1 //===- InstructionSimplify.cpp - Fold instruction operands ----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements routines for folding instructions into simpler forms 10 // that do not require creating new instructions. This does constant folding 11 // ("add i32 1, 1" -> "2") but can also handle non-constant operands, either 12 // returning a constant ("and i32 %x, 0" -> "0") or an already existing value 13 // ("and i32 %x, %x" -> "%x"). All operands are assumed to have already been 14 // simplified: This is usually true and assuming it simplifies the logic (if 15 // they have not been simplified then results are correct but maybe suboptimal). 16 // 17 //===----------------------------------------------------------------------===// 18 19 #include "llvm/Analysis/InstructionSimplify.h" 20 21 #include "llvm/ADT/STLExtras.h" 22 #include "llvm/ADT/SetVector.h" 23 #include "llvm/ADT/Statistic.h" 24 #include "llvm/Analysis/AliasAnalysis.h" 25 #include "llvm/Analysis/AssumptionCache.h" 26 #include "llvm/Analysis/CaptureTracking.h" 27 #include "llvm/Analysis/CmpInstAnalysis.h" 28 #include "llvm/Analysis/ConstantFolding.h" 29 #include "llvm/Analysis/InstSimplifyFolder.h" 30 #include "llvm/Analysis/LoopAnalysisManager.h" 31 #include "llvm/Analysis/MemoryBuiltins.h" 32 #include "llvm/Analysis/OverflowInstAnalysis.h" 33 #include "llvm/Analysis/ValueTracking.h" 34 #include "llvm/Analysis/VectorUtils.h" 35 #include "llvm/IR/ConstantRange.h" 36 #include "llvm/IR/DataLayout.h" 37 #include "llvm/IR/Dominators.h" 38 #include "llvm/IR/InstrTypes.h" 39 #include "llvm/IR/Instructions.h" 40 #include "llvm/IR/Operator.h" 41 #include "llvm/IR/PatternMatch.h" 42 #include "llvm/Support/KnownBits.h" 43 #include <algorithm> 44 using namespace llvm; 45 using namespace llvm::PatternMatch; 46 47 #define DEBUG_TYPE "instsimplify" 48 49 enum { RecursionLimit = 3 }; 50 51 STATISTIC(NumExpand, "Number of expansions"); 52 STATISTIC(NumReassoc, "Number of reassociations"); 53 54 static Value *SimplifyAndInst(Value *, Value *, const SimplifyQuery &, unsigned); 55 static Value *simplifyUnOp(unsigned, Value *, const SimplifyQuery &, unsigned); 56 static Value *simplifyFPUnOp(unsigned, Value *, const FastMathFlags &, 57 const SimplifyQuery &, unsigned); 58 static Value *SimplifyBinOp(unsigned, Value *, Value *, const SimplifyQuery &, 59 unsigned); 60 static Value *SimplifyBinOp(unsigned, Value *, Value *, const FastMathFlags &, 61 const SimplifyQuery &, unsigned); 62 static Value *SimplifyCmpInst(unsigned, Value *, Value *, const SimplifyQuery &, 63 unsigned); 64 static Value *SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS, 65 const SimplifyQuery &Q, unsigned MaxRecurse); 66 static Value *SimplifyOrInst(Value *, Value *, const SimplifyQuery &, unsigned); 67 static Value *SimplifyXorInst(Value *, Value *, const SimplifyQuery &, unsigned); 68 static Value *SimplifyCastInst(unsigned, Value *, Type *, 69 const SimplifyQuery &, unsigned); 70 static Value *SimplifyGEPInst(Type *, Value *, ArrayRef<Value *>, bool, 71 const SimplifyQuery &, unsigned); 72 static Value *SimplifySelectInst(Value *, Value *, Value *, 73 const SimplifyQuery &, unsigned); 74 75 static Value *foldSelectWithBinaryOp(Value *Cond, Value *TrueVal, 76 Value *FalseVal) { 77 BinaryOperator::BinaryOps BinOpCode; 78 if (auto *BO = dyn_cast<BinaryOperator>(Cond)) 79 BinOpCode = BO->getOpcode(); 80 else 81 return nullptr; 82 83 CmpInst::Predicate ExpectedPred, Pred1, Pred2; 84 if (BinOpCode == BinaryOperator::Or) { 85 ExpectedPred = ICmpInst::ICMP_NE; 86 } else if (BinOpCode == BinaryOperator::And) { 87 ExpectedPred = ICmpInst::ICMP_EQ; 88 } else 89 return nullptr; 90 91 // %A = icmp eq %TV, %FV 92 // %B = icmp eq %X, %Y (and one of these is a select operand) 93 // %C = and %A, %B 94 // %D = select %C, %TV, %FV 95 // --> 96 // %FV 97 98 // %A = icmp ne %TV, %FV 99 // %B = icmp ne %X, %Y (and one of these is a select operand) 100 // %C = or %A, %B 101 // %D = select %C, %TV, %FV 102 // --> 103 // %TV 104 Value *X, *Y; 105 if (!match(Cond, m_c_BinOp(m_c_ICmp(Pred1, m_Specific(TrueVal), 106 m_Specific(FalseVal)), 107 m_ICmp(Pred2, m_Value(X), m_Value(Y)))) || 108 Pred1 != Pred2 || Pred1 != ExpectedPred) 109 return nullptr; 110 111 if (X == TrueVal || X == FalseVal || Y == TrueVal || Y == FalseVal) 112 return BinOpCode == BinaryOperator::Or ? TrueVal : FalseVal; 113 114 return nullptr; 115 } 116 117 /// For a boolean type or a vector of boolean type, return false or a vector 118 /// with every element false. 119 static Constant *getFalse(Type *Ty) { 120 return ConstantInt::getFalse(Ty); 121 } 122 123 /// For a boolean type or a vector of boolean type, return true or a vector 124 /// with every element true. 125 static Constant *getTrue(Type *Ty) { 126 return ConstantInt::getTrue(Ty); 127 } 128 129 /// isSameCompare - Is V equivalent to the comparison "LHS Pred RHS"? 130 static bool isSameCompare(Value *V, CmpInst::Predicate Pred, Value *LHS, 131 Value *RHS) { 132 CmpInst *Cmp = dyn_cast<CmpInst>(V); 133 if (!Cmp) 134 return false; 135 CmpInst::Predicate CPred = Cmp->getPredicate(); 136 Value *CLHS = Cmp->getOperand(0), *CRHS = Cmp->getOperand(1); 137 if (CPred == Pred && CLHS == LHS && CRHS == RHS) 138 return true; 139 return CPred == CmpInst::getSwappedPredicate(Pred) && CLHS == RHS && 140 CRHS == LHS; 141 } 142 143 /// Simplify comparison with true or false branch of select: 144 /// %sel = select i1 %cond, i32 %tv, i32 %fv 145 /// %cmp = icmp sle i32 %sel, %rhs 146 /// Compose new comparison by substituting %sel with either %tv or %fv 147 /// and see if it simplifies. 148 static Value *simplifyCmpSelCase(CmpInst::Predicate Pred, Value *LHS, 149 Value *RHS, Value *Cond, 150 const SimplifyQuery &Q, unsigned MaxRecurse, 151 Constant *TrueOrFalse) { 152 Value *SimplifiedCmp = SimplifyCmpInst(Pred, LHS, RHS, Q, MaxRecurse); 153 if (SimplifiedCmp == Cond) { 154 // %cmp simplified to the select condition (%cond). 155 return TrueOrFalse; 156 } else if (!SimplifiedCmp && isSameCompare(Cond, Pred, LHS, RHS)) { 157 // It didn't simplify. However, if composed comparison is equivalent 158 // to the select condition (%cond) then we can replace it. 159 return TrueOrFalse; 160 } 161 return SimplifiedCmp; 162 } 163 164 /// Simplify comparison with true branch of select 165 static Value *simplifyCmpSelTrueCase(CmpInst::Predicate Pred, Value *LHS, 166 Value *RHS, Value *Cond, 167 const SimplifyQuery &Q, 168 unsigned MaxRecurse) { 169 return simplifyCmpSelCase(Pred, LHS, RHS, Cond, Q, MaxRecurse, 170 getTrue(Cond->getType())); 171 } 172 173 /// Simplify comparison with false branch of select 174 static Value *simplifyCmpSelFalseCase(CmpInst::Predicate Pred, Value *LHS, 175 Value *RHS, Value *Cond, 176 const SimplifyQuery &Q, 177 unsigned MaxRecurse) { 178 return simplifyCmpSelCase(Pred, LHS, RHS, Cond, Q, MaxRecurse, 179 getFalse(Cond->getType())); 180 } 181 182 /// We know comparison with both branches of select can be simplified, but they 183 /// are not equal. This routine handles some logical simplifications. 184 static Value *handleOtherCmpSelSimplifications(Value *TCmp, Value *FCmp, 185 Value *Cond, 186 const SimplifyQuery &Q, 187 unsigned MaxRecurse) { 188 // If the false value simplified to false, then the result of the compare 189 // is equal to "Cond && TCmp". This also catches the case when the false 190 // value simplified to false and the true value to true, returning "Cond". 191 // Folding select to and/or isn't poison-safe in general; impliesPoison 192 // checks whether folding it does not convert a well-defined value into 193 // poison. 194 if (match(FCmp, m_Zero()) && impliesPoison(TCmp, Cond)) 195 if (Value *V = SimplifyAndInst(Cond, TCmp, Q, MaxRecurse)) 196 return V; 197 // If the true value simplified to true, then the result of the compare 198 // is equal to "Cond || FCmp". 199 if (match(TCmp, m_One()) && impliesPoison(FCmp, Cond)) 200 if (Value *V = SimplifyOrInst(Cond, FCmp, Q, MaxRecurse)) 201 return V; 202 // Finally, if the false value simplified to true and the true value to 203 // false, then the result of the compare is equal to "!Cond". 204 if (match(FCmp, m_One()) && match(TCmp, m_Zero())) 205 if (Value *V = SimplifyXorInst( 206 Cond, Constant::getAllOnesValue(Cond->getType()), Q, MaxRecurse)) 207 return V; 208 return nullptr; 209 } 210 211 /// Does the given value dominate the specified phi node? 212 static bool valueDominatesPHI(Value *V, PHINode *P, const DominatorTree *DT) { 213 Instruction *I = dyn_cast<Instruction>(V); 214 if (!I) 215 // Arguments and constants dominate all instructions. 216 return true; 217 218 // If we are processing instructions (and/or basic blocks) that have not been 219 // fully added to a function, the parent nodes may still be null. Simply 220 // return the conservative answer in these cases. 221 if (!I->getParent() || !P->getParent() || !I->getFunction()) 222 return false; 223 224 // If we have a DominatorTree then do a precise test. 225 if (DT) 226 return DT->dominates(I, P); 227 228 // Otherwise, if the instruction is in the entry block and is not an invoke, 229 // then it obviously dominates all phi nodes. 230 if (I->getParent()->isEntryBlock() && !isa<InvokeInst>(I) && 231 !isa<CallBrInst>(I)) 232 return true; 233 234 return false; 235 } 236 237 /// Try to simplify a binary operator of form "V op OtherOp" where V is 238 /// "(B0 opex B1)" by distributing 'op' across 'opex' as 239 /// "(B0 op OtherOp) opex (B1 op OtherOp)". 240 static Value *expandBinOp(Instruction::BinaryOps Opcode, Value *V, 241 Value *OtherOp, Instruction::BinaryOps OpcodeToExpand, 242 const SimplifyQuery &Q, unsigned MaxRecurse) { 243 auto *B = dyn_cast<BinaryOperator>(V); 244 if (!B || B->getOpcode() != OpcodeToExpand) 245 return nullptr; 246 Value *B0 = B->getOperand(0), *B1 = B->getOperand(1); 247 Value *L = SimplifyBinOp(Opcode, B0, OtherOp, Q.getWithoutUndef(), 248 MaxRecurse); 249 if (!L) 250 return nullptr; 251 Value *R = SimplifyBinOp(Opcode, B1, OtherOp, Q.getWithoutUndef(), 252 MaxRecurse); 253 if (!R) 254 return nullptr; 255 256 // Does the expanded pair of binops simplify to the existing binop? 257 if ((L == B0 && R == B1) || 258 (Instruction::isCommutative(OpcodeToExpand) && L == B1 && R == B0)) { 259 ++NumExpand; 260 return B; 261 } 262 263 // Otherwise, return "L op' R" if it simplifies. 264 Value *S = SimplifyBinOp(OpcodeToExpand, L, R, Q, MaxRecurse); 265 if (!S) 266 return nullptr; 267 268 ++NumExpand; 269 return S; 270 } 271 272 /// Try to simplify binops of form "A op (B op' C)" or the commuted variant by 273 /// distributing op over op'. 274 static Value *expandCommutativeBinOp(Instruction::BinaryOps Opcode, 275 Value *L, Value *R, 276 Instruction::BinaryOps OpcodeToExpand, 277 const SimplifyQuery &Q, 278 unsigned MaxRecurse) { 279 // Recursion is always used, so bail out at once if we already hit the limit. 280 if (!MaxRecurse--) 281 return nullptr; 282 283 if (Value *V = expandBinOp(Opcode, L, R, OpcodeToExpand, Q, MaxRecurse)) 284 return V; 285 if (Value *V = expandBinOp(Opcode, R, L, OpcodeToExpand, Q, MaxRecurse)) 286 return V; 287 return nullptr; 288 } 289 290 /// Generic simplifications for associative binary operations. 291 /// Returns the simpler value, or null if none was found. 292 static Value *SimplifyAssociativeBinOp(Instruction::BinaryOps Opcode, 293 Value *LHS, Value *RHS, 294 const SimplifyQuery &Q, 295 unsigned MaxRecurse) { 296 assert(Instruction::isAssociative(Opcode) && "Not an associative operation!"); 297 298 // Recursion is always used, so bail out at once if we already hit the limit. 299 if (!MaxRecurse--) 300 return nullptr; 301 302 BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS); 303 BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS); 304 305 // Transform: "(A op B) op C" ==> "A op (B op C)" if it simplifies completely. 306 if (Op0 && Op0->getOpcode() == Opcode) { 307 Value *A = Op0->getOperand(0); 308 Value *B = Op0->getOperand(1); 309 Value *C = RHS; 310 311 // Does "B op C" simplify? 312 if (Value *V = SimplifyBinOp(Opcode, B, C, Q, MaxRecurse)) { 313 // It does! Return "A op V" if it simplifies or is already available. 314 // If V equals B then "A op V" is just the LHS. 315 if (V == B) return LHS; 316 // Otherwise return "A op V" if it simplifies. 317 if (Value *W = SimplifyBinOp(Opcode, A, V, Q, MaxRecurse)) { 318 ++NumReassoc; 319 return W; 320 } 321 } 322 } 323 324 // Transform: "A op (B op C)" ==> "(A op B) op C" if it simplifies completely. 325 if (Op1 && Op1->getOpcode() == Opcode) { 326 Value *A = LHS; 327 Value *B = Op1->getOperand(0); 328 Value *C = Op1->getOperand(1); 329 330 // Does "A op B" simplify? 331 if (Value *V = SimplifyBinOp(Opcode, A, B, Q, MaxRecurse)) { 332 // It does! Return "V op C" if it simplifies or is already available. 333 // If V equals B then "V op C" is just the RHS. 334 if (V == B) return RHS; 335 // Otherwise return "V op C" if it simplifies. 336 if (Value *W = SimplifyBinOp(Opcode, V, C, Q, MaxRecurse)) { 337 ++NumReassoc; 338 return W; 339 } 340 } 341 } 342 343 // The remaining transforms require commutativity as well as associativity. 344 if (!Instruction::isCommutative(Opcode)) 345 return nullptr; 346 347 // Transform: "(A op B) op C" ==> "(C op A) op B" if it simplifies completely. 348 if (Op0 && Op0->getOpcode() == Opcode) { 349 Value *A = Op0->getOperand(0); 350 Value *B = Op0->getOperand(1); 351 Value *C = RHS; 352 353 // Does "C op A" simplify? 354 if (Value *V = SimplifyBinOp(Opcode, C, A, Q, MaxRecurse)) { 355 // It does! Return "V op B" if it simplifies or is already available. 356 // If V equals A then "V op B" is just the LHS. 357 if (V == A) return LHS; 358 // Otherwise return "V op B" if it simplifies. 359 if (Value *W = SimplifyBinOp(Opcode, V, B, Q, MaxRecurse)) { 360 ++NumReassoc; 361 return W; 362 } 363 } 364 } 365 366 // Transform: "A op (B op C)" ==> "B op (C op A)" if it simplifies completely. 367 if (Op1 && Op1->getOpcode() == Opcode) { 368 Value *A = LHS; 369 Value *B = Op1->getOperand(0); 370 Value *C = Op1->getOperand(1); 371 372 // Does "C op A" simplify? 373 if (Value *V = SimplifyBinOp(Opcode, C, A, Q, MaxRecurse)) { 374 // It does! Return "B op V" if it simplifies or is already available. 375 // If V equals C then "B op V" is just the RHS. 376 if (V == C) return RHS; 377 // Otherwise return "B op V" if it simplifies. 378 if (Value *W = SimplifyBinOp(Opcode, B, V, Q, MaxRecurse)) { 379 ++NumReassoc; 380 return W; 381 } 382 } 383 } 384 385 return nullptr; 386 } 387 388 /// In the case of a binary operation with a select instruction as an operand, 389 /// try to simplify the binop by seeing whether evaluating it on both branches 390 /// of the select results in the same value. Returns the common value if so, 391 /// otherwise returns null. 392 static Value *ThreadBinOpOverSelect(Instruction::BinaryOps Opcode, Value *LHS, 393 Value *RHS, const SimplifyQuery &Q, 394 unsigned MaxRecurse) { 395 // Recursion is always used, so bail out at once if we already hit the limit. 396 if (!MaxRecurse--) 397 return nullptr; 398 399 SelectInst *SI; 400 if (isa<SelectInst>(LHS)) { 401 SI = cast<SelectInst>(LHS); 402 } else { 403 assert(isa<SelectInst>(RHS) && "No select instruction operand!"); 404 SI = cast<SelectInst>(RHS); 405 } 406 407 // Evaluate the BinOp on the true and false branches of the select. 408 Value *TV; 409 Value *FV; 410 if (SI == LHS) { 411 TV = SimplifyBinOp(Opcode, SI->getTrueValue(), RHS, Q, MaxRecurse); 412 FV = SimplifyBinOp(Opcode, SI->getFalseValue(), RHS, Q, MaxRecurse); 413 } else { 414 TV = SimplifyBinOp(Opcode, LHS, SI->getTrueValue(), Q, MaxRecurse); 415 FV = SimplifyBinOp(Opcode, LHS, SI->getFalseValue(), Q, MaxRecurse); 416 } 417 418 // If they simplified to the same value, then return the common value. 419 // If they both failed to simplify then return null. 420 if (TV == FV) 421 return TV; 422 423 // If one branch simplified to undef, return the other one. 424 if (TV && Q.isUndefValue(TV)) 425 return FV; 426 if (FV && Q.isUndefValue(FV)) 427 return TV; 428 429 // If applying the operation did not change the true and false select values, 430 // then the result of the binop is the select itself. 431 if (TV == SI->getTrueValue() && FV == SI->getFalseValue()) 432 return SI; 433 434 // If one branch simplified and the other did not, and the simplified 435 // value is equal to the unsimplified one, return the simplified value. 436 // For example, select (cond, X, X & Z) & Z -> X & Z. 437 if ((FV && !TV) || (TV && !FV)) { 438 // Check that the simplified value has the form "X op Y" where "op" is the 439 // same as the original operation. 440 Instruction *Simplified = dyn_cast<Instruction>(FV ? FV : TV); 441 if (Simplified && Simplified->getOpcode() == unsigned(Opcode)) { 442 // The value that didn't simplify is "UnsimplifiedLHS op UnsimplifiedRHS". 443 // We already know that "op" is the same as for the simplified value. See 444 // if the operands match too. If so, return the simplified value. 445 Value *UnsimplifiedBranch = FV ? SI->getTrueValue() : SI->getFalseValue(); 446 Value *UnsimplifiedLHS = SI == LHS ? UnsimplifiedBranch : LHS; 447 Value *UnsimplifiedRHS = SI == LHS ? RHS : UnsimplifiedBranch; 448 if (Simplified->getOperand(0) == UnsimplifiedLHS && 449 Simplified->getOperand(1) == UnsimplifiedRHS) 450 return Simplified; 451 if (Simplified->isCommutative() && 452 Simplified->getOperand(1) == UnsimplifiedLHS && 453 Simplified->getOperand(0) == UnsimplifiedRHS) 454 return Simplified; 455 } 456 } 457 458 return nullptr; 459 } 460 461 /// In the case of a comparison with a select instruction, try to simplify the 462 /// comparison by seeing whether both branches of the select result in the same 463 /// value. Returns the common value if so, otherwise returns null. 464 /// For example, if we have: 465 /// %tmp = select i1 %cmp, i32 1, i32 2 466 /// %cmp1 = icmp sle i32 %tmp, 3 467 /// We can simplify %cmp1 to true, because both branches of select are 468 /// less than 3. We compose new comparison by substituting %tmp with both 469 /// branches of select and see if it can be simplified. 470 static Value *ThreadCmpOverSelect(CmpInst::Predicate Pred, Value *LHS, 471 Value *RHS, const SimplifyQuery &Q, 472 unsigned MaxRecurse) { 473 // Recursion is always used, so bail out at once if we already hit the limit. 474 if (!MaxRecurse--) 475 return nullptr; 476 477 // Make sure the select is on the LHS. 478 if (!isa<SelectInst>(LHS)) { 479 std::swap(LHS, RHS); 480 Pred = CmpInst::getSwappedPredicate(Pred); 481 } 482 assert(isa<SelectInst>(LHS) && "Not comparing with a select instruction!"); 483 SelectInst *SI = cast<SelectInst>(LHS); 484 Value *Cond = SI->getCondition(); 485 Value *TV = SI->getTrueValue(); 486 Value *FV = SI->getFalseValue(); 487 488 // Now that we have "cmp select(Cond, TV, FV), RHS", analyse it. 489 // Does "cmp TV, RHS" simplify? 490 Value *TCmp = simplifyCmpSelTrueCase(Pred, TV, RHS, Cond, Q, MaxRecurse); 491 if (!TCmp) 492 return nullptr; 493 494 // Does "cmp FV, RHS" simplify? 495 Value *FCmp = simplifyCmpSelFalseCase(Pred, FV, RHS, Cond, Q, MaxRecurse); 496 if (!FCmp) 497 return nullptr; 498 499 // If both sides simplified to the same value, then use it as the result of 500 // the original comparison. 501 if (TCmp == FCmp) 502 return TCmp; 503 504 // The remaining cases only make sense if the select condition has the same 505 // type as the result of the comparison, so bail out if this is not so. 506 if (Cond->getType()->isVectorTy() == RHS->getType()->isVectorTy()) 507 return handleOtherCmpSelSimplifications(TCmp, FCmp, Cond, Q, MaxRecurse); 508 509 return nullptr; 510 } 511 512 /// In the case of a binary operation with an operand that is a PHI instruction, 513 /// try to simplify the binop by seeing whether evaluating it on the incoming 514 /// phi values yields the same result for every value. If so returns the common 515 /// value, otherwise returns null. 516 static Value *ThreadBinOpOverPHI(Instruction::BinaryOps Opcode, Value *LHS, 517 Value *RHS, const SimplifyQuery &Q, 518 unsigned MaxRecurse) { 519 // Recursion is always used, so bail out at once if we already hit the limit. 520 if (!MaxRecurse--) 521 return nullptr; 522 523 PHINode *PI; 524 if (isa<PHINode>(LHS)) { 525 PI = cast<PHINode>(LHS); 526 // Bail out if RHS and the phi may be mutually interdependent due to a loop. 527 if (!valueDominatesPHI(RHS, PI, Q.DT)) 528 return nullptr; 529 } else { 530 assert(isa<PHINode>(RHS) && "No PHI instruction operand!"); 531 PI = cast<PHINode>(RHS); 532 // Bail out if LHS and the phi may be mutually interdependent due to a loop. 533 if (!valueDominatesPHI(LHS, PI, Q.DT)) 534 return nullptr; 535 } 536 537 // Evaluate the BinOp on the incoming phi values. 538 Value *CommonValue = nullptr; 539 for (Value *Incoming : PI->incoming_values()) { 540 // If the incoming value is the phi node itself, it can safely be skipped. 541 if (Incoming == PI) continue; 542 Value *V = PI == LHS ? 543 SimplifyBinOp(Opcode, Incoming, RHS, Q, MaxRecurse) : 544 SimplifyBinOp(Opcode, LHS, Incoming, Q, MaxRecurse); 545 // If the operation failed to simplify, or simplified to a different value 546 // to previously, then give up. 547 if (!V || (CommonValue && V != CommonValue)) 548 return nullptr; 549 CommonValue = V; 550 } 551 552 return CommonValue; 553 } 554 555 /// In the case of a comparison with a PHI instruction, try to simplify the 556 /// comparison by seeing whether comparing with all of the incoming phi values 557 /// yields the same result every time. If so returns the common result, 558 /// otherwise returns null. 559 static Value *ThreadCmpOverPHI(CmpInst::Predicate Pred, Value *LHS, Value *RHS, 560 const SimplifyQuery &Q, unsigned MaxRecurse) { 561 // Recursion is always used, so bail out at once if we already hit the limit. 562 if (!MaxRecurse--) 563 return nullptr; 564 565 // Make sure the phi is on the LHS. 566 if (!isa<PHINode>(LHS)) { 567 std::swap(LHS, RHS); 568 Pred = CmpInst::getSwappedPredicate(Pred); 569 } 570 assert(isa<PHINode>(LHS) && "Not comparing with a phi instruction!"); 571 PHINode *PI = cast<PHINode>(LHS); 572 573 // Bail out if RHS and the phi may be mutually interdependent due to a loop. 574 if (!valueDominatesPHI(RHS, PI, Q.DT)) 575 return nullptr; 576 577 // Evaluate the BinOp on the incoming phi values. 578 Value *CommonValue = nullptr; 579 for (unsigned u = 0, e = PI->getNumIncomingValues(); u < e; ++u) { 580 Value *Incoming = PI->getIncomingValue(u); 581 Instruction *InTI = PI->getIncomingBlock(u)->getTerminator(); 582 // If the incoming value is the phi node itself, it can safely be skipped. 583 if (Incoming == PI) continue; 584 // Change the context instruction to the "edge" that flows into the phi. 585 // This is important because that is where incoming is actually "evaluated" 586 // even though it is used later somewhere else. 587 Value *V = SimplifyCmpInst(Pred, Incoming, RHS, Q.getWithInstruction(InTI), 588 MaxRecurse); 589 // If the operation failed to simplify, or simplified to a different value 590 // to previously, then give up. 591 if (!V || (CommonValue && V != CommonValue)) 592 return nullptr; 593 CommonValue = V; 594 } 595 596 return CommonValue; 597 } 598 599 static Constant *foldOrCommuteConstant(Instruction::BinaryOps Opcode, 600 Value *&Op0, Value *&Op1, 601 const SimplifyQuery &Q) { 602 if (auto *CLHS = dyn_cast<Constant>(Op0)) { 603 if (auto *CRHS = dyn_cast<Constant>(Op1)) 604 return ConstantFoldBinaryOpOperands(Opcode, CLHS, CRHS, Q.DL); 605 606 // Canonicalize the constant to the RHS if this is a commutative operation. 607 if (Instruction::isCommutative(Opcode)) 608 std::swap(Op0, Op1); 609 } 610 return nullptr; 611 } 612 613 /// Given operands for an Add, see if we can fold the result. 614 /// If not, this returns null. 615 static Value *SimplifyAddInst(Value *Op0, Value *Op1, bool IsNSW, bool IsNUW, 616 const SimplifyQuery &Q, unsigned MaxRecurse) { 617 if (Constant *C = foldOrCommuteConstant(Instruction::Add, Op0, Op1, Q)) 618 return C; 619 620 // X + poison -> poison 621 if (isa<PoisonValue>(Op1)) 622 return Op1; 623 624 // X + undef -> undef 625 if (Q.isUndefValue(Op1)) 626 return Op1; 627 628 // X + 0 -> X 629 if (match(Op1, m_Zero())) 630 return Op0; 631 632 // If two operands are negative, return 0. 633 if (isKnownNegation(Op0, Op1)) 634 return Constant::getNullValue(Op0->getType()); 635 636 // X + (Y - X) -> Y 637 // (Y - X) + X -> Y 638 // Eg: X + -X -> 0 639 Value *Y = nullptr; 640 if (match(Op1, m_Sub(m_Value(Y), m_Specific(Op0))) || 641 match(Op0, m_Sub(m_Value(Y), m_Specific(Op1)))) 642 return Y; 643 644 // X + ~X -> -1 since ~X = -X-1 645 Type *Ty = Op0->getType(); 646 if (match(Op0, m_Not(m_Specific(Op1))) || 647 match(Op1, m_Not(m_Specific(Op0)))) 648 return Constant::getAllOnesValue(Ty); 649 650 // add nsw/nuw (xor Y, signmask), signmask --> Y 651 // The no-wrapping add guarantees that the top bit will be set by the add. 652 // Therefore, the xor must be clearing the already set sign bit of Y. 653 if ((IsNSW || IsNUW) && match(Op1, m_SignMask()) && 654 match(Op0, m_Xor(m_Value(Y), m_SignMask()))) 655 return Y; 656 657 // add nuw %x, -1 -> -1, because %x can only be 0. 658 if (IsNUW && match(Op1, m_AllOnes())) 659 return Op1; // Which is -1. 660 661 /// i1 add -> xor. 662 if (MaxRecurse && Op0->getType()->isIntOrIntVectorTy(1)) 663 if (Value *V = SimplifyXorInst(Op0, Op1, Q, MaxRecurse-1)) 664 return V; 665 666 // Try some generic simplifications for associative operations. 667 if (Value *V = SimplifyAssociativeBinOp(Instruction::Add, Op0, Op1, Q, 668 MaxRecurse)) 669 return V; 670 671 // Threading Add over selects and phi nodes is pointless, so don't bother. 672 // Threading over the select in "A + select(cond, B, C)" means evaluating 673 // "A+B" and "A+C" and seeing if they are equal; but they are equal if and 674 // only if B and C are equal. If B and C are equal then (since we assume 675 // that operands have already been simplified) "select(cond, B, C)" should 676 // have been simplified to the common value of B and C already. Analysing 677 // "A+B" and "A+C" thus gains nothing, but costs compile time. Similarly 678 // for threading over phi nodes. 679 680 return nullptr; 681 } 682 683 Value *llvm::SimplifyAddInst(Value *Op0, Value *Op1, bool IsNSW, bool IsNUW, 684 const SimplifyQuery &Query) { 685 return ::SimplifyAddInst(Op0, Op1, IsNSW, IsNUW, Query, RecursionLimit); 686 } 687 688 /// Compute the base pointer and cumulative constant offsets for V. 689 /// 690 /// This strips all constant offsets off of V, leaving it the base pointer, and 691 /// accumulates the total constant offset applied in the returned constant. 692 /// It returns zero if there are no constant offsets applied. 693 /// 694 /// This is very similar to stripAndAccumulateConstantOffsets(), except it 695 /// normalizes the offset bitwidth to the stripped pointer type, not the 696 /// original pointer type. 697 static APInt stripAndComputeConstantOffsets(const DataLayout &DL, Value *&V, 698 bool AllowNonInbounds = false) { 699 assert(V->getType()->isPtrOrPtrVectorTy()); 700 701 APInt Offset = APInt::getZero(DL.getIndexTypeSizeInBits(V->getType())); 702 V = V->stripAndAccumulateConstantOffsets(DL, Offset, AllowNonInbounds); 703 // As that strip may trace through `addrspacecast`, need to sext or trunc 704 // the offset calculated. 705 return Offset.sextOrTrunc(DL.getIndexTypeSizeInBits(V->getType())); 706 } 707 708 /// Compute the constant difference between two pointer values. 709 /// If the difference is not a constant, returns zero. 710 static Constant *computePointerDifference(const DataLayout &DL, Value *LHS, 711 Value *RHS) { 712 APInt LHSOffset = stripAndComputeConstantOffsets(DL, LHS); 713 APInt RHSOffset = stripAndComputeConstantOffsets(DL, RHS); 714 715 // If LHS and RHS are not related via constant offsets to the same base 716 // value, there is nothing we can do here. 717 if (LHS != RHS) 718 return nullptr; 719 720 // Otherwise, the difference of LHS - RHS can be computed as: 721 // LHS - RHS 722 // = (LHSOffset + Base) - (RHSOffset + Base) 723 // = LHSOffset - RHSOffset 724 Constant *Res = ConstantInt::get(LHS->getContext(), LHSOffset - RHSOffset); 725 if (auto *VecTy = dyn_cast<VectorType>(LHS->getType())) 726 Res = ConstantVector::getSplat(VecTy->getElementCount(), Res); 727 return Res; 728 } 729 730 /// Given operands for a Sub, see if we can fold the result. 731 /// If not, this returns null. 732 static Value *SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, 733 const SimplifyQuery &Q, unsigned MaxRecurse) { 734 if (Constant *C = foldOrCommuteConstant(Instruction::Sub, Op0, Op1, Q)) 735 return C; 736 737 // X - poison -> poison 738 // poison - X -> poison 739 if (isa<PoisonValue>(Op0) || isa<PoisonValue>(Op1)) 740 return PoisonValue::get(Op0->getType()); 741 742 // X - undef -> undef 743 // undef - X -> undef 744 if (Q.isUndefValue(Op0) || Q.isUndefValue(Op1)) 745 return UndefValue::get(Op0->getType()); 746 747 // X - 0 -> X 748 if (match(Op1, m_Zero())) 749 return Op0; 750 751 // X - X -> 0 752 if (Op0 == Op1) 753 return Constant::getNullValue(Op0->getType()); 754 755 // Is this a negation? 756 if (match(Op0, m_Zero())) { 757 // 0 - X -> 0 if the sub is NUW. 758 if (isNUW) 759 return Constant::getNullValue(Op0->getType()); 760 761 KnownBits Known = computeKnownBits(Op1, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 762 if (Known.Zero.isMaxSignedValue()) { 763 // Op1 is either 0 or the minimum signed value. If the sub is NSW, then 764 // Op1 must be 0 because negating the minimum signed value is undefined. 765 if (isNSW) 766 return Constant::getNullValue(Op0->getType()); 767 768 // 0 - X -> X if X is 0 or the minimum signed value. 769 return Op1; 770 } 771 } 772 773 // (X + Y) - Z -> X + (Y - Z) or Y + (X - Z) if everything simplifies. 774 // For example, (X + Y) - Y -> X; (Y + X) - Y -> X 775 Value *X = nullptr, *Y = nullptr, *Z = Op1; 776 if (MaxRecurse && match(Op0, m_Add(m_Value(X), m_Value(Y)))) { // (X + Y) - Z 777 // See if "V === Y - Z" simplifies. 778 if (Value *V = SimplifyBinOp(Instruction::Sub, Y, Z, Q, MaxRecurse-1)) 779 // It does! Now see if "X + V" simplifies. 780 if (Value *W = SimplifyBinOp(Instruction::Add, X, V, Q, MaxRecurse-1)) { 781 // It does, we successfully reassociated! 782 ++NumReassoc; 783 return W; 784 } 785 // See if "V === X - Z" simplifies. 786 if (Value *V = SimplifyBinOp(Instruction::Sub, X, Z, Q, MaxRecurse-1)) 787 // It does! Now see if "Y + V" simplifies. 788 if (Value *W = SimplifyBinOp(Instruction::Add, Y, V, Q, MaxRecurse-1)) { 789 // It does, we successfully reassociated! 790 ++NumReassoc; 791 return W; 792 } 793 } 794 795 // X - (Y + Z) -> (X - Y) - Z or (X - Z) - Y if everything simplifies. 796 // For example, X - (X + 1) -> -1 797 X = Op0; 798 if (MaxRecurse && match(Op1, m_Add(m_Value(Y), m_Value(Z)))) { // X - (Y + Z) 799 // See if "V === X - Y" simplifies. 800 if (Value *V = SimplifyBinOp(Instruction::Sub, X, Y, Q, MaxRecurse-1)) 801 // It does! Now see if "V - Z" simplifies. 802 if (Value *W = SimplifyBinOp(Instruction::Sub, V, Z, Q, MaxRecurse-1)) { 803 // It does, we successfully reassociated! 804 ++NumReassoc; 805 return W; 806 } 807 // See if "V === X - Z" simplifies. 808 if (Value *V = SimplifyBinOp(Instruction::Sub, X, Z, Q, MaxRecurse-1)) 809 // It does! Now see if "V - Y" simplifies. 810 if (Value *W = SimplifyBinOp(Instruction::Sub, V, Y, Q, MaxRecurse-1)) { 811 // It does, we successfully reassociated! 812 ++NumReassoc; 813 return W; 814 } 815 } 816 817 // Z - (X - Y) -> (Z - X) + Y if everything simplifies. 818 // For example, X - (X - Y) -> Y. 819 Z = Op0; 820 if (MaxRecurse && match(Op1, m_Sub(m_Value(X), m_Value(Y)))) // Z - (X - Y) 821 // See if "V === Z - X" simplifies. 822 if (Value *V = SimplifyBinOp(Instruction::Sub, Z, X, Q, MaxRecurse-1)) 823 // It does! Now see if "V + Y" simplifies. 824 if (Value *W = SimplifyBinOp(Instruction::Add, V, Y, Q, MaxRecurse-1)) { 825 // It does, we successfully reassociated! 826 ++NumReassoc; 827 return W; 828 } 829 830 // trunc(X) - trunc(Y) -> trunc(X - Y) if everything simplifies. 831 if (MaxRecurse && match(Op0, m_Trunc(m_Value(X))) && 832 match(Op1, m_Trunc(m_Value(Y)))) 833 if (X->getType() == Y->getType()) 834 // See if "V === X - Y" simplifies. 835 if (Value *V = SimplifyBinOp(Instruction::Sub, X, Y, Q, MaxRecurse-1)) 836 // It does! Now see if "trunc V" simplifies. 837 if (Value *W = SimplifyCastInst(Instruction::Trunc, V, Op0->getType(), 838 Q, MaxRecurse - 1)) 839 // It does, return the simplified "trunc V". 840 return W; 841 842 // Variations on GEP(base, I, ...) - GEP(base, i, ...) -> GEP(null, I-i, ...). 843 if (match(Op0, m_PtrToInt(m_Value(X))) && 844 match(Op1, m_PtrToInt(m_Value(Y)))) 845 if (Constant *Result = computePointerDifference(Q.DL, X, Y)) 846 return ConstantExpr::getIntegerCast(Result, Op0->getType(), true); 847 848 // i1 sub -> xor. 849 if (MaxRecurse && Op0->getType()->isIntOrIntVectorTy(1)) 850 if (Value *V = SimplifyXorInst(Op0, Op1, Q, MaxRecurse-1)) 851 return V; 852 853 // Threading Sub over selects and phi nodes is pointless, so don't bother. 854 // Threading over the select in "A - select(cond, B, C)" means evaluating 855 // "A-B" and "A-C" and seeing if they are equal; but they are equal if and 856 // only if B and C are equal. If B and C are equal then (since we assume 857 // that operands have already been simplified) "select(cond, B, C)" should 858 // have been simplified to the common value of B and C already. Analysing 859 // "A-B" and "A-C" thus gains nothing, but costs compile time. Similarly 860 // for threading over phi nodes. 861 862 return nullptr; 863 } 864 865 Value *llvm::SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, 866 const SimplifyQuery &Q) { 867 return ::SimplifySubInst(Op0, Op1, isNSW, isNUW, Q, RecursionLimit); 868 } 869 870 /// Given operands for a Mul, see if we can fold the result. 871 /// If not, this returns null. 872 static Value *SimplifyMulInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 873 unsigned MaxRecurse) { 874 if (Constant *C = foldOrCommuteConstant(Instruction::Mul, Op0, Op1, Q)) 875 return C; 876 877 // X * poison -> poison 878 if (isa<PoisonValue>(Op1)) 879 return Op1; 880 881 // X * undef -> 0 882 // X * 0 -> 0 883 if (Q.isUndefValue(Op1) || match(Op1, m_Zero())) 884 return Constant::getNullValue(Op0->getType()); 885 886 // X * 1 -> X 887 if (match(Op1, m_One())) 888 return Op0; 889 890 // (X / Y) * Y -> X if the division is exact. 891 Value *X = nullptr; 892 if (Q.IIQ.UseInstrInfo && 893 (match(Op0, 894 m_Exact(m_IDiv(m_Value(X), m_Specific(Op1)))) || // (X / Y) * Y 895 match(Op1, m_Exact(m_IDiv(m_Value(X), m_Specific(Op0)))))) // Y * (X / Y) 896 return X; 897 898 // i1 mul -> and. 899 if (MaxRecurse && Op0->getType()->isIntOrIntVectorTy(1)) 900 if (Value *V = SimplifyAndInst(Op0, Op1, Q, MaxRecurse-1)) 901 return V; 902 903 // Try some generic simplifications for associative operations. 904 if (Value *V = SimplifyAssociativeBinOp(Instruction::Mul, Op0, Op1, Q, 905 MaxRecurse)) 906 return V; 907 908 // Mul distributes over Add. Try some generic simplifications based on this. 909 if (Value *V = expandCommutativeBinOp(Instruction::Mul, Op0, Op1, 910 Instruction::Add, Q, MaxRecurse)) 911 return V; 912 913 // If the operation is with the result of a select instruction, check whether 914 // operating on either branch of the select always yields the same value. 915 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 916 if (Value *V = ThreadBinOpOverSelect(Instruction::Mul, Op0, Op1, Q, 917 MaxRecurse)) 918 return V; 919 920 // If the operation is with the result of a phi instruction, check whether 921 // operating on all incoming values of the phi always yields the same value. 922 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 923 if (Value *V = ThreadBinOpOverPHI(Instruction::Mul, Op0, Op1, Q, 924 MaxRecurse)) 925 return V; 926 927 return nullptr; 928 } 929 930 Value *llvm::SimplifyMulInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 931 return ::SimplifyMulInst(Op0, Op1, Q, RecursionLimit); 932 } 933 934 /// Check for common or similar folds of integer division or integer remainder. 935 /// This applies to all 4 opcodes (sdiv/udiv/srem/urem). 936 static Value *simplifyDivRem(Instruction::BinaryOps Opcode, Value *Op0, 937 Value *Op1, const SimplifyQuery &Q) { 938 bool IsDiv = (Opcode == Instruction::SDiv || Opcode == Instruction::UDiv); 939 bool IsSigned = (Opcode == Instruction::SDiv || Opcode == Instruction::SRem); 940 941 Type *Ty = Op0->getType(); 942 943 // X / undef -> poison 944 // X % undef -> poison 945 if (Q.isUndefValue(Op1) || isa<PoisonValue>(Op1)) 946 return PoisonValue::get(Ty); 947 948 // X / 0 -> poison 949 // X % 0 -> poison 950 // We don't need to preserve faults! 951 if (match(Op1, m_Zero())) 952 return PoisonValue::get(Ty); 953 954 // If any element of a constant divisor fixed width vector is zero or undef 955 // the behavior is undefined and we can fold the whole op to poison. 956 auto *Op1C = dyn_cast<Constant>(Op1); 957 auto *VTy = dyn_cast<FixedVectorType>(Ty); 958 if (Op1C && VTy) { 959 unsigned NumElts = VTy->getNumElements(); 960 for (unsigned i = 0; i != NumElts; ++i) { 961 Constant *Elt = Op1C->getAggregateElement(i); 962 if (Elt && (Elt->isNullValue() || Q.isUndefValue(Elt))) 963 return PoisonValue::get(Ty); 964 } 965 } 966 967 // poison / X -> poison 968 // poison % X -> poison 969 if (isa<PoisonValue>(Op0)) 970 return Op0; 971 972 // undef / X -> 0 973 // undef % X -> 0 974 if (Q.isUndefValue(Op0)) 975 return Constant::getNullValue(Ty); 976 977 // 0 / X -> 0 978 // 0 % X -> 0 979 if (match(Op0, m_Zero())) 980 return Constant::getNullValue(Op0->getType()); 981 982 // X / X -> 1 983 // X % X -> 0 984 if (Op0 == Op1) 985 return IsDiv ? ConstantInt::get(Ty, 1) : Constant::getNullValue(Ty); 986 987 // X / 1 -> X 988 // X % 1 -> 0 989 // If this is a boolean op (single-bit element type), we can't have 990 // division-by-zero or remainder-by-zero, so assume the divisor is 1. 991 // Similarly, if we're zero-extending a boolean divisor, then assume it's a 1. 992 Value *X; 993 if (match(Op1, m_One()) || Ty->isIntOrIntVectorTy(1) || 994 (match(Op1, m_ZExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1))) 995 return IsDiv ? Op0 : Constant::getNullValue(Ty); 996 997 // If X * Y does not overflow, then: 998 // X * Y / Y -> X 999 // X * Y % Y -> 0 1000 if (match(Op0, m_c_Mul(m_Value(X), m_Specific(Op1)))) { 1001 auto *Mul = cast<OverflowingBinaryOperator>(Op0); 1002 // The multiplication can't overflow if it is defined not to, or if 1003 // X == A / Y for some A. 1004 if ((IsSigned && Q.IIQ.hasNoSignedWrap(Mul)) || 1005 (!IsSigned && Q.IIQ.hasNoUnsignedWrap(Mul)) || 1006 (IsSigned && match(X, m_SDiv(m_Value(), m_Specific(Op1)))) || 1007 (!IsSigned && match(X, m_UDiv(m_Value(), m_Specific(Op1))))) { 1008 return IsDiv ? X : Constant::getNullValue(Op0->getType()); 1009 } 1010 } 1011 1012 return nullptr; 1013 } 1014 1015 /// Given a predicate and two operands, return true if the comparison is true. 1016 /// This is a helper for div/rem simplification where we return some other value 1017 /// when we can prove a relationship between the operands. 1018 static bool isICmpTrue(ICmpInst::Predicate Pred, Value *LHS, Value *RHS, 1019 const SimplifyQuery &Q, unsigned MaxRecurse) { 1020 Value *V = SimplifyICmpInst(Pred, LHS, RHS, Q, MaxRecurse); 1021 Constant *C = dyn_cast_or_null<Constant>(V); 1022 return (C && C->isAllOnesValue()); 1023 } 1024 1025 /// Return true if we can simplify X / Y to 0. Remainder can adapt that answer 1026 /// to simplify X % Y to X. 1027 static bool isDivZero(Value *X, Value *Y, const SimplifyQuery &Q, 1028 unsigned MaxRecurse, bool IsSigned) { 1029 // Recursion is always used, so bail out at once if we already hit the limit. 1030 if (!MaxRecurse--) 1031 return false; 1032 1033 if (IsSigned) { 1034 // |X| / |Y| --> 0 1035 // 1036 // We require that 1 operand is a simple constant. That could be extended to 1037 // 2 variables if we computed the sign bit for each. 1038 // 1039 // Make sure that a constant is not the minimum signed value because taking 1040 // the abs() of that is undefined. 1041 Type *Ty = X->getType(); 1042 const APInt *C; 1043 if (match(X, m_APInt(C)) && !C->isMinSignedValue()) { 1044 // Is the variable divisor magnitude always greater than the constant 1045 // dividend magnitude? 1046 // |Y| > |C| --> Y < -abs(C) or Y > abs(C) 1047 Constant *PosDividendC = ConstantInt::get(Ty, C->abs()); 1048 Constant *NegDividendC = ConstantInt::get(Ty, -C->abs()); 1049 if (isICmpTrue(CmpInst::ICMP_SLT, Y, NegDividendC, Q, MaxRecurse) || 1050 isICmpTrue(CmpInst::ICMP_SGT, Y, PosDividendC, Q, MaxRecurse)) 1051 return true; 1052 } 1053 if (match(Y, m_APInt(C))) { 1054 // Special-case: we can't take the abs() of a minimum signed value. If 1055 // that's the divisor, then all we have to do is prove that the dividend 1056 // is also not the minimum signed value. 1057 if (C->isMinSignedValue()) 1058 return isICmpTrue(CmpInst::ICMP_NE, X, Y, Q, MaxRecurse); 1059 1060 // Is the variable dividend magnitude always less than the constant 1061 // divisor magnitude? 1062 // |X| < |C| --> X > -abs(C) and X < abs(C) 1063 Constant *PosDivisorC = ConstantInt::get(Ty, C->abs()); 1064 Constant *NegDivisorC = ConstantInt::get(Ty, -C->abs()); 1065 if (isICmpTrue(CmpInst::ICMP_SGT, X, NegDivisorC, Q, MaxRecurse) && 1066 isICmpTrue(CmpInst::ICMP_SLT, X, PosDivisorC, Q, MaxRecurse)) 1067 return true; 1068 } 1069 return false; 1070 } 1071 1072 // IsSigned == false. 1073 1074 // Is the unsigned dividend known to be less than a constant divisor? 1075 // TODO: Convert this (and above) to range analysis 1076 // ("computeConstantRangeIncludingKnownBits")? 1077 const APInt *C; 1078 if (match(Y, m_APInt(C)) && 1079 computeKnownBits(X, Q.DL, 0, Q.AC, Q.CxtI, Q.DT).getMaxValue().ult(*C)) 1080 return true; 1081 1082 // Try again for any divisor: 1083 // Is the dividend unsigned less than the divisor? 1084 return isICmpTrue(ICmpInst::ICMP_ULT, X, Y, Q, MaxRecurse); 1085 } 1086 1087 /// These are simplifications common to SDiv and UDiv. 1088 static Value *simplifyDiv(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1, 1089 const SimplifyQuery &Q, unsigned MaxRecurse) { 1090 if (Constant *C = foldOrCommuteConstant(Opcode, Op0, Op1, Q)) 1091 return C; 1092 1093 if (Value *V = simplifyDivRem(Opcode, Op0, Op1, Q)) 1094 return V; 1095 1096 bool IsSigned = Opcode == Instruction::SDiv; 1097 1098 // (X rem Y) / Y -> 0 1099 if ((IsSigned && match(Op0, m_SRem(m_Value(), m_Specific(Op1)))) || 1100 (!IsSigned && match(Op0, m_URem(m_Value(), m_Specific(Op1))))) 1101 return Constant::getNullValue(Op0->getType()); 1102 1103 // (X /u C1) /u C2 -> 0 if C1 * C2 overflow 1104 ConstantInt *C1, *C2; 1105 if (!IsSigned && match(Op0, m_UDiv(m_Value(), m_ConstantInt(C1))) && 1106 match(Op1, m_ConstantInt(C2))) { 1107 bool Overflow; 1108 (void)C1->getValue().umul_ov(C2->getValue(), Overflow); 1109 if (Overflow) 1110 return Constant::getNullValue(Op0->getType()); 1111 } 1112 1113 // If the operation is with the result of a select instruction, check whether 1114 // operating on either branch of the select always yields the same value. 1115 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 1116 if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse)) 1117 return V; 1118 1119 // If the operation is with the result of a phi instruction, check whether 1120 // operating on all incoming values of the phi always yields the same value. 1121 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 1122 if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse)) 1123 return V; 1124 1125 if (isDivZero(Op0, Op1, Q, MaxRecurse, IsSigned)) 1126 return Constant::getNullValue(Op0->getType()); 1127 1128 return nullptr; 1129 } 1130 1131 /// These are simplifications common to SRem and URem. 1132 static Value *simplifyRem(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1, 1133 const SimplifyQuery &Q, unsigned MaxRecurse) { 1134 if (Constant *C = foldOrCommuteConstant(Opcode, Op0, Op1, Q)) 1135 return C; 1136 1137 if (Value *V = simplifyDivRem(Opcode, Op0, Op1, Q)) 1138 return V; 1139 1140 // (X % Y) % Y -> X % Y 1141 if ((Opcode == Instruction::SRem && 1142 match(Op0, m_SRem(m_Value(), m_Specific(Op1)))) || 1143 (Opcode == Instruction::URem && 1144 match(Op0, m_URem(m_Value(), m_Specific(Op1))))) 1145 return Op0; 1146 1147 // (X << Y) % X -> 0 1148 if (Q.IIQ.UseInstrInfo && 1149 ((Opcode == Instruction::SRem && 1150 match(Op0, m_NSWShl(m_Specific(Op1), m_Value()))) || 1151 (Opcode == Instruction::URem && 1152 match(Op0, m_NUWShl(m_Specific(Op1), m_Value()))))) 1153 return Constant::getNullValue(Op0->getType()); 1154 1155 // If the operation is with the result of a select instruction, check whether 1156 // operating on either branch of the select always yields the same value. 1157 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 1158 if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse)) 1159 return V; 1160 1161 // If the operation is with the result of a phi instruction, check whether 1162 // operating on all incoming values of the phi always yields the same value. 1163 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 1164 if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse)) 1165 return V; 1166 1167 // If X / Y == 0, then X % Y == X. 1168 if (isDivZero(Op0, Op1, Q, MaxRecurse, Opcode == Instruction::SRem)) 1169 return Op0; 1170 1171 return nullptr; 1172 } 1173 1174 /// Given operands for an SDiv, see if we can fold the result. 1175 /// If not, this returns null. 1176 static Value *SimplifySDivInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 1177 unsigned MaxRecurse) { 1178 // If two operands are negated and no signed overflow, return -1. 1179 if (isKnownNegation(Op0, Op1, /*NeedNSW=*/true)) 1180 return Constant::getAllOnesValue(Op0->getType()); 1181 1182 return simplifyDiv(Instruction::SDiv, Op0, Op1, Q, MaxRecurse); 1183 } 1184 1185 Value *llvm::SimplifySDivInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 1186 return ::SimplifySDivInst(Op0, Op1, Q, RecursionLimit); 1187 } 1188 1189 /// Given operands for a UDiv, see if we can fold the result. 1190 /// If not, this returns null. 1191 static Value *SimplifyUDivInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 1192 unsigned MaxRecurse) { 1193 return simplifyDiv(Instruction::UDiv, Op0, Op1, Q, MaxRecurse); 1194 } 1195 1196 Value *llvm::SimplifyUDivInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 1197 return ::SimplifyUDivInst(Op0, Op1, Q, RecursionLimit); 1198 } 1199 1200 /// Given operands for an SRem, see if we can fold the result. 1201 /// If not, this returns null. 1202 static Value *SimplifySRemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 1203 unsigned MaxRecurse) { 1204 // If the divisor is 0, the result is undefined, so assume the divisor is -1. 1205 // srem Op0, (sext i1 X) --> srem Op0, -1 --> 0 1206 Value *X; 1207 if (match(Op1, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)) 1208 return ConstantInt::getNullValue(Op0->getType()); 1209 1210 // If the two operands are negated, return 0. 1211 if (isKnownNegation(Op0, Op1)) 1212 return ConstantInt::getNullValue(Op0->getType()); 1213 1214 return simplifyRem(Instruction::SRem, Op0, Op1, Q, MaxRecurse); 1215 } 1216 1217 Value *llvm::SimplifySRemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 1218 return ::SimplifySRemInst(Op0, Op1, Q, RecursionLimit); 1219 } 1220 1221 /// Given operands for a URem, see if we can fold the result. 1222 /// If not, this returns null. 1223 static Value *SimplifyURemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 1224 unsigned MaxRecurse) { 1225 return simplifyRem(Instruction::URem, Op0, Op1, Q, MaxRecurse); 1226 } 1227 1228 Value *llvm::SimplifyURemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 1229 return ::SimplifyURemInst(Op0, Op1, Q, RecursionLimit); 1230 } 1231 1232 /// Returns true if a shift by \c Amount always yields poison. 1233 static bool isPoisonShift(Value *Amount, const SimplifyQuery &Q) { 1234 Constant *C = dyn_cast<Constant>(Amount); 1235 if (!C) 1236 return false; 1237 1238 // X shift by undef -> poison because it may shift by the bitwidth. 1239 if (Q.isUndefValue(C)) 1240 return true; 1241 1242 // Shifting by the bitwidth or more is undefined. 1243 if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1244 if (CI->getValue().uge(CI->getType()->getScalarSizeInBits())) 1245 return true; 1246 1247 // If all lanes of a vector shift are undefined the whole shift is. 1248 if (isa<ConstantVector>(C) || isa<ConstantDataVector>(C)) { 1249 for (unsigned I = 0, 1250 E = cast<FixedVectorType>(C->getType())->getNumElements(); 1251 I != E; ++I) 1252 if (!isPoisonShift(C->getAggregateElement(I), Q)) 1253 return false; 1254 return true; 1255 } 1256 1257 return false; 1258 } 1259 1260 /// Given operands for an Shl, LShr or AShr, see if we can fold the result. 1261 /// If not, this returns null. 1262 static Value *SimplifyShift(Instruction::BinaryOps Opcode, Value *Op0, 1263 Value *Op1, bool IsNSW, const SimplifyQuery &Q, 1264 unsigned MaxRecurse) { 1265 if (Constant *C = foldOrCommuteConstant(Opcode, Op0, Op1, Q)) 1266 return C; 1267 1268 // poison shift by X -> poison 1269 if (isa<PoisonValue>(Op0)) 1270 return Op0; 1271 1272 // 0 shift by X -> 0 1273 if (match(Op0, m_Zero())) 1274 return Constant::getNullValue(Op0->getType()); 1275 1276 // X shift by 0 -> X 1277 // Shift-by-sign-extended bool must be shift-by-0 because shift-by-all-ones 1278 // would be poison. 1279 Value *X; 1280 if (match(Op1, m_Zero()) || 1281 (match(Op1, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1))) 1282 return Op0; 1283 1284 // Fold undefined shifts. 1285 if (isPoisonShift(Op1, Q)) 1286 return PoisonValue::get(Op0->getType()); 1287 1288 // If the operation is with the result of a select instruction, check whether 1289 // operating on either branch of the select always yields the same value. 1290 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 1291 if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse)) 1292 return V; 1293 1294 // If the operation is with the result of a phi instruction, check whether 1295 // operating on all incoming values of the phi always yields the same value. 1296 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 1297 if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse)) 1298 return V; 1299 1300 // If any bits in the shift amount make that value greater than or equal to 1301 // the number of bits in the type, the shift is undefined. 1302 KnownBits KnownAmt = computeKnownBits(Op1, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 1303 if (KnownAmt.getMinValue().uge(KnownAmt.getBitWidth())) 1304 return PoisonValue::get(Op0->getType()); 1305 1306 // If all valid bits in the shift amount are known zero, the first operand is 1307 // unchanged. 1308 unsigned NumValidShiftBits = Log2_32_Ceil(KnownAmt.getBitWidth()); 1309 if (KnownAmt.countMinTrailingZeros() >= NumValidShiftBits) 1310 return Op0; 1311 1312 // Check for nsw shl leading to a poison value. 1313 if (IsNSW) { 1314 assert(Opcode == Instruction::Shl && "Expected shl for nsw instruction"); 1315 KnownBits KnownVal = computeKnownBits(Op0, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 1316 KnownBits KnownShl = KnownBits::shl(KnownVal, KnownAmt); 1317 1318 if (KnownVal.Zero.isSignBitSet()) 1319 KnownShl.Zero.setSignBit(); 1320 if (KnownVal.One.isSignBitSet()) 1321 KnownShl.One.setSignBit(); 1322 1323 if (KnownShl.hasConflict()) 1324 return PoisonValue::get(Op0->getType()); 1325 } 1326 1327 return nullptr; 1328 } 1329 1330 /// Given operands for an Shl, LShr or AShr, see if we can 1331 /// fold the result. If not, this returns null. 1332 static Value *SimplifyRightShift(Instruction::BinaryOps Opcode, Value *Op0, 1333 Value *Op1, bool isExact, const SimplifyQuery &Q, 1334 unsigned MaxRecurse) { 1335 if (Value *V = 1336 SimplifyShift(Opcode, Op0, Op1, /*IsNSW*/ false, Q, MaxRecurse)) 1337 return V; 1338 1339 // X >> X -> 0 1340 if (Op0 == Op1) 1341 return Constant::getNullValue(Op0->getType()); 1342 1343 // undef >> X -> 0 1344 // undef >> X -> undef (if it's exact) 1345 if (Q.isUndefValue(Op0)) 1346 return isExact ? Op0 : Constant::getNullValue(Op0->getType()); 1347 1348 // The low bit cannot be shifted out of an exact shift if it is set. 1349 if (isExact) { 1350 KnownBits Op0Known = computeKnownBits(Op0, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT); 1351 if (Op0Known.One[0]) 1352 return Op0; 1353 } 1354 1355 return nullptr; 1356 } 1357 1358 /// Given operands for an Shl, see if we can fold the result. 1359 /// If not, this returns null. 1360 static Value *SimplifyShlInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, 1361 const SimplifyQuery &Q, unsigned MaxRecurse) { 1362 if (Value *V = 1363 SimplifyShift(Instruction::Shl, Op0, Op1, isNSW, Q, MaxRecurse)) 1364 return V; 1365 1366 // undef << X -> 0 1367 // undef << X -> undef if (if it's NSW/NUW) 1368 if (Q.isUndefValue(Op0)) 1369 return isNSW || isNUW ? Op0 : Constant::getNullValue(Op0->getType()); 1370 1371 // (X >> A) << A -> X 1372 Value *X; 1373 if (Q.IIQ.UseInstrInfo && 1374 match(Op0, m_Exact(m_Shr(m_Value(X), m_Specific(Op1))))) 1375 return X; 1376 1377 // shl nuw i8 C, %x -> C iff C has sign bit set. 1378 if (isNUW && match(Op0, m_Negative())) 1379 return Op0; 1380 // NOTE: could use computeKnownBits() / LazyValueInfo, 1381 // but the cost-benefit analysis suggests it isn't worth it. 1382 1383 return nullptr; 1384 } 1385 1386 Value *llvm::SimplifyShlInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, 1387 const SimplifyQuery &Q) { 1388 return ::SimplifyShlInst(Op0, Op1, isNSW, isNUW, Q, RecursionLimit); 1389 } 1390 1391 /// Given operands for an LShr, see if we can fold the result. 1392 /// If not, this returns null. 1393 static Value *SimplifyLShrInst(Value *Op0, Value *Op1, bool isExact, 1394 const SimplifyQuery &Q, unsigned MaxRecurse) { 1395 if (Value *V = SimplifyRightShift(Instruction::LShr, Op0, Op1, isExact, Q, 1396 MaxRecurse)) 1397 return V; 1398 1399 // (X << A) >> A -> X 1400 Value *X; 1401 if (match(Op0, m_NUWShl(m_Value(X), m_Specific(Op1)))) 1402 return X; 1403 1404 // ((X << A) | Y) >> A -> X if effective width of Y is not larger than A. 1405 // We can return X as we do in the above case since OR alters no bits in X. 1406 // SimplifyDemandedBits in InstCombine can do more general optimization for 1407 // bit manipulation. This pattern aims to provide opportunities for other 1408 // optimizers by supporting a simple but common case in InstSimplify. 1409 Value *Y; 1410 const APInt *ShRAmt, *ShLAmt; 1411 if (match(Op1, m_APInt(ShRAmt)) && 1412 match(Op0, m_c_Or(m_NUWShl(m_Value(X), m_APInt(ShLAmt)), m_Value(Y))) && 1413 *ShRAmt == *ShLAmt) { 1414 const KnownBits YKnown = computeKnownBits(Y, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 1415 const unsigned EffWidthY = YKnown.countMaxActiveBits(); 1416 if (ShRAmt->uge(EffWidthY)) 1417 return X; 1418 } 1419 1420 return nullptr; 1421 } 1422 1423 Value *llvm::SimplifyLShrInst(Value *Op0, Value *Op1, bool isExact, 1424 const SimplifyQuery &Q) { 1425 return ::SimplifyLShrInst(Op0, Op1, isExact, Q, RecursionLimit); 1426 } 1427 1428 /// Given operands for an AShr, see if we can fold the result. 1429 /// If not, this returns null. 1430 static Value *SimplifyAShrInst(Value *Op0, Value *Op1, bool isExact, 1431 const SimplifyQuery &Q, unsigned MaxRecurse) { 1432 if (Value *V = SimplifyRightShift(Instruction::AShr, Op0, Op1, isExact, Q, 1433 MaxRecurse)) 1434 return V; 1435 1436 // -1 >>a X --> -1 1437 // (-1 << X) a>> X --> -1 1438 // Do not return Op0 because it may contain undef elements if it's a vector. 1439 if (match(Op0, m_AllOnes()) || 1440 match(Op0, m_Shl(m_AllOnes(), m_Specific(Op1)))) 1441 return Constant::getAllOnesValue(Op0->getType()); 1442 1443 // (X << A) >> A -> X 1444 Value *X; 1445 if (Q.IIQ.UseInstrInfo && match(Op0, m_NSWShl(m_Value(X), m_Specific(Op1)))) 1446 return X; 1447 1448 // Arithmetic shifting an all-sign-bit value is a no-op. 1449 unsigned NumSignBits = ComputeNumSignBits(Op0, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 1450 if (NumSignBits == Op0->getType()->getScalarSizeInBits()) 1451 return Op0; 1452 1453 return nullptr; 1454 } 1455 1456 Value *llvm::SimplifyAShrInst(Value *Op0, Value *Op1, bool isExact, 1457 const SimplifyQuery &Q) { 1458 return ::SimplifyAShrInst(Op0, Op1, isExact, Q, RecursionLimit); 1459 } 1460 1461 /// Commuted variants are assumed to be handled by calling this function again 1462 /// with the parameters swapped. 1463 static Value *simplifyUnsignedRangeCheck(ICmpInst *ZeroICmp, 1464 ICmpInst *UnsignedICmp, bool IsAnd, 1465 const SimplifyQuery &Q) { 1466 Value *X, *Y; 1467 1468 ICmpInst::Predicate EqPred; 1469 if (!match(ZeroICmp, m_ICmp(EqPred, m_Value(Y), m_Zero())) || 1470 !ICmpInst::isEquality(EqPred)) 1471 return nullptr; 1472 1473 ICmpInst::Predicate UnsignedPred; 1474 1475 Value *A, *B; 1476 // Y = (A - B); 1477 if (match(Y, m_Sub(m_Value(A), m_Value(B)))) { 1478 if (match(UnsignedICmp, 1479 m_c_ICmp(UnsignedPred, m_Specific(A), m_Specific(B))) && 1480 ICmpInst::isUnsigned(UnsignedPred)) { 1481 // A >=/<= B || (A - B) != 0 <--> true 1482 if ((UnsignedPred == ICmpInst::ICMP_UGE || 1483 UnsignedPred == ICmpInst::ICMP_ULE) && 1484 EqPred == ICmpInst::ICMP_NE && !IsAnd) 1485 return ConstantInt::getTrue(UnsignedICmp->getType()); 1486 // A </> B && (A - B) == 0 <--> false 1487 if ((UnsignedPred == ICmpInst::ICMP_ULT || 1488 UnsignedPred == ICmpInst::ICMP_UGT) && 1489 EqPred == ICmpInst::ICMP_EQ && IsAnd) 1490 return ConstantInt::getFalse(UnsignedICmp->getType()); 1491 1492 // A </> B && (A - B) != 0 <--> A </> B 1493 // A </> B || (A - B) != 0 <--> (A - B) != 0 1494 if (EqPred == ICmpInst::ICMP_NE && (UnsignedPred == ICmpInst::ICMP_ULT || 1495 UnsignedPred == ICmpInst::ICMP_UGT)) 1496 return IsAnd ? UnsignedICmp : ZeroICmp; 1497 1498 // A <=/>= B && (A - B) == 0 <--> (A - B) == 0 1499 // A <=/>= B || (A - B) == 0 <--> A <=/>= B 1500 if (EqPred == ICmpInst::ICMP_EQ && (UnsignedPred == ICmpInst::ICMP_ULE || 1501 UnsignedPred == ICmpInst::ICMP_UGE)) 1502 return IsAnd ? ZeroICmp : UnsignedICmp; 1503 } 1504 1505 // Given Y = (A - B) 1506 // Y >= A && Y != 0 --> Y >= A iff B != 0 1507 // Y < A || Y == 0 --> Y < A iff B != 0 1508 if (match(UnsignedICmp, 1509 m_c_ICmp(UnsignedPred, m_Specific(Y), m_Specific(A)))) { 1510 if (UnsignedPred == ICmpInst::ICMP_UGE && IsAnd && 1511 EqPred == ICmpInst::ICMP_NE && 1512 isKnownNonZero(B, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT)) 1513 return UnsignedICmp; 1514 if (UnsignedPred == ICmpInst::ICMP_ULT && !IsAnd && 1515 EqPred == ICmpInst::ICMP_EQ && 1516 isKnownNonZero(B, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT)) 1517 return UnsignedICmp; 1518 } 1519 } 1520 1521 if (match(UnsignedICmp, m_ICmp(UnsignedPred, m_Value(X), m_Specific(Y))) && 1522 ICmpInst::isUnsigned(UnsignedPred)) 1523 ; 1524 else if (match(UnsignedICmp, 1525 m_ICmp(UnsignedPred, m_Specific(Y), m_Value(X))) && 1526 ICmpInst::isUnsigned(UnsignedPred)) 1527 UnsignedPred = ICmpInst::getSwappedPredicate(UnsignedPred); 1528 else 1529 return nullptr; 1530 1531 // X > Y && Y == 0 --> Y == 0 iff X != 0 1532 // X > Y || Y == 0 --> X > Y iff X != 0 1533 if (UnsignedPred == ICmpInst::ICMP_UGT && EqPred == ICmpInst::ICMP_EQ && 1534 isKnownNonZero(X, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT)) 1535 return IsAnd ? ZeroICmp : UnsignedICmp; 1536 1537 // X <= Y && Y != 0 --> X <= Y iff X != 0 1538 // X <= Y || Y != 0 --> Y != 0 iff X != 0 1539 if (UnsignedPred == ICmpInst::ICMP_ULE && EqPred == ICmpInst::ICMP_NE && 1540 isKnownNonZero(X, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT)) 1541 return IsAnd ? UnsignedICmp : ZeroICmp; 1542 1543 // The transforms below here are expected to be handled more generally with 1544 // simplifyAndOrOfICmpsWithLimitConst() or in InstCombine's 1545 // foldAndOrOfICmpsWithConstEq(). If we are looking to trim optimizer overlap, 1546 // these are candidates for removal. 1547 1548 // X < Y && Y != 0 --> X < Y 1549 // X < Y || Y != 0 --> Y != 0 1550 if (UnsignedPred == ICmpInst::ICMP_ULT && EqPred == ICmpInst::ICMP_NE) 1551 return IsAnd ? UnsignedICmp : ZeroICmp; 1552 1553 // X >= Y && Y == 0 --> Y == 0 1554 // X >= Y || Y == 0 --> X >= Y 1555 if (UnsignedPred == ICmpInst::ICMP_UGE && EqPred == ICmpInst::ICMP_EQ) 1556 return IsAnd ? ZeroICmp : UnsignedICmp; 1557 1558 // X < Y && Y == 0 --> false 1559 if (UnsignedPred == ICmpInst::ICMP_ULT && EqPred == ICmpInst::ICMP_EQ && 1560 IsAnd) 1561 return getFalse(UnsignedICmp->getType()); 1562 1563 // X >= Y || Y != 0 --> true 1564 if (UnsignedPred == ICmpInst::ICMP_UGE && EqPred == ICmpInst::ICMP_NE && 1565 !IsAnd) 1566 return getTrue(UnsignedICmp->getType()); 1567 1568 return nullptr; 1569 } 1570 1571 /// Commuted variants are assumed to be handled by calling this function again 1572 /// with the parameters swapped. 1573 static Value *simplifyAndOfICmpsWithSameOperands(ICmpInst *Op0, ICmpInst *Op1) { 1574 ICmpInst::Predicate Pred0, Pred1; 1575 Value *A ,*B; 1576 if (!match(Op0, m_ICmp(Pred0, m_Value(A), m_Value(B))) || 1577 !match(Op1, m_ICmp(Pred1, m_Specific(A), m_Specific(B)))) 1578 return nullptr; 1579 1580 // We have (icmp Pred0, A, B) & (icmp Pred1, A, B). 1581 // If Op1 is always implied true by Op0, then Op0 is a subset of Op1, and we 1582 // can eliminate Op1 from this 'and'. 1583 if (ICmpInst::isImpliedTrueByMatchingCmp(Pred0, Pred1)) 1584 return Op0; 1585 1586 // Check for any combination of predicates that are guaranteed to be disjoint. 1587 if ((Pred0 == ICmpInst::getInversePredicate(Pred1)) || 1588 (Pred0 == ICmpInst::ICMP_EQ && ICmpInst::isFalseWhenEqual(Pred1)) || 1589 (Pred0 == ICmpInst::ICMP_SLT && Pred1 == ICmpInst::ICMP_SGT) || 1590 (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_UGT)) 1591 return getFalse(Op0->getType()); 1592 1593 return nullptr; 1594 } 1595 1596 /// Commuted variants are assumed to be handled by calling this function again 1597 /// with the parameters swapped. 1598 static Value *simplifyOrOfICmpsWithSameOperands(ICmpInst *Op0, ICmpInst *Op1) { 1599 ICmpInst::Predicate Pred0, Pred1; 1600 Value *A ,*B; 1601 if (!match(Op0, m_ICmp(Pred0, m_Value(A), m_Value(B))) || 1602 !match(Op1, m_ICmp(Pred1, m_Specific(A), m_Specific(B)))) 1603 return nullptr; 1604 1605 // We have (icmp Pred0, A, B) | (icmp Pred1, A, B). 1606 // If Op1 is always implied true by Op0, then Op0 is a subset of Op1, and we 1607 // can eliminate Op0 from this 'or'. 1608 if (ICmpInst::isImpliedTrueByMatchingCmp(Pred0, Pred1)) 1609 return Op1; 1610 1611 // Check for any combination of predicates that cover the entire range of 1612 // possibilities. 1613 if ((Pred0 == ICmpInst::getInversePredicate(Pred1)) || 1614 (Pred0 == ICmpInst::ICMP_NE && ICmpInst::isTrueWhenEqual(Pred1)) || 1615 (Pred0 == ICmpInst::ICMP_SLE && Pred1 == ICmpInst::ICMP_SGE) || 1616 (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_UGE)) 1617 return getTrue(Op0->getType()); 1618 1619 return nullptr; 1620 } 1621 1622 /// Test if a pair of compares with a shared operand and 2 constants has an 1623 /// empty set intersection, full set union, or if one compare is a superset of 1624 /// the other. 1625 static Value *simplifyAndOrOfICmpsWithConstants(ICmpInst *Cmp0, ICmpInst *Cmp1, 1626 bool IsAnd) { 1627 // Look for this pattern: {and/or} (icmp X, C0), (icmp X, C1)). 1628 if (Cmp0->getOperand(0) != Cmp1->getOperand(0)) 1629 return nullptr; 1630 1631 const APInt *C0, *C1; 1632 if (!match(Cmp0->getOperand(1), m_APInt(C0)) || 1633 !match(Cmp1->getOperand(1), m_APInt(C1))) 1634 return nullptr; 1635 1636 auto Range0 = ConstantRange::makeExactICmpRegion(Cmp0->getPredicate(), *C0); 1637 auto Range1 = ConstantRange::makeExactICmpRegion(Cmp1->getPredicate(), *C1); 1638 1639 // For and-of-compares, check if the intersection is empty: 1640 // (icmp X, C0) && (icmp X, C1) --> empty set --> false 1641 if (IsAnd && Range0.intersectWith(Range1).isEmptySet()) 1642 return getFalse(Cmp0->getType()); 1643 1644 // For or-of-compares, check if the union is full: 1645 // (icmp X, C0) || (icmp X, C1) --> full set --> true 1646 if (!IsAnd && Range0.unionWith(Range1).isFullSet()) 1647 return getTrue(Cmp0->getType()); 1648 1649 // Is one range a superset of the other? 1650 // If this is and-of-compares, take the smaller set: 1651 // (icmp sgt X, 4) && (icmp sgt X, 42) --> icmp sgt X, 42 1652 // If this is or-of-compares, take the larger set: 1653 // (icmp sgt X, 4) || (icmp sgt X, 42) --> icmp sgt X, 4 1654 if (Range0.contains(Range1)) 1655 return IsAnd ? Cmp1 : Cmp0; 1656 if (Range1.contains(Range0)) 1657 return IsAnd ? Cmp0 : Cmp1; 1658 1659 return nullptr; 1660 } 1661 1662 static Value *simplifyAndOrOfICmpsWithZero(ICmpInst *Cmp0, ICmpInst *Cmp1, 1663 bool IsAnd) { 1664 ICmpInst::Predicate P0 = Cmp0->getPredicate(), P1 = Cmp1->getPredicate(); 1665 if (!match(Cmp0->getOperand(1), m_Zero()) || 1666 !match(Cmp1->getOperand(1), m_Zero()) || P0 != P1) 1667 return nullptr; 1668 1669 if ((IsAnd && P0 != ICmpInst::ICMP_NE) || (!IsAnd && P1 != ICmpInst::ICMP_EQ)) 1670 return nullptr; 1671 1672 // We have either "(X == 0 || Y == 0)" or "(X != 0 && Y != 0)". 1673 Value *X = Cmp0->getOperand(0); 1674 Value *Y = Cmp1->getOperand(0); 1675 1676 // If one of the compares is a masked version of a (not) null check, then 1677 // that compare implies the other, so we eliminate the other. Optionally, look 1678 // through a pointer-to-int cast to match a null check of a pointer type. 1679 1680 // (X == 0) || (([ptrtoint] X & ?) == 0) --> ([ptrtoint] X & ?) == 0 1681 // (X == 0) || ((? & [ptrtoint] X) == 0) --> (? & [ptrtoint] X) == 0 1682 // (X != 0) && (([ptrtoint] X & ?) != 0) --> ([ptrtoint] X & ?) != 0 1683 // (X != 0) && ((? & [ptrtoint] X) != 0) --> (? & [ptrtoint] X) != 0 1684 if (match(Y, m_c_And(m_Specific(X), m_Value())) || 1685 match(Y, m_c_And(m_PtrToInt(m_Specific(X)), m_Value()))) 1686 return Cmp1; 1687 1688 // (([ptrtoint] Y & ?) == 0) || (Y == 0) --> ([ptrtoint] Y & ?) == 0 1689 // ((? & [ptrtoint] Y) == 0) || (Y == 0) --> (? & [ptrtoint] Y) == 0 1690 // (([ptrtoint] Y & ?) != 0) && (Y != 0) --> ([ptrtoint] Y & ?) != 0 1691 // ((? & [ptrtoint] Y) != 0) && (Y != 0) --> (? & [ptrtoint] Y) != 0 1692 if (match(X, m_c_And(m_Specific(Y), m_Value())) || 1693 match(X, m_c_And(m_PtrToInt(m_Specific(Y)), m_Value()))) 1694 return Cmp0; 1695 1696 return nullptr; 1697 } 1698 1699 static Value *simplifyAndOfICmpsWithAdd(ICmpInst *Op0, ICmpInst *Op1, 1700 const InstrInfoQuery &IIQ) { 1701 // (icmp (add V, C0), C1) & (icmp V, C0) 1702 ICmpInst::Predicate Pred0, Pred1; 1703 const APInt *C0, *C1; 1704 Value *V; 1705 if (!match(Op0, m_ICmp(Pred0, m_Add(m_Value(V), m_APInt(C0)), m_APInt(C1)))) 1706 return nullptr; 1707 1708 if (!match(Op1, m_ICmp(Pred1, m_Specific(V), m_Value()))) 1709 return nullptr; 1710 1711 auto *AddInst = cast<OverflowingBinaryOperator>(Op0->getOperand(0)); 1712 if (AddInst->getOperand(1) != Op1->getOperand(1)) 1713 return nullptr; 1714 1715 Type *ITy = Op0->getType(); 1716 bool isNSW = IIQ.hasNoSignedWrap(AddInst); 1717 bool isNUW = IIQ.hasNoUnsignedWrap(AddInst); 1718 1719 const APInt Delta = *C1 - *C0; 1720 if (C0->isStrictlyPositive()) { 1721 if (Delta == 2) { 1722 if (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_SGT) 1723 return getFalse(ITy); 1724 if (Pred0 == ICmpInst::ICMP_SLT && Pred1 == ICmpInst::ICMP_SGT && isNSW) 1725 return getFalse(ITy); 1726 } 1727 if (Delta == 1) { 1728 if (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_SGT) 1729 return getFalse(ITy); 1730 if (Pred0 == ICmpInst::ICMP_SLE && Pred1 == ICmpInst::ICMP_SGT && isNSW) 1731 return getFalse(ITy); 1732 } 1733 } 1734 if (C0->getBoolValue() && isNUW) { 1735 if (Delta == 2) 1736 if (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_UGT) 1737 return getFalse(ITy); 1738 if (Delta == 1) 1739 if (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_UGT) 1740 return getFalse(ITy); 1741 } 1742 1743 return nullptr; 1744 } 1745 1746 /// Try to eliminate compares with signed or unsigned min/max constants. 1747 static Value *simplifyAndOrOfICmpsWithLimitConst(ICmpInst *Cmp0, ICmpInst *Cmp1, 1748 bool IsAnd) { 1749 // Canonicalize an equality compare as Cmp0. 1750 if (Cmp1->isEquality()) 1751 std::swap(Cmp0, Cmp1); 1752 if (!Cmp0->isEquality()) 1753 return nullptr; 1754 1755 // The non-equality compare must include a common operand (X). Canonicalize 1756 // the common operand as operand 0 (the predicate is swapped if the common 1757 // operand was operand 1). 1758 ICmpInst::Predicate Pred0 = Cmp0->getPredicate(); 1759 Value *X = Cmp0->getOperand(0); 1760 ICmpInst::Predicate Pred1; 1761 bool HasNotOp = match(Cmp1, m_c_ICmp(Pred1, m_Not(m_Specific(X)), m_Value())); 1762 if (!HasNotOp && !match(Cmp1, m_c_ICmp(Pred1, m_Specific(X), m_Value()))) 1763 return nullptr; 1764 if (ICmpInst::isEquality(Pred1)) 1765 return nullptr; 1766 1767 // The equality compare must be against a constant. Flip bits if we matched 1768 // a bitwise not. Convert a null pointer constant to an integer zero value. 1769 APInt MinMaxC; 1770 const APInt *C; 1771 if (match(Cmp0->getOperand(1), m_APInt(C))) 1772 MinMaxC = HasNotOp ? ~*C : *C; 1773 else if (isa<ConstantPointerNull>(Cmp0->getOperand(1))) 1774 MinMaxC = APInt::getZero(8); 1775 else 1776 return nullptr; 1777 1778 // DeMorganize if this is 'or': P0 || P1 --> !P0 && !P1. 1779 if (!IsAnd) { 1780 Pred0 = ICmpInst::getInversePredicate(Pred0); 1781 Pred1 = ICmpInst::getInversePredicate(Pred1); 1782 } 1783 1784 // Normalize to unsigned compare and unsigned min/max value. 1785 // Example for 8-bit: -128 + 128 -> 0; 127 + 128 -> 255 1786 if (ICmpInst::isSigned(Pred1)) { 1787 Pred1 = ICmpInst::getUnsignedPredicate(Pred1); 1788 MinMaxC += APInt::getSignedMinValue(MinMaxC.getBitWidth()); 1789 } 1790 1791 // (X != MAX) && (X < Y) --> X < Y 1792 // (X == MAX) || (X >= Y) --> X >= Y 1793 if (MinMaxC.isMaxValue()) 1794 if (Pred0 == ICmpInst::ICMP_NE && Pred1 == ICmpInst::ICMP_ULT) 1795 return Cmp1; 1796 1797 // (X != MIN) && (X > Y) --> X > Y 1798 // (X == MIN) || (X <= Y) --> X <= Y 1799 if (MinMaxC.isMinValue()) 1800 if (Pred0 == ICmpInst::ICMP_NE && Pred1 == ICmpInst::ICMP_UGT) 1801 return Cmp1; 1802 1803 return nullptr; 1804 } 1805 1806 /// Try to simplify and/or of icmp with ctpop intrinsic. 1807 static Value *simplifyAndOrOfICmpsWithCtpop(ICmpInst *Cmp0, ICmpInst *Cmp1, 1808 bool IsAnd) { 1809 ICmpInst::Predicate Pred0, Pred1; 1810 Value *X; 1811 const APInt *C; 1812 if (!match(Cmp0, m_ICmp(Pred0, m_Intrinsic<Intrinsic::ctpop>(m_Value(X)), 1813 m_APInt(C))) || 1814 !match(Cmp1, m_ICmp(Pred1, m_Specific(X), m_ZeroInt())) || C->isZero()) 1815 return nullptr; 1816 1817 // (ctpop(X) == C) || (X != 0) --> X != 0 where C > 0 1818 if (!IsAnd && Pred0 == ICmpInst::ICMP_EQ && Pred1 == ICmpInst::ICMP_NE) 1819 return Cmp1; 1820 // (ctpop(X) != C) && (X == 0) --> X == 0 where C > 0 1821 if (IsAnd && Pred0 == ICmpInst::ICMP_NE && Pred1 == ICmpInst::ICMP_EQ) 1822 return Cmp1; 1823 1824 return nullptr; 1825 } 1826 1827 static Value *simplifyAndOfICmps(ICmpInst *Op0, ICmpInst *Op1, 1828 const SimplifyQuery &Q) { 1829 if (Value *X = simplifyUnsignedRangeCheck(Op0, Op1, /*IsAnd=*/true, Q)) 1830 return X; 1831 if (Value *X = simplifyUnsignedRangeCheck(Op1, Op0, /*IsAnd=*/true, Q)) 1832 return X; 1833 1834 if (Value *X = simplifyAndOfICmpsWithSameOperands(Op0, Op1)) 1835 return X; 1836 if (Value *X = simplifyAndOfICmpsWithSameOperands(Op1, Op0)) 1837 return X; 1838 1839 if (Value *X = simplifyAndOrOfICmpsWithConstants(Op0, Op1, true)) 1840 return X; 1841 1842 if (Value *X = simplifyAndOrOfICmpsWithLimitConst(Op0, Op1, true)) 1843 return X; 1844 1845 if (Value *X = simplifyAndOrOfICmpsWithZero(Op0, Op1, true)) 1846 return X; 1847 1848 if (Value *X = simplifyAndOrOfICmpsWithCtpop(Op0, Op1, true)) 1849 return X; 1850 if (Value *X = simplifyAndOrOfICmpsWithCtpop(Op1, Op0, true)) 1851 return X; 1852 1853 if (Value *X = simplifyAndOfICmpsWithAdd(Op0, Op1, Q.IIQ)) 1854 return X; 1855 if (Value *X = simplifyAndOfICmpsWithAdd(Op1, Op0, Q.IIQ)) 1856 return X; 1857 1858 return nullptr; 1859 } 1860 1861 static Value *simplifyOrOfICmpsWithAdd(ICmpInst *Op0, ICmpInst *Op1, 1862 const InstrInfoQuery &IIQ) { 1863 // (icmp (add V, C0), C1) | (icmp V, C0) 1864 ICmpInst::Predicate Pred0, Pred1; 1865 const APInt *C0, *C1; 1866 Value *V; 1867 if (!match(Op0, m_ICmp(Pred0, m_Add(m_Value(V), m_APInt(C0)), m_APInt(C1)))) 1868 return nullptr; 1869 1870 if (!match(Op1, m_ICmp(Pred1, m_Specific(V), m_Value()))) 1871 return nullptr; 1872 1873 auto *AddInst = cast<BinaryOperator>(Op0->getOperand(0)); 1874 if (AddInst->getOperand(1) != Op1->getOperand(1)) 1875 return nullptr; 1876 1877 Type *ITy = Op0->getType(); 1878 bool isNSW = IIQ.hasNoSignedWrap(AddInst); 1879 bool isNUW = IIQ.hasNoUnsignedWrap(AddInst); 1880 1881 const APInt Delta = *C1 - *C0; 1882 if (C0->isStrictlyPositive()) { 1883 if (Delta == 2) { 1884 if (Pred0 == ICmpInst::ICMP_UGE && Pred1 == ICmpInst::ICMP_SLE) 1885 return getTrue(ITy); 1886 if (Pred0 == ICmpInst::ICMP_SGE && Pred1 == ICmpInst::ICMP_SLE && isNSW) 1887 return getTrue(ITy); 1888 } 1889 if (Delta == 1) { 1890 if (Pred0 == ICmpInst::ICMP_UGT && Pred1 == ICmpInst::ICMP_SLE) 1891 return getTrue(ITy); 1892 if (Pred0 == ICmpInst::ICMP_SGT && Pred1 == ICmpInst::ICMP_SLE && isNSW) 1893 return getTrue(ITy); 1894 } 1895 } 1896 if (C0->getBoolValue() && isNUW) { 1897 if (Delta == 2) 1898 if (Pred0 == ICmpInst::ICMP_UGE && Pred1 == ICmpInst::ICMP_ULE) 1899 return getTrue(ITy); 1900 if (Delta == 1) 1901 if (Pred0 == ICmpInst::ICMP_UGT && Pred1 == ICmpInst::ICMP_ULE) 1902 return getTrue(ITy); 1903 } 1904 1905 return nullptr; 1906 } 1907 1908 static Value *simplifyOrOfICmps(ICmpInst *Op0, ICmpInst *Op1, 1909 const SimplifyQuery &Q) { 1910 if (Value *X = simplifyUnsignedRangeCheck(Op0, Op1, /*IsAnd=*/false, Q)) 1911 return X; 1912 if (Value *X = simplifyUnsignedRangeCheck(Op1, Op0, /*IsAnd=*/false, Q)) 1913 return X; 1914 1915 if (Value *X = simplifyOrOfICmpsWithSameOperands(Op0, Op1)) 1916 return X; 1917 if (Value *X = simplifyOrOfICmpsWithSameOperands(Op1, Op0)) 1918 return X; 1919 1920 if (Value *X = simplifyAndOrOfICmpsWithConstants(Op0, Op1, false)) 1921 return X; 1922 1923 if (Value *X = simplifyAndOrOfICmpsWithLimitConst(Op0, Op1, false)) 1924 return X; 1925 1926 if (Value *X = simplifyAndOrOfICmpsWithZero(Op0, Op1, false)) 1927 return X; 1928 1929 if (Value *X = simplifyAndOrOfICmpsWithCtpop(Op0, Op1, false)) 1930 return X; 1931 if (Value *X = simplifyAndOrOfICmpsWithCtpop(Op1, Op0, false)) 1932 return X; 1933 1934 if (Value *X = simplifyOrOfICmpsWithAdd(Op0, Op1, Q.IIQ)) 1935 return X; 1936 if (Value *X = simplifyOrOfICmpsWithAdd(Op1, Op0, Q.IIQ)) 1937 return X; 1938 1939 return nullptr; 1940 } 1941 1942 static Value *simplifyAndOrOfFCmps(const TargetLibraryInfo *TLI, 1943 FCmpInst *LHS, FCmpInst *RHS, bool IsAnd) { 1944 Value *LHS0 = LHS->getOperand(0), *LHS1 = LHS->getOperand(1); 1945 Value *RHS0 = RHS->getOperand(0), *RHS1 = RHS->getOperand(1); 1946 if (LHS0->getType() != RHS0->getType()) 1947 return nullptr; 1948 1949 FCmpInst::Predicate PredL = LHS->getPredicate(), PredR = RHS->getPredicate(); 1950 if ((PredL == FCmpInst::FCMP_ORD && PredR == FCmpInst::FCMP_ORD && IsAnd) || 1951 (PredL == FCmpInst::FCMP_UNO && PredR == FCmpInst::FCMP_UNO && !IsAnd)) { 1952 // (fcmp ord NNAN, X) & (fcmp ord X, Y) --> fcmp ord X, Y 1953 // (fcmp ord NNAN, X) & (fcmp ord Y, X) --> fcmp ord Y, X 1954 // (fcmp ord X, NNAN) & (fcmp ord X, Y) --> fcmp ord X, Y 1955 // (fcmp ord X, NNAN) & (fcmp ord Y, X) --> fcmp ord Y, X 1956 // (fcmp uno NNAN, X) | (fcmp uno X, Y) --> fcmp uno X, Y 1957 // (fcmp uno NNAN, X) | (fcmp uno Y, X) --> fcmp uno Y, X 1958 // (fcmp uno X, NNAN) | (fcmp uno X, Y) --> fcmp uno X, Y 1959 // (fcmp uno X, NNAN) | (fcmp uno Y, X) --> fcmp uno Y, X 1960 if ((isKnownNeverNaN(LHS0, TLI) && (LHS1 == RHS0 || LHS1 == RHS1)) || 1961 (isKnownNeverNaN(LHS1, TLI) && (LHS0 == RHS0 || LHS0 == RHS1))) 1962 return RHS; 1963 1964 // (fcmp ord X, Y) & (fcmp ord NNAN, X) --> fcmp ord X, Y 1965 // (fcmp ord Y, X) & (fcmp ord NNAN, X) --> fcmp ord Y, X 1966 // (fcmp ord X, Y) & (fcmp ord X, NNAN) --> fcmp ord X, Y 1967 // (fcmp ord Y, X) & (fcmp ord X, NNAN) --> fcmp ord Y, X 1968 // (fcmp uno X, Y) | (fcmp uno NNAN, X) --> fcmp uno X, Y 1969 // (fcmp uno Y, X) | (fcmp uno NNAN, X) --> fcmp uno Y, X 1970 // (fcmp uno X, Y) | (fcmp uno X, NNAN) --> fcmp uno X, Y 1971 // (fcmp uno Y, X) | (fcmp uno X, NNAN) --> fcmp uno Y, X 1972 if ((isKnownNeverNaN(RHS0, TLI) && (RHS1 == LHS0 || RHS1 == LHS1)) || 1973 (isKnownNeverNaN(RHS1, TLI) && (RHS0 == LHS0 || RHS0 == LHS1))) 1974 return LHS; 1975 } 1976 1977 return nullptr; 1978 } 1979 1980 static Value *simplifyAndOrOfCmps(const SimplifyQuery &Q, 1981 Value *Op0, Value *Op1, bool IsAnd) { 1982 // Look through casts of the 'and' operands to find compares. 1983 auto *Cast0 = dyn_cast<CastInst>(Op0); 1984 auto *Cast1 = dyn_cast<CastInst>(Op1); 1985 if (Cast0 && Cast1 && Cast0->getOpcode() == Cast1->getOpcode() && 1986 Cast0->getSrcTy() == Cast1->getSrcTy()) { 1987 Op0 = Cast0->getOperand(0); 1988 Op1 = Cast1->getOperand(0); 1989 } 1990 1991 Value *V = nullptr; 1992 auto *ICmp0 = dyn_cast<ICmpInst>(Op0); 1993 auto *ICmp1 = dyn_cast<ICmpInst>(Op1); 1994 if (ICmp0 && ICmp1) 1995 V = IsAnd ? simplifyAndOfICmps(ICmp0, ICmp1, Q) 1996 : simplifyOrOfICmps(ICmp0, ICmp1, Q); 1997 1998 auto *FCmp0 = dyn_cast<FCmpInst>(Op0); 1999 auto *FCmp1 = dyn_cast<FCmpInst>(Op1); 2000 if (FCmp0 && FCmp1) 2001 V = simplifyAndOrOfFCmps(Q.TLI, FCmp0, FCmp1, IsAnd); 2002 2003 if (!V) 2004 return nullptr; 2005 if (!Cast0) 2006 return V; 2007 2008 // If we looked through casts, we can only handle a constant simplification 2009 // because we are not allowed to create a cast instruction here. 2010 if (auto *C = dyn_cast<Constant>(V)) 2011 return ConstantExpr::getCast(Cast0->getOpcode(), C, Cast0->getType()); 2012 2013 return nullptr; 2014 } 2015 2016 /// Given a bitwise logic op, check if the operands are add/sub with a common 2017 /// source value and inverted constant (identity: C - X -> ~(X + ~C)). 2018 static Value *simplifyLogicOfAddSub(Value *Op0, Value *Op1, 2019 Instruction::BinaryOps Opcode) { 2020 assert(Op0->getType() == Op1->getType() && "Mismatched binop types"); 2021 assert(BinaryOperator::isBitwiseLogicOp(Opcode) && "Expected logic op"); 2022 Value *X; 2023 Constant *C1, *C2; 2024 if ((match(Op0, m_Add(m_Value(X), m_Constant(C1))) && 2025 match(Op1, m_Sub(m_Constant(C2), m_Specific(X)))) || 2026 (match(Op1, m_Add(m_Value(X), m_Constant(C1))) && 2027 match(Op0, m_Sub(m_Constant(C2), m_Specific(X))))) { 2028 if (ConstantExpr::getNot(C1) == C2) { 2029 // (X + C) & (~C - X) --> (X + C) & ~(X + C) --> 0 2030 // (X + C) | (~C - X) --> (X + C) | ~(X + C) --> -1 2031 // (X + C) ^ (~C - X) --> (X + C) ^ ~(X + C) --> -1 2032 Type *Ty = Op0->getType(); 2033 return Opcode == Instruction::And ? ConstantInt::getNullValue(Ty) 2034 : ConstantInt::getAllOnesValue(Ty); 2035 } 2036 } 2037 return nullptr; 2038 } 2039 2040 /// Given operands for an And, see if we can fold the result. 2041 /// If not, this returns null. 2042 static Value *SimplifyAndInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 2043 unsigned MaxRecurse) { 2044 if (Constant *C = foldOrCommuteConstant(Instruction::And, Op0, Op1, Q)) 2045 return C; 2046 2047 // X & poison -> poison 2048 if (isa<PoisonValue>(Op1)) 2049 return Op1; 2050 2051 // X & undef -> 0 2052 if (Q.isUndefValue(Op1)) 2053 return Constant::getNullValue(Op0->getType()); 2054 2055 // X & X = X 2056 if (Op0 == Op1) 2057 return Op0; 2058 2059 // X & 0 = 0 2060 if (match(Op1, m_Zero())) 2061 return Constant::getNullValue(Op0->getType()); 2062 2063 // X & -1 = X 2064 if (match(Op1, m_AllOnes())) 2065 return Op0; 2066 2067 // A & ~A = ~A & A = 0 2068 if (match(Op0, m_Not(m_Specific(Op1))) || 2069 match(Op1, m_Not(m_Specific(Op0)))) 2070 return Constant::getNullValue(Op0->getType()); 2071 2072 // (A | ?) & A = A 2073 if (match(Op0, m_c_Or(m_Specific(Op1), m_Value()))) 2074 return Op1; 2075 2076 // A & (A | ?) = A 2077 if (match(Op1, m_c_Or(m_Specific(Op0), m_Value()))) 2078 return Op0; 2079 2080 // (X | Y) & (X | ~Y) --> X (commuted 8 ways) 2081 Value *X, *Y; 2082 if (match(Op0, m_c_Or(m_Value(X), m_Not(m_Value(Y)))) && 2083 match(Op1, m_c_Or(m_Deferred(X), m_Deferred(Y)))) 2084 return X; 2085 if (match(Op1, m_c_Or(m_Value(X), m_Not(m_Value(Y)))) && 2086 match(Op0, m_c_Or(m_Deferred(X), m_Deferred(Y)))) 2087 return X; 2088 2089 if (Value *V = simplifyLogicOfAddSub(Op0, Op1, Instruction::And)) 2090 return V; 2091 2092 // A mask that only clears known zeros of a shifted value is a no-op. 2093 const APInt *Mask; 2094 const APInt *ShAmt; 2095 if (match(Op1, m_APInt(Mask))) { 2096 // If all bits in the inverted and shifted mask are clear: 2097 // and (shl X, ShAmt), Mask --> shl X, ShAmt 2098 if (match(Op0, m_Shl(m_Value(X), m_APInt(ShAmt))) && 2099 (~(*Mask)).lshr(*ShAmt).isZero()) 2100 return Op0; 2101 2102 // If all bits in the inverted and shifted mask are clear: 2103 // and (lshr X, ShAmt), Mask --> lshr X, ShAmt 2104 if (match(Op0, m_LShr(m_Value(X), m_APInt(ShAmt))) && 2105 (~(*Mask)).shl(*ShAmt).isZero()) 2106 return Op0; 2107 } 2108 2109 // If we have a multiplication overflow check that is being 'and'ed with a 2110 // check that one of the multipliers is not zero, we can omit the 'and', and 2111 // only keep the overflow check. 2112 if (isCheckForZeroAndMulWithOverflow(Op0, Op1, true)) 2113 return Op1; 2114 if (isCheckForZeroAndMulWithOverflow(Op1, Op0, true)) 2115 return Op0; 2116 2117 // A & (-A) = A if A is a power of two or zero. 2118 if (match(Op0, m_Neg(m_Specific(Op1))) || 2119 match(Op1, m_Neg(m_Specific(Op0)))) { 2120 if (isKnownToBeAPowerOfTwo(Op0, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI, 2121 Q.DT)) 2122 return Op0; 2123 if (isKnownToBeAPowerOfTwo(Op1, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI, 2124 Q.DT)) 2125 return Op1; 2126 } 2127 2128 // This is a similar pattern used for checking if a value is a power-of-2: 2129 // (A - 1) & A --> 0 (if A is a power-of-2 or 0) 2130 // A & (A - 1) --> 0 (if A is a power-of-2 or 0) 2131 if (match(Op0, m_Add(m_Specific(Op1), m_AllOnes())) && 2132 isKnownToBeAPowerOfTwo(Op1, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI, Q.DT)) 2133 return Constant::getNullValue(Op1->getType()); 2134 if (match(Op1, m_Add(m_Specific(Op0), m_AllOnes())) && 2135 isKnownToBeAPowerOfTwo(Op0, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI, Q.DT)) 2136 return Constant::getNullValue(Op0->getType()); 2137 2138 if (Value *V = simplifyAndOrOfCmps(Q, Op0, Op1, true)) 2139 return V; 2140 2141 // Try some generic simplifications for associative operations. 2142 if (Value *V = SimplifyAssociativeBinOp(Instruction::And, Op0, Op1, Q, 2143 MaxRecurse)) 2144 return V; 2145 2146 // And distributes over Or. Try some generic simplifications based on this. 2147 if (Value *V = expandCommutativeBinOp(Instruction::And, Op0, Op1, 2148 Instruction::Or, Q, MaxRecurse)) 2149 return V; 2150 2151 // And distributes over Xor. Try some generic simplifications based on this. 2152 if (Value *V = expandCommutativeBinOp(Instruction::And, Op0, Op1, 2153 Instruction::Xor, Q, MaxRecurse)) 2154 return V; 2155 2156 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) { 2157 if (Op0->getType()->isIntOrIntVectorTy(1)) { 2158 // A & (A && B) -> A && B 2159 if (match(Op1, m_Select(m_Specific(Op0), m_Value(), m_Zero()))) 2160 return Op1; 2161 else if (match(Op0, m_Select(m_Specific(Op1), m_Value(), m_Zero()))) 2162 return Op0; 2163 } 2164 // If the operation is with the result of a select instruction, check 2165 // whether operating on either branch of the select always yields the same 2166 // value. 2167 if (Value *V = ThreadBinOpOverSelect(Instruction::And, Op0, Op1, Q, 2168 MaxRecurse)) 2169 return V; 2170 } 2171 2172 // If the operation is with the result of a phi instruction, check whether 2173 // operating on all incoming values of the phi always yields the same value. 2174 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 2175 if (Value *V = ThreadBinOpOverPHI(Instruction::And, Op0, Op1, Q, 2176 MaxRecurse)) 2177 return V; 2178 2179 // Assuming the effective width of Y is not larger than A, i.e. all bits 2180 // from X and Y are disjoint in (X << A) | Y, 2181 // if the mask of this AND op covers all bits of X or Y, while it covers 2182 // no bits from the other, we can bypass this AND op. E.g., 2183 // ((X << A) | Y) & Mask -> Y, 2184 // if Mask = ((1 << effective_width_of(Y)) - 1) 2185 // ((X << A) | Y) & Mask -> X << A, 2186 // if Mask = ((1 << effective_width_of(X)) - 1) << A 2187 // SimplifyDemandedBits in InstCombine can optimize the general case. 2188 // This pattern aims to help other passes for a common case. 2189 Value *XShifted; 2190 if (match(Op1, m_APInt(Mask)) && 2191 match(Op0, m_c_Or(m_CombineAnd(m_NUWShl(m_Value(X), m_APInt(ShAmt)), 2192 m_Value(XShifted)), 2193 m_Value(Y)))) { 2194 const unsigned Width = Op0->getType()->getScalarSizeInBits(); 2195 const unsigned ShftCnt = ShAmt->getLimitedValue(Width); 2196 const KnownBits YKnown = computeKnownBits(Y, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2197 const unsigned EffWidthY = YKnown.countMaxActiveBits(); 2198 if (EffWidthY <= ShftCnt) { 2199 const KnownBits XKnown = computeKnownBits(X, Q.DL, 0, Q.AC, Q.CxtI, 2200 Q.DT); 2201 const unsigned EffWidthX = XKnown.countMaxActiveBits(); 2202 const APInt EffBitsY = APInt::getLowBitsSet(Width, EffWidthY); 2203 const APInt EffBitsX = APInt::getLowBitsSet(Width, EffWidthX) << ShftCnt; 2204 // If the mask is extracting all bits from X or Y as is, we can skip 2205 // this AND op. 2206 if (EffBitsY.isSubsetOf(*Mask) && !EffBitsX.intersects(*Mask)) 2207 return Y; 2208 if (EffBitsX.isSubsetOf(*Mask) && !EffBitsY.intersects(*Mask)) 2209 return XShifted; 2210 } 2211 } 2212 2213 // ((X | Y) ^ X ) & ((X | Y) ^ Y) --> 0 2214 // ((X | Y) ^ Y ) & ((X | Y) ^ X) --> 0 2215 BinaryOperator *Or; 2216 if (match(Op0, m_c_Xor(m_Value(X), 2217 m_CombineAnd(m_BinOp(Or), 2218 m_c_Or(m_Deferred(X), m_Value(Y))))) && 2219 match(Op1, m_c_Xor(m_Specific(Or), m_Specific(Y)))) 2220 return Constant::getNullValue(Op0->getType()); 2221 2222 return nullptr; 2223 } 2224 2225 Value *llvm::SimplifyAndInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 2226 return ::SimplifyAndInst(Op0, Op1, Q, RecursionLimit); 2227 } 2228 2229 static Value *simplifyOrLogic(Value *X, Value *Y) { 2230 assert(X->getType() == Y->getType() && "Expected same type for 'or' ops"); 2231 Type *Ty = X->getType(); 2232 2233 // X | ~X --> -1 2234 if (match(Y, m_Not(m_Specific(X)))) 2235 return ConstantInt::getAllOnesValue(Ty); 2236 2237 // X | ~(X & ?) = -1 2238 if (match(Y, m_Not(m_c_And(m_Specific(X), m_Value())))) 2239 return ConstantInt::getAllOnesValue(Ty); 2240 2241 // X | (X & ?) --> X 2242 if (match(Y, m_c_And(m_Specific(X), m_Value()))) 2243 return X; 2244 2245 Value *A, *B; 2246 2247 // (A ^ B) | (A | B) --> A | B 2248 // (A ^ B) | (B | A) --> B | A 2249 if (match(X, m_Xor(m_Value(A), m_Value(B))) && 2250 match(Y, m_c_Or(m_Specific(A), m_Specific(B)))) 2251 return Y; 2252 2253 // ~(A ^ B) | (A | B) --> -1 2254 // ~(A ^ B) | (B | A) --> -1 2255 if (match(X, m_Not(m_Xor(m_Value(A), m_Value(B)))) && 2256 match(Y, m_c_Or(m_Specific(A), m_Specific(B)))) 2257 return ConstantInt::getAllOnesValue(Ty); 2258 2259 // (A & ~B) | (A ^ B) --> A ^ B 2260 // (~B & A) | (A ^ B) --> A ^ B 2261 // (A & ~B) | (B ^ A) --> B ^ A 2262 // (~B & A) | (B ^ A) --> B ^ A 2263 if (match(X, m_c_And(m_Value(A), m_Not(m_Value(B)))) && 2264 match(Y, m_c_Xor(m_Specific(A), m_Specific(B)))) 2265 return Y; 2266 2267 // (~A ^ B) | (A & B) --> ~A ^ B 2268 // (B ^ ~A) | (A & B) --> B ^ ~A 2269 // (~A ^ B) | (B & A) --> ~A ^ B 2270 // (B ^ ~A) | (B & A) --> B ^ ~A 2271 if (match(X, m_c_Xor(m_Not(m_Value(A)), m_Value(B))) && 2272 match(Y, m_c_And(m_Specific(A), m_Specific(B)))) 2273 return X; 2274 2275 // (~A | B) | (A ^ B) --> -1 2276 // (~A | B) | (B ^ A) --> -1 2277 // (B | ~A) | (A ^ B) --> -1 2278 // (B | ~A) | (B ^ A) --> -1 2279 if (match(X, m_c_Or(m_Not(m_Value(A)), m_Value(B))) && 2280 match(Y, m_c_Xor(m_Specific(A), m_Specific(B)))) 2281 return ConstantInt::getAllOnesValue(Ty); 2282 2283 // (~A & B) | ~(A | B) --> ~A 2284 // (~A & B) | ~(B | A) --> ~A 2285 // (B & ~A) | ~(A | B) --> ~A 2286 // (B & ~A) | ~(B | A) --> ~A 2287 Value *NotA; 2288 if (match(X, 2289 m_c_And(m_CombineAnd(m_Value(NotA), m_NotForbidUndef(m_Value(A))), 2290 m_Value(B))) && 2291 match(Y, m_Not(m_c_Or(m_Specific(A), m_Specific(B))))) 2292 return NotA; 2293 2294 // ~(A ^ B) | (A & B) --> ~(A ^ B) 2295 // ~(A ^ B) | (B & A) --> ~(A ^ B) 2296 Value *NotAB; 2297 if (match(X, m_CombineAnd(m_NotForbidUndef(m_Xor(m_Value(A), m_Value(B))), 2298 m_Value(NotAB))) && 2299 match(Y, m_c_And(m_Specific(A), m_Specific(B)))) 2300 return NotAB; 2301 2302 // ~(A & B) | (A ^ B) --> ~(A & B) 2303 // ~(A & B) | (B ^ A) --> ~(A & B) 2304 if (match(X, m_CombineAnd(m_NotForbidUndef(m_And(m_Value(A), m_Value(B))), 2305 m_Value(NotAB))) && 2306 match(Y, m_c_Xor(m_Specific(A), m_Specific(B)))) 2307 return NotAB; 2308 2309 return nullptr; 2310 } 2311 2312 /// Given operands for an Or, see if we can fold the result. 2313 /// If not, this returns null. 2314 static Value *SimplifyOrInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 2315 unsigned MaxRecurse) { 2316 if (Constant *C = foldOrCommuteConstant(Instruction::Or, Op0, Op1, Q)) 2317 return C; 2318 2319 // X | poison -> poison 2320 if (isa<PoisonValue>(Op1)) 2321 return Op1; 2322 2323 // X | undef -> -1 2324 // X | -1 = -1 2325 // Do not return Op1 because it may contain undef elements if it's a vector. 2326 if (Q.isUndefValue(Op1) || match(Op1, m_AllOnes())) 2327 return Constant::getAllOnesValue(Op0->getType()); 2328 2329 // X | X = X 2330 // X | 0 = X 2331 if (Op0 == Op1 || match(Op1, m_Zero())) 2332 return Op0; 2333 2334 if (Value *R = simplifyOrLogic(Op0, Op1)) 2335 return R; 2336 if (Value *R = simplifyOrLogic(Op1, Op0)) 2337 return R; 2338 2339 if (Value *V = simplifyLogicOfAddSub(Op0, Op1, Instruction::Or)) 2340 return V; 2341 2342 // Rotated -1 is still -1: 2343 // (-1 << X) | (-1 >> (C - X)) --> -1 2344 // (-1 >> X) | (-1 << (C - X)) --> -1 2345 // ...with C <= bitwidth (and commuted variants). 2346 Value *X, *Y; 2347 if ((match(Op0, m_Shl(m_AllOnes(), m_Value(X))) && 2348 match(Op1, m_LShr(m_AllOnes(), m_Value(Y)))) || 2349 (match(Op1, m_Shl(m_AllOnes(), m_Value(X))) && 2350 match(Op0, m_LShr(m_AllOnes(), m_Value(Y))))) { 2351 const APInt *C; 2352 if ((match(X, m_Sub(m_APInt(C), m_Specific(Y))) || 2353 match(Y, m_Sub(m_APInt(C), m_Specific(X)))) && 2354 C->ule(X->getType()->getScalarSizeInBits())) { 2355 return ConstantInt::getAllOnesValue(X->getType()); 2356 } 2357 } 2358 2359 // A funnel shift (rotate) can be decomposed into simpler shifts. See if we 2360 // are mixing in another shift that is redundant with the funnel shift. 2361 2362 // (fshl X, ?, Y) | (shl X, Y) --> fshl X, ?, Y 2363 // (shl X, Y) | (fshl X, ?, Y) --> fshl X, ?, Y 2364 if (match(Op0, 2365 m_Intrinsic<Intrinsic::fshl>(m_Value(X), m_Value(), m_Value(Y))) && 2366 match(Op1, m_Shl(m_Specific(X), m_Specific(Y)))) 2367 return Op0; 2368 if (match(Op1, 2369 m_Intrinsic<Intrinsic::fshl>(m_Value(X), m_Value(), m_Value(Y))) && 2370 match(Op0, m_Shl(m_Specific(X), m_Specific(Y)))) 2371 return Op1; 2372 2373 // (fshr ?, X, Y) | (lshr X, Y) --> fshr ?, X, Y 2374 // (lshr X, Y) | (fshr ?, X, Y) --> fshr ?, X, Y 2375 if (match(Op0, 2376 m_Intrinsic<Intrinsic::fshr>(m_Value(), m_Value(X), m_Value(Y))) && 2377 match(Op1, m_LShr(m_Specific(X), m_Specific(Y)))) 2378 return Op0; 2379 if (match(Op1, 2380 m_Intrinsic<Intrinsic::fshr>(m_Value(), m_Value(X), m_Value(Y))) && 2381 match(Op0, m_LShr(m_Specific(X), m_Specific(Y)))) 2382 return Op1; 2383 2384 if (Value *V = simplifyAndOrOfCmps(Q, Op0, Op1, false)) 2385 return V; 2386 2387 // If we have a multiplication overflow check that is being 'and'ed with a 2388 // check that one of the multipliers is not zero, we can omit the 'and', and 2389 // only keep the overflow check. 2390 if (isCheckForZeroAndMulWithOverflow(Op0, Op1, false)) 2391 return Op1; 2392 if (isCheckForZeroAndMulWithOverflow(Op1, Op0, false)) 2393 return Op0; 2394 2395 // Try some generic simplifications for associative operations. 2396 if (Value *V = SimplifyAssociativeBinOp(Instruction::Or, Op0, Op1, Q, 2397 MaxRecurse)) 2398 return V; 2399 2400 // Or distributes over And. Try some generic simplifications based on this. 2401 if (Value *V = expandCommutativeBinOp(Instruction::Or, Op0, Op1, 2402 Instruction::And, Q, MaxRecurse)) 2403 return V; 2404 2405 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) { 2406 if (Op0->getType()->isIntOrIntVectorTy(1)) { 2407 // A | (A || B) -> A || B 2408 if (match(Op1, m_Select(m_Specific(Op0), m_One(), m_Value()))) 2409 return Op1; 2410 else if (match(Op0, m_Select(m_Specific(Op1), m_One(), m_Value()))) 2411 return Op0; 2412 } 2413 // If the operation is with the result of a select instruction, check 2414 // whether operating on either branch of the select always yields the same 2415 // value. 2416 if (Value *V = ThreadBinOpOverSelect(Instruction::Or, Op0, Op1, Q, 2417 MaxRecurse)) 2418 return V; 2419 } 2420 2421 // (A & C1)|(B & C2) 2422 Value *A, *B; 2423 const APInt *C1, *C2; 2424 if (match(Op0, m_And(m_Value(A), m_APInt(C1))) && 2425 match(Op1, m_And(m_Value(B), m_APInt(C2)))) { 2426 if (*C1 == ~*C2) { 2427 // (A & C1)|(B & C2) 2428 // If we have: ((V + N) & C1) | (V & C2) 2429 // .. and C2 = ~C1 and C2 is 0+1+ and (N & C2) == 0 2430 // replace with V+N. 2431 Value *N; 2432 if (C2->isMask() && // C2 == 0+1+ 2433 match(A, m_c_Add(m_Specific(B), m_Value(N)))) { 2434 // Add commutes, try both ways. 2435 if (MaskedValueIsZero(N, *C2, Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 2436 return A; 2437 } 2438 // Or commutes, try both ways. 2439 if (C1->isMask() && 2440 match(B, m_c_Add(m_Specific(A), m_Value(N)))) { 2441 // Add commutes, try both ways. 2442 if (MaskedValueIsZero(N, *C1, Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 2443 return B; 2444 } 2445 } 2446 } 2447 2448 // If the operation is with the result of a phi instruction, check whether 2449 // operating on all incoming values of the phi always yields the same value. 2450 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 2451 if (Value *V = ThreadBinOpOverPHI(Instruction::Or, Op0, Op1, Q, MaxRecurse)) 2452 return V; 2453 2454 return nullptr; 2455 } 2456 2457 Value *llvm::SimplifyOrInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 2458 return ::SimplifyOrInst(Op0, Op1, Q, RecursionLimit); 2459 } 2460 2461 /// Given operands for a Xor, see if we can fold the result. 2462 /// If not, this returns null. 2463 static Value *SimplifyXorInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 2464 unsigned MaxRecurse) { 2465 if (Constant *C = foldOrCommuteConstant(Instruction::Xor, Op0, Op1, Q)) 2466 return C; 2467 2468 // X ^ poison -> poison 2469 if (isa<PoisonValue>(Op1)) 2470 return Op1; 2471 2472 // A ^ undef -> undef 2473 if (Q.isUndefValue(Op1)) 2474 return Op1; 2475 2476 // A ^ 0 = A 2477 if (match(Op1, m_Zero())) 2478 return Op0; 2479 2480 // A ^ A = 0 2481 if (Op0 == Op1) 2482 return Constant::getNullValue(Op0->getType()); 2483 2484 // A ^ ~A = ~A ^ A = -1 2485 if (match(Op0, m_Not(m_Specific(Op1))) || 2486 match(Op1, m_Not(m_Specific(Op0)))) 2487 return Constant::getAllOnesValue(Op0->getType()); 2488 2489 auto foldAndOrNot = [](Value *X, Value *Y) -> Value * { 2490 Value *A, *B; 2491 // (~A & B) ^ (A | B) --> A -- There are 8 commuted variants. 2492 if (match(X, m_c_And(m_Not(m_Value(A)), m_Value(B))) && 2493 match(Y, m_c_Or(m_Specific(A), m_Specific(B)))) 2494 return A; 2495 2496 // (~A | B) ^ (A & B) --> ~A -- There are 8 commuted variants. 2497 // The 'not' op must contain a complete -1 operand (no undef elements for 2498 // vector) for the transform to be safe. 2499 Value *NotA; 2500 if (match(X, 2501 m_c_Or(m_CombineAnd(m_NotForbidUndef(m_Value(A)), m_Value(NotA)), 2502 m_Value(B))) && 2503 match(Y, m_c_And(m_Specific(A), m_Specific(B)))) 2504 return NotA; 2505 2506 return nullptr; 2507 }; 2508 if (Value *R = foldAndOrNot(Op0, Op1)) 2509 return R; 2510 if (Value *R = foldAndOrNot(Op1, Op0)) 2511 return R; 2512 2513 if (Value *V = simplifyLogicOfAddSub(Op0, Op1, Instruction::Xor)) 2514 return V; 2515 2516 // Try some generic simplifications for associative operations. 2517 if (Value *V = SimplifyAssociativeBinOp(Instruction::Xor, Op0, Op1, Q, 2518 MaxRecurse)) 2519 return V; 2520 2521 // Threading Xor over selects and phi nodes is pointless, so don't bother. 2522 // Threading over the select in "A ^ select(cond, B, C)" means evaluating 2523 // "A^B" and "A^C" and seeing if they are equal; but they are equal if and 2524 // only if B and C are equal. If B and C are equal then (since we assume 2525 // that operands have already been simplified) "select(cond, B, C)" should 2526 // have been simplified to the common value of B and C already. Analysing 2527 // "A^B" and "A^C" thus gains nothing, but costs compile time. Similarly 2528 // for threading over phi nodes. 2529 2530 return nullptr; 2531 } 2532 2533 Value *llvm::SimplifyXorInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 2534 return ::SimplifyXorInst(Op0, Op1, Q, RecursionLimit); 2535 } 2536 2537 2538 static Type *GetCompareTy(Value *Op) { 2539 return CmpInst::makeCmpResultType(Op->getType()); 2540 } 2541 2542 /// Rummage around inside V looking for something equivalent to the comparison 2543 /// "LHS Pred RHS". Return such a value if found, otherwise return null. 2544 /// Helper function for analyzing max/min idioms. 2545 static Value *ExtractEquivalentCondition(Value *V, CmpInst::Predicate Pred, 2546 Value *LHS, Value *RHS) { 2547 SelectInst *SI = dyn_cast<SelectInst>(V); 2548 if (!SI) 2549 return nullptr; 2550 CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition()); 2551 if (!Cmp) 2552 return nullptr; 2553 Value *CmpLHS = Cmp->getOperand(0), *CmpRHS = Cmp->getOperand(1); 2554 if (Pred == Cmp->getPredicate() && LHS == CmpLHS && RHS == CmpRHS) 2555 return Cmp; 2556 if (Pred == CmpInst::getSwappedPredicate(Cmp->getPredicate()) && 2557 LHS == CmpRHS && RHS == CmpLHS) 2558 return Cmp; 2559 return nullptr; 2560 } 2561 2562 /// Return true if the underlying object (storage) must be disjoint from 2563 /// storage returned by any noalias return call. 2564 static bool IsAllocDisjoint(const Value *V) { 2565 // For allocas, we consider only static ones (dynamic 2566 // allocas might be transformed into calls to malloc not simultaneously 2567 // live with the compared-to allocation). For globals, we exclude symbols 2568 // that might be resolve lazily to symbols in another dynamically-loaded 2569 // library (and, thus, could be malloc'ed by the implementation). 2570 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) 2571 return AI->getParent() && AI->getFunction() && AI->isStaticAlloca(); 2572 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) 2573 return (GV->hasLocalLinkage() || GV->hasHiddenVisibility() || 2574 GV->hasProtectedVisibility() || GV->hasGlobalUnnamedAddr()) && 2575 !GV->isThreadLocal(); 2576 if (const Argument *A = dyn_cast<Argument>(V)) 2577 return A->hasByValAttr(); 2578 return false; 2579 } 2580 2581 /// Return true if V1 and V2 are each the base of some distict storage region 2582 /// [V, object_size(V)] which do not overlap. Note that zero sized regions 2583 /// *are* possible, and that zero sized regions do not overlap with any other. 2584 static bool HaveNonOverlappingStorage(const Value *V1, const Value *V2) { 2585 // Global variables always exist, so they always exist during the lifetime 2586 // of each other and all allocas. Global variables themselves usually have 2587 // non-overlapping storage, but since their addresses are constants, the 2588 // case involving two globals does not reach here and is instead handled in 2589 // constant folding. 2590 // 2591 // Two different allocas usually have different addresses... 2592 // 2593 // However, if there's an @llvm.stackrestore dynamically in between two 2594 // allocas, they may have the same address. It's tempting to reduce the 2595 // scope of the problem by only looking at *static* allocas here. That would 2596 // cover the majority of allocas while significantly reducing the likelihood 2597 // of having an @llvm.stackrestore pop up in the middle. However, it's not 2598 // actually impossible for an @llvm.stackrestore to pop up in the middle of 2599 // an entry block. Also, if we have a block that's not attached to a 2600 // function, we can't tell if it's "static" under the current definition. 2601 // Theoretically, this problem could be fixed by creating a new kind of 2602 // instruction kind specifically for static allocas. Such a new instruction 2603 // could be required to be at the top of the entry block, thus preventing it 2604 // from being subject to a @llvm.stackrestore. Instcombine could even 2605 // convert regular allocas into these special allocas. It'd be nifty. 2606 // However, until then, this problem remains open. 2607 // 2608 // So, we'll assume that two non-empty allocas have different addresses 2609 // for now. 2610 auto isByValArg = [](const Value *V) { 2611 const Argument *A = dyn_cast<Argument>(V); 2612 return A && A->hasByValAttr(); 2613 }; 2614 2615 // Byval args are backed by store which does not overlap with each other, 2616 // allocas, or globals. 2617 if (isByValArg(V1)) 2618 return isa<AllocaInst>(V2) || isa<GlobalVariable>(V2) || isByValArg(V2); 2619 if (isByValArg(V2)) 2620 return isa<AllocaInst>(V1) || isa<GlobalVariable>(V1) || isByValArg(V1); 2621 2622 return isa<AllocaInst>(V1) && 2623 (isa<AllocaInst>(V2) || isa<GlobalVariable>(V2)); 2624 } 2625 2626 // A significant optimization not implemented here is assuming that alloca 2627 // addresses are not equal to incoming argument values. They don't *alias*, 2628 // as we say, but that doesn't mean they aren't equal, so we take a 2629 // conservative approach. 2630 // 2631 // This is inspired in part by C++11 5.10p1: 2632 // "Two pointers of the same type compare equal if and only if they are both 2633 // null, both point to the same function, or both represent the same 2634 // address." 2635 // 2636 // This is pretty permissive. 2637 // 2638 // It's also partly due to C11 6.5.9p6: 2639 // "Two pointers compare equal if and only if both are null pointers, both are 2640 // pointers to the same object (including a pointer to an object and a 2641 // subobject at its beginning) or function, both are pointers to one past the 2642 // last element of the same array object, or one is a pointer to one past the 2643 // end of one array object and the other is a pointer to the start of a 2644 // different array object that happens to immediately follow the first array 2645 // object in the address space.) 2646 // 2647 // C11's version is more restrictive, however there's no reason why an argument 2648 // couldn't be a one-past-the-end value for a stack object in the caller and be 2649 // equal to the beginning of a stack object in the callee. 2650 // 2651 // If the C and C++ standards are ever made sufficiently restrictive in this 2652 // area, it may be possible to update LLVM's semantics accordingly and reinstate 2653 // this optimization. 2654 static Constant * 2655 computePointerICmp(CmpInst::Predicate Pred, Value *LHS, Value *RHS, 2656 const SimplifyQuery &Q) { 2657 const DataLayout &DL = Q.DL; 2658 const TargetLibraryInfo *TLI = Q.TLI; 2659 const DominatorTree *DT = Q.DT; 2660 const Instruction *CxtI = Q.CxtI; 2661 const InstrInfoQuery &IIQ = Q.IIQ; 2662 2663 // First, skip past any trivial no-ops. 2664 LHS = LHS->stripPointerCasts(); 2665 RHS = RHS->stripPointerCasts(); 2666 2667 // A non-null pointer is not equal to a null pointer. 2668 if (isa<ConstantPointerNull>(RHS) && ICmpInst::isEquality(Pred) && 2669 llvm::isKnownNonZero(LHS, DL, 0, nullptr, nullptr, nullptr, 2670 IIQ.UseInstrInfo)) 2671 return ConstantInt::get(GetCompareTy(LHS), 2672 !CmpInst::isTrueWhenEqual(Pred)); 2673 2674 // We can only fold certain predicates on pointer comparisons. 2675 switch (Pred) { 2676 default: 2677 return nullptr; 2678 2679 // Equality comaprisons are easy to fold. 2680 case CmpInst::ICMP_EQ: 2681 case CmpInst::ICMP_NE: 2682 break; 2683 2684 // We can only handle unsigned relational comparisons because 'inbounds' on 2685 // a GEP only protects against unsigned wrapping. 2686 case CmpInst::ICMP_UGT: 2687 case CmpInst::ICMP_UGE: 2688 case CmpInst::ICMP_ULT: 2689 case CmpInst::ICMP_ULE: 2690 // However, we have to switch them to their signed variants to handle 2691 // negative indices from the base pointer. 2692 Pred = ICmpInst::getSignedPredicate(Pred); 2693 break; 2694 } 2695 2696 // Strip off any constant offsets so that we can reason about them. 2697 // It's tempting to use getUnderlyingObject or even just stripInBoundsOffsets 2698 // here and compare base addresses like AliasAnalysis does, however there are 2699 // numerous hazards. AliasAnalysis and its utilities rely on special rules 2700 // governing loads and stores which don't apply to icmps. Also, AliasAnalysis 2701 // doesn't need to guarantee pointer inequality when it says NoAlias. 2702 2703 // Even if an non-inbounds GEP occurs along the path we can still optimize 2704 // equality comparisons concerning the result. 2705 bool AllowNonInbounds = ICmpInst::isEquality(Pred); 2706 APInt LHSOffset = stripAndComputeConstantOffsets(DL, LHS, AllowNonInbounds); 2707 APInt RHSOffset = stripAndComputeConstantOffsets(DL, RHS, AllowNonInbounds); 2708 2709 // If LHS and RHS are related via constant offsets to the same base 2710 // value, we can replace it with an icmp which just compares the offsets. 2711 if (LHS == RHS) 2712 return ConstantInt::get( 2713 GetCompareTy(LHS), ICmpInst::compare(LHSOffset, RHSOffset, Pred)); 2714 2715 // Various optimizations for (in)equality comparisons. 2716 if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE) { 2717 // Different non-empty allocations that exist at the same time have 2718 // different addresses (if the program can tell). If the offsets are 2719 // within the bounds of their allocations (and not one-past-the-end! 2720 // so we can't use inbounds!), and their allocations aren't the same, 2721 // the pointers are not equal. 2722 if (HaveNonOverlappingStorage(LHS, RHS)) { 2723 uint64_t LHSSize, RHSSize; 2724 ObjectSizeOpts Opts; 2725 Opts.EvalMode = ObjectSizeOpts::Mode::Min; 2726 auto *F = [](Value *V) -> Function * { 2727 if (auto *I = dyn_cast<Instruction>(V)) 2728 return I->getFunction(); 2729 if (auto *A = dyn_cast<Argument>(V)) 2730 return A->getParent(); 2731 return nullptr; 2732 }(LHS); 2733 Opts.NullIsUnknownSize = F ? NullPointerIsDefined(F) : true; 2734 if (getObjectSize(LHS, LHSSize, DL, TLI, Opts) && 2735 getObjectSize(RHS, RHSSize, DL, TLI, Opts) && 2736 !LHSOffset.isNegative() && !RHSOffset.isNegative() && 2737 LHSOffset.ult(LHSSize) && RHSOffset.ult(RHSSize)) { 2738 return ConstantInt::get(GetCompareTy(LHS), 2739 !CmpInst::isTrueWhenEqual(Pred)); 2740 } 2741 } 2742 2743 // If one side of the equality comparison must come from a noalias call 2744 // (meaning a system memory allocation function), and the other side must 2745 // come from a pointer that cannot overlap with dynamically-allocated 2746 // memory within the lifetime of the current function (allocas, byval 2747 // arguments, globals), then determine the comparison result here. 2748 SmallVector<const Value *, 8> LHSUObjs, RHSUObjs; 2749 getUnderlyingObjects(LHS, LHSUObjs); 2750 getUnderlyingObjects(RHS, RHSUObjs); 2751 2752 // Is the set of underlying objects all noalias calls? 2753 auto IsNAC = [](ArrayRef<const Value *> Objects) { 2754 return all_of(Objects, isNoAliasCall); 2755 }; 2756 2757 // Is the set of underlying objects all things which must be disjoint from 2758 // noalias calls. We assume that indexing from such disjoint storage 2759 // into the heap is undefined, and thus offsets can be safely ignored. 2760 auto IsAllocDisjoint = [](ArrayRef<const Value *> Objects) { 2761 return all_of(Objects, ::IsAllocDisjoint); 2762 }; 2763 2764 if ((IsNAC(LHSUObjs) && IsAllocDisjoint(RHSUObjs)) || 2765 (IsNAC(RHSUObjs) && IsAllocDisjoint(LHSUObjs))) 2766 return ConstantInt::get(GetCompareTy(LHS), 2767 !CmpInst::isTrueWhenEqual(Pred)); 2768 2769 // Fold comparisons for non-escaping pointer even if the allocation call 2770 // cannot be elided. We cannot fold malloc comparison to null. Also, the 2771 // dynamic allocation call could be either of the operands. Note that 2772 // the other operand can not be based on the alloc - if it were, then 2773 // the cmp itself would be a capture. 2774 Value *MI = nullptr; 2775 if (isAllocLikeFn(LHS, TLI) && 2776 llvm::isKnownNonZero(RHS, DL, 0, nullptr, CxtI, DT)) 2777 MI = LHS; 2778 else if (isAllocLikeFn(RHS, TLI) && 2779 llvm::isKnownNonZero(LHS, DL, 0, nullptr, CxtI, DT)) 2780 MI = RHS; 2781 // FIXME: We should also fold the compare when the pointer escapes, but the 2782 // compare dominates the pointer escape 2783 if (MI && !PointerMayBeCaptured(MI, true, true)) 2784 return ConstantInt::get(GetCompareTy(LHS), 2785 CmpInst::isFalseWhenEqual(Pred)); 2786 } 2787 2788 // Otherwise, fail. 2789 return nullptr; 2790 } 2791 2792 /// Fold an icmp when its operands have i1 scalar type. 2793 static Value *simplifyICmpOfBools(CmpInst::Predicate Pred, Value *LHS, 2794 Value *RHS, const SimplifyQuery &Q) { 2795 Type *ITy = GetCompareTy(LHS); // The return type. 2796 Type *OpTy = LHS->getType(); // The operand type. 2797 if (!OpTy->isIntOrIntVectorTy(1)) 2798 return nullptr; 2799 2800 // A boolean compared to true/false can be reduced in 14 out of the 20 2801 // (10 predicates * 2 constants) possible combinations. The other 2802 // 6 cases require a 'not' of the LHS. 2803 2804 auto ExtractNotLHS = [](Value *V) -> Value * { 2805 Value *X; 2806 if (match(V, m_Not(m_Value(X)))) 2807 return X; 2808 return nullptr; 2809 }; 2810 2811 if (match(RHS, m_Zero())) { 2812 switch (Pred) { 2813 case CmpInst::ICMP_NE: // X != 0 -> X 2814 case CmpInst::ICMP_UGT: // X >u 0 -> X 2815 case CmpInst::ICMP_SLT: // X <s 0 -> X 2816 return LHS; 2817 2818 case CmpInst::ICMP_EQ: // not(X) == 0 -> X != 0 -> X 2819 case CmpInst::ICMP_ULE: // not(X) <=u 0 -> X >u 0 -> X 2820 case CmpInst::ICMP_SGE: // not(X) >=s 0 -> X <s 0 -> X 2821 if (Value *X = ExtractNotLHS(LHS)) 2822 return X; 2823 break; 2824 2825 case CmpInst::ICMP_ULT: // X <u 0 -> false 2826 case CmpInst::ICMP_SGT: // X >s 0 -> false 2827 return getFalse(ITy); 2828 2829 case CmpInst::ICMP_UGE: // X >=u 0 -> true 2830 case CmpInst::ICMP_SLE: // X <=s 0 -> true 2831 return getTrue(ITy); 2832 2833 default: break; 2834 } 2835 } else if (match(RHS, m_One())) { 2836 switch (Pred) { 2837 case CmpInst::ICMP_EQ: // X == 1 -> X 2838 case CmpInst::ICMP_UGE: // X >=u 1 -> X 2839 case CmpInst::ICMP_SLE: // X <=s -1 -> X 2840 return LHS; 2841 2842 case CmpInst::ICMP_NE: // not(X) != 1 -> X == 1 -> X 2843 case CmpInst::ICMP_ULT: // not(X) <=u 1 -> X >=u 1 -> X 2844 case CmpInst::ICMP_SGT: // not(X) >s 1 -> X <=s -1 -> X 2845 if (Value *X = ExtractNotLHS(LHS)) 2846 return X; 2847 break; 2848 2849 case CmpInst::ICMP_UGT: // X >u 1 -> false 2850 case CmpInst::ICMP_SLT: // X <s -1 -> false 2851 return getFalse(ITy); 2852 2853 case CmpInst::ICMP_ULE: // X <=u 1 -> true 2854 case CmpInst::ICMP_SGE: // X >=s -1 -> true 2855 return getTrue(ITy); 2856 2857 default: break; 2858 } 2859 } 2860 2861 switch (Pred) { 2862 default: 2863 break; 2864 case ICmpInst::ICMP_UGE: 2865 if (isImpliedCondition(RHS, LHS, Q.DL).getValueOr(false)) 2866 return getTrue(ITy); 2867 break; 2868 case ICmpInst::ICMP_SGE: 2869 /// For signed comparison, the values for an i1 are 0 and -1 2870 /// respectively. This maps into a truth table of: 2871 /// LHS | RHS | LHS >=s RHS | LHS implies RHS 2872 /// 0 | 0 | 1 (0 >= 0) | 1 2873 /// 0 | 1 | 1 (0 >= -1) | 1 2874 /// 1 | 0 | 0 (-1 >= 0) | 0 2875 /// 1 | 1 | 1 (-1 >= -1) | 1 2876 if (isImpliedCondition(LHS, RHS, Q.DL).getValueOr(false)) 2877 return getTrue(ITy); 2878 break; 2879 case ICmpInst::ICMP_ULE: 2880 if (isImpliedCondition(LHS, RHS, Q.DL).getValueOr(false)) 2881 return getTrue(ITy); 2882 break; 2883 } 2884 2885 return nullptr; 2886 } 2887 2888 /// Try hard to fold icmp with zero RHS because this is a common case. 2889 static Value *simplifyICmpWithZero(CmpInst::Predicate Pred, Value *LHS, 2890 Value *RHS, const SimplifyQuery &Q) { 2891 if (!match(RHS, m_Zero())) 2892 return nullptr; 2893 2894 Type *ITy = GetCompareTy(LHS); // The return type. 2895 switch (Pred) { 2896 default: 2897 llvm_unreachable("Unknown ICmp predicate!"); 2898 case ICmpInst::ICMP_ULT: 2899 return getFalse(ITy); 2900 case ICmpInst::ICMP_UGE: 2901 return getTrue(ITy); 2902 case ICmpInst::ICMP_EQ: 2903 case ICmpInst::ICMP_ULE: 2904 if (isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT, Q.IIQ.UseInstrInfo)) 2905 return getFalse(ITy); 2906 break; 2907 case ICmpInst::ICMP_NE: 2908 case ICmpInst::ICMP_UGT: 2909 if (isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT, Q.IIQ.UseInstrInfo)) 2910 return getTrue(ITy); 2911 break; 2912 case ICmpInst::ICMP_SLT: { 2913 KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2914 if (LHSKnown.isNegative()) 2915 return getTrue(ITy); 2916 if (LHSKnown.isNonNegative()) 2917 return getFalse(ITy); 2918 break; 2919 } 2920 case ICmpInst::ICMP_SLE: { 2921 KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2922 if (LHSKnown.isNegative()) 2923 return getTrue(ITy); 2924 if (LHSKnown.isNonNegative() && 2925 isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 2926 return getFalse(ITy); 2927 break; 2928 } 2929 case ICmpInst::ICMP_SGE: { 2930 KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2931 if (LHSKnown.isNegative()) 2932 return getFalse(ITy); 2933 if (LHSKnown.isNonNegative()) 2934 return getTrue(ITy); 2935 break; 2936 } 2937 case ICmpInst::ICMP_SGT: { 2938 KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2939 if (LHSKnown.isNegative()) 2940 return getFalse(ITy); 2941 if (LHSKnown.isNonNegative() && 2942 isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 2943 return getTrue(ITy); 2944 break; 2945 } 2946 } 2947 2948 return nullptr; 2949 } 2950 2951 static Value *simplifyICmpWithConstant(CmpInst::Predicate Pred, Value *LHS, 2952 Value *RHS, const InstrInfoQuery &IIQ) { 2953 Type *ITy = GetCompareTy(RHS); // The return type. 2954 2955 Value *X; 2956 // Sign-bit checks can be optimized to true/false after unsigned 2957 // floating-point casts: 2958 // icmp slt (bitcast (uitofp X)), 0 --> false 2959 // icmp sgt (bitcast (uitofp X)), -1 --> true 2960 if (match(LHS, m_BitCast(m_UIToFP(m_Value(X))))) { 2961 if (Pred == ICmpInst::ICMP_SLT && match(RHS, m_Zero())) 2962 return ConstantInt::getFalse(ITy); 2963 if (Pred == ICmpInst::ICMP_SGT && match(RHS, m_AllOnes())) 2964 return ConstantInt::getTrue(ITy); 2965 } 2966 2967 const APInt *C; 2968 if (!match(RHS, m_APIntAllowUndef(C))) 2969 return nullptr; 2970 2971 // Rule out tautological comparisons (eg., ult 0 or uge 0). 2972 ConstantRange RHS_CR = ConstantRange::makeExactICmpRegion(Pred, *C); 2973 if (RHS_CR.isEmptySet()) 2974 return ConstantInt::getFalse(ITy); 2975 if (RHS_CR.isFullSet()) 2976 return ConstantInt::getTrue(ITy); 2977 2978 ConstantRange LHS_CR = 2979 computeConstantRange(LHS, CmpInst::isSigned(Pred), IIQ.UseInstrInfo); 2980 if (!LHS_CR.isFullSet()) { 2981 if (RHS_CR.contains(LHS_CR)) 2982 return ConstantInt::getTrue(ITy); 2983 if (RHS_CR.inverse().contains(LHS_CR)) 2984 return ConstantInt::getFalse(ITy); 2985 } 2986 2987 // (mul nuw/nsw X, MulC) != C --> true (if C is not a multiple of MulC) 2988 // (mul nuw/nsw X, MulC) == C --> false (if C is not a multiple of MulC) 2989 const APInt *MulC; 2990 if (ICmpInst::isEquality(Pred) && 2991 ((match(LHS, m_NUWMul(m_Value(), m_APIntAllowUndef(MulC))) && 2992 *MulC != 0 && C->urem(*MulC) != 0) || 2993 (match(LHS, m_NSWMul(m_Value(), m_APIntAllowUndef(MulC))) && 2994 *MulC != 0 && C->srem(*MulC) != 0))) 2995 return ConstantInt::get(ITy, Pred == ICmpInst::ICMP_NE); 2996 2997 return nullptr; 2998 } 2999 3000 static Value *simplifyICmpWithBinOpOnLHS( 3001 CmpInst::Predicate Pred, BinaryOperator *LBO, Value *RHS, 3002 const SimplifyQuery &Q, unsigned MaxRecurse) { 3003 Type *ITy = GetCompareTy(RHS); // The return type. 3004 3005 Value *Y = nullptr; 3006 // icmp pred (or X, Y), X 3007 if (match(LBO, m_c_Or(m_Value(Y), m_Specific(RHS)))) { 3008 if (Pred == ICmpInst::ICMP_ULT) 3009 return getFalse(ITy); 3010 if (Pred == ICmpInst::ICMP_UGE) 3011 return getTrue(ITy); 3012 3013 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SGE) { 3014 KnownBits RHSKnown = computeKnownBits(RHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 3015 KnownBits YKnown = computeKnownBits(Y, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 3016 if (RHSKnown.isNonNegative() && YKnown.isNegative()) 3017 return Pred == ICmpInst::ICMP_SLT ? getTrue(ITy) : getFalse(ITy); 3018 if (RHSKnown.isNegative() || YKnown.isNonNegative()) 3019 return Pred == ICmpInst::ICMP_SLT ? getFalse(ITy) : getTrue(ITy); 3020 } 3021 } 3022 3023 // icmp pred (and X, Y), X 3024 if (match(LBO, m_c_And(m_Value(), m_Specific(RHS)))) { 3025 if (Pred == ICmpInst::ICMP_UGT) 3026 return getFalse(ITy); 3027 if (Pred == ICmpInst::ICMP_ULE) 3028 return getTrue(ITy); 3029 } 3030 3031 // icmp pred (urem X, Y), Y 3032 if (match(LBO, m_URem(m_Value(), m_Specific(RHS)))) { 3033 switch (Pred) { 3034 default: 3035 break; 3036 case ICmpInst::ICMP_SGT: 3037 case ICmpInst::ICMP_SGE: { 3038 KnownBits Known = computeKnownBits(RHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 3039 if (!Known.isNonNegative()) 3040 break; 3041 LLVM_FALLTHROUGH; 3042 } 3043 case ICmpInst::ICMP_EQ: 3044 case ICmpInst::ICMP_UGT: 3045 case ICmpInst::ICMP_UGE: 3046 return getFalse(ITy); 3047 case ICmpInst::ICMP_SLT: 3048 case ICmpInst::ICMP_SLE: { 3049 KnownBits Known = computeKnownBits(RHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 3050 if (!Known.isNonNegative()) 3051 break; 3052 LLVM_FALLTHROUGH; 3053 } 3054 case ICmpInst::ICMP_NE: 3055 case ICmpInst::ICMP_ULT: 3056 case ICmpInst::ICMP_ULE: 3057 return getTrue(ITy); 3058 } 3059 } 3060 3061 // icmp pred (urem X, Y), X 3062 if (match(LBO, m_URem(m_Specific(RHS), m_Value()))) { 3063 if (Pred == ICmpInst::ICMP_ULE) 3064 return getTrue(ITy); 3065 if (Pred == ICmpInst::ICMP_UGT) 3066 return getFalse(ITy); 3067 } 3068 3069 // x >>u y <=u x --> true. 3070 // x >>u y >u x --> false. 3071 // x udiv y <=u x --> true. 3072 // x udiv y >u x --> false. 3073 if (match(LBO, m_LShr(m_Specific(RHS), m_Value())) || 3074 match(LBO, m_UDiv(m_Specific(RHS), m_Value()))) { 3075 // icmp pred (X op Y), X 3076 if (Pred == ICmpInst::ICMP_UGT) 3077 return getFalse(ITy); 3078 if (Pred == ICmpInst::ICMP_ULE) 3079 return getTrue(ITy); 3080 } 3081 3082 // If x is nonzero: 3083 // x >>u C <u x --> true for C != 0. 3084 // x >>u C != x --> true for C != 0. 3085 // x >>u C >=u x --> false for C != 0. 3086 // x >>u C == x --> false for C != 0. 3087 // x udiv C <u x --> true for C != 1. 3088 // x udiv C != x --> true for C != 1. 3089 // x udiv C >=u x --> false for C != 1. 3090 // x udiv C == x --> false for C != 1. 3091 // TODO: allow non-constant shift amount/divisor 3092 const APInt *C; 3093 if ((match(LBO, m_LShr(m_Specific(RHS), m_APInt(C))) && *C != 0) || 3094 (match(LBO, m_UDiv(m_Specific(RHS), m_APInt(C))) && *C != 1)) { 3095 if (isKnownNonZero(RHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) { 3096 switch (Pred) { 3097 default: 3098 break; 3099 case ICmpInst::ICMP_EQ: 3100 case ICmpInst::ICMP_UGE: 3101 return getFalse(ITy); 3102 case ICmpInst::ICMP_NE: 3103 case ICmpInst::ICMP_ULT: 3104 return getTrue(ITy); 3105 case ICmpInst::ICMP_UGT: 3106 case ICmpInst::ICMP_ULE: 3107 // UGT/ULE are handled by the more general case just above 3108 llvm_unreachable("Unexpected UGT/ULE, should have been handled"); 3109 } 3110 } 3111 } 3112 3113 // (x*C1)/C2 <= x for C1 <= C2. 3114 // This holds even if the multiplication overflows: Assume that x != 0 and 3115 // arithmetic is modulo M. For overflow to occur we must have C1 >= M/x and 3116 // thus C2 >= M/x. It follows that (x*C1)/C2 <= (M-1)/C2 <= ((M-1)*x)/M < x. 3117 // 3118 // Additionally, either the multiplication and division might be represented 3119 // as shifts: 3120 // (x*C1)>>C2 <= x for C1 < 2**C2. 3121 // (x<<C1)/C2 <= x for 2**C1 < C2. 3122 const APInt *C1, *C2; 3123 if ((match(LBO, m_UDiv(m_Mul(m_Specific(RHS), m_APInt(C1)), m_APInt(C2))) && 3124 C1->ule(*C2)) || 3125 (match(LBO, m_LShr(m_Mul(m_Specific(RHS), m_APInt(C1)), m_APInt(C2))) && 3126 C1->ule(APInt(C2->getBitWidth(), 1) << *C2)) || 3127 (match(LBO, m_UDiv(m_Shl(m_Specific(RHS), m_APInt(C1)), m_APInt(C2))) && 3128 (APInt(C1->getBitWidth(), 1) << *C1).ule(*C2))) { 3129 if (Pred == ICmpInst::ICMP_UGT) 3130 return getFalse(ITy); 3131 if (Pred == ICmpInst::ICMP_ULE) 3132 return getTrue(ITy); 3133 } 3134 3135 return nullptr; 3136 } 3137 3138 3139 // If only one of the icmp's operands has NSW flags, try to prove that: 3140 // 3141 // icmp slt (x + C1), (x +nsw C2) 3142 // 3143 // is equivalent to: 3144 // 3145 // icmp slt C1, C2 3146 // 3147 // which is true if x + C2 has the NSW flags set and: 3148 // *) C1 < C2 && C1 >= 0, or 3149 // *) C2 < C1 && C1 <= 0. 3150 // 3151 static bool trySimplifyICmpWithAdds(CmpInst::Predicate Pred, Value *LHS, 3152 Value *RHS) { 3153 // TODO: only support icmp slt for now. 3154 if (Pred != CmpInst::ICMP_SLT) 3155 return false; 3156 3157 // Canonicalize nsw add as RHS. 3158 if (!match(RHS, m_NSWAdd(m_Value(), m_Value()))) 3159 std::swap(LHS, RHS); 3160 if (!match(RHS, m_NSWAdd(m_Value(), m_Value()))) 3161 return false; 3162 3163 Value *X; 3164 const APInt *C1, *C2; 3165 if (!match(LHS, m_c_Add(m_Value(X), m_APInt(C1))) || 3166 !match(RHS, m_c_Add(m_Specific(X), m_APInt(C2)))) 3167 return false; 3168 3169 return (C1->slt(*C2) && C1->isNonNegative()) || 3170 (C2->slt(*C1) && C1->isNonPositive()); 3171 } 3172 3173 3174 /// TODO: A large part of this logic is duplicated in InstCombine's 3175 /// foldICmpBinOp(). We should be able to share that and avoid the code 3176 /// duplication. 3177 static Value *simplifyICmpWithBinOp(CmpInst::Predicate Pred, Value *LHS, 3178 Value *RHS, const SimplifyQuery &Q, 3179 unsigned MaxRecurse) { 3180 BinaryOperator *LBO = dyn_cast<BinaryOperator>(LHS); 3181 BinaryOperator *RBO = dyn_cast<BinaryOperator>(RHS); 3182 if (MaxRecurse && (LBO || RBO)) { 3183 // Analyze the case when either LHS or RHS is an add instruction. 3184 Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr; 3185 // LHS = A + B (or A and B are null); RHS = C + D (or C and D are null). 3186 bool NoLHSWrapProblem = false, NoRHSWrapProblem = false; 3187 if (LBO && LBO->getOpcode() == Instruction::Add) { 3188 A = LBO->getOperand(0); 3189 B = LBO->getOperand(1); 3190 NoLHSWrapProblem = 3191 ICmpInst::isEquality(Pred) || 3192 (CmpInst::isUnsigned(Pred) && 3193 Q.IIQ.hasNoUnsignedWrap(cast<OverflowingBinaryOperator>(LBO))) || 3194 (CmpInst::isSigned(Pred) && 3195 Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(LBO))); 3196 } 3197 if (RBO && RBO->getOpcode() == Instruction::Add) { 3198 C = RBO->getOperand(0); 3199 D = RBO->getOperand(1); 3200 NoRHSWrapProblem = 3201 ICmpInst::isEquality(Pred) || 3202 (CmpInst::isUnsigned(Pred) && 3203 Q.IIQ.hasNoUnsignedWrap(cast<OverflowingBinaryOperator>(RBO))) || 3204 (CmpInst::isSigned(Pred) && 3205 Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(RBO))); 3206 } 3207 3208 // icmp (X+Y), X -> icmp Y, 0 for equalities or if there is no overflow. 3209 if ((A == RHS || B == RHS) && NoLHSWrapProblem) 3210 if (Value *V = SimplifyICmpInst(Pred, A == RHS ? B : A, 3211 Constant::getNullValue(RHS->getType()), Q, 3212 MaxRecurse - 1)) 3213 return V; 3214 3215 // icmp X, (X+Y) -> icmp 0, Y for equalities or if there is no overflow. 3216 if ((C == LHS || D == LHS) && NoRHSWrapProblem) 3217 if (Value *V = 3218 SimplifyICmpInst(Pred, Constant::getNullValue(LHS->getType()), 3219 C == LHS ? D : C, Q, MaxRecurse - 1)) 3220 return V; 3221 3222 // icmp (X+Y), (X+Z) -> icmp Y,Z for equalities or if there is no overflow. 3223 bool CanSimplify = (NoLHSWrapProblem && NoRHSWrapProblem) || 3224 trySimplifyICmpWithAdds(Pred, LHS, RHS); 3225 if (A && C && (A == C || A == D || B == C || B == D) && CanSimplify) { 3226 // Determine Y and Z in the form icmp (X+Y), (X+Z). 3227 Value *Y, *Z; 3228 if (A == C) { 3229 // C + B == C + D -> B == D 3230 Y = B; 3231 Z = D; 3232 } else if (A == D) { 3233 // D + B == C + D -> B == C 3234 Y = B; 3235 Z = C; 3236 } else if (B == C) { 3237 // A + C == C + D -> A == D 3238 Y = A; 3239 Z = D; 3240 } else { 3241 assert(B == D); 3242 // A + D == C + D -> A == C 3243 Y = A; 3244 Z = C; 3245 } 3246 if (Value *V = SimplifyICmpInst(Pred, Y, Z, Q, MaxRecurse - 1)) 3247 return V; 3248 } 3249 } 3250 3251 if (LBO) 3252 if (Value *V = simplifyICmpWithBinOpOnLHS(Pred, LBO, RHS, Q, MaxRecurse)) 3253 return V; 3254 3255 if (RBO) 3256 if (Value *V = simplifyICmpWithBinOpOnLHS( 3257 ICmpInst::getSwappedPredicate(Pred), RBO, LHS, Q, MaxRecurse)) 3258 return V; 3259 3260 // 0 - (zext X) pred C 3261 if (!CmpInst::isUnsigned(Pred) && match(LHS, m_Neg(m_ZExt(m_Value())))) { 3262 const APInt *C; 3263 if (match(RHS, m_APInt(C))) { 3264 if (C->isStrictlyPositive()) { 3265 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_NE) 3266 return ConstantInt::getTrue(GetCompareTy(RHS)); 3267 if (Pred == ICmpInst::ICMP_SGE || Pred == ICmpInst::ICMP_EQ) 3268 return ConstantInt::getFalse(GetCompareTy(RHS)); 3269 } 3270 if (C->isNonNegative()) { 3271 if (Pred == ICmpInst::ICMP_SLE) 3272 return ConstantInt::getTrue(GetCompareTy(RHS)); 3273 if (Pred == ICmpInst::ICMP_SGT) 3274 return ConstantInt::getFalse(GetCompareTy(RHS)); 3275 } 3276 } 3277 } 3278 3279 // If C2 is a power-of-2 and C is not: 3280 // (C2 << X) == C --> false 3281 // (C2 << X) != C --> true 3282 const APInt *C; 3283 if (match(LHS, m_Shl(m_Power2(), m_Value())) && 3284 match(RHS, m_APIntAllowUndef(C)) && !C->isPowerOf2()) { 3285 // C2 << X can equal zero in some circumstances. 3286 // This simplification might be unsafe if C is zero. 3287 // 3288 // We know it is safe if: 3289 // - The shift is nsw. We can't shift out the one bit. 3290 // - The shift is nuw. We can't shift out the one bit. 3291 // - C2 is one. 3292 // - C isn't zero. 3293 if (Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(LBO)) || 3294 Q.IIQ.hasNoUnsignedWrap(cast<OverflowingBinaryOperator>(LBO)) || 3295 match(LHS, m_Shl(m_One(), m_Value())) || !C->isZero()) { 3296 if (Pred == ICmpInst::ICMP_EQ) 3297 return ConstantInt::getFalse(GetCompareTy(RHS)); 3298 if (Pred == ICmpInst::ICMP_NE) 3299 return ConstantInt::getTrue(GetCompareTy(RHS)); 3300 } 3301 } 3302 3303 // TODO: This is overly constrained. LHS can be any power-of-2. 3304 // (1 << X) >u 0x8000 --> false 3305 // (1 << X) <=u 0x8000 --> true 3306 if (match(LHS, m_Shl(m_One(), m_Value())) && match(RHS, m_SignMask())) { 3307 if (Pred == ICmpInst::ICMP_UGT) 3308 return ConstantInt::getFalse(GetCompareTy(RHS)); 3309 if (Pred == ICmpInst::ICMP_ULE) 3310 return ConstantInt::getTrue(GetCompareTy(RHS)); 3311 } 3312 3313 if (MaxRecurse && LBO && RBO && LBO->getOpcode() == RBO->getOpcode() && 3314 LBO->getOperand(1) == RBO->getOperand(1)) { 3315 switch (LBO->getOpcode()) { 3316 default: 3317 break; 3318 case Instruction::UDiv: 3319 case Instruction::LShr: 3320 if (ICmpInst::isSigned(Pred) || !Q.IIQ.isExact(LBO) || 3321 !Q.IIQ.isExact(RBO)) 3322 break; 3323 if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0), 3324 RBO->getOperand(0), Q, MaxRecurse - 1)) 3325 return V; 3326 break; 3327 case Instruction::SDiv: 3328 if (!ICmpInst::isEquality(Pred) || !Q.IIQ.isExact(LBO) || 3329 !Q.IIQ.isExact(RBO)) 3330 break; 3331 if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0), 3332 RBO->getOperand(0), Q, MaxRecurse - 1)) 3333 return V; 3334 break; 3335 case Instruction::AShr: 3336 if (!Q.IIQ.isExact(LBO) || !Q.IIQ.isExact(RBO)) 3337 break; 3338 if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0), 3339 RBO->getOperand(0), Q, MaxRecurse - 1)) 3340 return V; 3341 break; 3342 case Instruction::Shl: { 3343 bool NUW = Q.IIQ.hasNoUnsignedWrap(LBO) && Q.IIQ.hasNoUnsignedWrap(RBO); 3344 bool NSW = Q.IIQ.hasNoSignedWrap(LBO) && Q.IIQ.hasNoSignedWrap(RBO); 3345 if (!NUW && !NSW) 3346 break; 3347 if (!NSW && ICmpInst::isSigned(Pred)) 3348 break; 3349 if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0), 3350 RBO->getOperand(0), Q, MaxRecurse - 1)) 3351 return V; 3352 break; 3353 } 3354 } 3355 } 3356 return nullptr; 3357 } 3358 3359 /// Simplify integer comparisons where at least one operand of the compare 3360 /// matches an integer min/max idiom. 3361 static Value *simplifyICmpWithMinMax(CmpInst::Predicate Pred, Value *LHS, 3362 Value *RHS, const SimplifyQuery &Q, 3363 unsigned MaxRecurse) { 3364 Type *ITy = GetCompareTy(LHS); // The return type. 3365 Value *A, *B; 3366 CmpInst::Predicate P = CmpInst::BAD_ICMP_PREDICATE; 3367 CmpInst::Predicate EqP; // Chosen so that "A == max/min(A,B)" iff "A EqP B". 3368 3369 // Signed variants on "max(a,b)>=a -> true". 3370 if (match(LHS, m_SMax(m_Value(A), m_Value(B))) && (A == RHS || B == RHS)) { 3371 if (A != RHS) 3372 std::swap(A, B); // smax(A, B) pred A. 3373 EqP = CmpInst::ICMP_SGE; // "A == smax(A, B)" iff "A sge B". 3374 // We analyze this as smax(A, B) pred A. 3375 P = Pred; 3376 } else if (match(RHS, m_SMax(m_Value(A), m_Value(B))) && 3377 (A == LHS || B == LHS)) { 3378 if (A != LHS) 3379 std::swap(A, B); // A pred smax(A, B). 3380 EqP = CmpInst::ICMP_SGE; // "A == smax(A, B)" iff "A sge B". 3381 // We analyze this as smax(A, B) swapped-pred A. 3382 P = CmpInst::getSwappedPredicate(Pred); 3383 } else if (match(LHS, m_SMin(m_Value(A), m_Value(B))) && 3384 (A == RHS || B == RHS)) { 3385 if (A != RHS) 3386 std::swap(A, B); // smin(A, B) pred A. 3387 EqP = CmpInst::ICMP_SLE; // "A == smin(A, B)" iff "A sle B". 3388 // We analyze this as smax(-A, -B) swapped-pred -A. 3389 // Note that we do not need to actually form -A or -B thanks to EqP. 3390 P = CmpInst::getSwappedPredicate(Pred); 3391 } else if (match(RHS, m_SMin(m_Value(A), m_Value(B))) && 3392 (A == LHS || B == LHS)) { 3393 if (A != LHS) 3394 std::swap(A, B); // A pred smin(A, B). 3395 EqP = CmpInst::ICMP_SLE; // "A == smin(A, B)" iff "A sle B". 3396 // We analyze this as smax(-A, -B) pred -A. 3397 // Note that we do not need to actually form -A or -B thanks to EqP. 3398 P = Pred; 3399 } 3400 if (P != CmpInst::BAD_ICMP_PREDICATE) { 3401 // Cases correspond to "max(A, B) p A". 3402 switch (P) { 3403 default: 3404 break; 3405 case CmpInst::ICMP_EQ: 3406 case CmpInst::ICMP_SLE: 3407 // Equivalent to "A EqP B". This may be the same as the condition tested 3408 // in the max/min; if so, we can just return that. 3409 if (Value *V = ExtractEquivalentCondition(LHS, EqP, A, B)) 3410 return V; 3411 if (Value *V = ExtractEquivalentCondition(RHS, EqP, A, B)) 3412 return V; 3413 // Otherwise, see if "A EqP B" simplifies. 3414 if (MaxRecurse) 3415 if (Value *V = SimplifyICmpInst(EqP, A, B, Q, MaxRecurse - 1)) 3416 return V; 3417 break; 3418 case CmpInst::ICMP_NE: 3419 case CmpInst::ICMP_SGT: { 3420 CmpInst::Predicate InvEqP = CmpInst::getInversePredicate(EqP); 3421 // Equivalent to "A InvEqP B". This may be the same as the condition 3422 // tested in the max/min; if so, we can just return that. 3423 if (Value *V = ExtractEquivalentCondition(LHS, InvEqP, A, B)) 3424 return V; 3425 if (Value *V = ExtractEquivalentCondition(RHS, InvEqP, A, B)) 3426 return V; 3427 // Otherwise, see if "A InvEqP B" simplifies. 3428 if (MaxRecurse) 3429 if (Value *V = SimplifyICmpInst(InvEqP, A, B, Q, MaxRecurse - 1)) 3430 return V; 3431 break; 3432 } 3433 case CmpInst::ICMP_SGE: 3434 // Always true. 3435 return getTrue(ITy); 3436 case CmpInst::ICMP_SLT: 3437 // Always false. 3438 return getFalse(ITy); 3439 } 3440 } 3441 3442 // Unsigned variants on "max(a,b)>=a -> true". 3443 P = CmpInst::BAD_ICMP_PREDICATE; 3444 if (match(LHS, m_UMax(m_Value(A), m_Value(B))) && (A == RHS || B == RHS)) { 3445 if (A != RHS) 3446 std::swap(A, B); // umax(A, B) pred A. 3447 EqP = CmpInst::ICMP_UGE; // "A == umax(A, B)" iff "A uge B". 3448 // We analyze this as umax(A, B) pred A. 3449 P = Pred; 3450 } else if (match(RHS, m_UMax(m_Value(A), m_Value(B))) && 3451 (A == LHS || B == LHS)) { 3452 if (A != LHS) 3453 std::swap(A, B); // A pred umax(A, B). 3454 EqP = CmpInst::ICMP_UGE; // "A == umax(A, B)" iff "A uge B". 3455 // We analyze this as umax(A, B) swapped-pred A. 3456 P = CmpInst::getSwappedPredicate(Pred); 3457 } else if (match(LHS, m_UMin(m_Value(A), m_Value(B))) && 3458 (A == RHS || B == RHS)) { 3459 if (A != RHS) 3460 std::swap(A, B); // umin(A, B) pred A. 3461 EqP = CmpInst::ICMP_ULE; // "A == umin(A, B)" iff "A ule B". 3462 // We analyze this as umax(-A, -B) swapped-pred -A. 3463 // Note that we do not need to actually form -A or -B thanks to EqP. 3464 P = CmpInst::getSwappedPredicate(Pred); 3465 } else if (match(RHS, m_UMin(m_Value(A), m_Value(B))) && 3466 (A == LHS || B == LHS)) { 3467 if (A != LHS) 3468 std::swap(A, B); // A pred umin(A, B). 3469 EqP = CmpInst::ICMP_ULE; // "A == umin(A, B)" iff "A ule B". 3470 // We analyze this as umax(-A, -B) pred -A. 3471 // Note that we do not need to actually form -A or -B thanks to EqP. 3472 P = Pred; 3473 } 3474 if (P != CmpInst::BAD_ICMP_PREDICATE) { 3475 // Cases correspond to "max(A, B) p A". 3476 switch (P) { 3477 default: 3478 break; 3479 case CmpInst::ICMP_EQ: 3480 case CmpInst::ICMP_ULE: 3481 // Equivalent to "A EqP B". This may be the same as the condition tested 3482 // in the max/min; if so, we can just return that. 3483 if (Value *V = ExtractEquivalentCondition(LHS, EqP, A, B)) 3484 return V; 3485 if (Value *V = ExtractEquivalentCondition(RHS, EqP, A, B)) 3486 return V; 3487 // Otherwise, see if "A EqP B" simplifies. 3488 if (MaxRecurse) 3489 if (Value *V = SimplifyICmpInst(EqP, A, B, Q, MaxRecurse - 1)) 3490 return V; 3491 break; 3492 case CmpInst::ICMP_NE: 3493 case CmpInst::ICMP_UGT: { 3494 CmpInst::Predicate InvEqP = CmpInst::getInversePredicate(EqP); 3495 // Equivalent to "A InvEqP B". This may be the same as the condition 3496 // tested in the max/min; if so, we can just return that. 3497 if (Value *V = ExtractEquivalentCondition(LHS, InvEqP, A, B)) 3498 return V; 3499 if (Value *V = ExtractEquivalentCondition(RHS, InvEqP, A, B)) 3500 return V; 3501 // Otherwise, see if "A InvEqP B" simplifies. 3502 if (MaxRecurse) 3503 if (Value *V = SimplifyICmpInst(InvEqP, A, B, Q, MaxRecurse - 1)) 3504 return V; 3505 break; 3506 } 3507 case CmpInst::ICMP_UGE: 3508 return getTrue(ITy); 3509 case CmpInst::ICMP_ULT: 3510 return getFalse(ITy); 3511 } 3512 } 3513 3514 // Comparing 1 each of min/max with a common operand? 3515 // Canonicalize min operand to RHS. 3516 if (match(LHS, m_UMin(m_Value(), m_Value())) || 3517 match(LHS, m_SMin(m_Value(), m_Value()))) { 3518 std::swap(LHS, RHS); 3519 Pred = ICmpInst::getSwappedPredicate(Pred); 3520 } 3521 3522 Value *C, *D; 3523 if (match(LHS, m_SMax(m_Value(A), m_Value(B))) && 3524 match(RHS, m_SMin(m_Value(C), m_Value(D))) && 3525 (A == C || A == D || B == C || B == D)) { 3526 // smax(A, B) >=s smin(A, D) --> true 3527 if (Pred == CmpInst::ICMP_SGE) 3528 return getTrue(ITy); 3529 // smax(A, B) <s smin(A, D) --> false 3530 if (Pred == CmpInst::ICMP_SLT) 3531 return getFalse(ITy); 3532 } else if (match(LHS, m_UMax(m_Value(A), m_Value(B))) && 3533 match(RHS, m_UMin(m_Value(C), m_Value(D))) && 3534 (A == C || A == D || B == C || B == D)) { 3535 // umax(A, B) >=u umin(A, D) --> true 3536 if (Pred == CmpInst::ICMP_UGE) 3537 return getTrue(ITy); 3538 // umax(A, B) <u umin(A, D) --> false 3539 if (Pred == CmpInst::ICMP_ULT) 3540 return getFalse(ITy); 3541 } 3542 3543 return nullptr; 3544 } 3545 3546 static Value *simplifyICmpWithDominatingAssume(CmpInst::Predicate Predicate, 3547 Value *LHS, Value *RHS, 3548 const SimplifyQuery &Q) { 3549 // Gracefully handle instructions that have not been inserted yet. 3550 if (!Q.AC || !Q.CxtI || !Q.CxtI->getParent()) 3551 return nullptr; 3552 3553 for (Value *AssumeBaseOp : {LHS, RHS}) { 3554 for (auto &AssumeVH : Q.AC->assumptionsFor(AssumeBaseOp)) { 3555 if (!AssumeVH) 3556 continue; 3557 3558 CallInst *Assume = cast<CallInst>(AssumeVH); 3559 if (Optional<bool> Imp = 3560 isImpliedCondition(Assume->getArgOperand(0), Predicate, LHS, RHS, 3561 Q.DL)) 3562 if (isValidAssumeForContext(Assume, Q.CxtI, Q.DT)) 3563 return ConstantInt::get(GetCompareTy(LHS), *Imp); 3564 } 3565 } 3566 3567 return nullptr; 3568 } 3569 3570 /// Given operands for an ICmpInst, see if we can fold the result. 3571 /// If not, this returns null. 3572 static Value *SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS, 3573 const SimplifyQuery &Q, unsigned MaxRecurse) { 3574 CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate; 3575 assert(CmpInst::isIntPredicate(Pred) && "Not an integer compare!"); 3576 3577 if (Constant *CLHS = dyn_cast<Constant>(LHS)) { 3578 if (Constant *CRHS = dyn_cast<Constant>(RHS)) 3579 return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, Q.DL, Q.TLI); 3580 3581 // If we have a constant, make sure it is on the RHS. 3582 std::swap(LHS, RHS); 3583 Pred = CmpInst::getSwappedPredicate(Pred); 3584 } 3585 assert(!isa<UndefValue>(LHS) && "Unexpected icmp undef,%X"); 3586 3587 Type *ITy = GetCompareTy(LHS); // The return type. 3588 3589 // icmp poison, X -> poison 3590 if (isa<PoisonValue>(RHS)) 3591 return PoisonValue::get(ITy); 3592 3593 // For EQ and NE, we can always pick a value for the undef to make the 3594 // predicate pass or fail, so we can return undef. 3595 // Matches behavior in llvm::ConstantFoldCompareInstruction. 3596 if (Q.isUndefValue(RHS) && ICmpInst::isEquality(Pred)) 3597 return UndefValue::get(ITy); 3598 3599 // icmp X, X -> true/false 3600 // icmp X, undef -> true/false because undef could be X. 3601 if (LHS == RHS || Q.isUndefValue(RHS)) 3602 return ConstantInt::get(ITy, CmpInst::isTrueWhenEqual(Pred)); 3603 3604 if (Value *V = simplifyICmpOfBools(Pred, LHS, RHS, Q)) 3605 return V; 3606 3607 // TODO: Sink/common this with other potentially expensive calls that use 3608 // ValueTracking? See comment below for isKnownNonEqual(). 3609 if (Value *V = simplifyICmpWithZero(Pred, LHS, RHS, Q)) 3610 return V; 3611 3612 if (Value *V = simplifyICmpWithConstant(Pred, LHS, RHS, Q.IIQ)) 3613 return V; 3614 3615 // If both operands have range metadata, use the metadata 3616 // to simplify the comparison. 3617 if (isa<Instruction>(RHS) && isa<Instruction>(LHS)) { 3618 auto RHS_Instr = cast<Instruction>(RHS); 3619 auto LHS_Instr = cast<Instruction>(LHS); 3620 3621 if (Q.IIQ.getMetadata(RHS_Instr, LLVMContext::MD_range) && 3622 Q.IIQ.getMetadata(LHS_Instr, LLVMContext::MD_range)) { 3623 auto RHS_CR = getConstantRangeFromMetadata( 3624 *RHS_Instr->getMetadata(LLVMContext::MD_range)); 3625 auto LHS_CR = getConstantRangeFromMetadata( 3626 *LHS_Instr->getMetadata(LLVMContext::MD_range)); 3627 3628 if (LHS_CR.icmp(Pred, RHS_CR)) 3629 return ConstantInt::getTrue(RHS->getContext()); 3630 3631 if (LHS_CR.icmp(CmpInst::getInversePredicate(Pred), RHS_CR)) 3632 return ConstantInt::getFalse(RHS->getContext()); 3633 } 3634 } 3635 3636 // Compare of cast, for example (zext X) != 0 -> X != 0 3637 if (isa<CastInst>(LHS) && (isa<Constant>(RHS) || isa<CastInst>(RHS))) { 3638 Instruction *LI = cast<CastInst>(LHS); 3639 Value *SrcOp = LI->getOperand(0); 3640 Type *SrcTy = SrcOp->getType(); 3641 Type *DstTy = LI->getType(); 3642 3643 // Turn icmp (ptrtoint x), (ptrtoint/constant) into a compare of the input 3644 // if the integer type is the same size as the pointer type. 3645 if (MaxRecurse && isa<PtrToIntInst>(LI) && 3646 Q.DL.getTypeSizeInBits(SrcTy) == DstTy->getPrimitiveSizeInBits()) { 3647 if (Constant *RHSC = dyn_cast<Constant>(RHS)) { 3648 // Transfer the cast to the constant. 3649 if (Value *V = SimplifyICmpInst(Pred, SrcOp, 3650 ConstantExpr::getIntToPtr(RHSC, SrcTy), 3651 Q, MaxRecurse-1)) 3652 return V; 3653 } else if (PtrToIntInst *RI = dyn_cast<PtrToIntInst>(RHS)) { 3654 if (RI->getOperand(0)->getType() == SrcTy) 3655 // Compare without the cast. 3656 if (Value *V = SimplifyICmpInst(Pred, SrcOp, RI->getOperand(0), 3657 Q, MaxRecurse-1)) 3658 return V; 3659 } 3660 } 3661 3662 if (isa<ZExtInst>(LHS)) { 3663 // Turn icmp (zext X), (zext Y) into a compare of X and Y if they have the 3664 // same type. 3665 if (ZExtInst *RI = dyn_cast<ZExtInst>(RHS)) { 3666 if (MaxRecurse && SrcTy == RI->getOperand(0)->getType()) 3667 // Compare X and Y. Note that signed predicates become unsigned. 3668 if (Value *V = SimplifyICmpInst(ICmpInst::getUnsignedPredicate(Pred), 3669 SrcOp, RI->getOperand(0), Q, 3670 MaxRecurse-1)) 3671 return V; 3672 } 3673 // Fold (zext X) ule (sext X), (zext X) sge (sext X) to true. 3674 else if (SExtInst *RI = dyn_cast<SExtInst>(RHS)) { 3675 if (SrcOp == RI->getOperand(0)) { 3676 if (Pred == ICmpInst::ICMP_ULE || Pred == ICmpInst::ICMP_SGE) 3677 return ConstantInt::getTrue(ITy); 3678 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_SLT) 3679 return ConstantInt::getFalse(ITy); 3680 } 3681 } 3682 // Turn icmp (zext X), Cst into a compare of X and Cst if Cst is extended 3683 // too. If not, then try to deduce the result of the comparison. 3684 else if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) { 3685 // Compute the constant that would happen if we truncated to SrcTy then 3686 // reextended to DstTy. 3687 Constant *Trunc = ConstantExpr::getTrunc(CI, SrcTy); 3688 Constant *RExt = ConstantExpr::getCast(CastInst::ZExt, Trunc, DstTy); 3689 3690 // If the re-extended constant didn't change then this is effectively 3691 // also a case of comparing two zero-extended values. 3692 if (RExt == CI && MaxRecurse) 3693 if (Value *V = SimplifyICmpInst(ICmpInst::getUnsignedPredicate(Pred), 3694 SrcOp, Trunc, Q, MaxRecurse-1)) 3695 return V; 3696 3697 // Otherwise the upper bits of LHS are zero while RHS has a non-zero bit 3698 // there. Use this to work out the result of the comparison. 3699 if (RExt != CI) { 3700 switch (Pred) { 3701 default: llvm_unreachable("Unknown ICmp predicate!"); 3702 // LHS <u RHS. 3703 case ICmpInst::ICMP_EQ: 3704 case ICmpInst::ICMP_UGT: 3705 case ICmpInst::ICMP_UGE: 3706 return ConstantInt::getFalse(CI->getContext()); 3707 3708 case ICmpInst::ICMP_NE: 3709 case ICmpInst::ICMP_ULT: 3710 case ICmpInst::ICMP_ULE: 3711 return ConstantInt::getTrue(CI->getContext()); 3712 3713 // LHS is non-negative. If RHS is negative then LHS >s LHS. If RHS 3714 // is non-negative then LHS <s RHS. 3715 case ICmpInst::ICMP_SGT: 3716 case ICmpInst::ICMP_SGE: 3717 return CI->getValue().isNegative() ? 3718 ConstantInt::getTrue(CI->getContext()) : 3719 ConstantInt::getFalse(CI->getContext()); 3720 3721 case ICmpInst::ICMP_SLT: 3722 case ICmpInst::ICMP_SLE: 3723 return CI->getValue().isNegative() ? 3724 ConstantInt::getFalse(CI->getContext()) : 3725 ConstantInt::getTrue(CI->getContext()); 3726 } 3727 } 3728 } 3729 } 3730 3731 if (isa<SExtInst>(LHS)) { 3732 // Turn icmp (sext X), (sext Y) into a compare of X and Y if they have the 3733 // same type. 3734 if (SExtInst *RI = dyn_cast<SExtInst>(RHS)) { 3735 if (MaxRecurse && SrcTy == RI->getOperand(0)->getType()) 3736 // Compare X and Y. Note that the predicate does not change. 3737 if (Value *V = SimplifyICmpInst(Pred, SrcOp, RI->getOperand(0), 3738 Q, MaxRecurse-1)) 3739 return V; 3740 } 3741 // Fold (sext X) uge (zext X), (sext X) sle (zext X) to true. 3742 else if (ZExtInst *RI = dyn_cast<ZExtInst>(RHS)) { 3743 if (SrcOp == RI->getOperand(0)) { 3744 if (Pred == ICmpInst::ICMP_UGE || Pred == ICmpInst::ICMP_SLE) 3745 return ConstantInt::getTrue(ITy); 3746 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_SGT) 3747 return ConstantInt::getFalse(ITy); 3748 } 3749 } 3750 // Turn icmp (sext X), Cst into a compare of X and Cst if Cst is extended 3751 // too. If not, then try to deduce the result of the comparison. 3752 else if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) { 3753 // Compute the constant that would happen if we truncated to SrcTy then 3754 // reextended to DstTy. 3755 Constant *Trunc = ConstantExpr::getTrunc(CI, SrcTy); 3756 Constant *RExt = ConstantExpr::getCast(CastInst::SExt, Trunc, DstTy); 3757 3758 // If the re-extended constant didn't change then this is effectively 3759 // also a case of comparing two sign-extended values. 3760 if (RExt == CI && MaxRecurse) 3761 if (Value *V = SimplifyICmpInst(Pred, SrcOp, Trunc, Q, MaxRecurse-1)) 3762 return V; 3763 3764 // Otherwise the upper bits of LHS are all equal, while RHS has varying 3765 // bits there. Use this to work out the result of the comparison. 3766 if (RExt != CI) { 3767 switch (Pred) { 3768 default: llvm_unreachable("Unknown ICmp predicate!"); 3769 case ICmpInst::ICMP_EQ: 3770 return ConstantInt::getFalse(CI->getContext()); 3771 case ICmpInst::ICMP_NE: 3772 return ConstantInt::getTrue(CI->getContext()); 3773 3774 // If RHS is non-negative then LHS <s RHS. If RHS is negative then 3775 // LHS >s RHS. 3776 case ICmpInst::ICMP_SGT: 3777 case ICmpInst::ICMP_SGE: 3778 return CI->getValue().isNegative() ? 3779 ConstantInt::getTrue(CI->getContext()) : 3780 ConstantInt::getFalse(CI->getContext()); 3781 case ICmpInst::ICMP_SLT: 3782 case ICmpInst::ICMP_SLE: 3783 return CI->getValue().isNegative() ? 3784 ConstantInt::getFalse(CI->getContext()) : 3785 ConstantInt::getTrue(CI->getContext()); 3786 3787 // If LHS is non-negative then LHS <u RHS. If LHS is negative then 3788 // LHS >u RHS. 3789 case ICmpInst::ICMP_UGT: 3790 case ICmpInst::ICMP_UGE: 3791 // Comparison is true iff the LHS <s 0. 3792 if (MaxRecurse) 3793 if (Value *V = SimplifyICmpInst(ICmpInst::ICMP_SLT, SrcOp, 3794 Constant::getNullValue(SrcTy), 3795 Q, MaxRecurse-1)) 3796 return V; 3797 break; 3798 case ICmpInst::ICMP_ULT: 3799 case ICmpInst::ICMP_ULE: 3800 // Comparison is true iff the LHS >=s 0. 3801 if (MaxRecurse) 3802 if (Value *V = SimplifyICmpInst(ICmpInst::ICMP_SGE, SrcOp, 3803 Constant::getNullValue(SrcTy), 3804 Q, MaxRecurse-1)) 3805 return V; 3806 break; 3807 } 3808 } 3809 } 3810 } 3811 } 3812 3813 // icmp eq|ne X, Y -> false|true if X != Y 3814 // This is potentially expensive, and we have already computedKnownBits for 3815 // compares with 0 above here, so only try this for a non-zero compare. 3816 if (ICmpInst::isEquality(Pred) && !match(RHS, m_Zero()) && 3817 isKnownNonEqual(LHS, RHS, Q.DL, Q.AC, Q.CxtI, Q.DT, Q.IIQ.UseInstrInfo)) { 3818 return Pred == ICmpInst::ICMP_NE ? getTrue(ITy) : getFalse(ITy); 3819 } 3820 3821 if (Value *V = simplifyICmpWithBinOp(Pred, LHS, RHS, Q, MaxRecurse)) 3822 return V; 3823 3824 if (Value *V = simplifyICmpWithMinMax(Pred, LHS, RHS, Q, MaxRecurse)) 3825 return V; 3826 3827 if (Value *V = simplifyICmpWithDominatingAssume(Pred, LHS, RHS, Q)) 3828 return V; 3829 3830 // Simplify comparisons of related pointers using a powerful, recursive 3831 // GEP-walk when we have target data available.. 3832 if (LHS->getType()->isPointerTy()) 3833 if (auto *C = computePointerICmp(Pred, LHS, RHS, Q)) 3834 return C; 3835 if (auto *CLHS = dyn_cast<PtrToIntOperator>(LHS)) 3836 if (auto *CRHS = dyn_cast<PtrToIntOperator>(RHS)) 3837 if (Q.DL.getTypeSizeInBits(CLHS->getPointerOperandType()) == 3838 Q.DL.getTypeSizeInBits(CLHS->getType()) && 3839 Q.DL.getTypeSizeInBits(CRHS->getPointerOperandType()) == 3840 Q.DL.getTypeSizeInBits(CRHS->getType())) 3841 if (auto *C = computePointerICmp(Pred, CLHS->getPointerOperand(), 3842 CRHS->getPointerOperand(), Q)) 3843 return C; 3844 3845 // If the comparison is with the result of a select instruction, check whether 3846 // comparing with either branch of the select always yields the same value. 3847 if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS)) 3848 if (Value *V = ThreadCmpOverSelect(Pred, LHS, RHS, Q, MaxRecurse)) 3849 return V; 3850 3851 // If the comparison is with the result of a phi instruction, check whether 3852 // doing the compare with each incoming phi value yields a common result. 3853 if (isa<PHINode>(LHS) || isa<PHINode>(RHS)) 3854 if (Value *V = ThreadCmpOverPHI(Pred, LHS, RHS, Q, MaxRecurse)) 3855 return V; 3856 3857 return nullptr; 3858 } 3859 3860 Value *llvm::SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS, 3861 const SimplifyQuery &Q) { 3862 return ::SimplifyICmpInst(Predicate, LHS, RHS, Q, RecursionLimit); 3863 } 3864 3865 /// Given operands for an FCmpInst, see if we can fold the result. 3866 /// If not, this returns null. 3867 static Value *SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS, 3868 FastMathFlags FMF, const SimplifyQuery &Q, 3869 unsigned MaxRecurse) { 3870 CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate; 3871 assert(CmpInst::isFPPredicate(Pred) && "Not an FP compare!"); 3872 3873 if (Constant *CLHS = dyn_cast<Constant>(LHS)) { 3874 if (Constant *CRHS = dyn_cast<Constant>(RHS)) 3875 return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, Q.DL, Q.TLI); 3876 3877 // If we have a constant, make sure it is on the RHS. 3878 std::swap(LHS, RHS); 3879 Pred = CmpInst::getSwappedPredicate(Pred); 3880 } 3881 3882 // Fold trivial predicates. 3883 Type *RetTy = GetCompareTy(LHS); 3884 if (Pred == FCmpInst::FCMP_FALSE) 3885 return getFalse(RetTy); 3886 if (Pred == FCmpInst::FCMP_TRUE) 3887 return getTrue(RetTy); 3888 3889 // Fold (un)ordered comparison if we can determine there are no NaNs. 3890 if (Pred == FCmpInst::FCMP_UNO || Pred == FCmpInst::FCMP_ORD) 3891 if (FMF.noNaNs() || 3892 (isKnownNeverNaN(LHS, Q.TLI) && isKnownNeverNaN(RHS, Q.TLI))) 3893 return ConstantInt::get(RetTy, Pred == FCmpInst::FCMP_ORD); 3894 3895 // NaN is unordered; NaN is not ordered. 3896 assert((FCmpInst::isOrdered(Pred) || FCmpInst::isUnordered(Pred)) && 3897 "Comparison must be either ordered or unordered"); 3898 if (match(RHS, m_NaN())) 3899 return ConstantInt::get(RetTy, CmpInst::isUnordered(Pred)); 3900 3901 // fcmp pred x, poison and fcmp pred poison, x 3902 // fold to poison 3903 if (isa<PoisonValue>(LHS) || isa<PoisonValue>(RHS)) 3904 return PoisonValue::get(RetTy); 3905 3906 // fcmp pred x, undef and fcmp pred undef, x 3907 // fold to true if unordered, false if ordered 3908 if (Q.isUndefValue(LHS) || Q.isUndefValue(RHS)) { 3909 // Choosing NaN for the undef will always make unordered comparison succeed 3910 // and ordered comparison fail. 3911 return ConstantInt::get(RetTy, CmpInst::isUnordered(Pred)); 3912 } 3913 3914 // fcmp x,x -> true/false. Not all compares are foldable. 3915 if (LHS == RHS) { 3916 if (CmpInst::isTrueWhenEqual(Pred)) 3917 return getTrue(RetTy); 3918 if (CmpInst::isFalseWhenEqual(Pred)) 3919 return getFalse(RetTy); 3920 } 3921 3922 // Handle fcmp with constant RHS. 3923 // TODO: Use match with a specific FP value, so these work with vectors with 3924 // undef lanes. 3925 const APFloat *C; 3926 if (match(RHS, m_APFloat(C))) { 3927 // Check whether the constant is an infinity. 3928 if (C->isInfinity()) { 3929 if (C->isNegative()) { 3930 switch (Pred) { 3931 case FCmpInst::FCMP_OLT: 3932 // No value is ordered and less than negative infinity. 3933 return getFalse(RetTy); 3934 case FCmpInst::FCMP_UGE: 3935 // All values are unordered with or at least negative infinity. 3936 return getTrue(RetTy); 3937 default: 3938 break; 3939 } 3940 } else { 3941 switch (Pred) { 3942 case FCmpInst::FCMP_OGT: 3943 // No value is ordered and greater than infinity. 3944 return getFalse(RetTy); 3945 case FCmpInst::FCMP_ULE: 3946 // All values are unordered with and at most infinity. 3947 return getTrue(RetTy); 3948 default: 3949 break; 3950 } 3951 } 3952 3953 // LHS == Inf 3954 if (Pred == FCmpInst::FCMP_OEQ && isKnownNeverInfinity(LHS, Q.TLI)) 3955 return getFalse(RetTy); 3956 // LHS != Inf 3957 if (Pred == FCmpInst::FCMP_UNE && isKnownNeverInfinity(LHS, Q.TLI)) 3958 return getTrue(RetTy); 3959 // LHS == Inf || LHS == NaN 3960 if (Pred == FCmpInst::FCMP_UEQ && isKnownNeverInfinity(LHS, Q.TLI) && 3961 isKnownNeverNaN(LHS, Q.TLI)) 3962 return getFalse(RetTy); 3963 // LHS != Inf && LHS != NaN 3964 if (Pred == FCmpInst::FCMP_ONE && isKnownNeverInfinity(LHS, Q.TLI) && 3965 isKnownNeverNaN(LHS, Q.TLI)) 3966 return getTrue(RetTy); 3967 } 3968 if (C->isNegative() && !C->isNegZero()) { 3969 assert(!C->isNaN() && "Unexpected NaN constant!"); 3970 // TODO: We can catch more cases by using a range check rather than 3971 // relying on CannotBeOrderedLessThanZero. 3972 switch (Pred) { 3973 case FCmpInst::FCMP_UGE: 3974 case FCmpInst::FCMP_UGT: 3975 case FCmpInst::FCMP_UNE: 3976 // (X >= 0) implies (X > C) when (C < 0) 3977 if (CannotBeOrderedLessThanZero(LHS, Q.TLI)) 3978 return getTrue(RetTy); 3979 break; 3980 case FCmpInst::FCMP_OEQ: 3981 case FCmpInst::FCMP_OLE: 3982 case FCmpInst::FCMP_OLT: 3983 // (X >= 0) implies !(X < C) when (C < 0) 3984 if (CannotBeOrderedLessThanZero(LHS, Q.TLI)) 3985 return getFalse(RetTy); 3986 break; 3987 default: 3988 break; 3989 } 3990 } 3991 3992 // Check comparison of [minnum/maxnum with constant] with other constant. 3993 const APFloat *C2; 3994 if ((match(LHS, m_Intrinsic<Intrinsic::minnum>(m_Value(), m_APFloat(C2))) && 3995 *C2 < *C) || 3996 (match(LHS, m_Intrinsic<Intrinsic::maxnum>(m_Value(), m_APFloat(C2))) && 3997 *C2 > *C)) { 3998 bool IsMaxNum = 3999 cast<IntrinsicInst>(LHS)->getIntrinsicID() == Intrinsic::maxnum; 4000 // The ordered relationship and minnum/maxnum guarantee that we do not 4001 // have NaN constants, so ordered/unordered preds are handled the same. 4002 switch (Pred) { 4003 case FCmpInst::FCMP_OEQ: case FCmpInst::FCMP_UEQ: 4004 // minnum(X, LesserC) == C --> false 4005 // maxnum(X, GreaterC) == C --> false 4006 return getFalse(RetTy); 4007 case FCmpInst::FCMP_ONE: case FCmpInst::FCMP_UNE: 4008 // minnum(X, LesserC) != C --> true 4009 // maxnum(X, GreaterC) != C --> true 4010 return getTrue(RetTy); 4011 case FCmpInst::FCMP_OGE: case FCmpInst::FCMP_UGE: 4012 case FCmpInst::FCMP_OGT: case FCmpInst::FCMP_UGT: 4013 // minnum(X, LesserC) >= C --> false 4014 // minnum(X, LesserC) > C --> false 4015 // maxnum(X, GreaterC) >= C --> true 4016 // maxnum(X, GreaterC) > C --> true 4017 return ConstantInt::get(RetTy, IsMaxNum); 4018 case FCmpInst::FCMP_OLE: case FCmpInst::FCMP_ULE: 4019 case FCmpInst::FCMP_OLT: case FCmpInst::FCMP_ULT: 4020 // minnum(X, LesserC) <= C --> true 4021 // minnum(X, LesserC) < C --> true 4022 // maxnum(X, GreaterC) <= C --> false 4023 // maxnum(X, GreaterC) < C --> false 4024 return ConstantInt::get(RetTy, !IsMaxNum); 4025 default: 4026 // TRUE/FALSE/ORD/UNO should be handled before this. 4027 llvm_unreachable("Unexpected fcmp predicate"); 4028 } 4029 } 4030 } 4031 4032 if (match(RHS, m_AnyZeroFP())) { 4033 switch (Pred) { 4034 case FCmpInst::FCMP_OGE: 4035 case FCmpInst::FCMP_ULT: 4036 // Positive or zero X >= 0.0 --> true 4037 // Positive or zero X < 0.0 --> false 4038 if ((FMF.noNaNs() || isKnownNeverNaN(LHS, Q.TLI)) && 4039 CannotBeOrderedLessThanZero(LHS, Q.TLI)) 4040 return Pred == FCmpInst::FCMP_OGE ? getTrue(RetTy) : getFalse(RetTy); 4041 break; 4042 case FCmpInst::FCMP_UGE: 4043 case FCmpInst::FCMP_OLT: 4044 // Positive or zero or nan X >= 0.0 --> true 4045 // Positive or zero or nan X < 0.0 --> false 4046 if (CannotBeOrderedLessThanZero(LHS, Q.TLI)) 4047 return Pred == FCmpInst::FCMP_UGE ? getTrue(RetTy) : getFalse(RetTy); 4048 break; 4049 default: 4050 break; 4051 } 4052 } 4053 4054 // If the comparison is with the result of a select instruction, check whether 4055 // comparing with either branch of the select always yields the same value. 4056 if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS)) 4057 if (Value *V = ThreadCmpOverSelect(Pred, LHS, RHS, Q, MaxRecurse)) 4058 return V; 4059 4060 // If the comparison is with the result of a phi instruction, check whether 4061 // doing the compare with each incoming phi value yields a common result. 4062 if (isa<PHINode>(LHS) || isa<PHINode>(RHS)) 4063 if (Value *V = ThreadCmpOverPHI(Pred, LHS, RHS, Q, MaxRecurse)) 4064 return V; 4065 4066 return nullptr; 4067 } 4068 4069 Value *llvm::SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS, 4070 FastMathFlags FMF, const SimplifyQuery &Q) { 4071 return ::SimplifyFCmpInst(Predicate, LHS, RHS, FMF, Q, RecursionLimit); 4072 } 4073 4074 static Value *simplifyWithOpReplaced(Value *V, Value *Op, Value *RepOp, 4075 const SimplifyQuery &Q, 4076 bool AllowRefinement, 4077 unsigned MaxRecurse) { 4078 assert(!Op->getType()->isVectorTy() && "This is not safe for vectors"); 4079 4080 // Trivial replacement. 4081 if (V == Op) 4082 return RepOp; 4083 4084 // We cannot replace a constant, and shouldn't even try. 4085 if (isa<Constant>(Op)) 4086 return nullptr; 4087 4088 auto *I = dyn_cast<Instruction>(V); 4089 if (!I || !is_contained(I->operands(), Op)) 4090 return nullptr; 4091 4092 // Replace Op with RepOp in instruction operands. 4093 SmallVector<Value *, 8> NewOps(I->getNumOperands()); 4094 transform(I->operands(), NewOps.begin(), 4095 [&](Value *V) { return V == Op ? RepOp : V; }); 4096 4097 if (!AllowRefinement) { 4098 // General InstSimplify functions may refine the result, e.g. by returning 4099 // a constant for a potentially poison value. To avoid this, implement only 4100 // a few non-refining but profitable transforms here. 4101 4102 if (auto *BO = dyn_cast<BinaryOperator>(I)) { 4103 unsigned Opcode = BO->getOpcode(); 4104 // id op x -> x, x op id -> x 4105 if (NewOps[0] == ConstantExpr::getBinOpIdentity(Opcode, I->getType())) 4106 return NewOps[1]; 4107 if (NewOps[1] == ConstantExpr::getBinOpIdentity(Opcode, I->getType(), 4108 /* RHS */ true)) 4109 return NewOps[0]; 4110 4111 // x & x -> x, x | x -> x 4112 if ((Opcode == Instruction::And || Opcode == Instruction::Or) && 4113 NewOps[0] == NewOps[1]) 4114 return NewOps[0]; 4115 } 4116 4117 if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) { 4118 // getelementptr x, 0 -> x 4119 if (NewOps.size() == 2 && match(NewOps[1], m_Zero()) && 4120 !GEP->isInBounds()) 4121 return NewOps[0]; 4122 } 4123 } else if (MaxRecurse) { 4124 // The simplification queries below may return the original value. Consider: 4125 // %div = udiv i32 %arg, %arg2 4126 // %mul = mul nsw i32 %div, %arg2 4127 // %cmp = icmp eq i32 %mul, %arg 4128 // %sel = select i1 %cmp, i32 %div, i32 undef 4129 // Replacing %arg by %mul, %div becomes "udiv i32 %mul, %arg2", which 4130 // simplifies back to %arg. This can only happen because %mul does not 4131 // dominate %div. To ensure a consistent return value contract, we make sure 4132 // that this case returns nullptr as well. 4133 auto PreventSelfSimplify = [V](Value *Simplified) { 4134 return Simplified != V ? Simplified : nullptr; 4135 }; 4136 4137 if (auto *B = dyn_cast<BinaryOperator>(I)) 4138 return PreventSelfSimplify(SimplifyBinOp(B->getOpcode(), NewOps[0], 4139 NewOps[1], Q, MaxRecurse - 1)); 4140 4141 if (CmpInst *C = dyn_cast<CmpInst>(I)) 4142 return PreventSelfSimplify(SimplifyCmpInst(C->getPredicate(), NewOps[0], 4143 NewOps[1], Q, MaxRecurse - 1)); 4144 4145 if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) 4146 return PreventSelfSimplify(SimplifyGEPInst( 4147 GEP->getSourceElementType(), NewOps[0], makeArrayRef(NewOps).slice(1), 4148 GEP->isInBounds(), Q, MaxRecurse - 1)); 4149 4150 if (isa<SelectInst>(I)) 4151 return PreventSelfSimplify( 4152 SimplifySelectInst(NewOps[0], NewOps[1], NewOps[2], Q, 4153 MaxRecurse - 1)); 4154 // TODO: We could hand off more cases to instsimplify here. 4155 } 4156 4157 // If all operands are constant after substituting Op for RepOp then we can 4158 // constant fold the instruction. 4159 SmallVector<Constant *, 8> ConstOps; 4160 for (Value *NewOp : NewOps) { 4161 if (Constant *ConstOp = dyn_cast<Constant>(NewOp)) 4162 ConstOps.push_back(ConstOp); 4163 else 4164 return nullptr; 4165 } 4166 4167 // Consider: 4168 // %cmp = icmp eq i32 %x, 2147483647 4169 // %add = add nsw i32 %x, 1 4170 // %sel = select i1 %cmp, i32 -2147483648, i32 %add 4171 // 4172 // We can't replace %sel with %add unless we strip away the flags (which 4173 // will be done in InstCombine). 4174 // TODO: This may be unsound, because it only catches some forms of 4175 // refinement. 4176 if (!AllowRefinement && canCreatePoison(cast<Operator>(I))) 4177 return nullptr; 4178 4179 if (CmpInst *C = dyn_cast<CmpInst>(I)) 4180 return ConstantFoldCompareInstOperands(C->getPredicate(), ConstOps[0], 4181 ConstOps[1], Q.DL, Q.TLI); 4182 4183 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 4184 if (!LI->isVolatile()) 4185 return ConstantFoldLoadFromConstPtr(ConstOps[0], LI->getType(), Q.DL); 4186 4187 return ConstantFoldInstOperands(I, ConstOps, Q.DL, Q.TLI); 4188 } 4189 4190 Value *llvm::simplifyWithOpReplaced(Value *V, Value *Op, Value *RepOp, 4191 const SimplifyQuery &Q, 4192 bool AllowRefinement) { 4193 return ::simplifyWithOpReplaced(V, Op, RepOp, Q, AllowRefinement, 4194 RecursionLimit); 4195 } 4196 4197 /// Try to simplify a select instruction when its condition operand is an 4198 /// integer comparison where one operand of the compare is a constant. 4199 static Value *simplifySelectBitTest(Value *TrueVal, Value *FalseVal, Value *X, 4200 const APInt *Y, bool TrueWhenUnset) { 4201 const APInt *C; 4202 4203 // (X & Y) == 0 ? X & ~Y : X --> X 4204 // (X & Y) != 0 ? X & ~Y : X --> X & ~Y 4205 if (FalseVal == X && match(TrueVal, m_And(m_Specific(X), m_APInt(C))) && 4206 *Y == ~*C) 4207 return TrueWhenUnset ? FalseVal : TrueVal; 4208 4209 // (X & Y) == 0 ? X : X & ~Y --> X & ~Y 4210 // (X & Y) != 0 ? X : X & ~Y --> X 4211 if (TrueVal == X && match(FalseVal, m_And(m_Specific(X), m_APInt(C))) && 4212 *Y == ~*C) 4213 return TrueWhenUnset ? FalseVal : TrueVal; 4214 4215 if (Y->isPowerOf2()) { 4216 // (X & Y) == 0 ? X | Y : X --> X | Y 4217 // (X & Y) != 0 ? X | Y : X --> X 4218 if (FalseVal == X && match(TrueVal, m_Or(m_Specific(X), m_APInt(C))) && 4219 *Y == *C) 4220 return TrueWhenUnset ? TrueVal : FalseVal; 4221 4222 // (X & Y) == 0 ? X : X | Y --> X 4223 // (X & Y) != 0 ? X : X | Y --> X | Y 4224 if (TrueVal == X && match(FalseVal, m_Or(m_Specific(X), m_APInt(C))) && 4225 *Y == *C) 4226 return TrueWhenUnset ? TrueVal : FalseVal; 4227 } 4228 4229 return nullptr; 4230 } 4231 4232 /// An alternative way to test if a bit is set or not uses sgt/slt instead of 4233 /// eq/ne. 4234 static Value *simplifySelectWithFakeICmpEq(Value *CmpLHS, Value *CmpRHS, 4235 ICmpInst::Predicate Pred, 4236 Value *TrueVal, Value *FalseVal) { 4237 Value *X; 4238 APInt Mask; 4239 if (!decomposeBitTestICmp(CmpLHS, CmpRHS, Pred, X, Mask)) 4240 return nullptr; 4241 4242 return simplifySelectBitTest(TrueVal, FalseVal, X, &Mask, 4243 Pred == ICmpInst::ICMP_EQ); 4244 } 4245 4246 /// Try to simplify a select instruction when its condition operand is an 4247 /// integer comparison. 4248 static Value *simplifySelectWithICmpCond(Value *CondVal, Value *TrueVal, 4249 Value *FalseVal, const SimplifyQuery &Q, 4250 unsigned MaxRecurse) { 4251 ICmpInst::Predicate Pred; 4252 Value *CmpLHS, *CmpRHS; 4253 if (!match(CondVal, m_ICmp(Pred, m_Value(CmpLHS), m_Value(CmpRHS)))) 4254 return nullptr; 4255 4256 // Canonicalize ne to eq predicate. 4257 if (Pred == ICmpInst::ICMP_NE) { 4258 Pred = ICmpInst::ICMP_EQ; 4259 std::swap(TrueVal, FalseVal); 4260 } 4261 4262 // Check for integer min/max with a limit constant: 4263 // X > MIN_INT ? X : MIN_INT --> X 4264 // X < MAX_INT ? X : MAX_INT --> X 4265 if (TrueVal->getType()->isIntOrIntVectorTy()) { 4266 Value *X, *Y; 4267 SelectPatternFlavor SPF = 4268 matchDecomposedSelectPattern(cast<ICmpInst>(CondVal), TrueVal, FalseVal, 4269 X, Y).Flavor; 4270 if (SelectPatternResult::isMinOrMax(SPF) && Pred == getMinMaxPred(SPF)) { 4271 APInt LimitC = getMinMaxLimit(getInverseMinMaxFlavor(SPF), 4272 X->getType()->getScalarSizeInBits()); 4273 if (match(Y, m_SpecificInt(LimitC))) 4274 return X; 4275 } 4276 } 4277 4278 if (Pred == ICmpInst::ICMP_EQ && match(CmpRHS, m_Zero())) { 4279 Value *X; 4280 const APInt *Y; 4281 if (match(CmpLHS, m_And(m_Value(X), m_APInt(Y)))) 4282 if (Value *V = simplifySelectBitTest(TrueVal, FalseVal, X, Y, 4283 /*TrueWhenUnset=*/true)) 4284 return V; 4285 4286 // Test for a bogus zero-shift-guard-op around funnel-shift or rotate. 4287 Value *ShAmt; 4288 auto isFsh = m_CombineOr(m_FShl(m_Value(X), m_Value(), m_Value(ShAmt)), 4289 m_FShr(m_Value(), m_Value(X), m_Value(ShAmt))); 4290 // (ShAmt == 0) ? fshl(X, *, ShAmt) : X --> X 4291 // (ShAmt == 0) ? fshr(*, X, ShAmt) : X --> X 4292 if (match(TrueVal, isFsh) && FalseVal == X && CmpLHS == ShAmt) 4293 return X; 4294 4295 // Test for a zero-shift-guard-op around rotates. These are used to 4296 // avoid UB from oversized shifts in raw IR rotate patterns, but the 4297 // intrinsics do not have that problem. 4298 // We do not allow this transform for the general funnel shift case because 4299 // that would not preserve the poison safety of the original code. 4300 auto isRotate = 4301 m_CombineOr(m_FShl(m_Value(X), m_Deferred(X), m_Value(ShAmt)), 4302 m_FShr(m_Value(X), m_Deferred(X), m_Value(ShAmt))); 4303 // (ShAmt == 0) ? X : fshl(X, X, ShAmt) --> fshl(X, X, ShAmt) 4304 // (ShAmt == 0) ? X : fshr(X, X, ShAmt) --> fshr(X, X, ShAmt) 4305 if (match(FalseVal, isRotate) && TrueVal == X && CmpLHS == ShAmt && 4306 Pred == ICmpInst::ICMP_EQ) 4307 return FalseVal; 4308 4309 // X == 0 ? abs(X) : -abs(X) --> -abs(X) 4310 // X == 0 ? -abs(X) : abs(X) --> abs(X) 4311 if (match(TrueVal, m_Intrinsic<Intrinsic::abs>(m_Specific(CmpLHS))) && 4312 match(FalseVal, m_Neg(m_Intrinsic<Intrinsic::abs>(m_Specific(CmpLHS))))) 4313 return FalseVal; 4314 if (match(TrueVal, 4315 m_Neg(m_Intrinsic<Intrinsic::abs>(m_Specific(CmpLHS)))) && 4316 match(FalseVal, m_Intrinsic<Intrinsic::abs>(m_Specific(CmpLHS)))) 4317 return FalseVal; 4318 } 4319 4320 // Check for other compares that behave like bit test. 4321 if (Value *V = simplifySelectWithFakeICmpEq(CmpLHS, CmpRHS, Pred, 4322 TrueVal, FalseVal)) 4323 return V; 4324 4325 // If we have a scalar equality comparison, then we know the value in one of 4326 // the arms of the select. See if substituting this value into the arm and 4327 // simplifying the result yields the same value as the other arm. 4328 // Note that the equivalence/replacement opportunity does not hold for vectors 4329 // because each element of a vector select is chosen independently. 4330 if (Pred == ICmpInst::ICMP_EQ && !CondVal->getType()->isVectorTy()) { 4331 if (simplifyWithOpReplaced(FalseVal, CmpLHS, CmpRHS, Q, 4332 /* AllowRefinement */ false, MaxRecurse) == 4333 TrueVal || 4334 simplifyWithOpReplaced(FalseVal, CmpRHS, CmpLHS, Q, 4335 /* AllowRefinement */ false, MaxRecurse) == 4336 TrueVal) 4337 return FalseVal; 4338 if (simplifyWithOpReplaced(TrueVal, CmpLHS, CmpRHS, Q, 4339 /* AllowRefinement */ true, MaxRecurse) == 4340 FalseVal || 4341 simplifyWithOpReplaced(TrueVal, CmpRHS, CmpLHS, Q, 4342 /* AllowRefinement */ true, MaxRecurse) == 4343 FalseVal) 4344 return FalseVal; 4345 } 4346 4347 return nullptr; 4348 } 4349 4350 /// Try to simplify a select instruction when its condition operand is a 4351 /// floating-point comparison. 4352 static Value *simplifySelectWithFCmp(Value *Cond, Value *T, Value *F, 4353 const SimplifyQuery &Q) { 4354 FCmpInst::Predicate Pred; 4355 if (!match(Cond, m_FCmp(Pred, m_Specific(T), m_Specific(F))) && 4356 !match(Cond, m_FCmp(Pred, m_Specific(F), m_Specific(T)))) 4357 return nullptr; 4358 4359 // This transform is safe if we do not have (do not care about) -0.0 or if 4360 // at least one operand is known to not be -0.0. Otherwise, the select can 4361 // change the sign of a zero operand. 4362 bool HasNoSignedZeros = Q.CxtI && isa<FPMathOperator>(Q.CxtI) && 4363 Q.CxtI->hasNoSignedZeros(); 4364 const APFloat *C; 4365 if (HasNoSignedZeros || (match(T, m_APFloat(C)) && C->isNonZero()) || 4366 (match(F, m_APFloat(C)) && C->isNonZero())) { 4367 // (T == F) ? T : F --> F 4368 // (F == T) ? T : F --> F 4369 if (Pred == FCmpInst::FCMP_OEQ) 4370 return F; 4371 4372 // (T != F) ? T : F --> T 4373 // (F != T) ? T : F --> T 4374 if (Pred == FCmpInst::FCMP_UNE) 4375 return T; 4376 } 4377 4378 return nullptr; 4379 } 4380 4381 /// Given operands for a SelectInst, see if we can fold the result. 4382 /// If not, this returns null. 4383 static Value *SimplifySelectInst(Value *Cond, Value *TrueVal, Value *FalseVal, 4384 const SimplifyQuery &Q, unsigned MaxRecurse) { 4385 if (auto *CondC = dyn_cast<Constant>(Cond)) { 4386 if (auto *TrueC = dyn_cast<Constant>(TrueVal)) 4387 if (auto *FalseC = dyn_cast<Constant>(FalseVal)) 4388 return ConstantFoldSelectInstruction(CondC, TrueC, FalseC); 4389 4390 // select poison, X, Y -> poison 4391 if (isa<PoisonValue>(CondC)) 4392 return PoisonValue::get(TrueVal->getType()); 4393 4394 // select undef, X, Y -> X or Y 4395 if (Q.isUndefValue(CondC)) 4396 return isa<Constant>(FalseVal) ? FalseVal : TrueVal; 4397 4398 // select true, X, Y --> X 4399 // select false, X, Y --> Y 4400 // For vectors, allow undef/poison elements in the condition to match the 4401 // defined elements, so we can eliminate the select. 4402 if (match(CondC, m_One())) 4403 return TrueVal; 4404 if (match(CondC, m_Zero())) 4405 return FalseVal; 4406 } 4407 4408 assert(Cond->getType()->isIntOrIntVectorTy(1) && 4409 "Select must have bool or bool vector condition"); 4410 assert(TrueVal->getType() == FalseVal->getType() && 4411 "Select must have same types for true/false ops"); 4412 4413 if (Cond->getType() == TrueVal->getType()) { 4414 // select i1 Cond, i1 true, i1 false --> i1 Cond 4415 if (match(TrueVal, m_One()) && match(FalseVal, m_ZeroInt())) 4416 return Cond; 4417 4418 // (X || Y) && (X || !Y) --> X (commuted 8 ways) 4419 Value *X, *Y; 4420 if (match(FalseVal, m_ZeroInt())) { 4421 if (match(Cond, m_c_LogicalOr(m_Value(X), m_Not(m_Value(Y)))) && 4422 match(TrueVal, m_c_LogicalOr(m_Specific(X), m_Specific(Y)))) 4423 return X; 4424 if (match(TrueVal, m_c_LogicalOr(m_Value(X), m_Not(m_Value(Y)))) && 4425 match(Cond, m_c_LogicalOr(m_Specific(X), m_Specific(Y)))) 4426 return X; 4427 } 4428 } 4429 4430 // select ?, X, X -> X 4431 if (TrueVal == FalseVal) 4432 return TrueVal; 4433 4434 // If the true or false value is poison, we can fold to the other value. 4435 // If the true or false value is undef, we can fold to the other value as 4436 // long as the other value isn't poison. 4437 // select ?, poison, X -> X 4438 // select ?, undef, X -> X 4439 if (isa<PoisonValue>(TrueVal) || 4440 (Q.isUndefValue(TrueVal) && 4441 isGuaranteedNotToBePoison(FalseVal, Q.AC, Q.CxtI, Q.DT))) 4442 return FalseVal; 4443 // select ?, X, poison -> X 4444 // select ?, X, undef -> X 4445 if (isa<PoisonValue>(FalseVal) || 4446 (Q.isUndefValue(FalseVal) && 4447 isGuaranteedNotToBePoison(TrueVal, Q.AC, Q.CxtI, Q.DT))) 4448 return TrueVal; 4449 4450 // Deal with partial undef vector constants: select ?, VecC, VecC' --> VecC'' 4451 Constant *TrueC, *FalseC; 4452 if (isa<FixedVectorType>(TrueVal->getType()) && 4453 match(TrueVal, m_Constant(TrueC)) && 4454 match(FalseVal, m_Constant(FalseC))) { 4455 unsigned NumElts = 4456 cast<FixedVectorType>(TrueC->getType())->getNumElements(); 4457 SmallVector<Constant *, 16> NewC; 4458 for (unsigned i = 0; i != NumElts; ++i) { 4459 // Bail out on incomplete vector constants. 4460 Constant *TEltC = TrueC->getAggregateElement(i); 4461 Constant *FEltC = FalseC->getAggregateElement(i); 4462 if (!TEltC || !FEltC) 4463 break; 4464 4465 // If the elements match (undef or not), that value is the result. If only 4466 // one element is undef, choose the defined element as the safe result. 4467 if (TEltC == FEltC) 4468 NewC.push_back(TEltC); 4469 else if (isa<PoisonValue>(TEltC) || 4470 (Q.isUndefValue(TEltC) && isGuaranteedNotToBePoison(FEltC))) 4471 NewC.push_back(FEltC); 4472 else if (isa<PoisonValue>(FEltC) || 4473 (Q.isUndefValue(FEltC) && isGuaranteedNotToBePoison(TEltC))) 4474 NewC.push_back(TEltC); 4475 else 4476 break; 4477 } 4478 if (NewC.size() == NumElts) 4479 return ConstantVector::get(NewC); 4480 } 4481 4482 if (Value *V = 4483 simplifySelectWithICmpCond(Cond, TrueVal, FalseVal, Q, MaxRecurse)) 4484 return V; 4485 4486 if (Value *V = simplifySelectWithFCmp(Cond, TrueVal, FalseVal, Q)) 4487 return V; 4488 4489 if (Value *V = foldSelectWithBinaryOp(Cond, TrueVal, FalseVal)) 4490 return V; 4491 4492 Optional<bool> Imp = isImpliedByDomCondition(Cond, Q.CxtI, Q.DL); 4493 if (Imp) 4494 return *Imp ? TrueVal : FalseVal; 4495 4496 return nullptr; 4497 } 4498 4499 Value *llvm::SimplifySelectInst(Value *Cond, Value *TrueVal, Value *FalseVal, 4500 const SimplifyQuery &Q) { 4501 return ::SimplifySelectInst(Cond, TrueVal, FalseVal, Q, RecursionLimit); 4502 } 4503 4504 /// Given operands for an GetElementPtrInst, see if we can fold the result. 4505 /// If not, this returns null. 4506 static Value *SimplifyGEPInst(Type *SrcTy, Value *Ptr, 4507 ArrayRef<Value *> Indices, bool InBounds, 4508 const SimplifyQuery &Q, unsigned) { 4509 // The type of the GEP pointer operand. 4510 unsigned AS = 4511 cast<PointerType>(Ptr->getType()->getScalarType())->getAddressSpace(); 4512 4513 // getelementptr P -> P. 4514 if (Indices.empty()) 4515 return Ptr; 4516 4517 // Compute the (pointer) type returned by the GEP instruction. 4518 Type *LastType = GetElementPtrInst::getIndexedType(SrcTy, Indices); 4519 Type *GEPTy = PointerType::get(LastType, AS); 4520 if (VectorType *VT = dyn_cast<VectorType>(Ptr->getType())) 4521 GEPTy = VectorType::get(GEPTy, VT->getElementCount()); 4522 else { 4523 for (Value *Op : Indices) { 4524 // If one of the operands is a vector, the result type is a vector of 4525 // pointers. All vector operands must have the same number of elements. 4526 if (VectorType *VT = dyn_cast<VectorType>(Op->getType())) { 4527 GEPTy = VectorType::get(GEPTy, VT->getElementCount()); 4528 break; 4529 } 4530 } 4531 } 4532 4533 // For opaque pointers an all-zero GEP is a no-op. For typed pointers, 4534 // it may be equivalent to a bitcast. 4535 if (Ptr->getType()->getScalarType()->isOpaquePointerTy() && 4536 Ptr->getType() == GEPTy && 4537 all_of(Indices, [](const auto *V) { return match(V, m_Zero()); })) 4538 return Ptr; 4539 4540 // getelementptr poison, idx -> poison 4541 // getelementptr baseptr, poison -> poison 4542 if (isa<PoisonValue>(Ptr) || 4543 any_of(Indices, [](const auto *V) { return isa<PoisonValue>(V); })) 4544 return PoisonValue::get(GEPTy); 4545 4546 if (Q.isUndefValue(Ptr)) 4547 // If inbounds, we can choose an out-of-bounds pointer as a base pointer. 4548 return InBounds ? PoisonValue::get(GEPTy) : UndefValue::get(GEPTy); 4549 4550 bool IsScalableVec = 4551 isa<ScalableVectorType>(SrcTy) || any_of(Indices, [](const Value *V) { 4552 return isa<ScalableVectorType>(V->getType()); 4553 }); 4554 4555 if (Indices.size() == 1) { 4556 // getelementptr P, 0 -> P. 4557 if (match(Indices[0], m_Zero()) && Ptr->getType() == GEPTy) 4558 return Ptr; 4559 4560 Type *Ty = SrcTy; 4561 if (!IsScalableVec && Ty->isSized()) { 4562 Value *P; 4563 uint64_t C; 4564 uint64_t TyAllocSize = Q.DL.getTypeAllocSize(Ty); 4565 // getelementptr P, N -> P if P points to a type of zero size. 4566 if (TyAllocSize == 0 && Ptr->getType() == GEPTy) 4567 return Ptr; 4568 4569 // The following transforms are only safe if the ptrtoint cast 4570 // doesn't truncate the pointers. 4571 if (Indices[0]->getType()->getScalarSizeInBits() == 4572 Q.DL.getPointerSizeInBits(AS)) { 4573 auto CanSimplify = [GEPTy, &P, Ptr]() -> bool { 4574 return P->getType() == GEPTy && 4575 getUnderlyingObject(P) == getUnderlyingObject(Ptr); 4576 }; 4577 // getelementptr V, (sub P, V) -> P if P points to a type of size 1. 4578 if (TyAllocSize == 1 && 4579 match(Indices[0], 4580 m_Sub(m_PtrToInt(m_Value(P)), m_PtrToInt(m_Specific(Ptr)))) && 4581 CanSimplify()) 4582 return P; 4583 4584 // getelementptr V, (ashr (sub P, V), C) -> P if P points to a type of 4585 // size 1 << C. 4586 if (match(Indices[0], m_AShr(m_Sub(m_PtrToInt(m_Value(P)), 4587 m_PtrToInt(m_Specific(Ptr))), 4588 m_ConstantInt(C))) && 4589 TyAllocSize == 1ULL << C && CanSimplify()) 4590 return P; 4591 4592 // getelementptr V, (sdiv (sub P, V), C) -> P if P points to a type of 4593 // size C. 4594 if (match(Indices[0], m_SDiv(m_Sub(m_PtrToInt(m_Value(P)), 4595 m_PtrToInt(m_Specific(Ptr))), 4596 m_SpecificInt(TyAllocSize))) && 4597 CanSimplify()) 4598 return P; 4599 } 4600 } 4601 } 4602 4603 if (!IsScalableVec && Q.DL.getTypeAllocSize(LastType) == 1 && 4604 all_of(Indices.drop_back(1), 4605 [](Value *Idx) { return match(Idx, m_Zero()); })) { 4606 unsigned IdxWidth = 4607 Q.DL.getIndexSizeInBits(Ptr->getType()->getPointerAddressSpace()); 4608 if (Q.DL.getTypeSizeInBits(Indices.back()->getType()) == IdxWidth) { 4609 APInt BasePtrOffset(IdxWidth, 0); 4610 Value *StrippedBasePtr = 4611 Ptr->stripAndAccumulateInBoundsConstantOffsets(Q.DL, BasePtrOffset); 4612 4613 // Avoid creating inttoptr of zero here: While LLVMs treatment of 4614 // inttoptr is generally conservative, this particular case is folded to 4615 // a null pointer, which will have incorrect provenance. 4616 4617 // gep (gep V, C), (sub 0, V) -> C 4618 if (match(Indices.back(), 4619 m_Sub(m_Zero(), m_PtrToInt(m_Specific(StrippedBasePtr)))) && 4620 !BasePtrOffset.isZero()) { 4621 auto *CI = ConstantInt::get(GEPTy->getContext(), BasePtrOffset); 4622 return ConstantExpr::getIntToPtr(CI, GEPTy); 4623 } 4624 // gep (gep V, C), (xor V, -1) -> C-1 4625 if (match(Indices.back(), 4626 m_Xor(m_PtrToInt(m_Specific(StrippedBasePtr)), m_AllOnes())) && 4627 !BasePtrOffset.isOne()) { 4628 auto *CI = ConstantInt::get(GEPTy->getContext(), BasePtrOffset - 1); 4629 return ConstantExpr::getIntToPtr(CI, GEPTy); 4630 } 4631 } 4632 } 4633 4634 // Check to see if this is constant foldable. 4635 if (!isa<Constant>(Ptr) || 4636 !all_of(Indices, [](Value *V) { return isa<Constant>(V); })) 4637 return nullptr; 4638 4639 auto *CE = ConstantExpr::getGetElementPtr(SrcTy, cast<Constant>(Ptr), Indices, 4640 InBounds); 4641 return ConstantFoldConstant(CE, Q.DL); 4642 } 4643 4644 Value *llvm::SimplifyGEPInst(Type *SrcTy, Value *Ptr, ArrayRef<Value *> Indices, 4645 bool InBounds, const SimplifyQuery &Q) { 4646 return ::SimplifyGEPInst(SrcTy, Ptr, Indices, InBounds, Q, RecursionLimit); 4647 } 4648 4649 /// Given operands for an InsertValueInst, see if we can fold the result. 4650 /// If not, this returns null. 4651 static Value *SimplifyInsertValueInst(Value *Agg, Value *Val, 4652 ArrayRef<unsigned> Idxs, const SimplifyQuery &Q, 4653 unsigned) { 4654 if (Constant *CAgg = dyn_cast<Constant>(Agg)) 4655 if (Constant *CVal = dyn_cast<Constant>(Val)) 4656 return ConstantFoldInsertValueInstruction(CAgg, CVal, Idxs); 4657 4658 // insertvalue x, undef, n -> x 4659 if (Q.isUndefValue(Val)) 4660 return Agg; 4661 4662 // insertvalue x, (extractvalue y, n), n 4663 if (ExtractValueInst *EV = dyn_cast<ExtractValueInst>(Val)) 4664 if (EV->getAggregateOperand()->getType() == Agg->getType() && 4665 EV->getIndices() == Idxs) { 4666 // insertvalue undef, (extractvalue y, n), n -> y 4667 if (Q.isUndefValue(Agg)) 4668 return EV->getAggregateOperand(); 4669 4670 // insertvalue y, (extractvalue y, n), n -> y 4671 if (Agg == EV->getAggregateOperand()) 4672 return Agg; 4673 } 4674 4675 return nullptr; 4676 } 4677 4678 Value *llvm::SimplifyInsertValueInst(Value *Agg, Value *Val, 4679 ArrayRef<unsigned> Idxs, 4680 const SimplifyQuery &Q) { 4681 return ::SimplifyInsertValueInst(Agg, Val, Idxs, Q, RecursionLimit); 4682 } 4683 4684 Value *llvm::SimplifyInsertElementInst(Value *Vec, Value *Val, Value *Idx, 4685 const SimplifyQuery &Q) { 4686 // Try to constant fold. 4687 auto *VecC = dyn_cast<Constant>(Vec); 4688 auto *ValC = dyn_cast<Constant>(Val); 4689 auto *IdxC = dyn_cast<Constant>(Idx); 4690 if (VecC && ValC && IdxC) 4691 return ConstantExpr::getInsertElement(VecC, ValC, IdxC); 4692 4693 // For fixed-length vector, fold into poison if index is out of bounds. 4694 if (auto *CI = dyn_cast<ConstantInt>(Idx)) { 4695 if (isa<FixedVectorType>(Vec->getType()) && 4696 CI->uge(cast<FixedVectorType>(Vec->getType())->getNumElements())) 4697 return PoisonValue::get(Vec->getType()); 4698 } 4699 4700 // If index is undef, it might be out of bounds (see above case) 4701 if (Q.isUndefValue(Idx)) 4702 return PoisonValue::get(Vec->getType()); 4703 4704 // If the scalar is poison, or it is undef and there is no risk of 4705 // propagating poison from the vector value, simplify to the vector value. 4706 if (isa<PoisonValue>(Val) || 4707 (Q.isUndefValue(Val) && isGuaranteedNotToBePoison(Vec))) 4708 return Vec; 4709 4710 // If we are extracting a value from a vector, then inserting it into the same 4711 // place, that's the input vector: 4712 // insertelt Vec, (extractelt Vec, Idx), Idx --> Vec 4713 if (match(Val, m_ExtractElt(m_Specific(Vec), m_Specific(Idx)))) 4714 return Vec; 4715 4716 return nullptr; 4717 } 4718 4719 /// Given operands for an ExtractValueInst, see if we can fold the result. 4720 /// If not, this returns null. 4721 static Value *SimplifyExtractValueInst(Value *Agg, ArrayRef<unsigned> Idxs, 4722 const SimplifyQuery &, unsigned) { 4723 if (auto *CAgg = dyn_cast<Constant>(Agg)) 4724 return ConstantFoldExtractValueInstruction(CAgg, Idxs); 4725 4726 // extractvalue x, (insertvalue y, elt, n), n -> elt 4727 unsigned NumIdxs = Idxs.size(); 4728 for (auto *IVI = dyn_cast<InsertValueInst>(Agg); IVI != nullptr; 4729 IVI = dyn_cast<InsertValueInst>(IVI->getAggregateOperand())) { 4730 ArrayRef<unsigned> InsertValueIdxs = IVI->getIndices(); 4731 unsigned NumInsertValueIdxs = InsertValueIdxs.size(); 4732 unsigned NumCommonIdxs = std::min(NumInsertValueIdxs, NumIdxs); 4733 if (InsertValueIdxs.slice(0, NumCommonIdxs) == 4734 Idxs.slice(0, NumCommonIdxs)) { 4735 if (NumIdxs == NumInsertValueIdxs) 4736 return IVI->getInsertedValueOperand(); 4737 break; 4738 } 4739 } 4740 4741 return nullptr; 4742 } 4743 4744 Value *llvm::SimplifyExtractValueInst(Value *Agg, ArrayRef<unsigned> Idxs, 4745 const SimplifyQuery &Q) { 4746 return ::SimplifyExtractValueInst(Agg, Idxs, Q, RecursionLimit); 4747 } 4748 4749 /// Given operands for an ExtractElementInst, see if we can fold the result. 4750 /// If not, this returns null. 4751 static Value *SimplifyExtractElementInst(Value *Vec, Value *Idx, 4752 const SimplifyQuery &Q, unsigned) { 4753 auto *VecVTy = cast<VectorType>(Vec->getType()); 4754 if (auto *CVec = dyn_cast<Constant>(Vec)) { 4755 if (auto *CIdx = dyn_cast<Constant>(Idx)) 4756 return ConstantExpr::getExtractElement(CVec, CIdx); 4757 4758 if (Q.isUndefValue(Vec)) 4759 return UndefValue::get(VecVTy->getElementType()); 4760 } 4761 4762 // An undef extract index can be arbitrarily chosen to be an out-of-range 4763 // index value, which would result in the instruction being poison. 4764 if (Q.isUndefValue(Idx)) 4765 return PoisonValue::get(VecVTy->getElementType()); 4766 4767 // If extracting a specified index from the vector, see if we can recursively 4768 // find a previously computed scalar that was inserted into the vector. 4769 if (auto *IdxC = dyn_cast<ConstantInt>(Idx)) { 4770 // For fixed-length vector, fold into undef if index is out of bounds. 4771 unsigned MinNumElts = VecVTy->getElementCount().getKnownMinValue(); 4772 if (isa<FixedVectorType>(VecVTy) && IdxC->getValue().uge(MinNumElts)) 4773 return PoisonValue::get(VecVTy->getElementType()); 4774 // Handle case where an element is extracted from a splat. 4775 if (IdxC->getValue().ult(MinNumElts)) 4776 if (auto *Splat = getSplatValue(Vec)) 4777 return Splat; 4778 if (Value *Elt = findScalarElement(Vec, IdxC->getZExtValue())) 4779 return Elt; 4780 } else { 4781 // The index is not relevant if our vector is a splat. 4782 if (Value *Splat = getSplatValue(Vec)) 4783 return Splat; 4784 } 4785 return nullptr; 4786 } 4787 4788 Value *llvm::SimplifyExtractElementInst(Value *Vec, Value *Idx, 4789 const SimplifyQuery &Q) { 4790 return ::SimplifyExtractElementInst(Vec, Idx, Q, RecursionLimit); 4791 } 4792 4793 /// See if we can fold the given phi. If not, returns null. 4794 static Value *SimplifyPHINode(PHINode *PN, ArrayRef<Value *> IncomingValues, 4795 const SimplifyQuery &Q) { 4796 // WARNING: no matter how worthwhile it may seem, we can not perform PHI CSE 4797 // here, because the PHI we may succeed simplifying to was not 4798 // def-reachable from the original PHI! 4799 4800 // If all of the PHI's incoming values are the same then replace the PHI node 4801 // with the common value. 4802 Value *CommonValue = nullptr; 4803 bool HasUndefInput = false; 4804 for (Value *Incoming : IncomingValues) { 4805 // If the incoming value is the phi node itself, it can safely be skipped. 4806 if (Incoming == PN) continue; 4807 if (Q.isUndefValue(Incoming)) { 4808 // Remember that we saw an undef value, but otherwise ignore them. 4809 HasUndefInput = true; 4810 continue; 4811 } 4812 if (CommonValue && Incoming != CommonValue) 4813 return nullptr; // Not the same, bail out. 4814 CommonValue = Incoming; 4815 } 4816 4817 // If CommonValue is null then all of the incoming values were either undef or 4818 // equal to the phi node itself. 4819 if (!CommonValue) 4820 return UndefValue::get(PN->getType()); 4821 4822 if (HasUndefInput) { 4823 // We cannot start executing a trapping constant expression on more control 4824 // flow paths. 4825 auto *CE = dyn_cast<ConstantExpr>(CommonValue); 4826 if (CE && CE->canTrap()) 4827 return nullptr; 4828 4829 // If we have a PHI node like phi(X, undef, X), where X is defined by some 4830 // instruction, we cannot return X as the result of the PHI node unless it 4831 // dominates the PHI block. 4832 return valueDominatesPHI(CommonValue, PN, Q.DT) ? CommonValue : nullptr; 4833 } 4834 4835 return CommonValue; 4836 } 4837 4838 static Value *SimplifyCastInst(unsigned CastOpc, Value *Op, 4839 Type *Ty, const SimplifyQuery &Q, unsigned MaxRecurse) { 4840 if (auto *C = dyn_cast<Constant>(Op)) 4841 return ConstantFoldCastOperand(CastOpc, C, Ty, Q.DL); 4842 4843 if (auto *CI = dyn_cast<CastInst>(Op)) { 4844 auto *Src = CI->getOperand(0); 4845 Type *SrcTy = Src->getType(); 4846 Type *MidTy = CI->getType(); 4847 Type *DstTy = Ty; 4848 if (Src->getType() == Ty) { 4849 auto FirstOp = static_cast<Instruction::CastOps>(CI->getOpcode()); 4850 auto SecondOp = static_cast<Instruction::CastOps>(CastOpc); 4851 Type *SrcIntPtrTy = 4852 SrcTy->isPtrOrPtrVectorTy() ? Q.DL.getIntPtrType(SrcTy) : nullptr; 4853 Type *MidIntPtrTy = 4854 MidTy->isPtrOrPtrVectorTy() ? Q.DL.getIntPtrType(MidTy) : nullptr; 4855 Type *DstIntPtrTy = 4856 DstTy->isPtrOrPtrVectorTy() ? Q.DL.getIntPtrType(DstTy) : nullptr; 4857 if (CastInst::isEliminableCastPair(FirstOp, SecondOp, SrcTy, MidTy, DstTy, 4858 SrcIntPtrTy, MidIntPtrTy, 4859 DstIntPtrTy) == Instruction::BitCast) 4860 return Src; 4861 } 4862 } 4863 4864 // bitcast x -> x 4865 if (CastOpc == Instruction::BitCast) 4866 if (Op->getType() == Ty) 4867 return Op; 4868 4869 return nullptr; 4870 } 4871 4872 Value *llvm::SimplifyCastInst(unsigned CastOpc, Value *Op, Type *Ty, 4873 const SimplifyQuery &Q) { 4874 return ::SimplifyCastInst(CastOpc, Op, Ty, Q, RecursionLimit); 4875 } 4876 4877 /// For the given destination element of a shuffle, peek through shuffles to 4878 /// match a root vector source operand that contains that element in the same 4879 /// vector lane (ie, the same mask index), so we can eliminate the shuffle(s). 4880 static Value *foldIdentityShuffles(int DestElt, Value *Op0, Value *Op1, 4881 int MaskVal, Value *RootVec, 4882 unsigned MaxRecurse) { 4883 if (!MaxRecurse--) 4884 return nullptr; 4885 4886 // Bail out if any mask value is undefined. That kind of shuffle may be 4887 // simplified further based on demanded bits or other folds. 4888 if (MaskVal == -1) 4889 return nullptr; 4890 4891 // The mask value chooses which source operand we need to look at next. 4892 int InVecNumElts = cast<FixedVectorType>(Op0->getType())->getNumElements(); 4893 int RootElt = MaskVal; 4894 Value *SourceOp = Op0; 4895 if (MaskVal >= InVecNumElts) { 4896 RootElt = MaskVal - InVecNumElts; 4897 SourceOp = Op1; 4898 } 4899 4900 // If the source operand is a shuffle itself, look through it to find the 4901 // matching root vector. 4902 if (auto *SourceShuf = dyn_cast<ShuffleVectorInst>(SourceOp)) { 4903 return foldIdentityShuffles( 4904 DestElt, SourceShuf->getOperand(0), SourceShuf->getOperand(1), 4905 SourceShuf->getMaskValue(RootElt), RootVec, MaxRecurse); 4906 } 4907 4908 // TODO: Look through bitcasts? What if the bitcast changes the vector element 4909 // size? 4910 4911 // The source operand is not a shuffle. Initialize the root vector value for 4912 // this shuffle if that has not been done yet. 4913 if (!RootVec) 4914 RootVec = SourceOp; 4915 4916 // Give up as soon as a source operand does not match the existing root value. 4917 if (RootVec != SourceOp) 4918 return nullptr; 4919 4920 // The element must be coming from the same lane in the source vector 4921 // (although it may have crossed lanes in intermediate shuffles). 4922 if (RootElt != DestElt) 4923 return nullptr; 4924 4925 return RootVec; 4926 } 4927 4928 static Value *SimplifyShuffleVectorInst(Value *Op0, Value *Op1, 4929 ArrayRef<int> Mask, Type *RetTy, 4930 const SimplifyQuery &Q, 4931 unsigned MaxRecurse) { 4932 if (all_of(Mask, [](int Elem) { return Elem == UndefMaskElem; })) 4933 return UndefValue::get(RetTy); 4934 4935 auto *InVecTy = cast<VectorType>(Op0->getType()); 4936 unsigned MaskNumElts = Mask.size(); 4937 ElementCount InVecEltCount = InVecTy->getElementCount(); 4938 4939 bool Scalable = InVecEltCount.isScalable(); 4940 4941 SmallVector<int, 32> Indices; 4942 Indices.assign(Mask.begin(), Mask.end()); 4943 4944 // Canonicalization: If mask does not select elements from an input vector, 4945 // replace that input vector with poison. 4946 if (!Scalable) { 4947 bool MaskSelects0 = false, MaskSelects1 = false; 4948 unsigned InVecNumElts = InVecEltCount.getKnownMinValue(); 4949 for (unsigned i = 0; i != MaskNumElts; ++i) { 4950 if (Indices[i] == -1) 4951 continue; 4952 if ((unsigned)Indices[i] < InVecNumElts) 4953 MaskSelects0 = true; 4954 else 4955 MaskSelects1 = true; 4956 } 4957 if (!MaskSelects0) 4958 Op0 = PoisonValue::get(InVecTy); 4959 if (!MaskSelects1) 4960 Op1 = PoisonValue::get(InVecTy); 4961 } 4962 4963 auto *Op0Const = dyn_cast<Constant>(Op0); 4964 auto *Op1Const = dyn_cast<Constant>(Op1); 4965 4966 // If all operands are constant, constant fold the shuffle. This 4967 // transformation depends on the value of the mask which is not known at 4968 // compile time for scalable vectors 4969 if (Op0Const && Op1Const) 4970 return ConstantExpr::getShuffleVector(Op0Const, Op1Const, Mask); 4971 4972 // Canonicalization: if only one input vector is constant, it shall be the 4973 // second one. This transformation depends on the value of the mask which 4974 // is not known at compile time for scalable vectors 4975 if (!Scalable && Op0Const && !Op1Const) { 4976 std::swap(Op0, Op1); 4977 ShuffleVectorInst::commuteShuffleMask(Indices, 4978 InVecEltCount.getKnownMinValue()); 4979 } 4980 4981 // A splat of an inserted scalar constant becomes a vector constant: 4982 // shuf (inselt ?, C, IndexC), undef, <IndexC, IndexC...> --> <C, C...> 4983 // NOTE: We may have commuted above, so analyze the updated Indices, not the 4984 // original mask constant. 4985 // NOTE: This transformation depends on the value of the mask which is not 4986 // known at compile time for scalable vectors 4987 Constant *C; 4988 ConstantInt *IndexC; 4989 if (!Scalable && match(Op0, m_InsertElt(m_Value(), m_Constant(C), 4990 m_ConstantInt(IndexC)))) { 4991 // Match a splat shuffle mask of the insert index allowing undef elements. 4992 int InsertIndex = IndexC->getZExtValue(); 4993 if (all_of(Indices, [InsertIndex](int MaskElt) { 4994 return MaskElt == InsertIndex || MaskElt == -1; 4995 })) { 4996 assert(isa<UndefValue>(Op1) && "Expected undef operand 1 for splat"); 4997 4998 // Shuffle mask undefs become undefined constant result elements. 4999 SmallVector<Constant *, 16> VecC(MaskNumElts, C); 5000 for (unsigned i = 0; i != MaskNumElts; ++i) 5001 if (Indices[i] == -1) 5002 VecC[i] = UndefValue::get(C->getType()); 5003 return ConstantVector::get(VecC); 5004 } 5005 } 5006 5007 // A shuffle of a splat is always the splat itself. Legal if the shuffle's 5008 // value type is same as the input vectors' type. 5009 if (auto *OpShuf = dyn_cast<ShuffleVectorInst>(Op0)) 5010 if (Q.isUndefValue(Op1) && RetTy == InVecTy && 5011 is_splat(OpShuf->getShuffleMask())) 5012 return Op0; 5013 5014 // All remaining transformation depend on the value of the mask, which is 5015 // not known at compile time for scalable vectors. 5016 if (Scalable) 5017 return nullptr; 5018 5019 // Don't fold a shuffle with undef mask elements. This may get folded in a 5020 // better way using demanded bits or other analysis. 5021 // TODO: Should we allow this? 5022 if (is_contained(Indices, -1)) 5023 return nullptr; 5024 5025 // Check if every element of this shuffle can be mapped back to the 5026 // corresponding element of a single root vector. If so, we don't need this 5027 // shuffle. This handles simple identity shuffles as well as chains of 5028 // shuffles that may widen/narrow and/or move elements across lanes and back. 5029 Value *RootVec = nullptr; 5030 for (unsigned i = 0; i != MaskNumElts; ++i) { 5031 // Note that recursion is limited for each vector element, so if any element 5032 // exceeds the limit, this will fail to simplify. 5033 RootVec = 5034 foldIdentityShuffles(i, Op0, Op1, Indices[i], RootVec, MaxRecurse); 5035 5036 // We can't replace a widening/narrowing shuffle with one of its operands. 5037 if (!RootVec || RootVec->getType() != RetTy) 5038 return nullptr; 5039 } 5040 return RootVec; 5041 } 5042 5043 /// Given operands for a ShuffleVectorInst, fold the result or return null. 5044 Value *llvm::SimplifyShuffleVectorInst(Value *Op0, Value *Op1, 5045 ArrayRef<int> Mask, Type *RetTy, 5046 const SimplifyQuery &Q) { 5047 return ::SimplifyShuffleVectorInst(Op0, Op1, Mask, RetTy, Q, RecursionLimit); 5048 } 5049 5050 static Constant *foldConstant(Instruction::UnaryOps Opcode, 5051 Value *&Op, const SimplifyQuery &Q) { 5052 if (auto *C = dyn_cast<Constant>(Op)) 5053 return ConstantFoldUnaryOpOperand(Opcode, C, Q.DL); 5054 return nullptr; 5055 } 5056 5057 /// Given the operand for an FNeg, see if we can fold the result. If not, this 5058 /// returns null. 5059 static Value *simplifyFNegInst(Value *Op, FastMathFlags FMF, 5060 const SimplifyQuery &Q, unsigned MaxRecurse) { 5061 if (Constant *C = foldConstant(Instruction::FNeg, Op, Q)) 5062 return C; 5063 5064 Value *X; 5065 // fneg (fneg X) ==> X 5066 if (match(Op, m_FNeg(m_Value(X)))) 5067 return X; 5068 5069 return nullptr; 5070 } 5071 5072 Value *llvm::SimplifyFNegInst(Value *Op, FastMathFlags FMF, 5073 const SimplifyQuery &Q) { 5074 return ::simplifyFNegInst(Op, FMF, Q, RecursionLimit); 5075 } 5076 5077 static Constant *propagateNaN(Constant *In) { 5078 // If the input is a vector with undef elements, just return a default NaN. 5079 if (!In->isNaN()) 5080 return ConstantFP::getNaN(In->getType()); 5081 5082 // Propagate the existing NaN constant when possible. 5083 // TODO: Should we quiet a signaling NaN? 5084 return In; 5085 } 5086 5087 /// Perform folds that are common to any floating-point operation. This implies 5088 /// transforms based on poison/undef/NaN because the operation itself makes no 5089 /// difference to the result. 5090 static Constant *simplifyFPOp(ArrayRef<Value *> Ops, FastMathFlags FMF, 5091 const SimplifyQuery &Q, 5092 fp::ExceptionBehavior ExBehavior, 5093 RoundingMode Rounding) { 5094 // Poison is independent of anything else. It always propagates from an 5095 // operand to a math result. 5096 if (any_of(Ops, [](Value *V) { return match(V, m_Poison()); })) 5097 return PoisonValue::get(Ops[0]->getType()); 5098 5099 for (Value *V : Ops) { 5100 bool IsNan = match(V, m_NaN()); 5101 bool IsInf = match(V, m_Inf()); 5102 bool IsUndef = Q.isUndefValue(V); 5103 5104 // If this operation has 'nnan' or 'ninf' and at least 1 disallowed operand 5105 // (an undef operand can be chosen to be Nan/Inf), then the result of 5106 // this operation is poison. 5107 if (FMF.noNaNs() && (IsNan || IsUndef)) 5108 return PoisonValue::get(V->getType()); 5109 if (FMF.noInfs() && (IsInf || IsUndef)) 5110 return PoisonValue::get(V->getType()); 5111 5112 if (isDefaultFPEnvironment(ExBehavior, Rounding)) { 5113 if (IsUndef || IsNan) 5114 return propagateNaN(cast<Constant>(V)); 5115 } else if (ExBehavior != fp::ebStrict) { 5116 if (IsNan) 5117 return propagateNaN(cast<Constant>(V)); 5118 } 5119 } 5120 return nullptr; 5121 } 5122 5123 /// Given operands for an FAdd, see if we can fold the result. If not, this 5124 /// returns null. 5125 static Value * 5126 SimplifyFAddInst(Value *Op0, Value *Op1, FastMathFlags FMF, 5127 const SimplifyQuery &Q, unsigned MaxRecurse, 5128 fp::ExceptionBehavior ExBehavior = fp::ebIgnore, 5129 RoundingMode Rounding = RoundingMode::NearestTiesToEven) { 5130 if (isDefaultFPEnvironment(ExBehavior, Rounding)) 5131 if (Constant *C = foldOrCommuteConstant(Instruction::FAdd, Op0, Op1, Q)) 5132 return C; 5133 5134 if (Constant *C = simplifyFPOp({Op0, Op1}, FMF, Q, ExBehavior, Rounding)) 5135 return C; 5136 5137 // fadd X, -0 ==> X 5138 // With strict/constrained FP, we have these possible edge cases that do 5139 // not simplify to Op0: 5140 // fadd SNaN, -0.0 --> QNaN 5141 // fadd +0.0, -0.0 --> -0.0 (but only with round toward negative) 5142 if (canIgnoreSNaN(ExBehavior, FMF) && 5143 (!canRoundingModeBe(Rounding, RoundingMode::TowardNegative) || 5144 FMF.noSignedZeros())) 5145 if (match(Op1, m_NegZeroFP())) 5146 return Op0; 5147 5148 // fadd X, 0 ==> X, when we know X is not -0 5149 if (canIgnoreSNaN(ExBehavior, FMF)) 5150 if (match(Op1, m_PosZeroFP()) && 5151 (FMF.noSignedZeros() || CannotBeNegativeZero(Op0, Q.TLI))) 5152 return Op0; 5153 5154 if (!isDefaultFPEnvironment(ExBehavior, Rounding)) 5155 return nullptr; 5156 5157 // With nnan: -X + X --> 0.0 (and commuted variant) 5158 // We don't have to explicitly exclude infinities (ninf): INF + -INF == NaN. 5159 // Negative zeros are allowed because we always end up with positive zero: 5160 // X = -0.0: (-0.0 - (-0.0)) + (-0.0) == ( 0.0) + (-0.0) == 0.0 5161 // X = -0.0: ( 0.0 - (-0.0)) + (-0.0) == ( 0.0) + (-0.0) == 0.0 5162 // X = 0.0: (-0.0 - ( 0.0)) + ( 0.0) == (-0.0) + ( 0.0) == 0.0 5163 // X = 0.0: ( 0.0 - ( 0.0)) + ( 0.0) == ( 0.0) + ( 0.0) == 0.0 5164 if (FMF.noNaNs()) { 5165 if (match(Op0, m_FSub(m_AnyZeroFP(), m_Specific(Op1))) || 5166 match(Op1, m_FSub(m_AnyZeroFP(), m_Specific(Op0)))) 5167 return ConstantFP::getNullValue(Op0->getType()); 5168 5169 if (match(Op0, m_FNeg(m_Specific(Op1))) || 5170 match(Op1, m_FNeg(m_Specific(Op0)))) 5171 return ConstantFP::getNullValue(Op0->getType()); 5172 } 5173 5174 // (X - Y) + Y --> X 5175 // Y + (X - Y) --> X 5176 Value *X; 5177 if (FMF.noSignedZeros() && FMF.allowReassoc() && 5178 (match(Op0, m_FSub(m_Value(X), m_Specific(Op1))) || 5179 match(Op1, m_FSub(m_Value(X), m_Specific(Op0))))) 5180 return X; 5181 5182 return nullptr; 5183 } 5184 5185 /// Given operands for an FSub, see if we can fold the result. If not, this 5186 /// returns null. 5187 static Value * 5188 SimplifyFSubInst(Value *Op0, Value *Op1, FastMathFlags FMF, 5189 const SimplifyQuery &Q, unsigned MaxRecurse, 5190 fp::ExceptionBehavior ExBehavior = fp::ebIgnore, 5191 RoundingMode Rounding = RoundingMode::NearestTiesToEven) { 5192 if (isDefaultFPEnvironment(ExBehavior, Rounding)) 5193 if (Constant *C = foldOrCommuteConstant(Instruction::FSub, Op0, Op1, Q)) 5194 return C; 5195 5196 if (Constant *C = simplifyFPOp({Op0, Op1}, FMF, Q, ExBehavior, Rounding)) 5197 return C; 5198 5199 // fsub X, +0 ==> X 5200 if (canIgnoreSNaN(ExBehavior, FMF) && 5201 (!canRoundingModeBe(Rounding, RoundingMode::TowardNegative) || 5202 FMF.noSignedZeros())) 5203 if (match(Op1, m_PosZeroFP())) 5204 return Op0; 5205 5206 // fsub X, -0 ==> X, when we know X is not -0 5207 if (canIgnoreSNaN(ExBehavior, FMF)) 5208 if (match(Op1, m_NegZeroFP()) && 5209 (FMF.noSignedZeros() || CannotBeNegativeZero(Op0, Q.TLI))) 5210 return Op0; 5211 5212 // fsub -0.0, (fsub -0.0, X) ==> X 5213 // fsub -0.0, (fneg X) ==> X 5214 Value *X; 5215 if (canIgnoreSNaN(ExBehavior, FMF)) 5216 if (match(Op0, m_NegZeroFP()) && 5217 match(Op1, m_FNeg(m_Value(X)))) 5218 return X; 5219 5220 if (!isDefaultFPEnvironment(ExBehavior, Rounding)) 5221 return nullptr; 5222 5223 // fsub 0.0, (fsub 0.0, X) ==> X if signed zeros are ignored. 5224 // fsub 0.0, (fneg X) ==> X if signed zeros are ignored. 5225 if (FMF.noSignedZeros() && match(Op0, m_AnyZeroFP()) && 5226 (match(Op1, m_FSub(m_AnyZeroFP(), m_Value(X))) || 5227 match(Op1, m_FNeg(m_Value(X))))) 5228 return X; 5229 5230 // fsub nnan x, x ==> 0.0 5231 if (FMF.noNaNs() && Op0 == Op1) 5232 return Constant::getNullValue(Op0->getType()); 5233 5234 // Y - (Y - X) --> X 5235 // (X + Y) - Y --> X 5236 if (FMF.noSignedZeros() && FMF.allowReassoc() && 5237 (match(Op1, m_FSub(m_Specific(Op0), m_Value(X))) || 5238 match(Op0, m_c_FAdd(m_Specific(Op1), m_Value(X))))) 5239 return X; 5240 5241 return nullptr; 5242 } 5243 5244 static Value *SimplifyFMAFMul(Value *Op0, Value *Op1, FastMathFlags FMF, 5245 const SimplifyQuery &Q, unsigned MaxRecurse, 5246 fp::ExceptionBehavior ExBehavior, 5247 RoundingMode Rounding) { 5248 if (Constant *C = simplifyFPOp({Op0, Op1}, FMF, Q, ExBehavior, Rounding)) 5249 return C; 5250 5251 if (!isDefaultFPEnvironment(ExBehavior, Rounding)) 5252 return nullptr; 5253 5254 // fmul X, 1.0 ==> X 5255 if (match(Op1, m_FPOne())) 5256 return Op0; 5257 5258 // fmul 1.0, X ==> X 5259 if (match(Op0, m_FPOne())) 5260 return Op1; 5261 5262 // fmul nnan nsz X, 0 ==> 0 5263 if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op1, m_AnyZeroFP())) 5264 return ConstantFP::getNullValue(Op0->getType()); 5265 5266 // fmul nnan nsz 0, X ==> 0 5267 if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op0, m_AnyZeroFP())) 5268 return ConstantFP::getNullValue(Op1->getType()); 5269 5270 // sqrt(X) * sqrt(X) --> X, if we can: 5271 // 1. Remove the intermediate rounding (reassociate). 5272 // 2. Ignore non-zero negative numbers because sqrt would produce NAN. 5273 // 3. Ignore -0.0 because sqrt(-0.0) == -0.0, but -0.0 * -0.0 == 0.0. 5274 Value *X; 5275 if (Op0 == Op1 && match(Op0, m_Intrinsic<Intrinsic::sqrt>(m_Value(X))) && 5276 FMF.allowReassoc() && FMF.noNaNs() && FMF.noSignedZeros()) 5277 return X; 5278 5279 return nullptr; 5280 } 5281 5282 /// Given the operands for an FMul, see if we can fold the result 5283 static Value * 5284 SimplifyFMulInst(Value *Op0, Value *Op1, FastMathFlags FMF, 5285 const SimplifyQuery &Q, unsigned MaxRecurse, 5286 fp::ExceptionBehavior ExBehavior = fp::ebIgnore, 5287 RoundingMode Rounding = RoundingMode::NearestTiesToEven) { 5288 if (isDefaultFPEnvironment(ExBehavior, Rounding)) 5289 if (Constant *C = foldOrCommuteConstant(Instruction::FMul, Op0, Op1, Q)) 5290 return C; 5291 5292 // Now apply simplifications that do not require rounding. 5293 return SimplifyFMAFMul(Op0, Op1, FMF, Q, MaxRecurse, ExBehavior, Rounding); 5294 } 5295 5296 Value *llvm::SimplifyFAddInst(Value *Op0, Value *Op1, FastMathFlags FMF, 5297 const SimplifyQuery &Q, 5298 fp::ExceptionBehavior ExBehavior, 5299 RoundingMode Rounding) { 5300 return ::SimplifyFAddInst(Op0, Op1, FMF, Q, RecursionLimit, ExBehavior, 5301 Rounding); 5302 } 5303 5304 Value *llvm::SimplifyFSubInst(Value *Op0, Value *Op1, FastMathFlags FMF, 5305 const SimplifyQuery &Q, 5306 fp::ExceptionBehavior ExBehavior, 5307 RoundingMode Rounding) { 5308 return ::SimplifyFSubInst(Op0, Op1, FMF, Q, RecursionLimit, ExBehavior, 5309 Rounding); 5310 } 5311 5312 Value *llvm::SimplifyFMulInst(Value *Op0, Value *Op1, FastMathFlags FMF, 5313 const SimplifyQuery &Q, 5314 fp::ExceptionBehavior ExBehavior, 5315 RoundingMode Rounding) { 5316 return ::SimplifyFMulInst(Op0, Op1, FMF, Q, RecursionLimit, ExBehavior, 5317 Rounding); 5318 } 5319 5320 Value *llvm::SimplifyFMAFMul(Value *Op0, Value *Op1, FastMathFlags FMF, 5321 const SimplifyQuery &Q, 5322 fp::ExceptionBehavior ExBehavior, 5323 RoundingMode Rounding) { 5324 return ::SimplifyFMAFMul(Op0, Op1, FMF, Q, RecursionLimit, ExBehavior, 5325 Rounding); 5326 } 5327 5328 static Value * 5329 SimplifyFDivInst(Value *Op0, Value *Op1, FastMathFlags FMF, 5330 const SimplifyQuery &Q, unsigned, 5331 fp::ExceptionBehavior ExBehavior = fp::ebIgnore, 5332 RoundingMode Rounding = RoundingMode::NearestTiesToEven) { 5333 if (isDefaultFPEnvironment(ExBehavior, Rounding)) 5334 if (Constant *C = foldOrCommuteConstant(Instruction::FDiv, Op0, Op1, Q)) 5335 return C; 5336 5337 if (Constant *C = simplifyFPOp({Op0, Op1}, FMF, Q, ExBehavior, Rounding)) 5338 return C; 5339 5340 if (!isDefaultFPEnvironment(ExBehavior, Rounding)) 5341 return nullptr; 5342 5343 // X / 1.0 -> X 5344 if (match(Op1, m_FPOne())) 5345 return Op0; 5346 5347 // 0 / X -> 0 5348 // Requires that NaNs are off (X could be zero) and signed zeroes are 5349 // ignored (X could be positive or negative, so the output sign is unknown). 5350 if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op0, m_AnyZeroFP())) 5351 return ConstantFP::getNullValue(Op0->getType()); 5352 5353 if (FMF.noNaNs()) { 5354 // X / X -> 1.0 is legal when NaNs are ignored. 5355 // We can ignore infinities because INF/INF is NaN. 5356 if (Op0 == Op1) 5357 return ConstantFP::get(Op0->getType(), 1.0); 5358 5359 // (X * Y) / Y --> X if we can reassociate to the above form. 5360 Value *X; 5361 if (FMF.allowReassoc() && match(Op0, m_c_FMul(m_Value(X), m_Specific(Op1)))) 5362 return X; 5363 5364 // -X / X -> -1.0 and 5365 // X / -X -> -1.0 are legal when NaNs are ignored. 5366 // We can ignore signed zeros because +-0.0/+-0.0 is NaN and ignored. 5367 if (match(Op0, m_FNegNSZ(m_Specific(Op1))) || 5368 match(Op1, m_FNegNSZ(m_Specific(Op0)))) 5369 return ConstantFP::get(Op0->getType(), -1.0); 5370 } 5371 5372 return nullptr; 5373 } 5374 5375 Value *llvm::SimplifyFDivInst(Value *Op0, Value *Op1, FastMathFlags FMF, 5376 const SimplifyQuery &Q, 5377 fp::ExceptionBehavior ExBehavior, 5378 RoundingMode Rounding) { 5379 return ::SimplifyFDivInst(Op0, Op1, FMF, Q, RecursionLimit, ExBehavior, 5380 Rounding); 5381 } 5382 5383 static Value * 5384 SimplifyFRemInst(Value *Op0, Value *Op1, FastMathFlags FMF, 5385 const SimplifyQuery &Q, unsigned, 5386 fp::ExceptionBehavior ExBehavior = fp::ebIgnore, 5387 RoundingMode Rounding = RoundingMode::NearestTiesToEven) { 5388 if (isDefaultFPEnvironment(ExBehavior, Rounding)) 5389 if (Constant *C = foldOrCommuteConstant(Instruction::FRem, Op0, Op1, Q)) 5390 return C; 5391 5392 if (Constant *C = simplifyFPOp({Op0, Op1}, FMF, Q, ExBehavior, Rounding)) 5393 return C; 5394 5395 if (!isDefaultFPEnvironment(ExBehavior, Rounding)) 5396 return nullptr; 5397 5398 // Unlike fdiv, the result of frem always matches the sign of the dividend. 5399 // The constant match may include undef elements in a vector, so return a full 5400 // zero constant as the result. 5401 if (FMF.noNaNs()) { 5402 // +0 % X -> 0 5403 if (match(Op0, m_PosZeroFP())) 5404 return ConstantFP::getNullValue(Op0->getType()); 5405 // -0 % X -> -0 5406 if (match(Op0, m_NegZeroFP())) 5407 return ConstantFP::getNegativeZero(Op0->getType()); 5408 } 5409 5410 return nullptr; 5411 } 5412 5413 Value *llvm::SimplifyFRemInst(Value *Op0, Value *Op1, FastMathFlags FMF, 5414 const SimplifyQuery &Q, 5415 fp::ExceptionBehavior ExBehavior, 5416 RoundingMode Rounding) { 5417 return ::SimplifyFRemInst(Op0, Op1, FMF, Q, RecursionLimit, ExBehavior, 5418 Rounding); 5419 } 5420 5421 //=== Helper functions for higher up the class hierarchy. 5422 5423 /// Given the operand for a UnaryOperator, see if we can fold the result. 5424 /// If not, this returns null. 5425 static Value *simplifyUnOp(unsigned Opcode, Value *Op, const SimplifyQuery &Q, 5426 unsigned MaxRecurse) { 5427 switch (Opcode) { 5428 case Instruction::FNeg: 5429 return simplifyFNegInst(Op, FastMathFlags(), Q, MaxRecurse); 5430 default: 5431 llvm_unreachable("Unexpected opcode"); 5432 } 5433 } 5434 5435 /// Given the operand for a UnaryOperator, see if we can fold the result. 5436 /// If not, this returns null. 5437 /// Try to use FastMathFlags when folding the result. 5438 static Value *simplifyFPUnOp(unsigned Opcode, Value *Op, 5439 const FastMathFlags &FMF, 5440 const SimplifyQuery &Q, unsigned MaxRecurse) { 5441 switch (Opcode) { 5442 case Instruction::FNeg: 5443 return simplifyFNegInst(Op, FMF, Q, MaxRecurse); 5444 default: 5445 return simplifyUnOp(Opcode, Op, Q, MaxRecurse); 5446 } 5447 } 5448 5449 Value *llvm::SimplifyUnOp(unsigned Opcode, Value *Op, const SimplifyQuery &Q) { 5450 return ::simplifyUnOp(Opcode, Op, Q, RecursionLimit); 5451 } 5452 5453 Value *llvm::SimplifyUnOp(unsigned Opcode, Value *Op, FastMathFlags FMF, 5454 const SimplifyQuery &Q) { 5455 return ::simplifyFPUnOp(Opcode, Op, FMF, Q, RecursionLimit); 5456 } 5457 5458 /// Given operands for a BinaryOperator, see if we can fold the result. 5459 /// If not, this returns null. 5460 static Value *SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS, 5461 const SimplifyQuery &Q, unsigned MaxRecurse) { 5462 switch (Opcode) { 5463 case Instruction::Add: 5464 return SimplifyAddInst(LHS, RHS, false, false, Q, MaxRecurse); 5465 case Instruction::Sub: 5466 return SimplifySubInst(LHS, RHS, false, false, Q, MaxRecurse); 5467 case Instruction::Mul: 5468 return SimplifyMulInst(LHS, RHS, Q, MaxRecurse); 5469 case Instruction::SDiv: 5470 return SimplifySDivInst(LHS, RHS, Q, MaxRecurse); 5471 case Instruction::UDiv: 5472 return SimplifyUDivInst(LHS, RHS, Q, MaxRecurse); 5473 case Instruction::SRem: 5474 return SimplifySRemInst(LHS, RHS, Q, MaxRecurse); 5475 case Instruction::URem: 5476 return SimplifyURemInst(LHS, RHS, Q, MaxRecurse); 5477 case Instruction::Shl: 5478 return SimplifyShlInst(LHS, RHS, false, false, Q, MaxRecurse); 5479 case Instruction::LShr: 5480 return SimplifyLShrInst(LHS, RHS, false, Q, MaxRecurse); 5481 case Instruction::AShr: 5482 return SimplifyAShrInst(LHS, RHS, false, Q, MaxRecurse); 5483 case Instruction::And: 5484 return SimplifyAndInst(LHS, RHS, Q, MaxRecurse); 5485 case Instruction::Or: 5486 return SimplifyOrInst(LHS, RHS, Q, MaxRecurse); 5487 case Instruction::Xor: 5488 return SimplifyXorInst(LHS, RHS, Q, MaxRecurse); 5489 case Instruction::FAdd: 5490 return SimplifyFAddInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse); 5491 case Instruction::FSub: 5492 return SimplifyFSubInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse); 5493 case Instruction::FMul: 5494 return SimplifyFMulInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse); 5495 case Instruction::FDiv: 5496 return SimplifyFDivInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse); 5497 case Instruction::FRem: 5498 return SimplifyFRemInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse); 5499 default: 5500 llvm_unreachable("Unexpected opcode"); 5501 } 5502 } 5503 5504 /// Given operands for a BinaryOperator, see if we can fold the result. 5505 /// If not, this returns null. 5506 /// Try to use FastMathFlags when folding the result. 5507 static Value *SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS, 5508 const FastMathFlags &FMF, const SimplifyQuery &Q, 5509 unsigned MaxRecurse) { 5510 switch (Opcode) { 5511 case Instruction::FAdd: 5512 return SimplifyFAddInst(LHS, RHS, FMF, Q, MaxRecurse); 5513 case Instruction::FSub: 5514 return SimplifyFSubInst(LHS, RHS, FMF, Q, MaxRecurse); 5515 case Instruction::FMul: 5516 return SimplifyFMulInst(LHS, RHS, FMF, Q, MaxRecurse); 5517 case Instruction::FDiv: 5518 return SimplifyFDivInst(LHS, RHS, FMF, Q, MaxRecurse); 5519 default: 5520 return SimplifyBinOp(Opcode, LHS, RHS, Q, MaxRecurse); 5521 } 5522 } 5523 5524 Value *llvm::SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS, 5525 const SimplifyQuery &Q) { 5526 return ::SimplifyBinOp(Opcode, LHS, RHS, Q, RecursionLimit); 5527 } 5528 5529 Value *llvm::SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS, 5530 FastMathFlags FMF, const SimplifyQuery &Q) { 5531 return ::SimplifyBinOp(Opcode, LHS, RHS, FMF, Q, RecursionLimit); 5532 } 5533 5534 /// Given operands for a CmpInst, see if we can fold the result. 5535 static Value *SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS, 5536 const SimplifyQuery &Q, unsigned MaxRecurse) { 5537 if (CmpInst::isIntPredicate((CmpInst::Predicate)Predicate)) 5538 return SimplifyICmpInst(Predicate, LHS, RHS, Q, MaxRecurse); 5539 return SimplifyFCmpInst(Predicate, LHS, RHS, FastMathFlags(), Q, MaxRecurse); 5540 } 5541 5542 Value *llvm::SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS, 5543 const SimplifyQuery &Q) { 5544 return ::SimplifyCmpInst(Predicate, LHS, RHS, Q, RecursionLimit); 5545 } 5546 5547 static bool IsIdempotent(Intrinsic::ID ID) { 5548 switch (ID) { 5549 default: return false; 5550 5551 // Unary idempotent: f(f(x)) = f(x) 5552 case Intrinsic::fabs: 5553 case Intrinsic::floor: 5554 case Intrinsic::ceil: 5555 case Intrinsic::trunc: 5556 case Intrinsic::rint: 5557 case Intrinsic::nearbyint: 5558 case Intrinsic::round: 5559 case Intrinsic::roundeven: 5560 case Intrinsic::canonicalize: 5561 return true; 5562 } 5563 } 5564 5565 static Value *SimplifyRelativeLoad(Constant *Ptr, Constant *Offset, 5566 const DataLayout &DL) { 5567 GlobalValue *PtrSym; 5568 APInt PtrOffset; 5569 if (!IsConstantOffsetFromGlobal(Ptr, PtrSym, PtrOffset, DL)) 5570 return nullptr; 5571 5572 Type *Int8PtrTy = Type::getInt8PtrTy(Ptr->getContext()); 5573 Type *Int32Ty = Type::getInt32Ty(Ptr->getContext()); 5574 Type *Int32PtrTy = Int32Ty->getPointerTo(); 5575 Type *Int64Ty = Type::getInt64Ty(Ptr->getContext()); 5576 5577 auto *OffsetConstInt = dyn_cast<ConstantInt>(Offset); 5578 if (!OffsetConstInt || OffsetConstInt->getType()->getBitWidth() > 64) 5579 return nullptr; 5580 5581 uint64_t OffsetInt = OffsetConstInt->getSExtValue(); 5582 if (OffsetInt % 4 != 0) 5583 return nullptr; 5584 5585 Constant *C = ConstantExpr::getGetElementPtr( 5586 Int32Ty, ConstantExpr::getBitCast(Ptr, Int32PtrTy), 5587 ConstantInt::get(Int64Ty, OffsetInt / 4)); 5588 Constant *Loaded = ConstantFoldLoadFromConstPtr(C, Int32Ty, DL); 5589 if (!Loaded) 5590 return nullptr; 5591 5592 auto *LoadedCE = dyn_cast<ConstantExpr>(Loaded); 5593 if (!LoadedCE) 5594 return nullptr; 5595 5596 if (LoadedCE->getOpcode() == Instruction::Trunc) { 5597 LoadedCE = dyn_cast<ConstantExpr>(LoadedCE->getOperand(0)); 5598 if (!LoadedCE) 5599 return nullptr; 5600 } 5601 5602 if (LoadedCE->getOpcode() != Instruction::Sub) 5603 return nullptr; 5604 5605 auto *LoadedLHS = dyn_cast<ConstantExpr>(LoadedCE->getOperand(0)); 5606 if (!LoadedLHS || LoadedLHS->getOpcode() != Instruction::PtrToInt) 5607 return nullptr; 5608 auto *LoadedLHSPtr = LoadedLHS->getOperand(0); 5609 5610 Constant *LoadedRHS = LoadedCE->getOperand(1); 5611 GlobalValue *LoadedRHSSym; 5612 APInt LoadedRHSOffset; 5613 if (!IsConstantOffsetFromGlobal(LoadedRHS, LoadedRHSSym, LoadedRHSOffset, 5614 DL) || 5615 PtrSym != LoadedRHSSym || PtrOffset != LoadedRHSOffset) 5616 return nullptr; 5617 5618 return ConstantExpr::getBitCast(LoadedLHSPtr, Int8PtrTy); 5619 } 5620 5621 static Value *simplifyUnaryIntrinsic(Function *F, Value *Op0, 5622 const SimplifyQuery &Q) { 5623 // Idempotent functions return the same result when called repeatedly. 5624 Intrinsic::ID IID = F->getIntrinsicID(); 5625 if (IsIdempotent(IID)) 5626 if (auto *II = dyn_cast<IntrinsicInst>(Op0)) 5627 if (II->getIntrinsicID() == IID) 5628 return II; 5629 5630 Value *X; 5631 switch (IID) { 5632 case Intrinsic::fabs: 5633 if (SignBitMustBeZero(Op0, Q.TLI)) return Op0; 5634 break; 5635 case Intrinsic::bswap: 5636 // bswap(bswap(x)) -> x 5637 if (match(Op0, m_BSwap(m_Value(X)))) return X; 5638 break; 5639 case Intrinsic::bitreverse: 5640 // bitreverse(bitreverse(x)) -> x 5641 if (match(Op0, m_BitReverse(m_Value(X)))) return X; 5642 break; 5643 case Intrinsic::ctpop: { 5644 // If everything but the lowest bit is zero, that bit is the pop-count. Ex: 5645 // ctpop(and X, 1) --> and X, 1 5646 unsigned BitWidth = Op0->getType()->getScalarSizeInBits(); 5647 if (MaskedValueIsZero(Op0, APInt::getHighBitsSet(BitWidth, BitWidth - 1), 5648 Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 5649 return Op0; 5650 break; 5651 } 5652 case Intrinsic::exp: 5653 // exp(log(x)) -> x 5654 if (Q.CxtI->hasAllowReassoc() && 5655 match(Op0, m_Intrinsic<Intrinsic::log>(m_Value(X)))) return X; 5656 break; 5657 case Intrinsic::exp2: 5658 // exp2(log2(x)) -> x 5659 if (Q.CxtI->hasAllowReassoc() && 5660 match(Op0, m_Intrinsic<Intrinsic::log2>(m_Value(X)))) return X; 5661 break; 5662 case Intrinsic::log: 5663 // log(exp(x)) -> x 5664 if (Q.CxtI->hasAllowReassoc() && 5665 match(Op0, m_Intrinsic<Intrinsic::exp>(m_Value(X)))) return X; 5666 break; 5667 case Intrinsic::log2: 5668 // log2(exp2(x)) -> x 5669 if (Q.CxtI->hasAllowReassoc() && 5670 (match(Op0, m_Intrinsic<Intrinsic::exp2>(m_Value(X))) || 5671 match(Op0, m_Intrinsic<Intrinsic::pow>(m_SpecificFP(2.0), 5672 m_Value(X))))) return X; 5673 break; 5674 case Intrinsic::log10: 5675 // log10(pow(10.0, x)) -> x 5676 if (Q.CxtI->hasAllowReassoc() && 5677 match(Op0, m_Intrinsic<Intrinsic::pow>(m_SpecificFP(10.0), 5678 m_Value(X)))) return X; 5679 break; 5680 case Intrinsic::floor: 5681 case Intrinsic::trunc: 5682 case Intrinsic::ceil: 5683 case Intrinsic::round: 5684 case Intrinsic::roundeven: 5685 case Intrinsic::nearbyint: 5686 case Intrinsic::rint: { 5687 // floor (sitofp x) -> sitofp x 5688 // floor (uitofp x) -> uitofp x 5689 // 5690 // Converting from int always results in a finite integral number or 5691 // infinity. For either of those inputs, these rounding functions always 5692 // return the same value, so the rounding can be eliminated. 5693 if (match(Op0, m_SIToFP(m_Value())) || match(Op0, m_UIToFP(m_Value()))) 5694 return Op0; 5695 break; 5696 } 5697 case Intrinsic::experimental_vector_reverse: 5698 // experimental.vector.reverse(experimental.vector.reverse(x)) -> x 5699 if (match(Op0, 5700 m_Intrinsic<Intrinsic::experimental_vector_reverse>(m_Value(X)))) 5701 return X; 5702 // experimental.vector.reverse(splat(X)) -> splat(X) 5703 if (isSplatValue(Op0)) 5704 return Op0; 5705 break; 5706 default: 5707 break; 5708 } 5709 5710 return nullptr; 5711 } 5712 5713 /// Given a min/max intrinsic, see if it can be removed based on having an 5714 /// operand that is another min/max intrinsic with shared operand(s). The caller 5715 /// is expected to swap the operand arguments to handle commutation. 5716 static Value *foldMinMaxSharedOp(Intrinsic::ID IID, Value *Op0, Value *Op1) { 5717 Value *X, *Y; 5718 if (!match(Op0, m_MaxOrMin(m_Value(X), m_Value(Y)))) 5719 return nullptr; 5720 5721 auto *MM0 = dyn_cast<IntrinsicInst>(Op0); 5722 if (!MM0) 5723 return nullptr; 5724 Intrinsic::ID IID0 = MM0->getIntrinsicID(); 5725 5726 if (Op1 == X || Op1 == Y || 5727 match(Op1, m_c_MaxOrMin(m_Specific(X), m_Specific(Y)))) { 5728 // max (max X, Y), X --> max X, Y 5729 if (IID0 == IID) 5730 return MM0; 5731 // max (min X, Y), X --> X 5732 if (IID0 == getInverseMinMaxIntrinsic(IID)) 5733 return Op1; 5734 } 5735 return nullptr; 5736 } 5737 5738 static Value *simplifyBinaryIntrinsic(Function *F, Value *Op0, Value *Op1, 5739 const SimplifyQuery &Q) { 5740 Intrinsic::ID IID = F->getIntrinsicID(); 5741 Type *ReturnType = F->getReturnType(); 5742 unsigned BitWidth = ReturnType->getScalarSizeInBits(); 5743 switch (IID) { 5744 case Intrinsic::abs: 5745 // abs(abs(x)) -> abs(x). We don't need to worry about the nsw arg here. 5746 // It is always ok to pick the earlier abs. We'll just lose nsw if its only 5747 // on the outer abs. 5748 if (match(Op0, m_Intrinsic<Intrinsic::abs>(m_Value(), m_Value()))) 5749 return Op0; 5750 break; 5751 5752 case Intrinsic::cttz: { 5753 Value *X; 5754 if (match(Op0, m_Shl(m_One(), m_Value(X)))) 5755 return X; 5756 break; 5757 } 5758 case Intrinsic::ctlz: { 5759 Value *X; 5760 if (match(Op0, m_LShr(m_Negative(), m_Value(X)))) 5761 return X; 5762 if (match(Op0, m_AShr(m_Negative(), m_Value()))) 5763 return Constant::getNullValue(ReturnType); 5764 break; 5765 } 5766 case Intrinsic::smax: 5767 case Intrinsic::smin: 5768 case Intrinsic::umax: 5769 case Intrinsic::umin: { 5770 // If the arguments are the same, this is a no-op. 5771 if (Op0 == Op1) 5772 return Op0; 5773 5774 // Canonicalize constant operand as Op1. 5775 if (isa<Constant>(Op0)) 5776 std::swap(Op0, Op1); 5777 5778 // Assume undef is the limit value. 5779 if (Q.isUndefValue(Op1)) 5780 return ConstantInt::get( 5781 ReturnType, MinMaxIntrinsic::getSaturationPoint(IID, BitWidth)); 5782 5783 const APInt *C; 5784 if (match(Op1, m_APIntAllowUndef(C))) { 5785 // Clamp to limit value. For example: 5786 // umax(i8 %x, i8 255) --> 255 5787 if (*C == MinMaxIntrinsic::getSaturationPoint(IID, BitWidth)) 5788 return ConstantInt::get(ReturnType, *C); 5789 5790 // If the constant op is the opposite of the limit value, the other must 5791 // be larger/smaller or equal. For example: 5792 // umin(i8 %x, i8 255) --> %x 5793 if (*C == MinMaxIntrinsic::getSaturationPoint( 5794 getInverseMinMaxIntrinsic(IID), BitWidth)) 5795 return Op0; 5796 5797 // Remove nested call if constant operands allow it. Example: 5798 // max (max X, 7), 5 -> max X, 7 5799 auto *MinMax0 = dyn_cast<IntrinsicInst>(Op0); 5800 if (MinMax0 && MinMax0->getIntrinsicID() == IID) { 5801 // TODO: loosen undef/splat restrictions for vector constants. 5802 Value *M00 = MinMax0->getOperand(0), *M01 = MinMax0->getOperand(1); 5803 const APInt *InnerC; 5804 if ((match(M00, m_APInt(InnerC)) || match(M01, m_APInt(InnerC))) && 5805 ICmpInst::compare(*InnerC, *C, 5806 ICmpInst::getNonStrictPredicate( 5807 MinMaxIntrinsic::getPredicate(IID)))) 5808 return Op0; 5809 } 5810 } 5811 5812 if (Value *V = foldMinMaxSharedOp(IID, Op0, Op1)) 5813 return V; 5814 if (Value *V = foldMinMaxSharedOp(IID, Op1, Op0)) 5815 return V; 5816 5817 ICmpInst::Predicate Pred = 5818 ICmpInst::getNonStrictPredicate(MinMaxIntrinsic::getPredicate(IID)); 5819 if (isICmpTrue(Pred, Op0, Op1, Q.getWithoutUndef(), RecursionLimit)) 5820 return Op0; 5821 if (isICmpTrue(Pred, Op1, Op0, Q.getWithoutUndef(), RecursionLimit)) 5822 return Op1; 5823 5824 if (Optional<bool> Imp = 5825 isImpliedByDomCondition(Pred, Op0, Op1, Q.CxtI, Q.DL)) 5826 return *Imp ? Op0 : Op1; 5827 if (Optional<bool> Imp = 5828 isImpliedByDomCondition(Pred, Op1, Op0, Q.CxtI, Q.DL)) 5829 return *Imp ? Op1 : Op0; 5830 5831 break; 5832 } 5833 case Intrinsic::usub_with_overflow: 5834 case Intrinsic::ssub_with_overflow: 5835 // X - X -> { 0, false } 5836 // X - undef -> { 0, false } 5837 // undef - X -> { 0, false } 5838 if (Op0 == Op1 || Q.isUndefValue(Op0) || Q.isUndefValue(Op1)) 5839 return Constant::getNullValue(ReturnType); 5840 break; 5841 case Intrinsic::uadd_with_overflow: 5842 case Intrinsic::sadd_with_overflow: 5843 // X + undef -> { -1, false } 5844 // undef + x -> { -1, false } 5845 if (Q.isUndefValue(Op0) || Q.isUndefValue(Op1)) { 5846 return ConstantStruct::get( 5847 cast<StructType>(ReturnType), 5848 {Constant::getAllOnesValue(ReturnType->getStructElementType(0)), 5849 Constant::getNullValue(ReturnType->getStructElementType(1))}); 5850 } 5851 break; 5852 case Intrinsic::umul_with_overflow: 5853 case Intrinsic::smul_with_overflow: 5854 // 0 * X -> { 0, false } 5855 // X * 0 -> { 0, false } 5856 if (match(Op0, m_Zero()) || match(Op1, m_Zero())) 5857 return Constant::getNullValue(ReturnType); 5858 // undef * X -> { 0, false } 5859 // X * undef -> { 0, false } 5860 if (Q.isUndefValue(Op0) || Q.isUndefValue(Op1)) 5861 return Constant::getNullValue(ReturnType); 5862 break; 5863 case Intrinsic::uadd_sat: 5864 // sat(MAX + X) -> MAX 5865 // sat(X + MAX) -> MAX 5866 if (match(Op0, m_AllOnes()) || match(Op1, m_AllOnes())) 5867 return Constant::getAllOnesValue(ReturnType); 5868 LLVM_FALLTHROUGH; 5869 case Intrinsic::sadd_sat: 5870 // sat(X + undef) -> -1 5871 // sat(undef + X) -> -1 5872 // For unsigned: Assume undef is MAX, thus we saturate to MAX (-1). 5873 // For signed: Assume undef is ~X, in which case X + ~X = -1. 5874 if (Q.isUndefValue(Op0) || Q.isUndefValue(Op1)) 5875 return Constant::getAllOnesValue(ReturnType); 5876 5877 // X + 0 -> X 5878 if (match(Op1, m_Zero())) 5879 return Op0; 5880 // 0 + X -> X 5881 if (match(Op0, m_Zero())) 5882 return Op1; 5883 break; 5884 case Intrinsic::usub_sat: 5885 // sat(0 - X) -> 0, sat(X - MAX) -> 0 5886 if (match(Op0, m_Zero()) || match(Op1, m_AllOnes())) 5887 return Constant::getNullValue(ReturnType); 5888 LLVM_FALLTHROUGH; 5889 case Intrinsic::ssub_sat: 5890 // X - X -> 0, X - undef -> 0, undef - X -> 0 5891 if (Op0 == Op1 || Q.isUndefValue(Op0) || Q.isUndefValue(Op1)) 5892 return Constant::getNullValue(ReturnType); 5893 // X - 0 -> X 5894 if (match(Op1, m_Zero())) 5895 return Op0; 5896 break; 5897 case Intrinsic::load_relative: 5898 if (auto *C0 = dyn_cast<Constant>(Op0)) 5899 if (auto *C1 = dyn_cast<Constant>(Op1)) 5900 return SimplifyRelativeLoad(C0, C1, Q.DL); 5901 break; 5902 case Intrinsic::powi: 5903 if (auto *Power = dyn_cast<ConstantInt>(Op1)) { 5904 // powi(x, 0) -> 1.0 5905 if (Power->isZero()) 5906 return ConstantFP::get(Op0->getType(), 1.0); 5907 // powi(x, 1) -> x 5908 if (Power->isOne()) 5909 return Op0; 5910 } 5911 break; 5912 case Intrinsic::copysign: 5913 // copysign X, X --> X 5914 if (Op0 == Op1) 5915 return Op0; 5916 // copysign -X, X --> X 5917 // copysign X, -X --> -X 5918 if (match(Op0, m_FNeg(m_Specific(Op1))) || 5919 match(Op1, m_FNeg(m_Specific(Op0)))) 5920 return Op1; 5921 break; 5922 case Intrinsic::maxnum: 5923 case Intrinsic::minnum: 5924 case Intrinsic::maximum: 5925 case Intrinsic::minimum: { 5926 // If the arguments are the same, this is a no-op. 5927 if (Op0 == Op1) return Op0; 5928 5929 // Canonicalize constant operand as Op1. 5930 if (isa<Constant>(Op0)) 5931 std::swap(Op0, Op1); 5932 5933 // If an argument is undef, return the other argument. 5934 if (Q.isUndefValue(Op1)) 5935 return Op0; 5936 5937 bool PropagateNaN = IID == Intrinsic::minimum || IID == Intrinsic::maximum; 5938 bool IsMin = IID == Intrinsic::minimum || IID == Intrinsic::minnum; 5939 5940 // minnum(X, nan) -> X 5941 // maxnum(X, nan) -> X 5942 // minimum(X, nan) -> nan 5943 // maximum(X, nan) -> nan 5944 if (match(Op1, m_NaN())) 5945 return PropagateNaN ? propagateNaN(cast<Constant>(Op1)) : Op0; 5946 5947 // In the following folds, inf can be replaced with the largest finite 5948 // float, if the ninf flag is set. 5949 const APFloat *C; 5950 if (match(Op1, m_APFloat(C)) && 5951 (C->isInfinity() || (Q.CxtI->hasNoInfs() && C->isLargest()))) { 5952 // minnum(X, -inf) -> -inf 5953 // maxnum(X, +inf) -> +inf 5954 // minimum(X, -inf) -> -inf if nnan 5955 // maximum(X, +inf) -> +inf if nnan 5956 if (C->isNegative() == IsMin && (!PropagateNaN || Q.CxtI->hasNoNaNs())) 5957 return ConstantFP::get(ReturnType, *C); 5958 5959 // minnum(X, +inf) -> X if nnan 5960 // maxnum(X, -inf) -> X if nnan 5961 // minimum(X, +inf) -> X 5962 // maximum(X, -inf) -> X 5963 if (C->isNegative() != IsMin && (PropagateNaN || Q.CxtI->hasNoNaNs())) 5964 return Op0; 5965 } 5966 5967 // Min/max of the same operation with common operand: 5968 // m(m(X, Y)), X --> m(X, Y) (4 commuted variants) 5969 if (auto *M0 = dyn_cast<IntrinsicInst>(Op0)) 5970 if (M0->getIntrinsicID() == IID && 5971 (M0->getOperand(0) == Op1 || M0->getOperand(1) == Op1)) 5972 return Op0; 5973 if (auto *M1 = dyn_cast<IntrinsicInst>(Op1)) 5974 if (M1->getIntrinsicID() == IID && 5975 (M1->getOperand(0) == Op0 || M1->getOperand(1) == Op0)) 5976 return Op1; 5977 5978 break; 5979 } 5980 case Intrinsic::experimental_vector_extract: { 5981 Type *ReturnType = F->getReturnType(); 5982 5983 // (extract_vector (insert_vector _, X, 0), 0) -> X 5984 unsigned IdxN = cast<ConstantInt>(Op1)->getZExtValue(); 5985 Value *X = nullptr; 5986 if (match(Op0, m_Intrinsic<Intrinsic::experimental_vector_insert>( 5987 m_Value(), m_Value(X), m_Zero())) && 5988 IdxN == 0 && X->getType() == ReturnType) 5989 return X; 5990 5991 break; 5992 } 5993 default: 5994 break; 5995 } 5996 5997 return nullptr; 5998 } 5999 6000 static Value *simplifyIntrinsic(CallBase *Call, const SimplifyQuery &Q) { 6001 6002 unsigned NumOperands = Call->arg_size(); 6003 Function *F = cast<Function>(Call->getCalledFunction()); 6004 Intrinsic::ID IID = F->getIntrinsicID(); 6005 6006 // Most of the intrinsics with no operands have some kind of side effect. 6007 // Don't simplify. 6008 if (!NumOperands) { 6009 switch (IID) { 6010 case Intrinsic::vscale: { 6011 // Call may not be inserted into the IR yet at point of calling simplify. 6012 if (!Call->getParent() || !Call->getParent()->getParent()) 6013 return nullptr; 6014 auto Attr = Call->getFunction()->getFnAttribute(Attribute::VScaleRange); 6015 if (!Attr.isValid()) 6016 return nullptr; 6017 unsigned VScaleMin = Attr.getVScaleRangeMin(); 6018 Optional<unsigned> VScaleMax = Attr.getVScaleRangeMax(); 6019 if (VScaleMax && VScaleMin == VScaleMax) 6020 return ConstantInt::get(F->getReturnType(), VScaleMin); 6021 return nullptr; 6022 } 6023 default: 6024 return nullptr; 6025 } 6026 } 6027 6028 if (NumOperands == 1) 6029 return simplifyUnaryIntrinsic(F, Call->getArgOperand(0), Q); 6030 6031 if (NumOperands == 2) 6032 return simplifyBinaryIntrinsic(F, Call->getArgOperand(0), 6033 Call->getArgOperand(1), Q); 6034 6035 // Handle intrinsics with 3 or more arguments. 6036 switch (IID) { 6037 case Intrinsic::masked_load: 6038 case Intrinsic::masked_gather: { 6039 Value *MaskArg = Call->getArgOperand(2); 6040 Value *PassthruArg = Call->getArgOperand(3); 6041 // If the mask is all zeros or undef, the "passthru" argument is the result. 6042 if (maskIsAllZeroOrUndef(MaskArg)) 6043 return PassthruArg; 6044 return nullptr; 6045 } 6046 case Intrinsic::fshl: 6047 case Intrinsic::fshr: { 6048 Value *Op0 = Call->getArgOperand(0), *Op1 = Call->getArgOperand(1), 6049 *ShAmtArg = Call->getArgOperand(2); 6050 6051 // If both operands are undef, the result is undef. 6052 if (Q.isUndefValue(Op0) && Q.isUndefValue(Op1)) 6053 return UndefValue::get(F->getReturnType()); 6054 6055 // If shift amount is undef, assume it is zero. 6056 if (Q.isUndefValue(ShAmtArg)) 6057 return Call->getArgOperand(IID == Intrinsic::fshl ? 0 : 1); 6058 6059 const APInt *ShAmtC; 6060 if (match(ShAmtArg, m_APInt(ShAmtC))) { 6061 // If there's effectively no shift, return the 1st arg or 2nd arg. 6062 APInt BitWidth = APInt(ShAmtC->getBitWidth(), ShAmtC->getBitWidth()); 6063 if (ShAmtC->urem(BitWidth).isZero()) 6064 return Call->getArgOperand(IID == Intrinsic::fshl ? 0 : 1); 6065 } 6066 6067 // Rotating zero by anything is zero. 6068 if (match(Op0, m_Zero()) && match(Op1, m_Zero())) 6069 return ConstantInt::getNullValue(F->getReturnType()); 6070 6071 // Rotating -1 by anything is -1. 6072 if (match(Op0, m_AllOnes()) && match(Op1, m_AllOnes())) 6073 return ConstantInt::getAllOnesValue(F->getReturnType()); 6074 6075 return nullptr; 6076 } 6077 case Intrinsic::experimental_constrained_fma: { 6078 Value *Op0 = Call->getArgOperand(0); 6079 Value *Op1 = Call->getArgOperand(1); 6080 Value *Op2 = Call->getArgOperand(2); 6081 auto *FPI = cast<ConstrainedFPIntrinsic>(Call); 6082 if (Value *V = simplifyFPOp({Op0, Op1, Op2}, {}, Q, 6083 FPI->getExceptionBehavior().getValue(), 6084 FPI->getRoundingMode().getValue())) 6085 return V; 6086 return nullptr; 6087 } 6088 case Intrinsic::fma: 6089 case Intrinsic::fmuladd: { 6090 Value *Op0 = Call->getArgOperand(0); 6091 Value *Op1 = Call->getArgOperand(1); 6092 Value *Op2 = Call->getArgOperand(2); 6093 if (Value *V = simplifyFPOp({Op0, Op1, Op2}, {}, Q, fp::ebIgnore, 6094 RoundingMode::NearestTiesToEven)) 6095 return V; 6096 return nullptr; 6097 } 6098 case Intrinsic::smul_fix: 6099 case Intrinsic::smul_fix_sat: { 6100 Value *Op0 = Call->getArgOperand(0); 6101 Value *Op1 = Call->getArgOperand(1); 6102 Value *Op2 = Call->getArgOperand(2); 6103 Type *ReturnType = F->getReturnType(); 6104 6105 // Canonicalize constant operand as Op1 (ConstantFolding handles the case 6106 // when both Op0 and Op1 are constant so we do not care about that special 6107 // case here). 6108 if (isa<Constant>(Op0)) 6109 std::swap(Op0, Op1); 6110 6111 // X * 0 -> 0 6112 if (match(Op1, m_Zero())) 6113 return Constant::getNullValue(ReturnType); 6114 6115 // X * undef -> 0 6116 if (Q.isUndefValue(Op1)) 6117 return Constant::getNullValue(ReturnType); 6118 6119 // X * (1 << Scale) -> X 6120 APInt ScaledOne = 6121 APInt::getOneBitSet(ReturnType->getScalarSizeInBits(), 6122 cast<ConstantInt>(Op2)->getZExtValue()); 6123 if (ScaledOne.isNonNegative() && match(Op1, m_SpecificInt(ScaledOne))) 6124 return Op0; 6125 6126 return nullptr; 6127 } 6128 case Intrinsic::experimental_vector_insert: { 6129 Value *Vec = Call->getArgOperand(0); 6130 Value *SubVec = Call->getArgOperand(1); 6131 Value *Idx = Call->getArgOperand(2); 6132 Type *ReturnType = F->getReturnType(); 6133 6134 // (insert_vector Y, (extract_vector X, 0), 0) -> X 6135 // where: Y is X, or Y is undef 6136 unsigned IdxN = cast<ConstantInt>(Idx)->getZExtValue(); 6137 Value *X = nullptr; 6138 if (match(SubVec, m_Intrinsic<Intrinsic::experimental_vector_extract>( 6139 m_Value(X), m_Zero())) && 6140 (Q.isUndefValue(Vec) || Vec == X) && IdxN == 0 && 6141 X->getType() == ReturnType) 6142 return X; 6143 6144 return nullptr; 6145 } 6146 case Intrinsic::experimental_constrained_fadd: { 6147 auto *FPI = cast<ConstrainedFPIntrinsic>(Call); 6148 return SimplifyFAddInst(FPI->getArgOperand(0), FPI->getArgOperand(1), 6149 FPI->getFastMathFlags(), Q, 6150 FPI->getExceptionBehavior().getValue(), 6151 FPI->getRoundingMode().getValue()); 6152 break; 6153 } 6154 case Intrinsic::experimental_constrained_fsub: { 6155 auto *FPI = cast<ConstrainedFPIntrinsic>(Call); 6156 return SimplifyFSubInst(FPI->getArgOperand(0), FPI->getArgOperand(1), 6157 FPI->getFastMathFlags(), Q, 6158 FPI->getExceptionBehavior().getValue(), 6159 FPI->getRoundingMode().getValue()); 6160 break; 6161 } 6162 case Intrinsic::experimental_constrained_fmul: { 6163 auto *FPI = cast<ConstrainedFPIntrinsic>(Call); 6164 return SimplifyFMulInst(FPI->getArgOperand(0), FPI->getArgOperand(1), 6165 FPI->getFastMathFlags(), Q, 6166 FPI->getExceptionBehavior().getValue(), 6167 FPI->getRoundingMode().getValue()); 6168 break; 6169 } 6170 case Intrinsic::experimental_constrained_fdiv: { 6171 auto *FPI = cast<ConstrainedFPIntrinsic>(Call); 6172 return SimplifyFDivInst(FPI->getArgOperand(0), FPI->getArgOperand(1), 6173 FPI->getFastMathFlags(), Q, 6174 FPI->getExceptionBehavior().getValue(), 6175 FPI->getRoundingMode().getValue()); 6176 break; 6177 } 6178 case Intrinsic::experimental_constrained_frem: { 6179 auto *FPI = cast<ConstrainedFPIntrinsic>(Call); 6180 return SimplifyFRemInst(FPI->getArgOperand(0), FPI->getArgOperand(1), 6181 FPI->getFastMathFlags(), Q, 6182 FPI->getExceptionBehavior().getValue(), 6183 FPI->getRoundingMode().getValue()); 6184 break; 6185 } 6186 default: 6187 return nullptr; 6188 } 6189 } 6190 6191 static Value *tryConstantFoldCall(CallBase *Call, const SimplifyQuery &Q) { 6192 auto *F = dyn_cast<Function>(Call->getCalledOperand()); 6193 if (!F || !canConstantFoldCallTo(Call, F)) 6194 return nullptr; 6195 6196 SmallVector<Constant *, 4> ConstantArgs; 6197 unsigned NumArgs = Call->arg_size(); 6198 ConstantArgs.reserve(NumArgs); 6199 for (auto &Arg : Call->args()) { 6200 Constant *C = dyn_cast<Constant>(&Arg); 6201 if (!C) { 6202 if (isa<MetadataAsValue>(Arg.get())) 6203 continue; 6204 return nullptr; 6205 } 6206 ConstantArgs.push_back(C); 6207 } 6208 6209 return ConstantFoldCall(Call, F, ConstantArgs, Q.TLI); 6210 } 6211 6212 Value *llvm::SimplifyCall(CallBase *Call, const SimplifyQuery &Q) { 6213 // musttail calls can only be simplified if they are also DCEd. 6214 // As we can't guarantee this here, don't simplify them. 6215 if (Call->isMustTailCall()) 6216 return nullptr; 6217 6218 // call undef -> poison 6219 // call null -> poison 6220 Value *Callee = Call->getCalledOperand(); 6221 if (isa<UndefValue>(Callee) || isa<ConstantPointerNull>(Callee)) 6222 return PoisonValue::get(Call->getType()); 6223 6224 if (Value *V = tryConstantFoldCall(Call, Q)) 6225 return V; 6226 6227 auto *F = dyn_cast<Function>(Callee); 6228 if (F && F->isIntrinsic()) 6229 if (Value *Ret = simplifyIntrinsic(Call, Q)) 6230 return Ret; 6231 6232 return nullptr; 6233 } 6234 6235 Value *llvm::SimplifyConstrainedFPCall(CallBase *Call, const SimplifyQuery &Q) { 6236 assert(isa<ConstrainedFPIntrinsic>(Call)); 6237 if (Value *V = tryConstantFoldCall(Call, Q)) 6238 return V; 6239 if (Value *Ret = simplifyIntrinsic(Call, Q)) 6240 return Ret; 6241 return nullptr; 6242 } 6243 6244 /// Given operands for a Freeze, see if we can fold the result. 6245 static Value *SimplifyFreezeInst(Value *Op0, const SimplifyQuery &Q) { 6246 // Use a utility function defined in ValueTracking. 6247 if (llvm::isGuaranteedNotToBeUndefOrPoison(Op0, Q.AC, Q.CxtI, Q.DT)) 6248 return Op0; 6249 // We have room for improvement. 6250 return nullptr; 6251 } 6252 6253 Value *llvm::SimplifyFreezeInst(Value *Op0, const SimplifyQuery &Q) { 6254 return ::SimplifyFreezeInst(Op0, Q); 6255 } 6256 6257 static Value *SimplifyLoadInst(LoadInst *LI, Value *PtrOp, 6258 const SimplifyQuery &Q) { 6259 if (LI->isVolatile()) 6260 return nullptr; 6261 6262 APInt Offset(Q.DL.getIndexTypeSizeInBits(PtrOp->getType()), 0); 6263 auto *PtrOpC = dyn_cast<Constant>(PtrOp); 6264 // Try to convert operand into a constant by stripping offsets while looking 6265 // through invariant.group intrinsics. Don't bother if the underlying object 6266 // is not constant, as calculating GEP offsets is expensive. 6267 if (!PtrOpC && isa<Constant>(getUnderlyingObject(PtrOp))) { 6268 PtrOp = PtrOp->stripAndAccumulateConstantOffsets( 6269 Q.DL, Offset, /* AllowNonInbounts */ true, 6270 /* AllowInvariantGroup */ true); 6271 // Index size may have changed due to address space casts. 6272 Offset = Offset.sextOrTrunc(Q.DL.getIndexTypeSizeInBits(PtrOp->getType())); 6273 PtrOpC = dyn_cast<Constant>(PtrOp); 6274 } 6275 6276 if (PtrOpC) 6277 return ConstantFoldLoadFromConstPtr(PtrOpC, LI->getType(), Offset, Q.DL); 6278 return nullptr; 6279 } 6280 6281 /// See if we can compute a simplified version of this instruction. 6282 /// If not, this returns null. 6283 6284 static Value *simplifyInstructionWithOperands(Instruction *I, 6285 ArrayRef<Value *> NewOps, 6286 const SimplifyQuery &SQ, 6287 OptimizationRemarkEmitter *ORE) { 6288 const SimplifyQuery Q = SQ.CxtI ? SQ : SQ.getWithInstruction(I); 6289 Value *Result = nullptr; 6290 6291 switch (I->getOpcode()) { 6292 default: 6293 if (llvm::all_of(NewOps, [](Value *V) { return isa<Constant>(V); })) { 6294 SmallVector<Constant *, 8> NewConstOps(NewOps.size()); 6295 transform(NewOps, NewConstOps.begin(), 6296 [](Value *V) { return cast<Constant>(V); }); 6297 Result = ConstantFoldInstOperands(I, NewConstOps, Q.DL, Q.TLI); 6298 } 6299 break; 6300 case Instruction::FNeg: 6301 Result = SimplifyFNegInst(NewOps[0], I->getFastMathFlags(), Q); 6302 break; 6303 case Instruction::FAdd: 6304 Result = SimplifyFAddInst(NewOps[0], NewOps[1], I->getFastMathFlags(), Q); 6305 break; 6306 case Instruction::Add: 6307 Result = SimplifyAddInst( 6308 NewOps[0], NewOps[1], Q.IIQ.hasNoSignedWrap(cast<BinaryOperator>(I)), 6309 Q.IIQ.hasNoUnsignedWrap(cast<BinaryOperator>(I)), Q); 6310 break; 6311 case Instruction::FSub: 6312 Result = SimplifyFSubInst(NewOps[0], NewOps[1], I->getFastMathFlags(), Q); 6313 break; 6314 case Instruction::Sub: 6315 Result = SimplifySubInst( 6316 NewOps[0], NewOps[1], Q.IIQ.hasNoSignedWrap(cast<BinaryOperator>(I)), 6317 Q.IIQ.hasNoUnsignedWrap(cast<BinaryOperator>(I)), Q); 6318 break; 6319 case Instruction::FMul: 6320 Result = SimplifyFMulInst(NewOps[0], NewOps[1], I->getFastMathFlags(), Q); 6321 break; 6322 case Instruction::Mul: 6323 Result = SimplifyMulInst(NewOps[0], NewOps[1], Q); 6324 break; 6325 case Instruction::SDiv: 6326 Result = SimplifySDivInst(NewOps[0], NewOps[1], Q); 6327 break; 6328 case Instruction::UDiv: 6329 Result = SimplifyUDivInst(NewOps[0], NewOps[1], Q); 6330 break; 6331 case Instruction::FDiv: 6332 Result = SimplifyFDivInst(NewOps[0], NewOps[1], I->getFastMathFlags(), Q); 6333 break; 6334 case Instruction::SRem: 6335 Result = SimplifySRemInst(NewOps[0], NewOps[1], Q); 6336 break; 6337 case Instruction::URem: 6338 Result = SimplifyURemInst(NewOps[0], NewOps[1], Q); 6339 break; 6340 case Instruction::FRem: 6341 Result = SimplifyFRemInst(NewOps[0], NewOps[1], I->getFastMathFlags(), Q); 6342 break; 6343 case Instruction::Shl: 6344 Result = SimplifyShlInst( 6345 NewOps[0], NewOps[1], Q.IIQ.hasNoSignedWrap(cast<BinaryOperator>(I)), 6346 Q.IIQ.hasNoUnsignedWrap(cast<BinaryOperator>(I)), Q); 6347 break; 6348 case Instruction::LShr: 6349 Result = SimplifyLShrInst(NewOps[0], NewOps[1], 6350 Q.IIQ.isExact(cast<BinaryOperator>(I)), Q); 6351 break; 6352 case Instruction::AShr: 6353 Result = SimplifyAShrInst(NewOps[0], NewOps[1], 6354 Q.IIQ.isExact(cast<BinaryOperator>(I)), Q); 6355 break; 6356 case Instruction::And: 6357 Result = SimplifyAndInst(NewOps[0], NewOps[1], Q); 6358 break; 6359 case Instruction::Or: 6360 Result = SimplifyOrInst(NewOps[0], NewOps[1], Q); 6361 break; 6362 case Instruction::Xor: 6363 Result = SimplifyXorInst(NewOps[0], NewOps[1], Q); 6364 break; 6365 case Instruction::ICmp: 6366 Result = SimplifyICmpInst(cast<ICmpInst>(I)->getPredicate(), NewOps[0], 6367 NewOps[1], Q); 6368 break; 6369 case Instruction::FCmp: 6370 Result = SimplifyFCmpInst(cast<FCmpInst>(I)->getPredicate(), NewOps[0], 6371 NewOps[1], I->getFastMathFlags(), Q); 6372 break; 6373 case Instruction::Select: 6374 Result = SimplifySelectInst(NewOps[0], NewOps[1], NewOps[2], Q); 6375 break; 6376 case Instruction::GetElementPtr: { 6377 auto *GEPI = cast<GetElementPtrInst>(I); 6378 Result = 6379 SimplifyGEPInst(GEPI->getSourceElementType(), NewOps[0], 6380 makeArrayRef(NewOps).slice(1), GEPI->isInBounds(), Q); 6381 break; 6382 } 6383 case Instruction::InsertValue: { 6384 InsertValueInst *IV = cast<InsertValueInst>(I); 6385 Result = SimplifyInsertValueInst(NewOps[0], NewOps[1], IV->getIndices(), Q); 6386 break; 6387 } 6388 case Instruction::InsertElement: { 6389 Result = SimplifyInsertElementInst(NewOps[0], NewOps[1], NewOps[2], Q); 6390 break; 6391 } 6392 case Instruction::ExtractValue: { 6393 auto *EVI = cast<ExtractValueInst>(I); 6394 Result = SimplifyExtractValueInst(NewOps[0], EVI->getIndices(), Q); 6395 break; 6396 } 6397 case Instruction::ExtractElement: { 6398 Result = SimplifyExtractElementInst(NewOps[0], NewOps[1], Q); 6399 break; 6400 } 6401 case Instruction::ShuffleVector: { 6402 auto *SVI = cast<ShuffleVectorInst>(I); 6403 Result = SimplifyShuffleVectorInst( 6404 NewOps[0], NewOps[1], SVI->getShuffleMask(), SVI->getType(), Q); 6405 break; 6406 } 6407 case Instruction::PHI: 6408 Result = SimplifyPHINode(cast<PHINode>(I), NewOps, Q); 6409 break; 6410 case Instruction::Call: { 6411 // TODO: Use NewOps 6412 Result = SimplifyCall(cast<CallInst>(I), Q); 6413 break; 6414 } 6415 case Instruction::Freeze: 6416 Result = llvm::SimplifyFreezeInst(NewOps[0], Q); 6417 break; 6418 #define HANDLE_CAST_INST(num, opc, clas) case Instruction::opc: 6419 #include "llvm/IR/Instruction.def" 6420 #undef HANDLE_CAST_INST 6421 Result = SimplifyCastInst(I->getOpcode(), NewOps[0], I->getType(), Q); 6422 break; 6423 case Instruction::Alloca: 6424 // No simplifications for Alloca and it can't be constant folded. 6425 Result = nullptr; 6426 break; 6427 case Instruction::Load: 6428 Result = SimplifyLoadInst(cast<LoadInst>(I), NewOps[0], Q); 6429 break; 6430 } 6431 6432 /// If called on unreachable code, the above logic may report that the 6433 /// instruction simplified to itself. Make life easier for users by 6434 /// detecting that case here, returning a safe value instead. 6435 return Result == I ? UndefValue::get(I->getType()) : Result; 6436 } 6437 6438 Value *llvm::SimplifyInstructionWithOperands(Instruction *I, 6439 ArrayRef<Value *> NewOps, 6440 const SimplifyQuery &SQ, 6441 OptimizationRemarkEmitter *ORE) { 6442 assert(NewOps.size() == I->getNumOperands() && 6443 "Number of operands should match the instruction!"); 6444 return ::simplifyInstructionWithOperands(I, NewOps, SQ, ORE); 6445 } 6446 6447 Value *llvm::SimplifyInstruction(Instruction *I, const SimplifyQuery &SQ, 6448 OptimizationRemarkEmitter *ORE) { 6449 SmallVector<Value *, 8> Ops(I->operands()); 6450 return ::simplifyInstructionWithOperands(I, Ops, SQ, ORE); 6451 } 6452 6453 /// Implementation of recursive simplification through an instruction's 6454 /// uses. 6455 /// 6456 /// This is the common implementation of the recursive simplification routines. 6457 /// If we have a pre-simplified value in 'SimpleV', that is forcibly used to 6458 /// replace the instruction 'I'. Otherwise, we simply add 'I' to the list of 6459 /// instructions to process and attempt to simplify it using 6460 /// InstructionSimplify. Recursively visited users which could not be 6461 /// simplified themselves are to the optional UnsimplifiedUsers set for 6462 /// further processing by the caller. 6463 /// 6464 /// This routine returns 'true' only when *it* simplifies something. The passed 6465 /// in simplified value does not count toward this. 6466 static bool replaceAndRecursivelySimplifyImpl( 6467 Instruction *I, Value *SimpleV, const TargetLibraryInfo *TLI, 6468 const DominatorTree *DT, AssumptionCache *AC, 6469 SmallSetVector<Instruction *, 8> *UnsimplifiedUsers = nullptr) { 6470 bool Simplified = false; 6471 SmallSetVector<Instruction *, 8> Worklist; 6472 const DataLayout &DL = I->getModule()->getDataLayout(); 6473 6474 // If we have an explicit value to collapse to, do that round of the 6475 // simplification loop by hand initially. 6476 if (SimpleV) { 6477 for (User *U : I->users()) 6478 if (U != I) 6479 Worklist.insert(cast<Instruction>(U)); 6480 6481 // Replace the instruction with its simplified value. 6482 I->replaceAllUsesWith(SimpleV); 6483 6484 // Gracefully handle edge cases where the instruction is not wired into any 6485 // parent block. 6486 if (I->getParent() && !I->isEHPad() && !I->isTerminator() && 6487 !I->mayHaveSideEffects()) 6488 I->eraseFromParent(); 6489 } else { 6490 Worklist.insert(I); 6491 } 6492 6493 // Note that we must test the size on each iteration, the worklist can grow. 6494 for (unsigned Idx = 0; Idx != Worklist.size(); ++Idx) { 6495 I = Worklist[Idx]; 6496 6497 // See if this instruction simplifies. 6498 SimpleV = SimplifyInstruction(I, {DL, TLI, DT, AC}); 6499 if (!SimpleV) { 6500 if (UnsimplifiedUsers) 6501 UnsimplifiedUsers->insert(I); 6502 continue; 6503 } 6504 6505 Simplified = true; 6506 6507 // Stash away all the uses of the old instruction so we can check them for 6508 // recursive simplifications after a RAUW. This is cheaper than checking all 6509 // uses of To on the recursive step in most cases. 6510 for (User *U : I->users()) 6511 Worklist.insert(cast<Instruction>(U)); 6512 6513 // Replace the instruction with its simplified value. 6514 I->replaceAllUsesWith(SimpleV); 6515 6516 // Gracefully handle edge cases where the instruction is not wired into any 6517 // parent block. 6518 if (I->getParent() && !I->isEHPad() && !I->isTerminator() && 6519 !I->mayHaveSideEffects()) 6520 I->eraseFromParent(); 6521 } 6522 return Simplified; 6523 } 6524 6525 bool llvm::replaceAndRecursivelySimplify( 6526 Instruction *I, Value *SimpleV, const TargetLibraryInfo *TLI, 6527 const DominatorTree *DT, AssumptionCache *AC, 6528 SmallSetVector<Instruction *, 8> *UnsimplifiedUsers) { 6529 assert(I != SimpleV && "replaceAndRecursivelySimplify(X,X) is not valid!"); 6530 assert(SimpleV && "Must provide a simplified value."); 6531 return replaceAndRecursivelySimplifyImpl(I, SimpleV, TLI, DT, AC, 6532 UnsimplifiedUsers); 6533 } 6534 6535 namespace llvm { 6536 const SimplifyQuery getBestSimplifyQuery(Pass &P, Function &F) { 6537 auto *DTWP = P.getAnalysisIfAvailable<DominatorTreeWrapperPass>(); 6538 auto *DT = DTWP ? &DTWP->getDomTree() : nullptr; 6539 auto *TLIWP = P.getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 6540 auto *TLI = TLIWP ? &TLIWP->getTLI(F) : nullptr; 6541 auto *ACWP = P.getAnalysisIfAvailable<AssumptionCacheTracker>(); 6542 auto *AC = ACWP ? &ACWP->getAssumptionCache(F) : nullptr; 6543 return {F.getParent()->getDataLayout(), TLI, DT, AC}; 6544 } 6545 6546 const SimplifyQuery getBestSimplifyQuery(LoopStandardAnalysisResults &AR, 6547 const DataLayout &DL) { 6548 return {DL, &AR.TLI, &AR.DT, &AR.AC}; 6549 } 6550 6551 template <class T, class... TArgs> 6552 const SimplifyQuery getBestSimplifyQuery(AnalysisManager<T, TArgs...> &AM, 6553 Function &F) { 6554 auto *DT = AM.template getCachedResult<DominatorTreeAnalysis>(F); 6555 auto *TLI = AM.template getCachedResult<TargetLibraryAnalysis>(F); 6556 auto *AC = AM.template getCachedResult<AssumptionAnalysis>(F); 6557 return {F.getParent()->getDataLayout(), TLI, DT, AC}; 6558 } 6559 template const SimplifyQuery getBestSimplifyQuery(AnalysisManager<Function> &, 6560 Function &); 6561 } 6562 6563 void InstSimplifyFolder::anchor() {} 6564