1 //===- InstructionSimplify.cpp - Fold instruction operands ----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements routines for folding instructions into simpler forms
10 // that do not require creating new instructions.  This does constant folding
11 // ("add i32 1, 1" -> "2") but can also handle non-constant operands, either
12 // returning a constant ("and i32 %x, 0" -> "0") or an already existing value
13 // ("and i32 %x, %x" -> "%x").  All operands are assumed to have already been
14 // simplified: This is usually true and assuming it simplifies the logic (if
15 // they have not been simplified then results are correct but maybe suboptimal).
16 //
17 //===----------------------------------------------------------------------===//
18 
19 #include "llvm/Analysis/InstructionSimplify.h"
20 #include "llvm/ADT/SetVector.h"
21 #include "llvm/ADT/Statistic.h"
22 #include "llvm/Analysis/AliasAnalysis.h"
23 #include "llvm/Analysis/AssumptionCache.h"
24 #include "llvm/Analysis/CaptureTracking.h"
25 #include "llvm/Analysis/CmpInstAnalysis.h"
26 #include "llvm/Analysis/ConstantFolding.h"
27 #include "llvm/Analysis/LoopAnalysisManager.h"
28 #include "llvm/Analysis/MemoryBuiltins.h"
29 #include "llvm/Analysis/ValueTracking.h"
30 #include "llvm/Analysis/VectorUtils.h"
31 #include "llvm/IR/ConstantRange.h"
32 #include "llvm/IR/DataLayout.h"
33 #include "llvm/IR/Dominators.h"
34 #include "llvm/IR/GetElementPtrTypeIterator.h"
35 #include "llvm/IR/GlobalAlias.h"
36 #include "llvm/IR/InstrTypes.h"
37 #include "llvm/IR/Instructions.h"
38 #include "llvm/IR/Operator.h"
39 #include "llvm/IR/PatternMatch.h"
40 #include "llvm/IR/ValueHandle.h"
41 #include "llvm/Support/KnownBits.h"
42 #include <algorithm>
43 using namespace llvm;
44 using namespace llvm::PatternMatch;
45 
46 #define DEBUG_TYPE "instsimplify"
47 
48 enum { RecursionLimit = 3 };
49 
50 STATISTIC(NumExpand,  "Number of expansions");
51 STATISTIC(NumReassoc, "Number of reassociations");
52 
53 static Value *SimplifyAndInst(Value *, Value *, const SimplifyQuery &, unsigned);
54 static Value *simplifyUnOp(unsigned, Value *, const SimplifyQuery &, unsigned);
55 static Value *simplifyFPUnOp(unsigned, Value *, const FastMathFlags &,
56                              const SimplifyQuery &, unsigned);
57 static Value *SimplifyBinOp(unsigned, Value *, Value *, const SimplifyQuery &,
58                             unsigned);
59 static Value *SimplifyBinOp(unsigned, Value *, Value *, const FastMathFlags &,
60                             const SimplifyQuery &, unsigned);
61 static Value *SimplifyCmpInst(unsigned, Value *, Value *, const SimplifyQuery &,
62                               unsigned);
63 static Value *SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS,
64                                const SimplifyQuery &Q, unsigned MaxRecurse);
65 static Value *SimplifyOrInst(Value *, Value *, const SimplifyQuery &, unsigned);
66 static Value *SimplifyXorInst(Value *, Value *, const SimplifyQuery &, unsigned);
67 static Value *SimplifyCastInst(unsigned, Value *, Type *,
68                                const SimplifyQuery &, unsigned);
69 static Value *SimplifyGEPInst(Type *, ArrayRef<Value *>, const SimplifyQuery &,
70                               unsigned);
71 
72 static Value *foldSelectWithBinaryOp(Value *Cond, Value *TrueVal,
73                                      Value *FalseVal) {
74   BinaryOperator::BinaryOps BinOpCode;
75   if (auto *BO = dyn_cast<BinaryOperator>(Cond))
76     BinOpCode = BO->getOpcode();
77   else
78     return nullptr;
79 
80   CmpInst::Predicate ExpectedPred, Pred1, Pred2;
81   if (BinOpCode == BinaryOperator::Or) {
82     ExpectedPred = ICmpInst::ICMP_NE;
83   } else if (BinOpCode == BinaryOperator::And) {
84     ExpectedPred = ICmpInst::ICMP_EQ;
85   } else
86     return nullptr;
87 
88   // %A = icmp eq %TV, %FV
89   // %B = icmp eq %X, %Y (and one of these is a select operand)
90   // %C = and %A, %B
91   // %D = select %C, %TV, %FV
92   // -->
93   // %FV
94 
95   // %A = icmp ne %TV, %FV
96   // %B = icmp ne %X, %Y (and one of these is a select operand)
97   // %C = or %A, %B
98   // %D = select %C, %TV, %FV
99   // -->
100   // %TV
101   Value *X, *Y;
102   if (!match(Cond, m_c_BinOp(m_c_ICmp(Pred1, m_Specific(TrueVal),
103                                       m_Specific(FalseVal)),
104                              m_ICmp(Pred2, m_Value(X), m_Value(Y)))) ||
105       Pred1 != Pred2 || Pred1 != ExpectedPred)
106     return nullptr;
107 
108   if (X == TrueVal || X == FalseVal || Y == TrueVal || Y == FalseVal)
109     return BinOpCode == BinaryOperator::Or ? TrueVal : FalseVal;
110 
111   return nullptr;
112 }
113 
114 /// For a boolean type or a vector of boolean type, return false or a vector
115 /// with every element false.
116 static Constant *getFalse(Type *Ty) {
117   return ConstantInt::getFalse(Ty);
118 }
119 
120 /// For a boolean type or a vector of boolean type, return true or a vector
121 /// with every element true.
122 static Constant *getTrue(Type *Ty) {
123   return ConstantInt::getTrue(Ty);
124 }
125 
126 /// isSameCompare - Is V equivalent to the comparison "LHS Pred RHS"?
127 static bool isSameCompare(Value *V, CmpInst::Predicate Pred, Value *LHS,
128                           Value *RHS) {
129   CmpInst *Cmp = dyn_cast<CmpInst>(V);
130   if (!Cmp)
131     return false;
132   CmpInst::Predicate CPred = Cmp->getPredicate();
133   Value *CLHS = Cmp->getOperand(0), *CRHS = Cmp->getOperand(1);
134   if (CPred == Pred && CLHS == LHS && CRHS == RHS)
135     return true;
136   return CPred == CmpInst::getSwappedPredicate(Pred) && CLHS == RHS &&
137     CRHS == LHS;
138 }
139 
140 /// Does the given value dominate the specified phi node?
141 static bool valueDominatesPHI(Value *V, PHINode *P, const DominatorTree *DT) {
142   Instruction *I = dyn_cast<Instruction>(V);
143   if (!I)
144     // Arguments and constants dominate all instructions.
145     return true;
146 
147   // If we are processing instructions (and/or basic blocks) that have not been
148   // fully added to a function, the parent nodes may still be null. Simply
149   // return the conservative answer in these cases.
150   if (!I->getParent() || !P->getParent() || !I->getFunction())
151     return false;
152 
153   // If we have a DominatorTree then do a precise test.
154   if (DT)
155     return DT->dominates(I, P);
156 
157   // Otherwise, if the instruction is in the entry block and is not an invoke,
158   // then it obviously dominates all phi nodes.
159   if (I->getParent() == &I->getFunction()->getEntryBlock() &&
160       !isa<InvokeInst>(I))
161     return true;
162 
163   return false;
164 }
165 
166 /// Simplify "A op (B op' C)" by distributing op over op', turning it into
167 /// "(A op B) op' (A op C)".  Here "op" is given by Opcode and "op'" is
168 /// given by OpcodeToExpand, while "A" corresponds to LHS and "B op' C" to RHS.
169 /// Also performs the transform "(A op' B) op C" -> "(A op C) op' (B op C)".
170 /// Returns the simplified value, or null if no simplification was performed.
171 static Value *ExpandBinOp(Instruction::BinaryOps Opcode, Value *LHS, Value *RHS,
172                           Instruction::BinaryOps OpcodeToExpand,
173                           const SimplifyQuery &Q, unsigned MaxRecurse) {
174   // Recursion is always used, so bail out at once if we already hit the limit.
175   if (!MaxRecurse--)
176     return nullptr;
177 
178   // Check whether the expression has the form "(A op' B) op C".
179   if (BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS))
180     if (Op0->getOpcode() == OpcodeToExpand) {
181       // It does!  Try turning it into "(A op C) op' (B op C)".
182       Value *A = Op0->getOperand(0), *B = Op0->getOperand(1), *C = RHS;
183       // Do "A op C" and "B op C" both simplify?
184       if (Value *L = SimplifyBinOp(Opcode, A, C, Q, MaxRecurse))
185         if (Value *R = SimplifyBinOp(Opcode, B, C, Q, MaxRecurse)) {
186           // They do! Return "L op' R" if it simplifies or is already available.
187           // If "L op' R" equals "A op' B" then "L op' R" is just the LHS.
188           if ((L == A && R == B) || (Instruction::isCommutative(OpcodeToExpand)
189                                      && L == B && R == A)) {
190             ++NumExpand;
191             return LHS;
192           }
193           // Otherwise return "L op' R" if it simplifies.
194           if (Value *V = SimplifyBinOp(OpcodeToExpand, L, R, Q, MaxRecurse)) {
195             ++NumExpand;
196             return V;
197           }
198         }
199     }
200 
201   // Check whether the expression has the form "A op (B op' C)".
202   if (BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS))
203     if (Op1->getOpcode() == OpcodeToExpand) {
204       // It does!  Try turning it into "(A op B) op' (A op C)".
205       Value *A = LHS, *B = Op1->getOperand(0), *C = Op1->getOperand(1);
206       // Do "A op B" and "A op C" both simplify?
207       if (Value *L = SimplifyBinOp(Opcode, A, B, Q, MaxRecurse))
208         if (Value *R = SimplifyBinOp(Opcode, A, C, Q, MaxRecurse)) {
209           // They do! Return "L op' R" if it simplifies or is already available.
210           // If "L op' R" equals "B op' C" then "L op' R" is just the RHS.
211           if ((L == B && R == C) || (Instruction::isCommutative(OpcodeToExpand)
212                                      && L == C && R == B)) {
213             ++NumExpand;
214             return RHS;
215           }
216           // Otherwise return "L op' R" if it simplifies.
217           if (Value *V = SimplifyBinOp(OpcodeToExpand, L, R, Q, MaxRecurse)) {
218             ++NumExpand;
219             return V;
220           }
221         }
222     }
223 
224   return nullptr;
225 }
226 
227 /// Generic simplifications for associative binary operations.
228 /// Returns the simpler value, or null if none was found.
229 static Value *SimplifyAssociativeBinOp(Instruction::BinaryOps Opcode,
230                                        Value *LHS, Value *RHS,
231                                        const SimplifyQuery &Q,
232                                        unsigned MaxRecurse) {
233   assert(Instruction::isAssociative(Opcode) && "Not an associative operation!");
234 
235   // Recursion is always used, so bail out at once if we already hit the limit.
236   if (!MaxRecurse--)
237     return nullptr;
238 
239   BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS);
240   BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS);
241 
242   // Transform: "(A op B) op C" ==> "A op (B op C)" if it simplifies completely.
243   if (Op0 && Op0->getOpcode() == Opcode) {
244     Value *A = Op0->getOperand(0);
245     Value *B = Op0->getOperand(1);
246     Value *C = RHS;
247 
248     // Does "B op C" simplify?
249     if (Value *V = SimplifyBinOp(Opcode, B, C, Q, MaxRecurse)) {
250       // It does!  Return "A op V" if it simplifies or is already available.
251       // If V equals B then "A op V" is just the LHS.
252       if (V == B) return LHS;
253       // Otherwise return "A op V" if it simplifies.
254       if (Value *W = SimplifyBinOp(Opcode, A, V, Q, MaxRecurse)) {
255         ++NumReassoc;
256         return W;
257       }
258     }
259   }
260 
261   // Transform: "A op (B op C)" ==> "(A op B) op C" if it simplifies completely.
262   if (Op1 && Op1->getOpcode() == Opcode) {
263     Value *A = LHS;
264     Value *B = Op1->getOperand(0);
265     Value *C = Op1->getOperand(1);
266 
267     // Does "A op B" simplify?
268     if (Value *V = SimplifyBinOp(Opcode, A, B, Q, MaxRecurse)) {
269       // It does!  Return "V op C" if it simplifies or is already available.
270       // If V equals B then "V op C" is just the RHS.
271       if (V == B) return RHS;
272       // Otherwise return "V op C" if it simplifies.
273       if (Value *W = SimplifyBinOp(Opcode, V, C, Q, MaxRecurse)) {
274         ++NumReassoc;
275         return W;
276       }
277     }
278   }
279 
280   // The remaining transforms require commutativity as well as associativity.
281   if (!Instruction::isCommutative(Opcode))
282     return nullptr;
283 
284   // Transform: "(A op B) op C" ==> "(C op A) op B" if it simplifies completely.
285   if (Op0 && Op0->getOpcode() == Opcode) {
286     Value *A = Op0->getOperand(0);
287     Value *B = Op0->getOperand(1);
288     Value *C = RHS;
289 
290     // Does "C op A" simplify?
291     if (Value *V = SimplifyBinOp(Opcode, C, A, Q, MaxRecurse)) {
292       // It does!  Return "V op B" if it simplifies or is already available.
293       // If V equals A then "V op B" is just the LHS.
294       if (V == A) return LHS;
295       // Otherwise return "V op B" if it simplifies.
296       if (Value *W = SimplifyBinOp(Opcode, V, B, Q, MaxRecurse)) {
297         ++NumReassoc;
298         return W;
299       }
300     }
301   }
302 
303   // Transform: "A op (B op C)" ==> "B op (C op A)" if it simplifies completely.
304   if (Op1 && Op1->getOpcode() == Opcode) {
305     Value *A = LHS;
306     Value *B = Op1->getOperand(0);
307     Value *C = Op1->getOperand(1);
308 
309     // Does "C op A" simplify?
310     if (Value *V = SimplifyBinOp(Opcode, C, A, Q, MaxRecurse)) {
311       // It does!  Return "B op V" if it simplifies or is already available.
312       // If V equals C then "B op V" is just the RHS.
313       if (V == C) return RHS;
314       // Otherwise return "B op V" if it simplifies.
315       if (Value *W = SimplifyBinOp(Opcode, B, V, Q, MaxRecurse)) {
316         ++NumReassoc;
317         return W;
318       }
319     }
320   }
321 
322   return nullptr;
323 }
324 
325 /// In the case of a binary operation with a select instruction as an operand,
326 /// try to simplify the binop by seeing whether evaluating it on both branches
327 /// of the select results in the same value. Returns the common value if so,
328 /// otherwise returns null.
329 static Value *ThreadBinOpOverSelect(Instruction::BinaryOps Opcode, Value *LHS,
330                                     Value *RHS, const SimplifyQuery &Q,
331                                     unsigned MaxRecurse) {
332   // Recursion is always used, so bail out at once if we already hit the limit.
333   if (!MaxRecurse--)
334     return nullptr;
335 
336   SelectInst *SI;
337   if (isa<SelectInst>(LHS)) {
338     SI = cast<SelectInst>(LHS);
339   } else {
340     assert(isa<SelectInst>(RHS) && "No select instruction operand!");
341     SI = cast<SelectInst>(RHS);
342   }
343 
344   // Evaluate the BinOp on the true and false branches of the select.
345   Value *TV;
346   Value *FV;
347   if (SI == LHS) {
348     TV = SimplifyBinOp(Opcode, SI->getTrueValue(), RHS, Q, MaxRecurse);
349     FV = SimplifyBinOp(Opcode, SI->getFalseValue(), RHS, Q, MaxRecurse);
350   } else {
351     TV = SimplifyBinOp(Opcode, LHS, SI->getTrueValue(), Q, MaxRecurse);
352     FV = SimplifyBinOp(Opcode, LHS, SI->getFalseValue(), Q, MaxRecurse);
353   }
354 
355   // If they simplified to the same value, then return the common value.
356   // If they both failed to simplify then return null.
357   if (TV == FV)
358     return TV;
359 
360   // If one branch simplified to undef, return the other one.
361   if (TV && isa<UndefValue>(TV))
362     return FV;
363   if (FV && isa<UndefValue>(FV))
364     return TV;
365 
366   // If applying the operation did not change the true and false select values,
367   // then the result of the binop is the select itself.
368   if (TV == SI->getTrueValue() && FV == SI->getFalseValue())
369     return SI;
370 
371   // If one branch simplified and the other did not, and the simplified
372   // value is equal to the unsimplified one, return the simplified value.
373   // For example, select (cond, X, X & Z) & Z -> X & Z.
374   if ((FV && !TV) || (TV && !FV)) {
375     // Check that the simplified value has the form "X op Y" where "op" is the
376     // same as the original operation.
377     Instruction *Simplified = dyn_cast<Instruction>(FV ? FV : TV);
378     if (Simplified && Simplified->getOpcode() == unsigned(Opcode)) {
379       // The value that didn't simplify is "UnsimplifiedLHS op UnsimplifiedRHS".
380       // We already know that "op" is the same as for the simplified value.  See
381       // if the operands match too.  If so, return the simplified value.
382       Value *UnsimplifiedBranch = FV ? SI->getTrueValue() : SI->getFalseValue();
383       Value *UnsimplifiedLHS = SI == LHS ? UnsimplifiedBranch : LHS;
384       Value *UnsimplifiedRHS = SI == LHS ? RHS : UnsimplifiedBranch;
385       if (Simplified->getOperand(0) == UnsimplifiedLHS &&
386           Simplified->getOperand(1) == UnsimplifiedRHS)
387         return Simplified;
388       if (Simplified->isCommutative() &&
389           Simplified->getOperand(1) == UnsimplifiedLHS &&
390           Simplified->getOperand(0) == UnsimplifiedRHS)
391         return Simplified;
392     }
393   }
394 
395   return nullptr;
396 }
397 
398 /// In the case of a comparison with a select instruction, try to simplify the
399 /// comparison by seeing whether both branches of the select result in the same
400 /// value. Returns the common value if so, otherwise returns null.
401 static Value *ThreadCmpOverSelect(CmpInst::Predicate Pred, Value *LHS,
402                                   Value *RHS, const SimplifyQuery &Q,
403                                   unsigned MaxRecurse) {
404   // Recursion is always used, so bail out at once if we already hit the limit.
405   if (!MaxRecurse--)
406     return nullptr;
407 
408   // Make sure the select is on the LHS.
409   if (!isa<SelectInst>(LHS)) {
410     std::swap(LHS, RHS);
411     Pred = CmpInst::getSwappedPredicate(Pred);
412   }
413   assert(isa<SelectInst>(LHS) && "Not comparing with a select instruction!");
414   SelectInst *SI = cast<SelectInst>(LHS);
415   Value *Cond = SI->getCondition();
416   Value *TV = SI->getTrueValue();
417   Value *FV = SI->getFalseValue();
418 
419   // Now that we have "cmp select(Cond, TV, FV), RHS", analyse it.
420   // Does "cmp TV, RHS" simplify?
421   Value *TCmp = SimplifyCmpInst(Pred, TV, RHS, Q, MaxRecurse);
422   if (TCmp == Cond) {
423     // It not only simplified, it simplified to the select condition.  Replace
424     // it with 'true'.
425     TCmp = getTrue(Cond->getType());
426   } else if (!TCmp) {
427     // It didn't simplify.  However if "cmp TV, RHS" is equal to the select
428     // condition then we can replace it with 'true'.  Otherwise give up.
429     if (!isSameCompare(Cond, Pred, TV, RHS))
430       return nullptr;
431     TCmp = getTrue(Cond->getType());
432   }
433 
434   // Does "cmp FV, RHS" simplify?
435   Value *FCmp = SimplifyCmpInst(Pred, FV, RHS, Q, MaxRecurse);
436   if (FCmp == Cond) {
437     // It not only simplified, it simplified to the select condition.  Replace
438     // it with 'false'.
439     FCmp = getFalse(Cond->getType());
440   } else if (!FCmp) {
441     // It didn't simplify.  However if "cmp FV, RHS" is equal to the select
442     // condition then we can replace it with 'false'.  Otherwise give up.
443     if (!isSameCompare(Cond, Pred, FV, RHS))
444       return nullptr;
445     FCmp = getFalse(Cond->getType());
446   }
447 
448   // If both sides simplified to the same value, then use it as the result of
449   // the original comparison.
450   if (TCmp == FCmp)
451     return TCmp;
452 
453   // The remaining cases only make sense if the select condition has the same
454   // type as the result of the comparison, so bail out if this is not so.
455   if (Cond->getType()->isVectorTy() != RHS->getType()->isVectorTy())
456     return nullptr;
457   // If the false value simplified to false, then the result of the compare
458   // is equal to "Cond && TCmp".  This also catches the case when the false
459   // value simplified to false and the true value to true, returning "Cond".
460   if (match(FCmp, m_Zero()))
461     if (Value *V = SimplifyAndInst(Cond, TCmp, Q, MaxRecurse))
462       return V;
463   // If the true value simplified to true, then the result of the compare
464   // is equal to "Cond || FCmp".
465   if (match(TCmp, m_One()))
466     if (Value *V = SimplifyOrInst(Cond, FCmp, Q, MaxRecurse))
467       return V;
468   // Finally, if the false value simplified to true and the true value to
469   // false, then the result of the compare is equal to "!Cond".
470   if (match(FCmp, m_One()) && match(TCmp, m_Zero()))
471     if (Value *V =
472         SimplifyXorInst(Cond, Constant::getAllOnesValue(Cond->getType()),
473                         Q, MaxRecurse))
474       return V;
475 
476   return nullptr;
477 }
478 
479 /// In the case of a binary operation with an operand that is a PHI instruction,
480 /// try to simplify the binop by seeing whether evaluating it on the incoming
481 /// phi values yields the same result for every value. If so returns the common
482 /// value, otherwise returns null.
483 static Value *ThreadBinOpOverPHI(Instruction::BinaryOps Opcode, Value *LHS,
484                                  Value *RHS, const SimplifyQuery &Q,
485                                  unsigned MaxRecurse) {
486   // Recursion is always used, so bail out at once if we already hit the limit.
487   if (!MaxRecurse--)
488     return nullptr;
489 
490   PHINode *PI;
491   if (isa<PHINode>(LHS)) {
492     PI = cast<PHINode>(LHS);
493     // Bail out if RHS and the phi may be mutually interdependent due to a loop.
494     if (!valueDominatesPHI(RHS, PI, Q.DT))
495       return nullptr;
496   } else {
497     assert(isa<PHINode>(RHS) && "No PHI instruction operand!");
498     PI = cast<PHINode>(RHS);
499     // Bail out if LHS and the phi may be mutually interdependent due to a loop.
500     if (!valueDominatesPHI(LHS, PI, Q.DT))
501       return nullptr;
502   }
503 
504   // Evaluate the BinOp on the incoming phi values.
505   Value *CommonValue = nullptr;
506   for (Value *Incoming : PI->incoming_values()) {
507     // If the incoming value is the phi node itself, it can safely be skipped.
508     if (Incoming == PI) continue;
509     Value *V = PI == LHS ?
510       SimplifyBinOp(Opcode, Incoming, RHS, Q, MaxRecurse) :
511       SimplifyBinOp(Opcode, LHS, Incoming, Q, MaxRecurse);
512     // If the operation failed to simplify, or simplified to a different value
513     // to previously, then give up.
514     if (!V || (CommonValue && V != CommonValue))
515       return nullptr;
516     CommonValue = V;
517   }
518 
519   return CommonValue;
520 }
521 
522 /// In the case of a comparison with a PHI instruction, try to simplify the
523 /// comparison by seeing whether comparing with all of the incoming phi values
524 /// yields the same result every time. If so returns the common result,
525 /// otherwise returns null.
526 static Value *ThreadCmpOverPHI(CmpInst::Predicate Pred, Value *LHS, Value *RHS,
527                                const SimplifyQuery &Q, unsigned MaxRecurse) {
528   // Recursion is always used, so bail out at once if we already hit the limit.
529   if (!MaxRecurse--)
530     return nullptr;
531 
532   // Make sure the phi is on the LHS.
533   if (!isa<PHINode>(LHS)) {
534     std::swap(LHS, RHS);
535     Pred = CmpInst::getSwappedPredicate(Pred);
536   }
537   assert(isa<PHINode>(LHS) && "Not comparing with a phi instruction!");
538   PHINode *PI = cast<PHINode>(LHS);
539 
540   // Bail out if RHS and the phi may be mutually interdependent due to a loop.
541   if (!valueDominatesPHI(RHS, PI, Q.DT))
542     return nullptr;
543 
544   // Evaluate the BinOp on the incoming phi values.
545   Value *CommonValue = nullptr;
546   for (Value *Incoming : PI->incoming_values()) {
547     // If the incoming value is the phi node itself, it can safely be skipped.
548     if (Incoming == PI) continue;
549     Value *V = SimplifyCmpInst(Pred, Incoming, RHS, Q, MaxRecurse);
550     // If the operation failed to simplify, or simplified to a different value
551     // to previously, then give up.
552     if (!V || (CommonValue && V != CommonValue))
553       return nullptr;
554     CommonValue = V;
555   }
556 
557   return CommonValue;
558 }
559 
560 static Constant *foldOrCommuteConstant(Instruction::BinaryOps Opcode,
561                                        Value *&Op0, Value *&Op1,
562                                        const SimplifyQuery &Q) {
563   if (auto *CLHS = dyn_cast<Constant>(Op0)) {
564     if (auto *CRHS = dyn_cast<Constant>(Op1))
565       return ConstantFoldBinaryOpOperands(Opcode, CLHS, CRHS, Q.DL);
566 
567     // Canonicalize the constant to the RHS if this is a commutative operation.
568     if (Instruction::isCommutative(Opcode))
569       std::swap(Op0, Op1);
570   }
571   return nullptr;
572 }
573 
574 /// Given operands for an Add, see if we can fold the result.
575 /// If not, this returns null.
576 static Value *SimplifyAddInst(Value *Op0, Value *Op1, bool IsNSW, bool IsNUW,
577                               const SimplifyQuery &Q, unsigned MaxRecurse) {
578   if (Constant *C = foldOrCommuteConstant(Instruction::Add, Op0, Op1, Q))
579     return C;
580 
581   // X + undef -> undef
582   if (match(Op1, m_Undef()))
583     return Op1;
584 
585   // X + 0 -> X
586   if (match(Op1, m_Zero()))
587     return Op0;
588 
589   // If two operands are negative, return 0.
590   if (isKnownNegation(Op0, Op1))
591     return Constant::getNullValue(Op0->getType());
592 
593   // X + (Y - X) -> Y
594   // (Y - X) + X -> Y
595   // Eg: X + -X -> 0
596   Value *Y = nullptr;
597   if (match(Op1, m_Sub(m_Value(Y), m_Specific(Op0))) ||
598       match(Op0, m_Sub(m_Value(Y), m_Specific(Op1))))
599     return Y;
600 
601   // X + ~X -> -1   since   ~X = -X-1
602   Type *Ty = Op0->getType();
603   if (match(Op0, m_Not(m_Specific(Op1))) ||
604       match(Op1, m_Not(m_Specific(Op0))))
605     return Constant::getAllOnesValue(Ty);
606 
607   // add nsw/nuw (xor Y, signmask), signmask --> Y
608   // The no-wrapping add guarantees that the top bit will be set by the add.
609   // Therefore, the xor must be clearing the already set sign bit of Y.
610   if ((IsNSW || IsNUW) && match(Op1, m_SignMask()) &&
611       match(Op0, m_Xor(m_Value(Y), m_SignMask())))
612     return Y;
613 
614   // add nuw %x, -1  ->  -1, because %x can only be 0.
615   if (IsNUW && match(Op1, m_AllOnes()))
616     return Op1; // Which is -1.
617 
618   /// i1 add -> xor.
619   if (MaxRecurse && Op0->getType()->isIntOrIntVectorTy(1))
620     if (Value *V = SimplifyXorInst(Op0, Op1, Q, MaxRecurse-1))
621       return V;
622 
623   // Try some generic simplifications for associative operations.
624   if (Value *V = SimplifyAssociativeBinOp(Instruction::Add, Op0, Op1, Q,
625                                           MaxRecurse))
626     return V;
627 
628   // Threading Add over selects and phi nodes is pointless, so don't bother.
629   // Threading over the select in "A + select(cond, B, C)" means evaluating
630   // "A+B" and "A+C" and seeing if they are equal; but they are equal if and
631   // only if B and C are equal.  If B and C are equal then (since we assume
632   // that operands have already been simplified) "select(cond, B, C)" should
633   // have been simplified to the common value of B and C already.  Analysing
634   // "A+B" and "A+C" thus gains nothing, but costs compile time.  Similarly
635   // for threading over phi nodes.
636 
637   return nullptr;
638 }
639 
640 Value *llvm::SimplifyAddInst(Value *Op0, Value *Op1, bool IsNSW, bool IsNUW,
641                              const SimplifyQuery &Query) {
642   return ::SimplifyAddInst(Op0, Op1, IsNSW, IsNUW, Query, RecursionLimit);
643 }
644 
645 /// Compute the base pointer and cumulative constant offsets for V.
646 ///
647 /// This strips all constant offsets off of V, leaving it the base pointer, and
648 /// accumulates the total constant offset applied in the returned constant. It
649 /// returns 0 if V is not a pointer, and returns the constant '0' if there are
650 /// no constant offsets applied.
651 ///
652 /// This is very similar to GetPointerBaseWithConstantOffset except it doesn't
653 /// follow non-inbounds geps. This allows it to remain usable for icmp ult/etc.
654 /// folding.
655 static Constant *stripAndComputeConstantOffsets(const DataLayout &DL, Value *&V,
656                                                 bool AllowNonInbounds = false) {
657   assert(V->getType()->isPtrOrPtrVectorTy());
658 
659   Type *IntPtrTy = DL.getIntPtrType(V->getType())->getScalarType();
660   APInt Offset = APInt::getNullValue(IntPtrTy->getIntegerBitWidth());
661 
662   V = V->stripAndAccumulateConstantOffsets(DL, Offset, AllowNonInbounds);
663   // As that strip may trace through `addrspacecast`, need to sext or trunc
664   // the offset calculated.
665   IntPtrTy = DL.getIntPtrType(V->getType())->getScalarType();
666   Offset = Offset.sextOrTrunc(IntPtrTy->getIntegerBitWidth());
667 
668   Constant *OffsetIntPtr = ConstantInt::get(IntPtrTy, Offset);
669   if (V->getType()->isVectorTy())
670     return ConstantVector::getSplat(V->getType()->getVectorNumElements(),
671                                     OffsetIntPtr);
672   return OffsetIntPtr;
673 }
674 
675 /// Compute the constant difference between two pointer values.
676 /// If the difference is not a constant, returns zero.
677 static Constant *computePointerDifference(const DataLayout &DL, Value *LHS,
678                                           Value *RHS) {
679   Constant *LHSOffset = stripAndComputeConstantOffsets(DL, LHS);
680   Constant *RHSOffset = stripAndComputeConstantOffsets(DL, RHS);
681 
682   // If LHS and RHS are not related via constant offsets to the same base
683   // value, there is nothing we can do here.
684   if (LHS != RHS)
685     return nullptr;
686 
687   // Otherwise, the difference of LHS - RHS can be computed as:
688   //    LHS - RHS
689   //  = (LHSOffset + Base) - (RHSOffset + Base)
690   //  = LHSOffset - RHSOffset
691   return ConstantExpr::getSub(LHSOffset, RHSOffset);
692 }
693 
694 /// Given operands for a Sub, see if we can fold the result.
695 /// If not, this returns null.
696 static Value *SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
697                               const SimplifyQuery &Q, unsigned MaxRecurse) {
698   if (Constant *C = foldOrCommuteConstant(Instruction::Sub, Op0, Op1, Q))
699     return C;
700 
701   // X - undef -> undef
702   // undef - X -> undef
703   if (match(Op0, m_Undef()) || match(Op1, m_Undef()))
704     return UndefValue::get(Op0->getType());
705 
706   // X - 0 -> X
707   if (match(Op1, m_Zero()))
708     return Op0;
709 
710   // X - X -> 0
711   if (Op0 == Op1)
712     return Constant::getNullValue(Op0->getType());
713 
714   // Is this a negation?
715   if (match(Op0, m_Zero())) {
716     // 0 - X -> 0 if the sub is NUW.
717     if (isNUW)
718       return Constant::getNullValue(Op0->getType());
719 
720     KnownBits Known = computeKnownBits(Op1, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
721     if (Known.Zero.isMaxSignedValue()) {
722       // Op1 is either 0 or the minimum signed value. If the sub is NSW, then
723       // Op1 must be 0 because negating the minimum signed value is undefined.
724       if (isNSW)
725         return Constant::getNullValue(Op0->getType());
726 
727       // 0 - X -> X if X is 0 or the minimum signed value.
728       return Op1;
729     }
730   }
731 
732   // (X + Y) - Z -> X + (Y - Z) or Y + (X - Z) if everything simplifies.
733   // For example, (X + Y) - Y -> X; (Y + X) - Y -> X
734   Value *X = nullptr, *Y = nullptr, *Z = Op1;
735   if (MaxRecurse && match(Op0, m_Add(m_Value(X), m_Value(Y)))) { // (X + Y) - Z
736     // See if "V === Y - Z" simplifies.
737     if (Value *V = SimplifyBinOp(Instruction::Sub, Y, Z, Q, MaxRecurse-1))
738       // It does!  Now see if "X + V" simplifies.
739       if (Value *W = SimplifyBinOp(Instruction::Add, X, V, Q, MaxRecurse-1)) {
740         // It does, we successfully reassociated!
741         ++NumReassoc;
742         return W;
743       }
744     // See if "V === X - Z" simplifies.
745     if (Value *V = SimplifyBinOp(Instruction::Sub, X, Z, Q, MaxRecurse-1))
746       // It does!  Now see if "Y + V" simplifies.
747       if (Value *W = SimplifyBinOp(Instruction::Add, Y, V, Q, MaxRecurse-1)) {
748         // It does, we successfully reassociated!
749         ++NumReassoc;
750         return W;
751       }
752   }
753 
754   // X - (Y + Z) -> (X - Y) - Z or (X - Z) - Y if everything simplifies.
755   // For example, X - (X + 1) -> -1
756   X = Op0;
757   if (MaxRecurse && match(Op1, m_Add(m_Value(Y), m_Value(Z)))) { // X - (Y + Z)
758     // See if "V === X - Y" simplifies.
759     if (Value *V = SimplifyBinOp(Instruction::Sub, X, Y, Q, MaxRecurse-1))
760       // It does!  Now see if "V - Z" simplifies.
761       if (Value *W = SimplifyBinOp(Instruction::Sub, V, Z, Q, MaxRecurse-1)) {
762         // It does, we successfully reassociated!
763         ++NumReassoc;
764         return W;
765       }
766     // See if "V === X - Z" simplifies.
767     if (Value *V = SimplifyBinOp(Instruction::Sub, X, Z, Q, MaxRecurse-1))
768       // It does!  Now see if "V - Y" simplifies.
769       if (Value *W = SimplifyBinOp(Instruction::Sub, V, Y, Q, MaxRecurse-1)) {
770         // It does, we successfully reassociated!
771         ++NumReassoc;
772         return W;
773       }
774   }
775 
776   // Z - (X - Y) -> (Z - X) + Y if everything simplifies.
777   // For example, X - (X - Y) -> Y.
778   Z = Op0;
779   if (MaxRecurse && match(Op1, m_Sub(m_Value(X), m_Value(Y)))) // Z - (X - Y)
780     // See if "V === Z - X" simplifies.
781     if (Value *V = SimplifyBinOp(Instruction::Sub, Z, X, Q, MaxRecurse-1))
782       // It does!  Now see if "V + Y" simplifies.
783       if (Value *W = SimplifyBinOp(Instruction::Add, V, Y, Q, MaxRecurse-1)) {
784         // It does, we successfully reassociated!
785         ++NumReassoc;
786         return W;
787       }
788 
789   // trunc(X) - trunc(Y) -> trunc(X - Y) if everything simplifies.
790   if (MaxRecurse && match(Op0, m_Trunc(m_Value(X))) &&
791       match(Op1, m_Trunc(m_Value(Y))))
792     if (X->getType() == Y->getType())
793       // See if "V === X - Y" simplifies.
794       if (Value *V = SimplifyBinOp(Instruction::Sub, X, Y, Q, MaxRecurse-1))
795         // It does!  Now see if "trunc V" simplifies.
796         if (Value *W = SimplifyCastInst(Instruction::Trunc, V, Op0->getType(),
797                                         Q, MaxRecurse - 1))
798           // It does, return the simplified "trunc V".
799           return W;
800 
801   // Variations on GEP(base, I, ...) - GEP(base, i, ...) -> GEP(null, I-i, ...).
802   if (match(Op0, m_PtrToInt(m_Value(X))) &&
803       match(Op1, m_PtrToInt(m_Value(Y))))
804     if (Constant *Result = computePointerDifference(Q.DL, X, Y))
805       return ConstantExpr::getIntegerCast(Result, Op0->getType(), true);
806 
807   // i1 sub -> xor.
808   if (MaxRecurse && Op0->getType()->isIntOrIntVectorTy(1))
809     if (Value *V = SimplifyXorInst(Op0, Op1, Q, MaxRecurse-1))
810       return V;
811 
812   // Threading Sub over selects and phi nodes is pointless, so don't bother.
813   // Threading over the select in "A - select(cond, B, C)" means evaluating
814   // "A-B" and "A-C" and seeing if they are equal; but they are equal if and
815   // only if B and C are equal.  If B and C are equal then (since we assume
816   // that operands have already been simplified) "select(cond, B, C)" should
817   // have been simplified to the common value of B and C already.  Analysing
818   // "A-B" and "A-C" thus gains nothing, but costs compile time.  Similarly
819   // for threading over phi nodes.
820 
821   return nullptr;
822 }
823 
824 Value *llvm::SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
825                              const SimplifyQuery &Q) {
826   return ::SimplifySubInst(Op0, Op1, isNSW, isNUW, Q, RecursionLimit);
827 }
828 
829 /// Given operands for a Mul, see if we can fold the result.
830 /// If not, this returns null.
831 static Value *SimplifyMulInst(Value *Op0, Value *Op1, const SimplifyQuery &Q,
832                               unsigned MaxRecurse) {
833   if (Constant *C = foldOrCommuteConstant(Instruction::Mul, Op0, Op1, Q))
834     return C;
835 
836   // X * undef -> 0
837   // X * 0 -> 0
838   if (match(Op1, m_CombineOr(m_Undef(), m_Zero())))
839     return Constant::getNullValue(Op0->getType());
840 
841   // X * 1 -> X
842   if (match(Op1, m_One()))
843     return Op0;
844 
845   // (X / Y) * Y -> X if the division is exact.
846   Value *X = nullptr;
847   if (Q.IIQ.UseInstrInfo &&
848       (match(Op0,
849              m_Exact(m_IDiv(m_Value(X), m_Specific(Op1)))) ||     // (X / Y) * Y
850        match(Op1, m_Exact(m_IDiv(m_Value(X), m_Specific(Op0)))))) // Y * (X / Y)
851     return X;
852 
853   // i1 mul -> and.
854   if (MaxRecurse && Op0->getType()->isIntOrIntVectorTy(1))
855     if (Value *V = SimplifyAndInst(Op0, Op1, Q, MaxRecurse-1))
856       return V;
857 
858   // Try some generic simplifications for associative operations.
859   if (Value *V = SimplifyAssociativeBinOp(Instruction::Mul, Op0, Op1, Q,
860                                           MaxRecurse))
861     return V;
862 
863   // Mul distributes over Add. Try some generic simplifications based on this.
864   if (Value *V = ExpandBinOp(Instruction::Mul, Op0, Op1, Instruction::Add,
865                              Q, MaxRecurse))
866     return V;
867 
868   // If the operation is with the result of a select instruction, check whether
869   // operating on either branch of the select always yields the same value.
870   if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
871     if (Value *V = ThreadBinOpOverSelect(Instruction::Mul, Op0, Op1, Q,
872                                          MaxRecurse))
873       return V;
874 
875   // If the operation is with the result of a phi instruction, check whether
876   // operating on all incoming values of the phi always yields the same value.
877   if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
878     if (Value *V = ThreadBinOpOverPHI(Instruction::Mul, Op0, Op1, Q,
879                                       MaxRecurse))
880       return V;
881 
882   return nullptr;
883 }
884 
885 Value *llvm::SimplifyMulInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) {
886   return ::SimplifyMulInst(Op0, Op1, Q, RecursionLimit);
887 }
888 
889 /// Check for common or similar folds of integer division or integer remainder.
890 /// This applies to all 4 opcodes (sdiv/udiv/srem/urem).
891 static Value *simplifyDivRem(Value *Op0, Value *Op1, bool IsDiv) {
892   Type *Ty = Op0->getType();
893 
894   // X / undef -> undef
895   // X % undef -> undef
896   if (match(Op1, m_Undef()))
897     return Op1;
898 
899   // X / 0 -> undef
900   // X % 0 -> undef
901   // We don't need to preserve faults!
902   if (match(Op1, m_Zero()))
903     return UndefValue::get(Ty);
904 
905   // If any element of a constant divisor vector is zero or undef, the whole op
906   // is undef.
907   auto *Op1C = dyn_cast<Constant>(Op1);
908   if (Op1C && Ty->isVectorTy()) {
909     unsigned NumElts = Ty->getVectorNumElements();
910     for (unsigned i = 0; i != NumElts; ++i) {
911       Constant *Elt = Op1C->getAggregateElement(i);
912       if (Elt && (Elt->isNullValue() || isa<UndefValue>(Elt)))
913         return UndefValue::get(Ty);
914     }
915   }
916 
917   // undef / X -> 0
918   // undef % X -> 0
919   if (match(Op0, m_Undef()))
920     return Constant::getNullValue(Ty);
921 
922   // 0 / X -> 0
923   // 0 % X -> 0
924   if (match(Op0, m_Zero()))
925     return Constant::getNullValue(Op0->getType());
926 
927   // X / X -> 1
928   // X % X -> 0
929   if (Op0 == Op1)
930     return IsDiv ? ConstantInt::get(Ty, 1) : Constant::getNullValue(Ty);
931 
932   // X / 1 -> X
933   // X % 1 -> 0
934   // If this is a boolean op (single-bit element type), we can't have
935   // division-by-zero or remainder-by-zero, so assume the divisor is 1.
936   // Similarly, if we're zero-extending a boolean divisor, then assume it's a 1.
937   Value *X;
938   if (match(Op1, m_One()) || Ty->isIntOrIntVectorTy(1) ||
939       (match(Op1, m_ZExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)))
940     return IsDiv ? Op0 : Constant::getNullValue(Ty);
941 
942   return nullptr;
943 }
944 
945 /// Given a predicate and two operands, return true if the comparison is true.
946 /// This is a helper for div/rem simplification where we return some other value
947 /// when we can prove a relationship between the operands.
948 static bool isICmpTrue(ICmpInst::Predicate Pred, Value *LHS, Value *RHS,
949                        const SimplifyQuery &Q, unsigned MaxRecurse) {
950   Value *V = SimplifyICmpInst(Pred, LHS, RHS, Q, MaxRecurse);
951   Constant *C = dyn_cast_or_null<Constant>(V);
952   return (C && C->isAllOnesValue());
953 }
954 
955 /// Return true if we can simplify X / Y to 0. Remainder can adapt that answer
956 /// to simplify X % Y to X.
957 static bool isDivZero(Value *X, Value *Y, const SimplifyQuery &Q,
958                       unsigned MaxRecurse, bool IsSigned) {
959   // Recursion is always used, so bail out at once if we already hit the limit.
960   if (!MaxRecurse--)
961     return false;
962 
963   if (IsSigned) {
964     // |X| / |Y| --> 0
965     //
966     // We require that 1 operand is a simple constant. That could be extended to
967     // 2 variables if we computed the sign bit for each.
968     //
969     // Make sure that a constant is not the minimum signed value because taking
970     // the abs() of that is undefined.
971     Type *Ty = X->getType();
972     const APInt *C;
973     if (match(X, m_APInt(C)) && !C->isMinSignedValue()) {
974       // Is the variable divisor magnitude always greater than the constant
975       // dividend magnitude?
976       // |Y| > |C| --> Y < -abs(C) or Y > abs(C)
977       Constant *PosDividendC = ConstantInt::get(Ty, C->abs());
978       Constant *NegDividendC = ConstantInt::get(Ty, -C->abs());
979       if (isICmpTrue(CmpInst::ICMP_SLT, Y, NegDividendC, Q, MaxRecurse) ||
980           isICmpTrue(CmpInst::ICMP_SGT, Y, PosDividendC, Q, MaxRecurse))
981         return true;
982     }
983     if (match(Y, m_APInt(C))) {
984       // Special-case: we can't take the abs() of a minimum signed value. If
985       // that's the divisor, then all we have to do is prove that the dividend
986       // is also not the minimum signed value.
987       if (C->isMinSignedValue())
988         return isICmpTrue(CmpInst::ICMP_NE, X, Y, Q, MaxRecurse);
989 
990       // Is the variable dividend magnitude always less than the constant
991       // divisor magnitude?
992       // |X| < |C| --> X > -abs(C) and X < abs(C)
993       Constant *PosDivisorC = ConstantInt::get(Ty, C->abs());
994       Constant *NegDivisorC = ConstantInt::get(Ty, -C->abs());
995       if (isICmpTrue(CmpInst::ICMP_SGT, X, NegDivisorC, Q, MaxRecurse) &&
996           isICmpTrue(CmpInst::ICMP_SLT, X, PosDivisorC, Q, MaxRecurse))
997         return true;
998     }
999     return false;
1000   }
1001 
1002   // IsSigned == false.
1003   // Is the dividend unsigned less than the divisor?
1004   return isICmpTrue(ICmpInst::ICMP_ULT, X, Y, Q, MaxRecurse);
1005 }
1006 
1007 /// These are simplifications common to SDiv and UDiv.
1008 static Value *simplifyDiv(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1,
1009                           const SimplifyQuery &Q, unsigned MaxRecurse) {
1010   if (Constant *C = foldOrCommuteConstant(Opcode, Op0, Op1, Q))
1011     return C;
1012 
1013   if (Value *V = simplifyDivRem(Op0, Op1, true))
1014     return V;
1015 
1016   bool IsSigned = Opcode == Instruction::SDiv;
1017 
1018   // (X * Y) / Y -> X if the multiplication does not overflow.
1019   Value *X;
1020   if (match(Op0, m_c_Mul(m_Value(X), m_Specific(Op1)))) {
1021     auto *Mul = cast<OverflowingBinaryOperator>(Op0);
1022     // If the Mul does not overflow, then we are good to go.
1023     if ((IsSigned && Q.IIQ.hasNoSignedWrap(Mul)) ||
1024         (!IsSigned && Q.IIQ.hasNoUnsignedWrap(Mul)))
1025       return X;
1026     // If X has the form X = A / Y, then X * Y cannot overflow.
1027     if ((IsSigned && match(X, m_SDiv(m_Value(), m_Specific(Op1)))) ||
1028         (!IsSigned && match(X, m_UDiv(m_Value(), m_Specific(Op1)))))
1029       return X;
1030   }
1031 
1032   // (X rem Y) / Y -> 0
1033   if ((IsSigned && match(Op0, m_SRem(m_Value(), m_Specific(Op1)))) ||
1034       (!IsSigned && match(Op0, m_URem(m_Value(), m_Specific(Op1)))))
1035     return Constant::getNullValue(Op0->getType());
1036 
1037   // (X /u C1) /u C2 -> 0 if C1 * C2 overflow
1038   ConstantInt *C1, *C2;
1039   if (!IsSigned && match(Op0, m_UDiv(m_Value(X), m_ConstantInt(C1))) &&
1040       match(Op1, m_ConstantInt(C2))) {
1041     bool Overflow;
1042     (void)C1->getValue().umul_ov(C2->getValue(), Overflow);
1043     if (Overflow)
1044       return Constant::getNullValue(Op0->getType());
1045   }
1046 
1047   // If the operation is with the result of a select instruction, check whether
1048   // operating on either branch of the select always yields the same value.
1049   if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
1050     if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse))
1051       return V;
1052 
1053   // If the operation is with the result of a phi instruction, check whether
1054   // operating on all incoming values of the phi always yields the same value.
1055   if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
1056     if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse))
1057       return V;
1058 
1059   if (isDivZero(Op0, Op1, Q, MaxRecurse, IsSigned))
1060     return Constant::getNullValue(Op0->getType());
1061 
1062   return nullptr;
1063 }
1064 
1065 /// These are simplifications common to SRem and URem.
1066 static Value *simplifyRem(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1,
1067                           const SimplifyQuery &Q, unsigned MaxRecurse) {
1068   if (Constant *C = foldOrCommuteConstant(Opcode, Op0, Op1, Q))
1069     return C;
1070 
1071   if (Value *V = simplifyDivRem(Op0, Op1, false))
1072     return V;
1073 
1074   // (X % Y) % Y -> X % Y
1075   if ((Opcode == Instruction::SRem &&
1076        match(Op0, m_SRem(m_Value(), m_Specific(Op1)))) ||
1077       (Opcode == Instruction::URem &&
1078        match(Op0, m_URem(m_Value(), m_Specific(Op1)))))
1079     return Op0;
1080 
1081   // (X << Y) % X -> 0
1082   if (Q.IIQ.UseInstrInfo &&
1083       ((Opcode == Instruction::SRem &&
1084         match(Op0, m_NSWShl(m_Specific(Op1), m_Value()))) ||
1085        (Opcode == Instruction::URem &&
1086         match(Op0, m_NUWShl(m_Specific(Op1), m_Value())))))
1087     return Constant::getNullValue(Op0->getType());
1088 
1089   // If the operation is with the result of a select instruction, check whether
1090   // operating on either branch of the select always yields the same value.
1091   if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
1092     if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse))
1093       return V;
1094 
1095   // If the operation is with the result of a phi instruction, check whether
1096   // operating on all incoming values of the phi always yields the same value.
1097   if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
1098     if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse))
1099       return V;
1100 
1101   // If X / Y == 0, then X % Y == X.
1102   if (isDivZero(Op0, Op1, Q, MaxRecurse, Opcode == Instruction::SRem))
1103     return Op0;
1104 
1105   return nullptr;
1106 }
1107 
1108 /// Given operands for an SDiv, see if we can fold the result.
1109 /// If not, this returns null.
1110 static Value *SimplifySDivInst(Value *Op0, Value *Op1, const SimplifyQuery &Q,
1111                                unsigned MaxRecurse) {
1112   // If two operands are negated and no signed overflow, return -1.
1113   if (isKnownNegation(Op0, Op1, /*NeedNSW=*/true))
1114     return Constant::getAllOnesValue(Op0->getType());
1115 
1116   return simplifyDiv(Instruction::SDiv, Op0, Op1, Q, MaxRecurse);
1117 }
1118 
1119 Value *llvm::SimplifySDivInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) {
1120   return ::SimplifySDivInst(Op0, Op1, Q, RecursionLimit);
1121 }
1122 
1123 /// Given operands for a UDiv, see if we can fold the result.
1124 /// If not, this returns null.
1125 static Value *SimplifyUDivInst(Value *Op0, Value *Op1, const SimplifyQuery &Q,
1126                                unsigned MaxRecurse) {
1127   return simplifyDiv(Instruction::UDiv, Op0, Op1, Q, MaxRecurse);
1128 }
1129 
1130 Value *llvm::SimplifyUDivInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) {
1131   return ::SimplifyUDivInst(Op0, Op1, Q, RecursionLimit);
1132 }
1133 
1134 /// Given operands for an SRem, see if we can fold the result.
1135 /// If not, this returns null.
1136 static Value *SimplifySRemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q,
1137                                unsigned MaxRecurse) {
1138   // If the divisor is 0, the result is undefined, so assume the divisor is -1.
1139   // srem Op0, (sext i1 X) --> srem Op0, -1 --> 0
1140   Value *X;
1141   if (match(Op1, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1))
1142     return ConstantInt::getNullValue(Op0->getType());
1143 
1144   // If the two operands are negated, return 0.
1145   if (isKnownNegation(Op0, Op1))
1146     return ConstantInt::getNullValue(Op0->getType());
1147 
1148   return simplifyRem(Instruction::SRem, Op0, Op1, Q, MaxRecurse);
1149 }
1150 
1151 Value *llvm::SimplifySRemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) {
1152   return ::SimplifySRemInst(Op0, Op1, Q, RecursionLimit);
1153 }
1154 
1155 /// Given operands for a URem, see if we can fold the result.
1156 /// If not, this returns null.
1157 static Value *SimplifyURemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q,
1158                                unsigned MaxRecurse) {
1159   return simplifyRem(Instruction::URem, Op0, Op1, Q, MaxRecurse);
1160 }
1161 
1162 Value *llvm::SimplifyURemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) {
1163   return ::SimplifyURemInst(Op0, Op1, Q, RecursionLimit);
1164 }
1165 
1166 /// Returns true if a shift by \c Amount always yields undef.
1167 static bool isUndefShift(Value *Amount) {
1168   Constant *C = dyn_cast<Constant>(Amount);
1169   if (!C)
1170     return false;
1171 
1172   // X shift by undef -> undef because it may shift by the bitwidth.
1173   if (isa<UndefValue>(C))
1174     return true;
1175 
1176   // Shifting by the bitwidth or more is undefined.
1177   if (ConstantInt *CI = dyn_cast<ConstantInt>(C))
1178     if (CI->getValue().getLimitedValue() >=
1179         CI->getType()->getScalarSizeInBits())
1180       return true;
1181 
1182   // If all lanes of a vector shift are undefined the whole shift is.
1183   if (isa<ConstantVector>(C) || isa<ConstantDataVector>(C)) {
1184     for (unsigned I = 0, E = C->getType()->getVectorNumElements(); I != E; ++I)
1185       if (!isUndefShift(C->getAggregateElement(I)))
1186         return false;
1187     return true;
1188   }
1189 
1190   return false;
1191 }
1192 
1193 /// Given operands for an Shl, LShr or AShr, see if we can fold the result.
1194 /// If not, this returns null.
1195 static Value *SimplifyShift(Instruction::BinaryOps Opcode, Value *Op0,
1196                             Value *Op1, const SimplifyQuery &Q, unsigned MaxRecurse) {
1197   if (Constant *C = foldOrCommuteConstant(Opcode, Op0, Op1, Q))
1198     return C;
1199 
1200   // 0 shift by X -> 0
1201   if (match(Op0, m_Zero()))
1202     return Constant::getNullValue(Op0->getType());
1203 
1204   // X shift by 0 -> X
1205   // Shift-by-sign-extended bool must be shift-by-0 because shift-by-all-ones
1206   // would be poison.
1207   Value *X;
1208   if (match(Op1, m_Zero()) ||
1209       (match(Op1, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)))
1210     return Op0;
1211 
1212   // Fold undefined shifts.
1213   if (isUndefShift(Op1))
1214     return UndefValue::get(Op0->getType());
1215 
1216   // If the operation is with the result of a select instruction, check whether
1217   // operating on either branch of the select always yields the same value.
1218   if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
1219     if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse))
1220       return V;
1221 
1222   // If the operation is with the result of a phi instruction, check whether
1223   // operating on all incoming values of the phi always yields the same value.
1224   if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
1225     if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse))
1226       return V;
1227 
1228   // If any bits in the shift amount make that value greater than or equal to
1229   // the number of bits in the type, the shift is undefined.
1230   KnownBits Known = computeKnownBits(Op1, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
1231   if (Known.One.getLimitedValue() >= Known.getBitWidth())
1232     return UndefValue::get(Op0->getType());
1233 
1234   // If all valid bits in the shift amount are known zero, the first operand is
1235   // unchanged.
1236   unsigned NumValidShiftBits = Log2_32_Ceil(Known.getBitWidth());
1237   if (Known.countMinTrailingZeros() >= NumValidShiftBits)
1238     return Op0;
1239 
1240   return nullptr;
1241 }
1242 
1243 /// Given operands for an Shl, LShr or AShr, see if we can
1244 /// fold the result.  If not, this returns null.
1245 static Value *SimplifyRightShift(Instruction::BinaryOps Opcode, Value *Op0,
1246                                  Value *Op1, bool isExact, const SimplifyQuery &Q,
1247                                  unsigned MaxRecurse) {
1248   if (Value *V = SimplifyShift(Opcode, Op0, Op1, Q, MaxRecurse))
1249     return V;
1250 
1251   // X >> X -> 0
1252   if (Op0 == Op1)
1253     return Constant::getNullValue(Op0->getType());
1254 
1255   // undef >> X -> 0
1256   // undef >> X -> undef (if it's exact)
1257   if (match(Op0, m_Undef()))
1258     return isExact ? Op0 : Constant::getNullValue(Op0->getType());
1259 
1260   // The low bit cannot be shifted out of an exact shift if it is set.
1261   if (isExact) {
1262     KnownBits Op0Known = computeKnownBits(Op0, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT);
1263     if (Op0Known.One[0])
1264       return Op0;
1265   }
1266 
1267   return nullptr;
1268 }
1269 
1270 /// Given operands for an Shl, see if we can fold the result.
1271 /// If not, this returns null.
1272 static Value *SimplifyShlInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
1273                               const SimplifyQuery &Q, unsigned MaxRecurse) {
1274   if (Value *V = SimplifyShift(Instruction::Shl, Op0, Op1, Q, MaxRecurse))
1275     return V;
1276 
1277   // undef << X -> 0
1278   // undef << X -> undef if (if it's NSW/NUW)
1279   if (match(Op0, m_Undef()))
1280     return isNSW || isNUW ? Op0 : Constant::getNullValue(Op0->getType());
1281 
1282   // (X >> A) << A -> X
1283   Value *X;
1284   if (Q.IIQ.UseInstrInfo &&
1285       match(Op0, m_Exact(m_Shr(m_Value(X), m_Specific(Op1)))))
1286     return X;
1287 
1288   // shl nuw i8 C, %x  ->  C  iff C has sign bit set.
1289   if (isNUW && match(Op0, m_Negative()))
1290     return Op0;
1291   // NOTE: could use computeKnownBits() / LazyValueInfo,
1292   // but the cost-benefit analysis suggests it isn't worth it.
1293 
1294   return nullptr;
1295 }
1296 
1297 Value *llvm::SimplifyShlInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
1298                              const SimplifyQuery &Q) {
1299   return ::SimplifyShlInst(Op0, Op1, isNSW, isNUW, Q, RecursionLimit);
1300 }
1301 
1302 /// Given operands for an LShr, see if we can fold the result.
1303 /// If not, this returns null.
1304 static Value *SimplifyLShrInst(Value *Op0, Value *Op1, bool isExact,
1305                                const SimplifyQuery &Q, unsigned MaxRecurse) {
1306   if (Value *V = SimplifyRightShift(Instruction::LShr, Op0, Op1, isExact, Q,
1307                                     MaxRecurse))
1308       return V;
1309 
1310   // (X << A) >> A -> X
1311   Value *X;
1312   if (match(Op0, m_NUWShl(m_Value(X), m_Specific(Op1))))
1313     return X;
1314 
1315   // ((X << A) | Y) >> A -> X  if effective width of Y is not larger than A.
1316   // We can return X as we do in the above case since OR alters no bits in X.
1317   // SimplifyDemandedBits in InstCombine can do more general optimization for
1318   // bit manipulation. This pattern aims to provide opportunities for other
1319   // optimizers by supporting a simple but common case in InstSimplify.
1320   Value *Y;
1321   const APInt *ShRAmt, *ShLAmt;
1322   if (match(Op1, m_APInt(ShRAmt)) &&
1323       match(Op0, m_c_Or(m_NUWShl(m_Value(X), m_APInt(ShLAmt)), m_Value(Y))) &&
1324       *ShRAmt == *ShLAmt) {
1325     const KnownBits YKnown = computeKnownBits(Y, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
1326     const unsigned Width = Op0->getType()->getScalarSizeInBits();
1327     const unsigned EffWidthY = Width - YKnown.countMinLeadingZeros();
1328     if (ShRAmt->uge(EffWidthY))
1329       return X;
1330   }
1331 
1332   return nullptr;
1333 }
1334 
1335 Value *llvm::SimplifyLShrInst(Value *Op0, Value *Op1, bool isExact,
1336                               const SimplifyQuery &Q) {
1337   return ::SimplifyLShrInst(Op0, Op1, isExact, Q, RecursionLimit);
1338 }
1339 
1340 /// Given operands for an AShr, see if we can fold the result.
1341 /// If not, this returns null.
1342 static Value *SimplifyAShrInst(Value *Op0, Value *Op1, bool isExact,
1343                                const SimplifyQuery &Q, unsigned MaxRecurse) {
1344   if (Value *V = SimplifyRightShift(Instruction::AShr, Op0, Op1, isExact, Q,
1345                                     MaxRecurse))
1346     return V;
1347 
1348   // all ones >>a X -> -1
1349   // Do not return Op0 because it may contain undef elements if it's a vector.
1350   if (match(Op0, m_AllOnes()))
1351     return Constant::getAllOnesValue(Op0->getType());
1352 
1353   // (X << A) >> A -> X
1354   Value *X;
1355   if (Q.IIQ.UseInstrInfo && match(Op0, m_NSWShl(m_Value(X), m_Specific(Op1))))
1356     return X;
1357 
1358   // Arithmetic shifting an all-sign-bit value is a no-op.
1359   unsigned NumSignBits = ComputeNumSignBits(Op0, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
1360   if (NumSignBits == Op0->getType()->getScalarSizeInBits())
1361     return Op0;
1362 
1363   return nullptr;
1364 }
1365 
1366 Value *llvm::SimplifyAShrInst(Value *Op0, Value *Op1, bool isExact,
1367                               const SimplifyQuery &Q) {
1368   return ::SimplifyAShrInst(Op0, Op1, isExact, Q, RecursionLimit);
1369 }
1370 
1371 /// Commuted variants are assumed to be handled by calling this function again
1372 /// with the parameters swapped.
1373 static Value *simplifyUnsignedRangeCheck(ICmpInst *ZeroICmp,
1374                                          ICmpInst *UnsignedICmp, bool IsAnd,
1375                                          const SimplifyQuery &Q) {
1376   Value *X, *Y;
1377 
1378   ICmpInst::Predicate EqPred;
1379   if (!match(ZeroICmp, m_ICmp(EqPred, m_Value(Y), m_Zero())) ||
1380       !ICmpInst::isEquality(EqPred))
1381     return nullptr;
1382 
1383   ICmpInst::Predicate UnsignedPred;
1384 
1385   Value *A, *B;
1386   // Y = (A - B);
1387   if (match(Y, m_Sub(m_Value(A), m_Value(B)))) {
1388     if (match(UnsignedICmp,
1389               m_c_ICmp(UnsignedPred, m_Specific(A), m_Specific(B))) &&
1390         ICmpInst::isUnsigned(UnsignedPred)) {
1391       if (UnsignedICmp->getOperand(0) != A)
1392         UnsignedPred = ICmpInst::getSwappedPredicate(UnsignedPred);
1393 
1394       // A >=/<= B || (A - B) != 0  <-->  true
1395       if ((UnsignedPred == ICmpInst::ICMP_UGE ||
1396            UnsignedPred == ICmpInst::ICMP_ULE) &&
1397           EqPred == ICmpInst::ICMP_NE && !IsAnd)
1398         return ConstantInt::getTrue(UnsignedICmp->getType());
1399       // A </> B && (A - B) == 0  <-->  false
1400       if ((UnsignedPred == ICmpInst::ICMP_ULT ||
1401            UnsignedPred == ICmpInst::ICMP_UGT) &&
1402           EqPred == ICmpInst::ICMP_EQ && IsAnd)
1403         return ConstantInt::getFalse(UnsignedICmp->getType());
1404     }
1405 
1406     // Given  Y = (A - B)
1407     //   Y >= A && Y != 0  --> Y >= A  iff B != 0
1408     //   Y <  A || Y == 0  --> Y <  A  iff B != 0
1409     if (match(UnsignedICmp,
1410               m_c_ICmp(UnsignedPred, m_Specific(Y), m_Specific(A)))) {
1411       if (UnsignedICmp->getOperand(0) != Y)
1412         UnsignedPred = ICmpInst::getSwappedPredicate(UnsignedPred);
1413 
1414       if (UnsignedPred == ICmpInst::ICMP_UGE && IsAnd &&
1415           EqPred == ICmpInst::ICMP_NE &&
1416           isKnownNonZero(B, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT))
1417         return UnsignedICmp;
1418       if (UnsignedPred == ICmpInst::ICMP_ULT && !IsAnd &&
1419           EqPred == ICmpInst::ICMP_EQ &&
1420           isKnownNonZero(B, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT))
1421         return UnsignedICmp;
1422     }
1423   }
1424 
1425   if (match(UnsignedICmp, m_ICmp(UnsignedPred, m_Value(X), m_Specific(Y))) &&
1426       ICmpInst::isUnsigned(UnsignedPred))
1427     ;
1428   else if (match(UnsignedICmp,
1429                  m_ICmp(UnsignedPred, m_Specific(Y), m_Value(X))) &&
1430            ICmpInst::isUnsigned(UnsignedPred))
1431     UnsignedPred = ICmpInst::getSwappedPredicate(UnsignedPred);
1432   else
1433     return nullptr;
1434 
1435   // X < Y && Y != 0  -->  X < Y
1436   // X < Y || Y != 0  -->  Y != 0
1437   if (UnsignedPred == ICmpInst::ICMP_ULT && EqPred == ICmpInst::ICMP_NE)
1438     return IsAnd ? UnsignedICmp : ZeroICmp;
1439 
1440   // X <= Y && Y != 0  -->  X <= Y  iff X != 0
1441   // X <= Y || Y != 0  -->  Y != 0  iff X != 0
1442   if (UnsignedPred == ICmpInst::ICMP_ULE && EqPred == ICmpInst::ICMP_NE &&
1443       isKnownNonZero(X, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT))
1444     return IsAnd ? UnsignedICmp : ZeroICmp;
1445 
1446   // X > Y && Y == 0  -->  Y == 0  iff X != 0
1447   // X > Y || Y == 0  -->  X > Y   iff X != 0
1448   if (UnsignedPred == ICmpInst::ICMP_UGT && EqPred == ICmpInst::ICMP_EQ &&
1449       isKnownNonZero(X, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT))
1450     return IsAnd ? ZeroICmp : UnsignedICmp;
1451 
1452   // X >= Y || Y != 0  -->  true
1453   // X >= Y || Y == 0  -->  X >= Y
1454   if (UnsignedPred == ICmpInst::ICMP_UGE && !IsAnd) {
1455     if (EqPred == ICmpInst::ICMP_NE)
1456       return getTrue(UnsignedICmp->getType());
1457     return UnsignedICmp;
1458   }
1459 
1460   // X < Y && Y == 0  -->  false
1461   if (UnsignedPred == ICmpInst::ICMP_ULT && EqPred == ICmpInst::ICMP_EQ &&
1462       IsAnd)
1463     return getFalse(UnsignedICmp->getType());
1464 
1465   return nullptr;
1466 }
1467 
1468 /// Commuted variants are assumed to be handled by calling this function again
1469 /// with the parameters swapped.
1470 static Value *simplifyAndOfICmpsWithSameOperands(ICmpInst *Op0, ICmpInst *Op1) {
1471   ICmpInst::Predicate Pred0, Pred1;
1472   Value *A ,*B;
1473   if (!match(Op0, m_ICmp(Pred0, m_Value(A), m_Value(B))) ||
1474       !match(Op1, m_ICmp(Pred1, m_Specific(A), m_Specific(B))))
1475     return nullptr;
1476 
1477   // We have (icmp Pred0, A, B) & (icmp Pred1, A, B).
1478   // If Op1 is always implied true by Op0, then Op0 is a subset of Op1, and we
1479   // can eliminate Op1 from this 'and'.
1480   if (ICmpInst::isImpliedTrueByMatchingCmp(Pred0, Pred1))
1481     return Op0;
1482 
1483   // Check for any combination of predicates that are guaranteed to be disjoint.
1484   if ((Pred0 == ICmpInst::getInversePredicate(Pred1)) ||
1485       (Pred0 == ICmpInst::ICMP_EQ && ICmpInst::isFalseWhenEqual(Pred1)) ||
1486       (Pred0 == ICmpInst::ICMP_SLT && Pred1 == ICmpInst::ICMP_SGT) ||
1487       (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_UGT))
1488     return getFalse(Op0->getType());
1489 
1490   return nullptr;
1491 }
1492 
1493 /// Commuted variants are assumed to be handled by calling this function again
1494 /// with the parameters swapped.
1495 static Value *simplifyOrOfICmpsWithSameOperands(ICmpInst *Op0, ICmpInst *Op1) {
1496   ICmpInst::Predicate Pred0, Pred1;
1497   Value *A ,*B;
1498   if (!match(Op0, m_ICmp(Pred0, m_Value(A), m_Value(B))) ||
1499       !match(Op1, m_ICmp(Pred1, m_Specific(A), m_Specific(B))))
1500     return nullptr;
1501 
1502   // We have (icmp Pred0, A, B) | (icmp Pred1, A, B).
1503   // If Op1 is always implied true by Op0, then Op0 is a subset of Op1, and we
1504   // can eliminate Op0 from this 'or'.
1505   if (ICmpInst::isImpliedTrueByMatchingCmp(Pred0, Pred1))
1506     return Op1;
1507 
1508   // Check for any combination of predicates that cover the entire range of
1509   // possibilities.
1510   if ((Pred0 == ICmpInst::getInversePredicate(Pred1)) ||
1511       (Pred0 == ICmpInst::ICMP_NE && ICmpInst::isTrueWhenEqual(Pred1)) ||
1512       (Pred0 == ICmpInst::ICMP_SLE && Pred1 == ICmpInst::ICMP_SGE) ||
1513       (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_UGE))
1514     return getTrue(Op0->getType());
1515 
1516   return nullptr;
1517 }
1518 
1519 /// Test if a pair of compares with a shared operand and 2 constants has an
1520 /// empty set intersection, full set union, or if one compare is a superset of
1521 /// the other.
1522 static Value *simplifyAndOrOfICmpsWithConstants(ICmpInst *Cmp0, ICmpInst *Cmp1,
1523                                                 bool IsAnd) {
1524   // Look for this pattern: {and/or} (icmp X, C0), (icmp X, C1)).
1525   if (Cmp0->getOperand(0) != Cmp1->getOperand(0))
1526     return nullptr;
1527 
1528   const APInt *C0, *C1;
1529   if (!match(Cmp0->getOperand(1), m_APInt(C0)) ||
1530       !match(Cmp1->getOperand(1), m_APInt(C1)))
1531     return nullptr;
1532 
1533   auto Range0 = ConstantRange::makeExactICmpRegion(Cmp0->getPredicate(), *C0);
1534   auto Range1 = ConstantRange::makeExactICmpRegion(Cmp1->getPredicate(), *C1);
1535 
1536   // For and-of-compares, check if the intersection is empty:
1537   // (icmp X, C0) && (icmp X, C1) --> empty set --> false
1538   if (IsAnd && Range0.intersectWith(Range1).isEmptySet())
1539     return getFalse(Cmp0->getType());
1540 
1541   // For or-of-compares, check if the union is full:
1542   // (icmp X, C0) || (icmp X, C1) --> full set --> true
1543   if (!IsAnd && Range0.unionWith(Range1).isFullSet())
1544     return getTrue(Cmp0->getType());
1545 
1546   // Is one range a superset of the other?
1547   // If this is and-of-compares, take the smaller set:
1548   // (icmp sgt X, 4) && (icmp sgt X, 42) --> icmp sgt X, 42
1549   // If this is or-of-compares, take the larger set:
1550   // (icmp sgt X, 4) || (icmp sgt X, 42) --> icmp sgt X, 4
1551   if (Range0.contains(Range1))
1552     return IsAnd ? Cmp1 : Cmp0;
1553   if (Range1.contains(Range0))
1554     return IsAnd ? Cmp0 : Cmp1;
1555 
1556   return nullptr;
1557 }
1558 
1559 static Value *simplifyAndOrOfICmpsWithZero(ICmpInst *Cmp0, ICmpInst *Cmp1,
1560                                            bool IsAnd) {
1561   ICmpInst::Predicate P0 = Cmp0->getPredicate(), P1 = Cmp1->getPredicate();
1562   if (!match(Cmp0->getOperand(1), m_Zero()) ||
1563       !match(Cmp1->getOperand(1), m_Zero()) || P0 != P1)
1564     return nullptr;
1565 
1566   if ((IsAnd && P0 != ICmpInst::ICMP_NE) || (!IsAnd && P1 != ICmpInst::ICMP_EQ))
1567     return nullptr;
1568 
1569   // We have either "(X == 0 || Y == 0)" or "(X != 0 && Y != 0)".
1570   Value *X = Cmp0->getOperand(0);
1571   Value *Y = Cmp1->getOperand(0);
1572 
1573   // If one of the compares is a masked version of a (not) null check, then
1574   // that compare implies the other, so we eliminate the other. Optionally, look
1575   // through a pointer-to-int cast to match a null check of a pointer type.
1576 
1577   // (X == 0) || (([ptrtoint] X & ?) == 0) --> ([ptrtoint] X & ?) == 0
1578   // (X == 0) || ((? & [ptrtoint] X) == 0) --> (? & [ptrtoint] X) == 0
1579   // (X != 0) && (([ptrtoint] X & ?) != 0) --> ([ptrtoint] X & ?) != 0
1580   // (X != 0) && ((? & [ptrtoint] X) != 0) --> (? & [ptrtoint] X) != 0
1581   if (match(Y, m_c_And(m_Specific(X), m_Value())) ||
1582       match(Y, m_c_And(m_PtrToInt(m_Specific(X)), m_Value())))
1583     return Cmp1;
1584 
1585   // (([ptrtoint] Y & ?) == 0) || (Y == 0) --> ([ptrtoint] Y & ?) == 0
1586   // ((? & [ptrtoint] Y) == 0) || (Y == 0) --> (? & [ptrtoint] Y) == 0
1587   // (([ptrtoint] Y & ?) != 0) && (Y != 0) --> ([ptrtoint] Y & ?) != 0
1588   // ((? & [ptrtoint] Y) != 0) && (Y != 0) --> (? & [ptrtoint] Y) != 0
1589   if (match(X, m_c_And(m_Specific(Y), m_Value())) ||
1590       match(X, m_c_And(m_PtrToInt(m_Specific(Y)), m_Value())))
1591     return Cmp0;
1592 
1593   return nullptr;
1594 }
1595 
1596 static Value *simplifyAndOfICmpsWithAdd(ICmpInst *Op0, ICmpInst *Op1,
1597                                         const InstrInfoQuery &IIQ) {
1598   // (icmp (add V, C0), C1) & (icmp V, C0)
1599   ICmpInst::Predicate Pred0, Pred1;
1600   const APInt *C0, *C1;
1601   Value *V;
1602   if (!match(Op0, m_ICmp(Pred0, m_Add(m_Value(V), m_APInt(C0)), m_APInt(C1))))
1603     return nullptr;
1604 
1605   if (!match(Op1, m_ICmp(Pred1, m_Specific(V), m_Value())))
1606     return nullptr;
1607 
1608   auto *AddInst = cast<OverflowingBinaryOperator>(Op0->getOperand(0));
1609   if (AddInst->getOperand(1) != Op1->getOperand(1))
1610     return nullptr;
1611 
1612   Type *ITy = Op0->getType();
1613   bool isNSW = IIQ.hasNoSignedWrap(AddInst);
1614   bool isNUW = IIQ.hasNoUnsignedWrap(AddInst);
1615 
1616   const APInt Delta = *C1 - *C0;
1617   if (C0->isStrictlyPositive()) {
1618     if (Delta == 2) {
1619       if (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_SGT)
1620         return getFalse(ITy);
1621       if (Pred0 == ICmpInst::ICMP_SLT && Pred1 == ICmpInst::ICMP_SGT && isNSW)
1622         return getFalse(ITy);
1623     }
1624     if (Delta == 1) {
1625       if (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_SGT)
1626         return getFalse(ITy);
1627       if (Pred0 == ICmpInst::ICMP_SLE && Pred1 == ICmpInst::ICMP_SGT && isNSW)
1628         return getFalse(ITy);
1629     }
1630   }
1631   if (C0->getBoolValue() && isNUW) {
1632     if (Delta == 2)
1633       if (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_UGT)
1634         return getFalse(ITy);
1635     if (Delta == 1)
1636       if (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_UGT)
1637         return getFalse(ITy);
1638   }
1639 
1640   return nullptr;
1641 }
1642 
1643 static Value *simplifyAndOfICmps(ICmpInst *Op0, ICmpInst *Op1,
1644                                  const SimplifyQuery &Q) {
1645   if (Value *X = simplifyUnsignedRangeCheck(Op0, Op1, /*IsAnd=*/true, Q))
1646     return X;
1647   if (Value *X = simplifyUnsignedRangeCheck(Op1, Op0, /*IsAnd=*/true, Q))
1648     return X;
1649 
1650   if (Value *X = simplifyAndOfICmpsWithSameOperands(Op0, Op1))
1651     return X;
1652   if (Value *X = simplifyAndOfICmpsWithSameOperands(Op1, Op0))
1653     return X;
1654 
1655   if (Value *X = simplifyAndOrOfICmpsWithConstants(Op0, Op1, true))
1656     return X;
1657 
1658   if (Value *X = simplifyAndOrOfICmpsWithZero(Op0, Op1, true))
1659     return X;
1660 
1661   if (Value *X = simplifyAndOfICmpsWithAdd(Op0, Op1, Q.IIQ))
1662     return X;
1663   if (Value *X = simplifyAndOfICmpsWithAdd(Op1, Op0, Q.IIQ))
1664     return X;
1665 
1666   return nullptr;
1667 }
1668 
1669 static Value *simplifyOrOfICmpsWithAdd(ICmpInst *Op0, ICmpInst *Op1,
1670                                        const InstrInfoQuery &IIQ) {
1671   // (icmp (add V, C0), C1) | (icmp V, C0)
1672   ICmpInst::Predicate Pred0, Pred1;
1673   const APInt *C0, *C1;
1674   Value *V;
1675   if (!match(Op0, m_ICmp(Pred0, m_Add(m_Value(V), m_APInt(C0)), m_APInt(C1))))
1676     return nullptr;
1677 
1678   if (!match(Op1, m_ICmp(Pred1, m_Specific(V), m_Value())))
1679     return nullptr;
1680 
1681   auto *AddInst = cast<BinaryOperator>(Op0->getOperand(0));
1682   if (AddInst->getOperand(1) != Op1->getOperand(1))
1683     return nullptr;
1684 
1685   Type *ITy = Op0->getType();
1686   bool isNSW = IIQ.hasNoSignedWrap(AddInst);
1687   bool isNUW = IIQ.hasNoUnsignedWrap(AddInst);
1688 
1689   const APInt Delta = *C1 - *C0;
1690   if (C0->isStrictlyPositive()) {
1691     if (Delta == 2) {
1692       if (Pred0 == ICmpInst::ICMP_UGE && Pred1 == ICmpInst::ICMP_SLE)
1693         return getTrue(ITy);
1694       if (Pred0 == ICmpInst::ICMP_SGE && Pred1 == ICmpInst::ICMP_SLE && isNSW)
1695         return getTrue(ITy);
1696     }
1697     if (Delta == 1) {
1698       if (Pred0 == ICmpInst::ICMP_UGT && Pred1 == ICmpInst::ICMP_SLE)
1699         return getTrue(ITy);
1700       if (Pred0 == ICmpInst::ICMP_SGT && Pred1 == ICmpInst::ICMP_SLE && isNSW)
1701         return getTrue(ITy);
1702     }
1703   }
1704   if (C0->getBoolValue() && isNUW) {
1705     if (Delta == 2)
1706       if (Pred0 == ICmpInst::ICMP_UGE && Pred1 == ICmpInst::ICMP_ULE)
1707         return getTrue(ITy);
1708     if (Delta == 1)
1709       if (Pred0 == ICmpInst::ICMP_UGT && Pred1 == ICmpInst::ICMP_ULE)
1710         return getTrue(ITy);
1711   }
1712 
1713   return nullptr;
1714 }
1715 
1716 static Value *simplifyOrOfICmps(ICmpInst *Op0, ICmpInst *Op1,
1717                                 const SimplifyQuery &Q) {
1718   if (Value *X = simplifyUnsignedRangeCheck(Op0, Op1, /*IsAnd=*/false, Q))
1719     return X;
1720   if (Value *X = simplifyUnsignedRangeCheck(Op1, Op0, /*IsAnd=*/false, Q))
1721     return X;
1722 
1723   if (Value *X = simplifyOrOfICmpsWithSameOperands(Op0, Op1))
1724     return X;
1725   if (Value *X = simplifyOrOfICmpsWithSameOperands(Op1, Op0))
1726     return X;
1727 
1728   if (Value *X = simplifyAndOrOfICmpsWithConstants(Op0, Op1, false))
1729     return X;
1730 
1731   if (Value *X = simplifyAndOrOfICmpsWithZero(Op0, Op1, false))
1732     return X;
1733 
1734   if (Value *X = simplifyOrOfICmpsWithAdd(Op0, Op1, Q.IIQ))
1735     return X;
1736   if (Value *X = simplifyOrOfICmpsWithAdd(Op1, Op0, Q.IIQ))
1737     return X;
1738 
1739   return nullptr;
1740 }
1741 
1742 static Value *simplifyAndOrOfFCmps(const TargetLibraryInfo *TLI,
1743                                    FCmpInst *LHS, FCmpInst *RHS, bool IsAnd) {
1744   Value *LHS0 = LHS->getOperand(0), *LHS1 = LHS->getOperand(1);
1745   Value *RHS0 = RHS->getOperand(0), *RHS1 = RHS->getOperand(1);
1746   if (LHS0->getType() != RHS0->getType())
1747     return nullptr;
1748 
1749   FCmpInst::Predicate PredL = LHS->getPredicate(), PredR = RHS->getPredicate();
1750   if ((PredL == FCmpInst::FCMP_ORD && PredR == FCmpInst::FCMP_ORD && IsAnd) ||
1751       (PredL == FCmpInst::FCMP_UNO && PredR == FCmpInst::FCMP_UNO && !IsAnd)) {
1752     // (fcmp ord NNAN, X) & (fcmp ord X, Y) --> fcmp ord X, Y
1753     // (fcmp ord NNAN, X) & (fcmp ord Y, X) --> fcmp ord Y, X
1754     // (fcmp ord X, NNAN) & (fcmp ord X, Y) --> fcmp ord X, Y
1755     // (fcmp ord X, NNAN) & (fcmp ord Y, X) --> fcmp ord Y, X
1756     // (fcmp uno NNAN, X) | (fcmp uno X, Y) --> fcmp uno X, Y
1757     // (fcmp uno NNAN, X) | (fcmp uno Y, X) --> fcmp uno Y, X
1758     // (fcmp uno X, NNAN) | (fcmp uno X, Y) --> fcmp uno X, Y
1759     // (fcmp uno X, NNAN) | (fcmp uno Y, X) --> fcmp uno Y, X
1760     if ((isKnownNeverNaN(LHS0, TLI) && (LHS1 == RHS0 || LHS1 == RHS1)) ||
1761         (isKnownNeverNaN(LHS1, TLI) && (LHS0 == RHS0 || LHS0 == RHS1)))
1762       return RHS;
1763 
1764     // (fcmp ord X, Y) & (fcmp ord NNAN, X) --> fcmp ord X, Y
1765     // (fcmp ord Y, X) & (fcmp ord NNAN, X) --> fcmp ord Y, X
1766     // (fcmp ord X, Y) & (fcmp ord X, NNAN) --> fcmp ord X, Y
1767     // (fcmp ord Y, X) & (fcmp ord X, NNAN) --> fcmp ord Y, X
1768     // (fcmp uno X, Y) | (fcmp uno NNAN, X) --> fcmp uno X, Y
1769     // (fcmp uno Y, X) | (fcmp uno NNAN, X) --> fcmp uno Y, X
1770     // (fcmp uno X, Y) | (fcmp uno X, NNAN) --> fcmp uno X, Y
1771     // (fcmp uno Y, X) | (fcmp uno X, NNAN) --> fcmp uno Y, X
1772     if ((isKnownNeverNaN(RHS0, TLI) && (RHS1 == LHS0 || RHS1 == LHS1)) ||
1773         (isKnownNeverNaN(RHS1, TLI) && (RHS0 == LHS0 || RHS0 == LHS1)))
1774       return LHS;
1775   }
1776 
1777   return nullptr;
1778 }
1779 
1780 static Value *simplifyAndOrOfCmps(const SimplifyQuery &Q,
1781                                   Value *Op0, Value *Op1, bool IsAnd) {
1782   // Look through casts of the 'and' operands to find compares.
1783   auto *Cast0 = dyn_cast<CastInst>(Op0);
1784   auto *Cast1 = dyn_cast<CastInst>(Op1);
1785   if (Cast0 && Cast1 && Cast0->getOpcode() == Cast1->getOpcode() &&
1786       Cast0->getSrcTy() == Cast1->getSrcTy()) {
1787     Op0 = Cast0->getOperand(0);
1788     Op1 = Cast1->getOperand(0);
1789   }
1790 
1791   Value *V = nullptr;
1792   auto *ICmp0 = dyn_cast<ICmpInst>(Op0);
1793   auto *ICmp1 = dyn_cast<ICmpInst>(Op1);
1794   if (ICmp0 && ICmp1)
1795     V = IsAnd ? simplifyAndOfICmps(ICmp0, ICmp1, Q)
1796               : simplifyOrOfICmps(ICmp0, ICmp1, Q);
1797 
1798   auto *FCmp0 = dyn_cast<FCmpInst>(Op0);
1799   auto *FCmp1 = dyn_cast<FCmpInst>(Op1);
1800   if (FCmp0 && FCmp1)
1801     V = simplifyAndOrOfFCmps(Q.TLI, FCmp0, FCmp1, IsAnd);
1802 
1803   if (!V)
1804     return nullptr;
1805   if (!Cast0)
1806     return V;
1807 
1808   // If we looked through casts, we can only handle a constant simplification
1809   // because we are not allowed to create a cast instruction here.
1810   if (auto *C = dyn_cast<Constant>(V))
1811     return ConstantExpr::getCast(Cast0->getOpcode(), C, Cast0->getType());
1812 
1813   return nullptr;
1814 }
1815 
1816 /// Check that the Op1 is in expected form, i.e.:
1817 ///   %Agg = tail call { i4, i1 } @llvm.[us]mul.with.overflow.i4(i4 %X, i4 %???)
1818 ///   %Op1 = extractvalue { i4, i1 } %Agg, 1
1819 static bool omitCheckForZeroBeforeMulWithOverflowInternal(Value *Op1,
1820                                                           Value *X) {
1821   auto *Extract = dyn_cast<ExtractValueInst>(Op1);
1822   // We should only be extracting the overflow bit.
1823   if (!Extract || !Extract->getIndices().equals(1))
1824     return false;
1825   Value *Agg = Extract->getAggregateOperand();
1826   // This should be a multiplication-with-overflow intrinsic.
1827   if (!match(Agg, m_CombineOr(m_Intrinsic<Intrinsic::umul_with_overflow>(),
1828                               m_Intrinsic<Intrinsic::smul_with_overflow>())))
1829     return false;
1830   // One of its multipliers should be the value we checked for zero before.
1831   if (!match(Agg, m_CombineOr(m_Argument<0>(m_Specific(X)),
1832                               m_Argument<1>(m_Specific(X)))))
1833     return false;
1834   return true;
1835 }
1836 
1837 /// The @llvm.[us]mul.with.overflow intrinsic could have been folded from some
1838 /// other form of check, e.g. one that was using division; it may have been
1839 /// guarded against division-by-zero. We can drop that check now.
1840 /// Look for:
1841 ///   %Op0 = icmp ne i4 %X, 0
1842 ///   %Agg = tail call { i4, i1 } @llvm.[us]mul.with.overflow.i4(i4 %X, i4 %???)
1843 ///   %Op1 = extractvalue { i4, i1 } %Agg, 1
1844 ///   %??? = and i1 %Op0, %Op1
1845 /// We can just return  %Op1
1846 static Value *omitCheckForZeroBeforeMulWithOverflow(Value *Op0, Value *Op1) {
1847   ICmpInst::Predicate Pred;
1848   Value *X;
1849   if (!match(Op0, m_ICmp(Pred, m_Value(X), m_Zero())) ||
1850       Pred != ICmpInst::Predicate::ICMP_NE)
1851     return nullptr;
1852   // Is Op1 in expected form?
1853   if (!omitCheckForZeroBeforeMulWithOverflowInternal(Op1, X))
1854     return nullptr;
1855   // Can omit 'and', and just return the overflow bit.
1856   return Op1;
1857 }
1858 
1859 /// The @llvm.[us]mul.with.overflow intrinsic could have been folded from some
1860 /// other form of check, e.g. one that was using division; it may have been
1861 /// guarded against division-by-zero. We can drop that check now.
1862 /// Look for:
1863 ///   %Op0 = icmp eq i4 %X, 0
1864 ///   %Agg = tail call { i4, i1 } @llvm.[us]mul.with.overflow.i4(i4 %X, i4 %???)
1865 ///   %Op1 = extractvalue { i4, i1 } %Agg, 1
1866 ///   %NotOp1 = xor i1 %Op1, true
1867 ///   %or = or i1 %Op0, %NotOp1
1868 /// We can just return  %NotOp1
1869 static Value *omitCheckForZeroBeforeInvertedMulWithOverflow(Value *Op0,
1870                                                             Value *NotOp1) {
1871   ICmpInst::Predicate Pred;
1872   Value *X;
1873   if (!match(Op0, m_ICmp(Pred, m_Value(X), m_Zero())) ||
1874       Pred != ICmpInst::Predicate::ICMP_EQ)
1875     return nullptr;
1876   // We expect the other hand of an 'or' to be a 'not'.
1877   Value *Op1;
1878   if (!match(NotOp1, m_Not(m_Value(Op1))))
1879     return nullptr;
1880   // Is Op1 in expected form?
1881   if (!omitCheckForZeroBeforeMulWithOverflowInternal(Op1, X))
1882     return nullptr;
1883   // Can omit 'and', and just return the inverted overflow bit.
1884   return NotOp1;
1885 }
1886 
1887 /// Given operands for an And, see if we can fold the result.
1888 /// If not, this returns null.
1889 static Value *SimplifyAndInst(Value *Op0, Value *Op1, const SimplifyQuery &Q,
1890                               unsigned MaxRecurse) {
1891   if (Constant *C = foldOrCommuteConstant(Instruction::And, Op0, Op1, Q))
1892     return C;
1893 
1894   // X & undef -> 0
1895   if (match(Op1, m_Undef()))
1896     return Constant::getNullValue(Op0->getType());
1897 
1898   // X & X = X
1899   if (Op0 == Op1)
1900     return Op0;
1901 
1902   // X & 0 = 0
1903   if (match(Op1, m_Zero()))
1904     return Constant::getNullValue(Op0->getType());
1905 
1906   // X & -1 = X
1907   if (match(Op1, m_AllOnes()))
1908     return Op0;
1909 
1910   // A & ~A  =  ~A & A  =  0
1911   if (match(Op0, m_Not(m_Specific(Op1))) ||
1912       match(Op1, m_Not(m_Specific(Op0))))
1913     return Constant::getNullValue(Op0->getType());
1914 
1915   // (A | ?) & A = A
1916   if (match(Op0, m_c_Or(m_Specific(Op1), m_Value())))
1917     return Op1;
1918 
1919   // A & (A | ?) = A
1920   if (match(Op1, m_c_Or(m_Specific(Op0), m_Value())))
1921     return Op0;
1922 
1923   // A mask that only clears known zeros of a shifted value is a no-op.
1924   Value *X;
1925   const APInt *Mask;
1926   const APInt *ShAmt;
1927   if (match(Op1, m_APInt(Mask))) {
1928     // If all bits in the inverted and shifted mask are clear:
1929     // and (shl X, ShAmt), Mask --> shl X, ShAmt
1930     if (match(Op0, m_Shl(m_Value(X), m_APInt(ShAmt))) &&
1931         (~(*Mask)).lshr(*ShAmt).isNullValue())
1932       return Op0;
1933 
1934     // If all bits in the inverted and shifted mask are clear:
1935     // and (lshr X, ShAmt), Mask --> lshr X, ShAmt
1936     if (match(Op0, m_LShr(m_Value(X), m_APInt(ShAmt))) &&
1937         (~(*Mask)).shl(*ShAmt).isNullValue())
1938       return Op0;
1939   }
1940 
1941   // If we have a multiplication overflow check that is being 'and'ed with a
1942   // check that one of the multipliers is not zero, we can omit the 'and', and
1943   // only keep the overflow check.
1944   if (Value *V = omitCheckForZeroBeforeMulWithOverflow(Op0, Op1))
1945     return V;
1946   if (Value *V = omitCheckForZeroBeforeMulWithOverflow(Op1, Op0))
1947     return V;
1948 
1949   // A & (-A) = A if A is a power of two or zero.
1950   if (match(Op0, m_Neg(m_Specific(Op1))) ||
1951       match(Op1, m_Neg(m_Specific(Op0)))) {
1952     if (isKnownToBeAPowerOfTwo(Op0, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI,
1953                                Q.DT))
1954       return Op0;
1955     if (isKnownToBeAPowerOfTwo(Op1, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI,
1956                                Q.DT))
1957       return Op1;
1958   }
1959 
1960   // This is a similar pattern used for checking if a value is a power-of-2:
1961   // (A - 1) & A --> 0 (if A is a power-of-2 or 0)
1962   // A & (A - 1) --> 0 (if A is a power-of-2 or 0)
1963   if (match(Op0, m_Add(m_Specific(Op1), m_AllOnes())) &&
1964       isKnownToBeAPowerOfTwo(Op1, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI, Q.DT))
1965     return Constant::getNullValue(Op1->getType());
1966   if (match(Op1, m_Add(m_Specific(Op0), m_AllOnes())) &&
1967       isKnownToBeAPowerOfTwo(Op0, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI, Q.DT))
1968     return Constant::getNullValue(Op0->getType());
1969 
1970   if (Value *V = simplifyAndOrOfCmps(Q, Op0, Op1, true))
1971     return V;
1972 
1973   // Try some generic simplifications for associative operations.
1974   if (Value *V = SimplifyAssociativeBinOp(Instruction::And, Op0, Op1, Q,
1975                                           MaxRecurse))
1976     return V;
1977 
1978   // And distributes over Or.  Try some generic simplifications based on this.
1979   if (Value *V = ExpandBinOp(Instruction::And, Op0, Op1, Instruction::Or,
1980                              Q, MaxRecurse))
1981     return V;
1982 
1983   // And distributes over Xor.  Try some generic simplifications based on this.
1984   if (Value *V = ExpandBinOp(Instruction::And, Op0, Op1, Instruction::Xor,
1985                              Q, MaxRecurse))
1986     return V;
1987 
1988   // If the operation is with the result of a select instruction, check whether
1989   // operating on either branch of the select always yields the same value.
1990   if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
1991     if (Value *V = ThreadBinOpOverSelect(Instruction::And, Op0, Op1, Q,
1992                                          MaxRecurse))
1993       return V;
1994 
1995   // If the operation is with the result of a phi instruction, check whether
1996   // operating on all incoming values of the phi always yields the same value.
1997   if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
1998     if (Value *V = ThreadBinOpOverPHI(Instruction::And, Op0, Op1, Q,
1999                                       MaxRecurse))
2000       return V;
2001 
2002   // Assuming the effective width of Y is not larger than A, i.e. all bits
2003   // from X and Y are disjoint in (X << A) | Y,
2004   // if the mask of this AND op covers all bits of X or Y, while it covers
2005   // no bits from the other, we can bypass this AND op. E.g.,
2006   // ((X << A) | Y) & Mask -> Y,
2007   //     if Mask = ((1 << effective_width_of(Y)) - 1)
2008   // ((X << A) | Y) & Mask -> X << A,
2009   //     if Mask = ((1 << effective_width_of(X)) - 1) << A
2010   // SimplifyDemandedBits in InstCombine can optimize the general case.
2011   // This pattern aims to help other passes for a common case.
2012   Value *Y, *XShifted;
2013   if (match(Op1, m_APInt(Mask)) &&
2014       match(Op0, m_c_Or(m_CombineAnd(m_NUWShl(m_Value(X), m_APInt(ShAmt)),
2015                                      m_Value(XShifted)),
2016                         m_Value(Y)))) {
2017     const unsigned Width = Op0->getType()->getScalarSizeInBits();
2018     const unsigned ShftCnt = ShAmt->getLimitedValue(Width);
2019     const KnownBits YKnown = computeKnownBits(Y, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
2020     const unsigned EffWidthY = Width - YKnown.countMinLeadingZeros();
2021     if (EffWidthY <= ShftCnt) {
2022       const KnownBits XKnown = computeKnownBits(X, Q.DL, 0, Q.AC, Q.CxtI,
2023                                                 Q.DT);
2024       const unsigned EffWidthX = Width - XKnown.countMinLeadingZeros();
2025       const APInt EffBitsY = APInt::getLowBitsSet(Width, EffWidthY);
2026       const APInt EffBitsX = APInt::getLowBitsSet(Width, EffWidthX) << ShftCnt;
2027       // If the mask is extracting all bits from X or Y as is, we can skip
2028       // this AND op.
2029       if (EffBitsY.isSubsetOf(*Mask) && !EffBitsX.intersects(*Mask))
2030         return Y;
2031       if (EffBitsX.isSubsetOf(*Mask) && !EffBitsY.intersects(*Mask))
2032         return XShifted;
2033     }
2034   }
2035 
2036   return nullptr;
2037 }
2038 
2039 Value *llvm::SimplifyAndInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) {
2040   return ::SimplifyAndInst(Op0, Op1, Q, RecursionLimit);
2041 }
2042 
2043 /// Given operands for an Or, see if we can fold the result.
2044 /// If not, this returns null.
2045 static Value *SimplifyOrInst(Value *Op0, Value *Op1, const SimplifyQuery &Q,
2046                              unsigned MaxRecurse) {
2047   if (Constant *C = foldOrCommuteConstant(Instruction::Or, Op0, Op1, Q))
2048     return C;
2049 
2050   // X | undef -> -1
2051   // X | -1 = -1
2052   // Do not return Op1 because it may contain undef elements if it's a vector.
2053   if (match(Op1, m_Undef()) || match(Op1, m_AllOnes()))
2054     return Constant::getAllOnesValue(Op0->getType());
2055 
2056   // X | X = X
2057   // X | 0 = X
2058   if (Op0 == Op1 || match(Op1, m_Zero()))
2059     return Op0;
2060 
2061   // A | ~A  =  ~A | A  =  -1
2062   if (match(Op0, m_Not(m_Specific(Op1))) ||
2063       match(Op1, m_Not(m_Specific(Op0))))
2064     return Constant::getAllOnesValue(Op0->getType());
2065 
2066   // (A & ?) | A = A
2067   if (match(Op0, m_c_And(m_Specific(Op1), m_Value())))
2068     return Op1;
2069 
2070   // A | (A & ?) = A
2071   if (match(Op1, m_c_And(m_Specific(Op0), m_Value())))
2072     return Op0;
2073 
2074   // ~(A & ?) | A = -1
2075   if (match(Op0, m_Not(m_c_And(m_Specific(Op1), m_Value()))))
2076     return Constant::getAllOnesValue(Op1->getType());
2077 
2078   // A | ~(A & ?) = -1
2079   if (match(Op1, m_Not(m_c_And(m_Specific(Op1), m_Value()))))
2080     return Constant::getAllOnesValue(Op0->getType());
2081 
2082   Value *A, *B;
2083   // (A & ~B) | (A ^ B) -> (A ^ B)
2084   // (~B & A) | (A ^ B) -> (A ^ B)
2085   // (A & ~B) | (B ^ A) -> (B ^ A)
2086   // (~B & A) | (B ^ A) -> (B ^ A)
2087   if (match(Op1, m_Xor(m_Value(A), m_Value(B))) &&
2088       (match(Op0, m_c_And(m_Specific(A), m_Not(m_Specific(B)))) ||
2089        match(Op0, m_c_And(m_Not(m_Specific(A)), m_Specific(B)))))
2090     return Op1;
2091 
2092   // Commute the 'or' operands.
2093   // (A ^ B) | (A & ~B) -> (A ^ B)
2094   // (A ^ B) | (~B & A) -> (A ^ B)
2095   // (B ^ A) | (A & ~B) -> (B ^ A)
2096   // (B ^ A) | (~B & A) -> (B ^ A)
2097   if (match(Op0, m_Xor(m_Value(A), m_Value(B))) &&
2098       (match(Op1, m_c_And(m_Specific(A), m_Not(m_Specific(B)))) ||
2099        match(Op1, m_c_And(m_Not(m_Specific(A)), m_Specific(B)))))
2100     return Op0;
2101 
2102   // (A & B) | (~A ^ B) -> (~A ^ B)
2103   // (B & A) | (~A ^ B) -> (~A ^ B)
2104   // (A & B) | (B ^ ~A) -> (B ^ ~A)
2105   // (B & A) | (B ^ ~A) -> (B ^ ~A)
2106   if (match(Op0, m_And(m_Value(A), m_Value(B))) &&
2107       (match(Op1, m_c_Xor(m_Specific(A), m_Not(m_Specific(B)))) ||
2108        match(Op1, m_c_Xor(m_Not(m_Specific(A)), m_Specific(B)))))
2109     return Op1;
2110 
2111   // (~A ^ B) | (A & B) -> (~A ^ B)
2112   // (~A ^ B) | (B & A) -> (~A ^ B)
2113   // (B ^ ~A) | (A & B) -> (B ^ ~A)
2114   // (B ^ ~A) | (B & A) -> (B ^ ~A)
2115   if (match(Op1, m_And(m_Value(A), m_Value(B))) &&
2116       (match(Op0, m_c_Xor(m_Specific(A), m_Not(m_Specific(B)))) ||
2117        match(Op0, m_c_Xor(m_Not(m_Specific(A)), m_Specific(B)))))
2118     return Op0;
2119 
2120   if (Value *V = simplifyAndOrOfCmps(Q, Op0, Op1, false))
2121     return V;
2122 
2123   // If we have a multiplication overflow check that is being 'and'ed with a
2124   // check that one of the multipliers is not zero, we can omit the 'and', and
2125   // only keep the overflow check.
2126   if (Value *V = omitCheckForZeroBeforeInvertedMulWithOverflow(Op0, Op1))
2127     return V;
2128   if (Value *V = omitCheckForZeroBeforeInvertedMulWithOverflow(Op1, Op0))
2129     return V;
2130 
2131   // Try some generic simplifications for associative operations.
2132   if (Value *V = SimplifyAssociativeBinOp(Instruction::Or, Op0, Op1, Q,
2133                                           MaxRecurse))
2134     return V;
2135 
2136   // Or distributes over And.  Try some generic simplifications based on this.
2137   if (Value *V = ExpandBinOp(Instruction::Or, Op0, Op1, Instruction::And, Q,
2138                              MaxRecurse))
2139     return V;
2140 
2141   // If the operation is with the result of a select instruction, check whether
2142   // operating on either branch of the select always yields the same value.
2143   if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
2144     if (Value *V = ThreadBinOpOverSelect(Instruction::Or, Op0, Op1, Q,
2145                                          MaxRecurse))
2146       return V;
2147 
2148   // (A & C1)|(B & C2)
2149   const APInt *C1, *C2;
2150   if (match(Op0, m_And(m_Value(A), m_APInt(C1))) &&
2151       match(Op1, m_And(m_Value(B), m_APInt(C2)))) {
2152     if (*C1 == ~*C2) {
2153       // (A & C1)|(B & C2)
2154       // If we have: ((V + N) & C1) | (V & C2)
2155       // .. and C2 = ~C1 and C2 is 0+1+ and (N & C2) == 0
2156       // replace with V+N.
2157       Value *N;
2158       if (C2->isMask() && // C2 == 0+1+
2159           match(A, m_c_Add(m_Specific(B), m_Value(N)))) {
2160         // Add commutes, try both ways.
2161         if (MaskedValueIsZero(N, *C2, Q.DL, 0, Q.AC, Q.CxtI, Q.DT))
2162           return A;
2163       }
2164       // Or commutes, try both ways.
2165       if (C1->isMask() &&
2166           match(B, m_c_Add(m_Specific(A), m_Value(N)))) {
2167         // Add commutes, try both ways.
2168         if (MaskedValueIsZero(N, *C1, Q.DL, 0, Q.AC, Q.CxtI, Q.DT))
2169           return B;
2170       }
2171     }
2172   }
2173 
2174   // If the operation is with the result of a phi instruction, check whether
2175   // operating on all incoming values of the phi always yields the same value.
2176   if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
2177     if (Value *V = ThreadBinOpOverPHI(Instruction::Or, Op0, Op1, Q, MaxRecurse))
2178       return V;
2179 
2180   return nullptr;
2181 }
2182 
2183 Value *llvm::SimplifyOrInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) {
2184   return ::SimplifyOrInst(Op0, Op1, Q, RecursionLimit);
2185 }
2186 
2187 /// Given operands for a Xor, see if we can fold the result.
2188 /// If not, this returns null.
2189 static Value *SimplifyXorInst(Value *Op0, Value *Op1, const SimplifyQuery &Q,
2190                               unsigned MaxRecurse) {
2191   if (Constant *C = foldOrCommuteConstant(Instruction::Xor, Op0, Op1, Q))
2192     return C;
2193 
2194   // A ^ undef -> undef
2195   if (match(Op1, m_Undef()))
2196     return Op1;
2197 
2198   // A ^ 0 = A
2199   if (match(Op1, m_Zero()))
2200     return Op0;
2201 
2202   // A ^ A = 0
2203   if (Op0 == Op1)
2204     return Constant::getNullValue(Op0->getType());
2205 
2206   // A ^ ~A  =  ~A ^ A  =  -1
2207   if (match(Op0, m_Not(m_Specific(Op1))) ||
2208       match(Op1, m_Not(m_Specific(Op0))))
2209     return Constant::getAllOnesValue(Op0->getType());
2210 
2211   // Try some generic simplifications for associative operations.
2212   if (Value *V = SimplifyAssociativeBinOp(Instruction::Xor, Op0, Op1, Q,
2213                                           MaxRecurse))
2214     return V;
2215 
2216   // Threading Xor over selects and phi nodes is pointless, so don't bother.
2217   // Threading over the select in "A ^ select(cond, B, C)" means evaluating
2218   // "A^B" and "A^C" and seeing if they are equal; but they are equal if and
2219   // only if B and C are equal.  If B and C are equal then (since we assume
2220   // that operands have already been simplified) "select(cond, B, C)" should
2221   // have been simplified to the common value of B and C already.  Analysing
2222   // "A^B" and "A^C" thus gains nothing, but costs compile time.  Similarly
2223   // for threading over phi nodes.
2224 
2225   return nullptr;
2226 }
2227 
2228 Value *llvm::SimplifyXorInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) {
2229   return ::SimplifyXorInst(Op0, Op1, Q, RecursionLimit);
2230 }
2231 
2232 
2233 static Type *GetCompareTy(Value *Op) {
2234   return CmpInst::makeCmpResultType(Op->getType());
2235 }
2236 
2237 /// Rummage around inside V looking for something equivalent to the comparison
2238 /// "LHS Pred RHS". Return such a value if found, otherwise return null.
2239 /// Helper function for analyzing max/min idioms.
2240 static Value *ExtractEquivalentCondition(Value *V, CmpInst::Predicate Pred,
2241                                          Value *LHS, Value *RHS) {
2242   SelectInst *SI = dyn_cast<SelectInst>(V);
2243   if (!SI)
2244     return nullptr;
2245   CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition());
2246   if (!Cmp)
2247     return nullptr;
2248   Value *CmpLHS = Cmp->getOperand(0), *CmpRHS = Cmp->getOperand(1);
2249   if (Pred == Cmp->getPredicate() && LHS == CmpLHS && RHS == CmpRHS)
2250     return Cmp;
2251   if (Pred == CmpInst::getSwappedPredicate(Cmp->getPredicate()) &&
2252       LHS == CmpRHS && RHS == CmpLHS)
2253     return Cmp;
2254   return nullptr;
2255 }
2256 
2257 // A significant optimization not implemented here is assuming that alloca
2258 // addresses are not equal to incoming argument values. They don't *alias*,
2259 // as we say, but that doesn't mean they aren't equal, so we take a
2260 // conservative approach.
2261 //
2262 // This is inspired in part by C++11 5.10p1:
2263 //   "Two pointers of the same type compare equal if and only if they are both
2264 //    null, both point to the same function, or both represent the same
2265 //    address."
2266 //
2267 // This is pretty permissive.
2268 //
2269 // It's also partly due to C11 6.5.9p6:
2270 //   "Two pointers compare equal if and only if both are null pointers, both are
2271 //    pointers to the same object (including a pointer to an object and a
2272 //    subobject at its beginning) or function, both are pointers to one past the
2273 //    last element of the same array object, or one is a pointer to one past the
2274 //    end of one array object and the other is a pointer to the start of a
2275 //    different array object that happens to immediately follow the first array
2276 //    object in the address space.)
2277 //
2278 // C11's version is more restrictive, however there's no reason why an argument
2279 // couldn't be a one-past-the-end value for a stack object in the caller and be
2280 // equal to the beginning of a stack object in the callee.
2281 //
2282 // If the C and C++ standards are ever made sufficiently restrictive in this
2283 // area, it may be possible to update LLVM's semantics accordingly and reinstate
2284 // this optimization.
2285 static Constant *
2286 computePointerICmp(const DataLayout &DL, const TargetLibraryInfo *TLI,
2287                    const DominatorTree *DT, CmpInst::Predicate Pred,
2288                    AssumptionCache *AC, const Instruction *CxtI,
2289                    const InstrInfoQuery &IIQ, Value *LHS, Value *RHS) {
2290   // First, skip past any trivial no-ops.
2291   LHS = LHS->stripPointerCasts();
2292   RHS = RHS->stripPointerCasts();
2293 
2294   // A non-null pointer is not equal to a null pointer.
2295   if (llvm::isKnownNonZero(LHS, DL, 0, nullptr, nullptr, nullptr,
2296                            IIQ.UseInstrInfo) &&
2297       isa<ConstantPointerNull>(RHS) &&
2298       (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE))
2299     return ConstantInt::get(GetCompareTy(LHS),
2300                             !CmpInst::isTrueWhenEqual(Pred));
2301 
2302   // We can only fold certain predicates on pointer comparisons.
2303   switch (Pred) {
2304   default:
2305     return nullptr;
2306 
2307     // Equality comaprisons are easy to fold.
2308   case CmpInst::ICMP_EQ:
2309   case CmpInst::ICMP_NE:
2310     break;
2311 
2312     // We can only handle unsigned relational comparisons because 'inbounds' on
2313     // a GEP only protects against unsigned wrapping.
2314   case CmpInst::ICMP_UGT:
2315   case CmpInst::ICMP_UGE:
2316   case CmpInst::ICMP_ULT:
2317   case CmpInst::ICMP_ULE:
2318     // However, we have to switch them to their signed variants to handle
2319     // negative indices from the base pointer.
2320     Pred = ICmpInst::getSignedPredicate(Pred);
2321     break;
2322   }
2323 
2324   // Strip off any constant offsets so that we can reason about them.
2325   // It's tempting to use getUnderlyingObject or even just stripInBoundsOffsets
2326   // here and compare base addresses like AliasAnalysis does, however there are
2327   // numerous hazards. AliasAnalysis and its utilities rely on special rules
2328   // governing loads and stores which don't apply to icmps. Also, AliasAnalysis
2329   // doesn't need to guarantee pointer inequality when it says NoAlias.
2330   Constant *LHSOffset = stripAndComputeConstantOffsets(DL, LHS);
2331   Constant *RHSOffset = stripAndComputeConstantOffsets(DL, RHS);
2332 
2333   // If LHS and RHS are related via constant offsets to the same base
2334   // value, we can replace it with an icmp which just compares the offsets.
2335   if (LHS == RHS)
2336     return ConstantExpr::getICmp(Pred, LHSOffset, RHSOffset);
2337 
2338   // Various optimizations for (in)equality comparisons.
2339   if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE) {
2340     // Different non-empty allocations that exist at the same time have
2341     // different addresses (if the program can tell). Global variables always
2342     // exist, so they always exist during the lifetime of each other and all
2343     // allocas. Two different allocas usually have different addresses...
2344     //
2345     // However, if there's an @llvm.stackrestore dynamically in between two
2346     // allocas, they may have the same address. It's tempting to reduce the
2347     // scope of the problem by only looking at *static* allocas here. That would
2348     // cover the majority of allocas while significantly reducing the likelihood
2349     // of having an @llvm.stackrestore pop up in the middle. However, it's not
2350     // actually impossible for an @llvm.stackrestore to pop up in the middle of
2351     // an entry block. Also, if we have a block that's not attached to a
2352     // function, we can't tell if it's "static" under the current definition.
2353     // Theoretically, this problem could be fixed by creating a new kind of
2354     // instruction kind specifically for static allocas. Such a new instruction
2355     // could be required to be at the top of the entry block, thus preventing it
2356     // from being subject to a @llvm.stackrestore. Instcombine could even
2357     // convert regular allocas into these special allocas. It'd be nifty.
2358     // However, until then, this problem remains open.
2359     //
2360     // So, we'll assume that two non-empty allocas have different addresses
2361     // for now.
2362     //
2363     // With all that, if the offsets are within the bounds of their allocations
2364     // (and not one-past-the-end! so we can't use inbounds!), and their
2365     // allocations aren't the same, the pointers are not equal.
2366     //
2367     // Note that it's not necessary to check for LHS being a global variable
2368     // address, due to canonicalization and constant folding.
2369     if (isa<AllocaInst>(LHS) &&
2370         (isa<AllocaInst>(RHS) || isa<GlobalVariable>(RHS))) {
2371       ConstantInt *LHSOffsetCI = dyn_cast<ConstantInt>(LHSOffset);
2372       ConstantInt *RHSOffsetCI = dyn_cast<ConstantInt>(RHSOffset);
2373       uint64_t LHSSize, RHSSize;
2374       ObjectSizeOpts Opts;
2375       Opts.NullIsUnknownSize =
2376           NullPointerIsDefined(cast<AllocaInst>(LHS)->getFunction());
2377       if (LHSOffsetCI && RHSOffsetCI &&
2378           getObjectSize(LHS, LHSSize, DL, TLI, Opts) &&
2379           getObjectSize(RHS, RHSSize, DL, TLI, Opts)) {
2380         const APInt &LHSOffsetValue = LHSOffsetCI->getValue();
2381         const APInt &RHSOffsetValue = RHSOffsetCI->getValue();
2382         if (!LHSOffsetValue.isNegative() &&
2383             !RHSOffsetValue.isNegative() &&
2384             LHSOffsetValue.ult(LHSSize) &&
2385             RHSOffsetValue.ult(RHSSize)) {
2386           return ConstantInt::get(GetCompareTy(LHS),
2387                                   !CmpInst::isTrueWhenEqual(Pred));
2388         }
2389       }
2390 
2391       // Repeat the above check but this time without depending on DataLayout
2392       // or being able to compute a precise size.
2393       if (!cast<PointerType>(LHS->getType())->isEmptyTy() &&
2394           !cast<PointerType>(RHS->getType())->isEmptyTy() &&
2395           LHSOffset->isNullValue() &&
2396           RHSOffset->isNullValue())
2397         return ConstantInt::get(GetCompareTy(LHS),
2398                                 !CmpInst::isTrueWhenEqual(Pred));
2399     }
2400 
2401     // Even if an non-inbounds GEP occurs along the path we can still optimize
2402     // equality comparisons concerning the result. We avoid walking the whole
2403     // chain again by starting where the last calls to
2404     // stripAndComputeConstantOffsets left off and accumulate the offsets.
2405     Constant *LHSNoBound = stripAndComputeConstantOffsets(DL, LHS, true);
2406     Constant *RHSNoBound = stripAndComputeConstantOffsets(DL, RHS, true);
2407     if (LHS == RHS)
2408       return ConstantExpr::getICmp(Pred,
2409                                    ConstantExpr::getAdd(LHSOffset, LHSNoBound),
2410                                    ConstantExpr::getAdd(RHSOffset, RHSNoBound));
2411 
2412     // If one side of the equality comparison must come from a noalias call
2413     // (meaning a system memory allocation function), and the other side must
2414     // come from a pointer that cannot overlap with dynamically-allocated
2415     // memory within the lifetime of the current function (allocas, byval
2416     // arguments, globals), then determine the comparison result here.
2417     SmallVector<const Value *, 8> LHSUObjs, RHSUObjs;
2418     GetUnderlyingObjects(LHS, LHSUObjs, DL);
2419     GetUnderlyingObjects(RHS, RHSUObjs, DL);
2420 
2421     // Is the set of underlying objects all noalias calls?
2422     auto IsNAC = [](ArrayRef<const Value *> Objects) {
2423       return all_of(Objects, isNoAliasCall);
2424     };
2425 
2426     // Is the set of underlying objects all things which must be disjoint from
2427     // noalias calls. For allocas, we consider only static ones (dynamic
2428     // allocas might be transformed into calls to malloc not simultaneously
2429     // live with the compared-to allocation). For globals, we exclude symbols
2430     // that might be resolve lazily to symbols in another dynamically-loaded
2431     // library (and, thus, could be malloc'ed by the implementation).
2432     auto IsAllocDisjoint = [](ArrayRef<const Value *> Objects) {
2433       return all_of(Objects, [](const Value *V) {
2434         if (const AllocaInst *AI = dyn_cast<AllocaInst>(V))
2435           return AI->getParent() && AI->getFunction() && AI->isStaticAlloca();
2436         if (const GlobalValue *GV = dyn_cast<GlobalValue>(V))
2437           return (GV->hasLocalLinkage() || GV->hasHiddenVisibility() ||
2438                   GV->hasProtectedVisibility() || GV->hasGlobalUnnamedAddr()) &&
2439                  !GV->isThreadLocal();
2440         if (const Argument *A = dyn_cast<Argument>(V))
2441           return A->hasByValAttr();
2442         return false;
2443       });
2444     };
2445 
2446     if ((IsNAC(LHSUObjs) && IsAllocDisjoint(RHSUObjs)) ||
2447         (IsNAC(RHSUObjs) && IsAllocDisjoint(LHSUObjs)))
2448         return ConstantInt::get(GetCompareTy(LHS),
2449                                 !CmpInst::isTrueWhenEqual(Pred));
2450 
2451     // Fold comparisons for non-escaping pointer even if the allocation call
2452     // cannot be elided. We cannot fold malloc comparison to null. Also, the
2453     // dynamic allocation call could be either of the operands.
2454     Value *MI = nullptr;
2455     if (isAllocLikeFn(LHS, TLI) &&
2456         llvm::isKnownNonZero(RHS, DL, 0, nullptr, CxtI, DT))
2457       MI = LHS;
2458     else if (isAllocLikeFn(RHS, TLI) &&
2459              llvm::isKnownNonZero(LHS, DL, 0, nullptr, CxtI, DT))
2460       MI = RHS;
2461     // FIXME: We should also fold the compare when the pointer escapes, but the
2462     // compare dominates the pointer escape
2463     if (MI && !PointerMayBeCaptured(MI, true, true))
2464       return ConstantInt::get(GetCompareTy(LHS),
2465                               CmpInst::isFalseWhenEqual(Pred));
2466   }
2467 
2468   // Otherwise, fail.
2469   return nullptr;
2470 }
2471 
2472 /// Fold an icmp when its operands have i1 scalar type.
2473 static Value *simplifyICmpOfBools(CmpInst::Predicate Pred, Value *LHS,
2474                                   Value *RHS, const SimplifyQuery &Q) {
2475   Type *ITy = GetCompareTy(LHS); // The return type.
2476   Type *OpTy = LHS->getType();   // The operand type.
2477   if (!OpTy->isIntOrIntVectorTy(1))
2478     return nullptr;
2479 
2480   // A boolean compared to true/false can be simplified in 14 out of the 20
2481   // (10 predicates * 2 constants) possible combinations. Cases not handled here
2482   // require a 'not' of the LHS, so those must be transformed in InstCombine.
2483   if (match(RHS, m_Zero())) {
2484     switch (Pred) {
2485     case CmpInst::ICMP_NE:  // X !=  0 -> X
2486     case CmpInst::ICMP_UGT: // X >u  0 -> X
2487     case CmpInst::ICMP_SLT: // X <s  0 -> X
2488       return LHS;
2489 
2490     case CmpInst::ICMP_ULT: // X <u  0 -> false
2491     case CmpInst::ICMP_SGT: // X >s  0 -> false
2492       return getFalse(ITy);
2493 
2494     case CmpInst::ICMP_UGE: // X >=u 0 -> true
2495     case CmpInst::ICMP_SLE: // X <=s 0 -> true
2496       return getTrue(ITy);
2497 
2498     default: break;
2499     }
2500   } else if (match(RHS, m_One())) {
2501     switch (Pred) {
2502     case CmpInst::ICMP_EQ:  // X ==   1 -> X
2503     case CmpInst::ICMP_UGE: // X >=u  1 -> X
2504     case CmpInst::ICMP_SLE: // X <=s -1 -> X
2505       return LHS;
2506 
2507     case CmpInst::ICMP_UGT: // X >u   1 -> false
2508     case CmpInst::ICMP_SLT: // X <s  -1 -> false
2509       return getFalse(ITy);
2510 
2511     case CmpInst::ICMP_ULE: // X <=u  1 -> true
2512     case CmpInst::ICMP_SGE: // X >=s -1 -> true
2513       return getTrue(ITy);
2514 
2515     default: break;
2516     }
2517   }
2518 
2519   switch (Pred) {
2520   default:
2521     break;
2522   case ICmpInst::ICMP_UGE:
2523     if (isImpliedCondition(RHS, LHS, Q.DL).getValueOr(false))
2524       return getTrue(ITy);
2525     break;
2526   case ICmpInst::ICMP_SGE:
2527     /// For signed comparison, the values for an i1 are 0 and -1
2528     /// respectively. This maps into a truth table of:
2529     /// LHS | RHS | LHS >=s RHS   | LHS implies RHS
2530     ///  0  |  0  |  1 (0 >= 0)   |  1
2531     ///  0  |  1  |  1 (0 >= -1)  |  1
2532     ///  1  |  0  |  0 (-1 >= 0)  |  0
2533     ///  1  |  1  |  1 (-1 >= -1) |  1
2534     if (isImpliedCondition(LHS, RHS, Q.DL).getValueOr(false))
2535       return getTrue(ITy);
2536     break;
2537   case ICmpInst::ICMP_ULE:
2538     if (isImpliedCondition(LHS, RHS, Q.DL).getValueOr(false))
2539       return getTrue(ITy);
2540     break;
2541   }
2542 
2543   return nullptr;
2544 }
2545 
2546 /// Try hard to fold icmp with zero RHS because this is a common case.
2547 static Value *simplifyICmpWithZero(CmpInst::Predicate Pred, Value *LHS,
2548                                    Value *RHS, const SimplifyQuery &Q) {
2549   if (!match(RHS, m_Zero()))
2550     return nullptr;
2551 
2552   Type *ITy = GetCompareTy(LHS); // The return type.
2553   switch (Pred) {
2554   default:
2555     llvm_unreachable("Unknown ICmp predicate!");
2556   case ICmpInst::ICMP_ULT:
2557     return getFalse(ITy);
2558   case ICmpInst::ICMP_UGE:
2559     return getTrue(ITy);
2560   case ICmpInst::ICMP_EQ:
2561   case ICmpInst::ICMP_ULE:
2562     if (isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT, Q.IIQ.UseInstrInfo))
2563       return getFalse(ITy);
2564     break;
2565   case ICmpInst::ICMP_NE:
2566   case ICmpInst::ICMP_UGT:
2567     if (isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT, Q.IIQ.UseInstrInfo))
2568       return getTrue(ITy);
2569     break;
2570   case ICmpInst::ICMP_SLT: {
2571     KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
2572     if (LHSKnown.isNegative())
2573       return getTrue(ITy);
2574     if (LHSKnown.isNonNegative())
2575       return getFalse(ITy);
2576     break;
2577   }
2578   case ICmpInst::ICMP_SLE: {
2579     KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
2580     if (LHSKnown.isNegative())
2581       return getTrue(ITy);
2582     if (LHSKnown.isNonNegative() &&
2583         isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT))
2584       return getFalse(ITy);
2585     break;
2586   }
2587   case ICmpInst::ICMP_SGE: {
2588     KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
2589     if (LHSKnown.isNegative())
2590       return getFalse(ITy);
2591     if (LHSKnown.isNonNegative())
2592       return getTrue(ITy);
2593     break;
2594   }
2595   case ICmpInst::ICMP_SGT: {
2596     KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
2597     if (LHSKnown.isNegative())
2598       return getFalse(ITy);
2599     if (LHSKnown.isNonNegative() &&
2600         isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT))
2601       return getTrue(ITy);
2602     break;
2603   }
2604   }
2605 
2606   return nullptr;
2607 }
2608 
2609 static Value *simplifyICmpWithConstant(CmpInst::Predicate Pred, Value *LHS,
2610                                        Value *RHS, const InstrInfoQuery &IIQ) {
2611   Type *ITy = GetCompareTy(RHS); // The return type.
2612 
2613   Value *X;
2614   // Sign-bit checks can be optimized to true/false after unsigned
2615   // floating-point casts:
2616   // icmp slt (bitcast (uitofp X)),  0 --> false
2617   // icmp sgt (bitcast (uitofp X)), -1 --> true
2618   if (match(LHS, m_BitCast(m_UIToFP(m_Value(X))))) {
2619     if (Pred == ICmpInst::ICMP_SLT && match(RHS, m_Zero()))
2620       return ConstantInt::getFalse(ITy);
2621     if (Pred == ICmpInst::ICMP_SGT && match(RHS, m_AllOnes()))
2622       return ConstantInt::getTrue(ITy);
2623   }
2624 
2625   const APInt *C;
2626   if (!match(RHS, m_APInt(C)))
2627     return nullptr;
2628 
2629   // Rule out tautological comparisons (eg., ult 0 or uge 0).
2630   ConstantRange RHS_CR = ConstantRange::makeExactICmpRegion(Pred, *C);
2631   if (RHS_CR.isEmptySet())
2632     return ConstantInt::getFalse(ITy);
2633   if (RHS_CR.isFullSet())
2634     return ConstantInt::getTrue(ITy);
2635 
2636   ConstantRange LHS_CR = computeConstantRange(LHS, IIQ.UseInstrInfo);
2637   if (!LHS_CR.isFullSet()) {
2638     if (RHS_CR.contains(LHS_CR))
2639       return ConstantInt::getTrue(ITy);
2640     if (RHS_CR.inverse().contains(LHS_CR))
2641       return ConstantInt::getFalse(ITy);
2642   }
2643 
2644   return nullptr;
2645 }
2646 
2647 /// TODO: A large part of this logic is duplicated in InstCombine's
2648 /// foldICmpBinOp(). We should be able to share that and avoid the code
2649 /// duplication.
2650 static Value *simplifyICmpWithBinOp(CmpInst::Predicate Pred, Value *LHS,
2651                                     Value *RHS, const SimplifyQuery &Q,
2652                                     unsigned MaxRecurse) {
2653   Type *ITy = GetCompareTy(LHS); // The return type.
2654 
2655   BinaryOperator *LBO = dyn_cast<BinaryOperator>(LHS);
2656   BinaryOperator *RBO = dyn_cast<BinaryOperator>(RHS);
2657   if (MaxRecurse && (LBO || RBO)) {
2658     // Analyze the case when either LHS or RHS is an add instruction.
2659     Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr;
2660     // LHS = A + B (or A and B are null); RHS = C + D (or C and D are null).
2661     bool NoLHSWrapProblem = false, NoRHSWrapProblem = false;
2662     if (LBO && LBO->getOpcode() == Instruction::Add) {
2663       A = LBO->getOperand(0);
2664       B = LBO->getOperand(1);
2665       NoLHSWrapProblem =
2666           ICmpInst::isEquality(Pred) ||
2667           (CmpInst::isUnsigned(Pred) &&
2668            Q.IIQ.hasNoUnsignedWrap(cast<OverflowingBinaryOperator>(LBO))) ||
2669           (CmpInst::isSigned(Pred) &&
2670            Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(LBO)));
2671     }
2672     if (RBO && RBO->getOpcode() == Instruction::Add) {
2673       C = RBO->getOperand(0);
2674       D = RBO->getOperand(1);
2675       NoRHSWrapProblem =
2676           ICmpInst::isEquality(Pred) ||
2677           (CmpInst::isUnsigned(Pred) &&
2678            Q.IIQ.hasNoUnsignedWrap(cast<OverflowingBinaryOperator>(RBO))) ||
2679           (CmpInst::isSigned(Pred) &&
2680            Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(RBO)));
2681     }
2682 
2683     // icmp (X+Y), X -> icmp Y, 0 for equalities or if there is no overflow.
2684     if ((A == RHS || B == RHS) && NoLHSWrapProblem)
2685       if (Value *V = SimplifyICmpInst(Pred, A == RHS ? B : A,
2686                                       Constant::getNullValue(RHS->getType()), Q,
2687                                       MaxRecurse - 1))
2688         return V;
2689 
2690     // icmp X, (X+Y) -> icmp 0, Y for equalities or if there is no overflow.
2691     if ((C == LHS || D == LHS) && NoRHSWrapProblem)
2692       if (Value *V =
2693               SimplifyICmpInst(Pred, Constant::getNullValue(LHS->getType()),
2694                                C == LHS ? D : C, Q, MaxRecurse - 1))
2695         return V;
2696 
2697     // icmp (X+Y), (X+Z) -> icmp Y,Z for equalities or if there is no overflow.
2698     if (A && C && (A == C || A == D || B == C || B == D) && NoLHSWrapProblem &&
2699         NoRHSWrapProblem) {
2700       // Determine Y and Z in the form icmp (X+Y), (X+Z).
2701       Value *Y, *Z;
2702       if (A == C) {
2703         // C + B == C + D  ->  B == D
2704         Y = B;
2705         Z = D;
2706       } else if (A == D) {
2707         // D + B == C + D  ->  B == C
2708         Y = B;
2709         Z = C;
2710       } else if (B == C) {
2711         // A + C == C + D  ->  A == D
2712         Y = A;
2713         Z = D;
2714       } else {
2715         assert(B == D);
2716         // A + D == C + D  ->  A == C
2717         Y = A;
2718         Z = C;
2719       }
2720       if (Value *V = SimplifyICmpInst(Pred, Y, Z, Q, MaxRecurse - 1))
2721         return V;
2722     }
2723   }
2724 
2725   {
2726     Value *Y = nullptr;
2727     // icmp pred (or X, Y), X
2728     if (LBO && match(LBO, m_c_Or(m_Value(Y), m_Specific(RHS)))) {
2729       if (Pred == ICmpInst::ICMP_ULT)
2730         return getFalse(ITy);
2731       if (Pred == ICmpInst::ICMP_UGE)
2732         return getTrue(ITy);
2733 
2734       if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SGE) {
2735         KnownBits RHSKnown = computeKnownBits(RHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
2736         KnownBits YKnown = computeKnownBits(Y, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
2737         if (RHSKnown.isNonNegative() && YKnown.isNegative())
2738           return Pred == ICmpInst::ICMP_SLT ? getTrue(ITy) : getFalse(ITy);
2739         if (RHSKnown.isNegative() || YKnown.isNonNegative())
2740           return Pred == ICmpInst::ICMP_SLT ? getFalse(ITy) : getTrue(ITy);
2741       }
2742     }
2743     // icmp pred X, (or X, Y)
2744     if (RBO && match(RBO, m_c_Or(m_Value(Y), m_Specific(LHS)))) {
2745       if (Pred == ICmpInst::ICMP_ULE)
2746         return getTrue(ITy);
2747       if (Pred == ICmpInst::ICMP_UGT)
2748         return getFalse(ITy);
2749 
2750       if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SLE) {
2751         KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
2752         KnownBits YKnown = computeKnownBits(Y, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
2753         if (LHSKnown.isNonNegative() && YKnown.isNegative())
2754           return Pred == ICmpInst::ICMP_SGT ? getTrue(ITy) : getFalse(ITy);
2755         if (LHSKnown.isNegative() || YKnown.isNonNegative())
2756           return Pred == ICmpInst::ICMP_SGT ? getFalse(ITy) : getTrue(ITy);
2757       }
2758     }
2759   }
2760 
2761   // icmp pred (and X, Y), X
2762   if (LBO && match(LBO, m_c_And(m_Value(), m_Specific(RHS)))) {
2763     if (Pred == ICmpInst::ICMP_UGT)
2764       return getFalse(ITy);
2765     if (Pred == ICmpInst::ICMP_ULE)
2766       return getTrue(ITy);
2767   }
2768   // icmp pred X, (and X, Y)
2769   if (RBO && match(RBO, m_c_And(m_Value(), m_Specific(LHS)))) {
2770     if (Pred == ICmpInst::ICMP_UGE)
2771       return getTrue(ITy);
2772     if (Pred == ICmpInst::ICMP_ULT)
2773       return getFalse(ITy);
2774   }
2775 
2776   // 0 - (zext X) pred C
2777   if (!CmpInst::isUnsigned(Pred) && match(LHS, m_Neg(m_ZExt(m_Value())))) {
2778     if (ConstantInt *RHSC = dyn_cast<ConstantInt>(RHS)) {
2779       if (RHSC->getValue().isStrictlyPositive()) {
2780         if (Pred == ICmpInst::ICMP_SLT)
2781           return ConstantInt::getTrue(RHSC->getContext());
2782         if (Pred == ICmpInst::ICMP_SGE)
2783           return ConstantInt::getFalse(RHSC->getContext());
2784         if (Pred == ICmpInst::ICMP_EQ)
2785           return ConstantInt::getFalse(RHSC->getContext());
2786         if (Pred == ICmpInst::ICMP_NE)
2787           return ConstantInt::getTrue(RHSC->getContext());
2788       }
2789       if (RHSC->getValue().isNonNegative()) {
2790         if (Pred == ICmpInst::ICMP_SLE)
2791           return ConstantInt::getTrue(RHSC->getContext());
2792         if (Pred == ICmpInst::ICMP_SGT)
2793           return ConstantInt::getFalse(RHSC->getContext());
2794       }
2795     }
2796   }
2797 
2798   // icmp pred (urem X, Y), Y
2799   if (LBO && match(LBO, m_URem(m_Value(), m_Specific(RHS)))) {
2800     switch (Pred) {
2801     default:
2802       break;
2803     case ICmpInst::ICMP_SGT:
2804     case ICmpInst::ICMP_SGE: {
2805       KnownBits Known = computeKnownBits(RHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
2806       if (!Known.isNonNegative())
2807         break;
2808       LLVM_FALLTHROUGH;
2809     }
2810     case ICmpInst::ICMP_EQ:
2811     case ICmpInst::ICMP_UGT:
2812     case ICmpInst::ICMP_UGE:
2813       return getFalse(ITy);
2814     case ICmpInst::ICMP_SLT:
2815     case ICmpInst::ICMP_SLE: {
2816       KnownBits Known = computeKnownBits(RHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
2817       if (!Known.isNonNegative())
2818         break;
2819       LLVM_FALLTHROUGH;
2820     }
2821     case ICmpInst::ICMP_NE:
2822     case ICmpInst::ICMP_ULT:
2823     case ICmpInst::ICMP_ULE:
2824       return getTrue(ITy);
2825     }
2826   }
2827 
2828   // icmp pred X, (urem Y, X)
2829   if (RBO && match(RBO, m_URem(m_Value(), m_Specific(LHS)))) {
2830     switch (Pred) {
2831     default:
2832       break;
2833     case ICmpInst::ICMP_SGT:
2834     case ICmpInst::ICMP_SGE: {
2835       KnownBits Known = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
2836       if (!Known.isNonNegative())
2837         break;
2838       LLVM_FALLTHROUGH;
2839     }
2840     case ICmpInst::ICMP_NE:
2841     case ICmpInst::ICMP_UGT:
2842     case ICmpInst::ICMP_UGE:
2843       return getTrue(ITy);
2844     case ICmpInst::ICMP_SLT:
2845     case ICmpInst::ICMP_SLE: {
2846       KnownBits Known = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
2847       if (!Known.isNonNegative())
2848         break;
2849       LLVM_FALLTHROUGH;
2850     }
2851     case ICmpInst::ICMP_EQ:
2852     case ICmpInst::ICMP_ULT:
2853     case ICmpInst::ICMP_ULE:
2854       return getFalse(ITy);
2855     }
2856   }
2857 
2858   // x >> y <=u x
2859   // x udiv y <=u x.
2860   if (LBO && (match(LBO, m_LShr(m_Specific(RHS), m_Value())) ||
2861               match(LBO, m_UDiv(m_Specific(RHS), m_Value())))) {
2862     // icmp pred (X op Y), X
2863     if (Pred == ICmpInst::ICMP_UGT)
2864       return getFalse(ITy);
2865     if (Pred == ICmpInst::ICMP_ULE)
2866       return getTrue(ITy);
2867   }
2868 
2869   // x >=u x >> y
2870   // x >=u x udiv y.
2871   if (RBO && (match(RBO, m_LShr(m_Specific(LHS), m_Value())) ||
2872               match(RBO, m_UDiv(m_Specific(LHS), m_Value())))) {
2873     // icmp pred X, (X op Y)
2874     if (Pred == ICmpInst::ICMP_ULT)
2875       return getFalse(ITy);
2876     if (Pred == ICmpInst::ICMP_UGE)
2877       return getTrue(ITy);
2878   }
2879 
2880   // handle:
2881   //   CI2 << X == CI
2882   //   CI2 << X != CI
2883   //
2884   //   where CI2 is a power of 2 and CI isn't
2885   if (auto *CI = dyn_cast<ConstantInt>(RHS)) {
2886     const APInt *CI2Val, *CIVal = &CI->getValue();
2887     if (LBO && match(LBO, m_Shl(m_APInt(CI2Val), m_Value())) &&
2888         CI2Val->isPowerOf2()) {
2889       if (!CIVal->isPowerOf2()) {
2890         // CI2 << X can equal zero in some circumstances,
2891         // this simplification is unsafe if CI is zero.
2892         //
2893         // We know it is safe if:
2894         // - The shift is nsw, we can't shift out the one bit.
2895         // - The shift is nuw, we can't shift out the one bit.
2896         // - CI2 is one
2897         // - CI isn't zero
2898         if (Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(LBO)) ||
2899             Q.IIQ.hasNoUnsignedWrap(cast<OverflowingBinaryOperator>(LBO)) ||
2900             CI2Val->isOneValue() || !CI->isZero()) {
2901           if (Pred == ICmpInst::ICMP_EQ)
2902             return ConstantInt::getFalse(RHS->getContext());
2903           if (Pred == ICmpInst::ICMP_NE)
2904             return ConstantInt::getTrue(RHS->getContext());
2905         }
2906       }
2907       if (CIVal->isSignMask() && CI2Val->isOneValue()) {
2908         if (Pred == ICmpInst::ICMP_UGT)
2909           return ConstantInt::getFalse(RHS->getContext());
2910         if (Pred == ICmpInst::ICMP_ULE)
2911           return ConstantInt::getTrue(RHS->getContext());
2912       }
2913     }
2914   }
2915 
2916   if (MaxRecurse && LBO && RBO && LBO->getOpcode() == RBO->getOpcode() &&
2917       LBO->getOperand(1) == RBO->getOperand(1)) {
2918     switch (LBO->getOpcode()) {
2919     default:
2920       break;
2921     case Instruction::UDiv:
2922     case Instruction::LShr:
2923       if (ICmpInst::isSigned(Pred) || !Q.IIQ.isExact(LBO) ||
2924           !Q.IIQ.isExact(RBO))
2925         break;
2926       if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0),
2927                                       RBO->getOperand(0), Q, MaxRecurse - 1))
2928           return V;
2929       break;
2930     case Instruction::SDiv:
2931       if (!ICmpInst::isEquality(Pred) || !Q.IIQ.isExact(LBO) ||
2932           !Q.IIQ.isExact(RBO))
2933         break;
2934       if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0),
2935                                       RBO->getOperand(0), Q, MaxRecurse - 1))
2936         return V;
2937       break;
2938     case Instruction::AShr:
2939       if (!Q.IIQ.isExact(LBO) || !Q.IIQ.isExact(RBO))
2940         break;
2941       if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0),
2942                                       RBO->getOperand(0), Q, MaxRecurse - 1))
2943         return V;
2944       break;
2945     case Instruction::Shl: {
2946       bool NUW = Q.IIQ.hasNoUnsignedWrap(LBO) && Q.IIQ.hasNoUnsignedWrap(RBO);
2947       bool NSW = Q.IIQ.hasNoSignedWrap(LBO) && Q.IIQ.hasNoSignedWrap(RBO);
2948       if (!NUW && !NSW)
2949         break;
2950       if (!NSW && ICmpInst::isSigned(Pred))
2951         break;
2952       if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0),
2953                                       RBO->getOperand(0), Q, MaxRecurse - 1))
2954         return V;
2955       break;
2956     }
2957     }
2958   }
2959   return nullptr;
2960 }
2961 
2962 /// Simplify integer comparisons where at least one operand of the compare
2963 /// matches an integer min/max idiom.
2964 static Value *simplifyICmpWithMinMax(CmpInst::Predicate Pred, Value *LHS,
2965                                      Value *RHS, const SimplifyQuery &Q,
2966                                      unsigned MaxRecurse) {
2967   Type *ITy = GetCompareTy(LHS); // The return type.
2968   Value *A, *B;
2969   CmpInst::Predicate P = CmpInst::BAD_ICMP_PREDICATE;
2970   CmpInst::Predicate EqP; // Chosen so that "A == max/min(A,B)" iff "A EqP B".
2971 
2972   // Signed variants on "max(a,b)>=a -> true".
2973   if (match(LHS, m_SMax(m_Value(A), m_Value(B))) && (A == RHS || B == RHS)) {
2974     if (A != RHS)
2975       std::swap(A, B);       // smax(A, B) pred A.
2976     EqP = CmpInst::ICMP_SGE; // "A == smax(A, B)" iff "A sge B".
2977     // We analyze this as smax(A, B) pred A.
2978     P = Pred;
2979   } else if (match(RHS, m_SMax(m_Value(A), m_Value(B))) &&
2980              (A == LHS || B == LHS)) {
2981     if (A != LHS)
2982       std::swap(A, B);       // A pred smax(A, B).
2983     EqP = CmpInst::ICMP_SGE; // "A == smax(A, B)" iff "A sge B".
2984     // We analyze this as smax(A, B) swapped-pred A.
2985     P = CmpInst::getSwappedPredicate(Pred);
2986   } else if (match(LHS, m_SMin(m_Value(A), m_Value(B))) &&
2987              (A == RHS || B == RHS)) {
2988     if (A != RHS)
2989       std::swap(A, B);       // smin(A, B) pred A.
2990     EqP = CmpInst::ICMP_SLE; // "A == smin(A, B)" iff "A sle B".
2991     // We analyze this as smax(-A, -B) swapped-pred -A.
2992     // Note that we do not need to actually form -A or -B thanks to EqP.
2993     P = CmpInst::getSwappedPredicate(Pred);
2994   } else if (match(RHS, m_SMin(m_Value(A), m_Value(B))) &&
2995              (A == LHS || B == LHS)) {
2996     if (A != LHS)
2997       std::swap(A, B);       // A pred smin(A, B).
2998     EqP = CmpInst::ICMP_SLE; // "A == smin(A, B)" iff "A sle B".
2999     // We analyze this as smax(-A, -B) pred -A.
3000     // Note that we do not need to actually form -A or -B thanks to EqP.
3001     P = Pred;
3002   }
3003   if (P != CmpInst::BAD_ICMP_PREDICATE) {
3004     // Cases correspond to "max(A, B) p A".
3005     switch (P) {
3006     default:
3007       break;
3008     case CmpInst::ICMP_EQ:
3009     case CmpInst::ICMP_SLE:
3010       // Equivalent to "A EqP B".  This may be the same as the condition tested
3011       // in the max/min; if so, we can just return that.
3012       if (Value *V = ExtractEquivalentCondition(LHS, EqP, A, B))
3013         return V;
3014       if (Value *V = ExtractEquivalentCondition(RHS, EqP, A, B))
3015         return V;
3016       // Otherwise, see if "A EqP B" simplifies.
3017       if (MaxRecurse)
3018         if (Value *V = SimplifyICmpInst(EqP, A, B, Q, MaxRecurse - 1))
3019           return V;
3020       break;
3021     case CmpInst::ICMP_NE:
3022     case CmpInst::ICMP_SGT: {
3023       CmpInst::Predicate InvEqP = CmpInst::getInversePredicate(EqP);
3024       // Equivalent to "A InvEqP B".  This may be the same as the condition
3025       // tested in the max/min; if so, we can just return that.
3026       if (Value *V = ExtractEquivalentCondition(LHS, InvEqP, A, B))
3027         return V;
3028       if (Value *V = ExtractEquivalentCondition(RHS, InvEqP, A, B))
3029         return V;
3030       // Otherwise, see if "A InvEqP B" simplifies.
3031       if (MaxRecurse)
3032         if (Value *V = SimplifyICmpInst(InvEqP, A, B, Q, MaxRecurse - 1))
3033           return V;
3034       break;
3035     }
3036     case CmpInst::ICMP_SGE:
3037       // Always true.
3038       return getTrue(ITy);
3039     case CmpInst::ICMP_SLT:
3040       // Always false.
3041       return getFalse(ITy);
3042     }
3043   }
3044 
3045   // Unsigned variants on "max(a,b)>=a -> true".
3046   P = CmpInst::BAD_ICMP_PREDICATE;
3047   if (match(LHS, m_UMax(m_Value(A), m_Value(B))) && (A == RHS || B == RHS)) {
3048     if (A != RHS)
3049       std::swap(A, B);       // umax(A, B) pred A.
3050     EqP = CmpInst::ICMP_UGE; // "A == umax(A, B)" iff "A uge B".
3051     // We analyze this as umax(A, B) pred A.
3052     P = Pred;
3053   } else if (match(RHS, m_UMax(m_Value(A), m_Value(B))) &&
3054              (A == LHS || B == LHS)) {
3055     if (A != LHS)
3056       std::swap(A, B);       // A pred umax(A, B).
3057     EqP = CmpInst::ICMP_UGE; // "A == umax(A, B)" iff "A uge B".
3058     // We analyze this as umax(A, B) swapped-pred A.
3059     P = CmpInst::getSwappedPredicate(Pred);
3060   } else if (match(LHS, m_UMin(m_Value(A), m_Value(B))) &&
3061              (A == RHS || B == RHS)) {
3062     if (A != RHS)
3063       std::swap(A, B);       // umin(A, B) pred A.
3064     EqP = CmpInst::ICMP_ULE; // "A == umin(A, B)" iff "A ule B".
3065     // We analyze this as umax(-A, -B) swapped-pred -A.
3066     // Note that we do not need to actually form -A or -B thanks to EqP.
3067     P = CmpInst::getSwappedPredicate(Pred);
3068   } else if (match(RHS, m_UMin(m_Value(A), m_Value(B))) &&
3069              (A == LHS || B == LHS)) {
3070     if (A != LHS)
3071       std::swap(A, B);       // A pred umin(A, B).
3072     EqP = CmpInst::ICMP_ULE; // "A == umin(A, B)" iff "A ule B".
3073     // We analyze this as umax(-A, -B) pred -A.
3074     // Note that we do not need to actually form -A or -B thanks to EqP.
3075     P = Pred;
3076   }
3077   if (P != CmpInst::BAD_ICMP_PREDICATE) {
3078     // Cases correspond to "max(A, B) p A".
3079     switch (P) {
3080     default:
3081       break;
3082     case CmpInst::ICMP_EQ:
3083     case CmpInst::ICMP_ULE:
3084       // Equivalent to "A EqP B".  This may be the same as the condition tested
3085       // in the max/min; if so, we can just return that.
3086       if (Value *V = ExtractEquivalentCondition(LHS, EqP, A, B))
3087         return V;
3088       if (Value *V = ExtractEquivalentCondition(RHS, EqP, A, B))
3089         return V;
3090       // Otherwise, see if "A EqP B" simplifies.
3091       if (MaxRecurse)
3092         if (Value *V = SimplifyICmpInst(EqP, A, B, Q, MaxRecurse - 1))
3093           return V;
3094       break;
3095     case CmpInst::ICMP_NE:
3096     case CmpInst::ICMP_UGT: {
3097       CmpInst::Predicate InvEqP = CmpInst::getInversePredicate(EqP);
3098       // Equivalent to "A InvEqP B".  This may be the same as the condition
3099       // tested in the max/min; if so, we can just return that.
3100       if (Value *V = ExtractEquivalentCondition(LHS, InvEqP, A, B))
3101         return V;
3102       if (Value *V = ExtractEquivalentCondition(RHS, InvEqP, A, B))
3103         return V;
3104       // Otherwise, see if "A InvEqP B" simplifies.
3105       if (MaxRecurse)
3106         if (Value *V = SimplifyICmpInst(InvEqP, A, B, Q, MaxRecurse - 1))
3107           return V;
3108       break;
3109     }
3110     case CmpInst::ICMP_UGE:
3111       // Always true.
3112       return getTrue(ITy);
3113     case CmpInst::ICMP_ULT:
3114       // Always false.
3115       return getFalse(ITy);
3116     }
3117   }
3118 
3119   // Variants on "max(x,y) >= min(x,z)".
3120   Value *C, *D;
3121   if (match(LHS, m_SMax(m_Value(A), m_Value(B))) &&
3122       match(RHS, m_SMin(m_Value(C), m_Value(D))) &&
3123       (A == C || A == D || B == C || B == D)) {
3124     // max(x, ?) pred min(x, ?).
3125     if (Pred == CmpInst::ICMP_SGE)
3126       // Always true.
3127       return getTrue(ITy);
3128     if (Pred == CmpInst::ICMP_SLT)
3129       // Always false.
3130       return getFalse(ITy);
3131   } else if (match(LHS, m_SMin(m_Value(A), m_Value(B))) &&
3132              match(RHS, m_SMax(m_Value(C), m_Value(D))) &&
3133              (A == C || A == D || B == C || B == D)) {
3134     // min(x, ?) pred max(x, ?).
3135     if (Pred == CmpInst::ICMP_SLE)
3136       // Always true.
3137       return getTrue(ITy);
3138     if (Pred == CmpInst::ICMP_SGT)
3139       // Always false.
3140       return getFalse(ITy);
3141   } else if (match(LHS, m_UMax(m_Value(A), m_Value(B))) &&
3142              match(RHS, m_UMin(m_Value(C), m_Value(D))) &&
3143              (A == C || A == D || B == C || B == D)) {
3144     // max(x, ?) pred min(x, ?).
3145     if (Pred == CmpInst::ICMP_UGE)
3146       // Always true.
3147       return getTrue(ITy);
3148     if (Pred == CmpInst::ICMP_ULT)
3149       // Always false.
3150       return getFalse(ITy);
3151   } else if (match(LHS, m_UMin(m_Value(A), m_Value(B))) &&
3152              match(RHS, m_UMax(m_Value(C), m_Value(D))) &&
3153              (A == C || A == D || B == C || B == D)) {
3154     // min(x, ?) pred max(x, ?).
3155     if (Pred == CmpInst::ICMP_ULE)
3156       // Always true.
3157       return getTrue(ITy);
3158     if (Pred == CmpInst::ICMP_UGT)
3159       // Always false.
3160       return getFalse(ITy);
3161   }
3162 
3163   return nullptr;
3164 }
3165 
3166 /// Given operands for an ICmpInst, see if we can fold the result.
3167 /// If not, this returns null.
3168 static Value *SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS,
3169                                const SimplifyQuery &Q, unsigned MaxRecurse) {
3170   CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate;
3171   assert(CmpInst::isIntPredicate(Pred) && "Not an integer compare!");
3172 
3173   if (Constant *CLHS = dyn_cast<Constant>(LHS)) {
3174     if (Constant *CRHS = dyn_cast<Constant>(RHS))
3175       return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, Q.DL, Q.TLI);
3176 
3177     // If we have a constant, make sure it is on the RHS.
3178     std::swap(LHS, RHS);
3179     Pred = CmpInst::getSwappedPredicate(Pred);
3180   }
3181   assert(!isa<UndefValue>(LHS) && "Unexpected icmp undef,%X");
3182 
3183   Type *ITy = GetCompareTy(LHS); // The return type.
3184 
3185   // For EQ and NE, we can always pick a value for the undef to make the
3186   // predicate pass or fail, so we can return undef.
3187   // Matches behavior in llvm::ConstantFoldCompareInstruction.
3188   if (isa<UndefValue>(RHS) && ICmpInst::isEquality(Pred))
3189     return UndefValue::get(ITy);
3190 
3191   // icmp X, X -> true/false
3192   // icmp X, undef -> true/false because undef could be X.
3193   if (LHS == RHS || isa<UndefValue>(RHS))
3194     return ConstantInt::get(ITy, CmpInst::isTrueWhenEqual(Pred));
3195 
3196   if (Value *V = simplifyICmpOfBools(Pred, LHS, RHS, Q))
3197     return V;
3198 
3199   if (Value *V = simplifyICmpWithZero(Pred, LHS, RHS, Q))
3200     return V;
3201 
3202   if (Value *V = simplifyICmpWithConstant(Pred, LHS, RHS, Q.IIQ))
3203     return V;
3204 
3205   // If both operands have range metadata, use the metadata
3206   // to simplify the comparison.
3207   if (isa<Instruction>(RHS) && isa<Instruction>(LHS)) {
3208     auto RHS_Instr = cast<Instruction>(RHS);
3209     auto LHS_Instr = cast<Instruction>(LHS);
3210 
3211     if (Q.IIQ.getMetadata(RHS_Instr, LLVMContext::MD_range) &&
3212         Q.IIQ.getMetadata(LHS_Instr, LLVMContext::MD_range)) {
3213       auto RHS_CR = getConstantRangeFromMetadata(
3214           *RHS_Instr->getMetadata(LLVMContext::MD_range));
3215       auto LHS_CR = getConstantRangeFromMetadata(
3216           *LHS_Instr->getMetadata(LLVMContext::MD_range));
3217 
3218       auto Satisfied_CR = ConstantRange::makeSatisfyingICmpRegion(Pred, RHS_CR);
3219       if (Satisfied_CR.contains(LHS_CR))
3220         return ConstantInt::getTrue(RHS->getContext());
3221 
3222       auto InversedSatisfied_CR = ConstantRange::makeSatisfyingICmpRegion(
3223                 CmpInst::getInversePredicate(Pred), RHS_CR);
3224       if (InversedSatisfied_CR.contains(LHS_CR))
3225         return ConstantInt::getFalse(RHS->getContext());
3226     }
3227   }
3228 
3229   // Compare of cast, for example (zext X) != 0 -> X != 0
3230   if (isa<CastInst>(LHS) && (isa<Constant>(RHS) || isa<CastInst>(RHS))) {
3231     Instruction *LI = cast<CastInst>(LHS);
3232     Value *SrcOp = LI->getOperand(0);
3233     Type *SrcTy = SrcOp->getType();
3234     Type *DstTy = LI->getType();
3235 
3236     // Turn icmp (ptrtoint x), (ptrtoint/constant) into a compare of the input
3237     // if the integer type is the same size as the pointer type.
3238     if (MaxRecurse && isa<PtrToIntInst>(LI) &&
3239         Q.DL.getTypeSizeInBits(SrcTy) == DstTy->getPrimitiveSizeInBits()) {
3240       if (Constant *RHSC = dyn_cast<Constant>(RHS)) {
3241         // Transfer the cast to the constant.
3242         if (Value *V = SimplifyICmpInst(Pred, SrcOp,
3243                                         ConstantExpr::getIntToPtr(RHSC, SrcTy),
3244                                         Q, MaxRecurse-1))
3245           return V;
3246       } else if (PtrToIntInst *RI = dyn_cast<PtrToIntInst>(RHS)) {
3247         if (RI->getOperand(0)->getType() == SrcTy)
3248           // Compare without the cast.
3249           if (Value *V = SimplifyICmpInst(Pred, SrcOp, RI->getOperand(0),
3250                                           Q, MaxRecurse-1))
3251             return V;
3252       }
3253     }
3254 
3255     if (isa<ZExtInst>(LHS)) {
3256       // Turn icmp (zext X), (zext Y) into a compare of X and Y if they have the
3257       // same type.
3258       if (ZExtInst *RI = dyn_cast<ZExtInst>(RHS)) {
3259         if (MaxRecurse && SrcTy == RI->getOperand(0)->getType())
3260           // Compare X and Y.  Note that signed predicates become unsigned.
3261           if (Value *V = SimplifyICmpInst(ICmpInst::getUnsignedPredicate(Pred),
3262                                           SrcOp, RI->getOperand(0), Q,
3263                                           MaxRecurse-1))
3264             return V;
3265       }
3266       // Turn icmp (zext X), Cst into a compare of X and Cst if Cst is extended
3267       // too.  If not, then try to deduce the result of the comparison.
3268       else if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
3269         // Compute the constant that would happen if we truncated to SrcTy then
3270         // reextended to DstTy.
3271         Constant *Trunc = ConstantExpr::getTrunc(CI, SrcTy);
3272         Constant *RExt = ConstantExpr::getCast(CastInst::ZExt, Trunc, DstTy);
3273 
3274         // If the re-extended constant didn't change then this is effectively
3275         // also a case of comparing two zero-extended values.
3276         if (RExt == CI && MaxRecurse)
3277           if (Value *V = SimplifyICmpInst(ICmpInst::getUnsignedPredicate(Pred),
3278                                         SrcOp, Trunc, Q, MaxRecurse-1))
3279             return V;
3280 
3281         // Otherwise the upper bits of LHS are zero while RHS has a non-zero bit
3282         // there.  Use this to work out the result of the comparison.
3283         if (RExt != CI) {
3284           switch (Pred) {
3285           default: llvm_unreachable("Unknown ICmp predicate!");
3286           // LHS <u RHS.
3287           case ICmpInst::ICMP_EQ:
3288           case ICmpInst::ICMP_UGT:
3289           case ICmpInst::ICMP_UGE:
3290             return ConstantInt::getFalse(CI->getContext());
3291 
3292           case ICmpInst::ICMP_NE:
3293           case ICmpInst::ICMP_ULT:
3294           case ICmpInst::ICMP_ULE:
3295             return ConstantInt::getTrue(CI->getContext());
3296 
3297           // LHS is non-negative.  If RHS is negative then LHS >s LHS.  If RHS
3298           // is non-negative then LHS <s RHS.
3299           case ICmpInst::ICMP_SGT:
3300           case ICmpInst::ICMP_SGE:
3301             return CI->getValue().isNegative() ?
3302               ConstantInt::getTrue(CI->getContext()) :
3303               ConstantInt::getFalse(CI->getContext());
3304 
3305           case ICmpInst::ICMP_SLT:
3306           case ICmpInst::ICMP_SLE:
3307             return CI->getValue().isNegative() ?
3308               ConstantInt::getFalse(CI->getContext()) :
3309               ConstantInt::getTrue(CI->getContext());
3310           }
3311         }
3312       }
3313     }
3314 
3315     if (isa<SExtInst>(LHS)) {
3316       // Turn icmp (sext X), (sext Y) into a compare of X and Y if they have the
3317       // same type.
3318       if (SExtInst *RI = dyn_cast<SExtInst>(RHS)) {
3319         if (MaxRecurse && SrcTy == RI->getOperand(0)->getType())
3320           // Compare X and Y.  Note that the predicate does not change.
3321           if (Value *V = SimplifyICmpInst(Pred, SrcOp, RI->getOperand(0),
3322                                           Q, MaxRecurse-1))
3323             return V;
3324       }
3325       // Turn icmp (sext X), Cst into a compare of X and Cst if Cst is extended
3326       // too.  If not, then try to deduce the result of the comparison.
3327       else if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
3328         // Compute the constant that would happen if we truncated to SrcTy then
3329         // reextended to DstTy.
3330         Constant *Trunc = ConstantExpr::getTrunc(CI, SrcTy);
3331         Constant *RExt = ConstantExpr::getCast(CastInst::SExt, Trunc, DstTy);
3332 
3333         // If the re-extended constant didn't change then this is effectively
3334         // also a case of comparing two sign-extended values.
3335         if (RExt == CI && MaxRecurse)
3336           if (Value *V = SimplifyICmpInst(Pred, SrcOp, Trunc, Q, MaxRecurse-1))
3337             return V;
3338 
3339         // Otherwise the upper bits of LHS are all equal, while RHS has varying
3340         // bits there.  Use this to work out the result of the comparison.
3341         if (RExt != CI) {
3342           switch (Pred) {
3343           default: llvm_unreachable("Unknown ICmp predicate!");
3344           case ICmpInst::ICMP_EQ:
3345             return ConstantInt::getFalse(CI->getContext());
3346           case ICmpInst::ICMP_NE:
3347             return ConstantInt::getTrue(CI->getContext());
3348 
3349           // If RHS is non-negative then LHS <s RHS.  If RHS is negative then
3350           // LHS >s RHS.
3351           case ICmpInst::ICMP_SGT:
3352           case ICmpInst::ICMP_SGE:
3353             return CI->getValue().isNegative() ?
3354               ConstantInt::getTrue(CI->getContext()) :
3355               ConstantInt::getFalse(CI->getContext());
3356           case ICmpInst::ICMP_SLT:
3357           case ICmpInst::ICMP_SLE:
3358             return CI->getValue().isNegative() ?
3359               ConstantInt::getFalse(CI->getContext()) :
3360               ConstantInt::getTrue(CI->getContext());
3361 
3362           // If LHS is non-negative then LHS <u RHS.  If LHS is negative then
3363           // LHS >u RHS.
3364           case ICmpInst::ICMP_UGT:
3365           case ICmpInst::ICMP_UGE:
3366             // Comparison is true iff the LHS <s 0.
3367             if (MaxRecurse)
3368               if (Value *V = SimplifyICmpInst(ICmpInst::ICMP_SLT, SrcOp,
3369                                               Constant::getNullValue(SrcTy),
3370                                               Q, MaxRecurse-1))
3371                 return V;
3372             break;
3373           case ICmpInst::ICMP_ULT:
3374           case ICmpInst::ICMP_ULE:
3375             // Comparison is true iff the LHS >=s 0.
3376             if (MaxRecurse)
3377               if (Value *V = SimplifyICmpInst(ICmpInst::ICMP_SGE, SrcOp,
3378                                               Constant::getNullValue(SrcTy),
3379                                               Q, MaxRecurse-1))
3380                 return V;
3381             break;
3382           }
3383         }
3384       }
3385     }
3386   }
3387 
3388   // icmp eq|ne X, Y -> false|true if X != Y
3389   if (ICmpInst::isEquality(Pred) &&
3390       isKnownNonEqual(LHS, RHS, Q.DL, Q.AC, Q.CxtI, Q.DT, Q.IIQ.UseInstrInfo)) {
3391     return Pred == ICmpInst::ICMP_NE ? getTrue(ITy) : getFalse(ITy);
3392   }
3393 
3394   if (Value *V = simplifyICmpWithBinOp(Pred, LHS, RHS, Q, MaxRecurse))
3395     return V;
3396 
3397   if (Value *V = simplifyICmpWithMinMax(Pred, LHS, RHS, Q, MaxRecurse))
3398     return V;
3399 
3400   // Simplify comparisons of related pointers using a powerful, recursive
3401   // GEP-walk when we have target data available..
3402   if (LHS->getType()->isPointerTy())
3403     if (auto *C = computePointerICmp(Q.DL, Q.TLI, Q.DT, Pred, Q.AC, Q.CxtI,
3404                                      Q.IIQ, LHS, RHS))
3405       return C;
3406   if (auto *CLHS = dyn_cast<PtrToIntOperator>(LHS))
3407     if (auto *CRHS = dyn_cast<PtrToIntOperator>(RHS))
3408       if (Q.DL.getTypeSizeInBits(CLHS->getPointerOperandType()) ==
3409               Q.DL.getTypeSizeInBits(CLHS->getType()) &&
3410           Q.DL.getTypeSizeInBits(CRHS->getPointerOperandType()) ==
3411               Q.DL.getTypeSizeInBits(CRHS->getType()))
3412         if (auto *C = computePointerICmp(Q.DL, Q.TLI, Q.DT, Pred, Q.AC, Q.CxtI,
3413                                          Q.IIQ, CLHS->getPointerOperand(),
3414                                          CRHS->getPointerOperand()))
3415           return C;
3416 
3417   if (GetElementPtrInst *GLHS = dyn_cast<GetElementPtrInst>(LHS)) {
3418     if (GEPOperator *GRHS = dyn_cast<GEPOperator>(RHS)) {
3419       if (GLHS->getPointerOperand() == GRHS->getPointerOperand() &&
3420           GLHS->hasAllConstantIndices() && GRHS->hasAllConstantIndices() &&
3421           (ICmpInst::isEquality(Pred) ||
3422            (GLHS->isInBounds() && GRHS->isInBounds() &&
3423             Pred == ICmpInst::getSignedPredicate(Pred)))) {
3424         // The bases are equal and the indices are constant.  Build a constant
3425         // expression GEP with the same indices and a null base pointer to see
3426         // what constant folding can make out of it.
3427         Constant *Null = Constant::getNullValue(GLHS->getPointerOperandType());
3428         SmallVector<Value *, 4> IndicesLHS(GLHS->idx_begin(), GLHS->idx_end());
3429         Constant *NewLHS = ConstantExpr::getGetElementPtr(
3430             GLHS->getSourceElementType(), Null, IndicesLHS);
3431 
3432         SmallVector<Value *, 4> IndicesRHS(GRHS->idx_begin(), GRHS->idx_end());
3433         Constant *NewRHS = ConstantExpr::getGetElementPtr(
3434             GLHS->getSourceElementType(), Null, IndicesRHS);
3435         return ConstantExpr::getICmp(Pred, NewLHS, NewRHS);
3436       }
3437     }
3438   }
3439 
3440   // If the comparison is with the result of a select instruction, check whether
3441   // comparing with either branch of the select always yields the same value.
3442   if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS))
3443     if (Value *V = ThreadCmpOverSelect(Pred, LHS, RHS, Q, MaxRecurse))
3444       return V;
3445 
3446   // If the comparison is with the result of a phi instruction, check whether
3447   // doing the compare with each incoming phi value yields a common result.
3448   if (isa<PHINode>(LHS) || isa<PHINode>(RHS))
3449     if (Value *V = ThreadCmpOverPHI(Pred, LHS, RHS, Q, MaxRecurse))
3450       return V;
3451 
3452   return nullptr;
3453 }
3454 
3455 Value *llvm::SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS,
3456                               const SimplifyQuery &Q) {
3457   return ::SimplifyICmpInst(Predicate, LHS, RHS, Q, RecursionLimit);
3458 }
3459 
3460 /// Given operands for an FCmpInst, see if we can fold the result.
3461 /// If not, this returns null.
3462 static Value *SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
3463                                FastMathFlags FMF, const SimplifyQuery &Q,
3464                                unsigned MaxRecurse) {
3465   CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate;
3466   assert(CmpInst::isFPPredicate(Pred) && "Not an FP compare!");
3467 
3468   if (Constant *CLHS = dyn_cast<Constant>(LHS)) {
3469     if (Constant *CRHS = dyn_cast<Constant>(RHS))
3470       return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, Q.DL, Q.TLI);
3471 
3472     // If we have a constant, make sure it is on the RHS.
3473     std::swap(LHS, RHS);
3474     Pred = CmpInst::getSwappedPredicate(Pred);
3475   }
3476 
3477   // Fold trivial predicates.
3478   Type *RetTy = GetCompareTy(LHS);
3479   if (Pred == FCmpInst::FCMP_FALSE)
3480     return getFalse(RetTy);
3481   if (Pred == FCmpInst::FCMP_TRUE)
3482     return getTrue(RetTy);
3483 
3484   // Fold (un)ordered comparison if we can determine there are no NaNs.
3485   if (Pred == FCmpInst::FCMP_UNO || Pred == FCmpInst::FCMP_ORD)
3486     if (FMF.noNaNs() ||
3487         (isKnownNeverNaN(LHS, Q.TLI) && isKnownNeverNaN(RHS, Q.TLI)))
3488       return ConstantInt::get(RetTy, Pred == FCmpInst::FCMP_ORD);
3489 
3490   // NaN is unordered; NaN is not ordered.
3491   assert((FCmpInst::isOrdered(Pred) || FCmpInst::isUnordered(Pred)) &&
3492          "Comparison must be either ordered or unordered");
3493   if (match(RHS, m_NaN()))
3494     return ConstantInt::get(RetTy, CmpInst::isUnordered(Pred));
3495 
3496   // fcmp pred x, undef  and  fcmp pred undef, x
3497   // fold to true if unordered, false if ordered
3498   if (isa<UndefValue>(LHS) || isa<UndefValue>(RHS)) {
3499     // Choosing NaN for the undef will always make unordered comparison succeed
3500     // and ordered comparison fail.
3501     return ConstantInt::get(RetTy, CmpInst::isUnordered(Pred));
3502   }
3503 
3504   // fcmp x,x -> true/false.  Not all compares are foldable.
3505   if (LHS == RHS) {
3506     if (CmpInst::isTrueWhenEqual(Pred))
3507       return getTrue(RetTy);
3508     if (CmpInst::isFalseWhenEqual(Pred))
3509       return getFalse(RetTy);
3510   }
3511 
3512   // Handle fcmp with constant RHS.
3513   // TODO: Use match with a specific FP value, so these work with vectors with
3514   // undef lanes.
3515   const APFloat *C;
3516   if (match(RHS, m_APFloat(C))) {
3517     // Check whether the constant is an infinity.
3518     if (C->isInfinity()) {
3519       if (C->isNegative()) {
3520         switch (Pred) {
3521         case FCmpInst::FCMP_OLT:
3522           // No value is ordered and less than negative infinity.
3523           return getFalse(RetTy);
3524         case FCmpInst::FCMP_UGE:
3525           // All values are unordered with or at least negative infinity.
3526           return getTrue(RetTy);
3527         default:
3528           break;
3529         }
3530       } else {
3531         switch (Pred) {
3532         case FCmpInst::FCMP_OGT:
3533           // No value is ordered and greater than infinity.
3534           return getFalse(RetTy);
3535         case FCmpInst::FCMP_ULE:
3536           // All values are unordered with and at most infinity.
3537           return getTrue(RetTy);
3538         default:
3539           break;
3540         }
3541       }
3542     }
3543     if (C->isNegative() && !C->isNegZero()) {
3544       assert(!C->isNaN() && "Unexpected NaN constant!");
3545       // TODO: We can catch more cases by using a range check rather than
3546       //       relying on CannotBeOrderedLessThanZero.
3547       switch (Pred) {
3548       case FCmpInst::FCMP_UGE:
3549       case FCmpInst::FCMP_UGT:
3550       case FCmpInst::FCMP_UNE:
3551         // (X >= 0) implies (X > C) when (C < 0)
3552         if (CannotBeOrderedLessThanZero(LHS, Q.TLI))
3553           return getTrue(RetTy);
3554         break;
3555       case FCmpInst::FCMP_OEQ:
3556       case FCmpInst::FCMP_OLE:
3557       case FCmpInst::FCMP_OLT:
3558         // (X >= 0) implies !(X < C) when (C < 0)
3559         if (CannotBeOrderedLessThanZero(LHS, Q.TLI))
3560           return getFalse(RetTy);
3561         break;
3562       default:
3563         break;
3564       }
3565     }
3566 
3567     // Check comparison of [minnum/maxnum with constant] with other constant.
3568     const APFloat *C2;
3569     if ((match(LHS, m_Intrinsic<Intrinsic::minnum>(m_Value(), m_APFloat(C2))) &&
3570          C2->compare(*C) == APFloat::cmpLessThan) ||
3571         (match(LHS, m_Intrinsic<Intrinsic::maxnum>(m_Value(), m_APFloat(C2))) &&
3572          C2->compare(*C) == APFloat::cmpGreaterThan)) {
3573       bool IsMaxNum =
3574           cast<IntrinsicInst>(LHS)->getIntrinsicID() == Intrinsic::maxnum;
3575       // The ordered relationship and minnum/maxnum guarantee that we do not
3576       // have NaN constants, so ordered/unordered preds are handled the same.
3577       switch (Pred) {
3578       case FCmpInst::FCMP_OEQ: case FCmpInst::FCMP_UEQ:
3579         // minnum(X, LesserC)  == C --> false
3580         // maxnum(X, GreaterC) == C --> false
3581         return getFalse(RetTy);
3582       case FCmpInst::FCMP_ONE: case FCmpInst::FCMP_UNE:
3583         // minnum(X, LesserC)  != C --> true
3584         // maxnum(X, GreaterC) != C --> true
3585         return getTrue(RetTy);
3586       case FCmpInst::FCMP_OGE: case FCmpInst::FCMP_UGE:
3587       case FCmpInst::FCMP_OGT: case FCmpInst::FCMP_UGT:
3588         // minnum(X, LesserC)  >= C --> false
3589         // minnum(X, LesserC)  >  C --> false
3590         // maxnum(X, GreaterC) >= C --> true
3591         // maxnum(X, GreaterC) >  C --> true
3592         return ConstantInt::get(RetTy, IsMaxNum);
3593       case FCmpInst::FCMP_OLE: case FCmpInst::FCMP_ULE:
3594       case FCmpInst::FCMP_OLT: case FCmpInst::FCMP_ULT:
3595         // minnum(X, LesserC)  <= C --> true
3596         // minnum(X, LesserC)  <  C --> true
3597         // maxnum(X, GreaterC) <= C --> false
3598         // maxnum(X, GreaterC) <  C --> false
3599         return ConstantInt::get(RetTy, !IsMaxNum);
3600       default:
3601         // TRUE/FALSE/ORD/UNO should be handled before this.
3602         llvm_unreachable("Unexpected fcmp predicate");
3603       }
3604     }
3605   }
3606 
3607   if (match(RHS, m_AnyZeroFP())) {
3608     switch (Pred) {
3609     case FCmpInst::FCMP_OGE:
3610     case FCmpInst::FCMP_ULT:
3611       // Positive or zero X >= 0.0 --> true
3612       // Positive or zero X <  0.0 --> false
3613       if ((FMF.noNaNs() || isKnownNeverNaN(LHS, Q.TLI)) &&
3614           CannotBeOrderedLessThanZero(LHS, Q.TLI))
3615         return Pred == FCmpInst::FCMP_OGE ? getTrue(RetTy) : getFalse(RetTy);
3616       break;
3617     case FCmpInst::FCMP_UGE:
3618     case FCmpInst::FCMP_OLT:
3619       // Positive or zero or nan X >= 0.0 --> true
3620       // Positive or zero or nan X <  0.0 --> false
3621       if (CannotBeOrderedLessThanZero(LHS, Q.TLI))
3622         return Pred == FCmpInst::FCMP_UGE ? getTrue(RetTy) : getFalse(RetTy);
3623       break;
3624     default:
3625       break;
3626     }
3627   }
3628 
3629   // If the comparison is with the result of a select instruction, check whether
3630   // comparing with either branch of the select always yields the same value.
3631   if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS))
3632     if (Value *V = ThreadCmpOverSelect(Pred, LHS, RHS, Q, MaxRecurse))
3633       return V;
3634 
3635   // If the comparison is with the result of a phi instruction, check whether
3636   // doing the compare with each incoming phi value yields a common result.
3637   if (isa<PHINode>(LHS) || isa<PHINode>(RHS))
3638     if (Value *V = ThreadCmpOverPHI(Pred, LHS, RHS, Q, MaxRecurse))
3639       return V;
3640 
3641   return nullptr;
3642 }
3643 
3644 Value *llvm::SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
3645                               FastMathFlags FMF, const SimplifyQuery &Q) {
3646   return ::SimplifyFCmpInst(Predicate, LHS, RHS, FMF, Q, RecursionLimit);
3647 }
3648 
3649 /// See if V simplifies when its operand Op is replaced with RepOp.
3650 static const Value *SimplifyWithOpReplaced(Value *V, Value *Op, Value *RepOp,
3651                                            const SimplifyQuery &Q,
3652                                            unsigned MaxRecurse) {
3653   // Trivial replacement.
3654   if (V == Op)
3655     return RepOp;
3656 
3657   // We cannot replace a constant, and shouldn't even try.
3658   if (isa<Constant>(Op))
3659     return nullptr;
3660 
3661   auto *I = dyn_cast<Instruction>(V);
3662   if (!I)
3663     return nullptr;
3664 
3665   // If this is a binary operator, try to simplify it with the replaced op.
3666   if (auto *B = dyn_cast<BinaryOperator>(I)) {
3667     // Consider:
3668     //   %cmp = icmp eq i32 %x, 2147483647
3669     //   %add = add nsw i32 %x, 1
3670     //   %sel = select i1 %cmp, i32 -2147483648, i32 %add
3671     //
3672     // We can't replace %sel with %add unless we strip away the flags.
3673     // TODO: This is an unusual limitation because better analysis results in
3674     //       worse simplification. InstCombine can do this fold more generally
3675     //       by dropping the flags. Remove this fold to save compile-time?
3676     if (isa<OverflowingBinaryOperator>(B))
3677       if (Q.IIQ.hasNoSignedWrap(B) || Q.IIQ.hasNoUnsignedWrap(B))
3678         return nullptr;
3679     if (isa<PossiblyExactOperator>(B) && Q.IIQ.isExact(B))
3680       return nullptr;
3681 
3682     if (MaxRecurse) {
3683       if (B->getOperand(0) == Op)
3684         return SimplifyBinOp(B->getOpcode(), RepOp, B->getOperand(1), Q,
3685                              MaxRecurse - 1);
3686       if (B->getOperand(1) == Op)
3687         return SimplifyBinOp(B->getOpcode(), B->getOperand(0), RepOp, Q,
3688                              MaxRecurse - 1);
3689     }
3690   }
3691 
3692   // Same for CmpInsts.
3693   if (CmpInst *C = dyn_cast<CmpInst>(I)) {
3694     if (MaxRecurse) {
3695       if (C->getOperand(0) == Op)
3696         return SimplifyCmpInst(C->getPredicate(), RepOp, C->getOperand(1), Q,
3697                                MaxRecurse - 1);
3698       if (C->getOperand(1) == Op)
3699         return SimplifyCmpInst(C->getPredicate(), C->getOperand(0), RepOp, Q,
3700                                MaxRecurse - 1);
3701     }
3702   }
3703 
3704   // Same for GEPs.
3705   if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) {
3706     if (MaxRecurse) {
3707       SmallVector<Value *, 8> NewOps(GEP->getNumOperands());
3708       transform(GEP->operands(), NewOps.begin(),
3709                 [&](Value *V) { return V == Op ? RepOp : V; });
3710       return SimplifyGEPInst(GEP->getSourceElementType(), NewOps, Q,
3711                              MaxRecurse - 1);
3712     }
3713   }
3714 
3715   // TODO: We could hand off more cases to instsimplify here.
3716 
3717   // If all operands are constant after substituting Op for RepOp then we can
3718   // constant fold the instruction.
3719   if (Constant *CRepOp = dyn_cast<Constant>(RepOp)) {
3720     // Build a list of all constant operands.
3721     SmallVector<Constant *, 8> ConstOps;
3722     for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
3723       if (I->getOperand(i) == Op)
3724         ConstOps.push_back(CRepOp);
3725       else if (Constant *COp = dyn_cast<Constant>(I->getOperand(i)))
3726         ConstOps.push_back(COp);
3727       else
3728         break;
3729     }
3730 
3731     // All operands were constants, fold it.
3732     if (ConstOps.size() == I->getNumOperands()) {
3733       if (CmpInst *C = dyn_cast<CmpInst>(I))
3734         return ConstantFoldCompareInstOperands(C->getPredicate(), ConstOps[0],
3735                                                ConstOps[1], Q.DL, Q.TLI);
3736 
3737       if (LoadInst *LI = dyn_cast<LoadInst>(I))
3738         if (!LI->isVolatile())
3739           return ConstantFoldLoadFromConstPtr(ConstOps[0], LI->getType(), Q.DL);
3740 
3741       return ConstantFoldInstOperands(I, ConstOps, Q.DL, Q.TLI);
3742     }
3743   }
3744 
3745   return nullptr;
3746 }
3747 
3748 /// Try to simplify a select instruction when its condition operand is an
3749 /// integer comparison where one operand of the compare is a constant.
3750 static Value *simplifySelectBitTest(Value *TrueVal, Value *FalseVal, Value *X,
3751                                     const APInt *Y, bool TrueWhenUnset) {
3752   const APInt *C;
3753 
3754   // (X & Y) == 0 ? X & ~Y : X  --> X
3755   // (X & Y) != 0 ? X & ~Y : X  --> X & ~Y
3756   if (FalseVal == X && match(TrueVal, m_And(m_Specific(X), m_APInt(C))) &&
3757       *Y == ~*C)
3758     return TrueWhenUnset ? FalseVal : TrueVal;
3759 
3760   // (X & Y) == 0 ? X : X & ~Y  --> X & ~Y
3761   // (X & Y) != 0 ? X : X & ~Y  --> X
3762   if (TrueVal == X && match(FalseVal, m_And(m_Specific(X), m_APInt(C))) &&
3763       *Y == ~*C)
3764     return TrueWhenUnset ? FalseVal : TrueVal;
3765 
3766   if (Y->isPowerOf2()) {
3767     // (X & Y) == 0 ? X | Y : X  --> X | Y
3768     // (X & Y) != 0 ? X | Y : X  --> X
3769     if (FalseVal == X && match(TrueVal, m_Or(m_Specific(X), m_APInt(C))) &&
3770         *Y == *C)
3771       return TrueWhenUnset ? TrueVal : FalseVal;
3772 
3773     // (X & Y) == 0 ? X : X | Y  --> X
3774     // (X & Y) != 0 ? X : X | Y  --> X | Y
3775     if (TrueVal == X && match(FalseVal, m_Or(m_Specific(X), m_APInt(C))) &&
3776         *Y == *C)
3777       return TrueWhenUnset ? TrueVal : FalseVal;
3778   }
3779 
3780   return nullptr;
3781 }
3782 
3783 /// An alternative way to test if a bit is set or not uses sgt/slt instead of
3784 /// eq/ne.
3785 static Value *simplifySelectWithFakeICmpEq(Value *CmpLHS, Value *CmpRHS,
3786                                            ICmpInst::Predicate Pred,
3787                                            Value *TrueVal, Value *FalseVal) {
3788   Value *X;
3789   APInt Mask;
3790   if (!decomposeBitTestICmp(CmpLHS, CmpRHS, Pred, X, Mask))
3791     return nullptr;
3792 
3793   return simplifySelectBitTest(TrueVal, FalseVal, X, &Mask,
3794                                Pred == ICmpInst::ICMP_EQ);
3795 }
3796 
3797 /// Try to simplify a select instruction when its condition operand is an
3798 /// integer comparison.
3799 static Value *simplifySelectWithICmpCond(Value *CondVal, Value *TrueVal,
3800                                          Value *FalseVal, const SimplifyQuery &Q,
3801                                          unsigned MaxRecurse) {
3802   ICmpInst::Predicate Pred;
3803   Value *CmpLHS, *CmpRHS;
3804   if (!match(CondVal, m_ICmp(Pred, m_Value(CmpLHS), m_Value(CmpRHS))))
3805     return nullptr;
3806 
3807   if (ICmpInst::isEquality(Pred) && match(CmpRHS, m_Zero())) {
3808     Value *X;
3809     const APInt *Y;
3810     if (match(CmpLHS, m_And(m_Value(X), m_APInt(Y))))
3811       if (Value *V = simplifySelectBitTest(TrueVal, FalseVal, X, Y,
3812                                            Pred == ICmpInst::ICMP_EQ))
3813         return V;
3814 
3815     // Test for a bogus zero-shift-guard-op around funnel-shift or rotate.
3816     Value *ShAmt;
3817     auto isFsh = m_CombineOr(m_Intrinsic<Intrinsic::fshl>(m_Value(X), m_Value(),
3818                                                           m_Value(ShAmt)),
3819                              m_Intrinsic<Intrinsic::fshr>(m_Value(), m_Value(X),
3820                                                           m_Value(ShAmt)));
3821     // (ShAmt == 0) ? fshl(X, *, ShAmt) : X --> X
3822     // (ShAmt == 0) ? fshr(*, X, ShAmt) : X --> X
3823     if (match(TrueVal, isFsh) && FalseVal == X && CmpLHS == ShAmt &&
3824         Pred == ICmpInst::ICMP_EQ)
3825       return X;
3826     // (ShAmt != 0) ? X : fshl(X, *, ShAmt) --> X
3827     // (ShAmt != 0) ? X : fshr(*, X, ShAmt) --> X
3828     if (match(FalseVal, isFsh) && TrueVal == X && CmpLHS == ShAmt &&
3829         Pred == ICmpInst::ICMP_NE)
3830       return X;
3831 
3832     // Test for a zero-shift-guard-op around rotates. These are used to
3833     // avoid UB from oversized shifts in raw IR rotate patterns, but the
3834     // intrinsics do not have that problem.
3835     // We do not allow this transform for the general funnel shift case because
3836     // that would not preserve the poison safety of the original code.
3837     auto isRotate = m_CombineOr(m_Intrinsic<Intrinsic::fshl>(m_Value(X),
3838                                                              m_Deferred(X),
3839                                                              m_Value(ShAmt)),
3840                                 m_Intrinsic<Intrinsic::fshr>(m_Value(X),
3841                                                              m_Deferred(X),
3842                                                              m_Value(ShAmt)));
3843     // (ShAmt != 0) ? fshl(X, X, ShAmt) : X --> fshl(X, X, ShAmt)
3844     // (ShAmt != 0) ? fshr(X, X, ShAmt) : X --> fshr(X, X, ShAmt)
3845     if (match(TrueVal, isRotate) && FalseVal == X && CmpLHS == ShAmt &&
3846         Pred == ICmpInst::ICMP_NE)
3847       return TrueVal;
3848     // (ShAmt == 0) ? X : fshl(X, X, ShAmt) --> fshl(X, X, ShAmt)
3849     // (ShAmt == 0) ? X : fshr(X, X, ShAmt) --> fshr(X, X, ShAmt)
3850     if (match(FalseVal, isRotate) && TrueVal == X && CmpLHS == ShAmt &&
3851         Pred == ICmpInst::ICMP_EQ)
3852       return FalseVal;
3853   }
3854 
3855   // Check for other compares that behave like bit test.
3856   if (Value *V = simplifySelectWithFakeICmpEq(CmpLHS, CmpRHS, Pred,
3857                                               TrueVal, FalseVal))
3858     return V;
3859 
3860   // If we have an equality comparison, then we know the value in one of the
3861   // arms of the select. See if substituting this value into the arm and
3862   // simplifying the result yields the same value as the other arm.
3863   if (Pred == ICmpInst::ICMP_EQ) {
3864     if (SimplifyWithOpReplaced(FalseVal, CmpLHS, CmpRHS, Q, MaxRecurse) ==
3865             TrueVal ||
3866         SimplifyWithOpReplaced(FalseVal, CmpRHS, CmpLHS, Q, MaxRecurse) ==
3867             TrueVal)
3868       return FalseVal;
3869     if (SimplifyWithOpReplaced(TrueVal, CmpLHS, CmpRHS, Q, MaxRecurse) ==
3870             FalseVal ||
3871         SimplifyWithOpReplaced(TrueVal, CmpRHS, CmpLHS, Q, MaxRecurse) ==
3872             FalseVal)
3873       return FalseVal;
3874   } else if (Pred == ICmpInst::ICMP_NE) {
3875     if (SimplifyWithOpReplaced(TrueVal, CmpLHS, CmpRHS, Q, MaxRecurse) ==
3876             FalseVal ||
3877         SimplifyWithOpReplaced(TrueVal, CmpRHS, CmpLHS, Q, MaxRecurse) ==
3878             FalseVal)
3879       return TrueVal;
3880     if (SimplifyWithOpReplaced(FalseVal, CmpLHS, CmpRHS, Q, MaxRecurse) ==
3881             TrueVal ||
3882         SimplifyWithOpReplaced(FalseVal, CmpRHS, CmpLHS, Q, MaxRecurse) ==
3883             TrueVal)
3884       return TrueVal;
3885   }
3886 
3887   return nullptr;
3888 }
3889 
3890 /// Try to simplify a select instruction when its condition operand is a
3891 /// floating-point comparison.
3892 static Value *simplifySelectWithFCmp(Value *Cond, Value *T, Value *F) {
3893   FCmpInst::Predicate Pred;
3894   if (!match(Cond, m_FCmp(Pred, m_Specific(T), m_Specific(F))) &&
3895       !match(Cond, m_FCmp(Pred, m_Specific(F), m_Specific(T))))
3896     return nullptr;
3897 
3898   // TODO: The transform may not be valid with -0.0. An incomplete way of
3899   // testing for that possibility is to check if at least one operand is a
3900   // non-zero constant.
3901   const APFloat *C;
3902   if ((match(T, m_APFloat(C)) && C->isNonZero()) ||
3903       (match(F, m_APFloat(C)) && C->isNonZero())) {
3904     // (T == F) ? T : F --> F
3905     // (F == T) ? T : F --> F
3906     if (Pred == FCmpInst::FCMP_OEQ)
3907       return F;
3908 
3909     // (T != F) ? T : F --> T
3910     // (F != T) ? T : F --> T
3911     if (Pred == FCmpInst::FCMP_UNE)
3912       return T;
3913   }
3914 
3915   return nullptr;
3916 }
3917 
3918 /// Given operands for a SelectInst, see if we can fold the result.
3919 /// If not, this returns null.
3920 static Value *SimplifySelectInst(Value *Cond, Value *TrueVal, Value *FalseVal,
3921                                  const SimplifyQuery &Q, unsigned MaxRecurse) {
3922   if (auto *CondC = dyn_cast<Constant>(Cond)) {
3923     if (auto *TrueC = dyn_cast<Constant>(TrueVal))
3924       if (auto *FalseC = dyn_cast<Constant>(FalseVal))
3925         return ConstantFoldSelectInstruction(CondC, TrueC, FalseC);
3926 
3927     // select undef, X, Y -> X or Y
3928     if (isa<UndefValue>(CondC))
3929       return isa<Constant>(FalseVal) ? FalseVal : TrueVal;
3930 
3931     // TODO: Vector constants with undef elements don't simplify.
3932 
3933     // select true, X, Y  -> X
3934     if (CondC->isAllOnesValue())
3935       return TrueVal;
3936     // select false, X, Y -> Y
3937     if (CondC->isNullValue())
3938       return FalseVal;
3939   }
3940 
3941   // select ?, X, X -> X
3942   if (TrueVal == FalseVal)
3943     return TrueVal;
3944 
3945   if (isa<UndefValue>(TrueVal))   // select ?, undef, X -> X
3946     return FalseVal;
3947   if (isa<UndefValue>(FalseVal))   // select ?, X, undef -> X
3948     return TrueVal;
3949 
3950   if (Value *V =
3951           simplifySelectWithICmpCond(Cond, TrueVal, FalseVal, Q, MaxRecurse))
3952     return V;
3953 
3954   if (Value *V = simplifySelectWithFCmp(Cond, TrueVal, FalseVal))
3955     return V;
3956 
3957   if (Value *V = foldSelectWithBinaryOp(Cond, TrueVal, FalseVal))
3958     return V;
3959 
3960   Optional<bool> Imp = isImpliedByDomCondition(Cond, Q.CxtI, Q.DL);
3961   if (Imp)
3962     return *Imp ? TrueVal : FalseVal;
3963 
3964   return nullptr;
3965 }
3966 
3967 Value *llvm::SimplifySelectInst(Value *Cond, Value *TrueVal, Value *FalseVal,
3968                                 const SimplifyQuery &Q) {
3969   return ::SimplifySelectInst(Cond, TrueVal, FalseVal, Q, RecursionLimit);
3970 }
3971 
3972 /// Given operands for an GetElementPtrInst, see if we can fold the result.
3973 /// If not, this returns null.
3974 static Value *SimplifyGEPInst(Type *SrcTy, ArrayRef<Value *> Ops,
3975                               const SimplifyQuery &Q, unsigned) {
3976   // The type of the GEP pointer operand.
3977   unsigned AS =
3978       cast<PointerType>(Ops[0]->getType()->getScalarType())->getAddressSpace();
3979 
3980   // getelementptr P -> P.
3981   if (Ops.size() == 1)
3982     return Ops[0];
3983 
3984   // Compute the (pointer) type returned by the GEP instruction.
3985   Type *LastType = GetElementPtrInst::getIndexedType(SrcTy, Ops.slice(1));
3986   Type *GEPTy = PointerType::get(LastType, AS);
3987   if (VectorType *VT = dyn_cast<VectorType>(Ops[0]->getType()))
3988     GEPTy = VectorType::get(GEPTy, VT->getNumElements());
3989   else if (VectorType *VT = dyn_cast<VectorType>(Ops[1]->getType()))
3990     GEPTy = VectorType::get(GEPTy, VT->getNumElements());
3991 
3992   if (isa<UndefValue>(Ops[0]))
3993     return UndefValue::get(GEPTy);
3994 
3995   if (Ops.size() == 2) {
3996     // getelementptr P, 0 -> P.
3997     if (match(Ops[1], m_Zero()) && Ops[0]->getType() == GEPTy)
3998       return Ops[0];
3999 
4000     Type *Ty = SrcTy;
4001     if (Ty->isSized()) {
4002       Value *P;
4003       uint64_t C;
4004       uint64_t TyAllocSize = Q.DL.getTypeAllocSize(Ty);
4005       // getelementptr P, N -> P if P points to a type of zero size.
4006       if (TyAllocSize == 0 && Ops[0]->getType() == GEPTy)
4007         return Ops[0];
4008 
4009       // The following transforms are only safe if the ptrtoint cast
4010       // doesn't truncate the pointers.
4011       if (Ops[1]->getType()->getScalarSizeInBits() ==
4012           Q.DL.getIndexSizeInBits(AS)) {
4013         auto PtrToIntOrZero = [GEPTy](Value *P) -> Value * {
4014           if (match(P, m_Zero()))
4015             return Constant::getNullValue(GEPTy);
4016           Value *Temp;
4017           if (match(P, m_PtrToInt(m_Value(Temp))))
4018             if (Temp->getType() == GEPTy)
4019               return Temp;
4020           return nullptr;
4021         };
4022 
4023         // getelementptr V, (sub P, V) -> P if P points to a type of size 1.
4024         if (TyAllocSize == 1 &&
4025             match(Ops[1], m_Sub(m_Value(P), m_PtrToInt(m_Specific(Ops[0])))))
4026           if (Value *R = PtrToIntOrZero(P))
4027             return R;
4028 
4029         // getelementptr V, (ashr (sub P, V), C) -> Q
4030         // if P points to a type of size 1 << C.
4031         if (match(Ops[1],
4032                   m_AShr(m_Sub(m_Value(P), m_PtrToInt(m_Specific(Ops[0]))),
4033                          m_ConstantInt(C))) &&
4034             TyAllocSize == 1ULL << C)
4035           if (Value *R = PtrToIntOrZero(P))
4036             return R;
4037 
4038         // getelementptr V, (sdiv (sub P, V), C) -> Q
4039         // if P points to a type of size C.
4040         if (match(Ops[1],
4041                   m_SDiv(m_Sub(m_Value(P), m_PtrToInt(m_Specific(Ops[0]))),
4042                          m_SpecificInt(TyAllocSize))))
4043           if (Value *R = PtrToIntOrZero(P))
4044             return R;
4045       }
4046     }
4047   }
4048 
4049   if (Q.DL.getTypeAllocSize(LastType) == 1 &&
4050       all_of(Ops.slice(1).drop_back(1),
4051              [](Value *Idx) { return match(Idx, m_Zero()); })) {
4052     unsigned IdxWidth =
4053         Q.DL.getIndexSizeInBits(Ops[0]->getType()->getPointerAddressSpace());
4054     if (Q.DL.getTypeSizeInBits(Ops.back()->getType()) == IdxWidth) {
4055       APInt BasePtrOffset(IdxWidth, 0);
4056       Value *StrippedBasePtr =
4057           Ops[0]->stripAndAccumulateInBoundsConstantOffsets(Q.DL,
4058                                                             BasePtrOffset);
4059 
4060       // gep (gep V, C), (sub 0, V) -> C
4061       if (match(Ops.back(),
4062                 m_Sub(m_Zero(), m_PtrToInt(m_Specific(StrippedBasePtr))))) {
4063         auto *CI = ConstantInt::get(GEPTy->getContext(), BasePtrOffset);
4064         return ConstantExpr::getIntToPtr(CI, GEPTy);
4065       }
4066       // gep (gep V, C), (xor V, -1) -> C-1
4067       if (match(Ops.back(),
4068                 m_Xor(m_PtrToInt(m_Specific(StrippedBasePtr)), m_AllOnes()))) {
4069         auto *CI = ConstantInt::get(GEPTy->getContext(), BasePtrOffset - 1);
4070         return ConstantExpr::getIntToPtr(CI, GEPTy);
4071       }
4072     }
4073   }
4074 
4075   // Check to see if this is constant foldable.
4076   if (!all_of(Ops, [](Value *V) { return isa<Constant>(V); }))
4077     return nullptr;
4078 
4079   auto *CE = ConstantExpr::getGetElementPtr(SrcTy, cast<Constant>(Ops[0]),
4080                                             Ops.slice(1));
4081   if (auto *CEFolded = ConstantFoldConstant(CE, Q.DL))
4082     return CEFolded;
4083   return CE;
4084 }
4085 
4086 Value *llvm::SimplifyGEPInst(Type *SrcTy, ArrayRef<Value *> Ops,
4087                              const SimplifyQuery &Q) {
4088   return ::SimplifyGEPInst(SrcTy, Ops, Q, RecursionLimit);
4089 }
4090 
4091 /// Given operands for an InsertValueInst, see if we can fold the result.
4092 /// If not, this returns null.
4093 static Value *SimplifyInsertValueInst(Value *Agg, Value *Val,
4094                                       ArrayRef<unsigned> Idxs, const SimplifyQuery &Q,
4095                                       unsigned) {
4096   if (Constant *CAgg = dyn_cast<Constant>(Agg))
4097     if (Constant *CVal = dyn_cast<Constant>(Val))
4098       return ConstantFoldInsertValueInstruction(CAgg, CVal, Idxs);
4099 
4100   // insertvalue x, undef, n -> x
4101   if (match(Val, m_Undef()))
4102     return Agg;
4103 
4104   // insertvalue x, (extractvalue y, n), n
4105   if (ExtractValueInst *EV = dyn_cast<ExtractValueInst>(Val))
4106     if (EV->getAggregateOperand()->getType() == Agg->getType() &&
4107         EV->getIndices() == Idxs) {
4108       // insertvalue undef, (extractvalue y, n), n -> y
4109       if (match(Agg, m_Undef()))
4110         return EV->getAggregateOperand();
4111 
4112       // insertvalue y, (extractvalue y, n), n -> y
4113       if (Agg == EV->getAggregateOperand())
4114         return Agg;
4115     }
4116 
4117   return nullptr;
4118 }
4119 
4120 Value *llvm::SimplifyInsertValueInst(Value *Agg, Value *Val,
4121                                      ArrayRef<unsigned> Idxs,
4122                                      const SimplifyQuery &Q) {
4123   return ::SimplifyInsertValueInst(Agg, Val, Idxs, Q, RecursionLimit);
4124 }
4125 
4126 Value *llvm::SimplifyInsertElementInst(Value *Vec, Value *Val, Value *Idx,
4127                                        const SimplifyQuery &Q) {
4128   // Try to constant fold.
4129   auto *VecC = dyn_cast<Constant>(Vec);
4130   auto *ValC = dyn_cast<Constant>(Val);
4131   auto *IdxC = dyn_cast<Constant>(Idx);
4132   if (VecC && ValC && IdxC)
4133     return ConstantFoldInsertElementInstruction(VecC, ValC, IdxC);
4134 
4135   // Fold into undef if index is out of bounds.
4136   if (auto *CI = dyn_cast<ConstantInt>(Idx)) {
4137     uint64_t NumElements = cast<VectorType>(Vec->getType())->getNumElements();
4138     if (CI->uge(NumElements))
4139       return UndefValue::get(Vec->getType());
4140   }
4141 
4142   // If index is undef, it might be out of bounds (see above case)
4143   if (isa<UndefValue>(Idx))
4144     return UndefValue::get(Vec->getType());
4145 
4146   // Inserting an undef scalar? Assume it is the same value as the existing
4147   // vector element.
4148   if (isa<UndefValue>(Val))
4149     return Vec;
4150 
4151   // If we are extracting a value from a vector, then inserting it into the same
4152   // place, that's the input vector:
4153   // insertelt Vec, (extractelt Vec, Idx), Idx --> Vec
4154   if (match(Val, m_ExtractElement(m_Specific(Vec), m_Specific(Idx))))
4155     return Vec;
4156 
4157   return nullptr;
4158 }
4159 
4160 /// Given operands for an ExtractValueInst, see if we can fold the result.
4161 /// If not, this returns null.
4162 static Value *SimplifyExtractValueInst(Value *Agg, ArrayRef<unsigned> Idxs,
4163                                        const SimplifyQuery &, unsigned) {
4164   if (auto *CAgg = dyn_cast<Constant>(Agg))
4165     return ConstantFoldExtractValueInstruction(CAgg, Idxs);
4166 
4167   // extractvalue x, (insertvalue y, elt, n), n -> elt
4168   unsigned NumIdxs = Idxs.size();
4169   for (auto *IVI = dyn_cast<InsertValueInst>(Agg); IVI != nullptr;
4170        IVI = dyn_cast<InsertValueInst>(IVI->getAggregateOperand())) {
4171     ArrayRef<unsigned> InsertValueIdxs = IVI->getIndices();
4172     unsigned NumInsertValueIdxs = InsertValueIdxs.size();
4173     unsigned NumCommonIdxs = std::min(NumInsertValueIdxs, NumIdxs);
4174     if (InsertValueIdxs.slice(0, NumCommonIdxs) ==
4175         Idxs.slice(0, NumCommonIdxs)) {
4176       if (NumIdxs == NumInsertValueIdxs)
4177         return IVI->getInsertedValueOperand();
4178       break;
4179     }
4180   }
4181 
4182   return nullptr;
4183 }
4184 
4185 Value *llvm::SimplifyExtractValueInst(Value *Agg, ArrayRef<unsigned> Idxs,
4186                                       const SimplifyQuery &Q) {
4187   return ::SimplifyExtractValueInst(Agg, Idxs, Q, RecursionLimit);
4188 }
4189 
4190 /// Given operands for an ExtractElementInst, see if we can fold the result.
4191 /// If not, this returns null.
4192 static Value *SimplifyExtractElementInst(Value *Vec, Value *Idx, const SimplifyQuery &,
4193                                          unsigned) {
4194   if (auto *CVec = dyn_cast<Constant>(Vec)) {
4195     if (auto *CIdx = dyn_cast<Constant>(Idx))
4196       return ConstantFoldExtractElementInstruction(CVec, CIdx);
4197 
4198     // The index is not relevant if our vector is a splat.
4199     if (auto *Splat = CVec->getSplatValue())
4200       return Splat;
4201 
4202     if (isa<UndefValue>(Vec))
4203       return UndefValue::get(Vec->getType()->getVectorElementType());
4204   }
4205 
4206   // If extracting a specified index from the vector, see if we can recursively
4207   // find a previously computed scalar that was inserted into the vector.
4208   if (auto *IdxC = dyn_cast<ConstantInt>(Idx)) {
4209     if (IdxC->getValue().uge(Vec->getType()->getVectorNumElements()))
4210       // definitely out of bounds, thus undefined result
4211       return UndefValue::get(Vec->getType()->getVectorElementType());
4212     if (Value *Elt = findScalarElement(Vec, IdxC->getZExtValue()))
4213       return Elt;
4214   }
4215 
4216   // An undef extract index can be arbitrarily chosen to be an out-of-range
4217   // index value, which would result in the instruction being undef.
4218   if (isa<UndefValue>(Idx))
4219     return UndefValue::get(Vec->getType()->getVectorElementType());
4220 
4221   return nullptr;
4222 }
4223 
4224 Value *llvm::SimplifyExtractElementInst(Value *Vec, Value *Idx,
4225                                         const SimplifyQuery &Q) {
4226   return ::SimplifyExtractElementInst(Vec, Idx, Q, RecursionLimit);
4227 }
4228 
4229 /// See if we can fold the given phi. If not, returns null.
4230 static Value *SimplifyPHINode(PHINode *PN, const SimplifyQuery &Q) {
4231   // If all of the PHI's incoming values are the same then replace the PHI node
4232   // with the common value.
4233   Value *CommonValue = nullptr;
4234   bool HasUndefInput = false;
4235   for (Value *Incoming : PN->incoming_values()) {
4236     // If the incoming value is the phi node itself, it can safely be skipped.
4237     if (Incoming == PN) continue;
4238     if (isa<UndefValue>(Incoming)) {
4239       // Remember that we saw an undef value, but otherwise ignore them.
4240       HasUndefInput = true;
4241       continue;
4242     }
4243     if (CommonValue && Incoming != CommonValue)
4244       return nullptr;  // Not the same, bail out.
4245     CommonValue = Incoming;
4246   }
4247 
4248   // If CommonValue is null then all of the incoming values were either undef or
4249   // equal to the phi node itself.
4250   if (!CommonValue)
4251     return UndefValue::get(PN->getType());
4252 
4253   // If we have a PHI node like phi(X, undef, X), where X is defined by some
4254   // instruction, we cannot return X as the result of the PHI node unless it
4255   // dominates the PHI block.
4256   if (HasUndefInput)
4257     return valueDominatesPHI(CommonValue, PN, Q.DT) ? CommonValue : nullptr;
4258 
4259   return CommonValue;
4260 }
4261 
4262 static Value *SimplifyCastInst(unsigned CastOpc, Value *Op,
4263                                Type *Ty, const SimplifyQuery &Q, unsigned MaxRecurse) {
4264   if (auto *C = dyn_cast<Constant>(Op))
4265     return ConstantFoldCastOperand(CastOpc, C, Ty, Q.DL);
4266 
4267   if (auto *CI = dyn_cast<CastInst>(Op)) {
4268     auto *Src = CI->getOperand(0);
4269     Type *SrcTy = Src->getType();
4270     Type *MidTy = CI->getType();
4271     Type *DstTy = Ty;
4272     if (Src->getType() == Ty) {
4273       auto FirstOp = static_cast<Instruction::CastOps>(CI->getOpcode());
4274       auto SecondOp = static_cast<Instruction::CastOps>(CastOpc);
4275       Type *SrcIntPtrTy =
4276           SrcTy->isPtrOrPtrVectorTy() ? Q.DL.getIntPtrType(SrcTy) : nullptr;
4277       Type *MidIntPtrTy =
4278           MidTy->isPtrOrPtrVectorTy() ? Q.DL.getIntPtrType(MidTy) : nullptr;
4279       Type *DstIntPtrTy =
4280           DstTy->isPtrOrPtrVectorTy() ? Q.DL.getIntPtrType(DstTy) : nullptr;
4281       if (CastInst::isEliminableCastPair(FirstOp, SecondOp, SrcTy, MidTy, DstTy,
4282                                          SrcIntPtrTy, MidIntPtrTy,
4283                                          DstIntPtrTy) == Instruction::BitCast)
4284         return Src;
4285     }
4286   }
4287 
4288   // bitcast x -> x
4289   if (CastOpc == Instruction::BitCast)
4290     if (Op->getType() == Ty)
4291       return Op;
4292 
4293   return nullptr;
4294 }
4295 
4296 Value *llvm::SimplifyCastInst(unsigned CastOpc, Value *Op, Type *Ty,
4297                               const SimplifyQuery &Q) {
4298   return ::SimplifyCastInst(CastOpc, Op, Ty, Q, RecursionLimit);
4299 }
4300 
4301 /// For the given destination element of a shuffle, peek through shuffles to
4302 /// match a root vector source operand that contains that element in the same
4303 /// vector lane (ie, the same mask index), so we can eliminate the shuffle(s).
4304 static Value *foldIdentityShuffles(int DestElt, Value *Op0, Value *Op1,
4305                                    int MaskVal, Value *RootVec,
4306                                    unsigned MaxRecurse) {
4307   if (!MaxRecurse--)
4308     return nullptr;
4309 
4310   // Bail out if any mask value is undefined. That kind of shuffle may be
4311   // simplified further based on demanded bits or other folds.
4312   if (MaskVal == -1)
4313     return nullptr;
4314 
4315   // The mask value chooses which source operand we need to look at next.
4316   int InVecNumElts = Op0->getType()->getVectorNumElements();
4317   int RootElt = MaskVal;
4318   Value *SourceOp = Op0;
4319   if (MaskVal >= InVecNumElts) {
4320     RootElt = MaskVal - InVecNumElts;
4321     SourceOp = Op1;
4322   }
4323 
4324   // If the source operand is a shuffle itself, look through it to find the
4325   // matching root vector.
4326   if (auto *SourceShuf = dyn_cast<ShuffleVectorInst>(SourceOp)) {
4327     return foldIdentityShuffles(
4328         DestElt, SourceShuf->getOperand(0), SourceShuf->getOperand(1),
4329         SourceShuf->getMaskValue(RootElt), RootVec, MaxRecurse);
4330   }
4331 
4332   // TODO: Look through bitcasts? What if the bitcast changes the vector element
4333   // size?
4334 
4335   // The source operand is not a shuffle. Initialize the root vector value for
4336   // this shuffle if that has not been done yet.
4337   if (!RootVec)
4338     RootVec = SourceOp;
4339 
4340   // Give up as soon as a source operand does not match the existing root value.
4341   if (RootVec != SourceOp)
4342     return nullptr;
4343 
4344   // The element must be coming from the same lane in the source vector
4345   // (although it may have crossed lanes in intermediate shuffles).
4346   if (RootElt != DestElt)
4347     return nullptr;
4348 
4349   return RootVec;
4350 }
4351 
4352 static Value *SimplifyShuffleVectorInst(Value *Op0, Value *Op1, Constant *Mask,
4353                                         Type *RetTy, const SimplifyQuery &Q,
4354                                         unsigned MaxRecurse) {
4355   if (isa<UndefValue>(Mask))
4356     return UndefValue::get(RetTy);
4357 
4358   Type *InVecTy = Op0->getType();
4359   unsigned MaskNumElts = Mask->getType()->getVectorNumElements();
4360   unsigned InVecNumElts = InVecTy->getVectorNumElements();
4361 
4362   SmallVector<int, 32> Indices;
4363   ShuffleVectorInst::getShuffleMask(Mask, Indices);
4364   assert(MaskNumElts == Indices.size() &&
4365          "Size of Indices not same as number of mask elements?");
4366 
4367   // Canonicalization: If mask does not select elements from an input vector,
4368   // replace that input vector with undef.
4369   bool MaskSelects0 = false, MaskSelects1 = false;
4370   for (unsigned i = 0; i != MaskNumElts; ++i) {
4371     if (Indices[i] == -1)
4372       continue;
4373     if ((unsigned)Indices[i] < InVecNumElts)
4374       MaskSelects0 = true;
4375     else
4376       MaskSelects1 = true;
4377   }
4378   if (!MaskSelects0)
4379     Op0 = UndefValue::get(InVecTy);
4380   if (!MaskSelects1)
4381     Op1 = UndefValue::get(InVecTy);
4382 
4383   auto *Op0Const = dyn_cast<Constant>(Op0);
4384   auto *Op1Const = dyn_cast<Constant>(Op1);
4385 
4386   // If all operands are constant, constant fold the shuffle.
4387   if (Op0Const && Op1Const)
4388     return ConstantFoldShuffleVectorInstruction(Op0Const, Op1Const, Mask);
4389 
4390   // Canonicalization: if only one input vector is constant, it shall be the
4391   // second one.
4392   if (Op0Const && !Op1Const) {
4393     std::swap(Op0, Op1);
4394     ShuffleVectorInst::commuteShuffleMask(Indices, InVecNumElts);
4395   }
4396 
4397   // A shuffle of a splat is always the splat itself. Legal if the shuffle's
4398   // value type is same as the input vectors' type.
4399   if (auto *OpShuf = dyn_cast<ShuffleVectorInst>(Op0))
4400     if (isa<UndefValue>(Op1) && RetTy == InVecTy &&
4401         OpShuf->getMask()->getSplatValue())
4402       return Op0;
4403 
4404   // Don't fold a shuffle with undef mask elements. This may get folded in a
4405   // better way using demanded bits or other analysis.
4406   // TODO: Should we allow this?
4407   if (find(Indices, -1) != Indices.end())
4408     return nullptr;
4409 
4410   // Check if every element of this shuffle can be mapped back to the
4411   // corresponding element of a single root vector. If so, we don't need this
4412   // shuffle. This handles simple identity shuffles as well as chains of
4413   // shuffles that may widen/narrow and/or move elements across lanes and back.
4414   Value *RootVec = nullptr;
4415   for (unsigned i = 0; i != MaskNumElts; ++i) {
4416     // Note that recursion is limited for each vector element, so if any element
4417     // exceeds the limit, this will fail to simplify.
4418     RootVec =
4419         foldIdentityShuffles(i, Op0, Op1, Indices[i], RootVec, MaxRecurse);
4420 
4421     // We can't replace a widening/narrowing shuffle with one of its operands.
4422     if (!RootVec || RootVec->getType() != RetTy)
4423       return nullptr;
4424   }
4425   return RootVec;
4426 }
4427 
4428 /// Given operands for a ShuffleVectorInst, fold the result or return null.
4429 Value *llvm::SimplifyShuffleVectorInst(Value *Op0, Value *Op1, Constant *Mask,
4430                                        Type *RetTy, const SimplifyQuery &Q) {
4431   return ::SimplifyShuffleVectorInst(Op0, Op1, Mask, RetTy, Q, RecursionLimit);
4432 }
4433 
4434 static Constant *foldConstant(Instruction::UnaryOps Opcode,
4435                               Value *&Op, const SimplifyQuery &Q) {
4436   if (auto *C = dyn_cast<Constant>(Op))
4437     return ConstantFoldUnaryOpOperand(Opcode, C, Q.DL);
4438   return nullptr;
4439 }
4440 
4441 /// Given the operand for an FNeg, see if we can fold the result.  If not, this
4442 /// returns null.
4443 static Value *simplifyFNegInst(Value *Op, FastMathFlags FMF,
4444                                const SimplifyQuery &Q, unsigned MaxRecurse) {
4445   if (Constant *C = foldConstant(Instruction::FNeg, Op, Q))
4446     return C;
4447 
4448   Value *X;
4449   // fneg (fneg X) ==> X
4450   if (match(Op, m_FNeg(m_Value(X))))
4451     return X;
4452 
4453   return nullptr;
4454 }
4455 
4456 Value *llvm::SimplifyFNegInst(Value *Op, FastMathFlags FMF,
4457                               const SimplifyQuery &Q) {
4458   return ::simplifyFNegInst(Op, FMF, Q, RecursionLimit);
4459 }
4460 
4461 static Constant *propagateNaN(Constant *In) {
4462   // If the input is a vector with undef elements, just return a default NaN.
4463   if (!In->isNaN())
4464     return ConstantFP::getNaN(In->getType());
4465 
4466   // Propagate the existing NaN constant when possible.
4467   // TODO: Should we quiet a signaling NaN?
4468   return In;
4469 }
4470 
4471 static Constant *simplifyFPBinop(Value *Op0, Value *Op1) {
4472   if (isa<UndefValue>(Op0) || isa<UndefValue>(Op1))
4473     return ConstantFP::getNaN(Op0->getType());
4474 
4475   if (match(Op0, m_NaN()))
4476     return propagateNaN(cast<Constant>(Op0));
4477   if (match(Op1, m_NaN()))
4478     return propagateNaN(cast<Constant>(Op1));
4479 
4480   return nullptr;
4481 }
4482 
4483 /// Given operands for an FAdd, see if we can fold the result.  If not, this
4484 /// returns null.
4485 static Value *SimplifyFAddInst(Value *Op0, Value *Op1, FastMathFlags FMF,
4486                                const SimplifyQuery &Q, unsigned MaxRecurse) {
4487   if (Constant *C = foldOrCommuteConstant(Instruction::FAdd, Op0, Op1, Q))
4488     return C;
4489 
4490   if (Constant *C = simplifyFPBinop(Op0, Op1))
4491     return C;
4492 
4493   // fadd X, -0 ==> X
4494   if (match(Op1, m_NegZeroFP()))
4495     return Op0;
4496 
4497   // fadd X, 0 ==> X, when we know X is not -0
4498   if (match(Op1, m_PosZeroFP()) &&
4499       (FMF.noSignedZeros() || CannotBeNegativeZero(Op0, Q.TLI)))
4500     return Op0;
4501 
4502   // With nnan: -X + X --> 0.0 (and commuted variant)
4503   // We don't have to explicitly exclude infinities (ninf): INF + -INF == NaN.
4504   // Negative zeros are allowed because we always end up with positive zero:
4505   // X = -0.0: (-0.0 - (-0.0)) + (-0.0) == ( 0.0) + (-0.0) == 0.0
4506   // X = -0.0: ( 0.0 - (-0.0)) + (-0.0) == ( 0.0) + (-0.0) == 0.0
4507   // X =  0.0: (-0.0 - ( 0.0)) + ( 0.0) == (-0.0) + ( 0.0) == 0.0
4508   // X =  0.0: ( 0.0 - ( 0.0)) + ( 0.0) == ( 0.0) + ( 0.0) == 0.0
4509   if (FMF.noNaNs()) {
4510     if (match(Op0, m_FSub(m_AnyZeroFP(), m_Specific(Op1))) ||
4511         match(Op1, m_FSub(m_AnyZeroFP(), m_Specific(Op0))))
4512       return ConstantFP::getNullValue(Op0->getType());
4513 
4514     if (match(Op0, m_FNeg(m_Specific(Op1))) ||
4515         match(Op1, m_FNeg(m_Specific(Op0))))
4516       return ConstantFP::getNullValue(Op0->getType());
4517   }
4518 
4519   // (X - Y) + Y --> X
4520   // Y + (X - Y) --> X
4521   Value *X;
4522   if (FMF.noSignedZeros() && FMF.allowReassoc() &&
4523       (match(Op0, m_FSub(m_Value(X), m_Specific(Op1))) ||
4524        match(Op1, m_FSub(m_Value(X), m_Specific(Op0)))))
4525     return X;
4526 
4527   return nullptr;
4528 }
4529 
4530 /// Given operands for an FSub, see if we can fold the result.  If not, this
4531 /// returns null.
4532 static Value *SimplifyFSubInst(Value *Op0, Value *Op1, FastMathFlags FMF,
4533                                const SimplifyQuery &Q, unsigned MaxRecurse) {
4534   if (Constant *C = foldOrCommuteConstant(Instruction::FSub, Op0, Op1, Q))
4535     return C;
4536 
4537   if (Constant *C = simplifyFPBinop(Op0, Op1))
4538     return C;
4539 
4540   // fsub X, +0 ==> X
4541   if (match(Op1, m_PosZeroFP()))
4542     return Op0;
4543 
4544   // fsub X, -0 ==> X, when we know X is not -0
4545   if (match(Op1, m_NegZeroFP()) &&
4546       (FMF.noSignedZeros() || CannotBeNegativeZero(Op0, Q.TLI)))
4547     return Op0;
4548 
4549   // fsub -0.0, (fsub -0.0, X) ==> X
4550   // fsub -0.0, (fneg X) ==> X
4551   Value *X;
4552   if (match(Op0, m_NegZeroFP()) &&
4553       match(Op1, m_FNeg(m_Value(X))))
4554     return X;
4555 
4556   // fsub 0.0, (fsub 0.0, X) ==> X if signed zeros are ignored.
4557   // fsub 0.0, (fneg X) ==> X if signed zeros are ignored.
4558   if (FMF.noSignedZeros() && match(Op0, m_AnyZeroFP()) &&
4559       (match(Op1, m_FSub(m_AnyZeroFP(), m_Value(X))) ||
4560        match(Op1, m_FNeg(m_Value(X)))))
4561     return X;
4562 
4563   // fsub nnan x, x ==> 0.0
4564   if (FMF.noNaNs() && Op0 == Op1)
4565     return Constant::getNullValue(Op0->getType());
4566 
4567   // Y - (Y - X) --> X
4568   // (X + Y) - Y --> X
4569   if (FMF.noSignedZeros() && FMF.allowReassoc() &&
4570       (match(Op1, m_FSub(m_Specific(Op0), m_Value(X))) ||
4571        match(Op0, m_c_FAdd(m_Specific(Op1), m_Value(X)))))
4572     return X;
4573 
4574   return nullptr;
4575 }
4576 
4577 /// Given the operands for an FMul, see if we can fold the result
4578 static Value *SimplifyFMulInst(Value *Op0, Value *Op1, FastMathFlags FMF,
4579                                const SimplifyQuery &Q, unsigned MaxRecurse) {
4580   if (Constant *C = foldOrCommuteConstant(Instruction::FMul, Op0, Op1, Q))
4581     return C;
4582 
4583   if (Constant *C = simplifyFPBinop(Op0, Op1))
4584     return C;
4585 
4586   // fmul X, 1.0 ==> X
4587   if (match(Op1, m_FPOne()))
4588     return Op0;
4589 
4590   // fmul nnan nsz X, 0 ==> 0
4591   if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op1, m_AnyZeroFP()))
4592     return ConstantFP::getNullValue(Op0->getType());
4593 
4594   // sqrt(X) * sqrt(X) --> X, if we can:
4595   // 1. Remove the intermediate rounding (reassociate).
4596   // 2. Ignore non-zero negative numbers because sqrt would produce NAN.
4597   // 3. Ignore -0.0 because sqrt(-0.0) == -0.0, but -0.0 * -0.0 == 0.0.
4598   Value *X;
4599   if (Op0 == Op1 && match(Op0, m_Intrinsic<Intrinsic::sqrt>(m_Value(X))) &&
4600       FMF.allowReassoc() && FMF.noNaNs() && FMF.noSignedZeros())
4601     return X;
4602 
4603   return nullptr;
4604 }
4605 
4606 Value *llvm::SimplifyFAddInst(Value *Op0, Value *Op1, FastMathFlags FMF,
4607                               const SimplifyQuery &Q) {
4608   return ::SimplifyFAddInst(Op0, Op1, FMF, Q, RecursionLimit);
4609 }
4610 
4611 
4612 Value *llvm::SimplifyFSubInst(Value *Op0, Value *Op1, FastMathFlags FMF,
4613                               const SimplifyQuery &Q) {
4614   return ::SimplifyFSubInst(Op0, Op1, FMF, Q, RecursionLimit);
4615 }
4616 
4617 Value *llvm::SimplifyFMulInst(Value *Op0, Value *Op1, FastMathFlags FMF,
4618                               const SimplifyQuery &Q) {
4619   return ::SimplifyFMulInst(Op0, Op1, FMF, Q, RecursionLimit);
4620 }
4621 
4622 static Value *SimplifyFDivInst(Value *Op0, Value *Op1, FastMathFlags FMF,
4623                                const SimplifyQuery &Q, unsigned) {
4624   if (Constant *C = foldOrCommuteConstant(Instruction::FDiv, Op0, Op1, Q))
4625     return C;
4626 
4627   if (Constant *C = simplifyFPBinop(Op0, Op1))
4628     return C;
4629 
4630   // X / 1.0 -> X
4631   if (match(Op1, m_FPOne()))
4632     return Op0;
4633 
4634   // 0 / X -> 0
4635   // Requires that NaNs are off (X could be zero) and signed zeroes are
4636   // ignored (X could be positive or negative, so the output sign is unknown).
4637   if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op0, m_AnyZeroFP()))
4638     return ConstantFP::getNullValue(Op0->getType());
4639 
4640   if (FMF.noNaNs()) {
4641     // X / X -> 1.0 is legal when NaNs are ignored.
4642     // We can ignore infinities because INF/INF is NaN.
4643     if (Op0 == Op1)
4644       return ConstantFP::get(Op0->getType(), 1.0);
4645 
4646     // (X * Y) / Y --> X if we can reassociate to the above form.
4647     Value *X;
4648     if (FMF.allowReassoc() && match(Op0, m_c_FMul(m_Value(X), m_Specific(Op1))))
4649       return X;
4650 
4651     // -X /  X -> -1.0 and
4652     //  X / -X -> -1.0 are legal when NaNs are ignored.
4653     // We can ignore signed zeros because +-0.0/+-0.0 is NaN and ignored.
4654     if (match(Op0, m_FNegNSZ(m_Specific(Op1))) ||
4655         match(Op1, m_FNegNSZ(m_Specific(Op0))))
4656       return ConstantFP::get(Op0->getType(), -1.0);
4657   }
4658 
4659   return nullptr;
4660 }
4661 
4662 Value *llvm::SimplifyFDivInst(Value *Op0, Value *Op1, FastMathFlags FMF,
4663                               const SimplifyQuery &Q) {
4664   return ::SimplifyFDivInst(Op0, Op1, FMF, Q, RecursionLimit);
4665 }
4666 
4667 static Value *SimplifyFRemInst(Value *Op0, Value *Op1, FastMathFlags FMF,
4668                                const SimplifyQuery &Q, unsigned) {
4669   if (Constant *C = foldOrCommuteConstant(Instruction::FRem, Op0, Op1, Q))
4670     return C;
4671 
4672   if (Constant *C = simplifyFPBinop(Op0, Op1))
4673     return C;
4674 
4675   // Unlike fdiv, the result of frem always matches the sign of the dividend.
4676   // The constant match may include undef elements in a vector, so return a full
4677   // zero constant as the result.
4678   if (FMF.noNaNs()) {
4679     // +0 % X -> 0
4680     if (match(Op0, m_PosZeroFP()))
4681       return ConstantFP::getNullValue(Op0->getType());
4682     // -0 % X -> -0
4683     if (match(Op0, m_NegZeroFP()))
4684       return ConstantFP::getNegativeZero(Op0->getType());
4685   }
4686 
4687   return nullptr;
4688 }
4689 
4690 Value *llvm::SimplifyFRemInst(Value *Op0, Value *Op1, FastMathFlags FMF,
4691                               const SimplifyQuery &Q) {
4692   return ::SimplifyFRemInst(Op0, Op1, FMF, Q, RecursionLimit);
4693 }
4694 
4695 //=== Helper functions for higher up the class hierarchy.
4696 
4697 /// Given the operand for a UnaryOperator, see if we can fold the result.
4698 /// If not, this returns null.
4699 static Value *simplifyUnOp(unsigned Opcode, Value *Op, const SimplifyQuery &Q,
4700                            unsigned MaxRecurse) {
4701   switch (Opcode) {
4702   case Instruction::FNeg:
4703     return simplifyFNegInst(Op, FastMathFlags(), Q, MaxRecurse);
4704   default:
4705     llvm_unreachable("Unexpected opcode");
4706   }
4707 }
4708 
4709 /// Given the operand for a UnaryOperator, see if we can fold the result.
4710 /// If not, this returns null.
4711 /// Try to use FastMathFlags when folding the result.
4712 static Value *simplifyFPUnOp(unsigned Opcode, Value *Op,
4713                              const FastMathFlags &FMF,
4714                              const SimplifyQuery &Q, unsigned MaxRecurse) {
4715   switch (Opcode) {
4716   case Instruction::FNeg:
4717     return simplifyFNegInst(Op, FMF, Q, MaxRecurse);
4718   default:
4719     return simplifyUnOp(Opcode, Op, Q, MaxRecurse);
4720   }
4721 }
4722 
4723 Value *llvm::SimplifyUnOp(unsigned Opcode, Value *Op, const SimplifyQuery &Q) {
4724   return ::simplifyUnOp(Opcode, Op, Q, RecursionLimit);
4725 }
4726 
4727 Value *llvm::SimplifyUnOp(unsigned Opcode, Value *Op, FastMathFlags FMF,
4728                           const SimplifyQuery &Q) {
4729   return ::simplifyFPUnOp(Opcode, Op, FMF, Q, RecursionLimit);
4730 }
4731 
4732 /// Given operands for a BinaryOperator, see if we can fold the result.
4733 /// If not, this returns null.
4734 static Value *SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS,
4735                             const SimplifyQuery &Q, unsigned MaxRecurse) {
4736   switch (Opcode) {
4737   case Instruction::Add:
4738     return SimplifyAddInst(LHS, RHS, false, false, Q, MaxRecurse);
4739   case Instruction::Sub:
4740     return SimplifySubInst(LHS, RHS, false, false, Q, MaxRecurse);
4741   case Instruction::Mul:
4742     return SimplifyMulInst(LHS, RHS, Q, MaxRecurse);
4743   case Instruction::SDiv:
4744     return SimplifySDivInst(LHS, RHS, Q, MaxRecurse);
4745   case Instruction::UDiv:
4746     return SimplifyUDivInst(LHS, RHS, Q, MaxRecurse);
4747   case Instruction::SRem:
4748     return SimplifySRemInst(LHS, RHS, Q, MaxRecurse);
4749   case Instruction::URem:
4750     return SimplifyURemInst(LHS, RHS, Q, MaxRecurse);
4751   case Instruction::Shl:
4752     return SimplifyShlInst(LHS, RHS, false, false, Q, MaxRecurse);
4753   case Instruction::LShr:
4754     return SimplifyLShrInst(LHS, RHS, false, Q, MaxRecurse);
4755   case Instruction::AShr:
4756     return SimplifyAShrInst(LHS, RHS, false, Q, MaxRecurse);
4757   case Instruction::And:
4758     return SimplifyAndInst(LHS, RHS, Q, MaxRecurse);
4759   case Instruction::Or:
4760     return SimplifyOrInst(LHS, RHS, Q, MaxRecurse);
4761   case Instruction::Xor:
4762     return SimplifyXorInst(LHS, RHS, Q, MaxRecurse);
4763   case Instruction::FAdd:
4764     return SimplifyFAddInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse);
4765   case Instruction::FSub:
4766     return SimplifyFSubInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse);
4767   case Instruction::FMul:
4768     return SimplifyFMulInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse);
4769   case Instruction::FDiv:
4770     return SimplifyFDivInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse);
4771   case Instruction::FRem:
4772     return SimplifyFRemInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse);
4773   default:
4774     llvm_unreachable("Unexpected opcode");
4775   }
4776 }
4777 
4778 /// Given operands for a BinaryOperator, see if we can fold the result.
4779 /// If not, this returns null.
4780 /// Try to use FastMathFlags when folding the result.
4781 static Value *SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS,
4782                             const FastMathFlags &FMF, const SimplifyQuery &Q,
4783                             unsigned MaxRecurse) {
4784   switch (Opcode) {
4785   case Instruction::FAdd:
4786     return SimplifyFAddInst(LHS, RHS, FMF, Q, MaxRecurse);
4787   case Instruction::FSub:
4788     return SimplifyFSubInst(LHS, RHS, FMF, Q, MaxRecurse);
4789   case Instruction::FMul:
4790     return SimplifyFMulInst(LHS, RHS, FMF, Q, MaxRecurse);
4791   case Instruction::FDiv:
4792     return SimplifyFDivInst(LHS, RHS, FMF, Q, MaxRecurse);
4793   default:
4794     return SimplifyBinOp(Opcode, LHS, RHS, Q, MaxRecurse);
4795   }
4796 }
4797 
4798 Value *llvm::SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS,
4799                            const SimplifyQuery &Q) {
4800   return ::SimplifyBinOp(Opcode, LHS, RHS, Q, RecursionLimit);
4801 }
4802 
4803 Value *llvm::SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS,
4804                            FastMathFlags FMF, const SimplifyQuery &Q) {
4805   return ::SimplifyBinOp(Opcode, LHS, RHS, FMF, Q, RecursionLimit);
4806 }
4807 
4808 /// Given operands for a CmpInst, see if we can fold the result.
4809 static Value *SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
4810                               const SimplifyQuery &Q, unsigned MaxRecurse) {
4811   if (CmpInst::isIntPredicate((CmpInst::Predicate)Predicate))
4812     return SimplifyICmpInst(Predicate, LHS, RHS, Q, MaxRecurse);
4813   return SimplifyFCmpInst(Predicate, LHS, RHS, FastMathFlags(), Q, MaxRecurse);
4814 }
4815 
4816 Value *llvm::SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
4817                              const SimplifyQuery &Q) {
4818   return ::SimplifyCmpInst(Predicate, LHS, RHS, Q, RecursionLimit);
4819 }
4820 
4821 static bool IsIdempotent(Intrinsic::ID ID) {
4822   switch (ID) {
4823   default: return false;
4824 
4825   // Unary idempotent: f(f(x)) = f(x)
4826   case Intrinsic::fabs:
4827   case Intrinsic::floor:
4828   case Intrinsic::ceil:
4829   case Intrinsic::trunc:
4830   case Intrinsic::rint:
4831   case Intrinsic::nearbyint:
4832   case Intrinsic::round:
4833   case Intrinsic::canonicalize:
4834     return true;
4835   }
4836 }
4837 
4838 static Value *SimplifyRelativeLoad(Constant *Ptr, Constant *Offset,
4839                                    const DataLayout &DL) {
4840   GlobalValue *PtrSym;
4841   APInt PtrOffset;
4842   if (!IsConstantOffsetFromGlobal(Ptr, PtrSym, PtrOffset, DL))
4843     return nullptr;
4844 
4845   Type *Int8PtrTy = Type::getInt8PtrTy(Ptr->getContext());
4846   Type *Int32Ty = Type::getInt32Ty(Ptr->getContext());
4847   Type *Int32PtrTy = Int32Ty->getPointerTo();
4848   Type *Int64Ty = Type::getInt64Ty(Ptr->getContext());
4849 
4850   auto *OffsetConstInt = dyn_cast<ConstantInt>(Offset);
4851   if (!OffsetConstInt || OffsetConstInt->getType()->getBitWidth() > 64)
4852     return nullptr;
4853 
4854   uint64_t OffsetInt = OffsetConstInt->getSExtValue();
4855   if (OffsetInt % 4 != 0)
4856     return nullptr;
4857 
4858   Constant *C = ConstantExpr::getGetElementPtr(
4859       Int32Ty, ConstantExpr::getBitCast(Ptr, Int32PtrTy),
4860       ConstantInt::get(Int64Ty, OffsetInt / 4));
4861   Constant *Loaded = ConstantFoldLoadFromConstPtr(C, Int32Ty, DL);
4862   if (!Loaded)
4863     return nullptr;
4864 
4865   auto *LoadedCE = dyn_cast<ConstantExpr>(Loaded);
4866   if (!LoadedCE)
4867     return nullptr;
4868 
4869   if (LoadedCE->getOpcode() == Instruction::Trunc) {
4870     LoadedCE = dyn_cast<ConstantExpr>(LoadedCE->getOperand(0));
4871     if (!LoadedCE)
4872       return nullptr;
4873   }
4874 
4875   if (LoadedCE->getOpcode() != Instruction::Sub)
4876     return nullptr;
4877 
4878   auto *LoadedLHS = dyn_cast<ConstantExpr>(LoadedCE->getOperand(0));
4879   if (!LoadedLHS || LoadedLHS->getOpcode() != Instruction::PtrToInt)
4880     return nullptr;
4881   auto *LoadedLHSPtr = LoadedLHS->getOperand(0);
4882 
4883   Constant *LoadedRHS = LoadedCE->getOperand(1);
4884   GlobalValue *LoadedRHSSym;
4885   APInt LoadedRHSOffset;
4886   if (!IsConstantOffsetFromGlobal(LoadedRHS, LoadedRHSSym, LoadedRHSOffset,
4887                                   DL) ||
4888       PtrSym != LoadedRHSSym || PtrOffset != LoadedRHSOffset)
4889     return nullptr;
4890 
4891   return ConstantExpr::getBitCast(LoadedLHSPtr, Int8PtrTy);
4892 }
4893 
4894 static Value *simplifyUnaryIntrinsic(Function *F, Value *Op0,
4895                                      const SimplifyQuery &Q) {
4896   // Idempotent functions return the same result when called repeatedly.
4897   Intrinsic::ID IID = F->getIntrinsicID();
4898   if (IsIdempotent(IID))
4899     if (auto *II = dyn_cast<IntrinsicInst>(Op0))
4900       if (II->getIntrinsicID() == IID)
4901         return II;
4902 
4903   Value *X;
4904   switch (IID) {
4905   case Intrinsic::fabs:
4906     if (SignBitMustBeZero(Op0, Q.TLI)) return Op0;
4907     break;
4908   case Intrinsic::bswap:
4909     // bswap(bswap(x)) -> x
4910     if (match(Op0, m_BSwap(m_Value(X)))) return X;
4911     break;
4912   case Intrinsic::bitreverse:
4913     // bitreverse(bitreverse(x)) -> x
4914     if (match(Op0, m_BitReverse(m_Value(X)))) return X;
4915     break;
4916   case Intrinsic::exp:
4917     // exp(log(x)) -> x
4918     if (Q.CxtI->hasAllowReassoc() &&
4919         match(Op0, m_Intrinsic<Intrinsic::log>(m_Value(X)))) return X;
4920     break;
4921   case Intrinsic::exp2:
4922     // exp2(log2(x)) -> x
4923     if (Q.CxtI->hasAllowReassoc() &&
4924         match(Op0, m_Intrinsic<Intrinsic::log2>(m_Value(X)))) return X;
4925     break;
4926   case Intrinsic::log:
4927     // log(exp(x)) -> x
4928     if (Q.CxtI->hasAllowReassoc() &&
4929         match(Op0, m_Intrinsic<Intrinsic::exp>(m_Value(X)))) return X;
4930     break;
4931   case Intrinsic::log2:
4932     // log2(exp2(x)) -> x
4933     if (Q.CxtI->hasAllowReassoc() &&
4934         (match(Op0, m_Intrinsic<Intrinsic::exp2>(m_Value(X))) ||
4935          match(Op0, m_Intrinsic<Intrinsic::pow>(m_SpecificFP(2.0),
4936                                                 m_Value(X))))) return X;
4937     break;
4938   case Intrinsic::log10:
4939     // log10(pow(10.0, x)) -> x
4940     if (Q.CxtI->hasAllowReassoc() &&
4941         match(Op0, m_Intrinsic<Intrinsic::pow>(m_SpecificFP(10.0),
4942                                                m_Value(X)))) return X;
4943     break;
4944   case Intrinsic::floor:
4945   case Intrinsic::trunc:
4946   case Intrinsic::ceil:
4947   case Intrinsic::round:
4948   case Intrinsic::nearbyint:
4949   case Intrinsic::rint: {
4950     // floor (sitofp x) -> sitofp x
4951     // floor (uitofp x) -> uitofp x
4952     //
4953     // Converting from int always results in a finite integral number or
4954     // infinity. For either of those inputs, these rounding functions always
4955     // return the same value, so the rounding can be eliminated.
4956     if (match(Op0, m_SIToFP(m_Value())) || match(Op0, m_UIToFP(m_Value())))
4957       return Op0;
4958     break;
4959   }
4960   default:
4961     break;
4962   }
4963 
4964   return nullptr;
4965 }
4966 
4967 static Value *simplifyBinaryIntrinsic(Function *F, Value *Op0, Value *Op1,
4968                                       const SimplifyQuery &Q) {
4969   Intrinsic::ID IID = F->getIntrinsicID();
4970   Type *ReturnType = F->getReturnType();
4971   switch (IID) {
4972   case Intrinsic::usub_with_overflow:
4973   case Intrinsic::ssub_with_overflow:
4974     // X - X -> { 0, false }
4975     if (Op0 == Op1)
4976       return Constant::getNullValue(ReturnType);
4977     LLVM_FALLTHROUGH;
4978   case Intrinsic::uadd_with_overflow:
4979   case Intrinsic::sadd_with_overflow:
4980     // X - undef -> { undef, false }
4981     // undef - X -> { undef, false }
4982     // X + undef -> { undef, false }
4983     // undef + x -> { undef, false }
4984     if (isa<UndefValue>(Op0) || isa<UndefValue>(Op1)) {
4985       return ConstantStruct::get(
4986           cast<StructType>(ReturnType),
4987           {UndefValue::get(ReturnType->getStructElementType(0)),
4988            Constant::getNullValue(ReturnType->getStructElementType(1))});
4989     }
4990     break;
4991   case Intrinsic::umul_with_overflow:
4992   case Intrinsic::smul_with_overflow:
4993     // 0 * X -> { 0, false }
4994     // X * 0 -> { 0, false }
4995     if (match(Op0, m_Zero()) || match(Op1, m_Zero()))
4996       return Constant::getNullValue(ReturnType);
4997     // undef * X -> { 0, false }
4998     // X * undef -> { 0, false }
4999     if (match(Op0, m_Undef()) || match(Op1, m_Undef()))
5000       return Constant::getNullValue(ReturnType);
5001     break;
5002   case Intrinsic::uadd_sat:
5003     // sat(MAX + X) -> MAX
5004     // sat(X + MAX) -> MAX
5005     if (match(Op0, m_AllOnes()) || match(Op1, m_AllOnes()))
5006       return Constant::getAllOnesValue(ReturnType);
5007     LLVM_FALLTHROUGH;
5008   case Intrinsic::sadd_sat:
5009     // sat(X + undef) -> -1
5010     // sat(undef + X) -> -1
5011     // For unsigned: Assume undef is MAX, thus we saturate to MAX (-1).
5012     // For signed: Assume undef is ~X, in which case X + ~X = -1.
5013     if (match(Op0, m_Undef()) || match(Op1, m_Undef()))
5014       return Constant::getAllOnesValue(ReturnType);
5015 
5016     // X + 0 -> X
5017     if (match(Op1, m_Zero()))
5018       return Op0;
5019     // 0 + X -> X
5020     if (match(Op0, m_Zero()))
5021       return Op1;
5022     break;
5023   case Intrinsic::usub_sat:
5024     // sat(0 - X) -> 0, sat(X - MAX) -> 0
5025     if (match(Op0, m_Zero()) || match(Op1, m_AllOnes()))
5026       return Constant::getNullValue(ReturnType);
5027     LLVM_FALLTHROUGH;
5028   case Intrinsic::ssub_sat:
5029     // X - X -> 0, X - undef -> 0, undef - X -> 0
5030     if (Op0 == Op1 || match(Op0, m_Undef()) || match(Op1, m_Undef()))
5031       return Constant::getNullValue(ReturnType);
5032     // X - 0 -> X
5033     if (match(Op1, m_Zero()))
5034       return Op0;
5035     break;
5036   case Intrinsic::load_relative:
5037     if (auto *C0 = dyn_cast<Constant>(Op0))
5038       if (auto *C1 = dyn_cast<Constant>(Op1))
5039         return SimplifyRelativeLoad(C0, C1, Q.DL);
5040     break;
5041   case Intrinsic::powi:
5042     if (auto *Power = dyn_cast<ConstantInt>(Op1)) {
5043       // powi(x, 0) -> 1.0
5044       if (Power->isZero())
5045         return ConstantFP::get(Op0->getType(), 1.0);
5046       // powi(x, 1) -> x
5047       if (Power->isOne())
5048         return Op0;
5049     }
5050     break;
5051   case Intrinsic::maxnum:
5052   case Intrinsic::minnum:
5053   case Intrinsic::maximum:
5054   case Intrinsic::minimum: {
5055     // If the arguments are the same, this is a no-op.
5056     if (Op0 == Op1) return Op0;
5057 
5058     // If one argument is undef, return the other argument.
5059     if (match(Op0, m_Undef()))
5060       return Op1;
5061     if (match(Op1, m_Undef()))
5062       return Op0;
5063 
5064     // If one argument is NaN, return other or NaN appropriately.
5065     bool PropagateNaN = IID == Intrinsic::minimum || IID == Intrinsic::maximum;
5066     if (match(Op0, m_NaN()))
5067       return PropagateNaN ? Op0 : Op1;
5068     if (match(Op1, m_NaN()))
5069       return PropagateNaN ? Op1 : Op0;
5070 
5071     // Min/max of the same operation with common operand:
5072     // m(m(X, Y)), X --> m(X, Y) (4 commuted variants)
5073     if (auto *M0 = dyn_cast<IntrinsicInst>(Op0))
5074       if (M0->getIntrinsicID() == IID &&
5075           (M0->getOperand(0) == Op1 || M0->getOperand(1) == Op1))
5076         return Op0;
5077     if (auto *M1 = dyn_cast<IntrinsicInst>(Op1))
5078       if (M1->getIntrinsicID() == IID &&
5079           (M1->getOperand(0) == Op0 || M1->getOperand(1) == Op0))
5080         return Op1;
5081 
5082     // min(X, -Inf) --> -Inf (and commuted variant)
5083     // max(X, +Inf) --> +Inf (and commuted variant)
5084     bool UseNegInf = IID == Intrinsic::minnum || IID == Intrinsic::minimum;
5085     const APFloat *C;
5086     if ((match(Op0, m_APFloat(C)) && C->isInfinity() &&
5087          C->isNegative() == UseNegInf) ||
5088         (match(Op1, m_APFloat(C)) && C->isInfinity() &&
5089          C->isNegative() == UseNegInf))
5090       return ConstantFP::getInfinity(ReturnType, UseNegInf);
5091 
5092     // TODO: minnum(nnan x, inf) -> x
5093     // TODO: minnum(nnan ninf x, flt_max) -> x
5094     // TODO: maxnum(nnan x, -inf) -> x
5095     // TODO: maxnum(nnan ninf x, -flt_max) -> x
5096     break;
5097   }
5098   default:
5099     break;
5100   }
5101 
5102   return nullptr;
5103 }
5104 
5105 static Value *simplifyIntrinsic(CallBase *Call, const SimplifyQuery &Q) {
5106 
5107   // Intrinsics with no operands have some kind of side effect. Don't simplify.
5108   unsigned NumOperands = Call->getNumArgOperands();
5109   if (!NumOperands)
5110     return nullptr;
5111 
5112   Function *F = cast<Function>(Call->getCalledFunction());
5113   Intrinsic::ID IID = F->getIntrinsicID();
5114   if (NumOperands == 1)
5115     return simplifyUnaryIntrinsic(F, Call->getArgOperand(0), Q);
5116 
5117   if (NumOperands == 2)
5118     return simplifyBinaryIntrinsic(F, Call->getArgOperand(0),
5119                                    Call->getArgOperand(1), Q);
5120 
5121   // Handle intrinsics with 3 or more arguments.
5122   switch (IID) {
5123   case Intrinsic::masked_load:
5124   case Intrinsic::masked_gather: {
5125     Value *MaskArg = Call->getArgOperand(2);
5126     Value *PassthruArg = Call->getArgOperand(3);
5127     // If the mask is all zeros or undef, the "passthru" argument is the result.
5128     if (maskIsAllZeroOrUndef(MaskArg))
5129       return PassthruArg;
5130     return nullptr;
5131   }
5132   case Intrinsic::fshl:
5133   case Intrinsic::fshr: {
5134     Value *Op0 = Call->getArgOperand(0), *Op1 = Call->getArgOperand(1),
5135           *ShAmtArg = Call->getArgOperand(2);
5136 
5137     // If both operands are undef, the result is undef.
5138     if (match(Op0, m_Undef()) && match(Op1, m_Undef()))
5139       return UndefValue::get(F->getReturnType());
5140 
5141     // If shift amount is undef, assume it is zero.
5142     if (match(ShAmtArg, m_Undef()))
5143       return Call->getArgOperand(IID == Intrinsic::fshl ? 0 : 1);
5144 
5145     const APInt *ShAmtC;
5146     if (match(ShAmtArg, m_APInt(ShAmtC))) {
5147       // If there's effectively no shift, return the 1st arg or 2nd arg.
5148       APInt BitWidth = APInt(ShAmtC->getBitWidth(), ShAmtC->getBitWidth());
5149       if (ShAmtC->urem(BitWidth).isNullValue())
5150         return Call->getArgOperand(IID == Intrinsic::fshl ? 0 : 1);
5151     }
5152     return nullptr;
5153   }
5154   default:
5155     return nullptr;
5156   }
5157 }
5158 
5159 Value *llvm::SimplifyCall(CallBase *Call, const SimplifyQuery &Q) {
5160   Value *Callee = Call->getCalledValue();
5161 
5162   // call undef -> undef
5163   // call null -> undef
5164   if (isa<UndefValue>(Callee) || isa<ConstantPointerNull>(Callee))
5165     return UndefValue::get(Call->getType());
5166 
5167   Function *F = dyn_cast<Function>(Callee);
5168   if (!F)
5169     return nullptr;
5170 
5171   if (F->isIntrinsic())
5172     if (Value *Ret = simplifyIntrinsic(Call, Q))
5173       return Ret;
5174 
5175   if (!canConstantFoldCallTo(Call, F))
5176     return nullptr;
5177 
5178   SmallVector<Constant *, 4> ConstantArgs;
5179   unsigned NumArgs = Call->getNumArgOperands();
5180   ConstantArgs.reserve(NumArgs);
5181   for (auto &Arg : Call->args()) {
5182     Constant *C = dyn_cast<Constant>(&Arg);
5183     if (!C)
5184       return nullptr;
5185     ConstantArgs.push_back(C);
5186   }
5187 
5188   return ConstantFoldCall(Call, F, ConstantArgs, Q.TLI);
5189 }
5190 
5191 /// See if we can compute a simplified version of this instruction.
5192 /// If not, this returns null.
5193 
5194 Value *llvm::SimplifyInstruction(Instruction *I, const SimplifyQuery &SQ,
5195                                  OptimizationRemarkEmitter *ORE) {
5196   const SimplifyQuery Q = SQ.CxtI ? SQ : SQ.getWithInstruction(I);
5197   Value *Result;
5198 
5199   switch (I->getOpcode()) {
5200   default:
5201     Result = ConstantFoldInstruction(I, Q.DL, Q.TLI);
5202     break;
5203   case Instruction::FNeg:
5204     Result = SimplifyFNegInst(I->getOperand(0), I->getFastMathFlags(), Q);
5205     break;
5206   case Instruction::FAdd:
5207     Result = SimplifyFAddInst(I->getOperand(0), I->getOperand(1),
5208                               I->getFastMathFlags(), Q);
5209     break;
5210   case Instruction::Add:
5211     Result =
5212         SimplifyAddInst(I->getOperand(0), I->getOperand(1),
5213                         Q.IIQ.hasNoSignedWrap(cast<BinaryOperator>(I)),
5214                         Q.IIQ.hasNoUnsignedWrap(cast<BinaryOperator>(I)), Q);
5215     break;
5216   case Instruction::FSub:
5217     Result = SimplifyFSubInst(I->getOperand(0), I->getOperand(1),
5218                               I->getFastMathFlags(), Q);
5219     break;
5220   case Instruction::Sub:
5221     Result =
5222         SimplifySubInst(I->getOperand(0), I->getOperand(1),
5223                         Q.IIQ.hasNoSignedWrap(cast<BinaryOperator>(I)),
5224                         Q.IIQ.hasNoUnsignedWrap(cast<BinaryOperator>(I)), Q);
5225     break;
5226   case Instruction::FMul:
5227     Result = SimplifyFMulInst(I->getOperand(0), I->getOperand(1),
5228                               I->getFastMathFlags(), Q);
5229     break;
5230   case Instruction::Mul:
5231     Result = SimplifyMulInst(I->getOperand(0), I->getOperand(1), Q);
5232     break;
5233   case Instruction::SDiv:
5234     Result = SimplifySDivInst(I->getOperand(0), I->getOperand(1), Q);
5235     break;
5236   case Instruction::UDiv:
5237     Result = SimplifyUDivInst(I->getOperand(0), I->getOperand(1), Q);
5238     break;
5239   case Instruction::FDiv:
5240     Result = SimplifyFDivInst(I->getOperand(0), I->getOperand(1),
5241                               I->getFastMathFlags(), Q);
5242     break;
5243   case Instruction::SRem:
5244     Result = SimplifySRemInst(I->getOperand(0), I->getOperand(1), Q);
5245     break;
5246   case Instruction::URem:
5247     Result = SimplifyURemInst(I->getOperand(0), I->getOperand(1), Q);
5248     break;
5249   case Instruction::FRem:
5250     Result = SimplifyFRemInst(I->getOperand(0), I->getOperand(1),
5251                               I->getFastMathFlags(), Q);
5252     break;
5253   case Instruction::Shl:
5254     Result =
5255         SimplifyShlInst(I->getOperand(0), I->getOperand(1),
5256                         Q.IIQ.hasNoSignedWrap(cast<BinaryOperator>(I)),
5257                         Q.IIQ.hasNoUnsignedWrap(cast<BinaryOperator>(I)), Q);
5258     break;
5259   case Instruction::LShr:
5260     Result = SimplifyLShrInst(I->getOperand(0), I->getOperand(1),
5261                               Q.IIQ.isExact(cast<BinaryOperator>(I)), Q);
5262     break;
5263   case Instruction::AShr:
5264     Result = SimplifyAShrInst(I->getOperand(0), I->getOperand(1),
5265                               Q.IIQ.isExact(cast<BinaryOperator>(I)), Q);
5266     break;
5267   case Instruction::And:
5268     Result = SimplifyAndInst(I->getOperand(0), I->getOperand(1), Q);
5269     break;
5270   case Instruction::Or:
5271     Result = SimplifyOrInst(I->getOperand(0), I->getOperand(1), Q);
5272     break;
5273   case Instruction::Xor:
5274     Result = SimplifyXorInst(I->getOperand(0), I->getOperand(1), Q);
5275     break;
5276   case Instruction::ICmp:
5277     Result = SimplifyICmpInst(cast<ICmpInst>(I)->getPredicate(),
5278                               I->getOperand(0), I->getOperand(1), Q);
5279     break;
5280   case Instruction::FCmp:
5281     Result =
5282         SimplifyFCmpInst(cast<FCmpInst>(I)->getPredicate(), I->getOperand(0),
5283                          I->getOperand(1), I->getFastMathFlags(), Q);
5284     break;
5285   case Instruction::Select:
5286     Result = SimplifySelectInst(I->getOperand(0), I->getOperand(1),
5287                                 I->getOperand(2), Q);
5288     break;
5289   case Instruction::GetElementPtr: {
5290     SmallVector<Value *, 8> Ops(I->op_begin(), I->op_end());
5291     Result = SimplifyGEPInst(cast<GetElementPtrInst>(I)->getSourceElementType(),
5292                              Ops, Q);
5293     break;
5294   }
5295   case Instruction::InsertValue: {
5296     InsertValueInst *IV = cast<InsertValueInst>(I);
5297     Result = SimplifyInsertValueInst(IV->getAggregateOperand(),
5298                                      IV->getInsertedValueOperand(),
5299                                      IV->getIndices(), Q);
5300     break;
5301   }
5302   case Instruction::InsertElement: {
5303     auto *IE = cast<InsertElementInst>(I);
5304     Result = SimplifyInsertElementInst(IE->getOperand(0), IE->getOperand(1),
5305                                        IE->getOperand(2), Q);
5306     break;
5307   }
5308   case Instruction::ExtractValue: {
5309     auto *EVI = cast<ExtractValueInst>(I);
5310     Result = SimplifyExtractValueInst(EVI->getAggregateOperand(),
5311                                       EVI->getIndices(), Q);
5312     break;
5313   }
5314   case Instruction::ExtractElement: {
5315     auto *EEI = cast<ExtractElementInst>(I);
5316     Result = SimplifyExtractElementInst(EEI->getVectorOperand(),
5317                                         EEI->getIndexOperand(), Q);
5318     break;
5319   }
5320   case Instruction::ShuffleVector: {
5321     auto *SVI = cast<ShuffleVectorInst>(I);
5322     Result = SimplifyShuffleVectorInst(SVI->getOperand(0), SVI->getOperand(1),
5323                                        SVI->getMask(), SVI->getType(), Q);
5324     break;
5325   }
5326   case Instruction::PHI:
5327     Result = SimplifyPHINode(cast<PHINode>(I), Q);
5328     break;
5329   case Instruction::Call: {
5330     Result = SimplifyCall(cast<CallInst>(I), Q);
5331     break;
5332   }
5333 #define HANDLE_CAST_INST(num, opc, clas) case Instruction::opc:
5334 #include "llvm/IR/Instruction.def"
5335 #undef HANDLE_CAST_INST
5336     Result =
5337         SimplifyCastInst(I->getOpcode(), I->getOperand(0), I->getType(), Q);
5338     break;
5339   case Instruction::Alloca:
5340     // No simplifications for Alloca and it can't be constant folded.
5341     Result = nullptr;
5342     break;
5343   }
5344 
5345   // In general, it is possible for computeKnownBits to determine all bits in a
5346   // value even when the operands are not all constants.
5347   if (!Result && I->getType()->isIntOrIntVectorTy()) {
5348     KnownBits Known = computeKnownBits(I, Q.DL, /*Depth*/ 0, Q.AC, I, Q.DT, ORE);
5349     if (Known.isConstant())
5350       Result = ConstantInt::get(I->getType(), Known.getConstant());
5351   }
5352 
5353   /// If called on unreachable code, the above logic may report that the
5354   /// instruction simplified to itself.  Make life easier for users by
5355   /// detecting that case here, returning a safe value instead.
5356   return Result == I ? UndefValue::get(I->getType()) : Result;
5357 }
5358 
5359 /// Implementation of recursive simplification through an instruction's
5360 /// uses.
5361 ///
5362 /// This is the common implementation of the recursive simplification routines.
5363 /// If we have a pre-simplified value in 'SimpleV', that is forcibly used to
5364 /// replace the instruction 'I'. Otherwise, we simply add 'I' to the list of
5365 /// instructions to process and attempt to simplify it using
5366 /// InstructionSimplify. Recursively visited users which could not be
5367 /// simplified themselves are to the optional UnsimplifiedUsers set for
5368 /// further processing by the caller.
5369 ///
5370 /// This routine returns 'true' only when *it* simplifies something. The passed
5371 /// in simplified value does not count toward this.
5372 static bool replaceAndRecursivelySimplifyImpl(
5373     Instruction *I, Value *SimpleV, const TargetLibraryInfo *TLI,
5374     const DominatorTree *DT, AssumptionCache *AC,
5375     SmallSetVector<Instruction *, 8> *UnsimplifiedUsers = nullptr) {
5376   bool Simplified = false;
5377   SmallSetVector<Instruction *, 8> Worklist;
5378   const DataLayout &DL = I->getModule()->getDataLayout();
5379 
5380   // If we have an explicit value to collapse to, do that round of the
5381   // simplification loop by hand initially.
5382   if (SimpleV) {
5383     for (User *U : I->users())
5384       if (U != I)
5385         Worklist.insert(cast<Instruction>(U));
5386 
5387     // Replace the instruction with its simplified value.
5388     I->replaceAllUsesWith(SimpleV);
5389 
5390     // Gracefully handle edge cases where the instruction is not wired into any
5391     // parent block.
5392     if (I->getParent() && !I->isEHPad() && !I->isTerminator() &&
5393         !I->mayHaveSideEffects())
5394       I->eraseFromParent();
5395   } else {
5396     Worklist.insert(I);
5397   }
5398 
5399   // Note that we must test the size on each iteration, the worklist can grow.
5400   for (unsigned Idx = 0; Idx != Worklist.size(); ++Idx) {
5401     I = Worklist[Idx];
5402 
5403     // See if this instruction simplifies.
5404     SimpleV = SimplifyInstruction(I, {DL, TLI, DT, AC});
5405     if (!SimpleV) {
5406       if (UnsimplifiedUsers)
5407         UnsimplifiedUsers->insert(I);
5408       continue;
5409     }
5410 
5411     Simplified = true;
5412 
5413     // Stash away all the uses of the old instruction so we can check them for
5414     // recursive simplifications after a RAUW. This is cheaper than checking all
5415     // uses of To on the recursive step in most cases.
5416     for (User *U : I->users())
5417       Worklist.insert(cast<Instruction>(U));
5418 
5419     // Replace the instruction with its simplified value.
5420     I->replaceAllUsesWith(SimpleV);
5421 
5422     // Gracefully handle edge cases where the instruction is not wired into any
5423     // parent block.
5424     if (I->getParent() && !I->isEHPad() && !I->isTerminator() &&
5425         !I->mayHaveSideEffects())
5426       I->eraseFromParent();
5427   }
5428   return Simplified;
5429 }
5430 
5431 bool llvm::recursivelySimplifyInstruction(Instruction *I,
5432                                           const TargetLibraryInfo *TLI,
5433                                           const DominatorTree *DT,
5434                                           AssumptionCache *AC) {
5435   return replaceAndRecursivelySimplifyImpl(I, nullptr, TLI, DT, AC, nullptr);
5436 }
5437 
5438 bool llvm::replaceAndRecursivelySimplify(
5439     Instruction *I, Value *SimpleV, const TargetLibraryInfo *TLI,
5440     const DominatorTree *DT, AssumptionCache *AC,
5441     SmallSetVector<Instruction *, 8> *UnsimplifiedUsers) {
5442   assert(I != SimpleV && "replaceAndRecursivelySimplify(X,X) is not valid!");
5443   assert(SimpleV && "Must provide a simplified value.");
5444   return replaceAndRecursivelySimplifyImpl(I, SimpleV, TLI, DT, AC,
5445                                            UnsimplifiedUsers);
5446 }
5447 
5448 namespace llvm {
5449 const SimplifyQuery getBestSimplifyQuery(Pass &P, Function &F) {
5450   auto *DTWP = P.getAnalysisIfAvailable<DominatorTreeWrapperPass>();
5451   auto *DT = DTWP ? &DTWP->getDomTree() : nullptr;
5452   auto *TLIWP = P.getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>();
5453   auto *TLI = TLIWP ? &TLIWP->getTLI(F) : nullptr;
5454   auto *ACWP = P.getAnalysisIfAvailable<AssumptionCacheTracker>();
5455   auto *AC = ACWP ? &ACWP->getAssumptionCache(F) : nullptr;
5456   return {F.getParent()->getDataLayout(), TLI, DT, AC};
5457 }
5458 
5459 const SimplifyQuery getBestSimplifyQuery(LoopStandardAnalysisResults &AR,
5460                                          const DataLayout &DL) {
5461   return {DL, &AR.TLI, &AR.DT, &AR.AC};
5462 }
5463 
5464 template <class T, class... TArgs>
5465 const SimplifyQuery getBestSimplifyQuery(AnalysisManager<T, TArgs...> &AM,
5466                                          Function &F) {
5467   auto *DT = AM.template getCachedResult<DominatorTreeAnalysis>(F);
5468   auto *TLI = AM.template getCachedResult<TargetLibraryAnalysis>(F);
5469   auto *AC = AM.template getCachedResult<AssumptionAnalysis>(F);
5470   return {F.getParent()->getDataLayout(), TLI, DT, AC};
5471 }
5472 template const SimplifyQuery getBestSimplifyQuery(AnalysisManager<Function> &,
5473                                                   Function &);
5474 }
5475