1 //===- InstructionSimplify.cpp - Fold instruction operands ----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements routines for folding instructions into simpler forms
10 // that do not require creating new instructions.  This does constant folding
11 // ("add i32 1, 1" -> "2") but can also handle non-constant operands, either
12 // returning a constant ("and i32 %x, 0" -> "0") or an already existing value
13 // ("and i32 %x, %x" -> "%x").  All operands are assumed to have already been
14 // simplified: This is usually true and assuming it simplifies the logic (if
15 // they have not been simplified then results are correct but maybe suboptimal).
16 //
17 //===----------------------------------------------------------------------===//
18 
19 #include "llvm/Analysis/InstructionSimplify.h"
20 
21 #include "llvm/ADT/STLExtras.h"
22 #include "llvm/ADT/SetVector.h"
23 #include "llvm/ADT/SmallPtrSet.h"
24 #include "llvm/ADT/Statistic.h"
25 #include "llvm/Analysis/AliasAnalysis.h"
26 #include "llvm/Analysis/AssumptionCache.h"
27 #include "llvm/Analysis/CaptureTracking.h"
28 #include "llvm/Analysis/CmpInstAnalysis.h"
29 #include "llvm/Analysis/ConstantFolding.h"
30 #include "llvm/Analysis/LoopAnalysisManager.h"
31 #include "llvm/Analysis/MemoryBuiltins.h"
32 #include "llvm/Analysis/OverflowInstAnalysis.h"
33 #include "llvm/Analysis/ValueTracking.h"
34 #include "llvm/Analysis/VectorUtils.h"
35 #include "llvm/IR/ConstantRange.h"
36 #include "llvm/IR/DataLayout.h"
37 #include "llvm/IR/Dominators.h"
38 #include "llvm/IR/GetElementPtrTypeIterator.h"
39 #include "llvm/IR/GlobalAlias.h"
40 #include "llvm/IR/InstrTypes.h"
41 #include "llvm/IR/Instructions.h"
42 #include "llvm/IR/Operator.h"
43 #include "llvm/IR/PatternMatch.h"
44 #include "llvm/IR/ValueHandle.h"
45 #include "llvm/Support/KnownBits.h"
46 #include <algorithm>
47 using namespace llvm;
48 using namespace llvm::PatternMatch;
49 
50 #define DEBUG_TYPE "instsimplify"
51 
52 enum { RecursionLimit = 3 };
53 
54 STATISTIC(NumExpand,  "Number of expansions");
55 STATISTIC(NumReassoc, "Number of reassociations");
56 
57 static Value *SimplifyAndInst(Value *, Value *, const SimplifyQuery &, unsigned);
58 static Value *simplifyUnOp(unsigned, Value *, const SimplifyQuery &, unsigned);
59 static Value *simplifyFPUnOp(unsigned, Value *, const FastMathFlags &,
60                              const SimplifyQuery &, unsigned);
61 static Value *SimplifyBinOp(unsigned, Value *, Value *, const SimplifyQuery &,
62                             unsigned);
63 static Value *SimplifyBinOp(unsigned, Value *, Value *, const FastMathFlags &,
64                             const SimplifyQuery &, unsigned);
65 static Value *SimplifyCmpInst(unsigned, Value *, Value *, const SimplifyQuery &,
66                               unsigned);
67 static Value *SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS,
68                                const SimplifyQuery &Q, unsigned MaxRecurse);
69 static Value *SimplifyOrInst(Value *, Value *, const SimplifyQuery &, unsigned);
70 static Value *SimplifyXorInst(Value *, Value *, const SimplifyQuery &, unsigned);
71 static Value *SimplifyCastInst(unsigned, Value *, Type *,
72                                const SimplifyQuery &, unsigned);
73 static Value *SimplifyGEPInst(Type *, ArrayRef<Value *>, bool,
74                               const SimplifyQuery &, unsigned);
75 static Value *SimplifySelectInst(Value *, Value *, Value *,
76                                  const SimplifyQuery &, unsigned);
77 
78 static Value *foldSelectWithBinaryOp(Value *Cond, Value *TrueVal,
79                                      Value *FalseVal) {
80   BinaryOperator::BinaryOps BinOpCode;
81   if (auto *BO = dyn_cast<BinaryOperator>(Cond))
82     BinOpCode = BO->getOpcode();
83   else
84     return nullptr;
85 
86   CmpInst::Predicate ExpectedPred, Pred1, Pred2;
87   if (BinOpCode == BinaryOperator::Or) {
88     ExpectedPred = ICmpInst::ICMP_NE;
89   } else if (BinOpCode == BinaryOperator::And) {
90     ExpectedPred = ICmpInst::ICMP_EQ;
91   } else
92     return nullptr;
93 
94   // %A = icmp eq %TV, %FV
95   // %B = icmp eq %X, %Y (and one of these is a select operand)
96   // %C = and %A, %B
97   // %D = select %C, %TV, %FV
98   // -->
99   // %FV
100 
101   // %A = icmp ne %TV, %FV
102   // %B = icmp ne %X, %Y (and one of these is a select operand)
103   // %C = or %A, %B
104   // %D = select %C, %TV, %FV
105   // -->
106   // %TV
107   Value *X, *Y;
108   if (!match(Cond, m_c_BinOp(m_c_ICmp(Pred1, m_Specific(TrueVal),
109                                       m_Specific(FalseVal)),
110                              m_ICmp(Pred2, m_Value(X), m_Value(Y)))) ||
111       Pred1 != Pred2 || Pred1 != ExpectedPred)
112     return nullptr;
113 
114   if (X == TrueVal || X == FalseVal || Y == TrueVal || Y == FalseVal)
115     return BinOpCode == BinaryOperator::Or ? TrueVal : FalseVal;
116 
117   return nullptr;
118 }
119 
120 /// For a boolean type or a vector of boolean type, return false or a vector
121 /// with every element false.
122 static Constant *getFalse(Type *Ty) {
123   return ConstantInt::getFalse(Ty);
124 }
125 
126 /// For a boolean type or a vector of boolean type, return true or a vector
127 /// with every element true.
128 static Constant *getTrue(Type *Ty) {
129   return ConstantInt::getTrue(Ty);
130 }
131 
132 /// isSameCompare - Is V equivalent to the comparison "LHS Pred RHS"?
133 static bool isSameCompare(Value *V, CmpInst::Predicate Pred, Value *LHS,
134                           Value *RHS) {
135   CmpInst *Cmp = dyn_cast<CmpInst>(V);
136   if (!Cmp)
137     return false;
138   CmpInst::Predicate CPred = Cmp->getPredicate();
139   Value *CLHS = Cmp->getOperand(0), *CRHS = Cmp->getOperand(1);
140   if (CPred == Pred && CLHS == LHS && CRHS == RHS)
141     return true;
142   return CPred == CmpInst::getSwappedPredicate(Pred) && CLHS == RHS &&
143     CRHS == LHS;
144 }
145 
146 /// Simplify comparison with true or false branch of select:
147 ///  %sel = select i1 %cond, i32 %tv, i32 %fv
148 ///  %cmp = icmp sle i32 %sel, %rhs
149 /// Compose new comparison by substituting %sel with either %tv or %fv
150 /// and see if it simplifies.
151 static Value *simplifyCmpSelCase(CmpInst::Predicate Pred, Value *LHS,
152                                  Value *RHS, Value *Cond,
153                                  const SimplifyQuery &Q, unsigned MaxRecurse,
154                                  Constant *TrueOrFalse) {
155   Value *SimplifiedCmp = SimplifyCmpInst(Pred, LHS, RHS, Q, MaxRecurse);
156   if (SimplifiedCmp == Cond) {
157     // %cmp simplified to the select condition (%cond).
158     return TrueOrFalse;
159   } else if (!SimplifiedCmp && isSameCompare(Cond, Pred, LHS, RHS)) {
160     // It didn't simplify. However, if composed comparison is equivalent
161     // to the select condition (%cond) then we can replace it.
162     return TrueOrFalse;
163   }
164   return SimplifiedCmp;
165 }
166 
167 /// Simplify comparison with true branch of select
168 static Value *simplifyCmpSelTrueCase(CmpInst::Predicate Pred, Value *LHS,
169                                      Value *RHS, Value *Cond,
170                                      const SimplifyQuery &Q,
171                                      unsigned MaxRecurse) {
172   return simplifyCmpSelCase(Pred, LHS, RHS, Cond, Q, MaxRecurse,
173                             getTrue(Cond->getType()));
174 }
175 
176 /// Simplify comparison with false branch of select
177 static Value *simplifyCmpSelFalseCase(CmpInst::Predicate Pred, Value *LHS,
178                                       Value *RHS, Value *Cond,
179                                       const SimplifyQuery &Q,
180                                       unsigned MaxRecurse) {
181   return simplifyCmpSelCase(Pred, LHS, RHS, Cond, Q, MaxRecurse,
182                             getFalse(Cond->getType()));
183 }
184 
185 /// We know comparison with both branches of select can be simplified, but they
186 /// are not equal. This routine handles some logical simplifications.
187 static Value *handleOtherCmpSelSimplifications(Value *TCmp, Value *FCmp,
188                                                Value *Cond,
189                                                const SimplifyQuery &Q,
190                                                unsigned MaxRecurse) {
191   // If the false value simplified to false, then the result of the compare
192   // is equal to "Cond && TCmp".  This also catches the case when the false
193   // value simplified to false and the true value to true, returning "Cond".
194   // Folding select to and/or isn't poison-safe in general; impliesPoison
195   // checks whether folding it does not convert a well-defined value into
196   // poison.
197   if (match(FCmp, m_Zero()) && impliesPoison(TCmp, Cond))
198     if (Value *V = SimplifyAndInst(Cond, TCmp, Q, MaxRecurse))
199       return V;
200   // If the true value simplified to true, then the result of the compare
201   // is equal to "Cond || FCmp".
202   if (match(TCmp, m_One()) && impliesPoison(FCmp, Cond))
203     if (Value *V = SimplifyOrInst(Cond, FCmp, Q, MaxRecurse))
204       return V;
205   // Finally, if the false value simplified to true and the true value to
206   // false, then the result of the compare is equal to "!Cond".
207   if (match(FCmp, m_One()) && match(TCmp, m_Zero()))
208     if (Value *V = SimplifyXorInst(
209             Cond, Constant::getAllOnesValue(Cond->getType()), Q, MaxRecurse))
210       return V;
211   return nullptr;
212 }
213 
214 /// Does the given value dominate the specified phi node?
215 static bool valueDominatesPHI(Value *V, PHINode *P, const DominatorTree *DT) {
216   Instruction *I = dyn_cast<Instruction>(V);
217   if (!I)
218     // Arguments and constants dominate all instructions.
219     return true;
220 
221   // If we are processing instructions (and/or basic blocks) that have not been
222   // fully added to a function, the parent nodes may still be null. Simply
223   // return the conservative answer in these cases.
224   if (!I->getParent() || !P->getParent() || !I->getFunction())
225     return false;
226 
227   // If we have a DominatorTree then do a precise test.
228   if (DT)
229     return DT->dominates(I, P);
230 
231   // Otherwise, if the instruction is in the entry block and is not an invoke,
232   // then it obviously dominates all phi nodes.
233   if (I->getParent()->isEntryBlock() && !isa<InvokeInst>(I) &&
234       !isa<CallBrInst>(I))
235     return true;
236 
237   return false;
238 }
239 
240 /// Try to simplify a binary operator of form "V op OtherOp" where V is
241 /// "(B0 opex B1)" by distributing 'op' across 'opex' as
242 /// "(B0 op OtherOp) opex (B1 op OtherOp)".
243 static Value *expandBinOp(Instruction::BinaryOps Opcode, Value *V,
244                           Value *OtherOp, Instruction::BinaryOps OpcodeToExpand,
245                           const SimplifyQuery &Q, unsigned MaxRecurse) {
246   auto *B = dyn_cast<BinaryOperator>(V);
247   if (!B || B->getOpcode() != OpcodeToExpand)
248     return nullptr;
249   Value *B0 = B->getOperand(0), *B1 = B->getOperand(1);
250   Value *L = SimplifyBinOp(Opcode, B0, OtherOp, Q.getWithoutUndef(),
251                            MaxRecurse);
252   if (!L)
253     return nullptr;
254   Value *R = SimplifyBinOp(Opcode, B1, OtherOp, Q.getWithoutUndef(),
255                            MaxRecurse);
256   if (!R)
257     return nullptr;
258 
259   // Does the expanded pair of binops simplify to the existing binop?
260   if ((L == B0 && R == B1) ||
261       (Instruction::isCommutative(OpcodeToExpand) && L == B1 && R == B0)) {
262     ++NumExpand;
263     return B;
264   }
265 
266   // Otherwise, return "L op' R" if it simplifies.
267   Value *S = SimplifyBinOp(OpcodeToExpand, L, R, Q, MaxRecurse);
268   if (!S)
269     return nullptr;
270 
271   ++NumExpand;
272   return S;
273 }
274 
275 /// Try to simplify binops of form "A op (B op' C)" or the commuted variant by
276 /// distributing op over op'.
277 static Value *expandCommutativeBinOp(Instruction::BinaryOps Opcode,
278                                      Value *L, Value *R,
279                                      Instruction::BinaryOps OpcodeToExpand,
280                                      const SimplifyQuery &Q,
281                                      unsigned MaxRecurse) {
282   // Recursion is always used, so bail out at once if we already hit the limit.
283   if (!MaxRecurse--)
284     return nullptr;
285 
286   if (Value *V = expandBinOp(Opcode, L, R, OpcodeToExpand, Q, MaxRecurse))
287     return V;
288   if (Value *V = expandBinOp(Opcode, R, L, OpcodeToExpand, Q, MaxRecurse))
289     return V;
290   return nullptr;
291 }
292 
293 /// Generic simplifications for associative binary operations.
294 /// Returns the simpler value, or null if none was found.
295 static Value *SimplifyAssociativeBinOp(Instruction::BinaryOps Opcode,
296                                        Value *LHS, Value *RHS,
297                                        const SimplifyQuery &Q,
298                                        unsigned MaxRecurse) {
299   assert(Instruction::isAssociative(Opcode) && "Not an associative operation!");
300 
301   // Recursion is always used, so bail out at once if we already hit the limit.
302   if (!MaxRecurse--)
303     return nullptr;
304 
305   BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS);
306   BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS);
307 
308   // Transform: "(A op B) op C" ==> "A op (B op C)" if it simplifies completely.
309   if (Op0 && Op0->getOpcode() == Opcode) {
310     Value *A = Op0->getOperand(0);
311     Value *B = Op0->getOperand(1);
312     Value *C = RHS;
313 
314     // Does "B op C" simplify?
315     if (Value *V = SimplifyBinOp(Opcode, B, C, Q, MaxRecurse)) {
316       // It does!  Return "A op V" if it simplifies or is already available.
317       // If V equals B then "A op V" is just the LHS.
318       if (V == B) return LHS;
319       // Otherwise return "A op V" if it simplifies.
320       if (Value *W = SimplifyBinOp(Opcode, A, V, Q, MaxRecurse)) {
321         ++NumReassoc;
322         return W;
323       }
324     }
325   }
326 
327   // Transform: "A op (B op C)" ==> "(A op B) op C" if it simplifies completely.
328   if (Op1 && Op1->getOpcode() == Opcode) {
329     Value *A = LHS;
330     Value *B = Op1->getOperand(0);
331     Value *C = Op1->getOperand(1);
332 
333     // Does "A op B" simplify?
334     if (Value *V = SimplifyBinOp(Opcode, A, B, Q, MaxRecurse)) {
335       // It does!  Return "V op C" if it simplifies or is already available.
336       // If V equals B then "V op C" is just the RHS.
337       if (V == B) return RHS;
338       // Otherwise return "V op C" if it simplifies.
339       if (Value *W = SimplifyBinOp(Opcode, V, C, Q, MaxRecurse)) {
340         ++NumReassoc;
341         return W;
342       }
343     }
344   }
345 
346   // The remaining transforms require commutativity as well as associativity.
347   if (!Instruction::isCommutative(Opcode))
348     return nullptr;
349 
350   // Transform: "(A op B) op C" ==> "(C op A) op B" if it simplifies completely.
351   if (Op0 && Op0->getOpcode() == Opcode) {
352     Value *A = Op0->getOperand(0);
353     Value *B = Op0->getOperand(1);
354     Value *C = RHS;
355 
356     // Does "C op A" simplify?
357     if (Value *V = SimplifyBinOp(Opcode, C, A, Q, MaxRecurse)) {
358       // It does!  Return "V op B" if it simplifies or is already available.
359       // If V equals A then "V op B" is just the LHS.
360       if (V == A) return LHS;
361       // Otherwise return "V op B" if it simplifies.
362       if (Value *W = SimplifyBinOp(Opcode, V, B, Q, MaxRecurse)) {
363         ++NumReassoc;
364         return W;
365       }
366     }
367   }
368 
369   // Transform: "A op (B op C)" ==> "B op (C op A)" if it simplifies completely.
370   if (Op1 && Op1->getOpcode() == Opcode) {
371     Value *A = LHS;
372     Value *B = Op1->getOperand(0);
373     Value *C = Op1->getOperand(1);
374 
375     // Does "C op A" simplify?
376     if (Value *V = SimplifyBinOp(Opcode, C, A, Q, MaxRecurse)) {
377       // It does!  Return "B op V" if it simplifies or is already available.
378       // If V equals C then "B op V" is just the RHS.
379       if (V == C) return RHS;
380       // Otherwise return "B op V" if it simplifies.
381       if (Value *W = SimplifyBinOp(Opcode, B, V, Q, MaxRecurse)) {
382         ++NumReassoc;
383         return W;
384       }
385     }
386   }
387 
388   return nullptr;
389 }
390 
391 /// In the case of a binary operation with a select instruction as an operand,
392 /// try to simplify the binop by seeing whether evaluating it on both branches
393 /// of the select results in the same value. Returns the common value if so,
394 /// otherwise returns null.
395 static Value *ThreadBinOpOverSelect(Instruction::BinaryOps Opcode, Value *LHS,
396                                     Value *RHS, const SimplifyQuery &Q,
397                                     unsigned MaxRecurse) {
398   // Recursion is always used, so bail out at once if we already hit the limit.
399   if (!MaxRecurse--)
400     return nullptr;
401 
402   SelectInst *SI;
403   if (isa<SelectInst>(LHS)) {
404     SI = cast<SelectInst>(LHS);
405   } else {
406     assert(isa<SelectInst>(RHS) && "No select instruction operand!");
407     SI = cast<SelectInst>(RHS);
408   }
409 
410   // Evaluate the BinOp on the true and false branches of the select.
411   Value *TV;
412   Value *FV;
413   if (SI == LHS) {
414     TV = SimplifyBinOp(Opcode, SI->getTrueValue(), RHS, Q, MaxRecurse);
415     FV = SimplifyBinOp(Opcode, SI->getFalseValue(), RHS, Q, MaxRecurse);
416   } else {
417     TV = SimplifyBinOp(Opcode, LHS, SI->getTrueValue(), Q, MaxRecurse);
418     FV = SimplifyBinOp(Opcode, LHS, SI->getFalseValue(), Q, MaxRecurse);
419   }
420 
421   // If they simplified to the same value, then return the common value.
422   // If they both failed to simplify then return null.
423   if (TV == FV)
424     return TV;
425 
426   // If one branch simplified to undef, return the other one.
427   if (TV && Q.isUndefValue(TV))
428     return FV;
429   if (FV && Q.isUndefValue(FV))
430     return TV;
431 
432   // If applying the operation did not change the true and false select values,
433   // then the result of the binop is the select itself.
434   if (TV == SI->getTrueValue() && FV == SI->getFalseValue())
435     return SI;
436 
437   // If one branch simplified and the other did not, and the simplified
438   // value is equal to the unsimplified one, return the simplified value.
439   // For example, select (cond, X, X & Z) & Z -> X & Z.
440   if ((FV && !TV) || (TV && !FV)) {
441     // Check that the simplified value has the form "X op Y" where "op" is the
442     // same as the original operation.
443     Instruction *Simplified = dyn_cast<Instruction>(FV ? FV : TV);
444     if (Simplified && Simplified->getOpcode() == unsigned(Opcode)) {
445       // The value that didn't simplify is "UnsimplifiedLHS op UnsimplifiedRHS".
446       // We already know that "op" is the same as for the simplified value.  See
447       // if the operands match too.  If so, return the simplified value.
448       Value *UnsimplifiedBranch = FV ? SI->getTrueValue() : SI->getFalseValue();
449       Value *UnsimplifiedLHS = SI == LHS ? UnsimplifiedBranch : LHS;
450       Value *UnsimplifiedRHS = SI == LHS ? RHS : UnsimplifiedBranch;
451       if (Simplified->getOperand(0) == UnsimplifiedLHS &&
452           Simplified->getOperand(1) == UnsimplifiedRHS)
453         return Simplified;
454       if (Simplified->isCommutative() &&
455           Simplified->getOperand(1) == UnsimplifiedLHS &&
456           Simplified->getOperand(0) == UnsimplifiedRHS)
457         return Simplified;
458     }
459   }
460 
461   return nullptr;
462 }
463 
464 /// In the case of a comparison with a select instruction, try to simplify the
465 /// comparison by seeing whether both branches of the select result in the same
466 /// value. Returns the common value if so, otherwise returns null.
467 /// For example, if we have:
468 ///  %tmp = select i1 %cmp, i32 1, i32 2
469 ///  %cmp1 = icmp sle i32 %tmp, 3
470 /// We can simplify %cmp1 to true, because both branches of select are
471 /// less than 3. We compose new comparison by substituting %tmp with both
472 /// branches of select and see if it can be simplified.
473 static Value *ThreadCmpOverSelect(CmpInst::Predicate Pred, Value *LHS,
474                                   Value *RHS, const SimplifyQuery &Q,
475                                   unsigned MaxRecurse) {
476   // Recursion is always used, so bail out at once if we already hit the limit.
477   if (!MaxRecurse--)
478     return nullptr;
479 
480   // Make sure the select is on the LHS.
481   if (!isa<SelectInst>(LHS)) {
482     std::swap(LHS, RHS);
483     Pred = CmpInst::getSwappedPredicate(Pred);
484   }
485   assert(isa<SelectInst>(LHS) && "Not comparing with a select instruction!");
486   SelectInst *SI = cast<SelectInst>(LHS);
487   Value *Cond = SI->getCondition();
488   Value *TV = SI->getTrueValue();
489   Value *FV = SI->getFalseValue();
490 
491   // Now that we have "cmp select(Cond, TV, FV), RHS", analyse it.
492   // Does "cmp TV, RHS" simplify?
493   Value *TCmp = simplifyCmpSelTrueCase(Pred, TV, RHS, Cond, Q, MaxRecurse);
494   if (!TCmp)
495     return nullptr;
496 
497   // Does "cmp FV, RHS" simplify?
498   Value *FCmp = simplifyCmpSelFalseCase(Pred, FV, RHS, Cond, Q, MaxRecurse);
499   if (!FCmp)
500     return nullptr;
501 
502   // If both sides simplified to the same value, then use it as the result of
503   // the original comparison.
504   if (TCmp == FCmp)
505     return TCmp;
506 
507   // The remaining cases only make sense if the select condition has the same
508   // type as the result of the comparison, so bail out if this is not so.
509   if (Cond->getType()->isVectorTy() == RHS->getType()->isVectorTy())
510     return handleOtherCmpSelSimplifications(TCmp, FCmp, Cond, Q, MaxRecurse);
511 
512   return nullptr;
513 }
514 
515 /// In the case of a binary operation with an operand that is a PHI instruction,
516 /// try to simplify the binop by seeing whether evaluating it on the incoming
517 /// phi values yields the same result for every value. If so returns the common
518 /// value, otherwise returns null.
519 static Value *ThreadBinOpOverPHI(Instruction::BinaryOps Opcode, Value *LHS,
520                                  Value *RHS, const SimplifyQuery &Q,
521                                  unsigned MaxRecurse) {
522   // Recursion is always used, so bail out at once if we already hit the limit.
523   if (!MaxRecurse--)
524     return nullptr;
525 
526   PHINode *PI;
527   if (isa<PHINode>(LHS)) {
528     PI = cast<PHINode>(LHS);
529     // Bail out if RHS and the phi may be mutually interdependent due to a loop.
530     if (!valueDominatesPHI(RHS, PI, Q.DT))
531       return nullptr;
532   } else {
533     assert(isa<PHINode>(RHS) && "No PHI instruction operand!");
534     PI = cast<PHINode>(RHS);
535     // Bail out if LHS and the phi may be mutually interdependent due to a loop.
536     if (!valueDominatesPHI(LHS, PI, Q.DT))
537       return nullptr;
538   }
539 
540   // Evaluate the BinOp on the incoming phi values.
541   Value *CommonValue = nullptr;
542   for (Value *Incoming : PI->incoming_values()) {
543     // If the incoming value is the phi node itself, it can safely be skipped.
544     if (Incoming == PI) continue;
545     Value *V = PI == LHS ?
546       SimplifyBinOp(Opcode, Incoming, RHS, Q, MaxRecurse) :
547       SimplifyBinOp(Opcode, LHS, Incoming, Q, MaxRecurse);
548     // If the operation failed to simplify, or simplified to a different value
549     // to previously, then give up.
550     if (!V || (CommonValue && V != CommonValue))
551       return nullptr;
552     CommonValue = V;
553   }
554 
555   return CommonValue;
556 }
557 
558 /// In the case of a comparison with a PHI instruction, try to simplify the
559 /// comparison by seeing whether comparing with all of the incoming phi values
560 /// yields the same result every time. If so returns the common result,
561 /// otherwise returns null.
562 static Value *ThreadCmpOverPHI(CmpInst::Predicate Pred, Value *LHS, Value *RHS,
563                                const SimplifyQuery &Q, unsigned MaxRecurse) {
564   // Recursion is always used, so bail out at once if we already hit the limit.
565   if (!MaxRecurse--)
566     return nullptr;
567 
568   // Make sure the phi is on the LHS.
569   if (!isa<PHINode>(LHS)) {
570     std::swap(LHS, RHS);
571     Pred = CmpInst::getSwappedPredicate(Pred);
572   }
573   assert(isa<PHINode>(LHS) && "Not comparing with a phi instruction!");
574   PHINode *PI = cast<PHINode>(LHS);
575 
576   // Bail out if RHS and the phi may be mutually interdependent due to a loop.
577   if (!valueDominatesPHI(RHS, PI, Q.DT))
578     return nullptr;
579 
580   // Evaluate the BinOp on the incoming phi values.
581   Value *CommonValue = nullptr;
582   for (unsigned u = 0, e = PI->getNumIncomingValues(); u < e; ++u) {
583     Value *Incoming = PI->getIncomingValue(u);
584     Instruction *InTI = PI->getIncomingBlock(u)->getTerminator();
585     // If the incoming value is the phi node itself, it can safely be skipped.
586     if (Incoming == PI) continue;
587     // Change the context instruction to the "edge" that flows into the phi.
588     // This is important because that is where incoming is actually "evaluated"
589     // even though it is used later somewhere else.
590     Value *V = SimplifyCmpInst(Pred, Incoming, RHS, Q.getWithInstruction(InTI),
591                                MaxRecurse);
592     // If the operation failed to simplify, or simplified to a different value
593     // to previously, then give up.
594     if (!V || (CommonValue && V != CommonValue))
595       return nullptr;
596     CommonValue = V;
597   }
598 
599   return CommonValue;
600 }
601 
602 static Constant *foldOrCommuteConstant(Instruction::BinaryOps Opcode,
603                                        Value *&Op0, Value *&Op1,
604                                        const SimplifyQuery &Q) {
605   if (auto *CLHS = dyn_cast<Constant>(Op0)) {
606     if (auto *CRHS = dyn_cast<Constant>(Op1))
607       return ConstantFoldBinaryOpOperands(Opcode, CLHS, CRHS, Q.DL);
608 
609     // Canonicalize the constant to the RHS if this is a commutative operation.
610     if (Instruction::isCommutative(Opcode))
611       std::swap(Op0, Op1);
612   }
613   return nullptr;
614 }
615 
616 /// Given operands for an Add, see if we can fold the result.
617 /// If not, this returns null.
618 static Value *SimplifyAddInst(Value *Op0, Value *Op1, bool IsNSW, bool IsNUW,
619                               const SimplifyQuery &Q, unsigned MaxRecurse) {
620   if (Constant *C = foldOrCommuteConstant(Instruction::Add, Op0, Op1, Q))
621     return C;
622 
623   // X + undef -> undef
624   if (Q.isUndefValue(Op1))
625     return Op1;
626 
627   // X + 0 -> X
628   if (match(Op1, m_Zero()))
629     return Op0;
630 
631   // If two operands are negative, return 0.
632   if (isKnownNegation(Op0, Op1))
633     return Constant::getNullValue(Op0->getType());
634 
635   // X + (Y - X) -> Y
636   // (Y - X) + X -> Y
637   // Eg: X + -X -> 0
638   Value *Y = nullptr;
639   if (match(Op1, m_Sub(m_Value(Y), m_Specific(Op0))) ||
640       match(Op0, m_Sub(m_Value(Y), m_Specific(Op1))))
641     return Y;
642 
643   // X + ~X -> -1   since   ~X = -X-1
644   Type *Ty = Op0->getType();
645   if (match(Op0, m_Not(m_Specific(Op1))) ||
646       match(Op1, m_Not(m_Specific(Op0))))
647     return Constant::getAllOnesValue(Ty);
648 
649   // add nsw/nuw (xor Y, signmask), signmask --> Y
650   // The no-wrapping add guarantees that the top bit will be set by the add.
651   // Therefore, the xor must be clearing the already set sign bit of Y.
652   if ((IsNSW || IsNUW) && match(Op1, m_SignMask()) &&
653       match(Op0, m_Xor(m_Value(Y), m_SignMask())))
654     return Y;
655 
656   // add nuw %x, -1  ->  -1, because %x can only be 0.
657   if (IsNUW && match(Op1, m_AllOnes()))
658     return Op1; // Which is -1.
659 
660   /// i1 add -> xor.
661   if (MaxRecurse && Op0->getType()->isIntOrIntVectorTy(1))
662     if (Value *V = SimplifyXorInst(Op0, Op1, Q, MaxRecurse-1))
663       return V;
664 
665   // Try some generic simplifications for associative operations.
666   if (Value *V = SimplifyAssociativeBinOp(Instruction::Add, Op0, Op1, Q,
667                                           MaxRecurse))
668     return V;
669 
670   // Threading Add over selects and phi nodes is pointless, so don't bother.
671   // Threading over the select in "A + select(cond, B, C)" means evaluating
672   // "A+B" and "A+C" and seeing if they are equal; but they are equal if and
673   // only if B and C are equal.  If B and C are equal then (since we assume
674   // that operands have already been simplified) "select(cond, B, C)" should
675   // have been simplified to the common value of B and C already.  Analysing
676   // "A+B" and "A+C" thus gains nothing, but costs compile time.  Similarly
677   // for threading over phi nodes.
678 
679   return nullptr;
680 }
681 
682 Value *llvm::SimplifyAddInst(Value *Op0, Value *Op1, bool IsNSW, bool IsNUW,
683                              const SimplifyQuery &Query) {
684   return ::SimplifyAddInst(Op0, Op1, IsNSW, IsNUW, Query, RecursionLimit);
685 }
686 
687 /// Compute the base pointer and cumulative constant offsets for V.
688 ///
689 /// This strips all constant offsets off of V, leaving it the base pointer, and
690 /// accumulates the total constant offset applied in the returned constant. It
691 /// returns 0 if V is not a pointer, and returns the constant '0' if there are
692 /// no constant offsets applied.
693 ///
694 /// This is very similar to GetPointerBaseWithConstantOffset except it doesn't
695 /// follow non-inbounds geps. This allows it to remain usable for icmp ult/etc.
696 /// folding.
697 static Constant *stripAndComputeConstantOffsets(const DataLayout &DL, Value *&V,
698                                                 bool AllowNonInbounds = false) {
699   assert(V->getType()->isPtrOrPtrVectorTy());
700 
701   Type *IntIdxTy = DL.getIndexType(V->getType())->getScalarType();
702   APInt Offset = APInt::getZero(IntIdxTy->getIntegerBitWidth());
703 
704   V = V->stripAndAccumulateConstantOffsets(DL, Offset, AllowNonInbounds);
705   // As that strip may trace through `addrspacecast`, need to sext or trunc
706   // the offset calculated.
707   IntIdxTy = DL.getIndexType(V->getType())->getScalarType();
708   Offset = Offset.sextOrTrunc(IntIdxTy->getIntegerBitWidth());
709 
710   Constant *OffsetIntPtr = ConstantInt::get(IntIdxTy, Offset);
711   if (VectorType *VecTy = dyn_cast<VectorType>(V->getType()))
712     return ConstantVector::getSplat(VecTy->getElementCount(), OffsetIntPtr);
713   return OffsetIntPtr;
714 }
715 
716 /// Compute the constant difference between two pointer values.
717 /// If the difference is not a constant, returns zero.
718 static Constant *computePointerDifference(const DataLayout &DL, Value *LHS,
719                                           Value *RHS) {
720   Constant *LHSOffset = stripAndComputeConstantOffsets(DL, LHS);
721   Constant *RHSOffset = stripAndComputeConstantOffsets(DL, RHS);
722 
723   // If LHS and RHS are not related via constant offsets to the same base
724   // value, there is nothing we can do here.
725   if (LHS != RHS)
726     return nullptr;
727 
728   // Otherwise, the difference of LHS - RHS can be computed as:
729   //    LHS - RHS
730   //  = (LHSOffset + Base) - (RHSOffset + Base)
731   //  = LHSOffset - RHSOffset
732   return ConstantExpr::getSub(LHSOffset, RHSOffset);
733 }
734 
735 /// Given operands for a Sub, see if we can fold the result.
736 /// If not, this returns null.
737 static Value *SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
738                               const SimplifyQuery &Q, unsigned MaxRecurse) {
739   if (Constant *C = foldOrCommuteConstant(Instruction::Sub, Op0, Op1, Q))
740     return C;
741 
742   // X - poison -> poison
743   // poison - X -> poison
744   if (isa<PoisonValue>(Op0) || isa<PoisonValue>(Op1))
745     return PoisonValue::get(Op0->getType());
746 
747   // X - undef -> undef
748   // undef - X -> undef
749   if (Q.isUndefValue(Op0) || Q.isUndefValue(Op1))
750     return UndefValue::get(Op0->getType());
751 
752   // X - 0 -> X
753   if (match(Op1, m_Zero()))
754     return Op0;
755 
756   // X - X -> 0
757   if (Op0 == Op1)
758     return Constant::getNullValue(Op0->getType());
759 
760   // Is this a negation?
761   if (match(Op0, m_Zero())) {
762     // 0 - X -> 0 if the sub is NUW.
763     if (isNUW)
764       return Constant::getNullValue(Op0->getType());
765 
766     KnownBits Known = computeKnownBits(Op1, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
767     if (Known.Zero.isMaxSignedValue()) {
768       // Op1 is either 0 or the minimum signed value. If the sub is NSW, then
769       // Op1 must be 0 because negating the minimum signed value is undefined.
770       if (isNSW)
771         return Constant::getNullValue(Op0->getType());
772 
773       // 0 - X -> X if X is 0 or the minimum signed value.
774       return Op1;
775     }
776   }
777 
778   // (X + Y) - Z -> X + (Y - Z) or Y + (X - Z) if everything simplifies.
779   // For example, (X + Y) - Y -> X; (Y + X) - Y -> X
780   Value *X = nullptr, *Y = nullptr, *Z = Op1;
781   if (MaxRecurse && match(Op0, m_Add(m_Value(X), m_Value(Y)))) { // (X + Y) - Z
782     // See if "V === Y - Z" simplifies.
783     if (Value *V = SimplifyBinOp(Instruction::Sub, Y, Z, Q, MaxRecurse-1))
784       // It does!  Now see if "X + V" simplifies.
785       if (Value *W = SimplifyBinOp(Instruction::Add, X, V, Q, MaxRecurse-1)) {
786         // It does, we successfully reassociated!
787         ++NumReassoc;
788         return W;
789       }
790     // See if "V === X - Z" simplifies.
791     if (Value *V = SimplifyBinOp(Instruction::Sub, X, Z, Q, MaxRecurse-1))
792       // It does!  Now see if "Y + V" simplifies.
793       if (Value *W = SimplifyBinOp(Instruction::Add, Y, V, Q, MaxRecurse-1)) {
794         // It does, we successfully reassociated!
795         ++NumReassoc;
796         return W;
797       }
798   }
799 
800   // X - (Y + Z) -> (X - Y) - Z or (X - Z) - Y if everything simplifies.
801   // For example, X - (X + 1) -> -1
802   X = Op0;
803   if (MaxRecurse && match(Op1, m_Add(m_Value(Y), m_Value(Z)))) { // X - (Y + Z)
804     // See if "V === X - Y" simplifies.
805     if (Value *V = SimplifyBinOp(Instruction::Sub, X, Y, Q, MaxRecurse-1))
806       // It does!  Now see if "V - Z" simplifies.
807       if (Value *W = SimplifyBinOp(Instruction::Sub, V, Z, Q, MaxRecurse-1)) {
808         // It does, we successfully reassociated!
809         ++NumReassoc;
810         return W;
811       }
812     // See if "V === X - Z" simplifies.
813     if (Value *V = SimplifyBinOp(Instruction::Sub, X, Z, Q, MaxRecurse-1))
814       // It does!  Now see if "V - Y" simplifies.
815       if (Value *W = SimplifyBinOp(Instruction::Sub, V, Y, Q, MaxRecurse-1)) {
816         // It does, we successfully reassociated!
817         ++NumReassoc;
818         return W;
819       }
820   }
821 
822   // Z - (X - Y) -> (Z - X) + Y if everything simplifies.
823   // For example, X - (X - Y) -> Y.
824   Z = Op0;
825   if (MaxRecurse && match(Op1, m_Sub(m_Value(X), m_Value(Y)))) // Z - (X - Y)
826     // See if "V === Z - X" simplifies.
827     if (Value *V = SimplifyBinOp(Instruction::Sub, Z, X, Q, MaxRecurse-1))
828       // It does!  Now see if "V + Y" simplifies.
829       if (Value *W = SimplifyBinOp(Instruction::Add, V, Y, Q, MaxRecurse-1)) {
830         // It does, we successfully reassociated!
831         ++NumReassoc;
832         return W;
833       }
834 
835   // trunc(X) - trunc(Y) -> trunc(X - Y) if everything simplifies.
836   if (MaxRecurse && match(Op0, m_Trunc(m_Value(X))) &&
837       match(Op1, m_Trunc(m_Value(Y))))
838     if (X->getType() == Y->getType())
839       // See if "V === X - Y" simplifies.
840       if (Value *V = SimplifyBinOp(Instruction::Sub, X, Y, Q, MaxRecurse-1))
841         // It does!  Now see if "trunc V" simplifies.
842         if (Value *W = SimplifyCastInst(Instruction::Trunc, V, Op0->getType(),
843                                         Q, MaxRecurse - 1))
844           // It does, return the simplified "trunc V".
845           return W;
846 
847   // Variations on GEP(base, I, ...) - GEP(base, i, ...) -> GEP(null, I-i, ...).
848   if (match(Op0, m_PtrToInt(m_Value(X))) &&
849       match(Op1, m_PtrToInt(m_Value(Y))))
850     if (Constant *Result = computePointerDifference(Q.DL, X, Y))
851       return ConstantExpr::getIntegerCast(Result, Op0->getType(), true);
852 
853   // i1 sub -> xor.
854   if (MaxRecurse && Op0->getType()->isIntOrIntVectorTy(1))
855     if (Value *V = SimplifyXorInst(Op0, Op1, Q, MaxRecurse-1))
856       return V;
857 
858   // Threading Sub over selects and phi nodes is pointless, so don't bother.
859   // Threading over the select in "A - select(cond, B, C)" means evaluating
860   // "A-B" and "A-C" and seeing if they are equal; but they are equal if and
861   // only if B and C are equal.  If B and C are equal then (since we assume
862   // that operands have already been simplified) "select(cond, B, C)" should
863   // have been simplified to the common value of B and C already.  Analysing
864   // "A-B" and "A-C" thus gains nothing, but costs compile time.  Similarly
865   // for threading over phi nodes.
866 
867   return nullptr;
868 }
869 
870 Value *llvm::SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
871                              const SimplifyQuery &Q) {
872   return ::SimplifySubInst(Op0, Op1, isNSW, isNUW, Q, RecursionLimit);
873 }
874 
875 /// Given operands for a Mul, see if we can fold the result.
876 /// If not, this returns null.
877 static Value *SimplifyMulInst(Value *Op0, Value *Op1, const SimplifyQuery &Q,
878                               unsigned MaxRecurse) {
879   if (Constant *C = foldOrCommuteConstant(Instruction::Mul, Op0, Op1, Q))
880     return C;
881 
882   // X * poison -> poison
883   if (isa<PoisonValue>(Op1))
884     return Op1;
885 
886   // X * undef -> 0
887   // X * 0 -> 0
888   if (Q.isUndefValue(Op1) || match(Op1, m_Zero()))
889     return Constant::getNullValue(Op0->getType());
890 
891   // X * 1 -> X
892   if (match(Op1, m_One()))
893     return Op0;
894 
895   // (X / Y) * Y -> X if the division is exact.
896   Value *X = nullptr;
897   if (Q.IIQ.UseInstrInfo &&
898       (match(Op0,
899              m_Exact(m_IDiv(m_Value(X), m_Specific(Op1)))) ||     // (X / Y) * Y
900        match(Op1, m_Exact(m_IDiv(m_Value(X), m_Specific(Op0)))))) // Y * (X / Y)
901     return X;
902 
903   // i1 mul -> and.
904   if (MaxRecurse && Op0->getType()->isIntOrIntVectorTy(1))
905     if (Value *V = SimplifyAndInst(Op0, Op1, Q, MaxRecurse-1))
906       return V;
907 
908   // Try some generic simplifications for associative operations.
909   if (Value *V = SimplifyAssociativeBinOp(Instruction::Mul, Op0, Op1, Q,
910                                           MaxRecurse))
911     return V;
912 
913   // Mul distributes over Add. Try some generic simplifications based on this.
914   if (Value *V = expandCommutativeBinOp(Instruction::Mul, Op0, Op1,
915                                         Instruction::Add, Q, MaxRecurse))
916     return V;
917 
918   // If the operation is with the result of a select instruction, check whether
919   // operating on either branch of the select always yields the same value.
920   if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
921     if (Value *V = ThreadBinOpOverSelect(Instruction::Mul, Op0, Op1, Q,
922                                          MaxRecurse))
923       return V;
924 
925   // If the operation is with the result of a phi instruction, check whether
926   // operating on all incoming values of the phi always yields the same value.
927   if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
928     if (Value *V = ThreadBinOpOverPHI(Instruction::Mul, Op0, Op1, Q,
929                                       MaxRecurse))
930       return V;
931 
932   return nullptr;
933 }
934 
935 Value *llvm::SimplifyMulInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) {
936   return ::SimplifyMulInst(Op0, Op1, Q, RecursionLimit);
937 }
938 
939 /// Check for common or similar folds of integer division or integer remainder.
940 /// This applies to all 4 opcodes (sdiv/udiv/srem/urem).
941 static Value *simplifyDivRem(Instruction::BinaryOps Opcode, Value *Op0,
942                              Value *Op1, const SimplifyQuery &Q) {
943   bool IsDiv = (Opcode == Instruction::SDiv || Opcode == Instruction::UDiv);
944   bool IsSigned = (Opcode == Instruction::SDiv || Opcode == Instruction::SRem);
945 
946   Type *Ty = Op0->getType();
947 
948   // X / undef -> poison
949   // X % undef -> poison
950   if (Q.isUndefValue(Op1))
951     return PoisonValue::get(Ty);
952 
953   // X / 0 -> poison
954   // X % 0 -> poison
955   // We don't need to preserve faults!
956   if (match(Op1, m_Zero()))
957     return PoisonValue::get(Ty);
958 
959   // If any element of a constant divisor fixed width vector is zero or undef
960   // the behavior is undefined and we can fold the whole op to poison.
961   auto *Op1C = dyn_cast<Constant>(Op1);
962   auto *VTy = dyn_cast<FixedVectorType>(Ty);
963   if (Op1C && VTy) {
964     unsigned NumElts = VTy->getNumElements();
965     for (unsigned i = 0; i != NumElts; ++i) {
966       Constant *Elt = Op1C->getAggregateElement(i);
967       if (Elt && (Elt->isNullValue() || Q.isUndefValue(Elt)))
968         return PoisonValue::get(Ty);
969     }
970   }
971 
972   // poison / X -> poison
973   // poison % X -> poison
974   if (isa<PoisonValue>(Op0))
975     return Op0;
976 
977   // undef / X -> 0
978   // undef % X -> 0
979   if (Q.isUndefValue(Op0))
980     return Constant::getNullValue(Ty);
981 
982   // 0 / X -> 0
983   // 0 % X -> 0
984   if (match(Op0, m_Zero()))
985     return Constant::getNullValue(Op0->getType());
986 
987   // X / X -> 1
988   // X % X -> 0
989   if (Op0 == Op1)
990     return IsDiv ? ConstantInt::get(Ty, 1) : Constant::getNullValue(Ty);
991 
992   // X / 1 -> X
993   // X % 1 -> 0
994   // If this is a boolean op (single-bit element type), we can't have
995   // division-by-zero or remainder-by-zero, so assume the divisor is 1.
996   // Similarly, if we're zero-extending a boolean divisor, then assume it's a 1.
997   Value *X;
998   if (match(Op1, m_One()) || Ty->isIntOrIntVectorTy(1) ||
999       (match(Op1, m_ZExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)))
1000     return IsDiv ? Op0 : Constant::getNullValue(Ty);
1001 
1002   // If X * Y does not overflow, then:
1003   //   X * Y / Y -> X
1004   //   X * Y % Y -> 0
1005   if (match(Op0, m_c_Mul(m_Value(X), m_Specific(Op1)))) {
1006     auto *Mul = cast<OverflowingBinaryOperator>(Op0);
1007     // The multiplication can't overflow if it is defined not to, or if
1008     // X == A / Y for some A.
1009     if ((IsSigned && Q.IIQ.hasNoSignedWrap(Mul)) ||
1010         (!IsSigned && Q.IIQ.hasNoUnsignedWrap(Mul)) ||
1011         (IsSigned && match(X, m_SDiv(m_Value(), m_Specific(Op1)))) ||
1012         (!IsSigned && match(X, m_UDiv(m_Value(), m_Specific(Op1))))) {
1013       return IsDiv ? X : Constant::getNullValue(Op0->getType());
1014     }
1015   }
1016 
1017   return nullptr;
1018 }
1019 
1020 /// Given a predicate and two operands, return true if the comparison is true.
1021 /// This is a helper for div/rem simplification where we return some other value
1022 /// when we can prove a relationship between the operands.
1023 static bool isICmpTrue(ICmpInst::Predicate Pred, Value *LHS, Value *RHS,
1024                        const SimplifyQuery &Q, unsigned MaxRecurse) {
1025   Value *V = SimplifyICmpInst(Pred, LHS, RHS, Q, MaxRecurse);
1026   Constant *C = dyn_cast_or_null<Constant>(V);
1027   return (C && C->isAllOnesValue());
1028 }
1029 
1030 /// Return true if we can simplify X / Y to 0. Remainder can adapt that answer
1031 /// to simplify X % Y to X.
1032 static bool isDivZero(Value *X, Value *Y, const SimplifyQuery &Q,
1033                       unsigned MaxRecurse, bool IsSigned) {
1034   // Recursion is always used, so bail out at once if we already hit the limit.
1035   if (!MaxRecurse--)
1036     return false;
1037 
1038   if (IsSigned) {
1039     // |X| / |Y| --> 0
1040     //
1041     // We require that 1 operand is a simple constant. That could be extended to
1042     // 2 variables if we computed the sign bit for each.
1043     //
1044     // Make sure that a constant is not the minimum signed value because taking
1045     // the abs() of that is undefined.
1046     Type *Ty = X->getType();
1047     const APInt *C;
1048     if (match(X, m_APInt(C)) && !C->isMinSignedValue()) {
1049       // Is the variable divisor magnitude always greater than the constant
1050       // dividend magnitude?
1051       // |Y| > |C| --> Y < -abs(C) or Y > abs(C)
1052       Constant *PosDividendC = ConstantInt::get(Ty, C->abs());
1053       Constant *NegDividendC = ConstantInt::get(Ty, -C->abs());
1054       if (isICmpTrue(CmpInst::ICMP_SLT, Y, NegDividendC, Q, MaxRecurse) ||
1055           isICmpTrue(CmpInst::ICMP_SGT, Y, PosDividendC, Q, MaxRecurse))
1056         return true;
1057     }
1058     if (match(Y, m_APInt(C))) {
1059       // Special-case: we can't take the abs() of a minimum signed value. If
1060       // that's the divisor, then all we have to do is prove that the dividend
1061       // is also not the minimum signed value.
1062       if (C->isMinSignedValue())
1063         return isICmpTrue(CmpInst::ICMP_NE, X, Y, Q, MaxRecurse);
1064 
1065       // Is the variable dividend magnitude always less than the constant
1066       // divisor magnitude?
1067       // |X| < |C| --> X > -abs(C) and X < abs(C)
1068       Constant *PosDivisorC = ConstantInt::get(Ty, C->abs());
1069       Constant *NegDivisorC = ConstantInt::get(Ty, -C->abs());
1070       if (isICmpTrue(CmpInst::ICMP_SGT, X, NegDivisorC, Q, MaxRecurse) &&
1071           isICmpTrue(CmpInst::ICMP_SLT, X, PosDivisorC, Q, MaxRecurse))
1072         return true;
1073     }
1074     return false;
1075   }
1076 
1077   // IsSigned == false.
1078   // Is the dividend unsigned less than the divisor?
1079   return isICmpTrue(ICmpInst::ICMP_ULT, X, Y, Q, MaxRecurse);
1080 }
1081 
1082 /// These are simplifications common to SDiv and UDiv.
1083 static Value *simplifyDiv(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1,
1084                           const SimplifyQuery &Q, unsigned MaxRecurse) {
1085   if (Constant *C = foldOrCommuteConstant(Opcode, Op0, Op1, Q))
1086     return C;
1087 
1088   if (Value *V = simplifyDivRem(Opcode, Op0, Op1, Q))
1089     return V;
1090 
1091   bool IsSigned = Opcode == Instruction::SDiv;
1092 
1093   // (X rem Y) / Y -> 0
1094   if ((IsSigned && match(Op0, m_SRem(m_Value(), m_Specific(Op1)))) ||
1095       (!IsSigned && match(Op0, m_URem(m_Value(), m_Specific(Op1)))))
1096     return Constant::getNullValue(Op0->getType());
1097 
1098   // (X /u C1) /u C2 -> 0 if C1 * C2 overflow
1099   ConstantInt *C1, *C2;
1100   if (!IsSigned && match(Op0, m_UDiv(m_Value(), m_ConstantInt(C1))) &&
1101       match(Op1, m_ConstantInt(C2))) {
1102     bool Overflow;
1103     (void)C1->getValue().umul_ov(C2->getValue(), Overflow);
1104     if (Overflow)
1105       return Constant::getNullValue(Op0->getType());
1106   }
1107 
1108   // If the operation is with the result of a select instruction, check whether
1109   // operating on either branch of the select always yields the same value.
1110   if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
1111     if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse))
1112       return V;
1113 
1114   // If the operation is with the result of a phi instruction, check whether
1115   // operating on all incoming values of the phi always yields the same value.
1116   if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
1117     if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse))
1118       return V;
1119 
1120   if (isDivZero(Op0, Op1, Q, MaxRecurse, IsSigned))
1121     return Constant::getNullValue(Op0->getType());
1122 
1123   return nullptr;
1124 }
1125 
1126 /// These are simplifications common to SRem and URem.
1127 static Value *simplifyRem(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1,
1128                           const SimplifyQuery &Q, unsigned MaxRecurse) {
1129   if (Constant *C = foldOrCommuteConstant(Opcode, Op0, Op1, Q))
1130     return C;
1131 
1132   if (Value *V = simplifyDivRem(Opcode, Op0, Op1, Q))
1133     return V;
1134 
1135   // (X % Y) % Y -> X % Y
1136   if ((Opcode == Instruction::SRem &&
1137        match(Op0, m_SRem(m_Value(), m_Specific(Op1)))) ||
1138       (Opcode == Instruction::URem &&
1139        match(Op0, m_URem(m_Value(), m_Specific(Op1)))))
1140     return Op0;
1141 
1142   // (X << Y) % X -> 0
1143   if (Q.IIQ.UseInstrInfo &&
1144       ((Opcode == Instruction::SRem &&
1145         match(Op0, m_NSWShl(m_Specific(Op1), m_Value()))) ||
1146        (Opcode == Instruction::URem &&
1147         match(Op0, m_NUWShl(m_Specific(Op1), m_Value())))))
1148     return Constant::getNullValue(Op0->getType());
1149 
1150   // If the operation is with the result of a select instruction, check whether
1151   // operating on either branch of the select always yields the same value.
1152   if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
1153     if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse))
1154       return V;
1155 
1156   // If the operation is with the result of a phi instruction, check whether
1157   // operating on all incoming values of the phi always yields the same value.
1158   if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
1159     if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse))
1160       return V;
1161 
1162   // If X / Y == 0, then X % Y == X.
1163   if (isDivZero(Op0, Op1, Q, MaxRecurse, Opcode == Instruction::SRem))
1164     return Op0;
1165 
1166   return nullptr;
1167 }
1168 
1169 /// Given operands for an SDiv, see if we can fold the result.
1170 /// If not, this returns null.
1171 static Value *SimplifySDivInst(Value *Op0, Value *Op1, const SimplifyQuery &Q,
1172                                unsigned MaxRecurse) {
1173   // If two operands are negated and no signed overflow, return -1.
1174   if (isKnownNegation(Op0, Op1, /*NeedNSW=*/true))
1175     return Constant::getAllOnesValue(Op0->getType());
1176 
1177   return simplifyDiv(Instruction::SDiv, Op0, Op1, Q, MaxRecurse);
1178 }
1179 
1180 Value *llvm::SimplifySDivInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) {
1181   return ::SimplifySDivInst(Op0, Op1, Q, RecursionLimit);
1182 }
1183 
1184 /// Given operands for a UDiv, see if we can fold the result.
1185 /// If not, this returns null.
1186 static Value *SimplifyUDivInst(Value *Op0, Value *Op1, const SimplifyQuery &Q,
1187                                unsigned MaxRecurse) {
1188   return simplifyDiv(Instruction::UDiv, Op0, Op1, Q, MaxRecurse);
1189 }
1190 
1191 Value *llvm::SimplifyUDivInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) {
1192   return ::SimplifyUDivInst(Op0, Op1, Q, RecursionLimit);
1193 }
1194 
1195 /// Given operands for an SRem, see if we can fold the result.
1196 /// If not, this returns null.
1197 static Value *SimplifySRemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q,
1198                                unsigned MaxRecurse) {
1199   // If the divisor is 0, the result is undefined, so assume the divisor is -1.
1200   // srem Op0, (sext i1 X) --> srem Op0, -1 --> 0
1201   Value *X;
1202   if (match(Op1, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1))
1203     return ConstantInt::getNullValue(Op0->getType());
1204 
1205   // If the two operands are negated, return 0.
1206   if (isKnownNegation(Op0, Op1))
1207     return ConstantInt::getNullValue(Op0->getType());
1208 
1209   return simplifyRem(Instruction::SRem, Op0, Op1, Q, MaxRecurse);
1210 }
1211 
1212 Value *llvm::SimplifySRemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) {
1213   return ::SimplifySRemInst(Op0, Op1, Q, RecursionLimit);
1214 }
1215 
1216 /// Given operands for a URem, see if we can fold the result.
1217 /// If not, this returns null.
1218 static Value *SimplifyURemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q,
1219                                unsigned MaxRecurse) {
1220   return simplifyRem(Instruction::URem, Op0, Op1, Q, MaxRecurse);
1221 }
1222 
1223 Value *llvm::SimplifyURemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) {
1224   return ::SimplifyURemInst(Op0, Op1, Q, RecursionLimit);
1225 }
1226 
1227 /// Returns true if a shift by \c Amount always yields poison.
1228 static bool isPoisonShift(Value *Amount, const SimplifyQuery &Q) {
1229   Constant *C = dyn_cast<Constant>(Amount);
1230   if (!C)
1231     return false;
1232 
1233   // X shift by undef -> poison because it may shift by the bitwidth.
1234   if (Q.isUndefValue(C))
1235     return true;
1236 
1237   // Shifting by the bitwidth or more is undefined.
1238   if (ConstantInt *CI = dyn_cast<ConstantInt>(C))
1239     if (CI->getValue().uge(CI->getType()->getScalarSizeInBits()))
1240       return true;
1241 
1242   // If all lanes of a vector shift are undefined the whole shift is.
1243   if (isa<ConstantVector>(C) || isa<ConstantDataVector>(C)) {
1244     for (unsigned I = 0,
1245                   E = cast<FixedVectorType>(C->getType())->getNumElements();
1246          I != E; ++I)
1247       if (!isPoisonShift(C->getAggregateElement(I), Q))
1248         return false;
1249     return true;
1250   }
1251 
1252   return false;
1253 }
1254 
1255 /// Given operands for an Shl, LShr or AShr, see if we can fold the result.
1256 /// If not, this returns null.
1257 static Value *SimplifyShift(Instruction::BinaryOps Opcode, Value *Op0,
1258                             Value *Op1, bool IsNSW, const SimplifyQuery &Q,
1259                             unsigned MaxRecurse) {
1260   if (Constant *C = foldOrCommuteConstant(Opcode, Op0, Op1, Q))
1261     return C;
1262 
1263   // poison shift by X -> poison
1264   if (isa<PoisonValue>(Op0))
1265     return Op0;
1266 
1267   // 0 shift by X -> 0
1268   if (match(Op0, m_Zero()))
1269     return Constant::getNullValue(Op0->getType());
1270 
1271   // X shift by 0 -> X
1272   // Shift-by-sign-extended bool must be shift-by-0 because shift-by-all-ones
1273   // would be poison.
1274   Value *X;
1275   if (match(Op1, m_Zero()) ||
1276       (match(Op1, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)))
1277     return Op0;
1278 
1279   // Fold undefined shifts.
1280   if (isPoisonShift(Op1, Q))
1281     return PoisonValue::get(Op0->getType());
1282 
1283   // If the operation is with the result of a select instruction, check whether
1284   // operating on either branch of the select always yields the same value.
1285   if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
1286     if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse))
1287       return V;
1288 
1289   // If the operation is with the result of a phi instruction, check whether
1290   // operating on all incoming values of the phi always yields the same value.
1291   if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
1292     if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse))
1293       return V;
1294 
1295   // If any bits in the shift amount make that value greater than or equal to
1296   // the number of bits in the type, the shift is undefined.
1297   KnownBits KnownAmt = computeKnownBits(Op1, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
1298   if (KnownAmt.getMinValue().uge(KnownAmt.getBitWidth()))
1299     return PoisonValue::get(Op0->getType());
1300 
1301   // If all valid bits in the shift amount are known zero, the first operand is
1302   // unchanged.
1303   unsigned NumValidShiftBits = Log2_32_Ceil(KnownAmt.getBitWidth());
1304   if (KnownAmt.countMinTrailingZeros() >= NumValidShiftBits)
1305     return Op0;
1306 
1307   // Check for nsw shl leading to a poison value.
1308   if (IsNSW) {
1309     assert(Opcode == Instruction::Shl && "Expected shl for nsw instruction");
1310     KnownBits KnownVal = computeKnownBits(Op0, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
1311     KnownBits KnownShl = KnownBits::shl(KnownVal, KnownAmt);
1312 
1313     if (KnownVal.Zero.isSignBitSet())
1314       KnownShl.Zero.setSignBit();
1315     if (KnownVal.One.isSignBitSet())
1316       KnownShl.One.setSignBit();
1317 
1318     if (KnownShl.hasConflict())
1319       return PoisonValue::get(Op0->getType());
1320   }
1321 
1322   return nullptr;
1323 }
1324 
1325 /// Given operands for an Shl, LShr or AShr, see if we can
1326 /// fold the result.  If not, this returns null.
1327 static Value *SimplifyRightShift(Instruction::BinaryOps Opcode, Value *Op0,
1328                                  Value *Op1, bool isExact, const SimplifyQuery &Q,
1329                                  unsigned MaxRecurse) {
1330   if (Value *V =
1331           SimplifyShift(Opcode, Op0, Op1, /*IsNSW*/ false, Q, MaxRecurse))
1332     return V;
1333 
1334   // X >> X -> 0
1335   if (Op0 == Op1)
1336     return Constant::getNullValue(Op0->getType());
1337 
1338   // undef >> X -> 0
1339   // undef >> X -> undef (if it's exact)
1340   if (Q.isUndefValue(Op0))
1341     return isExact ? Op0 : Constant::getNullValue(Op0->getType());
1342 
1343   // The low bit cannot be shifted out of an exact shift if it is set.
1344   if (isExact) {
1345     KnownBits Op0Known = computeKnownBits(Op0, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT);
1346     if (Op0Known.One[0])
1347       return Op0;
1348   }
1349 
1350   return nullptr;
1351 }
1352 
1353 /// Given operands for an Shl, see if we can fold the result.
1354 /// If not, this returns null.
1355 static Value *SimplifyShlInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
1356                               const SimplifyQuery &Q, unsigned MaxRecurse) {
1357   if (Value *V =
1358           SimplifyShift(Instruction::Shl, Op0, Op1, isNSW, Q, MaxRecurse))
1359     return V;
1360 
1361   // undef << X -> 0
1362   // undef << X -> undef if (if it's NSW/NUW)
1363   if (Q.isUndefValue(Op0))
1364     return isNSW || isNUW ? Op0 : Constant::getNullValue(Op0->getType());
1365 
1366   // (X >> A) << A -> X
1367   Value *X;
1368   if (Q.IIQ.UseInstrInfo &&
1369       match(Op0, m_Exact(m_Shr(m_Value(X), m_Specific(Op1)))))
1370     return X;
1371 
1372   // shl nuw i8 C, %x  ->  C  iff C has sign bit set.
1373   if (isNUW && match(Op0, m_Negative()))
1374     return Op0;
1375   // NOTE: could use computeKnownBits() / LazyValueInfo,
1376   // but the cost-benefit analysis suggests it isn't worth it.
1377 
1378   return nullptr;
1379 }
1380 
1381 Value *llvm::SimplifyShlInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
1382                              const SimplifyQuery &Q) {
1383   return ::SimplifyShlInst(Op0, Op1, isNSW, isNUW, Q, RecursionLimit);
1384 }
1385 
1386 /// Given operands for an LShr, see if we can fold the result.
1387 /// If not, this returns null.
1388 static Value *SimplifyLShrInst(Value *Op0, Value *Op1, bool isExact,
1389                                const SimplifyQuery &Q, unsigned MaxRecurse) {
1390   if (Value *V = SimplifyRightShift(Instruction::LShr, Op0, Op1, isExact, Q,
1391                                     MaxRecurse))
1392       return V;
1393 
1394   // (X << A) >> A -> X
1395   Value *X;
1396   if (match(Op0, m_NUWShl(m_Value(X), m_Specific(Op1))))
1397     return X;
1398 
1399   // ((X << A) | Y) >> A -> X  if effective width of Y is not larger than A.
1400   // We can return X as we do in the above case since OR alters no bits in X.
1401   // SimplifyDemandedBits in InstCombine can do more general optimization for
1402   // bit manipulation. This pattern aims to provide opportunities for other
1403   // optimizers by supporting a simple but common case in InstSimplify.
1404   Value *Y;
1405   const APInt *ShRAmt, *ShLAmt;
1406   if (match(Op1, m_APInt(ShRAmt)) &&
1407       match(Op0, m_c_Or(m_NUWShl(m_Value(X), m_APInt(ShLAmt)), m_Value(Y))) &&
1408       *ShRAmt == *ShLAmt) {
1409     const KnownBits YKnown = computeKnownBits(Y, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
1410     const unsigned EffWidthY = YKnown.countMaxActiveBits();
1411     if (ShRAmt->uge(EffWidthY))
1412       return X;
1413   }
1414 
1415   return nullptr;
1416 }
1417 
1418 Value *llvm::SimplifyLShrInst(Value *Op0, Value *Op1, bool isExact,
1419                               const SimplifyQuery &Q) {
1420   return ::SimplifyLShrInst(Op0, Op1, isExact, Q, RecursionLimit);
1421 }
1422 
1423 /// Given operands for an AShr, see if we can fold the result.
1424 /// If not, this returns null.
1425 static Value *SimplifyAShrInst(Value *Op0, Value *Op1, bool isExact,
1426                                const SimplifyQuery &Q, unsigned MaxRecurse) {
1427   if (Value *V = SimplifyRightShift(Instruction::AShr, Op0, Op1, isExact, Q,
1428                                     MaxRecurse))
1429     return V;
1430 
1431   // -1 >>a X --> -1
1432   // (-1 << X) a>> X --> -1
1433   // Do not return Op0 because it may contain undef elements if it's a vector.
1434   if (match(Op0, m_AllOnes()) ||
1435       match(Op0, m_Shl(m_AllOnes(), m_Specific(Op1))))
1436     return Constant::getAllOnesValue(Op0->getType());
1437 
1438   // (X << A) >> A -> X
1439   Value *X;
1440   if (Q.IIQ.UseInstrInfo && match(Op0, m_NSWShl(m_Value(X), m_Specific(Op1))))
1441     return X;
1442 
1443   // Arithmetic shifting an all-sign-bit value is a no-op.
1444   unsigned NumSignBits = ComputeNumSignBits(Op0, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
1445   if (NumSignBits == Op0->getType()->getScalarSizeInBits())
1446     return Op0;
1447 
1448   return nullptr;
1449 }
1450 
1451 Value *llvm::SimplifyAShrInst(Value *Op0, Value *Op1, bool isExact,
1452                               const SimplifyQuery &Q) {
1453   return ::SimplifyAShrInst(Op0, Op1, isExact, Q, RecursionLimit);
1454 }
1455 
1456 /// Commuted variants are assumed to be handled by calling this function again
1457 /// with the parameters swapped.
1458 static Value *simplifyUnsignedRangeCheck(ICmpInst *ZeroICmp,
1459                                          ICmpInst *UnsignedICmp, bool IsAnd,
1460                                          const SimplifyQuery &Q) {
1461   Value *X, *Y;
1462 
1463   ICmpInst::Predicate EqPred;
1464   if (!match(ZeroICmp, m_ICmp(EqPred, m_Value(Y), m_Zero())) ||
1465       !ICmpInst::isEquality(EqPred))
1466     return nullptr;
1467 
1468   ICmpInst::Predicate UnsignedPred;
1469 
1470   Value *A, *B;
1471   // Y = (A - B);
1472   if (match(Y, m_Sub(m_Value(A), m_Value(B)))) {
1473     if (match(UnsignedICmp,
1474               m_c_ICmp(UnsignedPred, m_Specific(A), m_Specific(B))) &&
1475         ICmpInst::isUnsigned(UnsignedPred)) {
1476       // A >=/<= B || (A - B) != 0  <-->  true
1477       if ((UnsignedPred == ICmpInst::ICMP_UGE ||
1478            UnsignedPred == ICmpInst::ICMP_ULE) &&
1479           EqPred == ICmpInst::ICMP_NE && !IsAnd)
1480         return ConstantInt::getTrue(UnsignedICmp->getType());
1481       // A </> B && (A - B) == 0  <-->  false
1482       if ((UnsignedPred == ICmpInst::ICMP_ULT ||
1483            UnsignedPred == ICmpInst::ICMP_UGT) &&
1484           EqPred == ICmpInst::ICMP_EQ && IsAnd)
1485         return ConstantInt::getFalse(UnsignedICmp->getType());
1486 
1487       // A </> B && (A - B) != 0  <-->  A </> B
1488       // A </> B || (A - B) != 0  <-->  (A - B) != 0
1489       if (EqPred == ICmpInst::ICMP_NE && (UnsignedPred == ICmpInst::ICMP_ULT ||
1490                                           UnsignedPred == ICmpInst::ICMP_UGT))
1491         return IsAnd ? UnsignedICmp : ZeroICmp;
1492 
1493       // A <=/>= B && (A - B) == 0  <-->  (A - B) == 0
1494       // A <=/>= B || (A - B) == 0  <-->  A <=/>= B
1495       if (EqPred == ICmpInst::ICMP_EQ && (UnsignedPred == ICmpInst::ICMP_ULE ||
1496                                           UnsignedPred == ICmpInst::ICMP_UGE))
1497         return IsAnd ? ZeroICmp : UnsignedICmp;
1498     }
1499 
1500     // Given  Y = (A - B)
1501     //   Y >= A && Y != 0  --> Y >= A  iff B != 0
1502     //   Y <  A || Y == 0  --> Y <  A  iff B != 0
1503     if (match(UnsignedICmp,
1504               m_c_ICmp(UnsignedPred, m_Specific(Y), m_Specific(A)))) {
1505       if (UnsignedPred == ICmpInst::ICMP_UGE && IsAnd &&
1506           EqPred == ICmpInst::ICMP_NE &&
1507           isKnownNonZero(B, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT))
1508         return UnsignedICmp;
1509       if (UnsignedPred == ICmpInst::ICMP_ULT && !IsAnd &&
1510           EqPred == ICmpInst::ICMP_EQ &&
1511           isKnownNonZero(B, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT))
1512         return UnsignedICmp;
1513     }
1514   }
1515 
1516   if (match(UnsignedICmp, m_ICmp(UnsignedPred, m_Value(X), m_Specific(Y))) &&
1517       ICmpInst::isUnsigned(UnsignedPred))
1518     ;
1519   else if (match(UnsignedICmp,
1520                  m_ICmp(UnsignedPred, m_Specific(Y), m_Value(X))) &&
1521            ICmpInst::isUnsigned(UnsignedPred))
1522     UnsignedPred = ICmpInst::getSwappedPredicate(UnsignedPred);
1523   else
1524     return nullptr;
1525 
1526   // X > Y && Y == 0  -->  Y == 0  iff X != 0
1527   // X > Y || Y == 0  -->  X > Y   iff X != 0
1528   if (UnsignedPred == ICmpInst::ICMP_UGT && EqPred == ICmpInst::ICMP_EQ &&
1529       isKnownNonZero(X, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT))
1530     return IsAnd ? ZeroICmp : UnsignedICmp;
1531 
1532   // X <= Y && Y != 0  -->  X <= Y  iff X != 0
1533   // X <= Y || Y != 0  -->  Y != 0  iff X != 0
1534   if (UnsignedPred == ICmpInst::ICMP_ULE && EqPred == ICmpInst::ICMP_NE &&
1535       isKnownNonZero(X, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT))
1536     return IsAnd ? UnsignedICmp : ZeroICmp;
1537 
1538   // The transforms below here are expected to be handled more generally with
1539   // simplifyAndOrOfICmpsWithLimitConst() or in InstCombine's
1540   // foldAndOrOfICmpsWithConstEq(). If we are looking to trim optimizer overlap,
1541   // these are candidates for removal.
1542 
1543   // X < Y && Y != 0  -->  X < Y
1544   // X < Y || Y != 0  -->  Y != 0
1545   if (UnsignedPred == ICmpInst::ICMP_ULT && EqPred == ICmpInst::ICMP_NE)
1546     return IsAnd ? UnsignedICmp : ZeroICmp;
1547 
1548   // X >= Y && Y == 0  -->  Y == 0
1549   // X >= Y || Y == 0  -->  X >= Y
1550   if (UnsignedPred == ICmpInst::ICMP_UGE && EqPred == ICmpInst::ICMP_EQ)
1551     return IsAnd ? ZeroICmp : UnsignedICmp;
1552 
1553   // X < Y && Y == 0  -->  false
1554   if (UnsignedPred == ICmpInst::ICMP_ULT && EqPred == ICmpInst::ICMP_EQ &&
1555       IsAnd)
1556     return getFalse(UnsignedICmp->getType());
1557 
1558   // X >= Y || Y != 0  -->  true
1559   if (UnsignedPred == ICmpInst::ICMP_UGE && EqPred == ICmpInst::ICMP_NE &&
1560       !IsAnd)
1561     return getTrue(UnsignedICmp->getType());
1562 
1563   return nullptr;
1564 }
1565 
1566 /// Commuted variants are assumed to be handled by calling this function again
1567 /// with the parameters swapped.
1568 static Value *simplifyAndOfICmpsWithSameOperands(ICmpInst *Op0, ICmpInst *Op1) {
1569   ICmpInst::Predicate Pred0, Pred1;
1570   Value *A ,*B;
1571   if (!match(Op0, m_ICmp(Pred0, m_Value(A), m_Value(B))) ||
1572       !match(Op1, m_ICmp(Pred1, m_Specific(A), m_Specific(B))))
1573     return nullptr;
1574 
1575   // We have (icmp Pred0, A, B) & (icmp Pred1, A, B).
1576   // If Op1 is always implied true by Op0, then Op0 is a subset of Op1, and we
1577   // can eliminate Op1 from this 'and'.
1578   if (ICmpInst::isImpliedTrueByMatchingCmp(Pred0, Pred1))
1579     return Op0;
1580 
1581   // Check for any combination of predicates that are guaranteed to be disjoint.
1582   if ((Pred0 == ICmpInst::getInversePredicate(Pred1)) ||
1583       (Pred0 == ICmpInst::ICMP_EQ && ICmpInst::isFalseWhenEqual(Pred1)) ||
1584       (Pred0 == ICmpInst::ICMP_SLT && Pred1 == ICmpInst::ICMP_SGT) ||
1585       (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_UGT))
1586     return getFalse(Op0->getType());
1587 
1588   return nullptr;
1589 }
1590 
1591 /// Commuted variants are assumed to be handled by calling this function again
1592 /// with the parameters swapped.
1593 static Value *simplifyOrOfICmpsWithSameOperands(ICmpInst *Op0, ICmpInst *Op1) {
1594   ICmpInst::Predicate Pred0, Pred1;
1595   Value *A ,*B;
1596   if (!match(Op0, m_ICmp(Pred0, m_Value(A), m_Value(B))) ||
1597       !match(Op1, m_ICmp(Pred1, m_Specific(A), m_Specific(B))))
1598     return nullptr;
1599 
1600   // We have (icmp Pred0, A, B) | (icmp Pred1, A, B).
1601   // If Op1 is always implied true by Op0, then Op0 is a subset of Op1, and we
1602   // can eliminate Op0 from this 'or'.
1603   if (ICmpInst::isImpliedTrueByMatchingCmp(Pred0, Pred1))
1604     return Op1;
1605 
1606   // Check for any combination of predicates that cover the entire range of
1607   // possibilities.
1608   if ((Pred0 == ICmpInst::getInversePredicate(Pred1)) ||
1609       (Pred0 == ICmpInst::ICMP_NE && ICmpInst::isTrueWhenEqual(Pred1)) ||
1610       (Pred0 == ICmpInst::ICMP_SLE && Pred1 == ICmpInst::ICMP_SGE) ||
1611       (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_UGE))
1612     return getTrue(Op0->getType());
1613 
1614   return nullptr;
1615 }
1616 
1617 /// Test if a pair of compares with a shared operand and 2 constants has an
1618 /// empty set intersection, full set union, or if one compare is a superset of
1619 /// the other.
1620 static Value *simplifyAndOrOfICmpsWithConstants(ICmpInst *Cmp0, ICmpInst *Cmp1,
1621                                                 bool IsAnd) {
1622   // Look for this pattern: {and/or} (icmp X, C0), (icmp X, C1)).
1623   if (Cmp0->getOperand(0) != Cmp1->getOperand(0))
1624     return nullptr;
1625 
1626   const APInt *C0, *C1;
1627   if (!match(Cmp0->getOperand(1), m_APInt(C0)) ||
1628       !match(Cmp1->getOperand(1), m_APInt(C1)))
1629     return nullptr;
1630 
1631   auto Range0 = ConstantRange::makeExactICmpRegion(Cmp0->getPredicate(), *C0);
1632   auto Range1 = ConstantRange::makeExactICmpRegion(Cmp1->getPredicate(), *C1);
1633 
1634   // For and-of-compares, check if the intersection is empty:
1635   // (icmp X, C0) && (icmp X, C1) --> empty set --> false
1636   if (IsAnd && Range0.intersectWith(Range1).isEmptySet())
1637     return getFalse(Cmp0->getType());
1638 
1639   // For or-of-compares, check if the union is full:
1640   // (icmp X, C0) || (icmp X, C1) --> full set --> true
1641   if (!IsAnd && Range0.unionWith(Range1).isFullSet())
1642     return getTrue(Cmp0->getType());
1643 
1644   // Is one range a superset of the other?
1645   // If this is and-of-compares, take the smaller set:
1646   // (icmp sgt X, 4) && (icmp sgt X, 42) --> icmp sgt X, 42
1647   // If this is or-of-compares, take the larger set:
1648   // (icmp sgt X, 4) || (icmp sgt X, 42) --> icmp sgt X, 4
1649   if (Range0.contains(Range1))
1650     return IsAnd ? Cmp1 : Cmp0;
1651   if (Range1.contains(Range0))
1652     return IsAnd ? Cmp0 : Cmp1;
1653 
1654   return nullptr;
1655 }
1656 
1657 static Value *simplifyAndOrOfICmpsWithZero(ICmpInst *Cmp0, ICmpInst *Cmp1,
1658                                            bool IsAnd) {
1659   ICmpInst::Predicate P0 = Cmp0->getPredicate(), P1 = Cmp1->getPredicate();
1660   if (!match(Cmp0->getOperand(1), m_Zero()) ||
1661       !match(Cmp1->getOperand(1), m_Zero()) || P0 != P1)
1662     return nullptr;
1663 
1664   if ((IsAnd && P0 != ICmpInst::ICMP_NE) || (!IsAnd && P1 != ICmpInst::ICMP_EQ))
1665     return nullptr;
1666 
1667   // We have either "(X == 0 || Y == 0)" or "(X != 0 && Y != 0)".
1668   Value *X = Cmp0->getOperand(0);
1669   Value *Y = Cmp1->getOperand(0);
1670 
1671   // If one of the compares is a masked version of a (not) null check, then
1672   // that compare implies the other, so we eliminate the other. Optionally, look
1673   // through a pointer-to-int cast to match a null check of a pointer type.
1674 
1675   // (X == 0) || (([ptrtoint] X & ?) == 0) --> ([ptrtoint] X & ?) == 0
1676   // (X == 0) || ((? & [ptrtoint] X) == 0) --> (? & [ptrtoint] X) == 0
1677   // (X != 0) && (([ptrtoint] X & ?) != 0) --> ([ptrtoint] X & ?) != 0
1678   // (X != 0) && ((? & [ptrtoint] X) != 0) --> (? & [ptrtoint] X) != 0
1679   if (match(Y, m_c_And(m_Specific(X), m_Value())) ||
1680       match(Y, m_c_And(m_PtrToInt(m_Specific(X)), m_Value())))
1681     return Cmp1;
1682 
1683   // (([ptrtoint] Y & ?) == 0) || (Y == 0) --> ([ptrtoint] Y & ?) == 0
1684   // ((? & [ptrtoint] Y) == 0) || (Y == 0) --> (? & [ptrtoint] Y) == 0
1685   // (([ptrtoint] Y & ?) != 0) && (Y != 0) --> ([ptrtoint] Y & ?) != 0
1686   // ((? & [ptrtoint] Y) != 0) && (Y != 0) --> (? & [ptrtoint] Y) != 0
1687   if (match(X, m_c_And(m_Specific(Y), m_Value())) ||
1688       match(X, m_c_And(m_PtrToInt(m_Specific(Y)), m_Value())))
1689     return Cmp0;
1690 
1691   return nullptr;
1692 }
1693 
1694 static Value *simplifyAndOfICmpsWithAdd(ICmpInst *Op0, ICmpInst *Op1,
1695                                         const InstrInfoQuery &IIQ) {
1696   // (icmp (add V, C0), C1) & (icmp V, C0)
1697   ICmpInst::Predicate Pred0, Pred1;
1698   const APInt *C0, *C1;
1699   Value *V;
1700   if (!match(Op0, m_ICmp(Pred0, m_Add(m_Value(V), m_APInt(C0)), m_APInt(C1))))
1701     return nullptr;
1702 
1703   if (!match(Op1, m_ICmp(Pred1, m_Specific(V), m_Value())))
1704     return nullptr;
1705 
1706   auto *AddInst = cast<OverflowingBinaryOperator>(Op0->getOperand(0));
1707   if (AddInst->getOperand(1) != Op1->getOperand(1))
1708     return nullptr;
1709 
1710   Type *ITy = Op0->getType();
1711   bool isNSW = IIQ.hasNoSignedWrap(AddInst);
1712   bool isNUW = IIQ.hasNoUnsignedWrap(AddInst);
1713 
1714   const APInt Delta = *C1 - *C0;
1715   if (C0->isStrictlyPositive()) {
1716     if (Delta == 2) {
1717       if (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_SGT)
1718         return getFalse(ITy);
1719       if (Pred0 == ICmpInst::ICMP_SLT && Pred1 == ICmpInst::ICMP_SGT && isNSW)
1720         return getFalse(ITy);
1721     }
1722     if (Delta == 1) {
1723       if (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_SGT)
1724         return getFalse(ITy);
1725       if (Pred0 == ICmpInst::ICMP_SLE && Pred1 == ICmpInst::ICMP_SGT && isNSW)
1726         return getFalse(ITy);
1727     }
1728   }
1729   if (C0->getBoolValue() && isNUW) {
1730     if (Delta == 2)
1731       if (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_UGT)
1732         return getFalse(ITy);
1733     if (Delta == 1)
1734       if (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_UGT)
1735         return getFalse(ITy);
1736   }
1737 
1738   return nullptr;
1739 }
1740 
1741 /// Try to eliminate compares with signed or unsigned min/max constants.
1742 static Value *simplifyAndOrOfICmpsWithLimitConst(ICmpInst *Cmp0, ICmpInst *Cmp1,
1743                                                  bool IsAnd) {
1744   // Canonicalize an equality compare as Cmp0.
1745   if (Cmp1->isEquality())
1746     std::swap(Cmp0, Cmp1);
1747   if (!Cmp0->isEquality())
1748     return nullptr;
1749 
1750   // The non-equality compare must include a common operand (X). Canonicalize
1751   // the common operand as operand 0 (the predicate is swapped if the common
1752   // operand was operand 1).
1753   ICmpInst::Predicate Pred0 = Cmp0->getPredicate();
1754   Value *X = Cmp0->getOperand(0);
1755   ICmpInst::Predicate Pred1;
1756   bool HasNotOp = match(Cmp1, m_c_ICmp(Pred1, m_Not(m_Specific(X)), m_Value()));
1757   if (!HasNotOp && !match(Cmp1, m_c_ICmp(Pred1, m_Specific(X), m_Value())))
1758     return nullptr;
1759   if (ICmpInst::isEquality(Pred1))
1760     return nullptr;
1761 
1762   // The equality compare must be against a constant. Flip bits if we matched
1763   // a bitwise not. Convert a null pointer constant to an integer zero value.
1764   APInt MinMaxC;
1765   const APInt *C;
1766   if (match(Cmp0->getOperand(1), m_APInt(C)))
1767     MinMaxC = HasNotOp ? ~*C : *C;
1768   else if (isa<ConstantPointerNull>(Cmp0->getOperand(1)))
1769     MinMaxC = APInt::getZero(8);
1770   else
1771     return nullptr;
1772 
1773   // DeMorganize if this is 'or': P0 || P1 --> !P0 && !P1.
1774   if (!IsAnd) {
1775     Pred0 = ICmpInst::getInversePredicate(Pred0);
1776     Pred1 = ICmpInst::getInversePredicate(Pred1);
1777   }
1778 
1779   // Normalize to unsigned compare and unsigned min/max value.
1780   // Example for 8-bit: -128 + 128 -> 0; 127 + 128 -> 255
1781   if (ICmpInst::isSigned(Pred1)) {
1782     Pred1 = ICmpInst::getUnsignedPredicate(Pred1);
1783     MinMaxC += APInt::getSignedMinValue(MinMaxC.getBitWidth());
1784   }
1785 
1786   // (X != MAX) && (X < Y) --> X < Y
1787   // (X == MAX) || (X >= Y) --> X >= Y
1788   if (MinMaxC.isMaxValue())
1789     if (Pred0 == ICmpInst::ICMP_NE && Pred1 == ICmpInst::ICMP_ULT)
1790       return Cmp1;
1791 
1792   // (X != MIN) && (X > Y) -->  X > Y
1793   // (X == MIN) || (X <= Y) --> X <= Y
1794   if (MinMaxC.isMinValue())
1795     if (Pred0 == ICmpInst::ICMP_NE && Pred1 == ICmpInst::ICMP_UGT)
1796       return Cmp1;
1797 
1798   return nullptr;
1799 }
1800 
1801 static Value *simplifyAndOfICmps(ICmpInst *Op0, ICmpInst *Op1,
1802                                  const SimplifyQuery &Q) {
1803   if (Value *X = simplifyUnsignedRangeCheck(Op0, Op1, /*IsAnd=*/true, Q))
1804     return X;
1805   if (Value *X = simplifyUnsignedRangeCheck(Op1, Op0, /*IsAnd=*/true, Q))
1806     return X;
1807 
1808   if (Value *X = simplifyAndOfICmpsWithSameOperands(Op0, Op1))
1809     return X;
1810   if (Value *X = simplifyAndOfICmpsWithSameOperands(Op1, Op0))
1811     return X;
1812 
1813   if (Value *X = simplifyAndOrOfICmpsWithConstants(Op0, Op1, true))
1814     return X;
1815 
1816   if (Value *X = simplifyAndOrOfICmpsWithLimitConst(Op0, Op1, true))
1817     return X;
1818 
1819   if (Value *X = simplifyAndOrOfICmpsWithZero(Op0, Op1, true))
1820     return X;
1821 
1822   if (Value *X = simplifyAndOfICmpsWithAdd(Op0, Op1, Q.IIQ))
1823     return X;
1824   if (Value *X = simplifyAndOfICmpsWithAdd(Op1, Op0, Q.IIQ))
1825     return X;
1826 
1827   return nullptr;
1828 }
1829 
1830 static Value *simplifyOrOfICmpsWithAdd(ICmpInst *Op0, ICmpInst *Op1,
1831                                        const InstrInfoQuery &IIQ) {
1832   // (icmp (add V, C0), C1) | (icmp V, C0)
1833   ICmpInst::Predicate Pred0, Pred1;
1834   const APInt *C0, *C1;
1835   Value *V;
1836   if (!match(Op0, m_ICmp(Pred0, m_Add(m_Value(V), m_APInt(C0)), m_APInt(C1))))
1837     return nullptr;
1838 
1839   if (!match(Op1, m_ICmp(Pred1, m_Specific(V), m_Value())))
1840     return nullptr;
1841 
1842   auto *AddInst = cast<BinaryOperator>(Op0->getOperand(0));
1843   if (AddInst->getOperand(1) != Op1->getOperand(1))
1844     return nullptr;
1845 
1846   Type *ITy = Op0->getType();
1847   bool isNSW = IIQ.hasNoSignedWrap(AddInst);
1848   bool isNUW = IIQ.hasNoUnsignedWrap(AddInst);
1849 
1850   const APInt Delta = *C1 - *C0;
1851   if (C0->isStrictlyPositive()) {
1852     if (Delta == 2) {
1853       if (Pred0 == ICmpInst::ICMP_UGE && Pred1 == ICmpInst::ICMP_SLE)
1854         return getTrue(ITy);
1855       if (Pred0 == ICmpInst::ICMP_SGE && Pred1 == ICmpInst::ICMP_SLE && isNSW)
1856         return getTrue(ITy);
1857     }
1858     if (Delta == 1) {
1859       if (Pred0 == ICmpInst::ICMP_UGT && Pred1 == ICmpInst::ICMP_SLE)
1860         return getTrue(ITy);
1861       if (Pred0 == ICmpInst::ICMP_SGT && Pred1 == ICmpInst::ICMP_SLE && isNSW)
1862         return getTrue(ITy);
1863     }
1864   }
1865   if (C0->getBoolValue() && isNUW) {
1866     if (Delta == 2)
1867       if (Pred0 == ICmpInst::ICMP_UGE && Pred1 == ICmpInst::ICMP_ULE)
1868         return getTrue(ITy);
1869     if (Delta == 1)
1870       if (Pred0 == ICmpInst::ICMP_UGT && Pred1 == ICmpInst::ICMP_ULE)
1871         return getTrue(ITy);
1872   }
1873 
1874   return nullptr;
1875 }
1876 
1877 static Value *simplifyOrOfICmps(ICmpInst *Op0, ICmpInst *Op1,
1878                                 const SimplifyQuery &Q) {
1879   if (Value *X = simplifyUnsignedRangeCheck(Op0, Op1, /*IsAnd=*/false, Q))
1880     return X;
1881   if (Value *X = simplifyUnsignedRangeCheck(Op1, Op0, /*IsAnd=*/false, Q))
1882     return X;
1883 
1884   if (Value *X = simplifyOrOfICmpsWithSameOperands(Op0, Op1))
1885     return X;
1886   if (Value *X = simplifyOrOfICmpsWithSameOperands(Op1, Op0))
1887     return X;
1888 
1889   if (Value *X = simplifyAndOrOfICmpsWithConstants(Op0, Op1, false))
1890     return X;
1891 
1892   if (Value *X = simplifyAndOrOfICmpsWithLimitConst(Op0, Op1, false))
1893     return X;
1894 
1895   if (Value *X = simplifyAndOrOfICmpsWithZero(Op0, Op1, false))
1896     return X;
1897 
1898   if (Value *X = simplifyOrOfICmpsWithAdd(Op0, Op1, Q.IIQ))
1899     return X;
1900   if (Value *X = simplifyOrOfICmpsWithAdd(Op1, Op0, Q.IIQ))
1901     return X;
1902 
1903   return nullptr;
1904 }
1905 
1906 static Value *simplifyAndOrOfFCmps(const TargetLibraryInfo *TLI,
1907                                    FCmpInst *LHS, FCmpInst *RHS, bool IsAnd) {
1908   Value *LHS0 = LHS->getOperand(0), *LHS1 = LHS->getOperand(1);
1909   Value *RHS0 = RHS->getOperand(0), *RHS1 = RHS->getOperand(1);
1910   if (LHS0->getType() != RHS0->getType())
1911     return nullptr;
1912 
1913   FCmpInst::Predicate PredL = LHS->getPredicate(), PredR = RHS->getPredicate();
1914   if ((PredL == FCmpInst::FCMP_ORD && PredR == FCmpInst::FCMP_ORD && IsAnd) ||
1915       (PredL == FCmpInst::FCMP_UNO && PredR == FCmpInst::FCMP_UNO && !IsAnd)) {
1916     // (fcmp ord NNAN, X) & (fcmp ord X, Y) --> fcmp ord X, Y
1917     // (fcmp ord NNAN, X) & (fcmp ord Y, X) --> fcmp ord Y, X
1918     // (fcmp ord X, NNAN) & (fcmp ord X, Y) --> fcmp ord X, Y
1919     // (fcmp ord X, NNAN) & (fcmp ord Y, X) --> fcmp ord Y, X
1920     // (fcmp uno NNAN, X) | (fcmp uno X, Y) --> fcmp uno X, Y
1921     // (fcmp uno NNAN, X) | (fcmp uno Y, X) --> fcmp uno Y, X
1922     // (fcmp uno X, NNAN) | (fcmp uno X, Y) --> fcmp uno X, Y
1923     // (fcmp uno X, NNAN) | (fcmp uno Y, X) --> fcmp uno Y, X
1924     if ((isKnownNeverNaN(LHS0, TLI) && (LHS1 == RHS0 || LHS1 == RHS1)) ||
1925         (isKnownNeverNaN(LHS1, TLI) && (LHS0 == RHS0 || LHS0 == RHS1)))
1926       return RHS;
1927 
1928     // (fcmp ord X, Y) & (fcmp ord NNAN, X) --> fcmp ord X, Y
1929     // (fcmp ord Y, X) & (fcmp ord NNAN, X) --> fcmp ord Y, X
1930     // (fcmp ord X, Y) & (fcmp ord X, NNAN) --> fcmp ord X, Y
1931     // (fcmp ord Y, X) & (fcmp ord X, NNAN) --> fcmp ord Y, X
1932     // (fcmp uno X, Y) | (fcmp uno NNAN, X) --> fcmp uno X, Y
1933     // (fcmp uno Y, X) | (fcmp uno NNAN, X) --> fcmp uno Y, X
1934     // (fcmp uno X, Y) | (fcmp uno X, NNAN) --> fcmp uno X, Y
1935     // (fcmp uno Y, X) | (fcmp uno X, NNAN) --> fcmp uno Y, X
1936     if ((isKnownNeverNaN(RHS0, TLI) && (RHS1 == LHS0 || RHS1 == LHS1)) ||
1937         (isKnownNeverNaN(RHS1, TLI) && (RHS0 == LHS0 || RHS0 == LHS1)))
1938       return LHS;
1939   }
1940 
1941   return nullptr;
1942 }
1943 
1944 static Value *simplifyAndOrOfCmps(const SimplifyQuery &Q,
1945                                   Value *Op0, Value *Op1, bool IsAnd) {
1946   // Look through casts of the 'and' operands to find compares.
1947   auto *Cast0 = dyn_cast<CastInst>(Op0);
1948   auto *Cast1 = dyn_cast<CastInst>(Op1);
1949   if (Cast0 && Cast1 && Cast0->getOpcode() == Cast1->getOpcode() &&
1950       Cast0->getSrcTy() == Cast1->getSrcTy()) {
1951     Op0 = Cast0->getOperand(0);
1952     Op1 = Cast1->getOperand(0);
1953   }
1954 
1955   Value *V = nullptr;
1956   auto *ICmp0 = dyn_cast<ICmpInst>(Op0);
1957   auto *ICmp1 = dyn_cast<ICmpInst>(Op1);
1958   if (ICmp0 && ICmp1)
1959     V = IsAnd ? simplifyAndOfICmps(ICmp0, ICmp1, Q)
1960               : simplifyOrOfICmps(ICmp0, ICmp1, Q);
1961 
1962   auto *FCmp0 = dyn_cast<FCmpInst>(Op0);
1963   auto *FCmp1 = dyn_cast<FCmpInst>(Op1);
1964   if (FCmp0 && FCmp1)
1965     V = simplifyAndOrOfFCmps(Q.TLI, FCmp0, FCmp1, IsAnd);
1966 
1967   if (!V)
1968     return nullptr;
1969   if (!Cast0)
1970     return V;
1971 
1972   // If we looked through casts, we can only handle a constant simplification
1973   // because we are not allowed to create a cast instruction here.
1974   if (auto *C = dyn_cast<Constant>(V))
1975     return ConstantExpr::getCast(Cast0->getOpcode(), C, Cast0->getType());
1976 
1977   return nullptr;
1978 }
1979 
1980 /// Given a bitwise logic op, check if the operands are add/sub with a common
1981 /// source value and inverted constant (identity: C - X -> ~(X + ~C)).
1982 static Value *simplifyLogicOfAddSub(Value *Op0, Value *Op1,
1983                                     Instruction::BinaryOps Opcode) {
1984   assert(Op0->getType() == Op1->getType() && "Mismatched binop types");
1985   assert(BinaryOperator::isBitwiseLogicOp(Opcode) && "Expected logic op");
1986   Value *X;
1987   Constant *C1, *C2;
1988   if ((match(Op0, m_Add(m_Value(X), m_Constant(C1))) &&
1989        match(Op1, m_Sub(m_Constant(C2), m_Specific(X)))) ||
1990       (match(Op1, m_Add(m_Value(X), m_Constant(C1))) &&
1991        match(Op0, m_Sub(m_Constant(C2), m_Specific(X))))) {
1992     if (ConstantExpr::getNot(C1) == C2) {
1993       // (X + C) & (~C - X) --> (X + C) & ~(X + C) --> 0
1994       // (X + C) | (~C - X) --> (X + C) | ~(X + C) --> -1
1995       // (X + C) ^ (~C - X) --> (X + C) ^ ~(X + C) --> -1
1996       Type *Ty = Op0->getType();
1997       return Opcode == Instruction::And ? ConstantInt::getNullValue(Ty)
1998                                         : ConstantInt::getAllOnesValue(Ty);
1999     }
2000   }
2001   return nullptr;
2002 }
2003 
2004 /// Given operands for an And, see if we can fold the result.
2005 /// If not, this returns null.
2006 static Value *SimplifyAndInst(Value *Op0, Value *Op1, const SimplifyQuery &Q,
2007                               unsigned MaxRecurse) {
2008   if (Constant *C = foldOrCommuteConstant(Instruction::And, Op0, Op1, Q))
2009     return C;
2010 
2011   // X & poison -> poison
2012   if (isa<PoisonValue>(Op1))
2013     return Op1;
2014 
2015   // X & undef -> 0
2016   if (Q.isUndefValue(Op1))
2017     return Constant::getNullValue(Op0->getType());
2018 
2019   // X & X = X
2020   if (Op0 == Op1)
2021     return Op0;
2022 
2023   // X & 0 = 0
2024   if (match(Op1, m_Zero()))
2025     return Constant::getNullValue(Op0->getType());
2026 
2027   // X & -1 = X
2028   if (match(Op1, m_AllOnes()))
2029     return Op0;
2030 
2031   // A & ~A  =  ~A & A  =  0
2032   if (match(Op0, m_Not(m_Specific(Op1))) ||
2033       match(Op1, m_Not(m_Specific(Op0))))
2034     return Constant::getNullValue(Op0->getType());
2035 
2036   // (A | ?) & A = A
2037   if (match(Op0, m_c_Or(m_Specific(Op1), m_Value())))
2038     return Op1;
2039 
2040   // A & (A | ?) = A
2041   if (match(Op1, m_c_Or(m_Specific(Op0), m_Value())))
2042     return Op0;
2043 
2044   // (X | Y) & (X | ~Y) --> X (commuted 8 ways)
2045   Value *X, *Y;
2046   if (match(Op0, m_c_Or(m_Value(X), m_Not(m_Value(Y)))) &&
2047       match(Op1, m_c_Or(m_Deferred(X), m_Deferred(Y))))
2048     return X;
2049   if (match(Op1, m_c_Or(m_Value(X), m_Not(m_Value(Y)))) &&
2050       match(Op0, m_c_Or(m_Deferred(X), m_Deferred(Y))))
2051     return X;
2052 
2053   if (Value *V = simplifyLogicOfAddSub(Op0, Op1, Instruction::And))
2054     return V;
2055 
2056   // A mask that only clears known zeros of a shifted value is a no-op.
2057   const APInt *Mask;
2058   const APInt *ShAmt;
2059   if (match(Op1, m_APInt(Mask))) {
2060     // If all bits in the inverted and shifted mask are clear:
2061     // and (shl X, ShAmt), Mask --> shl X, ShAmt
2062     if (match(Op0, m_Shl(m_Value(X), m_APInt(ShAmt))) &&
2063         (~(*Mask)).lshr(*ShAmt).isZero())
2064       return Op0;
2065 
2066     // If all bits in the inverted and shifted mask are clear:
2067     // and (lshr X, ShAmt), Mask --> lshr X, ShAmt
2068     if (match(Op0, m_LShr(m_Value(X), m_APInt(ShAmt))) &&
2069         (~(*Mask)).shl(*ShAmt).isZero())
2070       return Op0;
2071   }
2072 
2073   // If we have a multiplication overflow check that is being 'and'ed with a
2074   // check that one of the multipliers is not zero, we can omit the 'and', and
2075   // only keep the overflow check.
2076   if (isCheckForZeroAndMulWithOverflow(Op0, Op1, true))
2077     return Op1;
2078   if (isCheckForZeroAndMulWithOverflow(Op1, Op0, true))
2079     return Op0;
2080 
2081   // A & (-A) = A if A is a power of two or zero.
2082   if (match(Op0, m_Neg(m_Specific(Op1))) ||
2083       match(Op1, m_Neg(m_Specific(Op0)))) {
2084     if (isKnownToBeAPowerOfTwo(Op0, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI,
2085                                Q.DT))
2086       return Op0;
2087     if (isKnownToBeAPowerOfTwo(Op1, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI,
2088                                Q.DT))
2089       return Op1;
2090   }
2091 
2092   // This is a similar pattern used for checking if a value is a power-of-2:
2093   // (A - 1) & A --> 0 (if A is a power-of-2 or 0)
2094   // A & (A - 1) --> 0 (if A is a power-of-2 or 0)
2095   if (match(Op0, m_Add(m_Specific(Op1), m_AllOnes())) &&
2096       isKnownToBeAPowerOfTwo(Op1, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI, Q.DT))
2097     return Constant::getNullValue(Op1->getType());
2098   if (match(Op1, m_Add(m_Specific(Op0), m_AllOnes())) &&
2099       isKnownToBeAPowerOfTwo(Op0, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI, Q.DT))
2100     return Constant::getNullValue(Op0->getType());
2101 
2102   if (Value *V = simplifyAndOrOfCmps(Q, Op0, Op1, true))
2103     return V;
2104 
2105   // Try some generic simplifications for associative operations.
2106   if (Value *V = SimplifyAssociativeBinOp(Instruction::And, Op0, Op1, Q,
2107                                           MaxRecurse))
2108     return V;
2109 
2110   // And distributes over Or.  Try some generic simplifications based on this.
2111   if (Value *V = expandCommutativeBinOp(Instruction::And, Op0, Op1,
2112                                         Instruction::Or, Q, MaxRecurse))
2113     return V;
2114 
2115   // And distributes over Xor.  Try some generic simplifications based on this.
2116   if (Value *V = expandCommutativeBinOp(Instruction::And, Op0, Op1,
2117                                         Instruction::Xor, Q, MaxRecurse))
2118     return V;
2119 
2120   if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) {
2121     if (Op0->getType()->isIntOrIntVectorTy(1)) {
2122       // A & (A && B) -> A && B
2123       if (match(Op1, m_Select(m_Specific(Op0), m_Value(), m_Zero())))
2124         return Op1;
2125       else if (match(Op0, m_Select(m_Specific(Op1), m_Value(), m_Zero())))
2126         return Op0;
2127     }
2128     // If the operation is with the result of a select instruction, check
2129     // whether operating on either branch of the select always yields the same
2130     // value.
2131     if (Value *V = ThreadBinOpOverSelect(Instruction::And, Op0, Op1, Q,
2132                                          MaxRecurse))
2133       return V;
2134   }
2135 
2136   // If the operation is with the result of a phi instruction, check whether
2137   // operating on all incoming values of the phi always yields the same value.
2138   if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
2139     if (Value *V = ThreadBinOpOverPHI(Instruction::And, Op0, Op1, Q,
2140                                       MaxRecurse))
2141       return V;
2142 
2143   // Assuming the effective width of Y is not larger than A, i.e. all bits
2144   // from X and Y are disjoint in (X << A) | Y,
2145   // if the mask of this AND op covers all bits of X or Y, while it covers
2146   // no bits from the other, we can bypass this AND op. E.g.,
2147   // ((X << A) | Y) & Mask -> Y,
2148   //     if Mask = ((1 << effective_width_of(Y)) - 1)
2149   // ((X << A) | Y) & Mask -> X << A,
2150   //     if Mask = ((1 << effective_width_of(X)) - 1) << A
2151   // SimplifyDemandedBits in InstCombine can optimize the general case.
2152   // This pattern aims to help other passes for a common case.
2153   Value *XShifted;
2154   if (match(Op1, m_APInt(Mask)) &&
2155       match(Op0, m_c_Or(m_CombineAnd(m_NUWShl(m_Value(X), m_APInt(ShAmt)),
2156                                      m_Value(XShifted)),
2157                         m_Value(Y)))) {
2158     const unsigned Width = Op0->getType()->getScalarSizeInBits();
2159     const unsigned ShftCnt = ShAmt->getLimitedValue(Width);
2160     const KnownBits YKnown = computeKnownBits(Y, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
2161     const unsigned EffWidthY = YKnown.countMaxActiveBits();
2162     if (EffWidthY <= ShftCnt) {
2163       const KnownBits XKnown = computeKnownBits(X, Q.DL, 0, Q.AC, Q.CxtI,
2164                                                 Q.DT);
2165       const unsigned EffWidthX = XKnown.countMaxActiveBits();
2166       const APInt EffBitsY = APInt::getLowBitsSet(Width, EffWidthY);
2167       const APInt EffBitsX = APInt::getLowBitsSet(Width, EffWidthX) << ShftCnt;
2168       // If the mask is extracting all bits from X or Y as is, we can skip
2169       // this AND op.
2170       if (EffBitsY.isSubsetOf(*Mask) && !EffBitsX.intersects(*Mask))
2171         return Y;
2172       if (EffBitsX.isSubsetOf(*Mask) && !EffBitsY.intersects(*Mask))
2173         return XShifted;
2174     }
2175   }
2176 
2177   return nullptr;
2178 }
2179 
2180 Value *llvm::SimplifyAndInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) {
2181   return ::SimplifyAndInst(Op0, Op1, Q, RecursionLimit);
2182 }
2183 
2184 /// Given operands for an Or, see if we can fold the result.
2185 /// If not, this returns null.
2186 static Value *SimplifyOrInst(Value *Op0, Value *Op1, const SimplifyQuery &Q,
2187                              unsigned MaxRecurse) {
2188   if (Constant *C = foldOrCommuteConstant(Instruction::Or, Op0, Op1, Q))
2189     return C;
2190 
2191   // X | poison -> poison
2192   if (isa<PoisonValue>(Op1))
2193     return Op1;
2194 
2195   // X | undef -> -1
2196   // X | -1 = -1
2197   // Do not return Op1 because it may contain undef elements if it's a vector.
2198   if (Q.isUndefValue(Op1) || match(Op1, m_AllOnes()))
2199     return Constant::getAllOnesValue(Op0->getType());
2200 
2201   // X | X = X
2202   // X | 0 = X
2203   if (Op0 == Op1 || match(Op1, m_Zero()))
2204     return Op0;
2205 
2206   // A | ~A  =  ~A | A  =  -1
2207   if (match(Op0, m_Not(m_Specific(Op1))) ||
2208       match(Op1, m_Not(m_Specific(Op0))))
2209     return Constant::getAllOnesValue(Op0->getType());
2210 
2211   // (A & ?) | A = A
2212   if (match(Op0, m_c_And(m_Specific(Op1), m_Value())))
2213     return Op1;
2214 
2215   // A | (A & ?) = A
2216   if (match(Op1, m_c_And(m_Specific(Op0), m_Value())))
2217     return Op0;
2218 
2219   // ~(A & ?) | A = -1
2220   if (match(Op0, m_Not(m_c_And(m_Specific(Op1), m_Value()))))
2221     return Constant::getAllOnesValue(Op1->getType());
2222 
2223   // A | ~(A & ?) = -1
2224   if (match(Op1, m_Not(m_c_And(m_Specific(Op0), m_Value()))))
2225     return Constant::getAllOnesValue(Op0->getType());
2226 
2227   if (Value *V = simplifyLogicOfAddSub(Op0, Op1, Instruction::Or))
2228     return V;
2229 
2230   Value *A, *B, *NotA;
2231   // (A & ~B) | (A ^ B) -> (A ^ B)
2232   // (~B & A) | (A ^ B) -> (A ^ B)
2233   // (A & ~B) | (B ^ A) -> (B ^ A)
2234   // (~B & A) | (B ^ A) -> (B ^ A)
2235   if (match(Op1, m_Xor(m_Value(A), m_Value(B))) &&
2236       (match(Op0, m_c_And(m_Specific(A), m_Not(m_Specific(B)))) ||
2237        match(Op0, m_c_And(m_Not(m_Specific(A)), m_Specific(B)))))
2238     return Op1;
2239 
2240   // Commute the 'or' operands.
2241   // (A ^ B) | (A & ~B) -> (A ^ B)
2242   // (A ^ B) | (~B & A) -> (A ^ B)
2243   // (B ^ A) | (A & ~B) -> (B ^ A)
2244   // (B ^ A) | (~B & A) -> (B ^ A)
2245   if (match(Op0, m_Xor(m_Value(A), m_Value(B))) &&
2246       (match(Op1, m_c_And(m_Specific(A), m_Not(m_Specific(B)))) ||
2247        match(Op1, m_c_And(m_Not(m_Specific(A)), m_Specific(B)))))
2248     return Op0;
2249 
2250   // (A & B) | (~A ^ B) -> (~A ^ B)
2251   // (B & A) | (~A ^ B) -> (~A ^ B)
2252   // (A & B) | (B ^ ~A) -> (B ^ ~A)
2253   // (B & A) | (B ^ ~A) -> (B ^ ~A)
2254   if (match(Op0, m_And(m_Value(A), m_Value(B))) &&
2255       (match(Op1, m_c_Xor(m_Specific(A), m_Not(m_Specific(B)))) ||
2256        match(Op1, m_c_Xor(m_Not(m_Specific(A)), m_Specific(B)))))
2257     return Op1;
2258 
2259   // Commute the 'or' operands.
2260   // (~A ^ B) | (A & B) -> (~A ^ B)
2261   // (~A ^ B) | (B & A) -> (~A ^ B)
2262   // (B ^ ~A) | (A & B) -> (B ^ ~A)
2263   // (B ^ ~A) | (B & A) -> (B ^ ~A)
2264   if (match(Op1, m_And(m_Value(A), m_Value(B))) &&
2265       (match(Op0, m_c_Xor(m_Specific(A), m_Not(m_Specific(B)))) ||
2266        match(Op0, m_c_Xor(m_Not(m_Specific(A)), m_Specific(B)))))
2267     return Op0;
2268 
2269   // (~A & B) | ~(A | B) --> ~A
2270   // (~A & B) | ~(B | A) --> ~A
2271   // (B & ~A) | ~(A | B) --> ~A
2272   // (B & ~A) | ~(B | A) --> ~A
2273   if (match(Op0, m_c_And(m_CombineAnd(m_Value(NotA), m_Not(m_Value(A))),
2274                          m_Value(B))) &&
2275       match(Op1, m_Not(m_c_Or(m_Specific(A), m_Specific(B)))))
2276     return NotA;
2277 
2278   // Commute the 'or' operands.
2279   // ~(A | B) | (~A & B) --> ~A
2280   // ~(B | A) | (~A & B) --> ~A
2281   // ~(A | B) | (B & ~A) --> ~A
2282   // ~(B | A) | (B & ~A) --> ~A
2283   if (match(Op1, m_c_And(m_CombineAnd(m_Value(NotA), m_Not(m_Value(A))),
2284                          m_Value(B))) &&
2285       match(Op0, m_Not(m_c_Or(m_Specific(A), m_Specific(B)))))
2286     return NotA;
2287 
2288   // Rotated -1 is still -1:
2289   // (-1 << X) | (-1 >> (C - X)) --> -1
2290   // (-1 >> X) | (-1 << (C - X)) --> -1
2291   // ...with C <= bitwidth (and commuted variants).
2292   Value *X, *Y;
2293   if ((match(Op0, m_Shl(m_AllOnes(), m_Value(X))) &&
2294        match(Op1, m_LShr(m_AllOnes(), m_Value(Y)))) ||
2295       (match(Op1, m_Shl(m_AllOnes(), m_Value(X))) &&
2296        match(Op0, m_LShr(m_AllOnes(), m_Value(Y))))) {
2297     const APInt *C;
2298     if ((match(X, m_Sub(m_APInt(C), m_Specific(Y))) ||
2299          match(Y, m_Sub(m_APInt(C), m_Specific(X)))) &&
2300         C->ule(X->getType()->getScalarSizeInBits())) {
2301       return ConstantInt::getAllOnesValue(X->getType());
2302     }
2303   }
2304 
2305   if (Value *V = simplifyAndOrOfCmps(Q, Op0, Op1, false))
2306     return V;
2307 
2308   // If we have a multiplication overflow check that is being 'and'ed with a
2309   // check that one of the multipliers is not zero, we can omit the 'and', and
2310   // only keep the overflow check.
2311   if (isCheckForZeroAndMulWithOverflow(Op0, Op1, false))
2312     return Op1;
2313   if (isCheckForZeroAndMulWithOverflow(Op1, Op0, false))
2314     return Op0;
2315 
2316   // Try some generic simplifications for associative operations.
2317   if (Value *V = SimplifyAssociativeBinOp(Instruction::Or, Op0, Op1, Q,
2318                                           MaxRecurse))
2319     return V;
2320 
2321   // Or distributes over And.  Try some generic simplifications based on this.
2322   if (Value *V = expandCommutativeBinOp(Instruction::Or, Op0, Op1,
2323                                         Instruction::And, Q, MaxRecurse))
2324     return V;
2325 
2326   if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) {
2327     if (Op0->getType()->isIntOrIntVectorTy(1)) {
2328       // A | (A || B) -> A || B
2329       if (match(Op1, m_Select(m_Specific(Op0), m_One(), m_Value())))
2330         return Op1;
2331       else if (match(Op0, m_Select(m_Specific(Op1), m_One(), m_Value())))
2332         return Op0;
2333     }
2334     // If the operation is with the result of a select instruction, check
2335     // whether operating on either branch of the select always yields the same
2336     // value.
2337     if (Value *V = ThreadBinOpOverSelect(Instruction::Or, Op0, Op1, Q,
2338                                          MaxRecurse))
2339       return V;
2340   }
2341 
2342   // (A & C1)|(B & C2)
2343   const APInt *C1, *C2;
2344   if (match(Op0, m_And(m_Value(A), m_APInt(C1))) &&
2345       match(Op1, m_And(m_Value(B), m_APInt(C2)))) {
2346     if (*C1 == ~*C2) {
2347       // (A & C1)|(B & C2)
2348       // If we have: ((V + N) & C1) | (V & C2)
2349       // .. and C2 = ~C1 and C2 is 0+1+ and (N & C2) == 0
2350       // replace with V+N.
2351       Value *N;
2352       if (C2->isMask() && // C2 == 0+1+
2353           match(A, m_c_Add(m_Specific(B), m_Value(N)))) {
2354         // Add commutes, try both ways.
2355         if (MaskedValueIsZero(N, *C2, Q.DL, 0, Q.AC, Q.CxtI, Q.DT))
2356           return A;
2357       }
2358       // Or commutes, try both ways.
2359       if (C1->isMask() &&
2360           match(B, m_c_Add(m_Specific(A), m_Value(N)))) {
2361         // Add commutes, try both ways.
2362         if (MaskedValueIsZero(N, *C1, Q.DL, 0, Q.AC, Q.CxtI, Q.DT))
2363           return B;
2364       }
2365     }
2366   }
2367 
2368   // If the operation is with the result of a phi instruction, check whether
2369   // operating on all incoming values of the phi always yields the same value.
2370   if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
2371     if (Value *V = ThreadBinOpOverPHI(Instruction::Or, Op0, Op1, Q, MaxRecurse))
2372       return V;
2373 
2374   return nullptr;
2375 }
2376 
2377 Value *llvm::SimplifyOrInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) {
2378   return ::SimplifyOrInst(Op0, Op1, Q, RecursionLimit);
2379 }
2380 
2381 /// Given operands for a Xor, see if we can fold the result.
2382 /// If not, this returns null.
2383 static Value *SimplifyXorInst(Value *Op0, Value *Op1, const SimplifyQuery &Q,
2384                               unsigned MaxRecurse) {
2385   if (Constant *C = foldOrCommuteConstant(Instruction::Xor, Op0, Op1, Q))
2386     return C;
2387 
2388   // A ^ undef -> undef
2389   if (Q.isUndefValue(Op1))
2390     return Op1;
2391 
2392   // A ^ 0 = A
2393   if (match(Op1, m_Zero()))
2394     return Op0;
2395 
2396   // A ^ A = 0
2397   if (Op0 == Op1)
2398     return Constant::getNullValue(Op0->getType());
2399 
2400   // A ^ ~A  =  ~A ^ A  =  -1
2401   if (match(Op0, m_Not(m_Specific(Op1))) ||
2402       match(Op1, m_Not(m_Specific(Op0))))
2403     return Constant::getAllOnesValue(Op0->getType());
2404 
2405   if (Value *V = simplifyLogicOfAddSub(Op0, Op1, Instruction::Xor))
2406     return V;
2407 
2408   // Try some generic simplifications for associative operations.
2409   if (Value *V = SimplifyAssociativeBinOp(Instruction::Xor, Op0, Op1, Q,
2410                                           MaxRecurse))
2411     return V;
2412 
2413   // Threading Xor over selects and phi nodes is pointless, so don't bother.
2414   // Threading over the select in "A ^ select(cond, B, C)" means evaluating
2415   // "A^B" and "A^C" and seeing if they are equal; but they are equal if and
2416   // only if B and C are equal.  If B and C are equal then (since we assume
2417   // that operands have already been simplified) "select(cond, B, C)" should
2418   // have been simplified to the common value of B and C already.  Analysing
2419   // "A^B" and "A^C" thus gains nothing, but costs compile time.  Similarly
2420   // for threading over phi nodes.
2421 
2422   return nullptr;
2423 }
2424 
2425 Value *llvm::SimplifyXorInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) {
2426   return ::SimplifyXorInst(Op0, Op1, Q, RecursionLimit);
2427 }
2428 
2429 
2430 static Type *GetCompareTy(Value *Op) {
2431   return CmpInst::makeCmpResultType(Op->getType());
2432 }
2433 
2434 /// Rummage around inside V looking for something equivalent to the comparison
2435 /// "LHS Pred RHS". Return such a value if found, otherwise return null.
2436 /// Helper function for analyzing max/min idioms.
2437 static Value *ExtractEquivalentCondition(Value *V, CmpInst::Predicate Pred,
2438                                          Value *LHS, Value *RHS) {
2439   SelectInst *SI = dyn_cast<SelectInst>(V);
2440   if (!SI)
2441     return nullptr;
2442   CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition());
2443   if (!Cmp)
2444     return nullptr;
2445   Value *CmpLHS = Cmp->getOperand(0), *CmpRHS = Cmp->getOperand(1);
2446   if (Pred == Cmp->getPredicate() && LHS == CmpLHS && RHS == CmpRHS)
2447     return Cmp;
2448   if (Pred == CmpInst::getSwappedPredicate(Cmp->getPredicate()) &&
2449       LHS == CmpRHS && RHS == CmpLHS)
2450     return Cmp;
2451   return nullptr;
2452 }
2453 
2454 // A significant optimization not implemented here is assuming that alloca
2455 // addresses are not equal to incoming argument values. They don't *alias*,
2456 // as we say, but that doesn't mean they aren't equal, so we take a
2457 // conservative approach.
2458 //
2459 // This is inspired in part by C++11 5.10p1:
2460 //   "Two pointers of the same type compare equal if and only if they are both
2461 //    null, both point to the same function, or both represent the same
2462 //    address."
2463 //
2464 // This is pretty permissive.
2465 //
2466 // It's also partly due to C11 6.5.9p6:
2467 //   "Two pointers compare equal if and only if both are null pointers, both are
2468 //    pointers to the same object (including a pointer to an object and a
2469 //    subobject at its beginning) or function, both are pointers to one past the
2470 //    last element of the same array object, or one is a pointer to one past the
2471 //    end of one array object and the other is a pointer to the start of a
2472 //    different array object that happens to immediately follow the first array
2473 //    object in the address space.)
2474 //
2475 // C11's version is more restrictive, however there's no reason why an argument
2476 // couldn't be a one-past-the-end value for a stack object in the caller and be
2477 // equal to the beginning of a stack object in the callee.
2478 //
2479 // If the C and C++ standards are ever made sufficiently restrictive in this
2480 // area, it may be possible to update LLVM's semantics accordingly and reinstate
2481 // this optimization.
2482 static Constant *
2483 computePointerICmp(CmpInst::Predicate Pred, Value *LHS, Value *RHS,
2484                    const SimplifyQuery &Q) {
2485   const DataLayout &DL = Q.DL;
2486   const TargetLibraryInfo *TLI = Q.TLI;
2487   const DominatorTree *DT = Q.DT;
2488   const Instruction *CxtI = Q.CxtI;
2489   const InstrInfoQuery &IIQ = Q.IIQ;
2490 
2491   // First, skip past any trivial no-ops.
2492   LHS = LHS->stripPointerCasts();
2493   RHS = RHS->stripPointerCasts();
2494 
2495   // A non-null pointer is not equal to a null pointer.
2496   if (isa<ConstantPointerNull>(RHS) && ICmpInst::isEquality(Pred) &&
2497       llvm::isKnownNonZero(LHS, DL, 0, nullptr, nullptr, nullptr,
2498                            IIQ.UseInstrInfo))
2499     return ConstantInt::get(GetCompareTy(LHS),
2500                             !CmpInst::isTrueWhenEqual(Pred));
2501 
2502   // We can only fold certain predicates on pointer comparisons.
2503   switch (Pred) {
2504   default:
2505     return nullptr;
2506 
2507     // Equality comaprisons are easy to fold.
2508   case CmpInst::ICMP_EQ:
2509   case CmpInst::ICMP_NE:
2510     break;
2511 
2512     // We can only handle unsigned relational comparisons because 'inbounds' on
2513     // a GEP only protects against unsigned wrapping.
2514   case CmpInst::ICMP_UGT:
2515   case CmpInst::ICMP_UGE:
2516   case CmpInst::ICMP_ULT:
2517   case CmpInst::ICMP_ULE:
2518     // However, we have to switch them to their signed variants to handle
2519     // negative indices from the base pointer.
2520     Pred = ICmpInst::getSignedPredicate(Pred);
2521     break;
2522   }
2523 
2524   // Strip off any constant offsets so that we can reason about them.
2525   // It's tempting to use getUnderlyingObject or even just stripInBoundsOffsets
2526   // here and compare base addresses like AliasAnalysis does, however there are
2527   // numerous hazards. AliasAnalysis and its utilities rely on special rules
2528   // governing loads and stores which don't apply to icmps. Also, AliasAnalysis
2529   // doesn't need to guarantee pointer inequality when it says NoAlias.
2530   Constant *LHSOffset = stripAndComputeConstantOffsets(DL, LHS);
2531   Constant *RHSOffset = stripAndComputeConstantOffsets(DL, RHS);
2532 
2533   // If LHS and RHS are related via constant offsets to the same base
2534   // value, we can replace it with an icmp which just compares the offsets.
2535   if (LHS == RHS)
2536     return ConstantExpr::getICmp(Pred, LHSOffset, RHSOffset);
2537 
2538   // Various optimizations for (in)equality comparisons.
2539   if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE) {
2540     // Different non-empty allocations that exist at the same time have
2541     // different addresses (if the program can tell). Global variables always
2542     // exist, so they always exist during the lifetime of each other and all
2543     // allocas. Two different allocas usually have different addresses...
2544     //
2545     // However, if there's an @llvm.stackrestore dynamically in between two
2546     // allocas, they may have the same address. It's tempting to reduce the
2547     // scope of the problem by only looking at *static* allocas here. That would
2548     // cover the majority of allocas while significantly reducing the likelihood
2549     // of having an @llvm.stackrestore pop up in the middle. However, it's not
2550     // actually impossible for an @llvm.stackrestore to pop up in the middle of
2551     // an entry block. Also, if we have a block that's not attached to a
2552     // function, we can't tell if it's "static" under the current definition.
2553     // Theoretically, this problem could be fixed by creating a new kind of
2554     // instruction kind specifically for static allocas. Such a new instruction
2555     // could be required to be at the top of the entry block, thus preventing it
2556     // from being subject to a @llvm.stackrestore. Instcombine could even
2557     // convert regular allocas into these special allocas. It'd be nifty.
2558     // However, until then, this problem remains open.
2559     //
2560     // So, we'll assume that two non-empty allocas have different addresses
2561     // for now.
2562     //
2563     // With all that, if the offsets are within the bounds of their allocations
2564     // (and not one-past-the-end! so we can't use inbounds!), and their
2565     // allocations aren't the same, the pointers are not equal.
2566     //
2567     // Note that it's not necessary to check for LHS being a global variable
2568     // address, due to canonicalization and constant folding.
2569     if (isa<AllocaInst>(LHS) &&
2570         (isa<AllocaInst>(RHS) || isa<GlobalVariable>(RHS))) {
2571       ConstantInt *LHSOffsetCI = dyn_cast<ConstantInt>(LHSOffset);
2572       ConstantInt *RHSOffsetCI = dyn_cast<ConstantInt>(RHSOffset);
2573       uint64_t LHSSize, RHSSize;
2574       ObjectSizeOpts Opts;
2575       Opts.NullIsUnknownSize =
2576           NullPointerIsDefined(cast<AllocaInst>(LHS)->getFunction());
2577       if (LHSOffsetCI && RHSOffsetCI &&
2578           getObjectSize(LHS, LHSSize, DL, TLI, Opts) &&
2579           getObjectSize(RHS, RHSSize, DL, TLI, Opts)) {
2580         const APInt &LHSOffsetValue = LHSOffsetCI->getValue();
2581         const APInt &RHSOffsetValue = RHSOffsetCI->getValue();
2582         if (!LHSOffsetValue.isNegative() &&
2583             !RHSOffsetValue.isNegative() &&
2584             LHSOffsetValue.ult(LHSSize) &&
2585             RHSOffsetValue.ult(RHSSize)) {
2586           return ConstantInt::get(GetCompareTy(LHS),
2587                                   !CmpInst::isTrueWhenEqual(Pred));
2588         }
2589       }
2590 
2591       // Repeat the above check but this time without depending on DataLayout
2592       // or being able to compute a precise size.
2593       if (!cast<PointerType>(LHS->getType())->isEmptyTy() &&
2594           !cast<PointerType>(RHS->getType())->isEmptyTy() &&
2595           LHSOffset->isNullValue() &&
2596           RHSOffset->isNullValue())
2597         return ConstantInt::get(GetCompareTy(LHS),
2598                                 !CmpInst::isTrueWhenEqual(Pred));
2599     }
2600 
2601     // Even if an non-inbounds GEP occurs along the path we can still optimize
2602     // equality comparisons concerning the result. We avoid walking the whole
2603     // chain again by starting where the last calls to
2604     // stripAndComputeConstantOffsets left off and accumulate the offsets.
2605     Constant *LHSNoBound = stripAndComputeConstantOffsets(DL, LHS, true);
2606     Constant *RHSNoBound = stripAndComputeConstantOffsets(DL, RHS, true);
2607     if (LHS == RHS)
2608       return ConstantExpr::getICmp(Pred,
2609                                    ConstantExpr::getAdd(LHSOffset, LHSNoBound),
2610                                    ConstantExpr::getAdd(RHSOffset, RHSNoBound));
2611 
2612     // If one side of the equality comparison must come from a noalias call
2613     // (meaning a system memory allocation function), and the other side must
2614     // come from a pointer that cannot overlap with dynamically-allocated
2615     // memory within the lifetime of the current function (allocas, byval
2616     // arguments, globals), then determine the comparison result here.
2617     SmallVector<const Value *, 8> LHSUObjs, RHSUObjs;
2618     getUnderlyingObjects(LHS, LHSUObjs);
2619     getUnderlyingObjects(RHS, RHSUObjs);
2620 
2621     // Is the set of underlying objects all noalias calls?
2622     auto IsNAC = [](ArrayRef<const Value *> Objects) {
2623       return all_of(Objects, isNoAliasCall);
2624     };
2625 
2626     // Is the set of underlying objects all things which must be disjoint from
2627     // noalias calls. For allocas, we consider only static ones (dynamic
2628     // allocas might be transformed into calls to malloc not simultaneously
2629     // live with the compared-to allocation). For globals, we exclude symbols
2630     // that might be resolve lazily to symbols in another dynamically-loaded
2631     // library (and, thus, could be malloc'ed by the implementation).
2632     auto IsAllocDisjoint = [](ArrayRef<const Value *> Objects) {
2633       return all_of(Objects, [](const Value *V) {
2634         if (const AllocaInst *AI = dyn_cast<AllocaInst>(V))
2635           return AI->getParent() && AI->getFunction() && AI->isStaticAlloca();
2636         if (const GlobalValue *GV = dyn_cast<GlobalValue>(V))
2637           return (GV->hasLocalLinkage() || GV->hasHiddenVisibility() ||
2638                   GV->hasProtectedVisibility() || GV->hasGlobalUnnamedAddr()) &&
2639                  !GV->isThreadLocal();
2640         if (const Argument *A = dyn_cast<Argument>(V))
2641           return A->hasByValAttr();
2642         return false;
2643       });
2644     };
2645 
2646     if ((IsNAC(LHSUObjs) && IsAllocDisjoint(RHSUObjs)) ||
2647         (IsNAC(RHSUObjs) && IsAllocDisjoint(LHSUObjs)))
2648         return ConstantInt::get(GetCompareTy(LHS),
2649                                 !CmpInst::isTrueWhenEqual(Pred));
2650 
2651     // Fold comparisons for non-escaping pointer even if the allocation call
2652     // cannot be elided. We cannot fold malloc comparison to null. Also, the
2653     // dynamic allocation call could be either of the operands.
2654     Value *MI = nullptr;
2655     if (isAllocLikeFn(LHS, TLI) &&
2656         llvm::isKnownNonZero(RHS, DL, 0, nullptr, CxtI, DT))
2657       MI = LHS;
2658     else if (isAllocLikeFn(RHS, TLI) &&
2659              llvm::isKnownNonZero(LHS, DL, 0, nullptr, CxtI, DT))
2660       MI = RHS;
2661     // FIXME: We should also fold the compare when the pointer escapes, but the
2662     // compare dominates the pointer escape
2663     if (MI && !PointerMayBeCaptured(MI, true, true))
2664       return ConstantInt::get(GetCompareTy(LHS),
2665                               CmpInst::isFalseWhenEqual(Pred));
2666   }
2667 
2668   // Otherwise, fail.
2669   return nullptr;
2670 }
2671 
2672 /// Fold an icmp when its operands have i1 scalar type.
2673 static Value *simplifyICmpOfBools(CmpInst::Predicate Pred, Value *LHS,
2674                                   Value *RHS, const SimplifyQuery &Q) {
2675   Type *ITy = GetCompareTy(LHS); // The return type.
2676   Type *OpTy = LHS->getType();   // The operand type.
2677   if (!OpTy->isIntOrIntVectorTy(1))
2678     return nullptr;
2679 
2680   // A boolean compared to true/false can be simplified in 14 out of the 20
2681   // (10 predicates * 2 constants) possible combinations. Cases not handled here
2682   // require a 'not' of the LHS, so those must be transformed in InstCombine.
2683   if (match(RHS, m_Zero())) {
2684     switch (Pred) {
2685     case CmpInst::ICMP_NE:  // X !=  0 -> X
2686     case CmpInst::ICMP_UGT: // X >u  0 -> X
2687     case CmpInst::ICMP_SLT: // X <s  0 -> X
2688       return LHS;
2689 
2690     case CmpInst::ICMP_ULT: // X <u  0 -> false
2691     case CmpInst::ICMP_SGT: // X >s  0 -> false
2692       return getFalse(ITy);
2693 
2694     case CmpInst::ICMP_UGE: // X >=u 0 -> true
2695     case CmpInst::ICMP_SLE: // X <=s 0 -> true
2696       return getTrue(ITy);
2697 
2698     default: break;
2699     }
2700   } else if (match(RHS, m_One())) {
2701     switch (Pred) {
2702     case CmpInst::ICMP_EQ:  // X ==   1 -> X
2703     case CmpInst::ICMP_UGE: // X >=u  1 -> X
2704     case CmpInst::ICMP_SLE: // X <=s -1 -> X
2705       return LHS;
2706 
2707     case CmpInst::ICMP_UGT: // X >u   1 -> false
2708     case CmpInst::ICMP_SLT: // X <s  -1 -> false
2709       return getFalse(ITy);
2710 
2711     case CmpInst::ICMP_ULE: // X <=u  1 -> true
2712     case CmpInst::ICMP_SGE: // X >=s -1 -> true
2713       return getTrue(ITy);
2714 
2715     default: break;
2716     }
2717   }
2718 
2719   switch (Pred) {
2720   default:
2721     break;
2722   case ICmpInst::ICMP_UGE:
2723     if (isImpliedCondition(RHS, LHS, Q.DL).getValueOr(false))
2724       return getTrue(ITy);
2725     break;
2726   case ICmpInst::ICMP_SGE:
2727     /// For signed comparison, the values for an i1 are 0 and -1
2728     /// respectively. This maps into a truth table of:
2729     /// LHS | RHS | LHS >=s RHS   | LHS implies RHS
2730     ///  0  |  0  |  1 (0 >= 0)   |  1
2731     ///  0  |  1  |  1 (0 >= -1)  |  1
2732     ///  1  |  0  |  0 (-1 >= 0)  |  0
2733     ///  1  |  1  |  1 (-1 >= -1) |  1
2734     if (isImpliedCondition(LHS, RHS, Q.DL).getValueOr(false))
2735       return getTrue(ITy);
2736     break;
2737   case ICmpInst::ICMP_ULE:
2738     if (isImpliedCondition(LHS, RHS, Q.DL).getValueOr(false))
2739       return getTrue(ITy);
2740     break;
2741   }
2742 
2743   return nullptr;
2744 }
2745 
2746 /// Try hard to fold icmp with zero RHS because this is a common case.
2747 static Value *simplifyICmpWithZero(CmpInst::Predicate Pred, Value *LHS,
2748                                    Value *RHS, const SimplifyQuery &Q) {
2749   if (!match(RHS, m_Zero()))
2750     return nullptr;
2751 
2752   Type *ITy = GetCompareTy(LHS); // The return type.
2753   switch (Pred) {
2754   default:
2755     llvm_unreachable("Unknown ICmp predicate!");
2756   case ICmpInst::ICMP_ULT:
2757     return getFalse(ITy);
2758   case ICmpInst::ICMP_UGE:
2759     return getTrue(ITy);
2760   case ICmpInst::ICMP_EQ:
2761   case ICmpInst::ICMP_ULE:
2762     if (isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT, Q.IIQ.UseInstrInfo))
2763       return getFalse(ITy);
2764     break;
2765   case ICmpInst::ICMP_NE:
2766   case ICmpInst::ICMP_UGT:
2767     if (isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT, Q.IIQ.UseInstrInfo))
2768       return getTrue(ITy);
2769     break;
2770   case ICmpInst::ICMP_SLT: {
2771     KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
2772     if (LHSKnown.isNegative())
2773       return getTrue(ITy);
2774     if (LHSKnown.isNonNegative())
2775       return getFalse(ITy);
2776     break;
2777   }
2778   case ICmpInst::ICMP_SLE: {
2779     KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
2780     if (LHSKnown.isNegative())
2781       return getTrue(ITy);
2782     if (LHSKnown.isNonNegative() &&
2783         isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT))
2784       return getFalse(ITy);
2785     break;
2786   }
2787   case ICmpInst::ICMP_SGE: {
2788     KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
2789     if (LHSKnown.isNegative())
2790       return getFalse(ITy);
2791     if (LHSKnown.isNonNegative())
2792       return getTrue(ITy);
2793     break;
2794   }
2795   case ICmpInst::ICMP_SGT: {
2796     KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
2797     if (LHSKnown.isNegative())
2798       return getFalse(ITy);
2799     if (LHSKnown.isNonNegative() &&
2800         isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT))
2801       return getTrue(ITy);
2802     break;
2803   }
2804   }
2805 
2806   return nullptr;
2807 }
2808 
2809 static Value *simplifyICmpWithConstant(CmpInst::Predicate Pred, Value *LHS,
2810                                        Value *RHS, const InstrInfoQuery &IIQ) {
2811   Type *ITy = GetCompareTy(RHS); // The return type.
2812 
2813   Value *X;
2814   // Sign-bit checks can be optimized to true/false after unsigned
2815   // floating-point casts:
2816   // icmp slt (bitcast (uitofp X)),  0 --> false
2817   // icmp sgt (bitcast (uitofp X)), -1 --> true
2818   if (match(LHS, m_BitCast(m_UIToFP(m_Value(X))))) {
2819     if (Pred == ICmpInst::ICMP_SLT && match(RHS, m_Zero()))
2820       return ConstantInt::getFalse(ITy);
2821     if (Pred == ICmpInst::ICMP_SGT && match(RHS, m_AllOnes()))
2822       return ConstantInt::getTrue(ITy);
2823   }
2824 
2825   const APInt *C;
2826   if (!match(RHS, m_APIntAllowUndef(C)))
2827     return nullptr;
2828 
2829   // Rule out tautological comparisons (eg., ult 0 or uge 0).
2830   ConstantRange RHS_CR = ConstantRange::makeExactICmpRegion(Pred, *C);
2831   if (RHS_CR.isEmptySet())
2832     return ConstantInt::getFalse(ITy);
2833   if (RHS_CR.isFullSet())
2834     return ConstantInt::getTrue(ITy);
2835 
2836   ConstantRange LHS_CR = computeConstantRange(LHS, IIQ.UseInstrInfo);
2837   if (!LHS_CR.isFullSet()) {
2838     if (RHS_CR.contains(LHS_CR))
2839       return ConstantInt::getTrue(ITy);
2840     if (RHS_CR.inverse().contains(LHS_CR))
2841       return ConstantInt::getFalse(ITy);
2842   }
2843 
2844   // (mul nuw/nsw X, MulC) != C --> true  (if C is not a multiple of MulC)
2845   // (mul nuw/nsw X, MulC) == C --> false (if C is not a multiple of MulC)
2846   const APInt *MulC;
2847   if (ICmpInst::isEquality(Pred) &&
2848       ((match(LHS, m_NUWMul(m_Value(), m_APIntAllowUndef(MulC))) &&
2849         *MulC != 0 && C->urem(*MulC) != 0) ||
2850        (match(LHS, m_NSWMul(m_Value(), m_APIntAllowUndef(MulC))) &&
2851         *MulC != 0 && C->srem(*MulC) != 0)))
2852     return ConstantInt::get(ITy, Pred == ICmpInst::ICMP_NE);
2853 
2854   return nullptr;
2855 }
2856 
2857 static Value *simplifyICmpWithBinOpOnLHS(
2858     CmpInst::Predicate Pred, BinaryOperator *LBO, Value *RHS,
2859     const SimplifyQuery &Q, unsigned MaxRecurse) {
2860   Type *ITy = GetCompareTy(RHS); // The return type.
2861 
2862   Value *Y = nullptr;
2863   // icmp pred (or X, Y), X
2864   if (match(LBO, m_c_Or(m_Value(Y), m_Specific(RHS)))) {
2865     if (Pred == ICmpInst::ICMP_ULT)
2866       return getFalse(ITy);
2867     if (Pred == ICmpInst::ICMP_UGE)
2868       return getTrue(ITy);
2869 
2870     if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SGE) {
2871       KnownBits RHSKnown = computeKnownBits(RHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
2872       KnownBits YKnown = computeKnownBits(Y, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
2873       if (RHSKnown.isNonNegative() && YKnown.isNegative())
2874         return Pred == ICmpInst::ICMP_SLT ? getTrue(ITy) : getFalse(ITy);
2875       if (RHSKnown.isNegative() || YKnown.isNonNegative())
2876         return Pred == ICmpInst::ICMP_SLT ? getFalse(ITy) : getTrue(ITy);
2877     }
2878   }
2879 
2880   // icmp pred (and X, Y), X
2881   if (match(LBO, m_c_And(m_Value(), m_Specific(RHS)))) {
2882     if (Pred == ICmpInst::ICMP_UGT)
2883       return getFalse(ITy);
2884     if (Pred == ICmpInst::ICMP_ULE)
2885       return getTrue(ITy);
2886   }
2887 
2888   // icmp pred (urem X, Y), Y
2889   if (match(LBO, m_URem(m_Value(), m_Specific(RHS)))) {
2890     switch (Pred) {
2891     default:
2892       break;
2893     case ICmpInst::ICMP_SGT:
2894     case ICmpInst::ICMP_SGE: {
2895       KnownBits Known = computeKnownBits(RHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
2896       if (!Known.isNonNegative())
2897         break;
2898       LLVM_FALLTHROUGH;
2899     }
2900     case ICmpInst::ICMP_EQ:
2901     case ICmpInst::ICMP_UGT:
2902     case ICmpInst::ICMP_UGE:
2903       return getFalse(ITy);
2904     case ICmpInst::ICMP_SLT:
2905     case ICmpInst::ICMP_SLE: {
2906       KnownBits Known = computeKnownBits(RHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
2907       if (!Known.isNonNegative())
2908         break;
2909       LLVM_FALLTHROUGH;
2910     }
2911     case ICmpInst::ICMP_NE:
2912     case ICmpInst::ICMP_ULT:
2913     case ICmpInst::ICMP_ULE:
2914       return getTrue(ITy);
2915     }
2916   }
2917 
2918   // icmp pred (urem X, Y), X
2919   if (match(LBO, m_URem(m_Specific(RHS), m_Value()))) {
2920     if (Pred == ICmpInst::ICMP_ULE)
2921       return getTrue(ITy);
2922     if (Pred == ICmpInst::ICMP_UGT)
2923       return getFalse(ITy);
2924   }
2925 
2926   // x >> y <=u x
2927   // x udiv y <=u x.
2928   if (match(LBO, m_LShr(m_Specific(RHS), m_Value())) ||
2929       match(LBO, m_UDiv(m_Specific(RHS), m_Value()))) {
2930     // icmp pred (X op Y), X
2931     if (Pred == ICmpInst::ICMP_UGT)
2932       return getFalse(ITy);
2933     if (Pred == ICmpInst::ICMP_ULE)
2934       return getTrue(ITy);
2935   }
2936 
2937   // (x*C1)/C2 <= x for C1 <= C2.
2938   // This holds even if the multiplication overflows: Assume that x != 0 and
2939   // arithmetic is modulo M. For overflow to occur we must have C1 >= M/x and
2940   // thus C2 >= M/x. It follows that (x*C1)/C2 <= (M-1)/C2 <= ((M-1)*x)/M < x.
2941   //
2942   // Additionally, either the multiplication and division might be represented
2943   // as shifts:
2944   // (x*C1)>>C2 <= x for C1 < 2**C2.
2945   // (x<<C1)/C2 <= x for 2**C1 < C2.
2946   const APInt *C1, *C2;
2947   if ((match(LBO, m_UDiv(m_Mul(m_Specific(RHS), m_APInt(C1)), m_APInt(C2))) &&
2948        C1->ule(*C2)) ||
2949       (match(LBO, m_LShr(m_Mul(m_Specific(RHS), m_APInt(C1)), m_APInt(C2))) &&
2950        C1->ule(APInt(C2->getBitWidth(), 1) << *C2)) ||
2951       (match(LBO, m_UDiv(m_Shl(m_Specific(RHS), m_APInt(C1)), m_APInt(C2))) &&
2952        (APInt(C1->getBitWidth(), 1) << *C1).ule(*C2))) {
2953     if (Pred == ICmpInst::ICMP_UGT)
2954       return getFalse(ITy);
2955     if (Pred == ICmpInst::ICMP_ULE)
2956       return getTrue(ITy);
2957   }
2958 
2959   return nullptr;
2960 }
2961 
2962 
2963 // If only one of the icmp's operands has NSW flags, try to prove that:
2964 //
2965 //   icmp slt (x + C1), (x +nsw C2)
2966 //
2967 // is equivalent to:
2968 //
2969 //   icmp slt C1, C2
2970 //
2971 // which is true if x + C2 has the NSW flags set and:
2972 // *) C1 < C2 && C1 >= 0, or
2973 // *) C2 < C1 && C1 <= 0.
2974 //
2975 static bool trySimplifyICmpWithAdds(CmpInst::Predicate Pred, Value *LHS,
2976                                     Value *RHS) {
2977   // TODO: only support icmp slt for now.
2978   if (Pred != CmpInst::ICMP_SLT)
2979     return false;
2980 
2981   // Canonicalize nsw add as RHS.
2982   if (!match(RHS, m_NSWAdd(m_Value(), m_Value())))
2983     std::swap(LHS, RHS);
2984   if (!match(RHS, m_NSWAdd(m_Value(), m_Value())))
2985     return false;
2986 
2987   Value *X;
2988   const APInt *C1, *C2;
2989   if (!match(LHS, m_c_Add(m_Value(X), m_APInt(C1))) ||
2990       !match(RHS, m_c_Add(m_Specific(X), m_APInt(C2))))
2991     return false;
2992 
2993   return (C1->slt(*C2) && C1->isNonNegative()) ||
2994          (C2->slt(*C1) && C1->isNonPositive());
2995 }
2996 
2997 
2998 /// TODO: A large part of this logic is duplicated in InstCombine's
2999 /// foldICmpBinOp(). We should be able to share that and avoid the code
3000 /// duplication.
3001 static Value *simplifyICmpWithBinOp(CmpInst::Predicate Pred, Value *LHS,
3002                                     Value *RHS, const SimplifyQuery &Q,
3003                                     unsigned MaxRecurse) {
3004   BinaryOperator *LBO = dyn_cast<BinaryOperator>(LHS);
3005   BinaryOperator *RBO = dyn_cast<BinaryOperator>(RHS);
3006   if (MaxRecurse && (LBO || RBO)) {
3007     // Analyze the case when either LHS or RHS is an add instruction.
3008     Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr;
3009     // LHS = A + B (or A and B are null); RHS = C + D (or C and D are null).
3010     bool NoLHSWrapProblem = false, NoRHSWrapProblem = false;
3011     if (LBO && LBO->getOpcode() == Instruction::Add) {
3012       A = LBO->getOperand(0);
3013       B = LBO->getOperand(1);
3014       NoLHSWrapProblem =
3015           ICmpInst::isEquality(Pred) ||
3016           (CmpInst::isUnsigned(Pred) &&
3017            Q.IIQ.hasNoUnsignedWrap(cast<OverflowingBinaryOperator>(LBO))) ||
3018           (CmpInst::isSigned(Pred) &&
3019            Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(LBO)));
3020     }
3021     if (RBO && RBO->getOpcode() == Instruction::Add) {
3022       C = RBO->getOperand(0);
3023       D = RBO->getOperand(1);
3024       NoRHSWrapProblem =
3025           ICmpInst::isEquality(Pred) ||
3026           (CmpInst::isUnsigned(Pred) &&
3027            Q.IIQ.hasNoUnsignedWrap(cast<OverflowingBinaryOperator>(RBO))) ||
3028           (CmpInst::isSigned(Pred) &&
3029            Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(RBO)));
3030     }
3031 
3032     // icmp (X+Y), X -> icmp Y, 0 for equalities or if there is no overflow.
3033     if ((A == RHS || B == RHS) && NoLHSWrapProblem)
3034       if (Value *V = SimplifyICmpInst(Pred, A == RHS ? B : A,
3035                                       Constant::getNullValue(RHS->getType()), Q,
3036                                       MaxRecurse - 1))
3037         return V;
3038 
3039     // icmp X, (X+Y) -> icmp 0, Y for equalities or if there is no overflow.
3040     if ((C == LHS || D == LHS) && NoRHSWrapProblem)
3041       if (Value *V =
3042               SimplifyICmpInst(Pred, Constant::getNullValue(LHS->getType()),
3043                                C == LHS ? D : C, Q, MaxRecurse - 1))
3044         return V;
3045 
3046     // icmp (X+Y), (X+Z) -> icmp Y,Z for equalities or if there is no overflow.
3047     bool CanSimplify = (NoLHSWrapProblem && NoRHSWrapProblem) ||
3048                        trySimplifyICmpWithAdds(Pred, LHS, RHS);
3049     if (A && C && (A == C || A == D || B == C || B == D) && CanSimplify) {
3050       // Determine Y and Z in the form icmp (X+Y), (X+Z).
3051       Value *Y, *Z;
3052       if (A == C) {
3053         // C + B == C + D  ->  B == D
3054         Y = B;
3055         Z = D;
3056       } else if (A == D) {
3057         // D + B == C + D  ->  B == C
3058         Y = B;
3059         Z = C;
3060       } else if (B == C) {
3061         // A + C == C + D  ->  A == D
3062         Y = A;
3063         Z = D;
3064       } else {
3065         assert(B == D);
3066         // A + D == C + D  ->  A == C
3067         Y = A;
3068         Z = C;
3069       }
3070       if (Value *V = SimplifyICmpInst(Pred, Y, Z, Q, MaxRecurse - 1))
3071         return V;
3072     }
3073   }
3074 
3075   if (LBO)
3076     if (Value *V = simplifyICmpWithBinOpOnLHS(Pred, LBO, RHS, Q, MaxRecurse))
3077       return V;
3078 
3079   if (RBO)
3080     if (Value *V = simplifyICmpWithBinOpOnLHS(
3081             ICmpInst::getSwappedPredicate(Pred), RBO, LHS, Q, MaxRecurse))
3082       return V;
3083 
3084   // 0 - (zext X) pred C
3085   if (!CmpInst::isUnsigned(Pred) && match(LHS, m_Neg(m_ZExt(m_Value())))) {
3086     const APInt *C;
3087     if (match(RHS, m_APInt(C))) {
3088       if (C->isStrictlyPositive()) {
3089         if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_NE)
3090           return ConstantInt::getTrue(GetCompareTy(RHS));
3091         if (Pred == ICmpInst::ICMP_SGE || Pred == ICmpInst::ICMP_EQ)
3092           return ConstantInt::getFalse(GetCompareTy(RHS));
3093       }
3094       if (C->isNonNegative()) {
3095         if (Pred == ICmpInst::ICMP_SLE)
3096           return ConstantInt::getTrue(GetCompareTy(RHS));
3097         if (Pred == ICmpInst::ICMP_SGT)
3098           return ConstantInt::getFalse(GetCompareTy(RHS));
3099       }
3100     }
3101   }
3102 
3103   //   If C2 is a power-of-2 and C is not:
3104   //   (C2 << X) == C --> false
3105   //   (C2 << X) != C --> true
3106   const APInt *C;
3107   if (match(LHS, m_Shl(m_Power2(), m_Value())) &&
3108       match(RHS, m_APIntAllowUndef(C)) && !C->isPowerOf2()) {
3109     // C2 << X can equal zero in some circumstances.
3110     // This simplification might be unsafe if C is zero.
3111     //
3112     // We know it is safe if:
3113     // - The shift is nsw. We can't shift out the one bit.
3114     // - The shift is nuw. We can't shift out the one bit.
3115     // - C2 is one.
3116     // - C isn't zero.
3117     if (Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(LBO)) ||
3118         Q.IIQ.hasNoUnsignedWrap(cast<OverflowingBinaryOperator>(LBO)) ||
3119         match(LHS, m_Shl(m_One(), m_Value())) || !C->isZero()) {
3120       if (Pred == ICmpInst::ICMP_EQ)
3121         return ConstantInt::getFalse(GetCompareTy(RHS));
3122       if (Pred == ICmpInst::ICMP_NE)
3123         return ConstantInt::getTrue(GetCompareTy(RHS));
3124     }
3125   }
3126 
3127   // TODO: This is overly constrained. LHS can be any power-of-2.
3128   // (1 << X)  >u 0x8000 --> false
3129   // (1 << X) <=u 0x8000 --> true
3130   if (match(LHS, m_Shl(m_One(), m_Value())) && match(RHS, m_SignMask())) {
3131     if (Pred == ICmpInst::ICMP_UGT)
3132       return ConstantInt::getFalse(GetCompareTy(RHS));
3133     if (Pred == ICmpInst::ICMP_ULE)
3134       return ConstantInt::getTrue(GetCompareTy(RHS));
3135   }
3136 
3137   if (MaxRecurse && LBO && RBO && LBO->getOpcode() == RBO->getOpcode() &&
3138       LBO->getOperand(1) == RBO->getOperand(1)) {
3139     switch (LBO->getOpcode()) {
3140     default:
3141       break;
3142     case Instruction::UDiv:
3143     case Instruction::LShr:
3144       if (ICmpInst::isSigned(Pred) || !Q.IIQ.isExact(LBO) ||
3145           !Q.IIQ.isExact(RBO))
3146         break;
3147       if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0),
3148                                       RBO->getOperand(0), Q, MaxRecurse - 1))
3149           return V;
3150       break;
3151     case Instruction::SDiv:
3152       if (!ICmpInst::isEquality(Pred) || !Q.IIQ.isExact(LBO) ||
3153           !Q.IIQ.isExact(RBO))
3154         break;
3155       if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0),
3156                                       RBO->getOperand(0), Q, MaxRecurse - 1))
3157         return V;
3158       break;
3159     case Instruction::AShr:
3160       if (!Q.IIQ.isExact(LBO) || !Q.IIQ.isExact(RBO))
3161         break;
3162       if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0),
3163                                       RBO->getOperand(0), Q, MaxRecurse - 1))
3164         return V;
3165       break;
3166     case Instruction::Shl: {
3167       bool NUW = Q.IIQ.hasNoUnsignedWrap(LBO) && Q.IIQ.hasNoUnsignedWrap(RBO);
3168       bool NSW = Q.IIQ.hasNoSignedWrap(LBO) && Q.IIQ.hasNoSignedWrap(RBO);
3169       if (!NUW && !NSW)
3170         break;
3171       if (!NSW && ICmpInst::isSigned(Pred))
3172         break;
3173       if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0),
3174                                       RBO->getOperand(0), Q, MaxRecurse - 1))
3175         return V;
3176       break;
3177     }
3178     }
3179   }
3180   return nullptr;
3181 }
3182 
3183 /// Simplify integer comparisons where at least one operand of the compare
3184 /// matches an integer min/max idiom.
3185 static Value *simplifyICmpWithMinMax(CmpInst::Predicate Pred, Value *LHS,
3186                                      Value *RHS, const SimplifyQuery &Q,
3187                                      unsigned MaxRecurse) {
3188   Type *ITy = GetCompareTy(LHS); // The return type.
3189   Value *A, *B;
3190   CmpInst::Predicate P = CmpInst::BAD_ICMP_PREDICATE;
3191   CmpInst::Predicate EqP; // Chosen so that "A == max/min(A,B)" iff "A EqP B".
3192 
3193   // Signed variants on "max(a,b)>=a -> true".
3194   if (match(LHS, m_SMax(m_Value(A), m_Value(B))) && (A == RHS || B == RHS)) {
3195     if (A != RHS)
3196       std::swap(A, B);       // smax(A, B) pred A.
3197     EqP = CmpInst::ICMP_SGE; // "A == smax(A, B)" iff "A sge B".
3198     // We analyze this as smax(A, B) pred A.
3199     P = Pred;
3200   } else if (match(RHS, m_SMax(m_Value(A), m_Value(B))) &&
3201              (A == LHS || B == LHS)) {
3202     if (A != LHS)
3203       std::swap(A, B);       // A pred smax(A, B).
3204     EqP = CmpInst::ICMP_SGE; // "A == smax(A, B)" iff "A sge B".
3205     // We analyze this as smax(A, B) swapped-pred A.
3206     P = CmpInst::getSwappedPredicate(Pred);
3207   } else if (match(LHS, m_SMin(m_Value(A), m_Value(B))) &&
3208              (A == RHS || B == RHS)) {
3209     if (A != RHS)
3210       std::swap(A, B);       // smin(A, B) pred A.
3211     EqP = CmpInst::ICMP_SLE; // "A == smin(A, B)" iff "A sle B".
3212     // We analyze this as smax(-A, -B) swapped-pred -A.
3213     // Note that we do not need to actually form -A or -B thanks to EqP.
3214     P = CmpInst::getSwappedPredicate(Pred);
3215   } else if (match(RHS, m_SMin(m_Value(A), m_Value(B))) &&
3216              (A == LHS || B == LHS)) {
3217     if (A != LHS)
3218       std::swap(A, B);       // A pred smin(A, B).
3219     EqP = CmpInst::ICMP_SLE; // "A == smin(A, B)" iff "A sle B".
3220     // We analyze this as smax(-A, -B) pred -A.
3221     // Note that we do not need to actually form -A or -B thanks to EqP.
3222     P = Pred;
3223   }
3224   if (P != CmpInst::BAD_ICMP_PREDICATE) {
3225     // Cases correspond to "max(A, B) p A".
3226     switch (P) {
3227     default:
3228       break;
3229     case CmpInst::ICMP_EQ:
3230     case CmpInst::ICMP_SLE:
3231       // Equivalent to "A EqP B".  This may be the same as the condition tested
3232       // in the max/min; if so, we can just return that.
3233       if (Value *V = ExtractEquivalentCondition(LHS, EqP, A, B))
3234         return V;
3235       if (Value *V = ExtractEquivalentCondition(RHS, EqP, A, B))
3236         return V;
3237       // Otherwise, see if "A EqP B" simplifies.
3238       if (MaxRecurse)
3239         if (Value *V = SimplifyICmpInst(EqP, A, B, Q, MaxRecurse - 1))
3240           return V;
3241       break;
3242     case CmpInst::ICMP_NE:
3243     case CmpInst::ICMP_SGT: {
3244       CmpInst::Predicate InvEqP = CmpInst::getInversePredicate(EqP);
3245       // Equivalent to "A InvEqP B".  This may be the same as the condition
3246       // tested in the max/min; if so, we can just return that.
3247       if (Value *V = ExtractEquivalentCondition(LHS, InvEqP, A, B))
3248         return V;
3249       if (Value *V = ExtractEquivalentCondition(RHS, InvEqP, A, B))
3250         return V;
3251       // Otherwise, see if "A InvEqP B" simplifies.
3252       if (MaxRecurse)
3253         if (Value *V = SimplifyICmpInst(InvEqP, A, B, Q, MaxRecurse - 1))
3254           return V;
3255       break;
3256     }
3257     case CmpInst::ICMP_SGE:
3258       // Always true.
3259       return getTrue(ITy);
3260     case CmpInst::ICMP_SLT:
3261       // Always false.
3262       return getFalse(ITy);
3263     }
3264   }
3265 
3266   // Unsigned variants on "max(a,b)>=a -> true".
3267   P = CmpInst::BAD_ICMP_PREDICATE;
3268   if (match(LHS, m_UMax(m_Value(A), m_Value(B))) && (A == RHS || B == RHS)) {
3269     if (A != RHS)
3270       std::swap(A, B);       // umax(A, B) pred A.
3271     EqP = CmpInst::ICMP_UGE; // "A == umax(A, B)" iff "A uge B".
3272     // We analyze this as umax(A, B) pred A.
3273     P = Pred;
3274   } else if (match(RHS, m_UMax(m_Value(A), m_Value(B))) &&
3275              (A == LHS || B == LHS)) {
3276     if (A != LHS)
3277       std::swap(A, B);       // A pred umax(A, B).
3278     EqP = CmpInst::ICMP_UGE; // "A == umax(A, B)" iff "A uge B".
3279     // We analyze this as umax(A, B) swapped-pred A.
3280     P = CmpInst::getSwappedPredicate(Pred);
3281   } else if (match(LHS, m_UMin(m_Value(A), m_Value(B))) &&
3282              (A == RHS || B == RHS)) {
3283     if (A != RHS)
3284       std::swap(A, B);       // umin(A, B) pred A.
3285     EqP = CmpInst::ICMP_ULE; // "A == umin(A, B)" iff "A ule B".
3286     // We analyze this as umax(-A, -B) swapped-pred -A.
3287     // Note that we do not need to actually form -A or -B thanks to EqP.
3288     P = CmpInst::getSwappedPredicate(Pred);
3289   } else if (match(RHS, m_UMin(m_Value(A), m_Value(B))) &&
3290              (A == LHS || B == LHS)) {
3291     if (A != LHS)
3292       std::swap(A, B);       // A pred umin(A, B).
3293     EqP = CmpInst::ICMP_ULE; // "A == umin(A, B)" iff "A ule B".
3294     // We analyze this as umax(-A, -B) pred -A.
3295     // Note that we do not need to actually form -A or -B thanks to EqP.
3296     P = Pred;
3297   }
3298   if (P != CmpInst::BAD_ICMP_PREDICATE) {
3299     // Cases correspond to "max(A, B) p A".
3300     switch (P) {
3301     default:
3302       break;
3303     case CmpInst::ICMP_EQ:
3304     case CmpInst::ICMP_ULE:
3305       // Equivalent to "A EqP B".  This may be the same as the condition tested
3306       // in the max/min; if so, we can just return that.
3307       if (Value *V = ExtractEquivalentCondition(LHS, EqP, A, B))
3308         return V;
3309       if (Value *V = ExtractEquivalentCondition(RHS, EqP, A, B))
3310         return V;
3311       // Otherwise, see if "A EqP B" simplifies.
3312       if (MaxRecurse)
3313         if (Value *V = SimplifyICmpInst(EqP, A, B, Q, MaxRecurse - 1))
3314           return V;
3315       break;
3316     case CmpInst::ICMP_NE:
3317     case CmpInst::ICMP_UGT: {
3318       CmpInst::Predicate InvEqP = CmpInst::getInversePredicate(EqP);
3319       // Equivalent to "A InvEqP B".  This may be the same as the condition
3320       // tested in the max/min; if so, we can just return that.
3321       if (Value *V = ExtractEquivalentCondition(LHS, InvEqP, A, B))
3322         return V;
3323       if (Value *V = ExtractEquivalentCondition(RHS, InvEqP, A, B))
3324         return V;
3325       // Otherwise, see if "A InvEqP B" simplifies.
3326       if (MaxRecurse)
3327         if (Value *V = SimplifyICmpInst(InvEqP, A, B, Q, MaxRecurse - 1))
3328           return V;
3329       break;
3330     }
3331     case CmpInst::ICMP_UGE:
3332       return getTrue(ITy);
3333     case CmpInst::ICMP_ULT:
3334       return getFalse(ITy);
3335     }
3336   }
3337 
3338   // Comparing 1 each of min/max with a common operand?
3339   // Canonicalize min operand to RHS.
3340   if (match(LHS, m_UMin(m_Value(), m_Value())) ||
3341       match(LHS, m_SMin(m_Value(), m_Value()))) {
3342     std::swap(LHS, RHS);
3343     Pred = ICmpInst::getSwappedPredicate(Pred);
3344   }
3345 
3346   Value *C, *D;
3347   if (match(LHS, m_SMax(m_Value(A), m_Value(B))) &&
3348       match(RHS, m_SMin(m_Value(C), m_Value(D))) &&
3349       (A == C || A == D || B == C || B == D)) {
3350     // smax(A, B) >=s smin(A, D) --> true
3351     if (Pred == CmpInst::ICMP_SGE)
3352       return getTrue(ITy);
3353     // smax(A, B) <s smin(A, D) --> false
3354     if (Pred == CmpInst::ICMP_SLT)
3355       return getFalse(ITy);
3356   } else if (match(LHS, m_UMax(m_Value(A), m_Value(B))) &&
3357              match(RHS, m_UMin(m_Value(C), m_Value(D))) &&
3358              (A == C || A == D || B == C || B == D)) {
3359     // umax(A, B) >=u umin(A, D) --> true
3360     if (Pred == CmpInst::ICMP_UGE)
3361       return getTrue(ITy);
3362     // umax(A, B) <u umin(A, D) --> false
3363     if (Pred == CmpInst::ICMP_ULT)
3364       return getFalse(ITy);
3365   }
3366 
3367   return nullptr;
3368 }
3369 
3370 static Value *simplifyICmpWithDominatingAssume(CmpInst::Predicate Predicate,
3371                                                Value *LHS, Value *RHS,
3372                                                const SimplifyQuery &Q) {
3373   // Gracefully handle instructions that have not been inserted yet.
3374   if (!Q.AC || !Q.CxtI || !Q.CxtI->getParent())
3375     return nullptr;
3376 
3377   for (Value *AssumeBaseOp : {LHS, RHS}) {
3378     for (auto &AssumeVH : Q.AC->assumptionsFor(AssumeBaseOp)) {
3379       if (!AssumeVH)
3380         continue;
3381 
3382       CallInst *Assume = cast<CallInst>(AssumeVH);
3383       if (Optional<bool> Imp =
3384               isImpliedCondition(Assume->getArgOperand(0), Predicate, LHS, RHS,
3385                                  Q.DL))
3386         if (isValidAssumeForContext(Assume, Q.CxtI, Q.DT))
3387           return ConstantInt::get(GetCompareTy(LHS), *Imp);
3388     }
3389   }
3390 
3391   return nullptr;
3392 }
3393 
3394 /// Given operands for an ICmpInst, see if we can fold the result.
3395 /// If not, this returns null.
3396 static Value *SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS,
3397                                const SimplifyQuery &Q, unsigned MaxRecurse) {
3398   CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate;
3399   assert(CmpInst::isIntPredicate(Pred) && "Not an integer compare!");
3400 
3401   if (Constant *CLHS = dyn_cast<Constant>(LHS)) {
3402     if (Constant *CRHS = dyn_cast<Constant>(RHS))
3403       return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, Q.DL, Q.TLI);
3404 
3405     // If we have a constant, make sure it is on the RHS.
3406     std::swap(LHS, RHS);
3407     Pred = CmpInst::getSwappedPredicate(Pred);
3408   }
3409   assert(!isa<UndefValue>(LHS) && "Unexpected icmp undef,%X");
3410 
3411   Type *ITy = GetCompareTy(LHS); // The return type.
3412 
3413   // icmp poison, X -> poison
3414   if (isa<PoisonValue>(RHS))
3415     return PoisonValue::get(ITy);
3416 
3417   // For EQ and NE, we can always pick a value for the undef to make the
3418   // predicate pass or fail, so we can return undef.
3419   // Matches behavior in llvm::ConstantFoldCompareInstruction.
3420   if (Q.isUndefValue(RHS) && ICmpInst::isEquality(Pred))
3421     return UndefValue::get(ITy);
3422 
3423   // icmp X, X -> true/false
3424   // icmp X, undef -> true/false because undef could be X.
3425   if (LHS == RHS || Q.isUndefValue(RHS))
3426     return ConstantInt::get(ITy, CmpInst::isTrueWhenEqual(Pred));
3427 
3428   if (Value *V = simplifyICmpOfBools(Pred, LHS, RHS, Q))
3429     return V;
3430 
3431   // TODO: Sink/common this with other potentially expensive calls that use
3432   //       ValueTracking? See comment below for isKnownNonEqual().
3433   if (Value *V = simplifyICmpWithZero(Pred, LHS, RHS, Q))
3434     return V;
3435 
3436   if (Value *V = simplifyICmpWithConstant(Pred, LHS, RHS, Q.IIQ))
3437     return V;
3438 
3439   // If both operands have range metadata, use the metadata
3440   // to simplify the comparison.
3441   if (isa<Instruction>(RHS) && isa<Instruction>(LHS)) {
3442     auto RHS_Instr = cast<Instruction>(RHS);
3443     auto LHS_Instr = cast<Instruction>(LHS);
3444 
3445     if (Q.IIQ.getMetadata(RHS_Instr, LLVMContext::MD_range) &&
3446         Q.IIQ.getMetadata(LHS_Instr, LLVMContext::MD_range)) {
3447       auto RHS_CR = getConstantRangeFromMetadata(
3448           *RHS_Instr->getMetadata(LLVMContext::MD_range));
3449       auto LHS_CR = getConstantRangeFromMetadata(
3450           *LHS_Instr->getMetadata(LLVMContext::MD_range));
3451 
3452       if (LHS_CR.icmp(Pred, RHS_CR))
3453         return ConstantInt::getTrue(RHS->getContext());
3454 
3455       if (LHS_CR.icmp(CmpInst::getInversePredicate(Pred), RHS_CR))
3456         return ConstantInt::getFalse(RHS->getContext());
3457     }
3458   }
3459 
3460   // Compare of cast, for example (zext X) != 0 -> X != 0
3461   if (isa<CastInst>(LHS) && (isa<Constant>(RHS) || isa<CastInst>(RHS))) {
3462     Instruction *LI = cast<CastInst>(LHS);
3463     Value *SrcOp = LI->getOperand(0);
3464     Type *SrcTy = SrcOp->getType();
3465     Type *DstTy = LI->getType();
3466 
3467     // Turn icmp (ptrtoint x), (ptrtoint/constant) into a compare of the input
3468     // if the integer type is the same size as the pointer type.
3469     if (MaxRecurse && isa<PtrToIntInst>(LI) &&
3470         Q.DL.getTypeSizeInBits(SrcTy) == DstTy->getPrimitiveSizeInBits()) {
3471       if (Constant *RHSC = dyn_cast<Constant>(RHS)) {
3472         // Transfer the cast to the constant.
3473         if (Value *V = SimplifyICmpInst(Pred, SrcOp,
3474                                         ConstantExpr::getIntToPtr(RHSC, SrcTy),
3475                                         Q, MaxRecurse-1))
3476           return V;
3477       } else if (PtrToIntInst *RI = dyn_cast<PtrToIntInst>(RHS)) {
3478         if (RI->getOperand(0)->getType() == SrcTy)
3479           // Compare without the cast.
3480           if (Value *V = SimplifyICmpInst(Pred, SrcOp, RI->getOperand(0),
3481                                           Q, MaxRecurse-1))
3482             return V;
3483       }
3484     }
3485 
3486     if (isa<ZExtInst>(LHS)) {
3487       // Turn icmp (zext X), (zext Y) into a compare of X and Y if they have the
3488       // same type.
3489       if (ZExtInst *RI = dyn_cast<ZExtInst>(RHS)) {
3490         if (MaxRecurse && SrcTy == RI->getOperand(0)->getType())
3491           // Compare X and Y.  Note that signed predicates become unsigned.
3492           if (Value *V = SimplifyICmpInst(ICmpInst::getUnsignedPredicate(Pred),
3493                                           SrcOp, RI->getOperand(0), Q,
3494                                           MaxRecurse-1))
3495             return V;
3496       }
3497       // Fold (zext X) ule (sext X), (zext X) sge (sext X) to true.
3498       else if (SExtInst *RI = dyn_cast<SExtInst>(RHS)) {
3499         if (SrcOp == RI->getOperand(0)) {
3500           if (Pred == ICmpInst::ICMP_ULE || Pred == ICmpInst::ICMP_SGE)
3501             return ConstantInt::getTrue(ITy);
3502           if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_SLT)
3503             return ConstantInt::getFalse(ITy);
3504         }
3505       }
3506       // Turn icmp (zext X), Cst into a compare of X and Cst if Cst is extended
3507       // too.  If not, then try to deduce the result of the comparison.
3508       else if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
3509         // Compute the constant that would happen if we truncated to SrcTy then
3510         // reextended to DstTy.
3511         Constant *Trunc = ConstantExpr::getTrunc(CI, SrcTy);
3512         Constant *RExt = ConstantExpr::getCast(CastInst::ZExt, Trunc, DstTy);
3513 
3514         // If the re-extended constant didn't change then this is effectively
3515         // also a case of comparing two zero-extended values.
3516         if (RExt == CI && MaxRecurse)
3517           if (Value *V = SimplifyICmpInst(ICmpInst::getUnsignedPredicate(Pred),
3518                                         SrcOp, Trunc, Q, MaxRecurse-1))
3519             return V;
3520 
3521         // Otherwise the upper bits of LHS are zero while RHS has a non-zero bit
3522         // there.  Use this to work out the result of the comparison.
3523         if (RExt != CI) {
3524           switch (Pred) {
3525           default: llvm_unreachable("Unknown ICmp predicate!");
3526           // LHS <u RHS.
3527           case ICmpInst::ICMP_EQ:
3528           case ICmpInst::ICMP_UGT:
3529           case ICmpInst::ICMP_UGE:
3530             return ConstantInt::getFalse(CI->getContext());
3531 
3532           case ICmpInst::ICMP_NE:
3533           case ICmpInst::ICMP_ULT:
3534           case ICmpInst::ICMP_ULE:
3535             return ConstantInt::getTrue(CI->getContext());
3536 
3537           // LHS is non-negative.  If RHS is negative then LHS >s LHS.  If RHS
3538           // is non-negative then LHS <s RHS.
3539           case ICmpInst::ICMP_SGT:
3540           case ICmpInst::ICMP_SGE:
3541             return CI->getValue().isNegative() ?
3542               ConstantInt::getTrue(CI->getContext()) :
3543               ConstantInt::getFalse(CI->getContext());
3544 
3545           case ICmpInst::ICMP_SLT:
3546           case ICmpInst::ICMP_SLE:
3547             return CI->getValue().isNegative() ?
3548               ConstantInt::getFalse(CI->getContext()) :
3549               ConstantInt::getTrue(CI->getContext());
3550           }
3551         }
3552       }
3553     }
3554 
3555     if (isa<SExtInst>(LHS)) {
3556       // Turn icmp (sext X), (sext Y) into a compare of X and Y if they have the
3557       // same type.
3558       if (SExtInst *RI = dyn_cast<SExtInst>(RHS)) {
3559         if (MaxRecurse && SrcTy == RI->getOperand(0)->getType())
3560           // Compare X and Y.  Note that the predicate does not change.
3561           if (Value *V = SimplifyICmpInst(Pred, SrcOp, RI->getOperand(0),
3562                                           Q, MaxRecurse-1))
3563             return V;
3564       }
3565       // Fold (sext X) uge (zext X), (sext X) sle (zext X) to true.
3566       else if (ZExtInst *RI = dyn_cast<ZExtInst>(RHS)) {
3567         if (SrcOp == RI->getOperand(0)) {
3568           if (Pred == ICmpInst::ICMP_UGE || Pred == ICmpInst::ICMP_SLE)
3569             return ConstantInt::getTrue(ITy);
3570           if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_SGT)
3571             return ConstantInt::getFalse(ITy);
3572         }
3573       }
3574       // Turn icmp (sext X), Cst into a compare of X and Cst if Cst is extended
3575       // too.  If not, then try to deduce the result of the comparison.
3576       else if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
3577         // Compute the constant that would happen if we truncated to SrcTy then
3578         // reextended to DstTy.
3579         Constant *Trunc = ConstantExpr::getTrunc(CI, SrcTy);
3580         Constant *RExt = ConstantExpr::getCast(CastInst::SExt, Trunc, DstTy);
3581 
3582         // If the re-extended constant didn't change then this is effectively
3583         // also a case of comparing two sign-extended values.
3584         if (RExt == CI && MaxRecurse)
3585           if (Value *V = SimplifyICmpInst(Pred, SrcOp, Trunc, Q, MaxRecurse-1))
3586             return V;
3587 
3588         // Otherwise the upper bits of LHS are all equal, while RHS has varying
3589         // bits there.  Use this to work out the result of the comparison.
3590         if (RExt != CI) {
3591           switch (Pred) {
3592           default: llvm_unreachable("Unknown ICmp predicate!");
3593           case ICmpInst::ICMP_EQ:
3594             return ConstantInt::getFalse(CI->getContext());
3595           case ICmpInst::ICMP_NE:
3596             return ConstantInt::getTrue(CI->getContext());
3597 
3598           // If RHS is non-negative then LHS <s RHS.  If RHS is negative then
3599           // LHS >s RHS.
3600           case ICmpInst::ICMP_SGT:
3601           case ICmpInst::ICMP_SGE:
3602             return CI->getValue().isNegative() ?
3603               ConstantInt::getTrue(CI->getContext()) :
3604               ConstantInt::getFalse(CI->getContext());
3605           case ICmpInst::ICMP_SLT:
3606           case ICmpInst::ICMP_SLE:
3607             return CI->getValue().isNegative() ?
3608               ConstantInt::getFalse(CI->getContext()) :
3609               ConstantInt::getTrue(CI->getContext());
3610 
3611           // If LHS is non-negative then LHS <u RHS.  If LHS is negative then
3612           // LHS >u RHS.
3613           case ICmpInst::ICMP_UGT:
3614           case ICmpInst::ICMP_UGE:
3615             // Comparison is true iff the LHS <s 0.
3616             if (MaxRecurse)
3617               if (Value *V = SimplifyICmpInst(ICmpInst::ICMP_SLT, SrcOp,
3618                                               Constant::getNullValue(SrcTy),
3619                                               Q, MaxRecurse-1))
3620                 return V;
3621             break;
3622           case ICmpInst::ICMP_ULT:
3623           case ICmpInst::ICMP_ULE:
3624             // Comparison is true iff the LHS >=s 0.
3625             if (MaxRecurse)
3626               if (Value *V = SimplifyICmpInst(ICmpInst::ICMP_SGE, SrcOp,
3627                                               Constant::getNullValue(SrcTy),
3628                                               Q, MaxRecurse-1))
3629                 return V;
3630             break;
3631           }
3632         }
3633       }
3634     }
3635   }
3636 
3637   // icmp eq|ne X, Y -> false|true if X != Y
3638   // This is potentially expensive, and we have already computedKnownBits for
3639   // compares with 0 above here, so only try this for a non-zero compare.
3640   if (ICmpInst::isEquality(Pred) && !match(RHS, m_Zero()) &&
3641       isKnownNonEqual(LHS, RHS, Q.DL, Q.AC, Q.CxtI, Q.DT, Q.IIQ.UseInstrInfo)) {
3642     return Pred == ICmpInst::ICMP_NE ? getTrue(ITy) : getFalse(ITy);
3643   }
3644 
3645   if (Value *V = simplifyICmpWithBinOp(Pred, LHS, RHS, Q, MaxRecurse))
3646     return V;
3647 
3648   if (Value *V = simplifyICmpWithMinMax(Pred, LHS, RHS, Q, MaxRecurse))
3649     return V;
3650 
3651   if (Value *V = simplifyICmpWithDominatingAssume(Pred, LHS, RHS, Q))
3652     return V;
3653 
3654   // Simplify comparisons of related pointers using a powerful, recursive
3655   // GEP-walk when we have target data available..
3656   if (LHS->getType()->isPointerTy())
3657     if (auto *C = computePointerICmp(Pred, LHS, RHS, Q))
3658       return C;
3659   if (auto *CLHS = dyn_cast<PtrToIntOperator>(LHS))
3660     if (auto *CRHS = dyn_cast<PtrToIntOperator>(RHS))
3661       if (Q.DL.getTypeSizeInBits(CLHS->getPointerOperandType()) ==
3662               Q.DL.getTypeSizeInBits(CLHS->getType()) &&
3663           Q.DL.getTypeSizeInBits(CRHS->getPointerOperandType()) ==
3664               Q.DL.getTypeSizeInBits(CRHS->getType()))
3665         if (auto *C = computePointerICmp(Pred, CLHS->getPointerOperand(),
3666                                          CRHS->getPointerOperand(), Q))
3667           return C;
3668 
3669   if (GetElementPtrInst *GLHS = dyn_cast<GetElementPtrInst>(LHS)) {
3670     if (GEPOperator *GRHS = dyn_cast<GEPOperator>(RHS)) {
3671       if (GLHS->getPointerOperand() == GRHS->getPointerOperand() &&
3672           GLHS->hasAllConstantIndices() && GRHS->hasAllConstantIndices() &&
3673           (ICmpInst::isEquality(Pred) ||
3674            (GLHS->isInBounds() && GRHS->isInBounds() &&
3675             Pred == ICmpInst::getSignedPredicate(Pred)))) {
3676         // The bases are equal and the indices are constant.  Build a constant
3677         // expression GEP with the same indices and a null base pointer to see
3678         // what constant folding can make out of it.
3679         Constant *Null = Constant::getNullValue(GLHS->getPointerOperandType());
3680         SmallVector<Value *, 4> IndicesLHS(GLHS->indices());
3681         Constant *NewLHS = ConstantExpr::getGetElementPtr(
3682             GLHS->getSourceElementType(), Null, IndicesLHS);
3683 
3684         SmallVector<Value *, 4> IndicesRHS(GRHS->indices());
3685         Constant *NewRHS = ConstantExpr::getGetElementPtr(
3686             GLHS->getSourceElementType(), Null, IndicesRHS);
3687         Constant *NewICmp = ConstantExpr::getICmp(Pred, NewLHS, NewRHS);
3688         return ConstantFoldConstant(NewICmp, Q.DL);
3689       }
3690     }
3691   }
3692 
3693   // If the comparison is with the result of a select instruction, check whether
3694   // comparing with either branch of the select always yields the same value.
3695   if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS))
3696     if (Value *V = ThreadCmpOverSelect(Pred, LHS, RHS, Q, MaxRecurse))
3697       return V;
3698 
3699   // If the comparison is with the result of a phi instruction, check whether
3700   // doing the compare with each incoming phi value yields a common result.
3701   if (isa<PHINode>(LHS) || isa<PHINode>(RHS))
3702     if (Value *V = ThreadCmpOverPHI(Pred, LHS, RHS, Q, MaxRecurse))
3703       return V;
3704 
3705   return nullptr;
3706 }
3707 
3708 Value *llvm::SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS,
3709                               const SimplifyQuery &Q) {
3710   return ::SimplifyICmpInst(Predicate, LHS, RHS, Q, RecursionLimit);
3711 }
3712 
3713 /// Given operands for an FCmpInst, see if we can fold the result.
3714 /// If not, this returns null.
3715 static Value *SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
3716                                FastMathFlags FMF, const SimplifyQuery &Q,
3717                                unsigned MaxRecurse) {
3718   CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate;
3719   assert(CmpInst::isFPPredicate(Pred) && "Not an FP compare!");
3720 
3721   if (Constant *CLHS = dyn_cast<Constant>(LHS)) {
3722     if (Constant *CRHS = dyn_cast<Constant>(RHS))
3723       return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, Q.DL, Q.TLI);
3724 
3725     // If we have a constant, make sure it is on the RHS.
3726     std::swap(LHS, RHS);
3727     Pred = CmpInst::getSwappedPredicate(Pred);
3728   }
3729 
3730   // Fold trivial predicates.
3731   Type *RetTy = GetCompareTy(LHS);
3732   if (Pred == FCmpInst::FCMP_FALSE)
3733     return getFalse(RetTy);
3734   if (Pred == FCmpInst::FCMP_TRUE)
3735     return getTrue(RetTy);
3736 
3737   // Fold (un)ordered comparison if we can determine there are no NaNs.
3738   if (Pred == FCmpInst::FCMP_UNO || Pred == FCmpInst::FCMP_ORD)
3739     if (FMF.noNaNs() ||
3740         (isKnownNeverNaN(LHS, Q.TLI) && isKnownNeverNaN(RHS, Q.TLI)))
3741       return ConstantInt::get(RetTy, Pred == FCmpInst::FCMP_ORD);
3742 
3743   // NaN is unordered; NaN is not ordered.
3744   assert((FCmpInst::isOrdered(Pred) || FCmpInst::isUnordered(Pred)) &&
3745          "Comparison must be either ordered or unordered");
3746   if (match(RHS, m_NaN()))
3747     return ConstantInt::get(RetTy, CmpInst::isUnordered(Pred));
3748 
3749   // fcmp pred x, poison and  fcmp pred poison, x
3750   // fold to poison
3751   if (isa<PoisonValue>(LHS) || isa<PoisonValue>(RHS))
3752     return PoisonValue::get(RetTy);
3753 
3754   // fcmp pred x, undef  and  fcmp pred undef, x
3755   // fold to true if unordered, false if ordered
3756   if (Q.isUndefValue(LHS) || Q.isUndefValue(RHS)) {
3757     // Choosing NaN for the undef will always make unordered comparison succeed
3758     // and ordered comparison fail.
3759     return ConstantInt::get(RetTy, CmpInst::isUnordered(Pred));
3760   }
3761 
3762   // fcmp x,x -> true/false.  Not all compares are foldable.
3763   if (LHS == RHS) {
3764     if (CmpInst::isTrueWhenEqual(Pred))
3765       return getTrue(RetTy);
3766     if (CmpInst::isFalseWhenEqual(Pred))
3767       return getFalse(RetTy);
3768   }
3769 
3770   // Handle fcmp with constant RHS.
3771   // TODO: Use match with a specific FP value, so these work with vectors with
3772   // undef lanes.
3773   const APFloat *C;
3774   if (match(RHS, m_APFloat(C))) {
3775     // Check whether the constant is an infinity.
3776     if (C->isInfinity()) {
3777       if (C->isNegative()) {
3778         switch (Pred) {
3779         case FCmpInst::FCMP_OLT:
3780           // No value is ordered and less than negative infinity.
3781           return getFalse(RetTy);
3782         case FCmpInst::FCMP_UGE:
3783           // All values are unordered with or at least negative infinity.
3784           return getTrue(RetTy);
3785         default:
3786           break;
3787         }
3788       } else {
3789         switch (Pred) {
3790         case FCmpInst::FCMP_OGT:
3791           // No value is ordered and greater than infinity.
3792           return getFalse(RetTy);
3793         case FCmpInst::FCMP_ULE:
3794           // All values are unordered with and at most infinity.
3795           return getTrue(RetTy);
3796         default:
3797           break;
3798         }
3799       }
3800 
3801       // LHS == Inf
3802       if (Pred == FCmpInst::FCMP_OEQ && isKnownNeverInfinity(LHS, Q.TLI))
3803         return getFalse(RetTy);
3804       // LHS != Inf
3805       if (Pred == FCmpInst::FCMP_UNE && isKnownNeverInfinity(LHS, Q.TLI))
3806         return getTrue(RetTy);
3807       // LHS == Inf || LHS == NaN
3808       if (Pred == FCmpInst::FCMP_UEQ && isKnownNeverInfinity(LHS, Q.TLI) &&
3809           isKnownNeverNaN(LHS, Q.TLI))
3810         return getFalse(RetTy);
3811       // LHS != Inf && LHS != NaN
3812       if (Pred == FCmpInst::FCMP_ONE && isKnownNeverInfinity(LHS, Q.TLI) &&
3813           isKnownNeverNaN(LHS, Q.TLI))
3814         return getTrue(RetTy);
3815     }
3816     if (C->isNegative() && !C->isNegZero()) {
3817       assert(!C->isNaN() && "Unexpected NaN constant!");
3818       // TODO: We can catch more cases by using a range check rather than
3819       //       relying on CannotBeOrderedLessThanZero.
3820       switch (Pred) {
3821       case FCmpInst::FCMP_UGE:
3822       case FCmpInst::FCMP_UGT:
3823       case FCmpInst::FCMP_UNE:
3824         // (X >= 0) implies (X > C) when (C < 0)
3825         if (CannotBeOrderedLessThanZero(LHS, Q.TLI))
3826           return getTrue(RetTy);
3827         break;
3828       case FCmpInst::FCMP_OEQ:
3829       case FCmpInst::FCMP_OLE:
3830       case FCmpInst::FCMP_OLT:
3831         // (X >= 0) implies !(X < C) when (C < 0)
3832         if (CannotBeOrderedLessThanZero(LHS, Q.TLI))
3833           return getFalse(RetTy);
3834         break;
3835       default:
3836         break;
3837       }
3838     }
3839 
3840     // Check comparison of [minnum/maxnum with constant] with other constant.
3841     const APFloat *C2;
3842     if ((match(LHS, m_Intrinsic<Intrinsic::minnum>(m_Value(), m_APFloat(C2))) &&
3843          *C2 < *C) ||
3844         (match(LHS, m_Intrinsic<Intrinsic::maxnum>(m_Value(), m_APFloat(C2))) &&
3845          *C2 > *C)) {
3846       bool IsMaxNum =
3847           cast<IntrinsicInst>(LHS)->getIntrinsicID() == Intrinsic::maxnum;
3848       // The ordered relationship and minnum/maxnum guarantee that we do not
3849       // have NaN constants, so ordered/unordered preds are handled the same.
3850       switch (Pred) {
3851       case FCmpInst::FCMP_OEQ: case FCmpInst::FCMP_UEQ:
3852         // minnum(X, LesserC)  == C --> false
3853         // maxnum(X, GreaterC) == C --> false
3854         return getFalse(RetTy);
3855       case FCmpInst::FCMP_ONE: case FCmpInst::FCMP_UNE:
3856         // minnum(X, LesserC)  != C --> true
3857         // maxnum(X, GreaterC) != C --> true
3858         return getTrue(RetTy);
3859       case FCmpInst::FCMP_OGE: case FCmpInst::FCMP_UGE:
3860       case FCmpInst::FCMP_OGT: case FCmpInst::FCMP_UGT:
3861         // minnum(X, LesserC)  >= C --> false
3862         // minnum(X, LesserC)  >  C --> false
3863         // maxnum(X, GreaterC) >= C --> true
3864         // maxnum(X, GreaterC) >  C --> true
3865         return ConstantInt::get(RetTy, IsMaxNum);
3866       case FCmpInst::FCMP_OLE: case FCmpInst::FCMP_ULE:
3867       case FCmpInst::FCMP_OLT: case FCmpInst::FCMP_ULT:
3868         // minnum(X, LesserC)  <= C --> true
3869         // minnum(X, LesserC)  <  C --> true
3870         // maxnum(X, GreaterC) <= C --> false
3871         // maxnum(X, GreaterC) <  C --> false
3872         return ConstantInt::get(RetTy, !IsMaxNum);
3873       default:
3874         // TRUE/FALSE/ORD/UNO should be handled before this.
3875         llvm_unreachable("Unexpected fcmp predicate");
3876       }
3877     }
3878   }
3879 
3880   if (match(RHS, m_AnyZeroFP())) {
3881     switch (Pred) {
3882     case FCmpInst::FCMP_OGE:
3883     case FCmpInst::FCMP_ULT:
3884       // Positive or zero X >= 0.0 --> true
3885       // Positive or zero X <  0.0 --> false
3886       if ((FMF.noNaNs() || isKnownNeverNaN(LHS, Q.TLI)) &&
3887           CannotBeOrderedLessThanZero(LHS, Q.TLI))
3888         return Pred == FCmpInst::FCMP_OGE ? getTrue(RetTy) : getFalse(RetTy);
3889       break;
3890     case FCmpInst::FCMP_UGE:
3891     case FCmpInst::FCMP_OLT:
3892       // Positive or zero or nan X >= 0.0 --> true
3893       // Positive or zero or nan X <  0.0 --> false
3894       if (CannotBeOrderedLessThanZero(LHS, Q.TLI))
3895         return Pred == FCmpInst::FCMP_UGE ? getTrue(RetTy) : getFalse(RetTy);
3896       break;
3897     default:
3898       break;
3899     }
3900   }
3901 
3902   // If the comparison is with the result of a select instruction, check whether
3903   // comparing with either branch of the select always yields the same value.
3904   if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS))
3905     if (Value *V = ThreadCmpOverSelect(Pred, LHS, RHS, Q, MaxRecurse))
3906       return V;
3907 
3908   // If the comparison is with the result of a phi instruction, check whether
3909   // doing the compare with each incoming phi value yields a common result.
3910   if (isa<PHINode>(LHS) || isa<PHINode>(RHS))
3911     if (Value *V = ThreadCmpOverPHI(Pred, LHS, RHS, Q, MaxRecurse))
3912       return V;
3913 
3914   return nullptr;
3915 }
3916 
3917 Value *llvm::SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
3918                               FastMathFlags FMF, const SimplifyQuery &Q) {
3919   return ::SimplifyFCmpInst(Predicate, LHS, RHS, FMF, Q, RecursionLimit);
3920 }
3921 
3922 static Value *simplifyWithOpReplaced(Value *V, Value *Op, Value *RepOp,
3923                                      const SimplifyQuery &Q,
3924                                      bool AllowRefinement,
3925                                      unsigned MaxRecurse) {
3926   assert(!Op->getType()->isVectorTy() && "This is not safe for vectors");
3927 
3928   // Trivial replacement.
3929   if (V == Op)
3930     return RepOp;
3931 
3932   // We cannot replace a constant, and shouldn't even try.
3933   if (isa<Constant>(Op))
3934     return nullptr;
3935 
3936   auto *I = dyn_cast<Instruction>(V);
3937   if (!I || !is_contained(I->operands(), Op))
3938     return nullptr;
3939 
3940   // Replace Op with RepOp in instruction operands.
3941   SmallVector<Value *, 8> NewOps(I->getNumOperands());
3942   transform(I->operands(), NewOps.begin(),
3943             [&](Value *V) { return V == Op ? RepOp : V; });
3944 
3945   if (!AllowRefinement) {
3946     // General InstSimplify functions may refine the result, e.g. by returning
3947     // a constant for a potentially poison value. To avoid this, implement only
3948     // a few non-refining but profitable transforms here.
3949 
3950     if (auto *BO = dyn_cast<BinaryOperator>(I)) {
3951       unsigned Opcode = BO->getOpcode();
3952       // id op x -> x, x op id -> x
3953       if (NewOps[0] == ConstantExpr::getBinOpIdentity(Opcode, I->getType()))
3954         return NewOps[1];
3955       if (NewOps[1] == ConstantExpr::getBinOpIdentity(Opcode, I->getType(),
3956                                                       /* RHS */ true))
3957         return NewOps[0];
3958 
3959       // x & x -> x, x | x -> x
3960       if ((Opcode == Instruction::And || Opcode == Instruction::Or) &&
3961           NewOps[0] == NewOps[1])
3962         return NewOps[0];
3963     }
3964 
3965     if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) {
3966       // getelementptr x, 0 -> x
3967       if (NewOps.size() == 2 && match(NewOps[1], m_Zero()) &&
3968           !GEP->isInBounds())
3969         return NewOps[0];
3970     }
3971   } else if (MaxRecurse) {
3972     // The simplification queries below may return the original value. Consider:
3973     //   %div = udiv i32 %arg, %arg2
3974     //   %mul = mul nsw i32 %div, %arg2
3975     //   %cmp = icmp eq i32 %mul, %arg
3976     //   %sel = select i1 %cmp, i32 %div, i32 undef
3977     // Replacing %arg by %mul, %div becomes "udiv i32 %mul, %arg2", which
3978     // simplifies back to %arg. This can only happen because %mul does not
3979     // dominate %div. To ensure a consistent return value contract, we make sure
3980     // that this case returns nullptr as well.
3981     auto PreventSelfSimplify = [V](Value *Simplified) {
3982       return Simplified != V ? Simplified : nullptr;
3983     };
3984 
3985     if (auto *B = dyn_cast<BinaryOperator>(I))
3986       return PreventSelfSimplify(SimplifyBinOp(B->getOpcode(), NewOps[0],
3987                                                NewOps[1], Q, MaxRecurse - 1));
3988 
3989     if (CmpInst *C = dyn_cast<CmpInst>(I))
3990       return PreventSelfSimplify(SimplifyCmpInst(C->getPredicate(), NewOps[0],
3991                                                  NewOps[1], Q, MaxRecurse - 1));
3992 
3993     if (auto *GEP = dyn_cast<GetElementPtrInst>(I))
3994       return PreventSelfSimplify(SimplifyGEPInst(GEP->getSourceElementType(),
3995                                                  NewOps, GEP->isInBounds(), Q,
3996                                                  MaxRecurse - 1));
3997 
3998     if (isa<SelectInst>(I))
3999       return PreventSelfSimplify(
4000           SimplifySelectInst(NewOps[0], NewOps[1], NewOps[2], Q,
4001                              MaxRecurse - 1));
4002     // TODO: We could hand off more cases to instsimplify here.
4003   }
4004 
4005   // If all operands are constant after substituting Op for RepOp then we can
4006   // constant fold the instruction.
4007   SmallVector<Constant *, 8> ConstOps;
4008   for (Value *NewOp : NewOps) {
4009     if (Constant *ConstOp = dyn_cast<Constant>(NewOp))
4010       ConstOps.push_back(ConstOp);
4011     else
4012       return nullptr;
4013   }
4014 
4015   // Consider:
4016   //   %cmp = icmp eq i32 %x, 2147483647
4017   //   %add = add nsw i32 %x, 1
4018   //   %sel = select i1 %cmp, i32 -2147483648, i32 %add
4019   //
4020   // We can't replace %sel with %add unless we strip away the flags (which
4021   // will be done in InstCombine).
4022   // TODO: This may be unsound, because it only catches some forms of
4023   // refinement.
4024   if (!AllowRefinement && canCreatePoison(cast<Operator>(I)))
4025     return nullptr;
4026 
4027   if (CmpInst *C = dyn_cast<CmpInst>(I))
4028     return ConstantFoldCompareInstOperands(C->getPredicate(), ConstOps[0],
4029                                            ConstOps[1], Q.DL, Q.TLI);
4030 
4031   if (LoadInst *LI = dyn_cast<LoadInst>(I))
4032     if (!LI->isVolatile())
4033       return ConstantFoldLoadFromConstPtr(ConstOps[0], LI->getType(), Q.DL);
4034 
4035   return ConstantFoldInstOperands(I, ConstOps, Q.DL, Q.TLI);
4036 }
4037 
4038 Value *llvm::simplifyWithOpReplaced(Value *V, Value *Op, Value *RepOp,
4039                                     const SimplifyQuery &Q,
4040                                     bool AllowRefinement) {
4041   return ::simplifyWithOpReplaced(V, Op, RepOp, Q, AllowRefinement,
4042                                   RecursionLimit);
4043 }
4044 
4045 /// Try to simplify a select instruction when its condition operand is an
4046 /// integer comparison where one operand of the compare is a constant.
4047 static Value *simplifySelectBitTest(Value *TrueVal, Value *FalseVal, Value *X,
4048                                     const APInt *Y, bool TrueWhenUnset) {
4049   const APInt *C;
4050 
4051   // (X & Y) == 0 ? X & ~Y : X  --> X
4052   // (X & Y) != 0 ? X & ~Y : X  --> X & ~Y
4053   if (FalseVal == X && match(TrueVal, m_And(m_Specific(X), m_APInt(C))) &&
4054       *Y == ~*C)
4055     return TrueWhenUnset ? FalseVal : TrueVal;
4056 
4057   // (X & Y) == 0 ? X : X & ~Y  --> X & ~Y
4058   // (X & Y) != 0 ? X : X & ~Y  --> X
4059   if (TrueVal == X && match(FalseVal, m_And(m_Specific(X), m_APInt(C))) &&
4060       *Y == ~*C)
4061     return TrueWhenUnset ? FalseVal : TrueVal;
4062 
4063   if (Y->isPowerOf2()) {
4064     // (X & Y) == 0 ? X | Y : X  --> X | Y
4065     // (X & Y) != 0 ? X | Y : X  --> X
4066     if (FalseVal == X && match(TrueVal, m_Or(m_Specific(X), m_APInt(C))) &&
4067         *Y == *C)
4068       return TrueWhenUnset ? TrueVal : FalseVal;
4069 
4070     // (X & Y) == 0 ? X : X | Y  --> X
4071     // (X & Y) != 0 ? X : X | Y  --> X | Y
4072     if (TrueVal == X && match(FalseVal, m_Or(m_Specific(X), m_APInt(C))) &&
4073         *Y == *C)
4074       return TrueWhenUnset ? TrueVal : FalseVal;
4075   }
4076 
4077   return nullptr;
4078 }
4079 
4080 /// An alternative way to test if a bit is set or not uses sgt/slt instead of
4081 /// eq/ne.
4082 static Value *simplifySelectWithFakeICmpEq(Value *CmpLHS, Value *CmpRHS,
4083                                            ICmpInst::Predicate Pred,
4084                                            Value *TrueVal, Value *FalseVal) {
4085   Value *X;
4086   APInt Mask;
4087   if (!decomposeBitTestICmp(CmpLHS, CmpRHS, Pred, X, Mask))
4088     return nullptr;
4089 
4090   return simplifySelectBitTest(TrueVal, FalseVal, X, &Mask,
4091                                Pred == ICmpInst::ICMP_EQ);
4092 }
4093 
4094 /// Try to simplify a select instruction when its condition operand is an
4095 /// integer comparison.
4096 static Value *simplifySelectWithICmpCond(Value *CondVal, Value *TrueVal,
4097                                          Value *FalseVal, const SimplifyQuery &Q,
4098                                          unsigned MaxRecurse) {
4099   ICmpInst::Predicate Pred;
4100   Value *CmpLHS, *CmpRHS;
4101   if (!match(CondVal, m_ICmp(Pred, m_Value(CmpLHS), m_Value(CmpRHS))))
4102     return nullptr;
4103 
4104   // Canonicalize ne to eq predicate.
4105   if (Pred == ICmpInst::ICMP_NE) {
4106     Pred = ICmpInst::ICMP_EQ;
4107     std::swap(TrueVal, FalseVal);
4108   }
4109 
4110   // Check for integer min/max with a limit constant:
4111   // X > MIN_INT ? X : MIN_INT --> X
4112   // X < MAX_INT ? X : MAX_INT --> X
4113   if (TrueVal->getType()->isIntOrIntVectorTy()) {
4114     Value *X, *Y;
4115     SelectPatternFlavor SPF =
4116         matchDecomposedSelectPattern(cast<ICmpInst>(CondVal), TrueVal, FalseVal,
4117                                      X, Y).Flavor;
4118     if (SelectPatternResult::isMinOrMax(SPF) && Pred == getMinMaxPred(SPF)) {
4119       APInt LimitC = getMinMaxLimit(getInverseMinMaxFlavor(SPF),
4120                                     X->getType()->getScalarSizeInBits());
4121       if (match(Y, m_SpecificInt(LimitC)))
4122         return X;
4123     }
4124   }
4125 
4126   if (Pred == ICmpInst::ICMP_EQ && match(CmpRHS, m_Zero())) {
4127     Value *X;
4128     const APInt *Y;
4129     if (match(CmpLHS, m_And(m_Value(X), m_APInt(Y))))
4130       if (Value *V = simplifySelectBitTest(TrueVal, FalseVal, X, Y,
4131                                            /*TrueWhenUnset=*/true))
4132         return V;
4133 
4134     // Test for a bogus zero-shift-guard-op around funnel-shift or rotate.
4135     Value *ShAmt;
4136     auto isFsh = m_CombineOr(m_FShl(m_Value(X), m_Value(), m_Value(ShAmt)),
4137                              m_FShr(m_Value(), m_Value(X), m_Value(ShAmt)));
4138     // (ShAmt == 0) ? fshl(X, *, ShAmt) : X --> X
4139     // (ShAmt == 0) ? fshr(*, X, ShAmt) : X --> X
4140     if (match(TrueVal, isFsh) && FalseVal == X && CmpLHS == ShAmt)
4141       return X;
4142 
4143     // Test for a zero-shift-guard-op around rotates. These are used to
4144     // avoid UB from oversized shifts in raw IR rotate patterns, but the
4145     // intrinsics do not have that problem.
4146     // We do not allow this transform for the general funnel shift case because
4147     // that would not preserve the poison safety of the original code.
4148     auto isRotate =
4149         m_CombineOr(m_FShl(m_Value(X), m_Deferred(X), m_Value(ShAmt)),
4150                     m_FShr(m_Value(X), m_Deferred(X), m_Value(ShAmt)));
4151     // (ShAmt == 0) ? X : fshl(X, X, ShAmt) --> fshl(X, X, ShAmt)
4152     // (ShAmt == 0) ? X : fshr(X, X, ShAmt) --> fshr(X, X, ShAmt)
4153     if (match(FalseVal, isRotate) && TrueVal == X && CmpLHS == ShAmt &&
4154         Pred == ICmpInst::ICMP_EQ)
4155       return FalseVal;
4156 
4157     // X == 0 ? abs(X) : -abs(X) --> -abs(X)
4158     // X == 0 ? -abs(X) : abs(X) --> abs(X)
4159     if (match(TrueVal, m_Intrinsic<Intrinsic::abs>(m_Specific(CmpLHS))) &&
4160         match(FalseVal, m_Neg(m_Intrinsic<Intrinsic::abs>(m_Specific(CmpLHS)))))
4161       return FalseVal;
4162     if (match(TrueVal,
4163               m_Neg(m_Intrinsic<Intrinsic::abs>(m_Specific(CmpLHS)))) &&
4164         match(FalseVal, m_Intrinsic<Intrinsic::abs>(m_Specific(CmpLHS))))
4165       return FalseVal;
4166   }
4167 
4168   // Check for other compares that behave like bit test.
4169   if (Value *V = simplifySelectWithFakeICmpEq(CmpLHS, CmpRHS, Pred,
4170                                               TrueVal, FalseVal))
4171     return V;
4172 
4173   // If we have a scalar equality comparison, then we know the value in one of
4174   // the arms of the select. See if substituting this value into the arm and
4175   // simplifying the result yields the same value as the other arm.
4176   // Note that the equivalence/replacement opportunity does not hold for vectors
4177   // because each element of a vector select is chosen independently.
4178   if (Pred == ICmpInst::ICMP_EQ && !CondVal->getType()->isVectorTy()) {
4179     if (simplifyWithOpReplaced(FalseVal, CmpLHS, CmpRHS, Q,
4180                                /* AllowRefinement */ false, MaxRecurse) ==
4181             TrueVal ||
4182         simplifyWithOpReplaced(FalseVal, CmpRHS, CmpLHS, Q,
4183                                /* AllowRefinement */ false, MaxRecurse) ==
4184             TrueVal)
4185       return FalseVal;
4186     if (simplifyWithOpReplaced(TrueVal, CmpLHS, CmpRHS, Q,
4187                                /* AllowRefinement */ true, MaxRecurse) ==
4188             FalseVal ||
4189         simplifyWithOpReplaced(TrueVal, CmpRHS, CmpLHS, Q,
4190                                /* AllowRefinement */ true, MaxRecurse) ==
4191             FalseVal)
4192       return FalseVal;
4193   }
4194 
4195   return nullptr;
4196 }
4197 
4198 /// Try to simplify a select instruction when its condition operand is a
4199 /// floating-point comparison.
4200 static Value *simplifySelectWithFCmp(Value *Cond, Value *T, Value *F,
4201                                      const SimplifyQuery &Q) {
4202   FCmpInst::Predicate Pred;
4203   if (!match(Cond, m_FCmp(Pred, m_Specific(T), m_Specific(F))) &&
4204       !match(Cond, m_FCmp(Pred, m_Specific(F), m_Specific(T))))
4205     return nullptr;
4206 
4207   // This transform is safe if we do not have (do not care about) -0.0 or if
4208   // at least one operand is known to not be -0.0. Otherwise, the select can
4209   // change the sign of a zero operand.
4210   bool HasNoSignedZeros = Q.CxtI && isa<FPMathOperator>(Q.CxtI) &&
4211                           Q.CxtI->hasNoSignedZeros();
4212   const APFloat *C;
4213   if (HasNoSignedZeros || (match(T, m_APFloat(C)) && C->isNonZero()) ||
4214                           (match(F, m_APFloat(C)) && C->isNonZero())) {
4215     // (T == F) ? T : F --> F
4216     // (F == T) ? T : F --> F
4217     if (Pred == FCmpInst::FCMP_OEQ)
4218       return F;
4219 
4220     // (T != F) ? T : F --> T
4221     // (F != T) ? T : F --> T
4222     if (Pred == FCmpInst::FCMP_UNE)
4223       return T;
4224   }
4225 
4226   return nullptr;
4227 }
4228 
4229 /// Given operands for a SelectInst, see if we can fold the result.
4230 /// If not, this returns null.
4231 static Value *SimplifySelectInst(Value *Cond, Value *TrueVal, Value *FalseVal,
4232                                  const SimplifyQuery &Q, unsigned MaxRecurse) {
4233   if (auto *CondC = dyn_cast<Constant>(Cond)) {
4234     if (auto *TrueC = dyn_cast<Constant>(TrueVal))
4235       if (auto *FalseC = dyn_cast<Constant>(FalseVal))
4236         return ConstantFoldSelectInstruction(CondC, TrueC, FalseC);
4237 
4238     // select poison, X, Y -> poison
4239     if (isa<PoisonValue>(CondC))
4240       return PoisonValue::get(TrueVal->getType());
4241 
4242     // select undef, X, Y -> X or Y
4243     if (Q.isUndefValue(CondC))
4244       return isa<Constant>(FalseVal) ? FalseVal : TrueVal;
4245 
4246     // select true,  X, Y --> X
4247     // select false, X, Y --> Y
4248     // For vectors, allow undef/poison elements in the condition to match the
4249     // defined elements, so we can eliminate the select.
4250     if (match(CondC, m_One()))
4251       return TrueVal;
4252     if (match(CondC, m_Zero()))
4253       return FalseVal;
4254   }
4255 
4256   assert(Cond->getType()->isIntOrIntVectorTy(1) &&
4257          "Select must have bool or bool vector condition");
4258   assert(TrueVal->getType() == FalseVal->getType() &&
4259          "Select must have same types for true/false ops");
4260 
4261   if (Cond->getType() == TrueVal->getType()) {
4262     // select i1 Cond, i1 true, i1 false --> i1 Cond
4263     if (match(TrueVal, m_One()) && match(FalseVal, m_ZeroInt()))
4264       return Cond;
4265 
4266     // (X || Y) && (X || !Y) --> X (commuted 8 ways)
4267     Value *X, *Y;
4268     if (match(FalseVal, m_ZeroInt())) {
4269       if (match(Cond, m_c_LogicalOr(m_Value(X), m_Not(m_Value(Y)))) &&
4270           match(TrueVal, m_c_LogicalOr(m_Specific(X), m_Specific(Y))))
4271         return X;
4272       if (match(TrueVal, m_c_LogicalOr(m_Value(X), m_Not(m_Value(Y)))) &&
4273           match(Cond, m_c_LogicalOr(m_Specific(X), m_Specific(Y))))
4274         return X;
4275     }
4276   }
4277 
4278   // select ?, X, X -> X
4279   if (TrueVal == FalseVal)
4280     return TrueVal;
4281 
4282   // If the true or false value is poison, we can fold to the other value.
4283   // If the true or false value is undef, we can fold to the other value as
4284   // long as the other value isn't poison.
4285   // select ?, poison, X -> X
4286   // select ?, undef,  X -> X
4287   if (isa<PoisonValue>(TrueVal) ||
4288       (Q.isUndefValue(TrueVal) &&
4289        isGuaranteedNotToBePoison(FalseVal, Q.AC, Q.CxtI, Q.DT)))
4290     return FalseVal;
4291   // select ?, X, poison -> X
4292   // select ?, X, undef  -> X
4293   if (isa<PoisonValue>(FalseVal) ||
4294       (Q.isUndefValue(FalseVal) &&
4295        isGuaranteedNotToBePoison(TrueVal, Q.AC, Q.CxtI, Q.DT)))
4296     return TrueVal;
4297 
4298   // Deal with partial undef vector constants: select ?, VecC, VecC' --> VecC''
4299   Constant *TrueC, *FalseC;
4300   if (isa<FixedVectorType>(TrueVal->getType()) &&
4301       match(TrueVal, m_Constant(TrueC)) &&
4302       match(FalseVal, m_Constant(FalseC))) {
4303     unsigned NumElts =
4304         cast<FixedVectorType>(TrueC->getType())->getNumElements();
4305     SmallVector<Constant *, 16> NewC;
4306     for (unsigned i = 0; i != NumElts; ++i) {
4307       // Bail out on incomplete vector constants.
4308       Constant *TEltC = TrueC->getAggregateElement(i);
4309       Constant *FEltC = FalseC->getAggregateElement(i);
4310       if (!TEltC || !FEltC)
4311         break;
4312 
4313       // If the elements match (undef or not), that value is the result. If only
4314       // one element is undef, choose the defined element as the safe result.
4315       if (TEltC == FEltC)
4316         NewC.push_back(TEltC);
4317       else if (isa<PoisonValue>(TEltC) ||
4318                (Q.isUndefValue(TEltC) && isGuaranteedNotToBePoison(FEltC)))
4319         NewC.push_back(FEltC);
4320       else if (isa<PoisonValue>(FEltC) ||
4321                (Q.isUndefValue(FEltC) && isGuaranteedNotToBePoison(TEltC)))
4322         NewC.push_back(TEltC);
4323       else
4324         break;
4325     }
4326     if (NewC.size() == NumElts)
4327       return ConstantVector::get(NewC);
4328   }
4329 
4330   if (Value *V =
4331           simplifySelectWithICmpCond(Cond, TrueVal, FalseVal, Q, MaxRecurse))
4332     return V;
4333 
4334   if (Value *V = simplifySelectWithFCmp(Cond, TrueVal, FalseVal, Q))
4335     return V;
4336 
4337   if (Value *V = foldSelectWithBinaryOp(Cond, TrueVal, FalseVal))
4338     return V;
4339 
4340   Optional<bool> Imp = isImpliedByDomCondition(Cond, Q.CxtI, Q.DL);
4341   if (Imp)
4342     return *Imp ? TrueVal : FalseVal;
4343 
4344   return nullptr;
4345 }
4346 
4347 Value *llvm::SimplifySelectInst(Value *Cond, Value *TrueVal, Value *FalseVal,
4348                                 const SimplifyQuery &Q) {
4349   return ::SimplifySelectInst(Cond, TrueVal, FalseVal, Q, RecursionLimit);
4350 }
4351 
4352 /// Given operands for an GetElementPtrInst, see if we can fold the result.
4353 /// If not, this returns null.
4354 static Value *SimplifyGEPInst(Type *SrcTy, ArrayRef<Value *> Ops, bool InBounds,
4355                               const SimplifyQuery &Q, unsigned) {
4356   // The type of the GEP pointer operand.
4357   unsigned AS =
4358       cast<PointerType>(Ops[0]->getType()->getScalarType())->getAddressSpace();
4359 
4360   // getelementptr P -> P.
4361   if (Ops.size() == 1)
4362     return Ops[0];
4363 
4364   // Compute the (pointer) type returned by the GEP instruction.
4365   Type *LastType = GetElementPtrInst::getIndexedType(SrcTy, Ops.slice(1));
4366   Type *GEPTy = PointerType::get(LastType, AS);
4367   for (Value *Op : Ops) {
4368     // If one of the operands is a vector, the result type is a vector of
4369     // pointers. All vector operands must have the same number of elements.
4370     if (VectorType *VT = dyn_cast<VectorType>(Op->getType())) {
4371       GEPTy = VectorType::get(GEPTy, VT->getElementCount());
4372       break;
4373     }
4374   }
4375 
4376   // getelementptr poison, idx -> poison
4377   // getelementptr baseptr, poison -> poison
4378   if (any_of(Ops, [](const auto *V) { return isa<PoisonValue>(V); }))
4379     return PoisonValue::get(GEPTy);
4380 
4381   if (Q.isUndefValue(Ops[0]))
4382     return UndefValue::get(GEPTy);
4383 
4384   bool IsScalableVec =
4385       isa<ScalableVectorType>(SrcTy) || any_of(Ops, [](const Value *V) {
4386         return isa<ScalableVectorType>(V->getType());
4387       });
4388 
4389   if (Ops.size() == 2) {
4390     // getelementptr P, 0 -> P.
4391     if (match(Ops[1], m_Zero()) && Ops[0]->getType() == GEPTy)
4392       return Ops[0];
4393 
4394     Type *Ty = SrcTy;
4395     if (!IsScalableVec && Ty->isSized()) {
4396       Value *P;
4397       uint64_t C;
4398       uint64_t TyAllocSize = Q.DL.getTypeAllocSize(Ty);
4399       // getelementptr P, N -> P if P points to a type of zero size.
4400       if (TyAllocSize == 0 && Ops[0]->getType() == GEPTy)
4401         return Ops[0];
4402 
4403       // The following transforms are only safe if the ptrtoint cast
4404       // doesn't truncate the pointers.
4405       if (Ops[1]->getType()->getScalarSizeInBits() ==
4406           Q.DL.getPointerSizeInBits(AS)) {
4407         auto CanSimplify = [GEPTy, &P, V = Ops[0]]() -> bool {
4408           return P->getType() == GEPTy &&
4409                  getUnderlyingObject(P) == getUnderlyingObject(V);
4410         };
4411         // getelementptr V, (sub P, V) -> P if P points to a type of size 1.
4412         if (TyAllocSize == 1 &&
4413             match(Ops[1], m_Sub(m_PtrToInt(m_Value(P)),
4414                                 m_PtrToInt(m_Specific(Ops[0])))) &&
4415             CanSimplify())
4416           return P;
4417 
4418         // getelementptr V, (ashr (sub P, V), C) -> P if P points to a type of
4419         // size 1 << C.
4420         if (match(Ops[1], m_AShr(m_Sub(m_PtrToInt(m_Value(P)),
4421                                        m_PtrToInt(m_Specific(Ops[0]))),
4422                                  m_ConstantInt(C))) &&
4423             TyAllocSize == 1ULL << C && CanSimplify())
4424           return P;
4425 
4426         // getelementptr V, (sdiv (sub P, V), C) -> P if P points to a type of
4427         // size C.
4428         if (match(Ops[1], m_SDiv(m_Sub(m_PtrToInt(m_Value(P)),
4429                                        m_PtrToInt(m_Specific(Ops[0]))),
4430                                  m_SpecificInt(TyAllocSize))) &&
4431             CanSimplify())
4432           return P;
4433       }
4434     }
4435   }
4436 
4437   if (!IsScalableVec && Q.DL.getTypeAllocSize(LastType) == 1 &&
4438       all_of(Ops.slice(1).drop_back(1),
4439              [](Value *Idx) { return match(Idx, m_Zero()); })) {
4440     unsigned IdxWidth =
4441         Q.DL.getIndexSizeInBits(Ops[0]->getType()->getPointerAddressSpace());
4442     if (Q.DL.getTypeSizeInBits(Ops.back()->getType()) == IdxWidth) {
4443       APInt BasePtrOffset(IdxWidth, 0);
4444       Value *StrippedBasePtr =
4445           Ops[0]->stripAndAccumulateInBoundsConstantOffsets(Q.DL,
4446                                                             BasePtrOffset);
4447 
4448       // Avoid creating inttoptr of zero here: While LLVMs treatment of
4449       // inttoptr is generally conservative, this particular case is folded to
4450       // a null pointer, which will have incorrect provenance.
4451 
4452       // gep (gep V, C), (sub 0, V) -> C
4453       if (match(Ops.back(),
4454                 m_Sub(m_Zero(), m_PtrToInt(m_Specific(StrippedBasePtr)))) &&
4455           !BasePtrOffset.isZero()) {
4456         auto *CI = ConstantInt::get(GEPTy->getContext(), BasePtrOffset);
4457         return ConstantExpr::getIntToPtr(CI, GEPTy);
4458       }
4459       // gep (gep V, C), (xor V, -1) -> C-1
4460       if (match(Ops.back(),
4461                 m_Xor(m_PtrToInt(m_Specific(StrippedBasePtr)), m_AllOnes())) &&
4462           !BasePtrOffset.isOne()) {
4463         auto *CI = ConstantInt::get(GEPTy->getContext(), BasePtrOffset - 1);
4464         return ConstantExpr::getIntToPtr(CI, GEPTy);
4465       }
4466     }
4467   }
4468 
4469   // Check to see if this is constant foldable.
4470   if (!all_of(Ops, [](Value *V) { return isa<Constant>(V); }))
4471     return nullptr;
4472 
4473   auto *CE = ConstantExpr::getGetElementPtr(SrcTy, cast<Constant>(Ops[0]),
4474                                             Ops.slice(1), InBounds);
4475   return ConstantFoldConstant(CE, Q.DL);
4476 }
4477 
4478 Value *llvm::SimplifyGEPInst(Type *SrcTy, ArrayRef<Value *> Ops, bool InBounds,
4479                              const SimplifyQuery &Q) {
4480   return ::SimplifyGEPInst(SrcTy, Ops, InBounds, Q, RecursionLimit);
4481 }
4482 
4483 /// Given operands for an InsertValueInst, see if we can fold the result.
4484 /// If not, this returns null.
4485 static Value *SimplifyInsertValueInst(Value *Agg, Value *Val,
4486                                       ArrayRef<unsigned> Idxs, const SimplifyQuery &Q,
4487                                       unsigned) {
4488   if (Constant *CAgg = dyn_cast<Constant>(Agg))
4489     if (Constant *CVal = dyn_cast<Constant>(Val))
4490       return ConstantFoldInsertValueInstruction(CAgg, CVal, Idxs);
4491 
4492   // insertvalue x, undef, n -> x
4493   if (Q.isUndefValue(Val))
4494     return Agg;
4495 
4496   // insertvalue x, (extractvalue y, n), n
4497   if (ExtractValueInst *EV = dyn_cast<ExtractValueInst>(Val))
4498     if (EV->getAggregateOperand()->getType() == Agg->getType() &&
4499         EV->getIndices() == Idxs) {
4500       // insertvalue undef, (extractvalue y, n), n -> y
4501       if (Q.isUndefValue(Agg))
4502         return EV->getAggregateOperand();
4503 
4504       // insertvalue y, (extractvalue y, n), n -> y
4505       if (Agg == EV->getAggregateOperand())
4506         return Agg;
4507     }
4508 
4509   return nullptr;
4510 }
4511 
4512 Value *llvm::SimplifyInsertValueInst(Value *Agg, Value *Val,
4513                                      ArrayRef<unsigned> Idxs,
4514                                      const SimplifyQuery &Q) {
4515   return ::SimplifyInsertValueInst(Agg, Val, Idxs, Q, RecursionLimit);
4516 }
4517 
4518 Value *llvm::SimplifyInsertElementInst(Value *Vec, Value *Val, Value *Idx,
4519                                        const SimplifyQuery &Q) {
4520   // Try to constant fold.
4521   auto *VecC = dyn_cast<Constant>(Vec);
4522   auto *ValC = dyn_cast<Constant>(Val);
4523   auto *IdxC = dyn_cast<Constant>(Idx);
4524   if (VecC && ValC && IdxC)
4525     return ConstantExpr::getInsertElement(VecC, ValC, IdxC);
4526 
4527   // For fixed-length vector, fold into poison if index is out of bounds.
4528   if (auto *CI = dyn_cast<ConstantInt>(Idx)) {
4529     if (isa<FixedVectorType>(Vec->getType()) &&
4530         CI->uge(cast<FixedVectorType>(Vec->getType())->getNumElements()))
4531       return PoisonValue::get(Vec->getType());
4532   }
4533 
4534   // If index is undef, it might be out of bounds (see above case)
4535   if (Q.isUndefValue(Idx))
4536     return PoisonValue::get(Vec->getType());
4537 
4538   // If the scalar is poison, or it is undef and there is no risk of
4539   // propagating poison from the vector value, simplify to the vector value.
4540   if (isa<PoisonValue>(Val) ||
4541       (Q.isUndefValue(Val) && isGuaranteedNotToBePoison(Vec)))
4542     return Vec;
4543 
4544   // If we are extracting a value from a vector, then inserting it into the same
4545   // place, that's the input vector:
4546   // insertelt Vec, (extractelt Vec, Idx), Idx --> Vec
4547   if (match(Val, m_ExtractElt(m_Specific(Vec), m_Specific(Idx))))
4548     return Vec;
4549 
4550   return nullptr;
4551 }
4552 
4553 /// Given operands for an ExtractValueInst, see if we can fold the result.
4554 /// If not, this returns null.
4555 static Value *SimplifyExtractValueInst(Value *Agg, ArrayRef<unsigned> Idxs,
4556                                        const SimplifyQuery &, unsigned) {
4557   if (auto *CAgg = dyn_cast<Constant>(Agg))
4558     return ConstantFoldExtractValueInstruction(CAgg, Idxs);
4559 
4560   // extractvalue x, (insertvalue y, elt, n), n -> elt
4561   unsigned NumIdxs = Idxs.size();
4562   for (auto *IVI = dyn_cast<InsertValueInst>(Agg); IVI != nullptr;
4563        IVI = dyn_cast<InsertValueInst>(IVI->getAggregateOperand())) {
4564     ArrayRef<unsigned> InsertValueIdxs = IVI->getIndices();
4565     unsigned NumInsertValueIdxs = InsertValueIdxs.size();
4566     unsigned NumCommonIdxs = std::min(NumInsertValueIdxs, NumIdxs);
4567     if (InsertValueIdxs.slice(0, NumCommonIdxs) ==
4568         Idxs.slice(0, NumCommonIdxs)) {
4569       if (NumIdxs == NumInsertValueIdxs)
4570         return IVI->getInsertedValueOperand();
4571       break;
4572     }
4573   }
4574 
4575   return nullptr;
4576 }
4577 
4578 Value *llvm::SimplifyExtractValueInst(Value *Agg, ArrayRef<unsigned> Idxs,
4579                                       const SimplifyQuery &Q) {
4580   return ::SimplifyExtractValueInst(Agg, Idxs, Q, RecursionLimit);
4581 }
4582 
4583 /// Given operands for an ExtractElementInst, see if we can fold the result.
4584 /// If not, this returns null.
4585 static Value *SimplifyExtractElementInst(Value *Vec, Value *Idx,
4586                                          const SimplifyQuery &Q, unsigned) {
4587   auto *VecVTy = cast<VectorType>(Vec->getType());
4588   if (auto *CVec = dyn_cast<Constant>(Vec)) {
4589     if (auto *CIdx = dyn_cast<Constant>(Idx))
4590       return ConstantExpr::getExtractElement(CVec, CIdx);
4591 
4592     if (Q.isUndefValue(Vec))
4593       return UndefValue::get(VecVTy->getElementType());
4594   }
4595 
4596   // An undef extract index can be arbitrarily chosen to be an out-of-range
4597   // index value, which would result in the instruction being poison.
4598   if (Q.isUndefValue(Idx))
4599     return PoisonValue::get(VecVTy->getElementType());
4600 
4601   // If extracting a specified index from the vector, see if we can recursively
4602   // find a previously computed scalar that was inserted into the vector.
4603   if (auto *IdxC = dyn_cast<ConstantInt>(Idx)) {
4604     // For fixed-length vector, fold into undef if index is out of bounds.
4605     unsigned MinNumElts = VecVTy->getElementCount().getKnownMinValue();
4606     if (isa<FixedVectorType>(VecVTy) && IdxC->getValue().uge(MinNumElts))
4607       return PoisonValue::get(VecVTy->getElementType());
4608     // Handle case where an element is extracted from a splat.
4609     if (IdxC->getValue().ult(MinNumElts))
4610       if (auto *Splat = getSplatValue(Vec))
4611         return Splat;
4612     if (Value *Elt = findScalarElement(Vec, IdxC->getZExtValue()))
4613       return Elt;
4614   } else {
4615     // The index is not relevant if our vector is a splat.
4616     if (Value *Splat = getSplatValue(Vec))
4617       return Splat;
4618   }
4619   return nullptr;
4620 }
4621 
4622 Value *llvm::SimplifyExtractElementInst(Value *Vec, Value *Idx,
4623                                         const SimplifyQuery &Q) {
4624   return ::SimplifyExtractElementInst(Vec, Idx, Q, RecursionLimit);
4625 }
4626 
4627 /// See if we can fold the given phi. If not, returns null.
4628 static Value *SimplifyPHINode(PHINode *PN, ArrayRef<Value *> IncomingValues,
4629                               const SimplifyQuery &Q) {
4630   // WARNING: no matter how worthwhile it may seem, we can not perform PHI CSE
4631   //          here, because the PHI we may succeed simplifying to was not
4632   //          def-reachable from the original PHI!
4633 
4634   // If all of the PHI's incoming values are the same then replace the PHI node
4635   // with the common value.
4636   Value *CommonValue = nullptr;
4637   bool HasUndefInput = false;
4638   for (Value *Incoming : IncomingValues) {
4639     // If the incoming value is the phi node itself, it can safely be skipped.
4640     if (Incoming == PN) continue;
4641     if (Q.isUndefValue(Incoming)) {
4642       // Remember that we saw an undef value, but otherwise ignore them.
4643       HasUndefInput = true;
4644       continue;
4645     }
4646     if (CommonValue && Incoming != CommonValue)
4647       return nullptr;  // Not the same, bail out.
4648     CommonValue = Incoming;
4649   }
4650 
4651   // If CommonValue is null then all of the incoming values were either undef or
4652   // equal to the phi node itself.
4653   if (!CommonValue)
4654     return UndefValue::get(PN->getType());
4655 
4656   // If we have a PHI node like phi(X, undef, X), where X is defined by some
4657   // instruction, we cannot return X as the result of the PHI node unless it
4658   // dominates the PHI block.
4659   if (HasUndefInput)
4660     return valueDominatesPHI(CommonValue, PN, Q.DT) ? CommonValue : nullptr;
4661 
4662   return CommonValue;
4663 }
4664 
4665 static Value *SimplifyCastInst(unsigned CastOpc, Value *Op,
4666                                Type *Ty, const SimplifyQuery &Q, unsigned MaxRecurse) {
4667   if (auto *C = dyn_cast<Constant>(Op))
4668     return ConstantFoldCastOperand(CastOpc, C, Ty, Q.DL);
4669 
4670   if (auto *CI = dyn_cast<CastInst>(Op)) {
4671     auto *Src = CI->getOperand(0);
4672     Type *SrcTy = Src->getType();
4673     Type *MidTy = CI->getType();
4674     Type *DstTy = Ty;
4675     if (Src->getType() == Ty) {
4676       auto FirstOp = static_cast<Instruction::CastOps>(CI->getOpcode());
4677       auto SecondOp = static_cast<Instruction::CastOps>(CastOpc);
4678       Type *SrcIntPtrTy =
4679           SrcTy->isPtrOrPtrVectorTy() ? Q.DL.getIntPtrType(SrcTy) : nullptr;
4680       Type *MidIntPtrTy =
4681           MidTy->isPtrOrPtrVectorTy() ? Q.DL.getIntPtrType(MidTy) : nullptr;
4682       Type *DstIntPtrTy =
4683           DstTy->isPtrOrPtrVectorTy() ? Q.DL.getIntPtrType(DstTy) : nullptr;
4684       if (CastInst::isEliminableCastPair(FirstOp, SecondOp, SrcTy, MidTy, DstTy,
4685                                          SrcIntPtrTy, MidIntPtrTy,
4686                                          DstIntPtrTy) == Instruction::BitCast)
4687         return Src;
4688     }
4689   }
4690 
4691   // bitcast x -> x
4692   if (CastOpc == Instruction::BitCast)
4693     if (Op->getType() == Ty)
4694       return Op;
4695 
4696   return nullptr;
4697 }
4698 
4699 Value *llvm::SimplifyCastInst(unsigned CastOpc, Value *Op, Type *Ty,
4700                               const SimplifyQuery &Q) {
4701   return ::SimplifyCastInst(CastOpc, Op, Ty, Q, RecursionLimit);
4702 }
4703 
4704 /// For the given destination element of a shuffle, peek through shuffles to
4705 /// match a root vector source operand that contains that element in the same
4706 /// vector lane (ie, the same mask index), so we can eliminate the shuffle(s).
4707 static Value *foldIdentityShuffles(int DestElt, Value *Op0, Value *Op1,
4708                                    int MaskVal, Value *RootVec,
4709                                    unsigned MaxRecurse) {
4710   if (!MaxRecurse--)
4711     return nullptr;
4712 
4713   // Bail out if any mask value is undefined. That kind of shuffle may be
4714   // simplified further based on demanded bits or other folds.
4715   if (MaskVal == -1)
4716     return nullptr;
4717 
4718   // The mask value chooses which source operand we need to look at next.
4719   int InVecNumElts = cast<FixedVectorType>(Op0->getType())->getNumElements();
4720   int RootElt = MaskVal;
4721   Value *SourceOp = Op0;
4722   if (MaskVal >= InVecNumElts) {
4723     RootElt = MaskVal - InVecNumElts;
4724     SourceOp = Op1;
4725   }
4726 
4727   // If the source operand is a shuffle itself, look through it to find the
4728   // matching root vector.
4729   if (auto *SourceShuf = dyn_cast<ShuffleVectorInst>(SourceOp)) {
4730     return foldIdentityShuffles(
4731         DestElt, SourceShuf->getOperand(0), SourceShuf->getOperand(1),
4732         SourceShuf->getMaskValue(RootElt), RootVec, MaxRecurse);
4733   }
4734 
4735   // TODO: Look through bitcasts? What if the bitcast changes the vector element
4736   // size?
4737 
4738   // The source operand is not a shuffle. Initialize the root vector value for
4739   // this shuffle if that has not been done yet.
4740   if (!RootVec)
4741     RootVec = SourceOp;
4742 
4743   // Give up as soon as a source operand does not match the existing root value.
4744   if (RootVec != SourceOp)
4745     return nullptr;
4746 
4747   // The element must be coming from the same lane in the source vector
4748   // (although it may have crossed lanes in intermediate shuffles).
4749   if (RootElt != DestElt)
4750     return nullptr;
4751 
4752   return RootVec;
4753 }
4754 
4755 static Value *SimplifyShuffleVectorInst(Value *Op0, Value *Op1,
4756                                         ArrayRef<int> Mask, Type *RetTy,
4757                                         const SimplifyQuery &Q,
4758                                         unsigned MaxRecurse) {
4759   if (all_of(Mask, [](int Elem) { return Elem == UndefMaskElem; }))
4760     return UndefValue::get(RetTy);
4761 
4762   auto *InVecTy = cast<VectorType>(Op0->getType());
4763   unsigned MaskNumElts = Mask.size();
4764   ElementCount InVecEltCount = InVecTy->getElementCount();
4765 
4766   bool Scalable = InVecEltCount.isScalable();
4767 
4768   SmallVector<int, 32> Indices;
4769   Indices.assign(Mask.begin(), Mask.end());
4770 
4771   // Canonicalization: If mask does not select elements from an input vector,
4772   // replace that input vector with poison.
4773   if (!Scalable) {
4774     bool MaskSelects0 = false, MaskSelects1 = false;
4775     unsigned InVecNumElts = InVecEltCount.getKnownMinValue();
4776     for (unsigned i = 0; i != MaskNumElts; ++i) {
4777       if (Indices[i] == -1)
4778         continue;
4779       if ((unsigned)Indices[i] < InVecNumElts)
4780         MaskSelects0 = true;
4781       else
4782         MaskSelects1 = true;
4783     }
4784     if (!MaskSelects0)
4785       Op0 = PoisonValue::get(InVecTy);
4786     if (!MaskSelects1)
4787       Op1 = PoisonValue::get(InVecTy);
4788   }
4789 
4790   auto *Op0Const = dyn_cast<Constant>(Op0);
4791   auto *Op1Const = dyn_cast<Constant>(Op1);
4792 
4793   // If all operands are constant, constant fold the shuffle. This
4794   // transformation depends on the value of the mask which is not known at
4795   // compile time for scalable vectors
4796   if (Op0Const && Op1Const)
4797     return ConstantExpr::getShuffleVector(Op0Const, Op1Const, Mask);
4798 
4799   // Canonicalization: if only one input vector is constant, it shall be the
4800   // second one. This transformation depends on the value of the mask which
4801   // is not known at compile time for scalable vectors
4802   if (!Scalable && Op0Const && !Op1Const) {
4803     std::swap(Op0, Op1);
4804     ShuffleVectorInst::commuteShuffleMask(Indices,
4805                                           InVecEltCount.getKnownMinValue());
4806   }
4807 
4808   // A splat of an inserted scalar constant becomes a vector constant:
4809   // shuf (inselt ?, C, IndexC), undef, <IndexC, IndexC...> --> <C, C...>
4810   // NOTE: We may have commuted above, so analyze the updated Indices, not the
4811   //       original mask constant.
4812   // NOTE: This transformation depends on the value of the mask which is not
4813   // known at compile time for scalable vectors
4814   Constant *C;
4815   ConstantInt *IndexC;
4816   if (!Scalable && match(Op0, m_InsertElt(m_Value(), m_Constant(C),
4817                                           m_ConstantInt(IndexC)))) {
4818     // Match a splat shuffle mask of the insert index allowing undef elements.
4819     int InsertIndex = IndexC->getZExtValue();
4820     if (all_of(Indices, [InsertIndex](int MaskElt) {
4821           return MaskElt == InsertIndex || MaskElt == -1;
4822         })) {
4823       assert(isa<UndefValue>(Op1) && "Expected undef operand 1 for splat");
4824 
4825       // Shuffle mask undefs become undefined constant result elements.
4826       SmallVector<Constant *, 16> VecC(MaskNumElts, C);
4827       for (unsigned i = 0; i != MaskNumElts; ++i)
4828         if (Indices[i] == -1)
4829           VecC[i] = UndefValue::get(C->getType());
4830       return ConstantVector::get(VecC);
4831     }
4832   }
4833 
4834   // A shuffle of a splat is always the splat itself. Legal if the shuffle's
4835   // value type is same as the input vectors' type.
4836   if (auto *OpShuf = dyn_cast<ShuffleVectorInst>(Op0))
4837     if (Q.isUndefValue(Op1) && RetTy == InVecTy &&
4838         is_splat(OpShuf->getShuffleMask()))
4839       return Op0;
4840 
4841   // All remaining transformation depend on the value of the mask, which is
4842   // not known at compile time for scalable vectors.
4843   if (Scalable)
4844     return nullptr;
4845 
4846   // Don't fold a shuffle with undef mask elements. This may get folded in a
4847   // better way using demanded bits or other analysis.
4848   // TODO: Should we allow this?
4849   if (is_contained(Indices, -1))
4850     return nullptr;
4851 
4852   // Check if every element of this shuffle can be mapped back to the
4853   // corresponding element of a single root vector. If so, we don't need this
4854   // shuffle. This handles simple identity shuffles as well as chains of
4855   // shuffles that may widen/narrow and/or move elements across lanes and back.
4856   Value *RootVec = nullptr;
4857   for (unsigned i = 0; i != MaskNumElts; ++i) {
4858     // Note that recursion is limited for each vector element, so if any element
4859     // exceeds the limit, this will fail to simplify.
4860     RootVec =
4861         foldIdentityShuffles(i, Op0, Op1, Indices[i], RootVec, MaxRecurse);
4862 
4863     // We can't replace a widening/narrowing shuffle with one of its operands.
4864     if (!RootVec || RootVec->getType() != RetTy)
4865       return nullptr;
4866   }
4867   return RootVec;
4868 }
4869 
4870 /// Given operands for a ShuffleVectorInst, fold the result or return null.
4871 Value *llvm::SimplifyShuffleVectorInst(Value *Op0, Value *Op1,
4872                                        ArrayRef<int> Mask, Type *RetTy,
4873                                        const SimplifyQuery &Q) {
4874   return ::SimplifyShuffleVectorInst(Op0, Op1, Mask, RetTy, Q, RecursionLimit);
4875 }
4876 
4877 static Constant *foldConstant(Instruction::UnaryOps Opcode,
4878                               Value *&Op, const SimplifyQuery &Q) {
4879   if (auto *C = dyn_cast<Constant>(Op))
4880     return ConstantFoldUnaryOpOperand(Opcode, C, Q.DL);
4881   return nullptr;
4882 }
4883 
4884 /// Given the operand for an FNeg, see if we can fold the result.  If not, this
4885 /// returns null.
4886 static Value *simplifyFNegInst(Value *Op, FastMathFlags FMF,
4887                                const SimplifyQuery &Q, unsigned MaxRecurse) {
4888   if (Constant *C = foldConstant(Instruction::FNeg, Op, Q))
4889     return C;
4890 
4891   Value *X;
4892   // fneg (fneg X) ==> X
4893   if (match(Op, m_FNeg(m_Value(X))))
4894     return X;
4895 
4896   return nullptr;
4897 }
4898 
4899 Value *llvm::SimplifyFNegInst(Value *Op, FastMathFlags FMF,
4900                               const SimplifyQuery &Q) {
4901   return ::simplifyFNegInst(Op, FMF, Q, RecursionLimit);
4902 }
4903 
4904 static Constant *propagateNaN(Constant *In) {
4905   // If the input is a vector with undef elements, just return a default NaN.
4906   if (!In->isNaN())
4907     return ConstantFP::getNaN(In->getType());
4908 
4909   // Propagate the existing NaN constant when possible.
4910   // TODO: Should we quiet a signaling NaN?
4911   return In;
4912 }
4913 
4914 /// Perform folds that are common to any floating-point operation. This implies
4915 /// transforms based on poison/undef/NaN because the operation itself makes no
4916 /// difference to the result.
4917 static Constant *simplifyFPOp(ArrayRef<Value *> Ops, FastMathFlags FMF,
4918                               const SimplifyQuery &Q,
4919                               fp::ExceptionBehavior ExBehavior,
4920                               RoundingMode Rounding) {
4921   // Poison is independent of anything else. It always propagates from an
4922   // operand to a math result.
4923   if (any_of(Ops, [](Value *V) { return match(V, m_Poison()); }))
4924     return PoisonValue::get(Ops[0]->getType());
4925 
4926   for (Value *V : Ops) {
4927     bool IsNan = match(V, m_NaN());
4928     bool IsInf = match(V, m_Inf());
4929     bool IsUndef = Q.isUndefValue(V);
4930 
4931     // If this operation has 'nnan' or 'ninf' and at least 1 disallowed operand
4932     // (an undef operand can be chosen to be Nan/Inf), then the result of
4933     // this operation is poison.
4934     if (FMF.noNaNs() && (IsNan || IsUndef))
4935       return PoisonValue::get(V->getType());
4936     if (FMF.noInfs() && (IsInf || IsUndef))
4937       return PoisonValue::get(V->getType());
4938 
4939     if (isDefaultFPEnvironment(ExBehavior, Rounding)) {
4940       if (IsUndef || IsNan)
4941         return propagateNaN(cast<Constant>(V));
4942     } else if (ExBehavior != fp::ebStrict) {
4943       if (IsNan)
4944         return propagateNaN(cast<Constant>(V));
4945     }
4946   }
4947   return nullptr;
4948 }
4949 
4950 // TODO: Move this out to a header file:
4951 static inline bool canIgnoreSNaN(fp::ExceptionBehavior EB, FastMathFlags FMF) {
4952   return (EB == fp::ebIgnore || FMF.noNaNs());
4953 }
4954 
4955 /// Given operands for an FAdd, see if we can fold the result.  If not, this
4956 /// returns null.
4957 static Value *
4958 SimplifyFAddInst(Value *Op0, Value *Op1, FastMathFlags FMF,
4959                  const SimplifyQuery &Q, unsigned MaxRecurse,
4960                  fp::ExceptionBehavior ExBehavior = fp::ebIgnore,
4961                  RoundingMode Rounding = RoundingMode::NearestTiesToEven) {
4962   if (isDefaultFPEnvironment(ExBehavior, Rounding))
4963     if (Constant *C = foldOrCommuteConstant(Instruction::FAdd, Op0, Op1, Q))
4964       return C;
4965 
4966   if (Constant *C = simplifyFPOp({Op0, Op1}, FMF, Q, ExBehavior, Rounding))
4967     return C;
4968 
4969   // fadd X, -0 ==> X
4970   // With strict/constrained FP, we have these possible edge cases that do
4971   // not simplify to Op0:
4972   // fadd SNaN, -0.0 --> QNaN
4973   // fadd +0.0, -0.0 --> -0.0 (but only with round toward negative)
4974   if (canIgnoreSNaN(ExBehavior, FMF) &&
4975       (!canRoundingModeBe(Rounding, RoundingMode::TowardNegative) ||
4976        FMF.noSignedZeros()))
4977     if (match(Op1, m_NegZeroFP()))
4978       return Op0;
4979 
4980   if (!isDefaultFPEnvironment(ExBehavior, Rounding))
4981     return nullptr;
4982 
4983   // fadd X, 0 ==> X, when we know X is not -0
4984   if (match(Op1, m_PosZeroFP()) &&
4985       (FMF.noSignedZeros() || CannotBeNegativeZero(Op0, Q.TLI)))
4986     return Op0;
4987 
4988   // With nnan: -X + X --> 0.0 (and commuted variant)
4989   // We don't have to explicitly exclude infinities (ninf): INF + -INF == NaN.
4990   // Negative zeros are allowed because we always end up with positive zero:
4991   // X = -0.0: (-0.0 - (-0.0)) + (-0.0) == ( 0.0) + (-0.0) == 0.0
4992   // X = -0.0: ( 0.0 - (-0.0)) + (-0.0) == ( 0.0) + (-0.0) == 0.0
4993   // X =  0.0: (-0.0 - ( 0.0)) + ( 0.0) == (-0.0) + ( 0.0) == 0.0
4994   // X =  0.0: ( 0.0 - ( 0.0)) + ( 0.0) == ( 0.0) + ( 0.0) == 0.0
4995   if (FMF.noNaNs()) {
4996     if (match(Op0, m_FSub(m_AnyZeroFP(), m_Specific(Op1))) ||
4997         match(Op1, m_FSub(m_AnyZeroFP(), m_Specific(Op0))))
4998       return ConstantFP::getNullValue(Op0->getType());
4999 
5000     if (match(Op0, m_FNeg(m_Specific(Op1))) ||
5001         match(Op1, m_FNeg(m_Specific(Op0))))
5002       return ConstantFP::getNullValue(Op0->getType());
5003   }
5004 
5005   // (X - Y) + Y --> X
5006   // Y + (X - Y) --> X
5007   Value *X;
5008   if (FMF.noSignedZeros() && FMF.allowReassoc() &&
5009       (match(Op0, m_FSub(m_Value(X), m_Specific(Op1))) ||
5010        match(Op1, m_FSub(m_Value(X), m_Specific(Op0)))))
5011     return X;
5012 
5013   return nullptr;
5014 }
5015 
5016 /// Given operands for an FSub, see if we can fold the result.  If not, this
5017 /// returns null.
5018 static Value *
5019 SimplifyFSubInst(Value *Op0, Value *Op1, FastMathFlags FMF,
5020                  const SimplifyQuery &Q, unsigned MaxRecurse,
5021                  fp::ExceptionBehavior ExBehavior = fp::ebIgnore,
5022                  RoundingMode Rounding = RoundingMode::NearestTiesToEven) {
5023   if (isDefaultFPEnvironment(ExBehavior, Rounding))
5024     if (Constant *C = foldOrCommuteConstant(Instruction::FSub, Op0, Op1, Q))
5025       return C;
5026 
5027   if (Constant *C = simplifyFPOp({Op0, Op1}, FMF, Q, ExBehavior, Rounding))
5028     return C;
5029 
5030   if (!isDefaultFPEnvironment(ExBehavior, Rounding))
5031     return nullptr;
5032 
5033   // fsub X, +0 ==> X
5034   if (match(Op1, m_PosZeroFP()))
5035     return Op0;
5036 
5037   // fsub X, -0 ==> X, when we know X is not -0
5038   if (match(Op1, m_NegZeroFP()) &&
5039       (FMF.noSignedZeros() || CannotBeNegativeZero(Op0, Q.TLI)))
5040     return Op0;
5041 
5042   // fsub -0.0, (fsub -0.0, X) ==> X
5043   // fsub -0.0, (fneg X) ==> X
5044   Value *X;
5045   if (match(Op0, m_NegZeroFP()) &&
5046       match(Op1, m_FNeg(m_Value(X))))
5047     return X;
5048 
5049   // fsub 0.0, (fsub 0.0, X) ==> X if signed zeros are ignored.
5050   // fsub 0.0, (fneg X) ==> X if signed zeros are ignored.
5051   if (FMF.noSignedZeros() && match(Op0, m_AnyZeroFP()) &&
5052       (match(Op1, m_FSub(m_AnyZeroFP(), m_Value(X))) ||
5053        match(Op1, m_FNeg(m_Value(X)))))
5054     return X;
5055 
5056   // fsub nnan x, x ==> 0.0
5057   if (FMF.noNaNs() && Op0 == Op1)
5058     return Constant::getNullValue(Op0->getType());
5059 
5060   // Y - (Y - X) --> X
5061   // (X + Y) - Y --> X
5062   if (FMF.noSignedZeros() && FMF.allowReassoc() &&
5063       (match(Op1, m_FSub(m_Specific(Op0), m_Value(X))) ||
5064        match(Op0, m_c_FAdd(m_Specific(Op1), m_Value(X)))))
5065     return X;
5066 
5067   return nullptr;
5068 }
5069 
5070 static Value *SimplifyFMAFMul(Value *Op0, Value *Op1, FastMathFlags FMF,
5071                               const SimplifyQuery &Q, unsigned MaxRecurse,
5072                               fp::ExceptionBehavior ExBehavior,
5073                               RoundingMode Rounding) {
5074   if (Constant *C = simplifyFPOp({Op0, Op1}, FMF, Q, ExBehavior, Rounding))
5075     return C;
5076 
5077   if (!isDefaultFPEnvironment(ExBehavior, Rounding))
5078     return nullptr;
5079 
5080   // fmul X, 1.0 ==> X
5081   if (match(Op1, m_FPOne()))
5082     return Op0;
5083 
5084   // fmul 1.0, X ==> X
5085   if (match(Op0, m_FPOne()))
5086     return Op1;
5087 
5088   // fmul nnan nsz X, 0 ==> 0
5089   if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op1, m_AnyZeroFP()))
5090     return ConstantFP::getNullValue(Op0->getType());
5091 
5092   // fmul nnan nsz 0, X ==> 0
5093   if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op0, m_AnyZeroFP()))
5094     return ConstantFP::getNullValue(Op1->getType());
5095 
5096   // sqrt(X) * sqrt(X) --> X, if we can:
5097   // 1. Remove the intermediate rounding (reassociate).
5098   // 2. Ignore non-zero negative numbers because sqrt would produce NAN.
5099   // 3. Ignore -0.0 because sqrt(-0.0) == -0.0, but -0.0 * -0.0 == 0.0.
5100   Value *X;
5101   if (Op0 == Op1 && match(Op0, m_Intrinsic<Intrinsic::sqrt>(m_Value(X))) &&
5102       FMF.allowReassoc() && FMF.noNaNs() && FMF.noSignedZeros())
5103     return X;
5104 
5105   return nullptr;
5106 }
5107 
5108 /// Given the operands for an FMul, see if we can fold the result
5109 static Value *
5110 SimplifyFMulInst(Value *Op0, Value *Op1, FastMathFlags FMF,
5111                  const SimplifyQuery &Q, unsigned MaxRecurse,
5112                  fp::ExceptionBehavior ExBehavior = fp::ebIgnore,
5113                  RoundingMode Rounding = RoundingMode::NearestTiesToEven) {
5114   if (isDefaultFPEnvironment(ExBehavior, Rounding))
5115     if (Constant *C = foldOrCommuteConstant(Instruction::FMul, Op0, Op1, Q))
5116       return C;
5117 
5118   // Now apply simplifications that do not require rounding.
5119   return SimplifyFMAFMul(Op0, Op1, FMF, Q, MaxRecurse, ExBehavior, Rounding);
5120 }
5121 
5122 Value *llvm::SimplifyFAddInst(Value *Op0, Value *Op1, FastMathFlags FMF,
5123                               const SimplifyQuery &Q,
5124                               fp::ExceptionBehavior ExBehavior,
5125                               RoundingMode Rounding) {
5126   return ::SimplifyFAddInst(Op0, Op1, FMF, Q, RecursionLimit, ExBehavior,
5127                             Rounding);
5128 }
5129 
5130 Value *llvm::SimplifyFSubInst(Value *Op0, Value *Op1, FastMathFlags FMF,
5131                               const SimplifyQuery &Q,
5132                               fp::ExceptionBehavior ExBehavior,
5133                               RoundingMode Rounding) {
5134   return ::SimplifyFSubInst(Op0, Op1, FMF, Q, RecursionLimit, ExBehavior,
5135                             Rounding);
5136 }
5137 
5138 Value *llvm::SimplifyFMulInst(Value *Op0, Value *Op1, FastMathFlags FMF,
5139                               const SimplifyQuery &Q,
5140                               fp::ExceptionBehavior ExBehavior,
5141                               RoundingMode Rounding) {
5142   return ::SimplifyFMulInst(Op0, Op1, FMF, Q, RecursionLimit, ExBehavior,
5143                             Rounding);
5144 }
5145 
5146 Value *llvm::SimplifyFMAFMul(Value *Op0, Value *Op1, FastMathFlags FMF,
5147                              const SimplifyQuery &Q,
5148                              fp::ExceptionBehavior ExBehavior,
5149                              RoundingMode Rounding) {
5150   return ::SimplifyFMAFMul(Op0, Op1, FMF, Q, RecursionLimit, ExBehavior,
5151                            Rounding);
5152 }
5153 
5154 static Value *
5155 SimplifyFDivInst(Value *Op0, Value *Op1, FastMathFlags FMF,
5156                  const SimplifyQuery &Q, unsigned,
5157                  fp::ExceptionBehavior ExBehavior = fp::ebIgnore,
5158                  RoundingMode Rounding = RoundingMode::NearestTiesToEven) {
5159   if (isDefaultFPEnvironment(ExBehavior, Rounding))
5160     if (Constant *C = foldOrCommuteConstant(Instruction::FDiv, Op0, Op1, Q))
5161       return C;
5162 
5163   if (Constant *C = simplifyFPOp({Op0, Op1}, FMF, Q, ExBehavior, Rounding))
5164     return C;
5165 
5166   if (!isDefaultFPEnvironment(ExBehavior, Rounding))
5167     return nullptr;
5168 
5169   // X / 1.0 -> X
5170   if (match(Op1, m_FPOne()))
5171     return Op0;
5172 
5173   // 0 / X -> 0
5174   // Requires that NaNs are off (X could be zero) and signed zeroes are
5175   // ignored (X could be positive or negative, so the output sign is unknown).
5176   if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op0, m_AnyZeroFP()))
5177     return ConstantFP::getNullValue(Op0->getType());
5178 
5179   if (FMF.noNaNs()) {
5180     // X / X -> 1.0 is legal when NaNs are ignored.
5181     // We can ignore infinities because INF/INF is NaN.
5182     if (Op0 == Op1)
5183       return ConstantFP::get(Op0->getType(), 1.0);
5184 
5185     // (X * Y) / Y --> X if we can reassociate to the above form.
5186     Value *X;
5187     if (FMF.allowReassoc() && match(Op0, m_c_FMul(m_Value(X), m_Specific(Op1))))
5188       return X;
5189 
5190     // -X /  X -> -1.0 and
5191     //  X / -X -> -1.0 are legal when NaNs are ignored.
5192     // We can ignore signed zeros because +-0.0/+-0.0 is NaN and ignored.
5193     if (match(Op0, m_FNegNSZ(m_Specific(Op1))) ||
5194         match(Op1, m_FNegNSZ(m_Specific(Op0))))
5195       return ConstantFP::get(Op0->getType(), -1.0);
5196   }
5197 
5198   return nullptr;
5199 }
5200 
5201 Value *llvm::SimplifyFDivInst(Value *Op0, Value *Op1, FastMathFlags FMF,
5202                               const SimplifyQuery &Q,
5203                               fp::ExceptionBehavior ExBehavior,
5204                               RoundingMode Rounding) {
5205   return ::SimplifyFDivInst(Op0, Op1, FMF, Q, RecursionLimit, ExBehavior,
5206                             Rounding);
5207 }
5208 
5209 static Value *
5210 SimplifyFRemInst(Value *Op0, Value *Op1, FastMathFlags FMF,
5211                  const SimplifyQuery &Q, unsigned,
5212                  fp::ExceptionBehavior ExBehavior = fp::ebIgnore,
5213                  RoundingMode Rounding = RoundingMode::NearestTiesToEven) {
5214   if (isDefaultFPEnvironment(ExBehavior, Rounding))
5215     if (Constant *C = foldOrCommuteConstant(Instruction::FRem, Op0, Op1, Q))
5216       return C;
5217 
5218   if (Constant *C = simplifyFPOp({Op0, Op1}, FMF, Q, ExBehavior, Rounding))
5219     return C;
5220 
5221   if (!isDefaultFPEnvironment(ExBehavior, Rounding))
5222     return nullptr;
5223 
5224   // Unlike fdiv, the result of frem always matches the sign of the dividend.
5225   // The constant match may include undef elements in a vector, so return a full
5226   // zero constant as the result.
5227   if (FMF.noNaNs()) {
5228     // +0 % X -> 0
5229     if (match(Op0, m_PosZeroFP()))
5230       return ConstantFP::getNullValue(Op0->getType());
5231     // -0 % X -> -0
5232     if (match(Op0, m_NegZeroFP()))
5233       return ConstantFP::getNegativeZero(Op0->getType());
5234   }
5235 
5236   return nullptr;
5237 }
5238 
5239 Value *llvm::SimplifyFRemInst(Value *Op0, Value *Op1, FastMathFlags FMF,
5240                               const SimplifyQuery &Q,
5241                               fp::ExceptionBehavior ExBehavior,
5242                               RoundingMode Rounding) {
5243   return ::SimplifyFRemInst(Op0, Op1, FMF, Q, RecursionLimit, ExBehavior,
5244                             Rounding);
5245 }
5246 
5247 //=== Helper functions for higher up the class hierarchy.
5248 
5249 /// Given the operand for a UnaryOperator, see if we can fold the result.
5250 /// If not, this returns null.
5251 static Value *simplifyUnOp(unsigned Opcode, Value *Op, const SimplifyQuery &Q,
5252                            unsigned MaxRecurse) {
5253   switch (Opcode) {
5254   case Instruction::FNeg:
5255     return simplifyFNegInst(Op, FastMathFlags(), Q, MaxRecurse);
5256   default:
5257     llvm_unreachable("Unexpected opcode");
5258   }
5259 }
5260 
5261 /// Given the operand for a UnaryOperator, see if we can fold the result.
5262 /// If not, this returns null.
5263 /// Try to use FastMathFlags when folding the result.
5264 static Value *simplifyFPUnOp(unsigned Opcode, Value *Op,
5265                              const FastMathFlags &FMF,
5266                              const SimplifyQuery &Q, unsigned MaxRecurse) {
5267   switch (Opcode) {
5268   case Instruction::FNeg:
5269     return simplifyFNegInst(Op, FMF, Q, MaxRecurse);
5270   default:
5271     return simplifyUnOp(Opcode, Op, Q, MaxRecurse);
5272   }
5273 }
5274 
5275 Value *llvm::SimplifyUnOp(unsigned Opcode, Value *Op, const SimplifyQuery &Q) {
5276   return ::simplifyUnOp(Opcode, Op, Q, RecursionLimit);
5277 }
5278 
5279 Value *llvm::SimplifyUnOp(unsigned Opcode, Value *Op, FastMathFlags FMF,
5280                           const SimplifyQuery &Q) {
5281   return ::simplifyFPUnOp(Opcode, Op, FMF, Q, RecursionLimit);
5282 }
5283 
5284 /// Given operands for a BinaryOperator, see if we can fold the result.
5285 /// If not, this returns null.
5286 static Value *SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS,
5287                             const SimplifyQuery &Q, unsigned MaxRecurse) {
5288   switch (Opcode) {
5289   case Instruction::Add:
5290     return SimplifyAddInst(LHS, RHS, false, false, Q, MaxRecurse);
5291   case Instruction::Sub:
5292     return SimplifySubInst(LHS, RHS, false, false, Q, MaxRecurse);
5293   case Instruction::Mul:
5294     return SimplifyMulInst(LHS, RHS, Q, MaxRecurse);
5295   case Instruction::SDiv:
5296     return SimplifySDivInst(LHS, RHS, Q, MaxRecurse);
5297   case Instruction::UDiv:
5298     return SimplifyUDivInst(LHS, RHS, Q, MaxRecurse);
5299   case Instruction::SRem:
5300     return SimplifySRemInst(LHS, RHS, Q, MaxRecurse);
5301   case Instruction::URem:
5302     return SimplifyURemInst(LHS, RHS, Q, MaxRecurse);
5303   case Instruction::Shl:
5304     return SimplifyShlInst(LHS, RHS, false, false, Q, MaxRecurse);
5305   case Instruction::LShr:
5306     return SimplifyLShrInst(LHS, RHS, false, Q, MaxRecurse);
5307   case Instruction::AShr:
5308     return SimplifyAShrInst(LHS, RHS, false, Q, MaxRecurse);
5309   case Instruction::And:
5310     return SimplifyAndInst(LHS, RHS, Q, MaxRecurse);
5311   case Instruction::Or:
5312     return SimplifyOrInst(LHS, RHS, Q, MaxRecurse);
5313   case Instruction::Xor:
5314     return SimplifyXorInst(LHS, RHS, Q, MaxRecurse);
5315   case Instruction::FAdd:
5316     return SimplifyFAddInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse);
5317   case Instruction::FSub:
5318     return SimplifyFSubInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse);
5319   case Instruction::FMul:
5320     return SimplifyFMulInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse);
5321   case Instruction::FDiv:
5322     return SimplifyFDivInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse);
5323   case Instruction::FRem:
5324     return SimplifyFRemInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse);
5325   default:
5326     llvm_unreachable("Unexpected opcode");
5327   }
5328 }
5329 
5330 /// Given operands for a BinaryOperator, see if we can fold the result.
5331 /// If not, this returns null.
5332 /// Try to use FastMathFlags when folding the result.
5333 static Value *SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS,
5334                             const FastMathFlags &FMF, const SimplifyQuery &Q,
5335                             unsigned MaxRecurse) {
5336   switch (Opcode) {
5337   case Instruction::FAdd:
5338     return SimplifyFAddInst(LHS, RHS, FMF, Q, MaxRecurse);
5339   case Instruction::FSub:
5340     return SimplifyFSubInst(LHS, RHS, FMF, Q, MaxRecurse);
5341   case Instruction::FMul:
5342     return SimplifyFMulInst(LHS, RHS, FMF, Q, MaxRecurse);
5343   case Instruction::FDiv:
5344     return SimplifyFDivInst(LHS, RHS, FMF, Q, MaxRecurse);
5345   default:
5346     return SimplifyBinOp(Opcode, LHS, RHS, Q, MaxRecurse);
5347   }
5348 }
5349 
5350 Value *llvm::SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS,
5351                            const SimplifyQuery &Q) {
5352   return ::SimplifyBinOp(Opcode, LHS, RHS, Q, RecursionLimit);
5353 }
5354 
5355 Value *llvm::SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS,
5356                            FastMathFlags FMF, const SimplifyQuery &Q) {
5357   return ::SimplifyBinOp(Opcode, LHS, RHS, FMF, Q, RecursionLimit);
5358 }
5359 
5360 /// Given operands for a CmpInst, see if we can fold the result.
5361 static Value *SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
5362                               const SimplifyQuery &Q, unsigned MaxRecurse) {
5363   if (CmpInst::isIntPredicate((CmpInst::Predicate)Predicate))
5364     return SimplifyICmpInst(Predicate, LHS, RHS, Q, MaxRecurse);
5365   return SimplifyFCmpInst(Predicate, LHS, RHS, FastMathFlags(), Q, MaxRecurse);
5366 }
5367 
5368 Value *llvm::SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
5369                              const SimplifyQuery &Q) {
5370   return ::SimplifyCmpInst(Predicate, LHS, RHS, Q, RecursionLimit);
5371 }
5372 
5373 static bool IsIdempotent(Intrinsic::ID ID) {
5374   switch (ID) {
5375   default: return false;
5376 
5377   // Unary idempotent: f(f(x)) = f(x)
5378   case Intrinsic::fabs:
5379   case Intrinsic::floor:
5380   case Intrinsic::ceil:
5381   case Intrinsic::trunc:
5382   case Intrinsic::rint:
5383   case Intrinsic::nearbyint:
5384   case Intrinsic::round:
5385   case Intrinsic::roundeven:
5386   case Intrinsic::canonicalize:
5387     return true;
5388   }
5389 }
5390 
5391 static Value *SimplifyRelativeLoad(Constant *Ptr, Constant *Offset,
5392                                    const DataLayout &DL) {
5393   GlobalValue *PtrSym;
5394   APInt PtrOffset;
5395   if (!IsConstantOffsetFromGlobal(Ptr, PtrSym, PtrOffset, DL))
5396     return nullptr;
5397 
5398   Type *Int8PtrTy = Type::getInt8PtrTy(Ptr->getContext());
5399   Type *Int32Ty = Type::getInt32Ty(Ptr->getContext());
5400   Type *Int32PtrTy = Int32Ty->getPointerTo();
5401   Type *Int64Ty = Type::getInt64Ty(Ptr->getContext());
5402 
5403   auto *OffsetConstInt = dyn_cast<ConstantInt>(Offset);
5404   if (!OffsetConstInt || OffsetConstInt->getType()->getBitWidth() > 64)
5405     return nullptr;
5406 
5407   uint64_t OffsetInt = OffsetConstInt->getSExtValue();
5408   if (OffsetInt % 4 != 0)
5409     return nullptr;
5410 
5411   Constant *C = ConstantExpr::getGetElementPtr(
5412       Int32Ty, ConstantExpr::getBitCast(Ptr, Int32PtrTy),
5413       ConstantInt::get(Int64Ty, OffsetInt / 4));
5414   Constant *Loaded = ConstantFoldLoadFromConstPtr(C, Int32Ty, DL);
5415   if (!Loaded)
5416     return nullptr;
5417 
5418   auto *LoadedCE = dyn_cast<ConstantExpr>(Loaded);
5419   if (!LoadedCE)
5420     return nullptr;
5421 
5422   if (LoadedCE->getOpcode() == Instruction::Trunc) {
5423     LoadedCE = dyn_cast<ConstantExpr>(LoadedCE->getOperand(0));
5424     if (!LoadedCE)
5425       return nullptr;
5426   }
5427 
5428   if (LoadedCE->getOpcode() != Instruction::Sub)
5429     return nullptr;
5430 
5431   auto *LoadedLHS = dyn_cast<ConstantExpr>(LoadedCE->getOperand(0));
5432   if (!LoadedLHS || LoadedLHS->getOpcode() != Instruction::PtrToInt)
5433     return nullptr;
5434   auto *LoadedLHSPtr = LoadedLHS->getOperand(0);
5435 
5436   Constant *LoadedRHS = LoadedCE->getOperand(1);
5437   GlobalValue *LoadedRHSSym;
5438   APInt LoadedRHSOffset;
5439   if (!IsConstantOffsetFromGlobal(LoadedRHS, LoadedRHSSym, LoadedRHSOffset,
5440                                   DL) ||
5441       PtrSym != LoadedRHSSym || PtrOffset != LoadedRHSOffset)
5442     return nullptr;
5443 
5444   return ConstantExpr::getBitCast(LoadedLHSPtr, Int8PtrTy);
5445 }
5446 
5447 static Value *simplifyUnaryIntrinsic(Function *F, Value *Op0,
5448                                      const SimplifyQuery &Q) {
5449   // Idempotent functions return the same result when called repeatedly.
5450   Intrinsic::ID IID = F->getIntrinsicID();
5451   if (IsIdempotent(IID))
5452     if (auto *II = dyn_cast<IntrinsicInst>(Op0))
5453       if (II->getIntrinsicID() == IID)
5454         return II;
5455 
5456   Value *X;
5457   switch (IID) {
5458   case Intrinsic::fabs:
5459     if (SignBitMustBeZero(Op0, Q.TLI)) return Op0;
5460     break;
5461   case Intrinsic::bswap:
5462     // bswap(bswap(x)) -> x
5463     if (match(Op0, m_BSwap(m_Value(X)))) return X;
5464     break;
5465   case Intrinsic::bitreverse:
5466     // bitreverse(bitreverse(x)) -> x
5467     if (match(Op0, m_BitReverse(m_Value(X)))) return X;
5468     break;
5469   case Intrinsic::ctpop: {
5470     // If everything but the lowest bit is zero, that bit is the pop-count. Ex:
5471     // ctpop(and X, 1) --> and X, 1
5472     unsigned BitWidth = Op0->getType()->getScalarSizeInBits();
5473     if (MaskedValueIsZero(Op0, APInt::getHighBitsSet(BitWidth, BitWidth - 1),
5474                           Q.DL, 0, Q.AC, Q.CxtI, Q.DT))
5475       return Op0;
5476     break;
5477   }
5478   case Intrinsic::exp:
5479     // exp(log(x)) -> x
5480     if (Q.CxtI->hasAllowReassoc() &&
5481         match(Op0, m_Intrinsic<Intrinsic::log>(m_Value(X)))) return X;
5482     break;
5483   case Intrinsic::exp2:
5484     // exp2(log2(x)) -> x
5485     if (Q.CxtI->hasAllowReassoc() &&
5486         match(Op0, m_Intrinsic<Intrinsic::log2>(m_Value(X)))) return X;
5487     break;
5488   case Intrinsic::log:
5489     // log(exp(x)) -> x
5490     if (Q.CxtI->hasAllowReassoc() &&
5491         match(Op0, m_Intrinsic<Intrinsic::exp>(m_Value(X)))) return X;
5492     break;
5493   case Intrinsic::log2:
5494     // log2(exp2(x)) -> x
5495     if (Q.CxtI->hasAllowReassoc() &&
5496         (match(Op0, m_Intrinsic<Intrinsic::exp2>(m_Value(X))) ||
5497          match(Op0, m_Intrinsic<Intrinsic::pow>(m_SpecificFP(2.0),
5498                                                 m_Value(X))))) return X;
5499     break;
5500   case Intrinsic::log10:
5501     // log10(pow(10.0, x)) -> x
5502     if (Q.CxtI->hasAllowReassoc() &&
5503         match(Op0, m_Intrinsic<Intrinsic::pow>(m_SpecificFP(10.0),
5504                                                m_Value(X)))) return X;
5505     break;
5506   case Intrinsic::floor:
5507   case Intrinsic::trunc:
5508   case Intrinsic::ceil:
5509   case Intrinsic::round:
5510   case Intrinsic::roundeven:
5511   case Intrinsic::nearbyint:
5512   case Intrinsic::rint: {
5513     // floor (sitofp x) -> sitofp x
5514     // floor (uitofp x) -> uitofp x
5515     //
5516     // Converting from int always results in a finite integral number or
5517     // infinity. For either of those inputs, these rounding functions always
5518     // return the same value, so the rounding can be eliminated.
5519     if (match(Op0, m_SIToFP(m_Value())) || match(Op0, m_UIToFP(m_Value())))
5520       return Op0;
5521     break;
5522   }
5523   case Intrinsic::experimental_vector_reverse:
5524     // experimental.vector.reverse(experimental.vector.reverse(x)) -> x
5525     if (match(Op0,
5526               m_Intrinsic<Intrinsic::experimental_vector_reverse>(m_Value(X))))
5527       return X;
5528     // experimental.vector.reverse(splat(X)) -> splat(X)
5529     if (isSplatValue(Op0))
5530       return Op0;
5531     break;
5532   default:
5533     break;
5534   }
5535 
5536   return nullptr;
5537 }
5538 
5539 static APInt getMaxMinLimit(Intrinsic::ID IID, unsigned BitWidth) {
5540   switch (IID) {
5541   case Intrinsic::smax: return APInt::getSignedMaxValue(BitWidth);
5542   case Intrinsic::smin: return APInt::getSignedMinValue(BitWidth);
5543   case Intrinsic::umax: return APInt::getMaxValue(BitWidth);
5544   case Intrinsic::umin: return APInt::getMinValue(BitWidth);
5545   default: llvm_unreachable("Unexpected intrinsic");
5546   }
5547 }
5548 
5549 static ICmpInst::Predicate getMaxMinPredicate(Intrinsic::ID IID) {
5550   switch (IID) {
5551   case Intrinsic::smax: return ICmpInst::ICMP_SGE;
5552   case Intrinsic::smin: return ICmpInst::ICMP_SLE;
5553   case Intrinsic::umax: return ICmpInst::ICMP_UGE;
5554   case Intrinsic::umin: return ICmpInst::ICMP_ULE;
5555   default: llvm_unreachable("Unexpected intrinsic");
5556   }
5557 }
5558 
5559 /// Given a min/max intrinsic, see if it can be removed based on having an
5560 /// operand that is another min/max intrinsic with shared operand(s). The caller
5561 /// is expected to swap the operand arguments to handle commutation.
5562 static Value *foldMinMaxSharedOp(Intrinsic::ID IID, Value *Op0, Value *Op1) {
5563   Value *X, *Y;
5564   if (!match(Op0, m_MaxOrMin(m_Value(X), m_Value(Y))))
5565     return nullptr;
5566 
5567   auto *MM0 = dyn_cast<IntrinsicInst>(Op0);
5568   if (!MM0)
5569     return nullptr;
5570   Intrinsic::ID IID0 = MM0->getIntrinsicID();
5571 
5572   if (Op1 == X || Op1 == Y ||
5573       match(Op1, m_c_MaxOrMin(m_Specific(X), m_Specific(Y)))) {
5574     // max (max X, Y), X --> max X, Y
5575     if (IID0 == IID)
5576       return MM0;
5577     // max (min X, Y), X --> X
5578     if (IID0 == getInverseMinMaxIntrinsic(IID))
5579       return Op1;
5580   }
5581   return nullptr;
5582 }
5583 
5584 static Value *simplifyBinaryIntrinsic(Function *F, Value *Op0, Value *Op1,
5585                                       const SimplifyQuery &Q) {
5586   Intrinsic::ID IID = F->getIntrinsicID();
5587   Type *ReturnType = F->getReturnType();
5588   unsigned BitWidth = ReturnType->getScalarSizeInBits();
5589   switch (IID) {
5590   case Intrinsic::abs:
5591     // abs(abs(x)) -> abs(x). We don't need to worry about the nsw arg here.
5592     // It is always ok to pick the earlier abs. We'll just lose nsw if its only
5593     // on the outer abs.
5594     if (match(Op0, m_Intrinsic<Intrinsic::abs>(m_Value(), m_Value())))
5595       return Op0;
5596     break;
5597 
5598   case Intrinsic::cttz: {
5599     Value *X;
5600     if (match(Op0, m_Shl(m_One(), m_Value(X))))
5601       return X;
5602     break;
5603   }
5604   case Intrinsic::ctlz: {
5605     Value *X;
5606     if (match(Op0, m_LShr(m_Negative(), m_Value(X))))
5607       return X;
5608     if (match(Op0, m_AShr(m_Negative(), m_Value())))
5609       return Constant::getNullValue(ReturnType);
5610     break;
5611   }
5612   case Intrinsic::smax:
5613   case Intrinsic::smin:
5614   case Intrinsic::umax:
5615   case Intrinsic::umin: {
5616     // If the arguments are the same, this is a no-op.
5617     if (Op0 == Op1)
5618       return Op0;
5619 
5620     // Canonicalize constant operand as Op1.
5621     if (isa<Constant>(Op0))
5622       std::swap(Op0, Op1);
5623 
5624     // Assume undef is the limit value.
5625     if (Q.isUndefValue(Op1))
5626       return ConstantInt::get(ReturnType, getMaxMinLimit(IID, BitWidth));
5627 
5628     const APInt *C;
5629     if (match(Op1, m_APIntAllowUndef(C))) {
5630       // Clamp to limit value. For example:
5631       // umax(i8 %x, i8 255) --> 255
5632       if (*C == getMaxMinLimit(IID, BitWidth))
5633         return ConstantInt::get(ReturnType, *C);
5634 
5635       // If the constant op is the opposite of the limit value, the other must
5636       // be larger/smaller or equal. For example:
5637       // umin(i8 %x, i8 255) --> %x
5638       if (*C == getMaxMinLimit(getInverseMinMaxIntrinsic(IID), BitWidth))
5639         return Op0;
5640 
5641       // Remove nested call if constant operands allow it. Example:
5642       // max (max X, 7), 5 -> max X, 7
5643       auto *MinMax0 = dyn_cast<IntrinsicInst>(Op0);
5644       if (MinMax0 && MinMax0->getIntrinsicID() == IID) {
5645         // TODO: loosen undef/splat restrictions for vector constants.
5646         Value *M00 = MinMax0->getOperand(0), *M01 = MinMax0->getOperand(1);
5647         const APInt *InnerC;
5648         if ((match(M00, m_APInt(InnerC)) || match(M01, m_APInt(InnerC))) &&
5649             ((IID == Intrinsic::smax && InnerC->sge(*C)) ||
5650              (IID == Intrinsic::smin && InnerC->sle(*C)) ||
5651              (IID == Intrinsic::umax && InnerC->uge(*C)) ||
5652              (IID == Intrinsic::umin && InnerC->ule(*C))))
5653           return Op0;
5654       }
5655     }
5656 
5657     if (Value *V = foldMinMaxSharedOp(IID, Op0, Op1))
5658       return V;
5659     if (Value *V = foldMinMaxSharedOp(IID, Op1, Op0))
5660       return V;
5661 
5662     ICmpInst::Predicate Pred = getMaxMinPredicate(IID);
5663     if (isICmpTrue(Pred, Op0, Op1, Q.getWithoutUndef(), RecursionLimit))
5664       return Op0;
5665     if (isICmpTrue(Pred, Op1, Op0, Q.getWithoutUndef(), RecursionLimit))
5666       return Op1;
5667 
5668     if (Optional<bool> Imp =
5669             isImpliedByDomCondition(Pred, Op0, Op1, Q.CxtI, Q.DL))
5670       return *Imp ? Op0 : Op1;
5671     if (Optional<bool> Imp =
5672             isImpliedByDomCondition(Pred, Op1, Op0, Q.CxtI, Q.DL))
5673       return *Imp ? Op1 : Op0;
5674 
5675     break;
5676   }
5677   case Intrinsic::usub_with_overflow:
5678   case Intrinsic::ssub_with_overflow:
5679     // X - X -> { 0, false }
5680     // X - undef -> { 0, false }
5681     // undef - X -> { 0, false }
5682     if (Op0 == Op1 || Q.isUndefValue(Op0) || Q.isUndefValue(Op1))
5683       return Constant::getNullValue(ReturnType);
5684     break;
5685   case Intrinsic::uadd_with_overflow:
5686   case Intrinsic::sadd_with_overflow:
5687     // X + undef -> { -1, false }
5688     // undef + x -> { -1, false }
5689     if (Q.isUndefValue(Op0) || Q.isUndefValue(Op1)) {
5690       return ConstantStruct::get(
5691           cast<StructType>(ReturnType),
5692           {Constant::getAllOnesValue(ReturnType->getStructElementType(0)),
5693            Constant::getNullValue(ReturnType->getStructElementType(1))});
5694     }
5695     break;
5696   case Intrinsic::umul_with_overflow:
5697   case Intrinsic::smul_with_overflow:
5698     // 0 * X -> { 0, false }
5699     // X * 0 -> { 0, false }
5700     if (match(Op0, m_Zero()) || match(Op1, m_Zero()))
5701       return Constant::getNullValue(ReturnType);
5702     // undef * X -> { 0, false }
5703     // X * undef -> { 0, false }
5704     if (Q.isUndefValue(Op0) || Q.isUndefValue(Op1))
5705       return Constant::getNullValue(ReturnType);
5706     break;
5707   case Intrinsic::uadd_sat:
5708     // sat(MAX + X) -> MAX
5709     // sat(X + MAX) -> MAX
5710     if (match(Op0, m_AllOnes()) || match(Op1, m_AllOnes()))
5711       return Constant::getAllOnesValue(ReturnType);
5712     LLVM_FALLTHROUGH;
5713   case Intrinsic::sadd_sat:
5714     // sat(X + undef) -> -1
5715     // sat(undef + X) -> -1
5716     // For unsigned: Assume undef is MAX, thus we saturate to MAX (-1).
5717     // For signed: Assume undef is ~X, in which case X + ~X = -1.
5718     if (Q.isUndefValue(Op0) || Q.isUndefValue(Op1))
5719       return Constant::getAllOnesValue(ReturnType);
5720 
5721     // X + 0 -> X
5722     if (match(Op1, m_Zero()))
5723       return Op0;
5724     // 0 + X -> X
5725     if (match(Op0, m_Zero()))
5726       return Op1;
5727     break;
5728   case Intrinsic::usub_sat:
5729     // sat(0 - X) -> 0, sat(X - MAX) -> 0
5730     if (match(Op0, m_Zero()) || match(Op1, m_AllOnes()))
5731       return Constant::getNullValue(ReturnType);
5732     LLVM_FALLTHROUGH;
5733   case Intrinsic::ssub_sat:
5734     // X - X -> 0, X - undef -> 0, undef - X -> 0
5735     if (Op0 == Op1 || Q.isUndefValue(Op0) || Q.isUndefValue(Op1))
5736       return Constant::getNullValue(ReturnType);
5737     // X - 0 -> X
5738     if (match(Op1, m_Zero()))
5739       return Op0;
5740     break;
5741   case Intrinsic::load_relative:
5742     if (auto *C0 = dyn_cast<Constant>(Op0))
5743       if (auto *C1 = dyn_cast<Constant>(Op1))
5744         return SimplifyRelativeLoad(C0, C1, Q.DL);
5745     break;
5746   case Intrinsic::powi:
5747     if (auto *Power = dyn_cast<ConstantInt>(Op1)) {
5748       // powi(x, 0) -> 1.0
5749       if (Power->isZero())
5750         return ConstantFP::get(Op0->getType(), 1.0);
5751       // powi(x, 1) -> x
5752       if (Power->isOne())
5753         return Op0;
5754     }
5755     break;
5756   case Intrinsic::copysign:
5757     // copysign X, X --> X
5758     if (Op0 == Op1)
5759       return Op0;
5760     // copysign -X, X --> X
5761     // copysign X, -X --> -X
5762     if (match(Op0, m_FNeg(m_Specific(Op1))) ||
5763         match(Op1, m_FNeg(m_Specific(Op0))))
5764       return Op1;
5765     break;
5766   case Intrinsic::maxnum:
5767   case Intrinsic::minnum:
5768   case Intrinsic::maximum:
5769   case Intrinsic::minimum: {
5770     // If the arguments are the same, this is a no-op.
5771     if (Op0 == Op1) return Op0;
5772 
5773     // Canonicalize constant operand as Op1.
5774     if (isa<Constant>(Op0))
5775       std::swap(Op0, Op1);
5776 
5777     // If an argument is undef, return the other argument.
5778     if (Q.isUndefValue(Op1))
5779       return Op0;
5780 
5781     bool PropagateNaN = IID == Intrinsic::minimum || IID == Intrinsic::maximum;
5782     bool IsMin = IID == Intrinsic::minimum || IID == Intrinsic::minnum;
5783 
5784     // minnum(X, nan) -> X
5785     // maxnum(X, nan) -> X
5786     // minimum(X, nan) -> nan
5787     // maximum(X, nan) -> nan
5788     if (match(Op1, m_NaN()))
5789       return PropagateNaN ? propagateNaN(cast<Constant>(Op1)) : Op0;
5790 
5791     // In the following folds, inf can be replaced with the largest finite
5792     // float, if the ninf flag is set.
5793     const APFloat *C;
5794     if (match(Op1, m_APFloat(C)) &&
5795         (C->isInfinity() || (Q.CxtI->hasNoInfs() && C->isLargest()))) {
5796       // minnum(X, -inf) -> -inf
5797       // maxnum(X, +inf) -> +inf
5798       // minimum(X, -inf) -> -inf if nnan
5799       // maximum(X, +inf) -> +inf if nnan
5800       if (C->isNegative() == IsMin && (!PropagateNaN || Q.CxtI->hasNoNaNs()))
5801         return ConstantFP::get(ReturnType, *C);
5802 
5803       // minnum(X, +inf) -> X if nnan
5804       // maxnum(X, -inf) -> X if nnan
5805       // minimum(X, +inf) -> X
5806       // maximum(X, -inf) -> X
5807       if (C->isNegative() != IsMin && (PropagateNaN || Q.CxtI->hasNoNaNs()))
5808         return Op0;
5809     }
5810 
5811     // Min/max of the same operation with common operand:
5812     // m(m(X, Y)), X --> m(X, Y) (4 commuted variants)
5813     if (auto *M0 = dyn_cast<IntrinsicInst>(Op0))
5814       if (M0->getIntrinsicID() == IID &&
5815           (M0->getOperand(0) == Op1 || M0->getOperand(1) == Op1))
5816         return Op0;
5817     if (auto *M1 = dyn_cast<IntrinsicInst>(Op1))
5818       if (M1->getIntrinsicID() == IID &&
5819           (M1->getOperand(0) == Op0 || M1->getOperand(1) == Op0))
5820         return Op1;
5821 
5822     break;
5823   }
5824   case Intrinsic::experimental_vector_extract: {
5825     Type *ReturnType = F->getReturnType();
5826 
5827     // (extract_vector (insert_vector _, X, 0), 0) -> X
5828     unsigned IdxN = cast<ConstantInt>(Op1)->getZExtValue();
5829     Value *X = nullptr;
5830     if (match(Op0, m_Intrinsic<Intrinsic::experimental_vector_insert>(
5831                        m_Value(), m_Value(X), m_Zero())) &&
5832         IdxN == 0 && X->getType() == ReturnType)
5833       return X;
5834 
5835     break;
5836   }
5837   default:
5838     break;
5839   }
5840 
5841   return nullptr;
5842 }
5843 
5844 static Value *simplifyIntrinsic(CallBase *Call, const SimplifyQuery &Q) {
5845 
5846   unsigned NumOperands = Call->arg_size();
5847   Function *F = cast<Function>(Call->getCalledFunction());
5848   Intrinsic::ID IID = F->getIntrinsicID();
5849 
5850   // Most of the intrinsics with no operands have some kind of side effect.
5851   // Don't simplify.
5852   if (!NumOperands) {
5853     switch (IID) {
5854     case Intrinsic::vscale: {
5855       // Call may not be inserted into the IR yet at point of calling simplify.
5856       if (!Call->getParent() || !Call->getParent()->getParent())
5857         return nullptr;
5858       auto Attr = Call->getFunction()->getFnAttribute(Attribute::VScaleRange);
5859       if (!Attr.isValid())
5860         return nullptr;
5861       unsigned VScaleMin, VScaleMax;
5862       std::tie(VScaleMin, VScaleMax) = Attr.getVScaleRangeArgs();
5863       if (VScaleMin == VScaleMax && VScaleMax != 0)
5864         return ConstantInt::get(F->getReturnType(), VScaleMin);
5865       return nullptr;
5866     }
5867     default:
5868       return nullptr;
5869     }
5870   }
5871 
5872   if (NumOperands == 1)
5873     return simplifyUnaryIntrinsic(F, Call->getArgOperand(0), Q);
5874 
5875   if (NumOperands == 2)
5876     return simplifyBinaryIntrinsic(F, Call->getArgOperand(0),
5877                                    Call->getArgOperand(1), Q);
5878 
5879   // Handle intrinsics with 3 or more arguments.
5880   switch (IID) {
5881   case Intrinsic::masked_load:
5882   case Intrinsic::masked_gather: {
5883     Value *MaskArg = Call->getArgOperand(2);
5884     Value *PassthruArg = Call->getArgOperand(3);
5885     // If the mask is all zeros or undef, the "passthru" argument is the result.
5886     if (maskIsAllZeroOrUndef(MaskArg))
5887       return PassthruArg;
5888     return nullptr;
5889   }
5890   case Intrinsic::fshl:
5891   case Intrinsic::fshr: {
5892     Value *Op0 = Call->getArgOperand(0), *Op1 = Call->getArgOperand(1),
5893           *ShAmtArg = Call->getArgOperand(2);
5894 
5895     // If both operands are undef, the result is undef.
5896     if (Q.isUndefValue(Op0) && Q.isUndefValue(Op1))
5897       return UndefValue::get(F->getReturnType());
5898 
5899     // If shift amount is undef, assume it is zero.
5900     if (Q.isUndefValue(ShAmtArg))
5901       return Call->getArgOperand(IID == Intrinsic::fshl ? 0 : 1);
5902 
5903     const APInt *ShAmtC;
5904     if (match(ShAmtArg, m_APInt(ShAmtC))) {
5905       // If there's effectively no shift, return the 1st arg or 2nd arg.
5906       APInt BitWidth = APInt(ShAmtC->getBitWidth(), ShAmtC->getBitWidth());
5907       if (ShAmtC->urem(BitWidth).isZero())
5908         return Call->getArgOperand(IID == Intrinsic::fshl ? 0 : 1);
5909     }
5910 
5911     // Rotating zero by anything is zero.
5912     if (match(Op0, m_Zero()) && match(Op1, m_Zero()))
5913       return ConstantInt::getNullValue(F->getReturnType());
5914 
5915     // Rotating -1 by anything is -1.
5916     if (match(Op0, m_AllOnes()) && match(Op1, m_AllOnes()))
5917       return ConstantInt::getAllOnesValue(F->getReturnType());
5918 
5919     return nullptr;
5920   }
5921   case Intrinsic::experimental_constrained_fma: {
5922     Value *Op0 = Call->getArgOperand(0);
5923     Value *Op1 = Call->getArgOperand(1);
5924     Value *Op2 = Call->getArgOperand(2);
5925     auto *FPI = cast<ConstrainedFPIntrinsic>(Call);
5926     if (Value *V = simplifyFPOp({Op0, Op1, Op2}, {}, Q,
5927                                 FPI->getExceptionBehavior().getValue(),
5928                                 FPI->getRoundingMode().getValue()))
5929       return V;
5930     return nullptr;
5931   }
5932   case Intrinsic::fma:
5933   case Intrinsic::fmuladd: {
5934     Value *Op0 = Call->getArgOperand(0);
5935     Value *Op1 = Call->getArgOperand(1);
5936     Value *Op2 = Call->getArgOperand(2);
5937     if (Value *V = simplifyFPOp({Op0, Op1, Op2}, {}, Q, fp::ebIgnore,
5938                                 RoundingMode::NearestTiesToEven))
5939       return V;
5940     return nullptr;
5941   }
5942   case Intrinsic::smul_fix:
5943   case Intrinsic::smul_fix_sat: {
5944     Value *Op0 = Call->getArgOperand(0);
5945     Value *Op1 = Call->getArgOperand(1);
5946     Value *Op2 = Call->getArgOperand(2);
5947     Type *ReturnType = F->getReturnType();
5948 
5949     // Canonicalize constant operand as Op1 (ConstantFolding handles the case
5950     // when both Op0 and Op1 are constant so we do not care about that special
5951     // case here).
5952     if (isa<Constant>(Op0))
5953       std::swap(Op0, Op1);
5954 
5955     // X * 0 -> 0
5956     if (match(Op1, m_Zero()))
5957       return Constant::getNullValue(ReturnType);
5958 
5959     // X * undef -> 0
5960     if (Q.isUndefValue(Op1))
5961       return Constant::getNullValue(ReturnType);
5962 
5963     // X * (1 << Scale) -> X
5964     APInt ScaledOne =
5965         APInt::getOneBitSet(ReturnType->getScalarSizeInBits(),
5966                             cast<ConstantInt>(Op2)->getZExtValue());
5967     if (ScaledOne.isNonNegative() && match(Op1, m_SpecificInt(ScaledOne)))
5968       return Op0;
5969 
5970     return nullptr;
5971   }
5972   case Intrinsic::experimental_vector_insert: {
5973     Value *Vec = Call->getArgOperand(0);
5974     Value *SubVec = Call->getArgOperand(1);
5975     Value *Idx = Call->getArgOperand(2);
5976     Type *ReturnType = F->getReturnType();
5977 
5978     // (insert_vector Y, (extract_vector X, 0), 0) -> X
5979     // where: Y is X, or Y is undef
5980     unsigned IdxN = cast<ConstantInt>(Idx)->getZExtValue();
5981     Value *X = nullptr;
5982     if (match(SubVec, m_Intrinsic<Intrinsic::experimental_vector_extract>(
5983                           m_Value(X), m_Zero())) &&
5984         (Q.isUndefValue(Vec) || Vec == X) && IdxN == 0 &&
5985         X->getType() == ReturnType)
5986       return X;
5987 
5988     return nullptr;
5989   }
5990   case Intrinsic::experimental_constrained_fadd: {
5991     auto *FPI = cast<ConstrainedFPIntrinsic>(Call);
5992     return SimplifyFAddInst(FPI->getArgOperand(0), FPI->getArgOperand(1),
5993                             FPI->getFastMathFlags(), Q,
5994                             FPI->getExceptionBehavior().getValue(),
5995                             FPI->getRoundingMode().getValue());
5996     break;
5997   }
5998   case Intrinsic::experimental_constrained_fsub: {
5999     auto *FPI = cast<ConstrainedFPIntrinsic>(Call);
6000     return SimplifyFSubInst(FPI->getArgOperand(0), FPI->getArgOperand(1),
6001                             FPI->getFastMathFlags(), Q,
6002                             FPI->getExceptionBehavior().getValue(),
6003                             FPI->getRoundingMode().getValue());
6004     break;
6005   }
6006   case Intrinsic::experimental_constrained_fmul: {
6007     auto *FPI = cast<ConstrainedFPIntrinsic>(Call);
6008     return SimplifyFMulInst(FPI->getArgOperand(0), FPI->getArgOperand(1),
6009                             FPI->getFastMathFlags(), Q,
6010                             FPI->getExceptionBehavior().getValue(),
6011                             FPI->getRoundingMode().getValue());
6012     break;
6013   }
6014   case Intrinsic::experimental_constrained_fdiv: {
6015     auto *FPI = cast<ConstrainedFPIntrinsic>(Call);
6016     return SimplifyFDivInst(FPI->getArgOperand(0), FPI->getArgOperand(1),
6017                             FPI->getFastMathFlags(), Q,
6018                             FPI->getExceptionBehavior().getValue(),
6019                             FPI->getRoundingMode().getValue());
6020     break;
6021   }
6022   case Intrinsic::experimental_constrained_frem: {
6023     auto *FPI = cast<ConstrainedFPIntrinsic>(Call);
6024     return SimplifyFRemInst(FPI->getArgOperand(0), FPI->getArgOperand(1),
6025                             FPI->getFastMathFlags(), Q,
6026                             FPI->getExceptionBehavior().getValue(),
6027                             FPI->getRoundingMode().getValue());
6028     break;
6029   }
6030   default:
6031     return nullptr;
6032   }
6033 }
6034 
6035 static Value *tryConstantFoldCall(CallBase *Call, const SimplifyQuery &Q) {
6036   auto *F = dyn_cast<Function>(Call->getCalledOperand());
6037   if (!F || !canConstantFoldCallTo(Call, F))
6038     return nullptr;
6039 
6040   SmallVector<Constant *, 4> ConstantArgs;
6041   unsigned NumArgs = Call->arg_size();
6042   ConstantArgs.reserve(NumArgs);
6043   for (auto &Arg : Call->args()) {
6044     Constant *C = dyn_cast<Constant>(&Arg);
6045     if (!C) {
6046       if (isa<MetadataAsValue>(Arg.get()))
6047         continue;
6048       return nullptr;
6049     }
6050     ConstantArgs.push_back(C);
6051   }
6052 
6053   return ConstantFoldCall(Call, F, ConstantArgs, Q.TLI);
6054 }
6055 
6056 Value *llvm::SimplifyCall(CallBase *Call, const SimplifyQuery &Q) {
6057   // musttail calls can only be simplified if they are also DCEd.
6058   // As we can't guarantee this here, don't simplify them.
6059   if (Call->isMustTailCall())
6060     return nullptr;
6061 
6062   // call undef -> poison
6063   // call null -> poison
6064   Value *Callee = Call->getCalledOperand();
6065   if (isa<UndefValue>(Callee) || isa<ConstantPointerNull>(Callee))
6066     return PoisonValue::get(Call->getType());
6067 
6068   if (Value *V = tryConstantFoldCall(Call, Q))
6069     return V;
6070 
6071   auto *F = dyn_cast<Function>(Callee);
6072   if (F && F->isIntrinsic())
6073     if (Value *Ret = simplifyIntrinsic(Call, Q))
6074       return Ret;
6075 
6076   return nullptr;
6077 }
6078 
6079 /// Given operands for a Freeze, see if we can fold the result.
6080 static Value *SimplifyFreezeInst(Value *Op0, const SimplifyQuery &Q) {
6081   // Use a utility function defined in ValueTracking.
6082   if (llvm::isGuaranteedNotToBeUndefOrPoison(Op0, Q.AC, Q.CxtI, Q.DT))
6083     return Op0;
6084   // We have room for improvement.
6085   return nullptr;
6086 }
6087 
6088 Value *llvm::SimplifyFreezeInst(Value *Op0, const SimplifyQuery &Q) {
6089   return ::SimplifyFreezeInst(Op0, Q);
6090 }
6091 
6092 static Constant *ConstructLoadOperandConstant(Value *Op) {
6093   SmallVector<Value *, 4> Worklist;
6094   // Invalid IR in unreachable code may contain self-referential values. Don't infinitely loop.
6095   SmallPtrSet<Value *, 4> Visited;
6096   Worklist.push_back(Op);
6097   while (true) {
6098     Value *CurOp = Worklist.back();
6099     if (!Visited.insert(CurOp).second)
6100       return nullptr;
6101     if (isa<Constant>(CurOp))
6102       break;
6103     if (auto *BC = dyn_cast<BitCastOperator>(CurOp)) {
6104       Worklist.push_back(BC->getOperand(0));
6105     } else if (auto *GEP = dyn_cast<GEPOperator>(CurOp)) {
6106       for (unsigned I = 1; I != GEP->getNumOperands(); ++I) {
6107         if (!isa<Constant>(GEP->getOperand(I)))
6108           return nullptr;
6109       }
6110       Worklist.push_back(GEP->getOperand(0));
6111     } else if (auto *II = dyn_cast<IntrinsicInst>(CurOp)) {
6112       if (II->isLaunderOrStripInvariantGroup())
6113         Worklist.push_back(II->getOperand(0));
6114       else
6115         return nullptr;
6116     } else {
6117       return nullptr;
6118     }
6119   }
6120 
6121   Constant *NewOp = cast<Constant>(Worklist.pop_back_val());
6122   while (!Worklist.empty()) {
6123     Value *CurOp = Worklist.pop_back_val();
6124     if (isa<BitCastOperator>(CurOp)) {
6125       NewOp = ConstantExpr::getBitCast(NewOp, CurOp->getType());
6126     } else if (auto *GEP = dyn_cast<GEPOperator>(CurOp)) {
6127       SmallVector<Constant *> Idxs;
6128       Idxs.reserve(GEP->getNumOperands() - 1);
6129       for (unsigned I = 1, E = GEP->getNumOperands(); I != E; ++I) {
6130         Idxs.push_back(cast<Constant>(GEP->getOperand(I)));
6131       }
6132       NewOp = ConstantExpr::getGetElementPtr(GEP->getSourceElementType(), NewOp,
6133                                              Idxs, GEP->isInBounds(),
6134                                              GEP->getInRangeIndex());
6135     } else {
6136       assert(isa<IntrinsicInst>(CurOp) &&
6137              cast<IntrinsicInst>(CurOp)->isLaunderOrStripInvariantGroup() &&
6138              "expected invariant group intrinsic");
6139       NewOp = ConstantExpr::getBitCast(NewOp, CurOp->getType());
6140     }
6141   }
6142   return NewOp;
6143 }
6144 
6145 static Value *SimplifyLoadInst(LoadInst *LI, Value *PtrOp,
6146                                const SimplifyQuery &Q) {
6147   if (LI->isVolatile())
6148     return nullptr;
6149 
6150   // Try to make the load operand a constant, specifically handle
6151   // invariant.group intrinsics.
6152   auto *PtrOpC = dyn_cast<Constant>(PtrOp);
6153   if (!PtrOpC)
6154     PtrOpC = ConstructLoadOperandConstant(PtrOp);
6155 
6156   if (PtrOpC)
6157     return ConstantFoldLoadFromConstPtr(PtrOpC, LI->getType(), Q.DL);
6158 
6159   return nullptr;
6160 }
6161 
6162 /// See if we can compute a simplified version of this instruction.
6163 /// If not, this returns null.
6164 
6165 static Value *simplifyInstructionWithOperands(Instruction *I,
6166                                               ArrayRef<Value *> NewOps,
6167                                               const SimplifyQuery &SQ,
6168                                               OptimizationRemarkEmitter *ORE) {
6169   const SimplifyQuery Q = SQ.CxtI ? SQ : SQ.getWithInstruction(I);
6170   Value *Result = nullptr;
6171 
6172   switch (I->getOpcode()) {
6173   default:
6174     if (llvm::all_of(NewOps, [](Value *V) { return isa<Constant>(V); })) {
6175       SmallVector<Constant *, 8> NewConstOps(NewOps.size());
6176       transform(NewOps, NewConstOps.begin(),
6177                 [](Value *V) { return cast<Constant>(V); });
6178       Result = ConstantFoldInstOperands(I, NewConstOps, Q.DL, Q.TLI);
6179     }
6180     break;
6181   case Instruction::FNeg:
6182     Result = SimplifyFNegInst(NewOps[0], I->getFastMathFlags(), Q);
6183     break;
6184   case Instruction::FAdd:
6185     Result = SimplifyFAddInst(NewOps[0], NewOps[1], I->getFastMathFlags(), Q);
6186     break;
6187   case Instruction::Add:
6188     Result = SimplifyAddInst(
6189         NewOps[0], NewOps[1], Q.IIQ.hasNoSignedWrap(cast<BinaryOperator>(I)),
6190         Q.IIQ.hasNoUnsignedWrap(cast<BinaryOperator>(I)), Q);
6191     break;
6192   case Instruction::FSub:
6193     Result = SimplifyFSubInst(NewOps[0], NewOps[1], I->getFastMathFlags(), Q);
6194     break;
6195   case Instruction::Sub:
6196     Result = SimplifySubInst(
6197         NewOps[0], NewOps[1], Q.IIQ.hasNoSignedWrap(cast<BinaryOperator>(I)),
6198         Q.IIQ.hasNoUnsignedWrap(cast<BinaryOperator>(I)), Q);
6199     break;
6200   case Instruction::FMul:
6201     Result = SimplifyFMulInst(NewOps[0], NewOps[1], I->getFastMathFlags(), Q);
6202     break;
6203   case Instruction::Mul:
6204     Result = SimplifyMulInst(NewOps[0], NewOps[1], Q);
6205     break;
6206   case Instruction::SDiv:
6207     Result = SimplifySDivInst(NewOps[0], NewOps[1], Q);
6208     break;
6209   case Instruction::UDiv:
6210     Result = SimplifyUDivInst(NewOps[0], NewOps[1], Q);
6211     break;
6212   case Instruction::FDiv:
6213     Result = SimplifyFDivInst(NewOps[0], NewOps[1], I->getFastMathFlags(), Q);
6214     break;
6215   case Instruction::SRem:
6216     Result = SimplifySRemInst(NewOps[0], NewOps[1], Q);
6217     break;
6218   case Instruction::URem:
6219     Result = SimplifyURemInst(NewOps[0], NewOps[1], Q);
6220     break;
6221   case Instruction::FRem:
6222     Result = SimplifyFRemInst(NewOps[0], NewOps[1], I->getFastMathFlags(), Q);
6223     break;
6224   case Instruction::Shl:
6225     Result = SimplifyShlInst(
6226         NewOps[0], NewOps[1], Q.IIQ.hasNoSignedWrap(cast<BinaryOperator>(I)),
6227         Q.IIQ.hasNoUnsignedWrap(cast<BinaryOperator>(I)), Q);
6228     break;
6229   case Instruction::LShr:
6230     Result = SimplifyLShrInst(NewOps[0], NewOps[1],
6231                               Q.IIQ.isExact(cast<BinaryOperator>(I)), Q);
6232     break;
6233   case Instruction::AShr:
6234     Result = SimplifyAShrInst(NewOps[0], NewOps[1],
6235                               Q.IIQ.isExact(cast<BinaryOperator>(I)), Q);
6236     break;
6237   case Instruction::And:
6238     Result = SimplifyAndInst(NewOps[0], NewOps[1], Q);
6239     break;
6240   case Instruction::Or:
6241     Result = SimplifyOrInst(NewOps[0], NewOps[1], Q);
6242     break;
6243   case Instruction::Xor:
6244     Result = SimplifyXorInst(NewOps[0], NewOps[1], Q);
6245     break;
6246   case Instruction::ICmp:
6247     Result = SimplifyICmpInst(cast<ICmpInst>(I)->getPredicate(), NewOps[0],
6248                               NewOps[1], Q);
6249     break;
6250   case Instruction::FCmp:
6251     Result = SimplifyFCmpInst(cast<FCmpInst>(I)->getPredicate(), NewOps[0],
6252                               NewOps[1], I->getFastMathFlags(), Q);
6253     break;
6254   case Instruction::Select:
6255     Result = SimplifySelectInst(NewOps[0], NewOps[1], NewOps[2], Q);
6256     break;
6257   case Instruction::GetElementPtr: {
6258     auto *GEPI = cast<GetElementPtrInst>(I);
6259     Result = SimplifyGEPInst(GEPI->getSourceElementType(), NewOps,
6260                              GEPI->isInBounds(), Q);
6261     break;
6262   }
6263   case Instruction::InsertValue: {
6264     InsertValueInst *IV = cast<InsertValueInst>(I);
6265     Result = SimplifyInsertValueInst(NewOps[0], NewOps[1], IV->getIndices(), Q);
6266     break;
6267   }
6268   case Instruction::InsertElement: {
6269     Result = SimplifyInsertElementInst(NewOps[0], NewOps[1], NewOps[2], Q);
6270     break;
6271   }
6272   case Instruction::ExtractValue: {
6273     auto *EVI = cast<ExtractValueInst>(I);
6274     Result = SimplifyExtractValueInst(NewOps[0], EVI->getIndices(), Q);
6275     break;
6276   }
6277   case Instruction::ExtractElement: {
6278     Result = SimplifyExtractElementInst(NewOps[0], NewOps[1], Q);
6279     break;
6280   }
6281   case Instruction::ShuffleVector: {
6282     auto *SVI = cast<ShuffleVectorInst>(I);
6283     Result = SimplifyShuffleVectorInst(
6284         NewOps[0], NewOps[1], SVI->getShuffleMask(), SVI->getType(), Q);
6285     break;
6286   }
6287   case Instruction::PHI:
6288     Result = SimplifyPHINode(cast<PHINode>(I), NewOps, Q);
6289     break;
6290   case Instruction::Call: {
6291     // TODO: Use NewOps
6292     Result = SimplifyCall(cast<CallInst>(I), Q);
6293     break;
6294   }
6295   case Instruction::Freeze:
6296     Result = llvm::SimplifyFreezeInst(NewOps[0], Q);
6297     break;
6298 #define HANDLE_CAST_INST(num, opc, clas) case Instruction::opc:
6299 #include "llvm/IR/Instruction.def"
6300 #undef HANDLE_CAST_INST
6301     Result = SimplifyCastInst(I->getOpcode(), NewOps[0], I->getType(), Q);
6302     break;
6303   case Instruction::Alloca:
6304     // No simplifications for Alloca and it can't be constant folded.
6305     Result = nullptr;
6306     break;
6307   case Instruction::Load:
6308     Result = SimplifyLoadInst(cast<LoadInst>(I), NewOps[0], Q);
6309     break;
6310   }
6311 
6312   /// If called on unreachable code, the above logic may report that the
6313   /// instruction simplified to itself.  Make life easier for users by
6314   /// detecting that case here, returning a safe value instead.
6315   return Result == I ? UndefValue::get(I->getType()) : Result;
6316 }
6317 
6318 Value *llvm::SimplifyInstructionWithOperands(Instruction *I,
6319                                              ArrayRef<Value *> NewOps,
6320                                              const SimplifyQuery &SQ,
6321                                              OptimizationRemarkEmitter *ORE) {
6322   assert(NewOps.size() == I->getNumOperands() &&
6323          "Number of operands should match the instruction!");
6324   return ::simplifyInstructionWithOperands(I, NewOps, SQ, ORE);
6325 }
6326 
6327 Value *llvm::SimplifyInstruction(Instruction *I, const SimplifyQuery &SQ,
6328                                  OptimizationRemarkEmitter *ORE) {
6329   SmallVector<Value *, 8> Ops(I->operands());
6330   return ::simplifyInstructionWithOperands(I, Ops, SQ, ORE);
6331 }
6332 
6333 /// Implementation of recursive simplification through an instruction's
6334 /// uses.
6335 ///
6336 /// This is the common implementation of the recursive simplification routines.
6337 /// If we have a pre-simplified value in 'SimpleV', that is forcibly used to
6338 /// replace the instruction 'I'. Otherwise, we simply add 'I' to the list of
6339 /// instructions to process and attempt to simplify it using
6340 /// InstructionSimplify. Recursively visited users which could not be
6341 /// simplified themselves are to the optional UnsimplifiedUsers set for
6342 /// further processing by the caller.
6343 ///
6344 /// This routine returns 'true' only when *it* simplifies something. The passed
6345 /// in simplified value does not count toward this.
6346 static bool replaceAndRecursivelySimplifyImpl(
6347     Instruction *I, Value *SimpleV, const TargetLibraryInfo *TLI,
6348     const DominatorTree *DT, AssumptionCache *AC,
6349     SmallSetVector<Instruction *, 8> *UnsimplifiedUsers = nullptr) {
6350   bool Simplified = false;
6351   SmallSetVector<Instruction *, 8> Worklist;
6352   const DataLayout &DL = I->getModule()->getDataLayout();
6353 
6354   // If we have an explicit value to collapse to, do that round of the
6355   // simplification loop by hand initially.
6356   if (SimpleV) {
6357     for (User *U : I->users())
6358       if (U != I)
6359         Worklist.insert(cast<Instruction>(U));
6360 
6361     // Replace the instruction with its simplified value.
6362     I->replaceAllUsesWith(SimpleV);
6363 
6364     // Gracefully handle edge cases where the instruction is not wired into any
6365     // parent block.
6366     if (I->getParent() && !I->isEHPad() && !I->isTerminator() &&
6367         !I->mayHaveSideEffects())
6368       I->eraseFromParent();
6369   } else {
6370     Worklist.insert(I);
6371   }
6372 
6373   // Note that we must test the size on each iteration, the worklist can grow.
6374   for (unsigned Idx = 0; Idx != Worklist.size(); ++Idx) {
6375     I = Worklist[Idx];
6376 
6377     // See if this instruction simplifies.
6378     SimpleV = SimplifyInstruction(I, {DL, TLI, DT, AC});
6379     if (!SimpleV) {
6380       if (UnsimplifiedUsers)
6381         UnsimplifiedUsers->insert(I);
6382       continue;
6383     }
6384 
6385     Simplified = true;
6386 
6387     // Stash away all the uses of the old instruction so we can check them for
6388     // recursive simplifications after a RAUW. This is cheaper than checking all
6389     // uses of To on the recursive step in most cases.
6390     for (User *U : I->users())
6391       Worklist.insert(cast<Instruction>(U));
6392 
6393     // Replace the instruction with its simplified value.
6394     I->replaceAllUsesWith(SimpleV);
6395 
6396     // Gracefully handle edge cases where the instruction is not wired into any
6397     // parent block.
6398     if (I->getParent() && !I->isEHPad() && !I->isTerminator() &&
6399         !I->mayHaveSideEffects())
6400       I->eraseFromParent();
6401   }
6402   return Simplified;
6403 }
6404 
6405 bool llvm::replaceAndRecursivelySimplify(
6406     Instruction *I, Value *SimpleV, const TargetLibraryInfo *TLI,
6407     const DominatorTree *DT, AssumptionCache *AC,
6408     SmallSetVector<Instruction *, 8> *UnsimplifiedUsers) {
6409   assert(I != SimpleV && "replaceAndRecursivelySimplify(X,X) is not valid!");
6410   assert(SimpleV && "Must provide a simplified value.");
6411   return replaceAndRecursivelySimplifyImpl(I, SimpleV, TLI, DT, AC,
6412                                            UnsimplifiedUsers);
6413 }
6414 
6415 namespace llvm {
6416 const SimplifyQuery getBestSimplifyQuery(Pass &P, Function &F) {
6417   auto *DTWP = P.getAnalysisIfAvailable<DominatorTreeWrapperPass>();
6418   auto *DT = DTWP ? &DTWP->getDomTree() : nullptr;
6419   auto *TLIWP = P.getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>();
6420   auto *TLI = TLIWP ? &TLIWP->getTLI(F) : nullptr;
6421   auto *ACWP = P.getAnalysisIfAvailable<AssumptionCacheTracker>();
6422   auto *AC = ACWP ? &ACWP->getAssumptionCache(F) : nullptr;
6423   return {F.getParent()->getDataLayout(), TLI, DT, AC};
6424 }
6425 
6426 const SimplifyQuery getBestSimplifyQuery(LoopStandardAnalysisResults &AR,
6427                                          const DataLayout &DL) {
6428   return {DL, &AR.TLI, &AR.DT, &AR.AC};
6429 }
6430 
6431 template <class T, class... TArgs>
6432 const SimplifyQuery getBestSimplifyQuery(AnalysisManager<T, TArgs...> &AM,
6433                                          Function &F) {
6434   auto *DT = AM.template getCachedResult<DominatorTreeAnalysis>(F);
6435   auto *TLI = AM.template getCachedResult<TargetLibraryAnalysis>(F);
6436   auto *AC = AM.template getCachedResult<AssumptionAnalysis>(F);
6437   return {F.getParent()->getDataLayout(), TLI, DT, AC};
6438 }
6439 template const SimplifyQuery getBestSimplifyQuery(AnalysisManager<Function> &,
6440                                                   Function &);
6441 }
6442