1 //===- InstructionSimplify.cpp - Fold instruction operands ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements routines for folding instructions into simpler forms 11 // that do not require creating new instructions. This does constant folding 12 // ("add i32 1, 1" -> "2") but can also handle non-constant operands, either 13 // returning a constant ("and i32 %x, 0" -> "0") or an already existing value 14 // ("and i32 %x, %x" -> "%x"). All operands are assumed to have already been 15 // simplified: This is usually true and assuming it simplifies the logic (if 16 // they have not been simplified then results are correct but maybe suboptimal). 17 // 18 //===----------------------------------------------------------------------===// 19 20 #include "llvm/Analysis/InstructionSimplify.h" 21 #include "llvm/ADT/SetVector.h" 22 #include "llvm/ADT/Statistic.h" 23 #include "llvm/Analysis/AliasAnalysis.h" 24 #include "llvm/Analysis/CaptureTracking.h" 25 #include "llvm/Analysis/ConstantFolding.h" 26 #include "llvm/Analysis/MemoryBuiltins.h" 27 #include "llvm/Analysis/OptimizationDiagnosticInfo.h" 28 #include "llvm/Analysis/ValueTracking.h" 29 #include "llvm/Analysis/VectorUtils.h" 30 #include "llvm/IR/ConstantRange.h" 31 #include "llvm/IR/DataLayout.h" 32 #include "llvm/IR/Dominators.h" 33 #include "llvm/IR/GetElementPtrTypeIterator.h" 34 #include "llvm/IR/GlobalAlias.h" 35 #include "llvm/IR/Operator.h" 36 #include "llvm/IR/PatternMatch.h" 37 #include "llvm/IR/ValueHandle.h" 38 #include <algorithm> 39 using namespace llvm; 40 using namespace llvm::PatternMatch; 41 42 #define DEBUG_TYPE "instsimplify" 43 44 enum { RecursionLimit = 3 }; 45 46 STATISTIC(NumExpand, "Number of expansions"); 47 STATISTIC(NumReassoc, "Number of reassociations"); 48 49 namespace { 50 struct Query { 51 const DataLayout &DL; 52 const TargetLibraryInfo *TLI; 53 const DominatorTree *DT; 54 AssumptionCache *AC; 55 const Instruction *CxtI; 56 57 Query(const DataLayout &DL, const TargetLibraryInfo *tli, 58 const DominatorTree *dt, AssumptionCache *ac = nullptr, 59 const Instruction *cxti = nullptr) 60 : DL(DL), TLI(tli), DT(dt), AC(ac), CxtI(cxti) {} 61 }; 62 } // end anonymous namespace 63 64 static Value *SimplifyAndInst(Value *, Value *, const Query &, unsigned); 65 static Value *SimplifyBinOp(unsigned, Value *, Value *, const Query &, 66 unsigned); 67 static Value *SimplifyFPBinOp(unsigned, Value *, Value *, const FastMathFlags &, 68 const Query &, unsigned); 69 static Value *SimplifyCmpInst(unsigned, Value *, Value *, const Query &, 70 unsigned); 71 static Value *SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS, 72 const Query &Q, unsigned MaxRecurse); 73 static Value *SimplifyOrInst(Value *, Value *, const Query &, unsigned); 74 static Value *SimplifyXorInst(Value *, Value *, const Query &, unsigned); 75 static Value *SimplifyCastInst(unsigned, Value *, Type *, 76 const Query &, unsigned); 77 78 /// For a boolean type or a vector of boolean type, return false or a vector 79 /// with every element false. 80 static Constant *getFalse(Type *Ty) { 81 return ConstantInt::getFalse(Ty); 82 } 83 84 /// For a boolean type or a vector of boolean type, return true or a vector 85 /// with every element true. 86 static Constant *getTrue(Type *Ty) { 87 return ConstantInt::getTrue(Ty); 88 } 89 90 /// isSameCompare - Is V equivalent to the comparison "LHS Pred RHS"? 91 static bool isSameCompare(Value *V, CmpInst::Predicate Pred, Value *LHS, 92 Value *RHS) { 93 CmpInst *Cmp = dyn_cast<CmpInst>(V); 94 if (!Cmp) 95 return false; 96 CmpInst::Predicate CPred = Cmp->getPredicate(); 97 Value *CLHS = Cmp->getOperand(0), *CRHS = Cmp->getOperand(1); 98 if (CPred == Pred && CLHS == LHS && CRHS == RHS) 99 return true; 100 return CPred == CmpInst::getSwappedPredicate(Pred) && CLHS == RHS && 101 CRHS == LHS; 102 } 103 104 /// Does the given value dominate the specified phi node? 105 static bool ValueDominatesPHI(Value *V, PHINode *P, const DominatorTree *DT) { 106 Instruction *I = dyn_cast<Instruction>(V); 107 if (!I) 108 // Arguments and constants dominate all instructions. 109 return true; 110 111 // If we are processing instructions (and/or basic blocks) that have not been 112 // fully added to a function, the parent nodes may still be null. Simply 113 // return the conservative answer in these cases. 114 if (!I->getParent() || !P->getParent() || !I->getParent()->getParent()) 115 return false; 116 117 // If we have a DominatorTree then do a precise test. 118 if (DT) { 119 if (!DT->isReachableFromEntry(P->getParent())) 120 return true; 121 if (!DT->isReachableFromEntry(I->getParent())) 122 return false; 123 return DT->dominates(I, P); 124 } 125 126 // Otherwise, if the instruction is in the entry block and is not an invoke, 127 // then it obviously dominates all phi nodes. 128 if (I->getParent() == &I->getParent()->getParent()->getEntryBlock() && 129 !isa<InvokeInst>(I)) 130 return true; 131 132 return false; 133 } 134 135 /// Simplify "A op (B op' C)" by distributing op over op', turning it into 136 /// "(A op B) op' (A op C)". Here "op" is given by Opcode and "op'" is 137 /// given by OpcodeToExpand, while "A" corresponds to LHS and "B op' C" to RHS. 138 /// Also performs the transform "(A op' B) op C" -> "(A op C) op' (B op C)". 139 /// Returns the simplified value, or null if no simplification was performed. 140 static Value *ExpandBinOp(Instruction::BinaryOps Opcode, Value *LHS, Value *RHS, 141 Instruction::BinaryOps OpcodeToExpand, const Query &Q, 142 unsigned MaxRecurse) { 143 // Recursion is always used, so bail out at once if we already hit the limit. 144 if (!MaxRecurse--) 145 return nullptr; 146 147 // Check whether the expression has the form "(A op' B) op C". 148 if (BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS)) 149 if (Op0->getOpcode() == OpcodeToExpand) { 150 // It does! Try turning it into "(A op C) op' (B op C)". 151 Value *A = Op0->getOperand(0), *B = Op0->getOperand(1), *C = RHS; 152 // Do "A op C" and "B op C" both simplify? 153 if (Value *L = SimplifyBinOp(Opcode, A, C, Q, MaxRecurse)) 154 if (Value *R = SimplifyBinOp(Opcode, B, C, Q, MaxRecurse)) { 155 // They do! Return "L op' R" if it simplifies or is already available. 156 // If "L op' R" equals "A op' B" then "L op' R" is just the LHS. 157 if ((L == A && R == B) || (Instruction::isCommutative(OpcodeToExpand) 158 && L == B && R == A)) { 159 ++NumExpand; 160 return LHS; 161 } 162 // Otherwise return "L op' R" if it simplifies. 163 if (Value *V = SimplifyBinOp(OpcodeToExpand, L, R, Q, MaxRecurse)) { 164 ++NumExpand; 165 return V; 166 } 167 } 168 } 169 170 // Check whether the expression has the form "A op (B op' C)". 171 if (BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS)) 172 if (Op1->getOpcode() == OpcodeToExpand) { 173 // It does! Try turning it into "(A op B) op' (A op C)". 174 Value *A = LHS, *B = Op1->getOperand(0), *C = Op1->getOperand(1); 175 // Do "A op B" and "A op C" both simplify? 176 if (Value *L = SimplifyBinOp(Opcode, A, B, Q, MaxRecurse)) 177 if (Value *R = SimplifyBinOp(Opcode, A, C, Q, MaxRecurse)) { 178 // They do! Return "L op' R" if it simplifies or is already available. 179 // If "L op' R" equals "B op' C" then "L op' R" is just the RHS. 180 if ((L == B && R == C) || (Instruction::isCommutative(OpcodeToExpand) 181 && L == C && R == B)) { 182 ++NumExpand; 183 return RHS; 184 } 185 // Otherwise return "L op' R" if it simplifies. 186 if (Value *V = SimplifyBinOp(OpcodeToExpand, L, R, Q, MaxRecurse)) { 187 ++NumExpand; 188 return V; 189 } 190 } 191 } 192 193 return nullptr; 194 } 195 196 /// Generic simplifications for associative binary operations. 197 /// Returns the simpler value, or null if none was found. 198 static Value *SimplifyAssociativeBinOp(Instruction::BinaryOps Opcode, 199 Value *LHS, Value *RHS, const Query &Q, 200 unsigned MaxRecurse) { 201 assert(Instruction::isAssociative(Opcode) && "Not an associative operation!"); 202 203 // Recursion is always used, so bail out at once if we already hit the limit. 204 if (!MaxRecurse--) 205 return nullptr; 206 207 BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS); 208 BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS); 209 210 // Transform: "(A op B) op C" ==> "A op (B op C)" if it simplifies completely. 211 if (Op0 && Op0->getOpcode() == Opcode) { 212 Value *A = Op0->getOperand(0); 213 Value *B = Op0->getOperand(1); 214 Value *C = RHS; 215 216 // Does "B op C" simplify? 217 if (Value *V = SimplifyBinOp(Opcode, B, C, Q, MaxRecurse)) { 218 // It does! Return "A op V" if it simplifies or is already available. 219 // If V equals B then "A op V" is just the LHS. 220 if (V == B) return LHS; 221 // Otherwise return "A op V" if it simplifies. 222 if (Value *W = SimplifyBinOp(Opcode, A, V, Q, MaxRecurse)) { 223 ++NumReassoc; 224 return W; 225 } 226 } 227 } 228 229 // Transform: "A op (B op C)" ==> "(A op B) op C" if it simplifies completely. 230 if (Op1 && Op1->getOpcode() == Opcode) { 231 Value *A = LHS; 232 Value *B = Op1->getOperand(0); 233 Value *C = Op1->getOperand(1); 234 235 // Does "A op B" simplify? 236 if (Value *V = SimplifyBinOp(Opcode, A, B, Q, MaxRecurse)) { 237 // It does! Return "V op C" if it simplifies or is already available. 238 // If V equals B then "V op C" is just the RHS. 239 if (V == B) return RHS; 240 // Otherwise return "V op C" if it simplifies. 241 if (Value *W = SimplifyBinOp(Opcode, V, C, Q, MaxRecurse)) { 242 ++NumReassoc; 243 return W; 244 } 245 } 246 } 247 248 // The remaining transforms require commutativity as well as associativity. 249 if (!Instruction::isCommutative(Opcode)) 250 return nullptr; 251 252 // Transform: "(A op B) op C" ==> "(C op A) op B" if it simplifies completely. 253 if (Op0 && Op0->getOpcode() == Opcode) { 254 Value *A = Op0->getOperand(0); 255 Value *B = Op0->getOperand(1); 256 Value *C = RHS; 257 258 // Does "C op A" simplify? 259 if (Value *V = SimplifyBinOp(Opcode, C, A, Q, MaxRecurse)) { 260 // It does! Return "V op B" if it simplifies or is already available. 261 // If V equals A then "V op B" is just the LHS. 262 if (V == A) return LHS; 263 // Otherwise return "V op B" if it simplifies. 264 if (Value *W = SimplifyBinOp(Opcode, V, B, Q, MaxRecurse)) { 265 ++NumReassoc; 266 return W; 267 } 268 } 269 } 270 271 // Transform: "A op (B op C)" ==> "B op (C op A)" if it simplifies completely. 272 if (Op1 && Op1->getOpcode() == Opcode) { 273 Value *A = LHS; 274 Value *B = Op1->getOperand(0); 275 Value *C = Op1->getOperand(1); 276 277 // Does "C op A" simplify? 278 if (Value *V = SimplifyBinOp(Opcode, C, A, Q, MaxRecurse)) { 279 // It does! Return "B op V" if it simplifies or is already available. 280 // If V equals C then "B op V" is just the RHS. 281 if (V == C) return RHS; 282 // Otherwise return "B op V" if it simplifies. 283 if (Value *W = SimplifyBinOp(Opcode, B, V, Q, MaxRecurse)) { 284 ++NumReassoc; 285 return W; 286 } 287 } 288 } 289 290 return nullptr; 291 } 292 293 /// In the case of a binary operation with a select instruction as an operand, 294 /// try to simplify the binop by seeing whether evaluating it on both branches 295 /// of the select results in the same value. Returns the common value if so, 296 /// otherwise returns null. 297 static Value *ThreadBinOpOverSelect(Instruction::BinaryOps Opcode, Value *LHS, 298 Value *RHS, const Query &Q, 299 unsigned MaxRecurse) { 300 // Recursion is always used, so bail out at once if we already hit the limit. 301 if (!MaxRecurse--) 302 return nullptr; 303 304 SelectInst *SI; 305 if (isa<SelectInst>(LHS)) { 306 SI = cast<SelectInst>(LHS); 307 } else { 308 assert(isa<SelectInst>(RHS) && "No select instruction operand!"); 309 SI = cast<SelectInst>(RHS); 310 } 311 312 // Evaluate the BinOp on the true and false branches of the select. 313 Value *TV; 314 Value *FV; 315 if (SI == LHS) { 316 TV = SimplifyBinOp(Opcode, SI->getTrueValue(), RHS, Q, MaxRecurse); 317 FV = SimplifyBinOp(Opcode, SI->getFalseValue(), RHS, Q, MaxRecurse); 318 } else { 319 TV = SimplifyBinOp(Opcode, LHS, SI->getTrueValue(), Q, MaxRecurse); 320 FV = SimplifyBinOp(Opcode, LHS, SI->getFalseValue(), Q, MaxRecurse); 321 } 322 323 // If they simplified to the same value, then return the common value. 324 // If they both failed to simplify then return null. 325 if (TV == FV) 326 return TV; 327 328 // If one branch simplified to undef, return the other one. 329 if (TV && isa<UndefValue>(TV)) 330 return FV; 331 if (FV && isa<UndefValue>(FV)) 332 return TV; 333 334 // If applying the operation did not change the true and false select values, 335 // then the result of the binop is the select itself. 336 if (TV == SI->getTrueValue() && FV == SI->getFalseValue()) 337 return SI; 338 339 // If one branch simplified and the other did not, and the simplified 340 // value is equal to the unsimplified one, return the simplified value. 341 // For example, select (cond, X, X & Z) & Z -> X & Z. 342 if ((FV && !TV) || (TV && !FV)) { 343 // Check that the simplified value has the form "X op Y" where "op" is the 344 // same as the original operation. 345 Instruction *Simplified = dyn_cast<Instruction>(FV ? FV : TV); 346 if (Simplified && Simplified->getOpcode() == Opcode) { 347 // The value that didn't simplify is "UnsimplifiedLHS op UnsimplifiedRHS". 348 // We already know that "op" is the same as for the simplified value. See 349 // if the operands match too. If so, return the simplified value. 350 Value *UnsimplifiedBranch = FV ? SI->getTrueValue() : SI->getFalseValue(); 351 Value *UnsimplifiedLHS = SI == LHS ? UnsimplifiedBranch : LHS; 352 Value *UnsimplifiedRHS = SI == LHS ? RHS : UnsimplifiedBranch; 353 if (Simplified->getOperand(0) == UnsimplifiedLHS && 354 Simplified->getOperand(1) == UnsimplifiedRHS) 355 return Simplified; 356 if (Simplified->isCommutative() && 357 Simplified->getOperand(1) == UnsimplifiedLHS && 358 Simplified->getOperand(0) == UnsimplifiedRHS) 359 return Simplified; 360 } 361 } 362 363 return nullptr; 364 } 365 366 /// In the case of a comparison with a select instruction, try to simplify the 367 /// comparison by seeing whether both branches of the select result in the same 368 /// value. Returns the common value if so, otherwise returns null. 369 static Value *ThreadCmpOverSelect(CmpInst::Predicate Pred, Value *LHS, 370 Value *RHS, const Query &Q, 371 unsigned MaxRecurse) { 372 // Recursion is always used, so bail out at once if we already hit the limit. 373 if (!MaxRecurse--) 374 return nullptr; 375 376 // Make sure the select is on the LHS. 377 if (!isa<SelectInst>(LHS)) { 378 std::swap(LHS, RHS); 379 Pred = CmpInst::getSwappedPredicate(Pred); 380 } 381 assert(isa<SelectInst>(LHS) && "Not comparing with a select instruction!"); 382 SelectInst *SI = cast<SelectInst>(LHS); 383 Value *Cond = SI->getCondition(); 384 Value *TV = SI->getTrueValue(); 385 Value *FV = SI->getFalseValue(); 386 387 // Now that we have "cmp select(Cond, TV, FV), RHS", analyse it. 388 // Does "cmp TV, RHS" simplify? 389 Value *TCmp = SimplifyCmpInst(Pred, TV, RHS, Q, MaxRecurse); 390 if (TCmp == Cond) { 391 // It not only simplified, it simplified to the select condition. Replace 392 // it with 'true'. 393 TCmp = getTrue(Cond->getType()); 394 } else if (!TCmp) { 395 // It didn't simplify. However if "cmp TV, RHS" is equal to the select 396 // condition then we can replace it with 'true'. Otherwise give up. 397 if (!isSameCompare(Cond, Pred, TV, RHS)) 398 return nullptr; 399 TCmp = getTrue(Cond->getType()); 400 } 401 402 // Does "cmp FV, RHS" simplify? 403 Value *FCmp = SimplifyCmpInst(Pred, FV, RHS, Q, MaxRecurse); 404 if (FCmp == Cond) { 405 // It not only simplified, it simplified to the select condition. Replace 406 // it with 'false'. 407 FCmp = getFalse(Cond->getType()); 408 } else if (!FCmp) { 409 // It didn't simplify. However if "cmp FV, RHS" is equal to the select 410 // condition then we can replace it with 'false'. Otherwise give up. 411 if (!isSameCompare(Cond, Pred, FV, RHS)) 412 return nullptr; 413 FCmp = getFalse(Cond->getType()); 414 } 415 416 // If both sides simplified to the same value, then use it as the result of 417 // the original comparison. 418 if (TCmp == FCmp) 419 return TCmp; 420 421 // The remaining cases only make sense if the select condition has the same 422 // type as the result of the comparison, so bail out if this is not so. 423 if (Cond->getType()->isVectorTy() != RHS->getType()->isVectorTy()) 424 return nullptr; 425 // If the false value simplified to false, then the result of the compare 426 // is equal to "Cond && TCmp". This also catches the case when the false 427 // value simplified to false and the true value to true, returning "Cond". 428 if (match(FCmp, m_Zero())) 429 if (Value *V = SimplifyAndInst(Cond, TCmp, Q, MaxRecurse)) 430 return V; 431 // If the true value simplified to true, then the result of the compare 432 // is equal to "Cond || FCmp". 433 if (match(TCmp, m_One())) 434 if (Value *V = SimplifyOrInst(Cond, FCmp, Q, MaxRecurse)) 435 return V; 436 // Finally, if the false value simplified to true and the true value to 437 // false, then the result of the compare is equal to "!Cond". 438 if (match(FCmp, m_One()) && match(TCmp, m_Zero())) 439 if (Value *V = 440 SimplifyXorInst(Cond, Constant::getAllOnesValue(Cond->getType()), 441 Q, MaxRecurse)) 442 return V; 443 444 return nullptr; 445 } 446 447 /// In the case of a binary operation with an operand that is a PHI instruction, 448 /// try to simplify the binop by seeing whether evaluating it on the incoming 449 /// phi values yields the same result for every value. If so returns the common 450 /// value, otherwise returns null. 451 static Value *ThreadBinOpOverPHI(Instruction::BinaryOps Opcode, Value *LHS, 452 Value *RHS, const Query &Q, 453 unsigned MaxRecurse) { 454 // Recursion is always used, so bail out at once if we already hit the limit. 455 if (!MaxRecurse--) 456 return nullptr; 457 458 PHINode *PI; 459 if (isa<PHINode>(LHS)) { 460 PI = cast<PHINode>(LHS); 461 // Bail out if RHS and the phi may be mutually interdependent due to a loop. 462 if (!ValueDominatesPHI(RHS, PI, Q.DT)) 463 return nullptr; 464 } else { 465 assert(isa<PHINode>(RHS) && "No PHI instruction operand!"); 466 PI = cast<PHINode>(RHS); 467 // Bail out if LHS and the phi may be mutually interdependent due to a loop. 468 if (!ValueDominatesPHI(LHS, PI, Q.DT)) 469 return nullptr; 470 } 471 472 // Evaluate the BinOp on the incoming phi values. 473 Value *CommonValue = nullptr; 474 for (Value *Incoming : PI->incoming_values()) { 475 // If the incoming value is the phi node itself, it can safely be skipped. 476 if (Incoming == PI) continue; 477 Value *V = PI == LHS ? 478 SimplifyBinOp(Opcode, Incoming, RHS, Q, MaxRecurse) : 479 SimplifyBinOp(Opcode, LHS, Incoming, Q, MaxRecurse); 480 // If the operation failed to simplify, or simplified to a different value 481 // to previously, then give up. 482 if (!V || (CommonValue && V != CommonValue)) 483 return nullptr; 484 CommonValue = V; 485 } 486 487 return CommonValue; 488 } 489 490 /// In the case of a comparison with a PHI instruction, try to simplify the 491 /// comparison by seeing whether comparing with all of the incoming phi values 492 /// yields the same result every time. If so returns the common result, 493 /// otherwise returns null. 494 static Value *ThreadCmpOverPHI(CmpInst::Predicate Pred, Value *LHS, Value *RHS, 495 const Query &Q, unsigned MaxRecurse) { 496 // Recursion is always used, so bail out at once if we already hit the limit. 497 if (!MaxRecurse--) 498 return nullptr; 499 500 // Make sure the phi is on the LHS. 501 if (!isa<PHINode>(LHS)) { 502 std::swap(LHS, RHS); 503 Pred = CmpInst::getSwappedPredicate(Pred); 504 } 505 assert(isa<PHINode>(LHS) && "Not comparing with a phi instruction!"); 506 PHINode *PI = cast<PHINode>(LHS); 507 508 // Bail out if RHS and the phi may be mutually interdependent due to a loop. 509 if (!ValueDominatesPHI(RHS, PI, Q.DT)) 510 return nullptr; 511 512 // Evaluate the BinOp on the incoming phi values. 513 Value *CommonValue = nullptr; 514 for (Value *Incoming : PI->incoming_values()) { 515 // If the incoming value is the phi node itself, it can safely be skipped. 516 if (Incoming == PI) continue; 517 Value *V = SimplifyCmpInst(Pred, Incoming, RHS, Q, MaxRecurse); 518 // If the operation failed to simplify, or simplified to a different value 519 // to previously, then give up. 520 if (!V || (CommonValue && V != CommonValue)) 521 return nullptr; 522 CommonValue = V; 523 } 524 525 return CommonValue; 526 } 527 528 static Constant *foldOrCommuteConstant(Instruction::BinaryOps Opcode, 529 Value *&Op0, Value *&Op1, 530 const Query &Q) { 531 if (auto *CLHS = dyn_cast<Constant>(Op0)) { 532 if (auto *CRHS = dyn_cast<Constant>(Op1)) 533 return ConstantFoldBinaryOpOperands(Opcode, CLHS, CRHS, Q.DL); 534 535 // Canonicalize the constant to the RHS if this is a commutative operation. 536 if (Instruction::isCommutative(Opcode)) 537 std::swap(Op0, Op1); 538 } 539 return nullptr; 540 } 541 542 /// Given operands for an Add, see if we can fold the result. 543 /// If not, this returns null. 544 static Value *SimplifyAddInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, 545 const Query &Q, unsigned MaxRecurse) { 546 if (Constant *C = foldOrCommuteConstant(Instruction::Add, Op0, Op1, Q)) 547 return C; 548 549 // X + undef -> undef 550 if (match(Op1, m_Undef())) 551 return Op1; 552 553 // X + 0 -> X 554 if (match(Op1, m_Zero())) 555 return Op0; 556 557 // X + (Y - X) -> Y 558 // (Y - X) + X -> Y 559 // Eg: X + -X -> 0 560 Value *Y = nullptr; 561 if (match(Op1, m_Sub(m_Value(Y), m_Specific(Op0))) || 562 match(Op0, m_Sub(m_Value(Y), m_Specific(Op1)))) 563 return Y; 564 565 // X + ~X -> -1 since ~X = -X-1 566 Type *Ty = Op0->getType(); 567 if (match(Op0, m_Not(m_Specific(Op1))) || 568 match(Op1, m_Not(m_Specific(Op0)))) 569 return Constant::getAllOnesValue(Ty); 570 571 // add nsw/nuw (xor Y, signbit), signbit --> Y 572 // The no-wrapping add guarantees that the top bit will be set by the add. 573 // Therefore, the xor must be clearing the already set sign bit of Y. 574 if ((isNSW || isNUW) && match(Op1, m_SignBit()) && 575 match(Op0, m_Xor(m_Value(Y), m_SignBit()))) 576 return Y; 577 578 /// i1 add -> xor. 579 if (MaxRecurse && Op0->getType()->getScalarType()->isIntegerTy(1)) 580 if (Value *V = SimplifyXorInst(Op0, Op1, Q, MaxRecurse-1)) 581 return V; 582 583 // Try some generic simplifications for associative operations. 584 if (Value *V = SimplifyAssociativeBinOp(Instruction::Add, Op0, Op1, Q, 585 MaxRecurse)) 586 return V; 587 588 // Threading Add over selects and phi nodes is pointless, so don't bother. 589 // Threading over the select in "A + select(cond, B, C)" means evaluating 590 // "A+B" and "A+C" and seeing if they are equal; but they are equal if and 591 // only if B and C are equal. If B and C are equal then (since we assume 592 // that operands have already been simplified) "select(cond, B, C)" should 593 // have been simplified to the common value of B and C already. Analysing 594 // "A+B" and "A+C" thus gains nothing, but costs compile time. Similarly 595 // for threading over phi nodes. 596 597 return nullptr; 598 } 599 600 Value *llvm::SimplifyAddInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, 601 const DataLayout &DL, const TargetLibraryInfo *TLI, 602 const DominatorTree *DT, AssumptionCache *AC, 603 const Instruction *CxtI) { 604 return ::SimplifyAddInst(Op0, Op1, isNSW, isNUW, Query(DL, TLI, DT, AC, CxtI), 605 RecursionLimit); 606 } 607 608 /// \brief Compute the base pointer and cumulative constant offsets for V. 609 /// 610 /// This strips all constant offsets off of V, leaving it the base pointer, and 611 /// accumulates the total constant offset applied in the returned constant. It 612 /// returns 0 if V is not a pointer, and returns the constant '0' if there are 613 /// no constant offsets applied. 614 /// 615 /// This is very similar to GetPointerBaseWithConstantOffset except it doesn't 616 /// follow non-inbounds geps. This allows it to remain usable for icmp ult/etc. 617 /// folding. 618 static Constant *stripAndComputeConstantOffsets(const DataLayout &DL, Value *&V, 619 bool AllowNonInbounds = false) { 620 assert(V->getType()->getScalarType()->isPointerTy()); 621 622 Type *IntPtrTy = DL.getIntPtrType(V->getType())->getScalarType(); 623 APInt Offset = APInt::getNullValue(IntPtrTy->getIntegerBitWidth()); 624 625 // Even though we don't look through PHI nodes, we could be called on an 626 // instruction in an unreachable block, which may be on a cycle. 627 SmallPtrSet<Value *, 4> Visited; 628 Visited.insert(V); 629 do { 630 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 631 if ((!AllowNonInbounds && !GEP->isInBounds()) || 632 !GEP->accumulateConstantOffset(DL, Offset)) 633 break; 634 V = GEP->getPointerOperand(); 635 } else if (Operator::getOpcode(V) == Instruction::BitCast) { 636 V = cast<Operator>(V)->getOperand(0); 637 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 638 if (GA->isInterposable()) 639 break; 640 V = GA->getAliasee(); 641 } else { 642 if (auto CS = CallSite(V)) 643 if (Value *RV = CS.getReturnedArgOperand()) { 644 V = RV; 645 continue; 646 } 647 break; 648 } 649 assert(V->getType()->getScalarType()->isPointerTy() && 650 "Unexpected operand type!"); 651 } while (Visited.insert(V).second); 652 653 Constant *OffsetIntPtr = ConstantInt::get(IntPtrTy, Offset); 654 if (V->getType()->isVectorTy()) 655 return ConstantVector::getSplat(V->getType()->getVectorNumElements(), 656 OffsetIntPtr); 657 return OffsetIntPtr; 658 } 659 660 /// \brief Compute the constant difference between two pointer values. 661 /// If the difference is not a constant, returns zero. 662 static Constant *computePointerDifference(const DataLayout &DL, Value *LHS, 663 Value *RHS) { 664 Constant *LHSOffset = stripAndComputeConstantOffsets(DL, LHS); 665 Constant *RHSOffset = stripAndComputeConstantOffsets(DL, RHS); 666 667 // If LHS and RHS are not related via constant offsets to the same base 668 // value, there is nothing we can do here. 669 if (LHS != RHS) 670 return nullptr; 671 672 // Otherwise, the difference of LHS - RHS can be computed as: 673 // LHS - RHS 674 // = (LHSOffset + Base) - (RHSOffset + Base) 675 // = LHSOffset - RHSOffset 676 return ConstantExpr::getSub(LHSOffset, RHSOffset); 677 } 678 679 /// Given operands for a Sub, see if we can fold the result. 680 /// If not, this returns null. 681 static Value *SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, 682 const Query &Q, unsigned MaxRecurse) { 683 if (Constant *C = foldOrCommuteConstant(Instruction::Sub, Op0, Op1, Q)) 684 return C; 685 686 // X - undef -> undef 687 // undef - X -> undef 688 if (match(Op0, m_Undef()) || match(Op1, m_Undef())) 689 return UndefValue::get(Op0->getType()); 690 691 // X - 0 -> X 692 if (match(Op1, m_Zero())) 693 return Op0; 694 695 // X - X -> 0 696 if (Op0 == Op1) 697 return Constant::getNullValue(Op0->getType()); 698 699 // Is this a negation? 700 if (match(Op0, m_Zero())) { 701 // 0 - X -> 0 if the sub is NUW. 702 if (isNUW) 703 return Op0; 704 705 unsigned BitWidth = Op1->getType()->getScalarSizeInBits(); 706 APInt KnownZero(BitWidth, 0); 707 APInt KnownOne(BitWidth, 0); 708 computeKnownBits(Op1, KnownZero, KnownOne, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 709 if (KnownZero.isMaxSignedValue()) { 710 // Op1 is either 0 or the minimum signed value. If the sub is NSW, then 711 // Op1 must be 0 because negating the minimum signed value is undefined. 712 if (isNSW) 713 return Op0; 714 715 // 0 - X -> X if X is 0 or the minimum signed value. 716 return Op1; 717 } 718 } 719 720 // (X + Y) - Z -> X + (Y - Z) or Y + (X - Z) if everything simplifies. 721 // For example, (X + Y) - Y -> X; (Y + X) - Y -> X 722 Value *X = nullptr, *Y = nullptr, *Z = Op1; 723 if (MaxRecurse && match(Op0, m_Add(m_Value(X), m_Value(Y)))) { // (X + Y) - Z 724 // See if "V === Y - Z" simplifies. 725 if (Value *V = SimplifyBinOp(Instruction::Sub, Y, Z, Q, MaxRecurse-1)) 726 // It does! Now see if "X + V" simplifies. 727 if (Value *W = SimplifyBinOp(Instruction::Add, X, V, Q, MaxRecurse-1)) { 728 // It does, we successfully reassociated! 729 ++NumReassoc; 730 return W; 731 } 732 // See if "V === X - Z" simplifies. 733 if (Value *V = SimplifyBinOp(Instruction::Sub, X, Z, Q, MaxRecurse-1)) 734 // It does! Now see if "Y + V" simplifies. 735 if (Value *W = SimplifyBinOp(Instruction::Add, Y, V, Q, MaxRecurse-1)) { 736 // It does, we successfully reassociated! 737 ++NumReassoc; 738 return W; 739 } 740 } 741 742 // X - (Y + Z) -> (X - Y) - Z or (X - Z) - Y if everything simplifies. 743 // For example, X - (X + 1) -> -1 744 X = Op0; 745 if (MaxRecurse && match(Op1, m_Add(m_Value(Y), m_Value(Z)))) { // X - (Y + Z) 746 // See if "V === X - Y" simplifies. 747 if (Value *V = SimplifyBinOp(Instruction::Sub, X, Y, Q, MaxRecurse-1)) 748 // It does! Now see if "V - Z" simplifies. 749 if (Value *W = SimplifyBinOp(Instruction::Sub, V, Z, Q, MaxRecurse-1)) { 750 // It does, we successfully reassociated! 751 ++NumReassoc; 752 return W; 753 } 754 // See if "V === X - Z" simplifies. 755 if (Value *V = SimplifyBinOp(Instruction::Sub, X, Z, Q, MaxRecurse-1)) 756 // It does! Now see if "V - Y" simplifies. 757 if (Value *W = SimplifyBinOp(Instruction::Sub, V, Y, Q, MaxRecurse-1)) { 758 // It does, we successfully reassociated! 759 ++NumReassoc; 760 return W; 761 } 762 } 763 764 // Z - (X - Y) -> (Z - X) + Y if everything simplifies. 765 // For example, X - (X - Y) -> Y. 766 Z = Op0; 767 if (MaxRecurse && match(Op1, m_Sub(m_Value(X), m_Value(Y)))) // Z - (X - Y) 768 // See if "V === Z - X" simplifies. 769 if (Value *V = SimplifyBinOp(Instruction::Sub, Z, X, Q, MaxRecurse-1)) 770 // It does! Now see if "V + Y" simplifies. 771 if (Value *W = SimplifyBinOp(Instruction::Add, V, Y, Q, MaxRecurse-1)) { 772 // It does, we successfully reassociated! 773 ++NumReassoc; 774 return W; 775 } 776 777 // trunc(X) - trunc(Y) -> trunc(X - Y) if everything simplifies. 778 if (MaxRecurse && match(Op0, m_Trunc(m_Value(X))) && 779 match(Op1, m_Trunc(m_Value(Y)))) 780 if (X->getType() == Y->getType()) 781 // See if "V === X - Y" simplifies. 782 if (Value *V = SimplifyBinOp(Instruction::Sub, X, Y, Q, MaxRecurse-1)) 783 // It does! Now see if "trunc V" simplifies. 784 if (Value *W = SimplifyCastInst(Instruction::Trunc, V, Op0->getType(), 785 Q, MaxRecurse - 1)) 786 // It does, return the simplified "trunc V". 787 return W; 788 789 // Variations on GEP(base, I, ...) - GEP(base, i, ...) -> GEP(null, I-i, ...). 790 if (match(Op0, m_PtrToInt(m_Value(X))) && 791 match(Op1, m_PtrToInt(m_Value(Y)))) 792 if (Constant *Result = computePointerDifference(Q.DL, X, Y)) 793 return ConstantExpr::getIntegerCast(Result, Op0->getType(), true); 794 795 // i1 sub -> xor. 796 if (MaxRecurse && Op0->getType()->getScalarType()->isIntegerTy(1)) 797 if (Value *V = SimplifyXorInst(Op0, Op1, Q, MaxRecurse-1)) 798 return V; 799 800 // Threading Sub over selects and phi nodes is pointless, so don't bother. 801 // Threading over the select in "A - select(cond, B, C)" means evaluating 802 // "A-B" and "A-C" and seeing if they are equal; but they are equal if and 803 // only if B and C are equal. If B and C are equal then (since we assume 804 // that operands have already been simplified) "select(cond, B, C)" should 805 // have been simplified to the common value of B and C already. Analysing 806 // "A-B" and "A-C" thus gains nothing, but costs compile time. Similarly 807 // for threading over phi nodes. 808 809 return nullptr; 810 } 811 812 Value *llvm::SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, 813 const DataLayout &DL, const TargetLibraryInfo *TLI, 814 const DominatorTree *DT, AssumptionCache *AC, 815 const Instruction *CxtI) { 816 return ::SimplifySubInst(Op0, Op1, isNSW, isNUW, Query(DL, TLI, DT, AC, CxtI), 817 RecursionLimit); 818 } 819 820 /// Given operands for an FAdd, see if we can fold the result. If not, this 821 /// returns null. 822 static Value *SimplifyFAddInst(Value *Op0, Value *Op1, FastMathFlags FMF, 823 const Query &Q, unsigned MaxRecurse) { 824 if (Constant *C = foldOrCommuteConstant(Instruction::FAdd, Op0, Op1, Q)) 825 return C; 826 827 // fadd X, -0 ==> X 828 if (match(Op1, m_NegZero())) 829 return Op0; 830 831 // fadd X, 0 ==> X, when we know X is not -0 832 if (match(Op1, m_Zero()) && 833 (FMF.noSignedZeros() || CannotBeNegativeZero(Op0, Q.TLI))) 834 return Op0; 835 836 // fadd [nnan ninf] X, (fsub [nnan ninf] 0, X) ==> 0 837 // where nnan and ninf have to occur at least once somewhere in this 838 // expression 839 Value *SubOp = nullptr; 840 if (match(Op1, m_FSub(m_AnyZero(), m_Specific(Op0)))) 841 SubOp = Op1; 842 else if (match(Op0, m_FSub(m_AnyZero(), m_Specific(Op1)))) 843 SubOp = Op0; 844 if (SubOp) { 845 Instruction *FSub = cast<Instruction>(SubOp); 846 if ((FMF.noNaNs() || FSub->hasNoNaNs()) && 847 (FMF.noInfs() || FSub->hasNoInfs())) 848 return Constant::getNullValue(Op0->getType()); 849 } 850 851 return nullptr; 852 } 853 854 /// Given operands for an FSub, see if we can fold the result. If not, this 855 /// returns null. 856 static Value *SimplifyFSubInst(Value *Op0, Value *Op1, FastMathFlags FMF, 857 const Query &Q, unsigned MaxRecurse) { 858 if (Constant *C = foldOrCommuteConstant(Instruction::FSub, Op0, Op1, Q)) 859 return C; 860 861 // fsub X, 0 ==> X 862 if (match(Op1, m_Zero())) 863 return Op0; 864 865 // fsub X, -0 ==> X, when we know X is not -0 866 if (match(Op1, m_NegZero()) && 867 (FMF.noSignedZeros() || CannotBeNegativeZero(Op0, Q.TLI))) 868 return Op0; 869 870 // fsub -0.0, (fsub -0.0, X) ==> X 871 Value *X; 872 if (match(Op0, m_NegZero()) && match(Op1, m_FSub(m_NegZero(), m_Value(X)))) 873 return X; 874 875 // fsub 0.0, (fsub 0.0, X) ==> X if signed zeros are ignored. 876 if (FMF.noSignedZeros() && match(Op0, m_AnyZero()) && 877 match(Op1, m_FSub(m_AnyZero(), m_Value(X)))) 878 return X; 879 880 // fsub nnan x, x ==> 0.0 881 if (FMF.noNaNs() && Op0 == Op1) 882 return Constant::getNullValue(Op0->getType()); 883 884 return nullptr; 885 } 886 887 /// Given the operands for an FMul, see if we can fold the result 888 static Value *SimplifyFMulInst(Value *Op0, Value *Op1, FastMathFlags FMF, 889 const Query &Q, unsigned MaxRecurse) { 890 if (Constant *C = foldOrCommuteConstant(Instruction::FMul, Op0, Op1, Q)) 891 return C; 892 893 // fmul X, 1.0 ==> X 894 if (match(Op1, m_FPOne())) 895 return Op0; 896 897 // fmul nnan nsz X, 0 ==> 0 898 if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op1, m_AnyZero())) 899 return Op1; 900 901 return nullptr; 902 } 903 904 /// Given operands for a Mul, see if we can fold the result. 905 /// If not, this returns null. 906 static Value *SimplifyMulInst(Value *Op0, Value *Op1, const Query &Q, 907 unsigned MaxRecurse) { 908 if (Constant *C = foldOrCommuteConstant(Instruction::Mul, Op0, Op1, Q)) 909 return C; 910 911 // X * undef -> 0 912 if (match(Op1, m_Undef())) 913 return Constant::getNullValue(Op0->getType()); 914 915 // X * 0 -> 0 916 if (match(Op1, m_Zero())) 917 return Op1; 918 919 // X * 1 -> X 920 if (match(Op1, m_One())) 921 return Op0; 922 923 // (X / Y) * Y -> X if the division is exact. 924 Value *X = nullptr; 925 if (match(Op0, m_Exact(m_IDiv(m_Value(X), m_Specific(Op1)))) || // (X / Y) * Y 926 match(Op1, m_Exact(m_IDiv(m_Value(X), m_Specific(Op0))))) // Y * (X / Y) 927 return X; 928 929 // i1 mul -> and. 930 if (MaxRecurse && Op0->getType()->getScalarType()->isIntegerTy(1)) 931 if (Value *V = SimplifyAndInst(Op0, Op1, Q, MaxRecurse-1)) 932 return V; 933 934 // Try some generic simplifications for associative operations. 935 if (Value *V = SimplifyAssociativeBinOp(Instruction::Mul, Op0, Op1, Q, 936 MaxRecurse)) 937 return V; 938 939 // Mul distributes over Add. Try some generic simplifications based on this. 940 if (Value *V = ExpandBinOp(Instruction::Mul, Op0, Op1, Instruction::Add, 941 Q, MaxRecurse)) 942 return V; 943 944 // If the operation is with the result of a select instruction, check whether 945 // operating on either branch of the select always yields the same value. 946 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 947 if (Value *V = ThreadBinOpOverSelect(Instruction::Mul, Op0, Op1, Q, 948 MaxRecurse)) 949 return V; 950 951 // If the operation is with the result of a phi instruction, check whether 952 // operating on all incoming values of the phi always yields the same value. 953 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 954 if (Value *V = ThreadBinOpOverPHI(Instruction::Mul, Op0, Op1, Q, 955 MaxRecurse)) 956 return V; 957 958 return nullptr; 959 } 960 961 Value *llvm::SimplifyFAddInst(Value *Op0, Value *Op1, FastMathFlags FMF, 962 const DataLayout &DL, 963 const TargetLibraryInfo *TLI, 964 const DominatorTree *DT, AssumptionCache *AC, 965 const Instruction *CxtI) { 966 return ::SimplifyFAddInst(Op0, Op1, FMF, Query(DL, TLI, DT, AC, CxtI), 967 RecursionLimit); 968 } 969 970 Value *llvm::SimplifyFSubInst(Value *Op0, Value *Op1, FastMathFlags FMF, 971 const DataLayout &DL, 972 const TargetLibraryInfo *TLI, 973 const DominatorTree *DT, AssumptionCache *AC, 974 const Instruction *CxtI) { 975 return ::SimplifyFSubInst(Op0, Op1, FMF, Query(DL, TLI, DT, AC, CxtI), 976 RecursionLimit); 977 } 978 979 Value *llvm::SimplifyFMulInst(Value *Op0, Value *Op1, FastMathFlags FMF, 980 const DataLayout &DL, 981 const TargetLibraryInfo *TLI, 982 const DominatorTree *DT, AssumptionCache *AC, 983 const Instruction *CxtI) { 984 return ::SimplifyFMulInst(Op0, Op1, FMF, Query(DL, TLI, DT, AC, CxtI), 985 RecursionLimit); 986 } 987 988 Value *llvm::SimplifyMulInst(Value *Op0, Value *Op1, const DataLayout &DL, 989 const TargetLibraryInfo *TLI, 990 const DominatorTree *DT, AssumptionCache *AC, 991 const Instruction *CxtI) { 992 return ::SimplifyMulInst(Op0, Op1, Query(DL, TLI, DT, AC, CxtI), 993 RecursionLimit); 994 } 995 996 /// Check for common or similar folds of integer division or integer remainder. 997 static Value *simplifyDivRem(Value *Op0, Value *Op1, bool IsDiv) { 998 Type *Ty = Op0->getType(); 999 1000 // X / undef -> undef 1001 // X % undef -> undef 1002 if (match(Op1, m_Undef())) 1003 return Op1; 1004 1005 // X / 0 -> undef 1006 // X % 0 -> undef 1007 // We don't need to preserve faults! 1008 if (match(Op1, m_Zero())) 1009 return UndefValue::get(Ty); 1010 1011 // If any element of a constant divisor vector is zero, the whole op is undef. 1012 auto *Op1C = dyn_cast<Constant>(Op1); 1013 if (Op1C && Ty->isVectorTy()) { 1014 unsigned NumElts = Ty->getVectorNumElements(); 1015 for (unsigned i = 0; i != NumElts; ++i) { 1016 Constant *Elt = Op1C->getAggregateElement(i); 1017 if (Elt && Elt->isNullValue()) 1018 return UndefValue::get(Ty); 1019 } 1020 } 1021 1022 // undef / X -> 0 1023 // undef % X -> 0 1024 if (match(Op0, m_Undef())) 1025 return Constant::getNullValue(Ty); 1026 1027 // 0 / X -> 0 1028 // 0 % X -> 0 1029 if (match(Op0, m_Zero())) 1030 return Op0; 1031 1032 // X / X -> 1 1033 // X % X -> 0 1034 if (Op0 == Op1) 1035 return IsDiv ? ConstantInt::get(Ty, 1) : Constant::getNullValue(Ty); 1036 1037 // X / 1 -> X 1038 // X % 1 -> 0 1039 // If this is a boolean op (single-bit element type), we can't have 1040 // division-by-zero or remainder-by-zero, so assume the divisor is 1. 1041 if (match(Op1, m_One()) || Ty->getScalarType()->isIntegerTy(1)) 1042 return IsDiv ? Op0 : Constant::getNullValue(Ty); 1043 1044 return nullptr; 1045 } 1046 1047 /// Given operands for an SDiv or UDiv, see if we can fold the result. 1048 /// If not, this returns null. 1049 static Value *SimplifyDiv(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1, 1050 const Query &Q, unsigned MaxRecurse) { 1051 if (Constant *C = foldOrCommuteConstant(Opcode, Op0, Op1, Q)) 1052 return C; 1053 1054 if (Value *V = simplifyDivRem(Op0, Op1, true)) 1055 return V; 1056 1057 bool isSigned = Opcode == Instruction::SDiv; 1058 1059 // (X * Y) / Y -> X if the multiplication does not overflow. 1060 Value *X = nullptr, *Y = nullptr; 1061 if (match(Op0, m_Mul(m_Value(X), m_Value(Y))) && (X == Op1 || Y == Op1)) { 1062 if (Y != Op1) std::swap(X, Y); // Ensure expression is (X * Y) / Y, Y = Op1 1063 OverflowingBinaryOperator *Mul = cast<OverflowingBinaryOperator>(Op0); 1064 // If the Mul knows it does not overflow, then we are good to go. 1065 if ((isSigned && Mul->hasNoSignedWrap()) || 1066 (!isSigned && Mul->hasNoUnsignedWrap())) 1067 return X; 1068 // If X has the form X = A / Y then X * Y cannot overflow. 1069 if (BinaryOperator *Div = dyn_cast<BinaryOperator>(X)) 1070 if (Div->getOpcode() == Opcode && Div->getOperand(1) == Y) 1071 return X; 1072 } 1073 1074 // (X rem Y) / Y -> 0 1075 if ((isSigned && match(Op0, m_SRem(m_Value(), m_Specific(Op1)))) || 1076 (!isSigned && match(Op0, m_URem(m_Value(), m_Specific(Op1))))) 1077 return Constant::getNullValue(Op0->getType()); 1078 1079 // (X /u C1) /u C2 -> 0 if C1 * C2 overflow 1080 ConstantInt *C1, *C2; 1081 if (!isSigned && match(Op0, m_UDiv(m_Value(X), m_ConstantInt(C1))) && 1082 match(Op1, m_ConstantInt(C2))) { 1083 bool Overflow; 1084 C1->getValue().umul_ov(C2->getValue(), Overflow); 1085 if (Overflow) 1086 return Constant::getNullValue(Op0->getType()); 1087 } 1088 1089 // If the operation is with the result of a select instruction, check whether 1090 // operating on either branch of the select always yields the same value. 1091 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 1092 if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse)) 1093 return V; 1094 1095 // If the operation is with the result of a phi instruction, check whether 1096 // operating on all incoming values of the phi always yields the same value. 1097 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 1098 if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse)) 1099 return V; 1100 1101 return nullptr; 1102 } 1103 1104 /// Given operands for an SDiv, see if we can fold the result. 1105 /// If not, this returns null. 1106 static Value *SimplifySDivInst(Value *Op0, Value *Op1, const Query &Q, 1107 unsigned MaxRecurse) { 1108 if (Value *V = SimplifyDiv(Instruction::SDiv, Op0, Op1, Q, MaxRecurse)) 1109 return V; 1110 1111 return nullptr; 1112 } 1113 1114 Value *llvm::SimplifySDivInst(Value *Op0, Value *Op1, const DataLayout &DL, 1115 const TargetLibraryInfo *TLI, 1116 const DominatorTree *DT, AssumptionCache *AC, 1117 const Instruction *CxtI) { 1118 return ::SimplifySDivInst(Op0, Op1, Query(DL, TLI, DT, AC, CxtI), 1119 RecursionLimit); 1120 } 1121 1122 /// Given operands for a UDiv, see if we can fold the result. 1123 /// If not, this returns null. 1124 static Value *SimplifyUDivInst(Value *Op0, Value *Op1, const Query &Q, 1125 unsigned MaxRecurse) { 1126 if (Value *V = SimplifyDiv(Instruction::UDiv, Op0, Op1, Q, MaxRecurse)) 1127 return V; 1128 1129 // udiv %V, C -> 0 if %V < C 1130 if (MaxRecurse) { 1131 if (Constant *C = dyn_cast_or_null<Constant>(SimplifyICmpInst( 1132 ICmpInst::ICMP_ULT, Op0, Op1, Q, MaxRecurse - 1))) { 1133 if (C->isAllOnesValue()) { 1134 return Constant::getNullValue(Op0->getType()); 1135 } 1136 } 1137 } 1138 1139 return nullptr; 1140 } 1141 1142 Value *llvm::SimplifyUDivInst(Value *Op0, Value *Op1, const DataLayout &DL, 1143 const TargetLibraryInfo *TLI, 1144 const DominatorTree *DT, AssumptionCache *AC, 1145 const Instruction *CxtI) { 1146 return ::SimplifyUDivInst(Op0, Op1, Query(DL, TLI, DT, AC, CxtI), 1147 RecursionLimit); 1148 } 1149 1150 static Value *SimplifyFDivInst(Value *Op0, Value *Op1, FastMathFlags FMF, 1151 const Query &Q, unsigned) { 1152 if (Constant *C = foldOrCommuteConstant(Instruction::FDiv, Op0, Op1, Q)) 1153 return C; 1154 1155 // undef / X -> undef (the undef could be a snan). 1156 if (match(Op0, m_Undef())) 1157 return Op0; 1158 1159 // X / undef -> undef 1160 if (match(Op1, m_Undef())) 1161 return Op1; 1162 1163 // X / 1.0 -> X 1164 if (match(Op1, m_FPOne())) 1165 return Op0; 1166 1167 // 0 / X -> 0 1168 // Requires that NaNs are off (X could be zero) and signed zeroes are 1169 // ignored (X could be positive or negative, so the output sign is unknown). 1170 if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op0, m_AnyZero())) 1171 return Op0; 1172 1173 if (FMF.noNaNs()) { 1174 // X / X -> 1.0 is legal when NaNs are ignored. 1175 if (Op0 == Op1) 1176 return ConstantFP::get(Op0->getType(), 1.0); 1177 1178 // -X / X -> -1.0 and 1179 // X / -X -> -1.0 are legal when NaNs are ignored. 1180 // We can ignore signed zeros because +-0.0/+-0.0 is NaN and ignored. 1181 if ((BinaryOperator::isFNeg(Op0, /*IgnoreZeroSign=*/true) && 1182 BinaryOperator::getFNegArgument(Op0) == Op1) || 1183 (BinaryOperator::isFNeg(Op1, /*IgnoreZeroSign=*/true) && 1184 BinaryOperator::getFNegArgument(Op1) == Op0)) 1185 return ConstantFP::get(Op0->getType(), -1.0); 1186 } 1187 1188 return nullptr; 1189 } 1190 1191 Value *llvm::SimplifyFDivInst(Value *Op0, Value *Op1, FastMathFlags FMF, 1192 const DataLayout &DL, 1193 const TargetLibraryInfo *TLI, 1194 const DominatorTree *DT, AssumptionCache *AC, 1195 const Instruction *CxtI) { 1196 return ::SimplifyFDivInst(Op0, Op1, FMF, Query(DL, TLI, DT, AC, CxtI), 1197 RecursionLimit); 1198 } 1199 1200 /// Given operands for an SRem or URem, see if we can fold the result. 1201 /// If not, this returns null. 1202 static Value *SimplifyRem(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1, 1203 const Query &Q, unsigned MaxRecurse) { 1204 if (Constant *C = foldOrCommuteConstant(Opcode, Op0, Op1, Q)) 1205 return C; 1206 1207 if (Value *V = simplifyDivRem(Op0, Op1, false)) 1208 return V; 1209 1210 // (X % Y) % Y -> X % Y 1211 if ((Opcode == Instruction::SRem && 1212 match(Op0, m_SRem(m_Value(), m_Specific(Op1)))) || 1213 (Opcode == Instruction::URem && 1214 match(Op0, m_URem(m_Value(), m_Specific(Op1))))) 1215 return Op0; 1216 1217 // If the operation is with the result of a select instruction, check whether 1218 // operating on either branch of the select always yields the same value. 1219 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 1220 if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse)) 1221 return V; 1222 1223 // If the operation is with the result of a phi instruction, check whether 1224 // operating on all incoming values of the phi always yields the same value. 1225 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 1226 if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse)) 1227 return V; 1228 1229 return nullptr; 1230 } 1231 1232 /// Given operands for an SRem, see if we can fold the result. 1233 /// If not, this returns null. 1234 static Value *SimplifySRemInst(Value *Op0, Value *Op1, const Query &Q, 1235 unsigned MaxRecurse) { 1236 if (Value *V = SimplifyRem(Instruction::SRem, Op0, Op1, Q, MaxRecurse)) 1237 return V; 1238 1239 return nullptr; 1240 } 1241 1242 Value *llvm::SimplifySRemInst(Value *Op0, Value *Op1, const DataLayout &DL, 1243 const TargetLibraryInfo *TLI, 1244 const DominatorTree *DT, AssumptionCache *AC, 1245 const Instruction *CxtI) { 1246 return ::SimplifySRemInst(Op0, Op1, Query(DL, TLI, DT, AC, CxtI), 1247 RecursionLimit); 1248 } 1249 1250 /// Given operands for a URem, see if we can fold the result. 1251 /// If not, this returns null. 1252 static Value *SimplifyURemInst(Value *Op0, Value *Op1, const Query &Q, 1253 unsigned MaxRecurse) { 1254 if (Value *V = SimplifyRem(Instruction::URem, Op0, Op1, Q, MaxRecurse)) 1255 return V; 1256 1257 // urem %V, C -> %V if %V < C 1258 if (MaxRecurse) { 1259 if (Constant *C = dyn_cast_or_null<Constant>(SimplifyICmpInst( 1260 ICmpInst::ICMP_ULT, Op0, Op1, Q, MaxRecurse - 1))) { 1261 if (C->isAllOnesValue()) { 1262 return Op0; 1263 } 1264 } 1265 } 1266 1267 return nullptr; 1268 } 1269 1270 Value *llvm::SimplifyURemInst(Value *Op0, Value *Op1, const DataLayout &DL, 1271 const TargetLibraryInfo *TLI, 1272 const DominatorTree *DT, AssumptionCache *AC, 1273 const Instruction *CxtI) { 1274 return ::SimplifyURemInst(Op0, Op1, Query(DL, TLI, DT, AC, CxtI), 1275 RecursionLimit); 1276 } 1277 1278 static Value *SimplifyFRemInst(Value *Op0, Value *Op1, FastMathFlags FMF, 1279 const Query &Q, unsigned) { 1280 if (Constant *C = foldOrCommuteConstant(Instruction::FRem, Op0, Op1, Q)) 1281 return C; 1282 1283 // undef % X -> undef (the undef could be a snan). 1284 if (match(Op0, m_Undef())) 1285 return Op0; 1286 1287 // X % undef -> undef 1288 if (match(Op1, m_Undef())) 1289 return Op1; 1290 1291 // 0 % X -> 0 1292 // Requires that NaNs are off (X could be zero) and signed zeroes are 1293 // ignored (X could be positive or negative, so the output sign is unknown). 1294 if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op0, m_AnyZero())) 1295 return Op0; 1296 1297 return nullptr; 1298 } 1299 1300 Value *llvm::SimplifyFRemInst(Value *Op0, Value *Op1, FastMathFlags FMF, 1301 const DataLayout &DL, 1302 const TargetLibraryInfo *TLI, 1303 const DominatorTree *DT, AssumptionCache *AC, 1304 const Instruction *CxtI) { 1305 return ::SimplifyFRemInst(Op0, Op1, FMF, Query(DL, TLI, DT, AC, CxtI), 1306 RecursionLimit); 1307 } 1308 1309 /// Returns true if a shift by \c Amount always yields undef. 1310 static bool isUndefShift(Value *Amount) { 1311 Constant *C = dyn_cast<Constant>(Amount); 1312 if (!C) 1313 return false; 1314 1315 // X shift by undef -> undef because it may shift by the bitwidth. 1316 if (isa<UndefValue>(C)) 1317 return true; 1318 1319 // Shifting by the bitwidth or more is undefined. 1320 if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1321 if (CI->getValue().getLimitedValue() >= 1322 CI->getType()->getScalarSizeInBits()) 1323 return true; 1324 1325 // If all lanes of a vector shift are undefined the whole shift is. 1326 if (isa<ConstantVector>(C) || isa<ConstantDataVector>(C)) { 1327 for (unsigned I = 0, E = C->getType()->getVectorNumElements(); I != E; ++I) 1328 if (!isUndefShift(C->getAggregateElement(I))) 1329 return false; 1330 return true; 1331 } 1332 1333 return false; 1334 } 1335 1336 /// Given operands for an Shl, LShr or AShr, see if we can fold the result. 1337 /// If not, this returns null. 1338 static Value *SimplifyShift(Instruction::BinaryOps Opcode, Value *Op0, 1339 Value *Op1, const Query &Q, unsigned MaxRecurse) { 1340 if (Constant *C = foldOrCommuteConstant(Opcode, Op0, Op1, Q)) 1341 return C; 1342 1343 // 0 shift by X -> 0 1344 if (match(Op0, m_Zero())) 1345 return Op0; 1346 1347 // X shift by 0 -> X 1348 if (match(Op1, m_Zero())) 1349 return Op0; 1350 1351 // Fold undefined shifts. 1352 if (isUndefShift(Op1)) 1353 return UndefValue::get(Op0->getType()); 1354 1355 // If the operation is with the result of a select instruction, check whether 1356 // operating on either branch of the select always yields the same value. 1357 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 1358 if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse)) 1359 return V; 1360 1361 // If the operation is with the result of a phi instruction, check whether 1362 // operating on all incoming values of the phi always yields the same value. 1363 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 1364 if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse)) 1365 return V; 1366 1367 // If any bits in the shift amount make that value greater than or equal to 1368 // the number of bits in the type, the shift is undefined. 1369 unsigned BitWidth = Op1->getType()->getScalarSizeInBits(); 1370 APInt KnownZero(BitWidth, 0); 1371 APInt KnownOne(BitWidth, 0); 1372 computeKnownBits(Op1, KnownZero, KnownOne, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 1373 if (KnownOne.getLimitedValue() >= BitWidth) 1374 return UndefValue::get(Op0->getType()); 1375 1376 // If all valid bits in the shift amount are known zero, the first operand is 1377 // unchanged. 1378 unsigned NumValidShiftBits = Log2_32_Ceil(BitWidth); 1379 APInt ShiftAmountMask = APInt::getLowBitsSet(BitWidth, NumValidShiftBits); 1380 if ((KnownZero & ShiftAmountMask) == ShiftAmountMask) 1381 return Op0; 1382 1383 return nullptr; 1384 } 1385 1386 /// \brief Given operands for an Shl, LShr or AShr, see if we can 1387 /// fold the result. If not, this returns null. 1388 static Value *SimplifyRightShift(Instruction::BinaryOps Opcode, Value *Op0, 1389 Value *Op1, bool isExact, const Query &Q, 1390 unsigned MaxRecurse) { 1391 if (Value *V = SimplifyShift(Opcode, Op0, Op1, Q, MaxRecurse)) 1392 return V; 1393 1394 // X >> X -> 0 1395 if (Op0 == Op1) 1396 return Constant::getNullValue(Op0->getType()); 1397 1398 // undef >> X -> 0 1399 // undef >> X -> undef (if it's exact) 1400 if (match(Op0, m_Undef())) 1401 return isExact ? Op0 : Constant::getNullValue(Op0->getType()); 1402 1403 // The low bit cannot be shifted out of an exact shift if it is set. 1404 if (isExact) { 1405 unsigned BitWidth = Op0->getType()->getScalarSizeInBits(); 1406 APInt Op0KnownZero(BitWidth, 0); 1407 APInt Op0KnownOne(BitWidth, 0); 1408 computeKnownBits(Op0, Op0KnownZero, Op0KnownOne, Q.DL, /*Depth=*/0, Q.AC, 1409 Q.CxtI, Q.DT); 1410 if (Op0KnownOne[0]) 1411 return Op0; 1412 } 1413 1414 return nullptr; 1415 } 1416 1417 /// Given operands for an Shl, see if we can fold the result. 1418 /// If not, this returns null. 1419 static Value *SimplifyShlInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, 1420 const Query &Q, unsigned MaxRecurse) { 1421 if (Value *V = SimplifyShift(Instruction::Shl, Op0, Op1, Q, MaxRecurse)) 1422 return V; 1423 1424 // undef << X -> 0 1425 // undef << X -> undef if (if it's NSW/NUW) 1426 if (match(Op0, m_Undef())) 1427 return isNSW || isNUW ? Op0 : Constant::getNullValue(Op0->getType()); 1428 1429 // (X >> A) << A -> X 1430 Value *X; 1431 if (match(Op0, m_Exact(m_Shr(m_Value(X), m_Specific(Op1))))) 1432 return X; 1433 return nullptr; 1434 } 1435 1436 Value *llvm::SimplifyShlInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, 1437 const DataLayout &DL, const TargetLibraryInfo *TLI, 1438 const DominatorTree *DT, AssumptionCache *AC, 1439 const Instruction *CxtI) { 1440 return ::SimplifyShlInst(Op0, Op1, isNSW, isNUW, Query(DL, TLI, DT, AC, CxtI), 1441 RecursionLimit); 1442 } 1443 1444 /// Given operands for an LShr, see if we can fold the result. 1445 /// If not, this returns null. 1446 static Value *SimplifyLShrInst(Value *Op0, Value *Op1, bool isExact, 1447 const Query &Q, unsigned MaxRecurse) { 1448 if (Value *V = SimplifyRightShift(Instruction::LShr, Op0, Op1, isExact, Q, 1449 MaxRecurse)) 1450 return V; 1451 1452 // (X << A) >> A -> X 1453 Value *X; 1454 if (match(Op0, m_NUWShl(m_Value(X), m_Specific(Op1)))) 1455 return X; 1456 1457 return nullptr; 1458 } 1459 1460 Value *llvm::SimplifyLShrInst(Value *Op0, Value *Op1, bool isExact, 1461 const DataLayout &DL, 1462 const TargetLibraryInfo *TLI, 1463 const DominatorTree *DT, AssumptionCache *AC, 1464 const Instruction *CxtI) { 1465 return ::SimplifyLShrInst(Op0, Op1, isExact, Query(DL, TLI, DT, AC, CxtI), 1466 RecursionLimit); 1467 } 1468 1469 /// Given operands for an AShr, see if we can fold the result. 1470 /// If not, this returns null. 1471 static Value *SimplifyAShrInst(Value *Op0, Value *Op1, bool isExact, 1472 const Query &Q, unsigned MaxRecurse) { 1473 if (Value *V = SimplifyRightShift(Instruction::AShr, Op0, Op1, isExact, Q, 1474 MaxRecurse)) 1475 return V; 1476 1477 // all ones >>a X -> all ones 1478 if (match(Op0, m_AllOnes())) 1479 return Op0; 1480 1481 // (X << A) >> A -> X 1482 Value *X; 1483 if (match(Op0, m_NSWShl(m_Value(X), m_Specific(Op1)))) 1484 return X; 1485 1486 // Arithmetic shifting an all-sign-bit value is a no-op. 1487 unsigned NumSignBits = ComputeNumSignBits(Op0, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 1488 if (NumSignBits == Op0->getType()->getScalarSizeInBits()) 1489 return Op0; 1490 1491 return nullptr; 1492 } 1493 1494 Value *llvm::SimplifyAShrInst(Value *Op0, Value *Op1, bool isExact, 1495 const DataLayout &DL, 1496 const TargetLibraryInfo *TLI, 1497 const DominatorTree *DT, AssumptionCache *AC, 1498 const Instruction *CxtI) { 1499 return ::SimplifyAShrInst(Op0, Op1, isExact, Query(DL, TLI, DT, AC, CxtI), 1500 RecursionLimit); 1501 } 1502 1503 static Value *simplifyUnsignedRangeCheck(ICmpInst *ZeroICmp, 1504 ICmpInst *UnsignedICmp, bool IsAnd) { 1505 Value *X, *Y; 1506 1507 ICmpInst::Predicate EqPred; 1508 if (!match(ZeroICmp, m_ICmp(EqPred, m_Value(Y), m_Zero())) || 1509 !ICmpInst::isEquality(EqPred)) 1510 return nullptr; 1511 1512 ICmpInst::Predicate UnsignedPred; 1513 if (match(UnsignedICmp, m_ICmp(UnsignedPred, m_Value(X), m_Specific(Y))) && 1514 ICmpInst::isUnsigned(UnsignedPred)) 1515 ; 1516 else if (match(UnsignedICmp, 1517 m_ICmp(UnsignedPred, m_Value(Y), m_Specific(X))) && 1518 ICmpInst::isUnsigned(UnsignedPred)) 1519 UnsignedPred = ICmpInst::getSwappedPredicate(UnsignedPred); 1520 else 1521 return nullptr; 1522 1523 // X < Y && Y != 0 --> X < Y 1524 // X < Y || Y != 0 --> Y != 0 1525 if (UnsignedPred == ICmpInst::ICMP_ULT && EqPred == ICmpInst::ICMP_NE) 1526 return IsAnd ? UnsignedICmp : ZeroICmp; 1527 1528 // X >= Y || Y != 0 --> true 1529 // X >= Y || Y == 0 --> X >= Y 1530 if (UnsignedPred == ICmpInst::ICMP_UGE && !IsAnd) { 1531 if (EqPred == ICmpInst::ICMP_NE) 1532 return getTrue(UnsignedICmp->getType()); 1533 return UnsignedICmp; 1534 } 1535 1536 // X < Y && Y == 0 --> false 1537 if (UnsignedPred == ICmpInst::ICMP_ULT && EqPred == ICmpInst::ICMP_EQ && 1538 IsAnd) 1539 return getFalse(UnsignedICmp->getType()); 1540 1541 return nullptr; 1542 } 1543 1544 /// Commuted variants are assumed to be handled by calling this function again 1545 /// with the parameters swapped. 1546 static Value *simplifyAndOfICmpsWithSameOperands(ICmpInst *Op0, ICmpInst *Op1) { 1547 ICmpInst::Predicate Pred0, Pred1; 1548 Value *A ,*B; 1549 if (!match(Op0, m_ICmp(Pred0, m_Value(A), m_Value(B))) || 1550 !match(Op1, m_ICmp(Pred1, m_Specific(A), m_Specific(B)))) 1551 return nullptr; 1552 1553 // We have (icmp Pred0, A, B) & (icmp Pred1, A, B). 1554 // If Op1 is always implied true by Op0, then Op0 is a subset of Op1, and we 1555 // can eliminate Op1 from this 'and'. 1556 if (ICmpInst::isImpliedTrueByMatchingCmp(Pred0, Pred1)) 1557 return Op0; 1558 1559 // Check for any combination of predicates that are guaranteed to be disjoint. 1560 if ((Pred0 == ICmpInst::getInversePredicate(Pred1)) || 1561 (Pred0 == ICmpInst::ICMP_EQ && ICmpInst::isFalseWhenEqual(Pred1)) || 1562 (Pred0 == ICmpInst::ICMP_SLT && Pred1 == ICmpInst::ICMP_SGT) || 1563 (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_UGT)) 1564 return getFalse(Op0->getType()); 1565 1566 return nullptr; 1567 } 1568 1569 /// Commuted variants are assumed to be handled by calling this function again 1570 /// with the parameters swapped. 1571 static Value *SimplifyAndOfICmps(ICmpInst *Op0, ICmpInst *Op1) { 1572 if (Value *X = simplifyUnsignedRangeCheck(Op0, Op1, /*IsAnd=*/true)) 1573 return X; 1574 1575 if (Value *X = simplifyAndOfICmpsWithSameOperands(Op0, Op1)) 1576 return X; 1577 1578 // Look for this pattern: (icmp V, C0) & (icmp V, C1)). 1579 Type *ITy = Op0->getType(); 1580 ICmpInst::Predicate Pred0, Pred1; 1581 const APInt *C0, *C1; 1582 Value *V; 1583 if (match(Op0, m_ICmp(Pred0, m_Value(V), m_APInt(C0))) && 1584 match(Op1, m_ICmp(Pred1, m_Specific(V), m_APInt(C1)))) { 1585 // Make a constant range that's the intersection of the two icmp ranges. 1586 // If the intersection is empty, we know that the result is false. 1587 auto Range0 = ConstantRange::makeAllowedICmpRegion(Pred0, *C0); 1588 auto Range1 = ConstantRange::makeAllowedICmpRegion(Pred1, *C1); 1589 if (Range0.intersectWith(Range1).isEmptySet()) 1590 return getFalse(ITy); 1591 } 1592 1593 // (icmp (add V, C0), C1) & (icmp V, C0) 1594 if (!match(Op0, m_ICmp(Pred0, m_Add(m_Value(V), m_APInt(C0)), m_APInt(C1)))) 1595 return nullptr; 1596 1597 if (!match(Op1, m_ICmp(Pred1, m_Specific(V), m_Value()))) 1598 return nullptr; 1599 1600 auto *AddInst = cast<BinaryOperator>(Op0->getOperand(0)); 1601 if (AddInst->getOperand(1) != Op1->getOperand(1)) 1602 return nullptr; 1603 1604 bool isNSW = AddInst->hasNoSignedWrap(); 1605 bool isNUW = AddInst->hasNoUnsignedWrap(); 1606 1607 const APInt Delta = *C1 - *C0; 1608 if (C0->isStrictlyPositive()) { 1609 if (Delta == 2) { 1610 if (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_SGT) 1611 return getFalse(ITy); 1612 if (Pred0 == ICmpInst::ICMP_SLT && Pred1 == ICmpInst::ICMP_SGT && isNSW) 1613 return getFalse(ITy); 1614 } 1615 if (Delta == 1) { 1616 if (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_SGT) 1617 return getFalse(ITy); 1618 if (Pred0 == ICmpInst::ICMP_SLE && Pred1 == ICmpInst::ICMP_SGT && isNSW) 1619 return getFalse(ITy); 1620 } 1621 } 1622 if (C0->getBoolValue() && isNUW) { 1623 if (Delta == 2) 1624 if (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_UGT) 1625 return getFalse(ITy); 1626 if (Delta == 1) 1627 if (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_UGT) 1628 return getFalse(ITy); 1629 } 1630 1631 return nullptr; 1632 } 1633 1634 /// Given operands for an And, see if we can fold the result. 1635 /// If not, this returns null. 1636 static Value *SimplifyAndInst(Value *Op0, Value *Op1, const Query &Q, 1637 unsigned MaxRecurse) { 1638 if (Constant *C = foldOrCommuteConstant(Instruction::And, Op0, Op1, Q)) 1639 return C; 1640 1641 // X & undef -> 0 1642 if (match(Op1, m_Undef())) 1643 return Constant::getNullValue(Op0->getType()); 1644 1645 // X & X = X 1646 if (Op0 == Op1) 1647 return Op0; 1648 1649 // X & 0 = 0 1650 if (match(Op1, m_Zero())) 1651 return Op1; 1652 1653 // X & -1 = X 1654 if (match(Op1, m_AllOnes())) 1655 return Op0; 1656 1657 // A & ~A = ~A & A = 0 1658 if (match(Op0, m_Not(m_Specific(Op1))) || 1659 match(Op1, m_Not(m_Specific(Op0)))) 1660 return Constant::getNullValue(Op0->getType()); 1661 1662 // (A | ?) & A = A 1663 Value *A = nullptr, *B = nullptr; 1664 if (match(Op0, m_Or(m_Value(A), m_Value(B))) && 1665 (A == Op1 || B == Op1)) 1666 return Op1; 1667 1668 // A & (A | ?) = A 1669 if (match(Op1, m_Or(m_Value(A), m_Value(B))) && 1670 (A == Op0 || B == Op0)) 1671 return Op0; 1672 1673 // A & (-A) = A if A is a power of two or zero. 1674 if (match(Op0, m_Neg(m_Specific(Op1))) || 1675 match(Op1, m_Neg(m_Specific(Op0)))) { 1676 if (isKnownToBeAPowerOfTwo(Op0, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI, 1677 Q.DT)) 1678 return Op0; 1679 if (isKnownToBeAPowerOfTwo(Op1, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI, 1680 Q.DT)) 1681 return Op1; 1682 } 1683 1684 if (auto *ICILHS = dyn_cast<ICmpInst>(Op0)) { 1685 if (auto *ICIRHS = dyn_cast<ICmpInst>(Op1)) { 1686 if (Value *V = SimplifyAndOfICmps(ICILHS, ICIRHS)) 1687 return V; 1688 if (Value *V = SimplifyAndOfICmps(ICIRHS, ICILHS)) 1689 return V; 1690 } 1691 } 1692 1693 // The compares may be hidden behind casts. Look through those and try the 1694 // same folds as above. 1695 auto *Cast0 = dyn_cast<CastInst>(Op0); 1696 auto *Cast1 = dyn_cast<CastInst>(Op1); 1697 if (Cast0 && Cast1 && Cast0->getOpcode() == Cast1->getOpcode() && 1698 Cast0->getSrcTy() == Cast1->getSrcTy()) { 1699 auto *Cmp0 = dyn_cast<ICmpInst>(Cast0->getOperand(0)); 1700 auto *Cmp1 = dyn_cast<ICmpInst>(Cast1->getOperand(0)); 1701 if (Cmp0 && Cmp1) { 1702 Instruction::CastOps CastOpc = Cast0->getOpcode(); 1703 Type *ResultType = Cast0->getType(); 1704 if (auto *V = dyn_cast_or_null<Constant>(SimplifyAndOfICmps(Cmp0, Cmp1))) 1705 return ConstantExpr::getCast(CastOpc, V, ResultType); 1706 if (auto *V = dyn_cast_or_null<Constant>(SimplifyAndOfICmps(Cmp1, Cmp0))) 1707 return ConstantExpr::getCast(CastOpc, V, ResultType); 1708 } 1709 } 1710 1711 // Try some generic simplifications for associative operations. 1712 if (Value *V = SimplifyAssociativeBinOp(Instruction::And, Op0, Op1, Q, 1713 MaxRecurse)) 1714 return V; 1715 1716 // And distributes over Or. Try some generic simplifications based on this. 1717 if (Value *V = ExpandBinOp(Instruction::And, Op0, Op1, Instruction::Or, 1718 Q, MaxRecurse)) 1719 return V; 1720 1721 // And distributes over Xor. Try some generic simplifications based on this. 1722 if (Value *V = ExpandBinOp(Instruction::And, Op0, Op1, Instruction::Xor, 1723 Q, MaxRecurse)) 1724 return V; 1725 1726 // If the operation is with the result of a select instruction, check whether 1727 // operating on either branch of the select always yields the same value. 1728 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 1729 if (Value *V = ThreadBinOpOverSelect(Instruction::And, Op0, Op1, Q, 1730 MaxRecurse)) 1731 return V; 1732 1733 // If the operation is with the result of a phi instruction, check whether 1734 // operating on all incoming values of the phi always yields the same value. 1735 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 1736 if (Value *V = ThreadBinOpOverPHI(Instruction::And, Op0, Op1, Q, 1737 MaxRecurse)) 1738 return V; 1739 1740 return nullptr; 1741 } 1742 1743 Value *llvm::SimplifyAndInst(Value *Op0, Value *Op1, const DataLayout &DL, 1744 const TargetLibraryInfo *TLI, 1745 const DominatorTree *DT, AssumptionCache *AC, 1746 const Instruction *CxtI) { 1747 return ::SimplifyAndInst(Op0, Op1, Query(DL, TLI, DT, AC, CxtI), 1748 RecursionLimit); 1749 } 1750 1751 /// Commuted variants are assumed to be handled by calling this function again 1752 /// with the parameters swapped. 1753 static Value *simplifyOrOfICmpsWithSameOperands(ICmpInst *Op0, ICmpInst *Op1) { 1754 ICmpInst::Predicate Pred0, Pred1; 1755 Value *A ,*B; 1756 if (!match(Op0, m_ICmp(Pred0, m_Value(A), m_Value(B))) || 1757 !match(Op1, m_ICmp(Pred1, m_Specific(A), m_Specific(B)))) 1758 return nullptr; 1759 1760 // We have (icmp Pred0, A, B) | (icmp Pred1, A, B). 1761 // If Op1 is always implied true by Op0, then Op0 is a subset of Op1, and we 1762 // can eliminate Op0 from this 'or'. 1763 if (ICmpInst::isImpliedTrueByMatchingCmp(Pred0, Pred1)) 1764 return Op1; 1765 1766 // Check for any combination of predicates that cover the entire range of 1767 // possibilities. 1768 if ((Pred0 == ICmpInst::getInversePredicate(Pred1)) || 1769 (Pred0 == ICmpInst::ICMP_NE && ICmpInst::isTrueWhenEqual(Pred1)) || 1770 (Pred0 == ICmpInst::ICMP_SLE && Pred1 == ICmpInst::ICMP_SGE) || 1771 (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_UGE)) 1772 return getTrue(Op0->getType()); 1773 1774 return nullptr; 1775 } 1776 1777 /// Commuted variants are assumed to be handled by calling this function again 1778 /// with the parameters swapped. 1779 static Value *SimplifyOrOfICmps(ICmpInst *Op0, ICmpInst *Op1) { 1780 if (Value *X = simplifyUnsignedRangeCheck(Op0, Op1, /*IsAnd=*/false)) 1781 return X; 1782 1783 if (Value *X = simplifyOrOfICmpsWithSameOperands(Op0, Op1)) 1784 return X; 1785 1786 // (icmp (add V, C0), C1) | (icmp V, C0) 1787 ICmpInst::Predicate Pred0, Pred1; 1788 const APInt *C0, *C1; 1789 Value *V; 1790 if (!match(Op0, m_ICmp(Pred0, m_Add(m_Value(V), m_APInt(C0)), m_APInt(C1)))) 1791 return nullptr; 1792 1793 if (!match(Op1, m_ICmp(Pred1, m_Specific(V), m_Value()))) 1794 return nullptr; 1795 1796 auto *AddInst = cast<BinaryOperator>(Op0->getOperand(0)); 1797 if (AddInst->getOperand(1) != Op1->getOperand(1)) 1798 return nullptr; 1799 1800 Type *ITy = Op0->getType(); 1801 bool isNSW = AddInst->hasNoSignedWrap(); 1802 bool isNUW = AddInst->hasNoUnsignedWrap(); 1803 1804 const APInt Delta = *C1 - *C0; 1805 if (C0->isStrictlyPositive()) { 1806 if (Delta == 2) { 1807 if (Pred0 == ICmpInst::ICMP_UGE && Pred1 == ICmpInst::ICMP_SLE) 1808 return getTrue(ITy); 1809 if (Pred0 == ICmpInst::ICMP_SGE && Pred1 == ICmpInst::ICMP_SLE && isNSW) 1810 return getTrue(ITy); 1811 } 1812 if (Delta == 1) { 1813 if (Pred0 == ICmpInst::ICMP_UGT && Pred1 == ICmpInst::ICMP_SLE) 1814 return getTrue(ITy); 1815 if (Pred0 == ICmpInst::ICMP_SGT && Pred1 == ICmpInst::ICMP_SLE && isNSW) 1816 return getTrue(ITy); 1817 } 1818 } 1819 if (C0->getBoolValue() && isNUW) { 1820 if (Delta == 2) 1821 if (Pred0 == ICmpInst::ICMP_UGE && Pred1 == ICmpInst::ICMP_ULE) 1822 return getTrue(ITy); 1823 if (Delta == 1) 1824 if (Pred0 == ICmpInst::ICMP_UGT && Pred1 == ICmpInst::ICMP_ULE) 1825 return getTrue(ITy); 1826 } 1827 1828 return nullptr; 1829 } 1830 1831 /// Given operands for an Or, see if we can fold the result. 1832 /// If not, this returns null. 1833 static Value *SimplifyOrInst(Value *Op0, Value *Op1, const Query &Q, 1834 unsigned MaxRecurse) { 1835 if (Constant *C = foldOrCommuteConstant(Instruction::Or, Op0, Op1, Q)) 1836 return C; 1837 1838 // X | undef -> -1 1839 if (match(Op1, m_Undef())) 1840 return Constant::getAllOnesValue(Op0->getType()); 1841 1842 // X | X = X 1843 if (Op0 == Op1) 1844 return Op0; 1845 1846 // X | 0 = X 1847 if (match(Op1, m_Zero())) 1848 return Op0; 1849 1850 // X | -1 = -1 1851 if (match(Op1, m_AllOnes())) 1852 return Op1; 1853 1854 // A | ~A = ~A | A = -1 1855 if (match(Op0, m_Not(m_Specific(Op1))) || 1856 match(Op1, m_Not(m_Specific(Op0)))) 1857 return Constant::getAllOnesValue(Op0->getType()); 1858 1859 // (A & ?) | A = A 1860 Value *A = nullptr, *B = nullptr; 1861 if (match(Op0, m_And(m_Value(A), m_Value(B))) && 1862 (A == Op1 || B == Op1)) 1863 return Op1; 1864 1865 // A | (A & ?) = A 1866 if (match(Op1, m_And(m_Value(A), m_Value(B))) && 1867 (A == Op0 || B == Op0)) 1868 return Op0; 1869 1870 // ~(A & ?) | A = -1 1871 if (match(Op0, m_Not(m_And(m_Value(A), m_Value(B)))) && 1872 (A == Op1 || B == Op1)) 1873 return Constant::getAllOnesValue(Op1->getType()); 1874 1875 // A | ~(A & ?) = -1 1876 if (match(Op1, m_Not(m_And(m_Value(A), m_Value(B)))) && 1877 (A == Op0 || B == Op0)) 1878 return Constant::getAllOnesValue(Op0->getType()); 1879 1880 if (auto *ICILHS = dyn_cast<ICmpInst>(Op0)) { 1881 if (auto *ICIRHS = dyn_cast<ICmpInst>(Op1)) { 1882 if (Value *V = SimplifyOrOfICmps(ICILHS, ICIRHS)) 1883 return V; 1884 if (Value *V = SimplifyOrOfICmps(ICIRHS, ICILHS)) 1885 return V; 1886 } 1887 } 1888 1889 // Try some generic simplifications for associative operations. 1890 if (Value *V = SimplifyAssociativeBinOp(Instruction::Or, Op0, Op1, Q, 1891 MaxRecurse)) 1892 return V; 1893 1894 // Or distributes over And. Try some generic simplifications based on this. 1895 if (Value *V = ExpandBinOp(Instruction::Or, Op0, Op1, Instruction::And, Q, 1896 MaxRecurse)) 1897 return V; 1898 1899 // If the operation is with the result of a select instruction, check whether 1900 // operating on either branch of the select always yields the same value. 1901 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 1902 if (Value *V = ThreadBinOpOverSelect(Instruction::Or, Op0, Op1, Q, 1903 MaxRecurse)) 1904 return V; 1905 1906 // (A & C)|(B & D) 1907 Value *C = nullptr, *D = nullptr; 1908 if (match(Op0, m_And(m_Value(A), m_Value(C))) && 1909 match(Op1, m_And(m_Value(B), m_Value(D)))) { 1910 ConstantInt *C1 = dyn_cast<ConstantInt>(C); 1911 ConstantInt *C2 = dyn_cast<ConstantInt>(D); 1912 if (C1 && C2 && (C1->getValue() == ~C2->getValue())) { 1913 // (A & C1)|(B & C2) 1914 // If we have: ((V + N) & C1) | (V & C2) 1915 // .. and C2 = ~C1 and C2 is 0+1+ and (N & C2) == 0 1916 // replace with V+N. 1917 Value *V1, *V2; 1918 if ((C2->getValue() & (C2->getValue() + 1)) == 0 && // C2 == 0+1+ 1919 match(A, m_Add(m_Value(V1), m_Value(V2)))) { 1920 // Add commutes, try both ways. 1921 if (V1 == B && 1922 MaskedValueIsZero(V2, C2->getValue(), Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 1923 return A; 1924 if (V2 == B && 1925 MaskedValueIsZero(V1, C2->getValue(), Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 1926 return A; 1927 } 1928 // Or commutes, try both ways. 1929 if ((C1->getValue() & (C1->getValue() + 1)) == 0 && 1930 match(B, m_Add(m_Value(V1), m_Value(V2)))) { 1931 // Add commutes, try both ways. 1932 if (V1 == A && 1933 MaskedValueIsZero(V2, C1->getValue(), Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 1934 return B; 1935 if (V2 == A && 1936 MaskedValueIsZero(V1, C1->getValue(), Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 1937 return B; 1938 } 1939 } 1940 } 1941 1942 // If the operation is with the result of a phi instruction, check whether 1943 // operating on all incoming values of the phi always yields the same value. 1944 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 1945 if (Value *V = ThreadBinOpOverPHI(Instruction::Or, Op0, Op1, Q, MaxRecurse)) 1946 return V; 1947 1948 return nullptr; 1949 } 1950 1951 Value *llvm::SimplifyOrInst(Value *Op0, Value *Op1, const DataLayout &DL, 1952 const TargetLibraryInfo *TLI, 1953 const DominatorTree *DT, AssumptionCache *AC, 1954 const Instruction *CxtI) { 1955 return ::SimplifyOrInst(Op0, Op1, Query(DL, TLI, DT, AC, CxtI), 1956 RecursionLimit); 1957 } 1958 1959 /// Given operands for a Xor, see if we can fold the result. 1960 /// If not, this returns null. 1961 static Value *SimplifyXorInst(Value *Op0, Value *Op1, const Query &Q, 1962 unsigned MaxRecurse) { 1963 if (Constant *C = foldOrCommuteConstant(Instruction::Xor, Op0, Op1, Q)) 1964 return C; 1965 1966 // A ^ undef -> undef 1967 if (match(Op1, m_Undef())) 1968 return Op1; 1969 1970 // A ^ 0 = A 1971 if (match(Op1, m_Zero())) 1972 return Op0; 1973 1974 // A ^ A = 0 1975 if (Op0 == Op1) 1976 return Constant::getNullValue(Op0->getType()); 1977 1978 // A ^ ~A = ~A ^ A = -1 1979 if (match(Op0, m_Not(m_Specific(Op1))) || 1980 match(Op1, m_Not(m_Specific(Op0)))) 1981 return Constant::getAllOnesValue(Op0->getType()); 1982 1983 // Try some generic simplifications for associative operations. 1984 if (Value *V = SimplifyAssociativeBinOp(Instruction::Xor, Op0, Op1, Q, 1985 MaxRecurse)) 1986 return V; 1987 1988 // Threading Xor over selects and phi nodes is pointless, so don't bother. 1989 // Threading over the select in "A ^ select(cond, B, C)" means evaluating 1990 // "A^B" and "A^C" and seeing if they are equal; but they are equal if and 1991 // only if B and C are equal. If B and C are equal then (since we assume 1992 // that operands have already been simplified) "select(cond, B, C)" should 1993 // have been simplified to the common value of B and C already. Analysing 1994 // "A^B" and "A^C" thus gains nothing, but costs compile time. Similarly 1995 // for threading over phi nodes. 1996 1997 return nullptr; 1998 } 1999 2000 Value *llvm::SimplifyXorInst(Value *Op0, Value *Op1, const DataLayout &DL, 2001 const TargetLibraryInfo *TLI, 2002 const DominatorTree *DT, AssumptionCache *AC, 2003 const Instruction *CxtI) { 2004 return ::SimplifyXorInst(Op0, Op1, Query(DL, TLI, DT, AC, CxtI), 2005 RecursionLimit); 2006 } 2007 2008 static Type *GetCompareTy(Value *Op) { 2009 return CmpInst::makeCmpResultType(Op->getType()); 2010 } 2011 2012 /// Rummage around inside V looking for something equivalent to the comparison 2013 /// "LHS Pred RHS". Return such a value if found, otherwise return null. 2014 /// Helper function for analyzing max/min idioms. 2015 static Value *ExtractEquivalentCondition(Value *V, CmpInst::Predicate Pred, 2016 Value *LHS, Value *RHS) { 2017 SelectInst *SI = dyn_cast<SelectInst>(V); 2018 if (!SI) 2019 return nullptr; 2020 CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition()); 2021 if (!Cmp) 2022 return nullptr; 2023 Value *CmpLHS = Cmp->getOperand(0), *CmpRHS = Cmp->getOperand(1); 2024 if (Pred == Cmp->getPredicate() && LHS == CmpLHS && RHS == CmpRHS) 2025 return Cmp; 2026 if (Pred == CmpInst::getSwappedPredicate(Cmp->getPredicate()) && 2027 LHS == CmpRHS && RHS == CmpLHS) 2028 return Cmp; 2029 return nullptr; 2030 } 2031 2032 // A significant optimization not implemented here is assuming that alloca 2033 // addresses are not equal to incoming argument values. They don't *alias*, 2034 // as we say, but that doesn't mean they aren't equal, so we take a 2035 // conservative approach. 2036 // 2037 // This is inspired in part by C++11 5.10p1: 2038 // "Two pointers of the same type compare equal if and only if they are both 2039 // null, both point to the same function, or both represent the same 2040 // address." 2041 // 2042 // This is pretty permissive. 2043 // 2044 // It's also partly due to C11 6.5.9p6: 2045 // "Two pointers compare equal if and only if both are null pointers, both are 2046 // pointers to the same object (including a pointer to an object and a 2047 // subobject at its beginning) or function, both are pointers to one past the 2048 // last element of the same array object, or one is a pointer to one past the 2049 // end of one array object and the other is a pointer to the start of a 2050 // different array object that happens to immediately follow the first array 2051 // object in the address space.) 2052 // 2053 // C11's version is more restrictive, however there's no reason why an argument 2054 // couldn't be a one-past-the-end value for a stack object in the caller and be 2055 // equal to the beginning of a stack object in the callee. 2056 // 2057 // If the C and C++ standards are ever made sufficiently restrictive in this 2058 // area, it may be possible to update LLVM's semantics accordingly and reinstate 2059 // this optimization. 2060 static Constant * 2061 computePointerICmp(const DataLayout &DL, const TargetLibraryInfo *TLI, 2062 const DominatorTree *DT, CmpInst::Predicate Pred, 2063 const Instruction *CxtI, Value *LHS, Value *RHS) { 2064 // First, skip past any trivial no-ops. 2065 LHS = LHS->stripPointerCasts(); 2066 RHS = RHS->stripPointerCasts(); 2067 2068 // A non-null pointer is not equal to a null pointer. 2069 if (llvm::isKnownNonNull(LHS) && isa<ConstantPointerNull>(RHS) && 2070 (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE)) 2071 return ConstantInt::get(GetCompareTy(LHS), 2072 !CmpInst::isTrueWhenEqual(Pred)); 2073 2074 // We can only fold certain predicates on pointer comparisons. 2075 switch (Pred) { 2076 default: 2077 return nullptr; 2078 2079 // Equality comaprisons are easy to fold. 2080 case CmpInst::ICMP_EQ: 2081 case CmpInst::ICMP_NE: 2082 break; 2083 2084 // We can only handle unsigned relational comparisons because 'inbounds' on 2085 // a GEP only protects against unsigned wrapping. 2086 case CmpInst::ICMP_UGT: 2087 case CmpInst::ICMP_UGE: 2088 case CmpInst::ICMP_ULT: 2089 case CmpInst::ICMP_ULE: 2090 // However, we have to switch them to their signed variants to handle 2091 // negative indices from the base pointer. 2092 Pred = ICmpInst::getSignedPredicate(Pred); 2093 break; 2094 } 2095 2096 // Strip off any constant offsets so that we can reason about them. 2097 // It's tempting to use getUnderlyingObject or even just stripInBoundsOffsets 2098 // here and compare base addresses like AliasAnalysis does, however there are 2099 // numerous hazards. AliasAnalysis and its utilities rely on special rules 2100 // governing loads and stores which don't apply to icmps. Also, AliasAnalysis 2101 // doesn't need to guarantee pointer inequality when it says NoAlias. 2102 Constant *LHSOffset = stripAndComputeConstantOffsets(DL, LHS); 2103 Constant *RHSOffset = stripAndComputeConstantOffsets(DL, RHS); 2104 2105 // If LHS and RHS are related via constant offsets to the same base 2106 // value, we can replace it with an icmp which just compares the offsets. 2107 if (LHS == RHS) 2108 return ConstantExpr::getICmp(Pred, LHSOffset, RHSOffset); 2109 2110 // Various optimizations for (in)equality comparisons. 2111 if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE) { 2112 // Different non-empty allocations that exist at the same time have 2113 // different addresses (if the program can tell). Global variables always 2114 // exist, so they always exist during the lifetime of each other and all 2115 // allocas. Two different allocas usually have different addresses... 2116 // 2117 // However, if there's an @llvm.stackrestore dynamically in between two 2118 // allocas, they may have the same address. It's tempting to reduce the 2119 // scope of the problem by only looking at *static* allocas here. That would 2120 // cover the majority of allocas while significantly reducing the likelihood 2121 // of having an @llvm.stackrestore pop up in the middle. However, it's not 2122 // actually impossible for an @llvm.stackrestore to pop up in the middle of 2123 // an entry block. Also, if we have a block that's not attached to a 2124 // function, we can't tell if it's "static" under the current definition. 2125 // Theoretically, this problem could be fixed by creating a new kind of 2126 // instruction kind specifically for static allocas. Such a new instruction 2127 // could be required to be at the top of the entry block, thus preventing it 2128 // from being subject to a @llvm.stackrestore. Instcombine could even 2129 // convert regular allocas into these special allocas. It'd be nifty. 2130 // However, until then, this problem remains open. 2131 // 2132 // So, we'll assume that two non-empty allocas have different addresses 2133 // for now. 2134 // 2135 // With all that, if the offsets are within the bounds of their allocations 2136 // (and not one-past-the-end! so we can't use inbounds!), and their 2137 // allocations aren't the same, the pointers are not equal. 2138 // 2139 // Note that it's not necessary to check for LHS being a global variable 2140 // address, due to canonicalization and constant folding. 2141 if (isa<AllocaInst>(LHS) && 2142 (isa<AllocaInst>(RHS) || isa<GlobalVariable>(RHS))) { 2143 ConstantInt *LHSOffsetCI = dyn_cast<ConstantInt>(LHSOffset); 2144 ConstantInt *RHSOffsetCI = dyn_cast<ConstantInt>(RHSOffset); 2145 uint64_t LHSSize, RHSSize; 2146 if (LHSOffsetCI && RHSOffsetCI && 2147 getObjectSize(LHS, LHSSize, DL, TLI) && 2148 getObjectSize(RHS, RHSSize, DL, TLI)) { 2149 const APInt &LHSOffsetValue = LHSOffsetCI->getValue(); 2150 const APInt &RHSOffsetValue = RHSOffsetCI->getValue(); 2151 if (!LHSOffsetValue.isNegative() && 2152 !RHSOffsetValue.isNegative() && 2153 LHSOffsetValue.ult(LHSSize) && 2154 RHSOffsetValue.ult(RHSSize)) { 2155 return ConstantInt::get(GetCompareTy(LHS), 2156 !CmpInst::isTrueWhenEqual(Pred)); 2157 } 2158 } 2159 2160 // Repeat the above check but this time without depending on DataLayout 2161 // or being able to compute a precise size. 2162 if (!cast<PointerType>(LHS->getType())->isEmptyTy() && 2163 !cast<PointerType>(RHS->getType())->isEmptyTy() && 2164 LHSOffset->isNullValue() && 2165 RHSOffset->isNullValue()) 2166 return ConstantInt::get(GetCompareTy(LHS), 2167 !CmpInst::isTrueWhenEqual(Pred)); 2168 } 2169 2170 // Even if an non-inbounds GEP occurs along the path we can still optimize 2171 // equality comparisons concerning the result. We avoid walking the whole 2172 // chain again by starting where the last calls to 2173 // stripAndComputeConstantOffsets left off and accumulate the offsets. 2174 Constant *LHSNoBound = stripAndComputeConstantOffsets(DL, LHS, true); 2175 Constant *RHSNoBound = stripAndComputeConstantOffsets(DL, RHS, true); 2176 if (LHS == RHS) 2177 return ConstantExpr::getICmp(Pred, 2178 ConstantExpr::getAdd(LHSOffset, LHSNoBound), 2179 ConstantExpr::getAdd(RHSOffset, RHSNoBound)); 2180 2181 // If one side of the equality comparison must come from a noalias call 2182 // (meaning a system memory allocation function), and the other side must 2183 // come from a pointer that cannot overlap with dynamically-allocated 2184 // memory within the lifetime of the current function (allocas, byval 2185 // arguments, globals), then determine the comparison result here. 2186 SmallVector<Value *, 8> LHSUObjs, RHSUObjs; 2187 GetUnderlyingObjects(LHS, LHSUObjs, DL); 2188 GetUnderlyingObjects(RHS, RHSUObjs, DL); 2189 2190 // Is the set of underlying objects all noalias calls? 2191 auto IsNAC = [](ArrayRef<Value *> Objects) { 2192 return all_of(Objects, isNoAliasCall); 2193 }; 2194 2195 // Is the set of underlying objects all things which must be disjoint from 2196 // noalias calls. For allocas, we consider only static ones (dynamic 2197 // allocas might be transformed into calls to malloc not simultaneously 2198 // live with the compared-to allocation). For globals, we exclude symbols 2199 // that might be resolve lazily to symbols in another dynamically-loaded 2200 // library (and, thus, could be malloc'ed by the implementation). 2201 auto IsAllocDisjoint = [](ArrayRef<Value *> Objects) { 2202 return all_of(Objects, [](Value *V) { 2203 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) 2204 return AI->getParent() && AI->getFunction() && AI->isStaticAlloca(); 2205 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) 2206 return (GV->hasLocalLinkage() || GV->hasHiddenVisibility() || 2207 GV->hasProtectedVisibility() || GV->hasGlobalUnnamedAddr()) && 2208 !GV->isThreadLocal(); 2209 if (const Argument *A = dyn_cast<Argument>(V)) 2210 return A->hasByValAttr(); 2211 return false; 2212 }); 2213 }; 2214 2215 if ((IsNAC(LHSUObjs) && IsAllocDisjoint(RHSUObjs)) || 2216 (IsNAC(RHSUObjs) && IsAllocDisjoint(LHSUObjs))) 2217 return ConstantInt::get(GetCompareTy(LHS), 2218 !CmpInst::isTrueWhenEqual(Pred)); 2219 2220 // Fold comparisons for non-escaping pointer even if the allocation call 2221 // cannot be elided. We cannot fold malloc comparison to null. Also, the 2222 // dynamic allocation call could be either of the operands. 2223 Value *MI = nullptr; 2224 if (isAllocLikeFn(LHS, TLI) && llvm::isKnownNonNullAt(RHS, CxtI, DT)) 2225 MI = LHS; 2226 else if (isAllocLikeFn(RHS, TLI) && llvm::isKnownNonNullAt(LHS, CxtI, DT)) 2227 MI = RHS; 2228 // FIXME: We should also fold the compare when the pointer escapes, but the 2229 // compare dominates the pointer escape 2230 if (MI && !PointerMayBeCaptured(MI, true, true)) 2231 return ConstantInt::get(GetCompareTy(LHS), 2232 CmpInst::isFalseWhenEqual(Pred)); 2233 } 2234 2235 // Otherwise, fail. 2236 return nullptr; 2237 } 2238 2239 /// Fold an icmp when its operands have i1 scalar type. 2240 static Value *simplifyICmpOfBools(CmpInst::Predicate Pred, Value *LHS, 2241 Value *RHS, const Query &Q) { 2242 Type *ITy = GetCompareTy(LHS); // The return type. 2243 Type *OpTy = LHS->getType(); // The operand type. 2244 if (!OpTy->getScalarType()->isIntegerTy(1)) 2245 return nullptr; 2246 2247 switch (Pred) { 2248 default: 2249 break; 2250 case ICmpInst::ICMP_EQ: 2251 // X == 1 -> X 2252 if (match(RHS, m_One())) 2253 return LHS; 2254 break; 2255 case ICmpInst::ICMP_NE: 2256 // X != 0 -> X 2257 if (match(RHS, m_Zero())) 2258 return LHS; 2259 break; 2260 case ICmpInst::ICMP_UGT: 2261 // X >u 0 -> X 2262 if (match(RHS, m_Zero())) 2263 return LHS; 2264 break; 2265 case ICmpInst::ICMP_UGE: 2266 // X >=u 1 -> X 2267 if (match(RHS, m_One())) 2268 return LHS; 2269 if (isImpliedCondition(RHS, LHS, Q.DL).getValueOr(false)) 2270 return getTrue(ITy); 2271 break; 2272 case ICmpInst::ICMP_SGE: 2273 /// For signed comparison, the values for an i1 are 0 and -1 2274 /// respectively. This maps into a truth table of: 2275 /// LHS | RHS | LHS >=s RHS | LHS implies RHS 2276 /// 0 | 0 | 1 (0 >= 0) | 1 2277 /// 0 | 1 | 1 (0 >= -1) | 1 2278 /// 1 | 0 | 0 (-1 >= 0) | 0 2279 /// 1 | 1 | 1 (-1 >= -1) | 1 2280 if (isImpliedCondition(LHS, RHS, Q.DL).getValueOr(false)) 2281 return getTrue(ITy); 2282 break; 2283 case ICmpInst::ICMP_SLT: 2284 // X <s 0 -> X 2285 if (match(RHS, m_Zero())) 2286 return LHS; 2287 break; 2288 case ICmpInst::ICMP_SLE: 2289 // X <=s -1 -> X 2290 if (match(RHS, m_One())) 2291 return LHS; 2292 break; 2293 case ICmpInst::ICMP_ULE: 2294 if (isImpliedCondition(LHS, RHS, Q.DL).getValueOr(false)) 2295 return getTrue(ITy); 2296 break; 2297 } 2298 2299 return nullptr; 2300 } 2301 2302 /// Try hard to fold icmp with zero RHS because this is a common case. 2303 static Value *simplifyICmpWithZero(CmpInst::Predicate Pred, Value *LHS, 2304 Value *RHS, const Query &Q) { 2305 if (!match(RHS, m_Zero())) 2306 return nullptr; 2307 2308 Type *ITy = GetCompareTy(LHS); // The return type. 2309 bool LHSKnownNonNegative, LHSKnownNegative; 2310 switch (Pred) { 2311 default: 2312 llvm_unreachable("Unknown ICmp predicate!"); 2313 case ICmpInst::ICMP_ULT: 2314 return getFalse(ITy); 2315 case ICmpInst::ICMP_UGE: 2316 return getTrue(ITy); 2317 case ICmpInst::ICMP_EQ: 2318 case ICmpInst::ICMP_ULE: 2319 if (isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 2320 return getFalse(ITy); 2321 break; 2322 case ICmpInst::ICMP_NE: 2323 case ICmpInst::ICMP_UGT: 2324 if (isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 2325 return getTrue(ITy); 2326 break; 2327 case ICmpInst::ICMP_SLT: 2328 ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, Q.DL, 0, Q.AC, 2329 Q.CxtI, Q.DT); 2330 if (LHSKnownNegative) 2331 return getTrue(ITy); 2332 if (LHSKnownNonNegative) 2333 return getFalse(ITy); 2334 break; 2335 case ICmpInst::ICMP_SLE: 2336 ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, Q.DL, 0, Q.AC, 2337 Q.CxtI, Q.DT); 2338 if (LHSKnownNegative) 2339 return getTrue(ITy); 2340 if (LHSKnownNonNegative && isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 2341 return getFalse(ITy); 2342 break; 2343 case ICmpInst::ICMP_SGE: 2344 ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, Q.DL, 0, Q.AC, 2345 Q.CxtI, Q.DT); 2346 if (LHSKnownNegative) 2347 return getFalse(ITy); 2348 if (LHSKnownNonNegative) 2349 return getTrue(ITy); 2350 break; 2351 case ICmpInst::ICMP_SGT: 2352 ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, Q.DL, 0, Q.AC, 2353 Q.CxtI, Q.DT); 2354 if (LHSKnownNegative) 2355 return getFalse(ITy); 2356 if (LHSKnownNonNegative && isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 2357 return getTrue(ITy); 2358 break; 2359 } 2360 2361 return nullptr; 2362 } 2363 2364 /// Many binary operators with a constant operand have an easy-to-compute 2365 /// range of outputs. This can be used to fold a comparison to always true or 2366 /// always false. 2367 static void setLimitsForBinOp(BinaryOperator &BO, APInt &Lower, APInt &Upper) { 2368 unsigned Width = Lower.getBitWidth(); 2369 const APInt *C; 2370 switch (BO.getOpcode()) { 2371 case Instruction::Add: 2372 if (match(BO.getOperand(1), m_APInt(C)) && *C != 0) { 2373 // FIXME: If we have both nuw and nsw, we should reduce the range further. 2374 if (BO.hasNoUnsignedWrap()) { 2375 // 'add nuw x, C' produces [C, UINT_MAX]. 2376 Lower = *C; 2377 } else if (BO.hasNoSignedWrap()) { 2378 if (C->isNegative()) { 2379 // 'add nsw x, -C' produces [SINT_MIN, SINT_MAX - C]. 2380 Lower = APInt::getSignedMinValue(Width); 2381 Upper = APInt::getSignedMaxValue(Width) + *C + 1; 2382 } else { 2383 // 'add nsw x, +C' produces [SINT_MIN + C, SINT_MAX]. 2384 Lower = APInt::getSignedMinValue(Width) + *C; 2385 Upper = APInt::getSignedMaxValue(Width) + 1; 2386 } 2387 } 2388 } 2389 break; 2390 2391 case Instruction::And: 2392 if (match(BO.getOperand(1), m_APInt(C))) 2393 // 'and x, C' produces [0, C]. 2394 Upper = *C + 1; 2395 break; 2396 2397 case Instruction::Or: 2398 if (match(BO.getOperand(1), m_APInt(C))) 2399 // 'or x, C' produces [C, UINT_MAX]. 2400 Lower = *C; 2401 break; 2402 2403 case Instruction::AShr: 2404 if (match(BO.getOperand(1), m_APInt(C)) && C->ult(Width)) { 2405 // 'ashr x, C' produces [INT_MIN >> C, INT_MAX >> C]. 2406 Lower = APInt::getSignedMinValue(Width).ashr(*C); 2407 Upper = APInt::getSignedMaxValue(Width).ashr(*C) + 1; 2408 } else if (match(BO.getOperand(0), m_APInt(C))) { 2409 unsigned ShiftAmount = Width - 1; 2410 if (*C != 0 && BO.isExact()) 2411 ShiftAmount = C->countTrailingZeros(); 2412 if (C->isNegative()) { 2413 // 'ashr C, x' produces [C, C >> (Width-1)] 2414 Lower = *C; 2415 Upper = C->ashr(ShiftAmount) + 1; 2416 } else { 2417 // 'ashr C, x' produces [C >> (Width-1), C] 2418 Lower = C->ashr(ShiftAmount); 2419 Upper = *C + 1; 2420 } 2421 } 2422 break; 2423 2424 case Instruction::LShr: 2425 if (match(BO.getOperand(1), m_APInt(C)) && C->ult(Width)) { 2426 // 'lshr x, C' produces [0, UINT_MAX >> C]. 2427 Upper = APInt::getAllOnesValue(Width).lshr(*C) + 1; 2428 } else if (match(BO.getOperand(0), m_APInt(C))) { 2429 // 'lshr C, x' produces [C >> (Width-1), C]. 2430 unsigned ShiftAmount = Width - 1; 2431 if (*C != 0 && BO.isExact()) 2432 ShiftAmount = C->countTrailingZeros(); 2433 Lower = C->lshr(ShiftAmount); 2434 Upper = *C + 1; 2435 } 2436 break; 2437 2438 case Instruction::Shl: 2439 if (match(BO.getOperand(0), m_APInt(C))) { 2440 if (BO.hasNoUnsignedWrap()) { 2441 // 'shl nuw C, x' produces [C, C << CLZ(C)] 2442 Lower = *C; 2443 Upper = Lower.shl(Lower.countLeadingZeros()) + 1; 2444 } else if (BO.hasNoSignedWrap()) { // TODO: What if both nuw+nsw? 2445 if (C->isNegative()) { 2446 // 'shl nsw C, x' produces [C << CLO(C)-1, C] 2447 unsigned ShiftAmount = C->countLeadingOnes() - 1; 2448 Lower = C->shl(ShiftAmount); 2449 Upper = *C + 1; 2450 } else { 2451 // 'shl nsw C, x' produces [C, C << CLZ(C)-1] 2452 unsigned ShiftAmount = C->countLeadingZeros() - 1; 2453 Lower = *C; 2454 Upper = C->shl(ShiftAmount) + 1; 2455 } 2456 } 2457 } 2458 break; 2459 2460 case Instruction::SDiv: 2461 if (match(BO.getOperand(1), m_APInt(C))) { 2462 APInt IntMin = APInt::getSignedMinValue(Width); 2463 APInt IntMax = APInt::getSignedMaxValue(Width); 2464 if (C->isAllOnesValue()) { 2465 // 'sdiv x, -1' produces [INT_MIN + 1, INT_MAX] 2466 // where C != -1 and C != 0 and C != 1 2467 Lower = IntMin + 1; 2468 Upper = IntMax + 1; 2469 } else if (C->countLeadingZeros() < Width - 1) { 2470 // 'sdiv x, C' produces [INT_MIN / C, INT_MAX / C] 2471 // where C != -1 and C != 0 and C != 1 2472 Lower = IntMin.sdiv(*C); 2473 Upper = IntMax.sdiv(*C); 2474 if (Lower.sgt(Upper)) 2475 std::swap(Lower, Upper); 2476 Upper = Upper + 1; 2477 assert(Upper != Lower && "Upper part of range has wrapped!"); 2478 } 2479 } else if (match(BO.getOperand(0), m_APInt(C))) { 2480 if (C->isMinSignedValue()) { 2481 // 'sdiv INT_MIN, x' produces [INT_MIN, INT_MIN / -2]. 2482 Lower = *C; 2483 Upper = Lower.lshr(1) + 1; 2484 } else { 2485 // 'sdiv C, x' produces [-|C|, |C|]. 2486 Upper = C->abs() + 1; 2487 Lower = (-Upper) + 1; 2488 } 2489 } 2490 break; 2491 2492 case Instruction::UDiv: 2493 if (match(BO.getOperand(1), m_APInt(C)) && *C != 0) { 2494 // 'udiv x, C' produces [0, UINT_MAX / C]. 2495 Upper = APInt::getMaxValue(Width).udiv(*C) + 1; 2496 } else if (match(BO.getOperand(0), m_APInt(C))) { 2497 // 'udiv C, x' produces [0, C]. 2498 Upper = *C + 1; 2499 } 2500 break; 2501 2502 case Instruction::SRem: 2503 if (match(BO.getOperand(1), m_APInt(C))) { 2504 // 'srem x, C' produces (-|C|, |C|). 2505 Upper = C->abs(); 2506 Lower = (-Upper) + 1; 2507 } 2508 break; 2509 2510 case Instruction::URem: 2511 if (match(BO.getOperand(1), m_APInt(C))) 2512 // 'urem x, C' produces [0, C). 2513 Upper = *C; 2514 break; 2515 2516 default: 2517 break; 2518 } 2519 } 2520 2521 static Value *simplifyICmpWithConstant(CmpInst::Predicate Pred, Value *LHS, 2522 Value *RHS) { 2523 const APInt *C; 2524 if (!match(RHS, m_APInt(C))) 2525 return nullptr; 2526 2527 // Rule out tautological comparisons (eg., ult 0 or uge 0). 2528 ConstantRange RHS_CR = ConstantRange::makeExactICmpRegion(Pred, *C); 2529 if (RHS_CR.isEmptySet()) 2530 return ConstantInt::getFalse(GetCompareTy(RHS)); 2531 if (RHS_CR.isFullSet()) 2532 return ConstantInt::getTrue(GetCompareTy(RHS)); 2533 2534 // Find the range of possible values for binary operators. 2535 unsigned Width = C->getBitWidth(); 2536 APInt Lower = APInt(Width, 0); 2537 APInt Upper = APInt(Width, 0); 2538 if (auto *BO = dyn_cast<BinaryOperator>(LHS)) 2539 setLimitsForBinOp(*BO, Lower, Upper); 2540 2541 ConstantRange LHS_CR = 2542 Lower != Upper ? ConstantRange(Lower, Upper) : ConstantRange(Width, true); 2543 2544 if (auto *I = dyn_cast<Instruction>(LHS)) 2545 if (auto *Ranges = I->getMetadata(LLVMContext::MD_range)) 2546 LHS_CR = LHS_CR.intersectWith(getConstantRangeFromMetadata(*Ranges)); 2547 2548 if (!LHS_CR.isFullSet()) { 2549 if (RHS_CR.contains(LHS_CR)) 2550 return ConstantInt::getTrue(GetCompareTy(RHS)); 2551 if (RHS_CR.inverse().contains(LHS_CR)) 2552 return ConstantInt::getFalse(GetCompareTy(RHS)); 2553 } 2554 2555 return nullptr; 2556 } 2557 2558 static Value *simplifyICmpWithBinOp(CmpInst::Predicate Pred, Value *LHS, 2559 Value *RHS, const Query &Q, 2560 unsigned MaxRecurse) { 2561 Type *ITy = GetCompareTy(LHS); // The return type. 2562 2563 BinaryOperator *LBO = dyn_cast<BinaryOperator>(LHS); 2564 BinaryOperator *RBO = dyn_cast<BinaryOperator>(RHS); 2565 if (MaxRecurse && (LBO || RBO)) { 2566 // Analyze the case when either LHS or RHS is an add instruction. 2567 Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr; 2568 // LHS = A + B (or A and B are null); RHS = C + D (or C and D are null). 2569 bool NoLHSWrapProblem = false, NoRHSWrapProblem = false; 2570 if (LBO && LBO->getOpcode() == Instruction::Add) { 2571 A = LBO->getOperand(0); 2572 B = LBO->getOperand(1); 2573 NoLHSWrapProblem = 2574 ICmpInst::isEquality(Pred) || 2575 (CmpInst::isUnsigned(Pred) && LBO->hasNoUnsignedWrap()) || 2576 (CmpInst::isSigned(Pred) && LBO->hasNoSignedWrap()); 2577 } 2578 if (RBO && RBO->getOpcode() == Instruction::Add) { 2579 C = RBO->getOperand(0); 2580 D = RBO->getOperand(1); 2581 NoRHSWrapProblem = 2582 ICmpInst::isEquality(Pred) || 2583 (CmpInst::isUnsigned(Pred) && RBO->hasNoUnsignedWrap()) || 2584 (CmpInst::isSigned(Pred) && RBO->hasNoSignedWrap()); 2585 } 2586 2587 // icmp (X+Y), X -> icmp Y, 0 for equalities or if there is no overflow. 2588 if ((A == RHS || B == RHS) && NoLHSWrapProblem) 2589 if (Value *V = SimplifyICmpInst(Pred, A == RHS ? B : A, 2590 Constant::getNullValue(RHS->getType()), Q, 2591 MaxRecurse - 1)) 2592 return V; 2593 2594 // icmp X, (X+Y) -> icmp 0, Y for equalities or if there is no overflow. 2595 if ((C == LHS || D == LHS) && NoRHSWrapProblem) 2596 if (Value *V = 2597 SimplifyICmpInst(Pred, Constant::getNullValue(LHS->getType()), 2598 C == LHS ? D : C, Q, MaxRecurse - 1)) 2599 return V; 2600 2601 // icmp (X+Y), (X+Z) -> icmp Y,Z for equalities or if there is no overflow. 2602 if (A && C && (A == C || A == D || B == C || B == D) && NoLHSWrapProblem && 2603 NoRHSWrapProblem) { 2604 // Determine Y and Z in the form icmp (X+Y), (X+Z). 2605 Value *Y, *Z; 2606 if (A == C) { 2607 // C + B == C + D -> B == D 2608 Y = B; 2609 Z = D; 2610 } else if (A == D) { 2611 // D + B == C + D -> B == C 2612 Y = B; 2613 Z = C; 2614 } else if (B == C) { 2615 // A + C == C + D -> A == D 2616 Y = A; 2617 Z = D; 2618 } else { 2619 assert(B == D); 2620 // A + D == C + D -> A == C 2621 Y = A; 2622 Z = C; 2623 } 2624 if (Value *V = SimplifyICmpInst(Pred, Y, Z, Q, MaxRecurse - 1)) 2625 return V; 2626 } 2627 } 2628 2629 { 2630 Value *Y = nullptr; 2631 // icmp pred (or X, Y), X 2632 if (LBO && match(LBO, m_c_Or(m_Value(Y), m_Specific(RHS)))) { 2633 if (Pred == ICmpInst::ICMP_ULT) 2634 return getFalse(ITy); 2635 if (Pred == ICmpInst::ICMP_UGE) 2636 return getTrue(ITy); 2637 2638 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SGE) { 2639 bool RHSKnownNonNegative, RHSKnownNegative; 2640 bool YKnownNonNegative, YKnownNegative; 2641 ComputeSignBit(RHS, RHSKnownNonNegative, RHSKnownNegative, Q.DL, 0, 2642 Q.AC, Q.CxtI, Q.DT); 2643 ComputeSignBit(Y, YKnownNonNegative, YKnownNegative, Q.DL, 0, Q.AC, 2644 Q.CxtI, Q.DT); 2645 if (RHSKnownNonNegative && YKnownNegative) 2646 return Pred == ICmpInst::ICMP_SLT ? getTrue(ITy) : getFalse(ITy); 2647 if (RHSKnownNegative || YKnownNonNegative) 2648 return Pred == ICmpInst::ICMP_SLT ? getFalse(ITy) : getTrue(ITy); 2649 } 2650 } 2651 // icmp pred X, (or X, Y) 2652 if (RBO && match(RBO, m_c_Or(m_Value(Y), m_Specific(LHS)))) { 2653 if (Pred == ICmpInst::ICMP_ULE) 2654 return getTrue(ITy); 2655 if (Pred == ICmpInst::ICMP_UGT) 2656 return getFalse(ITy); 2657 2658 if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SLE) { 2659 bool LHSKnownNonNegative, LHSKnownNegative; 2660 bool YKnownNonNegative, YKnownNegative; 2661 ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, Q.DL, 0, 2662 Q.AC, Q.CxtI, Q.DT); 2663 ComputeSignBit(Y, YKnownNonNegative, YKnownNegative, Q.DL, 0, Q.AC, 2664 Q.CxtI, Q.DT); 2665 if (LHSKnownNonNegative && YKnownNegative) 2666 return Pred == ICmpInst::ICMP_SGT ? getTrue(ITy) : getFalse(ITy); 2667 if (LHSKnownNegative || YKnownNonNegative) 2668 return Pred == ICmpInst::ICMP_SGT ? getFalse(ITy) : getTrue(ITy); 2669 } 2670 } 2671 } 2672 2673 // icmp pred (and X, Y), X 2674 if (LBO && match(LBO, m_CombineOr(m_And(m_Value(), m_Specific(RHS)), 2675 m_And(m_Specific(RHS), m_Value())))) { 2676 if (Pred == ICmpInst::ICMP_UGT) 2677 return getFalse(ITy); 2678 if (Pred == ICmpInst::ICMP_ULE) 2679 return getTrue(ITy); 2680 } 2681 // icmp pred X, (and X, Y) 2682 if (RBO && match(RBO, m_CombineOr(m_And(m_Value(), m_Specific(LHS)), 2683 m_And(m_Specific(LHS), m_Value())))) { 2684 if (Pred == ICmpInst::ICMP_UGE) 2685 return getTrue(ITy); 2686 if (Pred == ICmpInst::ICMP_ULT) 2687 return getFalse(ITy); 2688 } 2689 2690 // 0 - (zext X) pred C 2691 if (!CmpInst::isUnsigned(Pred) && match(LHS, m_Neg(m_ZExt(m_Value())))) { 2692 if (ConstantInt *RHSC = dyn_cast<ConstantInt>(RHS)) { 2693 if (RHSC->getValue().isStrictlyPositive()) { 2694 if (Pred == ICmpInst::ICMP_SLT) 2695 return ConstantInt::getTrue(RHSC->getContext()); 2696 if (Pred == ICmpInst::ICMP_SGE) 2697 return ConstantInt::getFalse(RHSC->getContext()); 2698 if (Pred == ICmpInst::ICMP_EQ) 2699 return ConstantInt::getFalse(RHSC->getContext()); 2700 if (Pred == ICmpInst::ICMP_NE) 2701 return ConstantInt::getTrue(RHSC->getContext()); 2702 } 2703 if (RHSC->getValue().isNonNegative()) { 2704 if (Pred == ICmpInst::ICMP_SLE) 2705 return ConstantInt::getTrue(RHSC->getContext()); 2706 if (Pred == ICmpInst::ICMP_SGT) 2707 return ConstantInt::getFalse(RHSC->getContext()); 2708 } 2709 } 2710 } 2711 2712 // icmp pred (urem X, Y), Y 2713 if (LBO && match(LBO, m_URem(m_Value(), m_Specific(RHS)))) { 2714 bool KnownNonNegative, KnownNegative; 2715 switch (Pred) { 2716 default: 2717 break; 2718 case ICmpInst::ICMP_SGT: 2719 case ICmpInst::ICMP_SGE: 2720 ComputeSignBit(RHS, KnownNonNegative, KnownNegative, Q.DL, 0, Q.AC, 2721 Q.CxtI, Q.DT); 2722 if (!KnownNonNegative) 2723 break; 2724 LLVM_FALLTHROUGH; 2725 case ICmpInst::ICMP_EQ: 2726 case ICmpInst::ICMP_UGT: 2727 case ICmpInst::ICMP_UGE: 2728 return getFalse(ITy); 2729 case ICmpInst::ICMP_SLT: 2730 case ICmpInst::ICMP_SLE: 2731 ComputeSignBit(RHS, KnownNonNegative, KnownNegative, Q.DL, 0, Q.AC, 2732 Q.CxtI, Q.DT); 2733 if (!KnownNonNegative) 2734 break; 2735 LLVM_FALLTHROUGH; 2736 case ICmpInst::ICMP_NE: 2737 case ICmpInst::ICMP_ULT: 2738 case ICmpInst::ICMP_ULE: 2739 return getTrue(ITy); 2740 } 2741 } 2742 2743 // icmp pred X, (urem Y, X) 2744 if (RBO && match(RBO, m_URem(m_Value(), m_Specific(LHS)))) { 2745 bool KnownNonNegative, KnownNegative; 2746 switch (Pred) { 2747 default: 2748 break; 2749 case ICmpInst::ICMP_SGT: 2750 case ICmpInst::ICMP_SGE: 2751 ComputeSignBit(LHS, KnownNonNegative, KnownNegative, Q.DL, 0, Q.AC, 2752 Q.CxtI, Q.DT); 2753 if (!KnownNonNegative) 2754 break; 2755 LLVM_FALLTHROUGH; 2756 case ICmpInst::ICMP_NE: 2757 case ICmpInst::ICMP_UGT: 2758 case ICmpInst::ICMP_UGE: 2759 return getTrue(ITy); 2760 case ICmpInst::ICMP_SLT: 2761 case ICmpInst::ICMP_SLE: 2762 ComputeSignBit(LHS, KnownNonNegative, KnownNegative, Q.DL, 0, Q.AC, 2763 Q.CxtI, Q.DT); 2764 if (!KnownNonNegative) 2765 break; 2766 LLVM_FALLTHROUGH; 2767 case ICmpInst::ICMP_EQ: 2768 case ICmpInst::ICMP_ULT: 2769 case ICmpInst::ICMP_ULE: 2770 return getFalse(ITy); 2771 } 2772 } 2773 2774 // x >> y <=u x 2775 // x udiv y <=u x. 2776 if (LBO && (match(LBO, m_LShr(m_Specific(RHS), m_Value())) || 2777 match(LBO, m_UDiv(m_Specific(RHS), m_Value())))) { 2778 // icmp pred (X op Y), X 2779 if (Pred == ICmpInst::ICMP_UGT) 2780 return getFalse(ITy); 2781 if (Pred == ICmpInst::ICMP_ULE) 2782 return getTrue(ITy); 2783 } 2784 2785 // x >=u x >> y 2786 // x >=u x udiv y. 2787 if (RBO && (match(RBO, m_LShr(m_Specific(LHS), m_Value())) || 2788 match(RBO, m_UDiv(m_Specific(LHS), m_Value())))) { 2789 // icmp pred X, (X op Y) 2790 if (Pred == ICmpInst::ICMP_ULT) 2791 return getFalse(ITy); 2792 if (Pred == ICmpInst::ICMP_UGE) 2793 return getTrue(ITy); 2794 } 2795 2796 // handle: 2797 // CI2 << X == CI 2798 // CI2 << X != CI 2799 // 2800 // where CI2 is a power of 2 and CI isn't 2801 if (auto *CI = dyn_cast<ConstantInt>(RHS)) { 2802 const APInt *CI2Val, *CIVal = &CI->getValue(); 2803 if (LBO && match(LBO, m_Shl(m_APInt(CI2Val), m_Value())) && 2804 CI2Val->isPowerOf2()) { 2805 if (!CIVal->isPowerOf2()) { 2806 // CI2 << X can equal zero in some circumstances, 2807 // this simplification is unsafe if CI is zero. 2808 // 2809 // We know it is safe if: 2810 // - The shift is nsw, we can't shift out the one bit. 2811 // - The shift is nuw, we can't shift out the one bit. 2812 // - CI2 is one 2813 // - CI isn't zero 2814 if (LBO->hasNoSignedWrap() || LBO->hasNoUnsignedWrap() || 2815 *CI2Val == 1 || !CI->isZero()) { 2816 if (Pred == ICmpInst::ICMP_EQ) 2817 return ConstantInt::getFalse(RHS->getContext()); 2818 if (Pred == ICmpInst::ICMP_NE) 2819 return ConstantInt::getTrue(RHS->getContext()); 2820 } 2821 } 2822 if (CIVal->isSignBit() && *CI2Val == 1) { 2823 if (Pred == ICmpInst::ICMP_UGT) 2824 return ConstantInt::getFalse(RHS->getContext()); 2825 if (Pred == ICmpInst::ICMP_ULE) 2826 return ConstantInt::getTrue(RHS->getContext()); 2827 } 2828 } 2829 } 2830 2831 if (MaxRecurse && LBO && RBO && LBO->getOpcode() == RBO->getOpcode() && 2832 LBO->getOperand(1) == RBO->getOperand(1)) { 2833 switch (LBO->getOpcode()) { 2834 default: 2835 break; 2836 case Instruction::UDiv: 2837 case Instruction::LShr: 2838 if (ICmpInst::isSigned(Pred)) 2839 break; 2840 LLVM_FALLTHROUGH; 2841 case Instruction::SDiv: 2842 case Instruction::AShr: 2843 if (!LBO->isExact() || !RBO->isExact()) 2844 break; 2845 if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0), 2846 RBO->getOperand(0), Q, MaxRecurse - 1)) 2847 return V; 2848 break; 2849 case Instruction::Shl: { 2850 bool NUW = LBO->hasNoUnsignedWrap() && RBO->hasNoUnsignedWrap(); 2851 bool NSW = LBO->hasNoSignedWrap() && RBO->hasNoSignedWrap(); 2852 if (!NUW && !NSW) 2853 break; 2854 if (!NSW && ICmpInst::isSigned(Pred)) 2855 break; 2856 if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0), 2857 RBO->getOperand(0), Q, MaxRecurse - 1)) 2858 return V; 2859 break; 2860 } 2861 } 2862 } 2863 return nullptr; 2864 } 2865 2866 /// Simplify integer comparisons where at least one operand of the compare 2867 /// matches an integer min/max idiom. 2868 static Value *simplifyICmpWithMinMax(CmpInst::Predicate Pred, Value *LHS, 2869 Value *RHS, const Query &Q, 2870 unsigned MaxRecurse) { 2871 Type *ITy = GetCompareTy(LHS); // The return type. 2872 Value *A, *B; 2873 CmpInst::Predicate P = CmpInst::BAD_ICMP_PREDICATE; 2874 CmpInst::Predicate EqP; // Chosen so that "A == max/min(A,B)" iff "A EqP B". 2875 2876 // Signed variants on "max(a,b)>=a -> true". 2877 if (match(LHS, m_SMax(m_Value(A), m_Value(B))) && (A == RHS || B == RHS)) { 2878 if (A != RHS) 2879 std::swap(A, B); // smax(A, B) pred A. 2880 EqP = CmpInst::ICMP_SGE; // "A == smax(A, B)" iff "A sge B". 2881 // We analyze this as smax(A, B) pred A. 2882 P = Pred; 2883 } else if (match(RHS, m_SMax(m_Value(A), m_Value(B))) && 2884 (A == LHS || B == LHS)) { 2885 if (A != LHS) 2886 std::swap(A, B); // A pred smax(A, B). 2887 EqP = CmpInst::ICMP_SGE; // "A == smax(A, B)" iff "A sge B". 2888 // We analyze this as smax(A, B) swapped-pred A. 2889 P = CmpInst::getSwappedPredicate(Pred); 2890 } else if (match(LHS, m_SMin(m_Value(A), m_Value(B))) && 2891 (A == RHS || B == RHS)) { 2892 if (A != RHS) 2893 std::swap(A, B); // smin(A, B) pred A. 2894 EqP = CmpInst::ICMP_SLE; // "A == smin(A, B)" iff "A sle B". 2895 // We analyze this as smax(-A, -B) swapped-pred -A. 2896 // Note that we do not need to actually form -A or -B thanks to EqP. 2897 P = CmpInst::getSwappedPredicate(Pred); 2898 } else if (match(RHS, m_SMin(m_Value(A), m_Value(B))) && 2899 (A == LHS || B == LHS)) { 2900 if (A != LHS) 2901 std::swap(A, B); // A pred smin(A, B). 2902 EqP = CmpInst::ICMP_SLE; // "A == smin(A, B)" iff "A sle B". 2903 // We analyze this as smax(-A, -B) pred -A. 2904 // Note that we do not need to actually form -A or -B thanks to EqP. 2905 P = Pred; 2906 } 2907 if (P != CmpInst::BAD_ICMP_PREDICATE) { 2908 // Cases correspond to "max(A, B) p A". 2909 switch (P) { 2910 default: 2911 break; 2912 case CmpInst::ICMP_EQ: 2913 case CmpInst::ICMP_SLE: 2914 // Equivalent to "A EqP B". This may be the same as the condition tested 2915 // in the max/min; if so, we can just return that. 2916 if (Value *V = ExtractEquivalentCondition(LHS, EqP, A, B)) 2917 return V; 2918 if (Value *V = ExtractEquivalentCondition(RHS, EqP, A, B)) 2919 return V; 2920 // Otherwise, see if "A EqP B" simplifies. 2921 if (MaxRecurse) 2922 if (Value *V = SimplifyICmpInst(EqP, A, B, Q, MaxRecurse - 1)) 2923 return V; 2924 break; 2925 case CmpInst::ICMP_NE: 2926 case CmpInst::ICMP_SGT: { 2927 CmpInst::Predicate InvEqP = CmpInst::getInversePredicate(EqP); 2928 // Equivalent to "A InvEqP B". This may be the same as the condition 2929 // tested in the max/min; if so, we can just return that. 2930 if (Value *V = ExtractEquivalentCondition(LHS, InvEqP, A, B)) 2931 return V; 2932 if (Value *V = ExtractEquivalentCondition(RHS, InvEqP, A, B)) 2933 return V; 2934 // Otherwise, see if "A InvEqP B" simplifies. 2935 if (MaxRecurse) 2936 if (Value *V = SimplifyICmpInst(InvEqP, A, B, Q, MaxRecurse - 1)) 2937 return V; 2938 break; 2939 } 2940 case CmpInst::ICMP_SGE: 2941 // Always true. 2942 return getTrue(ITy); 2943 case CmpInst::ICMP_SLT: 2944 // Always false. 2945 return getFalse(ITy); 2946 } 2947 } 2948 2949 // Unsigned variants on "max(a,b)>=a -> true". 2950 P = CmpInst::BAD_ICMP_PREDICATE; 2951 if (match(LHS, m_UMax(m_Value(A), m_Value(B))) && (A == RHS || B == RHS)) { 2952 if (A != RHS) 2953 std::swap(A, B); // umax(A, B) pred A. 2954 EqP = CmpInst::ICMP_UGE; // "A == umax(A, B)" iff "A uge B". 2955 // We analyze this as umax(A, B) pred A. 2956 P = Pred; 2957 } else if (match(RHS, m_UMax(m_Value(A), m_Value(B))) && 2958 (A == LHS || B == LHS)) { 2959 if (A != LHS) 2960 std::swap(A, B); // A pred umax(A, B). 2961 EqP = CmpInst::ICMP_UGE; // "A == umax(A, B)" iff "A uge B". 2962 // We analyze this as umax(A, B) swapped-pred A. 2963 P = CmpInst::getSwappedPredicate(Pred); 2964 } else if (match(LHS, m_UMin(m_Value(A), m_Value(B))) && 2965 (A == RHS || B == RHS)) { 2966 if (A != RHS) 2967 std::swap(A, B); // umin(A, B) pred A. 2968 EqP = CmpInst::ICMP_ULE; // "A == umin(A, B)" iff "A ule B". 2969 // We analyze this as umax(-A, -B) swapped-pred -A. 2970 // Note that we do not need to actually form -A or -B thanks to EqP. 2971 P = CmpInst::getSwappedPredicate(Pred); 2972 } else if (match(RHS, m_UMin(m_Value(A), m_Value(B))) && 2973 (A == LHS || B == LHS)) { 2974 if (A != LHS) 2975 std::swap(A, B); // A pred umin(A, B). 2976 EqP = CmpInst::ICMP_ULE; // "A == umin(A, B)" iff "A ule B". 2977 // We analyze this as umax(-A, -B) pred -A. 2978 // Note that we do not need to actually form -A or -B thanks to EqP. 2979 P = Pred; 2980 } 2981 if (P != CmpInst::BAD_ICMP_PREDICATE) { 2982 // Cases correspond to "max(A, B) p A". 2983 switch (P) { 2984 default: 2985 break; 2986 case CmpInst::ICMP_EQ: 2987 case CmpInst::ICMP_ULE: 2988 // Equivalent to "A EqP B". This may be the same as the condition tested 2989 // in the max/min; if so, we can just return that. 2990 if (Value *V = ExtractEquivalentCondition(LHS, EqP, A, B)) 2991 return V; 2992 if (Value *V = ExtractEquivalentCondition(RHS, EqP, A, B)) 2993 return V; 2994 // Otherwise, see if "A EqP B" simplifies. 2995 if (MaxRecurse) 2996 if (Value *V = SimplifyICmpInst(EqP, A, B, Q, MaxRecurse - 1)) 2997 return V; 2998 break; 2999 case CmpInst::ICMP_NE: 3000 case CmpInst::ICMP_UGT: { 3001 CmpInst::Predicate InvEqP = CmpInst::getInversePredicate(EqP); 3002 // Equivalent to "A InvEqP B". This may be the same as the condition 3003 // tested in the max/min; if so, we can just return that. 3004 if (Value *V = ExtractEquivalentCondition(LHS, InvEqP, A, B)) 3005 return V; 3006 if (Value *V = ExtractEquivalentCondition(RHS, InvEqP, A, B)) 3007 return V; 3008 // Otherwise, see if "A InvEqP B" simplifies. 3009 if (MaxRecurse) 3010 if (Value *V = SimplifyICmpInst(InvEqP, A, B, Q, MaxRecurse - 1)) 3011 return V; 3012 break; 3013 } 3014 case CmpInst::ICMP_UGE: 3015 // Always true. 3016 return getTrue(ITy); 3017 case CmpInst::ICMP_ULT: 3018 // Always false. 3019 return getFalse(ITy); 3020 } 3021 } 3022 3023 // Variants on "max(x,y) >= min(x,z)". 3024 Value *C, *D; 3025 if (match(LHS, m_SMax(m_Value(A), m_Value(B))) && 3026 match(RHS, m_SMin(m_Value(C), m_Value(D))) && 3027 (A == C || A == D || B == C || B == D)) { 3028 // max(x, ?) pred min(x, ?). 3029 if (Pred == CmpInst::ICMP_SGE) 3030 // Always true. 3031 return getTrue(ITy); 3032 if (Pred == CmpInst::ICMP_SLT) 3033 // Always false. 3034 return getFalse(ITy); 3035 } else if (match(LHS, m_SMin(m_Value(A), m_Value(B))) && 3036 match(RHS, m_SMax(m_Value(C), m_Value(D))) && 3037 (A == C || A == D || B == C || B == D)) { 3038 // min(x, ?) pred max(x, ?). 3039 if (Pred == CmpInst::ICMP_SLE) 3040 // Always true. 3041 return getTrue(ITy); 3042 if (Pred == CmpInst::ICMP_SGT) 3043 // Always false. 3044 return getFalse(ITy); 3045 } else if (match(LHS, m_UMax(m_Value(A), m_Value(B))) && 3046 match(RHS, m_UMin(m_Value(C), m_Value(D))) && 3047 (A == C || A == D || B == C || B == D)) { 3048 // max(x, ?) pred min(x, ?). 3049 if (Pred == CmpInst::ICMP_UGE) 3050 // Always true. 3051 return getTrue(ITy); 3052 if (Pred == CmpInst::ICMP_ULT) 3053 // Always false. 3054 return getFalse(ITy); 3055 } else if (match(LHS, m_UMin(m_Value(A), m_Value(B))) && 3056 match(RHS, m_UMax(m_Value(C), m_Value(D))) && 3057 (A == C || A == D || B == C || B == D)) { 3058 // min(x, ?) pred max(x, ?). 3059 if (Pred == CmpInst::ICMP_ULE) 3060 // Always true. 3061 return getTrue(ITy); 3062 if (Pred == CmpInst::ICMP_UGT) 3063 // Always false. 3064 return getFalse(ITy); 3065 } 3066 3067 return nullptr; 3068 } 3069 3070 /// Given operands for an ICmpInst, see if we can fold the result. 3071 /// If not, this returns null. 3072 static Value *SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS, 3073 const Query &Q, unsigned MaxRecurse) { 3074 CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate; 3075 assert(CmpInst::isIntPredicate(Pred) && "Not an integer compare!"); 3076 3077 if (Constant *CLHS = dyn_cast<Constant>(LHS)) { 3078 if (Constant *CRHS = dyn_cast<Constant>(RHS)) 3079 return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, Q.DL, Q.TLI); 3080 3081 // If we have a constant, make sure it is on the RHS. 3082 std::swap(LHS, RHS); 3083 Pred = CmpInst::getSwappedPredicate(Pred); 3084 } 3085 3086 Type *ITy = GetCompareTy(LHS); // The return type. 3087 3088 // icmp X, X -> true/false 3089 // X icmp undef -> true/false. For example, icmp ugt %X, undef -> false 3090 // because X could be 0. 3091 if (LHS == RHS || isa<UndefValue>(RHS)) 3092 return ConstantInt::get(ITy, CmpInst::isTrueWhenEqual(Pred)); 3093 3094 if (Value *V = simplifyICmpOfBools(Pred, LHS, RHS, Q)) 3095 return V; 3096 3097 if (Value *V = simplifyICmpWithZero(Pred, LHS, RHS, Q)) 3098 return V; 3099 3100 if (Value *V = simplifyICmpWithConstant(Pred, LHS, RHS)) 3101 return V; 3102 3103 // If both operands have range metadata, use the metadata 3104 // to simplify the comparison. 3105 if (isa<Instruction>(RHS) && isa<Instruction>(LHS)) { 3106 auto RHS_Instr = cast<Instruction>(RHS); 3107 auto LHS_Instr = cast<Instruction>(LHS); 3108 3109 if (RHS_Instr->getMetadata(LLVMContext::MD_range) && 3110 LHS_Instr->getMetadata(LLVMContext::MD_range)) { 3111 auto RHS_CR = getConstantRangeFromMetadata( 3112 *RHS_Instr->getMetadata(LLVMContext::MD_range)); 3113 auto LHS_CR = getConstantRangeFromMetadata( 3114 *LHS_Instr->getMetadata(LLVMContext::MD_range)); 3115 3116 auto Satisfied_CR = ConstantRange::makeSatisfyingICmpRegion(Pred, RHS_CR); 3117 if (Satisfied_CR.contains(LHS_CR)) 3118 return ConstantInt::getTrue(RHS->getContext()); 3119 3120 auto InversedSatisfied_CR = ConstantRange::makeSatisfyingICmpRegion( 3121 CmpInst::getInversePredicate(Pred), RHS_CR); 3122 if (InversedSatisfied_CR.contains(LHS_CR)) 3123 return ConstantInt::getFalse(RHS->getContext()); 3124 } 3125 } 3126 3127 // Compare of cast, for example (zext X) != 0 -> X != 0 3128 if (isa<CastInst>(LHS) && (isa<Constant>(RHS) || isa<CastInst>(RHS))) { 3129 Instruction *LI = cast<CastInst>(LHS); 3130 Value *SrcOp = LI->getOperand(0); 3131 Type *SrcTy = SrcOp->getType(); 3132 Type *DstTy = LI->getType(); 3133 3134 // Turn icmp (ptrtoint x), (ptrtoint/constant) into a compare of the input 3135 // if the integer type is the same size as the pointer type. 3136 if (MaxRecurse && isa<PtrToIntInst>(LI) && 3137 Q.DL.getTypeSizeInBits(SrcTy) == DstTy->getPrimitiveSizeInBits()) { 3138 if (Constant *RHSC = dyn_cast<Constant>(RHS)) { 3139 // Transfer the cast to the constant. 3140 if (Value *V = SimplifyICmpInst(Pred, SrcOp, 3141 ConstantExpr::getIntToPtr(RHSC, SrcTy), 3142 Q, MaxRecurse-1)) 3143 return V; 3144 } else if (PtrToIntInst *RI = dyn_cast<PtrToIntInst>(RHS)) { 3145 if (RI->getOperand(0)->getType() == SrcTy) 3146 // Compare without the cast. 3147 if (Value *V = SimplifyICmpInst(Pred, SrcOp, RI->getOperand(0), 3148 Q, MaxRecurse-1)) 3149 return V; 3150 } 3151 } 3152 3153 if (isa<ZExtInst>(LHS)) { 3154 // Turn icmp (zext X), (zext Y) into a compare of X and Y if they have the 3155 // same type. 3156 if (ZExtInst *RI = dyn_cast<ZExtInst>(RHS)) { 3157 if (MaxRecurse && SrcTy == RI->getOperand(0)->getType()) 3158 // Compare X and Y. Note that signed predicates become unsigned. 3159 if (Value *V = SimplifyICmpInst(ICmpInst::getUnsignedPredicate(Pred), 3160 SrcOp, RI->getOperand(0), Q, 3161 MaxRecurse-1)) 3162 return V; 3163 } 3164 // Turn icmp (zext X), Cst into a compare of X and Cst if Cst is extended 3165 // too. If not, then try to deduce the result of the comparison. 3166 else if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) { 3167 // Compute the constant that would happen if we truncated to SrcTy then 3168 // reextended to DstTy. 3169 Constant *Trunc = ConstantExpr::getTrunc(CI, SrcTy); 3170 Constant *RExt = ConstantExpr::getCast(CastInst::ZExt, Trunc, DstTy); 3171 3172 // If the re-extended constant didn't change then this is effectively 3173 // also a case of comparing two zero-extended values. 3174 if (RExt == CI && MaxRecurse) 3175 if (Value *V = SimplifyICmpInst(ICmpInst::getUnsignedPredicate(Pred), 3176 SrcOp, Trunc, Q, MaxRecurse-1)) 3177 return V; 3178 3179 // Otherwise the upper bits of LHS are zero while RHS has a non-zero bit 3180 // there. Use this to work out the result of the comparison. 3181 if (RExt != CI) { 3182 switch (Pred) { 3183 default: llvm_unreachable("Unknown ICmp predicate!"); 3184 // LHS <u RHS. 3185 case ICmpInst::ICMP_EQ: 3186 case ICmpInst::ICMP_UGT: 3187 case ICmpInst::ICMP_UGE: 3188 return ConstantInt::getFalse(CI->getContext()); 3189 3190 case ICmpInst::ICMP_NE: 3191 case ICmpInst::ICMP_ULT: 3192 case ICmpInst::ICMP_ULE: 3193 return ConstantInt::getTrue(CI->getContext()); 3194 3195 // LHS is non-negative. If RHS is negative then LHS >s LHS. If RHS 3196 // is non-negative then LHS <s RHS. 3197 case ICmpInst::ICMP_SGT: 3198 case ICmpInst::ICMP_SGE: 3199 return CI->getValue().isNegative() ? 3200 ConstantInt::getTrue(CI->getContext()) : 3201 ConstantInt::getFalse(CI->getContext()); 3202 3203 case ICmpInst::ICMP_SLT: 3204 case ICmpInst::ICMP_SLE: 3205 return CI->getValue().isNegative() ? 3206 ConstantInt::getFalse(CI->getContext()) : 3207 ConstantInt::getTrue(CI->getContext()); 3208 } 3209 } 3210 } 3211 } 3212 3213 if (isa<SExtInst>(LHS)) { 3214 // Turn icmp (sext X), (sext Y) into a compare of X and Y if they have the 3215 // same type. 3216 if (SExtInst *RI = dyn_cast<SExtInst>(RHS)) { 3217 if (MaxRecurse && SrcTy == RI->getOperand(0)->getType()) 3218 // Compare X and Y. Note that the predicate does not change. 3219 if (Value *V = SimplifyICmpInst(Pred, SrcOp, RI->getOperand(0), 3220 Q, MaxRecurse-1)) 3221 return V; 3222 } 3223 // Turn icmp (sext X), Cst into a compare of X and Cst if Cst is extended 3224 // too. If not, then try to deduce the result of the comparison. 3225 else if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) { 3226 // Compute the constant that would happen if we truncated to SrcTy then 3227 // reextended to DstTy. 3228 Constant *Trunc = ConstantExpr::getTrunc(CI, SrcTy); 3229 Constant *RExt = ConstantExpr::getCast(CastInst::SExt, Trunc, DstTy); 3230 3231 // If the re-extended constant didn't change then this is effectively 3232 // also a case of comparing two sign-extended values. 3233 if (RExt == CI && MaxRecurse) 3234 if (Value *V = SimplifyICmpInst(Pred, SrcOp, Trunc, Q, MaxRecurse-1)) 3235 return V; 3236 3237 // Otherwise the upper bits of LHS are all equal, while RHS has varying 3238 // bits there. Use this to work out the result of the comparison. 3239 if (RExt != CI) { 3240 switch (Pred) { 3241 default: llvm_unreachable("Unknown ICmp predicate!"); 3242 case ICmpInst::ICMP_EQ: 3243 return ConstantInt::getFalse(CI->getContext()); 3244 case ICmpInst::ICMP_NE: 3245 return ConstantInt::getTrue(CI->getContext()); 3246 3247 // If RHS is non-negative then LHS <s RHS. If RHS is negative then 3248 // LHS >s RHS. 3249 case ICmpInst::ICMP_SGT: 3250 case ICmpInst::ICMP_SGE: 3251 return CI->getValue().isNegative() ? 3252 ConstantInt::getTrue(CI->getContext()) : 3253 ConstantInt::getFalse(CI->getContext()); 3254 case ICmpInst::ICMP_SLT: 3255 case ICmpInst::ICMP_SLE: 3256 return CI->getValue().isNegative() ? 3257 ConstantInt::getFalse(CI->getContext()) : 3258 ConstantInt::getTrue(CI->getContext()); 3259 3260 // If LHS is non-negative then LHS <u RHS. If LHS is negative then 3261 // LHS >u RHS. 3262 case ICmpInst::ICMP_UGT: 3263 case ICmpInst::ICMP_UGE: 3264 // Comparison is true iff the LHS <s 0. 3265 if (MaxRecurse) 3266 if (Value *V = SimplifyICmpInst(ICmpInst::ICMP_SLT, SrcOp, 3267 Constant::getNullValue(SrcTy), 3268 Q, MaxRecurse-1)) 3269 return V; 3270 break; 3271 case ICmpInst::ICMP_ULT: 3272 case ICmpInst::ICMP_ULE: 3273 // Comparison is true iff the LHS >=s 0. 3274 if (MaxRecurse) 3275 if (Value *V = SimplifyICmpInst(ICmpInst::ICMP_SGE, SrcOp, 3276 Constant::getNullValue(SrcTy), 3277 Q, MaxRecurse-1)) 3278 return V; 3279 break; 3280 } 3281 } 3282 } 3283 } 3284 } 3285 3286 // icmp eq|ne X, Y -> false|true if X != Y 3287 if ((Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_NE) && 3288 isKnownNonEqual(LHS, RHS, Q.DL, Q.AC, Q.CxtI, Q.DT)) { 3289 LLVMContext &Ctx = LHS->getType()->getContext(); 3290 return Pred == ICmpInst::ICMP_NE ? 3291 ConstantInt::getTrue(Ctx) : ConstantInt::getFalse(Ctx); 3292 } 3293 3294 if (Value *V = simplifyICmpWithBinOp(Pred, LHS, RHS, Q, MaxRecurse)) 3295 return V; 3296 3297 if (Value *V = simplifyICmpWithMinMax(Pred, LHS, RHS, Q, MaxRecurse)) 3298 return V; 3299 3300 // Simplify comparisons of related pointers using a powerful, recursive 3301 // GEP-walk when we have target data available.. 3302 if (LHS->getType()->isPointerTy()) 3303 if (auto *C = computePointerICmp(Q.DL, Q.TLI, Q.DT, Pred, Q.CxtI, LHS, RHS)) 3304 return C; 3305 if (auto *CLHS = dyn_cast<PtrToIntOperator>(LHS)) 3306 if (auto *CRHS = dyn_cast<PtrToIntOperator>(RHS)) 3307 if (Q.DL.getTypeSizeInBits(CLHS->getPointerOperandType()) == 3308 Q.DL.getTypeSizeInBits(CLHS->getType()) && 3309 Q.DL.getTypeSizeInBits(CRHS->getPointerOperandType()) == 3310 Q.DL.getTypeSizeInBits(CRHS->getType())) 3311 if (auto *C = computePointerICmp(Q.DL, Q.TLI, Q.DT, Pred, Q.CxtI, 3312 CLHS->getPointerOperand(), 3313 CRHS->getPointerOperand())) 3314 return C; 3315 3316 if (GetElementPtrInst *GLHS = dyn_cast<GetElementPtrInst>(LHS)) { 3317 if (GEPOperator *GRHS = dyn_cast<GEPOperator>(RHS)) { 3318 if (GLHS->getPointerOperand() == GRHS->getPointerOperand() && 3319 GLHS->hasAllConstantIndices() && GRHS->hasAllConstantIndices() && 3320 (ICmpInst::isEquality(Pred) || 3321 (GLHS->isInBounds() && GRHS->isInBounds() && 3322 Pred == ICmpInst::getSignedPredicate(Pred)))) { 3323 // The bases are equal and the indices are constant. Build a constant 3324 // expression GEP with the same indices and a null base pointer to see 3325 // what constant folding can make out of it. 3326 Constant *Null = Constant::getNullValue(GLHS->getPointerOperandType()); 3327 SmallVector<Value *, 4> IndicesLHS(GLHS->idx_begin(), GLHS->idx_end()); 3328 Constant *NewLHS = ConstantExpr::getGetElementPtr( 3329 GLHS->getSourceElementType(), Null, IndicesLHS); 3330 3331 SmallVector<Value *, 4> IndicesRHS(GRHS->idx_begin(), GRHS->idx_end()); 3332 Constant *NewRHS = ConstantExpr::getGetElementPtr( 3333 GLHS->getSourceElementType(), Null, IndicesRHS); 3334 return ConstantExpr::getICmp(Pred, NewLHS, NewRHS); 3335 } 3336 } 3337 } 3338 3339 // If a bit is known to be zero for A and known to be one for B, 3340 // then A and B cannot be equal. 3341 if (ICmpInst::isEquality(Pred)) { 3342 const APInt *RHSVal; 3343 if (match(RHS, m_APInt(RHSVal))) { 3344 unsigned BitWidth = RHSVal->getBitWidth(); 3345 APInt LHSKnownZero(BitWidth, 0); 3346 APInt LHSKnownOne(BitWidth, 0); 3347 computeKnownBits(LHS, LHSKnownZero, LHSKnownOne, Q.DL, /*Depth=*/0, Q.AC, 3348 Q.CxtI, Q.DT); 3349 if (((LHSKnownZero & *RHSVal) != 0) || ((LHSKnownOne & ~(*RHSVal)) != 0)) 3350 return Pred == ICmpInst::ICMP_EQ ? ConstantInt::getFalse(ITy) 3351 : ConstantInt::getTrue(ITy); 3352 } 3353 } 3354 3355 // If the comparison is with the result of a select instruction, check whether 3356 // comparing with either branch of the select always yields the same value. 3357 if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS)) 3358 if (Value *V = ThreadCmpOverSelect(Pred, LHS, RHS, Q, MaxRecurse)) 3359 return V; 3360 3361 // If the comparison is with the result of a phi instruction, check whether 3362 // doing the compare with each incoming phi value yields a common result. 3363 if (isa<PHINode>(LHS) || isa<PHINode>(RHS)) 3364 if (Value *V = ThreadCmpOverPHI(Pred, LHS, RHS, Q, MaxRecurse)) 3365 return V; 3366 3367 return nullptr; 3368 } 3369 3370 Value *llvm::SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS, 3371 const DataLayout &DL, 3372 const TargetLibraryInfo *TLI, 3373 const DominatorTree *DT, AssumptionCache *AC, 3374 const Instruction *CxtI) { 3375 return ::SimplifyICmpInst(Predicate, LHS, RHS, Query(DL, TLI, DT, AC, CxtI), 3376 RecursionLimit); 3377 } 3378 3379 /// Given operands for an FCmpInst, see if we can fold the result. 3380 /// If not, this returns null. 3381 static Value *SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS, 3382 FastMathFlags FMF, const Query &Q, 3383 unsigned MaxRecurse) { 3384 CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate; 3385 assert(CmpInst::isFPPredicate(Pred) && "Not an FP compare!"); 3386 3387 if (Constant *CLHS = dyn_cast<Constant>(LHS)) { 3388 if (Constant *CRHS = dyn_cast<Constant>(RHS)) 3389 return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, Q.DL, Q.TLI); 3390 3391 // If we have a constant, make sure it is on the RHS. 3392 std::swap(LHS, RHS); 3393 Pred = CmpInst::getSwappedPredicate(Pred); 3394 } 3395 3396 // Fold trivial predicates. 3397 Type *RetTy = GetCompareTy(LHS); 3398 if (Pred == FCmpInst::FCMP_FALSE) 3399 return getFalse(RetTy); 3400 if (Pred == FCmpInst::FCMP_TRUE) 3401 return getTrue(RetTy); 3402 3403 // UNO/ORD predicates can be trivially folded if NaNs are ignored. 3404 if (FMF.noNaNs()) { 3405 if (Pred == FCmpInst::FCMP_UNO) 3406 return getFalse(RetTy); 3407 if (Pred == FCmpInst::FCMP_ORD) 3408 return getTrue(RetTy); 3409 } 3410 3411 // fcmp pred x, undef and fcmp pred undef, x 3412 // fold to true if unordered, false if ordered 3413 if (isa<UndefValue>(LHS) || isa<UndefValue>(RHS)) { 3414 // Choosing NaN for the undef will always make unordered comparison succeed 3415 // and ordered comparison fail. 3416 return ConstantInt::get(RetTy, CmpInst::isUnordered(Pred)); 3417 } 3418 3419 // fcmp x,x -> true/false. Not all compares are foldable. 3420 if (LHS == RHS) { 3421 if (CmpInst::isTrueWhenEqual(Pred)) 3422 return getTrue(RetTy); 3423 if (CmpInst::isFalseWhenEqual(Pred)) 3424 return getFalse(RetTy); 3425 } 3426 3427 // Handle fcmp with constant RHS 3428 const ConstantFP *CFP = nullptr; 3429 if (const auto *RHSC = dyn_cast<Constant>(RHS)) { 3430 if (RHS->getType()->isVectorTy()) 3431 CFP = dyn_cast_or_null<ConstantFP>(RHSC->getSplatValue()); 3432 else 3433 CFP = dyn_cast<ConstantFP>(RHSC); 3434 } 3435 if (CFP) { 3436 // If the constant is a nan, see if we can fold the comparison based on it. 3437 if (CFP->getValueAPF().isNaN()) { 3438 if (FCmpInst::isOrdered(Pred)) // True "if ordered and foo" 3439 return getFalse(RetTy); 3440 assert(FCmpInst::isUnordered(Pred) && 3441 "Comparison must be either ordered or unordered!"); 3442 // True if unordered. 3443 return getTrue(RetTy); 3444 } 3445 // Check whether the constant is an infinity. 3446 if (CFP->getValueAPF().isInfinity()) { 3447 if (CFP->getValueAPF().isNegative()) { 3448 switch (Pred) { 3449 case FCmpInst::FCMP_OLT: 3450 // No value is ordered and less than negative infinity. 3451 return getFalse(RetTy); 3452 case FCmpInst::FCMP_UGE: 3453 // All values are unordered with or at least negative infinity. 3454 return getTrue(RetTy); 3455 default: 3456 break; 3457 } 3458 } else { 3459 switch (Pred) { 3460 case FCmpInst::FCMP_OGT: 3461 // No value is ordered and greater than infinity. 3462 return getFalse(RetTy); 3463 case FCmpInst::FCMP_ULE: 3464 // All values are unordered with and at most infinity. 3465 return getTrue(RetTy); 3466 default: 3467 break; 3468 } 3469 } 3470 } 3471 if (CFP->getValueAPF().isZero()) { 3472 switch (Pred) { 3473 case FCmpInst::FCMP_UGE: 3474 if (CannotBeOrderedLessThanZero(LHS, Q.TLI)) 3475 return getTrue(RetTy); 3476 break; 3477 case FCmpInst::FCMP_OLT: 3478 // X < 0 3479 if (CannotBeOrderedLessThanZero(LHS, Q.TLI)) 3480 return getFalse(RetTy); 3481 break; 3482 default: 3483 break; 3484 } 3485 } 3486 } 3487 3488 // If the comparison is with the result of a select instruction, check whether 3489 // comparing with either branch of the select always yields the same value. 3490 if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS)) 3491 if (Value *V = ThreadCmpOverSelect(Pred, LHS, RHS, Q, MaxRecurse)) 3492 return V; 3493 3494 // If the comparison is with the result of a phi instruction, check whether 3495 // doing the compare with each incoming phi value yields a common result. 3496 if (isa<PHINode>(LHS) || isa<PHINode>(RHS)) 3497 if (Value *V = ThreadCmpOverPHI(Pred, LHS, RHS, Q, MaxRecurse)) 3498 return V; 3499 3500 return nullptr; 3501 } 3502 3503 Value *llvm::SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS, 3504 FastMathFlags FMF, const DataLayout &DL, 3505 const TargetLibraryInfo *TLI, 3506 const DominatorTree *DT, AssumptionCache *AC, 3507 const Instruction *CxtI) { 3508 return ::SimplifyFCmpInst(Predicate, LHS, RHS, FMF, 3509 Query(DL, TLI, DT, AC, CxtI), RecursionLimit); 3510 } 3511 3512 /// See if V simplifies when its operand Op is replaced with RepOp. 3513 static const Value *SimplifyWithOpReplaced(Value *V, Value *Op, Value *RepOp, 3514 const Query &Q, 3515 unsigned MaxRecurse) { 3516 // Trivial replacement. 3517 if (V == Op) 3518 return RepOp; 3519 3520 auto *I = dyn_cast<Instruction>(V); 3521 if (!I) 3522 return nullptr; 3523 3524 // If this is a binary operator, try to simplify it with the replaced op. 3525 if (auto *B = dyn_cast<BinaryOperator>(I)) { 3526 // Consider: 3527 // %cmp = icmp eq i32 %x, 2147483647 3528 // %add = add nsw i32 %x, 1 3529 // %sel = select i1 %cmp, i32 -2147483648, i32 %add 3530 // 3531 // We can't replace %sel with %add unless we strip away the flags. 3532 if (isa<OverflowingBinaryOperator>(B)) 3533 if (B->hasNoSignedWrap() || B->hasNoUnsignedWrap()) 3534 return nullptr; 3535 if (isa<PossiblyExactOperator>(B)) 3536 if (B->isExact()) 3537 return nullptr; 3538 3539 if (MaxRecurse) { 3540 if (B->getOperand(0) == Op) 3541 return SimplifyBinOp(B->getOpcode(), RepOp, B->getOperand(1), Q, 3542 MaxRecurse - 1); 3543 if (B->getOperand(1) == Op) 3544 return SimplifyBinOp(B->getOpcode(), B->getOperand(0), RepOp, Q, 3545 MaxRecurse - 1); 3546 } 3547 } 3548 3549 // Same for CmpInsts. 3550 if (CmpInst *C = dyn_cast<CmpInst>(I)) { 3551 if (MaxRecurse) { 3552 if (C->getOperand(0) == Op) 3553 return SimplifyCmpInst(C->getPredicate(), RepOp, C->getOperand(1), Q, 3554 MaxRecurse - 1); 3555 if (C->getOperand(1) == Op) 3556 return SimplifyCmpInst(C->getPredicate(), C->getOperand(0), RepOp, Q, 3557 MaxRecurse - 1); 3558 } 3559 } 3560 3561 // TODO: We could hand off more cases to instsimplify here. 3562 3563 // If all operands are constant after substituting Op for RepOp then we can 3564 // constant fold the instruction. 3565 if (Constant *CRepOp = dyn_cast<Constant>(RepOp)) { 3566 // Build a list of all constant operands. 3567 SmallVector<Constant *, 8> ConstOps; 3568 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 3569 if (I->getOperand(i) == Op) 3570 ConstOps.push_back(CRepOp); 3571 else if (Constant *COp = dyn_cast<Constant>(I->getOperand(i))) 3572 ConstOps.push_back(COp); 3573 else 3574 break; 3575 } 3576 3577 // All operands were constants, fold it. 3578 if (ConstOps.size() == I->getNumOperands()) { 3579 if (CmpInst *C = dyn_cast<CmpInst>(I)) 3580 return ConstantFoldCompareInstOperands(C->getPredicate(), ConstOps[0], 3581 ConstOps[1], Q.DL, Q.TLI); 3582 3583 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 3584 if (!LI->isVolatile()) 3585 return ConstantFoldLoadFromConstPtr(ConstOps[0], LI->getType(), Q.DL); 3586 3587 return ConstantFoldInstOperands(I, ConstOps, Q.DL, Q.TLI); 3588 } 3589 } 3590 3591 return nullptr; 3592 } 3593 3594 /// Try to simplify a select instruction when its condition operand is an 3595 /// integer comparison where one operand of the compare is a constant. 3596 static Value *simplifySelectBitTest(Value *TrueVal, Value *FalseVal, Value *X, 3597 const APInt *Y, bool TrueWhenUnset) { 3598 const APInt *C; 3599 3600 // (X & Y) == 0 ? X & ~Y : X --> X 3601 // (X & Y) != 0 ? X & ~Y : X --> X & ~Y 3602 if (FalseVal == X && match(TrueVal, m_And(m_Specific(X), m_APInt(C))) && 3603 *Y == ~*C) 3604 return TrueWhenUnset ? FalseVal : TrueVal; 3605 3606 // (X & Y) == 0 ? X : X & ~Y --> X & ~Y 3607 // (X & Y) != 0 ? X : X & ~Y --> X 3608 if (TrueVal == X && match(FalseVal, m_And(m_Specific(X), m_APInt(C))) && 3609 *Y == ~*C) 3610 return TrueWhenUnset ? FalseVal : TrueVal; 3611 3612 if (Y->isPowerOf2()) { 3613 // (X & Y) == 0 ? X | Y : X --> X | Y 3614 // (X & Y) != 0 ? X | Y : X --> X 3615 if (FalseVal == X && match(TrueVal, m_Or(m_Specific(X), m_APInt(C))) && 3616 *Y == *C) 3617 return TrueWhenUnset ? TrueVal : FalseVal; 3618 3619 // (X & Y) == 0 ? X : X | Y --> X 3620 // (X & Y) != 0 ? X : X | Y --> X | Y 3621 if (TrueVal == X && match(FalseVal, m_Or(m_Specific(X), m_APInt(C))) && 3622 *Y == *C) 3623 return TrueWhenUnset ? TrueVal : FalseVal; 3624 } 3625 3626 return nullptr; 3627 } 3628 3629 /// An alternative way to test if a bit is set or not uses sgt/slt instead of 3630 /// eq/ne. 3631 static Value *simplifySelectWithFakeICmpEq(Value *CmpLHS, Value *TrueVal, 3632 Value *FalseVal, 3633 bool TrueWhenUnset) { 3634 unsigned BitWidth = TrueVal->getType()->getScalarSizeInBits(); 3635 if (!BitWidth) 3636 return nullptr; 3637 3638 APInt MinSignedValue; 3639 Value *X; 3640 if (match(CmpLHS, m_Trunc(m_Value(X))) && (X == TrueVal || X == FalseVal)) { 3641 // icmp slt (trunc X), 0 <--> icmp ne (and X, C), 0 3642 // icmp sgt (trunc X), -1 <--> icmp eq (and X, C), 0 3643 unsigned DestSize = CmpLHS->getType()->getScalarSizeInBits(); 3644 MinSignedValue = APInt::getSignedMinValue(DestSize).zext(BitWidth); 3645 } else { 3646 // icmp slt X, 0 <--> icmp ne (and X, C), 0 3647 // icmp sgt X, -1 <--> icmp eq (and X, C), 0 3648 X = CmpLHS; 3649 MinSignedValue = APInt::getSignedMinValue(BitWidth); 3650 } 3651 3652 if (Value *V = simplifySelectBitTest(TrueVal, FalseVal, X, &MinSignedValue, 3653 TrueWhenUnset)) 3654 return V; 3655 3656 return nullptr; 3657 } 3658 3659 /// Try to simplify a select instruction when its condition operand is an 3660 /// integer comparison. 3661 static Value *simplifySelectWithICmpCond(Value *CondVal, Value *TrueVal, 3662 Value *FalseVal, const Query &Q, 3663 unsigned MaxRecurse) { 3664 ICmpInst::Predicate Pred; 3665 Value *CmpLHS, *CmpRHS; 3666 if (!match(CondVal, m_ICmp(Pred, m_Value(CmpLHS), m_Value(CmpRHS)))) 3667 return nullptr; 3668 3669 // FIXME: This code is nearly duplicated in InstCombine. Using/refactoring 3670 // decomposeBitTestICmp() might help. 3671 if (ICmpInst::isEquality(Pred) && match(CmpRHS, m_Zero())) { 3672 Value *X; 3673 const APInt *Y; 3674 if (match(CmpLHS, m_And(m_Value(X), m_APInt(Y)))) 3675 if (Value *V = simplifySelectBitTest(TrueVal, FalseVal, X, Y, 3676 Pred == ICmpInst::ICMP_EQ)) 3677 return V; 3678 } else if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, m_Zero())) { 3679 // Comparing signed-less-than 0 checks if the sign bit is set. 3680 if (Value *V = simplifySelectWithFakeICmpEq(CmpLHS, TrueVal, FalseVal, 3681 false)) 3682 return V; 3683 } else if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, m_AllOnes())) { 3684 // Comparing signed-greater-than -1 checks if the sign bit is not set. 3685 if (Value *V = simplifySelectWithFakeICmpEq(CmpLHS, TrueVal, FalseVal, 3686 true)) 3687 return V; 3688 } 3689 3690 if (CondVal->hasOneUse()) { 3691 const APInt *C; 3692 if (match(CmpRHS, m_APInt(C))) { 3693 // X < MIN ? T : F --> F 3694 if (Pred == ICmpInst::ICMP_SLT && C->isMinSignedValue()) 3695 return FalseVal; 3696 // X < MIN ? T : F --> F 3697 if (Pred == ICmpInst::ICMP_ULT && C->isMinValue()) 3698 return FalseVal; 3699 // X > MAX ? T : F --> F 3700 if (Pred == ICmpInst::ICMP_SGT && C->isMaxSignedValue()) 3701 return FalseVal; 3702 // X > MAX ? T : F --> F 3703 if (Pred == ICmpInst::ICMP_UGT && C->isMaxValue()) 3704 return FalseVal; 3705 } 3706 } 3707 3708 // If we have an equality comparison, then we know the value in one of the 3709 // arms of the select. See if substituting this value into the arm and 3710 // simplifying the result yields the same value as the other arm. 3711 if (Pred == ICmpInst::ICMP_EQ) { 3712 if (SimplifyWithOpReplaced(FalseVal, CmpLHS, CmpRHS, Q, MaxRecurse) == 3713 TrueVal || 3714 SimplifyWithOpReplaced(FalseVal, CmpRHS, CmpLHS, Q, MaxRecurse) == 3715 TrueVal) 3716 return FalseVal; 3717 if (SimplifyWithOpReplaced(TrueVal, CmpLHS, CmpRHS, Q, MaxRecurse) == 3718 FalseVal || 3719 SimplifyWithOpReplaced(TrueVal, CmpRHS, CmpLHS, Q, MaxRecurse) == 3720 FalseVal) 3721 return FalseVal; 3722 } else if (Pred == ICmpInst::ICMP_NE) { 3723 if (SimplifyWithOpReplaced(TrueVal, CmpLHS, CmpRHS, Q, MaxRecurse) == 3724 FalseVal || 3725 SimplifyWithOpReplaced(TrueVal, CmpRHS, CmpLHS, Q, MaxRecurse) == 3726 FalseVal) 3727 return TrueVal; 3728 if (SimplifyWithOpReplaced(FalseVal, CmpLHS, CmpRHS, Q, MaxRecurse) == 3729 TrueVal || 3730 SimplifyWithOpReplaced(FalseVal, CmpRHS, CmpLHS, Q, MaxRecurse) == 3731 TrueVal) 3732 return TrueVal; 3733 } 3734 3735 return nullptr; 3736 } 3737 3738 /// Given operands for a SelectInst, see if we can fold the result. 3739 /// If not, this returns null. 3740 static Value *SimplifySelectInst(Value *CondVal, Value *TrueVal, 3741 Value *FalseVal, const Query &Q, 3742 unsigned MaxRecurse) { 3743 // select true, X, Y -> X 3744 // select false, X, Y -> Y 3745 if (Constant *CB = dyn_cast<Constant>(CondVal)) { 3746 if (CB->isAllOnesValue()) 3747 return TrueVal; 3748 if (CB->isNullValue()) 3749 return FalseVal; 3750 } 3751 3752 // select C, X, X -> X 3753 if (TrueVal == FalseVal) 3754 return TrueVal; 3755 3756 if (isa<UndefValue>(CondVal)) { // select undef, X, Y -> X or Y 3757 if (isa<Constant>(TrueVal)) 3758 return TrueVal; 3759 return FalseVal; 3760 } 3761 if (isa<UndefValue>(TrueVal)) // select C, undef, X -> X 3762 return FalseVal; 3763 if (isa<UndefValue>(FalseVal)) // select C, X, undef -> X 3764 return TrueVal; 3765 3766 if (Value *V = 3767 simplifySelectWithICmpCond(CondVal, TrueVal, FalseVal, Q, MaxRecurse)) 3768 return V; 3769 3770 return nullptr; 3771 } 3772 3773 Value *llvm::SimplifySelectInst(Value *Cond, Value *TrueVal, Value *FalseVal, 3774 const DataLayout &DL, 3775 const TargetLibraryInfo *TLI, 3776 const DominatorTree *DT, AssumptionCache *AC, 3777 const Instruction *CxtI) { 3778 return ::SimplifySelectInst(Cond, TrueVal, FalseVal, 3779 Query(DL, TLI, DT, AC, CxtI), RecursionLimit); 3780 } 3781 3782 /// Given operands for an GetElementPtrInst, see if we can fold the result. 3783 /// If not, this returns null. 3784 static Value *SimplifyGEPInst(Type *SrcTy, ArrayRef<Value *> Ops, 3785 const Query &Q, unsigned) { 3786 // The type of the GEP pointer operand. 3787 unsigned AS = 3788 cast<PointerType>(Ops[0]->getType()->getScalarType())->getAddressSpace(); 3789 3790 // getelementptr P -> P. 3791 if (Ops.size() == 1) 3792 return Ops[0]; 3793 3794 // Compute the (pointer) type returned by the GEP instruction. 3795 Type *LastType = GetElementPtrInst::getIndexedType(SrcTy, Ops.slice(1)); 3796 Type *GEPTy = PointerType::get(LastType, AS); 3797 if (VectorType *VT = dyn_cast<VectorType>(Ops[0]->getType())) 3798 GEPTy = VectorType::get(GEPTy, VT->getNumElements()); 3799 3800 if (isa<UndefValue>(Ops[0])) 3801 return UndefValue::get(GEPTy); 3802 3803 if (Ops.size() == 2) { 3804 // getelementptr P, 0 -> P. 3805 if (match(Ops[1], m_Zero())) 3806 return Ops[0]; 3807 3808 Type *Ty = SrcTy; 3809 if (Ty->isSized()) { 3810 Value *P; 3811 uint64_t C; 3812 uint64_t TyAllocSize = Q.DL.getTypeAllocSize(Ty); 3813 // getelementptr P, N -> P if P points to a type of zero size. 3814 if (TyAllocSize == 0) 3815 return Ops[0]; 3816 3817 // The following transforms are only safe if the ptrtoint cast 3818 // doesn't truncate the pointers. 3819 if (Ops[1]->getType()->getScalarSizeInBits() == 3820 Q.DL.getPointerSizeInBits(AS)) { 3821 auto PtrToIntOrZero = [GEPTy](Value *P) -> Value * { 3822 if (match(P, m_Zero())) 3823 return Constant::getNullValue(GEPTy); 3824 Value *Temp; 3825 if (match(P, m_PtrToInt(m_Value(Temp)))) 3826 if (Temp->getType() == GEPTy) 3827 return Temp; 3828 return nullptr; 3829 }; 3830 3831 // getelementptr V, (sub P, V) -> P if P points to a type of size 1. 3832 if (TyAllocSize == 1 && 3833 match(Ops[1], m_Sub(m_Value(P), m_PtrToInt(m_Specific(Ops[0]))))) 3834 if (Value *R = PtrToIntOrZero(P)) 3835 return R; 3836 3837 // getelementptr V, (ashr (sub P, V), C) -> Q 3838 // if P points to a type of size 1 << C. 3839 if (match(Ops[1], 3840 m_AShr(m_Sub(m_Value(P), m_PtrToInt(m_Specific(Ops[0]))), 3841 m_ConstantInt(C))) && 3842 TyAllocSize == 1ULL << C) 3843 if (Value *R = PtrToIntOrZero(P)) 3844 return R; 3845 3846 // getelementptr V, (sdiv (sub P, V), C) -> Q 3847 // if P points to a type of size C. 3848 if (match(Ops[1], 3849 m_SDiv(m_Sub(m_Value(P), m_PtrToInt(m_Specific(Ops[0]))), 3850 m_SpecificInt(TyAllocSize)))) 3851 if (Value *R = PtrToIntOrZero(P)) 3852 return R; 3853 } 3854 } 3855 } 3856 3857 if (Q.DL.getTypeAllocSize(LastType) == 1 && 3858 all_of(Ops.slice(1).drop_back(1), 3859 [](Value *Idx) { return match(Idx, m_Zero()); })) { 3860 unsigned PtrWidth = 3861 Q.DL.getPointerSizeInBits(Ops[0]->getType()->getPointerAddressSpace()); 3862 if (Q.DL.getTypeSizeInBits(Ops.back()->getType()) == PtrWidth) { 3863 APInt BasePtrOffset(PtrWidth, 0); 3864 Value *StrippedBasePtr = 3865 Ops[0]->stripAndAccumulateInBoundsConstantOffsets(Q.DL, 3866 BasePtrOffset); 3867 3868 // gep (gep V, C), (sub 0, V) -> C 3869 if (match(Ops.back(), 3870 m_Sub(m_Zero(), m_PtrToInt(m_Specific(StrippedBasePtr))))) { 3871 auto *CI = ConstantInt::get(GEPTy->getContext(), BasePtrOffset); 3872 return ConstantExpr::getIntToPtr(CI, GEPTy); 3873 } 3874 // gep (gep V, C), (xor V, -1) -> C-1 3875 if (match(Ops.back(), 3876 m_Xor(m_PtrToInt(m_Specific(StrippedBasePtr)), m_AllOnes()))) { 3877 auto *CI = ConstantInt::get(GEPTy->getContext(), BasePtrOffset - 1); 3878 return ConstantExpr::getIntToPtr(CI, GEPTy); 3879 } 3880 } 3881 } 3882 3883 // Check to see if this is constant foldable. 3884 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 3885 if (!isa<Constant>(Ops[i])) 3886 return nullptr; 3887 3888 return ConstantExpr::getGetElementPtr(SrcTy, cast<Constant>(Ops[0]), 3889 Ops.slice(1)); 3890 } 3891 3892 Value *llvm::SimplifyGEPInst(Type *SrcTy, ArrayRef<Value *> Ops, 3893 const DataLayout &DL, 3894 const TargetLibraryInfo *TLI, 3895 const DominatorTree *DT, AssumptionCache *AC, 3896 const Instruction *CxtI) { 3897 return ::SimplifyGEPInst(SrcTy, Ops, 3898 Query(DL, TLI, DT, AC, CxtI), RecursionLimit); 3899 } 3900 3901 /// Given operands for an InsertValueInst, see if we can fold the result. 3902 /// If not, this returns null. 3903 static Value *SimplifyInsertValueInst(Value *Agg, Value *Val, 3904 ArrayRef<unsigned> Idxs, const Query &Q, 3905 unsigned) { 3906 if (Constant *CAgg = dyn_cast<Constant>(Agg)) 3907 if (Constant *CVal = dyn_cast<Constant>(Val)) 3908 return ConstantFoldInsertValueInstruction(CAgg, CVal, Idxs); 3909 3910 // insertvalue x, undef, n -> x 3911 if (match(Val, m_Undef())) 3912 return Agg; 3913 3914 // insertvalue x, (extractvalue y, n), n 3915 if (ExtractValueInst *EV = dyn_cast<ExtractValueInst>(Val)) 3916 if (EV->getAggregateOperand()->getType() == Agg->getType() && 3917 EV->getIndices() == Idxs) { 3918 // insertvalue undef, (extractvalue y, n), n -> y 3919 if (match(Agg, m_Undef())) 3920 return EV->getAggregateOperand(); 3921 3922 // insertvalue y, (extractvalue y, n), n -> y 3923 if (Agg == EV->getAggregateOperand()) 3924 return Agg; 3925 } 3926 3927 return nullptr; 3928 } 3929 3930 Value *llvm::SimplifyInsertValueInst( 3931 Value *Agg, Value *Val, ArrayRef<unsigned> Idxs, const DataLayout &DL, 3932 const TargetLibraryInfo *TLI, const DominatorTree *DT, AssumptionCache *AC, 3933 const Instruction *CxtI) { 3934 return ::SimplifyInsertValueInst(Agg, Val, Idxs, Query(DL, TLI, DT, AC, CxtI), 3935 RecursionLimit); 3936 } 3937 3938 /// Given operands for an ExtractValueInst, see if we can fold the result. 3939 /// If not, this returns null. 3940 static Value *SimplifyExtractValueInst(Value *Agg, ArrayRef<unsigned> Idxs, 3941 const Query &, unsigned) { 3942 if (auto *CAgg = dyn_cast<Constant>(Agg)) 3943 return ConstantFoldExtractValueInstruction(CAgg, Idxs); 3944 3945 // extractvalue x, (insertvalue y, elt, n), n -> elt 3946 unsigned NumIdxs = Idxs.size(); 3947 for (auto *IVI = dyn_cast<InsertValueInst>(Agg); IVI != nullptr; 3948 IVI = dyn_cast<InsertValueInst>(IVI->getAggregateOperand())) { 3949 ArrayRef<unsigned> InsertValueIdxs = IVI->getIndices(); 3950 unsigned NumInsertValueIdxs = InsertValueIdxs.size(); 3951 unsigned NumCommonIdxs = std::min(NumInsertValueIdxs, NumIdxs); 3952 if (InsertValueIdxs.slice(0, NumCommonIdxs) == 3953 Idxs.slice(0, NumCommonIdxs)) { 3954 if (NumIdxs == NumInsertValueIdxs) 3955 return IVI->getInsertedValueOperand(); 3956 break; 3957 } 3958 } 3959 3960 return nullptr; 3961 } 3962 3963 Value *llvm::SimplifyExtractValueInst(Value *Agg, ArrayRef<unsigned> Idxs, 3964 const DataLayout &DL, 3965 const TargetLibraryInfo *TLI, 3966 const DominatorTree *DT, 3967 AssumptionCache *AC, 3968 const Instruction *CxtI) { 3969 return ::SimplifyExtractValueInst(Agg, Idxs, Query(DL, TLI, DT, AC, CxtI), 3970 RecursionLimit); 3971 } 3972 3973 /// Given operands for an ExtractElementInst, see if we can fold the result. 3974 /// If not, this returns null. 3975 static Value *SimplifyExtractElementInst(Value *Vec, Value *Idx, const Query &, 3976 unsigned) { 3977 if (auto *CVec = dyn_cast<Constant>(Vec)) { 3978 if (auto *CIdx = dyn_cast<Constant>(Idx)) 3979 return ConstantFoldExtractElementInstruction(CVec, CIdx); 3980 3981 // The index is not relevant if our vector is a splat. 3982 if (auto *Splat = CVec->getSplatValue()) 3983 return Splat; 3984 3985 if (isa<UndefValue>(Vec)) 3986 return UndefValue::get(Vec->getType()->getVectorElementType()); 3987 } 3988 3989 // If extracting a specified index from the vector, see if we can recursively 3990 // find a previously computed scalar that was inserted into the vector. 3991 if (auto *IdxC = dyn_cast<ConstantInt>(Idx)) 3992 if (Value *Elt = findScalarElement(Vec, IdxC->getZExtValue())) 3993 return Elt; 3994 3995 return nullptr; 3996 } 3997 3998 Value *llvm::SimplifyExtractElementInst( 3999 Value *Vec, Value *Idx, const DataLayout &DL, const TargetLibraryInfo *TLI, 4000 const DominatorTree *DT, AssumptionCache *AC, const Instruction *CxtI) { 4001 return ::SimplifyExtractElementInst(Vec, Idx, Query(DL, TLI, DT, AC, CxtI), 4002 RecursionLimit); 4003 } 4004 4005 /// See if we can fold the given phi. If not, returns null. 4006 static Value *SimplifyPHINode(PHINode *PN, const Query &Q) { 4007 // If all of the PHI's incoming values are the same then replace the PHI node 4008 // with the common value. 4009 Value *CommonValue = nullptr; 4010 bool HasUndefInput = false; 4011 for (Value *Incoming : PN->incoming_values()) { 4012 // If the incoming value is the phi node itself, it can safely be skipped. 4013 if (Incoming == PN) continue; 4014 if (isa<UndefValue>(Incoming)) { 4015 // Remember that we saw an undef value, but otherwise ignore them. 4016 HasUndefInput = true; 4017 continue; 4018 } 4019 if (CommonValue && Incoming != CommonValue) 4020 return nullptr; // Not the same, bail out. 4021 CommonValue = Incoming; 4022 } 4023 4024 // If CommonValue is null then all of the incoming values were either undef or 4025 // equal to the phi node itself. 4026 if (!CommonValue) 4027 return UndefValue::get(PN->getType()); 4028 4029 // If we have a PHI node like phi(X, undef, X), where X is defined by some 4030 // instruction, we cannot return X as the result of the PHI node unless it 4031 // dominates the PHI block. 4032 if (HasUndefInput) 4033 return ValueDominatesPHI(CommonValue, PN, Q.DT) ? CommonValue : nullptr; 4034 4035 return CommonValue; 4036 } 4037 4038 static Value *SimplifyCastInst(unsigned CastOpc, Value *Op, 4039 Type *Ty, const Query &Q, unsigned MaxRecurse) { 4040 if (auto *C = dyn_cast<Constant>(Op)) 4041 return ConstantFoldCastOperand(CastOpc, C, Ty, Q.DL); 4042 4043 if (auto *CI = dyn_cast<CastInst>(Op)) { 4044 auto *Src = CI->getOperand(0); 4045 Type *SrcTy = Src->getType(); 4046 Type *MidTy = CI->getType(); 4047 Type *DstTy = Ty; 4048 if (Src->getType() == Ty) { 4049 auto FirstOp = static_cast<Instruction::CastOps>(CI->getOpcode()); 4050 auto SecondOp = static_cast<Instruction::CastOps>(CastOpc); 4051 Type *SrcIntPtrTy = 4052 SrcTy->isPtrOrPtrVectorTy() ? Q.DL.getIntPtrType(SrcTy) : nullptr; 4053 Type *MidIntPtrTy = 4054 MidTy->isPtrOrPtrVectorTy() ? Q.DL.getIntPtrType(MidTy) : nullptr; 4055 Type *DstIntPtrTy = 4056 DstTy->isPtrOrPtrVectorTy() ? Q.DL.getIntPtrType(DstTy) : nullptr; 4057 if (CastInst::isEliminableCastPair(FirstOp, SecondOp, SrcTy, MidTy, DstTy, 4058 SrcIntPtrTy, MidIntPtrTy, 4059 DstIntPtrTy) == Instruction::BitCast) 4060 return Src; 4061 } 4062 } 4063 4064 // bitcast x -> x 4065 if (CastOpc == Instruction::BitCast) 4066 if (Op->getType() == Ty) 4067 return Op; 4068 4069 return nullptr; 4070 } 4071 4072 Value *llvm::SimplifyCastInst(unsigned CastOpc, Value *Op, Type *Ty, 4073 const DataLayout &DL, 4074 const TargetLibraryInfo *TLI, 4075 const DominatorTree *DT, AssumptionCache *AC, 4076 const Instruction *CxtI) { 4077 return ::SimplifyCastInst(CastOpc, Op, Ty, Query(DL, TLI, DT, AC, CxtI), 4078 RecursionLimit); 4079 } 4080 4081 static Value *SimplifyShuffleVectorInst(Value *Op0, Value *Op1, Constant *Mask, 4082 Type *RetTy, const Query &Q, 4083 unsigned MaxRecurse) { 4084 Type *InVecTy = Op0->getType(); 4085 unsigned MaskNumElts = Mask->getType()->getVectorNumElements(); 4086 unsigned InVecNumElts = InVecTy->getVectorNumElements(); 4087 4088 auto *Op0Const = dyn_cast<Constant>(Op0); 4089 auto *Op1Const = dyn_cast<Constant>(Op1); 4090 4091 // If all operands are constant, constant fold the shuffle. 4092 if (Op0Const && Op1Const) 4093 return ConstantFoldShuffleVectorInstruction(Op0Const, Op1Const, Mask); 4094 4095 // If only one of the operands is constant, constant fold the shuffle if the 4096 // mask does not select elements from the variable operand. 4097 bool MaskSelects0 = false, MaskSelects1 = false; 4098 for (unsigned i = 0; i != MaskNumElts; ++i) { 4099 int Idx = ShuffleVectorInst::getMaskValue(Mask, i); 4100 if (Idx == -1) 4101 continue; 4102 if ((unsigned)Idx < InVecNumElts) 4103 MaskSelects0 = true; 4104 else 4105 MaskSelects1 = true; 4106 } 4107 if (!MaskSelects0 && Op1Const) 4108 return ConstantFoldShuffleVectorInstruction(UndefValue::get(InVecTy), 4109 Op1Const, Mask); 4110 if (!MaskSelects1 && Op0Const) 4111 return ConstantFoldShuffleVectorInstruction(Op0Const, 4112 UndefValue::get(InVecTy), Mask); 4113 4114 // A shuffle of a splat is always the splat itself. Legal if the shuffle's 4115 // value type is same as the input vectors' type. 4116 if (auto *OpShuf = dyn_cast<ShuffleVectorInst>(Op0)) 4117 if (!MaskSelects1 && RetTy == InVecTy && 4118 OpShuf->getMask()->getSplatValue()) 4119 return Op0; 4120 if (auto *OpShuf = dyn_cast<ShuffleVectorInst>(Op1)) 4121 if (!MaskSelects0 && RetTy == InVecTy && 4122 OpShuf->getMask()->getSplatValue()) 4123 return Op1; 4124 4125 return nullptr; 4126 } 4127 4128 /// Given operands for a ShuffleVectorInst, fold the result or return null. 4129 Value *llvm::SimplifyShuffleVectorInst( 4130 Value *Op0, Value *Op1, Constant *Mask, Type *RetTy, 4131 const DataLayout &DL, const TargetLibraryInfo *TLI, const DominatorTree *DT, 4132 AssumptionCache *AC, const Instruction *CxtI) { 4133 return ::SimplifyShuffleVectorInst( 4134 Op0, Op1, Mask, RetTy, Query(DL, TLI, DT, AC, CxtI), RecursionLimit); 4135 } 4136 4137 //=== Helper functions for higher up the class hierarchy. 4138 4139 /// Given operands for a BinaryOperator, see if we can fold the result. 4140 /// If not, this returns null. 4141 static Value *SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS, 4142 const Query &Q, unsigned MaxRecurse) { 4143 switch (Opcode) { 4144 case Instruction::Add: 4145 return SimplifyAddInst(LHS, RHS, false, false, Q, MaxRecurse); 4146 case Instruction::FAdd: 4147 return SimplifyFAddInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse); 4148 case Instruction::Sub: 4149 return SimplifySubInst(LHS, RHS, false, false, Q, MaxRecurse); 4150 case Instruction::FSub: 4151 return SimplifyFSubInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse); 4152 case Instruction::Mul: 4153 return SimplifyMulInst(LHS, RHS, Q, MaxRecurse); 4154 case Instruction::FMul: 4155 return SimplifyFMulInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse); 4156 case Instruction::SDiv: 4157 return SimplifySDivInst(LHS, RHS, Q, MaxRecurse); 4158 case Instruction::UDiv: 4159 return SimplifyUDivInst(LHS, RHS, Q, MaxRecurse); 4160 case Instruction::FDiv: 4161 return SimplifyFDivInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse); 4162 case Instruction::SRem: 4163 return SimplifySRemInst(LHS, RHS, Q, MaxRecurse); 4164 case Instruction::URem: 4165 return SimplifyURemInst(LHS, RHS, Q, MaxRecurse); 4166 case Instruction::FRem: 4167 return SimplifyFRemInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse); 4168 case Instruction::Shl: 4169 return SimplifyShlInst(LHS, RHS, false, false, Q, MaxRecurse); 4170 case Instruction::LShr: 4171 return SimplifyLShrInst(LHS, RHS, false, Q, MaxRecurse); 4172 case Instruction::AShr: 4173 return SimplifyAShrInst(LHS, RHS, false, Q, MaxRecurse); 4174 case Instruction::And: 4175 return SimplifyAndInst(LHS, RHS, Q, MaxRecurse); 4176 case Instruction::Or: 4177 return SimplifyOrInst(LHS, RHS, Q, MaxRecurse); 4178 case Instruction::Xor: 4179 return SimplifyXorInst(LHS, RHS, Q, MaxRecurse); 4180 default: 4181 llvm_unreachable("Unexpected opcode"); 4182 } 4183 } 4184 4185 /// Given operands for a BinaryOperator, see if we can fold the result. 4186 /// If not, this returns null. 4187 /// In contrast to SimplifyBinOp, try to use FastMathFlag when folding the 4188 /// result. In case we don't need FastMathFlags, simply fall to SimplifyBinOp. 4189 static Value *SimplifyFPBinOp(unsigned Opcode, Value *LHS, Value *RHS, 4190 const FastMathFlags &FMF, const Query &Q, 4191 unsigned MaxRecurse) { 4192 switch (Opcode) { 4193 case Instruction::FAdd: 4194 return SimplifyFAddInst(LHS, RHS, FMF, Q, MaxRecurse); 4195 case Instruction::FSub: 4196 return SimplifyFSubInst(LHS, RHS, FMF, Q, MaxRecurse); 4197 case Instruction::FMul: 4198 return SimplifyFMulInst(LHS, RHS, FMF, Q, MaxRecurse); 4199 case Instruction::FDiv: 4200 return SimplifyFDivInst(LHS, RHS, FMF, Q, MaxRecurse); 4201 default: 4202 return SimplifyBinOp(Opcode, LHS, RHS, Q, MaxRecurse); 4203 } 4204 } 4205 4206 Value *llvm::SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS, 4207 const DataLayout &DL, const TargetLibraryInfo *TLI, 4208 const DominatorTree *DT, AssumptionCache *AC, 4209 const Instruction *CxtI) { 4210 return ::SimplifyBinOp(Opcode, LHS, RHS, Query(DL, TLI, DT, AC, CxtI), 4211 RecursionLimit); 4212 } 4213 4214 Value *llvm::SimplifyFPBinOp(unsigned Opcode, Value *LHS, Value *RHS, 4215 const FastMathFlags &FMF, const DataLayout &DL, 4216 const TargetLibraryInfo *TLI, 4217 const DominatorTree *DT, AssumptionCache *AC, 4218 const Instruction *CxtI) { 4219 return ::SimplifyFPBinOp(Opcode, LHS, RHS, FMF, Query(DL, TLI, DT, AC, CxtI), 4220 RecursionLimit); 4221 } 4222 4223 /// Given operands for a CmpInst, see if we can fold the result. 4224 static Value *SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS, 4225 const Query &Q, unsigned MaxRecurse) { 4226 if (CmpInst::isIntPredicate((CmpInst::Predicate)Predicate)) 4227 return SimplifyICmpInst(Predicate, LHS, RHS, Q, MaxRecurse); 4228 return SimplifyFCmpInst(Predicate, LHS, RHS, FastMathFlags(), Q, MaxRecurse); 4229 } 4230 4231 Value *llvm::SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS, 4232 const DataLayout &DL, const TargetLibraryInfo *TLI, 4233 const DominatorTree *DT, AssumptionCache *AC, 4234 const Instruction *CxtI) { 4235 return ::SimplifyCmpInst(Predicate, LHS, RHS, Query(DL, TLI, DT, AC, CxtI), 4236 RecursionLimit); 4237 } 4238 4239 static bool IsIdempotent(Intrinsic::ID ID) { 4240 switch (ID) { 4241 default: return false; 4242 4243 // Unary idempotent: f(f(x)) = f(x) 4244 case Intrinsic::fabs: 4245 case Intrinsic::floor: 4246 case Intrinsic::ceil: 4247 case Intrinsic::trunc: 4248 case Intrinsic::rint: 4249 case Intrinsic::nearbyint: 4250 case Intrinsic::round: 4251 return true; 4252 } 4253 } 4254 4255 static Value *SimplifyRelativeLoad(Constant *Ptr, Constant *Offset, 4256 const DataLayout &DL) { 4257 GlobalValue *PtrSym; 4258 APInt PtrOffset; 4259 if (!IsConstantOffsetFromGlobal(Ptr, PtrSym, PtrOffset, DL)) 4260 return nullptr; 4261 4262 Type *Int8PtrTy = Type::getInt8PtrTy(Ptr->getContext()); 4263 Type *Int32Ty = Type::getInt32Ty(Ptr->getContext()); 4264 Type *Int32PtrTy = Int32Ty->getPointerTo(); 4265 Type *Int64Ty = Type::getInt64Ty(Ptr->getContext()); 4266 4267 auto *OffsetConstInt = dyn_cast<ConstantInt>(Offset); 4268 if (!OffsetConstInt || OffsetConstInt->getType()->getBitWidth() > 64) 4269 return nullptr; 4270 4271 uint64_t OffsetInt = OffsetConstInt->getSExtValue(); 4272 if (OffsetInt % 4 != 0) 4273 return nullptr; 4274 4275 Constant *C = ConstantExpr::getGetElementPtr( 4276 Int32Ty, ConstantExpr::getBitCast(Ptr, Int32PtrTy), 4277 ConstantInt::get(Int64Ty, OffsetInt / 4)); 4278 Constant *Loaded = ConstantFoldLoadFromConstPtr(C, Int32Ty, DL); 4279 if (!Loaded) 4280 return nullptr; 4281 4282 auto *LoadedCE = dyn_cast<ConstantExpr>(Loaded); 4283 if (!LoadedCE) 4284 return nullptr; 4285 4286 if (LoadedCE->getOpcode() == Instruction::Trunc) { 4287 LoadedCE = dyn_cast<ConstantExpr>(LoadedCE->getOperand(0)); 4288 if (!LoadedCE) 4289 return nullptr; 4290 } 4291 4292 if (LoadedCE->getOpcode() != Instruction::Sub) 4293 return nullptr; 4294 4295 auto *LoadedLHS = dyn_cast<ConstantExpr>(LoadedCE->getOperand(0)); 4296 if (!LoadedLHS || LoadedLHS->getOpcode() != Instruction::PtrToInt) 4297 return nullptr; 4298 auto *LoadedLHSPtr = LoadedLHS->getOperand(0); 4299 4300 Constant *LoadedRHS = LoadedCE->getOperand(1); 4301 GlobalValue *LoadedRHSSym; 4302 APInt LoadedRHSOffset; 4303 if (!IsConstantOffsetFromGlobal(LoadedRHS, LoadedRHSSym, LoadedRHSOffset, 4304 DL) || 4305 PtrSym != LoadedRHSSym || PtrOffset != LoadedRHSOffset) 4306 return nullptr; 4307 4308 return ConstantExpr::getBitCast(LoadedLHSPtr, Int8PtrTy); 4309 } 4310 4311 static bool maskIsAllZeroOrUndef(Value *Mask) { 4312 auto *ConstMask = dyn_cast<Constant>(Mask); 4313 if (!ConstMask) 4314 return false; 4315 if (ConstMask->isNullValue() || isa<UndefValue>(ConstMask)) 4316 return true; 4317 for (unsigned I = 0, E = ConstMask->getType()->getVectorNumElements(); I != E; 4318 ++I) { 4319 if (auto *MaskElt = ConstMask->getAggregateElement(I)) 4320 if (MaskElt->isNullValue() || isa<UndefValue>(MaskElt)) 4321 continue; 4322 return false; 4323 } 4324 return true; 4325 } 4326 4327 template <typename IterTy> 4328 static Value *SimplifyIntrinsic(Function *F, IterTy ArgBegin, IterTy ArgEnd, 4329 const Query &Q, unsigned MaxRecurse) { 4330 Intrinsic::ID IID = F->getIntrinsicID(); 4331 unsigned NumOperands = std::distance(ArgBegin, ArgEnd); 4332 4333 // Unary Ops 4334 if (NumOperands == 1) { 4335 // Perform idempotent optimizations 4336 if (IsIdempotent(IID)) { 4337 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(*ArgBegin)) { 4338 if (II->getIntrinsicID() == IID) 4339 return II; 4340 } 4341 } 4342 4343 switch (IID) { 4344 case Intrinsic::fabs: { 4345 if (SignBitMustBeZero(*ArgBegin, Q.TLI)) 4346 return *ArgBegin; 4347 return nullptr; 4348 } 4349 default: 4350 return nullptr; 4351 } 4352 } 4353 4354 // Binary Ops 4355 if (NumOperands == 2) { 4356 Value *LHS = *ArgBegin; 4357 Value *RHS = *(ArgBegin + 1); 4358 Type *ReturnType = F->getReturnType(); 4359 4360 switch (IID) { 4361 case Intrinsic::usub_with_overflow: 4362 case Intrinsic::ssub_with_overflow: { 4363 // X - X -> { 0, false } 4364 if (LHS == RHS) 4365 return Constant::getNullValue(ReturnType); 4366 4367 // X - undef -> undef 4368 // undef - X -> undef 4369 if (isa<UndefValue>(LHS) || isa<UndefValue>(RHS)) 4370 return UndefValue::get(ReturnType); 4371 4372 return nullptr; 4373 } 4374 case Intrinsic::uadd_with_overflow: 4375 case Intrinsic::sadd_with_overflow: { 4376 // X + undef -> undef 4377 if (isa<UndefValue>(RHS)) 4378 return UndefValue::get(ReturnType); 4379 4380 return nullptr; 4381 } 4382 case Intrinsic::umul_with_overflow: 4383 case Intrinsic::smul_with_overflow: { 4384 // X * 0 -> { 0, false } 4385 if (match(RHS, m_Zero())) 4386 return Constant::getNullValue(ReturnType); 4387 4388 // X * undef -> { 0, false } 4389 if (match(RHS, m_Undef())) 4390 return Constant::getNullValue(ReturnType); 4391 4392 return nullptr; 4393 } 4394 case Intrinsic::load_relative: { 4395 Constant *C0 = dyn_cast<Constant>(LHS); 4396 Constant *C1 = dyn_cast<Constant>(RHS); 4397 if (C0 && C1) 4398 return SimplifyRelativeLoad(C0, C1, Q.DL); 4399 return nullptr; 4400 } 4401 default: 4402 return nullptr; 4403 } 4404 } 4405 4406 // Simplify calls to llvm.masked.load.* 4407 switch (IID) { 4408 case Intrinsic::masked_load: { 4409 Value *MaskArg = ArgBegin[2]; 4410 Value *PassthruArg = ArgBegin[3]; 4411 // If the mask is all zeros or undef, the "passthru" argument is the result. 4412 if (maskIsAllZeroOrUndef(MaskArg)) 4413 return PassthruArg; 4414 return nullptr; 4415 } 4416 default: 4417 return nullptr; 4418 } 4419 } 4420 4421 template <typename IterTy> 4422 static Value *SimplifyCall(Value *V, IterTy ArgBegin, IterTy ArgEnd, 4423 const Query &Q, unsigned MaxRecurse) { 4424 Type *Ty = V->getType(); 4425 if (PointerType *PTy = dyn_cast<PointerType>(Ty)) 4426 Ty = PTy->getElementType(); 4427 FunctionType *FTy = cast<FunctionType>(Ty); 4428 4429 // call undef -> undef 4430 // call null -> undef 4431 if (isa<UndefValue>(V) || isa<ConstantPointerNull>(V)) 4432 return UndefValue::get(FTy->getReturnType()); 4433 4434 Function *F = dyn_cast<Function>(V); 4435 if (!F) 4436 return nullptr; 4437 4438 if (F->isIntrinsic()) 4439 if (Value *Ret = SimplifyIntrinsic(F, ArgBegin, ArgEnd, Q, MaxRecurse)) 4440 return Ret; 4441 4442 if (!canConstantFoldCallTo(F)) 4443 return nullptr; 4444 4445 SmallVector<Constant *, 4> ConstantArgs; 4446 ConstantArgs.reserve(ArgEnd - ArgBegin); 4447 for (IterTy I = ArgBegin, E = ArgEnd; I != E; ++I) { 4448 Constant *C = dyn_cast<Constant>(*I); 4449 if (!C) 4450 return nullptr; 4451 ConstantArgs.push_back(C); 4452 } 4453 4454 return ConstantFoldCall(F, ConstantArgs, Q.TLI); 4455 } 4456 4457 Value *llvm::SimplifyCall(Value *V, User::op_iterator ArgBegin, 4458 User::op_iterator ArgEnd, const DataLayout &DL, 4459 const TargetLibraryInfo *TLI, const DominatorTree *DT, 4460 AssumptionCache *AC, const Instruction *CxtI) { 4461 return ::SimplifyCall(V, ArgBegin, ArgEnd, Query(DL, TLI, DT, AC, CxtI), 4462 RecursionLimit); 4463 } 4464 4465 Value *llvm::SimplifyCall(Value *V, ArrayRef<Value *> Args, 4466 const DataLayout &DL, const TargetLibraryInfo *TLI, 4467 const DominatorTree *DT, AssumptionCache *AC, 4468 const Instruction *CxtI) { 4469 return ::SimplifyCall(V, Args.begin(), Args.end(), 4470 Query(DL, TLI, DT, AC, CxtI), RecursionLimit); 4471 } 4472 4473 /// See if we can compute a simplified version of this instruction. 4474 /// If not, this returns null. 4475 Value *llvm::SimplifyInstruction(Instruction *I, const DataLayout &DL, 4476 const TargetLibraryInfo *TLI, 4477 const DominatorTree *DT, AssumptionCache *AC, 4478 OptimizationRemarkEmitter *ORE) { 4479 Value *Result; 4480 4481 switch (I->getOpcode()) { 4482 default: 4483 Result = ConstantFoldInstruction(I, DL, TLI); 4484 break; 4485 case Instruction::FAdd: 4486 Result = SimplifyFAddInst(I->getOperand(0), I->getOperand(1), 4487 I->getFastMathFlags(), DL, TLI, DT, AC, I); 4488 break; 4489 case Instruction::Add: 4490 Result = SimplifyAddInst(I->getOperand(0), I->getOperand(1), 4491 cast<BinaryOperator>(I)->hasNoSignedWrap(), 4492 cast<BinaryOperator>(I)->hasNoUnsignedWrap(), DL, 4493 TLI, DT, AC, I); 4494 break; 4495 case Instruction::FSub: 4496 Result = SimplifyFSubInst(I->getOperand(0), I->getOperand(1), 4497 I->getFastMathFlags(), DL, TLI, DT, AC, I); 4498 break; 4499 case Instruction::Sub: 4500 Result = SimplifySubInst(I->getOperand(0), I->getOperand(1), 4501 cast<BinaryOperator>(I)->hasNoSignedWrap(), 4502 cast<BinaryOperator>(I)->hasNoUnsignedWrap(), DL, 4503 TLI, DT, AC, I); 4504 break; 4505 case Instruction::FMul: 4506 Result = SimplifyFMulInst(I->getOperand(0), I->getOperand(1), 4507 I->getFastMathFlags(), DL, TLI, DT, AC, I); 4508 break; 4509 case Instruction::Mul: 4510 Result = 4511 SimplifyMulInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT, AC, I); 4512 break; 4513 case Instruction::SDiv: 4514 Result = SimplifySDivInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT, 4515 AC, I); 4516 break; 4517 case Instruction::UDiv: 4518 Result = SimplifyUDivInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT, 4519 AC, I); 4520 break; 4521 case Instruction::FDiv: 4522 Result = SimplifyFDivInst(I->getOperand(0), I->getOperand(1), 4523 I->getFastMathFlags(), DL, TLI, DT, AC, I); 4524 break; 4525 case Instruction::SRem: 4526 Result = SimplifySRemInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT, 4527 AC, I); 4528 break; 4529 case Instruction::URem: 4530 Result = SimplifyURemInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT, 4531 AC, I); 4532 break; 4533 case Instruction::FRem: 4534 Result = SimplifyFRemInst(I->getOperand(0), I->getOperand(1), 4535 I->getFastMathFlags(), DL, TLI, DT, AC, I); 4536 break; 4537 case Instruction::Shl: 4538 Result = SimplifyShlInst(I->getOperand(0), I->getOperand(1), 4539 cast<BinaryOperator>(I)->hasNoSignedWrap(), 4540 cast<BinaryOperator>(I)->hasNoUnsignedWrap(), DL, 4541 TLI, DT, AC, I); 4542 break; 4543 case Instruction::LShr: 4544 Result = SimplifyLShrInst(I->getOperand(0), I->getOperand(1), 4545 cast<BinaryOperator>(I)->isExact(), DL, TLI, DT, 4546 AC, I); 4547 break; 4548 case Instruction::AShr: 4549 Result = SimplifyAShrInst(I->getOperand(0), I->getOperand(1), 4550 cast<BinaryOperator>(I)->isExact(), DL, TLI, DT, 4551 AC, I); 4552 break; 4553 case Instruction::And: 4554 Result = 4555 SimplifyAndInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT, AC, I); 4556 break; 4557 case Instruction::Or: 4558 Result = 4559 SimplifyOrInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT, AC, I); 4560 break; 4561 case Instruction::Xor: 4562 Result = 4563 SimplifyXorInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT, AC, I); 4564 break; 4565 case Instruction::ICmp: 4566 Result = 4567 SimplifyICmpInst(cast<ICmpInst>(I)->getPredicate(), I->getOperand(0), 4568 I->getOperand(1), DL, TLI, DT, AC, I); 4569 break; 4570 case Instruction::FCmp: 4571 Result = SimplifyFCmpInst(cast<FCmpInst>(I)->getPredicate(), 4572 I->getOperand(0), I->getOperand(1), 4573 I->getFastMathFlags(), DL, TLI, DT, AC, I); 4574 break; 4575 case Instruction::Select: 4576 Result = SimplifySelectInst(I->getOperand(0), I->getOperand(1), 4577 I->getOperand(2), DL, TLI, DT, AC, I); 4578 break; 4579 case Instruction::GetElementPtr: { 4580 SmallVector<Value*, 8> Ops(I->op_begin(), I->op_end()); 4581 Result = SimplifyGEPInst(cast<GetElementPtrInst>(I)->getSourceElementType(), 4582 Ops, DL, TLI, DT, AC, I); 4583 break; 4584 } 4585 case Instruction::InsertValue: { 4586 InsertValueInst *IV = cast<InsertValueInst>(I); 4587 Result = SimplifyInsertValueInst(IV->getAggregateOperand(), 4588 IV->getInsertedValueOperand(), 4589 IV->getIndices(), DL, TLI, DT, AC, I); 4590 break; 4591 } 4592 case Instruction::ExtractValue: { 4593 auto *EVI = cast<ExtractValueInst>(I); 4594 Result = SimplifyExtractValueInst(EVI->getAggregateOperand(), 4595 EVI->getIndices(), DL, TLI, DT, AC, I); 4596 break; 4597 } 4598 case Instruction::ExtractElement: { 4599 auto *EEI = cast<ExtractElementInst>(I); 4600 Result = SimplifyExtractElementInst( 4601 EEI->getVectorOperand(), EEI->getIndexOperand(), DL, TLI, DT, AC, I); 4602 break; 4603 } 4604 case Instruction::ShuffleVector: { 4605 auto *SVI = cast<ShuffleVectorInst>(I); 4606 Result = SimplifyShuffleVectorInst(SVI->getOperand(0), SVI->getOperand(1), 4607 SVI->getMask(), SVI->getType(), DL, TLI, 4608 DT, AC, I); 4609 break; 4610 } 4611 case Instruction::PHI: 4612 Result = SimplifyPHINode(cast<PHINode>(I), Query(DL, TLI, DT, AC, I)); 4613 break; 4614 case Instruction::Call: { 4615 CallSite CS(cast<CallInst>(I)); 4616 Result = SimplifyCall(CS.getCalledValue(), CS.arg_begin(), CS.arg_end(), DL, 4617 TLI, DT, AC, I); 4618 break; 4619 } 4620 #define HANDLE_CAST_INST(num, opc, clas) case Instruction::opc: 4621 #include "llvm/IR/Instruction.def" 4622 #undef HANDLE_CAST_INST 4623 Result = SimplifyCastInst(I->getOpcode(), I->getOperand(0), I->getType(), 4624 DL, TLI, DT, AC, I); 4625 break; 4626 case Instruction::Alloca: 4627 // No simplifications for Alloca and it can't be constant folded. 4628 Result = nullptr; 4629 break; 4630 } 4631 4632 // In general, it is possible for computeKnownBits to determine all bits in a 4633 // value even when the operands are not all constants. 4634 if (!Result && I->getType()->isIntOrIntVectorTy()) { 4635 unsigned BitWidth = I->getType()->getScalarSizeInBits(); 4636 APInt KnownZero(BitWidth, 0); 4637 APInt KnownOne(BitWidth, 0); 4638 computeKnownBits(I, KnownZero, KnownOne, DL, /*Depth*/0, AC, I, DT, ORE); 4639 if ((KnownZero | KnownOne).isAllOnesValue()) 4640 Result = ConstantInt::get(I->getType(), KnownOne); 4641 } 4642 4643 /// If called on unreachable code, the above logic may report that the 4644 /// instruction simplified to itself. Make life easier for users by 4645 /// detecting that case here, returning a safe value instead. 4646 return Result == I ? UndefValue::get(I->getType()) : Result; 4647 } 4648 4649 /// \brief Implementation of recursive simplification through an instruction's 4650 /// uses. 4651 /// 4652 /// This is the common implementation of the recursive simplification routines. 4653 /// If we have a pre-simplified value in 'SimpleV', that is forcibly used to 4654 /// replace the instruction 'I'. Otherwise, we simply add 'I' to the list of 4655 /// instructions to process and attempt to simplify it using 4656 /// InstructionSimplify. 4657 /// 4658 /// This routine returns 'true' only when *it* simplifies something. The passed 4659 /// in simplified value does not count toward this. 4660 static bool replaceAndRecursivelySimplifyImpl(Instruction *I, Value *SimpleV, 4661 const TargetLibraryInfo *TLI, 4662 const DominatorTree *DT, 4663 AssumptionCache *AC) { 4664 bool Simplified = false; 4665 SmallSetVector<Instruction *, 8> Worklist; 4666 const DataLayout &DL = I->getModule()->getDataLayout(); 4667 4668 // If we have an explicit value to collapse to, do that round of the 4669 // simplification loop by hand initially. 4670 if (SimpleV) { 4671 for (User *U : I->users()) 4672 if (U != I) 4673 Worklist.insert(cast<Instruction>(U)); 4674 4675 // Replace the instruction with its simplified value. 4676 I->replaceAllUsesWith(SimpleV); 4677 4678 // Gracefully handle edge cases where the instruction is not wired into any 4679 // parent block. 4680 if (I->getParent() && !I->isEHPad() && !isa<TerminatorInst>(I) && 4681 !I->mayHaveSideEffects()) 4682 I->eraseFromParent(); 4683 } else { 4684 Worklist.insert(I); 4685 } 4686 4687 // Note that we must test the size on each iteration, the worklist can grow. 4688 for (unsigned Idx = 0; Idx != Worklist.size(); ++Idx) { 4689 I = Worklist[Idx]; 4690 4691 // See if this instruction simplifies. 4692 SimpleV = SimplifyInstruction(I, DL, TLI, DT, AC); 4693 if (!SimpleV) 4694 continue; 4695 4696 Simplified = true; 4697 4698 // Stash away all the uses of the old instruction so we can check them for 4699 // recursive simplifications after a RAUW. This is cheaper than checking all 4700 // uses of To on the recursive step in most cases. 4701 for (User *U : I->users()) 4702 Worklist.insert(cast<Instruction>(U)); 4703 4704 // Replace the instruction with its simplified value. 4705 I->replaceAllUsesWith(SimpleV); 4706 4707 // Gracefully handle edge cases where the instruction is not wired into any 4708 // parent block. 4709 if (I->getParent() && !I->isEHPad() && !isa<TerminatorInst>(I) && 4710 !I->mayHaveSideEffects()) 4711 I->eraseFromParent(); 4712 } 4713 return Simplified; 4714 } 4715 4716 bool llvm::recursivelySimplifyInstruction(Instruction *I, 4717 const TargetLibraryInfo *TLI, 4718 const DominatorTree *DT, 4719 AssumptionCache *AC) { 4720 return replaceAndRecursivelySimplifyImpl(I, nullptr, TLI, DT, AC); 4721 } 4722 4723 bool llvm::replaceAndRecursivelySimplify(Instruction *I, Value *SimpleV, 4724 const TargetLibraryInfo *TLI, 4725 const DominatorTree *DT, 4726 AssumptionCache *AC) { 4727 assert(I != SimpleV && "replaceAndRecursivelySimplify(X,X) is not valid!"); 4728 assert(SimpleV && "Must provide a simplified value."); 4729 return replaceAndRecursivelySimplifyImpl(I, SimpleV, TLI, DT, AC); 4730 } 4731