1 //===- InstructionSimplify.cpp - Fold instruction operands ----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements routines for folding instructions into simpler forms 10 // that do not require creating new instructions. This does constant folding 11 // ("add i32 1, 1" -> "2") but can also handle non-constant operands, either 12 // returning a constant ("and i32 %x, 0" -> "0") or an already existing value 13 // ("and i32 %x, %x" -> "%x"). All operands are assumed to have already been 14 // simplified: This is usually true and assuming it simplifies the logic (if 15 // they have not been simplified then results are correct but maybe suboptimal). 16 // 17 //===----------------------------------------------------------------------===// 18 19 #include "llvm/Analysis/InstructionSimplify.h" 20 #include "llvm/ADT/SetVector.h" 21 #include "llvm/ADT/Statistic.h" 22 #include "llvm/Analysis/AliasAnalysis.h" 23 #include "llvm/Analysis/AssumptionCache.h" 24 #include "llvm/Analysis/CaptureTracking.h" 25 #include "llvm/Analysis/CmpInstAnalysis.h" 26 #include "llvm/Analysis/ConstantFolding.h" 27 #include "llvm/Analysis/LoopAnalysisManager.h" 28 #include "llvm/Analysis/MemoryBuiltins.h" 29 #include "llvm/Analysis/ValueTracking.h" 30 #include "llvm/Analysis/VectorUtils.h" 31 #include "llvm/IR/ConstantRange.h" 32 #include "llvm/IR/DataLayout.h" 33 #include "llvm/IR/Dominators.h" 34 #include "llvm/IR/GetElementPtrTypeIterator.h" 35 #include "llvm/IR/GlobalAlias.h" 36 #include "llvm/IR/InstrTypes.h" 37 #include "llvm/IR/Instructions.h" 38 #include "llvm/IR/Operator.h" 39 #include "llvm/IR/PatternMatch.h" 40 #include "llvm/IR/ValueHandle.h" 41 #include "llvm/Support/KnownBits.h" 42 #include <algorithm> 43 using namespace llvm; 44 using namespace llvm::PatternMatch; 45 46 #define DEBUG_TYPE "instsimplify" 47 48 enum { RecursionLimit = 3 }; 49 50 STATISTIC(NumExpand, "Number of expansions"); 51 STATISTIC(NumReassoc, "Number of reassociations"); 52 53 static Value *SimplifyAndInst(Value *, Value *, const SimplifyQuery &, unsigned); 54 static Value *simplifyUnOp(unsigned, Value *, const SimplifyQuery &, unsigned); 55 static Value *simplifyFPUnOp(unsigned, Value *, const FastMathFlags &, 56 const SimplifyQuery &, unsigned); 57 static Value *SimplifyBinOp(unsigned, Value *, Value *, const SimplifyQuery &, 58 unsigned); 59 static Value *SimplifyBinOp(unsigned, Value *, Value *, const FastMathFlags &, 60 const SimplifyQuery &, unsigned); 61 static Value *SimplifyCmpInst(unsigned, Value *, Value *, const SimplifyQuery &, 62 unsigned); 63 static Value *SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS, 64 const SimplifyQuery &Q, unsigned MaxRecurse); 65 static Value *SimplifyOrInst(Value *, Value *, const SimplifyQuery &, unsigned); 66 static Value *SimplifyXorInst(Value *, Value *, const SimplifyQuery &, unsigned); 67 static Value *SimplifyCastInst(unsigned, Value *, Type *, 68 const SimplifyQuery &, unsigned); 69 static Value *SimplifyGEPInst(Type *, ArrayRef<Value *>, const SimplifyQuery &, 70 unsigned); 71 72 static Value *foldSelectWithBinaryOp(Value *Cond, Value *TrueVal, 73 Value *FalseVal) { 74 BinaryOperator::BinaryOps BinOpCode; 75 if (auto *BO = dyn_cast<BinaryOperator>(Cond)) 76 BinOpCode = BO->getOpcode(); 77 else 78 return nullptr; 79 80 CmpInst::Predicate ExpectedPred, Pred1, Pred2; 81 if (BinOpCode == BinaryOperator::Or) { 82 ExpectedPred = ICmpInst::ICMP_NE; 83 } else if (BinOpCode == BinaryOperator::And) { 84 ExpectedPred = ICmpInst::ICMP_EQ; 85 } else 86 return nullptr; 87 88 // %A = icmp eq %TV, %FV 89 // %B = icmp eq %X, %Y (and one of these is a select operand) 90 // %C = and %A, %B 91 // %D = select %C, %TV, %FV 92 // --> 93 // %FV 94 95 // %A = icmp ne %TV, %FV 96 // %B = icmp ne %X, %Y (and one of these is a select operand) 97 // %C = or %A, %B 98 // %D = select %C, %TV, %FV 99 // --> 100 // %TV 101 Value *X, *Y; 102 if (!match(Cond, m_c_BinOp(m_c_ICmp(Pred1, m_Specific(TrueVal), 103 m_Specific(FalseVal)), 104 m_ICmp(Pred2, m_Value(X), m_Value(Y)))) || 105 Pred1 != Pred2 || Pred1 != ExpectedPred) 106 return nullptr; 107 108 if (X == TrueVal || X == FalseVal || Y == TrueVal || Y == FalseVal) 109 return BinOpCode == BinaryOperator::Or ? TrueVal : FalseVal; 110 111 return nullptr; 112 } 113 114 /// For a boolean type or a vector of boolean type, return false or a vector 115 /// with every element false. 116 static Constant *getFalse(Type *Ty) { 117 return ConstantInt::getFalse(Ty); 118 } 119 120 /// For a boolean type or a vector of boolean type, return true or a vector 121 /// with every element true. 122 static Constant *getTrue(Type *Ty) { 123 return ConstantInt::getTrue(Ty); 124 } 125 126 /// isSameCompare - Is V equivalent to the comparison "LHS Pred RHS"? 127 static bool isSameCompare(Value *V, CmpInst::Predicate Pred, Value *LHS, 128 Value *RHS) { 129 CmpInst *Cmp = dyn_cast<CmpInst>(V); 130 if (!Cmp) 131 return false; 132 CmpInst::Predicate CPred = Cmp->getPredicate(); 133 Value *CLHS = Cmp->getOperand(0), *CRHS = Cmp->getOperand(1); 134 if (CPred == Pred && CLHS == LHS && CRHS == RHS) 135 return true; 136 return CPred == CmpInst::getSwappedPredicate(Pred) && CLHS == RHS && 137 CRHS == LHS; 138 } 139 140 /// Does the given value dominate the specified phi node? 141 static bool valueDominatesPHI(Value *V, PHINode *P, const DominatorTree *DT) { 142 Instruction *I = dyn_cast<Instruction>(V); 143 if (!I) 144 // Arguments and constants dominate all instructions. 145 return true; 146 147 // If we are processing instructions (and/or basic blocks) that have not been 148 // fully added to a function, the parent nodes may still be null. Simply 149 // return the conservative answer in these cases. 150 if (!I->getParent() || !P->getParent() || !I->getFunction()) 151 return false; 152 153 // If we have a DominatorTree then do a precise test. 154 if (DT) 155 return DT->dominates(I, P); 156 157 // Otherwise, if the instruction is in the entry block and is not an invoke, 158 // then it obviously dominates all phi nodes. 159 if (I->getParent() == &I->getFunction()->getEntryBlock() && 160 !isa<InvokeInst>(I)) 161 return true; 162 163 return false; 164 } 165 166 /// Simplify "A op (B op' C)" by distributing op over op', turning it into 167 /// "(A op B) op' (A op C)". Here "op" is given by Opcode and "op'" is 168 /// given by OpcodeToExpand, while "A" corresponds to LHS and "B op' C" to RHS. 169 /// Also performs the transform "(A op' B) op C" -> "(A op C) op' (B op C)". 170 /// Returns the simplified value, or null if no simplification was performed. 171 static Value *ExpandBinOp(Instruction::BinaryOps Opcode, Value *LHS, Value *RHS, 172 Instruction::BinaryOps OpcodeToExpand, 173 const SimplifyQuery &Q, unsigned MaxRecurse) { 174 // Recursion is always used, so bail out at once if we already hit the limit. 175 if (!MaxRecurse--) 176 return nullptr; 177 178 // Check whether the expression has the form "(A op' B) op C". 179 if (BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS)) 180 if (Op0->getOpcode() == OpcodeToExpand) { 181 // It does! Try turning it into "(A op C) op' (B op C)". 182 Value *A = Op0->getOperand(0), *B = Op0->getOperand(1), *C = RHS; 183 // Do "A op C" and "B op C" both simplify? 184 if (Value *L = SimplifyBinOp(Opcode, A, C, Q, MaxRecurse)) 185 if (Value *R = SimplifyBinOp(Opcode, B, C, Q, MaxRecurse)) { 186 // They do! Return "L op' R" if it simplifies or is already available. 187 // If "L op' R" equals "A op' B" then "L op' R" is just the LHS. 188 if ((L == A && R == B) || (Instruction::isCommutative(OpcodeToExpand) 189 && L == B && R == A)) { 190 ++NumExpand; 191 return LHS; 192 } 193 // Otherwise return "L op' R" if it simplifies. 194 if (Value *V = SimplifyBinOp(OpcodeToExpand, L, R, Q, MaxRecurse)) { 195 ++NumExpand; 196 return V; 197 } 198 } 199 } 200 201 // Check whether the expression has the form "A op (B op' C)". 202 if (BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS)) 203 if (Op1->getOpcode() == OpcodeToExpand) { 204 // It does! Try turning it into "(A op B) op' (A op C)". 205 Value *A = LHS, *B = Op1->getOperand(0), *C = Op1->getOperand(1); 206 // Do "A op B" and "A op C" both simplify? 207 if (Value *L = SimplifyBinOp(Opcode, A, B, Q, MaxRecurse)) 208 if (Value *R = SimplifyBinOp(Opcode, A, C, Q, MaxRecurse)) { 209 // They do! Return "L op' R" if it simplifies or is already available. 210 // If "L op' R" equals "B op' C" then "L op' R" is just the RHS. 211 if ((L == B && R == C) || (Instruction::isCommutative(OpcodeToExpand) 212 && L == C && R == B)) { 213 ++NumExpand; 214 return RHS; 215 } 216 // Otherwise return "L op' R" if it simplifies. 217 if (Value *V = SimplifyBinOp(OpcodeToExpand, L, R, Q, MaxRecurse)) { 218 ++NumExpand; 219 return V; 220 } 221 } 222 } 223 224 return nullptr; 225 } 226 227 /// Generic simplifications for associative binary operations. 228 /// Returns the simpler value, or null if none was found. 229 static Value *SimplifyAssociativeBinOp(Instruction::BinaryOps Opcode, 230 Value *LHS, Value *RHS, 231 const SimplifyQuery &Q, 232 unsigned MaxRecurse) { 233 assert(Instruction::isAssociative(Opcode) && "Not an associative operation!"); 234 235 // Recursion is always used, so bail out at once if we already hit the limit. 236 if (!MaxRecurse--) 237 return nullptr; 238 239 BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS); 240 BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS); 241 242 // Transform: "(A op B) op C" ==> "A op (B op C)" if it simplifies completely. 243 if (Op0 && Op0->getOpcode() == Opcode) { 244 Value *A = Op0->getOperand(0); 245 Value *B = Op0->getOperand(1); 246 Value *C = RHS; 247 248 // Does "B op C" simplify? 249 if (Value *V = SimplifyBinOp(Opcode, B, C, Q, MaxRecurse)) { 250 // It does! Return "A op V" if it simplifies or is already available. 251 // If V equals B then "A op V" is just the LHS. 252 if (V == B) return LHS; 253 // Otherwise return "A op V" if it simplifies. 254 if (Value *W = SimplifyBinOp(Opcode, A, V, Q, MaxRecurse)) { 255 ++NumReassoc; 256 return W; 257 } 258 } 259 } 260 261 // Transform: "A op (B op C)" ==> "(A op B) op C" if it simplifies completely. 262 if (Op1 && Op1->getOpcode() == Opcode) { 263 Value *A = LHS; 264 Value *B = Op1->getOperand(0); 265 Value *C = Op1->getOperand(1); 266 267 // Does "A op B" simplify? 268 if (Value *V = SimplifyBinOp(Opcode, A, B, Q, MaxRecurse)) { 269 // It does! Return "V op C" if it simplifies or is already available. 270 // If V equals B then "V op C" is just the RHS. 271 if (V == B) return RHS; 272 // Otherwise return "V op C" if it simplifies. 273 if (Value *W = SimplifyBinOp(Opcode, V, C, Q, MaxRecurse)) { 274 ++NumReassoc; 275 return W; 276 } 277 } 278 } 279 280 // The remaining transforms require commutativity as well as associativity. 281 if (!Instruction::isCommutative(Opcode)) 282 return nullptr; 283 284 // Transform: "(A op B) op C" ==> "(C op A) op B" if it simplifies completely. 285 if (Op0 && Op0->getOpcode() == Opcode) { 286 Value *A = Op0->getOperand(0); 287 Value *B = Op0->getOperand(1); 288 Value *C = RHS; 289 290 // Does "C op A" simplify? 291 if (Value *V = SimplifyBinOp(Opcode, C, A, Q, MaxRecurse)) { 292 // It does! Return "V op B" if it simplifies or is already available. 293 // If V equals A then "V op B" is just the LHS. 294 if (V == A) return LHS; 295 // Otherwise return "V op B" if it simplifies. 296 if (Value *W = SimplifyBinOp(Opcode, V, B, Q, MaxRecurse)) { 297 ++NumReassoc; 298 return W; 299 } 300 } 301 } 302 303 // Transform: "A op (B op C)" ==> "B op (C op A)" if it simplifies completely. 304 if (Op1 && Op1->getOpcode() == Opcode) { 305 Value *A = LHS; 306 Value *B = Op1->getOperand(0); 307 Value *C = Op1->getOperand(1); 308 309 // Does "C op A" simplify? 310 if (Value *V = SimplifyBinOp(Opcode, C, A, Q, MaxRecurse)) { 311 // It does! Return "B op V" if it simplifies or is already available. 312 // If V equals C then "B op V" is just the RHS. 313 if (V == C) return RHS; 314 // Otherwise return "B op V" if it simplifies. 315 if (Value *W = SimplifyBinOp(Opcode, B, V, Q, MaxRecurse)) { 316 ++NumReassoc; 317 return W; 318 } 319 } 320 } 321 322 return nullptr; 323 } 324 325 /// In the case of a binary operation with a select instruction as an operand, 326 /// try to simplify the binop by seeing whether evaluating it on both branches 327 /// of the select results in the same value. Returns the common value if so, 328 /// otherwise returns null. 329 static Value *ThreadBinOpOverSelect(Instruction::BinaryOps Opcode, Value *LHS, 330 Value *RHS, const SimplifyQuery &Q, 331 unsigned MaxRecurse) { 332 // Recursion is always used, so bail out at once if we already hit the limit. 333 if (!MaxRecurse--) 334 return nullptr; 335 336 SelectInst *SI; 337 if (isa<SelectInst>(LHS)) { 338 SI = cast<SelectInst>(LHS); 339 } else { 340 assert(isa<SelectInst>(RHS) && "No select instruction operand!"); 341 SI = cast<SelectInst>(RHS); 342 } 343 344 // Evaluate the BinOp on the true and false branches of the select. 345 Value *TV; 346 Value *FV; 347 if (SI == LHS) { 348 TV = SimplifyBinOp(Opcode, SI->getTrueValue(), RHS, Q, MaxRecurse); 349 FV = SimplifyBinOp(Opcode, SI->getFalseValue(), RHS, Q, MaxRecurse); 350 } else { 351 TV = SimplifyBinOp(Opcode, LHS, SI->getTrueValue(), Q, MaxRecurse); 352 FV = SimplifyBinOp(Opcode, LHS, SI->getFalseValue(), Q, MaxRecurse); 353 } 354 355 // If they simplified to the same value, then return the common value. 356 // If they both failed to simplify then return null. 357 if (TV == FV) 358 return TV; 359 360 // If one branch simplified to undef, return the other one. 361 if (TV && isa<UndefValue>(TV)) 362 return FV; 363 if (FV && isa<UndefValue>(FV)) 364 return TV; 365 366 // If applying the operation did not change the true and false select values, 367 // then the result of the binop is the select itself. 368 if (TV == SI->getTrueValue() && FV == SI->getFalseValue()) 369 return SI; 370 371 // If one branch simplified and the other did not, and the simplified 372 // value is equal to the unsimplified one, return the simplified value. 373 // For example, select (cond, X, X & Z) & Z -> X & Z. 374 if ((FV && !TV) || (TV && !FV)) { 375 // Check that the simplified value has the form "X op Y" where "op" is the 376 // same as the original operation. 377 Instruction *Simplified = dyn_cast<Instruction>(FV ? FV : TV); 378 if (Simplified && Simplified->getOpcode() == unsigned(Opcode)) { 379 // The value that didn't simplify is "UnsimplifiedLHS op UnsimplifiedRHS". 380 // We already know that "op" is the same as for the simplified value. See 381 // if the operands match too. If so, return the simplified value. 382 Value *UnsimplifiedBranch = FV ? SI->getTrueValue() : SI->getFalseValue(); 383 Value *UnsimplifiedLHS = SI == LHS ? UnsimplifiedBranch : LHS; 384 Value *UnsimplifiedRHS = SI == LHS ? RHS : UnsimplifiedBranch; 385 if (Simplified->getOperand(0) == UnsimplifiedLHS && 386 Simplified->getOperand(1) == UnsimplifiedRHS) 387 return Simplified; 388 if (Simplified->isCommutative() && 389 Simplified->getOperand(1) == UnsimplifiedLHS && 390 Simplified->getOperand(0) == UnsimplifiedRHS) 391 return Simplified; 392 } 393 } 394 395 return nullptr; 396 } 397 398 /// In the case of a comparison with a select instruction, try to simplify the 399 /// comparison by seeing whether both branches of the select result in the same 400 /// value. Returns the common value if so, otherwise returns null. 401 static Value *ThreadCmpOverSelect(CmpInst::Predicate Pred, Value *LHS, 402 Value *RHS, const SimplifyQuery &Q, 403 unsigned MaxRecurse) { 404 // Recursion is always used, so bail out at once if we already hit the limit. 405 if (!MaxRecurse--) 406 return nullptr; 407 408 // Make sure the select is on the LHS. 409 if (!isa<SelectInst>(LHS)) { 410 std::swap(LHS, RHS); 411 Pred = CmpInst::getSwappedPredicate(Pred); 412 } 413 assert(isa<SelectInst>(LHS) && "Not comparing with a select instruction!"); 414 SelectInst *SI = cast<SelectInst>(LHS); 415 Value *Cond = SI->getCondition(); 416 Value *TV = SI->getTrueValue(); 417 Value *FV = SI->getFalseValue(); 418 419 // Now that we have "cmp select(Cond, TV, FV), RHS", analyse it. 420 // Does "cmp TV, RHS" simplify? 421 Value *TCmp = SimplifyCmpInst(Pred, TV, RHS, Q, MaxRecurse); 422 if (TCmp == Cond) { 423 // It not only simplified, it simplified to the select condition. Replace 424 // it with 'true'. 425 TCmp = getTrue(Cond->getType()); 426 } else if (!TCmp) { 427 // It didn't simplify. However if "cmp TV, RHS" is equal to the select 428 // condition then we can replace it with 'true'. Otherwise give up. 429 if (!isSameCompare(Cond, Pred, TV, RHS)) 430 return nullptr; 431 TCmp = getTrue(Cond->getType()); 432 } 433 434 // Does "cmp FV, RHS" simplify? 435 Value *FCmp = SimplifyCmpInst(Pred, FV, RHS, Q, MaxRecurse); 436 if (FCmp == Cond) { 437 // It not only simplified, it simplified to the select condition. Replace 438 // it with 'false'. 439 FCmp = getFalse(Cond->getType()); 440 } else if (!FCmp) { 441 // It didn't simplify. However if "cmp FV, RHS" is equal to the select 442 // condition then we can replace it with 'false'. Otherwise give up. 443 if (!isSameCompare(Cond, Pred, FV, RHS)) 444 return nullptr; 445 FCmp = getFalse(Cond->getType()); 446 } 447 448 // If both sides simplified to the same value, then use it as the result of 449 // the original comparison. 450 if (TCmp == FCmp) 451 return TCmp; 452 453 // The remaining cases only make sense if the select condition has the same 454 // type as the result of the comparison, so bail out if this is not so. 455 if (Cond->getType()->isVectorTy() != RHS->getType()->isVectorTy()) 456 return nullptr; 457 // If the false value simplified to false, then the result of the compare 458 // is equal to "Cond && TCmp". This also catches the case when the false 459 // value simplified to false and the true value to true, returning "Cond". 460 if (match(FCmp, m_Zero())) 461 if (Value *V = SimplifyAndInst(Cond, TCmp, Q, MaxRecurse)) 462 return V; 463 // If the true value simplified to true, then the result of the compare 464 // is equal to "Cond || FCmp". 465 if (match(TCmp, m_One())) 466 if (Value *V = SimplifyOrInst(Cond, FCmp, Q, MaxRecurse)) 467 return V; 468 // Finally, if the false value simplified to true and the true value to 469 // false, then the result of the compare is equal to "!Cond". 470 if (match(FCmp, m_One()) && match(TCmp, m_Zero())) 471 if (Value *V = 472 SimplifyXorInst(Cond, Constant::getAllOnesValue(Cond->getType()), 473 Q, MaxRecurse)) 474 return V; 475 476 return nullptr; 477 } 478 479 /// In the case of a binary operation with an operand that is a PHI instruction, 480 /// try to simplify the binop by seeing whether evaluating it on the incoming 481 /// phi values yields the same result for every value. If so returns the common 482 /// value, otherwise returns null. 483 static Value *ThreadBinOpOverPHI(Instruction::BinaryOps Opcode, Value *LHS, 484 Value *RHS, const SimplifyQuery &Q, 485 unsigned MaxRecurse) { 486 // Recursion is always used, so bail out at once if we already hit the limit. 487 if (!MaxRecurse--) 488 return nullptr; 489 490 PHINode *PI; 491 if (isa<PHINode>(LHS)) { 492 PI = cast<PHINode>(LHS); 493 // Bail out if RHS and the phi may be mutually interdependent due to a loop. 494 if (!valueDominatesPHI(RHS, PI, Q.DT)) 495 return nullptr; 496 } else { 497 assert(isa<PHINode>(RHS) && "No PHI instruction operand!"); 498 PI = cast<PHINode>(RHS); 499 // Bail out if LHS and the phi may be mutually interdependent due to a loop. 500 if (!valueDominatesPHI(LHS, PI, Q.DT)) 501 return nullptr; 502 } 503 504 // Evaluate the BinOp on the incoming phi values. 505 Value *CommonValue = nullptr; 506 for (Value *Incoming : PI->incoming_values()) { 507 // If the incoming value is the phi node itself, it can safely be skipped. 508 if (Incoming == PI) continue; 509 Value *V = PI == LHS ? 510 SimplifyBinOp(Opcode, Incoming, RHS, Q, MaxRecurse) : 511 SimplifyBinOp(Opcode, LHS, Incoming, Q, MaxRecurse); 512 // If the operation failed to simplify, or simplified to a different value 513 // to previously, then give up. 514 if (!V || (CommonValue && V != CommonValue)) 515 return nullptr; 516 CommonValue = V; 517 } 518 519 return CommonValue; 520 } 521 522 /// In the case of a comparison with a PHI instruction, try to simplify the 523 /// comparison by seeing whether comparing with all of the incoming phi values 524 /// yields the same result every time. If so returns the common result, 525 /// otherwise returns null. 526 static Value *ThreadCmpOverPHI(CmpInst::Predicate Pred, Value *LHS, Value *RHS, 527 const SimplifyQuery &Q, unsigned MaxRecurse) { 528 // Recursion is always used, so bail out at once if we already hit the limit. 529 if (!MaxRecurse--) 530 return nullptr; 531 532 // Make sure the phi is on the LHS. 533 if (!isa<PHINode>(LHS)) { 534 std::swap(LHS, RHS); 535 Pred = CmpInst::getSwappedPredicate(Pred); 536 } 537 assert(isa<PHINode>(LHS) && "Not comparing with a phi instruction!"); 538 PHINode *PI = cast<PHINode>(LHS); 539 540 // Bail out if RHS and the phi may be mutually interdependent due to a loop. 541 if (!valueDominatesPHI(RHS, PI, Q.DT)) 542 return nullptr; 543 544 // Evaluate the BinOp on the incoming phi values. 545 Value *CommonValue = nullptr; 546 for (Value *Incoming : PI->incoming_values()) { 547 // If the incoming value is the phi node itself, it can safely be skipped. 548 if (Incoming == PI) continue; 549 Value *V = SimplifyCmpInst(Pred, Incoming, RHS, Q, MaxRecurse); 550 // If the operation failed to simplify, or simplified to a different value 551 // to previously, then give up. 552 if (!V || (CommonValue && V != CommonValue)) 553 return nullptr; 554 CommonValue = V; 555 } 556 557 return CommonValue; 558 } 559 560 static Constant *foldOrCommuteConstant(Instruction::BinaryOps Opcode, 561 Value *&Op0, Value *&Op1, 562 const SimplifyQuery &Q) { 563 if (auto *CLHS = dyn_cast<Constant>(Op0)) { 564 if (auto *CRHS = dyn_cast<Constant>(Op1)) 565 return ConstantFoldBinaryOpOperands(Opcode, CLHS, CRHS, Q.DL); 566 567 // Canonicalize the constant to the RHS if this is a commutative operation. 568 if (Instruction::isCommutative(Opcode)) 569 std::swap(Op0, Op1); 570 } 571 return nullptr; 572 } 573 574 /// Given operands for an Add, see if we can fold the result. 575 /// If not, this returns null. 576 static Value *SimplifyAddInst(Value *Op0, Value *Op1, bool IsNSW, bool IsNUW, 577 const SimplifyQuery &Q, unsigned MaxRecurse) { 578 if (Constant *C = foldOrCommuteConstant(Instruction::Add, Op0, Op1, Q)) 579 return C; 580 581 // X + undef -> undef 582 if (match(Op1, m_Undef())) 583 return Op1; 584 585 // X + 0 -> X 586 if (match(Op1, m_Zero())) 587 return Op0; 588 589 // If two operands are negative, return 0. 590 if (isKnownNegation(Op0, Op1)) 591 return Constant::getNullValue(Op0->getType()); 592 593 // X + (Y - X) -> Y 594 // (Y - X) + X -> Y 595 // Eg: X + -X -> 0 596 Value *Y = nullptr; 597 if (match(Op1, m_Sub(m_Value(Y), m_Specific(Op0))) || 598 match(Op0, m_Sub(m_Value(Y), m_Specific(Op1)))) 599 return Y; 600 601 // X + ~X -> -1 since ~X = -X-1 602 Type *Ty = Op0->getType(); 603 if (match(Op0, m_Not(m_Specific(Op1))) || 604 match(Op1, m_Not(m_Specific(Op0)))) 605 return Constant::getAllOnesValue(Ty); 606 607 // add nsw/nuw (xor Y, signmask), signmask --> Y 608 // The no-wrapping add guarantees that the top bit will be set by the add. 609 // Therefore, the xor must be clearing the already set sign bit of Y. 610 if ((IsNSW || IsNUW) && match(Op1, m_SignMask()) && 611 match(Op0, m_Xor(m_Value(Y), m_SignMask()))) 612 return Y; 613 614 // add nuw %x, -1 -> -1, because %x can only be 0. 615 if (IsNUW && match(Op1, m_AllOnes())) 616 return Op1; // Which is -1. 617 618 /// i1 add -> xor. 619 if (MaxRecurse && Op0->getType()->isIntOrIntVectorTy(1)) 620 if (Value *V = SimplifyXorInst(Op0, Op1, Q, MaxRecurse-1)) 621 return V; 622 623 // Try some generic simplifications for associative operations. 624 if (Value *V = SimplifyAssociativeBinOp(Instruction::Add, Op0, Op1, Q, 625 MaxRecurse)) 626 return V; 627 628 // Threading Add over selects and phi nodes is pointless, so don't bother. 629 // Threading over the select in "A + select(cond, B, C)" means evaluating 630 // "A+B" and "A+C" and seeing if they are equal; but they are equal if and 631 // only if B and C are equal. If B and C are equal then (since we assume 632 // that operands have already been simplified) "select(cond, B, C)" should 633 // have been simplified to the common value of B and C already. Analysing 634 // "A+B" and "A+C" thus gains nothing, but costs compile time. Similarly 635 // for threading over phi nodes. 636 637 return nullptr; 638 } 639 640 Value *llvm::SimplifyAddInst(Value *Op0, Value *Op1, bool IsNSW, bool IsNUW, 641 const SimplifyQuery &Query) { 642 return ::SimplifyAddInst(Op0, Op1, IsNSW, IsNUW, Query, RecursionLimit); 643 } 644 645 /// Compute the base pointer and cumulative constant offsets for V. 646 /// 647 /// This strips all constant offsets off of V, leaving it the base pointer, and 648 /// accumulates the total constant offset applied in the returned constant. It 649 /// returns 0 if V is not a pointer, and returns the constant '0' if there are 650 /// no constant offsets applied. 651 /// 652 /// This is very similar to GetPointerBaseWithConstantOffset except it doesn't 653 /// follow non-inbounds geps. This allows it to remain usable for icmp ult/etc. 654 /// folding. 655 static Constant *stripAndComputeConstantOffsets(const DataLayout &DL, Value *&V, 656 bool AllowNonInbounds = false) { 657 assert(V->getType()->isPtrOrPtrVectorTy()); 658 659 Type *IntPtrTy = DL.getIntPtrType(V->getType())->getScalarType(); 660 APInt Offset = APInt::getNullValue(IntPtrTy->getIntegerBitWidth()); 661 662 V = V->stripAndAccumulateConstantOffsets(DL, Offset, AllowNonInbounds); 663 // As that strip may trace through `addrspacecast`, need to sext or trunc 664 // the offset calculated. 665 IntPtrTy = DL.getIntPtrType(V->getType())->getScalarType(); 666 Offset = Offset.sextOrTrunc(IntPtrTy->getIntegerBitWidth()); 667 668 Constant *OffsetIntPtr = ConstantInt::get(IntPtrTy, Offset); 669 if (V->getType()->isVectorTy()) 670 return ConstantVector::getSplat(V->getType()->getVectorNumElements(), 671 OffsetIntPtr); 672 return OffsetIntPtr; 673 } 674 675 /// Compute the constant difference between two pointer values. 676 /// If the difference is not a constant, returns zero. 677 static Constant *computePointerDifference(const DataLayout &DL, Value *LHS, 678 Value *RHS) { 679 Constant *LHSOffset = stripAndComputeConstantOffsets(DL, LHS); 680 Constant *RHSOffset = stripAndComputeConstantOffsets(DL, RHS); 681 682 // If LHS and RHS are not related via constant offsets to the same base 683 // value, there is nothing we can do here. 684 if (LHS != RHS) 685 return nullptr; 686 687 // Otherwise, the difference of LHS - RHS can be computed as: 688 // LHS - RHS 689 // = (LHSOffset + Base) - (RHSOffset + Base) 690 // = LHSOffset - RHSOffset 691 return ConstantExpr::getSub(LHSOffset, RHSOffset); 692 } 693 694 /// Given operands for a Sub, see if we can fold the result. 695 /// If not, this returns null. 696 static Value *SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, 697 const SimplifyQuery &Q, unsigned MaxRecurse) { 698 if (Constant *C = foldOrCommuteConstant(Instruction::Sub, Op0, Op1, Q)) 699 return C; 700 701 // X - undef -> undef 702 // undef - X -> undef 703 if (match(Op0, m_Undef()) || match(Op1, m_Undef())) 704 return UndefValue::get(Op0->getType()); 705 706 // X - 0 -> X 707 if (match(Op1, m_Zero())) 708 return Op0; 709 710 // X - X -> 0 711 if (Op0 == Op1) 712 return Constant::getNullValue(Op0->getType()); 713 714 // Is this a negation? 715 if (match(Op0, m_Zero())) { 716 // 0 - X -> 0 if the sub is NUW. 717 if (isNUW) 718 return Constant::getNullValue(Op0->getType()); 719 720 KnownBits Known = computeKnownBits(Op1, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 721 if (Known.Zero.isMaxSignedValue()) { 722 // Op1 is either 0 or the minimum signed value. If the sub is NSW, then 723 // Op1 must be 0 because negating the minimum signed value is undefined. 724 if (isNSW) 725 return Constant::getNullValue(Op0->getType()); 726 727 // 0 - X -> X if X is 0 or the minimum signed value. 728 return Op1; 729 } 730 } 731 732 // (X + Y) - Z -> X + (Y - Z) or Y + (X - Z) if everything simplifies. 733 // For example, (X + Y) - Y -> X; (Y + X) - Y -> X 734 Value *X = nullptr, *Y = nullptr, *Z = Op1; 735 if (MaxRecurse && match(Op0, m_Add(m_Value(X), m_Value(Y)))) { // (X + Y) - Z 736 // See if "V === Y - Z" simplifies. 737 if (Value *V = SimplifyBinOp(Instruction::Sub, Y, Z, Q, MaxRecurse-1)) 738 // It does! Now see if "X + V" simplifies. 739 if (Value *W = SimplifyBinOp(Instruction::Add, X, V, Q, MaxRecurse-1)) { 740 // It does, we successfully reassociated! 741 ++NumReassoc; 742 return W; 743 } 744 // See if "V === X - Z" simplifies. 745 if (Value *V = SimplifyBinOp(Instruction::Sub, X, Z, Q, MaxRecurse-1)) 746 // It does! Now see if "Y + V" simplifies. 747 if (Value *W = SimplifyBinOp(Instruction::Add, Y, V, Q, MaxRecurse-1)) { 748 // It does, we successfully reassociated! 749 ++NumReassoc; 750 return W; 751 } 752 } 753 754 // X - (Y + Z) -> (X - Y) - Z or (X - Z) - Y if everything simplifies. 755 // For example, X - (X + 1) -> -1 756 X = Op0; 757 if (MaxRecurse && match(Op1, m_Add(m_Value(Y), m_Value(Z)))) { // X - (Y + Z) 758 // See if "V === X - Y" simplifies. 759 if (Value *V = SimplifyBinOp(Instruction::Sub, X, Y, Q, MaxRecurse-1)) 760 // It does! Now see if "V - Z" simplifies. 761 if (Value *W = SimplifyBinOp(Instruction::Sub, V, Z, Q, MaxRecurse-1)) { 762 // It does, we successfully reassociated! 763 ++NumReassoc; 764 return W; 765 } 766 // See if "V === X - Z" simplifies. 767 if (Value *V = SimplifyBinOp(Instruction::Sub, X, Z, Q, MaxRecurse-1)) 768 // It does! Now see if "V - Y" simplifies. 769 if (Value *W = SimplifyBinOp(Instruction::Sub, V, Y, Q, MaxRecurse-1)) { 770 // It does, we successfully reassociated! 771 ++NumReassoc; 772 return W; 773 } 774 } 775 776 // Z - (X - Y) -> (Z - X) + Y if everything simplifies. 777 // For example, X - (X - Y) -> Y. 778 Z = Op0; 779 if (MaxRecurse && match(Op1, m_Sub(m_Value(X), m_Value(Y)))) // Z - (X - Y) 780 // See if "V === Z - X" simplifies. 781 if (Value *V = SimplifyBinOp(Instruction::Sub, Z, X, Q, MaxRecurse-1)) 782 // It does! Now see if "V + Y" simplifies. 783 if (Value *W = SimplifyBinOp(Instruction::Add, V, Y, Q, MaxRecurse-1)) { 784 // It does, we successfully reassociated! 785 ++NumReassoc; 786 return W; 787 } 788 789 // trunc(X) - trunc(Y) -> trunc(X - Y) if everything simplifies. 790 if (MaxRecurse && match(Op0, m_Trunc(m_Value(X))) && 791 match(Op1, m_Trunc(m_Value(Y)))) 792 if (X->getType() == Y->getType()) 793 // See if "V === X - Y" simplifies. 794 if (Value *V = SimplifyBinOp(Instruction::Sub, X, Y, Q, MaxRecurse-1)) 795 // It does! Now see if "trunc V" simplifies. 796 if (Value *W = SimplifyCastInst(Instruction::Trunc, V, Op0->getType(), 797 Q, MaxRecurse - 1)) 798 // It does, return the simplified "trunc V". 799 return W; 800 801 // Variations on GEP(base, I, ...) - GEP(base, i, ...) -> GEP(null, I-i, ...). 802 if (match(Op0, m_PtrToInt(m_Value(X))) && 803 match(Op1, m_PtrToInt(m_Value(Y)))) 804 if (Constant *Result = computePointerDifference(Q.DL, X, Y)) 805 return ConstantExpr::getIntegerCast(Result, Op0->getType(), true); 806 807 // i1 sub -> xor. 808 if (MaxRecurse && Op0->getType()->isIntOrIntVectorTy(1)) 809 if (Value *V = SimplifyXorInst(Op0, Op1, Q, MaxRecurse-1)) 810 return V; 811 812 // Threading Sub over selects and phi nodes is pointless, so don't bother. 813 // Threading over the select in "A - select(cond, B, C)" means evaluating 814 // "A-B" and "A-C" and seeing if they are equal; but they are equal if and 815 // only if B and C are equal. If B and C are equal then (since we assume 816 // that operands have already been simplified) "select(cond, B, C)" should 817 // have been simplified to the common value of B and C already. Analysing 818 // "A-B" and "A-C" thus gains nothing, but costs compile time. Similarly 819 // for threading over phi nodes. 820 821 return nullptr; 822 } 823 824 Value *llvm::SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, 825 const SimplifyQuery &Q) { 826 return ::SimplifySubInst(Op0, Op1, isNSW, isNUW, Q, RecursionLimit); 827 } 828 829 /// Given operands for a Mul, see if we can fold the result. 830 /// If not, this returns null. 831 static Value *SimplifyMulInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 832 unsigned MaxRecurse) { 833 if (Constant *C = foldOrCommuteConstant(Instruction::Mul, Op0, Op1, Q)) 834 return C; 835 836 // X * undef -> 0 837 // X * 0 -> 0 838 if (match(Op1, m_CombineOr(m_Undef(), m_Zero()))) 839 return Constant::getNullValue(Op0->getType()); 840 841 // X * 1 -> X 842 if (match(Op1, m_One())) 843 return Op0; 844 845 // (X / Y) * Y -> X if the division is exact. 846 Value *X = nullptr; 847 if (Q.IIQ.UseInstrInfo && 848 (match(Op0, 849 m_Exact(m_IDiv(m_Value(X), m_Specific(Op1)))) || // (X / Y) * Y 850 match(Op1, m_Exact(m_IDiv(m_Value(X), m_Specific(Op0)))))) // Y * (X / Y) 851 return X; 852 853 // i1 mul -> and. 854 if (MaxRecurse && Op0->getType()->isIntOrIntVectorTy(1)) 855 if (Value *V = SimplifyAndInst(Op0, Op1, Q, MaxRecurse-1)) 856 return V; 857 858 // Try some generic simplifications for associative operations. 859 if (Value *V = SimplifyAssociativeBinOp(Instruction::Mul, Op0, Op1, Q, 860 MaxRecurse)) 861 return V; 862 863 // Mul distributes over Add. Try some generic simplifications based on this. 864 if (Value *V = ExpandBinOp(Instruction::Mul, Op0, Op1, Instruction::Add, 865 Q, MaxRecurse)) 866 return V; 867 868 // If the operation is with the result of a select instruction, check whether 869 // operating on either branch of the select always yields the same value. 870 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 871 if (Value *V = ThreadBinOpOverSelect(Instruction::Mul, Op0, Op1, Q, 872 MaxRecurse)) 873 return V; 874 875 // If the operation is with the result of a phi instruction, check whether 876 // operating on all incoming values of the phi always yields the same value. 877 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 878 if (Value *V = ThreadBinOpOverPHI(Instruction::Mul, Op0, Op1, Q, 879 MaxRecurse)) 880 return V; 881 882 return nullptr; 883 } 884 885 Value *llvm::SimplifyMulInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 886 return ::SimplifyMulInst(Op0, Op1, Q, RecursionLimit); 887 } 888 889 /// Check for common or similar folds of integer division or integer remainder. 890 /// This applies to all 4 opcodes (sdiv/udiv/srem/urem). 891 static Value *simplifyDivRem(Value *Op0, Value *Op1, bool IsDiv) { 892 Type *Ty = Op0->getType(); 893 894 // X / undef -> undef 895 // X % undef -> undef 896 if (match(Op1, m_Undef())) 897 return Op1; 898 899 // X / 0 -> undef 900 // X % 0 -> undef 901 // We don't need to preserve faults! 902 if (match(Op1, m_Zero())) 903 return UndefValue::get(Ty); 904 905 // If any element of a constant divisor vector is zero or undef, the whole op 906 // is undef. 907 auto *Op1C = dyn_cast<Constant>(Op1); 908 if (Op1C && Ty->isVectorTy()) { 909 unsigned NumElts = Ty->getVectorNumElements(); 910 for (unsigned i = 0; i != NumElts; ++i) { 911 Constant *Elt = Op1C->getAggregateElement(i); 912 if (Elt && (Elt->isNullValue() || isa<UndefValue>(Elt))) 913 return UndefValue::get(Ty); 914 } 915 } 916 917 // undef / X -> 0 918 // undef % X -> 0 919 if (match(Op0, m_Undef())) 920 return Constant::getNullValue(Ty); 921 922 // 0 / X -> 0 923 // 0 % X -> 0 924 if (match(Op0, m_Zero())) 925 return Constant::getNullValue(Op0->getType()); 926 927 // X / X -> 1 928 // X % X -> 0 929 if (Op0 == Op1) 930 return IsDiv ? ConstantInt::get(Ty, 1) : Constant::getNullValue(Ty); 931 932 // X / 1 -> X 933 // X % 1 -> 0 934 // If this is a boolean op (single-bit element type), we can't have 935 // division-by-zero or remainder-by-zero, so assume the divisor is 1. 936 // Similarly, if we're zero-extending a boolean divisor, then assume it's a 1. 937 Value *X; 938 if (match(Op1, m_One()) || Ty->isIntOrIntVectorTy(1) || 939 (match(Op1, m_ZExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1))) 940 return IsDiv ? Op0 : Constant::getNullValue(Ty); 941 942 return nullptr; 943 } 944 945 /// Given a predicate and two operands, return true if the comparison is true. 946 /// This is a helper for div/rem simplification where we return some other value 947 /// when we can prove a relationship between the operands. 948 static bool isICmpTrue(ICmpInst::Predicate Pred, Value *LHS, Value *RHS, 949 const SimplifyQuery &Q, unsigned MaxRecurse) { 950 Value *V = SimplifyICmpInst(Pred, LHS, RHS, Q, MaxRecurse); 951 Constant *C = dyn_cast_or_null<Constant>(V); 952 return (C && C->isAllOnesValue()); 953 } 954 955 /// Return true if we can simplify X / Y to 0. Remainder can adapt that answer 956 /// to simplify X % Y to X. 957 static bool isDivZero(Value *X, Value *Y, const SimplifyQuery &Q, 958 unsigned MaxRecurse, bool IsSigned) { 959 // Recursion is always used, so bail out at once if we already hit the limit. 960 if (!MaxRecurse--) 961 return false; 962 963 if (IsSigned) { 964 // |X| / |Y| --> 0 965 // 966 // We require that 1 operand is a simple constant. That could be extended to 967 // 2 variables if we computed the sign bit for each. 968 // 969 // Make sure that a constant is not the minimum signed value because taking 970 // the abs() of that is undefined. 971 Type *Ty = X->getType(); 972 const APInt *C; 973 if (match(X, m_APInt(C)) && !C->isMinSignedValue()) { 974 // Is the variable divisor magnitude always greater than the constant 975 // dividend magnitude? 976 // |Y| > |C| --> Y < -abs(C) or Y > abs(C) 977 Constant *PosDividendC = ConstantInt::get(Ty, C->abs()); 978 Constant *NegDividendC = ConstantInt::get(Ty, -C->abs()); 979 if (isICmpTrue(CmpInst::ICMP_SLT, Y, NegDividendC, Q, MaxRecurse) || 980 isICmpTrue(CmpInst::ICMP_SGT, Y, PosDividendC, Q, MaxRecurse)) 981 return true; 982 } 983 if (match(Y, m_APInt(C))) { 984 // Special-case: we can't take the abs() of a minimum signed value. If 985 // that's the divisor, then all we have to do is prove that the dividend 986 // is also not the minimum signed value. 987 if (C->isMinSignedValue()) 988 return isICmpTrue(CmpInst::ICMP_NE, X, Y, Q, MaxRecurse); 989 990 // Is the variable dividend magnitude always less than the constant 991 // divisor magnitude? 992 // |X| < |C| --> X > -abs(C) and X < abs(C) 993 Constant *PosDivisorC = ConstantInt::get(Ty, C->abs()); 994 Constant *NegDivisorC = ConstantInt::get(Ty, -C->abs()); 995 if (isICmpTrue(CmpInst::ICMP_SGT, X, NegDivisorC, Q, MaxRecurse) && 996 isICmpTrue(CmpInst::ICMP_SLT, X, PosDivisorC, Q, MaxRecurse)) 997 return true; 998 } 999 return false; 1000 } 1001 1002 // IsSigned == false. 1003 // Is the dividend unsigned less than the divisor? 1004 return isICmpTrue(ICmpInst::ICMP_ULT, X, Y, Q, MaxRecurse); 1005 } 1006 1007 /// These are simplifications common to SDiv and UDiv. 1008 static Value *simplifyDiv(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1, 1009 const SimplifyQuery &Q, unsigned MaxRecurse) { 1010 if (Constant *C = foldOrCommuteConstant(Opcode, Op0, Op1, Q)) 1011 return C; 1012 1013 if (Value *V = simplifyDivRem(Op0, Op1, true)) 1014 return V; 1015 1016 bool IsSigned = Opcode == Instruction::SDiv; 1017 1018 // (X * Y) / Y -> X if the multiplication does not overflow. 1019 Value *X; 1020 if (match(Op0, m_c_Mul(m_Value(X), m_Specific(Op1)))) { 1021 auto *Mul = cast<OverflowingBinaryOperator>(Op0); 1022 // If the Mul does not overflow, then we are good to go. 1023 if ((IsSigned && Q.IIQ.hasNoSignedWrap(Mul)) || 1024 (!IsSigned && Q.IIQ.hasNoUnsignedWrap(Mul))) 1025 return X; 1026 // If X has the form X = A / Y, then X * Y cannot overflow. 1027 if ((IsSigned && match(X, m_SDiv(m_Value(), m_Specific(Op1)))) || 1028 (!IsSigned && match(X, m_UDiv(m_Value(), m_Specific(Op1))))) 1029 return X; 1030 } 1031 1032 // (X rem Y) / Y -> 0 1033 if ((IsSigned && match(Op0, m_SRem(m_Value(), m_Specific(Op1)))) || 1034 (!IsSigned && match(Op0, m_URem(m_Value(), m_Specific(Op1))))) 1035 return Constant::getNullValue(Op0->getType()); 1036 1037 // (X /u C1) /u C2 -> 0 if C1 * C2 overflow 1038 ConstantInt *C1, *C2; 1039 if (!IsSigned && match(Op0, m_UDiv(m_Value(X), m_ConstantInt(C1))) && 1040 match(Op1, m_ConstantInt(C2))) { 1041 bool Overflow; 1042 (void)C1->getValue().umul_ov(C2->getValue(), Overflow); 1043 if (Overflow) 1044 return Constant::getNullValue(Op0->getType()); 1045 } 1046 1047 // If the operation is with the result of a select instruction, check whether 1048 // operating on either branch of the select always yields the same value. 1049 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 1050 if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse)) 1051 return V; 1052 1053 // If the operation is with the result of a phi instruction, check whether 1054 // operating on all incoming values of the phi always yields the same value. 1055 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 1056 if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse)) 1057 return V; 1058 1059 if (isDivZero(Op0, Op1, Q, MaxRecurse, IsSigned)) 1060 return Constant::getNullValue(Op0->getType()); 1061 1062 return nullptr; 1063 } 1064 1065 /// These are simplifications common to SRem and URem. 1066 static Value *simplifyRem(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1, 1067 const SimplifyQuery &Q, unsigned MaxRecurse) { 1068 if (Constant *C = foldOrCommuteConstant(Opcode, Op0, Op1, Q)) 1069 return C; 1070 1071 if (Value *V = simplifyDivRem(Op0, Op1, false)) 1072 return V; 1073 1074 // (X % Y) % Y -> X % Y 1075 if ((Opcode == Instruction::SRem && 1076 match(Op0, m_SRem(m_Value(), m_Specific(Op1)))) || 1077 (Opcode == Instruction::URem && 1078 match(Op0, m_URem(m_Value(), m_Specific(Op1))))) 1079 return Op0; 1080 1081 // (X << Y) % X -> 0 1082 if (Q.IIQ.UseInstrInfo && 1083 ((Opcode == Instruction::SRem && 1084 match(Op0, m_NSWShl(m_Specific(Op1), m_Value()))) || 1085 (Opcode == Instruction::URem && 1086 match(Op0, m_NUWShl(m_Specific(Op1), m_Value()))))) 1087 return Constant::getNullValue(Op0->getType()); 1088 1089 // If the operation is with the result of a select instruction, check whether 1090 // operating on either branch of the select always yields the same value. 1091 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 1092 if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse)) 1093 return V; 1094 1095 // If the operation is with the result of a phi instruction, check whether 1096 // operating on all incoming values of the phi always yields the same value. 1097 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 1098 if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse)) 1099 return V; 1100 1101 // If X / Y == 0, then X % Y == X. 1102 if (isDivZero(Op0, Op1, Q, MaxRecurse, Opcode == Instruction::SRem)) 1103 return Op0; 1104 1105 return nullptr; 1106 } 1107 1108 /// Given operands for an SDiv, see if we can fold the result. 1109 /// If not, this returns null. 1110 static Value *SimplifySDivInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 1111 unsigned MaxRecurse) { 1112 // If two operands are negated and no signed overflow, return -1. 1113 if (isKnownNegation(Op0, Op1, /*NeedNSW=*/true)) 1114 return Constant::getAllOnesValue(Op0->getType()); 1115 1116 return simplifyDiv(Instruction::SDiv, Op0, Op1, Q, MaxRecurse); 1117 } 1118 1119 Value *llvm::SimplifySDivInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 1120 return ::SimplifySDivInst(Op0, Op1, Q, RecursionLimit); 1121 } 1122 1123 /// Given operands for a UDiv, see if we can fold the result. 1124 /// If not, this returns null. 1125 static Value *SimplifyUDivInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 1126 unsigned MaxRecurse) { 1127 return simplifyDiv(Instruction::UDiv, Op0, Op1, Q, MaxRecurse); 1128 } 1129 1130 Value *llvm::SimplifyUDivInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 1131 return ::SimplifyUDivInst(Op0, Op1, Q, RecursionLimit); 1132 } 1133 1134 /// Given operands for an SRem, see if we can fold the result. 1135 /// If not, this returns null. 1136 static Value *SimplifySRemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 1137 unsigned MaxRecurse) { 1138 // If the divisor is 0, the result is undefined, so assume the divisor is -1. 1139 // srem Op0, (sext i1 X) --> srem Op0, -1 --> 0 1140 Value *X; 1141 if (match(Op1, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)) 1142 return ConstantInt::getNullValue(Op0->getType()); 1143 1144 // If the two operands are negated, return 0. 1145 if (isKnownNegation(Op0, Op1)) 1146 return ConstantInt::getNullValue(Op0->getType()); 1147 1148 return simplifyRem(Instruction::SRem, Op0, Op1, Q, MaxRecurse); 1149 } 1150 1151 Value *llvm::SimplifySRemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 1152 return ::SimplifySRemInst(Op0, Op1, Q, RecursionLimit); 1153 } 1154 1155 /// Given operands for a URem, see if we can fold the result. 1156 /// If not, this returns null. 1157 static Value *SimplifyURemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 1158 unsigned MaxRecurse) { 1159 return simplifyRem(Instruction::URem, Op0, Op1, Q, MaxRecurse); 1160 } 1161 1162 Value *llvm::SimplifyURemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 1163 return ::SimplifyURemInst(Op0, Op1, Q, RecursionLimit); 1164 } 1165 1166 /// Returns true if a shift by \c Amount always yields undef. 1167 static bool isUndefShift(Value *Amount) { 1168 Constant *C = dyn_cast<Constant>(Amount); 1169 if (!C) 1170 return false; 1171 1172 // X shift by undef -> undef because it may shift by the bitwidth. 1173 if (isa<UndefValue>(C)) 1174 return true; 1175 1176 // Shifting by the bitwidth or more is undefined. 1177 if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1178 if (CI->getValue().getLimitedValue() >= 1179 CI->getType()->getScalarSizeInBits()) 1180 return true; 1181 1182 // If all lanes of a vector shift are undefined the whole shift is. 1183 if (isa<ConstantVector>(C) || isa<ConstantDataVector>(C)) { 1184 for (unsigned I = 0, E = C->getType()->getVectorNumElements(); I != E; ++I) 1185 if (!isUndefShift(C->getAggregateElement(I))) 1186 return false; 1187 return true; 1188 } 1189 1190 return false; 1191 } 1192 1193 /// Given operands for an Shl, LShr or AShr, see if we can fold the result. 1194 /// If not, this returns null. 1195 static Value *SimplifyShift(Instruction::BinaryOps Opcode, Value *Op0, 1196 Value *Op1, const SimplifyQuery &Q, unsigned MaxRecurse) { 1197 if (Constant *C = foldOrCommuteConstant(Opcode, Op0, Op1, Q)) 1198 return C; 1199 1200 // 0 shift by X -> 0 1201 if (match(Op0, m_Zero())) 1202 return Constant::getNullValue(Op0->getType()); 1203 1204 // X shift by 0 -> X 1205 // Shift-by-sign-extended bool must be shift-by-0 because shift-by-all-ones 1206 // would be poison. 1207 Value *X; 1208 if (match(Op1, m_Zero()) || 1209 (match(Op1, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1))) 1210 return Op0; 1211 1212 // Fold undefined shifts. 1213 if (isUndefShift(Op1)) 1214 return UndefValue::get(Op0->getType()); 1215 1216 // If the operation is with the result of a select instruction, check whether 1217 // operating on either branch of the select always yields the same value. 1218 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 1219 if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse)) 1220 return V; 1221 1222 // If the operation is with the result of a phi instruction, check whether 1223 // operating on all incoming values of the phi always yields the same value. 1224 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 1225 if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse)) 1226 return V; 1227 1228 // If any bits in the shift amount make that value greater than or equal to 1229 // the number of bits in the type, the shift is undefined. 1230 KnownBits Known = computeKnownBits(Op1, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 1231 if (Known.One.getLimitedValue() >= Known.getBitWidth()) 1232 return UndefValue::get(Op0->getType()); 1233 1234 // If all valid bits in the shift amount are known zero, the first operand is 1235 // unchanged. 1236 unsigned NumValidShiftBits = Log2_32_Ceil(Known.getBitWidth()); 1237 if (Known.countMinTrailingZeros() >= NumValidShiftBits) 1238 return Op0; 1239 1240 return nullptr; 1241 } 1242 1243 /// Given operands for an Shl, LShr or AShr, see if we can 1244 /// fold the result. If not, this returns null. 1245 static Value *SimplifyRightShift(Instruction::BinaryOps Opcode, Value *Op0, 1246 Value *Op1, bool isExact, const SimplifyQuery &Q, 1247 unsigned MaxRecurse) { 1248 if (Value *V = SimplifyShift(Opcode, Op0, Op1, Q, MaxRecurse)) 1249 return V; 1250 1251 // X >> X -> 0 1252 if (Op0 == Op1) 1253 return Constant::getNullValue(Op0->getType()); 1254 1255 // undef >> X -> 0 1256 // undef >> X -> undef (if it's exact) 1257 if (match(Op0, m_Undef())) 1258 return isExact ? Op0 : Constant::getNullValue(Op0->getType()); 1259 1260 // The low bit cannot be shifted out of an exact shift if it is set. 1261 if (isExact) { 1262 KnownBits Op0Known = computeKnownBits(Op0, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT); 1263 if (Op0Known.One[0]) 1264 return Op0; 1265 } 1266 1267 return nullptr; 1268 } 1269 1270 /// Given operands for an Shl, see if we can fold the result. 1271 /// If not, this returns null. 1272 static Value *SimplifyShlInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, 1273 const SimplifyQuery &Q, unsigned MaxRecurse) { 1274 if (Value *V = SimplifyShift(Instruction::Shl, Op0, Op1, Q, MaxRecurse)) 1275 return V; 1276 1277 // undef << X -> 0 1278 // undef << X -> undef if (if it's NSW/NUW) 1279 if (match(Op0, m_Undef())) 1280 return isNSW || isNUW ? Op0 : Constant::getNullValue(Op0->getType()); 1281 1282 // (X >> A) << A -> X 1283 Value *X; 1284 if (Q.IIQ.UseInstrInfo && 1285 match(Op0, m_Exact(m_Shr(m_Value(X), m_Specific(Op1))))) 1286 return X; 1287 1288 // shl nuw i8 C, %x -> C iff C has sign bit set. 1289 if (isNUW && match(Op0, m_Negative())) 1290 return Op0; 1291 // NOTE: could use computeKnownBits() / LazyValueInfo, 1292 // but the cost-benefit analysis suggests it isn't worth it. 1293 1294 return nullptr; 1295 } 1296 1297 Value *llvm::SimplifyShlInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, 1298 const SimplifyQuery &Q) { 1299 return ::SimplifyShlInst(Op0, Op1, isNSW, isNUW, Q, RecursionLimit); 1300 } 1301 1302 /// Given operands for an LShr, see if we can fold the result. 1303 /// If not, this returns null. 1304 static Value *SimplifyLShrInst(Value *Op0, Value *Op1, bool isExact, 1305 const SimplifyQuery &Q, unsigned MaxRecurse) { 1306 if (Value *V = SimplifyRightShift(Instruction::LShr, Op0, Op1, isExact, Q, 1307 MaxRecurse)) 1308 return V; 1309 1310 // (X << A) >> A -> X 1311 Value *X; 1312 if (match(Op0, m_NUWShl(m_Value(X), m_Specific(Op1)))) 1313 return X; 1314 1315 // ((X << A) | Y) >> A -> X if effective width of Y is not larger than A. 1316 // We can return X as we do in the above case since OR alters no bits in X. 1317 // SimplifyDemandedBits in InstCombine can do more general optimization for 1318 // bit manipulation. This pattern aims to provide opportunities for other 1319 // optimizers by supporting a simple but common case in InstSimplify. 1320 Value *Y; 1321 const APInt *ShRAmt, *ShLAmt; 1322 if (match(Op1, m_APInt(ShRAmt)) && 1323 match(Op0, m_c_Or(m_NUWShl(m_Value(X), m_APInt(ShLAmt)), m_Value(Y))) && 1324 *ShRAmt == *ShLAmt) { 1325 const KnownBits YKnown = computeKnownBits(Y, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 1326 const unsigned Width = Op0->getType()->getScalarSizeInBits(); 1327 const unsigned EffWidthY = Width - YKnown.countMinLeadingZeros(); 1328 if (ShRAmt->uge(EffWidthY)) 1329 return X; 1330 } 1331 1332 return nullptr; 1333 } 1334 1335 Value *llvm::SimplifyLShrInst(Value *Op0, Value *Op1, bool isExact, 1336 const SimplifyQuery &Q) { 1337 return ::SimplifyLShrInst(Op0, Op1, isExact, Q, RecursionLimit); 1338 } 1339 1340 /// Given operands for an AShr, see if we can fold the result. 1341 /// If not, this returns null. 1342 static Value *SimplifyAShrInst(Value *Op0, Value *Op1, bool isExact, 1343 const SimplifyQuery &Q, unsigned MaxRecurse) { 1344 if (Value *V = SimplifyRightShift(Instruction::AShr, Op0, Op1, isExact, Q, 1345 MaxRecurse)) 1346 return V; 1347 1348 // all ones >>a X -> -1 1349 // Do not return Op0 because it may contain undef elements if it's a vector. 1350 if (match(Op0, m_AllOnes())) 1351 return Constant::getAllOnesValue(Op0->getType()); 1352 1353 // (X << A) >> A -> X 1354 Value *X; 1355 if (Q.IIQ.UseInstrInfo && match(Op0, m_NSWShl(m_Value(X), m_Specific(Op1)))) 1356 return X; 1357 1358 // Arithmetic shifting an all-sign-bit value is a no-op. 1359 unsigned NumSignBits = ComputeNumSignBits(Op0, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 1360 if (NumSignBits == Op0->getType()->getScalarSizeInBits()) 1361 return Op0; 1362 1363 return nullptr; 1364 } 1365 1366 Value *llvm::SimplifyAShrInst(Value *Op0, Value *Op1, bool isExact, 1367 const SimplifyQuery &Q) { 1368 return ::SimplifyAShrInst(Op0, Op1, isExact, Q, RecursionLimit); 1369 } 1370 1371 /// Commuted variants are assumed to be handled by calling this function again 1372 /// with the parameters swapped. 1373 static Value *simplifyUnsignedRangeCheck(ICmpInst *ZeroICmp, 1374 ICmpInst *UnsignedICmp, bool IsAnd, 1375 const SimplifyQuery &Q) { 1376 Value *X, *Y; 1377 1378 ICmpInst::Predicate EqPred; 1379 if (!match(ZeroICmp, m_ICmp(EqPred, m_Value(Y), m_Zero())) || 1380 !ICmpInst::isEquality(EqPred)) 1381 return nullptr; 1382 1383 ICmpInst::Predicate UnsignedPred; 1384 1385 Value *A, *B; 1386 // Y = (A - B); 1387 if (match(Y, m_Sub(m_Value(A), m_Value(B)))) { 1388 if (match(UnsignedICmp, 1389 m_c_ICmp(UnsignedPred, m_Specific(A), m_Specific(B))) && 1390 ICmpInst::isUnsigned(UnsignedPred)) { 1391 if (UnsignedICmp->getOperand(0) != A) 1392 UnsignedPred = ICmpInst::getSwappedPredicate(UnsignedPred); 1393 1394 // A >=/<= B || (A - B) != 0 <--> true 1395 if ((UnsignedPred == ICmpInst::ICMP_UGE || 1396 UnsignedPred == ICmpInst::ICMP_ULE) && 1397 EqPred == ICmpInst::ICMP_NE && !IsAnd) 1398 return ConstantInt::getTrue(UnsignedICmp->getType()); 1399 // A </> B && (A - B) == 0 <--> false 1400 if ((UnsignedPred == ICmpInst::ICMP_ULT || 1401 UnsignedPred == ICmpInst::ICMP_UGT) && 1402 EqPred == ICmpInst::ICMP_EQ && IsAnd) 1403 return ConstantInt::getFalse(UnsignedICmp->getType()); 1404 } 1405 1406 // Given Y = (A - B) 1407 // Y >= A && Y != 0 --> Y >= A iff B != 0 1408 // Y < A || Y == 0 --> Y < A iff B != 0 1409 if (match(UnsignedICmp, 1410 m_c_ICmp(UnsignedPred, m_Specific(Y), m_Specific(A)))) { 1411 if (UnsignedICmp->getOperand(0) != Y) 1412 UnsignedPred = ICmpInst::getSwappedPredicate(UnsignedPred); 1413 1414 if (UnsignedPred == ICmpInst::ICMP_UGE && IsAnd && 1415 EqPred == ICmpInst::ICMP_NE && 1416 isKnownNonZero(B, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT)) 1417 return UnsignedICmp; 1418 if (UnsignedPred == ICmpInst::ICMP_ULT && !IsAnd && 1419 EqPred == ICmpInst::ICMP_EQ && 1420 isKnownNonZero(B, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT)) 1421 return UnsignedICmp; 1422 } 1423 } 1424 1425 if (match(UnsignedICmp, m_ICmp(UnsignedPred, m_Value(X), m_Specific(Y))) && 1426 ICmpInst::isUnsigned(UnsignedPred)) 1427 ; 1428 else if (match(UnsignedICmp, 1429 m_ICmp(UnsignedPred, m_Specific(Y), m_Value(X))) && 1430 ICmpInst::isUnsigned(UnsignedPred)) 1431 UnsignedPred = ICmpInst::getSwappedPredicate(UnsignedPred); 1432 else 1433 return nullptr; 1434 1435 // X < Y && Y != 0 --> X < Y 1436 // X < Y || Y != 0 --> Y != 0 1437 if (UnsignedPred == ICmpInst::ICMP_ULT && EqPred == ICmpInst::ICMP_NE) 1438 return IsAnd ? UnsignedICmp : ZeroICmp; 1439 1440 // X <= Y && Y != 0 --> X <= Y iff X != 0 1441 // X <= Y || Y != 0 --> Y != 0 iff X != 0 1442 if (UnsignedPred == ICmpInst::ICMP_ULE && EqPred == ICmpInst::ICMP_NE && 1443 isKnownNonZero(X, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT)) 1444 return IsAnd ? UnsignedICmp : ZeroICmp; 1445 1446 // X > Y && Y == 0 --> Y == 0 iff X != 0 1447 // X > Y || Y == 0 --> X > Y iff X != 0 1448 if (UnsignedPred == ICmpInst::ICMP_UGT && EqPred == ICmpInst::ICMP_EQ && 1449 isKnownNonZero(X, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT)) 1450 return IsAnd ? ZeroICmp : UnsignedICmp; 1451 1452 // X >= Y || Y != 0 --> true 1453 // X >= Y || Y == 0 --> X >= Y 1454 if (UnsignedPred == ICmpInst::ICMP_UGE && !IsAnd) { 1455 if (EqPred == ICmpInst::ICMP_NE) 1456 return getTrue(UnsignedICmp->getType()); 1457 return UnsignedICmp; 1458 } 1459 1460 // X < Y && Y == 0 --> false 1461 if (UnsignedPred == ICmpInst::ICMP_ULT && EqPred == ICmpInst::ICMP_EQ && 1462 IsAnd) 1463 return getFalse(UnsignedICmp->getType()); 1464 1465 return nullptr; 1466 } 1467 1468 /// Commuted variants are assumed to be handled by calling this function again 1469 /// with the parameters swapped. 1470 static Value *simplifyAndOfICmpsWithSameOperands(ICmpInst *Op0, ICmpInst *Op1) { 1471 ICmpInst::Predicate Pred0, Pred1; 1472 Value *A ,*B; 1473 if (!match(Op0, m_ICmp(Pred0, m_Value(A), m_Value(B))) || 1474 !match(Op1, m_ICmp(Pred1, m_Specific(A), m_Specific(B)))) 1475 return nullptr; 1476 1477 // We have (icmp Pred0, A, B) & (icmp Pred1, A, B). 1478 // If Op1 is always implied true by Op0, then Op0 is a subset of Op1, and we 1479 // can eliminate Op1 from this 'and'. 1480 if (ICmpInst::isImpliedTrueByMatchingCmp(Pred0, Pred1)) 1481 return Op0; 1482 1483 // Check for any combination of predicates that are guaranteed to be disjoint. 1484 if ((Pred0 == ICmpInst::getInversePredicate(Pred1)) || 1485 (Pred0 == ICmpInst::ICMP_EQ && ICmpInst::isFalseWhenEqual(Pred1)) || 1486 (Pred0 == ICmpInst::ICMP_SLT && Pred1 == ICmpInst::ICMP_SGT) || 1487 (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_UGT)) 1488 return getFalse(Op0->getType()); 1489 1490 return nullptr; 1491 } 1492 1493 /// Commuted variants are assumed to be handled by calling this function again 1494 /// with the parameters swapped. 1495 static Value *simplifyOrOfICmpsWithSameOperands(ICmpInst *Op0, ICmpInst *Op1) { 1496 ICmpInst::Predicate Pred0, Pred1; 1497 Value *A ,*B; 1498 if (!match(Op0, m_ICmp(Pred0, m_Value(A), m_Value(B))) || 1499 !match(Op1, m_ICmp(Pred1, m_Specific(A), m_Specific(B)))) 1500 return nullptr; 1501 1502 // We have (icmp Pred0, A, B) | (icmp Pred1, A, B). 1503 // If Op1 is always implied true by Op0, then Op0 is a subset of Op1, and we 1504 // can eliminate Op0 from this 'or'. 1505 if (ICmpInst::isImpliedTrueByMatchingCmp(Pred0, Pred1)) 1506 return Op1; 1507 1508 // Check for any combination of predicates that cover the entire range of 1509 // possibilities. 1510 if ((Pred0 == ICmpInst::getInversePredicate(Pred1)) || 1511 (Pred0 == ICmpInst::ICMP_NE && ICmpInst::isTrueWhenEqual(Pred1)) || 1512 (Pred0 == ICmpInst::ICMP_SLE && Pred1 == ICmpInst::ICMP_SGE) || 1513 (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_UGE)) 1514 return getTrue(Op0->getType()); 1515 1516 return nullptr; 1517 } 1518 1519 /// Test if a pair of compares with a shared operand and 2 constants has an 1520 /// empty set intersection, full set union, or if one compare is a superset of 1521 /// the other. 1522 static Value *simplifyAndOrOfICmpsWithConstants(ICmpInst *Cmp0, ICmpInst *Cmp1, 1523 bool IsAnd) { 1524 // Look for this pattern: {and/or} (icmp X, C0), (icmp X, C1)). 1525 if (Cmp0->getOperand(0) != Cmp1->getOperand(0)) 1526 return nullptr; 1527 1528 const APInt *C0, *C1; 1529 if (!match(Cmp0->getOperand(1), m_APInt(C0)) || 1530 !match(Cmp1->getOperand(1), m_APInt(C1))) 1531 return nullptr; 1532 1533 auto Range0 = ConstantRange::makeExactICmpRegion(Cmp0->getPredicate(), *C0); 1534 auto Range1 = ConstantRange::makeExactICmpRegion(Cmp1->getPredicate(), *C1); 1535 1536 // For and-of-compares, check if the intersection is empty: 1537 // (icmp X, C0) && (icmp X, C1) --> empty set --> false 1538 if (IsAnd && Range0.intersectWith(Range1).isEmptySet()) 1539 return getFalse(Cmp0->getType()); 1540 1541 // For or-of-compares, check if the union is full: 1542 // (icmp X, C0) || (icmp X, C1) --> full set --> true 1543 if (!IsAnd && Range0.unionWith(Range1).isFullSet()) 1544 return getTrue(Cmp0->getType()); 1545 1546 // Is one range a superset of the other? 1547 // If this is and-of-compares, take the smaller set: 1548 // (icmp sgt X, 4) && (icmp sgt X, 42) --> icmp sgt X, 42 1549 // If this is or-of-compares, take the larger set: 1550 // (icmp sgt X, 4) || (icmp sgt X, 42) --> icmp sgt X, 4 1551 if (Range0.contains(Range1)) 1552 return IsAnd ? Cmp1 : Cmp0; 1553 if (Range1.contains(Range0)) 1554 return IsAnd ? Cmp0 : Cmp1; 1555 1556 return nullptr; 1557 } 1558 1559 static Value *simplifyAndOrOfICmpsWithZero(ICmpInst *Cmp0, ICmpInst *Cmp1, 1560 bool IsAnd) { 1561 ICmpInst::Predicate P0 = Cmp0->getPredicate(), P1 = Cmp1->getPredicate(); 1562 if (!match(Cmp0->getOperand(1), m_Zero()) || 1563 !match(Cmp1->getOperand(1), m_Zero()) || P0 != P1) 1564 return nullptr; 1565 1566 if ((IsAnd && P0 != ICmpInst::ICMP_NE) || (!IsAnd && P1 != ICmpInst::ICMP_EQ)) 1567 return nullptr; 1568 1569 // We have either "(X == 0 || Y == 0)" or "(X != 0 && Y != 0)". 1570 Value *X = Cmp0->getOperand(0); 1571 Value *Y = Cmp1->getOperand(0); 1572 1573 // If one of the compares is a masked version of a (not) null check, then 1574 // that compare implies the other, so we eliminate the other. Optionally, look 1575 // through a pointer-to-int cast to match a null check of a pointer type. 1576 1577 // (X == 0) || (([ptrtoint] X & ?) == 0) --> ([ptrtoint] X & ?) == 0 1578 // (X == 0) || ((? & [ptrtoint] X) == 0) --> (? & [ptrtoint] X) == 0 1579 // (X != 0) && (([ptrtoint] X & ?) != 0) --> ([ptrtoint] X & ?) != 0 1580 // (X != 0) && ((? & [ptrtoint] X) != 0) --> (? & [ptrtoint] X) != 0 1581 if (match(Y, m_c_And(m_Specific(X), m_Value())) || 1582 match(Y, m_c_And(m_PtrToInt(m_Specific(X)), m_Value()))) 1583 return Cmp1; 1584 1585 // (([ptrtoint] Y & ?) == 0) || (Y == 0) --> ([ptrtoint] Y & ?) == 0 1586 // ((? & [ptrtoint] Y) == 0) || (Y == 0) --> (? & [ptrtoint] Y) == 0 1587 // (([ptrtoint] Y & ?) != 0) && (Y != 0) --> ([ptrtoint] Y & ?) != 0 1588 // ((? & [ptrtoint] Y) != 0) && (Y != 0) --> (? & [ptrtoint] Y) != 0 1589 if (match(X, m_c_And(m_Specific(Y), m_Value())) || 1590 match(X, m_c_And(m_PtrToInt(m_Specific(Y)), m_Value()))) 1591 return Cmp0; 1592 1593 return nullptr; 1594 } 1595 1596 static Value *simplifyAndOfICmpsWithAdd(ICmpInst *Op0, ICmpInst *Op1, 1597 const InstrInfoQuery &IIQ) { 1598 // (icmp (add V, C0), C1) & (icmp V, C0) 1599 ICmpInst::Predicate Pred0, Pred1; 1600 const APInt *C0, *C1; 1601 Value *V; 1602 if (!match(Op0, m_ICmp(Pred0, m_Add(m_Value(V), m_APInt(C0)), m_APInt(C1)))) 1603 return nullptr; 1604 1605 if (!match(Op1, m_ICmp(Pred1, m_Specific(V), m_Value()))) 1606 return nullptr; 1607 1608 auto *AddInst = cast<OverflowingBinaryOperator>(Op0->getOperand(0)); 1609 if (AddInst->getOperand(1) != Op1->getOperand(1)) 1610 return nullptr; 1611 1612 Type *ITy = Op0->getType(); 1613 bool isNSW = IIQ.hasNoSignedWrap(AddInst); 1614 bool isNUW = IIQ.hasNoUnsignedWrap(AddInst); 1615 1616 const APInt Delta = *C1 - *C0; 1617 if (C0->isStrictlyPositive()) { 1618 if (Delta == 2) { 1619 if (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_SGT) 1620 return getFalse(ITy); 1621 if (Pred0 == ICmpInst::ICMP_SLT && Pred1 == ICmpInst::ICMP_SGT && isNSW) 1622 return getFalse(ITy); 1623 } 1624 if (Delta == 1) { 1625 if (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_SGT) 1626 return getFalse(ITy); 1627 if (Pred0 == ICmpInst::ICMP_SLE && Pred1 == ICmpInst::ICMP_SGT && isNSW) 1628 return getFalse(ITy); 1629 } 1630 } 1631 if (C0->getBoolValue() && isNUW) { 1632 if (Delta == 2) 1633 if (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_UGT) 1634 return getFalse(ITy); 1635 if (Delta == 1) 1636 if (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_UGT) 1637 return getFalse(ITy); 1638 } 1639 1640 return nullptr; 1641 } 1642 1643 static Value *simplifyAndOfICmps(ICmpInst *Op0, ICmpInst *Op1, 1644 const SimplifyQuery &Q) { 1645 if (Value *X = simplifyUnsignedRangeCheck(Op0, Op1, /*IsAnd=*/true, Q)) 1646 return X; 1647 if (Value *X = simplifyUnsignedRangeCheck(Op1, Op0, /*IsAnd=*/true, Q)) 1648 return X; 1649 1650 if (Value *X = simplifyAndOfICmpsWithSameOperands(Op0, Op1)) 1651 return X; 1652 if (Value *X = simplifyAndOfICmpsWithSameOperands(Op1, Op0)) 1653 return X; 1654 1655 if (Value *X = simplifyAndOrOfICmpsWithConstants(Op0, Op1, true)) 1656 return X; 1657 1658 if (Value *X = simplifyAndOrOfICmpsWithZero(Op0, Op1, true)) 1659 return X; 1660 1661 if (Value *X = simplifyAndOfICmpsWithAdd(Op0, Op1, Q.IIQ)) 1662 return X; 1663 if (Value *X = simplifyAndOfICmpsWithAdd(Op1, Op0, Q.IIQ)) 1664 return X; 1665 1666 return nullptr; 1667 } 1668 1669 static Value *simplifyOrOfICmpsWithAdd(ICmpInst *Op0, ICmpInst *Op1, 1670 const InstrInfoQuery &IIQ) { 1671 // (icmp (add V, C0), C1) | (icmp V, C0) 1672 ICmpInst::Predicate Pred0, Pred1; 1673 const APInt *C0, *C1; 1674 Value *V; 1675 if (!match(Op0, m_ICmp(Pred0, m_Add(m_Value(V), m_APInt(C0)), m_APInt(C1)))) 1676 return nullptr; 1677 1678 if (!match(Op1, m_ICmp(Pred1, m_Specific(V), m_Value()))) 1679 return nullptr; 1680 1681 auto *AddInst = cast<BinaryOperator>(Op0->getOperand(0)); 1682 if (AddInst->getOperand(1) != Op1->getOperand(1)) 1683 return nullptr; 1684 1685 Type *ITy = Op0->getType(); 1686 bool isNSW = IIQ.hasNoSignedWrap(AddInst); 1687 bool isNUW = IIQ.hasNoUnsignedWrap(AddInst); 1688 1689 const APInt Delta = *C1 - *C0; 1690 if (C0->isStrictlyPositive()) { 1691 if (Delta == 2) { 1692 if (Pred0 == ICmpInst::ICMP_UGE && Pred1 == ICmpInst::ICMP_SLE) 1693 return getTrue(ITy); 1694 if (Pred0 == ICmpInst::ICMP_SGE && Pred1 == ICmpInst::ICMP_SLE && isNSW) 1695 return getTrue(ITy); 1696 } 1697 if (Delta == 1) { 1698 if (Pred0 == ICmpInst::ICMP_UGT && Pred1 == ICmpInst::ICMP_SLE) 1699 return getTrue(ITy); 1700 if (Pred0 == ICmpInst::ICMP_SGT && Pred1 == ICmpInst::ICMP_SLE && isNSW) 1701 return getTrue(ITy); 1702 } 1703 } 1704 if (C0->getBoolValue() && isNUW) { 1705 if (Delta == 2) 1706 if (Pred0 == ICmpInst::ICMP_UGE && Pred1 == ICmpInst::ICMP_ULE) 1707 return getTrue(ITy); 1708 if (Delta == 1) 1709 if (Pred0 == ICmpInst::ICMP_UGT && Pred1 == ICmpInst::ICMP_ULE) 1710 return getTrue(ITy); 1711 } 1712 1713 return nullptr; 1714 } 1715 1716 static Value *simplifyOrOfICmps(ICmpInst *Op0, ICmpInst *Op1, 1717 const SimplifyQuery &Q) { 1718 if (Value *X = simplifyUnsignedRangeCheck(Op0, Op1, /*IsAnd=*/false, Q)) 1719 return X; 1720 if (Value *X = simplifyUnsignedRangeCheck(Op1, Op0, /*IsAnd=*/false, Q)) 1721 return X; 1722 1723 if (Value *X = simplifyOrOfICmpsWithSameOperands(Op0, Op1)) 1724 return X; 1725 if (Value *X = simplifyOrOfICmpsWithSameOperands(Op1, Op0)) 1726 return X; 1727 1728 if (Value *X = simplifyAndOrOfICmpsWithConstants(Op0, Op1, false)) 1729 return X; 1730 1731 if (Value *X = simplifyAndOrOfICmpsWithZero(Op0, Op1, false)) 1732 return X; 1733 1734 if (Value *X = simplifyOrOfICmpsWithAdd(Op0, Op1, Q.IIQ)) 1735 return X; 1736 if (Value *X = simplifyOrOfICmpsWithAdd(Op1, Op0, Q.IIQ)) 1737 return X; 1738 1739 return nullptr; 1740 } 1741 1742 static Value *simplifyAndOrOfFCmps(const TargetLibraryInfo *TLI, 1743 FCmpInst *LHS, FCmpInst *RHS, bool IsAnd) { 1744 Value *LHS0 = LHS->getOperand(0), *LHS1 = LHS->getOperand(1); 1745 Value *RHS0 = RHS->getOperand(0), *RHS1 = RHS->getOperand(1); 1746 if (LHS0->getType() != RHS0->getType()) 1747 return nullptr; 1748 1749 FCmpInst::Predicate PredL = LHS->getPredicate(), PredR = RHS->getPredicate(); 1750 if ((PredL == FCmpInst::FCMP_ORD && PredR == FCmpInst::FCMP_ORD && IsAnd) || 1751 (PredL == FCmpInst::FCMP_UNO && PredR == FCmpInst::FCMP_UNO && !IsAnd)) { 1752 // (fcmp ord NNAN, X) & (fcmp ord X, Y) --> fcmp ord X, Y 1753 // (fcmp ord NNAN, X) & (fcmp ord Y, X) --> fcmp ord Y, X 1754 // (fcmp ord X, NNAN) & (fcmp ord X, Y) --> fcmp ord X, Y 1755 // (fcmp ord X, NNAN) & (fcmp ord Y, X) --> fcmp ord Y, X 1756 // (fcmp uno NNAN, X) | (fcmp uno X, Y) --> fcmp uno X, Y 1757 // (fcmp uno NNAN, X) | (fcmp uno Y, X) --> fcmp uno Y, X 1758 // (fcmp uno X, NNAN) | (fcmp uno X, Y) --> fcmp uno X, Y 1759 // (fcmp uno X, NNAN) | (fcmp uno Y, X) --> fcmp uno Y, X 1760 if ((isKnownNeverNaN(LHS0, TLI) && (LHS1 == RHS0 || LHS1 == RHS1)) || 1761 (isKnownNeverNaN(LHS1, TLI) && (LHS0 == RHS0 || LHS0 == RHS1))) 1762 return RHS; 1763 1764 // (fcmp ord X, Y) & (fcmp ord NNAN, X) --> fcmp ord X, Y 1765 // (fcmp ord Y, X) & (fcmp ord NNAN, X) --> fcmp ord Y, X 1766 // (fcmp ord X, Y) & (fcmp ord X, NNAN) --> fcmp ord X, Y 1767 // (fcmp ord Y, X) & (fcmp ord X, NNAN) --> fcmp ord Y, X 1768 // (fcmp uno X, Y) | (fcmp uno NNAN, X) --> fcmp uno X, Y 1769 // (fcmp uno Y, X) | (fcmp uno NNAN, X) --> fcmp uno Y, X 1770 // (fcmp uno X, Y) | (fcmp uno X, NNAN) --> fcmp uno X, Y 1771 // (fcmp uno Y, X) | (fcmp uno X, NNAN) --> fcmp uno Y, X 1772 if ((isKnownNeverNaN(RHS0, TLI) && (RHS1 == LHS0 || RHS1 == LHS1)) || 1773 (isKnownNeverNaN(RHS1, TLI) && (RHS0 == LHS0 || RHS0 == LHS1))) 1774 return LHS; 1775 } 1776 1777 return nullptr; 1778 } 1779 1780 static Value *simplifyAndOrOfCmps(const SimplifyQuery &Q, 1781 Value *Op0, Value *Op1, bool IsAnd) { 1782 // Look through casts of the 'and' operands to find compares. 1783 auto *Cast0 = dyn_cast<CastInst>(Op0); 1784 auto *Cast1 = dyn_cast<CastInst>(Op1); 1785 if (Cast0 && Cast1 && Cast0->getOpcode() == Cast1->getOpcode() && 1786 Cast0->getSrcTy() == Cast1->getSrcTy()) { 1787 Op0 = Cast0->getOperand(0); 1788 Op1 = Cast1->getOperand(0); 1789 } 1790 1791 Value *V = nullptr; 1792 auto *ICmp0 = dyn_cast<ICmpInst>(Op0); 1793 auto *ICmp1 = dyn_cast<ICmpInst>(Op1); 1794 if (ICmp0 && ICmp1) 1795 V = IsAnd ? simplifyAndOfICmps(ICmp0, ICmp1, Q) 1796 : simplifyOrOfICmps(ICmp0, ICmp1, Q); 1797 1798 auto *FCmp0 = dyn_cast<FCmpInst>(Op0); 1799 auto *FCmp1 = dyn_cast<FCmpInst>(Op1); 1800 if (FCmp0 && FCmp1) 1801 V = simplifyAndOrOfFCmps(Q.TLI, FCmp0, FCmp1, IsAnd); 1802 1803 if (!V) 1804 return nullptr; 1805 if (!Cast0) 1806 return V; 1807 1808 // If we looked through casts, we can only handle a constant simplification 1809 // because we are not allowed to create a cast instruction here. 1810 if (auto *C = dyn_cast<Constant>(V)) 1811 return ConstantExpr::getCast(Cast0->getOpcode(), C, Cast0->getType()); 1812 1813 return nullptr; 1814 } 1815 1816 /// Check that the Op1 is in expected form, i.e.: 1817 /// %Agg = tail call { i4, i1 } @llvm.[us]mul.with.overflow.i4(i4 %X, i4 %???) 1818 /// %Op1 = extractvalue { i4, i1 } %Agg, 1 1819 static bool omitCheckForZeroBeforeMulWithOverflowInternal(Value *Op1, 1820 Value *X) { 1821 auto *Extract = dyn_cast<ExtractValueInst>(Op1); 1822 // We should only be extracting the overflow bit. 1823 if (!Extract || !Extract->getIndices().equals(1)) 1824 return false; 1825 Value *Agg = Extract->getAggregateOperand(); 1826 // This should be a multiplication-with-overflow intrinsic. 1827 if (!match(Agg, m_CombineOr(m_Intrinsic<Intrinsic::umul_with_overflow>(), 1828 m_Intrinsic<Intrinsic::smul_with_overflow>()))) 1829 return false; 1830 // One of its multipliers should be the value we checked for zero before. 1831 if (!match(Agg, m_CombineOr(m_Argument<0>(m_Specific(X)), 1832 m_Argument<1>(m_Specific(X))))) 1833 return false; 1834 return true; 1835 } 1836 1837 /// The @llvm.[us]mul.with.overflow intrinsic could have been folded from some 1838 /// other form of check, e.g. one that was using division; it may have been 1839 /// guarded against division-by-zero. We can drop that check now. 1840 /// Look for: 1841 /// %Op0 = icmp ne i4 %X, 0 1842 /// %Agg = tail call { i4, i1 } @llvm.[us]mul.with.overflow.i4(i4 %X, i4 %???) 1843 /// %Op1 = extractvalue { i4, i1 } %Agg, 1 1844 /// %??? = and i1 %Op0, %Op1 1845 /// We can just return %Op1 1846 static Value *omitCheckForZeroBeforeMulWithOverflow(Value *Op0, Value *Op1) { 1847 ICmpInst::Predicate Pred; 1848 Value *X; 1849 if (!match(Op0, m_ICmp(Pred, m_Value(X), m_Zero())) || 1850 Pred != ICmpInst::Predicate::ICMP_NE) 1851 return nullptr; 1852 // Is Op1 in expected form? 1853 if (!omitCheckForZeroBeforeMulWithOverflowInternal(Op1, X)) 1854 return nullptr; 1855 // Can omit 'and', and just return the overflow bit. 1856 return Op1; 1857 } 1858 1859 /// The @llvm.[us]mul.with.overflow intrinsic could have been folded from some 1860 /// other form of check, e.g. one that was using division; it may have been 1861 /// guarded against division-by-zero. We can drop that check now. 1862 /// Look for: 1863 /// %Op0 = icmp eq i4 %X, 0 1864 /// %Agg = tail call { i4, i1 } @llvm.[us]mul.with.overflow.i4(i4 %X, i4 %???) 1865 /// %Op1 = extractvalue { i4, i1 } %Agg, 1 1866 /// %NotOp1 = xor i1 %Op1, true 1867 /// %or = or i1 %Op0, %NotOp1 1868 /// We can just return %NotOp1 1869 static Value *omitCheckForZeroBeforeInvertedMulWithOverflow(Value *Op0, 1870 Value *NotOp1) { 1871 ICmpInst::Predicate Pred; 1872 Value *X; 1873 if (!match(Op0, m_ICmp(Pred, m_Value(X), m_Zero())) || 1874 Pred != ICmpInst::Predicate::ICMP_EQ) 1875 return nullptr; 1876 // We expect the other hand of an 'or' to be a 'not'. 1877 Value *Op1; 1878 if (!match(NotOp1, m_Not(m_Value(Op1)))) 1879 return nullptr; 1880 // Is Op1 in expected form? 1881 if (!omitCheckForZeroBeforeMulWithOverflowInternal(Op1, X)) 1882 return nullptr; 1883 // Can omit 'and', and just return the inverted overflow bit. 1884 return NotOp1; 1885 } 1886 1887 /// Given operands for an And, see if we can fold the result. 1888 /// If not, this returns null. 1889 static Value *SimplifyAndInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 1890 unsigned MaxRecurse) { 1891 if (Constant *C = foldOrCommuteConstant(Instruction::And, Op0, Op1, Q)) 1892 return C; 1893 1894 // X & undef -> 0 1895 if (match(Op1, m_Undef())) 1896 return Constant::getNullValue(Op0->getType()); 1897 1898 // X & X = X 1899 if (Op0 == Op1) 1900 return Op0; 1901 1902 // X & 0 = 0 1903 if (match(Op1, m_Zero())) 1904 return Constant::getNullValue(Op0->getType()); 1905 1906 // X & -1 = X 1907 if (match(Op1, m_AllOnes())) 1908 return Op0; 1909 1910 // A & ~A = ~A & A = 0 1911 if (match(Op0, m_Not(m_Specific(Op1))) || 1912 match(Op1, m_Not(m_Specific(Op0)))) 1913 return Constant::getNullValue(Op0->getType()); 1914 1915 // (A | ?) & A = A 1916 if (match(Op0, m_c_Or(m_Specific(Op1), m_Value()))) 1917 return Op1; 1918 1919 // A & (A | ?) = A 1920 if (match(Op1, m_c_Or(m_Specific(Op0), m_Value()))) 1921 return Op0; 1922 1923 // A mask that only clears known zeros of a shifted value is a no-op. 1924 Value *X; 1925 const APInt *Mask; 1926 const APInt *ShAmt; 1927 if (match(Op1, m_APInt(Mask))) { 1928 // If all bits in the inverted and shifted mask are clear: 1929 // and (shl X, ShAmt), Mask --> shl X, ShAmt 1930 if (match(Op0, m_Shl(m_Value(X), m_APInt(ShAmt))) && 1931 (~(*Mask)).lshr(*ShAmt).isNullValue()) 1932 return Op0; 1933 1934 // If all bits in the inverted and shifted mask are clear: 1935 // and (lshr X, ShAmt), Mask --> lshr X, ShAmt 1936 if (match(Op0, m_LShr(m_Value(X), m_APInt(ShAmt))) && 1937 (~(*Mask)).shl(*ShAmt).isNullValue()) 1938 return Op0; 1939 } 1940 1941 // If we have a multiplication overflow check that is being 'and'ed with a 1942 // check that one of the multipliers is not zero, we can omit the 'and', and 1943 // only keep the overflow check. 1944 if (Value *V = omitCheckForZeroBeforeMulWithOverflow(Op0, Op1)) 1945 return V; 1946 if (Value *V = omitCheckForZeroBeforeMulWithOverflow(Op1, Op0)) 1947 return V; 1948 1949 // A & (-A) = A if A is a power of two or zero. 1950 if (match(Op0, m_Neg(m_Specific(Op1))) || 1951 match(Op1, m_Neg(m_Specific(Op0)))) { 1952 if (isKnownToBeAPowerOfTwo(Op0, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI, 1953 Q.DT)) 1954 return Op0; 1955 if (isKnownToBeAPowerOfTwo(Op1, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI, 1956 Q.DT)) 1957 return Op1; 1958 } 1959 1960 // This is a similar pattern used for checking if a value is a power-of-2: 1961 // (A - 1) & A --> 0 (if A is a power-of-2 or 0) 1962 // A & (A - 1) --> 0 (if A is a power-of-2 or 0) 1963 if (match(Op0, m_Add(m_Specific(Op1), m_AllOnes())) && 1964 isKnownToBeAPowerOfTwo(Op1, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI, Q.DT)) 1965 return Constant::getNullValue(Op1->getType()); 1966 if (match(Op1, m_Add(m_Specific(Op0), m_AllOnes())) && 1967 isKnownToBeAPowerOfTwo(Op0, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI, Q.DT)) 1968 return Constant::getNullValue(Op0->getType()); 1969 1970 if (Value *V = simplifyAndOrOfCmps(Q, Op0, Op1, true)) 1971 return V; 1972 1973 // Try some generic simplifications for associative operations. 1974 if (Value *V = SimplifyAssociativeBinOp(Instruction::And, Op0, Op1, Q, 1975 MaxRecurse)) 1976 return V; 1977 1978 // And distributes over Or. Try some generic simplifications based on this. 1979 if (Value *V = ExpandBinOp(Instruction::And, Op0, Op1, Instruction::Or, 1980 Q, MaxRecurse)) 1981 return V; 1982 1983 // And distributes over Xor. Try some generic simplifications based on this. 1984 if (Value *V = ExpandBinOp(Instruction::And, Op0, Op1, Instruction::Xor, 1985 Q, MaxRecurse)) 1986 return V; 1987 1988 // If the operation is with the result of a select instruction, check whether 1989 // operating on either branch of the select always yields the same value. 1990 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 1991 if (Value *V = ThreadBinOpOverSelect(Instruction::And, Op0, Op1, Q, 1992 MaxRecurse)) 1993 return V; 1994 1995 // If the operation is with the result of a phi instruction, check whether 1996 // operating on all incoming values of the phi always yields the same value. 1997 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 1998 if (Value *V = ThreadBinOpOverPHI(Instruction::And, Op0, Op1, Q, 1999 MaxRecurse)) 2000 return V; 2001 2002 // Assuming the effective width of Y is not larger than A, i.e. all bits 2003 // from X and Y are disjoint in (X << A) | Y, 2004 // if the mask of this AND op covers all bits of X or Y, while it covers 2005 // no bits from the other, we can bypass this AND op. E.g., 2006 // ((X << A) | Y) & Mask -> Y, 2007 // if Mask = ((1 << effective_width_of(Y)) - 1) 2008 // ((X << A) | Y) & Mask -> X << A, 2009 // if Mask = ((1 << effective_width_of(X)) - 1) << A 2010 // SimplifyDemandedBits in InstCombine can optimize the general case. 2011 // This pattern aims to help other passes for a common case. 2012 Value *Y, *XShifted; 2013 if (match(Op1, m_APInt(Mask)) && 2014 match(Op0, m_c_Or(m_CombineAnd(m_NUWShl(m_Value(X), m_APInt(ShAmt)), 2015 m_Value(XShifted)), 2016 m_Value(Y)))) { 2017 const unsigned Width = Op0->getType()->getScalarSizeInBits(); 2018 const unsigned ShftCnt = ShAmt->getLimitedValue(Width); 2019 const KnownBits YKnown = computeKnownBits(Y, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2020 const unsigned EffWidthY = Width - YKnown.countMinLeadingZeros(); 2021 if (EffWidthY <= ShftCnt) { 2022 const KnownBits XKnown = computeKnownBits(X, Q.DL, 0, Q.AC, Q.CxtI, 2023 Q.DT); 2024 const unsigned EffWidthX = Width - XKnown.countMinLeadingZeros(); 2025 const APInt EffBitsY = APInt::getLowBitsSet(Width, EffWidthY); 2026 const APInt EffBitsX = APInt::getLowBitsSet(Width, EffWidthX) << ShftCnt; 2027 // If the mask is extracting all bits from X or Y as is, we can skip 2028 // this AND op. 2029 if (EffBitsY.isSubsetOf(*Mask) && !EffBitsX.intersects(*Mask)) 2030 return Y; 2031 if (EffBitsX.isSubsetOf(*Mask) && !EffBitsY.intersects(*Mask)) 2032 return XShifted; 2033 } 2034 } 2035 2036 return nullptr; 2037 } 2038 2039 Value *llvm::SimplifyAndInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 2040 return ::SimplifyAndInst(Op0, Op1, Q, RecursionLimit); 2041 } 2042 2043 /// Given operands for an Or, see if we can fold the result. 2044 /// If not, this returns null. 2045 static Value *SimplifyOrInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 2046 unsigned MaxRecurse) { 2047 if (Constant *C = foldOrCommuteConstant(Instruction::Or, Op0, Op1, Q)) 2048 return C; 2049 2050 // X | undef -> -1 2051 // X | -1 = -1 2052 // Do not return Op1 because it may contain undef elements if it's a vector. 2053 if (match(Op1, m_Undef()) || match(Op1, m_AllOnes())) 2054 return Constant::getAllOnesValue(Op0->getType()); 2055 2056 // X | X = X 2057 // X | 0 = X 2058 if (Op0 == Op1 || match(Op1, m_Zero())) 2059 return Op0; 2060 2061 // A | ~A = ~A | A = -1 2062 if (match(Op0, m_Not(m_Specific(Op1))) || 2063 match(Op1, m_Not(m_Specific(Op0)))) 2064 return Constant::getAllOnesValue(Op0->getType()); 2065 2066 // (A & ?) | A = A 2067 if (match(Op0, m_c_And(m_Specific(Op1), m_Value()))) 2068 return Op1; 2069 2070 // A | (A & ?) = A 2071 if (match(Op1, m_c_And(m_Specific(Op0), m_Value()))) 2072 return Op0; 2073 2074 // ~(A & ?) | A = -1 2075 if (match(Op0, m_Not(m_c_And(m_Specific(Op1), m_Value())))) 2076 return Constant::getAllOnesValue(Op1->getType()); 2077 2078 // A | ~(A & ?) = -1 2079 if (match(Op1, m_Not(m_c_And(m_Specific(Op1), m_Value())))) 2080 return Constant::getAllOnesValue(Op0->getType()); 2081 2082 Value *A, *B; 2083 // (A & ~B) | (A ^ B) -> (A ^ B) 2084 // (~B & A) | (A ^ B) -> (A ^ B) 2085 // (A & ~B) | (B ^ A) -> (B ^ A) 2086 // (~B & A) | (B ^ A) -> (B ^ A) 2087 if (match(Op1, m_Xor(m_Value(A), m_Value(B))) && 2088 (match(Op0, m_c_And(m_Specific(A), m_Not(m_Specific(B)))) || 2089 match(Op0, m_c_And(m_Not(m_Specific(A)), m_Specific(B))))) 2090 return Op1; 2091 2092 // Commute the 'or' operands. 2093 // (A ^ B) | (A & ~B) -> (A ^ B) 2094 // (A ^ B) | (~B & A) -> (A ^ B) 2095 // (B ^ A) | (A & ~B) -> (B ^ A) 2096 // (B ^ A) | (~B & A) -> (B ^ A) 2097 if (match(Op0, m_Xor(m_Value(A), m_Value(B))) && 2098 (match(Op1, m_c_And(m_Specific(A), m_Not(m_Specific(B)))) || 2099 match(Op1, m_c_And(m_Not(m_Specific(A)), m_Specific(B))))) 2100 return Op0; 2101 2102 // (A & B) | (~A ^ B) -> (~A ^ B) 2103 // (B & A) | (~A ^ B) -> (~A ^ B) 2104 // (A & B) | (B ^ ~A) -> (B ^ ~A) 2105 // (B & A) | (B ^ ~A) -> (B ^ ~A) 2106 if (match(Op0, m_And(m_Value(A), m_Value(B))) && 2107 (match(Op1, m_c_Xor(m_Specific(A), m_Not(m_Specific(B)))) || 2108 match(Op1, m_c_Xor(m_Not(m_Specific(A)), m_Specific(B))))) 2109 return Op1; 2110 2111 // (~A ^ B) | (A & B) -> (~A ^ B) 2112 // (~A ^ B) | (B & A) -> (~A ^ B) 2113 // (B ^ ~A) | (A & B) -> (B ^ ~A) 2114 // (B ^ ~A) | (B & A) -> (B ^ ~A) 2115 if (match(Op1, m_And(m_Value(A), m_Value(B))) && 2116 (match(Op0, m_c_Xor(m_Specific(A), m_Not(m_Specific(B)))) || 2117 match(Op0, m_c_Xor(m_Not(m_Specific(A)), m_Specific(B))))) 2118 return Op0; 2119 2120 if (Value *V = simplifyAndOrOfCmps(Q, Op0, Op1, false)) 2121 return V; 2122 2123 // If we have a multiplication overflow check that is being 'and'ed with a 2124 // check that one of the multipliers is not zero, we can omit the 'and', and 2125 // only keep the overflow check. 2126 if (Value *V = omitCheckForZeroBeforeInvertedMulWithOverflow(Op0, Op1)) 2127 return V; 2128 if (Value *V = omitCheckForZeroBeforeInvertedMulWithOverflow(Op1, Op0)) 2129 return V; 2130 2131 // Try some generic simplifications for associative operations. 2132 if (Value *V = SimplifyAssociativeBinOp(Instruction::Or, Op0, Op1, Q, 2133 MaxRecurse)) 2134 return V; 2135 2136 // Or distributes over And. Try some generic simplifications based on this. 2137 if (Value *V = ExpandBinOp(Instruction::Or, Op0, Op1, Instruction::And, Q, 2138 MaxRecurse)) 2139 return V; 2140 2141 // If the operation is with the result of a select instruction, check whether 2142 // operating on either branch of the select always yields the same value. 2143 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 2144 if (Value *V = ThreadBinOpOverSelect(Instruction::Or, Op0, Op1, Q, 2145 MaxRecurse)) 2146 return V; 2147 2148 // (A & C1)|(B & C2) 2149 const APInt *C1, *C2; 2150 if (match(Op0, m_And(m_Value(A), m_APInt(C1))) && 2151 match(Op1, m_And(m_Value(B), m_APInt(C2)))) { 2152 if (*C1 == ~*C2) { 2153 // (A & C1)|(B & C2) 2154 // If we have: ((V + N) & C1) | (V & C2) 2155 // .. and C2 = ~C1 and C2 is 0+1+ and (N & C2) == 0 2156 // replace with V+N. 2157 Value *N; 2158 if (C2->isMask() && // C2 == 0+1+ 2159 match(A, m_c_Add(m_Specific(B), m_Value(N)))) { 2160 // Add commutes, try both ways. 2161 if (MaskedValueIsZero(N, *C2, Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 2162 return A; 2163 } 2164 // Or commutes, try both ways. 2165 if (C1->isMask() && 2166 match(B, m_c_Add(m_Specific(A), m_Value(N)))) { 2167 // Add commutes, try both ways. 2168 if (MaskedValueIsZero(N, *C1, Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 2169 return B; 2170 } 2171 } 2172 } 2173 2174 // If the operation is with the result of a phi instruction, check whether 2175 // operating on all incoming values of the phi always yields the same value. 2176 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 2177 if (Value *V = ThreadBinOpOverPHI(Instruction::Or, Op0, Op1, Q, MaxRecurse)) 2178 return V; 2179 2180 return nullptr; 2181 } 2182 2183 Value *llvm::SimplifyOrInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 2184 return ::SimplifyOrInst(Op0, Op1, Q, RecursionLimit); 2185 } 2186 2187 /// Given operands for a Xor, see if we can fold the result. 2188 /// If not, this returns null. 2189 static Value *SimplifyXorInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 2190 unsigned MaxRecurse) { 2191 if (Constant *C = foldOrCommuteConstant(Instruction::Xor, Op0, Op1, Q)) 2192 return C; 2193 2194 // A ^ undef -> undef 2195 if (match(Op1, m_Undef())) 2196 return Op1; 2197 2198 // A ^ 0 = A 2199 if (match(Op1, m_Zero())) 2200 return Op0; 2201 2202 // A ^ A = 0 2203 if (Op0 == Op1) 2204 return Constant::getNullValue(Op0->getType()); 2205 2206 // A ^ ~A = ~A ^ A = -1 2207 if (match(Op0, m_Not(m_Specific(Op1))) || 2208 match(Op1, m_Not(m_Specific(Op0)))) 2209 return Constant::getAllOnesValue(Op0->getType()); 2210 2211 // Try some generic simplifications for associative operations. 2212 if (Value *V = SimplifyAssociativeBinOp(Instruction::Xor, Op0, Op1, Q, 2213 MaxRecurse)) 2214 return V; 2215 2216 // Threading Xor over selects and phi nodes is pointless, so don't bother. 2217 // Threading over the select in "A ^ select(cond, B, C)" means evaluating 2218 // "A^B" and "A^C" and seeing if they are equal; but they are equal if and 2219 // only if B and C are equal. If B and C are equal then (since we assume 2220 // that operands have already been simplified) "select(cond, B, C)" should 2221 // have been simplified to the common value of B and C already. Analysing 2222 // "A^B" and "A^C" thus gains nothing, but costs compile time. Similarly 2223 // for threading over phi nodes. 2224 2225 return nullptr; 2226 } 2227 2228 Value *llvm::SimplifyXorInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 2229 return ::SimplifyXorInst(Op0, Op1, Q, RecursionLimit); 2230 } 2231 2232 2233 static Type *GetCompareTy(Value *Op) { 2234 return CmpInst::makeCmpResultType(Op->getType()); 2235 } 2236 2237 /// Rummage around inside V looking for something equivalent to the comparison 2238 /// "LHS Pred RHS". Return such a value if found, otherwise return null. 2239 /// Helper function for analyzing max/min idioms. 2240 static Value *ExtractEquivalentCondition(Value *V, CmpInst::Predicate Pred, 2241 Value *LHS, Value *RHS) { 2242 SelectInst *SI = dyn_cast<SelectInst>(V); 2243 if (!SI) 2244 return nullptr; 2245 CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition()); 2246 if (!Cmp) 2247 return nullptr; 2248 Value *CmpLHS = Cmp->getOperand(0), *CmpRHS = Cmp->getOperand(1); 2249 if (Pred == Cmp->getPredicate() && LHS == CmpLHS && RHS == CmpRHS) 2250 return Cmp; 2251 if (Pred == CmpInst::getSwappedPredicate(Cmp->getPredicate()) && 2252 LHS == CmpRHS && RHS == CmpLHS) 2253 return Cmp; 2254 return nullptr; 2255 } 2256 2257 // A significant optimization not implemented here is assuming that alloca 2258 // addresses are not equal to incoming argument values. They don't *alias*, 2259 // as we say, but that doesn't mean they aren't equal, so we take a 2260 // conservative approach. 2261 // 2262 // This is inspired in part by C++11 5.10p1: 2263 // "Two pointers of the same type compare equal if and only if they are both 2264 // null, both point to the same function, or both represent the same 2265 // address." 2266 // 2267 // This is pretty permissive. 2268 // 2269 // It's also partly due to C11 6.5.9p6: 2270 // "Two pointers compare equal if and only if both are null pointers, both are 2271 // pointers to the same object (including a pointer to an object and a 2272 // subobject at its beginning) or function, both are pointers to one past the 2273 // last element of the same array object, or one is a pointer to one past the 2274 // end of one array object and the other is a pointer to the start of a 2275 // different array object that happens to immediately follow the first array 2276 // object in the address space.) 2277 // 2278 // C11's version is more restrictive, however there's no reason why an argument 2279 // couldn't be a one-past-the-end value for a stack object in the caller and be 2280 // equal to the beginning of a stack object in the callee. 2281 // 2282 // If the C and C++ standards are ever made sufficiently restrictive in this 2283 // area, it may be possible to update LLVM's semantics accordingly and reinstate 2284 // this optimization. 2285 static Constant * 2286 computePointerICmp(const DataLayout &DL, const TargetLibraryInfo *TLI, 2287 const DominatorTree *DT, CmpInst::Predicate Pred, 2288 AssumptionCache *AC, const Instruction *CxtI, 2289 const InstrInfoQuery &IIQ, Value *LHS, Value *RHS) { 2290 // First, skip past any trivial no-ops. 2291 LHS = LHS->stripPointerCasts(); 2292 RHS = RHS->stripPointerCasts(); 2293 2294 // A non-null pointer is not equal to a null pointer. 2295 if (llvm::isKnownNonZero(LHS, DL, 0, nullptr, nullptr, nullptr, 2296 IIQ.UseInstrInfo) && 2297 isa<ConstantPointerNull>(RHS) && 2298 (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE)) 2299 return ConstantInt::get(GetCompareTy(LHS), 2300 !CmpInst::isTrueWhenEqual(Pred)); 2301 2302 // We can only fold certain predicates on pointer comparisons. 2303 switch (Pred) { 2304 default: 2305 return nullptr; 2306 2307 // Equality comaprisons are easy to fold. 2308 case CmpInst::ICMP_EQ: 2309 case CmpInst::ICMP_NE: 2310 break; 2311 2312 // We can only handle unsigned relational comparisons because 'inbounds' on 2313 // a GEP only protects against unsigned wrapping. 2314 case CmpInst::ICMP_UGT: 2315 case CmpInst::ICMP_UGE: 2316 case CmpInst::ICMP_ULT: 2317 case CmpInst::ICMP_ULE: 2318 // However, we have to switch them to their signed variants to handle 2319 // negative indices from the base pointer. 2320 Pred = ICmpInst::getSignedPredicate(Pred); 2321 break; 2322 } 2323 2324 // Strip off any constant offsets so that we can reason about them. 2325 // It's tempting to use getUnderlyingObject or even just stripInBoundsOffsets 2326 // here and compare base addresses like AliasAnalysis does, however there are 2327 // numerous hazards. AliasAnalysis and its utilities rely on special rules 2328 // governing loads and stores which don't apply to icmps. Also, AliasAnalysis 2329 // doesn't need to guarantee pointer inequality when it says NoAlias. 2330 Constant *LHSOffset = stripAndComputeConstantOffsets(DL, LHS); 2331 Constant *RHSOffset = stripAndComputeConstantOffsets(DL, RHS); 2332 2333 // If LHS and RHS are related via constant offsets to the same base 2334 // value, we can replace it with an icmp which just compares the offsets. 2335 if (LHS == RHS) 2336 return ConstantExpr::getICmp(Pred, LHSOffset, RHSOffset); 2337 2338 // Various optimizations for (in)equality comparisons. 2339 if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE) { 2340 // Different non-empty allocations that exist at the same time have 2341 // different addresses (if the program can tell). Global variables always 2342 // exist, so they always exist during the lifetime of each other and all 2343 // allocas. Two different allocas usually have different addresses... 2344 // 2345 // However, if there's an @llvm.stackrestore dynamically in between two 2346 // allocas, they may have the same address. It's tempting to reduce the 2347 // scope of the problem by only looking at *static* allocas here. That would 2348 // cover the majority of allocas while significantly reducing the likelihood 2349 // of having an @llvm.stackrestore pop up in the middle. However, it's not 2350 // actually impossible for an @llvm.stackrestore to pop up in the middle of 2351 // an entry block. Also, if we have a block that's not attached to a 2352 // function, we can't tell if it's "static" under the current definition. 2353 // Theoretically, this problem could be fixed by creating a new kind of 2354 // instruction kind specifically for static allocas. Such a new instruction 2355 // could be required to be at the top of the entry block, thus preventing it 2356 // from being subject to a @llvm.stackrestore. Instcombine could even 2357 // convert regular allocas into these special allocas. It'd be nifty. 2358 // However, until then, this problem remains open. 2359 // 2360 // So, we'll assume that two non-empty allocas have different addresses 2361 // for now. 2362 // 2363 // With all that, if the offsets are within the bounds of their allocations 2364 // (and not one-past-the-end! so we can't use inbounds!), and their 2365 // allocations aren't the same, the pointers are not equal. 2366 // 2367 // Note that it's not necessary to check for LHS being a global variable 2368 // address, due to canonicalization and constant folding. 2369 if (isa<AllocaInst>(LHS) && 2370 (isa<AllocaInst>(RHS) || isa<GlobalVariable>(RHS))) { 2371 ConstantInt *LHSOffsetCI = dyn_cast<ConstantInt>(LHSOffset); 2372 ConstantInt *RHSOffsetCI = dyn_cast<ConstantInt>(RHSOffset); 2373 uint64_t LHSSize, RHSSize; 2374 ObjectSizeOpts Opts; 2375 Opts.NullIsUnknownSize = 2376 NullPointerIsDefined(cast<AllocaInst>(LHS)->getFunction()); 2377 if (LHSOffsetCI && RHSOffsetCI && 2378 getObjectSize(LHS, LHSSize, DL, TLI, Opts) && 2379 getObjectSize(RHS, RHSSize, DL, TLI, Opts)) { 2380 const APInt &LHSOffsetValue = LHSOffsetCI->getValue(); 2381 const APInt &RHSOffsetValue = RHSOffsetCI->getValue(); 2382 if (!LHSOffsetValue.isNegative() && 2383 !RHSOffsetValue.isNegative() && 2384 LHSOffsetValue.ult(LHSSize) && 2385 RHSOffsetValue.ult(RHSSize)) { 2386 return ConstantInt::get(GetCompareTy(LHS), 2387 !CmpInst::isTrueWhenEqual(Pred)); 2388 } 2389 } 2390 2391 // Repeat the above check but this time without depending on DataLayout 2392 // or being able to compute a precise size. 2393 if (!cast<PointerType>(LHS->getType())->isEmptyTy() && 2394 !cast<PointerType>(RHS->getType())->isEmptyTy() && 2395 LHSOffset->isNullValue() && 2396 RHSOffset->isNullValue()) 2397 return ConstantInt::get(GetCompareTy(LHS), 2398 !CmpInst::isTrueWhenEqual(Pred)); 2399 } 2400 2401 // Even if an non-inbounds GEP occurs along the path we can still optimize 2402 // equality comparisons concerning the result. We avoid walking the whole 2403 // chain again by starting where the last calls to 2404 // stripAndComputeConstantOffsets left off and accumulate the offsets. 2405 Constant *LHSNoBound = stripAndComputeConstantOffsets(DL, LHS, true); 2406 Constant *RHSNoBound = stripAndComputeConstantOffsets(DL, RHS, true); 2407 if (LHS == RHS) 2408 return ConstantExpr::getICmp(Pred, 2409 ConstantExpr::getAdd(LHSOffset, LHSNoBound), 2410 ConstantExpr::getAdd(RHSOffset, RHSNoBound)); 2411 2412 // If one side of the equality comparison must come from a noalias call 2413 // (meaning a system memory allocation function), and the other side must 2414 // come from a pointer that cannot overlap with dynamically-allocated 2415 // memory within the lifetime of the current function (allocas, byval 2416 // arguments, globals), then determine the comparison result here. 2417 SmallVector<const Value *, 8> LHSUObjs, RHSUObjs; 2418 GetUnderlyingObjects(LHS, LHSUObjs, DL); 2419 GetUnderlyingObjects(RHS, RHSUObjs, DL); 2420 2421 // Is the set of underlying objects all noalias calls? 2422 auto IsNAC = [](ArrayRef<const Value *> Objects) { 2423 return all_of(Objects, isNoAliasCall); 2424 }; 2425 2426 // Is the set of underlying objects all things which must be disjoint from 2427 // noalias calls. For allocas, we consider only static ones (dynamic 2428 // allocas might be transformed into calls to malloc not simultaneously 2429 // live with the compared-to allocation). For globals, we exclude symbols 2430 // that might be resolve lazily to symbols in another dynamically-loaded 2431 // library (and, thus, could be malloc'ed by the implementation). 2432 auto IsAllocDisjoint = [](ArrayRef<const Value *> Objects) { 2433 return all_of(Objects, [](const Value *V) { 2434 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) 2435 return AI->getParent() && AI->getFunction() && AI->isStaticAlloca(); 2436 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) 2437 return (GV->hasLocalLinkage() || GV->hasHiddenVisibility() || 2438 GV->hasProtectedVisibility() || GV->hasGlobalUnnamedAddr()) && 2439 !GV->isThreadLocal(); 2440 if (const Argument *A = dyn_cast<Argument>(V)) 2441 return A->hasByValAttr(); 2442 return false; 2443 }); 2444 }; 2445 2446 if ((IsNAC(LHSUObjs) && IsAllocDisjoint(RHSUObjs)) || 2447 (IsNAC(RHSUObjs) && IsAllocDisjoint(LHSUObjs))) 2448 return ConstantInt::get(GetCompareTy(LHS), 2449 !CmpInst::isTrueWhenEqual(Pred)); 2450 2451 // Fold comparisons for non-escaping pointer even if the allocation call 2452 // cannot be elided. We cannot fold malloc comparison to null. Also, the 2453 // dynamic allocation call could be either of the operands. 2454 Value *MI = nullptr; 2455 if (isAllocLikeFn(LHS, TLI) && 2456 llvm::isKnownNonZero(RHS, DL, 0, nullptr, CxtI, DT)) 2457 MI = LHS; 2458 else if (isAllocLikeFn(RHS, TLI) && 2459 llvm::isKnownNonZero(LHS, DL, 0, nullptr, CxtI, DT)) 2460 MI = RHS; 2461 // FIXME: We should also fold the compare when the pointer escapes, but the 2462 // compare dominates the pointer escape 2463 if (MI && !PointerMayBeCaptured(MI, true, true)) 2464 return ConstantInt::get(GetCompareTy(LHS), 2465 CmpInst::isFalseWhenEqual(Pred)); 2466 } 2467 2468 // Otherwise, fail. 2469 return nullptr; 2470 } 2471 2472 /// Fold an icmp when its operands have i1 scalar type. 2473 static Value *simplifyICmpOfBools(CmpInst::Predicate Pred, Value *LHS, 2474 Value *RHS, const SimplifyQuery &Q) { 2475 Type *ITy = GetCompareTy(LHS); // The return type. 2476 Type *OpTy = LHS->getType(); // The operand type. 2477 if (!OpTy->isIntOrIntVectorTy(1)) 2478 return nullptr; 2479 2480 // A boolean compared to true/false can be simplified in 14 out of the 20 2481 // (10 predicates * 2 constants) possible combinations. Cases not handled here 2482 // require a 'not' of the LHS, so those must be transformed in InstCombine. 2483 if (match(RHS, m_Zero())) { 2484 switch (Pred) { 2485 case CmpInst::ICMP_NE: // X != 0 -> X 2486 case CmpInst::ICMP_UGT: // X >u 0 -> X 2487 case CmpInst::ICMP_SLT: // X <s 0 -> X 2488 return LHS; 2489 2490 case CmpInst::ICMP_ULT: // X <u 0 -> false 2491 case CmpInst::ICMP_SGT: // X >s 0 -> false 2492 return getFalse(ITy); 2493 2494 case CmpInst::ICMP_UGE: // X >=u 0 -> true 2495 case CmpInst::ICMP_SLE: // X <=s 0 -> true 2496 return getTrue(ITy); 2497 2498 default: break; 2499 } 2500 } else if (match(RHS, m_One())) { 2501 switch (Pred) { 2502 case CmpInst::ICMP_EQ: // X == 1 -> X 2503 case CmpInst::ICMP_UGE: // X >=u 1 -> X 2504 case CmpInst::ICMP_SLE: // X <=s -1 -> X 2505 return LHS; 2506 2507 case CmpInst::ICMP_UGT: // X >u 1 -> false 2508 case CmpInst::ICMP_SLT: // X <s -1 -> false 2509 return getFalse(ITy); 2510 2511 case CmpInst::ICMP_ULE: // X <=u 1 -> true 2512 case CmpInst::ICMP_SGE: // X >=s -1 -> true 2513 return getTrue(ITy); 2514 2515 default: break; 2516 } 2517 } 2518 2519 switch (Pred) { 2520 default: 2521 break; 2522 case ICmpInst::ICMP_UGE: 2523 if (isImpliedCondition(RHS, LHS, Q.DL).getValueOr(false)) 2524 return getTrue(ITy); 2525 break; 2526 case ICmpInst::ICMP_SGE: 2527 /// For signed comparison, the values for an i1 are 0 and -1 2528 /// respectively. This maps into a truth table of: 2529 /// LHS | RHS | LHS >=s RHS | LHS implies RHS 2530 /// 0 | 0 | 1 (0 >= 0) | 1 2531 /// 0 | 1 | 1 (0 >= -1) | 1 2532 /// 1 | 0 | 0 (-1 >= 0) | 0 2533 /// 1 | 1 | 1 (-1 >= -1) | 1 2534 if (isImpliedCondition(LHS, RHS, Q.DL).getValueOr(false)) 2535 return getTrue(ITy); 2536 break; 2537 case ICmpInst::ICMP_ULE: 2538 if (isImpliedCondition(LHS, RHS, Q.DL).getValueOr(false)) 2539 return getTrue(ITy); 2540 break; 2541 } 2542 2543 return nullptr; 2544 } 2545 2546 /// Try hard to fold icmp with zero RHS because this is a common case. 2547 static Value *simplifyICmpWithZero(CmpInst::Predicate Pred, Value *LHS, 2548 Value *RHS, const SimplifyQuery &Q) { 2549 if (!match(RHS, m_Zero())) 2550 return nullptr; 2551 2552 Type *ITy = GetCompareTy(LHS); // The return type. 2553 switch (Pred) { 2554 default: 2555 llvm_unreachable("Unknown ICmp predicate!"); 2556 case ICmpInst::ICMP_ULT: 2557 return getFalse(ITy); 2558 case ICmpInst::ICMP_UGE: 2559 return getTrue(ITy); 2560 case ICmpInst::ICMP_EQ: 2561 case ICmpInst::ICMP_ULE: 2562 if (isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT, Q.IIQ.UseInstrInfo)) 2563 return getFalse(ITy); 2564 break; 2565 case ICmpInst::ICMP_NE: 2566 case ICmpInst::ICMP_UGT: 2567 if (isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT, Q.IIQ.UseInstrInfo)) 2568 return getTrue(ITy); 2569 break; 2570 case ICmpInst::ICMP_SLT: { 2571 KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2572 if (LHSKnown.isNegative()) 2573 return getTrue(ITy); 2574 if (LHSKnown.isNonNegative()) 2575 return getFalse(ITy); 2576 break; 2577 } 2578 case ICmpInst::ICMP_SLE: { 2579 KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2580 if (LHSKnown.isNegative()) 2581 return getTrue(ITy); 2582 if (LHSKnown.isNonNegative() && 2583 isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 2584 return getFalse(ITy); 2585 break; 2586 } 2587 case ICmpInst::ICMP_SGE: { 2588 KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2589 if (LHSKnown.isNegative()) 2590 return getFalse(ITy); 2591 if (LHSKnown.isNonNegative()) 2592 return getTrue(ITy); 2593 break; 2594 } 2595 case ICmpInst::ICMP_SGT: { 2596 KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2597 if (LHSKnown.isNegative()) 2598 return getFalse(ITy); 2599 if (LHSKnown.isNonNegative() && 2600 isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 2601 return getTrue(ITy); 2602 break; 2603 } 2604 } 2605 2606 return nullptr; 2607 } 2608 2609 static Value *simplifyICmpWithConstant(CmpInst::Predicate Pred, Value *LHS, 2610 Value *RHS, const InstrInfoQuery &IIQ) { 2611 Type *ITy = GetCompareTy(RHS); // The return type. 2612 2613 Value *X; 2614 // Sign-bit checks can be optimized to true/false after unsigned 2615 // floating-point casts: 2616 // icmp slt (bitcast (uitofp X)), 0 --> false 2617 // icmp sgt (bitcast (uitofp X)), -1 --> true 2618 if (match(LHS, m_BitCast(m_UIToFP(m_Value(X))))) { 2619 if (Pred == ICmpInst::ICMP_SLT && match(RHS, m_Zero())) 2620 return ConstantInt::getFalse(ITy); 2621 if (Pred == ICmpInst::ICMP_SGT && match(RHS, m_AllOnes())) 2622 return ConstantInt::getTrue(ITy); 2623 } 2624 2625 const APInt *C; 2626 if (!match(RHS, m_APInt(C))) 2627 return nullptr; 2628 2629 // Rule out tautological comparisons (eg., ult 0 or uge 0). 2630 ConstantRange RHS_CR = ConstantRange::makeExactICmpRegion(Pred, *C); 2631 if (RHS_CR.isEmptySet()) 2632 return ConstantInt::getFalse(ITy); 2633 if (RHS_CR.isFullSet()) 2634 return ConstantInt::getTrue(ITy); 2635 2636 ConstantRange LHS_CR = computeConstantRange(LHS, IIQ.UseInstrInfo); 2637 if (!LHS_CR.isFullSet()) { 2638 if (RHS_CR.contains(LHS_CR)) 2639 return ConstantInt::getTrue(ITy); 2640 if (RHS_CR.inverse().contains(LHS_CR)) 2641 return ConstantInt::getFalse(ITy); 2642 } 2643 2644 return nullptr; 2645 } 2646 2647 /// TODO: A large part of this logic is duplicated in InstCombine's 2648 /// foldICmpBinOp(). We should be able to share that and avoid the code 2649 /// duplication. 2650 static Value *simplifyICmpWithBinOp(CmpInst::Predicate Pred, Value *LHS, 2651 Value *RHS, const SimplifyQuery &Q, 2652 unsigned MaxRecurse) { 2653 Type *ITy = GetCompareTy(LHS); // The return type. 2654 2655 BinaryOperator *LBO = dyn_cast<BinaryOperator>(LHS); 2656 BinaryOperator *RBO = dyn_cast<BinaryOperator>(RHS); 2657 if (MaxRecurse && (LBO || RBO)) { 2658 // Analyze the case when either LHS or RHS is an add instruction. 2659 Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr; 2660 // LHS = A + B (or A and B are null); RHS = C + D (or C and D are null). 2661 bool NoLHSWrapProblem = false, NoRHSWrapProblem = false; 2662 if (LBO && LBO->getOpcode() == Instruction::Add) { 2663 A = LBO->getOperand(0); 2664 B = LBO->getOperand(1); 2665 NoLHSWrapProblem = 2666 ICmpInst::isEquality(Pred) || 2667 (CmpInst::isUnsigned(Pred) && 2668 Q.IIQ.hasNoUnsignedWrap(cast<OverflowingBinaryOperator>(LBO))) || 2669 (CmpInst::isSigned(Pred) && 2670 Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(LBO))); 2671 } 2672 if (RBO && RBO->getOpcode() == Instruction::Add) { 2673 C = RBO->getOperand(0); 2674 D = RBO->getOperand(1); 2675 NoRHSWrapProblem = 2676 ICmpInst::isEquality(Pred) || 2677 (CmpInst::isUnsigned(Pred) && 2678 Q.IIQ.hasNoUnsignedWrap(cast<OverflowingBinaryOperator>(RBO))) || 2679 (CmpInst::isSigned(Pred) && 2680 Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(RBO))); 2681 } 2682 2683 // icmp (X+Y), X -> icmp Y, 0 for equalities or if there is no overflow. 2684 if ((A == RHS || B == RHS) && NoLHSWrapProblem) 2685 if (Value *V = SimplifyICmpInst(Pred, A == RHS ? B : A, 2686 Constant::getNullValue(RHS->getType()), Q, 2687 MaxRecurse - 1)) 2688 return V; 2689 2690 // icmp X, (X+Y) -> icmp 0, Y for equalities or if there is no overflow. 2691 if ((C == LHS || D == LHS) && NoRHSWrapProblem) 2692 if (Value *V = 2693 SimplifyICmpInst(Pred, Constant::getNullValue(LHS->getType()), 2694 C == LHS ? D : C, Q, MaxRecurse - 1)) 2695 return V; 2696 2697 // icmp (X+Y), (X+Z) -> icmp Y,Z for equalities or if there is no overflow. 2698 if (A && C && (A == C || A == D || B == C || B == D) && NoLHSWrapProblem && 2699 NoRHSWrapProblem) { 2700 // Determine Y and Z in the form icmp (X+Y), (X+Z). 2701 Value *Y, *Z; 2702 if (A == C) { 2703 // C + B == C + D -> B == D 2704 Y = B; 2705 Z = D; 2706 } else if (A == D) { 2707 // D + B == C + D -> B == C 2708 Y = B; 2709 Z = C; 2710 } else if (B == C) { 2711 // A + C == C + D -> A == D 2712 Y = A; 2713 Z = D; 2714 } else { 2715 assert(B == D); 2716 // A + D == C + D -> A == C 2717 Y = A; 2718 Z = C; 2719 } 2720 if (Value *V = SimplifyICmpInst(Pred, Y, Z, Q, MaxRecurse - 1)) 2721 return V; 2722 } 2723 } 2724 2725 { 2726 Value *Y = nullptr; 2727 // icmp pred (or X, Y), X 2728 if (LBO && match(LBO, m_c_Or(m_Value(Y), m_Specific(RHS)))) { 2729 if (Pred == ICmpInst::ICMP_ULT) 2730 return getFalse(ITy); 2731 if (Pred == ICmpInst::ICMP_UGE) 2732 return getTrue(ITy); 2733 2734 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SGE) { 2735 KnownBits RHSKnown = computeKnownBits(RHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2736 KnownBits YKnown = computeKnownBits(Y, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2737 if (RHSKnown.isNonNegative() && YKnown.isNegative()) 2738 return Pred == ICmpInst::ICMP_SLT ? getTrue(ITy) : getFalse(ITy); 2739 if (RHSKnown.isNegative() || YKnown.isNonNegative()) 2740 return Pred == ICmpInst::ICMP_SLT ? getFalse(ITy) : getTrue(ITy); 2741 } 2742 } 2743 // icmp pred X, (or X, Y) 2744 if (RBO && match(RBO, m_c_Or(m_Value(Y), m_Specific(LHS)))) { 2745 if (Pred == ICmpInst::ICMP_ULE) 2746 return getTrue(ITy); 2747 if (Pred == ICmpInst::ICMP_UGT) 2748 return getFalse(ITy); 2749 2750 if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SLE) { 2751 KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2752 KnownBits YKnown = computeKnownBits(Y, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2753 if (LHSKnown.isNonNegative() && YKnown.isNegative()) 2754 return Pred == ICmpInst::ICMP_SGT ? getTrue(ITy) : getFalse(ITy); 2755 if (LHSKnown.isNegative() || YKnown.isNonNegative()) 2756 return Pred == ICmpInst::ICMP_SGT ? getFalse(ITy) : getTrue(ITy); 2757 } 2758 } 2759 } 2760 2761 // icmp pred (and X, Y), X 2762 if (LBO && match(LBO, m_c_And(m_Value(), m_Specific(RHS)))) { 2763 if (Pred == ICmpInst::ICMP_UGT) 2764 return getFalse(ITy); 2765 if (Pred == ICmpInst::ICMP_ULE) 2766 return getTrue(ITy); 2767 } 2768 // icmp pred X, (and X, Y) 2769 if (RBO && match(RBO, m_c_And(m_Value(), m_Specific(LHS)))) { 2770 if (Pred == ICmpInst::ICMP_UGE) 2771 return getTrue(ITy); 2772 if (Pred == ICmpInst::ICMP_ULT) 2773 return getFalse(ITy); 2774 } 2775 2776 // 0 - (zext X) pred C 2777 if (!CmpInst::isUnsigned(Pred) && match(LHS, m_Neg(m_ZExt(m_Value())))) { 2778 if (ConstantInt *RHSC = dyn_cast<ConstantInt>(RHS)) { 2779 if (RHSC->getValue().isStrictlyPositive()) { 2780 if (Pred == ICmpInst::ICMP_SLT) 2781 return ConstantInt::getTrue(RHSC->getContext()); 2782 if (Pred == ICmpInst::ICMP_SGE) 2783 return ConstantInt::getFalse(RHSC->getContext()); 2784 if (Pred == ICmpInst::ICMP_EQ) 2785 return ConstantInt::getFalse(RHSC->getContext()); 2786 if (Pred == ICmpInst::ICMP_NE) 2787 return ConstantInt::getTrue(RHSC->getContext()); 2788 } 2789 if (RHSC->getValue().isNonNegative()) { 2790 if (Pred == ICmpInst::ICMP_SLE) 2791 return ConstantInt::getTrue(RHSC->getContext()); 2792 if (Pred == ICmpInst::ICMP_SGT) 2793 return ConstantInt::getFalse(RHSC->getContext()); 2794 } 2795 } 2796 } 2797 2798 // icmp pred (urem X, Y), Y 2799 if (LBO && match(LBO, m_URem(m_Value(), m_Specific(RHS)))) { 2800 switch (Pred) { 2801 default: 2802 break; 2803 case ICmpInst::ICMP_SGT: 2804 case ICmpInst::ICMP_SGE: { 2805 KnownBits Known = computeKnownBits(RHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2806 if (!Known.isNonNegative()) 2807 break; 2808 LLVM_FALLTHROUGH; 2809 } 2810 case ICmpInst::ICMP_EQ: 2811 case ICmpInst::ICMP_UGT: 2812 case ICmpInst::ICMP_UGE: 2813 return getFalse(ITy); 2814 case ICmpInst::ICMP_SLT: 2815 case ICmpInst::ICMP_SLE: { 2816 KnownBits Known = computeKnownBits(RHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2817 if (!Known.isNonNegative()) 2818 break; 2819 LLVM_FALLTHROUGH; 2820 } 2821 case ICmpInst::ICMP_NE: 2822 case ICmpInst::ICMP_ULT: 2823 case ICmpInst::ICMP_ULE: 2824 return getTrue(ITy); 2825 } 2826 } 2827 2828 // icmp pred X, (urem Y, X) 2829 if (RBO && match(RBO, m_URem(m_Value(), m_Specific(LHS)))) { 2830 switch (Pred) { 2831 default: 2832 break; 2833 case ICmpInst::ICMP_SGT: 2834 case ICmpInst::ICMP_SGE: { 2835 KnownBits Known = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2836 if (!Known.isNonNegative()) 2837 break; 2838 LLVM_FALLTHROUGH; 2839 } 2840 case ICmpInst::ICMP_NE: 2841 case ICmpInst::ICMP_UGT: 2842 case ICmpInst::ICMP_UGE: 2843 return getTrue(ITy); 2844 case ICmpInst::ICMP_SLT: 2845 case ICmpInst::ICMP_SLE: { 2846 KnownBits Known = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2847 if (!Known.isNonNegative()) 2848 break; 2849 LLVM_FALLTHROUGH; 2850 } 2851 case ICmpInst::ICMP_EQ: 2852 case ICmpInst::ICMP_ULT: 2853 case ICmpInst::ICMP_ULE: 2854 return getFalse(ITy); 2855 } 2856 } 2857 2858 // x >> y <=u x 2859 // x udiv y <=u x. 2860 if (LBO && (match(LBO, m_LShr(m_Specific(RHS), m_Value())) || 2861 match(LBO, m_UDiv(m_Specific(RHS), m_Value())))) { 2862 // icmp pred (X op Y), X 2863 if (Pred == ICmpInst::ICMP_UGT) 2864 return getFalse(ITy); 2865 if (Pred == ICmpInst::ICMP_ULE) 2866 return getTrue(ITy); 2867 } 2868 2869 // x >=u x >> y 2870 // x >=u x udiv y. 2871 if (RBO && (match(RBO, m_LShr(m_Specific(LHS), m_Value())) || 2872 match(RBO, m_UDiv(m_Specific(LHS), m_Value())))) { 2873 // icmp pred X, (X op Y) 2874 if (Pred == ICmpInst::ICMP_ULT) 2875 return getFalse(ITy); 2876 if (Pred == ICmpInst::ICMP_UGE) 2877 return getTrue(ITy); 2878 } 2879 2880 // handle: 2881 // CI2 << X == CI 2882 // CI2 << X != CI 2883 // 2884 // where CI2 is a power of 2 and CI isn't 2885 if (auto *CI = dyn_cast<ConstantInt>(RHS)) { 2886 const APInt *CI2Val, *CIVal = &CI->getValue(); 2887 if (LBO && match(LBO, m_Shl(m_APInt(CI2Val), m_Value())) && 2888 CI2Val->isPowerOf2()) { 2889 if (!CIVal->isPowerOf2()) { 2890 // CI2 << X can equal zero in some circumstances, 2891 // this simplification is unsafe if CI is zero. 2892 // 2893 // We know it is safe if: 2894 // - The shift is nsw, we can't shift out the one bit. 2895 // - The shift is nuw, we can't shift out the one bit. 2896 // - CI2 is one 2897 // - CI isn't zero 2898 if (Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(LBO)) || 2899 Q.IIQ.hasNoUnsignedWrap(cast<OverflowingBinaryOperator>(LBO)) || 2900 CI2Val->isOneValue() || !CI->isZero()) { 2901 if (Pred == ICmpInst::ICMP_EQ) 2902 return ConstantInt::getFalse(RHS->getContext()); 2903 if (Pred == ICmpInst::ICMP_NE) 2904 return ConstantInt::getTrue(RHS->getContext()); 2905 } 2906 } 2907 if (CIVal->isSignMask() && CI2Val->isOneValue()) { 2908 if (Pred == ICmpInst::ICMP_UGT) 2909 return ConstantInt::getFalse(RHS->getContext()); 2910 if (Pred == ICmpInst::ICMP_ULE) 2911 return ConstantInt::getTrue(RHS->getContext()); 2912 } 2913 } 2914 } 2915 2916 if (MaxRecurse && LBO && RBO && LBO->getOpcode() == RBO->getOpcode() && 2917 LBO->getOperand(1) == RBO->getOperand(1)) { 2918 switch (LBO->getOpcode()) { 2919 default: 2920 break; 2921 case Instruction::UDiv: 2922 case Instruction::LShr: 2923 if (ICmpInst::isSigned(Pred) || !Q.IIQ.isExact(LBO) || 2924 !Q.IIQ.isExact(RBO)) 2925 break; 2926 if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0), 2927 RBO->getOperand(0), Q, MaxRecurse - 1)) 2928 return V; 2929 break; 2930 case Instruction::SDiv: 2931 if (!ICmpInst::isEquality(Pred) || !Q.IIQ.isExact(LBO) || 2932 !Q.IIQ.isExact(RBO)) 2933 break; 2934 if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0), 2935 RBO->getOperand(0), Q, MaxRecurse - 1)) 2936 return V; 2937 break; 2938 case Instruction::AShr: 2939 if (!Q.IIQ.isExact(LBO) || !Q.IIQ.isExact(RBO)) 2940 break; 2941 if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0), 2942 RBO->getOperand(0), Q, MaxRecurse - 1)) 2943 return V; 2944 break; 2945 case Instruction::Shl: { 2946 bool NUW = Q.IIQ.hasNoUnsignedWrap(LBO) && Q.IIQ.hasNoUnsignedWrap(RBO); 2947 bool NSW = Q.IIQ.hasNoSignedWrap(LBO) && Q.IIQ.hasNoSignedWrap(RBO); 2948 if (!NUW && !NSW) 2949 break; 2950 if (!NSW && ICmpInst::isSigned(Pred)) 2951 break; 2952 if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0), 2953 RBO->getOperand(0), Q, MaxRecurse - 1)) 2954 return V; 2955 break; 2956 } 2957 } 2958 } 2959 return nullptr; 2960 } 2961 2962 /// Simplify integer comparisons where at least one operand of the compare 2963 /// matches an integer min/max idiom. 2964 static Value *simplifyICmpWithMinMax(CmpInst::Predicate Pred, Value *LHS, 2965 Value *RHS, const SimplifyQuery &Q, 2966 unsigned MaxRecurse) { 2967 Type *ITy = GetCompareTy(LHS); // The return type. 2968 Value *A, *B; 2969 CmpInst::Predicate P = CmpInst::BAD_ICMP_PREDICATE; 2970 CmpInst::Predicate EqP; // Chosen so that "A == max/min(A,B)" iff "A EqP B". 2971 2972 // Signed variants on "max(a,b)>=a -> true". 2973 if (match(LHS, m_SMax(m_Value(A), m_Value(B))) && (A == RHS || B == RHS)) { 2974 if (A != RHS) 2975 std::swap(A, B); // smax(A, B) pred A. 2976 EqP = CmpInst::ICMP_SGE; // "A == smax(A, B)" iff "A sge B". 2977 // We analyze this as smax(A, B) pred A. 2978 P = Pred; 2979 } else if (match(RHS, m_SMax(m_Value(A), m_Value(B))) && 2980 (A == LHS || B == LHS)) { 2981 if (A != LHS) 2982 std::swap(A, B); // A pred smax(A, B). 2983 EqP = CmpInst::ICMP_SGE; // "A == smax(A, B)" iff "A sge B". 2984 // We analyze this as smax(A, B) swapped-pred A. 2985 P = CmpInst::getSwappedPredicate(Pred); 2986 } else if (match(LHS, m_SMin(m_Value(A), m_Value(B))) && 2987 (A == RHS || B == RHS)) { 2988 if (A != RHS) 2989 std::swap(A, B); // smin(A, B) pred A. 2990 EqP = CmpInst::ICMP_SLE; // "A == smin(A, B)" iff "A sle B". 2991 // We analyze this as smax(-A, -B) swapped-pred -A. 2992 // Note that we do not need to actually form -A or -B thanks to EqP. 2993 P = CmpInst::getSwappedPredicate(Pred); 2994 } else if (match(RHS, m_SMin(m_Value(A), m_Value(B))) && 2995 (A == LHS || B == LHS)) { 2996 if (A != LHS) 2997 std::swap(A, B); // A pred smin(A, B). 2998 EqP = CmpInst::ICMP_SLE; // "A == smin(A, B)" iff "A sle B". 2999 // We analyze this as smax(-A, -B) pred -A. 3000 // Note that we do not need to actually form -A or -B thanks to EqP. 3001 P = Pred; 3002 } 3003 if (P != CmpInst::BAD_ICMP_PREDICATE) { 3004 // Cases correspond to "max(A, B) p A". 3005 switch (P) { 3006 default: 3007 break; 3008 case CmpInst::ICMP_EQ: 3009 case CmpInst::ICMP_SLE: 3010 // Equivalent to "A EqP B". This may be the same as the condition tested 3011 // in the max/min; if so, we can just return that. 3012 if (Value *V = ExtractEquivalentCondition(LHS, EqP, A, B)) 3013 return V; 3014 if (Value *V = ExtractEquivalentCondition(RHS, EqP, A, B)) 3015 return V; 3016 // Otherwise, see if "A EqP B" simplifies. 3017 if (MaxRecurse) 3018 if (Value *V = SimplifyICmpInst(EqP, A, B, Q, MaxRecurse - 1)) 3019 return V; 3020 break; 3021 case CmpInst::ICMP_NE: 3022 case CmpInst::ICMP_SGT: { 3023 CmpInst::Predicate InvEqP = CmpInst::getInversePredicate(EqP); 3024 // Equivalent to "A InvEqP B". This may be the same as the condition 3025 // tested in the max/min; if so, we can just return that. 3026 if (Value *V = ExtractEquivalentCondition(LHS, InvEqP, A, B)) 3027 return V; 3028 if (Value *V = ExtractEquivalentCondition(RHS, InvEqP, A, B)) 3029 return V; 3030 // Otherwise, see if "A InvEqP B" simplifies. 3031 if (MaxRecurse) 3032 if (Value *V = SimplifyICmpInst(InvEqP, A, B, Q, MaxRecurse - 1)) 3033 return V; 3034 break; 3035 } 3036 case CmpInst::ICMP_SGE: 3037 // Always true. 3038 return getTrue(ITy); 3039 case CmpInst::ICMP_SLT: 3040 // Always false. 3041 return getFalse(ITy); 3042 } 3043 } 3044 3045 // Unsigned variants on "max(a,b)>=a -> true". 3046 P = CmpInst::BAD_ICMP_PREDICATE; 3047 if (match(LHS, m_UMax(m_Value(A), m_Value(B))) && (A == RHS || B == RHS)) { 3048 if (A != RHS) 3049 std::swap(A, B); // umax(A, B) pred A. 3050 EqP = CmpInst::ICMP_UGE; // "A == umax(A, B)" iff "A uge B". 3051 // We analyze this as umax(A, B) pred A. 3052 P = Pred; 3053 } else if (match(RHS, m_UMax(m_Value(A), m_Value(B))) && 3054 (A == LHS || B == LHS)) { 3055 if (A != LHS) 3056 std::swap(A, B); // A pred umax(A, B). 3057 EqP = CmpInst::ICMP_UGE; // "A == umax(A, B)" iff "A uge B". 3058 // We analyze this as umax(A, B) swapped-pred A. 3059 P = CmpInst::getSwappedPredicate(Pred); 3060 } else if (match(LHS, m_UMin(m_Value(A), m_Value(B))) && 3061 (A == RHS || B == RHS)) { 3062 if (A != RHS) 3063 std::swap(A, B); // umin(A, B) pred A. 3064 EqP = CmpInst::ICMP_ULE; // "A == umin(A, B)" iff "A ule B". 3065 // We analyze this as umax(-A, -B) swapped-pred -A. 3066 // Note that we do not need to actually form -A or -B thanks to EqP. 3067 P = CmpInst::getSwappedPredicate(Pred); 3068 } else if (match(RHS, m_UMin(m_Value(A), m_Value(B))) && 3069 (A == LHS || B == LHS)) { 3070 if (A != LHS) 3071 std::swap(A, B); // A pred umin(A, B). 3072 EqP = CmpInst::ICMP_ULE; // "A == umin(A, B)" iff "A ule B". 3073 // We analyze this as umax(-A, -B) pred -A. 3074 // Note that we do not need to actually form -A or -B thanks to EqP. 3075 P = Pred; 3076 } 3077 if (P != CmpInst::BAD_ICMP_PREDICATE) { 3078 // Cases correspond to "max(A, B) p A". 3079 switch (P) { 3080 default: 3081 break; 3082 case CmpInst::ICMP_EQ: 3083 case CmpInst::ICMP_ULE: 3084 // Equivalent to "A EqP B". This may be the same as the condition tested 3085 // in the max/min; if so, we can just return that. 3086 if (Value *V = ExtractEquivalentCondition(LHS, EqP, A, B)) 3087 return V; 3088 if (Value *V = ExtractEquivalentCondition(RHS, EqP, A, B)) 3089 return V; 3090 // Otherwise, see if "A EqP B" simplifies. 3091 if (MaxRecurse) 3092 if (Value *V = SimplifyICmpInst(EqP, A, B, Q, MaxRecurse - 1)) 3093 return V; 3094 break; 3095 case CmpInst::ICMP_NE: 3096 case CmpInst::ICMP_UGT: { 3097 CmpInst::Predicate InvEqP = CmpInst::getInversePredicate(EqP); 3098 // Equivalent to "A InvEqP B". This may be the same as the condition 3099 // tested in the max/min; if so, we can just return that. 3100 if (Value *V = ExtractEquivalentCondition(LHS, InvEqP, A, B)) 3101 return V; 3102 if (Value *V = ExtractEquivalentCondition(RHS, InvEqP, A, B)) 3103 return V; 3104 // Otherwise, see if "A InvEqP B" simplifies. 3105 if (MaxRecurse) 3106 if (Value *V = SimplifyICmpInst(InvEqP, A, B, Q, MaxRecurse - 1)) 3107 return V; 3108 break; 3109 } 3110 case CmpInst::ICMP_UGE: 3111 // Always true. 3112 return getTrue(ITy); 3113 case CmpInst::ICMP_ULT: 3114 // Always false. 3115 return getFalse(ITy); 3116 } 3117 } 3118 3119 // Variants on "max(x,y) >= min(x,z)". 3120 Value *C, *D; 3121 if (match(LHS, m_SMax(m_Value(A), m_Value(B))) && 3122 match(RHS, m_SMin(m_Value(C), m_Value(D))) && 3123 (A == C || A == D || B == C || B == D)) { 3124 // max(x, ?) pred min(x, ?). 3125 if (Pred == CmpInst::ICMP_SGE) 3126 // Always true. 3127 return getTrue(ITy); 3128 if (Pred == CmpInst::ICMP_SLT) 3129 // Always false. 3130 return getFalse(ITy); 3131 } else if (match(LHS, m_SMin(m_Value(A), m_Value(B))) && 3132 match(RHS, m_SMax(m_Value(C), m_Value(D))) && 3133 (A == C || A == D || B == C || B == D)) { 3134 // min(x, ?) pred max(x, ?). 3135 if (Pred == CmpInst::ICMP_SLE) 3136 // Always true. 3137 return getTrue(ITy); 3138 if (Pred == CmpInst::ICMP_SGT) 3139 // Always false. 3140 return getFalse(ITy); 3141 } else if (match(LHS, m_UMax(m_Value(A), m_Value(B))) && 3142 match(RHS, m_UMin(m_Value(C), m_Value(D))) && 3143 (A == C || A == D || B == C || B == D)) { 3144 // max(x, ?) pred min(x, ?). 3145 if (Pred == CmpInst::ICMP_UGE) 3146 // Always true. 3147 return getTrue(ITy); 3148 if (Pred == CmpInst::ICMP_ULT) 3149 // Always false. 3150 return getFalse(ITy); 3151 } else if (match(LHS, m_UMin(m_Value(A), m_Value(B))) && 3152 match(RHS, m_UMax(m_Value(C), m_Value(D))) && 3153 (A == C || A == D || B == C || B == D)) { 3154 // min(x, ?) pred max(x, ?). 3155 if (Pred == CmpInst::ICMP_ULE) 3156 // Always true. 3157 return getTrue(ITy); 3158 if (Pred == CmpInst::ICMP_UGT) 3159 // Always false. 3160 return getFalse(ITy); 3161 } 3162 3163 return nullptr; 3164 } 3165 3166 /// Given operands for an ICmpInst, see if we can fold the result. 3167 /// If not, this returns null. 3168 static Value *SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS, 3169 const SimplifyQuery &Q, unsigned MaxRecurse) { 3170 CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate; 3171 assert(CmpInst::isIntPredicate(Pred) && "Not an integer compare!"); 3172 3173 if (Constant *CLHS = dyn_cast<Constant>(LHS)) { 3174 if (Constant *CRHS = dyn_cast<Constant>(RHS)) 3175 return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, Q.DL, Q.TLI); 3176 3177 // If we have a constant, make sure it is on the RHS. 3178 std::swap(LHS, RHS); 3179 Pred = CmpInst::getSwappedPredicate(Pred); 3180 } 3181 assert(!isa<UndefValue>(LHS) && "Unexpected icmp undef,%X"); 3182 3183 Type *ITy = GetCompareTy(LHS); // The return type. 3184 3185 // For EQ and NE, we can always pick a value for the undef to make the 3186 // predicate pass or fail, so we can return undef. 3187 // Matches behavior in llvm::ConstantFoldCompareInstruction. 3188 if (isa<UndefValue>(RHS) && ICmpInst::isEquality(Pred)) 3189 return UndefValue::get(ITy); 3190 3191 // icmp X, X -> true/false 3192 // icmp X, undef -> true/false because undef could be X. 3193 if (LHS == RHS || isa<UndefValue>(RHS)) 3194 return ConstantInt::get(ITy, CmpInst::isTrueWhenEqual(Pred)); 3195 3196 if (Value *V = simplifyICmpOfBools(Pred, LHS, RHS, Q)) 3197 return V; 3198 3199 if (Value *V = simplifyICmpWithZero(Pred, LHS, RHS, Q)) 3200 return V; 3201 3202 if (Value *V = simplifyICmpWithConstant(Pred, LHS, RHS, Q.IIQ)) 3203 return V; 3204 3205 // If both operands have range metadata, use the metadata 3206 // to simplify the comparison. 3207 if (isa<Instruction>(RHS) && isa<Instruction>(LHS)) { 3208 auto RHS_Instr = cast<Instruction>(RHS); 3209 auto LHS_Instr = cast<Instruction>(LHS); 3210 3211 if (Q.IIQ.getMetadata(RHS_Instr, LLVMContext::MD_range) && 3212 Q.IIQ.getMetadata(LHS_Instr, LLVMContext::MD_range)) { 3213 auto RHS_CR = getConstantRangeFromMetadata( 3214 *RHS_Instr->getMetadata(LLVMContext::MD_range)); 3215 auto LHS_CR = getConstantRangeFromMetadata( 3216 *LHS_Instr->getMetadata(LLVMContext::MD_range)); 3217 3218 auto Satisfied_CR = ConstantRange::makeSatisfyingICmpRegion(Pred, RHS_CR); 3219 if (Satisfied_CR.contains(LHS_CR)) 3220 return ConstantInt::getTrue(RHS->getContext()); 3221 3222 auto InversedSatisfied_CR = ConstantRange::makeSatisfyingICmpRegion( 3223 CmpInst::getInversePredicate(Pred), RHS_CR); 3224 if (InversedSatisfied_CR.contains(LHS_CR)) 3225 return ConstantInt::getFalse(RHS->getContext()); 3226 } 3227 } 3228 3229 // Compare of cast, for example (zext X) != 0 -> X != 0 3230 if (isa<CastInst>(LHS) && (isa<Constant>(RHS) || isa<CastInst>(RHS))) { 3231 Instruction *LI = cast<CastInst>(LHS); 3232 Value *SrcOp = LI->getOperand(0); 3233 Type *SrcTy = SrcOp->getType(); 3234 Type *DstTy = LI->getType(); 3235 3236 // Turn icmp (ptrtoint x), (ptrtoint/constant) into a compare of the input 3237 // if the integer type is the same size as the pointer type. 3238 if (MaxRecurse && isa<PtrToIntInst>(LI) && 3239 Q.DL.getTypeSizeInBits(SrcTy) == DstTy->getPrimitiveSizeInBits()) { 3240 if (Constant *RHSC = dyn_cast<Constant>(RHS)) { 3241 // Transfer the cast to the constant. 3242 if (Value *V = SimplifyICmpInst(Pred, SrcOp, 3243 ConstantExpr::getIntToPtr(RHSC, SrcTy), 3244 Q, MaxRecurse-1)) 3245 return V; 3246 } else if (PtrToIntInst *RI = dyn_cast<PtrToIntInst>(RHS)) { 3247 if (RI->getOperand(0)->getType() == SrcTy) 3248 // Compare without the cast. 3249 if (Value *V = SimplifyICmpInst(Pred, SrcOp, RI->getOperand(0), 3250 Q, MaxRecurse-1)) 3251 return V; 3252 } 3253 } 3254 3255 if (isa<ZExtInst>(LHS)) { 3256 // Turn icmp (zext X), (zext Y) into a compare of X and Y if they have the 3257 // same type. 3258 if (ZExtInst *RI = dyn_cast<ZExtInst>(RHS)) { 3259 if (MaxRecurse && SrcTy == RI->getOperand(0)->getType()) 3260 // Compare X and Y. Note that signed predicates become unsigned. 3261 if (Value *V = SimplifyICmpInst(ICmpInst::getUnsignedPredicate(Pred), 3262 SrcOp, RI->getOperand(0), Q, 3263 MaxRecurse-1)) 3264 return V; 3265 } 3266 // Turn icmp (zext X), Cst into a compare of X and Cst if Cst is extended 3267 // too. If not, then try to deduce the result of the comparison. 3268 else if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) { 3269 // Compute the constant that would happen if we truncated to SrcTy then 3270 // reextended to DstTy. 3271 Constant *Trunc = ConstantExpr::getTrunc(CI, SrcTy); 3272 Constant *RExt = ConstantExpr::getCast(CastInst::ZExt, Trunc, DstTy); 3273 3274 // If the re-extended constant didn't change then this is effectively 3275 // also a case of comparing two zero-extended values. 3276 if (RExt == CI && MaxRecurse) 3277 if (Value *V = SimplifyICmpInst(ICmpInst::getUnsignedPredicate(Pred), 3278 SrcOp, Trunc, Q, MaxRecurse-1)) 3279 return V; 3280 3281 // Otherwise the upper bits of LHS are zero while RHS has a non-zero bit 3282 // there. Use this to work out the result of the comparison. 3283 if (RExt != CI) { 3284 switch (Pred) { 3285 default: llvm_unreachable("Unknown ICmp predicate!"); 3286 // LHS <u RHS. 3287 case ICmpInst::ICMP_EQ: 3288 case ICmpInst::ICMP_UGT: 3289 case ICmpInst::ICMP_UGE: 3290 return ConstantInt::getFalse(CI->getContext()); 3291 3292 case ICmpInst::ICMP_NE: 3293 case ICmpInst::ICMP_ULT: 3294 case ICmpInst::ICMP_ULE: 3295 return ConstantInt::getTrue(CI->getContext()); 3296 3297 // LHS is non-negative. If RHS is negative then LHS >s LHS. If RHS 3298 // is non-negative then LHS <s RHS. 3299 case ICmpInst::ICMP_SGT: 3300 case ICmpInst::ICMP_SGE: 3301 return CI->getValue().isNegative() ? 3302 ConstantInt::getTrue(CI->getContext()) : 3303 ConstantInt::getFalse(CI->getContext()); 3304 3305 case ICmpInst::ICMP_SLT: 3306 case ICmpInst::ICMP_SLE: 3307 return CI->getValue().isNegative() ? 3308 ConstantInt::getFalse(CI->getContext()) : 3309 ConstantInt::getTrue(CI->getContext()); 3310 } 3311 } 3312 } 3313 } 3314 3315 if (isa<SExtInst>(LHS)) { 3316 // Turn icmp (sext X), (sext Y) into a compare of X and Y if they have the 3317 // same type. 3318 if (SExtInst *RI = dyn_cast<SExtInst>(RHS)) { 3319 if (MaxRecurse && SrcTy == RI->getOperand(0)->getType()) 3320 // Compare X and Y. Note that the predicate does not change. 3321 if (Value *V = SimplifyICmpInst(Pred, SrcOp, RI->getOperand(0), 3322 Q, MaxRecurse-1)) 3323 return V; 3324 } 3325 // Turn icmp (sext X), Cst into a compare of X and Cst if Cst is extended 3326 // too. If not, then try to deduce the result of the comparison. 3327 else if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) { 3328 // Compute the constant that would happen if we truncated to SrcTy then 3329 // reextended to DstTy. 3330 Constant *Trunc = ConstantExpr::getTrunc(CI, SrcTy); 3331 Constant *RExt = ConstantExpr::getCast(CastInst::SExt, Trunc, DstTy); 3332 3333 // If the re-extended constant didn't change then this is effectively 3334 // also a case of comparing two sign-extended values. 3335 if (RExt == CI && MaxRecurse) 3336 if (Value *V = SimplifyICmpInst(Pred, SrcOp, Trunc, Q, MaxRecurse-1)) 3337 return V; 3338 3339 // Otherwise the upper bits of LHS are all equal, while RHS has varying 3340 // bits there. Use this to work out the result of the comparison. 3341 if (RExt != CI) { 3342 switch (Pred) { 3343 default: llvm_unreachable("Unknown ICmp predicate!"); 3344 case ICmpInst::ICMP_EQ: 3345 return ConstantInt::getFalse(CI->getContext()); 3346 case ICmpInst::ICMP_NE: 3347 return ConstantInt::getTrue(CI->getContext()); 3348 3349 // If RHS is non-negative then LHS <s RHS. If RHS is negative then 3350 // LHS >s RHS. 3351 case ICmpInst::ICMP_SGT: 3352 case ICmpInst::ICMP_SGE: 3353 return CI->getValue().isNegative() ? 3354 ConstantInt::getTrue(CI->getContext()) : 3355 ConstantInt::getFalse(CI->getContext()); 3356 case ICmpInst::ICMP_SLT: 3357 case ICmpInst::ICMP_SLE: 3358 return CI->getValue().isNegative() ? 3359 ConstantInt::getFalse(CI->getContext()) : 3360 ConstantInt::getTrue(CI->getContext()); 3361 3362 // If LHS is non-negative then LHS <u RHS. If LHS is negative then 3363 // LHS >u RHS. 3364 case ICmpInst::ICMP_UGT: 3365 case ICmpInst::ICMP_UGE: 3366 // Comparison is true iff the LHS <s 0. 3367 if (MaxRecurse) 3368 if (Value *V = SimplifyICmpInst(ICmpInst::ICMP_SLT, SrcOp, 3369 Constant::getNullValue(SrcTy), 3370 Q, MaxRecurse-1)) 3371 return V; 3372 break; 3373 case ICmpInst::ICMP_ULT: 3374 case ICmpInst::ICMP_ULE: 3375 // Comparison is true iff the LHS >=s 0. 3376 if (MaxRecurse) 3377 if (Value *V = SimplifyICmpInst(ICmpInst::ICMP_SGE, SrcOp, 3378 Constant::getNullValue(SrcTy), 3379 Q, MaxRecurse-1)) 3380 return V; 3381 break; 3382 } 3383 } 3384 } 3385 } 3386 } 3387 3388 // icmp eq|ne X, Y -> false|true if X != Y 3389 if (ICmpInst::isEquality(Pred) && 3390 isKnownNonEqual(LHS, RHS, Q.DL, Q.AC, Q.CxtI, Q.DT, Q.IIQ.UseInstrInfo)) { 3391 return Pred == ICmpInst::ICMP_NE ? getTrue(ITy) : getFalse(ITy); 3392 } 3393 3394 if (Value *V = simplifyICmpWithBinOp(Pred, LHS, RHS, Q, MaxRecurse)) 3395 return V; 3396 3397 if (Value *V = simplifyICmpWithMinMax(Pred, LHS, RHS, Q, MaxRecurse)) 3398 return V; 3399 3400 // Simplify comparisons of related pointers using a powerful, recursive 3401 // GEP-walk when we have target data available.. 3402 if (LHS->getType()->isPointerTy()) 3403 if (auto *C = computePointerICmp(Q.DL, Q.TLI, Q.DT, Pred, Q.AC, Q.CxtI, 3404 Q.IIQ, LHS, RHS)) 3405 return C; 3406 if (auto *CLHS = dyn_cast<PtrToIntOperator>(LHS)) 3407 if (auto *CRHS = dyn_cast<PtrToIntOperator>(RHS)) 3408 if (Q.DL.getTypeSizeInBits(CLHS->getPointerOperandType()) == 3409 Q.DL.getTypeSizeInBits(CLHS->getType()) && 3410 Q.DL.getTypeSizeInBits(CRHS->getPointerOperandType()) == 3411 Q.DL.getTypeSizeInBits(CRHS->getType())) 3412 if (auto *C = computePointerICmp(Q.DL, Q.TLI, Q.DT, Pred, Q.AC, Q.CxtI, 3413 Q.IIQ, CLHS->getPointerOperand(), 3414 CRHS->getPointerOperand())) 3415 return C; 3416 3417 if (GetElementPtrInst *GLHS = dyn_cast<GetElementPtrInst>(LHS)) { 3418 if (GEPOperator *GRHS = dyn_cast<GEPOperator>(RHS)) { 3419 if (GLHS->getPointerOperand() == GRHS->getPointerOperand() && 3420 GLHS->hasAllConstantIndices() && GRHS->hasAllConstantIndices() && 3421 (ICmpInst::isEquality(Pred) || 3422 (GLHS->isInBounds() && GRHS->isInBounds() && 3423 Pred == ICmpInst::getSignedPredicate(Pred)))) { 3424 // The bases are equal and the indices are constant. Build a constant 3425 // expression GEP with the same indices and a null base pointer to see 3426 // what constant folding can make out of it. 3427 Constant *Null = Constant::getNullValue(GLHS->getPointerOperandType()); 3428 SmallVector<Value *, 4> IndicesLHS(GLHS->idx_begin(), GLHS->idx_end()); 3429 Constant *NewLHS = ConstantExpr::getGetElementPtr( 3430 GLHS->getSourceElementType(), Null, IndicesLHS); 3431 3432 SmallVector<Value *, 4> IndicesRHS(GRHS->idx_begin(), GRHS->idx_end()); 3433 Constant *NewRHS = ConstantExpr::getGetElementPtr( 3434 GLHS->getSourceElementType(), Null, IndicesRHS); 3435 return ConstantExpr::getICmp(Pred, NewLHS, NewRHS); 3436 } 3437 } 3438 } 3439 3440 // If the comparison is with the result of a select instruction, check whether 3441 // comparing with either branch of the select always yields the same value. 3442 if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS)) 3443 if (Value *V = ThreadCmpOverSelect(Pred, LHS, RHS, Q, MaxRecurse)) 3444 return V; 3445 3446 // If the comparison is with the result of a phi instruction, check whether 3447 // doing the compare with each incoming phi value yields a common result. 3448 if (isa<PHINode>(LHS) || isa<PHINode>(RHS)) 3449 if (Value *V = ThreadCmpOverPHI(Pred, LHS, RHS, Q, MaxRecurse)) 3450 return V; 3451 3452 return nullptr; 3453 } 3454 3455 Value *llvm::SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS, 3456 const SimplifyQuery &Q) { 3457 return ::SimplifyICmpInst(Predicate, LHS, RHS, Q, RecursionLimit); 3458 } 3459 3460 /// Given operands for an FCmpInst, see if we can fold the result. 3461 /// If not, this returns null. 3462 static Value *SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS, 3463 FastMathFlags FMF, const SimplifyQuery &Q, 3464 unsigned MaxRecurse) { 3465 CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate; 3466 assert(CmpInst::isFPPredicate(Pred) && "Not an FP compare!"); 3467 3468 if (Constant *CLHS = dyn_cast<Constant>(LHS)) { 3469 if (Constant *CRHS = dyn_cast<Constant>(RHS)) 3470 return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, Q.DL, Q.TLI); 3471 3472 // If we have a constant, make sure it is on the RHS. 3473 std::swap(LHS, RHS); 3474 Pred = CmpInst::getSwappedPredicate(Pred); 3475 } 3476 3477 // Fold trivial predicates. 3478 Type *RetTy = GetCompareTy(LHS); 3479 if (Pred == FCmpInst::FCMP_FALSE) 3480 return getFalse(RetTy); 3481 if (Pred == FCmpInst::FCMP_TRUE) 3482 return getTrue(RetTy); 3483 3484 // Fold (un)ordered comparison if we can determine there are no NaNs. 3485 if (Pred == FCmpInst::FCMP_UNO || Pred == FCmpInst::FCMP_ORD) 3486 if (FMF.noNaNs() || 3487 (isKnownNeverNaN(LHS, Q.TLI) && isKnownNeverNaN(RHS, Q.TLI))) 3488 return ConstantInt::get(RetTy, Pred == FCmpInst::FCMP_ORD); 3489 3490 // NaN is unordered; NaN is not ordered. 3491 assert((FCmpInst::isOrdered(Pred) || FCmpInst::isUnordered(Pred)) && 3492 "Comparison must be either ordered or unordered"); 3493 if (match(RHS, m_NaN())) 3494 return ConstantInt::get(RetTy, CmpInst::isUnordered(Pred)); 3495 3496 // fcmp pred x, undef and fcmp pred undef, x 3497 // fold to true if unordered, false if ordered 3498 if (isa<UndefValue>(LHS) || isa<UndefValue>(RHS)) { 3499 // Choosing NaN for the undef will always make unordered comparison succeed 3500 // and ordered comparison fail. 3501 return ConstantInt::get(RetTy, CmpInst::isUnordered(Pred)); 3502 } 3503 3504 // fcmp x,x -> true/false. Not all compares are foldable. 3505 if (LHS == RHS) { 3506 if (CmpInst::isTrueWhenEqual(Pred)) 3507 return getTrue(RetTy); 3508 if (CmpInst::isFalseWhenEqual(Pred)) 3509 return getFalse(RetTy); 3510 } 3511 3512 // Handle fcmp with constant RHS. 3513 // TODO: Use match with a specific FP value, so these work with vectors with 3514 // undef lanes. 3515 const APFloat *C; 3516 if (match(RHS, m_APFloat(C))) { 3517 // Check whether the constant is an infinity. 3518 if (C->isInfinity()) { 3519 if (C->isNegative()) { 3520 switch (Pred) { 3521 case FCmpInst::FCMP_OLT: 3522 // No value is ordered and less than negative infinity. 3523 return getFalse(RetTy); 3524 case FCmpInst::FCMP_UGE: 3525 // All values are unordered with or at least negative infinity. 3526 return getTrue(RetTy); 3527 default: 3528 break; 3529 } 3530 } else { 3531 switch (Pred) { 3532 case FCmpInst::FCMP_OGT: 3533 // No value is ordered and greater than infinity. 3534 return getFalse(RetTy); 3535 case FCmpInst::FCMP_ULE: 3536 // All values are unordered with and at most infinity. 3537 return getTrue(RetTy); 3538 default: 3539 break; 3540 } 3541 } 3542 } 3543 if (C->isNegative() && !C->isNegZero()) { 3544 assert(!C->isNaN() && "Unexpected NaN constant!"); 3545 // TODO: We can catch more cases by using a range check rather than 3546 // relying on CannotBeOrderedLessThanZero. 3547 switch (Pred) { 3548 case FCmpInst::FCMP_UGE: 3549 case FCmpInst::FCMP_UGT: 3550 case FCmpInst::FCMP_UNE: 3551 // (X >= 0) implies (X > C) when (C < 0) 3552 if (CannotBeOrderedLessThanZero(LHS, Q.TLI)) 3553 return getTrue(RetTy); 3554 break; 3555 case FCmpInst::FCMP_OEQ: 3556 case FCmpInst::FCMP_OLE: 3557 case FCmpInst::FCMP_OLT: 3558 // (X >= 0) implies !(X < C) when (C < 0) 3559 if (CannotBeOrderedLessThanZero(LHS, Q.TLI)) 3560 return getFalse(RetTy); 3561 break; 3562 default: 3563 break; 3564 } 3565 } 3566 3567 // Check comparison of [minnum/maxnum with constant] with other constant. 3568 const APFloat *C2; 3569 if ((match(LHS, m_Intrinsic<Intrinsic::minnum>(m_Value(), m_APFloat(C2))) && 3570 C2->compare(*C) == APFloat::cmpLessThan) || 3571 (match(LHS, m_Intrinsic<Intrinsic::maxnum>(m_Value(), m_APFloat(C2))) && 3572 C2->compare(*C) == APFloat::cmpGreaterThan)) { 3573 bool IsMaxNum = 3574 cast<IntrinsicInst>(LHS)->getIntrinsicID() == Intrinsic::maxnum; 3575 // The ordered relationship and minnum/maxnum guarantee that we do not 3576 // have NaN constants, so ordered/unordered preds are handled the same. 3577 switch (Pred) { 3578 case FCmpInst::FCMP_OEQ: case FCmpInst::FCMP_UEQ: 3579 // minnum(X, LesserC) == C --> false 3580 // maxnum(X, GreaterC) == C --> false 3581 return getFalse(RetTy); 3582 case FCmpInst::FCMP_ONE: case FCmpInst::FCMP_UNE: 3583 // minnum(X, LesserC) != C --> true 3584 // maxnum(X, GreaterC) != C --> true 3585 return getTrue(RetTy); 3586 case FCmpInst::FCMP_OGE: case FCmpInst::FCMP_UGE: 3587 case FCmpInst::FCMP_OGT: case FCmpInst::FCMP_UGT: 3588 // minnum(X, LesserC) >= C --> false 3589 // minnum(X, LesserC) > C --> false 3590 // maxnum(X, GreaterC) >= C --> true 3591 // maxnum(X, GreaterC) > C --> true 3592 return ConstantInt::get(RetTy, IsMaxNum); 3593 case FCmpInst::FCMP_OLE: case FCmpInst::FCMP_ULE: 3594 case FCmpInst::FCMP_OLT: case FCmpInst::FCMP_ULT: 3595 // minnum(X, LesserC) <= C --> true 3596 // minnum(X, LesserC) < C --> true 3597 // maxnum(X, GreaterC) <= C --> false 3598 // maxnum(X, GreaterC) < C --> false 3599 return ConstantInt::get(RetTy, !IsMaxNum); 3600 default: 3601 // TRUE/FALSE/ORD/UNO should be handled before this. 3602 llvm_unreachable("Unexpected fcmp predicate"); 3603 } 3604 } 3605 } 3606 3607 if (match(RHS, m_AnyZeroFP())) { 3608 switch (Pred) { 3609 case FCmpInst::FCMP_OGE: 3610 case FCmpInst::FCMP_ULT: 3611 // Positive or zero X >= 0.0 --> true 3612 // Positive or zero X < 0.0 --> false 3613 if ((FMF.noNaNs() || isKnownNeverNaN(LHS, Q.TLI)) && 3614 CannotBeOrderedLessThanZero(LHS, Q.TLI)) 3615 return Pred == FCmpInst::FCMP_OGE ? getTrue(RetTy) : getFalse(RetTy); 3616 break; 3617 case FCmpInst::FCMP_UGE: 3618 case FCmpInst::FCMP_OLT: 3619 // Positive or zero or nan X >= 0.0 --> true 3620 // Positive or zero or nan X < 0.0 --> false 3621 if (CannotBeOrderedLessThanZero(LHS, Q.TLI)) 3622 return Pred == FCmpInst::FCMP_UGE ? getTrue(RetTy) : getFalse(RetTy); 3623 break; 3624 default: 3625 break; 3626 } 3627 } 3628 3629 // If the comparison is with the result of a select instruction, check whether 3630 // comparing with either branch of the select always yields the same value. 3631 if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS)) 3632 if (Value *V = ThreadCmpOverSelect(Pred, LHS, RHS, Q, MaxRecurse)) 3633 return V; 3634 3635 // If the comparison is with the result of a phi instruction, check whether 3636 // doing the compare with each incoming phi value yields a common result. 3637 if (isa<PHINode>(LHS) || isa<PHINode>(RHS)) 3638 if (Value *V = ThreadCmpOverPHI(Pred, LHS, RHS, Q, MaxRecurse)) 3639 return V; 3640 3641 return nullptr; 3642 } 3643 3644 Value *llvm::SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS, 3645 FastMathFlags FMF, const SimplifyQuery &Q) { 3646 return ::SimplifyFCmpInst(Predicate, LHS, RHS, FMF, Q, RecursionLimit); 3647 } 3648 3649 /// See if V simplifies when its operand Op is replaced with RepOp. 3650 static const Value *SimplifyWithOpReplaced(Value *V, Value *Op, Value *RepOp, 3651 const SimplifyQuery &Q, 3652 unsigned MaxRecurse) { 3653 // Trivial replacement. 3654 if (V == Op) 3655 return RepOp; 3656 3657 // We cannot replace a constant, and shouldn't even try. 3658 if (isa<Constant>(Op)) 3659 return nullptr; 3660 3661 auto *I = dyn_cast<Instruction>(V); 3662 if (!I) 3663 return nullptr; 3664 3665 // If this is a binary operator, try to simplify it with the replaced op. 3666 if (auto *B = dyn_cast<BinaryOperator>(I)) { 3667 // Consider: 3668 // %cmp = icmp eq i32 %x, 2147483647 3669 // %add = add nsw i32 %x, 1 3670 // %sel = select i1 %cmp, i32 -2147483648, i32 %add 3671 // 3672 // We can't replace %sel with %add unless we strip away the flags. 3673 // TODO: This is an unusual limitation because better analysis results in 3674 // worse simplification. InstCombine can do this fold more generally 3675 // by dropping the flags. Remove this fold to save compile-time? 3676 if (isa<OverflowingBinaryOperator>(B)) 3677 if (Q.IIQ.hasNoSignedWrap(B) || Q.IIQ.hasNoUnsignedWrap(B)) 3678 return nullptr; 3679 if (isa<PossiblyExactOperator>(B) && Q.IIQ.isExact(B)) 3680 return nullptr; 3681 3682 if (MaxRecurse) { 3683 if (B->getOperand(0) == Op) 3684 return SimplifyBinOp(B->getOpcode(), RepOp, B->getOperand(1), Q, 3685 MaxRecurse - 1); 3686 if (B->getOperand(1) == Op) 3687 return SimplifyBinOp(B->getOpcode(), B->getOperand(0), RepOp, Q, 3688 MaxRecurse - 1); 3689 } 3690 } 3691 3692 // Same for CmpInsts. 3693 if (CmpInst *C = dyn_cast<CmpInst>(I)) { 3694 if (MaxRecurse) { 3695 if (C->getOperand(0) == Op) 3696 return SimplifyCmpInst(C->getPredicate(), RepOp, C->getOperand(1), Q, 3697 MaxRecurse - 1); 3698 if (C->getOperand(1) == Op) 3699 return SimplifyCmpInst(C->getPredicate(), C->getOperand(0), RepOp, Q, 3700 MaxRecurse - 1); 3701 } 3702 } 3703 3704 // Same for GEPs. 3705 if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) { 3706 if (MaxRecurse) { 3707 SmallVector<Value *, 8> NewOps(GEP->getNumOperands()); 3708 transform(GEP->operands(), NewOps.begin(), 3709 [&](Value *V) { return V == Op ? RepOp : V; }); 3710 return SimplifyGEPInst(GEP->getSourceElementType(), NewOps, Q, 3711 MaxRecurse - 1); 3712 } 3713 } 3714 3715 // TODO: We could hand off more cases to instsimplify here. 3716 3717 // If all operands are constant after substituting Op for RepOp then we can 3718 // constant fold the instruction. 3719 if (Constant *CRepOp = dyn_cast<Constant>(RepOp)) { 3720 // Build a list of all constant operands. 3721 SmallVector<Constant *, 8> ConstOps; 3722 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 3723 if (I->getOperand(i) == Op) 3724 ConstOps.push_back(CRepOp); 3725 else if (Constant *COp = dyn_cast<Constant>(I->getOperand(i))) 3726 ConstOps.push_back(COp); 3727 else 3728 break; 3729 } 3730 3731 // All operands were constants, fold it. 3732 if (ConstOps.size() == I->getNumOperands()) { 3733 if (CmpInst *C = dyn_cast<CmpInst>(I)) 3734 return ConstantFoldCompareInstOperands(C->getPredicate(), ConstOps[0], 3735 ConstOps[1], Q.DL, Q.TLI); 3736 3737 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 3738 if (!LI->isVolatile()) 3739 return ConstantFoldLoadFromConstPtr(ConstOps[0], LI->getType(), Q.DL); 3740 3741 return ConstantFoldInstOperands(I, ConstOps, Q.DL, Q.TLI); 3742 } 3743 } 3744 3745 return nullptr; 3746 } 3747 3748 /// Try to simplify a select instruction when its condition operand is an 3749 /// integer comparison where one operand of the compare is a constant. 3750 static Value *simplifySelectBitTest(Value *TrueVal, Value *FalseVal, Value *X, 3751 const APInt *Y, bool TrueWhenUnset) { 3752 const APInt *C; 3753 3754 // (X & Y) == 0 ? X & ~Y : X --> X 3755 // (X & Y) != 0 ? X & ~Y : X --> X & ~Y 3756 if (FalseVal == X && match(TrueVal, m_And(m_Specific(X), m_APInt(C))) && 3757 *Y == ~*C) 3758 return TrueWhenUnset ? FalseVal : TrueVal; 3759 3760 // (X & Y) == 0 ? X : X & ~Y --> X & ~Y 3761 // (X & Y) != 0 ? X : X & ~Y --> X 3762 if (TrueVal == X && match(FalseVal, m_And(m_Specific(X), m_APInt(C))) && 3763 *Y == ~*C) 3764 return TrueWhenUnset ? FalseVal : TrueVal; 3765 3766 if (Y->isPowerOf2()) { 3767 // (X & Y) == 0 ? X | Y : X --> X | Y 3768 // (X & Y) != 0 ? X | Y : X --> X 3769 if (FalseVal == X && match(TrueVal, m_Or(m_Specific(X), m_APInt(C))) && 3770 *Y == *C) 3771 return TrueWhenUnset ? TrueVal : FalseVal; 3772 3773 // (X & Y) == 0 ? X : X | Y --> X 3774 // (X & Y) != 0 ? X : X | Y --> X | Y 3775 if (TrueVal == X && match(FalseVal, m_Or(m_Specific(X), m_APInt(C))) && 3776 *Y == *C) 3777 return TrueWhenUnset ? TrueVal : FalseVal; 3778 } 3779 3780 return nullptr; 3781 } 3782 3783 /// An alternative way to test if a bit is set or not uses sgt/slt instead of 3784 /// eq/ne. 3785 static Value *simplifySelectWithFakeICmpEq(Value *CmpLHS, Value *CmpRHS, 3786 ICmpInst::Predicate Pred, 3787 Value *TrueVal, Value *FalseVal) { 3788 Value *X; 3789 APInt Mask; 3790 if (!decomposeBitTestICmp(CmpLHS, CmpRHS, Pred, X, Mask)) 3791 return nullptr; 3792 3793 return simplifySelectBitTest(TrueVal, FalseVal, X, &Mask, 3794 Pred == ICmpInst::ICMP_EQ); 3795 } 3796 3797 /// Try to simplify a select instruction when its condition operand is an 3798 /// integer comparison. 3799 static Value *simplifySelectWithICmpCond(Value *CondVal, Value *TrueVal, 3800 Value *FalseVal, const SimplifyQuery &Q, 3801 unsigned MaxRecurse) { 3802 ICmpInst::Predicate Pred; 3803 Value *CmpLHS, *CmpRHS; 3804 if (!match(CondVal, m_ICmp(Pred, m_Value(CmpLHS), m_Value(CmpRHS)))) 3805 return nullptr; 3806 3807 if (ICmpInst::isEquality(Pred) && match(CmpRHS, m_Zero())) { 3808 Value *X; 3809 const APInt *Y; 3810 if (match(CmpLHS, m_And(m_Value(X), m_APInt(Y)))) 3811 if (Value *V = simplifySelectBitTest(TrueVal, FalseVal, X, Y, 3812 Pred == ICmpInst::ICMP_EQ)) 3813 return V; 3814 3815 // Test for a bogus zero-shift-guard-op around funnel-shift or rotate. 3816 Value *ShAmt; 3817 auto isFsh = m_CombineOr(m_Intrinsic<Intrinsic::fshl>(m_Value(X), m_Value(), 3818 m_Value(ShAmt)), 3819 m_Intrinsic<Intrinsic::fshr>(m_Value(), m_Value(X), 3820 m_Value(ShAmt))); 3821 // (ShAmt == 0) ? fshl(X, *, ShAmt) : X --> X 3822 // (ShAmt == 0) ? fshr(*, X, ShAmt) : X --> X 3823 if (match(TrueVal, isFsh) && FalseVal == X && CmpLHS == ShAmt && 3824 Pred == ICmpInst::ICMP_EQ) 3825 return X; 3826 // (ShAmt != 0) ? X : fshl(X, *, ShAmt) --> X 3827 // (ShAmt != 0) ? X : fshr(*, X, ShAmt) --> X 3828 if (match(FalseVal, isFsh) && TrueVal == X && CmpLHS == ShAmt && 3829 Pred == ICmpInst::ICMP_NE) 3830 return X; 3831 3832 // Test for a zero-shift-guard-op around rotates. These are used to 3833 // avoid UB from oversized shifts in raw IR rotate patterns, but the 3834 // intrinsics do not have that problem. 3835 // We do not allow this transform for the general funnel shift case because 3836 // that would not preserve the poison safety of the original code. 3837 auto isRotate = m_CombineOr(m_Intrinsic<Intrinsic::fshl>(m_Value(X), 3838 m_Deferred(X), 3839 m_Value(ShAmt)), 3840 m_Intrinsic<Intrinsic::fshr>(m_Value(X), 3841 m_Deferred(X), 3842 m_Value(ShAmt))); 3843 // (ShAmt != 0) ? fshl(X, X, ShAmt) : X --> fshl(X, X, ShAmt) 3844 // (ShAmt != 0) ? fshr(X, X, ShAmt) : X --> fshr(X, X, ShAmt) 3845 if (match(TrueVal, isRotate) && FalseVal == X && CmpLHS == ShAmt && 3846 Pred == ICmpInst::ICMP_NE) 3847 return TrueVal; 3848 // (ShAmt == 0) ? X : fshl(X, X, ShAmt) --> fshl(X, X, ShAmt) 3849 // (ShAmt == 0) ? X : fshr(X, X, ShAmt) --> fshr(X, X, ShAmt) 3850 if (match(FalseVal, isRotate) && TrueVal == X && CmpLHS == ShAmt && 3851 Pred == ICmpInst::ICMP_EQ) 3852 return FalseVal; 3853 } 3854 3855 // Check for other compares that behave like bit test. 3856 if (Value *V = simplifySelectWithFakeICmpEq(CmpLHS, CmpRHS, Pred, 3857 TrueVal, FalseVal)) 3858 return V; 3859 3860 // If we have an equality comparison, then we know the value in one of the 3861 // arms of the select. See if substituting this value into the arm and 3862 // simplifying the result yields the same value as the other arm. 3863 if (Pred == ICmpInst::ICMP_EQ) { 3864 if (SimplifyWithOpReplaced(FalseVal, CmpLHS, CmpRHS, Q, MaxRecurse) == 3865 TrueVal || 3866 SimplifyWithOpReplaced(FalseVal, CmpRHS, CmpLHS, Q, MaxRecurse) == 3867 TrueVal) 3868 return FalseVal; 3869 if (SimplifyWithOpReplaced(TrueVal, CmpLHS, CmpRHS, Q, MaxRecurse) == 3870 FalseVal || 3871 SimplifyWithOpReplaced(TrueVal, CmpRHS, CmpLHS, Q, MaxRecurse) == 3872 FalseVal) 3873 return FalseVal; 3874 } else if (Pred == ICmpInst::ICMP_NE) { 3875 if (SimplifyWithOpReplaced(TrueVal, CmpLHS, CmpRHS, Q, MaxRecurse) == 3876 FalseVal || 3877 SimplifyWithOpReplaced(TrueVal, CmpRHS, CmpLHS, Q, MaxRecurse) == 3878 FalseVal) 3879 return TrueVal; 3880 if (SimplifyWithOpReplaced(FalseVal, CmpLHS, CmpRHS, Q, MaxRecurse) == 3881 TrueVal || 3882 SimplifyWithOpReplaced(FalseVal, CmpRHS, CmpLHS, Q, MaxRecurse) == 3883 TrueVal) 3884 return TrueVal; 3885 } 3886 3887 return nullptr; 3888 } 3889 3890 /// Try to simplify a select instruction when its condition operand is a 3891 /// floating-point comparison. 3892 static Value *simplifySelectWithFCmp(Value *Cond, Value *T, Value *F) { 3893 FCmpInst::Predicate Pred; 3894 if (!match(Cond, m_FCmp(Pred, m_Specific(T), m_Specific(F))) && 3895 !match(Cond, m_FCmp(Pred, m_Specific(F), m_Specific(T)))) 3896 return nullptr; 3897 3898 // TODO: The transform may not be valid with -0.0. An incomplete way of 3899 // testing for that possibility is to check if at least one operand is a 3900 // non-zero constant. 3901 const APFloat *C; 3902 if ((match(T, m_APFloat(C)) && C->isNonZero()) || 3903 (match(F, m_APFloat(C)) && C->isNonZero())) { 3904 // (T == F) ? T : F --> F 3905 // (F == T) ? T : F --> F 3906 if (Pred == FCmpInst::FCMP_OEQ) 3907 return F; 3908 3909 // (T != F) ? T : F --> T 3910 // (F != T) ? T : F --> T 3911 if (Pred == FCmpInst::FCMP_UNE) 3912 return T; 3913 } 3914 3915 return nullptr; 3916 } 3917 3918 /// Given operands for a SelectInst, see if we can fold the result. 3919 /// If not, this returns null. 3920 static Value *SimplifySelectInst(Value *Cond, Value *TrueVal, Value *FalseVal, 3921 const SimplifyQuery &Q, unsigned MaxRecurse) { 3922 if (auto *CondC = dyn_cast<Constant>(Cond)) { 3923 if (auto *TrueC = dyn_cast<Constant>(TrueVal)) 3924 if (auto *FalseC = dyn_cast<Constant>(FalseVal)) 3925 return ConstantFoldSelectInstruction(CondC, TrueC, FalseC); 3926 3927 // select undef, X, Y -> X or Y 3928 if (isa<UndefValue>(CondC)) 3929 return isa<Constant>(FalseVal) ? FalseVal : TrueVal; 3930 3931 // TODO: Vector constants with undef elements don't simplify. 3932 3933 // select true, X, Y -> X 3934 if (CondC->isAllOnesValue()) 3935 return TrueVal; 3936 // select false, X, Y -> Y 3937 if (CondC->isNullValue()) 3938 return FalseVal; 3939 } 3940 3941 // select ?, X, X -> X 3942 if (TrueVal == FalseVal) 3943 return TrueVal; 3944 3945 if (isa<UndefValue>(TrueVal)) // select ?, undef, X -> X 3946 return FalseVal; 3947 if (isa<UndefValue>(FalseVal)) // select ?, X, undef -> X 3948 return TrueVal; 3949 3950 if (Value *V = 3951 simplifySelectWithICmpCond(Cond, TrueVal, FalseVal, Q, MaxRecurse)) 3952 return V; 3953 3954 if (Value *V = simplifySelectWithFCmp(Cond, TrueVal, FalseVal)) 3955 return V; 3956 3957 if (Value *V = foldSelectWithBinaryOp(Cond, TrueVal, FalseVal)) 3958 return V; 3959 3960 Optional<bool> Imp = isImpliedByDomCondition(Cond, Q.CxtI, Q.DL); 3961 if (Imp) 3962 return *Imp ? TrueVal : FalseVal; 3963 3964 return nullptr; 3965 } 3966 3967 Value *llvm::SimplifySelectInst(Value *Cond, Value *TrueVal, Value *FalseVal, 3968 const SimplifyQuery &Q) { 3969 return ::SimplifySelectInst(Cond, TrueVal, FalseVal, Q, RecursionLimit); 3970 } 3971 3972 /// Given operands for an GetElementPtrInst, see if we can fold the result. 3973 /// If not, this returns null. 3974 static Value *SimplifyGEPInst(Type *SrcTy, ArrayRef<Value *> Ops, 3975 const SimplifyQuery &Q, unsigned) { 3976 // The type of the GEP pointer operand. 3977 unsigned AS = 3978 cast<PointerType>(Ops[0]->getType()->getScalarType())->getAddressSpace(); 3979 3980 // getelementptr P -> P. 3981 if (Ops.size() == 1) 3982 return Ops[0]; 3983 3984 // Compute the (pointer) type returned by the GEP instruction. 3985 Type *LastType = GetElementPtrInst::getIndexedType(SrcTy, Ops.slice(1)); 3986 Type *GEPTy = PointerType::get(LastType, AS); 3987 if (VectorType *VT = dyn_cast<VectorType>(Ops[0]->getType())) 3988 GEPTy = VectorType::get(GEPTy, VT->getNumElements()); 3989 else if (VectorType *VT = dyn_cast<VectorType>(Ops[1]->getType())) 3990 GEPTy = VectorType::get(GEPTy, VT->getNumElements()); 3991 3992 if (isa<UndefValue>(Ops[0])) 3993 return UndefValue::get(GEPTy); 3994 3995 if (Ops.size() == 2) { 3996 // getelementptr P, 0 -> P. 3997 if (match(Ops[1], m_Zero()) && Ops[0]->getType() == GEPTy) 3998 return Ops[0]; 3999 4000 Type *Ty = SrcTy; 4001 if (Ty->isSized()) { 4002 Value *P; 4003 uint64_t C; 4004 uint64_t TyAllocSize = Q.DL.getTypeAllocSize(Ty); 4005 // getelementptr P, N -> P if P points to a type of zero size. 4006 if (TyAllocSize == 0 && Ops[0]->getType() == GEPTy) 4007 return Ops[0]; 4008 4009 // The following transforms are only safe if the ptrtoint cast 4010 // doesn't truncate the pointers. 4011 if (Ops[1]->getType()->getScalarSizeInBits() == 4012 Q.DL.getIndexSizeInBits(AS)) { 4013 auto PtrToIntOrZero = [GEPTy](Value *P) -> Value * { 4014 if (match(P, m_Zero())) 4015 return Constant::getNullValue(GEPTy); 4016 Value *Temp; 4017 if (match(P, m_PtrToInt(m_Value(Temp)))) 4018 if (Temp->getType() == GEPTy) 4019 return Temp; 4020 return nullptr; 4021 }; 4022 4023 // getelementptr V, (sub P, V) -> P if P points to a type of size 1. 4024 if (TyAllocSize == 1 && 4025 match(Ops[1], m_Sub(m_Value(P), m_PtrToInt(m_Specific(Ops[0]))))) 4026 if (Value *R = PtrToIntOrZero(P)) 4027 return R; 4028 4029 // getelementptr V, (ashr (sub P, V), C) -> Q 4030 // if P points to a type of size 1 << C. 4031 if (match(Ops[1], 4032 m_AShr(m_Sub(m_Value(P), m_PtrToInt(m_Specific(Ops[0]))), 4033 m_ConstantInt(C))) && 4034 TyAllocSize == 1ULL << C) 4035 if (Value *R = PtrToIntOrZero(P)) 4036 return R; 4037 4038 // getelementptr V, (sdiv (sub P, V), C) -> Q 4039 // if P points to a type of size C. 4040 if (match(Ops[1], 4041 m_SDiv(m_Sub(m_Value(P), m_PtrToInt(m_Specific(Ops[0]))), 4042 m_SpecificInt(TyAllocSize)))) 4043 if (Value *R = PtrToIntOrZero(P)) 4044 return R; 4045 } 4046 } 4047 } 4048 4049 if (Q.DL.getTypeAllocSize(LastType) == 1 && 4050 all_of(Ops.slice(1).drop_back(1), 4051 [](Value *Idx) { return match(Idx, m_Zero()); })) { 4052 unsigned IdxWidth = 4053 Q.DL.getIndexSizeInBits(Ops[0]->getType()->getPointerAddressSpace()); 4054 if (Q.DL.getTypeSizeInBits(Ops.back()->getType()) == IdxWidth) { 4055 APInt BasePtrOffset(IdxWidth, 0); 4056 Value *StrippedBasePtr = 4057 Ops[0]->stripAndAccumulateInBoundsConstantOffsets(Q.DL, 4058 BasePtrOffset); 4059 4060 // gep (gep V, C), (sub 0, V) -> C 4061 if (match(Ops.back(), 4062 m_Sub(m_Zero(), m_PtrToInt(m_Specific(StrippedBasePtr))))) { 4063 auto *CI = ConstantInt::get(GEPTy->getContext(), BasePtrOffset); 4064 return ConstantExpr::getIntToPtr(CI, GEPTy); 4065 } 4066 // gep (gep V, C), (xor V, -1) -> C-1 4067 if (match(Ops.back(), 4068 m_Xor(m_PtrToInt(m_Specific(StrippedBasePtr)), m_AllOnes()))) { 4069 auto *CI = ConstantInt::get(GEPTy->getContext(), BasePtrOffset - 1); 4070 return ConstantExpr::getIntToPtr(CI, GEPTy); 4071 } 4072 } 4073 } 4074 4075 // Check to see if this is constant foldable. 4076 if (!all_of(Ops, [](Value *V) { return isa<Constant>(V); })) 4077 return nullptr; 4078 4079 auto *CE = ConstantExpr::getGetElementPtr(SrcTy, cast<Constant>(Ops[0]), 4080 Ops.slice(1)); 4081 if (auto *CEFolded = ConstantFoldConstant(CE, Q.DL)) 4082 return CEFolded; 4083 return CE; 4084 } 4085 4086 Value *llvm::SimplifyGEPInst(Type *SrcTy, ArrayRef<Value *> Ops, 4087 const SimplifyQuery &Q) { 4088 return ::SimplifyGEPInst(SrcTy, Ops, Q, RecursionLimit); 4089 } 4090 4091 /// Given operands for an InsertValueInst, see if we can fold the result. 4092 /// If not, this returns null. 4093 static Value *SimplifyInsertValueInst(Value *Agg, Value *Val, 4094 ArrayRef<unsigned> Idxs, const SimplifyQuery &Q, 4095 unsigned) { 4096 if (Constant *CAgg = dyn_cast<Constant>(Agg)) 4097 if (Constant *CVal = dyn_cast<Constant>(Val)) 4098 return ConstantFoldInsertValueInstruction(CAgg, CVal, Idxs); 4099 4100 // insertvalue x, undef, n -> x 4101 if (match(Val, m_Undef())) 4102 return Agg; 4103 4104 // insertvalue x, (extractvalue y, n), n 4105 if (ExtractValueInst *EV = dyn_cast<ExtractValueInst>(Val)) 4106 if (EV->getAggregateOperand()->getType() == Agg->getType() && 4107 EV->getIndices() == Idxs) { 4108 // insertvalue undef, (extractvalue y, n), n -> y 4109 if (match(Agg, m_Undef())) 4110 return EV->getAggregateOperand(); 4111 4112 // insertvalue y, (extractvalue y, n), n -> y 4113 if (Agg == EV->getAggregateOperand()) 4114 return Agg; 4115 } 4116 4117 return nullptr; 4118 } 4119 4120 Value *llvm::SimplifyInsertValueInst(Value *Agg, Value *Val, 4121 ArrayRef<unsigned> Idxs, 4122 const SimplifyQuery &Q) { 4123 return ::SimplifyInsertValueInst(Agg, Val, Idxs, Q, RecursionLimit); 4124 } 4125 4126 Value *llvm::SimplifyInsertElementInst(Value *Vec, Value *Val, Value *Idx, 4127 const SimplifyQuery &Q) { 4128 // Try to constant fold. 4129 auto *VecC = dyn_cast<Constant>(Vec); 4130 auto *ValC = dyn_cast<Constant>(Val); 4131 auto *IdxC = dyn_cast<Constant>(Idx); 4132 if (VecC && ValC && IdxC) 4133 return ConstantFoldInsertElementInstruction(VecC, ValC, IdxC); 4134 4135 // Fold into undef if index is out of bounds. 4136 if (auto *CI = dyn_cast<ConstantInt>(Idx)) { 4137 uint64_t NumElements = cast<VectorType>(Vec->getType())->getNumElements(); 4138 if (CI->uge(NumElements)) 4139 return UndefValue::get(Vec->getType()); 4140 } 4141 4142 // If index is undef, it might be out of bounds (see above case) 4143 if (isa<UndefValue>(Idx)) 4144 return UndefValue::get(Vec->getType()); 4145 4146 // Inserting an undef scalar? Assume it is the same value as the existing 4147 // vector element. 4148 if (isa<UndefValue>(Val)) 4149 return Vec; 4150 4151 // If we are extracting a value from a vector, then inserting it into the same 4152 // place, that's the input vector: 4153 // insertelt Vec, (extractelt Vec, Idx), Idx --> Vec 4154 if (match(Val, m_ExtractElement(m_Specific(Vec), m_Specific(Idx)))) 4155 return Vec; 4156 4157 return nullptr; 4158 } 4159 4160 /// Given operands for an ExtractValueInst, see if we can fold the result. 4161 /// If not, this returns null. 4162 static Value *SimplifyExtractValueInst(Value *Agg, ArrayRef<unsigned> Idxs, 4163 const SimplifyQuery &, unsigned) { 4164 if (auto *CAgg = dyn_cast<Constant>(Agg)) 4165 return ConstantFoldExtractValueInstruction(CAgg, Idxs); 4166 4167 // extractvalue x, (insertvalue y, elt, n), n -> elt 4168 unsigned NumIdxs = Idxs.size(); 4169 for (auto *IVI = dyn_cast<InsertValueInst>(Agg); IVI != nullptr; 4170 IVI = dyn_cast<InsertValueInst>(IVI->getAggregateOperand())) { 4171 ArrayRef<unsigned> InsertValueIdxs = IVI->getIndices(); 4172 unsigned NumInsertValueIdxs = InsertValueIdxs.size(); 4173 unsigned NumCommonIdxs = std::min(NumInsertValueIdxs, NumIdxs); 4174 if (InsertValueIdxs.slice(0, NumCommonIdxs) == 4175 Idxs.slice(0, NumCommonIdxs)) { 4176 if (NumIdxs == NumInsertValueIdxs) 4177 return IVI->getInsertedValueOperand(); 4178 break; 4179 } 4180 } 4181 4182 return nullptr; 4183 } 4184 4185 Value *llvm::SimplifyExtractValueInst(Value *Agg, ArrayRef<unsigned> Idxs, 4186 const SimplifyQuery &Q) { 4187 return ::SimplifyExtractValueInst(Agg, Idxs, Q, RecursionLimit); 4188 } 4189 4190 /// Given operands for an ExtractElementInst, see if we can fold the result. 4191 /// If not, this returns null. 4192 static Value *SimplifyExtractElementInst(Value *Vec, Value *Idx, const SimplifyQuery &, 4193 unsigned) { 4194 if (auto *CVec = dyn_cast<Constant>(Vec)) { 4195 if (auto *CIdx = dyn_cast<Constant>(Idx)) 4196 return ConstantFoldExtractElementInstruction(CVec, CIdx); 4197 4198 // The index is not relevant if our vector is a splat. 4199 if (auto *Splat = CVec->getSplatValue()) 4200 return Splat; 4201 4202 if (isa<UndefValue>(Vec)) 4203 return UndefValue::get(Vec->getType()->getVectorElementType()); 4204 } 4205 4206 // If extracting a specified index from the vector, see if we can recursively 4207 // find a previously computed scalar that was inserted into the vector. 4208 if (auto *IdxC = dyn_cast<ConstantInt>(Idx)) { 4209 if (IdxC->getValue().uge(Vec->getType()->getVectorNumElements())) 4210 // definitely out of bounds, thus undefined result 4211 return UndefValue::get(Vec->getType()->getVectorElementType()); 4212 if (Value *Elt = findScalarElement(Vec, IdxC->getZExtValue())) 4213 return Elt; 4214 } 4215 4216 // An undef extract index can be arbitrarily chosen to be an out-of-range 4217 // index value, which would result in the instruction being undef. 4218 if (isa<UndefValue>(Idx)) 4219 return UndefValue::get(Vec->getType()->getVectorElementType()); 4220 4221 return nullptr; 4222 } 4223 4224 Value *llvm::SimplifyExtractElementInst(Value *Vec, Value *Idx, 4225 const SimplifyQuery &Q) { 4226 return ::SimplifyExtractElementInst(Vec, Idx, Q, RecursionLimit); 4227 } 4228 4229 /// See if we can fold the given phi. If not, returns null. 4230 static Value *SimplifyPHINode(PHINode *PN, const SimplifyQuery &Q) { 4231 // If all of the PHI's incoming values are the same then replace the PHI node 4232 // with the common value. 4233 Value *CommonValue = nullptr; 4234 bool HasUndefInput = false; 4235 for (Value *Incoming : PN->incoming_values()) { 4236 // If the incoming value is the phi node itself, it can safely be skipped. 4237 if (Incoming == PN) continue; 4238 if (isa<UndefValue>(Incoming)) { 4239 // Remember that we saw an undef value, but otherwise ignore them. 4240 HasUndefInput = true; 4241 continue; 4242 } 4243 if (CommonValue && Incoming != CommonValue) 4244 return nullptr; // Not the same, bail out. 4245 CommonValue = Incoming; 4246 } 4247 4248 // If CommonValue is null then all of the incoming values were either undef or 4249 // equal to the phi node itself. 4250 if (!CommonValue) 4251 return UndefValue::get(PN->getType()); 4252 4253 // If we have a PHI node like phi(X, undef, X), where X is defined by some 4254 // instruction, we cannot return X as the result of the PHI node unless it 4255 // dominates the PHI block. 4256 if (HasUndefInput) 4257 return valueDominatesPHI(CommonValue, PN, Q.DT) ? CommonValue : nullptr; 4258 4259 return CommonValue; 4260 } 4261 4262 static Value *SimplifyCastInst(unsigned CastOpc, Value *Op, 4263 Type *Ty, const SimplifyQuery &Q, unsigned MaxRecurse) { 4264 if (auto *C = dyn_cast<Constant>(Op)) 4265 return ConstantFoldCastOperand(CastOpc, C, Ty, Q.DL); 4266 4267 if (auto *CI = dyn_cast<CastInst>(Op)) { 4268 auto *Src = CI->getOperand(0); 4269 Type *SrcTy = Src->getType(); 4270 Type *MidTy = CI->getType(); 4271 Type *DstTy = Ty; 4272 if (Src->getType() == Ty) { 4273 auto FirstOp = static_cast<Instruction::CastOps>(CI->getOpcode()); 4274 auto SecondOp = static_cast<Instruction::CastOps>(CastOpc); 4275 Type *SrcIntPtrTy = 4276 SrcTy->isPtrOrPtrVectorTy() ? Q.DL.getIntPtrType(SrcTy) : nullptr; 4277 Type *MidIntPtrTy = 4278 MidTy->isPtrOrPtrVectorTy() ? Q.DL.getIntPtrType(MidTy) : nullptr; 4279 Type *DstIntPtrTy = 4280 DstTy->isPtrOrPtrVectorTy() ? Q.DL.getIntPtrType(DstTy) : nullptr; 4281 if (CastInst::isEliminableCastPair(FirstOp, SecondOp, SrcTy, MidTy, DstTy, 4282 SrcIntPtrTy, MidIntPtrTy, 4283 DstIntPtrTy) == Instruction::BitCast) 4284 return Src; 4285 } 4286 } 4287 4288 // bitcast x -> x 4289 if (CastOpc == Instruction::BitCast) 4290 if (Op->getType() == Ty) 4291 return Op; 4292 4293 return nullptr; 4294 } 4295 4296 Value *llvm::SimplifyCastInst(unsigned CastOpc, Value *Op, Type *Ty, 4297 const SimplifyQuery &Q) { 4298 return ::SimplifyCastInst(CastOpc, Op, Ty, Q, RecursionLimit); 4299 } 4300 4301 /// For the given destination element of a shuffle, peek through shuffles to 4302 /// match a root vector source operand that contains that element in the same 4303 /// vector lane (ie, the same mask index), so we can eliminate the shuffle(s). 4304 static Value *foldIdentityShuffles(int DestElt, Value *Op0, Value *Op1, 4305 int MaskVal, Value *RootVec, 4306 unsigned MaxRecurse) { 4307 if (!MaxRecurse--) 4308 return nullptr; 4309 4310 // Bail out if any mask value is undefined. That kind of shuffle may be 4311 // simplified further based on demanded bits or other folds. 4312 if (MaskVal == -1) 4313 return nullptr; 4314 4315 // The mask value chooses which source operand we need to look at next. 4316 int InVecNumElts = Op0->getType()->getVectorNumElements(); 4317 int RootElt = MaskVal; 4318 Value *SourceOp = Op0; 4319 if (MaskVal >= InVecNumElts) { 4320 RootElt = MaskVal - InVecNumElts; 4321 SourceOp = Op1; 4322 } 4323 4324 // If the source operand is a shuffle itself, look through it to find the 4325 // matching root vector. 4326 if (auto *SourceShuf = dyn_cast<ShuffleVectorInst>(SourceOp)) { 4327 return foldIdentityShuffles( 4328 DestElt, SourceShuf->getOperand(0), SourceShuf->getOperand(1), 4329 SourceShuf->getMaskValue(RootElt), RootVec, MaxRecurse); 4330 } 4331 4332 // TODO: Look through bitcasts? What if the bitcast changes the vector element 4333 // size? 4334 4335 // The source operand is not a shuffle. Initialize the root vector value for 4336 // this shuffle if that has not been done yet. 4337 if (!RootVec) 4338 RootVec = SourceOp; 4339 4340 // Give up as soon as a source operand does not match the existing root value. 4341 if (RootVec != SourceOp) 4342 return nullptr; 4343 4344 // The element must be coming from the same lane in the source vector 4345 // (although it may have crossed lanes in intermediate shuffles). 4346 if (RootElt != DestElt) 4347 return nullptr; 4348 4349 return RootVec; 4350 } 4351 4352 static Value *SimplifyShuffleVectorInst(Value *Op0, Value *Op1, Constant *Mask, 4353 Type *RetTy, const SimplifyQuery &Q, 4354 unsigned MaxRecurse) { 4355 if (isa<UndefValue>(Mask)) 4356 return UndefValue::get(RetTy); 4357 4358 Type *InVecTy = Op0->getType(); 4359 unsigned MaskNumElts = Mask->getType()->getVectorNumElements(); 4360 unsigned InVecNumElts = InVecTy->getVectorNumElements(); 4361 4362 SmallVector<int, 32> Indices; 4363 ShuffleVectorInst::getShuffleMask(Mask, Indices); 4364 assert(MaskNumElts == Indices.size() && 4365 "Size of Indices not same as number of mask elements?"); 4366 4367 // Canonicalization: If mask does not select elements from an input vector, 4368 // replace that input vector with undef. 4369 bool MaskSelects0 = false, MaskSelects1 = false; 4370 for (unsigned i = 0; i != MaskNumElts; ++i) { 4371 if (Indices[i] == -1) 4372 continue; 4373 if ((unsigned)Indices[i] < InVecNumElts) 4374 MaskSelects0 = true; 4375 else 4376 MaskSelects1 = true; 4377 } 4378 if (!MaskSelects0) 4379 Op0 = UndefValue::get(InVecTy); 4380 if (!MaskSelects1) 4381 Op1 = UndefValue::get(InVecTy); 4382 4383 auto *Op0Const = dyn_cast<Constant>(Op0); 4384 auto *Op1Const = dyn_cast<Constant>(Op1); 4385 4386 // If all operands are constant, constant fold the shuffle. 4387 if (Op0Const && Op1Const) 4388 return ConstantFoldShuffleVectorInstruction(Op0Const, Op1Const, Mask); 4389 4390 // Canonicalization: if only one input vector is constant, it shall be the 4391 // second one. 4392 if (Op0Const && !Op1Const) { 4393 std::swap(Op0, Op1); 4394 ShuffleVectorInst::commuteShuffleMask(Indices, InVecNumElts); 4395 } 4396 4397 // A shuffle of a splat is always the splat itself. Legal if the shuffle's 4398 // value type is same as the input vectors' type. 4399 if (auto *OpShuf = dyn_cast<ShuffleVectorInst>(Op0)) 4400 if (isa<UndefValue>(Op1) && RetTy == InVecTy && 4401 OpShuf->getMask()->getSplatValue()) 4402 return Op0; 4403 4404 // Don't fold a shuffle with undef mask elements. This may get folded in a 4405 // better way using demanded bits or other analysis. 4406 // TODO: Should we allow this? 4407 if (find(Indices, -1) != Indices.end()) 4408 return nullptr; 4409 4410 // Check if every element of this shuffle can be mapped back to the 4411 // corresponding element of a single root vector. If so, we don't need this 4412 // shuffle. This handles simple identity shuffles as well as chains of 4413 // shuffles that may widen/narrow and/or move elements across lanes and back. 4414 Value *RootVec = nullptr; 4415 for (unsigned i = 0; i != MaskNumElts; ++i) { 4416 // Note that recursion is limited for each vector element, so if any element 4417 // exceeds the limit, this will fail to simplify. 4418 RootVec = 4419 foldIdentityShuffles(i, Op0, Op1, Indices[i], RootVec, MaxRecurse); 4420 4421 // We can't replace a widening/narrowing shuffle with one of its operands. 4422 if (!RootVec || RootVec->getType() != RetTy) 4423 return nullptr; 4424 } 4425 return RootVec; 4426 } 4427 4428 /// Given operands for a ShuffleVectorInst, fold the result or return null. 4429 Value *llvm::SimplifyShuffleVectorInst(Value *Op0, Value *Op1, Constant *Mask, 4430 Type *RetTy, const SimplifyQuery &Q) { 4431 return ::SimplifyShuffleVectorInst(Op0, Op1, Mask, RetTy, Q, RecursionLimit); 4432 } 4433 4434 static Constant *foldConstant(Instruction::UnaryOps Opcode, 4435 Value *&Op, const SimplifyQuery &Q) { 4436 if (auto *C = dyn_cast<Constant>(Op)) 4437 return ConstantFoldUnaryOpOperand(Opcode, C, Q.DL); 4438 return nullptr; 4439 } 4440 4441 /// Given the operand for an FNeg, see if we can fold the result. If not, this 4442 /// returns null. 4443 static Value *simplifyFNegInst(Value *Op, FastMathFlags FMF, 4444 const SimplifyQuery &Q, unsigned MaxRecurse) { 4445 if (Constant *C = foldConstant(Instruction::FNeg, Op, Q)) 4446 return C; 4447 4448 Value *X; 4449 // fneg (fneg X) ==> X 4450 if (match(Op, m_FNeg(m_Value(X)))) 4451 return X; 4452 4453 return nullptr; 4454 } 4455 4456 Value *llvm::SimplifyFNegInst(Value *Op, FastMathFlags FMF, 4457 const SimplifyQuery &Q) { 4458 return ::simplifyFNegInst(Op, FMF, Q, RecursionLimit); 4459 } 4460 4461 static Constant *propagateNaN(Constant *In) { 4462 // If the input is a vector with undef elements, just return a default NaN. 4463 if (!In->isNaN()) 4464 return ConstantFP::getNaN(In->getType()); 4465 4466 // Propagate the existing NaN constant when possible. 4467 // TODO: Should we quiet a signaling NaN? 4468 return In; 4469 } 4470 4471 static Constant *simplifyFPBinop(Value *Op0, Value *Op1) { 4472 if (isa<UndefValue>(Op0) || isa<UndefValue>(Op1)) 4473 return ConstantFP::getNaN(Op0->getType()); 4474 4475 if (match(Op0, m_NaN())) 4476 return propagateNaN(cast<Constant>(Op0)); 4477 if (match(Op1, m_NaN())) 4478 return propagateNaN(cast<Constant>(Op1)); 4479 4480 return nullptr; 4481 } 4482 4483 /// Given operands for an FAdd, see if we can fold the result. If not, this 4484 /// returns null. 4485 static Value *SimplifyFAddInst(Value *Op0, Value *Op1, FastMathFlags FMF, 4486 const SimplifyQuery &Q, unsigned MaxRecurse) { 4487 if (Constant *C = foldOrCommuteConstant(Instruction::FAdd, Op0, Op1, Q)) 4488 return C; 4489 4490 if (Constant *C = simplifyFPBinop(Op0, Op1)) 4491 return C; 4492 4493 // fadd X, -0 ==> X 4494 if (match(Op1, m_NegZeroFP())) 4495 return Op0; 4496 4497 // fadd X, 0 ==> X, when we know X is not -0 4498 if (match(Op1, m_PosZeroFP()) && 4499 (FMF.noSignedZeros() || CannotBeNegativeZero(Op0, Q.TLI))) 4500 return Op0; 4501 4502 // With nnan: -X + X --> 0.0 (and commuted variant) 4503 // We don't have to explicitly exclude infinities (ninf): INF + -INF == NaN. 4504 // Negative zeros are allowed because we always end up with positive zero: 4505 // X = -0.0: (-0.0 - (-0.0)) + (-0.0) == ( 0.0) + (-0.0) == 0.0 4506 // X = -0.0: ( 0.0 - (-0.0)) + (-0.0) == ( 0.0) + (-0.0) == 0.0 4507 // X = 0.0: (-0.0 - ( 0.0)) + ( 0.0) == (-0.0) + ( 0.0) == 0.0 4508 // X = 0.0: ( 0.0 - ( 0.0)) + ( 0.0) == ( 0.0) + ( 0.0) == 0.0 4509 if (FMF.noNaNs()) { 4510 if (match(Op0, m_FSub(m_AnyZeroFP(), m_Specific(Op1))) || 4511 match(Op1, m_FSub(m_AnyZeroFP(), m_Specific(Op0)))) 4512 return ConstantFP::getNullValue(Op0->getType()); 4513 4514 if (match(Op0, m_FNeg(m_Specific(Op1))) || 4515 match(Op1, m_FNeg(m_Specific(Op0)))) 4516 return ConstantFP::getNullValue(Op0->getType()); 4517 } 4518 4519 // (X - Y) + Y --> X 4520 // Y + (X - Y) --> X 4521 Value *X; 4522 if (FMF.noSignedZeros() && FMF.allowReassoc() && 4523 (match(Op0, m_FSub(m_Value(X), m_Specific(Op1))) || 4524 match(Op1, m_FSub(m_Value(X), m_Specific(Op0))))) 4525 return X; 4526 4527 return nullptr; 4528 } 4529 4530 /// Given operands for an FSub, see if we can fold the result. If not, this 4531 /// returns null. 4532 static Value *SimplifyFSubInst(Value *Op0, Value *Op1, FastMathFlags FMF, 4533 const SimplifyQuery &Q, unsigned MaxRecurse) { 4534 if (Constant *C = foldOrCommuteConstant(Instruction::FSub, Op0, Op1, Q)) 4535 return C; 4536 4537 if (Constant *C = simplifyFPBinop(Op0, Op1)) 4538 return C; 4539 4540 // fsub X, +0 ==> X 4541 if (match(Op1, m_PosZeroFP())) 4542 return Op0; 4543 4544 // fsub X, -0 ==> X, when we know X is not -0 4545 if (match(Op1, m_NegZeroFP()) && 4546 (FMF.noSignedZeros() || CannotBeNegativeZero(Op0, Q.TLI))) 4547 return Op0; 4548 4549 // fsub -0.0, (fsub -0.0, X) ==> X 4550 // fsub -0.0, (fneg X) ==> X 4551 Value *X; 4552 if (match(Op0, m_NegZeroFP()) && 4553 match(Op1, m_FNeg(m_Value(X)))) 4554 return X; 4555 4556 // fsub 0.0, (fsub 0.0, X) ==> X if signed zeros are ignored. 4557 // fsub 0.0, (fneg X) ==> X if signed zeros are ignored. 4558 if (FMF.noSignedZeros() && match(Op0, m_AnyZeroFP()) && 4559 (match(Op1, m_FSub(m_AnyZeroFP(), m_Value(X))) || 4560 match(Op1, m_FNeg(m_Value(X))))) 4561 return X; 4562 4563 // fsub nnan x, x ==> 0.0 4564 if (FMF.noNaNs() && Op0 == Op1) 4565 return Constant::getNullValue(Op0->getType()); 4566 4567 // Y - (Y - X) --> X 4568 // (X + Y) - Y --> X 4569 if (FMF.noSignedZeros() && FMF.allowReassoc() && 4570 (match(Op1, m_FSub(m_Specific(Op0), m_Value(X))) || 4571 match(Op0, m_c_FAdd(m_Specific(Op1), m_Value(X))))) 4572 return X; 4573 4574 return nullptr; 4575 } 4576 4577 /// Given the operands for an FMul, see if we can fold the result 4578 static Value *SimplifyFMulInst(Value *Op0, Value *Op1, FastMathFlags FMF, 4579 const SimplifyQuery &Q, unsigned MaxRecurse) { 4580 if (Constant *C = foldOrCommuteConstant(Instruction::FMul, Op0, Op1, Q)) 4581 return C; 4582 4583 if (Constant *C = simplifyFPBinop(Op0, Op1)) 4584 return C; 4585 4586 // fmul X, 1.0 ==> X 4587 if (match(Op1, m_FPOne())) 4588 return Op0; 4589 4590 // fmul nnan nsz X, 0 ==> 0 4591 if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op1, m_AnyZeroFP())) 4592 return ConstantFP::getNullValue(Op0->getType()); 4593 4594 // sqrt(X) * sqrt(X) --> X, if we can: 4595 // 1. Remove the intermediate rounding (reassociate). 4596 // 2. Ignore non-zero negative numbers because sqrt would produce NAN. 4597 // 3. Ignore -0.0 because sqrt(-0.0) == -0.0, but -0.0 * -0.0 == 0.0. 4598 Value *X; 4599 if (Op0 == Op1 && match(Op0, m_Intrinsic<Intrinsic::sqrt>(m_Value(X))) && 4600 FMF.allowReassoc() && FMF.noNaNs() && FMF.noSignedZeros()) 4601 return X; 4602 4603 return nullptr; 4604 } 4605 4606 Value *llvm::SimplifyFAddInst(Value *Op0, Value *Op1, FastMathFlags FMF, 4607 const SimplifyQuery &Q) { 4608 return ::SimplifyFAddInst(Op0, Op1, FMF, Q, RecursionLimit); 4609 } 4610 4611 4612 Value *llvm::SimplifyFSubInst(Value *Op0, Value *Op1, FastMathFlags FMF, 4613 const SimplifyQuery &Q) { 4614 return ::SimplifyFSubInst(Op0, Op1, FMF, Q, RecursionLimit); 4615 } 4616 4617 Value *llvm::SimplifyFMulInst(Value *Op0, Value *Op1, FastMathFlags FMF, 4618 const SimplifyQuery &Q) { 4619 return ::SimplifyFMulInst(Op0, Op1, FMF, Q, RecursionLimit); 4620 } 4621 4622 static Value *SimplifyFDivInst(Value *Op0, Value *Op1, FastMathFlags FMF, 4623 const SimplifyQuery &Q, unsigned) { 4624 if (Constant *C = foldOrCommuteConstant(Instruction::FDiv, Op0, Op1, Q)) 4625 return C; 4626 4627 if (Constant *C = simplifyFPBinop(Op0, Op1)) 4628 return C; 4629 4630 // X / 1.0 -> X 4631 if (match(Op1, m_FPOne())) 4632 return Op0; 4633 4634 // 0 / X -> 0 4635 // Requires that NaNs are off (X could be zero) and signed zeroes are 4636 // ignored (X could be positive or negative, so the output sign is unknown). 4637 if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op0, m_AnyZeroFP())) 4638 return ConstantFP::getNullValue(Op0->getType()); 4639 4640 if (FMF.noNaNs()) { 4641 // X / X -> 1.0 is legal when NaNs are ignored. 4642 // We can ignore infinities because INF/INF is NaN. 4643 if (Op0 == Op1) 4644 return ConstantFP::get(Op0->getType(), 1.0); 4645 4646 // (X * Y) / Y --> X if we can reassociate to the above form. 4647 Value *X; 4648 if (FMF.allowReassoc() && match(Op0, m_c_FMul(m_Value(X), m_Specific(Op1)))) 4649 return X; 4650 4651 // -X / X -> -1.0 and 4652 // X / -X -> -1.0 are legal when NaNs are ignored. 4653 // We can ignore signed zeros because +-0.0/+-0.0 is NaN and ignored. 4654 if (match(Op0, m_FNegNSZ(m_Specific(Op1))) || 4655 match(Op1, m_FNegNSZ(m_Specific(Op0)))) 4656 return ConstantFP::get(Op0->getType(), -1.0); 4657 } 4658 4659 return nullptr; 4660 } 4661 4662 Value *llvm::SimplifyFDivInst(Value *Op0, Value *Op1, FastMathFlags FMF, 4663 const SimplifyQuery &Q) { 4664 return ::SimplifyFDivInst(Op0, Op1, FMF, Q, RecursionLimit); 4665 } 4666 4667 static Value *SimplifyFRemInst(Value *Op0, Value *Op1, FastMathFlags FMF, 4668 const SimplifyQuery &Q, unsigned) { 4669 if (Constant *C = foldOrCommuteConstant(Instruction::FRem, Op0, Op1, Q)) 4670 return C; 4671 4672 if (Constant *C = simplifyFPBinop(Op0, Op1)) 4673 return C; 4674 4675 // Unlike fdiv, the result of frem always matches the sign of the dividend. 4676 // The constant match may include undef elements in a vector, so return a full 4677 // zero constant as the result. 4678 if (FMF.noNaNs()) { 4679 // +0 % X -> 0 4680 if (match(Op0, m_PosZeroFP())) 4681 return ConstantFP::getNullValue(Op0->getType()); 4682 // -0 % X -> -0 4683 if (match(Op0, m_NegZeroFP())) 4684 return ConstantFP::getNegativeZero(Op0->getType()); 4685 } 4686 4687 return nullptr; 4688 } 4689 4690 Value *llvm::SimplifyFRemInst(Value *Op0, Value *Op1, FastMathFlags FMF, 4691 const SimplifyQuery &Q) { 4692 return ::SimplifyFRemInst(Op0, Op1, FMF, Q, RecursionLimit); 4693 } 4694 4695 //=== Helper functions for higher up the class hierarchy. 4696 4697 /// Given the operand for a UnaryOperator, see if we can fold the result. 4698 /// If not, this returns null. 4699 static Value *simplifyUnOp(unsigned Opcode, Value *Op, const SimplifyQuery &Q, 4700 unsigned MaxRecurse) { 4701 switch (Opcode) { 4702 case Instruction::FNeg: 4703 return simplifyFNegInst(Op, FastMathFlags(), Q, MaxRecurse); 4704 default: 4705 llvm_unreachable("Unexpected opcode"); 4706 } 4707 } 4708 4709 /// Given the operand for a UnaryOperator, see if we can fold the result. 4710 /// If not, this returns null. 4711 /// Try to use FastMathFlags when folding the result. 4712 static Value *simplifyFPUnOp(unsigned Opcode, Value *Op, 4713 const FastMathFlags &FMF, 4714 const SimplifyQuery &Q, unsigned MaxRecurse) { 4715 switch (Opcode) { 4716 case Instruction::FNeg: 4717 return simplifyFNegInst(Op, FMF, Q, MaxRecurse); 4718 default: 4719 return simplifyUnOp(Opcode, Op, Q, MaxRecurse); 4720 } 4721 } 4722 4723 Value *llvm::SimplifyUnOp(unsigned Opcode, Value *Op, const SimplifyQuery &Q) { 4724 return ::simplifyUnOp(Opcode, Op, Q, RecursionLimit); 4725 } 4726 4727 Value *llvm::SimplifyUnOp(unsigned Opcode, Value *Op, FastMathFlags FMF, 4728 const SimplifyQuery &Q) { 4729 return ::simplifyFPUnOp(Opcode, Op, FMF, Q, RecursionLimit); 4730 } 4731 4732 /// Given operands for a BinaryOperator, see if we can fold the result. 4733 /// If not, this returns null. 4734 static Value *SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS, 4735 const SimplifyQuery &Q, unsigned MaxRecurse) { 4736 switch (Opcode) { 4737 case Instruction::Add: 4738 return SimplifyAddInst(LHS, RHS, false, false, Q, MaxRecurse); 4739 case Instruction::Sub: 4740 return SimplifySubInst(LHS, RHS, false, false, Q, MaxRecurse); 4741 case Instruction::Mul: 4742 return SimplifyMulInst(LHS, RHS, Q, MaxRecurse); 4743 case Instruction::SDiv: 4744 return SimplifySDivInst(LHS, RHS, Q, MaxRecurse); 4745 case Instruction::UDiv: 4746 return SimplifyUDivInst(LHS, RHS, Q, MaxRecurse); 4747 case Instruction::SRem: 4748 return SimplifySRemInst(LHS, RHS, Q, MaxRecurse); 4749 case Instruction::URem: 4750 return SimplifyURemInst(LHS, RHS, Q, MaxRecurse); 4751 case Instruction::Shl: 4752 return SimplifyShlInst(LHS, RHS, false, false, Q, MaxRecurse); 4753 case Instruction::LShr: 4754 return SimplifyLShrInst(LHS, RHS, false, Q, MaxRecurse); 4755 case Instruction::AShr: 4756 return SimplifyAShrInst(LHS, RHS, false, Q, MaxRecurse); 4757 case Instruction::And: 4758 return SimplifyAndInst(LHS, RHS, Q, MaxRecurse); 4759 case Instruction::Or: 4760 return SimplifyOrInst(LHS, RHS, Q, MaxRecurse); 4761 case Instruction::Xor: 4762 return SimplifyXorInst(LHS, RHS, Q, MaxRecurse); 4763 case Instruction::FAdd: 4764 return SimplifyFAddInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse); 4765 case Instruction::FSub: 4766 return SimplifyFSubInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse); 4767 case Instruction::FMul: 4768 return SimplifyFMulInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse); 4769 case Instruction::FDiv: 4770 return SimplifyFDivInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse); 4771 case Instruction::FRem: 4772 return SimplifyFRemInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse); 4773 default: 4774 llvm_unreachable("Unexpected opcode"); 4775 } 4776 } 4777 4778 /// Given operands for a BinaryOperator, see if we can fold the result. 4779 /// If not, this returns null. 4780 /// Try to use FastMathFlags when folding the result. 4781 static Value *SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS, 4782 const FastMathFlags &FMF, const SimplifyQuery &Q, 4783 unsigned MaxRecurse) { 4784 switch (Opcode) { 4785 case Instruction::FAdd: 4786 return SimplifyFAddInst(LHS, RHS, FMF, Q, MaxRecurse); 4787 case Instruction::FSub: 4788 return SimplifyFSubInst(LHS, RHS, FMF, Q, MaxRecurse); 4789 case Instruction::FMul: 4790 return SimplifyFMulInst(LHS, RHS, FMF, Q, MaxRecurse); 4791 case Instruction::FDiv: 4792 return SimplifyFDivInst(LHS, RHS, FMF, Q, MaxRecurse); 4793 default: 4794 return SimplifyBinOp(Opcode, LHS, RHS, Q, MaxRecurse); 4795 } 4796 } 4797 4798 Value *llvm::SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS, 4799 const SimplifyQuery &Q) { 4800 return ::SimplifyBinOp(Opcode, LHS, RHS, Q, RecursionLimit); 4801 } 4802 4803 Value *llvm::SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS, 4804 FastMathFlags FMF, const SimplifyQuery &Q) { 4805 return ::SimplifyBinOp(Opcode, LHS, RHS, FMF, Q, RecursionLimit); 4806 } 4807 4808 /// Given operands for a CmpInst, see if we can fold the result. 4809 static Value *SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS, 4810 const SimplifyQuery &Q, unsigned MaxRecurse) { 4811 if (CmpInst::isIntPredicate((CmpInst::Predicate)Predicate)) 4812 return SimplifyICmpInst(Predicate, LHS, RHS, Q, MaxRecurse); 4813 return SimplifyFCmpInst(Predicate, LHS, RHS, FastMathFlags(), Q, MaxRecurse); 4814 } 4815 4816 Value *llvm::SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS, 4817 const SimplifyQuery &Q) { 4818 return ::SimplifyCmpInst(Predicate, LHS, RHS, Q, RecursionLimit); 4819 } 4820 4821 static bool IsIdempotent(Intrinsic::ID ID) { 4822 switch (ID) { 4823 default: return false; 4824 4825 // Unary idempotent: f(f(x)) = f(x) 4826 case Intrinsic::fabs: 4827 case Intrinsic::floor: 4828 case Intrinsic::ceil: 4829 case Intrinsic::trunc: 4830 case Intrinsic::rint: 4831 case Intrinsic::nearbyint: 4832 case Intrinsic::round: 4833 case Intrinsic::canonicalize: 4834 return true; 4835 } 4836 } 4837 4838 static Value *SimplifyRelativeLoad(Constant *Ptr, Constant *Offset, 4839 const DataLayout &DL) { 4840 GlobalValue *PtrSym; 4841 APInt PtrOffset; 4842 if (!IsConstantOffsetFromGlobal(Ptr, PtrSym, PtrOffset, DL)) 4843 return nullptr; 4844 4845 Type *Int8PtrTy = Type::getInt8PtrTy(Ptr->getContext()); 4846 Type *Int32Ty = Type::getInt32Ty(Ptr->getContext()); 4847 Type *Int32PtrTy = Int32Ty->getPointerTo(); 4848 Type *Int64Ty = Type::getInt64Ty(Ptr->getContext()); 4849 4850 auto *OffsetConstInt = dyn_cast<ConstantInt>(Offset); 4851 if (!OffsetConstInt || OffsetConstInt->getType()->getBitWidth() > 64) 4852 return nullptr; 4853 4854 uint64_t OffsetInt = OffsetConstInt->getSExtValue(); 4855 if (OffsetInt % 4 != 0) 4856 return nullptr; 4857 4858 Constant *C = ConstantExpr::getGetElementPtr( 4859 Int32Ty, ConstantExpr::getBitCast(Ptr, Int32PtrTy), 4860 ConstantInt::get(Int64Ty, OffsetInt / 4)); 4861 Constant *Loaded = ConstantFoldLoadFromConstPtr(C, Int32Ty, DL); 4862 if (!Loaded) 4863 return nullptr; 4864 4865 auto *LoadedCE = dyn_cast<ConstantExpr>(Loaded); 4866 if (!LoadedCE) 4867 return nullptr; 4868 4869 if (LoadedCE->getOpcode() == Instruction::Trunc) { 4870 LoadedCE = dyn_cast<ConstantExpr>(LoadedCE->getOperand(0)); 4871 if (!LoadedCE) 4872 return nullptr; 4873 } 4874 4875 if (LoadedCE->getOpcode() != Instruction::Sub) 4876 return nullptr; 4877 4878 auto *LoadedLHS = dyn_cast<ConstantExpr>(LoadedCE->getOperand(0)); 4879 if (!LoadedLHS || LoadedLHS->getOpcode() != Instruction::PtrToInt) 4880 return nullptr; 4881 auto *LoadedLHSPtr = LoadedLHS->getOperand(0); 4882 4883 Constant *LoadedRHS = LoadedCE->getOperand(1); 4884 GlobalValue *LoadedRHSSym; 4885 APInt LoadedRHSOffset; 4886 if (!IsConstantOffsetFromGlobal(LoadedRHS, LoadedRHSSym, LoadedRHSOffset, 4887 DL) || 4888 PtrSym != LoadedRHSSym || PtrOffset != LoadedRHSOffset) 4889 return nullptr; 4890 4891 return ConstantExpr::getBitCast(LoadedLHSPtr, Int8PtrTy); 4892 } 4893 4894 static Value *simplifyUnaryIntrinsic(Function *F, Value *Op0, 4895 const SimplifyQuery &Q) { 4896 // Idempotent functions return the same result when called repeatedly. 4897 Intrinsic::ID IID = F->getIntrinsicID(); 4898 if (IsIdempotent(IID)) 4899 if (auto *II = dyn_cast<IntrinsicInst>(Op0)) 4900 if (II->getIntrinsicID() == IID) 4901 return II; 4902 4903 Value *X; 4904 switch (IID) { 4905 case Intrinsic::fabs: 4906 if (SignBitMustBeZero(Op0, Q.TLI)) return Op0; 4907 break; 4908 case Intrinsic::bswap: 4909 // bswap(bswap(x)) -> x 4910 if (match(Op0, m_BSwap(m_Value(X)))) return X; 4911 break; 4912 case Intrinsic::bitreverse: 4913 // bitreverse(bitreverse(x)) -> x 4914 if (match(Op0, m_BitReverse(m_Value(X)))) return X; 4915 break; 4916 case Intrinsic::exp: 4917 // exp(log(x)) -> x 4918 if (Q.CxtI->hasAllowReassoc() && 4919 match(Op0, m_Intrinsic<Intrinsic::log>(m_Value(X)))) return X; 4920 break; 4921 case Intrinsic::exp2: 4922 // exp2(log2(x)) -> x 4923 if (Q.CxtI->hasAllowReassoc() && 4924 match(Op0, m_Intrinsic<Intrinsic::log2>(m_Value(X)))) return X; 4925 break; 4926 case Intrinsic::log: 4927 // log(exp(x)) -> x 4928 if (Q.CxtI->hasAllowReassoc() && 4929 match(Op0, m_Intrinsic<Intrinsic::exp>(m_Value(X)))) return X; 4930 break; 4931 case Intrinsic::log2: 4932 // log2(exp2(x)) -> x 4933 if (Q.CxtI->hasAllowReassoc() && 4934 (match(Op0, m_Intrinsic<Intrinsic::exp2>(m_Value(X))) || 4935 match(Op0, m_Intrinsic<Intrinsic::pow>(m_SpecificFP(2.0), 4936 m_Value(X))))) return X; 4937 break; 4938 case Intrinsic::log10: 4939 // log10(pow(10.0, x)) -> x 4940 if (Q.CxtI->hasAllowReassoc() && 4941 match(Op0, m_Intrinsic<Intrinsic::pow>(m_SpecificFP(10.0), 4942 m_Value(X)))) return X; 4943 break; 4944 case Intrinsic::floor: 4945 case Intrinsic::trunc: 4946 case Intrinsic::ceil: 4947 case Intrinsic::round: 4948 case Intrinsic::nearbyint: 4949 case Intrinsic::rint: { 4950 // floor (sitofp x) -> sitofp x 4951 // floor (uitofp x) -> uitofp x 4952 // 4953 // Converting from int always results in a finite integral number or 4954 // infinity. For either of those inputs, these rounding functions always 4955 // return the same value, so the rounding can be eliminated. 4956 if (match(Op0, m_SIToFP(m_Value())) || match(Op0, m_UIToFP(m_Value()))) 4957 return Op0; 4958 break; 4959 } 4960 default: 4961 break; 4962 } 4963 4964 return nullptr; 4965 } 4966 4967 static Value *simplifyBinaryIntrinsic(Function *F, Value *Op0, Value *Op1, 4968 const SimplifyQuery &Q) { 4969 Intrinsic::ID IID = F->getIntrinsicID(); 4970 Type *ReturnType = F->getReturnType(); 4971 switch (IID) { 4972 case Intrinsic::usub_with_overflow: 4973 case Intrinsic::ssub_with_overflow: 4974 // X - X -> { 0, false } 4975 if (Op0 == Op1) 4976 return Constant::getNullValue(ReturnType); 4977 LLVM_FALLTHROUGH; 4978 case Intrinsic::uadd_with_overflow: 4979 case Intrinsic::sadd_with_overflow: 4980 // X - undef -> { undef, false } 4981 // undef - X -> { undef, false } 4982 // X + undef -> { undef, false } 4983 // undef + x -> { undef, false } 4984 if (isa<UndefValue>(Op0) || isa<UndefValue>(Op1)) { 4985 return ConstantStruct::get( 4986 cast<StructType>(ReturnType), 4987 {UndefValue::get(ReturnType->getStructElementType(0)), 4988 Constant::getNullValue(ReturnType->getStructElementType(1))}); 4989 } 4990 break; 4991 case Intrinsic::umul_with_overflow: 4992 case Intrinsic::smul_with_overflow: 4993 // 0 * X -> { 0, false } 4994 // X * 0 -> { 0, false } 4995 if (match(Op0, m_Zero()) || match(Op1, m_Zero())) 4996 return Constant::getNullValue(ReturnType); 4997 // undef * X -> { 0, false } 4998 // X * undef -> { 0, false } 4999 if (match(Op0, m_Undef()) || match(Op1, m_Undef())) 5000 return Constant::getNullValue(ReturnType); 5001 break; 5002 case Intrinsic::uadd_sat: 5003 // sat(MAX + X) -> MAX 5004 // sat(X + MAX) -> MAX 5005 if (match(Op0, m_AllOnes()) || match(Op1, m_AllOnes())) 5006 return Constant::getAllOnesValue(ReturnType); 5007 LLVM_FALLTHROUGH; 5008 case Intrinsic::sadd_sat: 5009 // sat(X + undef) -> -1 5010 // sat(undef + X) -> -1 5011 // For unsigned: Assume undef is MAX, thus we saturate to MAX (-1). 5012 // For signed: Assume undef is ~X, in which case X + ~X = -1. 5013 if (match(Op0, m_Undef()) || match(Op1, m_Undef())) 5014 return Constant::getAllOnesValue(ReturnType); 5015 5016 // X + 0 -> X 5017 if (match(Op1, m_Zero())) 5018 return Op0; 5019 // 0 + X -> X 5020 if (match(Op0, m_Zero())) 5021 return Op1; 5022 break; 5023 case Intrinsic::usub_sat: 5024 // sat(0 - X) -> 0, sat(X - MAX) -> 0 5025 if (match(Op0, m_Zero()) || match(Op1, m_AllOnes())) 5026 return Constant::getNullValue(ReturnType); 5027 LLVM_FALLTHROUGH; 5028 case Intrinsic::ssub_sat: 5029 // X - X -> 0, X - undef -> 0, undef - X -> 0 5030 if (Op0 == Op1 || match(Op0, m_Undef()) || match(Op1, m_Undef())) 5031 return Constant::getNullValue(ReturnType); 5032 // X - 0 -> X 5033 if (match(Op1, m_Zero())) 5034 return Op0; 5035 break; 5036 case Intrinsic::load_relative: 5037 if (auto *C0 = dyn_cast<Constant>(Op0)) 5038 if (auto *C1 = dyn_cast<Constant>(Op1)) 5039 return SimplifyRelativeLoad(C0, C1, Q.DL); 5040 break; 5041 case Intrinsic::powi: 5042 if (auto *Power = dyn_cast<ConstantInt>(Op1)) { 5043 // powi(x, 0) -> 1.0 5044 if (Power->isZero()) 5045 return ConstantFP::get(Op0->getType(), 1.0); 5046 // powi(x, 1) -> x 5047 if (Power->isOne()) 5048 return Op0; 5049 } 5050 break; 5051 case Intrinsic::maxnum: 5052 case Intrinsic::minnum: 5053 case Intrinsic::maximum: 5054 case Intrinsic::minimum: { 5055 // If the arguments are the same, this is a no-op. 5056 if (Op0 == Op1) return Op0; 5057 5058 // If one argument is undef, return the other argument. 5059 if (match(Op0, m_Undef())) 5060 return Op1; 5061 if (match(Op1, m_Undef())) 5062 return Op0; 5063 5064 // If one argument is NaN, return other or NaN appropriately. 5065 bool PropagateNaN = IID == Intrinsic::minimum || IID == Intrinsic::maximum; 5066 if (match(Op0, m_NaN())) 5067 return PropagateNaN ? Op0 : Op1; 5068 if (match(Op1, m_NaN())) 5069 return PropagateNaN ? Op1 : Op0; 5070 5071 // Min/max of the same operation with common operand: 5072 // m(m(X, Y)), X --> m(X, Y) (4 commuted variants) 5073 if (auto *M0 = dyn_cast<IntrinsicInst>(Op0)) 5074 if (M0->getIntrinsicID() == IID && 5075 (M0->getOperand(0) == Op1 || M0->getOperand(1) == Op1)) 5076 return Op0; 5077 if (auto *M1 = dyn_cast<IntrinsicInst>(Op1)) 5078 if (M1->getIntrinsicID() == IID && 5079 (M1->getOperand(0) == Op0 || M1->getOperand(1) == Op0)) 5080 return Op1; 5081 5082 // min(X, -Inf) --> -Inf (and commuted variant) 5083 // max(X, +Inf) --> +Inf (and commuted variant) 5084 bool UseNegInf = IID == Intrinsic::minnum || IID == Intrinsic::minimum; 5085 const APFloat *C; 5086 if ((match(Op0, m_APFloat(C)) && C->isInfinity() && 5087 C->isNegative() == UseNegInf) || 5088 (match(Op1, m_APFloat(C)) && C->isInfinity() && 5089 C->isNegative() == UseNegInf)) 5090 return ConstantFP::getInfinity(ReturnType, UseNegInf); 5091 5092 // TODO: minnum(nnan x, inf) -> x 5093 // TODO: minnum(nnan ninf x, flt_max) -> x 5094 // TODO: maxnum(nnan x, -inf) -> x 5095 // TODO: maxnum(nnan ninf x, -flt_max) -> x 5096 break; 5097 } 5098 default: 5099 break; 5100 } 5101 5102 return nullptr; 5103 } 5104 5105 static Value *simplifyIntrinsic(CallBase *Call, const SimplifyQuery &Q) { 5106 5107 // Intrinsics with no operands have some kind of side effect. Don't simplify. 5108 unsigned NumOperands = Call->getNumArgOperands(); 5109 if (!NumOperands) 5110 return nullptr; 5111 5112 Function *F = cast<Function>(Call->getCalledFunction()); 5113 Intrinsic::ID IID = F->getIntrinsicID(); 5114 if (NumOperands == 1) 5115 return simplifyUnaryIntrinsic(F, Call->getArgOperand(0), Q); 5116 5117 if (NumOperands == 2) 5118 return simplifyBinaryIntrinsic(F, Call->getArgOperand(0), 5119 Call->getArgOperand(1), Q); 5120 5121 // Handle intrinsics with 3 or more arguments. 5122 switch (IID) { 5123 case Intrinsic::masked_load: 5124 case Intrinsic::masked_gather: { 5125 Value *MaskArg = Call->getArgOperand(2); 5126 Value *PassthruArg = Call->getArgOperand(3); 5127 // If the mask is all zeros or undef, the "passthru" argument is the result. 5128 if (maskIsAllZeroOrUndef(MaskArg)) 5129 return PassthruArg; 5130 return nullptr; 5131 } 5132 case Intrinsic::fshl: 5133 case Intrinsic::fshr: { 5134 Value *Op0 = Call->getArgOperand(0), *Op1 = Call->getArgOperand(1), 5135 *ShAmtArg = Call->getArgOperand(2); 5136 5137 // If both operands are undef, the result is undef. 5138 if (match(Op0, m_Undef()) && match(Op1, m_Undef())) 5139 return UndefValue::get(F->getReturnType()); 5140 5141 // If shift amount is undef, assume it is zero. 5142 if (match(ShAmtArg, m_Undef())) 5143 return Call->getArgOperand(IID == Intrinsic::fshl ? 0 : 1); 5144 5145 const APInt *ShAmtC; 5146 if (match(ShAmtArg, m_APInt(ShAmtC))) { 5147 // If there's effectively no shift, return the 1st arg or 2nd arg. 5148 APInt BitWidth = APInt(ShAmtC->getBitWidth(), ShAmtC->getBitWidth()); 5149 if (ShAmtC->urem(BitWidth).isNullValue()) 5150 return Call->getArgOperand(IID == Intrinsic::fshl ? 0 : 1); 5151 } 5152 return nullptr; 5153 } 5154 default: 5155 return nullptr; 5156 } 5157 } 5158 5159 Value *llvm::SimplifyCall(CallBase *Call, const SimplifyQuery &Q) { 5160 Value *Callee = Call->getCalledValue(); 5161 5162 // call undef -> undef 5163 // call null -> undef 5164 if (isa<UndefValue>(Callee) || isa<ConstantPointerNull>(Callee)) 5165 return UndefValue::get(Call->getType()); 5166 5167 Function *F = dyn_cast<Function>(Callee); 5168 if (!F) 5169 return nullptr; 5170 5171 if (F->isIntrinsic()) 5172 if (Value *Ret = simplifyIntrinsic(Call, Q)) 5173 return Ret; 5174 5175 if (!canConstantFoldCallTo(Call, F)) 5176 return nullptr; 5177 5178 SmallVector<Constant *, 4> ConstantArgs; 5179 unsigned NumArgs = Call->getNumArgOperands(); 5180 ConstantArgs.reserve(NumArgs); 5181 for (auto &Arg : Call->args()) { 5182 Constant *C = dyn_cast<Constant>(&Arg); 5183 if (!C) 5184 return nullptr; 5185 ConstantArgs.push_back(C); 5186 } 5187 5188 return ConstantFoldCall(Call, F, ConstantArgs, Q.TLI); 5189 } 5190 5191 /// See if we can compute a simplified version of this instruction. 5192 /// If not, this returns null. 5193 5194 Value *llvm::SimplifyInstruction(Instruction *I, const SimplifyQuery &SQ, 5195 OptimizationRemarkEmitter *ORE) { 5196 const SimplifyQuery Q = SQ.CxtI ? SQ : SQ.getWithInstruction(I); 5197 Value *Result; 5198 5199 switch (I->getOpcode()) { 5200 default: 5201 Result = ConstantFoldInstruction(I, Q.DL, Q.TLI); 5202 break; 5203 case Instruction::FNeg: 5204 Result = SimplifyFNegInst(I->getOperand(0), I->getFastMathFlags(), Q); 5205 break; 5206 case Instruction::FAdd: 5207 Result = SimplifyFAddInst(I->getOperand(0), I->getOperand(1), 5208 I->getFastMathFlags(), Q); 5209 break; 5210 case Instruction::Add: 5211 Result = 5212 SimplifyAddInst(I->getOperand(0), I->getOperand(1), 5213 Q.IIQ.hasNoSignedWrap(cast<BinaryOperator>(I)), 5214 Q.IIQ.hasNoUnsignedWrap(cast<BinaryOperator>(I)), Q); 5215 break; 5216 case Instruction::FSub: 5217 Result = SimplifyFSubInst(I->getOperand(0), I->getOperand(1), 5218 I->getFastMathFlags(), Q); 5219 break; 5220 case Instruction::Sub: 5221 Result = 5222 SimplifySubInst(I->getOperand(0), I->getOperand(1), 5223 Q.IIQ.hasNoSignedWrap(cast<BinaryOperator>(I)), 5224 Q.IIQ.hasNoUnsignedWrap(cast<BinaryOperator>(I)), Q); 5225 break; 5226 case Instruction::FMul: 5227 Result = SimplifyFMulInst(I->getOperand(0), I->getOperand(1), 5228 I->getFastMathFlags(), Q); 5229 break; 5230 case Instruction::Mul: 5231 Result = SimplifyMulInst(I->getOperand(0), I->getOperand(1), Q); 5232 break; 5233 case Instruction::SDiv: 5234 Result = SimplifySDivInst(I->getOperand(0), I->getOperand(1), Q); 5235 break; 5236 case Instruction::UDiv: 5237 Result = SimplifyUDivInst(I->getOperand(0), I->getOperand(1), Q); 5238 break; 5239 case Instruction::FDiv: 5240 Result = SimplifyFDivInst(I->getOperand(0), I->getOperand(1), 5241 I->getFastMathFlags(), Q); 5242 break; 5243 case Instruction::SRem: 5244 Result = SimplifySRemInst(I->getOperand(0), I->getOperand(1), Q); 5245 break; 5246 case Instruction::URem: 5247 Result = SimplifyURemInst(I->getOperand(0), I->getOperand(1), Q); 5248 break; 5249 case Instruction::FRem: 5250 Result = SimplifyFRemInst(I->getOperand(0), I->getOperand(1), 5251 I->getFastMathFlags(), Q); 5252 break; 5253 case Instruction::Shl: 5254 Result = 5255 SimplifyShlInst(I->getOperand(0), I->getOperand(1), 5256 Q.IIQ.hasNoSignedWrap(cast<BinaryOperator>(I)), 5257 Q.IIQ.hasNoUnsignedWrap(cast<BinaryOperator>(I)), Q); 5258 break; 5259 case Instruction::LShr: 5260 Result = SimplifyLShrInst(I->getOperand(0), I->getOperand(1), 5261 Q.IIQ.isExact(cast<BinaryOperator>(I)), Q); 5262 break; 5263 case Instruction::AShr: 5264 Result = SimplifyAShrInst(I->getOperand(0), I->getOperand(1), 5265 Q.IIQ.isExact(cast<BinaryOperator>(I)), Q); 5266 break; 5267 case Instruction::And: 5268 Result = SimplifyAndInst(I->getOperand(0), I->getOperand(1), Q); 5269 break; 5270 case Instruction::Or: 5271 Result = SimplifyOrInst(I->getOperand(0), I->getOperand(1), Q); 5272 break; 5273 case Instruction::Xor: 5274 Result = SimplifyXorInst(I->getOperand(0), I->getOperand(1), Q); 5275 break; 5276 case Instruction::ICmp: 5277 Result = SimplifyICmpInst(cast<ICmpInst>(I)->getPredicate(), 5278 I->getOperand(0), I->getOperand(1), Q); 5279 break; 5280 case Instruction::FCmp: 5281 Result = 5282 SimplifyFCmpInst(cast<FCmpInst>(I)->getPredicate(), I->getOperand(0), 5283 I->getOperand(1), I->getFastMathFlags(), Q); 5284 break; 5285 case Instruction::Select: 5286 Result = SimplifySelectInst(I->getOperand(0), I->getOperand(1), 5287 I->getOperand(2), Q); 5288 break; 5289 case Instruction::GetElementPtr: { 5290 SmallVector<Value *, 8> Ops(I->op_begin(), I->op_end()); 5291 Result = SimplifyGEPInst(cast<GetElementPtrInst>(I)->getSourceElementType(), 5292 Ops, Q); 5293 break; 5294 } 5295 case Instruction::InsertValue: { 5296 InsertValueInst *IV = cast<InsertValueInst>(I); 5297 Result = SimplifyInsertValueInst(IV->getAggregateOperand(), 5298 IV->getInsertedValueOperand(), 5299 IV->getIndices(), Q); 5300 break; 5301 } 5302 case Instruction::InsertElement: { 5303 auto *IE = cast<InsertElementInst>(I); 5304 Result = SimplifyInsertElementInst(IE->getOperand(0), IE->getOperand(1), 5305 IE->getOperand(2), Q); 5306 break; 5307 } 5308 case Instruction::ExtractValue: { 5309 auto *EVI = cast<ExtractValueInst>(I); 5310 Result = SimplifyExtractValueInst(EVI->getAggregateOperand(), 5311 EVI->getIndices(), Q); 5312 break; 5313 } 5314 case Instruction::ExtractElement: { 5315 auto *EEI = cast<ExtractElementInst>(I); 5316 Result = SimplifyExtractElementInst(EEI->getVectorOperand(), 5317 EEI->getIndexOperand(), Q); 5318 break; 5319 } 5320 case Instruction::ShuffleVector: { 5321 auto *SVI = cast<ShuffleVectorInst>(I); 5322 Result = SimplifyShuffleVectorInst(SVI->getOperand(0), SVI->getOperand(1), 5323 SVI->getMask(), SVI->getType(), Q); 5324 break; 5325 } 5326 case Instruction::PHI: 5327 Result = SimplifyPHINode(cast<PHINode>(I), Q); 5328 break; 5329 case Instruction::Call: { 5330 Result = SimplifyCall(cast<CallInst>(I), Q); 5331 break; 5332 } 5333 #define HANDLE_CAST_INST(num, opc, clas) case Instruction::opc: 5334 #include "llvm/IR/Instruction.def" 5335 #undef HANDLE_CAST_INST 5336 Result = 5337 SimplifyCastInst(I->getOpcode(), I->getOperand(0), I->getType(), Q); 5338 break; 5339 case Instruction::Alloca: 5340 // No simplifications for Alloca and it can't be constant folded. 5341 Result = nullptr; 5342 break; 5343 } 5344 5345 // In general, it is possible for computeKnownBits to determine all bits in a 5346 // value even when the operands are not all constants. 5347 if (!Result && I->getType()->isIntOrIntVectorTy()) { 5348 KnownBits Known = computeKnownBits(I, Q.DL, /*Depth*/ 0, Q.AC, I, Q.DT, ORE); 5349 if (Known.isConstant()) 5350 Result = ConstantInt::get(I->getType(), Known.getConstant()); 5351 } 5352 5353 /// If called on unreachable code, the above logic may report that the 5354 /// instruction simplified to itself. Make life easier for users by 5355 /// detecting that case here, returning a safe value instead. 5356 return Result == I ? UndefValue::get(I->getType()) : Result; 5357 } 5358 5359 /// Implementation of recursive simplification through an instruction's 5360 /// uses. 5361 /// 5362 /// This is the common implementation of the recursive simplification routines. 5363 /// If we have a pre-simplified value in 'SimpleV', that is forcibly used to 5364 /// replace the instruction 'I'. Otherwise, we simply add 'I' to the list of 5365 /// instructions to process and attempt to simplify it using 5366 /// InstructionSimplify. Recursively visited users which could not be 5367 /// simplified themselves are to the optional UnsimplifiedUsers set for 5368 /// further processing by the caller. 5369 /// 5370 /// This routine returns 'true' only when *it* simplifies something. The passed 5371 /// in simplified value does not count toward this. 5372 static bool replaceAndRecursivelySimplifyImpl( 5373 Instruction *I, Value *SimpleV, const TargetLibraryInfo *TLI, 5374 const DominatorTree *DT, AssumptionCache *AC, 5375 SmallSetVector<Instruction *, 8> *UnsimplifiedUsers = nullptr) { 5376 bool Simplified = false; 5377 SmallSetVector<Instruction *, 8> Worklist; 5378 const DataLayout &DL = I->getModule()->getDataLayout(); 5379 5380 // If we have an explicit value to collapse to, do that round of the 5381 // simplification loop by hand initially. 5382 if (SimpleV) { 5383 for (User *U : I->users()) 5384 if (U != I) 5385 Worklist.insert(cast<Instruction>(U)); 5386 5387 // Replace the instruction with its simplified value. 5388 I->replaceAllUsesWith(SimpleV); 5389 5390 // Gracefully handle edge cases where the instruction is not wired into any 5391 // parent block. 5392 if (I->getParent() && !I->isEHPad() && !I->isTerminator() && 5393 !I->mayHaveSideEffects()) 5394 I->eraseFromParent(); 5395 } else { 5396 Worklist.insert(I); 5397 } 5398 5399 // Note that we must test the size on each iteration, the worklist can grow. 5400 for (unsigned Idx = 0; Idx != Worklist.size(); ++Idx) { 5401 I = Worklist[Idx]; 5402 5403 // See if this instruction simplifies. 5404 SimpleV = SimplifyInstruction(I, {DL, TLI, DT, AC}); 5405 if (!SimpleV) { 5406 if (UnsimplifiedUsers) 5407 UnsimplifiedUsers->insert(I); 5408 continue; 5409 } 5410 5411 Simplified = true; 5412 5413 // Stash away all the uses of the old instruction so we can check them for 5414 // recursive simplifications after a RAUW. This is cheaper than checking all 5415 // uses of To on the recursive step in most cases. 5416 for (User *U : I->users()) 5417 Worklist.insert(cast<Instruction>(U)); 5418 5419 // Replace the instruction with its simplified value. 5420 I->replaceAllUsesWith(SimpleV); 5421 5422 // Gracefully handle edge cases where the instruction is not wired into any 5423 // parent block. 5424 if (I->getParent() && !I->isEHPad() && !I->isTerminator() && 5425 !I->mayHaveSideEffects()) 5426 I->eraseFromParent(); 5427 } 5428 return Simplified; 5429 } 5430 5431 bool llvm::recursivelySimplifyInstruction(Instruction *I, 5432 const TargetLibraryInfo *TLI, 5433 const DominatorTree *DT, 5434 AssumptionCache *AC) { 5435 return replaceAndRecursivelySimplifyImpl(I, nullptr, TLI, DT, AC, nullptr); 5436 } 5437 5438 bool llvm::replaceAndRecursivelySimplify( 5439 Instruction *I, Value *SimpleV, const TargetLibraryInfo *TLI, 5440 const DominatorTree *DT, AssumptionCache *AC, 5441 SmallSetVector<Instruction *, 8> *UnsimplifiedUsers) { 5442 assert(I != SimpleV && "replaceAndRecursivelySimplify(X,X) is not valid!"); 5443 assert(SimpleV && "Must provide a simplified value."); 5444 return replaceAndRecursivelySimplifyImpl(I, SimpleV, TLI, DT, AC, 5445 UnsimplifiedUsers); 5446 } 5447 5448 namespace llvm { 5449 const SimplifyQuery getBestSimplifyQuery(Pass &P, Function &F) { 5450 auto *DTWP = P.getAnalysisIfAvailable<DominatorTreeWrapperPass>(); 5451 auto *DT = DTWP ? &DTWP->getDomTree() : nullptr; 5452 auto *TLIWP = P.getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 5453 auto *TLI = TLIWP ? &TLIWP->getTLI(F) : nullptr; 5454 auto *ACWP = P.getAnalysisIfAvailable<AssumptionCacheTracker>(); 5455 auto *AC = ACWP ? &ACWP->getAssumptionCache(F) : nullptr; 5456 return {F.getParent()->getDataLayout(), TLI, DT, AC}; 5457 } 5458 5459 const SimplifyQuery getBestSimplifyQuery(LoopStandardAnalysisResults &AR, 5460 const DataLayout &DL) { 5461 return {DL, &AR.TLI, &AR.DT, &AR.AC}; 5462 } 5463 5464 template <class T, class... TArgs> 5465 const SimplifyQuery getBestSimplifyQuery(AnalysisManager<T, TArgs...> &AM, 5466 Function &F) { 5467 auto *DT = AM.template getCachedResult<DominatorTreeAnalysis>(F); 5468 auto *TLI = AM.template getCachedResult<TargetLibraryAnalysis>(F); 5469 auto *AC = AM.template getCachedResult<AssumptionAnalysis>(F); 5470 return {F.getParent()->getDataLayout(), TLI, DT, AC}; 5471 } 5472 template const SimplifyQuery getBestSimplifyQuery(AnalysisManager<Function> &, 5473 Function &); 5474 } 5475