1 //===- InstructionSimplify.cpp - Fold instruction operands ----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements routines for folding instructions into simpler forms 10 // that do not require creating new instructions. This does constant folding 11 // ("add i32 1, 1" -> "2") but can also handle non-constant operands, either 12 // returning a constant ("and i32 %x, 0" -> "0") or an already existing value 13 // ("and i32 %x, %x" -> "%x"). All operands are assumed to have already been 14 // simplified: This is usually true and assuming it simplifies the logic (if 15 // they have not been simplified then results are correct but maybe suboptimal). 16 // 17 //===----------------------------------------------------------------------===// 18 19 #include "llvm/Analysis/InstructionSimplify.h" 20 21 #include "llvm/ADT/STLExtras.h" 22 #include "llvm/ADT/SetVector.h" 23 #include "llvm/ADT/Statistic.h" 24 #include "llvm/Analysis/AliasAnalysis.h" 25 #include "llvm/Analysis/AssumptionCache.h" 26 #include "llvm/Analysis/CaptureTracking.h" 27 #include "llvm/Analysis/CmpInstAnalysis.h" 28 #include "llvm/Analysis/ConstantFolding.h" 29 #include "llvm/Analysis/InstSimplifyFolder.h" 30 #include "llvm/Analysis/LoopAnalysisManager.h" 31 #include "llvm/Analysis/MemoryBuiltins.h" 32 #include "llvm/Analysis/OverflowInstAnalysis.h" 33 #include "llvm/Analysis/ValueTracking.h" 34 #include "llvm/Analysis/VectorUtils.h" 35 #include "llvm/IR/ConstantRange.h" 36 #include "llvm/IR/DataLayout.h" 37 #include "llvm/IR/Dominators.h" 38 #include "llvm/IR/InstrTypes.h" 39 #include "llvm/IR/Instructions.h" 40 #include "llvm/IR/Operator.h" 41 #include "llvm/IR/PatternMatch.h" 42 #include "llvm/Support/KnownBits.h" 43 #include <algorithm> 44 using namespace llvm; 45 using namespace llvm::PatternMatch; 46 47 #define DEBUG_TYPE "instsimplify" 48 49 enum { RecursionLimit = 3 }; 50 51 STATISTIC(NumExpand, "Number of expansions"); 52 STATISTIC(NumReassoc, "Number of reassociations"); 53 54 static Value *SimplifyAndInst(Value *, Value *, const SimplifyQuery &, unsigned); 55 static Value *simplifyUnOp(unsigned, Value *, const SimplifyQuery &, unsigned); 56 static Value *simplifyFPUnOp(unsigned, Value *, const FastMathFlags &, 57 const SimplifyQuery &, unsigned); 58 static Value *SimplifyBinOp(unsigned, Value *, Value *, const SimplifyQuery &, 59 unsigned); 60 static Value *SimplifyBinOp(unsigned, Value *, Value *, const FastMathFlags &, 61 const SimplifyQuery &, unsigned); 62 static Value *SimplifyCmpInst(unsigned, Value *, Value *, const SimplifyQuery &, 63 unsigned); 64 static Value *SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS, 65 const SimplifyQuery &Q, unsigned MaxRecurse); 66 static Value *SimplifyOrInst(Value *, Value *, const SimplifyQuery &, unsigned); 67 static Value *SimplifyXorInst(Value *, Value *, const SimplifyQuery &, unsigned); 68 static Value *SimplifyCastInst(unsigned, Value *, Type *, 69 const SimplifyQuery &, unsigned); 70 static Value *SimplifyGEPInst(Type *, Value *, ArrayRef<Value *>, bool, 71 const SimplifyQuery &, unsigned); 72 static Value *SimplifySelectInst(Value *, Value *, Value *, 73 const SimplifyQuery &, unsigned); 74 75 static Value *foldSelectWithBinaryOp(Value *Cond, Value *TrueVal, 76 Value *FalseVal) { 77 BinaryOperator::BinaryOps BinOpCode; 78 if (auto *BO = dyn_cast<BinaryOperator>(Cond)) 79 BinOpCode = BO->getOpcode(); 80 else 81 return nullptr; 82 83 CmpInst::Predicate ExpectedPred, Pred1, Pred2; 84 if (BinOpCode == BinaryOperator::Or) { 85 ExpectedPred = ICmpInst::ICMP_NE; 86 } else if (BinOpCode == BinaryOperator::And) { 87 ExpectedPred = ICmpInst::ICMP_EQ; 88 } else 89 return nullptr; 90 91 // %A = icmp eq %TV, %FV 92 // %B = icmp eq %X, %Y (and one of these is a select operand) 93 // %C = and %A, %B 94 // %D = select %C, %TV, %FV 95 // --> 96 // %FV 97 98 // %A = icmp ne %TV, %FV 99 // %B = icmp ne %X, %Y (and one of these is a select operand) 100 // %C = or %A, %B 101 // %D = select %C, %TV, %FV 102 // --> 103 // %TV 104 Value *X, *Y; 105 if (!match(Cond, m_c_BinOp(m_c_ICmp(Pred1, m_Specific(TrueVal), 106 m_Specific(FalseVal)), 107 m_ICmp(Pred2, m_Value(X), m_Value(Y)))) || 108 Pred1 != Pred2 || Pred1 != ExpectedPred) 109 return nullptr; 110 111 if (X == TrueVal || X == FalseVal || Y == TrueVal || Y == FalseVal) 112 return BinOpCode == BinaryOperator::Or ? TrueVal : FalseVal; 113 114 return nullptr; 115 } 116 117 /// For a boolean type or a vector of boolean type, return false or a vector 118 /// with every element false. 119 static Constant *getFalse(Type *Ty) { 120 return ConstantInt::getFalse(Ty); 121 } 122 123 /// For a boolean type or a vector of boolean type, return true or a vector 124 /// with every element true. 125 static Constant *getTrue(Type *Ty) { 126 return ConstantInt::getTrue(Ty); 127 } 128 129 /// isSameCompare - Is V equivalent to the comparison "LHS Pred RHS"? 130 static bool isSameCompare(Value *V, CmpInst::Predicate Pred, Value *LHS, 131 Value *RHS) { 132 CmpInst *Cmp = dyn_cast<CmpInst>(V); 133 if (!Cmp) 134 return false; 135 CmpInst::Predicate CPred = Cmp->getPredicate(); 136 Value *CLHS = Cmp->getOperand(0), *CRHS = Cmp->getOperand(1); 137 if (CPred == Pred && CLHS == LHS && CRHS == RHS) 138 return true; 139 return CPred == CmpInst::getSwappedPredicate(Pred) && CLHS == RHS && 140 CRHS == LHS; 141 } 142 143 /// Simplify comparison with true or false branch of select: 144 /// %sel = select i1 %cond, i32 %tv, i32 %fv 145 /// %cmp = icmp sle i32 %sel, %rhs 146 /// Compose new comparison by substituting %sel with either %tv or %fv 147 /// and see if it simplifies. 148 static Value *simplifyCmpSelCase(CmpInst::Predicate Pred, Value *LHS, 149 Value *RHS, Value *Cond, 150 const SimplifyQuery &Q, unsigned MaxRecurse, 151 Constant *TrueOrFalse) { 152 Value *SimplifiedCmp = SimplifyCmpInst(Pred, LHS, RHS, Q, MaxRecurse); 153 if (SimplifiedCmp == Cond) { 154 // %cmp simplified to the select condition (%cond). 155 return TrueOrFalse; 156 } else if (!SimplifiedCmp && isSameCompare(Cond, Pred, LHS, RHS)) { 157 // It didn't simplify. However, if composed comparison is equivalent 158 // to the select condition (%cond) then we can replace it. 159 return TrueOrFalse; 160 } 161 return SimplifiedCmp; 162 } 163 164 /// Simplify comparison with true branch of select 165 static Value *simplifyCmpSelTrueCase(CmpInst::Predicate Pred, Value *LHS, 166 Value *RHS, Value *Cond, 167 const SimplifyQuery &Q, 168 unsigned MaxRecurse) { 169 return simplifyCmpSelCase(Pred, LHS, RHS, Cond, Q, MaxRecurse, 170 getTrue(Cond->getType())); 171 } 172 173 /// Simplify comparison with false branch of select 174 static Value *simplifyCmpSelFalseCase(CmpInst::Predicate Pred, Value *LHS, 175 Value *RHS, Value *Cond, 176 const SimplifyQuery &Q, 177 unsigned MaxRecurse) { 178 return simplifyCmpSelCase(Pred, LHS, RHS, Cond, Q, MaxRecurse, 179 getFalse(Cond->getType())); 180 } 181 182 /// We know comparison with both branches of select can be simplified, but they 183 /// are not equal. This routine handles some logical simplifications. 184 static Value *handleOtherCmpSelSimplifications(Value *TCmp, Value *FCmp, 185 Value *Cond, 186 const SimplifyQuery &Q, 187 unsigned MaxRecurse) { 188 // If the false value simplified to false, then the result of the compare 189 // is equal to "Cond && TCmp". This also catches the case when the false 190 // value simplified to false and the true value to true, returning "Cond". 191 // Folding select to and/or isn't poison-safe in general; impliesPoison 192 // checks whether folding it does not convert a well-defined value into 193 // poison. 194 if (match(FCmp, m_Zero()) && impliesPoison(TCmp, Cond)) 195 if (Value *V = SimplifyAndInst(Cond, TCmp, Q, MaxRecurse)) 196 return V; 197 // If the true value simplified to true, then the result of the compare 198 // is equal to "Cond || FCmp". 199 if (match(TCmp, m_One()) && impliesPoison(FCmp, Cond)) 200 if (Value *V = SimplifyOrInst(Cond, FCmp, Q, MaxRecurse)) 201 return V; 202 // Finally, if the false value simplified to true and the true value to 203 // false, then the result of the compare is equal to "!Cond". 204 if (match(FCmp, m_One()) && match(TCmp, m_Zero())) 205 if (Value *V = SimplifyXorInst( 206 Cond, Constant::getAllOnesValue(Cond->getType()), Q, MaxRecurse)) 207 return V; 208 return nullptr; 209 } 210 211 /// Does the given value dominate the specified phi node? 212 static bool valueDominatesPHI(Value *V, PHINode *P, const DominatorTree *DT) { 213 Instruction *I = dyn_cast<Instruction>(V); 214 if (!I) 215 // Arguments and constants dominate all instructions. 216 return true; 217 218 // If we are processing instructions (and/or basic blocks) that have not been 219 // fully added to a function, the parent nodes may still be null. Simply 220 // return the conservative answer in these cases. 221 if (!I->getParent() || !P->getParent() || !I->getFunction()) 222 return false; 223 224 // If we have a DominatorTree then do a precise test. 225 if (DT) 226 return DT->dominates(I, P); 227 228 // Otherwise, if the instruction is in the entry block and is not an invoke, 229 // then it obviously dominates all phi nodes. 230 if (I->getParent()->isEntryBlock() && !isa<InvokeInst>(I) && 231 !isa<CallBrInst>(I)) 232 return true; 233 234 return false; 235 } 236 237 /// Try to simplify a binary operator of form "V op OtherOp" where V is 238 /// "(B0 opex B1)" by distributing 'op' across 'opex' as 239 /// "(B0 op OtherOp) opex (B1 op OtherOp)". 240 static Value *expandBinOp(Instruction::BinaryOps Opcode, Value *V, 241 Value *OtherOp, Instruction::BinaryOps OpcodeToExpand, 242 const SimplifyQuery &Q, unsigned MaxRecurse) { 243 auto *B = dyn_cast<BinaryOperator>(V); 244 if (!B || B->getOpcode() != OpcodeToExpand) 245 return nullptr; 246 Value *B0 = B->getOperand(0), *B1 = B->getOperand(1); 247 Value *L = SimplifyBinOp(Opcode, B0, OtherOp, Q.getWithoutUndef(), 248 MaxRecurse); 249 if (!L) 250 return nullptr; 251 Value *R = SimplifyBinOp(Opcode, B1, OtherOp, Q.getWithoutUndef(), 252 MaxRecurse); 253 if (!R) 254 return nullptr; 255 256 // Does the expanded pair of binops simplify to the existing binop? 257 if ((L == B0 && R == B1) || 258 (Instruction::isCommutative(OpcodeToExpand) && L == B1 && R == B0)) { 259 ++NumExpand; 260 return B; 261 } 262 263 // Otherwise, return "L op' R" if it simplifies. 264 Value *S = SimplifyBinOp(OpcodeToExpand, L, R, Q, MaxRecurse); 265 if (!S) 266 return nullptr; 267 268 ++NumExpand; 269 return S; 270 } 271 272 /// Try to simplify binops of form "A op (B op' C)" or the commuted variant by 273 /// distributing op over op'. 274 static Value *expandCommutativeBinOp(Instruction::BinaryOps Opcode, 275 Value *L, Value *R, 276 Instruction::BinaryOps OpcodeToExpand, 277 const SimplifyQuery &Q, 278 unsigned MaxRecurse) { 279 // Recursion is always used, so bail out at once if we already hit the limit. 280 if (!MaxRecurse--) 281 return nullptr; 282 283 if (Value *V = expandBinOp(Opcode, L, R, OpcodeToExpand, Q, MaxRecurse)) 284 return V; 285 if (Value *V = expandBinOp(Opcode, R, L, OpcodeToExpand, Q, MaxRecurse)) 286 return V; 287 return nullptr; 288 } 289 290 /// Generic simplifications for associative binary operations. 291 /// Returns the simpler value, or null if none was found. 292 static Value *SimplifyAssociativeBinOp(Instruction::BinaryOps Opcode, 293 Value *LHS, Value *RHS, 294 const SimplifyQuery &Q, 295 unsigned MaxRecurse) { 296 assert(Instruction::isAssociative(Opcode) && "Not an associative operation!"); 297 298 // Recursion is always used, so bail out at once if we already hit the limit. 299 if (!MaxRecurse--) 300 return nullptr; 301 302 BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS); 303 BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS); 304 305 // Transform: "(A op B) op C" ==> "A op (B op C)" if it simplifies completely. 306 if (Op0 && Op0->getOpcode() == Opcode) { 307 Value *A = Op0->getOperand(0); 308 Value *B = Op0->getOperand(1); 309 Value *C = RHS; 310 311 // Does "B op C" simplify? 312 if (Value *V = SimplifyBinOp(Opcode, B, C, Q, MaxRecurse)) { 313 // It does! Return "A op V" if it simplifies or is already available. 314 // If V equals B then "A op V" is just the LHS. 315 if (V == B) return LHS; 316 // Otherwise return "A op V" if it simplifies. 317 if (Value *W = SimplifyBinOp(Opcode, A, V, Q, MaxRecurse)) { 318 ++NumReassoc; 319 return W; 320 } 321 } 322 } 323 324 // Transform: "A op (B op C)" ==> "(A op B) op C" if it simplifies completely. 325 if (Op1 && Op1->getOpcode() == Opcode) { 326 Value *A = LHS; 327 Value *B = Op1->getOperand(0); 328 Value *C = Op1->getOperand(1); 329 330 // Does "A op B" simplify? 331 if (Value *V = SimplifyBinOp(Opcode, A, B, Q, MaxRecurse)) { 332 // It does! Return "V op C" if it simplifies or is already available. 333 // If V equals B then "V op C" is just the RHS. 334 if (V == B) return RHS; 335 // Otherwise return "V op C" if it simplifies. 336 if (Value *W = SimplifyBinOp(Opcode, V, C, Q, MaxRecurse)) { 337 ++NumReassoc; 338 return W; 339 } 340 } 341 } 342 343 // The remaining transforms require commutativity as well as associativity. 344 if (!Instruction::isCommutative(Opcode)) 345 return nullptr; 346 347 // Transform: "(A op B) op C" ==> "(C op A) op B" if it simplifies completely. 348 if (Op0 && Op0->getOpcode() == Opcode) { 349 Value *A = Op0->getOperand(0); 350 Value *B = Op0->getOperand(1); 351 Value *C = RHS; 352 353 // Does "C op A" simplify? 354 if (Value *V = SimplifyBinOp(Opcode, C, A, Q, MaxRecurse)) { 355 // It does! Return "V op B" if it simplifies or is already available. 356 // If V equals A then "V op B" is just the LHS. 357 if (V == A) return LHS; 358 // Otherwise return "V op B" if it simplifies. 359 if (Value *W = SimplifyBinOp(Opcode, V, B, Q, MaxRecurse)) { 360 ++NumReassoc; 361 return W; 362 } 363 } 364 } 365 366 // Transform: "A op (B op C)" ==> "B op (C op A)" if it simplifies completely. 367 if (Op1 && Op1->getOpcode() == Opcode) { 368 Value *A = LHS; 369 Value *B = Op1->getOperand(0); 370 Value *C = Op1->getOperand(1); 371 372 // Does "C op A" simplify? 373 if (Value *V = SimplifyBinOp(Opcode, C, A, Q, MaxRecurse)) { 374 // It does! Return "B op V" if it simplifies or is already available. 375 // If V equals C then "B op V" is just the RHS. 376 if (V == C) return RHS; 377 // Otherwise return "B op V" if it simplifies. 378 if (Value *W = SimplifyBinOp(Opcode, B, V, Q, MaxRecurse)) { 379 ++NumReassoc; 380 return W; 381 } 382 } 383 } 384 385 return nullptr; 386 } 387 388 /// In the case of a binary operation with a select instruction as an operand, 389 /// try to simplify the binop by seeing whether evaluating it on both branches 390 /// of the select results in the same value. Returns the common value if so, 391 /// otherwise returns null. 392 static Value *ThreadBinOpOverSelect(Instruction::BinaryOps Opcode, Value *LHS, 393 Value *RHS, const SimplifyQuery &Q, 394 unsigned MaxRecurse) { 395 // Recursion is always used, so bail out at once if we already hit the limit. 396 if (!MaxRecurse--) 397 return nullptr; 398 399 SelectInst *SI; 400 if (isa<SelectInst>(LHS)) { 401 SI = cast<SelectInst>(LHS); 402 } else { 403 assert(isa<SelectInst>(RHS) && "No select instruction operand!"); 404 SI = cast<SelectInst>(RHS); 405 } 406 407 // Evaluate the BinOp on the true and false branches of the select. 408 Value *TV; 409 Value *FV; 410 if (SI == LHS) { 411 TV = SimplifyBinOp(Opcode, SI->getTrueValue(), RHS, Q, MaxRecurse); 412 FV = SimplifyBinOp(Opcode, SI->getFalseValue(), RHS, Q, MaxRecurse); 413 } else { 414 TV = SimplifyBinOp(Opcode, LHS, SI->getTrueValue(), Q, MaxRecurse); 415 FV = SimplifyBinOp(Opcode, LHS, SI->getFalseValue(), Q, MaxRecurse); 416 } 417 418 // If they simplified to the same value, then return the common value. 419 // If they both failed to simplify then return null. 420 if (TV == FV) 421 return TV; 422 423 // If one branch simplified to undef, return the other one. 424 if (TV && Q.isUndefValue(TV)) 425 return FV; 426 if (FV && Q.isUndefValue(FV)) 427 return TV; 428 429 // If applying the operation did not change the true and false select values, 430 // then the result of the binop is the select itself. 431 if (TV == SI->getTrueValue() && FV == SI->getFalseValue()) 432 return SI; 433 434 // If one branch simplified and the other did not, and the simplified 435 // value is equal to the unsimplified one, return the simplified value. 436 // For example, select (cond, X, X & Z) & Z -> X & Z. 437 if ((FV && !TV) || (TV && !FV)) { 438 // Check that the simplified value has the form "X op Y" where "op" is the 439 // same as the original operation. 440 Instruction *Simplified = dyn_cast<Instruction>(FV ? FV : TV); 441 if (Simplified && Simplified->getOpcode() == unsigned(Opcode)) { 442 // The value that didn't simplify is "UnsimplifiedLHS op UnsimplifiedRHS". 443 // We already know that "op" is the same as for the simplified value. See 444 // if the operands match too. If so, return the simplified value. 445 Value *UnsimplifiedBranch = FV ? SI->getTrueValue() : SI->getFalseValue(); 446 Value *UnsimplifiedLHS = SI == LHS ? UnsimplifiedBranch : LHS; 447 Value *UnsimplifiedRHS = SI == LHS ? RHS : UnsimplifiedBranch; 448 if (Simplified->getOperand(0) == UnsimplifiedLHS && 449 Simplified->getOperand(1) == UnsimplifiedRHS) 450 return Simplified; 451 if (Simplified->isCommutative() && 452 Simplified->getOperand(1) == UnsimplifiedLHS && 453 Simplified->getOperand(0) == UnsimplifiedRHS) 454 return Simplified; 455 } 456 } 457 458 return nullptr; 459 } 460 461 /// In the case of a comparison with a select instruction, try to simplify the 462 /// comparison by seeing whether both branches of the select result in the same 463 /// value. Returns the common value if so, otherwise returns null. 464 /// For example, if we have: 465 /// %tmp = select i1 %cmp, i32 1, i32 2 466 /// %cmp1 = icmp sle i32 %tmp, 3 467 /// We can simplify %cmp1 to true, because both branches of select are 468 /// less than 3. We compose new comparison by substituting %tmp with both 469 /// branches of select and see if it can be simplified. 470 static Value *ThreadCmpOverSelect(CmpInst::Predicate Pred, Value *LHS, 471 Value *RHS, const SimplifyQuery &Q, 472 unsigned MaxRecurse) { 473 // Recursion is always used, so bail out at once if we already hit the limit. 474 if (!MaxRecurse--) 475 return nullptr; 476 477 // Make sure the select is on the LHS. 478 if (!isa<SelectInst>(LHS)) { 479 std::swap(LHS, RHS); 480 Pred = CmpInst::getSwappedPredicate(Pred); 481 } 482 assert(isa<SelectInst>(LHS) && "Not comparing with a select instruction!"); 483 SelectInst *SI = cast<SelectInst>(LHS); 484 Value *Cond = SI->getCondition(); 485 Value *TV = SI->getTrueValue(); 486 Value *FV = SI->getFalseValue(); 487 488 // Now that we have "cmp select(Cond, TV, FV), RHS", analyse it. 489 // Does "cmp TV, RHS" simplify? 490 Value *TCmp = simplifyCmpSelTrueCase(Pred, TV, RHS, Cond, Q, MaxRecurse); 491 if (!TCmp) 492 return nullptr; 493 494 // Does "cmp FV, RHS" simplify? 495 Value *FCmp = simplifyCmpSelFalseCase(Pred, FV, RHS, Cond, Q, MaxRecurse); 496 if (!FCmp) 497 return nullptr; 498 499 // If both sides simplified to the same value, then use it as the result of 500 // the original comparison. 501 if (TCmp == FCmp) 502 return TCmp; 503 504 // The remaining cases only make sense if the select condition has the same 505 // type as the result of the comparison, so bail out if this is not so. 506 if (Cond->getType()->isVectorTy() == RHS->getType()->isVectorTy()) 507 return handleOtherCmpSelSimplifications(TCmp, FCmp, Cond, Q, MaxRecurse); 508 509 return nullptr; 510 } 511 512 /// In the case of a binary operation with an operand that is a PHI instruction, 513 /// try to simplify the binop by seeing whether evaluating it on the incoming 514 /// phi values yields the same result for every value. If so returns the common 515 /// value, otherwise returns null. 516 static Value *ThreadBinOpOverPHI(Instruction::BinaryOps Opcode, Value *LHS, 517 Value *RHS, const SimplifyQuery &Q, 518 unsigned MaxRecurse) { 519 // Recursion is always used, so bail out at once if we already hit the limit. 520 if (!MaxRecurse--) 521 return nullptr; 522 523 PHINode *PI; 524 if (isa<PHINode>(LHS)) { 525 PI = cast<PHINode>(LHS); 526 // Bail out if RHS and the phi may be mutually interdependent due to a loop. 527 if (!valueDominatesPHI(RHS, PI, Q.DT)) 528 return nullptr; 529 } else { 530 assert(isa<PHINode>(RHS) && "No PHI instruction operand!"); 531 PI = cast<PHINode>(RHS); 532 // Bail out if LHS and the phi may be mutually interdependent due to a loop. 533 if (!valueDominatesPHI(LHS, PI, Q.DT)) 534 return nullptr; 535 } 536 537 // Evaluate the BinOp on the incoming phi values. 538 Value *CommonValue = nullptr; 539 for (Value *Incoming : PI->incoming_values()) { 540 // If the incoming value is the phi node itself, it can safely be skipped. 541 if (Incoming == PI) continue; 542 Value *V = PI == LHS ? 543 SimplifyBinOp(Opcode, Incoming, RHS, Q, MaxRecurse) : 544 SimplifyBinOp(Opcode, LHS, Incoming, Q, MaxRecurse); 545 // If the operation failed to simplify, or simplified to a different value 546 // to previously, then give up. 547 if (!V || (CommonValue && V != CommonValue)) 548 return nullptr; 549 CommonValue = V; 550 } 551 552 return CommonValue; 553 } 554 555 /// In the case of a comparison with a PHI instruction, try to simplify the 556 /// comparison by seeing whether comparing with all of the incoming phi values 557 /// yields the same result every time. If so returns the common result, 558 /// otherwise returns null. 559 static Value *ThreadCmpOverPHI(CmpInst::Predicate Pred, Value *LHS, Value *RHS, 560 const SimplifyQuery &Q, unsigned MaxRecurse) { 561 // Recursion is always used, so bail out at once if we already hit the limit. 562 if (!MaxRecurse--) 563 return nullptr; 564 565 // Make sure the phi is on the LHS. 566 if (!isa<PHINode>(LHS)) { 567 std::swap(LHS, RHS); 568 Pred = CmpInst::getSwappedPredicate(Pred); 569 } 570 assert(isa<PHINode>(LHS) && "Not comparing with a phi instruction!"); 571 PHINode *PI = cast<PHINode>(LHS); 572 573 // Bail out if RHS and the phi may be mutually interdependent due to a loop. 574 if (!valueDominatesPHI(RHS, PI, Q.DT)) 575 return nullptr; 576 577 // Evaluate the BinOp on the incoming phi values. 578 Value *CommonValue = nullptr; 579 for (unsigned u = 0, e = PI->getNumIncomingValues(); u < e; ++u) { 580 Value *Incoming = PI->getIncomingValue(u); 581 Instruction *InTI = PI->getIncomingBlock(u)->getTerminator(); 582 // If the incoming value is the phi node itself, it can safely be skipped. 583 if (Incoming == PI) continue; 584 // Change the context instruction to the "edge" that flows into the phi. 585 // This is important because that is where incoming is actually "evaluated" 586 // even though it is used later somewhere else. 587 Value *V = SimplifyCmpInst(Pred, Incoming, RHS, Q.getWithInstruction(InTI), 588 MaxRecurse); 589 // If the operation failed to simplify, or simplified to a different value 590 // to previously, then give up. 591 if (!V || (CommonValue && V != CommonValue)) 592 return nullptr; 593 CommonValue = V; 594 } 595 596 return CommonValue; 597 } 598 599 static Constant *foldOrCommuteConstant(Instruction::BinaryOps Opcode, 600 Value *&Op0, Value *&Op1, 601 const SimplifyQuery &Q) { 602 if (auto *CLHS = dyn_cast<Constant>(Op0)) { 603 if (auto *CRHS = dyn_cast<Constant>(Op1)) 604 return ConstantFoldBinaryOpOperands(Opcode, CLHS, CRHS, Q.DL); 605 606 // Canonicalize the constant to the RHS if this is a commutative operation. 607 if (Instruction::isCommutative(Opcode)) 608 std::swap(Op0, Op1); 609 } 610 return nullptr; 611 } 612 613 /// Given operands for an Add, see if we can fold the result. 614 /// If not, this returns null. 615 static Value *SimplifyAddInst(Value *Op0, Value *Op1, bool IsNSW, bool IsNUW, 616 const SimplifyQuery &Q, unsigned MaxRecurse) { 617 if (Constant *C = foldOrCommuteConstant(Instruction::Add, Op0, Op1, Q)) 618 return C; 619 620 // X + poison -> poison 621 if (isa<PoisonValue>(Op1)) 622 return Op1; 623 624 // X + undef -> undef 625 if (Q.isUndefValue(Op1)) 626 return Op1; 627 628 // X + 0 -> X 629 if (match(Op1, m_Zero())) 630 return Op0; 631 632 // If two operands are negative, return 0. 633 if (isKnownNegation(Op0, Op1)) 634 return Constant::getNullValue(Op0->getType()); 635 636 // X + (Y - X) -> Y 637 // (Y - X) + X -> Y 638 // Eg: X + -X -> 0 639 Value *Y = nullptr; 640 if (match(Op1, m_Sub(m_Value(Y), m_Specific(Op0))) || 641 match(Op0, m_Sub(m_Value(Y), m_Specific(Op1)))) 642 return Y; 643 644 // X + ~X -> -1 since ~X = -X-1 645 Type *Ty = Op0->getType(); 646 if (match(Op0, m_Not(m_Specific(Op1))) || 647 match(Op1, m_Not(m_Specific(Op0)))) 648 return Constant::getAllOnesValue(Ty); 649 650 // add nsw/nuw (xor Y, signmask), signmask --> Y 651 // The no-wrapping add guarantees that the top bit will be set by the add. 652 // Therefore, the xor must be clearing the already set sign bit of Y. 653 if ((IsNSW || IsNUW) && match(Op1, m_SignMask()) && 654 match(Op0, m_Xor(m_Value(Y), m_SignMask()))) 655 return Y; 656 657 // add nuw %x, -1 -> -1, because %x can only be 0. 658 if (IsNUW && match(Op1, m_AllOnes())) 659 return Op1; // Which is -1. 660 661 /// i1 add -> xor. 662 if (MaxRecurse && Op0->getType()->isIntOrIntVectorTy(1)) 663 if (Value *V = SimplifyXorInst(Op0, Op1, Q, MaxRecurse-1)) 664 return V; 665 666 // Try some generic simplifications for associative operations. 667 if (Value *V = SimplifyAssociativeBinOp(Instruction::Add, Op0, Op1, Q, 668 MaxRecurse)) 669 return V; 670 671 // Threading Add over selects and phi nodes is pointless, so don't bother. 672 // Threading over the select in "A + select(cond, B, C)" means evaluating 673 // "A+B" and "A+C" and seeing if they are equal; but they are equal if and 674 // only if B and C are equal. If B and C are equal then (since we assume 675 // that operands have already been simplified) "select(cond, B, C)" should 676 // have been simplified to the common value of B and C already. Analysing 677 // "A+B" and "A+C" thus gains nothing, but costs compile time. Similarly 678 // for threading over phi nodes. 679 680 return nullptr; 681 } 682 683 Value *llvm::SimplifyAddInst(Value *Op0, Value *Op1, bool IsNSW, bool IsNUW, 684 const SimplifyQuery &Query) { 685 return ::SimplifyAddInst(Op0, Op1, IsNSW, IsNUW, Query, RecursionLimit); 686 } 687 688 /// Compute the base pointer and cumulative constant offsets for V. 689 /// 690 /// This strips all constant offsets off of V, leaving it the base pointer, and 691 /// accumulates the total constant offset applied in the returned constant. 692 /// It returns zero if there are no constant offsets applied. 693 /// 694 /// This is very similar to stripAndAccumulateConstantOffsets(), except it 695 /// normalizes the offset bitwidth to the stripped pointer type, not the 696 /// original pointer type. 697 static APInt stripAndComputeConstantOffsets(const DataLayout &DL, Value *&V, 698 bool AllowNonInbounds = false) { 699 assert(V->getType()->isPtrOrPtrVectorTy()); 700 701 APInt Offset = APInt::getZero(DL.getIndexTypeSizeInBits(V->getType())); 702 V = V->stripAndAccumulateConstantOffsets(DL, Offset, AllowNonInbounds); 703 // As that strip may trace through `addrspacecast`, need to sext or trunc 704 // the offset calculated. 705 return Offset.sextOrTrunc(DL.getIndexTypeSizeInBits(V->getType())); 706 } 707 708 /// Compute the constant difference between two pointer values. 709 /// If the difference is not a constant, returns zero. 710 static Constant *computePointerDifference(const DataLayout &DL, Value *LHS, 711 Value *RHS) { 712 APInt LHSOffset = stripAndComputeConstantOffsets(DL, LHS); 713 APInt RHSOffset = stripAndComputeConstantOffsets(DL, RHS); 714 715 // If LHS and RHS are not related via constant offsets to the same base 716 // value, there is nothing we can do here. 717 if (LHS != RHS) 718 return nullptr; 719 720 // Otherwise, the difference of LHS - RHS can be computed as: 721 // LHS - RHS 722 // = (LHSOffset + Base) - (RHSOffset + Base) 723 // = LHSOffset - RHSOffset 724 Constant *Res = ConstantInt::get(LHS->getContext(), LHSOffset - RHSOffset); 725 if (auto *VecTy = dyn_cast<VectorType>(LHS->getType())) 726 Res = ConstantVector::getSplat(VecTy->getElementCount(), Res); 727 return Res; 728 } 729 730 /// Given operands for a Sub, see if we can fold the result. 731 /// If not, this returns null. 732 static Value *SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, 733 const SimplifyQuery &Q, unsigned MaxRecurse) { 734 if (Constant *C = foldOrCommuteConstant(Instruction::Sub, Op0, Op1, Q)) 735 return C; 736 737 // X - poison -> poison 738 // poison - X -> poison 739 if (isa<PoisonValue>(Op0) || isa<PoisonValue>(Op1)) 740 return PoisonValue::get(Op0->getType()); 741 742 // X - undef -> undef 743 // undef - X -> undef 744 if (Q.isUndefValue(Op0) || Q.isUndefValue(Op1)) 745 return UndefValue::get(Op0->getType()); 746 747 // X - 0 -> X 748 if (match(Op1, m_Zero())) 749 return Op0; 750 751 // X - X -> 0 752 if (Op0 == Op1) 753 return Constant::getNullValue(Op0->getType()); 754 755 // Is this a negation? 756 if (match(Op0, m_Zero())) { 757 // 0 - X -> 0 if the sub is NUW. 758 if (isNUW) 759 return Constant::getNullValue(Op0->getType()); 760 761 KnownBits Known = computeKnownBits(Op1, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 762 if (Known.Zero.isMaxSignedValue()) { 763 // Op1 is either 0 or the minimum signed value. If the sub is NSW, then 764 // Op1 must be 0 because negating the minimum signed value is undefined. 765 if (isNSW) 766 return Constant::getNullValue(Op0->getType()); 767 768 // 0 - X -> X if X is 0 or the minimum signed value. 769 return Op1; 770 } 771 } 772 773 // (X + Y) - Z -> X + (Y - Z) or Y + (X - Z) if everything simplifies. 774 // For example, (X + Y) - Y -> X; (Y + X) - Y -> X 775 Value *X = nullptr, *Y = nullptr, *Z = Op1; 776 if (MaxRecurse && match(Op0, m_Add(m_Value(X), m_Value(Y)))) { // (X + Y) - Z 777 // See if "V === Y - Z" simplifies. 778 if (Value *V = SimplifyBinOp(Instruction::Sub, Y, Z, Q, MaxRecurse-1)) 779 // It does! Now see if "X + V" simplifies. 780 if (Value *W = SimplifyBinOp(Instruction::Add, X, V, Q, MaxRecurse-1)) { 781 // It does, we successfully reassociated! 782 ++NumReassoc; 783 return W; 784 } 785 // See if "V === X - Z" simplifies. 786 if (Value *V = SimplifyBinOp(Instruction::Sub, X, Z, Q, MaxRecurse-1)) 787 // It does! Now see if "Y + V" simplifies. 788 if (Value *W = SimplifyBinOp(Instruction::Add, Y, V, Q, MaxRecurse-1)) { 789 // It does, we successfully reassociated! 790 ++NumReassoc; 791 return W; 792 } 793 } 794 795 // X - (Y + Z) -> (X - Y) - Z or (X - Z) - Y if everything simplifies. 796 // For example, X - (X + 1) -> -1 797 X = Op0; 798 if (MaxRecurse && match(Op1, m_Add(m_Value(Y), m_Value(Z)))) { // X - (Y + Z) 799 // See if "V === X - Y" simplifies. 800 if (Value *V = SimplifyBinOp(Instruction::Sub, X, Y, Q, MaxRecurse-1)) 801 // It does! Now see if "V - Z" simplifies. 802 if (Value *W = SimplifyBinOp(Instruction::Sub, V, Z, Q, MaxRecurse-1)) { 803 // It does, we successfully reassociated! 804 ++NumReassoc; 805 return W; 806 } 807 // See if "V === X - Z" simplifies. 808 if (Value *V = SimplifyBinOp(Instruction::Sub, X, Z, Q, MaxRecurse-1)) 809 // It does! Now see if "V - Y" simplifies. 810 if (Value *W = SimplifyBinOp(Instruction::Sub, V, Y, Q, MaxRecurse-1)) { 811 // It does, we successfully reassociated! 812 ++NumReassoc; 813 return W; 814 } 815 } 816 817 // Z - (X - Y) -> (Z - X) + Y if everything simplifies. 818 // For example, X - (X - Y) -> Y. 819 Z = Op0; 820 if (MaxRecurse && match(Op1, m_Sub(m_Value(X), m_Value(Y)))) // Z - (X - Y) 821 // See if "V === Z - X" simplifies. 822 if (Value *V = SimplifyBinOp(Instruction::Sub, Z, X, Q, MaxRecurse-1)) 823 // It does! Now see if "V + Y" simplifies. 824 if (Value *W = SimplifyBinOp(Instruction::Add, V, Y, Q, MaxRecurse-1)) { 825 // It does, we successfully reassociated! 826 ++NumReassoc; 827 return W; 828 } 829 830 // trunc(X) - trunc(Y) -> trunc(X - Y) if everything simplifies. 831 if (MaxRecurse && match(Op0, m_Trunc(m_Value(X))) && 832 match(Op1, m_Trunc(m_Value(Y)))) 833 if (X->getType() == Y->getType()) 834 // See if "V === X - Y" simplifies. 835 if (Value *V = SimplifyBinOp(Instruction::Sub, X, Y, Q, MaxRecurse-1)) 836 // It does! Now see if "trunc V" simplifies. 837 if (Value *W = SimplifyCastInst(Instruction::Trunc, V, Op0->getType(), 838 Q, MaxRecurse - 1)) 839 // It does, return the simplified "trunc V". 840 return W; 841 842 // Variations on GEP(base, I, ...) - GEP(base, i, ...) -> GEP(null, I-i, ...). 843 if (match(Op0, m_PtrToInt(m_Value(X))) && 844 match(Op1, m_PtrToInt(m_Value(Y)))) 845 if (Constant *Result = computePointerDifference(Q.DL, X, Y)) 846 return ConstantExpr::getIntegerCast(Result, Op0->getType(), true); 847 848 // i1 sub -> xor. 849 if (MaxRecurse && Op0->getType()->isIntOrIntVectorTy(1)) 850 if (Value *V = SimplifyXorInst(Op0, Op1, Q, MaxRecurse-1)) 851 return V; 852 853 // Threading Sub over selects and phi nodes is pointless, so don't bother. 854 // Threading over the select in "A - select(cond, B, C)" means evaluating 855 // "A-B" and "A-C" and seeing if they are equal; but they are equal if and 856 // only if B and C are equal. If B and C are equal then (since we assume 857 // that operands have already been simplified) "select(cond, B, C)" should 858 // have been simplified to the common value of B and C already. Analysing 859 // "A-B" and "A-C" thus gains nothing, but costs compile time. Similarly 860 // for threading over phi nodes. 861 862 return nullptr; 863 } 864 865 Value *llvm::SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, 866 const SimplifyQuery &Q) { 867 return ::SimplifySubInst(Op0, Op1, isNSW, isNUW, Q, RecursionLimit); 868 } 869 870 /// Given operands for a Mul, see if we can fold the result. 871 /// If not, this returns null. 872 static Value *SimplifyMulInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 873 unsigned MaxRecurse) { 874 if (Constant *C = foldOrCommuteConstant(Instruction::Mul, Op0, Op1, Q)) 875 return C; 876 877 // X * poison -> poison 878 if (isa<PoisonValue>(Op1)) 879 return Op1; 880 881 // X * undef -> 0 882 // X * 0 -> 0 883 if (Q.isUndefValue(Op1) || match(Op1, m_Zero())) 884 return Constant::getNullValue(Op0->getType()); 885 886 // X * 1 -> X 887 if (match(Op1, m_One())) 888 return Op0; 889 890 // (X / Y) * Y -> X if the division is exact. 891 Value *X = nullptr; 892 if (Q.IIQ.UseInstrInfo && 893 (match(Op0, 894 m_Exact(m_IDiv(m_Value(X), m_Specific(Op1)))) || // (X / Y) * Y 895 match(Op1, m_Exact(m_IDiv(m_Value(X), m_Specific(Op0)))))) // Y * (X / Y) 896 return X; 897 898 // i1 mul -> and. 899 if (MaxRecurse && Op0->getType()->isIntOrIntVectorTy(1)) 900 if (Value *V = SimplifyAndInst(Op0, Op1, Q, MaxRecurse-1)) 901 return V; 902 903 // Try some generic simplifications for associative operations. 904 if (Value *V = SimplifyAssociativeBinOp(Instruction::Mul, Op0, Op1, Q, 905 MaxRecurse)) 906 return V; 907 908 // Mul distributes over Add. Try some generic simplifications based on this. 909 if (Value *V = expandCommutativeBinOp(Instruction::Mul, Op0, Op1, 910 Instruction::Add, Q, MaxRecurse)) 911 return V; 912 913 // If the operation is with the result of a select instruction, check whether 914 // operating on either branch of the select always yields the same value. 915 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 916 if (Value *V = ThreadBinOpOverSelect(Instruction::Mul, Op0, Op1, Q, 917 MaxRecurse)) 918 return V; 919 920 // If the operation is with the result of a phi instruction, check whether 921 // operating on all incoming values of the phi always yields the same value. 922 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 923 if (Value *V = ThreadBinOpOverPHI(Instruction::Mul, Op0, Op1, Q, 924 MaxRecurse)) 925 return V; 926 927 return nullptr; 928 } 929 930 Value *llvm::SimplifyMulInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 931 return ::SimplifyMulInst(Op0, Op1, Q, RecursionLimit); 932 } 933 934 /// Check for common or similar folds of integer division or integer remainder. 935 /// This applies to all 4 opcodes (sdiv/udiv/srem/urem). 936 static Value *simplifyDivRem(Instruction::BinaryOps Opcode, Value *Op0, 937 Value *Op1, const SimplifyQuery &Q) { 938 bool IsDiv = (Opcode == Instruction::SDiv || Opcode == Instruction::UDiv); 939 bool IsSigned = (Opcode == Instruction::SDiv || Opcode == Instruction::SRem); 940 941 Type *Ty = Op0->getType(); 942 943 // X / undef -> poison 944 // X % undef -> poison 945 if (Q.isUndefValue(Op1) || isa<PoisonValue>(Op1)) 946 return PoisonValue::get(Ty); 947 948 // X / 0 -> poison 949 // X % 0 -> poison 950 // We don't need to preserve faults! 951 if (match(Op1, m_Zero())) 952 return PoisonValue::get(Ty); 953 954 // If any element of a constant divisor fixed width vector is zero or undef 955 // the behavior is undefined and we can fold the whole op to poison. 956 auto *Op1C = dyn_cast<Constant>(Op1); 957 auto *VTy = dyn_cast<FixedVectorType>(Ty); 958 if (Op1C && VTy) { 959 unsigned NumElts = VTy->getNumElements(); 960 for (unsigned i = 0; i != NumElts; ++i) { 961 Constant *Elt = Op1C->getAggregateElement(i); 962 if (Elt && (Elt->isNullValue() || Q.isUndefValue(Elt))) 963 return PoisonValue::get(Ty); 964 } 965 } 966 967 // poison / X -> poison 968 // poison % X -> poison 969 if (isa<PoisonValue>(Op0)) 970 return Op0; 971 972 // undef / X -> 0 973 // undef % X -> 0 974 if (Q.isUndefValue(Op0)) 975 return Constant::getNullValue(Ty); 976 977 // 0 / X -> 0 978 // 0 % X -> 0 979 if (match(Op0, m_Zero())) 980 return Constant::getNullValue(Op0->getType()); 981 982 // X / X -> 1 983 // X % X -> 0 984 if (Op0 == Op1) 985 return IsDiv ? ConstantInt::get(Ty, 1) : Constant::getNullValue(Ty); 986 987 // X / 1 -> X 988 // X % 1 -> 0 989 // If this is a boolean op (single-bit element type), we can't have 990 // division-by-zero or remainder-by-zero, so assume the divisor is 1. 991 // Similarly, if we're zero-extending a boolean divisor, then assume it's a 1. 992 Value *X; 993 if (match(Op1, m_One()) || Ty->isIntOrIntVectorTy(1) || 994 (match(Op1, m_ZExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1))) 995 return IsDiv ? Op0 : Constant::getNullValue(Ty); 996 997 // If X * Y does not overflow, then: 998 // X * Y / Y -> X 999 // X * Y % Y -> 0 1000 if (match(Op0, m_c_Mul(m_Value(X), m_Specific(Op1)))) { 1001 auto *Mul = cast<OverflowingBinaryOperator>(Op0); 1002 // The multiplication can't overflow if it is defined not to, or if 1003 // X == A / Y for some A. 1004 if ((IsSigned && Q.IIQ.hasNoSignedWrap(Mul)) || 1005 (!IsSigned && Q.IIQ.hasNoUnsignedWrap(Mul)) || 1006 (IsSigned && match(X, m_SDiv(m_Value(), m_Specific(Op1)))) || 1007 (!IsSigned && match(X, m_UDiv(m_Value(), m_Specific(Op1))))) { 1008 return IsDiv ? X : Constant::getNullValue(Op0->getType()); 1009 } 1010 } 1011 1012 return nullptr; 1013 } 1014 1015 /// Given a predicate and two operands, return true if the comparison is true. 1016 /// This is a helper for div/rem simplification where we return some other value 1017 /// when we can prove a relationship between the operands. 1018 static bool isICmpTrue(ICmpInst::Predicate Pred, Value *LHS, Value *RHS, 1019 const SimplifyQuery &Q, unsigned MaxRecurse) { 1020 Value *V = SimplifyICmpInst(Pred, LHS, RHS, Q, MaxRecurse); 1021 Constant *C = dyn_cast_or_null<Constant>(V); 1022 return (C && C->isAllOnesValue()); 1023 } 1024 1025 /// Return true if we can simplify X / Y to 0. Remainder can adapt that answer 1026 /// to simplify X % Y to X. 1027 static bool isDivZero(Value *X, Value *Y, const SimplifyQuery &Q, 1028 unsigned MaxRecurse, bool IsSigned) { 1029 // Recursion is always used, so bail out at once if we already hit the limit. 1030 if (!MaxRecurse--) 1031 return false; 1032 1033 if (IsSigned) { 1034 // |X| / |Y| --> 0 1035 // 1036 // We require that 1 operand is a simple constant. That could be extended to 1037 // 2 variables if we computed the sign bit for each. 1038 // 1039 // Make sure that a constant is not the minimum signed value because taking 1040 // the abs() of that is undefined. 1041 Type *Ty = X->getType(); 1042 const APInt *C; 1043 if (match(X, m_APInt(C)) && !C->isMinSignedValue()) { 1044 // Is the variable divisor magnitude always greater than the constant 1045 // dividend magnitude? 1046 // |Y| > |C| --> Y < -abs(C) or Y > abs(C) 1047 Constant *PosDividendC = ConstantInt::get(Ty, C->abs()); 1048 Constant *NegDividendC = ConstantInt::get(Ty, -C->abs()); 1049 if (isICmpTrue(CmpInst::ICMP_SLT, Y, NegDividendC, Q, MaxRecurse) || 1050 isICmpTrue(CmpInst::ICMP_SGT, Y, PosDividendC, Q, MaxRecurse)) 1051 return true; 1052 } 1053 if (match(Y, m_APInt(C))) { 1054 // Special-case: we can't take the abs() of a minimum signed value. If 1055 // that's the divisor, then all we have to do is prove that the dividend 1056 // is also not the minimum signed value. 1057 if (C->isMinSignedValue()) 1058 return isICmpTrue(CmpInst::ICMP_NE, X, Y, Q, MaxRecurse); 1059 1060 // Is the variable dividend magnitude always less than the constant 1061 // divisor magnitude? 1062 // |X| < |C| --> X > -abs(C) and X < abs(C) 1063 Constant *PosDivisorC = ConstantInt::get(Ty, C->abs()); 1064 Constant *NegDivisorC = ConstantInt::get(Ty, -C->abs()); 1065 if (isICmpTrue(CmpInst::ICMP_SGT, X, NegDivisorC, Q, MaxRecurse) && 1066 isICmpTrue(CmpInst::ICMP_SLT, X, PosDivisorC, Q, MaxRecurse)) 1067 return true; 1068 } 1069 return false; 1070 } 1071 1072 // IsSigned == false. 1073 1074 // Is the unsigned dividend known to be less than a constant divisor? 1075 // TODO: Convert this (and above) to range analysis 1076 // ("computeConstantRangeIncludingKnownBits")? 1077 const APInt *C; 1078 if (match(Y, m_APInt(C)) && 1079 computeKnownBits(X, Q.DL, 0, Q.AC, Q.CxtI, Q.DT).getMaxValue().ult(*C)) 1080 return true; 1081 1082 // Try again for any divisor: 1083 // Is the dividend unsigned less than the divisor? 1084 return isICmpTrue(ICmpInst::ICMP_ULT, X, Y, Q, MaxRecurse); 1085 } 1086 1087 /// These are simplifications common to SDiv and UDiv. 1088 static Value *simplifyDiv(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1, 1089 const SimplifyQuery &Q, unsigned MaxRecurse) { 1090 if (Constant *C = foldOrCommuteConstant(Opcode, Op0, Op1, Q)) 1091 return C; 1092 1093 if (Value *V = simplifyDivRem(Opcode, Op0, Op1, Q)) 1094 return V; 1095 1096 bool IsSigned = Opcode == Instruction::SDiv; 1097 1098 // (X rem Y) / Y -> 0 1099 if ((IsSigned && match(Op0, m_SRem(m_Value(), m_Specific(Op1)))) || 1100 (!IsSigned && match(Op0, m_URem(m_Value(), m_Specific(Op1))))) 1101 return Constant::getNullValue(Op0->getType()); 1102 1103 // (X /u C1) /u C2 -> 0 if C1 * C2 overflow 1104 ConstantInt *C1, *C2; 1105 if (!IsSigned && match(Op0, m_UDiv(m_Value(), m_ConstantInt(C1))) && 1106 match(Op1, m_ConstantInt(C2))) { 1107 bool Overflow; 1108 (void)C1->getValue().umul_ov(C2->getValue(), Overflow); 1109 if (Overflow) 1110 return Constant::getNullValue(Op0->getType()); 1111 } 1112 1113 // If the operation is with the result of a select instruction, check whether 1114 // operating on either branch of the select always yields the same value. 1115 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 1116 if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse)) 1117 return V; 1118 1119 // If the operation is with the result of a phi instruction, check whether 1120 // operating on all incoming values of the phi always yields the same value. 1121 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 1122 if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse)) 1123 return V; 1124 1125 if (isDivZero(Op0, Op1, Q, MaxRecurse, IsSigned)) 1126 return Constant::getNullValue(Op0->getType()); 1127 1128 return nullptr; 1129 } 1130 1131 /// These are simplifications common to SRem and URem. 1132 static Value *simplifyRem(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1, 1133 const SimplifyQuery &Q, unsigned MaxRecurse) { 1134 if (Constant *C = foldOrCommuteConstant(Opcode, Op0, Op1, Q)) 1135 return C; 1136 1137 if (Value *V = simplifyDivRem(Opcode, Op0, Op1, Q)) 1138 return V; 1139 1140 // (X % Y) % Y -> X % Y 1141 if ((Opcode == Instruction::SRem && 1142 match(Op0, m_SRem(m_Value(), m_Specific(Op1)))) || 1143 (Opcode == Instruction::URem && 1144 match(Op0, m_URem(m_Value(), m_Specific(Op1))))) 1145 return Op0; 1146 1147 // (X << Y) % X -> 0 1148 if (Q.IIQ.UseInstrInfo && 1149 ((Opcode == Instruction::SRem && 1150 match(Op0, m_NSWShl(m_Specific(Op1), m_Value()))) || 1151 (Opcode == Instruction::URem && 1152 match(Op0, m_NUWShl(m_Specific(Op1), m_Value()))))) 1153 return Constant::getNullValue(Op0->getType()); 1154 1155 // If the operation is with the result of a select instruction, check whether 1156 // operating on either branch of the select always yields the same value. 1157 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 1158 if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse)) 1159 return V; 1160 1161 // If the operation is with the result of a phi instruction, check whether 1162 // operating on all incoming values of the phi always yields the same value. 1163 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 1164 if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse)) 1165 return V; 1166 1167 // If X / Y == 0, then X % Y == X. 1168 if (isDivZero(Op0, Op1, Q, MaxRecurse, Opcode == Instruction::SRem)) 1169 return Op0; 1170 1171 return nullptr; 1172 } 1173 1174 /// Given operands for an SDiv, see if we can fold the result. 1175 /// If not, this returns null. 1176 static Value *SimplifySDivInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 1177 unsigned MaxRecurse) { 1178 // If two operands are negated and no signed overflow, return -1. 1179 if (isKnownNegation(Op0, Op1, /*NeedNSW=*/true)) 1180 return Constant::getAllOnesValue(Op0->getType()); 1181 1182 return simplifyDiv(Instruction::SDiv, Op0, Op1, Q, MaxRecurse); 1183 } 1184 1185 Value *llvm::SimplifySDivInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 1186 return ::SimplifySDivInst(Op0, Op1, Q, RecursionLimit); 1187 } 1188 1189 /// Given operands for a UDiv, see if we can fold the result. 1190 /// If not, this returns null. 1191 static Value *SimplifyUDivInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 1192 unsigned MaxRecurse) { 1193 return simplifyDiv(Instruction::UDiv, Op0, Op1, Q, MaxRecurse); 1194 } 1195 1196 Value *llvm::SimplifyUDivInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 1197 return ::SimplifyUDivInst(Op0, Op1, Q, RecursionLimit); 1198 } 1199 1200 /// Given operands for an SRem, see if we can fold the result. 1201 /// If not, this returns null. 1202 static Value *SimplifySRemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 1203 unsigned MaxRecurse) { 1204 // If the divisor is 0, the result is undefined, so assume the divisor is -1. 1205 // srem Op0, (sext i1 X) --> srem Op0, -1 --> 0 1206 Value *X; 1207 if (match(Op1, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)) 1208 return ConstantInt::getNullValue(Op0->getType()); 1209 1210 // If the two operands are negated, return 0. 1211 if (isKnownNegation(Op0, Op1)) 1212 return ConstantInt::getNullValue(Op0->getType()); 1213 1214 return simplifyRem(Instruction::SRem, Op0, Op1, Q, MaxRecurse); 1215 } 1216 1217 Value *llvm::SimplifySRemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 1218 return ::SimplifySRemInst(Op0, Op1, Q, RecursionLimit); 1219 } 1220 1221 /// Given operands for a URem, see if we can fold the result. 1222 /// If not, this returns null. 1223 static Value *SimplifyURemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 1224 unsigned MaxRecurse) { 1225 return simplifyRem(Instruction::URem, Op0, Op1, Q, MaxRecurse); 1226 } 1227 1228 Value *llvm::SimplifyURemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 1229 return ::SimplifyURemInst(Op0, Op1, Q, RecursionLimit); 1230 } 1231 1232 /// Returns true if a shift by \c Amount always yields poison. 1233 static bool isPoisonShift(Value *Amount, const SimplifyQuery &Q) { 1234 Constant *C = dyn_cast<Constant>(Amount); 1235 if (!C) 1236 return false; 1237 1238 // X shift by undef -> poison because it may shift by the bitwidth. 1239 if (Q.isUndefValue(C)) 1240 return true; 1241 1242 // Shifting by the bitwidth or more is undefined. 1243 if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1244 if (CI->getValue().uge(CI->getType()->getScalarSizeInBits())) 1245 return true; 1246 1247 // If all lanes of a vector shift are undefined the whole shift is. 1248 if (isa<ConstantVector>(C) || isa<ConstantDataVector>(C)) { 1249 for (unsigned I = 0, 1250 E = cast<FixedVectorType>(C->getType())->getNumElements(); 1251 I != E; ++I) 1252 if (!isPoisonShift(C->getAggregateElement(I), Q)) 1253 return false; 1254 return true; 1255 } 1256 1257 return false; 1258 } 1259 1260 /// Given operands for an Shl, LShr or AShr, see if we can fold the result. 1261 /// If not, this returns null. 1262 static Value *SimplifyShift(Instruction::BinaryOps Opcode, Value *Op0, 1263 Value *Op1, bool IsNSW, const SimplifyQuery &Q, 1264 unsigned MaxRecurse) { 1265 if (Constant *C = foldOrCommuteConstant(Opcode, Op0, Op1, Q)) 1266 return C; 1267 1268 // poison shift by X -> poison 1269 if (isa<PoisonValue>(Op0)) 1270 return Op0; 1271 1272 // 0 shift by X -> 0 1273 if (match(Op0, m_Zero())) 1274 return Constant::getNullValue(Op0->getType()); 1275 1276 // X shift by 0 -> X 1277 // Shift-by-sign-extended bool must be shift-by-0 because shift-by-all-ones 1278 // would be poison. 1279 Value *X; 1280 if (match(Op1, m_Zero()) || 1281 (match(Op1, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1))) 1282 return Op0; 1283 1284 // Fold undefined shifts. 1285 if (isPoisonShift(Op1, Q)) 1286 return PoisonValue::get(Op0->getType()); 1287 1288 // If the operation is with the result of a select instruction, check whether 1289 // operating on either branch of the select always yields the same value. 1290 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 1291 if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse)) 1292 return V; 1293 1294 // If the operation is with the result of a phi instruction, check whether 1295 // operating on all incoming values of the phi always yields the same value. 1296 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 1297 if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse)) 1298 return V; 1299 1300 // If any bits in the shift amount make that value greater than or equal to 1301 // the number of bits in the type, the shift is undefined. 1302 KnownBits KnownAmt = computeKnownBits(Op1, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 1303 if (KnownAmt.getMinValue().uge(KnownAmt.getBitWidth())) 1304 return PoisonValue::get(Op0->getType()); 1305 1306 // If all valid bits in the shift amount are known zero, the first operand is 1307 // unchanged. 1308 unsigned NumValidShiftBits = Log2_32_Ceil(KnownAmt.getBitWidth()); 1309 if (KnownAmt.countMinTrailingZeros() >= NumValidShiftBits) 1310 return Op0; 1311 1312 // Check for nsw shl leading to a poison value. 1313 if (IsNSW) { 1314 assert(Opcode == Instruction::Shl && "Expected shl for nsw instruction"); 1315 KnownBits KnownVal = computeKnownBits(Op0, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 1316 KnownBits KnownShl = KnownBits::shl(KnownVal, KnownAmt); 1317 1318 if (KnownVal.Zero.isSignBitSet()) 1319 KnownShl.Zero.setSignBit(); 1320 if (KnownVal.One.isSignBitSet()) 1321 KnownShl.One.setSignBit(); 1322 1323 if (KnownShl.hasConflict()) 1324 return PoisonValue::get(Op0->getType()); 1325 } 1326 1327 return nullptr; 1328 } 1329 1330 /// Given operands for an Shl, LShr or AShr, see if we can 1331 /// fold the result. If not, this returns null. 1332 static Value *SimplifyRightShift(Instruction::BinaryOps Opcode, Value *Op0, 1333 Value *Op1, bool isExact, const SimplifyQuery &Q, 1334 unsigned MaxRecurse) { 1335 if (Value *V = 1336 SimplifyShift(Opcode, Op0, Op1, /*IsNSW*/ false, Q, MaxRecurse)) 1337 return V; 1338 1339 // X >> X -> 0 1340 if (Op0 == Op1) 1341 return Constant::getNullValue(Op0->getType()); 1342 1343 // undef >> X -> 0 1344 // undef >> X -> undef (if it's exact) 1345 if (Q.isUndefValue(Op0)) 1346 return isExact ? Op0 : Constant::getNullValue(Op0->getType()); 1347 1348 // The low bit cannot be shifted out of an exact shift if it is set. 1349 if (isExact) { 1350 KnownBits Op0Known = computeKnownBits(Op0, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT); 1351 if (Op0Known.One[0]) 1352 return Op0; 1353 } 1354 1355 return nullptr; 1356 } 1357 1358 /// Given operands for an Shl, see if we can fold the result. 1359 /// If not, this returns null. 1360 static Value *SimplifyShlInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, 1361 const SimplifyQuery &Q, unsigned MaxRecurse) { 1362 if (Value *V = 1363 SimplifyShift(Instruction::Shl, Op0, Op1, isNSW, Q, MaxRecurse)) 1364 return V; 1365 1366 // undef << X -> 0 1367 // undef << X -> undef if (if it's NSW/NUW) 1368 if (Q.isUndefValue(Op0)) 1369 return isNSW || isNUW ? Op0 : Constant::getNullValue(Op0->getType()); 1370 1371 // (X >> A) << A -> X 1372 Value *X; 1373 if (Q.IIQ.UseInstrInfo && 1374 match(Op0, m_Exact(m_Shr(m_Value(X), m_Specific(Op1))))) 1375 return X; 1376 1377 // shl nuw i8 C, %x -> C iff C has sign bit set. 1378 if (isNUW && match(Op0, m_Negative())) 1379 return Op0; 1380 // NOTE: could use computeKnownBits() / LazyValueInfo, 1381 // but the cost-benefit analysis suggests it isn't worth it. 1382 1383 return nullptr; 1384 } 1385 1386 Value *llvm::SimplifyShlInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, 1387 const SimplifyQuery &Q) { 1388 return ::SimplifyShlInst(Op0, Op1, isNSW, isNUW, Q, RecursionLimit); 1389 } 1390 1391 /// Given operands for an LShr, see if we can fold the result. 1392 /// If not, this returns null. 1393 static Value *SimplifyLShrInst(Value *Op0, Value *Op1, bool isExact, 1394 const SimplifyQuery &Q, unsigned MaxRecurse) { 1395 if (Value *V = SimplifyRightShift(Instruction::LShr, Op0, Op1, isExact, Q, 1396 MaxRecurse)) 1397 return V; 1398 1399 // (X << A) >> A -> X 1400 Value *X; 1401 if (match(Op0, m_NUWShl(m_Value(X), m_Specific(Op1)))) 1402 return X; 1403 1404 // ((X << A) | Y) >> A -> X if effective width of Y is not larger than A. 1405 // We can return X as we do in the above case since OR alters no bits in X. 1406 // SimplifyDemandedBits in InstCombine can do more general optimization for 1407 // bit manipulation. This pattern aims to provide opportunities for other 1408 // optimizers by supporting a simple but common case in InstSimplify. 1409 Value *Y; 1410 const APInt *ShRAmt, *ShLAmt; 1411 if (match(Op1, m_APInt(ShRAmt)) && 1412 match(Op0, m_c_Or(m_NUWShl(m_Value(X), m_APInt(ShLAmt)), m_Value(Y))) && 1413 *ShRAmt == *ShLAmt) { 1414 const KnownBits YKnown = computeKnownBits(Y, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 1415 const unsigned EffWidthY = YKnown.countMaxActiveBits(); 1416 if (ShRAmt->uge(EffWidthY)) 1417 return X; 1418 } 1419 1420 return nullptr; 1421 } 1422 1423 Value *llvm::SimplifyLShrInst(Value *Op0, Value *Op1, bool isExact, 1424 const SimplifyQuery &Q) { 1425 return ::SimplifyLShrInst(Op0, Op1, isExact, Q, RecursionLimit); 1426 } 1427 1428 /// Given operands for an AShr, see if we can fold the result. 1429 /// If not, this returns null. 1430 static Value *SimplifyAShrInst(Value *Op0, Value *Op1, bool isExact, 1431 const SimplifyQuery &Q, unsigned MaxRecurse) { 1432 if (Value *V = SimplifyRightShift(Instruction::AShr, Op0, Op1, isExact, Q, 1433 MaxRecurse)) 1434 return V; 1435 1436 // -1 >>a X --> -1 1437 // (-1 << X) a>> X --> -1 1438 // Do not return Op0 because it may contain undef elements if it's a vector. 1439 if (match(Op0, m_AllOnes()) || 1440 match(Op0, m_Shl(m_AllOnes(), m_Specific(Op1)))) 1441 return Constant::getAllOnesValue(Op0->getType()); 1442 1443 // (X << A) >> A -> X 1444 Value *X; 1445 if (Q.IIQ.UseInstrInfo && match(Op0, m_NSWShl(m_Value(X), m_Specific(Op1)))) 1446 return X; 1447 1448 // Arithmetic shifting an all-sign-bit value is a no-op. 1449 unsigned NumSignBits = ComputeNumSignBits(Op0, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 1450 if (NumSignBits == Op0->getType()->getScalarSizeInBits()) 1451 return Op0; 1452 1453 return nullptr; 1454 } 1455 1456 Value *llvm::SimplifyAShrInst(Value *Op0, Value *Op1, bool isExact, 1457 const SimplifyQuery &Q) { 1458 return ::SimplifyAShrInst(Op0, Op1, isExact, Q, RecursionLimit); 1459 } 1460 1461 /// Commuted variants are assumed to be handled by calling this function again 1462 /// with the parameters swapped. 1463 static Value *simplifyUnsignedRangeCheck(ICmpInst *ZeroICmp, 1464 ICmpInst *UnsignedICmp, bool IsAnd, 1465 const SimplifyQuery &Q) { 1466 Value *X, *Y; 1467 1468 ICmpInst::Predicate EqPred; 1469 if (!match(ZeroICmp, m_ICmp(EqPred, m_Value(Y), m_Zero())) || 1470 !ICmpInst::isEquality(EqPred)) 1471 return nullptr; 1472 1473 ICmpInst::Predicate UnsignedPred; 1474 1475 Value *A, *B; 1476 // Y = (A - B); 1477 if (match(Y, m_Sub(m_Value(A), m_Value(B)))) { 1478 if (match(UnsignedICmp, 1479 m_c_ICmp(UnsignedPred, m_Specific(A), m_Specific(B))) && 1480 ICmpInst::isUnsigned(UnsignedPred)) { 1481 // A >=/<= B || (A - B) != 0 <--> true 1482 if ((UnsignedPred == ICmpInst::ICMP_UGE || 1483 UnsignedPred == ICmpInst::ICMP_ULE) && 1484 EqPred == ICmpInst::ICMP_NE && !IsAnd) 1485 return ConstantInt::getTrue(UnsignedICmp->getType()); 1486 // A </> B && (A - B) == 0 <--> false 1487 if ((UnsignedPred == ICmpInst::ICMP_ULT || 1488 UnsignedPred == ICmpInst::ICMP_UGT) && 1489 EqPred == ICmpInst::ICMP_EQ && IsAnd) 1490 return ConstantInt::getFalse(UnsignedICmp->getType()); 1491 1492 // A </> B && (A - B) != 0 <--> A </> B 1493 // A </> B || (A - B) != 0 <--> (A - B) != 0 1494 if (EqPred == ICmpInst::ICMP_NE && (UnsignedPred == ICmpInst::ICMP_ULT || 1495 UnsignedPred == ICmpInst::ICMP_UGT)) 1496 return IsAnd ? UnsignedICmp : ZeroICmp; 1497 1498 // A <=/>= B && (A - B) == 0 <--> (A - B) == 0 1499 // A <=/>= B || (A - B) == 0 <--> A <=/>= B 1500 if (EqPred == ICmpInst::ICMP_EQ && (UnsignedPred == ICmpInst::ICMP_ULE || 1501 UnsignedPred == ICmpInst::ICMP_UGE)) 1502 return IsAnd ? ZeroICmp : UnsignedICmp; 1503 } 1504 1505 // Given Y = (A - B) 1506 // Y >= A && Y != 0 --> Y >= A iff B != 0 1507 // Y < A || Y == 0 --> Y < A iff B != 0 1508 if (match(UnsignedICmp, 1509 m_c_ICmp(UnsignedPred, m_Specific(Y), m_Specific(A)))) { 1510 if (UnsignedPred == ICmpInst::ICMP_UGE && IsAnd && 1511 EqPred == ICmpInst::ICMP_NE && 1512 isKnownNonZero(B, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT)) 1513 return UnsignedICmp; 1514 if (UnsignedPred == ICmpInst::ICMP_ULT && !IsAnd && 1515 EqPred == ICmpInst::ICMP_EQ && 1516 isKnownNonZero(B, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT)) 1517 return UnsignedICmp; 1518 } 1519 } 1520 1521 if (match(UnsignedICmp, m_ICmp(UnsignedPred, m_Value(X), m_Specific(Y))) && 1522 ICmpInst::isUnsigned(UnsignedPred)) 1523 ; 1524 else if (match(UnsignedICmp, 1525 m_ICmp(UnsignedPred, m_Specific(Y), m_Value(X))) && 1526 ICmpInst::isUnsigned(UnsignedPred)) 1527 UnsignedPred = ICmpInst::getSwappedPredicate(UnsignedPred); 1528 else 1529 return nullptr; 1530 1531 // X > Y && Y == 0 --> Y == 0 iff X != 0 1532 // X > Y || Y == 0 --> X > Y iff X != 0 1533 if (UnsignedPred == ICmpInst::ICMP_UGT && EqPred == ICmpInst::ICMP_EQ && 1534 isKnownNonZero(X, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT)) 1535 return IsAnd ? ZeroICmp : UnsignedICmp; 1536 1537 // X <= Y && Y != 0 --> X <= Y iff X != 0 1538 // X <= Y || Y != 0 --> Y != 0 iff X != 0 1539 if (UnsignedPred == ICmpInst::ICMP_ULE && EqPred == ICmpInst::ICMP_NE && 1540 isKnownNonZero(X, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT)) 1541 return IsAnd ? UnsignedICmp : ZeroICmp; 1542 1543 // The transforms below here are expected to be handled more generally with 1544 // simplifyAndOrOfICmpsWithLimitConst() or in InstCombine's 1545 // foldAndOrOfICmpsWithConstEq(). If we are looking to trim optimizer overlap, 1546 // these are candidates for removal. 1547 1548 // X < Y && Y != 0 --> X < Y 1549 // X < Y || Y != 0 --> Y != 0 1550 if (UnsignedPred == ICmpInst::ICMP_ULT && EqPred == ICmpInst::ICMP_NE) 1551 return IsAnd ? UnsignedICmp : ZeroICmp; 1552 1553 // X >= Y && Y == 0 --> Y == 0 1554 // X >= Y || Y == 0 --> X >= Y 1555 if (UnsignedPred == ICmpInst::ICMP_UGE && EqPred == ICmpInst::ICMP_EQ) 1556 return IsAnd ? ZeroICmp : UnsignedICmp; 1557 1558 // X < Y && Y == 0 --> false 1559 if (UnsignedPred == ICmpInst::ICMP_ULT && EqPred == ICmpInst::ICMP_EQ && 1560 IsAnd) 1561 return getFalse(UnsignedICmp->getType()); 1562 1563 // X >= Y || Y != 0 --> true 1564 if (UnsignedPred == ICmpInst::ICMP_UGE && EqPred == ICmpInst::ICMP_NE && 1565 !IsAnd) 1566 return getTrue(UnsignedICmp->getType()); 1567 1568 return nullptr; 1569 } 1570 1571 /// Commuted variants are assumed to be handled by calling this function again 1572 /// with the parameters swapped. 1573 static Value *simplifyAndOfICmpsWithSameOperands(ICmpInst *Op0, ICmpInst *Op1) { 1574 ICmpInst::Predicate Pred0, Pred1; 1575 Value *A ,*B; 1576 if (!match(Op0, m_ICmp(Pred0, m_Value(A), m_Value(B))) || 1577 !match(Op1, m_ICmp(Pred1, m_Specific(A), m_Specific(B)))) 1578 return nullptr; 1579 1580 // We have (icmp Pred0, A, B) & (icmp Pred1, A, B). 1581 // If Op1 is always implied true by Op0, then Op0 is a subset of Op1, and we 1582 // can eliminate Op1 from this 'and'. 1583 if (ICmpInst::isImpliedTrueByMatchingCmp(Pred0, Pred1)) 1584 return Op0; 1585 1586 // Check for any combination of predicates that are guaranteed to be disjoint. 1587 if ((Pred0 == ICmpInst::getInversePredicate(Pred1)) || 1588 (Pred0 == ICmpInst::ICMP_EQ && ICmpInst::isFalseWhenEqual(Pred1)) || 1589 (Pred0 == ICmpInst::ICMP_SLT && Pred1 == ICmpInst::ICMP_SGT) || 1590 (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_UGT)) 1591 return getFalse(Op0->getType()); 1592 1593 return nullptr; 1594 } 1595 1596 /// Commuted variants are assumed to be handled by calling this function again 1597 /// with the parameters swapped. 1598 static Value *simplifyOrOfICmpsWithSameOperands(ICmpInst *Op0, ICmpInst *Op1) { 1599 ICmpInst::Predicate Pred0, Pred1; 1600 Value *A ,*B; 1601 if (!match(Op0, m_ICmp(Pred0, m_Value(A), m_Value(B))) || 1602 !match(Op1, m_ICmp(Pred1, m_Specific(A), m_Specific(B)))) 1603 return nullptr; 1604 1605 // We have (icmp Pred0, A, B) | (icmp Pred1, A, B). 1606 // If Op1 is always implied true by Op0, then Op0 is a subset of Op1, and we 1607 // can eliminate Op0 from this 'or'. 1608 if (ICmpInst::isImpliedTrueByMatchingCmp(Pred0, Pred1)) 1609 return Op1; 1610 1611 // Check for any combination of predicates that cover the entire range of 1612 // possibilities. 1613 if ((Pred0 == ICmpInst::getInversePredicate(Pred1)) || 1614 (Pred0 == ICmpInst::ICMP_NE && ICmpInst::isTrueWhenEqual(Pred1)) || 1615 (Pred0 == ICmpInst::ICMP_SLE && Pred1 == ICmpInst::ICMP_SGE) || 1616 (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_UGE)) 1617 return getTrue(Op0->getType()); 1618 1619 return nullptr; 1620 } 1621 1622 /// Test if a pair of compares with a shared operand and 2 constants has an 1623 /// empty set intersection, full set union, or if one compare is a superset of 1624 /// the other. 1625 static Value *simplifyAndOrOfICmpsWithConstants(ICmpInst *Cmp0, ICmpInst *Cmp1, 1626 bool IsAnd) { 1627 // Look for this pattern: {and/or} (icmp X, C0), (icmp X, C1)). 1628 if (Cmp0->getOperand(0) != Cmp1->getOperand(0)) 1629 return nullptr; 1630 1631 const APInt *C0, *C1; 1632 if (!match(Cmp0->getOperand(1), m_APInt(C0)) || 1633 !match(Cmp1->getOperand(1), m_APInt(C1))) 1634 return nullptr; 1635 1636 auto Range0 = ConstantRange::makeExactICmpRegion(Cmp0->getPredicate(), *C0); 1637 auto Range1 = ConstantRange::makeExactICmpRegion(Cmp1->getPredicate(), *C1); 1638 1639 // For and-of-compares, check if the intersection is empty: 1640 // (icmp X, C0) && (icmp X, C1) --> empty set --> false 1641 if (IsAnd && Range0.intersectWith(Range1).isEmptySet()) 1642 return getFalse(Cmp0->getType()); 1643 1644 // For or-of-compares, check if the union is full: 1645 // (icmp X, C0) || (icmp X, C1) --> full set --> true 1646 if (!IsAnd && Range0.unionWith(Range1).isFullSet()) 1647 return getTrue(Cmp0->getType()); 1648 1649 // Is one range a superset of the other? 1650 // If this is and-of-compares, take the smaller set: 1651 // (icmp sgt X, 4) && (icmp sgt X, 42) --> icmp sgt X, 42 1652 // If this is or-of-compares, take the larger set: 1653 // (icmp sgt X, 4) || (icmp sgt X, 42) --> icmp sgt X, 4 1654 if (Range0.contains(Range1)) 1655 return IsAnd ? Cmp1 : Cmp0; 1656 if (Range1.contains(Range0)) 1657 return IsAnd ? Cmp0 : Cmp1; 1658 1659 return nullptr; 1660 } 1661 1662 static Value *simplifyAndOrOfICmpsWithZero(ICmpInst *Cmp0, ICmpInst *Cmp1, 1663 bool IsAnd) { 1664 ICmpInst::Predicate P0 = Cmp0->getPredicate(), P1 = Cmp1->getPredicate(); 1665 if (!match(Cmp0->getOperand(1), m_Zero()) || 1666 !match(Cmp1->getOperand(1), m_Zero()) || P0 != P1) 1667 return nullptr; 1668 1669 if ((IsAnd && P0 != ICmpInst::ICMP_NE) || (!IsAnd && P1 != ICmpInst::ICMP_EQ)) 1670 return nullptr; 1671 1672 // We have either "(X == 0 || Y == 0)" or "(X != 0 && Y != 0)". 1673 Value *X = Cmp0->getOperand(0); 1674 Value *Y = Cmp1->getOperand(0); 1675 1676 // If one of the compares is a masked version of a (not) null check, then 1677 // that compare implies the other, so we eliminate the other. Optionally, look 1678 // through a pointer-to-int cast to match a null check of a pointer type. 1679 1680 // (X == 0) || (([ptrtoint] X & ?) == 0) --> ([ptrtoint] X & ?) == 0 1681 // (X == 0) || ((? & [ptrtoint] X) == 0) --> (? & [ptrtoint] X) == 0 1682 // (X != 0) && (([ptrtoint] X & ?) != 0) --> ([ptrtoint] X & ?) != 0 1683 // (X != 0) && ((? & [ptrtoint] X) != 0) --> (? & [ptrtoint] X) != 0 1684 if (match(Y, m_c_And(m_Specific(X), m_Value())) || 1685 match(Y, m_c_And(m_PtrToInt(m_Specific(X)), m_Value()))) 1686 return Cmp1; 1687 1688 // (([ptrtoint] Y & ?) == 0) || (Y == 0) --> ([ptrtoint] Y & ?) == 0 1689 // ((? & [ptrtoint] Y) == 0) || (Y == 0) --> (? & [ptrtoint] Y) == 0 1690 // (([ptrtoint] Y & ?) != 0) && (Y != 0) --> ([ptrtoint] Y & ?) != 0 1691 // ((? & [ptrtoint] Y) != 0) && (Y != 0) --> (? & [ptrtoint] Y) != 0 1692 if (match(X, m_c_And(m_Specific(Y), m_Value())) || 1693 match(X, m_c_And(m_PtrToInt(m_Specific(Y)), m_Value()))) 1694 return Cmp0; 1695 1696 return nullptr; 1697 } 1698 1699 static Value *simplifyAndOfICmpsWithAdd(ICmpInst *Op0, ICmpInst *Op1, 1700 const InstrInfoQuery &IIQ) { 1701 // (icmp (add V, C0), C1) & (icmp V, C0) 1702 ICmpInst::Predicate Pred0, Pred1; 1703 const APInt *C0, *C1; 1704 Value *V; 1705 if (!match(Op0, m_ICmp(Pred0, m_Add(m_Value(V), m_APInt(C0)), m_APInt(C1)))) 1706 return nullptr; 1707 1708 if (!match(Op1, m_ICmp(Pred1, m_Specific(V), m_Value()))) 1709 return nullptr; 1710 1711 auto *AddInst = cast<OverflowingBinaryOperator>(Op0->getOperand(0)); 1712 if (AddInst->getOperand(1) != Op1->getOperand(1)) 1713 return nullptr; 1714 1715 Type *ITy = Op0->getType(); 1716 bool isNSW = IIQ.hasNoSignedWrap(AddInst); 1717 bool isNUW = IIQ.hasNoUnsignedWrap(AddInst); 1718 1719 const APInt Delta = *C1 - *C0; 1720 if (C0->isStrictlyPositive()) { 1721 if (Delta == 2) { 1722 if (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_SGT) 1723 return getFalse(ITy); 1724 if (Pred0 == ICmpInst::ICMP_SLT && Pred1 == ICmpInst::ICMP_SGT && isNSW) 1725 return getFalse(ITy); 1726 } 1727 if (Delta == 1) { 1728 if (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_SGT) 1729 return getFalse(ITy); 1730 if (Pred0 == ICmpInst::ICMP_SLE && Pred1 == ICmpInst::ICMP_SGT && isNSW) 1731 return getFalse(ITy); 1732 } 1733 } 1734 if (C0->getBoolValue() && isNUW) { 1735 if (Delta == 2) 1736 if (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_UGT) 1737 return getFalse(ITy); 1738 if (Delta == 1) 1739 if (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_UGT) 1740 return getFalse(ITy); 1741 } 1742 1743 return nullptr; 1744 } 1745 1746 /// Try to eliminate compares with signed or unsigned min/max constants. 1747 static Value *simplifyAndOrOfICmpsWithLimitConst(ICmpInst *Cmp0, ICmpInst *Cmp1, 1748 bool IsAnd) { 1749 // Canonicalize an equality compare as Cmp0. 1750 if (Cmp1->isEquality()) 1751 std::swap(Cmp0, Cmp1); 1752 if (!Cmp0->isEquality()) 1753 return nullptr; 1754 1755 // The non-equality compare must include a common operand (X). Canonicalize 1756 // the common operand as operand 0 (the predicate is swapped if the common 1757 // operand was operand 1). 1758 ICmpInst::Predicate Pred0 = Cmp0->getPredicate(); 1759 Value *X = Cmp0->getOperand(0); 1760 ICmpInst::Predicate Pred1; 1761 bool HasNotOp = match(Cmp1, m_c_ICmp(Pred1, m_Not(m_Specific(X)), m_Value())); 1762 if (!HasNotOp && !match(Cmp1, m_c_ICmp(Pred1, m_Specific(X), m_Value()))) 1763 return nullptr; 1764 if (ICmpInst::isEquality(Pred1)) 1765 return nullptr; 1766 1767 // The equality compare must be against a constant. Flip bits if we matched 1768 // a bitwise not. Convert a null pointer constant to an integer zero value. 1769 APInt MinMaxC; 1770 const APInt *C; 1771 if (match(Cmp0->getOperand(1), m_APInt(C))) 1772 MinMaxC = HasNotOp ? ~*C : *C; 1773 else if (isa<ConstantPointerNull>(Cmp0->getOperand(1))) 1774 MinMaxC = APInt::getZero(8); 1775 else 1776 return nullptr; 1777 1778 // DeMorganize if this is 'or': P0 || P1 --> !P0 && !P1. 1779 if (!IsAnd) { 1780 Pred0 = ICmpInst::getInversePredicate(Pred0); 1781 Pred1 = ICmpInst::getInversePredicate(Pred1); 1782 } 1783 1784 // Normalize to unsigned compare and unsigned min/max value. 1785 // Example for 8-bit: -128 + 128 -> 0; 127 + 128 -> 255 1786 if (ICmpInst::isSigned(Pred1)) { 1787 Pred1 = ICmpInst::getUnsignedPredicate(Pred1); 1788 MinMaxC += APInt::getSignedMinValue(MinMaxC.getBitWidth()); 1789 } 1790 1791 // (X != MAX) && (X < Y) --> X < Y 1792 // (X == MAX) || (X >= Y) --> X >= Y 1793 if (MinMaxC.isMaxValue()) 1794 if (Pred0 == ICmpInst::ICMP_NE && Pred1 == ICmpInst::ICMP_ULT) 1795 return Cmp1; 1796 1797 // (X != MIN) && (X > Y) --> X > Y 1798 // (X == MIN) || (X <= Y) --> X <= Y 1799 if (MinMaxC.isMinValue()) 1800 if (Pred0 == ICmpInst::ICMP_NE && Pred1 == ICmpInst::ICMP_UGT) 1801 return Cmp1; 1802 1803 return nullptr; 1804 } 1805 1806 static Value *simplifyAndOfICmps(ICmpInst *Op0, ICmpInst *Op1, 1807 const SimplifyQuery &Q) { 1808 if (Value *X = simplifyUnsignedRangeCheck(Op0, Op1, /*IsAnd=*/true, Q)) 1809 return X; 1810 if (Value *X = simplifyUnsignedRangeCheck(Op1, Op0, /*IsAnd=*/true, Q)) 1811 return X; 1812 1813 if (Value *X = simplifyAndOfICmpsWithSameOperands(Op0, Op1)) 1814 return X; 1815 if (Value *X = simplifyAndOfICmpsWithSameOperands(Op1, Op0)) 1816 return X; 1817 1818 if (Value *X = simplifyAndOrOfICmpsWithConstants(Op0, Op1, true)) 1819 return X; 1820 1821 if (Value *X = simplifyAndOrOfICmpsWithLimitConst(Op0, Op1, true)) 1822 return X; 1823 1824 if (Value *X = simplifyAndOrOfICmpsWithZero(Op0, Op1, true)) 1825 return X; 1826 1827 if (Value *X = simplifyAndOfICmpsWithAdd(Op0, Op1, Q.IIQ)) 1828 return X; 1829 if (Value *X = simplifyAndOfICmpsWithAdd(Op1, Op0, Q.IIQ)) 1830 return X; 1831 1832 return nullptr; 1833 } 1834 1835 static Value *simplifyOrOfICmpsWithAdd(ICmpInst *Op0, ICmpInst *Op1, 1836 const InstrInfoQuery &IIQ) { 1837 // (icmp (add V, C0), C1) | (icmp V, C0) 1838 ICmpInst::Predicate Pred0, Pred1; 1839 const APInt *C0, *C1; 1840 Value *V; 1841 if (!match(Op0, m_ICmp(Pred0, m_Add(m_Value(V), m_APInt(C0)), m_APInt(C1)))) 1842 return nullptr; 1843 1844 if (!match(Op1, m_ICmp(Pred1, m_Specific(V), m_Value()))) 1845 return nullptr; 1846 1847 auto *AddInst = cast<BinaryOperator>(Op0->getOperand(0)); 1848 if (AddInst->getOperand(1) != Op1->getOperand(1)) 1849 return nullptr; 1850 1851 Type *ITy = Op0->getType(); 1852 bool isNSW = IIQ.hasNoSignedWrap(AddInst); 1853 bool isNUW = IIQ.hasNoUnsignedWrap(AddInst); 1854 1855 const APInt Delta = *C1 - *C0; 1856 if (C0->isStrictlyPositive()) { 1857 if (Delta == 2) { 1858 if (Pred0 == ICmpInst::ICMP_UGE && Pred1 == ICmpInst::ICMP_SLE) 1859 return getTrue(ITy); 1860 if (Pred0 == ICmpInst::ICMP_SGE && Pred1 == ICmpInst::ICMP_SLE && isNSW) 1861 return getTrue(ITy); 1862 } 1863 if (Delta == 1) { 1864 if (Pred0 == ICmpInst::ICMP_UGT && Pred1 == ICmpInst::ICMP_SLE) 1865 return getTrue(ITy); 1866 if (Pred0 == ICmpInst::ICMP_SGT && Pred1 == ICmpInst::ICMP_SLE && isNSW) 1867 return getTrue(ITy); 1868 } 1869 } 1870 if (C0->getBoolValue() && isNUW) { 1871 if (Delta == 2) 1872 if (Pred0 == ICmpInst::ICMP_UGE && Pred1 == ICmpInst::ICMP_ULE) 1873 return getTrue(ITy); 1874 if (Delta == 1) 1875 if (Pred0 == ICmpInst::ICMP_UGT && Pred1 == ICmpInst::ICMP_ULE) 1876 return getTrue(ITy); 1877 } 1878 1879 return nullptr; 1880 } 1881 1882 static Value *simplifyOrOfICmps(ICmpInst *Op0, ICmpInst *Op1, 1883 const SimplifyQuery &Q) { 1884 if (Value *X = simplifyUnsignedRangeCheck(Op0, Op1, /*IsAnd=*/false, Q)) 1885 return X; 1886 if (Value *X = simplifyUnsignedRangeCheck(Op1, Op0, /*IsAnd=*/false, Q)) 1887 return X; 1888 1889 if (Value *X = simplifyOrOfICmpsWithSameOperands(Op0, Op1)) 1890 return X; 1891 if (Value *X = simplifyOrOfICmpsWithSameOperands(Op1, Op0)) 1892 return X; 1893 1894 if (Value *X = simplifyAndOrOfICmpsWithConstants(Op0, Op1, false)) 1895 return X; 1896 1897 if (Value *X = simplifyAndOrOfICmpsWithLimitConst(Op0, Op1, false)) 1898 return X; 1899 1900 if (Value *X = simplifyAndOrOfICmpsWithZero(Op0, Op1, false)) 1901 return X; 1902 1903 if (Value *X = simplifyOrOfICmpsWithAdd(Op0, Op1, Q.IIQ)) 1904 return X; 1905 if (Value *X = simplifyOrOfICmpsWithAdd(Op1, Op0, Q.IIQ)) 1906 return X; 1907 1908 return nullptr; 1909 } 1910 1911 static Value *simplifyAndOrOfFCmps(const TargetLibraryInfo *TLI, 1912 FCmpInst *LHS, FCmpInst *RHS, bool IsAnd) { 1913 Value *LHS0 = LHS->getOperand(0), *LHS1 = LHS->getOperand(1); 1914 Value *RHS0 = RHS->getOperand(0), *RHS1 = RHS->getOperand(1); 1915 if (LHS0->getType() != RHS0->getType()) 1916 return nullptr; 1917 1918 FCmpInst::Predicate PredL = LHS->getPredicate(), PredR = RHS->getPredicate(); 1919 if ((PredL == FCmpInst::FCMP_ORD && PredR == FCmpInst::FCMP_ORD && IsAnd) || 1920 (PredL == FCmpInst::FCMP_UNO && PredR == FCmpInst::FCMP_UNO && !IsAnd)) { 1921 // (fcmp ord NNAN, X) & (fcmp ord X, Y) --> fcmp ord X, Y 1922 // (fcmp ord NNAN, X) & (fcmp ord Y, X) --> fcmp ord Y, X 1923 // (fcmp ord X, NNAN) & (fcmp ord X, Y) --> fcmp ord X, Y 1924 // (fcmp ord X, NNAN) & (fcmp ord Y, X) --> fcmp ord Y, X 1925 // (fcmp uno NNAN, X) | (fcmp uno X, Y) --> fcmp uno X, Y 1926 // (fcmp uno NNAN, X) | (fcmp uno Y, X) --> fcmp uno Y, X 1927 // (fcmp uno X, NNAN) | (fcmp uno X, Y) --> fcmp uno X, Y 1928 // (fcmp uno X, NNAN) | (fcmp uno Y, X) --> fcmp uno Y, X 1929 if ((isKnownNeverNaN(LHS0, TLI) && (LHS1 == RHS0 || LHS1 == RHS1)) || 1930 (isKnownNeverNaN(LHS1, TLI) && (LHS0 == RHS0 || LHS0 == RHS1))) 1931 return RHS; 1932 1933 // (fcmp ord X, Y) & (fcmp ord NNAN, X) --> fcmp ord X, Y 1934 // (fcmp ord Y, X) & (fcmp ord NNAN, X) --> fcmp ord Y, X 1935 // (fcmp ord X, Y) & (fcmp ord X, NNAN) --> fcmp ord X, Y 1936 // (fcmp ord Y, X) & (fcmp ord X, NNAN) --> fcmp ord Y, X 1937 // (fcmp uno X, Y) | (fcmp uno NNAN, X) --> fcmp uno X, Y 1938 // (fcmp uno Y, X) | (fcmp uno NNAN, X) --> fcmp uno Y, X 1939 // (fcmp uno X, Y) | (fcmp uno X, NNAN) --> fcmp uno X, Y 1940 // (fcmp uno Y, X) | (fcmp uno X, NNAN) --> fcmp uno Y, X 1941 if ((isKnownNeverNaN(RHS0, TLI) && (RHS1 == LHS0 || RHS1 == LHS1)) || 1942 (isKnownNeverNaN(RHS1, TLI) && (RHS0 == LHS0 || RHS0 == LHS1))) 1943 return LHS; 1944 } 1945 1946 return nullptr; 1947 } 1948 1949 static Value *simplifyAndOrOfCmps(const SimplifyQuery &Q, 1950 Value *Op0, Value *Op1, bool IsAnd) { 1951 // Look through casts of the 'and' operands to find compares. 1952 auto *Cast0 = dyn_cast<CastInst>(Op0); 1953 auto *Cast1 = dyn_cast<CastInst>(Op1); 1954 if (Cast0 && Cast1 && Cast0->getOpcode() == Cast1->getOpcode() && 1955 Cast0->getSrcTy() == Cast1->getSrcTy()) { 1956 Op0 = Cast0->getOperand(0); 1957 Op1 = Cast1->getOperand(0); 1958 } 1959 1960 Value *V = nullptr; 1961 auto *ICmp0 = dyn_cast<ICmpInst>(Op0); 1962 auto *ICmp1 = dyn_cast<ICmpInst>(Op1); 1963 if (ICmp0 && ICmp1) 1964 V = IsAnd ? simplifyAndOfICmps(ICmp0, ICmp1, Q) 1965 : simplifyOrOfICmps(ICmp0, ICmp1, Q); 1966 1967 auto *FCmp0 = dyn_cast<FCmpInst>(Op0); 1968 auto *FCmp1 = dyn_cast<FCmpInst>(Op1); 1969 if (FCmp0 && FCmp1) 1970 V = simplifyAndOrOfFCmps(Q.TLI, FCmp0, FCmp1, IsAnd); 1971 1972 if (!V) 1973 return nullptr; 1974 if (!Cast0) 1975 return V; 1976 1977 // If we looked through casts, we can only handle a constant simplification 1978 // because we are not allowed to create a cast instruction here. 1979 if (auto *C = dyn_cast<Constant>(V)) 1980 return ConstantExpr::getCast(Cast0->getOpcode(), C, Cast0->getType()); 1981 1982 return nullptr; 1983 } 1984 1985 /// Given a bitwise logic op, check if the operands are add/sub with a common 1986 /// source value and inverted constant (identity: C - X -> ~(X + ~C)). 1987 static Value *simplifyLogicOfAddSub(Value *Op0, Value *Op1, 1988 Instruction::BinaryOps Opcode) { 1989 assert(Op0->getType() == Op1->getType() && "Mismatched binop types"); 1990 assert(BinaryOperator::isBitwiseLogicOp(Opcode) && "Expected logic op"); 1991 Value *X; 1992 Constant *C1, *C2; 1993 if ((match(Op0, m_Add(m_Value(X), m_Constant(C1))) && 1994 match(Op1, m_Sub(m_Constant(C2), m_Specific(X)))) || 1995 (match(Op1, m_Add(m_Value(X), m_Constant(C1))) && 1996 match(Op0, m_Sub(m_Constant(C2), m_Specific(X))))) { 1997 if (ConstantExpr::getNot(C1) == C2) { 1998 // (X + C) & (~C - X) --> (X + C) & ~(X + C) --> 0 1999 // (X + C) | (~C - X) --> (X + C) | ~(X + C) --> -1 2000 // (X + C) ^ (~C - X) --> (X + C) ^ ~(X + C) --> -1 2001 Type *Ty = Op0->getType(); 2002 return Opcode == Instruction::And ? ConstantInt::getNullValue(Ty) 2003 : ConstantInt::getAllOnesValue(Ty); 2004 } 2005 } 2006 return nullptr; 2007 } 2008 2009 /// Given operands for an And, see if we can fold the result. 2010 /// If not, this returns null. 2011 static Value *SimplifyAndInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 2012 unsigned MaxRecurse) { 2013 if (Constant *C = foldOrCommuteConstant(Instruction::And, Op0, Op1, Q)) 2014 return C; 2015 2016 // X & poison -> poison 2017 if (isa<PoisonValue>(Op1)) 2018 return Op1; 2019 2020 // X & undef -> 0 2021 if (Q.isUndefValue(Op1)) 2022 return Constant::getNullValue(Op0->getType()); 2023 2024 // X & X = X 2025 if (Op0 == Op1) 2026 return Op0; 2027 2028 // X & 0 = 0 2029 if (match(Op1, m_Zero())) 2030 return Constant::getNullValue(Op0->getType()); 2031 2032 // X & -1 = X 2033 if (match(Op1, m_AllOnes())) 2034 return Op0; 2035 2036 // A & ~A = ~A & A = 0 2037 if (match(Op0, m_Not(m_Specific(Op1))) || 2038 match(Op1, m_Not(m_Specific(Op0)))) 2039 return Constant::getNullValue(Op0->getType()); 2040 2041 // (A | ?) & A = A 2042 if (match(Op0, m_c_Or(m_Specific(Op1), m_Value()))) 2043 return Op1; 2044 2045 // A & (A | ?) = A 2046 if (match(Op1, m_c_Or(m_Specific(Op0), m_Value()))) 2047 return Op0; 2048 2049 // (X | Y) & (X | ~Y) --> X (commuted 8 ways) 2050 Value *X, *Y; 2051 if (match(Op0, m_c_Or(m_Value(X), m_Not(m_Value(Y)))) && 2052 match(Op1, m_c_Or(m_Deferred(X), m_Deferred(Y)))) 2053 return X; 2054 if (match(Op1, m_c_Or(m_Value(X), m_Not(m_Value(Y)))) && 2055 match(Op0, m_c_Or(m_Deferred(X), m_Deferred(Y)))) 2056 return X; 2057 2058 if (Value *V = simplifyLogicOfAddSub(Op0, Op1, Instruction::And)) 2059 return V; 2060 2061 // A mask that only clears known zeros of a shifted value is a no-op. 2062 const APInt *Mask; 2063 const APInt *ShAmt; 2064 if (match(Op1, m_APInt(Mask))) { 2065 // If all bits in the inverted and shifted mask are clear: 2066 // and (shl X, ShAmt), Mask --> shl X, ShAmt 2067 if (match(Op0, m_Shl(m_Value(X), m_APInt(ShAmt))) && 2068 (~(*Mask)).lshr(*ShAmt).isZero()) 2069 return Op0; 2070 2071 // If all bits in the inverted and shifted mask are clear: 2072 // and (lshr X, ShAmt), Mask --> lshr X, ShAmt 2073 if (match(Op0, m_LShr(m_Value(X), m_APInt(ShAmt))) && 2074 (~(*Mask)).shl(*ShAmt).isZero()) 2075 return Op0; 2076 } 2077 2078 // If we have a multiplication overflow check that is being 'and'ed with a 2079 // check that one of the multipliers is not zero, we can omit the 'and', and 2080 // only keep the overflow check. 2081 if (isCheckForZeroAndMulWithOverflow(Op0, Op1, true)) 2082 return Op1; 2083 if (isCheckForZeroAndMulWithOverflow(Op1, Op0, true)) 2084 return Op0; 2085 2086 // A & (-A) = A if A is a power of two or zero. 2087 if (match(Op0, m_Neg(m_Specific(Op1))) || 2088 match(Op1, m_Neg(m_Specific(Op0)))) { 2089 if (isKnownToBeAPowerOfTwo(Op0, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI, 2090 Q.DT)) 2091 return Op0; 2092 if (isKnownToBeAPowerOfTwo(Op1, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI, 2093 Q.DT)) 2094 return Op1; 2095 } 2096 2097 // This is a similar pattern used for checking if a value is a power-of-2: 2098 // (A - 1) & A --> 0 (if A is a power-of-2 or 0) 2099 // A & (A - 1) --> 0 (if A is a power-of-2 or 0) 2100 if (match(Op0, m_Add(m_Specific(Op1), m_AllOnes())) && 2101 isKnownToBeAPowerOfTwo(Op1, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI, Q.DT)) 2102 return Constant::getNullValue(Op1->getType()); 2103 if (match(Op1, m_Add(m_Specific(Op0), m_AllOnes())) && 2104 isKnownToBeAPowerOfTwo(Op0, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI, Q.DT)) 2105 return Constant::getNullValue(Op0->getType()); 2106 2107 if (Value *V = simplifyAndOrOfCmps(Q, Op0, Op1, true)) 2108 return V; 2109 2110 // Try some generic simplifications for associative operations. 2111 if (Value *V = SimplifyAssociativeBinOp(Instruction::And, Op0, Op1, Q, 2112 MaxRecurse)) 2113 return V; 2114 2115 // And distributes over Or. Try some generic simplifications based on this. 2116 if (Value *V = expandCommutativeBinOp(Instruction::And, Op0, Op1, 2117 Instruction::Or, Q, MaxRecurse)) 2118 return V; 2119 2120 // And distributes over Xor. Try some generic simplifications based on this. 2121 if (Value *V = expandCommutativeBinOp(Instruction::And, Op0, Op1, 2122 Instruction::Xor, Q, MaxRecurse)) 2123 return V; 2124 2125 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) { 2126 if (Op0->getType()->isIntOrIntVectorTy(1)) { 2127 // A & (A && B) -> A && B 2128 if (match(Op1, m_Select(m_Specific(Op0), m_Value(), m_Zero()))) 2129 return Op1; 2130 else if (match(Op0, m_Select(m_Specific(Op1), m_Value(), m_Zero()))) 2131 return Op0; 2132 } 2133 // If the operation is with the result of a select instruction, check 2134 // whether operating on either branch of the select always yields the same 2135 // value. 2136 if (Value *V = ThreadBinOpOverSelect(Instruction::And, Op0, Op1, Q, 2137 MaxRecurse)) 2138 return V; 2139 } 2140 2141 // If the operation is with the result of a phi instruction, check whether 2142 // operating on all incoming values of the phi always yields the same value. 2143 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 2144 if (Value *V = ThreadBinOpOverPHI(Instruction::And, Op0, Op1, Q, 2145 MaxRecurse)) 2146 return V; 2147 2148 // Assuming the effective width of Y is not larger than A, i.e. all bits 2149 // from X and Y are disjoint in (X << A) | Y, 2150 // if the mask of this AND op covers all bits of X or Y, while it covers 2151 // no bits from the other, we can bypass this AND op. E.g., 2152 // ((X << A) | Y) & Mask -> Y, 2153 // if Mask = ((1 << effective_width_of(Y)) - 1) 2154 // ((X << A) | Y) & Mask -> X << A, 2155 // if Mask = ((1 << effective_width_of(X)) - 1) << A 2156 // SimplifyDemandedBits in InstCombine can optimize the general case. 2157 // This pattern aims to help other passes for a common case. 2158 Value *XShifted; 2159 if (match(Op1, m_APInt(Mask)) && 2160 match(Op0, m_c_Or(m_CombineAnd(m_NUWShl(m_Value(X), m_APInt(ShAmt)), 2161 m_Value(XShifted)), 2162 m_Value(Y)))) { 2163 const unsigned Width = Op0->getType()->getScalarSizeInBits(); 2164 const unsigned ShftCnt = ShAmt->getLimitedValue(Width); 2165 const KnownBits YKnown = computeKnownBits(Y, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2166 const unsigned EffWidthY = YKnown.countMaxActiveBits(); 2167 if (EffWidthY <= ShftCnt) { 2168 const KnownBits XKnown = computeKnownBits(X, Q.DL, 0, Q.AC, Q.CxtI, 2169 Q.DT); 2170 const unsigned EffWidthX = XKnown.countMaxActiveBits(); 2171 const APInt EffBitsY = APInt::getLowBitsSet(Width, EffWidthY); 2172 const APInt EffBitsX = APInt::getLowBitsSet(Width, EffWidthX) << ShftCnt; 2173 // If the mask is extracting all bits from X or Y as is, we can skip 2174 // this AND op. 2175 if (EffBitsY.isSubsetOf(*Mask) && !EffBitsX.intersects(*Mask)) 2176 return Y; 2177 if (EffBitsX.isSubsetOf(*Mask) && !EffBitsY.intersects(*Mask)) 2178 return XShifted; 2179 } 2180 } 2181 2182 // ((X | Y) ^ X ) & ((X | Y) ^ Y) --> 0 2183 // ((X | Y) ^ Y ) & ((X | Y) ^ X) --> 0 2184 BinaryOperator *Or; 2185 if (match(Op0, m_c_Xor(m_Value(X), 2186 m_CombineAnd(m_BinOp(Or), 2187 m_c_Or(m_Deferred(X), m_Value(Y))))) && 2188 match(Op1, m_c_Xor(m_Specific(Or), m_Specific(Y)))) 2189 return Constant::getNullValue(Op0->getType()); 2190 2191 return nullptr; 2192 } 2193 2194 Value *llvm::SimplifyAndInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 2195 return ::SimplifyAndInst(Op0, Op1, Q, RecursionLimit); 2196 } 2197 2198 static Value *simplifyOrLogic(Value *X, Value *Y) { 2199 assert(X->getType() == Y->getType() && "Expected same type for 'or' ops"); 2200 Type *Ty = X->getType(); 2201 2202 // X | ~X --> -1 2203 if (match(Y, m_Not(m_Specific(X)))) 2204 return ConstantInt::getAllOnesValue(Ty); 2205 2206 // X | ~(X & ?) = -1 2207 if (match(Y, m_Not(m_c_And(m_Specific(X), m_Value())))) 2208 return ConstantInt::getAllOnesValue(Ty); 2209 2210 // X | (X & ?) --> X 2211 if (match(Y, m_c_And(m_Specific(X), m_Value()))) 2212 return X; 2213 2214 Value *A, *B; 2215 2216 // (A ^ B) | (A | B) --> A | B 2217 // (A ^ B) | (B | A) --> B | A 2218 if (match(X, m_Xor(m_Value(A), m_Value(B))) && 2219 match(Y, m_c_Or(m_Specific(A), m_Specific(B)))) 2220 return Y; 2221 2222 // ~(A ^ B) | (A | B) --> -1 2223 // ~(A ^ B) | (B | A) --> -1 2224 if (match(X, m_Not(m_Xor(m_Value(A), m_Value(B)))) && 2225 match(Y, m_c_Or(m_Specific(A), m_Specific(B)))) 2226 return ConstantInt::getAllOnesValue(Ty); 2227 2228 // (A & ~B) | (A ^ B) --> A ^ B 2229 // (~B & A) | (A ^ B) --> A ^ B 2230 // (A & ~B) | (B ^ A) --> B ^ A 2231 // (~B & A) | (B ^ A) --> B ^ A 2232 if (match(X, m_c_And(m_Value(A), m_Not(m_Value(B)))) && 2233 match(Y, m_c_Xor(m_Specific(A), m_Specific(B)))) 2234 return Y; 2235 2236 // (~A ^ B) | (A & B) --> ~A ^ B 2237 // (B ^ ~A) | (A & B) --> B ^ ~A 2238 // (~A ^ B) | (B & A) --> ~A ^ B 2239 // (B ^ ~A) | (B & A) --> B ^ ~A 2240 if (match(X, m_c_Xor(m_Not(m_Value(A)), m_Value(B))) && 2241 match(Y, m_c_And(m_Specific(A), m_Specific(B)))) 2242 return X; 2243 2244 // (~A | B) | (A ^ B) --> -1 2245 // (~A | B) | (B ^ A) --> -1 2246 // (B | ~A) | (A ^ B) --> -1 2247 // (B | ~A) | (B ^ A) --> -1 2248 if (match(X, m_c_Or(m_Not(m_Value(A)), m_Value(B))) && 2249 match(Y, m_c_Xor(m_Specific(A), m_Specific(B)))) 2250 return ConstantInt::getAllOnesValue(Ty); 2251 2252 // (~A & B) | ~(A | B) --> ~A 2253 // (~A & B) | ~(B | A) --> ~A 2254 // (B & ~A) | ~(A | B) --> ~A 2255 // (B & ~A) | ~(B | A) --> ~A 2256 Value *NotA; 2257 if (match(X, 2258 m_c_And(m_CombineAnd(m_Value(NotA), m_NotForbidUndef(m_Value(A))), 2259 m_Value(B))) && 2260 match(Y, m_Not(m_c_Or(m_Specific(A), m_Specific(B))))) 2261 return NotA; 2262 2263 // ~(A ^ B) | (A & B) --> ~(A ^ B) 2264 // ~(A ^ B) | (B & A) --> ~(A ^ B) 2265 Value *NotAB; 2266 if (match(X, m_CombineAnd(m_NotForbidUndef(m_Xor(m_Value(A), m_Value(B))), 2267 m_Value(NotAB))) && 2268 match(Y, m_c_And(m_Specific(A), m_Specific(B)))) 2269 return NotAB; 2270 2271 // ~(A & B) | (A ^ B) --> ~(A & B) 2272 // ~(A & B) | (B ^ A) --> ~(A & B) 2273 if (match(X, m_CombineAnd(m_NotForbidUndef(m_And(m_Value(A), m_Value(B))), 2274 m_Value(NotAB))) && 2275 match(Y, m_c_Xor(m_Specific(A), m_Specific(B)))) 2276 return NotAB; 2277 2278 return nullptr; 2279 } 2280 2281 /// Given operands for an Or, see if we can fold the result. 2282 /// If not, this returns null. 2283 static Value *SimplifyOrInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 2284 unsigned MaxRecurse) { 2285 if (Constant *C = foldOrCommuteConstant(Instruction::Or, Op0, Op1, Q)) 2286 return C; 2287 2288 // X | poison -> poison 2289 if (isa<PoisonValue>(Op1)) 2290 return Op1; 2291 2292 // X | undef -> -1 2293 // X | -1 = -1 2294 // Do not return Op1 because it may contain undef elements if it's a vector. 2295 if (Q.isUndefValue(Op1) || match(Op1, m_AllOnes())) 2296 return Constant::getAllOnesValue(Op0->getType()); 2297 2298 // X | X = X 2299 // X | 0 = X 2300 if (Op0 == Op1 || match(Op1, m_Zero())) 2301 return Op0; 2302 2303 if (Value *R = simplifyOrLogic(Op0, Op1)) 2304 return R; 2305 if (Value *R = simplifyOrLogic(Op1, Op0)) 2306 return R; 2307 2308 if (Value *V = simplifyLogicOfAddSub(Op0, Op1, Instruction::Or)) 2309 return V; 2310 2311 // Rotated -1 is still -1: 2312 // (-1 << X) | (-1 >> (C - X)) --> -1 2313 // (-1 >> X) | (-1 << (C - X)) --> -1 2314 // ...with C <= bitwidth (and commuted variants). 2315 Value *X, *Y; 2316 if ((match(Op0, m_Shl(m_AllOnes(), m_Value(X))) && 2317 match(Op1, m_LShr(m_AllOnes(), m_Value(Y)))) || 2318 (match(Op1, m_Shl(m_AllOnes(), m_Value(X))) && 2319 match(Op0, m_LShr(m_AllOnes(), m_Value(Y))))) { 2320 const APInt *C; 2321 if ((match(X, m_Sub(m_APInt(C), m_Specific(Y))) || 2322 match(Y, m_Sub(m_APInt(C), m_Specific(X)))) && 2323 C->ule(X->getType()->getScalarSizeInBits())) { 2324 return ConstantInt::getAllOnesValue(X->getType()); 2325 } 2326 } 2327 2328 // A funnel shift (rotate) can be decomposed into simpler shifts. See if we 2329 // are mixing in another shift that is redundant with the funnel shift. 2330 2331 // (fshl X, ?, Y) | (shl X, Y) --> fshl X, ?, Y 2332 // (shl X, Y) | (fshl X, ?, Y) --> fshl X, ?, Y 2333 if (match(Op0, 2334 m_Intrinsic<Intrinsic::fshl>(m_Value(X), m_Value(), m_Value(Y))) && 2335 match(Op1, m_Shl(m_Specific(X), m_Specific(Y)))) 2336 return Op0; 2337 if (match(Op1, 2338 m_Intrinsic<Intrinsic::fshl>(m_Value(X), m_Value(), m_Value(Y))) && 2339 match(Op0, m_Shl(m_Specific(X), m_Specific(Y)))) 2340 return Op1; 2341 2342 // (fshr ?, X, Y) | (lshr X, Y) --> fshr ?, X, Y 2343 // (lshr X, Y) | (fshr ?, X, Y) --> fshr ?, X, Y 2344 if (match(Op0, 2345 m_Intrinsic<Intrinsic::fshr>(m_Value(), m_Value(X), m_Value(Y))) && 2346 match(Op1, m_LShr(m_Specific(X), m_Specific(Y)))) 2347 return Op0; 2348 if (match(Op1, 2349 m_Intrinsic<Intrinsic::fshr>(m_Value(), m_Value(X), m_Value(Y))) && 2350 match(Op0, m_LShr(m_Specific(X), m_Specific(Y)))) 2351 return Op1; 2352 2353 if (Value *V = simplifyAndOrOfCmps(Q, Op0, Op1, false)) 2354 return V; 2355 2356 // If we have a multiplication overflow check that is being 'and'ed with a 2357 // check that one of the multipliers is not zero, we can omit the 'and', and 2358 // only keep the overflow check. 2359 if (isCheckForZeroAndMulWithOverflow(Op0, Op1, false)) 2360 return Op1; 2361 if (isCheckForZeroAndMulWithOverflow(Op1, Op0, false)) 2362 return Op0; 2363 2364 // Try some generic simplifications for associative operations. 2365 if (Value *V = SimplifyAssociativeBinOp(Instruction::Or, Op0, Op1, Q, 2366 MaxRecurse)) 2367 return V; 2368 2369 // Or distributes over And. Try some generic simplifications based on this. 2370 if (Value *V = expandCommutativeBinOp(Instruction::Or, Op0, Op1, 2371 Instruction::And, Q, MaxRecurse)) 2372 return V; 2373 2374 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) { 2375 if (Op0->getType()->isIntOrIntVectorTy(1)) { 2376 // A | (A || B) -> A || B 2377 if (match(Op1, m_Select(m_Specific(Op0), m_One(), m_Value()))) 2378 return Op1; 2379 else if (match(Op0, m_Select(m_Specific(Op1), m_One(), m_Value()))) 2380 return Op0; 2381 } 2382 // If the operation is with the result of a select instruction, check 2383 // whether operating on either branch of the select always yields the same 2384 // value. 2385 if (Value *V = ThreadBinOpOverSelect(Instruction::Or, Op0, Op1, Q, 2386 MaxRecurse)) 2387 return V; 2388 } 2389 2390 // (A & C1)|(B & C2) 2391 Value *A, *B; 2392 const APInt *C1, *C2; 2393 if (match(Op0, m_And(m_Value(A), m_APInt(C1))) && 2394 match(Op1, m_And(m_Value(B), m_APInt(C2)))) { 2395 if (*C1 == ~*C2) { 2396 // (A & C1)|(B & C2) 2397 // If we have: ((V + N) & C1) | (V & C2) 2398 // .. and C2 = ~C1 and C2 is 0+1+ and (N & C2) == 0 2399 // replace with V+N. 2400 Value *N; 2401 if (C2->isMask() && // C2 == 0+1+ 2402 match(A, m_c_Add(m_Specific(B), m_Value(N)))) { 2403 // Add commutes, try both ways. 2404 if (MaskedValueIsZero(N, *C2, Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 2405 return A; 2406 } 2407 // Or commutes, try both ways. 2408 if (C1->isMask() && 2409 match(B, m_c_Add(m_Specific(A), m_Value(N)))) { 2410 // Add commutes, try both ways. 2411 if (MaskedValueIsZero(N, *C1, Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 2412 return B; 2413 } 2414 } 2415 } 2416 2417 // If the operation is with the result of a phi instruction, check whether 2418 // operating on all incoming values of the phi always yields the same value. 2419 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 2420 if (Value *V = ThreadBinOpOverPHI(Instruction::Or, Op0, Op1, Q, MaxRecurse)) 2421 return V; 2422 2423 return nullptr; 2424 } 2425 2426 Value *llvm::SimplifyOrInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 2427 return ::SimplifyOrInst(Op0, Op1, Q, RecursionLimit); 2428 } 2429 2430 /// Given operands for a Xor, see if we can fold the result. 2431 /// If not, this returns null. 2432 static Value *SimplifyXorInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 2433 unsigned MaxRecurse) { 2434 if (Constant *C = foldOrCommuteConstant(Instruction::Xor, Op0, Op1, Q)) 2435 return C; 2436 2437 // X ^ poison -> poison 2438 if (isa<PoisonValue>(Op1)) 2439 return Op1; 2440 2441 // A ^ undef -> undef 2442 if (Q.isUndefValue(Op1)) 2443 return Op1; 2444 2445 // A ^ 0 = A 2446 if (match(Op1, m_Zero())) 2447 return Op0; 2448 2449 // A ^ A = 0 2450 if (Op0 == Op1) 2451 return Constant::getNullValue(Op0->getType()); 2452 2453 // A ^ ~A = ~A ^ A = -1 2454 if (match(Op0, m_Not(m_Specific(Op1))) || 2455 match(Op1, m_Not(m_Specific(Op0)))) 2456 return Constant::getAllOnesValue(Op0->getType()); 2457 2458 auto foldAndOrNot = [](Value *X, Value *Y) -> Value * { 2459 Value *A, *B; 2460 // (~A & B) ^ (A | B) --> A -- There are 8 commuted variants. 2461 if (match(X, m_c_And(m_Not(m_Value(A)), m_Value(B))) && 2462 match(Y, m_c_Or(m_Specific(A), m_Specific(B)))) 2463 return A; 2464 2465 // (~A | B) ^ (A & B) --> ~A -- There are 8 commuted variants. 2466 // The 'not' op must contain a complete -1 operand (no undef elements for 2467 // vector) for the transform to be safe. 2468 Value *NotA; 2469 if (match(X, 2470 m_c_Or(m_CombineAnd(m_NotForbidUndef(m_Value(A)), m_Value(NotA)), 2471 m_Value(B))) && 2472 match(Y, m_c_And(m_Specific(A), m_Specific(B)))) 2473 return NotA; 2474 2475 return nullptr; 2476 }; 2477 if (Value *R = foldAndOrNot(Op0, Op1)) 2478 return R; 2479 if (Value *R = foldAndOrNot(Op1, Op0)) 2480 return R; 2481 2482 if (Value *V = simplifyLogicOfAddSub(Op0, Op1, Instruction::Xor)) 2483 return V; 2484 2485 // Try some generic simplifications for associative operations. 2486 if (Value *V = SimplifyAssociativeBinOp(Instruction::Xor, Op0, Op1, Q, 2487 MaxRecurse)) 2488 return V; 2489 2490 // Threading Xor over selects and phi nodes is pointless, so don't bother. 2491 // Threading over the select in "A ^ select(cond, B, C)" means evaluating 2492 // "A^B" and "A^C" and seeing if they are equal; but they are equal if and 2493 // only if B and C are equal. If B and C are equal then (since we assume 2494 // that operands have already been simplified) "select(cond, B, C)" should 2495 // have been simplified to the common value of B and C already. Analysing 2496 // "A^B" and "A^C" thus gains nothing, but costs compile time. Similarly 2497 // for threading over phi nodes. 2498 2499 return nullptr; 2500 } 2501 2502 Value *llvm::SimplifyXorInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 2503 return ::SimplifyXorInst(Op0, Op1, Q, RecursionLimit); 2504 } 2505 2506 2507 static Type *GetCompareTy(Value *Op) { 2508 return CmpInst::makeCmpResultType(Op->getType()); 2509 } 2510 2511 /// Rummage around inside V looking for something equivalent to the comparison 2512 /// "LHS Pred RHS". Return such a value if found, otherwise return null. 2513 /// Helper function for analyzing max/min idioms. 2514 static Value *ExtractEquivalentCondition(Value *V, CmpInst::Predicate Pred, 2515 Value *LHS, Value *RHS) { 2516 SelectInst *SI = dyn_cast<SelectInst>(V); 2517 if (!SI) 2518 return nullptr; 2519 CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition()); 2520 if (!Cmp) 2521 return nullptr; 2522 Value *CmpLHS = Cmp->getOperand(0), *CmpRHS = Cmp->getOperand(1); 2523 if (Pred == Cmp->getPredicate() && LHS == CmpLHS && RHS == CmpRHS) 2524 return Cmp; 2525 if (Pred == CmpInst::getSwappedPredicate(Cmp->getPredicate()) && 2526 LHS == CmpRHS && RHS == CmpLHS) 2527 return Cmp; 2528 return nullptr; 2529 } 2530 2531 /// Return true if the underlying object (storage) must be disjoint from 2532 /// storage returned by any noalias return call. 2533 static bool IsAllocDisjoint(const Value *V) { 2534 // For allocas, we consider only static ones (dynamic 2535 // allocas might be transformed into calls to malloc not simultaneously 2536 // live with the compared-to allocation). For globals, we exclude symbols 2537 // that might be resolve lazily to symbols in another dynamically-loaded 2538 // library (and, thus, could be malloc'ed by the implementation). 2539 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) 2540 return AI->getParent() && AI->getFunction() && AI->isStaticAlloca(); 2541 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) 2542 return (GV->hasLocalLinkage() || GV->hasHiddenVisibility() || 2543 GV->hasProtectedVisibility() || GV->hasGlobalUnnamedAddr()) && 2544 !GV->isThreadLocal(); 2545 if (const Argument *A = dyn_cast<Argument>(V)) 2546 return A->hasByValAttr(); 2547 return false; 2548 } 2549 2550 /// Return true if V1 and V2 are each the base of some distict storage region 2551 /// [V, object_size(V)] which do not overlap. Note that zero sized regions 2552 /// *are* possible, and that zero sized regions do not overlap with any other. 2553 static bool HaveNonOverlappingStorage(const Value *V1, const Value *V2) { 2554 // Global variables always exist, so they always exist during the lifetime 2555 // of each other and all allocas. Global variables themselves usually have 2556 // non-overlapping storage, but since their addresses are constants, the 2557 // case involving two globals does not reach here and is instead handled in 2558 // constant folding. 2559 // 2560 // Two different allocas usually have different addresses... 2561 // 2562 // However, if there's an @llvm.stackrestore dynamically in between two 2563 // allocas, they may have the same address. It's tempting to reduce the 2564 // scope of the problem by only looking at *static* allocas here. That would 2565 // cover the majority of allocas while significantly reducing the likelihood 2566 // of having an @llvm.stackrestore pop up in the middle. However, it's not 2567 // actually impossible for an @llvm.stackrestore to pop up in the middle of 2568 // an entry block. Also, if we have a block that's not attached to a 2569 // function, we can't tell if it's "static" under the current definition. 2570 // Theoretically, this problem could be fixed by creating a new kind of 2571 // instruction kind specifically for static allocas. Such a new instruction 2572 // could be required to be at the top of the entry block, thus preventing it 2573 // from being subject to a @llvm.stackrestore. Instcombine could even 2574 // convert regular allocas into these special allocas. It'd be nifty. 2575 // However, until then, this problem remains open. 2576 // 2577 // So, we'll assume that two non-empty allocas have different addresses 2578 // for now. 2579 auto isByValArg = [](const Value *V) { 2580 const Argument *A = dyn_cast<Argument>(V); 2581 return A && A->hasByValAttr(); 2582 }; 2583 2584 // Byval args are backed by store which does not overlap with each other, 2585 // allocas, or globals. 2586 if (isByValArg(V1)) 2587 return isa<AllocaInst>(V2) || isa<GlobalVariable>(V2) || isByValArg(V2); 2588 if (isByValArg(V2)) 2589 return isa<AllocaInst>(V1) || isa<GlobalVariable>(V1) || isByValArg(V1); 2590 2591 return isa<AllocaInst>(V1) && 2592 (isa<AllocaInst>(V2) || isa<GlobalVariable>(V2)); 2593 } 2594 2595 // A significant optimization not implemented here is assuming that alloca 2596 // addresses are not equal to incoming argument values. They don't *alias*, 2597 // as we say, but that doesn't mean they aren't equal, so we take a 2598 // conservative approach. 2599 // 2600 // This is inspired in part by C++11 5.10p1: 2601 // "Two pointers of the same type compare equal if and only if they are both 2602 // null, both point to the same function, or both represent the same 2603 // address." 2604 // 2605 // This is pretty permissive. 2606 // 2607 // It's also partly due to C11 6.5.9p6: 2608 // "Two pointers compare equal if and only if both are null pointers, both are 2609 // pointers to the same object (including a pointer to an object and a 2610 // subobject at its beginning) or function, both are pointers to one past the 2611 // last element of the same array object, or one is a pointer to one past the 2612 // end of one array object and the other is a pointer to the start of a 2613 // different array object that happens to immediately follow the first array 2614 // object in the address space.) 2615 // 2616 // C11's version is more restrictive, however there's no reason why an argument 2617 // couldn't be a one-past-the-end value for a stack object in the caller and be 2618 // equal to the beginning of a stack object in the callee. 2619 // 2620 // If the C and C++ standards are ever made sufficiently restrictive in this 2621 // area, it may be possible to update LLVM's semantics accordingly and reinstate 2622 // this optimization. 2623 static Constant * 2624 computePointerICmp(CmpInst::Predicate Pred, Value *LHS, Value *RHS, 2625 const SimplifyQuery &Q) { 2626 const DataLayout &DL = Q.DL; 2627 const TargetLibraryInfo *TLI = Q.TLI; 2628 const DominatorTree *DT = Q.DT; 2629 const Instruction *CxtI = Q.CxtI; 2630 const InstrInfoQuery &IIQ = Q.IIQ; 2631 2632 // First, skip past any trivial no-ops. 2633 LHS = LHS->stripPointerCasts(); 2634 RHS = RHS->stripPointerCasts(); 2635 2636 // A non-null pointer is not equal to a null pointer. 2637 if (isa<ConstantPointerNull>(RHS) && ICmpInst::isEquality(Pred) && 2638 llvm::isKnownNonZero(LHS, DL, 0, nullptr, nullptr, nullptr, 2639 IIQ.UseInstrInfo)) 2640 return ConstantInt::get(GetCompareTy(LHS), 2641 !CmpInst::isTrueWhenEqual(Pred)); 2642 2643 // We can only fold certain predicates on pointer comparisons. 2644 switch (Pred) { 2645 default: 2646 return nullptr; 2647 2648 // Equality comaprisons are easy to fold. 2649 case CmpInst::ICMP_EQ: 2650 case CmpInst::ICMP_NE: 2651 break; 2652 2653 // We can only handle unsigned relational comparisons because 'inbounds' on 2654 // a GEP only protects against unsigned wrapping. 2655 case CmpInst::ICMP_UGT: 2656 case CmpInst::ICMP_UGE: 2657 case CmpInst::ICMP_ULT: 2658 case CmpInst::ICMP_ULE: 2659 // However, we have to switch them to their signed variants to handle 2660 // negative indices from the base pointer. 2661 Pred = ICmpInst::getSignedPredicate(Pred); 2662 break; 2663 } 2664 2665 // Strip off any constant offsets so that we can reason about them. 2666 // It's tempting to use getUnderlyingObject or even just stripInBoundsOffsets 2667 // here and compare base addresses like AliasAnalysis does, however there are 2668 // numerous hazards. AliasAnalysis and its utilities rely on special rules 2669 // governing loads and stores which don't apply to icmps. Also, AliasAnalysis 2670 // doesn't need to guarantee pointer inequality when it says NoAlias. 2671 2672 // Even if an non-inbounds GEP occurs along the path we can still optimize 2673 // equality comparisons concerning the result. 2674 bool AllowNonInbounds = ICmpInst::isEquality(Pred); 2675 APInt LHSOffset = stripAndComputeConstantOffsets(DL, LHS, AllowNonInbounds); 2676 APInt RHSOffset = stripAndComputeConstantOffsets(DL, RHS, AllowNonInbounds); 2677 2678 // If LHS and RHS are related via constant offsets to the same base 2679 // value, we can replace it with an icmp which just compares the offsets. 2680 if (LHS == RHS) 2681 return ConstantInt::get( 2682 GetCompareTy(LHS), ICmpInst::compare(LHSOffset, RHSOffset, Pred)); 2683 2684 // Various optimizations for (in)equality comparisons. 2685 if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE) { 2686 // Different non-empty allocations that exist at the same time have 2687 // different addresses (if the program can tell). If the offsets are 2688 // within the bounds of their allocations (and not one-past-the-end! 2689 // so we can't use inbounds!), and their allocations aren't the same, 2690 // the pointers are not equal. 2691 if (HaveNonOverlappingStorage(LHS, RHS)) { 2692 uint64_t LHSSize, RHSSize; 2693 ObjectSizeOpts Opts; 2694 Opts.EvalMode = ObjectSizeOpts::Mode::Min; 2695 auto *F = [](Value *V) { 2696 if (auto *I = dyn_cast<Instruction>(V)) 2697 return I->getFunction(); 2698 return cast<Argument>(V)->getParent(); 2699 }(LHS); 2700 Opts.NullIsUnknownSize = NullPointerIsDefined(F); 2701 if (getObjectSize(LHS, LHSSize, DL, TLI, Opts) && 2702 getObjectSize(RHS, RHSSize, DL, TLI, Opts) && 2703 !LHSOffset.isNegative() && !RHSOffset.isNegative() && 2704 LHSOffset.ult(LHSSize) && RHSOffset.ult(RHSSize)) { 2705 return ConstantInt::get(GetCompareTy(LHS), 2706 !CmpInst::isTrueWhenEqual(Pred)); 2707 } 2708 } 2709 2710 // If one side of the equality comparison must come from a noalias call 2711 // (meaning a system memory allocation function), and the other side must 2712 // come from a pointer that cannot overlap with dynamically-allocated 2713 // memory within the lifetime of the current function (allocas, byval 2714 // arguments, globals), then determine the comparison result here. 2715 SmallVector<const Value *, 8> LHSUObjs, RHSUObjs; 2716 getUnderlyingObjects(LHS, LHSUObjs); 2717 getUnderlyingObjects(RHS, RHSUObjs); 2718 2719 // Is the set of underlying objects all noalias calls? 2720 auto IsNAC = [](ArrayRef<const Value *> Objects) { 2721 return all_of(Objects, isNoAliasCall); 2722 }; 2723 2724 // Is the set of underlying objects all things which must be disjoint from 2725 // noalias calls. We assume that indexing from such disjoint storage 2726 // into the heap is undefined, and thus offsets can be safely ignored. 2727 auto IsAllocDisjoint = [](ArrayRef<const Value *> Objects) { 2728 return all_of(Objects, ::IsAllocDisjoint); 2729 }; 2730 2731 if ((IsNAC(LHSUObjs) && IsAllocDisjoint(RHSUObjs)) || 2732 (IsNAC(RHSUObjs) && IsAllocDisjoint(LHSUObjs))) 2733 return ConstantInt::get(GetCompareTy(LHS), 2734 !CmpInst::isTrueWhenEqual(Pred)); 2735 2736 // Fold comparisons for non-escaping pointer even if the allocation call 2737 // cannot be elided. We cannot fold malloc comparison to null. Also, the 2738 // dynamic allocation call could be either of the operands. Note that 2739 // the other operand can not be based on the alloc - if it were, then 2740 // the cmp itself would be a capture. 2741 Value *MI = nullptr; 2742 if (isAllocLikeFn(LHS, TLI) && 2743 llvm::isKnownNonZero(RHS, DL, 0, nullptr, CxtI, DT)) 2744 MI = LHS; 2745 else if (isAllocLikeFn(RHS, TLI) && 2746 llvm::isKnownNonZero(LHS, DL, 0, nullptr, CxtI, DT)) 2747 MI = RHS; 2748 // FIXME: We should also fold the compare when the pointer escapes, but the 2749 // compare dominates the pointer escape 2750 if (MI && !PointerMayBeCaptured(MI, true, true)) 2751 return ConstantInt::get(GetCompareTy(LHS), 2752 CmpInst::isFalseWhenEqual(Pred)); 2753 } 2754 2755 // Otherwise, fail. 2756 return nullptr; 2757 } 2758 2759 /// Fold an icmp when its operands have i1 scalar type. 2760 static Value *simplifyICmpOfBools(CmpInst::Predicate Pred, Value *LHS, 2761 Value *RHS, const SimplifyQuery &Q) { 2762 Type *ITy = GetCompareTy(LHS); // The return type. 2763 Type *OpTy = LHS->getType(); // The operand type. 2764 if (!OpTy->isIntOrIntVectorTy(1)) 2765 return nullptr; 2766 2767 // A boolean compared to true/false can be reduced in 14 out of the 20 2768 // (10 predicates * 2 constants) possible combinations. The other 2769 // 6 cases require a 'not' of the LHS. 2770 2771 auto ExtractNotLHS = [](Value *V) -> Value * { 2772 Value *X; 2773 if (match(V, m_Not(m_Value(X)))) 2774 return X; 2775 return nullptr; 2776 }; 2777 2778 if (match(RHS, m_Zero())) { 2779 switch (Pred) { 2780 case CmpInst::ICMP_NE: // X != 0 -> X 2781 case CmpInst::ICMP_UGT: // X >u 0 -> X 2782 case CmpInst::ICMP_SLT: // X <s 0 -> X 2783 return LHS; 2784 2785 case CmpInst::ICMP_EQ: // not(X) == 0 -> X != 0 -> X 2786 case CmpInst::ICMP_ULE: // not(X) <=u 0 -> X >u 0 -> X 2787 case CmpInst::ICMP_SGE: // not(X) >=s 0 -> X <s 0 -> X 2788 if (Value *X = ExtractNotLHS(LHS)) 2789 return X; 2790 break; 2791 2792 case CmpInst::ICMP_ULT: // X <u 0 -> false 2793 case CmpInst::ICMP_SGT: // X >s 0 -> false 2794 return getFalse(ITy); 2795 2796 case CmpInst::ICMP_UGE: // X >=u 0 -> true 2797 case CmpInst::ICMP_SLE: // X <=s 0 -> true 2798 return getTrue(ITy); 2799 2800 default: break; 2801 } 2802 } else if (match(RHS, m_One())) { 2803 switch (Pred) { 2804 case CmpInst::ICMP_EQ: // X == 1 -> X 2805 case CmpInst::ICMP_UGE: // X >=u 1 -> X 2806 case CmpInst::ICMP_SLE: // X <=s -1 -> X 2807 return LHS; 2808 2809 case CmpInst::ICMP_NE: // not(X) != 1 -> X == 1 -> X 2810 case CmpInst::ICMP_ULT: // not(X) <=u 1 -> X >=u 1 -> X 2811 case CmpInst::ICMP_SGT: // not(X) >s 1 -> X <=s -1 -> X 2812 if (Value *X = ExtractNotLHS(LHS)) 2813 return X; 2814 break; 2815 2816 case CmpInst::ICMP_UGT: // X >u 1 -> false 2817 case CmpInst::ICMP_SLT: // X <s -1 -> false 2818 return getFalse(ITy); 2819 2820 case CmpInst::ICMP_ULE: // X <=u 1 -> true 2821 case CmpInst::ICMP_SGE: // X >=s -1 -> true 2822 return getTrue(ITy); 2823 2824 default: break; 2825 } 2826 } 2827 2828 switch (Pred) { 2829 default: 2830 break; 2831 case ICmpInst::ICMP_UGE: 2832 if (isImpliedCondition(RHS, LHS, Q.DL).getValueOr(false)) 2833 return getTrue(ITy); 2834 break; 2835 case ICmpInst::ICMP_SGE: 2836 /// For signed comparison, the values for an i1 are 0 and -1 2837 /// respectively. This maps into a truth table of: 2838 /// LHS | RHS | LHS >=s RHS | LHS implies RHS 2839 /// 0 | 0 | 1 (0 >= 0) | 1 2840 /// 0 | 1 | 1 (0 >= -1) | 1 2841 /// 1 | 0 | 0 (-1 >= 0) | 0 2842 /// 1 | 1 | 1 (-1 >= -1) | 1 2843 if (isImpliedCondition(LHS, RHS, Q.DL).getValueOr(false)) 2844 return getTrue(ITy); 2845 break; 2846 case ICmpInst::ICMP_ULE: 2847 if (isImpliedCondition(LHS, RHS, Q.DL).getValueOr(false)) 2848 return getTrue(ITy); 2849 break; 2850 } 2851 2852 return nullptr; 2853 } 2854 2855 /// Try hard to fold icmp with zero RHS because this is a common case. 2856 static Value *simplifyICmpWithZero(CmpInst::Predicate Pred, Value *LHS, 2857 Value *RHS, const SimplifyQuery &Q) { 2858 if (!match(RHS, m_Zero())) 2859 return nullptr; 2860 2861 Type *ITy = GetCompareTy(LHS); // The return type. 2862 switch (Pred) { 2863 default: 2864 llvm_unreachable("Unknown ICmp predicate!"); 2865 case ICmpInst::ICMP_ULT: 2866 return getFalse(ITy); 2867 case ICmpInst::ICMP_UGE: 2868 return getTrue(ITy); 2869 case ICmpInst::ICMP_EQ: 2870 case ICmpInst::ICMP_ULE: 2871 if (isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT, Q.IIQ.UseInstrInfo)) 2872 return getFalse(ITy); 2873 break; 2874 case ICmpInst::ICMP_NE: 2875 case ICmpInst::ICMP_UGT: 2876 if (isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT, Q.IIQ.UseInstrInfo)) 2877 return getTrue(ITy); 2878 break; 2879 case ICmpInst::ICMP_SLT: { 2880 KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2881 if (LHSKnown.isNegative()) 2882 return getTrue(ITy); 2883 if (LHSKnown.isNonNegative()) 2884 return getFalse(ITy); 2885 break; 2886 } 2887 case ICmpInst::ICMP_SLE: { 2888 KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2889 if (LHSKnown.isNegative()) 2890 return getTrue(ITy); 2891 if (LHSKnown.isNonNegative() && 2892 isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 2893 return getFalse(ITy); 2894 break; 2895 } 2896 case ICmpInst::ICMP_SGE: { 2897 KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2898 if (LHSKnown.isNegative()) 2899 return getFalse(ITy); 2900 if (LHSKnown.isNonNegative()) 2901 return getTrue(ITy); 2902 break; 2903 } 2904 case ICmpInst::ICMP_SGT: { 2905 KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2906 if (LHSKnown.isNegative()) 2907 return getFalse(ITy); 2908 if (LHSKnown.isNonNegative() && 2909 isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 2910 return getTrue(ITy); 2911 break; 2912 } 2913 } 2914 2915 return nullptr; 2916 } 2917 2918 static Value *simplifyICmpWithConstant(CmpInst::Predicate Pred, Value *LHS, 2919 Value *RHS, const InstrInfoQuery &IIQ) { 2920 Type *ITy = GetCompareTy(RHS); // The return type. 2921 2922 Value *X; 2923 // Sign-bit checks can be optimized to true/false after unsigned 2924 // floating-point casts: 2925 // icmp slt (bitcast (uitofp X)), 0 --> false 2926 // icmp sgt (bitcast (uitofp X)), -1 --> true 2927 if (match(LHS, m_BitCast(m_UIToFP(m_Value(X))))) { 2928 if (Pred == ICmpInst::ICMP_SLT && match(RHS, m_Zero())) 2929 return ConstantInt::getFalse(ITy); 2930 if (Pred == ICmpInst::ICMP_SGT && match(RHS, m_AllOnes())) 2931 return ConstantInt::getTrue(ITy); 2932 } 2933 2934 const APInt *C; 2935 if (!match(RHS, m_APIntAllowUndef(C))) 2936 return nullptr; 2937 2938 // Rule out tautological comparisons (eg., ult 0 or uge 0). 2939 ConstantRange RHS_CR = ConstantRange::makeExactICmpRegion(Pred, *C); 2940 if (RHS_CR.isEmptySet()) 2941 return ConstantInt::getFalse(ITy); 2942 if (RHS_CR.isFullSet()) 2943 return ConstantInt::getTrue(ITy); 2944 2945 ConstantRange LHS_CR = 2946 computeConstantRange(LHS, CmpInst::isSigned(Pred), IIQ.UseInstrInfo); 2947 if (!LHS_CR.isFullSet()) { 2948 if (RHS_CR.contains(LHS_CR)) 2949 return ConstantInt::getTrue(ITy); 2950 if (RHS_CR.inverse().contains(LHS_CR)) 2951 return ConstantInt::getFalse(ITy); 2952 } 2953 2954 // (mul nuw/nsw X, MulC) != C --> true (if C is not a multiple of MulC) 2955 // (mul nuw/nsw X, MulC) == C --> false (if C is not a multiple of MulC) 2956 const APInt *MulC; 2957 if (ICmpInst::isEquality(Pred) && 2958 ((match(LHS, m_NUWMul(m_Value(), m_APIntAllowUndef(MulC))) && 2959 *MulC != 0 && C->urem(*MulC) != 0) || 2960 (match(LHS, m_NSWMul(m_Value(), m_APIntAllowUndef(MulC))) && 2961 *MulC != 0 && C->srem(*MulC) != 0))) 2962 return ConstantInt::get(ITy, Pred == ICmpInst::ICMP_NE); 2963 2964 return nullptr; 2965 } 2966 2967 static Value *simplifyICmpWithBinOpOnLHS( 2968 CmpInst::Predicate Pred, BinaryOperator *LBO, Value *RHS, 2969 const SimplifyQuery &Q, unsigned MaxRecurse) { 2970 Type *ITy = GetCompareTy(RHS); // The return type. 2971 2972 Value *Y = nullptr; 2973 // icmp pred (or X, Y), X 2974 if (match(LBO, m_c_Or(m_Value(Y), m_Specific(RHS)))) { 2975 if (Pred == ICmpInst::ICMP_ULT) 2976 return getFalse(ITy); 2977 if (Pred == ICmpInst::ICMP_UGE) 2978 return getTrue(ITy); 2979 2980 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SGE) { 2981 KnownBits RHSKnown = computeKnownBits(RHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2982 KnownBits YKnown = computeKnownBits(Y, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2983 if (RHSKnown.isNonNegative() && YKnown.isNegative()) 2984 return Pred == ICmpInst::ICMP_SLT ? getTrue(ITy) : getFalse(ITy); 2985 if (RHSKnown.isNegative() || YKnown.isNonNegative()) 2986 return Pred == ICmpInst::ICMP_SLT ? getFalse(ITy) : getTrue(ITy); 2987 } 2988 } 2989 2990 // icmp pred (and X, Y), X 2991 if (match(LBO, m_c_And(m_Value(), m_Specific(RHS)))) { 2992 if (Pred == ICmpInst::ICMP_UGT) 2993 return getFalse(ITy); 2994 if (Pred == ICmpInst::ICMP_ULE) 2995 return getTrue(ITy); 2996 } 2997 2998 // icmp pred (urem X, Y), Y 2999 if (match(LBO, m_URem(m_Value(), m_Specific(RHS)))) { 3000 switch (Pred) { 3001 default: 3002 break; 3003 case ICmpInst::ICMP_SGT: 3004 case ICmpInst::ICMP_SGE: { 3005 KnownBits Known = computeKnownBits(RHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 3006 if (!Known.isNonNegative()) 3007 break; 3008 LLVM_FALLTHROUGH; 3009 } 3010 case ICmpInst::ICMP_EQ: 3011 case ICmpInst::ICMP_UGT: 3012 case ICmpInst::ICMP_UGE: 3013 return getFalse(ITy); 3014 case ICmpInst::ICMP_SLT: 3015 case ICmpInst::ICMP_SLE: { 3016 KnownBits Known = computeKnownBits(RHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 3017 if (!Known.isNonNegative()) 3018 break; 3019 LLVM_FALLTHROUGH; 3020 } 3021 case ICmpInst::ICMP_NE: 3022 case ICmpInst::ICMP_ULT: 3023 case ICmpInst::ICMP_ULE: 3024 return getTrue(ITy); 3025 } 3026 } 3027 3028 // icmp pred (urem X, Y), X 3029 if (match(LBO, m_URem(m_Specific(RHS), m_Value()))) { 3030 if (Pred == ICmpInst::ICMP_ULE) 3031 return getTrue(ITy); 3032 if (Pred == ICmpInst::ICMP_UGT) 3033 return getFalse(ITy); 3034 } 3035 3036 // x >>u y <=u x --> true. 3037 // x >>u y >u x --> false. 3038 // x udiv y <=u x --> true. 3039 // x udiv y >u x --> false. 3040 if (match(LBO, m_LShr(m_Specific(RHS), m_Value())) || 3041 match(LBO, m_UDiv(m_Specific(RHS), m_Value()))) { 3042 // icmp pred (X op Y), X 3043 if (Pred == ICmpInst::ICMP_UGT) 3044 return getFalse(ITy); 3045 if (Pred == ICmpInst::ICMP_ULE) 3046 return getTrue(ITy); 3047 } 3048 3049 // If x is nonzero: 3050 // x >>u C <u x --> true for C != 0. 3051 // x >>u C != x --> true for C != 0. 3052 // x >>u C >=u x --> false for C != 0. 3053 // x >>u C == x --> false for C != 0. 3054 // x udiv C <u x --> true for C != 1. 3055 // x udiv C != x --> true for C != 1. 3056 // x udiv C >=u x --> false for C != 1. 3057 // x udiv C == x --> false for C != 1. 3058 // TODO: allow non-constant shift amount/divisor 3059 const APInt *C; 3060 if ((match(LBO, m_LShr(m_Specific(RHS), m_APInt(C))) && *C != 0) || 3061 (match(LBO, m_UDiv(m_Specific(RHS), m_APInt(C))) && *C != 1)) { 3062 if (isKnownNonZero(RHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) { 3063 switch (Pred) { 3064 default: 3065 break; 3066 case ICmpInst::ICMP_EQ: 3067 case ICmpInst::ICMP_UGE: 3068 return getFalse(ITy); 3069 case ICmpInst::ICMP_NE: 3070 case ICmpInst::ICMP_ULT: 3071 return getTrue(ITy); 3072 case ICmpInst::ICMP_UGT: 3073 case ICmpInst::ICMP_ULE: 3074 // UGT/ULE are handled by the more general case just above 3075 llvm_unreachable("Unexpected UGT/ULE, should have been handled"); 3076 } 3077 } 3078 } 3079 3080 // (x*C1)/C2 <= x for C1 <= C2. 3081 // This holds even if the multiplication overflows: Assume that x != 0 and 3082 // arithmetic is modulo M. For overflow to occur we must have C1 >= M/x and 3083 // thus C2 >= M/x. It follows that (x*C1)/C2 <= (M-1)/C2 <= ((M-1)*x)/M < x. 3084 // 3085 // Additionally, either the multiplication and division might be represented 3086 // as shifts: 3087 // (x*C1)>>C2 <= x for C1 < 2**C2. 3088 // (x<<C1)/C2 <= x for 2**C1 < C2. 3089 const APInt *C1, *C2; 3090 if ((match(LBO, m_UDiv(m_Mul(m_Specific(RHS), m_APInt(C1)), m_APInt(C2))) && 3091 C1->ule(*C2)) || 3092 (match(LBO, m_LShr(m_Mul(m_Specific(RHS), m_APInt(C1)), m_APInt(C2))) && 3093 C1->ule(APInt(C2->getBitWidth(), 1) << *C2)) || 3094 (match(LBO, m_UDiv(m_Shl(m_Specific(RHS), m_APInt(C1)), m_APInt(C2))) && 3095 (APInt(C1->getBitWidth(), 1) << *C1).ule(*C2))) { 3096 if (Pred == ICmpInst::ICMP_UGT) 3097 return getFalse(ITy); 3098 if (Pred == ICmpInst::ICMP_ULE) 3099 return getTrue(ITy); 3100 } 3101 3102 return nullptr; 3103 } 3104 3105 3106 // If only one of the icmp's operands has NSW flags, try to prove that: 3107 // 3108 // icmp slt (x + C1), (x +nsw C2) 3109 // 3110 // is equivalent to: 3111 // 3112 // icmp slt C1, C2 3113 // 3114 // which is true if x + C2 has the NSW flags set and: 3115 // *) C1 < C2 && C1 >= 0, or 3116 // *) C2 < C1 && C1 <= 0. 3117 // 3118 static bool trySimplifyICmpWithAdds(CmpInst::Predicate Pred, Value *LHS, 3119 Value *RHS) { 3120 // TODO: only support icmp slt for now. 3121 if (Pred != CmpInst::ICMP_SLT) 3122 return false; 3123 3124 // Canonicalize nsw add as RHS. 3125 if (!match(RHS, m_NSWAdd(m_Value(), m_Value()))) 3126 std::swap(LHS, RHS); 3127 if (!match(RHS, m_NSWAdd(m_Value(), m_Value()))) 3128 return false; 3129 3130 Value *X; 3131 const APInt *C1, *C2; 3132 if (!match(LHS, m_c_Add(m_Value(X), m_APInt(C1))) || 3133 !match(RHS, m_c_Add(m_Specific(X), m_APInt(C2)))) 3134 return false; 3135 3136 return (C1->slt(*C2) && C1->isNonNegative()) || 3137 (C2->slt(*C1) && C1->isNonPositive()); 3138 } 3139 3140 3141 /// TODO: A large part of this logic is duplicated in InstCombine's 3142 /// foldICmpBinOp(). We should be able to share that and avoid the code 3143 /// duplication. 3144 static Value *simplifyICmpWithBinOp(CmpInst::Predicate Pred, Value *LHS, 3145 Value *RHS, const SimplifyQuery &Q, 3146 unsigned MaxRecurse) { 3147 BinaryOperator *LBO = dyn_cast<BinaryOperator>(LHS); 3148 BinaryOperator *RBO = dyn_cast<BinaryOperator>(RHS); 3149 if (MaxRecurse && (LBO || RBO)) { 3150 // Analyze the case when either LHS or RHS is an add instruction. 3151 Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr; 3152 // LHS = A + B (or A and B are null); RHS = C + D (or C and D are null). 3153 bool NoLHSWrapProblem = false, NoRHSWrapProblem = false; 3154 if (LBO && LBO->getOpcode() == Instruction::Add) { 3155 A = LBO->getOperand(0); 3156 B = LBO->getOperand(1); 3157 NoLHSWrapProblem = 3158 ICmpInst::isEquality(Pred) || 3159 (CmpInst::isUnsigned(Pred) && 3160 Q.IIQ.hasNoUnsignedWrap(cast<OverflowingBinaryOperator>(LBO))) || 3161 (CmpInst::isSigned(Pred) && 3162 Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(LBO))); 3163 } 3164 if (RBO && RBO->getOpcode() == Instruction::Add) { 3165 C = RBO->getOperand(0); 3166 D = RBO->getOperand(1); 3167 NoRHSWrapProblem = 3168 ICmpInst::isEquality(Pred) || 3169 (CmpInst::isUnsigned(Pred) && 3170 Q.IIQ.hasNoUnsignedWrap(cast<OverflowingBinaryOperator>(RBO))) || 3171 (CmpInst::isSigned(Pred) && 3172 Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(RBO))); 3173 } 3174 3175 // icmp (X+Y), X -> icmp Y, 0 for equalities or if there is no overflow. 3176 if ((A == RHS || B == RHS) && NoLHSWrapProblem) 3177 if (Value *V = SimplifyICmpInst(Pred, A == RHS ? B : A, 3178 Constant::getNullValue(RHS->getType()), Q, 3179 MaxRecurse - 1)) 3180 return V; 3181 3182 // icmp X, (X+Y) -> icmp 0, Y for equalities or if there is no overflow. 3183 if ((C == LHS || D == LHS) && NoRHSWrapProblem) 3184 if (Value *V = 3185 SimplifyICmpInst(Pred, Constant::getNullValue(LHS->getType()), 3186 C == LHS ? D : C, Q, MaxRecurse - 1)) 3187 return V; 3188 3189 // icmp (X+Y), (X+Z) -> icmp Y,Z for equalities or if there is no overflow. 3190 bool CanSimplify = (NoLHSWrapProblem && NoRHSWrapProblem) || 3191 trySimplifyICmpWithAdds(Pred, LHS, RHS); 3192 if (A && C && (A == C || A == D || B == C || B == D) && CanSimplify) { 3193 // Determine Y and Z in the form icmp (X+Y), (X+Z). 3194 Value *Y, *Z; 3195 if (A == C) { 3196 // C + B == C + D -> B == D 3197 Y = B; 3198 Z = D; 3199 } else if (A == D) { 3200 // D + B == C + D -> B == C 3201 Y = B; 3202 Z = C; 3203 } else if (B == C) { 3204 // A + C == C + D -> A == D 3205 Y = A; 3206 Z = D; 3207 } else { 3208 assert(B == D); 3209 // A + D == C + D -> A == C 3210 Y = A; 3211 Z = C; 3212 } 3213 if (Value *V = SimplifyICmpInst(Pred, Y, Z, Q, MaxRecurse - 1)) 3214 return V; 3215 } 3216 } 3217 3218 if (LBO) 3219 if (Value *V = simplifyICmpWithBinOpOnLHS(Pred, LBO, RHS, Q, MaxRecurse)) 3220 return V; 3221 3222 if (RBO) 3223 if (Value *V = simplifyICmpWithBinOpOnLHS( 3224 ICmpInst::getSwappedPredicate(Pred), RBO, LHS, Q, MaxRecurse)) 3225 return V; 3226 3227 // 0 - (zext X) pred C 3228 if (!CmpInst::isUnsigned(Pred) && match(LHS, m_Neg(m_ZExt(m_Value())))) { 3229 const APInt *C; 3230 if (match(RHS, m_APInt(C))) { 3231 if (C->isStrictlyPositive()) { 3232 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_NE) 3233 return ConstantInt::getTrue(GetCompareTy(RHS)); 3234 if (Pred == ICmpInst::ICMP_SGE || Pred == ICmpInst::ICMP_EQ) 3235 return ConstantInt::getFalse(GetCompareTy(RHS)); 3236 } 3237 if (C->isNonNegative()) { 3238 if (Pred == ICmpInst::ICMP_SLE) 3239 return ConstantInt::getTrue(GetCompareTy(RHS)); 3240 if (Pred == ICmpInst::ICMP_SGT) 3241 return ConstantInt::getFalse(GetCompareTy(RHS)); 3242 } 3243 } 3244 } 3245 3246 // If C2 is a power-of-2 and C is not: 3247 // (C2 << X) == C --> false 3248 // (C2 << X) != C --> true 3249 const APInt *C; 3250 if (match(LHS, m_Shl(m_Power2(), m_Value())) && 3251 match(RHS, m_APIntAllowUndef(C)) && !C->isPowerOf2()) { 3252 // C2 << X can equal zero in some circumstances. 3253 // This simplification might be unsafe if C is zero. 3254 // 3255 // We know it is safe if: 3256 // - The shift is nsw. We can't shift out the one bit. 3257 // - The shift is nuw. We can't shift out the one bit. 3258 // - C2 is one. 3259 // - C isn't zero. 3260 if (Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(LBO)) || 3261 Q.IIQ.hasNoUnsignedWrap(cast<OverflowingBinaryOperator>(LBO)) || 3262 match(LHS, m_Shl(m_One(), m_Value())) || !C->isZero()) { 3263 if (Pred == ICmpInst::ICMP_EQ) 3264 return ConstantInt::getFalse(GetCompareTy(RHS)); 3265 if (Pred == ICmpInst::ICMP_NE) 3266 return ConstantInt::getTrue(GetCompareTy(RHS)); 3267 } 3268 } 3269 3270 // TODO: This is overly constrained. LHS can be any power-of-2. 3271 // (1 << X) >u 0x8000 --> false 3272 // (1 << X) <=u 0x8000 --> true 3273 if (match(LHS, m_Shl(m_One(), m_Value())) && match(RHS, m_SignMask())) { 3274 if (Pred == ICmpInst::ICMP_UGT) 3275 return ConstantInt::getFalse(GetCompareTy(RHS)); 3276 if (Pred == ICmpInst::ICMP_ULE) 3277 return ConstantInt::getTrue(GetCompareTy(RHS)); 3278 } 3279 3280 if (MaxRecurse && LBO && RBO && LBO->getOpcode() == RBO->getOpcode() && 3281 LBO->getOperand(1) == RBO->getOperand(1)) { 3282 switch (LBO->getOpcode()) { 3283 default: 3284 break; 3285 case Instruction::UDiv: 3286 case Instruction::LShr: 3287 if (ICmpInst::isSigned(Pred) || !Q.IIQ.isExact(LBO) || 3288 !Q.IIQ.isExact(RBO)) 3289 break; 3290 if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0), 3291 RBO->getOperand(0), Q, MaxRecurse - 1)) 3292 return V; 3293 break; 3294 case Instruction::SDiv: 3295 if (!ICmpInst::isEquality(Pred) || !Q.IIQ.isExact(LBO) || 3296 !Q.IIQ.isExact(RBO)) 3297 break; 3298 if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0), 3299 RBO->getOperand(0), Q, MaxRecurse - 1)) 3300 return V; 3301 break; 3302 case Instruction::AShr: 3303 if (!Q.IIQ.isExact(LBO) || !Q.IIQ.isExact(RBO)) 3304 break; 3305 if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0), 3306 RBO->getOperand(0), Q, MaxRecurse - 1)) 3307 return V; 3308 break; 3309 case Instruction::Shl: { 3310 bool NUW = Q.IIQ.hasNoUnsignedWrap(LBO) && Q.IIQ.hasNoUnsignedWrap(RBO); 3311 bool NSW = Q.IIQ.hasNoSignedWrap(LBO) && Q.IIQ.hasNoSignedWrap(RBO); 3312 if (!NUW && !NSW) 3313 break; 3314 if (!NSW && ICmpInst::isSigned(Pred)) 3315 break; 3316 if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0), 3317 RBO->getOperand(0), Q, MaxRecurse - 1)) 3318 return V; 3319 break; 3320 } 3321 } 3322 } 3323 return nullptr; 3324 } 3325 3326 /// Simplify integer comparisons where at least one operand of the compare 3327 /// matches an integer min/max idiom. 3328 static Value *simplifyICmpWithMinMax(CmpInst::Predicate Pred, Value *LHS, 3329 Value *RHS, const SimplifyQuery &Q, 3330 unsigned MaxRecurse) { 3331 Type *ITy = GetCompareTy(LHS); // The return type. 3332 Value *A, *B; 3333 CmpInst::Predicate P = CmpInst::BAD_ICMP_PREDICATE; 3334 CmpInst::Predicate EqP; // Chosen so that "A == max/min(A,B)" iff "A EqP B". 3335 3336 // Signed variants on "max(a,b)>=a -> true". 3337 if (match(LHS, m_SMax(m_Value(A), m_Value(B))) && (A == RHS || B == RHS)) { 3338 if (A != RHS) 3339 std::swap(A, B); // smax(A, B) pred A. 3340 EqP = CmpInst::ICMP_SGE; // "A == smax(A, B)" iff "A sge B". 3341 // We analyze this as smax(A, B) pred A. 3342 P = Pred; 3343 } else if (match(RHS, m_SMax(m_Value(A), m_Value(B))) && 3344 (A == LHS || B == LHS)) { 3345 if (A != LHS) 3346 std::swap(A, B); // A pred smax(A, B). 3347 EqP = CmpInst::ICMP_SGE; // "A == smax(A, B)" iff "A sge B". 3348 // We analyze this as smax(A, B) swapped-pred A. 3349 P = CmpInst::getSwappedPredicate(Pred); 3350 } else if (match(LHS, m_SMin(m_Value(A), m_Value(B))) && 3351 (A == RHS || B == RHS)) { 3352 if (A != RHS) 3353 std::swap(A, B); // smin(A, B) pred A. 3354 EqP = CmpInst::ICMP_SLE; // "A == smin(A, B)" iff "A sle B". 3355 // We analyze this as smax(-A, -B) swapped-pred -A. 3356 // Note that we do not need to actually form -A or -B thanks to EqP. 3357 P = CmpInst::getSwappedPredicate(Pred); 3358 } else if (match(RHS, m_SMin(m_Value(A), m_Value(B))) && 3359 (A == LHS || B == LHS)) { 3360 if (A != LHS) 3361 std::swap(A, B); // A pred smin(A, B). 3362 EqP = CmpInst::ICMP_SLE; // "A == smin(A, B)" iff "A sle B". 3363 // We analyze this as smax(-A, -B) pred -A. 3364 // Note that we do not need to actually form -A or -B thanks to EqP. 3365 P = Pred; 3366 } 3367 if (P != CmpInst::BAD_ICMP_PREDICATE) { 3368 // Cases correspond to "max(A, B) p A". 3369 switch (P) { 3370 default: 3371 break; 3372 case CmpInst::ICMP_EQ: 3373 case CmpInst::ICMP_SLE: 3374 // Equivalent to "A EqP B". This may be the same as the condition tested 3375 // in the max/min; if so, we can just return that. 3376 if (Value *V = ExtractEquivalentCondition(LHS, EqP, A, B)) 3377 return V; 3378 if (Value *V = ExtractEquivalentCondition(RHS, EqP, A, B)) 3379 return V; 3380 // Otherwise, see if "A EqP B" simplifies. 3381 if (MaxRecurse) 3382 if (Value *V = SimplifyICmpInst(EqP, A, B, Q, MaxRecurse - 1)) 3383 return V; 3384 break; 3385 case CmpInst::ICMP_NE: 3386 case CmpInst::ICMP_SGT: { 3387 CmpInst::Predicate InvEqP = CmpInst::getInversePredicate(EqP); 3388 // Equivalent to "A InvEqP B". This may be the same as the condition 3389 // tested in the max/min; if so, we can just return that. 3390 if (Value *V = ExtractEquivalentCondition(LHS, InvEqP, A, B)) 3391 return V; 3392 if (Value *V = ExtractEquivalentCondition(RHS, InvEqP, A, B)) 3393 return V; 3394 // Otherwise, see if "A InvEqP B" simplifies. 3395 if (MaxRecurse) 3396 if (Value *V = SimplifyICmpInst(InvEqP, A, B, Q, MaxRecurse - 1)) 3397 return V; 3398 break; 3399 } 3400 case CmpInst::ICMP_SGE: 3401 // Always true. 3402 return getTrue(ITy); 3403 case CmpInst::ICMP_SLT: 3404 // Always false. 3405 return getFalse(ITy); 3406 } 3407 } 3408 3409 // Unsigned variants on "max(a,b)>=a -> true". 3410 P = CmpInst::BAD_ICMP_PREDICATE; 3411 if (match(LHS, m_UMax(m_Value(A), m_Value(B))) && (A == RHS || B == RHS)) { 3412 if (A != RHS) 3413 std::swap(A, B); // umax(A, B) pred A. 3414 EqP = CmpInst::ICMP_UGE; // "A == umax(A, B)" iff "A uge B". 3415 // We analyze this as umax(A, B) pred A. 3416 P = Pred; 3417 } else if (match(RHS, m_UMax(m_Value(A), m_Value(B))) && 3418 (A == LHS || B == LHS)) { 3419 if (A != LHS) 3420 std::swap(A, B); // A pred umax(A, B). 3421 EqP = CmpInst::ICMP_UGE; // "A == umax(A, B)" iff "A uge B". 3422 // We analyze this as umax(A, B) swapped-pred A. 3423 P = CmpInst::getSwappedPredicate(Pred); 3424 } else if (match(LHS, m_UMin(m_Value(A), m_Value(B))) && 3425 (A == RHS || B == RHS)) { 3426 if (A != RHS) 3427 std::swap(A, B); // umin(A, B) pred A. 3428 EqP = CmpInst::ICMP_ULE; // "A == umin(A, B)" iff "A ule B". 3429 // We analyze this as umax(-A, -B) swapped-pred -A. 3430 // Note that we do not need to actually form -A or -B thanks to EqP. 3431 P = CmpInst::getSwappedPredicate(Pred); 3432 } else if (match(RHS, m_UMin(m_Value(A), m_Value(B))) && 3433 (A == LHS || B == LHS)) { 3434 if (A != LHS) 3435 std::swap(A, B); // A pred umin(A, B). 3436 EqP = CmpInst::ICMP_ULE; // "A == umin(A, B)" iff "A ule B". 3437 // We analyze this as umax(-A, -B) pred -A. 3438 // Note that we do not need to actually form -A or -B thanks to EqP. 3439 P = Pred; 3440 } 3441 if (P != CmpInst::BAD_ICMP_PREDICATE) { 3442 // Cases correspond to "max(A, B) p A". 3443 switch (P) { 3444 default: 3445 break; 3446 case CmpInst::ICMP_EQ: 3447 case CmpInst::ICMP_ULE: 3448 // Equivalent to "A EqP B". This may be the same as the condition tested 3449 // in the max/min; if so, we can just return that. 3450 if (Value *V = ExtractEquivalentCondition(LHS, EqP, A, B)) 3451 return V; 3452 if (Value *V = ExtractEquivalentCondition(RHS, EqP, A, B)) 3453 return V; 3454 // Otherwise, see if "A EqP B" simplifies. 3455 if (MaxRecurse) 3456 if (Value *V = SimplifyICmpInst(EqP, A, B, Q, MaxRecurse - 1)) 3457 return V; 3458 break; 3459 case CmpInst::ICMP_NE: 3460 case CmpInst::ICMP_UGT: { 3461 CmpInst::Predicate InvEqP = CmpInst::getInversePredicate(EqP); 3462 // Equivalent to "A InvEqP B". This may be the same as the condition 3463 // tested in the max/min; if so, we can just return that. 3464 if (Value *V = ExtractEquivalentCondition(LHS, InvEqP, A, B)) 3465 return V; 3466 if (Value *V = ExtractEquivalentCondition(RHS, InvEqP, A, B)) 3467 return V; 3468 // Otherwise, see if "A InvEqP B" simplifies. 3469 if (MaxRecurse) 3470 if (Value *V = SimplifyICmpInst(InvEqP, A, B, Q, MaxRecurse - 1)) 3471 return V; 3472 break; 3473 } 3474 case CmpInst::ICMP_UGE: 3475 return getTrue(ITy); 3476 case CmpInst::ICMP_ULT: 3477 return getFalse(ITy); 3478 } 3479 } 3480 3481 // Comparing 1 each of min/max with a common operand? 3482 // Canonicalize min operand to RHS. 3483 if (match(LHS, m_UMin(m_Value(), m_Value())) || 3484 match(LHS, m_SMin(m_Value(), m_Value()))) { 3485 std::swap(LHS, RHS); 3486 Pred = ICmpInst::getSwappedPredicate(Pred); 3487 } 3488 3489 Value *C, *D; 3490 if (match(LHS, m_SMax(m_Value(A), m_Value(B))) && 3491 match(RHS, m_SMin(m_Value(C), m_Value(D))) && 3492 (A == C || A == D || B == C || B == D)) { 3493 // smax(A, B) >=s smin(A, D) --> true 3494 if (Pred == CmpInst::ICMP_SGE) 3495 return getTrue(ITy); 3496 // smax(A, B) <s smin(A, D) --> false 3497 if (Pred == CmpInst::ICMP_SLT) 3498 return getFalse(ITy); 3499 } else if (match(LHS, m_UMax(m_Value(A), m_Value(B))) && 3500 match(RHS, m_UMin(m_Value(C), m_Value(D))) && 3501 (A == C || A == D || B == C || B == D)) { 3502 // umax(A, B) >=u umin(A, D) --> true 3503 if (Pred == CmpInst::ICMP_UGE) 3504 return getTrue(ITy); 3505 // umax(A, B) <u umin(A, D) --> false 3506 if (Pred == CmpInst::ICMP_ULT) 3507 return getFalse(ITy); 3508 } 3509 3510 return nullptr; 3511 } 3512 3513 static Value *simplifyICmpWithDominatingAssume(CmpInst::Predicate Predicate, 3514 Value *LHS, Value *RHS, 3515 const SimplifyQuery &Q) { 3516 // Gracefully handle instructions that have not been inserted yet. 3517 if (!Q.AC || !Q.CxtI || !Q.CxtI->getParent()) 3518 return nullptr; 3519 3520 for (Value *AssumeBaseOp : {LHS, RHS}) { 3521 for (auto &AssumeVH : Q.AC->assumptionsFor(AssumeBaseOp)) { 3522 if (!AssumeVH) 3523 continue; 3524 3525 CallInst *Assume = cast<CallInst>(AssumeVH); 3526 if (Optional<bool> Imp = 3527 isImpliedCondition(Assume->getArgOperand(0), Predicate, LHS, RHS, 3528 Q.DL)) 3529 if (isValidAssumeForContext(Assume, Q.CxtI, Q.DT)) 3530 return ConstantInt::get(GetCompareTy(LHS), *Imp); 3531 } 3532 } 3533 3534 return nullptr; 3535 } 3536 3537 /// Given operands for an ICmpInst, see if we can fold the result. 3538 /// If not, this returns null. 3539 static Value *SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS, 3540 const SimplifyQuery &Q, unsigned MaxRecurse) { 3541 CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate; 3542 assert(CmpInst::isIntPredicate(Pred) && "Not an integer compare!"); 3543 3544 if (Constant *CLHS = dyn_cast<Constant>(LHS)) { 3545 if (Constant *CRHS = dyn_cast<Constant>(RHS)) 3546 return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, Q.DL, Q.TLI); 3547 3548 // If we have a constant, make sure it is on the RHS. 3549 std::swap(LHS, RHS); 3550 Pred = CmpInst::getSwappedPredicate(Pred); 3551 } 3552 assert(!isa<UndefValue>(LHS) && "Unexpected icmp undef,%X"); 3553 3554 Type *ITy = GetCompareTy(LHS); // The return type. 3555 3556 // icmp poison, X -> poison 3557 if (isa<PoisonValue>(RHS)) 3558 return PoisonValue::get(ITy); 3559 3560 // For EQ and NE, we can always pick a value for the undef to make the 3561 // predicate pass or fail, so we can return undef. 3562 // Matches behavior in llvm::ConstantFoldCompareInstruction. 3563 if (Q.isUndefValue(RHS) && ICmpInst::isEquality(Pred)) 3564 return UndefValue::get(ITy); 3565 3566 // icmp X, X -> true/false 3567 // icmp X, undef -> true/false because undef could be X. 3568 if (LHS == RHS || Q.isUndefValue(RHS)) 3569 return ConstantInt::get(ITy, CmpInst::isTrueWhenEqual(Pred)); 3570 3571 if (Value *V = simplifyICmpOfBools(Pred, LHS, RHS, Q)) 3572 return V; 3573 3574 // TODO: Sink/common this with other potentially expensive calls that use 3575 // ValueTracking? See comment below for isKnownNonEqual(). 3576 if (Value *V = simplifyICmpWithZero(Pred, LHS, RHS, Q)) 3577 return V; 3578 3579 if (Value *V = simplifyICmpWithConstant(Pred, LHS, RHS, Q.IIQ)) 3580 return V; 3581 3582 // If both operands have range metadata, use the metadata 3583 // to simplify the comparison. 3584 if (isa<Instruction>(RHS) && isa<Instruction>(LHS)) { 3585 auto RHS_Instr = cast<Instruction>(RHS); 3586 auto LHS_Instr = cast<Instruction>(LHS); 3587 3588 if (Q.IIQ.getMetadata(RHS_Instr, LLVMContext::MD_range) && 3589 Q.IIQ.getMetadata(LHS_Instr, LLVMContext::MD_range)) { 3590 auto RHS_CR = getConstantRangeFromMetadata( 3591 *RHS_Instr->getMetadata(LLVMContext::MD_range)); 3592 auto LHS_CR = getConstantRangeFromMetadata( 3593 *LHS_Instr->getMetadata(LLVMContext::MD_range)); 3594 3595 if (LHS_CR.icmp(Pred, RHS_CR)) 3596 return ConstantInt::getTrue(RHS->getContext()); 3597 3598 if (LHS_CR.icmp(CmpInst::getInversePredicate(Pred), RHS_CR)) 3599 return ConstantInt::getFalse(RHS->getContext()); 3600 } 3601 } 3602 3603 // Compare of cast, for example (zext X) != 0 -> X != 0 3604 if (isa<CastInst>(LHS) && (isa<Constant>(RHS) || isa<CastInst>(RHS))) { 3605 Instruction *LI = cast<CastInst>(LHS); 3606 Value *SrcOp = LI->getOperand(0); 3607 Type *SrcTy = SrcOp->getType(); 3608 Type *DstTy = LI->getType(); 3609 3610 // Turn icmp (ptrtoint x), (ptrtoint/constant) into a compare of the input 3611 // if the integer type is the same size as the pointer type. 3612 if (MaxRecurse && isa<PtrToIntInst>(LI) && 3613 Q.DL.getTypeSizeInBits(SrcTy) == DstTy->getPrimitiveSizeInBits()) { 3614 if (Constant *RHSC = dyn_cast<Constant>(RHS)) { 3615 // Transfer the cast to the constant. 3616 if (Value *V = SimplifyICmpInst(Pred, SrcOp, 3617 ConstantExpr::getIntToPtr(RHSC, SrcTy), 3618 Q, MaxRecurse-1)) 3619 return V; 3620 } else if (PtrToIntInst *RI = dyn_cast<PtrToIntInst>(RHS)) { 3621 if (RI->getOperand(0)->getType() == SrcTy) 3622 // Compare without the cast. 3623 if (Value *V = SimplifyICmpInst(Pred, SrcOp, RI->getOperand(0), 3624 Q, MaxRecurse-1)) 3625 return V; 3626 } 3627 } 3628 3629 if (isa<ZExtInst>(LHS)) { 3630 // Turn icmp (zext X), (zext Y) into a compare of X and Y if they have the 3631 // same type. 3632 if (ZExtInst *RI = dyn_cast<ZExtInst>(RHS)) { 3633 if (MaxRecurse && SrcTy == RI->getOperand(0)->getType()) 3634 // Compare X and Y. Note that signed predicates become unsigned. 3635 if (Value *V = SimplifyICmpInst(ICmpInst::getUnsignedPredicate(Pred), 3636 SrcOp, RI->getOperand(0), Q, 3637 MaxRecurse-1)) 3638 return V; 3639 } 3640 // Fold (zext X) ule (sext X), (zext X) sge (sext X) to true. 3641 else if (SExtInst *RI = dyn_cast<SExtInst>(RHS)) { 3642 if (SrcOp == RI->getOperand(0)) { 3643 if (Pred == ICmpInst::ICMP_ULE || Pred == ICmpInst::ICMP_SGE) 3644 return ConstantInt::getTrue(ITy); 3645 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_SLT) 3646 return ConstantInt::getFalse(ITy); 3647 } 3648 } 3649 // Turn icmp (zext X), Cst into a compare of X and Cst if Cst is extended 3650 // too. If not, then try to deduce the result of the comparison. 3651 else if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) { 3652 // Compute the constant that would happen if we truncated to SrcTy then 3653 // reextended to DstTy. 3654 Constant *Trunc = ConstantExpr::getTrunc(CI, SrcTy); 3655 Constant *RExt = ConstantExpr::getCast(CastInst::ZExt, Trunc, DstTy); 3656 3657 // If the re-extended constant didn't change then this is effectively 3658 // also a case of comparing two zero-extended values. 3659 if (RExt == CI && MaxRecurse) 3660 if (Value *V = SimplifyICmpInst(ICmpInst::getUnsignedPredicate(Pred), 3661 SrcOp, Trunc, Q, MaxRecurse-1)) 3662 return V; 3663 3664 // Otherwise the upper bits of LHS are zero while RHS has a non-zero bit 3665 // there. Use this to work out the result of the comparison. 3666 if (RExt != CI) { 3667 switch (Pred) { 3668 default: llvm_unreachable("Unknown ICmp predicate!"); 3669 // LHS <u RHS. 3670 case ICmpInst::ICMP_EQ: 3671 case ICmpInst::ICMP_UGT: 3672 case ICmpInst::ICMP_UGE: 3673 return ConstantInt::getFalse(CI->getContext()); 3674 3675 case ICmpInst::ICMP_NE: 3676 case ICmpInst::ICMP_ULT: 3677 case ICmpInst::ICMP_ULE: 3678 return ConstantInt::getTrue(CI->getContext()); 3679 3680 // LHS is non-negative. If RHS is negative then LHS >s LHS. If RHS 3681 // is non-negative then LHS <s RHS. 3682 case ICmpInst::ICMP_SGT: 3683 case ICmpInst::ICMP_SGE: 3684 return CI->getValue().isNegative() ? 3685 ConstantInt::getTrue(CI->getContext()) : 3686 ConstantInt::getFalse(CI->getContext()); 3687 3688 case ICmpInst::ICMP_SLT: 3689 case ICmpInst::ICMP_SLE: 3690 return CI->getValue().isNegative() ? 3691 ConstantInt::getFalse(CI->getContext()) : 3692 ConstantInt::getTrue(CI->getContext()); 3693 } 3694 } 3695 } 3696 } 3697 3698 if (isa<SExtInst>(LHS)) { 3699 // Turn icmp (sext X), (sext Y) into a compare of X and Y if they have the 3700 // same type. 3701 if (SExtInst *RI = dyn_cast<SExtInst>(RHS)) { 3702 if (MaxRecurse && SrcTy == RI->getOperand(0)->getType()) 3703 // Compare X and Y. Note that the predicate does not change. 3704 if (Value *V = SimplifyICmpInst(Pred, SrcOp, RI->getOperand(0), 3705 Q, MaxRecurse-1)) 3706 return V; 3707 } 3708 // Fold (sext X) uge (zext X), (sext X) sle (zext X) to true. 3709 else if (ZExtInst *RI = dyn_cast<ZExtInst>(RHS)) { 3710 if (SrcOp == RI->getOperand(0)) { 3711 if (Pred == ICmpInst::ICMP_UGE || Pred == ICmpInst::ICMP_SLE) 3712 return ConstantInt::getTrue(ITy); 3713 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_SGT) 3714 return ConstantInt::getFalse(ITy); 3715 } 3716 } 3717 // Turn icmp (sext X), Cst into a compare of X and Cst if Cst is extended 3718 // too. If not, then try to deduce the result of the comparison. 3719 else if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) { 3720 // Compute the constant that would happen if we truncated to SrcTy then 3721 // reextended to DstTy. 3722 Constant *Trunc = ConstantExpr::getTrunc(CI, SrcTy); 3723 Constant *RExt = ConstantExpr::getCast(CastInst::SExt, Trunc, DstTy); 3724 3725 // If the re-extended constant didn't change then this is effectively 3726 // also a case of comparing two sign-extended values. 3727 if (RExt == CI && MaxRecurse) 3728 if (Value *V = SimplifyICmpInst(Pred, SrcOp, Trunc, Q, MaxRecurse-1)) 3729 return V; 3730 3731 // Otherwise the upper bits of LHS are all equal, while RHS has varying 3732 // bits there. Use this to work out the result of the comparison. 3733 if (RExt != CI) { 3734 switch (Pred) { 3735 default: llvm_unreachable("Unknown ICmp predicate!"); 3736 case ICmpInst::ICMP_EQ: 3737 return ConstantInt::getFalse(CI->getContext()); 3738 case ICmpInst::ICMP_NE: 3739 return ConstantInt::getTrue(CI->getContext()); 3740 3741 // If RHS is non-negative then LHS <s RHS. If RHS is negative then 3742 // LHS >s RHS. 3743 case ICmpInst::ICMP_SGT: 3744 case ICmpInst::ICMP_SGE: 3745 return CI->getValue().isNegative() ? 3746 ConstantInt::getTrue(CI->getContext()) : 3747 ConstantInt::getFalse(CI->getContext()); 3748 case ICmpInst::ICMP_SLT: 3749 case ICmpInst::ICMP_SLE: 3750 return CI->getValue().isNegative() ? 3751 ConstantInt::getFalse(CI->getContext()) : 3752 ConstantInt::getTrue(CI->getContext()); 3753 3754 // If LHS is non-negative then LHS <u RHS. If LHS is negative then 3755 // LHS >u RHS. 3756 case ICmpInst::ICMP_UGT: 3757 case ICmpInst::ICMP_UGE: 3758 // Comparison is true iff the LHS <s 0. 3759 if (MaxRecurse) 3760 if (Value *V = SimplifyICmpInst(ICmpInst::ICMP_SLT, SrcOp, 3761 Constant::getNullValue(SrcTy), 3762 Q, MaxRecurse-1)) 3763 return V; 3764 break; 3765 case ICmpInst::ICMP_ULT: 3766 case ICmpInst::ICMP_ULE: 3767 // Comparison is true iff the LHS >=s 0. 3768 if (MaxRecurse) 3769 if (Value *V = SimplifyICmpInst(ICmpInst::ICMP_SGE, SrcOp, 3770 Constant::getNullValue(SrcTy), 3771 Q, MaxRecurse-1)) 3772 return V; 3773 break; 3774 } 3775 } 3776 } 3777 } 3778 } 3779 3780 // icmp eq|ne X, Y -> false|true if X != Y 3781 // This is potentially expensive, and we have already computedKnownBits for 3782 // compares with 0 above here, so only try this for a non-zero compare. 3783 if (ICmpInst::isEquality(Pred) && !match(RHS, m_Zero()) && 3784 isKnownNonEqual(LHS, RHS, Q.DL, Q.AC, Q.CxtI, Q.DT, Q.IIQ.UseInstrInfo)) { 3785 return Pred == ICmpInst::ICMP_NE ? getTrue(ITy) : getFalse(ITy); 3786 } 3787 3788 if (Value *V = simplifyICmpWithBinOp(Pred, LHS, RHS, Q, MaxRecurse)) 3789 return V; 3790 3791 if (Value *V = simplifyICmpWithMinMax(Pred, LHS, RHS, Q, MaxRecurse)) 3792 return V; 3793 3794 if (Value *V = simplifyICmpWithDominatingAssume(Pred, LHS, RHS, Q)) 3795 return V; 3796 3797 // Simplify comparisons of related pointers using a powerful, recursive 3798 // GEP-walk when we have target data available.. 3799 if (LHS->getType()->isPointerTy()) 3800 if (auto *C = computePointerICmp(Pred, LHS, RHS, Q)) 3801 return C; 3802 if (auto *CLHS = dyn_cast<PtrToIntOperator>(LHS)) 3803 if (auto *CRHS = dyn_cast<PtrToIntOperator>(RHS)) 3804 if (Q.DL.getTypeSizeInBits(CLHS->getPointerOperandType()) == 3805 Q.DL.getTypeSizeInBits(CLHS->getType()) && 3806 Q.DL.getTypeSizeInBits(CRHS->getPointerOperandType()) == 3807 Q.DL.getTypeSizeInBits(CRHS->getType())) 3808 if (auto *C = computePointerICmp(Pred, CLHS->getPointerOperand(), 3809 CRHS->getPointerOperand(), Q)) 3810 return C; 3811 3812 // If the comparison is with the result of a select instruction, check whether 3813 // comparing with either branch of the select always yields the same value. 3814 if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS)) 3815 if (Value *V = ThreadCmpOverSelect(Pred, LHS, RHS, Q, MaxRecurse)) 3816 return V; 3817 3818 // If the comparison is with the result of a phi instruction, check whether 3819 // doing the compare with each incoming phi value yields a common result. 3820 if (isa<PHINode>(LHS) || isa<PHINode>(RHS)) 3821 if (Value *V = ThreadCmpOverPHI(Pred, LHS, RHS, Q, MaxRecurse)) 3822 return V; 3823 3824 return nullptr; 3825 } 3826 3827 Value *llvm::SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS, 3828 const SimplifyQuery &Q) { 3829 return ::SimplifyICmpInst(Predicate, LHS, RHS, Q, RecursionLimit); 3830 } 3831 3832 /// Given operands for an FCmpInst, see if we can fold the result. 3833 /// If not, this returns null. 3834 static Value *SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS, 3835 FastMathFlags FMF, const SimplifyQuery &Q, 3836 unsigned MaxRecurse) { 3837 CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate; 3838 assert(CmpInst::isFPPredicate(Pred) && "Not an FP compare!"); 3839 3840 if (Constant *CLHS = dyn_cast<Constant>(LHS)) { 3841 if (Constant *CRHS = dyn_cast<Constant>(RHS)) 3842 return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, Q.DL, Q.TLI); 3843 3844 // If we have a constant, make sure it is on the RHS. 3845 std::swap(LHS, RHS); 3846 Pred = CmpInst::getSwappedPredicate(Pred); 3847 } 3848 3849 // Fold trivial predicates. 3850 Type *RetTy = GetCompareTy(LHS); 3851 if (Pred == FCmpInst::FCMP_FALSE) 3852 return getFalse(RetTy); 3853 if (Pred == FCmpInst::FCMP_TRUE) 3854 return getTrue(RetTy); 3855 3856 // Fold (un)ordered comparison if we can determine there are no NaNs. 3857 if (Pred == FCmpInst::FCMP_UNO || Pred == FCmpInst::FCMP_ORD) 3858 if (FMF.noNaNs() || 3859 (isKnownNeverNaN(LHS, Q.TLI) && isKnownNeverNaN(RHS, Q.TLI))) 3860 return ConstantInt::get(RetTy, Pred == FCmpInst::FCMP_ORD); 3861 3862 // NaN is unordered; NaN is not ordered. 3863 assert((FCmpInst::isOrdered(Pred) || FCmpInst::isUnordered(Pred)) && 3864 "Comparison must be either ordered or unordered"); 3865 if (match(RHS, m_NaN())) 3866 return ConstantInt::get(RetTy, CmpInst::isUnordered(Pred)); 3867 3868 // fcmp pred x, poison and fcmp pred poison, x 3869 // fold to poison 3870 if (isa<PoisonValue>(LHS) || isa<PoisonValue>(RHS)) 3871 return PoisonValue::get(RetTy); 3872 3873 // fcmp pred x, undef and fcmp pred undef, x 3874 // fold to true if unordered, false if ordered 3875 if (Q.isUndefValue(LHS) || Q.isUndefValue(RHS)) { 3876 // Choosing NaN for the undef will always make unordered comparison succeed 3877 // and ordered comparison fail. 3878 return ConstantInt::get(RetTy, CmpInst::isUnordered(Pred)); 3879 } 3880 3881 // fcmp x,x -> true/false. Not all compares are foldable. 3882 if (LHS == RHS) { 3883 if (CmpInst::isTrueWhenEqual(Pred)) 3884 return getTrue(RetTy); 3885 if (CmpInst::isFalseWhenEqual(Pred)) 3886 return getFalse(RetTy); 3887 } 3888 3889 // Handle fcmp with constant RHS. 3890 // TODO: Use match with a specific FP value, so these work with vectors with 3891 // undef lanes. 3892 const APFloat *C; 3893 if (match(RHS, m_APFloat(C))) { 3894 // Check whether the constant is an infinity. 3895 if (C->isInfinity()) { 3896 if (C->isNegative()) { 3897 switch (Pred) { 3898 case FCmpInst::FCMP_OLT: 3899 // No value is ordered and less than negative infinity. 3900 return getFalse(RetTy); 3901 case FCmpInst::FCMP_UGE: 3902 // All values are unordered with or at least negative infinity. 3903 return getTrue(RetTy); 3904 default: 3905 break; 3906 } 3907 } else { 3908 switch (Pred) { 3909 case FCmpInst::FCMP_OGT: 3910 // No value is ordered and greater than infinity. 3911 return getFalse(RetTy); 3912 case FCmpInst::FCMP_ULE: 3913 // All values are unordered with and at most infinity. 3914 return getTrue(RetTy); 3915 default: 3916 break; 3917 } 3918 } 3919 3920 // LHS == Inf 3921 if (Pred == FCmpInst::FCMP_OEQ && isKnownNeverInfinity(LHS, Q.TLI)) 3922 return getFalse(RetTy); 3923 // LHS != Inf 3924 if (Pred == FCmpInst::FCMP_UNE && isKnownNeverInfinity(LHS, Q.TLI)) 3925 return getTrue(RetTy); 3926 // LHS == Inf || LHS == NaN 3927 if (Pred == FCmpInst::FCMP_UEQ && isKnownNeverInfinity(LHS, Q.TLI) && 3928 isKnownNeverNaN(LHS, Q.TLI)) 3929 return getFalse(RetTy); 3930 // LHS != Inf && LHS != NaN 3931 if (Pred == FCmpInst::FCMP_ONE && isKnownNeverInfinity(LHS, Q.TLI) && 3932 isKnownNeverNaN(LHS, Q.TLI)) 3933 return getTrue(RetTy); 3934 } 3935 if (C->isNegative() && !C->isNegZero()) { 3936 assert(!C->isNaN() && "Unexpected NaN constant!"); 3937 // TODO: We can catch more cases by using a range check rather than 3938 // relying on CannotBeOrderedLessThanZero. 3939 switch (Pred) { 3940 case FCmpInst::FCMP_UGE: 3941 case FCmpInst::FCMP_UGT: 3942 case FCmpInst::FCMP_UNE: 3943 // (X >= 0) implies (X > C) when (C < 0) 3944 if (CannotBeOrderedLessThanZero(LHS, Q.TLI)) 3945 return getTrue(RetTy); 3946 break; 3947 case FCmpInst::FCMP_OEQ: 3948 case FCmpInst::FCMP_OLE: 3949 case FCmpInst::FCMP_OLT: 3950 // (X >= 0) implies !(X < C) when (C < 0) 3951 if (CannotBeOrderedLessThanZero(LHS, Q.TLI)) 3952 return getFalse(RetTy); 3953 break; 3954 default: 3955 break; 3956 } 3957 } 3958 3959 // Check comparison of [minnum/maxnum with constant] with other constant. 3960 const APFloat *C2; 3961 if ((match(LHS, m_Intrinsic<Intrinsic::minnum>(m_Value(), m_APFloat(C2))) && 3962 *C2 < *C) || 3963 (match(LHS, m_Intrinsic<Intrinsic::maxnum>(m_Value(), m_APFloat(C2))) && 3964 *C2 > *C)) { 3965 bool IsMaxNum = 3966 cast<IntrinsicInst>(LHS)->getIntrinsicID() == Intrinsic::maxnum; 3967 // The ordered relationship and minnum/maxnum guarantee that we do not 3968 // have NaN constants, so ordered/unordered preds are handled the same. 3969 switch (Pred) { 3970 case FCmpInst::FCMP_OEQ: case FCmpInst::FCMP_UEQ: 3971 // minnum(X, LesserC) == C --> false 3972 // maxnum(X, GreaterC) == C --> false 3973 return getFalse(RetTy); 3974 case FCmpInst::FCMP_ONE: case FCmpInst::FCMP_UNE: 3975 // minnum(X, LesserC) != C --> true 3976 // maxnum(X, GreaterC) != C --> true 3977 return getTrue(RetTy); 3978 case FCmpInst::FCMP_OGE: case FCmpInst::FCMP_UGE: 3979 case FCmpInst::FCMP_OGT: case FCmpInst::FCMP_UGT: 3980 // minnum(X, LesserC) >= C --> false 3981 // minnum(X, LesserC) > C --> false 3982 // maxnum(X, GreaterC) >= C --> true 3983 // maxnum(X, GreaterC) > C --> true 3984 return ConstantInt::get(RetTy, IsMaxNum); 3985 case FCmpInst::FCMP_OLE: case FCmpInst::FCMP_ULE: 3986 case FCmpInst::FCMP_OLT: case FCmpInst::FCMP_ULT: 3987 // minnum(X, LesserC) <= C --> true 3988 // minnum(X, LesserC) < C --> true 3989 // maxnum(X, GreaterC) <= C --> false 3990 // maxnum(X, GreaterC) < C --> false 3991 return ConstantInt::get(RetTy, !IsMaxNum); 3992 default: 3993 // TRUE/FALSE/ORD/UNO should be handled before this. 3994 llvm_unreachable("Unexpected fcmp predicate"); 3995 } 3996 } 3997 } 3998 3999 if (match(RHS, m_AnyZeroFP())) { 4000 switch (Pred) { 4001 case FCmpInst::FCMP_OGE: 4002 case FCmpInst::FCMP_ULT: 4003 // Positive or zero X >= 0.0 --> true 4004 // Positive or zero X < 0.0 --> false 4005 if ((FMF.noNaNs() || isKnownNeverNaN(LHS, Q.TLI)) && 4006 CannotBeOrderedLessThanZero(LHS, Q.TLI)) 4007 return Pred == FCmpInst::FCMP_OGE ? getTrue(RetTy) : getFalse(RetTy); 4008 break; 4009 case FCmpInst::FCMP_UGE: 4010 case FCmpInst::FCMP_OLT: 4011 // Positive or zero or nan X >= 0.0 --> true 4012 // Positive or zero or nan X < 0.0 --> false 4013 if (CannotBeOrderedLessThanZero(LHS, Q.TLI)) 4014 return Pred == FCmpInst::FCMP_UGE ? getTrue(RetTy) : getFalse(RetTy); 4015 break; 4016 default: 4017 break; 4018 } 4019 } 4020 4021 // If the comparison is with the result of a select instruction, check whether 4022 // comparing with either branch of the select always yields the same value. 4023 if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS)) 4024 if (Value *V = ThreadCmpOverSelect(Pred, LHS, RHS, Q, MaxRecurse)) 4025 return V; 4026 4027 // If the comparison is with the result of a phi instruction, check whether 4028 // doing the compare with each incoming phi value yields a common result. 4029 if (isa<PHINode>(LHS) || isa<PHINode>(RHS)) 4030 if (Value *V = ThreadCmpOverPHI(Pred, LHS, RHS, Q, MaxRecurse)) 4031 return V; 4032 4033 return nullptr; 4034 } 4035 4036 Value *llvm::SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS, 4037 FastMathFlags FMF, const SimplifyQuery &Q) { 4038 return ::SimplifyFCmpInst(Predicate, LHS, RHS, FMF, Q, RecursionLimit); 4039 } 4040 4041 static Value *simplifyWithOpReplaced(Value *V, Value *Op, Value *RepOp, 4042 const SimplifyQuery &Q, 4043 bool AllowRefinement, 4044 unsigned MaxRecurse) { 4045 assert(!Op->getType()->isVectorTy() && "This is not safe for vectors"); 4046 4047 // Trivial replacement. 4048 if (V == Op) 4049 return RepOp; 4050 4051 // We cannot replace a constant, and shouldn't even try. 4052 if (isa<Constant>(Op)) 4053 return nullptr; 4054 4055 auto *I = dyn_cast<Instruction>(V); 4056 if (!I || !is_contained(I->operands(), Op)) 4057 return nullptr; 4058 4059 // Replace Op with RepOp in instruction operands. 4060 SmallVector<Value *, 8> NewOps(I->getNumOperands()); 4061 transform(I->operands(), NewOps.begin(), 4062 [&](Value *V) { return V == Op ? RepOp : V; }); 4063 4064 if (!AllowRefinement) { 4065 // General InstSimplify functions may refine the result, e.g. by returning 4066 // a constant for a potentially poison value. To avoid this, implement only 4067 // a few non-refining but profitable transforms here. 4068 4069 if (auto *BO = dyn_cast<BinaryOperator>(I)) { 4070 unsigned Opcode = BO->getOpcode(); 4071 // id op x -> x, x op id -> x 4072 if (NewOps[0] == ConstantExpr::getBinOpIdentity(Opcode, I->getType())) 4073 return NewOps[1]; 4074 if (NewOps[1] == ConstantExpr::getBinOpIdentity(Opcode, I->getType(), 4075 /* RHS */ true)) 4076 return NewOps[0]; 4077 4078 // x & x -> x, x | x -> x 4079 if ((Opcode == Instruction::And || Opcode == Instruction::Or) && 4080 NewOps[0] == NewOps[1]) 4081 return NewOps[0]; 4082 } 4083 4084 if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) { 4085 // getelementptr x, 0 -> x 4086 if (NewOps.size() == 2 && match(NewOps[1], m_Zero()) && 4087 !GEP->isInBounds()) 4088 return NewOps[0]; 4089 } 4090 } else if (MaxRecurse) { 4091 // The simplification queries below may return the original value. Consider: 4092 // %div = udiv i32 %arg, %arg2 4093 // %mul = mul nsw i32 %div, %arg2 4094 // %cmp = icmp eq i32 %mul, %arg 4095 // %sel = select i1 %cmp, i32 %div, i32 undef 4096 // Replacing %arg by %mul, %div becomes "udiv i32 %mul, %arg2", which 4097 // simplifies back to %arg. This can only happen because %mul does not 4098 // dominate %div. To ensure a consistent return value contract, we make sure 4099 // that this case returns nullptr as well. 4100 auto PreventSelfSimplify = [V](Value *Simplified) { 4101 return Simplified != V ? Simplified : nullptr; 4102 }; 4103 4104 if (auto *B = dyn_cast<BinaryOperator>(I)) 4105 return PreventSelfSimplify(SimplifyBinOp(B->getOpcode(), NewOps[0], 4106 NewOps[1], Q, MaxRecurse - 1)); 4107 4108 if (CmpInst *C = dyn_cast<CmpInst>(I)) 4109 return PreventSelfSimplify(SimplifyCmpInst(C->getPredicate(), NewOps[0], 4110 NewOps[1], Q, MaxRecurse - 1)); 4111 4112 if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) 4113 return PreventSelfSimplify(SimplifyGEPInst( 4114 GEP->getSourceElementType(), NewOps[0], makeArrayRef(NewOps).slice(1), 4115 GEP->isInBounds(), Q, MaxRecurse - 1)); 4116 4117 if (isa<SelectInst>(I)) 4118 return PreventSelfSimplify( 4119 SimplifySelectInst(NewOps[0], NewOps[1], NewOps[2], Q, 4120 MaxRecurse - 1)); 4121 // TODO: We could hand off more cases to instsimplify here. 4122 } 4123 4124 // If all operands are constant after substituting Op for RepOp then we can 4125 // constant fold the instruction. 4126 SmallVector<Constant *, 8> ConstOps; 4127 for (Value *NewOp : NewOps) { 4128 if (Constant *ConstOp = dyn_cast<Constant>(NewOp)) 4129 ConstOps.push_back(ConstOp); 4130 else 4131 return nullptr; 4132 } 4133 4134 // Consider: 4135 // %cmp = icmp eq i32 %x, 2147483647 4136 // %add = add nsw i32 %x, 1 4137 // %sel = select i1 %cmp, i32 -2147483648, i32 %add 4138 // 4139 // We can't replace %sel with %add unless we strip away the flags (which 4140 // will be done in InstCombine). 4141 // TODO: This may be unsound, because it only catches some forms of 4142 // refinement. 4143 if (!AllowRefinement && canCreatePoison(cast<Operator>(I))) 4144 return nullptr; 4145 4146 if (CmpInst *C = dyn_cast<CmpInst>(I)) 4147 return ConstantFoldCompareInstOperands(C->getPredicate(), ConstOps[0], 4148 ConstOps[1], Q.DL, Q.TLI); 4149 4150 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 4151 if (!LI->isVolatile()) 4152 return ConstantFoldLoadFromConstPtr(ConstOps[0], LI->getType(), Q.DL); 4153 4154 return ConstantFoldInstOperands(I, ConstOps, Q.DL, Q.TLI); 4155 } 4156 4157 Value *llvm::simplifyWithOpReplaced(Value *V, Value *Op, Value *RepOp, 4158 const SimplifyQuery &Q, 4159 bool AllowRefinement) { 4160 return ::simplifyWithOpReplaced(V, Op, RepOp, Q, AllowRefinement, 4161 RecursionLimit); 4162 } 4163 4164 /// Try to simplify a select instruction when its condition operand is an 4165 /// integer comparison where one operand of the compare is a constant. 4166 static Value *simplifySelectBitTest(Value *TrueVal, Value *FalseVal, Value *X, 4167 const APInt *Y, bool TrueWhenUnset) { 4168 const APInt *C; 4169 4170 // (X & Y) == 0 ? X & ~Y : X --> X 4171 // (X & Y) != 0 ? X & ~Y : X --> X & ~Y 4172 if (FalseVal == X && match(TrueVal, m_And(m_Specific(X), m_APInt(C))) && 4173 *Y == ~*C) 4174 return TrueWhenUnset ? FalseVal : TrueVal; 4175 4176 // (X & Y) == 0 ? X : X & ~Y --> X & ~Y 4177 // (X & Y) != 0 ? X : X & ~Y --> X 4178 if (TrueVal == X && match(FalseVal, m_And(m_Specific(X), m_APInt(C))) && 4179 *Y == ~*C) 4180 return TrueWhenUnset ? FalseVal : TrueVal; 4181 4182 if (Y->isPowerOf2()) { 4183 // (X & Y) == 0 ? X | Y : X --> X | Y 4184 // (X & Y) != 0 ? X | Y : X --> X 4185 if (FalseVal == X && match(TrueVal, m_Or(m_Specific(X), m_APInt(C))) && 4186 *Y == *C) 4187 return TrueWhenUnset ? TrueVal : FalseVal; 4188 4189 // (X & Y) == 0 ? X : X | Y --> X 4190 // (X & Y) != 0 ? X : X | Y --> X | Y 4191 if (TrueVal == X && match(FalseVal, m_Or(m_Specific(X), m_APInt(C))) && 4192 *Y == *C) 4193 return TrueWhenUnset ? TrueVal : FalseVal; 4194 } 4195 4196 return nullptr; 4197 } 4198 4199 /// An alternative way to test if a bit is set or not uses sgt/slt instead of 4200 /// eq/ne. 4201 static Value *simplifySelectWithFakeICmpEq(Value *CmpLHS, Value *CmpRHS, 4202 ICmpInst::Predicate Pred, 4203 Value *TrueVal, Value *FalseVal) { 4204 Value *X; 4205 APInt Mask; 4206 if (!decomposeBitTestICmp(CmpLHS, CmpRHS, Pred, X, Mask)) 4207 return nullptr; 4208 4209 return simplifySelectBitTest(TrueVal, FalseVal, X, &Mask, 4210 Pred == ICmpInst::ICMP_EQ); 4211 } 4212 4213 /// Try to simplify a select instruction when its condition operand is an 4214 /// integer comparison. 4215 static Value *simplifySelectWithICmpCond(Value *CondVal, Value *TrueVal, 4216 Value *FalseVal, const SimplifyQuery &Q, 4217 unsigned MaxRecurse) { 4218 ICmpInst::Predicate Pred; 4219 Value *CmpLHS, *CmpRHS; 4220 if (!match(CondVal, m_ICmp(Pred, m_Value(CmpLHS), m_Value(CmpRHS)))) 4221 return nullptr; 4222 4223 // Canonicalize ne to eq predicate. 4224 if (Pred == ICmpInst::ICMP_NE) { 4225 Pred = ICmpInst::ICMP_EQ; 4226 std::swap(TrueVal, FalseVal); 4227 } 4228 4229 // Check for integer min/max with a limit constant: 4230 // X > MIN_INT ? X : MIN_INT --> X 4231 // X < MAX_INT ? X : MAX_INT --> X 4232 if (TrueVal->getType()->isIntOrIntVectorTy()) { 4233 Value *X, *Y; 4234 SelectPatternFlavor SPF = 4235 matchDecomposedSelectPattern(cast<ICmpInst>(CondVal), TrueVal, FalseVal, 4236 X, Y).Flavor; 4237 if (SelectPatternResult::isMinOrMax(SPF) && Pred == getMinMaxPred(SPF)) { 4238 APInt LimitC = getMinMaxLimit(getInverseMinMaxFlavor(SPF), 4239 X->getType()->getScalarSizeInBits()); 4240 if (match(Y, m_SpecificInt(LimitC))) 4241 return X; 4242 } 4243 } 4244 4245 if (Pred == ICmpInst::ICMP_EQ && match(CmpRHS, m_Zero())) { 4246 Value *X; 4247 const APInt *Y; 4248 if (match(CmpLHS, m_And(m_Value(X), m_APInt(Y)))) 4249 if (Value *V = simplifySelectBitTest(TrueVal, FalseVal, X, Y, 4250 /*TrueWhenUnset=*/true)) 4251 return V; 4252 4253 // Test for a bogus zero-shift-guard-op around funnel-shift or rotate. 4254 Value *ShAmt; 4255 auto isFsh = m_CombineOr(m_FShl(m_Value(X), m_Value(), m_Value(ShAmt)), 4256 m_FShr(m_Value(), m_Value(X), m_Value(ShAmt))); 4257 // (ShAmt == 0) ? fshl(X, *, ShAmt) : X --> X 4258 // (ShAmt == 0) ? fshr(*, X, ShAmt) : X --> X 4259 if (match(TrueVal, isFsh) && FalseVal == X && CmpLHS == ShAmt) 4260 return X; 4261 4262 // Test for a zero-shift-guard-op around rotates. These are used to 4263 // avoid UB from oversized shifts in raw IR rotate patterns, but the 4264 // intrinsics do not have that problem. 4265 // We do not allow this transform for the general funnel shift case because 4266 // that would not preserve the poison safety of the original code. 4267 auto isRotate = 4268 m_CombineOr(m_FShl(m_Value(X), m_Deferred(X), m_Value(ShAmt)), 4269 m_FShr(m_Value(X), m_Deferred(X), m_Value(ShAmt))); 4270 // (ShAmt == 0) ? X : fshl(X, X, ShAmt) --> fshl(X, X, ShAmt) 4271 // (ShAmt == 0) ? X : fshr(X, X, ShAmt) --> fshr(X, X, ShAmt) 4272 if (match(FalseVal, isRotate) && TrueVal == X && CmpLHS == ShAmt && 4273 Pred == ICmpInst::ICMP_EQ) 4274 return FalseVal; 4275 4276 // X == 0 ? abs(X) : -abs(X) --> -abs(X) 4277 // X == 0 ? -abs(X) : abs(X) --> abs(X) 4278 if (match(TrueVal, m_Intrinsic<Intrinsic::abs>(m_Specific(CmpLHS))) && 4279 match(FalseVal, m_Neg(m_Intrinsic<Intrinsic::abs>(m_Specific(CmpLHS))))) 4280 return FalseVal; 4281 if (match(TrueVal, 4282 m_Neg(m_Intrinsic<Intrinsic::abs>(m_Specific(CmpLHS)))) && 4283 match(FalseVal, m_Intrinsic<Intrinsic::abs>(m_Specific(CmpLHS)))) 4284 return FalseVal; 4285 } 4286 4287 // Check for other compares that behave like bit test. 4288 if (Value *V = simplifySelectWithFakeICmpEq(CmpLHS, CmpRHS, Pred, 4289 TrueVal, FalseVal)) 4290 return V; 4291 4292 // If we have a scalar equality comparison, then we know the value in one of 4293 // the arms of the select. See if substituting this value into the arm and 4294 // simplifying the result yields the same value as the other arm. 4295 // Note that the equivalence/replacement opportunity does not hold for vectors 4296 // because each element of a vector select is chosen independently. 4297 if (Pred == ICmpInst::ICMP_EQ && !CondVal->getType()->isVectorTy()) { 4298 if (simplifyWithOpReplaced(FalseVal, CmpLHS, CmpRHS, Q, 4299 /* AllowRefinement */ false, MaxRecurse) == 4300 TrueVal || 4301 simplifyWithOpReplaced(FalseVal, CmpRHS, CmpLHS, Q, 4302 /* AllowRefinement */ false, MaxRecurse) == 4303 TrueVal) 4304 return FalseVal; 4305 if (simplifyWithOpReplaced(TrueVal, CmpLHS, CmpRHS, Q, 4306 /* AllowRefinement */ true, MaxRecurse) == 4307 FalseVal || 4308 simplifyWithOpReplaced(TrueVal, CmpRHS, CmpLHS, Q, 4309 /* AllowRefinement */ true, MaxRecurse) == 4310 FalseVal) 4311 return FalseVal; 4312 } 4313 4314 return nullptr; 4315 } 4316 4317 /// Try to simplify a select instruction when its condition operand is a 4318 /// floating-point comparison. 4319 static Value *simplifySelectWithFCmp(Value *Cond, Value *T, Value *F, 4320 const SimplifyQuery &Q) { 4321 FCmpInst::Predicate Pred; 4322 if (!match(Cond, m_FCmp(Pred, m_Specific(T), m_Specific(F))) && 4323 !match(Cond, m_FCmp(Pred, m_Specific(F), m_Specific(T)))) 4324 return nullptr; 4325 4326 // This transform is safe if we do not have (do not care about) -0.0 or if 4327 // at least one operand is known to not be -0.0. Otherwise, the select can 4328 // change the sign of a zero operand. 4329 bool HasNoSignedZeros = Q.CxtI && isa<FPMathOperator>(Q.CxtI) && 4330 Q.CxtI->hasNoSignedZeros(); 4331 const APFloat *C; 4332 if (HasNoSignedZeros || (match(T, m_APFloat(C)) && C->isNonZero()) || 4333 (match(F, m_APFloat(C)) && C->isNonZero())) { 4334 // (T == F) ? T : F --> F 4335 // (F == T) ? T : F --> F 4336 if (Pred == FCmpInst::FCMP_OEQ) 4337 return F; 4338 4339 // (T != F) ? T : F --> T 4340 // (F != T) ? T : F --> T 4341 if (Pred == FCmpInst::FCMP_UNE) 4342 return T; 4343 } 4344 4345 return nullptr; 4346 } 4347 4348 /// Given operands for a SelectInst, see if we can fold the result. 4349 /// If not, this returns null. 4350 static Value *SimplifySelectInst(Value *Cond, Value *TrueVal, Value *FalseVal, 4351 const SimplifyQuery &Q, unsigned MaxRecurse) { 4352 if (auto *CondC = dyn_cast<Constant>(Cond)) { 4353 if (auto *TrueC = dyn_cast<Constant>(TrueVal)) 4354 if (auto *FalseC = dyn_cast<Constant>(FalseVal)) 4355 return ConstantFoldSelectInstruction(CondC, TrueC, FalseC); 4356 4357 // select poison, X, Y -> poison 4358 if (isa<PoisonValue>(CondC)) 4359 return PoisonValue::get(TrueVal->getType()); 4360 4361 // select undef, X, Y -> X or Y 4362 if (Q.isUndefValue(CondC)) 4363 return isa<Constant>(FalseVal) ? FalseVal : TrueVal; 4364 4365 // select true, X, Y --> X 4366 // select false, X, Y --> Y 4367 // For vectors, allow undef/poison elements in the condition to match the 4368 // defined elements, so we can eliminate the select. 4369 if (match(CondC, m_One())) 4370 return TrueVal; 4371 if (match(CondC, m_Zero())) 4372 return FalseVal; 4373 } 4374 4375 assert(Cond->getType()->isIntOrIntVectorTy(1) && 4376 "Select must have bool or bool vector condition"); 4377 assert(TrueVal->getType() == FalseVal->getType() && 4378 "Select must have same types for true/false ops"); 4379 4380 if (Cond->getType() == TrueVal->getType()) { 4381 // select i1 Cond, i1 true, i1 false --> i1 Cond 4382 if (match(TrueVal, m_One()) && match(FalseVal, m_ZeroInt())) 4383 return Cond; 4384 4385 // (X || Y) && (X || !Y) --> X (commuted 8 ways) 4386 Value *X, *Y; 4387 if (match(FalseVal, m_ZeroInt())) { 4388 if (match(Cond, m_c_LogicalOr(m_Value(X), m_Not(m_Value(Y)))) && 4389 match(TrueVal, m_c_LogicalOr(m_Specific(X), m_Specific(Y)))) 4390 return X; 4391 if (match(TrueVal, m_c_LogicalOr(m_Value(X), m_Not(m_Value(Y)))) && 4392 match(Cond, m_c_LogicalOr(m_Specific(X), m_Specific(Y)))) 4393 return X; 4394 } 4395 } 4396 4397 // select ?, X, X -> X 4398 if (TrueVal == FalseVal) 4399 return TrueVal; 4400 4401 // If the true or false value is poison, we can fold to the other value. 4402 // If the true or false value is undef, we can fold to the other value as 4403 // long as the other value isn't poison. 4404 // select ?, poison, X -> X 4405 // select ?, undef, X -> X 4406 if (isa<PoisonValue>(TrueVal) || 4407 (Q.isUndefValue(TrueVal) && 4408 isGuaranteedNotToBePoison(FalseVal, Q.AC, Q.CxtI, Q.DT))) 4409 return FalseVal; 4410 // select ?, X, poison -> X 4411 // select ?, X, undef -> X 4412 if (isa<PoisonValue>(FalseVal) || 4413 (Q.isUndefValue(FalseVal) && 4414 isGuaranteedNotToBePoison(TrueVal, Q.AC, Q.CxtI, Q.DT))) 4415 return TrueVal; 4416 4417 // Deal with partial undef vector constants: select ?, VecC, VecC' --> VecC'' 4418 Constant *TrueC, *FalseC; 4419 if (isa<FixedVectorType>(TrueVal->getType()) && 4420 match(TrueVal, m_Constant(TrueC)) && 4421 match(FalseVal, m_Constant(FalseC))) { 4422 unsigned NumElts = 4423 cast<FixedVectorType>(TrueC->getType())->getNumElements(); 4424 SmallVector<Constant *, 16> NewC; 4425 for (unsigned i = 0; i != NumElts; ++i) { 4426 // Bail out on incomplete vector constants. 4427 Constant *TEltC = TrueC->getAggregateElement(i); 4428 Constant *FEltC = FalseC->getAggregateElement(i); 4429 if (!TEltC || !FEltC) 4430 break; 4431 4432 // If the elements match (undef or not), that value is the result. If only 4433 // one element is undef, choose the defined element as the safe result. 4434 if (TEltC == FEltC) 4435 NewC.push_back(TEltC); 4436 else if (isa<PoisonValue>(TEltC) || 4437 (Q.isUndefValue(TEltC) && isGuaranteedNotToBePoison(FEltC))) 4438 NewC.push_back(FEltC); 4439 else if (isa<PoisonValue>(FEltC) || 4440 (Q.isUndefValue(FEltC) && isGuaranteedNotToBePoison(TEltC))) 4441 NewC.push_back(TEltC); 4442 else 4443 break; 4444 } 4445 if (NewC.size() == NumElts) 4446 return ConstantVector::get(NewC); 4447 } 4448 4449 if (Value *V = 4450 simplifySelectWithICmpCond(Cond, TrueVal, FalseVal, Q, MaxRecurse)) 4451 return V; 4452 4453 if (Value *V = simplifySelectWithFCmp(Cond, TrueVal, FalseVal, Q)) 4454 return V; 4455 4456 if (Value *V = foldSelectWithBinaryOp(Cond, TrueVal, FalseVal)) 4457 return V; 4458 4459 Optional<bool> Imp = isImpliedByDomCondition(Cond, Q.CxtI, Q.DL); 4460 if (Imp) 4461 return *Imp ? TrueVal : FalseVal; 4462 4463 return nullptr; 4464 } 4465 4466 Value *llvm::SimplifySelectInst(Value *Cond, Value *TrueVal, Value *FalseVal, 4467 const SimplifyQuery &Q) { 4468 return ::SimplifySelectInst(Cond, TrueVal, FalseVal, Q, RecursionLimit); 4469 } 4470 4471 /// Given operands for an GetElementPtrInst, see if we can fold the result. 4472 /// If not, this returns null. 4473 static Value *SimplifyGEPInst(Type *SrcTy, Value *Ptr, 4474 ArrayRef<Value *> Indices, bool InBounds, 4475 const SimplifyQuery &Q, unsigned) { 4476 // The type of the GEP pointer operand. 4477 unsigned AS = 4478 cast<PointerType>(Ptr->getType()->getScalarType())->getAddressSpace(); 4479 4480 // getelementptr P -> P. 4481 if (Indices.empty()) 4482 return Ptr; 4483 4484 // Compute the (pointer) type returned by the GEP instruction. 4485 Type *LastType = GetElementPtrInst::getIndexedType(SrcTy, Indices); 4486 Type *GEPTy = PointerType::get(LastType, AS); 4487 if (VectorType *VT = dyn_cast<VectorType>(Ptr->getType())) 4488 GEPTy = VectorType::get(GEPTy, VT->getElementCount()); 4489 else { 4490 for (Value *Op : Indices) { 4491 // If one of the operands is a vector, the result type is a vector of 4492 // pointers. All vector operands must have the same number of elements. 4493 if (VectorType *VT = dyn_cast<VectorType>(Op->getType())) { 4494 GEPTy = VectorType::get(GEPTy, VT->getElementCount()); 4495 break; 4496 } 4497 } 4498 } 4499 4500 // For opaque pointers an all-zero GEP is a no-op. For typed pointers, 4501 // it may be equivalent to a bitcast. 4502 if (Ptr->getType()->getScalarType()->isOpaquePointerTy() && 4503 Ptr->getType() == GEPTy && 4504 all_of(Indices, [](const auto *V) { return match(V, m_Zero()); })) 4505 return Ptr; 4506 4507 // getelementptr poison, idx -> poison 4508 // getelementptr baseptr, poison -> poison 4509 if (isa<PoisonValue>(Ptr) || 4510 any_of(Indices, [](const auto *V) { return isa<PoisonValue>(V); })) 4511 return PoisonValue::get(GEPTy); 4512 4513 if (Q.isUndefValue(Ptr)) 4514 // If inbounds, we can choose an out-of-bounds pointer as a base pointer. 4515 return InBounds ? PoisonValue::get(GEPTy) : UndefValue::get(GEPTy); 4516 4517 bool IsScalableVec = 4518 isa<ScalableVectorType>(SrcTy) || any_of(Indices, [](const Value *V) { 4519 return isa<ScalableVectorType>(V->getType()); 4520 }); 4521 4522 if (Indices.size() == 1) { 4523 // getelementptr P, 0 -> P. 4524 if (match(Indices[0], m_Zero()) && Ptr->getType() == GEPTy) 4525 return Ptr; 4526 4527 Type *Ty = SrcTy; 4528 if (!IsScalableVec && Ty->isSized()) { 4529 Value *P; 4530 uint64_t C; 4531 uint64_t TyAllocSize = Q.DL.getTypeAllocSize(Ty); 4532 // getelementptr P, N -> P if P points to a type of zero size. 4533 if (TyAllocSize == 0 && Ptr->getType() == GEPTy) 4534 return Ptr; 4535 4536 // The following transforms are only safe if the ptrtoint cast 4537 // doesn't truncate the pointers. 4538 if (Indices[0]->getType()->getScalarSizeInBits() == 4539 Q.DL.getPointerSizeInBits(AS)) { 4540 auto CanSimplify = [GEPTy, &P, Ptr]() -> bool { 4541 return P->getType() == GEPTy && 4542 getUnderlyingObject(P) == getUnderlyingObject(Ptr); 4543 }; 4544 // getelementptr V, (sub P, V) -> P if P points to a type of size 1. 4545 if (TyAllocSize == 1 && 4546 match(Indices[0], 4547 m_Sub(m_PtrToInt(m_Value(P)), m_PtrToInt(m_Specific(Ptr)))) && 4548 CanSimplify()) 4549 return P; 4550 4551 // getelementptr V, (ashr (sub P, V), C) -> P if P points to a type of 4552 // size 1 << C. 4553 if (match(Indices[0], m_AShr(m_Sub(m_PtrToInt(m_Value(P)), 4554 m_PtrToInt(m_Specific(Ptr))), 4555 m_ConstantInt(C))) && 4556 TyAllocSize == 1ULL << C && CanSimplify()) 4557 return P; 4558 4559 // getelementptr V, (sdiv (sub P, V), C) -> P if P points to a type of 4560 // size C. 4561 if (match(Indices[0], m_SDiv(m_Sub(m_PtrToInt(m_Value(P)), 4562 m_PtrToInt(m_Specific(Ptr))), 4563 m_SpecificInt(TyAllocSize))) && 4564 CanSimplify()) 4565 return P; 4566 } 4567 } 4568 } 4569 4570 if (!IsScalableVec && Q.DL.getTypeAllocSize(LastType) == 1 && 4571 all_of(Indices.drop_back(1), 4572 [](Value *Idx) { return match(Idx, m_Zero()); })) { 4573 unsigned IdxWidth = 4574 Q.DL.getIndexSizeInBits(Ptr->getType()->getPointerAddressSpace()); 4575 if (Q.DL.getTypeSizeInBits(Indices.back()->getType()) == IdxWidth) { 4576 APInt BasePtrOffset(IdxWidth, 0); 4577 Value *StrippedBasePtr = 4578 Ptr->stripAndAccumulateInBoundsConstantOffsets(Q.DL, BasePtrOffset); 4579 4580 // Avoid creating inttoptr of zero here: While LLVMs treatment of 4581 // inttoptr is generally conservative, this particular case is folded to 4582 // a null pointer, which will have incorrect provenance. 4583 4584 // gep (gep V, C), (sub 0, V) -> C 4585 if (match(Indices.back(), 4586 m_Sub(m_Zero(), m_PtrToInt(m_Specific(StrippedBasePtr)))) && 4587 !BasePtrOffset.isZero()) { 4588 auto *CI = ConstantInt::get(GEPTy->getContext(), BasePtrOffset); 4589 return ConstantExpr::getIntToPtr(CI, GEPTy); 4590 } 4591 // gep (gep V, C), (xor V, -1) -> C-1 4592 if (match(Indices.back(), 4593 m_Xor(m_PtrToInt(m_Specific(StrippedBasePtr)), m_AllOnes())) && 4594 !BasePtrOffset.isOne()) { 4595 auto *CI = ConstantInt::get(GEPTy->getContext(), BasePtrOffset - 1); 4596 return ConstantExpr::getIntToPtr(CI, GEPTy); 4597 } 4598 } 4599 } 4600 4601 // Check to see if this is constant foldable. 4602 if (!isa<Constant>(Ptr) || 4603 !all_of(Indices, [](Value *V) { return isa<Constant>(V); })) 4604 return nullptr; 4605 4606 auto *CE = ConstantExpr::getGetElementPtr(SrcTy, cast<Constant>(Ptr), Indices, 4607 InBounds); 4608 return ConstantFoldConstant(CE, Q.DL); 4609 } 4610 4611 Value *llvm::SimplifyGEPInst(Type *SrcTy, Value *Ptr, ArrayRef<Value *> Indices, 4612 bool InBounds, const SimplifyQuery &Q) { 4613 return ::SimplifyGEPInst(SrcTy, Ptr, Indices, InBounds, Q, RecursionLimit); 4614 } 4615 4616 /// Given operands for an InsertValueInst, see if we can fold the result. 4617 /// If not, this returns null. 4618 static Value *SimplifyInsertValueInst(Value *Agg, Value *Val, 4619 ArrayRef<unsigned> Idxs, const SimplifyQuery &Q, 4620 unsigned) { 4621 if (Constant *CAgg = dyn_cast<Constant>(Agg)) 4622 if (Constant *CVal = dyn_cast<Constant>(Val)) 4623 return ConstantFoldInsertValueInstruction(CAgg, CVal, Idxs); 4624 4625 // insertvalue x, undef, n -> x 4626 if (Q.isUndefValue(Val)) 4627 return Agg; 4628 4629 // insertvalue x, (extractvalue y, n), n 4630 if (ExtractValueInst *EV = dyn_cast<ExtractValueInst>(Val)) 4631 if (EV->getAggregateOperand()->getType() == Agg->getType() && 4632 EV->getIndices() == Idxs) { 4633 // insertvalue undef, (extractvalue y, n), n -> y 4634 if (Q.isUndefValue(Agg)) 4635 return EV->getAggregateOperand(); 4636 4637 // insertvalue y, (extractvalue y, n), n -> y 4638 if (Agg == EV->getAggregateOperand()) 4639 return Agg; 4640 } 4641 4642 return nullptr; 4643 } 4644 4645 Value *llvm::SimplifyInsertValueInst(Value *Agg, Value *Val, 4646 ArrayRef<unsigned> Idxs, 4647 const SimplifyQuery &Q) { 4648 return ::SimplifyInsertValueInst(Agg, Val, Idxs, Q, RecursionLimit); 4649 } 4650 4651 Value *llvm::SimplifyInsertElementInst(Value *Vec, Value *Val, Value *Idx, 4652 const SimplifyQuery &Q) { 4653 // Try to constant fold. 4654 auto *VecC = dyn_cast<Constant>(Vec); 4655 auto *ValC = dyn_cast<Constant>(Val); 4656 auto *IdxC = dyn_cast<Constant>(Idx); 4657 if (VecC && ValC && IdxC) 4658 return ConstantExpr::getInsertElement(VecC, ValC, IdxC); 4659 4660 // For fixed-length vector, fold into poison if index is out of bounds. 4661 if (auto *CI = dyn_cast<ConstantInt>(Idx)) { 4662 if (isa<FixedVectorType>(Vec->getType()) && 4663 CI->uge(cast<FixedVectorType>(Vec->getType())->getNumElements())) 4664 return PoisonValue::get(Vec->getType()); 4665 } 4666 4667 // If index is undef, it might be out of bounds (see above case) 4668 if (Q.isUndefValue(Idx)) 4669 return PoisonValue::get(Vec->getType()); 4670 4671 // If the scalar is poison, or it is undef and there is no risk of 4672 // propagating poison from the vector value, simplify to the vector value. 4673 if (isa<PoisonValue>(Val) || 4674 (Q.isUndefValue(Val) && isGuaranteedNotToBePoison(Vec))) 4675 return Vec; 4676 4677 // If we are extracting a value from a vector, then inserting it into the same 4678 // place, that's the input vector: 4679 // insertelt Vec, (extractelt Vec, Idx), Idx --> Vec 4680 if (match(Val, m_ExtractElt(m_Specific(Vec), m_Specific(Idx)))) 4681 return Vec; 4682 4683 return nullptr; 4684 } 4685 4686 /// Given operands for an ExtractValueInst, see if we can fold the result. 4687 /// If not, this returns null. 4688 static Value *SimplifyExtractValueInst(Value *Agg, ArrayRef<unsigned> Idxs, 4689 const SimplifyQuery &, unsigned) { 4690 if (auto *CAgg = dyn_cast<Constant>(Agg)) 4691 return ConstantFoldExtractValueInstruction(CAgg, Idxs); 4692 4693 // extractvalue x, (insertvalue y, elt, n), n -> elt 4694 unsigned NumIdxs = Idxs.size(); 4695 for (auto *IVI = dyn_cast<InsertValueInst>(Agg); IVI != nullptr; 4696 IVI = dyn_cast<InsertValueInst>(IVI->getAggregateOperand())) { 4697 ArrayRef<unsigned> InsertValueIdxs = IVI->getIndices(); 4698 unsigned NumInsertValueIdxs = InsertValueIdxs.size(); 4699 unsigned NumCommonIdxs = std::min(NumInsertValueIdxs, NumIdxs); 4700 if (InsertValueIdxs.slice(0, NumCommonIdxs) == 4701 Idxs.slice(0, NumCommonIdxs)) { 4702 if (NumIdxs == NumInsertValueIdxs) 4703 return IVI->getInsertedValueOperand(); 4704 break; 4705 } 4706 } 4707 4708 return nullptr; 4709 } 4710 4711 Value *llvm::SimplifyExtractValueInst(Value *Agg, ArrayRef<unsigned> Idxs, 4712 const SimplifyQuery &Q) { 4713 return ::SimplifyExtractValueInst(Agg, Idxs, Q, RecursionLimit); 4714 } 4715 4716 /// Given operands for an ExtractElementInst, see if we can fold the result. 4717 /// If not, this returns null. 4718 static Value *SimplifyExtractElementInst(Value *Vec, Value *Idx, 4719 const SimplifyQuery &Q, unsigned) { 4720 auto *VecVTy = cast<VectorType>(Vec->getType()); 4721 if (auto *CVec = dyn_cast<Constant>(Vec)) { 4722 if (auto *CIdx = dyn_cast<Constant>(Idx)) 4723 return ConstantExpr::getExtractElement(CVec, CIdx); 4724 4725 if (Q.isUndefValue(Vec)) 4726 return UndefValue::get(VecVTy->getElementType()); 4727 } 4728 4729 // An undef extract index can be arbitrarily chosen to be an out-of-range 4730 // index value, which would result in the instruction being poison. 4731 if (Q.isUndefValue(Idx)) 4732 return PoisonValue::get(VecVTy->getElementType()); 4733 4734 // If extracting a specified index from the vector, see if we can recursively 4735 // find a previously computed scalar that was inserted into the vector. 4736 if (auto *IdxC = dyn_cast<ConstantInt>(Idx)) { 4737 // For fixed-length vector, fold into undef if index is out of bounds. 4738 unsigned MinNumElts = VecVTy->getElementCount().getKnownMinValue(); 4739 if (isa<FixedVectorType>(VecVTy) && IdxC->getValue().uge(MinNumElts)) 4740 return PoisonValue::get(VecVTy->getElementType()); 4741 // Handle case where an element is extracted from a splat. 4742 if (IdxC->getValue().ult(MinNumElts)) 4743 if (auto *Splat = getSplatValue(Vec)) 4744 return Splat; 4745 if (Value *Elt = findScalarElement(Vec, IdxC->getZExtValue())) 4746 return Elt; 4747 } else { 4748 // The index is not relevant if our vector is a splat. 4749 if (Value *Splat = getSplatValue(Vec)) 4750 return Splat; 4751 } 4752 return nullptr; 4753 } 4754 4755 Value *llvm::SimplifyExtractElementInst(Value *Vec, Value *Idx, 4756 const SimplifyQuery &Q) { 4757 return ::SimplifyExtractElementInst(Vec, Idx, Q, RecursionLimit); 4758 } 4759 4760 /// See if we can fold the given phi. If not, returns null. 4761 static Value *SimplifyPHINode(PHINode *PN, ArrayRef<Value *> IncomingValues, 4762 const SimplifyQuery &Q) { 4763 // WARNING: no matter how worthwhile it may seem, we can not perform PHI CSE 4764 // here, because the PHI we may succeed simplifying to was not 4765 // def-reachable from the original PHI! 4766 4767 // If all of the PHI's incoming values are the same then replace the PHI node 4768 // with the common value. 4769 Value *CommonValue = nullptr; 4770 bool HasUndefInput = false; 4771 for (Value *Incoming : IncomingValues) { 4772 // If the incoming value is the phi node itself, it can safely be skipped. 4773 if (Incoming == PN) continue; 4774 if (Q.isUndefValue(Incoming)) { 4775 // Remember that we saw an undef value, but otherwise ignore them. 4776 HasUndefInput = true; 4777 continue; 4778 } 4779 if (CommonValue && Incoming != CommonValue) 4780 return nullptr; // Not the same, bail out. 4781 CommonValue = Incoming; 4782 } 4783 4784 // If CommonValue is null then all of the incoming values were either undef or 4785 // equal to the phi node itself. 4786 if (!CommonValue) 4787 return UndefValue::get(PN->getType()); 4788 4789 // If we have a PHI node like phi(X, undef, X), where X is defined by some 4790 // instruction, we cannot return X as the result of the PHI node unless it 4791 // dominates the PHI block. 4792 if (HasUndefInput) 4793 return valueDominatesPHI(CommonValue, PN, Q.DT) ? CommonValue : nullptr; 4794 4795 return CommonValue; 4796 } 4797 4798 static Value *SimplifyCastInst(unsigned CastOpc, Value *Op, 4799 Type *Ty, const SimplifyQuery &Q, unsigned MaxRecurse) { 4800 if (auto *C = dyn_cast<Constant>(Op)) 4801 return ConstantFoldCastOperand(CastOpc, C, Ty, Q.DL); 4802 4803 if (auto *CI = dyn_cast<CastInst>(Op)) { 4804 auto *Src = CI->getOperand(0); 4805 Type *SrcTy = Src->getType(); 4806 Type *MidTy = CI->getType(); 4807 Type *DstTy = Ty; 4808 if (Src->getType() == Ty) { 4809 auto FirstOp = static_cast<Instruction::CastOps>(CI->getOpcode()); 4810 auto SecondOp = static_cast<Instruction::CastOps>(CastOpc); 4811 Type *SrcIntPtrTy = 4812 SrcTy->isPtrOrPtrVectorTy() ? Q.DL.getIntPtrType(SrcTy) : nullptr; 4813 Type *MidIntPtrTy = 4814 MidTy->isPtrOrPtrVectorTy() ? Q.DL.getIntPtrType(MidTy) : nullptr; 4815 Type *DstIntPtrTy = 4816 DstTy->isPtrOrPtrVectorTy() ? Q.DL.getIntPtrType(DstTy) : nullptr; 4817 if (CastInst::isEliminableCastPair(FirstOp, SecondOp, SrcTy, MidTy, DstTy, 4818 SrcIntPtrTy, MidIntPtrTy, 4819 DstIntPtrTy) == Instruction::BitCast) 4820 return Src; 4821 } 4822 } 4823 4824 // bitcast x -> x 4825 if (CastOpc == Instruction::BitCast) 4826 if (Op->getType() == Ty) 4827 return Op; 4828 4829 return nullptr; 4830 } 4831 4832 Value *llvm::SimplifyCastInst(unsigned CastOpc, Value *Op, Type *Ty, 4833 const SimplifyQuery &Q) { 4834 return ::SimplifyCastInst(CastOpc, Op, Ty, Q, RecursionLimit); 4835 } 4836 4837 /// For the given destination element of a shuffle, peek through shuffles to 4838 /// match a root vector source operand that contains that element in the same 4839 /// vector lane (ie, the same mask index), so we can eliminate the shuffle(s). 4840 static Value *foldIdentityShuffles(int DestElt, Value *Op0, Value *Op1, 4841 int MaskVal, Value *RootVec, 4842 unsigned MaxRecurse) { 4843 if (!MaxRecurse--) 4844 return nullptr; 4845 4846 // Bail out if any mask value is undefined. That kind of shuffle may be 4847 // simplified further based on demanded bits or other folds. 4848 if (MaskVal == -1) 4849 return nullptr; 4850 4851 // The mask value chooses which source operand we need to look at next. 4852 int InVecNumElts = cast<FixedVectorType>(Op0->getType())->getNumElements(); 4853 int RootElt = MaskVal; 4854 Value *SourceOp = Op0; 4855 if (MaskVal >= InVecNumElts) { 4856 RootElt = MaskVal - InVecNumElts; 4857 SourceOp = Op1; 4858 } 4859 4860 // If the source operand is a shuffle itself, look through it to find the 4861 // matching root vector. 4862 if (auto *SourceShuf = dyn_cast<ShuffleVectorInst>(SourceOp)) { 4863 return foldIdentityShuffles( 4864 DestElt, SourceShuf->getOperand(0), SourceShuf->getOperand(1), 4865 SourceShuf->getMaskValue(RootElt), RootVec, MaxRecurse); 4866 } 4867 4868 // TODO: Look through bitcasts? What if the bitcast changes the vector element 4869 // size? 4870 4871 // The source operand is not a shuffle. Initialize the root vector value for 4872 // this shuffle if that has not been done yet. 4873 if (!RootVec) 4874 RootVec = SourceOp; 4875 4876 // Give up as soon as a source operand does not match the existing root value. 4877 if (RootVec != SourceOp) 4878 return nullptr; 4879 4880 // The element must be coming from the same lane in the source vector 4881 // (although it may have crossed lanes in intermediate shuffles). 4882 if (RootElt != DestElt) 4883 return nullptr; 4884 4885 return RootVec; 4886 } 4887 4888 static Value *SimplifyShuffleVectorInst(Value *Op0, Value *Op1, 4889 ArrayRef<int> Mask, Type *RetTy, 4890 const SimplifyQuery &Q, 4891 unsigned MaxRecurse) { 4892 if (all_of(Mask, [](int Elem) { return Elem == UndefMaskElem; })) 4893 return UndefValue::get(RetTy); 4894 4895 auto *InVecTy = cast<VectorType>(Op0->getType()); 4896 unsigned MaskNumElts = Mask.size(); 4897 ElementCount InVecEltCount = InVecTy->getElementCount(); 4898 4899 bool Scalable = InVecEltCount.isScalable(); 4900 4901 SmallVector<int, 32> Indices; 4902 Indices.assign(Mask.begin(), Mask.end()); 4903 4904 // Canonicalization: If mask does not select elements from an input vector, 4905 // replace that input vector with poison. 4906 if (!Scalable) { 4907 bool MaskSelects0 = false, MaskSelects1 = false; 4908 unsigned InVecNumElts = InVecEltCount.getKnownMinValue(); 4909 for (unsigned i = 0; i != MaskNumElts; ++i) { 4910 if (Indices[i] == -1) 4911 continue; 4912 if ((unsigned)Indices[i] < InVecNumElts) 4913 MaskSelects0 = true; 4914 else 4915 MaskSelects1 = true; 4916 } 4917 if (!MaskSelects0) 4918 Op0 = PoisonValue::get(InVecTy); 4919 if (!MaskSelects1) 4920 Op1 = PoisonValue::get(InVecTy); 4921 } 4922 4923 auto *Op0Const = dyn_cast<Constant>(Op0); 4924 auto *Op1Const = dyn_cast<Constant>(Op1); 4925 4926 // If all operands are constant, constant fold the shuffle. This 4927 // transformation depends on the value of the mask which is not known at 4928 // compile time for scalable vectors 4929 if (Op0Const && Op1Const) 4930 return ConstantExpr::getShuffleVector(Op0Const, Op1Const, Mask); 4931 4932 // Canonicalization: if only one input vector is constant, it shall be the 4933 // second one. This transformation depends on the value of the mask which 4934 // is not known at compile time for scalable vectors 4935 if (!Scalable && Op0Const && !Op1Const) { 4936 std::swap(Op0, Op1); 4937 ShuffleVectorInst::commuteShuffleMask(Indices, 4938 InVecEltCount.getKnownMinValue()); 4939 } 4940 4941 // A splat of an inserted scalar constant becomes a vector constant: 4942 // shuf (inselt ?, C, IndexC), undef, <IndexC, IndexC...> --> <C, C...> 4943 // NOTE: We may have commuted above, so analyze the updated Indices, not the 4944 // original mask constant. 4945 // NOTE: This transformation depends on the value of the mask which is not 4946 // known at compile time for scalable vectors 4947 Constant *C; 4948 ConstantInt *IndexC; 4949 if (!Scalable && match(Op0, m_InsertElt(m_Value(), m_Constant(C), 4950 m_ConstantInt(IndexC)))) { 4951 // Match a splat shuffle mask of the insert index allowing undef elements. 4952 int InsertIndex = IndexC->getZExtValue(); 4953 if (all_of(Indices, [InsertIndex](int MaskElt) { 4954 return MaskElt == InsertIndex || MaskElt == -1; 4955 })) { 4956 assert(isa<UndefValue>(Op1) && "Expected undef operand 1 for splat"); 4957 4958 // Shuffle mask undefs become undefined constant result elements. 4959 SmallVector<Constant *, 16> VecC(MaskNumElts, C); 4960 for (unsigned i = 0; i != MaskNumElts; ++i) 4961 if (Indices[i] == -1) 4962 VecC[i] = UndefValue::get(C->getType()); 4963 return ConstantVector::get(VecC); 4964 } 4965 } 4966 4967 // A shuffle of a splat is always the splat itself. Legal if the shuffle's 4968 // value type is same as the input vectors' type. 4969 if (auto *OpShuf = dyn_cast<ShuffleVectorInst>(Op0)) 4970 if (Q.isUndefValue(Op1) && RetTy == InVecTy && 4971 is_splat(OpShuf->getShuffleMask())) 4972 return Op0; 4973 4974 // All remaining transformation depend on the value of the mask, which is 4975 // not known at compile time for scalable vectors. 4976 if (Scalable) 4977 return nullptr; 4978 4979 // Don't fold a shuffle with undef mask elements. This may get folded in a 4980 // better way using demanded bits or other analysis. 4981 // TODO: Should we allow this? 4982 if (is_contained(Indices, -1)) 4983 return nullptr; 4984 4985 // Check if every element of this shuffle can be mapped back to the 4986 // corresponding element of a single root vector. If so, we don't need this 4987 // shuffle. This handles simple identity shuffles as well as chains of 4988 // shuffles that may widen/narrow and/or move elements across lanes and back. 4989 Value *RootVec = nullptr; 4990 for (unsigned i = 0; i != MaskNumElts; ++i) { 4991 // Note that recursion is limited for each vector element, so if any element 4992 // exceeds the limit, this will fail to simplify. 4993 RootVec = 4994 foldIdentityShuffles(i, Op0, Op1, Indices[i], RootVec, MaxRecurse); 4995 4996 // We can't replace a widening/narrowing shuffle with one of its operands. 4997 if (!RootVec || RootVec->getType() != RetTy) 4998 return nullptr; 4999 } 5000 return RootVec; 5001 } 5002 5003 /// Given operands for a ShuffleVectorInst, fold the result or return null. 5004 Value *llvm::SimplifyShuffleVectorInst(Value *Op0, Value *Op1, 5005 ArrayRef<int> Mask, Type *RetTy, 5006 const SimplifyQuery &Q) { 5007 return ::SimplifyShuffleVectorInst(Op0, Op1, Mask, RetTy, Q, RecursionLimit); 5008 } 5009 5010 static Constant *foldConstant(Instruction::UnaryOps Opcode, 5011 Value *&Op, const SimplifyQuery &Q) { 5012 if (auto *C = dyn_cast<Constant>(Op)) 5013 return ConstantFoldUnaryOpOperand(Opcode, C, Q.DL); 5014 return nullptr; 5015 } 5016 5017 /// Given the operand for an FNeg, see if we can fold the result. If not, this 5018 /// returns null. 5019 static Value *simplifyFNegInst(Value *Op, FastMathFlags FMF, 5020 const SimplifyQuery &Q, unsigned MaxRecurse) { 5021 if (Constant *C = foldConstant(Instruction::FNeg, Op, Q)) 5022 return C; 5023 5024 Value *X; 5025 // fneg (fneg X) ==> X 5026 if (match(Op, m_FNeg(m_Value(X)))) 5027 return X; 5028 5029 return nullptr; 5030 } 5031 5032 Value *llvm::SimplifyFNegInst(Value *Op, FastMathFlags FMF, 5033 const SimplifyQuery &Q) { 5034 return ::simplifyFNegInst(Op, FMF, Q, RecursionLimit); 5035 } 5036 5037 static Constant *propagateNaN(Constant *In) { 5038 // If the input is a vector with undef elements, just return a default NaN. 5039 if (!In->isNaN()) 5040 return ConstantFP::getNaN(In->getType()); 5041 5042 // Propagate the existing NaN constant when possible. 5043 // TODO: Should we quiet a signaling NaN? 5044 return In; 5045 } 5046 5047 /// Perform folds that are common to any floating-point operation. This implies 5048 /// transforms based on poison/undef/NaN because the operation itself makes no 5049 /// difference to the result. 5050 static Constant *simplifyFPOp(ArrayRef<Value *> Ops, FastMathFlags FMF, 5051 const SimplifyQuery &Q, 5052 fp::ExceptionBehavior ExBehavior, 5053 RoundingMode Rounding) { 5054 // Poison is independent of anything else. It always propagates from an 5055 // operand to a math result. 5056 if (any_of(Ops, [](Value *V) { return match(V, m_Poison()); })) 5057 return PoisonValue::get(Ops[0]->getType()); 5058 5059 for (Value *V : Ops) { 5060 bool IsNan = match(V, m_NaN()); 5061 bool IsInf = match(V, m_Inf()); 5062 bool IsUndef = Q.isUndefValue(V); 5063 5064 // If this operation has 'nnan' or 'ninf' and at least 1 disallowed operand 5065 // (an undef operand can be chosen to be Nan/Inf), then the result of 5066 // this operation is poison. 5067 if (FMF.noNaNs() && (IsNan || IsUndef)) 5068 return PoisonValue::get(V->getType()); 5069 if (FMF.noInfs() && (IsInf || IsUndef)) 5070 return PoisonValue::get(V->getType()); 5071 5072 if (isDefaultFPEnvironment(ExBehavior, Rounding)) { 5073 if (IsUndef || IsNan) 5074 return propagateNaN(cast<Constant>(V)); 5075 } else if (ExBehavior != fp::ebStrict) { 5076 if (IsNan) 5077 return propagateNaN(cast<Constant>(V)); 5078 } 5079 } 5080 return nullptr; 5081 } 5082 5083 /// Given operands for an FAdd, see if we can fold the result. If not, this 5084 /// returns null. 5085 static Value * 5086 SimplifyFAddInst(Value *Op0, Value *Op1, FastMathFlags FMF, 5087 const SimplifyQuery &Q, unsigned MaxRecurse, 5088 fp::ExceptionBehavior ExBehavior = fp::ebIgnore, 5089 RoundingMode Rounding = RoundingMode::NearestTiesToEven) { 5090 if (isDefaultFPEnvironment(ExBehavior, Rounding)) 5091 if (Constant *C = foldOrCommuteConstant(Instruction::FAdd, Op0, Op1, Q)) 5092 return C; 5093 5094 if (Constant *C = simplifyFPOp({Op0, Op1}, FMF, Q, ExBehavior, Rounding)) 5095 return C; 5096 5097 // fadd X, -0 ==> X 5098 // With strict/constrained FP, we have these possible edge cases that do 5099 // not simplify to Op0: 5100 // fadd SNaN, -0.0 --> QNaN 5101 // fadd +0.0, -0.0 --> -0.0 (but only with round toward negative) 5102 if (canIgnoreSNaN(ExBehavior, FMF) && 5103 (!canRoundingModeBe(Rounding, RoundingMode::TowardNegative) || 5104 FMF.noSignedZeros())) 5105 if (match(Op1, m_NegZeroFP())) 5106 return Op0; 5107 5108 // fadd X, 0 ==> X, when we know X is not -0 5109 if (canIgnoreSNaN(ExBehavior, FMF)) 5110 if (match(Op1, m_PosZeroFP()) && 5111 (FMF.noSignedZeros() || CannotBeNegativeZero(Op0, Q.TLI))) 5112 return Op0; 5113 5114 if (!isDefaultFPEnvironment(ExBehavior, Rounding)) 5115 return nullptr; 5116 5117 // With nnan: -X + X --> 0.0 (and commuted variant) 5118 // We don't have to explicitly exclude infinities (ninf): INF + -INF == NaN. 5119 // Negative zeros are allowed because we always end up with positive zero: 5120 // X = -0.0: (-0.0 - (-0.0)) + (-0.0) == ( 0.0) + (-0.0) == 0.0 5121 // X = -0.0: ( 0.0 - (-0.0)) + (-0.0) == ( 0.0) + (-0.0) == 0.0 5122 // X = 0.0: (-0.0 - ( 0.0)) + ( 0.0) == (-0.0) + ( 0.0) == 0.0 5123 // X = 0.0: ( 0.0 - ( 0.0)) + ( 0.0) == ( 0.0) + ( 0.0) == 0.0 5124 if (FMF.noNaNs()) { 5125 if (match(Op0, m_FSub(m_AnyZeroFP(), m_Specific(Op1))) || 5126 match(Op1, m_FSub(m_AnyZeroFP(), m_Specific(Op0)))) 5127 return ConstantFP::getNullValue(Op0->getType()); 5128 5129 if (match(Op0, m_FNeg(m_Specific(Op1))) || 5130 match(Op1, m_FNeg(m_Specific(Op0)))) 5131 return ConstantFP::getNullValue(Op0->getType()); 5132 } 5133 5134 // (X - Y) + Y --> X 5135 // Y + (X - Y) --> X 5136 Value *X; 5137 if (FMF.noSignedZeros() && FMF.allowReassoc() && 5138 (match(Op0, m_FSub(m_Value(X), m_Specific(Op1))) || 5139 match(Op1, m_FSub(m_Value(X), m_Specific(Op0))))) 5140 return X; 5141 5142 return nullptr; 5143 } 5144 5145 /// Given operands for an FSub, see if we can fold the result. If not, this 5146 /// returns null. 5147 static Value * 5148 SimplifyFSubInst(Value *Op0, Value *Op1, FastMathFlags FMF, 5149 const SimplifyQuery &Q, unsigned MaxRecurse, 5150 fp::ExceptionBehavior ExBehavior = fp::ebIgnore, 5151 RoundingMode Rounding = RoundingMode::NearestTiesToEven) { 5152 if (isDefaultFPEnvironment(ExBehavior, Rounding)) 5153 if (Constant *C = foldOrCommuteConstant(Instruction::FSub, Op0, Op1, Q)) 5154 return C; 5155 5156 if (Constant *C = simplifyFPOp({Op0, Op1}, FMF, Q, ExBehavior, Rounding)) 5157 return C; 5158 5159 // fsub X, +0 ==> X 5160 if (canIgnoreSNaN(ExBehavior, FMF) && 5161 (!canRoundingModeBe(Rounding, RoundingMode::TowardNegative) || 5162 FMF.noSignedZeros())) 5163 if (match(Op1, m_PosZeroFP())) 5164 return Op0; 5165 5166 // fsub X, -0 ==> X, when we know X is not -0 5167 if (canIgnoreSNaN(ExBehavior, FMF)) 5168 if (match(Op1, m_NegZeroFP()) && 5169 (FMF.noSignedZeros() || CannotBeNegativeZero(Op0, Q.TLI))) 5170 return Op0; 5171 5172 if (!isDefaultFPEnvironment(ExBehavior, Rounding)) 5173 return nullptr; 5174 5175 // fsub -0.0, (fsub -0.0, X) ==> X 5176 // fsub -0.0, (fneg X) ==> X 5177 Value *X; 5178 if (match(Op0, m_NegZeroFP()) && 5179 match(Op1, m_FNeg(m_Value(X)))) 5180 return X; 5181 5182 // fsub 0.0, (fsub 0.0, X) ==> X if signed zeros are ignored. 5183 // fsub 0.0, (fneg X) ==> X if signed zeros are ignored. 5184 if (FMF.noSignedZeros() && match(Op0, m_AnyZeroFP()) && 5185 (match(Op1, m_FSub(m_AnyZeroFP(), m_Value(X))) || 5186 match(Op1, m_FNeg(m_Value(X))))) 5187 return X; 5188 5189 // fsub nnan x, x ==> 0.0 5190 if (FMF.noNaNs() && Op0 == Op1) 5191 return Constant::getNullValue(Op0->getType()); 5192 5193 // Y - (Y - X) --> X 5194 // (X + Y) - Y --> X 5195 if (FMF.noSignedZeros() && FMF.allowReassoc() && 5196 (match(Op1, m_FSub(m_Specific(Op0), m_Value(X))) || 5197 match(Op0, m_c_FAdd(m_Specific(Op1), m_Value(X))))) 5198 return X; 5199 5200 return nullptr; 5201 } 5202 5203 static Value *SimplifyFMAFMul(Value *Op0, Value *Op1, FastMathFlags FMF, 5204 const SimplifyQuery &Q, unsigned MaxRecurse, 5205 fp::ExceptionBehavior ExBehavior, 5206 RoundingMode Rounding) { 5207 if (Constant *C = simplifyFPOp({Op0, Op1}, FMF, Q, ExBehavior, Rounding)) 5208 return C; 5209 5210 if (!isDefaultFPEnvironment(ExBehavior, Rounding)) 5211 return nullptr; 5212 5213 // fmul X, 1.0 ==> X 5214 if (match(Op1, m_FPOne())) 5215 return Op0; 5216 5217 // fmul 1.0, X ==> X 5218 if (match(Op0, m_FPOne())) 5219 return Op1; 5220 5221 // fmul nnan nsz X, 0 ==> 0 5222 if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op1, m_AnyZeroFP())) 5223 return ConstantFP::getNullValue(Op0->getType()); 5224 5225 // fmul nnan nsz 0, X ==> 0 5226 if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op0, m_AnyZeroFP())) 5227 return ConstantFP::getNullValue(Op1->getType()); 5228 5229 // sqrt(X) * sqrt(X) --> X, if we can: 5230 // 1. Remove the intermediate rounding (reassociate). 5231 // 2. Ignore non-zero negative numbers because sqrt would produce NAN. 5232 // 3. Ignore -0.0 because sqrt(-0.0) == -0.0, but -0.0 * -0.0 == 0.0. 5233 Value *X; 5234 if (Op0 == Op1 && match(Op0, m_Intrinsic<Intrinsic::sqrt>(m_Value(X))) && 5235 FMF.allowReassoc() && FMF.noNaNs() && FMF.noSignedZeros()) 5236 return X; 5237 5238 return nullptr; 5239 } 5240 5241 /// Given the operands for an FMul, see if we can fold the result 5242 static Value * 5243 SimplifyFMulInst(Value *Op0, Value *Op1, FastMathFlags FMF, 5244 const SimplifyQuery &Q, unsigned MaxRecurse, 5245 fp::ExceptionBehavior ExBehavior = fp::ebIgnore, 5246 RoundingMode Rounding = RoundingMode::NearestTiesToEven) { 5247 if (isDefaultFPEnvironment(ExBehavior, Rounding)) 5248 if (Constant *C = foldOrCommuteConstant(Instruction::FMul, Op0, Op1, Q)) 5249 return C; 5250 5251 // Now apply simplifications that do not require rounding. 5252 return SimplifyFMAFMul(Op0, Op1, FMF, Q, MaxRecurse, ExBehavior, Rounding); 5253 } 5254 5255 Value *llvm::SimplifyFAddInst(Value *Op0, Value *Op1, FastMathFlags FMF, 5256 const SimplifyQuery &Q, 5257 fp::ExceptionBehavior ExBehavior, 5258 RoundingMode Rounding) { 5259 return ::SimplifyFAddInst(Op0, Op1, FMF, Q, RecursionLimit, ExBehavior, 5260 Rounding); 5261 } 5262 5263 Value *llvm::SimplifyFSubInst(Value *Op0, Value *Op1, FastMathFlags FMF, 5264 const SimplifyQuery &Q, 5265 fp::ExceptionBehavior ExBehavior, 5266 RoundingMode Rounding) { 5267 return ::SimplifyFSubInst(Op0, Op1, FMF, Q, RecursionLimit, ExBehavior, 5268 Rounding); 5269 } 5270 5271 Value *llvm::SimplifyFMulInst(Value *Op0, Value *Op1, FastMathFlags FMF, 5272 const SimplifyQuery &Q, 5273 fp::ExceptionBehavior ExBehavior, 5274 RoundingMode Rounding) { 5275 return ::SimplifyFMulInst(Op0, Op1, FMF, Q, RecursionLimit, ExBehavior, 5276 Rounding); 5277 } 5278 5279 Value *llvm::SimplifyFMAFMul(Value *Op0, Value *Op1, FastMathFlags FMF, 5280 const SimplifyQuery &Q, 5281 fp::ExceptionBehavior ExBehavior, 5282 RoundingMode Rounding) { 5283 return ::SimplifyFMAFMul(Op0, Op1, FMF, Q, RecursionLimit, ExBehavior, 5284 Rounding); 5285 } 5286 5287 static Value * 5288 SimplifyFDivInst(Value *Op0, Value *Op1, FastMathFlags FMF, 5289 const SimplifyQuery &Q, unsigned, 5290 fp::ExceptionBehavior ExBehavior = fp::ebIgnore, 5291 RoundingMode Rounding = RoundingMode::NearestTiesToEven) { 5292 if (isDefaultFPEnvironment(ExBehavior, Rounding)) 5293 if (Constant *C = foldOrCommuteConstant(Instruction::FDiv, Op0, Op1, Q)) 5294 return C; 5295 5296 if (Constant *C = simplifyFPOp({Op0, Op1}, FMF, Q, ExBehavior, Rounding)) 5297 return C; 5298 5299 if (!isDefaultFPEnvironment(ExBehavior, Rounding)) 5300 return nullptr; 5301 5302 // X / 1.0 -> X 5303 if (match(Op1, m_FPOne())) 5304 return Op0; 5305 5306 // 0 / X -> 0 5307 // Requires that NaNs are off (X could be zero) and signed zeroes are 5308 // ignored (X could be positive or negative, so the output sign is unknown). 5309 if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op0, m_AnyZeroFP())) 5310 return ConstantFP::getNullValue(Op0->getType()); 5311 5312 if (FMF.noNaNs()) { 5313 // X / X -> 1.0 is legal when NaNs are ignored. 5314 // We can ignore infinities because INF/INF is NaN. 5315 if (Op0 == Op1) 5316 return ConstantFP::get(Op0->getType(), 1.0); 5317 5318 // (X * Y) / Y --> X if we can reassociate to the above form. 5319 Value *X; 5320 if (FMF.allowReassoc() && match(Op0, m_c_FMul(m_Value(X), m_Specific(Op1)))) 5321 return X; 5322 5323 // -X / X -> -1.0 and 5324 // X / -X -> -1.0 are legal when NaNs are ignored. 5325 // We can ignore signed zeros because +-0.0/+-0.0 is NaN and ignored. 5326 if (match(Op0, m_FNegNSZ(m_Specific(Op1))) || 5327 match(Op1, m_FNegNSZ(m_Specific(Op0)))) 5328 return ConstantFP::get(Op0->getType(), -1.0); 5329 } 5330 5331 return nullptr; 5332 } 5333 5334 Value *llvm::SimplifyFDivInst(Value *Op0, Value *Op1, FastMathFlags FMF, 5335 const SimplifyQuery &Q, 5336 fp::ExceptionBehavior ExBehavior, 5337 RoundingMode Rounding) { 5338 return ::SimplifyFDivInst(Op0, Op1, FMF, Q, RecursionLimit, ExBehavior, 5339 Rounding); 5340 } 5341 5342 static Value * 5343 SimplifyFRemInst(Value *Op0, Value *Op1, FastMathFlags FMF, 5344 const SimplifyQuery &Q, unsigned, 5345 fp::ExceptionBehavior ExBehavior = fp::ebIgnore, 5346 RoundingMode Rounding = RoundingMode::NearestTiesToEven) { 5347 if (isDefaultFPEnvironment(ExBehavior, Rounding)) 5348 if (Constant *C = foldOrCommuteConstant(Instruction::FRem, Op0, Op1, Q)) 5349 return C; 5350 5351 if (Constant *C = simplifyFPOp({Op0, Op1}, FMF, Q, ExBehavior, Rounding)) 5352 return C; 5353 5354 if (!isDefaultFPEnvironment(ExBehavior, Rounding)) 5355 return nullptr; 5356 5357 // Unlike fdiv, the result of frem always matches the sign of the dividend. 5358 // The constant match may include undef elements in a vector, so return a full 5359 // zero constant as the result. 5360 if (FMF.noNaNs()) { 5361 // +0 % X -> 0 5362 if (match(Op0, m_PosZeroFP())) 5363 return ConstantFP::getNullValue(Op0->getType()); 5364 // -0 % X -> -0 5365 if (match(Op0, m_NegZeroFP())) 5366 return ConstantFP::getNegativeZero(Op0->getType()); 5367 } 5368 5369 return nullptr; 5370 } 5371 5372 Value *llvm::SimplifyFRemInst(Value *Op0, Value *Op1, FastMathFlags FMF, 5373 const SimplifyQuery &Q, 5374 fp::ExceptionBehavior ExBehavior, 5375 RoundingMode Rounding) { 5376 return ::SimplifyFRemInst(Op0, Op1, FMF, Q, RecursionLimit, ExBehavior, 5377 Rounding); 5378 } 5379 5380 //=== Helper functions for higher up the class hierarchy. 5381 5382 /// Given the operand for a UnaryOperator, see if we can fold the result. 5383 /// If not, this returns null. 5384 static Value *simplifyUnOp(unsigned Opcode, Value *Op, const SimplifyQuery &Q, 5385 unsigned MaxRecurse) { 5386 switch (Opcode) { 5387 case Instruction::FNeg: 5388 return simplifyFNegInst(Op, FastMathFlags(), Q, MaxRecurse); 5389 default: 5390 llvm_unreachable("Unexpected opcode"); 5391 } 5392 } 5393 5394 /// Given the operand for a UnaryOperator, see if we can fold the result. 5395 /// If not, this returns null. 5396 /// Try to use FastMathFlags when folding the result. 5397 static Value *simplifyFPUnOp(unsigned Opcode, Value *Op, 5398 const FastMathFlags &FMF, 5399 const SimplifyQuery &Q, unsigned MaxRecurse) { 5400 switch (Opcode) { 5401 case Instruction::FNeg: 5402 return simplifyFNegInst(Op, FMF, Q, MaxRecurse); 5403 default: 5404 return simplifyUnOp(Opcode, Op, Q, MaxRecurse); 5405 } 5406 } 5407 5408 Value *llvm::SimplifyUnOp(unsigned Opcode, Value *Op, const SimplifyQuery &Q) { 5409 return ::simplifyUnOp(Opcode, Op, Q, RecursionLimit); 5410 } 5411 5412 Value *llvm::SimplifyUnOp(unsigned Opcode, Value *Op, FastMathFlags FMF, 5413 const SimplifyQuery &Q) { 5414 return ::simplifyFPUnOp(Opcode, Op, FMF, Q, RecursionLimit); 5415 } 5416 5417 /// Given operands for a BinaryOperator, see if we can fold the result. 5418 /// If not, this returns null. 5419 static Value *SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS, 5420 const SimplifyQuery &Q, unsigned MaxRecurse) { 5421 switch (Opcode) { 5422 case Instruction::Add: 5423 return SimplifyAddInst(LHS, RHS, false, false, Q, MaxRecurse); 5424 case Instruction::Sub: 5425 return SimplifySubInst(LHS, RHS, false, false, Q, MaxRecurse); 5426 case Instruction::Mul: 5427 return SimplifyMulInst(LHS, RHS, Q, MaxRecurse); 5428 case Instruction::SDiv: 5429 return SimplifySDivInst(LHS, RHS, Q, MaxRecurse); 5430 case Instruction::UDiv: 5431 return SimplifyUDivInst(LHS, RHS, Q, MaxRecurse); 5432 case Instruction::SRem: 5433 return SimplifySRemInst(LHS, RHS, Q, MaxRecurse); 5434 case Instruction::URem: 5435 return SimplifyURemInst(LHS, RHS, Q, MaxRecurse); 5436 case Instruction::Shl: 5437 return SimplifyShlInst(LHS, RHS, false, false, Q, MaxRecurse); 5438 case Instruction::LShr: 5439 return SimplifyLShrInst(LHS, RHS, false, Q, MaxRecurse); 5440 case Instruction::AShr: 5441 return SimplifyAShrInst(LHS, RHS, false, Q, MaxRecurse); 5442 case Instruction::And: 5443 return SimplifyAndInst(LHS, RHS, Q, MaxRecurse); 5444 case Instruction::Or: 5445 return SimplifyOrInst(LHS, RHS, Q, MaxRecurse); 5446 case Instruction::Xor: 5447 return SimplifyXorInst(LHS, RHS, Q, MaxRecurse); 5448 case Instruction::FAdd: 5449 return SimplifyFAddInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse); 5450 case Instruction::FSub: 5451 return SimplifyFSubInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse); 5452 case Instruction::FMul: 5453 return SimplifyFMulInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse); 5454 case Instruction::FDiv: 5455 return SimplifyFDivInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse); 5456 case Instruction::FRem: 5457 return SimplifyFRemInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse); 5458 default: 5459 llvm_unreachable("Unexpected opcode"); 5460 } 5461 } 5462 5463 /// Given operands for a BinaryOperator, see if we can fold the result. 5464 /// If not, this returns null. 5465 /// Try to use FastMathFlags when folding the result. 5466 static Value *SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS, 5467 const FastMathFlags &FMF, const SimplifyQuery &Q, 5468 unsigned MaxRecurse) { 5469 switch (Opcode) { 5470 case Instruction::FAdd: 5471 return SimplifyFAddInst(LHS, RHS, FMF, Q, MaxRecurse); 5472 case Instruction::FSub: 5473 return SimplifyFSubInst(LHS, RHS, FMF, Q, MaxRecurse); 5474 case Instruction::FMul: 5475 return SimplifyFMulInst(LHS, RHS, FMF, Q, MaxRecurse); 5476 case Instruction::FDiv: 5477 return SimplifyFDivInst(LHS, RHS, FMF, Q, MaxRecurse); 5478 default: 5479 return SimplifyBinOp(Opcode, LHS, RHS, Q, MaxRecurse); 5480 } 5481 } 5482 5483 Value *llvm::SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS, 5484 const SimplifyQuery &Q) { 5485 return ::SimplifyBinOp(Opcode, LHS, RHS, Q, RecursionLimit); 5486 } 5487 5488 Value *llvm::SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS, 5489 FastMathFlags FMF, const SimplifyQuery &Q) { 5490 return ::SimplifyBinOp(Opcode, LHS, RHS, FMF, Q, RecursionLimit); 5491 } 5492 5493 /// Given operands for a CmpInst, see if we can fold the result. 5494 static Value *SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS, 5495 const SimplifyQuery &Q, unsigned MaxRecurse) { 5496 if (CmpInst::isIntPredicate((CmpInst::Predicate)Predicate)) 5497 return SimplifyICmpInst(Predicate, LHS, RHS, Q, MaxRecurse); 5498 return SimplifyFCmpInst(Predicate, LHS, RHS, FastMathFlags(), Q, MaxRecurse); 5499 } 5500 5501 Value *llvm::SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS, 5502 const SimplifyQuery &Q) { 5503 return ::SimplifyCmpInst(Predicate, LHS, RHS, Q, RecursionLimit); 5504 } 5505 5506 static bool IsIdempotent(Intrinsic::ID ID) { 5507 switch (ID) { 5508 default: return false; 5509 5510 // Unary idempotent: f(f(x)) = f(x) 5511 case Intrinsic::fabs: 5512 case Intrinsic::floor: 5513 case Intrinsic::ceil: 5514 case Intrinsic::trunc: 5515 case Intrinsic::rint: 5516 case Intrinsic::nearbyint: 5517 case Intrinsic::round: 5518 case Intrinsic::roundeven: 5519 case Intrinsic::canonicalize: 5520 return true; 5521 } 5522 } 5523 5524 static Value *SimplifyRelativeLoad(Constant *Ptr, Constant *Offset, 5525 const DataLayout &DL) { 5526 GlobalValue *PtrSym; 5527 APInt PtrOffset; 5528 if (!IsConstantOffsetFromGlobal(Ptr, PtrSym, PtrOffset, DL)) 5529 return nullptr; 5530 5531 Type *Int8PtrTy = Type::getInt8PtrTy(Ptr->getContext()); 5532 Type *Int32Ty = Type::getInt32Ty(Ptr->getContext()); 5533 Type *Int32PtrTy = Int32Ty->getPointerTo(); 5534 Type *Int64Ty = Type::getInt64Ty(Ptr->getContext()); 5535 5536 auto *OffsetConstInt = dyn_cast<ConstantInt>(Offset); 5537 if (!OffsetConstInt || OffsetConstInt->getType()->getBitWidth() > 64) 5538 return nullptr; 5539 5540 uint64_t OffsetInt = OffsetConstInt->getSExtValue(); 5541 if (OffsetInt % 4 != 0) 5542 return nullptr; 5543 5544 Constant *C = ConstantExpr::getGetElementPtr( 5545 Int32Ty, ConstantExpr::getBitCast(Ptr, Int32PtrTy), 5546 ConstantInt::get(Int64Ty, OffsetInt / 4)); 5547 Constant *Loaded = ConstantFoldLoadFromConstPtr(C, Int32Ty, DL); 5548 if (!Loaded) 5549 return nullptr; 5550 5551 auto *LoadedCE = dyn_cast<ConstantExpr>(Loaded); 5552 if (!LoadedCE) 5553 return nullptr; 5554 5555 if (LoadedCE->getOpcode() == Instruction::Trunc) { 5556 LoadedCE = dyn_cast<ConstantExpr>(LoadedCE->getOperand(0)); 5557 if (!LoadedCE) 5558 return nullptr; 5559 } 5560 5561 if (LoadedCE->getOpcode() != Instruction::Sub) 5562 return nullptr; 5563 5564 auto *LoadedLHS = dyn_cast<ConstantExpr>(LoadedCE->getOperand(0)); 5565 if (!LoadedLHS || LoadedLHS->getOpcode() != Instruction::PtrToInt) 5566 return nullptr; 5567 auto *LoadedLHSPtr = LoadedLHS->getOperand(0); 5568 5569 Constant *LoadedRHS = LoadedCE->getOperand(1); 5570 GlobalValue *LoadedRHSSym; 5571 APInt LoadedRHSOffset; 5572 if (!IsConstantOffsetFromGlobal(LoadedRHS, LoadedRHSSym, LoadedRHSOffset, 5573 DL) || 5574 PtrSym != LoadedRHSSym || PtrOffset != LoadedRHSOffset) 5575 return nullptr; 5576 5577 return ConstantExpr::getBitCast(LoadedLHSPtr, Int8PtrTy); 5578 } 5579 5580 static Value *simplifyUnaryIntrinsic(Function *F, Value *Op0, 5581 const SimplifyQuery &Q) { 5582 // Idempotent functions return the same result when called repeatedly. 5583 Intrinsic::ID IID = F->getIntrinsicID(); 5584 if (IsIdempotent(IID)) 5585 if (auto *II = dyn_cast<IntrinsicInst>(Op0)) 5586 if (II->getIntrinsicID() == IID) 5587 return II; 5588 5589 Value *X; 5590 switch (IID) { 5591 case Intrinsic::fabs: 5592 if (SignBitMustBeZero(Op0, Q.TLI)) return Op0; 5593 break; 5594 case Intrinsic::bswap: 5595 // bswap(bswap(x)) -> x 5596 if (match(Op0, m_BSwap(m_Value(X)))) return X; 5597 break; 5598 case Intrinsic::bitreverse: 5599 // bitreverse(bitreverse(x)) -> x 5600 if (match(Op0, m_BitReverse(m_Value(X)))) return X; 5601 break; 5602 case Intrinsic::ctpop: { 5603 // If everything but the lowest bit is zero, that bit is the pop-count. Ex: 5604 // ctpop(and X, 1) --> and X, 1 5605 unsigned BitWidth = Op0->getType()->getScalarSizeInBits(); 5606 if (MaskedValueIsZero(Op0, APInt::getHighBitsSet(BitWidth, BitWidth - 1), 5607 Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 5608 return Op0; 5609 break; 5610 } 5611 case Intrinsic::exp: 5612 // exp(log(x)) -> x 5613 if (Q.CxtI->hasAllowReassoc() && 5614 match(Op0, m_Intrinsic<Intrinsic::log>(m_Value(X)))) return X; 5615 break; 5616 case Intrinsic::exp2: 5617 // exp2(log2(x)) -> x 5618 if (Q.CxtI->hasAllowReassoc() && 5619 match(Op0, m_Intrinsic<Intrinsic::log2>(m_Value(X)))) return X; 5620 break; 5621 case Intrinsic::log: 5622 // log(exp(x)) -> x 5623 if (Q.CxtI->hasAllowReassoc() && 5624 match(Op0, m_Intrinsic<Intrinsic::exp>(m_Value(X)))) return X; 5625 break; 5626 case Intrinsic::log2: 5627 // log2(exp2(x)) -> x 5628 if (Q.CxtI->hasAllowReassoc() && 5629 (match(Op0, m_Intrinsic<Intrinsic::exp2>(m_Value(X))) || 5630 match(Op0, m_Intrinsic<Intrinsic::pow>(m_SpecificFP(2.0), 5631 m_Value(X))))) return X; 5632 break; 5633 case Intrinsic::log10: 5634 // log10(pow(10.0, x)) -> x 5635 if (Q.CxtI->hasAllowReassoc() && 5636 match(Op0, m_Intrinsic<Intrinsic::pow>(m_SpecificFP(10.0), 5637 m_Value(X)))) return X; 5638 break; 5639 case Intrinsic::floor: 5640 case Intrinsic::trunc: 5641 case Intrinsic::ceil: 5642 case Intrinsic::round: 5643 case Intrinsic::roundeven: 5644 case Intrinsic::nearbyint: 5645 case Intrinsic::rint: { 5646 // floor (sitofp x) -> sitofp x 5647 // floor (uitofp x) -> uitofp x 5648 // 5649 // Converting from int always results in a finite integral number or 5650 // infinity. For either of those inputs, these rounding functions always 5651 // return the same value, so the rounding can be eliminated. 5652 if (match(Op0, m_SIToFP(m_Value())) || match(Op0, m_UIToFP(m_Value()))) 5653 return Op0; 5654 break; 5655 } 5656 case Intrinsic::experimental_vector_reverse: 5657 // experimental.vector.reverse(experimental.vector.reverse(x)) -> x 5658 if (match(Op0, 5659 m_Intrinsic<Intrinsic::experimental_vector_reverse>(m_Value(X)))) 5660 return X; 5661 // experimental.vector.reverse(splat(X)) -> splat(X) 5662 if (isSplatValue(Op0)) 5663 return Op0; 5664 break; 5665 default: 5666 break; 5667 } 5668 5669 return nullptr; 5670 } 5671 5672 /// Given a min/max intrinsic, see if it can be removed based on having an 5673 /// operand that is another min/max intrinsic with shared operand(s). The caller 5674 /// is expected to swap the operand arguments to handle commutation. 5675 static Value *foldMinMaxSharedOp(Intrinsic::ID IID, Value *Op0, Value *Op1) { 5676 Value *X, *Y; 5677 if (!match(Op0, m_MaxOrMin(m_Value(X), m_Value(Y)))) 5678 return nullptr; 5679 5680 auto *MM0 = dyn_cast<IntrinsicInst>(Op0); 5681 if (!MM0) 5682 return nullptr; 5683 Intrinsic::ID IID0 = MM0->getIntrinsicID(); 5684 5685 if (Op1 == X || Op1 == Y || 5686 match(Op1, m_c_MaxOrMin(m_Specific(X), m_Specific(Y)))) { 5687 // max (max X, Y), X --> max X, Y 5688 if (IID0 == IID) 5689 return MM0; 5690 // max (min X, Y), X --> X 5691 if (IID0 == getInverseMinMaxIntrinsic(IID)) 5692 return Op1; 5693 } 5694 return nullptr; 5695 } 5696 5697 static Value *simplifyBinaryIntrinsic(Function *F, Value *Op0, Value *Op1, 5698 const SimplifyQuery &Q) { 5699 Intrinsic::ID IID = F->getIntrinsicID(); 5700 Type *ReturnType = F->getReturnType(); 5701 unsigned BitWidth = ReturnType->getScalarSizeInBits(); 5702 switch (IID) { 5703 case Intrinsic::abs: 5704 // abs(abs(x)) -> abs(x). We don't need to worry about the nsw arg here. 5705 // It is always ok to pick the earlier abs. We'll just lose nsw if its only 5706 // on the outer abs. 5707 if (match(Op0, m_Intrinsic<Intrinsic::abs>(m_Value(), m_Value()))) 5708 return Op0; 5709 break; 5710 5711 case Intrinsic::cttz: { 5712 Value *X; 5713 if (match(Op0, m_Shl(m_One(), m_Value(X)))) 5714 return X; 5715 break; 5716 } 5717 case Intrinsic::ctlz: { 5718 Value *X; 5719 if (match(Op0, m_LShr(m_Negative(), m_Value(X)))) 5720 return X; 5721 if (match(Op0, m_AShr(m_Negative(), m_Value()))) 5722 return Constant::getNullValue(ReturnType); 5723 break; 5724 } 5725 case Intrinsic::smax: 5726 case Intrinsic::smin: 5727 case Intrinsic::umax: 5728 case Intrinsic::umin: { 5729 // If the arguments are the same, this is a no-op. 5730 if (Op0 == Op1) 5731 return Op0; 5732 5733 // Canonicalize constant operand as Op1. 5734 if (isa<Constant>(Op0)) 5735 std::swap(Op0, Op1); 5736 5737 // Assume undef is the limit value. 5738 if (Q.isUndefValue(Op1)) 5739 return ConstantInt::get( 5740 ReturnType, MinMaxIntrinsic::getSaturationPoint(IID, BitWidth)); 5741 5742 const APInt *C; 5743 if (match(Op1, m_APIntAllowUndef(C))) { 5744 // Clamp to limit value. For example: 5745 // umax(i8 %x, i8 255) --> 255 5746 if (*C == MinMaxIntrinsic::getSaturationPoint(IID, BitWidth)) 5747 return ConstantInt::get(ReturnType, *C); 5748 5749 // If the constant op is the opposite of the limit value, the other must 5750 // be larger/smaller or equal. For example: 5751 // umin(i8 %x, i8 255) --> %x 5752 if (*C == MinMaxIntrinsic::getSaturationPoint( 5753 getInverseMinMaxIntrinsic(IID), BitWidth)) 5754 return Op0; 5755 5756 // Remove nested call if constant operands allow it. Example: 5757 // max (max X, 7), 5 -> max X, 7 5758 auto *MinMax0 = dyn_cast<IntrinsicInst>(Op0); 5759 if (MinMax0 && MinMax0->getIntrinsicID() == IID) { 5760 // TODO: loosen undef/splat restrictions for vector constants. 5761 Value *M00 = MinMax0->getOperand(0), *M01 = MinMax0->getOperand(1); 5762 const APInt *InnerC; 5763 if ((match(M00, m_APInt(InnerC)) || match(M01, m_APInt(InnerC))) && 5764 ICmpInst::compare(*InnerC, *C, 5765 ICmpInst::getNonStrictPredicate( 5766 MinMaxIntrinsic::getPredicate(IID)))) 5767 return Op0; 5768 } 5769 } 5770 5771 if (Value *V = foldMinMaxSharedOp(IID, Op0, Op1)) 5772 return V; 5773 if (Value *V = foldMinMaxSharedOp(IID, Op1, Op0)) 5774 return V; 5775 5776 ICmpInst::Predicate Pred = 5777 ICmpInst::getNonStrictPredicate(MinMaxIntrinsic::getPredicate(IID)); 5778 if (isICmpTrue(Pred, Op0, Op1, Q.getWithoutUndef(), RecursionLimit)) 5779 return Op0; 5780 if (isICmpTrue(Pred, Op1, Op0, Q.getWithoutUndef(), RecursionLimit)) 5781 return Op1; 5782 5783 if (Optional<bool> Imp = 5784 isImpliedByDomCondition(Pred, Op0, Op1, Q.CxtI, Q.DL)) 5785 return *Imp ? Op0 : Op1; 5786 if (Optional<bool> Imp = 5787 isImpliedByDomCondition(Pred, Op1, Op0, Q.CxtI, Q.DL)) 5788 return *Imp ? Op1 : Op0; 5789 5790 break; 5791 } 5792 case Intrinsic::usub_with_overflow: 5793 case Intrinsic::ssub_with_overflow: 5794 // X - X -> { 0, false } 5795 // X - undef -> { 0, false } 5796 // undef - X -> { 0, false } 5797 if (Op0 == Op1 || Q.isUndefValue(Op0) || Q.isUndefValue(Op1)) 5798 return Constant::getNullValue(ReturnType); 5799 break; 5800 case Intrinsic::uadd_with_overflow: 5801 case Intrinsic::sadd_with_overflow: 5802 // X + undef -> { -1, false } 5803 // undef + x -> { -1, false } 5804 if (Q.isUndefValue(Op0) || Q.isUndefValue(Op1)) { 5805 return ConstantStruct::get( 5806 cast<StructType>(ReturnType), 5807 {Constant::getAllOnesValue(ReturnType->getStructElementType(0)), 5808 Constant::getNullValue(ReturnType->getStructElementType(1))}); 5809 } 5810 break; 5811 case Intrinsic::umul_with_overflow: 5812 case Intrinsic::smul_with_overflow: 5813 // 0 * X -> { 0, false } 5814 // X * 0 -> { 0, false } 5815 if (match(Op0, m_Zero()) || match(Op1, m_Zero())) 5816 return Constant::getNullValue(ReturnType); 5817 // undef * X -> { 0, false } 5818 // X * undef -> { 0, false } 5819 if (Q.isUndefValue(Op0) || Q.isUndefValue(Op1)) 5820 return Constant::getNullValue(ReturnType); 5821 break; 5822 case Intrinsic::uadd_sat: 5823 // sat(MAX + X) -> MAX 5824 // sat(X + MAX) -> MAX 5825 if (match(Op0, m_AllOnes()) || match(Op1, m_AllOnes())) 5826 return Constant::getAllOnesValue(ReturnType); 5827 LLVM_FALLTHROUGH; 5828 case Intrinsic::sadd_sat: 5829 // sat(X + undef) -> -1 5830 // sat(undef + X) -> -1 5831 // For unsigned: Assume undef is MAX, thus we saturate to MAX (-1). 5832 // For signed: Assume undef is ~X, in which case X + ~X = -1. 5833 if (Q.isUndefValue(Op0) || Q.isUndefValue(Op1)) 5834 return Constant::getAllOnesValue(ReturnType); 5835 5836 // X + 0 -> X 5837 if (match(Op1, m_Zero())) 5838 return Op0; 5839 // 0 + X -> X 5840 if (match(Op0, m_Zero())) 5841 return Op1; 5842 break; 5843 case Intrinsic::usub_sat: 5844 // sat(0 - X) -> 0, sat(X - MAX) -> 0 5845 if (match(Op0, m_Zero()) || match(Op1, m_AllOnes())) 5846 return Constant::getNullValue(ReturnType); 5847 LLVM_FALLTHROUGH; 5848 case Intrinsic::ssub_sat: 5849 // X - X -> 0, X - undef -> 0, undef - X -> 0 5850 if (Op0 == Op1 || Q.isUndefValue(Op0) || Q.isUndefValue(Op1)) 5851 return Constant::getNullValue(ReturnType); 5852 // X - 0 -> X 5853 if (match(Op1, m_Zero())) 5854 return Op0; 5855 break; 5856 case Intrinsic::load_relative: 5857 if (auto *C0 = dyn_cast<Constant>(Op0)) 5858 if (auto *C1 = dyn_cast<Constant>(Op1)) 5859 return SimplifyRelativeLoad(C0, C1, Q.DL); 5860 break; 5861 case Intrinsic::powi: 5862 if (auto *Power = dyn_cast<ConstantInt>(Op1)) { 5863 // powi(x, 0) -> 1.0 5864 if (Power->isZero()) 5865 return ConstantFP::get(Op0->getType(), 1.0); 5866 // powi(x, 1) -> x 5867 if (Power->isOne()) 5868 return Op0; 5869 } 5870 break; 5871 case Intrinsic::copysign: 5872 // copysign X, X --> X 5873 if (Op0 == Op1) 5874 return Op0; 5875 // copysign -X, X --> X 5876 // copysign X, -X --> -X 5877 if (match(Op0, m_FNeg(m_Specific(Op1))) || 5878 match(Op1, m_FNeg(m_Specific(Op0)))) 5879 return Op1; 5880 break; 5881 case Intrinsic::maxnum: 5882 case Intrinsic::minnum: 5883 case Intrinsic::maximum: 5884 case Intrinsic::minimum: { 5885 // If the arguments are the same, this is a no-op. 5886 if (Op0 == Op1) return Op0; 5887 5888 // Canonicalize constant operand as Op1. 5889 if (isa<Constant>(Op0)) 5890 std::swap(Op0, Op1); 5891 5892 // If an argument is undef, return the other argument. 5893 if (Q.isUndefValue(Op1)) 5894 return Op0; 5895 5896 bool PropagateNaN = IID == Intrinsic::minimum || IID == Intrinsic::maximum; 5897 bool IsMin = IID == Intrinsic::minimum || IID == Intrinsic::minnum; 5898 5899 // minnum(X, nan) -> X 5900 // maxnum(X, nan) -> X 5901 // minimum(X, nan) -> nan 5902 // maximum(X, nan) -> nan 5903 if (match(Op1, m_NaN())) 5904 return PropagateNaN ? propagateNaN(cast<Constant>(Op1)) : Op0; 5905 5906 // In the following folds, inf can be replaced with the largest finite 5907 // float, if the ninf flag is set. 5908 const APFloat *C; 5909 if (match(Op1, m_APFloat(C)) && 5910 (C->isInfinity() || (Q.CxtI->hasNoInfs() && C->isLargest()))) { 5911 // minnum(X, -inf) -> -inf 5912 // maxnum(X, +inf) -> +inf 5913 // minimum(X, -inf) -> -inf if nnan 5914 // maximum(X, +inf) -> +inf if nnan 5915 if (C->isNegative() == IsMin && (!PropagateNaN || Q.CxtI->hasNoNaNs())) 5916 return ConstantFP::get(ReturnType, *C); 5917 5918 // minnum(X, +inf) -> X if nnan 5919 // maxnum(X, -inf) -> X if nnan 5920 // minimum(X, +inf) -> X 5921 // maximum(X, -inf) -> X 5922 if (C->isNegative() != IsMin && (PropagateNaN || Q.CxtI->hasNoNaNs())) 5923 return Op0; 5924 } 5925 5926 // Min/max of the same operation with common operand: 5927 // m(m(X, Y)), X --> m(X, Y) (4 commuted variants) 5928 if (auto *M0 = dyn_cast<IntrinsicInst>(Op0)) 5929 if (M0->getIntrinsicID() == IID && 5930 (M0->getOperand(0) == Op1 || M0->getOperand(1) == Op1)) 5931 return Op0; 5932 if (auto *M1 = dyn_cast<IntrinsicInst>(Op1)) 5933 if (M1->getIntrinsicID() == IID && 5934 (M1->getOperand(0) == Op0 || M1->getOperand(1) == Op0)) 5935 return Op1; 5936 5937 break; 5938 } 5939 case Intrinsic::experimental_vector_extract: { 5940 Type *ReturnType = F->getReturnType(); 5941 5942 // (extract_vector (insert_vector _, X, 0), 0) -> X 5943 unsigned IdxN = cast<ConstantInt>(Op1)->getZExtValue(); 5944 Value *X = nullptr; 5945 if (match(Op0, m_Intrinsic<Intrinsic::experimental_vector_insert>( 5946 m_Value(), m_Value(X), m_Zero())) && 5947 IdxN == 0 && X->getType() == ReturnType) 5948 return X; 5949 5950 break; 5951 } 5952 default: 5953 break; 5954 } 5955 5956 return nullptr; 5957 } 5958 5959 static Value *simplifyIntrinsic(CallBase *Call, const SimplifyQuery &Q) { 5960 5961 unsigned NumOperands = Call->arg_size(); 5962 Function *F = cast<Function>(Call->getCalledFunction()); 5963 Intrinsic::ID IID = F->getIntrinsicID(); 5964 5965 // Most of the intrinsics with no operands have some kind of side effect. 5966 // Don't simplify. 5967 if (!NumOperands) { 5968 switch (IID) { 5969 case Intrinsic::vscale: { 5970 // Call may not be inserted into the IR yet at point of calling simplify. 5971 if (!Call->getParent() || !Call->getParent()->getParent()) 5972 return nullptr; 5973 auto Attr = Call->getFunction()->getFnAttribute(Attribute::VScaleRange); 5974 if (!Attr.isValid()) 5975 return nullptr; 5976 unsigned VScaleMin = Attr.getVScaleRangeMin(); 5977 Optional<unsigned> VScaleMax = Attr.getVScaleRangeMax(); 5978 if (VScaleMax && VScaleMin == VScaleMax) 5979 return ConstantInt::get(F->getReturnType(), VScaleMin); 5980 return nullptr; 5981 } 5982 default: 5983 return nullptr; 5984 } 5985 } 5986 5987 if (NumOperands == 1) 5988 return simplifyUnaryIntrinsic(F, Call->getArgOperand(0), Q); 5989 5990 if (NumOperands == 2) 5991 return simplifyBinaryIntrinsic(F, Call->getArgOperand(0), 5992 Call->getArgOperand(1), Q); 5993 5994 // Handle intrinsics with 3 or more arguments. 5995 switch (IID) { 5996 case Intrinsic::masked_load: 5997 case Intrinsic::masked_gather: { 5998 Value *MaskArg = Call->getArgOperand(2); 5999 Value *PassthruArg = Call->getArgOperand(3); 6000 // If the mask is all zeros or undef, the "passthru" argument is the result. 6001 if (maskIsAllZeroOrUndef(MaskArg)) 6002 return PassthruArg; 6003 return nullptr; 6004 } 6005 case Intrinsic::fshl: 6006 case Intrinsic::fshr: { 6007 Value *Op0 = Call->getArgOperand(0), *Op1 = Call->getArgOperand(1), 6008 *ShAmtArg = Call->getArgOperand(2); 6009 6010 // If both operands are undef, the result is undef. 6011 if (Q.isUndefValue(Op0) && Q.isUndefValue(Op1)) 6012 return UndefValue::get(F->getReturnType()); 6013 6014 // If shift amount is undef, assume it is zero. 6015 if (Q.isUndefValue(ShAmtArg)) 6016 return Call->getArgOperand(IID == Intrinsic::fshl ? 0 : 1); 6017 6018 const APInt *ShAmtC; 6019 if (match(ShAmtArg, m_APInt(ShAmtC))) { 6020 // If there's effectively no shift, return the 1st arg or 2nd arg. 6021 APInt BitWidth = APInt(ShAmtC->getBitWidth(), ShAmtC->getBitWidth()); 6022 if (ShAmtC->urem(BitWidth).isZero()) 6023 return Call->getArgOperand(IID == Intrinsic::fshl ? 0 : 1); 6024 } 6025 6026 // Rotating zero by anything is zero. 6027 if (match(Op0, m_Zero()) && match(Op1, m_Zero())) 6028 return ConstantInt::getNullValue(F->getReturnType()); 6029 6030 // Rotating -1 by anything is -1. 6031 if (match(Op0, m_AllOnes()) && match(Op1, m_AllOnes())) 6032 return ConstantInt::getAllOnesValue(F->getReturnType()); 6033 6034 return nullptr; 6035 } 6036 case Intrinsic::experimental_constrained_fma: { 6037 Value *Op0 = Call->getArgOperand(0); 6038 Value *Op1 = Call->getArgOperand(1); 6039 Value *Op2 = Call->getArgOperand(2); 6040 auto *FPI = cast<ConstrainedFPIntrinsic>(Call); 6041 if (Value *V = simplifyFPOp({Op0, Op1, Op2}, {}, Q, 6042 FPI->getExceptionBehavior().getValue(), 6043 FPI->getRoundingMode().getValue())) 6044 return V; 6045 return nullptr; 6046 } 6047 case Intrinsic::fma: 6048 case Intrinsic::fmuladd: { 6049 Value *Op0 = Call->getArgOperand(0); 6050 Value *Op1 = Call->getArgOperand(1); 6051 Value *Op2 = Call->getArgOperand(2); 6052 if (Value *V = simplifyFPOp({Op0, Op1, Op2}, {}, Q, fp::ebIgnore, 6053 RoundingMode::NearestTiesToEven)) 6054 return V; 6055 return nullptr; 6056 } 6057 case Intrinsic::smul_fix: 6058 case Intrinsic::smul_fix_sat: { 6059 Value *Op0 = Call->getArgOperand(0); 6060 Value *Op1 = Call->getArgOperand(1); 6061 Value *Op2 = Call->getArgOperand(2); 6062 Type *ReturnType = F->getReturnType(); 6063 6064 // Canonicalize constant operand as Op1 (ConstantFolding handles the case 6065 // when both Op0 and Op1 are constant so we do not care about that special 6066 // case here). 6067 if (isa<Constant>(Op0)) 6068 std::swap(Op0, Op1); 6069 6070 // X * 0 -> 0 6071 if (match(Op1, m_Zero())) 6072 return Constant::getNullValue(ReturnType); 6073 6074 // X * undef -> 0 6075 if (Q.isUndefValue(Op1)) 6076 return Constant::getNullValue(ReturnType); 6077 6078 // X * (1 << Scale) -> X 6079 APInt ScaledOne = 6080 APInt::getOneBitSet(ReturnType->getScalarSizeInBits(), 6081 cast<ConstantInt>(Op2)->getZExtValue()); 6082 if (ScaledOne.isNonNegative() && match(Op1, m_SpecificInt(ScaledOne))) 6083 return Op0; 6084 6085 return nullptr; 6086 } 6087 case Intrinsic::experimental_vector_insert: { 6088 Value *Vec = Call->getArgOperand(0); 6089 Value *SubVec = Call->getArgOperand(1); 6090 Value *Idx = Call->getArgOperand(2); 6091 Type *ReturnType = F->getReturnType(); 6092 6093 // (insert_vector Y, (extract_vector X, 0), 0) -> X 6094 // where: Y is X, or Y is undef 6095 unsigned IdxN = cast<ConstantInt>(Idx)->getZExtValue(); 6096 Value *X = nullptr; 6097 if (match(SubVec, m_Intrinsic<Intrinsic::experimental_vector_extract>( 6098 m_Value(X), m_Zero())) && 6099 (Q.isUndefValue(Vec) || Vec == X) && IdxN == 0 && 6100 X->getType() == ReturnType) 6101 return X; 6102 6103 return nullptr; 6104 } 6105 case Intrinsic::experimental_constrained_fadd: { 6106 auto *FPI = cast<ConstrainedFPIntrinsic>(Call); 6107 return SimplifyFAddInst(FPI->getArgOperand(0), FPI->getArgOperand(1), 6108 FPI->getFastMathFlags(), Q, 6109 FPI->getExceptionBehavior().getValue(), 6110 FPI->getRoundingMode().getValue()); 6111 break; 6112 } 6113 case Intrinsic::experimental_constrained_fsub: { 6114 auto *FPI = cast<ConstrainedFPIntrinsic>(Call); 6115 return SimplifyFSubInst(FPI->getArgOperand(0), FPI->getArgOperand(1), 6116 FPI->getFastMathFlags(), Q, 6117 FPI->getExceptionBehavior().getValue(), 6118 FPI->getRoundingMode().getValue()); 6119 break; 6120 } 6121 case Intrinsic::experimental_constrained_fmul: { 6122 auto *FPI = cast<ConstrainedFPIntrinsic>(Call); 6123 return SimplifyFMulInst(FPI->getArgOperand(0), FPI->getArgOperand(1), 6124 FPI->getFastMathFlags(), Q, 6125 FPI->getExceptionBehavior().getValue(), 6126 FPI->getRoundingMode().getValue()); 6127 break; 6128 } 6129 case Intrinsic::experimental_constrained_fdiv: { 6130 auto *FPI = cast<ConstrainedFPIntrinsic>(Call); 6131 return SimplifyFDivInst(FPI->getArgOperand(0), FPI->getArgOperand(1), 6132 FPI->getFastMathFlags(), Q, 6133 FPI->getExceptionBehavior().getValue(), 6134 FPI->getRoundingMode().getValue()); 6135 break; 6136 } 6137 case Intrinsic::experimental_constrained_frem: { 6138 auto *FPI = cast<ConstrainedFPIntrinsic>(Call); 6139 return SimplifyFRemInst(FPI->getArgOperand(0), FPI->getArgOperand(1), 6140 FPI->getFastMathFlags(), Q, 6141 FPI->getExceptionBehavior().getValue(), 6142 FPI->getRoundingMode().getValue()); 6143 break; 6144 } 6145 default: 6146 return nullptr; 6147 } 6148 } 6149 6150 static Value *tryConstantFoldCall(CallBase *Call, const SimplifyQuery &Q) { 6151 auto *F = dyn_cast<Function>(Call->getCalledOperand()); 6152 if (!F || !canConstantFoldCallTo(Call, F)) 6153 return nullptr; 6154 6155 SmallVector<Constant *, 4> ConstantArgs; 6156 unsigned NumArgs = Call->arg_size(); 6157 ConstantArgs.reserve(NumArgs); 6158 for (auto &Arg : Call->args()) { 6159 Constant *C = dyn_cast<Constant>(&Arg); 6160 if (!C) { 6161 if (isa<MetadataAsValue>(Arg.get())) 6162 continue; 6163 return nullptr; 6164 } 6165 ConstantArgs.push_back(C); 6166 } 6167 6168 return ConstantFoldCall(Call, F, ConstantArgs, Q.TLI); 6169 } 6170 6171 Value *llvm::SimplifyCall(CallBase *Call, const SimplifyQuery &Q) { 6172 // musttail calls can only be simplified if they are also DCEd. 6173 // As we can't guarantee this here, don't simplify them. 6174 if (Call->isMustTailCall()) 6175 return nullptr; 6176 6177 // call undef -> poison 6178 // call null -> poison 6179 Value *Callee = Call->getCalledOperand(); 6180 if (isa<UndefValue>(Callee) || isa<ConstantPointerNull>(Callee)) 6181 return PoisonValue::get(Call->getType()); 6182 6183 if (Value *V = tryConstantFoldCall(Call, Q)) 6184 return V; 6185 6186 auto *F = dyn_cast<Function>(Callee); 6187 if (F && F->isIntrinsic()) 6188 if (Value *Ret = simplifyIntrinsic(Call, Q)) 6189 return Ret; 6190 6191 return nullptr; 6192 } 6193 6194 /// Given operands for a Freeze, see if we can fold the result. 6195 static Value *SimplifyFreezeInst(Value *Op0, const SimplifyQuery &Q) { 6196 // Use a utility function defined in ValueTracking. 6197 if (llvm::isGuaranteedNotToBeUndefOrPoison(Op0, Q.AC, Q.CxtI, Q.DT)) 6198 return Op0; 6199 // We have room for improvement. 6200 return nullptr; 6201 } 6202 6203 Value *llvm::SimplifyFreezeInst(Value *Op0, const SimplifyQuery &Q) { 6204 return ::SimplifyFreezeInst(Op0, Q); 6205 } 6206 6207 static Value *SimplifyLoadInst(LoadInst *LI, Value *PtrOp, 6208 const SimplifyQuery &Q) { 6209 if (LI->isVolatile()) 6210 return nullptr; 6211 6212 APInt Offset(Q.DL.getIndexTypeSizeInBits(PtrOp->getType()), 0); 6213 auto *PtrOpC = dyn_cast<Constant>(PtrOp); 6214 // Try to convert operand into a constant by stripping offsets while looking 6215 // through invariant.group intrinsics. Don't bother if the underlying object 6216 // is not constant, as calculating GEP offsets is expensive. 6217 if (!PtrOpC && isa<Constant>(getUnderlyingObject(PtrOp))) { 6218 PtrOp = PtrOp->stripAndAccumulateConstantOffsets( 6219 Q.DL, Offset, /* AllowNonInbounts */ true, 6220 /* AllowInvariantGroup */ true); 6221 // Index size may have changed due to address space casts. 6222 Offset = Offset.sextOrTrunc(Q.DL.getIndexTypeSizeInBits(PtrOp->getType())); 6223 PtrOpC = dyn_cast<Constant>(PtrOp); 6224 } 6225 6226 if (PtrOpC) 6227 return ConstantFoldLoadFromConstPtr(PtrOpC, LI->getType(), Offset, Q.DL); 6228 return nullptr; 6229 } 6230 6231 /// See if we can compute a simplified version of this instruction. 6232 /// If not, this returns null. 6233 6234 static Value *simplifyInstructionWithOperands(Instruction *I, 6235 ArrayRef<Value *> NewOps, 6236 const SimplifyQuery &SQ, 6237 OptimizationRemarkEmitter *ORE) { 6238 const SimplifyQuery Q = SQ.CxtI ? SQ : SQ.getWithInstruction(I); 6239 Value *Result = nullptr; 6240 6241 switch (I->getOpcode()) { 6242 default: 6243 if (llvm::all_of(NewOps, [](Value *V) { return isa<Constant>(V); })) { 6244 SmallVector<Constant *, 8> NewConstOps(NewOps.size()); 6245 transform(NewOps, NewConstOps.begin(), 6246 [](Value *V) { return cast<Constant>(V); }); 6247 Result = ConstantFoldInstOperands(I, NewConstOps, Q.DL, Q.TLI); 6248 } 6249 break; 6250 case Instruction::FNeg: 6251 Result = SimplifyFNegInst(NewOps[0], I->getFastMathFlags(), Q); 6252 break; 6253 case Instruction::FAdd: 6254 Result = SimplifyFAddInst(NewOps[0], NewOps[1], I->getFastMathFlags(), Q); 6255 break; 6256 case Instruction::Add: 6257 Result = SimplifyAddInst( 6258 NewOps[0], NewOps[1], Q.IIQ.hasNoSignedWrap(cast<BinaryOperator>(I)), 6259 Q.IIQ.hasNoUnsignedWrap(cast<BinaryOperator>(I)), Q); 6260 break; 6261 case Instruction::FSub: 6262 Result = SimplifyFSubInst(NewOps[0], NewOps[1], I->getFastMathFlags(), Q); 6263 break; 6264 case Instruction::Sub: 6265 Result = SimplifySubInst( 6266 NewOps[0], NewOps[1], Q.IIQ.hasNoSignedWrap(cast<BinaryOperator>(I)), 6267 Q.IIQ.hasNoUnsignedWrap(cast<BinaryOperator>(I)), Q); 6268 break; 6269 case Instruction::FMul: 6270 Result = SimplifyFMulInst(NewOps[0], NewOps[1], I->getFastMathFlags(), Q); 6271 break; 6272 case Instruction::Mul: 6273 Result = SimplifyMulInst(NewOps[0], NewOps[1], Q); 6274 break; 6275 case Instruction::SDiv: 6276 Result = SimplifySDivInst(NewOps[0], NewOps[1], Q); 6277 break; 6278 case Instruction::UDiv: 6279 Result = SimplifyUDivInst(NewOps[0], NewOps[1], Q); 6280 break; 6281 case Instruction::FDiv: 6282 Result = SimplifyFDivInst(NewOps[0], NewOps[1], I->getFastMathFlags(), Q); 6283 break; 6284 case Instruction::SRem: 6285 Result = SimplifySRemInst(NewOps[0], NewOps[1], Q); 6286 break; 6287 case Instruction::URem: 6288 Result = SimplifyURemInst(NewOps[0], NewOps[1], Q); 6289 break; 6290 case Instruction::FRem: 6291 Result = SimplifyFRemInst(NewOps[0], NewOps[1], I->getFastMathFlags(), Q); 6292 break; 6293 case Instruction::Shl: 6294 Result = SimplifyShlInst( 6295 NewOps[0], NewOps[1], Q.IIQ.hasNoSignedWrap(cast<BinaryOperator>(I)), 6296 Q.IIQ.hasNoUnsignedWrap(cast<BinaryOperator>(I)), Q); 6297 break; 6298 case Instruction::LShr: 6299 Result = SimplifyLShrInst(NewOps[0], NewOps[1], 6300 Q.IIQ.isExact(cast<BinaryOperator>(I)), Q); 6301 break; 6302 case Instruction::AShr: 6303 Result = SimplifyAShrInst(NewOps[0], NewOps[1], 6304 Q.IIQ.isExact(cast<BinaryOperator>(I)), Q); 6305 break; 6306 case Instruction::And: 6307 Result = SimplifyAndInst(NewOps[0], NewOps[1], Q); 6308 break; 6309 case Instruction::Or: 6310 Result = SimplifyOrInst(NewOps[0], NewOps[1], Q); 6311 break; 6312 case Instruction::Xor: 6313 Result = SimplifyXorInst(NewOps[0], NewOps[1], Q); 6314 break; 6315 case Instruction::ICmp: 6316 Result = SimplifyICmpInst(cast<ICmpInst>(I)->getPredicate(), NewOps[0], 6317 NewOps[1], Q); 6318 break; 6319 case Instruction::FCmp: 6320 Result = SimplifyFCmpInst(cast<FCmpInst>(I)->getPredicate(), NewOps[0], 6321 NewOps[1], I->getFastMathFlags(), Q); 6322 break; 6323 case Instruction::Select: 6324 Result = SimplifySelectInst(NewOps[0], NewOps[1], NewOps[2], Q); 6325 break; 6326 case Instruction::GetElementPtr: { 6327 auto *GEPI = cast<GetElementPtrInst>(I); 6328 Result = 6329 SimplifyGEPInst(GEPI->getSourceElementType(), NewOps[0], 6330 makeArrayRef(NewOps).slice(1), GEPI->isInBounds(), Q); 6331 break; 6332 } 6333 case Instruction::InsertValue: { 6334 InsertValueInst *IV = cast<InsertValueInst>(I); 6335 Result = SimplifyInsertValueInst(NewOps[0], NewOps[1], IV->getIndices(), Q); 6336 break; 6337 } 6338 case Instruction::InsertElement: { 6339 Result = SimplifyInsertElementInst(NewOps[0], NewOps[1], NewOps[2], Q); 6340 break; 6341 } 6342 case Instruction::ExtractValue: { 6343 auto *EVI = cast<ExtractValueInst>(I); 6344 Result = SimplifyExtractValueInst(NewOps[0], EVI->getIndices(), Q); 6345 break; 6346 } 6347 case Instruction::ExtractElement: { 6348 Result = SimplifyExtractElementInst(NewOps[0], NewOps[1], Q); 6349 break; 6350 } 6351 case Instruction::ShuffleVector: { 6352 auto *SVI = cast<ShuffleVectorInst>(I); 6353 Result = SimplifyShuffleVectorInst( 6354 NewOps[0], NewOps[1], SVI->getShuffleMask(), SVI->getType(), Q); 6355 break; 6356 } 6357 case Instruction::PHI: 6358 Result = SimplifyPHINode(cast<PHINode>(I), NewOps, Q); 6359 break; 6360 case Instruction::Call: { 6361 // TODO: Use NewOps 6362 Result = SimplifyCall(cast<CallInst>(I), Q); 6363 break; 6364 } 6365 case Instruction::Freeze: 6366 Result = llvm::SimplifyFreezeInst(NewOps[0], Q); 6367 break; 6368 #define HANDLE_CAST_INST(num, opc, clas) case Instruction::opc: 6369 #include "llvm/IR/Instruction.def" 6370 #undef HANDLE_CAST_INST 6371 Result = SimplifyCastInst(I->getOpcode(), NewOps[0], I->getType(), Q); 6372 break; 6373 case Instruction::Alloca: 6374 // No simplifications for Alloca and it can't be constant folded. 6375 Result = nullptr; 6376 break; 6377 case Instruction::Load: 6378 Result = SimplifyLoadInst(cast<LoadInst>(I), NewOps[0], Q); 6379 break; 6380 } 6381 6382 /// If called on unreachable code, the above logic may report that the 6383 /// instruction simplified to itself. Make life easier for users by 6384 /// detecting that case here, returning a safe value instead. 6385 return Result == I ? UndefValue::get(I->getType()) : Result; 6386 } 6387 6388 Value *llvm::SimplifyInstructionWithOperands(Instruction *I, 6389 ArrayRef<Value *> NewOps, 6390 const SimplifyQuery &SQ, 6391 OptimizationRemarkEmitter *ORE) { 6392 assert(NewOps.size() == I->getNumOperands() && 6393 "Number of operands should match the instruction!"); 6394 return ::simplifyInstructionWithOperands(I, NewOps, SQ, ORE); 6395 } 6396 6397 Value *llvm::SimplifyInstruction(Instruction *I, const SimplifyQuery &SQ, 6398 OptimizationRemarkEmitter *ORE) { 6399 SmallVector<Value *, 8> Ops(I->operands()); 6400 return ::simplifyInstructionWithOperands(I, Ops, SQ, ORE); 6401 } 6402 6403 /// Implementation of recursive simplification through an instruction's 6404 /// uses. 6405 /// 6406 /// This is the common implementation of the recursive simplification routines. 6407 /// If we have a pre-simplified value in 'SimpleV', that is forcibly used to 6408 /// replace the instruction 'I'. Otherwise, we simply add 'I' to the list of 6409 /// instructions to process and attempt to simplify it using 6410 /// InstructionSimplify. Recursively visited users which could not be 6411 /// simplified themselves are to the optional UnsimplifiedUsers set for 6412 /// further processing by the caller. 6413 /// 6414 /// This routine returns 'true' only when *it* simplifies something. The passed 6415 /// in simplified value does not count toward this. 6416 static bool replaceAndRecursivelySimplifyImpl( 6417 Instruction *I, Value *SimpleV, const TargetLibraryInfo *TLI, 6418 const DominatorTree *DT, AssumptionCache *AC, 6419 SmallSetVector<Instruction *, 8> *UnsimplifiedUsers = nullptr) { 6420 bool Simplified = false; 6421 SmallSetVector<Instruction *, 8> Worklist; 6422 const DataLayout &DL = I->getModule()->getDataLayout(); 6423 6424 // If we have an explicit value to collapse to, do that round of the 6425 // simplification loop by hand initially. 6426 if (SimpleV) { 6427 for (User *U : I->users()) 6428 if (U != I) 6429 Worklist.insert(cast<Instruction>(U)); 6430 6431 // Replace the instruction with its simplified value. 6432 I->replaceAllUsesWith(SimpleV); 6433 6434 // Gracefully handle edge cases where the instruction is not wired into any 6435 // parent block. 6436 if (I->getParent() && !I->isEHPad() && !I->isTerminator() && 6437 !I->mayHaveSideEffects()) 6438 I->eraseFromParent(); 6439 } else { 6440 Worklist.insert(I); 6441 } 6442 6443 // Note that we must test the size on each iteration, the worklist can grow. 6444 for (unsigned Idx = 0; Idx != Worklist.size(); ++Idx) { 6445 I = Worklist[Idx]; 6446 6447 // See if this instruction simplifies. 6448 SimpleV = SimplifyInstruction(I, {DL, TLI, DT, AC}); 6449 if (!SimpleV) { 6450 if (UnsimplifiedUsers) 6451 UnsimplifiedUsers->insert(I); 6452 continue; 6453 } 6454 6455 Simplified = true; 6456 6457 // Stash away all the uses of the old instruction so we can check them for 6458 // recursive simplifications after a RAUW. This is cheaper than checking all 6459 // uses of To on the recursive step in most cases. 6460 for (User *U : I->users()) 6461 Worklist.insert(cast<Instruction>(U)); 6462 6463 // Replace the instruction with its simplified value. 6464 I->replaceAllUsesWith(SimpleV); 6465 6466 // Gracefully handle edge cases where the instruction is not wired into any 6467 // parent block. 6468 if (I->getParent() && !I->isEHPad() && !I->isTerminator() && 6469 !I->mayHaveSideEffects()) 6470 I->eraseFromParent(); 6471 } 6472 return Simplified; 6473 } 6474 6475 bool llvm::replaceAndRecursivelySimplify( 6476 Instruction *I, Value *SimpleV, const TargetLibraryInfo *TLI, 6477 const DominatorTree *DT, AssumptionCache *AC, 6478 SmallSetVector<Instruction *, 8> *UnsimplifiedUsers) { 6479 assert(I != SimpleV && "replaceAndRecursivelySimplify(X,X) is not valid!"); 6480 assert(SimpleV && "Must provide a simplified value."); 6481 return replaceAndRecursivelySimplifyImpl(I, SimpleV, TLI, DT, AC, 6482 UnsimplifiedUsers); 6483 } 6484 6485 namespace llvm { 6486 const SimplifyQuery getBestSimplifyQuery(Pass &P, Function &F) { 6487 auto *DTWP = P.getAnalysisIfAvailable<DominatorTreeWrapperPass>(); 6488 auto *DT = DTWP ? &DTWP->getDomTree() : nullptr; 6489 auto *TLIWP = P.getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 6490 auto *TLI = TLIWP ? &TLIWP->getTLI(F) : nullptr; 6491 auto *ACWP = P.getAnalysisIfAvailable<AssumptionCacheTracker>(); 6492 auto *AC = ACWP ? &ACWP->getAssumptionCache(F) : nullptr; 6493 return {F.getParent()->getDataLayout(), TLI, DT, AC}; 6494 } 6495 6496 const SimplifyQuery getBestSimplifyQuery(LoopStandardAnalysisResults &AR, 6497 const DataLayout &DL) { 6498 return {DL, &AR.TLI, &AR.DT, &AR.AC}; 6499 } 6500 6501 template <class T, class... TArgs> 6502 const SimplifyQuery getBestSimplifyQuery(AnalysisManager<T, TArgs...> &AM, 6503 Function &F) { 6504 auto *DT = AM.template getCachedResult<DominatorTreeAnalysis>(F); 6505 auto *TLI = AM.template getCachedResult<TargetLibraryAnalysis>(F); 6506 auto *AC = AM.template getCachedResult<AssumptionAnalysis>(F); 6507 return {F.getParent()->getDataLayout(), TLI, DT, AC}; 6508 } 6509 template const SimplifyQuery getBestSimplifyQuery(AnalysisManager<Function> &, 6510 Function &); 6511 } 6512 6513 void InstSimplifyFolder::anchor() {} 6514