1 //===- InstructionSimplify.cpp - Fold instruction operands ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements routines for folding instructions into simpler forms 11 // that do not require creating new instructions. This does constant folding 12 // ("add i32 1, 1" -> "2") but can also handle non-constant operands, either 13 // returning a constant ("and i32 %x, 0" -> "0") or an already existing value 14 // ("and i32 %x, %x" -> "%x"). All operands are assumed to have already been 15 // simplified: This is usually true and assuming it simplifies the logic (if 16 // they have not been simplified then results are correct but maybe suboptimal). 17 // 18 //===----------------------------------------------------------------------===// 19 20 #define DEBUG_TYPE "instsimplify" 21 #include "llvm/Operator.h" 22 #include "llvm/ADT/Statistic.h" 23 #include "llvm/Analysis/InstructionSimplify.h" 24 #include "llvm/Analysis/ConstantFolding.h" 25 #include "llvm/Analysis/Dominators.h" 26 #include "llvm/Analysis/ValueTracking.h" 27 #include "llvm/Support/ConstantRange.h" 28 #include "llvm/Support/PatternMatch.h" 29 #include "llvm/Support/ValueHandle.h" 30 #include "llvm/Target/TargetData.h" 31 using namespace llvm; 32 using namespace llvm::PatternMatch; 33 34 enum { RecursionLimit = 3 }; 35 36 STATISTIC(NumExpand, "Number of expansions"); 37 STATISTIC(NumFactor , "Number of factorizations"); 38 STATISTIC(NumReassoc, "Number of reassociations"); 39 40 static Value *SimplifyAndInst(Value *, Value *, const TargetData *, 41 const DominatorTree *, unsigned); 42 static Value *SimplifyBinOp(unsigned, Value *, Value *, const TargetData *, 43 const DominatorTree *, unsigned); 44 static Value *SimplifyCmpInst(unsigned, Value *, Value *, const TargetData *, 45 const DominatorTree *, unsigned); 46 static Value *SimplifyOrInst(Value *, Value *, const TargetData *, 47 const DominatorTree *, unsigned); 48 static Value *SimplifyXorInst(Value *, Value *, const TargetData *, 49 const DominatorTree *, unsigned); 50 51 /// ValueDominatesPHI - Does the given value dominate the specified phi node? 52 static bool ValueDominatesPHI(Value *V, PHINode *P, const DominatorTree *DT) { 53 Instruction *I = dyn_cast<Instruction>(V); 54 if (!I) 55 // Arguments and constants dominate all instructions. 56 return true; 57 58 // If we have a DominatorTree then do a precise test. 59 if (DT) 60 return DT->dominates(I, P); 61 62 // Otherwise, if the instruction is in the entry block, and is not an invoke, 63 // then it obviously dominates all phi nodes. 64 if (I->getParent() == &I->getParent()->getParent()->getEntryBlock() && 65 !isa<InvokeInst>(I)) 66 return true; 67 68 return false; 69 } 70 71 /// ExpandBinOp - Simplify "A op (B op' C)" by distributing op over op', turning 72 /// it into "(A op B) op' (A op C)". Here "op" is given by Opcode and "op'" is 73 /// given by OpcodeToExpand, while "A" corresponds to LHS and "B op' C" to RHS. 74 /// Also performs the transform "(A op' B) op C" -> "(A op C) op' (B op C)". 75 /// Returns the simplified value, or null if no simplification was performed. 76 static Value *ExpandBinOp(unsigned Opcode, Value *LHS, Value *RHS, 77 unsigned OpcToExpand, const TargetData *TD, 78 const DominatorTree *DT, unsigned MaxRecurse) { 79 Instruction::BinaryOps OpcodeToExpand = (Instruction::BinaryOps)OpcToExpand; 80 // Recursion is always used, so bail out at once if we already hit the limit. 81 if (!MaxRecurse--) 82 return 0; 83 84 // Check whether the expression has the form "(A op' B) op C". 85 if (BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS)) 86 if (Op0->getOpcode() == OpcodeToExpand) { 87 // It does! Try turning it into "(A op C) op' (B op C)". 88 Value *A = Op0->getOperand(0), *B = Op0->getOperand(1), *C = RHS; 89 // Do "A op C" and "B op C" both simplify? 90 if (Value *L = SimplifyBinOp(Opcode, A, C, TD, DT, MaxRecurse)) 91 if (Value *R = SimplifyBinOp(Opcode, B, C, TD, DT, MaxRecurse)) { 92 // They do! Return "L op' R" if it simplifies or is already available. 93 // If "L op' R" equals "A op' B" then "L op' R" is just the LHS. 94 if ((L == A && R == B) || (Instruction::isCommutative(OpcodeToExpand) 95 && L == B && R == A)) { 96 ++NumExpand; 97 return LHS; 98 } 99 // Otherwise return "L op' R" if it simplifies. 100 if (Value *V = SimplifyBinOp(OpcodeToExpand, L, R, TD, DT, 101 MaxRecurse)) { 102 ++NumExpand; 103 return V; 104 } 105 } 106 } 107 108 // Check whether the expression has the form "A op (B op' C)". 109 if (BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS)) 110 if (Op1->getOpcode() == OpcodeToExpand) { 111 // It does! Try turning it into "(A op B) op' (A op C)". 112 Value *A = LHS, *B = Op1->getOperand(0), *C = Op1->getOperand(1); 113 // Do "A op B" and "A op C" both simplify? 114 if (Value *L = SimplifyBinOp(Opcode, A, B, TD, DT, MaxRecurse)) 115 if (Value *R = SimplifyBinOp(Opcode, A, C, TD, DT, MaxRecurse)) { 116 // They do! Return "L op' R" if it simplifies or is already available. 117 // If "L op' R" equals "B op' C" then "L op' R" is just the RHS. 118 if ((L == B && R == C) || (Instruction::isCommutative(OpcodeToExpand) 119 && L == C && R == B)) { 120 ++NumExpand; 121 return RHS; 122 } 123 // Otherwise return "L op' R" if it simplifies. 124 if (Value *V = SimplifyBinOp(OpcodeToExpand, L, R, TD, DT, 125 MaxRecurse)) { 126 ++NumExpand; 127 return V; 128 } 129 } 130 } 131 132 return 0; 133 } 134 135 /// FactorizeBinOp - Simplify "LHS Opcode RHS" by factorizing out a common term 136 /// using the operation OpCodeToExtract. For example, when Opcode is Add and 137 /// OpCodeToExtract is Mul then this tries to turn "(A*B)+(A*C)" into "A*(B+C)". 138 /// Returns the simplified value, or null if no simplification was performed. 139 static Value *FactorizeBinOp(unsigned Opcode, Value *LHS, Value *RHS, 140 unsigned OpcToExtract, const TargetData *TD, 141 const DominatorTree *DT, unsigned MaxRecurse) { 142 Instruction::BinaryOps OpcodeToExtract = (Instruction::BinaryOps)OpcToExtract; 143 // Recursion is always used, so bail out at once if we already hit the limit. 144 if (!MaxRecurse--) 145 return 0; 146 147 BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS); 148 BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS); 149 150 if (!Op0 || Op0->getOpcode() != OpcodeToExtract || 151 !Op1 || Op1->getOpcode() != OpcodeToExtract) 152 return 0; 153 154 // The expression has the form "(A op' B) op (C op' D)". 155 Value *A = Op0->getOperand(0), *B = Op0->getOperand(1); 156 Value *C = Op1->getOperand(0), *D = Op1->getOperand(1); 157 158 // Use left distributivity, i.e. "X op' (Y op Z) = (X op' Y) op (X op' Z)". 159 // Does the instruction have the form "(A op' B) op (A op' D)" or, in the 160 // commutative case, "(A op' B) op (C op' A)"? 161 if (A == C || (Instruction::isCommutative(OpcodeToExtract) && A == D)) { 162 Value *DD = A == C ? D : C; 163 // Form "A op' (B op DD)" if it simplifies completely. 164 // Does "B op DD" simplify? 165 if (Value *V = SimplifyBinOp(Opcode, B, DD, TD, DT, MaxRecurse)) { 166 // It does! Return "A op' V" if it simplifies or is already available. 167 // If V equals B then "A op' V" is just the LHS. If V equals DD then 168 // "A op' V" is just the RHS. 169 if (V == B || V == DD) { 170 ++NumFactor; 171 return V == B ? LHS : RHS; 172 } 173 // Otherwise return "A op' V" if it simplifies. 174 if (Value *W = SimplifyBinOp(OpcodeToExtract, A, V, TD, DT, MaxRecurse)) { 175 ++NumFactor; 176 return W; 177 } 178 } 179 } 180 181 // Use right distributivity, i.e. "(X op Y) op' Z = (X op' Z) op (Y op' Z)". 182 // Does the instruction have the form "(A op' B) op (C op' B)" or, in the 183 // commutative case, "(A op' B) op (B op' D)"? 184 if (B == D || (Instruction::isCommutative(OpcodeToExtract) && B == C)) { 185 Value *CC = B == D ? C : D; 186 // Form "(A op CC) op' B" if it simplifies completely.. 187 // Does "A op CC" simplify? 188 if (Value *V = SimplifyBinOp(Opcode, A, CC, TD, DT, MaxRecurse)) { 189 // It does! Return "V op' B" if it simplifies or is already available. 190 // If V equals A then "V op' B" is just the LHS. If V equals CC then 191 // "V op' B" is just the RHS. 192 if (V == A || V == CC) { 193 ++NumFactor; 194 return V == A ? LHS : RHS; 195 } 196 // Otherwise return "V op' B" if it simplifies. 197 if (Value *W = SimplifyBinOp(OpcodeToExtract, V, B, TD, DT, MaxRecurse)) { 198 ++NumFactor; 199 return W; 200 } 201 } 202 } 203 204 return 0; 205 } 206 207 /// SimplifyAssociativeBinOp - Generic simplifications for associative binary 208 /// operations. Returns the simpler value, or null if none was found. 209 static Value *SimplifyAssociativeBinOp(unsigned Opc, Value *LHS, Value *RHS, 210 const TargetData *TD, 211 const DominatorTree *DT, 212 unsigned MaxRecurse) { 213 Instruction::BinaryOps Opcode = (Instruction::BinaryOps)Opc; 214 assert(Instruction::isAssociative(Opcode) && "Not an associative operation!"); 215 216 // Recursion is always used, so bail out at once if we already hit the limit. 217 if (!MaxRecurse--) 218 return 0; 219 220 BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS); 221 BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS); 222 223 // Transform: "(A op B) op C" ==> "A op (B op C)" if it simplifies completely. 224 if (Op0 && Op0->getOpcode() == Opcode) { 225 Value *A = Op0->getOperand(0); 226 Value *B = Op0->getOperand(1); 227 Value *C = RHS; 228 229 // Does "B op C" simplify? 230 if (Value *V = SimplifyBinOp(Opcode, B, C, TD, DT, MaxRecurse)) { 231 // It does! Return "A op V" if it simplifies or is already available. 232 // If V equals B then "A op V" is just the LHS. 233 if (V == B) return LHS; 234 // Otherwise return "A op V" if it simplifies. 235 if (Value *W = SimplifyBinOp(Opcode, A, V, TD, DT, MaxRecurse)) { 236 ++NumReassoc; 237 return W; 238 } 239 } 240 } 241 242 // Transform: "A op (B op C)" ==> "(A op B) op C" if it simplifies completely. 243 if (Op1 && Op1->getOpcode() == Opcode) { 244 Value *A = LHS; 245 Value *B = Op1->getOperand(0); 246 Value *C = Op1->getOperand(1); 247 248 // Does "A op B" simplify? 249 if (Value *V = SimplifyBinOp(Opcode, A, B, TD, DT, MaxRecurse)) { 250 // It does! Return "V op C" if it simplifies or is already available. 251 // If V equals B then "V op C" is just the RHS. 252 if (V == B) return RHS; 253 // Otherwise return "V op C" if it simplifies. 254 if (Value *W = SimplifyBinOp(Opcode, V, C, TD, DT, MaxRecurse)) { 255 ++NumReassoc; 256 return W; 257 } 258 } 259 } 260 261 // The remaining transforms require commutativity as well as associativity. 262 if (!Instruction::isCommutative(Opcode)) 263 return 0; 264 265 // Transform: "(A op B) op C" ==> "(C op A) op B" if it simplifies completely. 266 if (Op0 && Op0->getOpcode() == Opcode) { 267 Value *A = Op0->getOperand(0); 268 Value *B = Op0->getOperand(1); 269 Value *C = RHS; 270 271 // Does "C op A" simplify? 272 if (Value *V = SimplifyBinOp(Opcode, C, A, TD, DT, MaxRecurse)) { 273 // It does! Return "V op B" if it simplifies or is already available. 274 // If V equals A then "V op B" is just the LHS. 275 if (V == A) return LHS; 276 // Otherwise return "V op B" if it simplifies. 277 if (Value *W = SimplifyBinOp(Opcode, V, B, TD, DT, MaxRecurse)) { 278 ++NumReassoc; 279 return W; 280 } 281 } 282 } 283 284 // Transform: "A op (B op C)" ==> "B op (C op A)" if it simplifies completely. 285 if (Op1 && Op1->getOpcode() == Opcode) { 286 Value *A = LHS; 287 Value *B = Op1->getOperand(0); 288 Value *C = Op1->getOperand(1); 289 290 // Does "C op A" simplify? 291 if (Value *V = SimplifyBinOp(Opcode, C, A, TD, DT, MaxRecurse)) { 292 // It does! Return "B op V" if it simplifies or is already available. 293 // If V equals C then "B op V" is just the RHS. 294 if (V == C) return RHS; 295 // Otherwise return "B op V" if it simplifies. 296 if (Value *W = SimplifyBinOp(Opcode, B, V, TD, DT, MaxRecurse)) { 297 ++NumReassoc; 298 return W; 299 } 300 } 301 } 302 303 return 0; 304 } 305 306 /// ThreadBinOpOverSelect - In the case of a binary operation with a select 307 /// instruction as an operand, try to simplify the binop by seeing whether 308 /// evaluating it on both branches of the select results in the same value. 309 /// Returns the common value if so, otherwise returns null. 310 static Value *ThreadBinOpOverSelect(unsigned Opcode, Value *LHS, Value *RHS, 311 const TargetData *TD, 312 const DominatorTree *DT, 313 unsigned MaxRecurse) { 314 // Recursion is always used, so bail out at once if we already hit the limit. 315 if (!MaxRecurse--) 316 return 0; 317 318 SelectInst *SI; 319 if (isa<SelectInst>(LHS)) { 320 SI = cast<SelectInst>(LHS); 321 } else { 322 assert(isa<SelectInst>(RHS) && "No select instruction operand!"); 323 SI = cast<SelectInst>(RHS); 324 } 325 326 // Evaluate the BinOp on the true and false branches of the select. 327 Value *TV; 328 Value *FV; 329 if (SI == LHS) { 330 TV = SimplifyBinOp(Opcode, SI->getTrueValue(), RHS, TD, DT, MaxRecurse); 331 FV = SimplifyBinOp(Opcode, SI->getFalseValue(), RHS, TD, DT, MaxRecurse); 332 } else { 333 TV = SimplifyBinOp(Opcode, LHS, SI->getTrueValue(), TD, DT, MaxRecurse); 334 FV = SimplifyBinOp(Opcode, LHS, SI->getFalseValue(), TD, DT, MaxRecurse); 335 } 336 337 // If they simplified to the same value, then return the common value. 338 // If they both failed to simplify then return null. 339 if (TV == FV) 340 return TV; 341 342 // If one branch simplified to undef, return the other one. 343 if (TV && isa<UndefValue>(TV)) 344 return FV; 345 if (FV && isa<UndefValue>(FV)) 346 return TV; 347 348 // If applying the operation did not change the true and false select values, 349 // then the result of the binop is the select itself. 350 if (TV == SI->getTrueValue() && FV == SI->getFalseValue()) 351 return SI; 352 353 // If one branch simplified and the other did not, and the simplified 354 // value is equal to the unsimplified one, return the simplified value. 355 // For example, select (cond, X, X & Z) & Z -> X & Z. 356 if ((FV && !TV) || (TV && !FV)) { 357 // Check that the simplified value has the form "X op Y" where "op" is the 358 // same as the original operation. 359 Instruction *Simplified = dyn_cast<Instruction>(FV ? FV : TV); 360 if (Simplified && Simplified->getOpcode() == Opcode) { 361 // The value that didn't simplify is "UnsimplifiedLHS op UnsimplifiedRHS". 362 // We already know that "op" is the same as for the simplified value. See 363 // if the operands match too. If so, return the simplified value. 364 Value *UnsimplifiedBranch = FV ? SI->getTrueValue() : SI->getFalseValue(); 365 Value *UnsimplifiedLHS = SI == LHS ? UnsimplifiedBranch : LHS; 366 Value *UnsimplifiedRHS = SI == LHS ? RHS : UnsimplifiedBranch; 367 if (Simplified->getOperand(0) == UnsimplifiedLHS && 368 Simplified->getOperand(1) == UnsimplifiedRHS) 369 return Simplified; 370 if (Simplified->isCommutative() && 371 Simplified->getOperand(1) == UnsimplifiedLHS && 372 Simplified->getOperand(0) == UnsimplifiedRHS) 373 return Simplified; 374 } 375 } 376 377 return 0; 378 } 379 380 /// ThreadCmpOverSelect - In the case of a comparison with a select instruction, 381 /// try to simplify the comparison by seeing whether both branches of the select 382 /// result in the same value. Returns the common value if so, otherwise returns 383 /// null. 384 static Value *ThreadCmpOverSelect(CmpInst::Predicate Pred, Value *LHS, 385 Value *RHS, const TargetData *TD, 386 const DominatorTree *DT, 387 unsigned MaxRecurse) { 388 // Recursion is always used, so bail out at once if we already hit the limit. 389 if (!MaxRecurse--) 390 return 0; 391 392 // Make sure the select is on the LHS. 393 if (!isa<SelectInst>(LHS)) { 394 std::swap(LHS, RHS); 395 Pred = CmpInst::getSwappedPredicate(Pred); 396 } 397 assert(isa<SelectInst>(LHS) && "Not comparing with a select instruction!"); 398 SelectInst *SI = cast<SelectInst>(LHS); 399 400 // Now that we have "cmp select(Cond, TV, FV), RHS", analyse it. 401 // Does "cmp TV, RHS" simplify? 402 if (Value *TCmp = SimplifyCmpInst(Pred, SI->getTrueValue(), RHS, TD, DT, 403 MaxRecurse)) { 404 // It does! Does "cmp FV, RHS" simplify? 405 if (Value *FCmp = SimplifyCmpInst(Pred, SI->getFalseValue(), RHS, TD, DT, 406 MaxRecurse)) { 407 // It does! If they simplified to the same value, then use it as the 408 // result of the original comparison. 409 if (TCmp == FCmp) 410 return TCmp; 411 Value *Cond = SI->getCondition(); 412 // If the false value simplified to false, then the result of the compare 413 // is equal to "Cond && TCmp". This also catches the case when the false 414 // value simplified to false and the true value to true, returning "Cond". 415 if (match(FCmp, m_Zero())) 416 if (Value *V = SimplifyAndInst(Cond, TCmp, TD, DT, MaxRecurse)) 417 return V; 418 // If the true value simplified to true, then the result of the compare 419 // is equal to "Cond || FCmp". 420 if (match(TCmp, m_One())) 421 if (Value *V = SimplifyOrInst(Cond, FCmp, TD, DT, MaxRecurse)) 422 return V; 423 // Finally, if the false value simplified to true and the true value to 424 // false, then the result of the compare is equal to "!Cond". 425 if (match(FCmp, m_One()) && match(TCmp, m_Zero())) 426 if (Value *V = 427 SimplifyXorInst(Cond, Constant::getAllOnesValue(Cond->getType()), 428 TD, DT, MaxRecurse)) 429 return V; 430 } 431 } 432 433 return 0; 434 } 435 436 /// ThreadBinOpOverPHI - In the case of a binary operation with an operand that 437 /// is a PHI instruction, try to simplify the binop by seeing whether evaluating 438 /// it on the incoming phi values yields the same result for every value. If so 439 /// returns the common value, otherwise returns null. 440 static Value *ThreadBinOpOverPHI(unsigned Opcode, Value *LHS, Value *RHS, 441 const TargetData *TD, const DominatorTree *DT, 442 unsigned MaxRecurse) { 443 // Recursion is always used, so bail out at once if we already hit the limit. 444 if (!MaxRecurse--) 445 return 0; 446 447 PHINode *PI; 448 if (isa<PHINode>(LHS)) { 449 PI = cast<PHINode>(LHS); 450 // Bail out if RHS and the phi may be mutually interdependent due to a loop. 451 if (!ValueDominatesPHI(RHS, PI, DT)) 452 return 0; 453 } else { 454 assert(isa<PHINode>(RHS) && "No PHI instruction operand!"); 455 PI = cast<PHINode>(RHS); 456 // Bail out if LHS and the phi may be mutually interdependent due to a loop. 457 if (!ValueDominatesPHI(LHS, PI, DT)) 458 return 0; 459 } 460 461 // Evaluate the BinOp on the incoming phi values. 462 Value *CommonValue = 0; 463 for (unsigned i = 0, e = PI->getNumIncomingValues(); i != e; ++i) { 464 Value *Incoming = PI->getIncomingValue(i); 465 // If the incoming value is the phi node itself, it can safely be skipped. 466 if (Incoming == PI) continue; 467 Value *V = PI == LHS ? 468 SimplifyBinOp(Opcode, Incoming, RHS, TD, DT, MaxRecurse) : 469 SimplifyBinOp(Opcode, LHS, Incoming, TD, DT, MaxRecurse); 470 // If the operation failed to simplify, or simplified to a different value 471 // to previously, then give up. 472 if (!V || (CommonValue && V != CommonValue)) 473 return 0; 474 CommonValue = V; 475 } 476 477 return CommonValue; 478 } 479 480 /// ThreadCmpOverPHI - In the case of a comparison with a PHI instruction, try 481 /// try to simplify the comparison by seeing whether comparing with all of the 482 /// incoming phi values yields the same result every time. If so returns the 483 /// common result, otherwise returns null. 484 static Value *ThreadCmpOverPHI(CmpInst::Predicate Pred, Value *LHS, Value *RHS, 485 const TargetData *TD, const DominatorTree *DT, 486 unsigned MaxRecurse) { 487 // Recursion is always used, so bail out at once if we already hit the limit. 488 if (!MaxRecurse--) 489 return 0; 490 491 // Make sure the phi is on the LHS. 492 if (!isa<PHINode>(LHS)) { 493 std::swap(LHS, RHS); 494 Pred = CmpInst::getSwappedPredicate(Pred); 495 } 496 assert(isa<PHINode>(LHS) && "Not comparing with a phi instruction!"); 497 PHINode *PI = cast<PHINode>(LHS); 498 499 // Bail out if RHS and the phi may be mutually interdependent due to a loop. 500 if (!ValueDominatesPHI(RHS, PI, DT)) 501 return 0; 502 503 // Evaluate the BinOp on the incoming phi values. 504 Value *CommonValue = 0; 505 for (unsigned i = 0, e = PI->getNumIncomingValues(); i != e; ++i) { 506 Value *Incoming = PI->getIncomingValue(i); 507 // If the incoming value is the phi node itself, it can safely be skipped. 508 if (Incoming == PI) continue; 509 Value *V = SimplifyCmpInst(Pred, Incoming, RHS, TD, DT, MaxRecurse); 510 // If the operation failed to simplify, or simplified to a different value 511 // to previously, then give up. 512 if (!V || (CommonValue && V != CommonValue)) 513 return 0; 514 CommonValue = V; 515 } 516 517 return CommonValue; 518 } 519 520 /// SimplifyAddInst - Given operands for an Add, see if we can 521 /// fold the result. If not, this returns null. 522 static Value *SimplifyAddInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, 523 const TargetData *TD, const DominatorTree *DT, 524 unsigned MaxRecurse) { 525 if (Constant *CLHS = dyn_cast<Constant>(Op0)) { 526 if (Constant *CRHS = dyn_cast<Constant>(Op1)) { 527 Constant *Ops[] = { CLHS, CRHS }; 528 return ConstantFoldInstOperands(Instruction::Add, CLHS->getType(), 529 Ops, 2, TD); 530 } 531 532 // Canonicalize the constant to the RHS. 533 std::swap(Op0, Op1); 534 } 535 536 // X + undef -> undef 537 if (match(Op1, m_Undef())) 538 return Op1; 539 540 // X + 0 -> X 541 if (match(Op1, m_Zero())) 542 return Op0; 543 544 // X + (Y - X) -> Y 545 // (Y - X) + X -> Y 546 // Eg: X + -X -> 0 547 Value *Y = 0; 548 if (match(Op1, m_Sub(m_Value(Y), m_Specific(Op0))) || 549 match(Op0, m_Sub(m_Value(Y), m_Specific(Op1)))) 550 return Y; 551 552 // X + ~X -> -1 since ~X = -X-1 553 if (match(Op0, m_Not(m_Specific(Op1))) || 554 match(Op1, m_Not(m_Specific(Op0)))) 555 return Constant::getAllOnesValue(Op0->getType()); 556 557 /// i1 add -> xor. 558 if (MaxRecurse && Op0->getType()->isIntegerTy(1)) 559 if (Value *V = SimplifyXorInst(Op0, Op1, TD, DT, MaxRecurse-1)) 560 return V; 561 562 // Try some generic simplifications for associative operations. 563 if (Value *V = SimplifyAssociativeBinOp(Instruction::Add, Op0, Op1, TD, DT, 564 MaxRecurse)) 565 return V; 566 567 // Mul distributes over Add. Try some generic simplifications based on this. 568 if (Value *V = FactorizeBinOp(Instruction::Add, Op0, Op1, Instruction::Mul, 569 TD, DT, MaxRecurse)) 570 return V; 571 572 // Threading Add over selects and phi nodes is pointless, so don't bother. 573 // Threading over the select in "A + select(cond, B, C)" means evaluating 574 // "A+B" and "A+C" and seeing if they are equal; but they are equal if and 575 // only if B and C are equal. If B and C are equal then (since we assume 576 // that operands have already been simplified) "select(cond, B, C)" should 577 // have been simplified to the common value of B and C already. Analysing 578 // "A+B" and "A+C" thus gains nothing, but costs compile time. Similarly 579 // for threading over phi nodes. 580 581 return 0; 582 } 583 584 Value *llvm::SimplifyAddInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, 585 const TargetData *TD, const DominatorTree *DT) { 586 return ::SimplifyAddInst(Op0, Op1, isNSW, isNUW, TD, DT, RecursionLimit); 587 } 588 589 /// SimplifySubInst - Given operands for a Sub, see if we can 590 /// fold the result. If not, this returns null. 591 static Value *SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, 592 const TargetData *TD, const DominatorTree *DT, 593 unsigned MaxRecurse) { 594 if (Constant *CLHS = dyn_cast<Constant>(Op0)) 595 if (Constant *CRHS = dyn_cast<Constant>(Op1)) { 596 Constant *Ops[] = { CLHS, CRHS }; 597 return ConstantFoldInstOperands(Instruction::Sub, CLHS->getType(), 598 Ops, 2, TD); 599 } 600 601 // X - undef -> undef 602 // undef - X -> undef 603 if (match(Op0, m_Undef()) || match(Op1, m_Undef())) 604 return UndefValue::get(Op0->getType()); 605 606 // X - 0 -> X 607 if (match(Op1, m_Zero())) 608 return Op0; 609 610 // X - X -> 0 611 if (Op0 == Op1) 612 return Constant::getNullValue(Op0->getType()); 613 614 // (X*2) - X -> X 615 // (X<<1) - X -> X 616 Value *X = 0; 617 if (match(Op0, m_Mul(m_Specific(Op1), m_ConstantInt<2>())) || 618 match(Op0, m_Shl(m_Specific(Op1), m_One()))) 619 return Op1; 620 621 // (X + Y) - Z -> X + (Y - Z) or Y + (X - Z) if everything simplifies. 622 // For example, (X + Y) - Y -> X; (Y + X) - Y -> X 623 Value *Y = 0, *Z = Op1; 624 if (MaxRecurse && match(Op0, m_Add(m_Value(X), m_Value(Y)))) { // (X + Y) - Z 625 // See if "V === Y - Z" simplifies. 626 if (Value *V = SimplifyBinOp(Instruction::Sub, Y, Z, TD, DT, MaxRecurse-1)) 627 // It does! Now see if "X + V" simplifies. 628 if (Value *W = SimplifyBinOp(Instruction::Add, X, V, TD, DT, 629 MaxRecurse-1)) { 630 // It does, we successfully reassociated! 631 ++NumReassoc; 632 return W; 633 } 634 // See if "V === X - Z" simplifies. 635 if (Value *V = SimplifyBinOp(Instruction::Sub, X, Z, TD, DT, MaxRecurse-1)) 636 // It does! Now see if "Y + V" simplifies. 637 if (Value *W = SimplifyBinOp(Instruction::Add, Y, V, TD, DT, 638 MaxRecurse-1)) { 639 // It does, we successfully reassociated! 640 ++NumReassoc; 641 return W; 642 } 643 } 644 645 // X - (Y + Z) -> (X - Y) - Z or (X - Z) - Y if everything simplifies. 646 // For example, X - (X + 1) -> -1 647 X = Op0; 648 if (MaxRecurse && match(Op1, m_Add(m_Value(Y), m_Value(Z)))) { // X - (Y + Z) 649 // See if "V === X - Y" simplifies. 650 if (Value *V = SimplifyBinOp(Instruction::Sub, X, Y, TD, DT, MaxRecurse-1)) 651 // It does! Now see if "V - Z" simplifies. 652 if (Value *W = SimplifyBinOp(Instruction::Sub, V, Z, TD, DT, 653 MaxRecurse-1)) { 654 // It does, we successfully reassociated! 655 ++NumReassoc; 656 return W; 657 } 658 // See if "V === X - Z" simplifies. 659 if (Value *V = SimplifyBinOp(Instruction::Sub, X, Z, TD, DT, MaxRecurse-1)) 660 // It does! Now see if "V - Y" simplifies. 661 if (Value *W = SimplifyBinOp(Instruction::Sub, V, Y, TD, DT, 662 MaxRecurse-1)) { 663 // It does, we successfully reassociated! 664 ++NumReassoc; 665 return W; 666 } 667 } 668 669 // Z - (X - Y) -> (Z - X) + Y if everything simplifies. 670 // For example, X - (X - Y) -> Y. 671 Z = Op0; 672 if (MaxRecurse && match(Op1, m_Sub(m_Value(X), m_Value(Y)))) // Z - (X - Y) 673 // See if "V === Z - X" simplifies. 674 if (Value *V = SimplifyBinOp(Instruction::Sub, Z, X, TD, DT, MaxRecurse-1)) 675 // It does! Now see if "V + Y" simplifies. 676 if (Value *W = SimplifyBinOp(Instruction::Add, V, Y, TD, DT, 677 MaxRecurse-1)) { 678 // It does, we successfully reassociated! 679 ++NumReassoc; 680 return W; 681 } 682 683 // Mul distributes over Sub. Try some generic simplifications based on this. 684 if (Value *V = FactorizeBinOp(Instruction::Sub, Op0, Op1, Instruction::Mul, 685 TD, DT, MaxRecurse)) 686 return V; 687 688 // i1 sub -> xor. 689 if (MaxRecurse && Op0->getType()->isIntegerTy(1)) 690 if (Value *V = SimplifyXorInst(Op0, Op1, TD, DT, MaxRecurse-1)) 691 return V; 692 693 // Threading Sub over selects and phi nodes is pointless, so don't bother. 694 // Threading over the select in "A - select(cond, B, C)" means evaluating 695 // "A-B" and "A-C" and seeing if they are equal; but they are equal if and 696 // only if B and C are equal. If B and C are equal then (since we assume 697 // that operands have already been simplified) "select(cond, B, C)" should 698 // have been simplified to the common value of B and C already. Analysing 699 // "A-B" and "A-C" thus gains nothing, but costs compile time. Similarly 700 // for threading over phi nodes. 701 702 return 0; 703 } 704 705 Value *llvm::SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, 706 const TargetData *TD, const DominatorTree *DT) { 707 return ::SimplifySubInst(Op0, Op1, isNSW, isNUW, TD, DT, RecursionLimit); 708 } 709 710 /// SimplifyMulInst - Given operands for a Mul, see if we can 711 /// fold the result. If not, this returns null. 712 static Value *SimplifyMulInst(Value *Op0, Value *Op1, const TargetData *TD, 713 const DominatorTree *DT, unsigned MaxRecurse) { 714 if (Constant *CLHS = dyn_cast<Constant>(Op0)) { 715 if (Constant *CRHS = dyn_cast<Constant>(Op1)) { 716 Constant *Ops[] = { CLHS, CRHS }; 717 return ConstantFoldInstOperands(Instruction::Mul, CLHS->getType(), 718 Ops, 2, TD); 719 } 720 721 // Canonicalize the constant to the RHS. 722 std::swap(Op0, Op1); 723 } 724 725 // X * undef -> 0 726 if (match(Op1, m_Undef())) 727 return Constant::getNullValue(Op0->getType()); 728 729 // X * 0 -> 0 730 if (match(Op1, m_Zero())) 731 return Op1; 732 733 // X * 1 -> X 734 if (match(Op1, m_One())) 735 return Op0; 736 737 // (X / Y) * Y -> X if the division is exact. 738 Value *X = 0, *Y = 0; 739 if ((match(Op0, m_IDiv(m_Value(X), m_Value(Y))) && Y == Op1) || // (X / Y) * Y 740 (match(Op1, m_IDiv(m_Value(X), m_Value(Y))) && Y == Op0)) { // Y * (X / Y) 741 BinaryOperator *Div = cast<BinaryOperator>(Y == Op1 ? Op0 : Op1); 742 if (Div->isExact()) 743 return X; 744 } 745 746 // i1 mul -> and. 747 if (MaxRecurse && Op0->getType()->isIntegerTy(1)) 748 if (Value *V = SimplifyAndInst(Op0, Op1, TD, DT, MaxRecurse-1)) 749 return V; 750 751 // Try some generic simplifications for associative operations. 752 if (Value *V = SimplifyAssociativeBinOp(Instruction::Mul, Op0, Op1, TD, DT, 753 MaxRecurse)) 754 return V; 755 756 // Mul distributes over Add. Try some generic simplifications based on this. 757 if (Value *V = ExpandBinOp(Instruction::Mul, Op0, Op1, Instruction::Add, 758 TD, DT, MaxRecurse)) 759 return V; 760 761 // If the operation is with the result of a select instruction, check whether 762 // operating on either branch of the select always yields the same value. 763 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 764 if (Value *V = ThreadBinOpOverSelect(Instruction::Mul, Op0, Op1, TD, DT, 765 MaxRecurse)) 766 return V; 767 768 // If the operation is with the result of a phi instruction, check whether 769 // operating on all incoming values of the phi always yields the same value. 770 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 771 if (Value *V = ThreadBinOpOverPHI(Instruction::Mul, Op0, Op1, TD, DT, 772 MaxRecurse)) 773 return V; 774 775 return 0; 776 } 777 778 Value *llvm::SimplifyMulInst(Value *Op0, Value *Op1, const TargetData *TD, 779 const DominatorTree *DT) { 780 return ::SimplifyMulInst(Op0, Op1, TD, DT, RecursionLimit); 781 } 782 783 /// SimplifyDiv - Given operands for an SDiv or UDiv, see if we can 784 /// fold the result. If not, this returns null. 785 static Value *SimplifyDiv(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1, 786 const TargetData *TD, const DominatorTree *DT, 787 unsigned MaxRecurse) { 788 if (Constant *C0 = dyn_cast<Constant>(Op0)) { 789 if (Constant *C1 = dyn_cast<Constant>(Op1)) { 790 Constant *Ops[] = { C0, C1 }; 791 return ConstantFoldInstOperands(Opcode, C0->getType(), Ops, 2, TD); 792 } 793 } 794 795 bool isSigned = Opcode == Instruction::SDiv; 796 797 // X / undef -> undef 798 if (match(Op1, m_Undef())) 799 return Op1; 800 801 // undef / X -> 0 802 if (match(Op0, m_Undef())) 803 return Constant::getNullValue(Op0->getType()); 804 805 // 0 / X -> 0, we don't need to preserve faults! 806 if (match(Op0, m_Zero())) 807 return Op0; 808 809 // X / 1 -> X 810 if (match(Op1, m_One())) 811 return Op0; 812 813 if (Op0->getType()->isIntegerTy(1)) 814 // It can't be division by zero, hence it must be division by one. 815 return Op0; 816 817 // X / X -> 1 818 if (Op0 == Op1) 819 return ConstantInt::get(Op0->getType(), 1); 820 821 // (X * Y) / Y -> X if the multiplication does not overflow. 822 Value *X = 0, *Y = 0; 823 if (match(Op0, m_Mul(m_Value(X), m_Value(Y))) && (X == Op1 || Y == Op1)) { 824 if (Y != Op1) std::swap(X, Y); // Ensure expression is (X * Y) / Y, Y = Op1 825 BinaryOperator *Mul = cast<BinaryOperator>(Op0); 826 // If the Mul knows it does not overflow, then we are good to go. 827 if ((isSigned && Mul->hasNoSignedWrap()) || 828 (!isSigned && Mul->hasNoUnsignedWrap())) 829 return X; 830 // If X has the form X = A / Y then X * Y cannot overflow. 831 if (BinaryOperator *Div = dyn_cast<BinaryOperator>(X)) 832 if (Div->getOpcode() == Opcode && Div->getOperand(1) == Y) 833 return X; 834 } 835 836 // (X rem Y) / Y -> 0 837 if ((isSigned && match(Op0, m_SRem(m_Value(), m_Specific(Op1)))) || 838 (!isSigned && match(Op0, m_URem(m_Value(), m_Specific(Op1))))) 839 return Constant::getNullValue(Op0->getType()); 840 841 // If the operation is with the result of a select instruction, check whether 842 // operating on either branch of the select always yields the same value. 843 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 844 if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, TD, DT, MaxRecurse)) 845 return V; 846 847 // If the operation is with the result of a phi instruction, check whether 848 // operating on all incoming values of the phi always yields the same value. 849 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 850 if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, TD, DT, MaxRecurse)) 851 return V; 852 853 return 0; 854 } 855 856 /// SimplifySDivInst - Given operands for an SDiv, see if we can 857 /// fold the result. If not, this returns null. 858 static Value *SimplifySDivInst(Value *Op0, Value *Op1, const TargetData *TD, 859 const DominatorTree *DT, unsigned MaxRecurse) { 860 if (Value *V = SimplifyDiv(Instruction::SDiv, Op0, Op1, TD, DT, MaxRecurse)) 861 return V; 862 863 return 0; 864 } 865 866 Value *llvm::SimplifySDivInst(Value *Op0, Value *Op1, const TargetData *TD, 867 const DominatorTree *DT) { 868 return ::SimplifySDivInst(Op0, Op1, TD, DT, RecursionLimit); 869 } 870 871 /// SimplifyUDivInst - Given operands for a UDiv, see if we can 872 /// fold the result. If not, this returns null. 873 static Value *SimplifyUDivInst(Value *Op0, Value *Op1, const TargetData *TD, 874 const DominatorTree *DT, unsigned MaxRecurse) { 875 if (Value *V = SimplifyDiv(Instruction::UDiv, Op0, Op1, TD, DT, MaxRecurse)) 876 return V; 877 878 return 0; 879 } 880 881 Value *llvm::SimplifyUDivInst(Value *Op0, Value *Op1, const TargetData *TD, 882 const DominatorTree *DT) { 883 return ::SimplifyUDivInst(Op0, Op1, TD, DT, RecursionLimit); 884 } 885 886 static Value *SimplifyFDivInst(Value *Op0, Value *Op1, const TargetData *, 887 const DominatorTree *, unsigned) { 888 // undef / X -> undef (the undef could be a snan). 889 if (match(Op0, m_Undef())) 890 return Op0; 891 892 // X / undef -> undef 893 if (match(Op1, m_Undef())) 894 return Op1; 895 896 return 0; 897 } 898 899 Value *llvm::SimplifyFDivInst(Value *Op0, Value *Op1, const TargetData *TD, 900 const DominatorTree *DT) { 901 return ::SimplifyFDivInst(Op0, Op1, TD, DT, RecursionLimit); 902 } 903 904 /// SimplifyShift - Given operands for an Shl, LShr or AShr, see if we can 905 /// fold the result. If not, this returns null. 906 static Value *SimplifyShift(unsigned Opcode, Value *Op0, Value *Op1, 907 const TargetData *TD, const DominatorTree *DT, 908 unsigned MaxRecurse) { 909 if (Constant *C0 = dyn_cast<Constant>(Op0)) { 910 if (Constant *C1 = dyn_cast<Constant>(Op1)) { 911 Constant *Ops[] = { C0, C1 }; 912 return ConstantFoldInstOperands(Opcode, C0->getType(), Ops, 2, TD); 913 } 914 } 915 916 // 0 shift by X -> 0 917 if (match(Op0, m_Zero())) 918 return Op0; 919 920 // X shift by 0 -> X 921 if (match(Op1, m_Zero())) 922 return Op0; 923 924 // X shift by undef -> undef because it may shift by the bitwidth. 925 if (match(Op1, m_Undef())) 926 return Op1; 927 928 // Shifting by the bitwidth or more is undefined. 929 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) 930 if (CI->getValue().getLimitedValue() >= 931 Op0->getType()->getScalarSizeInBits()) 932 return UndefValue::get(Op0->getType()); 933 934 // If the operation is with the result of a select instruction, check whether 935 // operating on either branch of the select always yields the same value. 936 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 937 if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, TD, DT, MaxRecurse)) 938 return V; 939 940 // If the operation is with the result of a phi instruction, check whether 941 // operating on all incoming values of the phi always yields the same value. 942 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 943 if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, TD, DT, MaxRecurse)) 944 return V; 945 946 return 0; 947 } 948 949 /// SimplifyShlInst - Given operands for an Shl, see if we can 950 /// fold the result. If not, this returns null. 951 static Value *SimplifyShlInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, 952 const TargetData *TD, const DominatorTree *DT, 953 unsigned MaxRecurse) { 954 if (Value *V = SimplifyShift(Instruction::Shl, Op0, Op1, TD, DT, MaxRecurse)) 955 return V; 956 957 // undef << X -> 0 958 if (match(Op0, m_Undef())) 959 return Constant::getNullValue(Op0->getType()); 960 961 // (X >> A) << A -> X 962 Value *X; 963 if (match(Op0, m_Shr(m_Value(X), m_Specific(Op1))) && 964 cast<PossiblyExactOperator>(Op0)->isExact()) 965 return X; 966 return 0; 967 } 968 969 Value *llvm::SimplifyShlInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, 970 const TargetData *TD, const DominatorTree *DT) { 971 return ::SimplifyShlInst(Op0, Op1, isNSW, isNUW, TD, DT, RecursionLimit); 972 } 973 974 /// SimplifyLShrInst - Given operands for an LShr, see if we can 975 /// fold the result. If not, this returns null. 976 static Value *SimplifyLShrInst(Value *Op0, Value *Op1, bool isExact, 977 const TargetData *TD, const DominatorTree *DT, 978 unsigned MaxRecurse) { 979 if (Value *V = SimplifyShift(Instruction::LShr, Op0, Op1, TD, DT, MaxRecurse)) 980 return V; 981 982 // undef >>l X -> 0 983 if (match(Op0, m_Undef())) 984 return Constant::getNullValue(Op0->getType()); 985 986 // (X << A) >> A -> X 987 Value *X; 988 if (match(Op0, m_Shl(m_Value(X), m_Specific(Op1))) && 989 cast<OverflowingBinaryOperator>(Op0)->hasNoUnsignedWrap()) 990 return X; 991 992 return 0; 993 } 994 995 Value *llvm::SimplifyLShrInst(Value *Op0, Value *Op1, bool isExact, 996 const TargetData *TD, const DominatorTree *DT) { 997 return ::SimplifyLShrInst(Op0, Op1, isExact, TD, DT, RecursionLimit); 998 } 999 1000 /// SimplifyAShrInst - Given operands for an AShr, see if we can 1001 /// fold the result. If not, this returns null. 1002 static Value *SimplifyAShrInst(Value *Op0, Value *Op1, bool isExact, 1003 const TargetData *TD, const DominatorTree *DT, 1004 unsigned MaxRecurse) { 1005 if (Value *V = SimplifyShift(Instruction::AShr, Op0, Op1, TD, DT, MaxRecurse)) 1006 return V; 1007 1008 // all ones >>a X -> all ones 1009 if (match(Op0, m_AllOnes())) 1010 return Op0; 1011 1012 // undef >>a X -> all ones 1013 if (match(Op0, m_Undef())) 1014 return Constant::getAllOnesValue(Op0->getType()); 1015 1016 // (X << A) >> A -> X 1017 Value *X; 1018 if (match(Op0, m_Shl(m_Value(X), m_Specific(Op1))) && 1019 cast<OverflowingBinaryOperator>(Op0)->hasNoSignedWrap()) 1020 return X; 1021 1022 return 0; 1023 } 1024 1025 Value *llvm::SimplifyAShrInst(Value *Op0, Value *Op1, bool isExact, 1026 const TargetData *TD, const DominatorTree *DT) { 1027 return ::SimplifyAShrInst(Op0, Op1, isExact, TD, DT, RecursionLimit); 1028 } 1029 1030 /// SimplifyAndInst - Given operands for an And, see if we can 1031 /// fold the result. If not, this returns null. 1032 static Value *SimplifyAndInst(Value *Op0, Value *Op1, const TargetData *TD, 1033 const DominatorTree *DT, unsigned MaxRecurse) { 1034 if (Constant *CLHS = dyn_cast<Constant>(Op0)) { 1035 if (Constant *CRHS = dyn_cast<Constant>(Op1)) { 1036 Constant *Ops[] = { CLHS, CRHS }; 1037 return ConstantFoldInstOperands(Instruction::And, CLHS->getType(), 1038 Ops, 2, TD); 1039 } 1040 1041 // Canonicalize the constant to the RHS. 1042 std::swap(Op0, Op1); 1043 } 1044 1045 // X & undef -> 0 1046 if (match(Op1, m_Undef())) 1047 return Constant::getNullValue(Op0->getType()); 1048 1049 // X & X = X 1050 if (Op0 == Op1) 1051 return Op0; 1052 1053 // X & 0 = 0 1054 if (match(Op1, m_Zero())) 1055 return Op1; 1056 1057 // X & -1 = X 1058 if (match(Op1, m_AllOnes())) 1059 return Op0; 1060 1061 // A & ~A = ~A & A = 0 1062 if (match(Op0, m_Not(m_Specific(Op1))) || 1063 match(Op1, m_Not(m_Specific(Op0)))) 1064 return Constant::getNullValue(Op0->getType()); 1065 1066 // (A | ?) & A = A 1067 Value *A = 0, *B = 0; 1068 if (match(Op0, m_Or(m_Value(A), m_Value(B))) && 1069 (A == Op1 || B == Op1)) 1070 return Op1; 1071 1072 // A & (A | ?) = A 1073 if (match(Op1, m_Or(m_Value(A), m_Value(B))) && 1074 (A == Op0 || B == Op0)) 1075 return Op0; 1076 1077 // Try some generic simplifications for associative operations. 1078 if (Value *V = SimplifyAssociativeBinOp(Instruction::And, Op0, Op1, TD, DT, 1079 MaxRecurse)) 1080 return V; 1081 1082 // And distributes over Or. Try some generic simplifications based on this. 1083 if (Value *V = ExpandBinOp(Instruction::And, Op0, Op1, Instruction::Or, 1084 TD, DT, MaxRecurse)) 1085 return V; 1086 1087 // And distributes over Xor. Try some generic simplifications based on this. 1088 if (Value *V = ExpandBinOp(Instruction::And, Op0, Op1, Instruction::Xor, 1089 TD, DT, MaxRecurse)) 1090 return V; 1091 1092 // Or distributes over And. Try some generic simplifications based on this. 1093 if (Value *V = FactorizeBinOp(Instruction::And, Op0, Op1, Instruction::Or, 1094 TD, DT, MaxRecurse)) 1095 return V; 1096 1097 // If the operation is with the result of a select instruction, check whether 1098 // operating on either branch of the select always yields the same value. 1099 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 1100 if (Value *V = ThreadBinOpOverSelect(Instruction::And, Op0, Op1, TD, DT, 1101 MaxRecurse)) 1102 return V; 1103 1104 // If the operation is with the result of a phi instruction, check whether 1105 // operating on all incoming values of the phi always yields the same value. 1106 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 1107 if (Value *V = ThreadBinOpOverPHI(Instruction::And, Op0, Op1, TD, DT, 1108 MaxRecurse)) 1109 return V; 1110 1111 return 0; 1112 } 1113 1114 Value *llvm::SimplifyAndInst(Value *Op0, Value *Op1, const TargetData *TD, 1115 const DominatorTree *DT) { 1116 return ::SimplifyAndInst(Op0, Op1, TD, DT, RecursionLimit); 1117 } 1118 1119 /// SimplifyOrInst - Given operands for an Or, see if we can 1120 /// fold the result. If not, this returns null. 1121 static Value *SimplifyOrInst(Value *Op0, Value *Op1, const TargetData *TD, 1122 const DominatorTree *DT, unsigned MaxRecurse) { 1123 if (Constant *CLHS = dyn_cast<Constant>(Op0)) { 1124 if (Constant *CRHS = dyn_cast<Constant>(Op1)) { 1125 Constant *Ops[] = { CLHS, CRHS }; 1126 return ConstantFoldInstOperands(Instruction::Or, CLHS->getType(), 1127 Ops, 2, TD); 1128 } 1129 1130 // Canonicalize the constant to the RHS. 1131 std::swap(Op0, Op1); 1132 } 1133 1134 // X | undef -> -1 1135 if (match(Op1, m_Undef())) 1136 return Constant::getAllOnesValue(Op0->getType()); 1137 1138 // X | X = X 1139 if (Op0 == Op1) 1140 return Op0; 1141 1142 // X | 0 = X 1143 if (match(Op1, m_Zero())) 1144 return Op0; 1145 1146 // X | -1 = -1 1147 if (match(Op1, m_AllOnes())) 1148 return Op1; 1149 1150 // A | ~A = ~A | A = -1 1151 if (match(Op0, m_Not(m_Specific(Op1))) || 1152 match(Op1, m_Not(m_Specific(Op0)))) 1153 return Constant::getAllOnesValue(Op0->getType()); 1154 1155 // (A & ?) | A = A 1156 Value *A = 0, *B = 0; 1157 if (match(Op0, m_And(m_Value(A), m_Value(B))) && 1158 (A == Op1 || B == Op1)) 1159 return Op1; 1160 1161 // A | (A & ?) = A 1162 if (match(Op1, m_And(m_Value(A), m_Value(B))) && 1163 (A == Op0 || B == Op0)) 1164 return Op0; 1165 1166 // ~(A & ?) | A = -1 1167 if (match(Op0, m_Not(m_And(m_Value(A), m_Value(B)))) && 1168 (A == Op1 || B == Op1)) 1169 return Constant::getAllOnesValue(Op1->getType()); 1170 1171 // A | ~(A & ?) = -1 1172 if (match(Op1, m_Not(m_And(m_Value(A), m_Value(B)))) && 1173 (A == Op0 || B == Op0)) 1174 return Constant::getAllOnesValue(Op0->getType()); 1175 1176 // Try some generic simplifications for associative operations. 1177 if (Value *V = SimplifyAssociativeBinOp(Instruction::Or, Op0, Op1, TD, DT, 1178 MaxRecurse)) 1179 return V; 1180 1181 // Or distributes over And. Try some generic simplifications based on this. 1182 if (Value *V = ExpandBinOp(Instruction::Or, Op0, Op1, Instruction::And, 1183 TD, DT, MaxRecurse)) 1184 return V; 1185 1186 // And distributes over Or. Try some generic simplifications based on this. 1187 if (Value *V = FactorizeBinOp(Instruction::Or, Op0, Op1, Instruction::And, 1188 TD, DT, MaxRecurse)) 1189 return V; 1190 1191 // If the operation is with the result of a select instruction, check whether 1192 // operating on either branch of the select always yields the same value. 1193 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 1194 if (Value *V = ThreadBinOpOverSelect(Instruction::Or, Op0, Op1, TD, DT, 1195 MaxRecurse)) 1196 return V; 1197 1198 // If the operation is with the result of a phi instruction, check whether 1199 // operating on all incoming values of the phi always yields the same value. 1200 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 1201 if (Value *V = ThreadBinOpOverPHI(Instruction::Or, Op0, Op1, TD, DT, 1202 MaxRecurse)) 1203 return V; 1204 1205 return 0; 1206 } 1207 1208 Value *llvm::SimplifyOrInst(Value *Op0, Value *Op1, const TargetData *TD, 1209 const DominatorTree *DT) { 1210 return ::SimplifyOrInst(Op0, Op1, TD, DT, RecursionLimit); 1211 } 1212 1213 /// SimplifyXorInst - Given operands for a Xor, see if we can 1214 /// fold the result. If not, this returns null. 1215 static Value *SimplifyXorInst(Value *Op0, Value *Op1, const TargetData *TD, 1216 const DominatorTree *DT, unsigned MaxRecurse) { 1217 if (Constant *CLHS = dyn_cast<Constant>(Op0)) { 1218 if (Constant *CRHS = dyn_cast<Constant>(Op1)) { 1219 Constant *Ops[] = { CLHS, CRHS }; 1220 return ConstantFoldInstOperands(Instruction::Xor, CLHS->getType(), 1221 Ops, 2, TD); 1222 } 1223 1224 // Canonicalize the constant to the RHS. 1225 std::swap(Op0, Op1); 1226 } 1227 1228 // A ^ undef -> undef 1229 if (match(Op1, m_Undef())) 1230 return Op1; 1231 1232 // A ^ 0 = A 1233 if (match(Op1, m_Zero())) 1234 return Op0; 1235 1236 // A ^ A = 0 1237 if (Op0 == Op1) 1238 return Constant::getNullValue(Op0->getType()); 1239 1240 // A ^ ~A = ~A ^ A = -1 1241 if (match(Op0, m_Not(m_Specific(Op1))) || 1242 match(Op1, m_Not(m_Specific(Op0)))) 1243 return Constant::getAllOnesValue(Op0->getType()); 1244 1245 // Try some generic simplifications for associative operations. 1246 if (Value *V = SimplifyAssociativeBinOp(Instruction::Xor, Op0, Op1, TD, DT, 1247 MaxRecurse)) 1248 return V; 1249 1250 // And distributes over Xor. Try some generic simplifications based on this. 1251 if (Value *V = FactorizeBinOp(Instruction::Xor, Op0, Op1, Instruction::And, 1252 TD, DT, MaxRecurse)) 1253 return V; 1254 1255 // Threading Xor over selects and phi nodes is pointless, so don't bother. 1256 // Threading over the select in "A ^ select(cond, B, C)" means evaluating 1257 // "A^B" and "A^C" and seeing if they are equal; but they are equal if and 1258 // only if B and C are equal. If B and C are equal then (since we assume 1259 // that operands have already been simplified) "select(cond, B, C)" should 1260 // have been simplified to the common value of B and C already. Analysing 1261 // "A^B" and "A^C" thus gains nothing, but costs compile time. Similarly 1262 // for threading over phi nodes. 1263 1264 return 0; 1265 } 1266 1267 Value *llvm::SimplifyXorInst(Value *Op0, Value *Op1, const TargetData *TD, 1268 const DominatorTree *DT) { 1269 return ::SimplifyXorInst(Op0, Op1, TD, DT, RecursionLimit); 1270 } 1271 1272 static const Type *GetCompareTy(Value *Op) { 1273 return CmpInst::makeCmpResultType(Op->getType()); 1274 } 1275 1276 /// SimplifyICmpInst - Given operands for an ICmpInst, see if we can 1277 /// fold the result. If not, this returns null. 1278 static Value *SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS, 1279 const TargetData *TD, const DominatorTree *DT, 1280 unsigned MaxRecurse) { 1281 CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate; 1282 assert(CmpInst::isIntPredicate(Pred) && "Not an integer compare!"); 1283 1284 if (Constant *CLHS = dyn_cast<Constant>(LHS)) { 1285 if (Constant *CRHS = dyn_cast<Constant>(RHS)) 1286 return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, TD); 1287 1288 // If we have a constant, make sure it is on the RHS. 1289 std::swap(LHS, RHS); 1290 Pred = CmpInst::getSwappedPredicate(Pred); 1291 } 1292 1293 const Type *ITy = GetCompareTy(LHS); // The return type. 1294 const Type *OpTy = LHS->getType(); // The operand type. 1295 1296 // icmp X, X -> true/false 1297 // X icmp undef -> true/false. For example, icmp ugt %X, undef -> false 1298 // because X could be 0. 1299 if (LHS == RHS || isa<UndefValue>(RHS)) 1300 return ConstantInt::get(ITy, CmpInst::isTrueWhenEqual(Pred)); 1301 1302 // Special case logic when the operands have i1 type. 1303 if (OpTy->isIntegerTy(1) || (OpTy->isVectorTy() && 1304 cast<VectorType>(OpTy)->getElementType()->isIntegerTy(1))) { 1305 switch (Pred) { 1306 default: break; 1307 case ICmpInst::ICMP_EQ: 1308 // X == 1 -> X 1309 if (match(RHS, m_One())) 1310 return LHS; 1311 break; 1312 case ICmpInst::ICMP_NE: 1313 // X != 0 -> X 1314 if (match(RHS, m_Zero())) 1315 return LHS; 1316 break; 1317 case ICmpInst::ICMP_UGT: 1318 // X >u 0 -> X 1319 if (match(RHS, m_Zero())) 1320 return LHS; 1321 break; 1322 case ICmpInst::ICMP_UGE: 1323 // X >=u 1 -> X 1324 if (match(RHS, m_One())) 1325 return LHS; 1326 break; 1327 case ICmpInst::ICMP_SLT: 1328 // X <s 0 -> X 1329 if (match(RHS, m_Zero())) 1330 return LHS; 1331 break; 1332 case ICmpInst::ICMP_SLE: 1333 // X <=s -1 -> X 1334 if (match(RHS, m_One())) 1335 return LHS; 1336 break; 1337 } 1338 } 1339 1340 // icmp <alloca*>, <global/alloca*/null> - Different stack variables have 1341 // different addresses, and what's more the address of a stack variable is 1342 // never null or equal to the address of a global. Note that generalizing 1343 // to the case where LHS is a global variable address or null is pointless, 1344 // since if both LHS and RHS are constants then we already constant folded 1345 // the compare, and if only one of them is then we moved it to RHS already. 1346 if (isa<AllocaInst>(LHS) && (isa<GlobalValue>(RHS) || isa<AllocaInst>(RHS) || 1347 isa<ConstantPointerNull>(RHS))) 1348 // We already know that LHS != RHS. 1349 return ConstantInt::get(ITy, CmpInst::isFalseWhenEqual(Pred)); 1350 1351 // If we are comparing with zero then try hard since this is a common case. 1352 if (match(RHS, m_Zero())) { 1353 bool LHSKnownNonNegative, LHSKnownNegative; 1354 switch (Pred) { 1355 default: 1356 assert(false && "Unknown ICmp predicate!"); 1357 case ICmpInst::ICMP_ULT: 1358 return ConstantInt::getFalse(LHS->getContext()); 1359 case ICmpInst::ICMP_UGE: 1360 return ConstantInt::getTrue(LHS->getContext()); 1361 case ICmpInst::ICMP_EQ: 1362 case ICmpInst::ICMP_ULE: 1363 if (isKnownNonZero(LHS, TD)) 1364 return ConstantInt::getFalse(LHS->getContext()); 1365 break; 1366 case ICmpInst::ICMP_NE: 1367 case ICmpInst::ICMP_UGT: 1368 if (isKnownNonZero(LHS, TD)) 1369 return ConstantInt::getTrue(LHS->getContext()); 1370 break; 1371 case ICmpInst::ICMP_SLT: 1372 ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, TD); 1373 if (LHSKnownNegative) 1374 return ConstantInt::getTrue(LHS->getContext()); 1375 if (LHSKnownNonNegative) 1376 return ConstantInt::getFalse(LHS->getContext()); 1377 break; 1378 case ICmpInst::ICMP_SLE: 1379 ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, TD); 1380 if (LHSKnownNegative) 1381 return ConstantInt::getTrue(LHS->getContext()); 1382 if (LHSKnownNonNegative && isKnownNonZero(LHS, TD)) 1383 return ConstantInt::getFalse(LHS->getContext()); 1384 break; 1385 case ICmpInst::ICMP_SGE: 1386 ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, TD); 1387 if (LHSKnownNegative) 1388 return ConstantInt::getFalse(LHS->getContext()); 1389 if (LHSKnownNonNegative) 1390 return ConstantInt::getTrue(LHS->getContext()); 1391 break; 1392 case ICmpInst::ICMP_SGT: 1393 ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, TD); 1394 if (LHSKnownNegative) 1395 return ConstantInt::getFalse(LHS->getContext()); 1396 if (LHSKnownNonNegative && isKnownNonZero(LHS, TD)) 1397 return ConstantInt::getTrue(LHS->getContext()); 1398 break; 1399 } 1400 } 1401 1402 // See if we are doing a comparison with a constant integer. 1403 if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) { 1404 // Rule out tautological comparisons (eg., ult 0 or uge 0). 1405 ConstantRange RHS_CR = ICmpInst::makeConstantRange(Pred, CI->getValue()); 1406 if (RHS_CR.isEmptySet()) 1407 return ConstantInt::getFalse(CI->getContext()); 1408 if (RHS_CR.isFullSet()) 1409 return ConstantInt::getTrue(CI->getContext()); 1410 1411 // Many binary operators with constant RHS have easy to compute constant 1412 // range. Use them to check whether the comparison is a tautology. 1413 uint32_t Width = CI->getBitWidth(); 1414 APInt Lower = APInt(Width, 0); 1415 APInt Upper = APInt(Width, 0); 1416 ConstantInt *CI2; 1417 if (match(LHS, m_URem(m_Value(), m_ConstantInt(CI2)))) { 1418 // 'urem x, CI2' produces [0, CI2). 1419 Upper = CI2->getValue(); 1420 } else if (match(LHS, m_SRem(m_Value(), m_ConstantInt(CI2)))) { 1421 // 'srem x, CI2' produces (-|CI2|, |CI2|). 1422 Upper = CI2->getValue().abs(); 1423 Lower = (-Upper) + 1; 1424 } else if (match(LHS, m_UDiv(m_Value(), m_ConstantInt(CI2)))) { 1425 // 'udiv x, CI2' produces [0, UINT_MAX / CI2]. 1426 APInt NegOne = APInt::getAllOnesValue(Width); 1427 if (!CI2->isZero()) 1428 Upper = NegOne.udiv(CI2->getValue()) + 1; 1429 } else if (match(LHS, m_SDiv(m_Value(), m_ConstantInt(CI2)))) { 1430 // 'sdiv x, CI2' produces [INT_MIN / CI2, INT_MAX / CI2]. 1431 APInt IntMin = APInt::getSignedMinValue(Width); 1432 APInt IntMax = APInt::getSignedMaxValue(Width); 1433 APInt Val = CI2->getValue().abs(); 1434 if (!Val.isMinValue()) { 1435 Lower = IntMin.sdiv(Val); 1436 Upper = IntMax.sdiv(Val) + 1; 1437 } 1438 } else if (match(LHS, m_LShr(m_Value(), m_ConstantInt(CI2)))) { 1439 // 'lshr x, CI2' produces [0, UINT_MAX >> CI2]. 1440 APInt NegOne = APInt::getAllOnesValue(Width); 1441 if (CI2->getValue().ult(Width)) 1442 Upper = NegOne.lshr(CI2->getValue()) + 1; 1443 } else if (match(LHS, m_AShr(m_Value(), m_ConstantInt(CI2)))) { 1444 // 'ashr x, CI2' produces [INT_MIN >> CI2, INT_MAX >> CI2]. 1445 APInt IntMin = APInt::getSignedMinValue(Width); 1446 APInt IntMax = APInt::getSignedMaxValue(Width); 1447 if (CI2->getValue().ult(Width)) { 1448 Lower = IntMin.ashr(CI2->getValue()); 1449 Upper = IntMax.ashr(CI2->getValue()) + 1; 1450 } 1451 } else if (match(LHS, m_Or(m_Value(), m_ConstantInt(CI2)))) { 1452 // 'or x, CI2' produces [CI2, UINT_MAX]. 1453 Lower = CI2->getValue(); 1454 } else if (match(LHS, m_And(m_Value(), m_ConstantInt(CI2)))) { 1455 // 'and x, CI2' produces [0, CI2]. 1456 Upper = CI2->getValue() + 1; 1457 } 1458 if (Lower != Upper) { 1459 ConstantRange LHS_CR = ConstantRange(Lower, Upper); 1460 if (RHS_CR.contains(LHS_CR)) 1461 return ConstantInt::getTrue(RHS->getContext()); 1462 if (RHS_CR.inverse().contains(LHS_CR)) 1463 return ConstantInt::getFalse(RHS->getContext()); 1464 } 1465 } 1466 1467 // Compare of cast, for example (zext X) != 0 -> X != 0 1468 if (isa<CastInst>(LHS) && (isa<Constant>(RHS) || isa<CastInst>(RHS))) { 1469 Instruction *LI = cast<CastInst>(LHS); 1470 Value *SrcOp = LI->getOperand(0); 1471 const Type *SrcTy = SrcOp->getType(); 1472 const Type *DstTy = LI->getType(); 1473 1474 // Turn icmp (ptrtoint x), (ptrtoint/constant) into a compare of the input 1475 // if the integer type is the same size as the pointer type. 1476 if (MaxRecurse && TD && isa<PtrToIntInst>(LI) && 1477 TD->getPointerSizeInBits() == DstTy->getPrimitiveSizeInBits()) { 1478 if (Constant *RHSC = dyn_cast<Constant>(RHS)) { 1479 // Transfer the cast to the constant. 1480 if (Value *V = SimplifyICmpInst(Pred, SrcOp, 1481 ConstantExpr::getIntToPtr(RHSC, SrcTy), 1482 TD, DT, MaxRecurse-1)) 1483 return V; 1484 } else if (PtrToIntInst *RI = dyn_cast<PtrToIntInst>(RHS)) { 1485 if (RI->getOperand(0)->getType() == SrcTy) 1486 // Compare without the cast. 1487 if (Value *V = SimplifyICmpInst(Pred, SrcOp, RI->getOperand(0), 1488 TD, DT, MaxRecurse-1)) 1489 return V; 1490 } 1491 } 1492 1493 if (isa<ZExtInst>(LHS)) { 1494 // Turn icmp (zext X), (zext Y) into a compare of X and Y if they have the 1495 // same type. 1496 if (ZExtInst *RI = dyn_cast<ZExtInst>(RHS)) { 1497 if (MaxRecurse && SrcTy == RI->getOperand(0)->getType()) 1498 // Compare X and Y. Note that signed predicates become unsigned. 1499 if (Value *V = SimplifyICmpInst(ICmpInst::getUnsignedPredicate(Pred), 1500 SrcOp, RI->getOperand(0), TD, DT, 1501 MaxRecurse-1)) 1502 return V; 1503 } 1504 // Turn icmp (zext X), Cst into a compare of X and Cst if Cst is extended 1505 // too. If not, then try to deduce the result of the comparison. 1506 else if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) { 1507 // Compute the constant that would happen if we truncated to SrcTy then 1508 // reextended to DstTy. 1509 Constant *Trunc = ConstantExpr::getTrunc(CI, SrcTy); 1510 Constant *RExt = ConstantExpr::getCast(CastInst::ZExt, Trunc, DstTy); 1511 1512 // If the re-extended constant didn't change then this is effectively 1513 // also a case of comparing two zero-extended values. 1514 if (RExt == CI && MaxRecurse) 1515 if (Value *V = SimplifyICmpInst(ICmpInst::getUnsignedPredicate(Pred), 1516 SrcOp, Trunc, TD, DT, MaxRecurse-1)) 1517 return V; 1518 1519 // Otherwise the upper bits of LHS are zero while RHS has a non-zero bit 1520 // there. Use this to work out the result of the comparison. 1521 if (RExt != CI) { 1522 switch (Pred) { 1523 default: 1524 assert(false && "Unknown ICmp predicate!"); 1525 // LHS <u RHS. 1526 case ICmpInst::ICMP_EQ: 1527 case ICmpInst::ICMP_UGT: 1528 case ICmpInst::ICMP_UGE: 1529 return ConstantInt::getFalse(CI->getContext()); 1530 1531 case ICmpInst::ICMP_NE: 1532 case ICmpInst::ICMP_ULT: 1533 case ICmpInst::ICMP_ULE: 1534 return ConstantInt::getTrue(CI->getContext()); 1535 1536 // LHS is non-negative. If RHS is negative then LHS >s LHS. If RHS 1537 // is non-negative then LHS <s RHS. 1538 case ICmpInst::ICMP_SGT: 1539 case ICmpInst::ICMP_SGE: 1540 return CI->getValue().isNegative() ? 1541 ConstantInt::getTrue(CI->getContext()) : 1542 ConstantInt::getFalse(CI->getContext()); 1543 1544 case ICmpInst::ICMP_SLT: 1545 case ICmpInst::ICMP_SLE: 1546 return CI->getValue().isNegative() ? 1547 ConstantInt::getFalse(CI->getContext()) : 1548 ConstantInt::getTrue(CI->getContext()); 1549 } 1550 } 1551 } 1552 } 1553 1554 if (isa<SExtInst>(LHS)) { 1555 // Turn icmp (sext X), (sext Y) into a compare of X and Y if they have the 1556 // same type. 1557 if (SExtInst *RI = dyn_cast<SExtInst>(RHS)) { 1558 if (MaxRecurse && SrcTy == RI->getOperand(0)->getType()) 1559 // Compare X and Y. Note that the predicate does not change. 1560 if (Value *V = SimplifyICmpInst(Pred, SrcOp, RI->getOperand(0), 1561 TD, DT, MaxRecurse-1)) 1562 return V; 1563 } 1564 // Turn icmp (sext X), Cst into a compare of X and Cst if Cst is extended 1565 // too. If not, then try to deduce the result of the comparison. 1566 else if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) { 1567 // Compute the constant that would happen if we truncated to SrcTy then 1568 // reextended to DstTy. 1569 Constant *Trunc = ConstantExpr::getTrunc(CI, SrcTy); 1570 Constant *RExt = ConstantExpr::getCast(CastInst::SExt, Trunc, DstTy); 1571 1572 // If the re-extended constant didn't change then this is effectively 1573 // also a case of comparing two sign-extended values. 1574 if (RExt == CI && MaxRecurse) 1575 if (Value *V = SimplifyICmpInst(Pred, SrcOp, Trunc, TD, DT, 1576 MaxRecurse-1)) 1577 return V; 1578 1579 // Otherwise the upper bits of LHS are all equal, while RHS has varying 1580 // bits there. Use this to work out the result of the comparison. 1581 if (RExt != CI) { 1582 switch (Pred) { 1583 default: 1584 assert(false && "Unknown ICmp predicate!"); 1585 case ICmpInst::ICMP_EQ: 1586 return ConstantInt::getFalse(CI->getContext()); 1587 case ICmpInst::ICMP_NE: 1588 return ConstantInt::getTrue(CI->getContext()); 1589 1590 // If RHS is non-negative then LHS <s RHS. If RHS is negative then 1591 // LHS >s RHS. 1592 case ICmpInst::ICMP_SGT: 1593 case ICmpInst::ICMP_SGE: 1594 return CI->getValue().isNegative() ? 1595 ConstantInt::getTrue(CI->getContext()) : 1596 ConstantInt::getFalse(CI->getContext()); 1597 case ICmpInst::ICMP_SLT: 1598 case ICmpInst::ICMP_SLE: 1599 return CI->getValue().isNegative() ? 1600 ConstantInt::getFalse(CI->getContext()) : 1601 ConstantInt::getTrue(CI->getContext()); 1602 1603 // If LHS is non-negative then LHS <u RHS. If LHS is negative then 1604 // LHS >u RHS. 1605 case ICmpInst::ICMP_UGT: 1606 case ICmpInst::ICMP_UGE: 1607 // Comparison is true iff the LHS <s 0. 1608 if (MaxRecurse) 1609 if (Value *V = SimplifyICmpInst(ICmpInst::ICMP_SLT, SrcOp, 1610 Constant::getNullValue(SrcTy), 1611 TD, DT, MaxRecurse-1)) 1612 return V; 1613 break; 1614 case ICmpInst::ICMP_ULT: 1615 case ICmpInst::ICMP_ULE: 1616 // Comparison is true iff the LHS >=s 0. 1617 if (MaxRecurse) 1618 if (Value *V = SimplifyICmpInst(ICmpInst::ICMP_SGE, SrcOp, 1619 Constant::getNullValue(SrcTy), 1620 TD, DT, MaxRecurse-1)) 1621 return V; 1622 break; 1623 } 1624 } 1625 } 1626 } 1627 } 1628 1629 // Special logic for binary operators. 1630 BinaryOperator *LBO = dyn_cast<BinaryOperator>(LHS); 1631 BinaryOperator *RBO = dyn_cast<BinaryOperator>(RHS); 1632 if (MaxRecurse && (LBO || RBO)) { 1633 // Analyze the case when either LHS or RHS is an add instruction. 1634 Value *A = 0, *B = 0, *C = 0, *D = 0; 1635 // LHS = A + B (or A and B are null); RHS = C + D (or C and D are null). 1636 bool NoLHSWrapProblem = false, NoRHSWrapProblem = false; 1637 if (LBO && LBO->getOpcode() == Instruction::Add) { 1638 A = LBO->getOperand(0); B = LBO->getOperand(1); 1639 NoLHSWrapProblem = ICmpInst::isEquality(Pred) || 1640 (CmpInst::isUnsigned(Pred) && LBO->hasNoUnsignedWrap()) || 1641 (CmpInst::isSigned(Pred) && LBO->hasNoSignedWrap()); 1642 } 1643 if (RBO && RBO->getOpcode() == Instruction::Add) { 1644 C = RBO->getOperand(0); D = RBO->getOperand(1); 1645 NoRHSWrapProblem = ICmpInst::isEquality(Pred) || 1646 (CmpInst::isUnsigned(Pred) && RBO->hasNoUnsignedWrap()) || 1647 (CmpInst::isSigned(Pred) && RBO->hasNoSignedWrap()); 1648 } 1649 1650 // icmp (X+Y), X -> icmp Y, 0 for equalities or if there is no overflow. 1651 if ((A == RHS || B == RHS) && NoLHSWrapProblem) 1652 if (Value *V = SimplifyICmpInst(Pred, A == RHS ? B : A, 1653 Constant::getNullValue(RHS->getType()), 1654 TD, DT, MaxRecurse-1)) 1655 return V; 1656 1657 // icmp X, (X+Y) -> icmp 0, Y for equalities or if there is no overflow. 1658 if ((C == LHS || D == LHS) && NoRHSWrapProblem) 1659 if (Value *V = SimplifyICmpInst(Pred, 1660 Constant::getNullValue(LHS->getType()), 1661 C == LHS ? D : C, TD, DT, MaxRecurse-1)) 1662 return V; 1663 1664 // icmp (X+Y), (X+Z) -> icmp Y,Z for equalities or if there is no overflow. 1665 if (A && C && (A == C || A == D || B == C || B == D) && 1666 NoLHSWrapProblem && NoRHSWrapProblem) { 1667 // Determine Y and Z in the form icmp (X+Y), (X+Z). 1668 Value *Y = (A == C || A == D) ? B : A; 1669 Value *Z = (C == A || C == B) ? D : C; 1670 if (Value *V = SimplifyICmpInst(Pred, Y, Z, TD, DT, MaxRecurse-1)) 1671 return V; 1672 } 1673 } 1674 1675 if (LBO && match(LBO, m_URem(m_Value(), m_Specific(RHS)))) { 1676 bool KnownNonNegative, KnownNegative; 1677 switch (Pred) { 1678 default: 1679 break; 1680 case ICmpInst::ICMP_SGT: 1681 case ICmpInst::ICMP_SGE: 1682 ComputeSignBit(LHS, KnownNonNegative, KnownNegative, TD); 1683 if (!KnownNonNegative) 1684 break; 1685 // fall-through 1686 case ICmpInst::ICMP_EQ: 1687 case ICmpInst::ICMP_UGT: 1688 case ICmpInst::ICMP_UGE: 1689 return ConstantInt::getFalse(RHS->getContext()); 1690 case ICmpInst::ICMP_SLT: 1691 case ICmpInst::ICMP_SLE: 1692 ComputeSignBit(LHS, KnownNonNegative, KnownNegative, TD); 1693 if (!KnownNonNegative) 1694 break; 1695 // fall-through 1696 case ICmpInst::ICMP_NE: 1697 case ICmpInst::ICMP_ULT: 1698 case ICmpInst::ICMP_ULE: 1699 return ConstantInt::getTrue(RHS->getContext()); 1700 } 1701 } 1702 if (RBO && match(RBO, m_URem(m_Value(), m_Specific(LHS)))) { 1703 bool KnownNonNegative, KnownNegative; 1704 switch (Pred) { 1705 default: 1706 break; 1707 case ICmpInst::ICMP_SGT: 1708 case ICmpInst::ICMP_SGE: 1709 ComputeSignBit(RHS, KnownNonNegative, KnownNegative, TD); 1710 if (!KnownNonNegative) 1711 break; 1712 // fall-through 1713 case ICmpInst::ICMP_NE: 1714 case ICmpInst::ICMP_UGT: 1715 case ICmpInst::ICMP_UGE: 1716 return ConstantInt::getTrue(RHS->getContext()); 1717 case ICmpInst::ICMP_SLT: 1718 case ICmpInst::ICMP_SLE: 1719 ComputeSignBit(RHS, KnownNonNegative, KnownNegative, TD); 1720 if (!KnownNonNegative) 1721 break; 1722 // fall-through 1723 case ICmpInst::ICMP_EQ: 1724 case ICmpInst::ICMP_ULT: 1725 case ICmpInst::ICMP_ULE: 1726 return ConstantInt::getFalse(RHS->getContext()); 1727 } 1728 } 1729 1730 if (MaxRecurse && LBO && RBO && LBO->getOpcode() == RBO->getOpcode() && 1731 LBO->getOperand(1) == RBO->getOperand(1)) { 1732 switch (LBO->getOpcode()) { 1733 default: break; 1734 case Instruction::UDiv: 1735 case Instruction::LShr: 1736 if (ICmpInst::isSigned(Pred)) 1737 break; 1738 // fall-through 1739 case Instruction::SDiv: 1740 case Instruction::AShr: 1741 if (!LBO->isExact() && !RBO->isExact()) 1742 break; 1743 if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0), 1744 RBO->getOperand(0), TD, DT, MaxRecurse-1)) 1745 return V; 1746 break; 1747 case Instruction::Shl: { 1748 bool NUW = LBO->hasNoUnsignedWrap() && LBO->hasNoUnsignedWrap(); 1749 bool NSW = LBO->hasNoSignedWrap() && RBO->hasNoSignedWrap(); 1750 if (!NUW && !NSW) 1751 break; 1752 if (!NSW && ICmpInst::isSigned(Pred)) 1753 break; 1754 if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0), 1755 RBO->getOperand(0), TD, DT, MaxRecurse-1)) 1756 return V; 1757 break; 1758 } 1759 } 1760 } 1761 1762 // If the comparison is with the result of a select instruction, check whether 1763 // comparing with either branch of the select always yields the same value. 1764 if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS)) 1765 if (Value *V = ThreadCmpOverSelect(Pred, LHS, RHS, TD, DT, MaxRecurse)) 1766 return V; 1767 1768 // If the comparison is with the result of a phi instruction, check whether 1769 // doing the compare with each incoming phi value yields a common result. 1770 if (isa<PHINode>(LHS) || isa<PHINode>(RHS)) 1771 if (Value *V = ThreadCmpOverPHI(Pred, LHS, RHS, TD, DT, MaxRecurse)) 1772 return V; 1773 1774 return 0; 1775 } 1776 1777 Value *llvm::SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS, 1778 const TargetData *TD, const DominatorTree *DT) { 1779 return ::SimplifyICmpInst(Predicate, LHS, RHS, TD, DT, RecursionLimit); 1780 } 1781 1782 /// SimplifyFCmpInst - Given operands for an FCmpInst, see if we can 1783 /// fold the result. If not, this returns null. 1784 static Value *SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS, 1785 const TargetData *TD, const DominatorTree *DT, 1786 unsigned MaxRecurse) { 1787 CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate; 1788 assert(CmpInst::isFPPredicate(Pred) && "Not an FP compare!"); 1789 1790 if (Constant *CLHS = dyn_cast<Constant>(LHS)) { 1791 if (Constant *CRHS = dyn_cast<Constant>(RHS)) 1792 return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, TD); 1793 1794 // If we have a constant, make sure it is on the RHS. 1795 std::swap(LHS, RHS); 1796 Pred = CmpInst::getSwappedPredicate(Pred); 1797 } 1798 1799 // Fold trivial predicates. 1800 if (Pred == FCmpInst::FCMP_FALSE) 1801 return ConstantInt::get(GetCompareTy(LHS), 0); 1802 if (Pred == FCmpInst::FCMP_TRUE) 1803 return ConstantInt::get(GetCompareTy(LHS), 1); 1804 1805 if (isa<UndefValue>(RHS)) // fcmp pred X, undef -> undef 1806 return UndefValue::get(GetCompareTy(LHS)); 1807 1808 // fcmp x,x -> true/false. Not all compares are foldable. 1809 if (LHS == RHS) { 1810 if (CmpInst::isTrueWhenEqual(Pred)) 1811 return ConstantInt::get(GetCompareTy(LHS), 1); 1812 if (CmpInst::isFalseWhenEqual(Pred)) 1813 return ConstantInt::get(GetCompareTy(LHS), 0); 1814 } 1815 1816 // Handle fcmp with constant RHS 1817 if (Constant *RHSC = dyn_cast<Constant>(RHS)) { 1818 // If the constant is a nan, see if we can fold the comparison based on it. 1819 if (ConstantFP *CFP = dyn_cast<ConstantFP>(RHSC)) { 1820 if (CFP->getValueAPF().isNaN()) { 1821 if (FCmpInst::isOrdered(Pred)) // True "if ordered and foo" 1822 return ConstantInt::getFalse(CFP->getContext()); 1823 assert(FCmpInst::isUnordered(Pred) && 1824 "Comparison must be either ordered or unordered!"); 1825 // True if unordered. 1826 return ConstantInt::getTrue(CFP->getContext()); 1827 } 1828 // Check whether the constant is an infinity. 1829 if (CFP->getValueAPF().isInfinity()) { 1830 if (CFP->getValueAPF().isNegative()) { 1831 switch (Pred) { 1832 case FCmpInst::FCMP_OLT: 1833 // No value is ordered and less than negative infinity. 1834 return ConstantInt::getFalse(CFP->getContext()); 1835 case FCmpInst::FCMP_UGE: 1836 // All values are unordered with or at least negative infinity. 1837 return ConstantInt::getTrue(CFP->getContext()); 1838 default: 1839 break; 1840 } 1841 } else { 1842 switch (Pred) { 1843 case FCmpInst::FCMP_OGT: 1844 // No value is ordered and greater than infinity. 1845 return ConstantInt::getFalse(CFP->getContext()); 1846 case FCmpInst::FCMP_ULE: 1847 // All values are unordered with and at most infinity. 1848 return ConstantInt::getTrue(CFP->getContext()); 1849 default: 1850 break; 1851 } 1852 } 1853 } 1854 } 1855 } 1856 1857 // If the comparison is with the result of a select instruction, check whether 1858 // comparing with either branch of the select always yields the same value. 1859 if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS)) 1860 if (Value *V = ThreadCmpOverSelect(Pred, LHS, RHS, TD, DT, MaxRecurse)) 1861 return V; 1862 1863 // If the comparison is with the result of a phi instruction, check whether 1864 // doing the compare with each incoming phi value yields a common result. 1865 if (isa<PHINode>(LHS) || isa<PHINode>(RHS)) 1866 if (Value *V = ThreadCmpOverPHI(Pred, LHS, RHS, TD, DT, MaxRecurse)) 1867 return V; 1868 1869 return 0; 1870 } 1871 1872 Value *llvm::SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS, 1873 const TargetData *TD, const DominatorTree *DT) { 1874 return ::SimplifyFCmpInst(Predicate, LHS, RHS, TD, DT, RecursionLimit); 1875 } 1876 1877 /// SimplifySelectInst - Given operands for a SelectInst, see if we can fold 1878 /// the result. If not, this returns null. 1879 Value *llvm::SimplifySelectInst(Value *CondVal, Value *TrueVal, Value *FalseVal, 1880 const TargetData *TD, const DominatorTree *) { 1881 // select true, X, Y -> X 1882 // select false, X, Y -> Y 1883 if (ConstantInt *CB = dyn_cast<ConstantInt>(CondVal)) 1884 return CB->getZExtValue() ? TrueVal : FalseVal; 1885 1886 // select C, X, X -> X 1887 if (TrueVal == FalseVal) 1888 return TrueVal; 1889 1890 if (isa<UndefValue>(TrueVal)) // select C, undef, X -> X 1891 return FalseVal; 1892 if (isa<UndefValue>(FalseVal)) // select C, X, undef -> X 1893 return TrueVal; 1894 if (isa<UndefValue>(CondVal)) { // select undef, X, Y -> X or Y 1895 if (isa<Constant>(TrueVal)) 1896 return TrueVal; 1897 return FalseVal; 1898 } 1899 1900 return 0; 1901 } 1902 1903 /// SimplifyGEPInst - Given operands for an GetElementPtrInst, see if we can 1904 /// fold the result. If not, this returns null. 1905 Value *llvm::SimplifyGEPInst(Value *const *Ops, unsigned NumOps, 1906 const TargetData *TD, const DominatorTree *) { 1907 // The type of the GEP pointer operand. 1908 const PointerType *PtrTy = cast<PointerType>(Ops[0]->getType()); 1909 1910 // getelementptr P -> P. 1911 if (NumOps == 1) 1912 return Ops[0]; 1913 1914 if (isa<UndefValue>(Ops[0])) { 1915 // Compute the (pointer) type returned by the GEP instruction. 1916 const Type *LastType = GetElementPtrInst::getIndexedType(PtrTy, &Ops[1], 1917 NumOps-1); 1918 const Type *GEPTy = PointerType::get(LastType, PtrTy->getAddressSpace()); 1919 return UndefValue::get(GEPTy); 1920 } 1921 1922 if (NumOps == 2) { 1923 // getelementptr P, 0 -> P. 1924 if (ConstantInt *C = dyn_cast<ConstantInt>(Ops[1])) 1925 if (C->isZero()) 1926 return Ops[0]; 1927 // getelementptr P, N -> P if P points to a type of zero size. 1928 if (TD) { 1929 const Type *Ty = PtrTy->getElementType(); 1930 if (Ty->isSized() && TD->getTypeAllocSize(Ty) == 0) 1931 return Ops[0]; 1932 } 1933 } 1934 1935 // Check to see if this is constant foldable. 1936 for (unsigned i = 0; i != NumOps; ++i) 1937 if (!isa<Constant>(Ops[i])) 1938 return 0; 1939 1940 return ConstantExpr::getGetElementPtr(cast<Constant>(Ops[0]), 1941 (Constant *const*)Ops+1, NumOps-1); 1942 } 1943 1944 /// SimplifyPHINode - See if we can fold the given phi. If not, returns null. 1945 static Value *SimplifyPHINode(PHINode *PN, const DominatorTree *DT) { 1946 // If all of the PHI's incoming values are the same then replace the PHI node 1947 // with the common value. 1948 Value *CommonValue = 0; 1949 bool HasUndefInput = false; 1950 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 1951 Value *Incoming = PN->getIncomingValue(i); 1952 // If the incoming value is the phi node itself, it can safely be skipped. 1953 if (Incoming == PN) continue; 1954 if (isa<UndefValue>(Incoming)) { 1955 // Remember that we saw an undef value, but otherwise ignore them. 1956 HasUndefInput = true; 1957 continue; 1958 } 1959 if (CommonValue && Incoming != CommonValue) 1960 return 0; // Not the same, bail out. 1961 CommonValue = Incoming; 1962 } 1963 1964 // If CommonValue is null then all of the incoming values were either undef or 1965 // equal to the phi node itself. 1966 if (!CommonValue) 1967 return UndefValue::get(PN->getType()); 1968 1969 // If we have a PHI node like phi(X, undef, X), where X is defined by some 1970 // instruction, we cannot return X as the result of the PHI node unless it 1971 // dominates the PHI block. 1972 if (HasUndefInput) 1973 return ValueDominatesPHI(CommonValue, PN, DT) ? CommonValue : 0; 1974 1975 return CommonValue; 1976 } 1977 1978 1979 //=== Helper functions for higher up the class hierarchy. 1980 1981 /// SimplifyBinOp - Given operands for a BinaryOperator, see if we can 1982 /// fold the result. If not, this returns null. 1983 static Value *SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS, 1984 const TargetData *TD, const DominatorTree *DT, 1985 unsigned MaxRecurse) { 1986 switch (Opcode) { 1987 case Instruction::Add: 1988 return SimplifyAddInst(LHS, RHS, /*isNSW*/false, /*isNUW*/false, 1989 TD, DT, MaxRecurse); 1990 case Instruction::Sub: 1991 return SimplifySubInst(LHS, RHS, /*isNSW*/false, /*isNUW*/false, 1992 TD, DT, MaxRecurse); 1993 case Instruction::Mul: return SimplifyMulInst (LHS, RHS, TD, DT, MaxRecurse); 1994 case Instruction::SDiv: return SimplifySDivInst(LHS, RHS, TD, DT, MaxRecurse); 1995 case Instruction::UDiv: return SimplifyUDivInst(LHS, RHS, TD, DT, MaxRecurse); 1996 case Instruction::FDiv: return SimplifyFDivInst(LHS, RHS, TD, DT, MaxRecurse); 1997 case Instruction::Shl: 1998 return SimplifyShlInst(LHS, RHS, /*isNSW*/false, /*isNUW*/false, 1999 TD, DT, MaxRecurse); 2000 case Instruction::LShr: 2001 return SimplifyLShrInst(LHS, RHS, /*isExact*/false, TD, DT, MaxRecurse); 2002 case Instruction::AShr: 2003 return SimplifyAShrInst(LHS, RHS, /*isExact*/false, TD, DT, MaxRecurse); 2004 case Instruction::And: return SimplifyAndInst(LHS, RHS, TD, DT, MaxRecurse); 2005 case Instruction::Or: return SimplifyOrInst (LHS, RHS, TD, DT, MaxRecurse); 2006 case Instruction::Xor: return SimplifyXorInst(LHS, RHS, TD, DT, MaxRecurse); 2007 default: 2008 if (Constant *CLHS = dyn_cast<Constant>(LHS)) 2009 if (Constant *CRHS = dyn_cast<Constant>(RHS)) { 2010 Constant *COps[] = {CLHS, CRHS}; 2011 return ConstantFoldInstOperands(Opcode, LHS->getType(), COps, 2, TD); 2012 } 2013 2014 // If the operation is associative, try some generic simplifications. 2015 if (Instruction::isAssociative(Opcode)) 2016 if (Value *V = SimplifyAssociativeBinOp(Opcode, LHS, RHS, TD, DT, 2017 MaxRecurse)) 2018 return V; 2019 2020 // If the operation is with the result of a select instruction, check whether 2021 // operating on either branch of the select always yields the same value. 2022 if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS)) 2023 if (Value *V = ThreadBinOpOverSelect(Opcode, LHS, RHS, TD, DT, 2024 MaxRecurse)) 2025 return V; 2026 2027 // If the operation is with the result of a phi instruction, check whether 2028 // operating on all incoming values of the phi always yields the same value. 2029 if (isa<PHINode>(LHS) || isa<PHINode>(RHS)) 2030 if (Value *V = ThreadBinOpOverPHI(Opcode, LHS, RHS, TD, DT, MaxRecurse)) 2031 return V; 2032 2033 return 0; 2034 } 2035 } 2036 2037 Value *llvm::SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS, 2038 const TargetData *TD, const DominatorTree *DT) { 2039 return ::SimplifyBinOp(Opcode, LHS, RHS, TD, DT, RecursionLimit); 2040 } 2041 2042 /// SimplifyCmpInst - Given operands for a CmpInst, see if we can 2043 /// fold the result. 2044 static Value *SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS, 2045 const TargetData *TD, const DominatorTree *DT, 2046 unsigned MaxRecurse) { 2047 if (CmpInst::isIntPredicate((CmpInst::Predicate)Predicate)) 2048 return SimplifyICmpInst(Predicate, LHS, RHS, TD, DT, MaxRecurse); 2049 return SimplifyFCmpInst(Predicate, LHS, RHS, TD, DT, MaxRecurse); 2050 } 2051 2052 Value *llvm::SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS, 2053 const TargetData *TD, const DominatorTree *DT) { 2054 return ::SimplifyCmpInst(Predicate, LHS, RHS, TD, DT, RecursionLimit); 2055 } 2056 2057 /// SimplifyInstruction - See if we can compute a simplified version of this 2058 /// instruction. If not, this returns null. 2059 Value *llvm::SimplifyInstruction(Instruction *I, const TargetData *TD, 2060 const DominatorTree *DT) { 2061 Value *Result; 2062 2063 switch (I->getOpcode()) { 2064 default: 2065 Result = ConstantFoldInstruction(I, TD); 2066 break; 2067 case Instruction::Add: 2068 Result = SimplifyAddInst(I->getOperand(0), I->getOperand(1), 2069 cast<BinaryOperator>(I)->hasNoSignedWrap(), 2070 cast<BinaryOperator>(I)->hasNoUnsignedWrap(), 2071 TD, DT); 2072 break; 2073 case Instruction::Sub: 2074 Result = SimplifySubInst(I->getOperand(0), I->getOperand(1), 2075 cast<BinaryOperator>(I)->hasNoSignedWrap(), 2076 cast<BinaryOperator>(I)->hasNoUnsignedWrap(), 2077 TD, DT); 2078 break; 2079 case Instruction::Mul: 2080 Result = SimplifyMulInst(I->getOperand(0), I->getOperand(1), TD, DT); 2081 break; 2082 case Instruction::SDiv: 2083 Result = SimplifySDivInst(I->getOperand(0), I->getOperand(1), TD, DT); 2084 break; 2085 case Instruction::UDiv: 2086 Result = SimplifyUDivInst(I->getOperand(0), I->getOperand(1), TD, DT); 2087 break; 2088 case Instruction::FDiv: 2089 Result = SimplifyFDivInst(I->getOperand(0), I->getOperand(1), TD, DT); 2090 break; 2091 case Instruction::Shl: 2092 Result = SimplifyShlInst(I->getOperand(0), I->getOperand(1), 2093 cast<BinaryOperator>(I)->hasNoSignedWrap(), 2094 cast<BinaryOperator>(I)->hasNoUnsignedWrap(), 2095 TD, DT); 2096 break; 2097 case Instruction::LShr: 2098 Result = SimplifyLShrInst(I->getOperand(0), I->getOperand(1), 2099 cast<BinaryOperator>(I)->isExact(), 2100 TD, DT); 2101 break; 2102 case Instruction::AShr: 2103 Result = SimplifyAShrInst(I->getOperand(0), I->getOperand(1), 2104 cast<BinaryOperator>(I)->isExact(), 2105 TD, DT); 2106 break; 2107 case Instruction::And: 2108 Result = SimplifyAndInst(I->getOperand(0), I->getOperand(1), TD, DT); 2109 break; 2110 case Instruction::Or: 2111 Result = SimplifyOrInst(I->getOperand(0), I->getOperand(1), TD, DT); 2112 break; 2113 case Instruction::Xor: 2114 Result = SimplifyXorInst(I->getOperand(0), I->getOperand(1), TD, DT); 2115 break; 2116 case Instruction::ICmp: 2117 Result = SimplifyICmpInst(cast<ICmpInst>(I)->getPredicate(), 2118 I->getOperand(0), I->getOperand(1), TD, DT); 2119 break; 2120 case Instruction::FCmp: 2121 Result = SimplifyFCmpInst(cast<FCmpInst>(I)->getPredicate(), 2122 I->getOperand(0), I->getOperand(1), TD, DT); 2123 break; 2124 case Instruction::Select: 2125 Result = SimplifySelectInst(I->getOperand(0), I->getOperand(1), 2126 I->getOperand(2), TD, DT); 2127 break; 2128 case Instruction::GetElementPtr: { 2129 SmallVector<Value*, 8> Ops(I->op_begin(), I->op_end()); 2130 Result = SimplifyGEPInst(&Ops[0], Ops.size(), TD, DT); 2131 break; 2132 } 2133 case Instruction::PHI: 2134 Result = SimplifyPHINode(cast<PHINode>(I), DT); 2135 break; 2136 } 2137 2138 /// If called on unreachable code, the above logic may report that the 2139 /// instruction simplified to itself. Make life easier for users by 2140 /// detecting that case here, returning a safe value instead. 2141 return Result == I ? UndefValue::get(I->getType()) : Result; 2142 } 2143 2144 /// ReplaceAndSimplifyAllUses - Perform From->replaceAllUsesWith(To) and then 2145 /// delete the From instruction. In addition to a basic RAUW, this does a 2146 /// recursive simplification of the newly formed instructions. This catches 2147 /// things where one simplification exposes other opportunities. This only 2148 /// simplifies and deletes scalar operations, it does not change the CFG. 2149 /// 2150 void llvm::ReplaceAndSimplifyAllUses(Instruction *From, Value *To, 2151 const TargetData *TD, 2152 const DominatorTree *DT) { 2153 assert(From != To && "ReplaceAndSimplifyAllUses(X,X) is not valid!"); 2154 2155 // FromHandle/ToHandle - This keeps a WeakVH on the from/to values so that 2156 // we can know if it gets deleted out from under us or replaced in a 2157 // recursive simplification. 2158 WeakVH FromHandle(From); 2159 WeakVH ToHandle(To); 2160 2161 while (!From->use_empty()) { 2162 // Update the instruction to use the new value. 2163 Use &TheUse = From->use_begin().getUse(); 2164 Instruction *User = cast<Instruction>(TheUse.getUser()); 2165 TheUse = To; 2166 2167 // Check to see if the instruction can be folded due to the operand 2168 // replacement. For example changing (or X, Y) into (or X, -1) can replace 2169 // the 'or' with -1. 2170 Value *SimplifiedVal; 2171 { 2172 // Sanity check to make sure 'User' doesn't dangle across 2173 // SimplifyInstruction. 2174 AssertingVH<> UserHandle(User); 2175 2176 SimplifiedVal = SimplifyInstruction(User, TD, DT); 2177 if (SimplifiedVal == 0) continue; 2178 } 2179 2180 // Recursively simplify this user to the new value. 2181 ReplaceAndSimplifyAllUses(User, SimplifiedVal, TD, DT); 2182 From = dyn_cast_or_null<Instruction>((Value*)FromHandle); 2183 To = ToHandle; 2184 2185 assert(ToHandle && "To value deleted by recursive simplification?"); 2186 2187 // If the recursive simplification ended up revisiting and deleting 2188 // 'From' then we're done. 2189 if (From == 0) 2190 return; 2191 } 2192 2193 // If 'From' has value handles referring to it, do a real RAUW to update them. 2194 From->replaceAllUsesWith(To); 2195 2196 From->eraseFromParent(); 2197 } 2198