1 //===- InstructionSimplify.cpp - Fold instruction operands ----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements routines for folding instructions into simpler forms 10 // that do not require creating new instructions. This does constant folding 11 // ("add i32 1, 1" -> "2") but can also handle non-constant operands, either 12 // returning a constant ("and i32 %x, 0" -> "0") or an already existing value 13 // ("and i32 %x, %x" -> "%x"). All operands are assumed to have already been 14 // simplified: This is usually true and assuming it simplifies the logic (if 15 // they have not been simplified then results are correct but maybe suboptimal). 16 // 17 //===----------------------------------------------------------------------===// 18 19 #include "llvm/Analysis/InstructionSimplify.h" 20 #include "llvm/ADT/SetVector.h" 21 #include "llvm/ADT/Statistic.h" 22 #include "llvm/Analysis/AliasAnalysis.h" 23 #include "llvm/Analysis/AssumptionCache.h" 24 #include "llvm/Analysis/CaptureTracking.h" 25 #include "llvm/Analysis/CmpInstAnalysis.h" 26 #include "llvm/Analysis/ConstantFolding.h" 27 #include "llvm/Analysis/LoopAnalysisManager.h" 28 #include "llvm/Analysis/MemoryBuiltins.h" 29 #include "llvm/Analysis/ValueTracking.h" 30 #include "llvm/Analysis/VectorUtils.h" 31 #include "llvm/IR/ConstantRange.h" 32 #include "llvm/IR/DataLayout.h" 33 #include "llvm/IR/Dominators.h" 34 #include "llvm/IR/GetElementPtrTypeIterator.h" 35 #include "llvm/IR/GlobalAlias.h" 36 #include "llvm/IR/InstrTypes.h" 37 #include "llvm/IR/Instructions.h" 38 #include "llvm/IR/Operator.h" 39 #include "llvm/IR/PatternMatch.h" 40 #include "llvm/IR/ValueHandle.h" 41 #include "llvm/Support/KnownBits.h" 42 #include <algorithm> 43 using namespace llvm; 44 using namespace llvm::PatternMatch; 45 46 #define DEBUG_TYPE "instsimplify" 47 48 enum { RecursionLimit = 3 }; 49 50 STATISTIC(NumExpand, "Number of expansions"); 51 STATISTIC(NumReassoc, "Number of reassociations"); 52 53 static Value *SimplifyAndInst(Value *, Value *, const SimplifyQuery &, unsigned); 54 static Value *simplifyUnOp(unsigned, Value *, const SimplifyQuery &, unsigned); 55 static Value *simplifyFPUnOp(unsigned, Value *, const FastMathFlags &, 56 const SimplifyQuery &, unsigned); 57 static Value *SimplifyBinOp(unsigned, Value *, Value *, const SimplifyQuery &, 58 unsigned); 59 static Value *SimplifyBinOp(unsigned, Value *, Value *, const FastMathFlags &, 60 const SimplifyQuery &, unsigned); 61 static Value *SimplifyCmpInst(unsigned, Value *, Value *, const SimplifyQuery &, 62 unsigned); 63 static Value *SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS, 64 const SimplifyQuery &Q, unsigned MaxRecurse); 65 static Value *SimplifyOrInst(Value *, Value *, const SimplifyQuery &, unsigned); 66 static Value *SimplifyXorInst(Value *, Value *, const SimplifyQuery &, unsigned); 67 static Value *SimplifyCastInst(unsigned, Value *, Type *, 68 const SimplifyQuery &, unsigned); 69 static Value *SimplifyGEPInst(Type *, ArrayRef<Value *>, const SimplifyQuery &, 70 unsigned); 71 72 static Value *foldSelectWithBinaryOp(Value *Cond, Value *TrueVal, 73 Value *FalseVal) { 74 BinaryOperator::BinaryOps BinOpCode; 75 if (auto *BO = dyn_cast<BinaryOperator>(Cond)) 76 BinOpCode = BO->getOpcode(); 77 else 78 return nullptr; 79 80 CmpInst::Predicate ExpectedPred, Pred1, Pred2; 81 if (BinOpCode == BinaryOperator::Or) { 82 ExpectedPred = ICmpInst::ICMP_NE; 83 } else if (BinOpCode == BinaryOperator::And) { 84 ExpectedPred = ICmpInst::ICMP_EQ; 85 } else 86 return nullptr; 87 88 // %A = icmp eq %TV, %FV 89 // %B = icmp eq %X, %Y (and one of these is a select operand) 90 // %C = and %A, %B 91 // %D = select %C, %TV, %FV 92 // --> 93 // %FV 94 95 // %A = icmp ne %TV, %FV 96 // %B = icmp ne %X, %Y (and one of these is a select operand) 97 // %C = or %A, %B 98 // %D = select %C, %TV, %FV 99 // --> 100 // %TV 101 Value *X, *Y; 102 if (!match(Cond, m_c_BinOp(m_c_ICmp(Pred1, m_Specific(TrueVal), 103 m_Specific(FalseVal)), 104 m_ICmp(Pred2, m_Value(X), m_Value(Y)))) || 105 Pred1 != Pred2 || Pred1 != ExpectedPred) 106 return nullptr; 107 108 if (X == TrueVal || X == FalseVal || Y == TrueVal || Y == FalseVal) 109 return BinOpCode == BinaryOperator::Or ? TrueVal : FalseVal; 110 111 return nullptr; 112 } 113 114 /// For a boolean type or a vector of boolean type, return false or a vector 115 /// with every element false. 116 static Constant *getFalse(Type *Ty) { 117 return ConstantInt::getFalse(Ty); 118 } 119 120 /// For a boolean type or a vector of boolean type, return true or a vector 121 /// with every element true. 122 static Constant *getTrue(Type *Ty) { 123 return ConstantInt::getTrue(Ty); 124 } 125 126 /// isSameCompare - Is V equivalent to the comparison "LHS Pred RHS"? 127 static bool isSameCompare(Value *V, CmpInst::Predicate Pred, Value *LHS, 128 Value *RHS) { 129 CmpInst *Cmp = dyn_cast<CmpInst>(V); 130 if (!Cmp) 131 return false; 132 CmpInst::Predicate CPred = Cmp->getPredicate(); 133 Value *CLHS = Cmp->getOperand(0), *CRHS = Cmp->getOperand(1); 134 if (CPred == Pred && CLHS == LHS && CRHS == RHS) 135 return true; 136 return CPred == CmpInst::getSwappedPredicate(Pred) && CLHS == RHS && 137 CRHS == LHS; 138 } 139 140 /// Simplify comparison with true or false branch of select: 141 /// %sel = select i1 %cond, i32 %tv, i32 %fv 142 /// %cmp = icmp sle i32 %sel, %rhs 143 /// Compose new comparison by substituting %sel with either %tv or %fv 144 /// and see if it simplifies. 145 static Value *simplifyCmpSelCase(CmpInst::Predicate Pred, Value *LHS, 146 Value *RHS, Value *Cond, 147 const SimplifyQuery &Q, unsigned MaxRecurse, 148 Constant *TrueOrFalse) { 149 Value *SimplifiedCmp = SimplifyCmpInst(Pred, LHS, RHS, Q, MaxRecurse); 150 if (SimplifiedCmp == Cond) { 151 // %cmp simplified to the select condition (%cond). 152 return TrueOrFalse; 153 } else if (!SimplifiedCmp && isSameCompare(Cond, Pred, LHS, RHS)) { 154 // It didn't simplify. However, if composed comparison is equivalent 155 // to the select condition (%cond) then we can replace it. 156 return TrueOrFalse; 157 } 158 return SimplifiedCmp; 159 } 160 161 /// Simplify comparison with true branch of select 162 static Value *simplifyCmpSelTrueCase(CmpInst::Predicate Pred, Value *LHS, 163 Value *RHS, Value *Cond, 164 const SimplifyQuery &Q, 165 unsigned MaxRecurse) { 166 return simplifyCmpSelCase(Pred, LHS, RHS, Cond, Q, MaxRecurse, 167 getTrue(Cond->getType())); 168 } 169 170 /// Simplify comparison with false branch of select 171 static Value *simplifyCmpSelFalseCase(CmpInst::Predicate Pred, Value *LHS, 172 Value *RHS, Value *Cond, 173 const SimplifyQuery &Q, 174 unsigned MaxRecurse) { 175 return simplifyCmpSelCase(Pred, LHS, RHS, Cond, Q, MaxRecurse, 176 getFalse(Cond->getType())); 177 } 178 179 /// We know comparison with both branches of select can be simplified, but they 180 /// are not equal. This routine handles some logical simplifications. 181 static Value *handleOtherCmpSelSimplifications(Value *TCmp, Value *FCmp, 182 Value *Cond, 183 const SimplifyQuery &Q, 184 unsigned MaxRecurse) { 185 // If the false value simplified to false, then the result of the compare 186 // is equal to "Cond && TCmp". This also catches the case when the false 187 // value simplified to false and the true value to true, returning "Cond". 188 if (match(FCmp, m_Zero())) 189 if (Value *V = SimplifyAndInst(Cond, TCmp, Q, MaxRecurse)) 190 return V; 191 // If the true value simplified to true, then the result of the compare 192 // is equal to "Cond || FCmp". 193 if (match(TCmp, m_One())) 194 if (Value *V = SimplifyOrInst(Cond, FCmp, Q, MaxRecurse)) 195 return V; 196 // Finally, if the false value simplified to true and the true value to 197 // false, then the result of the compare is equal to "!Cond". 198 if (match(FCmp, m_One()) && match(TCmp, m_Zero())) 199 if (Value *V = SimplifyXorInst( 200 Cond, Constant::getAllOnesValue(Cond->getType()), Q, MaxRecurse)) 201 return V; 202 return nullptr; 203 } 204 205 /// Does the given value dominate the specified phi node? 206 static bool valueDominatesPHI(Value *V, PHINode *P, const DominatorTree *DT) { 207 Instruction *I = dyn_cast<Instruction>(V); 208 if (!I) 209 // Arguments and constants dominate all instructions. 210 return true; 211 212 // If we are processing instructions (and/or basic blocks) that have not been 213 // fully added to a function, the parent nodes may still be null. Simply 214 // return the conservative answer in these cases. 215 if (!I->getParent() || !P->getParent() || !I->getFunction()) 216 return false; 217 218 // If we have a DominatorTree then do a precise test. 219 if (DT) 220 return DT->dominates(I, P); 221 222 // Otherwise, if the instruction is in the entry block and is not an invoke, 223 // then it obviously dominates all phi nodes. 224 if (I->getParent() == &I->getFunction()->getEntryBlock() && 225 !isa<InvokeInst>(I) && !isa<CallBrInst>(I)) 226 return true; 227 228 return false; 229 } 230 231 /// Try to simplify a binary operator of form "V op OtherOp" where V is 232 /// "(B0 opex B1)" by distributing 'op' across 'opex' as 233 /// "(B0 op OtherOp) opex (B1 op OtherOp)". 234 static Value *expandBinOp(Instruction::BinaryOps Opcode, Value *V, 235 Value *OtherOp, Instruction::BinaryOps OpcodeToExpand, 236 const SimplifyQuery &Q, unsigned MaxRecurse) { 237 auto *B = dyn_cast<BinaryOperator>(V); 238 if (!B || B->getOpcode() != OpcodeToExpand) 239 return nullptr; 240 Value *B0 = B->getOperand(0), *B1 = B->getOperand(1); 241 Value *L = SimplifyBinOp(Opcode, B0, OtherOp, Q.getWithoutUndef(), 242 MaxRecurse); 243 if (!L) 244 return nullptr; 245 Value *R = SimplifyBinOp(Opcode, B1, OtherOp, Q.getWithoutUndef(), 246 MaxRecurse); 247 if (!R) 248 return nullptr; 249 250 // Does the expanded pair of binops simplify to the existing binop? 251 if ((L == B0 && R == B1) || 252 (Instruction::isCommutative(OpcodeToExpand) && L == B1 && R == B0)) { 253 ++NumExpand; 254 return B; 255 } 256 257 // Otherwise, return "L op' R" if it simplifies. 258 Value *S = SimplifyBinOp(OpcodeToExpand, L, R, Q, MaxRecurse); 259 if (!S) 260 return nullptr; 261 262 ++NumExpand; 263 return S; 264 } 265 266 /// Try to simplify binops of form "A op (B op' C)" or the commuted variant by 267 /// distributing op over op'. 268 static Value *expandCommutativeBinOp(Instruction::BinaryOps Opcode, 269 Value *L, Value *R, 270 Instruction::BinaryOps OpcodeToExpand, 271 const SimplifyQuery &Q, 272 unsigned MaxRecurse) { 273 // Recursion is always used, so bail out at once if we already hit the limit. 274 if (!MaxRecurse--) 275 return nullptr; 276 277 if (Value *V = expandBinOp(Opcode, L, R, OpcodeToExpand, Q, MaxRecurse)) 278 return V; 279 if (Value *V = expandBinOp(Opcode, R, L, OpcodeToExpand, Q, MaxRecurse)) 280 return V; 281 return nullptr; 282 } 283 284 /// Generic simplifications for associative binary operations. 285 /// Returns the simpler value, or null if none was found. 286 static Value *SimplifyAssociativeBinOp(Instruction::BinaryOps Opcode, 287 Value *LHS, Value *RHS, 288 const SimplifyQuery &Q, 289 unsigned MaxRecurse) { 290 assert(Instruction::isAssociative(Opcode) && "Not an associative operation!"); 291 292 // Recursion is always used, so bail out at once if we already hit the limit. 293 if (!MaxRecurse--) 294 return nullptr; 295 296 BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS); 297 BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS); 298 299 // Transform: "(A op B) op C" ==> "A op (B op C)" if it simplifies completely. 300 if (Op0 && Op0->getOpcode() == Opcode) { 301 Value *A = Op0->getOperand(0); 302 Value *B = Op0->getOperand(1); 303 Value *C = RHS; 304 305 // Does "B op C" simplify? 306 if (Value *V = SimplifyBinOp(Opcode, B, C, Q, MaxRecurse)) { 307 // It does! Return "A op V" if it simplifies or is already available. 308 // If V equals B then "A op V" is just the LHS. 309 if (V == B) return LHS; 310 // Otherwise return "A op V" if it simplifies. 311 if (Value *W = SimplifyBinOp(Opcode, A, V, Q, MaxRecurse)) { 312 ++NumReassoc; 313 return W; 314 } 315 } 316 } 317 318 // Transform: "A op (B op C)" ==> "(A op B) op C" if it simplifies completely. 319 if (Op1 && Op1->getOpcode() == Opcode) { 320 Value *A = LHS; 321 Value *B = Op1->getOperand(0); 322 Value *C = Op1->getOperand(1); 323 324 // Does "A op B" simplify? 325 if (Value *V = SimplifyBinOp(Opcode, A, B, Q, MaxRecurse)) { 326 // It does! Return "V op C" if it simplifies or is already available. 327 // If V equals B then "V op C" is just the RHS. 328 if (V == B) return RHS; 329 // Otherwise return "V op C" if it simplifies. 330 if (Value *W = SimplifyBinOp(Opcode, V, C, Q, MaxRecurse)) { 331 ++NumReassoc; 332 return W; 333 } 334 } 335 } 336 337 // The remaining transforms require commutativity as well as associativity. 338 if (!Instruction::isCommutative(Opcode)) 339 return nullptr; 340 341 // Transform: "(A op B) op C" ==> "(C op A) op B" if it simplifies completely. 342 if (Op0 && Op0->getOpcode() == Opcode) { 343 Value *A = Op0->getOperand(0); 344 Value *B = Op0->getOperand(1); 345 Value *C = RHS; 346 347 // Does "C op A" simplify? 348 if (Value *V = SimplifyBinOp(Opcode, C, A, Q, MaxRecurse)) { 349 // It does! Return "V op B" if it simplifies or is already available. 350 // If V equals A then "V op B" is just the LHS. 351 if (V == A) return LHS; 352 // Otherwise return "V op B" if it simplifies. 353 if (Value *W = SimplifyBinOp(Opcode, V, B, Q, MaxRecurse)) { 354 ++NumReassoc; 355 return W; 356 } 357 } 358 } 359 360 // Transform: "A op (B op C)" ==> "B op (C op A)" if it simplifies completely. 361 if (Op1 && Op1->getOpcode() == Opcode) { 362 Value *A = LHS; 363 Value *B = Op1->getOperand(0); 364 Value *C = Op1->getOperand(1); 365 366 // Does "C op A" simplify? 367 if (Value *V = SimplifyBinOp(Opcode, C, A, Q, MaxRecurse)) { 368 // It does! Return "B op V" if it simplifies or is already available. 369 // If V equals C then "B op V" is just the RHS. 370 if (V == C) return RHS; 371 // Otherwise return "B op V" if it simplifies. 372 if (Value *W = SimplifyBinOp(Opcode, B, V, Q, MaxRecurse)) { 373 ++NumReassoc; 374 return W; 375 } 376 } 377 } 378 379 return nullptr; 380 } 381 382 /// In the case of a binary operation with a select instruction as an operand, 383 /// try to simplify the binop by seeing whether evaluating it on both branches 384 /// of the select results in the same value. Returns the common value if so, 385 /// otherwise returns null. 386 static Value *ThreadBinOpOverSelect(Instruction::BinaryOps Opcode, Value *LHS, 387 Value *RHS, const SimplifyQuery &Q, 388 unsigned MaxRecurse) { 389 // Recursion is always used, so bail out at once if we already hit the limit. 390 if (!MaxRecurse--) 391 return nullptr; 392 393 SelectInst *SI; 394 if (isa<SelectInst>(LHS)) { 395 SI = cast<SelectInst>(LHS); 396 } else { 397 assert(isa<SelectInst>(RHS) && "No select instruction operand!"); 398 SI = cast<SelectInst>(RHS); 399 } 400 401 // Evaluate the BinOp on the true and false branches of the select. 402 Value *TV; 403 Value *FV; 404 if (SI == LHS) { 405 TV = SimplifyBinOp(Opcode, SI->getTrueValue(), RHS, Q, MaxRecurse); 406 FV = SimplifyBinOp(Opcode, SI->getFalseValue(), RHS, Q, MaxRecurse); 407 } else { 408 TV = SimplifyBinOp(Opcode, LHS, SI->getTrueValue(), Q, MaxRecurse); 409 FV = SimplifyBinOp(Opcode, LHS, SI->getFalseValue(), Q, MaxRecurse); 410 } 411 412 // If they simplified to the same value, then return the common value. 413 // If they both failed to simplify then return null. 414 if (TV == FV) 415 return TV; 416 417 // If one branch simplified to undef, return the other one. 418 if (TV && Q.isUndefValue(TV)) 419 return FV; 420 if (FV && Q.isUndefValue(FV)) 421 return TV; 422 423 // If applying the operation did not change the true and false select values, 424 // then the result of the binop is the select itself. 425 if (TV == SI->getTrueValue() && FV == SI->getFalseValue()) 426 return SI; 427 428 // If one branch simplified and the other did not, and the simplified 429 // value is equal to the unsimplified one, return the simplified value. 430 // For example, select (cond, X, X & Z) & Z -> X & Z. 431 if ((FV && !TV) || (TV && !FV)) { 432 // Check that the simplified value has the form "X op Y" where "op" is the 433 // same as the original operation. 434 Instruction *Simplified = dyn_cast<Instruction>(FV ? FV : TV); 435 if (Simplified && Simplified->getOpcode() == unsigned(Opcode)) { 436 // The value that didn't simplify is "UnsimplifiedLHS op UnsimplifiedRHS". 437 // We already know that "op" is the same as for the simplified value. See 438 // if the operands match too. If so, return the simplified value. 439 Value *UnsimplifiedBranch = FV ? SI->getTrueValue() : SI->getFalseValue(); 440 Value *UnsimplifiedLHS = SI == LHS ? UnsimplifiedBranch : LHS; 441 Value *UnsimplifiedRHS = SI == LHS ? RHS : UnsimplifiedBranch; 442 if (Simplified->getOperand(0) == UnsimplifiedLHS && 443 Simplified->getOperand(1) == UnsimplifiedRHS) 444 return Simplified; 445 if (Simplified->isCommutative() && 446 Simplified->getOperand(1) == UnsimplifiedLHS && 447 Simplified->getOperand(0) == UnsimplifiedRHS) 448 return Simplified; 449 } 450 } 451 452 return nullptr; 453 } 454 455 /// In the case of a comparison with a select instruction, try to simplify the 456 /// comparison by seeing whether both branches of the select result in the same 457 /// value. Returns the common value if so, otherwise returns null. 458 /// For example, if we have: 459 /// %tmp = select i1 %cmp, i32 1, i32 2 460 /// %cmp1 = icmp sle i32 %tmp, 3 461 /// We can simplify %cmp1 to true, because both branches of select are 462 /// less than 3. We compose new comparison by substituting %tmp with both 463 /// branches of select and see if it can be simplified. 464 static Value *ThreadCmpOverSelect(CmpInst::Predicate Pred, Value *LHS, 465 Value *RHS, const SimplifyQuery &Q, 466 unsigned MaxRecurse) { 467 // Recursion is always used, so bail out at once if we already hit the limit. 468 if (!MaxRecurse--) 469 return nullptr; 470 471 // Make sure the select is on the LHS. 472 if (!isa<SelectInst>(LHS)) { 473 std::swap(LHS, RHS); 474 Pred = CmpInst::getSwappedPredicate(Pred); 475 } 476 assert(isa<SelectInst>(LHS) && "Not comparing with a select instruction!"); 477 SelectInst *SI = cast<SelectInst>(LHS); 478 Value *Cond = SI->getCondition(); 479 Value *TV = SI->getTrueValue(); 480 Value *FV = SI->getFalseValue(); 481 482 // Now that we have "cmp select(Cond, TV, FV), RHS", analyse it. 483 // Does "cmp TV, RHS" simplify? 484 Value *TCmp = simplifyCmpSelTrueCase(Pred, TV, RHS, Cond, Q, MaxRecurse); 485 if (!TCmp) 486 return nullptr; 487 488 // Does "cmp FV, RHS" simplify? 489 Value *FCmp = simplifyCmpSelFalseCase(Pred, FV, RHS, Cond, Q, MaxRecurse); 490 if (!FCmp) 491 return nullptr; 492 493 // If both sides simplified to the same value, then use it as the result of 494 // the original comparison. 495 if (TCmp == FCmp) 496 return TCmp; 497 498 // The remaining cases only make sense if the select condition has the same 499 // type as the result of the comparison, so bail out if this is not so. 500 if (Cond->getType()->isVectorTy() == RHS->getType()->isVectorTy()) 501 return handleOtherCmpSelSimplifications(TCmp, FCmp, Cond, Q, MaxRecurse); 502 503 return nullptr; 504 } 505 506 /// In the case of a binary operation with an operand that is a PHI instruction, 507 /// try to simplify the binop by seeing whether evaluating it on the incoming 508 /// phi values yields the same result for every value. If so returns the common 509 /// value, otherwise returns null. 510 static Value *ThreadBinOpOverPHI(Instruction::BinaryOps Opcode, Value *LHS, 511 Value *RHS, const SimplifyQuery &Q, 512 unsigned MaxRecurse) { 513 // Recursion is always used, so bail out at once if we already hit the limit. 514 if (!MaxRecurse--) 515 return nullptr; 516 517 PHINode *PI; 518 if (isa<PHINode>(LHS)) { 519 PI = cast<PHINode>(LHS); 520 // Bail out if RHS and the phi may be mutually interdependent due to a loop. 521 if (!valueDominatesPHI(RHS, PI, Q.DT)) 522 return nullptr; 523 } else { 524 assert(isa<PHINode>(RHS) && "No PHI instruction operand!"); 525 PI = cast<PHINode>(RHS); 526 // Bail out if LHS and the phi may be mutually interdependent due to a loop. 527 if (!valueDominatesPHI(LHS, PI, Q.DT)) 528 return nullptr; 529 } 530 531 // Evaluate the BinOp on the incoming phi values. 532 Value *CommonValue = nullptr; 533 for (Value *Incoming : PI->incoming_values()) { 534 // If the incoming value is the phi node itself, it can safely be skipped. 535 if (Incoming == PI) continue; 536 Value *V = PI == LHS ? 537 SimplifyBinOp(Opcode, Incoming, RHS, Q, MaxRecurse) : 538 SimplifyBinOp(Opcode, LHS, Incoming, Q, MaxRecurse); 539 // If the operation failed to simplify, or simplified to a different value 540 // to previously, then give up. 541 if (!V || (CommonValue && V != CommonValue)) 542 return nullptr; 543 CommonValue = V; 544 } 545 546 return CommonValue; 547 } 548 549 /// In the case of a comparison with a PHI instruction, try to simplify the 550 /// comparison by seeing whether comparing with all of the incoming phi values 551 /// yields the same result every time. If so returns the common result, 552 /// otherwise returns null. 553 static Value *ThreadCmpOverPHI(CmpInst::Predicate Pred, Value *LHS, Value *RHS, 554 const SimplifyQuery &Q, unsigned MaxRecurse) { 555 // Recursion is always used, so bail out at once if we already hit the limit. 556 if (!MaxRecurse--) 557 return nullptr; 558 559 // Make sure the phi is on the LHS. 560 if (!isa<PHINode>(LHS)) { 561 std::swap(LHS, RHS); 562 Pred = CmpInst::getSwappedPredicate(Pred); 563 } 564 assert(isa<PHINode>(LHS) && "Not comparing with a phi instruction!"); 565 PHINode *PI = cast<PHINode>(LHS); 566 567 // Bail out if RHS and the phi may be mutually interdependent due to a loop. 568 if (!valueDominatesPHI(RHS, PI, Q.DT)) 569 return nullptr; 570 571 // Evaluate the BinOp on the incoming phi values. 572 Value *CommonValue = nullptr; 573 for (unsigned u = 0, e = PI->getNumIncomingValues(); u < e; ++u) { 574 Value *Incoming = PI->getIncomingValue(u); 575 Instruction *InTI = PI->getIncomingBlock(u)->getTerminator(); 576 // If the incoming value is the phi node itself, it can safely be skipped. 577 if (Incoming == PI) continue; 578 // Change the context instruction to the "edge" that flows into the phi. 579 // This is important because that is where incoming is actually "evaluated" 580 // even though it is used later somewhere else. 581 Value *V = SimplifyCmpInst(Pred, Incoming, RHS, Q.getWithInstruction(InTI), 582 MaxRecurse); 583 // If the operation failed to simplify, or simplified to a different value 584 // to previously, then give up. 585 if (!V || (CommonValue && V != CommonValue)) 586 return nullptr; 587 CommonValue = V; 588 } 589 590 return CommonValue; 591 } 592 593 static Constant *foldOrCommuteConstant(Instruction::BinaryOps Opcode, 594 Value *&Op0, Value *&Op1, 595 const SimplifyQuery &Q) { 596 if (auto *CLHS = dyn_cast<Constant>(Op0)) { 597 if (auto *CRHS = dyn_cast<Constant>(Op1)) 598 return ConstantFoldBinaryOpOperands(Opcode, CLHS, CRHS, Q.DL); 599 600 // Canonicalize the constant to the RHS if this is a commutative operation. 601 if (Instruction::isCommutative(Opcode)) 602 std::swap(Op0, Op1); 603 } 604 return nullptr; 605 } 606 607 /// Given operands for an Add, see if we can fold the result. 608 /// If not, this returns null. 609 static Value *SimplifyAddInst(Value *Op0, Value *Op1, bool IsNSW, bool IsNUW, 610 const SimplifyQuery &Q, unsigned MaxRecurse) { 611 if (Constant *C = foldOrCommuteConstant(Instruction::Add, Op0, Op1, Q)) 612 return C; 613 614 // X + undef -> undef 615 if (Q.isUndefValue(Op1)) 616 return Op1; 617 618 // X + 0 -> X 619 if (match(Op1, m_Zero())) 620 return Op0; 621 622 // If two operands are negative, return 0. 623 if (isKnownNegation(Op0, Op1)) 624 return Constant::getNullValue(Op0->getType()); 625 626 // X + (Y - X) -> Y 627 // (Y - X) + X -> Y 628 // Eg: X + -X -> 0 629 Value *Y = nullptr; 630 if (match(Op1, m_Sub(m_Value(Y), m_Specific(Op0))) || 631 match(Op0, m_Sub(m_Value(Y), m_Specific(Op1)))) 632 return Y; 633 634 // X + ~X -> -1 since ~X = -X-1 635 Type *Ty = Op0->getType(); 636 if (match(Op0, m_Not(m_Specific(Op1))) || 637 match(Op1, m_Not(m_Specific(Op0)))) 638 return Constant::getAllOnesValue(Ty); 639 640 // add nsw/nuw (xor Y, signmask), signmask --> Y 641 // The no-wrapping add guarantees that the top bit will be set by the add. 642 // Therefore, the xor must be clearing the already set sign bit of Y. 643 if ((IsNSW || IsNUW) && match(Op1, m_SignMask()) && 644 match(Op0, m_Xor(m_Value(Y), m_SignMask()))) 645 return Y; 646 647 // add nuw %x, -1 -> -1, because %x can only be 0. 648 if (IsNUW && match(Op1, m_AllOnes())) 649 return Op1; // Which is -1. 650 651 /// i1 add -> xor. 652 if (MaxRecurse && Op0->getType()->isIntOrIntVectorTy(1)) 653 if (Value *V = SimplifyXorInst(Op0, Op1, Q, MaxRecurse-1)) 654 return V; 655 656 // Try some generic simplifications for associative operations. 657 if (Value *V = SimplifyAssociativeBinOp(Instruction::Add, Op0, Op1, Q, 658 MaxRecurse)) 659 return V; 660 661 // Threading Add over selects and phi nodes is pointless, so don't bother. 662 // Threading over the select in "A + select(cond, B, C)" means evaluating 663 // "A+B" and "A+C" and seeing if they are equal; but they are equal if and 664 // only if B and C are equal. If B and C are equal then (since we assume 665 // that operands have already been simplified) "select(cond, B, C)" should 666 // have been simplified to the common value of B and C already. Analysing 667 // "A+B" and "A+C" thus gains nothing, but costs compile time. Similarly 668 // for threading over phi nodes. 669 670 return nullptr; 671 } 672 673 Value *llvm::SimplifyAddInst(Value *Op0, Value *Op1, bool IsNSW, bool IsNUW, 674 const SimplifyQuery &Query) { 675 return ::SimplifyAddInst(Op0, Op1, IsNSW, IsNUW, Query, RecursionLimit); 676 } 677 678 /// Compute the base pointer and cumulative constant offsets for V. 679 /// 680 /// This strips all constant offsets off of V, leaving it the base pointer, and 681 /// accumulates the total constant offset applied in the returned constant. It 682 /// returns 0 if V is not a pointer, and returns the constant '0' if there are 683 /// no constant offsets applied. 684 /// 685 /// This is very similar to GetPointerBaseWithConstantOffset except it doesn't 686 /// follow non-inbounds geps. This allows it to remain usable for icmp ult/etc. 687 /// folding. 688 static Constant *stripAndComputeConstantOffsets(const DataLayout &DL, Value *&V, 689 bool AllowNonInbounds = false) { 690 assert(V->getType()->isPtrOrPtrVectorTy()); 691 692 Type *IntIdxTy = DL.getIndexType(V->getType())->getScalarType(); 693 APInt Offset = APInt::getNullValue(IntIdxTy->getIntegerBitWidth()); 694 695 V = V->stripAndAccumulateConstantOffsets(DL, Offset, AllowNonInbounds); 696 // As that strip may trace through `addrspacecast`, need to sext or trunc 697 // the offset calculated. 698 IntIdxTy = DL.getIndexType(V->getType())->getScalarType(); 699 Offset = Offset.sextOrTrunc(IntIdxTy->getIntegerBitWidth()); 700 701 Constant *OffsetIntPtr = ConstantInt::get(IntIdxTy, Offset); 702 if (VectorType *VecTy = dyn_cast<VectorType>(V->getType())) 703 return ConstantVector::getSplat(VecTy->getElementCount(), OffsetIntPtr); 704 return OffsetIntPtr; 705 } 706 707 /// Compute the constant difference between two pointer values. 708 /// If the difference is not a constant, returns zero. 709 static Constant *computePointerDifference(const DataLayout &DL, Value *LHS, 710 Value *RHS) { 711 Constant *LHSOffset = stripAndComputeConstantOffsets(DL, LHS); 712 Constant *RHSOffset = stripAndComputeConstantOffsets(DL, RHS); 713 714 // If LHS and RHS are not related via constant offsets to the same base 715 // value, there is nothing we can do here. 716 if (LHS != RHS) 717 return nullptr; 718 719 // Otherwise, the difference of LHS - RHS can be computed as: 720 // LHS - RHS 721 // = (LHSOffset + Base) - (RHSOffset + Base) 722 // = LHSOffset - RHSOffset 723 return ConstantExpr::getSub(LHSOffset, RHSOffset); 724 } 725 726 /// Given operands for a Sub, see if we can fold the result. 727 /// If not, this returns null. 728 static Value *SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, 729 const SimplifyQuery &Q, unsigned MaxRecurse) { 730 if (Constant *C = foldOrCommuteConstant(Instruction::Sub, Op0, Op1, Q)) 731 return C; 732 733 // X - undef -> undef 734 // undef - X -> undef 735 if (Q.isUndefValue(Op0) || Q.isUndefValue(Op1)) 736 return UndefValue::get(Op0->getType()); 737 738 // X - 0 -> X 739 if (match(Op1, m_Zero())) 740 return Op0; 741 742 // X - X -> 0 743 if (Op0 == Op1) 744 return Constant::getNullValue(Op0->getType()); 745 746 // Is this a negation? 747 if (match(Op0, m_Zero())) { 748 // 0 - X -> 0 if the sub is NUW. 749 if (isNUW) 750 return Constant::getNullValue(Op0->getType()); 751 752 KnownBits Known = computeKnownBits(Op1, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 753 if (Known.Zero.isMaxSignedValue()) { 754 // Op1 is either 0 or the minimum signed value. If the sub is NSW, then 755 // Op1 must be 0 because negating the minimum signed value is undefined. 756 if (isNSW) 757 return Constant::getNullValue(Op0->getType()); 758 759 // 0 - X -> X if X is 0 or the minimum signed value. 760 return Op1; 761 } 762 } 763 764 // (X + Y) - Z -> X + (Y - Z) or Y + (X - Z) if everything simplifies. 765 // For example, (X + Y) - Y -> X; (Y + X) - Y -> X 766 Value *X = nullptr, *Y = nullptr, *Z = Op1; 767 if (MaxRecurse && match(Op0, m_Add(m_Value(X), m_Value(Y)))) { // (X + Y) - Z 768 // See if "V === Y - Z" simplifies. 769 if (Value *V = SimplifyBinOp(Instruction::Sub, Y, Z, Q, MaxRecurse-1)) 770 // It does! Now see if "X + V" simplifies. 771 if (Value *W = SimplifyBinOp(Instruction::Add, X, V, Q, MaxRecurse-1)) { 772 // It does, we successfully reassociated! 773 ++NumReassoc; 774 return W; 775 } 776 // See if "V === X - Z" simplifies. 777 if (Value *V = SimplifyBinOp(Instruction::Sub, X, Z, Q, MaxRecurse-1)) 778 // It does! Now see if "Y + V" simplifies. 779 if (Value *W = SimplifyBinOp(Instruction::Add, Y, V, Q, MaxRecurse-1)) { 780 // It does, we successfully reassociated! 781 ++NumReassoc; 782 return W; 783 } 784 } 785 786 // X - (Y + Z) -> (X - Y) - Z or (X - Z) - Y if everything simplifies. 787 // For example, X - (X + 1) -> -1 788 X = Op0; 789 if (MaxRecurse && match(Op1, m_Add(m_Value(Y), m_Value(Z)))) { // X - (Y + Z) 790 // See if "V === X - Y" simplifies. 791 if (Value *V = SimplifyBinOp(Instruction::Sub, X, Y, Q, MaxRecurse-1)) 792 // It does! Now see if "V - Z" simplifies. 793 if (Value *W = SimplifyBinOp(Instruction::Sub, V, Z, Q, MaxRecurse-1)) { 794 // It does, we successfully reassociated! 795 ++NumReassoc; 796 return W; 797 } 798 // See if "V === X - Z" simplifies. 799 if (Value *V = SimplifyBinOp(Instruction::Sub, X, Z, Q, MaxRecurse-1)) 800 // It does! Now see if "V - Y" simplifies. 801 if (Value *W = SimplifyBinOp(Instruction::Sub, V, Y, Q, MaxRecurse-1)) { 802 // It does, we successfully reassociated! 803 ++NumReassoc; 804 return W; 805 } 806 } 807 808 // Z - (X - Y) -> (Z - X) + Y if everything simplifies. 809 // For example, X - (X - Y) -> Y. 810 Z = Op0; 811 if (MaxRecurse && match(Op1, m_Sub(m_Value(X), m_Value(Y)))) // Z - (X - Y) 812 // See if "V === Z - X" simplifies. 813 if (Value *V = SimplifyBinOp(Instruction::Sub, Z, X, Q, MaxRecurse-1)) 814 // It does! Now see if "V + Y" simplifies. 815 if (Value *W = SimplifyBinOp(Instruction::Add, V, Y, Q, MaxRecurse-1)) { 816 // It does, we successfully reassociated! 817 ++NumReassoc; 818 return W; 819 } 820 821 // trunc(X) - trunc(Y) -> trunc(X - Y) if everything simplifies. 822 if (MaxRecurse && match(Op0, m_Trunc(m_Value(X))) && 823 match(Op1, m_Trunc(m_Value(Y)))) 824 if (X->getType() == Y->getType()) 825 // See if "V === X - Y" simplifies. 826 if (Value *V = SimplifyBinOp(Instruction::Sub, X, Y, Q, MaxRecurse-1)) 827 // It does! Now see if "trunc V" simplifies. 828 if (Value *W = SimplifyCastInst(Instruction::Trunc, V, Op0->getType(), 829 Q, MaxRecurse - 1)) 830 // It does, return the simplified "trunc V". 831 return W; 832 833 // Variations on GEP(base, I, ...) - GEP(base, i, ...) -> GEP(null, I-i, ...). 834 if (match(Op0, m_PtrToInt(m_Value(X))) && 835 match(Op1, m_PtrToInt(m_Value(Y)))) 836 if (Constant *Result = computePointerDifference(Q.DL, X, Y)) 837 return ConstantExpr::getIntegerCast(Result, Op0->getType(), true); 838 839 // i1 sub -> xor. 840 if (MaxRecurse && Op0->getType()->isIntOrIntVectorTy(1)) 841 if (Value *V = SimplifyXorInst(Op0, Op1, Q, MaxRecurse-1)) 842 return V; 843 844 // Threading Sub over selects and phi nodes is pointless, so don't bother. 845 // Threading over the select in "A - select(cond, B, C)" means evaluating 846 // "A-B" and "A-C" and seeing if they are equal; but they are equal if and 847 // only if B and C are equal. If B and C are equal then (since we assume 848 // that operands have already been simplified) "select(cond, B, C)" should 849 // have been simplified to the common value of B and C already. Analysing 850 // "A-B" and "A-C" thus gains nothing, but costs compile time. Similarly 851 // for threading over phi nodes. 852 853 return nullptr; 854 } 855 856 Value *llvm::SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, 857 const SimplifyQuery &Q) { 858 return ::SimplifySubInst(Op0, Op1, isNSW, isNUW, Q, RecursionLimit); 859 } 860 861 /// Given operands for a Mul, see if we can fold the result. 862 /// If not, this returns null. 863 static Value *SimplifyMulInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 864 unsigned MaxRecurse) { 865 if (Constant *C = foldOrCommuteConstant(Instruction::Mul, Op0, Op1, Q)) 866 return C; 867 868 // X * undef -> 0 869 // X * 0 -> 0 870 if (Q.isUndefValue(Op1) || match(Op1, m_Zero())) 871 return Constant::getNullValue(Op0->getType()); 872 873 // X * 1 -> X 874 if (match(Op1, m_One())) 875 return Op0; 876 877 // (X / Y) * Y -> X if the division is exact. 878 Value *X = nullptr; 879 if (Q.IIQ.UseInstrInfo && 880 (match(Op0, 881 m_Exact(m_IDiv(m_Value(X), m_Specific(Op1)))) || // (X / Y) * Y 882 match(Op1, m_Exact(m_IDiv(m_Value(X), m_Specific(Op0)))))) // Y * (X / Y) 883 return X; 884 885 // i1 mul -> and. 886 if (MaxRecurse && Op0->getType()->isIntOrIntVectorTy(1)) 887 if (Value *V = SimplifyAndInst(Op0, Op1, Q, MaxRecurse-1)) 888 return V; 889 890 // Try some generic simplifications for associative operations. 891 if (Value *V = SimplifyAssociativeBinOp(Instruction::Mul, Op0, Op1, Q, 892 MaxRecurse)) 893 return V; 894 895 // Mul distributes over Add. Try some generic simplifications based on this. 896 if (Value *V = expandCommutativeBinOp(Instruction::Mul, Op0, Op1, 897 Instruction::Add, Q, MaxRecurse)) 898 return V; 899 900 // If the operation is with the result of a select instruction, check whether 901 // operating on either branch of the select always yields the same value. 902 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 903 if (Value *V = ThreadBinOpOverSelect(Instruction::Mul, Op0, Op1, Q, 904 MaxRecurse)) 905 return V; 906 907 // If the operation is with the result of a phi instruction, check whether 908 // operating on all incoming values of the phi always yields the same value. 909 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 910 if (Value *V = ThreadBinOpOverPHI(Instruction::Mul, Op0, Op1, Q, 911 MaxRecurse)) 912 return V; 913 914 return nullptr; 915 } 916 917 Value *llvm::SimplifyMulInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 918 return ::SimplifyMulInst(Op0, Op1, Q, RecursionLimit); 919 } 920 921 /// Check for common or similar folds of integer division or integer remainder. 922 /// This applies to all 4 opcodes (sdiv/udiv/srem/urem). 923 static Value *simplifyDivRem(Value *Op0, Value *Op1, bool IsDiv, 924 const SimplifyQuery &Q) { 925 Type *Ty = Op0->getType(); 926 927 // X / undef -> undef 928 // X % undef -> undef 929 if (Q.isUndefValue(Op1)) 930 return Op1; 931 932 // X / 0 -> undef 933 // X % 0 -> undef 934 // We don't need to preserve faults! 935 if (match(Op1, m_Zero())) 936 return UndefValue::get(Ty); 937 938 // If any element of a constant divisor fixed width vector is zero or undef, 939 // the whole op is undef. 940 auto *Op1C = dyn_cast<Constant>(Op1); 941 auto *VTy = dyn_cast<FixedVectorType>(Ty); 942 if (Op1C && VTy) { 943 unsigned NumElts = VTy->getNumElements(); 944 for (unsigned i = 0; i != NumElts; ++i) { 945 Constant *Elt = Op1C->getAggregateElement(i); 946 if (Elt && (Elt->isNullValue() || Q.isUndefValue(Elt))) 947 return UndefValue::get(Ty); 948 } 949 } 950 951 // undef / X -> 0 952 // undef % X -> 0 953 if (Q.isUndefValue(Op0)) 954 return Constant::getNullValue(Ty); 955 956 // 0 / X -> 0 957 // 0 % X -> 0 958 if (match(Op0, m_Zero())) 959 return Constant::getNullValue(Op0->getType()); 960 961 // X / X -> 1 962 // X % X -> 0 963 if (Op0 == Op1) 964 return IsDiv ? ConstantInt::get(Ty, 1) : Constant::getNullValue(Ty); 965 966 // X / 1 -> X 967 // X % 1 -> 0 968 // If this is a boolean op (single-bit element type), we can't have 969 // division-by-zero or remainder-by-zero, so assume the divisor is 1. 970 // Similarly, if we're zero-extending a boolean divisor, then assume it's a 1. 971 Value *X; 972 if (match(Op1, m_One()) || Ty->isIntOrIntVectorTy(1) || 973 (match(Op1, m_ZExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1))) 974 return IsDiv ? Op0 : Constant::getNullValue(Ty); 975 976 return nullptr; 977 } 978 979 /// Given a predicate and two operands, return true if the comparison is true. 980 /// This is a helper for div/rem simplification where we return some other value 981 /// when we can prove a relationship between the operands. 982 static bool isICmpTrue(ICmpInst::Predicate Pred, Value *LHS, Value *RHS, 983 const SimplifyQuery &Q, unsigned MaxRecurse) { 984 Value *V = SimplifyICmpInst(Pred, LHS, RHS, Q, MaxRecurse); 985 Constant *C = dyn_cast_or_null<Constant>(V); 986 return (C && C->isAllOnesValue()); 987 } 988 989 /// Return true if we can simplify X / Y to 0. Remainder can adapt that answer 990 /// to simplify X % Y to X. 991 static bool isDivZero(Value *X, Value *Y, const SimplifyQuery &Q, 992 unsigned MaxRecurse, bool IsSigned) { 993 // Recursion is always used, so bail out at once if we already hit the limit. 994 if (!MaxRecurse--) 995 return false; 996 997 if (IsSigned) { 998 // |X| / |Y| --> 0 999 // 1000 // We require that 1 operand is a simple constant. That could be extended to 1001 // 2 variables if we computed the sign bit for each. 1002 // 1003 // Make sure that a constant is not the minimum signed value because taking 1004 // the abs() of that is undefined. 1005 Type *Ty = X->getType(); 1006 const APInt *C; 1007 if (match(X, m_APInt(C)) && !C->isMinSignedValue()) { 1008 // Is the variable divisor magnitude always greater than the constant 1009 // dividend magnitude? 1010 // |Y| > |C| --> Y < -abs(C) or Y > abs(C) 1011 Constant *PosDividendC = ConstantInt::get(Ty, C->abs()); 1012 Constant *NegDividendC = ConstantInt::get(Ty, -C->abs()); 1013 if (isICmpTrue(CmpInst::ICMP_SLT, Y, NegDividendC, Q, MaxRecurse) || 1014 isICmpTrue(CmpInst::ICMP_SGT, Y, PosDividendC, Q, MaxRecurse)) 1015 return true; 1016 } 1017 if (match(Y, m_APInt(C))) { 1018 // Special-case: we can't take the abs() of a minimum signed value. If 1019 // that's the divisor, then all we have to do is prove that the dividend 1020 // is also not the minimum signed value. 1021 if (C->isMinSignedValue()) 1022 return isICmpTrue(CmpInst::ICMP_NE, X, Y, Q, MaxRecurse); 1023 1024 // Is the variable dividend magnitude always less than the constant 1025 // divisor magnitude? 1026 // |X| < |C| --> X > -abs(C) and X < abs(C) 1027 Constant *PosDivisorC = ConstantInt::get(Ty, C->abs()); 1028 Constant *NegDivisorC = ConstantInt::get(Ty, -C->abs()); 1029 if (isICmpTrue(CmpInst::ICMP_SGT, X, NegDivisorC, Q, MaxRecurse) && 1030 isICmpTrue(CmpInst::ICMP_SLT, X, PosDivisorC, Q, MaxRecurse)) 1031 return true; 1032 } 1033 return false; 1034 } 1035 1036 // IsSigned == false. 1037 // Is the dividend unsigned less than the divisor? 1038 return isICmpTrue(ICmpInst::ICMP_ULT, X, Y, Q, MaxRecurse); 1039 } 1040 1041 /// These are simplifications common to SDiv and UDiv. 1042 static Value *simplifyDiv(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1, 1043 const SimplifyQuery &Q, unsigned MaxRecurse) { 1044 if (Constant *C = foldOrCommuteConstant(Opcode, Op0, Op1, Q)) 1045 return C; 1046 1047 if (Value *V = simplifyDivRem(Op0, Op1, true, Q)) 1048 return V; 1049 1050 bool IsSigned = Opcode == Instruction::SDiv; 1051 1052 // (X * Y) / Y -> X if the multiplication does not overflow. 1053 Value *X; 1054 if (match(Op0, m_c_Mul(m_Value(X), m_Specific(Op1)))) { 1055 auto *Mul = cast<OverflowingBinaryOperator>(Op0); 1056 // If the Mul does not overflow, then we are good to go. 1057 if ((IsSigned && Q.IIQ.hasNoSignedWrap(Mul)) || 1058 (!IsSigned && Q.IIQ.hasNoUnsignedWrap(Mul))) 1059 return X; 1060 // If X has the form X = A / Y, then X * Y cannot overflow. 1061 if ((IsSigned && match(X, m_SDiv(m_Value(), m_Specific(Op1)))) || 1062 (!IsSigned && match(X, m_UDiv(m_Value(), m_Specific(Op1))))) 1063 return X; 1064 } 1065 1066 // (X rem Y) / Y -> 0 1067 if ((IsSigned && match(Op0, m_SRem(m_Value(), m_Specific(Op1)))) || 1068 (!IsSigned && match(Op0, m_URem(m_Value(), m_Specific(Op1))))) 1069 return Constant::getNullValue(Op0->getType()); 1070 1071 // (X /u C1) /u C2 -> 0 if C1 * C2 overflow 1072 ConstantInt *C1, *C2; 1073 if (!IsSigned && match(Op0, m_UDiv(m_Value(X), m_ConstantInt(C1))) && 1074 match(Op1, m_ConstantInt(C2))) { 1075 bool Overflow; 1076 (void)C1->getValue().umul_ov(C2->getValue(), Overflow); 1077 if (Overflow) 1078 return Constant::getNullValue(Op0->getType()); 1079 } 1080 1081 // If the operation is with the result of a select instruction, check whether 1082 // operating on either branch of the select always yields the same value. 1083 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 1084 if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse)) 1085 return V; 1086 1087 // If the operation is with the result of a phi instruction, check whether 1088 // operating on all incoming values of the phi always yields the same value. 1089 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 1090 if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse)) 1091 return V; 1092 1093 if (isDivZero(Op0, Op1, Q, MaxRecurse, IsSigned)) 1094 return Constant::getNullValue(Op0->getType()); 1095 1096 return nullptr; 1097 } 1098 1099 /// These are simplifications common to SRem and URem. 1100 static Value *simplifyRem(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1, 1101 const SimplifyQuery &Q, unsigned MaxRecurse) { 1102 if (Constant *C = foldOrCommuteConstant(Opcode, Op0, Op1, Q)) 1103 return C; 1104 1105 if (Value *V = simplifyDivRem(Op0, Op1, false, Q)) 1106 return V; 1107 1108 // (X % Y) % Y -> X % Y 1109 if ((Opcode == Instruction::SRem && 1110 match(Op0, m_SRem(m_Value(), m_Specific(Op1)))) || 1111 (Opcode == Instruction::URem && 1112 match(Op0, m_URem(m_Value(), m_Specific(Op1))))) 1113 return Op0; 1114 1115 // (X << Y) % X -> 0 1116 if (Q.IIQ.UseInstrInfo && 1117 ((Opcode == Instruction::SRem && 1118 match(Op0, m_NSWShl(m_Specific(Op1), m_Value()))) || 1119 (Opcode == Instruction::URem && 1120 match(Op0, m_NUWShl(m_Specific(Op1), m_Value()))))) 1121 return Constant::getNullValue(Op0->getType()); 1122 1123 // If the operation is with the result of a select instruction, check whether 1124 // operating on either branch of the select always yields the same value. 1125 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 1126 if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse)) 1127 return V; 1128 1129 // If the operation is with the result of a phi instruction, check whether 1130 // operating on all incoming values of the phi always yields the same value. 1131 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 1132 if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse)) 1133 return V; 1134 1135 // If X / Y == 0, then X % Y == X. 1136 if (isDivZero(Op0, Op1, Q, MaxRecurse, Opcode == Instruction::SRem)) 1137 return Op0; 1138 1139 return nullptr; 1140 } 1141 1142 /// Given operands for an SDiv, see if we can fold the result. 1143 /// If not, this returns null. 1144 static Value *SimplifySDivInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 1145 unsigned MaxRecurse) { 1146 // If two operands are negated and no signed overflow, return -1. 1147 if (isKnownNegation(Op0, Op1, /*NeedNSW=*/true)) 1148 return Constant::getAllOnesValue(Op0->getType()); 1149 1150 return simplifyDiv(Instruction::SDiv, Op0, Op1, Q, MaxRecurse); 1151 } 1152 1153 Value *llvm::SimplifySDivInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 1154 return ::SimplifySDivInst(Op0, Op1, Q, RecursionLimit); 1155 } 1156 1157 /// Given operands for a UDiv, see if we can fold the result. 1158 /// If not, this returns null. 1159 static Value *SimplifyUDivInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 1160 unsigned MaxRecurse) { 1161 return simplifyDiv(Instruction::UDiv, Op0, Op1, Q, MaxRecurse); 1162 } 1163 1164 Value *llvm::SimplifyUDivInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 1165 return ::SimplifyUDivInst(Op0, Op1, Q, RecursionLimit); 1166 } 1167 1168 /// Given operands for an SRem, see if we can fold the result. 1169 /// If not, this returns null. 1170 static Value *SimplifySRemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 1171 unsigned MaxRecurse) { 1172 // If the divisor is 0, the result is undefined, so assume the divisor is -1. 1173 // srem Op0, (sext i1 X) --> srem Op0, -1 --> 0 1174 Value *X; 1175 if (match(Op1, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)) 1176 return ConstantInt::getNullValue(Op0->getType()); 1177 1178 // If the two operands are negated, return 0. 1179 if (isKnownNegation(Op0, Op1)) 1180 return ConstantInt::getNullValue(Op0->getType()); 1181 1182 return simplifyRem(Instruction::SRem, Op0, Op1, Q, MaxRecurse); 1183 } 1184 1185 Value *llvm::SimplifySRemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 1186 return ::SimplifySRemInst(Op0, Op1, Q, RecursionLimit); 1187 } 1188 1189 /// Given operands for a URem, see if we can fold the result. 1190 /// If not, this returns null. 1191 static Value *SimplifyURemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 1192 unsigned MaxRecurse) { 1193 return simplifyRem(Instruction::URem, Op0, Op1, Q, MaxRecurse); 1194 } 1195 1196 Value *llvm::SimplifyURemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 1197 return ::SimplifyURemInst(Op0, Op1, Q, RecursionLimit); 1198 } 1199 1200 /// Returns true if a shift by \c Amount always yields undef. 1201 static bool isUndefShift(Value *Amount, const SimplifyQuery &Q) { 1202 Constant *C = dyn_cast<Constant>(Amount); 1203 if (!C) 1204 return false; 1205 1206 // X shift by undef -> undef because it may shift by the bitwidth. 1207 if (Q.isUndefValue(C)) 1208 return true; 1209 1210 // Shifting by the bitwidth or more is undefined. 1211 if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1212 if (CI->getValue().getLimitedValue() >= 1213 CI->getType()->getScalarSizeInBits()) 1214 return true; 1215 1216 // If all lanes of a vector shift are undefined the whole shift is. 1217 if (isa<ConstantVector>(C) || isa<ConstantDataVector>(C)) { 1218 for (unsigned I = 0, 1219 E = cast<FixedVectorType>(C->getType())->getNumElements(); 1220 I != E; ++I) 1221 if (!isUndefShift(C->getAggregateElement(I), Q)) 1222 return false; 1223 return true; 1224 } 1225 1226 return false; 1227 } 1228 1229 /// Given operands for an Shl, LShr or AShr, see if we can fold the result. 1230 /// If not, this returns null. 1231 static Value *SimplifyShift(Instruction::BinaryOps Opcode, Value *Op0, 1232 Value *Op1, const SimplifyQuery &Q, unsigned MaxRecurse) { 1233 if (Constant *C = foldOrCommuteConstant(Opcode, Op0, Op1, Q)) 1234 return C; 1235 1236 // 0 shift by X -> 0 1237 if (match(Op0, m_Zero())) 1238 return Constant::getNullValue(Op0->getType()); 1239 1240 // X shift by 0 -> X 1241 // Shift-by-sign-extended bool must be shift-by-0 because shift-by-all-ones 1242 // would be poison. 1243 Value *X; 1244 if (match(Op1, m_Zero()) || 1245 (match(Op1, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1))) 1246 return Op0; 1247 1248 // Fold undefined shifts. 1249 if (isUndefShift(Op1, Q)) 1250 return UndefValue::get(Op0->getType()); 1251 1252 // If the operation is with the result of a select instruction, check whether 1253 // operating on either branch of the select always yields the same value. 1254 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 1255 if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse)) 1256 return V; 1257 1258 // If the operation is with the result of a phi instruction, check whether 1259 // operating on all incoming values of the phi always yields the same value. 1260 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 1261 if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse)) 1262 return V; 1263 1264 // If any bits in the shift amount make that value greater than or equal to 1265 // the number of bits in the type, the shift is undefined. 1266 KnownBits Known = computeKnownBits(Op1, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 1267 if (Known.One.getLimitedValue() >= Known.getBitWidth()) 1268 return UndefValue::get(Op0->getType()); 1269 1270 // If all valid bits in the shift amount are known zero, the first operand is 1271 // unchanged. 1272 unsigned NumValidShiftBits = Log2_32_Ceil(Known.getBitWidth()); 1273 if (Known.countMinTrailingZeros() >= NumValidShiftBits) 1274 return Op0; 1275 1276 return nullptr; 1277 } 1278 1279 /// Given operands for an Shl, LShr or AShr, see if we can 1280 /// fold the result. If not, this returns null. 1281 static Value *SimplifyRightShift(Instruction::BinaryOps Opcode, Value *Op0, 1282 Value *Op1, bool isExact, const SimplifyQuery &Q, 1283 unsigned MaxRecurse) { 1284 if (Value *V = SimplifyShift(Opcode, Op0, Op1, Q, MaxRecurse)) 1285 return V; 1286 1287 // X >> X -> 0 1288 if (Op0 == Op1) 1289 return Constant::getNullValue(Op0->getType()); 1290 1291 // undef >> X -> 0 1292 // undef >> X -> undef (if it's exact) 1293 if (Q.isUndefValue(Op0)) 1294 return isExact ? Op0 : Constant::getNullValue(Op0->getType()); 1295 1296 // The low bit cannot be shifted out of an exact shift if it is set. 1297 if (isExact) { 1298 KnownBits Op0Known = computeKnownBits(Op0, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT); 1299 if (Op0Known.One[0]) 1300 return Op0; 1301 } 1302 1303 return nullptr; 1304 } 1305 1306 /// Given operands for an Shl, see if we can fold the result. 1307 /// If not, this returns null. 1308 static Value *SimplifyShlInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, 1309 const SimplifyQuery &Q, unsigned MaxRecurse) { 1310 if (Value *V = SimplifyShift(Instruction::Shl, Op0, Op1, Q, MaxRecurse)) 1311 return V; 1312 1313 // undef << X -> 0 1314 // undef << X -> undef if (if it's NSW/NUW) 1315 if (Q.isUndefValue(Op0)) 1316 return isNSW || isNUW ? Op0 : Constant::getNullValue(Op0->getType()); 1317 1318 // (X >> A) << A -> X 1319 Value *X; 1320 if (Q.IIQ.UseInstrInfo && 1321 match(Op0, m_Exact(m_Shr(m_Value(X), m_Specific(Op1))))) 1322 return X; 1323 1324 // shl nuw i8 C, %x -> C iff C has sign bit set. 1325 if (isNUW && match(Op0, m_Negative())) 1326 return Op0; 1327 // NOTE: could use computeKnownBits() / LazyValueInfo, 1328 // but the cost-benefit analysis suggests it isn't worth it. 1329 1330 return nullptr; 1331 } 1332 1333 Value *llvm::SimplifyShlInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, 1334 const SimplifyQuery &Q) { 1335 return ::SimplifyShlInst(Op0, Op1, isNSW, isNUW, Q, RecursionLimit); 1336 } 1337 1338 /// Given operands for an LShr, see if we can fold the result. 1339 /// If not, this returns null. 1340 static Value *SimplifyLShrInst(Value *Op0, Value *Op1, bool isExact, 1341 const SimplifyQuery &Q, unsigned MaxRecurse) { 1342 if (Value *V = SimplifyRightShift(Instruction::LShr, Op0, Op1, isExact, Q, 1343 MaxRecurse)) 1344 return V; 1345 1346 // (X << A) >> A -> X 1347 Value *X; 1348 if (match(Op0, m_NUWShl(m_Value(X), m_Specific(Op1)))) 1349 return X; 1350 1351 // ((X << A) | Y) >> A -> X if effective width of Y is not larger than A. 1352 // We can return X as we do in the above case since OR alters no bits in X. 1353 // SimplifyDemandedBits in InstCombine can do more general optimization for 1354 // bit manipulation. This pattern aims to provide opportunities for other 1355 // optimizers by supporting a simple but common case in InstSimplify. 1356 Value *Y; 1357 const APInt *ShRAmt, *ShLAmt; 1358 if (match(Op1, m_APInt(ShRAmt)) && 1359 match(Op0, m_c_Or(m_NUWShl(m_Value(X), m_APInt(ShLAmt)), m_Value(Y))) && 1360 *ShRAmt == *ShLAmt) { 1361 const KnownBits YKnown = computeKnownBits(Y, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 1362 const unsigned Width = Op0->getType()->getScalarSizeInBits(); 1363 const unsigned EffWidthY = Width - YKnown.countMinLeadingZeros(); 1364 if (ShRAmt->uge(EffWidthY)) 1365 return X; 1366 } 1367 1368 return nullptr; 1369 } 1370 1371 Value *llvm::SimplifyLShrInst(Value *Op0, Value *Op1, bool isExact, 1372 const SimplifyQuery &Q) { 1373 return ::SimplifyLShrInst(Op0, Op1, isExact, Q, RecursionLimit); 1374 } 1375 1376 /// Given operands for an AShr, see if we can fold the result. 1377 /// If not, this returns null. 1378 static Value *SimplifyAShrInst(Value *Op0, Value *Op1, bool isExact, 1379 const SimplifyQuery &Q, unsigned MaxRecurse) { 1380 if (Value *V = SimplifyRightShift(Instruction::AShr, Op0, Op1, isExact, Q, 1381 MaxRecurse)) 1382 return V; 1383 1384 // all ones >>a X -> -1 1385 // Do not return Op0 because it may contain undef elements if it's a vector. 1386 if (match(Op0, m_AllOnes())) 1387 return Constant::getAllOnesValue(Op0->getType()); 1388 1389 // (X << A) >> A -> X 1390 Value *X; 1391 if (Q.IIQ.UseInstrInfo && match(Op0, m_NSWShl(m_Value(X), m_Specific(Op1)))) 1392 return X; 1393 1394 // Arithmetic shifting an all-sign-bit value is a no-op. 1395 unsigned NumSignBits = ComputeNumSignBits(Op0, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 1396 if (NumSignBits == Op0->getType()->getScalarSizeInBits()) 1397 return Op0; 1398 1399 return nullptr; 1400 } 1401 1402 Value *llvm::SimplifyAShrInst(Value *Op0, Value *Op1, bool isExact, 1403 const SimplifyQuery &Q) { 1404 return ::SimplifyAShrInst(Op0, Op1, isExact, Q, RecursionLimit); 1405 } 1406 1407 /// Commuted variants are assumed to be handled by calling this function again 1408 /// with the parameters swapped. 1409 static Value *simplifyUnsignedRangeCheck(ICmpInst *ZeroICmp, 1410 ICmpInst *UnsignedICmp, bool IsAnd, 1411 const SimplifyQuery &Q) { 1412 Value *X, *Y; 1413 1414 ICmpInst::Predicate EqPred; 1415 if (!match(ZeroICmp, m_ICmp(EqPred, m_Value(Y), m_Zero())) || 1416 !ICmpInst::isEquality(EqPred)) 1417 return nullptr; 1418 1419 ICmpInst::Predicate UnsignedPred; 1420 1421 Value *A, *B; 1422 // Y = (A - B); 1423 if (match(Y, m_Sub(m_Value(A), m_Value(B)))) { 1424 if (match(UnsignedICmp, 1425 m_c_ICmp(UnsignedPred, m_Specific(A), m_Specific(B))) && 1426 ICmpInst::isUnsigned(UnsignedPred)) { 1427 // A >=/<= B || (A - B) != 0 <--> true 1428 if ((UnsignedPred == ICmpInst::ICMP_UGE || 1429 UnsignedPred == ICmpInst::ICMP_ULE) && 1430 EqPred == ICmpInst::ICMP_NE && !IsAnd) 1431 return ConstantInt::getTrue(UnsignedICmp->getType()); 1432 // A </> B && (A - B) == 0 <--> false 1433 if ((UnsignedPred == ICmpInst::ICMP_ULT || 1434 UnsignedPred == ICmpInst::ICMP_UGT) && 1435 EqPred == ICmpInst::ICMP_EQ && IsAnd) 1436 return ConstantInt::getFalse(UnsignedICmp->getType()); 1437 1438 // A </> B && (A - B) != 0 <--> A </> B 1439 // A </> B || (A - B) != 0 <--> (A - B) != 0 1440 if (EqPred == ICmpInst::ICMP_NE && (UnsignedPred == ICmpInst::ICMP_ULT || 1441 UnsignedPred == ICmpInst::ICMP_UGT)) 1442 return IsAnd ? UnsignedICmp : ZeroICmp; 1443 1444 // A <=/>= B && (A - B) == 0 <--> (A - B) == 0 1445 // A <=/>= B || (A - B) == 0 <--> A <=/>= B 1446 if (EqPred == ICmpInst::ICMP_EQ && (UnsignedPred == ICmpInst::ICMP_ULE || 1447 UnsignedPred == ICmpInst::ICMP_UGE)) 1448 return IsAnd ? ZeroICmp : UnsignedICmp; 1449 } 1450 1451 // Given Y = (A - B) 1452 // Y >= A && Y != 0 --> Y >= A iff B != 0 1453 // Y < A || Y == 0 --> Y < A iff B != 0 1454 if (match(UnsignedICmp, 1455 m_c_ICmp(UnsignedPred, m_Specific(Y), m_Specific(A)))) { 1456 if (UnsignedPred == ICmpInst::ICMP_UGE && IsAnd && 1457 EqPred == ICmpInst::ICMP_NE && 1458 isKnownNonZero(B, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT)) 1459 return UnsignedICmp; 1460 if (UnsignedPred == ICmpInst::ICMP_ULT && !IsAnd && 1461 EqPred == ICmpInst::ICMP_EQ && 1462 isKnownNonZero(B, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT)) 1463 return UnsignedICmp; 1464 } 1465 } 1466 1467 if (match(UnsignedICmp, m_ICmp(UnsignedPred, m_Value(X), m_Specific(Y))) && 1468 ICmpInst::isUnsigned(UnsignedPred)) 1469 ; 1470 else if (match(UnsignedICmp, 1471 m_ICmp(UnsignedPred, m_Specific(Y), m_Value(X))) && 1472 ICmpInst::isUnsigned(UnsignedPred)) 1473 UnsignedPred = ICmpInst::getSwappedPredicate(UnsignedPred); 1474 else 1475 return nullptr; 1476 1477 // X > Y && Y == 0 --> Y == 0 iff X != 0 1478 // X > Y || Y == 0 --> X > Y iff X != 0 1479 if (UnsignedPred == ICmpInst::ICMP_UGT && EqPred == ICmpInst::ICMP_EQ && 1480 isKnownNonZero(X, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT)) 1481 return IsAnd ? ZeroICmp : UnsignedICmp; 1482 1483 // X <= Y && Y != 0 --> X <= Y iff X != 0 1484 // X <= Y || Y != 0 --> Y != 0 iff X != 0 1485 if (UnsignedPred == ICmpInst::ICMP_ULE && EqPred == ICmpInst::ICMP_NE && 1486 isKnownNonZero(X, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT)) 1487 return IsAnd ? UnsignedICmp : ZeroICmp; 1488 1489 // The transforms below here are expected to be handled more generally with 1490 // simplifyAndOrOfICmpsWithLimitConst() or in InstCombine's 1491 // foldAndOrOfICmpsWithConstEq(). If we are looking to trim optimizer overlap, 1492 // these are candidates for removal. 1493 1494 // X < Y && Y != 0 --> X < Y 1495 // X < Y || Y != 0 --> Y != 0 1496 if (UnsignedPred == ICmpInst::ICMP_ULT && EqPred == ICmpInst::ICMP_NE) 1497 return IsAnd ? UnsignedICmp : ZeroICmp; 1498 1499 // X >= Y && Y == 0 --> Y == 0 1500 // X >= Y || Y == 0 --> X >= Y 1501 if (UnsignedPred == ICmpInst::ICMP_UGE && EqPred == ICmpInst::ICMP_EQ) 1502 return IsAnd ? ZeroICmp : UnsignedICmp; 1503 1504 // X < Y && Y == 0 --> false 1505 if (UnsignedPred == ICmpInst::ICMP_ULT && EqPred == ICmpInst::ICMP_EQ && 1506 IsAnd) 1507 return getFalse(UnsignedICmp->getType()); 1508 1509 // X >= Y || Y != 0 --> true 1510 if (UnsignedPred == ICmpInst::ICMP_UGE && EqPred == ICmpInst::ICMP_NE && 1511 !IsAnd) 1512 return getTrue(UnsignedICmp->getType()); 1513 1514 return nullptr; 1515 } 1516 1517 /// Commuted variants are assumed to be handled by calling this function again 1518 /// with the parameters swapped. 1519 static Value *simplifyAndOfICmpsWithSameOperands(ICmpInst *Op0, ICmpInst *Op1) { 1520 ICmpInst::Predicate Pred0, Pred1; 1521 Value *A ,*B; 1522 if (!match(Op0, m_ICmp(Pred0, m_Value(A), m_Value(B))) || 1523 !match(Op1, m_ICmp(Pred1, m_Specific(A), m_Specific(B)))) 1524 return nullptr; 1525 1526 // We have (icmp Pred0, A, B) & (icmp Pred1, A, B). 1527 // If Op1 is always implied true by Op0, then Op0 is a subset of Op1, and we 1528 // can eliminate Op1 from this 'and'. 1529 if (ICmpInst::isImpliedTrueByMatchingCmp(Pred0, Pred1)) 1530 return Op0; 1531 1532 // Check for any combination of predicates that are guaranteed to be disjoint. 1533 if ((Pred0 == ICmpInst::getInversePredicate(Pred1)) || 1534 (Pred0 == ICmpInst::ICMP_EQ && ICmpInst::isFalseWhenEqual(Pred1)) || 1535 (Pred0 == ICmpInst::ICMP_SLT && Pred1 == ICmpInst::ICMP_SGT) || 1536 (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_UGT)) 1537 return getFalse(Op0->getType()); 1538 1539 return nullptr; 1540 } 1541 1542 /// Commuted variants are assumed to be handled by calling this function again 1543 /// with the parameters swapped. 1544 static Value *simplifyOrOfICmpsWithSameOperands(ICmpInst *Op0, ICmpInst *Op1) { 1545 ICmpInst::Predicate Pred0, Pred1; 1546 Value *A ,*B; 1547 if (!match(Op0, m_ICmp(Pred0, m_Value(A), m_Value(B))) || 1548 !match(Op1, m_ICmp(Pred1, m_Specific(A), m_Specific(B)))) 1549 return nullptr; 1550 1551 // We have (icmp Pred0, A, B) | (icmp Pred1, A, B). 1552 // If Op1 is always implied true by Op0, then Op0 is a subset of Op1, and we 1553 // can eliminate Op0 from this 'or'. 1554 if (ICmpInst::isImpliedTrueByMatchingCmp(Pred0, Pred1)) 1555 return Op1; 1556 1557 // Check for any combination of predicates that cover the entire range of 1558 // possibilities. 1559 if ((Pred0 == ICmpInst::getInversePredicate(Pred1)) || 1560 (Pred0 == ICmpInst::ICMP_NE && ICmpInst::isTrueWhenEqual(Pred1)) || 1561 (Pred0 == ICmpInst::ICMP_SLE && Pred1 == ICmpInst::ICMP_SGE) || 1562 (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_UGE)) 1563 return getTrue(Op0->getType()); 1564 1565 return nullptr; 1566 } 1567 1568 /// Test if a pair of compares with a shared operand and 2 constants has an 1569 /// empty set intersection, full set union, or if one compare is a superset of 1570 /// the other. 1571 static Value *simplifyAndOrOfICmpsWithConstants(ICmpInst *Cmp0, ICmpInst *Cmp1, 1572 bool IsAnd) { 1573 // Look for this pattern: {and/or} (icmp X, C0), (icmp X, C1)). 1574 if (Cmp0->getOperand(0) != Cmp1->getOperand(0)) 1575 return nullptr; 1576 1577 const APInt *C0, *C1; 1578 if (!match(Cmp0->getOperand(1), m_APInt(C0)) || 1579 !match(Cmp1->getOperand(1), m_APInt(C1))) 1580 return nullptr; 1581 1582 auto Range0 = ConstantRange::makeExactICmpRegion(Cmp0->getPredicate(), *C0); 1583 auto Range1 = ConstantRange::makeExactICmpRegion(Cmp1->getPredicate(), *C1); 1584 1585 // For and-of-compares, check if the intersection is empty: 1586 // (icmp X, C0) && (icmp X, C1) --> empty set --> false 1587 if (IsAnd && Range0.intersectWith(Range1).isEmptySet()) 1588 return getFalse(Cmp0->getType()); 1589 1590 // For or-of-compares, check if the union is full: 1591 // (icmp X, C0) || (icmp X, C1) --> full set --> true 1592 if (!IsAnd && Range0.unionWith(Range1).isFullSet()) 1593 return getTrue(Cmp0->getType()); 1594 1595 // Is one range a superset of the other? 1596 // If this is and-of-compares, take the smaller set: 1597 // (icmp sgt X, 4) && (icmp sgt X, 42) --> icmp sgt X, 42 1598 // If this is or-of-compares, take the larger set: 1599 // (icmp sgt X, 4) || (icmp sgt X, 42) --> icmp sgt X, 4 1600 if (Range0.contains(Range1)) 1601 return IsAnd ? Cmp1 : Cmp0; 1602 if (Range1.contains(Range0)) 1603 return IsAnd ? Cmp0 : Cmp1; 1604 1605 return nullptr; 1606 } 1607 1608 static Value *simplifyAndOrOfICmpsWithZero(ICmpInst *Cmp0, ICmpInst *Cmp1, 1609 bool IsAnd) { 1610 ICmpInst::Predicate P0 = Cmp0->getPredicate(), P1 = Cmp1->getPredicate(); 1611 if (!match(Cmp0->getOperand(1), m_Zero()) || 1612 !match(Cmp1->getOperand(1), m_Zero()) || P0 != P1) 1613 return nullptr; 1614 1615 if ((IsAnd && P0 != ICmpInst::ICMP_NE) || (!IsAnd && P1 != ICmpInst::ICMP_EQ)) 1616 return nullptr; 1617 1618 // We have either "(X == 0 || Y == 0)" or "(X != 0 && Y != 0)". 1619 Value *X = Cmp0->getOperand(0); 1620 Value *Y = Cmp1->getOperand(0); 1621 1622 // If one of the compares is a masked version of a (not) null check, then 1623 // that compare implies the other, so we eliminate the other. Optionally, look 1624 // through a pointer-to-int cast to match a null check of a pointer type. 1625 1626 // (X == 0) || (([ptrtoint] X & ?) == 0) --> ([ptrtoint] X & ?) == 0 1627 // (X == 0) || ((? & [ptrtoint] X) == 0) --> (? & [ptrtoint] X) == 0 1628 // (X != 0) && (([ptrtoint] X & ?) != 0) --> ([ptrtoint] X & ?) != 0 1629 // (X != 0) && ((? & [ptrtoint] X) != 0) --> (? & [ptrtoint] X) != 0 1630 if (match(Y, m_c_And(m_Specific(X), m_Value())) || 1631 match(Y, m_c_And(m_PtrToInt(m_Specific(X)), m_Value()))) 1632 return Cmp1; 1633 1634 // (([ptrtoint] Y & ?) == 0) || (Y == 0) --> ([ptrtoint] Y & ?) == 0 1635 // ((? & [ptrtoint] Y) == 0) || (Y == 0) --> (? & [ptrtoint] Y) == 0 1636 // (([ptrtoint] Y & ?) != 0) && (Y != 0) --> ([ptrtoint] Y & ?) != 0 1637 // ((? & [ptrtoint] Y) != 0) && (Y != 0) --> (? & [ptrtoint] Y) != 0 1638 if (match(X, m_c_And(m_Specific(Y), m_Value())) || 1639 match(X, m_c_And(m_PtrToInt(m_Specific(Y)), m_Value()))) 1640 return Cmp0; 1641 1642 return nullptr; 1643 } 1644 1645 static Value *simplifyAndOfICmpsWithAdd(ICmpInst *Op0, ICmpInst *Op1, 1646 const InstrInfoQuery &IIQ) { 1647 // (icmp (add V, C0), C1) & (icmp V, C0) 1648 ICmpInst::Predicate Pred0, Pred1; 1649 const APInt *C0, *C1; 1650 Value *V; 1651 if (!match(Op0, m_ICmp(Pred0, m_Add(m_Value(V), m_APInt(C0)), m_APInt(C1)))) 1652 return nullptr; 1653 1654 if (!match(Op1, m_ICmp(Pred1, m_Specific(V), m_Value()))) 1655 return nullptr; 1656 1657 auto *AddInst = cast<OverflowingBinaryOperator>(Op0->getOperand(0)); 1658 if (AddInst->getOperand(1) != Op1->getOperand(1)) 1659 return nullptr; 1660 1661 Type *ITy = Op0->getType(); 1662 bool isNSW = IIQ.hasNoSignedWrap(AddInst); 1663 bool isNUW = IIQ.hasNoUnsignedWrap(AddInst); 1664 1665 const APInt Delta = *C1 - *C0; 1666 if (C0->isStrictlyPositive()) { 1667 if (Delta == 2) { 1668 if (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_SGT) 1669 return getFalse(ITy); 1670 if (Pred0 == ICmpInst::ICMP_SLT && Pred1 == ICmpInst::ICMP_SGT && isNSW) 1671 return getFalse(ITy); 1672 } 1673 if (Delta == 1) { 1674 if (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_SGT) 1675 return getFalse(ITy); 1676 if (Pred0 == ICmpInst::ICMP_SLE && Pred1 == ICmpInst::ICMP_SGT && isNSW) 1677 return getFalse(ITy); 1678 } 1679 } 1680 if (C0->getBoolValue() && isNUW) { 1681 if (Delta == 2) 1682 if (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_UGT) 1683 return getFalse(ITy); 1684 if (Delta == 1) 1685 if (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_UGT) 1686 return getFalse(ITy); 1687 } 1688 1689 return nullptr; 1690 } 1691 1692 /// Try to eliminate compares with signed or unsigned min/max constants. 1693 static Value *simplifyAndOrOfICmpsWithLimitConst(ICmpInst *Cmp0, ICmpInst *Cmp1, 1694 bool IsAnd) { 1695 // Canonicalize an equality compare as Cmp0. 1696 if (Cmp1->isEquality()) 1697 std::swap(Cmp0, Cmp1); 1698 if (!Cmp0->isEquality()) 1699 return nullptr; 1700 1701 // The non-equality compare must include a common operand (X). Canonicalize 1702 // the common operand as operand 0 (the predicate is swapped if the common 1703 // operand was operand 1). 1704 ICmpInst::Predicate Pred0 = Cmp0->getPredicate(); 1705 Value *X = Cmp0->getOperand(0); 1706 ICmpInst::Predicate Pred1; 1707 bool HasNotOp = match(Cmp1, m_c_ICmp(Pred1, m_Not(m_Specific(X)), m_Value())); 1708 if (!HasNotOp && !match(Cmp1, m_c_ICmp(Pred1, m_Specific(X), m_Value()))) 1709 return nullptr; 1710 if (ICmpInst::isEquality(Pred1)) 1711 return nullptr; 1712 1713 // The equality compare must be against a constant. Flip bits if we matched 1714 // a bitwise not. Convert a null pointer constant to an integer zero value. 1715 APInt MinMaxC; 1716 const APInt *C; 1717 if (match(Cmp0->getOperand(1), m_APInt(C))) 1718 MinMaxC = HasNotOp ? ~*C : *C; 1719 else if (isa<ConstantPointerNull>(Cmp0->getOperand(1))) 1720 MinMaxC = APInt::getNullValue(8); 1721 else 1722 return nullptr; 1723 1724 // DeMorganize if this is 'or': P0 || P1 --> !P0 && !P1. 1725 if (!IsAnd) { 1726 Pred0 = ICmpInst::getInversePredicate(Pred0); 1727 Pred1 = ICmpInst::getInversePredicate(Pred1); 1728 } 1729 1730 // Normalize to unsigned compare and unsigned min/max value. 1731 // Example for 8-bit: -128 + 128 -> 0; 127 + 128 -> 255 1732 if (ICmpInst::isSigned(Pred1)) { 1733 Pred1 = ICmpInst::getUnsignedPredicate(Pred1); 1734 MinMaxC += APInt::getSignedMinValue(MinMaxC.getBitWidth()); 1735 } 1736 1737 // (X != MAX) && (X < Y) --> X < Y 1738 // (X == MAX) || (X >= Y) --> X >= Y 1739 if (MinMaxC.isMaxValue()) 1740 if (Pred0 == ICmpInst::ICMP_NE && Pred1 == ICmpInst::ICMP_ULT) 1741 return Cmp1; 1742 1743 // (X != MIN) && (X > Y) --> X > Y 1744 // (X == MIN) || (X <= Y) --> X <= Y 1745 if (MinMaxC.isMinValue()) 1746 if (Pred0 == ICmpInst::ICMP_NE && Pred1 == ICmpInst::ICMP_UGT) 1747 return Cmp1; 1748 1749 return nullptr; 1750 } 1751 1752 static Value *simplifyAndOfICmps(ICmpInst *Op0, ICmpInst *Op1, 1753 const SimplifyQuery &Q) { 1754 if (Value *X = simplifyUnsignedRangeCheck(Op0, Op1, /*IsAnd=*/true, Q)) 1755 return X; 1756 if (Value *X = simplifyUnsignedRangeCheck(Op1, Op0, /*IsAnd=*/true, Q)) 1757 return X; 1758 1759 if (Value *X = simplifyAndOfICmpsWithSameOperands(Op0, Op1)) 1760 return X; 1761 if (Value *X = simplifyAndOfICmpsWithSameOperands(Op1, Op0)) 1762 return X; 1763 1764 if (Value *X = simplifyAndOrOfICmpsWithConstants(Op0, Op1, true)) 1765 return X; 1766 1767 if (Value *X = simplifyAndOrOfICmpsWithLimitConst(Op0, Op1, true)) 1768 return X; 1769 1770 if (Value *X = simplifyAndOrOfICmpsWithZero(Op0, Op1, true)) 1771 return X; 1772 1773 if (Value *X = simplifyAndOfICmpsWithAdd(Op0, Op1, Q.IIQ)) 1774 return X; 1775 if (Value *X = simplifyAndOfICmpsWithAdd(Op1, Op0, Q.IIQ)) 1776 return X; 1777 1778 return nullptr; 1779 } 1780 1781 static Value *simplifyOrOfICmpsWithAdd(ICmpInst *Op0, ICmpInst *Op1, 1782 const InstrInfoQuery &IIQ) { 1783 // (icmp (add V, C0), C1) | (icmp V, C0) 1784 ICmpInst::Predicate Pred0, Pred1; 1785 const APInt *C0, *C1; 1786 Value *V; 1787 if (!match(Op0, m_ICmp(Pred0, m_Add(m_Value(V), m_APInt(C0)), m_APInt(C1)))) 1788 return nullptr; 1789 1790 if (!match(Op1, m_ICmp(Pred1, m_Specific(V), m_Value()))) 1791 return nullptr; 1792 1793 auto *AddInst = cast<BinaryOperator>(Op0->getOperand(0)); 1794 if (AddInst->getOperand(1) != Op1->getOperand(1)) 1795 return nullptr; 1796 1797 Type *ITy = Op0->getType(); 1798 bool isNSW = IIQ.hasNoSignedWrap(AddInst); 1799 bool isNUW = IIQ.hasNoUnsignedWrap(AddInst); 1800 1801 const APInt Delta = *C1 - *C0; 1802 if (C0->isStrictlyPositive()) { 1803 if (Delta == 2) { 1804 if (Pred0 == ICmpInst::ICMP_UGE && Pred1 == ICmpInst::ICMP_SLE) 1805 return getTrue(ITy); 1806 if (Pred0 == ICmpInst::ICMP_SGE && Pred1 == ICmpInst::ICMP_SLE && isNSW) 1807 return getTrue(ITy); 1808 } 1809 if (Delta == 1) { 1810 if (Pred0 == ICmpInst::ICMP_UGT && Pred1 == ICmpInst::ICMP_SLE) 1811 return getTrue(ITy); 1812 if (Pred0 == ICmpInst::ICMP_SGT && Pred1 == ICmpInst::ICMP_SLE && isNSW) 1813 return getTrue(ITy); 1814 } 1815 } 1816 if (C0->getBoolValue() && isNUW) { 1817 if (Delta == 2) 1818 if (Pred0 == ICmpInst::ICMP_UGE && Pred1 == ICmpInst::ICMP_ULE) 1819 return getTrue(ITy); 1820 if (Delta == 1) 1821 if (Pred0 == ICmpInst::ICMP_UGT && Pred1 == ICmpInst::ICMP_ULE) 1822 return getTrue(ITy); 1823 } 1824 1825 return nullptr; 1826 } 1827 1828 static Value *simplifyOrOfICmps(ICmpInst *Op0, ICmpInst *Op1, 1829 const SimplifyQuery &Q) { 1830 if (Value *X = simplifyUnsignedRangeCheck(Op0, Op1, /*IsAnd=*/false, Q)) 1831 return X; 1832 if (Value *X = simplifyUnsignedRangeCheck(Op1, Op0, /*IsAnd=*/false, Q)) 1833 return X; 1834 1835 if (Value *X = simplifyOrOfICmpsWithSameOperands(Op0, Op1)) 1836 return X; 1837 if (Value *X = simplifyOrOfICmpsWithSameOperands(Op1, Op0)) 1838 return X; 1839 1840 if (Value *X = simplifyAndOrOfICmpsWithConstants(Op0, Op1, false)) 1841 return X; 1842 1843 if (Value *X = simplifyAndOrOfICmpsWithLimitConst(Op0, Op1, false)) 1844 return X; 1845 1846 if (Value *X = simplifyAndOrOfICmpsWithZero(Op0, Op1, false)) 1847 return X; 1848 1849 if (Value *X = simplifyOrOfICmpsWithAdd(Op0, Op1, Q.IIQ)) 1850 return X; 1851 if (Value *X = simplifyOrOfICmpsWithAdd(Op1, Op0, Q.IIQ)) 1852 return X; 1853 1854 return nullptr; 1855 } 1856 1857 static Value *simplifyAndOrOfFCmps(const TargetLibraryInfo *TLI, 1858 FCmpInst *LHS, FCmpInst *RHS, bool IsAnd) { 1859 Value *LHS0 = LHS->getOperand(0), *LHS1 = LHS->getOperand(1); 1860 Value *RHS0 = RHS->getOperand(0), *RHS1 = RHS->getOperand(1); 1861 if (LHS0->getType() != RHS0->getType()) 1862 return nullptr; 1863 1864 FCmpInst::Predicate PredL = LHS->getPredicate(), PredR = RHS->getPredicate(); 1865 if ((PredL == FCmpInst::FCMP_ORD && PredR == FCmpInst::FCMP_ORD && IsAnd) || 1866 (PredL == FCmpInst::FCMP_UNO && PredR == FCmpInst::FCMP_UNO && !IsAnd)) { 1867 // (fcmp ord NNAN, X) & (fcmp ord X, Y) --> fcmp ord X, Y 1868 // (fcmp ord NNAN, X) & (fcmp ord Y, X) --> fcmp ord Y, X 1869 // (fcmp ord X, NNAN) & (fcmp ord X, Y) --> fcmp ord X, Y 1870 // (fcmp ord X, NNAN) & (fcmp ord Y, X) --> fcmp ord Y, X 1871 // (fcmp uno NNAN, X) | (fcmp uno X, Y) --> fcmp uno X, Y 1872 // (fcmp uno NNAN, X) | (fcmp uno Y, X) --> fcmp uno Y, X 1873 // (fcmp uno X, NNAN) | (fcmp uno X, Y) --> fcmp uno X, Y 1874 // (fcmp uno X, NNAN) | (fcmp uno Y, X) --> fcmp uno Y, X 1875 if ((isKnownNeverNaN(LHS0, TLI) && (LHS1 == RHS0 || LHS1 == RHS1)) || 1876 (isKnownNeverNaN(LHS1, TLI) && (LHS0 == RHS0 || LHS0 == RHS1))) 1877 return RHS; 1878 1879 // (fcmp ord X, Y) & (fcmp ord NNAN, X) --> fcmp ord X, Y 1880 // (fcmp ord Y, X) & (fcmp ord NNAN, X) --> fcmp ord Y, X 1881 // (fcmp ord X, Y) & (fcmp ord X, NNAN) --> fcmp ord X, Y 1882 // (fcmp ord Y, X) & (fcmp ord X, NNAN) --> fcmp ord Y, X 1883 // (fcmp uno X, Y) | (fcmp uno NNAN, X) --> fcmp uno X, Y 1884 // (fcmp uno Y, X) | (fcmp uno NNAN, X) --> fcmp uno Y, X 1885 // (fcmp uno X, Y) | (fcmp uno X, NNAN) --> fcmp uno X, Y 1886 // (fcmp uno Y, X) | (fcmp uno X, NNAN) --> fcmp uno Y, X 1887 if ((isKnownNeverNaN(RHS0, TLI) && (RHS1 == LHS0 || RHS1 == LHS1)) || 1888 (isKnownNeverNaN(RHS1, TLI) && (RHS0 == LHS0 || RHS0 == LHS1))) 1889 return LHS; 1890 } 1891 1892 return nullptr; 1893 } 1894 1895 static Value *simplifyAndOrOfCmps(const SimplifyQuery &Q, 1896 Value *Op0, Value *Op1, bool IsAnd) { 1897 // Look through casts of the 'and' operands to find compares. 1898 auto *Cast0 = dyn_cast<CastInst>(Op0); 1899 auto *Cast1 = dyn_cast<CastInst>(Op1); 1900 if (Cast0 && Cast1 && Cast0->getOpcode() == Cast1->getOpcode() && 1901 Cast0->getSrcTy() == Cast1->getSrcTy()) { 1902 Op0 = Cast0->getOperand(0); 1903 Op1 = Cast1->getOperand(0); 1904 } 1905 1906 Value *V = nullptr; 1907 auto *ICmp0 = dyn_cast<ICmpInst>(Op0); 1908 auto *ICmp1 = dyn_cast<ICmpInst>(Op1); 1909 if (ICmp0 && ICmp1) 1910 V = IsAnd ? simplifyAndOfICmps(ICmp0, ICmp1, Q) 1911 : simplifyOrOfICmps(ICmp0, ICmp1, Q); 1912 1913 auto *FCmp0 = dyn_cast<FCmpInst>(Op0); 1914 auto *FCmp1 = dyn_cast<FCmpInst>(Op1); 1915 if (FCmp0 && FCmp1) 1916 V = simplifyAndOrOfFCmps(Q.TLI, FCmp0, FCmp1, IsAnd); 1917 1918 if (!V) 1919 return nullptr; 1920 if (!Cast0) 1921 return V; 1922 1923 // If we looked through casts, we can only handle a constant simplification 1924 // because we are not allowed to create a cast instruction here. 1925 if (auto *C = dyn_cast<Constant>(V)) 1926 return ConstantExpr::getCast(Cast0->getOpcode(), C, Cast0->getType()); 1927 1928 return nullptr; 1929 } 1930 1931 /// Check that the Op1 is in expected form, i.e.: 1932 /// %Agg = tail call { i4, i1 } @llvm.[us]mul.with.overflow.i4(i4 %X, i4 %???) 1933 /// %Op1 = extractvalue { i4, i1 } %Agg, 1 1934 static bool omitCheckForZeroBeforeMulWithOverflowInternal(Value *Op1, 1935 Value *X) { 1936 auto *Extract = dyn_cast<ExtractValueInst>(Op1); 1937 // We should only be extracting the overflow bit. 1938 if (!Extract || !Extract->getIndices().equals(1)) 1939 return false; 1940 Value *Agg = Extract->getAggregateOperand(); 1941 // This should be a multiplication-with-overflow intrinsic. 1942 if (!match(Agg, m_CombineOr(m_Intrinsic<Intrinsic::umul_with_overflow>(), 1943 m_Intrinsic<Intrinsic::smul_with_overflow>()))) 1944 return false; 1945 // One of its multipliers should be the value we checked for zero before. 1946 if (!match(Agg, m_CombineOr(m_Argument<0>(m_Specific(X)), 1947 m_Argument<1>(m_Specific(X))))) 1948 return false; 1949 return true; 1950 } 1951 1952 /// The @llvm.[us]mul.with.overflow intrinsic could have been folded from some 1953 /// other form of check, e.g. one that was using division; it may have been 1954 /// guarded against division-by-zero. We can drop that check now. 1955 /// Look for: 1956 /// %Op0 = icmp ne i4 %X, 0 1957 /// %Agg = tail call { i4, i1 } @llvm.[us]mul.with.overflow.i4(i4 %X, i4 %???) 1958 /// %Op1 = extractvalue { i4, i1 } %Agg, 1 1959 /// %??? = and i1 %Op0, %Op1 1960 /// We can just return %Op1 1961 static Value *omitCheckForZeroBeforeMulWithOverflow(Value *Op0, Value *Op1) { 1962 ICmpInst::Predicate Pred; 1963 Value *X; 1964 if (!match(Op0, m_ICmp(Pred, m_Value(X), m_Zero())) || 1965 Pred != ICmpInst::Predicate::ICMP_NE) 1966 return nullptr; 1967 // Is Op1 in expected form? 1968 if (!omitCheckForZeroBeforeMulWithOverflowInternal(Op1, X)) 1969 return nullptr; 1970 // Can omit 'and', and just return the overflow bit. 1971 return Op1; 1972 } 1973 1974 /// The @llvm.[us]mul.with.overflow intrinsic could have been folded from some 1975 /// other form of check, e.g. one that was using division; it may have been 1976 /// guarded against division-by-zero. We can drop that check now. 1977 /// Look for: 1978 /// %Op0 = icmp eq i4 %X, 0 1979 /// %Agg = tail call { i4, i1 } @llvm.[us]mul.with.overflow.i4(i4 %X, i4 %???) 1980 /// %Op1 = extractvalue { i4, i1 } %Agg, 1 1981 /// %NotOp1 = xor i1 %Op1, true 1982 /// %or = or i1 %Op0, %NotOp1 1983 /// We can just return %NotOp1 1984 static Value *omitCheckForZeroBeforeInvertedMulWithOverflow(Value *Op0, 1985 Value *NotOp1) { 1986 ICmpInst::Predicate Pred; 1987 Value *X; 1988 if (!match(Op0, m_ICmp(Pred, m_Value(X), m_Zero())) || 1989 Pred != ICmpInst::Predicate::ICMP_EQ) 1990 return nullptr; 1991 // We expect the other hand of an 'or' to be a 'not'. 1992 Value *Op1; 1993 if (!match(NotOp1, m_Not(m_Value(Op1)))) 1994 return nullptr; 1995 // Is Op1 in expected form? 1996 if (!omitCheckForZeroBeforeMulWithOverflowInternal(Op1, X)) 1997 return nullptr; 1998 // Can omit 'and', and just return the inverted overflow bit. 1999 return NotOp1; 2000 } 2001 2002 /// Given operands for an And, see if we can fold the result. 2003 /// If not, this returns null. 2004 static Value *SimplifyAndInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 2005 unsigned MaxRecurse) { 2006 if (Constant *C = foldOrCommuteConstant(Instruction::And, Op0, Op1, Q)) 2007 return C; 2008 2009 // X & undef -> 0 2010 if (Q.isUndefValue(Op1)) 2011 return Constant::getNullValue(Op0->getType()); 2012 2013 // X & X = X 2014 if (Op0 == Op1) 2015 return Op0; 2016 2017 // X & 0 = 0 2018 if (match(Op1, m_Zero())) 2019 return Constant::getNullValue(Op0->getType()); 2020 2021 // X & -1 = X 2022 if (match(Op1, m_AllOnes())) 2023 return Op0; 2024 2025 // A & ~A = ~A & A = 0 2026 if (match(Op0, m_Not(m_Specific(Op1))) || 2027 match(Op1, m_Not(m_Specific(Op0)))) 2028 return Constant::getNullValue(Op0->getType()); 2029 2030 // (A | ?) & A = A 2031 if (match(Op0, m_c_Or(m_Specific(Op1), m_Value()))) 2032 return Op1; 2033 2034 // A & (A | ?) = A 2035 if (match(Op1, m_c_Or(m_Specific(Op0), m_Value()))) 2036 return Op0; 2037 2038 // A mask that only clears known zeros of a shifted value is a no-op. 2039 Value *X; 2040 const APInt *Mask; 2041 const APInt *ShAmt; 2042 if (match(Op1, m_APInt(Mask))) { 2043 // If all bits in the inverted and shifted mask are clear: 2044 // and (shl X, ShAmt), Mask --> shl X, ShAmt 2045 if (match(Op0, m_Shl(m_Value(X), m_APInt(ShAmt))) && 2046 (~(*Mask)).lshr(*ShAmt).isNullValue()) 2047 return Op0; 2048 2049 // If all bits in the inverted and shifted mask are clear: 2050 // and (lshr X, ShAmt), Mask --> lshr X, ShAmt 2051 if (match(Op0, m_LShr(m_Value(X), m_APInt(ShAmt))) && 2052 (~(*Mask)).shl(*ShAmt).isNullValue()) 2053 return Op0; 2054 } 2055 2056 // If we have a multiplication overflow check that is being 'and'ed with a 2057 // check that one of the multipliers is not zero, we can omit the 'and', and 2058 // only keep the overflow check. 2059 if (Value *V = omitCheckForZeroBeforeMulWithOverflow(Op0, Op1)) 2060 return V; 2061 if (Value *V = omitCheckForZeroBeforeMulWithOverflow(Op1, Op0)) 2062 return V; 2063 2064 // A & (-A) = A if A is a power of two or zero. 2065 if (match(Op0, m_Neg(m_Specific(Op1))) || 2066 match(Op1, m_Neg(m_Specific(Op0)))) { 2067 if (isKnownToBeAPowerOfTwo(Op0, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI, 2068 Q.DT)) 2069 return Op0; 2070 if (isKnownToBeAPowerOfTwo(Op1, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI, 2071 Q.DT)) 2072 return Op1; 2073 } 2074 2075 // This is a similar pattern used for checking if a value is a power-of-2: 2076 // (A - 1) & A --> 0 (if A is a power-of-2 or 0) 2077 // A & (A - 1) --> 0 (if A is a power-of-2 or 0) 2078 if (match(Op0, m_Add(m_Specific(Op1), m_AllOnes())) && 2079 isKnownToBeAPowerOfTwo(Op1, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI, Q.DT)) 2080 return Constant::getNullValue(Op1->getType()); 2081 if (match(Op1, m_Add(m_Specific(Op0), m_AllOnes())) && 2082 isKnownToBeAPowerOfTwo(Op0, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI, Q.DT)) 2083 return Constant::getNullValue(Op0->getType()); 2084 2085 if (Value *V = simplifyAndOrOfCmps(Q, Op0, Op1, true)) 2086 return V; 2087 2088 // Try some generic simplifications for associative operations. 2089 if (Value *V = SimplifyAssociativeBinOp(Instruction::And, Op0, Op1, Q, 2090 MaxRecurse)) 2091 return V; 2092 2093 // And distributes over Or. Try some generic simplifications based on this. 2094 if (Value *V = expandCommutativeBinOp(Instruction::And, Op0, Op1, 2095 Instruction::Or, Q, MaxRecurse)) 2096 return V; 2097 2098 // And distributes over Xor. Try some generic simplifications based on this. 2099 if (Value *V = expandCommutativeBinOp(Instruction::And, Op0, Op1, 2100 Instruction::Xor, Q, MaxRecurse)) 2101 return V; 2102 2103 // If the operation is with the result of a select instruction, check whether 2104 // operating on either branch of the select always yields the same value. 2105 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 2106 if (Value *V = ThreadBinOpOverSelect(Instruction::And, Op0, Op1, Q, 2107 MaxRecurse)) 2108 return V; 2109 2110 // If the operation is with the result of a phi instruction, check whether 2111 // operating on all incoming values of the phi always yields the same value. 2112 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 2113 if (Value *V = ThreadBinOpOverPHI(Instruction::And, Op0, Op1, Q, 2114 MaxRecurse)) 2115 return V; 2116 2117 // Assuming the effective width of Y is not larger than A, i.e. all bits 2118 // from X and Y are disjoint in (X << A) | Y, 2119 // if the mask of this AND op covers all bits of X or Y, while it covers 2120 // no bits from the other, we can bypass this AND op. E.g., 2121 // ((X << A) | Y) & Mask -> Y, 2122 // if Mask = ((1 << effective_width_of(Y)) - 1) 2123 // ((X << A) | Y) & Mask -> X << A, 2124 // if Mask = ((1 << effective_width_of(X)) - 1) << A 2125 // SimplifyDemandedBits in InstCombine can optimize the general case. 2126 // This pattern aims to help other passes for a common case. 2127 Value *Y, *XShifted; 2128 if (match(Op1, m_APInt(Mask)) && 2129 match(Op0, m_c_Or(m_CombineAnd(m_NUWShl(m_Value(X), m_APInt(ShAmt)), 2130 m_Value(XShifted)), 2131 m_Value(Y)))) { 2132 const unsigned Width = Op0->getType()->getScalarSizeInBits(); 2133 const unsigned ShftCnt = ShAmt->getLimitedValue(Width); 2134 const KnownBits YKnown = computeKnownBits(Y, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2135 const unsigned EffWidthY = Width - YKnown.countMinLeadingZeros(); 2136 if (EffWidthY <= ShftCnt) { 2137 const KnownBits XKnown = computeKnownBits(X, Q.DL, 0, Q.AC, Q.CxtI, 2138 Q.DT); 2139 const unsigned EffWidthX = Width - XKnown.countMinLeadingZeros(); 2140 const APInt EffBitsY = APInt::getLowBitsSet(Width, EffWidthY); 2141 const APInt EffBitsX = APInt::getLowBitsSet(Width, EffWidthX) << ShftCnt; 2142 // If the mask is extracting all bits from X or Y as is, we can skip 2143 // this AND op. 2144 if (EffBitsY.isSubsetOf(*Mask) && !EffBitsX.intersects(*Mask)) 2145 return Y; 2146 if (EffBitsX.isSubsetOf(*Mask) && !EffBitsY.intersects(*Mask)) 2147 return XShifted; 2148 } 2149 } 2150 2151 return nullptr; 2152 } 2153 2154 Value *llvm::SimplifyAndInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 2155 return ::SimplifyAndInst(Op0, Op1, Q, RecursionLimit); 2156 } 2157 2158 /// Given operands for an Or, see if we can fold the result. 2159 /// If not, this returns null. 2160 static Value *SimplifyOrInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 2161 unsigned MaxRecurse) { 2162 if (Constant *C = foldOrCommuteConstant(Instruction::Or, Op0, Op1, Q)) 2163 return C; 2164 2165 // X | undef -> -1 2166 // X | -1 = -1 2167 // Do not return Op1 because it may contain undef elements if it's a vector. 2168 if (Q.isUndefValue(Op1) || match(Op1, m_AllOnes())) 2169 return Constant::getAllOnesValue(Op0->getType()); 2170 2171 // X | X = X 2172 // X | 0 = X 2173 if (Op0 == Op1 || match(Op1, m_Zero())) 2174 return Op0; 2175 2176 // A | ~A = ~A | A = -1 2177 if (match(Op0, m_Not(m_Specific(Op1))) || 2178 match(Op1, m_Not(m_Specific(Op0)))) 2179 return Constant::getAllOnesValue(Op0->getType()); 2180 2181 // (A & ?) | A = A 2182 if (match(Op0, m_c_And(m_Specific(Op1), m_Value()))) 2183 return Op1; 2184 2185 // A | (A & ?) = A 2186 if (match(Op1, m_c_And(m_Specific(Op0), m_Value()))) 2187 return Op0; 2188 2189 // ~(A & ?) | A = -1 2190 if (match(Op0, m_Not(m_c_And(m_Specific(Op1), m_Value())))) 2191 return Constant::getAllOnesValue(Op1->getType()); 2192 2193 // A | ~(A & ?) = -1 2194 if (match(Op1, m_Not(m_c_And(m_Specific(Op0), m_Value())))) 2195 return Constant::getAllOnesValue(Op0->getType()); 2196 2197 Value *A, *B; 2198 // (A & ~B) | (A ^ B) -> (A ^ B) 2199 // (~B & A) | (A ^ B) -> (A ^ B) 2200 // (A & ~B) | (B ^ A) -> (B ^ A) 2201 // (~B & A) | (B ^ A) -> (B ^ A) 2202 if (match(Op1, m_Xor(m_Value(A), m_Value(B))) && 2203 (match(Op0, m_c_And(m_Specific(A), m_Not(m_Specific(B)))) || 2204 match(Op0, m_c_And(m_Not(m_Specific(A)), m_Specific(B))))) 2205 return Op1; 2206 2207 // Commute the 'or' operands. 2208 // (A ^ B) | (A & ~B) -> (A ^ B) 2209 // (A ^ B) | (~B & A) -> (A ^ B) 2210 // (B ^ A) | (A & ~B) -> (B ^ A) 2211 // (B ^ A) | (~B & A) -> (B ^ A) 2212 if (match(Op0, m_Xor(m_Value(A), m_Value(B))) && 2213 (match(Op1, m_c_And(m_Specific(A), m_Not(m_Specific(B)))) || 2214 match(Op1, m_c_And(m_Not(m_Specific(A)), m_Specific(B))))) 2215 return Op0; 2216 2217 // (A & B) | (~A ^ B) -> (~A ^ B) 2218 // (B & A) | (~A ^ B) -> (~A ^ B) 2219 // (A & B) | (B ^ ~A) -> (B ^ ~A) 2220 // (B & A) | (B ^ ~A) -> (B ^ ~A) 2221 if (match(Op0, m_And(m_Value(A), m_Value(B))) && 2222 (match(Op1, m_c_Xor(m_Specific(A), m_Not(m_Specific(B)))) || 2223 match(Op1, m_c_Xor(m_Not(m_Specific(A)), m_Specific(B))))) 2224 return Op1; 2225 2226 // (~A ^ B) | (A & B) -> (~A ^ B) 2227 // (~A ^ B) | (B & A) -> (~A ^ B) 2228 // (B ^ ~A) | (A & B) -> (B ^ ~A) 2229 // (B ^ ~A) | (B & A) -> (B ^ ~A) 2230 if (match(Op1, m_And(m_Value(A), m_Value(B))) && 2231 (match(Op0, m_c_Xor(m_Specific(A), m_Not(m_Specific(B)))) || 2232 match(Op0, m_c_Xor(m_Not(m_Specific(A)), m_Specific(B))))) 2233 return Op0; 2234 2235 if (Value *V = simplifyAndOrOfCmps(Q, Op0, Op1, false)) 2236 return V; 2237 2238 // If we have a multiplication overflow check that is being 'and'ed with a 2239 // check that one of the multipliers is not zero, we can omit the 'and', and 2240 // only keep the overflow check. 2241 if (Value *V = omitCheckForZeroBeforeInvertedMulWithOverflow(Op0, Op1)) 2242 return V; 2243 if (Value *V = omitCheckForZeroBeforeInvertedMulWithOverflow(Op1, Op0)) 2244 return V; 2245 2246 // Try some generic simplifications for associative operations. 2247 if (Value *V = SimplifyAssociativeBinOp(Instruction::Or, Op0, Op1, Q, 2248 MaxRecurse)) 2249 return V; 2250 2251 // Or distributes over And. Try some generic simplifications based on this. 2252 if (Value *V = expandCommutativeBinOp(Instruction::Or, Op0, Op1, 2253 Instruction::And, Q, MaxRecurse)) 2254 return V; 2255 2256 // If the operation is with the result of a select instruction, check whether 2257 // operating on either branch of the select always yields the same value. 2258 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 2259 if (Value *V = ThreadBinOpOverSelect(Instruction::Or, Op0, Op1, Q, 2260 MaxRecurse)) 2261 return V; 2262 2263 // (A & C1)|(B & C2) 2264 const APInt *C1, *C2; 2265 if (match(Op0, m_And(m_Value(A), m_APInt(C1))) && 2266 match(Op1, m_And(m_Value(B), m_APInt(C2)))) { 2267 if (*C1 == ~*C2) { 2268 // (A & C1)|(B & C2) 2269 // If we have: ((V + N) & C1) | (V & C2) 2270 // .. and C2 = ~C1 and C2 is 0+1+ and (N & C2) == 0 2271 // replace with V+N. 2272 Value *N; 2273 if (C2->isMask() && // C2 == 0+1+ 2274 match(A, m_c_Add(m_Specific(B), m_Value(N)))) { 2275 // Add commutes, try both ways. 2276 if (MaskedValueIsZero(N, *C2, Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 2277 return A; 2278 } 2279 // Or commutes, try both ways. 2280 if (C1->isMask() && 2281 match(B, m_c_Add(m_Specific(A), m_Value(N)))) { 2282 // Add commutes, try both ways. 2283 if (MaskedValueIsZero(N, *C1, Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 2284 return B; 2285 } 2286 } 2287 } 2288 2289 // If the operation is with the result of a phi instruction, check whether 2290 // operating on all incoming values of the phi always yields the same value. 2291 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 2292 if (Value *V = ThreadBinOpOverPHI(Instruction::Or, Op0, Op1, Q, MaxRecurse)) 2293 return V; 2294 2295 return nullptr; 2296 } 2297 2298 Value *llvm::SimplifyOrInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 2299 return ::SimplifyOrInst(Op0, Op1, Q, RecursionLimit); 2300 } 2301 2302 /// Given operands for a Xor, see if we can fold the result. 2303 /// If not, this returns null. 2304 static Value *SimplifyXorInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 2305 unsigned MaxRecurse) { 2306 if (Constant *C = foldOrCommuteConstant(Instruction::Xor, Op0, Op1, Q)) 2307 return C; 2308 2309 // A ^ undef -> undef 2310 if (Q.isUndefValue(Op1)) 2311 return Op1; 2312 2313 // A ^ 0 = A 2314 if (match(Op1, m_Zero())) 2315 return Op0; 2316 2317 // A ^ A = 0 2318 if (Op0 == Op1) 2319 return Constant::getNullValue(Op0->getType()); 2320 2321 // A ^ ~A = ~A ^ A = -1 2322 if (match(Op0, m_Not(m_Specific(Op1))) || 2323 match(Op1, m_Not(m_Specific(Op0)))) 2324 return Constant::getAllOnesValue(Op0->getType()); 2325 2326 // Try some generic simplifications for associative operations. 2327 if (Value *V = SimplifyAssociativeBinOp(Instruction::Xor, Op0, Op1, Q, 2328 MaxRecurse)) 2329 return V; 2330 2331 // Threading Xor over selects and phi nodes is pointless, so don't bother. 2332 // Threading over the select in "A ^ select(cond, B, C)" means evaluating 2333 // "A^B" and "A^C" and seeing if they are equal; but they are equal if and 2334 // only if B and C are equal. If B and C are equal then (since we assume 2335 // that operands have already been simplified) "select(cond, B, C)" should 2336 // have been simplified to the common value of B and C already. Analysing 2337 // "A^B" and "A^C" thus gains nothing, but costs compile time. Similarly 2338 // for threading over phi nodes. 2339 2340 return nullptr; 2341 } 2342 2343 Value *llvm::SimplifyXorInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 2344 return ::SimplifyXorInst(Op0, Op1, Q, RecursionLimit); 2345 } 2346 2347 2348 static Type *GetCompareTy(Value *Op) { 2349 return CmpInst::makeCmpResultType(Op->getType()); 2350 } 2351 2352 /// Rummage around inside V looking for something equivalent to the comparison 2353 /// "LHS Pred RHS". Return such a value if found, otherwise return null. 2354 /// Helper function for analyzing max/min idioms. 2355 static Value *ExtractEquivalentCondition(Value *V, CmpInst::Predicate Pred, 2356 Value *LHS, Value *RHS) { 2357 SelectInst *SI = dyn_cast<SelectInst>(V); 2358 if (!SI) 2359 return nullptr; 2360 CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition()); 2361 if (!Cmp) 2362 return nullptr; 2363 Value *CmpLHS = Cmp->getOperand(0), *CmpRHS = Cmp->getOperand(1); 2364 if (Pred == Cmp->getPredicate() && LHS == CmpLHS && RHS == CmpRHS) 2365 return Cmp; 2366 if (Pred == CmpInst::getSwappedPredicate(Cmp->getPredicate()) && 2367 LHS == CmpRHS && RHS == CmpLHS) 2368 return Cmp; 2369 return nullptr; 2370 } 2371 2372 // A significant optimization not implemented here is assuming that alloca 2373 // addresses are not equal to incoming argument values. They don't *alias*, 2374 // as we say, but that doesn't mean they aren't equal, so we take a 2375 // conservative approach. 2376 // 2377 // This is inspired in part by C++11 5.10p1: 2378 // "Two pointers of the same type compare equal if and only if they are both 2379 // null, both point to the same function, or both represent the same 2380 // address." 2381 // 2382 // This is pretty permissive. 2383 // 2384 // It's also partly due to C11 6.5.9p6: 2385 // "Two pointers compare equal if and only if both are null pointers, both are 2386 // pointers to the same object (including a pointer to an object and a 2387 // subobject at its beginning) or function, both are pointers to one past the 2388 // last element of the same array object, or one is a pointer to one past the 2389 // end of one array object and the other is a pointer to the start of a 2390 // different array object that happens to immediately follow the first array 2391 // object in the address space.) 2392 // 2393 // C11's version is more restrictive, however there's no reason why an argument 2394 // couldn't be a one-past-the-end value for a stack object in the caller and be 2395 // equal to the beginning of a stack object in the callee. 2396 // 2397 // If the C and C++ standards are ever made sufficiently restrictive in this 2398 // area, it may be possible to update LLVM's semantics accordingly and reinstate 2399 // this optimization. 2400 static Constant * 2401 computePointerICmp(const DataLayout &DL, const TargetLibraryInfo *TLI, 2402 const DominatorTree *DT, CmpInst::Predicate Pred, 2403 AssumptionCache *AC, const Instruction *CxtI, 2404 const InstrInfoQuery &IIQ, Value *LHS, Value *RHS) { 2405 // First, skip past any trivial no-ops. 2406 LHS = LHS->stripPointerCasts(); 2407 RHS = RHS->stripPointerCasts(); 2408 2409 // A non-null pointer is not equal to a null pointer. 2410 if (isa<ConstantPointerNull>(RHS) && ICmpInst::isEquality(Pred) && 2411 llvm::isKnownNonZero(LHS, DL, 0, nullptr, nullptr, nullptr, 2412 IIQ.UseInstrInfo)) 2413 return ConstantInt::get(GetCompareTy(LHS), 2414 !CmpInst::isTrueWhenEqual(Pred)); 2415 2416 // We can only fold certain predicates on pointer comparisons. 2417 switch (Pred) { 2418 default: 2419 return nullptr; 2420 2421 // Equality comaprisons are easy to fold. 2422 case CmpInst::ICMP_EQ: 2423 case CmpInst::ICMP_NE: 2424 break; 2425 2426 // We can only handle unsigned relational comparisons because 'inbounds' on 2427 // a GEP only protects against unsigned wrapping. 2428 case CmpInst::ICMP_UGT: 2429 case CmpInst::ICMP_UGE: 2430 case CmpInst::ICMP_ULT: 2431 case CmpInst::ICMP_ULE: 2432 // However, we have to switch them to their signed variants to handle 2433 // negative indices from the base pointer. 2434 Pred = ICmpInst::getSignedPredicate(Pred); 2435 break; 2436 } 2437 2438 // Strip off any constant offsets so that we can reason about them. 2439 // It's tempting to use getUnderlyingObject or even just stripInBoundsOffsets 2440 // here and compare base addresses like AliasAnalysis does, however there are 2441 // numerous hazards. AliasAnalysis and its utilities rely on special rules 2442 // governing loads and stores which don't apply to icmps. Also, AliasAnalysis 2443 // doesn't need to guarantee pointer inequality when it says NoAlias. 2444 Constant *LHSOffset = stripAndComputeConstantOffsets(DL, LHS); 2445 Constant *RHSOffset = stripAndComputeConstantOffsets(DL, RHS); 2446 2447 // If LHS and RHS are related via constant offsets to the same base 2448 // value, we can replace it with an icmp which just compares the offsets. 2449 if (LHS == RHS) 2450 return ConstantExpr::getICmp(Pred, LHSOffset, RHSOffset); 2451 2452 // Various optimizations for (in)equality comparisons. 2453 if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE) { 2454 // Different non-empty allocations that exist at the same time have 2455 // different addresses (if the program can tell). Global variables always 2456 // exist, so they always exist during the lifetime of each other and all 2457 // allocas. Two different allocas usually have different addresses... 2458 // 2459 // However, if there's an @llvm.stackrestore dynamically in between two 2460 // allocas, they may have the same address. It's tempting to reduce the 2461 // scope of the problem by only looking at *static* allocas here. That would 2462 // cover the majority of allocas while significantly reducing the likelihood 2463 // of having an @llvm.stackrestore pop up in the middle. However, it's not 2464 // actually impossible for an @llvm.stackrestore to pop up in the middle of 2465 // an entry block. Also, if we have a block that's not attached to a 2466 // function, we can't tell if it's "static" under the current definition. 2467 // Theoretically, this problem could be fixed by creating a new kind of 2468 // instruction kind specifically for static allocas. Such a new instruction 2469 // could be required to be at the top of the entry block, thus preventing it 2470 // from being subject to a @llvm.stackrestore. Instcombine could even 2471 // convert regular allocas into these special allocas. It'd be nifty. 2472 // However, until then, this problem remains open. 2473 // 2474 // So, we'll assume that two non-empty allocas have different addresses 2475 // for now. 2476 // 2477 // With all that, if the offsets are within the bounds of their allocations 2478 // (and not one-past-the-end! so we can't use inbounds!), and their 2479 // allocations aren't the same, the pointers are not equal. 2480 // 2481 // Note that it's not necessary to check for LHS being a global variable 2482 // address, due to canonicalization and constant folding. 2483 if (isa<AllocaInst>(LHS) && 2484 (isa<AllocaInst>(RHS) || isa<GlobalVariable>(RHS))) { 2485 ConstantInt *LHSOffsetCI = dyn_cast<ConstantInt>(LHSOffset); 2486 ConstantInt *RHSOffsetCI = dyn_cast<ConstantInt>(RHSOffset); 2487 uint64_t LHSSize, RHSSize; 2488 ObjectSizeOpts Opts; 2489 Opts.NullIsUnknownSize = 2490 NullPointerIsDefined(cast<AllocaInst>(LHS)->getFunction()); 2491 if (LHSOffsetCI && RHSOffsetCI && 2492 getObjectSize(LHS, LHSSize, DL, TLI, Opts) && 2493 getObjectSize(RHS, RHSSize, DL, TLI, Opts)) { 2494 const APInt &LHSOffsetValue = LHSOffsetCI->getValue(); 2495 const APInt &RHSOffsetValue = RHSOffsetCI->getValue(); 2496 if (!LHSOffsetValue.isNegative() && 2497 !RHSOffsetValue.isNegative() && 2498 LHSOffsetValue.ult(LHSSize) && 2499 RHSOffsetValue.ult(RHSSize)) { 2500 return ConstantInt::get(GetCompareTy(LHS), 2501 !CmpInst::isTrueWhenEqual(Pred)); 2502 } 2503 } 2504 2505 // Repeat the above check but this time without depending on DataLayout 2506 // or being able to compute a precise size. 2507 if (!cast<PointerType>(LHS->getType())->isEmptyTy() && 2508 !cast<PointerType>(RHS->getType())->isEmptyTy() && 2509 LHSOffset->isNullValue() && 2510 RHSOffset->isNullValue()) 2511 return ConstantInt::get(GetCompareTy(LHS), 2512 !CmpInst::isTrueWhenEqual(Pred)); 2513 } 2514 2515 // Even if an non-inbounds GEP occurs along the path we can still optimize 2516 // equality comparisons concerning the result. We avoid walking the whole 2517 // chain again by starting where the last calls to 2518 // stripAndComputeConstantOffsets left off and accumulate the offsets. 2519 Constant *LHSNoBound = stripAndComputeConstantOffsets(DL, LHS, true); 2520 Constant *RHSNoBound = stripAndComputeConstantOffsets(DL, RHS, true); 2521 if (LHS == RHS) 2522 return ConstantExpr::getICmp(Pred, 2523 ConstantExpr::getAdd(LHSOffset, LHSNoBound), 2524 ConstantExpr::getAdd(RHSOffset, RHSNoBound)); 2525 2526 // If one side of the equality comparison must come from a noalias call 2527 // (meaning a system memory allocation function), and the other side must 2528 // come from a pointer that cannot overlap with dynamically-allocated 2529 // memory within the lifetime of the current function (allocas, byval 2530 // arguments, globals), then determine the comparison result here. 2531 SmallVector<const Value *, 8> LHSUObjs, RHSUObjs; 2532 getUnderlyingObjects(LHS, LHSUObjs); 2533 getUnderlyingObjects(RHS, RHSUObjs); 2534 2535 // Is the set of underlying objects all noalias calls? 2536 auto IsNAC = [](ArrayRef<const Value *> Objects) { 2537 return all_of(Objects, isNoAliasCall); 2538 }; 2539 2540 // Is the set of underlying objects all things which must be disjoint from 2541 // noalias calls. For allocas, we consider only static ones (dynamic 2542 // allocas might be transformed into calls to malloc not simultaneously 2543 // live with the compared-to allocation). For globals, we exclude symbols 2544 // that might be resolve lazily to symbols in another dynamically-loaded 2545 // library (and, thus, could be malloc'ed by the implementation). 2546 auto IsAllocDisjoint = [](ArrayRef<const Value *> Objects) { 2547 return all_of(Objects, [](const Value *V) { 2548 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) 2549 return AI->getParent() && AI->getFunction() && AI->isStaticAlloca(); 2550 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) 2551 return (GV->hasLocalLinkage() || GV->hasHiddenVisibility() || 2552 GV->hasProtectedVisibility() || GV->hasGlobalUnnamedAddr()) && 2553 !GV->isThreadLocal(); 2554 if (const Argument *A = dyn_cast<Argument>(V)) 2555 return A->hasByValAttr(); 2556 return false; 2557 }); 2558 }; 2559 2560 if ((IsNAC(LHSUObjs) && IsAllocDisjoint(RHSUObjs)) || 2561 (IsNAC(RHSUObjs) && IsAllocDisjoint(LHSUObjs))) 2562 return ConstantInt::get(GetCompareTy(LHS), 2563 !CmpInst::isTrueWhenEqual(Pred)); 2564 2565 // Fold comparisons for non-escaping pointer even if the allocation call 2566 // cannot be elided. We cannot fold malloc comparison to null. Also, the 2567 // dynamic allocation call could be either of the operands. 2568 Value *MI = nullptr; 2569 if (isAllocLikeFn(LHS, TLI) && 2570 llvm::isKnownNonZero(RHS, DL, 0, nullptr, CxtI, DT)) 2571 MI = LHS; 2572 else if (isAllocLikeFn(RHS, TLI) && 2573 llvm::isKnownNonZero(LHS, DL, 0, nullptr, CxtI, DT)) 2574 MI = RHS; 2575 // FIXME: We should also fold the compare when the pointer escapes, but the 2576 // compare dominates the pointer escape 2577 if (MI && !PointerMayBeCaptured(MI, true, true)) 2578 return ConstantInt::get(GetCompareTy(LHS), 2579 CmpInst::isFalseWhenEqual(Pred)); 2580 } 2581 2582 // Otherwise, fail. 2583 return nullptr; 2584 } 2585 2586 /// Fold an icmp when its operands have i1 scalar type. 2587 static Value *simplifyICmpOfBools(CmpInst::Predicate Pred, Value *LHS, 2588 Value *RHS, const SimplifyQuery &Q) { 2589 Type *ITy = GetCompareTy(LHS); // The return type. 2590 Type *OpTy = LHS->getType(); // The operand type. 2591 if (!OpTy->isIntOrIntVectorTy(1)) 2592 return nullptr; 2593 2594 // A boolean compared to true/false can be simplified in 14 out of the 20 2595 // (10 predicates * 2 constants) possible combinations. Cases not handled here 2596 // require a 'not' of the LHS, so those must be transformed in InstCombine. 2597 if (match(RHS, m_Zero())) { 2598 switch (Pred) { 2599 case CmpInst::ICMP_NE: // X != 0 -> X 2600 case CmpInst::ICMP_UGT: // X >u 0 -> X 2601 case CmpInst::ICMP_SLT: // X <s 0 -> X 2602 return LHS; 2603 2604 case CmpInst::ICMP_ULT: // X <u 0 -> false 2605 case CmpInst::ICMP_SGT: // X >s 0 -> false 2606 return getFalse(ITy); 2607 2608 case CmpInst::ICMP_UGE: // X >=u 0 -> true 2609 case CmpInst::ICMP_SLE: // X <=s 0 -> true 2610 return getTrue(ITy); 2611 2612 default: break; 2613 } 2614 } else if (match(RHS, m_One())) { 2615 switch (Pred) { 2616 case CmpInst::ICMP_EQ: // X == 1 -> X 2617 case CmpInst::ICMP_UGE: // X >=u 1 -> X 2618 case CmpInst::ICMP_SLE: // X <=s -1 -> X 2619 return LHS; 2620 2621 case CmpInst::ICMP_UGT: // X >u 1 -> false 2622 case CmpInst::ICMP_SLT: // X <s -1 -> false 2623 return getFalse(ITy); 2624 2625 case CmpInst::ICMP_ULE: // X <=u 1 -> true 2626 case CmpInst::ICMP_SGE: // X >=s -1 -> true 2627 return getTrue(ITy); 2628 2629 default: break; 2630 } 2631 } 2632 2633 switch (Pred) { 2634 default: 2635 break; 2636 case ICmpInst::ICMP_UGE: 2637 if (isImpliedCondition(RHS, LHS, Q.DL).getValueOr(false)) 2638 return getTrue(ITy); 2639 break; 2640 case ICmpInst::ICMP_SGE: 2641 /// For signed comparison, the values for an i1 are 0 and -1 2642 /// respectively. This maps into a truth table of: 2643 /// LHS | RHS | LHS >=s RHS | LHS implies RHS 2644 /// 0 | 0 | 1 (0 >= 0) | 1 2645 /// 0 | 1 | 1 (0 >= -1) | 1 2646 /// 1 | 0 | 0 (-1 >= 0) | 0 2647 /// 1 | 1 | 1 (-1 >= -1) | 1 2648 if (isImpliedCondition(LHS, RHS, Q.DL).getValueOr(false)) 2649 return getTrue(ITy); 2650 break; 2651 case ICmpInst::ICMP_ULE: 2652 if (isImpliedCondition(LHS, RHS, Q.DL).getValueOr(false)) 2653 return getTrue(ITy); 2654 break; 2655 } 2656 2657 return nullptr; 2658 } 2659 2660 /// Try hard to fold icmp with zero RHS because this is a common case. 2661 static Value *simplifyICmpWithZero(CmpInst::Predicate Pred, Value *LHS, 2662 Value *RHS, const SimplifyQuery &Q) { 2663 if (!match(RHS, m_Zero())) 2664 return nullptr; 2665 2666 Type *ITy = GetCompareTy(LHS); // The return type. 2667 switch (Pred) { 2668 default: 2669 llvm_unreachable("Unknown ICmp predicate!"); 2670 case ICmpInst::ICMP_ULT: 2671 return getFalse(ITy); 2672 case ICmpInst::ICMP_UGE: 2673 return getTrue(ITy); 2674 case ICmpInst::ICMP_EQ: 2675 case ICmpInst::ICMP_ULE: 2676 if (isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT, Q.IIQ.UseInstrInfo)) 2677 return getFalse(ITy); 2678 break; 2679 case ICmpInst::ICMP_NE: 2680 case ICmpInst::ICMP_UGT: 2681 if (isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT, Q.IIQ.UseInstrInfo)) 2682 return getTrue(ITy); 2683 break; 2684 case ICmpInst::ICMP_SLT: { 2685 KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2686 if (LHSKnown.isNegative()) 2687 return getTrue(ITy); 2688 if (LHSKnown.isNonNegative()) 2689 return getFalse(ITy); 2690 break; 2691 } 2692 case ICmpInst::ICMP_SLE: { 2693 KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2694 if (LHSKnown.isNegative()) 2695 return getTrue(ITy); 2696 if (LHSKnown.isNonNegative() && 2697 isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 2698 return getFalse(ITy); 2699 break; 2700 } 2701 case ICmpInst::ICMP_SGE: { 2702 KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2703 if (LHSKnown.isNegative()) 2704 return getFalse(ITy); 2705 if (LHSKnown.isNonNegative()) 2706 return getTrue(ITy); 2707 break; 2708 } 2709 case ICmpInst::ICMP_SGT: { 2710 KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2711 if (LHSKnown.isNegative()) 2712 return getFalse(ITy); 2713 if (LHSKnown.isNonNegative() && 2714 isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 2715 return getTrue(ITy); 2716 break; 2717 } 2718 } 2719 2720 return nullptr; 2721 } 2722 2723 static Value *simplifyICmpWithConstant(CmpInst::Predicate Pred, Value *LHS, 2724 Value *RHS, const InstrInfoQuery &IIQ) { 2725 Type *ITy = GetCompareTy(RHS); // The return type. 2726 2727 Value *X; 2728 // Sign-bit checks can be optimized to true/false after unsigned 2729 // floating-point casts: 2730 // icmp slt (bitcast (uitofp X)), 0 --> false 2731 // icmp sgt (bitcast (uitofp X)), -1 --> true 2732 if (match(LHS, m_BitCast(m_UIToFP(m_Value(X))))) { 2733 if (Pred == ICmpInst::ICMP_SLT && match(RHS, m_Zero())) 2734 return ConstantInt::getFalse(ITy); 2735 if (Pred == ICmpInst::ICMP_SGT && match(RHS, m_AllOnes())) 2736 return ConstantInt::getTrue(ITy); 2737 } 2738 2739 const APInt *C; 2740 if (!match(RHS, m_APIntAllowUndef(C))) 2741 return nullptr; 2742 2743 // Rule out tautological comparisons (eg., ult 0 or uge 0). 2744 ConstantRange RHS_CR = ConstantRange::makeExactICmpRegion(Pred, *C); 2745 if (RHS_CR.isEmptySet()) 2746 return ConstantInt::getFalse(ITy); 2747 if (RHS_CR.isFullSet()) 2748 return ConstantInt::getTrue(ITy); 2749 2750 ConstantRange LHS_CR = computeConstantRange(LHS, IIQ.UseInstrInfo); 2751 if (!LHS_CR.isFullSet()) { 2752 if (RHS_CR.contains(LHS_CR)) 2753 return ConstantInt::getTrue(ITy); 2754 if (RHS_CR.inverse().contains(LHS_CR)) 2755 return ConstantInt::getFalse(ITy); 2756 } 2757 2758 // (mul nuw/nsw X, MulC) != C --> true (if C is not a multiple of MulC) 2759 // (mul nuw/nsw X, MulC) == C --> false (if C is not a multiple of MulC) 2760 const APInt *MulC; 2761 if (ICmpInst::isEquality(Pred) && 2762 ((match(LHS, m_NUWMul(m_Value(), m_APIntAllowUndef(MulC))) && 2763 *MulC != 0 && C->urem(*MulC) != 0) || 2764 (match(LHS, m_NSWMul(m_Value(), m_APIntAllowUndef(MulC))) && 2765 *MulC != 0 && C->srem(*MulC) != 0))) 2766 return ConstantInt::get(ITy, Pred == ICmpInst::ICMP_NE); 2767 2768 return nullptr; 2769 } 2770 2771 static Value *simplifyICmpWithBinOpOnLHS( 2772 CmpInst::Predicate Pred, BinaryOperator *LBO, Value *RHS, 2773 const SimplifyQuery &Q, unsigned MaxRecurse) { 2774 Type *ITy = GetCompareTy(RHS); // The return type. 2775 2776 Value *Y = nullptr; 2777 // icmp pred (or X, Y), X 2778 if (match(LBO, m_c_Or(m_Value(Y), m_Specific(RHS)))) { 2779 if (Pred == ICmpInst::ICMP_ULT) 2780 return getFalse(ITy); 2781 if (Pred == ICmpInst::ICMP_UGE) 2782 return getTrue(ITy); 2783 2784 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SGE) { 2785 KnownBits RHSKnown = computeKnownBits(RHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2786 KnownBits YKnown = computeKnownBits(Y, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2787 if (RHSKnown.isNonNegative() && YKnown.isNegative()) 2788 return Pred == ICmpInst::ICMP_SLT ? getTrue(ITy) : getFalse(ITy); 2789 if (RHSKnown.isNegative() || YKnown.isNonNegative()) 2790 return Pred == ICmpInst::ICMP_SLT ? getFalse(ITy) : getTrue(ITy); 2791 } 2792 } 2793 2794 // icmp pred (and X, Y), X 2795 if (match(LBO, m_c_And(m_Value(), m_Specific(RHS)))) { 2796 if (Pred == ICmpInst::ICMP_UGT) 2797 return getFalse(ITy); 2798 if (Pred == ICmpInst::ICMP_ULE) 2799 return getTrue(ITy); 2800 } 2801 2802 // icmp pred (urem X, Y), Y 2803 if (match(LBO, m_URem(m_Value(), m_Specific(RHS)))) { 2804 switch (Pred) { 2805 default: 2806 break; 2807 case ICmpInst::ICMP_SGT: 2808 case ICmpInst::ICMP_SGE: { 2809 KnownBits Known = computeKnownBits(RHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2810 if (!Known.isNonNegative()) 2811 break; 2812 LLVM_FALLTHROUGH; 2813 } 2814 case ICmpInst::ICMP_EQ: 2815 case ICmpInst::ICMP_UGT: 2816 case ICmpInst::ICMP_UGE: 2817 return getFalse(ITy); 2818 case ICmpInst::ICMP_SLT: 2819 case ICmpInst::ICMP_SLE: { 2820 KnownBits Known = computeKnownBits(RHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2821 if (!Known.isNonNegative()) 2822 break; 2823 LLVM_FALLTHROUGH; 2824 } 2825 case ICmpInst::ICMP_NE: 2826 case ICmpInst::ICMP_ULT: 2827 case ICmpInst::ICMP_ULE: 2828 return getTrue(ITy); 2829 } 2830 } 2831 2832 // icmp pred (urem X, Y), X 2833 if (match(LBO, m_URem(m_Specific(RHS), m_Value()))) { 2834 if (Pred == ICmpInst::ICMP_ULE) 2835 return getTrue(ITy); 2836 if (Pred == ICmpInst::ICMP_UGT) 2837 return getFalse(ITy); 2838 } 2839 2840 // x >> y <=u x 2841 // x udiv y <=u x. 2842 if (match(LBO, m_LShr(m_Specific(RHS), m_Value())) || 2843 match(LBO, m_UDiv(m_Specific(RHS), m_Value()))) { 2844 // icmp pred (X op Y), X 2845 if (Pred == ICmpInst::ICMP_UGT) 2846 return getFalse(ITy); 2847 if (Pred == ICmpInst::ICMP_ULE) 2848 return getTrue(ITy); 2849 } 2850 2851 return nullptr; 2852 } 2853 2854 2855 // If only one of the icmp's operands has NSW flags, try to prove that: 2856 // 2857 // icmp slt (x + C1), (x +nsw C2) 2858 // 2859 // is equivalent to: 2860 // 2861 // icmp slt C1, C2 2862 // 2863 // which is true if x + C2 has the NSW flags set and: 2864 // *) C1 < C2 && C1 >= 0, or 2865 // *) C2 < C1 && C1 <= 0. 2866 // 2867 static bool trySimplifyICmpWithAdds(CmpInst::Predicate Pred, Value *LHS, 2868 Value *RHS) { 2869 // TODO: only support icmp slt for now. 2870 if (Pred != CmpInst::ICMP_SLT) 2871 return false; 2872 2873 // Canonicalize nsw add as RHS. 2874 if (!match(RHS, m_NSWAdd(m_Value(), m_Value()))) 2875 std::swap(LHS, RHS); 2876 if (!match(RHS, m_NSWAdd(m_Value(), m_Value()))) 2877 return false; 2878 2879 Value *X; 2880 const APInt *C1, *C2; 2881 if (!match(LHS, m_c_Add(m_Value(X), m_APInt(C1))) || 2882 !match(RHS, m_c_Add(m_Specific(X), m_APInt(C2)))) 2883 return false; 2884 2885 return (C1->slt(*C2) && C1->isNonNegative()) || 2886 (C2->slt(*C1) && C1->isNonPositive()); 2887 } 2888 2889 2890 /// TODO: A large part of this logic is duplicated in InstCombine's 2891 /// foldICmpBinOp(). We should be able to share that and avoid the code 2892 /// duplication. 2893 static Value *simplifyICmpWithBinOp(CmpInst::Predicate Pred, Value *LHS, 2894 Value *RHS, const SimplifyQuery &Q, 2895 unsigned MaxRecurse) { 2896 BinaryOperator *LBO = dyn_cast<BinaryOperator>(LHS); 2897 BinaryOperator *RBO = dyn_cast<BinaryOperator>(RHS); 2898 if (MaxRecurse && (LBO || RBO)) { 2899 // Analyze the case when either LHS or RHS is an add instruction. 2900 Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr; 2901 // LHS = A + B (or A and B are null); RHS = C + D (or C and D are null). 2902 bool NoLHSWrapProblem = false, NoRHSWrapProblem = false; 2903 if (LBO && LBO->getOpcode() == Instruction::Add) { 2904 A = LBO->getOperand(0); 2905 B = LBO->getOperand(1); 2906 NoLHSWrapProblem = 2907 ICmpInst::isEquality(Pred) || 2908 (CmpInst::isUnsigned(Pred) && 2909 Q.IIQ.hasNoUnsignedWrap(cast<OverflowingBinaryOperator>(LBO))) || 2910 (CmpInst::isSigned(Pred) && 2911 Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(LBO))); 2912 } 2913 if (RBO && RBO->getOpcode() == Instruction::Add) { 2914 C = RBO->getOperand(0); 2915 D = RBO->getOperand(1); 2916 NoRHSWrapProblem = 2917 ICmpInst::isEquality(Pred) || 2918 (CmpInst::isUnsigned(Pred) && 2919 Q.IIQ.hasNoUnsignedWrap(cast<OverflowingBinaryOperator>(RBO))) || 2920 (CmpInst::isSigned(Pred) && 2921 Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(RBO))); 2922 } 2923 2924 // icmp (X+Y), X -> icmp Y, 0 for equalities or if there is no overflow. 2925 if ((A == RHS || B == RHS) && NoLHSWrapProblem) 2926 if (Value *V = SimplifyICmpInst(Pred, A == RHS ? B : A, 2927 Constant::getNullValue(RHS->getType()), Q, 2928 MaxRecurse - 1)) 2929 return V; 2930 2931 // icmp X, (X+Y) -> icmp 0, Y for equalities or if there is no overflow. 2932 if ((C == LHS || D == LHS) && NoRHSWrapProblem) 2933 if (Value *V = 2934 SimplifyICmpInst(Pred, Constant::getNullValue(LHS->getType()), 2935 C == LHS ? D : C, Q, MaxRecurse - 1)) 2936 return V; 2937 2938 // icmp (X+Y), (X+Z) -> icmp Y,Z for equalities or if there is no overflow. 2939 bool CanSimplify = (NoLHSWrapProblem && NoRHSWrapProblem) || 2940 trySimplifyICmpWithAdds(Pred, LHS, RHS); 2941 if (A && C && (A == C || A == D || B == C || B == D) && CanSimplify) { 2942 // Determine Y and Z in the form icmp (X+Y), (X+Z). 2943 Value *Y, *Z; 2944 if (A == C) { 2945 // C + B == C + D -> B == D 2946 Y = B; 2947 Z = D; 2948 } else if (A == D) { 2949 // D + B == C + D -> B == C 2950 Y = B; 2951 Z = C; 2952 } else if (B == C) { 2953 // A + C == C + D -> A == D 2954 Y = A; 2955 Z = D; 2956 } else { 2957 assert(B == D); 2958 // A + D == C + D -> A == C 2959 Y = A; 2960 Z = C; 2961 } 2962 if (Value *V = SimplifyICmpInst(Pred, Y, Z, Q, MaxRecurse - 1)) 2963 return V; 2964 } 2965 } 2966 2967 if (LBO) 2968 if (Value *V = simplifyICmpWithBinOpOnLHS(Pred, LBO, RHS, Q, MaxRecurse)) 2969 return V; 2970 2971 if (RBO) 2972 if (Value *V = simplifyICmpWithBinOpOnLHS( 2973 ICmpInst::getSwappedPredicate(Pred), RBO, LHS, Q, MaxRecurse)) 2974 return V; 2975 2976 // 0 - (zext X) pred C 2977 if (!CmpInst::isUnsigned(Pred) && match(LHS, m_Neg(m_ZExt(m_Value())))) { 2978 const APInt *C; 2979 if (match(RHS, m_APInt(C))) { 2980 if (C->isStrictlyPositive()) { 2981 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_NE) 2982 return ConstantInt::getTrue(GetCompareTy(RHS)); 2983 if (Pred == ICmpInst::ICMP_SGE || Pred == ICmpInst::ICMP_EQ) 2984 return ConstantInt::getFalse(GetCompareTy(RHS)); 2985 } 2986 if (C->isNonNegative()) { 2987 if (Pred == ICmpInst::ICMP_SLE) 2988 return ConstantInt::getTrue(GetCompareTy(RHS)); 2989 if (Pred == ICmpInst::ICMP_SGT) 2990 return ConstantInt::getFalse(GetCompareTy(RHS)); 2991 } 2992 } 2993 } 2994 2995 // If C2 is a power-of-2 and C is not: 2996 // (C2 << X) == C --> false 2997 // (C2 << X) != C --> true 2998 const APInt *C; 2999 if (match(LHS, m_Shl(m_Power2(), m_Value())) && 3000 match(RHS, m_APIntAllowUndef(C)) && !C->isPowerOf2()) { 3001 // C2 << X can equal zero in some circumstances. 3002 // This simplification might be unsafe if C is zero. 3003 // 3004 // We know it is safe if: 3005 // - The shift is nsw. We can't shift out the one bit. 3006 // - The shift is nuw. We can't shift out the one bit. 3007 // - C2 is one. 3008 // - C isn't zero. 3009 if (Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(LBO)) || 3010 Q.IIQ.hasNoUnsignedWrap(cast<OverflowingBinaryOperator>(LBO)) || 3011 match(LHS, m_Shl(m_One(), m_Value())) || !C->isNullValue()) { 3012 if (Pred == ICmpInst::ICMP_EQ) 3013 return ConstantInt::getFalse(GetCompareTy(RHS)); 3014 if (Pred == ICmpInst::ICMP_NE) 3015 return ConstantInt::getTrue(GetCompareTy(RHS)); 3016 } 3017 } 3018 3019 // TODO: This is overly constrained. LHS can be any power-of-2. 3020 // (1 << X) >u 0x8000 --> false 3021 // (1 << X) <=u 0x8000 --> true 3022 if (match(LHS, m_Shl(m_One(), m_Value())) && match(RHS, m_SignMask())) { 3023 if (Pred == ICmpInst::ICMP_UGT) 3024 return ConstantInt::getFalse(GetCompareTy(RHS)); 3025 if (Pred == ICmpInst::ICMP_ULE) 3026 return ConstantInt::getTrue(GetCompareTy(RHS)); 3027 } 3028 3029 if (MaxRecurse && LBO && RBO && LBO->getOpcode() == RBO->getOpcode() && 3030 LBO->getOperand(1) == RBO->getOperand(1)) { 3031 switch (LBO->getOpcode()) { 3032 default: 3033 break; 3034 case Instruction::UDiv: 3035 case Instruction::LShr: 3036 if (ICmpInst::isSigned(Pred) || !Q.IIQ.isExact(LBO) || 3037 !Q.IIQ.isExact(RBO)) 3038 break; 3039 if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0), 3040 RBO->getOperand(0), Q, MaxRecurse - 1)) 3041 return V; 3042 break; 3043 case Instruction::SDiv: 3044 if (!ICmpInst::isEquality(Pred) || !Q.IIQ.isExact(LBO) || 3045 !Q.IIQ.isExact(RBO)) 3046 break; 3047 if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0), 3048 RBO->getOperand(0), Q, MaxRecurse - 1)) 3049 return V; 3050 break; 3051 case Instruction::AShr: 3052 if (!Q.IIQ.isExact(LBO) || !Q.IIQ.isExact(RBO)) 3053 break; 3054 if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0), 3055 RBO->getOperand(0), Q, MaxRecurse - 1)) 3056 return V; 3057 break; 3058 case Instruction::Shl: { 3059 bool NUW = Q.IIQ.hasNoUnsignedWrap(LBO) && Q.IIQ.hasNoUnsignedWrap(RBO); 3060 bool NSW = Q.IIQ.hasNoSignedWrap(LBO) && Q.IIQ.hasNoSignedWrap(RBO); 3061 if (!NUW && !NSW) 3062 break; 3063 if (!NSW && ICmpInst::isSigned(Pred)) 3064 break; 3065 if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0), 3066 RBO->getOperand(0), Q, MaxRecurse - 1)) 3067 return V; 3068 break; 3069 } 3070 } 3071 } 3072 return nullptr; 3073 } 3074 3075 /// Simplify integer comparisons where at least one operand of the compare 3076 /// matches an integer min/max idiom. 3077 static Value *simplifyICmpWithMinMax(CmpInst::Predicate Pred, Value *LHS, 3078 Value *RHS, const SimplifyQuery &Q, 3079 unsigned MaxRecurse) { 3080 Type *ITy = GetCompareTy(LHS); // The return type. 3081 Value *A, *B; 3082 CmpInst::Predicate P = CmpInst::BAD_ICMP_PREDICATE; 3083 CmpInst::Predicate EqP; // Chosen so that "A == max/min(A,B)" iff "A EqP B". 3084 3085 // Signed variants on "max(a,b)>=a -> true". 3086 if (match(LHS, m_SMax(m_Value(A), m_Value(B))) && (A == RHS || B == RHS)) { 3087 if (A != RHS) 3088 std::swap(A, B); // smax(A, B) pred A. 3089 EqP = CmpInst::ICMP_SGE; // "A == smax(A, B)" iff "A sge B". 3090 // We analyze this as smax(A, B) pred A. 3091 P = Pred; 3092 } else if (match(RHS, m_SMax(m_Value(A), m_Value(B))) && 3093 (A == LHS || B == LHS)) { 3094 if (A != LHS) 3095 std::swap(A, B); // A pred smax(A, B). 3096 EqP = CmpInst::ICMP_SGE; // "A == smax(A, B)" iff "A sge B". 3097 // We analyze this as smax(A, B) swapped-pred A. 3098 P = CmpInst::getSwappedPredicate(Pred); 3099 } else if (match(LHS, m_SMin(m_Value(A), m_Value(B))) && 3100 (A == RHS || B == RHS)) { 3101 if (A != RHS) 3102 std::swap(A, B); // smin(A, B) pred A. 3103 EqP = CmpInst::ICMP_SLE; // "A == smin(A, B)" iff "A sle B". 3104 // We analyze this as smax(-A, -B) swapped-pred -A. 3105 // Note that we do not need to actually form -A or -B thanks to EqP. 3106 P = CmpInst::getSwappedPredicate(Pred); 3107 } else if (match(RHS, m_SMin(m_Value(A), m_Value(B))) && 3108 (A == LHS || B == LHS)) { 3109 if (A != LHS) 3110 std::swap(A, B); // A pred smin(A, B). 3111 EqP = CmpInst::ICMP_SLE; // "A == smin(A, B)" iff "A sle B". 3112 // We analyze this as smax(-A, -B) pred -A. 3113 // Note that we do not need to actually form -A or -B thanks to EqP. 3114 P = Pred; 3115 } 3116 if (P != CmpInst::BAD_ICMP_PREDICATE) { 3117 // Cases correspond to "max(A, B) p A". 3118 switch (P) { 3119 default: 3120 break; 3121 case CmpInst::ICMP_EQ: 3122 case CmpInst::ICMP_SLE: 3123 // Equivalent to "A EqP B". This may be the same as the condition tested 3124 // in the max/min; if so, we can just return that. 3125 if (Value *V = ExtractEquivalentCondition(LHS, EqP, A, B)) 3126 return V; 3127 if (Value *V = ExtractEquivalentCondition(RHS, EqP, A, B)) 3128 return V; 3129 // Otherwise, see if "A EqP B" simplifies. 3130 if (MaxRecurse) 3131 if (Value *V = SimplifyICmpInst(EqP, A, B, Q, MaxRecurse - 1)) 3132 return V; 3133 break; 3134 case CmpInst::ICMP_NE: 3135 case CmpInst::ICMP_SGT: { 3136 CmpInst::Predicate InvEqP = CmpInst::getInversePredicate(EqP); 3137 // Equivalent to "A InvEqP B". This may be the same as the condition 3138 // tested in the max/min; if so, we can just return that. 3139 if (Value *V = ExtractEquivalentCondition(LHS, InvEqP, A, B)) 3140 return V; 3141 if (Value *V = ExtractEquivalentCondition(RHS, InvEqP, A, B)) 3142 return V; 3143 // Otherwise, see if "A InvEqP B" simplifies. 3144 if (MaxRecurse) 3145 if (Value *V = SimplifyICmpInst(InvEqP, A, B, Q, MaxRecurse - 1)) 3146 return V; 3147 break; 3148 } 3149 case CmpInst::ICMP_SGE: 3150 // Always true. 3151 return getTrue(ITy); 3152 case CmpInst::ICMP_SLT: 3153 // Always false. 3154 return getFalse(ITy); 3155 } 3156 } 3157 3158 // Unsigned variants on "max(a,b)>=a -> true". 3159 P = CmpInst::BAD_ICMP_PREDICATE; 3160 if (match(LHS, m_UMax(m_Value(A), m_Value(B))) && (A == RHS || B == RHS)) { 3161 if (A != RHS) 3162 std::swap(A, B); // umax(A, B) pred A. 3163 EqP = CmpInst::ICMP_UGE; // "A == umax(A, B)" iff "A uge B". 3164 // We analyze this as umax(A, B) pred A. 3165 P = Pred; 3166 } else if (match(RHS, m_UMax(m_Value(A), m_Value(B))) && 3167 (A == LHS || B == LHS)) { 3168 if (A != LHS) 3169 std::swap(A, B); // A pred umax(A, B). 3170 EqP = CmpInst::ICMP_UGE; // "A == umax(A, B)" iff "A uge B". 3171 // We analyze this as umax(A, B) swapped-pred A. 3172 P = CmpInst::getSwappedPredicate(Pred); 3173 } else if (match(LHS, m_UMin(m_Value(A), m_Value(B))) && 3174 (A == RHS || B == RHS)) { 3175 if (A != RHS) 3176 std::swap(A, B); // umin(A, B) pred A. 3177 EqP = CmpInst::ICMP_ULE; // "A == umin(A, B)" iff "A ule B". 3178 // We analyze this as umax(-A, -B) swapped-pred -A. 3179 // Note that we do not need to actually form -A or -B thanks to EqP. 3180 P = CmpInst::getSwappedPredicate(Pred); 3181 } else if (match(RHS, m_UMin(m_Value(A), m_Value(B))) && 3182 (A == LHS || B == LHS)) { 3183 if (A != LHS) 3184 std::swap(A, B); // A pred umin(A, B). 3185 EqP = CmpInst::ICMP_ULE; // "A == umin(A, B)" iff "A ule B". 3186 // We analyze this as umax(-A, -B) pred -A. 3187 // Note that we do not need to actually form -A or -B thanks to EqP. 3188 P = Pred; 3189 } 3190 if (P != CmpInst::BAD_ICMP_PREDICATE) { 3191 // Cases correspond to "max(A, B) p A". 3192 switch (P) { 3193 default: 3194 break; 3195 case CmpInst::ICMP_EQ: 3196 case CmpInst::ICMP_ULE: 3197 // Equivalent to "A EqP B". This may be the same as the condition tested 3198 // in the max/min; if so, we can just return that. 3199 if (Value *V = ExtractEquivalentCondition(LHS, EqP, A, B)) 3200 return V; 3201 if (Value *V = ExtractEquivalentCondition(RHS, EqP, A, B)) 3202 return V; 3203 // Otherwise, see if "A EqP B" simplifies. 3204 if (MaxRecurse) 3205 if (Value *V = SimplifyICmpInst(EqP, A, B, Q, MaxRecurse - 1)) 3206 return V; 3207 break; 3208 case CmpInst::ICMP_NE: 3209 case CmpInst::ICMP_UGT: { 3210 CmpInst::Predicate InvEqP = CmpInst::getInversePredicate(EqP); 3211 // Equivalent to "A InvEqP B". This may be the same as the condition 3212 // tested in the max/min; if so, we can just return that. 3213 if (Value *V = ExtractEquivalentCondition(LHS, InvEqP, A, B)) 3214 return V; 3215 if (Value *V = ExtractEquivalentCondition(RHS, InvEqP, A, B)) 3216 return V; 3217 // Otherwise, see if "A InvEqP B" simplifies. 3218 if (MaxRecurse) 3219 if (Value *V = SimplifyICmpInst(InvEqP, A, B, Q, MaxRecurse - 1)) 3220 return V; 3221 break; 3222 } 3223 case CmpInst::ICMP_UGE: 3224 return getTrue(ITy); 3225 case CmpInst::ICMP_ULT: 3226 return getFalse(ITy); 3227 } 3228 } 3229 3230 // Comparing 1 each of min/max with a common operand? 3231 // Canonicalize min operand to RHS. 3232 if (match(LHS, m_UMin(m_Value(), m_Value())) || 3233 match(LHS, m_SMin(m_Value(), m_Value()))) { 3234 std::swap(LHS, RHS); 3235 Pred = ICmpInst::getSwappedPredicate(Pred); 3236 } 3237 3238 Value *C, *D; 3239 if (match(LHS, m_SMax(m_Value(A), m_Value(B))) && 3240 match(RHS, m_SMin(m_Value(C), m_Value(D))) && 3241 (A == C || A == D || B == C || B == D)) { 3242 // smax(A, B) >=s smin(A, D) --> true 3243 if (Pred == CmpInst::ICMP_SGE) 3244 return getTrue(ITy); 3245 // smax(A, B) <s smin(A, D) --> false 3246 if (Pred == CmpInst::ICMP_SLT) 3247 return getFalse(ITy); 3248 } else if (match(LHS, m_UMax(m_Value(A), m_Value(B))) && 3249 match(RHS, m_UMin(m_Value(C), m_Value(D))) && 3250 (A == C || A == D || B == C || B == D)) { 3251 // umax(A, B) >=u umin(A, D) --> true 3252 if (Pred == CmpInst::ICMP_UGE) 3253 return getTrue(ITy); 3254 // umax(A, B) <u umin(A, D) --> false 3255 if (Pred == CmpInst::ICMP_ULT) 3256 return getFalse(ITy); 3257 } 3258 3259 return nullptr; 3260 } 3261 3262 static Value *simplifyICmpWithDominatingAssume(CmpInst::Predicate Predicate, 3263 Value *LHS, Value *RHS, 3264 const SimplifyQuery &Q) { 3265 // Gracefully handle instructions that have not been inserted yet. 3266 if (!Q.AC || !Q.CxtI || !Q.CxtI->getParent()) 3267 return nullptr; 3268 3269 for (Value *AssumeBaseOp : {LHS, RHS}) { 3270 for (auto &AssumeVH : Q.AC->assumptionsFor(AssumeBaseOp)) { 3271 if (!AssumeVH) 3272 continue; 3273 3274 CallInst *Assume = cast<CallInst>(AssumeVH); 3275 if (Optional<bool> Imp = 3276 isImpliedCondition(Assume->getArgOperand(0), Predicate, LHS, RHS, 3277 Q.DL)) 3278 if (isValidAssumeForContext(Assume, Q.CxtI, Q.DT)) 3279 return ConstantInt::get(GetCompareTy(LHS), *Imp); 3280 } 3281 } 3282 3283 return nullptr; 3284 } 3285 3286 /// Given operands for an ICmpInst, see if we can fold the result. 3287 /// If not, this returns null. 3288 static Value *SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS, 3289 const SimplifyQuery &Q, unsigned MaxRecurse) { 3290 CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate; 3291 assert(CmpInst::isIntPredicate(Pred) && "Not an integer compare!"); 3292 3293 if (Constant *CLHS = dyn_cast<Constant>(LHS)) { 3294 if (Constant *CRHS = dyn_cast<Constant>(RHS)) 3295 return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, Q.DL, Q.TLI); 3296 3297 // If we have a constant, make sure it is on the RHS. 3298 std::swap(LHS, RHS); 3299 Pred = CmpInst::getSwappedPredicate(Pred); 3300 } 3301 assert(!isa<UndefValue>(LHS) && "Unexpected icmp undef,%X"); 3302 3303 Type *ITy = GetCompareTy(LHS); // The return type. 3304 3305 // For EQ and NE, we can always pick a value for the undef to make the 3306 // predicate pass or fail, so we can return undef. 3307 // Matches behavior in llvm::ConstantFoldCompareInstruction. 3308 if (Q.isUndefValue(RHS) && ICmpInst::isEquality(Pred)) 3309 return UndefValue::get(ITy); 3310 3311 // icmp X, X -> true/false 3312 // icmp X, undef -> true/false because undef could be X. 3313 if (LHS == RHS || Q.isUndefValue(RHS)) 3314 return ConstantInt::get(ITy, CmpInst::isTrueWhenEqual(Pred)); 3315 3316 if (Value *V = simplifyICmpOfBools(Pred, LHS, RHS, Q)) 3317 return V; 3318 3319 if (Value *V = simplifyICmpWithZero(Pred, LHS, RHS, Q)) 3320 return V; 3321 3322 if (Value *V = simplifyICmpWithConstant(Pred, LHS, RHS, Q.IIQ)) 3323 return V; 3324 3325 // If both operands have range metadata, use the metadata 3326 // to simplify the comparison. 3327 if (isa<Instruction>(RHS) && isa<Instruction>(LHS)) { 3328 auto RHS_Instr = cast<Instruction>(RHS); 3329 auto LHS_Instr = cast<Instruction>(LHS); 3330 3331 if (Q.IIQ.getMetadata(RHS_Instr, LLVMContext::MD_range) && 3332 Q.IIQ.getMetadata(LHS_Instr, LLVMContext::MD_range)) { 3333 auto RHS_CR = getConstantRangeFromMetadata( 3334 *RHS_Instr->getMetadata(LLVMContext::MD_range)); 3335 auto LHS_CR = getConstantRangeFromMetadata( 3336 *LHS_Instr->getMetadata(LLVMContext::MD_range)); 3337 3338 auto Satisfied_CR = ConstantRange::makeSatisfyingICmpRegion(Pred, RHS_CR); 3339 if (Satisfied_CR.contains(LHS_CR)) 3340 return ConstantInt::getTrue(RHS->getContext()); 3341 3342 auto InversedSatisfied_CR = ConstantRange::makeSatisfyingICmpRegion( 3343 CmpInst::getInversePredicate(Pred), RHS_CR); 3344 if (InversedSatisfied_CR.contains(LHS_CR)) 3345 return ConstantInt::getFalse(RHS->getContext()); 3346 } 3347 } 3348 3349 // Compare of cast, for example (zext X) != 0 -> X != 0 3350 if (isa<CastInst>(LHS) && (isa<Constant>(RHS) || isa<CastInst>(RHS))) { 3351 Instruction *LI = cast<CastInst>(LHS); 3352 Value *SrcOp = LI->getOperand(0); 3353 Type *SrcTy = SrcOp->getType(); 3354 Type *DstTy = LI->getType(); 3355 3356 // Turn icmp (ptrtoint x), (ptrtoint/constant) into a compare of the input 3357 // if the integer type is the same size as the pointer type. 3358 if (MaxRecurse && isa<PtrToIntInst>(LI) && 3359 Q.DL.getTypeSizeInBits(SrcTy) == DstTy->getPrimitiveSizeInBits()) { 3360 if (Constant *RHSC = dyn_cast<Constant>(RHS)) { 3361 // Transfer the cast to the constant. 3362 if (Value *V = SimplifyICmpInst(Pred, SrcOp, 3363 ConstantExpr::getIntToPtr(RHSC, SrcTy), 3364 Q, MaxRecurse-1)) 3365 return V; 3366 } else if (PtrToIntInst *RI = dyn_cast<PtrToIntInst>(RHS)) { 3367 if (RI->getOperand(0)->getType() == SrcTy) 3368 // Compare without the cast. 3369 if (Value *V = SimplifyICmpInst(Pred, SrcOp, RI->getOperand(0), 3370 Q, MaxRecurse-1)) 3371 return V; 3372 } 3373 } 3374 3375 if (isa<ZExtInst>(LHS)) { 3376 // Turn icmp (zext X), (zext Y) into a compare of X and Y if they have the 3377 // same type. 3378 if (ZExtInst *RI = dyn_cast<ZExtInst>(RHS)) { 3379 if (MaxRecurse && SrcTy == RI->getOperand(0)->getType()) 3380 // Compare X and Y. Note that signed predicates become unsigned. 3381 if (Value *V = SimplifyICmpInst(ICmpInst::getUnsignedPredicate(Pred), 3382 SrcOp, RI->getOperand(0), Q, 3383 MaxRecurse-1)) 3384 return V; 3385 } 3386 // Fold (zext X) ule (sext X), (zext X) sge (sext X) to true. 3387 else if (SExtInst *RI = dyn_cast<SExtInst>(RHS)) { 3388 if (SrcOp == RI->getOperand(0)) { 3389 if (Pred == ICmpInst::ICMP_ULE || Pred == ICmpInst::ICMP_SGE) 3390 return ConstantInt::getTrue(ITy); 3391 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_SLT) 3392 return ConstantInt::getFalse(ITy); 3393 } 3394 } 3395 // Turn icmp (zext X), Cst into a compare of X and Cst if Cst is extended 3396 // too. If not, then try to deduce the result of the comparison. 3397 else if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) { 3398 // Compute the constant that would happen if we truncated to SrcTy then 3399 // reextended to DstTy. 3400 Constant *Trunc = ConstantExpr::getTrunc(CI, SrcTy); 3401 Constant *RExt = ConstantExpr::getCast(CastInst::ZExt, Trunc, DstTy); 3402 3403 // If the re-extended constant didn't change then this is effectively 3404 // also a case of comparing two zero-extended values. 3405 if (RExt == CI && MaxRecurse) 3406 if (Value *V = SimplifyICmpInst(ICmpInst::getUnsignedPredicate(Pred), 3407 SrcOp, Trunc, Q, MaxRecurse-1)) 3408 return V; 3409 3410 // Otherwise the upper bits of LHS are zero while RHS has a non-zero bit 3411 // there. Use this to work out the result of the comparison. 3412 if (RExt != CI) { 3413 switch (Pred) { 3414 default: llvm_unreachable("Unknown ICmp predicate!"); 3415 // LHS <u RHS. 3416 case ICmpInst::ICMP_EQ: 3417 case ICmpInst::ICMP_UGT: 3418 case ICmpInst::ICMP_UGE: 3419 return ConstantInt::getFalse(CI->getContext()); 3420 3421 case ICmpInst::ICMP_NE: 3422 case ICmpInst::ICMP_ULT: 3423 case ICmpInst::ICMP_ULE: 3424 return ConstantInt::getTrue(CI->getContext()); 3425 3426 // LHS is non-negative. If RHS is negative then LHS >s LHS. If RHS 3427 // is non-negative then LHS <s RHS. 3428 case ICmpInst::ICMP_SGT: 3429 case ICmpInst::ICMP_SGE: 3430 return CI->getValue().isNegative() ? 3431 ConstantInt::getTrue(CI->getContext()) : 3432 ConstantInt::getFalse(CI->getContext()); 3433 3434 case ICmpInst::ICMP_SLT: 3435 case ICmpInst::ICMP_SLE: 3436 return CI->getValue().isNegative() ? 3437 ConstantInt::getFalse(CI->getContext()) : 3438 ConstantInt::getTrue(CI->getContext()); 3439 } 3440 } 3441 } 3442 } 3443 3444 if (isa<SExtInst>(LHS)) { 3445 // Turn icmp (sext X), (sext Y) into a compare of X and Y if they have the 3446 // same type. 3447 if (SExtInst *RI = dyn_cast<SExtInst>(RHS)) { 3448 if (MaxRecurse && SrcTy == RI->getOperand(0)->getType()) 3449 // Compare X and Y. Note that the predicate does not change. 3450 if (Value *V = SimplifyICmpInst(Pred, SrcOp, RI->getOperand(0), 3451 Q, MaxRecurse-1)) 3452 return V; 3453 } 3454 // Fold (sext X) uge (zext X), (sext X) sle (zext X) to true. 3455 else if (ZExtInst *RI = dyn_cast<ZExtInst>(RHS)) { 3456 if (SrcOp == RI->getOperand(0)) { 3457 if (Pred == ICmpInst::ICMP_UGE || Pred == ICmpInst::ICMP_SLE) 3458 return ConstantInt::getTrue(ITy); 3459 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_SGT) 3460 return ConstantInt::getFalse(ITy); 3461 } 3462 } 3463 // Turn icmp (sext X), Cst into a compare of X and Cst if Cst is extended 3464 // too. If not, then try to deduce the result of the comparison. 3465 else if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) { 3466 // Compute the constant that would happen if we truncated to SrcTy then 3467 // reextended to DstTy. 3468 Constant *Trunc = ConstantExpr::getTrunc(CI, SrcTy); 3469 Constant *RExt = ConstantExpr::getCast(CastInst::SExt, Trunc, DstTy); 3470 3471 // If the re-extended constant didn't change then this is effectively 3472 // also a case of comparing two sign-extended values. 3473 if (RExt == CI && MaxRecurse) 3474 if (Value *V = SimplifyICmpInst(Pred, SrcOp, Trunc, Q, MaxRecurse-1)) 3475 return V; 3476 3477 // Otherwise the upper bits of LHS are all equal, while RHS has varying 3478 // bits there. Use this to work out the result of the comparison. 3479 if (RExt != CI) { 3480 switch (Pred) { 3481 default: llvm_unreachable("Unknown ICmp predicate!"); 3482 case ICmpInst::ICMP_EQ: 3483 return ConstantInt::getFalse(CI->getContext()); 3484 case ICmpInst::ICMP_NE: 3485 return ConstantInt::getTrue(CI->getContext()); 3486 3487 // If RHS is non-negative then LHS <s RHS. If RHS is negative then 3488 // LHS >s RHS. 3489 case ICmpInst::ICMP_SGT: 3490 case ICmpInst::ICMP_SGE: 3491 return CI->getValue().isNegative() ? 3492 ConstantInt::getTrue(CI->getContext()) : 3493 ConstantInt::getFalse(CI->getContext()); 3494 case ICmpInst::ICMP_SLT: 3495 case ICmpInst::ICMP_SLE: 3496 return CI->getValue().isNegative() ? 3497 ConstantInt::getFalse(CI->getContext()) : 3498 ConstantInt::getTrue(CI->getContext()); 3499 3500 // If LHS is non-negative then LHS <u RHS. If LHS is negative then 3501 // LHS >u RHS. 3502 case ICmpInst::ICMP_UGT: 3503 case ICmpInst::ICMP_UGE: 3504 // Comparison is true iff the LHS <s 0. 3505 if (MaxRecurse) 3506 if (Value *V = SimplifyICmpInst(ICmpInst::ICMP_SLT, SrcOp, 3507 Constant::getNullValue(SrcTy), 3508 Q, MaxRecurse-1)) 3509 return V; 3510 break; 3511 case ICmpInst::ICMP_ULT: 3512 case ICmpInst::ICMP_ULE: 3513 // Comparison is true iff the LHS >=s 0. 3514 if (MaxRecurse) 3515 if (Value *V = SimplifyICmpInst(ICmpInst::ICMP_SGE, SrcOp, 3516 Constant::getNullValue(SrcTy), 3517 Q, MaxRecurse-1)) 3518 return V; 3519 break; 3520 } 3521 } 3522 } 3523 } 3524 } 3525 3526 // icmp eq|ne X, Y -> false|true if X != Y 3527 if (ICmpInst::isEquality(Pred) && 3528 isKnownNonEqual(LHS, RHS, Q.DL, Q.AC, Q.CxtI, Q.DT, Q.IIQ.UseInstrInfo)) { 3529 return Pred == ICmpInst::ICMP_NE ? getTrue(ITy) : getFalse(ITy); 3530 } 3531 3532 if (Value *V = simplifyICmpWithBinOp(Pred, LHS, RHS, Q, MaxRecurse)) 3533 return V; 3534 3535 if (Value *V = simplifyICmpWithMinMax(Pred, LHS, RHS, Q, MaxRecurse)) 3536 return V; 3537 3538 if (Value *V = simplifyICmpWithDominatingAssume(Pred, LHS, RHS, Q)) 3539 return V; 3540 3541 // Simplify comparisons of related pointers using a powerful, recursive 3542 // GEP-walk when we have target data available.. 3543 if (LHS->getType()->isPointerTy()) 3544 if (auto *C = computePointerICmp(Q.DL, Q.TLI, Q.DT, Pred, Q.AC, Q.CxtI, 3545 Q.IIQ, LHS, RHS)) 3546 return C; 3547 if (auto *CLHS = dyn_cast<PtrToIntOperator>(LHS)) 3548 if (auto *CRHS = dyn_cast<PtrToIntOperator>(RHS)) 3549 if (Q.DL.getTypeSizeInBits(CLHS->getPointerOperandType()) == 3550 Q.DL.getTypeSizeInBits(CLHS->getType()) && 3551 Q.DL.getTypeSizeInBits(CRHS->getPointerOperandType()) == 3552 Q.DL.getTypeSizeInBits(CRHS->getType())) 3553 if (auto *C = computePointerICmp(Q.DL, Q.TLI, Q.DT, Pred, Q.AC, Q.CxtI, 3554 Q.IIQ, CLHS->getPointerOperand(), 3555 CRHS->getPointerOperand())) 3556 return C; 3557 3558 if (GetElementPtrInst *GLHS = dyn_cast<GetElementPtrInst>(LHS)) { 3559 if (GEPOperator *GRHS = dyn_cast<GEPOperator>(RHS)) { 3560 if (GLHS->getPointerOperand() == GRHS->getPointerOperand() && 3561 GLHS->hasAllConstantIndices() && GRHS->hasAllConstantIndices() && 3562 (ICmpInst::isEquality(Pred) || 3563 (GLHS->isInBounds() && GRHS->isInBounds() && 3564 Pred == ICmpInst::getSignedPredicate(Pred)))) { 3565 // The bases are equal and the indices are constant. Build a constant 3566 // expression GEP with the same indices and a null base pointer to see 3567 // what constant folding can make out of it. 3568 Constant *Null = Constant::getNullValue(GLHS->getPointerOperandType()); 3569 SmallVector<Value *, 4> IndicesLHS(GLHS->idx_begin(), GLHS->idx_end()); 3570 Constant *NewLHS = ConstantExpr::getGetElementPtr( 3571 GLHS->getSourceElementType(), Null, IndicesLHS); 3572 3573 SmallVector<Value *, 4> IndicesRHS(GRHS->idx_begin(), GRHS->idx_end()); 3574 Constant *NewRHS = ConstantExpr::getGetElementPtr( 3575 GLHS->getSourceElementType(), Null, IndicesRHS); 3576 Constant *NewICmp = ConstantExpr::getICmp(Pred, NewLHS, NewRHS); 3577 return ConstantFoldConstant(NewICmp, Q.DL); 3578 } 3579 } 3580 } 3581 3582 // If the comparison is with the result of a select instruction, check whether 3583 // comparing with either branch of the select always yields the same value. 3584 if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS)) 3585 if (Value *V = ThreadCmpOverSelect(Pred, LHS, RHS, Q, MaxRecurse)) 3586 return V; 3587 3588 // If the comparison is with the result of a phi instruction, check whether 3589 // doing the compare with each incoming phi value yields a common result. 3590 if (isa<PHINode>(LHS) || isa<PHINode>(RHS)) 3591 if (Value *V = ThreadCmpOverPHI(Pred, LHS, RHS, Q, MaxRecurse)) 3592 return V; 3593 3594 return nullptr; 3595 } 3596 3597 Value *llvm::SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS, 3598 const SimplifyQuery &Q) { 3599 return ::SimplifyICmpInst(Predicate, LHS, RHS, Q, RecursionLimit); 3600 } 3601 3602 /// Given operands for an FCmpInst, see if we can fold the result. 3603 /// If not, this returns null. 3604 static Value *SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS, 3605 FastMathFlags FMF, const SimplifyQuery &Q, 3606 unsigned MaxRecurse) { 3607 CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate; 3608 assert(CmpInst::isFPPredicate(Pred) && "Not an FP compare!"); 3609 3610 if (Constant *CLHS = dyn_cast<Constant>(LHS)) { 3611 if (Constant *CRHS = dyn_cast<Constant>(RHS)) 3612 return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, Q.DL, Q.TLI); 3613 3614 // If we have a constant, make sure it is on the RHS. 3615 std::swap(LHS, RHS); 3616 Pred = CmpInst::getSwappedPredicate(Pred); 3617 } 3618 3619 // Fold trivial predicates. 3620 Type *RetTy = GetCompareTy(LHS); 3621 if (Pred == FCmpInst::FCMP_FALSE) 3622 return getFalse(RetTy); 3623 if (Pred == FCmpInst::FCMP_TRUE) 3624 return getTrue(RetTy); 3625 3626 // Fold (un)ordered comparison if we can determine there are no NaNs. 3627 if (Pred == FCmpInst::FCMP_UNO || Pred == FCmpInst::FCMP_ORD) 3628 if (FMF.noNaNs() || 3629 (isKnownNeverNaN(LHS, Q.TLI) && isKnownNeverNaN(RHS, Q.TLI))) 3630 return ConstantInt::get(RetTy, Pred == FCmpInst::FCMP_ORD); 3631 3632 // NaN is unordered; NaN is not ordered. 3633 assert((FCmpInst::isOrdered(Pred) || FCmpInst::isUnordered(Pred)) && 3634 "Comparison must be either ordered or unordered"); 3635 if (match(RHS, m_NaN())) 3636 return ConstantInt::get(RetTy, CmpInst::isUnordered(Pred)); 3637 3638 // fcmp pred x, undef and fcmp pred undef, x 3639 // fold to true if unordered, false if ordered 3640 if (Q.isUndefValue(LHS) || Q.isUndefValue(RHS)) { 3641 // Choosing NaN for the undef will always make unordered comparison succeed 3642 // and ordered comparison fail. 3643 return ConstantInt::get(RetTy, CmpInst::isUnordered(Pred)); 3644 } 3645 3646 // fcmp x,x -> true/false. Not all compares are foldable. 3647 if (LHS == RHS) { 3648 if (CmpInst::isTrueWhenEqual(Pred)) 3649 return getTrue(RetTy); 3650 if (CmpInst::isFalseWhenEqual(Pred)) 3651 return getFalse(RetTy); 3652 } 3653 3654 // Handle fcmp with constant RHS. 3655 // TODO: Use match with a specific FP value, so these work with vectors with 3656 // undef lanes. 3657 const APFloat *C; 3658 if (match(RHS, m_APFloat(C))) { 3659 // Check whether the constant is an infinity. 3660 if (C->isInfinity()) { 3661 if (C->isNegative()) { 3662 switch (Pred) { 3663 case FCmpInst::FCMP_OLT: 3664 // No value is ordered and less than negative infinity. 3665 return getFalse(RetTy); 3666 case FCmpInst::FCMP_UGE: 3667 // All values are unordered with or at least negative infinity. 3668 return getTrue(RetTy); 3669 default: 3670 break; 3671 } 3672 } else { 3673 switch (Pred) { 3674 case FCmpInst::FCMP_OGT: 3675 // No value is ordered and greater than infinity. 3676 return getFalse(RetTy); 3677 case FCmpInst::FCMP_ULE: 3678 // All values are unordered with and at most infinity. 3679 return getTrue(RetTy); 3680 default: 3681 break; 3682 } 3683 } 3684 3685 // LHS == Inf 3686 if (Pred == FCmpInst::FCMP_OEQ && isKnownNeverInfinity(LHS, Q.TLI)) 3687 return getFalse(RetTy); 3688 // LHS != Inf 3689 if (Pred == FCmpInst::FCMP_UNE && isKnownNeverInfinity(LHS, Q.TLI)) 3690 return getTrue(RetTy); 3691 // LHS == Inf || LHS == NaN 3692 if (Pred == FCmpInst::FCMP_UEQ && isKnownNeverInfinity(LHS, Q.TLI) && 3693 isKnownNeverNaN(LHS, Q.TLI)) 3694 return getFalse(RetTy); 3695 // LHS != Inf && LHS != NaN 3696 if (Pred == FCmpInst::FCMP_ONE && isKnownNeverInfinity(LHS, Q.TLI) && 3697 isKnownNeverNaN(LHS, Q.TLI)) 3698 return getTrue(RetTy); 3699 } 3700 if (C->isNegative() && !C->isNegZero()) { 3701 assert(!C->isNaN() && "Unexpected NaN constant!"); 3702 // TODO: We can catch more cases by using a range check rather than 3703 // relying on CannotBeOrderedLessThanZero. 3704 switch (Pred) { 3705 case FCmpInst::FCMP_UGE: 3706 case FCmpInst::FCMP_UGT: 3707 case FCmpInst::FCMP_UNE: 3708 // (X >= 0) implies (X > C) when (C < 0) 3709 if (CannotBeOrderedLessThanZero(LHS, Q.TLI)) 3710 return getTrue(RetTy); 3711 break; 3712 case FCmpInst::FCMP_OEQ: 3713 case FCmpInst::FCMP_OLE: 3714 case FCmpInst::FCMP_OLT: 3715 // (X >= 0) implies !(X < C) when (C < 0) 3716 if (CannotBeOrderedLessThanZero(LHS, Q.TLI)) 3717 return getFalse(RetTy); 3718 break; 3719 default: 3720 break; 3721 } 3722 } 3723 3724 // Check comparison of [minnum/maxnum with constant] with other constant. 3725 const APFloat *C2; 3726 if ((match(LHS, m_Intrinsic<Intrinsic::minnum>(m_Value(), m_APFloat(C2))) && 3727 *C2 < *C) || 3728 (match(LHS, m_Intrinsic<Intrinsic::maxnum>(m_Value(), m_APFloat(C2))) && 3729 *C2 > *C)) { 3730 bool IsMaxNum = 3731 cast<IntrinsicInst>(LHS)->getIntrinsicID() == Intrinsic::maxnum; 3732 // The ordered relationship and minnum/maxnum guarantee that we do not 3733 // have NaN constants, so ordered/unordered preds are handled the same. 3734 switch (Pred) { 3735 case FCmpInst::FCMP_OEQ: case FCmpInst::FCMP_UEQ: 3736 // minnum(X, LesserC) == C --> false 3737 // maxnum(X, GreaterC) == C --> false 3738 return getFalse(RetTy); 3739 case FCmpInst::FCMP_ONE: case FCmpInst::FCMP_UNE: 3740 // minnum(X, LesserC) != C --> true 3741 // maxnum(X, GreaterC) != C --> true 3742 return getTrue(RetTy); 3743 case FCmpInst::FCMP_OGE: case FCmpInst::FCMP_UGE: 3744 case FCmpInst::FCMP_OGT: case FCmpInst::FCMP_UGT: 3745 // minnum(X, LesserC) >= C --> false 3746 // minnum(X, LesserC) > C --> false 3747 // maxnum(X, GreaterC) >= C --> true 3748 // maxnum(X, GreaterC) > C --> true 3749 return ConstantInt::get(RetTy, IsMaxNum); 3750 case FCmpInst::FCMP_OLE: case FCmpInst::FCMP_ULE: 3751 case FCmpInst::FCMP_OLT: case FCmpInst::FCMP_ULT: 3752 // minnum(X, LesserC) <= C --> true 3753 // minnum(X, LesserC) < C --> true 3754 // maxnum(X, GreaterC) <= C --> false 3755 // maxnum(X, GreaterC) < C --> false 3756 return ConstantInt::get(RetTy, !IsMaxNum); 3757 default: 3758 // TRUE/FALSE/ORD/UNO should be handled before this. 3759 llvm_unreachable("Unexpected fcmp predicate"); 3760 } 3761 } 3762 } 3763 3764 if (match(RHS, m_AnyZeroFP())) { 3765 switch (Pred) { 3766 case FCmpInst::FCMP_OGE: 3767 case FCmpInst::FCMP_ULT: 3768 // Positive or zero X >= 0.0 --> true 3769 // Positive or zero X < 0.0 --> false 3770 if ((FMF.noNaNs() || isKnownNeverNaN(LHS, Q.TLI)) && 3771 CannotBeOrderedLessThanZero(LHS, Q.TLI)) 3772 return Pred == FCmpInst::FCMP_OGE ? getTrue(RetTy) : getFalse(RetTy); 3773 break; 3774 case FCmpInst::FCMP_UGE: 3775 case FCmpInst::FCMP_OLT: 3776 // Positive or zero or nan X >= 0.0 --> true 3777 // Positive or zero or nan X < 0.0 --> false 3778 if (CannotBeOrderedLessThanZero(LHS, Q.TLI)) 3779 return Pred == FCmpInst::FCMP_UGE ? getTrue(RetTy) : getFalse(RetTy); 3780 break; 3781 default: 3782 break; 3783 } 3784 } 3785 3786 // If the comparison is with the result of a select instruction, check whether 3787 // comparing with either branch of the select always yields the same value. 3788 if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS)) 3789 if (Value *V = ThreadCmpOverSelect(Pred, LHS, RHS, Q, MaxRecurse)) 3790 return V; 3791 3792 // If the comparison is with the result of a phi instruction, check whether 3793 // doing the compare with each incoming phi value yields a common result. 3794 if (isa<PHINode>(LHS) || isa<PHINode>(RHS)) 3795 if (Value *V = ThreadCmpOverPHI(Pred, LHS, RHS, Q, MaxRecurse)) 3796 return V; 3797 3798 return nullptr; 3799 } 3800 3801 Value *llvm::SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS, 3802 FastMathFlags FMF, const SimplifyQuery &Q) { 3803 return ::SimplifyFCmpInst(Predicate, LHS, RHS, FMF, Q, RecursionLimit); 3804 } 3805 3806 static Value *SimplifyWithOpReplaced(Value *V, Value *Op, Value *RepOp, 3807 const SimplifyQuery &Q, 3808 bool AllowRefinement, 3809 unsigned MaxRecurse) { 3810 // Trivial replacement. 3811 if (V == Op) 3812 return RepOp; 3813 3814 // We cannot replace a constant, and shouldn't even try. 3815 if (isa<Constant>(Op)) 3816 return nullptr; 3817 3818 auto *I = dyn_cast<Instruction>(V); 3819 if (!I) 3820 return nullptr; 3821 3822 // Consider: 3823 // %cmp = icmp eq i32 %x, 2147483647 3824 // %add = add nsw i32 %x, 1 3825 // %sel = select i1 %cmp, i32 -2147483648, i32 %add 3826 // 3827 // We can't replace %sel with %add unless we strip away the flags (which will 3828 // be done in InstCombine). 3829 // TODO: This is unsound, because it only catches some forms of refinement. 3830 if (!AllowRefinement && canCreatePoison(cast<Operator>(I))) 3831 return nullptr; 3832 3833 // The simplification queries below may return the original value. Consider: 3834 // %div = udiv i32 %arg, %arg2 3835 // %mul = mul nsw i32 %div, %arg2 3836 // %cmp = icmp eq i32 %mul, %arg 3837 // %sel = select i1 %cmp, i32 %div, i32 undef 3838 // Replacing %arg by %mul, %div becomes "udiv i32 %mul, %arg2", which 3839 // simplifies back to %arg. This can only happen because %mul does not 3840 // dominate %div. To ensure a consistent return value contract, we make sure 3841 // that this case returns nullptr as well. 3842 auto PreventSelfSimplify = [V](Value *Simplified) { 3843 return Simplified != V ? Simplified : nullptr; 3844 }; 3845 3846 // If this is a binary operator, try to simplify it with the replaced op. 3847 if (auto *B = dyn_cast<BinaryOperator>(I)) { 3848 if (MaxRecurse) { 3849 if (B->getOperand(0) == Op) 3850 return PreventSelfSimplify(SimplifyBinOp(B->getOpcode(), RepOp, 3851 B->getOperand(1), Q, 3852 MaxRecurse - 1)); 3853 if (B->getOperand(1) == Op) 3854 return PreventSelfSimplify(SimplifyBinOp(B->getOpcode(), 3855 B->getOperand(0), RepOp, Q, 3856 MaxRecurse - 1)); 3857 } 3858 } 3859 3860 // Same for CmpInsts. 3861 if (CmpInst *C = dyn_cast<CmpInst>(I)) { 3862 if (MaxRecurse) { 3863 if (C->getOperand(0) == Op) 3864 return PreventSelfSimplify(SimplifyCmpInst(C->getPredicate(), RepOp, 3865 C->getOperand(1), Q, 3866 MaxRecurse - 1)); 3867 if (C->getOperand(1) == Op) 3868 return PreventSelfSimplify(SimplifyCmpInst(C->getPredicate(), 3869 C->getOperand(0), RepOp, Q, 3870 MaxRecurse - 1)); 3871 } 3872 } 3873 3874 // Same for GEPs. 3875 if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) { 3876 if (MaxRecurse) { 3877 SmallVector<Value *, 8> NewOps(GEP->getNumOperands()); 3878 transform(GEP->operands(), NewOps.begin(), 3879 [&](Value *V) { return V == Op ? RepOp : V; }); 3880 return PreventSelfSimplify(SimplifyGEPInst(GEP->getSourceElementType(), 3881 NewOps, Q, MaxRecurse - 1)); 3882 } 3883 } 3884 3885 // TODO: We could hand off more cases to instsimplify here. 3886 3887 // If all operands are constant after substituting Op for RepOp then we can 3888 // constant fold the instruction. 3889 if (Constant *CRepOp = dyn_cast<Constant>(RepOp)) { 3890 // Build a list of all constant operands. 3891 SmallVector<Constant *, 8> ConstOps; 3892 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 3893 if (I->getOperand(i) == Op) 3894 ConstOps.push_back(CRepOp); 3895 else if (Constant *COp = dyn_cast<Constant>(I->getOperand(i))) 3896 ConstOps.push_back(COp); 3897 else 3898 break; 3899 } 3900 3901 // All operands were constants, fold it. 3902 if (ConstOps.size() == I->getNumOperands()) { 3903 if (CmpInst *C = dyn_cast<CmpInst>(I)) 3904 return ConstantFoldCompareInstOperands(C->getPredicate(), ConstOps[0], 3905 ConstOps[1], Q.DL, Q.TLI); 3906 3907 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 3908 if (!LI->isVolatile()) 3909 return ConstantFoldLoadFromConstPtr(ConstOps[0], LI->getType(), Q.DL); 3910 3911 return ConstantFoldInstOperands(I, ConstOps, Q.DL, Q.TLI); 3912 } 3913 } 3914 3915 return nullptr; 3916 } 3917 3918 Value *llvm::SimplifyWithOpReplaced(Value *V, Value *Op, Value *RepOp, 3919 const SimplifyQuery &Q, 3920 bool AllowRefinement) { 3921 return ::SimplifyWithOpReplaced(V, Op, RepOp, Q, AllowRefinement, 3922 RecursionLimit); 3923 } 3924 3925 /// Try to simplify a select instruction when its condition operand is an 3926 /// integer comparison where one operand of the compare is a constant. 3927 static Value *simplifySelectBitTest(Value *TrueVal, Value *FalseVal, Value *X, 3928 const APInt *Y, bool TrueWhenUnset) { 3929 const APInt *C; 3930 3931 // (X & Y) == 0 ? X & ~Y : X --> X 3932 // (X & Y) != 0 ? X & ~Y : X --> X & ~Y 3933 if (FalseVal == X && match(TrueVal, m_And(m_Specific(X), m_APInt(C))) && 3934 *Y == ~*C) 3935 return TrueWhenUnset ? FalseVal : TrueVal; 3936 3937 // (X & Y) == 0 ? X : X & ~Y --> X & ~Y 3938 // (X & Y) != 0 ? X : X & ~Y --> X 3939 if (TrueVal == X && match(FalseVal, m_And(m_Specific(X), m_APInt(C))) && 3940 *Y == ~*C) 3941 return TrueWhenUnset ? FalseVal : TrueVal; 3942 3943 if (Y->isPowerOf2()) { 3944 // (X & Y) == 0 ? X | Y : X --> X | Y 3945 // (X & Y) != 0 ? X | Y : X --> X 3946 if (FalseVal == X && match(TrueVal, m_Or(m_Specific(X), m_APInt(C))) && 3947 *Y == *C) 3948 return TrueWhenUnset ? TrueVal : FalseVal; 3949 3950 // (X & Y) == 0 ? X : X | Y --> X 3951 // (X & Y) != 0 ? X : X | Y --> X | Y 3952 if (TrueVal == X && match(FalseVal, m_Or(m_Specific(X), m_APInt(C))) && 3953 *Y == *C) 3954 return TrueWhenUnset ? TrueVal : FalseVal; 3955 } 3956 3957 return nullptr; 3958 } 3959 3960 /// An alternative way to test if a bit is set or not uses sgt/slt instead of 3961 /// eq/ne. 3962 static Value *simplifySelectWithFakeICmpEq(Value *CmpLHS, Value *CmpRHS, 3963 ICmpInst::Predicate Pred, 3964 Value *TrueVal, Value *FalseVal) { 3965 Value *X; 3966 APInt Mask; 3967 if (!decomposeBitTestICmp(CmpLHS, CmpRHS, Pred, X, Mask)) 3968 return nullptr; 3969 3970 return simplifySelectBitTest(TrueVal, FalseVal, X, &Mask, 3971 Pred == ICmpInst::ICMP_EQ); 3972 } 3973 3974 /// Try to simplify a select instruction when its condition operand is an 3975 /// integer comparison. 3976 static Value *simplifySelectWithICmpCond(Value *CondVal, Value *TrueVal, 3977 Value *FalseVal, const SimplifyQuery &Q, 3978 unsigned MaxRecurse) { 3979 ICmpInst::Predicate Pred; 3980 Value *CmpLHS, *CmpRHS; 3981 if (!match(CondVal, m_ICmp(Pred, m_Value(CmpLHS), m_Value(CmpRHS)))) 3982 return nullptr; 3983 3984 // Canonicalize ne to eq predicate. 3985 if (Pred == ICmpInst::ICMP_NE) { 3986 Pred = ICmpInst::ICMP_EQ; 3987 std::swap(TrueVal, FalseVal); 3988 } 3989 3990 if (Pred == ICmpInst::ICMP_EQ && match(CmpRHS, m_Zero())) { 3991 Value *X; 3992 const APInt *Y; 3993 if (match(CmpLHS, m_And(m_Value(X), m_APInt(Y)))) 3994 if (Value *V = simplifySelectBitTest(TrueVal, FalseVal, X, Y, 3995 /*TrueWhenUnset=*/true)) 3996 return V; 3997 3998 // Test for a bogus zero-shift-guard-op around funnel-shift or rotate. 3999 Value *ShAmt; 4000 auto isFsh = m_CombineOr(m_FShl(m_Value(X), m_Value(), m_Value(ShAmt)), 4001 m_FShr(m_Value(), m_Value(X), m_Value(ShAmt))); 4002 // (ShAmt == 0) ? fshl(X, *, ShAmt) : X --> X 4003 // (ShAmt == 0) ? fshr(*, X, ShAmt) : X --> X 4004 if (match(TrueVal, isFsh) && FalseVal == X && CmpLHS == ShAmt) 4005 return X; 4006 4007 // Test for a zero-shift-guard-op around rotates. These are used to 4008 // avoid UB from oversized shifts in raw IR rotate patterns, but the 4009 // intrinsics do not have that problem. 4010 // We do not allow this transform for the general funnel shift case because 4011 // that would not preserve the poison safety of the original code. 4012 auto isRotate = 4013 m_CombineOr(m_FShl(m_Value(X), m_Deferred(X), m_Value(ShAmt)), 4014 m_FShr(m_Value(X), m_Deferred(X), m_Value(ShAmt))); 4015 // (ShAmt == 0) ? X : fshl(X, X, ShAmt) --> fshl(X, X, ShAmt) 4016 // (ShAmt == 0) ? X : fshr(X, X, ShAmt) --> fshr(X, X, ShAmt) 4017 if (match(FalseVal, isRotate) && TrueVal == X && CmpLHS == ShAmt && 4018 Pred == ICmpInst::ICMP_EQ) 4019 return FalseVal; 4020 4021 // X == 0 ? abs(X) : -abs(X) --> -abs(X) 4022 // X == 0 ? -abs(X) : abs(X) --> abs(X) 4023 if (match(TrueVal, m_Intrinsic<Intrinsic::abs>(m_Value(X))) && 4024 match(FalseVal, m_Neg(m_Intrinsic<Intrinsic::abs>(m_Specific(X))))) 4025 return FalseVal; 4026 if (match(TrueVal, m_Neg(m_Intrinsic<Intrinsic::abs>(m_Value(X)))) && 4027 match(FalseVal, m_Intrinsic<Intrinsic::abs>(m_Specific(X)))) 4028 return FalseVal; 4029 } 4030 4031 // Check for other compares that behave like bit test. 4032 if (Value *V = simplifySelectWithFakeICmpEq(CmpLHS, CmpRHS, Pred, 4033 TrueVal, FalseVal)) 4034 return V; 4035 4036 // If we have an equality comparison, then we know the value in one of the 4037 // arms of the select. See if substituting this value into the arm and 4038 // simplifying the result yields the same value as the other arm. 4039 if (Pred == ICmpInst::ICMP_EQ) { 4040 if (SimplifyWithOpReplaced(FalseVal, CmpLHS, CmpRHS, Q, 4041 /* AllowRefinement */ false, MaxRecurse) == 4042 TrueVal || 4043 SimplifyWithOpReplaced(FalseVal, CmpRHS, CmpLHS, Q, 4044 /* AllowRefinement */ false, MaxRecurse) == 4045 TrueVal) 4046 return FalseVal; 4047 if (SimplifyWithOpReplaced(TrueVal, CmpLHS, CmpRHS, Q, 4048 /* AllowRefinement */ true, MaxRecurse) == 4049 FalseVal || 4050 SimplifyWithOpReplaced(TrueVal, CmpRHS, CmpLHS, Q, 4051 /* AllowRefinement */ true, MaxRecurse) == 4052 FalseVal) 4053 return FalseVal; 4054 } 4055 4056 return nullptr; 4057 } 4058 4059 /// Try to simplify a select instruction when its condition operand is a 4060 /// floating-point comparison. 4061 static Value *simplifySelectWithFCmp(Value *Cond, Value *T, Value *F, 4062 const SimplifyQuery &Q) { 4063 FCmpInst::Predicate Pred; 4064 if (!match(Cond, m_FCmp(Pred, m_Specific(T), m_Specific(F))) && 4065 !match(Cond, m_FCmp(Pred, m_Specific(F), m_Specific(T)))) 4066 return nullptr; 4067 4068 // This transform is safe if we do not have (do not care about) -0.0 or if 4069 // at least one operand is known to not be -0.0. Otherwise, the select can 4070 // change the sign of a zero operand. 4071 bool HasNoSignedZeros = Q.CxtI && isa<FPMathOperator>(Q.CxtI) && 4072 Q.CxtI->hasNoSignedZeros(); 4073 const APFloat *C; 4074 if (HasNoSignedZeros || (match(T, m_APFloat(C)) && C->isNonZero()) || 4075 (match(F, m_APFloat(C)) && C->isNonZero())) { 4076 // (T == F) ? T : F --> F 4077 // (F == T) ? T : F --> F 4078 if (Pred == FCmpInst::FCMP_OEQ) 4079 return F; 4080 4081 // (T != F) ? T : F --> T 4082 // (F != T) ? T : F --> T 4083 if (Pred == FCmpInst::FCMP_UNE) 4084 return T; 4085 } 4086 4087 return nullptr; 4088 } 4089 4090 /// Given operands for a SelectInst, see if we can fold the result. 4091 /// If not, this returns null. 4092 static Value *SimplifySelectInst(Value *Cond, Value *TrueVal, Value *FalseVal, 4093 const SimplifyQuery &Q, unsigned MaxRecurse) { 4094 if (auto *CondC = dyn_cast<Constant>(Cond)) { 4095 if (auto *TrueC = dyn_cast<Constant>(TrueVal)) 4096 if (auto *FalseC = dyn_cast<Constant>(FalseVal)) 4097 return ConstantFoldSelectInstruction(CondC, TrueC, FalseC); 4098 4099 // select undef, X, Y -> X or Y 4100 if (Q.isUndefValue(CondC)) 4101 return isa<Constant>(FalseVal) ? FalseVal : TrueVal; 4102 4103 // TODO: Vector constants with undef elements don't simplify. 4104 4105 // select true, X, Y -> X 4106 if (CondC->isAllOnesValue()) 4107 return TrueVal; 4108 // select false, X, Y -> Y 4109 if (CondC->isNullValue()) 4110 return FalseVal; 4111 } 4112 4113 // select i1 Cond, i1 true, i1 false --> i1 Cond 4114 assert(Cond->getType()->isIntOrIntVectorTy(1) && 4115 "Select must have bool or bool vector condition"); 4116 assert(TrueVal->getType() == FalseVal->getType() && 4117 "Select must have same types for true/false ops"); 4118 if (Cond->getType() == TrueVal->getType() && 4119 match(TrueVal, m_One()) && match(FalseVal, m_ZeroInt())) 4120 return Cond; 4121 4122 // select ?, X, X -> X 4123 if (TrueVal == FalseVal) 4124 return TrueVal; 4125 4126 // If the true or false value is undef, we can fold to the other value as 4127 // long as the other value isn't poison. 4128 // select ?, undef, X -> X 4129 if (Q.isUndefValue(TrueVal) && 4130 isGuaranteedNotToBeUndefOrPoison(FalseVal, Q.AC, Q.CxtI, Q.DT)) 4131 return FalseVal; 4132 // select ?, X, undef -> X 4133 if (Q.isUndefValue(FalseVal) && 4134 isGuaranteedNotToBeUndefOrPoison(TrueVal, Q.AC, Q.CxtI, Q.DT)) 4135 return TrueVal; 4136 4137 // Deal with partial undef vector constants: select ?, VecC, VecC' --> VecC'' 4138 Constant *TrueC, *FalseC; 4139 if (isa<FixedVectorType>(TrueVal->getType()) && 4140 match(TrueVal, m_Constant(TrueC)) && 4141 match(FalseVal, m_Constant(FalseC))) { 4142 unsigned NumElts = 4143 cast<FixedVectorType>(TrueC->getType())->getNumElements(); 4144 SmallVector<Constant *, 16> NewC; 4145 for (unsigned i = 0; i != NumElts; ++i) { 4146 // Bail out on incomplete vector constants. 4147 Constant *TEltC = TrueC->getAggregateElement(i); 4148 Constant *FEltC = FalseC->getAggregateElement(i); 4149 if (!TEltC || !FEltC) 4150 break; 4151 4152 // If the elements match (undef or not), that value is the result. If only 4153 // one element is undef, choose the defined element as the safe result. 4154 if (TEltC == FEltC) 4155 NewC.push_back(TEltC); 4156 else if (Q.isUndefValue(TEltC) && 4157 isGuaranteedNotToBeUndefOrPoison(FEltC)) 4158 NewC.push_back(FEltC); 4159 else if (Q.isUndefValue(FEltC) && 4160 isGuaranteedNotToBeUndefOrPoison(TEltC)) 4161 NewC.push_back(TEltC); 4162 else 4163 break; 4164 } 4165 if (NewC.size() == NumElts) 4166 return ConstantVector::get(NewC); 4167 } 4168 4169 if (Value *V = 4170 simplifySelectWithICmpCond(Cond, TrueVal, FalseVal, Q, MaxRecurse)) 4171 return V; 4172 4173 if (Value *V = simplifySelectWithFCmp(Cond, TrueVal, FalseVal, Q)) 4174 return V; 4175 4176 if (Value *V = foldSelectWithBinaryOp(Cond, TrueVal, FalseVal)) 4177 return V; 4178 4179 Optional<bool> Imp = isImpliedByDomCondition(Cond, Q.CxtI, Q.DL); 4180 if (Imp) 4181 return *Imp ? TrueVal : FalseVal; 4182 4183 return nullptr; 4184 } 4185 4186 Value *llvm::SimplifySelectInst(Value *Cond, Value *TrueVal, Value *FalseVal, 4187 const SimplifyQuery &Q) { 4188 return ::SimplifySelectInst(Cond, TrueVal, FalseVal, Q, RecursionLimit); 4189 } 4190 4191 /// Given operands for an GetElementPtrInst, see if we can fold the result. 4192 /// If not, this returns null. 4193 static Value *SimplifyGEPInst(Type *SrcTy, ArrayRef<Value *> Ops, 4194 const SimplifyQuery &Q, unsigned) { 4195 // The type of the GEP pointer operand. 4196 unsigned AS = 4197 cast<PointerType>(Ops[0]->getType()->getScalarType())->getAddressSpace(); 4198 4199 // getelementptr P -> P. 4200 if (Ops.size() == 1) 4201 return Ops[0]; 4202 4203 // Compute the (pointer) type returned by the GEP instruction. 4204 Type *LastType = GetElementPtrInst::getIndexedType(SrcTy, Ops.slice(1)); 4205 Type *GEPTy = PointerType::get(LastType, AS); 4206 if (VectorType *VT = dyn_cast<VectorType>(Ops[0]->getType())) 4207 GEPTy = VectorType::get(GEPTy, VT->getElementCount()); 4208 else if (VectorType *VT = dyn_cast<VectorType>(Ops[1]->getType())) 4209 GEPTy = VectorType::get(GEPTy, VT->getElementCount()); 4210 4211 if (Q.isUndefValue(Ops[0])) 4212 return UndefValue::get(GEPTy); 4213 4214 bool IsScalableVec = isa<ScalableVectorType>(SrcTy); 4215 4216 if (Ops.size() == 2) { 4217 // getelementptr P, 0 -> P. 4218 if (match(Ops[1], m_Zero()) && Ops[0]->getType() == GEPTy) 4219 return Ops[0]; 4220 4221 Type *Ty = SrcTy; 4222 if (!IsScalableVec && Ty->isSized()) { 4223 Value *P; 4224 uint64_t C; 4225 uint64_t TyAllocSize = Q.DL.getTypeAllocSize(Ty); 4226 // getelementptr P, N -> P if P points to a type of zero size. 4227 if (TyAllocSize == 0 && Ops[0]->getType() == GEPTy) 4228 return Ops[0]; 4229 4230 // The following transforms are only safe if the ptrtoint cast 4231 // doesn't truncate the pointers. 4232 if (Ops[1]->getType()->getScalarSizeInBits() == 4233 Q.DL.getPointerSizeInBits(AS)) { 4234 auto PtrToIntOrZero = [GEPTy](Value *P) -> Value * { 4235 if (match(P, m_Zero())) 4236 return Constant::getNullValue(GEPTy); 4237 Value *Temp; 4238 if (match(P, m_PtrToInt(m_Value(Temp)))) 4239 if (Temp->getType() == GEPTy) 4240 return Temp; 4241 return nullptr; 4242 }; 4243 4244 // getelementptr V, (sub P, V) -> P if P points to a type of size 1. 4245 if (TyAllocSize == 1 && 4246 match(Ops[1], m_Sub(m_Value(P), m_PtrToInt(m_Specific(Ops[0]))))) 4247 if (Value *R = PtrToIntOrZero(P)) 4248 return R; 4249 4250 // getelementptr V, (ashr (sub P, V), C) -> Q 4251 // if P points to a type of size 1 << C. 4252 if (match(Ops[1], 4253 m_AShr(m_Sub(m_Value(P), m_PtrToInt(m_Specific(Ops[0]))), 4254 m_ConstantInt(C))) && 4255 TyAllocSize == 1ULL << C) 4256 if (Value *R = PtrToIntOrZero(P)) 4257 return R; 4258 4259 // getelementptr V, (sdiv (sub P, V), C) -> Q 4260 // if P points to a type of size C. 4261 if (match(Ops[1], 4262 m_SDiv(m_Sub(m_Value(P), m_PtrToInt(m_Specific(Ops[0]))), 4263 m_SpecificInt(TyAllocSize)))) 4264 if (Value *R = PtrToIntOrZero(P)) 4265 return R; 4266 } 4267 } 4268 } 4269 4270 if (!IsScalableVec && Q.DL.getTypeAllocSize(LastType) == 1 && 4271 all_of(Ops.slice(1).drop_back(1), 4272 [](Value *Idx) { return match(Idx, m_Zero()); })) { 4273 unsigned IdxWidth = 4274 Q.DL.getIndexSizeInBits(Ops[0]->getType()->getPointerAddressSpace()); 4275 if (Q.DL.getTypeSizeInBits(Ops.back()->getType()) == IdxWidth) { 4276 APInt BasePtrOffset(IdxWidth, 0); 4277 Value *StrippedBasePtr = 4278 Ops[0]->stripAndAccumulateInBoundsConstantOffsets(Q.DL, 4279 BasePtrOffset); 4280 4281 // gep (gep V, C), (sub 0, V) -> C 4282 if (match(Ops.back(), 4283 m_Sub(m_Zero(), m_PtrToInt(m_Specific(StrippedBasePtr))))) { 4284 auto *CI = ConstantInt::get(GEPTy->getContext(), BasePtrOffset); 4285 return ConstantExpr::getIntToPtr(CI, GEPTy); 4286 } 4287 // gep (gep V, C), (xor V, -1) -> C-1 4288 if (match(Ops.back(), 4289 m_Xor(m_PtrToInt(m_Specific(StrippedBasePtr)), m_AllOnes()))) { 4290 auto *CI = ConstantInt::get(GEPTy->getContext(), BasePtrOffset - 1); 4291 return ConstantExpr::getIntToPtr(CI, GEPTy); 4292 } 4293 } 4294 } 4295 4296 // Check to see if this is constant foldable. 4297 if (!all_of(Ops, [](Value *V) { return isa<Constant>(V); })) 4298 return nullptr; 4299 4300 auto *CE = ConstantExpr::getGetElementPtr(SrcTy, cast<Constant>(Ops[0]), 4301 Ops.slice(1)); 4302 return ConstantFoldConstant(CE, Q.DL); 4303 } 4304 4305 Value *llvm::SimplifyGEPInst(Type *SrcTy, ArrayRef<Value *> Ops, 4306 const SimplifyQuery &Q) { 4307 return ::SimplifyGEPInst(SrcTy, Ops, Q, RecursionLimit); 4308 } 4309 4310 /// Given operands for an InsertValueInst, see if we can fold the result. 4311 /// If not, this returns null. 4312 static Value *SimplifyInsertValueInst(Value *Agg, Value *Val, 4313 ArrayRef<unsigned> Idxs, const SimplifyQuery &Q, 4314 unsigned) { 4315 if (Constant *CAgg = dyn_cast<Constant>(Agg)) 4316 if (Constant *CVal = dyn_cast<Constant>(Val)) 4317 return ConstantFoldInsertValueInstruction(CAgg, CVal, Idxs); 4318 4319 // insertvalue x, undef, n -> x 4320 if (Q.isUndefValue(Val)) 4321 return Agg; 4322 4323 // insertvalue x, (extractvalue y, n), n 4324 if (ExtractValueInst *EV = dyn_cast<ExtractValueInst>(Val)) 4325 if (EV->getAggregateOperand()->getType() == Agg->getType() && 4326 EV->getIndices() == Idxs) { 4327 // insertvalue undef, (extractvalue y, n), n -> y 4328 if (Q.isUndefValue(Agg)) 4329 return EV->getAggregateOperand(); 4330 4331 // insertvalue y, (extractvalue y, n), n -> y 4332 if (Agg == EV->getAggregateOperand()) 4333 return Agg; 4334 } 4335 4336 return nullptr; 4337 } 4338 4339 Value *llvm::SimplifyInsertValueInst(Value *Agg, Value *Val, 4340 ArrayRef<unsigned> Idxs, 4341 const SimplifyQuery &Q) { 4342 return ::SimplifyInsertValueInst(Agg, Val, Idxs, Q, RecursionLimit); 4343 } 4344 4345 Value *llvm::SimplifyInsertElementInst(Value *Vec, Value *Val, Value *Idx, 4346 const SimplifyQuery &Q) { 4347 // Try to constant fold. 4348 auto *VecC = dyn_cast<Constant>(Vec); 4349 auto *ValC = dyn_cast<Constant>(Val); 4350 auto *IdxC = dyn_cast<Constant>(Idx); 4351 if (VecC && ValC && IdxC) 4352 return ConstantExpr::getInsertElement(VecC, ValC, IdxC); 4353 4354 // For fixed-length vector, fold into undef if index is out of bounds. 4355 if (auto *CI = dyn_cast<ConstantInt>(Idx)) { 4356 if (isa<FixedVectorType>(Vec->getType()) && 4357 CI->uge(cast<FixedVectorType>(Vec->getType())->getNumElements())) 4358 return UndefValue::get(Vec->getType()); 4359 } 4360 4361 // If index is undef, it might be out of bounds (see above case) 4362 if (Q.isUndefValue(Idx)) 4363 return UndefValue::get(Vec->getType()); 4364 4365 // If the scalar is undef, and there is no risk of propagating poison from the 4366 // vector value, simplify to the vector value. 4367 if (Q.isUndefValue(Val) && 4368 isGuaranteedNotToBeUndefOrPoison(Vec)) 4369 return Vec; 4370 4371 // If we are extracting a value from a vector, then inserting it into the same 4372 // place, that's the input vector: 4373 // insertelt Vec, (extractelt Vec, Idx), Idx --> Vec 4374 if (match(Val, m_ExtractElt(m_Specific(Vec), m_Specific(Idx)))) 4375 return Vec; 4376 4377 return nullptr; 4378 } 4379 4380 /// Given operands for an ExtractValueInst, see if we can fold the result. 4381 /// If not, this returns null. 4382 static Value *SimplifyExtractValueInst(Value *Agg, ArrayRef<unsigned> Idxs, 4383 const SimplifyQuery &, unsigned) { 4384 if (auto *CAgg = dyn_cast<Constant>(Agg)) 4385 return ConstantFoldExtractValueInstruction(CAgg, Idxs); 4386 4387 // extractvalue x, (insertvalue y, elt, n), n -> elt 4388 unsigned NumIdxs = Idxs.size(); 4389 for (auto *IVI = dyn_cast<InsertValueInst>(Agg); IVI != nullptr; 4390 IVI = dyn_cast<InsertValueInst>(IVI->getAggregateOperand())) { 4391 ArrayRef<unsigned> InsertValueIdxs = IVI->getIndices(); 4392 unsigned NumInsertValueIdxs = InsertValueIdxs.size(); 4393 unsigned NumCommonIdxs = std::min(NumInsertValueIdxs, NumIdxs); 4394 if (InsertValueIdxs.slice(0, NumCommonIdxs) == 4395 Idxs.slice(0, NumCommonIdxs)) { 4396 if (NumIdxs == NumInsertValueIdxs) 4397 return IVI->getInsertedValueOperand(); 4398 break; 4399 } 4400 } 4401 4402 return nullptr; 4403 } 4404 4405 Value *llvm::SimplifyExtractValueInst(Value *Agg, ArrayRef<unsigned> Idxs, 4406 const SimplifyQuery &Q) { 4407 return ::SimplifyExtractValueInst(Agg, Idxs, Q, RecursionLimit); 4408 } 4409 4410 /// Given operands for an ExtractElementInst, see if we can fold the result. 4411 /// If not, this returns null. 4412 static Value *SimplifyExtractElementInst(Value *Vec, Value *Idx, 4413 const SimplifyQuery &Q, unsigned) { 4414 auto *VecVTy = cast<VectorType>(Vec->getType()); 4415 if (auto *CVec = dyn_cast<Constant>(Vec)) { 4416 if (auto *CIdx = dyn_cast<Constant>(Idx)) 4417 return ConstantExpr::getExtractElement(CVec, CIdx); 4418 4419 // The index is not relevant if our vector is a splat. 4420 if (auto *Splat = CVec->getSplatValue()) 4421 return Splat; 4422 4423 if (Q.isUndefValue(Vec)) 4424 return UndefValue::get(VecVTy->getElementType()); 4425 } 4426 4427 // If extracting a specified index from the vector, see if we can recursively 4428 // find a previously computed scalar that was inserted into the vector. 4429 if (auto *IdxC = dyn_cast<ConstantInt>(Idx)) { 4430 // For fixed-length vector, fold into undef if index is out of bounds. 4431 if (isa<FixedVectorType>(VecVTy) && 4432 IdxC->getValue().uge(cast<FixedVectorType>(VecVTy)->getNumElements())) 4433 return UndefValue::get(VecVTy->getElementType()); 4434 if (Value *Elt = findScalarElement(Vec, IdxC->getZExtValue())) 4435 return Elt; 4436 } 4437 4438 // An undef extract index can be arbitrarily chosen to be an out-of-range 4439 // index value, which would result in the instruction being undef. 4440 if (Q.isUndefValue(Idx)) 4441 return UndefValue::get(VecVTy->getElementType()); 4442 4443 return nullptr; 4444 } 4445 4446 Value *llvm::SimplifyExtractElementInst(Value *Vec, Value *Idx, 4447 const SimplifyQuery &Q) { 4448 return ::SimplifyExtractElementInst(Vec, Idx, Q, RecursionLimit); 4449 } 4450 4451 /// See if we can fold the given phi. If not, returns null. 4452 static Value *SimplifyPHINode(PHINode *PN, const SimplifyQuery &Q) { 4453 // WARNING: no matter how worthwhile it may seem, we can not perform PHI CSE 4454 // here, because the PHI we may succeed simplifying to was not 4455 // def-reachable from the original PHI! 4456 4457 // If all of the PHI's incoming values are the same then replace the PHI node 4458 // with the common value. 4459 Value *CommonValue = nullptr; 4460 bool HasUndefInput = false; 4461 for (Value *Incoming : PN->incoming_values()) { 4462 // If the incoming value is the phi node itself, it can safely be skipped. 4463 if (Incoming == PN) continue; 4464 if (Q.isUndefValue(Incoming)) { 4465 // Remember that we saw an undef value, but otherwise ignore them. 4466 HasUndefInput = true; 4467 continue; 4468 } 4469 if (CommonValue && Incoming != CommonValue) 4470 return nullptr; // Not the same, bail out. 4471 CommonValue = Incoming; 4472 } 4473 4474 // If CommonValue is null then all of the incoming values were either undef or 4475 // equal to the phi node itself. 4476 if (!CommonValue) 4477 return UndefValue::get(PN->getType()); 4478 4479 // If we have a PHI node like phi(X, undef, X), where X is defined by some 4480 // instruction, we cannot return X as the result of the PHI node unless it 4481 // dominates the PHI block. 4482 if (HasUndefInput) 4483 return valueDominatesPHI(CommonValue, PN, Q.DT) ? CommonValue : nullptr; 4484 4485 return CommonValue; 4486 } 4487 4488 static Value *SimplifyCastInst(unsigned CastOpc, Value *Op, 4489 Type *Ty, const SimplifyQuery &Q, unsigned MaxRecurse) { 4490 if (auto *C = dyn_cast<Constant>(Op)) 4491 return ConstantFoldCastOperand(CastOpc, C, Ty, Q.DL); 4492 4493 if (auto *CI = dyn_cast<CastInst>(Op)) { 4494 auto *Src = CI->getOperand(0); 4495 Type *SrcTy = Src->getType(); 4496 Type *MidTy = CI->getType(); 4497 Type *DstTy = Ty; 4498 if (Src->getType() == Ty) { 4499 auto FirstOp = static_cast<Instruction::CastOps>(CI->getOpcode()); 4500 auto SecondOp = static_cast<Instruction::CastOps>(CastOpc); 4501 Type *SrcIntPtrTy = 4502 SrcTy->isPtrOrPtrVectorTy() ? Q.DL.getIntPtrType(SrcTy) : nullptr; 4503 Type *MidIntPtrTy = 4504 MidTy->isPtrOrPtrVectorTy() ? Q.DL.getIntPtrType(MidTy) : nullptr; 4505 Type *DstIntPtrTy = 4506 DstTy->isPtrOrPtrVectorTy() ? Q.DL.getIntPtrType(DstTy) : nullptr; 4507 if (CastInst::isEliminableCastPair(FirstOp, SecondOp, SrcTy, MidTy, DstTy, 4508 SrcIntPtrTy, MidIntPtrTy, 4509 DstIntPtrTy) == Instruction::BitCast) 4510 return Src; 4511 } 4512 } 4513 4514 // bitcast x -> x 4515 if (CastOpc == Instruction::BitCast) 4516 if (Op->getType() == Ty) 4517 return Op; 4518 4519 return nullptr; 4520 } 4521 4522 Value *llvm::SimplifyCastInst(unsigned CastOpc, Value *Op, Type *Ty, 4523 const SimplifyQuery &Q) { 4524 return ::SimplifyCastInst(CastOpc, Op, Ty, Q, RecursionLimit); 4525 } 4526 4527 /// For the given destination element of a shuffle, peek through shuffles to 4528 /// match a root vector source operand that contains that element in the same 4529 /// vector lane (ie, the same mask index), so we can eliminate the shuffle(s). 4530 static Value *foldIdentityShuffles(int DestElt, Value *Op0, Value *Op1, 4531 int MaskVal, Value *RootVec, 4532 unsigned MaxRecurse) { 4533 if (!MaxRecurse--) 4534 return nullptr; 4535 4536 // Bail out if any mask value is undefined. That kind of shuffle may be 4537 // simplified further based on demanded bits or other folds. 4538 if (MaskVal == -1) 4539 return nullptr; 4540 4541 // The mask value chooses which source operand we need to look at next. 4542 int InVecNumElts = cast<FixedVectorType>(Op0->getType())->getNumElements(); 4543 int RootElt = MaskVal; 4544 Value *SourceOp = Op0; 4545 if (MaskVal >= InVecNumElts) { 4546 RootElt = MaskVal - InVecNumElts; 4547 SourceOp = Op1; 4548 } 4549 4550 // If the source operand is a shuffle itself, look through it to find the 4551 // matching root vector. 4552 if (auto *SourceShuf = dyn_cast<ShuffleVectorInst>(SourceOp)) { 4553 return foldIdentityShuffles( 4554 DestElt, SourceShuf->getOperand(0), SourceShuf->getOperand(1), 4555 SourceShuf->getMaskValue(RootElt), RootVec, MaxRecurse); 4556 } 4557 4558 // TODO: Look through bitcasts? What if the bitcast changes the vector element 4559 // size? 4560 4561 // The source operand is not a shuffle. Initialize the root vector value for 4562 // this shuffle if that has not been done yet. 4563 if (!RootVec) 4564 RootVec = SourceOp; 4565 4566 // Give up as soon as a source operand does not match the existing root value. 4567 if (RootVec != SourceOp) 4568 return nullptr; 4569 4570 // The element must be coming from the same lane in the source vector 4571 // (although it may have crossed lanes in intermediate shuffles). 4572 if (RootElt != DestElt) 4573 return nullptr; 4574 4575 return RootVec; 4576 } 4577 4578 static Value *SimplifyShuffleVectorInst(Value *Op0, Value *Op1, 4579 ArrayRef<int> Mask, Type *RetTy, 4580 const SimplifyQuery &Q, 4581 unsigned MaxRecurse) { 4582 if (all_of(Mask, [](int Elem) { return Elem == UndefMaskElem; })) 4583 return UndefValue::get(RetTy); 4584 4585 auto *InVecTy = cast<VectorType>(Op0->getType()); 4586 unsigned MaskNumElts = Mask.size(); 4587 ElementCount InVecEltCount = InVecTy->getElementCount(); 4588 4589 bool Scalable = InVecEltCount.isScalable(); 4590 4591 SmallVector<int, 32> Indices; 4592 Indices.assign(Mask.begin(), Mask.end()); 4593 4594 // Canonicalization: If mask does not select elements from an input vector, 4595 // replace that input vector with undef. 4596 if (!Scalable) { 4597 bool MaskSelects0 = false, MaskSelects1 = false; 4598 unsigned InVecNumElts = InVecEltCount.getKnownMinValue(); 4599 for (unsigned i = 0; i != MaskNumElts; ++i) { 4600 if (Indices[i] == -1) 4601 continue; 4602 if ((unsigned)Indices[i] < InVecNumElts) 4603 MaskSelects0 = true; 4604 else 4605 MaskSelects1 = true; 4606 } 4607 if (!MaskSelects0) 4608 Op0 = UndefValue::get(InVecTy); 4609 if (!MaskSelects1) 4610 Op1 = UndefValue::get(InVecTy); 4611 } 4612 4613 auto *Op0Const = dyn_cast<Constant>(Op0); 4614 auto *Op1Const = dyn_cast<Constant>(Op1); 4615 4616 // If all operands are constant, constant fold the shuffle. This 4617 // transformation depends on the value of the mask which is not known at 4618 // compile time for scalable vectors 4619 if (Op0Const && Op1Const) 4620 return ConstantExpr::getShuffleVector(Op0Const, Op1Const, Mask); 4621 4622 // Canonicalization: if only one input vector is constant, it shall be the 4623 // second one. This transformation depends on the value of the mask which 4624 // is not known at compile time for scalable vectors 4625 if (!Scalable && Op0Const && !Op1Const) { 4626 std::swap(Op0, Op1); 4627 ShuffleVectorInst::commuteShuffleMask(Indices, 4628 InVecEltCount.getKnownMinValue()); 4629 } 4630 4631 // A splat of an inserted scalar constant becomes a vector constant: 4632 // shuf (inselt ?, C, IndexC), undef, <IndexC, IndexC...> --> <C, C...> 4633 // NOTE: We may have commuted above, so analyze the updated Indices, not the 4634 // original mask constant. 4635 // NOTE: This transformation depends on the value of the mask which is not 4636 // known at compile time for scalable vectors 4637 Constant *C; 4638 ConstantInt *IndexC; 4639 if (!Scalable && match(Op0, m_InsertElt(m_Value(), m_Constant(C), 4640 m_ConstantInt(IndexC)))) { 4641 // Match a splat shuffle mask of the insert index allowing undef elements. 4642 int InsertIndex = IndexC->getZExtValue(); 4643 if (all_of(Indices, [InsertIndex](int MaskElt) { 4644 return MaskElt == InsertIndex || MaskElt == -1; 4645 })) { 4646 assert(isa<UndefValue>(Op1) && "Expected undef operand 1 for splat"); 4647 4648 // Shuffle mask undefs become undefined constant result elements. 4649 SmallVector<Constant *, 16> VecC(MaskNumElts, C); 4650 for (unsigned i = 0; i != MaskNumElts; ++i) 4651 if (Indices[i] == -1) 4652 VecC[i] = UndefValue::get(C->getType()); 4653 return ConstantVector::get(VecC); 4654 } 4655 } 4656 4657 // A shuffle of a splat is always the splat itself. Legal if the shuffle's 4658 // value type is same as the input vectors' type. 4659 if (auto *OpShuf = dyn_cast<ShuffleVectorInst>(Op0)) 4660 if (Q.isUndefValue(Op1) && RetTy == InVecTy && 4661 is_splat(OpShuf->getShuffleMask())) 4662 return Op0; 4663 4664 // All remaining transformation depend on the value of the mask, which is 4665 // not known at compile time for scalable vectors. 4666 if (Scalable) 4667 return nullptr; 4668 4669 // Don't fold a shuffle with undef mask elements. This may get folded in a 4670 // better way using demanded bits or other analysis. 4671 // TODO: Should we allow this? 4672 if (is_contained(Indices, -1)) 4673 return nullptr; 4674 4675 // Check if every element of this shuffle can be mapped back to the 4676 // corresponding element of a single root vector. If so, we don't need this 4677 // shuffle. This handles simple identity shuffles as well as chains of 4678 // shuffles that may widen/narrow and/or move elements across lanes and back. 4679 Value *RootVec = nullptr; 4680 for (unsigned i = 0; i != MaskNumElts; ++i) { 4681 // Note that recursion is limited for each vector element, so if any element 4682 // exceeds the limit, this will fail to simplify. 4683 RootVec = 4684 foldIdentityShuffles(i, Op0, Op1, Indices[i], RootVec, MaxRecurse); 4685 4686 // We can't replace a widening/narrowing shuffle with one of its operands. 4687 if (!RootVec || RootVec->getType() != RetTy) 4688 return nullptr; 4689 } 4690 return RootVec; 4691 } 4692 4693 /// Given operands for a ShuffleVectorInst, fold the result or return null. 4694 Value *llvm::SimplifyShuffleVectorInst(Value *Op0, Value *Op1, 4695 ArrayRef<int> Mask, Type *RetTy, 4696 const SimplifyQuery &Q) { 4697 return ::SimplifyShuffleVectorInst(Op0, Op1, Mask, RetTy, Q, RecursionLimit); 4698 } 4699 4700 static Constant *foldConstant(Instruction::UnaryOps Opcode, 4701 Value *&Op, const SimplifyQuery &Q) { 4702 if (auto *C = dyn_cast<Constant>(Op)) 4703 return ConstantFoldUnaryOpOperand(Opcode, C, Q.DL); 4704 return nullptr; 4705 } 4706 4707 /// Given the operand for an FNeg, see if we can fold the result. If not, this 4708 /// returns null. 4709 static Value *simplifyFNegInst(Value *Op, FastMathFlags FMF, 4710 const SimplifyQuery &Q, unsigned MaxRecurse) { 4711 if (Constant *C = foldConstant(Instruction::FNeg, Op, Q)) 4712 return C; 4713 4714 Value *X; 4715 // fneg (fneg X) ==> X 4716 if (match(Op, m_FNeg(m_Value(X)))) 4717 return X; 4718 4719 return nullptr; 4720 } 4721 4722 Value *llvm::SimplifyFNegInst(Value *Op, FastMathFlags FMF, 4723 const SimplifyQuery &Q) { 4724 return ::simplifyFNegInst(Op, FMF, Q, RecursionLimit); 4725 } 4726 4727 static Constant *propagateNaN(Constant *In) { 4728 // If the input is a vector with undef elements, just return a default NaN. 4729 if (!In->isNaN()) 4730 return ConstantFP::getNaN(In->getType()); 4731 4732 // Propagate the existing NaN constant when possible. 4733 // TODO: Should we quiet a signaling NaN? 4734 return In; 4735 } 4736 4737 /// Perform folds that are common to any floating-point operation. This implies 4738 /// transforms based on undef/NaN because the operation itself makes no 4739 /// difference to the result. 4740 static Constant *simplifyFPOp(ArrayRef<Value *> Ops, 4741 FastMathFlags FMF, 4742 const SimplifyQuery &Q) { 4743 for (Value *V : Ops) { 4744 bool IsNan = match(V, m_NaN()); 4745 bool IsInf = match(V, m_Inf()); 4746 bool IsUndef = Q.isUndefValue(V); 4747 4748 // If this operation has 'nnan' or 'ninf' and at least 1 disallowed operand 4749 // (an undef operand can be chosen to be Nan/Inf), then the result of 4750 // this operation is poison. That result can be relaxed to undef. 4751 if (FMF.noNaNs() && (IsNan || IsUndef)) 4752 return UndefValue::get(V->getType()); 4753 if (FMF.noInfs() && (IsInf || IsUndef)) 4754 return UndefValue::get(V->getType()); 4755 4756 if (IsUndef || IsNan) 4757 return propagateNaN(cast<Constant>(V)); 4758 } 4759 return nullptr; 4760 } 4761 4762 /// Given operands for an FAdd, see if we can fold the result. If not, this 4763 /// returns null. 4764 static Value *SimplifyFAddInst(Value *Op0, Value *Op1, FastMathFlags FMF, 4765 const SimplifyQuery &Q, unsigned MaxRecurse) { 4766 if (Constant *C = foldOrCommuteConstant(Instruction::FAdd, Op0, Op1, Q)) 4767 return C; 4768 4769 if (Constant *C = simplifyFPOp({Op0, Op1}, FMF, Q)) 4770 return C; 4771 4772 // fadd X, -0 ==> X 4773 if (match(Op1, m_NegZeroFP())) 4774 return Op0; 4775 4776 // fadd X, 0 ==> X, when we know X is not -0 4777 if (match(Op1, m_PosZeroFP()) && 4778 (FMF.noSignedZeros() || CannotBeNegativeZero(Op0, Q.TLI))) 4779 return Op0; 4780 4781 // With nnan: -X + X --> 0.0 (and commuted variant) 4782 // We don't have to explicitly exclude infinities (ninf): INF + -INF == NaN. 4783 // Negative zeros are allowed because we always end up with positive zero: 4784 // X = -0.0: (-0.0 - (-0.0)) + (-0.0) == ( 0.0) + (-0.0) == 0.0 4785 // X = -0.0: ( 0.0 - (-0.0)) + (-0.0) == ( 0.0) + (-0.0) == 0.0 4786 // X = 0.0: (-0.0 - ( 0.0)) + ( 0.0) == (-0.0) + ( 0.0) == 0.0 4787 // X = 0.0: ( 0.0 - ( 0.0)) + ( 0.0) == ( 0.0) + ( 0.0) == 0.0 4788 if (FMF.noNaNs()) { 4789 if (match(Op0, m_FSub(m_AnyZeroFP(), m_Specific(Op1))) || 4790 match(Op1, m_FSub(m_AnyZeroFP(), m_Specific(Op0)))) 4791 return ConstantFP::getNullValue(Op0->getType()); 4792 4793 if (match(Op0, m_FNeg(m_Specific(Op1))) || 4794 match(Op1, m_FNeg(m_Specific(Op0)))) 4795 return ConstantFP::getNullValue(Op0->getType()); 4796 } 4797 4798 // (X - Y) + Y --> X 4799 // Y + (X - Y) --> X 4800 Value *X; 4801 if (FMF.noSignedZeros() && FMF.allowReassoc() && 4802 (match(Op0, m_FSub(m_Value(X), m_Specific(Op1))) || 4803 match(Op1, m_FSub(m_Value(X), m_Specific(Op0))))) 4804 return X; 4805 4806 return nullptr; 4807 } 4808 4809 /// Given operands for an FSub, see if we can fold the result. If not, this 4810 /// returns null. 4811 static Value *SimplifyFSubInst(Value *Op0, Value *Op1, FastMathFlags FMF, 4812 const SimplifyQuery &Q, unsigned MaxRecurse) { 4813 if (Constant *C = foldOrCommuteConstant(Instruction::FSub, Op0, Op1, Q)) 4814 return C; 4815 4816 if (Constant *C = simplifyFPOp({Op0, Op1}, FMF, Q)) 4817 return C; 4818 4819 // fsub X, +0 ==> X 4820 if (match(Op1, m_PosZeroFP())) 4821 return Op0; 4822 4823 // fsub X, -0 ==> X, when we know X is not -0 4824 if (match(Op1, m_NegZeroFP()) && 4825 (FMF.noSignedZeros() || CannotBeNegativeZero(Op0, Q.TLI))) 4826 return Op0; 4827 4828 // fsub -0.0, (fsub -0.0, X) ==> X 4829 // fsub -0.0, (fneg X) ==> X 4830 Value *X; 4831 if (match(Op0, m_NegZeroFP()) && 4832 match(Op1, m_FNeg(m_Value(X)))) 4833 return X; 4834 4835 // fsub 0.0, (fsub 0.0, X) ==> X if signed zeros are ignored. 4836 // fsub 0.0, (fneg X) ==> X if signed zeros are ignored. 4837 if (FMF.noSignedZeros() && match(Op0, m_AnyZeroFP()) && 4838 (match(Op1, m_FSub(m_AnyZeroFP(), m_Value(X))) || 4839 match(Op1, m_FNeg(m_Value(X))))) 4840 return X; 4841 4842 // fsub nnan x, x ==> 0.0 4843 if (FMF.noNaNs() && Op0 == Op1) 4844 return Constant::getNullValue(Op0->getType()); 4845 4846 // Y - (Y - X) --> X 4847 // (X + Y) - Y --> X 4848 if (FMF.noSignedZeros() && FMF.allowReassoc() && 4849 (match(Op1, m_FSub(m_Specific(Op0), m_Value(X))) || 4850 match(Op0, m_c_FAdd(m_Specific(Op1), m_Value(X))))) 4851 return X; 4852 4853 return nullptr; 4854 } 4855 4856 static Value *SimplifyFMAFMul(Value *Op0, Value *Op1, FastMathFlags FMF, 4857 const SimplifyQuery &Q, unsigned MaxRecurse) { 4858 if (Constant *C = simplifyFPOp({Op0, Op1}, FMF, Q)) 4859 return C; 4860 4861 // fmul X, 1.0 ==> X 4862 if (match(Op1, m_FPOne())) 4863 return Op0; 4864 4865 // fmul 1.0, X ==> X 4866 if (match(Op0, m_FPOne())) 4867 return Op1; 4868 4869 // fmul nnan nsz X, 0 ==> 0 4870 if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op1, m_AnyZeroFP())) 4871 return ConstantFP::getNullValue(Op0->getType()); 4872 4873 // fmul nnan nsz 0, X ==> 0 4874 if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op0, m_AnyZeroFP())) 4875 return ConstantFP::getNullValue(Op1->getType()); 4876 4877 // sqrt(X) * sqrt(X) --> X, if we can: 4878 // 1. Remove the intermediate rounding (reassociate). 4879 // 2. Ignore non-zero negative numbers because sqrt would produce NAN. 4880 // 3. Ignore -0.0 because sqrt(-0.0) == -0.0, but -0.0 * -0.0 == 0.0. 4881 Value *X; 4882 if (Op0 == Op1 && match(Op0, m_Intrinsic<Intrinsic::sqrt>(m_Value(X))) && 4883 FMF.allowReassoc() && FMF.noNaNs() && FMF.noSignedZeros()) 4884 return X; 4885 4886 return nullptr; 4887 } 4888 4889 /// Given the operands for an FMul, see if we can fold the result 4890 static Value *SimplifyFMulInst(Value *Op0, Value *Op1, FastMathFlags FMF, 4891 const SimplifyQuery &Q, unsigned MaxRecurse) { 4892 if (Constant *C = foldOrCommuteConstant(Instruction::FMul, Op0, Op1, Q)) 4893 return C; 4894 4895 // Now apply simplifications that do not require rounding. 4896 return SimplifyFMAFMul(Op0, Op1, FMF, Q, MaxRecurse); 4897 } 4898 4899 Value *llvm::SimplifyFAddInst(Value *Op0, Value *Op1, FastMathFlags FMF, 4900 const SimplifyQuery &Q) { 4901 return ::SimplifyFAddInst(Op0, Op1, FMF, Q, RecursionLimit); 4902 } 4903 4904 4905 Value *llvm::SimplifyFSubInst(Value *Op0, Value *Op1, FastMathFlags FMF, 4906 const SimplifyQuery &Q) { 4907 return ::SimplifyFSubInst(Op0, Op1, FMF, Q, RecursionLimit); 4908 } 4909 4910 Value *llvm::SimplifyFMulInst(Value *Op0, Value *Op1, FastMathFlags FMF, 4911 const SimplifyQuery &Q) { 4912 return ::SimplifyFMulInst(Op0, Op1, FMF, Q, RecursionLimit); 4913 } 4914 4915 Value *llvm::SimplifyFMAFMul(Value *Op0, Value *Op1, FastMathFlags FMF, 4916 const SimplifyQuery &Q) { 4917 return ::SimplifyFMAFMul(Op0, Op1, FMF, Q, RecursionLimit); 4918 } 4919 4920 static Value *SimplifyFDivInst(Value *Op0, Value *Op1, FastMathFlags FMF, 4921 const SimplifyQuery &Q, unsigned) { 4922 if (Constant *C = foldOrCommuteConstant(Instruction::FDiv, Op0, Op1, Q)) 4923 return C; 4924 4925 if (Constant *C = simplifyFPOp({Op0, Op1}, FMF, Q)) 4926 return C; 4927 4928 // X / 1.0 -> X 4929 if (match(Op1, m_FPOne())) 4930 return Op0; 4931 4932 // 0 / X -> 0 4933 // Requires that NaNs are off (X could be zero) and signed zeroes are 4934 // ignored (X could be positive or negative, so the output sign is unknown). 4935 if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op0, m_AnyZeroFP())) 4936 return ConstantFP::getNullValue(Op0->getType()); 4937 4938 if (FMF.noNaNs()) { 4939 // X / X -> 1.0 is legal when NaNs are ignored. 4940 // We can ignore infinities because INF/INF is NaN. 4941 if (Op0 == Op1) 4942 return ConstantFP::get(Op0->getType(), 1.0); 4943 4944 // (X * Y) / Y --> X if we can reassociate to the above form. 4945 Value *X; 4946 if (FMF.allowReassoc() && match(Op0, m_c_FMul(m_Value(X), m_Specific(Op1)))) 4947 return X; 4948 4949 // -X / X -> -1.0 and 4950 // X / -X -> -1.0 are legal when NaNs are ignored. 4951 // We can ignore signed zeros because +-0.0/+-0.0 is NaN and ignored. 4952 if (match(Op0, m_FNegNSZ(m_Specific(Op1))) || 4953 match(Op1, m_FNegNSZ(m_Specific(Op0)))) 4954 return ConstantFP::get(Op0->getType(), -1.0); 4955 } 4956 4957 return nullptr; 4958 } 4959 4960 Value *llvm::SimplifyFDivInst(Value *Op0, Value *Op1, FastMathFlags FMF, 4961 const SimplifyQuery &Q) { 4962 return ::SimplifyFDivInst(Op0, Op1, FMF, Q, RecursionLimit); 4963 } 4964 4965 static Value *SimplifyFRemInst(Value *Op0, Value *Op1, FastMathFlags FMF, 4966 const SimplifyQuery &Q, unsigned) { 4967 if (Constant *C = foldOrCommuteConstant(Instruction::FRem, Op0, Op1, Q)) 4968 return C; 4969 4970 if (Constant *C = simplifyFPOp({Op0, Op1}, FMF, Q)) 4971 return C; 4972 4973 // Unlike fdiv, the result of frem always matches the sign of the dividend. 4974 // The constant match may include undef elements in a vector, so return a full 4975 // zero constant as the result. 4976 if (FMF.noNaNs()) { 4977 // +0 % X -> 0 4978 if (match(Op0, m_PosZeroFP())) 4979 return ConstantFP::getNullValue(Op0->getType()); 4980 // -0 % X -> -0 4981 if (match(Op0, m_NegZeroFP())) 4982 return ConstantFP::getNegativeZero(Op0->getType()); 4983 } 4984 4985 return nullptr; 4986 } 4987 4988 Value *llvm::SimplifyFRemInst(Value *Op0, Value *Op1, FastMathFlags FMF, 4989 const SimplifyQuery &Q) { 4990 return ::SimplifyFRemInst(Op0, Op1, FMF, Q, RecursionLimit); 4991 } 4992 4993 //=== Helper functions for higher up the class hierarchy. 4994 4995 /// Given the operand for a UnaryOperator, see if we can fold the result. 4996 /// If not, this returns null. 4997 static Value *simplifyUnOp(unsigned Opcode, Value *Op, const SimplifyQuery &Q, 4998 unsigned MaxRecurse) { 4999 switch (Opcode) { 5000 case Instruction::FNeg: 5001 return simplifyFNegInst(Op, FastMathFlags(), Q, MaxRecurse); 5002 default: 5003 llvm_unreachable("Unexpected opcode"); 5004 } 5005 } 5006 5007 /// Given the operand for a UnaryOperator, see if we can fold the result. 5008 /// If not, this returns null. 5009 /// Try to use FastMathFlags when folding the result. 5010 static Value *simplifyFPUnOp(unsigned Opcode, Value *Op, 5011 const FastMathFlags &FMF, 5012 const SimplifyQuery &Q, unsigned MaxRecurse) { 5013 switch (Opcode) { 5014 case Instruction::FNeg: 5015 return simplifyFNegInst(Op, FMF, Q, MaxRecurse); 5016 default: 5017 return simplifyUnOp(Opcode, Op, Q, MaxRecurse); 5018 } 5019 } 5020 5021 Value *llvm::SimplifyUnOp(unsigned Opcode, Value *Op, const SimplifyQuery &Q) { 5022 return ::simplifyUnOp(Opcode, Op, Q, RecursionLimit); 5023 } 5024 5025 Value *llvm::SimplifyUnOp(unsigned Opcode, Value *Op, FastMathFlags FMF, 5026 const SimplifyQuery &Q) { 5027 return ::simplifyFPUnOp(Opcode, Op, FMF, Q, RecursionLimit); 5028 } 5029 5030 /// Given operands for a BinaryOperator, see if we can fold the result. 5031 /// If not, this returns null. 5032 static Value *SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS, 5033 const SimplifyQuery &Q, unsigned MaxRecurse) { 5034 switch (Opcode) { 5035 case Instruction::Add: 5036 return SimplifyAddInst(LHS, RHS, false, false, Q, MaxRecurse); 5037 case Instruction::Sub: 5038 return SimplifySubInst(LHS, RHS, false, false, Q, MaxRecurse); 5039 case Instruction::Mul: 5040 return SimplifyMulInst(LHS, RHS, Q, MaxRecurse); 5041 case Instruction::SDiv: 5042 return SimplifySDivInst(LHS, RHS, Q, MaxRecurse); 5043 case Instruction::UDiv: 5044 return SimplifyUDivInst(LHS, RHS, Q, MaxRecurse); 5045 case Instruction::SRem: 5046 return SimplifySRemInst(LHS, RHS, Q, MaxRecurse); 5047 case Instruction::URem: 5048 return SimplifyURemInst(LHS, RHS, Q, MaxRecurse); 5049 case Instruction::Shl: 5050 return SimplifyShlInst(LHS, RHS, false, false, Q, MaxRecurse); 5051 case Instruction::LShr: 5052 return SimplifyLShrInst(LHS, RHS, false, Q, MaxRecurse); 5053 case Instruction::AShr: 5054 return SimplifyAShrInst(LHS, RHS, false, Q, MaxRecurse); 5055 case Instruction::And: 5056 return SimplifyAndInst(LHS, RHS, Q, MaxRecurse); 5057 case Instruction::Or: 5058 return SimplifyOrInst(LHS, RHS, Q, MaxRecurse); 5059 case Instruction::Xor: 5060 return SimplifyXorInst(LHS, RHS, Q, MaxRecurse); 5061 case Instruction::FAdd: 5062 return SimplifyFAddInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse); 5063 case Instruction::FSub: 5064 return SimplifyFSubInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse); 5065 case Instruction::FMul: 5066 return SimplifyFMulInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse); 5067 case Instruction::FDiv: 5068 return SimplifyFDivInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse); 5069 case Instruction::FRem: 5070 return SimplifyFRemInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse); 5071 default: 5072 llvm_unreachable("Unexpected opcode"); 5073 } 5074 } 5075 5076 /// Given operands for a BinaryOperator, see if we can fold the result. 5077 /// If not, this returns null. 5078 /// Try to use FastMathFlags when folding the result. 5079 static Value *SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS, 5080 const FastMathFlags &FMF, const SimplifyQuery &Q, 5081 unsigned MaxRecurse) { 5082 switch (Opcode) { 5083 case Instruction::FAdd: 5084 return SimplifyFAddInst(LHS, RHS, FMF, Q, MaxRecurse); 5085 case Instruction::FSub: 5086 return SimplifyFSubInst(LHS, RHS, FMF, Q, MaxRecurse); 5087 case Instruction::FMul: 5088 return SimplifyFMulInst(LHS, RHS, FMF, Q, MaxRecurse); 5089 case Instruction::FDiv: 5090 return SimplifyFDivInst(LHS, RHS, FMF, Q, MaxRecurse); 5091 default: 5092 return SimplifyBinOp(Opcode, LHS, RHS, Q, MaxRecurse); 5093 } 5094 } 5095 5096 Value *llvm::SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS, 5097 const SimplifyQuery &Q) { 5098 return ::SimplifyBinOp(Opcode, LHS, RHS, Q, RecursionLimit); 5099 } 5100 5101 Value *llvm::SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS, 5102 FastMathFlags FMF, const SimplifyQuery &Q) { 5103 return ::SimplifyBinOp(Opcode, LHS, RHS, FMF, Q, RecursionLimit); 5104 } 5105 5106 /// Given operands for a CmpInst, see if we can fold the result. 5107 static Value *SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS, 5108 const SimplifyQuery &Q, unsigned MaxRecurse) { 5109 if (CmpInst::isIntPredicate((CmpInst::Predicate)Predicate)) 5110 return SimplifyICmpInst(Predicate, LHS, RHS, Q, MaxRecurse); 5111 return SimplifyFCmpInst(Predicate, LHS, RHS, FastMathFlags(), Q, MaxRecurse); 5112 } 5113 5114 Value *llvm::SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS, 5115 const SimplifyQuery &Q) { 5116 return ::SimplifyCmpInst(Predicate, LHS, RHS, Q, RecursionLimit); 5117 } 5118 5119 static bool IsIdempotent(Intrinsic::ID ID) { 5120 switch (ID) { 5121 default: return false; 5122 5123 // Unary idempotent: f(f(x)) = f(x) 5124 case Intrinsic::fabs: 5125 case Intrinsic::floor: 5126 case Intrinsic::ceil: 5127 case Intrinsic::trunc: 5128 case Intrinsic::rint: 5129 case Intrinsic::nearbyint: 5130 case Intrinsic::round: 5131 case Intrinsic::roundeven: 5132 case Intrinsic::canonicalize: 5133 return true; 5134 } 5135 } 5136 5137 static Value *SimplifyRelativeLoad(Constant *Ptr, Constant *Offset, 5138 const DataLayout &DL) { 5139 GlobalValue *PtrSym; 5140 APInt PtrOffset; 5141 if (!IsConstantOffsetFromGlobal(Ptr, PtrSym, PtrOffset, DL)) 5142 return nullptr; 5143 5144 Type *Int8PtrTy = Type::getInt8PtrTy(Ptr->getContext()); 5145 Type *Int32Ty = Type::getInt32Ty(Ptr->getContext()); 5146 Type *Int32PtrTy = Int32Ty->getPointerTo(); 5147 Type *Int64Ty = Type::getInt64Ty(Ptr->getContext()); 5148 5149 auto *OffsetConstInt = dyn_cast<ConstantInt>(Offset); 5150 if (!OffsetConstInt || OffsetConstInt->getType()->getBitWidth() > 64) 5151 return nullptr; 5152 5153 uint64_t OffsetInt = OffsetConstInt->getSExtValue(); 5154 if (OffsetInt % 4 != 0) 5155 return nullptr; 5156 5157 Constant *C = ConstantExpr::getGetElementPtr( 5158 Int32Ty, ConstantExpr::getBitCast(Ptr, Int32PtrTy), 5159 ConstantInt::get(Int64Ty, OffsetInt / 4)); 5160 Constant *Loaded = ConstantFoldLoadFromConstPtr(C, Int32Ty, DL); 5161 if (!Loaded) 5162 return nullptr; 5163 5164 auto *LoadedCE = dyn_cast<ConstantExpr>(Loaded); 5165 if (!LoadedCE) 5166 return nullptr; 5167 5168 if (LoadedCE->getOpcode() == Instruction::Trunc) { 5169 LoadedCE = dyn_cast<ConstantExpr>(LoadedCE->getOperand(0)); 5170 if (!LoadedCE) 5171 return nullptr; 5172 } 5173 5174 if (LoadedCE->getOpcode() != Instruction::Sub) 5175 return nullptr; 5176 5177 auto *LoadedLHS = dyn_cast<ConstantExpr>(LoadedCE->getOperand(0)); 5178 if (!LoadedLHS || LoadedLHS->getOpcode() != Instruction::PtrToInt) 5179 return nullptr; 5180 auto *LoadedLHSPtr = LoadedLHS->getOperand(0); 5181 5182 Constant *LoadedRHS = LoadedCE->getOperand(1); 5183 GlobalValue *LoadedRHSSym; 5184 APInt LoadedRHSOffset; 5185 if (!IsConstantOffsetFromGlobal(LoadedRHS, LoadedRHSSym, LoadedRHSOffset, 5186 DL) || 5187 PtrSym != LoadedRHSSym || PtrOffset != LoadedRHSOffset) 5188 return nullptr; 5189 5190 return ConstantExpr::getBitCast(LoadedLHSPtr, Int8PtrTy); 5191 } 5192 5193 static Value *simplifyUnaryIntrinsic(Function *F, Value *Op0, 5194 const SimplifyQuery &Q) { 5195 // Idempotent functions return the same result when called repeatedly. 5196 Intrinsic::ID IID = F->getIntrinsicID(); 5197 if (IsIdempotent(IID)) 5198 if (auto *II = dyn_cast<IntrinsicInst>(Op0)) 5199 if (II->getIntrinsicID() == IID) 5200 return II; 5201 5202 Value *X; 5203 switch (IID) { 5204 case Intrinsic::fabs: 5205 if (SignBitMustBeZero(Op0, Q.TLI)) return Op0; 5206 break; 5207 case Intrinsic::bswap: 5208 // bswap(bswap(x)) -> x 5209 if (match(Op0, m_BSwap(m_Value(X)))) return X; 5210 break; 5211 case Intrinsic::bitreverse: 5212 // bitreverse(bitreverse(x)) -> x 5213 if (match(Op0, m_BitReverse(m_Value(X)))) return X; 5214 break; 5215 case Intrinsic::exp: 5216 // exp(log(x)) -> x 5217 if (Q.CxtI->hasAllowReassoc() && 5218 match(Op0, m_Intrinsic<Intrinsic::log>(m_Value(X)))) return X; 5219 break; 5220 case Intrinsic::exp2: 5221 // exp2(log2(x)) -> x 5222 if (Q.CxtI->hasAllowReassoc() && 5223 match(Op0, m_Intrinsic<Intrinsic::log2>(m_Value(X)))) return X; 5224 break; 5225 case Intrinsic::log: 5226 // log(exp(x)) -> x 5227 if (Q.CxtI->hasAllowReassoc() && 5228 match(Op0, m_Intrinsic<Intrinsic::exp>(m_Value(X)))) return X; 5229 break; 5230 case Intrinsic::log2: 5231 // log2(exp2(x)) -> x 5232 if (Q.CxtI->hasAllowReassoc() && 5233 (match(Op0, m_Intrinsic<Intrinsic::exp2>(m_Value(X))) || 5234 match(Op0, m_Intrinsic<Intrinsic::pow>(m_SpecificFP(2.0), 5235 m_Value(X))))) return X; 5236 break; 5237 case Intrinsic::log10: 5238 // log10(pow(10.0, x)) -> x 5239 if (Q.CxtI->hasAllowReassoc() && 5240 match(Op0, m_Intrinsic<Intrinsic::pow>(m_SpecificFP(10.0), 5241 m_Value(X)))) return X; 5242 break; 5243 case Intrinsic::floor: 5244 case Intrinsic::trunc: 5245 case Intrinsic::ceil: 5246 case Intrinsic::round: 5247 case Intrinsic::roundeven: 5248 case Intrinsic::nearbyint: 5249 case Intrinsic::rint: { 5250 // floor (sitofp x) -> sitofp x 5251 // floor (uitofp x) -> uitofp x 5252 // 5253 // Converting from int always results in a finite integral number or 5254 // infinity. For either of those inputs, these rounding functions always 5255 // return the same value, so the rounding can be eliminated. 5256 if (match(Op0, m_SIToFP(m_Value())) || match(Op0, m_UIToFP(m_Value()))) 5257 return Op0; 5258 break; 5259 } 5260 default: 5261 break; 5262 } 5263 5264 return nullptr; 5265 } 5266 5267 static Intrinsic::ID getMaxMinOpposite(Intrinsic::ID IID) { 5268 switch (IID) { 5269 case Intrinsic::smax: return Intrinsic::smin; 5270 case Intrinsic::smin: return Intrinsic::smax; 5271 case Intrinsic::umax: return Intrinsic::umin; 5272 case Intrinsic::umin: return Intrinsic::umax; 5273 default: llvm_unreachable("Unexpected intrinsic"); 5274 } 5275 } 5276 5277 static APInt getMaxMinLimit(Intrinsic::ID IID, unsigned BitWidth) { 5278 switch (IID) { 5279 case Intrinsic::smax: return APInt::getSignedMaxValue(BitWidth); 5280 case Intrinsic::smin: return APInt::getSignedMinValue(BitWidth); 5281 case Intrinsic::umax: return APInt::getMaxValue(BitWidth); 5282 case Intrinsic::umin: return APInt::getMinValue(BitWidth); 5283 default: llvm_unreachable("Unexpected intrinsic"); 5284 } 5285 } 5286 5287 static ICmpInst::Predicate getMaxMinPredicate(Intrinsic::ID IID) { 5288 switch (IID) { 5289 case Intrinsic::smax: return ICmpInst::ICMP_SGE; 5290 case Intrinsic::smin: return ICmpInst::ICMP_SLE; 5291 case Intrinsic::umax: return ICmpInst::ICMP_UGE; 5292 case Intrinsic::umin: return ICmpInst::ICMP_ULE; 5293 default: llvm_unreachable("Unexpected intrinsic"); 5294 } 5295 } 5296 5297 /// Given a min/max intrinsic, see if it can be removed based on having an 5298 /// operand that is another min/max intrinsic with shared operand(s). The caller 5299 /// is expected to swap the operand arguments to handle commutation. 5300 static Value *foldMinMaxSharedOp(Intrinsic::ID IID, Value *Op0, Value *Op1) { 5301 Value *X, *Y; 5302 if (!match(Op0, m_MaxOrMin(m_Value(X), m_Value(Y)))) 5303 return nullptr; 5304 5305 auto *MM0 = dyn_cast<IntrinsicInst>(Op0); 5306 if (!MM0) 5307 return nullptr; 5308 Intrinsic::ID IID0 = MM0->getIntrinsicID(); 5309 5310 if (Op1 == X || Op1 == Y || 5311 match(Op1, m_c_MaxOrMin(m_Specific(X), m_Specific(Y)))) { 5312 // max (max X, Y), X --> max X, Y 5313 if (IID0 == IID) 5314 return MM0; 5315 // max (min X, Y), X --> X 5316 if (IID0 == getMaxMinOpposite(IID)) 5317 return Op1; 5318 } 5319 return nullptr; 5320 } 5321 5322 static Value *simplifyBinaryIntrinsic(Function *F, Value *Op0, Value *Op1, 5323 const SimplifyQuery &Q) { 5324 Intrinsic::ID IID = F->getIntrinsicID(); 5325 Type *ReturnType = F->getReturnType(); 5326 unsigned BitWidth = ReturnType->getScalarSizeInBits(); 5327 switch (IID) { 5328 case Intrinsic::abs: 5329 // abs(abs(x)) -> abs(x). We don't need to worry about the nsw arg here. 5330 // It is always ok to pick the earlier abs. We'll just lose nsw if its only 5331 // on the outer abs. 5332 if (match(Op0, m_Intrinsic<Intrinsic::abs>(m_Value(), m_Value()))) 5333 return Op0; 5334 break; 5335 5336 case Intrinsic::smax: 5337 case Intrinsic::smin: 5338 case Intrinsic::umax: 5339 case Intrinsic::umin: { 5340 // If the arguments are the same, this is a no-op. 5341 if (Op0 == Op1) 5342 return Op0; 5343 5344 // Canonicalize constant operand as Op1. 5345 if (isa<Constant>(Op0)) 5346 std::swap(Op0, Op1); 5347 5348 // Assume undef is the limit value. 5349 if (Q.isUndefValue(Op1)) 5350 return ConstantInt::get(ReturnType, getMaxMinLimit(IID, BitWidth)); 5351 5352 const APInt *C; 5353 if (match(Op1, m_APIntAllowUndef(C))) { 5354 // Clamp to limit value. For example: 5355 // umax(i8 %x, i8 255) --> 255 5356 if (*C == getMaxMinLimit(IID, BitWidth)) 5357 return ConstantInt::get(ReturnType, *C); 5358 5359 // If the constant op is the opposite of the limit value, the other must 5360 // be larger/smaller or equal. For example: 5361 // umin(i8 %x, i8 255) --> %x 5362 if (*C == getMaxMinLimit(getMaxMinOpposite(IID), BitWidth)) 5363 return Op0; 5364 5365 // Remove nested call if constant operands allow it. Example: 5366 // max (max X, 7), 5 -> max X, 7 5367 auto *MinMax0 = dyn_cast<IntrinsicInst>(Op0); 5368 if (MinMax0 && MinMax0->getIntrinsicID() == IID) { 5369 // TODO: loosen undef/splat restrictions for vector constants. 5370 Value *M00 = MinMax0->getOperand(0), *M01 = MinMax0->getOperand(1); 5371 const APInt *InnerC; 5372 if ((match(M00, m_APInt(InnerC)) || match(M01, m_APInt(InnerC))) && 5373 ((IID == Intrinsic::smax && InnerC->sge(*C)) || 5374 (IID == Intrinsic::smin && InnerC->sle(*C)) || 5375 (IID == Intrinsic::umax && InnerC->uge(*C)) || 5376 (IID == Intrinsic::umin && InnerC->ule(*C)))) 5377 return Op0; 5378 } 5379 } 5380 5381 if (Value *V = foldMinMaxSharedOp(IID, Op0, Op1)) 5382 return V; 5383 if (Value *V = foldMinMaxSharedOp(IID, Op1, Op0)) 5384 return V; 5385 5386 ICmpInst::Predicate Pred = getMaxMinPredicate(IID); 5387 if (isICmpTrue(Pred, Op0, Op1, Q.getWithoutUndef(), RecursionLimit)) 5388 return Op0; 5389 if (isICmpTrue(Pred, Op1, Op0, Q.getWithoutUndef(), RecursionLimit)) 5390 return Op1; 5391 5392 if (Optional<bool> Imp = 5393 isImpliedByDomCondition(Pred, Op0, Op1, Q.CxtI, Q.DL)) 5394 return *Imp ? Op0 : Op1; 5395 if (Optional<bool> Imp = 5396 isImpliedByDomCondition(Pred, Op1, Op0, Q.CxtI, Q.DL)) 5397 return *Imp ? Op1 : Op0; 5398 5399 break; 5400 } 5401 case Intrinsic::usub_with_overflow: 5402 case Intrinsic::ssub_with_overflow: 5403 // X - X -> { 0, false } 5404 if (Op0 == Op1) 5405 return Constant::getNullValue(ReturnType); 5406 LLVM_FALLTHROUGH; 5407 case Intrinsic::uadd_with_overflow: 5408 case Intrinsic::sadd_with_overflow: 5409 // X - undef -> { undef, false } 5410 // undef - X -> { undef, false } 5411 // X + undef -> { undef, false } 5412 // undef + x -> { undef, false } 5413 if (Q.isUndefValue(Op0) || Q.isUndefValue(Op1)) { 5414 return ConstantStruct::get( 5415 cast<StructType>(ReturnType), 5416 {UndefValue::get(ReturnType->getStructElementType(0)), 5417 Constant::getNullValue(ReturnType->getStructElementType(1))}); 5418 } 5419 break; 5420 case Intrinsic::umul_with_overflow: 5421 case Intrinsic::smul_with_overflow: 5422 // 0 * X -> { 0, false } 5423 // X * 0 -> { 0, false } 5424 if (match(Op0, m_Zero()) || match(Op1, m_Zero())) 5425 return Constant::getNullValue(ReturnType); 5426 // undef * X -> { 0, false } 5427 // X * undef -> { 0, false } 5428 if (Q.isUndefValue(Op0) || Q.isUndefValue(Op1)) 5429 return Constant::getNullValue(ReturnType); 5430 break; 5431 case Intrinsic::uadd_sat: 5432 // sat(MAX + X) -> MAX 5433 // sat(X + MAX) -> MAX 5434 if (match(Op0, m_AllOnes()) || match(Op1, m_AllOnes())) 5435 return Constant::getAllOnesValue(ReturnType); 5436 LLVM_FALLTHROUGH; 5437 case Intrinsic::sadd_sat: 5438 // sat(X + undef) -> -1 5439 // sat(undef + X) -> -1 5440 // For unsigned: Assume undef is MAX, thus we saturate to MAX (-1). 5441 // For signed: Assume undef is ~X, in which case X + ~X = -1. 5442 if (Q.isUndefValue(Op0) || Q.isUndefValue(Op1)) 5443 return Constant::getAllOnesValue(ReturnType); 5444 5445 // X + 0 -> X 5446 if (match(Op1, m_Zero())) 5447 return Op0; 5448 // 0 + X -> X 5449 if (match(Op0, m_Zero())) 5450 return Op1; 5451 break; 5452 case Intrinsic::usub_sat: 5453 // sat(0 - X) -> 0, sat(X - MAX) -> 0 5454 if (match(Op0, m_Zero()) || match(Op1, m_AllOnes())) 5455 return Constant::getNullValue(ReturnType); 5456 LLVM_FALLTHROUGH; 5457 case Intrinsic::ssub_sat: 5458 // X - X -> 0, X - undef -> 0, undef - X -> 0 5459 if (Op0 == Op1 || Q.isUndefValue(Op0) || Q.isUndefValue(Op1)) 5460 return Constant::getNullValue(ReturnType); 5461 // X - 0 -> X 5462 if (match(Op1, m_Zero())) 5463 return Op0; 5464 break; 5465 case Intrinsic::load_relative: 5466 if (auto *C0 = dyn_cast<Constant>(Op0)) 5467 if (auto *C1 = dyn_cast<Constant>(Op1)) 5468 return SimplifyRelativeLoad(C0, C1, Q.DL); 5469 break; 5470 case Intrinsic::powi: 5471 if (auto *Power = dyn_cast<ConstantInt>(Op1)) { 5472 // powi(x, 0) -> 1.0 5473 if (Power->isZero()) 5474 return ConstantFP::get(Op0->getType(), 1.0); 5475 // powi(x, 1) -> x 5476 if (Power->isOne()) 5477 return Op0; 5478 } 5479 break; 5480 case Intrinsic::copysign: 5481 // copysign X, X --> X 5482 if (Op0 == Op1) 5483 return Op0; 5484 // copysign -X, X --> X 5485 // copysign X, -X --> -X 5486 if (match(Op0, m_FNeg(m_Specific(Op1))) || 5487 match(Op1, m_FNeg(m_Specific(Op0)))) 5488 return Op1; 5489 break; 5490 case Intrinsic::maxnum: 5491 case Intrinsic::minnum: 5492 case Intrinsic::maximum: 5493 case Intrinsic::minimum: { 5494 // If the arguments are the same, this is a no-op. 5495 if (Op0 == Op1) return Op0; 5496 5497 // Canonicalize constant operand as Op1. 5498 if (isa<Constant>(Op0)) 5499 std::swap(Op0, Op1); 5500 5501 // If an argument is undef, return the other argument. 5502 if (Q.isUndefValue(Op1)) 5503 return Op0; 5504 5505 bool PropagateNaN = IID == Intrinsic::minimum || IID == Intrinsic::maximum; 5506 bool IsMin = IID == Intrinsic::minimum || IID == Intrinsic::minnum; 5507 5508 // minnum(X, nan) -> X 5509 // maxnum(X, nan) -> X 5510 // minimum(X, nan) -> nan 5511 // maximum(X, nan) -> nan 5512 if (match(Op1, m_NaN())) 5513 return PropagateNaN ? propagateNaN(cast<Constant>(Op1)) : Op0; 5514 5515 // In the following folds, inf can be replaced with the largest finite 5516 // float, if the ninf flag is set. 5517 const APFloat *C; 5518 if (match(Op1, m_APFloat(C)) && 5519 (C->isInfinity() || (Q.CxtI->hasNoInfs() && C->isLargest()))) { 5520 // minnum(X, -inf) -> -inf 5521 // maxnum(X, +inf) -> +inf 5522 // minimum(X, -inf) -> -inf if nnan 5523 // maximum(X, +inf) -> +inf if nnan 5524 if (C->isNegative() == IsMin && (!PropagateNaN || Q.CxtI->hasNoNaNs())) 5525 return ConstantFP::get(ReturnType, *C); 5526 5527 // minnum(X, +inf) -> X if nnan 5528 // maxnum(X, -inf) -> X if nnan 5529 // minimum(X, +inf) -> X 5530 // maximum(X, -inf) -> X 5531 if (C->isNegative() != IsMin && (PropagateNaN || Q.CxtI->hasNoNaNs())) 5532 return Op0; 5533 } 5534 5535 // Min/max of the same operation with common operand: 5536 // m(m(X, Y)), X --> m(X, Y) (4 commuted variants) 5537 if (auto *M0 = dyn_cast<IntrinsicInst>(Op0)) 5538 if (M0->getIntrinsicID() == IID && 5539 (M0->getOperand(0) == Op1 || M0->getOperand(1) == Op1)) 5540 return Op0; 5541 if (auto *M1 = dyn_cast<IntrinsicInst>(Op1)) 5542 if (M1->getIntrinsicID() == IID && 5543 (M1->getOperand(0) == Op0 || M1->getOperand(1) == Op0)) 5544 return Op1; 5545 5546 break; 5547 } 5548 default: 5549 break; 5550 } 5551 5552 return nullptr; 5553 } 5554 5555 static Value *simplifyIntrinsic(CallBase *Call, const SimplifyQuery &Q) { 5556 5557 // Intrinsics with no operands have some kind of side effect. Don't simplify. 5558 unsigned NumOperands = Call->getNumArgOperands(); 5559 if (!NumOperands) 5560 return nullptr; 5561 5562 Function *F = cast<Function>(Call->getCalledFunction()); 5563 Intrinsic::ID IID = F->getIntrinsicID(); 5564 if (NumOperands == 1) 5565 return simplifyUnaryIntrinsic(F, Call->getArgOperand(0), Q); 5566 5567 if (NumOperands == 2) 5568 return simplifyBinaryIntrinsic(F, Call->getArgOperand(0), 5569 Call->getArgOperand(1), Q); 5570 5571 // Handle intrinsics with 3 or more arguments. 5572 switch (IID) { 5573 case Intrinsic::masked_load: 5574 case Intrinsic::masked_gather: { 5575 Value *MaskArg = Call->getArgOperand(2); 5576 Value *PassthruArg = Call->getArgOperand(3); 5577 // If the mask is all zeros or undef, the "passthru" argument is the result. 5578 if (maskIsAllZeroOrUndef(MaskArg)) 5579 return PassthruArg; 5580 return nullptr; 5581 } 5582 case Intrinsic::fshl: 5583 case Intrinsic::fshr: { 5584 Value *Op0 = Call->getArgOperand(0), *Op1 = Call->getArgOperand(1), 5585 *ShAmtArg = Call->getArgOperand(2); 5586 5587 // If both operands are undef, the result is undef. 5588 if (Q.isUndefValue(Op0) && Q.isUndefValue(Op1)) 5589 return UndefValue::get(F->getReturnType()); 5590 5591 // If shift amount is undef, assume it is zero. 5592 if (Q.isUndefValue(ShAmtArg)) 5593 return Call->getArgOperand(IID == Intrinsic::fshl ? 0 : 1); 5594 5595 const APInt *ShAmtC; 5596 if (match(ShAmtArg, m_APInt(ShAmtC))) { 5597 // If there's effectively no shift, return the 1st arg or 2nd arg. 5598 APInt BitWidth = APInt(ShAmtC->getBitWidth(), ShAmtC->getBitWidth()); 5599 if (ShAmtC->urem(BitWidth).isNullValue()) 5600 return Call->getArgOperand(IID == Intrinsic::fshl ? 0 : 1); 5601 } 5602 return nullptr; 5603 } 5604 case Intrinsic::fma: 5605 case Intrinsic::fmuladd: { 5606 Value *Op0 = Call->getArgOperand(0); 5607 Value *Op1 = Call->getArgOperand(1); 5608 Value *Op2 = Call->getArgOperand(2); 5609 if (Value *V = simplifyFPOp({ Op0, Op1, Op2 }, {}, Q)) 5610 return V; 5611 return nullptr; 5612 } 5613 default: 5614 return nullptr; 5615 } 5616 } 5617 5618 static Value *tryConstantFoldCall(CallBase *Call, const SimplifyQuery &Q) { 5619 auto *F = dyn_cast<Function>(Call->getCalledOperand()); 5620 if (!F || !canConstantFoldCallTo(Call, F)) 5621 return nullptr; 5622 5623 SmallVector<Constant *, 4> ConstantArgs; 5624 unsigned NumArgs = Call->getNumArgOperands(); 5625 ConstantArgs.reserve(NumArgs); 5626 for (auto &Arg : Call->args()) { 5627 Constant *C = dyn_cast<Constant>(&Arg); 5628 if (!C) { 5629 if (isa<MetadataAsValue>(Arg.get())) 5630 continue; 5631 return nullptr; 5632 } 5633 ConstantArgs.push_back(C); 5634 } 5635 5636 return ConstantFoldCall(Call, F, ConstantArgs, Q.TLI); 5637 } 5638 5639 Value *llvm::SimplifyCall(CallBase *Call, const SimplifyQuery &Q) { 5640 // musttail calls can only be simplified if they are also DCEd. 5641 // As we can't guarantee this here, don't simplify them. 5642 if (Call->isMustTailCall()) 5643 return nullptr; 5644 5645 // call undef -> undef 5646 // call null -> undef 5647 Value *Callee = Call->getCalledOperand(); 5648 if (isa<UndefValue>(Callee) || isa<ConstantPointerNull>(Callee)) 5649 return UndefValue::get(Call->getType()); 5650 5651 if (Value *V = tryConstantFoldCall(Call, Q)) 5652 return V; 5653 5654 auto *F = dyn_cast<Function>(Callee); 5655 if (F && F->isIntrinsic()) 5656 if (Value *Ret = simplifyIntrinsic(Call, Q)) 5657 return Ret; 5658 5659 return nullptr; 5660 } 5661 5662 /// Given operands for a Freeze, see if we can fold the result. 5663 static Value *SimplifyFreezeInst(Value *Op0, const SimplifyQuery &Q) { 5664 // Use a utility function defined in ValueTracking. 5665 if (llvm::isGuaranteedNotToBeUndefOrPoison(Op0, Q.AC, Q.CxtI, Q.DT)) 5666 return Op0; 5667 // We have room for improvement. 5668 return nullptr; 5669 } 5670 5671 Value *llvm::SimplifyFreezeInst(Value *Op0, const SimplifyQuery &Q) { 5672 return ::SimplifyFreezeInst(Op0, Q); 5673 } 5674 5675 /// See if we can compute a simplified version of this instruction. 5676 /// If not, this returns null. 5677 5678 Value *llvm::SimplifyInstruction(Instruction *I, const SimplifyQuery &SQ, 5679 OptimizationRemarkEmitter *ORE) { 5680 const SimplifyQuery Q = SQ.CxtI ? SQ : SQ.getWithInstruction(I); 5681 Value *Result; 5682 5683 switch (I->getOpcode()) { 5684 default: 5685 Result = ConstantFoldInstruction(I, Q.DL, Q.TLI); 5686 break; 5687 case Instruction::FNeg: 5688 Result = SimplifyFNegInst(I->getOperand(0), I->getFastMathFlags(), Q); 5689 break; 5690 case Instruction::FAdd: 5691 Result = SimplifyFAddInst(I->getOperand(0), I->getOperand(1), 5692 I->getFastMathFlags(), Q); 5693 break; 5694 case Instruction::Add: 5695 Result = 5696 SimplifyAddInst(I->getOperand(0), I->getOperand(1), 5697 Q.IIQ.hasNoSignedWrap(cast<BinaryOperator>(I)), 5698 Q.IIQ.hasNoUnsignedWrap(cast<BinaryOperator>(I)), Q); 5699 break; 5700 case Instruction::FSub: 5701 Result = SimplifyFSubInst(I->getOperand(0), I->getOperand(1), 5702 I->getFastMathFlags(), Q); 5703 break; 5704 case Instruction::Sub: 5705 Result = 5706 SimplifySubInst(I->getOperand(0), I->getOperand(1), 5707 Q.IIQ.hasNoSignedWrap(cast<BinaryOperator>(I)), 5708 Q.IIQ.hasNoUnsignedWrap(cast<BinaryOperator>(I)), Q); 5709 break; 5710 case Instruction::FMul: 5711 Result = SimplifyFMulInst(I->getOperand(0), I->getOperand(1), 5712 I->getFastMathFlags(), Q); 5713 break; 5714 case Instruction::Mul: 5715 Result = SimplifyMulInst(I->getOperand(0), I->getOperand(1), Q); 5716 break; 5717 case Instruction::SDiv: 5718 Result = SimplifySDivInst(I->getOperand(0), I->getOperand(1), Q); 5719 break; 5720 case Instruction::UDiv: 5721 Result = SimplifyUDivInst(I->getOperand(0), I->getOperand(1), Q); 5722 break; 5723 case Instruction::FDiv: 5724 Result = SimplifyFDivInst(I->getOperand(0), I->getOperand(1), 5725 I->getFastMathFlags(), Q); 5726 break; 5727 case Instruction::SRem: 5728 Result = SimplifySRemInst(I->getOperand(0), I->getOperand(1), Q); 5729 break; 5730 case Instruction::URem: 5731 Result = SimplifyURemInst(I->getOperand(0), I->getOperand(1), Q); 5732 break; 5733 case Instruction::FRem: 5734 Result = SimplifyFRemInst(I->getOperand(0), I->getOperand(1), 5735 I->getFastMathFlags(), Q); 5736 break; 5737 case Instruction::Shl: 5738 Result = 5739 SimplifyShlInst(I->getOperand(0), I->getOperand(1), 5740 Q.IIQ.hasNoSignedWrap(cast<BinaryOperator>(I)), 5741 Q.IIQ.hasNoUnsignedWrap(cast<BinaryOperator>(I)), Q); 5742 break; 5743 case Instruction::LShr: 5744 Result = SimplifyLShrInst(I->getOperand(0), I->getOperand(1), 5745 Q.IIQ.isExact(cast<BinaryOperator>(I)), Q); 5746 break; 5747 case Instruction::AShr: 5748 Result = SimplifyAShrInst(I->getOperand(0), I->getOperand(1), 5749 Q.IIQ.isExact(cast<BinaryOperator>(I)), Q); 5750 break; 5751 case Instruction::And: 5752 Result = SimplifyAndInst(I->getOperand(0), I->getOperand(1), Q); 5753 break; 5754 case Instruction::Or: 5755 Result = SimplifyOrInst(I->getOperand(0), I->getOperand(1), Q); 5756 break; 5757 case Instruction::Xor: 5758 Result = SimplifyXorInst(I->getOperand(0), I->getOperand(1), Q); 5759 break; 5760 case Instruction::ICmp: 5761 Result = SimplifyICmpInst(cast<ICmpInst>(I)->getPredicate(), 5762 I->getOperand(0), I->getOperand(1), Q); 5763 break; 5764 case Instruction::FCmp: 5765 Result = 5766 SimplifyFCmpInst(cast<FCmpInst>(I)->getPredicate(), I->getOperand(0), 5767 I->getOperand(1), I->getFastMathFlags(), Q); 5768 break; 5769 case Instruction::Select: 5770 Result = SimplifySelectInst(I->getOperand(0), I->getOperand(1), 5771 I->getOperand(2), Q); 5772 break; 5773 case Instruction::GetElementPtr: { 5774 SmallVector<Value *, 8> Ops(I->op_begin(), I->op_end()); 5775 Result = SimplifyGEPInst(cast<GetElementPtrInst>(I)->getSourceElementType(), 5776 Ops, Q); 5777 break; 5778 } 5779 case Instruction::InsertValue: { 5780 InsertValueInst *IV = cast<InsertValueInst>(I); 5781 Result = SimplifyInsertValueInst(IV->getAggregateOperand(), 5782 IV->getInsertedValueOperand(), 5783 IV->getIndices(), Q); 5784 break; 5785 } 5786 case Instruction::InsertElement: { 5787 auto *IE = cast<InsertElementInst>(I); 5788 Result = SimplifyInsertElementInst(IE->getOperand(0), IE->getOperand(1), 5789 IE->getOperand(2), Q); 5790 break; 5791 } 5792 case Instruction::ExtractValue: { 5793 auto *EVI = cast<ExtractValueInst>(I); 5794 Result = SimplifyExtractValueInst(EVI->getAggregateOperand(), 5795 EVI->getIndices(), Q); 5796 break; 5797 } 5798 case Instruction::ExtractElement: { 5799 auto *EEI = cast<ExtractElementInst>(I); 5800 Result = SimplifyExtractElementInst(EEI->getVectorOperand(), 5801 EEI->getIndexOperand(), Q); 5802 break; 5803 } 5804 case Instruction::ShuffleVector: { 5805 auto *SVI = cast<ShuffleVectorInst>(I); 5806 Result = 5807 SimplifyShuffleVectorInst(SVI->getOperand(0), SVI->getOperand(1), 5808 SVI->getShuffleMask(), SVI->getType(), Q); 5809 break; 5810 } 5811 case Instruction::PHI: 5812 Result = SimplifyPHINode(cast<PHINode>(I), Q); 5813 break; 5814 case Instruction::Call: { 5815 Result = SimplifyCall(cast<CallInst>(I), Q); 5816 break; 5817 } 5818 case Instruction::Freeze: 5819 Result = SimplifyFreezeInst(I->getOperand(0), Q); 5820 break; 5821 #define HANDLE_CAST_INST(num, opc, clas) case Instruction::opc: 5822 #include "llvm/IR/Instruction.def" 5823 #undef HANDLE_CAST_INST 5824 Result = 5825 SimplifyCastInst(I->getOpcode(), I->getOperand(0), I->getType(), Q); 5826 break; 5827 case Instruction::Alloca: 5828 // No simplifications for Alloca and it can't be constant folded. 5829 Result = nullptr; 5830 break; 5831 } 5832 5833 /// If called on unreachable code, the above logic may report that the 5834 /// instruction simplified to itself. Make life easier for users by 5835 /// detecting that case here, returning a safe value instead. 5836 return Result == I ? UndefValue::get(I->getType()) : Result; 5837 } 5838 5839 /// Implementation of recursive simplification through an instruction's 5840 /// uses. 5841 /// 5842 /// This is the common implementation of the recursive simplification routines. 5843 /// If we have a pre-simplified value in 'SimpleV', that is forcibly used to 5844 /// replace the instruction 'I'. Otherwise, we simply add 'I' to the list of 5845 /// instructions to process and attempt to simplify it using 5846 /// InstructionSimplify. Recursively visited users which could not be 5847 /// simplified themselves are to the optional UnsimplifiedUsers set for 5848 /// further processing by the caller. 5849 /// 5850 /// This routine returns 'true' only when *it* simplifies something. The passed 5851 /// in simplified value does not count toward this. 5852 static bool replaceAndRecursivelySimplifyImpl( 5853 Instruction *I, Value *SimpleV, const TargetLibraryInfo *TLI, 5854 const DominatorTree *DT, AssumptionCache *AC, 5855 SmallSetVector<Instruction *, 8> *UnsimplifiedUsers = nullptr) { 5856 bool Simplified = false; 5857 SmallSetVector<Instruction *, 8> Worklist; 5858 const DataLayout &DL = I->getModule()->getDataLayout(); 5859 5860 // If we have an explicit value to collapse to, do that round of the 5861 // simplification loop by hand initially. 5862 if (SimpleV) { 5863 for (User *U : I->users()) 5864 if (U != I) 5865 Worklist.insert(cast<Instruction>(U)); 5866 5867 // Replace the instruction with its simplified value. 5868 I->replaceAllUsesWith(SimpleV); 5869 5870 // Gracefully handle edge cases where the instruction is not wired into any 5871 // parent block. 5872 if (I->getParent() && !I->isEHPad() && !I->isTerminator() && 5873 !I->mayHaveSideEffects()) 5874 I->eraseFromParent(); 5875 } else { 5876 Worklist.insert(I); 5877 } 5878 5879 // Note that we must test the size on each iteration, the worklist can grow. 5880 for (unsigned Idx = 0; Idx != Worklist.size(); ++Idx) { 5881 I = Worklist[Idx]; 5882 5883 // See if this instruction simplifies. 5884 SimpleV = SimplifyInstruction(I, {DL, TLI, DT, AC}); 5885 if (!SimpleV) { 5886 if (UnsimplifiedUsers) 5887 UnsimplifiedUsers->insert(I); 5888 continue; 5889 } 5890 5891 Simplified = true; 5892 5893 // Stash away all the uses of the old instruction so we can check them for 5894 // recursive simplifications after a RAUW. This is cheaper than checking all 5895 // uses of To on the recursive step in most cases. 5896 for (User *U : I->users()) 5897 Worklist.insert(cast<Instruction>(U)); 5898 5899 // Replace the instruction with its simplified value. 5900 I->replaceAllUsesWith(SimpleV); 5901 5902 // Gracefully handle edge cases where the instruction is not wired into any 5903 // parent block. 5904 if (I->getParent() && !I->isEHPad() && !I->isTerminator() && 5905 !I->mayHaveSideEffects()) 5906 I->eraseFromParent(); 5907 } 5908 return Simplified; 5909 } 5910 5911 bool llvm::recursivelySimplifyInstruction(Instruction *I, 5912 const TargetLibraryInfo *TLI, 5913 const DominatorTree *DT, 5914 AssumptionCache *AC) { 5915 return replaceAndRecursivelySimplifyImpl(I, nullptr, TLI, DT, AC, nullptr); 5916 } 5917 5918 bool llvm::replaceAndRecursivelySimplify( 5919 Instruction *I, Value *SimpleV, const TargetLibraryInfo *TLI, 5920 const DominatorTree *DT, AssumptionCache *AC, 5921 SmallSetVector<Instruction *, 8> *UnsimplifiedUsers) { 5922 assert(I != SimpleV && "replaceAndRecursivelySimplify(X,X) is not valid!"); 5923 assert(SimpleV && "Must provide a simplified value."); 5924 return replaceAndRecursivelySimplifyImpl(I, SimpleV, TLI, DT, AC, 5925 UnsimplifiedUsers); 5926 } 5927 5928 namespace llvm { 5929 const SimplifyQuery getBestSimplifyQuery(Pass &P, Function &F) { 5930 auto *DTWP = P.getAnalysisIfAvailable<DominatorTreeWrapperPass>(); 5931 auto *DT = DTWP ? &DTWP->getDomTree() : nullptr; 5932 auto *TLIWP = P.getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 5933 auto *TLI = TLIWP ? &TLIWP->getTLI(F) : nullptr; 5934 auto *ACWP = P.getAnalysisIfAvailable<AssumptionCacheTracker>(); 5935 auto *AC = ACWP ? &ACWP->getAssumptionCache(F) : nullptr; 5936 return {F.getParent()->getDataLayout(), TLI, DT, AC}; 5937 } 5938 5939 const SimplifyQuery getBestSimplifyQuery(LoopStandardAnalysisResults &AR, 5940 const DataLayout &DL) { 5941 return {DL, &AR.TLI, &AR.DT, &AR.AC}; 5942 } 5943 5944 template <class T, class... TArgs> 5945 const SimplifyQuery getBestSimplifyQuery(AnalysisManager<T, TArgs...> &AM, 5946 Function &F) { 5947 auto *DT = AM.template getCachedResult<DominatorTreeAnalysis>(F); 5948 auto *TLI = AM.template getCachedResult<TargetLibraryAnalysis>(F); 5949 auto *AC = AM.template getCachedResult<AssumptionAnalysis>(F); 5950 return {F.getParent()->getDataLayout(), TLI, DT, AC}; 5951 } 5952 template const SimplifyQuery getBestSimplifyQuery(AnalysisManager<Function> &, 5953 Function &); 5954 } 5955