1 //===- InstructionSimplify.cpp - Fold instruction operands ----------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements routines for folding instructions into simpler forms
11 // that do not require creating new instructions.  This does constant folding
12 // ("add i32 1, 1" -> "2") but can also handle non-constant operands, either
13 // returning a constant ("and i32 %x, 0" -> "0") or an already existing value
14 // ("and i32 %x, %x" -> "%x").  All operands are assumed to have already been
15 // simplified: This is usually true and assuming it simplifies the logic (if
16 // they have not been simplified then results are correct but maybe suboptimal).
17 //
18 //===----------------------------------------------------------------------===//
19 
20 #include "llvm/Analysis/InstructionSimplify.h"
21 #include "llvm/ADT/SetVector.h"
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/Analysis/AliasAnalysis.h"
24 #include "llvm/Analysis/CaptureTracking.h"
25 #include "llvm/Analysis/ConstantFolding.h"
26 #include "llvm/Analysis/MemoryBuiltins.h"
27 #include "llvm/Analysis/OptimizationDiagnosticInfo.h"
28 #include "llvm/Analysis/ValueTracking.h"
29 #include "llvm/Analysis/VectorUtils.h"
30 #include "llvm/IR/ConstantRange.h"
31 #include "llvm/IR/DataLayout.h"
32 #include "llvm/IR/Dominators.h"
33 #include "llvm/IR/GetElementPtrTypeIterator.h"
34 #include "llvm/IR/GlobalAlias.h"
35 #include "llvm/IR/Operator.h"
36 #include "llvm/IR/PatternMatch.h"
37 #include "llvm/IR/ValueHandle.h"
38 #include <algorithm>
39 using namespace llvm;
40 using namespace llvm::PatternMatch;
41 
42 #define DEBUG_TYPE "instsimplify"
43 
44 enum { RecursionLimit = 3 };
45 
46 STATISTIC(NumExpand,  "Number of expansions");
47 STATISTIC(NumReassoc, "Number of reassociations");
48 
49 namespace {
50 struct Query {
51   const DataLayout &DL;
52   const TargetLibraryInfo *TLI;
53   const DominatorTree *DT;
54   AssumptionCache *AC;
55   const Instruction *CxtI;
56 
57   Query(const DataLayout &DL, const TargetLibraryInfo *tli,
58         const DominatorTree *dt, AssumptionCache *ac = nullptr,
59         const Instruction *cxti = nullptr)
60       : DL(DL), TLI(tli), DT(dt), AC(ac), CxtI(cxti) {}
61 };
62 } // end anonymous namespace
63 
64 static Value *SimplifyAndInst(Value *, Value *, const Query &, unsigned);
65 static Value *SimplifyBinOp(unsigned, Value *, Value *, const Query &,
66                             unsigned);
67 static Value *SimplifyFPBinOp(unsigned, Value *, Value *, const FastMathFlags &,
68                               const Query &, unsigned);
69 static Value *SimplifyCmpInst(unsigned, Value *, Value *, const Query &,
70                               unsigned);
71 static Value *SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS,
72                                const Query &Q, unsigned MaxRecurse);
73 static Value *SimplifyOrInst(Value *, Value *, const Query &, unsigned);
74 static Value *SimplifyXorInst(Value *, Value *, const Query &, unsigned);
75 static Value *SimplifyCastInst(unsigned, Value *, Type *,
76                                const Query &, unsigned);
77 
78 /// For a boolean type or a vector of boolean type, return false or a vector
79 /// with every element false.
80 static Constant *getFalse(Type *Ty) {
81   return ConstantInt::getFalse(Ty);
82 }
83 
84 /// For a boolean type or a vector of boolean type, return true or a vector
85 /// with every element true.
86 static Constant *getTrue(Type *Ty) {
87   return ConstantInt::getTrue(Ty);
88 }
89 
90 /// isSameCompare - Is V equivalent to the comparison "LHS Pred RHS"?
91 static bool isSameCompare(Value *V, CmpInst::Predicate Pred, Value *LHS,
92                           Value *RHS) {
93   CmpInst *Cmp = dyn_cast<CmpInst>(V);
94   if (!Cmp)
95     return false;
96   CmpInst::Predicate CPred = Cmp->getPredicate();
97   Value *CLHS = Cmp->getOperand(0), *CRHS = Cmp->getOperand(1);
98   if (CPred == Pred && CLHS == LHS && CRHS == RHS)
99     return true;
100   return CPred == CmpInst::getSwappedPredicate(Pred) && CLHS == RHS &&
101     CRHS == LHS;
102 }
103 
104 /// Does the given value dominate the specified phi node?
105 static bool ValueDominatesPHI(Value *V, PHINode *P, const DominatorTree *DT) {
106   Instruction *I = dyn_cast<Instruction>(V);
107   if (!I)
108     // Arguments and constants dominate all instructions.
109     return true;
110 
111   // If we are processing instructions (and/or basic blocks) that have not been
112   // fully added to a function, the parent nodes may still be null. Simply
113   // return the conservative answer in these cases.
114   if (!I->getParent() || !P->getParent() || !I->getParent()->getParent())
115     return false;
116 
117   // If we have a DominatorTree then do a precise test.
118   if (DT) {
119     if (!DT->isReachableFromEntry(P->getParent()))
120       return true;
121     if (!DT->isReachableFromEntry(I->getParent()))
122       return false;
123     return DT->dominates(I, P);
124   }
125 
126   // Otherwise, if the instruction is in the entry block and is not an invoke,
127   // then it obviously dominates all phi nodes.
128   if (I->getParent() == &I->getParent()->getParent()->getEntryBlock() &&
129       !isa<InvokeInst>(I))
130     return true;
131 
132   return false;
133 }
134 
135 /// Simplify "A op (B op' C)" by distributing op over op', turning it into
136 /// "(A op B) op' (A op C)".  Here "op" is given by Opcode and "op'" is
137 /// given by OpcodeToExpand, while "A" corresponds to LHS and "B op' C" to RHS.
138 /// Also performs the transform "(A op' B) op C" -> "(A op C) op' (B op C)".
139 /// Returns the simplified value, or null if no simplification was performed.
140 static Value *ExpandBinOp(Instruction::BinaryOps Opcode, Value *LHS, Value *RHS,
141                           Instruction::BinaryOps OpcodeToExpand, const Query &Q,
142                           unsigned MaxRecurse) {
143   // Recursion is always used, so bail out at once if we already hit the limit.
144   if (!MaxRecurse--)
145     return nullptr;
146 
147   // Check whether the expression has the form "(A op' B) op C".
148   if (BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS))
149     if (Op0->getOpcode() == OpcodeToExpand) {
150       // It does!  Try turning it into "(A op C) op' (B op C)".
151       Value *A = Op0->getOperand(0), *B = Op0->getOperand(1), *C = RHS;
152       // Do "A op C" and "B op C" both simplify?
153       if (Value *L = SimplifyBinOp(Opcode, A, C, Q, MaxRecurse))
154         if (Value *R = SimplifyBinOp(Opcode, B, C, Q, MaxRecurse)) {
155           // They do! Return "L op' R" if it simplifies or is already available.
156           // If "L op' R" equals "A op' B" then "L op' R" is just the LHS.
157           if ((L == A && R == B) || (Instruction::isCommutative(OpcodeToExpand)
158                                      && L == B && R == A)) {
159             ++NumExpand;
160             return LHS;
161           }
162           // Otherwise return "L op' R" if it simplifies.
163           if (Value *V = SimplifyBinOp(OpcodeToExpand, L, R, Q, MaxRecurse)) {
164             ++NumExpand;
165             return V;
166           }
167         }
168     }
169 
170   // Check whether the expression has the form "A op (B op' C)".
171   if (BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS))
172     if (Op1->getOpcode() == OpcodeToExpand) {
173       // It does!  Try turning it into "(A op B) op' (A op C)".
174       Value *A = LHS, *B = Op1->getOperand(0), *C = Op1->getOperand(1);
175       // Do "A op B" and "A op C" both simplify?
176       if (Value *L = SimplifyBinOp(Opcode, A, B, Q, MaxRecurse))
177         if (Value *R = SimplifyBinOp(Opcode, A, C, Q, MaxRecurse)) {
178           // They do! Return "L op' R" if it simplifies or is already available.
179           // If "L op' R" equals "B op' C" then "L op' R" is just the RHS.
180           if ((L == B && R == C) || (Instruction::isCommutative(OpcodeToExpand)
181                                      && L == C && R == B)) {
182             ++NumExpand;
183             return RHS;
184           }
185           // Otherwise return "L op' R" if it simplifies.
186           if (Value *V = SimplifyBinOp(OpcodeToExpand, L, R, Q, MaxRecurse)) {
187             ++NumExpand;
188             return V;
189           }
190         }
191     }
192 
193   return nullptr;
194 }
195 
196 /// Generic simplifications for associative binary operations.
197 /// Returns the simpler value, or null if none was found.
198 static Value *SimplifyAssociativeBinOp(Instruction::BinaryOps Opcode,
199                                        Value *LHS, Value *RHS, const Query &Q,
200                                        unsigned MaxRecurse) {
201   assert(Instruction::isAssociative(Opcode) && "Not an associative operation!");
202 
203   // Recursion is always used, so bail out at once if we already hit the limit.
204   if (!MaxRecurse--)
205     return nullptr;
206 
207   BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS);
208   BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS);
209 
210   // Transform: "(A op B) op C" ==> "A op (B op C)" if it simplifies completely.
211   if (Op0 && Op0->getOpcode() == Opcode) {
212     Value *A = Op0->getOperand(0);
213     Value *B = Op0->getOperand(1);
214     Value *C = RHS;
215 
216     // Does "B op C" simplify?
217     if (Value *V = SimplifyBinOp(Opcode, B, C, Q, MaxRecurse)) {
218       // It does!  Return "A op V" if it simplifies or is already available.
219       // If V equals B then "A op V" is just the LHS.
220       if (V == B) return LHS;
221       // Otherwise return "A op V" if it simplifies.
222       if (Value *W = SimplifyBinOp(Opcode, A, V, Q, MaxRecurse)) {
223         ++NumReassoc;
224         return W;
225       }
226     }
227   }
228 
229   // Transform: "A op (B op C)" ==> "(A op B) op C" if it simplifies completely.
230   if (Op1 && Op1->getOpcode() == Opcode) {
231     Value *A = LHS;
232     Value *B = Op1->getOperand(0);
233     Value *C = Op1->getOperand(1);
234 
235     // Does "A op B" simplify?
236     if (Value *V = SimplifyBinOp(Opcode, A, B, Q, MaxRecurse)) {
237       // It does!  Return "V op C" if it simplifies or is already available.
238       // If V equals B then "V op C" is just the RHS.
239       if (V == B) return RHS;
240       // Otherwise return "V op C" if it simplifies.
241       if (Value *W = SimplifyBinOp(Opcode, V, C, Q, MaxRecurse)) {
242         ++NumReassoc;
243         return W;
244       }
245     }
246   }
247 
248   // The remaining transforms require commutativity as well as associativity.
249   if (!Instruction::isCommutative(Opcode))
250     return nullptr;
251 
252   // Transform: "(A op B) op C" ==> "(C op A) op B" if it simplifies completely.
253   if (Op0 && Op0->getOpcode() == Opcode) {
254     Value *A = Op0->getOperand(0);
255     Value *B = Op0->getOperand(1);
256     Value *C = RHS;
257 
258     // Does "C op A" simplify?
259     if (Value *V = SimplifyBinOp(Opcode, C, A, Q, MaxRecurse)) {
260       // It does!  Return "V op B" if it simplifies or is already available.
261       // If V equals A then "V op B" is just the LHS.
262       if (V == A) return LHS;
263       // Otherwise return "V op B" if it simplifies.
264       if (Value *W = SimplifyBinOp(Opcode, V, B, Q, MaxRecurse)) {
265         ++NumReassoc;
266         return W;
267       }
268     }
269   }
270 
271   // Transform: "A op (B op C)" ==> "B op (C op A)" if it simplifies completely.
272   if (Op1 && Op1->getOpcode() == Opcode) {
273     Value *A = LHS;
274     Value *B = Op1->getOperand(0);
275     Value *C = Op1->getOperand(1);
276 
277     // Does "C op A" simplify?
278     if (Value *V = SimplifyBinOp(Opcode, C, A, Q, MaxRecurse)) {
279       // It does!  Return "B op V" if it simplifies or is already available.
280       // If V equals C then "B op V" is just the RHS.
281       if (V == C) return RHS;
282       // Otherwise return "B op V" if it simplifies.
283       if (Value *W = SimplifyBinOp(Opcode, B, V, Q, MaxRecurse)) {
284         ++NumReassoc;
285         return W;
286       }
287     }
288   }
289 
290   return nullptr;
291 }
292 
293 /// In the case of a binary operation with a select instruction as an operand,
294 /// try to simplify the binop by seeing whether evaluating it on both branches
295 /// of the select results in the same value. Returns the common value if so,
296 /// otherwise returns null.
297 static Value *ThreadBinOpOverSelect(Instruction::BinaryOps Opcode, Value *LHS,
298                                     Value *RHS, const Query &Q,
299                                     unsigned MaxRecurse) {
300   // Recursion is always used, so bail out at once if we already hit the limit.
301   if (!MaxRecurse--)
302     return nullptr;
303 
304   SelectInst *SI;
305   if (isa<SelectInst>(LHS)) {
306     SI = cast<SelectInst>(LHS);
307   } else {
308     assert(isa<SelectInst>(RHS) && "No select instruction operand!");
309     SI = cast<SelectInst>(RHS);
310   }
311 
312   // Evaluate the BinOp on the true and false branches of the select.
313   Value *TV;
314   Value *FV;
315   if (SI == LHS) {
316     TV = SimplifyBinOp(Opcode, SI->getTrueValue(), RHS, Q, MaxRecurse);
317     FV = SimplifyBinOp(Opcode, SI->getFalseValue(), RHS, Q, MaxRecurse);
318   } else {
319     TV = SimplifyBinOp(Opcode, LHS, SI->getTrueValue(), Q, MaxRecurse);
320     FV = SimplifyBinOp(Opcode, LHS, SI->getFalseValue(), Q, MaxRecurse);
321   }
322 
323   // If they simplified to the same value, then return the common value.
324   // If they both failed to simplify then return null.
325   if (TV == FV)
326     return TV;
327 
328   // If one branch simplified to undef, return the other one.
329   if (TV && isa<UndefValue>(TV))
330     return FV;
331   if (FV && isa<UndefValue>(FV))
332     return TV;
333 
334   // If applying the operation did not change the true and false select values,
335   // then the result of the binop is the select itself.
336   if (TV == SI->getTrueValue() && FV == SI->getFalseValue())
337     return SI;
338 
339   // If one branch simplified and the other did not, and the simplified
340   // value is equal to the unsimplified one, return the simplified value.
341   // For example, select (cond, X, X & Z) & Z -> X & Z.
342   if ((FV && !TV) || (TV && !FV)) {
343     // Check that the simplified value has the form "X op Y" where "op" is the
344     // same as the original operation.
345     Instruction *Simplified = dyn_cast<Instruction>(FV ? FV : TV);
346     if (Simplified && Simplified->getOpcode() == Opcode) {
347       // The value that didn't simplify is "UnsimplifiedLHS op UnsimplifiedRHS".
348       // We already know that "op" is the same as for the simplified value.  See
349       // if the operands match too.  If so, return the simplified value.
350       Value *UnsimplifiedBranch = FV ? SI->getTrueValue() : SI->getFalseValue();
351       Value *UnsimplifiedLHS = SI == LHS ? UnsimplifiedBranch : LHS;
352       Value *UnsimplifiedRHS = SI == LHS ? RHS : UnsimplifiedBranch;
353       if (Simplified->getOperand(0) == UnsimplifiedLHS &&
354           Simplified->getOperand(1) == UnsimplifiedRHS)
355         return Simplified;
356       if (Simplified->isCommutative() &&
357           Simplified->getOperand(1) == UnsimplifiedLHS &&
358           Simplified->getOperand(0) == UnsimplifiedRHS)
359         return Simplified;
360     }
361   }
362 
363   return nullptr;
364 }
365 
366 /// In the case of a comparison with a select instruction, try to simplify the
367 /// comparison by seeing whether both branches of the select result in the same
368 /// value. Returns the common value if so, otherwise returns null.
369 static Value *ThreadCmpOverSelect(CmpInst::Predicate Pred, Value *LHS,
370                                   Value *RHS, const Query &Q,
371                                   unsigned MaxRecurse) {
372   // Recursion is always used, so bail out at once if we already hit the limit.
373   if (!MaxRecurse--)
374     return nullptr;
375 
376   // Make sure the select is on the LHS.
377   if (!isa<SelectInst>(LHS)) {
378     std::swap(LHS, RHS);
379     Pred = CmpInst::getSwappedPredicate(Pred);
380   }
381   assert(isa<SelectInst>(LHS) && "Not comparing with a select instruction!");
382   SelectInst *SI = cast<SelectInst>(LHS);
383   Value *Cond = SI->getCondition();
384   Value *TV = SI->getTrueValue();
385   Value *FV = SI->getFalseValue();
386 
387   // Now that we have "cmp select(Cond, TV, FV), RHS", analyse it.
388   // Does "cmp TV, RHS" simplify?
389   Value *TCmp = SimplifyCmpInst(Pred, TV, RHS, Q, MaxRecurse);
390   if (TCmp == Cond) {
391     // It not only simplified, it simplified to the select condition.  Replace
392     // it with 'true'.
393     TCmp = getTrue(Cond->getType());
394   } else if (!TCmp) {
395     // It didn't simplify.  However if "cmp TV, RHS" is equal to the select
396     // condition then we can replace it with 'true'.  Otherwise give up.
397     if (!isSameCompare(Cond, Pred, TV, RHS))
398       return nullptr;
399     TCmp = getTrue(Cond->getType());
400   }
401 
402   // Does "cmp FV, RHS" simplify?
403   Value *FCmp = SimplifyCmpInst(Pred, FV, RHS, Q, MaxRecurse);
404   if (FCmp == Cond) {
405     // It not only simplified, it simplified to the select condition.  Replace
406     // it with 'false'.
407     FCmp = getFalse(Cond->getType());
408   } else if (!FCmp) {
409     // It didn't simplify.  However if "cmp FV, RHS" is equal to the select
410     // condition then we can replace it with 'false'.  Otherwise give up.
411     if (!isSameCompare(Cond, Pred, FV, RHS))
412       return nullptr;
413     FCmp = getFalse(Cond->getType());
414   }
415 
416   // If both sides simplified to the same value, then use it as the result of
417   // the original comparison.
418   if (TCmp == FCmp)
419     return TCmp;
420 
421   // The remaining cases only make sense if the select condition has the same
422   // type as the result of the comparison, so bail out if this is not so.
423   if (Cond->getType()->isVectorTy() != RHS->getType()->isVectorTy())
424     return nullptr;
425   // If the false value simplified to false, then the result of the compare
426   // is equal to "Cond && TCmp".  This also catches the case when the false
427   // value simplified to false and the true value to true, returning "Cond".
428   if (match(FCmp, m_Zero()))
429     if (Value *V = SimplifyAndInst(Cond, TCmp, Q, MaxRecurse))
430       return V;
431   // If the true value simplified to true, then the result of the compare
432   // is equal to "Cond || FCmp".
433   if (match(TCmp, m_One()))
434     if (Value *V = SimplifyOrInst(Cond, FCmp, Q, MaxRecurse))
435       return V;
436   // Finally, if the false value simplified to true and the true value to
437   // false, then the result of the compare is equal to "!Cond".
438   if (match(FCmp, m_One()) && match(TCmp, m_Zero()))
439     if (Value *V =
440         SimplifyXorInst(Cond, Constant::getAllOnesValue(Cond->getType()),
441                         Q, MaxRecurse))
442       return V;
443 
444   return nullptr;
445 }
446 
447 /// In the case of a binary operation with an operand that is a PHI instruction,
448 /// try to simplify the binop by seeing whether evaluating it on the incoming
449 /// phi values yields the same result for every value. If so returns the common
450 /// value, otherwise returns null.
451 static Value *ThreadBinOpOverPHI(Instruction::BinaryOps Opcode, Value *LHS,
452                                  Value *RHS, const Query &Q,
453                                  unsigned MaxRecurse) {
454   // Recursion is always used, so bail out at once if we already hit the limit.
455   if (!MaxRecurse--)
456     return nullptr;
457 
458   PHINode *PI;
459   if (isa<PHINode>(LHS)) {
460     PI = cast<PHINode>(LHS);
461     // Bail out if RHS and the phi may be mutually interdependent due to a loop.
462     if (!ValueDominatesPHI(RHS, PI, Q.DT))
463       return nullptr;
464   } else {
465     assert(isa<PHINode>(RHS) && "No PHI instruction operand!");
466     PI = cast<PHINode>(RHS);
467     // Bail out if LHS and the phi may be mutually interdependent due to a loop.
468     if (!ValueDominatesPHI(LHS, PI, Q.DT))
469       return nullptr;
470   }
471 
472   // Evaluate the BinOp on the incoming phi values.
473   Value *CommonValue = nullptr;
474   for (Value *Incoming : PI->incoming_values()) {
475     // If the incoming value is the phi node itself, it can safely be skipped.
476     if (Incoming == PI) continue;
477     Value *V = PI == LHS ?
478       SimplifyBinOp(Opcode, Incoming, RHS, Q, MaxRecurse) :
479       SimplifyBinOp(Opcode, LHS, Incoming, Q, MaxRecurse);
480     // If the operation failed to simplify, or simplified to a different value
481     // to previously, then give up.
482     if (!V || (CommonValue && V != CommonValue))
483       return nullptr;
484     CommonValue = V;
485   }
486 
487   return CommonValue;
488 }
489 
490 /// In the case of a comparison with a PHI instruction, try to simplify the
491 /// comparison by seeing whether comparing with all of the incoming phi values
492 /// yields the same result every time. If so returns the common result,
493 /// otherwise returns null.
494 static Value *ThreadCmpOverPHI(CmpInst::Predicate Pred, Value *LHS, Value *RHS,
495                                const Query &Q, unsigned MaxRecurse) {
496   // Recursion is always used, so bail out at once if we already hit the limit.
497   if (!MaxRecurse--)
498     return nullptr;
499 
500   // Make sure the phi is on the LHS.
501   if (!isa<PHINode>(LHS)) {
502     std::swap(LHS, RHS);
503     Pred = CmpInst::getSwappedPredicate(Pred);
504   }
505   assert(isa<PHINode>(LHS) && "Not comparing with a phi instruction!");
506   PHINode *PI = cast<PHINode>(LHS);
507 
508   // Bail out if RHS and the phi may be mutually interdependent due to a loop.
509   if (!ValueDominatesPHI(RHS, PI, Q.DT))
510     return nullptr;
511 
512   // Evaluate the BinOp on the incoming phi values.
513   Value *CommonValue = nullptr;
514   for (Value *Incoming : PI->incoming_values()) {
515     // If the incoming value is the phi node itself, it can safely be skipped.
516     if (Incoming == PI) continue;
517     Value *V = SimplifyCmpInst(Pred, Incoming, RHS, Q, MaxRecurse);
518     // If the operation failed to simplify, or simplified to a different value
519     // to previously, then give up.
520     if (!V || (CommonValue && V != CommonValue))
521       return nullptr;
522     CommonValue = V;
523   }
524 
525   return CommonValue;
526 }
527 
528 static Constant *foldOrCommuteConstant(Instruction::BinaryOps Opcode,
529                                        Value *&Op0, Value *&Op1,
530                                        const Query &Q) {
531   if (auto *CLHS = dyn_cast<Constant>(Op0)) {
532     if (auto *CRHS = dyn_cast<Constant>(Op1))
533       return ConstantFoldBinaryOpOperands(Opcode, CLHS, CRHS, Q.DL);
534 
535     // Canonicalize the constant to the RHS if this is a commutative operation.
536     if (Instruction::isCommutative(Opcode))
537       std::swap(Op0, Op1);
538   }
539   return nullptr;
540 }
541 
542 /// Given operands for an Add, see if we can fold the result.
543 /// If not, this returns null.
544 static Value *SimplifyAddInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
545                               const Query &Q, unsigned MaxRecurse) {
546   if (Constant *C = foldOrCommuteConstant(Instruction::Add, Op0, Op1, Q))
547     return C;
548 
549   // X + undef -> undef
550   if (match(Op1, m_Undef()))
551     return Op1;
552 
553   // X + 0 -> X
554   if (match(Op1, m_Zero()))
555     return Op0;
556 
557   // X + (Y - X) -> Y
558   // (Y - X) + X -> Y
559   // Eg: X + -X -> 0
560   Value *Y = nullptr;
561   if (match(Op1, m_Sub(m_Value(Y), m_Specific(Op0))) ||
562       match(Op0, m_Sub(m_Value(Y), m_Specific(Op1))))
563     return Y;
564 
565   // X + ~X -> -1   since   ~X = -X-1
566   Type *Ty = Op0->getType();
567   if (match(Op0, m_Not(m_Specific(Op1))) ||
568       match(Op1, m_Not(m_Specific(Op0))))
569     return Constant::getAllOnesValue(Ty);
570 
571   // add nsw/nuw (xor Y, signbit), signbit --> Y
572   // The no-wrapping add guarantees that the top bit will be set by the add.
573   // Therefore, the xor must be clearing the already set sign bit of Y.
574   if ((isNSW || isNUW) && match(Op1, m_SignBit()) &&
575       match(Op0, m_Xor(m_Value(Y), m_SignBit())))
576     return Y;
577 
578   /// i1 add -> xor.
579   if (MaxRecurse && Op0->getType()->getScalarType()->isIntegerTy(1))
580     if (Value *V = SimplifyXorInst(Op0, Op1, Q, MaxRecurse-1))
581       return V;
582 
583   // Try some generic simplifications for associative operations.
584   if (Value *V = SimplifyAssociativeBinOp(Instruction::Add, Op0, Op1, Q,
585                                           MaxRecurse))
586     return V;
587 
588   // Threading Add over selects and phi nodes is pointless, so don't bother.
589   // Threading over the select in "A + select(cond, B, C)" means evaluating
590   // "A+B" and "A+C" and seeing if they are equal; but they are equal if and
591   // only if B and C are equal.  If B and C are equal then (since we assume
592   // that operands have already been simplified) "select(cond, B, C)" should
593   // have been simplified to the common value of B and C already.  Analysing
594   // "A+B" and "A+C" thus gains nothing, but costs compile time.  Similarly
595   // for threading over phi nodes.
596 
597   return nullptr;
598 }
599 
600 Value *llvm::SimplifyAddInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
601                              const DataLayout &DL, const TargetLibraryInfo *TLI,
602                              const DominatorTree *DT, AssumptionCache *AC,
603                              const Instruction *CxtI) {
604   return ::SimplifyAddInst(Op0, Op1, isNSW, isNUW, Query(DL, TLI, DT, AC, CxtI),
605                            RecursionLimit);
606 }
607 
608 /// \brief Compute the base pointer and cumulative constant offsets for V.
609 ///
610 /// This strips all constant offsets off of V, leaving it the base pointer, and
611 /// accumulates the total constant offset applied in the returned constant. It
612 /// returns 0 if V is not a pointer, and returns the constant '0' if there are
613 /// no constant offsets applied.
614 ///
615 /// This is very similar to GetPointerBaseWithConstantOffset except it doesn't
616 /// follow non-inbounds geps. This allows it to remain usable for icmp ult/etc.
617 /// folding.
618 static Constant *stripAndComputeConstantOffsets(const DataLayout &DL, Value *&V,
619                                                 bool AllowNonInbounds = false) {
620   assert(V->getType()->getScalarType()->isPointerTy());
621 
622   Type *IntPtrTy = DL.getIntPtrType(V->getType())->getScalarType();
623   APInt Offset = APInt::getNullValue(IntPtrTy->getIntegerBitWidth());
624 
625   // Even though we don't look through PHI nodes, we could be called on an
626   // instruction in an unreachable block, which may be on a cycle.
627   SmallPtrSet<Value *, 4> Visited;
628   Visited.insert(V);
629   do {
630     if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
631       if ((!AllowNonInbounds && !GEP->isInBounds()) ||
632           !GEP->accumulateConstantOffset(DL, Offset))
633         break;
634       V = GEP->getPointerOperand();
635     } else if (Operator::getOpcode(V) == Instruction::BitCast) {
636       V = cast<Operator>(V)->getOperand(0);
637     } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
638       if (GA->isInterposable())
639         break;
640       V = GA->getAliasee();
641     } else {
642       if (auto CS = CallSite(V))
643         if (Value *RV = CS.getReturnedArgOperand()) {
644           V = RV;
645           continue;
646         }
647       break;
648     }
649     assert(V->getType()->getScalarType()->isPointerTy() &&
650            "Unexpected operand type!");
651   } while (Visited.insert(V).second);
652 
653   Constant *OffsetIntPtr = ConstantInt::get(IntPtrTy, Offset);
654   if (V->getType()->isVectorTy())
655     return ConstantVector::getSplat(V->getType()->getVectorNumElements(),
656                                     OffsetIntPtr);
657   return OffsetIntPtr;
658 }
659 
660 /// \brief Compute the constant difference between two pointer values.
661 /// If the difference is not a constant, returns zero.
662 static Constant *computePointerDifference(const DataLayout &DL, Value *LHS,
663                                           Value *RHS) {
664   Constant *LHSOffset = stripAndComputeConstantOffsets(DL, LHS);
665   Constant *RHSOffset = stripAndComputeConstantOffsets(DL, RHS);
666 
667   // If LHS and RHS are not related via constant offsets to the same base
668   // value, there is nothing we can do here.
669   if (LHS != RHS)
670     return nullptr;
671 
672   // Otherwise, the difference of LHS - RHS can be computed as:
673   //    LHS - RHS
674   //  = (LHSOffset + Base) - (RHSOffset + Base)
675   //  = LHSOffset - RHSOffset
676   return ConstantExpr::getSub(LHSOffset, RHSOffset);
677 }
678 
679 /// Given operands for a Sub, see if we can fold the result.
680 /// If not, this returns null.
681 static Value *SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
682                               const Query &Q, unsigned MaxRecurse) {
683   if (Constant *C = foldOrCommuteConstant(Instruction::Sub, Op0, Op1, Q))
684     return C;
685 
686   // X - undef -> undef
687   // undef - X -> undef
688   if (match(Op0, m_Undef()) || match(Op1, m_Undef()))
689     return UndefValue::get(Op0->getType());
690 
691   // X - 0 -> X
692   if (match(Op1, m_Zero()))
693     return Op0;
694 
695   // X - X -> 0
696   if (Op0 == Op1)
697     return Constant::getNullValue(Op0->getType());
698 
699   // Is this a negation?
700   if (match(Op0, m_Zero())) {
701     // 0 - X -> 0 if the sub is NUW.
702     if (isNUW)
703       return Op0;
704 
705     unsigned BitWidth = Op1->getType()->getScalarSizeInBits();
706     APInt KnownZero(BitWidth, 0);
707     APInt KnownOne(BitWidth, 0);
708     computeKnownBits(Op1, KnownZero, KnownOne, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
709     if (KnownZero.isMaxSignedValue()) {
710       // Op1 is either 0 or the minimum signed value. If the sub is NSW, then
711       // Op1 must be 0 because negating the minimum signed value is undefined.
712       if (isNSW)
713         return Op0;
714 
715       // 0 - X -> X if X is 0 or the minimum signed value.
716       return Op1;
717     }
718   }
719 
720   // (X + Y) - Z -> X + (Y - Z) or Y + (X - Z) if everything simplifies.
721   // For example, (X + Y) - Y -> X; (Y + X) - Y -> X
722   Value *X = nullptr, *Y = nullptr, *Z = Op1;
723   if (MaxRecurse && match(Op0, m_Add(m_Value(X), m_Value(Y)))) { // (X + Y) - Z
724     // See if "V === Y - Z" simplifies.
725     if (Value *V = SimplifyBinOp(Instruction::Sub, Y, Z, Q, MaxRecurse-1))
726       // It does!  Now see if "X + V" simplifies.
727       if (Value *W = SimplifyBinOp(Instruction::Add, X, V, Q, MaxRecurse-1)) {
728         // It does, we successfully reassociated!
729         ++NumReassoc;
730         return W;
731       }
732     // See if "V === X - Z" simplifies.
733     if (Value *V = SimplifyBinOp(Instruction::Sub, X, Z, Q, MaxRecurse-1))
734       // It does!  Now see if "Y + V" simplifies.
735       if (Value *W = SimplifyBinOp(Instruction::Add, Y, V, Q, MaxRecurse-1)) {
736         // It does, we successfully reassociated!
737         ++NumReassoc;
738         return W;
739       }
740   }
741 
742   // X - (Y + Z) -> (X - Y) - Z or (X - Z) - Y if everything simplifies.
743   // For example, X - (X + 1) -> -1
744   X = Op0;
745   if (MaxRecurse && match(Op1, m_Add(m_Value(Y), m_Value(Z)))) { // X - (Y + Z)
746     // See if "V === X - Y" simplifies.
747     if (Value *V = SimplifyBinOp(Instruction::Sub, X, Y, Q, MaxRecurse-1))
748       // It does!  Now see if "V - Z" simplifies.
749       if (Value *W = SimplifyBinOp(Instruction::Sub, V, Z, Q, MaxRecurse-1)) {
750         // It does, we successfully reassociated!
751         ++NumReassoc;
752         return W;
753       }
754     // See if "V === X - Z" simplifies.
755     if (Value *V = SimplifyBinOp(Instruction::Sub, X, Z, Q, MaxRecurse-1))
756       // It does!  Now see if "V - Y" simplifies.
757       if (Value *W = SimplifyBinOp(Instruction::Sub, V, Y, Q, MaxRecurse-1)) {
758         // It does, we successfully reassociated!
759         ++NumReassoc;
760         return W;
761       }
762   }
763 
764   // Z - (X - Y) -> (Z - X) + Y if everything simplifies.
765   // For example, X - (X - Y) -> Y.
766   Z = Op0;
767   if (MaxRecurse && match(Op1, m_Sub(m_Value(X), m_Value(Y)))) // Z - (X - Y)
768     // See if "V === Z - X" simplifies.
769     if (Value *V = SimplifyBinOp(Instruction::Sub, Z, X, Q, MaxRecurse-1))
770       // It does!  Now see if "V + Y" simplifies.
771       if (Value *W = SimplifyBinOp(Instruction::Add, V, Y, Q, MaxRecurse-1)) {
772         // It does, we successfully reassociated!
773         ++NumReassoc;
774         return W;
775       }
776 
777   // trunc(X) - trunc(Y) -> trunc(X - Y) if everything simplifies.
778   if (MaxRecurse && match(Op0, m_Trunc(m_Value(X))) &&
779       match(Op1, m_Trunc(m_Value(Y))))
780     if (X->getType() == Y->getType())
781       // See if "V === X - Y" simplifies.
782       if (Value *V = SimplifyBinOp(Instruction::Sub, X, Y, Q, MaxRecurse-1))
783         // It does!  Now see if "trunc V" simplifies.
784         if (Value *W = SimplifyCastInst(Instruction::Trunc, V, Op0->getType(),
785                                         Q, MaxRecurse - 1))
786           // It does, return the simplified "trunc V".
787           return W;
788 
789   // Variations on GEP(base, I, ...) - GEP(base, i, ...) -> GEP(null, I-i, ...).
790   if (match(Op0, m_PtrToInt(m_Value(X))) &&
791       match(Op1, m_PtrToInt(m_Value(Y))))
792     if (Constant *Result = computePointerDifference(Q.DL, X, Y))
793       return ConstantExpr::getIntegerCast(Result, Op0->getType(), true);
794 
795   // i1 sub -> xor.
796   if (MaxRecurse && Op0->getType()->getScalarType()->isIntegerTy(1))
797     if (Value *V = SimplifyXorInst(Op0, Op1, Q, MaxRecurse-1))
798       return V;
799 
800   // Threading Sub over selects and phi nodes is pointless, so don't bother.
801   // Threading over the select in "A - select(cond, B, C)" means evaluating
802   // "A-B" and "A-C" and seeing if they are equal; but they are equal if and
803   // only if B and C are equal.  If B and C are equal then (since we assume
804   // that operands have already been simplified) "select(cond, B, C)" should
805   // have been simplified to the common value of B and C already.  Analysing
806   // "A-B" and "A-C" thus gains nothing, but costs compile time.  Similarly
807   // for threading over phi nodes.
808 
809   return nullptr;
810 }
811 
812 Value *llvm::SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
813                              const DataLayout &DL, const TargetLibraryInfo *TLI,
814                              const DominatorTree *DT, AssumptionCache *AC,
815                              const Instruction *CxtI) {
816   return ::SimplifySubInst(Op0, Op1, isNSW, isNUW, Query(DL, TLI, DT, AC, CxtI),
817                            RecursionLimit);
818 }
819 
820 /// Given operands for an FAdd, see if we can fold the result.  If not, this
821 /// returns null.
822 static Value *SimplifyFAddInst(Value *Op0, Value *Op1, FastMathFlags FMF,
823                               const Query &Q, unsigned MaxRecurse) {
824   if (Constant *C = foldOrCommuteConstant(Instruction::FAdd, Op0, Op1, Q))
825     return C;
826 
827   // fadd X, -0 ==> X
828   if (match(Op1, m_NegZero()))
829     return Op0;
830 
831   // fadd X, 0 ==> X, when we know X is not -0
832   if (match(Op1, m_Zero()) &&
833       (FMF.noSignedZeros() || CannotBeNegativeZero(Op0, Q.TLI)))
834     return Op0;
835 
836   // fadd [nnan ninf] X, (fsub [nnan ninf] 0, X) ==> 0
837   //   where nnan and ninf have to occur at least once somewhere in this
838   //   expression
839   Value *SubOp = nullptr;
840   if (match(Op1, m_FSub(m_AnyZero(), m_Specific(Op0))))
841     SubOp = Op1;
842   else if (match(Op0, m_FSub(m_AnyZero(), m_Specific(Op1))))
843     SubOp = Op0;
844   if (SubOp) {
845     Instruction *FSub = cast<Instruction>(SubOp);
846     if ((FMF.noNaNs() || FSub->hasNoNaNs()) &&
847         (FMF.noInfs() || FSub->hasNoInfs()))
848       return Constant::getNullValue(Op0->getType());
849   }
850 
851   return nullptr;
852 }
853 
854 /// Given operands for an FSub, see if we can fold the result.  If not, this
855 /// returns null.
856 static Value *SimplifyFSubInst(Value *Op0, Value *Op1, FastMathFlags FMF,
857                               const Query &Q, unsigned MaxRecurse) {
858   if (Constant *C = foldOrCommuteConstant(Instruction::FSub, Op0, Op1, Q))
859     return C;
860 
861   // fsub X, 0 ==> X
862   if (match(Op1, m_Zero()))
863     return Op0;
864 
865   // fsub X, -0 ==> X, when we know X is not -0
866   if (match(Op1, m_NegZero()) &&
867       (FMF.noSignedZeros() || CannotBeNegativeZero(Op0, Q.TLI)))
868     return Op0;
869 
870   // fsub -0.0, (fsub -0.0, X) ==> X
871   Value *X;
872   if (match(Op0, m_NegZero()) && match(Op1, m_FSub(m_NegZero(), m_Value(X))))
873     return X;
874 
875   // fsub 0.0, (fsub 0.0, X) ==> X if signed zeros are ignored.
876   if (FMF.noSignedZeros() && match(Op0, m_AnyZero()) &&
877       match(Op1, m_FSub(m_AnyZero(), m_Value(X))))
878     return X;
879 
880   // fsub nnan x, x ==> 0.0
881   if (FMF.noNaNs() && Op0 == Op1)
882     return Constant::getNullValue(Op0->getType());
883 
884   return nullptr;
885 }
886 
887 /// Given the operands for an FMul, see if we can fold the result
888 static Value *SimplifyFMulInst(Value *Op0, Value *Op1, FastMathFlags FMF,
889                                const Query &Q, unsigned MaxRecurse) {
890   if (Constant *C = foldOrCommuteConstant(Instruction::FMul, Op0, Op1, Q))
891     return C;
892 
893   // fmul X, 1.0 ==> X
894   if (match(Op1, m_FPOne()))
895     return Op0;
896 
897   // fmul nnan nsz X, 0 ==> 0
898   if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op1, m_AnyZero()))
899     return Op1;
900 
901   return nullptr;
902 }
903 
904 /// Given operands for a Mul, see if we can fold the result.
905 /// If not, this returns null.
906 static Value *SimplifyMulInst(Value *Op0, Value *Op1, const Query &Q,
907                               unsigned MaxRecurse) {
908   if (Constant *C = foldOrCommuteConstant(Instruction::Mul, Op0, Op1, Q))
909     return C;
910 
911   // X * undef -> 0
912   if (match(Op1, m_Undef()))
913     return Constant::getNullValue(Op0->getType());
914 
915   // X * 0 -> 0
916   if (match(Op1, m_Zero()))
917     return Op1;
918 
919   // X * 1 -> X
920   if (match(Op1, m_One()))
921     return Op0;
922 
923   // (X / Y) * Y -> X if the division is exact.
924   Value *X = nullptr;
925   if (match(Op0, m_Exact(m_IDiv(m_Value(X), m_Specific(Op1)))) || // (X / Y) * Y
926       match(Op1, m_Exact(m_IDiv(m_Value(X), m_Specific(Op0)))))   // Y * (X / Y)
927     return X;
928 
929   // i1 mul -> and.
930   if (MaxRecurse && Op0->getType()->getScalarType()->isIntegerTy(1))
931     if (Value *V = SimplifyAndInst(Op0, Op1, Q, MaxRecurse-1))
932       return V;
933 
934   // Try some generic simplifications for associative operations.
935   if (Value *V = SimplifyAssociativeBinOp(Instruction::Mul, Op0, Op1, Q,
936                                           MaxRecurse))
937     return V;
938 
939   // Mul distributes over Add.  Try some generic simplifications based on this.
940   if (Value *V = ExpandBinOp(Instruction::Mul, Op0, Op1, Instruction::Add,
941                              Q, MaxRecurse))
942     return V;
943 
944   // If the operation is with the result of a select instruction, check whether
945   // operating on either branch of the select always yields the same value.
946   if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
947     if (Value *V = ThreadBinOpOverSelect(Instruction::Mul, Op0, Op1, Q,
948                                          MaxRecurse))
949       return V;
950 
951   // If the operation is with the result of a phi instruction, check whether
952   // operating on all incoming values of the phi always yields the same value.
953   if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
954     if (Value *V = ThreadBinOpOverPHI(Instruction::Mul, Op0, Op1, Q,
955                                       MaxRecurse))
956       return V;
957 
958   return nullptr;
959 }
960 
961 Value *llvm::SimplifyFAddInst(Value *Op0, Value *Op1, FastMathFlags FMF,
962                               const DataLayout &DL,
963                               const TargetLibraryInfo *TLI,
964                               const DominatorTree *DT, AssumptionCache *AC,
965                               const Instruction *CxtI) {
966   return ::SimplifyFAddInst(Op0, Op1, FMF, Query(DL, TLI, DT, AC, CxtI),
967                             RecursionLimit);
968 }
969 
970 Value *llvm::SimplifyFSubInst(Value *Op0, Value *Op1, FastMathFlags FMF,
971                               const DataLayout &DL,
972                               const TargetLibraryInfo *TLI,
973                               const DominatorTree *DT, AssumptionCache *AC,
974                               const Instruction *CxtI) {
975   return ::SimplifyFSubInst(Op0, Op1, FMF, Query(DL, TLI, DT, AC, CxtI),
976                             RecursionLimit);
977 }
978 
979 Value *llvm::SimplifyFMulInst(Value *Op0, Value *Op1, FastMathFlags FMF,
980                               const DataLayout &DL,
981                               const TargetLibraryInfo *TLI,
982                               const DominatorTree *DT, AssumptionCache *AC,
983                               const Instruction *CxtI) {
984   return ::SimplifyFMulInst(Op0, Op1, FMF, Query(DL, TLI, DT, AC, CxtI),
985                             RecursionLimit);
986 }
987 
988 Value *llvm::SimplifyMulInst(Value *Op0, Value *Op1, const DataLayout &DL,
989                              const TargetLibraryInfo *TLI,
990                              const DominatorTree *DT, AssumptionCache *AC,
991                              const Instruction *CxtI) {
992   return ::SimplifyMulInst(Op0, Op1, Query(DL, TLI, DT, AC, CxtI),
993                            RecursionLimit);
994 }
995 
996 /// Check for common or similar folds of integer division or integer remainder.
997 static Value *simplifyDivRem(Value *Op0, Value *Op1, bool IsDiv) {
998   Type *Ty = Op0->getType();
999 
1000   // X / undef -> undef
1001   // X % undef -> undef
1002   if (match(Op1, m_Undef()))
1003     return Op1;
1004 
1005   // X / 0 -> undef
1006   // X % 0 -> undef
1007   // We don't need to preserve faults!
1008   if (match(Op1, m_Zero()))
1009     return UndefValue::get(Ty);
1010 
1011   // If any element of a constant divisor vector is zero, the whole op is undef.
1012   auto *Op1C = dyn_cast<Constant>(Op1);
1013   if (Op1C && Ty->isVectorTy()) {
1014     unsigned NumElts = Ty->getVectorNumElements();
1015     for (unsigned i = 0; i != NumElts; ++i) {
1016       Constant *Elt = Op1C->getAggregateElement(i);
1017       if (Elt && Elt->isNullValue())
1018         return UndefValue::get(Ty);
1019     }
1020   }
1021 
1022   // undef / X -> 0
1023   // undef % X -> 0
1024   if (match(Op0, m_Undef()))
1025     return Constant::getNullValue(Ty);
1026 
1027   // 0 / X -> 0
1028   // 0 % X -> 0
1029   if (match(Op0, m_Zero()))
1030     return Op0;
1031 
1032   // X / X -> 1
1033   // X % X -> 0
1034   if (Op0 == Op1)
1035     return IsDiv ? ConstantInt::get(Ty, 1) : Constant::getNullValue(Ty);
1036 
1037   // X / 1 -> X
1038   // X % 1 -> 0
1039   // If this is a boolean op (single-bit element type), we can't have
1040   // division-by-zero or remainder-by-zero, so assume the divisor is 1.
1041   if (match(Op1, m_One()) || Ty->getScalarType()->isIntegerTy(1))
1042     return IsDiv ? Op0 : Constant::getNullValue(Ty);
1043 
1044   return nullptr;
1045 }
1046 
1047 /// Given operands for an SDiv or UDiv, see if we can fold the result.
1048 /// If not, this returns null.
1049 static Value *SimplifyDiv(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1,
1050                           const Query &Q, unsigned MaxRecurse) {
1051   if (Constant *C = foldOrCommuteConstant(Opcode, Op0, Op1, Q))
1052     return C;
1053 
1054   if (Value *V = simplifyDivRem(Op0, Op1, true))
1055     return V;
1056 
1057   bool isSigned = Opcode == Instruction::SDiv;
1058 
1059   // (X * Y) / Y -> X if the multiplication does not overflow.
1060   Value *X = nullptr, *Y = nullptr;
1061   if (match(Op0, m_Mul(m_Value(X), m_Value(Y))) && (X == Op1 || Y == Op1)) {
1062     if (Y != Op1) std::swap(X, Y); // Ensure expression is (X * Y) / Y, Y = Op1
1063     OverflowingBinaryOperator *Mul = cast<OverflowingBinaryOperator>(Op0);
1064     // If the Mul knows it does not overflow, then we are good to go.
1065     if ((isSigned && Mul->hasNoSignedWrap()) ||
1066         (!isSigned && Mul->hasNoUnsignedWrap()))
1067       return X;
1068     // If X has the form X = A / Y then X * Y cannot overflow.
1069     if (BinaryOperator *Div = dyn_cast<BinaryOperator>(X))
1070       if (Div->getOpcode() == Opcode && Div->getOperand(1) == Y)
1071         return X;
1072   }
1073 
1074   // (X rem Y) / Y -> 0
1075   if ((isSigned && match(Op0, m_SRem(m_Value(), m_Specific(Op1)))) ||
1076       (!isSigned && match(Op0, m_URem(m_Value(), m_Specific(Op1)))))
1077     return Constant::getNullValue(Op0->getType());
1078 
1079   // (X /u C1) /u C2 -> 0 if C1 * C2 overflow
1080   ConstantInt *C1, *C2;
1081   if (!isSigned && match(Op0, m_UDiv(m_Value(X), m_ConstantInt(C1))) &&
1082       match(Op1, m_ConstantInt(C2))) {
1083     bool Overflow;
1084     C1->getValue().umul_ov(C2->getValue(), Overflow);
1085     if (Overflow)
1086       return Constant::getNullValue(Op0->getType());
1087   }
1088 
1089   // If the operation is with the result of a select instruction, check whether
1090   // operating on either branch of the select always yields the same value.
1091   if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
1092     if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse))
1093       return V;
1094 
1095   // If the operation is with the result of a phi instruction, check whether
1096   // operating on all incoming values of the phi always yields the same value.
1097   if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
1098     if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse))
1099       return V;
1100 
1101   return nullptr;
1102 }
1103 
1104 /// Given operands for an SDiv, see if we can fold the result.
1105 /// If not, this returns null.
1106 static Value *SimplifySDivInst(Value *Op0, Value *Op1, const Query &Q,
1107                                unsigned MaxRecurse) {
1108   if (Value *V = SimplifyDiv(Instruction::SDiv, Op0, Op1, Q, MaxRecurse))
1109     return V;
1110 
1111   return nullptr;
1112 }
1113 
1114 Value *llvm::SimplifySDivInst(Value *Op0, Value *Op1, const DataLayout &DL,
1115                               const TargetLibraryInfo *TLI,
1116                               const DominatorTree *DT, AssumptionCache *AC,
1117                               const Instruction *CxtI) {
1118   return ::SimplifySDivInst(Op0, Op1, Query(DL, TLI, DT, AC, CxtI),
1119                             RecursionLimit);
1120 }
1121 
1122 /// Given operands for a UDiv, see if we can fold the result.
1123 /// If not, this returns null.
1124 static Value *SimplifyUDivInst(Value *Op0, Value *Op1, const Query &Q,
1125                                unsigned MaxRecurse) {
1126   if (Value *V = SimplifyDiv(Instruction::UDiv, Op0, Op1, Q, MaxRecurse))
1127     return V;
1128 
1129   // udiv %V, C -> 0 if %V < C
1130   if (MaxRecurse) {
1131     if (Constant *C = dyn_cast_or_null<Constant>(SimplifyICmpInst(
1132             ICmpInst::ICMP_ULT, Op0, Op1, Q, MaxRecurse - 1))) {
1133       if (C->isAllOnesValue()) {
1134         return Constant::getNullValue(Op0->getType());
1135       }
1136     }
1137   }
1138 
1139   return nullptr;
1140 }
1141 
1142 Value *llvm::SimplifyUDivInst(Value *Op0, Value *Op1, const DataLayout &DL,
1143                               const TargetLibraryInfo *TLI,
1144                               const DominatorTree *DT, AssumptionCache *AC,
1145                               const Instruction *CxtI) {
1146   return ::SimplifyUDivInst(Op0, Op1, Query(DL, TLI, DT, AC, CxtI),
1147                             RecursionLimit);
1148 }
1149 
1150 static Value *SimplifyFDivInst(Value *Op0, Value *Op1, FastMathFlags FMF,
1151                                const Query &Q, unsigned) {
1152   if (Constant *C = foldOrCommuteConstant(Instruction::FDiv, Op0, Op1, Q))
1153     return C;
1154 
1155   // undef / X -> undef    (the undef could be a snan).
1156   if (match(Op0, m_Undef()))
1157     return Op0;
1158 
1159   // X / undef -> undef
1160   if (match(Op1, m_Undef()))
1161     return Op1;
1162 
1163   // X / 1.0 -> X
1164   if (match(Op1, m_FPOne()))
1165     return Op0;
1166 
1167   // 0 / X -> 0
1168   // Requires that NaNs are off (X could be zero) and signed zeroes are
1169   // ignored (X could be positive or negative, so the output sign is unknown).
1170   if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op0, m_AnyZero()))
1171     return Op0;
1172 
1173   if (FMF.noNaNs()) {
1174     // X / X -> 1.0 is legal when NaNs are ignored.
1175     if (Op0 == Op1)
1176       return ConstantFP::get(Op0->getType(), 1.0);
1177 
1178     // -X /  X -> -1.0 and
1179     //  X / -X -> -1.0 are legal when NaNs are ignored.
1180     // We can ignore signed zeros because +-0.0/+-0.0 is NaN and ignored.
1181     if ((BinaryOperator::isFNeg(Op0, /*IgnoreZeroSign=*/true) &&
1182          BinaryOperator::getFNegArgument(Op0) == Op1) ||
1183         (BinaryOperator::isFNeg(Op1, /*IgnoreZeroSign=*/true) &&
1184          BinaryOperator::getFNegArgument(Op1) == Op0))
1185       return ConstantFP::get(Op0->getType(), -1.0);
1186   }
1187 
1188   return nullptr;
1189 }
1190 
1191 Value *llvm::SimplifyFDivInst(Value *Op0, Value *Op1, FastMathFlags FMF,
1192                               const DataLayout &DL,
1193                               const TargetLibraryInfo *TLI,
1194                               const DominatorTree *DT, AssumptionCache *AC,
1195                               const Instruction *CxtI) {
1196   return ::SimplifyFDivInst(Op0, Op1, FMF, Query(DL, TLI, DT, AC, CxtI),
1197                             RecursionLimit);
1198 }
1199 
1200 /// Given operands for an SRem or URem, see if we can fold the result.
1201 /// If not, this returns null.
1202 static Value *SimplifyRem(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1,
1203                           const Query &Q, unsigned MaxRecurse) {
1204   if (Constant *C = foldOrCommuteConstant(Opcode, Op0, Op1, Q))
1205     return C;
1206 
1207   if (Value *V = simplifyDivRem(Op0, Op1, false))
1208     return V;
1209 
1210   // (X % Y) % Y -> X % Y
1211   if ((Opcode == Instruction::SRem &&
1212        match(Op0, m_SRem(m_Value(), m_Specific(Op1)))) ||
1213       (Opcode == Instruction::URem &&
1214        match(Op0, m_URem(m_Value(), m_Specific(Op1)))))
1215     return Op0;
1216 
1217   // If the operation is with the result of a select instruction, check whether
1218   // operating on either branch of the select always yields the same value.
1219   if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
1220     if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse))
1221       return V;
1222 
1223   // If the operation is with the result of a phi instruction, check whether
1224   // operating on all incoming values of the phi always yields the same value.
1225   if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
1226     if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse))
1227       return V;
1228 
1229   return nullptr;
1230 }
1231 
1232 /// Given operands for an SRem, see if we can fold the result.
1233 /// If not, this returns null.
1234 static Value *SimplifySRemInst(Value *Op0, Value *Op1, const Query &Q,
1235                                unsigned MaxRecurse) {
1236   if (Value *V = SimplifyRem(Instruction::SRem, Op0, Op1, Q, MaxRecurse))
1237     return V;
1238 
1239   return nullptr;
1240 }
1241 
1242 Value *llvm::SimplifySRemInst(Value *Op0, Value *Op1, const DataLayout &DL,
1243                               const TargetLibraryInfo *TLI,
1244                               const DominatorTree *DT, AssumptionCache *AC,
1245                               const Instruction *CxtI) {
1246   return ::SimplifySRemInst(Op0, Op1, Query(DL, TLI, DT, AC, CxtI),
1247                             RecursionLimit);
1248 }
1249 
1250 /// Given operands for a URem, see if we can fold the result.
1251 /// If not, this returns null.
1252 static Value *SimplifyURemInst(Value *Op0, Value *Op1, const Query &Q,
1253                                unsigned MaxRecurse) {
1254   if (Value *V = SimplifyRem(Instruction::URem, Op0, Op1, Q, MaxRecurse))
1255     return V;
1256 
1257   // urem %V, C -> %V if %V < C
1258   if (MaxRecurse) {
1259     if (Constant *C = dyn_cast_or_null<Constant>(SimplifyICmpInst(
1260             ICmpInst::ICMP_ULT, Op0, Op1, Q, MaxRecurse - 1))) {
1261       if (C->isAllOnesValue()) {
1262         return Op0;
1263       }
1264     }
1265   }
1266 
1267   return nullptr;
1268 }
1269 
1270 Value *llvm::SimplifyURemInst(Value *Op0, Value *Op1, const DataLayout &DL,
1271                               const TargetLibraryInfo *TLI,
1272                               const DominatorTree *DT, AssumptionCache *AC,
1273                               const Instruction *CxtI) {
1274   return ::SimplifyURemInst(Op0, Op1, Query(DL, TLI, DT, AC, CxtI),
1275                             RecursionLimit);
1276 }
1277 
1278 static Value *SimplifyFRemInst(Value *Op0, Value *Op1, FastMathFlags FMF,
1279                                const Query &Q, unsigned) {
1280   if (Constant *C = foldOrCommuteConstant(Instruction::FRem, Op0, Op1, Q))
1281     return C;
1282 
1283   // undef % X -> undef    (the undef could be a snan).
1284   if (match(Op0, m_Undef()))
1285     return Op0;
1286 
1287   // X % undef -> undef
1288   if (match(Op1, m_Undef()))
1289     return Op1;
1290 
1291   // 0 % X -> 0
1292   // Requires that NaNs are off (X could be zero) and signed zeroes are
1293   // ignored (X could be positive or negative, so the output sign is unknown).
1294   if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op0, m_AnyZero()))
1295     return Op0;
1296 
1297   return nullptr;
1298 }
1299 
1300 Value *llvm::SimplifyFRemInst(Value *Op0, Value *Op1, FastMathFlags FMF,
1301                               const DataLayout &DL,
1302                               const TargetLibraryInfo *TLI,
1303                               const DominatorTree *DT, AssumptionCache *AC,
1304                               const Instruction *CxtI) {
1305   return ::SimplifyFRemInst(Op0, Op1, FMF, Query(DL, TLI, DT, AC, CxtI),
1306                             RecursionLimit);
1307 }
1308 
1309 /// Returns true if a shift by \c Amount always yields undef.
1310 static bool isUndefShift(Value *Amount) {
1311   Constant *C = dyn_cast<Constant>(Amount);
1312   if (!C)
1313     return false;
1314 
1315   // X shift by undef -> undef because it may shift by the bitwidth.
1316   if (isa<UndefValue>(C))
1317     return true;
1318 
1319   // Shifting by the bitwidth or more is undefined.
1320   if (ConstantInt *CI = dyn_cast<ConstantInt>(C))
1321     if (CI->getValue().getLimitedValue() >=
1322         CI->getType()->getScalarSizeInBits())
1323       return true;
1324 
1325   // If all lanes of a vector shift are undefined the whole shift is.
1326   if (isa<ConstantVector>(C) || isa<ConstantDataVector>(C)) {
1327     for (unsigned I = 0, E = C->getType()->getVectorNumElements(); I != E; ++I)
1328       if (!isUndefShift(C->getAggregateElement(I)))
1329         return false;
1330     return true;
1331   }
1332 
1333   return false;
1334 }
1335 
1336 /// Given operands for an Shl, LShr or AShr, see if we can fold the result.
1337 /// If not, this returns null.
1338 static Value *SimplifyShift(Instruction::BinaryOps Opcode, Value *Op0,
1339                             Value *Op1, const Query &Q, unsigned MaxRecurse) {
1340   if (Constant *C = foldOrCommuteConstant(Opcode, Op0, Op1, Q))
1341     return C;
1342 
1343   // 0 shift by X -> 0
1344   if (match(Op0, m_Zero()))
1345     return Op0;
1346 
1347   // X shift by 0 -> X
1348   if (match(Op1, m_Zero()))
1349     return Op0;
1350 
1351   // Fold undefined shifts.
1352   if (isUndefShift(Op1))
1353     return UndefValue::get(Op0->getType());
1354 
1355   // If the operation is with the result of a select instruction, check whether
1356   // operating on either branch of the select always yields the same value.
1357   if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
1358     if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse))
1359       return V;
1360 
1361   // If the operation is with the result of a phi instruction, check whether
1362   // operating on all incoming values of the phi always yields the same value.
1363   if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
1364     if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse))
1365       return V;
1366 
1367   // If any bits in the shift amount make that value greater than or equal to
1368   // the number of bits in the type, the shift is undefined.
1369   unsigned BitWidth = Op1->getType()->getScalarSizeInBits();
1370   APInt KnownZero(BitWidth, 0);
1371   APInt KnownOne(BitWidth, 0);
1372   computeKnownBits(Op1, KnownZero, KnownOne, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
1373   if (KnownOne.getLimitedValue() >= BitWidth)
1374     return UndefValue::get(Op0->getType());
1375 
1376   // If all valid bits in the shift amount are known zero, the first operand is
1377   // unchanged.
1378   unsigned NumValidShiftBits = Log2_32_Ceil(BitWidth);
1379   APInt ShiftAmountMask = APInt::getLowBitsSet(BitWidth, NumValidShiftBits);
1380   if ((KnownZero & ShiftAmountMask) == ShiftAmountMask)
1381     return Op0;
1382 
1383   return nullptr;
1384 }
1385 
1386 /// \brief Given operands for an Shl, LShr or AShr, see if we can
1387 /// fold the result.  If not, this returns null.
1388 static Value *SimplifyRightShift(Instruction::BinaryOps Opcode, Value *Op0,
1389                                  Value *Op1, bool isExact, const Query &Q,
1390                                  unsigned MaxRecurse) {
1391   if (Value *V = SimplifyShift(Opcode, Op0, Op1, Q, MaxRecurse))
1392     return V;
1393 
1394   // X >> X -> 0
1395   if (Op0 == Op1)
1396     return Constant::getNullValue(Op0->getType());
1397 
1398   // undef >> X -> 0
1399   // undef >> X -> undef (if it's exact)
1400   if (match(Op0, m_Undef()))
1401     return isExact ? Op0 : Constant::getNullValue(Op0->getType());
1402 
1403   // The low bit cannot be shifted out of an exact shift if it is set.
1404   if (isExact) {
1405     unsigned BitWidth = Op0->getType()->getScalarSizeInBits();
1406     APInt Op0KnownZero(BitWidth, 0);
1407     APInt Op0KnownOne(BitWidth, 0);
1408     computeKnownBits(Op0, Op0KnownZero, Op0KnownOne, Q.DL, /*Depth=*/0, Q.AC,
1409                      Q.CxtI, Q.DT);
1410     if (Op0KnownOne[0])
1411       return Op0;
1412   }
1413 
1414   return nullptr;
1415 }
1416 
1417 /// Given operands for an Shl, see if we can fold the result.
1418 /// If not, this returns null.
1419 static Value *SimplifyShlInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
1420                               const Query &Q, unsigned MaxRecurse) {
1421   if (Value *V = SimplifyShift(Instruction::Shl, Op0, Op1, Q, MaxRecurse))
1422     return V;
1423 
1424   // undef << X -> 0
1425   // undef << X -> undef if (if it's NSW/NUW)
1426   if (match(Op0, m_Undef()))
1427     return isNSW || isNUW ? Op0 : Constant::getNullValue(Op0->getType());
1428 
1429   // (X >> A) << A -> X
1430   Value *X;
1431   if (match(Op0, m_Exact(m_Shr(m_Value(X), m_Specific(Op1)))))
1432     return X;
1433   return nullptr;
1434 }
1435 
1436 Value *llvm::SimplifyShlInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
1437                              const DataLayout &DL, const TargetLibraryInfo *TLI,
1438                              const DominatorTree *DT, AssumptionCache *AC,
1439                              const Instruction *CxtI) {
1440   return ::SimplifyShlInst(Op0, Op1, isNSW, isNUW, Query(DL, TLI, DT, AC, CxtI),
1441                            RecursionLimit);
1442 }
1443 
1444 /// Given operands for an LShr, see if we can fold the result.
1445 /// If not, this returns null.
1446 static Value *SimplifyLShrInst(Value *Op0, Value *Op1, bool isExact,
1447                                const Query &Q, unsigned MaxRecurse) {
1448   if (Value *V = SimplifyRightShift(Instruction::LShr, Op0, Op1, isExact, Q,
1449                                     MaxRecurse))
1450       return V;
1451 
1452   // (X << A) >> A -> X
1453   Value *X;
1454   if (match(Op0, m_NUWShl(m_Value(X), m_Specific(Op1))))
1455     return X;
1456 
1457   return nullptr;
1458 }
1459 
1460 Value *llvm::SimplifyLShrInst(Value *Op0, Value *Op1, bool isExact,
1461                               const DataLayout &DL,
1462                               const TargetLibraryInfo *TLI,
1463                               const DominatorTree *DT, AssumptionCache *AC,
1464                               const Instruction *CxtI) {
1465   return ::SimplifyLShrInst(Op0, Op1, isExact, Query(DL, TLI, DT, AC, CxtI),
1466                             RecursionLimit);
1467 }
1468 
1469 /// Given operands for an AShr, see if we can fold the result.
1470 /// If not, this returns null.
1471 static Value *SimplifyAShrInst(Value *Op0, Value *Op1, bool isExact,
1472                                const Query &Q, unsigned MaxRecurse) {
1473   if (Value *V = SimplifyRightShift(Instruction::AShr, Op0, Op1, isExact, Q,
1474                                     MaxRecurse))
1475     return V;
1476 
1477   // all ones >>a X -> all ones
1478   if (match(Op0, m_AllOnes()))
1479     return Op0;
1480 
1481   // (X << A) >> A -> X
1482   Value *X;
1483   if (match(Op0, m_NSWShl(m_Value(X), m_Specific(Op1))))
1484     return X;
1485 
1486   // Arithmetic shifting an all-sign-bit value is a no-op.
1487   unsigned NumSignBits = ComputeNumSignBits(Op0, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
1488   if (NumSignBits == Op0->getType()->getScalarSizeInBits())
1489     return Op0;
1490 
1491   return nullptr;
1492 }
1493 
1494 Value *llvm::SimplifyAShrInst(Value *Op0, Value *Op1, bool isExact,
1495                               const DataLayout &DL,
1496                               const TargetLibraryInfo *TLI,
1497                               const DominatorTree *DT, AssumptionCache *AC,
1498                               const Instruction *CxtI) {
1499   return ::SimplifyAShrInst(Op0, Op1, isExact, Query(DL, TLI, DT, AC, CxtI),
1500                             RecursionLimit);
1501 }
1502 
1503 static Value *simplifyUnsignedRangeCheck(ICmpInst *ZeroICmp,
1504                                          ICmpInst *UnsignedICmp, bool IsAnd) {
1505   Value *X, *Y;
1506 
1507   ICmpInst::Predicate EqPred;
1508   if (!match(ZeroICmp, m_ICmp(EqPred, m_Value(Y), m_Zero())) ||
1509       !ICmpInst::isEquality(EqPred))
1510     return nullptr;
1511 
1512   ICmpInst::Predicate UnsignedPred;
1513   if (match(UnsignedICmp, m_ICmp(UnsignedPred, m_Value(X), m_Specific(Y))) &&
1514       ICmpInst::isUnsigned(UnsignedPred))
1515     ;
1516   else if (match(UnsignedICmp,
1517                  m_ICmp(UnsignedPred, m_Value(Y), m_Specific(X))) &&
1518            ICmpInst::isUnsigned(UnsignedPred))
1519     UnsignedPred = ICmpInst::getSwappedPredicate(UnsignedPred);
1520   else
1521     return nullptr;
1522 
1523   // X < Y && Y != 0  -->  X < Y
1524   // X < Y || Y != 0  -->  Y != 0
1525   if (UnsignedPred == ICmpInst::ICMP_ULT && EqPred == ICmpInst::ICMP_NE)
1526     return IsAnd ? UnsignedICmp : ZeroICmp;
1527 
1528   // X >= Y || Y != 0  -->  true
1529   // X >= Y || Y == 0  -->  X >= Y
1530   if (UnsignedPred == ICmpInst::ICMP_UGE && !IsAnd) {
1531     if (EqPred == ICmpInst::ICMP_NE)
1532       return getTrue(UnsignedICmp->getType());
1533     return UnsignedICmp;
1534   }
1535 
1536   // X < Y && Y == 0  -->  false
1537   if (UnsignedPred == ICmpInst::ICMP_ULT && EqPred == ICmpInst::ICMP_EQ &&
1538       IsAnd)
1539     return getFalse(UnsignedICmp->getType());
1540 
1541   return nullptr;
1542 }
1543 
1544 /// Commuted variants are assumed to be handled by calling this function again
1545 /// with the parameters swapped.
1546 static Value *simplifyAndOfICmpsWithSameOperands(ICmpInst *Op0, ICmpInst *Op1) {
1547   ICmpInst::Predicate Pred0, Pred1;
1548   Value *A ,*B;
1549   if (!match(Op0, m_ICmp(Pred0, m_Value(A), m_Value(B))) ||
1550       !match(Op1, m_ICmp(Pred1, m_Specific(A), m_Specific(B))))
1551     return nullptr;
1552 
1553   // We have (icmp Pred0, A, B) & (icmp Pred1, A, B).
1554   // If Op1 is always implied true by Op0, then Op0 is a subset of Op1, and we
1555   // can eliminate Op1 from this 'and'.
1556   if (ICmpInst::isImpliedTrueByMatchingCmp(Pred0, Pred1))
1557     return Op0;
1558 
1559   // Check for any combination of predicates that are guaranteed to be disjoint.
1560   if ((Pred0 == ICmpInst::getInversePredicate(Pred1)) ||
1561       (Pred0 == ICmpInst::ICMP_EQ && ICmpInst::isFalseWhenEqual(Pred1)) ||
1562       (Pred0 == ICmpInst::ICMP_SLT && Pred1 == ICmpInst::ICMP_SGT) ||
1563       (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_UGT))
1564     return getFalse(Op0->getType());
1565 
1566   return nullptr;
1567 }
1568 
1569 /// Commuted variants are assumed to be handled by calling this function again
1570 /// with the parameters swapped.
1571 static Value *SimplifyAndOfICmps(ICmpInst *Op0, ICmpInst *Op1) {
1572   if (Value *X = simplifyUnsignedRangeCheck(Op0, Op1, /*IsAnd=*/true))
1573     return X;
1574 
1575   if (Value *X = simplifyAndOfICmpsWithSameOperands(Op0, Op1))
1576     return X;
1577 
1578   // Look for this pattern: (icmp V, C0) & (icmp V, C1)).
1579   Type *ITy = Op0->getType();
1580   ICmpInst::Predicate Pred0, Pred1;
1581   const APInt *C0, *C1;
1582   Value *V;
1583   if (match(Op0, m_ICmp(Pred0, m_Value(V), m_APInt(C0))) &&
1584       match(Op1, m_ICmp(Pred1, m_Specific(V), m_APInt(C1)))) {
1585     // Make a constant range that's the intersection of the two icmp ranges.
1586     // If the intersection is empty, we know that the result is false.
1587     auto Range0 = ConstantRange::makeAllowedICmpRegion(Pred0, *C0);
1588     auto Range1 = ConstantRange::makeAllowedICmpRegion(Pred1, *C1);
1589     if (Range0.intersectWith(Range1).isEmptySet())
1590       return getFalse(ITy);
1591   }
1592 
1593   // (icmp (add V, C0), C1) & (icmp V, C0)
1594   if (!match(Op0, m_ICmp(Pred0, m_Add(m_Value(V), m_APInt(C0)), m_APInt(C1))))
1595     return nullptr;
1596 
1597   if (!match(Op1, m_ICmp(Pred1, m_Specific(V), m_Value())))
1598     return nullptr;
1599 
1600   auto *AddInst = cast<BinaryOperator>(Op0->getOperand(0));
1601   if (AddInst->getOperand(1) != Op1->getOperand(1))
1602     return nullptr;
1603 
1604   bool isNSW = AddInst->hasNoSignedWrap();
1605   bool isNUW = AddInst->hasNoUnsignedWrap();
1606 
1607   const APInt Delta = *C1 - *C0;
1608   if (C0->isStrictlyPositive()) {
1609     if (Delta == 2) {
1610       if (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_SGT)
1611         return getFalse(ITy);
1612       if (Pred0 == ICmpInst::ICMP_SLT && Pred1 == ICmpInst::ICMP_SGT && isNSW)
1613         return getFalse(ITy);
1614     }
1615     if (Delta == 1) {
1616       if (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_SGT)
1617         return getFalse(ITy);
1618       if (Pred0 == ICmpInst::ICMP_SLE && Pred1 == ICmpInst::ICMP_SGT && isNSW)
1619         return getFalse(ITy);
1620     }
1621   }
1622   if (C0->getBoolValue() && isNUW) {
1623     if (Delta == 2)
1624       if (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_UGT)
1625         return getFalse(ITy);
1626     if (Delta == 1)
1627       if (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_UGT)
1628         return getFalse(ITy);
1629   }
1630 
1631   return nullptr;
1632 }
1633 
1634 /// Given operands for an And, see if we can fold the result.
1635 /// If not, this returns null.
1636 static Value *SimplifyAndInst(Value *Op0, Value *Op1, const Query &Q,
1637                               unsigned MaxRecurse) {
1638   if (Constant *C = foldOrCommuteConstant(Instruction::And, Op0, Op1, Q))
1639     return C;
1640 
1641   // X & undef -> 0
1642   if (match(Op1, m_Undef()))
1643     return Constant::getNullValue(Op0->getType());
1644 
1645   // X & X = X
1646   if (Op0 == Op1)
1647     return Op0;
1648 
1649   // X & 0 = 0
1650   if (match(Op1, m_Zero()))
1651     return Op1;
1652 
1653   // X & -1 = X
1654   if (match(Op1, m_AllOnes()))
1655     return Op0;
1656 
1657   // A & ~A  =  ~A & A  =  0
1658   if (match(Op0, m_Not(m_Specific(Op1))) ||
1659       match(Op1, m_Not(m_Specific(Op0))))
1660     return Constant::getNullValue(Op0->getType());
1661 
1662   // (A | ?) & A = A
1663   Value *A = nullptr, *B = nullptr;
1664   if (match(Op0, m_Or(m_Value(A), m_Value(B))) &&
1665       (A == Op1 || B == Op1))
1666     return Op1;
1667 
1668   // A & (A | ?) = A
1669   if (match(Op1, m_Or(m_Value(A), m_Value(B))) &&
1670       (A == Op0 || B == Op0))
1671     return Op0;
1672 
1673   // A & (-A) = A if A is a power of two or zero.
1674   if (match(Op0, m_Neg(m_Specific(Op1))) ||
1675       match(Op1, m_Neg(m_Specific(Op0)))) {
1676     if (isKnownToBeAPowerOfTwo(Op0, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI,
1677                                Q.DT))
1678       return Op0;
1679     if (isKnownToBeAPowerOfTwo(Op1, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI,
1680                                Q.DT))
1681       return Op1;
1682   }
1683 
1684   if (auto *ICILHS = dyn_cast<ICmpInst>(Op0)) {
1685     if (auto *ICIRHS = dyn_cast<ICmpInst>(Op1)) {
1686       if (Value *V = SimplifyAndOfICmps(ICILHS, ICIRHS))
1687         return V;
1688       if (Value *V = SimplifyAndOfICmps(ICIRHS, ICILHS))
1689         return V;
1690     }
1691   }
1692 
1693   // The compares may be hidden behind casts. Look through those and try the
1694   // same folds as above.
1695   auto *Cast0 = dyn_cast<CastInst>(Op0);
1696   auto *Cast1 = dyn_cast<CastInst>(Op1);
1697   if (Cast0 && Cast1 && Cast0->getOpcode() == Cast1->getOpcode() &&
1698       Cast0->getSrcTy() == Cast1->getSrcTy()) {
1699     auto *Cmp0 = dyn_cast<ICmpInst>(Cast0->getOperand(0));
1700     auto *Cmp1 = dyn_cast<ICmpInst>(Cast1->getOperand(0));
1701     if (Cmp0 && Cmp1) {
1702       Instruction::CastOps CastOpc = Cast0->getOpcode();
1703       Type *ResultType = Cast0->getType();
1704       if (auto *V = dyn_cast_or_null<Constant>(SimplifyAndOfICmps(Cmp0, Cmp1)))
1705         return ConstantExpr::getCast(CastOpc, V, ResultType);
1706       if (auto *V = dyn_cast_or_null<Constant>(SimplifyAndOfICmps(Cmp1, Cmp0)))
1707         return ConstantExpr::getCast(CastOpc, V, ResultType);
1708     }
1709   }
1710 
1711   // Try some generic simplifications for associative operations.
1712   if (Value *V = SimplifyAssociativeBinOp(Instruction::And, Op0, Op1, Q,
1713                                           MaxRecurse))
1714     return V;
1715 
1716   // And distributes over Or.  Try some generic simplifications based on this.
1717   if (Value *V = ExpandBinOp(Instruction::And, Op0, Op1, Instruction::Or,
1718                              Q, MaxRecurse))
1719     return V;
1720 
1721   // And distributes over Xor.  Try some generic simplifications based on this.
1722   if (Value *V = ExpandBinOp(Instruction::And, Op0, Op1, Instruction::Xor,
1723                              Q, MaxRecurse))
1724     return V;
1725 
1726   // If the operation is with the result of a select instruction, check whether
1727   // operating on either branch of the select always yields the same value.
1728   if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
1729     if (Value *V = ThreadBinOpOverSelect(Instruction::And, Op0, Op1, Q,
1730                                          MaxRecurse))
1731       return V;
1732 
1733   // If the operation is with the result of a phi instruction, check whether
1734   // operating on all incoming values of the phi always yields the same value.
1735   if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
1736     if (Value *V = ThreadBinOpOverPHI(Instruction::And, Op0, Op1, Q,
1737                                       MaxRecurse))
1738       return V;
1739 
1740   return nullptr;
1741 }
1742 
1743 Value *llvm::SimplifyAndInst(Value *Op0, Value *Op1, const DataLayout &DL,
1744                              const TargetLibraryInfo *TLI,
1745                              const DominatorTree *DT, AssumptionCache *AC,
1746                              const Instruction *CxtI) {
1747   return ::SimplifyAndInst(Op0, Op1, Query(DL, TLI, DT, AC, CxtI),
1748                            RecursionLimit);
1749 }
1750 
1751 /// Commuted variants are assumed to be handled by calling this function again
1752 /// with the parameters swapped.
1753 static Value *simplifyOrOfICmpsWithSameOperands(ICmpInst *Op0, ICmpInst *Op1) {
1754   ICmpInst::Predicate Pred0, Pred1;
1755   Value *A ,*B;
1756   if (!match(Op0, m_ICmp(Pred0, m_Value(A), m_Value(B))) ||
1757       !match(Op1, m_ICmp(Pred1, m_Specific(A), m_Specific(B))))
1758     return nullptr;
1759 
1760   // We have (icmp Pred0, A, B) | (icmp Pred1, A, B).
1761   // If Op1 is always implied true by Op0, then Op0 is a subset of Op1, and we
1762   // can eliminate Op0 from this 'or'.
1763   if (ICmpInst::isImpliedTrueByMatchingCmp(Pred0, Pred1))
1764     return Op1;
1765 
1766   // Check for any combination of predicates that cover the entire range of
1767   // possibilities.
1768   if ((Pred0 == ICmpInst::getInversePredicate(Pred1)) ||
1769       (Pred0 == ICmpInst::ICMP_NE && ICmpInst::isTrueWhenEqual(Pred1)) ||
1770       (Pred0 == ICmpInst::ICMP_SLE && Pred1 == ICmpInst::ICMP_SGE) ||
1771       (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_UGE))
1772     return getTrue(Op0->getType());
1773 
1774   return nullptr;
1775 }
1776 
1777 /// Commuted variants are assumed to be handled by calling this function again
1778 /// with the parameters swapped.
1779 static Value *SimplifyOrOfICmps(ICmpInst *Op0, ICmpInst *Op1) {
1780   if (Value *X = simplifyUnsignedRangeCheck(Op0, Op1, /*IsAnd=*/false))
1781     return X;
1782 
1783   if (Value *X = simplifyOrOfICmpsWithSameOperands(Op0, Op1))
1784     return X;
1785 
1786   // (icmp (add V, C0), C1) | (icmp V, C0)
1787   ICmpInst::Predicate Pred0, Pred1;
1788   const APInt *C0, *C1;
1789   Value *V;
1790   if (!match(Op0, m_ICmp(Pred0, m_Add(m_Value(V), m_APInt(C0)), m_APInt(C1))))
1791     return nullptr;
1792 
1793   if (!match(Op1, m_ICmp(Pred1, m_Specific(V), m_Value())))
1794     return nullptr;
1795 
1796   auto *AddInst = cast<BinaryOperator>(Op0->getOperand(0));
1797   if (AddInst->getOperand(1) != Op1->getOperand(1))
1798     return nullptr;
1799 
1800   Type *ITy = Op0->getType();
1801   bool isNSW = AddInst->hasNoSignedWrap();
1802   bool isNUW = AddInst->hasNoUnsignedWrap();
1803 
1804   const APInt Delta = *C1 - *C0;
1805   if (C0->isStrictlyPositive()) {
1806     if (Delta == 2) {
1807       if (Pred0 == ICmpInst::ICMP_UGE && Pred1 == ICmpInst::ICMP_SLE)
1808         return getTrue(ITy);
1809       if (Pred0 == ICmpInst::ICMP_SGE && Pred1 == ICmpInst::ICMP_SLE && isNSW)
1810         return getTrue(ITy);
1811     }
1812     if (Delta == 1) {
1813       if (Pred0 == ICmpInst::ICMP_UGT && Pred1 == ICmpInst::ICMP_SLE)
1814         return getTrue(ITy);
1815       if (Pred0 == ICmpInst::ICMP_SGT && Pred1 == ICmpInst::ICMP_SLE && isNSW)
1816         return getTrue(ITy);
1817     }
1818   }
1819   if (C0->getBoolValue() && isNUW) {
1820     if (Delta == 2)
1821       if (Pred0 == ICmpInst::ICMP_UGE && Pred1 == ICmpInst::ICMP_ULE)
1822         return getTrue(ITy);
1823     if (Delta == 1)
1824       if (Pred0 == ICmpInst::ICMP_UGT && Pred1 == ICmpInst::ICMP_ULE)
1825         return getTrue(ITy);
1826   }
1827 
1828   return nullptr;
1829 }
1830 
1831 /// Given operands for an Or, see if we can fold the result.
1832 /// If not, this returns null.
1833 static Value *SimplifyOrInst(Value *Op0, Value *Op1, const Query &Q,
1834                              unsigned MaxRecurse) {
1835   if (Constant *C = foldOrCommuteConstant(Instruction::Or, Op0, Op1, Q))
1836     return C;
1837 
1838   // X | undef -> -1
1839   if (match(Op1, m_Undef()))
1840     return Constant::getAllOnesValue(Op0->getType());
1841 
1842   // X | X = X
1843   if (Op0 == Op1)
1844     return Op0;
1845 
1846   // X | 0 = X
1847   if (match(Op1, m_Zero()))
1848     return Op0;
1849 
1850   // X | -1 = -1
1851   if (match(Op1, m_AllOnes()))
1852     return Op1;
1853 
1854   // A | ~A  =  ~A | A  =  -1
1855   if (match(Op0, m_Not(m_Specific(Op1))) ||
1856       match(Op1, m_Not(m_Specific(Op0))))
1857     return Constant::getAllOnesValue(Op0->getType());
1858 
1859   // (A & ?) | A = A
1860   Value *A = nullptr, *B = nullptr;
1861   if (match(Op0, m_And(m_Value(A), m_Value(B))) &&
1862       (A == Op1 || B == Op1))
1863     return Op1;
1864 
1865   // A | (A & ?) = A
1866   if (match(Op1, m_And(m_Value(A), m_Value(B))) &&
1867       (A == Op0 || B == Op0))
1868     return Op0;
1869 
1870   // ~(A & ?) | A = -1
1871   if (match(Op0, m_Not(m_And(m_Value(A), m_Value(B)))) &&
1872       (A == Op1 || B == Op1))
1873     return Constant::getAllOnesValue(Op1->getType());
1874 
1875   // A | ~(A & ?) = -1
1876   if (match(Op1, m_Not(m_And(m_Value(A), m_Value(B)))) &&
1877       (A == Op0 || B == Op0))
1878     return Constant::getAllOnesValue(Op0->getType());
1879 
1880   if (auto *ICILHS = dyn_cast<ICmpInst>(Op0)) {
1881     if (auto *ICIRHS = dyn_cast<ICmpInst>(Op1)) {
1882       if (Value *V = SimplifyOrOfICmps(ICILHS, ICIRHS))
1883         return V;
1884       if (Value *V = SimplifyOrOfICmps(ICIRHS, ICILHS))
1885         return V;
1886     }
1887   }
1888 
1889   // Try some generic simplifications for associative operations.
1890   if (Value *V = SimplifyAssociativeBinOp(Instruction::Or, Op0, Op1, Q,
1891                                           MaxRecurse))
1892     return V;
1893 
1894   // Or distributes over And.  Try some generic simplifications based on this.
1895   if (Value *V = ExpandBinOp(Instruction::Or, Op0, Op1, Instruction::And, Q,
1896                              MaxRecurse))
1897     return V;
1898 
1899   // If the operation is with the result of a select instruction, check whether
1900   // operating on either branch of the select always yields the same value.
1901   if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
1902     if (Value *V = ThreadBinOpOverSelect(Instruction::Or, Op0, Op1, Q,
1903                                          MaxRecurse))
1904       return V;
1905 
1906   // (A & C)|(B & D)
1907   Value *C = nullptr, *D = nullptr;
1908   if (match(Op0, m_And(m_Value(A), m_Value(C))) &&
1909       match(Op1, m_And(m_Value(B), m_Value(D)))) {
1910     ConstantInt *C1 = dyn_cast<ConstantInt>(C);
1911     ConstantInt *C2 = dyn_cast<ConstantInt>(D);
1912     if (C1 && C2 && (C1->getValue() == ~C2->getValue())) {
1913       // (A & C1)|(B & C2)
1914       // If we have: ((V + N) & C1) | (V & C2)
1915       // .. and C2 = ~C1 and C2 is 0+1+ and (N & C2) == 0
1916       // replace with V+N.
1917       Value *V1, *V2;
1918       if ((C2->getValue() & (C2->getValue() + 1)) == 0 && // C2 == 0+1+
1919           match(A, m_Add(m_Value(V1), m_Value(V2)))) {
1920         // Add commutes, try both ways.
1921         if (V1 == B &&
1922             MaskedValueIsZero(V2, C2->getValue(), Q.DL, 0, Q.AC, Q.CxtI, Q.DT))
1923           return A;
1924         if (V2 == B &&
1925             MaskedValueIsZero(V1, C2->getValue(), Q.DL, 0, Q.AC, Q.CxtI, Q.DT))
1926           return A;
1927       }
1928       // Or commutes, try both ways.
1929       if ((C1->getValue() & (C1->getValue() + 1)) == 0 &&
1930           match(B, m_Add(m_Value(V1), m_Value(V2)))) {
1931         // Add commutes, try both ways.
1932         if (V1 == A &&
1933             MaskedValueIsZero(V2, C1->getValue(), Q.DL, 0, Q.AC, Q.CxtI, Q.DT))
1934           return B;
1935         if (V2 == A &&
1936             MaskedValueIsZero(V1, C1->getValue(), Q.DL, 0, Q.AC, Q.CxtI, Q.DT))
1937           return B;
1938       }
1939     }
1940   }
1941 
1942   // If the operation is with the result of a phi instruction, check whether
1943   // operating on all incoming values of the phi always yields the same value.
1944   if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
1945     if (Value *V = ThreadBinOpOverPHI(Instruction::Or, Op0, Op1, Q, MaxRecurse))
1946       return V;
1947 
1948   return nullptr;
1949 }
1950 
1951 Value *llvm::SimplifyOrInst(Value *Op0, Value *Op1, const DataLayout &DL,
1952                             const TargetLibraryInfo *TLI,
1953                             const DominatorTree *DT, AssumptionCache *AC,
1954                             const Instruction *CxtI) {
1955   return ::SimplifyOrInst(Op0, Op1, Query(DL, TLI, DT, AC, CxtI),
1956                           RecursionLimit);
1957 }
1958 
1959 /// Given operands for a Xor, see if we can fold the result.
1960 /// If not, this returns null.
1961 static Value *SimplifyXorInst(Value *Op0, Value *Op1, const Query &Q,
1962                               unsigned MaxRecurse) {
1963   if (Constant *C = foldOrCommuteConstant(Instruction::Xor, Op0, Op1, Q))
1964     return C;
1965 
1966   // A ^ undef -> undef
1967   if (match(Op1, m_Undef()))
1968     return Op1;
1969 
1970   // A ^ 0 = A
1971   if (match(Op1, m_Zero()))
1972     return Op0;
1973 
1974   // A ^ A = 0
1975   if (Op0 == Op1)
1976     return Constant::getNullValue(Op0->getType());
1977 
1978   // A ^ ~A  =  ~A ^ A  =  -1
1979   if (match(Op0, m_Not(m_Specific(Op1))) ||
1980       match(Op1, m_Not(m_Specific(Op0))))
1981     return Constant::getAllOnesValue(Op0->getType());
1982 
1983   // Try some generic simplifications for associative operations.
1984   if (Value *V = SimplifyAssociativeBinOp(Instruction::Xor, Op0, Op1, Q,
1985                                           MaxRecurse))
1986     return V;
1987 
1988   // Threading Xor over selects and phi nodes is pointless, so don't bother.
1989   // Threading over the select in "A ^ select(cond, B, C)" means evaluating
1990   // "A^B" and "A^C" and seeing if they are equal; but they are equal if and
1991   // only if B and C are equal.  If B and C are equal then (since we assume
1992   // that operands have already been simplified) "select(cond, B, C)" should
1993   // have been simplified to the common value of B and C already.  Analysing
1994   // "A^B" and "A^C" thus gains nothing, but costs compile time.  Similarly
1995   // for threading over phi nodes.
1996 
1997   return nullptr;
1998 }
1999 
2000 Value *llvm::SimplifyXorInst(Value *Op0, Value *Op1, const DataLayout &DL,
2001                              const TargetLibraryInfo *TLI,
2002                              const DominatorTree *DT, AssumptionCache *AC,
2003                              const Instruction *CxtI) {
2004   return ::SimplifyXorInst(Op0, Op1, Query(DL, TLI, DT, AC, CxtI),
2005                            RecursionLimit);
2006 }
2007 
2008 static Type *GetCompareTy(Value *Op) {
2009   return CmpInst::makeCmpResultType(Op->getType());
2010 }
2011 
2012 /// Rummage around inside V looking for something equivalent to the comparison
2013 /// "LHS Pred RHS". Return such a value if found, otherwise return null.
2014 /// Helper function for analyzing max/min idioms.
2015 static Value *ExtractEquivalentCondition(Value *V, CmpInst::Predicate Pred,
2016                                          Value *LHS, Value *RHS) {
2017   SelectInst *SI = dyn_cast<SelectInst>(V);
2018   if (!SI)
2019     return nullptr;
2020   CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition());
2021   if (!Cmp)
2022     return nullptr;
2023   Value *CmpLHS = Cmp->getOperand(0), *CmpRHS = Cmp->getOperand(1);
2024   if (Pred == Cmp->getPredicate() && LHS == CmpLHS && RHS == CmpRHS)
2025     return Cmp;
2026   if (Pred == CmpInst::getSwappedPredicate(Cmp->getPredicate()) &&
2027       LHS == CmpRHS && RHS == CmpLHS)
2028     return Cmp;
2029   return nullptr;
2030 }
2031 
2032 // A significant optimization not implemented here is assuming that alloca
2033 // addresses are not equal to incoming argument values. They don't *alias*,
2034 // as we say, but that doesn't mean they aren't equal, so we take a
2035 // conservative approach.
2036 //
2037 // This is inspired in part by C++11 5.10p1:
2038 //   "Two pointers of the same type compare equal if and only if they are both
2039 //    null, both point to the same function, or both represent the same
2040 //    address."
2041 //
2042 // This is pretty permissive.
2043 //
2044 // It's also partly due to C11 6.5.9p6:
2045 //   "Two pointers compare equal if and only if both are null pointers, both are
2046 //    pointers to the same object (including a pointer to an object and a
2047 //    subobject at its beginning) or function, both are pointers to one past the
2048 //    last element of the same array object, or one is a pointer to one past the
2049 //    end of one array object and the other is a pointer to the start of a
2050 //    different array object that happens to immediately follow the first array
2051 //    object in the address space.)
2052 //
2053 // C11's version is more restrictive, however there's no reason why an argument
2054 // couldn't be a one-past-the-end value for a stack object in the caller and be
2055 // equal to the beginning of a stack object in the callee.
2056 //
2057 // If the C and C++ standards are ever made sufficiently restrictive in this
2058 // area, it may be possible to update LLVM's semantics accordingly and reinstate
2059 // this optimization.
2060 static Constant *
2061 computePointerICmp(const DataLayout &DL, const TargetLibraryInfo *TLI,
2062                    const DominatorTree *DT, CmpInst::Predicate Pred,
2063                    const Instruction *CxtI, Value *LHS, Value *RHS) {
2064   // First, skip past any trivial no-ops.
2065   LHS = LHS->stripPointerCasts();
2066   RHS = RHS->stripPointerCasts();
2067 
2068   // A non-null pointer is not equal to a null pointer.
2069   if (llvm::isKnownNonNull(LHS) && isa<ConstantPointerNull>(RHS) &&
2070       (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE))
2071     return ConstantInt::get(GetCompareTy(LHS),
2072                             !CmpInst::isTrueWhenEqual(Pred));
2073 
2074   // We can only fold certain predicates on pointer comparisons.
2075   switch (Pred) {
2076   default:
2077     return nullptr;
2078 
2079     // Equality comaprisons are easy to fold.
2080   case CmpInst::ICMP_EQ:
2081   case CmpInst::ICMP_NE:
2082     break;
2083 
2084     // We can only handle unsigned relational comparisons because 'inbounds' on
2085     // a GEP only protects against unsigned wrapping.
2086   case CmpInst::ICMP_UGT:
2087   case CmpInst::ICMP_UGE:
2088   case CmpInst::ICMP_ULT:
2089   case CmpInst::ICMP_ULE:
2090     // However, we have to switch them to their signed variants to handle
2091     // negative indices from the base pointer.
2092     Pred = ICmpInst::getSignedPredicate(Pred);
2093     break;
2094   }
2095 
2096   // Strip off any constant offsets so that we can reason about them.
2097   // It's tempting to use getUnderlyingObject or even just stripInBoundsOffsets
2098   // here and compare base addresses like AliasAnalysis does, however there are
2099   // numerous hazards. AliasAnalysis and its utilities rely on special rules
2100   // governing loads and stores which don't apply to icmps. Also, AliasAnalysis
2101   // doesn't need to guarantee pointer inequality when it says NoAlias.
2102   Constant *LHSOffset = stripAndComputeConstantOffsets(DL, LHS);
2103   Constant *RHSOffset = stripAndComputeConstantOffsets(DL, RHS);
2104 
2105   // If LHS and RHS are related via constant offsets to the same base
2106   // value, we can replace it with an icmp which just compares the offsets.
2107   if (LHS == RHS)
2108     return ConstantExpr::getICmp(Pred, LHSOffset, RHSOffset);
2109 
2110   // Various optimizations for (in)equality comparisons.
2111   if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE) {
2112     // Different non-empty allocations that exist at the same time have
2113     // different addresses (if the program can tell). Global variables always
2114     // exist, so they always exist during the lifetime of each other and all
2115     // allocas. Two different allocas usually have different addresses...
2116     //
2117     // However, if there's an @llvm.stackrestore dynamically in between two
2118     // allocas, they may have the same address. It's tempting to reduce the
2119     // scope of the problem by only looking at *static* allocas here. That would
2120     // cover the majority of allocas while significantly reducing the likelihood
2121     // of having an @llvm.stackrestore pop up in the middle. However, it's not
2122     // actually impossible for an @llvm.stackrestore to pop up in the middle of
2123     // an entry block. Also, if we have a block that's not attached to a
2124     // function, we can't tell if it's "static" under the current definition.
2125     // Theoretically, this problem could be fixed by creating a new kind of
2126     // instruction kind specifically for static allocas. Such a new instruction
2127     // could be required to be at the top of the entry block, thus preventing it
2128     // from being subject to a @llvm.stackrestore. Instcombine could even
2129     // convert regular allocas into these special allocas. It'd be nifty.
2130     // However, until then, this problem remains open.
2131     //
2132     // So, we'll assume that two non-empty allocas have different addresses
2133     // for now.
2134     //
2135     // With all that, if the offsets are within the bounds of their allocations
2136     // (and not one-past-the-end! so we can't use inbounds!), and their
2137     // allocations aren't the same, the pointers are not equal.
2138     //
2139     // Note that it's not necessary to check for LHS being a global variable
2140     // address, due to canonicalization and constant folding.
2141     if (isa<AllocaInst>(LHS) &&
2142         (isa<AllocaInst>(RHS) || isa<GlobalVariable>(RHS))) {
2143       ConstantInt *LHSOffsetCI = dyn_cast<ConstantInt>(LHSOffset);
2144       ConstantInt *RHSOffsetCI = dyn_cast<ConstantInt>(RHSOffset);
2145       uint64_t LHSSize, RHSSize;
2146       if (LHSOffsetCI && RHSOffsetCI &&
2147           getObjectSize(LHS, LHSSize, DL, TLI) &&
2148           getObjectSize(RHS, RHSSize, DL, TLI)) {
2149         const APInt &LHSOffsetValue = LHSOffsetCI->getValue();
2150         const APInt &RHSOffsetValue = RHSOffsetCI->getValue();
2151         if (!LHSOffsetValue.isNegative() &&
2152             !RHSOffsetValue.isNegative() &&
2153             LHSOffsetValue.ult(LHSSize) &&
2154             RHSOffsetValue.ult(RHSSize)) {
2155           return ConstantInt::get(GetCompareTy(LHS),
2156                                   !CmpInst::isTrueWhenEqual(Pred));
2157         }
2158       }
2159 
2160       // Repeat the above check but this time without depending on DataLayout
2161       // or being able to compute a precise size.
2162       if (!cast<PointerType>(LHS->getType())->isEmptyTy() &&
2163           !cast<PointerType>(RHS->getType())->isEmptyTy() &&
2164           LHSOffset->isNullValue() &&
2165           RHSOffset->isNullValue())
2166         return ConstantInt::get(GetCompareTy(LHS),
2167                                 !CmpInst::isTrueWhenEqual(Pred));
2168     }
2169 
2170     // Even if an non-inbounds GEP occurs along the path we can still optimize
2171     // equality comparisons concerning the result. We avoid walking the whole
2172     // chain again by starting where the last calls to
2173     // stripAndComputeConstantOffsets left off and accumulate the offsets.
2174     Constant *LHSNoBound = stripAndComputeConstantOffsets(DL, LHS, true);
2175     Constant *RHSNoBound = stripAndComputeConstantOffsets(DL, RHS, true);
2176     if (LHS == RHS)
2177       return ConstantExpr::getICmp(Pred,
2178                                    ConstantExpr::getAdd(LHSOffset, LHSNoBound),
2179                                    ConstantExpr::getAdd(RHSOffset, RHSNoBound));
2180 
2181     // If one side of the equality comparison must come from a noalias call
2182     // (meaning a system memory allocation function), and the other side must
2183     // come from a pointer that cannot overlap with dynamically-allocated
2184     // memory within the lifetime of the current function (allocas, byval
2185     // arguments, globals), then determine the comparison result here.
2186     SmallVector<Value *, 8> LHSUObjs, RHSUObjs;
2187     GetUnderlyingObjects(LHS, LHSUObjs, DL);
2188     GetUnderlyingObjects(RHS, RHSUObjs, DL);
2189 
2190     // Is the set of underlying objects all noalias calls?
2191     auto IsNAC = [](ArrayRef<Value *> Objects) {
2192       return all_of(Objects, isNoAliasCall);
2193     };
2194 
2195     // Is the set of underlying objects all things which must be disjoint from
2196     // noalias calls. For allocas, we consider only static ones (dynamic
2197     // allocas might be transformed into calls to malloc not simultaneously
2198     // live with the compared-to allocation). For globals, we exclude symbols
2199     // that might be resolve lazily to symbols in another dynamically-loaded
2200     // library (and, thus, could be malloc'ed by the implementation).
2201     auto IsAllocDisjoint = [](ArrayRef<Value *> Objects) {
2202       return all_of(Objects, [](Value *V) {
2203         if (const AllocaInst *AI = dyn_cast<AllocaInst>(V))
2204           return AI->getParent() && AI->getFunction() && AI->isStaticAlloca();
2205         if (const GlobalValue *GV = dyn_cast<GlobalValue>(V))
2206           return (GV->hasLocalLinkage() || GV->hasHiddenVisibility() ||
2207                   GV->hasProtectedVisibility() || GV->hasGlobalUnnamedAddr()) &&
2208                  !GV->isThreadLocal();
2209         if (const Argument *A = dyn_cast<Argument>(V))
2210           return A->hasByValAttr();
2211         return false;
2212       });
2213     };
2214 
2215     if ((IsNAC(LHSUObjs) && IsAllocDisjoint(RHSUObjs)) ||
2216         (IsNAC(RHSUObjs) && IsAllocDisjoint(LHSUObjs)))
2217         return ConstantInt::get(GetCompareTy(LHS),
2218                                 !CmpInst::isTrueWhenEqual(Pred));
2219 
2220     // Fold comparisons for non-escaping pointer even if the allocation call
2221     // cannot be elided. We cannot fold malloc comparison to null. Also, the
2222     // dynamic allocation call could be either of the operands.
2223     Value *MI = nullptr;
2224     if (isAllocLikeFn(LHS, TLI) && llvm::isKnownNonNullAt(RHS, CxtI, DT))
2225       MI = LHS;
2226     else if (isAllocLikeFn(RHS, TLI) && llvm::isKnownNonNullAt(LHS, CxtI, DT))
2227       MI = RHS;
2228     // FIXME: We should also fold the compare when the pointer escapes, but the
2229     // compare dominates the pointer escape
2230     if (MI && !PointerMayBeCaptured(MI, true, true))
2231       return ConstantInt::get(GetCompareTy(LHS),
2232                               CmpInst::isFalseWhenEqual(Pred));
2233   }
2234 
2235   // Otherwise, fail.
2236   return nullptr;
2237 }
2238 
2239 /// Fold an icmp when its operands have i1 scalar type.
2240 static Value *simplifyICmpOfBools(CmpInst::Predicate Pred, Value *LHS,
2241                                   Value *RHS, const Query &Q) {
2242   Type *ITy = GetCompareTy(LHS); // The return type.
2243   Type *OpTy = LHS->getType();   // The operand type.
2244   if (!OpTy->getScalarType()->isIntegerTy(1))
2245     return nullptr;
2246 
2247   switch (Pred) {
2248   default:
2249     break;
2250   case ICmpInst::ICMP_EQ:
2251     // X == 1 -> X
2252     if (match(RHS, m_One()))
2253       return LHS;
2254     break;
2255   case ICmpInst::ICMP_NE:
2256     // X != 0 -> X
2257     if (match(RHS, m_Zero()))
2258       return LHS;
2259     break;
2260   case ICmpInst::ICMP_UGT:
2261     // X >u 0 -> X
2262     if (match(RHS, m_Zero()))
2263       return LHS;
2264     break;
2265   case ICmpInst::ICMP_UGE:
2266     // X >=u 1 -> X
2267     if (match(RHS, m_One()))
2268       return LHS;
2269     if (isImpliedCondition(RHS, LHS, Q.DL).getValueOr(false))
2270       return getTrue(ITy);
2271     break;
2272   case ICmpInst::ICMP_SGE:
2273     /// For signed comparison, the values for an i1 are 0 and -1
2274     /// respectively. This maps into a truth table of:
2275     /// LHS | RHS | LHS >=s RHS   | LHS implies RHS
2276     ///  0  |  0  |  1 (0 >= 0)   |  1
2277     ///  0  |  1  |  1 (0 >= -1)  |  1
2278     ///  1  |  0  |  0 (-1 >= 0)  |  0
2279     ///  1  |  1  |  1 (-1 >= -1) |  1
2280     if (isImpliedCondition(LHS, RHS, Q.DL).getValueOr(false))
2281       return getTrue(ITy);
2282     break;
2283   case ICmpInst::ICMP_SLT:
2284     // X <s 0 -> X
2285     if (match(RHS, m_Zero()))
2286       return LHS;
2287     break;
2288   case ICmpInst::ICMP_SLE:
2289     // X <=s -1 -> X
2290     if (match(RHS, m_One()))
2291       return LHS;
2292     break;
2293   case ICmpInst::ICMP_ULE:
2294     if (isImpliedCondition(LHS, RHS, Q.DL).getValueOr(false))
2295       return getTrue(ITy);
2296     break;
2297   }
2298 
2299   return nullptr;
2300 }
2301 
2302 /// Try hard to fold icmp with zero RHS because this is a common case.
2303 static Value *simplifyICmpWithZero(CmpInst::Predicate Pred, Value *LHS,
2304                                    Value *RHS, const Query &Q) {
2305   if (!match(RHS, m_Zero()))
2306     return nullptr;
2307 
2308   Type *ITy = GetCompareTy(LHS); // The return type.
2309   bool LHSKnownNonNegative, LHSKnownNegative;
2310   switch (Pred) {
2311   default:
2312     llvm_unreachable("Unknown ICmp predicate!");
2313   case ICmpInst::ICMP_ULT:
2314     return getFalse(ITy);
2315   case ICmpInst::ICMP_UGE:
2316     return getTrue(ITy);
2317   case ICmpInst::ICMP_EQ:
2318   case ICmpInst::ICMP_ULE:
2319     if (isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT))
2320       return getFalse(ITy);
2321     break;
2322   case ICmpInst::ICMP_NE:
2323   case ICmpInst::ICMP_UGT:
2324     if (isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT))
2325       return getTrue(ITy);
2326     break;
2327   case ICmpInst::ICMP_SLT:
2328     ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, Q.DL, 0, Q.AC,
2329                    Q.CxtI, Q.DT);
2330     if (LHSKnownNegative)
2331       return getTrue(ITy);
2332     if (LHSKnownNonNegative)
2333       return getFalse(ITy);
2334     break;
2335   case ICmpInst::ICMP_SLE:
2336     ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, Q.DL, 0, Q.AC,
2337                    Q.CxtI, Q.DT);
2338     if (LHSKnownNegative)
2339       return getTrue(ITy);
2340     if (LHSKnownNonNegative && isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT))
2341       return getFalse(ITy);
2342     break;
2343   case ICmpInst::ICMP_SGE:
2344     ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, Q.DL, 0, Q.AC,
2345                    Q.CxtI, Q.DT);
2346     if (LHSKnownNegative)
2347       return getFalse(ITy);
2348     if (LHSKnownNonNegative)
2349       return getTrue(ITy);
2350     break;
2351   case ICmpInst::ICMP_SGT:
2352     ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, Q.DL, 0, Q.AC,
2353                    Q.CxtI, Q.DT);
2354     if (LHSKnownNegative)
2355       return getFalse(ITy);
2356     if (LHSKnownNonNegative && isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT))
2357       return getTrue(ITy);
2358     break;
2359   }
2360 
2361   return nullptr;
2362 }
2363 
2364 /// Many binary operators with a constant operand have an easy-to-compute
2365 /// range of outputs. This can be used to fold a comparison to always true or
2366 /// always false.
2367 static void setLimitsForBinOp(BinaryOperator &BO, APInt &Lower, APInt &Upper) {
2368   unsigned Width = Lower.getBitWidth();
2369   const APInt *C;
2370   switch (BO.getOpcode()) {
2371   case Instruction::Add:
2372     if (match(BO.getOperand(1), m_APInt(C)) && *C != 0) {
2373       // FIXME: If we have both nuw and nsw, we should reduce the range further.
2374       if (BO.hasNoUnsignedWrap()) {
2375         // 'add nuw x, C' produces [C, UINT_MAX].
2376         Lower = *C;
2377       } else if (BO.hasNoSignedWrap()) {
2378         if (C->isNegative()) {
2379           // 'add nsw x, -C' produces [SINT_MIN, SINT_MAX - C].
2380           Lower = APInt::getSignedMinValue(Width);
2381           Upper = APInt::getSignedMaxValue(Width) + *C + 1;
2382         } else {
2383           // 'add nsw x, +C' produces [SINT_MIN + C, SINT_MAX].
2384           Lower = APInt::getSignedMinValue(Width) + *C;
2385           Upper = APInt::getSignedMaxValue(Width) + 1;
2386         }
2387       }
2388     }
2389     break;
2390 
2391   case Instruction::And:
2392     if (match(BO.getOperand(1), m_APInt(C)))
2393       // 'and x, C' produces [0, C].
2394       Upper = *C + 1;
2395     break;
2396 
2397   case Instruction::Or:
2398     if (match(BO.getOperand(1), m_APInt(C)))
2399       // 'or x, C' produces [C, UINT_MAX].
2400       Lower = *C;
2401     break;
2402 
2403   case Instruction::AShr:
2404     if (match(BO.getOperand(1), m_APInt(C)) && C->ult(Width)) {
2405       // 'ashr x, C' produces [INT_MIN >> C, INT_MAX >> C].
2406       Lower = APInt::getSignedMinValue(Width).ashr(*C);
2407       Upper = APInt::getSignedMaxValue(Width).ashr(*C) + 1;
2408     } else if (match(BO.getOperand(0), m_APInt(C))) {
2409       unsigned ShiftAmount = Width - 1;
2410       if (*C != 0 && BO.isExact())
2411         ShiftAmount = C->countTrailingZeros();
2412       if (C->isNegative()) {
2413         // 'ashr C, x' produces [C, C >> (Width-1)]
2414         Lower = *C;
2415         Upper = C->ashr(ShiftAmount) + 1;
2416       } else {
2417         // 'ashr C, x' produces [C >> (Width-1), C]
2418         Lower = C->ashr(ShiftAmount);
2419         Upper = *C + 1;
2420       }
2421     }
2422     break;
2423 
2424   case Instruction::LShr:
2425     if (match(BO.getOperand(1), m_APInt(C)) && C->ult(Width)) {
2426       // 'lshr x, C' produces [0, UINT_MAX >> C].
2427       Upper = APInt::getAllOnesValue(Width).lshr(*C) + 1;
2428     } else if (match(BO.getOperand(0), m_APInt(C))) {
2429       // 'lshr C, x' produces [C >> (Width-1), C].
2430       unsigned ShiftAmount = Width - 1;
2431       if (*C != 0 && BO.isExact())
2432         ShiftAmount = C->countTrailingZeros();
2433       Lower = C->lshr(ShiftAmount);
2434       Upper = *C + 1;
2435     }
2436     break;
2437 
2438   case Instruction::Shl:
2439     if (match(BO.getOperand(0), m_APInt(C))) {
2440       if (BO.hasNoUnsignedWrap()) {
2441         // 'shl nuw C, x' produces [C, C << CLZ(C)]
2442         Lower = *C;
2443         Upper = Lower.shl(Lower.countLeadingZeros()) + 1;
2444       } else if (BO.hasNoSignedWrap()) { // TODO: What if both nuw+nsw?
2445         if (C->isNegative()) {
2446           // 'shl nsw C, x' produces [C << CLO(C)-1, C]
2447           unsigned ShiftAmount = C->countLeadingOnes() - 1;
2448           Lower = C->shl(ShiftAmount);
2449           Upper = *C + 1;
2450         } else {
2451           // 'shl nsw C, x' produces [C, C << CLZ(C)-1]
2452           unsigned ShiftAmount = C->countLeadingZeros() - 1;
2453           Lower = *C;
2454           Upper = C->shl(ShiftAmount) + 1;
2455         }
2456       }
2457     }
2458     break;
2459 
2460   case Instruction::SDiv:
2461     if (match(BO.getOperand(1), m_APInt(C))) {
2462       APInt IntMin = APInt::getSignedMinValue(Width);
2463       APInt IntMax = APInt::getSignedMaxValue(Width);
2464       if (C->isAllOnesValue()) {
2465         // 'sdiv x, -1' produces [INT_MIN + 1, INT_MAX]
2466         //    where C != -1 and C != 0 and C != 1
2467         Lower = IntMin + 1;
2468         Upper = IntMax + 1;
2469       } else if (C->countLeadingZeros() < Width - 1) {
2470         // 'sdiv x, C' produces [INT_MIN / C, INT_MAX / C]
2471         //    where C != -1 and C != 0 and C != 1
2472         Lower = IntMin.sdiv(*C);
2473         Upper = IntMax.sdiv(*C);
2474         if (Lower.sgt(Upper))
2475           std::swap(Lower, Upper);
2476         Upper = Upper + 1;
2477         assert(Upper != Lower && "Upper part of range has wrapped!");
2478       }
2479     } else if (match(BO.getOperand(0), m_APInt(C))) {
2480       if (C->isMinSignedValue()) {
2481         // 'sdiv INT_MIN, x' produces [INT_MIN, INT_MIN / -2].
2482         Lower = *C;
2483         Upper = Lower.lshr(1) + 1;
2484       } else {
2485         // 'sdiv C, x' produces [-|C|, |C|].
2486         Upper = C->abs() + 1;
2487         Lower = (-Upper) + 1;
2488       }
2489     }
2490     break;
2491 
2492   case Instruction::UDiv:
2493     if (match(BO.getOperand(1), m_APInt(C)) && *C != 0) {
2494       // 'udiv x, C' produces [0, UINT_MAX / C].
2495       Upper = APInt::getMaxValue(Width).udiv(*C) + 1;
2496     } else if (match(BO.getOperand(0), m_APInt(C))) {
2497       // 'udiv C, x' produces [0, C].
2498       Upper = *C + 1;
2499     }
2500     break;
2501 
2502   case Instruction::SRem:
2503     if (match(BO.getOperand(1), m_APInt(C))) {
2504       // 'srem x, C' produces (-|C|, |C|).
2505       Upper = C->abs();
2506       Lower = (-Upper) + 1;
2507     }
2508     break;
2509 
2510   case Instruction::URem:
2511     if (match(BO.getOperand(1), m_APInt(C)))
2512       // 'urem x, C' produces [0, C).
2513       Upper = *C;
2514     break;
2515 
2516   default:
2517     break;
2518   }
2519 }
2520 
2521 static Value *simplifyICmpWithConstant(CmpInst::Predicate Pred, Value *LHS,
2522                                        Value *RHS) {
2523   const APInt *C;
2524   if (!match(RHS, m_APInt(C)))
2525     return nullptr;
2526 
2527   // Rule out tautological comparisons (eg., ult 0 or uge 0).
2528   ConstantRange RHS_CR = ConstantRange::makeExactICmpRegion(Pred, *C);
2529   if (RHS_CR.isEmptySet())
2530     return ConstantInt::getFalse(GetCompareTy(RHS));
2531   if (RHS_CR.isFullSet())
2532     return ConstantInt::getTrue(GetCompareTy(RHS));
2533 
2534   // Find the range of possible values for binary operators.
2535   unsigned Width = C->getBitWidth();
2536   APInt Lower = APInt(Width, 0);
2537   APInt Upper = APInt(Width, 0);
2538   if (auto *BO = dyn_cast<BinaryOperator>(LHS))
2539     setLimitsForBinOp(*BO, Lower, Upper);
2540 
2541   ConstantRange LHS_CR =
2542       Lower != Upper ? ConstantRange(Lower, Upper) : ConstantRange(Width, true);
2543 
2544   if (auto *I = dyn_cast<Instruction>(LHS))
2545     if (auto *Ranges = I->getMetadata(LLVMContext::MD_range))
2546       LHS_CR = LHS_CR.intersectWith(getConstantRangeFromMetadata(*Ranges));
2547 
2548   if (!LHS_CR.isFullSet()) {
2549     if (RHS_CR.contains(LHS_CR))
2550       return ConstantInt::getTrue(GetCompareTy(RHS));
2551     if (RHS_CR.inverse().contains(LHS_CR))
2552       return ConstantInt::getFalse(GetCompareTy(RHS));
2553   }
2554 
2555   return nullptr;
2556 }
2557 
2558 static Value *simplifyICmpWithBinOp(CmpInst::Predicate Pred, Value *LHS,
2559                                     Value *RHS, const Query &Q,
2560                                     unsigned MaxRecurse) {
2561   Type *ITy = GetCompareTy(LHS); // The return type.
2562 
2563   BinaryOperator *LBO = dyn_cast<BinaryOperator>(LHS);
2564   BinaryOperator *RBO = dyn_cast<BinaryOperator>(RHS);
2565   if (MaxRecurse && (LBO || RBO)) {
2566     // Analyze the case when either LHS or RHS is an add instruction.
2567     Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr;
2568     // LHS = A + B (or A and B are null); RHS = C + D (or C and D are null).
2569     bool NoLHSWrapProblem = false, NoRHSWrapProblem = false;
2570     if (LBO && LBO->getOpcode() == Instruction::Add) {
2571       A = LBO->getOperand(0);
2572       B = LBO->getOperand(1);
2573       NoLHSWrapProblem =
2574           ICmpInst::isEquality(Pred) ||
2575           (CmpInst::isUnsigned(Pred) && LBO->hasNoUnsignedWrap()) ||
2576           (CmpInst::isSigned(Pred) && LBO->hasNoSignedWrap());
2577     }
2578     if (RBO && RBO->getOpcode() == Instruction::Add) {
2579       C = RBO->getOperand(0);
2580       D = RBO->getOperand(1);
2581       NoRHSWrapProblem =
2582           ICmpInst::isEquality(Pred) ||
2583           (CmpInst::isUnsigned(Pred) && RBO->hasNoUnsignedWrap()) ||
2584           (CmpInst::isSigned(Pred) && RBO->hasNoSignedWrap());
2585     }
2586 
2587     // icmp (X+Y), X -> icmp Y, 0 for equalities or if there is no overflow.
2588     if ((A == RHS || B == RHS) && NoLHSWrapProblem)
2589       if (Value *V = SimplifyICmpInst(Pred, A == RHS ? B : A,
2590                                       Constant::getNullValue(RHS->getType()), Q,
2591                                       MaxRecurse - 1))
2592         return V;
2593 
2594     // icmp X, (X+Y) -> icmp 0, Y for equalities or if there is no overflow.
2595     if ((C == LHS || D == LHS) && NoRHSWrapProblem)
2596       if (Value *V =
2597               SimplifyICmpInst(Pred, Constant::getNullValue(LHS->getType()),
2598                                C == LHS ? D : C, Q, MaxRecurse - 1))
2599         return V;
2600 
2601     // icmp (X+Y), (X+Z) -> icmp Y,Z for equalities or if there is no overflow.
2602     if (A && C && (A == C || A == D || B == C || B == D) && NoLHSWrapProblem &&
2603         NoRHSWrapProblem) {
2604       // Determine Y and Z in the form icmp (X+Y), (X+Z).
2605       Value *Y, *Z;
2606       if (A == C) {
2607         // C + B == C + D  ->  B == D
2608         Y = B;
2609         Z = D;
2610       } else if (A == D) {
2611         // D + B == C + D  ->  B == C
2612         Y = B;
2613         Z = C;
2614       } else if (B == C) {
2615         // A + C == C + D  ->  A == D
2616         Y = A;
2617         Z = D;
2618       } else {
2619         assert(B == D);
2620         // A + D == C + D  ->  A == C
2621         Y = A;
2622         Z = C;
2623       }
2624       if (Value *V = SimplifyICmpInst(Pred, Y, Z, Q, MaxRecurse - 1))
2625         return V;
2626     }
2627   }
2628 
2629   {
2630     Value *Y = nullptr;
2631     // icmp pred (or X, Y), X
2632     if (LBO && match(LBO, m_c_Or(m_Value(Y), m_Specific(RHS)))) {
2633       if (Pred == ICmpInst::ICMP_ULT)
2634         return getFalse(ITy);
2635       if (Pred == ICmpInst::ICMP_UGE)
2636         return getTrue(ITy);
2637 
2638       if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SGE) {
2639         bool RHSKnownNonNegative, RHSKnownNegative;
2640         bool YKnownNonNegative, YKnownNegative;
2641         ComputeSignBit(RHS, RHSKnownNonNegative, RHSKnownNegative, Q.DL, 0,
2642                        Q.AC, Q.CxtI, Q.DT);
2643         ComputeSignBit(Y, YKnownNonNegative, YKnownNegative, Q.DL, 0, Q.AC,
2644                        Q.CxtI, Q.DT);
2645         if (RHSKnownNonNegative && YKnownNegative)
2646           return Pred == ICmpInst::ICMP_SLT ? getTrue(ITy) : getFalse(ITy);
2647         if (RHSKnownNegative || YKnownNonNegative)
2648           return Pred == ICmpInst::ICMP_SLT ? getFalse(ITy) : getTrue(ITy);
2649       }
2650     }
2651     // icmp pred X, (or X, Y)
2652     if (RBO && match(RBO, m_c_Or(m_Value(Y), m_Specific(LHS)))) {
2653       if (Pred == ICmpInst::ICMP_ULE)
2654         return getTrue(ITy);
2655       if (Pred == ICmpInst::ICMP_UGT)
2656         return getFalse(ITy);
2657 
2658       if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SLE) {
2659         bool LHSKnownNonNegative, LHSKnownNegative;
2660         bool YKnownNonNegative, YKnownNegative;
2661         ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, Q.DL, 0,
2662                        Q.AC, Q.CxtI, Q.DT);
2663         ComputeSignBit(Y, YKnownNonNegative, YKnownNegative, Q.DL, 0, Q.AC,
2664                        Q.CxtI, Q.DT);
2665         if (LHSKnownNonNegative && YKnownNegative)
2666           return Pred == ICmpInst::ICMP_SGT ? getTrue(ITy) : getFalse(ITy);
2667         if (LHSKnownNegative || YKnownNonNegative)
2668           return Pred == ICmpInst::ICMP_SGT ? getFalse(ITy) : getTrue(ITy);
2669       }
2670     }
2671   }
2672 
2673   // icmp pred (and X, Y), X
2674   if (LBO && match(LBO, m_CombineOr(m_And(m_Value(), m_Specific(RHS)),
2675                                     m_And(m_Specific(RHS), m_Value())))) {
2676     if (Pred == ICmpInst::ICMP_UGT)
2677       return getFalse(ITy);
2678     if (Pred == ICmpInst::ICMP_ULE)
2679       return getTrue(ITy);
2680   }
2681   // icmp pred X, (and X, Y)
2682   if (RBO && match(RBO, m_CombineOr(m_And(m_Value(), m_Specific(LHS)),
2683                                     m_And(m_Specific(LHS), m_Value())))) {
2684     if (Pred == ICmpInst::ICMP_UGE)
2685       return getTrue(ITy);
2686     if (Pred == ICmpInst::ICMP_ULT)
2687       return getFalse(ITy);
2688   }
2689 
2690   // 0 - (zext X) pred C
2691   if (!CmpInst::isUnsigned(Pred) && match(LHS, m_Neg(m_ZExt(m_Value())))) {
2692     if (ConstantInt *RHSC = dyn_cast<ConstantInt>(RHS)) {
2693       if (RHSC->getValue().isStrictlyPositive()) {
2694         if (Pred == ICmpInst::ICMP_SLT)
2695           return ConstantInt::getTrue(RHSC->getContext());
2696         if (Pred == ICmpInst::ICMP_SGE)
2697           return ConstantInt::getFalse(RHSC->getContext());
2698         if (Pred == ICmpInst::ICMP_EQ)
2699           return ConstantInt::getFalse(RHSC->getContext());
2700         if (Pred == ICmpInst::ICMP_NE)
2701           return ConstantInt::getTrue(RHSC->getContext());
2702       }
2703       if (RHSC->getValue().isNonNegative()) {
2704         if (Pred == ICmpInst::ICMP_SLE)
2705           return ConstantInt::getTrue(RHSC->getContext());
2706         if (Pred == ICmpInst::ICMP_SGT)
2707           return ConstantInt::getFalse(RHSC->getContext());
2708       }
2709     }
2710   }
2711 
2712   // icmp pred (urem X, Y), Y
2713   if (LBO && match(LBO, m_URem(m_Value(), m_Specific(RHS)))) {
2714     bool KnownNonNegative, KnownNegative;
2715     switch (Pred) {
2716     default:
2717       break;
2718     case ICmpInst::ICMP_SGT:
2719     case ICmpInst::ICMP_SGE:
2720       ComputeSignBit(RHS, KnownNonNegative, KnownNegative, Q.DL, 0, Q.AC,
2721                      Q.CxtI, Q.DT);
2722       if (!KnownNonNegative)
2723         break;
2724       LLVM_FALLTHROUGH;
2725     case ICmpInst::ICMP_EQ:
2726     case ICmpInst::ICMP_UGT:
2727     case ICmpInst::ICMP_UGE:
2728       return getFalse(ITy);
2729     case ICmpInst::ICMP_SLT:
2730     case ICmpInst::ICMP_SLE:
2731       ComputeSignBit(RHS, KnownNonNegative, KnownNegative, Q.DL, 0, Q.AC,
2732                      Q.CxtI, Q.DT);
2733       if (!KnownNonNegative)
2734         break;
2735       LLVM_FALLTHROUGH;
2736     case ICmpInst::ICMP_NE:
2737     case ICmpInst::ICMP_ULT:
2738     case ICmpInst::ICMP_ULE:
2739       return getTrue(ITy);
2740     }
2741   }
2742 
2743   // icmp pred X, (urem Y, X)
2744   if (RBO && match(RBO, m_URem(m_Value(), m_Specific(LHS)))) {
2745     bool KnownNonNegative, KnownNegative;
2746     switch (Pred) {
2747     default:
2748       break;
2749     case ICmpInst::ICMP_SGT:
2750     case ICmpInst::ICMP_SGE:
2751       ComputeSignBit(LHS, KnownNonNegative, KnownNegative, Q.DL, 0, Q.AC,
2752                      Q.CxtI, Q.DT);
2753       if (!KnownNonNegative)
2754         break;
2755       LLVM_FALLTHROUGH;
2756     case ICmpInst::ICMP_NE:
2757     case ICmpInst::ICMP_UGT:
2758     case ICmpInst::ICMP_UGE:
2759       return getTrue(ITy);
2760     case ICmpInst::ICMP_SLT:
2761     case ICmpInst::ICMP_SLE:
2762       ComputeSignBit(LHS, KnownNonNegative, KnownNegative, Q.DL, 0, Q.AC,
2763                      Q.CxtI, Q.DT);
2764       if (!KnownNonNegative)
2765         break;
2766       LLVM_FALLTHROUGH;
2767     case ICmpInst::ICMP_EQ:
2768     case ICmpInst::ICMP_ULT:
2769     case ICmpInst::ICMP_ULE:
2770       return getFalse(ITy);
2771     }
2772   }
2773 
2774   // x >> y <=u x
2775   // x udiv y <=u x.
2776   if (LBO && (match(LBO, m_LShr(m_Specific(RHS), m_Value())) ||
2777               match(LBO, m_UDiv(m_Specific(RHS), m_Value())))) {
2778     // icmp pred (X op Y), X
2779     if (Pred == ICmpInst::ICMP_UGT)
2780       return getFalse(ITy);
2781     if (Pred == ICmpInst::ICMP_ULE)
2782       return getTrue(ITy);
2783   }
2784 
2785   // x >=u x >> y
2786   // x >=u x udiv y.
2787   if (RBO && (match(RBO, m_LShr(m_Specific(LHS), m_Value())) ||
2788               match(RBO, m_UDiv(m_Specific(LHS), m_Value())))) {
2789     // icmp pred X, (X op Y)
2790     if (Pred == ICmpInst::ICMP_ULT)
2791       return getFalse(ITy);
2792     if (Pred == ICmpInst::ICMP_UGE)
2793       return getTrue(ITy);
2794   }
2795 
2796   // handle:
2797   //   CI2 << X == CI
2798   //   CI2 << X != CI
2799   //
2800   //   where CI2 is a power of 2 and CI isn't
2801   if (auto *CI = dyn_cast<ConstantInt>(RHS)) {
2802     const APInt *CI2Val, *CIVal = &CI->getValue();
2803     if (LBO && match(LBO, m_Shl(m_APInt(CI2Val), m_Value())) &&
2804         CI2Val->isPowerOf2()) {
2805       if (!CIVal->isPowerOf2()) {
2806         // CI2 << X can equal zero in some circumstances,
2807         // this simplification is unsafe if CI is zero.
2808         //
2809         // We know it is safe if:
2810         // - The shift is nsw, we can't shift out the one bit.
2811         // - The shift is nuw, we can't shift out the one bit.
2812         // - CI2 is one
2813         // - CI isn't zero
2814         if (LBO->hasNoSignedWrap() || LBO->hasNoUnsignedWrap() ||
2815             *CI2Val == 1 || !CI->isZero()) {
2816           if (Pred == ICmpInst::ICMP_EQ)
2817             return ConstantInt::getFalse(RHS->getContext());
2818           if (Pred == ICmpInst::ICMP_NE)
2819             return ConstantInt::getTrue(RHS->getContext());
2820         }
2821       }
2822       if (CIVal->isSignBit() && *CI2Val == 1) {
2823         if (Pred == ICmpInst::ICMP_UGT)
2824           return ConstantInt::getFalse(RHS->getContext());
2825         if (Pred == ICmpInst::ICMP_ULE)
2826           return ConstantInt::getTrue(RHS->getContext());
2827       }
2828     }
2829   }
2830 
2831   if (MaxRecurse && LBO && RBO && LBO->getOpcode() == RBO->getOpcode() &&
2832       LBO->getOperand(1) == RBO->getOperand(1)) {
2833     switch (LBO->getOpcode()) {
2834     default:
2835       break;
2836     case Instruction::UDiv:
2837     case Instruction::LShr:
2838       if (ICmpInst::isSigned(Pred))
2839         break;
2840       LLVM_FALLTHROUGH;
2841     case Instruction::SDiv:
2842     case Instruction::AShr:
2843       if (!LBO->isExact() || !RBO->isExact())
2844         break;
2845       if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0),
2846                                       RBO->getOperand(0), Q, MaxRecurse - 1))
2847         return V;
2848       break;
2849     case Instruction::Shl: {
2850       bool NUW = LBO->hasNoUnsignedWrap() && RBO->hasNoUnsignedWrap();
2851       bool NSW = LBO->hasNoSignedWrap() && RBO->hasNoSignedWrap();
2852       if (!NUW && !NSW)
2853         break;
2854       if (!NSW && ICmpInst::isSigned(Pred))
2855         break;
2856       if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0),
2857                                       RBO->getOperand(0), Q, MaxRecurse - 1))
2858         return V;
2859       break;
2860     }
2861     }
2862   }
2863   return nullptr;
2864 }
2865 
2866 /// Simplify integer comparisons where at least one operand of the compare
2867 /// matches an integer min/max idiom.
2868 static Value *simplifyICmpWithMinMax(CmpInst::Predicate Pred, Value *LHS,
2869                                      Value *RHS, const Query &Q,
2870                                      unsigned MaxRecurse) {
2871   Type *ITy = GetCompareTy(LHS); // The return type.
2872   Value *A, *B;
2873   CmpInst::Predicate P = CmpInst::BAD_ICMP_PREDICATE;
2874   CmpInst::Predicate EqP; // Chosen so that "A == max/min(A,B)" iff "A EqP B".
2875 
2876   // Signed variants on "max(a,b)>=a -> true".
2877   if (match(LHS, m_SMax(m_Value(A), m_Value(B))) && (A == RHS || B == RHS)) {
2878     if (A != RHS)
2879       std::swap(A, B);       // smax(A, B) pred A.
2880     EqP = CmpInst::ICMP_SGE; // "A == smax(A, B)" iff "A sge B".
2881     // We analyze this as smax(A, B) pred A.
2882     P = Pred;
2883   } else if (match(RHS, m_SMax(m_Value(A), m_Value(B))) &&
2884              (A == LHS || B == LHS)) {
2885     if (A != LHS)
2886       std::swap(A, B);       // A pred smax(A, B).
2887     EqP = CmpInst::ICMP_SGE; // "A == smax(A, B)" iff "A sge B".
2888     // We analyze this as smax(A, B) swapped-pred A.
2889     P = CmpInst::getSwappedPredicate(Pred);
2890   } else if (match(LHS, m_SMin(m_Value(A), m_Value(B))) &&
2891              (A == RHS || B == RHS)) {
2892     if (A != RHS)
2893       std::swap(A, B);       // smin(A, B) pred A.
2894     EqP = CmpInst::ICMP_SLE; // "A == smin(A, B)" iff "A sle B".
2895     // We analyze this as smax(-A, -B) swapped-pred -A.
2896     // Note that we do not need to actually form -A or -B thanks to EqP.
2897     P = CmpInst::getSwappedPredicate(Pred);
2898   } else if (match(RHS, m_SMin(m_Value(A), m_Value(B))) &&
2899              (A == LHS || B == LHS)) {
2900     if (A != LHS)
2901       std::swap(A, B);       // A pred smin(A, B).
2902     EqP = CmpInst::ICMP_SLE; // "A == smin(A, B)" iff "A sle B".
2903     // We analyze this as smax(-A, -B) pred -A.
2904     // Note that we do not need to actually form -A or -B thanks to EqP.
2905     P = Pred;
2906   }
2907   if (P != CmpInst::BAD_ICMP_PREDICATE) {
2908     // Cases correspond to "max(A, B) p A".
2909     switch (P) {
2910     default:
2911       break;
2912     case CmpInst::ICMP_EQ:
2913     case CmpInst::ICMP_SLE:
2914       // Equivalent to "A EqP B".  This may be the same as the condition tested
2915       // in the max/min; if so, we can just return that.
2916       if (Value *V = ExtractEquivalentCondition(LHS, EqP, A, B))
2917         return V;
2918       if (Value *V = ExtractEquivalentCondition(RHS, EqP, A, B))
2919         return V;
2920       // Otherwise, see if "A EqP B" simplifies.
2921       if (MaxRecurse)
2922         if (Value *V = SimplifyICmpInst(EqP, A, B, Q, MaxRecurse - 1))
2923           return V;
2924       break;
2925     case CmpInst::ICMP_NE:
2926     case CmpInst::ICMP_SGT: {
2927       CmpInst::Predicate InvEqP = CmpInst::getInversePredicate(EqP);
2928       // Equivalent to "A InvEqP B".  This may be the same as the condition
2929       // tested in the max/min; if so, we can just return that.
2930       if (Value *V = ExtractEquivalentCondition(LHS, InvEqP, A, B))
2931         return V;
2932       if (Value *V = ExtractEquivalentCondition(RHS, InvEqP, A, B))
2933         return V;
2934       // Otherwise, see if "A InvEqP B" simplifies.
2935       if (MaxRecurse)
2936         if (Value *V = SimplifyICmpInst(InvEqP, A, B, Q, MaxRecurse - 1))
2937           return V;
2938       break;
2939     }
2940     case CmpInst::ICMP_SGE:
2941       // Always true.
2942       return getTrue(ITy);
2943     case CmpInst::ICMP_SLT:
2944       // Always false.
2945       return getFalse(ITy);
2946     }
2947   }
2948 
2949   // Unsigned variants on "max(a,b)>=a -> true".
2950   P = CmpInst::BAD_ICMP_PREDICATE;
2951   if (match(LHS, m_UMax(m_Value(A), m_Value(B))) && (A == RHS || B == RHS)) {
2952     if (A != RHS)
2953       std::swap(A, B);       // umax(A, B) pred A.
2954     EqP = CmpInst::ICMP_UGE; // "A == umax(A, B)" iff "A uge B".
2955     // We analyze this as umax(A, B) pred A.
2956     P = Pred;
2957   } else if (match(RHS, m_UMax(m_Value(A), m_Value(B))) &&
2958              (A == LHS || B == LHS)) {
2959     if (A != LHS)
2960       std::swap(A, B);       // A pred umax(A, B).
2961     EqP = CmpInst::ICMP_UGE; // "A == umax(A, B)" iff "A uge B".
2962     // We analyze this as umax(A, B) swapped-pred A.
2963     P = CmpInst::getSwappedPredicate(Pred);
2964   } else if (match(LHS, m_UMin(m_Value(A), m_Value(B))) &&
2965              (A == RHS || B == RHS)) {
2966     if (A != RHS)
2967       std::swap(A, B);       // umin(A, B) pred A.
2968     EqP = CmpInst::ICMP_ULE; // "A == umin(A, B)" iff "A ule B".
2969     // We analyze this as umax(-A, -B) swapped-pred -A.
2970     // Note that we do not need to actually form -A or -B thanks to EqP.
2971     P = CmpInst::getSwappedPredicate(Pred);
2972   } else if (match(RHS, m_UMin(m_Value(A), m_Value(B))) &&
2973              (A == LHS || B == LHS)) {
2974     if (A != LHS)
2975       std::swap(A, B);       // A pred umin(A, B).
2976     EqP = CmpInst::ICMP_ULE; // "A == umin(A, B)" iff "A ule B".
2977     // We analyze this as umax(-A, -B) pred -A.
2978     // Note that we do not need to actually form -A or -B thanks to EqP.
2979     P = Pred;
2980   }
2981   if (P != CmpInst::BAD_ICMP_PREDICATE) {
2982     // Cases correspond to "max(A, B) p A".
2983     switch (P) {
2984     default:
2985       break;
2986     case CmpInst::ICMP_EQ:
2987     case CmpInst::ICMP_ULE:
2988       // Equivalent to "A EqP B".  This may be the same as the condition tested
2989       // in the max/min; if so, we can just return that.
2990       if (Value *V = ExtractEquivalentCondition(LHS, EqP, A, B))
2991         return V;
2992       if (Value *V = ExtractEquivalentCondition(RHS, EqP, A, B))
2993         return V;
2994       // Otherwise, see if "A EqP B" simplifies.
2995       if (MaxRecurse)
2996         if (Value *V = SimplifyICmpInst(EqP, A, B, Q, MaxRecurse - 1))
2997           return V;
2998       break;
2999     case CmpInst::ICMP_NE:
3000     case CmpInst::ICMP_UGT: {
3001       CmpInst::Predicate InvEqP = CmpInst::getInversePredicate(EqP);
3002       // Equivalent to "A InvEqP B".  This may be the same as the condition
3003       // tested in the max/min; if so, we can just return that.
3004       if (Value *V = ExtractEquivalentCondition(LHS, InvEqP, A, B))
3005         return V;
3006       if (Value *V = ExtractEquivalentCondition(RHS, InvEqP, A, B))
3007         return V;
3008       // Otherwise, see if "A InvEqP B" simplifies.
3009       if (MaxRecurse)
3010         if (Value *V = SimplifyICmpInst(InvEqP, A, B, Q, MaxRecurse - 1))
3011           return V;
3012       break;
3013     }
3014     case CmpInst::ICMP_UGE:
3015       // Always true.
3016       return getTrue(ITy);
3017     case CmpInst::ICMP_ULT:
3018       // Always false.
3019       return getFalse(ITy);
3020     }
3021   }
3022 
3023   // Variants on "max(x,y) >= min(x,z)".
3024   Value *C, *D;
3025   if (match(LHS, m_SMax(m_Value(A), m_Value(B))) &&
3026       match(RHS, m_SMin(m_Value(C), m_Value(D))) &&
3027       (A == C || A == D || B == C || B == D)) {
3028     // max(x, ?) pred min(x, ?).
3029     if (Pred == CmpInst::ICMP_SGE)
3030       // Always true.
3031       return getTrue(ITy);
3032     if (Pred == CmpInst::ICMP_SLT)
3033       // Always false.
3034       return getFalse(ITy);
3035   } else if (match(LHS, m_SMin(m_Value(A), m_Value(B))) &&
3036              match(RHS, m_SMax(m_Value(C), m_Value(D))) &&
3037              (A == C || A == D || B == C || B == D)) {
3038     // min(x, ?) pred max(x, ?).
3039     if (Pred == CmpInst::ICMP_SLE)
3040       // Always true.
3041       return getTrue(ITy);
3042     if (Pred == CmpInst::ICMP_SGT)
3043       // Always false.
3044       return getFalse(ITy);
3045   } else if (match(LHS, m_UMax(m_Value(A), m_Value(B))) &&
3046              match(RHS, m_UMin(m_Value(C), m_Value(D))) &&
3047              (A == C || A == D || B == C || B == D)) {
3048     // max(x, ?) pred min(x, ?).
3049     if (Pred == CmpInst::ICMP_UGE)
3050       // Always true.
3051       return getTrue(ITy);
3052     if (Pred == CmpInst::ICMP_ULT)
3053       // Always false.
3054       return getFalse(ITy);
3055   } else if (match(LHS, m_UMin(m_Value(A), m_Value(B))) &&
3056              match(RHS, m_UMax(m_Value(C), m_Value(D))) &&
3057              (A == C || A == D || B == C || B == D)) {
3058     // min(x, ?) pred max(x, ?).
3059     if (Pred == CmpInst::ICMP_ULE)
3060       // Always true.
3061       return getTrue(ITy);
3062     if (Pred == CmpInst::ICMP_UGT)
3063       // Always false.
3064       return getFalse(ITy);
3065   }
3066 
3067   return nullptr;
3068 }
3069 
3070 /// Given operands for an ICmpInst, see if we can fold the result.
3071 /// If not, this returns null.
3072 static Value *SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS,
3073                                const Query &Q, unsigned MaxRecurse) {
3074   CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate;
3075   assert(CmpInst::isIntPredicate(Pred) && "Not an integer compare!");
3076 
3077   if (Constant *CLHS = dyn_cast<Constant>(LHS)) {
3078     if (Constant *CRHS = dyn_cast<Constant>(RHS))
3079       return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, Q.DL, Q.TLI);
3080 
3081     // If we have a constant, make sure it is on the RHS.
3082     std::swap(LHS, RHS);
3083     Pred = CmpInst::getSwappedPredicate(Pred);
3084   }
3085 
3086   Type *ITy = GetCompareTy(LHS); // The return type.
3087 
3088   // icmp X, X -> true/false
3089   // X icmp undef -> true/false.  For example, icmp ugt %X, undef -> false
3090   // because X could be 0.
3091   if (LHS == RHS || isa<UndefValue>(RHS))
3092     return ConstantInt::get(ITy, CmpInst::isTrueWhenEqual(Pred));
3093 
3094   if (Value *V = simplifyICmpOfBools(Pred, LHS, RHS, Q))
3095     return V;
3096 
3097   if (Value *V = simplifyICmpWithZero(Pred, LHS, RHS, Q))
3098     return V;
3099 
3100   if (Value *V = simplifyICmpWithConstant(Pred, LHS, RHS))
3101     return V;
3102 
3103   // If both operands have range metadata, use the metadata
3104   // to simplify the comparison.
3105   if (isa<Instruction>(RHS) && isa<Instruction>(LHS)) {
3106     auto RHS_Instr = cast<Instruction>(RHS);
3107     auto LHS_Instr = cast<Instruction>(LHS);
3108 
3109     if (RHS_Instr->getMetadata(LLVMContext::MD_range) &&
3110         LHS_Instr->getMetadata(LLVMContext::MD_range)) {
3111       auto RHS_CR = getConstantRangeFromMetadata(
3112           *RHS_Instr->getMetadata(LLVMContext::MD_range));
3113       auto LHS_CR = getConstantRangeFromMetadata(
3114           *LHS_Instr->getMetadata(LLVMContext::MD_range));
3115 
3116       auto Satisfied_CR = ConstantRange::makeSatisfyingICmpRegion(Pred, RHS_CR);
3117       if (Satisfied_CR.contains(LHS_CR))
3118         return ConstantInt::getTrue(RHS->getContext());
3119 
3120       auto InversedSatisfied_CR = ConstantRange::makeSatisfyingICmpRegion(
3121                 CmpInst::getInversePredicate(Pred), RHS_CR);
3122       if (InversedSatisfied_CR.contains(LHS_CR))
3123         return ConstantInt::getFalse(RHS->getContext());
3124     }
3125   }
3126 
3127   // Compare of cast, for example (zext X) != 0 -> X != 0
3128   if (isa<CastInst>(LHS) && (isa<Constant>(RHS) || isa<CastInst>(RHS))) {
3129     Instruction *LI = cast<CastInst>(LHS);
3130     Value *SrcOp = LI->getOperand(0);
3131     Type *SrcTy = SrcOp->getType();
3132     Type *DstTy = LI->getType();
3133 
3134     // Turn icmp (ptrtoint x), (ptrtoint/constant) into a compare of the input
3135     // if the integer type is the same size as the pointer type.
3136     if (MaxRecurse && isa<PtrToIntInst>(LI) &&
3137         Q.DL.getTypeSizeInBits(SrcTy) == DstTy->getPrimitiveSizeInBits()) {
3138       if (Constant *RHSC = dyn_cast<Constant>(RHS)) {
3139         // Transfer the cast to the constant.
3140         if (Value *V = SimplifyICmpInst(Pred, SrcOp,
3141                                         ConstantExpr::getIntToPtr(RHSC, SrcTy),
3142                                         Q, MaxRecurse-1))
3143           return V;
3144       } else if (PtrToIntInst *RI = dyn_cast<PtrToIntInst>(RHS)) {
3145         if (RI->getOperand(0)->getType() == SrcTy)
3146           // Compare without the cast.
3147           if (Value *V = SimplifyICmpInst(Pred, SrcOp, RI->getOperand(0),
3148                                           Q, MaxRecurse-1))
3149             return V;
3150       }
3151     }
3152 
3153     if (isa<ZExtInst>(LHS)) {
3154       // Turn icmp (zext X), (zext Y) into a compare of X and Y if they have the
3155       // same type.
3156       if (ZExtInst *RI = dyn_cast<ZExtInst>(RHS)) {
3157         if (MaxRecurse && SrcTy == RI->getOperand(0)->getType())
3158           // Compare X and Y.  Note that signed predicates become unsigned.
3159           if (Value *V = SimplifyICmpInst(ICmpInst::getUnsignedPredicate(Pred),
3160                                           SrcOp, RI->getOperand(0), Q,
3161                                           MaxRecurse-1))
3162             return V;
3163       }
3164       // Turn icmp (zext X), Cst into a compare of X and Cst if Cst is extended
3165       // too.  If not, then try to deduce the result of the comparison.
3166       else if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
3167         // Compute the constant that would happen if we truncated to SrcTy then
3168         // reextended to DstTy.
3169         Constant *Trunc = ConstantExpr::getTrunc(CI, SrcTy);
3170         Constant *RExt = ConstantExpr::getCast(CastInst::ZExt, Trunc, DstTy);
3171 
3172         // If the re-extended constant didn't change then this is effectively
3173         // also a case of comparing two zero-extended values.
3174         if (RExt == CI && MaxRecurse)
3175           if (Value *V = SimplifyICmpInst(ICmpInst::getUnsignedPredicate(Pred),
3176                                         SrcOp, Trunc, Q, MaxRecurse-1))
3177             return V;
3178 
3179         // Otherwise the upper bits of LHS are zero while RHS has a non-zero bit
3180         // there.  Use this to work out the result of the comparison.
3181         if (RExt != CI) {
3182           switch (Pred) {
3183           default: llvm_unreachable("Unknown ICmp predicate!");
3184           // LHS <u RHS.
3185           case ICmpInst::ICMP_EQ:
3186           case ICmpInst::ICMP_UGT:
3187           case ICmpInst::ICMP_UGE:
3188             return ConstantInt::getFalse(CI->getContext());
3189 
3190           case ICmpInst::ICMP_NE:
3191           case ICmpInst::ICMP_ULT:
3192           case ICmpInst::ICMP_ULE:
3193             return ConstantInt::getTrue(CI->getContext());
3194 
3195           // LHS is non-negative.  If RHS is negative then LHS >s LHS.  If RHS
3196           // is non-negative then LHS <s RHS.
3197           case ICmpInst::ICMP_SGT:
3198           case ICmpInst::ICMP_SGE:
3199             return CI->getValue().isNegative() ?
3200               ConstantInt::getTrue(CI->getContext()) :
3201               ConstantInt::getFalse(CI->getContext());
3202 
3203           case ICmpInst::ICMP_SLT:
3204           case ICmpInst::ICMP_SLE:
3205             return CI->getValue().isNegative() ?
3206               ConstantInt::getFalse(CI->getContext()) :
3207               ConstantInt::getTrue(CI->getContext());
3208           }
3209         }
3210       }
3211     }
3212 
3213     if (isa<SExtInst>(LHS)) {
3214       // Turn icmp (sext X), (sext Y) into a compare of X and Y if they have the
3215       // same type.
3216       if (SExtInst *RI = dyn_cast<SExtInst>(RHS)) {
3217         if (MaxRecurse && SrcTy == RI->getOperand(0)->getType())
3218           // Compare X and Y.  Note that the predicate does not change.
3219           if (Value *V = SimplifyICmpInst(Pred, SrcOp, RI->getOperand(0),
3220                                           Q, MaxRecurse-1))
3221             return V;
3222       }
3223       // Turn icmp (sext X), Cst into a compare of X and Cst if Cst is extended
3224       // too.  If not, then try to deduce the result of the comparison.
3225       else if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
3226         // Compute the constant that would happen if we truncated to SrcTy then
3227         // reextended to DstTy.
3228         Constant *Trunc = ConstantExpr::getTrunc(CI, SrcTy);
3229         Constant *RExt = ConstantExpr::getCast(CastInst::SExt, Trunc, DstTy);
3230 
3231         // If the re-extended constant didn't change then this is effectively
3232         // also a case of comparing two sign-extended values.
3233         if (RExt == CI && MaxRecurse)
3234           if (Value *V = SimplifyICmpInst(Pred, SrcOp, Trunc, Q, MaxRecurse-1))
3235             return V;
3236 
3237         // Otherwise the upper bits of LHS are all equal, while RHS has varying
3238         // bits there.  Use this to work out the result of the comparison.
3239         if (RExt != CI) {
3240           switch (Pred) {
3241           default: llvm_unreachable("Unknown ICmp predicate!");
3242           case ICmpInst::ICMP_EQ:
3243             return ConstantInt::getFalse(CI->getContext());
3244           case ICmpInst::ICMP_NE:
3245             return ConstantInt::getTrue(CI->getContext());
3246 
3247           // If RHS is non-negative then LHS <s RHS.  If RHS is negative then
3248           // LHS >s RHS.
3249           case ICmpInst::ICMP_SGT:
3250           case ICmpInst::ICMP_SGE:
3251             return CI->getValue().isNegative() ?
3252               ConstantInt::getTrue(CI->getContext()) :
3253               ConstantInt::getFalse(CI->getContext());
3254           case ICmpInst::ICMP_SLT:
3255           case ICmpInst::ICMP_SLE:
3256             return CI->getValue().isNegative() ?
3257               ConstantInt::getFalse(CI->getContext()) :
3258               ConstantInt::getTrue(CI->getContext());
3259 
3260           // If LHS is non-negative then LHS <u RHS.  If LHS is negative then
3261           // LHS >u RHS.
3262           case ICmpInst::ICMP_UGT:
3263           case ICmpInst::ICMP_UGE:
3264             // Comparison is true iff the LHS <s 0.
3265             if (MaxRecurse)
3266               if (Value *V = SimplifyICmpInst(ICmpInst::ICMP_SLT, SrcOp,
3267                                               Constant::getNullValue(SrcTy),
3268                                               Q, MaxRecurse-1))
3269                 return V;
3270             break;
3271           case ICmpInst::ICMP_ULT:
3272           case ICmpInst::ICMP_ULE:
3273             // Comparison is true iff the LHS >=s 0.
3274             if (MaxRecurse)
3275               if (Value *V = SimplifyICmpInst(ICmpInst::ICMP_SGE, SrcOp,
3276                                               Constant::getNullValue(SrcTy),
3277                                               Q, MaxRecurse-1))
3278                 return V;
3279             break;
3280           }
3281         }
3282       }
3283     }
3284   }
3285 
3286   // icmp eq|ne X, Y -> false|true if X != Y
3287   if ((Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_NE) &&
3288       isKnownNonEqual(LHS, RHS, Q.DL, Q.AC, Q.CxtI, Q.DT)) {
3289     LLVMContext &Ctx = LHS->getType()->getContext();
3290     return Pred == ICmpInst::ICMP_NE ?
3291       ConstantInt::getTrue(Ctx) : ConstantInt::getFalse(Ctx);
3292   }
3293 
3294   if (Value *V = simplifyICmpWithBinOp(Pred, LHS, RHS, Q, MaxRecurse))
3295     return V;
3296 
3297   if (Value *V = simplifyICmpWithMinMax(Pred, LHS, RHS, Q, MaxRecurse))
3298     return V;
3299 
3300   // Simplify comparisons of related pointers using a powerful, recursive
3301   // GEP-walk when we have target data available..
3302   if (LHS->getType()->isPointerTy())
3303     if (auto *C = computePointerICmp(Q.DL, Q.TLI, Q.DT, Pred, Q.CxtI, LHS, RHS))
3304       return C;
3305   if (auto *CLHS = dyn_cast<PtrToIntOperator>(LHS))
3306     if (auto *CRHS = dyn_cast<PtrToIntOperator>(RHS))
3307       if (Q.DL.getTypeSizeInBits(CLHS->getPointerOperandType()) ==
3308               Q.DL.getTypeSizeInBits(CLHS->getType()) &&
3309           Q.DL.getTypeSizeInBits(CRHS->getPointerOperandType()) ==
3310               Q.DL.getTypeSizeInBits(CRHS->getType()))
3311         if (auto *C = computePointerICmp(Q.DL, Q.TLI, Q.DT, Pred, Q.CxtI,
3312                                          CLHS->getPointerOperand(),
3313                                          CRHS->getPointerOperand()))
3314           return C;
3315 
3316   if (GetElementPtrInst *GLHS = dyn_cast<GetElementPtrInst>(LHS)) {
3317     if (GEPOperator *GRHS = dyn_cast<GEPOperator>(RHS)) {
3318       if (GLHS->getPointerOperand() == GRHS->getPointerOperand() &&
3319           GLHS->hasAllConstantIndices() && GRHS->hasAllConstantIndices() &&
3320           (ICmpInst::isEquality(Pred) ||
3321            (GLHS->isInBounds() && GRHS->isInBounds() &&
3322             Pred == ICmpInst::getSignedPredicate(Pred)))) {
3323         // The bases are equal and the indices are constant.  Build a constant
3324         // expression GEP with the same indices and a null base pointer to see
3325         // what constant folding can make out of it.
3326         Constant *Null = Constant::getNullValue(GLHS->getPointerOperandType());
3327         SmallVector<Value *, 4> IndicesLHS(GLHS->idx_begin(), GLHS->idx_end());
3328         Constant *NewLHS = ConstantExpr::getGetElementPtr(
3329             GLHS->getSourceElementType(), Null, IndicesLHS);
3330 
3331         SmallVector<Value *, 4> IndicesRHS(GRHS->idx_begin(), GRHS->idx_end());
3332         Constant *NewRHS = ConstantExpr::getGetElementPtr(
3333             GLHS->getSourceElementType(), Null, IndicesRHS);
3334         return ConstantExpr::getICmp(Pred, NewLHS, NewRHS);
3335       }
3336     }
3337   }
3338 
3339   // If a bit is known to be zero for A and known to be one for B,
3340   // then A and B cannot be equal.
3341   if (ICmpInst::isEquality(Pred)) {
3342     const APInt *RHSVal;
3343     if (match(RHS, m_APInt(RHSVal))) {
3344       unsigned BitWidth = RHSVal->getBitWidth();
3345       APInt LHSKnownZero(BitWidth, 0);
3346       APInt LHSKnownOne(BitWidth, 0);
3347       computeKnownBits(LHS, LHSKnownZero, LHSKnownOne, Q.DL, /*Depth=*/0, Q.AC,
3348                        Q.CxtI, Q.DT);
3349       if (((LHSKnownZero & *RHSVal) != 0) || ((LHSKnownOne & ~(*RHSVal)) != 0))
3350         return Pred == ICmpInst::ICMP_EQ ? ConstantInt::getFalse(ITy)
3351                                          : ConstantInt::getTrue(ITy);
3352     }
3353   }
3354 
3355   // If the comparison is with the result of a select instruction, check whether
3356   // comparing with either branch of the select always yields the same value.
3357   if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS))
3358     if (Value *V = ThreadCmpOverSelect(Pred, LHS, RHS, Q, MaxRecurse))
3359       return V;
3360 
3361   // If the comparison is with the result of a phi instruction, check whether
3362   // doing the compare with each incoming phi value yields a common result.
3363   if (isa<PHINode>(LHS) || isa<PHINode>(RHS))
3364     if (Value *V = ThreadCmpOverPHI(Pred, LHS, RHS, Q, MaxRecurse))
3365       return V;
3366 
3367   return nullptr;
3368 }
3369 
3370 Value *llvm::SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS,
3371                               const DataLayout &DL,
3372                               const TargetLibraryInfo *TLI,
3373                               const DominatorTree *DT, AssumptionCache *AC,
3374                               const Instruction *CxtI) {
3375   return ::SimplifyICmpInst(Predicate, LHS, RHS, Query(DL, TLI, DT, AC, CxtI),
3376                             RecursionLimit);
3377 }
3378 
3379 /// Given operands for an FCmpInst, see if we can fold the result.
3380 /// If not, this returns null.
3381 static Value *SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
3382                                FastMathFlags FMF, const Query &Q,
3383                                unsigned MaxRecurse) {
3384   CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate;
3385   assert(CmpInst::isFPPredicate(Pred) && "Not an FP compare!");
3386 
3387   if (Constant *CLHS = dyn_cast<Constant>(LHS)) {
3388     if (Constant *CRHS = dyn_cast<Constant>(RHS))
3389       return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, Q.DL, Q.TLI);
3390 
3391     // If we have a constant, make sure it is on the RHS.
3392     std::swap(LHS, RHS);
3393     Pred = CmpInst::getSwappedPredicate(Pred);
3394   }
3395 
3396   // Fold trivial predicates.
3397   Type *RetTy = GetCompareTy(LHS);
3398   if (Pred == FCmpInst::FCMP_FALSE)
3399     return getFalse(RetTy);
3400   if (Pred == FCmpInst::FCMP_TRUE)
3401     return getTrue(RetTy);
3402 
3403   // UNO/ORD predicates can be trivially folded if NaNs are ignored.
3404   if (FMF.noNaNs()) {
3405     if (Pred == FCmpInst::FCMP_UNO)
3406       return getFalse(RetTy);
3407     if (Pred == FCmpInst::FCMP_ORD)
3408       return getTrue(RetTy);
3409   }
3410 
3411   // fcmp pred x, undef  and  fcmp pred undef, x
3412   // fold to true if unordered, false if ordered
3413   if (isa<UndefValue>(LHS) || isa<UndefValue>(RHS)) {
3414     // Choosing NaN for the undef will always make unordered comparison succeed
3415     // and ordered comparison fail.
3416     return ConstantInt::get(RetTy, CmpInst::isUnordered(Pred));
3417   }
3418 
3419   // fcmp x,x -> true/false.  Not all compares are foldable.
3420   if (LHS == RHS) {
3421     if (CmpInst::isTrueWhenEqual(Pred))
3422       return getTrue(RetTy);
3423     if (CmpInst::isFalseWhenEqual(Pred))
3424       return getFalse(RetTy);
3425   }
3426 
3427   // Handle fcmp with constant RHS
3428   const ConstantFP *CFP = nullptr;
3429   if (const auto *RHSC = dyn_cast<Constant>(RHS)) {
3430     if (RHS->getType()->isVectorTy())
3431       CFP = dyn_cast_or_null<ConstantFP>(RHSC->getSplatValue());
3432     else
3433       CFP = dyn_cast<ConstantFP>(RHSC);
3434   }
3435   if (CFP) {
3436     // If the constant is a nan, see if we can fold the comparison based on it.
3437     if (CFP->getValueAPF().isNaN()) {
3438       if (FCmpInst::isOrdered(Pred)) // True "if ordered and foo"
3439         return getFalse(RetTy);
3440       assert(FCmpInst::isUnordered(Pred) &&
3441              "Comparison must be either ordered or unordered!");
3442       // True if unordered.
3443       return getTrue(RetTy);
3444     }
3445     // Check whether the constant is an infinity.
3446     if (CFP->getValueAPF().isInfinity()) {
3447       if (CFP->getValueAPF().isNegative()) {
3448         switch (Pred) {
3449         case FCmpInst::FCMP_OLT:
3450           // No value is ordered and less than negative infinity.
3451           return getFalse(RetTy);
3452         case FCmpInst::FCMP_UGE:
3453           // All values are unordered with or at least negative infinity.
3454           return getTrue(RetTy);
3455         default:
3456           break;
3457         }
3458       } else {
3459         switch (Pred) {
3460         case FCmpInst::FCMP_OGT:
3461           // No value is ordered and greater than infinity.
3462           return getFalse(RetTy);
3463         case FCmpInst::FCMP_ULE:
3464           // All values are unordered with and at most infinity.
3465           return getTrue(RetTy);
3466         default:
3467           break;
3468         }
3469       }
3470     }
3471     if (CFP->getValueAPF().isZero()) {
3472       switch (Pred) {
3473       case FCmpInst::FCMP_UGE:
3474         if (CannotBeOrderedLessThanZero(LHS, Q.TLI))
3475           return getTrue(RetTy);
3476         break;
3477       case FCmpInst::FCMP_OLT:
3478         // X < 0
3479         if (CannotBeOrderedLessThanZero(LHS, Q.TLI))
3480           return getFalse(RetTy);
3481         break;
3482       default:
3483         break;
3484       }
3485     }
3486   }
3487 
3488   // If the comparison is with the result of a select instruction, check whether
3489   // comparing with either branch of the select always yields the same value.
3490   if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS))
3491     if (Value *V = ThreadCmpOverSelect(Pred, LHS, RHS, Q, MaxRecurse))
3492       return V;
3493 
3494   // If the comparison is with the result of a phi instruction, check whether
3495   // doing the compare with each incoming phi value yields a common result.
3496   if (isa<PHINode>(LHS) || isa<PHINode>(RHS))
3497     if (Value *V = ThreadCmpOverPHI(Pred, LHS, RHS, Q, MaxRecurse))
3498       return V;
3499 
3500   return nullptr;
3501 }
3502 
3503 Value *llvm::SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
3504                               FastMathFlags FMF, const DataLayout &DL,
3505                               const TargetLibraryInfo *TLI,
3506                               const DominatorTree *DT, AssumptionCache *AC,
3507                               const Instruction *CxtI) {
3508   return ::SimplifyFCmpInst(Predicate, LHS, RHS, FMF,
3509                             Query(DL, TLI, DT, AC, CxtI), RecursionLimit);
3510 }
3511 
3512 /// See if V simplifies when its operand Op is replaced with RepOp.
3513 static const Value *SimplifyWithOpReplaced(Value *V, Value *Op, Value *RepOp,
3514                                            const Query &Q,
3515                                            unsigned MaxRecurse) {
3516   // Trivial replacement.
3517   if (V == Op)
3518     return RepOp;
3519 
3520   auto *I = dyn_cast<Instruction>(V);
3521   if (!I)
3522     return nullptr;
3523 
3524   // If this is a binary operator, try to simplify it with the replaced op.
3525   if (auto *B = dyn_cast<BinaryOperator>(I)) {
3526     // Consider:
3527     //   %cmp = icmp eq i32 %x, 2147483647
3528     //   %add = add nsw i32 %x, 1
3529     //   %sel = select i1 %cmp, i32 -2147483648, i32 %add
3530     //
3531     // We can't replace %sel with %add unless we strip away the flags.
3532     if (isa<OverflowingBinaryOperator>(B))
3533       if (B->hasNoSignedWrap() || B->hasNoUnsignedWrap())
3534         return nullptr;
3535     if (isa<PossiblyExactOperator>(B))
3536       if (B->isExact())
3537         return nullptr;
3538 
3539     if (MaxRecurse) {
3540       if (B->getOperand(0) == Op)
3541         return SimplifyBinOp(B->getOpcode(), RepOp, B->getOperand(1), Q,
3542                              MaxRecurse - 1);
3543       if (B->getOperand(1) == Op)
3544         return SimplifyBinOp(B->getOpcode(), B->getOperand(0), RepOp, Q,
3545                              MaxRecurse - 1);
3546     }
3547   }
3548 
3549   // Same for CmpInsts.
3550   if (CmpInst *C = dyn_cast<CmpInst>(I)) {
3551     if (MaxRecurse) {
3552       if (C->getOperand(0) == Op)
3553         return SimplifyCmpInst(C->getPredicate(), RepOp, C->getOperand(1), Q,
3554                                MaxRecurse - 1);
3555       if (C->getOperand(1) == Op)
3556         return SimplifyCmpInst(C->getPredicate(), C->getOperand(0), RepOp, Q,
3557                                MaxRecurse - 1);
3558     }
3559   }
3560 
3561   // TODO: We could hand off more cases to instsimplify here.
3562 
3563   // If all operands are constant after substituting Op for RepOp then we can
3564   // constant fold the instruction.
3565   if (Constant *CRepOp = dyn_cast<Constant>(RepOp)) {
3566     // Build a list of all constant operands.
3567     SmallVector<Constant *, 8> ConstOps;
3568     for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
3569       if (I->getOperand(i) == Op)
3570         ConstOps.push_back(CRepOp);
3571       else if (Constant *COp = dyn_cast<Constant>(I->getOperand(i)))
3572         ConstOps.push_back(COp);
3573       else
3574         break;
3575     }
3576 
3577     // All operands were constants, fold it.
3578     if (ConstOps.size() == I->getNumOperands()) {
3579       if (CmpInst *C = dyn_cast<CmpInst>(I))
3580         return ConstantFoldCompareInstOperands(C->getPredicate(), ConstOps[0],
3581                                                ConstOps[1], Q.DL, Q.TLI);
3582 
3583       if (LoadInst *LI = dyn_cast<LoadInst>(I))
3584         if (!LI->isVolatile())
3585           return ConstantFoldLoadFromConstPtr(ConstOps[0], LI->getType(), Q.DL);
3586 
3587       return ConstantFoldInstOperands(I, ConstOps, Q.DL, Q.TLI);
3588     }
3589   }
3590 
3591   return nullptr;
3592 }
3593 
3594 /// Try to simplify a select instruction when its condition operand is an
3595 /// integer comparison where one operand of the compare is a constant.
3596 static Value *simplifySelectBitTest(Value *TrueVal, Value *FalseVal, Value *X,
3597                                     const APInt *Y, bool TrueWhenUnset) {
3598   const APInt *C;
3599 
3600   // (X & Y) == 0 ? X & ~Y : X  --> X
3601   // (X & Y) != 0 ? X & ~Y : X  --> X & ~Y
3602   if (FalseVal == X && match(TrueVal, m_And(m_Specific(X), m_APInt(C))) &&
3603       *Y == ~*C)
3604     return TrueWhenUnset ? FalseVal : TrueVal;
3605 
3606   // (X & Y) == 0 ? X : X & ~Y  --> X & ~Y
3607   // (X & Y) != 0 ? X : X & ~Y  --> X
3608   if (TrueVal == X && match(FalseVal, m_And(m_Specific(X), m_APInt(C))) &&
3609       *Y == ~*C)
3610     return TrueWhenUnset ? FalseVal : TrueVal;
3611 
3612   if (Y->isPowerOf2()) {
3613     // (X & Y) == 0 ? X | Y : X  --> X | Y
3614     // (X & Y) != 0 ? X | Y : X  --> X
3615     if (FalseVal == X && match(TrueVal, m_Or(m_Specific(X), m_APInt(C))) &&
3616         *Y == *C)
3617       return TrueWhenUnset ? TrueVal : FalseVal;
3618 
3619     // (X & Y) == 0 ? X : X | Y  --> X
3620     // (X & Y) != 0 ? X : X | Y  --> X | Y
3621     if (TrueVal == X && match(FalseVal, m_Or(m_Specific(X), m_APInt(C))) &&
3622         *Y == *C)
3623       return TrueWhenUnset ? TrueVal : FalseVal;
3624   }
3625 
3626   return nullptr;
3627 }
3628 
3629 /// An alternative way to test if a bit is set or not uses sgt/slt instead of
3630 /// eq/ne.
3631 static Value *simplifySelectWithFakeICmpEq(Value *CmpLHS, Value *TrueVal,
3632                                            Value *FalseVal,
3633                                            bool TrueWhenUnset) {
3634   unsigned BitWidth = TrueVal->getType()->getScalarSizeInBits();
3635   if (!BitWidth)
3636     return nullptr;
3637 
3638   APInt MinSignedValue;
3639   Value *X;
3640   if (match(CmpLHS, m_Trunc(m_Value(X))) && (X == TrueVal || X == FalseVal)) {
3641     // icmp slt (trunc X), 0  <--> icmp ne (and X, C), 0
3642     // icmp sgt (trunc X), -1 <--> icmp eq (and X, C), 0
3643     unsigned DestSize = CmpLHS->getType()->getScalarSizeInBits();
3644     MinSignedValue = APInt::getSignedMinValue(DestSize).zext(BitWidth);
3645   } else {
3646     // icmp slt X, 0  <--> icmp ne (and X, C), 0
3647     // icmp sgt X, -1 <--> icmp eq (and X, C), 0
3648     X = CmpLHS;
3649     MinSignedValue = APInt::getSignedMinValue(BitWidth);
3650   }
3651 
3652   if (Value *V = simplifySelectBitTest(TrueVal, FalseVal, X, &MinSignedValue,
3653                                        TrueWhenUnset))
3654     return V;
3655 
3656   return nullptr;
3657 }
3658 
3659 /// Try to simplify a select instruction when its condition operand is an
3660 /// integer comparison.
3661 static Value *simplifySelectWithICmpCond(Value *CondVal, Value *TrueVal,
3662                                          Value *FalseVal, const Query &Q,
3663                                          unsigned MaxRecurse) {
3664   ICmpInst::Predicate Pred;
3665   Value *CmpLHS, *CmpRHS;
3666   if (!match(CondVal, m_ICmp(Pred, m_Value(CmpLHS), m_Value(CmpRHS))))
3667     return nullptr;
3668 
3669   // FIXME: This code is nearly duplicated in InstCombine. Using/refactoring
3670   // decomposeBitTestICmp() might help.
3671   if (ICmpInst::isEquality(Pred) && match(CmpRHS, m_Zero())) {
3672     Value *X;
3673     const APInt *Y;
3674     if (match(CmpLHS, m_And(m_Value(X), m_APInt(Y))))
3675       if (Value *V = simplifySelectBitTest(TrueVal, FalseVal, X, Y,
3676                                            Pred == ICmpInst::ICMP_EQ))
3677         return V;
3678   } else if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, m_Zero())) {
3679     // Comparing signed-less-than 0 checks if the sign bit is set.
3680     if (Value *V = simplifySelectWithFakeICmpEq(CmpLHS, TrueVal, FalseVal,
3681                                                 false))
3682       return V;
3683   } else if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, m_AllOnes())) {
3684     // Comparing signed-greater-than -1 checks if the sign bit is not set.
3685     if (Value *V = simplifySelectWithFakeICmpEq(CmpLHS, TrueVal, FalseVal,
3686                                                 true))
3687       return V;
3688   }
3689 
3690   if (CondVal->hasOneUse()) {
3691     const APInt *C;
3692     if (match(CmpRHS, m_APInt(C))) {
3693       // X < MIN ? T : F  -->  F
3694       if (Pred == ICmpInst::ICMP_SLT && C->isMinSignedValue())
3695         return FalseVal;
3696       // X < MIN ? T : F  -->  F
3697       if (Pred == ICmpInst::ICMP_ULT && C->isMinValue())
3698         return FalseVal;
3699       // X > MAX ? T : F  -->  F
3700       if (Pred == ICmpInst::ICMP_SGT && C->isMaxSignedValue())
3701         return FalseVal;
3702       // X > MAX ? T : F  -->  F
3703       if (Pred == ICmpInst::ICMP_UGT && C->isMaxValue())
3704         return FalseVal;
3705     }
3706   }
3707 
3708   // If we have an equality comparison, then we know the value in one of the
3709   // arms of the select. See if substituting this value into the arm and
3710   // simplifying the result yields the same value as the other arm.
3711   if (Pred == ICmpInst::ICMP_EQ) {
3712     if (SimplifyWithOpReplaced(FalseVal, CmpLHS, CmpRHS, Q, MaxRecurse) ==
3713             TrueVal ||
3714         SimplifyWithOpReplaced(FalseVal, CmpRHS, CmpLHS, Q, MaxRecurse) ==
3715             TrueVal)
3716       return FalseVal;
3717     if (SimplifyWithOpReplaced(TrueVal, CmpLHS, CmpRHS, Q, MaxRecurse) ==
3718             FalseVal ||
3719         SimplifyWithOpReplaced(TrueVal, CmpRHS, CmpLHS, Q, MaxRecurse) ==
3720             FalseVal)
3721       return FalseVal;
3722   } else if (Pred == ICmpInst::ICMP_NE) {
3723     if (SimplifyWithOpReplaced(TrueVal, CmpLHS, CmpRHS, Q, MaxRecurse) ==
3724             FalseVal ||
3725         SimplifyWithOpReplaced(TrueVal, CmpRHS, CmpLHS, Q, MaxRecurse) ==
3726             FalseVal)
3727       return TrueVal;
3728     if (SimplifyWithOpReplaced(FalseVal, CmpLHS, CmpRHS, Q, MaxRecurse) ==
3729             TrueVal ||
3730         SimplifyWithOpReplaced(FalseVal, CmpRHS, CmpLHS, Q, MaxRecurse) ==
3731             TrueVal)
3732       return TrueVal;
3733   }
3734 
3735   return nullptr;
3736 }
3737 
3738 /// Given operands for a SelectInst, see if we can fold the result.
3739 /// If not, this returns null.
3740 static Value *SimplifySelectInst(Value *CondVal, Value *TrueVal,
3741                                  Value *FalseVal, const Query &Q,
3742                                  unsigned MaxRecurse) {
3743   // select true, X, Y  -> X
3744   // select false, X, Y -> Y
3745   if (Constant *CB = dyn_cast<Constant>(CondVal)) {
3746     if (CB->isAllOnesValue())
3747       return TrueVal;
3748     if (CB->isNullValue())
3749       return FalseVal;
3750   }
3751 
3752   // select C, X, X -> X
3753   if (TrueVal == FalseVal)
3754     return TrueVal;
3755 
3756   if (isa<UndefValue>(CondVal)) {  // select undef, X, Y -> X or Y
3757     if (isa<Constant>(TrueVal))
3758       return TrueVal;
3759     return FalseVal;
3760   }
3761   if (isa<UndefValue>(TrueVal))   // select C, undef, X -> X
3762     return FalseVal;
3763   if (isa<UndefValue>(FalseVal))   // select C, X, undef -> X
3764     return TrueVal;
3765 
3766   if (Value *V =
3767           simplifySelectWithICmpCond(CondVal, TrueVal, FalseVal, Q, MaxRecurse))
3768     return V;
3769 
3770   return nullptr;
3771 }
3772 
3773 Value *llvm::SimplifySelectInst(Value *Cond, Value *TrueVal, Value *FalseVal,
3774                                 const DataLayout &DL,
3775                                 const TargetLibraryInfo *TLI,
3776                                 const DominatorTree *DT, AssumptionCache *AC,
3777                                 const Instruction *CxtI) {
3778   return ::SimplifySelectInst(Cond, TrueVal, FalseVal,
3779                               Query(DL, TLI, DT, AC, CxtI), RecursionLimit);
3780 }
3781 
3782 /// Given operands for an GetElementPtrInst, see if we can fold the result.
3783 /// If not, this returns null.
3784 static Value *SimplifyGEPInst(Type *SrcTy, ArrayRef<Value *> Ops,
3785                               const Query &Q, unsigned) {
3786   // The type of the GEP pointer operand.
3787   unsigned AS =
3788       cast<PointerType>(Ops[0]->getType()->getScalarType())->getAddressSpace();
3789 
3790   // getelementptr P -> P.
3791   if (Ops.size() == 1)
3792     return Ops[0];
3793 
3794   // Compute the (pointer) type returned by the GEP instruction.
3795   Type *LastType = GetElementPtrInst::getIndexedType(SrcTy, Ops.slice(1));
3796   Type *GEPTy = PointerType::get(LastType, AS);
3797   if (VectorType *VT = dyn_cast<VectorType>(Ops[0]->getType()))
3798     GEPTy = VectorType::get(GEPTy, VT->getNumElements());
3799 
3800   if (isa<UndefValue>(Ops[0]))
3801     return UndefValue::get(GEPTy);
3802 
3803   if (Ops.size() == 2) {
3804     // getelementptr P, 0 -> P.
3805     if (match(Ops[1], m_Zero()))
3806       return Ops[0];
3807 
3808     Type *Ty = SrcTy;
3809     if (Ty->isSized()) {
3810       Value *P;
3811       uint64_t C;
3812       uint64_t TyAllocSize = Q.DL.getTypeAllocSize(Ty);
3813       // getelementptr P, N -> P if P points to a type of zero size.
3814       if (TyAllocSize == 0)
3815         return Ops[0];
3816 
3817       // The following transforms are only safe if the ptrtoint cast
3818       // doesn't truncate the pointers.
3819       if (Ops[1]->getType()->getScalarSizeInBits() ==
3820           Q.DL.getPointerSizeInBits(AS)) {
3821         auto PtrToIntOrZero = [GEPTy](Value *P) -> Value * {
3822           if (match(P, m_Zero()))
3823             return Constant::getNullValue(GEPTy);
3824           Value *Temp;
3825           if (match(P, m_PtrToInt(m_Value(Temp))))
3826             if (Temp->getType() == GEPTy)
3827               return Temp;
3828           return nullptr;
3829         };
3830 
3831         // getelementptr V, (sub P, V) -> P if P points to a type of size 1.
3832         if (TyAllocSize == 1 &&
3833             match(Ops[1], m_Sub(m_Value(P), m_PtrToInt(m_Specific(Ops[0])))))
3834           if (Value *R = PtrToIntOrZero(P))
3835             return R;
3836 
3837         // getelementptr V, (ashr (sub P, V), C) -> Q
3838         // if P points to a type of size 1 << C.
3839         if (match(Ops[1],
3840                   m_AShr(m_Sub(m_Value(P), m_PtrToInt(m_Specific(Ops[0]))),
3841                          m_ConstantInt(C))) &&
3842             TyAllocSize == 1ULL << C)
3843           if (Value *R = PtrToIntOrZero(P))
3844             return R;
3845 
3846         // getelementptr V, (sdiv (sub P, V), C) -> Q
3847         // if P points to a type of size C.
3848         if (match(Ops[1],
3849                   m_SDiv(m_Sub(m_Value(P), m_PtrToInt(m_Specific(Ops[0]))),
3850                          m_SpecificInt(TyAllocSize))))
3851           if (Value *R = PtrToIntOrZero(P))
3852             return R;
3853       }
3854     }
3855   }
3856 
3857   if (Q.DL.getTypeAllocSize(LastType) == 1 &&
3858       all_of(Ops.slice(1).drop_back(1),
3859              [](Value *Idx) { return match(Idx, m_Zero()); })) {
3860     unsigned PtrWidth =
3861         Q.DL.getPointerSizeInBits(Ops[0]->getType()->getPointerAddressSpace());
3862     if (Q.DL.getTypeSizeInBits(Ops.back()->getType()) == PtrWidth) {
3863       APInt BasePtrOffset(PtrWidth, 0);
3864       Value *StrippedBasePtr =
3865           Ops[0]->stripAndAccumulateInBoundsConstantOffsets(Q.DL,
3866                                                             BasePtrOffset);
3867 
3868       // gep (gep V, C), (sub 0, V) -> C
3869       if (match(Ops.back(),
3870                 m_Sub(m_Zero(), m_PtrToInt(m_Specific(StrippedBasePtr))))) {
3871         auto *CI = ConstantInt::get(GEPTy->getContext(), BasePtrOffset);
3872         return ConstantExpr::getIntToPtr(CI, GEPTy);
3873       }
3874       // gep (gep V, C), (xor V, -1) -> C-1
3875       if (match(Ops.back(),
3876                 m_Xor(m_PtrToInt(m_Specific(StrippedBasePtr)), m_AllOnes()))) {
3877         auto *CI = ConstantInt::get(GEPTy->getContext(), BasePtrOffset - 1);
3878         return ConstantExpr::getIntToPtr(CI, GEPTy);
3879       }
3880     }
3881   }
3882 
3883   // Check to see if this is constant foldable.
3884   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
3885     if (!isa<Constant>(Ops[i]))
3886       return nullptr;
3887 
3888   return ConstantExpr::getGetElementPtr(SrcTy, cast<Constant>(Ops[0]),
3889                                         Ops.slice(1));
3890 }
3891 
3892 Value *llvm::SimplifyGEPInst(Type *SrcTy, ArrayRef<Value *> Ops,
3893                              const DataLayout &DL,
3894                              const TargetLibraryInfo *TLI,
3895                              const DominatorTree *DT, AssumptionCache *AC,
3896                              const Instruction *CxtI) {
3897   return ::SimplifyGEPInst(SrcTy, Ops,
3898                            Query(DL, TLI, DT, AC, CxtI), RecursionLimit);
3899 }
3900 
3901 /// Given operands for an InsertValueInst, see if we can fold the result.
3902 /// If not, this returns null.
3903 static Value *SimplifyInsertValueInst(Value *Agg, Value *Val,
3904                                       ArrayRef<unsigned> Idxs, const Query &Q,
3905                                       unsigned) {
3906   if (Constant *CAgg = dyn_cast<Constant>(Agg))
3907     if (Constant *CVal = dyn_cast<Constant>(Val))
3908       return ConstantFoldInsertValueInstruction(CAgg, CVal, Idxs);
3909 
3910   // insertvalue x, undef, n -> x
3911   if (match(Val, m_Undef()))
3912     return Agg;
3913 
3914   // insertvalue x, (extractvalue y, n), n
3915   if (ExtractValueInst *EV = dyn_cast<ExtractValueInst>(Val))
3916     if (EV->getAggregateOperand()->getType() == Agg->getType() &&
3917         EV->getIndices() == Idxs) {
3918       // insertvalue undef, (extractvalue y, n), n -> y
3919       if (match(Agg, m_Undef()))
3920         return EV->getAggregateOperand();
3921 
3922       // insertvalue y, (extractvalue y, n), n -> y
3923       if (Agg == EV->getAggregateOperand())
3924         return Agg;
3925     }
3926 
3927   return nullptr;
3928 }
3929 
3930 Value *llvm::SimplifyInsertValueInst(
3931     Value *Agg, Value *Val, ArrayRef<unsigned> Idxs, const DataLayout &DL,
3932     const TargetLibraryInfo *TLI, const DominatorTree *DT, AssumptionCache *AC,
3933     const Instruction *CxtI) {
3934   return ::SimplifyInsertValueInst(Agg, Val, Idxs, Query(DL, TLI, DT, AC, CxtI),
3935                                    RecursionLimit);
3936 }
3937 
3938 /// Given operands for an ExtractValueInst, see if we can fold the result.
3939 /// If not, this returns null.
3940 static Value *SimplifyExtractValueInst(Value *Agg, ArrayRef<unsigned> Idxs,
3941                                        const Query &, unsigned) {
3942   if (auto *CAgg = dyn_cast<Constant>(Agg))
3943     return ConstantFoldExtractValueInstruction(CAgg, Idxs);
3944 
3945   // extractvalue x, (insertvalue y, elt, n), n -> elt
3946   unsigned NumIdxs = Idxs.size();
3947   for (auto *IVI = dyn_cast<InsertValueInst>(Agg); IVI != nullptr;
3948        IVI = dyn_cast<InsertValueInst>(IVI->getAggregateOperand())) {
3949     ArrayRef<unsigned> InsertValueIdxs = IVI->getIndices();
3950     unsigned NumInsertValueIdxs = InsertValueIdxs.size();
3951     unsigned NumCommonIdxs = std::min(NumInsertValueIdxs, NumIdxs);
3952     if (InsertValueIdxs.slice(0, NumCommonIdxs) ==
3953         Idxs.slice(0, NumCommonIdxs)) {
3954       if (NumIdxs == NumInsertValueIdxs)
3955         return IVI->getInsertedValueOperand();
3956       break;
3957     }
3958   }
3959 
3960   return nullptr;
3961 }
3962 
3963 Value *llvm::SimplifyExtractValueInst(Value *Agg, ArrayRef<unsigned> Idxs,
3964                                       const DataLayout &DL,
3965                                       const TargetLibraryInfo *TLI,
3966                                       const DominatorTree *DT,
3967                                       AssumptionCache *AC,
3968                                       const Instruction *CxtI) {
3969   return ::SimplifyExtractValueInst(Agg, Idxs, Query(DL, TLI, DT, AC, CxtI),
3970                                     RecursionLimit);
3971 }
3972 
3973 /// Given operands for an ExtractElementInst, see if we can fold the result.
3974 /// If not, this returns null.
3975 static Value *SimplifyExtractElementInst(Value *Vec, Value *Idx, const Query &,
3976                                          unsigned) {
3977   if (auto *CVec = dyn_cast<Constant>(Vec)) {
3978     if (auto *CIdx = dyn_cast<Constant>(Idx))
3979       return ConstantFoldExtractElementInstruction(CVec, CIdx);
3980 
3981     // The index is not relevant if our vector is a splat.
3982     if (auto *Splat = CVec->getSplatValue())
3983       return Splat;
3984 
3985     if (isa<UndefValue>(Vec))
3986       return UndefValue::get(Vec->getType()->getVectorElementType());
3987   }
3988 
3989   // If extracting a specified index from the vector, see if we can recursively
3990   // find a previously computed scalar that was inserted into the vector.
3991   if (auto *IdxC = dyn_cast<ConstantInt>(Idx))
3992     if (Value *Elt = findScalarElement(Vec, IdxC->getZExtValue()))
3993       return Elt;
3994 
3995   return nullptr;
3996 }
3997 
3998 Value *llvm::SimplifyExtractElementInst(
3999     Value *Vec, Value *Idx, const DataLayout &DL, const TargetLibraryInfo *TLI,
4000     const DominatorTree *DT, AssumptionCache *AC, const Instruction *CxtI) {
4001   return ::SimplifyExtractElementInst(Vec, Idx, Query(DL, TLI, DT, AC, CxtI),
4002                                       RecursionLimit);
4003 }
4004 
4005 /// See if we can fold the given phi. If not, returns null.
4006 static Value *SimplifyPHINode(PHINode *PN, const Query &Q) {
4007   // If all of the PHI's incoming values are the same then replace the PHI node
4008   // with the common value.
4009   Value *CommonValue = nullptr;
4010   bool HasUndefInput = false;
4011   for (Value *Incoming : PN->incoming_values()) {
4012     // If the incoming value is the phi node itself, it can safely be skipped.
4013     if (Incoming == PN) continue;
4014     if (isa<UndefValue>(Incoming)) {
4015       // Remember that we saw an undef value, but otherwise ignore them.
4016       HasUndefInput = true;
4017       continue;
4018     }
4019     if (CommonValue && Incoming != CommonValue)
4020       return nullptr;  // Not the same, bail out.
4021     CommonValue = Incoming;
4022   }
4023 
4024   // If CommonValue is null then all of the incoming values were either undef or
4025   // equal to the phi node itself.
4026   if (!CommonValue)
4027     return UndefValue::get(PN->getType());
4028 
4029   // If we have a PHI node like phi(X, undef, X), where X is defined by some
4030   // instruction, we cannot return X as the result of the PHI node unless it
4031   // dominates the PHI block.
4032   if (HasUndefInput)
4033     return ValueDominatesPHI(CommonValue, PN, Q.DT) ? CommonValue : nullptr;
4034 
4035   return CommonValue;
4036 }
4037 
4038 static Value *SimplifyCastInst(unsigned CastOpc, Value *Op,
4039                                Type *Ty, const Query &Q, unsigned MaxRecurse) {
4040   if (auto *C = dyn_cast<Constant>(Op))
4041     return ConstantFoldCastOperand(CastOpc, C, Ty, Q.DL);
4042 
4043   if (auto *CI = dyn_cast<CastInst>(Op)) {
4044     auto *Src = CI->getOperand(0);
4045     Type *SrcTy = Src->getType();
4046     Type *MidTy = CI->getType();
4047     Type *DstTy = Ty;
4048     if (Src->getType() == Ty) {
4049       auto FirstOp = static_cast<Instruction::CastOps>(CI->getOpcode());
4050       auto SecondOp = static_cast<Instruction::CastOps>(CastOpc);
4051       Type *SrcIntPtrTy =
4052           SrcTy->isPtrOrPtrVectorTy() ? Q.DL.getIntPtrType(SrcTy) : nullptr;
4053       Type *MidIntPtrTy =
4054           MidTy->isPtrOrPtrVectorTy() ? Q.DL.getIntPtrType(MidTy) : nullptr;
4055       Type *DstIntPtrTy =
4056           DstTy->isPtrOrPtrVectorTy() ? Q.DL.getIntPtrType(DstTy) : nullptr;
4057       if (CastInst::isEliminableCastPair(FirstOp, SecondOp, SrcTy, MidTy, DstTy,
4058                                          SrcIntPtrTy, MidIntPtrTy,
4059                                          DstIntPtrTy) == Instruction::BitCast)
4060         return Src;
4061     }
4062   }
4063 
4064   // bitcast x -> x
4065   if (CastOpc == Instruction::BitCast)
4066     if (Op->getType() == Ty)
4067       return Op;
4068 
4069   return nullptr;
4070 }
4071 
4072 Value *llvm::SimplifyCastInst(unsigned CastOpc, Value *Op, Type *Ty,
4073                               const DataLayout &DL,
4074                               const TargetLibraryInfo *TLI,
4075                               const DominatorTree *DT, AssumptionCache *AC,
4076                               const Instruction *CxtI) {
4077   return ::SimplifyCastInst(CastOpc, Op, Ty, Query(DL, TLI, DT, AC, CxtI),
4078                             RecursionLimit);
4079 }
4080 
4081 static Value *SimplifyShuffleVectorInst(Value *Op0, Value *Op1, Constant *Mask,
4082                                         Type *RetTy, const Query &Q,
4083                                         unsigned MaxRecurse) {
4084   Type *InVecTy = Op0->getType();
4085   unsigned MaskNumElts = Mask->getType()->getVectorNumElements();
4086   unsigned InVecNumElts = InVecTy->getVectorNumElements();
4087 
4088   auto *Op0Const = dyn_cast<Constant>(Op0);
4089   auto *Op1Const = dyn_cast<Constant>(Op1);
4090 
4091   // If all operands are constant, constant fold the shuffle.
4092   if (Op0Const && Op1Const)
4093     return ConstantFoldShuffleVectorInstruction(Op0Const, Op1Const, Mask);
4094 
4095   // If only one of the operands is constant, constant fold the shuffle if the
4096   // mask does not select elements from the variable operand.
4097   bool MaskSelects0 = false, MaskSelects1 = false;
4098   for (unsigned i = 0; i != MaskNumElts; ++i) {
4099     int Idx = ShuffleVectorInst::getMaskValue(Mask, i);
4100     if (Idx == -1)
4101       continue;
4102     if ((unsigned)Idx < InVecNumElts)
4103       MaskSelects0 = true;
4104     else
4105       MaskSelects1 = true;
4106   }
4107   if (!MaskSelects0 && Op1Const)
4108     return ConstantFoldShuffleVectorInstruction(UndefValue::get(InVecTy),
4109                                                 Op1Const, Mask);
4110   if (!MaskSelects1 && Op0Const)
4111     return ConstantFoldShuffleVectorInstruction(Op0Const,
4112                                                 UndefValue::get(InVecTy), Mask);
4113 
4114   // A shuffle of a splat is always the splat itself. Legal if the shuffle's
4115   // value type is same as the input vectors' type.
4116   if (auto *OpShuf = dyn_cast<ShuffleVectorInst>(Op0))
4117     if (!MaskSelects1 && RetTy == InVecTy &&
4118         OpShuf->getMask()->getSplatValue())
4119       return Op0;
4120   if (auto *OpShuf = dyn_cast<ShuffleVectorInst>(Op1))
4121     if (!MaskSelects0 && RetTy == InVecTy &&
4122         OpShuf->getMask()->getSplatValue())
4123       return Op1;
4124 
4125   return nullptr;
4126 }
4127 
4128 /// Given operands for a ShuffleVectorInst, fold the result or return null.
4129 Value *llvm::SimplifyShuffleVectorInst(
4130     Value *Op0, Value *Op1, Constant *Mask, Type *RetTy,
4131     const DataLayout &DL, const TargetLibraryInfo *TLI, const DominatorTree *DT,
4132     AssumptionCache *AC, const Instruction *CxtI) {
4133   return ::SimplifyShuffleVectorInst(
4134       Op0, Op1, Mask, RetTy, Query(DL, TLI, DT, AC, CxtI), RecursionLimit);
4135 }
4136 
4137 //=== Helper functions for higher up the class hierarchy.
4138 
4139 /// Given operands for a BinaryOperator, see if we can fold the result.
4140 /// If not, this returns null.
4141 static Value *SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS,
4142                             const Query &Q, unsigned MaxRecurse) {
4143   switch (Opcode) {
4144   case Instruction::Add:
4145     return SimplifyAddInst(LHS, RHS, false, false, Q, MaxRecurse);
4146   case Instruction::FAdd:
4147     return SimplifyFAddInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse);
4148   case Instruction::Sub:
4149     return SimplifySubInst(LHS, RHS, false, false, Q, MaxRecurse);
4150   case Instruction::FSub:
4151     return SimplifyFSubInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse);
4152   case Instruction::Mul:
4153     return SimplifyMulInst(LHS, RHS, Q, MaxRecurse);
4154   case Instruction::FMul:
4155     return SimplifyFMulInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse);
4156   case Instruction::SDiv:
4157     return SimplifySDivInst(LHS, RHS, Q, MaxRecurse);
4158   case Instruction::UDiv:
4159     return SimplifyUDivInst(LHS, RHS, Q, MaxRecurse);
4160   case Instruction::FDiv:
4161     return SimplifyFDivInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse);
4162   case Instruction::SRem:
4163     return SimplifySRemInst(LHS, RHS, Q, MaxRecurse);
4164   case Instruction::URem:
4165     return SimplifyURemInst(LHS, RHS, Q, MaxRecurse);
4166   case Instruction::FRem:
4167     return SimplifyFRemInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse);
4168   case Instruction::Shl:
4169     return SimplifyShlInst(LHS, RHS, false, false, Q, MaxRecurse);
4170   case Instruction::LShr:
4171     return SimplifyLShrInst(LHS, RHS, false, Q, MaxRecurse);
4172   case Instruction::AShr:
4173     return SimplifyAShrInst(LHS, RHS, false, Q, MaxRecurse);
4174   case Instruction::And:
4175     return SimplifyAndInst(LHS, RHS, Q, MaxRecurse);
4176   case Instruction::Or:
4177     return SimplifyOrInst(LHS, RHS, Q, MaxRecurse);
4178   case Instruction::Xor:
4179     return SimplifyXorInst(LHS, RHS, Q, MaxRecurse);
4180   default:
4181     llvm_unreachable("Unexpected opcode");
4182   }
4183 }
4184 
4185 /// Given operands for a BinaryOperator, see if we can fold the result.
4186 /// If not, this returns null.
4187 /// In contrast to SimplifyBinOp, try to use FastMathFlag when folding the
4188 /// result. In case we don't need FastMathFlags, simply fall to SimplifyBinOp.
4189 static Value *SimplifyFPBinOp(unsigned Opcode, Value *LHS, Value *RHS,
4190                               const FastMathFlags &FMF, const Query &Q,
4191                               unsigned MaxRecurse) {
4192   switch (Opcode) {
4193   case Instruction::FAdd:
4194     return SimplifyFAddInst(LHS, RHS, FMF, Q, MaxRecurse);
4195   case Instruction::FSub:
4196     return SimplifyFSubInst(LHS, RHS, FMF, Q, MaxRecurse);
4197   case Instruction::FMul:
4198     return SimplifyFMulInst(LHS, RHS, FMF, Q, MaxRecurse);
4199   case Instruction::FDiv:
4200     return SimplifyFDivInst(LHS, RHS, FMF, Q, MaxRecurse);
4201   default:
4202     return SimplifyBinOp(Opcode, LHS, RHS, Q, MaxRecurse);
4203   }
4204 }
4205 
4206 Value *llvm::SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS,
4207                            const DataLayout &DL, const TargetLibraryInfo *TLI,
4208                            const DominatorTree *DT, AssumptionCache *AC,
4209                            const Instruction *CxtI) {
4210   return ::SimplifyBinOp(Opcode, LHS, RHS, Query(DL, TLI, DT, AC, CxtI),
4211                          RecursionLimit);
4212 }
4213 
4214 Value *llvm::SimplifyFPBinOp(unsigned Opcode, Value *LHS, Value *RHS,
4215                              const FastMathFlags &FMF, const DataLayout &DL,
4216                              const TargetLibraryInfo *TLI,
4217                              const DominatorTree *DT, AssumptionCache *AC,
4218                              const Instruction *CxtI) {
4219   return ::SimplifyFPBinOp(Opcode, LHS, RHS, FMF, Query(DL, TLI, DT, AC, CxtI),
4220                            RecursionLimit);
4221 }
4222 
4223 /// Given operands for a CmpInst, see if we can fold the result.
4224 static Value *SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
4225                               const Query &Q, unsigned MaxRecurse) {
4226   if (CmpInst::isIntPredicate((CmpInst::Predicate)Predicate))
4227     return SimplifyICmpInst(Predicate, LHS, RHS, Q, MaxRecurse);
4228   return SimplifyFCmpInst(Predicate, LHS, RHS, FastMathFlags(), Q, MaxRecurse);
4229 }
4230 
4231 Value *llvm::SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
4232                              const DataLayout &DL, const TargetLibraryInfo *TLI,
4233                              const DominatorTree *DT, AssumptionCache *AC,
4234                              const Instruction *CxtI) {
4235   return ::SimplifyCmpInst(Predicate, LHS, RHS, Query(DL, TLI, DT, AC, CxtI),
4236                            RecursionLimit);
4237 }
4238 
4239 static bool IsIdempotent(Intrinsic::ID ID) {
4240   switch (ID) {
4241   default: return false;
4242 
4243   // Unary idempotent: f(f(x)) = f(x)
4244   case Intrinsic::fabs:
4245   case Intrinsic::floor:
4246   case Intrinsic::ceil:
4247   case Intrinsic::trunc:
4248   case Intrinsic::rint:
4249   case Intrinsic::nearbyint:
4250   case Intrinsic::round:
4251     return true;
4252   }
4253 }
4254 
4255 static Value *SimplifyRelativeLoad(Constant *Ptr, Constant *Offset,
4256                                    const DataLayout &DL) {
4257   GlobalValue *PtrSym;
4258   APInt PtrOffset;
4259   if (!IsConstantOffsetFromGlobal(Ptr, PtrSym, PtrOffset, DL))
4260     return nullptr;
4261 
4262   Type *Int8PtrTy = Type::getInt8PtrTy(Ptr->getContext());
4263   Type *Int32Ty = Type::getInt32Ty(Ptr->getContext());
4264   Type *Int32PtrTy = Int32Ty->getPointerTo();
4265   Type *Int64Ty = Type::getInt64Ty(Ptr->getContext());
4266 
4267   auto *OffsetConstInt = dyn_cast<ConstantInt>(Offset);
4268   if (!OffsetConstInt || OffsetConstInt->getType()->getBitWidth() > 64)
4269     return nullptr;
4270 
4271   uint64_t OffsetInt = OffsetConstInt->getSExtValue();
4272   if (OffsetInt % 4 != 0)
4273     return nullptr;
4274 
4275   Constant *C = ConstantExpr::getGetElementPtr(
4276       Int32Ty, ConstantExpr::getBitCast(Ptr, Int32PtrTy),
4277       ConstantInt::get(Int64Ty, OffsetInt / 4));
4278   Constant *Loaded = ConstantFoldLoadFromConstPtr(C, Int32Ty, DL);
4279   if (!Loaded)
4280     return nullptr;
4281 
4282   auto *LoadedCE = dyn_cast<ConstantExpr>(Loaded);
4283   if (!LoadedCE)
4284     return nullptr;
4285 
4286   if (LoadedCE->getOpcode() == Instruction::Trunc) {
4287     LoadedCE = dyn_cast<ConstantExpr>(LoadedCE->getOperand(0));
4288     if (!LoadedCE)
4289       return nullptr;
4290   }
4291 
4292   if (LoadedCE->getOpcode() != Instruction::Sub)
4293     return nullptr;
4294 
4295   auto *LoadedLHS = dyn_cast<ConstantExpr>(LoadedCE->getOperand(0));
4296   if (!LoadedLHS || LoadedLHS->getOpcode() != Instruction::PtrToInt)
4297     return nullptr;
4298   auto *LoadedLHSPtr = LoadedLHS->getOperand(0);
4299 
4300   Constant *LoadedRHS = LoadedCE->getOperand(1);
4301   GlobalValue *LoadedRHSSym;
4302   APInt LoadedRHSOffset;
4303   if (!IsConstantOffsetFromGlobal(LoadedRHS, LoadedRHSSym, LoadedRHSOffset,
4304                                   DL) ||
4305       PtrSym != LoadedRHSSym || PtrOffset != LoadedRHSOffset)
4306     return nullptr;
4307 
4308   return ConstantExpr::getBitCast(LoadedLHSPtr, Int8PtrTy);
4309 }
4310 
4311 static bool maskIsAllZeroOrUndef(Value *Mask) {
4312   auto *ConstMask = dyn_cast<Constant>(Mask);
4313   if (!ConstMask)
4314     return false;
4315   if (ConstMask->isNullValue() || isa<UndefValue>(ConstMask))
4316     return true;
4317   for (unsigned I = 0, E = ConstMask->getType()->getVectorNumElements(); I != E;
4318        ++I) {
4319     if (auto *MaskElt = ConstMask->getAggregateElement(I))
4320       if (MaskElt->isNullValue() || isa<UndefValue>(MaskElt))
4321         continue;
4322     return false;
4323   }
4324   return true;
4325 }
4326 
4327 template <typename IterTy>
4328 static Value *SimplifyIntrinsic(Function *F, IterTy ArgBegin, IterTy ArgEnd,
4329                                 const Query &Q, unsigned MaxRecurse) {
4330   Intrinsic::ID IID = F->getIntrinsicID();
4331   unsigned NumOperands = std::distance(ArgBegin, ArgEnd);
4332 
4333   // Unary Ops
4334   if (NumOperands == 1) {
4335     // Perform idempotent optimizations
4336     if (IsIdempotent(IID)) {
4337       if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(*ArgBegin)) {
4338         if (II->getIntrinsicID() == IID)
4339           return II;
4340       }
4341     }
4342 
4343     switch (IID) {
4344     case Intrinsic::fabs: {
4345       if (SignBitMustBeZero(*ArgBegin, Q.TLI))
4346         return *ArgBegin;
4347       return nullptr;
4348     }
4349     default:
4350       return nullptr;
4351     }
4352   }
4353 
4354   // Binary Ops
4355   if (NumOperands == 2) {
4356     Value *LHS = *ArgBegin;
4357     Value *RHS = *(ArgBegin + 1);
4358     Type *ReturnType = F->getReturnType();
4359 
4360     switch (IID) {
4361     case Intrinsic::usub_with_overflow:
4362     case Intrinsic::ssub_with_overflow: {
4363       // X - X -> { 0, false }
4364       if (LHS == RHS)
4365         return Constant::getNullValue(ReturnType);
4366 
4367       // X - undef -> undef
4368       // undef - X -> undef
4369       if (isa<UndefValue>(LHS) || isa<UndefValue>(RHS))
4370         return UndefValue::get(ReturnType);
4371 
4372       return nullptr;
4373     }
4374     case Intrinsic::uadd_with_overflow:
4375     case Intrinsic::sadd_with_overflow: {
4376       // X + undef -> undef
4377       if (isa<UndefValue>(RHS))
4378         return UndefValue::get(ReturnType);
4379 
4380       return nullptr;
4381     }
4382     case Intrinsic::umul_with_overflow:
4383     case Intrinsic::smul_with_overflow: {
4384       // X * 0 -> { 0, false }
4385       if (match(RHS, m_Zero()))
4386         return Constant::getNullValue(ReturnType);
4387 
4388       // X * undef -> { 0, false }
4389       if (match(RHS, m_Undef()))
4390         return Constant::getNullValue(ReturnType);
4391 
4392       return nullptr;
4393     }
4394     case Intrinsic::load_relative: {
4395       Constant *C0 = dyn_cast<Constant>(LHS);
4396       Constant *C1 = dyn_cast<Constant>(RHS);
4397       if (C0 && C1)
4398         return SimplifyRelativeLoad(C0, C1, Q.DL);
4399       return nullptr;
4400     }
4401     default:
4402       return nullptr;
4403     }
4404   }
4405 
4406   // Simplify calls to llvm.masked.load.*
4407   switch (IID) {
4408   case Intrinsic::masked_load: {
4409     Value *MaskArg = ArgBegin[2];
4410     Value *PassthruArg = ArgBegin[3];
4411     // If the mask is all zeros or undef, the "passthru" argument is the result.
4412     if (maskIsAllZeroOrUndef(MaskArg))
4413       return PassthruArg;
4414     return nullptr;
4415   }
4416   default:
4417     return nullptr;
4418   }
4419 }
4420 
4421 template <typename IterTy>
4422 static Value *SimplifyCall(Value *V, IterTy ArgBegin, IterTy ArgEnd,
4423                            const Query &Q, unsigned MaxRecurse) {
4424   Type *Ty = V->getType();
4425   if (PointerType *PTy = dyn_cast<PointerType>(Ty))
4426     Ty = PTy->getElementType();
4427   FunctionType *FTy = cast<FunctionType>(Ty);
4428 
4429   // call undef -> undef
4430   // call null -> undef
4431   if (isa<UndefValue>(V) || isa<ConstantPointerNull>(V))
4432     return UndefValue::get(FTy->getReturnType());
4433 
4434   Function *F = dyn_cast<Function>(V);
4435   if (!F)
4436     return nullptr;
4437 
4438   if (F->isIntrinsic())
4439     if (Value *Ret = SimplifyIntrinsic(F, ArgBegin, ArgEnd, Q, MaxRecurse))
4440       return Ret;
4441 
4442   if (!canConstantFoldCallTo(F))
4443     return nullptr;
4444 
4445   SmallVector<Constant *, 4> ConstantArgs;
4446   ConstantArgs.reserve(ArgEnd - ArgBegin);
4447   for (IterTy I = ArgBegin, E = ArgEnd; I != E; ++I) {
4448     Constant *C = dyn_cast<Constant>(*I);
4449     if (!C)
4450       return nullptr;
4451     ConstantArgs.push_back(C);
4452   }
4453 
4454   return ConstantFoldCall(F, ConstantArgs, Q.TLI);
4455 }
4456 
4457 Value *llvm::SimplifyCall(Value *V, User::op_iterator ArgBegin,
4458                           User::op_iterator ArgEnd, const DataLayout &DL,
4459                           const TargetLibraryInfo *TLI, const DominatorTree *DT,
4460                           AssumptionCache *AC, const Instruction *CxtI) {
4461   return ::SimplifyCall(V, ArgBegin, ArgEnd, Query(DL, TLI, DT, AC, CxtI),
4462                         RecursionLimit);
4463 }
4464 
4465 Value *llvm::SimplifyCall(Value *V, ArrayRef<Value *> Args,
4466                           const DataLayout &DL, const TargetLibraryInfo *TLI,
4467                           const DominatorTree *DT, AssumptionCache *AC,
4468                           const Instruction *CxtI) {
4469   return ::SimplifyCall(V, Args.begin(), Args.end(),
4470                         Query(DL, TLI, DT, AC, CxtI), RecursionLimit);
4471 }
4472 
4473 /// See if we can compute a simplified version of this instruction.
4474 /// If not, this returns null.
4475 Value *llvm::SimplifyInstruction(Instruction *I, const DataLayout &DL,
4476                                  const TargetLibraryInfo *TLI,
4477                                  const DominatorTree *DT, AssumptionCache *AC,
4478                                  OptimizationRemarkEmitter *ORE) {
4479   Value *Result;
4480 
4481   switch (I->getOpcode()) {
4482   default:
4483     Result = ConstantFoldInstruction(I, DL, TLI);
4484     break;
4485   case Instruction::FAdd:
4486     Result = SimplifyFAddInst(I->getOperand(0), I->getOperand(1),
4487                               I->getFastMathFlags(), DL, TLI, DT, AC, I);
4488     break;
4489   case Instruction::Add:
4490     Result = SimplifyAddInst(I->getOperand(0), I->getOperand(1),
4491                              cast<BinaryOperator>(I)->hasNoSignedWrap(),
4492                              cast<BinaryOperator>(I)->hasNoUnsignedWrap(), DL,
4493                              TLI, DT, AC, I);
4494     break;
4495   case Instruction::FSub:
4496     Result = SimplifyFSubInst(I->getOperand(0), I->getOperand(1),
4497                               I->getFastMathFlags(), DL, TLI, DT, AC, I);
4498     break;
4499   case Instruction::Sub:
4500     Result = SimplifySubInst(I->getOperand(0), I->getOperand(1),
4501                              cast<BinaryOperator>(I)->hasNoSignedWrap(),
4502                              cast<BinaryOperator>(I)->hasNoUnsignedWrap(), DL,
4503                              TLI, DT, AC, I);
4504     break;
4505   case Instruction::FMul:
4506     Result = SimplifyFMulInst(I->getOperand(0), I->getOperand(1),
4507                               I->getFastMathFlags(), DL, TLI, DT, AC, I);
4508     break;
4509   case Instruction::Mul:
4510     Result =
4511         SimplifyMulInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT, AC, I);
4512     break;
4513   case Instruction::SDiv:
4514     Result = SimplifySDivInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT,
4515                               AC, I);
4516     break;
4517   case Instruction::UDiv:
4518     Result = SimplifyUDivInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT,
4519                               AC, I);
4520     break;
4521   case Instruction::FDiv:
4522     Result = SimplifyFDivInst(I->getOperand(0), I->getOperand(1),
4523                               I->getFastMathFlags(), DL, TLI, DT, AC, I);
4524     break;
4525   case Instruction::SRem:
4526     Result = SimplifySRemInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT,
4527                               AC, I);
4528     break;
4529   case Instruction::URem:
4530     Result = SimplifyURemInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT,
4531                               AC, I);
4532     break;
4533   case Instruction::FRem:
4534     Result = SimplifyFRemInst(I->getOperand(0), I->getOperand(1),
4535                               I->getFastMathFlags(), DL, TLI, DT, AC, I);
4536     break;
4537   case Instruction::Shl:
4538     Result = SimplifyShlInst(I->getOperand(0), I->getOperand(1),
4539                              cast<BinaryOperator>(I)->hasNoSignedWrap(),
4540                              cast<BinaryOperator>(I)->hasNoUnsignedWrap(), DL,
4541                              TLI, DT, AC, I);
4542     break;
4543   case Instruction::LShr:
4544     Result = SimplifyLShrInst(I->getOperand(0), I->getOperand(1),
4545                               cast<BinaryOperator>(I)->isExact(), DL, TLI, DT,
4546                               AC, I);
4547     break;
4548   case Instruction::AShr:
4549     Result = SimplifyAShrInst(I->getOperand(0), I->getOperand(1),
4550                               cast<BinaryOperator>(I)->isExact(), DL, TLI, DT,
4551                               AC, I);
4552     break;
4553   case Instruction::And:
4554     Result =
4555         SimplifyAndInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT, AC, I);
4556     break;
4557   case Instruction::Or:
4558     Result =
4559         SimplifyOrInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT, AC, I);
4560     break;
4561   case Instruction::Xor:
4562     Result =
4563         SimplifyXorInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT, AC, I);
4564     break;
4565   case Instruction::ICmp:
4566     Result =
4567         SimplifyICmpInst(cast<ICmpInst>(I)->getPredicate(), I->getOperand(0),
4568                          I->getOperand(1), DL, TLI, DT, AC, I);
4569     break;
4570   case Instruction::FCmp:
4571     Result = SimplifyFCmpInst(cast<FCmpInst>(I)->getPredicate(),
4572                               I->getOperand(0), I->getOperand(1),
4573                               I->getFastMathFlags(), DL, TLI, DT, AC, I);
4574     break;
4575   case Instruction::Select:
4576     Result = SimplifySelectInst(I->getOperand(0), I->getOperand(1),
4577                                 I->getOperand(2), DL, TLI, DT, AC, I);
4578     break;
4579   case Instruction::GetElementPtr: {
4580     SmallVector<Value*, 8> Ops(I->op_begin(), I->op_end());
4581     Result = SimplifyGEPInst(cast<GetElementPtrInst>(I)->getSourceElementType(),
4582                              Ops, DL, TLI, DT, AC, I);
4583     break;
4584   }
4585   case Instruction::InsertValue: {
4586     InsertValueInst *IV = cast<InsertValueInst>(I);
4587     Result = SimplifyInsertValueInst(IV->getAggregateOperand(),
4588                                      IV->getInsertedValueOperand(),
4589                                      IV->getIndices(), DL, TLI, DT, AC, I);
4590     break;
4591   }
4592   case Instruction::ExtractValue: {
4593     auto *EVI = cast<ExtractValueInst>(I);
4594     Result = SimplifyExtractValueInst(EVI->getAggregateOperand(),
4595                                       EVI->getIndices(), DL, TLI, DT, AC, I);
4596     break;
4597   }
4598   case Instruction::ExtractElement: {
4599     auto *EEI = cast<ExtractElementInst>(I);
4600     Result = SimplifyExtractElementInst(
4601         EEI->getVectorOperand(), EEI->getIndexOperand(), DL, TLI, DT, AC, I);
4602     break;
4603   }
4604   case Instruction::ShuffleVector: {
4605     auto *SVI = cast<ShuffleVectorInst>(I);
4606     Result = SimplifyShuffleVectorInst(SVI->getOperand(0), SVI->getOperand(1),
4607                                        SVI->getMask(), SVI->getType(), DL, TLI,
4608                                        DT, AC, I);
4609     break;
4610   }
4611   case Instruction::PHI:
4612     Result = SimplifyPHINode(cast<PHINode>(I), Query(DL, TLI, DT, AC, I));
4613     break;
4614   case Instruction::Call: {
4615     CallSite CS(cast<CallInst>(I));
4616     Result = SimplifyCall(CS.getCalledValue(), CS.arg_begin(), CS.arg_end(), DL,
4617                           TLI, DT, AC, I);
4618     break;
4619   }
4620 #define HANDLE_CAST_INST(num, opc, clas) case Instruction::opc:
4621 #include "llvm/IR/Instruction.def"
4622 #undef HANDLE_CAST_INST
4623     Result = SimplifyCastInst(I->getOpcode(), I->getOperand(0), I->getType(),
4624                               DL, TLI, DT, AC, I);
4625     break;
4626   case Instruction::Alloca:
4627     // No simplifications for Alloca and it can't be constant folded.
4628     Result = nullptr;
4629     break;
4630   }
4631 
4632   // In general, it is possible for computeKnownBits to determine all bits in a
4633   // value even when the operands are not all constants.
4634   if (!Result && I->getType()->isIntOrIntVectorTy()) {
4635     unsigned BitWidth = I->getType()->getScalarSizeInBits();
4636     APInt KnownZero(BitWidth, 0);
4637     APInt KnownOne(BitWidth, 0);
4638     computeKnownBits(I, KnownZero, KnownOne, DL, /*Depth*/0, AC, I, DT, ORE);
4639     if ((KnownZero | KnownOne).isAllOnesValue())
4640       Result = ConstantInt::get(I->getType(), KnownOne);
4641   }
4642 
4643   /// If called on unreachable code, the above logic may report that the
4644   /// instruction simplified to itself.  Make life easier for users by
4645   /// detecting that case here, returning a safe value instead.
4646   return Result == I ? UndefValue::get(I->getType()) : Result;
4647 }
4648 
4649 /// \brief Implementation of recursive simplification through an instruction's
4650 /// uses.
4651 ///
4652 /// This is the common implementation of the recursive simplification routines.
4653 /// If we have a pre-simplified value in 'SimpleV', that is forcibly used to
4654 /// replace the instruction 'I'. Otherwise, we simply add 'I' to the list of
4655 /// instructions to process and attempt to simplify it using
4656 /// InstructionSimplify.
4657 ///
4658 /// This routine returns 'true' only when *it* simplifies something. The passed
4659 /// in simplified value does not count toward this.
4660 static bool replaceAndRecursivelySimplifyImpl(Instruction *I, Value *SimpleV,
4661                                               const TargetLibraryInfo *TLI,
4662                                               const DominatorTree *DT,
4663                                               AssumptionCache *AC) {
4664   bool Simplified = false;
4665   SmallSetVector<Instruction *, 8> Worklist;
4666   const DataLayout &DL = I->getModule()->getDataLayout();
4667 
4668   // If we have an explicit value to collapse to, do that round of the
4669   // simplification loop by hand initially.
4670   if (SimpleV) {
4671     for (User *U : I->users())
4672       if (U != I)
4673         Worklist.insert(cast<Instruction>(U));
4674 
4675     // Replace the instruction with its simplified value.
4676     I->replaceAllUsesWith(SimpleV);
4677 
4678     // Gracefully handle edge cases where the instruction is not wired into any
4679     // parent block.
4680     if (I->getParent() && !I->isEHPad() && !isa<TerminatorInst>(I) &&
4681         !I->mayHaveSideEffects())
4682       I->eraseFromParent();
4683   } else {
4684     Worklist.insert(I);
4685   }
4686 
4687   // Note that we must test the size on each iteration, the worklist can grow.
4688   for (unsigned Idx = 0; Idx != Worklist.size(); ++Idx) {
4689     I = Worklist[Idx];
4690 
4691     // See if this instruction simplifies.
4692     SimpleV = SimplifyInstruction(I, DL, TLI, DT, AC);
4693     if (!SimpleV)
4694       continue;
4695 
4696     Simplified = true;
4697 
4698     // Stash away all the uses of the old instruction so we can check them for
4699     // recursive simplifications after a RAUW. This is cheaper than checking all
4700     // uses of To on the recursive step in most cases.
4701     for (User *U : I->users())
4702       Worklist.insert(cast<Instruction>(U));
4703 
4704     // Replace the instruction with its simplified value.
4705     I->replaceAllUsesWith(SimpleV);
4706 
4707     // Gracefully handle edge cases where the instruction is not wired into any
4708     // parent block.
4709     if (I->getParent() && !I->isEHPad() && !isa<TerminatorInst>(I) &&
4710         !I->mayHaveSideEffects())
4711       I->eraseFromParent();
4712   }
4713   return Simplified;
4714 }
4715 
4716 bool llvm::recursivelySimplifyInstruction(Instruction *I,
4717                                           const TargetLibraryInfo *TLI,
4718                                           const DominatorTree *DT,
4719                                           AssumptionCache *AC) {
4720   return replaceAndRecursivelySimplifyImpl(I, nullptr, TLI, DT, AC);
4721 }
4722 
4723 bool llvm::replaceAndRecursivelySimplify(Instruction *I, Value *SimpleV,
4724                                          const TargetLibraryInfo *TLI,
4725                                          const DominatorTree *DT,
4726                                          AssumptionCache *AC) {
4727   assert(I != SimpleV && "replaceAndRecursivelySimplify(X,X) is not valid!");
4728   assert(SimpleV && "Must provide a simplified value.");
4729   return replaceAndRecursivelySimplifyImpl(I, SimpleV, TLI, DT, AC);
4730 }
4731