1 //===- InstructionSimplify.cpp - Fold instruction operands ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements routines for folding instructions into simpler forms 11 // that do not require creating new instructions. This does constant folding 12 // ("add i32 1, 1" -> "2") but can also handle non-constant operands, either 13 // returning a constant ("and i32 %x, 0" -> "0") or an already existing value 14 // ("and i32 %x, %x" -> "%x"). All operands are assumed to have already been 15 // simplified: This is usually true and assuming it simplifies the logic (if 16 // they have not been simplified then results are correct but maybe suboptimal). 17 // 18 //===----------------------------------------------------------------------===// 19 20 #include "llvm/Analysis/InstructionSimplify.h" 21 #include "llvm/ADT/SetVector.h" 22 #include "llvm/ADT/Statistic.h" 23 #include "llvm/Analysis/AliasAnalysis.h" 24 #include "llvm/Analysis/AssumptionCache.h" 25 #include "llvm/Analysis/CaptureTracking.h" 26 #include "llvm/Analysis/CmpInstAnalysis.h" 27 #include "llvm/Analysis/ConstantFolding.h" 28 #include "llvm/Analysis/LoopAnalysisManager.h" 29 #include "llvm/Analysis/MemoryBuiltins.h" 30 #include "llvm/Analysis/ValueTracking.h" 31 #include "llvm/Analysis/VectorUtils.h" 32 #include "llvm/IR/ConstantRange.h" 33 #include "llvm/IR/DataLayout.h" 34 #include "llvm/IR/Dominators.h" 35 #include "llvm/IR/GetElementPtrTypeIterator.h" 36 #include "llvm/IR/GlobalAlias.h" 37 #include "llvm/IR/Operator.h" 38 #include "llvm/IR/PatternMatch.h" 39 #include "llvm/IR/ValueHandle.h" 40 #include "llvm/Support/KnownBits.h" 41 #include <algorithm> 42 using namespace llvm; 43 using namespace llvm::PatternMatch; 44 45 #define DEBUG_TYPE "instsimplify" 46 47 enum { RecursionLimit = 3 }; 48 49 STATISTIC(NumExpand, "Number of expansions"); 50 STATISTIC(NumReassoc, "Number of reassociations"); 51 52 static Value *SimplifyAndInst(Value *, Value *, const SimplifyQuery &, unsigned); 53 static Value *SimplifyBinOp(unsigned, Value *, Value *, const SimplifyQuery &, 54 unsigned); 55 static Value *SimplifyFPBinOp(unsigned, Value *, Value *, const FastMathFlags &, 56 const SimplifyQuery &, unsigned); 57 static Value *SimplifyCmpInst(unsigned, Value *, Value *, const SimplifyQuery &, 58 unsigned); 59 static Value *SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS, 60 const SimplifyQuery &Q, unsigned MaxRecurse); 61 static Value *SimplifyOrInst(Value *, Value *, const SimplifyQuery &, unsigned); 62 static Value *SimplifyXorInst(Value *, Value *, const SimplifyQuery &, unsigned); 63 static Value *SimplifyCastInst(unsigned, Value *, Type *, 64 const SimplifyQuery &, unsigned); 65 66 /// For a boolean type or a vector of boolean type, return false or a vector 67 /// with every element false. 68 static Constant *getFalse(Type *Ty) { 69 return ConstantInt::getFalse(Ty); 70 } 71 72 /// For a boolean type or a vector of boolean type, return true or a vector 73 /// with every element true. 74 static Constant *getTrue(Type *Ty) { 75 return ConstantInt::getTrue(Ty); 76 } 77 78 /// isSameCompare - Is V equivalent to the comparison "LHS Pred RHS"? 79 static bool isSameCompare(Value *V, CmpInst::Predicate Pred, Value *LHS, 80 Value *RHS) { 81 CmpInst *Cmp = dyn_cast<CmpInst>(V); 82 if (!Cmp) 83 return false; 84 CmpInst::Predicate CPred = Cmp->getPredicate(); 85 Value *CLHS = Cmp->getOperand(0), *CRHS = Cmp->getOperand(1); 86 if (CPred == Pred && CLHS == LHS && CRHS == RHS) 87 return true; 88 return CPred == CmpInst::getSwappedPredicate(Pred) && CLHS == RHS && 89 CRHS == LHS; 90 } 91 92 /// Does the given value dominate the specified phi node? 93 static bool ValueDominatesPHI(Value *V, PHINode *P, const DominatorTree *DT) { 94 Instruction *I = dyn_cast<Instruction>(V); 95 if (!I) 96 // Arguments and constants dominate all instructions. 97 return true; 98 99 // If we are processing instructions (and/or basic blocks) that have not been 100 // fully added to a function, the parent nodes may still be null. Simply 101 // return the conservative answer in these cases. 102 if (!I->getParent() || !P->getParent() || !I->getParent()->getParent()) 103 return false; 104 105 // If we have a DominatorTree then do a precise test. 106 if (DT) 107 return DT->dominates(I, P); 108 109 // Otherwise, if the instruction is in the entry block and is not an invoke, 110 // then it obviously dominates all phi nodes. 111 if (I->getParent() == &I->getParent()->getParent()->getEntryBlock() && 112 !isa<InvokeInst>(I)) 113 return true; 114 115 return false; 116 } 117 118 /// Simplify "A op (B op' C)" by distributing op over op', turning it into 119 /// "(A op B) op' (A op C)". Here "op" is given by Opcode and "op'" is 120 /// given by OpcodeToExpand, while "A" corresponds to LHS and "B op' C" to RHS. 121 /// Also performs the transform "(A op' B) op C" -> "(A op C) op' (B op C)". 122 /// Returns the simplified value, or null if no simplification was performed. 123 static Value *ExpandBinOp(Instruction::BinaryOps Opcode, Value *LHS, Value *RHS, 124 Instruction::BinaryOps OpcodeToExpand, 125 const SimplifyQuery &Q, unsigned MaxRecurse) { 126 // Recursion is always used, so bail out at once if we already hit the limit. 127 if (!MaxRecurse--) 128 return nullptr; 129 130 // Check whether the expression has the form "(A op' B) op C". 131 if (BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS)) 132 if (Op0->getOpcode() == OpcodeToExpand) { 133 // It does! Try turning it into "(A op C) op' (B op C)". 134 Value *A = Op0->getOperand(0), *B = Op0->getOperand(1), *C = RHS; 135 // Do "A op C" and "B op C" both simplify? 136 if (Value *L = SimplifyBinOp(Opcode, A, C, Q, MaxRecurse)) 137 if (Value *R = SimplifyBinOp(Opcode, B, C, Q, MaxRecurse)) { 138 // They do! Return "L op' R" if it simplifies or is already available. 139 // If "L op' R" equals "A op' B" then "L op' R" is just the LHS. 140 if ((L == A && R == B) || (Instruction::isCommutative(OpcodeToExpand) 141 && L == B && R == A)) { 142 ++NumExpand; 143 return LHS; 144 } 145 // Otherwise return "L op' R" if it simplifies. 146 if (Value *V = SimplifyBinOp(OpcodeToExpand, L, R, Q, MaxRecurse)) { 147 ++NumExpand; 148 return V; 149 } 150 } 151 } 152 153 // Check whether the expression has the form "A op (B op' C)". 154 if (BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS)) 155 if (Op1->getOpcode() == OpcodeToExpand) { 156 // It does! Try turning it into "(A op B) op' (A op C)". 157 Value *A = LHS, *B = Op1->getOperand(0), *C = Op1->getOperand(1); 158 // Do "A op B" and "A op C" both simplify? 159 if (Value *L = SimplifyBinOp(Opcode, A, B, Q, MaxRecurse)) 160 if (Value *R = SimplifyBinOp(Opcode, A, C, Q, MaxRecurse)) { 161 // They do! Return "L op' R" if it simplifies or is already available. 162 // If "L op' R" equals "B op' C" then "L op' R" is just the RHS. 163 if ((L == B && R == C) || (Instruction::isCommutative(OpcodeToExpand) 164 && L == C && R == B)) { 165 ++NumExpand; 166 return RHS; 167 } 168 // Otherwise return "L op' R" if it simplifies. 169 if (Value *V = SimplifyBinOp(OpcodeToExpand, L, R, Q, MaxRecurse)) { 170 ++NumExpand; 171 return V; 172 } 173 } 174 } 175 176 return nullptr; 177 } 178 179 /// Generic simplifications for associative binary operations. 180 /// Returns the simpler value, or null if none was found. 181 static Value *SimplifyAssociativeBinOp(Instruction::BinaryOps Opcode, 182 Value *LHS, Value *RHS, 183 const SimplifyQuery &Q, 184 unsigned MaxRecurse) { 185 assert(Instruction::isAssociative(Opcode) && "Not an associative operation!"); 186 187 // Recursion is always used, so bail out at once if we already hit the limit. 188 if (!MaxRecurse--) 189 return nullptr; 190 191 BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS); 192 BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS); 193 194 // Transform: "(A op B) op C" ==> "A op (B op C)" if it simplifies completely. 195 if (Op0 && Op0->getOpcode() == Opcode) { 196 Value *A = Op0->getOperand(0); 197 Value *B = Op0->getOperand(1); 198 Value *C = RHS; 199 200 // Does "B op C" simplify? 201 if (Value *V = SimplifyBinOp(Opcode, B, C, Q, MaxRecurse)) { 202 // It does! Return "A op V" if it simplifies or is already available. 203 // If V equals B then "A op V" is just the LHS. 204 if (V == B) return LHS; 205 // Otherwise return "A op V" if it simplifies. 206 if (Value *W = SimplifyBinOp(Opcode, A, V, Q, MaxRecurse)) { 207 ++NumReassoc; 208 return W; 209 } 210 } 211 } 212 213 // Transform: "A op (B op C)" ==> "(A op B) op C" if it simplifies completely. 214 if (Op1 && Op1->getOpcode() == Opcode) { 215 Value *A = LHS; 216 Value *B = Op1->getOperand(0); 217 Value *C = Op1->getOperand(1); 218 219 // Does "A op B" simplify? 220 if (Value *V = SimplifyBinOp(Opcode, A, B, Q, MaxRecurse)) { 221 // It does! Return "V op C" if it simplifies or is already available. 222 // If V equals B then "V op C" is just the RHS. 223 if (V == B) return RHS; 224 // Otherwise return "V op C" if it simplifies. 225 if (Value *W = SimplifyBinOp(Opcode, V, C, Q, MaxRecurse)) { 226 ++NumReassoc; 227 return W; 228 } 229 } 230 } 231 232 // The remaining transforms require commutativity as well as associativity. 233 if (!Instruction::isCommutative(Opcode)) 234 return nullptr; 235 236 // Transform: "(A op B) op C" ==> "(C op A) op B" if it simplifies completely. 237 if (Op0 && Op0->getOpcode() == Opcode) { 238 Value *A = Op0->getOperand(0); 239 Value *B = Op0->getOperand(1); 240 Value *C = RHS; 241 242 // Does "C op A" simplify? 243 if (Value *V = SimplifyBinOp(Opcode, C, A, Q, MaxRecurse)) { 244 // It does! Return "V op B" if it simplifies or is already available. 245 // If V equals A then "V op B" is just the LHS. 246 if (V == A) return LHS; 247 // Otherwise return "V op B" if it simplifies. 248 if (Value *W = SimplifyBinOp(Opcode, V, B, Q, MaxRecurse)) { 249 ++NumReassoc; 250 return W; 251 } 252 } 253 } 254 255 // Transform: "A op (B op C)" ==> "B op (C op A)" if it simplifies completely. 256 if (Op1 && Op1->getOpcode() == Opcode) { 257 Value *A = LHS; 258 Value *B = Op1->getOperand(0); 259 Value *C = Op1->getOperand(1); 260 261 // Does "C op A" simplify? 262 if (Value *V = SimplifyBinOp(Opcode, C, A, Q, MaxRecurse)) { 263 // It does! Return "B op V" if it simplifies or is already available. 264 // If V equals C then "B op V" is just the RHS. 265 if (V == C) return RHS; 266 // Otherwise return "B op V" if it simplifies. 267 if (Value *W = SimplifyBinOp(Opcode, B, V, Q, MaxRecurse)) { 268 ++NumReassoc; 269 return W; 270 } 271 } 272 } 273 274 return nullptr; 275 } 276 277 /// In the case of a binary operation with a select instruction as an operand, 278 /// try to simplify the binop by seeing whether evaluating it on both branches 279 /// of the select results in the same value. Returns the common value if so, 280 /// otherwise returns null. 281 static Value *ThreadBinOpOverSelect(Instruction::BinaryOps Opcode, Value *LHS, 282 Value *RHS, const SimplifyQuery &Q, 283 unsigned MaxRecurse) { 284 // Recursion is always used, so bail out at once if we already hit the limit. 285 if (!MaxRecurse--) 286 return nullptr; 287 288 SelectInst *SI; 289 if (isa<SelectInst>(LHS)) { 290 SI = cast<SelectInst>(LHS); 291 } else { 292 assert(isa<SelectInst>(RHS) && "No select instruction operand!"); 293 SI = cast<SelectInst>(RHS); 294 } 295 296 // Evaluate the BinOp on the true and false branches of the select. 297 Value *TV; 298 Value *FV; 299 if (SI == LHS) { 300 TV = SimplifyBinOp(Opcode, SI->getTrueValue(), RHS, Q, MaxRecurse); 301 FV = SimplifyBinOp(Opcode, SI->getFalseValue(), RHS, Q, MaxRecurse); 302 } else { 303 TV = SimplifyBinOp(Opcode, LHS, SI->getTrueValue(), Q, MaxRecurse); 304 FV = SimplifyBinOp(Opcode, LHS, SI->getFalseValue(), Q, MaxRecurse); 305 } 306 307 // If they simplified to the same value, then return the common value. 308 // If they both failed to simplify then return null. 309 if (TV == FV) 310 return TV; 311 312 // If one branch simplified to undef, return the other one. 313 if (TV && isa<UndefValue>(TV)) 314 return FV; 315 if (FV && isa<UndefValue>(FV)) 316 return TV; 317 318 // If applying the operation did not change the true and false select values, 319 // then the result of the binop is the select itself. 320 if (TV == SI->getTrueValue() && FV == SI->getFalseValue()) 321 return SI; 322 323 // If one branch simplified and the other did not, and the simplified 324 // value is equal to the unsimplified one, return the simplified value. 325 // For example, select (cond, X, X & Z) & Z -> X & Z. 326 if ((FV && !TV) || (TV && !FV)) { 327 // Check that the simplified value has the form "X op Y" where "op" is the 328 // same as the original operation. 329 Instruction *Simplified = dyn_cast<Instruction>(FV ? FV : TV); 330 if (Simplified && Simplified->getOpcode() == unsigned(Opcode)) { 331 // The value that didn't simplify is "UnsimplifiedLHS op UnsimplifiedRHS". 332 // We already know that "op" is the same as for the simplified value. See 333 // if the operands match too. If so, return the simplified value. 334 Value *UnsimplifiedBranch = FV ? SI->getTrueValue() : SI->getFalseValue(); 335 Value *UnsimplifiedLHS = SI == LHS ? UnsimplifiedBranch : LHS; 336 Value *UnsimplifiedRHS = SI == LHS ? RHS : UnsimplifiedBranch; 337 if (Simplified->getOperand(0) == UnsimplifiedLHS && 338 Simplified->getOperand(1) == UnsimplifiedRHS) 339 return Simplified; 340 if (Simplified->isCommutative() && 341 Simplified->getOperand(1) == UnsimplifiedLHS && 342 Simplified->getOperand(0) == UnsimplifiedRHS) 343 return Simplified; 344 } 345 } 346 347 return nullptr; 348 } 349 350 /// In the case of a comparison with a select instruction, try to simplify the 351 /// comparison by seeing whether both branches of the select result in the same 352 /// value. Returns the common value if so, otherwise returns null. 353 static Value *ThreadCmpOverSelect(CmpInst::Predicate Pred, Value *LHS, 354 Value *RHS, const SimplifyQuery &Q, 355 unsigned MaxRecurse) { 356 // Recursion is always used, so bail out at once if we already hit the limit. 357 if (!MaxRecurse--) 358 return nullptr; 359 360 // Make sure the select is on the LHS. 361 if (!isa<SelectInst>(LHS)) { 362 std::swap(LHS, RHS); 363 Pred = CmpInst::getSwappedPredicate(Pred); 364 } 365 assert(isa<SelectInst>(LHS) && "Not comparing with a select instruction!"); 366 SelectInst *SI = cast<SelectInst>(LHS); 367 Value *Cond = SI->getCondition(); 368 Value *TV = SI->getTrueValue(); 369 Value *FV = SI->getFalseValue(); 370 371 // Now that we have "cmp select(Cond, TV, FV), RHS", analyse it. 372 // Does "cmp TV, RHS" simplify? 373 Value *TCmp = SimplifyCmpInst(Pred, TV, RHS, Q, MaxRecurse); 374 if (TCmp == Cond) { 375 // It not only simplified, it simplified to the select condition. Replace 376 // it with 'true'. 377 TCmp = getTrue(Cond->getType()); 378 } else if (!TCmp) { 379 // It didn't simplify. However if "cmp TV, RHS" is equal to the select 380 // condition then we can replace it with 'true'. Otherwise give up. 381 if (!isSameCompare(Cond, Pred, TV, RHS)) 382 return nullptr; 383 TCmp = getTrue(Cond->getType()); 384 } 385 386 // Does "cmp FV, RHS" simplify? 387 Value *FCmp = SimplifyCmpInst(Pred, FV, RHS, Q, MaxRecurse); 388 if (FCmp == Cond) { 389 // It not only simplified, it simplified to the select condition. Replace 390 // it with 'false'. 391 FCmp = getFalse(Cond->getType()); 392 } else if (!FCmp) { 393 // It didn't simplify. However if "cmp FV, RHS" is equal to the select 394 // condition then we can replace it with 'false'. Otherwise give up. 395 if (!isSameCompare(Cond, Pred, FV, RHS)) 396 return nullptr; 397 FCmp = getFalse(Cond->getType()); 398 } 399 400 // If both sides simplified to the same value, then use it as the result of 401 // the original comparison. 402 if (TCmp == FCmp) 403 return TCmp; 404 405 // The remaining cases only make sense if the select condition has the same 406 // type as the result of the comparison, so bail out if this is not so. 407 if (Cond->getType()->isVectorTy() != RHS->getType()->isVectorTy()) 408 return nullptr; 409 // If the false value simplified to false, then the result of the compare 410 // is equal to "Cond && TCmp". This also catches the case when the false 411 // value simplified to false and the true value to true, returning "Cond". 412 if (match(FCmp, m_Zero())) 413 if (Value *V = SimplifyAndInst(Cond, TCmp, Q, MaxRecurse)) 414 return V; 415 // If the true value simplified to true, then the result of the compare 416 // is equal to "Cond || FCmp". 417 if (match(TCmp, m_One())) 418 if (Value *V = SimplifyOrInst(Cond, FCmp, Q, MaxRecurse)) 419 return V; 420 // Finally, if the false value simplified to true and the true value to 421 // false, then the result of the compare is equal to "!Cond". 422 if (match(FCmp, m_One()) && match(TCmp, m_Zero())) 423 if (Value *V = 424 SimplifyXorInst(Cond, Constant::getAllOnesValue(Cond->getType()), 425 Q, MaxRecurse)) 426 return V; 427 428 return nullptr; 429 } 430 431 /// In the case of a binary operation with an operand that is a PHI instruction, 432 /// try to simplify the binop by seeing whether evaluating it on the incoming 433 /// phi values yields the same result for every value. If so returns the common 434 /// value, otherwise returns null. 435 static Value *ThreadBinOpOverPHI(Instruction::BinaryOps Opcode, Value *LHS, 436 Value *RHS, const SimplifyQuery &Q, 437 unsigned MaxRecurse) { 438 // Recursion is always used, so bail out at once if we already hit the limit. 439 if (!MaxRecurse--) 440 return nullptr; 441 442 PHINode *PI; 443 if (isa<PHINode>(LHS)) { 444 PI = cast<PHINode>(LHS); 445 // Bail out if RHS and the phi may be mutually interdependent due to a loop. 446 if (!ValueDominatesPHI(RHS, PI, Q.DT)) 447 return nullptr; 448 } else { 449 assert(isa<PHINode>(RHS) && "No PHI instruction operand!"); 450 PI = cast<PHINode>(RHS); 451 // Bail out if LHS and the phi may be mutually interdependent due to a loop. 452 if (!ValueDominatesPHI(LHS, PI, Q.DT)) 453 return nullptr; 454 } 455 456 // Evaluate the BinOp on the incoming phi values. 457 Value *CommonValue = nullptr; 458 for (Value *Incoming : PI->incoming_values()) { 459 // If the incoming value is the phi node itself, it can safely be skipped. 460 if (Incoming == PI) continue; 461 Value *V = PI == LHS ? 462 SimplifyBinOp(Opcode, Incoming, RHS, Q, MaxRecurse) : 463 SimplifyBinOp(Opcode, LHS, Incoming, Q, MaxRecurse); 464 // If the operation failed to simplify, or simplified to a different value 465 // to previously, then give up. 466 if (!V || (CommonValue && V != CommonValue)) 467 return nullptr; 468 CommonValue = V; 469 } 470 471 return CommonValue; 472 } 473 474 /// In the case of a comparison with a PHI instruction, try to simplify the 475 /// comparison by seeing whether comparing with all of the incoming phi values 476 /// yields the same result every time. If so returns the common result, 477 /// otherwise returns null. 478 static Value *ThreadCmpOverPHI(CmpInst::Predicate Pred, Value *LHS, Value *RHS, 479 const SimplifyQuery &Q, unsigned MaxRecurse) { 480 // Recursion is always used, so bail out at once if we already hit the limit. 481 if (!MaxRecurse--) 482 return nullptr; 483 484 // Make sure the phi is on the LHS. 485 if (!isa<PHINode>(LHS)) { 486 std::swap(LHS, RHS); 487 Pred = CmpInst::getSwappedPredicate(Pred); 488 } 489 assert(isa<PHINode>(LHS) && "Not comparing with a phi instruction!"); 490 PHINode *PI = cast<PHINode>(LHS); 491 492 // Bail out if RHS and the phi may be mutually interdependent due to a loop. 493 if (!ValueDominatesPHI(RHS, PI, Q.DT)) 494 return nullptr; 495 496 // Evaluate the BinOp on the incoming phi values. 497 Value *CommonValue = nullptr; 498 for (Value *Incoming : PI->incoming_values()) { 499 // If the incoming value is the phi node itself, it can safely be skipped. 500 if (Incoming == PI) continue; 501 Value *V = SimplifyCmpInst(Pred, Incoming, RHS, Q, MaxRecurse); 502 // If the operation failed to simplify, or simplified to a different value 503 // to previously, then give up. 504 if (!V || (CommonValue && V != CommonValue)) 505 return nullptr; 506 CommonValue = V; 507 } 508 509 return CommonValue; 510 } 511 512 static Constant *foldOrCommuteConstant(Instruction::BinaryOps Opcode, 513 Value *&Op0, Value *&Op1, 514 const SimplifyQuery &Q) { 515 if (auto *CLHS = dyn_cast<Constant>(Op0)) { 516 if (auto *CRHS = dyn_cast<Constant>(Op1)) 517 return ConstantFoldBinaryOpOperands(Opcode, CLHS, CRHS, Q.DL); 518 519 // Canonicalize the constant to the RHS if this is a commutative operation. 520 if (Instruction::isCommutative(Opcode)) 521 std::swap(Op0, Op1); 522 } 523 return nullptr; 524 } 525 526 /// Given operands for an Add, see if we can fold the result. 527 /// If not, this returns null. 528 static Value *SimplifyAddInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, 529 const SimplifyQuery &Q, unsigned MaxRecurse) { 530 if (Constant *C = foldOrCommuteConstant(Instruction::Add, Op0, Op1, Q)) 531 return C; 532 533 // X + undef -> undef 534 if (match(Op1, m_Undef())) 535 return Op1; 536 537 // X + 0 -> X 538 if (match(Op1, m_Zero())) 539 return Op0; 540 541 // X + (Y - X) -> Y 542 // (Y - X) + X -> Y 543 // Eg: X + -X -> 0 544 Value *Y = nullptr; 545 if (match(Op1, m_Sub(m_Value(Y), m_Specific(Op0))) || 546 match(Op0, m_Sub(m_Value(Y), m_Specific(Op1)))) 547 return Y; 548 549 // X + ~X -> -1 since ~X = -X-1 550 Type *Ty = Op0->getType(); 551 if (match(Op0, m_Not(m_Specific(Op1))) || 552 match(Op1, m_Not(m_Specific(Op0)))) 553 return Constant::getAllOnesValue(Ty); 554 555 // add nsw/nuw (xor Y, signmask), signmask --> Y 556 // The no-wrapping add guarantees that the top bit will be set by the add. 557 // Therefore, the xor must be clearing the already set sign bit of Y. 558 if ((isNSW || isNUW) && match(Op1, m_SignMask()) && 559 match(Op0, m_Xor(m_Value(Y), m_SignMask()))) 560 return Y; 561 562 /// i1 add -> xor. 563 if (MaxRecurse && Op0->getType()->isIntOrIntVectorTy(1)) 564 if (Value *V = SimplifyXorInst(Op0, Op1, Q, MaxRecurse-1)) 565 return V; 566 567 // Try some generic simplifications for associative operations. 568 if (Value *V = SimplifyAssociativeBinOp(Instruction::Add, Op0, Op1, Q, 569 MaxRecurse)) 570 return V; 571 572 // Threading Add over selects and phi nodes is pointless, so don't bother. 573 // Threading over the select in "A + select(cond, B, C)" means evaluating 574 // "A+B" and "A+C" and seeing if they are equal; but they are equal if and 575 // only if B and C are equal. If B and C are equal then (since we assume 576 // that operands have already been simplified) "select(cond, B, C)" should 577 // have been simplified to the common value of B and C already. Analysing 578 // "A+B" and "A+C" thus gains nothing, but costs compile time. Similarly 579 // for threading over phi nodes. 580 581 return nullptr; 582 } 583 584 Value *llvm::SimplifyAddInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, 585 const SimplifyQuery &Query) { 586 return ::SimplifyAddInst(Op0, Op1, isNSW, isNUW, Query, RecursionLimit); 587 } 588 589 /// \brief Compute the base pointer and cumulative constant offsets for V. 590 /// 591 /// This strips all constant offsets off of V, leaving it the base pointer, and 592 /// accumulates the total constant offset applied in the returned constant. It 593 /// returns 0 if V is not a pointer, and returns the constant '0' if there are 594 /// no constant offsets applied. 595 /// 596 /// This is very similar to GetPointerBaseWithConstantOffset except it doesn't 597 /// follow non-inbounds geps. This allows it to remain usable for icmp ult/etc. 598 /// folding. 599 static Constant *stripAndComputeConstantOffsets(const DataLayout &DL, Value *&V, 600 bool AllowNonInbounds = false) { 601 assert(V->getType()->isPtrOrPtrVectorTy()); 602 603 Type *IntPtrTy = DL.getIntPtrType(V->getType())->getScalarType(); 604 APInt Offset = APInt::getNullValue(IntPtrTy->getIntegerBitWidth()); 605 606 // Even though we don't look through PHI nodes, we could be called on an 607 // instruction in an unreachable block, which may be on a cycle. 608 SmallPtrSet<Value *, 4> Visited; 609 Visited.insert(V); 610 do { 611 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 612 if ((!AllowNonInbounds && !GEP->isInBounds()) || 613 !GEP->accumulateConstantOffset(DL, Offset)) 614 break; 615 V = GEP->getPointerOperand(); 616 } else if (Operator::getOpcode(V) == Instruction::BitCast) { 617 V = cast<Operator>(V)->getOperand(0); 618 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 619 if (GA->isInterposable()) 620 break; 621 V = GA->getAliasee(); 622 } else { 623 if (auto CS = CallSite(V)) 624 if (Value *RV = CS.getReturnedArgOperand()) { 625 V = RV; 626 continue; 627 } 628 break; 629 } 630 assert(V->getType()->isPtrOrPtrVectorTy() && "Unexpected operand type!"); 631 } while (Visited.insert(V).second); 632 633 Constant *OffsetIntPtr = ConstantInt::get(IntPtrTy, Offset); 634 if (V->getType()->isVectorTy()) 635 return ConstantVector::getSplat(V->getType()->getVectorNumElements(), 636 OffsetIntPtr); 637 return OffsetIntPtr; 638 } 639 640 /// \brief Compute the constant difference between two pointer values. 641 /// If the difference is not a constant, returns zero. 642 static Constant *computePointerDifference(const DataLayout &DL, Value *LHS, 643 Value *RHS) { 644 Constant *LHSOffset = stripAndComputeConstantOffsets(DL, LHS); 645 Constant *RHSOffset = stripAndComputeConstantOffsets(DL, RHS); 646 647 // If LHS and RHS are not related via constant offsets to the same base 648 // value, there is nothing we can do here. 649 if (LHS != RHS) 650 return nullptr; 651 652 // Otherwise, the difference of LHS - RHS can be computed as: 653 // LHS - RHS 654 // = (LHSOffset + Base) - (RHSOffset + Base) 655 // = LHSOffset - RHSOffset 656 return ConstantExpr::getSub(LHSOffset, RHSOffset); 657 } 658 659 /// Given operands for a Sub, see if we can fold the result. 660 /// If not, this returns null. 661 static Value *SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, 662 const SimplifyQuery &Q, unsigned MaxRecurse) { 663 if (Constant *C = foldOrCommuteConstant(Instruction::Sub, Op0, Op1, Q)) 664 return C; 665 666 // X - undef -> undef 667 // undef - X -> undef 668 if (match(Op0, m_Undef()) || match(Op1, m_Undef())) 669 return UndefValue::get(Op0->getType()); 670 671 // X - 0 -> X 672 if (match(Op1, m_Zero())) 673 return Op0; 674 675 // X - X -> 0 676 if (Op0 == Op1) 677 return Constant::getNullValue(Op0->getType()); 678 679 // Is this a negation? 680 if (match(Op0, m_Zero())) { 681 // 0 - X -> 0 if the sub is NUW. 682 if (isNUW) 683 return Op0; 684 685 KnownBits Known = computeKnownBits(Op1, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 686 if (Known.Zero.isMaxSignedValue()) { 687 // Op1 is either 0 or the minimum signed value. If the sub is NSW, then 688 // Op1 must be 0 because negating the minimum signed value is undefined. 689 if (isNSW) 690 return Op0; 691 692 // 0 - X -> X if X is 0 or the minimum signed value. 693 return Op1; 694 } 695 } 696 697 // (X + Y) - Z -> X + (Y - Z) or Y + (X - Z) if everything simplifies. 698 // For example, (X + Y) - Y -> X; (Y + X) - Y -> X 699 Value *X = nullptr, *Y = nullptr, *Z = Op1; 700 if (MaxRecurse && match(Op0, m_Add(m_Value(X), m_Value(Y)))) { // (X + Y) - Z 701 // See if "V === Y - Z" simplifies. 702 if (Value *V = SimplifyBinOp(Instruction::Sub, Y, Z, Q, MaxRecurse-1)) 703 // It does! Now see if "X + V" simplifies. 704 if (Value *W = SimplifyBinOp(Instruction::Add, X, V, Q, MaxRecurse-1)) { 705 // It does, we successfully reassociated! 706 ++NumReassoc; 707 return W; 708 } 709 // See if "V === X - Z" simplifies. 710 if (Value *V = SimplifyBinOp(Instruction::Sub, X, Z, Q, MaxRecurse-1)) 711 // It does! Now see if "Y + V" simplifies. 712 if (Value *W = SimplifyBinOp(Instruction::Add, Y, V, Q, MaxRecurse-1)) { 713 // It does, we successfully reassociated! 714 ++NumReassoc; 715 return W; 716 } 717 } 718 719 // X - (Y + Z) -> (X - Y) - Z or (X - Z) - Y if everything simplifies. 720 // For example, X - (X + 1) -> -1 721 X = Op0; 722 if (MaxRecurse && match(Op1, m_Add(m_Value(Y), m_Value(Z)))) { // X - (Y + Z) 723 // See if "V === X - Y" simplifies. 724 if (Value *V = SimplifyBinOp(Instruction::Sub, X, Y, Q, MaxRecurse-1)) 725 // It does! Now see if "V - Z" simplifies. 726 if (Value *W = SimplifyBinOp(Instruction::Sub, V, Z, Q, MaxRecurse-1)) { 727 // It does, we successfully reassociated! 728 ++NumReassoc; 729 return W; 730 } 731 // See if "V === X - Z" simplifies. 732 if (Value *V = SimplifyBinOp(Instruction::Sub, X, Z, Q, MaxRecurse-1)) 733 // It does! Now see if "V - Y" simplifies. 734 if (Value *W = SimplifyBinOp(Instruction::Sub, V, Y, Q, MaxRecurse-1)) { 735 // It does, we successfully reassociated! 736 ++NumReassoc; 737 return W; 738 } 739 } 740 741 // Z - (X - Y) -> (Z - X) + Y if everything simplifies. 742 // For example, X - (X - Y) -> Y. 743 Z = Op0; 744 if (MaxRecurse && match(Op1, m_Sub(m_Value(X), m_Value(Y)))) // Z - (X - Y) 745 // See if "V === Z - X" simplifies. 746 if (Value *V = SimplifyBinOp(Instruction::Sub, Z, X, Q, MaxRecurse-1)) 747 // It does! Now see if "V + Y" simplifies. 748 if (Value *W = SimplifyBinOp(Instruction::Add, V, Y, Q, MaxRecurse-1)) { 749 // It does, we successfully reassociated! 750 ++NumReassoc; 751 return W; 752 } 753 754 // trunc(X) - trunc(Y) -> trunc(X - Y) if everything simplifies. 755 if (MaxRecurse && match(Op0, m_Trunc(m_Value(X))) && 756 match(Op1, m_Trunc(m_Value(Y)))) 757 if (X->getType() == Y->getType()) 758 // See if "V === X - Y" simplifies. 759 if (Value *V = SimplifyBinOp(Instruction::Sub, X, Y, Q, MaxRecurse-1)) 760 // It does! Now see if "trunc V" simplifies. 761 if (Value *W = SimplifyCastInst(Instruction::Trunc, V, Op0->getType(), 762 Q, MaxRecurse - 1)) 763 // It does, return the simplified "trunc V". 764 return W; 765 766 // Variations on GEP(base, I, ...) - GEP(base, i, ...) -> GEP(null, I-i, ...). 767 if (match(Op0, m_PtrToInt(m_Value(X))) && 768 match(Op1, m_PtrToInt(m_Value(Y)))) 769 if (Constant *Result = computePointerDifference(Q.DL, X, Y)) 770 return ConstantExpr::getIntegerCast(Result, Op0->getType(), true); 771 772 // i1 sub -> xor. 773 if (MaxRecurse && Op0->getType()->isIntOrIntVectorTy(1)) 774 if (Value *V = SimplifyXorInst(Op0, Op1, Q, MaxRecurse-1)) 775 return V; 776 777 // Threading Sub over selects and phi nodes is pointless, so don't bother. 778 // Threading over the select in "A - select(cond, B, C)" means evaluating 779 // "A-B" and "A-C" and seeing if they are equal; but they are equal if and 780 // only if B and C are equal. If B and C are equal then (since we assume 781 // that operands have already been simplified) "select(cond, B, C)" should 782 // have been simplified to the common value of B and C already. Analysing 783 // "A-B" and "A-C" thus gains nothing, but costs compile time. Similarly 784 // for threading over phi nodes. 785 786 return nullptr; 787 } 788 789 Value *llvm::SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, 790 const SimplifyQuery &Q) { 791 return ::SimplifySubInst(Op0, Op1, isNSW, isNUW, Q, RecursionLimit); 792 } 793 794 /// Given operands for a Mul, see if we can fold the result. 795 /// If not, this returns null. 796 static Value *SimplifyMulInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 797 unsigned MaxRecurse) { 798 if (Constant *C = foldOrCommuteConstant(Instruction::Mul, Op0, Op1, Q)) 799 return C; 800 801 // X * undef -> 0 802 if (match(Op1, m_Undef())) 803 return Constant::getNullValue(Op0->getType()); 804 805 // X * 0 -> 0 806 if (match(Op1, m_Zero())) 807 return Op1; 808 809 // X * 1 -> X 810 if (match(Op1, m_One())) 811 return Op0; 812 813 // (X / Y) * Y -> X if the division is exact. 814 Value *X = nullptr; 815 if (match(Op0, m_Exact(m_IDiv(m_Value(X), m_Specific(Op1)))) || // (X / Y) * Y 816 match(Op1, m_Exact(m_IDiv(m_Value(X), m_Specific(Op0))))) // Y * (X / Y) 817 return X; 818 819 // i1 mul -> and. 820 if (MaxRecurse && Op0->getType()->isIntOrIntVectorTy(1)) 821 if (Value *V = SimplifyAndInst(Op0, Op1, Q, MaxRecurse-1)) 822 return V; 823 824 // Try some generic simplifications for associative operations. 825 if (Value *V = SimplifyAssociativeBinOp(Instruction::Mul, Op0, Op1, Q, 826 MaxRecurse)) 827 return V; 828 829 // Mul distributes over Add. Try some generic simplifications based on this. 830 if (Value *V = ExpandBinOp(Instruction::Mul, Op0, Op1, Instruction::Add, 831 Q, MaxRecurse)) 832 return V; 833 834 // If the operation is with the result of a select instruction, check whether 835 // operating on either branch of the select always yields the same value. 836 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 837 if (Value *V = ThreadBinOpOverSelect(Instruction::Mul, Op0, Op1, Q, 838 MaxRecurse)) 839 return V; 840 841 // If the operation is with the result of a phi instruction, check whether 842 // operating on all incoming values of the phi always yields the same value. 843 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 844 if (Value *V = ThreadBinOpOverPHI(Instruction::Mul, Op0, Op1, Q, 845 MaxRecurse)) 846 return V; 847 848 return nullptr; 849 } 850 851 Value *llvm::SimplifyMulInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 852 return ::SimplifyMulInst(Op0, Op1, Q, RecursionLimit); 853 } 854 855 /// Check for common or similar folds of integer division or integer remainder. 856 /// This applies to all 4 opcodes (sdiv/udiv/srem/urem). 857 static Value *simplifyDivRem(Value *Op0, Value *Op1, bool IsDiv) { 858 Type *Ty = Op0->getType(); 859 860 // X / undef -> undef 861 // X % undef -> undef 862 if (match(Op1, m_Undef())) 863 return Op1; 864 865 // X / 0 -> undef 866 // X % 0 -> undef 867 // We don't need to preserve faults! 868 if (match(Op1, m_Zero())) 869 return UndefValue::get(Ty); 870 871 // If any element of a constant divisor vector is zero, the whole op is undef. 872 auto *Op1C = dyn_cast<Constant>(Op1); 873 if (Op1C && Ty->isVectorTy()) { 874 unsigned NumElts = Ty->getVectorNumElements(); 875 for (unsigned i = 0; i != NumElts; ++i) { 876 Constant *Elt = Op1C->getAggregateElement(i); 877 if (Elt && Elt->isNullValue()) 878 return UndefValue::get(Ty); 879 } 880 } 881 882 // undef / X -> 0 883 // undef % X -> 0 884 if (match(Op0, m_Undef())) 885 return Constant::getNullValue(Ty); 886 887 // 0 / X -> 0 888 // 0 % X -> 0 889 if (match(Op0, m_Zero())) 890 return Op0; 891 892 // X / X -> 1 893 // X % X -> 0 894 if (Op0 == Op1) 895 return IsDiv ? ConstantInt::get(Ty, 1) : Constant::getNullValue(Ty); 896 897 // X / 1 -> X 898 // X % 1 -> 0 899 // If this is a boolean op (single-bit element type), we can't have 900 // division-by-zero or remainder-by-zero, so assume the divisor is 1. 901 if (match(Op1, m_One()) || Ty->isIntOrIntVectorTy(1)) 902 return IsDiv ? Op0 : Constant::getNullValue(Ty); 903 904 return nullptr; 905 } 906 907 /// Given a predicate and two operands, return true if the comparison is true. 908 /// This is a helper for div/rem simplification where we return some other value 909 /// when we can prove a relationship between the operands. 910 static bool isICmpTrue(ICmpInst::Predicate Pred, Value *LHS, Value *RHS, 911 const SimplifyQuery &Q, unsigned MaxRecurse) { 912 Value *V = SimplifyICmpInst(Pred, LHS, RHS, Q, MaxRecurse); 913 Constant *C = dyn_cast_or_null<Constant>(V); 914 return (C && C->isAllOnesValue()); 915 } 916 917 /// Return true if we can simplify X / Y to 0. Remainder can adapt that answer 918 /// to simplify X % Y to X. 919 static bool isDivZero(Value *X, Value *Y, const SimplifyQuery &Q, 920 unsigned MaxRecurse, bool IsSigned) { 921 // Recursion is always used, so bail out at once if we already hit the limit. 922 if (!MaxRecurse--) 923 return false; 924 925 if (IsSigned) { 926 // |X| / |Y| --> 0 927 // 928 // We require that 1 operand is a simple constant. That could be extended to 929 // 2 variables if we computed the sign bit for each. 930 // 931 // Make sure that a constant is not the minimum signed value because taking 932 // the abs() of that is undefined. 933 Type *Ty = X->getType(); 934 const APInt *C; 935 if (match(X, m_APInt(C)) && !C->isMinSignedValue()) { 936 // Is the variable divisor magnitude always greater than the constant 937 // dividend magnitude? 938 // |Y| > |C| --> Y < -abs(C) or Y > abs(C) 939 Constant *PosDividendC = ConstantInt::get(Ty, C->abs()); 940 Constant *NegDividendC = ConstantInt::get(Ty, -C->abs()); 941 if (isICmpTrue(CmpInst::ICMP_SLT, Y, NegDividendC, Q, MaxRecurse) || 942 isICmpTrue(CmpInst::ICMP_SGT, Y, PosDividendC, Q, MaxRecurse)) 943 return true; 944 } 945 if (match(Y, m_APInt(C))) { 946 // Special-case: we can't take the abs() of a minimum signed value. If 947 // that's the divisor, then all we have to do is prove that the dividend 948 // is also not the minimum signed value. 949 if (C->isMinSignedValue()) 950 return isICmpTrue(CmpInst::ICMP_NE, X, Y, Q, MaxRecurse); 951 952 // Is the variable dividend magnitude always less than the constant 953 // divisor magnitude? 954 // |X| < |C| --> X > -abs(C) and X < abs(C) 955 Constant *PosDivisorC = ConstantInt::get(Ty, C->abs()); 956 Constant *NegDivisorC = ConstantInt::get(Ty, -C->abs()); 957 if (isICmpTrue(CmpInst::ICMP_SGT, X, NegDivisorC, Q, MaxRecurse) && 958 isICmpTrue(CmpInst::ICMP_SLT, X, PosDivisorC, Q, MaxRecurse)) 959 return true; 960 } 961 return false; 962 } 963 964 // IsSigned == false. 965 // Is the dividend unsigned less than the divisor? 966 return isICmpTrue(ICmpInst::ICMP_ULT, X, Y, Q, MaxRecurse); 967 } 968 969 /// These are simplifications common to SDiv and UDiv. 970 static Value *simplifyDiv(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1, 971 const SimplifyQuery &Q, unsigned MaxRecurse) { 972 if (Constant *C = foldOrCommuteConstant(Opcode, Op0, Op1, Q)) 973 return C; 974 975 if (Value *V = simplifyDivRem(Op0, Op1, true)) 976 return V; 977 978 bool IsSigned = Opcode == Instruction::SDiv; 979 980 // (X * Y) / Y -> X if the multiplication does not overflow. 981 Value *X = nullptr, *Y = nullptr; 982 if (match(Op0, m_Mul(m_Value(X), m_Value(Y))) && (X == Op1 || Y == Op1)) { 983 if (Y != Op1) std::swap(X, Y); // Ensure expression is (X * Y) / Y, Y = Op1 984 OverflowingBinaryOperator *Mul = cast<OverflowingBinaryOperator>(Op0); 985 // If the Mul knows it does not overflow, then we are good to go. 986 if ((IsSigned && Mul->hasNoSignedWrap()) || 987 (!IsSigned && Mul->hasNoUnsignedWrap())) 988 return X; 989 // If X has the form X = A / Y then X * Y cannot overflow. 990 if (BinaryOperator *Div = dyn_cast<BinaryOperator>(X)) 991 if (Div->getOpcode() == Opcode && Div->getOperand(1) == Y) 992 return X; 993 } 994 995 // (X rem Y) / Y -> 0 996 if ((IsSigned && match(Op0, m_SRem(m_Value(), m_Specific(Op1)))) || 997 (!IsSigned && match(Op0, m_URem(m_Value(), m_Specific(Op1))))) 998 return Constant::getNullValue(Op0->getType()); 999 1000 // (X /u C1) /u C2 -> 0 if C1 * C2 overflow 1001 ConstantInt *C1, *C2; 1002 if (!IsSigned && match(Op0, m_UDiv(m_Value(X), m_ConstantInt(C1))) && 1003 match(Op1, m_ConstantInt(C2))) { 1004 bool Overflow; 1005 (void)C1->getValue().umul_ov(C2->getValue(), Overflow); 1006 if (Overflow) 1007 return Constant::getNullValue(Op0->getType()); 1008 } 1009 1010 // If the operation is with the result of a select instruction, check whether 1011 // operating on either branch of the select always yields the same value. 1012 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 1013 if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse)) 1014 return V; 1015 1016 // If the operation is with the result of a phi instruction, check whether 1017 // operating on all incoming values of the phi always yields the same value. 1018 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 1019 if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse)) 1020 return V; 1021 1022 if (isDivZero(Op0, Op1, Q, MaxRecurse, IsSigned)) 1023 return Constant::getNullValue(Op0->getType()); 1024 1025 return nullptr; 1026 } 1027 1028 /// These are simplifications common to SRem and URem. 1029 static Value *simplifyRem(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1, 1030 const SimplifyQuery &Q, unsigned MaxRecurse) { 1031 if (Constant *C = foldOrCommuteConstant(Opcode, Op0, Op1, Q)) 1032 return C; 1033 1034 if (Value *V = simplifyDivRem(Op0, Op1, false)) 1035 return V; 1036 1037 // (X % Y) % Y -> X % Y 1038 if ((Opcode == Instruction::SRem && 1039 match(Op0, m_SRem(m_Value(), m_Specific(Op1)))) || 1040 (Opcode == Instruction::URem && 1041 match(Op0, m_URem(m_Value(), m_Specific(Op1))))) 1042 return Op0; 1043 1044 // If the operation is with the result of a select instruction, check whether 1045 // operating on either branch of the select always yields the same value. 1046 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 1047 if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse)) 1048 return V; 1049 1050 // If the operation is with the result of a phi instruction, check whether 1051 // operating on all incoming values of the phi always yields the same value. 1052 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 1053 if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse)) 1054 return V; 1055 1056 // If X / Y == 0, then X % Y == X. 1057 if (isDivZero(Op0, Op1, Q, MaxRecurse, Opcode == Instruction::SRem)) 1058 return Op0; 1059 1060 return nullptr; 1061 } 1062 1063 /// Given operands for an SDiv, see if we can fold the result. 1064 /// If not, this returns null. 1065 static Value *SimplifySDivInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 1066 unsigned MaxRecurse) { 1067 return simplifyDiv(Instruction::SDiv, Op0, Op1, Q, MaxRecurse); 1068 } 1069 1070 Value *llvm::SimplifySDivInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 1071 return ::SimplifySDivInst(Op0, Op1, Q, RecursionLimit); 1072 } 1073 1074 /// Given operands for a UDiv, see if we can fold the result. 1075 /// If not, this returns null. 1076 static Value *SimplifyUDivInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 1077 unsigned MaxRecurse) { 1078 return simplifyDiv(Instruction::UDiv, Op0, Op1, Q, MaxRecurse); 1079 } 1080 1081 Value *llvm::SimplifyUDivInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 1082 return ::SimplifyUDivInst(Op0, Op1, Q, RecursionLimit); 1083 } 1084 1085 /// Given operands for an SRem, see if we can fold the result. 1086 /// If not, this returns null. 1087 static Value *SimplifySRemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 1088 unsigned MaxRecurse) { 1089 return simplifyRem(Instruction::SRem, Op0, Op1, Q, MaxRecurse); 1090 } 1091 1092 Value *llvm::SimplifySRemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 1093 return ::SimplifySRemInst(Op0, Op1, Q, RecursionLimit); 1094 } 1095 1096 /// Given operands for a URem, see if we can fold the result. 1097 /// If not, this returns null. 1098 static Value *SimplifyURemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 1099 unsigned MaxRecurse) { 1100 return simplifyRem(Instruction::URem, Op0, Op1, Q, MaxRecurse); 1101 } 1102 1103 Value *llvm::SimplifyURemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 1104 return ::SimplifyURemInst(Op0, Op1, Q, RecursionLimit); 1105 } 1106 1107 /// Returns true if a shift by \c Amount always yields undef. 1108 static bool isUndefShift(Value *Amount) { 1109 Constant *C = dyn_cast<Constant>(Amount); 1110 if (!C) 1111 return false; 1112 1113 // X shift by undef -> undef because it may shift by the bitwidth. 1114 if (isa<UndefValue>(C)) 1115 return true; 1116 1117 // Shifting by the bitwidth or more is undefined. 1118 if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1119 if (CI->getValue().getLimitedValue() >= 1120 CI->getType()->getScalarSizeInBits()) 1121 return true; 1122 1123 // If all lanes of a vector shift are undefined the whole shift is. 1124 if (isa<ConstantVector>(C) || isa<ConstantDataVector>(C)) { 1125 for (unsigned I = 0, E = C->getType()->getVectorNumElements(); I != E; ++I) 1126 if (!isUndefShift(C->getAggregateElement(I))) 1127 return false; 1128 return true; 1129 } 1130 1131 return false; 1132 } 1133 1134 /// Given operands for an Shl, LShr or AShr, see if we can fold the result. 1135 /// If not, this returns null. 1136 static Value *SimplifyShift(Instruction::BinaryOps Opcode, Value *Op0, 1137 Value *Op1, const SimplifyQuery &Q, unsigned MaxRecurse) { 1138 if (Constant *C = foldOrCommuteConstant(Opcode, Op0, Op1, Q)) 1139 return C; 1140 1141 // 0 shift by X -> 0 1142 if (match(Op0, m_Zero())) 1143 return Op0; 1144 1145 // X shift by 0 -> X 1146 if (match(Op1, m_Zero())) 1147 return Op0; 1148 1149 // Fold undefined shifts. 1150 if (isUndefShift(Op1)) 1151 return UndefValue::get(Op0->getType()); 1152 1153 // If the operation is with the result of a select instruction, check whether 1154 // operating on either branch of the select always yields the same value. 1155 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 1156 if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse)) 1157 return V; 1158 1159 // If the operation is with the result of a phi instruction, check whether 1160 // operating on all incoming values of the phi always yields the same value. 1161 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 1162 if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse)) 1163 return V; 1164 1165 // If any bits in the shift amount make that value greater than or equal to 1166 // the number of bits in the type, the shift is undefined. 1167 KnownBits Known = computeKnownBits(Op1, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 1168 if (Known.One.getLimitedValue() >= Known.getBitWidth()) 1169 return UndefValue::get(Op0->getType()); 1170 1171 // If all valid bits in the shift amount are known zero, the first operand is 1172 // unchanged. 1173 unsigned NumValidShiftBits = Log2_32_Ceil(Known.getBitWidth()); 1174 if (Known.countMinTrailingZeros() >= NumValidShiftBits) 1175 return Op0; 1176 1177 return nullptr; 1178 } 1179 1180 /// \brief Given operands for an Shl, LShr or AShr, see if we can 1181 /// fold the result. If not, this returns null. 1182 static Value *SimplifyRightShift(Instruction::BinaryOps Opcode, Value *Op0, 1183 Value *Op1, bool isExact, const SimplifyQuery &Q, 1184 unsigned MaxRecurse) { 1185 if (Value *V = SimplifyShift(Opcode, Op0, Op1, Q, MaxRecurse)) 1186 return V; 1187 1188 // X >> X -> 0 1189 if (Op0 == Op1) 1190 return Constant::getNullValue(Op0->getType()); 1191 1192 // undef >> X -> 0 1193 // undef >> X -> undef (if it's exact) 1194 if (match(Op0, m_Undef())) 1195 return isExact ? Op0 : Constant::getNullValue(Op0->getType()); 1196 1197 // The low bit cannot be shifted out of an exact shift if it is set. 1198 if (isExact) { 1199 KnownBits Op0Known = computeKnownBits(Op0, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT); 1200 if (Op0Known.One[0]) 1201 return Op0; 1202 } 1203 1204 return nullptr; 1205 } 1206 1207 /// Given operands for an Shl, see if we can fold the result. 1208 /// If not, this returns null. 1209 static Value *SimplifyShlInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, 1210 const SimplifyQuery &Q, unsigned MaxRecurse) { 1211 if (Value *V = SimplifyShift(Instruction::Shl, Op0, Op1, Q, MaxRecurse)) 1212 return V; 1213 1214 // undef << X -> 0 1215 // undef << X -> undef if (if it's NSW/NUW) 1216 if (match(Op0, m_Undef())) 1217 return isNSW || isNUW ? Op0 : Constant::getNullValue(Op0->getType()); 1218 1219 // (X >> A) << A -> X 1220 Value *X; 1221 if (match(Op0, m_Exact(m_Shr(m_Value(X), m_Specific(Op1))))) 1222 return X; 1223 return nullptr; 1224 } 1225 1226 Value *llvm::SimplifyShlInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, 1227 const SimplifyQuery &Q) { 1228 return ::SimplifyShlInst(Op0, Op1, isNSW, isNUW, Q, RecursionLimit); 1229 } 1230 1231 /// Given operands for an LShr, see if we can fold the result. 1232 /// If not, this returns null. 1233 static Value *SimplifyLShrInst(Value *Op0, Value *Op1, bool isExact, 1234 const SimplifyQuery &Q, unsigned MaxRecurse) { 1235 if (Value *V = SimplifyRightShift(Instruction::LShr, Op0, Op1, isExact, Q, 1236 MaxRecurse)) 1237 return V; 1238 1239 // (X << A) >> A -> X 1240 Value *X; 1241 if (match(Op0, m_NUWShl(m_Value(X), m_Specific(Op1)))) 1242 return X; 1243 1244 return nullptr; 1245 } 1246 1247 Value *llvm::SimplifyLShrInst(Value *Op0, Value *Op1, bool isExact, 1248 const SimplifyQuery &Q) { 1249 return ::SimplifyLShrInst(Op0, Op1, isExact, Q, RecursionLimit); 1250 } 1251 1252 /// Given operands for an AShr, see if we can fold the result. 1253 /// If not, this returns null. 1254 static Value *SimplifyAShrInst(Value *Op0, Value *Op1, bool isExact, 1255 const SimplifyQuery &Q, unsigned MaxRecurse) { 1256 if (Value *V = SimplifyRightShift(Instruction::AShr, Op0, Op1, isExact, Q, 1257 MaxRecurse)) 1258 return V; 1259 1260 // all ones >>a X -> all ones 1261 if (match(Op0, m_AllOnes())) 1262 return Op0; 1263 1264 // (X << A) >> A -> X 1265 Value *X; 1266 if (match(Op0, m_NSWShl(m_Value(X), m_Specific(Op1)))) 1267 return X; 1268 1269 // Arithmetic shifting an all-sign-bit value is a no-op. 1270 unsigned NumSignBits = ComputeNumSignBits(Op0, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 1271 if (NumSignBits == Op0->getType()->getScalarSizeInBits()) 1272 return Op0; 1273 1274 return nullptr; 1275 } 1276 1277 Value *llvm::SimplifyAShrInst(Value *Op0, Value *Op1, bool isExact, 1278 const SimplifyQuery &Q) { 1279 return ::SimplifyAShrInst(Op0, Op1, isExact, Q, RecursionLimit); 1280 } 1281 1282 /// Commuted variants are assumed to be handled by calling this function again 1283 /// with the parameters swapped. 1284 static Value *simplifyUnsignedRangeCheck(ICmpInst *ZeroICmp, 1285 ICmpInst *UnsignedICmp, bool IsAnd) { 1286 Value *X, *Y; 1287 1288 ICmpInst::Predicate EqPred; 1289 if (!match(ZeroICmp, m_ICmp(EqPred, m_Value(Y), m_Zero())) || 1290 !ICmpInst::isEquality(EqPred)) 1291 return nullptr; 1292 1293 ICmpInst::Predicate UnsignedPred; 1294 if (match(UnsignedICmp, m_ICmp(UnsignedPred, m_Value(X), m_Specific(Y))) && 1295 ICmpInst::isUnsigned(UnsignedPred)) 1296 ; 1297 else if (match(UnsignedICmp, 1298 m_ICmp(UnsignedPred, m_Value(Y), m_Specific(X))) && 1299 ICmpInst::isUnsigned(UnsignedPred)) 1300 UnsignedPred = ICmpInst::getSwappedPredicate(UnsignedPred); 1301 else 1302 return nullptr; 1303 1304 // X < Y && Y != 0 --> X < Y 1305 // X < Y || Y != 0 --> Y != 0 1306 if (UnsignedPred == ICmpInst::ICMP_ULT && EqPred == ICmpInst::ICMP_NE) 1307 return IsAnd ? UnsignedICmp : ZeroICmp; 1308 1309 // X >= Y || Y != 0 --> true 1310 // X >= Y || Y == 0 --> X >= Y 1311 if (UnsignedPred == ICmpInst::ICMP_UGE && !IsAnd) { 1312 if (EqPred == ICmpInst::ICMP_NE) 1313 return getTrue(UnsignedICmp->getType()); 1314 return UnsignedICmp; 1315 } 1316 1317 // X < Y && Y == 0 --> false 1318 if (UnsignedPred == ICmpInst::ICMP_ULT && EqPred == ICmpInst::ICMP_EQ && 1319 IsAnd) 1320 return getFalse(UnsignedICmp->getType()); 1321 1322 return nullptr; 1323 } 1324 1325 /// Commuted variants are assumed to be handled by calling this function again 1326 /// with the parameters swapped. 1327 static Value *simplifyAndOfICmpsWithSameOperands(ICmpInst *Op0, ICmpInst *Op1) { 1328 ICmpInst::Predicate Pred0, Pred1; 1329 Value *A ,*B; 1330 if (!match(Op0, m_ICmp(Pred0, m_Value(A), m_Value(B))) || 1331 !match(Op1, m_ICmp(Pred1, m_Specific(A), m_Specific(B)))) 1332 return nullptr; 1333 1334 // We have (icmp Pred0, A, B) & (icmp Pred1, A, B). 1335 // If Op1 is always implied true by Op0, then Op0 is a subset of Op1, and we 1336 // can eliminate Op1 from this 'and'. 1337 if (ICmpInst::isImpliedTrueByMatchingCmp(Pred0, Pred1)) 1338 return Op0; 1339 1340 // Check for any combination of predicates that are guaranteed to be disjoint. 1341 if ((Pred0 == ICmpInst::getInversePredicate(Pred1)) || 1342 (Pred0 == ICmpInst::ICMP_EQ && ICmpInst::isFalseWhenEqual(Pred1)) || 1343 (Pred0 == ICmpInst::ICMP_SLT && Pred1 == ICmpInst::ICMP_SGT) || 1344 (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_UGT)) 1345 return getFalse(Op0->getType()); 1346 1347 return nullptr; 1348 } 1349 1350 /// Commuted variants are assumed to be handled by calling this function again 1351 /// with the parameters swapped. 1352 static Value *simplifyOrOfICmpsWithSameOperands(ICmpInst *Op0, ICmpInst *Op1) { 1353 ICmpInst::Predicate Pred0, Pred1; 1354 Value *A ,*B; 1355 if (!match(Op0, m_ICmp(Pred0, m_Value(A), m_Value(B))) || 1356 !match(Op1, m_ICmp(Pred1, m_Specific(A), m_Specific(B)))) 1357 return nullptr; 1358 1359 // We have (icmp Pred0, A, B) | (icmp Pred1, A, B). 1360 // If Op1 is always implied true by Op0, then Op0 is a subset of Op1, and we 1361 // can eliminate Op0 from this 'or'. 1362 if (ICmpInst::isImpliedTrueByMatchingCmp(Pred0, Pred1)) 1363 return Op1; 1364 1365 // Check for any combination of predicates that cover the entire range of 1366 // possibilities. 1367 if ((Pred0 == ICmpInst::getInversePredicate(Pred1)) || 1368 (Pred0 == ICmpInst::ICMP_NE && ICmpInst::isTrueWhenEqual(Pred1)) || 1369 (Pred0 == ICmpInst::ICMP_SLE && Pred1 == ICmpInst::ICMP_SGE) || 1370 (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_UGE)) 1371 return getTrue(Op0->getType()); 1372 1373 return nullptr; 1374 } 1375 1376 /// Test if a pair of compares with a shared operand and 2 constants has an 1377 /// empty set intersection, full set union, or if one compare is a superset of 1378 /// the other. 1379 static Value *simplifyAndOrOfICmpsWithConstants(ICmpInst *Cmp0, ICmpInst *Cmp1, 1380 bool IsAnd) { 1381 // Look for this pattern: {and/or} (icmp X, C0), (icmp X, C1)). 1382 if (Cmp0->getOperand(0) != Cmp1->getOperand(0)) 1383 return nullptr; 1384 1385 const APInt *C0, *C1; 1386 if (!match(Cmp0->getOperand(1), m_APInt(C0)) || 1387 !match(Cmp1->getOperand(1), m_APInt(C1))) 1388 return nullptr; 1389 1390 auto Range0 = ConstantRange::makeExactICmpRegion(Cmp0->getPredicate(), *C0); 1391 auto Range1 = ConstantRange::makeExactICmpRegion(Cmp1->getPredicate(), *C1); 1392 1393 // For and-of-compares, check if the intersection is empty: 1394 // (icmp X, C0) && (icmp X, C1) --> empty set --> false 1395 if (IsAnd && Range0.intersectWith(Range1).isEmptySet()) 1396 return getFalse(Cmp0->getType()); 1397 1398 // For or-of-compares, check if the union is full: 1399 // (icmp X, C0) || (icmp X, C1) --> full set --> true 1400 if (!IsAnd && Range0.unionWith(Range1).isFullSet()) 1401 return getTrue(Cmp0->getType()); 1402 1403 // Is one range a superset of the other? 1404 // If this is and-of-compares, take the smaller set: 1405 // (icmp sgt X, 4) && (icmp sgt X, 42) --> icmp sgt X, 42 1406 // If this is or-of-compares, take the larger set: 1407 // (icmp sgt X, 4) || (icmp sgt X, 42) --> icmp sgt X, 4 1408 if (Range0.contains(Range1)) 1409 return IsAnd ? Cmp1 : Cmp0; 1410 if (Range1.contains(Range0)) 1411 return IsAnd ? Cmp0 : Cmp1; 1412 1413 return nullptr; 1414 } 1415 1416 static Value *simplifyAndOrOfICmpsWithZero(ICmpInst *Cmp0, ICmpInst *Cmp1, 1417 bool IsAnd) { 1418 ICmpInst::Predicate P0 = Cmp0->getPredicate(), P1 = Cmp1->getPredicate(); 1419 if (!match(Cmp0->getOperand(1), m_Zero()) || 1420 !match(Cmp1->getOperand(1), m_Zero()) || P0 != P1) 1421 return nullptr; 1422 1423 if ((IsAnd && P0 != ICmpInst::ICMP_NE) || (!IsAnd && P1 != ICmpInst::ICMP_EQ)) 1424 return nullptr; 1425 1426 // We have either "(X == 0 || Y == 0)" or "(X != 0 && Y != 0)". 1427 Value *X = Cmp0->getOperand(0); 1428 Value *Y = Cmp1->getOperand(0); 1429 1430 // If one of the compares is a masked version of a (not) null check, then 1431 // that compare implies the other, so we eliminate the other. Optionally, look 1432 // through a pointer-to-int cast to match a null check of a pointer type. 1433 1434 // (X == 0) || (([ptrtoint] X & ?) == 0) --> ([ptrtoint] X & ?) == 0 1435 // (X == 0) || ((? & [ptrtoint] X) == 0) --> (? & [ptrtoint] X) == 0 1436 // (X != 0) && (([ptrtoint] X & ?) != 0) --> ([ptrtoint] X & ?) != 0 1437 // (X != 0) && ((? & [ptrtoint] X) != 0) --> (? & [ptrtoint] X) != 0 1438 if (match(Y, m_c_And(m_Specific(X), m_Value())) || 1439 match(Y, m_c_And(m_PtrToInt(m_Specific(X)), m_Value()))) 1440 return Cmp1; 1441 1442 // (([ptrtoint] Y & ?) == 0) || (Y == 0) --> ([ptrtoint] Y & ?) == 0 1443 // ((? & [ptrtoint] Y) == 0) || (Y == 0) --> (? & [ptrtoint] Y) == 0 1444 // (([ptrtoint] Y & ?) != 0) && (Y != 0) --> ([ptrtoint] Y & ?) != 0 1445 // ((? & [ptrtoint] Y) != 0) && (Y != 0) --> (? & [ptrtoint] Y) != 0 1446 if (match(X, m_c_And(m_Specific(Y), m_Value())) || 1447 match(X, m_c_And(m_PtrToInt(m_Specific(Y)), m_Value()))) 1448 return Cmp0; 1449 1450 return nullptr; 1451 } 1452 1453 static Value *simplifyAndOfICmpsWithAdd(ICmpInst *Op0, ICmpInst *Op1) { 1454 // (icmp (add V, C0), C1) & (icmp V, C0) 1455 ICmpInst::Predicate Pred0, Pred1; 1456 const APInt *C0, *C1; 1457 Value *V; 1458 if (!match(Op0, m_ICmp(Pred0, m_Add(m_Value(V), m_APInt(C0)), m_APInt(C1)))) 1459 return nullptr; 1460 1461 if (!match(Op1, m_ICmp(Pred1, m_Specific(V), m_Value()))) 1462 return nullptr; 1463 1464 auto *AddInst = cast<BinaryOperator>(Op0->getOperand(0)); 1465 if (AddInst->getOperand(1) != Op1->getOperand(1)) 1466 return nullptr; 1467 1468 Type *ITy = Op0->getType(); 1469 bool isNSW = AddInst->hasNoSignedWrap(); 1470 bool isNUW = AddInst->hasNoUnsignedWrap(); 1471 1472 const APInt Delta = *C1 - *C0; 1473 if (C0->isStrictlyPositive()) { 1474 if (Delta == 2) { 1475 if (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_SGT) 1476 return getFalse(ITy); 1477 if (Pred0 == ICmpInst::ICMP_SLT && Pred1 == ICmpInst::ICMP_SGT && isNSW) 1478 return getFalse(ITy); 1479 } 1480 if (Delta == 1) { 1481 if (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_SGT) 1482 return getFalse(ITy); 1483 if (Pred0 == ICmpInst::ICMP_SLE && Pred1 == ICmpInst::ICMP_SGT && isNSW) 1484 return getFalse(ITy); 1485 } 1486 } 1487 if (C0->getBoolValue() && isNUW) { 1488 if (Delta == 2) 1489 if (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_UGT) 1490 return getFalse(ITy); 1491 if (Delta == 1) 1492 if (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_UGT) 1493 return getFalse(ITy); 1494 } 1495 1496 return nullptr; 1497 } 1498 1499 static Value *simplifyAndOfICmps(ICmpInst *Op0, ICmpInst *Op1) { 1500 if (Value *X = simplifyUnsignedRangeCheck(Op0, Op1, /*IsAnd=*/true)) 1501 return X; 1502 if (Value *X = simplifyUnsignedRangeCheck(Op1, Op0, /*IsAnd=*/true)) 1503 return X; 1504 1505 if (Value *X = simplifyAndOfICmpsWithSameOperands(Op0, Op1)) 1506 return X; 1507 if (Value *X = simplifyAndOfICmpsWithSameOperands(Op1, Op0)) 1508 return X; 1509 1510 if (Value *X = simplifyAndOrOfICmpsWithConstants(Op0, Op1, true)) 1511 return X; 1512 1513 if (Value *X = simplifyAndOrOfICmpsWithZero(Op0, Op1, true)) 1514 return X; 1515 1516 if (Value *X = simplifyAndOfICmpsWithAdd(Op0, Op1)) 1517 return X; 1518 if (Value *X = simplifyAndOfICmpsWithAdd(Op1, Op0)) 1519 return X; 1520 1521 return nullptr; 1522 } 1523 1524 static Value *simplifyOrOfICmpsWithAdd(ICmpInst *Op0, ICmpInst *Op1) { 1525 // (icmp (add V, C0), C1) | (icmp V, C0) 1526 ICmpInst::Predicate Pred0, Pred1; 1527 const APInt *C0, *C1; 1528 Value *V; 1529 if (!match(Op0, m_ICmp(Pred0, m_Add(m_Value(V), m_APInt(C0)), m_APInt(C1)))) 1530 return nullptr; 1531 1532 if (!match(Op1, m_ICmp(Pred1, m_Specific(V), m_Value()))) 1533 return nullptr; 1534 1535 auto *AddInst = cast<BinaryOperator>(Op0->getOperand(0)); 1536 if (AddInst->getOperand(1) != Op1->getOperand(1)) 1537 return nullptr; 1538 1539 Type *ITy = Op0->getType(); 1540 bool isNSW = AddInst->hasNoSignedWrap(); 1541 bool isNUW = AddInst->hasNoUnsignedWrap(); 1542 1543 const APInt Delta = *C1 - *C0; 1544 if (C0->isStrictlyPositive()) { 1545 if (Delta == 2) { 1546 if (Pred0 == ICmpInst::ICMP_UGE && Pred1 == ICmpInst::ICMP_SLE) 1547 return getTrue(ITy); 1548 if (Pred0 == ICmpInst::ICMP_SGE && Pred1 == ICmpInst::ICMP_SLE && isNSW) 1549 return getTrue(ITy); 1550 } 1551 if (Delta == 1) { 1552 if (Pred0 == ICmpInst::ICMP_UGT && Pred1 == ICmpInst::ICMP_SLE) 1553 return getTrue(ITy); 1554 if (Pred0 == ICmpInst::ICMP_SGT && Pred1 == ICmpInst::ICMP_SLE && isNSW) 1555 return getTrue(ITy); 1556 } 1557 } 1558 if (C0->getBoolValue() && isNUW) { 1559 if (Delta == 2) 1560 if (Pred0 == ICmpInst::ICMP_UGE && Pred1 == ICmpInst::ICMP_ULE) 1561 return getTrue(ITy); 1562 if (Delta == 1) 1563 if (Pred0 == ICmpInst::ICMP_UGT && Pred1 == ICmpInst::ICMP_ULE) 1564 return getTrue(ITy); 1565 } 1566 1567 return nullptr; 1568 } 1569 1570 static Value *simplifyOrOfICmps(ICmpInst *Op0, ICmpInst *Op1) { 1571 if (Value *X = simplifyUnsignedRangeCheck(Op0, Op1, /*IsAnd=*/false)) 1572 return X; 1573 if (Value *X = simplifyUnsignedRangeCheck(Op1, Op0, /*IsAnd=*/false)) 1574 return X; 1575 1576 if (Value *X = simplifyOrOfICmpsWithSameOperands(Op0, Op1)) 1577 return X; 1578 if (Value *X = simplifyOrOfICmpsWithSameOperands(Op1, Op0)) 1579 return X; 1580 1581 if (Value *X = simplifyAndOrOfICmpsWithConstants(Op0, Op1, false)) 1582 return X; 1583 1584 if (Value *X = simplifyAndOrOfICmpsWithZero(Op0, Op1, false)) 1585 return X; 1586 1587 if (Value *X = simplifyOrOfICmpsWithAdd(Op0, Op1)) 1588 return X; 1589 if (Value *X = simplifyOrOfICmpsWithAdd(Op1, Op0)) 1590 return X; 1591 1592 return nullptr; 1593 } 1594 1595 static Value *simplifyAndOrOfFCmps(FCmpInst *LHS, FCmpInst *RHS, bool IsAnd) { 1596 Value *LHS0 = LHS->getOperand(0), *LHS1 = LHS->getOperand(1); 1597 Value *RHS0 = RHS->getOperand(0), *RHS1 = RHS->getOperand(1); 1598 if (LHS0->getType() != RHS0->getType()) 1599 return nullptr; 1600 1601 FCmpInst::Predicate PredL = LHS->getPredicate(), PredR = RHS->getPredicate(); 1602 if ((PredL == FCmpInst::FCMP_ORD && PredR == FCmpInst::FCMP_ORD && IsAnd) || 1603 (PredL == FCmpInst::FCMP_UNO && PredR == FCmpInst::FCMP_UNO && !IsAnd)) { 1604 // (fcmp ord NNAN, X) & (fcmp ord X, Y) --> fcmp ord X, Y 1605 // (fcmp ord NNAN, X) & (fcmp ord Y, X) --> fcmp ord Y, X 1606 // (fcmp ord X, NNAN) & (fcmp ord X, Y) --> fcmp ord X, Y 1607 // (fcmp ord X, NNAN) & (fcmp ord Y, X) --> fcmp ord Y, X 1608 // (fcmp uno NNAN, X) | (fcmp uno X, Y) --> fcmp uno X, Y 1609 // (fcmp uno NNAN, X) | (fcmp uno Y, X) --> fcmp uno Y, X 1610 // (fcmp uno X, NNAN) | (fcmp uno X, Y) --> fcmp uno X, Y 1611 // (fcmp uno X, NNAN) | (fcmp uno Y, X) --> fcmp uno Y, X 1612 if ((isKnownNeverNaN(LHS0) && (LHS1 == RHS0 || LHS1 == RHS1)) || 1613 (isKnownNeverNaN(LHS1) && (LHS0 == RHS0 || LHS0 == RHS1))) 1614 return RHS; 1615 1616 // (fcmp ord X, Y) & (fcmp ord NNAN, X) --> fcmp ord X, Y 1617 // (fcmp ord Y, X) & (fcmp ord NNAN, X) --> fcmp ord Y, X 1618 // (fcmp ord X, Y) & (fcmp ord X, NNAN) --> fcmp ord X, Y 1619 // (fcmp ord Y, X) & (fcmp ord X, NNAN) --> fcmp ord Y, X 1620 // (fcmp uno X, Y) | (fcmp uno NNAN, X) --> fcmp uno X, Y 1621 // (fcmp uno Y, X) | (fcmp uno NNAN, X) --> fcmp uno Y, X 1622 // (fcmp uno X, Y) | (fcmp uno X, NNAN) --> fcmp uno X, Y 1623 // (fcmp uno Y, X) | (fcmp uno X, NNAN) --> fcmp uno Y, X 1624 if ((isKnownNeverNaN(RHS0) && (RHS1 == LHS0 || RHS1 == LHS1)) || 1625 (isKnownNeverNaN(RHS1) && (RHS0 == LHS0 || RHS0 == LHS1))) 1626 return LHS; 1627 } 1628 1629 return nullptr; 1630 } 1631 1632 static Value *simplifyAndOrOfCmps(Value *Op0, Value *Op1, bool IsAnd) { 1633 // Look through casts of the 'and' operands to find compares. 1634 auto *Cast0 = dyn_cast<CastInst>(Op0); 1635 auto *Cast1 = dyn_cast<CastInst>(Op1); 1636 if (Cast0 && Cast1 && Cast0->getOpcode() == Cast1->getOpcode() && 1637 Cast0->getSrcTy() == Cast1->getSrcTy()) { 1638 Op0 = Cast0->getOperand(0); 1639 Op1 = Cast1->getOperand(0); 1640 } 1641 1642 Value *V = nullptr; 1643 auto *ICmp0 = dyn_cast<ICmpInst>(Op0); 1644 auto *ICmp1 = dyn_cast<ICmpInst>(Op1); 1645 if (ICmp0 && ICmp1) 1646 V = IsAnd ? simplifyAndOfICmps(ICmp0, ICmp1) : 1647 simplifyOrOfICmps(ICmp0, ICmp1); 1648 1649 auto *FCmp0 = dyn_cast<FCmpInst>(Op0); 1650 auto *FCmp1 = dyn_cast<FCmpInst>(Op1); 1651 if (FCmp0 && FCmp1) 1652 V = simplifyAndOrOfFCmps(FCmp0, FCmp1, IsAnd); 1653 1654 if (!V) 1655 return nullptr; 1656 if (!Cast0) 1657 return V; 1658 1659 // If we looked through casts, we can only handle a constant simplification 1660 // because we are not allowed to create a cast instruction here. 1661 if (auto *C = dyn_cast<Constant>(V)) 1662 return ConstantExpr::getCast(Cast0->getOpcode(), C, Cast0->getType()); 1663 1664 return nullptr; 1665 } 1666 1667 /// Given operands for an And, see if we can fold the result. 1668 /// If not, this returns null. 1669 static Value *SimplifyAndInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 1670 unsigned MaxRecurse) { 1671 if (Constant *C = foldOrCommuteConstant(Instruction::And, Op0, Op1, Q)) 1672 return C; 1673 1674 // X & undef -> 0 1675 if (match(Op1, m_Undef())) 1676 return Constant::getNullValue(Op0->getType()); 1677 1678 // X & X = X 1679 if (Op0 == Op1) 1680 return Op0; 1681 1682 // X & 0 = 0 1683 if (match(Op1, m_Zero())) 1684 return Op1; 1685 1686 // X & -1 = X 1687 if (match(Op1, m_AllOnes())) 1688 return Op0; 1689 1690 // A & ~A = ~A & A = 0 1691 if (match(Op0, m_Not(m_Specific(Op1))) || 1692 match(Op1, m_Not(m_Specific(Op0)))) 1693 return Constant::getNullValue(Op0->getType()); 1694 1695 // (A | ?) & A = A 1696 if (match(Op0, m_c_Or(m_Specific(Op1), m_Value()))) 1697 return Op1; 1698 1699 // A & (A | ?) = A 1700 if (match(Op1, m_c_Or(m_Specific(Op0), m_Value()))) 1701 return Op0; 1702 1703 // A mask that only clears known zeros of a shifted value is a no-op. 1704 Value *X; 1705 const APInt *Mask; 1706 const APInt *ShAmt; 1707 if (match(Op1, m_APInt(Mask))) { 1708 // If all bits in the inverted and shifted mask are clear: 1709 // and (shl X, ShAmt), Mask --> shl X, ShAmt 1710 if (match(Op0, m_Shl(m_Value(X), m_APInt(ShAmt))) && 1711 (~(*Mask)).lshr(*ShAmt).isNullValue()) 1712 return Op0; 1713 1714 // If all bits in the inverted and shifted mask are clear: 1715 // and (lshr X, ShAmt), Mask --> lshr X, ShAmt 1716 if (match(Op0, m_LShr(m_Value(X), m_APInt(ShAmt))) && 1717 (~(*Mask)).shl(*ShAmt).isNullValue()) 1718 return Op0; 1719 } 1720 1721 // A & (-A) = A if A is a power of two or zero. 1722 if (match(Op0, m_Neg(m_Specific(Op1))) || 1723 match(Op1, m_Neg(m_Specific(Op0)))) { 1724 if (isKnownToBeAPowerOfTwo(Op0, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI, 1725 Q.DT)) 1726 return Op0; 1727 if (isKnownToBeAPowerOfTwo(Op1, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI, 1728 Q.DT)) 1729 return Op1; 1730 } 1731 1732 if (Value *V = simplifyAndOrOfCmps(Op0, Op1, true)) 1733 return V; 1734 1735 // Try some generic simplifications for associative operations. 1736 if (Value *V = SimplifyAssociativeBinOp(Instruction::And, Op0, Op1, Q, 1737 MaxRecurse)) 1738 return V; 1739 1740 // And distributes over Or. Try some generic simplifications based on this. 1741 if (Value *V = ExpandBinOp(Instruction::And, Op0, Op1, Instruction::Or, 1742 Q, MaxRecurse)) 1743 return V; 1744 1745 // And distributes over Xor. Try some generic simplifications based on this. 1746 if (Value *V = ExpandBinOp(Instruction::And, Op0, Op1, Instruction::Xor, 1747 Q, MaxRecurse)) 1748 return V; 1749 1750 // If the operation is with the result of a select instruction, check whether 1751 // operating on either branch of the select always yields the same value. 1752 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 1753 if (Value *V = ThreadBinOpOverSelect(Instruction::And, Op0, Op1, Q, 1754 MaxRecurse)) 1755 return V; 1756 1757 // If the operation is with the result of a phi instruction, check whether 1758 // operating on all incoming values of the phi always yields the same value. 1759 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 1760 if (Value *V = ThreadBinOpOverPHI(Instruction::And, Op0, Op1, Q, 1761 MaxRecurse)) 1762 return V; 1763 1764 return nullptr; 1765 } 1766 1767 Value *llvm::SimplifyAndInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 1768 return ::SimplifyAndInst(Op0, Op1, Q, RecursionLimit); 1769 } 1770 1771 /// Given operands for an Or, see if we can fold the result. 1772 /// If not, this returns null. 1773 static Value *SimplifyOrInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 1774 unsigned MaxRecurse) { 1775 if (Constant *C = foldOrCommuteConstant(Instruction::Or, Op0, Op1, Q)) 1776 return C; 1777 1778 // X | undef -> -1 1779 if (match(Op1, m_Undef())) 1780 return Constant::getAllOnesValue(Op0->getType()); 1781 1782 // X | X = X 1783 if (Op0 == Op1) 1784 return Op0; 1785 1786 // X | 0 = X 1787 if (match(Op1, m_Zero())) 1788 return Op0; 1789 1790 // X | -1 = -1 1791 if (match(Op1, m_AllOnes())) 1792 return Op1; 1793 1794 // A | ~A = ~A | A = -1 1795 if (match(Op0, m_Not(m_Specific(Op1))) || 1796 match(Op1, m_Not(m_Specific(Op0)))) 1797 return Constant::getAllOnesValue(Op0->getType()); 1798 1799 // (A & ?) | A = A 1800 if (match(Op0, m_c_And(m_Specific(Op1), m_Value()))) 1801 return Op1; 1802 1803 // A | (A & ?) = A 1804 if (match(Op1, m_c_And(m_Specific(Op0), m_Value()))) 1805 return Op0; 1806 1807 // ~(A & ?) | A = -1 1808 if (match(Op0, m_Not(m_c_And(m_Specific(Op1), m_Value())))) 1809 return Constant::getAllOnesValue(Op1->getType()); 1810 1811 // A | ~(A & ?) = -1 1812 if (match(Op1, m_Not(m_c_And(m_Specific(Op1), m_Value())))) 1813 return Constant::getAllOnesValue(Op0->getType()); 1814 1815 Value *A, *B; 1816 // (A & ~B) | (A ^ B) -> (A ^ B) 1817 // (~B & A) | (A ^ B) -> (A ^ B) 1818 // (A & ~B) | (B ^ A) -> (B ^ A) 1819 // (~B & A) | (B ^ A) -> (B ^ A) 1820 if (match(Op1, m_Xor(m_Value(A), m_Value(B))) && 1821 (match(Op0, m_c_And(m_Specific(A), m_Not(m_Specific(B)))) || 1822 match(Op0, m_c_And(m_Not(m_Specific(A)), m_Specific(B))))) 1823 return Op1; 1824 1825 // Commute the 'or' operands. 1826 // (A ^ B) | (A & ~B) -> (A ^ B) 1827 // (A ^ B) | (~B & A) -> (A ^ B) 1828 // (B ^ A) | (A & ~B) -> (B ^ A) 1829 // (B ^ A) | (~B & A) -> (B ^ A) 1830 if (match(Op0, m_Xor(m_Value(A), m_Value(B))) && 1831 (match(Op1, m_c_And(m_Specific(A), m_Not(m_Specific(B)))) || 1832 match(Op1, m_c_And(m_Not(m_Specific(A)), m_Specific(B))))) 1833 return Op0; 1834 1835 // (A & B) | (~A ^ B) -> (~A ^ B) 1836 // (B & A) | (~A ^ B) -> (~A ^ B) 1837 // (A & B) | (B ^ ~A) -> (B ^ ~A) 1838 // (B & A) | (B ^ ~A) -> (B ^ ~A) 1839 if (match(Op0, m_And(m_Value(A), m_Value(B))) && 1840 (match(Op1, m_c_Xor(m_Specific(A), m_Not(m_Specific(B)))) || 1841 match(Op1, m_c_Xor(m_Not(m_Specific(A)), m_Specific(B))))) 1842 return Op1; 1843 1844 // (~A ^ B) | (A & B) -> (~A ^ B) 1845 // (~A ^ B) | (B & A) -> (~A ^ B) 1846 // (B ^ ~A) | (A & B) -> (B ^ ~A) 1847 // (B ^ ~A) | (B & A) -> (B ^ ~A) 1848 if (match(Op1, m_And(m_Value(A), m_Value(B))) && 1849 (match(Op0, m_c_Xor(m_Specific(A), m_Not(m_Specific(B)))) || 1850 match(Op0, m_c_Xor(m_Not(m_Specific(A)), m_Specific(B))))) 1851 return Op0; 1852 1853 if (Value *V = simplifyAndOrOfCmps(Op0, Op1, false)) 1854 return V; 1855 1856 // Try some generic simplifications for associative operations. 1857 if (Value *V = SimplifyAssociativeBinOp(Instruction::Or, Op0, Op1, Q, 1858 MaxRecurse)) 1859 return V; 1860 1861 // Or distributes over And. Try some generic simplifications based on this. 1862 if (Value *V = ExpandBinOp(Instruction::Or, Op0, Op1, Instruction::And, Q, 1863 MaxRecurse)) 1864 return V; 1865 1866 // If the operation is with the result of a select instruction, check whether 1867 // operating on either branch of the select always yields the same value. 1868 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 1869 if (Value *V = ThreadBinOpOverSelect(Instruction::Or, Op0, Op1, Q, 1870 MaxRecurse)) 1871 return V; 1872 1873 // (A & C1)|(B & C2) 1874 const APInt *C1, *C2; 1875 if (match(Op0, m_And(m_Value(A), m_APInt(C1))) && 1876 match(Op1, m_And(m_Value(B), m_APInt(C2)))) { 1877 if (*C1 == ~*C2) { 1878 // (A & C1)|(B & C2) 1879 // If we have: ((V + N) & C1) | (V & C2) 1880 // .. and C2 = ~C1 and C2 is 0+1+ and (N & C2) == 0 1881 // replace with V+N. 1882 Value *N; 1883 if (C2->isMask() && // C2 == 0+1+ 1884 match(A, m_c_Add(m_Specific(B), m_Value(N)))) { 1885 // Add commutes, try both ways. 1886 if (MaskedValueIsZero(N, *C2, Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 1887 return A; 1888 } 1889 // Or commutes, try both ways. 1890 if (C1->isMask() && 1891 match(B, m_c_Add(m_Specific(A), m_Value(N)))) { 1892 // Add commutes, try both ways. 1893 if (MaskedValueIsZero(N, *C1, Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 1894 return B; 1895 } 1896 } 1897 } 1898 1899 // If the operation is with the result of a phi instruction, check whether 1900 // operating on all incoming values of the phi always yields the same value. 1901 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 1902 if (Value *V = ThreadBinOpOverPHI(Instruction::Or, Op0, Op1, Q, MaxRecurse)) 1903 return V; 1904 1905 return nullptr; 1906 } 1907 1908 Value *llvm::SimplifyOrInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 1909 return ::SimplifyOrInst(Op0, Op1, Q, RecursionLimit); 1910 } 1911 1912 /// Given operands for a Xor, see if we can fold the result. 1913 /// If not, this returns null. 1914 static Value *SimplifyXorInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 1915 unsigned MaxRecurse) { 1916 if (Constant *C = foldOrCommuteConstant(Instruction::Xor, Op0, Op1, Q)) 1917 return C; 1918 1919 // A ^ undef -> undef 1920 if (match(Op1, m_Undef())) 1921 return Op1; 1922 1923 // A ^ 0 = A 1924 if (match(Op1, m_Zero())) 1925 return Op0; 1926 1927 // A ^ A = 0 1928 if (Op0 == Op1) 1929 return Constant::getNullValue(Op0->getType()); 1930 1931 // A ^ ~A = ~A ^ A = -1 1932 if (match(Op0, m_Not(m_Specific(Op1))) || 1933 match(Op1, m_Not(m_Specific(Op0)))) 1934 return Constant::getAllOnesValue(Op0->getType()); 1935 1936 // Try some generic simplifications for associative operations. 1937 if (Value *V = SimplifyAssociativeBinOp(Instruction::Xor, Op0, Op1, Q, 1938 MaxRecurse)) 1939 return V; 1940 1941 // Threading Xor over selects and phi nodes is pointless, so don't bother. 1942 // Threading over the select in "A ^ select(cond, B, C)" means evaluating 1943 // "A^B" and "A^C" and seeing if they are equal; but they are equal if and 1944 // only if B and C are equal. If B and C are equal then (since we assume 1945 // that operands have already been simplified) "select(cond, B, C)" should 1946 // have been simplified to the common value of B and C already. Analysing 1947 // "A^B" and "A^C" thus gains nothing, but costs compile time. Similarly 1948 // for threading over phi nodes. 1949 1950 return nullptr; 1951 } 1952 1953 Value *llvm::SimplifyXorInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 1954 return ::SimplifyXorInst(Op0, Op1, Q, RecursionLimit); 1955 } 1956 1957 1958 static Type *GetCompareTy(Value *Op) { 1959 return CmpInst::makeCmpResultType(Op->getType()); 1960 } 1961 1962 /// Rummage around inside V looking for something equivalent to the comparison 1963 /// "LHS Pred RHS". Return such a value if found, otherwise return null. 1964 /// Helper function for analyzing max/min idioms. 1965 static Value *ExtractEquivalentCondition(Value *V, CmpInst::Predicate Pred, 1966 Value *LHS, Value *RHS) { 1967 SelectInst *SI = dyn_cast<SelectInst>(V); 1968 if (!SI) 1969 return nullptr; 1970 CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition()); 1971 if (!Cmp) 1972 return nullptr; 1973 Value *CmpLHS = Cmp->getOperand(0), *CmpRHS = Cmp->getOperand(1); 1974 if (Pred == Cmp->getPredicate() && LHS == CmpLHS && RHS == CmpRHS) 1975 return Cmp; 1976 if (Pred == CmpInst::getSwappedPredicate(Cmp->getPredicate()) && 1977 LHS == CmpRHS && RHS == CmpLHS) 1978 return Cmp; 1979 return nullptr; 1980 } 1981 1982 // A significant optimization not implemented here is assuming that alloca 1983 // addresses are not equal to incoming argument values. They don't *alias*, 1984 // as we say, but that doesn't mean they aren't equal, so we take a 1985 // conservative approach. 1986 // 1987 // This is inspired in part by C++11 5.10p1: 1988 // "Two pointers of the same type compare equal if and only if they are both 1989 // null, both point to the same function, or both represent the same 1990 // address." 1991 // 1992 // This is pretty permissive. 1993 // 1994 // It's also partly due to C11 6.5.9p6: 1995 // "Two pointers compare equal if and only if both are null pointers, both are 1996 // pointers to the same object (including a pointer to an object and a 1997 // subobject at its beginning) or function, both are pointers to one past the 1998 // last element of the same array object, or one is a pointer to one past the 1999 // end of one array object and the other is a pointer to the start of a 2000 // different array object that happens to immediately follow the first array 2001 // object in the address space.) 2002 // 2003 // C11's version is more restrictive, however there's no reason why an argument 2004 // couldn't be a one-past-the-end value for a stack object in the caller and be 2005 // equal to the beginning of a stack object in the callee. 2006 // 2007 // If the C and C++ standards are ever made sufficiently restrictive in this 2008 // area, it may be possible to update LLVM's semantics accordingly and reinstate 2009 // this optimization. 2010 static Constant * 2011 computePointerICmp(const DataLayout &DL, const TargetLibraryInfo *TLI, 2012 const DominatorTree *DT, CmpInst::Predicate Pred, 2013 AssumptionCache *AC, const Instruction *CxtI, 2014 Value *LHS, Value *RHS) { 2015 // First, skip past any trivial no-ops. 2016 LHS = LHS->stripPointerCasts(); 2017 RHS = RHS->stripPointerCasts(); 2018 2019 // A non-null pointer is not equal to a null pointer. 2020 if (llvm::isKnownNonZero(LHS, DL) && isa<ConstantPointerNull>(RHS) && 2021 (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE)) 2022 return ConstantInt::get(GetCompareTy(LHS), 2023 !CmpInst::isTrueWhenEqual(Pred)); 2024 2025 // We can only fold certain predicates on pointer comparisons. 2026 switch (Pred) { 2027 default: 2028 return nullptr; 2029 2030 // Equality comaprisons are easy to fold. 2031 case CmpInst::ICMP_EQ: 2032 case CmpInst::ICMP_NE: 2033 break; 2034 2035 // We can only handle unsigned relational comparisons because 'inbounds' on 2036 // a GEP only protects against unsigned wrapping. 2037 case CmpInst::ICMP_UGT: 2038 case CmpInst::ICMP_UGE: 2039 case CmpInst::ICMP_ULT: 2040 case CmpInst::ICMP_ULE: 2041 // However, we have to switch them to their signed variants to handle 2042 // negative indices from the base pointer. 2043 Pred = ICmpInst::getSignedPredicate(Pred); 2044 break; 2045 } 2046 2047 // Strip off any constant offsets so that we can reason about them. 2048 // It's tempting to use getUnderlyingObject or even just stripInBoundsOffsets 2049 // here and compare base addresses like AliasAnalysis does, however there are 2050 // numerous hazards. AliasAnalysis and its utilities rely on special rules 2051 // governing loads and stores which don't apply to icmps. Also, AliasAnalysis 2052 // doesn't need to guarantee pointer inequality when it says NoAlias. 2053 Constant *LHSOffset = stripAndComputeConstantOffsets(DL, LHS); 2054 Constant *RHSOffset = stripAndComputeConstantOffsets(DL, RHS); 2055 2056 // If LHS and RHS are related via constant offsets to the same base 2057 // value, we can replace it with an icmp which just compares the offsets. 2058 if (LHS == RHS) 2059 return ConstantExpr::getICmp(Pred, LHSOffset, RHSOffset); 2060 2061 // Various optimizations for (in)equality comparisons. 2062 if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE) { 2063 // Different non-empty allocations that exist at the same time have 2064 // different addresses (if the program can tell). Global variables always 2065 // exist, so they always exist during the lifetime of each other and all 2066 // allocas. Two different allocas usually have different addresses... 2067 // 2068 // However, if there's an @llvm.stackrestore dynamically in between two 2069 // allocas, they may have the same address. It's tempting to reduce the 2070 // scope of the problem by only looking at *static* allocas here. That would 2071 // cover the majority of allocas while significantly reducing the likelihood 2072 // of having an @llvm.stackrestore pop up in the middle. However, it's not 2073 // actually impossible for an @llvm.stackrestore to pop up in the middle of 2074 // an entry block. Also, if we have a block that's not attached to a 2075 // function, we can't tell if it's "static" under the current definition. 2076 // Theoretically, this problem could be fixed by creating a new kind of 2077 // instruction kind specifically for static allocas. Such a new instruction 2078 // could be required to be at the top of the entry block, thus preventing it 2079 // from being subject to a @llvm.stackrestore. Instcombine could even 2080 // convert regular allocas into these special allocas. It'd be nifty. 2081 // However, until then, this problem remains open. 2082 // 2083 // So, we'll assume that two non-empty allocas have different addresses 2084 // for now. 2085 // 2086 // With all that, if the offsets are within the bounds of their allocations 2087 // (and not one-past-the-end! so we can't use inbounds!), and their 2088 // allocations aren't the same, the pointers are not equal. 2089 // 2090 // Note that it's not necessary to check for LHS being a global variable 2091 // address, due to canonicalization and constant folding. 2092 if (isa<AllocaInst>(LHS) && 2093 (isa<AllocaInst>(RHS) || isa<GlobalVariable>(RHS))) { 2094 ConstantInt *LHSOffsetCI = dyn_cast<ConstantInt>(LHSOffset); 2095 ConstantInt *RHSOffsetCI = dyn_cast<ConstantInt>(RHSOffset); 2096 uint64_t LHSSize, RHSSize; 2097 if (LHSOffsetCI && RHSOffsetCI && 2098 getObjectSize(LHS, LHSSize, DL, TLI) && 2099 getObjectSize(RHS, RHSSize, DL, TLI)) { 2100 const APInt &LHSOffsetValue = LHSOffsetCI->getValue(); 2101 const APInt &RHSOffsetValue = RHSOffsetCI->getValue(); 2102 if (!LHSOffsetValue.isNegative() && 2103 !RHSOffsetValue.isNegative() && 2104 LHSOffsetValue.ult(LHSSize) && 2105 RHSOffsetValue.ult(RHSSize)) { 2106 return ConstantInt::get(GetCompareTy(LHS), 2107 !CmpInst::isTrueWhenEqual(Pred)); 2108 } 2109 } 2110 2111 // Repeat the above check but this time without depending on DataLayout 2112 // or being able to compute a precise size. 2113 if (!cast<PointerType>(LHS->getType())->isEmptyTy() && 2114 !cast<PointerType>(RHS->getType())->isEmptyTy() && 2115 LHSOffset->isNullValue() && 2116 RHSOffset->isNullValue()) 2117 return ConstantInt::get(GetCompareTy(LHS), 2118 !CmpInst::isTrueWhenEqual(Pred)); 2119 } 2120 2121 // Even if an non-inbounds GEP occurs along the path we can still optimize 2122 // equality comparisons concerning the result. We avoid walking the whole 2123 // chain again by starting where the last calls to 2124 // stripAndComputeConstantOffsets left off and accumulate the offsets. 2125 Constant *LHSNoBound = stripAndComputeConstantOffsets(DL, LHS, true); 2126 Constant *RHSNoBound = stripAndComputeConstantOffsets(DL, RHS, true); 2127 if (LHS == RHS) 2128 return ConstantExpr::getICmp(Pred, 2129 ConstantExpr::getAdd(LHSOffset, LHSNoBound), 2130 ConstantExpr::getAdd(RHSOffset, RHSNoBound)); 2131 2132 // If one side of the equality comparison must come from a noalias call 2133 // (meaning a system memory allocation function), and the other side must 2134 // come from a pointer that cannot overlap with dynamically-allocated 2135 // memory within the lifetime of the current function (allocas, byval 2136 // arguments, globals), then determine the comparison result here. 2137 SmallVector<Value *, 8> LHSUObjs, RHSUObjs; 2138 GetUnderlyingObjects(LHS, LHSUObjs, DL); 2139 GetUnderlyingObjects(RHS, RHSUObjs, DL); 2140 2141 // Is the set of underlying objects all noalias calls? 2142 auto IsNAC = [](ArrayRef<Value *> Objects) { 2143 return all_of(Objects, isNoAliasCall); 2144 }; 2145 2146 // Is the set of underlying objects all things which must be disjoint from 2147 // noalias calls. For allocas, we consider only static ones (dynamic 2148 // allocas might be transformed into calls to malloc not simultaneously 2149 // live with the compared-to allocation). For globals, we exclude symbols 2150 // that might be resolve lazily to symbols in another dynamically-loaded 2151 // library (and, thus, could be malloc'ed by the implementation). 2152 auto IsAllocDisjoint = [](ArrayRef<Value *> Objects) { 2153 return all_of(Objects, [](Value *V) { 2154 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) 2155 return AI->getParent() && AI->getFunction() && AI->isStaticAlloca(); 2156 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) 2157 return (GV->hasLocalLinkage() || GV->hasHiddenVisibility() || 2158 GV->hasProtectedVisibility() || GV->hasGlobalUnnamedAddr()) && 2159 !GV->isThreadLocal(); 2160 if (const Argument *A = dyn_cast<Argument>(V)) 2161 return A->hasByValAttr(); 2162 return false; 2163 }); 2164 }; 2165 2166 if ((IsNAC(LHSUObjs) && IsAllocDisjoint(RHSUObjs)) || 2167 (IsNAC(RHSUObjs) && IsAllocDisjoint(LHSUObjs))) 2168 return ConstantInt::get(GetCompareTy(LHS), 2169 !CmpInst::isTrueWhenEqual(Pred)); 2170 2171 // Fold comparisons for non-escaping pointer even if the allocation call 2172 // cannot be elided. We cannot fold malloc comparison to null. Also, the 2173 // dynamic allocation call could be either of the operands. 2174 Value *MI = nullptr; 2175 if (isAllocLikeFn(LHS, TLI) && 2176 llvm::isKnownNonZero(RHS, DL, 0, nullptr, CxtI, DT)) 2177 MI = LHS; 2178 else if (isAllocLikeFn(RHS, TLI) && 2179 llvm::isKnownNonZero(LHS, DL, 0, nullptr, CxtI, DT)) 2180 MI = RHS; 2181 // FIXME: We should also fold the compare when the pointer escapes, but the 2182 // compare dominates the pointer escape 2183 if (MI && !PointerMayBeCaptured(MI, true, true)) 2184 return ConstantInt::get(GetCompareTy(LHS), 2185 CmpInst::isFalseWhenEqual(Pred)); 2186 } 2187 2188 // Otherwise, fail. 2189 return nullptr; 2190 } 2191 2192 /// Fold an icmp when its operands have i1 scalar type. 2193 static Value *simplifyICmpOfBools(CmpInst::Predicate Pred, Value *LHS, 2194 Value *RHS, const SimplifyQuery &Q) { 2195 Type *ITy = GetCompareTy(LHS); // The return type. 2196 Type *OpTy = LHS->getType(); // The operand type. 2197 if (!OpTy->isIntOrIntVectorTy(1)) 2198 return nullptr; 2199 2200 // A boolean compared to true/false can be simplified in 14 out of the 20 2201 // (10 predicates * 2 constants) possible combinations. Cases not handled here 2202 // require a 'not' of the LHS, so those must be transformed in InstCombine. 2203 if (match(RHS, m_Zero())) { 2204 switch (Pred) { 2205 case CmpInst::ICMP_NE: // X != 0 -> X 2206 case CmpInst::ICMP_UGT: // X >u 0 -> X 2207 case CmpInst::ICMP_SLT: // X <s 0 -> X 2208 return LHS; 2209 2210 case CmpInst::ICMP_ULT: // X <u 0 -> false 2211 case CmpInst::ICMP_SGT: // X >s 0 -> false 2212 return getFalse(ITy); 2213 2214 case CmpInst::ICMP_UGE: // X >=u 0 -> true 2215 case CmpInst::ICMP_SLE: // X <=s 0 -> true 2216 return getTrue(ITy); 2217 2218 default: break; 2219 } 2220 } else if (match(RHS, m_One())) { 2221 switch (Pred) { 2222 case CmpInst::ICMP_EQ: // X == 1 -> X 2223 case CmpInst::ICMP_UGE: // X >=u 1 -> X 2224 case CmpInst::ICMP_SLE: // X <=s -1 -> X 2225 return LHS; 2226 2227 case CmpInst::ICMP_UGT: // X >u 1 -> false 2228 case CmpInst::ICMP_SLT: // X <s -1 -> false 2229 return getFalse(ITy); 2230 2231 case CmpInst::ICMP_ULE: // X <=u 1 -> true 2232 case CmpInst::ICMP_SGE: // X >=s -1 -> true 2233 return getTrue(ITy); 2234 2235 default: break; 2236 } 2237 } 2238 2239 switch (Pred) { 2240 default: 2241 break; 2242 case ICmpInst::ICMP_UGE: 2243 if (isImpliedCondition(RHS, LHS, Q.DL).getValueOr(false)) 2244 return getTrue(ITy); 2245 break; 2246 case ICmpInst::ICMP_SGE: 2247 /// For signed comparison, the values for an i1 are 0 and -1 2248 /// respectively. This maps into a truth table of: 2249 /// LHS | RHS | LHS >=s RHS | LHS implies RHS 2250 /// 0 | 0 | 1 (0 >= 0) | 1 2251 /// 0 | 1 | 1 (0 >= -1) | 1 2252 /// 1 | 0 | 0 (-1 >= 0) | 0 2253 /// 1 | 1 | 1 (-1 >= -1) | 1 2254 if (isImpliedCondition(LHS, RHS, Q.DL).getValueOr(false)) 2255 return getTrue(ITy); 2256 break; 2257 case ICmpInst::ICMP_ULE: 2258 if (isImpliedCondition(LHS, RHS, Q.DL).getValueOr(false)) 2259 return getTrue(ITy); 2260 break; 2261 } 2262 2263 return nullptr; 2264 } 2265 2266 /// Try hard to fold icmp with zero RHS because this is a common case. 2267 static Value *simplifyICmpWithZero(CmpInst::Predicate Pred, Value *LHS, 2268 Value *RHS, const SimplifyQuery &Q) { 2269 if (!match(RHS, m_Zero())) 2270 return nullptr; 2271 2272 Type *ITy = GetCompareTy(LHS); // The return type. 2273 switch (Pred) { 2274 default: 2275 llvm_unreachable("Unknown ICmp predicate!"); 2276 case ICmpInst::ICMP_ULT: 2277 return getFalse(ITy); 2278 case ICmpInst::ICMP_UGE: 2279 return getTrue(ITy); 2280 case ICmpInst::ICMP_EQ: 2281 case ICmpInst::ICMP_ULE: 2282 if (isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 2283 return getFalse(ITy); 2284 break; 2285 case ICmpInst::ICMP_NE: 2286 case ICmpInst::ICMP_UGT: 2287 if (isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 2288 return getTrue(ITy); 2289 break; 2290 case ICmpInst::ICMP_SLT: { 2291 KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2292 if (LHSKnown.isNegative()) 2293 return getTrue(ITy); 2294 if (LHSKnown.isNonNegative()) 2295 return getFalse(ITy); 2296 break; 2297 } 2298 case ICmpInst::ICMP_SLE: { 2299 KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2300 if (LHSKnown.isNegative()) 2301 return getTrue(ITy); 2302 if (LHSKnown.isNonNegative() && 2303 isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 2304 return getFalse(ITy); 2305 break; 2306 } 2307 case ICmpInst::ICMP_SGE: { 2308 KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2309 if (LHSKnown.isNegative()) 2310 return getFalse(ITy); 2311 if (LHSKnown.isNonNegative()) 2312 return getTrue(ITy); 2313 break; 2314 } 2315 case ICmpInst::ICMP_SGT: { 2316 KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2317 if (LHSKnown.isNegative()) 2318 return getFalse(ITy); 2319 if (LHSKnown.isNonNegative() && 2320 isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 2321 return getTrue(ITy); 2322 break; 2323 } 2324 } 2325 2326 return nullptr; 2327 } 2328 2329 /// Many binary operators with a constant operand have an easy-to-compute 2330 /// range of outputs. This can be used to fold a comparison to always true or 2331 /// always false. 2332 static void setLimitsForBinOp(BinaryOperator &BO, APInt &Lower, APInt &Upper) { 2333 unsigned Width = Lower.getBitWidth(); 2334 const APInt *C; 2335 switch (BO.getOpcode()) { 2336 case Instruction::Add: 2337 if (match(BO.getOperand(1), m_APInt(C)) && !C->isNullValue()) { 2338 // FIXME: If we have both nuw and nsw, we should reduce the range further. 2339 if (BO.hasNoUnsignedWrap()) { 2340 // 'add nuw x, C' produces [C, UINT_MAX]. 2341 Lower = *C; 2342 } else if (BO.hasNoSignedWrap()) { 2343 if (C->isNegative()) { 2344 // 'add nsw x, -C' produces [SINT_MIN, SINT_MAX - C]. 2345 Lower = APInt::getSignedMinValue(Width); 2346 Upper = APInt::getSignedMaxValue(Width) + *C + 1; 2347 } else { 2348 // 'add nsw x, +C' produces [SINT_MIN + C, SINT_MAX]. 2349 Lower = APInt::getSignedMinValue(Width) + *C; 2350 Upper = APInt::getSignedMaxValue(Width) + 1; 2351 } 2352 } 2353 } 2354 break; 2355 2356 case Instruction::And: 2357 if (match(BO.getOperand(1), m_APInt(C))) 2358 // 'and x, C' produces [0, C]. 2359 Upper = *C + 1; 2360 break; 2361 2362 case Instruction::Or: 2363 if (match(BO.getOperand(1), m_APInt(C))) 2364 // 'or x, C' produces [C, UINT_MAX]. 2365 Lower = *C; 2366 break; 2367 2368 case Instruction::AShr: 2369 if (match(BO.getOperand(1), m_APInt(C)) && C->ult(Width)) { 2370 // 'ashr x, C' produces [INT_MIN >> C, INT_MAX >> C]. 2371 Lower = APInt::getSignedMinValue(Width).ashr(*C); 2372 Upper = APInt::getSignedMaxValue(Width).ashr(*C) + 1; 2373 } else if (match(BO.getOperand(0), m_APInt(C))) { 2374 unsigned ShiftAmount = Width - 1; 2375 if (!C->isNullValue() && BO.isExact()) 2376 ShiftAmount = C->countTrailingZeros(); 2377 if (C->isNegative()) { 2378 // 'ashr C, x' produces [C, C >> (Width-1)] 2379 Lower = *C; 2380 Upper = C->ashr(ShiftAmount) + 1; 2381 } else { 2382 // 'ashr C, x' produces [C >> (Width-1), C] 2383 Lower = C->ashr(ShiftAmount); 2384 Upper = *C + 1; 2385 } 2386 } 2387 break; 2388 2389 case Instruction::LShr: 2390 if (match(BO.getOperand(1), m_APInt(C)) && C->ult(Width)) { 2391 // 'lshr x, C' produces [0, UINT_MAX >> C]. 2392 Upper = APInt::getAllOnesValue(Width).lshr(*C) + 1; 2393 } else if (match(BO.getOperand(0), m_APInt(C))) { 2394 // 'lshr C, x' produces [C >> (Width-1), C]. 2395 unsigned ShiftAmount = Width - 1; 2396 if (!C->isNullValue() && BO.isExact()) 2397 ShiftAmount = C->countTrailingZeros(); 2398 Lower = C->lshr(ShiftAmount); 2399 Upper = *C + 1; 2400 } 2401 break; 2402 2403 case Instruction::Shl: 2404 if (match(BO.getOperand(0), m_APInt(C))) { 2405 if (BO.hasNoUnsignedWrap()) { 2406 // 'shl nuw C, x' produces [C, C << CLZ(C)] 2407 Lower = *C; 2408 Upper = Lower.shl(Lower.countLeadingZeros()) + 1; 2409 } else if (BO.hasNoSignedWrap()) { // TODO: What if both nuw+nsw? 2410 if (C->isNegative()) { 2411 // 'shl nsw C, x' produces [C << CLO(C)-1, C] 2412 unsigned ShiftAmount = C->countLeadingOnes() - 1; 2413 Lower = C->shl(ShiftAmount); 2414 Upper = *C + 1; 2415 } else { 2416 // 'shl nsw C, x' produces [C, C << CLZ(C)-1] 2417 unsigned ShiftAmount = C->countLeadingZeros() - 1; 2418 Lower = *C; 2419 Upper = C->shl(ShiftAmount) + 1; 2420 } 2421 } 2422 } 2423 break; 2424 2425 case Instruction::SDiv: 2426 if (match(BO.getOperand(1), m_APInt(C))) { 2427 APInt IntMin = APInt::getSignedMinValue(Width); 2428 APInt IntMax = APInt::getSignedMaxValue(Width); 2429 if (C->isAllOnesValue()) { 2430 // 'sdiv x, -1' produces [INT_MIN + 1, INT_MAX] 2431 // where C != -1 and C != 0 and C != 1 2432 Lower = IntMin + 1; 2433 Upper = IntMax + 1; 2434 } else if (C->countLeadingZeros() < Width - 1) { 2435 // 'sdiv x, C' produces [INT_MIN / C, INT_MAX / C] 2436 // where C != -1 and C != 0 and C != 1 2437 Lower = IntMin.sdiv(*C); 2438 Upper = IntMax.sdiv(*C); 2439 if (Lower.sgt(Upper)) 2440 std::swap(Lower, Upper); 2441 Upper = Upper + 1; 2442 assert(Upper != Lower && "Upper part of range has wrapped!"); 2443 } 2444 } else if (match(BO.getOperand(0), m_APInt(C))) { 2445 if (C->isMinSignedValue()) { 2446 // 'sdiv INT_MIN, x' produces [INT_MIN, INT_MIN / -2]. 2447 Lower = *C; 2448 Upper = Lower.lshr(1) + 1; 2449 } else { 2450 // 'sdiv C, x' produces [-|C|, |C|]. 2451 Upper = C->abs() + 1; 2452 Lower = (-Upper) + 1; 2453 } 2454 } 2455 break; 2456 2457 case Instruction::UDiv: 2458 if (match(BO.getOperand(1), m_APInt(C)) && !C->isNullValue()) { 2459 // 'udiv x, C' produces [0, UINT_MAX / C]. 2460 Upper = APInt::getMaxValue(Width).udiv(*C) + 1; 2461 } else if (match(BO.getOperand(0), m_APInt(C))) { 2462 // 'udiv C, x' produces [0, C]. 2463 Upper = *C + 1; 2464 } 2465 break; 2466 2467 case Instruction::SRem: 2468 if (match(BO.getOperand(1), m_APInt(C))) { 2469 // 'srem x, C' produces (-|C|, |C|). 2470 Upper = C->abs(); 2471 Lower = (-Upper) + 1; 2472 } 2473 break; 2474 2475 case Instruction::URem: 2476 if (match(BO.getOperand(1), m_APInt(C))) 2477 // 'urem x, C' produces [0, C). 2478 Upper = *C; 2479 break; 2480 2481 default: 2482 break; 2483 } 2484 } 2485 2486 static Value *simplifyICmpWithConstant(CmpInst::Predicate Pred, Value *LHS, 2487 Value *RHS) { 2488 const APInt *C; 2489 if (!match(RHS, m_APInt(C))) 2490 return nullptr; 2491 2492 // Rule out tautological comparisons (eg., ult 0 or uge 0). 2493 ConstantRange RHS_CR = ConstantRange::makeExactICmpRegion(Pred, *C); 2494 if (RHS_CR.isEmptySet()) 2495 return ConstantInt::getFalse(GetCompareTy(RHS)); 2496 if (RHS_CR.isFullSet()) 2497 return ConstantInt::getTrue(GetCompareTy(RHS)); 2498 2499 // Find the range of possible values for binary operators. 2500 unsigned Width = C->getBitWidth(); 2501 APInt Lower = APInt(Width, 0); 2502 APInt Upper = APInt(Width, 0); 2503 if (auto *BO = dyn_cast<BinaryOperator>(LHS)) 2504 setLimitsForBinOp(*BO, Lower, Upper); 2505 2506 ConstantRange LHS_CR = 2507 Lower != Upper ? ConstantRange(Lower, Upper) : ConstantRange(Width, true); 2508 2509 if (auto *I = dyn_cast<Instruction>(LHS)) 2510 if (auto *Ranges = I->getMetadata(LLVMContext::MD_range)) 2511 LHS_CR = LHS_CR.intersectWith(getConstantRangeFromMetadata(*Ranges)); 2512 2513 if (!LHS_CR.isFullSet()) { 2514 if (RHS_CR.contains(LHS_CR)) 2515 return ConstantInt::getTrue(GetCompareTy(RHS)); 2516 if (RHS_CR.inverse().contains(LHS_CR)) 2517 return ConstantInt::getFalse(GetCompareTy(RHS)); 2518 } 2519 2520 return nullptr; 2521 } 2522 2523 /// TODO: A large part of this logic is duplicated in InstCombine's 2524 /// foldICmpBinOp(). We should be able to share that and avoid the code 2525 /// duplication. 2526 static Value *simplifyICmpWithBinOp(CmpInst::Predicate Pred, Value *LHS, 2527 Value *RHS, const SimplifyQuery &Q, 2528 unsigned MaxRecurse) { 2529 Type *ITy = GetCompareTy(LHS); // The return type. 2530 2531 BinaryOperator *LBO = dyn_cast<BinaryOperator>(LHS); 2532 BinaryOperator *RBO = dyn_cast<BinaryOperator>(RHS); 2533 if (MaxRecurse && (LBO || RBO)) { 2534 // Analyze the case when either LHS or RHS is an add instruction. 2535 Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr; 2536 // LHS = A + B (or A and B are null); RHS = C + D (or C and D are null). 2537 bool NoLHSWrapProblem = false, NoRHSWrapProblem = false; 2538 if (LBO && LBO->getOpcode() == Instruction::Add) { 2539 A = LBO->getOperand(0); 2540 B = LBO->getOperand(1); 2541 NoLHSWrapProblem = 2542 ICmpInst::isEquality(Pred) || 2543 (CmpInst::isUnsigned(Pred) && LBO->hasNoUnsignedWrap()) || 2544 (CmpInst::isSigned(Pred) && LBO->hasNoSignedWrap()); 2545 } 2546 if (RBO && RBO->getOpcode() == Instruction::Add) { 2547 C = RBO->getOperand(0); 2548 D = RBO->getOperand(1); 2549 NoRHSWrapProblem = 2550 ICmpInst::isEquality(Pred) || 2551 (CmpInst::isUnsigned(Pred) && RBO->hasNoUnsignedWrap()) || 2552 (CmpInst::isSigned(Pred) && RBO->hasNoSignedWrap()); 2553 } 2554 2555 // icmp (X+Y), X -> icmp Y, 0 for equalities or if there is no overflow. 2556 if ((A == RHS || B == RHS) && NoLHSWrapProblem) 2557 if (Value *V = SimplifyICmpInst(Pred, A == RHS ? B : A, 2558 Constant::getNullValue(RHS->getType()), Q, 2559 MaxRecurse - 1)) 2560 return V; 2561 2562 // icmp X, (X+Y) -> icmp 0, Y for equalities or if there is no overflow. 2563 if ((C == LHS || D == LHS) && NoRHSWrapProblem) 2564 if (Value *V = 2565 SimplifyICmpInst(Pred, Constant::getNullValue(LHS->getType()), 2566 C == LHS ? D : C, Q, MaxRecurse - 1)) 2567 return V; 2568 2569 // icmp (X+Y), (X+Z) -> icmp Y,Z for equalities or if there is no overflow. 2570 if (A && C && (A == C || A == D || B == C || B == D) && NoLHSWrapProblem && 2571 NoRHSWrapProblem) { 2572 // Determine Y and Z in the form icmp (X+Y), (X+Z). 2573 Value *Y, *Z; 2574 if (A == C) { 2575 // C + B == C + D -> B == D 2576 Y = B; 2577 Z = D; 2578 } else if (A == D) { 2579 // D + B == C + D -> B == C 2580 Y = B; 2581 Z = C; 2582 } else if (B == C) { 2583 // A + C == C + D -> A == D 2584 Y = A; 2585 Z = D; 2586 } else { 2587 assert(B == D); 2588 // A + D == C + D -> A == C 2589 Y = A; 2590 Z = C; 2591 } 2592 if (Value *V = SimplifyICmpInst(Pred, Y, Z, Q, MaxRecurse - 1)) 2593 return V; 2594 } 2595 } 2596 2597 { 2598 Value *Y = nullptr; 2599 // icmp pred (or X, Y), X 2600 if (LBO && match(LBO, m_c_Or(m_Value(Y), m_Specific(RHS)))) { 2601 if (Pred == ICmpInst::ICMP_ULT) 2602 return getFalse(ITy); 2603 if (Pred == ICmpInst::ICMP_UGE) 2604 return getTrue(ITy); 2605 2606 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SGE) { 2607 KnownBits RHSKnown = computeKnownBits(RHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2608 KnownBits YKnown = computeKnownBits(Y, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2609 if (RHSKnown.isNonNegative() && YKnown.isNegative()) 2610 return Pred == ICmpInst::ICMP_SLT ? getTrue(ITy) : getFalse(ITy); 2611 if (RHSKnown.isNegative() || YKnown.isNonNegative()) 2612 return Pred == ICmpInst::ICMP_SLT ? getFalse(ITy) : getTrue(ITy); 2613 } 2614 } 2615 // icmp pred X, (or X, Y) 2616 if (RBO && match(RBO, m_c_Or(m_Value(Y), m_Specific(LHS)))) { 2617 if (Pred == ICmpInst::ICMP_ULE) 2618 return getTrue(ITy); 2619 if (Pred == ICmpInst::ICMP_UGT) 2620 return getFalse(ITy); 2621 2622 if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SLE) { 2623 KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2624 KnownBits YKnown = computeKnownBits(Y, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2625 if (LHSKnown.isNonNegative() && YKnown.isNegative()) 2626 return Pred == ICmpInst::ICMP_SGT ? getTrue(ITy) : getFalse(ITy); 2627 if (LHSKnown.isNegative() || YKnown.isNonNegative()) 2628 return Pred == ICmpInst::ICMP_SGT ? getFalse(ITy) : getTrue(ITy); 2629 } 2630 } 2631 } 2632 2633 // icmp pred (and X, Y), X 2634 if (LBO && match(LBO, m_c_And(m_Value(), m_Specific(RHS)))) { 2635 if (Pred == ICmpInst::ICMP_UGT) 2636 return getFalse(ITy); 2637 if (Pred == ICmpInst::ICMP_ULE) 2638 return getTrue(ITy); 2639 } 2640 // icmp pred X, (and X, Y) 2641 if (RBO && match(RBO, m_c_And(m_Value(), m_Specific(LHS)))) { 2642 if (Pred == ICmpInst::ICMP_UGE) 2643 return getTrue(ITy); 2644 if (Pred == ICmpInst::ICMP_ULT) 2645 return getFalse(ITy); 2646 } 2647 2648 // 0 - (zext X) pred C 2649 if (!CmpInst::isUnsigned(Pred) && match(LHS, m_Neg(m_ZExt(m_Value())))) { 2650 if (ConstantInt *RHSC = dyn_cast<ConstantInt>(RHS)) { 2651 if (RHSC->getValue().isStrictlyPositive()) { 2652 if (Pred == ICmpInst::ICMP_SLT) 2653 return ConstantInt::getTrue(RHSC->getContext()); 2654 if (Pred == ICmpInst::ICMP_SGE) 2655 return ConstantInt::getFalse(RHSC->getContext()); 2656 if (Pred == ICmpInst::ICMP_EQ) 2657 return ConstantInt::getFalse(RHSC->getContext()); 2658 if (Pred == ICmpInst::ICMP_NE) 2659 return ConstantInt::getTrue(RHSC->getContext()); 2660 } 2661 if (RHSC->getValue().isNonNegative()) { 2662 if (Pred == ICmpInst::ICMP_SLE) 2663 return ConstantInt::getTrue(RHSC->getContext()); 2664 if (Pred == ICmpInst::ICMP_SGT) 2665 return ConstantInt::getFalse(RHSC->getContext()); 2666 } 2667 } 2668 } 2669 2670 // icmp pred (urem X, Y), Y 2671 if (LBO && match(LBO, m_URem(m_Value(), m_Specific(RHS)))) { 2672 switch (Pred) { 2673 default: 2674 break; 2675 case ICmpInst::ICMP_SGT: 2676 case ICmpInst::ICMP_SGE: { 2677 KnownBits Known = computeKnownBits(RHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2678 if (!Known.isNonNegative()) 2679 break; 2680 LLVM_FALLTHROUGH; 2681 } 2682 case ICmpInst::ICMP_EQ: 2683 case ICmpInst::ICMP_UGT: 2684 case ICmpInst::ICMP_UGE: 2685 return getFalse(ITy); 2686 case ICmpInst::ICMP_SLT: 2687 case ICmpInst::ICMP_SLE: { 2688 KnownBits Known = computeKnownBits(RHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2689 if (!Known.isNonNegative()) 2690 break; 2691 LLVM_FALLTHROUGH; 2692 } 2693 case ICmpInst::ICMP_NE: 2694 case ICmpInst::ICMP_ULT: 2695 case ICmpInst::ICMP_ULE: 2696 return getTrue(ITy); 2697 } 2698 } 2699 2700 // icmp pred X, (urem Y, X) 2701 if (RBO && match(RBO, m_URem(m_Value(), m_Specific(LHS)))) { 2702 switch (Pred) { 2703 default: 2704 break; 2705 case ICmpInst::ICMP_SGT: 2706 case ICmpInst::ICMP_SGE: { 2707 KnownBits Known = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2708 if (!Known.isNonNegative()) 2709 break; 2710 LLVM_FALLTHROUGH; 2711 } 2712 case ICmpInst::ICMP_NE: 2713 case ICmpInst::ICMP_UGT: 2714 case ICmpInst::ICMP_UGE: 2715 return getTrue(ITy); 2716 case ICmpInst::ICMP_SLT: 2717 case ICmpInst::ICMP_SLE: { 2718 KnownBits Known = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2719 if (!Known.isNonNegative()) 2720 break; 2721 LLVM_FALLTHROUGH; 2722 } 2723 case ICmpInst::ICMP_EQ: 2724 case ICmpInst::ICMP_ULT: 2725 case ICmpInst::ICMP_ULE: 2726 return getFalse(ITy); 2727 } 2728 } 2729 2730 // x >> y <=u x 2731 // x udiv y <=u x. 2732 if (LBO && (match(LBO, m_LShr(m_Specific(RHS), m_Value())) || 2733 match(LBO, m_UDiv(m_Specific(RHS), m_Value())))) { 2734 // icmp pred (X op Y), X 2735 if (Pred == ICmpInst::ICMP_UGT) 2736 return getFalse(ITy); 2737 if (Pred == ICmpInst::ICMP_ULE) 2738 return getTrue(ITy); 2739 } 2740 2741 // x >=u x >> y 2742 // x >=u x udiv y. 2743 if (RBO && (match(RBO, m_LShr(m_Specific(LHS), m_Value())) || 2744 match(RBO, m_UDiv(m_Specific(LHS), m_Value())))) { 2745 // icmp pred X, (X op Y) 2746 if (Pred == ICmpInst::ICMP_ULT) 2747 return getFalse(ITy); 2748 if (Pred == ICmpInst::ICMP_UGE) 2749 return getTrue(ITy); 2750 } 2751 2752 // handle: 2753 // CI2 << X == CI 2754 // CI2 << X != CI 2755 // 2756 // where CI2 is a power of 2 and CI isn't 2757 if (auto *CI = dyn_cast<ConstantInt>(RHS)) { 2758 const APInt *CI2Val, *CIVal = &CI->getValue(); 2759 if (LBO && match(LBO, m_Shl(m_APInt(CI2Val), m_Value())) && 2760 CI2Val->isPowerOf2()) { 2761 if (!CIVal->isPowerOf2()) { 2762 // CI2 << X can equal zero in some circumstances, 2763 // this simplification is unsafe if CI is zero. 2764 // 2765 // We know it is safe if: 2766 // - The shift is nsw, we can't shift out the one bit. 2767 // - The shift is nuw, we can't shift out the one bit. 2768 // - CI2 is one 2769 // - CI isn't zero 2770 if (LBO->hasNoSignedWrap() || LBO->hasNoUnsignedWrap() || 2771 CI2Val->isOneValue() || !CI->isZero()) { 2772 if (Pred == ICmpInst::ICMP_EQ) 2773 return ConstantInt::getFalse(RHS->getContext()); 2774 if (Pred == ICmpInst::ICMP_NE) 2775 return ConstantInt::getTrue(RHS->getContext()); 2776 } 2777 } 2778 if (CIVal->isSignMask() && CI2Val->isOneValue()) { 2779 if (Pred == ICmpInst::ICMP_UGT) 2780 return ConstantInt::getFalse(RHS->getContext()); 2781 if (Pred == ICmpInst::ICMP_ULE) 2782 return ConstantInt::getTrue(RHS->getContext()); 2783 } 2784 } 2785 } 2786 2787 if (MaxRecurse && LBO && RBO && LBO->getOpcode() == RBO->getOpcode() && 2788 LBO->getOperand(1) == RBO->getOperand(1)) { 2789 switch (LBO->getOpcode()) { 2790 default: 2791 break; 2792 case Instruction::UDiv: 2793 case Instruction::LShr: 2794 if (ICmpInst::isSigned(Pred) || !LBO->isExact() || !RBO->isExact()) 2795 break; 2796 if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0), 2797 RBO->getOperand(0), Q, MaxRecurse - 1)) 2798 return V; 2799 break; 2800 case Instruction::SDiv: 2801 if (!ICmpInst::isEquality(Pred) || !LBO->isExact() || !RBO->isExact()) 2802 break; 2803 if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0), 2804 RBO->getOperand(0), Q, MaxRecurse - 1)) 2805 return V; 2806 break; 2807 case Instruction::AShr: 2808 if (!LBO->isExact() || !RBO->isExact()) 2809 break; 2810 if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0), 2811 RBO->getOperand(0), Q, MaxRecurse - 1)) 2812 return V; 2813 break; 2814 case Instruction::Shl: { 2815 bool NUW = LBO->hasNoUnsignedWrap() && RBO->hasNoUnsignedWrap(); 2816 bool NSW = LBO->hasNoSignedWrap() && RBO->hasNoSignedWrap(); 2817 if (!NUW && !NSW) 2818 break; 2819 if (!NSW && ICmpInst::isSigned(Pred)) 2820 break; 2821 if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0), 2822 RBO->getOperand(0), Q, MaxRecurse - 1)) 2823 return V; 2824 break; 2825 } 2826 } 2827 } 2828 return nullptr; 2829 } 2830 2831 /// Simplify integer comparisons where at least one operand of the compare 2832 /// matches an integer min/max idiom. 2833 static Value *simplifyICmpWithMinMax(CmpInst::Predicate Pred, Value *LHS, 2834 Value *RHS, const SimplifyQuery &Q, 2835 unsigned MaxRecurse) { 2836 Type *ITy = GetCompareTy(LHS); // The return type. 2837 Value *A, *B; 2838 CmpInst::Predicate P = CmpInst::BAD_ICMP_PREDICATE; 2839 CmpInst::Predicate EqP; // Chosen so that "A == max/min(A,B)" iff "A EqP B". 2840 2841 // Signed variants on "max(a,b)>=a -> true". 2842 if (match(LHS, m_SMax(m_Value(A), m_Value(B))) && (A == RHS || B == RHS)) { 2843 if (A != RHS) 2844 std::swap(A, B); // smax(A, B) pred A. 2845 EqP = CmpInst::ICMP_SGE; // "A == smax(A, B)" iff "A sge B". 2846 // We analyze this as smax(A, B) pred A. 2847 P = Pred; 2848 } else if (match(RHS, m_SMax(m_Value(A), m_Value(B))) && 2849 (A == LHS || B == LHS)) { 2850 if (A != LHS) 2851 std::swap(A, B); // A pred smax(A, B). 2852 EqP = CmpInst::ICMP_SGE; // "A == smax(A, B)" iff "A sge B". 2853 // We analyze this as smax(A, B) swapped-pred A. 2854 P = CmpInst::getSwappedPredicate(Pred); 2855 } else if (match(LHS, m_SMin(m_Value(A), m_Value(B))) && 2856 (A == RHS || B == RHS)) { 2857 if (A != RHS) 2858 std::swap(A, B); // smin(A, B) pred A. 2859 EqP = CmpInst::ICMP_SLE; // "A == smin(A, B)" iff "A sle B". 2860 // We analyze this as smax(-A, -B) swapped-pred -A. 2861 // Note that we do not need to actually form -A or -B thanks to EqP. 2862 P = CmpInst::getSwappedPredicate(Pred); 2863 } else if (match(RHS, m_SMin(m_Value(A), m_Value(B))) && 2864 (A == LHS || B == LHS)) { 2865 if (A != LHS) 2866 std::swap(A, B); // A pred smin(A, B). 2867 EqP = CmpInst::ICMP_SLE; // "A == smin(A, B)" iff "A sle B". 2868 // We analyze this as smax(-A, -B) pred -A. 2869 // Note that we do not need to actually form -A or -B thanks to EqP. 2870 P = Pred; 2871 } 2872 if (P != CmpInst::BAD_ICMP_PREDICATE) { 2873 // Cases correspond to "max(A, B) p A". 2874 switch (P) { 2875 default: 2876 break; 2877 case CmpInst::ICMP_EQ: 2878 case CmpInst::ICMP_SLE: 2879 // Equivalent to "A EqP B". This may be the same as the condition tested 2880 // in the max/min; if so, we can just return that. 2881 if (Value *V = ExtractEquivalentCondition(LHS, EqP, A, B)) 2882 return V; 2883 if (Value *V = ExtractEquivalentCondition(RHS, EqP, A, B)) 2884 return V; 2885 // Otherwise, see if "A EqP B" simplifies. 2886 if (MaxRecurse) 2887 if (Value *V = SimplifyICmpInst(EqP, A, B, Q, MaxRecurse - 1)) 2888 return V; 2889 break; 2890 case CmpInst::ICMP_NE: 2891 case CmpInst::ICMP_SGT: { 2892 CmpInst::Predicate InvEqP = CmpInst::getInversePredicate(EqP); 2893 // Equivalent to "A InvEqP B". This may be the same as the condition 2894 // tested in the max/min; if so, we can just return that. 2895 if (Value *V = ExtractEquivalentCondition(LHS, InvEqP, A, B)) 2896 return V; 2897 if (Value *V = ExtractEquivalentCondition(RHS, InvEqP, A, B)) 2898 return V; 2899 // Otherwise, see if "A InvEqP B" simplifies. 2900 if (MaxRecurse) 2901 if (Value *V = SimplifyICmpInst(InvEqP, A, B, Q, MaxRecurse - 1)) 2902 return V; 2903 break; 2904 } 2905 case CmpInst::ICMP_SGE: 2906 // Always true. 2907 return getTrue(ITy); 2908 case CmpInst::ICMP_SLT: 2909 // Always false. 2910 return getFalse(ITy); 2911 } 2912 } 2913 2914 // Unsigned variants on "max(a,b)>=a -> true". 2915 P = CmpInst::BAD_ICMP_PREDICATE; 2916 if (match(LHS, m_UMax(m_Value(A), m_Value(B))) && (A == RHS || B == RHS)) { 2917 if (A != RHS) 2918 std::swap(A, B); // umax(A, B) pred A. 2919 EqP = CmpInst::ICMP_UGE; // "A == umax(A, B)" iff "A uge B". 2920 // We analyze this as umax(A, B) pred A. 2921 P = Pred; 2922 } else if (match(RHS, m_UMax(m_Value(A), m_Value(B))) && 2923 (A == LHS || B == LHS)) { 2924 if (A != LHS) 2925 std::swap(A, B); // A pred umax(A, B). 2926 EqP = CmpInst::ICMP_UGE; // "A == umax(A, B)" iff "A uge B". 2927 // We analyze this as umax(A, B) swapped-pred A. 2928 P = CmpInst::getSwappedPredicate(Pred); 2929 } else if (match(LHS, m_UMin(m_Value(A), m_Value(B))) && 2930 (A == RHS || B == RHS)) { 2931 if (A != RHS) 2932 std::swap(A, B); // umin(A, B) pred A. 2933 EqP = CmpInst::ICMP_ULE; // "A == umin(A, B)" iff "A ule B". 2934 // We analyze this as umax(-A, -B) swapped-pred -A. 2935 // Note that we do not need to actually form -A or -B thanks to EqP. 2936 P = CmpInst::getSwappedPredicate(Pred); 2937 } else if (match(RHS, m_UMin(m_Value(A), m_Value(B))) && 2938 (A == LHS || B == LHS)) { 2939 if (A != LHS) 2940 std::swap(A, B); // A pred umin(A, B). 2941 EqP = CmpInst::ICMP_ULE; // "A == umin(A, B)" iff "A ule B". 2942 // We analyze this as umax(-A, -B) pred -A. 2943 // Note that we do not need to actually form -A or -B thanks to EqP. 2944 P = Pred; 2945 } 2946 if (P != CmpInst::BAD_ICMP_PREDICATE) { 2947 // Cases correspond to "max(A, B) p A". 2948 switch (P) { 2949 default: 2950 break; 2951 case CmpInst::ICMP_EQ: 2952 case CmpInst::ICMP_ULE: 2953 // Equivalent to "A EqP B". This may be the same as the condition tested 2954 // in the max/min; if so, we can just return that. 2955 if (Value *V = ExtractEquivalentCondition(LHS, EqP, A, B)) 2956 return V; 2957 if (Value *V = ExtractEquivalentCondition(RHS, EqP, A, B)) 2958 return V; 2959 // Otherwise, see if "A EqP B" simplifies. 2960 if (MaxRecurse) 2961 if (Value *V = SimplifyICmpInst(EqP, A, B, Q, MaxRecurse - 1)) 2962 return V; 2963 break; 2964 case CmpInst::ICMP_NE: 2965 case CmpInst::ICMP_UGT: { 2966 CmpInst::Predicate InvEqP = CmpInst::getInversePredicate(EqP); 2967 // Equivalent to "A InvEqP B". This may be the same as the condition 2968 // tested in the max/min; if so, we can just return that. 2969 if (Value *V = ExtractEquivalentCondition(LHS, InvEqP, A, B)) 2970 return V; 2971 if (Value *V = ExtractEquivalentCondition(RHS, InvEqP, A, B)) 2972 return V; 2973 // Otherwise, see if "A InvEqP B" simplifies. 2974 if (MaxRecurse) 2975 if (Value *V = SimplifyICmpInst(InvEqP, A, B, Q, MaxRecurse - 1)) 2976 return V; 2977 break; 2978 } 2979 case CmpInst::ICMP_UGE: 2980 // Always true. 2981 return getTrue(ITy); 2982 case CmpInst::ICMP_ULT: 2983 // Always false. 2984 return getFalse(ITy); 2985 } 2986 } 2987 2988 // Variants on "max(x,y) >= min(x,z)". 2989 Value *C, *D; 2990 if (match(LHS, m_SMax(m_Value(A), m_Value(B))) && 2991 match(RHS, m_SMin(m_Value(C), m_Value(D))) && 2992 (A == C || A == D || B == C || B == D)) { 2993 // max(x, ?) pred min(x, ?). 2994 if (Pred == CmpInst::ICMP_SGE) 2995 // Always true. 2996 return getTrue(ITy); 2997 if (Pred == CmpInst::ICMP_SLT) 2998 // Always false. 2999 return getFalse(ITy); 3000 } else if (match(LHS, m_SMin(m_Value(A), m_Value(B))) && 3001 match(RHS, m_SMax(m_Value(C), m_Value(D))) && 3002 (A == C || A == D || B == C || B == D)) { 3003 // min(x, ?) pred max(x, ?). 3004 if (Pred == CmpInst::ICMP_SLE) 3005 // Always true. 3006 return getTrue(ITy); 3007 if (Pred == CmpInst::ICMP_SGT) 3008 // Always false. 3009 return getFalse(ITy); 3010 } else if (match(LHS, m_UMax(m_Value(A), m_Value(B))) && 3011 match(RHS, m_UMin(m_Value(C), m_Value(D))) && 3012 (A == C || A == D || B == C || B == D)) { 3013 // max(x, ?) pred min(x, ?). 3014 if (Pred == CmpInst::ICMP_UGE) 3015 // Always true. 3016 return getTrue(ITy); 3017 if (Pred == CmpInst::ICMP_ULT) 3018 // Always false. 3019 return getFalse(ITy); 3020 } else if (match(LHS, m_UMin(m_Value(A), m_Value(B))) && 3021 match(RHS, m_UMax(m_Value(C), m_Value(D))) && 3022 (A == C || A == D || B == C || B == D)) { 3023 // min(x, ?) pred max(x, ?). 3024 if (Pred == CmpInst::ICMP_ULE) 3025 // Always true. 3026 return getTrue(ITy); 3027 if (Pred == CmpInst::ICMP_UGT) 3028 // Always false. 3029 return getFalse(ITy); 3030 } 3031 3032 return nullptr; 3033 } 3034 3035 /// Given operands for an ICmpInst, see if we can fold the result. 3036 /// If not, this returns null. 3037 static Value *SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS, 3038 const SimplifyQuery &Q, unsigned MaxRecurse) { 3039 CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate; 3040 assert(CmpInst::isIntPredicate(Pred) && "Not an integer compare!"); 3041 3042 if (Constant *CLHS = dyn_cast<Constant>(LHS)) { 3043 if (Constant *CRHS = dyn_cast<Constant>(RHS)) 3044 return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, Q.DL, Q.TLI); 3045 3046 // If we have a constant, make sure it is on the RHS. 3047 std::swap(LHS, RHS); 3048 Pred = CmpInst::getSwappedPredicate(Pred); 3049 } 3050 3051 Type *ITy = GetCompareTy(LHS); // The return type. 3052 3053 // icmp X, X -> true/false 3054 // X icmp undef -> true/false. For example, icmp ugt %X, undef -> false 3055 // because X could be 0. 3056 if (LHS == RHS || isa<UndefValue>(RHS)) 3057 return ConstantInt::get(ITy, CmpInst::isTrueWhenEqual(Pred)); 3058 3059 if (Value *V = simplifyICmpOfBools(Pred, LHS, RHS, Q)) 3060 return V; 3061 3062 if (Value *V = simplifyICmpWithZero(Pred, LHS, RHS, Q)) 3063 return V; 3064 3065 if (Value *V = simplifyICmpWithConstant(Pred, LHS, RHS)) 3066 return V; 3067 3068 // If both operands have range metadata, use the metadata 3069 // to simplify the comparison. 3070 if (isa<Instruction>(RHS) && isa<Instruction>(LHS)) { 3071 auto RHS_Instr = cast<Instruction>(RHS); 3072 auto LHS_Instr = cast<Instruction>(LHS); 3073 3074 if (RHS_Instr->getMetadata(LLVMContext::MD_range) && 3075 LHS_Instr->getMetadata(LLVMContext::MD_range)) { 3076 auto RHS_CR = getConstantRangeFromMetadata( 3077 *RHS_Instr->getMetadata(LLVMContext::MD_range)); 3078 auto LHS_CR = getConstantRangeFromMetadata( 3079 *LHS_Instr->getMetadata(LLVMContext::MD_range)); 3080 3081 auto Satisfied_CR = ConstantRange::makeSatisfyingICmpRegion(Pred, RHS_CR); 3082 if (Satisfied_CR.contains(LHS_CR)) 3083 return ConstantInt::getTrue(RHS->getContext()); 3084 3085 auto InversedSatisfied_CR = ConstantRange::makeSatisfyingICmpRegion( 3086 CmpInst::getInversePredicate(Pred), RHS_CR); 3087 if (InversedSatisfied_CR.contains(LHS_CR)) 3088 return ConstantInt::getFalse(RHS->getContext()); 3089 } 3090 } 3091 3092 // Compare of cast, for example (zext X) != 0 -> X != 0 3093 if (isa<CastInst>(LHS) && (isa<Constant>(RHS) || isa<CastInst>(RHS))) { 3094 Instruction *LI = cast<CastInst>(LHS); 3095 Value *SrcOp = LI->getOperand(0); 3096 Type *SrcTy = SrcOp->getType(); 3097 Type *DstTy = LI->getType(); 3098 3099 // Turn icmp (ptrtoint x), (ptrtoint/constant) into a compare of the input 3100 // if the integer type is the same size as the pointer type. 3101 if (MaxRecurse && isa<PtrToIntInst>(LI) && 3102 Q.DL.getTypeSizeInBits(SrcTy) == DstTy->getPrimitiveSizeInBits()) { 3103 if (Constant *RHSC = dyn_cast<Constant>(RHS)) { 3104 // Transfer the cast to the constant. 3105 if (Value *V = SimplifyICmpInst(Pred, SrcOp, 3106 ConstantExpr::getIntToPtr(RHSC, SrcTy), 3107 Q, MaxRecurse-1)) 3108 return V; 3109 } else if (PtrToIntInst *RI = dyn_cast<PtrToIntInst>(RHS)) { 3110 if (RI->getOperand(0)->getType() == SrcTy) 3111 // Compare without the cast. 3112 if (Value *V = SimplifyICmpInst(Pred, SrcOp, RI->getOperand(0), 3113 Q, MaxRecurse-1)) 3114 return V; 3115 } 3116 } 3117 3118 if (isa<ZExtInst>(LHS)) { 3119 // Turn icmp (zext X), (zext Y) into a compare of X and Y if they have the 3120 // same type. 3121 if (ZExtInst *RI = dyn_cast<ZExtInst>(RHS)) { 3122 if (MaxRecurse && SrcTy == RI->getOperand(0)->getType()) 3123 // Compare X and Y. Note that signed predicates become unsigned. 3124 if (Value *V = SimplifyICmpInst(ICmpInst::getUnsignedPredicate(Pred), 3125 SrcOp, RI->getOperand(0), Q, 3126 MaxRecurse-1)) 3127 return V; 3128 } 3129 // Turn icmp (zext X), Cst into a compare of X and Cst if Cst is extended 3130 // too. If not, then try to deduce the result of the comparison. 3131 else if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) { 3132 // Compute the constant that would happen if we truncated to SrcTy then 3133 // reextended to DstTy. 3134 Constant *Trunc = ConstantExpr::getTrunc(CI, SrcTy); 3135 Constant *RExt = ConstantExpr::getCast(CastInst::ZExt, Trunc, DstTy); 3136 3137 // If the re-extended constant didn't change then this is effectively 3138 // also a case of comparing two zero-extended values. 3139 if (RExt == CI && MaxRecurse) 3140 if (Value *V = SimplifyICmpInst(ICmpInst::getUnsignedPredicate(Pred), 3141 SrcOp, Trunc, Q, MaxRecurse-1)) 3142 return V; 3143 3144 // Otherwise the upper bits of LHS are zero while RHS has a non-zero bit 3145 // there. Use this to work out the result of the comparison. 3146 if (RExt != CI) { 3147 switch (Pred) { 3148 default: llvm_unreachable("Unknown ICmp predicate!"); 3149 // LHS <u RHS. 3150 case ICmpInst::ICMP_EQ: 3151 case ICmpInst::ICMP_UGT: 3152 case ICmpInst::ICMP_UGE: 3153 return ConstantInt::getFalse(CI->getContext()); 3154 3155 case ICmpInst::ICMP_NE: 3156 case ICmpInst::ICMP_ULT: 3157 case ICmpInst::ICMP_ULE: 3158 return ConstantInt::getTrue(CI->getContext()); 3159 3160 // LHS is non-negative. If RHS is negative then LHS >s LHS. If RHS 3161 // is non-negative then LHS <s RHS. 3162 case ICmpInst::ICMP_SGT: 3163 case ICmpInst::ICMP_SGE: 3164 return CI->getValue().isNegative() ? 3165 ConstantInt::getTrue(CI->getContext()) : 3166 ConstantInt::getFalse(CI->getContext()); 3167 3168 case ICmpInst::ICMP_SLT: 3169 case ICmpInst::ICMP_SLE: 3170 return CI->getValue().isNegative() ? 3171 ConstantInt::getFalse(CI->getContext()) : 3172 ConstantInt::getTrue(CI->getContext()); 3173 } 3174 } 3175 } 3176 } 3177 3178 if (isa<SExtInst>(LHS)) { 3179 // Turn icmp (sext X), (sext Y) into a compare of X and Y if they have the 3180 // same type. 3181 if (SExtInst *RI = dyn_cast<SExtInst>(RHS)) { 3182 if (MaxRecurse && SrcTy == RI->getOperand(0)->getType()) 3183 // Compare X and Y. Note that the predicate does not change. 3184 if (Value *V = SimplifyICmpInst(Pred, SrcOp, RI->getOperand(0), 3185 Q, MaxRecurse-1)) 3186 return V; 3187 } 3188 // Turn icmp (sext X), Cst into a compare of X and Cst if Cst is extended 3189 // too. If not, then try to deduce the result of the comparison. 3190 else if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) { 3191 // Compute the constant that would happen if we truncated to SrcTy then 3192 // reextended to DstTy. 3193 Constant *Trunc = ConstantExpr::getTrunc(CI, SrcTy); 3194 Constant *RExt = ConstantExpr::getCast(CastInst::SExt, Trunc, DstTy); 3195 3196 // If the re-extended constant didn't change then this is effectively 3197 // also a case of comparing two sign-extended values. 3198 if (RExt == CI && MaxRecurse) 3199 if (Value *V = SimplifyICmpInst(Pred, SrcOp, Trunc, Q, MaxRecurse-1)) 3200 return V; 3201 3202 // Otherwise the upper bits of LHS are all equal, while RHS has varying 3203 // bits there. Use this to work out the result of the comparison. 3204 if (RExt != CI) { 3205 switch (Pred) { 3206 default: llvm_unreachable("Unknown ICmp predicate!"); 3207 case ICmpInst::ICMP_EQ: 3208 return ConstantInt::getFalse(CI->getContext()); 3209 case ICmpInst::ICMP_NE: 3210 return ConstantInt::getTrue(CI->getContext()); 3211 3212 // If RHS is non-negative then LHS <s RHS. If RHS is negative then 3213 // LHS >s RHS. 3214 case ICmpInst::ICMP_SGT: 3215 case ICmpInst::ICMP_SGE: 3216 return CI->getValue().isNegative() ? 3217 ConstantInt::getTrue(CI->getContext()) : 3218 ConstantInt::getFalse(CI->getContext()); 3219 case ICmpInst::ICMP_SLT: 3220 case ICmpInst::ICMP_SLE: 3221 return CI->getValue().isNegative() ? 3222 ConstantInt::getFalse(CI->getContext()) : 3223 ConstantInt::getTrue(CI->getContext()); 3224 3225 // If LHS is non-negative then LHS <u RHS. If LHS is negative then 3226 // LHS >u RHS. 3227 case ICmpInst::ICMP_UGT: 3228 case ICmpInst::ICMP_UGE: 3229 // Comparison is true iff the LHS <s 0. 3230 if (MaxRecurse) 3231 if (Value *V = SimplifyICmpInst(ICmpInst::ICMP_SLT, SrcOp, 3232 Constant::getNullValue(SrcTy), 3233 Q, MaxRecurse-1)) 3234 return V; 3235 break; 3236 case ICmpInst::ICMP_ULT: 3237 case ICmpInst::ICMP_ULE: 3238 // Comparison is true iff the LHS >=s 0. 3239 if (MaxRecurse) 3240 if (Value *V = SimplifyICmpInst(ICmpInst::ICMP_SGE, SrcOp, 3241 Constant::getNullValue(SrcTy), 3242 Q, MaxRecurse-1)) 3243 return V; 3244 break; 3245 } 3246 } 3247 } 3248 } 3249 } 3250 3251 // icmp eq|ne X, Y -> false|true if X != Y 3252 if (ICmpInst::isEquality(Pred) && 3253 isKnownNonEqual(LHS, RHS, Q.DL, Q.AC, Q.CxtI, Q.DT)) { 3254 return Pred == ICmpInst::ICMP_NE ? getTrue(ITy) : getFalse(ITy); 3255 } 3256 3257 if (Value *V = simplifyICmpWithBinOp(Pred, LHS, RHS, Q, MaxRecurse)) 3258 return V; 3259 3260 if (Value *V = simplifyICmpWithMinMax(Pred, LHS, RHS, Q, MaxRecurse)) 3261 return V; 3262 3263 // Simplify comparisons of related pointers using a powerful, recursive 3264 // GEP-walk when we have target data available.. 3265 if (LHS->getType()->isPointerTy()) 3266 if (auto *C = computePointerICmp(Q.DL, Q.TLI, Q.DT, Pred, Q.AC, Q.CxtI, LHS, 3267 RHS)) 3268 return C; 3269 if (auto *CLHS = dyn_cast<PtrToIntOperator>(LHS)) 3270 if (auto *CRHS = dyn_cast<PtrToIntOperator>(RHS)) 3271 if (Q.DL.getTypeSizeInBits(CLHS->getPointerOperandType()) == 3272 Q.DL.getTypeSizeInBits(CLHS->getType()) && 3273 Q.DL.getTypeSizeInBits(CRHS->getPointerOperandType()) == 3274 Q.DL.getTypeSizeInBits(CRHS->getType())) 3275 if (auto *C = computePointerICmp(Q.DL, Q.TLI, Q.DT, Pred, Q.AC, Q.CxtI, 3276 CLHS->getPointerOperand(), 3277 CRHS->getPointerOperand())) 3278 return C; 3279 3280 if (GetElementPtrInst *GLHS = dyn_cast<GetElementPtrInst>(LHS)) { 3281 if (GEPOperator *GRHS = dyn_cast<GEPOperator>(RHS)) { 3282 if (GLHS->getPointerOperand() == GRHS->getPointerOperand() && 3283 GLHS->hasAllConstantIndices() && GRHS->hasAllConstantIndices() && 3284 (ICmpInst::isEquality(Pred) || 3285 (GLHS->isInBounds() && GRHS->isInBounds() && 3286 Pred == ICmpInst::getSignedPredicate(Pred)))) { 3287 // The bases are equal and the indices are constant. Build a constant 3288 // expression GEP with the same indices and a null base pointer to see 3289 // what constant folding can make out of it. 3290 Constant *Null = Constant::getNullValue(GLHS->getPointerOperandType()); 3291 SmallVector<Value *, 4> IndicesLHS(GLHS->idx_begin(), GLHS->idx_end()); 3292 Constant *NewLHS = ConstantExpr::getGetElementPtr( 3293 GLHS->getSourceElementType(), Null, IndicesLHS); 3294 3295 SmallVector<Value *, 4> IndicesRHS(GRHS->idx_begin(), GRHS->idx_end()); 3296 Constant *NewRHS = ConstantExpr::getGetElementPtr( 3297 GLHS->getSourceElementType(), Null, IndicesRHS); 3298 return ConstantExpr::getICmp(Pred, NewLHS, NewRHS); 3299 } 3300 } 3301 } 3302 3303 // If the comparison is with the result of a select instruction, check whether 3304 // comparing with either branch of the select always yields the same value. 3305 if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS)) 3306 if (Value *V = ThreadCmpOverSelect(Pred, LHS, RHS, Q, MaxRecurse)) 3307 return V; 3308 3309 // If the comparison is with the result of a phi instruction, check whether 3310 // doing the compare with each incoming phi value yields a common result. 3311 if (isa<PHINode>(LHS) || isa<PHINode>(RHS)) 3312 if (Value *V = ThreadCmpOverPHI(Pred, LHS, RHS, Q, MaxRecurse)) 3313 return V; 3314 3315 return nullptr; 3316 } 3317 3318 Value *llvm::SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS, 3319 const SimplifyQuery &Q) { 3320 return ::SimplifyICmpInst(Predicate, LHS, RHS, Q, RecursionLimit); 3321 } 3322 3323 /// Given operands for an FCmpInst, see if we can fold the result. 3324 /// If not, this returns null. 3325 static Value *SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS, 3326 FastMathFlags FMF, const SimplifyQuery &Q, 3327 unsigned MaxRecurse) { 3328 CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate; 3329 assert(CmpInst::isFPPredicate(Pred) && "Not an FP compare!"); 3330 3331 if (Constant *CLHS = dyn_cast<Constant>(LHS)) { 3332 if (Constant *CRHS = dyn_cast<Constant>(RHS)) 3333 return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, Q.DL, Q.TLI); 3334 3335 // If we have a constant, make sure it is on the RHS. 3336 std::swap(LHS, RHS); 3337 Pred = CmpInst::getSwappedPredicate(Pred); 3338 } 3339 3340 // Fold trivial predicates. 3341 Type *RetTy = GetCompareTy(LHS); 3342 if (Pred == FCmpInst::FCMP_FALSE) 3343 return getFalse(RetTy); 3344 if (Pred == FCmpInst::FCMP_TRUE) 3345 return getTrue(RetTy); 3346 3347 // UNO/ORD predicates can be trivially folded if NaNs are ignored. 3348 if (FMF.noNaNs()) { 3349 if (Pred == FCmpInst::FCMP_UNO) 3350 return getFalse(RetTy); 3351 if (Pred == FCmpInst::FCMP_ORD) 3352 return getTrue(RetTy); 3353 } 3354 3355 // fcmp pred x, undef and fcmp pred undef, x 3356 // fold to true if unordered, false if ordered 3357 if (isa<UndefValue>(LHS) || isa<UndefValue>(RHS)) { 3358 // Choosing NaN for the undef will always make unordered comparison succeed 3359 // and ordered comparison fail. 3360 return ConstantInt::get(RetTy, CmpInst::isUnordered(Pred)); 3361 } 3362 3363 // fcmp x,x -> true/false. Not all compares are foldable. 3364 if (LHS == RHS) { 3365 if (CmpInst::isTrueWhenEqual(Pred)) 3366 return getTrue(RetTy); 3367 if (CmpInst::isFalseWhenEqual(Pred)) 3368 return getFalse(RetTy); 3369 } 3370 3371 // Handle fcmp with constant RHS. 3372 const APFloat *C; 3373 if (match(RHS, m_APFloat(C))) { 3374 // If the constant is a nan, see if we can fold the comparison based on it. 3375 if (C->isNaN()) { 3376 if (FCmpInst::isOrdered(Pred)) // True "if ordered and foo" 3377 return getFalse(RetTy); 3378 assert(FCmpInst::isUnordered(Pred) && 3379 "Comparison must be either ordered or unordered!"); 3380 // True if unordered. 3381 return getTrue(RetTy); 3382 } 3383 // Check whether the constant is an infinity. 3384 if (C->isInfinity()) { 3385 if (C->isNegative()) { 3386 switch (Pred) { 3387 case FCmpInst::FCMP_OLT: 3388 // No value is ordered and less than negative infinity. 3389 return getFalse(RetTy); 3390 case FCmpInst::FCMP_UGE: 3391 // All values are unordered with or at least negative infinity. 3392 return getTrue(RetTy); 3393 default: 3394 break; 3395 } 3396 } else { 3397 switch (Pred) { 3398 case FCmpInst::FCMP_OGT: 3399 // No value is ordered and greater than infinity. 3400 return getFalse(RetTy); 3401 case FCmpInst::FCMP_ULE: 3402 // All values are unordered with and at most infinity. 3403 return getTrue(RetTy); 3404 default: 3405 break; 3406 } 3407 } 3408 } 3409 if (C->isZero()) { 3410 switch (Pred) { 3411 case FCmpInst::FCMP_UGE: 3412 if (CannotBeOrderedLessThanZero(LHS, Q.TLI)) 3413 return getTrue(RetTy); 3414 break; 3415 case FCmpInst::FCMP_OLT: 3416 // X < 0 3417 if (CannotBeOrderedLessThanZero(LHS, Q.TLI)) 3418 return getFalse(RetTy); 3419 break; 3420 default: 3421 break; 3422 } 3423 } else if (C->isNegative()) { 3424 assert(!C->isNaN() && "Unexpected NaN constant!"); 3425 // TODO: We can catch more cases by using a range check rather than 3426 // relying on CannotBeOrderedLessThanZero. 3427 switch (Pred) { 3428 case FCmpInst::FCMP_UGE: 3429 case FCmpInst::FCMP_UGT: 3430 case FCmpInst::FCMP_UNE: 3431 // (X >= 0) implies (X > C) when (C < 0) 3432 if (CannotBeOrderedLessThanZero(LHS, Q.TLI)) 3433 return getTrue(RetTy); 3434 break; 3435 case FCmpInst::FCMP_OEQ: 3436 case FCmpInst::FCMP_OLE: 3437 case FCmpInst::FCMP_OLT: 3438 // (X >= 0) implies !(X < C) when (C < 0) 3439 if (CannotBeOrderedLessThanZero(LHS, Q.TLI)) 3440 return getFalse(RetTy); 3441 break; 3442 default: 3443 break; 3444 } 3445 } 3446 } 3447 3448 // If the comparison is with the result of a select instruction, check whether 3449 // comparing with either branch of the select always yields the same value. 3450 if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS)) 3451 if (Value *V = ThreadCmpOverSelect(Pred, LHS, RHS, Q, MaxRecurse)) 3452 return V; 3453 3454 // If the comparison is with the result of a phi instruction, check whether 3455 // doing the compare with each incoming phi value yields a common result. 3456 if (isa<PHINode>(LHS) || isa<PHINode>(RHS)) 3457 if (Value *V = ThreadCmpOverPHI(Pred, LHS, RHS, Q, MaxRecurse)) 3458 return V; 3459 3460 return nullptr; 3461 } 3462 3463 Value *llvm::SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS, 3464 FastMathFlags FMF, const SimplifyQuery &Q) { 3465 return ::SimplifyFCmpInst(Predicate, LHS, RHS, FMF, Q, RecursionLimit); 3466 } 3467 3468 /// See if V simplifies when its operand Op is replaced with RepOp. 3469 static const Value *SimplifyWithOpReplaced(Value *V, Value *Op, Value *RepOp, 3470 const SimplifyQuery &Q, 3471 unsigned MaxRecurse) { 3472 // Trivial replacement. 3473 if (V == Op) 3474 return RepOp; 3475 3476 // We cannot replace a constant, and shouldn't even try. 3477 if (isa<Constant>(Op)) 3478 return nullptr; 3479 3480 auto *I = dyn_cast<Instruction>(V); 3481 if (!I) 3482 return nullptr; 3483 3484 // If this is a binary operator, try to simplify it with the replaced op. 3485 if (auto *B = dyn_cast<BinaryOperator>(I)) { 3486 // Consider: 3487 // %cmp = icmp eq i32 %x, 2147483647 3488 // %add = add nsw i32 %x, 1 3489 // %sel = select i1 %cmp, i32 -2147483648, i32 %add 3490 // 3491 // We can't replace %sel with %add unless we strip away the flags. 3492 if (isa<OverflowingBinaryOperator>(B)) 3493 if (B->hasNoSignedWrap() || B->hasNoUnsignedWrap()) 3494 return nullptr; 3495 if (isa<PossiblyExactOperator>(B)) 3496 if (B->isExact()) 3497 return nullptr; 3498 3499 if (MaxRecurse) { 3500 if (B->getOperand(0) == Op) 3501 return SimplifyBinOp(B->getOpcode(), RepOp, B->getOperand(1), Q, 3502 MaxRecurse - 1); 3503 if (B->getOperand(1) == Op) 3504 return SimplifyBinOp(B->getOpcode(), B->getOperand(0), RepOp, Q, 3505 MaxRecurse - 1); 3506 } 3507 } 3508 3509 // Same for CmpInsts. 3510 if (CmpInst *C = dyn_cast<CmpInst>(I)) { 3511 if (MaxRecurse) { 3512 if (C->getOperand(0) == Op) 3513 return SimplifyCmpInst(C->getPredicate(), RepOp, C->getOperand(1), Q, 3514 MaxRecurse - 1); 3515 if (C->getOperand(1) == Op) 3516 return SimplifyCmpInst(C->getPredicate(), C->getOperand(0), RepOp, Q, 3517 MaxRecurse - 1); 3518 } 3519 } 3520 3521 // TODO: We could hand off more cases to instsimplify here. 3522 3523 // If all operands are constant after substituting Op for RepOp then we can 3524 // constant fold the instruction. 3525 if (Constant *CRepOp = dyn_cast<Constant>(RepOp)) { 3526 // Build a list of all constant operands. 3527 SmallVector<Constant *, 8> ConstOps; 3528 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 3529 if (I->getOperand(i) == Op) 3530 ConstOps.push_back(CRepOp); 3531 else if (Constant *COp = dyn_cast<Constant>(I->getOperand(i))) 3532 ConstOps.push_back(COp); 3533 else 3534 break; 3535 } 3536 3537 // All operands were constants, fold it. 3538 if (ConstOps.size() == I->getNumOperands()) { 3539 if (CmpInst *C = dyn_cast<CmpInst>(I)) 3540 return ConstantFoldCompareInstOperands(C->getPredicate(), ConstOps[0], 3541 ConstOps[1], Q.DL, Q.TLI); 3542 3543 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 3544 if (!LI->isVolatile()) 3545 return ConstantFoldLoadFromConstPtr(ConstOps[0], LI->getType(), Q.DL); 3546 3547 return ConstantFoldInstOperands(I, ConstOps, Q.DL, Q.TLI); 3548 } 3549 } 3550 3551 return nullptr; 3552 } 3553 3554 /// Try to simplify a select instruction when its condition operand is an 3555 /// integer comparison where one operand of the compare is a constant. 3556 static Value *simplifySelectBitTest(Value *TrueVal, Value *FalseVal, Value *X, 3557 const APInt *Y, bool TrueWhenUnset) { 3558 const APInt *C; 3559 3560 // (X & Y) == 0 ? X & ~Y : X --> X 3561 // (X & Y) != 0 ? X & ~Y : X --> X & ~Y 3562 if (FalseVal == X && match(TrueVal, m_And(m_Specific(X), m_APInt(C))) && 3563 *Y == ~*C) 3564 return TrueWhenUnset ? FalseVal : TrueVal; 3565 3566 // (X & Y) == 0 ? X : X & ~Y --> X & ~Y 3567 // (X & Y) != 0 ? X : X & ~Y --> X 3568 if (TrueVal == X && match(FalseVal, m_And(m_Specific(X), m_APInt(C))) && 3569 *Y == ~*C) 3570 return TrueWhenUnset ? FalseVal : TrueVal; 3571 3572 if (Y->isPowerOf2()) { 3573 // (X & Y) == 0 ? X | Y : X --> X | Y 3574 // (X & Y) != 0 ? X | Y : X --> X 3575 if (FalseVal == X && match(TrueVal, m_Or(m_Specific(X), m_APInt(C))) && 3576 *Y == *C) 3577 return TrueWhenUnset ? TrueVal : FalseVal; 3578 3579 // (X & Y) == 0 ? X : X | Y --> X 3580 // (X & Y) != 0 ? X : X | Y --> X | Y 3581 if (TrueVal == X && match(FalseVal, m_Or(m_Specific(X), m_APInt(C))) && 3582 *Y == *C) 3583 return TrueWhenUnset ? TrueVal : FalseVal; 3584 } 3585 3586 return nullptr; 3587 } 3588 3589 /// An alternative way to test if a bit is set or not uses sgt/slt instead of 3590 /// eq/ne. 3591 static Value *simplifySelectWithFakeICmpEq(Value *CmpLHS, Value *CmpRHS, 3592 ICmpInst::Predicate Pred, 3593 Value *TrueVal, Value *FalseVal) { 3594 Value *X; 3595 APInt Mask; 3596 if (!decomposeBitTestICmp(CmpLHS, CmpRHS, Pred, X, Mask)) 3597 return nullptr; 3598 3599 return simplifySelectBitTest(TrueVal, FalseVal, X, &Mask, 3600 Pred == ICmpInst::ICMP_EQ); 3601 } 3602 3603 /// Try to simplify a select instruction when its condition operand is an 3604 /// integer comparison. 3605 static Value *simplifySelectWithICmpCond(Value *CondVal, Value *TrueVal, 3606 Value *FalseVal, const SimplifyQuery &Q, 3607 unsigned MaxRecurse) { 3608 ICmpInst::Predicate Pred; 3609 Value *CmpLHS, *CmpRHS; 3610 if (!match(CondVal, m_ICmp(Pred, m_Value(CmpLHS), m_Value(CmpRHS)))) 3611 return nullptr; 3612 3613 if (ICmpInst::isEquality(Pred) && match(CmpRHS, m_Zero())) { 3614 Value *X; 3615 const APInt *Y; 3616 if (match(CmpLHS, m_And(m_Value(X), m_APInt(Y)))) 3617 if (Value *V = simplifySelectBitTest(TrueVal, FalseVal, X, Y, 3618 Pred == ICmpInst::ICMP_EQ)) 3619 return V; 3620 } 3621 3622 // Check for other compares that behave like bit test. 3623 if (Value *V = simplifySelectWithFakeICmpEq(CmpLHS, CmpRHS, Pred, 3624 TrueVal, FalseVal)) 3625 return V; 3626 3627 if (CondVal->hasOneUse()) { 3628 const APInt *C; 3629 if (match(CmpRHS, m_APInt(C))) { 3630 // X < MIN ? T : F --> F 3631 if (Pred == ICmpInst::ICMP_SLT && C->isMinSignedValue()) 3632 return FalseVal; 3633 // X < MIN ? T : F --> F 3634 if (Pred == ICmpInst::ICMP_ULT && C->isMinValue()) 3635 return FalseVal; 3636 // X > MAX ? T : F --> F 3637 if (Pred == ICmpInst::ICMP_SGT && C->isMaxSignedValue()) 3638 return FalseVal; 3639 // X > MAX ? T : F --> F 3640 if (Pred == ICmpInst::ICMP_UGT && C->isMaxValue()) 3641 return FalseVal; 3642 } 3643 } 3644 3645 // If we have an equality comparison, then we know the value in one of the 3646 // arms of the select. See if substituting this value into the arm and 3647 // simplifying the result yields the same value as the other arm. 3648 if (Pred == ICmpInst::ICMP_EQ) { 3649 if (SimplifyWithOpReplaced(FalseVal, CmpLHS, CmpRHS, Q, MaxRecurse) == 3650 TrueVal || 3651 SimplifyWithOpReplaced(FalseVal, CmpRHS, CmpLHS, Q, MaxRecurse) == 3652 TrueVal) 3653 return FalseVal; 3654 if (SimplifyWithOpReplaced(TrueVal, CmpLHS, CmpRHS, Q, MaxRecurse) == 3655 FalseVal || 3656 SimplifyWithOpReplaced(TrueVal, CmpRHS, CmpLHS, Q, MaxRecurse) == 3657 FalseVal) 3658 return FalseVal; 3659 } else if (Pred == ICmpInst::ICMP_NE) { 3660 if (SimplifyWithOpReplaced(TrueVal, CmpLHS, CmpRHS, Q, MaxRecurse) == 3661 FalseVal || 3662 SimplifyWithOpReplaced(TrueVal, CmpRHS, CmpLHS, Q, MaxRecurse) == 3663 FalseVal) 3664 return TrueVal; 3665 if (SimplifyWithOpReplaced(FalseVal, CmpLHS, CmpRHS, Q, MaxRecurse) == 3666 TrueVal || 3667 SimplifyWithOpReplaced(FalseVal, CmpRHS, CmpLHS, Q, MaxRecurse) == 3668 TrueVal) 3669 return TrueVal; 3670 } 3671 3672 return nullptr; 3673 } 3674 3675 /// Given operands for a SelectInst, see if we can fold the result. 3676 /// If not, this returns null. 3677 static Value *SimplifySelectInst(Value *CondVal, Value *TrueVal, 3678 Value *FalseVal, const SimplifyQuery &Q, 3679 unsigned MaxRecurse) { 3680 // select true, X, Y -> X 3681 // select false, X, Y -> Y 3682 if (Constant *CB = dyn_cast<Constant>(CondVal)) { 3683 if (Constant *CT = dyn_cast<Constant>(TrueVal)) 3684 if (Constant *CF = dyn_cast<Constant>(FalseVal)) 3685 return ConstantFoldSelectInstruction(CB, CT, CF); 3686 if (CB->isAllOnesValue()) 3687 return TrueVal; 3688 if (CB->isNullValue()) 3689 return FalseVal; 3690 } 3691 3692 // select C, X, X -> X 3693 if (TrueVal == FalseVal) 3694 return TrueVal; 3695 3696 if (isa<UndefValue>(CondVal)) { // select undef, X, Y -> X or Y 3697 if (isa<Constant>(FalseVal)) 3698 return FalseVal; 3699 return TrueVal; 3700 } 3701 if (isa<UndefValue>(TrueVal)) // select C, undef, X -> X 3702 return FalseVal; 3703 if (isa<UndefValue>(FalseVal)) // select C, X, undef -> X 3704 return TrueVal; 3705 3706 if (Value *V = 3707 simplifySelectWithICmpCond(CondVal, TrueVal, FalseVal, Q, MaxRecurse)) 3708 return V; 3709 3710 return nullptr; 3711 } 3712 3713 Value *llvm::SimplifySelectInst(Value *Cond, Value *TrueVal, Value *FalseVal, 3714 const SimplifyQuery &Q) { 3715 return ::SimplifySelectInst(Cond, TrueVal, FalseVal, Q, RecursionLimit); 3716 } 3717 3718 /// Given operands for an GetElementPtrInst, see if we can fold the result. 3719 /// If not, this returns null. 3720 static Value *SimplifyGEPInst(Type *SrcTy, ArrayRef<Value *> Ops, 3721 const SimplifyQuery &Q, unsigned) { 3722 // The type of the GEP pointer operand. 3723 unsigned AS = 3724 cast<PointerType>(Ops[0]->getType()->getScalarType())->getAddressSpace(); 3725 3726 // getelementptr P -> P. 3727 if (Ops.size() == 1) 3728 return Ops[0]; 3729 3730 // Compute the (pointer) type returned by the GEP instruction. 3731 Type *LastType = GetElementPtrInst::getIndexedType(SrcTy, Ops.slice(1)); 3732 Type *GEPTy = PointerType::get(LastType, AS); 3733 if (VectorType *VT = dyn_cast<VectorType>(Ops[0]->getType())) 3734 GEPTy = VectorType::get(GEPTy, VT->getNumElements()); 3735 else if (VectorType *VT = dyn_cast<VectorType>(Ops[1]->getType())) 3736 GEPTy = VectorType::get(GEPTy, VT->getNumElements()); 3737 3738 if (isa<UndefValue>(Ops[0])) 3739 return UndefValue::get(GEPTy); 3740 3741 if (Ops.size() == 2) { 3742 // getelementptr P, 0 -> P. 3743 if (match(Ops[1], m_Zero())) 3744 return Ops[0]; 3745 3746 Type *Ty = SrcTy; 3747 if (Ty->isSized()) { 3748 Value *P; 3749 uint64_t C; 3750 uint64_t TyAllocSize = Q.DL.getTypeAllocSize(Ty); 3751 // getelementptr P, N -> P if P points to a type of zero size. 3752 if (TyAllocSize == 0) 3753 return Ops[0]; 3754 3755 // The following transforms are only safe if the ptrtoint cast 3756 // doesn't truncate the pointers. 3757 if (Ops[1]->getType()->getScalarSizeInBits() == 3758 Q.DL.getPointerSizeInBits(AS)) { 3759 auto PtrToIntOrZero = [GEPTy](Value *P) -> Value * { 3760 if (match(P, m_Zero())) 3761 return Constant::getNullValue(GEPTy); 3762 Value *Temp; 3763 if (match(P, m_PtrToInt(m_Value(Temp)))) 3764 if (Temp->getType() == GEPTy) 3765 return Temp; 3766 return nullptr; 3767 }; 3768 3769 // getelementptr V, (sub P, V) -> P if P points to a type of size 1. 3770 if (TyAllocSize == 1 && 3771 match(Ops[1], m_Sub(m_Value(P), m_PtrToInt(m_Specific(Ops[0]))))) 3772 if (Value *R = PtrToIntOrZero(P)) 3773 return R; 3774 3775 // getelementptr V, (ashr (sub P, V), C) -> Q 3776 // if P points to a type of size 1 << C. 3777 if (match(Ops[1], 3778 m_AShr(m_Sub(m_Value(P), m_PtrToInt(m_Specific(Ops[0]))), 3779 m_ConstantInt(C))) && 3780 TyAllocSize == 1ULL << C) 3781 if (Value *R = PtrToIntOrZero(P)) 3782 return R; 3783 3784 // getelementptr V, (sdiv (sub P, V), C) -> Q 3785 // if P points to a type of size C. 3786 if (match(Ops[1], 3787 m_SDiv(m_Sub(m_Value(P), m_PtrToInt(m_Specific(Ops[0]))), 3788 m_SpecificInt(TyAllocSize)))) 3789 if (Value *R = PtrToIntOrZero(P)) 3790 return R; 3791 } 3792 } 3793 } 3794 3795 if (Q.DL.getTypeAllocSize(LastType) == 1 && 3796 all_of(Ops.slice(1).drop_back(1), 3797 [](Value *Idx) { return match(Idx, m_Zero()); })) { 3798 unsigned PtrWidth = 3799 Q.DL.getPointerSizeInBits(Ops[0]->getType()->getPointerAddressSpace()); 3800 if (Q.DL.getTypeSizeInBits(Ops.back()->getType()) == PtrWidth) { 3801 APInt BasePtrOffset(PtrWidth, 0); 3802 Value *StrippedBasePtr = 3803 Ops[0]->stripAndAccumulateInBoundsConstantOffsets(Q.DL, 3804 BasePtrOffset); 3805 3806 // gep (gep V, C), (sub 0, V) -> C 3807 if (match(Ops.back(), 3808 m_Sub(m_Zero(), m_PtrToInt(m_Specific(StrippedBasePtr))))) { 3809 auto *CI = ConstantInt::get(GEPTy->getContext(), BasePtrOffset); 3810 return ConstantExpr::getIntToPtr(CI, GEPTy); 3811 } 3812 // gep (gep V, C), (xor V, -1) -> C-1 3813 if (match(Ops.back(), 3814 m_Xor(m_PtrToInt(m_Specific(StrippedBasePtr)), m_AllOnes()))) { 3815 auto *CI = ConstantInt::get(GEPTy->getContext(), BasePtrOffset - 1); 3816 return ConstantExpr::getIntToPtr(CI, GEPTy); 3817 } 3818 } 3819 } 3820 3821 // Check to see if this is constant foldable. 3822 if (!all_of(Ops, [](Value *V) { return isa<Constant>(V); })) 3823 return nullptr; 3824 3825 auto *CE = ConstantExpr::getGetElementPtr(SrcTy, cast<Constant>(Ops[0]), 3826 Ops.slice(1)); 3827 if (auto *CEFolded = ConstantFoldConstant(CE, Q.DL)) 3828 return CEFolded; 3829 return CE; 3830 } 3831 3832 Value *llvm::SimplifyGEPInst(Type *SrcTy, ArrayRef<Value *> Ops, 3833 const SimplifyQuery &Q) { 3834 return ::SimplifyGEPInst(SrcTy, Ops, Q, RecursionLimit); 3835 } 3836 3837 /// Given operands for an InsertValueInst, see if we can fold the result. 3838 /// If not, this returns null. 3839 static Value *SimplifyInsertValueInst(Value *Agg, Value *Val, 3840 ArrayRef<unsigned> Idxs, const SimplifyQuery &Q, 3841 unsigned) { 3842 if (Constant *CAgg = dyn_cast<Constant>(Agg)) 3843 if (Constant *CVal = dyn_cast<Constant>(Val)) 3844 return ConstantFoldInsertValueInstruction(CAgg, CVal, Idxs); 3845 3846 // insertvalue x, undef, n -> x 3847 if (match(Val, m_Undef())) 3848 return Agg; 3849 3850 // insertvalue x, (extractvalue y, n), n 3851 if (ExtractValueInst *EV = dyn_cast<ExtractValueInst>(Val)) 3852 if (EV->getAggregateOperand()->getType() == Agg->getType() && 3853 EV->getIndices() == Idxs) { 3854 // insertvalue undef, (extractvalue y, n), n -> y 3855 if (match(Agg, m_Undef())) 3856 return EV->getAggregateOperand(); 3857 3858 // insertvalue y, (extractvalue y, n), n -> y 3859 if (Agg == EV->getAggregateOperand()) 3860 return Agg; 3861 } 3862 3863 return nullptr; 3864 } 3865 3866 Value *llvm::SimplifyInsertValueInst(Value *Agg, Value *Val, 3867 ArrayRef<unsigned> Idxs, 3868 const SimplifyQuery &Q) { 3869 return ::SimplifyInsertValueInst(Agg, Val, Idxs, Q, RecursionLimit); 3870 } 3871 3872 Value *llvm::SimplifyInsertElementInst(Value *Vec, Value *Val, Value *Idx, 3873 const SimplifyQuery &Q) { 3874 // Try to constant fold. 3875 auto *VecC = dyn_cast<Constant>(Vec); 3876 auto *ValC = dyn_cast<Constant>(Val); 3877 auto *IdxC = dyn_cast<Constant>(Idx); 3878 if (VecC && ValC && IdxC) 3879 return ConstantFoldInsertElementInstruction(VecC, ValC, IdxC); 3880 3881 // Fold into undef if index is out of bounds. 3882 if (auto *CI = dyn_cast<ConstantInt>(Idx)) { 3883 uint64_t NumElements = cast<VectorType>(Vec->getType())->getNumElements(); 3884 if (CI->uge(NumElements)) 3885 return UndefValue::get(Vec->getType()); 3886 } 3887 3888 // If index is undef, it might be out of bounds (see above case) 3889 if (isa<UndefValue>(Idx)) 3890 return UndefValue::get(Vec->getType()); 3891 3892 return nullptr; 3893 } 3894 3895 /// Given operands for an ExtractValueInst, see if we can fold the result. 3896 /// If not, this returns null. 3897 static Value *SimplifyExtractValueInst(Value *Agg, ArrayRef<unsigned> Idxs, 3898 const SimplifyQuery &, unsigned) { 3899 if (auto *CAgg = dyn_cast<Constant>(Agg)) 3900 return ConstantFoldExtractValueInstruction(CAgg, Idxs); 3901 3902 // extractvalue x, (insertvalue y, elt, n), n -> elt 3903 unsigned NumIdxs = Idxs.size(); 3904 for (auto *IVI = dyn_cast<InsertValueInst>(Agg); IVI != nullptr; 3905 IVI = dyn_cast<InsertValueInst>(IVI->getAggregateOperand())) { 3906 ArrayRef<unsigned> InsertValueIdxs = IVI->getIndices(); 3907 unsigned NumInsertValueIdxs = InsertValueIdxs.size(); 3908 unsigned NumCommonIdxs = std::min(NumInsertValueIdxs, NumIdxs); 3909 if (InsertValueIdxs.slice(0, NumCommonIdxs) == 3910 Idxs.slice(0, NumCommonIdxs)) { 3911 if (NumIdxs == NumInsertValueIdxs) 3912 return IVI->getInsertedValueOperand(); 3913 break; 3914 } 3915 } 3916 3917 return nullptr; 3918 } 3919 3920 Value *llvm::SimplifyExtractValueInst(Value *Agg, ArrayRef<unsigned> Idxs, 3921 const SimplifyQuery &Q) { 3922 return ::SimplifyExtractValueInst(Agg, Idxs, Q, RecursionLimit); 3923 } 3924 3925 /// Given operands for an ExtractElementInst, see if we can fold the result. 3926 /// If not, this returns null. 3927 static Value *SimplifyExtractElementInst(Value *Vec, Value *Idx, const SimplifyQuery &, 3928 unsigned) { 3929 if (auto *CVec = dyn_cast<Constant>(Vec)) { 3930 if (auto *CIdx = dyn_cast<Constant>(Idx)) 3931 return ConstantFoldExtractElementInstruction(CVec, CIdx); 3932 3933 // The index is not relevant if our vector is a splat. 3934 if (auto *Splat = CVec->getSplatValue()) 3935 return Splat; 3936 3937 if (isa<UndefValue>(Vec)) 3938 return UndefValue::get(Vec->getType()->getVectorElementType()); 3939 } 3940 3941 // If extracting a specified index from the vector, see if we can recursively 3942 // find a previously computed scalar that was inserted into the vector. 3943 if (auto *IdxC = dyn_cast<ConstantInt>(Idx)) { 3944 if (IdxC->getValue().uge(Vec->getType()->getVectorNumElements())) 3945 // definitely out of bounds, thus undefined result 3946 return UndefValue::get(Vec->getType()->getVectorElementType()); 3947 if (Value *Elt = findScalarElement(Vec, IdxC->getZExtValue())) 3948 return Elt; 3949 } 3950 3951 // An undef extract index can be arbitrarily chosen to be an out-of-range 3952 // index value, which would result in the instruction being undef. 3953 if (isa<UndefValue>(Idx)) 3954 return UndefValue::get(Vec->getType()->getVectorElementType()); 3955 3956 return nullptr; 3957 } 3958 3959 Value *llvm::SimplifyExtractElementInst(Value *Vec, Value *Idx, 3960 const SimplifyQuery &Q) { 3961 return ::SimplifyExtractElementInst(Vec, Idx, Q, RecursionLimit); 3962 } 3963 3964 /// See if we can fold the given phi. If not, returns null. 3965 static Value *SimplifyPHINode(PHINode *PN, const SimplifyQuery &Q) { 3966 // If all of the PHI's incoming values are the same then replace the PHI node 3967 // with the common value. 3968 Value *CommonValue = nullptr; 3969 bool HasUndefInput = false; 3970 for (Value *Incoming : PN->incoming_values()) { 3971 // If the incoming value is the phi node itself, it can safely be skipped. 3972 if (Incoming == PN) continue; 3973 if (isa<UndefValue>(Incoming)) { 3974 // Remember that we saw an undef value, but otherwise ignore them. 3975 HasUndefInput = true; 3976 continue; 3977 } 3978 if (CommonValue && Incoming != CommonValue) 3979 return nullptr; // Not the same, bail out. 3980 CommonValue = Incoming; 3981 } 3982 3983 // If CommonValue is null then all of the incoming values were either undef or 3984 // equal to the phi node itself. 3985 if (!CommonValue) 3986 return UndefValue::get(PN->getType()); 3987 3988 // If we have a PHI node like phi(X, undef, X), where X is defined by some 3989 // instruction, we cannot return X as the result of the PHI node unless it 3990 // dominates the PHI block. 3991 if (HasUndefInput) 3992 return ValueDominatesPHI(CommonValue, PN, Q.DT) ? CommonValue : nullptr; 3993 3994 return CommonValue; 3995 } 3996 3997 static Value *SimplifyCastInst(unsigned CastOpc, Value *Op, 3998 Type *Ty, const SimplifyQuery &Q, unsigned MaxRecurse) { 3999 if (auto *C = dyn_cast<Constant>(Op)) 4000 return ConstantFoldCastOperand(CastOpc, C, Ty, Q.DL); 4001 4002 if (auto *CI = dyn_cast<CastInst>(Op)) { 4003 auto *Src = CI->getOperand(0); 4004 Type *SrcTy = Src->getType(); 4005 Type *MidTy = CI->getType(); 4006 Type *DstTy = Ty; 4007 if (Src->getType() == Ty) { 4008 auto FirstOp = static_cast<Instruction::CastOps>(CI->getOpcode()); 4009 auto SecondOp = static_cast<Instruction::CastOps>(CastOpc); 4010 Type *SrcIntPtrTy = 4011 SrcTy->isPtrOrPtrVectorTy() ? Q.DL.getIntPtrType(SrcTy) : nullptr; 4012 Type *MidIntPtrTy = 4013 MidTy->isPtrOrPtrVectorTy() ? Q.DL.getIntPtrType(MidTy) : nullptr; 4014 Type *DstIntPtrTy = 4015 DstTy->isPtrOrPtrVectorTy() ? Q.DL.getIntPtrType(DstTy) : nullptr; 4016 if (CastInst::isEliminableCastPair(FirstOp, SecondOp, SrcTy, MidTy, DstTy, 4017 SrcIntPtrTy, MidIntPtrTy, 4018 DstIntPtrTy) == Instruction::BitCast) 4019 return Src; 4020 } 4021 } 4022 4023 // bitcast x -> x 4024 if (CastOpc == Instruction::BitCast) 4025 if (Op->getType() == Ty) 4026 return Op; 4027 4028 return nullptr; 4029 } 4030 4031 Value *llvm::SimplifyCastInst(unsigned CastOpc, Value *Op, Type *Ty, 4032 const SimplifyQuery &Q) { 4033 return ::SimplifyCastInst(CastOpc, Op, Ty, Q, RecursionLimit); 4034 } 4035 4036 /// For the given destination element of a shuffle, peek through shuffles to 4037 /// match a root vector source operand that contains that element in the same 4038 /// vector lane (ie, the same mask index), so we can eliminate the shuffle(s). 4039 static Value *foldIdentityShuffles(int DestElt, Value *Op0, Value *Op1, 4040 int MaskVal, Value *RootVec, 4041 unsigned MaxRecurse) { 4042 if (!MaxRecurse--) 4043 return nullptr; 4044 4045 // Bail out if any mask value is undefined. That kind of shuffle may be 4046 // simplified further based on demanded bits or other folds. 4047 if (MaskVal == -1) 4048 return nullptr; 4049 4050 // The mask value chooses which source operand we need to look at next. 4051 int InVecNumElts = Op0->getType()->getVectorNumElements(); 4052 int RootElt = MaskVal; 4053 Value *SourceOp = Op0; 4054 if (MaskVal >= InVecNumElts) { 4055 RootElt = MaskVal - InVecNumElts; 4056 SourceOp = Op1; 4057 } 4058 4059 // If the source operand is a shuffle itself, look through it to find the 4060 // matching root vector. 4061 if (auto *SourceShuf = dyn_cast<ShuffleVectorInst>(SourceOp)) { 4062 return foldIdentityShuffles( 4063 DestElt, SourceShuf->getOperand(0), SourceShuf->getOperand(1), 4064 SourceShuf->getMaskValue(RootElt), RootVec, MaxRecurse); 4065 } 4066 4067 // TODO: Look through bitcasts? What if the bitcast changes the vector element 4068 // size? 4069 4070 // The source operand is not a shuffle. Initialize the root vector value for 4071 // this shuffle if that has not been done yet. 4072 if (!RootVec) 4073 RootVec = SourceOp; 4074 4075 // Give up as soon as a source operand does not match the existing root value. 4076 if (RootVec != SourceOp) 4077 return nullptr; 4078 4079 // The element must be coming from the same lane in the source vector 4080 // (although it may have crossed lanes in intermediate shuffles). 4081 if (RootElt != DestElt) 4082 return nullptr; 4083 4084 return RootVec; 4085 } 4086 4087 static Value *SimplifyShuffleVectorInst(Value *Op0, Value *Op1, Constant *Mask, 4088 Type *RetTy, const SimplifyQuery &Q, 4089 unsigned MaxRecurse) { 4090 if (isa<UndefValue>(Mask)) 4091 return UndefValue::get(RetTy); 4092 4093 Type *InVecTy = Op0->getType(); 4094 unsigned MaskNumElts = Mask->getType()->getVectorNumElements(); 4095 unsigned InVecNumElts = InVecTy->getVectorNumElements(); 4096 4097 SmallVector<int, 32> Indices; 4098 ShuffleVectorInst::getShuffleMask(Mask, Indices); 4099 assert(MaskNumElts == Indices.size() && 4100 "Size of Indices not same as number of mask elements?"); 4101 4102 // Canonicalization: If mask does not select elements from an input vector, 4103 // replace that input vector with undef. 4104 bool MaskSelects0 = false, MaskSelects1 = false; 4105 for (unsigned i = 0; i != MaskNumElts; ++i) { 4106 if (Indices[i] == -1) 4107 continue; 4108 if ((unsigned)Indices[i] < InVecNumElts) 4109 MaskSelects0 = true; 4110 else 4111 MaskSelects1 = true; 4112 } 4113 if (!MaskSelects0) 4114 Op0 = UndefValue::get(InVecTy); 4115 if (!MaskSelects1) 4116 Op1 = UndefValue::get(InVecTy); 4117 4118 auto *Op0Const = dyn_cast<Constant>(Op0); 4119 auto *Op1Const = dyn_cast<Constant>(Op1); 4120 4121 // If all operands are constant, constant fold the shuffle. 4122 if (Op0Const && Op1Const) 4123 return ConstantFoldShuffleVectorInstruction(Op0Const, Op1Const, Mask); 4124 4125 // Canonicalization: if only one input vector is constant, it shall be the 4126 // second one. 4127 if (Op0Const && !Op1Const) { 4128 std::swap(Op0, Op1); 4129 ShuffleVectorInst::commuteShuffleMask(Indices, InVecNumElts); 4130 } 4131 4132 // A shuffle of a splat is always the splat itself. Legal if the shuffle's 4133 // value type is same as the input vectors' type. 4134 if (auto *OpShuf = dyn_cast<ShuffleVectorInst>(Op0)) 4135 if (isa<UndefValue>(Op1) && RetTy == InVecTy && 4136 OpShuf->getMask()->getSplatValue()) 4137 return Op0; 4138 4139 // Don't fold a shuffle with undef mask elements. This may get folded in a 4140 // better way using demanded bits or other analysis. 4141 // TODO: Should we allow this? 4142 if (find(Indices, -1) != Indices.end()) 4143 return nullptr; 4144 4145 // Check if every element of this shuffle can be mapped back to the 4146 // corresponding element of a single root vector. If so, we don't need this 4147 // shuffle. This handles simple identity shuffles as well as chains of 4148 // shuffles that may widen/narrow and/or move elements across lanes and back. 4149 Value *RootVec = nullptr; 4150 for (unsigned i = 0; i != MaskNumElts; ++i) { 4151 // Note that recursion is limited for each vector element, so if any element 4152 // exceeds the limit, this will fail to simplify. 4153 RootVec = 4154 foldIdentityShuffles(i, Op0, Op1, Indices[i], RootVec, MaxRecurse); 4155 4156 // We can't replace a widening/narrowing shuffle with one of its operands. 4157 if (!RootVec || RootVec->getType() != RetTy) 4158 return nullptr; 4159 } 4160 return RootVec; 4161 } 4162 4163 /// Given operands for a ShuffleVectorInst, fold the result or return null. 4164 Value *llvm::SimplifyShuffleVectorInst(Value *Op0, Value *Op1, Constant *Mask, 4165 Type *RetTy, const SimplifyQuery &Q) { 4166 return ::SimplifyShuffleVectorInst(Op0, Op1, Mask, RetTy, Q, RecursionLimit); 4167 } 4168 4169 /// Given operands for an FAdd, see if we can fold the result. If not, this 4170 /// returns null. 4171 static Value *SimplifyFAddInst(Value *Op0, Value *Op1, FastMathFlags FMF, 4172 const SimplifyQuery &Q, unsigned MaxRecurse) { 4173 if (Constant *C = foldOrCommuteConstant(Instruction::FAdd, Op0, Op1, Q)) 4174 return C; 4175 4176 // fadd X, -0 ==> X 4177 if (match(Op1, m_NegZero())) 4178 return Op0; 4179 4180 // fadd X, 0 ==> X, when we know X is not -0 4181 if (match(Op1, m_Zero()) && 4182 (FMF.noSignedZeros() || CannotBeNegativeZero(Op0, Q.TLI))) 4183 return Op0; 4184 4185 // fadd [nnan ninf] X, (fsub [nnan ninf] 0, X) ==> 0 4186 // where nnan and ninf have to occur at least once somewhere in this 4187 // expression 4188 Value *SubOp = nullptr; 4189 if (match(Op1, m_FSub(m_AnyZero(), m_Specific(Op0)))) 4190 SubOp = Op1; 4191 else if (match(Op0, m_FSub(m_AnyZero(), m_Specific(Op1)))) 4192 SubOp = Op0; 4193 if (SubOp) { 4194 Instruction *FSub = cast<Instruction>(SubOp); 4195 if ((FMF.noNaNs() || FSub->hasNoNaNs()) && 4196 (FMF.noInfs() || FSub->hasNoInfs())) 4197 return Constant::getNullValue(Op0->getType()); 4198 } 4199 4200 return nullptr; 4201 } 4202 4203 /// Given operands for an FSub, see if we can fold the result. If not, this 4204 /// returns null. 4205 static Value *SimplifyFSubInst(Value *Op0, Value *Op1, FastMathFlags FMF, 4206 const SimplifyQuery &Q, unsigned MaxRecurse) { 4207 if (Constant *C = foldOrCommuteConstant(Instruction::FSub, Op0, Op1, Q)) 4208 return C; 4209 4210 // fsub X, 0 ==> X 4211 if (match(Op1, m_Zero())) 4212 return Op0; 4213 4214 // fsub X, -0 ==> X, when we know X is not -0 4215 if (match(Op1, m_NegZero()) && 4216 (FMF.noSignedZeros() || CannotBeNegativeZero(Op0, Q.TLI))) 4217 return Op0; 4218 4219 // fsub -0.0, (fsub -0.0, X) ==> X 4220 Value *X; 4221 if (match(Op0, m_NegZero()) && match(Op1, m_FSub(m_NegZero(), m_Value(X)))) 4222 return X; 4223 4224 // fsub 0.0, (fsub 0.0, X) ==> X if signed zeros are ignored. 4225 if (FMF.noSignedZeros() && match(Op0, m_AnyZero()) && 4226 match(Op1, m_FSub(m_AnyZero(), m_Value(X)))) 4227 return X; 4228 4229 // fsub nnan x, x ==> 0.0 4230 if (FMF.noNaNs() && Op0 == Op1) 4231 return Constant::getNullValue(Op0->getType()); 4232 4233 return nullptr; 4234 } 4235 4236 /// Given the operands for an FMul, see if we can fold the result 4237 static Value *SimplifyFMulInst(Value *Op0, Value *Op1, FastMathFlags FMF, 4238 const SimplifyQuery &Q, unsigned MaxRecurse) { 4239 if (Constant *C = foldOrCommuteConstant(Instruction::FMul, Op0, Op1, Q)) 4240 return C; 4241 4242 // fmul X, 1.0 ==> X 4243 if (match(Op1, m_FPOne())) 4244 return Op0; 4245 4246 // fmul nnan nsz X, 0 ==> 0 4247 if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op1, m_AnyZero())) 4248 return Op1; 4249 4250 return nullptr; 4251 } 4252 4253 Value *llvm::SimplifyFAddInst(Value *Op0, Value *Op1, FastMathFlags FMF, 4254 const SimplifyQuery &Q) { 4255 return ::SimplifyFAddInst(Op0, Op1, FMF, Q, RecursionLimit); 4256 } 4257 4258 4259 Value *llvm::SimplifyFSubInst(Value *Op0, Value *Op1, FastMathFlags FMF, 4260 const SimplifyQuery &Q) { 4261 return ::SimplifyFSubInst(Op0, Op1, FMF, Q, RecursionLimit); 4262 } 4263 4264 Value *llvm::SimplifyFMulInst(Value *Op0, Value *Op1, FastMathFlags FMF, 4265 const SimplifyQuery &Q) { 4266 return ::SimplifyFMulInst(Op0, Op1, FMF, Q, RecursionLimit); 4267 } 4268 4269 static Value *SimplifyFDivInst(Value *Op0, Value *Op1, FastMathFlags FMF, 4270 const SimplifyQuery &Q, unsigned) { 4271 if (Constant *C = foldOrCommuteConstant(Instruction::FDiv, Op0, Op1, Q)) 4272 return C; 4273 4274 // undef / X -> undef (the undef could be a snan). 4275 if (match(Op0, m_Undef())) 4276 return Op0; 4277 4278 // X / undef -> undef 4279 if (match(Op1, m_Undef())) 4280 return Op1; 4281 4282 // X / 1.0 -> X 4283 if (match(Op1, m_FPOne())) 4284 return Op0; 4285 4286 // 0 / X -> 0 4287 // Requires that NaNs are off (X could be zero) and signed zeroes are 4288 // ignored (X could be positive or negative, so the output sign is unknown). 4289 if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op0, m_AnyZero())) 4290 return Op0; 4291 4292 if (FMF.noNaNs()) { 4293 // X / X -> 1.0 is legal when NaNs are ignored. 4294 if (Op0 == Op1) 4295 return ConstantFP::get(Op0->getType(), 1.0); 4296 4297 // -X / X -> -1.0 and 4298 // X / -X -> -1.0 are legal when NaNs are ignored. 4299 // We can ignore signed zeros because +-0.0/+-0.0 is NaN and ignored. 4300 if ((BinaryOperator::isFNeg(Op0, /*IgnoreZeroSign=*/true) && 4301 BinaryOperator::getFNegArgument(Op0) == Op1) || 4302 (BinaryOperator::isFNeg(Op1, /*IgnoreZeroSign=*/true) && 4303 BinaryOperator::getFNegArgument(Op1) == Op0)) 4304 return ConstantFP::get(Op0->getType(), -1.0); 4305 } 4306 4307 return nullptr; 4308 } 4309 4310 Value *llvm::SimplifyFDivInst(Value *Op0, Value *Op1, FastMathFlags FMF, 4311 const SimplifyQuery &Q) { 4312 return ::SimplifyFDivInst(Op0, Op1, FMF, Q, RecursionLimit); 4313 } 4314 4315 static Value *SimplifyFRemInst(Value *Op0, Value *Op1, FastMathFlags FMF, 4316 const SimplifyQuery &Q, unsigned) { 4317 if (Constant *C = foldOrCommuteConstant(Instruction::FRem, Op0, Op1, Q)) 4318 return C; 4319 4320 // undef % X -> undef (the undef could be a snan). 4321 if (match(Op0, m_Undef())) 4322 return Op0; 4323 4324 // X % undef -> undef 4325 if (match(Op1, m_Undef())) 4326 return Op1; 4327 4328 // 0 % X -> 0 4329 // Requires that NaNs are off (X could be zero) and signed zeroes are 4330 // ignored (X could be positive or negative, so the output sign is unknown). 4331 if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op0, m_AnyZero())) 4332 return Op0; 4333 4334 return nullptr; 4335 } 4336 4337 Value *llvm::SimplifyFRemInst(Value *Op0, Value *Op1, FastMathFlags FMF, 4338 const SimplifyQuery &Q) { 4339 return ::SimplifyFRemInst(Op0, Op1, FMF, Q, RecursionLimit); 4340 } 4341 4342 //=== Helper functions for higher up the class hierarchy. 4343 4344 /// Given operands for a BinaryOperator, see if we can fold the result. 4345 /// If not, this returns null. 4346 static Value *SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS, 4347 const SimplifyQuery &Q, unsigned MaxRecurse) { 4348 switch (Opcode) { 4349 case Instruction::Add: 4350 return SimplifyAddInst(LHS, RHS, false, false, Q, MaxRecurse); 4351 case Instruction::Sub: 4352 return SimplifySubInst(LHS, RHS, false, false, Q, MaxRecurse); 4353 case Instruction::Mul: 4354 return SimplifyMulInst(LHS, RHS, Q, MaxRecurse); 4355 case Instruction::SDiv: 4356 return SimplifySDivInst(LHS, RHS, Q, MaxRecurse); 4357 case Instruction::UDiv: 4358 return SimplifyUDivInst(LHS, RHS, Q, MaxRecurse); 4359 case Instruction::SRem: 4360 return SimplifySRemInst(LHS, RHS, Q, MaxRecurse); 4361 case Instruction::URem: 4362 return SimplifyURemInst(LHS, RHS, Q, MaxRecurse); 4363 case Instruction::Shl: 4364 return SimplifyShlInst(LHS, RHS, false, false, Q, MaxRecurse); 4365 case Instruction::LShr: 4366 return SimplifyLShrInst(LHS, RHS, false, Q, MaxRecurse); 4367 case Instruction::AShr: 4368 return SimplifyAShrInst(LHS, RHS, false, Q, MaxRecurse); 4369 case Instruction::And: 4370 return SimplifyAndInst(LHS, RHS, Q, MaxRecurse); 4371 case Instruction::Or: 4372 return SimplifyOrInst(LHS, RHS, Q, MaxRecurse); 4373 case Instruction::Xor: 4374 return SimplifyXorInst(LHS, RHS, Q, MaxRecurse); 4375 case Instruction::FAdd: 4376 return SimplifyFAddInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse); 4377 case Instruction::FSub: 4378 return SimplifyFSubInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse); 4379 case Instruction::FMul: 4380 return SimplifyFMulInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse); 4381 case Instruction::FDiv: 4382 return SimplifyFDivInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse); 4383 case Instruction::FRem: 4384 return SimplifyFRemInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse); 4385 default: 4386 llvm_unreachable("Unexpected opcode"); 4387 } 4388 } 4389 4390 /// Given operands for a BinaryOperator, see if we can fold the result. 4391 /// If not, this returns null. 4392 /// In contrast to SimplifyBinOp, try to use FastMathFlag when folding the 4393 /// result. In case we don't need FastMathFlags, simply fall to SimplifyBinOp. 4394 static Value *SimplifyFPBinOp(unsigned Opcode, Value *LHS, Value *RHS, 4395 const FastMathFlags &FMF, const SimplifyQuery &Q, 4396 unsigned MaxRecurse) { 4397 switch (Opcode) { 4398 case Instruction::FAdd: 4399 return SimplifyFAddInst(LHS, RHS, FMF, Q, MaxRecurse); 4400 case Instruction::FSub: 4401 return SimplifyFSubInst(LHS, RHS, FMF, Q, MaxRecurse); 4402 case Instruction::FMul: 4403 return SimplifyFMulInst(LHS, RHS, FMF, Q, MaxRecurse); 4404 case Instruction::FDiv: 4405 return SimplifyFDivInst(LHS, RHS, FMF, Q, MaxRecurse); 4406 default: 4407 return SimplifyBinOp(Opcode, LHS, RHS, Q, MaxRecurse); 4408 } 4409 } 4410 4411 Value *llvm::SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS, 4412 const SimplifyQuery &Q) { 4413 return ::SimplifyBinOp(Opcode, LHS, RHS, Q, RecursionLimit); 4414 } 4415 4416 Value *llvm::SimplifyFPBinOp(unsigned Opcode, Value *LHS, Value *RHS, 4417 FastMathFlags FMF, const SimplifyQuery &Q) { 4418 return ::SimplifyFPBinOp(Opcode, LHS, RHS, FMF, Q, RecursionLimit); 4419 } 4420 4421 /// Given operands for a CmpInst, see if we can fold the result. 4422 static Value *SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS, 4423 const SimplifyQuery &Q, unsigned MaxRecurse) { 4424 if (CmpInst::isIntPredicate((CmpInst::Predicate)Predicate)) 4425 return SimplifyICmpInst(Predicate, LHS, RHS, Q, MaxRecurse); 4426 return SimplifyFCmpInst(Predicate, LHS, RHS, FastMathFlags(), Q, MaxRecurse); 4427 } 4428 4429 Value *llvm::SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS, 4430 const SimplifyQuery &Q) { 4431 return ::SimplifyCmpInst(Predicate, LHS, RHS, Q, RecursionLimit); 4432 } 4433 4434 static bool IsIdempotent(Intrinsic::ID ID) { 4435 switch (ID) { 4436 default: return false; 4437 4438 // Unary idempotent: f(f(x)) = f(x) 4439 case Intrinsic::fabs: 4440 case Intrinsic::floor: 4441 case Intrinsic::ceil: 4442 case Intrinsic::trunc: 4443 case Intrinsic::rint: 4444 case Intrinsic::nearbyint: 4445 case Intrinsic::round: 4446 case Intrinsic::canonicalize: 4447 return true; 4448 } 4449 } 4450 4451 static Value *SimplifyRelativeLoad(Constant *Ptr, Constant *Offset, 4452 const DataLayout &DL) { 4453 GlobalValue *PtrSym; 4454 APInt PtrOffset; 4455 if (!IsConstantOffsetFromGlobal(Ptr, PtrSym, PtrOffset, DL)) 4456 return nullptr; 4457 4458 Type *Int8PtrTy = Type::getInt8PtrTy(Ptr->getContext()); 4459 Type *Int32Ty = Type::getInt32Ty(Ptr->getContext()); 4460 Type *Int32PtrTy = Int32Ty->getPointerTo(); 4461 Type *Int64Ty = Type::getInt64Ty(Ptr->getContext()); 4462 4463 auto *OffsetConstInt = dyn_cast<ConstantInt>(Offset); 4464 if (!OffsetConstInt || OffsetConstInt->getType()->getBitWidth() > 64) 4465 return nullptr; 4466 4467 uint64_t OffsetInt = OffsetConstInt->getSExtValue(); 4468 if (OffsetInt % 4 != 0) 4469 return nullptr; 4470 4471 Constant *C = ConstantExpr::getGetElementPtr( 4472 Int32Ty, ConstantExpr::getBitCast(Ptr, Int32PtrTy), 4473 ConstantInt::get(Int64Ty, OffsetInt / 4)); 4474 Constant *Loaded = ConstantFoldLoadFromConstPtr(C, Int32Ty, DL); 4475 if (!Loaded) 4476 return nullptr; 4477 4478 auto *LoadedCE = dyn_cast<ConstantExpr>(Loaded); 4479 if (!LoadedCE) 4480 return nullptr; 4481 4482 if (LoadedCE->getOpcode() == Instruction::Trunc) { 4483 LoadedCE = dyn_cast<ConstantExpr>(LoadedCE->getOperand(0)); 4484 if (!LoadedCE) 4485 return nullptr; 4486 } 4487 4488 if (LoadedCE->getOpcode() != Instruction::Sub) 4489 return nullptr; 4490 4491 auto *LoadedLHS = dyn_cast<ConstantExpr>(LoadedCE->getOperand(0)); 4492 if (!LoadedLHS || LoadedLHS->getOpcode() != Instruction::PtrToInt) 4493 return nullptr; 4494 auto *LoadedLHSPtr = LoadedLHS->getOperand(0); 4495 4496 Constant *LoadedRHS = LoadedCE->getOperand(1); 4497 GlobalValue *LoadedRHSSym; 4498 APInt LoadedRHSOffset; 4499 if (!IsConstantOffsetFromGlobal(LoadedRHS, LoadedRHSSym, LoadedRHSOffset, 4500 DL) || 4501 PtrSym != LoadedRHSSym || PtrOffset != LoadedRHSOffset) 4502 return nullptr; 4503 4504 return ConstantExpr::getBitCast(LoadedLHSPtr, Int8PtrTy); 4505 } 4506 4507 static bool maskIsAllZeroOrUndef(Value *Mask) { 4508 auto *ConstMask = dyn_cast<Constant>(Mask); 4509 if (!ConstMask) 4510 return false; 4511 if (ConstMask->isNullValue() || isa<UndefValue>(ConstMask)) 4512 return true; 4513 for (unsigned I = 0, E = ConstMask->getType()->getVectorNumElements(); I != E; 4514 ++I) { 4515 if (auto *MaskElt = ConstMask->getAggregateElement(I)) 4516 if (MaskElt->isNullValue() || isa<UndefValue>(MaskElt)) 4517 continue; 4518 return false; 4519 } 4520 return true; 4521 } 4522 4523 template <typename IterTy> 4524 static Value *SimplifyIntrinsic(Function *F, IterTy ArgBegin, IterTy ArgEnd, 4525 const SimplifyQuery &Q, unsigned MaxRecurse) { 4526 Intrinsic::ID IID = F->getIntrinsicID(); 4527 unsigned NumOperands = std::distance(ArgBegin, ArgEnd); 4528 4529 // Unary Ops 4530 if (NumOperands == 1) { 4531 // Perform idempotent optimizations 4532 if (IsIdempotent(IID)) { 4533 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(*ArgBegin)) { 4534 if (II->getIntrinsicID() == IID) 4535 return II; 4536 } 4537 } 4538 4539 Value *IIOperand = *ArgBegin; 4540 Value *X; 4541 switch (IID) { 4542 case Intrinsic::fabs: { 4543 if (SignBitMustBeZero(IIOperand, Q.TLI)) 4544 return IIOperand; 4545 return nullptr; 4546 } 4547 case Intrinsic::bswap: { 4548 // bswap(bswap(x)) -> x 4549 if (match(IIOperand, m_BSwap(m_Value(X)))) 4550 return X; 4551 return nullptr; 4552 } 4553 case Intrinsic::bitreverse: { 4554 // bitreverse(bitreverse(x)) -> x 4555 if (match(IIOperand, m_BitReverse(m_Value(X)))) 4556 return X; 4557 return nullptr; 4558 } 4559 case Intrinsic::exp: { 4560 // exp(log(x)) -> x 4561 if (Q.CxtI->isFast() && 4562 match(IIOperand, m_Intrinsic<Intrinsic::log>(m_Value(X)))) 4563 return X; 4564 return nullptr; 4565 } 4566 case Intrinsic::exp2: { 4567 // exp2(log2(x)) -> x 4568 if (Q.CxtI->isFast() && 4569 match(IIOperand, m_Intrinsic<Intrinsic::log2>(m_Value(X)))) 4570 return X; 4571 return nullptr; 4572 } 4573 case Intrinsic::log: { 4574 // log(exp(x)) -> x 4575 if (Q.CxtI->isFast() && 4576 match(IIOperand, m_Intrinsic<Intrinsic::exp>(m_Value(X)))) 4577 return X; 4578 return nullptr; 4579 } 4580 case Intrinsic::log2: { 4581 // log2(exp2(x)) -> x 4582 if (Q.CxtI->isFast() && 4583 match(IIOperand, m_Intrinsic<Intrinsic::exp2>(m_Value(X)))) { 4584 return X; 4585 } 4586 return nullptr; 4587 } 4588 default: 4589 return nullptr; 4590 } 4591 } 4592 4593 // Binary Ops 4594 if (NumOperands == 2) { 4595 Value *LHS = *ArgBegin; 4596 Value *RHS = *(ArgBegin + 1); 4597 Type *ReturnType = F->getReturnType(); 4598 4599 switch (IID) { 4600 case Intrinsic::usub_with_overflow: 4601 case Intrinsic::ssub_with_overflow: { 4602 // X - X -> { 0, false } 4603 if (LHS == RHS) 4604 return Constant::getNullValue(ReturnType); 4605 4606 // X - undef -> undef 4607 // undef - X -> undef 4608 if (isa<UndefValue>(LHS) || isa<UndefValue>(RHS)) 4609 return UndefValue::get(ReturnType); 4610 4611 return nullptr; 4612 } 4613 case Intrinsic::uadd_with_overflow: 4614 case Intrinsic::sadd_with_overflow: { 4615 // X + undef -> undef 4616 if (isa<UndefValue>(LHS) || isa<UndefValue>(RHS)) 4617 return UndefValue::get(ReturnType); 4618 4619 return nullptr; 4620 } 4621 case Intrinsic::umul_with_overflow: 4622 case Intrinsic::smul_with_overflow: { 4623 // 0 * X -> { 0, false } 4624 // X * 0 -> { 0, false } 4625 if (match(LHS, m_Zero()) || match(RHS, m_Zero())) 4626 return Constant::getNullValue(ReturnType); 4627 4628 // undef * X -> { 0, false } 4629 // X * undef -> { 0, false } 4630 if (match(LHS, m_Undef()) || match(RHS, m_Undef())) 4631 return Constant::getNullValue(ReturnType); 4632 4633 return nullptr; 4634 } 4635 case Intrinsic::load_relative: { 4636 Constant *C0 = dyn_cast<Constant>(LHS); 4637 Constant *C1 = dyn_cast<Constant>(RHS); 4638 if (C0 && C1) 4639 return SimplifyRelativeLoad(C0, C1, Q.DL); 4640 return nullptr; 4641 } 4642 case Intrinsic::powi: 4643 if (ConstantInt *Power = dyn_cast<ConstantInt>(RHS)) { 4644 // powi(x, 0) -> 1.0 4645 if (Power->isZero()) 4646 return ConstantFP::get(LHS->getType(), 1.0); 4647 // powi(x, 1) -> x 4648 if (Power->isOne()) 4649 return LHS; 4650 } 4651 return nullptr; 4652 default: 4653 return nullptr; 4654 } 4655 } 4656 4657 // Simplify calls to llvm.masked.load.* 4658 switch (IID) { 4659 case Intrinsic::masked_load: { 4660 Value *MaskArg = ArgBegin[2]; 4661 Value *PassthruArg = ArgBegin[3]; 4662 // If the mask is all zeros or undef, the "passthru" argument is the result. 4663 if (maskIsAllZeroOrUndef(MaskArg)) 4664 return PassthruArg; 4665 return nullptr; 4666 } 4667 default: 4668 return nullptr; 4669 } 4670 } 4671 4672 template <typename IterTy> 4673 static Value *SimplifyCall(ImmutableCallSite CS, Value *V, IterTy ArgBegin, 4674 IterTy ArgEnd, const SimplifyQuery &Q, 4675 unsigned MaxRecurse) { 4676 Type *Ty = V->getType(); 4677 if (PointerType *PTy = dyn_cast<PointerType>(Ty)) 4678 Ty = PTy->getElementType(); 4679 FunctionType *FTy = cast<FunctionType>(Ty); 4680 4681 // call undef -> undef 4682 // call null -> undef 4683 if (isa<UndefValue>(V) || isa<ConstantPointerNull>(V)) 4684 return UndefValue::get(FTy->getReturnType()); 4685 4686 Function *F = dyn_cast<Function>(V); 4687 if (!F) 4688 return nullptr; 4689 4690 if (F->isIntrinsic()) 4691 if (Value *Ret = SimplifyIntrinsic(F, ArgBegin, ArgEnd, Q, MaxRecurse)) 4692 return Ret; 4693 4694 if (!canConstantFoldCallTo(CS, F)) 4695 return nullptr; 4696 4697 SmallVector<Constant *, 4> ConstantArgs; 4698 ConstantArgs.reserve(ArgEnd - ArgBegin); 4699 for (IterTy I = ArgBegin, E = ArgEnd; I != E; ++I) { 4700 Constant *C = dyn_cast<Constant>(*I); 4701 if (!C) 4702 return nullptr; 4703 ConstantArgs.push_back(C); 4704 } 4705 4706 return ConstantFoldCall(CS, F, ConstantArgs, Q.TLI); 4707 } 4708 4709 Value *llvm::SimplifyCall(ImmutableCallSite CS, Value *V, 4710 User::op_iterator ArgBegin, User::op_iterator ArgEnd, 4711 const SimplifyQuery &Q) { 4712 return ::SimplifyCall(CS, V, ArgBegin, ArgEnd, Q, RecursionLimit); 4713 } 4714 4715 Value *llvm::SimplifyCall(ImmutableCallSite CS, Value *V, 4716 ArrayRef<Value *> Args, const SimplifyQuery &Q) { 4717 return ::SimplifyCall(CS, V, Args.begin(), Args.end(), Q, RecursionLimit); 4718 } 4719 4720 Value *llvm::SimplifyCall(ImmutableCallSite ICS, const SimplifyQuery &Q) { 4721 CallSite CS(const_cast<Instruction*>(ICS.getInstruction())); 4722 return ::SimplifyCall(CS, CS.getCalledValue(), CS.arg_begin(), CS.arg_end(), 4723 Q, RecursionLimit); 4724 } 4725 4726 /// See if we can compute a simplified version of this instruction. 4727 /// If not, this returns null. 4728 4729 Value *llvm::SimplifyInstruction(Instruction *I, const SimplifyQuery &SQ, 4730 OptimizationRemarkEmitter *ORE) { 4731 const SimplifyQuery Q = SQ.CxtI ? SQ : SQ.getWithInstruction(I); 4732 Value *Result; 4733 4734 switch (I->getOpcode()) { 4735 default: 4736 Result = ConstantFoldInstruction(I, Q.DL, Q.TLI); 4737 break; 4738 case Instruction::FAdd: 4739 Result = SimplifyFAddInst(I->getOperand(0), I->getOperand(1), 4740 I->getFastMathFlags(), Q); 4741 break; 4742 case Instruction::Add: 4743 Result = SimplifyAddInst(I->getOperand(0), I->getOperand(1), 4744 cast<BinaryOperator>(I)->hasNoSignedWrap(), 4745 cast<BinaryOperator>(I)->hasNoUnsignedWrap(), Q); 4746 break; 4747 case Instruction::FSub: 4748 Result = SimplifyFSubInst(I->getOperand(0), I->getOperand(1), 4749 I->getFastMathFlags(), Q); 4750 break; 4751 case Instruction::Sub: 4752 Result = SimplifySubInst(I->getOperand(0), I->getOperand(1), 4753 cast<BinaryOperator>(I)->hasNoSignedWrap(), 4754 cast<BinaryOperator>(I)->hasNoUnsignedWrap(), Q); 4755 break; 4756 case Instruction::FMul: 4757 Result = SimplifyFMulInst(I->getOperand(0), I->getOperand(1), 4758 I->getFastMathFlags(), Q); 4759 break; 4760 case Instruction::Mul: 4761 Result = SimplifyMulInst(I->getOperand(0), I->getOperand(1), Q); 4762 break; 4763 case Instruction::SDiv: 4764 Result = SimplifySDivInst(I->getOperand(0), I->getOperand(1), Q); 4765 break; 4766 case Instruction::UDiv: 4767 Result = SimplifyUDivInst(I->getOperand(0), I->getOperand(1), Q); 4768 break; 4769 case Instruction::FDiv: 4770 Result = SimplifyFDivInst(I->getOperand(0), I->getOperand(1), 4771 I->getFastMathFlags(), Q); 4772 break; 4773 case Instruction::SRem: 4774 Result = SimplifySRemInst(I->getOperand(0), I->getOperand(1), Q); 4775 break; 4776 case Instruction::URem: 4777 Result = SimplifyURemInst(I->getOperand(0), I->getOperand(1), Q); 4778 break; 4779 case Instruction::FRem: 4780 Result = SimplifyFRemInst(I->getOperand(0), I->getOperand(1), 4781 I->getFastMathFlags(), Q); 4782 break; 4783 case Instruction::Shl: 4784 Result = SimplifyShlInst(I->getOperand(0), I->getOperand(1), 4785 cast<BinaryOperator>(I)->hasNoSignedWrap(), 4786 cast<BinaryOperator>(I)->hasNoUnsignedWrap(), Q); 4787 break; 4788 case Instruction::LShr: 4789 Result = SimplifyLShrInst(I->getOperand(0), I->getOperand(1), 4790 cast<BinaryOperator>(I)->isExact(), Q); 4791 break; 4792 case Instruction::AShr: 4793 Result = SimplifyAShrInst(I->getOperand(0), I->getOperand(1), 4794 cast<BinaryOperator>(I)->isExact(), Q); 4795 break; 4796 case Instruction::And: 4797 Result = SimplifyAndInst(I->getOperand(0), I->getOperand(1), Q); 4798 break; 4799 case Instruction::Or: 4800 Result = SimplifyOrInst(I->getOperand(0), I->getOperand(1), Q); 4801 break; 4802 case Instruction::Xor: 4803 Result = SimplifyXorInst(I->getOperand(0), I->getOperand(1), Q); 4804 break; 4805 case Instruction::ICmp: 4806 Result = SimplifyICmpInst(cast<ICmpInst>(I)->getPredicate(), 4807 I->getOperand(0), I->getOperand(1), Q); 4808 break; 4809 case Instruction::FCmp: 4810 Result = 4811 SimplifyFCmpInst(cast<FCmpInst>(I)->getPredicate(), I->getOperand(0), 4812 I->getOperand(1), I->getFastMathFlags(), Q); 4813 break; 4814 case Instruction::Select: 4815 Result = SimplifySelectInst(I->getOperand(0), I->getOperand(1), 4816 I->getOperand(2), Q); 4817 break; 4818 case Instruction::GetElementPtr: { 4819 SmallVector<Value *, 8> Ops(I->op_begin(), I->op_end()); 4820 Result = SimplifyGEPInst(cast<GetElementPtrInst>(I)->getSourceElementType(), 4821 Ops, Q); 4822 break; 4823 } 4824 case Instruction::InsertValue: { 4825 InsertValueInst *IV = cast<InsertValueInst>(I); 4826 Result = SimplifyInsertValueInst(IV->getAggregateOperand(), 4827 IV->getInsertedValueOperand(), 4828 IV->getIndices(), Q); 4829 break; 4830 } 4831 case Instruction::InsertElement: { 4832 auto *IE = cast<InsertElementInst>(I); 4833 Result = SimplifyInsertElementInst(IE->getOperand(0), IE->getOperand(1), 4834 IE->getOperand(2), Q); 4835 break; 4836 } 4837 case Instruction::ExtractValue: { 4838 auto *EVI = cast<ExtractValueInst>(I); 4839 Result = SimplifyExtractValueInst(EVI->getAggregateOperand(), 4840 EVI->getIndices(), Q); 4841 break; 4842 } 4843 case Instruction::ExtractElement: { 4844 auto *EEI = cast<ExtractElementInst>(I); 4845 Result = SimplifyExtractElementInst(EEI->getVectorOperand(), 4846 EEI->getIndexOperand(), Q); 4847 break; 4848 } 4849 case Instruction::ShuffleVector: { 4850 auto *SVI = cast<ShuffleVectorInst>(I); 4851 Result = SimplifyShuffleVectorInst(SVI->getOperand(0), SVI->getOperand(1), 4852 SVI->getMask(), SVI->getType(), Q); 4853 break; 4854 } 4855 case Instruction::PHI: 4856 Result = SimplifyPHINode(cast<PHINode>(I), Q); 4857 break; 4858 case Instruction::Call: { 4859 CallSite CS(cast<CallInst>(I)); 4860 Result = SimplifyCall(CS, Q); 4861 break; 4862 } 4863 #define HANDLE_CAST_INST(num, opc, clas) case Instruction::opc: 4864 #include "llvm/IR/Instruction.def" 4865 #undef HANDLE_CAST_INST 4866 Result = 4867 SimplifyCastInst(I->getOpcode(), I->getOperand(0), I->getType(), Q); 4868 break; 4869 case Instruction::Alloca: 4870 // No simplifications for Alloca and it can't be constant folded. 4871 Result = nullptr; 4872 break; 4873 } 4874 4875 // In general, it is possible for computeKnownBits to determine all bits in a 4876 // value even when the operands are not all constants. 4877 if (!Result && I->getType()->isIntOrIntVectorTy()) { 4878 KnownBits Known = computeKnownBits(I, Q.DL, /*Depth*/ 0, Q.AC, I, Q.DT, ORE); 4879 if (Known.isConstant()) 4880 Result = ConstantInt::get(I->getType(), Known.getConstant()); 4881 } 4882 4883 /// If called on unreachable code, the above logic may report that the 4884 /// instruction simplified to itself. Make life easier for users by 4885 /// detecting that case here, returning a safe value instead. 4886 return Result == I ? UndefValue::get(I->getType()) : Result; 4887 } 4888 4889 /// \brief Implementation of recursive simplification through an instruction's 4890 /// uses. 4891 /// 4892 /// This is the common implementation of the recursive simplification routines. 4893 /// If we have a pre-simplified value in 'SimpleV', that is forcibly used to 4894 /// replace the instruction 'I'. Otherwise, we simply add 'I' to the list of 4895 /// instructions to process and attempt to simplify it using 4896 /// InstructionSimplify. 4897 /// 4898 /// This routine returns 'true' only when *it* simplifies something. The passed 4899 /// in simplified value does not count toward this. 4900 static bool replaceAndRecursivelySimplifyImpl(Instruction *I, Value *SimpleV, 4901 const TargetLibraryInfo *TLI, 4902 const DominatorTree *DT, 4903 AssumptionCache *AC) { 4904 bool Simplified = false; 4905 SmallSetVector<Instruction *, 8> Worklist; 4906 const DataLayout &DL = I->getModule()->getDataLayout(); 4907 4908 // If we have an explicit value to collapse to, do that round of the 4909 // simplification loop by hand initially. 4910 if (SimpleV) { 4911 for (User *U : I->users()) 4912 if (U != I) 4913 Worklist.insert(cast<Instruction>(U)); 4914 4915 // Replace the instruction with its simplified value. 4916 I->replaceAllUsesWith(SimpleV); 4917 4918 // Gracefully handle edge cases where the instruction is not wired into any 4919 // parent block. 4920 if (I->getParent() && !I->isEHPad() && !isa<TerminatorInst>(I) && 4921 !I->mayHaveSideEffects()) 4922 I->eraseFromParent(); 4923 } else { 4924 Worklist.insert(I); 4925 } 4926 4927 // Note that we must test the size on each iteration, the worklist can grow. 4928 for (unsigned Idx = 0; Idx != Worklist.size(); ++Idx) { 4929 I = Worklist[Idx]; 4930 4931 // See if this instruction simplifies. 4932 SimpleV = SimplifyInstruction(I, {DL, TLI, DT, AC}); 4933 if (!SimpleV) 4934 continue; 4935 4936 Simplified = true; 4937 4938 // Stash away all the uses of the old instruction so we can check them for 4939 // recursive simplifications after a RAUW. This is cheaper than checking all 4940 // uses of To on the recursive step in most cases. 4941 for (User *U : I->users()) 4942 Worklist.insert(cast<Instruction>(U)); 4943 4944 // Replace the instruction with its simplified value. 4945 I->replaceAllUsesWith(SimpleV); 4946 4947 // Gracefully handle edge cases where the instruction is not wired into any 4948 // parent block. 4949 if (I->getParent() && !I->isEHPad() && !isa<TerminatorInst>(I) && 4950 !I->mayHaveSideEffects()) 4951 I->eraseFromParent(); 4952 } 4953 return Simplified; 4954 } 4955 4956 bool llvm::recursivelySimplifyInstruction(Instruction *I, 4957 const TargetLibraryInfo *TLI, 4958 const DominatorTree *DT, 4959 AssumptionCache *AC) { 4960 return replaceAndRecursivelySimplifyImpl(I, nullptr, TLI, DT, AC); 4961 } 4962 4963 bool llvm::replaceAndRecursivelySimplify(Instruction *I, Value *SimpleV, 4964 const TargetLibraryInfo *TLI, 4965 const DominatorTree *DT, 4966 AssumptionCache *AC) { 4967 assert(I != SimpleV && "replaceAndRecursivelySimplify(X,X) is not valid!"); 4968 assert(SimpleV && "Must provide a simplified value."); 4969 return replaceAndRecursivelySimplifyImpl(I, SimpleV, TLI, DT, AC); 4970 } 4971 4972 namespace llvm { 4973 const SimplifyQuery getBestSimplifyQuery(Pass &P, Function &F) { 4974 auto *DTWP = P.getAnalysisIfAvailable<DominatorTreeWrapperPass>(); 4975 auto *DT = DTWP ? &DTWP->getDomTree() : nullptr; 4976 auto *TLIWP = P.getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 4977 auto *TLI = TLIWP ? &TLIWP->getTLI() : nullptr; 4978 auto *ACWP = P.getAnalysisIfAvailable<AssumptionCacheTracker>(); 4979 auto *AC = ACWP ? &ACWP->getAssumptionCache(F) : nullptr; 4980 return {F.getParent()->getDataLayout(), TLI, DT, AC}; 4981 } 4982 4983 const SimplifyQuery getBestSimplifyQuery(LoopStandardAnalysisResults &AR, 4984 const DataLayout &DL) { 4985 return {DL, &AR.TLI, &AR.DT, &AR.AC}; 4986 } 4987 4988 template <class T, class... TArgs> 4989 const SimplifyQuery getBestSimplifyQuery(AnalysisManager<T, TArgs...> &AM, 4990 Function &F) { 4991 auto *DT = AM.template getCachedResult<DominatorTreeAnalysis>(F); 4992 auto *TLI = AM.template getCachedResult<TargetLibraryAnalysis>(F); 4993 auto *AC = AM.template getCachedResult<AssumptionAnalysis>(F); 4994 return {F.getParent()->getDataLayout(), TLI, DT, AC}; 4995 } 4996 template const SimplifyQuery getBestSimplifyQuery(AnalysisManager<Function> &, 4997 Function &); 4998 } 4999