1 //===- InstructionSimplify.cpp - Fold instruction operands ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements routines for folding instructions into simpler forms 11 // that do not require creating new instructions. This does constant folding 12 // ("add i32 1, 1" -> "2") but can also handle non-constant operands, either 13 // returning a constant ("and i32 %x, 0" -> "0") or an already existing value 14 // ("and i32 %x, %x" -> "%x"). All operands are assumed to have already been 15 // simplified: This is usually true and assuming it simplifies the logic (if 16 // they have not been simplified then results are correct but maybe suboptimal). 17 // 18 //===----------------------------------------------------------------------===// 19 20 #include "llvm/Analysis/InstructionSimplify.h" 21 #include "llvm/ADT/SetVector.h" 22 #include "llvm/ADT/Statistic.h" 23 #include "llvm/Analysis/AliasAnalysis.h" 24 #include "llvm/Analysis/ConstantFolding.h" 25 #include "llvm/Analysis/MemoryBuiltins.h" 26 #include "llvm/Analysis/ValueTracking.h" 27 #include "llvm/Analysis/VectorUtils.h" 28 #include "llvm/IR/ConstantRange.h" 29 #include "llvm/IR/DataLayout.h" 30 #include "llvm/IR/Dominators.h" 31 #include "llvm/IR/GetElementPtrTypeIterator.h" 32 #include "llvm/IR/GlobalAlias.h" 33 #include "llvm/IR/Operator.h" 34 #include "llvm/IR/PatternMatch.h" 35 #include "llvm/IR/ValueHandle.h" 36 #include <algorithm> 37 using namespace llvm; 38 using namespace llvm::PatternMatch; 39 40 #define DEBUG_TYPE "instsimplify" 41 42 enum { RecursionLimit = 3 }; 43 44 STATISTIC(NumExpand, "Number of expansions"); 45 STATISTIC(NumReassoc, "Number of reassociations"); 46 47 namespace { 48 struct Query { 49 const DataLayout &DL; 50 const TargetLibraryInfo *TLI; 51 const DominatorTree *DT; 52 AssumptionCache *AC; 53 const Instruction *CxtI; 54 55 Query(const DataLayout &DL, const TargetLibraryInfo *tli, 56 const DominatorTree *dt, AssumptionCache *ac = nullptr, 57 const Instruction *cxti = nullptr) 58 : DL(DL), TLI(tli), DT(dt), AC(ac), CxtI(cxti) {} 59 }; 60 } // end anonymous namespace 61 62 static Value *SimplifyAndInst(Value *, Value *, const Query &, unsigned); 63 static Value *SimplifyBinOp(unsigned, Value *, Value *, const Query &, 64 unsigned); 65 static Value *SimplifyFPBinOp(unsigned, Value *, Value *, const FastMathFlags &, 66 const Query &, unsigned); 67 static Value *SimplifyCmpInst(unsigned, Value *, Value *, const Query &, 68 unsigned); 69 static Value *SimplifyOrInst(Value *, Value *, const Query &, unsigned); 70 static Value *SimplifyXorInst(Value *, Value *, const Query &, unsigned); 71 static Value *SimplifyTruncInst(Value *, Type *, const Query &, unsigned); 72 73 /// For a boolean type, or a vector of boolean type, return false, or 74 /// a vector with every element false, as appropriate for the type. 75 static Constant *getFalse(Type *Ty) { 76 assert(Ty->getScalarType()->isIntegerTy(1) && 77 "Expected i1 type or a vector of i1!"); 78 return Constant::getNullValue(Ty); 79 } 80 81 /// For a boolean type, or a vector of boolean type, return true, or 82 /// a vector with every element true, as appropriate for the type. 83 static Constant *getTrue(Type *Ty) { 84 assert(Ty->getScalarType()->isIntegerTy(1) && 85 "Expected i1 type or a vector of i1!"); 86 return Constant::getAllOnesValue(Ty); 87 } 88 89 /// isSameCompare - Is V equivalent to the comparison "LHS Pred RHS"? 90 static bool isSameCompare(Value *V, CmpInst::Predicate Pred, Value *LHS, 91 Value *RHS) { 92 CmpInst *Cmp = dyn_cast<CmpInst>(V); 93 if (!Cmp) 94 return false; 95 CmpInst::Predicate CPred = Cmp->getPredicate(); 96 Value *CLHS = Cmp->getOperand(0), *CRHS = Cmp->getOperand(1); 97 if (CPred == Pred && CLHS == LHS && CRHS == RHS) 98 return true; 99 return CPred == CmpInst::getSwappedPredicate(Pred) && CLHS == RHS && 100 CRHS == LHS; 101 } 102 103 /// Does the given value dominate the specified phi node? 104 static bool ValueDominatesPHI(Value *V, PHINode *P, const DominatorTree *DT) { 105 Instruction *I = dyn_cast<Instruction>(V); 106 if (!I) 107 // Arguments and constants dominate all instructions. 108 return true; 109 110 // If we are processing instructions (and/or basic blocks) that have not been 111 // fully added to a function, the parent nodes may still be null. Simply 112 // return the conservative answer in these cases. 113 if (!I->getParent() || !P->getParent() || !I->getParent()->getParent()) 114 return false; 115 116 // If we have a DominatorTree then do a precise test. 117 if (DT) { 118 if (!DT->isReachableFromEntry(P->getParent())) 119 return true; 120 if (!DT->isReachableFromEntry(I->getParent())) 121 return false; 122 return DT->dominates(I, P); 123 } 124 125 // Otherwise, if the instruction is in the entry block and is not an invoke, 126 // then it obviously dominates all phi nodes. 127 if (I->getParent() == &I->getParent()->getParent()->getEntryBlock() && 128 !isa<InvokeInst>(I)) 129 return true; 130 131 return false; 132 } 133 134 /// Simplify "A op (B op' C)" by distributing op over op', turning it into 135 /// "(A op B) op' (A op C)". Here "op" is given by Opcode and "op'" is 136 /// given by OpcodeToExpand, while "A" corresponds to LHS and "B op' C" to RHS. 137 /// Also performs the transform "(A op' B) op C" -> "(A op C) op' (B op C)". 138 /// Returns the simplified value, or null if no simplification was performed. 139 static Value *ExpandBinOp(unsigned Opcode, Value *LHS, Value *RHS, 140 unsigned OpcToExpand, const Query &Q, 141 unsigned MaxRecurse) { 142 Instruction::BinaryOps OpcodeToExpand = (Instruction::BinaryOps)OpcToExpand; 143 // Recursion is always used, so bail out at once if we already hit the limit. 144 if (!MaxRecurse--) 145 return nullptr; 146 147 // Check whether the expression has the form "(A op' B) op C". 148 if (BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS)) 149 if (Op0->getOpcode() == OpcodeToExpand) { 150 // It does! Try turning it into "(A op C) op' (B op C)". 151 Value *A = Op0->getOperand(0), *B = Op0->getOperand(1), *C = RHS; 152 // Do "A op C" and "B op C" both simplify? 153 if (Value *L = SimplifyBinOp(Opcode, A, C, Q, MaxRecurse)) 154 if (Value *R = SimplifyBinOp(Opcode, B, C, Q, MaxRecurse)) { 155 // They do! Return "L op' R" if it simplifies or is already available. 156 // If "L op' R" equals "A op' B" then "L op' R" is just the LHS. 157 if ((L == A && R == B) || (Instruction::isCommutative(OpcodeToExpand) 158 && L == B && R == A)) { 159 ++NumExpand; 160 return LHS; 161 } 162 // Otherwise return "L op' R" if it simplifies. 163 if (Value *V = SimplifyBinOp(OpcodeToExpand, L, R, Q, MaxRecurse)) { 164 ++NumExpand; 165 return V; 166 } 167 } 168 } 169 170 // Check whether the expression has the form "A op (B op' C)". 171 if (BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS)) 172 if (Op1->getOpcode() == OpcodeToExpand) { 173 // It does! Try turning it into "(A op B) op' (A op C)". 174 Value *A = LHS, *B = Op1->getOperand(0), *C = Op1->getOperand(1); 175 // Do "A op B" and "A op C" both simplify? 176 if (Value *L = SimplifyBinOp(Opcode, A, B, Q, MaxRecurse)) 177 if (Value *R = SimplifyBinOp(Opcode, A, C, Q, MaxRecurse)) { 178 // They do! Return "L op' R" if it simplifies or is already available. 179 // If "L op' R" equals "B op' C" then "L op' R" is just the RHS. 180 if ((L == B && R == C) || (Instruction::isCommutative(OpcodeToExpand) 181 && L == C && R == B)) { 182 ++NumExpand; 183 return RHS; 184 } 185 // Otherwise return "L op' R" if it simplifies. 186 if (Value *V = SimplifyBinOp(OpcodeToExpand, L, R, Q, MaxRecurse)) { 187 ++NumExpand; 188 return V; 189 } 190 } 191 } 192 193 return nullptr; 194 } 195 196 /// Generic simplifications for associative binary operations. 197 /// Returns the simpler value, or null if none was found. 198 static Value *SimplifyAssociativeBinOp(unsigned Opc, Value *LHS, Value *RHS, 199 const Query &Q, unsigned MaxRecurse) { 200 Instruction::BinaryOps Opcode = (Instruction::BinaryOps)Opc; 201 assert(Instruction::isAssociative(Opcode) && "Not an associative operation!"); 202 203 // Recursion is always used, so bail out at once if we already hit the limit. 204 if (!MaxRecurse--) 205 return nullptr; 206 207 BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS); 208 BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS); 209 210 // Transform: "(A op B) op C" ==> "A op (B op C)" if it simplifies completely. 211 if (Op0 && Op0->getOpcode() == Opcode) { 212 Value *A = Op0->getOperand(0); 213 Value *B = Op0->getOperand(1); 214 Value *C = RHS; 215 216 // Does "B op C" simplify? 217 if (Value *V = SimplifyBinOp(Opcode, B, C, Q, MaxRecurse)) { 218 // It does! Return "A op V" if it simplifies or is already available. 219 // If V equals B then "A op V" is just the LHS. 220 if (V == B) return LHS; 221 // Otherwise return "A op V" if it simplifies. 222 if (Value *W = SimplifyBinOp(Opcode, A, V, Q, MaxRecurse)) { 223 ++NumReassoc; 224 return W; 225 } 226 } 227 } 228 229 // Transform: "A op (B op C)" ==> "(A op B) op C" if it simplifies completely. 230 if (Op1 && Op1->getOpcode() == Opcode) { 231 Value *A = LHS; 232 Value *B = Op1->getOperand(0); 233 Value *C = Op1->getOperand(1); 234 235 // Does "A op B" simplify? 236 if (Value *V = SimplifyBinOp(Opcode, A, B, Q, MaxRecurse)) { 237 // It does! Return "V op C" if it simplifies or is already available. 238 // If V equals B then "V op C" is just the RHS. 239 if (V == B) return RHS; 240 // Otherwise return "V op C" if it simplifies. 241 if (Value *W = SimplifyBinOp(Opcode, V, C, Q, MaxRecurse)) { 242 ++NumReassoc; 243 return W; 244 } 245 } 246 } 247 248 // The remaining transforms require commutativity as well as associativity. 249 if (!Instruction::isCommutative(Opcode)) 250 return nullptr; 251 252 // Transform: "(A op B) op C" ==> "(C op A) op B" if it simplifies completely. 253 if (Op0 && Op0->getOpcode() == Opcode) { 254 Value *A = Op0->getOperand(0); 255 Value *B = Op0->getOperand(1); 256 Value *C = RHS; 257 258 // Does "C op A" simplify? 259 if (Value *V = SimplifyBinOp(Opcode, C, A, Q, MaxRecurse)) { 260 // It does! Return "V op B" if it simplifies or is already available. 261 // If V equals A then "V op B" is just the LHS. 262 if (V == A) return LHS; 263 // Otherwise return "V op B" if it simplifies. 264 if (Value *W = SimplifyBinOp(Opcode, V, B, Q, MaxRecurse)) { 265 ++NumReassoc; 266 return W; 267 } 268 } 269 } 270 271 // Transform: "A op (B op C)" ==> "B op (C op A)" if it simplifies completely. 272 if (Op1 && Op1->getOpcode() == Opcode) { 273 Value *A = LHS; 274 Value *B = Op1->getOperand(0); 275 Value *C = Op1->getOperand(1); 276 277 // Does "C op A" simplify? 278 if (Value *V = SimplifyBinOp(Opcode, C, A, Q, MaxRecurse)) { 279 // It does! Return "B op V" if it simplifies or is already available. 280 // If V equals C then "B op V" is just the RHS. 281 if (V == C) return RHS; 282 // Otherwise return "B op V" if it simplifies. 283 if (Value *W = SimplifyBinOp(Opcode, B, V, Q, MaxRecurse)) { 284 ++NumReassoc; 285 return W; 286 } 287 } 288 } 289 290 return nullptr; 291 } 292 293 /// In the case of a binary operation with a select instruction as an operand, 294 /// try to simplify the binop by seeing whether evaluating it on both branches 295 /// of the select results in the same value. Returns the common value if so, 296 /// otherwise returns null. 297 static Value *ThreadBinOpOverSelect(unsigned Opcode, Value *LHS, Value *RHS, 298 const Query &Q, unsigned MaxRecurse) { 299 // Recursion is always used, so bail out at once if we already hit the limit. 300 if (!MaxRecurse--) 301 return nullptr; 302 303 SelectInst *SI; 304 if (isa<SelectInst>(LHS)) { 305 SI = cast<SelectInst>(LHS); 306 } else { 307 assert(isa<SelectInst>(RHS) && "No select instruction operand!"); 308 SI = cast<SelectInst>(RHS); 309 } 310 311 // Evaluate the BinOp on the true and false branches of the select. 312 Value *TV; 313 Value *FV; 314 if (SI == LHS) { 315 TV = SimplifyBinOp(Opcode, SI->getTrueValue(), RHS, Q, MaxRecurse); 316 FV = SimplifyBinOp(Opcode, SI->getFalseValue(), RHS, Q, MaxRecurse); 317 } else { 318 TV = SimplifyBinOp(Opcode, LHS, SI->getTrueValue(), Q, MaxRecurse); 319 FV = SimplifyBinOp(Opcode, LHS, SI->getFalseValue(), Q, MaxRecurse); 320 } 321 322 // If they simplified to the same value, then return the common value. 323 // If they both failed to simplify then return null. 324 if (TV == FV) 325 return TV; 326 327 // If one branch simplified to undef, return the other one. 328 if (TV && isa<UndefValue>(TV)) 329 return FV; 330 if (FV && isa<UndefValue>(FV)) 331 return TV; 332 333 // If applying the operation did not change the true and false select values, 334 // then the result of the binop is the select itself. 335 if (TV == SI->getTrueValue() && FV == SI->getFalseValue()) 336 return SI; 337 338 // If one branch simplified and the other did not, and the simplified 339 // value is equal to the unsimplified one, return the simplified value. 340 // For example, select (cond, X, X & Z) & Z -> X & Z. 341 if ((FV && !TV) || (TV && !FV)) { 342 // Check that the simplified value has the form "X op Y" where "op" is the 343 // same as the original operation. 344 Instruction *Simplified = dyn_cast<Instruction>(FV ? FV : TV); 345 if (Simplified && Simplified->getOpcode() == Opcode) { 346 // The value that didn't simplify is "UnsimplifiedLHS op UnsimplifiedRHS". 347 // We already know that "op" is the same as for the simplified value. See 348 // if the operands match too. If so, return the simplified value. 349 Value *UnsimplifiedBranch = FV ? SI->getTrueValue() : SI->getFalseValue(); 350 Value *UnsimplifiedLHS = SI == LHS ? UnsimplifiedBranch : LHS; 351 Value *UnsimplifiedRHS = SI == LHS ? RHS : UnsimplifiedBranch; 352 if (Simplified->getOperand(0) == UnsimplifiedLHS && 353 Simplified->getOperand(1) == UnsimplifiedRHS) 354 return Simplified; 355 if (Simplified->isCommutative() && 356 Simplified->getOperand(1) == UnsimplifiedLHS && 357 Simplified->getOperand(0) == UnsimplifiedRHS) 358 return Simplified; 359 } 360 } 361 362 return nullptr; 363 } 364 365 /// In the case of a comparison with a select instruction, try to simplify the 366 /// comparison by seeing whether both branches of the select result in the same 367 /// value. Returns the common value if so, otherwise returns null. 368 static Value *ThreadCmpOverSelect(CmpInst::Predicate Pred, Value *LHS, 369 Value *RHS, const Query &Q, 370 unsigned MaxRecurse) { 371 // Recursion is always used, so bail out at once if we already hit the limit. 372 if (!MaxRecurse--) 373 return nullptr; 374 375 // Make sure the select is on the LHS. 376 if (!isa<SelectInst>(LHS)) { 377 std::swap(LHS, RHS); 378 Pred = CmpInst::getSwappedPredicate(Pred); 379 } 380 assert(isa<SelectInst>(LHS) && "Not comparing with a select instruction!"); 381 SelectInst *SI = cast<SelectInst>(LHS); 382 Value *Cond = SI->getCondition(); 383 Value *TV = SI->getTrueValue(); 384 Value *FV = SI->getFalseValue(); 385 386 // Now that we have "cmp select(Cond, TV, FV), RHS", analyse it. 387 // Does "cmp TV, RHS" simplify? 388 Value *TCmp = SimplifyCmpInst(Pred, TV, RHS, Q, MaxRecurse); 389 if (TCmp == Cond) { 390 // It not only simplified, it simplified to the select condition. Replace 391 // it with 'true'. 392 TCmp = getTrue(Cond->getType()); 393 } else if (!TCmp) { 394 // It didn't simplify. However if "cmp TV, RHS" is equal to the select 395 // condition then we can replace it with 'true'. Otherwise give up. 396 if (!isSameCompare(Cond, Pred, TV, RHS)) 397 return nullptr; 398 TCmp = getTrue(Cond->getType()); 399 } 400 401 // Does "cmp FV, RHS" simplify? 402 Value *FCmp = SimplifyCmpInst(Pred, FV, RHS, Q, MaxRecurse); 403 if (FCmp == Cond) { 404 // It not only simplified, it simplified to the select condition. Replace 405 // it with 'false'. 406 FCmp = getFalse(Cond->getType()); 407 } else if (!FCmp) { 408 // It didn't simplify. However if "cmp FV, RHS" is equal to the select 409 // condition then we can replace it with 'false'. Otherwise give up. 410 if (!isSameCompare(Cond, Pred, FV, RHS)) 411 return nullptr; 412 FCmp = getFalse(Cond->getType()); 413 } 414 415 // If both sides simplified to the same value, then use it as the result of 416 // the original comparison. 417 if (TCmp == FCmp) 418 return TCmp; 419 420 // The remaining cases only make sense if the select condition has the same 421 // type as the result of the comparison, so bail out if this is not so. 422 if (Cond->getType()->isVectorTy() != RHS->getType()->isVectorTy()) 423 return nullptr; 424 // If the false value simplified to false, then the result of the compare 425 // is equal to "Cond && TCmp". This also catches the case when the false 426 // value simplified to false and the true value to true, returning "Cond". 427 if (match(FCmp, m_Zero())) 428 if (Value *V = SimplifyAndInst(Cond, TCmp, Q, MaxRecurse)) 429 return V; 430 // If the true value simplified to true, then the result of the compare 431 // is equal to "Cond || FCmp". 432 if (match(TCmp, m_One())) 433 if (Value *V = SimplifyOrInst(Cond, FCmp, Q, MaxRecurse)) 434 return V; 435 // Finally, if the false value simplified to true and the true value to 436 // false, then the result of the compare is equal to "!Cond". 437 if (match(FCmp, m_One()) && match(TCmp, m_Zero())) 438 if (Value *V = 439 SimplifyXorInst(Cond, Constant::getAllOnesValue(Cond->getType()), 440 Q, MaxRecurse)) 441 return V; 442 443 return nullptr; 444 } 445 446 /// In the case of a binary operation with an operand that is a PHI instruction, 447 /// try to simplify the binop by seeing whether evaluating it on the incoming 448 /// phi values yields the same result for every value. If so returns the common 449 /// value, otherwise returns null. 450 static Value *ThreadBinOpOverPHI(unsigned Opcode, Value *LHS, Value *RHS, 451 const Query &Q, unsigned MaxRecurse) { 452 // Recursion is always used, so bail out at once if we already hit the limit. 453 if (!MaxRecurse--) 454 return nullptr; 455 456 PHINode *PI; 457 if (isa<PHINode>(LHS)) { 458 PI = cast<PHINode>(LHS); 459 // Bail out if RHS and the phi may be mutually interdependent due to a loop. 460 if (!ValueDominatesPHI(RHS, PI, Q.DT)) 461 return nullptr; 462 } else { 463 assert(isa<PHINode>(RHS) && "No PHI instruction operand!"); 464 PI = cast<PHINode>(RHS); 465 // Bail out if LHS and the phi may be mutually interdependent due to a loop. 466 if (!ValueDominatesPHI(LHS, PI, Q.DT)) 467 return nullptr; 468 } 469 470 // Evaluate the BinOp on the incoming phi values. 471 Value *CommonValue = nullptr; 472 for (Value *Incoming : PI->incoming_values()) { 473 // If the incoming value is the phi node itself, it can safely be skipped. 474 if (Incoming == PI) continue; 475 Value *V = PI == LHS ? 476 SimplifyBinOp(Opcode, Incoming, RHS, Q, MaxRecurse) : 477 SimplifyBinOp(Opcode, LHS, Incoming, Q, MaxRecurse); 478 // If the operation failed to simplify, or simplified to a different value 479 // to previously, then give up. 480 if (!V || (CommonValue && V != CommonValue)) 481 return nullptr; 482 CommonValue = V; 483 } 484 485 return CommonValue; 486 } 487 488 /// In the case of a comparison with a PHI instruction, try to simplify the 489 /// comparison by seeing whether comparing with all of the incoming phi values 490 /// yields the same result every time. If so returns the common result, 491 /// otherwise returns null. 492 static Value *ThreadCmpOverPHI(CmpInst::Predicate Pred, Value *LHS, Value *RHS, 493 const Query &Q, unsigned MaxRecurse) { 494 // Recursion is always used, so bail out at once if we already hit the limit. 495 if (!MaxRecurse--) 496 return nullptr; 497 498 // Make sure the phi is on the LHS. 499 if (!isa<PHINode>(LHS)) { 500 std::swap(LHS, RHS); 501 Pred = CmpInst::getSwappedPredicate(Pred); 502 } 503 assert(isa<PHINode>(LHS) && "Not comparing with a phi instruction!"); 504 PHINode *PI = cast<PHINode>(LHS); 505 506 // Bail out if RHS and the phi may be mutually interdependent due to a loop. 507 if (!ValueDominatesPHI(RHS, PI, Q.DT)) 508 return nullptr; 509 510 // Evaluate the BinOp on the incoming phi values. 511 Value *CommonValue = nullptr; 512 for (Value *Incoming : PI->incoming_values()) { 513 // If the incoming value is the phi node itself, it can safely be skipped. 514 if (Incoming == PI) continue; 515 Value *V = SimplifyCmpInst(Pred, Incoming, RHS, Q, MaxRecurse); 516 // If the operation failed to simplify, or simplified to a different value 517 // to previously, then give up. 518 if (!V || (CommonValue && V != CommonValue)) 519 return nullptr; 520 CommonValue = V; 521 } 522 523 return CommonValue; 524 } 525 526 /// Given operands for an Add, see if we can fold the result. 527 /// If not, this returns null. 528 static Value *SimplifyAddInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, 529 const Query &Q, unsigned MaxRecurse) { 530 if (Constant *CLHS = dyn_cast<Constant>(Op0)) { 531 if (Constant *CRHS = dyn_cast<Constant>(Op1)) 532 return ConstantFoldBinaryOpOperands(Instruction::Add, CLHS, CRHS, Q.DL); 533 534 // Canonicalize the constant to the RHS. 535 std::swap(Op0, Op1); 536 } 537 538 // X + undef -> undef 539 if (match(Op1, m_Undef())) 540 return Op1; 541 542 // X + 0 -> X 543 if (match(Op1, m_Zero())) 544 return Op0; 545 546 // X + (Y - X) -> Y 547 // (Y - X) + X -> Y 548 // Eg: X + -X -> 0 549 Value *Y = nullptr; 550 if (match(Op1, m_Sub(m_Value(Y), m_Specific(Op0))) || 551 match(Op0, m_Sub(m_Value(Y), m_Specific(Op1)))) 552 return Y; 553 554 // X + ~X -> -1 since ~X = -X-1 555 if (match(Op0, m_Not(m_Specific(Op1))) || 556 match(Op1, m_Not(m_Specific(Op0)))) 557 return Constant::getAllOnesValue(Op0->getType()); 558 559 /// i1 add -> xor. 560 if (MaxRecurse && Op0->getType()->isIntegerTy(1)) 561 if (Value *V = SimplifyXorInst(Op0, Op1, Q, MaxRecurse-1)) 562 return V; 563 564 // Try some generic simplifications for associative operations. 565 if (Value *V = SimplifyAssociativeBinOp(Instruction::Add, Op0, Op1, Q, 566 MaxRecurse)) 567 return V; 568 569 // Threading Add over selects and phi nodes is pointless, so don't bother. 570 // Threading over the select in "A + select(cond, B, C)" means evaluating 571 // "A+B" and "A+C" and seeing if they are equal; but they are equal if and 572 // only if B and C are equal. If B and C are equal then (since we assume 573 // that operands have already been simplified) "select(cond, B, C)" should 574 // have been simplified to the common value of B and C already. Analysing 575 // "A+B" and "A+C" thus gains nothing, but costs compile time. Similarly 576 // for threading over phi nodes. 577 578 return nullptr; 579 } 580 581 Value *llvm::SimplifyAddInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, 582 const DataLayout &DL, const TargetLibraryInfo *TLI, 583 const DominatorTree *DT, AssumptionCache *AC, 584 const Instruction *CxtI) { 585 return ::SimplifyAddInst(Op0, Op1, isNSW, isNUW, Query(DL, TLI, DT, AC, CxtI), 586 RecursionLimit); 587 } 588 589 /// \brief Compute the base pointer and cumulative constant offsets for V. 590 /// 591 /// This strips all constant offsets off of V, leaving it the base pointer, and 592 /// accumulates the total constant offset applied in the returned constant. It 593 /// returns 0 if V is not a pointer, and returns the constant '0' if there are 594 /// no constant offsets applied. 595 /// 596 /// This is very similar to GetPointerBaseWithConstantOffset except it doesn't 597 /// follow non-inbounds geps. This allows it to remain usable for icmp ult/etc. 598 /// folding. 599 static Constant *stripAndComputeConstantOffsets(const DataLayout &DL, Value *&V, 600 bool AllowNonInbounds = false) { 601 assert(V->getType()->getScalarType()->isPointerTy()); 602 603 Type *IntPtrTy = DL.getIntPtrType(V->getType())->getScalarType(); 604 APInt Offset = APInt::getNullValue(IntPtrTy->getIntegerBitWidth()); 605 606 // Even though we don't look through PHI nodes, we could be called on an 607 // instruction in an unreachable block, which may be on a cycle. 608 SmallPtrSet<Value *, 4> Visited; 609 Visited.insert(V); 610 do { 611 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 612 if ((!AllowNonInbounds && !GEP->isInBounds()) || 613 !GEP->accumulateConstantOffset(DL, Offset)) 614 break; 615 V = GEP->getPointerOperand(); 616 } else if (Operator::getOpcode(V) == Instruction::BitCast) { 617 V = cast<Operator>(V)->getOperand(0); 618 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 619 if (GA->mayBeOverridden()) 620 break; 621 V = GA->getAliasee(); 622 } else { 623 break; 624 } 625 assert(V->getType()->getScalarType()->isPointerTy() && 626 "Unexpected operand type!"); 627 } while (Visited.insert(V).second); 628 629 Constant *OffsetIntPtr = ConstantInt::get(IntPtrTy, Offset); 630 if (V->getType()->isVectorTy()) 631 return ConstantVector::getSplat(V->getType()->getVectorNumElements(), 632 OffsetIntPtr); 633 return OffsetIntPtr; 634 } 635 636 /// \brief Compute the constant difference between two pointer values. 637 /// If the difference is not a constant, returns zero. 638 static Constant *computePointerDifference(const DataLayout &DL, Value *LHS, 639 Value *RHS) { 640 Constant *LHSOffset = stripAndComputeConstantOffsets(DL, LHS); 641 Constant *RHSOffset = stripAndComputeConstantOffsets(DL, RHS); 642 643 // If LHS and RHS are not related via constant offsets to the same base 644 // value, there is nothing we can do here. 645 if (LHS != RHS) 646 return nullptr; 647 648 // Otherwise, the difference of LHS - RHS can be computed as: 649 // LHS - RHS 650 // = (LHSOffset + Base) - (RHSOffset + Base) 651 // = LHSOffset - RHSOffset 652 return ConstantExpr::getSub(LHSOffset, RHSOffset); 653 } 654 655 /// Given operands for a Sub, see if we can fold the result. 656 /// If not, this returns null. 657 static Value *SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, 658 const Query &Q, unsigned MaxRecurse) { 659 if (Constant *CLHS = dyn_cast<Constant>(Op0)) 660 if (Constant *CRHS = dyn_cast<Constant>(Op1)) 661 return ConstantFoldBinaryOpOperands(Instruction::Sub, CLHS, CRHS, Q.DL); 662 663 // X - undef -> undef 664 // undef - X -> undef 665 if (match(Op0, m_Undef()) || match(Op1, m_Undef())) 666 return UndefValue::get(Op0->getType()); 667 668 // X - 0 -> X 669 if (match(Op1, m_Zero())) 670 return Op0; 671 672 // X - X -> 0 673 if (Op0 == Op1) 674 return Constant::getNullValue(Op0->getType()); 675 676 // 0 - X -> 0 if the sub is NUW. 677 if (isNUW && match(Op0, m_Zero())) 678 return Op0; 679 680 // (X + Y) - Z -> X + (Y - Z) or Y + (X - Z) if everything simplifies. 681 // For example, (X + Y) - Y -> X; (Y + X) - Y -> X 682 Value *X = nullptr, *Y = nullptr, *Z = Op1; 683 if (MaxRecurse && match(Op0, m_Add(m_Value(X), m_Value(Y)))) { // (X + Y) - Z 684 // See if "V === Y - Z" simplifies. 685 if (Value *V = SimplifyBinOp(Instruction::Sub, Y, Z, Q, MaxRecurse-1)) 686 // It does! Now see if "X + V" simplifies. 687 if (Value *W = SimplifyBinOp(Instruction::Add, X, V, Q, MaxRecurse-1)) { 688 // It does, we successfully reassociated! 689 ++NumReassoc; 690 return W; 691 } 692 // See if "V === X - Z" simplifies. 693 if (Value *V = SimplifyBinOp(Instruction::Sub, X, Z, Q, MaxRecurse-1)) 694 // It does! Now see if "Y + V" simplifies. 695 if (Value *W = SimplifyBinOp(Instruction::Add, Y, V, Q, MaxRecurse-1)) { 696 // It does, we successfully reassociated! 697 ++NumReassoc; 698 return W; 699 } 700 } 701 702 // X - (Y + Z) -> (X - Y) - Z or (X - Z) - Y if everything simplifies. 703 // For example, X - (X + 1) -> -1 704 X = Op0; 705 if (MaxRecurse && match(Op1, m_Add(m_Value(Y), m_Value(Z)))) { // X - (Y + Z) 706 // See if "V === X - Y" simplifies. 707 if (Value *V = SimplifyBinOp(Instruction::Sub, X, Y, Q, MaxRecurse-1)) 708 // It does! Now see if "V - Z" simplifies. 709 if (Value *W = SimplifyBinOp(Instruction::Sub, V, Z, Q, MaxRecurse-1)) { 710 // It does, we successfully reassociated! 711 ++NumReassoc; 712 return W; 713 } 714 // See if "V === X - Z" simplifies. 715 if (Value *V = SimplifyBinOp(Instruction::Sub, X, Z, Q, MaxRecurse-1)) 716 // It does! Now see if "V - Y" simplifies. 717 if (Value *W = SimplifyBinOp(Instruction::Sub, V, Y, Q, MaxRecurse-1)) { 718 // It does, we successfully reassociated! 719 ++NumReassoc; 720 return W; 721 } 722 } 723 724 // Z - (X - Y) -> (Z - X) + Y if everything simplifies. 725 // For example, X - (X - Y) -> Y. 726 Z = Op0; 727 if (MaxRecurse && match(Op1, m_Sub(m_Value(X), m_Value(Y)))) // Z - (X - Y) 728 // See if "V === Z - X" simplifies. 729 if (Value *V = SimplifyBinOp(Instruction::Sub, Z, X, Q, MaxRecurse-1)) 730 // It does! Now see if "V + Y" simplifies. 731 if (Value *W = SimplifyBinOp(Instruction::Add, V, Y, Q, MaxRecurse-1)) { 732 // It does, we successfully reassociated! 733 ++NumReassoc; 734 return W; 735 } 736 737 // trunc(X) - trunc(Y) -> trunc(X - Y) if everything simplifies. 738 if (MaxRecurse && match(Op0, m_Trunc(m_Value(X))) && 739 match(Op1, m_Trunc(m_Value(Y)))) 740 if (X->getType() == Y->getType()) 741 // See if "V === X - Y" simplifies. 742 if (Value *V = SimplifyBinOp(Instruction::Sub, X, Y, Q, MaxRecurse-1)) 743 // It does! Now see if "trunc V" simplifies. 744 if (Value *W = SimplifyTruncInst(V, Op0->getType(), Q, MaxRecurse-1)) 745 // It does, return the simplified "trunc V". 746 return W; 747 748 // Variations on GEP(base, I, ...) - GEP(base, i, ...) -> GEP(null, I-i, ...). 749 if (match(Op0, m_PtrToInt(m_Value(X))) && 750 match(Op1, m_PtrToInt(m_Value(Y)))) 751 if (Constant *Result = computePointerDifference(Q.DL, X, Y)) 752 return ConstantExpr::getIntegerCast(Result, Op0->getType(), true); 753 754 // i1 sub -> xor. 755 if (MaxRecurse && Op0->getType()->isIntegerTy(1)) 756 if (Value *V = SimplifyXorInst(Op0, Op1, Q, MaxRecurse-1)) 757 return V; 758 759 // Threading Sub over selects and phi nodes is pointless, so don't bother. 760 // Threading over the select in "A - select(cond, B, C)" means evaluating 761 // "A-B" and "A-C" and seeing if they are equal; but they are equal if and 762 // only if B and C are equal. If B and C are equal then (since we assume 763 // that operands have already been simplified) "select(cond, B, C)" should 764 // have been simplified to the common value of B and C already. Analysing 765 // "A-B" and "A-C" thus gains nothing, but costs compile time. Similarly 766 // for threading over phi nodes. 767 768 return nullptr; 769 } 770 771 Value *llvm::SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, 772 const DataLayout &DL, const TargetLibraryInfo *TLI, 773 const DominatorTree *DT, AssumptionCache *AC, 774 const Instruction *CxtI) { 775 return ::SimplifySubInst(Op0, Op1, isNSW, isNUW, Query(DL, TLI, DT, AC, CxtI), 776 RecursionLimit); 777 } 778 779 /// Given operands for an FAdd, see if we can fold the result. If not, this 780 /// returns null. 781 static Value *SimplifyFAddInst(Value *Op0, Value *Op1, FastMathFlags FMF, 782 const Query &Q, unsigned MaxRecurse) { 783 if (Constant *CLHS = dyn_cast<Constant>(Op0)) { 784 if (Constant *CRHS = dyn_cast<Constant>(Op1)) 785 return ConstantFoldBinaryOpOperands(Instruction::FAdd, CLHS, CRHS, Q.DL); 786 787 // Canonicalize the constant to the RHS. 788 std::swap(Op0, Op1); 789 } 790 791 // fadd X, -0 ==> X 792 if (match(Op1, m_NegZero())) 793 return Op0; 794 795 // fadd X, 0 ==> X, when we know X is not -0 796 if (match(Op1, m_Zero()) && 797 (FMF.noSignedZeros() || CannotBeNegativeZero(Op0))) 798 return Op0; 799 800 // fadd [nnan ninf] X, (fsub [nnan ninf] 0, X) ==> 0 801 // where nnan and ninf have to occur at least once somewhere in this 802 // expression 803 Value *SubOp = nullptr; 804 if (match(Op1, m_FSub(m_AnyZero(), m_Specific(Op0)))) 805 SubOp = Op1; 806 else if (match(Op0, m_FSub(m_AnyZero(), m_Specific(Op1)))) 807 SubOp = Op0; 808 if (SubOp) { 809 Instruction *FSub = cast<Instruction>(SubOp); 810 if ((FMF.noNaNs() || FSub->hasNoNaNs()) && 811 (FMF.noInfs() || FSub->hasNoInfs())) 812 return Constant::getNullValue(Op0->getType()); 813 } 814 815 return nullptr; 816 } 817 818 /// Given operands for an FSub, see if we can fold the result. If not, this 819 /// returns null. 820 static Value *SimplifyFSubInst(Value *Op0, Value *Op1, FastMathFlags FMF, 821 const Query &Q, unsigned MaxRecurse) { 822 if (Constant *CLHS = dyn_cast<Constant>(Op0)) { 823 if (Constant *CRHS = dyn_cast<Constant>(Op1)) 824 return ConstantFoldBinaryOpOperands(Instruction::FSub, CLHS, CRHS, Q.DL); 825 } 826 827 // fsub X, 0 ==> X 828 if (match(Op1, m_Zero())) 829 return Op0; 830 831 // fsub X, -0 ==> X, when we know X is not -0 832 if (match(Op1, m_NegZero()) && 833 (FMF.noSignedZeros() || CannotBeNegativeZero(Op0))) 834 return Op0; 835 836 // fsub 0, (fsub -0.0, X) ==> X 837 Value *X; 838 if (match(Op0, m_AnyZero())) { 839 if (match(Op1, m_FSub(m_NegZero(), m_Value(X)))) 840 return X; 841 if (FMF.noSignedZeros() && match(Op1, m_FSub(m_AnyZero(), m_Value(X)))) 842 return X; 843 } 844 845 // fsub nnan x, x ==> 0.0 846 if (FMF.noNaNs() && Op0 == Op1) 847 return Constant::getNullValue(Op0->getType()); 848 849 return nullptr; 850 } 851 852 /// Given the operands for an FMul, see if we can fold the result 853 static Value *SimplifyFMulInst(Value *Op0, Value *Op1, 854 FastMathFlags FMF, 855 const Query &Q, 856 unsigned MaxRecurse) { 857 if (Constant *CLHS = dyn_cast<Constant>(Op0)) { 858 if (Constant *CRHS = dyn_cast<Constant>(Op1)) 859 return ConstantFoldBinaryOpOperands(Instruction::FMul, CLHS, CRHS, Q.DL); 860 861 // Canonicalize the constant to the RHS. 862 std::swap(Op0, Op1); 863 } 864 865 // fmul X, 1.0 ==> X 866 if (match(Op1, m_FPOne())) 867 return Op0; 868 869 // fmul nnan nsz X, 0 ==> 0 870 if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op1, m_AnyZero())) 871 return Op1; 872 873 return nullptr; 874 } 875 876 /// Given operands for a Mul, see if we can fold the result. 877 /// If not, this returns null. 878 static Value *SimplifyMulInst(Value *Op0, Value *Op1, const Query &Q, 879 unsigned MaxRecurse) { 880 if (Constant *CLHS = dyn_cast<Constant>(Op0)) { 881 if (Constant *CRHS = dyn_cast<Constant>(Op1)) 882 return ConstantFoldBinaryOpOperands(Instruction::Mul, CLHS, CRHS, Q.DL); 883 884 // Canonicalize the constant to the RHS. 885 std::swap(Op0, Op1); 886 } 887 888 // X * undef -> 0 889 if (match(Op1, m_Undef())) 890 return Constant::getNullValue(Op0->getType()); 891 892 // X * 0 -> 0 893 if (match(Op1, m_Zero())) 894 return Op1; 895 896 // X * 1 -> X 897 if (match(Op1, m_One())) 898 return Op0; 899 900 // (X / Y) * Y -> X if the division is exact. 901 Value *X = nullptr; 902 if (match(Op0, m_Exact(m_IDiv(m_Value(X), m_Specific(Op1)))) || // (X / Y) * Y 903 match(Op1, m_Exact(m_IDiv(m_Value(X), m_Specific(Op0))))) // Y * (X / Y) 904 return X; 905 906 // i1 mul -> and. 907 if (MaxRecurse && Op0->getType()->isIntegerTy(1)) 908 if (Value *V = SimplifyAndInst(Op0, Op1, Q, MaxRecurse-1)) 909 return V; 910 911 // Try some generic simplifications for associative operations. 912 if (Value *V = SimplifyAssociativeBinOp(Instruction::Mul, Op0, Op1, Q, 913 MaxRecurse)) 914 return V; 915 916 // Mul distributes over Add. Try some generic simplifications based on this. 917 if (Value *V = ExpandBinOp(Instruction::Mul, Op0, Op1, Instruction::Add, 918 Q, MaxRecurse)) 919 return V; 920 921 // If the operation is with the result of a select instruction, check whether 922 // operating on either branch of the select always yields the same value. 923 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 924 if (Value *V = ThreadBinOpOverSelect(Instruction::Mul, Op0, Op1, Q, 925 MaxRecurse)) 926 return V; 927 928 // If the operation is with the result of a phi instruction, check whether 929 // operating on all incoming values of the phi always yields the same value. 930 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 931 if (Value *V = ThreadBinOpOverPHI(Instruction::Mul, Op0, Op1, Q, 932 MaxRecurse)) 933 return V; 934 935 return nullptr; 936 } 937 938 Value *llvm::SimplifyFAddInst(Value *Op0, Value *Op1, FastMathFlags FMF, 939 const DataLayout &DL, 940 const TargetLibraryInfo *TLI, 941 const DominatorTree *DT, AssumptionCache *AC, 942 const Instruction *CxtI) { 943 return ::SimplifyFAddInst(Op0, Op1, FMF, Query(DL, TLI, DT, AC, CxtI), 944 RecursionLimit); 945 } 946 947 Value *llvm::SimplifyFSubInst(Value *Op0, Value *Op1, FastMathFlags FMF, 948 const DataLayout &DL, 949 const TargetLibraryInfo *TLI, 950 const DominatorTree *DT, AssumptionCache *AC, 951 const Instruction *CxtI) { 952 return ::SimplifyFSubInst(Op0, Op1, FMF, Query(DL, TLI, DT, AC, CxtI), 953 RecursionLimit); 954 } 955 956 Value *llvm::SimplifyFMulInst(Value *Op0, Value *Op1, FastMathFlags FMF, 957 const DataLayout &DL, 958 const TargetLibraryInfo *TLI, 959 const DominatorTree *DT, AssumptionCache *AC, 960 const Instruction *CxtI) { 961 return ::SimplifyFMulInst(Op0, Op1, FMF, Query(DL, TLI, DT, AC, CxtI), 962 RecursionLimit); 963 } 964 965 Value *llvm::SimplifyMulInst(Value *Op0, Value *Op1, const DataLayout &DL, 966 const TargetLibraryInfo *TLI, 967 const DominatorTree *DT, AssumptionCache *AC, 968 const Instruction *CxtI) { 969 return ::SimplifyMulInst(Op0, Op1, Query(DL, TLI, DT, AC, CxtI), 970 RecursionLimit); 971 } 972 973 /// Given operands for an SDiv or UDiv, see if we can fold the result. 974 /// If not, this returns null. 975 static Value *SimplifyDiv(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1, 976 const Query &Q, unsigned MaxRecurse) { 977 if (Constant *C0 = dyn_cast<Constant>(Op0)) 978 if (Constant *C1 = dyn_cast<Constant>(Op1)) 979 return ConstantFoldBinaryOpOperands(Opcode, C0, C1, Q.DL); 980 981 bool isSigned = Opcode == Instruction::SDiv; 982 983 // X / undef -> undef 984 if (match(Op1, m_Undef())) 985 return Op1; 986 987 // X / 0 -> undef, we don't need to preserve faults! 988 if (match(Op1, m_Zero())) 989 return UndefValue::get(Op1->getType()); 990 991 // undef / X -> 0 992 if (match(Op0, m_Undef())) 993 return Constant::getNullValue(Op0->getType()); 994 995 // 0 / X -> 0, we don't need to preserve faults! 996 if (match(Op0, m_Zero())) 997 return Op0; 998 999 // X / 1 -> X 1000 if (match(Op1, m_One())) 1001 return Op0; 1002 1003 if (Op0->getType()->isIntegerTy(1)) 1004 // It can't be division by zero, hence it must be division by one. 1005 return Op0; 1006 1007 // X / X -> 1 1008 if (Op0 == Op1) 1009 return ConstantInt::get(Op0->getType(), 1); 1010 1011 // (X * Y) / Y -> X if the multiplication does not overflow. 1012 Value *X = nullptr, *Y = nullptr; 1013 if (match(Op0, m_Mul(m_Value(X), m_Value(Y))) && (X == Op1 || Y == Op1)) { 1014 if (Y != Op1) std::swap(X, Y); // Ensure expression is (X * Y) / Y, Y = Op1 1015 OverflowingBinaryOperator *Mul = cast<OverflowingBinaryOperator>(Op0); 1016 // If the Mul knows it does not overflow, then we are good to go. 1017 if ((isSigned && Mul->hasNoSignedWrap()) || 1018 (!isSigned && Mul->hasNoUnsignedWrap())) 1019 return X; 1020 // If X has the form X = A / Y then X * Y cannot overflow. 1021 if (BinaryOperator *Div = dyn_cast<BinaryOperator>(X)) 1022 if (Div->getOpcode() == Opcode && Div->getOperand(1) == Y) 1023 return X; 1024 } 1025 1026 // (X rem Y) / Y -> 0 1027 if ((isSigned && match(Op0, m_SRem(m_Value(), m_Specific(Op1)))) || 1028 (!isSigned && match(Op0, m_URem(m_Value(), m_Specific(Op1))))) 1029 return Constant::getNullValue(Op0->getType()); 1030 1031 // (X /u C1) /u C2 -> 0 if C1 * C2 overflow 1032 ConstantInt *C1, *C2; 1033 if (!isSigned && match(Op0, m_UDiv(m_Value(X), m_ConstantInt(C1))) && 1034 match(Op1, m_ConstantInt(C2))) { 1035 bool Overflow; 1036 C1->getValue().umul_ov(C2->getValue(), Overflow); 1037 if (Overflow) 1038 return Constant::getNullValue(Op0->getType()); 1039 } 1040 1041 // If the operation is with the result of a select instruction, check whether 1042 // operating on either branch of the select always yields the same value. 1043 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 1044 if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse)) 1045 return V; 1046 1047 // If the operation is with the result of a phi instruction, check whether 1048 // operating on all incoming values of the phi always yields the same value. 1049 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 1050 if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse)) 1051 return V; 1052 1053 return nullptr; 1054 } 1055 1056 /// Given operands for an SDiv, see if we can fold the result. 1057 /// If not, this returns null. 1058 static Value *SimplifySDivInst(Value *Op0, Value *Op1, const Query &Q, 1059 unsigned MaxRecurse) { 1060 if (Value *V = SimplifyDiv(Instruction::SDiv, Op0, Op1, Q, MaxRecurse)) 1061 return V; 1062 1063 return nullptr; 1064 } 1065 1066 Value *llvm::SimplifySDivInst(Value *Op0, Value *Op1, const DataLayout &DL, 1067 const TargetLibraryInfo *TLI, 1068 const DominatorTree *DT, AssumptionCache *AC, 1069 const Instruction *CxtI) { 1070 return ::SimplifySDivInst(Op0, Op1, Query(DL, TLI, DT, AC, CxtI), 1071 RecursionLimit); 1072 } 1073 1074 /// Given operands for a UDiv, see if we can fold the result. 1075 /// If not, this returns null. 1076 static Value *SimplifyUDivInst(Value *Op0, Value *Op1, const Query &Q, 1077 unsigned MaxRecurse) { 1078 if (Value *V = SimplifyDiv(Instruction::UDiv, Op0, Op1, Q, MaxRecurse)) 1079 return V; 1080 1081 return nullptr; 1082 } 1083 1084 Value *llvm::SimplifyUDivInst(Value *Op0, Value *Op1, const DataLayout &DL, 1085 const TargetLibraryInfo *TLI, 1086 const DominatorTree *DT, AssumptionCache *AC, 1087 const Instruction *CxtI) { 1088 return ::SimplifyUDivInst(Op0, Op1, Query(DL, TLI, DT, AC, CxtI), 1089 RecursionLimit); 1090 } 1091 1092 static Value *SimplifyFDivInst(Value *Op0, Value *Op1, FastMathFlags FMF, 1093 const Query &Q, unsigned) { 1094 // undef / X -> undef (the undef could be a snan). 1095 if (match(Op0, m_Undef())) 1096 return Op0; 1097 1098 // X / undef -> undef 1099 if (match(Op1, m_Undef())) 1100 return Op1; 1101 1102 // 0 / X -> 0 1103 // Requires that NaNs are off (X could be zero) and signed zeroes are 1104 // ignored (X could be positive or negative, so the output sign is unknown). 1105 if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op0, m_AnyZero())) 1106 return Op0; 1107 1108 if (FMF.noNaNs()) { 1109 // X / X -> 1.0 is legal when NaNs are ignored. 1110 if (Op0 == Op1) 1111 return ConstantFP::get(Op0->getType(), 1.0); 1112 1113 // -X / X -> -1.0 and 1114 // X / -X -> -1.0 are legal when NaNs are ignored. 1115 // We can ignore signed zeros because +-0.0/+-0.0 is NaN and ignored. 1116 if ((BinaryOperator::isFNeg(Op0, /*IgnoreZeroSign=*/true) && 1117 BinaryOperator::getFNegArgument(Op0) == Op1) || 1118 (BinaryOperator::isFNeg(Op1, /*IgnoreZeroSign=*/true) && 1119 BinaryOperator::getFNegArgument(Op1) == Op0)) 1120 return ConstantFP::get(Op0->getType(), -1.0); 1121 } 1122 1123 return nullptr; 1124 } 1125 1126 Value *llvm::SimplifyFDivInst(Value *Op0, Value *Op1, FastMathFlags FMF, 1127 const DataLayout &DL, 1128 const TargetLibraryInfo *TLI, 1129 const DominatorTree *DT, AssumptionCache *AC, 1130 const Instruction *CxtI) { 1131 return ::SimplifyFDivInst(Op0, Op1, FMF, Query(DL, TLI, DT, AC, CxtI), 1132 RecursionLimit); 1133 } 1134 1135 /// Given operands for an SRem or URem, see if we can fold the result. 1136 /// If not, this returns null. 1137 static Value *SimplifyRem(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1, 1138 const Query &Q, unsigned MaxRecurse) { 1139 if (Constant *C0 = dyn_cast<Constant>(Op0)) 1140 if (Constant *C1 = dyn_cast<Constant>(Op1)) 1141 return ConstantFoldBinaryOpOperands(Opcode, C0, C1, Q.DL); 1142 1143 // X % undef -> undef 1144 if (match(Op1, m_Undef())) 1145 return Op1; 1146 1147 // undef % X -> 0 1148 if (match(Op0, m_Undef())) 1149 return Constant::getNullValue(Op0->getType()); 1150 1151 // 0 % X -> 0, we don't need to preserve faults! 1152 if (match(Op0, m_Zero())) 1153 return Op0; 1154 1155 // X % 0 -> undef, we don't need to preserve faults! 1156 if (match(Op1, m_Zero())) 1157 return UndefValue::get(Op0->getType()); 1158 1159 // X % 1 -> 0 1160 if (match(Op1, m_One())) 1161 return Constant::getNullValue(Op0->getType()); 1162 1163 if (Op0->getType()->isIntegerTy(1)) 1164 // It can't be remainder by zero, hence it must be remainder by one. 1165 return Constant::getNullValue(Op0->getType()); 1166 1167 // X % X -> 0 1168 if (Op0 == Op1) 1169 return Constant::getNullValue(Op0->getType()); 1170 1171 // (X % Y) % Y -> X % Y 1172 if ((Opcode == Instruction::SRem && 1173 match(Op0, m_SRem(m_Value(), m_Specific(Op1)))) || 1174 (Opcode == Instruction::URem && 1175 match(Op0, m_URem(m_Value(), m_Specific(Op1))))) 1176 return Op0; 1177 1178 // If the operation is with the result of a select instruction, check whether 1179 // operating on either branch of the select always yields the same value. 1180 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 1181 if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse)) 1182 return V; 1183 1184 // If the operation is with the result of a phi instruction, check whether 1185 // operating on all incoming values of the phi always yields the same value. 1186 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 1187 if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse)) 1188 return V; 1189 1190 return nullptr; 1191 } 1192 1193 /// Given operands for an SRem, see if we can fold the result. 1194 /// If not, this returns null. 1195 static Value *SimplifySRemInst(Value *Op0, Value *Op1, const Query &Q, 1196 unsigned MaxRecurse) { 1197 if (Value *V = SimplifyRem(Instruction::SRem, Op0, Op1, Q, MaxRecurse)) 1198 return V; 1199 1200 return nullptr; 1201 } 1202 1203 Value *llvm::SimplifySRemInst(Value *Op0, Value *Op1, const DataLayout &DL, 1204 const TargetLibraryInfo *TLI, 1205 const DominatorTree *DT, AssumptionCache *AC, 1206 const Instruction *CxtI) { 1207 return ::SimplifySRemInst(Op0, Op1, Query(DL, TLI, DT, AC, CxtI), 1208 RecursionLimit); 1209 } 1210 1211 /// Given operands for a URem, see if we can fold the result. 1212 /// If not, this returns null. 1213 static Value *SimplifyURemInst(Value *Op0, Value *Op1, const Query &Q, 1214 unsigned MaxRecurse) { 1215 if (Value *V = SimplifyRem(Instruction::URem, Op0, Op1, Q, MaxRecurse)) 1216 return V; 1217 1218 return nullptr; 1219 } 1220 1221 Value *llvm::SimplifyURemInst(Value *Op0, Value *Op1, const DataLayout &DL, 1222 const TargetLibraryInfo *TLI, 1223 const DominatorTree *DT, AssumptionCache *AC, 1224 const Instruction *CxtI) { 1225 return ::SimplifyURemInst(Op0, Op1, Query(DL, TLI, DT, AC, CxtI), 1226 RecursionLimit); 1227 } 1228 1229 static Value *SimplifyFRemInst(Value *Op0, Value *Op1, FastMathFlags FMF, 1230 const Query &, unsigned) { 1231 // undef % X -> undef (the undef could be a snan). 1232 if (match(Op0, m_Undef())) 1233 return Op0; 1234 1235 // X % undef -> undef 1236 if (match(Op1, m_Undef())) 1237 return Op1; 1238 1239 // 0 % X -> 0 1240 // Requires that NaNs are off (X could be zero) and signed zeroes are 1241 // ignored (X could be positive or negative, so the output sign is unknown). 1242 if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op0, m_AnyZero())) 1243 return Op0; 1244 1245 return nullptr; 1246 } 1247 1248 Value *llvm::SimplifyFRemInst(Value *Op0, Value *Op1, FastMathFlags FMF, 1249 const DataLayout &DL, 1250 const TargetLibraryInfo *TLI, 1251 const DominatorTree *DT, AssumptionCache *AC, 1252 const Instruction *CxtI) { 1253 return ::SimplifyFRemInst(Op0, Op1, FMF, Query(DL, TLI, DT, AC, CxtI), 1254 RecursionLimit); 1255 } 1256 1257 /// Returns true if a shift by \c Amount always yields undef. 1258 static bool isUndefShift(Value *Amount) { 1259 Constant *C = dyn_cast<Constant>(Amount); 1260 if (!C) 1261 return false; 1262 1263 // X shift by undef -> undef because it may shift by the bitwidth. 1264 if (isa<UndefValue>(C)) 1265 return true; 1266 1267 // Shifting by the bitwidth or more is undefined. 1268 if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1269 if (CI->getValue().getLimitedValue() >= 1270 CI->getType()->getScalarSizeInBits()) 1271 return true; 1272 1273 // If all lanes of a vector shift are undefined the whole shift is. 1274 if (isa<ConstantVector>(C) || isa<ConstantDataVector>(C)) { 1275 for (unsigned I = 0, E = C->getType()->getVectorNumElements(); I != E; ++I) 1276 if (!isUndefShift(C->getAggregateElement(I))) 1277 return false; 1278 return true; 1279 } 1280 1281 return false; 1282 } 1283 1284 /// Given operands for an Shl, LShr or AShr, see if we can fold the result. 1285 /// If not, this returns null. 1286 static Value *SimplifyShift(unsigned Opcode, Value *Op0, Value *Op1, 1287 const Query &Q, unsigned MaxRecurse) { 1288 if (Constant *C0 = dyn_cast<Constant>(Op0)) 1289 if (Constant *C1 = dyn_cast<Constant>(Op1)) 1290 return ConstantFoldBinaryOpOperands(Opcode, C0, C1, Q.DL); 1291 1292 // 0 shift by X -> 0 1293 if (match(Op0, m_Zero())) 1294 return Op0; 1295 1296 // X shift by 0 -> X 1297 if (match(Op1, m_Zero())) 1298 return Op0; 1299 1300 // Fold undefined shifts. 1301 if (isUndefShift(Op1)) 1302 return UndefValue::get(Op0->getType()); 1303 1304 // If the operation is with the result of a select instruction, check whether 1305 // operating on either branch of the select always yields the same value. 1306 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 1307 if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse)) 1308 return V; 1309 1310 // If the operation is with the result of a phi instruction, check whether 1311 // operating on all incoming values of the phi always yields the same value. 1312 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 1313 if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse)) 1314 return V; 1315 1316 return nullptr; 1317 } 1318 1319 /// \brief Given operands for an Shl, LShr or AShr, see if we can 1320 /// fold the result. If not, this returns null. 1321 static Value *SimplifyRightShift(unsigned Opcode, Value *Op0, Value *Op1, 1322 bool isExact, const Query &Q, 1323 unsigned MaxRecurse) { 1324 if (Value *V = SimplifyShift(Opcode, Op0, Op1, Q, MaxRecurse)) 1325 return V; 1326 1327 // X >> X -> 0 1328 if (Op0 == Op1) 1329 return Constant::getNullValue(Op0->getType()); 1330 1331 // undef >> X -> 0 1332 // undef >> X -> undef (if it's exact) 1333 if (match(Op0, m_Undef())) 1334 return isExact ? Op0 : Constant::getNullValue(Op0->getType()); 1335 1336 // The low bit cannot be shifted out of an exact shift if it is set. 1337 if (isExact) { 1338 unsigned BitWidth = Op0->getType()->getScalarSizeInBits(); 1339 APInt Op0KnownZero(BitWidth, 0); 1340 APInt Op0KnownOne(BitWidth, 0); 1341 computeKnownBits(Op0, Op0KnownZero, Op0KnownOne, Q.DL, /*Depth=*/0, Q.AC, 1342 Q.CxtI, Q.DT); 1343 if (Op0KnownOne[0]) 1344 return Op0; 1345 } 1346 1347 return nullptr; 1348 } 1349 1350 /// Given operands for an Shl, see if we can fold the result. 1351 /// If not, this returns null. 1352 static Value *SimplifyShlInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, 1353 const Query &Q, unsigned MaxRecurse) { 1354 if (Value *V = SimplifyShift(Instruction::Shl, Op0, Op1, Q, MaxRecurse)) 1355 return V; 1356 1357 // undef << X -> 0 1358 // undef << X -> undef if (if it's NSW/NUW) 1359 if (match(Op0, m_Undef())) 1360 return isNSW || isNUW ? Op0 : Constant::getNullValue(Op0->getType()); 1361 1362 // (X >> A) << A -> X 1363 Value *X; 1364 if (match(Op0, m_Exact(m_Shr(m_Value(X), m_Specific(Op1))))) 1365 return X; 1366 return nullptr; 1367 } 1368 1369 Value *llvm::SimplifyShlInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, 1370 const DataLayout &DL, const TargetLibraryInfo *TLI, 1371 const DominatorTree *DT, AssumptionCache *AC, 1372 const Instruction *CxtI) { 1373 return ::SimplifyShlInst(Op0, Op1, isNSW, isNUW, Query(DL, TLI, DT, AC, CxtI), 1374 RecursionLimit); 1375 } 1376 1377 /// Given operands for an LShr, see if we can fold the result. 1378 /// If not, this returns null. 1379 static Value *SimplifyLShrInst(Value *Op0, Value *Op1, bool isExact, 1380 const Query &Q, unsigned MaxRecurse) { 1381 if (Value *V = SimplifyRightShift(Instruction::LShr, Op0, Op1, isExact, Q, 1382 MaxRecurse)) 1383 return V; 1384 1385 // (X << A) >> A -> X 1386 Value *X; 1387 if (match(Op0, m_NUWShl(m_Value(X), m_Specific(Op1)))) 1388 return X; 1389 1390 return nullptr; 1391 } 1392 1393 Value *llvm::SimplifyLShrInst(Value *Op0, Value *Op1, bool isExact, 1394 const DataLayout &DL, 1395 const TargetLibraryInfo *TLI, 1396 const DominatorTree *DT, AssumptionCache *AC, 1397 const Instruction *CxtI) { 1398 return ::SimplifyLShrInst(Op0, Op1, isExact, Query(DL, TLI, DT, AC, CxtI), 1399 RecursionLimit); 1400 } 1401 1402 /// Given operands for an AShr, see if we can fold the result. 1403 /// If not, this returns null. 1404 static Value *SimplifyAShrInst(Value *Op0, Value *Op1, bool isExact, 1405 const Query &Q, unsigned MaxRecurse) { 1406 if (Value *V = SimplifyRightShift(Instruction::AShr, Op0, Op1, isExact, Q, 1407 MaxRecurse)) 1408 return V; 1409 1410 // all ones >>a X -> all ones 1411 if (match(Op0, m_AllOnes())) 1412 return Op0; 1413 1414 // (X << A) >> A -> X 1415 Value *X; 1416 if (match(Op0, m_NSWShl(m_Value(X), m_Specific(Op1)))) 1417 return X; 1418 1419 // Arithmetic shifting an all-sign-bit value is a no-op. 1420 unsigned NumSignBits = ComputeNumSignBits(Op0, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 1421 if (NumSignBits == Op0->getType()->getScalarSizeInBits()) 1422 return Op0; 1423 1424 return nullptr; 1425 } 1426 1427 Value *llvm::SimplifyAShrInst(Value *Op0, Value *Op1, bool isExact, 1428 const DataLayout &DL, 1429 const TargetLibraryInfo *TLI, 1430 const DominatorTree *DT, AssumptionCache *AC, 1431 const Instruction *CxtI) { 1432 return ::SimplifyAShrInst(Op0, Op1, isExact, Query(DL, TLI, DT, AC, CxtI), 1433 RecursionLimit); 1434 } 1435 1436 static Value *simplifyUnsignedRangeCheck(ICmpInst *ZeroICmp, 1437 ICmpInst *UnsignedICmp, bool IsAnd) { 1438 Value *X, *Y; 1439 1440 ICmpInst::Predicate EqPred; 1441 if (!match(ZeroICmp, m_ICmp(EqPred, m_Value(Y), m_Zero())) || 1442 !ICmpInst::isEquality(EqPred)) 1443 return nullptr; 1444 1445 ICmpInst::Predicate UnsignedPred; 1446 if (match(UnsignedICmp, m_ICmp(UnsignedPred, m_Value(X), m_Specific(Y))) && 1447 ICmpInst::isUnsigned(UnsignedPred)) 1448 ; 1449 else if (match(UnsignedICmp, 1450 m_ICmp(UnsignedPred, m_Value(Y), m_Specific(X))) && 1451 ICmpInst::isUnsigned(UnsignedPred)) 1452 UnsignedPred = ICmpInst::getSwappedPredicate(UnsignedPred); 1453 else 1454 return nullptr; 1455 1456 // X < Y && Y != 0 --> X < Y 1457 // X < Y || Y != 0 --> Y != 0 1458 if (UnsignedPred == ICmpInst::ICMP_ULT && EqPred == ICmpInst::ICMP_NE) 1459 return IsAnd ? UnsignedICmp : ZeroICmp; 1460 1461 // X >= Y || Y != 0 --> true 1462 // X >= Y || Y == 0 --> X >= Y 1463 if (UnsignedPred == ICmpInst::ICMP_UGE && !IsAnd) { 1464 if (EqPred == ICmpInst::ICMP_NE) 1465 return getTrue(UnsignedICmp->getType()); 1466 return UnsignedICmp; 1467 } 1468 1469 // X < Y && Y == 0 --> false 1470 if (UnsignedPred == ICmpInst::ICMP_ULT && EqPred == ICmpInst::ICMP_EQ && 1471 IsAnd) 1472 return getFalse(UnsignedICmp->getType()); 1473 1474 return nullptr; 1475 } 1476 1477 /// Simplify (and (icmp ...) (icmp ...)) to true when we can tell that the range 1478 /// of possible values cannot be satisfied. 1479 static Value *SimplifyAndOfICmps(ICmpInst *Op0, ICmpInst *Op1) { 1480 ICmpInst::Predicate Pred0, Pred1; 1481 ConstantInt *CI1, *CI2; 1482 Value *V; 1483 1484 if (Value *X = simplifyUnsignedRangeCheck(Op0, Op1, /*IsAnd=*/true)) 1485 return X; 1486 1487 if (!match(Op0, m_ICmp(Pred0, m_Add(m_Value(V), m_ConstantInt(CI1)), 1488 m_ConstantInt(CI2)))) 1489 return nullptr; 1490 1491 if (!match(Op1, m_ICmp(Pred1, m_Specific(V), m_Specific(CI1)))) 1492 return nullptr; 1493 1494 Type *ITy = Op0->getType(); 1495 1496 auto *AddInst = cast<BinaryOperator>(Op0->getOperand(0)); 1497 bool isNSW = AddInst->hasNoSignedWrap(); 1498 bool isNUW = AddInst->hasNoUnsignedWrap(); 1499 1500 const APInt &CI1V = CI1->getValue(); 1501 const APInt &CI2V = CI2->getValue(); 1502 const APInt Delta = CI2V - CI1V; 1503 if (CI1V.isStrictlyPositive()) { 1504 if (Delta == 2) { 1505 if (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_SGT) 1506 return getFalse(ITy); 1507 if (Pred0 == ICmpInst::ICMP_SLT && Pred1 == ICmpInst::ICMP_SGT && isNSW) 1508 return getFalse(ITy); 1509 } 1510 if (Delta == 1) { 1511 if (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_SGT) 1512 return getFalse(ITy); 1513 if (Pred0 == ICmpInst::ICMP_SLE && Pred1 == ICmpInst::ICMP_SGT && isNSW) 1514 return getFalse(ITy); 1515 } 1516 } 1517 if (CI1V.getBoolValue() && isNUW) { 1518 if (Delta == 2) 1519 if (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_UGT) 1520 return getFalse(ITy); 1521 if (Delta == 1) 1522 if (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_UGT) 1523 return getFalse(ITy); 1524 } 1525 1526 return nullptr; 1527 } 1528 1529 /// Given operands for an And, see if we can fold the result. 1530 /// If not, this returns null. 1531 static Value *SimplifyAndInst(Value *Op0, Value *Op1, const Query &Q, 1532 unsigned MaxRecurse) { 1533 if (Constant *CLHS = dyn_cast<Constant>(Op0)) { 1534 if (Constant *CRHS = dyn_cast<Constant>(Op1)) 1535 return ConstantFoldBinaryOpOperands(Instruction::And, CLHS, CRHS, Q.DL); 1536 1537 // Canonicalize the constant to the RHS. 1538 std::swap(Op0, Op1); 1539 } 1540 1541 // X & undef -> 0 1542 if (match(Op1, m_Undef())) 1543 return Constant::getNullValue(Op0->getType()); 1544 1545 // X & X = X 1546 if (Op0 == Op1) 1547 return Op0; 1548 1549 // X & 0 = 0 1550 if (match(Op1, m_Zero())) 1551 return Op1; 1552 1553 // X & -1 = X 1554 if (match(Op1, m_AllOnes())) 1555 return Op0; 1556 1557 // A & ~A = ~A & A = 0 1558 if (match(Op0, m_Not(m_Specific(Op1))) || 1559 match(Op1, m_Not(m_Specific(Op0)))) 1560 return Constant::getNullValue(Op0->getType()); 1561 1562 // (A | ?) & A = A 1563 Value *A = nullptr, *B = nullptr; 1564 if (match(Op0, m_Or(m_Value(A), m_Value(B))) && 1565 (A == Op1 || B == Op1)) 1566 return Op1; 1567 1568 // A & (A | ?) = A 1569 if (match(Op1, m_Or(m_Value(A), m_Value(B))) && 1570 (A == Op0 || B == Op0)) 1571 return Op0; 1572 1573 // A & (-A) = A if A is a power of two or zero. 1574 if (match(Op0, m_Neg(m_Specific(Op1))) || 1575 match(Op1, m_Neg(m_Specific(Op0)))) { 1576 if (isKnownToBeAPowerOfTwo(Op0, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI, 1577 Q.DT)) 1578 return Op0; 1579 if (isKnownToBeAPowerOfTwo(Op1, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI, 1580 Q.DT)) 1581 return Op1; 1582 } 1583 1584 if (auto *ICILHS = dyn_cast<ICmpInst>(Op0)) { 1585 if (auto *ICIRHS = dyn_cast<ICmpInst>(Op1)) { 1586 if (Value *V = SimplifyAndOfICmps(ICILHS, ICIRHS)) 1587 return V; 1588 if (Value *V = SimplifyAndOfICmps(ICIRHS, ICILHS)) 1589 return V; 1590 } 1591 } 1592 1593 // Try some generic simplifications for associative operations. 1594 if (Value *V = SimplifyAssociativeBinOp(Instruction::And, Op0, Op1, Q, 1595 MaxRecurse)) 1596 return V; 1597 1598 // And distributes over Or. Try some generic simplifications based on this. 1599 if (Value *V = ExpandBinOp(Instruction::And, Op0, Op1, Instruction::Or, 1600 Q, MaxRecurse)) 1601 return V; 1602 1603 // And distributes over Xor. Try some generic simplifications based on this. 1604 if (Value *V = ExpandBinOp(Instruction::And, Op0, Op1, Instruction::Xor, 1605 Q, MaxRecurse)) 1606 return V; 1607 1608 // If the operation is with the result of a select instruction, check whether 1609 // operating on either branch of the select always yields the same value. 1610 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 1611 if (Value *V = ThreadBinOpOverSelect(Instruction::And, Op0, Op1, Q, 1612 MaxRecurse)) 1613 return V; 1614 1615 // If the operation is with the result of a phi instruction, check whether 1616 // operating on all incoming values of the phi always yields the same value. 1617 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 1618 if (Value *V = ThreadBinOpOverPHI(Instruction::And, Op0, Op1, Q, 1619 MaxRecurse)) 1620 return V; 1621 1622 return nullptr; 1623 } 1624 1625 Value *llvm::SimplifyAndInst(Value *Op0, Value *Op1, const DataLayout &DL, 1626 const TargetLibraryInfo *TLI, 1627 const DominatorTree *DT, AssumptionCache *AC, 1628 const Instruction *CxtI) { 1629 return ::SimplifyAndInst(Op0, Op1, Query(DL, TLI, DT, AC, CxtI), 1630 RecursionLimit); 1631 } 1632 1633 /// Simplify (or (icmp ...) (icmp ...)) to true when we can tell that the union 1634 /// contains all possible values. 1635 static Value *SimplifyOrOfICmps(ICmpInst *Op0, ICmpInst *Op1) { 1636 ICmpInst::Predicate Pred0, Pred1; 1637 ConstantInt *CI1, *CI2; 1638 Value *V; 1639 1640 if (Value *X = simplifyUnsignedRangeCheck(Op0, Op1, /*IsAnd=*/false)) 1641 return X; 1642 1643 if (!match(Op0, m_ICmp(Pred0, m_Add(m_Value(V), m_ConstantInt(CI1)), 1644 m_ConstantInt(CI2)))) 1645 return nullptr; 1646 1647 if (!match(Op1, m_ICmp(Pred1, m_Specific(V), m_Specific(CI1)))) 1648 return nullptr; 1649 1650 Type *ITy = Op0->getType(); 1651 1652 auto *AddInst = cast<BinaryOperator>(Op0->getOperand(0)); 1653 bool isNSW = AddInst->hasNoSignedWrap(); 1654 bool isNUW = AddInst->hasNoUnsignedWrap(); 1655 1656 const APInt &CI1V = CI1->getValue(); 1657 const APInt &CI2V = CI2->getValue(); 1658 const APInt Delta = CI2V - CI1V; 1659 if (CI1V.isStrictlyPositive()) { 1660 if (Delta == 2) { 1661 if (Pred0 == ICmpInst::ICMP_UGE && Pred1 == ICmpInst::ICMP_SLE) 1662 return getTrue(ITy); 1663 if (Pred0 == ICmpInst::ICMP_SGE && Pred1 == ICmpInst::ICMP_SLE && isNSW) 1664 return getTrue(ITy); 1665 } 1666 if (Delta == 1) { 1667 if (Pred0 == ICmpInst::ICMP_UGT && Pred1 == ICmpInst::ICMP_SLE) 1668 return getTrue(ITy); 1669 if (Pred0 == ICmpInst::ICMP_SGT && Pred1 == ICmpInst::ICMP_SLE && isNSW) 1670 return getTrue(ITy); 1671 } 1672 } 1673 if (CI1V.getBoolValue() && isNUW) { 1674 if (Delta == 2) 1675 if (Pred0 == ICmpInst::ICMP_UGE && Pred1 == ICmpInst::ICMP_ULE) 1676 return getTrue(ITy); 1677 if (Delta == 1) 1678 if (Pred0 == ICmpInst::ICMP_UGT && Pred1 == ICmpInst::ICMP_ULE) 1679 return getTrue(ITy); 1680 } 1681 1682 return nullptr; 1683 } 1684 1685 /// Given operands for an Or, see if we can fold the result. 1686 /// If not, this returns null. 1687 static Value *SimplifyOrInst(Value *Op0, Value *Op1, const Query &Q, 1688 unsigned MaxRecurse) { 1689 if (Constant *CLHS = dyn_cast<Constant>(Op0)) { 1690 if (Constant *CRHS = dyn_cast<Constant>(Op1)) 1691 return ConstantFoldBinaryOpOperands(Instruction::Or, CLHS, CRHS, Q.DL); 1692 1693 // Canonicalize the constant to the RHS. 1694 std::swap(Op0, Op1); 1695 } 1696 1697 // X | undef -> -1 1698 if (match(Op1, m_Undef())) 1699 return Constant::getAllOnesValue(Op0->getType()); 1700 1701 // X | X = X 1702 if (Op0 == Op1) 1703 return Op0; 1704 1705 // X | 0 = X 1706 if (match(Op1, m_Zero())) 1707 return Op0; 1708 1709 // X | -1 = -1 1710 if (match(Op1, m_AllOnes())) 1711 return Op1; 1712 1713 // A | ~A = ~A | A = -1 1714 if (match(Op0, m_Not(m_Specific(Op1))) || 1715 match(Op1, m_Not(m_Specific(Op0)))) 1716 return Constant::getAllOnesValue(Op0->getType()); 1717 1718 // (A & ?) | A = A 1719 Value *A = nullptr, *B = nullptr; 1720 if (match(Op0, m_And(m_Value(A), m_Value(B))) && 1721 (A == Op1 || B == Op1)) 1722 return Op1; 1723 1724 // A | (A & ?) = A 1725 if (match(Op1, m_And(m_Value(A), m_Value(B))) && 1726 (A == Op0 || B == Op0)) 1727 return Op0; 1728 1729 // ~(A & ?) | A = -1 1730 if (match(Op0, m_Not(m_And(m_Value(A), m_Value(B)))) && 1731 (A == Op1 || B == Op1)) 1732 return Constant::getAllOnesValue(Op1->getType()); 1733 1734 // A | ~(A & ?) = -1 1735 if (match(Op1, m_Not(m_And(m_Value(A), m_Value(B)))) && 1736 (A == Op0 || B == Op0)) 1737 return Constant::getAllOnesValue(Op0->getType()); 1738 1739 if (auto *ICILHS = dyn_cast<ICmpInst>(Op0)) { 1740 if (auto *ICIRHS = dyn_cast<ICmpInst>(Op1)) { 1741 if (Value *V = SimplifyOrOfICmps(ICILHS, ICIRHS)) 1742 return V; 1743 if (Value *V = SimplifyOrOfICmps(ICIRHS, ICILHS)) 1744 return V; 1745 } 1746 } 1747 1748 // Try some generic simplifications for associative operations. 1749 if (Value *V = SimplifyAssociativeBinOp(Instruction::Or, Op0, Op1, Q, 1750 MaxRecurse)) 1751 return V; 1752 1753 // Or distributes over And. Try some generic simplifications based on this. 1754 if (Value *V = ExpandBinOp(Instruction::Or, Op0, Op1, Instruction::And, Q, 1755 MaxRecurse)) 1756 return V; 1757 1758 // If the operation is with the result of a select instruction, check whether 1759 // operating on either branch of the select always yields the same value. 1760 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 1761 if (Value *V = ThreadBinOpOverSelect(Instruction::Or, Op0, Op1, Q, 1762 MaxRecurse)) 1763 return V; 1764 1765 // (A & C)|(B & D) 1766 Value *C = nullptr, *D = nullptr; 1767 if (match(Op0, m_And(m_Value(A), m_Value(C))) && 1768 match(Op1, m_And(m_Value(B), m_Value(D)))) { 1769 ConstantInt *C1 = dyn_cast<ConstantInt>(C); 1770 ConstantInt *C2 = dyn_cast<ConstantInt>(D); 1771 if (C1 && C2 && (C1->getValue() == ~C2->getValue())) { 1772 // (A & C1)|(B & C2) 1773 // If we have: ((V + N) & C1) | (V & C2) 1774 // .. and C2 = ~C1 and C2 is 0+1+ and (N & C2) == 0 1775 // replace with V+N. 1776 Value *V1, *V2; 1777 if ((C2->getValue() & (C2->getValue() + 1)) == 0 && // C2 == 0+1+ 1778 match(A, m_Add(m_Value(V1), m_Value(V2)))) { 1779 // Add commutes, try both ways. 1780 if (V1 == B && 1781 MaskedValueIsZero(V2, C2->getValue(), Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 1782 return A; 1783 if (V2 == B && 1784 MaskedValueIsZero(V1, C2->getValue(), Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 1785 return A; 1786 } 1787 // Or commutes, try both ways. 1788 if ((C1->getValue() & (C1->getValue() + 1)) == 0 && 1789 match(B, m_Add(m_Value(V1), m_Value(V2)))) { 1790 // Add commutes, try both ways. 1791 if (V1 == A && 1792 MaskedValueIsZero(V2, C1->getValue(), Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 1793 return B; 1794 if (V2 == A && 1795 MaskedValueIsZero(V1, C1->getValue(), Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 1796 return B; 1797 } 1798 } 1799 } 1800 1801 // If the operation is with the result of a phi instruction, check whether 1802 // operating on all incoming values of the phi always yields the same value. 1803 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 1804 if (Value *V = ThreadBinOpOverPHI(Instruction::Or, Op0, Op1, Q, MaxRecurse)) 1805 return V; 1806 1807 return nullptr; 1808 } 1809 1810 Value *llvm::SimplifyOrInst(Value *Op0, Value *Op1, const DataLayout &DL, 1811 const TargetLibraryInfo *TLI, 1812 const DominatorTree *DT, AssumptionCache *AC, 1813 const Instruction *CxtI) { 1814 return ::SimplifyOrInst(Op0, Op1, Query(DL, TLI, DT, AC, CxtI), 1815 RecursionLimit); 1816 } 1817 1818 /// Given operands for a Xor, see if we can fold the result. 1819 /// If not, this returns null. 1820 static Value *SimplifyXorInst(Value *Op0, Value *Op1, const Query &Q, 1821 unsigned MaxRecurse) { 1822 if (Constant *CLHS = dyn_cast<Constant>(Op0)) { 1823 if (Constant *CRHS = dyn_cast<Constant>(Op1)) 1824 return ConstantFoldBinaryOpOperands(Instruction::Xor, CLHS, CRHS, Q.DL); 1825 1826 // Canonicalize the constant to the RHS. 1827 std::swap(Op0, Op1); 1828 } 1829 1830 // A ^ undef -> undef 1831 if (match(Op1, m_Undef())) 1832 return Op1; 1833 1834 // A ^ 0 = A 1835 if (match(Op1, m_Zero())) 1836 return Op0; 1837 1838 // A ^ A = 0 1839 if (Op0 == Op1) 1840 return Constant::getNullValue(Op0->getType()); 1841 1842 // A ^ ~A = ~A ^ A = -1 1843 if (match(Op0, m_Not(m_Specific(Op1))) || 1844 match(Op1, m_Not(m_Specific(Op0)))) 1845 return Constant::getAllOnesValue(Op0->getType()); 1846 1847 // Try some generic simplifications for associative operations. 1848 if (Value *V = SimplifyAssociativeBinOp(Instruction::Xor, Op0, Op1, Q, 1849 MaxRecurse)) 1850 return V; 1851 1852 // Threading Xor over selects and phi nodes is pointless, so don't bother. 1853 // Threading over the select in "A ^ select(cond, B, C)" means evaluating 1854 // "A^B" and "A^C" and seeing if they are equal; but they are equal if and 1855 // only if B and C are equal. If B and C are equal then (since we assume 1856 // that operands have already been simplified) "select(cond, B, C)" should 1857 // have been simplified to the common value of B and C already. Analysing 1858 // "A^B" and "A^C" thus gains nothing, but costs compile time. Similarly 1859 // for threading over phi nodes. 1860 1861 return nullptr; 1862 } 1863 1864 Value *llvm::SimplifyXorInst(Value *Op0, Value *Op1, const DataLayout &DL, 1865 const TargetLibraryInfo *TLI, 1866 const DominatorTree *DT, AssumptionCache *AC, 1867 const Instruction *CxtI) { 1868 return ::SimplifyXorInst(Op0, Op1, Query(DL, TLI, DT, AC, CxtI), 1869 RecursionLimit); 1870 } 1871 1872 static Type *GetCompareTy(Value *Op) { 1873 return CmpInst::makeCmpResultType(Op->getType()); 1874 } 1875 1876 /// Rummage around inside V looking for something equivalent to the comparison 1877 /// "LHS Pred RHS". Return such a value if found, otherwise return null. 1878 /// Helper function for analyzing max/min idioms. 1879 static Value *ExtractEquivalentCondition(Value *V, CmpInst::Predicate Pred, 1880 Value *LHS, Value *RHS) { 1881 SelectInst *SI = dyn_cast<SelectInst>(V); 1882 if (!SI) 1883 return nullptr; 1884 CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition()); 1885 if (!Cmp) 1886 return nullptr; 1887 Value *CmpLHS = Cmp->getOperand(0), *CmpRHS = Cmp->getOperand(1); 1888 if (Pred == Cmp->getPredicate() && LHS == CmpLHS && RHS == CmpRHS) 1889 return Cmp; 1890 if (Pred == CmpInst::getSwappedPredicate(Cmp->getPredicate()) && 1891 LHS == CmpRHS && RHS == CmpLHS) 1892 return Cmp; 1893 return nullptr; 1894 } 1895 1896 // A significant optimization not implemented here is assuming that alloca 1897 // addresses are not equal to incoming argument values. They don't *alias*, 1898 // as we say, but that doesn't mean they aren't equal, so we take a 1899 // conservative approach. 1900 // 1901 // This is inspired in part by C++11 5.10p1: 1902 // "Two pointers of the same type compare equal if and only if they are both 1903 // null, both point to the same function, or both represent the same 1904 // address." 1905 // 1906 // This is pretty permissive. 1907 // 1908 // It's also partly due to C11 6.5.9p6: 1909 // "Two pointers compare equal if and only if both are null pointers, both are 1910 // pointers to the same object (including a pointer to an object and a 1911 // subobject at its beginning) or function, both are pointers to one past the 1912 // last element of the same array object, or one is a pointer to one past the 1913 // end of one array object and the other is a pointer to the start of a 1914 // different array object that happens to immediately follow the first array 1915 // object in the address space.) 1916 // 1917 // C11's version is more restrictive, however there's no reason why an argument 1918 // couldn't be a one-past-the-end value for a stack object in the caller and be 1919 // equal to the beginning of a stack object in the callee. 1920 // 1921 // If the C and C++ standards are ever made sufficiently restrictive in this 1922 // area, it may be possible to update LLVM's semantics accordingly and reinstate 1923 // this optimization. 1924 static Constant *computePointerICmp(const DataLayout &DL, 1925 const TargetLibraryInfo *TLI, 1926 CmpInst::Predicate Pred, Value *LHS, 1927 Value *RHS) { 1928 // First, skip past any trivial no-ops. 1929 LHS = LHS->stripPointerCasts(); 1930 RHS = RHS->stripPointerCasts(); 1931 1932 // A non-null pointer is not equal to a null pointer. 1933 if (llvm::isKnownNonNull(LHS, TLI) && isa<ConstantPointerNull>(RHS) && 1934 (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE)) 1935 return ConstantInt::get(GetCompareTy(LHS), 1936 !CmpInst::isTrueWhenEqual(Pred)); 1937 1938 // We can only fold certain predicates on pointer comparisons. 1939 switch (Pred) { 1940 default: 1941 return nullptr; 1942 1943 // Equality comaprisons are easy to fold. 1944 case CmpInst::ICMP_EQ: 1945 case CmpInst::ICMP_NE: 1946 break; 1947 1948 // We can only handle unsigned relational comparisons because 'inbounds' on 1949 // a GEP only protects against unsigned wrapping. 1950 case CmpInst::ICMP_UGT: 1951 case CmpInst::ICMP_UGE: 1952 case CmpInst::ICMP_ULT: 1953 case CmpInst::ICMP_ULE: 1954 // However, we have to switch them to their signed variants to handle 1955 // negative indices from the base pointer. 1956 Pred = ICmpInst::getSignedPredicate(Pred); 1957 break; 1958 } 1959 1960 // Strip off any constant offsets so that we can reason about them. 1961 // It's tempting to use getUnderlyingObject or even just stripInBoundsOffsets 1962 // here and compare base addresses like AliasAnalysis does, however there are 1963 // numerous hazards. AliasAnalysis and its utilities rely on special rules 1964 // governing loads and stores which don't apply to icmps. Also, AliasAnalysis 1965 // doesn't need to guarantee pointer inequality when it says NoAlias. 1966 Constant *LHSOffset = stripAndComputeConstantOffsets(DL, LHS); 1967 Constant *RHSOffset = stripAndComputeConstantOffsets(DL, RHS); 1968 1969 // If LHS and RHS are related via constant offsets to the same base 1970 // value, we can replace it with an icmp which just compares the offsets. 1971 if (LHS == RHS) 1972 return ConstantExpr::getICmp(Pred, LHSOffset, RHSOffset); 1973 1974 // Various optimizations for (in)equality comparisons. 1975 if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE) { 1976 // Different non-empty allocations that exist at the same time have 1977 // different addresses (if the program can tell). Global variables always 1978 // exist, so they always exist during the lifetime of each other and all 1979 // allocas. Two different allocas usually have different addresses... 1980 // 1981 // However, if there's an @llvm.stackrestore dynamically in between two 1982 // allocas, they may have the same address. It's tempting to reduce the 1983 // scope of the problem by only looking at *static* allocas here. That would 1984 // cover the majority of allocas while significantly reducing the likelihood 1985 // of having an @llvm.stackrestore pop up in the middle. However, it's not 1986 // actually impossible for an @llvm.stackrestore to pop up in the middle of 1987 // an entry block. Also, if we have a block that's not attached to a 1988 // function, we can't tell if it's "static" under the current definition. 1989 // Theoretically, this problem could be fixed by creating a new kind of 1990 // instruction kind specifically for static allocas. Such a new instruction 1991 // could be required to be at the top of the entry block, thus preventing it 1992 // from being subject to a @llvm.stackrestore. Instcombine could even 1993 // convert regular allocas into these special allocas. It'd be nifty. 1994 // However, until then, this problem remains open. 1995 // 1996 // So, we'll assume that two non-empty allocas have different addresses 1997 // for now. 1998 // 1999 // With all that, if the offsets are within the bounds of their allocations 2000 // (and not one-past-the-end! so we can't use inbounds!), and their 2001 // allocations aren't the same, the pointers are not equal. 2002 // 2003 // Note that it's not necessary to check for LHS being a global variable 2004 // address, due to canonicalization and constant folding. 2005 if (isa<AllocaInst>(LHS) && 2006 (isa<AllocaInst>(RHS) || isa<GlobalVariable>(RHS))) { 2007 ConstantInt *LHSOffsetCI = dyn_cast<ConstantInt>(LHSOffset); 2008 ConstantInt *RHSOffsetCI = dyn_cast<ConstantInt>(RHSOffset); 2009 uint64_t LHSSize, RHSSize; 2010 if (LHSOffsetCI && RHSOffsetCI && 2011 getObjectSize(LHS, LHSSize, DL, TLI) && 2012 getObjectSize(RHS, RHSSize, DL, TLI)) { 2013 const APInt &LHSOffsetValue = LHSOffsetCI->getValue(); 2014 const APInt &RHSOffsetValue = RHSOffsetCI->getValue(); 2015 if (!LHSOffsetValue.isNegative() && 2016 !RHSOffsetValue.isNegative() && 2017 LHSOffsetValue.ult(LHSSize) && 2018 RHSOffsetValue.ult(RHSSize)) { 2019 return ConstantInt::get(GetCompareTy(LHS), 2020 !CmpInst::isTrueWhenEqual(Pred)); 2021 } 2022 } 2023 2024 // Repeat the above check but this time without depending on DataLayout 2025 // or being able to compute a precise size. 2026 if (!cast<PointerType>(LHS->getType())->isEmptyTy() && 2027 !cast<PointerType>(RHS->getType())->isEmptyTy() && 2028 LHSOffset->isNullValue() && 2029 RHSOffset->isNullValue()) 2030 return ConstantInt::get(GetCompareTy(LHS), 2031 !CmpInst::isTrueWhenEqual(Pred)); 2032 } 2033 2034 // Even if an non-inbounds GEP occurs along the path we can still optimize 2035 // equality comparisons concerning the result. We avoid walking the whole 2036 // chain again by starting where the last calls to 2037 // stripAndComputeConstantOffsets left off and accumulate the offsets. 2038 Constant *LHSNoBound = stripAndComputeConstantOffsets(DL, LHS, true); 2039 Constant *RHSNoBound = stripAndComputeConstantOffsets(DL, RHS, true); 2040 if (LHS == RHS) 2041 return ConstantExpr::getICmp(Pred, 2042 ConstantExpr::getAdd(LHSOffset, LHSNoBound), 2043 ConstantExpr::getAdd(RHSOffset, RHSNoBound)); 2044 2045 // If one side of the equality comparison must come from a noalias call 2046 // (meaning a system memory allocation function), and the other side must 2047 // come from a pointer that cannot overlap with dynamically-allocated 2048 // memory within the lifetime of the current function (allocas, byval 2049 // arguments, globals), then determine the comparison result here. 2050 SmallVector<Value *, 8> LHSUObjs, RHSUObjs; 2051 GetUnderlyingObjects(LHS, LHSUObjs, DL); 2052 GetUnderlyingObjects(RHS, RHSUObjs, DL); 2053 2054 // Is the set of underlying objects all noalias calls? 2055 auto IsNAC = [](SmallVectorImpl<Value *> &Objects) { 2056 return std::all_of(Objects.begin(), Objects.end(), isNoAliasCall); 2057 }; 2058 2059 // Is the set of underlying objects all things which must be disjoint from 2060 // noalias calls. For allocas, we consider only static ones (dynamic 2061 // allocas might be transformed into calls to malloc not simultaneously 2062 // live with the compared-to allocation). For globals, we exclude symbols 2063 // that might be resolve lazily to symbols in another dynamically-loaded 2064 // library (and, thus, could be malloc'ed by the implementation). 2065 auto IsAllocDisjoint = [](SmallVectorImpl<Value *> &Objects) { 2066 return std::all_of(Objects.begin(), Objects.end(), [](Value *V) { 2067 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) 2068 return AI->getParent() && AI->getFunction() && AI->isStaticAlloca(); 2069 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) 2070 return (GV->hasLocalLinkage() || GV->hasHiddenVisibility() || 2071 GV->hasProtectedVisibility() || GV->hasUnnamedAddr()) && 2072 !GV->isThreadLocal(); 2073 if (const Argument *A = dyn_cast<Argument>(V)) 2074 return A->hasByValAttr(); 2075 return false; 2076 }); 2077 }; 2078 2079 if ((IsNAC(LHSUObjs) && IsAllocDisjoint(RHSUObjs)) || 2080 (IsNAC(RHSUObjs) && IsAllocDisjoint(LHSUObjs))) 2081 return ConstantInt::get(GetCompareTy(LHS), 2082 !CmpInst::isTrueWhenEqual(Pred)); 2083 } 2084 2085 // Otherwise, fail. 2086 return nullptr; 2087 } 2088 2089 /// Given operands for an ICmpInst, see if we can fold the result. 2090 /// If not, this returns null. 2091 static Value *SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS, 2092 const Query &Q, unsigned MaxRecurse) { 2093 CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate; 2094 assert(CmpInst::isIntPredicate(Pred) && "Not an integer compare!"); 2095 2096 if (Constant *CLHS = dyn_cast<Constant>(LHS)) { 2097 if (Constant *CRHS = dyn_cast<Constant>(RHS)) 2098 return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, Q.DL, Q.TLI); 2099 2100 // If we have a constant, make sure it is on the RHS. 2101 std::swap(LHS, RHS); 2102 Pred = CmpInst::getSwappedPredicate(Pred); 2103 } 2104 2105 Type *ITy = GetCompareTy(LHS); // The return type. 2106 Type *OpTy = LHS->getType(); // The operand type. 2107 2108 // icmp X, X -> true/false 2109 // X icmp undef -> true/false. For example, icmp ugt %X, undef -> false 2110 // because X could be 0. 2111 if (LHS == RHS || isa<UndefValue>(RHS)) 2112 return ConstantInt::get(ITy, CmpInst::isTrueWhenEqual(Pred)); 2113 2114 // Special case logic when the operands have i1 type. 2115 if (OpTy->getScalarType()->isIntegerTy(1)) { 2116 switch (Pred) { 2117 default: break; 2118 case ICmpInst::ICMP_EQ: 2119 // X == 1 -> X 2120 if (match(RHS, m_One())) 2121 return LHS; 2122 break; 2123 case ICmpInst::ICMP_NE: 2124 // X != 0 -> X 2125 if (match(RHS, m_Zero())) 2126 return LHS; 2127 break; 2128 case ICmpInst::ICMP_UGT: 2129 // X >u 0 -> X 2130 if (match(RHS, m_Zero())) 2131 return LHS; 2132 break; 2133 case ICmpInst::ICMP_UGE: 2134 // X >=u 1 -> X 2135 if (match(RHS, m_One())) 2136 return LHS; 2137 if (isImpliedCondition(RHS, LHS, Q.DL)) 2138 return getTrue(ITy); 2139 break; 2140 case ICmpInst::ICMP_SGE: 2141 /// For signed comparison, the values for an i1 are 0 and -1 2142 /// respectively. This maps into a truth table of: 2143 /// LHS | RHS | LHS >=s RHS | LHS implies RHS 2144 /// 0 | 0 | 1 (0 >= 0) | 1 2145 /// 0 | 1 | 1 (0 >= -1) | 1 2146 /// 1 | 0 | 0 (-1 >= 0) | 0 2147 /// 1 | 1 | 1 (-1 >= -1) | 1 2148 if (isImpliedCondition(LHS, RHS, Q.DL)) 2149 return getTrue(ITy); 2150 break; 2151 case ICmpInst::ICMP_SLT: 2152 // X <s 0 -> X 2153 if (match(RHS, m_Zero())) 2154 return LHS; 2155 break; 2156 case ICmpInst::ICMP_SLE: 2157 // X <=s -1 -> X 2158 if (match(RHS, m_One())) 2159 return LHS; 2160 break; 2161 case ICmpInst::ICMP_ULE: 2162 if (isImpliedCondition(LHS, RHS, Q.DL)) 2163 return getTrue(ITy); 2164 break; 2165 } 2166 } 2167 2168 // If we are comparing with zero then try hard since this is a common case. 2169 if (match(RHS, m_Zero())) { 2170 bool LHSKnownNonNegative, LHSKnownNegative; 2171 switch (Pred) { 2172 default: llvm_unreachable("Unknown ICmp predicate!"); 2173 case ICmpInst::ICMP_ULT: 2174 return getFalse(ITy); 2175 case ICmpInst::ICMP_UGE: 2176 return getTrue(ITy); 2177 case ICmpInst::ICMP_EQ: 2178 case ICmpInst::ICMP_ULE: 2179 if (isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 2180 return getFalse(ITy); 2181 break; 2182 case ICmpInst::ICMP_NE: 2183 case ICmpInst::ICMP_UGT: 2184 if (isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 2185 return getTrue(ITy); 2186 break; 2187 case ICmpInst::ICMP_SLT: 2188 ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, Q.DL, 0, Q.AC, 2189 Q.CxtI, Q.DT); 2190 if (LHSKnownNegative) 2191 return getTrue(ITy); 2192 if (LHSKnownNonNegative) 2193 return getFalse(ITy); 2194 break; 2195 case ICmpInst::ICMP_SLE: 2196 ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, Q.DL, 0, Q.AC, 2197 Q.CxtI, Q.DT); 2198 if (LHSKnownNegative) 2199 return getTrue(ITy); 2200 if (LHSKnownNonNegative && 2201 isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 2202 return getFalse(ITy); 2203 break; 2204 case ICmpInst::ICMP_SGE: 2205 ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, Q.DL, 0, Q.AC, 2206 Q.CxtI, Q.DT); 2207 if (LHSKnownNegative) 2208 return getFalse(ITy); 2209 if (LHSKnownNonNegative) 2210 return getTrue(ITy); 2211 break; 2212 case ICmpInst::ICMP_SGT: 2213 ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, Q.DL, 0, Q.AC, 2214 Q.CxtI, Q.DT); 2215 if (LHSKnownNegative) 2216 return getFalse(ITy); 2217 if (LHSKnownNonNegative && 2218 isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 2219 return getTrue(ITy); 2220 break; 2221 } 2222 } 2223 2224 // See if we are doing a comparison with a constant integer. 2225 if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) { 2226 // Rule out tautological comparisons (eg., ult 0 or uge 0). 2227 ConstantRange RHS_CR = ICmpInst::makeConstantRange(Pred, CI->getValue()); 2228 if (RHS_CR.isEmptySet()) 2229 return ConstantInt::getFalse(CI->getContext()); 2230 if (RHS_CR.isFullSet()) 2231 return ConstantInt::getTrue(CI->getContext()); 2232 2233 // Many binary operators with constant RHS have easy to compute constant 2234 // range. Use them to check whether the comparison is a tautology. 2235 unsigned Width = CI->getBitWidth(); 2236 APInt Lower = APInt(Width, 0); 2237 APInt Upper = APInt(Width, 0); 2238 ConstantInt *CI2; 2239 if (match(LHS, m_URem(m_Value(), m_ConstantInt(CI2)))) { 2240 // 'urem x, CI2' produces [0, CI2). 2241 Upper = CI2->getValue(); 2242 } else if (match(LHS, m_SRem(m_Value(), m_ConstantInt(CI2)))) { 2243 // 'srem x, CI2' produces (-|CI2|, |CI2|). 2244 Upper = CI2->getValue().abs(); 2245 Lower = (-Upper) + 1; 2246 } else if (match(LHS, m_UDiv(m_ConstantInt(CI2), m_Value()))) { 2247 // 'udiv CI2, x' produces [0, CI2]. 2248 Upper = CI2->getValue() + 1; 2249 } else if (match(LHS, m_UDiv(m_Value(), m_ConstantInt(CI2)))) { 2250 // 'udiv x, CI2' produces [0, UINT_MAX / CI2]. 2251 APInt NegOne = APInt::getAllOnesValue(Width); 2252 if (!CI2->isZero()) 2253 Upper = NegOne.udiv(CI2->getValue()) + 1; 2254 } else if (match(LHS, m_SDiv(m_ConstantInt(CI2), m_Value()))) { 2255 if (CI2->isMinSignedValue()) { 2256 // 'sdiv INT_MIN, x' produces [INT_MIN, INT_MIN / -2]. 2257 Lower = CI2->getValue(); 2258 Upper = Lower.lshr(1) + 1; 2259 } else { 2260 // 'sdiv CI2, x' produces [-|CI2|, |CI2|]. 2261 Upper = CI2->getValue().abs() + 1; 2262 Lower = (-Upper) + 1; 2263 } 2264 } else if (match(LHS, m_SDiv(m_Value(), m_ConstantInt(CI2)))) { 2265 APInt IntMin = APInt::getSignedMinValue(Width); 2266 APInt IntMax = APInt::getSignedMaxValue(Width); 2267 APInt Val = CI2->getValue(); 2268 if (Val.isAllOnesValue()) { 2269 // 'sdiv x, -1' produces [INT_MIN + 1, INT_MAX] 2270 // where CI2 != -1 and CI2 != 0 and CI2 != 1 2271 Lower = IntMin + 1; 2272 Upper = IntMax + 1; 2273 } else if (Val.countLeadingZeros() < Width - 1) { 2274 // 'sdiv x, CI2' produces [INT_MIN / CI2, INT_MAX / CI2] 2275 // where CI2 != -1 and CI2 != 0 and CI2 != 1 2276 Lower = IntMin.sdiv(Val); 2277 Upper = IntMax.sdiv(Val); 2278 if (Lower.sgt(Upper)) 2279 std::swap(Lower, Upper); 2280 Upper = Upper + 1; 2281 assert(Upper != Lower && "Upper part of range has wrapped!"); 2282 } 2283 } else if (match(LHS, m_NUWShl(m_ConstantInt(CI2), m_Value()))) { 2284 // 'shl nuw CI2, x' produces [CI2, CI2 << CLZ(CI2)] 2285 Lower = CI2->getValue(); 2286 Upper = Lower.shl(Lower.countLeadingZeros()) + 1; 2287 } else if (match(LHS, m_NSWShl(m_ConstantInt(CI2), m_Value()))) { 2288 if (CI2->isNegative()) { 2289 // 'shl nsw CI2, x' produces [CI2 << CLO(CI2)-1, CI2] 2290 unsigned ShiftAmount = CI2->getValue().countLeadingOnes() - 1; 2291 Lower = CI2->getValue().shl(ShiftAmount); 2292 Upper = CI2->getValue() + 1; 2293 } else { 2294 // 'shl nsw CI2, x' produces [CI2, CI2 << CLZ(CI2)-1] 2295 unsigned ShiftAmount = CI2->getValue().countLeadingZeros() - 1; 2296 Lower = CI2->getValue(); 2297 Upper = CI2->getValue().shl(ShiftAmount) + 1; 2298 } 2299 } else if (match(LHS, m_LShr(m_Value(), m_ConstantInt(CI2)))) { 2300 // 'lshr x, CI2' produces [0, UINT_MAX >> CI2]. 2301 APInt NegOne = APInt::getAllOnesValue(Width); 2302 if (CI2->getValue().ult(Width)) 2303 Upper = NegOne.lshr(CI2->getValue()) + 1; 2304 } else if (match(LHS, m_LShr(m_ConstantInt(CI2), m_Value()))) { 2305 // 'lshr CI2, x' produces [CI2 >> (Width-1), CI2]. 2306 unsigned ShiftAmount = Width - 1; 2307 if (!CI2->isZero() && cast<BinaryOperator>(LHS)->isExact()) 2308 ShiftAmount = CI2->getValue().countTrailingZeros(); 2309 Lower = CI2->getValue().lshr(ShiftAmount); 2310 Upper = CI2->getValue() + 1; 2311 } else if (match(LHS, m_AShr(m_Value(), m_ConstantInt(CI2)))) { 2312 // 'ashr x, CI2' produces [INT_MIN >> CI2, INT_MAX >> CI2]. 2313 APInt IntMin = APInt::getSignedMinValue(Width); 2314 APInt IntMax = APInt::getSignedMaxValue(Width); 2315 if (CI2->getValue().ult(Width)) { 2316 Lower = IntMin.ashr(CI2->getValue()); 2317 Upper = IntMax.ashr(CI2->getValue()) + 1; 2318 } 2319 } else if (match(LHS, m_AShr(m_ConstantInt(CI2), m_Value()))) { 2320 unsigned ShiftAmount = Width - 1; 2321 if (!CI2->isZero() && cast<BinaryOperator>(LHS)->isExact()) 2322 ShiftAmount = CI2->getValue().countTrailingZeros(); 2323 if (CI2->isNegative()) { 2324 // 'ashr CI2, x' produces [CI2, CI2 >> (Width-1)] 2325 Lower = CI2->getValue(); 2326 Upper = CI2->getValue().ashr(ShiftAmount) + 1; 2327 } else { 2328 // 'ashr CI2, x' produces [CI2 >> (Width-1), CI2] 2329 Lower = CI2->getValue().ashr(ShiftAmount); 2330 Upper = CI2->getValue() + 1; 2331 } 2332 } else if (match(LHS, m_Or(m_Value(), m_ConstantInt(CI2)))) { 2333 // 'or x, CI2' produces [CI2, UINT_MAX]. 2334 Lower = CI2->getValue(); 2335 } else if (match(LHS, m_And(m_Value(), m_ConstantInt(CI2)))) { 2336 // 'and x, CI2' produces [0, CI2]. 2337 Upper = CI2->getValue() + 1; 2338 } else if (match(LHS, m_NUWAdd(m_Value(), m_ConstantInt(CI2)))) { 2339 // 'add nuw x, CI2' produces [CI2, UINT_MAX]. 2340 Lower = CI2->getValue(); 2341 } 2342 2343 ConstantRange LHS_CR = Lower != Upper ? ConstantRange(Lower, Upper) 2344 : ConstantRange(Width, true); 2345 2346 if (auto *I = dyn_cast<Instruction>(LHS)) 2347 if (auto *Ranges = I->getMetadata(LLVMContext::MD_range)) 2348 LHS_CR = LHS_CR.intersectWith(getConstantRangeFromMetadata(*Ranges)); 2349 2350 if (!LHS_CR.isFullSet()) { 2351 if (RHS_CR.contains(LHS_CR)) 2352 return ConstantInt::getTrue(RHS->getContext()); 2353 if (RHS_CR.inverse().contains(LHS_CR)) 2354 return ConstantInt::getFalse(RHS->getContext()); 2355 } 2356 } 2357 2358 // If both operands have range metadata, use the metadata 2359 // to simplify the comparison. 2360 if (isa<Instruction>(RHS) && isa<Instruction>(LHS)) { 2361 auto RHS_Instr = dyn_cast<Instruction>(RHS); 2362 auto LHS_Instr = dyn_cast<Instruction>(LHS); 2363 2364 if (RHS_Instr->getMetadata(LLVMContext::MD_range) && 2365 LHS_Instr->getMetadata(LLVMContext::MD_range)) { 2366 auto RHS_CR = getConstantRangeFromMetadata( 2367 *RHS_Instr->getMetadata(LLVMContext::MD_range)); 2368 auto LHS_CR = getConstantRangeFromMetadata( 2369 *LHS_Instr->getMetadata(LLVMContext::MD_range)); 2370 2371 auto Satisfied_CR = ConstantRange::makeSatisfyingICmpRegion(Pred, RHS_CR); 2372 if (Satisfied_CR.contains(LHS_CR)) 2373 return ConstantInt::getTrue(RHS->getContext()); 2374 2375 auto InversedSatisfied_CR = ConstantRange::makeSatisfyingICmpRegion( 2376 CmpInst::getInversePredicate(Pred), RHS_CR); 2377 if (InversedSatisfied_CR.contains(LHS_CR)) 2378 return ConstantInt::getFalse(RHS->getContext()); 2379 } 2380 } 2381 2382 // Compare of cast, for example (zext X) != 0 -> X != 0 2383 if (isa<CastInst>(LHS) && (isa<Constant>(RHS) || isa<CastInst>(RHS))) { 2384 Instruction *LI = cast<CastInst>(LHS); 2385 Value *SrcOp = LI->getOperand(0); 2386 Type *SrcTy = SrcOp->getType(); 2387 Type *DstTy = LI->getType(); 2388 2389 // Turn icmp (ptrtoint x), (ptrtoint/constant) into a compare of the input 2390 // if the integer type is the same size as the pointer type. 2391 if (MaxRecurse && isa<PtrToIntInst>(LI) && 2392 Q.DL.getTypeSizeInBits(SrcTy) == DstTy->getPrimitiveSizeInBits()) { 2393 if (Constant *RHSC = dyn_cast<Constant>(RHS)) { 2394 // Transfer the cast to the constant. 2395 if (Value *V = SimplifyICmpInst(Pred, SrcOp, 2396 ConstantExpr::getIntToPtr(RHSC, SrcTy), 2397 Q, MaxRecurse-1)) 2398 return V; 2399 } else if (PtrToIntInst *RI = dyn_cast<PtrToIntInst>(RHS)) { 2400 if (RI->getOperand(0)->getType() == SrcTy) 2401 // Compare without the cast. 2402 if (Value *V = SimplifyICmpInst(Pred, SrcOp, RI->getOperand(0), 2403 Q, MaxRecurse-1)) 2404 return V; 2405 } 2406 } 2407 2408 if (isa<ZExtInst>(LHS)) { 2409 // Turn icmp (zext X), (zext Y) into a compare of X and Y if they have the 2410 // same type. 2411 if (ZExtInst *RI = dyn_cast<ZExtInst>(RHS)) { 2412 if (MaxRecurse && SrcTy == RI->getOperand(0)->getType()) 2413 // Compare X and Y. Note that signed predicates become unsigned. 2414 if (Value *V = SimplifyICmpInst(ICmpInst::getUnsignedPredicate(Pred), 2415 SrcOp, RI->getOperand(0), Q, 2416 MaxRecurse-1)) 2417 return V; 2418 } 2419 // Turn icmp (zext X), Cst into a compare of X and Cst if Cst is extended 2420 // too. If not, then try to deduce the result of the comparison. 2421 else if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) { 2422 // Compute the constant that would happen if we truncated to SrcTy then 2423 // reextended to DstTy. 2424 Constant *Trunc = ConstantExpr::getTrunc(CI, SrcTy); 2425 Constant *RExt = ConstantExpr::getCast(CastInst::ZExt, Trunc, DstTy); 2426 2427 // If the re-extended constant didn't change then this is effectively 2428 // also a case of comparing two zero-extended values. 2429 if (RExt == CI && MaxRecurse) 2430 if (Value *V = SimplifyICmpInst(ICmpInst::getUnsignedPredicate(Pred), 2431 SrcOp, Trunc, Q, MaxRecurse-1)) 2432 return V; 2433 2434 // Otherwise the upper bits of LHS are zero while RHS has a non-zero bit 2435 // there. Use this to work out the result of the comparison. 2436 if (RExt != CI) { 2437 switch (Pred) { 2438 default: llvm_unreachable("Unknown ICmp predicate!"); 2439 // LHS <u RHS. 2440 case ICmpInst::ICMP_EQ: 2441 case ICmpInst::ICMP_UGT: 2442 case ICmpInst::ICMP_UGE: 2443 return ConstantInt::getFalse(CI->getContext()); 2444 2445 case ICmpInst::ICMP_NE: 2446 case ICmpInst::ICMP_ULT: 2447 case ICmpInst::ICMP_ULE: 2448 return ConstantInt::getTrue(CI->getContext()); 2449 2450 // LHS is non-negative. If RHS is negative then LHS >s LHS. If RHS 2451 // is non-negative then LHS <s RHS. 2452 case ICmpInst::ICMP_SGT: 2453 case ICmpInst::ICMP_SGE: 2454 return CI->getValue().isNegative() ? 2455 ConstantInt::getTrue(CI->getContext()) : 2456 ConstantInt::getFalse(CI->getContext()); 2457 2458 case ICmpInst::ICMP_SLT: 2459 case ICmpInst::ICMP_SLE: 2460 return CI->getValue().isNegative() ? 2461 ConstantInt::getFalse(CI->getContext()) : 2462 ConstantInt::getTrue(CI->getContext()); 2463 } 2464 } 2465 } 2466 } 2467 2468 if (isa<SExtInst>(LHS)) { 2469 // Turn icmp (sext X), (sext Y) into a compare of X and Y if they have the 2470 // same type. 2471 if (SExtInst *RI = dyn_cast<SExtInst>(RHS)) { 2472 if (MaxRecurse && SrcTy == RI->getOperand(0)->getType()) 2473 // Compare X and Y. Note that the predicate does not change. 2474 if (Value *V = SimplifyICmpInst(Pred, SrcOp, RI->getOperand(0), 2475 Q, MaxRecurse-1)) 2476 return V; 2477 } 2478 // Turn icmp (sext X), Cst into a compare of X and Cst if Cst is extended 2479 // too. If not, then try to deduce the result of the comparison. 2480 else if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) { 2481 // Compute the constant that would happen if we truncated to SrcTy then 2482 // reextended to DstTy. 2483 Constant *Trunc = ConstantExpr::getTrunc(CI, SrcTy); 2484 Constant *RExt = ConstantExpr::getCast(CastInst::SExt, Trunc, DstTy); 2485 2486 // If the re-extended constant didn't change then this is effectively 2487 // also a case of comparing two sign-extended values. 2488 if (RExt == CI && MaxRecurse) 2489 if (Value *V = SimplifyICmpInst(Pred, SrcOp, Trunc, Q, MaxRecurse-1)) 2490 return V; 2491 2492 // Otherwise the upper bits of LHS are all equal, while RHS has varying 2493 // bits there. Use this to work out the result of the comparison. 2494 if (RExt != CI) { 2495 switch (Pred) { 2496 default: llvm_unreachable("Unknown ICmp predicate!"); 2497 case ICmpInst::ICMP_EQ: 2498 return ConstantInt::getFalse(CI->getContext()); 2499 case ICmpInst::ICMP_NE: 2500 return ConstantInt::getTrue(CI->getContext()); 2501 2502 // If RHS is non-negative then LHS <s RHS. If RHS is negative then 2503 // LHS >s RHS. 2504 case ICmpInst::ICMP_SGT: 2505 case ICmpInst::ICMP_SGE: 2506 return CI->getValue().isNegative() ? 2507 ConstantInt::getTrue(CI->getContext()) : 2508 ConstantInt::getFalse(CI->getContext()); 2509 case ICmpInst::ICMP_SLT: 2510 case ICmpInst::ICMP_SLE: 2511 return CI->getValue().isNegative() ? 2512 ConstantInt::getFalse(CI->getContext()) : 2513 ConstantInt::getTrue(CI->getContext()); 2514 2515 // If LHS is non-negative then LHS <u RHS. If LHS is negative then 2516 // LHS >u RHS. 2517 case ICmpInst::ICMP_UGT: 2518 case ICmpInst::ICMP_UGE: 2519 // Comparison is true iff the LHS <s 0. 2520 if (MaxRecurse) 2521 if (Value *V = SimplifyICmpInst(ICmpInst::ICMP_SLT, SrcOp, 2522 Constant::getNullValue(SrcTy), 2523 Q, MaxRecurse-1)) 2524 return V; 2525 break; 2526 case ICmpInst::ICMP_ULT: 2527 case ICmpInst::ICMP_ULE: 2528 // Comparison is true iff the LHS >=s 0. 2529 if (MaxRecurse) 2530 if (Value *V = SimplifyICmpInst(ICmpInst::ICMP_SGE, SrcOp, 2531 Constant::getNullValue(SrcTy), 2532 Q, MaxRecurse-1)) 2533 return V; 2534 break; 2535 } 2536 } 2537 } 2538 } 2539 } 2540 2541 // icmp eq|ne X, Y -> false|true if X != Y 2542 if ((Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_NE) && 2543 isKnownNonEqual(LHS, RHS, Q.DL, Q.AC, Q.CxtI, Q.DT)) { 2544 LLVMContext &Ctx = LHS->getType()->getContext(); 2545 return Pred == ICmpInst::ICMP_NE ? 2546 ConstantInt::getTrue(Ctx) : ConstantInt::getFalse(Ctx); 2547 } 2548 2549 // Special logic for binary operators. 2550 BinaryOperator *LBO = dyn_cast<BinaryOperator>(LHS); 2551 BinaryOperator *RBO = dyn_cast<BinaryOperator>(RHS); 2552 if (MaxRecurse && (LBO || RBO)) { 2553 // Analyze the case when either LHS or RHS is an add instruction. 2554 Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr; 2555 // LHS = A + B (or A and B are null); RHS = C + D (or C and D are null). 2556 bool NoLHSWrapProblem = false, NoRHSWrapProblem = false; 2557 if (LBO && LBO->getOpcode() == Instruction::Add) { 2558 A = LBO->getOperand(0); B = LBO->getOperand(1); 2559 NoLHSWrapProblem = ICmpInst::isEquality(Pred) || 2560 (CmpInst::isUnsigned(Pred) && LBO->hasNoUnsignedWrap()) || 2561 (CmpInst::isSigned(Pred) && LBO->hasNoSignedWrap()); 2562 } 2563 if (RBO && RBO->getOpcode() == Instruction::Add) { 2564 C = RBO->getOperand(0); D = RBO->getOperand(1); 2565 NoRHSWrapProblem = ICmpInst::isEquality(Pred) || 2566 (CmpInst::isUnsigned(Pred) && RBO->hasNoUnsignedWrap()) || 2567 (CmpInst::isSigned(Pred) && RBO->hasNoSignedWrap()); 2568 } 2569 2570 // icmp (X+Y), X -> icmp Y, 0 for equalities or if there is no overflow. 2571 if ((A == RHS || B == RHS) && NoLHSWrapProblem) 2572 if (Value *V = SimplifyICmpInst(Pred, A == RHS ? B : A, 2573 Constant::getNullValue(RHS->getType()), 2574 Q, MaxRecurse-1)) 2575 return V; 2576 2577 // icmp X, (X+Y) -> icmp 0, Y for equalities or if there is no overflow. 2578 if ((C == LHS || D == LHS) && NoRHSWrapProblem) 2579 if (Value *V = SimplifyICmpInst(Pred, 2580 Constant::getNullValue(LHS->getType()), 2581 C == LHS ? D : C, Q, MaxRecurse-1)) 2582 return V; 2583 2584 // icmp (X+Y), (X+Z) -> icmp Y,Z for equalities or if there is no overflow. 2585 if (A && C && (A == C || A == D || B == C || B == D) && 2586 NoLHSWrapProblem && NoRHSWrapProblem) { 2587 // Determine Y and Z in the form icmp (X+Y), (X+Z). 2588 Value *Y, *Z; 2589 if (A == C) { 2590 // C + B == C + D -> B == D 2591 Y = B; 2592 Z = D; 2593 } else if (A == D) { 2594 // D + B == C + D -> B == C 2595 Y = B; 2596 Z = C; 2597 } else if (B == C) { 2598 // A + C == C + D -> A == D 2599 Y = A; 2600 Z = D; 2601 } else { 2602 assert(B == D); 2603 // A + D == C + D -> A == C 2604 Y = A; 2605 Z = C; 2606 } 2607 if (Value *V = SimplifyICmpInst(Pred, Y, Z, Q, MaxRecurse-1)) 2608 return V; 2609 } 2610 } 2611 2612 // icmp pred (or X, Y), X 2613 if (LBO && match(LBO, m_CombineOr(m_Or(m_Value(), m_Specific(RHS)), 2614 m_Or(m_Specific(RHS), m_Value())))) { 2615 if (Pred == ICmpInst::ICMP_ULT) 2616 return getFalse(ITy); 2617 if (Pred == ICmpInst::ICMP_UGE) 2618 return getTrue(ITy); 2619 } 2620 // icmp pred X, (or X, Y) 2621 if (RBO && match(RBO, m_CombineOr(m_Or(m_Value(), m_Specific(LHS)), 2622 m_Or(m_Specific(LHS), m_Value())))) { 2623 if (Pred == ICmpInst::ICMP_ULE) 2624 return getTrue(ITy); 2625 if (Pred == ICmpInst::ICMP_UGT) 2626 return getFalse(ITy); 2627 } 2628 2629 // icmp pred (and X, Y), X 2630 if (LBO && match(LBO, m_CombineOr(m_And(m_Value(), m_Specific(RHS)), 2631 m_And(m_Specific(RHS), m_Value())))) { 2632 if (Pred == ICmpInst::ICMP_UGT) 2633 return getFalse(ITy); 2634 if (Pred == ICmpInst::ICMP_ULE) 2635 return getTrue(ITy); 2636 } 2637 // icmp pred X, (and X, Y) 2638 if (RBO && match(RBO, m_CombineOr(m_And(m_Value(), m_Specific(LHS)), 2639 m_And(m_Specific(LHS), m_Value())))) { 2640 if (Pred == ICmpInst::ICMP_UGE) 2641 return getTrue(ITy); 2642 if (Pred == ICmpInst::ICMP_ULT) 2643 return getFalse(ITy); 2644 } 2645 2646 // 0 - (zext X) pred C 2647 if (!CmpInst::isUnsigned(Pred) && match(LHS, m_Neg(m_ZExt(m_Value())))) { 2648 if (ConstantInt *RHSC = dyn_cast<ConstantInt>(RHS)) { 2649 if (RHSC->getValue().isStrictlyPositive()) { 2650 if (Pred == ICmpInst::ICMP_SLT) 2651 return ConstantInt::getTrue(RHSC->getContext()); 2652 if (Pred == ICmpInst::ICMP_SGE) 2653 return ConstantInt::getFalse(RHSC->getContext()); 2654 if (Pred == ICmpInst::ICMP_EQ) 2655 return ConstantInt::getFalse(RHSC->getContext()); 2656 if (Pred == ICmpInst::ICMP_NE) 2657 return ConstantInt::getTrue(RHSC->getContext()); 2658 } 2659 if (RHSC->getValue().isNonNegative()) { 2660 if (Pred == ICmpInst::ICMP_SLE) 2661 return ConstantInt::getTrue(RHSC->getContext()); 2662 if (Pred == ICmpInst::ICMP_SGT) 2663 return ConstantInt::getFalse(RHSC->getContext()); 2664 } 2665 } 2666 } 2667 2668 // icmp pred (urem X, Y), Y 2669 if (LBO && match(LBO, m_URem(m_Value(), m_Specific(RHS)))) { 2670 bool KnownNonNegative, KnownNegative; 2671 switch (Pred) { 2672 default: 2673 break; 2674 case ICmpInst::ICMP_SGT: 2675 case ICmpInst::ICMP_SGE: 2676 ComputeSignBit(RHS, KnownNonNegative, KnownNegative, Q.DL, 0, Q.AC, 2677 Q.CxtI, Q.DT); 2678 if (!KnownNonNegative) 2679 break; 2680 // fall-through 2681 case ICmpInst::ICMP_EQ: 2682 case ICmpInst::ICMP_UGT: 2683 case ICmpInst::ICMP_UGE: 2684 return getFalse(ITy); 2685 case ICmpInst::ICMP_SLT: 2686 case ICmpInst::ICMP_SLE: 2687 ComputeSignBit(RHS, KnownNonNegative, KnownNegative, Q.DL, 0, Q.AC, 2688 Q.CxtI, Q.DT); 2689 if (!KnownNonNegative) 2690 break; 2691 // fall-through 2692 case ICmpInst::ICMP_NE: 2693 case ICmpInst::ICMP_ULT: 2694 case ICmpInst::ICMP_ULE: 2695 return getTrue(ITy); 2696 } 2697 } 2698 2699 // icmp pred X, (urem Y, X) 2700 if (RBO && match(RBO, m_URem(m_Value(), m_Specific(LHS)))) { 2701 bool KnownNonNegative, KnownNegative; 2702 switch (Pred) { 2703 default: 2704 break; 2705 case ICmpInst::ICMP_SGT: 2706 case ICmpInst::ICMP_SGE: 2707 ComputeSignBit(LHS, KnownNonNegative, KnownNegative, Q.DL, 0, Q.AC, 2708 Q.CxtI, Q.DT); 2709 if (!KnownNonNegative) 2710 break; 2711 // fall-through 2712 case ICmpInst::ICMP_NE: 2713 case ICmpInst::ICMP_UGT: 2714 case ICmpInst::ICMP_UGE: 2715 return getTrue(ITy); 2716 case ICmpInst::ICMP_SLT: 2717 case ICmpInst::ICMP_SLE: 2718 ComputeSignBit(LHS, KnownNonNegative, KnownNegative, Q.DL, 0, Q.AC, 2719 Q.CxtI, Q.DT); 2720 if (!KnownNonNegative) 2721 break; 2722 // fall-through 2723 case ICmpInst::ICMP_EQ: 2724 case ICmpInst::ICMP_ULT: 2725 case ICmpInst::ICMP_ULE: 2726 return getFalse(ITy); 2727 } 2728 } 2729 2730 // x >> y <=u x 2731 // x udiv y <=u x. 2732 if (LBO && (match(LBO, m_LShr(m_Specific(RHS), m_Value())) || 2733 match(LBO, m_UDiv(m_Specific(RHS), m_Value())))) { 2734 // icmp pred (X op Y), X 2735 if (Pred == ICmpInst::ICMP_UGT) 2736 return getFalse(ITy); 2737 if (Pred == ICmpInst::ICMP_ULE) 2738 return getTrue(ITy); 2739 } 2740 2741 // handle: 2742 // CI2 << X == CI 2743 // CI2 << X != CI 2744 // 2745 // where CI2 is a power of 2 and CI isn't 2746 if (auto *CI = dyn_cast<ConstantInt>(RHS)) { 2747 const APInt *CI2Val, *CIVal = &CI->getValue(); 2748 if (LBO && match(LBO, m_Shl(m_APInt(CI2Val), m_Value())) && 2749 CI2Val->isPowerOf2()) { 2750 if (!CIVal->isPowerOf2()) { 2751 // CI2 << X can equal zero in some circumstances, 2752 // this simplification is unsafe if CI is zero. 2753 // 2754 // We know it is safe if: 2755 // - The shift is nsw, we can't shift out the one bit. 2756 // - The shift is nuw, we can't shift out the one bit. 2757 // - CI2 is one 2758 // - CI isn't zero 2759 if (LBO->hasNoSignedWrap() || LBO->hasNoUnsignedWrap() || 2760 *CI2Val == 1 || !CI->isZero()) { 2761 if (Pred == ICmpInst::ICMP_EQ) 2762 return ConstantInt::getFalse(RHS->getContext()); 2763 if (Pred == ICmpInst::ICMP_NE) 2764 return ConstantInt::getTrue(RHS->getContext()); 2765 } 2766 } 2767 if (CIVal->isSignBit() && *CI2Val == 1) { 2768 if (Pred == ICmpInst::ICMP_UGT) 2769 return ConstantInt::getFalse(RHS->getContext()); 2770 if (Pred == ICmpInst::ICMP_ULE) 2771 return ConstantInt::getTrue(RHS->getContext()); 2772 } 2773 } 2774 } 2775 2776 if (MaxRecurse && LBO && RBO && LBO->getOpcode() == RBO->getOpcode() && 2777 LBO->getOperand(1) == RBO->getOperand(1)) { 2778 switch (LBO->getOpcode()) { 2779 default: break; 2780 case Instruction::UDiv: 2781 case Instruction::LShr: 2782 if (ICmpInst::isSigned(Pred)) 2783 break; 2784 // fall-through 2785 case Instruction::SDiv: 2786 case Instruction::AShr: 2787 if (!LBO->isExact() || !RBO->isExact()) 2788 break; 2789 if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0), 2790 RBO->getOperand(0), Q, MaxRecurse-1)) 2791 return V; 2792 break; 2793 case Instruction::Shl: { 2794 bool NUW = LBO->hasNoUnsignedWrap() && RBO->hasNoUnsignedWrap(); 2795 bool NSW = LBO->hasNoSignedWrap() && RBO->hasNoSignedWrap(); 2796 if (!NUW && !NSW) 2797 break; 2798 if (!NSW && ICmpInst::isSigned(Pred)) 2799 break; 2800 if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0), 2801 RBO->getOperand(0), Q, MaxRecurse-1)) 2802 return V; 2803 break; 2804 } 2805 } 2806 } 2807 2808 // Simplify comparisons involving max/min. 2809 Value *A, *B; 2810 CmpInst::Predicate P = CmpInst::BAD_ICMP_PREDICATE; 2811 CmpInst::Predicate EqP; // Chosen so that "A == max/min(A,B)" iff "A EqP B". 2812 2813 // Signed variants on "max(a,b)>=a -> true". 2814 if (match(LHS, m_SMax(m_Value(A), m_Value(B))) && (A == RHS || B == RHS)) { 2815 if (A != RHS) std::swap(A, B); // smax(A, B) pred A. 2816 EqP = CmpInst::ICMP_SGE; // "A == smax(A, B)" iff "A sge B". 2817 // We analyze this as smax(A, B) pred A. 2818 P = Pred; 2819 } else if (match(RHS, m_SMax(m_Value(A), m_Value(B))) && 2820 (A == LHS || B == LHS)) { 2821 if (A != LHS) std::swap(A, B); // A pred smax(A, B). 2822 EqP = CmpInst::ICMP_SGE; // "A == smax(A, B)" iff "A sge B". 2823 // We analyze this as smax(A, B) swapped-pred A. 2824 P = CmpInst::getSwappedPredicate(Pred); 2825 } else if (match(LHS, m_SMin(m_Value(A), m_Value(B))) && 2826 (A == RHS || B == RHS)) { 2827 if (A != RHS) std::swap(A, B); // smin(A, B) pred A. 2828 EqP = CmpInst::ICMP_SLE; // "A == smin(A, B)" iff "A sle B". 2829 // We analyze this as smax(-A, -B) swapped-pred -A. 2830 // Note that we do not need to actually form -A or -B thanks to EqP. 2831 P = CmpInst::getSwappedPredicate(Pred); 2832 } else if (match(RHS, m_SMin(m_Value(A), m_Value(B))) && 2833 (A == LHS || B == LHS)) { 2834 if (A != LHS) std::swap(A, B); // A pred smin(A, B). 2835 EqP = CmpInst::ICMP_SLE; // "A == smin(A, B)" iff "A sle B". 2836 // We analyze this as smax(-A, -B) pred -A. 2837 // Note that we do not need to actually form -A or -B thanks to EqP. 2838 P = Pred; 2839 } 2840 if (P != CmpInst::BAD_ICMP_PREDICATE) { 2841 // Cases correspond to "max(A, B) p A". 2842 switch (P) { 2843 default: 2844 break; 2845 case CmpInst::ICMP_EQ: 2846 case CmpInst::ICMP_SLE: 2847 // Equivalent to "A EqP B". This may be the same as the condition tested 2848 // in the max/min; if so, we can just return that. 2849 if (Value *V = ExtractEquivalentCondition(LHS, EqP, A, B)) 2850 return V; 2851 if (Value *V = ExtractEquivalentCondition(RHS, EqP, A, B)) 2852 return V; 2853 // Otherwise, see if "A EqP B" simplifies. 2854 if (MaxRecurse) 2855 if (Value *V = SimplifyICmpInst(EqP, A, B, Q, MaxRecurse-1)) 2856 return V; 2857 break; 2858 case CmpInst::ICMP_NE: 2859 case CmpInst::ICMP_SGT: { 2860 CmpInst::Predicate InvEqP = CmpInst::getInversePredicate(EqP); 2861 // Equivalent to "A InvEqP B". This may be the same as the condition 2862 // tested in the max/min; if so, we can just return that. 2863 if (Value *V = ExtractEquivalentCondition(LHS, InvEqP, A, B)) 2864 return V; 2865 if (Value *V = ExtractEquivalentCondition(RHS, InvEqP, A, B)) 2866 return V; 2867 // Otherwise, see if "A InvEqP B" simplifies. 2868 if (MaxRecurse) 2869 if (Value *V = SimplifyICmpInst(InvEqP, A, B, Q, MaxRecurse-1)) 2870 return V; 2871 break; 2872 } 2873 case CmpInst::ICMP_SGE: 2874 // Always true. 2875 return getTrue(ITy); 2876 case CmpInst::ICMP_SLT: 2877 // Always false. 2878 return getFalse(ITy); 2879 } 2880 } 2881 2882 // Unsigned variants on "max(a,b)>=a -> true". 2883 P = CmpInst::BAD_ICMP_PREDICATE; 2884 if (match(LHS, m_UMax(m_Value(A), m_Value(B))) && (A == RHS || B == RHS)) { 2885 if (A != RHS) std::swap(A, B); // umax(A, B) pred A. 2886 EqP = CmpInst::ICMP_UGE; // "A == umax(A, B)" iff "A uge B". 2887 // We analyze this as umax(A, B) pred A. 2888 P = Pred; 2889 } else if (match(RHS, m_UMax(m_Value(A), m_Value(B))) && 2890 (A == LHS || B == LHS)) { 2891 if (A != LHS) std::swap(A, B); // A pred umax(A, B). 2892 EqP = CmpInst::ICMP_UGE; // "A == umax(A, B)" iff "A uge B". 2893 // We analyze this as umax(A, B) swapped-pred A. 2894 P = CmpInst::getSwappedPredicate(Pred); 2895 } else if (match(LHS, m_UMin(m_Value(A), m_Value(B))) && 2896 (A == RHS || B == RHS)) { 2897 if (A != RHS) std::swap(A, B); // umin(A, B) pred A. 2898 EqP = CmpInst::ICMP_ULE; // "A == umin(A, B)" iff "A ule B". 2899 // We analyze this as umax(-A, -B) swapped-pred -A. 2900 // Note that we do not need to actually form -A or -B thanks to EqP. 2901 P = CmpInst::getSwappedPredicate(Pred); 2902 } else if (match(RHS, m_UMin(m_Value(A), m_Value(B))) && 2903 (A == LHS || B == LHS)) { 2904 if (A != LHS) std::swap(A, B); // A pred umin(A, B). 2905 EqP = CmpInst::ICMP_ULE; // "A == umin(A, B)" iff "A ule B". 2906 // We analyze this as umax(-A, -B) pred -A. 2907 // Note that we do not need to actually form -A or -B thanks to EqP. 2908 P = Pred; 2909 } 2910 if (P != CmpInst::BAD_ICMP_PREDICATE) { 2911 // Cases correspond to "max(A, B) p A". 2912 switch (P) { 2913 default: 2914 break; 2915 case CmpInst::ICMP_EQ: 2916 case CmpInst::ICMP_ULE: 2917 // Equivalent to "A EqP B". This may be the same as the condition tested 2918 // in the max/min; if so, we can just return that. 2919 if (Value *V = ExtractEquivalentCondition(LHS, EqP, A, B)) 2920 return V; 2921 if (Value *V = ExtractEquivalentCondition(RHS, EqP, A, B)) 2922 return V; 2923 // Otherwise, see if "A EqP B" simplifies. 2924 if (MaxRecurse) 2925 if (Value *V = SimplifyICmpInst(EqP, A, B, Q, MaxRecurse-1)) 2926 return V; 2927 break; 2928 case CmpInst::ICMP_NE: 2929 case CmpInst::ICMP_UGT: { 2930 CmpInst::Predicate InvEqP = CmpInst::getInversePredicate(EqP); 2931 // Equivalent to "A InvEqP B". This may be the same as the condition 2932 // tested in the max/min; if so, we can just return that. 2933 if (Value *V = ExtractEquivalentCondition(LHS, InvEqP, A, B)) 2934 return V; 2935 if (Value *V = ExtractEquivalentCondition(RHS, InvEqP, A, B)) 2936 return V; 2937 // Otherwise, see if "A InvEqP B" simplifies. 2938 if (MaxRecurse) 2939 if (Value *V = SimplifyICmpInst(InvEqP, A, B, Q, MaxRecurse-1)) 2940 return V; 2941 break; 2942 } 2943 case CmpInst::ICMP_UGE: 2944 // Always true. 2945 return getTrue(ITy); 2946 case CmpInst::ICMP_ULT: 2947 // Always false. 2948 return getFalse(ITy); 2949 } 2950 } 2951 2952 // Variants on "max(x,y) >= min(x,z)". 2953 Value *C, *D; 2954 if (match(LHS, m_SMax(m_Value(A), m_Value(B))) && 2955 match(RHS, m_SMin(m_Value(C), m_Value(D))) && 2956 (A == C || A == D || B == C || B == D)) { 2957 // max(x, ?) pred min(x, ?). 2958 if (Pred == CmpInst::ICMP_SGE) 2959 // Always true. 2960 return getTrue(ITy); 2961 if (Pred == CmpInst::ICMP_SLT) 2962 // Always false. 2963 return getFalse(ITy); 2964 } else if (match(LHS, m_SMin(m_Value(A), m_Value(B))) && 2965 match(RHS, m_SMax(m_Value(C), m_Value(D))) && 2966 (A == C || A == D || B == C || B == D)) { 2967 // min(x, ?) pred max(x, ?). 2968 if (Pred == CmpInst::ICMP_SLE) 2969 // Always true. 2970 return getTrue(ITy); 2971 if (Pred == CmpInst::ICMP_SGT) 2972 // Always false. 2973 return getFalse(ITy); 2974 } else if (match(LHS, m_UMax(m_Value(A), m_Value(B))) && 2975 match(RHS, m_UMin(m_Value(C), m_Value(D))) && 2976 (A == C || A == D || B == C || B == D)) { 2977 // max(x, ?) pred min(x, ?). 2978 if (Pred == CmpInst::ICMP_UGE) 2979 // Always true. 2980 return getTrue(ITy); 2981 if (Pred == CmpInst::ICMP_ULT) 2982 // Always false. 2983 return getFalse(ITy); 2984 } else if (match(LHS, m_UMin(m_Value(A), m_Value(B))) && 2985 match(RHS, m_UMax(m_Value(C), m_Value(D))) && 2986 (A == C || A == D || B == C || B == D)) { 2987 // min(x, ?) pred max(x, ?). 2988 if (Pred == CmpInst::ICMP_ULE) 2989 // Always true. 2990 return getTrue(ITy); 2991 if (Pred == CmpInst::ICMP_UGT) 2992 // Always false. 2993 return getFalse(ITy); 2994 } 2995 2996 // Simplify comparisons of related pointers using a powerful, recursive 2997 // GEP-walk when we have target data available.. 2998 if (LHS->getType()->isPointerTy()) 2999 if (Constant *C = computePointerICmp(Q.DL, Q.TLI, Pred, LHS, RHS)) 3000 return C; 3001 3002 if (GetElementPtrInst *GLHS = dyn_cast<GetElementPtrInst>(LHS)) { 3003 if (GEPOperator *GRHS = dyn_cast<GEPOperator>(RHS)) { 3004 if (GLHS->getPointerOperand() == GRHS->getPointerOperand() && 3005 GLHS->hasAllConstantIndices() && GRHS->hasAllConstantIndices() && 3006 (ICmpInst::isEquality(Pred) || 3007 (GLHS->isInBounds() && GRHS->isInBounds() && 3008 Pred == ICmpInst::getSignedPredicate(Pred)))) { 3009 // The bases are equal and the indices are constant. Build a constant 3010 // expression GEP with the same indices and a null base pointer to see 3011 // what constant folding can make out of it. 3012 Constant *Null = Constant::getNullValue(GLHS->getPointerOperandType()); 3013 SmallVector<Value *, 4> IndicesLHS(GLHS->idx_begin(), GLHS->idx_end()); 3014 Constant *NewLHS = ConstantExpr::getGetElementPtr( 3015 GLHS->getSourceElementType(), Null, IndicesLHS); 3016 3017 SmallVector<Value *, 4> IndicesRHS(GRHS->idx_begin(), GRHS->idx_end()); 3018 Constant *NewRHS = ConstantExpr::getGetElementPtr( 3019 GLHS->getSourceElementType(), Null, IndicesRHS); 3020 return ConstantExpr::getICmp(Pred, NewLHS, NewRHS); 3021 } 3022 } 3023 } 3024 3025 // If a bit is known to be zero for A and known to be one for B, 3026 // then A and B cannot be equal. 3027 if (ICmpInst::isEquality(Pred)) { 3028 if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) { 3029 uint32_t BitWidth = CI->getBitWidth(); 3030 APInt LHSKnownZero(BitWidth, 0); 3031 APInt LHSKnownOne(BitWidth, 0); 3032 computeKnownBits(LHS, LHSKnownZero, LHSKnownOne, Q.DL, /*Depth=*/0, Q.AC, 3033 Q.CxtI, Q.DT); 3034 const APInt &RHSVal = CI->getValue(); 3035 if (((LHSKnownZero & RHSVal) != 0) || ((LHSKnownOne & ~RHSVal) != 0)) 3036 return Pred == ICmpInst::ICMP_EQ 3037 ? ConstantInt::getFalse(CI->getContext()) 3038 : ConstantInt::getTrue(CI->getContext()); 3039 } 3040 } 3041 3042 // If the comparison is with the result of a select instruction, check whether 3043 // comparing with either branch of the select always yields the same value. 3044 if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS)) 3045 if (Value *V = ThreadCmpOverSelect(Pred, LHS, RHS, Q, MaxRecurse)) 3046 return V; 3047 3048 // If the comparison is with the result of a phi instruction, check whether 3049 // doing the compare with each incoming phi value yields a common result. 3050 if (isa<PHINode>(LHS) || isa<PHINode>(RHS)) 3051 if (Value *V = ThreadCmpOverPHI(Pred, LHS, RHS, Q, MaxRecurse)) 3052 return V; 3053 3054 return nullptr; 3055 } 3056 3057 Value *llvm::SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS, 3058 const DataLayout &DL, 3059 const TargetLibraryInfo *TLI, 3060 const DominatorTree *DT, AssumptionCache *AC, 3061 const Instruction *CxtI) { 3062 return ::SimplifyICmpInst(Predicate, LHS, RHS, Query(DL, TLI, DT, AC, CxtI), 3063 RecursionLimit); 3064 } 3065 3066 /// Given operands for an FCmpInst, see if we can fold the result. 3067 /// If not, this returns null. 3068 static Value *SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS, 3069 FastMathFlags FMF, const Query &Q, 3070 unsigned MaxRecurse) { 3071 CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate; 3072 assert(CmpInst::isFPPredicate(Pred) && "Not an FP compare!"); 3073 3074 if (Constant *CLHS = dyn_cast<Constant>(LHS)) { 3075 if (Constant *CRHS = dyn_cast<Constant>(RHS)) 3076 return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, Q.DL, Q.TLI); 3077 3078 // If we have a constant, make sure it is on the RHS. 3079 std::swap(LHS, RHS); 3080 Pred = CmpInst::getSwappedPredicate(Pred); 3081 } 3082 3083 // Fold trivial predicates. 3084 if (Pred == FCmpInst::FCMP_FALSE) 3085 return ConstantInt::get(GetCompareTy(LHS), 0); 3086 if (Pred == FCmpInst::FCMP_TRUE) 3087 return ConstantInt::get(GetCompareTy(LHS), 1); 3088 3089 // UNO/ORD predicates can be trivially folded if NaNs are ignored. 3090 if (FMF.noNaNs()) { 3091 if (Pred == FCmpInst::FCMP_UNO) 3092 return ConstantInt::get(GetCompareTy(LHS), 0); 3093 if (Pred == FCmpInst::FCMP_ORD) 3094 return ConstantInt::get(GetCompareTy(LHS), 1); 3095 } 3096 3097 // fcmp pred x, undef and fcmp pred undef, x 3098 // fold to true if unordered, false if ordered 3099 if (isa<UndefValue>(LHS) || isa<UndefValue>(RHS)) { 3100 // Choosing NaN for the undef will always make unordered comparison succeed 3101 // and ordered comparison fail. 3102 return ConstantInt::get(GetCompareTy(LHS), CmpInst::isUnordered(Pred)); 3103 } 3104 3105 // fcmp x,x -> true/false. Not all compares are foldable. 3106 if (LHS == RHS) { 3107 if (CmpInst::isTrueWhenEqual(Pred)) 3108 return ConstantInt::get(GetCompareTy(LHS), 1); 3109 if (CmpInst::isFalseWhenEqual(Pred)) 3110 return ConstantInt::get(GetCompareTy(LHS), 0); 3111 } 3112 3113 // Handle fcmp with constant RHS 3114 if (ConstantFP *CFP = dyn_cast<ConstantFP>(RHS)) { 3115 // If the constant is a nan, see if we can fold the comparison based on it. 3116 if (CFP->getValueAPF().isNaN()) { 3117 if (FCmpInst::isOrdered(Pred)) // True "if ordered and foo" 3118 return ConstantInt::getFalse(CFP->getContext()); 3119 assert(FCmpInst::isUnordered(Pred) && 3120 "Comparison must be either ordered or unordered!"); 3121 // True if unordered. 3122 return ConstantInt::getTrue(CFP->getContext()); 3123 } 3124 // Check whether the constant is an infinity. 3125 if (CFP->getValueAPF().isInfinity()) { 3126 if (CFP->getValueAPF().isNegative()) { 3127 switch (Pred) { 3128 case FCmpInst::FCMP_OLT: 3129 // No value is ordered and less than negative infinity. 3130 return ConstantInt::getFalse(CFP->getContext()); 3131 case FCmpInst::FCMP_UGE: 3132 // All values are unordered with or at least negative infinity. 3133 return ConstantInt::getTrue(CFP->getContext()); 3134 default: 3135 break; 3136 } 3137 } else { 3138 switch (Pred) { 3139 case FCmpInst::FCMP_OGT: 3140 // No value is ordered and greater than infinity. 3141 return ConstantInt::getFalse(CFP->getContext()); 3142 case FCmpInst::FCMP_ULE: 3143 // All values are unordered with and at most infinity. 3144 return ConstantInt::getTrue(CFP->getContext()); 3145 default: 3146 break; 3147 } 3148 } 3149 } 3150 if (CFP->getValueAPF().isZero()) { 3151 switch (Pred) { 3152 case FCmpInst::FCMP_UGE: 3153 if (CannotBeOrderedLessThanZero(LHS)) 3154 return ConstantInt::getTrue(CFP->getContext()); 3155 break; 3156 case FCmpInst::FCMP_OLT: 3157 // X < 0 3158 if (CannotBeOrderedLessThanZero(LHS)) 3159 return ConstantInt::getFalse(CFP->getContext()); 3160 break; 3161 default: 3162 break; 3163 } 3164 } 3165 } 3166 3167 // If the comparison is with the result of a select instruction, check whether 3168 // comparing with either branch of the select always yields the same value. 3169 if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS)) 3170 if (Value *V = ThreadCmpOverSelect(Pred, LHS, RHS, Q, MaxRecurse)) 3171 return V; 3172 3173 // If the comparison is with the result of a phi instruction, check whether 3174 // doing the compare with each incoming phi value yields a common result. 3175 if (isa<PHINode>(LHS) || isa<PHINode>(RHS)) 3176 if (Value *V = ThreadCmpOverPHI(Pred, LHS, RHS, Q, MaxRecurse)) 3177 return V; 3178 3179 return nullptr; 3180 } 3181 3182 Value *llvm::SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS, 3183 FastMathFlags FMF, const DataLayout &DL, 3184 const TargetLibraryInfo *TLI, 3185 const DominatorTree *DT, AssumptionCache *AC, 3186 const Instruction *CxtI) { 3187 return ::SimplifyFCmpInst(Predicate, LHS, RHS, FMF, 3188 Query(DL, TLI, DT, AC, CxtI), RecursionLimit); 3189 } 3190 3191 /// See if V simplifies when its operand Op is replaced with RepOp. 3192 static const Value *SimplifyWithOpReplaced(Value *V, Value *Op, Value *RepOp, 3193 const Query &Q, 3194 unsigned MaxRecurse) { 3195 // Trivial replacement. 3196 if (V == Op) 3197 return RepOp; 3198 3199 auto *I = dyn_cast<Instruction>(V); 3200 if (!I) 3201 return nullptr; 3202 3203 // If this is a binary operator, try to simplify it with the replaced op. 3204 if (auto *B = dyn_cast<BinaryOperator>(I)) { 3205 // Consider: 3206 // %cmp = icmp eq i32 %x, 2147483647 3207 // %add = add nsw i32 %x, 1 3208 // %sel = select i1 %cmp, i32 -2147483648, i32 %add 3209 // 3210 // We can't replace %sel with %add unless we strip away the flags. 3211 if (isa<OverflowingBinaryOperator>(B)) 3212 if (B->hasNoSignedWrap() || B->hasNoUnsignedWrap()) 3213 return nullptr; 3214 if (isa<PossiblyExactOperator>(B)) 3215 if (B->isExact()) 3216 return nullptr; 3217 3218 if (MaxRecurse) { 3219 if (B->getOperand(0) == Op) 3220 return SimplifyBinOp(B->getOpcode(), RepOp, B->getOperand(1), Q, 3221 MaxRecurse - 1); 3222 if (B->getOperand(1) == Op) 3223 return SimplifyBinOp(B->getOpcode(), B->getOperand(0), RepOp, Q, 3224 MaxRecurse - 1); 3225 } 3226 } 3227 3228 // Same for CmpInsts. 3229 if (CmpInst *C = dyn_cast<CmpInst>(I)) { 3230 if (MaxRecurse) { 3231 if (C->getOperand(0) == Op) 3232 return SimplifyCmpInst(C->getPredicate(), RepOp, C->getOperand(1), Q, 3233 MaxRecurse - 1); 3234 if (C->getOperand(1) == Op) 3235 return SimplifyCmpInst(C->getPredicate(), C->getOperand(0), RepOp, Q, 3236 MaxRecurse - 1); 3237 } 3238 } 3239 3240 // TODO: We could hand off more cases to instsimplify here. 3241 3242 // If all operands are constant after substituting Op for RepOp then we can 3243 // constant fold the instruction. 3244 if (Constant *CRepOp = dyn_cast<Constant>(RepOp)) { 3245 // Build a list of all constant operands. 3246 SmallVector<Constant *, 8> ConstOps; 3247 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 3248 if (I->getOperand(i) == Op) 3249 ConstOps.push_back(CRepOp); 3250 else if (Constant *COp = dyn_cast<Constant>(I->getOperand(i))) 3251 ConstOps.push_back(COp); 3252 else 3253 break; 3254 } 3255 3256 // All operands were constants, fold it. 3257 if (ConstOps.size() == I->getNumOperands()) { 3258 if (CmpInst *C = dyn_cast<CmpInst>(I)) 3259 return ConstantFoldCompareInstOperands(C->getPredicate(), ConstOps[0], 3260 ConstOps[1], Q.DL, Q.TLI); 3261 3262 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 3263 if (!LI->isVolatile()) 3264 return ConstantFoldLoadFromConstPtr(ConstOps[0], LI->getType(), Q.DL); 3265 3266 return ConstantFoldInstOperands(I, ConstOps, Q.DL, Q.TLI); 3267 } 3268 } 3269 3270 return nullptr; 3271 } 3272 3273 /// Given operands for a SelectInst, see if we can fold the result. 3274 /// If not, this returns null. 3275 static Value *SimplifySelectInst(Value *CondVal, Value *TrueVal, 3276 Value *FalseVal, const Query &Q, 3277 unsigned MaxRecurse) { 3278 // select true, X, Y -> X 3279 // select false, X, Y -> Y 3280 if (Constant *CB = dyn_cast<Constant>(CondVal)) { 3281 if (CB->isAllOnesValue()) 3282 return TrueVal; 3283 if (CB->isNullValue()) 3284 return FalseVal; 3285 } 3286 3287 // select C, X, X -> X 3288 if (TrueVal == FalseVal) 3289 return TrueVal; 3290 3291 if (isa<UndefValue>(CondVal)) { // select undef, X, Y -> X or Y 3292 if (isa<Constant>(TrueVal)) 3293 return TrueVal; 3294 return FalseVal; 3295 } 3296 if (isa<UndefValue>(TrueVal)) // select C, undef, X -> X 3297 return FalseVal; 3298 if (isa<UndefValue>(FalseVal)) // select C, X, undef -> X 3299 return TrueVal; 3300 3301 if (const auto *ICI = dyn_cast<ICmpInst>(CondVal)) { 3302 unsigned BitWidth = Q.DL.getTypeSizeInBits(TrueVal->getType()); 3303 ICmpInst::Predicate Pred = ICI->getPredicate(); 3304 Value *CmpLHS = ICI->getOperand(0); 3305 Value *CmpRHS = ICI->getOperand(1); 3306 APInt MinSignedValue = APInt::getSignBit(BitWidth); 3307 Value *X; 3308 const APInt *Y; 3309 bool TrueWhenUnset; 3310 bool IsBitTest = false; 3311 if (ICmpInst::isEquality(Pred) && 3312 match(CmpLHS, m_And(m_Value(X), m_APInt(Y))) && 3313 match(CmpRHS, m_Zero())) { 3314 IsBitTest = true; 3315 TrueWhenUnset = Pred == ICmpInst::ICMP_EQ; 3316 } else if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, m_Zero())) { 3317 X = CmpLHS; 3318 Y = &MinSignedValue; 3319 IsBitTest = true; 3320 TrueWhenUnset = false; 3321 } else if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, m_AllOnes())) { 3322 X = CmpLHS; 3323 Y = &MinSignedValue; 3324 IsBitTest = true; 3325 TrueWhenUnset = true; 3326 } 3327 if (IsBitTest) { 3328 const APInt *C; 3329 // (X & Y) == 0 ? X & ~Y : X --> X 3330 // (X & Y) != 0 ? X & ~Y : X --> X & ~Y 3331 if (FalseVal == X && match(TrueVal, m_And(m_Specific(X), m_APInt(C))) && 3332 *Y == ~*C) 3333 return TrueWhenUnset ? FalseVal : TrueVal; 3334 // (X & Y) == 0 ? X : X & ~Y --> X & ~Y 3335 // (X & Y) != 0 ? X : X & ~Y --> X 3336 if (TrueVal == X && match(FalseVal, m_And(m_Specific(X), m_APInt(C))) && 3337 *Y == ~*C) 3338 return TrueWhenUnset ? FalseVal : TrueVal; 3339 3340 if (Y->isPowerOf2()) { 3341 // (X & Y) == 0 ? X | Y : X --> X | Y 3342 // (X & Y) != 0 ? X | Y : X --> X 3343 if (FalseVal == X && match(TrueVal, m_Or(m_Specific(X), m_APInt(C))) && 3344 *Y == *C) 3345 return TrueWhenUnset ? TrueVal : FalseVal; 3346 // (X & Y) == 0 ? X : X | Y --> X 3347 // (X & Y) != 0 ? X : X | Y --> X | Y 3348 if (TrueVal == X && match(FalseVal, m_Or(m_Specific(X), m_APInt(C))) && 3349 *Y == *C) 3350 return TrueWhenUnset ? TrueVal : FalseVal; 3351 } 3352 } 3353 if (ICI->hasOneUse()) { 3354 const APInt *C; 3355 if (match(CmpRHS, m_APInt(C))) { 3356 // X < MIN ? T : F --> F 3357 if (Pred == ICmpInst::ICMP_SLT && C->isMinSignedValue()) 3358 return FalseVal; 3359 // X < MIN ? T : F --> F 3360 if (Pred == ICmpInst::ICMP_ULT && C->isMinValue()) 3361 return FalseVal; 3362 // X > MAX ? T : F --> F 3363 if (Pred == ICmpInst::ICMP_SGT && C->isMaxSignedValue()) 3364 return FalseVal; 3365 // X > MAX ? T : F --> F 3366 if (Pred == ICmpInst::ICMP_UGT && C->isMaxValue()) 3367 return FalseVal; 3368 } 3369 } 3370 3371 // If we have an equality comparison then we know the value in one of the 3372 // arms of the select. See if substituting this value into the arm and 3373 // simplifying the result yields the same value as the other arm. 3374 if (Pred == ICmpInst::ICMP_EQ) { 3375 if (SimplifyWithOpReplaced(FalseVal, CmpLHS, CmpRHS, Q, MaxRecurse) == 3376 TrueVal || 3377 SimplifyWithOpReplaced(FalseVal, CmpRHS, CmpLHS, Q, MaxRecurse) == 3378 TrueVal) 3379 return FalseVal; 3380 if (SimplifyWithOpReplaced(TrueVal, CmpLHS, CmpRHS, Q, MaxRecurse) == 3381 FalseVal || 3382 SimplifyWithOpReplaced(TrueVal, CmpRHS, CmpLHS, Q, MaxRecurse) == 3383 FalseVal) 3384 return FalseVal; 3385 } else if (Pred == ICmpInst::ICMP_NE) { 3386 if (SimplifyWithOpReplaced(TrueVal, CmpLHS, CmpRHS, Q, MaxRecurse) == 3387 FalseVal || 3388 SimplifyWithOpReplaced(TrueVal, CmpRHS, CmpLHS, Q, MaxRecurse) == 3389 FalseVal) 3390 return TrueVal; 3391 if (SimplifyWithOpReplaced(FalseVal, CmpLHS, CmpRHS, Q, MaxRecurse) == 3392 TrueVal || 3393 SimplifyWithOpReplaced(FalseVal, CmpRHS, CmpLHS, Q, MaxRecurse) == 3394 TrueVal) 3395 return TrueVal; 3396 } 3397 } 3398 3399 return nullptr; 3400 } 3401 3402 Value *llvm::SimplifySelectInst(Value *Cond, Value *TrueVal, Value *FalseVal, 3403 const DataLayout &DL, 3404 const TargetLibraryInfo *TLI, 3405 const DominatorTree *DT, AssumptionCache *AC, 3406 const Instruction *CxtI) { 3407 return ::SimplifySelectInst(Cond, TrueVal, FalseVal, 3408 Query(DL, TLI, DT, AC, CxtI), RecursionLimit); 3409 } 3410 3411 /// Given operands for an GetElementPtrInst, see if we can fold the result. 3412 /// If not, this returns null. 3413 static Value *SimplifyGEPInst(Type *SrcTy, ArrayRef<Value *> Ops, 3414 const Query &Q, unsigned) { 3415 // The type of the GEP pointer operand. 3416 unsigned AS = 3417 cast<PointerType>(Ops[0]->getType()->getScalarType())->getAddressSpace(); 3418 3419 // getelementptr P -> P. 3420 if (Ops.size() == 1) 3421 return Ops[0]; 3422 3423 // Compute the (pointer) type returned by the GEP instruction. 3424 Type *LastType = GetElementPtrInst::getIndexedType(SrcTy, Ops.slice(1)); 3425 Type *GEPTy = PointerType::get(LastType, AS); 3426 if (VectorType *VT = dyn_cast<VectorType>(Ops[0]->getType())) 3427 GEPTy = VectorType::get(GEPTy, VT->getNumElements()); 3428 3429 if (isa<UndefValue>(Ops[0])) 3430 return UndefValue::get(GEPTy); 3431 3432 if (Ops.size() == 2) { 3433 // getelementptr P, 0 -> P. 3434 if (match(Ops[1], m_Zero())) 3435 return Ops[0]; 3436 3437 Type *Ty = SrcTy; 3438 if (Ty->isSized()) { 3439 Value *P; 3440 uint64_t C; 3441 uint64_t TyAllocSize = Q.DL.getTypeAllocSize(Ty); 3442 // getelementptr P, N -> P if P points to a type of zero size. 3443 if (TyAllocSize == 0) 3444 return Ops[0]; 3445 3446 // The following transforms are only safe if the ptrtoint cast 3447 // doesn't truncate the pointers. 3448 if (Ops[1]->getType()->getScalarSizeInBits() == 3449 Q.DL.getPointerSizeInBits(AS)) { 3450 auto PtrToIntOrZero = [GEPTy](Value *P) -> Value * { 3451 if (match(P, m_Zero())) 3452 return Constant::getNullValue(GEPTy); 3453 Value *Temp; 3454 if (match(P, m_PtrToInt(m_Value(Temp)))) 3455 if (Temp->getType() == GEPTy) 3456 return Temp; 3457 return nullptr; 3458 }; 3459 3460 // getelementptr V, (sub P, V) -> P if P points to a type of size 1. 3461 if (TyAllocSize == 1 && 3462 match(Ops[1], m_Sub(m_Value(P), m_PtrToInt(m_Specific(Ops[0]))))) 3463 if (Value *R = PtrToIntOrZero(P)) 3464 return R; 3465 3466 // getelementptr V, (ashr (sub P, V), C) -> Q 3467 // if P points to a type of size 1 << C. 3468 if (match(Ops[1], 3469 m_AShr(m_Sub(m_Value(P), m_PtrToInt(m_Specific(Ops[0]))), 3470 m_ConstantInt(C))) && 3471 TyAllocSize == 1ULL << C) 3472 if (Value *R = PtrToIntOrZero(P)) 3473 return R; 3474 3475 // getelementptr V, (sdiv (sub P, V), C) -> Q 3476 // if P points to a type of size C. 3477 if (match(Ops[1], 3478 m_SDiv(m_Sub(m_Value(P), m_PtrToInt(m_Specific(Ops[0]))), 3479 m_SpecificInt(TyAllocSize)))) 3480 if (Value *R = PtrToIntOrZero(P)) 3481 return R; 3482 } 3483 } 3484 } 3485 3486 // Check to see if this is constant foldable. 3487 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 3488 if (!isa<Constant>(Ops[i])) 3489 return nullptr; 3490 3491 return ConstantExpr::getGetElementPtr(SrcTy, cast<Constant>(Ops[0]), 3492 Ops.slice(1)); 3493 } 3494 3495 Value *llvm::SimplifyGEPInst(Type *SrcTy, ArrayRef<Value *> Ops, 3496 const DataLayout &DL, 3497 const TargetLibraryInfo *TLI, 3498 const DominatorTree *DT, AssumptionCache *AC, 3499 const Instruction *CxtI) { 3500 return ::SimplifyGEPInst(SrcTy, Ops, 3501 Query(DL, TLI, DT, AC, CxtI), RecursionLimit); 3502 } 3503 3504 /// Given operands for an InsertValueInst, see if we can fold the result. 3505 /// If not, this returns null. 3506 static Value *SimplifyInsertValueInst(Value *Agg, Value *Val, 3507 ArrayRef<unsigned> Idxs, const Query &Q, 3508 unsigned) { 3509 if (Constant *CAgg = dyn_cast<Constant>(Agg)) 3510 if (Constant *CVal = dyn_cast<Constant>(Val)) 3511 return ConstantFoldInsertValueInstruction(CAgg, CVal, Idxs); 3512 3513 // insertvalue x, undef, n -> x 3514 if (match(Val, m_Undef())) 3515 return Agg; 3516 3517 // insertvalue x, (extractvalue y, n), n 3518 if (ExtractValueInst *EV = dyn_cast<ExtractValueInst>(Val)) 3519 if (EV->getAggregateOperand()->getType() == Agg->getType() && 3520 EV->getIndices() == Idxs) { 3521 // insertvalue undef, (extractvalue y, n), n -> y 3522 if (match(Agg, m_Undef())) 3523 return EV->getAggregateOperand(); 3524 3525 // insertvalue y, (extractvalue y, n), n -> y 3526 if (Agg == EV->getAggregateOperand()) 3527 return Agg; 3528 } 3529 3530 return nullptr; 3531 } 3532 3533 Value *llvm::SimplifyInsertValueInst( 3534 Value *Agg, Value *Val, ArrayRef<unsigned> Idxs, const DataLayout &DL, 3535 const TargetLibraryInfo *TLI, const DominatorTree *DT, AssumptionCache *AC, 3536 const Instruction *CxtI) { 3537 return ::SimplifyInsertValueInst(Agg, Val, Idxs, Query(DL, TLI, DT, AC, CxtI), 3538 RecursionLimit); 3539 } 3540 3541 /// Given operands for an ExtractValueInst, see if we can fold the result. 3542 /// If not, this returns null. 3543 static Value *SimplifyExtractValueInst(Value *Agg, ArrayRef<unsigned> Idxs, 3544 const Query &, unsigned) { 3545 if (auto *CAgg = dyn_cast<Constant>(Agg)) 3546 return ConstantFoldExtractValueInstruction(CAgg, Idxs); 3547 3548 // extractvalue x, (insertvalue y, elt, n), n -> elt 3549 unsigned NumIdxs = Idxs.size(); 3550 for (auto *IVI = dyn_cast<InsertValueInst>(Agg); IVI != nullptr; 3551 IVI = dyn_cast<InsertValueInst>(IVI->getAggregateOperand())) { 3552 ArrayRef<unsigned> InsertValueIdxs = IVI->getIndices(); 3553 unsigned NumInsertValueIdxs = InsertValueIdxs.size(); 3554 unsigned NumCommonIdxs = std::min(NumInsertValueIdxs, NumIdxs); 3555 if (InsertValueIdxs.slice(0, NumCommonIdxs) == 3556 Idxs.slice(0, NumCommonIdxs)) { 3557 if (NumIdxs == NumInsertValueIdxs) 3558 return IVI->getInsertedValueOperand(); 3559 break; 3560 } 3561 } 3562 3563 return nullptr; 3564 } 3565 3566 Value *llvm::SimplifyExtractValueInst(Value *Agg, ArrayRef<unsigned> Idxs, 3567 const DataLayout &DL, 3568 const TargetLibraryInfo *TLI, 3569 const DominatorTree *DT, 3570 AssumptionCache *AC, 3571 const Instruction *CxtI) { 3572 return ::SimplifyExtractValueInst(Agg, Idxs, Query(DL, TLI, DT, AC, CxtI), 3573 RecursionLimit); 3574 } 3575 3576 /// Given operands for an ExtractElementInst, see if we can fold the result. 3577 /// If not, this returns null. 3578 static Value *SimplifyExtractElementInst(Value *Vec, Value *Idx, const Query &, 3579 unsigned) { 3580 if (auto *CVec = dyn_cast<Constant>(Vec)) { 3581 if (auto *CIdx = dyn_cast<Constant>(Idx)) 3582 return ConstantFoldExtractElementInstruction(CVec, CIdx); 3583 3584 // The index is not relevant if our vector is a splat. 3585 if (auto *Splat = CVec->getSplatValue()) 3586 return Splat; 3587 3588 if (isa<UndefValue>(Vec)) 3589 return UndefValue::get(Vec->getType()->getVectorElementType()); 3590 } 3591 3592 // If extracting a specified index from the vector, see if we can recursively 3593 // find a previously computed scalar that was inserted into the vector. 3594 if (auto *IdxC = dyn_cast<ConstantInt>(Idx)) 3595 if (Value *Elt = findScalarElement(Vec, IdxC->getZExtValue())) 3596 return Elt; 3597 3598 return nullptr; 3599 } 3600 3601 Value *llvm::SimplifyExtractElementInst( 3602 Value *Vec, Value *Idx, const DataLayout &DL, const TargetLibraryInfo *TLI, 3603 const DominatorTree *DT, AssumptionCache *AC, const Instruction *CxtI) { 3604 return ::SimplifyExtractElementInst(Vec, Idx, Query(DL, TLI, DT, AC, CxtI), 3605 RecursionLimit); 3606 } 3607 3608 /// See if we can fold the given phi. If not, returns null. 3609 static Value *SimplifyPHINode(PHINode *PN, const Query &Q) { 3610 // If all of the PHI's incoming values are the same then replace the PHI node 3611 // with the common value. 3612 Value *CommonValue = nullptr; 3613 bool HasUndefInput = false; 3614 for (Value *Incoming : PN->incoming_values()) { 3615 // If the incoming value is the phi node itself, it can safely be skipped. 3616 if (Incoming == PN) continue; 3617 if (isa<UndefValue>(Incoming)) { 3618 // Remember that we saw an undef value, but otherwise ignore them. 3619 HasUndefInput = true; 3620 continue; 3621 } 3622 if (CommonValue && Incoming != CommonValue) 3623 return nullptr; // Not the same, bail out. 3624 CommonValue = Incoming; 3625 } 3626 3627 // If CommonValue is null then all of the incoming values were either undef or 3628 // equal to the phi node itself. 3629 if (!CommonValue) 3630 return UndefValue::get(PN->getType()); 3631 3632 // If we have a PHI node like phi(X, undef, X), where X is defined by some 3633 // instruction, we cannot return X as the result of the PHI node unless it 3634 // dominates the PHI block. 3635 if (HasUndefInput) 3636 return ValueDominatesPHI(CommonValue, PN, Q.DT) ? CommonValue : nullptr; 3637 3638 return CommonValue; 3639 } 3640 3641 static Value *SimplifyTruncInst(Value *Op, Type *Ty, const Query &Q, unsigned) { 3642 if (Constant *C = dyn_cast<Constant>(Op)) 3643 return ConstantFoldCastOperand(Instruction::Trunc, C, Ty, Q.DL); 3644 3645 return nullptr; 3646 } 3647 3648 Value *llvm::SimplifyTruncInst(Value *Op, Type *Ty, const DataLayout &DL, 3649 const TargetLibraryInfo *TLI, 3650 const DominatorTree *DT, AssumptionCache *AC, 3651 const Instruction *CxtI) { 3652 return ::SimplifyTruncInst(Op, Ty, Query(DL, TLI, DT, AC, CxtI), 3653 RecursionLimit); 3654 } 3655 3656 //=== Helper functions for higher up the class hierarchy. 3657 3658 /// Given operands for a BinaryOperator, see if we can fold the result. 3659 /// If not, this returns null. 3660 static Value *SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS, 3661 const Query &Q, unsigned MaxRecurse) { 3662 switch (Opcode) { 3663 case Instruction::Add: 3664 return SimplifyAddInst(LHS, RHS, /*isNSW*/false, /*isNUW*/false, 3665 Q, MaxRecurse); 3666 case Instruction::FAdd: 3667 return SimplifyFAddInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse); 3668 3669 case Instruction::Sub: 3670 return SimplifySubInst(LHS, RHS, /*isNSW*/false, /*isNUW*/false, 3671 Q, MaxRecurse); 3672 case Instruction::FSub: 3673 return SimplifyFSubInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse); 3674 3675 case Instruction::Mul: return SimplifyMulInst (LHS, RHS, Q, MaxRecurse); 3676 case Instruction::FMul: 3677 return SimplifyFMulInst (LHS, RHS, FastMathFlags(), Q, MaxRecurse); 3678 case Instruction::SDiv: return SimplifySDivInst(LHS, RHS, Q, MaxRecurse); 3679 case Instruction::UDiv: return SimplifyUDivInst(LHS, RHS, Q, MaxRecurse); 3680 case Instruction::FDiv: 3681 return SimplifyFDivInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse); 3682 case Instruction::SRem: return SimplifySRemInst(LHS, RHS, Q, MaxRecurse); 3683 case Instruction::URem: return SimplifyURemInst(LHS, RHS, Q, MaxRecurse); 3684 case Instruction::FRem: 3685 return SimplifyFRemInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse); 3686 case Instruction::Shl: 3687 return SimplifyShlInst(LHS, RHS, /*isNSW*/false, /*isNUW*/false, 3688 Q, MaxRecurse); 3689 case Instruction::LShr: 3690 return SimplifyLShrInst(LHS, RHS, /*isExact*/false, Q, MaxRecurse); 3691 case Instruction::AShr: 3692 return SimplifyAShrInst(LHS, RHS, /*isExact*/false, Q, MaxRecurse); 3693 case Instruction::And: return SimplifyAndInst(LHS, RHS, Q, MaxRecurse); 3694 case Instruction::Or: return SimplifyOrInst (LHS, RHS, Q, MaxRecurse); 3695 case Instruction::Xor: return SimplifyXorInst(LHS, RHS, Q, MaxRecurse); 3696 default: 3697 if (Constant *CLHS = dyn_cast<Constant>(LHS)) 3698 if (Constant *CRHS = dyn_cast<Constant>(RHS)) 3699 return ConstantFoldBinaryOpOperands(Opcode, CLHS, CRHS, Q.DL); 3700 3701 // If the operation is associative, try some generic simplifications. 3702 if (Instruction::isAssociative(Opcode)) 3703 if (Value *V = SimplifyAssociativeBinOp(Opcode, LHS, RHS, Q, MaxRecurse)) 3704 return V; 3705 3706 // If the operation is with the result of a select instruction check whether 3707 // operating on either branch of the select always yields the same value. 3708 if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS)) 3709 if (Value *V = ThreadBinOpOverSelect(Opcode, LHS, RHS, Q, MaxRecurse)) 3710 return V; 3711 3712 // If the operation is with the result of a phi instruction, check whether 3713 // operating on all incoming values of the phi always yields the same value. 3714 if (isa<PHINode>(LHS) || isa<PHINode>(RHS)) 3715 if (Value *V = ThreadBinOpOverPHI(Opcode, LHS, RHS, Q, MaxRecurse)) 3716 return V; 3717 3718 return nullptr; 3719 } 3720 } 3721 3722 /// Given operands for a BinaryOperator, see if we can fold the result. 3723 /// If not, this returns null. 3724 /// In contrast to SimplifyBinOp, try to use FastMathFlag when folding the 3725 /// result. In case we don't need FastMathFlags, simply fall to SimplifyBinOp. 3726 static Value *SimplifyFPBinOp(unsigned Opcode, Value *LHS, Value *RHS, 3727 const FastMathFlags &FMF, const Query &Q, 3728 unsigned MaxRecurse) { 3729 switch (Opcode) { 3730 case Instruction::FAdd: 3731 return SimplifyFAddInst(LHS, RHS, FMF, Q, MaxRecurse); 3732 case Instruction::FSub: 3733 return SimplifyFSubInst(LHS, RHS, FMF, Q, MaxRecurse); 3734 case Instruction::FMul: 3735 return SimplifyFMulInst(LHS, RHS, FMF, Q, MaxRecurse); 3736 default: 3737 return SimplifyBinOp(Opcode, LHS, RHS, Q, MaxRecurse); 3738 } 3739 } 3740 3741 Value *llvm::SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS, 3742 const DataLayout &DL, const TargetLibraryInfo *TLI, 3743 const DominatorTree *DT, AssumptionCache *AC, 3744 const Instruction *CxtI) { 3745 return ::SimplifyBinOp(Opcode, LHS, RHS, Query(DL, TLI, DT, AC, CxtI), 3746 RecursionLimit); 3747 } 3748 3749 Value *llvm::SimplifyFPBinOp(unsigned Opcode, Value *LHS, Value *RHS, 3750 const FastMathFlags &FMF, const DataLayout &DL, 3751 const TargetLibraryInfo *TLI, 3752 const DominatorTree *DT, AssumptionCache *AC, 3753 const Instruction *CxtI) { 3754 return ::SimplifyFPBinOp(Opcode, LHS, RHS, FMF, Query(DL, TLI, DT, AC, CxtI), 3755 RecursionLimit); 3756 } 3757 3758 /// Given operands for a CmpInst, see if we can fold the result. 3759 static Value *SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS, 3760 const Query &Q, unsigned MaxRecurse) { 3761 if (CmpInst::isIntPredicate((CmpInst::Predicate)Predicate)) 3762 return SimplifyICmpInst(Predicate, LHS, RHS, Q, MaxRecurse); 3763 return SimplifyFCmpInst(Predicate, LHS, RHS, FastMathFlags(), Q, MaxRecurse); 3764 } 3765 3766 Value *llvm::SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS, 3767 const DataLayout &DL, const TargetLibraryInfo *TLI, 3768 const DominatorTree *DT, AssumptionCache *AC, 3769 const Instruction *CxtI) { 3770 return ::SimplifyCmpInst(Predicate, LHS, RHS, Query(DL, TLI, DT, AC, CxtI), 3771 RecursionLimit); 3772 } 3773 3774 static bool IsIdempotent(Intrinsic::ID ID) { 3775 switch (ID) { 3776 default: return false; 3777 3778 // Unary idempotent: f(f(x)) = f(x) 3779 case Intrinsic::fabs: 3780 case Intrinsic::floor: 3781 case Intrinsic::ceil: 3782 case Intrinsic::trunc: 3783 case Intrinsic::rint: 3784 case Intrinsic::nearbyint: 3785 case Intrinsic::round: 3786 return true; 3787 } 3788 } 3789 3790 template <typename IterTy> 3791 static Value *SimplifyIntrinsic(Function *F, IterTy ArgBegin, IterTy ArgEnd, 3792 const Query &Q, unsigned MaxRecurse) { 3793 Intrinsic::ID IID = F->getIntrinsicID(); 3794 unsigned NumOperands = std::distance(ArgBegin, ArgEnd); 3795 Type *ReturnType = F->getReturnType(); 3796 3797 // Binary Ops 3798 if (NumOperands == 2) { 3799 Value *LHS = *ArgBegin; 3800 Value *RHS = *(ArgBegin + 1); 3801 if (IID == Intrinsic::usub_with_overflow || 3802 IID == Intrinsic::ssub_with_overflow) { 3803 // X - X -> { 0, false } 3804 if (LHS == RHS) 3805 return Constant::getNullValue(ReturnType); 3806 3807 // X - undef -> undef 3808 // undef - X -> undef 3809 if (isa<UndefValue>(LHS) || isa<UndefValue>(RHS)) 3810 return UndefValue::get(ReturnType); 3811 } 3812 3813 if (IID == Intrinsic::uadd_with_overflow || 3814 IID == Intrinsic::sadd_with_overflow) { 3815 // X + undef -> undef 3816 if (isa<UndefValue>(RHS)) 3817 return UndefValue::get(ReturnType); 3818 } 3819 3820 if (IID == Intrinsic::umul_with_overflow || 3821 IID == Intrinsic::smul_with_overflow) { 3822 // X * 0 -> { 0, false } 3823 if (match(RHS, m_Zero())) 3824 return Constant::getNullValue(ReturnType); 3825 3826 // X * undef -> { 0, false } 3827 if (match(RHS, m_Undef())) 3828 return Constant::getNullValue(ReturnType); 3829 } 3830 } 3831 3832 // Perform idempotent optimizations 3833 if (!IsIdempotent(IID)) 3834 return nullptr; 3835 3836 // Unary Ops 3837 if (NumOperands == 1) 3838 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(*ArgBegin)) 3839 if (II->getIntrinsicID() == IID) 3840 return II; 3841 3842 return nullptr; 3843 } 3844 3845 template <typename IterTy> 3846 static Value *SimplifyCall(Value *V, IterTy ArgBegin, IterTy ArgEnd, 3847 const Query &Q, unsigned MaxRecurse) { 3848 Type *Ty = V->getType(); 3849 if (PointerType *PTy = dyn_cast<PointerType>(Ty)) 3850 Ty = PTy->getElementType(); 3851 FunctionType *FTy = cast<FunctionType>(Ty); 3852 3853 // call undef -> undef 3854 if (isa<UndefValue>(V)) 3855 return UndefValue::get(FTy->getReturnType()); 3856 3857 Function *F = dyn_cast<Function>(V); 3858 if (!F) 3859 return nullptr; 3860 3861 if (F->isIntrinsic()) 3862 if (Value *Ret = SimplifyIntrinsic(F, ArgBegin, ArgEnd, Q, MaxRecurse)) 3863 return Ret; 3864 3865 if (!canConstantFoldCallTo(F)) 3866 return nullptr; 3867 3868 SmallVector<Constant *, 4> ConstantArgs; 3869 ConstantArgs.reserve(ArgEnd - ArgBegin); 3870 for (IterTy I = ArgBegin, E = ArgEnd; I != E; ++I) { 3871 Constant *C = dyn_cast<Constant>(*I); 3872 if (!C) 3873 return nullptr; 3874 ConstantArgs.push_back(C); 3875 } 3876 3877 return ConstantFoldCall(F, ConstantArgs, Q.TLI); 3878 } 3879 3880 Value *llvm::SimplifyCall(Value *V, User::op_iterator ArgBegin, 3881 User::op_iterator ArgEnd, const DataLayout &DL, 3882 const TargetLibraryInfo *TLI, const DominatorTree *DT, 3883 AssumptionCache *AC, const Instruction *CxtI) { 3884 return ::SimplifyCall(V, ArgBegin, ArgEnd, Query(DL, TLI, DT, AC, CxtI), 3885 RecursionLimit); 3886 } 3887 3888 Value *llvm::SimplifyCall(Value *V, ArrayRef<Value *> Args, 3889 const DataLayout &DL, const TargetLibraryInfo *TLI, 3890 const DominatorTree *DT, AssumptionCache *AC, 3891 const Instruction *CxtI) { 3892 return ::SimplifyCall(V, Args.begin(), Args.end(), 3893 Query(DL, TLI, DT, AC, CxtI), RecursionLimit); 3894 } 3895 3896 /// See if we can compute a simplified version of this instruction. 3897 /// If not, this returns null. 3898 Value *llvm::SimplifyInstruction(Instruction *I, const DataLayout &DL, 3899 const TargetLibraryInfo *TLI, 3900 const DominatorTree *DT, AssumptionCache *AC) { 3901 Value *Result; 3902 3903 switch (I->getOpcode()) { 3904 default: 3905 Result = ConstantFoldInstruction(I, DL, TLI); 3906 break; 3907 case Instruction::FAdd: 3908 Result = SimplifyFAddInst(I->getOperand(0), I->getOperand(1), 3909 I->getFastMathFlags(), DL, TLI, DT, AC, I); 3910 break; 3911 case Instruction::Add: 3912 Result = SimplifyAddInst(I->getOperand(0), I->getOperand(1), 3913 cast<BinaryOperator>(I)->hasNoSignedWrap(), 3914 cast<BinaryOperator>(I)->hasNoUnsignedWrap(), DL, 3915 TLI, DT, AC, I); 3916 break; 3917 case Instruction::FSub: 3918 Result = SimplifyFSubInst(I->getOperand(0), I->getOperand(1), 3919 I->getFastMathFlags(), DL, TLI, DT, AC, I); 3920 break; 3921 case Instruction::Sub: 3922 Result = SimplifySubInst(I->getOperand(0), I->getOperand(1), 3923 cast<BinaryOperator>(I)->hasNoSignedWrap(), 3924 cast<BinaryOperator>(I)->hasNoUnsignedWrap(), DL, 3925 TLI, DT, AC, I); 3926 break; 3927 case Instruction::FMul: 3928 Result = SimplifyFMulInst(I->getOperand(0), I->getOperand(1), 3929 I->getFastMathFlags(), DL, TLI, DT, AC, I); 3930 break; 3931 case Instruction::Mul: 3932 Result = 3933 SimplifyMulInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT, AC, I); 3934 break; 3935 case Instruction::SDiv: 3936 Result = SimplifySDivInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT, 3937 AC, I); 3938 break; 3939 case Instruction::UDiv: 3940 Result = SimplifyUDivInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT, 3941 AC, I); 3942 break; 3943 case Instruction::FDiv: 3944 Result = SimplifyFDivInst(I->getOperand(0), I->getOperand(1), 3945 I->getFastMathFlags(), DL, TLI, DT, AC, I); 3946 break; 3947 case Instruction::SRem: 3948 Result = SimplifySRemInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT, 3949 AC, I); 3950 break; 3951 case Instruction::URem: 3952 Result = SimplifyURemInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT, 3953 AC, I); 3954 break; 3955 case Instruction::FRem: 3956 Result = SimplifyFRemInst(I->getOperand(0), I->getOperand(1), 3957 I->getFastMathFlags(), DL, TLI, DT, AC, I); 3958 break; 3959 case Instruction::Shl: 3960 Result = SimplifyShlInst(I->getOperand(0), I->getOperand(1), 3961 cast<BinaryOperator>(I)->hasNoSignedWrap(), 3962 cast<BinaryOperator>(I)->hasNoUnsignedWrap(), DL, 3963 TLI, DT, AC, I); 3964 break; 3965 case Instruction::LShr: 3966 Result = SimplifyLShrInst(I->getOperand(0), I->getOperand(1), 3967 cast<BinaryOperator>(I)->isExact(), DL, TLI, DT, 3968 AC, I); 3969 break; 3970 case Instruction::AShr: 3971 Result = SimplifyAShrInst(I->getOperand(0), I->getOperand(1), 3972 cast<BinaryOperator>(I)->isExact(), DL, TLI, DT, 3973 AC, I); 3974 break; 3975 case Instruction::And: 3976 Result = 3977 SimplifyAndInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT, AC, I); 3978 break; 3979 case Instruction::Or: 3980 Result = 3981 SimplifyOrInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT, AC, I); 3982 break; 3983 case Instruction::Xor: 3984 Result = 3985 SimplifyXorInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT, AC, I); 3986 break; 3987 case Instruction::ICmp: 3988 Result = 3989 SimplifyICmpInst(cast<ICmpInst>(I)->getPredicate(), I->getOperand(0), 3990 I->getOperand(1), DL, TLI, DT, AC, I); 3991 break; 3992 case Instruction::FCmp: 3993 Result = SimplifyFCmpInst(cast<FCmpInst>(I)->getPredicate(), 3994 I->getOperand(0), I->getOperand(1), 3995 I->getFastMathFlags(), DL, TLI, DT, AC, I); 3996 break; 3997 case Instruction::Select: 3998 Result = SimplifySelectInst(I->getOperand(0), I->getOperand(1), 3999 I->getOperand(2), DL, TLI, DT, AC, I); 4000 break; 4001 case Instruction::GetElementPtr: { 4002 SmallVector<Value*, 8> Ops(I->op_begin(), I->op_end()); 4003 Result = SimplifyGEPInst(cast<GetElementPtrInst>(I)->getSourceElementType(), 4004 Ops, DL, TLI, DT, AC, I); 4005 break; 4006 } 4007 case Instruction::InsertValue: { 4008 InsertValueInst *IV = cast<InsertValueInst>(I); 4009 Result = SimplifyInsertValueInst(IV->getAggregateOperand(), 4010 IV->getInsertedValueOperand(), 4011 IV->getIndices(), DL, TLI, DT, AC, I); 4012 break; 4013 } 4014 case Instruction::ExtractValue: { 4015 auto *EVI = cast<ExtractValueInst>(I); 4016 Result = SimplifyExtractValueInst(EVI->getAggregateOperand(), 4017 EVI->getIndices(), DL, TLI, DT, AC, I); 4018 break; 4019 } 4020 case Instruction::ExtractElement: { 4021 auto *EEI = cast<ExtractElementInst>(I); 4022 Result = SimplifyExtractElementInst( 4023 EEI->getVectorOperand(), EEI->getIndexOperand(), DL, TLI, DT, AC, I); 4024 break; 4025 } 4026 case Instruction::PHI: 4027 Result = SimplifyPHINode(cast<PHINode>(I), Query(DL, TLI, DT, AC, I)); 4028 break; 4029 case Instruction::Call: { 4030 CallSite CS(cast<CallInst>(I)); 4031 Result = SimplifyCall(CS.getCalledValue(), CS.arg_begin(), CS.arg_end(), DL, 4032 TLI, DT, AC, I); 4033 break; 4034 } 4035 case Instruction::Trunc: 4036 Result = 4037 SimplifyTruncInst(I->getOperand(0), I->getType(), DL, TLI, DT, AC, I); 4038 break; 4039 } 4040 4041 // In general, it is possible for computeKnownBits to determine all bits in a 4042 // value even when the operands are not all constants. 4043 if (!Result && I->getType()->isIntegerTy()) { 4044 unsigned BitWidth = I->getType()->getScalarSizeInBits(); 4045 APInt KnownZero(BitWidth, 0); 4046 APInt KnownOne(BitWidth, 0); 4047 computeKnownBits(I, KnownZero, KnownOne, DL, /*Depth*/0, AC, I, DT); 4048 if ((KnownZero | KnownOne).isAllOnesValue()) 4049 Result = ConstantInt::get(I->getContext(), KnownOne); 4050 } 4051 4052 /// If called on unreachable code, the above logic may report that the 4053 /// instruction simplified to itself. Make life easier for users by 4054 /// detecting that case here, returning a safe value instead. 4055 return Result == I ? UndefValue::get(I->getType()) : Result; 4056 } 4057 4058 /// \brief Implementation of recursive simplification through an instruction's 4059 /// uses. 4060 /// 4061 /// This is the common implementation of the recursive simplification routines. 4062 /// If we have a pre-simplified value in 'SimpleV', that is forcibly used to 4063 /// replace the instruction 'I'. Otherwise, we simply add 'I' to the list of 4064 /// instructions to process and attempt to simplify it using 4065 /// InstructionSimplify. 4066 /// 4067 /// This routine returns 'true' only when *it* simplifies something. The passed 4068 /// in simplified value does not count toward this. 4069 static bool replaceAndRecursivelySimplifyImpl(Instruction *I, Value *SimpleV, 4070 const TargetLibraryInfo *TLI, 4071 const DominatorTree *DT, 4072 AssumptionCache *AC) { 4073 bool Simplified = false; 4074 SmallSetVector<Instruction *, 8> Worklist; 4075 const DataLayout &DL = I->getModule()->getDataLayout(); 4076 4077 // If we have an explicit value to collapse to, do that round of the 4078 // simplification loop by hand initially. 4079 if (SimpleV) { 4080 for (User *U : I->users()) 4081 if (U != I) 4082 Worklist.insert(cast<Instruction>(U)); 4083 4084 // Replace the instruction with its simplified value. 4085 I->replaceAllUsesWith(SimpleV); 4086 4087 // Gracefully handle edge cases where the instruction is not wired into any 4088 // parent block. 4089 if (I->getParent()) 4090 I->eraseFromParent(); 4091 } else { 4092 Worklist.insert(I); 4093 } 4094 4095 // Note that we must test the size on each iteration, the worklist can grow. 4096 for (unsigned Idx = 0; Idx != Worklist.size(); ++Idx) { 4097 I = Worklist[Idx]; 4098 4099 // See if this instruction simplifies. 4100 SimpleV = SimplifyInstruction(I, DL, TLI, DT, AC); 4101 if (!SimpleV) 4102 continue; 4103 4104 Simplified = true; 4105 4106 // Stash away all the uses of the old instruction so we can check them for 4107 // recursive simplifications after a RAUW. This is cheaper than checking all 4108 // uses of To on the recursive step in most cases. 4109 for (User *U : I->users()) 4110 Worklist.insert(cast<Instruction>(U)); 4111 4112 // Replace the instruction with its simplified value. 4113 I->replaceAllUsesWith(SimpleV); 4114 4115 // Gracefully handle edge cases where the instruction is not wired into any 4116 // parent block. 4117 if (I->getParent()) 4118 I->eraseFromParent(); 4119 } 4120 return Simplified; 4121 } 4122 4123 bool llvm::recursivelySimplifyInstruction(Instruction *I, 4124 const TargetLibraryInfo *TLI, 4125 const DominatorTree *DT, 4126 AssumptionCache *AC) { 4127 return replaceAndRecursivelySimplifyImpl(I, nullptr, TLI, DT, AC); 4128 } 4129 4130 bool llvm::replaceAndRecursivelySimplify(Instruction *I, Value *SimpleV, 4131 const TargetLibraryInfo *TLI, 4132 const DominatorTree *DT, 4133 AssumptionCache *AC) { 4134 assert(I != SimpleV && "replaceAndRecursivelySimplify(X,X) is not valid!"); 4135 assert(SimpleV && "Must provide a simplified value."); 4136 return replaceAndRecursivelySimplifyImpl(I, SimpleV, TLI, DT, AC); 4137 } 4138