1 //===- InstructionSimplify.cpp - Fold instruction operands ----------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements routines for folding instructions into simpler forms
11 // that do not require creating new instructions.  This does constant folding
12 // ("add i32 1, 1" -> "2") but can also handle non-constant operands, either
13 // returning a constant ("and i32 %x, 0" -> "0") or an already existing value
14 // ("and i32 %x, %x" -> "%x").  All operands are assumed to have already been
15 // simplified: This is usually true and assuming it simplifies the logic (if
16 // they have not been simplified then results are correct but maybe suboptimal).
17 //
18 //===----------------------------------------------------------------------===//
19 
20 #include "llvm/Analysis/InstructionSimplify.h"
21 #include "llvm/ADT/SetVector.h"
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/Analysis/AliasAnalysis.h"
24 #include "llvm/Analysis/AssumptionCache.h"
25 #include "llvm/Analysis/CaptureTracking.h"
26 #include "llvm/Analysis/CmpInstAnalysis.h"
27 #include "llvm/Analysis/ConstantFolding.h"
28 #include "llvm/Analysis/LoopAnalysisManager.h"
29 #include "llvm/Analysis/MemoryBuiltins.h"
30 #include "llvm/Analysis/ValueTracking.h"
31 #include "llvm/Analysis/VectorUtils.h"
32 #include "llvm/IR/ConstantRange.h"
33 #include "llvm/IR/DataLayout.h"
34 #include "llvm/IR/Dominators.h"
35 #include "llvm/IR/GetElementPtrTypeIterator.h"
36 #include "llvm/IR/GlobalAlias.h"
37 #include "llvm/IR/Operator.h"
38 #include "llvm/IR/PatternMatch.h"
39 #include "llvm/IR/ValueHandle.h"
40 #include "llvm/Support/KnownBits.h"
41 #include <algorithm>
42 using namespace llvm;
43 using namespace llvm::PatternMatch;
44 
45 #define DEBUG_TYPE "instsimplify"
46 
47 enum { RecursionLimit = 3 };
48 
49 STATISTIC(NumExpand,  "Number of expansions");
50 STATISTIC(NumReassoc, "Number of reassociations");
51 
52 static Value *SimplifyAndInst(Value *, Value *, const SimplifyQuery &, unsigned);
53 static Value *SimplifyBinOp(unsigned, Value *, Value *, const SimplifyQuery &,
54                             unsigned);
55 static Value *SimplifyFPBinOp(unsigned, Value *, Value *, const FastMathFlags &,
56                               const SimplifyQuery &, unsigned);
57 static Value *SimplifyCmpInst(unsigned, Value *, Value *, const SimplifyQuery &,
58                               unsigned);
59 static Value *SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS,
60                                const SimplifyQuery &Q, unsigned MaxRecurse);
61 static Value *SimplifyOrInst(Value *, Value *, const SimplifyQuery &, unsigned);
62 static Value *SimplifyXorInst(Value *, Value *, const SimplifyQuery &, unsigned);
63 static Value *SimplifyCastInst(unsigned, Value *, Type *,
64                                const SimplifyQuery &, unsigned);
65 
66 /// For a boolean type or a vector of boolean type, return false or a vector
67 /// with every element false.
68 static Constant *getFalse(Type *Ty) {
69   return ConstantInt::getFalse(Ty);
70 }
71 
72 /// For a boolean type or a vector of boolean type, return true or a vector
73 /// with every element true.
74 static Constant *getTrue(Type *Ty) {
75   return ConstantInt::getTrue(Ty);
76 }
77 
78 /// isSameCompare - Is V equivalent to the comparison "LHS Pred RHS"?
79 static bool isSameCompare(Value *V, CmpInst::Predicate Pred, Value *LHS,
80                           Value *RHS) {
81   CmpInst *Cmp = dyn_cast<CmpInst>(V);
82   if (!Cmp)
83     return false;
84   CmpInst::Predicate CPred = Cmp->getPredicate();
85   Value *CLHS = Cmp->getOperand(0), *CRHS = Cmp->getOperand(1);
86   if (CPred == Pred && CLHS == LHS && CRHS == RHS)
87     return true;
88   return CPred == CmpInst::getSwappedPredicate(Pred) && CLHS == RHS &&
89     CRHS == LHS;
90 }
91 
92 /// Does the given value dominate the specified phi node?
93 static bool ValueDominatesPHI(Value *V, PHINode *P, const DominatorTree *DT) {
94   Instruction *I = dyn_cast<Instruction>(V);
95   if (!I)
96     // Arguments and constants dominate all instructions.
97     return true;
98 
99   // If we are processing instructions (and/or basic blocks) that have not been
100   // fully added to a function, the parent nodes may still be null. Simply
101   // return the conservative answer in these cases.
102   if (!I->getParent() || !P->getParent() || !I->getParent()->getParent())
103     return false;
104 
105   // If we have a DominatorTree then do a precise test.
106   if (DT)
107     return DT->dominates(I, P);
108 
109   // Otherwise, if the instruction is in the entry block and is not an invoke,
110   // then it obviously dominates all phi nodes.
111   if (I->getParent() == &I->getParent()->getParent()->getEntryBlock() &&
112       !isa<InvokeInst>(I))
113     return true;
114 
115   return false;
116 }
117 
118 /// Simplify "A op (B op' C)" by distributing op over op', turning it into
119 /// "(A op B) op' (A op C)".  Here "op" is given by Opcode and "op'" is
120 /// given by OpcodeToExpand, while "A" corresponds to LHS and "B op' C" to RHS.
121 /// Also performs the transform "(A op' B) op C" -> "(A op C) op' (B op C)".
122 /// Returns the simplified value, or null if no simplification was performed.
123 static Value *ExpandBinOp(Instruction::BinaryOps Opcode, Value *LHS, Value *RHS,
124                           Instruction::BinaryOps OpcodeToExpand,
125                           const SimplifyQuery &Q, unsigned MaxRecurse) {
126   // Recursion is always used, so bail out at once if we already hit the limit.
127   if (!MaxRecurse--)
128     return nullptr;
129 
130   // Check whether the expression has the form "(A op' B) op C".
131   if (BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS))
132     if (Op0->getOpcode() == OpcodeToExpand) {
133       // It does!  Try turning it into "(A op C) op' (B op C)".
134       Value *A = Op0->getOperand(0), *B = Op0->getOperand(1), *C = RHS;
135       // Do "A op C" and "B op C" both simplify?
136       if (Value *L = SimplifyBinOp(Opcode, A, C, Q, MaxRecurse))
137         if (Value *R = SimplifyBinOp(Opcode, B, C, Q, MaxRecurse)) {
138           // They do! Return "L op' R" if it simplifies or is already available.
139           // If "L op' R" equals "A op' B" then "L op' R" is just the LHS.
140           if ((L == A && R == B) || (Instruction::isCommutative(OpcodeToExpand)
141                                      && L == B && R == A)) {
142             ++NumExpand;
143             return LHS;
144           }
145           // Otherwise return "L op' R" if it simplifies.
146           if (Value *V = SimplifyBinOp(OpcodeToExpand, L, R, Q, MaxRecurse)) {
147             ++NumExpand;
148             return V;
149           }
150         }
151     }
152 
153   // Check whether the expression has the form "A op (B op' C)".
154   if (BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS))
155     if (Op1->getOpcode() == OpcodeToExpand) {
156       // It does!  Try turning it into "(A op B) op' (A op C)".
157       Value *A = LHS, *B = Op1->getOperand(0), *C = Op1->getOperand(1);
158       // Do "A op B" and "A op C" both simplify?
159       if (Value *L = SimplifyBinOp(Opcode, A, B, Q, MaxRecurse))
160         if (Value *R = SimplifyBinOp(Opcode, A, C, Q, MaxRecurse)) {
161           // They do! Return "L op' R" if it simplifies or is already available.
162           // If "L op' R" equals "B op' C" then "L op' R" is just the RHS.
163           if ((L == B && R == C) || (Instruction::isCommutative(OpcodeToExpand)
164                                      && L == C && R == B)) {
165             ++NumExpand;
166             return RHS;
167           }
168           // Otherwise return "L op' R" if it simplifies.
169           if (Value *V = SimplifyBinOp(OpcodeToExpand, L, R, Q, MaxRecurse)) {
170             ++NumExpand;
171             return V;
172           }
173         }
174     }
175 
176   return nullptr;
177 }
178 
179 /// Generic simplifications for associative binary operations.
180 /// Returns the simpler value, or null if none was found.
181 static Value *SimplifyAssociativeBinOp(Instruction::BinaryOps Opcode,
182                                        Value *LHS, Value *RHS,
183                                        const SimplifyQuery &Q,
184                                        unsigned MaxRecurse) {
185   assert(Instruction::isAssociative(Opcode) && "Not an associative operation!");
186 
187   // Recursion is always used, so bail out at once if we already hit the limit.
188   if (!MaxRecurse--)
189     return nullptr;
190 
191   BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS);
192   BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS);
193 
194   // Transform: "(A op B) op C" ==> "A op (B op C)" if it simplifies completely.
195   if (Op0 && Op0->getOpcode() == Opcode) {
196     Value *A = Op0->getOperand(0);
197     Value *B = Op0->getOperand(1);
198     Value *C = RHS;
199 
200     // Does "B op C" simplify?
201     if (Value *V = SimplifyBinOp(Opcode, B, C, Q, MaxRecurse)) {
202       // It does!  Return "A op V" if it simplifies or is already available.
203       // If V equals B then "A op V" is just the LHS.
204       if (V == B) return LHS;
205       // Otherwise return "A op V" if it simplifies.
206       if (Value *W = SimplifyBinOp(Opcode, A, V, Q, MaxRecurse)) {
207         ++NumReassoc;
208         return W;
209       }
210     }
211   }
212 
213   // Transform: "A op (B op C)" ==> "(A op B) op C" if it simplifies completely.
214   if (Op1 && Op1->getOpcode() == Opcode) {
215     Value *A = LHS;
216     Value *B = Op1->getOperand(0);
217     Value *C = Op1->getOperand(1);
218 
219     // Does "A op B" simplify?
220     if (Value *V = SimplifyBinOp(Opcode, A, B, Q, MaxRecurse)) {
221       // It does!  Return "V op C" if it simplifies or is already available.
222       // If V equals B then "V op C" is just the RHS.
223       if (V == B) return RHS;
224       // Otherwise return "V op C" if it simplifies.
225       if (Value *W = SimplifyBinOp(Opcode, V, C, Q, MaxRecurse)) {
226         ++NumReassoc;
227         return W;
228       }
229     }
230   }
231 
232   // The remaining transforms require commutativity as well as associativity.
233   if (!Instruction::isCommutative(Opcode))
234     return nullptr;
235 
236   // Transform: "(A op B) op C" ==> "(C op A) op B" if it simplifies completely.
237   if (Op0 && Op0->getOpcode() == Opcode) {
238     Value *A = Op0->getOperand(0);
239     Value *B = Op0->getOperand(1);
240     Value *C = RHS;
241 
242     // Does "C op A" simplify?
243     if (Value *V = SimplifyBinOp(Opcode, C, A, Q, MaxRecurse)) {
244       // It does!  Return "V op B" if it simplifies or is already available.
245       // If V equals A then "V op B" is just the LHS.
246       if (V == A) return LHS;
247       // Otherwise return "V op B" if it simplifies.
248       if (Value *W = SimplifyBinOp(Opcode, V, B, Q, MaxRecurse)) {
249         ++NumReassoc;
250         return W;
251       }
252     }
253   }
254 
255   // Transform: "A op (B op C)" ==> "B op (C op A)" if it simplifies completely.
256   if (Op1 && Op1->getOpcode() == Opcode) {
257     Value *A = LHS;
258     Value *B = Op1->getOperand(0);
259     Value *C = Op1->getOperand(1);
260 
261     // Does "C op A" simplify?
262     if (Value *V = SimplifyBinOp(Opcode, C, A, Q, MaxRecurse)) {
263       // It does!  Return "B op V" if it simplifies or is already available.
264       // If V equals C then "B op V" is just the RHS.
265       if (V == C) return RHS;
266       // Otherwise return "B op V" if it simplifies.
267       if (Value *W = SimplifyBinOp(Opcode, B, V, Q, MaxRecurse)) {
268         ++NumReassoc;
269         return W;
270       }
271     }
272   }
273 
274   return nullptr;
275 }
276 
277 /// In the case of a binary operation with a select instruction as an operand,
278 /// try to simplify the binop by seeing whether evaluating it on both branches
279 /// of the select results in the same value. Returns the common value if so,
280 /// otherwise returns null.
281 static Value *ThreadBinOpOverSelect(Instruction::BinaryOps Opcode, Value *LHS,
282                                     Value *RHS, const SimplifyQuery &Q,
283                                     unsigned MaxRecurse) {
284   // Recursion is always used, so bail out at once if we already hit the limit.
285   if (!MaxRecurse--)
286     return nullptr;
287 
288   SelectInst *SI;
289   if (isa<SelectInst>(LHS)) {
290     SI = cast<SelectInst>(LHS);
291   } else {
292     assert(isa<SelectInst>(RHS) && "No select instruction operand!");
293     SI = cast<SelectInst>(RHS);
294   }
295 
296   // Evaluate the BinOp on the true and false branches of the select.
297   Value *TV;
298   Value *FV;
299   if (SI == LHS) {
300     TV = SimplifyBinOp(Opcode, SI->getTrueValue(), RHS, Q, MaxRecurse);
301     FV = SimplifyBinOp(Opcode, SI->getFalseValue(), RHS, Q, MaxRecurse);
302   } else {
303     TV = SimplifyBinOp(Opcode, LHS, SI->getTrueValue(), Q, MaxRecurse);
304     FV = SimplifyBinOp(Opcode, LHS, SI->getFalseValue(), Q, MaxRecurse);
305   }
306 
307   // If they simplified to the same value, then return the common value.
308   // If they both failed to simplify then return null.
309   if (TV == FV)
310     return TV;
311 
312   // If one branch simplified to undef, return the other one.
313   if (TV && isa<UndefValue>(TV))
314     return FV;
315   if (FV && isa<UndefValue>(FV))
316     return TV;
317 
318   // If applying the operation did not change the true and false select values,
319   // then the result of the binop is the select itself.
320   if (TV == SI->getTrueValue() && FV == SI->getFalseValue())
321     return SI;
322 
323   // If one branch simplified and the other did not, and the simplified
324   // value is equal to the unsimplified one, return the simplified value.
325   // For example, select (cond, X, X & Z) & Z -> X & Z.
326   if ((FV && !TV) || (TV && !FV)) {
327     // Check that the simplified value has the form "X op Y" where "op" is the
328     // same as the original operation.
329     Instruction *Simplified = dyn_cast<Instruction>(FV ? FV : TV);
330     if (Simplified && Simplified->getOpcode() == unsigned(Opcode)) {
331       // The value that didn't simplify is "UnsimplifiedLHS op UnsimplifiedRHS".
332       // We already know that "op" is the same as for the simplified value.  See
333       // if the operands match too.  If so, return the simplified value.
334       Value *UnsimplifiedBranch = FV ? SI->getTrueValue() : SI->getFalseValue();
335       Value *UnsimplifiedLHS = SI == LHS ? UnsimplifiedBranch : LHS;
336       Value *UnsimplifiedRHS = SI == LHS ? RHS : UnsimplifiedBranch;
337       if (Simplified->getOperand(0) == UnsimplifiedLHS &&
338           Simplified->getOperand(1) == UnsimplifiedRHS)
339         return Simplified;
340       if (Simplified->isCommutative() &&
341           Simplified->getOperand(1) == UnsimplifiedLHS &&
342           Simplified->getOperand(0) == UnsimplifiedRHS)
343         return Simplified;
344     }
345   }
346 
347   return nullptr;
348 }
349 
350 /// In the case of a comparison with a select instruction, try to simplify the
351 /// comparison by seeing whether both branches of the select result in the same
352 /// value. Returns the common value if so, otherwise returns null.
353 static Value *ThreadCmpOverSelect(CmpInst::Predicate Pred, Value *LHS,
354                                   Value *RHS, const SimplifyQuery &Q,
355                                   unsigned MaxRecurse) {
356   // Recursion is always used, so bail out at once if we already hit the limit.
357   if (!MaxRecurse--)
358     return nullptr;
359 
360   // Make sure the select is on the LHS.
361   if (!isa<SelectInst>(LHS)) {
362     std::swap(LHS, RHS);
363     Pred = CmpInst::getSwappedPredicate(Pred);
364   }
365   assert(isa<SelectInst>(LHS) && "Not comparing with a select instruction!");
366   SelectInst *SI = cast<SelectInst>(LHS);
367   Value *Cond = SI->getCondition();
368   Value *TV = SI->getTrueValue();
369   Value *FV = SI->getFalseValue();
370 
371   // Now that we have "cmp select(Cond, TV, FV), RHS", analyse it.
372   // Does "cmp TV, RHS" simplify?
373   Value *TCmp = SimplifyCmpInst(Pred, TV, RHS, Q, MaxRecurse);
374   if (TCmp == Cond) {
375     // It not only simplified, it simplified to the select condition.  Replace
376     // it with 'true'.
377     TCmp = getTrue(Cond->getType());
378   } else if (!TCmp) {
379     // It didn't simplify.  However if "cmp TV, RHS" is equal to the select
380     // condition then we can replace it with 'true'.  Otherwise give up.
381     if (!isSameCompare(Cond, Pred, TV, RHS))
382       return nullptr;
383     TCmp = getTrue(Cond->getType());
384   }
385 
386   // Does "cmp FV, RHS" simplify?
387   Value *FCmp = SimplifyCmpInst(Pred, FV, RHS, Q, MaxRecurse);
388   if (FCmp == Cond) {
389     // It not only simplified, it simplified to the select condition.  Replace
390     // it with 'false'.
391     FCmp = getFalse(Cond->getType());
392   } else if (!FCmp) {
393     // It didn't simplify.  However if "cmp FV, RHS" is equal to the select
394     // condition then we can replace it with 'false'.  Otherwise give up.
395     if (!isSameCompare(Cond, Pred, FV, RHS))
396       return nullptr;
397     FCmp = getFalse(Cond->getType());
398   }
399 
400   // If both sides simplified to the same value, then use it as the result of
401   // the original comparison.
402   if (TCmp == FCmp)
403     return TCmp;
404 
405   // The remaining cases only make sense if the select condition has the same
406   // type as the result of the comparison, so bail out if this is not so.
407   if (Cond->getType()->isVectorTy() != RHS->getType()->isVectorTy())
408     return nullptr;
409   // If the false value simplified to false, then the result of the compare
410   // is equal to "Cond && TCmp".  This also catches the case when the false
411   // value simplified to false and the true value to true, returning "Cond".
412   if (match(FCmp, m_Zero()))
413     if (Value *V = SimplifyAndInst(Cond, TCmp, Q, MaxRecurse))
414       return V;
415   // If the true value simplified to true, then the result of the compare
416   // is equal to "Cond || FCmp".
417   if (match(TCmp, m_One()))
418     if (Value *V = SimplifyOrInst(Cond, FCmp, Q, MaxRecurse))
419       return V;
420   // Finally, if the false value simplified to true and the true value to
421   // false, then the result of the compare is equal to "!Cond".
422   if (match(FCmp, m_One()) && match(TCmp, m_Zero()))
423     if (Value *V =
424         SimplifyXorInst(Cond, Constant::getAllOnesValue(Cond->getType()),
425                         Q, MaxRecurse))
426       return V;
427 
428   return nullptr;
429 }
430 
431 /// In the case of a binary operation with an operand that is a PHI instruction,
432 /// try to simplify the binop by seeing whether evaluating it on the incoming
433 /// phi values yields the same result for every value. If so returns the common
434 /// value, otherwise returns null.
435 static Value *ThreadBinOpOverPHI(Instruction::BinaryOps Opcode, Value *LHS,
436                                  Value *RHS, const SimplifyQuery &Q,
437                                  unsigned MaxRecurse) {
438   // Recursion is always used, so bail out at once if we already hit the limit.
439   if (!MaxRecurse--)
440     return nullptr;
441 
442   PHINode *PI;
443   if (isa<PHINode>(LHS)) {
444     PI = cast<PHINode>(LHS);
445     // Bail out if RHS and the phi may be mutually interdependent due to a loop.
446     if (!ValueDominatesPHI(RHS, PI, Q.DT))
447       return nullptr;
448   } else {
449     assert(isa<PHINode>(RHS) && "No PHI instruction operand!");
450     PI = cast<PHINode>(RHS);
451     // Bail out if LHS and the phi may be mutually interdependent due to a loop.
452     if (!ValueDominatesPHI(LHS, PI, Q.DT))
453       return nullptr;
454   }
455 
456   // Evaluate the BinOp on the incoming phi values.
457   Value *CommonValue = nullptr;
458   for (Value *Incoming : PI->incoming_values()) {
459     // If the incoming value is the phi node itself, it can safely be skipped.
460     if (Incoming == PI) continue;
461     Value *V = PI == LHS ?
462       SimplifyBinOp(Opcode, Incoming, RHS, Q, MaxRecurse) :
463       SimplifyBinOp(Opcode, LHS, Incoming, Q, MaxRecurse);
464     // If the operation failed to simplify, or simplified to a different value
465     // to previously, then give up.
466     if (!V || (CommonValue && V != CommonValue))
467       return nullptr;
468     CommonValue = V;
469   }
470 
471   return CommonValue;
472 }
473 
474 /// In the case of a comparison with a PHI instruction, try to simplify the
475 /// comparison by seeing whether comparing with all of the incoming phi values
476 /// yields the same result every time. If so returns the common result,
477 /// otherwise returns null.
478 static Value *ThreadCmpOverPHI(CmpInst::Predicate Pred, Value *LHS, Value *RHS,
479                                const SimplifyQuery &Q, unsigned MaxRecurse) {
480   // Recursion is always used, so bail out at once if we already hit the limit.
481   if (!MaxRecurse--)
482     return nullptr;
483 
484   // Make sure the phi is on the LHS.
485   if (!isa<PHINode>(LHS)) {
486     std::swap(LHS, RHS);
487     Pred = CmpInst::getSwappedPredicate(Pred);
488   }
489   assert(isa<PHINode>(LHS) && "Not comparing with a phi instruction!");
490   PHINode *PI = cast<PHINode>(LHS);
491 
492   // Bail out if RHS and the phi may be mutually interdependent due to a loop.
493   if (!ValueDominatesPHI(RHS, PI, Q.DT))
494     return nullptr;
495 
496   // Evaluate the BinOp on the incoming phi values.
497   Value *CommonValue = nullptr;
498   for (Value *Incoming : PI->incoming_values()) {
499     // If the incoming value is the phi node itself, it can safely be skipped.
500     if (Incoming == PI) continue;
501     Value *V = SimplifyCmpInst(Pred, Incoming, RHS, Q, MaxRecurse);
502     // If the operation failed to simplify, or simplified to a different value
503     // to previously, then give up.
504     if (!V || (CommonValue && V != CommonValue))
505       return nullptr;
506     CommonValue = V;
507   }
508 
509   return CommonValue;
510 }
511 
512 static Constant *foldOrCommuteConstant(Instruction::BinaryOps Opcode,
513                                        Value *&Op0, Value *&Op1,
514                                        const SimplifyQuery &Q) {
515   if (auto *CLHS = dyn_cast<Constant>(Op0)) {
516     if (auto *CRHS = dyn_cast<Constant>(Op1))
517       return ConstantFoldBinaryOpOperands(Opcode, CLHS, CRHS, Q.DL);
518 
519     // Canonicalize the constant to the RHS if this is a commutative operation.
520     if (Instruction::isCommutative(Opcode))
521       std::swap(Op0, Op1);
522   }
523   return nullptr;
524 }
525 
526 /// Given operands for an Add, see if we can fold the result.
527 /// If not, this returns null.
528 static Value *SimplifyAddInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
529                               const SimplifyQuery &Q, unsigned MaxRecurse) {
530   if (Constant *C = foldOrCommuteConstant(Instruction::Add, Op0, Op1, Q))
531     return C;
532 
533   // X + undef -> undef
534   if (match(Op1, m_Undef()))
535     return Op1;
536 
537   // X + 0 -> X
538   if (match(Op1, m_Zero()))
539     return Op0;
540 
541   // X + (Y - X) -> Y
542   // (Y - X) + X -> Y
543   // Eg: X + -X -> 0
544   Value *Y = nullptr;
545   if (match(Op1, m_Sub(m_Value(Y), m_Specific(Op0))) ||
546       match(Op0, m_Sub(m_Value(Y), m_Specific(Op1))))
547     return Y;
548 
549   // X + ~X -> -1   since   ~X = -X-1
550   Type *Ty = Op0->getType();
551   if (match(Op0, m_Not(m_Specific(Op1))) ||
552       match(Op1, m_Not(m_Specific(Op0))))
553     return Constant::getAllOnesValue(Ty);
554 
555   // add nsw/nuw (xor Y, signmask), signmask --> Y
556   // The no-wrapping add guarantees that the top bit will be set by the add.
557   // Therefore, the xor must be clearing the already set sign bit of Y.
558   if ((isNSW || isNUW) && match(Op1, m_SignMask()) &&
559       match(Op0, m_Xor(m_Value(Y), m_SignMask())))
560     return Y;
561 
562   /// i1 add -> xor.
563   if (MaxRecurse && Op0->getType()->isIntOrIntVectorTy(1))
564     if (Value *V = SimplifyXorInst(Op0, Op1, Q, MaxRecurse-1))
565       return V;
566 
567   // Try some generic simplifications for associative operations.
568   if (Value *V = SimplifyAssociativeBinOp(Instruction::Add, Op0, Op1, Q,
569                                           MaxRecurse))
570     return V;
571 
572   // Threading Add over selects and phi nodes is pointless, so don't bother.
573   // Threading over the select in "A + select(cond, B, C)" means evaluating
574   // "A+B" and "A+C" and seeing if they are equal; but they are equal if and
575   // only if B and C are equal.  If B and C are equal then (since we assume
576   // that operands have already been simplified) "select(cond, B, C)" should
577   // have been simplified to the common value of B and C already.  Analysing
578   // "A+B" and "A+C" thus gains nothing, but costs compile time.  Similarly
579   // for threading over phi nodes.
580 
581   return nullptr;
582 }
583 
584 Value *llvm::SimplifyAddInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
585                              const SimplifyQuery &Query) {
586   return ::SimplifyAddInst(Op0, Op1, isNSW, isNUW, Query, RecursionLimit);
587 }
588 
589 /// \brief Compute the base pointer and cumulative constant offsets for V.
590 ///
591 /// This strips all constant offsets off of V, leaving it the base pointer, and
592 /// accumulates the total constant offset applied in the returned constant. It
593 /// returns 0 if V is not a pointer, and returns the constant '0' if there are
594 /// no constant offsets applied.
595 ///
596 /// This is very similar to GetPointerBaseWithConstantOffset except it doesn't
597 /// follow non-inbounds geps. This allows it to remain usable for icmp ult/etc.
598 /// folding.
599 static Constant *stripAndComputeConstantOffsets(const DataLayout &DL, Value *&V,
600                                                 bool AllowNonInbounds = false) {
601   assert(V->getType()->isPtrOrPtrVectorTy());
602 
603   Type *IntPtrTy = DL.getIntPtrType(V->getType())->getScalarType();
604   APInt Offset = APInt::getNullValue(IntPtrTy->getIntegerBitWidth());
605 
606   // Even though we don't look through PHI nodes, we could be called on an
607   // instruction in an unreachable block, which may be on a cycle.
608   SmallPtrSet<Value *, 4> Visited;
609   Visited.insert(V);
610   do {
611     if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
612       if ((!AllowNonInbounds && !GEP->isInBounds()) ||
613           !GEP->accumulateConstantOffset(DL, Offset))
614         break;
615       V = GEP->getPointerOperand();
616     } else if (Operator::getOpcode(V) == Instruction::BitCast) {
617       V = cast<Operator>(V)->getOperand(0);
618     } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
619       if (GA->isInterposable())
620         break;
621       V = GA->getAliasee();
622     } else {
623       if (auto CS = CallSite(V))
624         if (Value *RV = CS.getReturnedArgOperand()) {
625           V = RV;
626           continue;
627         }
628       break;
629     }
630     assert(V->getType()->isPtrOrPtrVectorTy() && "Unexpected operand type!");
631   } while (Visited.insert(V).second);
632 
633   Constant *OffsetIntPtr = ConstantInt::get(IntPtrTy, Offset);
634   if (V->getType()->isVectorTy())
635     return ConstantVector::getSplat(V->getType()->getVectorNumElements(),
636                                     OffsetIntPtr);
637   return OffsetIntPtr;
638 }
639 
640 /// \brief Compute the constant difference between two pointer values.
641 /// If the difference is not a constant, returns zero.
642 static Constant *computePointerDifference(const DataLayout &DL, Value *LHS,
643                                           Value *RHS) {
644   Constant *LHSOffset = stripAndComputeConstantOffsets(DL, LHS);
645   Constant *RHSOffset = stripAndComputeConstantOffsets(DL, RHS);
646 
647   // If LHS and RHS are not related via constant offsets to the same base
648   // value, there is nothing we can do here.
649   if (LHS != RHS)
650     return nullptr;
651 
652   // Otherwise, the difference of LHS - RHS can be computed as:
653   //    LHS - RHS
654   //  = (LHSOffset + Base) - (RHSOffset + Base)
655   //  = LHSOffset - RHSOffset
656   return ConstantExpr::getSub(LHSOffset, RHSOffset);
657 }
658 
659 /// Given operands for a Sub, see if we can fold the result.
660 /// If not, this returns null.
661 static Value *SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
662                               const SimplifyQuery &Q, unsigned MaxRecurse) {
663   if (Constant *C = foldOrCommuteConstant(Instruction::Sub, Op0, Op1, Q))
664     return C;
665 
666   // X - undef -> undef
667   // undef - X -> undef
668   if (match(Op0, m_Undef()) || match(Op1, m_Undef()))
669     return UndefValue::get(Op0->getType());
670 
671   // X - 0 -> X
672   if (match(Op1, m_Zero()))
673     return Op0;
674 
675   // X - X -> 0
676   if (Op0 == Op1)
677     return Constant::getNullValue(Op0->getType());
678 
679   // Is this a negation?
680   if (match(Op0, m_Zero())) {
681     // 0 - X -> 0 if the sub is NUW.
682     if (isNUW)
683       return Op0;
684 
685     KnownBits Known = computeKnownBits(Op1, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
686     if (Known.Zero.isMaxSignedValue()) {
687       // Op1 is either 0 or the minimum signed value. If the sub is NSW, then
688       // Op1 must be 0 because negating the minimum signed value is undefined.
689       if (isNSW)
690         return Op0;
691 
692       // 0 - X -> X if X is 0 or the minimum signed value.
693       return Op1;
694     }
695   }
696 
697   // (X + Y) - Z -> X + (Y - Z) or Y + (X - Z) if everything simplifies.
698   // For example, (X + Y) - Y -> X; (Y + X) - Y -> X
699   Value *X = nullptr, *Y = nullptr, *Z = Op1;
700   if (MaxRecurse && match(Op0, m_Add(m_Value(X), m_Value(Y)))) { // (X + Y) - Z
701     // See if "V === Y - Z" simplifies.
702     if (Value *V = SimplifyBinOp(Instruction::Sub, Y, Z, Q, MaxRecurse-1))
703       // It does!  Now see if "X + V" simplifies.
704       if (Value *W = SimplifyBinOp(Instruction::Add, X, V, Q, MaxRecurse-1)) {
705         // It does, we successfully reassociated!
706         ++NumReassoc;
707         return W;
708       }
709     // See if "V === X - Z" simplifies.
710     if (Value *V = SimplifyBinOp(Instruction::Sub, X, Z, Q, MaxRecurse-1))
711       // It does!  Now see if "Y + V" simplifies.
712       if (Value *W = SimplifyBinOp(Instruction::Add, Y, V, Q, MaxRecurse-1)) {
713         // It does, we successfully reassociated!
714         ++NumReassoc;
715         return W;
716       }
717   }
718 
719   // X - (Y + Z) -> (X - Y) - Z or (X - Z) - Y if everything simplifies.
720   // For example, X - (X + 1) -> -1
721   X = Op0;
722   if (MaxRecurse && match(Op1, m_Add(m_Value(Y), m_Value(Z)))) { // X - (Y + Z)
723     // See if "V === X - Y" simplifies.
724     if (Value *V = SimplifyBinOp(Instruction::Sub, X, Y, Q, MaxRecurse-1))
725       // It does!  Now see if "V - Z" simplifies.
726       if (Value *W = SimplifyBinOp(Instruction::Sub, V, Z, Q, MaxRecurse-1)) {
727         // It does, we successfully reassociated!
728         ++NumReassoc;
729         return W;
730       }
731     // See if "V === X - Z" simplifies.
732     if (Value *V = SimplifyBinOp(Instruction::Sub, X, Z, Q, MaxRecurse-1))
733       // It does!  Now see if "V - Y" simplifies.
734       if (Value *W = SimplifyBinOp(Instruction::Sub, V, Y, Q, MaxRecurse-1)) {
735         // It does, we successfully reassociated!
736         ++NumReassoc;
737         return W;
738       }
739   }
740 
741   // Z - (X - Y) -> (Z - X) + Y if everything simplifies.
742   // For example, X - (X - Y) -> Y.
743   Z = Op0;
744   if (MaxRecurse && match(Op1, m_Sub(m_Value(X), m_Value(Y)))) // Z - (X - Y)
745     // See if "V === Z - X" simplifies.
746     if (Value *V = SimplifyBinOp(Instruction::Sub, Z, X, Q, MaxRecurse-1))
747       // It does!  Now see if "V + Y" simplifies.
748       if (Value *W = SimplifyBinOp(Instruction::Add, V, Y, Q, MaxRecurse-1)) {
749         // It does, we successfully reassociated!
750         ++NumReassoc;
751         return W;
752       }
753 
754   // trunc(X) - trunc(Y) -> trunc(X - Y) if everything simplifies.
755   if (MaxRecurse && match(Op0, m_Trunc(m_Value(X))) &&
756       match(Op1, m_Trunc(m_Value(Y))))
757     if (X->getType() == Y->getType())
758       // See if "V === X - Y" simplifies.
759       if (Value *V = SimplifyBinOp(Instruction::Sub, X, Y, Q, MaxRecurse-1))
760         // It does!  Now see if "trunc V" simplifies.
761         if (Value *W = SimplifyCastInst(Instruction::Trunc, V, Op0->getType(),
762                                         Q, MaxRecurse - 1))
763           // It does, return the simplified "trunc V".
764           return W;
765 
766   // Variations on GEP(base, I, ...) - GEP(base, i, ...) -> GEP(null, I-i, ...).
767   if (match(Op0, m_PtrToInt(m_Value(X))) &&
768       match(Op1, m_PtrToInt(m_Value(Y))))
769     if (Constant *Result = computePointerDifference(Q.DL, X, Y))
770       return ConstantExpr::getIntegerCast(Result, Op0->getType(), true);
771 
772   // i1 sub -> xor.
773   if (MaxRecurse && Op0->getType()->isIntOrIntVectorTy(1))
774     if (Value *V = SimplifyXorInst(Op0, Op1, Q, MaxRecurse-1))
775       return V;
776 
777   // Threading Sub over selects and phi nodes is pointless, so don't bother.
778   // Threading over the select in "A - select(cond, B, C)" means evaluating
779   // "A-B" and "A-C" and seeing if they are equal; but they are equal if and
780   // only if B and C are equal.  If B and C are equal then (since we assume
781   // that operands have already been simplified) "select(cond, B, C)" should
782   // have been simplified to the common value of B and C already.  Analysing
783   // "A-B" and "A-C" thus gains nothing, but costs compile time.  Similarly
784   // for threading over phi nodes.
785 
786   return nullptr;
787 }
788 
789 Value *llvm::SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
790                              const SimplifyQuery &Q) {
791   return ::SimplifySubInst(Op0, Op1, isNSW, isNUW, Q, RecursionLimit);
792 }
793 
794 /// Given operands for a Mul, see if we can fold the result.
795 /// If not, this returns null.
796 static Value *SimplifyMulInst(Value *Op0, Value *Op1, const SimplifyQuery &Q,
797                               unsigned MaxRecurse) {
798   if (Constant *C = foldOrCommuteConstant(Instruction::Mul, Op0, Op1, Q))
799     return C;
800 
801   // X * undef -> 0
802   if (match(Op1, m_Undef()))
803     return Constant::getNullValue(Op0->getType());
804 
805   // X * 0 -> 0
806   if (match(Op1, m_Zero()))
807     return Op1;
808 
809   // X * 1 -> X
810   if (match(Op1, m_One()))
811     return Op0;
812 
813   // (X / Y) * Y -> X if the division is exact.
814   Value *X = nullptr;
815   if (match(Op0, m_Exact(m_IDiv(m_Value(X), m_Specific(Op1)))) || // (X / Y) * Y
816       match(Op1, m_Exact(m_IDiv(m_Value(X), m_Specific(Op0)))))   // Y * (X / Y)
817     return X;
818 
819   // i1 mul -> and.
820   if (MaxRecurse && Op0->getType()->isIntOrIntVectorTy(1))
821     if (Value *V = SimplifyAndInst(Op0, Op1, Q, MaxRecurse-1))
822       return V;
823 
824   // Try some generic simplifications for associative operations.
825   if (Value *V = SimplifyAssociativeBinOp(Instruction::Mul, Op0, Op1, Q,
826                                           MaxRecurse))
827     return V;
828 
829   // Mul distributes over Add. Try some generic simplifications based on this.
830   if (Value *V = ExpandBinOp(Instruction::Mul, Op0, Op1, Instruction::Add,
831                              Q, MaxRecurse))
832     return V;
833 
834   // If the operation is with the result of a select instruction, check whether
835   // operating on either branch of the select always yields the same value.
836   if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
837     if (Value *V = ThreadBinOpOverSelect(Instruction::Mul, Op0, Op1, Q,
838                                          MaxRecurse))
839       return V;
840 
841   // If the operation is with the result of a phi instruction, check whether
842   // operating on all incoming values of the phi always yields the same value.
843   if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
844     if (Value *V = ThreadBinOpOverPHI(Instruction::Mul, Op0, Op1, Q,
845                                       MaxRecurse))
846       return V;
847 
848   return nullptr;
849 }
850 
851 Value *llvm::SimplifyMulInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) {
852   return ::SimplifyMulInst(Op0, Op1, Q, RecursionLimit);
853 }
854 
855 /// Check for common or similar folds of integer division or integer remainder.
856 /// This applies to all 4 opcodes (sdiv/udiv/srem/urem).
857 static Value *simplifyDivRem(Value *Op0, Value *Op1, bool IsDiv) {
858   Type *Ty = Op0->getType();
859 
860   // X / undef -> undef
861   // X % undef -> undef
862   if (match(Op1, m_Undef()))
863     return Op1;
864 
865   // X / 0 -> undef
866   // X % 0 -> undef
867   // We don't need to preserve faults!
868   if (match(Op1, m_Zero()))
869     return UndefValue::get(Ty);
870 
871   // If any element of a constant divisor vector is zero, the whole op is undef.
872   auto *Op1C = dyn_cast<Constant>(Op1);
873   if (Op1C && Ty->isVectorTy()) {
874     unsigned NumElts = Ty->getVectorNumElements();
875     for (unsigned i = 0; i != NumElts; ++i) {
876       Constant *Elt = Op1C->getAggregateElement(i);
877       if (Elt && Elt->isNullValue())
878         return UndefValue::get(Ty);
879     }
880   }
881 
882   // undef / X -> 0
883   // undef % X -> 0
884   if (match(Op0, m_Undef()))
885     return Constant::getNullValue(Ty);
886 
887   // 0 / X -> 0
888   // 0 % X -> 0
889   if (match(Op0, m_Zero()))
890     return Op0;
891 
892   // X / X -> 1
893   // X % X -> 0
894   if (Op0 == Op1)
895     return IsDiv ? ConstantInt::get(Ty, 1) : Constant::getNullValue(Ty);
896 
897   // X / 1 -> X
898   // X % 1 -> 0
899   // If this is a boolean op (single-bit element type), we can't have
900   // division-by-zero or remainder-by-zero, so assume the divisor is 1.
901   if (match(Op1, m_One()) || Ty->isIntOrIntVectorTy(1))
902     return IsDiv ? Op0 : Constant::getNullValue(Ty);
903 
904   return nullptr;
905 }
906 
907 /// Given a predicate and two operands, return true if the comparison is true.
908 /// This is a helper for div/rem simplification where we return some other value
909 /// when we can prove a relationship between the operands.
910 static bool isICmpTrue(ICmpInst::Predicate Pred, Value *LHS, Value *RHS,
911                        const SimplifyQuery &Q, unsigned MaxRecurse) {
912   Value *V = SimplifyICmpInst(Pred, LHS, RHS, Q, MaxRecurse);
913   Constant *C = dyn_cast_or_null<Constant>(V);
914   return (C && C->isAllOnesValue());
915 }
916 
917 /// Return true if we can simplify X / Y to 0. Remainder can adapt that answer
918 /// to simplify X % Y to X.
919 static bool isDivZero(Value *X, Value *Y, const SimplifyQuery &Q,
920                       unsigned MaxRecurse, bool IsSigned) {
921   // Recursion is always used, so bail out at once if we already hit the limit.
922   if (!MaxRecurse--)
923     return false;
924 
925   if (IsSigned) {
926     // |X| / |Y| --> 0
927     //
928     // We require that 1 operand is a simple constant. That could be extended to
929     // 2 variables if we computed the sign bit for each.
930     //
931     // Make sure that a constant is not the minimum signed value because taking
932     // the abs() of that is undefined.
933     Type *Ty = X->getType();
934     const APInt *C;
935     if (match(X, m_APInt(C)) && !C->isMinSignedValue()) {
936       // Is the variable divisor magnitude always greater than the constant
937       // dividend magnitude?
938       // |Y| > |C| --> Y < -abs(C) or Y > abs(C)
939       Constant *PosDividendC = ConstantInt::get(Ty, C->abs());
940       Constant *NegDividendC = ConstantInt::get(Ty, -C->abs());
941       if (isICmpTrue(CmpInst::ICMP_SLT, Y, NegDividendC, Q, MaxRecurse) ||
942           isICmpTrue(CmpInst::ICMP_SGT, Y, PosDividendC, Q, MaxRecurse))
943         return true;
944     }
945     if (match(Y, m_APInt(C))) {
946       // Special-case: we can't take the abs() of a minimum signed value. If
947       // that's the divisor, then all we have to do is prove that the dividend
948       // is also not the minimum signed value.
949       if (C->isMinSignedValue())
950         return isICmpTrue(CmpInst::ICMP_NE, X, Y, Q, MaxRecurse);
951 
952       // Is the variable dividend magnitude always less than the constant
953       // divisor magnitude?
954       // |X| < |C| --> X > -abs(C) and X < abs(C)
955       Constant *PosDivisorC = ConstantInt::get(Ty, C->abs());
956       Constant *NegDivisorC = ConstantInt::get(Ty, -C->abs());
957       if (isICmpTrue(CmpInst::ICMP_SGT, X, NegDivisorC, Q, MaxRecurse) &&
958           isICmpTrue(CmpInst::ICMP_SLT, X, PosDivisorC, Q, MaxRecurse))
959         return true;
960     }
961     return false;
962   }
963 
964   // IsSigned == false.
965   // Is the dividend unsigned less than the divisor?
966   return isICmpTrue(ICmpInst::ICMP_ULT, X, Y, Q, MaxRecurse);
967 }
968 
969 /// These are simplifications common to SDiv and UDiv.
970 static Value *simplifyDiv(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1,
971                           const SimplifyQuery &Q, unsigned MaxRecurse) {
972   if (Constant *C = foldOrCommuteConstant(Opcode, Op0, Op1, Q))
973     return C;
974 
975   if (Value *V = simplifyDivRem(Op0, Op1, true))
976     return V;
977 
978   bool IsSigned = Opcode == Instruction::SDiv;
979 
980   // (X * Y) / Y -> X if the multiplication does not overflow.
981   Value *X = nullptr, *Y = nullptr;
982   if (match(Op0, m_Mul(m_Value(X), m_Value(Y))) && (X == Op1 || Y == Op1)) {
983     if (Y != Op1) std::swap(X, Y); // Ensure expression is (X * Y) / Y, Y = Op1
984     OverflowingBinaryOperator *Mul = cast<OverflowingBinaryOperator>(Op0);
985     // If the Mul knows it does not overflow, then we are good to go.
986     if ((IsSigned && Mul->hasNoSignedWrap()) ||
987         (!IsSigned && Mul->hasNoUnsignedWrap()))
988       return X;
989     // If X has the form X = A / Y then X * Y cannot overflow.
990     if (BinaryOperator *Div = dyn_cast<BinaryOperator>(X))
991       if (Div->getOpcode() == Opcode && Div->getOperand(1) == Y)
992         return X;
993   }
994 
995   // (X rem Y) / Y -> 0
996   if ((IsSigned && match(Op0, m_SRem(m_Value(), m_Specific(Op1)))) ||
997       (!IsSigned && match(Op0, m_URem(m_Value(), m_Specific(Op1)))))
998     return Constant::getNullValue(Op0->getType());
999 
1000   // (X /u C1) /u C2 -> 0 if C1 * C2 overflow
1001   ConstantInt *C1, *C2;
1002   if (!IsSigned && match(Op0, m_UDiv(m_Value(X), m_ConstantInt(C1))) &&
1003       match(Op1, m_ConstantInt(C2))) {
1004     bool Overflow;
1005     (void)C1->getValue().umul_ov(C2->getValue(), Overflow);
1006     if (Overflow)
1007       return Constant::getNullValue(Op0->getType());
1008   }
1009 
1010   // If the operation is with the result of a select instruction, check whether
1011   // operating on either branch of the select always yields the same value.
1012   if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
1013     if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse))
1014       return V;
1015 
1016   // If the operation is with the result of a phi instruction, check whether
1017   // operating on all incoming values of the phi always yields the same value.
1018   if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
1019     if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse))
1020       return V;
1021 
1022   if (isDivZero(Op0, Op1, Q, MaxRecurse, IsSigned))
1023     return Constant::getNullValue(Op0->getType());
1024 
1025   return nullptr;
1026 }
1027 
1028 /// These are simplifications common to SRem and URem.
1029 static Value *simplifyRem(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1,
1030                           const SimplifyQuery &Q, unsigned MaxRecurse) {
1031   if (Constant *C = foldOrCommuteConstant(Opcode, Op0, Op1, Q))
1032     return C;
1033 
1034   if (Value *V = simplifyDivRem(Op0, Op1, false))
1035     return V;
1036 
1037   // (X % Y) % Y -> X % Y
1038   if ((Opcode == Instruction::SRem &&
1039        match(Op0, m_SRem(m_Value(), m_Specific(Op1)))) ||
1040       (Opcode == Instruction::URem &&
1041        match(Op0, m_URem(m_Value(), m_Specific(Op1)))))
1042     return Op0;
1043 
1044   // If the operation is with the result of a select instruction, check whether
1045   // operating on either branch of the select always yields the same value.
1046   if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
1047     if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse))
1048       return V;
1049 
1050   // If the operation is with the result of a phi instruction, check whether
1051   // operating on all incoming values of the phi always yields the same value.
1052   if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
1053     if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse))
1054       return V;
1055 
1056   // If X / Y == 0, then X % Y == X.
1057   if (isDivZero(Op0, Op1, Q, MaxRecurse, Opcode == Instruction::SRem))
1058     return Op0;
1059 
1060   return nullptr;
1061 }
1062 
1063 /// Given operands for an SDiv, see if we can fold the result.
1064 /// If not, this returns null.
1065 static Value *SimplifySDivInst(Value *Op0, Value *Op1, const SimplifyQuery &Q,
1066                                unsigned MaxRecurse) {
1067   return simplifyDiv(Instruction::SDiv, Op0, Op1, Q, MaxRecurse);
1068 }
1069 
1070 Value *llvm::SimplifySDivInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) {
1071   return ::SimplifySDivInst(Op0, Op1, Q, RecursionLimit);
1072 }
1073 
1074 /// Given operands for a UDiv, see if we can fold the result.
1075 /// If not, this returns null.
1076 static Value *SimplifyUDivInst(Value *Op0, Value *Op1, const SimplifyQuery &Q,
1077                                unsigned MaxRecurse) {
1078   return simplifyDiv(Instruction::UDiv, Op0, Op1, Q, MaxRecurse);
1079 }
1080 
1081 Value *llvm::SimplifyUDivInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) {
1082   return ::SimplifyUDivInst(Op0, Op1, Q, RecursionLimit);
1083 }
1084 
1085 /// Given operands for an SRem, see if we can fold the result.
1086 /// If not, this returns null.
1087 static Value *SimplifySRemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q,
1088                                unsigned MaxRecurse) {
1089   return simplifyRem(Instruction::SRem, Op0, Op1, Q, MaxRecurse);
1090 }
1091 
1092 Value *llvm::SimplifySRemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) {
1093   return ::SimplifySRemInst(Op0, Op1, Q, RecursionLimit);
1094 }
1095 
1096 /// Given operands for a URem, see if we can fold the result.
1097 /// If not, this returns null.
1098 static Value *SimplifyURemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q,
1099                                unsigned MaxRecurse) {
1100   return simplifyRem(Instruction::URem, Op0, Op1, Q, MaxRecurse);
1101 }
1102 
1103 Value *llvm::SimplifyURemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) {
1104   return ::SimplifyURemInst(Op0, Op1, Q, RecursionLimit);
1105 }
1106 
1107 /// Returns true if a shift by \c Amount always yields undef.
1108 static bool isUndefShift(Value *Amount) {
1109   Constant *C = dyn_cast<Constant>(Amount);
1110   if (!C)
1111     return false;
1112 
1113   // X shift by undef -> undef because it may shift by the bitwidth.
1114   if (isa<UndefValue>(C))
1115     return true;
1116 
1117   // Shifting by the bitwidth or more is undefined.
1118   if (ConstantInt *CI = dyn_cast<ConstantInt>(C))
1119     if (CI->getValue().getLimitedValue() >=
1120         CI->getType()->getScalarSizeInBits())
1121       return true;
1122 
1123   // If all lanes of a vector shift are undefined the whole shift is.
1124   if (isa<ConstantVector>(C) || isa<ConstantDataVector>(C)) {
1125     for (unsigned I = 0, E = C->getType()->getVectorNumElements(); I != E; ++I)
1126       if (!isUndefShift(C->getAggregateElement(I)))
1127         return false;
1128     return true;
1129   }
1130 
1131   return false;
1132 }
1133 
1134 /// Given operands for an Shl, LShr or AShr, see if we can fold the result.
1135 /// If not, this returns null.
1136 static Value *SimplifyShift(Instruction::BinaryOps Opcode, Value *Op0,
1137                             Value *Op1, const SimplifyQuery &Q, unsigned MaxRecurse) {
1138   if (Constant *C = foldOrCommuteConstant(Opcode, Op0, Op1, Q))
1139     return C;
1140 
1141   // 0 shift by X -> 0
1142   if (match(Op0, m_Zero()))
1143     return Op0;
1144 
1145   // X shift by 0 -> X
1146   if (match(Op1, m_Zero()))
1147     return Op0;
1148 
1149   // Fold undefined shifts.
1150   if (isUndefShift(Op1))
1151     return UndefValue::get(Op0->getType());
1152 
1153   // If the operation is with the result of a select instruction, check whether
1154   // operating on either branch of the select always yields the same value.
1155   if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
1156     if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse))
1157       return V;
1158 
1159   // If the operation is with the result of a phi instruction, check whether
1160   // operating on all incoming values of the phi always yields the same value.
1161   if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
1162     if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse))
1163       return V;
1164 
1165   // If any bits in the shift amount make that value greater than or equal to
1166   // the number of bits in the type, the shift is undefined.
1167   KnownBits Known = computeKnownBits(Op1, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
1168   if (Known.One.getLimitedValue() >= Known.getBitWidth())
1169     return UndefValue::get(Op0->getType());
1170 
1171   // If all valid bits in the shift amount are known zero, the first operand is
1172   // unchanged.
1173   unsigned NumValidShiftBits = Log2_32_Ceil(Known.getBitWidth());
1174   if (Known.countMinTrailingZeros() >= NumValidShiftBits)
1175     return Op0;
1176 
1177   return nullptr;
1178 }
1179 
1180 /// \brief Given operands for an Shl, LShr or AShr, see if we can
1181 /// fold the result.  If not, this returns null.
1182 static Value *SimplifyRightShift(Instruction::BinaryOps Opcode, Value *Op0,
1183                                  Value *Op1, bool isExact, const SimplifyQuery &Q,
1184                                  unsigned MaxRecurse) {
1185   if (Value *V = SimplifyShift(Opcode, Op0, Op1, Q, MaxRecurse))
1186     return V;
1187 
1188   // X >> X -> 0
1189   if (Op0 == Op1)
1190     return Constant::getNullValue(Op0->getType());
1191 
1192   // undef >> X -> 0
1193   // undef >> X -> undef (if it's exact)
1194   if (match(Op0, m_Undef()))
1195     return isExact ? Op0 : Constant::getNullValue(Op0->getType());
1196 
1197   // The low bit cannot be shifted out of an exact shift if it is set.
1198   if (isExact) {
1199     KnownBits Op0Known = computeKnownBits(Op0, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT);
1200     if (Op0Known.One[0])
1201       return Op0;
1202   }
1203 
1204   return nullptr;
1205 }
1206 
1207 /// Given operands for an Shl, see if we can fold the result.
1208 /// If not, this returns null.
1209 static Value *SimplifyShlInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
1210                               const SimplifyQuery &Q, unsigned MaxRecurse) {
1211   if (Value *V = SimplifyShift(Instruction::Shl, Op0, Op1, Q, MaxRecurse))
1212     return V;
1213 
1214   // undef << X -> 0
1215   // undef << X -> undef if (if it's NSW/NUW)
1216   if (match(Op0, m_Undef()))
1217     return isNSW || isNUW ? Op0 : Constant::getNullValue(Op0->getType());
1218 
1219   // (X >> A) << A -> X
1220   Value *X;
1221   if (match(Op0, m_Exact(m_Shr(m_Value(X), m_Specific(Op1)))))
1222     return X;
1223   return nullptr;
1224 }
1225 
1226 Value *llvm::SimplifyShlInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
1227                              const SimplifyQuery &Q) {
1228   return ::SimplifyShlInst(Op0, Op1, isNSW, isNUW, Q, RecursionLimit);
1229 }
1230 
1231 /// Given operands for an LShr, see if we can fold the result.
1232 /// If not, this returns null.
1233 static Value *SimplifyLShrInst(Value *Op0, Value *Op1, bool isExact,
1234                                const SimplifyQuery &Q, unsigned MaxRecurse) {
1235   if (Value *V = SimplifyRightShift(Instruction::LShr, Op0, Op1, isExact, Q,
1236                                     MaxRecurse))
1237       return V;
1238 
1239   // (X << A) >> A -> X
1240   Value *X;
1241   if (match(Op0, m_NUWShl(m_Value(X), m_Specific(Op1))))
1242     return X;
1243 
1244   return nullptr;
1245 }
1246 
1247 Value *llvm::SimplifyLShrInst(Value *Op0, Value *Op1, bool isExact,
1248                               const SimplifyQuery &Q) {
1249   return ::SimplifyLShrInst(Op0, Op1, isExact, Q, RecursionLimit);
1250 }
1251 
1252 /// Given operands for an AShr, see if we can fold the result.
1253 /// If not, this returns null.
1254 static Value *SimplifyAShrInst(Value *Op0, Value *Op1, bool isExact,
1255                                const SimplifyQuery &Q, unsigned MaxRecurse) {
1256   if (Value *V = SimplifyRightShift(Instruction::AShr, Op0, Op1, isExact, Q,
1257                                     MaxRecurse))
1258     return V;
1259 
1260   // all ones >>a X -> all ones
1261   if (match(Op0, m_AllOnes()))
1262     return Op0;
1263 
1264   // (X << A) >> A -> X
1265   Value *X;
1266   if (match(Op0, m_NSWShl(m_Value(X), m_Specific(Op1))))
1267     return X;
1268 
1269   // Arithmetic shifting an all-sign-bit value is a no-op.
1270   unsigned NumSignBits = ComputeNumSignBits(Op0, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
1271   if (NumSignBits == Op0->getType()->getScalarSizeInBits())
1272     return Op0;
1273 
1274   return nullptr;
1275 }
1276 
1277 Value *llvm::SimplifyAShrInst(Value *Op0, Value *Op1, bool isExact,
1278                               const SimplifyQuery &Q) {
1279   return ::SimplifyAShrInst(Op0, Op1, isExact, Q, RecursionLimit);
1280 }
1281 
1282 /// Commuted variants are assumed to be handled by calling this function again
1283 /// with the parameters swapped.
1284 static Value *simplifyUnsignedRangeCheck(ICmpInst *ZeroICmp,
1285                                          ICmpInst *UnsignedICmp, bool IsAnd) {
1286   Value *X, *Y;
1287 
1288   ICmpInst::Predicate EqPred;
1289   if (!match(ZeroICmp, m_ICmp(EqPred, m_Value(Y), m_Zero())) ||
1290       !ICmpInst::isEquality(EqPred))
1291     return nullptr;
1292 
1293   ICmpInst::Predicate UnsignedPred;
1294   if (match(UnsignedICmp, m_ICmp(UnsignedPred, m_Value(X), m_Specific(Y))) &&
1295       ICmpInst::isUnsigned(UnsignedPred))
1296     ;
1297   else if (match(UnsignedICmp,
1298                  m_ICmp(UnsignedPred, m_Value(Y), m_Specific(X))) &&
1299            ICmpInst::isUnsigned(UnsignedPred))
1300     UnsignedPred = ICmpInst::getSwappedPredicate(UnsignedPred);
1301   else
1302     return nullptr;
1303 
1304   // X < Y && Y != 0  -->  X < Y
1305   // X < Y || Y != 0  -->  Y != 0
1306   if (UnsignedPred == ICmpInst::ICMP_ULT && EqPred == ICmpInst::ICMP_NE)
1307     return IsAnd ? UnsignedICmp : ZeroICmp;
1308 
1309   // X >= Y || Y != 0  -->  true
1310   // X >= Y || Y == 0  -->  X >= Y
1311   if (UnsignedPred == ICmpInst::ICMP_UGE && !IsAnd) {
1312     if (EqPred == ICmpInst::ICMP_NE)
1313       return getTrue(UnsignedICmp->getType());
1314     return UnsignedICmp;
1315   }
1316 
1317   // X < Y && Y == 0  -->  false
1318   if (UnsignedPred == ICmpInst::ICMP_ULT && EqPred == ICmpInst::ICMP_EQ &&
1319       IsAnd)
1320     return getFalse(UnsignedICmp->getType());
1321 
1322   return nullptr;
1323 }
1324 
1325 /// Commuted variants are assumed to be handled by calling this function again
1326 /// with the parameters swapped.
1327 static Value *simplifyAndOfICmpsWithSameOperands(ICmpInst *Op0, ICmpInst *Op1) {
1328   ICmpInst::Predicate Pred0, Pred1;
1329   Value *A ,*B;
1330   if (!match(Op0, m_ICmp(Pred0, m_Value(A), m_Value(B))) ||
1331       !match(Op1, m_ICmp(Pred1, m_Specific(A), m_Specific(B))))
1332     return nullptr;
1333 
1334   // We have (icmp Pred0, A, B) & (icmp Pred1, A, B).
1335   // If Op1 is always implied true by Op0, then Op0 is a subset of Op1, and we
1336   // can eliminate Op1 from this 'and'.
1337   if (ICmpInst::isImpliedTrueByMatchingCmp(Pred0, Pred1))
1338     return Op0;
1339 
1340   // Check for any combination of predicates that are guaranteed to be disjoint.
1341   if ((Pred0 == ICmpInst::getInversePredicate(Pred1)) ||
1342       (Pred0 == ICmpInst::ICMP_EQ && ICmpInst::isFalseWhenEqual(Pred1)) ||
1343       (Pred0 == ICmpInst::ICMP_SLT && Pred1 == ICmpInst::ICMP_SGT) ||
1344       (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_UGT))
1345     return getFalse(Op0->getType());
1346 
1347   return nullptr;
1348 }
1349 
1350 /// Commuted variants are assumed to be handled by calling this function again
1351 /// with the parameters swapped.
1352 static Value *simplifyOrOfICmpsWithSameOperands(ICmpInst *Op0, ICmpInst *Op1) {
1353   ICmpInst::Predicate Pred0, Pred1;
1354   Value *A ,*B;
1355   if (!match(Op0, m_ICmp(Pred0, m_Value(A), m_Value(B))) ||
1356       !match(Op1, m_ICmp(Pred1, m_Specific(A), m_Specific(B))))
1357     return nullptr;
1358 
1359   // We have (icmp Pred0, A, B) | (icmp Pred1, A, B).
1360   // If Op1 is always implied true by Op0, then Op0 is a subset of Op1, and we
1361   // can eliminate Op0 from this 'or'.
1362   if (ICmpInst::isImpliedTrueByMatchingCmp(Pred0, Pred1))
1363     return Op1;
1364 
1365   // Check for any combination of predicates that cover the entire range of
1366   // possibilities.
1367   if ((Pred0 == ICmpInst::getInversePredicate(Pred1)) ||
1368       (Pred0 == ICmpInst::ICMP_NE && ICmpInst::isTrueWhenEqual(Pred1)) ||
1369       (Pred0 == ICmpInst::ICMP_SLE && Pred1 == ICmpInst::ICMP_SGE) ||
1370       (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_UGE))
1371     return getTrue(Op0->getType());
1372 
1373   return nullptr;
1374 }
1375 
1376 /// Test if a pair of compares with a shared operand and 2 constants has an
1377 /// empty set intersection, full set union, or if one compare is a superset of
1378 /// the other.
1379 static Value *simplifyAndOrOfICmpsWithConstants(ICmpInst *Cmp0, ICmpInst *Cmp1,
1380                                                 bool IsAnd) {
1381   // Look for this pattern: {and/or} (icmp X, C0), (icmp X, C1)).
1382   if (Cmp0->getOperand(0) != Cmp1->getOperand(0))
1383     return nullptr;
1384 
1385   const APInt *C0, *C1;
1386   if (!match(Cmp0->getOperand(1), m_APInt(C0)) ||
1387       !match(Cmp1->getOperand(1), m_APInt(C1)))
1388     return nullptr;
1389 
1390   auto Range0 = ConstantRange::makeExactICmpRegion(Cmp0->getPredicate(), *C0);
1391   auto Range1 = ConstantRange::makeExactICmpRegion(Cmp1->getPredicate(), *C1);
1392 
1393   // For and-of-compares, check if the intersection is empty:
1394   // (icmp X, C0) && (icmp X, C1) --> empty set --> false
1395   if (IsAnd && Range0.intersectWith(Range1).isEmptySet())
1396     return getFalse(Cmp0->getType());
1397 
1398   // For or-of-compares, check if the union is full:
1399   // (icmp X, C0) || (icmp X, C1) --> full set --> true
1400   if (!IsAnd && Range0.unionWith(Range1).isFullSet())
1401     return getTrue(Cmp0->getType());
1402 
1403   // Is one range a superset of the other?
1404   // If this is and-of-compares, take the smaller set:
1405   // (icmp sgt X, 4) && (icmp sgt X, 42) --> icmp sgt X, 42
1406   // If this is or-of-compares, take the larger set:
1407   // (icmp sgt X, 4) || (icmp sgt X, 42) --> icmp sgt X, 4
1408   if (Range0.contains(Range1))
1409     return IsAnd ? Cmp1 : Cmp0;
1410   if (Range1.contains(Range0))
1411     return IsAnd ? Cmp0 : Cmp1;
1412 
1413   return nullptr;
1414 }
1415 
1416 static Value *simplifyAndOrOfICmpsWithZero(ICmpInst *Cmp0, ICmpInst *Cmp1,
1417                                            bool IsAnd) {
1418   ICmpInst::Predicate P0 = Cmp0->getPredicate(), P1 = Cmp1->getPredicate();
1419   if (!match(Cmp0->getOperand(1), m_Zero()) ||
1420       !match(Cmp1->getOperand(1), m_Zero()) || P0 != P1)
1421     return nullptr;
1422 
1423   if ((IsAnd && P0 != ICmpInst::ICMP_NE) || (!IsAnd && P1 != ICmpInst::ICMP_EQ))
1424     return nullptr;
1425 
1426   // We have either "(X == 0 || Y == 0)" or "(X != 0 && Y != 0)".
1427   Value *X = Cmp0->getOperand(0);
1428   Value *Y = Cmp1->getOperand(0);
1429 
1430   // If one of the compares is a masked version of a (not) null check, then
1431   // that compare implies the other, so we eliminate the other. Optionally, look
1432   // through a pointer-to-int cast to match a null check of a pointer type.
1433 
1434   // (X == 0) || (([ptrtoint] X & ?) == 0) --> ([ptrtoint] X & ?) == 0
1435   // (X == 0) || ((? & [ptrtoint] X) == 0) --> (? & [ptrtoint] X) == 0
1436   // (X != 0) && (([ptrtoint] X & ?) != 0) --> ([ptrtoint] X & ?) != 0
1437   // (X != 0) && ((? & [ptrtoint] X) != 0) --> (? & [ptrtoint] X) != 0
1438   if (match(Y, m_c_And(m_Specific(X), m_Value())) ||
1439       match(Y, m_c_And(m_PtrToInt(m_Specific(X)), m_Value())))
1440     return Cmp1;
1441 
1442   // (([ptrtoint] Y & ?) == 0) || (Y == 0) --> ([ptrtoint] Y & ?) == 0
1443   // ((? & [ptrtoint] Y) == 0) || (Y == 0) --> (? & [ptrtoint] Y) == 0
1444   // (([ptrtoint] Y & ?) != 0) && (Y != 0) --> ([ptrtoint] Y & ?) != 0
1445   // ((? & [ptrtoint] Y) != 0) && (Y != 0) --> (? & [ptrtoint] Y) != 0
1446   if (match(X, m_c_And(m_Specific(Y), m_Value())) ||
1447       match(X, m_c_And(m_PtrToInt(m_Specific(Y)), m_Value())))
1448     return Cmp0;
1449 
1450   return nullptr;
1451 }
1452 
1453 static Value *simplifyAndOfICmpsWithAdd(ICmpInst *Op0, ICmpInst *Op1) {
1454   // (icmp (add V, C0), C1) & (icmp V, C0)
1455   ICmpInst::Predicate Pred0, Pred1;
1456   const APInt *C0, *C1;
1457   Value *V;
1458   if (!match(Op0, m_ICmp(Pred0, m_Add(m_Value(V), m_APInt(C0)), m_APInt(C1))))
1459     return nullptr;
1460 
1461   if (!match(Op1, m_ICmp(Pred1, m_Specific(V), m_Value())))
1462     return nullptr;
1463 
1464   auto *AddInst = cast<BinaryOperator>(Op0->getOperand(0));
1465   if (AddInst->getOperand(1) != Op1->getOperand(1))
1466     return nullptr;
1467 
1468   Type *ITy = Op0->getType();
1469   bool isNSW = AddInst->hasNoSignedWrap();
1470   bool isNUW = AddInst->hasNoUnsignedWrap();
1471 
1472   const APInt Delta = *C1 - *C0;
1473   if (C0->isStrictlyPositive()) {
1474     if (Delta == 2) {
1475       if (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_SGT)
1476         return getFalse(ITy);
1477       if (Pred0 == ICmpInst::ICMP_SLT && Pred1 == ICmpInst::ICMP_SGT && isNSW)
1478         return getFalse(ITy);
1479     }
1480     if (Delta == 1) {
1481       if (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_SGT)
1482         return getFalse(ITy);
1483       if (Pred0 == ICmpInst::ICMP_SLE && Pred1 == ICmpInst::ICMP_SGT && isNSW)
1484         return getFalse(ITy);
1485     }
1486   }
1487   if (C0->getBoolValue() && isNUW) {
1488     if (Delta == 2)
1489       if (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_UGT)
1490         return getFalse(ITy);
1491     if (Delta == 1)
1492       if (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_UGT)
1493         return getFalse(ITy);
1494   }
1495 
1496   return nullptr;
1497 }
1498 
1499 static Value *simplifyAndOfICmps(ICmpInst *Op0, ICmpInst *Op1) {
1500   if (Value *X = simplifyUnsignedRangeCheck(Op0, Op1, /*IsAnd=*/true))
1501     return X;
1502   if (Value *X = simplifyUnsignedRangeCheck(Op1, Op0, /*IsAnd=*/true))
1503     return X;
1504 
1505   if (Value *X = simplifyAndOfICmpsWithSameOperands(Op0, Op1))
1506     return X;
1507   if (Value *X = simplifyAndOfICmpsWithSameOperands(Op1, Op0))
1508     return X;
1509 
1510   if (Value *X = simplifyAndOrOfICmpsWithConstants(Op0, Op1, true))
1511     return X;
1512 
1513   if (Value *X = simplifyAndOrOfICmpsWithZero(Op0, Op1, true))
1514     return X;
1515 
1516   if (Value *X = simplifyAndOfICmpsWithAdd(Op0, Op1))
1517     return X;
1518   if (Value *X = simplifyAndOfICmpsWithAdd(Op1, Op0))
1519     return X;
1520 
1521   return nullptr;
1522 }
1523 
1524 static Value *simplifyOrOfICmpsWithAdd(ICmpInst *Op0, ICmpInst *Op1) {
1525   // (icmp (add V, C0), C1) | (icmp V, C0)
1526   ICmpInst::Predicate Pred0, Pred1;
1527   const APInt *C0, *C1;
1528   Value *V;
1529   if (!match(Op0, m_ICmp(Pred0, m_Add(m_Value(V), m_APInt(C0)), m_APInt(C1))))
1530     return nullptr;
1531 
1532   if (!match(Op1, m_ICmp(Pred1, m_Specific(V), m_Value())))
1533     return nullptr;
1534 
1535   auto *AddInst = cast<BinaryOperator>(Op0->getOperand(0));
1536   if (AddInst->getOperand(1) != Op1->getOperand(1))
1537     return nullptr;
1538 
1539   Type *ITy = Op0->getType();
1540   bool isNSW = AddInst->hasNoSignedWrap();
1541   bool isNUW = AddInst->hasNoUnsignedWrap();
1542 
1543   const APInt Delta = *C1 - *C0;
1544   if (C0->isStrictlyPositive()) {
1545     if (Delta == 2) {
1546       if (Pred0 == ICmpInst::ICMP_UGE && Pred1 == ICmpInst::ICMP_SLE)
1547         return getTrue(ITy);
1548       if (Pred0 == ICmpInst::ICMP_SGE && Pred1 == ICmpInst::ICMP_SLE && isNSW)
1549         return getTrue(ITy);
1550     }
1551     if (Delta == 1) {
1552       if (Pred0 == ICmpInst::ICMP_UGT && Pred1 == ICmpInst::ICMP_SLE)
1553         return getTrue(ITy);
1554       if (Pred0 == ICmpInst::ICMP_SGT && Pred1 == ICmpInst::ICMP_SLE && isNSW)
1555         return getTrue(ITy);
1556     }
1557   }
1558   if (C0->getBoolValue() && isNUW) {
1559     if (Delta == 2)
1560       if (Pred0 == ICmpInst::ICMP_UGE && Pred1 == ICmpInst::ICMP_ULE)
1561         return getTrue(ITy);
1562     if (Delta == 1)
1563       if (Pred0 == ICmpInst::ICMP_UGT && Pred1 == ICmpInst::ICMP_ULE)
1564         return getTrue(ITy);
1565   }
1566 
1567   return nullptr;
1568 }
1569 
1570 static Value *simplifyOrOfICmps(ICmpInst *Op0, ICmpInst *Op1) {
1571   if (Value *X = simplifyUnsignedRangeCheck(Op0, Op1, /*IsAnd=*/false))
1572     return X;
1573   if (Value *X = simplifyUnsignedRangeCheck(Op1, Op0, /*IsAnd=*/false))
1574     return X;
1575 
1576   if (Value *X = simplifyOrOfICmpsWithSameOperands(Op0, Op1))
1577     return X;
1578   if (Value *X = simplifyOrOfICmpsWithSameOperands(Op1, Op0))
1579     return X;
1580 
1581   if (Value *X = simplifyAndOrOfICmpsWithConstants(Op0, Op1, false))
1582     return X;
1583 
1584   if (Value *X = simplifyAndOrOfICmpsWithZero(Op0, Op1, false))
1585     return X;
1586 
1587   if (Value *X = simplifyOrOfICmpsWithAdd(Op0, Op1))
1588     return X;
1589   if (Value *X = simplifyOrOfICmpsWithAdd(Op1, Op0))
1590     return X;
1591 
1592   return nullptr;
1593 }
1594 
1595 static Value *simplifyAndOrOfFCmps(FCmpInst *LHS, FCmpInst *RHS, bool IsAnd) {
1596   Value *LHS0 = LHS->getOperand(0), *LHS1 = LHS->getOperand(1);
1597   Value *RHS0 = RHS->getOperand(0), *RHS1 = RHS->getOperand(1);
1598   if (LHS0->getType() != RHS0->getType())
1599     return nullptr;
1600 
1601   FCmpInst::Predicate PredL = LHS->getPredicate(), PredR = RHS->getPredicate();
1602   if ((PredL == FCmpInst::FCMP_ORD && PredR == FCmpInst::FCMP_ORD && IsAnd) ||
1603       (PredL == FCmpInst::FCMP_UNO && PredR == FCmpInst::FCMP_UNO && !IsAnd)) {
1604     // (fcmp ord NNAN, X) & (fcmp ord X, Y) --> fcmp ord X, Y
1605     // (fcmp ord NNAN, X) & (fcmp ord Y, X) --> fcmp ord Y, X
1606     // (fcmp ord X, NNAN) & (fcmp ord X, Y) --> fcmp ord X, Y
1607     // (fcmp ord X, NNAN) & (fcmp ord Y, X) --> fcmp ord Y, X
1608     // (fcmp uno NNAN, X) | (fcmp uno X, Y) --> fcmp uno X, Y
1609     // (fcmp uno NNAN, X) | (fcmp uno Y, X) --> fcmp uno Y, X
1610     // (fcmp uno X, NNAN) | (fcmp uno X, Y) --> fcmp uno X, Y
1611     // (fcmp uno X, NNAN) | (fcmp uno Y, X) --> fcmp uno Y, X
1612     if ((isKnownNeverNaN(LHS0) && (LHS1 == RHS0 || LHS1 == RHS1)) ||
1613         (isKnownNeverNaN(LHS1) && (LHS0 == RHS0 || LHS0 == RHS1)))
1614       return RHS;
1615 
1616     // (fcmp ord X, Y) & (fcmp ord NNAN, X) --> fcmp ord X, Y
1617     // (fcmp ord Y, X) & (fcmp ord NNAN, X) --> fcmp ord Y, X
1618     // (fcmp ord X, Y) & (fcmp ord X, NNAN) --> fcmp ord X, Y
1619     // (fcmp ord Y, X) & (fcmp ord X, NNAN) --> fcmp ord Y, X
1620     // (fcmp uno X, Y) | (fcmp uno NNAN, X) --> fcmp uno X, Y
1621     // (fcmp uno Y, X) | (fcmp uno NNAN, X) --> fcmp uno Y, X
1622     // (fcmp uno X, Y) | (fcmp uno X, NNAN) --> fcmp uno X, Y
1623     // (fcmp uno Y, X) | (fcmp uno X, NNAN) --> fcmp uno Y, X
1624     if ((isKnownNeverNaN(RHS0) && (RHS1 == LHS0 || RHS1 == LHS1)) ||
1625         (isKnownNeverNaN(RHS1) && (RHS0 == LHS0 || RHS0 == LHS1)))
1626       return LHS;
1627   }
1628 
1629   return nullptr;
1630 }
1631 
1632 static Value *simplifyAndOrOfCmps(Value *Op0, Value *Op1, bool IsAnd) {
1633   // Look through casts of the 'and' operands to find compares.
1634   auto *Cast0 = dyn_cast<CastInst>(Op0);
1635   auto *Cast1 = dyn_cast<CastInst>(Op1);
1636   if (Cast0 && Cast1 && Cast0->getOpcode() == Cast1->getOpcode() &&
1637       Cast0->getSrcTy() == Cast1->getSrcTy()) {
1638     Op0 = Cast0->getOperand(0);
1639     Op1 = Cast1->getOperand(0);
1640   }
1641 
1642   Value *V = nullptr;
1643   auto *ICmp0 = dyn_cast<ICmpInst>(Op0);
1644   auto *ICmp1 = dyn_cast<ICmpInst>(Op1);
1645   if (ICmp0 && ICmp1)
1646     V = IsAnd ? simplifyAndOfICmps(ICmp0, ICmp1) :
1647                 simplifyOrOfICmps(ICmp0, ICmp1);
1648 
1649   auto *FCmp0 = dyn_cast<FCmpInst>(Op0);
1650   auto *FCmp1 = dyn_cast<FCmpInst>(Op1);
1651   if (FCmp0 && FCmp1)
1652     V = simplifyAndOrOfFCmps(FCmp0, FCmp1, IsAnd);
1653 
1654   if (!V)
1655     return nullptr;
1656   if (!Cast0)
1657     return V;
1658 
1659   // If we looked through casts, we can only handle a constant simplification
1660   // because we are not allowed to create a cast instruction here.
1661   if (auto *C = dyn_cast<Constant>(V))
1662     return ConstantExpr::getCast(Cast0->getOpcode(), C, Cast0->getType());
1663 
1664   return nullptr;
1665 }
1666 
1667 /// Given operands for an And, see if we can fold the result.
1668 /// If not, this returns null.
1669 static Value *SimplifyAndInst(Value *Op0, Value *Op1, const SimplifyQuery &Q,
1670                               unsigned MaxRecurse) {
1671   if (Constant *C = foldOrCommuteConstant(Instruction::And, Op0, Op1, Q))
1672     return C;
1673 
1674   // X & undef -> 0
1675   if (match(Op1, m_Undef()))
1676     return Constant::getNullValue(Op0->getType());
1677 
1678   // X & X = X
1679   if (Op0 == Op1)
1680     return Op0;
1681 
1682   // X & 0 = 0
1683   if (match(Op1, m_Zero()))
1684     return Op1;
1685 
1686   // X & -1 = X
1687   if (match(Op1, m_AllOnes()))
1688     return Op0;
1689 
1690   // A & ~A  =  ~A & A  =  0
1691   if (match(Op0, m_Not(m_Specific(Op1))) ||
1692       match(Op1, m_Not(m_Specific(Op0))))
1693     return Constant::getNullValue(Op0->getType());
1694 
1695   // (A | ?) & A = A
1696   if (match(Op0, m_c_Or(m_Specific(Op1), m_Value())))
1697     return Op1;
1698 
1699   // A & (A | ?) = A
1700   if (match(Op1, m_c_Or(m_Specific(Op0), m_Value())))
1701     return Op0;
1702 
1703   // A mask that only clears known zeros of a shifted value is a no-op.
1704   Value *X;
1705   const APInt *Mask;
1706   const APInt *ShAmt;
1707   if (match(Op1, m_APInt(Mask))) {
1708     // If all bits in the inverted and shifted mask are clear:
1709     // and (shl X, ShAmt), Mask --> shl X, ShAmt
1710     if (match(Op0, m_Shl(m_Value(X), m_APInt(ShAmt))) &&
1711         (~(*Mask)).lshr(*ShAmt).isNullValue())
1712       return Op0;
1713 
1714     // If all bits in the inverted and shifted mask are clear:
1715     // and (lshr X, ShAmt), Mask --> lshr X, ShAmt
1716     if (match(Op0, m_LShr(m_Value(X), m_APInt(ShAmt))) &&
1717         (~(*Mask)).shl(*ShAmt).isNullValue())
1718       return Op0;
1719   }
1720 
1721   // A & (-A) = A if A is a power of two or zero.
1722   if (match(Op0, m_Neg(m_Specific(Op1))) ||
1723       match(Op1, m_Neg(m_Specific(Op0)))) {
1724     if (isKnownToBeAPowerOfTwo(Op0, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI,
1725                                Q.DT))
1726       return Op0;
1727     if (isKnownToBeAPowerOfTwo(Op1, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI,
1728                                Q.DT))
1729       return Op1;
1730   }
1731 
1732   if (Value *V = simplifyAndOrOfCmps(Op0, Op1, true))
1733     return V;
1734 
1735   // Try some generic simplifications for associative operations.
1736   if (Value *V = SimplifyAssociativeBinOp(Instruction::And, Op0, Op1, Q,
1737                                           MaxRecurse))
1738     return V;
1739 
1740   // And distributes over Or.  Try some generic simplifications based on this.
1741   if (Value *V = ExpandBinOp(Instruction::And, Op0, Op1, Instruction::Or,
1742                              Q, MaxRecurse))
1743     return V;
1744 
1745   // And distributes over Xor.  Try some generic simplifications based on this.
1746   if (Value *V = ExpandBinOp(Instruction::And, Op0, Op1, Instruction::Xor,
1747                              Q, MaxRecurse))
1748     return V;
1749 
1750   // If the operation is with the result of a select instruction, check whether
1751   // operating on either branch of the select always yields the same value.
1752   if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
1753     if (Value *V = ThreadBinOpOverSelect(Instruction::And, Op0, Op1, Q,
1754                                          MaxRecurse))
1755       return V;
1756 
1757   // If the operation is with the result of a phi instruction, check whether
1758   // operating on all incoming values of the phi always yields the same value.
1759   if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
1760     if (Value *V = ThreadBinOpOverPHI(Instruction::And, Op0, Op1, Q,
1761                                       MaxRecurse))
1762       return V;
1763 
1764   return nullptr;
1765 }
1766 
1767 Value *llvm::SimplifyAndInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) {
1768   return ::SimplifyAndInst(Op0, Op1, Q, RecursionLimit);
1769 }
1770 
1771 /// Given operands for an Or, see if we can fold the result.
1772 /// If not, this returns null.
1773 static Value *SimplifyOrInst(Value *Op0, Value *Op1, const SimplifyQuery &Q,
1774                              unsigned MaxRecurse) {
1775   if (Constant *C = foldOrCommuteConstant(Instruction::Or, Op0, Op1, Q))
1776     return C;
1777 
1778   // X | undef -> -1
1779   if (match(Op1, m_Undef()))
1780     return Constant::getAllOnesValue(Op0->getType());
1781 
1782   // X | X = X
1783   if (Op0 == Op1)
1784     return Op0;
1785 
1786   // X | 0 = X
1787   if (match(Op1, m_Zero()))
1788     return Op0;
1789 
1790   // X | -1 = -1
1791   if (match(Op1, m_AllOnes()))
1792     return Op1;
1793 
1794   // A | ~A  =  ~A | A  =  -1
1795   if (match(Op0, m_Not(m_Specific(Op1))) ||
1796       match(Op1, m_Not(m_Specific(Op0))))
1797     return Constant::getAllOnesValue(Op0->getType());
1798 
1799   // (A & ?) | A = A
1800   if (match(Op0, m_c_And(m_Specific(Op1), m_Value())))
1801     return Op1;
1802 
1803   // A | (A & ?) = A
1804   if (match(Op1, m_c_And(m_Specific(Op0), m_Value())))
1805     return Op0;
1806 
1807   // ~(A & ?) | A = -1
1808   if (match(Op0, m_Not(m_c_And(m_Specific(Op1), m_Value()))))
1809     return Constant::getAllOnesValue(Op1->getType());
1810 
1811   // A | ~(A & ?) = -1
1812   if (match(Op1, m_Not(m_c_And(m_Specific(Op1), m_Value()))))
1813     return Constant::getAllOnesValue(Op0->getType());
1814 
1815   Value *A, *B;
1816   // (A & ~B) | (A ^ B) -> (A ^ B)
1817   // (~B & A) | (A ^ B) -> (A ^ B)
1818   // (A & ~B) | (B ^ A) -> (B ^ A)
1819   // (~B & A) | (B ^ A) -> (B ^ A)
1820   if (match(Op1, m_Xor(m_Value(A), m_Value(B))) &&
1821       (match(Op0, m_c_And(m_Specific(A), m_Not(m_Specific(B)))) ||
1822        match(Op0, m_c_And(m_Not(m_Specific(A)), m_Specific(B)))))
1823     return Op1;
1824 
1825   // Commute the 'or' operands.
1826   // (A ^ B) | (A & ~B) -> (A ^ B)
1827   // (A ^ B) | (~B & A) -> (A ^ B)
1828   // (B ^ A) | (A & ~B) -> (B ^ A)
1829   // (B ^ A) | (~B & A) -> (B ^ A)
1830   if (match(Op0, m_Xor(m_Value(A), m_Value(B))) &&
1831       (match(Op1, m_c_And(m_Specific(A), m_Not(m_Specific(B)))) ||
1832        match(Op1, m_c_And(m_Not(m_Specific(A)), m_Specific(B)))))
1833     return Op0;
1834 
1835   // (A & B) | (~A ^ B) -> (~A ^ B)
1836   // (B & A) | (~A ^ B) -> (~A ^ B)
1837   // (A & B) | (B ^ ~A) -> (B ^ ~A)
1838   // (B & A) | (B ^ ~A) -> (B ^ ~A)
1839   if (match(Op0, m_And(m_Value(A), m_Value(B))) &&
1840       (match(Op1, m_c_Xor(m_Specific(A), m_Not(m_Specific(B)))) ||
1841        match(Op1, m_c_Xor(m_Not(m_Specific(A)), m_Specific(B)))))
1842     return Op1;
1843 
1844   // (~A ^ B) | (A & B) -> (~A ^ B)
1845   // (~A ^ B) | (B & A) -> (~A ^ B)
1846   // (B ^ ~A) | (A & B) -> (B ^ ~A)
1847   // (B ^ ~A) | (B & A) -> (B ^ ~A)
1848   if (match(Op1, m_And(m_Value(A), m_Value(B))) &&
1849       (match(Op0, m_c_Xor(m_Specific(A), m_Not(m_Specific(B)))) ||
1850        match(Op0, m_c_Xor(m_Not(m_Specific(A)), m_Specific(B)))))
1851     return Op0;
1852 
1853   if (Value *V = simplifyAndOrOfCmps(Op0, Op1, false))
1854     return V;
1855 
1856   // Try some generic simplifications for associative operations.
1857   if (Value *V = SimplifyAssociativeBinOp(Instruction::Or, Op0, Op1, Q,
1858                                           MaxRecurse))
1859     return V;
1860 
1861   // Or distributes over And.  Try some generic simplifications based on this.
1862   if (Value *V = ExpandBinOp(Instruction::Or, Op0, Op1, Instruction::And, Q,
1863                              MaxRecurse))
1864     return V;
1865 
1866   // If the operation is with the result of a select instruction, check whether
1867   // operating on either branch of the select always yields the same value.
1868   if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
1869     if (Value *V = ThreadBinOpOverSelect(Instruction::Or, Op0, Op1, Q,
1870                                          MaxRecurse))
1871       return V;
1872 
1873   // (A & C1)|(B & C2)
1874   const APInt *C1, *C2;
1875   if (match(Op0, m_And(m_Value(A), m_APInt(C1))) &&
1876       match(Op1, m_And(m_Value(B), m_APInt(C2)))) {
1877     if (*C1 == ~*C2) {
1878       // (A & C1)|(B & C2)
1879       // If we have: ((V + N) & C1) | (V & C2)
1880       // .. and C2 = ~C1 and C2 is 0+1+ and (N & C2) == 0
1881       // replace with V+N.
1882       Value *N;
1883       if (C2->isMask() && // C2 == 0+1+
1884           match(A, m_c_Add(m_Specific(B), m_Value(N)))) {
1885         // Add commutes, try both ways.
1886         if (MaskedValueIsZero(N, *C2, Q.DL, 0, Q.AC, Q.CxtI, Q.DT))
1887           return A;
1888       }
1889       // Or commutes, try both ways.
1890       if (C1->isMask() &&
1891           match(B, m_c_Add(m_Specific(A), m_Value(N)))) {
1892         // Add commutes, try both ways.
1893         if (MaskedValueIsZero(N, *C1, Q.DL, 0, Q.AC, Q.CxtI, Q.DT))
1894           return B;
1895       }
1896     }
1897   }
1898 
1899   // If the operation is with the result of a phi instruction, check whether
1900   // operating on all incoming values of the phi always yields the same value.
1901   if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
1902     if (Value *V = ThreadBinOpOverPHI(Instruction::Or, Op0, Op1, Q, MaxRecurse))
1903       return V;
1904 
1905   return nullptr;
1906 }
1907 
1908 Value *llvm::SimplifyOrInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) {
1909   return ::SimplifyOrInst(Op0, Op1, Q, RecursionLimit);
1910 }
1911 
1912 /// Given operands for a Xor, see if we can fold the result.
1913 /// If not, this returns null.
1914 static Value *SimplifyXorInst(Value *Op0, Value *Op1, const SimplifyQuery &Q,
1915                               unsigned MaxRecurse) {
1916   if (Constant *C = foldOrCommuteConstant(Instruction::Xor, Op0, Op1, Q))
1917     return C;
1918 
1919   // A ^ undef -> undef
1920   if (match(Op1, m_Undef()))
1921     return Op1;
1922 
1923   // A ^ 0 = A
1924   if (match(Op1, m_Zero()))
1925     return Op0;
1926 
1927   // A ^ A = 0
1928   if (Op0 == Op1)
1929     return Constant::getNullValue(Op0->getType());
1930 
1931   // A ^ ~A  =  ~A ^ A  =  -1
1932   if (match(Op0, m_Not(m_Specific(Op1))) ||
1933       match(Op1, m_Not(m_Specific(Op0))))
1934     return Constant::getAllOnesValue(Op0->getType());
1935 
1936   // Try some generic simplifications for associative operations.
1937   if (Value *V = SimplifyAssociativeBinOp(Instruction::Xor, Op0, Op1, Q,
1938                                           MaxRecurse))
1939     return V;
1940 
1941   // Threading Xor over selects and phi nodes is pointless, so don't bother.
1942   // Threading over the select in "A ^ select(cond, B, C)" means evaluating
1943   // "A^B" and "A^C" and seeing if they are equal; but they are equal if and
1944   // only if B and C are equal.  If B and C are equal then (since we assume
1945   // that operands have already been simplified) "select(cond, B, C)" should
1946   // have been simplified to the common value of B and C already.  Analysing
1947   // "A^B" and "A^C" thus gains nothing, but costs compile time.  Similarly
1948   // for threading over phi nodes.
1949 
1950   return nullptr;
1951 }
1952 
1953 Value *llvm::SimplifyXorInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) {
1954   return ::SimplifyXorInst(Op0, Op1, Q, RecursionLimit);
1955 }
1956 
1957 
1958 static Type *GetCompareTy(Value *Op) {
1959   return CmpInst::makeCmpResultType(Op->getType());
1960 }
1961 
1962 /// Rummage around inside V looking for something equivalent to the comparison
1963 /// "LHS Pred RHS". Return such a value if found, otherwise return null.
1964 /// Helper function for analyzing max/min idioms.
1965 static Value *ExtractEquivalentCondition(Value *V, CmpInst::Predicate Pred,
1966                                          Value *LHS, Value *RHS) {
1967   SelectInst *SI = dyn_cast<SelectInst>(V);
1968   if (!SI)
1969     return nullptr;
1970   CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition());
1971   if (!Cmp)
1972     return nullptr;
1973   Value *CmpLHS = Cmp->getOperand(0), *CmpRHS = Cmp->getOperand(1);
1974   if (Pred == Cmp->getPredicate() && LHS == CmpLHS && RHS == CmpRHS)
1975     return Cmp;
1976   if (Pred == CmpInst::getSwappedPredicate(Cmp->getPredicate()) &&
1977       LHS == CmpRHS && RHS == CmpLHS)
1978     return Cmp;
1979   return nullptr;
1980 }
1981 
1982 // A significant optimization not implemented here is assuming that alloca
1983 // addresses are not equal to incoming argument values. They don't *alias*,
1984 // as we say, but that doesn't mean they aren't equal, so we take a
1985 // conservative approach.
1986 //
1987 // This is inspired in part by C++11 5.10p1:
1988 //   "Two pointers of the same type compare equal if and only if they are both
1989 //    null, both point to the same function, or both represent the same
1990 //    address."
1991 //
1992 // This is pretty permissive.
1993 //
1994 // It's also partly due to C11 6.5.9p6:
1995 //   "Two pointers compare equal if and only if both are null pointers, both are
1996 //    pointers to the same object (including a pointer to an object and a
1997 //    subobject at its beginning) or function, both are pointers to one past the
1998 //    last element of the same array object, or one is a pointer to one past the
1999 //    end of one array object and the other is a pointer to the start of a
2000 //    different array object that happens to immediately follow the first array
2001 //    object in the address space.)
2002 //
2003 // C11's version is more restrictive, however there's no reason why an argument
2004 // couldn't be a one-past-the-end value for a stack object in the caller and be
2005 // equal to the beginning of a stack object in the callee.
2006 //
2007 // If the C and C++ standards are ever made sufficiently restrictive in this
2008 // area, it may be possible to update LLVM's semantics accordingly and reinstate
2009 // this optimization.
2010 static Constant *
2011 computePointerICmp(const DataLayout &DL, const TargetLibraryInfo *TLI,
2012                    const DominatorTree *DT, CmpInst::Predicate Pred,
2013                    AssumptionCache *AC, const Instruction *CxtI,
2014                    Value *LHS, Value *RHS) {
2015   // First, skip past any trivial no-ops.
2016   LHS = LHS->stripPointerCasts();
2017   RHS = RHS->stripPointerCasts();
2018 
2019   // A non-null pointer is not equal to a null pointer.
2020   if (llvm::isKnownNonZero(LHS, DL) && isa<ConstantPointerNull>(RHS) &&
2021       (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE))
2022     return ConstantInt::get(GetCompareTy(LHS),
2023                             !CmpInst::isTrueWhenEqual(Pred));
2024 
2025   // We can only fold certain predicates on pointer comparisons.
2026   switch (Pred) {
2027   default:
2028     return nullptr;
2029 
2030     // Equality comaprisons are easy to fold.
2031   case CmpInst::ICMP_EQ:
2032   case CmpInst::ICMP_NE:
2033     break;
2034 
2035     // We can only handle unsigned relational comparisons because 'inbounds' on
2036     // a GEP only protects against unsigned wrapping.
2037   case CmpInst::ICMP_UGT:
2038   case CmpInst::ICMP_UGE:
2039   case CmpInst::ICMP_ULT:
2040   case CmpInst::ICMP_ULE:
2041     // However, we have to switch them to their signed variants to handle
2042     // negative indices from the base pointer.
2043     Pred = ICmpInst::getSignedPredicate(Pred);
2044     break;
2045   }
2046 
2047   // Strip off any constant offsets so that we can reason about them.
2048   // It's tempting to use getUnderlyingObject or even just stripInBoundsOffsets
2049   // here and compare base addresses like AliasAnalysis does, however there are
2050   // numerous hazards. AliasAnalysis and its utilities rely on special rules
2051   // governing loads and stores which don't apply to icmps. Also, AliasAnalysis
2052   // doesn't need to guarantee pointer inequality when it says NoAlias.
2053   Constant *LHSOffset = stripAndComputeConstantOffsets(DL, LHS);
2054   Constant *RHSOffset = stripAndComputeConstantOffsets(DL, RHS);
2055 
2056   // If LHS and RHS are related via constant offsets to the same base
2057   // value, we can replace it with an icmp which just compares the offsets.
2058   if (LHS == RHS)
2059     return ConstantExpr::getICmp(Pred, LHSOffset, RHSOffset);
2060 
2061   // Various optimizations for (in)equality comparisons.
2062   if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE) {
2063     // Different non-empty allocations that exist at the same time have
2064     // different addresses (if the program can tell). Global variables always
2065     // exist, so they always exist during the lifetime of each other and all
2066     // allocas. Two different allocas usually have different addresses...
2067     //
2068     // However, if there's an @llvm.stackrestore dynamically in between two
2069     // allocas, they may have the same address. It's tempting to reduce the
2070     // scope of the problem by only looking at *static* allocas here. That would
2071     // cover the majority of allocas while significantly reducing the likelihood
2072     // of having an @llvm.stackrestore pop up in the middle. However, it's not
2073     // actually impossible for an @llvm.stackrestore to pop up in the middle of
2074     // an entry block. Also, if we have a block that's not attached to a
2075     // function, we can't tell if it's "static" under the current definition.
2076     // Theoretically, this problem could be fixed by creating a new kind of
2077     // instruction kind specifically for static allocas. Such a new instruction
2078     // could be required to be at the top of the entry block, thus preventing it
2079     // from being subject to a @llvm.stackrestore. Instcombine could even
2080     // convert regular allocas into these special allocas. It'd be nifty.
2081     // However, until then, this problem remains open.
2082     //
2083     // So, we'll assume that two non-empty allocas have different addresses
2084     // for now.
2085     //
2086     // With all that, if the offsets are within the bounds of their allocations
2087     // (and not one-past-the-end! so we can't use inbounds!), and their
2088     // allocations aren't the same, the pointers are not equal.
2089     //
2090     // Note that it's not necessary to check for LHS being a global variable
2091     // address, due to canonicalization and constant folding.
2092     if (isa<AllocaInst>(LHS) &&
2093         (isa<AllocaInst>(RHS) || isa<GlobalVariable>(RHS))) {
2094       ConstantInt *LHSOffsetCI = dyn_cast<ConstantInt>(LHSOffset);
2095       ConstantInt *RHSOffsetCI = dyn_cast<ConstantInt>(RHSOffset);
2096       uint64_t LHSSize, RHSSize;
2097       if (LHSOffsetCI && RHSOffsetCI &&
2098           getObjectSize(LHS, LHSSize, DL, TLI) &&
2099           getObjectSize(RHS, RHSSize, DL, TLI)) {
2100         const APInt &LHSOffsetValue = LHSOffsetCI->getValue();
2101         const APInt &RHSOffsetValue = RHSOffsetCI->getValue();
2102         if (!LHSOffsetValue.isNegative() &&
2103             !RHSOffsetValue.isNegative() &&
2104             LHSOffsetValue.ult(LHSSize) &&
2105             RHSOffsetValue.ult(RHSSize)) {
2106           return ConstantInt::get(GetCompareTy(LHS),
2107                                   !CmpInst::isTrueWhenEqual(Pred));
2108         }
2109       }
2110 
2111       // Repeat the above check but this time without depending on DataLayout
2112       // or being able to compute a precise size.
2113       if (!cast<PointerType>(LHS->getType())->isEmptyTy() &&
2114           !cast<PointerType>(RHS->getType())->isEmptyTy() &&
2115           LHSOffset->isNullValue() &&
2116           RHSOffset->isNullValue())
2117         return ConstantInt::get(GetCompareTy(LHS),
2118                                 !CmpInst::isTrueWhenEqual(Pred));
2119     }
2120 
2121     // Even if an non-inbounds GEP occurs along the path we can still optimize
2122     // equality comparisons concerning the result. We avoid walking the whole
2123     // chain again by starting where the last calls to
2124     // stripAndComputeConstantOffsets left off and accumulate the offsets.
2125     Constant *LHSNoBound = stripAndComputeConstantOffsets(DL, LHS, true);
2126     Constant *RHSNoBound = stripAndComputeConstantOffsets(DL, RHS, true);
2127     if (LHS == RHS)
2128       return ConstantExpr::getICmp(Pred,
2129                                    ConstantExpr::getAdd(LHSOffset, LHSNoBound),
2130                                    ConstantExpr::getAdd(RHSOffset, RHSNoBound));
2131 
2132     // If one side of the equality comparison must come from a noalias call
2133     // (meaning a system memory allocation function), and the other side must
2134     // come from a pointer that cannot overlap with dynamically-allocated
2135     // memory within the lifetime of the current function (allocas, byval
2136     // arguments, globals), then determine the comparison result here.
2137     SmallVector<Value *, 8> LHSUObjs, RHSUObjs;
2138     GetUnderlyingObjects(LHS, LHSUObjs, DL);
2139     GetUnderlyingObjects(RHS, RHSUObjs, DL);
2140 
2141     // Is the set of underlying objects all noalias calls?
2142     auto IsNAC = [](ArrayRef<Value *> Objects) {
2143       return all_of(Objects, isNoAliasCall);
2144     };
2145 
2146     // Is the set of underlying objects all things which must be disjoint from
2147     // noalias calls. For allocas, we consider only static ones (dynamic
2148     // allocas might be transformed into calls to malloc not simultaneously
2149     // live with the compared-to allocation). For globals, we exclude symbols
2150     // that might be resolve lazily to symbols in another dynamically-loaded
2151     // library (and, thus, could be malloc'ed by the implementation).
2152     auto IsAllocDisjoint = [](ArrayRef<Value *> Objects) {
2153       return all_of(Objects, [](Value *V) {
2154         if (const AllocaInst *AI = dyn_cast<AllocaInst>(V))
2155           return AI->getParent() && AI->getFunction() && AI->isStaticAlloca();
2156         if (const GlobalValue *GV = dyn_cast<GlobalValue>(V))
2157           return (GV->hasLocalLinkage() || GV->hasHiddenVisibility() ||
2158                   GV->hasProtectedVisibility() || GV->hasGlobalUnnamedAddr()) &&
2159                  !GV->isThreadLocal();
2160         if (const Argument *A = dyn_cast<Argument>(V))
2161           return A->hasByValAttr();
2162         return false;
2163       });
2164     };
2165 
2166     if ((IsNAC(LHSUObjs) && IsAllocDisjoint(RHSUObjs)) ||
2167         (IsNAC(RHSUObjs) && IsAllocDisjoint(LHSUObjs)))
2168         return ConstantInt::get(GetCompareTy(LHS),
2169                                 !CmpInst::isTrueWhenEqual(Pred));
2170 
2171     // Fold comparisons for non-escaping pointer even if the allocation call
2172     // cannot be elided. We cannot fold malloc comparison to null. Also, the
2173     // dynamic allocation call could be either of the operands.
2174     Value *MI = nullptr;
2175     if (isAllocLikeFn(LHS, TLI) &&
2176         llvm::isKnownNonZero(RHS, DL, 0, nullptr, CxtI, DT))
2177       MI = LHS;
2178     else if (isAllocLikeFn(RHS, TLI) &&
2179              llvm::isKnownNonZero(LHS, DL, 0, nullptr, CxtI, DT))
2180       MI = RHS;
2181     // FIXME: We should also fold the compare when the pointer escapes, but the
2182     // compare dominates the pointer escape
2183     if (MI && !PointerMayBeCaptured(MI, true, true))
2184       return ConstantInt::get(GetCompareTy(LHS),
2185                               CmpInst::isFalseWhenEqual(Pred));
2186   }
2187 
2188   // Otherwise, fail.
2189   return nullptr;
2190 }
2191 
2192 /// Fold an icmp when its operands have i1 scalar type.
2193 static Value *simplifyICmpOfBools(CmpInst::Predicate Pred, Value *LHS,
2194                                   Value *RHS, const SimplifyQuery &Q) {
2195   Type *ITy = GetCompareTy(LHS); // The return type.
2196   Type *OpTy = LHS->getType();   // The operand type.
2197   if (!OpTy->isIntOrIntVectorTy(1))
2198     return nullptr;
2199 
2200   // A boolean compared to true/false can be simplified in 14 out of the 20
2201   // (10 predicates * 2 constants) possible combinations. Cases not handled here
2202   // require a 'not' of the LHS, so those must be transformed in InstCombine.
2203   if (match(RHS, m_Zero())) {
2204     switch (Pred) {
2205     case CmpInst::ICMP_NE:  // X !=  0 -> X
2206     case CmpInst::ICMP_UGT: // X >u  0 -> X
2207     case CmpInst::ICMP_SLT: // X <s  0 -> X
2208       return LHS;
2209 
2210     case CmpInst::ICMP_ULT: // X <u  0 -> false
2211     case CmpInst::ICMP_SGT: // X >s  0 -> false
2212       return getFalse(ITy);
2213 
2214     case CmpInst::ICMP_UGE: // X >=u 0 -> true
2215     case CmpInst::ICMP_SLE: // X <=s 0 -> true
2216       return getTrue(ITy);
2217 
2218     default: break;
2219     }
2220   } else if (match(RHS, m_One())) {
2221     switch (Pred) {
2222     case CmpInst::ICMP_EQ:  // X ==   1 -> X
2223     case CmpInst::ICMP_UGE: // X >=u  1 -> X
2224     case CmpInst::ICMP_SLE: // X <=s -1 -> X
2225       return LHS;
2226 
2227     case CmpInst::ICMP_UGT: // X >u   1 -> false
2228     case CmpInst::ICMP_SLT: // X <s  -1 -> false
2229       return getFalse(ITy);
2230 
2231     case CmpInst::ICMP_ULE: // X <=u  1 -> true
2232     case CmpInst::ICMP_SGE: // X >=s -1 -> true
2233       return getTrue(ITy);
2234 
2235     default: break;
2236     }
2237   }
2238 
2239   switch (Pred) {
2240   default:
2241     break;
2242   case ICmpInst::ICMP_UGE:
2243     if (isImpliedCondition(RHS, LHS, Q.DL).getValueOr(false))
2244       return getTrue(ITy);
2245     break;
2246   case ICmpInst::ICMP_SGE:
2247     /// For signed comparison, the values for an i1 are 0 and -1
2248     /// respectively. This maps into a truth table of:
2249     /// LHS | RHS | LHS >=s RHS   | LHS implies RHS
2250     ///  0  |  0  |  1 (0 >= 0)   |  1
2251     ///  0  |  1  |  1 (0 >= -1)  |  1
2252     ///  1  |  0  |  0 (-1 >= 0)  |  0
2253     ///  1  |  1  |  1 (-1 >= -1) |  1
2254     if (isImpliedCondition(LHS, RHS, Q.DL).getValueOr(false))
2255       return getTrue(ITy);
2256     break;
2257   case ICmpInst::ICMP_ULE:
2258     if (isImpliedCondition(LHS, RHS, Q.DL).getValueOr(false))
2259       return getTrue(ITy);
2260     break;
2261   }
2262 
2263   return nullptr;
2264 }
2265 
2266 /// Try hard to fold icmp with zero RHS because this is a common case.
2267 static Value *simplifyICmpWithZero(CmpInst::Predicate Pred, Value *LHS,
2268                                    Value *RHS, const SimplifyQuery &Q) {
2269   if (!match(RHS, m_Zero()))
2270     return nullptr;
2271 
2272   Type *ITy = GetCompareTy(LHS); // The return type.
2273   switch (Pred) {
2274   default:
2275     llvm_unreachable("Unknown ICmp predicate!");
2276   case ICmpInst::ICMP_ULT:
2277     return getFalse(ITy);
2278   case ICmpInst::ICMP_UGE:
2279     return getTrue(ITy);
2280   case ICmpInst::ICMP_EQ:
2281   case ICmpInst::ICMP_ULE:
2282     if (isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT))
2283       return getFalse(ITy);
2284     break;
2285   case ICmpInst::ICMP_NE:
2286   case ICmpInst::ICMP_UGT:
2287     if (isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT))
2288       return getTrue(ITy);
2289     break;
2290   case ICmpInst::ICMP_SLT: {
2291     KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
2292     if (LHSKnown.isNegative())
2293       return getTrue(ITy);
2294     if (LHSKnown.isNonNegative())
2295       return getFalse(ITy);
2296     break;
2297   }
2298   case ICmpInst::ICMP_SLE: {
2299     KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
2300     if (LHSKnown.isNegative())
2301       return getTrue(ITy);
2302     if (LHSKnown.isNonNegative() &&
2303         isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT))
2304       return getFalse(ITy);
2305     break;
2306   }
2307   case ICmpInst::ICMP_SGE: {
2308     KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
2309     if (LHSKnown.isNegative())
2310       return getFalse(ITy);
2311     if (LHSKnown.isNonNegative())
2312       return getTrue(ITy);
2313     break;
2314   }
2315   case ICmpInst::ICMP_SGT: {
2316     KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
2317     if (LHSKnown.isNegative())
2318       return getFalse(ITy);
2319     if (LHSKnown.isNonNegative() &&
2320         isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT))
2321       return getTrue(ITy);
2322     break;
2323   }
2324   }
2325 
2326   return nullptr;
2327 }
2328 
2329 /// Many binary operators with a constant operand have an easy-to-compute
2330 /// range of outputs. This can be used to fold a comparison to always true or
2331 /// always false.
2332 static void setLimitsForBinOp(BinaryOperator &BO, APInt &Lower, APInt &Upper) {
2333   unsigned Width = Lower.getBitWidth();
2334   const APInt *C;
2335   switch (BO.getOpcode()) {
2336   case Instruction::Add:
2337     if (match(BO.getOperand(1), m_APInt(C)) && !C->isNullValue()) {
2338       // FIXME: If we have both nuw and nsw, we should reduce the range further.
2339       if (BO.hasNoUnsignedWrap()) {
2340         // 'add nuw x, C' produces [C, UINT_MAX].
2341         Lower = *C;
2342       } else if (BO.hasNoSignedWrap()) {
2343         if (C->isNegative()) {
2344           // 'add nsw x, -C' produces [SINT_MIN, SINT_MAX - C].
2345           Lower = APInt::getSignedMinValue(Width);
2346           Upper = APInt::getSignedMaxValue(Width) + *C + 1;
2347         } else {
2348           // 'add nsw x, +C' produces [SINT_MIN + C, SINT_MAX].
2349           Lower = APInt::getSignedMinValue(Width) + *C;
2350           Upper = APInt::getSignedMaxValue(Width) + 1;
2351         }
2352       }
2353     }
2354     break;
2355 
2356   case Instruction::And:
2357     if (match(BO.getOperand(1), m_APInt(C)))
2358       // 'and x, C' produces [0, C].
2359       Upper = *C + 1;
2360     break;
2361 
2362   case Instruction::Or:
2363     if (match(BO.getOperand(1), m_APInt(C)))
2364       // 'or x, C' produces [C, UINT_MAX].
2365       Lower = *C;
2366     break;
2367 
2368   case Instruction::AShr:
2369     if (match(BO.getOperand(1), m_APInt(C)) && C->ult(Width)) {
2370       // 'ashr x, C' produces [INT_MIN >> C, INT_MAX >> C].
2371       Lower = APInt::getSignedMinValue(Width).ashr(*C);
2372       Upper = APInt::getSignedMaxValue(Width).ashr(*C) + 1;
2373     } else if (match(BO.getOperand(0), m_APInt(C))) {
2374       unsigned ShiftAmount = Width - 1;
2375       if (!C->isNullValue() && BO.isExact())
2376         ShiftAmount = C->countTrailingZeros();
2377       if (C->isNegative()) {
2378         // 'ashr C, x' produces [C, C >> (Width-1)]
2379         Lower = *C;
2380         Upper = C->ashr(ShiftAmount) + 1;
2381       } else {
2382         // 'ashr C, x' produces [C >> (Width-1), C]
2383         Lower = C->ashr(ShiftAmount);
2384         Upper = *C + 1;
2385       }
2386     }
2387     break;
2388 
2389   case Instruction::LShr:
2390     if (match(BO.getOperand(1), m_APInt(C)) && C->ult(Width)) {
2391       // 'lshr x, C' produces [0, UINT_MAX >> C].
2392       Upper = APInt::getAllOnesValue(Width).lshr(*C) + 1;
2393     } else if (match(BO.getOperand(0), m_APInt(C))) {
2394       // 'lshr C, x' produces [C >> (Width-1), C].
2395       unsigned ShiftAmount = Width - 1;
2396       if (!C->isNullValue() && BO.isExact())
2397         ShiftAmount = C->countTrailingZeros();
2398       Lower = C->lshr(ShiftAmount);
2399       Upper = *C + 1;
2400     }
2401     break;
2402 
2403   case Instruction::Shl:
2404     if (match(BO.getOperand(0), m_APInt(C))) {
2405       if (BO.hasNoUnsignedWrap()) {
2406         // 'shl nuw C, x' produces [C, C << CLZ(C)]
2407         Lower = *C;
2408         Upper = Lower.shl(Lower.countLeadingZeros()) + 1;
2409       } else if (BO.hasNoSignedWrap()) { // TODO: What if both nuw+nsw?
2410         if (C->isNegative()) {
2411           // 'shl nsw C, x' produces [C << CLO(C)-1, C]
2412           unsigned ShiftAmount = C->countLeadingOnes() - 1;
2413           Lower = C->shl(ShiftAmount);
2414           Upper = *C + 1;
2415         } else {
2416           // 'shl nsw C, x' produces [C, C << CLZ(C)-1]
2417           unsigned ShiftAmount = C->countLeadingZeros() - 1;
2418           Lower = *C;
2419           Upper = C->shl(ShiftAmount) + 1;
2420         }
2421       }
2422     }
2423     break;
2424 
2425   case Instruction::SDiv:
2426     if (match(BO.getOperand(1), m_APInt(C))) {
2427       APInt IntMin = APInt::getSignedMinValue(Width);
2428       APInt IntMax = APInt::getSignedMaxValue(Width);
2429       if (C->isAllOnesValue()) {
2430         // 'sdiv x, -1' produces [INT_MIN + 1, INT_MAX]
2431         //    where C != -1 and C != 0 and C != 1
2432         Lower = IntMin + 1;
2433         Upper = IntMax + 1;
2434       } else if (C->countLeadingZeros() < Width - 1) {
2435         // 'sdiv x, C' produces [INT_MIN / C, INT_MAX / C]
2436         //    where C != -1 and C != 0 and C != 1
2437         Lower = IntMin.sdiv(*C);
2438         Upper = IntMax.sdiv(*C);
2439         if (Lower.sgt(Upper))
2440           std::swap(Lower, Upper);
2441         Upper = Upper + 1;
2442         assert(Upper != Lower && "Upper part of range has wrapped!");
2443       }
2444     } else if (match(BO.getOperand(0), m_APInt(C))) {
2445       if (C->isMinSignedValue()) {
2446         // 'sdiv INT_MIN, x' produces [INT_MIN, INT_MIN / -2].
2447         Lower = *C;
2448         Upper = Lower.lshr(1) + 1;
2449       } else {
2450         // 'sdiv C, x' produces [-|C|, |C|].
2451         Upper = C->abs() + 1;
2452         Lower = (-Upper) + 1;
2453       }
2454     }
2455     break;
2456 
2457   case Instruction::UDiv:
2458     if (match(BO.getOperand(1), m_APInt(C)) && !C->isNullValue()) {
2459       // 'udiv x, C' produces [0, UINT_MAX / C].
2460       Upper = APInt::getMaxValue(Width).udiv(*C) + 1;
2461     } else if (match(BO.getOperand(0), m_APInt(C))) {
2462       // 'udiv C, x' produces [0, C].
2463       Upper = *C + 1;
2464     }
2465     break;
2466 
2467   case Instruction::SRem:
2468     if (match(BO.getOperand(1), m_APInt(C))) {
2469       // 'srem x, C' produces (-|C|, |C|).
2470       Upper = C->abs();
2471       Lower = (-Upper) + 1;
2472     }
2473     break;
2474 
2475   case Instruction::URem:
2476     if (match(BO.getOperand(1), m_APInt(C)))
2477       // 'urem x, C' produces [0, C).
2478       Upper = *C;
2479     break;
2480 
2481   default:
2482     break;
2483   }
2484 }
2485 
2486 static Value *simplifyICmpWithConstant(CmpInst::Predicate Pred, Value *LHS,
2487                                        Value *RHS) {
2488   const APInt *C;
2489   if (!match(RHS, m_APInt(C)))
2490     return nullptr;
2491 
2492   // Rule out tautological comparisons (eg., ult 0 or uge 0).
2493   ConstantRange RHS_CR = ConstantRange::makeExactICmpRegion(Pred, *C);
2494   if (RHS_CR.isEmptySet())
2495     return ConstantInt::getFalse(GetCompareTy(RHS));
2496   if (RHS_CR.isFullSet())
2497     return ConstantInt::getTrue(GetCompareTy(RHS));
2498 
2499   // Find the range of possible values for binary operators.
2500   unsigned Width = C->getBitWidth();
2501   APInt Lower = APInt(Width, 0);
2502   APInt Upper = APInt(Width, 0);
2503   if (auto *BO = dyn_cast<BinaryOperator>(LHS))
2504     setLimitsForBinOp(*BO, Lower, Upper);
2505 
2506   ConstantRange LHS_CR =
2507       Lower != Upper ? ConstantRange(Lower, Upper) : ConstantRange(Width, true);
2508 
2509   if (auto *I = dyn_cast<Instruction>(LHS))
2510     if (auto *Ranges = I->getMetadata(LLVMContext::MD_range))
2511       LHS_CR = LHS_CR.intersectWith(getConstantRangeFromMetadata(*Ranges));
2512 
2513   if (!LHS_CR.isFullSet()) {
2514     if (RHS_CR.contains(LHS_CR))
2515       return ConstantInt::getTrue(GetCompareTy(RHS));
2516     if (RHS_CR.inverse().contains(LHS_CR))
2517       return ConstantInt::getFalse(GetCompareTy(RHS));
2518   }
2519 
2520   return nullptr;
2521 }
2522 
2523 /// TODO: A large part of this logic is duplicated in InstCombine's
2524 /// foldICmpBinOp(). We should be able to share that and avoid the code
2525 /// duplication.
2526 static Value *simplifyICmpWithBinOp(CmpInst::Predicate Pred, Value *LHS,
2527                                     Value *RHS, const SimplifyQuery &Q,
2528                                     unsigned MaxRecurse) {
2529   Type *ITy = GetCompareTy(LHS); // The return type.
2530 
2531   BinaryOperator *LBO = dyn_cast<BinaryOperator>(LHS);
2532   BinaryOperator *RBO = dyn_cast<BinaryOperator>(RHS);
2533   if (MaxRecurse && (LBO || RBO)) {
2534     // Analyze the case when either LHS or RHS is an add instruction.
2535     Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr;
2536     // LHS = A + B (or A and B are null); RHS = C + D (or C and D are null).
2537     bool NoLHSWrapProblem = false, NoRHSWrapProblem = false;
2538     if (LBO && LBO->getOpcode() == Instruction::Add) {
2539       A = LBO->getOperand(0);
2540       B = LBO->getOperand(1);
2541       NoLHSWrapProblem =
2542           ICmpInst::isEquality(Pred) ||
2543           (CmpInst::isUnsigned(Pred) && LBO->hasNoUnsignedWrap()) ||
2544           (CmpInst::isSigned(Pred) && LBO->hasNoSignedWrap());
2545     }
2546     if (RBO && RBO->getOpcode() == Instruction::Add) {
2547       C = RBO->getOperand(0);
2548       D = RBO->getOperand(1);
2549       NoRHSWrapProblem =
2550           ICmpInst::isEquality(Pred) ||
2551           (CmpInst::isUnsigned(Pred) && RBO->hasNoUnsignedWrap()) ||
2552           (CmpInst::isSigned(Pred) && RBO->hasNoSignedWrap());
2553     }
2554 
2555     // icmp (X+Y), X -> icmp Y, 0 for equalities or if there is no overflow.
2556     if ((A == RHS || B == RHS) && NoLHSWrapProblem)
2557       if (Value *V = SimplifyICmpInst(Pred, A == RHS ? B : A,
2558                                       Constant::getNullValue(RHS->getType()), Q,
2559                                       MaxRecurse - 1))
2560         return V;
2561 
2562     // icmp X, (X+Y) -> icmp 0, Y for equalities or if there is no overflow.
2563     if ((C == LHS || D == LHS) && NoRHSWrapProblem)
2564       if (Value *V =
2565               SimplifyICmpInst(Pred, Constant::getNullValue(LHS->getType()),
2566                                C == LHS ? D : C, Q, MaxRecurse - 1))
2567         return V;
2568 
2569     // icmp (X+Y), (X+Z) -> icmp Y,Z for equalities or if there is no overflow.
2570     if (A && C && (A == C || A == D || B == C || B == D) && NoLHSWrapProblem &&
2571         NoRHSWrapProblem) {
2572       // Determine Y and Z in the form icmp (X+Y), (X+Z).
2573       Value *Y, *Z;
2574       if (A == C) {
2575         // C + B == C + D  ->  B == D
2576         Y = B;
2577         Z = D;
2578       } else if (A == D) {
2579         // D + B == C + D  ->  B == C
2580         Y = B;
2581         Z = C;
2582       } else if (B == C) {
2583         // A + C == C + D  ->  A == D
2584         Y = A;
2585         Z = D;
2586       } else {
2587         assert(B == D);
2588         // A + D == C + D  ->  A == C
2589         Y = A;
2590         Z = C;
2591       }
2592       if (Value *V = SimplifyICmpInst(Pred, Y, Z, Q, MaxRecurse - 1))
2593         return V;
2594     }
2595   }
2596 
2597   {
2598     Value *Y = nullptr;
2599     // icmp pred (or X, Y), X
2600     if (LBO && match(LBO, m_c_Or(m_Value(Y), m_Specific(RHS)))) {
2601       if (Pred == ICmpInst::ICMP_ULT)
2602         return getFalse(ITy);
2603       if (Pred == ICmpInst::ICMP_UGE)
2604         return getTrue(ITy);
2605 
2606       if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SGE) {
2607         KnownBits RHSKnown = computeKnownBits(RHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
2608         KnownBits YKnown = computeKnownBits(Y, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
2609         if (RHSKnown.isNonNegative() && YKnown.isNegative())
2610           return Pred == ICmpInst::ICMP_SLT ? getTrue(ITy) : getFalse(ITy);
2611         if (RHSKnown.isNegative() || YKnown.isNonNegative())
2612           return Pred == ICmpInst::ICMP_SLT ? getFalse(ITy) : getTrue(ITy);
2613       }
2614     }
2615     // icmp pred X, (or X, Y)
2616     if (RBO && match(RBO, m_c_Or(m_Value(Y), m_Specific(LHS)))) {
2617       if (Pred == ICmpInst::ICMP_ULE)
2618         return getTrue(ITy);
2619       if (Pred == ICmpInst::ICMP_UGT)
2620         return getFalse(ITy);
2621 
2622       if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SLE) {
2623         KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
2624         KnownBits YKnown = computeKnownBits(Y, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
2625         if (LHSKnown.isNonNegative() && YKnown.isNegative())
2626           return Pred == ICmpInst::ICMP_SGT ? getTrue(ITy) : getFalse(ITy);
2627         if (LHSKnown.isNegative() || YKnown.isNonNegative())
2628           return Pred == ICmpInst::ICMP_SGT ? getFalse(ITy) : getTrue(ITy);
2629       }
2630     }
2631   }
2632 
2633   // icmp pred (and X, Y), X
2634   if (LBO && match(LBO, m_c_And(m_Value(), m_Specific(RHS)))) {
2635     if (Pred == ICmpInst::ICMP_UGT)
2636       return getFalse(ITy);
2637     if (Pred == ICmpInst::ICMP_ULE)
2638       return getTrue(ITy);
2639   }
2640   // icmp pred X, (and X, Y)
2641   if (RBO && match(RBO, m_c_And(m_Value(), m_Specific(LHS)))) {
2642     if (Pred == ICmpInst::ICMP_UGE)
2643       return getTrue(ITy);
2644     if (Pred == ICmpInst::ICMP_ULT)
2645       return getFalse(ITy);
2646   }
2647 
2648   // 0 - (zext X) pred C
2649   if (!CmpInst::isUnsigned(Pred) && match(LHS, m_Neg(m_ZExt(m_Value())))) {
2650     if (ConstantInt *RHSC = dyn_cast<ConstantInt>(RHS)) {
2651       if (RHSC->getValue().isStrictlyPositive()) {
2652         if (Pred == ICmpInst::ICMP_SLT)
2653           return ConstantInt::getTrue(RHSC->getContext());
2654         if (Pred == ICmpInst::ICMP_SGE)
2655           return ConstantInt::getFalse(RHSC->getContext());
2656         if (Pred == ICmpInst::ICMP_EQ)
2657           return ConstantInt::getFalse(RHSC->getContext());
2658         if (Pred == ICmpInst::ICMP_NE)
2659           return ConstantInt::getTrue(RHSC->getContext());
2660       }
2661       if (RHSC->getValue().isNonNegative()) {
2662         if (Pred == ICmpInst::ICMP_SLE)
2663           return ConstantInt::getTrue(RHSC->getContext());
2664         if (Pred == ICmpInst::ICMP_SGT)
2665           return ConstantInt::getFalse(RHSC->getContext());
2666       }
2667     }
2668   }
2669 
2670   // icmp pred (urem X, Y), Y
2671   if (LBO && match(LBO, m_URem(m_Value(), m_Specific(RHS)))) {
2672     switch (Pred) {
2673     default:
2674       break;
2675     case ICmpInst::ICMP_SGT:
2676     case ICmpInst::ICMP_SGE: {
2677       KnownBits Known = computeKnownBits(RHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
2678       if (!Known.isNonNegative())
2679         break;
2680       LLVM_FALLTHROUGH;
2681     }
2682     case ICmpInst::ICMP_EQ:
2683     case ICmpInst::ICMP_UGT:
2684     case ICmpInst::ICMP_UGE:
2685       return getFalse(ITy);
2686     case ICmpInst::ICMP_SLT:
2687     case ICmpInst::ICMP_SLE: {
2688       KnownBits Known = computeKnownBits(RHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
2689       if (!Known.isNonNegative())
2690         break;
2691       LLVM_FALLTHROUGH;
2692     }
2693     case ICmpInst::ICMP_NE:
2694     case ICmpInst::ICMP_ULT:
2695     case ICmpInst::ICMP_ULE:
2696       return getTrue(ITy);
2697     }
2698   }
2699 
2700   // icmp pred X, (urem Y, X)
2701   if (RBO && match(RBO, m_URem(m_Value(), m_Specific(LHS)))) {
2702     switch (Pred) {
2703     default:
2704       break;
2705     case ICmpInst::ICMP_SGT:
2706     case ICmpInst::ICMP_SGE: {
2707       KnownBits Known = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
2708       if (!Known.isNonNegative())
2709         break;
2710       LLVM_FALLTHROUGH;
2711     }
2712     case ICmpInst::ICMP_NE:
2713     case ICmpInst::ICMP_UGT:
2714     case ICmpInst::ICMP_UGE:
2715       return getTrue(ITy);
2716     case ICmpInst::ICMP_SLT:
2717     case ICmpInst::ICMP_SLE: {
2718       KnownBits Known = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
2719       if (!Known.isNonNegative())
2720         break;
2721       LLVM_FALLTHROUGH;
2722     }
2723     case ICmpInst::ICMP_EQ:
2724     case ICmpInst::ICMP_ULT:
2725     case ICmpInst::ICMP_ULE:
2726       return getFalse(ITy);
2727     }
2728   }
2729 
2730   // x >> y <=u x
2731   // x udiv y <=u x.
2732   if (LBO && (match(LBO, m_LShr(m_Specific(RHS), m_Value())) ||
2733               match(LBO, m_UDiv(m_Specific(RHS), m_Value())))) {
2734     // icmp pred (X op Y), X
2735     if (Pred == ICmpInst::ICMP_UGT)
2736       return getFalse(ITy);
2737     if (Pred == ICmpInst::ICMP_ULE)
2738       return getTrue(ITy);
2739   }
2740 
2741   // x >=u x >> y
2742   // x >=u x udiv y.
2743   if (RBO && (match(RBO, m_LShr(m_Specific(LHS), m_Value())) ||
2744               match(RBO, m_UDiv(m_Specific(LHS), m_Value())))) {
2745     // icmp pred X, (X op Y)
2746     if (Pred == ICmpInst::ICMP_ULT)
2747       return getFalse(ITy);
2748     if (Pred == ICmpInst::ICMP_UGE)
2749       return getTrue(ITy);
2750   }
2751 
2752   // handle:
2753   //   CI2 << X == CI
2754   //   CI2 << X != CI
2755   //
2756   //   where CI2 is a power of 2 and CI isn't
2757   if (auto *CI = dyn_cast<ConstantInt>(RHS)) {
2758     const APInt *CI2Val, *CIVal = &CI->getValue();
2759     if (LBO && match(LBO, m_Shl(m_APInt(CI2Val), m_Value())) &&
2760         CI2Val->isPowerOf2()) {
2761       if (!CIVal->isPowerOf2()) {
2762         // CI2 << X can equal zero in some circumstances,
2763         // this simplification is unsafe if CI is zero.
2764         //
2765         // We know it is safe if:
2766         // - The shift is nsw, we can't shift out the one bit.
2767         // - The shift is nuw, we can't shift out the one bit.
2768         // - CI2 is one
2769         // - CI isn't zero
2770         if (LBO->hasNoSignedWrap() || LBO->hasNoUnsignedWrap() ||
2771             CI2Val->isOneValue() || !CI->isZero()) {
2772           if (Pred == ICmpInst::ICMP_EQ)
2773             return ConstantInt::getFalse(RHS->getContext());
2774           if (Pred == ICmpInst::ICMP_NE)
2775             return ConstantInt::getTrue(RHS->getContext());
2776         }
2777       }
2778       if (CIVal->isSignMask() && CI2Val->isOneValue()) {
2779         if (Pred == ICmpInst::ICMP_UGT)
2780           return ConstantInt::getFalse(RHS->getContext());
2781         if (Pred == ICmpInst::ICMP_ULE)
2782           return ConstantInt::getTrue(RHS->getContext());
2783       }
2784     }
2785   }
2786 
2787   if (MaxRecurse && LBO && RBO && LBO->getOpcode() == RBO->getOpcode() &&
2788       LBO->getOperand(1) == RBO->getOperand(1)) {
2789     switch (LBO->getOpcode()) {
2790     default:
2791       break;
2792     case Instruction::UDiv:
2793     case Instruction::LShr:
2794       if (ICmpInst::isSigned(Pred) || !LBO->isExact() || !RBO->isExact())
2795         break;
2796       if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0),
2797                                       RBO->getOperand(0), Q, MaxRecurse - 1))
2798           return V;
2799       break;
2800     case Instruction::SDiv:
2801       if (!ICmpInst::isEquality(Pred) || !LBO->isExact() || !RBO->isExact())
2802         break;
2803       if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0),
2804                                       RBO->getOperand(0), Q, MaxRecurse - 1))
2805         return V;
2806       break;
2807     case Instruction::AShr:
2808       if (!LBO->isExact() || !RBO->isExact())
2809         break;
2810       if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0),
2811                                       RBO->getOperand(0), Q, MaxRecurse - 1))
2812         return V;
2813       break;
2814     case Instruction::Shl: {
2815       bool NUW = LBO->hasNoUnsignedWrap() && RBO->hasNoUnsignedWrap();
2816       bool NSW = LBO->hasNoSignedWrap() && RBO->hasNoSignedWrap();
2817       if (!NUW && !NSW)
2818         break;
2819       if (!NSW && ICmpInst::isSigned(Pred))
2820         break;
2821       if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0),
2822                                       RBO->getOperand(0), Q, MaxRecurse - 1))
2823         return V;
2824       break;
2825     }
2826     }
2827   }
2828   return nullptr;
2829 }
2830 
2831 /// Simplify integer comparisons where at least one operand of the compare
2832 /// matches an integer min/max idiom.
2833 static Value *simplifyICmpWithMinMax(CmpInst::Predicate Pred, Value *LHS,
2834                                      Value *RHS, const SimplifyQuery &Q,
2835                                      unsigned MaxRecurse) {
2836   Type *ITy = GetCompareTy(LHS); // The return type.
2837   Value *A, *B;
2838   CmpInst::Predicate P = CmpInst::BAD_ICMP_PREDICATE;
2839   CmpInst::Predicate EqP; // Chosen so that "A == max/min(A,B)" iff "A EqP B".
2840 
2841   // Signed variants on "max(a,b)>=a -> true".
2842   if (match(LHS, m_SMax(m_Value(A), m_Value(B))) && (A == RHS || B == RHS)) {
2843     if (A != RHS)
2844       std::swap(A, B);       // smax(A, B) pred A.
2845     EqP = CmpInst::ICMP_SGE; // "A == smax(A, B)" iff "A sge B".
2846     // We analyze this as smax(A, B) pred A.
2847     P = Pred;
2848   } else if (match(RHS, m_SMax(m_Value(A), m_Value(B))) &&
2849              (A == LHS || B == LHS)) {
2850     if (A != LHS)
2851       std::swap(A, B);       // A pred smax(A, B).
2852     EqP = CmpInst::ICMP_SGE; // "A == smax(A, B)" iff "A sge B".
2853     // We analyze this as smax(A, B) swapped-pred A.
2854     P = CmpInst::getSwappedPredicate(Pred);
2855   } else if (match(LHS, m_SMin(m_Value(A), m_Value(B))) &&
2856              (A == RHS || B == RHS)) {
2857     if (A != RHS)
2858       std::swap(A, B);       // smin(A, B) pred A.
2859     EqP = CmpInst::ICMP_SLE; // "A == smin(A, B)" iff "A sle B".
2860     // We analyze this as smax(-A, -B) swapped-pred -A.
2861     // Note that we do not need to actually form -A or -B thanks to EqP.
2862     P = CmpInst::getSwappedPredicate(Pred);
2863   } else if (match(RHS, m_SMin(m_Value(A), m_Value(B))) &&
2864              (A == LHS || B == LHS)) {
2865     if (A != LHS)
2866       std::swap(A, B);       // A pred smin(A, B).
2867     EqP = CmpInst::ICMP_SLE; // "A == smin(A, B)" iff "A sle B".
2868     // We analyze this as smax(-A, -B) pred -A.
2869     // Note that we do not need to actually form -A or -B thanks to EqP.
2870     P = Pred;
2871   }
2872   if (P != CmpInst::BAD_ICMP_PREDICATE) {
2873     // Cases correspond to "max(A, B) p A".
2874     switch (P) {
2875     default:
2876       break;
2877     case CmpInst::ICMP_EQ:
2878     case CmpInst::ICMP_SLE:
2879       // Equivalent to "A EqP B".  This may be the same as the condition tested
2880       // in the max/min; if so, we can just return that.
2881       if (Value *V = ExtractEquivalentCondition(LHS, EqP, A, B))
2882         return V;
2883       if (Value *V = ExtractEquivalentCondition(RHS, EqP, A, B))
2884         return V;
2885       // Otherwise, see if "A EqP B" simplifies.
2886       if (MaxRecurse)
2887         if (Value *V = SimplifyICmpInst(EqP, A, B, Q, MaxRecurse - 1))
2888           return V;
2889       break;
2890     case CmpInst::ICMP_NE:
2891     case CmpInst::ICMP_SGT: {
2892       CmpInst::Predicate InvEqP = CmpInst::getInversePredicate(EqP);
2893       // Equivalent to "A InvEqP B".  This may be the same as the condition
2894       // tested in the max/min; if so, we can just return that.
2895       if (Value *V = ExtractEquivalentCondition(LHS, InvEqP, A, B))
2896         return V;
2897       if (Value *V = ExtractEquivalentCondition(RHS, InvEqP, A, B))
2898         return V;
2899       // Otherwise, see if "A InvEqP B" simplifies.
2900       if (MaxRecurse)
2901         if (Value *V = SimplifyICmpInst(InvEqP, A, B, Q, MaxRecurse - 1))
2902           return V;
2903       break;
2904     }
2905     case CmpInst::ICMP_SGE:
2906       // Always true.
2907       return getTrue(ITy);
2908     case CmpInst::ICMP_SLT:
2909       // Always false.
2910       return getFalse(ITy);
2911     }
2912   }
2913 
2914   // Unsigned variants on "max(a,b)>=a -> true".
2915   P = CmpInst::BAD_ICMP_PREDICATE;
2916   if (match(LHS, m_UMax(m_Value(A), m_Value(B))) && (A == RHS || B == RHS)) {
2917     if (A != RHS)
2918       std::swap(A, B);       // umax(A, B) pred A.
2919     EqP = CmpInst::ICMP_UGE; // "A == umax(A, B)" iff "A uge B".
2920     // We analyze this as umax(A, B) pred A.
2921     P = Pred;
2922   } else if (match(RHS, m_UMax(m_Value(A), m_Value(B))) &&
2923              (A == LHS || B == LHS)) {
2924     if (A != LHS)
2925       std::swap(A, B);       // A pred umax(A, B).
2926     EqP = CmpInst::ICMP_UGE; // "A == umax(A, B)" iff "A uge B".
2927     // We analyze this as umax(A, B) swapped-pred A.
2928     P = CmpInst::getSwappedPredicate(Pred);
2929   } else if (match(LHS, m_UMin(m_Value(A), m_Value(B))) &&
2930              (A == RHS || B == RHS)) {
2931     if (A != RHS)
2932       std::swap(A, B);       // umin(A, B) pred A.
2933     EqP = CmpInst::ICMP_ULE; // "A == umin(A, B)" iff "A ule B".
2934     // We analyze this as umax(-A, -B) swapped-pred -A.
2935     // Note that we do not need to actually form -A or -B thanks to EqP.
2936     P = CmpInst::getSwappedPredicate(Pred);
2937   } else if (match(RHS, m_UMin(m_Value(A), m_Value(B))) &&
2938              (A == LHS || B == LHS)) {
2939     if (A != LHS)
2940       std::swap(A, B);       // A pred umin(A, B).
2941     EqP = CmpInst::ICMP_ULE; // "A == umin(A, B)" iff "A ule B".
2942     // We analyze this as umax(-A, -B) pred -A.
2943     // Note that we do not need to actually form -A or -B thanks to EqP.
2944     P = Pred;
2945   }
2946   if (P != CmpInst::BAD_ICMP_PREDICATE) {
2947     // Cases correspond to "max(A, B) p A".
2948     switch (P) {
2949     default:
2950       break;
2951     case CmpInst::ICMP_EQ:
2952     case CmpInst::ICMP_ULE:
2953       // Equivalent to "A EqP B".  This may be the same as the condition tested
2954       // in the max/min; if so, we can just return that.
2955       if (Value *V = ExtractEquivalentCondition(LHS, EqP, A, B))
2956         return V;
2957       if (Value *V = ExtractEquivalentCondition(RHS, EqP, A, B))
2958         return V;
2959       // Otherwise, see if "A EqP B" simplifies.
2960       if (MaxRecurse)
2961         if (Value *V = SimplifyICmpInst(EqP, A, B, Q, MaxRecurse - 1))
2962           return V;
2963       break;
2964     case CmpInst::ICMP_NE:
2965     case CmpInst::ICMP_UGT: {
2966       CmpInst::Predicate InvEqP = CmpInst::getInversePredicate(EqP);
2967       // Equivalent to "A InvEqP B".  This may be the same as the condition
2968       // tested in the max/min; if so, we can just return that.
2969       if (Value *V = ExtractEquivalentCondition(LHS, InvEqP, A, B))
2970         return V;
2971       if (Value *V = ExtractEquivalentCondition(RHS, InvEqP, A, B))
2972         return V;
2973       // Otherwise, see if "A InvEqP B" simplifies.
2974       if (MaxRecurse)
2975         if (Value *V = SimplifyICmpInst(InvEqP, A, B, Q, MaxRecurse - 1))
2976           return V;
2977       break;
2978     }
2979     case CmpInst::ICMP_UGE:
2980       // Always true.
2981       return getTrue(ITy);
2982     case CmpInst::ICMP_ULT:
2983       // Always false.
2984       return getFalse(ITy);
2985     }
2986   }
2987 
2988   // Variants on "max(x,y) >= min(x,z)".
2989   Value *C, *D;
2990   if (match(LHS, m_SMax(m_Value(A), m_Value(B))) &&
2991       match(RHS, m_SMin(m_Value(C), m_Value(D))) &&
2992       (A == C || A == D || B == C || B == D)) {
2993     // max(x, ?) pred min(x, ?).
2994     if (Pred == CmpInst::ICMP_SGE)
2995       // Always true.
2996       return getTrue(ITy);
2997     if (Pred == CmpInst::ICMP_SLT)
2998       // Always false.
2999       return getFalse(ITy);
3000   } else if (match(LHS, m_SMin(m_Value(A), m_Value(B))) &&
3001              match(RHS, m_SMax(m_Value(C), m_Value(D))) &&
3002              (A == C || A == D || B == C || B == D)) {
3003     // min(x, ?) pred max(x, ?).
3004     if (Pred == CmpInst::ICMP_SLE)
3005       // Always true.
3006       return getTrue(ITy);
3007     if (Pred == CmpInst::ICMP_SGT)
3008       // Always false.
3009       return getFalse(ITy);
3010   } else if (match(LHS, m_UMax(m_Value(A), m_Value(B))) &&
3011              match(RHS, m_UMin(m_Value(C), m_Value(D))) &&
3012              (A == C || A == D || B == C || B == D)) {
3013     // max(x, ?) pred min(x, ?).
3014     if (Pred == CmpInst::ICMP_UGE)
3015       // Always true.
3016       return getTrue(ITy);
3017     if (Pred == CmpInst::ICMP_ULT)
3018       // Always false.
3019       return getFalse(ITy);
3020   } else if (match(LHS, m_UMin(m_Value(A), m_Value(B))) &&
3021              match(RHS, m_UMax(m_Value(C), m_Value(D))) &&
3022              (A == C || A == D || B == C || B == D)) {
3023     // min(x, ?) pred max(x, ?).
3024     if (Pred == CmpInst::ICMP_ULE)
3025       // Always true.
3026       return getTrue(ITy);
3027     if (Pred == CmpInst::ICMP_UGT)
3028       // Always false.
3029       return getFalse(ITy);
3030   }
3031 
3032   return nullptr;
3033 }
3034 
3035 /// Given operands for an ICmpInst, see if we can fold the result.
3036 /// If not, this returns null.
3037 static Value *SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS,
3038                                const SimplifyQuery &Q, unsigned MaxRecurse) {
3039   CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate;
3040   assert(CmpInst::isIntPredicate(Pred) && "Not an integer compare!");
3041 
3042   if (Constant *CLHS = dyn_cast<Constant>(LHS)) {
3043     if (Constant *CRHS = dyn_cast<Constant>(RHS))
3044       return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, Q.DL, Q.TLI);
3045 
3046     // If we have a constant, make sure it is on the RHS.
3047     std::swap(LHS, RHS);
3048     Pred = CmpInst::getSwappedPredicate(Pred);
3049   }
3050 
3051   Type *ITy = GetCompareTy(LHS); // The return type.
3052 
3053   // icmp X, X -> true/false
3054   // X icmp undef -> true/false.  For example, icmp ugt %X, undef -> false
3055   // because X could be 0.
3056   if (LHS == RHS || isa<UndefValue>(RHS))
3057     return ConstantInt::get(ITy, CmpInst::isTrueWhenEqual(Pred));
3058 
3059   if (Value *V = simplifyICmpOfBools(Pred, LHS, RHS, Q))
3060     return V;
3061 
3062   if (Value *V = simplifyICmpWithZero(Pred, LHS, RHS, Q))
3063     return V;
3064 
3065   if (Value *V = simplifyICmpWithConstant(Pred, LHS, RHS))
3066     return V;
3067 
3068   // If both operands have range metadata, use the metadata
3069   // to simplify the comparison.
3070   if (isa<Instruction>(RHS) && isa<Instruction>(LHS)) {
3071     auto RHS_Instr = cast<Instruction>(RHS);
3072     auto LHS_Instr = cast<Instruction>(LHS);
3073 
3074     if (RHS_Instr->getMetadata(LLVMContext::MD_range) &&
3075         LHS_Instr->getMetadata(LLVMContext::MD_range)) {
3076       auto RHS_CR = getConstantRangeFromMetadata(
3077           *RHS_Instr->getMetadata(LLVMContext::MD_range));
3078       auto LHS_CR = getConstantRangeFromMetadata(
3079           *LHS_Instr->getMetadata(LLVMContext::MD_range));
3080 
3081       auto Satisfied_CR = ConstantRange::makeSatisfyingICmpRegion(Pred, RHS_CR);
3082       if (Satisfied_CR.contains(LHS_CR))
3083         return ConstantInt::getTrue(RHS->getContext());
3084 
3085       auto InversedSatisfied_CR = ConstantRange::makeSatisfyingICmpRegion(
3086                 CmpInst::getInversePredicate(Pred), RHS_CR);
3087       if (InversedSatisfied_CR.contains(LHS_CR))
3088         return ConstantInt::getFalse(RHS->getContext());
3089     }
3090   }
3091 
3092   // Compare of cast, for example (zext X) != 0 -> X != 0
3093   if (isa<CastInst>(LHS) && (isa<Constant>(RHS) || isa<CastInst>(RHS))) {
3094     Instruction *LI = cast<CastInst>(LHS);
3095     Value *SrcOp = LI->getOperand(0);
3096     Type *SrcTy = SrcOp->getType();
3097     Type *DstTy = LI->getType();
3098 
3099     // Turn icmp (ptrtoint x), (ptrtoint/constant) into a compare of the input
3100     // if the integer type is the same size as the pointer type.
3101     if (MaxRecurse && isa<PtrToIntInst>(LI) &&
3102         Q.DL.getTypeSizeInBits(SrcTy) == DstTy->getPrimitiveSizeInBits()) {
3103       if (Constant *RHSC = dyn_cast<Constant>(RHS)) {
3104         // Transfer the cast to the constant.
3105         if (Value *V = SimplifyICmpInst(Pred, SrcOp,
3106                                         ConstantExpr::getIntToPtr(RHSC, SrcTy),
3107                                         Q, MaxRecurse-1))
3108           return V;
3109       } else if (PtrToIntInst *RI = dyn_cast<PtrToIntInst>(RHS)) {
3110         if (RI->getOperand(0)->getType() == SrcTy)
3111           // Compare without the cast.
3112           if (Value *V = SimplifyICmpInst(Pred, SrcOp, RI->getOperand(0),
3113                                           Q, MaxRecurse-1))
3114             return V;
3115       }
3116     }
3117 
3118     if (isa<ZExtInst>(LHS)) {
3119       // Turn icmp (zext X), (zext Y) into a compare of X and Y if they have the
3120       // same type.
3121       if (ZExtInst *RI = dyn_cast<ZExtInst>(RHS)) {
3122         if (MaxRecurse && SrcTy == RI->getOperand(0)->getType())
3123           // Compare X and Y.  Note that signed predicates become unsigned.
3124           if (Value *V = SimplifyICmpInst(ICmpInst::getUnsignedPredicate(Pred),
3125                                           SrcOp, RI->getOperand(0), Q,
3126                                           MaxRecurse-1))
3127             return V;
3128       }
3129       // Turn icmp (zext X), Cst into a compare of X and Cst if Cst is extended
3130       // too.  If not, then try to deduce the result of the comparison.
3131       else if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
3132         // Compute the constant that would happen if we truncated to SrcTy then
3133         // reextended to DstTy.
3134         Constant *Trunc = ConstantExpr::getTrunc(CI, SrcTy);
3135         Constant *RExt = ConstantExpr::getCast(CastInst::ZExt, Trunc, DstTy);
3136 
3137         // If the re-extended constant didn't change then this is effectively
3138         // also a case of comparing two zero-extended values.
3139         if (RExt == CI && MaxRecurse)
3140           if (Value *V = SimplifyICmpInst(ICmpInst::getUnsignedPredicate(Pred),
3141                                         SrcOp, Trunc, Q, MaxRecurse-1))
3142             return V;
3143 
3144         // Otherwise the upper bits of LHS are zero while RHS has a non-zero bit
3145         // there.  Use this to work out the result of the comparison.
3146         if (RExt != CI) {
3147           switch (Pred) {
3148           default: llvm_unreachable("Unknown ICmp predicate!");
3149           // LHS <u RHS.
3150           case ICmpInst::ICMP_EQ:
3151           case ICmpInst::ICMP_UGT:
3152           case ICmpInst::ICMP_UGE:
3153             return ConstantInt::getFalse(CI->getContext());
3154 
3155           case ICmpInst::ICMP_NE:
3156           case ICmpInst::ICMP_ULT:
3157           case ICmpInst::ICMP_ULE:
3158             return ConstantInt::getTrue(CI->getContext());
3159 
3160           // LHS is non-negative.  If RHS is negative then LHS >s LHS.  If RHS
3161           // is non-negative then LHS <s RHS.
3162           case ICmpInst::ICMP_SGT:
3163           case ICmpInst::ICMP_SGE:
3164             return CI->getValue().isNegative() ?
3165               ConstantInt::getTrue(CI->getContext()) :
3166               ConstantInt::getFalse(CI->getContext());
3167 
3168           case ICmpInst::ICMP_SLT:
3169           case ICmpInst::ICMP_SLE:
3170             return CI->getValue().isNegative() ?
3171               ConstantInt::getFalse(CI->getContext()) :
3172               ConstantInt::getTrue(CI->getContext());
3173           }
3174         }
3175       }
3176     }
3177 
3178     if (isa<SExtInst>(LHS)) {
3179       // Turn icmp (sext X), (sext Y) into a compare of X and Y if they have the
3180       // same type.
3181       if (SExtInst *RI = dyn_cast<SExtInst>(RHS)) {
3182         if (MaxRecurse && SrcTy == RI->getOperand(0)->getType())
3183           // Compare X and Y.  Note that the predicate does not change.
3184           if (Value *V = SimplifyICmpInst(Pred, SrcOp, RI->getOperand(0),
3185                                           Q, MaxRecurse-1))
3186             return V;
3187       }
3188       // Turn icmp (sext X), Cst into a compare of X and Cst if Cst is extended
3189       // too.  If not, then try to deduce the result of the comparison.
3190       else if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
3191         // Compute the constant that would happen if we truncated to SrcTy then
3192         // reextended to DstTy.
3193         Constant *Trunc = ConstantExpr::getTrunc(CI, SrcTy);
3194         Constant *RExt = ConstantExpr::getCast(CastInst::SExt, Trunc, DstTy);
3195 
3196         // If the re-extended constant didn't change then this is effectively
3197         // also a case of comparing two sign-extended values.
3198         if (RExt == CI && MaxRecurse)
3199           if (Value *V = SimplifyICmpInst(Pred, SrcOp, Trunc, Q, MaxRecurse-1))
3200             return V;
3201 
3202         // Otherwise the upper bits of LHS are all equal, while RHS has varying
3203         // bits there.  Use this to work out the result of the comparison.
3204         if (RExt != CI) {
3205           switch (Pred) {
3206           default: llvm_unreachable("Unknown ICmp predicate!");
3207           case ICmpInst::ICMP_EQ:
3208             return ConstantInt::getFalse(CI->getContext());
3209           case ICmpInst::ICMP_NE:
3210             return ConstantInt::getTrue(CI->getContext());
3211 
3212           // If RHS is non-negative then LHS <s RHS.  If RHS is negative then
3213           // LHS >s RHS.
3214           case ICmpInst::ICMP_SGT:
3215           case ICmpInst::ICMP_SGE:
3216             return CI->getValue().isNegative() ?
3217               ConstantInt::getTrue(CI->getContext()) :
3218               ConstantInt::getFalse(CI->getContext());
3219           case ICmpInst::ICMP_SLT:
3220           case ICmpInst::ICMP_SLE:
3221             return CI->getValue().isNegative() ?
3222               ConstantInt::getFalse(CI->getContext()) :
3223               ConstantInt::getTrue(CI->getContext());
3224 
3225           // If LHS is non-negative then LHS <u RHS.  If LHS is negative then
3226           // LHS >u RHS.
3227           case ICmpInst::ICMP_UGT:
3228           case ICmpInst::ICMP_UGE:
3229             // Comparison is true iff the LHS <s 0.
3230             if (MaxRecurse)
3231               if (Value *V = SimplifyICmpInst(ICmpInst::ICMP_SLT, SrcOp,
3232                                               Constant::getNullValue(SrcTy),
3233                                               Q, MaxRecurse-1))
3234                 return V;
3235             break;
3236           case ICmpInst::ICMP_ULT:
3237           case ICmpInst::ICMP_ULE:
3238             // Comparison is true iff the LHS >=s 0.
3239             if (MaxRecurse)
3240               if (Value *V = SimplifyICmpInst(ICmpInst::ICMP_SGE, SrcOp,
3241                                               Constant::getNullValue(SrcTy),
3242                                               Q, MaxRecurse-1))
3243                 return V;
3244             break;
3245           }
3246         }
3247       }
3248     }
3249   }
3250 
3251   // icmp eq|ne X, Y -> false|true if X != Y
3252   if (ICmpInst::isEquality(Pred) &&
3253       isKnownNonEqual(LHS, RHS, Q.DL, Q.AC, Q.CxtI, Q.DT)) {
3254     return Pred == ICmpInst::ICMP_NE ? getTrue(ITy) : getFalse(ITy);
3255   }
3256 
3257   if (Value *V = simplifyICmpWithBinOp(Pred, LHS, RHS, Q, MaxRecurse))
3258     return V;
3259 
3260   if (Value *V = simplifyICmpWithMinMax(Pred, LHS, RHS, Q, MaxRecurse))
3261     return V;
3262 
3263   // Simplify comparisons of related pointers using a powerful, recursive
3264   // GEP-walk when we have target data available..
3265   if (LHS->getType()->isPointerTy())
3266     if (auto *C = computePointerICmp(Q.DL, Q.TLI, Q.DT, Pred, Q.AC, Q.CxtI, LHS,
3267                                      RHS))
3268       return C;
3269   if (auto *CLHS = dyn_cast<PtrToIntOperator>(LHS))
3270     if (auto *CRHS = dyn_cast<PtrToIntOperator>(RHS))
3271       if (Q.DL.getTypeSizeInBits(CLHS->getPointerOperandType()) ==
3272               Q.DL.getTypeSizeInBits(CLHS->getType()) &&
3273           Q.DL.getTypeSizeInBits(CRHS->getPointerOperandType()) ==
3274               Q.DL.getTypeSizeInBits(CRHS->getType()))
3275         if (auto *C = computePointerICmp(Q.DL, Q.TLI, Q.DT, Pred, Q.AC, Q.CxtI,
3276                                          CLHS->getPointerOperand(),
3277                                          CRHS->getPointerOperand()))
3278           return C;
3279 
3280   if (GetElementPtrInst *GLHS = dyn_cast<GetElementPtrInst>(LHS)) {
3281     if (GEPOperator *GRHS = dyn_cast<GEPOperator>(RHS)) {
3282       if (GLHS->getPointerOperand() == GRHS->getPointerOperand() &&
3283           GLHS->hasAllConstantIndices() && GRHS->hasAllConstantIndices() &&
3284           (ICmpInst::isEquality(Pred) ||
3285            (GLHS->isInBounds() && GRHS->isInBounds() &&
3286             Pred == ICmpInst::getSignedPredicate(Pred)))) {
3287         // The bases are equal and the indices are constant.  Build a constant
3288         // expression GEP with the same indices and a null base pointer to see
3289         // what constant folding can make out of it.
3290         Constant *Null = Constant::getNullValue(GLHS->getPointerOperandType());
3291         SmallVector<Value *, 4> IndicesLHS(GLHS->idx_begin(), GLHS->idx_end());
3292         Constant *NewLHS = ConstantExpr::getGetElementPtr(
3293             GLHS->getSourceElementType(), Null, IndicesLHS);
3294 
3295         SmallVector<Value *, 4> IndicesRHS(GRHS->idx_begin(), GRHS->idx_end());
3296         Constant *NewRHS = ConstantExpr::getGetElementPtr(
3297             GLHS->getSourceElementType(), Null, IndicesRHS);
3298         return ConstantExpr::getICmp(Pred, NewLHS, NewRHS);
3299       }
3300     }
3301   }
3302 
3303   // If the comparison is with the result of a select instruction, check whether
3304   // comparing with either branch of the select always yields the same value.
3305   if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS))
3306     if (Value *V = ThreadCmpOverSelect(Pred, LHS, RHS, Q, MaxRecurse))
3307       return V;
3308 
3309   // If the comparison is with the result of a phi instruction, check whether
3310   // doing the compare with each incoming phi value yields a common result.
3311   if (isa<PHINode>(LHS) || isa<PHINode>(RHS))
3312     if (Value *V = ThreadCmpOverPHI(Pred, LHS, RHS, Q, MaxRecurse))
3313       return V;
3314 
3315   return nullptr;
3316 }
3317 
3318 Value *llvm::SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS,
3319                               const SimplifyQuery &Q) {
3320   return ::SimplifyICmpInst(Predicate, LHS, RHS, Q, RecursionLimit);
3321 }
3322 
3323 /// Given operands for an FCmpInst, see if we can fold the result.
3324 /// If not, this returns null.
3325 static Value *SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
3326                                FastMathFlags FMF, const SimplifyQuery &Q,
3327                                unsigned MaxRecurse) {
3328   CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate;
3329   assert(CmpInst::isFPPredicate(Pred) && "Not an FP compare!");
3330 
3331   if (Constant *CLHS = dyn_cast<Constant>(LHS)) {
3332     if (Constant *CRHS = dyn_cast<Constant>(RHS))
3333       return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, Q.DL, Q.TLI);
3334 
3335     // If we have a constant, make sure it is on the RHS.
3336     std::swap(LHS, RHS);
3337     Pred = CmpInst::getSwappedPredicate(Pred);
3338   }
3339 
3340   // Fold trivial predicates.
3341   Type *RetTy = GetCompareTy(LHS);
3342   if (Pred == FCmpInst::FCMP_FALSE)
3343     return getFalse(RetTy);
3344   if (Pred == FCmpInst::FCMP_TRUE)
3345     return getTrue(RetTy);
3346 
3347   // UNO/ORD predicates can be trivially folded if NaNs are ignored.
3348   if (FMF.noNaNs()) {
3349     if (Pred == FCmpInst::FCMP_UNO)
3350       return getFalse(RetTy);
3351     if (Pred == FCmpInst::FCMP_ORD)
3352       return getTrue(RetTy);
3353   }
3354 
3355   // fcmp pred x, undef  and  fcmp pred undef, x
3356   // fold to true if unordered, false if ordered
3357   if (isa<UndefValue>(LHS) || isa<UndefValue>(RHS)) {
3358     // Choosing NaN for the undef will always make unordered comparison succeed
3359     // and ordered comparison fail.
3360     return ConstantInt::get(RetTy, CmpInst::isUnordered(Pred));
3361   }
3362 
3363   // fcmp x,x -> true/false.  Not all compares are foldable.
3364   if (LHS == RHS) {
3365     if (CmpInst::isTrueWhenEqual(Pred))
3366       return getTrue(RetTy);
3367     if (CmpInst::isFalseWhenEqual(Pred))
3368       return getFalse(RetTy);
3369   }
3370 
3371   // Handle fcmp with constant RHS.
3372   const APFloat *C;
3373   if (match(RHS, m_APFloat(C))) {
3374     // If the constant is a nan, see if we can fold the comparison based on it.
3375     if (C->isNaN()) {
3376       if (FCmpInst::isOrdered(Pred)) // True "if ordered and foo"
3377         return getFalse(RetTy);
3378       assert(FCmpInst::isUnordered(Pred) &&
3379              "Comparison must be either ordered or unordered!");
3380       // True if unordered.
3381       return getTrue(RetTy);
3382     }
3383     // Check whether the constant is an infinity.
3384     if (C->isInfinity()) {
3385       if (C->isNegative()) {
3386         switch (Pred) {
3387         case FCmpInst::FCMP_OLT:
3388           // No value is ordered and less than negative infinity.
3389           return getFalse(RetTy);
3390         case FCmpInst::FCMP_UGE:
3391           // All values are unordered with or at least negative infinity.
3392           return getTrue(RetTy);
3393         default:
3394           break;
3395         }
3396       } else {
3397         switch (Pred) {
3398         case FCmpInst::FCMP_OGT:
3399           // No value is ordered and greater than infinity.
3400           return getFalse(RetTy);
3401         case FCmpInst::FCMP_ULE:
3402           // All values are unordered with and at most infinity.
3403           return getTrue(RetTy);
3404         default:
3405           break;
3406         }
3407       }
3408     }
3409     if (C->isZero()) {
3410       switch (Pred) {
3411       case FCmpInst::FCMP_UGE:
3412         if (CannotBeOrderedLessThanZero(LHS, Q.TLI))
3413           return getTrue(RetTy);
3414         break;
3415       case FCmpInst::FCMP_OLT:
3416         // X < 0
3417         if (CannotBeOrderedLessThanZero(LHS, Q.TLI))
3418           return getFalse(RetTy);
3419         break;
3420       default:
3421         break;
3422       }
3423     } else if (C->isNegative()) {
3424       assert(!C->isNaN() && "Unexpected NaN constant!");
3425       // TODO: We can catch more cases by using a range check rather than
3426       //       relying on CannotBeOrderedLessThanZero.
3427       switch (Pred) {
3428       case FCmpInst::FCMP_UGE:
3429       case FCmpInst::FCMP_UGT:
3430       case FCmpInst::FCMP_UNE:
3431         // (X >= 0) implies (X > C) when (C < 0)
3432         if (CannotBeOrderedLessThanZero(LHS, Q.TLI))
3433           return getTrue(RetTy);
3434         break;
3435       case FCmpInst::FCMP_OEQ:
3436       case FCmpInst::FCMP_OLE:
3437       case FCmpInst::FCMP_OLT:
3438         // (X >= 0) implies !(X < C) when (C < 0)
3439         if (CannotBeOrderedLessThanZero(LHS, Q.TLI))
3440           return getFalse(RetTy);
3441         break;
3442       default:
3443         break;
3444       }
3445     }
3446   }
3447 
3448   // If the comparison is with the result of a select instruction, check whether
3449   // comparing with either branch of the select always yields the same value.
3450   if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS))
3451     if (Value *V = ThreadCmpOverSelect(Pred, LHS, RHS, Q, MaxRecurse))
3452       return V;
3453 
3454   // If the comparison is with the result of a phi instruction, check whether
3455   // doing the compare with each incoming phi value yields a common result.
3456   if (isa<PHINode>(LHS) || isa<PHINode>(RHS))
3457     if (Value *V = ThreadCmpOverPHI(Pred, LHS, RHS, Q, MaxRecurse))
3458       return V;
3459 
3460   return nullptr;
3461 }
3462 
3463 Value *llvm::SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
3464                               FastMathFlags FMF, const SimplifyQuery &Q) {
3465   return ::SimplifyFCmpInst(Predicate, LHS, RHS, FMF, Q, RecursionLimit);
3466 }
3467 
3468 /// See if V simplifies when its operand Op is replaced with RepOp.
3469 static const Value *SimplifyWithOpReplaced(Value *V, Value *Op, Value *RepOp,
3470                                            const SimplifyQuery &Q,
3471                                            unsigned MaxRecurse) {
3472   // Trivial replacement.
3473   if (V == Op)
3474     return RepOp;
3475 
3476   // We cannot replace a constant, and shouldn't even try.
3477   if (isa<Constant>(Op))
3478     return nullptr;
3479 
3480   auto *I = dyn_cast<Instruction>(V);
3481   if (!I)
3482     return nullptr;
3483 
3484   // If this is a binary operator, try to simplify it with the replaced op.
3485   if (auto *B = dyn_cast<BinaryOperator>(I)) {
3486     // Consider:
3487     //   %cmp = icmp eq i32 %x, 2147483647
3488     //   %add = add nsw i32 %x, 1
3489     //   %sel = select i1 %cmp, i32 -2147483648, i32 %add
3490     //
3491     // We can't replace %sel with %add unless we strip away the flags.
3492     if (isa<OverflowingBinaryOperator>(B))
3493       if (B->hasNoSignedWrap() || B->hasNoUnsignedWrap())
3494         return nullptr;
3495     if (isa<PossiblyExactOperator>(B))
3496       if (B->isExact())
3497         return nullptr;
3498 
3499     if (MaxRecurse) {
3500       if (B->getOperand(0) == Op)
3501         return SimplifyBinOp(B->getOpcode(), RepOp, B->getOperand(1), Q,
3502                              MaxRecurse - 1);
3503       if (B->getOperand(1) == Op)
3504         return SimplifyBinOp(B->getOpcode(), B->getOperand(0), RepOp, Q,
3505                              MaxRecurse - 1);
3506     }
3507   }
3508 
3509   // Same for CmpInsts.
3510   if (CmpInst *C = dyn_cast<CmpInst>(I)) {
3511     if (MaxRecurse) {
3512       if (C->getOperand(0) == Op)
3513         return SimplifyCmpInst(C->getPredicate(), RepOp, C->getOperand(1), Q,
3514                                MaxRecurse - 1);
3515       if (C->getOperand(1) == Op)
3516         return SimplifyCmpInst(C->getPredicate(), C->getOperand(0), RepOp, Q,
3517                                MaxRecurse - 1);
3518     }
3519   }
3520 
3521   // TODO: We could hand off more cases to instsimplify here.
3522 
3523   // If all operands are constant after substituting Op for RepOp then we can
3524   // constant fold the instruction.
3525   if (Constant *CRepOp = dyn_cast<Constant>(RepOp)) {
3526     // Build a list of all constant operands.
3527     SmallVector<Constant *, 8> ConstOps;
3528     for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
3529       if (I->getOperand(i) == Op)
3530         ConstOps.push_back(CRepOp);
3531       else if (Constant *COp = dyn_cast<Constant>(I->getOperand(i)))
3532         ConstOps.push_back(COp);
3533       else
3534         break;
3535     }
3536 
3537     // All operands were constants, fold it.
3538     if (ConstOps.size() == I->getNumOperands()) {
3539       if (CmpInst *C = dyn_cast<CmpInst>(I))
3540         return ConstantFoldCompareInstOperands(C->getPredicate(), ConstOps[0],
3541                                                ConstOps[1], Q.DL, Q.TLI);
3542 
3543       if (LoadInst *LI = dyn_cast<LoadInst>(I))
3544         if (!LI->isVolatile())
3545           return ConstantFoldLoadFromConstPtr(ConstOps[0], LI->getType(), Q.DL);
3546 
3547       return ConstantFoldInstOperands(I, ConstOps, Q.DL, Q.TLI);
3548     }
3549   }
3550 
3551   return nullptr;
3552 }
3553 
3554 /// Try to simplify a select instruction when its condition operand is an
3555 /// integer comparison where one operand of the compare is a constant.
3556 static Value *simplifySelectBitTest(Value *TrueVal, Value *FalseVal, Value *X,
3557                                     const APInt *Y, bool TrueWhenUnset) {
3558   const APInt *C;
3559 
3560   // (X & Y) == 0 ? X & ~Y : X  --> X
3561   // (X & Y) != 0 ? X & ~Y : X  --> X & ~Y
3562   if (FalseVal == X && match(TrueVal, m_And(m_Specific(X), m_APInt(C))) &&
3563       *Y == ~*C)
3564     return TrueWhenUnset ? FalseVal : TrueVal;
3565 
3566   // (X & Y) == 0 ? X : X & ~Y  --> X & ~Y
3567   // (X & Y) != 0 ? X : X & ~Y  --> X
3568   if (TrueVal == X && match(FalseVal, m_And(m_Specific(X), m_APInt(C))) &&
3569       *Y == ~*C)
3570     return TrueWhenUnset ? FalseVal : TrueVal;
3571 
3572   if (Y->isPowerOf2()) {
3573     // (X & Y) == 0 ? X | Y : X  --> X | Y
3574     // (X & Y) != 0 ? X | Y : X  --> X
3575     if (FalseVal == X && match(TrueVal, m_Or(m_Specific(X), m_APInt(C))) &&
3576         *Y == *C)
3577       return TrueWhenUnset ? TrueVal : FalseVal;
3578 
3579     // (X & Y) == 0 ? X : X | Y  --> X
3580     // (X & Y) != 0 ? X : X | Y  --> X | Y
3581     if (TrueVal == X && match(FalseVal, m_Or(m_Specific(X), m_APInt(C))) &&
3582         *Y == *C)
3583       return TrueWhenUnset ? TrueVal : FalseVal;
3584   }
3585 
3586   return nullptr;
3587 }
3588 
3589 /// An alternative way to test if a bit is set or not uses sgt/slt instead of
3590 /// eq/ne.
3591 static Value *simplifySelectWithFakeICmpEq(Value *CmpLHS, Value *CmpRHS,
3592                                            ICmpInst::Predicate Pred,
3593                                            Value *TrueVal, Value *FalseVal) {
3594   Value *X;
3595   APInt Mask;
3596   if (!decomposeBitTestICmp(CmpLHS, CmpRHS, Pred, X, Mask))
3597     return nullptr;
3598 
3599   return simplifySelectBitTest(TrueVal, FalseVal, X, &Mask,
3600                                Pred == ICmpInst::ICMP_EQ);
3601 }
3602 
3603 /// Try to simplify a select instruction when its condition operand is an
3604 /// integer comparison.
3605 static Value *simplifySelectWithICmpCond(Value *CondVal, Value *TrueVal,
3606                                          Value *FalseVal, const SimplifyQuery &Q,
3607                                          unsigned MaxRecurse) {
3608   ICmpInst::Predicate Pred;
3609   Value *CmpLHS, *CmpRHS;
3610   if (!match(CondVal, m_ICmp(Pred, m_Value(CmpLHS), m_Value(CmpRHS))))
3611     return nullptr;
3612 
3613   if (ICmpInst::isEquality(Pred) && match(CmpRHS, m_Zero())) {
3614     Value *X;
3615     const APInt *Y;
3616     if (match(CmpLHS, m_And(m_Value(X), m_APInt(Y))))
3617       if (Value *V = simplifySelectBitTest(TrueVal, FalseVal, X, Y,
3618                                            Pred == ICmpInst::ICMP_EQ))
3619         return V;
3620   }
3621 
3622   // Check for other compares that behave like bit test.
3623   if (Value *V = simplifySelectWithFakeICmpEq(CmpLHS, CmpRHS, Pred,
3624                                               TrueVal, FalseVal))
3625     return V;
3626 
3627   if (CondVal->hasOneUse()) {
3628     const APInt *C;
3629     if (match(CmpRHS, m_APInt(C))) {
3630       // X < MIN ? T : F  -->  F
3631       if (Pred == ICmpInst::ICMP_SLT && C->isMinSignedValue())
3632         return FalseVal;
3633       // X < MIN ? T : F  -->  F
3634       if (Pred == ICmpInst::ICMP_ULT && C->isMinValue())
3635         return FalseVal;
3636       // X > MAX ? T : F  -->  F
3637       if (Pred == ICmpInst::ICMP_SGT && C->isMaxSignedValue())
3638         return FalseVal;
3639       // X > MAX ? T : F  -->  F
3640       if (Pred == ICmpInst::ICMP_UGT && C->isMaxValue())
3641         return FalseVal;
3642     }
3643   }
3644 
3645   // If we have an equality comparison, then we know the value in one of the
3646   // arms of the select. See if substituting this value into the arm and
3647   // simplifying the result yields the same value as the other arm.
3648   if (Pred == ICmpInst::ICMP_EQ) {
3649     if (SimplifyWithOpReplaced(FalseVal, CmpLHS, CmpRHS, Q, MaxRecurse) ==
3650             TrueVal ||
3651         SimplifyWithOpReplaced(FalseVal, CmpRHS, CmpLHS, Q, MaxRecurse) ==
3652             TrueVal)
3653       return FalseVal;
3654     if (SimplifyWithOpReplaced(TrueVal, CmpLHS, CmpRHS, Q, MaxRecurse) ==
3655             FalseVal ||
3656         SimplifyWithOpReplaced(TrueVal, CmpRHS, CmpLHS, Q, MaxRecurse) ==
3657             FalseVal)
3658       return FalseVal;
3659   } else if (Pred == ICmpInst::ICMP_NE) {
3660     if (SimplifyWithOpReplaced(TrueVal, CmpLHS, CmpRHS, Q, MaxRecurse) ==
3661             FalseVal ||
3662         SimplifyWithOpReplaced(TrueVal, CmpRHS, CmpLHS, Q, MaxRecurse) ==
3663             FalseVal)
3664       return TrueVal;
3665     if (SimplifyWithOpReplaced(FalseVal, CmpLHS, CmpRHS, Q, MaxRecurse) ==
3666             TrueVal ||
3667         SimplifyWithOpReplaced(FalseVal, CmpRHS, CmpLHS, Q, MaxRecurse) ==
3668             TrueVal)
3669       return TrueVal;
3670   }
3671 
3672   return nullptr;
3673 }
3674 
3675 /// Given operands for a SelectInst, see if we can fold the result.
3676 /// If not, this returns null.
3677 static Value *SimplifySelectInst(Value *CondVal, Value *TrueVal,
3678                                  Value *FalseVal, const SimplifyQuery &Q,
3679                                  unsigned MaxRecurse) {
3680   // select true, X, Y  -> X
3681   // select false, X, Y -> Y
3682   if (Constant *CB = dyn_cast<Constant>(CondVal)) {
3683     if (Constant *CT = dyn_cast<Constant>(TrueVal))
3684       if (Constant *CF = dyn_cast<Constant>(FalseVal))
3685         return ConstantFoldSelectInstruction(CB, CT, CF);
3686     if (CB->isAllOnesValue())
3687       return TrueVal;
3688     if (CB->isNullValue())
3689       return FalseVal;
3690   }
3691 
3692   // select C, X, X -> X
3693   if (TrueVal == FalseVal)
3694     return TrueVal;
3695 
3696   if (isa<UndefValue>(CondVal)) {  // select undef, X, Y -> X or Y
3697     if (isa<Constant>(FalseVal))
3698       return FalseVal;
3699     return TrueVal;
3700   }
3701   if (isa<UndefValue>(TrueVal))   // select C, undef, X -> X
3702     return FalseVal;
3703   if (isa<UndefValue>(FalseVal))   // select C, X, undef -> X
3704     return TrueVal;
3705 
3706   if (Value *V =
3707           simplifySelectWithICmpCond(CondVal, TrueVal, FalseVal, Q, MaxRecurse))
3708     return V;
3709 
3710   return nullptr;
3711 }
3712 
3713 Value *llvm::SimplifySelectInst(Value *Cond, Value *TrueVal, Value *FalseVal,
3714                                 const SimplifyQuery &Q) {
3715   return ::SimplifySelectInst(Cond, TrueVal, FalseVal, Q, RecursionLimit);
3716 }
3717 
3718 /// Given operands for an GetElementPtrInst, see if we can fold the result.
3719 /// If not, this returns null.
3720 static Value *SimplifyGEPInst(Type *SrcTy, ArrayRef<Value *> Ops,
3721                               const SimplifyQuery &Q, unsigned) {
3722   // The type of the GEP pointer operand.
3723   unsigned AS =
3724       cast<PointerType>(Ops[0]->getType()->getScalarType())->getAddressSpace();
3725 
3726   // getelementptr P -> P.
3727   if (Ops.size() == 1)
3728     return Ops[0];
3729 
3730   // Compute the (pointer) type returned by the GEP instruction.
3731   Type *LastType = GetElementPtrInst::getIndexedType(SrcTy, Ops.slice(1));
3732   Type *GEPTy = PointerType::get(LastType, AS);
3733   if (VectorType *VT = dyn_cast<VectorType>(Ops[0]->getType()))
3734     GEPTy = VectorType::get(GEPTy, VT->getNumElements());
3735   else if (VectorType *VT = dyn_cast<VectorType>(Ops[1]->getType()))
3736     GEPTy = VectorType::get(GEPTy, VT->getNumElements());
3737 
3738   if (isa<UndefValue>(Ops[0]))
3739     return UndefValue::get(GEPTy);
3740 
3741   if (Ops.size() == 2) {
3742     // getelementptr P, 0 -> P.
3743     if (match(Ops[1], m_Zero()))
3744       return Ops[0];
3745 
3746     Type *Ty = SrcTy;
3747     if (Ty->isSized()) {
3748       Value *P;
3749       uint64_t C;
3750       uint64_t TyAllocSize = Q.DL.getTypeAllocSize(Ty);
3751       // getelementptr P, N -> P if P points to a type of zero size.
3752       if (TyAllocSize == 0)
3753         return Ops[0];
3754 
3755       // The following transforms are only safe if the ptrtoint cast
3756       // doesn't truncate the pointers.
3757       if (Ops[1]->getType()->getScalarSizeInBits() ==
3758           Q.DL.getPointerSizeInBits(AS)) {
3759         auto PtrToIntOrZero = [GEPTy](Value *P) -> Value * {
3760           if (match(P, m_Zero()))
3761             return Constant::getNullValue(GEPTy);
3762           Value *Temp;
3763           if (match(P, m_PtrToInt(m_Value(Temp))))
3764             if (Temp->getType() == GEPTy)
3765               return Temp;
3766           return nullptr;
3767         };
3768 
3769         // getelementptr V, (sub P, V) -> P if P points to a type of size 1.
3770         if (TyAllocSize == 1 &&
3771             match(Ops[1], m_Sub(m_Value(P), m_PtrToInt(m_Specific(Ops[0])))))
3772           if (Value *R = PtrToIntOrZero(P))
3773             return R;
3774 
3775         // getelementptr V, (ashr (sub P, V), C) -> Q
3776         // if P points to a type of size 1 << C.
3777         if (match(Ops[1],
3778                   m_AShr(m_Sub(m_Value(P), m_PtrToInt(m_Specific(Ops[0]))),
3779                          m_ConstantInt(C))) &&
3780             TyAllocSize == 1ULL << C)
3781           if (Value *R = PtrToIntOrZero(P))
3782             return R;
3783 
3784         // getelementptr V, (sdiv (sub P, V), C) -> Q
3785         // if P points to a type of size C.
3786         if (match(Ops[1],
3787                   m_SDiv(m_Sub(m_Value(P), m_PtrToInt(m_Specific(Ops[0]))),
3788                          m_SpecificInt(TyAllocSize))))
3789           if (Value *R = PtrToIntOrZero(P))
3790             return R;
3791       }
3792     }
3793   }
3794 
3795   if (Q.DL.getTypeAllocSize(LastType) == 1 &&
3796       all_of(Ops.slice(1).drop_back(1),
3797              [](Value *Idx) { return match(Idx, m_Zero()); })) {
3798     unsigned PtrWidth =
3799         Q.DL.getPointerSizeInBits(Ops[0]->getType()->getPointerAddressSpace());
3800     if (Q.DL.getTypeSizeInBits(Ops.back()->getType()) == PtrWidth) {
3801       APInt BasePtrOffset(PtrWidth, 0);
3802       Value *StrippedBasePtr =
3803           Ops[0]->stripAndAccumulateInBoundsConstantOffsets(Q.DL,
3804                                                             BasePtrOffset);
3805 
3806       // gep (gep V, C), (sub 0, V) -> C
3807       if (match(Ops.back(),
3808                 m_Sub(m_Zero(), m_PtrToInt(m_Specific(StrippedBasePtr))))) {
3809         auto *CI = ConstantInt::get(GEPTy->getContext(), BasePtrOffset);
3810         return ConstantExpr::getIntToPtr(CI, GEPTy);
3811       }
3812       // gep (gep V, C), (xor V, -1) -> C-1
3813       if (match(Ops.back(),
3814                 m_Xor(m_PtrToInt(m_Specific(StrippedBasePtr)), m_AllOnes()))) {
3815         auto *CI = ConstantInt::get(GEPTy->getContext(), BasePtrOffset - 1);
3816         return ConstantExpr::getIntToPtr(CI, GEPTy);
3817       }
3818     }
3819   }
3820 
3821   // Check to see if this is constant foldable.
3822   if (!all_of(Ops, [](Value *V) { return isa<Constant>(V); }))
3823     return nullptr;
3824 
3825   auto *CE = ConstantExpr::getGetElementPtr(SrcTy, cast<Constant>(Ops[0]),
3826                                             Ops.slice(1));
3827   if (auto *CEFolded = ConstantFoldConstant(CE, Q.DL))
3828     return CEFolded;
3829   return CE;
3830 }
3831 
3832 Value *llvm::SimplifyGEPInst(Type *SrcTy, ArrayRef<Value *> Ops,
3833                              const SimplifyQuery &Q) {
3834   return ::SimplifyGEPInst(SrcTy, Ops, Q, RecursionLimit);
3835 }
3836 
3837 /// Given operands for an InsertValueInst, see if we can fold the result.
3838 /// If not, this returns null.
3839 static Value *SimplifyInsertValueInst(Value *Agg, Value *Val,
3840                                       ArrayRef<unsigned> Idxs, const SimplifyQuery &Q,
3841                                       unsigned) {
3842   if (Constant *CAgg = dyn_cast<Constant>(Agg))
3843     if (Constant *CVal = dyn_cast<Constant>(Val))
3844       return ConstantFoldInsertValueInstruction(CAgg, CVal, Idxs);
3845 
3846   // insertvalue x, undef, n -> x
3847   if (match(Val, m_Undef()))
3848     return Agg;
3849 
3850   // insertvalue x, (extractvalue y, n), n
3851   if (ExtractValueInst *EV = dyn_cast<ExtractValueInst>(Val))
3852     if (EV->getAggregateOperand()->getType() == Agg->getType() &&
3853         EV->getIndices() == Idxs) {
3854       // insertvalue undef, (extractvalue y, n), n -> y
3855       if (match(Agg, m_Undef()))
3856         return EV->getAggregateOperand();
3857 
3858       // insertvalue y, (extractvalue y, n), n -> y
3859       if (Agg == EV->getAggregateOperand())
3860         return Agg;
3861     }
3862 
3863   return nullptr;
3864 }
3865 
3866 Value *llvm::SimplifyInsertValueInst(Value *Agg, Value *Val,
3867                                      ArrayRef<unsigned> Idxs,
3868                                      const SimplifyQuery &Q) {
3869   return ::SimplifyInsertValueInst(Agg, Val, Idxs, Q, RecursionLimit);
3870 }
3871 
3872 Value *llvm::SimplifyInsertElementInst(Value *Vec, Value *Val, Value *Idx,
3873                                        const SimplifyQuery &Q) {
3874   // Try to constant fold.
3875   auto *VecC = dyn_cast<Constant>(Vec);
3876   auto *ValC = dyn_cast<Constant>(Val);
3877   auto *IdxC = dyn_cast<Constant>(Idx);
3878   if (VecC && ValC && IdxC)
3879     return ConstantFoldInsertElementInstruction(VecC, ValC, IdxC);
3880 
3881   // Fold into undef if index is out of bounds.
3882   if (auto *CI = dyn_cast<ConstantInt>(Idx)) {
3883     uint64_t NumElements = cast<VectorType>(Vec->getType())->getNumElements();
3884     if (CI->uge(NumElements))
3885       return UndefValue::get(Vec->getType());
3886   }
3887 
3888   // If index is undef, it might be out of bounds (see above case)
3889   if (isa<UndefValue>(Idx))
3890     return UndefValue::get(Vec->getType());
3891 
3892   return nullptr;
3893 }
3894 
3895 /// Given operands for an ExtractValueInst, see if we can fold the result.
3896 /// If not, this returns null.
3897 static Value *SimplifyExtractValueInst(Value *Agg, ArrayRef<unsigned> Idxs,
3898                                        const SimplifyQuery &, unsigned) {
3899   if (auto *CAgg = dyn_cast<Constant>(Agg))
3900     return ConstantFoldExtractValueInstruction(CAgg, Idxs);
3901 
3902   // extractvalue x, (insertvalue y, elt, n), n -> elt
3903   unsigned NumIdxs = Idxs.size();
3904   for (auto *IVI = dyn_cast<InsertValueInst>(Agg); IVI != nullptr;
3905        IVI = dyn_cast<InsertValueInst>(IVI->getAggregateOperand())) {
3906     ArrayRef<unsigned> InsertValueIdxs = IVI->getIndices();
3907     unsigned NumInsertValueIdxs = InsertValueIdxs.size();
3908     unsigned NumCommonIdxs = std::min(NumInsertValueIdxs, NumIdxs);
3909     if (InsertValueIdxs.slice(0, NumCommonIdxs) ==
3910         Idxs.slice(0, NumCommonIdxs)) {
3911       if (NumIdxs == NumInsertValueIdxs)
3912         return IVI->getInsertedValueOperand();
3913       break;
3914     }
3915   }
3916 
3917   return nullptr;
3918 }
3919 
3920 Value *llvm::SimplifyExtractValueInst(Value *Agg, ArrayRef<unsigned> Idxs,
3921                                       const SimplifyQuery &Q) {
3922   return ::SimplifyExtractValueInst(Agg, Idxs, Q, RecursionLimit);
3923 }
3924 
3925 /// Given operands for an ExtractElementInst, see if we can fold the result.
3926 /// If not, this returns null.
3927 static Value *SimplifyExtractElementInst(Value *Vec, Value *Idx, const SimplifyQuery &,
3928                                          unsigned) {
3929   if (auto *CVec = dyn_cast<Constant>(Vec)) {
3930     if (auto *CIdx = dyn_cast<Constant>(Idx))
3931       return ConstantFoldExtractElementInstruction(CVec, CIdx);
3932 
3933     // The index is not relevant if our vector is a splat.
3934     if (auto *Splat = CVec->getSplatValue())
3935       return Splat;
3936 
3937     if (isa<UndefValue>(Vec))
3938       return UndefValue::get(Vec->getType()->getVectorElementType());
3939   }
3940 
3941   // If extracting a specified index from the vector, see if we can recursively
3942   // find a previously computed scalar that was inserted into the vector.
3943   if (auto *IdxC = dyn_cast<ConstantInt>(Idx)) {
3944     if (IdxC->getValue().uge(Vec->getType()->getVectorNumElements()))
3945       // definitely out of bounds, thus undefined result
3946       return UndefValue::get(Vec->getType()->getVectorElementType());
3947     if (Value *Elt = findScalarElement(Vec, IdxC->getZExtValue()))
3948       return Elt;
3949   }
3950 
3951   // An undef extract index can be arbitrarily chosen to be an out-of-range
3952   // index value, which would result in the instruction being undef.
3953   if (isa<UndefValue>(Idx))
3954     return UndefValue::get(Vec->getType()->getVectorElementType());
3955 
3956   return nullptr;
3957 }
3958 
3959 Value *llvm::SimplifyExtractElementInst(Value *Vec, Value *Idx,
3960                                         const SimplifyQuery &Q) {
3961   return ::SimplifyExtractElementInst(Vec, Idx, Q, RecursionLimit);
3962 }
3963 
3964 /// See if we can fold the given phi. If not, returns null.
3965 static Value *SimplifyPHINode(PHINode *PN, const SimplifyQuery &Q) {
3966   // If all of the PHI's incoming values are the same then replace the PHI node
3967   // with the common value.
3968   Value *CommonValue = nullptr;
3969   bool HasUndefInput = false;
3970   for (Value *Incoming : PN->incoming_values()) {
3971     // If the incoming value is the phi node itself, it can safely be skipped.
3972     if (Incoming == PN) continue;
3973     if (isa<UndefValue>(Incoming)) {
3974       // Remember that we saw an undef value, but otherwise ignore them.
3975       HasUndefInput = true;
3976       continue;
3977     }
3978     if (CommonValue && Incoming != CommonValue)
3979       return nullptr;  // Not the same, bail out.
3980     CommonValue = Incoming;
3981   }
3982 
3983   // If CommonValue is null then all of the incoming values were either undef or
3984   // equal to the phi node itself.
3985   if (!CommonValue)
3986     return UndefValue::get(PN->getType());
3987 
3988   // If we have a PHI node like phi(X, undef, X), where X is defined by some
3989   // instruction, we cannot return X as the result of the PHI node unless it
3990   // dominates the PHI block.
3991   if (HasUndefInput)
3992     return ValueDominatesPHI(CommonValue, PN, Q.DT) ? CommonValue : nullptr;
3993 
3994   return CommonValue;
3995 }
3996 
3997 static Value *SimplifyCastInst(unsigned CastOpc, Value *Op,
3998                                Type *Ty, const SimplifyQuery &Q, unsigned MaxRecurse) {
3999   if (auto *C = dyn_cast<Constant>(Op))
4000     return ConstantFoldCastOperand(CastOpc, C, Ty, Q.DL);
4001 
4002   if (auto *CI = dyn_cast<CastInst>(Op)) {
4003     auto *Src = CI->getOperand(0);
4004     Type *SrcTy = Src->getType();
4005     Type *MidTy = CI->getType();
4006     Type *DstTy = Ty;
4007     if (Src->getType() == Ty) {
4008       auto FirstOp = static_cast<Instruction::CastOps>(CI->getOpcode());
4009       auto SecondOp = static_cast<Instruction::CastOps>(CastOpc);
4010       Type *SrcIntPtrTy =
4011           SrcTy->isPtrOrPtrVectorTy() ? Q.DL.getIntPtrType(SrcTy) : nullptr;
4012       Type *MidIntPtrTy =
4013           MidTy->isPtrOrPtrVectorTy() ? Q.DL.getIntPtrType(MidTy) : nullptr;
4014       Type *DstIntPtrTy =
4015           DstTy->isPtrOrPtrVectorTy() ? Q.DL.getIntPtrType(DstTy) : nullptr;
4016       if (CastInst::isEliminableCastPair(FirstOp, SecondOp, SrcTy, MidTy, DstTy,
4017                                          SrcIntPtrTy, MidIntPtrTy,
4018                                          DstIntPtrTy) == Instruction::BitCast)
4019         return Src;
4020     }
4021   }
4022 
4023   // bitcast x -> x
4024   if (CastOpc == Instruction::BitCast)
4025     if (Op->getType() == Ty)
4026       return Op;
4027 
4028   return nullptr;
4029 }
4030 
4031 Value *llvm::SimplifyCastInst(unsigned CastOpc, Value *Op, Type *Ty,
4032                               const SimplifyQuery &Q) {
4033   return ::SimplifyCastInst(CastOpc, Op, Ty, Q, RecursionLimit);
4034 }
4035 
4036 /// For the given destination element of a shuffle, peek through shuffles to
4037 /// match a root vector source operand that contains that element in the same
4038 /// vector lane (ie, the same mask index), so we can eliminate the shuffle(s).
4039 static Value *foldIdentityShuffles(int DestElt, Value *Op0, Value *Op1,
4040                                    int MaskVal, Value *RootVec,
4041                                    unsigned MaxRecurse) {
4042   if (!MaxRecurse--)
4043     return nullptr;
4044 
4045   // Bail out if any mask value is undefined. That kind of shuffle may be
4046   // simplified further based on demanded bits or other folds.
4047   if (MaskVal == -1)
4048     return nullptr;
4049 
4050   // The mask value chooses which source operand we need to look at next.
4051   int InVecNumElts = Op0->getType()->getVectorNumElements();
4052   int RootElt = MaskVal;
4053   Value *SourceOp = Op0;
4054   if (MaskVal >= InVecNumElts) {
4055     RootElt = MaskVal - InVecNumElts;
4056     SourceOp = Op1;
4057   }
4058 
4059   // If the source operand is a shuffle itself, look through it to find the
4060   // matching root vector.
4061   if (auto *SourceShuf = dyn_cast<ShuffleVectorInst>(SourceOp)) {
4062     return foldIdentityShuffles(
4063         DestElt, SourceShuf->getOperand(0), SourceShuf->getOperand(1),
4064         SourceShuf->getMaskValue(RootElt), RootVec, MaxRecurse);
4065   }
4066 
4067   // TODO: Look through bitcasts? What if the bitcast changes the vector element
4068   // size?
4069 
4070   // The source operand is not a shuffle. Initialize the root vector value for
4071   // this shuffle if that has not been done yet.
4072   if (!RootVec)
4073     RootVec = SourceOp;
4074 
4075   // Give up as soon as a source operand does not match the existing root value.
4076   if (RootVec != SourceOp)
4077     return nullptr;
4078 
4079   // The element must be coming from the same lane in the source vector
4080   // (although it may have crossed lanes in intermediate shuffles).
4081   if (RootElt != DestElt)
4082     return nullptr;
4083 
4084   return RootVec;
4085 }
4086 
4087 static Value *SimplifyShuffleVectorInst(Value *Op0, Value *Op1, Constant *Mask,
4088                                         Type *RetTy, const SimplifyQuery &Q,
4089                                         unsigned MaxRecurse) {
4090   if (isa<UndefValue>(Mask))
4091     return UndefValue::get(RetTy);
4092 
4093   Type *InVecTy = Op0->getType();
4094   unsigned MaskNumElts = Mask->getType()->getVectorNumElements();
4095   unsigned InVecNumElts = InVecTy->getVectorNumElements();
4096 
4097   SmallVector<int, 32> Indices;
4098   ShuffleVectorInst::getShuffleMask(Mask, Indices);
4099   assert(MaskNumElts == Indices.size() &&
4100          "Size of Indices not same as number of mask elements?");
4101 
4102   // Canonicalization: If mask does not select elements from an input vector,
4103   // replace that input vector with undef.
4104   bool MaskSelects0 = false, MaskSelects1 = false;
4105   for (unsigned i = 0; i != MaskNumElts; ++i) {
4106     if (Indices[i] == -1)
4107       continue;
4108     if ((unsigned)Indices[i] < InVecNumElts)
4109       MaskSelects0 = true;
4110     else
4111       MaskSelects1 = true;
4112   }
4113   if (!MaskSelects0)
4114     Op0 = UndefValue::get(InVecTy);
4115   if (!MaskSelects1)
4116     Op1 = UndefValue::get(InVecTy);
4117 
4118   auto *Op0Const = dyn_cast<Constant>(Op0);
4119   auto *Op1Const = dyn_cast<Constant>(Op1);
4120 
4121   // If all operands are constant, constant fold the shuffle.
4122   if (Op0Const && Op1Const)
4123     return ConstantFoldShuffleVectorInstruction(Op0Const, Op1Const, Mask);
4124 
4125   // Canonicalization: if only one input vector is constant, it shall be the
4126   // second one.
4127   if (Op0Const && !Op1Const) {
4128     std::swap(Op0, Op1);
4129     ShuffleVectorInst::commuteShuffleMask(Indices, InVecNumElts);
4130   }
4131 
4132   // A shuffle of a splat is always the splat itself. Legal if the shuffle's
4133   // value type is same as the input vectors' type.
4134   if (auto *OpShuf = dyn_cast<ShuffleVectorInst>(Op0))
4135     if (isa<UndefValue>(Op1) && RetTy == InVecTy &&
4136         OpShuf->getMask()->getSplatValue())
4137       return Op0;
4138 
4139   // Don't fold a shuffle with undef mask elements. This may get folded in a
4140   // better way using demanded bits or other analysis.
4141   // TODO: Should we allow this?
4142   if (find(Indices, -1) != Indices.end())
4143     return nullptr;
4144 
4145   // Check if every element of this shuffle can be mapped back to the
4146   // corresponding element of a single root vector. If so, we don't need this
4147   // shuffle. This handles simple identity shuffles as well as chains of
4148   // shuffles that may widen/narrow and/or move elements across lanes and back.
4149   Value *RootVec = nullptr;
4150   for (unsigned i = 0; i != MaskNumElts; ++i) {
4151     // Note that recursion is limited for each vector element, so if any element
4152     // exceeds the limit, this will fail to simplify.
4153     RootVec =
4154         foldIdentityShuffles(i, Op0, Op1, Indices[i], RootVec, MaxRecurse);
4155 
4156     // We can't replace a widening/narrowing shuffle with one of its operands.
4157     if (!RootVec || RootVec->getType() != RetTy)
4158       return nullptr;
4159   }
4160   return RootVec;
4161 }
4162 
4163 /// Given operands for a ShuffleVectorInst, fold the result or return null.
4164 Value *llvm::SimplifyShuffleVectorInst(Value *Op0, Value *Op1, Constant *Mask,
4165                                        Type *RetTy, const SimplifyQuery &Q) {
4166   return ::SimplifyShuffleVectorInst(Op0, Op1, Mask, RetTy, Q, RecursionLimit);
4167 }
4168 
4169 /// Given operands for an FAdd, see if we can fold the result.  If not, this
4170 /// returns null.
4171 static Value *SimplifyFAddInst(Value *Op0, Value *Op1, FastMathFlags FMF,
4172                                const SimplifyQuery &Q, unsigned MaxRecurse) {
4173   if (Constant *C = foldOrCommuteConstant(Instruction::FAdd, Op0, Op1, Q))
4174     return C;
4175 
4176   // fadd X, -0 ==> X
4177   if (match(Op1, m_NegZero()))
4178     return Op0;
4179 
4180   // fadd X, 0 ==> X, when we know X is not -0
4181   if (match(Op1, m_Zero()) &&
4182       (FMF.noSignedZeros() || CannotBeNegativeZero(Op0, Q.TLI)))
4183     return Op0;
4184 
4185   // fadd [nnan ninf] X, (fsub [nnan ninf] 0, X) ==> 0
4186   //   where nnan and ninf have to occur at least once somewhere in this
4187   //   expression
4188   Value *SubOp = nullptr;
4189   if (match(Op1, m_FSub(m_AnyZero(), m_Specific(Op0))))
4190     SubOp = Op1;
4191   else if (match(Op0, m_FSub(m_AnyZero(), m_Specific(Op1))))
4192     SubOp = Op0;
4193   if (SubOp) {
4194     Instruction *FSub = cast<Instruction>(SubOp);
4195     if ((FMF.noNaNs() || FSub->hasNoNaNs()) &&
4196         (FMF.noInfs() || FSub->hasNoInfs()))
4197       return Constant::getNullValue(Op0->getType());
4198   }
4199 
4200   return nullptr;
4201 }
4202 
4203 /// Given operands for an FSub, see if we can fold the result.  If not, this
4204 /// returns null.
4205 static Value *SimplifyFSubInst(Value *Op0, Value *Op1, FastMathFlags FMF,
4206                                const SimplifyQuery &Q, unsigned MaxRecurse) {
4207   if (Constant *C = foldOrCommuteConstant(Instruction::FSub, Op0, Op1, Q))
4208     return C;
4209 
4210   // fsub X, 0 ==> X
4211   if (match(Op1, m_Zero()))
4212     return Op0;
4213 
4214   // fsub X, -0 ==> X, when we know X is not -0
4215   if (match(Op1, m_NegZero()) &&
4216       (FMF.noSignedZeros() || CannotBeNegativeZero(Op0, Q.TLI)))
4217     return Op0;
4218 
4219   // fsub -0.0, (fsub -0.0, X) ==> X
4220   Value *X;
4221   if (match(Op0, m_NegZero()) && match(Op1, m_FSub(m_NegZero(), m_Value(X))))
4222     return X;
4223 
4224   // fsub 0.0, (fsub 0.0, X) ==> X if signed zeros are ignored.
4225   if (FMF.noSignedZeros() && match(Op0, m_AnyZero()) &&
4226       match(Op1, m_FSub(m_AnyZero(), m_Value(X))))
4227     return X;
4228 
4229   // fsub nnan x, x ==> 0.0
4230   if (FMF.noNaNs() && Op0 == Op1)
4231     return Constant::getNullValue(Op0->getType());
4232 
4233   return nullptr;
4234 }
4235 
4236 /// Given the operands for an FMul, see if we can fold the result
4237 static Value *SimplifyFMulInst(Value *Op0, Value *Op1, FastMathFlags FMF,
4238                                const SimplifyQuery &Q, unsigned MaxRecurse) {
4239   if (Constant *C = foldOrCommuteConstant(Instruction::FMul, Op0, Op1, Q))
4240     return C;
4241 
4242   // fmul X, 1.0 ==> X
4243   if (match(Op1, m_FPOne()))
4244     return Op0;
4245 
4246   // fmul nnan nsz X, 0 ==> 0
4247   if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op1, m_AnyZero()))
4248     return Op1;
4249 
4250   return nullptr;
4251 }
4252 
4253 Value *llvm::SimplifyFAddInst(Value *Op0, Value *Op1, FastMathFlags FMF,
4254                               const SimplifyQuery &Q) {
4255   return ::SimplifyFAddInst(Op0, Op1, FMF, Q, RecursionLimit);
4256 }
4257 
4258 
4259 Value *llvm::SimplifyFSubInst(Value *Op0, Value *Op1, FastMathFlags FMF,
4260                               const SimplifyQuery &Q) {
4261   return ::SimplifyFSubInst(Op0, Op1, FMF, Q, RecursionLimit);
4262 }
4263 
4264 Value *llvm::SimplifyFMulInst(Value *Op0, Value *Op1, FastMathFlags FMF,
4265                               const SimplifyQuery &Q) {
4266   return ::SimplifyFMulInst(Op0, Op1, FMF, Q, RecursionLimit);
4267 }
4268 
4269 static Value *SimplifyFDivInst(Value *Op0, Value *Op1, FastMathFlags FMF,
4270                                const SimplifyQuery &Q, unsigned) {
4271   if (Constant *C = foldOrCommuteConstant(Instruction::FDiv, Op0, Op1, Q))
4272     return C;
4273 
4274   // undef / X -> undef    (the undef could be a snan).
4275   if (match(Op0, m_Undef()))
4276     return Op0;
4277 
4278   // X / undef -> undef
4279   if (match(Op1, m_Undef()))
4280     return Op1;
4281 
4282   // X / 1.0 -> X
4283   if (match(Op1, m_FPOne()))
4284     return Op0;
4285 
4286   // 0 / X -> 0
4287   // Requires that NaNs are off (X could be zero) and signed zeroes are
4288   // ignored (X could be positive or negative, so the output sign is unknown).
4289   if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op0, m_AnyZero()))
4290     return Op0;
4291 
4292   if (FMF.noNaNs()) {
4293     // X / X -> 1.0 is legal when NaNs are ignored.
4294     if (Op0 == Op1)
4295       return ConstantFP::get(Op0->getType(), 1.0);
4296 
4297     // -X /  X -> -1.0 and
4298     //  X / -X -> -1.0 are legal when NaNs are ignored.
4299     // We can ignore signed zeros because +-0.0/+-0.0 is NaN and ignored.
4300     if ((BinaryOperator::isFNeg(Op0, /*IgnoreZeroSign=*/true) &&
4301          BinaryOperator::getFNegArgument(Op0) == Op1) ||
4302         (BinaryOperator::isFNeg(Op1, /*IgnoreZeroSign=*/true) &&
4303          BinaryOperator::getFNegArgument(Op1) == Op0))
4304       return ConstantFP::get(Op0->getType(), -1.0);
4305   }
4306 
4307   return nullptr;
4308 }
4309 
4310 Value *llvm::SimplifyFDivInst(Value *Op0, Value *Op1, FastMathFlags FMF,
4311                               const SimplifyQuery &Q) {
4312   return ::SimplifyFDivInst(Op0, Op1, FMF, Q, RecursionLimit);
4313 }
4314 
4315 static Value *SimplifyFRemInst(Value *Op0, Value *Op1, FastMathFlags FMF,
4316                                const SimplifyQuery &Q, unsigned) {
4317   if (Constant *C = foldOrCommuteConstant(Instruction::FRem, Op0, Op1, Q))
4318     return C;
4319 
4320   // undef % X -> undef    (the undef could be a snan).
4321   if (match(Op0, m_Undef()))
4322     return Op0;
4323 
4324   // X % undef -> undef
4325   if (match(Op1, m_Undef()))
4326     return Op1;
4327 
4328   // 0 % X -> 0
4329   // Requires that NaNs are off (X could be zero) and signed zeroes are
4330   // ignored (X could be positive or negative, so the output sign is unknown).
4331   if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op0, m_AnyZero()))
4332     return Op0;
4333 
4334   return nullptr;
4335 }
4336 
4337 Value *llvm::SimplifyFRemInst(Value *Op0, Value *Op1, FastMathFlags FMF,
4338                               const SimplifyQuery &Q) {
4339   return ::SimplifyFRemInst(Op0, Op1, FMF, Q, RecursionLimit);
4340 }
4341 
4342 //=== Helper functions for higher up the class hierarchy.
4343 
4344 /// Given operands for a BinaryOperator, see if we can fold the result.
4345 /// If not, this returns null.
4346 static Value *SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS,
4347                             const SimplifyQuery &Q, unsigned MaxRecurse) {
4348   switch (Opcode) {
4349   case Instruction::Add:
4350     return SimplifyAddInst(LHS, RHS, false, false, Q, MaxRecurse);
4351   case Instruction::Sub:
4352     return SimplifySubInst(LHS, RHS, false, false, Q, MaxRecurse);
4353   case Instruction::Mul:
4354     return SimplifyMulInst(LHS, RHS, Q, MaxRecurse);
4355   case Instruction::SDiv:
4356     return SimplifySDivInst(LHS, RHS, Q, MaxRecurse);
4357   case Instruction::UDiv:
4358     return SimplifyUDivInst(LHS, RHS, Q, MaxRecurse);
4359   case Instruction::SRem:
4360     return SimplifySRemInst(LHS, RHS, Q, MaxRecurse);
4361   case Instruction::URem:
4362     return SimplifyURemInst(LHS, RHS, Q, MaxRecurse);
4363   case Instruction::Shl:
4364     return SimplifyShlInst(LHS, RHS, false, false, Q, MaxRecurse);
4365   case Instruction::LShr:
4366     return SimplifyLShrInst(LHS, RHS, false, Q, MaxRecurse);
4367   case Instruction::AShr:
4368     return SimplifyAShrInst(LHS, RHS, false, Q, MaxRecurse);
4369   case Instruction::And:
4370     return SimplifyAndInst(LHS, RHS, Q, MaxRecurse);
4371   case Instruction::Or:
4372     return SimplifyOrInst(LHS, RHS, Q, MaxRecurse);
4373   case Instruction::Xor:
4374     return SimplifyXorInst(LHS, RHS, Q, MaxRecurse);
4375   case Instruction::FAdd:
4376     return SimplifyFAddInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse);
4377   case Instruction::FSub:
4378     return SimplifyFSubInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse);
4379   case Instruction::FMul:
4380     return SimplifyFMulInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse);
4381   case Instruction::FDiv:
4382     return SimplifyFDivInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse);
4383   case Instruction::FRem:
4384     return SimplifyFRemInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse);
4385   default:
4386     llvm_unreachable("Unexpected opcode");
4387   }
4388 }
4389 
4390 /// Given operands for a BinaryOperator, see if we can fold the result.
4391 /// If not, this returns null.
4392 /// In contrast to SimplifyBinOp, try to use FastMathFlag when folding the
4393 /// result. In case we don't need FastMathFlags, simply fall to SimplifyBinOp.
4394 static Value *SimplifyFPBinOp(unsigned Opcode, Value *LHS, Value *RHS,
4395                               const FastMathFlags &FMF, const SimplifyQuery &Q,
4396                               unsigned MaxRecurse) {
4397   switch (Opcode) {
4398   case Instruction::FAdd:
4399     return SimplifyFAddInst(LHS, RHS, FMF, Q, MaxRecurse);
4400   case Instruction::FSub:
4401     return SimplifyFSubInst(LHS, RHS, FMF, Q, MaxRecurse);
4402   case Instruction::FMul:
4403     return SimplifyFMulInst(LHS, RHS, FMF, Q, MaxRecurse);
4404   case Instruction::FDiv:
4405     return SimplifyFDivInst(LHS, RHS, FMF, Q, MaxRecurse);
4406   default:
4407     return SimplifyBinOp(Opcode, LHS, RHS, Q, MaxRecurse);
4408   }
4409 }
4410 
4411 Value *llvm::SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS,
4412                            const SimplifyQuery &Q) {
4413   return ::SimplifyBinOp(Opcode, LHS, RHS, Q, RecursionLimit);
4414 }
4415 
4416 Value *llvm::SimplifyFPBinOp(unsigned Opcode, Value *LHS, Value *RHS,
4417                              FastMathFlags FMF, const SimplifyQuery &Q) {
4418   return ::SimplifyFPBinOp(Opcode, LHS, RHS, FMF, Q, RecursionLimit);
4419 }
4420 
4421 /// Given operands for a CmpInst, see if we can fold the result.
4422 static Value *SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
4423                               const SimplifyQuery &Q, unsigned MaxRecurse) {
4424   if (CmpInst::isIntPredicate((CmpInst::Predicate)Predicate))
4425     return SimplifyICmpInst(Predicate, LHS, RHS, Q, MaxRecurse);
4426   return SimplifyFCmpInst(Predicate, LHS, RHS, FastMathFlags(), Q, MaxRecurse);
4427 }
4428 
4429 Value *llvm::SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
4430                              const SimplifyQuery &Q) {
4431   return ::SimplifyCmpInst(Predicate, LHS, RHS, Q, RecursionLimit);
4432 }
4433 
4434 static bool IsIdempotent(Intrinsic::ID ID) {
4435   switch (ID) {
4436   default: return false;
4437 
4438   // Unary idempotent: f(f(x)) = f(x)
4439   case Intrinsic::fabs:
4440   case Intrinsic::floor:
4441   case Intrinsic::ceil:
4442   case Intrinsic::trunc:
4443   case Intrinsic::rint:
4444   case Intrinsic::nearbyint:
4445   case Intrinsic::round:
4446   case Intrinsic::canonicalize:
4447     return true;
4448   }
4449 }
4450 
4451 static Value *SimplifyRelativeLoad(Constant *Ptr, Constant *Offset,
4452                                    const DataLayout &DL) {
4453   GlobalValue *PtrSym;
4454   APInt PtrOffset;
4455   if (!IsConstantOffsetFromGlobal(Ptr, PtrSym, PtrOffset, DL))
4456     return nullptr;
4457 
4458   Type *Int8PtrTy = Type::getInt8PtrTy(Ptr->getContext());
4459   Type *Int32Ty = Type::getInt32Ty(Ptr->getContext());
4460   Type *Int32PtrTy = Int32Ty->getPointerTo();
4461   Type *Int64Ty = Type::getInt64Ty(Ptr->getContext());
4462 
4463   auto *OffsetConstInt = dyn_cast<ConstantInt>(Offset);
4464   if (!OffsetConstInt || OffsetConstInt->getType()->getBitWidth() > 64)
4465     return nullptr;
4466 
4467   uint64_t OffsetInt = OffsetConstInt->getSExtValue();
4468   if (OffsetInt % 4 != 0)
4469     return nullptr;
4470 
4471   Constant *C = ConstantExpr::getGetElementPtr(
4472       Int32Ty, ConstantExpr::getBitCast(Ptr, Int32PtrTy),
4473       ConstantInt::get(Int64Ty, OffsetInt / 4));
4474   Constant *Loaded = ConstantFoldLoadFromConstPtr(C, Int32Ty, DL);
4475   if (!Loaded)
4476     return nullptr;
4477 
4478   auto *LoadedCE = dyn_cast<ConstantExpr>(Loaded);
4479   if (!LoadedCE)
4480     return nullptr;
4481 
4482   if (LoadedCE->getOpcode() == Instruction::Trunc) {
4483     LoadedCE = dyn_cast<ConstantExpr>(LoadedCE->getOperand(0));
4484     if (!LoadedCE)
4485       return nullptr;
4486   }
4487 
4488   if (LoadedCE->getOpcode() != Instruction::Sub)
4489     return nullptr;
4490 
4491   auto *LoadedLHS = dyn_cast<ConstantExpr>(LoadedCE->getOperand(0));
4492   if (!LoadedLHS || LoadedLHS->getOpcode() != Instruction::PtrToInt)
4493     return nullptr;
4494   auto *LoadedLHSPtr = LoadedLHS->getOperand(0);
4495 
4496   Constant *LoadedRHS = LoadedCE->getOperand(1);
4497   GlobalValue *LoadedRHSSym;
4498   APInt LoadedRHSOffset;
4499   if (!IsConstantOffsetFromGlobal(LoadedRHS, LoadedRHSSym, LoadedRHSOffset,
4500                                   DL) ||
4501       PtrSym != LoadedRHSSym || PtrOffset != LoadedRHSOffset)
4502     return nullptr;
4503 
4504   return ConstantExpr::getBitCast(LoadedLHSPtr, Int8PtrTy);
4505 }
4506 
4507 static bool maskIsAllZeroOrUndef(Value *Mask) {
4508   auto *ConstMask = dyn_cast<Constant>(Mask);
4509   if (!ConstMask)
4510     return false;
4511   if (ConstMask->isNullValue() || isa<UndefValue>(ConstMask))
4512     return true;
4513   for (unsigned I = 0, E = ConstMask->getType()->getVectorNumElements(); I != E;
4514        ++I) {
4515     if (auto *MaskElt = ConstMask->getAggregateElement(I))
4516       if (MaskElt->isNullValue() || isa<UndefValue>(MaskElt))
4517         continue;
4518     return false;
4519   }
4520   return true;
4521 }
4522 
4523 template <typename IterTy>
4524 static Value *SimplifyIntrinsic(Function *F, IterTy ArgBegin, IterTy ArgEnd,
4525                                 const SimplifyQuery &Q, unsigned MaxRecurse) {
4526   Intrinsic::ID IID = F->getIntrinsicID();
4527   unsigned NumOperands = std::distance(ArgBegin, ArgEnd);
4528 
4529   // Unary Ops
4530   if (NumOperands == 1) {
4531     // Perform idempotent optimizations
4532     if (IsIdempotent(IID)) {
4533       if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(*ArgBegin)) {
4534         if (II->getIntrinsicID() == IID)
4535           return II;
4536       }
4537     }
4538 
4539     Value *IIOperand = *ArgBegin;
4540     Value *X;
4541     switch (IID) {
4542     case Intrinsic::fabs: {
4543       if (SignBitMustBeZero(IIOperand, Q.TLI))
4544         return IIOperand;
4545       return nullptr;
4546     }
4547     case Intrinsic::bswap: {
4548       // bswap(bswap(x)) -> x
4549       if (match(IIOperand, m_BSwap(m_Value(X))))
4550         return X;
4551       return nullptr;
4552     }
4553     case Intrinsic::bitreverse: {
4554       // bitreverse(bitreverse(x)) -> x
4555       if (match(IIOperand, m_BitReverse(m_Value(X))))
4556         return X;
4557       return nullptr;
4558     }
4559     case Intrinsic::exp: {
4560       // exp(log(x)) -> x
4561       if (Q.CxtI->isFast() &&
4562           match(IIOperand, m_Intrinsic<Intrinsic::log>(m_Value(X))))
4563         return X;
4564       return nullptr;
4565     }
4566     case Intrinsic::exp2: {
4567       // exp2(log2(x)) -> x
4568       if (Q.CxtI->isFast() &&
4569           match(IIOperand, m_Intrinsic<Intrinsic::log2>(m_Value(X))))
4570         return X;
4571       return nullptr;
4572     }
4573     case Intrinsic::log: {
4574       // log(exp(x)) -> x
4575       if (Q.CxtI->isFast() &&
4576           match(IIOperand, m_Intrinsic<Intrinsic::exp>(m_Value(X))))
4577         return X;
4578       return nullptr;
4579     }
4580     case Intrinsic::log2: {
4581       // log2(exp2(x)) -> x
4582       if (Q.CxtI->isFast() &&
4583           match(IIOperand, m_Intrinsic<Intrinsic::exp2>(m_Value(X)))) {
4584         return X;
4585       }
4586       return nullptr;
4587     }
4588     default:
4589       return nullptr;
4590     }
4591   }
4592 
4593   // Binary Ops
4594   if (NumOperands == 2) {
4595     Value *LHS = *ArgBegin;
4596     Value *RHS = *(ArgBegin + 1);
4597     Type *ReturnType = F->getReturnType();
4598 
4599     switch (IID) {
4600     case Intrinsic::usub_with_overflow:
4601     case Intrinsic::ssub_with_overflow: {
4602       // X - X -> { 0, false }
4603       if (LHS == RHS)
4604         return Constant::getNullValue(ReturnType);
4605 
4606       // X - undef -> undef
4607       // undef - X -> undef
4608       if (isa<UndefValue>(LHS) || isa<UndefValue>(RHS))
4609         return UndefValue::get(ReturnType);
4610 
4611       return nullptr;
4612     }
4613     case Intrinsic::uadd_with_overflow:
4614     case Intrinsic::sadd_with_overflow: {
4615       // X + undef -> undef
4616       if (isa<UndefValue>(LHS) || isa<UndefValue>(RHS))
4617         return UndefValue::get(ReturnType);
4618 
4619       return nullptr;
4620     }
4621     case Intrinsic::umul_with_overflow:
4622     case Intrinsic::smul_with_overflow: {
4623       // 0 * X -> { 0, false }
4624       // X * 0 -> { 0, false }
4625       if (match(LHS, m_Zero()) || match(RHS, m_Zero()))
4626         return Constant::getNullValue(ReturnType);
4627 
4628       // undef * X -> { 0, false }
4629       // X * undef -> { 0, false }
4630       if (match(LHS, m_Undef()) || match(RHS, m_Undef()))
4631         return Constant::getNullValue(ReturnType);
4632 
4633       return nullptr;
4634     }
4635     case Intrinsic::load_relative: {
4636       Constant *C0 = dyn_cast<Constant>(LHS);
4637       Constant *C1 = dyn_cast<Constant>(RHS);
4638       if (C0 && C1)
4639         return SimplifyRelativeLoad(C0, C1, Q.DL);
4640       return nullptr;
4641     }
4642     case Intrinsic::powi:
4643       if (ConstantInt *Power = dyn_cast<ConstantInt>(RHS)) {
4644         // powi(x, 0) -> 1.0
4645         if (Power->isZero())
4646           return ConstantFP::get(LHS->getType(), 1.0);
4647         // powi(x, 1) -> x
4648         if (Power->isOne())
4649           return LHS;
4650       }
4651       return nullptr;
4652     default:
4653       return nullptr;
4654     }
4655   }
4656 
4657   // Simplify calls to llvm.masked.load.*
4658   switch (IID) {
4659   case Intrinsic::masked_load: {
4660     Value *MaskArg = ArgBegin[2];
4661     Value *PassthruArg = ArgBegin[3];
4662     // If the mask is all zeros or undef, the "passthru" argument is the result.
4663     if (maskIsAllZeroOrUndef(MaskArg))
4664       return PassthruArg;
4665     return nullptr;
4666   }
4667   default:
4668     return nullptr;
4669   }
4670 }
4671 
4672 template <typename IterTy>
4673 static Value *SimplifyCall(ImmutableCallSite CS, Value *V, IterTy ArgBegin,
4674                            IterTy ArgEnd, const SimplifyQuery &Q,
4675                            unsigned MaxRecurse) {
4676   Type *Ty = V->getType();
4677   if (PointerType *PTy = dyn_cast<PointerType>(Ty))
4678     Ty = PTy->getElementType();
4679   FunctionType *FTy = cast<FunctionType>(Ty);
4680 
4681   // call undef -> undef
4682   // call null -> undef
4683   if (isa<UndefValue>(V) || isa<ConstantPointerNull>(V))
4684     return UndefValue::get(FTy->getReturnType());
4685 
4686   Function *F = dyn_cast<Function>(V);
4687   if (!F)
4688     return nullptr;
4689 
4690   if (F->isIntrinsic())
4691     if (Value *Ret = SimplifyIntrinsic(F, ArgBegin, ArgEnd, Q, MaxRecurse))
4692       return Ret;
4693 
4694   if (!canConstantFoldCallTo(CS, F))
4695     return nullptr;
4696 
4697   SmallVector<Constant *, 4> ConstantArgs;
4698   ConstantArgs.reserve(ArgEnd - ArgBegin);
4699   for (IterTy I = ArgBegin, E = ArgEnd; I != E; ++I) {
4700     Constant *C = dyn_cast<Constant>(*I);
4701     if (!C)
4702       return nullptr;
4703     ConstantArgs.push_back(C);
4704   }
4705 
4706   return ConstantFoldCall(CS, F, ConstantArgs, Q.TLI);
4707 }
4708 
4709 Value *llvm::SimplifyCall(ImmutableCallSite CS, Value *V,
4710                           User::op_iterator ArgBegin, User::op_iterator ArgEnd,
4711                           const SimplifyQuery &Q) {
4712   return ::SimplifyCall(CS, V, ArgBegin, ArgEnd, Q, RecursionLimit);
4713 }
4714 
4715 Value *llvm::SimplifyCall(ImmutableCallSite CS, Value *V,
4716                           ArrayRef<Value *> Args, const SimplifyQuery &Q) {
4717   return ::SimplifyCall(CS, V, Args.begin(), Args.end(), Q, RecursionLimit);
4718 }
4719 
4720 Value *llvm::SimplifyCall(ImmutableCallSite ICS, const SimplifyQuery &Q) {
4721   CallSite CS(const_cast<Instruction*>(ICS.getInstruction()));
4722   return ::SimplifyCall(CS, CS.getCalledValue(), CS.arg_begin(), CS.arg_end(),
4723                         Q, RecursionLimit);
4724 }
4725 
4726 /// See if we can compute a simplified version of this instruction.
4727 /// If not, this returns null.
4728 
4729 Value *llvm::SimplifyInstruction(Instruction *I, const SimplifyQuery &SQ,
4730                                  OptimizationRemarkEmitter *ORE) {
4731   const SimplifyQuery Q = SQ.CxtI ? SQ : SQ.getWithInstruction(I);
4732   Value *Result;
4733 
4734   switch (I->getOpcode()) {
4735   default:
4736     Result = ConstantFoldInstruction(I, Q.DL, Q.TLI);
4737     break;
4738   case Instruction::FAdd:
4739     Result = SimplifyFAddInst(I->getOperand(0), I->getOperand(1),
4740                               I->getFastMathFlags(), Q);
4741     break;
4742   case Instruction::Add:
4743     Result = SimplifyAddInst(I->getOperand(0), I->getOperand(1),
4744                              cast<BinaryOperator>(I)->hasNoSignedWrap(),
4745                              cast<BinaryOperator>(I)->hasNoUnsignedWrap(), Q);
4746     break;
4747   case Instruction::FSub:
4748     Result = SimplifyFSubInst(I->getOperand(0), I->getOperand(1),
4749                               I->getFastMathFlags(), Q);
4750     break;
4751   case Instruction::Sub:
4752     Result = SimplifySubInst(I->getOperand(0), I->getOperand(1),
4753                              cast<BinaryOperator>(I)->hasNoSignedWrap(),
4754                              cast<BinaryOperator>(I)->hasNoUnsignedWrap(), Q);
4755     break;
4756   case Instruction::FMul:
4757     Result = SimplifyFMulInst(I->getOperand(0), I->getOperand(1),
4758                               I->getFastMathFlags(), Q);
4759     break;
4760   case Instruction::Mul:
4761     Result = SimplifyMulInst(I->getOperand(0), I->getOperand(1), Q);
4762     break;
4763   case Instruction::SDiv:
4764     Result = SimplifySDivInst(I->getOperand(0), I->getOperand(1), Q);
4765     break;
4766   case Instruction::UDiv:
4767     Result = SimplifyUDivInst(I->getOperand(0), I->getOperand(1), Q);
4768     break;
4769   case Instruction::FDiv:
4770     Result = SimplifyFDivInst(I->getOperand(0), I->getOperand(1),
4771                               I->getFastMathFlags(), Q);
4772     break;
4773   case Instruction::SRem:
4774     Result = SimplifySRemInst(I->getOperand(0), I->getOperand(1), Q);
4775     break;
4776   case Instruction::URem:
4777     Result = SimplifyURemInst(I->getOperand(0), I->getOperand(1), Q);
4778     break;
4779   case Instruction::FRem:
4780     Result = SimplifyFRemInst(I->getOperand(0), I->getOperand(1),
4781                               I->getFastMathFlags(), Q);
4782     break;
4783   case Instruction::Shl:
4784     Result = SimplifyShlInst(I->getOperand(0), I->getOperand(1),
4785                              cast<BinaryOperator>(I)->hasNoSignedWrap(),
4786                              cast<BinaryOperator>(I)->hasNoUnsignedWrap(), Q);
4787     break;
4788   case Instruction::LShr:
4789     Result = SimplifyLShrInst(I->getOperand(0), I->getOperand(1),
4790                               cast<BinaryOperator>(I)->isExact(), Q);
4791     break;
4792   case Instruction::AShr:
4793     Result = SimplifyAShrInst(I->getOperand(0), I->getOperand(1),
4794                               cast<BinaryOperator>(I)->isExact(), Q);
4795     break;
4796   case Instruction::And:
4797     Result = SimplifyAndInst(I->getOperand(0), I->getOperand(1), Q);
4798     break;
4799   case Instruction::Or:
4800     Result = SimplifyOrInst(I->getOperand(0), I->getOperand(1), Q);
4801     break;
4802   case Instruction::Xor:
4803     Result = SimplifyXorInst(I->getOperand(0), I->getOperand(1), Q);
4804     break;
4805   case Instruction::ICmp:
4806     Result = SimplifyICmpInst(cast<ICmpInst>(I)->getPredicate(),
4807                               I->getOperand(0), I->getOperand(1), Q);
4808     break;
4809   case Instruction::FCmp:
4810     Result =
4811         SimplifyFCmpInst(cast<FCmpInst>(I)->getPredicate(), I->getOperand(0),
4812                          I->getOperand(1), I->getFastMathFlags(), Q);
4813     break;
4814   case Instruction::Select:
4815     Result = SimplifySelectInst(I->getOperand(0), I->getOperand(1),
4816                                 I->getOperand(2), Q);
4817     break;
4818   case Instruction::GetElementPtr: {
4819     SmallVector<Value *, 8> Ops(I->op_begin(), I->op_end());
4820     Result = SimplifyGEPInst(cast<GetElementPtrInst>(I)->getSourceElementType(),
4821                              Ops, Q);
4822     break;
4823   }
4824   case Instruction::InsertValue: {
4825     InsertValueInst *IV = cast<InsertValueInst>(I);
4826     Result = SimplifyInsertValueInst(IV->getAggregateOperand(),
4827                                      IV->getInsertedValueOperand(),
4828                                      IV->getIndices(), Q);
4829     break;
4830   }
4831   case Instruction::InsertElement: {
4832     auto *IE = cast<InsertElementInst>(I);
4833     Result = SimplifyInsertElementInst(IE->getOperand(0), IE->getOperand(1),
4834                                        IE->getOperand(2), Q);
4835     break;
4836   }
4837   case Instruction::ExtractValue: {
4838     auto *EVI = cast<ExtractValueInst>(I);
4839     Result = SimplifyExtractValueInst(EVI->getAggregateOperand(),
4840                                       EVI->getIndices(), Q);
4841     break;
4842   }
4843   case Instruction::ExtractElement: {
4844     auto *EEI = cast<ExtractElementInst>(I);
4845     Result = SimplifyExtractElementInst(EEI->getVectorOperand(),
4846                                         EEI->getIndexOperand(), Q);
4847     break;
4848   }
4849   case Instruction::ShuffleVector: {
4850     auto *SVI = cast<ShuffleVectorInst>(I);
4851     Result = SimplifyShuffleVectorInst(SVI->getOperand(0), SVI->getOperand(1),
4852                                        SVI->getMask(), SVI->getType(), Q);
4853     break;
4854   }
4855   case Instruction::PHI:
4856     Result = SimplifyPHINode(cast<PHINode>(I), Q);
4857     break;
4858   case Instruction::Call: {
4859     CallSite CS(cast<CallInst>(I));
4860     Result = SimplifyCall(CS, Q);
4861     break;
4862   }
4863 #define HANDLE_CAST_INST(num, opc, clas) case Instruction::opc:
4864 #include "llvm/IR/Instruction.def"
4865 #undef HANDLE_CAST_INST
4866     Result =
4867         SimplifyCastInst(I->getOpcode(), I->getOperand(0), I->getType(), Q);
4868     break;
4869   case Instruction::Alloca:
4870     // No simplifications for Alloca and it can't be constant folded.
4871     Result = nullptr;
4872     break;
4873   }
4874 
4875   // In general, it is possible for computeKnownBits to determine all bits in a
4876   // value even when the operands are not all constants.
4877   if (!Result && I->getType()->isIntOrIntVectorTy()) {
4878     KnownBits Known = computeKnownBits(I, Q.DL, /*Depth*/ 0, Q.AC, I, Q.DT, ORE);
4879     if (Known.isConstant())
4880       Result = ConstantInt::get(I->getType(), Known.getConstant());
4881   }
4882 
4883   /// If called on unreachable code, the above logic may report that the
4884   /// instruction simplified to itself.  Make life easier for users by
4885   /// detecting that case here, returning a safe value instead.
4886   return Result == I ? UndefValue::get(I->getType()) : Result;
4887 }
4888 
4889 /// \brief Implementation of recursive simplification through an instruction's
4890 /// uses.
4891 ///
4892 /// This is the common implementation of the recursive simplification routines.
4893 /// If we have a pre-simplified value in 'SimpleV', that is forcibly used to
4894 /// replace the instruction 'I'. Otherwise, we simply add 'I' to the list of
4895 /// instructions to process and attempt to simplify it using
4896 /// InstructionSimplify.
4897 ///
4898 /// This routine returns 'true' only when *it* simplifies something. The passed
4899 /// in simplified value does not count toward this.
4900 static bool replaceAndRecursivelySimplifyImpl(Instruction *I, Value *SimpleV,
4901                                               const TargetLibraryInfo *TLI,
4902                                               const DominatorTree *DT,
4903                                               AssumptionCache *AC) {
4904   bool Simplified = false;
4905   SmallSetVector<Instruction *, 8> Worklist;
4906   const DataLayout &DL = I->getModule()->getDataLayout();
4907 
4908   // If we have an explicit value to collapse to, do that round of the
4909   // simplification loop by hand initially.
4910   if (SimpleV) {
4911     for (User *U : I->users())
4912       if (U != I)
4913         Worklist.insert(cast<Instruction>(U));
4914 
4915     // Replace the instruction with its simplified value.
4916     I->replaceAllUsesWith(SimpleV);
4917 
4918     // Gracefully handle edge cases where the instruction is not wired into any
4919     // parent block.
4920     if (I->getParent() && !I->isEHPad() && !isa<TerminatorInst>(I) &&
4921         !I->mayHaveSideEffects())
4922       I->eraseFromParent();
4923   } else {
4924     Worklist.insert(I);
4925   }
4926 
4927   // Note that we must test the size on each iteration, the worklist can grow.
4928   for (unsigned Idx = 0; Idx != Worklist.size(); ++Idx) {
4929     I = Worklist[Idx];
4930 
4931     // See if this instruction simplifies.
4932     SimpleV = SimplifyInstruction(I, {DL, TLI, DT, AC});
4933     if (!SimpleV)
4934       continue;
4935 
4936     Simplified = true;
4937 
4938     // Stash away all the uses of the old instruction so we can check them for
4939     // recursive simplifications after a RAUW. This is cheaper than checking all
4940     // uses of To on the recursive step in most cases.
4941     for (User *U : I->users())
4942       Worklist.insert(cast<Instruction>(U));
4943 
4944     // Replace the instruction with its simplified value.
4945     I->replaceAllUsesWith(SimpleV);
4946 
4947     // Gracefully handle edge cases where the instruction is not wired into any
4948     // parent block.
4949     if (I->getParent() && !I->isEHPad() && !isa<TerminatorInst>(I) &&
4950         !I->mayHaveSideEffects())
4951       I->eraseFromParent();
4952   }
4953   return Simplified;
4954 }
4955 
4956 bool llvm::recursivelySimplifyInstruction(Instruction *I,
4957                                           const TargetLibraryInfo *TLI,
4958                                           const DominatorTree *DT,
4959                                           AssumptionCache *AC) {
4960   return replaceAndRecursivelySimplifyImpl(I, nullptr, TLI, DT, AC);
4961 }
4962 
4963 bool llvm::replaceAndRecursivelySimplify(Instruction *I, Value *SimpleV,
4964                                          const TargetLibraryInfo *TLI,
4965                                          const DominatorTree *DT,
4966                                          AssumptionCache *AC) {
4967   assert(I != SimpleV && "replaceAndRecursivelySimplify(X,X) is not valid!");
4968   assert(SimpleV && "Must provide a simplified value.");
4969   return replaceAndRecursivelySimplifyImpl(I, SimpleV, TLI, DT, AC);
4970 }
4971 
4972 namespace llvm {
4973 const SimplifyQuery getBestSimplifyQuery(Pass &P, Function &F) {
4974   auto *DTWP = P.getAnalysisIfAvailable<DominatorTreeWrapperPass>();
4975   auto *DT = DTWP ? &DTWP->getDomTree() : nullptr;
4976   auto *TLIWP = P.getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>();
4977   auto *TLI = TLIWP ? &TLIWP->getTLI() : nullptr;
4978   auto *ACWP = P.getAnalysisIfAvailable<AssumptionCacheTracker>();
4979   auto *AC = ACWP ? &ACWP->getAssumptionCache(F) : nullptr;
4980   return {F.getParent()->getDataLayout(), TLI, DT, AC};
4981 }
4982 
4983 const SimplifyQuery getBestSimplifyQuery(LoopStandardAnalysisResults &AR,
4984                                          const DataLayout &DL) {
4985   return {DL, &AR.TLI, &AR.DT, &AR.AC};
4986 }
4987 
4988 template <class T, class... TArgs>
4989 const SimplifyQuery getBestSimplifyQuery(AnalysisManager<T, TArgs...> &AM,
4990                                          Function &F) {
4991   auto *DT = AM.template getCachedResult<DominatorTreeAnalysis>(F);
4992   auto *TLI = AM.template getCachedResult<TargetLibraryAnalysis>(F);
4993   auto *AC = AM.template getCachedResult<AssumptionAnalysis>(F);
4994   return {F.getParent()->getDataLayout(), TLI, DT, AC};
4995 }
4996 template const SimplifyQuery getBestSimplifyQuery(AnalysisManager<Function> &,
4997                                                   Function &);
4998 }
4999