1 //===- InstructionSimplify.cpp - Fold instruction operands ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements routines for folding instructions into simpler forms 11 // that do not require creating new instructions. This does constant folding 12 // ("add i32 1, 1" -> "2") but can also handle non-constant operands, either 13 // returning a constant ("and i32 %x, 0" -> "0") or an already existing value 14 // ("and i32 %x, %x" -> "%x"). All operands are assumed to have already been 15 // simplified: This is usually true and assuming it simplifies the logic (if 16 // they have not been simplified then results are correct but maybe suboptimal). 17 // 18 //===----------------------------------------------------------------------===// 19 20 #include "llvm/Analysis/InstructionSimplify.h" 21 #include "llvm/ADT/SetVector.h" 22 #include "llvm/ADT/Statistic.h" 23 #include "llvm/Analysis/AliasAnalysis.h" 24 #include "llvm/Analysis/AssumptionCache.h" 25 #include "llvm/Analysis/CaptureTracking.h" 26 #include "llvm/Analysis/CmpInstAnalysis.h" 27 #include "llvm/Analysis/ConstantFolding.h" 28 #include "llvm/Analysis/LoopAnalysisManager.h" 29 #include "llvm/Analysis/MemoryBuiltins.h" 30 #include "llvm/Analysis/ValueTracking.h" 31 #include "llvm/Analysis/VectorUtils.h" 32 #include "llvm/IR/ConstantRange.h" 33 #include "llvm/IR/DataLayout.h" 34 #include "llvm/IR/Dominators.h" 35 #include "llvm/IR/GetElementPtrTypeIterator.h" 36 #include "llvm/IR/GlobalAlias.h" 37 #include "llvm/IR/Operator.h" 38 #include "llvm/IR/PatternMatch.h" 39 #include "llvm/IR/ValueHandle.h" 40 #include "llvm/Support/KnownBits.h" 41 #include <algorithm> 42 using namespace llvm; 43 using namespace llvm::PatternMatch; 44 45 #define DEBUG_TYPE "instsimplify" 46 47 enum { RecursionLimit = 3 }; 48 49 STATISTIC(NumExpand, "Number of expansions"); 50 STATISTIC(NumReassoc, "Number of reassociations"); 51 52 static Value *SimplifyAndInst(Value *, Value *, const SimplifyQuery &, unsigned); 53 static Value *SimplifyBinOp(unsigned, Value *, Value *, const SimplifyQuery &, 54 unsigned); 55 static Value *SimplifyFPBinOp(unsigned, Value *, Value *, const FastMathFlags &, 56 const SimplifyQuery &, unsigned); 57 static Value *SimplifyCmpInst(unsigned, Value *, Value *, const SimplifyQuery &, 58 unsigned); 59 static Value *SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS, 60 const SimplifyQuery &Q, unsigned MaxRecurse); 61 static Value *SimplifyOrInst(Value *, Value *, const SimplifyQuery &, unsigned); 62 static Value *SimplifyXorInst(Value *, Value *, const SimplifyQuery &, unsigned); 63 static Value *SimplifyCastInst(unsigned, Value *, Type *, 64 const SimplifyQuery &, unsigned); 65 static Value *SimplifyGEPInst(Type *, ArrayRef<Value *>, const SimplifyQuery &, 66 unsigned); 67 68 /// For a boolean type or a vector of boolean type, return false or a vector 69 /// with every element false. 70 static Constant *getFalse(Type *Ty) { 71 return ConstantInt::getFalse(Ty); 72 } 73 74 /// For a boolean type or a vector of boolean type, return true or a vector 75 /// with every element true. 76 static Constant *getTrue(Type *Ty) { 77 return ConstantInt::getTrue(Ty); 78 } 79 80 /// isSameCompare - Is V equivalent to the comparison "LHS Pred RHS"? 81 static bool isSameCompare(Value *V, CmpInst::Predicate Pred, Value *LHS, 82 Value *RHS) { 83 CmpInst *Cmp = dyn_cast<CmpInst>(V); 84 if (!Cmp) 85 return false; 86 CmpInst::Predicate CPred = Cmp->getPredicate(); 87 Value *CLHS = Cmp->getOperand(0), *CRHS = Cmp->getOperand(1); 88 if (CPred == Pred && CLHS == LHS && CRHS == RHS) 89 return true; 90 return CPred == CmpInst::getSwappedPredicate(Pred) && CLHS == RHS && 91 CRHS == LHS; 92 } 93 94 /// Does the given value dominate the specified phi node? 95 static bool valueDominatesPHI(Value *V, PHINode *P, const DominatorTree *DT) { 96 Instruction *I = dyn_cast<Instruction>(V); 97 if (!I) 98 // Arguments and constants dominate all instructions. 99 return true; 100 101 // If we are processing instructions (and/or basic blocks) that have not been 102 // fully added to a function, the parent nodes may still be null. Simply 103 // return the conservative answer in these cases. 104 if (!I->getParent() || !P->getParent() || !I->getFunction()) 105 return false; 106 107 // If we have a DominatorTree then do a precise test. 108 if (DT) 109 return DT->dominates(I, P); 110 111 // Otherwise, if the instruction is in the entry block and is not an invoke, 112 // then it obviously dominates all phi nodes. 113 if (I->getParent() == &I->getFunction()->getEntryBlock() && 114 !isa<InvokeInst>(I)) 115 return true; 116 117 return false; 118 } 119 120 /// Simplify "A op (B op' C)" by distributing op over op', turning it into 121 /// "(A op B) op' (A op C)". Here "op" is given by Opcode and "op'" is 122 /// given by OpcodeToExpand, while "A" corresponds to LHS and "B op' C" to RHS. 123 /// Also performs the transform "(A op' B) op C" -> "(A op C) op' (B op C)". 124 /// Returns the simplified value, or null if no simplification was performed. 125 static Value *ExpandBinOp(Instruction::BinaryOps Opcode, Value *LHS, Value *RHS, 126 Instruction::BinaryOps OpcodeToExpand, 127 const SimplifyQuery &Q, unsigned MaxRecurse) { 128 // Recursion is always used, so bail out at once if we already hit the limit. 129 if (!MaxRecurse--) 130 return nullptr; 131 132 // Check whether the expression has the form "(A op' B) op C". 133 if (BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS)) 134 if (Op0->getOpcode() == OpcodeToExpand) { 135 // It does! Try turning it into "(A op C) op' (B op C)". 136 Value *A = Op0->getOperand(0), *B = Op0->getOperand(1), *C = RHS; 137 // Do "A op C" and "B op C" both simplify? 138 if (Value *L = SimplifyBinOp(Opcode, A, C, Q, MaxRecurse)) 139 if (Value *R = SimplifyBinOp(Opcode, B, C, Q, MaxRecurse)) { 140 // They do! Return "L op' R" if it simplifies or is already available. 141 // If "L op' R" equals "A op' B" then "L op' R" is just the LHS. 142 if ((L == A && R == B) || (Instruction::isCommutative(OpcodeToExpand) 143 && L == B && R == A)) { 144 ++NumExpand; 145 return LHS; 146 } 147 // Otherwise return "L op' R" if it simplifies. 148 if (Value *V = SimplifyBinOp(OpcodeToExpand, L, R, Q, MaxRecurse)) { 149 ++NumExpand; 150 return V; 151 } 152 } 153 } 154 155 // Check whether the expression has the form "A op (B op' C)". 156 if (BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS)) 157 if (Op1->getOpcode() == OpcodeToExpand) { 158 // It does! Try turning it into "(A op B) op' (A op C)". 159 Value *A = LHS, *B = Op1->getOperand(0), *C = Op1->getOperand(1); 160 // Do "A op B" and "A op C" both simplify? 161 if (Value *L = SimplifyBinOp(Opcode, A, B, Q, MaxRecurse)) 162 if (Value *R = SimplifyBinOp(Opcode, A, C, Q, MaxRecurse)) { 163 // They do! Return "L op' R" if it simplifies or is already available. 164 // If "L op' R" equals "B op' C" then "L op' R" is just the RHS. 165 if ((L == B && R == C) || (Instruction::isCommutative(OpcodeToExpand) 166 && L == C && R == B)) { 167 ++NumExpand; 168 return RHS; 169 } 170 // Otherwise return "L op' R" if it simplifies. 171 if (Value *V = SimplifyBinOp(OpcodeToExpand, L, R, Q, MaxRecurse)) { 172 ++NumExpand; 173 return V; 174 } 175 } 176 } 177 178 return nullptr; 179 } 180 181 /// Generic simplifications for associative binary operations. 182 /// Returns the simpler value, or null if none was found. 183 static Value *SimplifyAssociativeBinOp(Instruction::BinaryOps Opcode, 184 Value *LHS, Value *RHS, 185 const SimplifyQuery &Q, 186 unsigned MaxRecurse) { 187 assert(Instruction::isAssociative(Opcode) && "Not an associative operation!"); 188 189 // Recursion is always used, so bail out at once if we already hit the limit. 190 if (!MaxRecurse--) 191 return nullptr; 192 193 BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS); 194 BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS); 195 196 // Transform: "(A op B) op C" ==> "A op (B op C)" if it simplifies completely. 197 if (Op0 && Op0->getOpcode() == Opcode) { 198 Value *A = Op0->getOperand(0); 199 Value *B = Op0->getOperand(1); 200 Value *C = RHS; 201 202 // Does "B op C" simplify? 203 if (Value *V = SimplifyBinOp(Opcode, B, C, Q, MaxRecurse)) { 204 // It does! Return "A op V" if it simplifies or is already available. 205 // If V equals B then "A op V" is just the LHS. 206 if (V == B) return LHS; 207 // Otherwise return "A op V" if it simplifies. 208 if (Value *W = SimplifyBinOp(Opcode, A, V, Q, MaxRecurse)) { 209 ++NumReassoc; 210 return W; 211 } 212 } 213 } 214 215 // Transform: "A op (B op C)" ==> "(A op B) op C" if it simplifies completely. 216 if (Op1 && Op1->getOpcode() == Opcode) { 217 Value *A = LHS; 218 Value *B = Op1->getOperand(0); 219 Value *C = Op1->getOperand(1); 220 221 // Does "A op B" simplify? 222 if (Value *V = SimplifyBinOp(Opcode, A, B, Q, MaxRecurse)) { 223 // It does! Return "V op C" if it simplifies or is already available. 224 // If V equals B then "V op C" is just the RHS. 225 if (V == B) return RHS; 226 // Otherwise return "V op C" if it simplifies. 227 if (Value *W = SimplifyBinOp(Opcode, V, C, Q, MaxRecurse)) { 228 ++NumReassoc; 229 return W; 230 } 231 } 232 } 233 234 // The remaining transforms require commutativity as well as associativity. 235 if (!Instruction::isCommutative(Opcode)) 236 return nullptr; 237 238 // Transform: "(A op B) op C" ==> "(C op A) op B" if it simplifies completely. 239 if (Op0 && Op0->getOpcode() == Opcode) { 240 Value *A = Op0->getOperand(0); 241 Value *B = Op0->getOperand(1); 242 Value *C = RHS; 243 244 // Does "C op A" simplify? 245 if (Value *V = SimplifyBinOp(Opcode, C, A, Q, MaxRecurse)) { 246 // It does! Return "V op B" if it simplifies or is already available. 247 // If V equals A then "V op B" is just the LHS. 248 if (V == A) return LHS; 249 // Otherwise return "V op B" if it simplifies. 250 if (Value *W = SimplifyBinOp(Opcode, V, B, Q, MaxRecurse)) { 251 ++NumReassoc; 252 return W; 253 } 254 } 255 } 256 257 // Transform: "A op (B op C)" ==> "B op (C op A)" if it simplifies completely. 258 if (Op1 && Op1->getOpcode() == Opcode) { 259 Value *A = LHS; 260 Value *B = Op1->getOperand(0); 261 Value *C = Op1->getOperand(1); 262 263 // Does "C op A" simplify? 264 if (Value *V = SimplifyBinOp(Opcode, C, A, Q, MaxRecurse)) { 265 // It does! Return "B op V" if it simplifies or is already available. 266 // If V equals C then "B op V" is just the RHS. 267 if (V == C) return RHS; 268 // Otherwise return "B op V" if it simplifies. 269 if (Value *W = SimplifyBinOp(Opcode, B, V, Q, MaxRecurse)) { 270 ++NumReassoc; 271 return W; 272 } 273 } 274 } 275 276 return nullptr; 277 } 278 279 /// In the case of a binary operation with a select instruction as an operand, 280 /// try to simplify the binop by seeing whether evaluating it on both branches 281 /// of the select results in the same value. Returns the common value if so, 282 /// otherwise returns null. 283 static Value *ThreadBinOpOverSelect(Instruction::BinaryOps Opcode, Value *LHS, 284 Value *RHS, const SimplifyQuery &Q, 285 unsigned MaxRecurse) { 286 // Recursion is always used, so bail out at once if we already hit the limit. 287 if (!MaxRecurse--) 288 return nullptr; 289 290 SelectInst *SI; 291 if (isa<SelectInst>(LHS)) { 292 SI = cast<SelectInst>(LHS); 293 } else { 294 assert(isa<SelectInst>(RHS) && "No select instruction operand!"); 295 SI = cast<SelectInst>(RHS); 296 } 297 298 // Evaluate the BinOp on the true and false branches of the select. 299 Value *TV; 300 Value *FV; 301 if (SI == LHS) { 302 TV = SimplifyBinOp(Opcode, SI->getTrueValue(), RHS, Q, MaxRecurse); 303 FV = SimplifyBinOp(Opcode, SI->getFalseValue(), RHS, Q, MaxRecurse); 304 } else { 305 TV = SimplifyBinOp(Opcode, LHS, SI->getTrueValue(), Q, MaxRecurse); 306 FV = SimplifyBinOp(Opcode, LHS, SI->getFalseValue(), Q, MaxRecurse); 307 } 308 309 // If they simplified to the same value, then return the common value. 310 // If they both failed to simplify then return null. 311 if (TV == FV) 312 return TV; 313 314 // If one branch simplified to undef, return the other one. 315 if (TV && isa<UndefValue>(TV)) 316 return FV; 317 if (FV && isa<UndefValue>(FV)) 318 return TV; 319 320 // If applying the operation did not change the true and false select values, 321 // then the result of the binop is the select itself. 322 if (TV == SI->getTrueValue() && FV == SI->getFalseValue()) 323 return SI; 324 325 // If one branch simplified and the other did not, and the simplified 326 // value is equal to the unsimplified one, return the simplified value. 327 // For example, select (cond, X, X & Z) & Z -> X & Z. 328 if ((FV && !TV) || (TV && !FV)) { 329 // Check that the simplified value has the form "X op Y" where "op" is the 330 // same as the original operation. 331 Instruction *Simplified = dyn_cast<Instruction>(FV ? FV : TV); 332 if (Simplified && Simplified->getOpcode() == unsigned(Opcode)) { 333 // The value that didn't simplify is "UnsimplifiedLHS op UnsimplifiedRHS". 334 // We already know that "op" is the same as for the simplified value. See 335 // if the operands match too. If so, return the simplified value. 336 Value *UnsimplifiedBranch = FV ? SI->getTrueValue() : SI->getFalseValue(); 337 Value *UnsimplifiedLHS = SI == LHS ? UnsimplifiedBranch : LHS; 338 Value *UnsimplifiedRHS = SI == LHS ? RHS : UnsimplifiedBranch; 339 if (Simplified->getOperand(0) == UnsimplifiedLHS && 340 Simplified->getOperand(1) == UnsimplifiedRHS) 341 return Simplified; 342 if (Simplified->isCommutative() && 343 Simplified->getOperand(1) == UnsimplifiedLHS && 344 Simplified->getOperand(0) == UnsimplifiedRHS) 345 return Simplified; 346 } 347 } 348 349 return nullptr; 350 } 351 352 /// In the case of a comparison with a select instruction, try to simplify the 353 /// comparison by seeing whether both branches of the select result in the same 354 /// value. Returns the common value if so, otherwise returns null. 355 static Value *ThreadCmpOverSelect(CmpInst::Predicate Pred, Value *LHS, 356 Value *RHS, const SimplifyQuery &Q, 357 unsigned MaxRecurse) { 358 // Recursion is always used, so bail out at once if we already hit the limit. 359 if (!MaxRecurse--) 360 return nullptr; 361 362 // Make sure the select is on the LHS. 363 if (!isa<SelectInst>(LHS)) { 364 std::swap(LHS, RHS); 365 Pred = CmpInst::getSwappedPredicate(Pred); 366 } 367 assert(isa<SelectInst>(LHS) && "Not comparing with a select instruction!"); 368 SelectInst *SI = cast<SelectInst>(LHS); 369 Value *Cond = SI->getCondition(); 370 Value *TV = SI->getTrueValue(); 371 Value *FV = SI->getFalseValue(); 372 373 // Now that we have "cmp select(Cond, TV, FV), RHS", analyse it. 374 // Does "cmp TV, RHS" simplify? 375 Value *TCmp = SimplifyCmpInst(Pred, TV, RHS, Q, MaxRecurse); 376 if (TCmp == Cond) { 377 // It not only simplified, it simplified to the select condition. Replace 378 // it with 'true'. 379 TCmp = getTrue(Cond->getType()); 380 } else if (!TCmp) { 381 // It didn't simplify. However if "cmp TV, RHS" is equal to the select 382 // condition then we can replace it with 'true'. Otherwise give up. 383 if (!isSameCompare(Cond, Pred, TV, RHS)) 384 return nullptr; 385 TCmp = getTrue(Cond->getType()); 386 } 387 388 // Does "cmp FV, RHS" simplify? 389 Value *FCmp = SimplifyCmpInst(Pred, FV, RHS, Q, MaxRecurse); 390 if (FCmp == Cond) { 391 // It not only simplified, it simplified to the select condition. Replace 392 // it with 'false'. 393 FCmp = getFalse(Cond->getType()); 394 } else if (!FCmp) { 395 // It didn't simplify. However if "cmp FV, RHS" is equal to the select 396 // condition then we can replace it with 'false'. Otherwise give up. 397 if (!isSameCompare(Cond, Pred, FV, RHS)) 398 return nullptr; 399 FCmp = getFalse(Cond->getType()); 400 } 401 402 // If both sides simplified to the same value, then use it as the result of 403 // the original comparison. 404 if (TCmp == FCmp) 405 return TCmp; 406 407 // The remaining cases only make sense if the select condition has the same 408 // type as the result of the comparison, so bail out if this is not so. 409 if (Cond->getType()->isVectorTy() != RHS->getType()->isVectorTy()) 410 return nullptr; 411 // If the false value simplified to false, then the result of the compare 412 // is equal to "Cond && TCmp". This also catches the case when the false 413 // value simplified to false and the true value to true, returning "Cond". 414 if (match(FCmp, m_Zero())) 415 if (Value *V = SimplifyAndInst(Cond, TCmp, Q, MaxRecurse)) 416 return V; 417 // If the true value simplified to true, then the result of the compare 418 // is equal to "Cond || FCmp". 419 if (match(TCmp, m_One())) 420 if (Value *V = SimplifyOrInst(Cond, FCmp, Q, MaxRecurse)) 421 return V; 422 // Finally, if the false value simplified to true and the true value to 423 // false, then the result of the compare is equal to "!Cond". 424 if (match(FCmp, m_One()) && match(TCmp, m_Zero())) 425 if (Value *V = 426 SimplifyXorInst(Cond, Constant::getAllOnesValue(Cond->getType()), 427 Q, MaxRecurse)) 428 return V; 429 430 return nullptr; 431 } 432 433 /// In the case of a binary operation with an operand that is a PHI instruction, 434 /// try to simplify the binop by seeing whether evaluating it on the incoming 435 /// phi values yields the same result for every value. If so returns the common 436 /// value, otherwise returns null. 437 static Value *ThreadBinOpOverPHI(Instruction::BinaryOps Opcode, Value *LHS, 438 Value *RHS, const SimplifyQuery &Q, 439 unsigned MaxRecurse) { 440 // Recursion is always used, so bail out at once if we already hit the limit. 441 if (!MaxRecurse--) 442 return nullptr; 443 444 PHINode *PI; 445 if (isa<PHINode>(LHS)) { 446 PI = cast<PHINode>(LHS); 447 // Bail out if RHS and the phi may be mutually interdependent due to a loop. 448 if (!valueDominatesPHI(RHS, PI, Q.DT)) 449 return nullptr; 450 } else { 451 assert(isa<PHINode>(RHS) && "No PHI instruction operand!"); 452 PI = cast<PHINode>(RHS); 453 // Bail out if LHS and the phi may be mutually interdependent due to a loop. 454 if (!valueDominatesPHI(LHS, PI, Q.DT)) 455 return nullptr; 456 } 457 458 // Evaluate the BinOp on the incoming phi values. 459 Value *CommonValue = nullptr; 460 for (Value *Incoming : PI->incoming_values()) { 461 // If the incoming value is the phi node itself, it can safely be skipped. 462 if (Incoming == PI) continue; 463 Value *V = PI == LHS ? 464 SimplifyBinOp(Opcode, Incoming, RHS, Q, MaxRecurse) : 465 SimplifyBinOp(Opcode, LHS, Incoming, Q, MaxRecurse); 466 // If the operation failed to simplify, or simplified to a different value 467 // to previously, then give up. 468 if (!V || (CommonValue && V != CommonValue)) 469 return nullptr; 470 CommonValue = V; 471 } 472 473 return CommonValue; 474 } 475 476 /// In the case of a comparison with a PHI instruction, try to simplify the 477 /// comparison by seeing whether comparing with all of the incoming phi values 478 /// yields the same result every time. If so returns the common result, 479 /// otherwise returns null. 480 static Value *ThreadCmpOverPHI(CmpInst::Predicate Pred, Value *LHS, Value *RHS, 481 const SimplifyQuery &Q, unsigned MaxRecurse) { 482 // Recursion is always used, so bail out at once if we already hit the limit. 483 if (!MaxRecurse--) 484 return nullptr; 485 486 // Make sure the phi is on the LHS. 487 if (!isa<PHINode>(LHS)) { 488 std::swap(LHS, RHS); 489 Pred = CmpInst::getSwappedPredicate(Pred); 490 } 491 assert(isa<PHINode>(LHS) && "Not comparing with a phi instruction!"); 492 PHINode *PI = cast<PHINode>(LHS); 493 494 // Bail out if RHS and the phi may be mutually interdependent due to a loop. 495 if (!valueDominatesPHI(RHS, PI, Q.DT)) 496 return nullptr; 497 498 // Evaluate the BinOp on the incoming phi values. 499 Value *CommonValue = nullptr; 500 for (Value *Incoming : PI->incoming_values()) { 501 // If the incoming value is the phi node itself, it can safely be skipped. 502 if (Incoming == PI) continue; 503 Value *V = SimplifyCmpInst(Pred, Incoming, RHS, Q, MaxRecurse); 504 // If the operation failed to simplify, or simplified to a different value 505 // to previously, then give up. 506 if (!V || (CommonValue && V != CommonValue)) 507 return nullptr; 508 CommonValue = V; 509 } 510 511 return CommonValue; 512 } 513 514 static Constant *foldOrCommuteConstant(Instruction::BinaryOps Opcode, 515 Value *&Op0, Value *&Op1, 516 const SimplifyQuery &Q) { 517 if (auto *CLHS = dyn_cast<Constant>(Op0)) { 518 if (auto *CRHS = dyn_cast<Constant>(Op1)) 519 return ConstantFoldBinaryOpOperands(Opcode, CLHS, CRHS, Q.DL); 520 521 // Canonicalize the constant to the RHS if this is a commutative operation. 522 if (Instruction::isCommutative(Opcode)) 523 std::swap(Op0, Op1); 524 } 525 return nullptr; 526 } 527 528 /// Given operands for an Add, see if we can fold the result. 529 /// If not, this returns null. 530 static Value *SimplifyAddInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, 531 const SimplifyQuery &Q, unsigned MaxRecurse) { 532 if (Constant *C = foldOrCommuteConstant(Instruction::Add, Op0, Op1, Q)) 533 return C; 534 535 // X + undef -> undef 536 if (match(Op1, m_Undef())) 537 return Op1; 538 539 // X + 0 -> X 540 if (match(Op1, m_Zero())) 541 return Op0; 542 543 // X + (Y - X) -> Y 544 // (Y - X) + X -> Y 545 // Eg: X + -X -> 0 546 Value *Y = nullptr; 547 if (match(Op1, m_Sub(m_Value(Y), m_Specific(Op0))) || 548 match(Op0, m_Sub(m_Value(Y), m_Specific(Op1)))) 549 return Y; 550 551 // X + ~X -> -1 since ~X = -X-1 552 Type *Ty = Op0->getType(); 553 if (match(Op0, m_Not(m_Specific(Op1))) || 554 match(Op1, m_Not(m_Specific(Op0)))) 555 return Constant::getAllOnesValue(Ty); 556 557 // add nsw/nuw (xor Y, signmask), signmask --> Y 558 // The no-wrapping add guarantees that the top bit will be set by the add. 559 // Therefore, the xor must be clearing the already set sign bit of Y. 560 if ((isNSW || isNUW) && match(Op1, m_SignMask()) && 561 match(Op0, m_Xor(m_Value(Y), m_SignMask()))) 562 return Y; 563 564 /// i1 add -> xor. 565 if (MaxRecurse && Op0->getType()->isIntOrIntVectorTy(1)) 566 if (Value *V = SimplifyXorInst(Op0, Op1, Q, MaxRecurse-1)) 567 return V; 568 569 // Try some generic simplifications for associative operations. 570 if (Value *V = SimplifyAssociativeBinOp(Instruction::Add, Op0, Op1, Q, 571 MaxRecurse)) 572 return V; 573 574 // Threading Add over selects and phi nodes is pointless, so don't bother. 575 // Threading over the select in "A + select(cond, B, C)" means evaluating 576 // "A+B" and "A+C" and seeing if they are equal; but they are equal if and 577 // only if B and C are equal. If B and C are equal then (since we assume 578 // that operands have already been simplified) "select(cond, B, C)" should 579 // have been simplified to the common value of B and C already. Analysing 580 // "A+B" and "A+C" thus gains nothing, but costs compile time. Similarly 581 // for threading over phi nodes. 582 583 return nullptr; 584 } 585 586 Value *llvm::SimplifyAddInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, 587 const SimplifyQuery &Query) { 588 return ::SimplifyAddInst(Op0, Op1, isNSW, isNUW, Query, RecursionLimit); 589 } 590 591 /// Compute the base pointer and cumulative constant offsets for V. 592 /// 593 /// This strips all constant offsets off of V, leaving it the base pointer, and 594 /// accumulates the total constant offset applied in the returned constant. It 595 /// returns 0 if V is not a pointer, and returns the constant '0' if there are 596 /// no constant offsets applied. 597 /// 598 /// This is very similar to GetPointerBaseWithConstantOffset except it doesn't 599 /// follow non-inbounds geps. This allows it to remain usable for icmp ult/etc. 600 /// folding. 601 static Constant *stripAndComputeConstantOffsets(const DataLayout &DL, Value *&V, 602 bool AllowNonInbounds = false) { 603 assert(V->getType()->isPtrOrPtrVectorTy()); 604 605 Type *IntPtrTy = DL.getIntPtrType(V->getType())->getScalarType(); 606 APInt Offset = APInt::getNullValue(IntPtrTy->getIntegerBitWidth()); 607 608 // Even though we don't look through PHI nodes, we could be called on an 609 // instruction in an unreachable block, which may be on a cycle. 610 SmallPtrSet<Value *, 4> Visited; 611 Visited.insert(V); 612 do { 613 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 614 if ((!AllowNonInbounds && !GEP->isInBounds()) || 615 !GEP->accumulateConstantOffset(DL, Offset)) 616 break; 617 V = GEP->getPointerOperand(); 618 } else if (Operator::getOpcode(V) == Instruction::BitCast) { 619 V = cast<Operator>(V)->getOperand(0); 620 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 621 if (GA->isInterposable()) 622 break; 623 V = GA->getAliasee(); 624 } else { 625 if (auto CS = CallSite(V)) 626 if (Value *RV = CS.getReturnedArgOperand()) { 627 V = RV; 628 continue; 629 } 630 break; 631 } 632 assert(V->getType()->isPtrOrPtrVectorTy() && "Unexpected operand type!"); 633 } while (Visited.insert(V).second); 634 635 Constant *OffsetIntPtr = ConstantInt::get(IntPtrTy, Offset); 636 if (V->getType()->isVectorTy()) 637 return ConstantVector::getSplat(V->getType()->getVectorNumElements(), 638 OffsetIntPtr); 639 return OffsetIntPtr; 640 } 641 642 /// Compute the constant difference between two pointer values. 643 /// If the difference is not a constant, returns zero. 644 static Constant *computePointerDifference(const DataLayout &DL, Value *LHS, 645 Value *RHS) { 646 Constant *LHSOffset = stripAndComputeConstantOffsets(DL, LHS); 647 Constant *RHSOffset = stripAndComputeConstantOffsets(DL, RHS); 648 649 // If LHS and RHS are not related via constant offsets to the same base 650 // value, there is nothing we can do here. 651 if (LHS != RHS) 652 return nullptr; 653 654 // Otherwise, the difference of LHS - RHS can be computed as: 655 // LHS - RHS 656 // = (LHSOffset + Base) - (RHSOffset + Base) 657 // = LHSOffset - RHSOffset 658 return ConstantExpr::getSub(LHSOffset, RHSOffset); 659 } 660 661 /// Given operands for a Sub, see if we can fold the result. 662 /// If not, this returns null. 663 static Value *SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, 664 const SimplifyQuery &Q, unsigned MaxRecurse) { 665 if (Constant *C = foldOrCommuteConstant(Instruction::Sub, Op0, Op1, Q)) 666 return C; 667 668 // X - undef -> undef 669 // undef - X -> undef 670 if (match(Op0, m_Undef()) || match(Op1, m_Undef())) 671 return UndefValue::get(Op0->getType()); 672 673 // X - 0 -> X 674 if (match(Op1, m_Zero())) 675 return Op0; 676 677 // X - X -> 0 678 if (Op0 == Op1) 679 return Constant::getNullValue(Op0->getType()); 680 681 // Is this a negation? 682 if (match(Op0, m_Zero())) { 683 // 0 - X -> 0 if the sub is NUW. 684 if (isNUW) 685 return Constant::getNullValue(Op0->getType()); 686 687 KnownBits Known = computeKnownBits(Op1, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 688 if (Known.Zero.isMaxSignedValue()) { 689 // Op1 is either 0 or the minimum signed value. If the sub is NSW, then 690 // Op1 must be 0 because negating the minimum signed value is undefined. 691 if (isNSW) 692 return Constant::getNullValue(Op0->getType()); 693 694 // 0 - X -> X if X is 0 or the minimum signed value. 695 return Op1; 696 } 697 } 698 699 // (X + Y) - Z -> X + (Y - Z) or Y + (X - Z) if everything simplifies. 700 // For example, (X + Y) - Y -> X; (Y + X) - Y -> X 701 Value *X = nullptr, *Y = nullptr, *Z = Op1; 702 if (MaxRecurse && match(Op0, m_Add(m_Value(X), m_Value(Y)))) { // (X + Y) - Z 703 // See if "V === Y - Z" simplifies. 704 if (Value *V = SimplifyBinOp(Instruction::Sub, Y, Z, Q, MaxRecurse-1)) 705 // It does! Now see if "X + V" simplifies. 706 if (Value *W = SimplifyBinOp(Instruction::Add, X, V, Q, MaxRecurse-1)) { 707 // It does, we successfully reassociated! 708 ++NumReassoc; 709 return W; 710 } 711 // See if "V === X - Z" simplifies. 712 if (Value *V = SimplifyBinOp(Instruction::Sub, X, Z, Q, MaxRecurse-1)) 713 // It does! Now see if "Y + V" simplifies. 714 if (Value *W = SimplifyBinOp(Instruction::Add, Y, V, Q, MaxRecurse-1)) { 715 // It does, we successfully reassociated! 716 ++NumReassoc; 717 return W; 718 } 719 } 720 721 // X - (Y + Z) -> (X - Y) - Z or (X - Z) - Y if everything simplifies. 722 // For example, X - (X + 1) -> -1 723 X = Op0; 724 if (MaxRecurse && match(Op1, m_Add(m_Value(Y), m_Value(Z)))) { // X - (Y + Z) 725 // See if "V === X - Y" simplifies. 726 if (Value *V = SimplifyBinOp(Instruction::Sub, X, Y, Q, MaxRecurse-1)) 727 // It does! Now see if "V - Z" simplifies. 728 if (Value *W = SimplifyBinOp(Instruction::Sub, V, Z, Q, MaxRecurse-1)) { 729 // It does, we successfully reassociated! 730 ++NumReassoc; 731 return W; 732 } 733 // See if "V === X - Z" simplifies. 734 if (Value *V = SimplifyBinOp(Instruction::Sub, X, Z, Q, MaxRecurse-1)) 735 // It does! Now see if "V - Y" simplifies. 736 if (Value *W = SimplifyBinOp(Instruction::Sub, V, Y, Q, MaxRecurse-1)) { 737 // It does, we successfully reassociated! 738 ++NumReassoc; 739 return W; 740 } 741 } 742 743 // Z - (X - Y) -> (Z - X) + Y if everything simplifies. 744 // For example, X - (X - Y) -> Y. 745 Z = Op0; 746 if (MaxRecurse && match(Op1, m_Sub(m_Value(X), m_Value(Y)))) // Z - (X - Y) 747 // See if "V === Z - X" simplifies. 748 if (Value *V = SimplifyBinOp(Instruction::Sub, Z, X, Q, MaxRecurse-1)) 749 // It does! Now see if "V + Y" simplifies. 750 if (Value *W = SimplifyBinOp(Instruction::Add, V, Y, Q, MaxRecurse-1)) { 751 // It does, we successfully reassociated! 752 ++NumReassoc; 753 return W; 754 } 755 756 // trunc(X) - trunc(Y) -> trunc(X - Y) if everything simplifies. 757 if (MaxRecurse && match(Op0, m_Trunc(m_Value(X))) && 758 match(Op1, m_Trunc(m_Value(Y)))) 759 if (X->getType() == Y->getType()) 760 // See if "V === X - Y" simplifies. 761 if (Value *V = SimplifyBinOp(Instruction::Sub, X, Y, Q, MaxRecurse-1)) 762 // It does! Now see if "trunc V" simplifies. 763 if (Value *W = SimplifyCastInst(Instruction::Trunc, V, Op0->getType(), 764 Q, MaxRecurse - 1)) 765 // It does, return the simplified "trunc V". 766 return W; 767 768 // Variations on GEP(base, I, ...) - GEP(base, i, ...) -> GEP(null, I-i, ...). 769 if (match(Op0, m_PtrToInt(m_Value(X))) && 770 match(Op1, m_PtrToInt(m_Value(Y)))) 771 if (Constant *Result = computePointerDifference(Q.DL, X, Y)) 772 return ConstantExpr::getIntegerCast(Result, Op0->getType(), true); 773 774 // i1 sub -> xor. 775 if (MaxRecurse && Op0->getType()->isIntOrIntVectorTy(1)) 776 if (Value *V = SimplifyXorInst(Op0, Op1, Q, MaxRecurse-1)) 777 return V; 778 779 // Threading Sub over selects and phi nodes is pointless, so don't bother. 780 // Threading over the select in "A - select(cond, B, C)" means evaluating 781 // "A-B" and "A-C" and seeing if they are equal; but they are equal if and 782 // only if B and C are equal. If B and C are equal then (since we assume 783 // that operands have already been simplified) "select(cond, B, C)" should 784 // have been simplified to the common value of B and C already. Analysing 785 // "A-B" and "A-C" thus gains nothing, but costs compile time. Similarly 786 // for threading over phi nodes. 787 788 return nullptr; 789 } 790 791 Value *llvm::SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, 792 const SimplifyQuery &Q) { 793 return ::SimplifySubInst(Op0, Op1, isNSW, isNUW, Q, RecursionLimit); 794 } 795 796 /// Given operands for a Mul, see if we can fold the result. 797 /// If not, this returns null. 798 static Value *SimplifyMulInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 799 unsigned MaxRecurse) { 800 if (Constant *C = foldOrCommuteConstant(Instruction::Mul, Op0, Op1, Q)) 801 return C; 802 803 // X * undef -> 0 804 // X * 0 -> 0 805 if (match(Op1, m_CombineOr(m_Undef(), m_Zero()))) 806 return Constant::getNullValue(Op0->getType()); 807 808 // X * 1 -> X 809 if (match(Op1, m_One())) 810 return Op0; 811 812 // (X / Y) * Y -> X if the division is exact. 813 Value *X = nullptr; 814 if (match(Op0, m_Exact(m_IDiv(m_Value(X), m_Specific(Op1)))) || // (X / Y) * Y 815 match(Op1, m_Exact(m_IDiv(m_Value(X), m_Specific(Op0))))) // Y * (X / Y) 816 return X; 817 818 // i1 mul -> and. 819 if (MaxRecurse && Op0->getType()->isIntOrIntVectorTy(1)) 820 if (Value *V = SimplifyAndInst(Op0, Op1, Q, MaxRecurse-1)) 821 return V; 822 823 // Try some generic simplifications for associative operations. 824 if (Value *V = SimplifyAssociativeBinOp(Instruction::Mul, Op0, Op1, Q, 825 MaxRecurse)) 826 return V; 827 828 // Mul distributes over Add. Try some generic simplifications based on this. 829 if (Value *V = ExpandBinOp(Instruction::Mul, Op0, Op1, Instruction::Add, 830 Q, MaxRecurse)) 831 return V; 832 833 // If the operation is with the result of a select instruction, check whether 834 // operating on either branch of the select always yields the same value. 835 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 836 if (Value *V = ThreadBinOpOverSelect(Instruction::Mul, Op0, Op1, Q, 837 MaxRecurse)) 838 return V; 839 840 // If the operation is with the result of a phi instruction, check whether 841 // operating on all incoming values of the phi always yields the same value. 842 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 843 if (Value *V = ThreadBinOpOverPHI(Instruction::Mul, Op0, Op1, Q, 844 MaxRecurse)) 845 return V; 846 847 return nullptr; 848 } 849 850 Value *llvm::SimplifyMulInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 851 return ::SimplifyMulInst(Op0, Op1, Q, RecursionLimit); 852 } 853 854 /// Check for common or similar folds of integer division or integer remainder. 855 /// This applies to all 4 opcodes (sdiv/udiv/srem/urem). 856 static Value *simplifyDivRem(Value *Op0, Value *Op1, bool IsDiv) { 857 Type *Ty = Op0->getType(); 858 859 // X / undef -> undef 860 // X % undef -> undef 861 if (match(Op1, m_Undef())) 862 return Op1; 863 864 // X / 0 -> undef 865 // X % 0 -> undef 866 // We don't need to preserve faults! 867 if (match(Op1, m_Zero())) 868 return UndefValue::get(Ty); 869 870 // If any element of a constant divisor vector is zero or undef, the whole op 871 // is undef. 872 auto *Op1C = dyn_cast<Constant>(Op1); 873 if (Op1C && Ty->isVectorTy()) { 874 unsigned NumElts = Ty->getVectorNumElements(); 875 for (unsigned i = 0; i != NumElts; ++i) { 876 Constant *Elt = Op1C->getAggregateElement(i); 877 if (Elt && (Elt->isNullValue() || isa<UndefValue>(Elt))) 878 return UndefValue::get(Ty); 879 } 880 } 881 882 // undef / X -> 0 883 // undef % X -> 0 884 if (match(Op0, m_Undef())) 885 return Constant::getNullValue(Ty); 886 887 // 0 / X -> 0 888 // 0 % X -> 0 889 if (match(Op0, m_Zero())) 890 return Constant::getNullValue(Op0->getType()); 891 892 // X / X -> 1 893 // X % X -> 0 894 if (Op0 == Op1) 895 return IsDiv ? ConstantInt::get(Ty, 1) : Constant::getNullValue(Ty); 896 897 // X / 1 -> X 898 // X % 1 -> 0 899 // If this is a boolean op (single-bit element type), we can't have 900 // division-by-zero or remainder-by-zero, so assume the divisor is 1. 901 if (match(Op1, m_One()) || Ty->isIntOrIntVectorTy(1)) 902 return IsDiv ? Op0 : Constant::getNullValue(Ty); 903 904 return nullptr; 905 } 906 907 /// Given a predicate and two operands, return true if the comparison is true. 908 /// This is a helper for div/rem simplification where we return some other value 909 /// when we can prove a relationship between the operands. 910 static bool isICmpTrue(ICmpInst::Predicate Pred, Value *LHS, Value *RHS, 911 const SimplifyQuery &Q, unsigned MaxRecurse) { 912 Value *V = SimplifyICmpInst(Pred, LHS, RHS, Q, MaxRecurse); 913 Constant *C = dyn_cast_or_null<Constant>(V); 914 return (C && C->isAllOnesValue()); 915 } 916 917 /// Return true if we can simplify X / Y to 0. Remainder can adapt that answer 918 /// to simplify X % Y to X. 919 static bool isDivZero(Value *X, Value *Y, const SimplifyQuery &Q, 920 unsigned MaxRecurse, bool IsSigned) { 921 // Recursion is always used, so bail out at once if we already hit the limit. 922 if (!MaxRecurse--) 923 return false; 924 925 if (IsSigned) { 926 // |X| / |Y| --> 0 927 // 928 // We require that 1 operand is a simple constant. That could be extended to 929 // 2 variables if we computed the sign bit for each. 930 // 931 // Make sure that a constant is not the minimum signed value because taking 932 // the abs() of that is undefined. 933 Type *Ty = X->getType(); 934 const APInt *C; 935 if (match(X, m_APInt(C)) && !C->isMinSignedValue()) { 936 // Is the variable divisor magnitude always greater than the constant 937 // dividend magnitude? 938 // |Y| > |C| --> Y < -abs(C) or Y > abs(C) 939 Constant *PosDividendC = ConstantInt::get(Ty, C->abs()); 940 Constant *NegDividendC = ConstantInt::get(Ty, -C->abs()); 941 if (isICmpTrue(CmpInst::ICMP_SLT, Y, NegDividendC, Q, MaxRecurse) || 942 isICmpTrue(CmpInst::ICMP_SGT, Y, PosDividendC, Q, MaxRecurse)) 943 return true; 944 } 945 if (match(Y, m_APInt(C))) { 946 // Special-case: we can't take the abs() of a minimum signed value. If 947 // that's the divisor, then all we have to do is prove that the dividend 948 // is also not the minimum signed value. 949 if (C->isMinSignedValue()) 950 return isICmpTrue(CmpInst::ICMP_NE, X, Y, Q, MaxRecurse); 951 952 // Is the variable dividend magnitude always less than the constant 953 // divisor magnitude? 954 // |X| < |C| --> X > -abs(C) and X < abs(C) 955 Constant *PosDivisorC = ConstantInt::get(Ty, C->abs()); 956 Constant *NegDivisorC = ConstantInt::get(Ty, -C->abs()); 957 if (isICmpTrue(CmpInst::ICMP_SGT, X, NegDivisorC, Q, MaxRecurse) && 958 isICmpTrue(CmpInst::ICMP_SLT, X, PosDivisorC, Q, MaxRecurse)) 959 return true; 960 } 961 return false; 962 } 963 964 // IsSigned == false. 965 // Is the dividend unsigned less than the divisor? 966 return isICmpTrue(ICmpInst::ICMP_ULT, X, Y, Q, MaxRecurse); 967 } 968 969 /// These are simplifications common to SDiv and UDiv. 970 static Value *simplifyDiv(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1, 971 const SimplifyQuery &Q, unsigned MaxRecurse) { 972 if (Constant *C = foldOrCommuteConstant(Opcode, Op0, Op1, Q)) 973 return C; 974 975 if (Value *V = simplifyDivRem(Op0, Op1, true)) 976 return V; 977 978 bool IsSigned = Opcode == Instruction::SDiv; 979 980 // (X * Y) / Y -> X if the multiplication does not overflow. 981 Value *X; 982 if (match(Op0, m_c_Mul(m_Value(X), m_Specific(Op1)))) { 983 auto *Mul = cast<OverflowingBinaryOperator>(Op0); 984 // If the Mul does not overflow, then we are good to go. 985 if ((IsSigned && Mul->hasNoSignedWrap()) || 986 (!IsSigned && Mul->hasNoUnsignedWrap())) 987 return X; 988 // If X has the form X = A / Y, then X * Y cannot overflow. 989 if ((IsSigned && match(X, m_SDiv(m_Value(), m_Specific(Op1)))) || 990 (!IsSigned && match(X, m_UDiv(m_Value(), m_Specific(Op1))))) 991 return X; 992 } 993 994 // (X rem Y) / Y -> 0 995 if ((IsSigned && match(Op0, m_SRem(m_Value(), m_Specific(Op1)))) || 996 (!IsSigned && match(Op0, m_URem(m_Value(), m_Specific(Op1))))) 997 return Constant::getNullValue(Op0->getType()); 998 999 // (X /u C1) /u C2 -> 0 if C1 * C2 overflow 1000 ConstantInt *C1, *C2; 1001 if (!IsSigned && match(Op0, m_UDiv(m_Value(X), m_ConstantInt(C1))) && 1002 match(Op1, m_ConstantInt(C2))) { 1003 bool Overflow; 1004 (void)C1->getValue().umul_ov(C2->getValue(), Overflow); 1005 if (Overflow) 1006 return Constant::getNullValue(Op0->getType()); 1007 } 1008 1009 // If the operation is with the result of a select instruction, check whether 1010 // operating on either branch of the select always yields the same value. 1011 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 1012 if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse)) 1013 return V; 1014 1015 // If the operation is with the result of a phi instruction, check whether 1016 // operating on all incoming values of the phi always yields the same value. 1017 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 1018 if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse)) 1019 return V; 1020 1021 if (isDivZero(Op0, Op1, Q, MaxRecurse, IsSigned)) 1022 return Constant::getNullValue(Op0->getType()); 1023 1024 return nullptr; 1025 } 1026 1027 /// These are simplifications common to SRem and URem. 1028 static Value *simplifyRem(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1, 1029 const SimplifyQuery &Q, unsigned MaxRecurse) { 1030 if (Constant *C = foldOrCommuteConstant(Opcode, Op0, Op1, Q)) 1031 return C; 1032 1033 if (Value *V = simplifyDivRem(Op0, Op1, false)) 1034 return V; 1035 1036 // (X % Y) % Y -> X % Y 1037 if ((Opcode == Instruction::SRem && 1038 match(Op0, m_SRem(m_Value(), m_Specific(Op1)))) || 1039 (Opcode == Instruction::URem && 1040 match(Op0, m_URem(m_Value(), m_Specific(Op1))))) 1041 return Op0; 1042 1043 // (X << Y) % X -> 0 1044 if ((Opcode == Instruction::SRem && 1045 match(Op0, m_NSWShl(m_Specific(Op1), m_Value()))) || 1046 (Opcode == Instruction::URem && 1047 match(Op0, m_NUWShl(m_Specific(Op1), m_Value())))) 1048 return Constant::getNullValue(Op0->getType()); 1049 1050 // If the operation is with the result of a select instruction, check whether 1051 // operating on either branch of the select always yields the same value. 1052 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 1053 if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse)) 1054 return V; 1055 1056 // If the operation is with the result of a phi instruction, check whether 1057 // operating on all incoming values of the phi always yields the same value. 1058 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 1059 if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse)) 1060 return V; 1061 1062 // If X / Y == 0, then X % Y == X. 1063 if (isDivZero(Op0, Op1, Q, MaxRecurse, Opcode == Instruction::SRem)) 1064 return Op0; 1065 1066 return nullptr; 1067 } 1068 1069 /// Given operands for an SDiv, see if we can fold the result. 1070 /// If not, this returns null. 1071 static Value *SimplifySDivInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 1072 unsigned MaxRecurse) { 1073 return simplifyDiv(Instruction::SDiv, Op0, Op1, Q, MaxRecurse); 1074 } 1075 1076 Value *llvm::SimplifySDivInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 1077 return ::SimplifySDivInst(Op0, Op1, Q, RecursionLimit); 1078 } 1079 1080 /// Given operands for a UDiv, see if we can fold the result. 1081 /// If not, this returns null. 1082 static Value *SimplifyUDivInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 1083 unsigned MaxRecurse) { 1084 return simplifyDiv(Instruction::UDiv, Op0, Op1, Q, MaxRecurse); 1085 } 1086 1087 Value *llvm::SimplifyUDivInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 1088 return ::SimplifyUDivInst(Op0, Op1, Q, RecursionLimit); 1089 } 1090 1091 /// Given operands for an SRem, see if we can fold the result. 1092 /// If not, this returns null. 1093 static Value *SimplifySRemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 1094 unsigned MaxRecurse) { 1095 return simplifyRem(Instruction::SRem, Op0, Op1, Q, MaxRecurse); 1096 } 1097 1098 Value *llvm::SimplifySRemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 1099 return ::SimplifySRemInst(Op0, Op1, Q, RecursionLimit); 1100 } 1101 1102 /// Given operands for a URem, see if we can fold the result. 1103 /// If not, this returns null. 1104 static Value *SimplifyURemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 1105 unsigned MaxRecurse) { 1106 return simplifyRem(Instruction::URem, Op0, Op1, Q, MaxRecurse); 1107 } 1108 1109 Value *llvm::SimplifyURemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 1110 return ::SimplifyURemInst(Op0, Op1, Q, RecursionLimit); 1111 } 1112 1113 /// Returns true if a shift by \c Amount always yields undef. 1114 static bool isUndefShift(Value *Amount) { 1115 Constant *C = dyn_cast<Constant>(Amount); 1116 if (!C) 1117 return false; 1118 1119 // X shift by undef -> undef because it may shift by the bitwidth. 1120 if (isa<UndefValue>(C)) 1121 return true; 1122 1123 // Shifting by the bitwidth or more is undefined. 1124 if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1125 if (CI->getValue().getLimitedValue() >= 1126 CI->getType()->getScalarSizeInBits()) 1127 return true; 1128 1129 // If all lanes of a vector shift are undefined the whole shift is. 1130 if (isa<ConstantVector>(C) || isa<ConstantDataVector>(C)) { 1131 for (unsigned I = 0, E = C->getType()->getVectorNumElements(); I != E; ++I) 1132 if (!isUndefShift(C->getAggregateElement(I))) 1133 return false; 1134 return true; 1135 } 1136 1137 return false; 1138 } 1139 1140 /// Given operands for an Shl, LShr or AShr, see if we can fold the result. 1141 /// If not, this returns null. 1142 static Value *SimplifyShift(Instruction::BinaryOps Opcode, Value *Op0, 1143 Value *Op1, const SimplifyQuery &Q, unsigned MaxRecurse) { 1144 if (Constant *C = foldOrCommuteConstant(Opcode, Op0, Op1, Q)) 1145 return C; 1146 1147 // 0 shift by X -> 0 1148 if (match(Op0, m_Zero())) 1149 return Constant::getNullValue(Op0->getType()); 1150 1151 // X shift by 0 -> X 1152 if (match(Op1, m_Zero())) 1153 return Op0; 1154 1155 // Fold undefined shifts. 1156 if (isUndefShift(Op1)) 1157 return UndefValue::get(Op0->getType()); 1158 1159 // If the operation is with the result of a select instruction, check whether 1160 // operating on either branch of the select always yields the same value. 1161 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 1162 if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse)) 1163 return V; 1164 1165 // If the operation is with the result of a phi instruction, check whether 1166 // operating on all incoming values of the phi always yields the same value. 1167 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 1168 if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse)) 1169 return V; 1170 1171 // If any bits in the shift amount make that value greater than or equal to 1172 // the number of bits in the type, the shift is undefined. 1173 KnownBits Known = computeKnownBits(Op1, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 1174 if (Known.One.getLimitedValue() >= Known.getBitWidth()) 1175 return UndefValue::get(Op0->getType()); 1176 1177 // If all valid bits in the shift amount are known zero, the first operand is 1178 // unchanged. 1179 unsigned NumValidShiftBits = Log2_32_Ceil(Known.getBitWidth()); 1180 if (Known.countMinTrailingZeros() >= NumValidShiftBits) 1181 return Op0; 1182 1183 return nullptr; 1184 } 1185 1186 /// Given operands for an Shl, LShr or AShr, see if we can 1187 /// fold the result. If not, this returns null. 1188 static Value *SimplifyRightShift(Instruction::BinaryOps Opcode, Value *Op0, 1189 Value *Op1, bool isExact, const SimplifyQuery &Q, 1190 unsigned MaxRecurse) { 1191 if (Value *V = SimplifyShift(Opcode, Op0, Op1, Q, MaxRecurse)) 1192 return V; 1193 1194 // X >> X -> 0 1195 if (Op0 == Op1) 1196 return Constant::getNullValue(Op0->getType()); 1197 1198 // undef >> X -> 0 1199 // undef >> X -> undef (if it's exact) 1200 if (match(Op0, m_Undef())) 1201 return isExact ? Op0 : Constant::getNullValue(Op0->getType()); 1202 1203 // The low bit cannot be shifted out of an exact shift if it is set. 1204 if (isExact) { 1205 KnownBits Op0Known = computeKnownBits(Op0, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT); 1206 if (Op0Known.One[0]) 1207 return Op0; 1208 } 1209 1210 return nullptr; 1211 } 1212 1213 /// Given operands for an Shl, see if we can fold the result. 1214 /// If not, this returns null. 1215 static Value *SimplifyShlInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, 1216 const SimplifyQuery &Q, unsigned MaxRecurse) { 1217 if (Value *V = SimplifyShift(Instruction::Shl, Op0, Op1, Q, MaxRecurse)) 1218 return V; 1219 1220 // undef << X -> 0 1221 // undef << X -> undef if (if it's NSW/NUW) 1222 if (match(Op0, m_Undef())) 1223 return isNSW || isNUW ? Op0 : Constant::getNullValue(Op0->getType()); 1224 1225 // (X >> A) << A -> X 1226 Value *X; 1227 if (match(Op0, m_Exact(m_Shr(m_Value(X), m_Specific(Op1))))) 1228 return X; 1229 return nullptr; 1230 } 1231 1232 Value *llvm::SimplifyShlInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, 1233 const SimplifyQuery &Q) { 1234 return ::SimplifyShlInst(Op0, Op1, isNSW, isNUW, Q, RecursionLimit); 1235 } 1236 1237 /// Given operands for an LShr, see if we can fold the result. 1238 /// If not, this returns null. 1239 static Value *SimplifyLShrInst(Value *Op0, Value *Op1, bool isExact, 1240 const SimplifyQuery &Q, unsigned MaxRecurse) { 1241 if (Value *V = SimplifyRightShift(Instruction::LShr, Op0, Op1, isExact, Q, 1242 MaxRecurse)) 1243 return V; 1244 1245 // (X << A) >> A -> X 1246 Value *X; 1247 if (match(Op0, m_NUWShl(m_Value(X), m_Specific(Op1)))) 1248 return X; 1249 1250 return nullptr; 1251 } 1252 1253 Value *llvm::SimplifyLShrInst(Value *Op0, Value *Op1, bool isExact, 1254 const SimplifyQuery &Q) { 1255 return ::SimplifyLShrInst(Op0, Op1, isExact, Q, RecursionLimit); 1256 } 1257 1258 /// Given operands for an AShr, see if we can fold the result. 1259 /// If not, this returns null. 1260 static Value *SimplifyAShrInst(Value *Op0, Value *Op1, bool isExact, 1261 const SimplifyQuery &Q, unsigned MaxRecurse) { 1262 if (Value *V = SimplifyRightShift(Instruction::AShr, Op0, Op1, isExact, Q, 1263 MaxRecurse)) 1264 return V; 1265 1266 // all ones >>a X -> -1 1267 // Do not return Op0 because it may contain undef elements if it's a vector. 1268 if (match(Op0, m_AllOnes())) 1269 return Constant::getAllOnesValue(Op0->getType()); 1270 1271 // (X << A) >> A -> X 1272 Value *X; 1273 if (match(Op0, m_NSWShl(m_Value(X), m_Specific(Op1)))) 1274 return X; 1275 1276 // Arithmetic shifting an all-sign-bit value is a no-op. 1277 unsigned NumSignBits = ComputeNumSignBits(Op0, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 1278 if (NumSignBits == Op0->getType()->getScalarSizeInBits()) 1279 return Op0; 1280 1281 return nullptr; 1282 } 1283 1284 Value *llvm::SimplifyAShrInst(Value *Op0, Value *Op1, bool isExact, 1285 const SimplifyQuery &Q) { 1286 return ::SimplifyAShrInst(Op0, Op1, isExact, Q, RecursionLimit); 1287 } 1288 1289 /// Commuted variants are assumed to be handled by calling this function again 1290 /// with the parameters swapped. 1291 static Value *simplifyUnsignedRangeCheck(ICmpInst *ZeroICmp, 1292 ICmpInst *UnsignedICmp, bool IsAnd) { 1293 Value *X, *Y; 1294 1295 ICmpInst::Predicate EqPred; 1296 if (!match(ZeroICmp, m_ICmp(EqPred, m_Value(Y), m_Zero())) || 1297 !ICmpInst::isEquality(EqPred)) 1298 return nullptr; 1299 1300 ICmpInst::Predicate UnsignedPred; 1301 if (match(UnsignedICmp, m_ICmp(UnsignedPred, m_Value(X), m_Specific(Y))) && 1302 ICmpInst::isUnsigned(UnsignedPred)) 1303 ; 1304 else if (match(UnsignedICmp, 1305 m_ICmp(UnsignedPred, m_Value(Y), m_Specific(X))) && 1306 ICmpInst::isUnsigned(UnsignedPred)) 1307 UnsignedPred = ICmpInst::getSwappedPredicate(UnsignedPred); 1308 else 1309 return nullptr; 1310 1311 // X < Y && Y != 0 --> X < Y 1312 // X < Y || Y != 0 --> Y != 0 1313 if (UnsignedPred == ICmpInst::ICMP_ULT && EqPred == ICmpInst::ICMP_NE) 1314 return IsAnd ? UnsignedICmp : ZeroICmp; 1315 1316 // X >= Y || Y != 0 --> true 1317 // X >= Y || Y == 0 --> X >= Y 1318 if (UnsignedPred == ICmpInst::ICMP_UGE && !IsAnd) { 1319 if (EqPred == ICmpInst::ICMP_NE) 1320 return getTrue(UnsignedICmp->getType()); 1321 return UnsignedICmp; 1322 } 1323 1324 // X < Y && Y == 0 --> false 1325 if (UnsignedPred == ICmpInst::ICMP_ULT && EqPred == ICmpInst::ICMP_EQ && 1326 IsAnd) 1327 return getFalse(UnsignedICmp->getType()); 1328 1329 return nullptr; 1330 } 1331 1332 /// Commuted variants are assumed to be handled by calling this function again 1333 /// with the parameters swapped. 1334 static Value *simplifyAndOfICmpsWithSameOperands(ICmpInst *Op0, ICmpInst *Op1) { 1335 ICmpInst::Predicate Pred0, Pred1; 1336 Value *A ,*B; 1337 if (!match(Op0, m_ICmp(Pred0, m_Value(A), m_Value(B))) || 1338 !match(Op1, m_ICmp(Pred1, m_Specific(A), m_Specific(B)))) 1339 return nullptr; 1340 1341 // We have (icmp Pred0, A, B) & (icmp Pred1, A, B). 1342 // If Op1 is always implied true by Op0, then Op0 is a subset of Op1, and we 1343 // can eliminate Op1 from this 'and'. 1344 if (ICmpInst::isImpliedTrueByMatchingCmp(Pred0, Pred1)) 1345 return Op0; 1346 1347 // Check for any combination of predicates that are guaranteed to be disjoint. 1348 if ((Pred0 == ICmpInst::getInversePredicate(Pred1)) || 1349 (Pred0 == ICmpInst::ICMP_EQ && ICmpInst::isFalseWhenEqual(Pred1)) || 1350 (Pred0 == ICmpInst::ICMP_SLT && Pred1 == ICmpInst::ICMP_SGT) || 1351 (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_UGT)) 1352 return getFalse(Op0->getType()); 1353 1354 return nullptr; 1355 } 1356 1357 /// Commuted variants are assumed to be handled by calling this function again 1358 /// with the parameters swapped. 1359 static Value *simplifyOrOfICmpsWithSameOperands(ICmpInst *Op0, ICmpInst *Op1) { 1360 ICmpInst::Predicate Pred0, Pred1; 1361 Value *A ,*B; 1362 if (!match(Op0, m_ICmp(Pred0, m_Value(A), m_Value(B))) || 1363 !match(Op1, m_ICmp(Pred1, m_Specific(A), m_Specific(B)))) 1364 return nullptr; 1365 1366 // We have (icmp Pred0, A, B) | (icmp Pred1, A, B). 1367 // If Op1 is always implied true by Op0, then Op0 is a subset of Op1, and we 1368 // can eliminate Op0 from this 'or'. 1369 if (ICmpInst::isImpliedTrueByMatchingCmp(Pred0, Pred1)) 1370 return Op1; 1371 1372 // Check for any combination of predicates that cover the entire range of 1373 // possibilities. 1374 if ((Pred0 == ICmpInst::getInversePredicate(Pred1)) || 1375 (Pred0 == ICmpInst::ICMP_NE && ICmpInst::isTrueWhenEqual(Pred1)) || 1376 (Pred0 == ICmpInst::ICMP_SLE && Pred1 == ICmpInst::ICMP_SGE) || 1377 (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_UGE)) 1378 return getTrue(Op0->getType()); 1379 1380 return nullptr; 1381 } 1382 1383 /// Test if a pair of compares with a shared operand and 2 constants has an 1384 /// empty set intersection, full set union, or if one compare is a superset of 1385 /// the other. 1386 static Value *simplifyAndOrOfICmpsWithConstants(ICmpInst *Cmp0, ICmpInst *Cmp1, 1387 bool IsAnd) { 1388 // Look for this pattern: {and/or} (icmp X, C0), (icmp X, C1)). 1389 if (Cmp0->getOperand(0) != Cmp1->getOperand(0)) 1390 return nullptr; 1391 1392 const APInt *C0, *C1; 1393 if (!match(Cmp0->getOperand(1), m_APInt(C0)) || 1394 !match(Cmp1->getOperand(1), m_APInt(C1))) 1395 return nullptr; 1396 1397 auto Range0 = ConstantRange::makeExactICmpRegion(Cmp0->getPredicate(), *C0); 1398 auto Range1 = ConstantRange::makeExactICmpRegion(Cmp1->getPredicate(), *C1); 1399 1400 // For and-of-compares, check if the intersection is empty: 1401 // (icmp X, C0) && (icmp X, C1) --> empty set --> false 1402 if (IsAnd && Range0.intersectWith(Range1).isEmptySet()) 1403 return getFalse(Cmp0->getType()); 1404 1405 // For or-of-compares, check if the union is full: 1406 // (icmp X, C0) || (icmp X, C1) --> full set --> true 1407 if (!IsAnd && Range0.unionWith(Range1).isFullSet()) 1408 return getTrue(Cmp0->getType()); 1409 1410 // Is one range a superset of the other? 1411 // If this is and-of-compares, take the smaller set: 1412 // (icmp sgt X, 4) && (icmp sgt X, 42) --> icmp sgt X, 42 1413 // If this is or-of-compares, take the larger set: 1414 // (icmp sgt X, 4) || (icmp sgt X, 42) --> icmp sgt X, 4 1415 if (Range0.contains(Range1)) 1416 return IsAnd ? Cmp1 : Cmp0; 1417 if (Range1.contains(Range0)) 1418 return IsAnd ? Cmp0 : Cmp1; 1419 1420 return nullptr; 1421 } 1422 1423 static Value *simplifyAndOrOfICmpsWithZero(ICmpInst *Cmp0, ICmpInst *Cmp1, 1424 bool IsAnd) { 1425 ICmpInst::Predicate P0 = Cmp0->getPredicate(), P1 = Cmp1->getPredicate(); 1426 if (!match(Cmp0->getOperand(1), m_Zero()) || 1427 !match(Cmp1->getOperand(1), m_Zero()) || P0 != P1) 1428 return nullptr; 1429 1430 if ((IsAnd && P0 != ICmpInst::ICMP_NE) || (!IsAnd && P1 != ICmpInst::ICMP_EQ)) 1431 return nullptr; 1432 1433 // We have either "(X == 0 || Y == 0)" or "(X != 0 && Y != 0)". 1434 Value *X = Cmp0->getOperand(0); 1435 Value *Y = Cmp1->getOperand(0); 1436 1437 // If one of the compares is a masked version of a (not) null check, then 1438 // that compare implies the other, so we eliminate the other. Optionally, look 1439 // through a pointer-to-int cast to match a null check of a pointer type. 1440 1441 // (X == 0) || (([ptrtoint] X & ?) == 0) --> ([ptrtoint] X & ?) == 0 1442 // (X == 0) || ((? & [ptrtoint] X) == 0) --> (? & [ptrtoint] X) == 0 1443 // (X != 0) && (([ptrtoint] X & ?) != 0) --> ([ptrtoint] X & ?) != 0 1444 // (X != 0) && ((? & [ptrtoint] X) != 0) --> (? & [ptrtoint] X) != 0 1445 if (match(Y, m_c_And(m_Specific(X), m_Value())) || 1446 match(Y, m_c_And(m_PtrToInt(m_Specific(X)), m_Value()))) 1447 return Cmp1; 1448 1449 // (([ptrtoint] Y & ?) == 0) || (Y == 0) --> ([ptrtoint] Y & ?) == 0 1450 // ((? & [ptrtoint] Y) == 0) || (Y == 0) --> (? & [ptrtoint] Y) == 0 1451 // (([ptrtoint] Y & ?) != 0) && (Y != 0) --> ([ptrtoint] Y & ?) != 0 1452 // ((? & [ptrtoint] Y) != 0) && (Y != 0) --> (? & [ptrtoint] Y) != 0 1453 if (match(X, m_c_And(m_Specific(Y), m_Value())) || 1454 match(X, m_c_And(m_PtrToInt(m_Specific(Y)), m_Value()))) 1455 return Cmp0; 1456 1457 return nullptr; 1458 } 1459 1460 static Value *simplifyAndOfICmpsWithAdd(ICmpInst *Op0, ICmpInst *Op1) { 1461 // (icmp (add V, C0), C1) & (icmp V, C0) 1462 ICmpInst::Predicate Pred0, Pred1; 1463 const APInt *C0, *C1; 1464 Value *V; 1465 if (!match(Op0, m_ICmp(Pred0, m_Add(m_Value(V), m_APInt(C0)), m_APInt(C1)))) 1466 return nullptr; 1467 1468 if (!match(Op1, m_ICmp(Pred1, m_Specific(V), m_Value()))) 1469 return nullptr; 1470 1471 auto *AddInst = cast<BinaryOperator>(Op0->getOperand(0)); 1472 if (AddInst->getOperand(1) != Op1->getOperand(1)) 1473 return nullptr; 1474 1475 Type *ITy = Op0->getType(); 1476 bool isNSW = AddInst->hasNoSignedWrap(); 1477 bool isNUW = AddInst->hasNoUnsignedWrap(); 1478 1479 const APInt Delta = *C1 - *C0; 1480 if (C0->isStrictlyPositive()) { 1481 if (Delta == 2) { 1482 if (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_SGT) 1483 return getFalse(ITy); 1484 if (Pred0 == ICmpInst::ICMP_SLT && Pred1 == ICmpInst::ICMP_SGT && isNSW) 1485 return getFalse(ITy); 1486 } 1487 if (Delta == 1) { 1488 if (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_SGT) 1489 return getFalse(ITy); 1490 if (Pred0 == ICmpInst::ICMP_SLE && Pred1 == ICmpInst::ICMP_SGT && isNSW) 1491 return getFalse(ITy); 1492 } 1493 } 1494 if (C0->getBoolValue() && isNUW) { 1495 if (Delta == 2) 1496 if (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_UGT) 1497 return getFalse(ITy); 1498 if (Delta == 1) 1499 if (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_UGT) 1500 return getFalse(ITy); 1501 } 1502 1503 return nullptr; 1504 } 1505 1506 static Value *simplifyAndOfICmps(ICmpInst *Op0, ICmpInst *Op1) { 1507 if (Value *X = simplifyUnsignedRangeCheck(Op0, Op1, /*IsAnd=*/true)) 1508 return X; 1509 if (Value *X = simplifyUnsignedRangeCheck(Op1, Op0, /*IsAnd=*/true)) 1510 return X; 1511 1512 if (Value *X = simplifyAndOfICmpsWithSameOperands(Op0, Op1)) 1513 return X; 1514 if (Value *X = simplifyAndOfICmpsWithSameOperands(Op1, Op0)) 1515 return X; 1516 1517 if (Value *X = simplifyAndOrOfICmpsWithConstants(Op0, Op1, true)) 1518 return X; 1519 1520 if (Value *X = simplifyAndOrOfICmpsWithZero(Op0, Op1, true)) 1521 return X; 1522 1523 if (Value *X = simplifyAndOfICmpsWithAdd(Op0, Op1)) 1524 return X; 1525 if (Value *X = simplifyAndOfICmpsWithAdd(Op1, Op0)) 1526 return X; 1527 1528 return nullptr; 1529 } 1530 1531 static Value *simplifyOrOfICmpsWithAdd(ICmpInst *Op0, ICmpInst *Op1) { 1532 // (icmp (add V, C0), C1) | (icmp V, C0) 1533 ICmpInst::Predicate Pred0, Pred1; 1534 const APInt *C0, *C1; 1535 Value *V; 1536 if (!match(Op0, m_ICmp(Pred0, m_Add(m_Value(V), m_APInt(C0)), m_APInt(C1)))) 1537 return nullptr; 1538 1539 if (!match(Op1, m_ICmp(Pred1, m_Specific(V), m_Value()))) 1540 return nullptr; 1541 1542 auto *AddInst = cast<BinaryOperator>(Op0->getOperand(0)); 1543 if (AddInst->getOperand(1) != Op1->getOperand(1)) 1544 return nullptr; 1545 1546 Type *ITy = Op0->getType(); 1547 bool isNSW = AddInst->hasNoSignedWrap(); 1548 bool isNUW = AddInst->hasNoUnsignedWrap(); 1549 1550 const APInt Delta = *C1 - *C0; 1551 if (C0->isStrictlyPositive()) { 1552 if (Delta == 2) { 1553 if (Pred0 == ICmpInst::ICMP_UGE && Pred1 == ICmpInst::ICMP_SLE) 1554 return getTrue(ITy); 1555 if (Pred0 == ICmpInst::ICMP_SGE && Pred1 == ICmpInst::ICMP_SLE && isNSW) 1556 return getTrue(ITy); 1557 } 1558 if (Delta == 1) { 1559 if (Pred0 == ICmpInst::ICMP_UGT && Pred1 == ICmpInst::ICMP_SLE) 1560 return getTrue(ITy); 1561 if (Pred0 == ICmpInst::ICMP_SGT && Pred1 == ICmpInst::ICMP_SLE && isNSW) 1562 return getTrue(ITy); 1563 } 1564 } 1565 if (C0->getBoolValue() && isNUW) { 1566 if (Delta == 2) 1567 if (Pred0 == ICmpInst::ICMP_UGE && Pred1 == ICmpInst::ICMP_ULE) 1568 return getTrue(ITy); 1569 if (Delta == 1) 1570 if (Pred0 == ICmpInst::ICMP_UGT && Pred1 == ICmpInst::ICMP_ULE) 1571 return getTrue(ITy); 1572 } 1573 1574 return nullptr; 1575 } 1576 1577 static Value *simplifyOrOfICmps(ICmpInst *Op0, ICmpInst *Op1) { 1578 if (Value *X = simplifyUnsignedRangeCheck(Op0, Op1, /*IsAnd=*/false)) 1579 return X; 1580 if (Value *X = simplifyUnsignedRangeCheck(Op1, Op0, /*IsAnd=*/false)) 1581 return X; 1582 1583 if (Value *X = simplifyOrOfICmpsWithSameOperands(Op0, Op1)) 1584 return X; 1585 if (Value *X = simplifyOrOfICmpsWithSameOperands(Op1, Op0)) 1586 return X; 1587 1588 if (Value *X = simplifyAndOrOfICmpsWithConstants(Op0, Op1, false)) 1589 return X; 1590 1591 if (Value *X = simplifyAndOrOfICmpsWithZero(Op0, Op1, false)) 1592 return X; 1593 1594 if (Value *X = simplifyOrOfICmpsWithAdd(Op0, Op1)) 1595 return X; 1596 if (Value *X = simplifyOrOfICmpsWithAdd(Op1, Op0)) 1597 return X; 1598 1599 return nullptr; 1600 } 1601 1602 static Value *simplifyAndOrOfFCmps(FCmpInst *LHS, FCmpInst *RHS, bool IsAnd) { 1603 Value *LHS0 = LHS->getOperand(0), *LHS1 = LHS->getOperand(1); 1604 Value *RHS0 = RHS->getOperand(0), *RHS1 = RHS->getOperand(1); 1605 if (LHS0->getType() != RHS0->getType()) 1606 return nullptr; 1607 1608 FCmpInst::Predicate PredL = LHS->getPredicate(), PredR = RHS->getPredicate(); 1609 if ((PredL == FCmpInst::FCMP_ORD && PredR == FCmpInst::FCMP_ORD && IsAnd) || 1610 (PredL == FCmpInst::FCMP_UNO && PredR == FCmpInst::FCMP_UNO && !IsAnd)) { 1611 // (fcmp ord NNAN, X) & (fcmp ord X, Y) --> fcmp ord X, Y 1612 // (fcmp ord NNAN, X) & (fcmp ord Y, X) --> fcmp ord Y, X 1613 // (fcmp ord X, NNAN) & (fcmp ord X, Y) --> fcmp ord X, Y 1614 // (fcmp ord X, NNAN) & (fcmp ord Y, X) --> fcmp ord Y, X 1615 // (fcmp uno NNAN, X) | (fcmp uno X, Y) --> fcmp uno X, Y 1616 // (fcmp uno NNAN, X) | (fcmp uno Y, X) --> fcmp uno Y, X 1617 // (fcmp uno X, NNAN) | (fcmp uno X, Y) --> fcmp uno X, Y 1618 // (fcmp uno X, NNAN) | (fcmp uno Y, X) --> fcmp uno Y, X 1619 if ((isKnownNeverNaN(LHS0) && (LHS1 == RHS0 || LHS1 == RHS1)) || 1620 (isKnownNeverNaN(LHS1) && (LHS0 == RHS0 || LHS0 == RHS1))) 1621 return RHS; 1622 1623 // (fcmp ord X, Y) & (fcmp ord NNAN, X) --> fcmp ord X, Y 1624 // (fcmp ord Y, X) & (fcmp ord NNAN, X) --> fcmp ord Y, X 1625 // (fcmp ord X, Y) & (fcmp ord X, NNAN) --> fcmp ord X, Y 1626 // (fcmp ord Y, X) & (fcmp ord X, NNAN) --> fcmp ord Y, X 1627 // (fcmp uno X, Y) | (fcmp uno NNAN, X) --> fcmp uno X, Y 1628 // (fcmp uno Y, X) | (fcmp uno NNAN, X) --> fcmp uno Y, X 1629 // (fcmp uno X, Y) | (fcmp uno X, NNAN) --> fcmp uno X, Y 1630 // (fcmp uno Y, X) | (fcmp uno X, NNAN) --> fcmp uno Y, X 1631 if ((isKnownNeverNaN(RHS0) && (RHS1 == LHS0 || RHS1 == LHS1)) || 1632 (isKnownNeverNaN(RHS1) && (RHS0 == LHS0 || RHS0 == LHS1))) 1633 return LHS; 1634 } 1635 1636 return nullptr; 1637 } 1638 1639 static Value *simplifyAndOrOfCmps(Value *Op0, Value *Op1, bool IsAnd) { 1640 // Look through casts of the 'and' operands to find compares. 1641 auto *Cast0 = dyn_cast<CastInst>(Op0); 1642 auto *Cast1 = dyn_cast<CastInst>(Op1); 1643 if (Cast0 && Cast1 && Cast0->getOpcode() == Cast1->getOpcode() && 1644 Cast0->getSrcTy() == Cast1->getSrcTy()) { 1645 Op0 = Cast0->getOperand(0); 1646 Op1 = Cast1->getOperand(0); 1647 } 1648 1649 Value *V = nullptr; 1650 auto *ICmp0 = dyn_cast<ICmpInst>(Op0); 1651 auto *ICmp1 = dyn_cast<ICmpInst>(Op1); 1652 if (ICmp0 && ICmp1) 1653 V = IsAnd ? simplifyAndOfICmps(ICmp0, ICmp1) : 1654 simplifyOrOfICmps(ICmp0, ICmp1); 1655 1656 auto *FCmp0 = dyn_cast<FCmpInst>(Op0); 1657 auto *FCmp1 = dyn_cast<FCmpInst>(Op1); 1658 if (FCmp0 && FCmp1) 1659 V = simplifyAndOrOfFCmps(FCmp0, FCmp1, IsAnd); 1660 1661 if (!V) 1662 return nullptr; 1663 if (!Cast0) 1664 return V; 1665 1666 // If we looked through casts, we can only handle a constant simplification 1667 // because we are not allowed to create a cast instruction here. 1668 if (auto *C = dyn_cast<Constant>(V)) 1669 return ConstantExpr::getCast(Cast0->getOpcode(), C, Cast0->getType()); 1670 1671 return nullptr; 1672 } 1673 1674 /// Given operands for an And, see if we can fold the result. 1675 /// If not, this returns null. 1676 static Value *SimplifyAndInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 1677 unsigned MaxRecurse) { 1678 if (Constant *C = foldOrCommuteConstant(Instruction::And, Op0, Op1, Q)) 1679 return C; 1680 1681 // X & undef -> 0 1682 if (match(Op1, m_Undef())) 1683 return Constant::getNullValue(Op0->getType()); 1684 1685 // X & X = X 1686 if (Op0 == Op1) 1687 return Op0; 1688 1689 // X & 0 = 0 1690 if (match(Op1, m_Zero())) 1691 return Constant::getNullValue(Op0->getType()); 1692 1693 // X & -1 = X 1694 if (match(Op1, m_AllOnes())) 1695 return Op0; 1696 1697 // A & ~A = ~A & A = 0 1698 if (match(Op0, m_Not(m_Specific(Op1))) || 1699 match(Op1, m_Not(m_Specific(Op0)))) 1700 return Constant::getNullValue(Op0->getType()); 1701 1702 // (A | ?) & A = A 1703 if (match(Op0, m_c_Or(m_Specific(Op1), m_Value()))) 1704 return Op1; 1705 1706 // A & (A | ?) = A 1707 if (match(Op1, m_c_Or(m_Specific(Op0), m_Value()))) 1708 return Op0; 1709 1710 // A mask that only clears known zeros of a shifted value is a no-op. 1711 Value *X; 1712 const APInt *Mask; 1713 const APInt *ShAmt; 1714 if (match(Op1, m_APInt(Mask))) { 1715 // If all bits in the inverted and shifted mask are clear: 1716 // and (shl X, ShAmt), Mask --> shl X, ShAmt 1717 if (match(Op0, m_Shl(m_Value(X), m_APInt(ShAmt))) && 1718 (~(*Mask)).lshr(*ShAmt).isNullValue()) 1719 return Op0; 1720 1721 // If all bits in the inverted and shifted mask are clear: 1722 // and (lshr X, ShAmt), Mask --> lshr X, ShAmt 1723 if (match(Op0, m_LShr(m_Value(X), m_APInt(ShAmt))) && 1724 (~(*Mask)).shl(*ShAmt).isNullValue()) 1725 return Op0; 1726 } 1727 1728 // A & (-A) = A if A is a power of two or zero. 1729 if (match(Op0, m_Neg(m_Specific(Op1))) || 1730 match(Op1, m_Neg(m_Specific(Op0)))) { 1731 if (isKnownToBeAPowerOfTwo(Op0, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI, 1732 Q.DT)) 1733 return Op0; 1734 if (isKnownToBeAPowerOfTwo(Op1, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI, 1735 Q.DT)) 1736 return Op1; 1737 } 1738 1739 if (Value *V = simplifyAndOrOfCmps(Op0, Op1, true)) 1740 return V; 1741 1742 // Try some generic simplifications for associative operations. 1743 if (Value *V = SimplifyAssociativeBinOp(Instruction::And, Op0, Op1, Q, 1744 MaxRecurse)) 1745 return V; 1746 1747 // And distributes over Or. Try some generic simplifications based on this. 1748 if (Value *V = ExpandBinOp(Instruction::And, Op0, Op1, Instruction::Or, 1749 Q, MaxRecurse)) 1750 return V; 1751 1752 // And distributes over Xor. Try some generic simplifications based on this. 1753 if (Value *V = ExpandBinOp(Instruction::And, Op0, Op1, Instruction::Xor, 1754 Q, MaxRecurse)) 1755 return V; 1756 1757 // If the operation is with the result of a select instruction, check whether 1758 // operating on either branch of the select always yields the same value. 1759 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 1760 if (Value *V = ThreadBinOpOverSelect(Instruction::And, Op0, Op1, Q, 1761 MaxRecurse)) 1762 return V; 1763 1764 // If the operation is with the result of a phi instruction, check whether 1765 // operating on all incoming values of the phi always yields the same value. 1766 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 1767 if (Value *V = ThreadBinOpOverPHI(Instruction::And, Op0, Op1, Q, 1768 MaxRecurse)) 1769 return V; 1770 1771 return nullptr; 1772 } 1773 1774 Value *llvm::SimplifyAndInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 1775 return ::SimplifyAndInst(Op0, Op1, Q, RecursionLimit); 1776 } 1777 1778 /// Given operands for an Or, see if we can fold the result. 1779 /// If not, this returns null. 1780 static Value *SimplifyOrInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 1781 unsigned MaxRecurse) { 1782 if (Constant *C = foldOrCommuteConstant(Instruction::Or, Op0, Op1, Q)) 1783 return C; 1784 1785 // X | undef -> -1 1786 // X | -1 = -1 1787 // Do not return Op1 because it may contain undef elements if it's a vector. 1788 if (match(Op1, m_Undef()) || match(Op1, m_AllOnes())) 1789 return Constant::getAllOnesValue(Op0->getType()); 1790 1791 // X | X = X 1792 // X | 0 = X 1793 if (Op0 == Op1 || match(Op1, m_Zero())) 1794 return Op0; 1795 1796 // A | ~A = ~A | A = -1 1797 if (match(Op0, m_Not(m_Specific(Op1))) || 1798 match(Op1, m_Not(m_Specific(Op0)))) 1799 return Constant::getAllOnesValue(Op0->getType()); 1800 1801 // (A & ?) | A = A 1802 if (match(Op0, m_c_And(m_Specific(Op1), m_Value()))) 1803 return Op1; 1804 1805 // A | (A & ?) = A 1806 if (match(Op1, m_c_And(m_Specific(Op0), m_Value()))) 1807 return Op0; 1808 1809 // ~(A & ?) | A = -1 1810 if (match(Op0, m_Not(m_c_And(m_Specific(Op1), m_Value())))) 1811 return Constant::getAllOnesValue(Op1->getType()); 1812 1813 // A | ~(A & ?) = -1 1814 if (match(Op1, m_Not(m_c_And(m_Specific(Op1), m_Value())))) 1815 return Constant::getAllOnesValue(Op0->getType()); 1816 1817 Value *A, *B; 1818 // (A & ~B) | (A ^ B) -> (A ^ B) 1819 // (~B & A) | (A ^ B) -> (A ^ B) 1820 // (A & ~B) | (B ^ A) -> (B ^ A) 1821 // (~B & A) | (B ^ A) -> (B ^ A) 1822 if (match(Op1, m_Xor(m_Value(A), m_Value(B))) && 1823 (match(Op0, m_c_And(m_Specific(A), m_Not(m_Specific(B)))) || 1824 match(Op0, m_c_And(m_Not(m_Specific(A)), m_Specific(B))))) 1825 return Op1; 1826 1827 // Commute the 'or' operands. 1828 // (A ^ B) | (A & ~B) -> (A ^ B) 1829 // (A ^ B) | (~B & A) -> (A ^ B) 1830 // (B ^ A) | (A & ~B) -> (B ^ A) 1831 // (B ^ A) | (~B & A) -> (B ^ A) 1832 if (match(Op0, m_Xor(m_Value(A), m_Value(B))) && 1833 (match(Op1, m_c_And(m_Specific(A), m_Not(m_Specific(B)))) || 1834 match(Op1, m_c_And(m_Not(m_Specific(A)), m_Specific(B))))) 1835 return Op0; 1836 1837 // (A & B) | (~A ^ B) -> (~A ^ B) 1838 // (B & A) | (~A ^ B) -> (~A ^ B) 1839 // (A & B) | (B ^ ~A) -> (B ^ ~A) 1840 // (B & A) | (B ^ ~A) -> (B ^ ~A) 1841 if (match(Op0, m_And(m_Value(A), m_Value(B))) && 1842 (match(Op1, m_c_Xor(m_Specific(A), m_Not(m_Specific(B)))) || 1843 match(Op1, m_c_Xor(m_Not(m_Specific(A)), m_Specific(B))))) 1844 return Op1; 1845 1846 // (~A ^ B) | (A & B) -> (~A ^ B) 1847 // (~A ^ B) | (B & A) -> (~A ^ B) 1848 // (B ^ ~A) | (A & B) -> (B ^ ~A) 1849 // (B ^ ~A) | (B & A) -> (B ^ ~A) 1850 if (match(Op1, m_And(m_Value(A), m_Value(B))) && 1851 (match(Op0, m_c_Xor(m_Specific(A), m_Not(m_Specific(B)))) || 1852 match(Op0, m_c_Xor(m_Not(m_Specific(A)), m_Specific(B))))) 1853 return Op0; 1854 1855 if (Value *V = simplifyAndOrOfCmps(Op0, Op1, false)) 1856 return V; 1857 1858 // Try some generic simplifications for associative operations. 1859 if (Value *V = SimplifyAssociativeBinOp(Instruction::Or, Op0, Op1, Q, 1860 MaxRecurse)) 1861 return V; 1862 1863 // Or distributes over And. Try some generic simplifications based on this. 1864 if (Value *V = ExpandBinOp(Instruction::Or, Op0, Op1, Instruction::And, Q, 1865 MaxRecurse)) 1866 return V; 1867 1868 // If the operation is with the result of a select instruction, check whether 1869 // operating on either branch of the select always yields the same value. 1870 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 1871 if (Value *V = ThreadBinOpOverSelect(Instruction::Or, Op0, Op1, Q, 1872 MaxRecurse)) 1873 return V; 1874 1875 // (A & C1)|(B & C2) 1876 const APInt *C1, *C2; 1877 if (match(Op0, m_And(m_Value(A), m_APInt(C1))) && 1878 match(Op1, m_And(m_Value(B), m_APInt(C2)))) { 1879 if (*C1 == ~*C2) { 1880 // (A & C1)|(B & C2) 1881 // If we have: ((V + N) & C1) | (V & C2) 1882 // .. and C2 = ~C1 and C2 is 0+1+ and (N & C2) == 0 1883 // replace with V+N. 1884 Value *N; 1885 if (C2->isMask() && // C2 == 0+1+ 1886 match(A, m_c_Add(m_Specific(B), m_Value(N)))) { 1887 // Add commutes, try both ways. 1888 if (MaskedValueIsZero(N, *C2, Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 1889 return A; 1890 } 1891 // Or commutes, try both ways. 1892 if (C1->isMask() && 1893 match(B, m_c_Add(m_Specific(A), m_Value(N)))) { 1894 // Add commutes, try both ways. 1895 if (MaskedValueIsZero(N, *C1, Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 1896 return B; 1897 } 1898 } 1899 } 1900 1901 // If the operation is with the result of a phi instruction, check whether 1902 // operating on all incoming values of the phi always yields the same value. 1903 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 1904 if (Value *V = ThreadBinOpOverPHI(Instruction::Or, Op0, Op1, Q, MaxRecurse)) 1905 return V; 1906 1907 return nullptr; 1908 } 1909 1910 Value *llvm::SimplifyOrInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 1911 return ::SimplifyOrInst(Op0, Op1, Q, RecursionLimit); 1912 } 1913 1914 /// Given operands for a Xor, see if we can fold the result. 1915 /// If not, this returns null. 1916 static Value *SimplifyXorInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 1917 unsigned MaxRecurse) { 1918 if (Constant *C = foldOrCommuteConstant(Instruction::Xor, Op0, Op1, Q)) 1919 return C; 1920 1921 // A ^ undef -> undef 1922 if (match(Op1, m_Undef())) 1923 return Op1; 1924 1925 // A ^ 0 = A 1926 if (match(Op1, m_Zero())) 1927 return Op0; 1928 1929 // A ^ A = 0 1930 if (Op0 == Op1) 1931 return Constant::getNullValue(Op0->getType()); 1932 1933 // A ^ ~A = ~A ^ A = -1 1934 if (match(Op0, m_Not(m_Specific(Op1))) || 1935 match(Op1, m_Not(m_Specific(Op0)))) 1936 return Constant::getAllOnesValue(Op0->getType()); 1937 1938 // Try some generic simplifications for associative operations. 1939 if (Value *V = SimplifyAssociativeBinOp(Instruction::Xor, Op0, Op1, Q, 1940 MaxRecurse)) 1941 return V; 1942 1943 // Threading Xor over selects and phi nodes is pointless, so don't bother. 1944 // Threading over the select in "A ^ select(cond, B, C)" means evaluating 1945 // "A^B" and "A^C" and seeing if they are equal; but they are equal if and 1946 // only if B and C are equal. If B and C are equal then (since we assume 1947 // that operands have already been simplified) "select(cond, B, C)" should 1948 // have been simplified to the common value of B and C already. Analysing 1949 // "A^B" and "A^C" thus gains nothing, but costs compile time. Similarly 1950 // for threading over phi nodes. 1951 1952 return nullptr; 1953 } 1954 1955 Value *llvm::SimplifyXorInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 1956 return ::SimplifyXorInst(Op0, Op1, Q, RecursionLimit); 1957 } 1958 1959 1960 static Type *GetCompareTy(Value *Op) { 1961 return CmpInst::makeCmpResultType(Op->getType()); 1962 } 1963 1964 /// Rummage around inside V looking for something equivalent to the comparison 1965 /// "LHS Pred RHS". Return such a value if found, otherwise return null. 1966 /// Helper function for analyzing max/min idioms. 1967 static Value *ExtractEquivalentCondition(Value *V, CmpInst::Predicate Pred, 1968 Value *LHS, Value *RHS) { 1969 SelectInst *SI = dyn_cast<SelectInst>(V); 1970 if (!SI) 1971 return nullptr; 1972 CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition()); 1973 if (!Cmp) 1974 return nullptr; 1975 Value *CmpLHS = Cmp->getOperand(0), *CmpRHS = Cmp->getOperand(1); 1976 if (Pred == Cmp->getPredicate() && LHS == CmpLHS && RHS == CmpRHS) 1977 return Cmp; 1978 if (Pred == CmpInst::getSwappedPredicate(Cmp->getPredicate()) && 1979 LHS == CmpRHS && RHS == CmpLHS) 1980 return Cmp; 1981 return nullptr; 1982 } 1983 1984 // A significant optimization not implemented here is assuming that alloca 1985 // addresses are not equal to incoming argument values. They don't *alias*, 1986 // as we say, but that doesn't mean they aren't equal, so we take a 1987 // conservative approach. 1988 // 1989 // This is inspired in part by C++11 5.10p1: 1990 // "Two pointers of the same type compare equal if and only if they are both 1991 // null, both point to the same function, or both represent the same 1992 // address." 1993 // 1994 // This is pretty permissive. 1995 // 1996 // It's also partly due to C11 6.5.9p6: 1997 // "Two pointers compare equal if and only if both are null pointers, both are 1998 // pointers to the same object (including a pointer to an object and a 1999 // subobject at its beginning) or function, both are pointers to one past the 2000 // last element of the same array object, or one is a pointer to one past the 2001 // end of one array object and the other is a pointer to the start of a 2002 // different array object that happens to immediately follow the first array 2003 // object in the address space.) 2004 // 2005 // C11's version is more restrictive, however there's no reason why an argument 2006 // couldn't be a one-past-the-end value for a stack object in the caller and be 2007 // equal to the beginning of a stack object in the callee. 2008 // 2009 // If the C and C++ standards are ever made sufficiently restrictive in this 2010 // area, it may be possible to update LLVM's semantics accordingly and reinstate 2011 // this optimization. 2012 static Constant * 2013 computePointerICmp(const DataLayout &DL, const TargetLibraryInfo *TLI, 2014 const DominatorTree *DT, CmpInst::Predicate Pred, 2015 AssumptionCache *AC, const Instruction *CxtI, 2016 Value *LHS, Value *RHS) { 2017 // First, skip past any trivial no-ops. 2018 LHS = LHS->stripPointerCasts(); 2019 RHS = RHS->stripPointerCasts(); 2020 2021 // A non-null pointer is not equal to a null pointer. 2022 if (llvm::isKnownNonZero(LHS, DL) && isa<ConstantPointerNull>(RHS) && 2023 (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE)) 2024 return ConstantInt::get(GetCompareTy(LHS), 2025 !CmpInst::isTrueWhenEqual(Pred)); 2026 2027 // We can only fold certain predicates on pointer comparisons. 2028 switch (Pred) { 2029 default: 2030 return nullptr; 2031 2032 // Equality comaprisons are easy to fold. 2033 case CmpInst::ICMP_EQ: 2034 case CmpInst::ICMP_NE: 2035 break; 2036 2037 // We can only handle unsigned relational comparisons because 'inbounds' on 2038 // a GEP only protects against unsigned wrapping. 2039 case CmpInst::ICMP_UGT: 2040 case CmpInst::ICMP_UGE: 2041 case CmpInst::ICMP_ULT: 2042 case CmpInst::ICMP_ULE: 2043 // However, we have to switch them to their signed variants to handle 2044 // negative indices from the base pointer. 2045 Pred = ICmpInst::getSignedPredicate(Pred); 2046 break; 2047 } 2048 2049 // Strip off any constant offsets so that we can reason about them. 2050 // It's tempting to use getUnderlyingObject or even just stripInBoundsOffsets 2051 // here and compare base addresses like AliasAnalysis does, however there are 2052 // numerous hazards. AliasAnalysis and its utilities rely on special rules 2053 // governing loads and stores which don't apply to icmps. Also, AliasAnalysis 2054 // doesn't need to guarantee pointer inequality when it says NoAlias. 2055 Constant *LHSOffset = stripAndComputeConstantOffsets(DL, LHS); 2056 Constant *RHSOffset = stripAndComputeConstantOffsets(DL, RHS); 2057 2058 // If LHS and RHS are related via constant offsets to the same base 2059 // value, we can replace it with an icmp which just compares the offsets. 2060 if (LHS == RHS) 2061 return ConstantExpr::getICmp(Pred, LHSOffset, RHSOffset); 2062 2063 // Various optimizations for (in)equality comparisons. 2064 if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE) { 2065 // Different non-empty allocations that exist at the same time have 2066 // different addresses (if the program can tell). Global variables always 2067 // exist, so they always exist during the lifetime of each other and all 2068 // allocas. Two different allocas usually have different addresses... 2069 // 2070 // However, if there's an @llvm.stackrestore dynamically in between two 2071 // allocas, they may have the same address. It's tempting to reduce the 2072 // scope of the problem by only looking at *static* allocas here. That would 2073 // cover the majority of allocas while significantly reducing the likelihood 2074 // of having an @llvm.stackrestore pop up in the middle. However, it's not 2075 // actually impossible for an @llvm.stackrestore to pop up in the middle of 2076 // an entry block. Also, if we have a block that's not attached to a 2077 // function, we can't tell if it's "static" under the current definition. 2078 // Theoretically, this problem could be fixed by creating a new kind of 2079 // instruction kind specifically for static allocas. Such a new instruction 2080 // could be required to be at the top of the entry block, thus preventing it 2081 // from being subject to a @llvm.stackrestore. Instcombine could even 2082 // convert regular allocas into these special allocas. It'd be nifty. 2083 // However, until then, this problem remains open. 2084 // 2085 // So, we'll assume that two non-empty allocas have different addresses 2086 // for now. 2087 // 2088 // With all that, if the offsets are within the bounds of their allocations 2089 // (and not one-past-the-end! so we can't use inbounds!), and their 2090 // allocations aren't the same, the pointers are not equal. 2091 // 2092 // Note that it's not necessary to check for LHS being a global variable 2093 // address, due to canonicalization and constant folding. 2094 if (isa<AllocaInst>(LHS) && 2095 (isa<AllocaInst>(RHS) || isa<GlobalVariable>(RHS))) { 2096 ConstantInt *LHSOffsetCI = dyn_cast<ConstantInt>(LHSOffset); 2097 ConstantInt *RHSOffsetCI = dyn_cast<ConstantInt>(RHSOffset); 2098 uint64_t LHSSize, RHSSize; 2099 if (LHSOffsetCI && RHSOffsetCI && 2100 getObjectSize(LHS, LHSSize, DL, TLI) && 2101 getObjectSize(RHS, RHSSize, DL, TLI)) { 2102 const APInt &LHSOffsetValue = LHSOffsetCI->getValue(); 2103 const APInt &RHSOffsetValue = RHSOffsetCI->getValue(); 2104 if (!LHSOffsetValue.isNegative() && 2105 !RHSOffsetValue.isNegative() && 2106 LHSOffsetValue.ult(LHSSize) && 2107 RHSOffsetValue.ult(RHSSize)) { 2108 return ConstantInt::get(GetCompareTy(LHS), 2109 !CmpInst::isTrueWhenEqual(Pred)); 2110 } 2111 } 2112 2113 // Repeat the above check but this time without depending on DataLayout 2114 // or being able to compute a precise size. 2115 if (!cast<PointerType>(LHS->getType())->isEmptyTy() && 2116 !cast<PointerType>(RHS->getType())->isEmptyTy() && 2117 LHSOffset->isNullValue() && 2118 RHSOffset->isNullValue()) 2119 return ConstantInt::get(GetCompareTy(LHS), 2120 !CmpInst::isTrueWhenEqual(Pred)); 2121 } 2122 2123 // Even if an non-inbounds GEP occurs along the path we can still optimize 2124 // equality comparisons concerning the result. We avoid walking the whole 2125 // chain again by starting where the last calls to 2126 // stripAndComputeConstantOffsets left off and accumulate the offsets. 2127 Constant *LHSNoBound = stripAndComputeConstantOffsets(DL, LHS, true); 2128 Constant *RHSNoBound = stripAndComputeConstantOffsets(DL, RHS, true); 2129 if (LHS == RHS) 2130 return ConstantExpr::getICmp(Pred, 2131 ConstantExpr::getAdd(LHSOffset, LHSNoBound), 2132 ConstantExpr::getAdd(RHSOffset, RHSNoBound)); 2133 2134 // If one side of the equality comparison must come from a noalias call 2135 // (meaning a system memory allocation function), and the other side must 2136 // come from a pointer that cannot overlap with dynamically-allocated 2137 // memory within the lifetime of the current function (allocas, byval 2138 // arguments, globals), then determine the comparison result here. 2139 SmallVector<Value *, 8> LHSUObjs, RHSUObjs; 2140 GetUnderlyingObjects(LHS, LHSUObjs, DL); 2141 GetUnderlyingObjects(RHS, RHSUObjs, DL); 2142 2143 // Is the set of underlying objects all noalias calls? 2144 auto IsNAC = [](ArrayRef<Value *> Objects) { 2145 return all_of(Objects, isNoAliasCall); 2146 }; 2147 2148 // Is the set of underlying objects all things which must be disjoint from 2149 // noalias calls. For allocas, we consider only static ones (dynamic 2150 // allocas might be transformed into calls to malloc not simultaneously 2151 // live with the compared-to allocation). For globals, we exclude symbols 2152 // that might be resolve lazily to symbols in another dynamically-loaded 2153 // library (and, thus, could be malloc'ed by the implementation). 2154 auto IsAllocDisjoint = [](ArrayRef<Value *> Objects) { 2155 return all_of(Objects, [](Value *V) { 2156 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) 2157 return AI->getParent() && AI->getFunction() && AI->isStaticAlloca(); 2158 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) 2159 return (GV->hasLocalLinkage() || GV->hasHiddenVisibility() || 2160 GV->hasProtectedVisibility() || GV->hasGlobalUnnamedAddr()) && 2161 !GV->isThreadLocal(); 2162 if (const Argument *A = dyn_cast<Argument>(V)) 2163 return A->hasByValAttr(); 2164 return false; 2165 }); 2166 }; 2167 2168 if ((IsNAC(LHSUObjs) && IsAllocDisjoint(RHSUObjs)) || 2169 (IsNAC(RHSUObjs) && IsAllocDisjoint(LHSUObjs))) 2170 return ConstantInt::get(GetCompareTy(LHS), 2171 !CmpInst::isTrueWhenEqual(Pred)); 2172 2173 // Fold comparisons for non-escaping pointer even if the allocation call 2174 // cannot be elided. We cannot fold malloc comparison to null. Also, the 2175 // dynamic allocation call could be either of the operands. 2176 Value *MI = nullptr; 2177 if (isAllocLikeFn(LHS, TLI) && 2178 llvm::isKnownNonZero(RHS, DL, 0, nullptr, CxtI, DT)) 2179 MI = LHS; 2180 else if (isAllocLikeFn(RHS, TLI) && 2181 llvm::isKnownNonZero(LHS, DL, 0, nullptr, CxtI, DT)) 2182 MI = RHS; 2183 // FIXME: We should also fold the compare when the pointer escapes, but the 2184 // compare dominates the pointer escape 2185 if (MI && !PointerMayBeCaptured(MI, true, true)) 2186 return ConstantInt::get(GetCompareTy(LHS), 2187 CmpInst::isFalseWhenEqual(Pred)); 2188 } 2189 2190 // Otherwise, fail. 2191 return nullptr; 2192 } 2193 2194 /// Fold an icmp when its operands have i1 scalar type. 2195 static Value *simplifyICmpOfBools(CmpInst::Predicate Pred, Value *LHS, 2196 Value *RHS, const SimplifyQuery &Q) { 2197 Type *ITy = GetCompareTy(LHS); // The return type. 2198 Type *OpTy = LHS->getType(); // The operand type. 2199 if (!OpTy->isIntOrIntVectorTy(1)) 2200 return nullptr; 2201 2202 // A boolean compared to true/false can be simplified in 14 out of the 20 2203 // (10 predicates * 2 constants) possible combinations. Cases not handled here 2204 // require a 'not' of the LHS, so those must be transformed in InstCombine. 2205 if (match(RHS, m_Zero())) { 2206 switch (Pred) { 2207 case CmpInst::ICMP_NE: // X != 0 -> X 2208 case CmpInst::ICMP_UGT: // X >u 0 -> X 2209 case CmpInst::ICMP_SLT: // X <s 0 -> X 2210 return LHS; 2211 2212 case CmpInst::ICMP_ULT: // X <u 0 -> false 2213 case CmpInst::ICMP_SGT: // X >s 0 -> false 2214 return getFalse(ITy); 2215 2216 case CmpInst::ICMP_UGE: // X >=u 0 -> true 2217 case CmpInst::ICMP_SLE: // X <=s 0 -> true 2218 return getTrue(ITy); 2219 2220 default: break; 2221 } 2222 } else if (match(RHS, m_One())) { 2223 switch (Pred) { 2224 case CmpInst::ICMP_EQ: // X == 1 -> X 2225 case CmpInst::ICMP_UGE: // X >=u 1 -> X 2226 case CmpInst::ICMP_SLE: // X <=s -1 -> X 2227 return LHS; 2228 2229 case CmpInst::ICMP_UGT: // X >u 1 -> false 2230 case CmpInst::ICMP_SLT: // X <s -1 -> false 2231 return getFalse(ITy); 2232 2233 case CmpInst::ICMP_ULE: // X <=u 1 -> true 2234 case CmpInst::ICMP_SGE: // X >=s -1 -> true 2235 return getTrue(ITy); 2236 2237 default: break; 2238 } 2239 } 2240 2241 switch (Pred) { 2242 default: 2243 break; 2244 case ICmpInst::ICMP_UGE: 2245 if (isImpliedCondition(RHS, LHS, Q.DL).getValueOr(false)) 2246 return getTrue(ITy); 2247 break; 2248 case ICmpInst::ICMP_SGE: 2249 /// For signed comparison, the values for an i1 are 0 and -1 2250 /// respectively. This maps into a truth table of: 2251 /// LHS | RHS | LHS >=s RHS | LHS implies RHS 2252 /// 0 | 0 | 1 (0 >= 0) | 1 2253 /// 0 | 1 | 1 (0 >= -1) | 1 2254 /// 1 | 0 | 0 (-1 >= 0) | 0 2255 /// 1 | 1 | 1 (-1 >= -1) | 1 2256 if (isImpliedCondition(LHS, RHS, Q.DL).getValueOr(false)) 2257 return getTrue(ITy); 2258 break; 2259 case ICmpInst::ICMP_ULE: 2260 if (isImpliedCondition(LHS, RHS, Q.DL).getValueOr(false)) 2261 return getTrue(ITy); 2262 break; 2263 } 2264 2265 return nullptr; 2266 } 2267 2268 /// Try hard to fold icmp with zero RHS because this is a common case. 2269 static Value *simplifyICmpWithZero(CmpInst::Predicate Pred, Value *LHS, 2270 Value *RHS, const SimplifyQuery &Q) { 2271 if (!match(RHS, m_Zero())) 2272 return nullptr; 2273 2274 Type *ITy = GetCompareTy(LHS); // The return type. 2275 switch (Pred) { 2276 default: 2277 llvm_unreachable("Unknown ICmp predicate!"); 2278 case ICmpInst::ICMP_ULT: 2279 return getFalse(ITy); 2280 case ICmpInst::ICMP_UGE: 2281 return getTrue(ITy); 2282 case ICmpInst::ICMP_EQ: 2283 case ICmpInst::ICMP_ULE: 2284 if (isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 2285 return getFalse(ITy); 2286 break; 2287 case ICmpInst::ICMP_NE: 2288 case ICmpInst::ICMP_UGT: 2289 if (isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 2290 return getTrue(ITy); 2291 break; 2292 case ICmpInst::ICMP_SLT: { 2293 KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2294 if (LHSKnown.isNegative()) 2295 return getTrue(ITy); 2296 if (LHSKnown.isNonNegative()) 2297 return getFalse(ITy); 2298 break; 2299 } 2300 case ICmpInst::ICMP_SLE: { 2301 KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2302 if (LHSKnown.isNegative()) 2303 return getTrue(ITy); 2304 if (LHSKnown.isNonNegative() && 2305 isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 2306 return getFalse(ITy); 2307 break; 2308 } 2309 case ICmpInst::ICMP_SGE: { 2310 KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2311 if (LHSKnown.isNegative()) 2312 return getFalse(ITy); 2313 if (LHSKnown.isNonNegative()) 2314 return getTrue(ITy); 2315 break; 2316 } 2317 case ICmpInst::ICMP_SGT: { 2318 KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2319 if (LHSKnown.isNegative()) 2320 return getFalse(ITy); 2321 if (LHSKnown.isNonNegative() && 2322 isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 2323 return getTrue(ITy); 2324 break; 2325 } 2326 } 2327 2328 return nullptr; 2329 } 2330 2331 /// Many binary operators with a constant operand have an easy-to-compute 2332 /// range of outputs. This can be used to fold a comparison to always true or 2333 /// always false. 2334 static void setLimitsForBinOp(BinaryOperator &BO, APInt &Lower, APInt &Upper) { 2335 unsigned Width = Lower.getBitWidth(); 2336 const APInt *C; 2337 switch (BO.getOpcode()) { 2338 case Instruction::Add: 2339 if (match(BO.getOperand(1), m_APInt(C)) && !C->isNullValue()) { 2340 // FIXME: If we have both nuw and nsw, we should reduce the range further. 2341 if (BO.hasNoUnsignedWrap()) { 2342 // 'add nuw x, C' produces [C, UINT_MAX]. 2343 Lower = *C; 2344 } else if (BO.hasNoSignedWrap()) { 2345 if (C->isNegative()) { 2346 // 'add nsw x, -C' produces [SINT_MIN, SINT_MAX - C]. 2347 Lower = APInt::getSignedMinValue(Width); 2348 Upper = APInt::getSignedMaxValue(Width) + *C + 1; 2349 } else { 2350 // 'add nsw x, +C' produces [SINT_MIN + C, SINT_MAX]. 2351 Lower = APInt::getSignedMinValue(Width) + *C; 2352 Upper = APInt::getSignedMaxValue(Width) + 1; 2353 } 2354 } 2355 } 2356 break; 2357 2358 case Instruction::And: 2359 if (match(BO.getOperand(1), m_APInt(C))) 2360 // 'and x, C' produces [0, C]. 2361 Upper = *C + 1; 2362 break; 2363 2364 case Instruction::Or: 2365 if (match(BO.getOperand(1), m_APInt(C))) 2366 // 'or x, C' produces [C, UINT_MAX]. 2367 Lower = *C; 2368 break; 2369 2370 case Instruction::AShr: 2371 if (match(BO.getOperand(1), m_APInt(C)) && C->ult(Width)) { 2372 // 'ashr x, C' produces [INT_MIN >> C, INT_MAX >> C]. 2373 Lower = APInt::getSignedMinValue(Width).ashr(*C); 2374 Upper = APInt::getSignedMaxValue(Width).ashr(*C) + 1; 2375 } else if (match(BO.getOperand(0), m_APInt(C))) { 2376 unsigned ShiftAmount = Width - 1; 2377 if (!C->isNullValue() && BO.isExact()) 2378 ShiftAmount = C->countTrailingZeros(); 2379 if (C->isNegative()) { 2380 // 'ashr C, x' produces [C, C >> (Width-1)] 2381 Lower = *C; 2382 Upper = C->ashr(ShiftAmount) + 1; 2383 } else { 2384 // 'ashr C, x' produces [C >> (Width-1), C] 2385 Lower = C->ashr(ShiftAmount); 2386 Upper = *C + 1; 2387 } 2388 } 2389 break; 2390 2391 case Instruction::LShr: 2392 if (match(BO.getOperand(1), m_APInt(C)) && C->ult(Width)) { 2393 // 'lshr x, C' produces [0, UINT_MAX >> C]. 2394 Upper = APInt::getAllOnesValue(Width).lshr(*C) + 1; 2395 } else if (match(BO.getOperand(0), m_APInt(C))) { 2396 // 'lshr C, x' produces [C >> (Width-1), C]. 2397 unsigned ShiftAmount = Width - 1; 2398 if (!C->isNullValue() && BO.isExact()) 2399 ShiftAmount = C->countTrailingZeros(); 2400 Lower = C->lshr(ShiftAmount); 2401 Upper = *C + 1; 2402 } 2403 break; 2404 2405 case Instruction::Shl: 2406 if (match(BO.getOperand(0), m_APInt(C))) { 2407 if (BO.hasNoUnsignedWrap()) { 2408 // 'shl nuw C, x' produces [C, C << CLZ(C)] 2409 Lower = *C; 2410 Upper = Lower.shl(Lower.countLeadingZeros()) + 1; 2411 } else if (BO.hasNoSignedWrap()) { // TODO: What if both nuw+nsw? 2412 if (C->isNegative()) { 2413 // 'shl nsw C, x' produces [C << CLO(C)-1, C] 2414 unsigned ShiftAmount = C->countLeadingOnes() - 1; 2415 Lower = C->shl(ShiftAmount); 2416 Upper = *C + 1; 2417 } else { 2418 // 'shl nsw C, x' produces [C, C << CLZ(C)-1] 2419 unsigned ShiftAmount = C->countLeadingZeros() - 1; 2420 Lower = *C; 2421 Upper = C->shl(ShiftAmount) + 1; 2422 } 2423 } 2424 } 2425 break; 2426 2427 case Instruction::SDiv: 2428 if (match(BO.getOperand(1), m_APInt(C))) { 2429 APInt IntMin = APInt::getSignedMinValue(Width); 2430 APInt IntMax = APInt::getSignedMaxValue(Width); 2431 if (C->isAllOnesValue()) { 2432 // 'sdiv x, -1' produces [INT_MIN + 1, INT_MAX] 2433 // where C != -1 and C != 0 and C != 1 2434 Lower = IntMin + 1; 2435 Upper = IntMax + 1; 2436 } else if (C->countLeadingZeros() < Width - 1) { 2437 // 'sdiv x, C' produces [INT_MIN / C, INT_MAX / C] 2438 // where C != -1 and C != 0 and C != 1 2439 Lower = IntMin.sdiv(*C); 2440 Upper = IntMax.sdiv(*C); 2441 if (Lower.sgt(Upper)) 2442 std::swap(Lower, Upper); 2443 Upper = Upper + 1; 2444 assert(Upper != Lower && "Upper part of range has wrapped!"); 2445 } 2446 } else if (match(BO.getOperand(0), m_APInt(C))) { 2447 if (C->isMinSignedValue()) { 2448 // 'sdiv INT_MIN, x' produces [INT_MIN, INT_MIN / -2]. 2449 Lower = *C; 2450 Upper = Lower.lshr(1) + 1; 2451 } else { 2452 // 'sdiv C, x' produces [-|C|, |C|]. 2453 Upper = C->abs() + 1; 2454 Lower = (-Upper) + 1; 2455 } 2456 } 2457 break; 2458 2459 case Instruction::UDiv: 2460 if (match(BO.getOperand(1), m_APInt(C)) && !C->isNullValue()) { 2461 // 'udiv x, C' produces [0, UINT_MAX / C]. 2462 Upper = APInt::getMaxValue(Width).udiv(*C) + 1; 2463 } else if (match(BO.getOperand(0), m_APInt(C))) { 2464 // 'udiv C, x' produces [0, C]. 2465 Upper = *C + 1; 2466 } 2467 break; 2468 2469 case Instruction::SRem: 2470 if (match(BO.getOperand(1), m_APInt(C))) { 2471 // 'srem x, C' produces (-|C|, |C|). 2472 Upper = C->abs(); 2473 Lower = (-Upper) + 1; 2474 } 2475 break; 2476 2477 case Instruction::URem: 2478 if (match(BO.getOperand(1), m_APInt(C))) 2479 // 'urem x, C' produces [0, C). 2480 Upper = *C; 2481 break; 2482 2483 default: 2484 break; 2485 } 2486 } 2487 2488 static Value *simplifyICmpWithConstant(CmpInst::Predicate Pred, Value *LHS, 2489 Value *RHS) { 2490 Type *ITy = GetCompareTy(RHS); // The return type. 2491 2492 Value *X; 2493 // Sign-bit checks can be optimized to true/false after unsigned 2494 // floating-point casts: 2495 // icmp slt (bitcast (uitofp X)), 0 --> false 2496 // icmp sgt (bitcast (uitofp X)), -1 --> true 2497 if (match(LHS, m_BitCast(m_UIToFP(m_Value(X))))) { 2498 if (Pred == ICmpInst::ICMP_SLT && match(RHS, m_Zero())) 2499 return ConstantInt::getFalse(ITy); 2500 if (Pred == ICmpInst::ICMP_SGT && match(RHS, m_AllOnes())) 2501 return ConstantInt::getTrue(ITy); 2502 } 2503 2504 const APInt *C; 2505 if (!match(RHS, m_APInt(C))) 2506 return nullptr; 2507 2508 // Rule out tautological comparisons (eg., ult 0 or uge 0). 2509 ConstantRange RHS_CR = ConstantRange::makeExactICmpRegion(Pred, *C); 2510 if (RHS_CR.isEmptySet()) 2511 return ConstantInt::getFalse(ITy); 2512 if (RHS_CR.isFullSet()) 2513 return ConstantInt::getTrue(ITy); 2514 2515 // Find the range of possible values for binary operators. 2516 unsigned Width = C->getBitWidth(); 2517 APInt Lower = APInt(Width, 0); 2518 APInt Upper = APInt(Width, 0); 2519 if (auto *BO = dyn_cast<BinaryOperator>(LHS)) 2520 setLimitsForBinOp(*BO, Lower, Upper); 2521 2522 ConstantRange LHS_CR = 2523 Lower != Upper ? ConstantRange(Lower, Upper) : ConstantRange(Width, true); 2524 2525 if (auto *I = dyn_cast<Instruction>(LHS)) 2526 if (auto *Ranges = I->getMetadata(LLVMContext::MD_range)) 2527 LHS_CR = LHS_CR.intersectWith(getConstantRangeFromMetadata(*Ranges)); 2528 2529 if (!LHS_CR.isFullSet()) { 2530 if (RHS_CR.contains(LHS_CR)) 2531 return ConstantInt::getTrue(ITy); 2532 if (RHS_CR.inverse().contains(LHS_CR)) 2533 return ConstantInt::getFalse(ITy); 2534 } 2535 2536 return nullptr; 2537 } 2538 2539 /// TODO: A large part of this logic is duplicated in InstCombine's 2540 /// foldICmpBinOp(). We should be able to share that and avoid the code 2541 /// duplication. 2542 static Value *simplifyICmpWithBinOp(CmpInst::Predicate Pred, Value *LHS, 2543 Value *RHS, const SimplifyQuery &Q, 2544 unsigned MaxRecurse) { 2545 Type *ITy = GetCompareTy(LHS); // The return type. 2546 2547 BinaryOperator *LBO = dyn_cast<BinaryOperator>(LHS); 2548 BinaryOperator *RBO = dyn_cast<BinaryOperator>(RHS); 2549 if (MaxRecurse && (LBO || RBO)) { 2550 // Analyze the case when either LHS or RHS is an add instruction. 2551 Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr; 2552 // LHS = A + B (or A and B are null); RHS = C + D (or C and D are null). 2553 bool NoLHSWrapProblem = false, NoRHSWrapProblem = false; 2554 if (LBO && LBO->getOpcode() == Instruction::Add) { 2555 A = LBO->getOperand(0); 2556 B = LBO->getOperand(1); 2557 NoLHSWrapProblem = 2558 ICmpInst::isEquality(Pred) || 2559 (CmpInst::isUnsigned(Pred) && LBO->hasNoUnsignedWrap()) || 2560 (CmpInst::isSigned(Pred) && LBO->hasNoSignedWrap()); 2561 } 2562 if (RBO && RBO->getOpcode() == Instruction::Add) { 2563 C = RBO->getOperand(0); 2564 D = RBO->getOperand(1); 2565 NoRHSWrapProblem = 2566 ICmpInst::isEquality(Pred) || 2567 (CmpInst::isUnsigned(Pred) && RBO->hasNoUnsignedWrap()) || 2568 (CmpInst::isSigned(Pred) && RBO->hasNoSignedWrap()); 2569 } 2570 2571 // icmp (X+Y), X -> icmp Y, 0 for equalities or if there is no overflow. 2572 if ((A == RHS || B == RHS) && NoLHSWrapProblem) 2573 if (Value *V = SimplifyICmpInst(Pred, A == RHS ? B : A, 2574 Constant::getNullValue(RHS->getType()), Q, 2575 MaxRecurse - 1)) 2576 return V; 2577 2578 // icmp X, (X+Y) -> icmp 0, Y for equalities or if there is no overflow. 2579 if ((C == LHS || D == LHS) && NoRHSWrapProblem) 2580 if (Value *V = 2581 SimplifyICmpInst(Pred, Constant::getNullValue(LHS->getType()), 2582 C == LHS ? D : C, Q, MaxRecurse - 1)) 2583 return V; 2584 2585 // icmp (X+Y), (X+Z) -> icmp Y,Z for equalities or if there is no overflow. 2586 if (A && C && (A == C || A == D || B == C || B == D) && NoLHSWrapProblem && 2587 NoRHSWrapProblem) { 2588 // Determine Y and Z in the form icmp (X+Y), (X+Z). 2589 Value *Y, *Z; 2590 if (A == C) { 2591 // C + B == C + D -> B == D 2592 Y = B; 2593 Z = D; 2594 } else if (A == D) { 2595 // D + B == C + D -> B == C 2596 Y = B; 2597 Z = C; 2598 } else if (B == C) { 2599 // A + C == C + D -> A == D 2600 Y = A; 2601 Z = D; 2602 } else { 2603 assert(B == D); 2604 // A + D == C + D -> A == C 2605 Y = A; 2606 Z = C; 2607 } 2608 if (Value *V = SimplifyICmpInst(Pred, Y, Z, Q, MaxRecurse - 1)) 2609 return V; 2610 } 2611 } 2612 2613 { 2614 Value *Y = nullptr; 2615 // icmp pred (or X, Y), X 2616 if (LBO && match(LBO, m_c_Or(m_Value(Y), m_Specific(RHS)))) { 2617 if (Pred == ICmpInst::ICMP_ULT) 2618 return getFalse(ITy); 2619 if (Pred == ICmpInst::ICMP_UGE) 2620 return getTrue(ITy); 2621 2622 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SGE) { 2623 KnownBits RHSKnown = computeKnownBits(RHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2624 KnownBits YKnown = computeKnownBits(Y, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2625 if (RHSKnown.isNonNegative() && YKnown.isNegative()) 2626 return Pred == ICmpInst::ICMP_SLT ? getTrue(ITy) : getFalse(ITy); 2627 if (RHSKnown.isNegative() || YKnown.isNonNegative()) 2628 return Pred == ICmpInst::ICMP_SLT ? getFalse(ITy) : getTrue(ITy); 2629 } 2630 } 2631 // icmp pred X, (or X, Y) 2632 if (RBO && match(RBO, m_c_Or(m_Value(Y), m_Specific(LHS)))) { 2633 if (Pred == ICmpInst::ICMP_ULE) 2634 return getTrue(ITy); 2635 if (Pred == ICmpInst::ICMP_UGT) 2636 return getFalse(ITy); 2637 2638 if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SLE) { 2639 KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2640 KnownBits YKnown = computeKnownBits(Y, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2641 if (LHSKnown.isNonNegative() && YKnown.isNegative()) 2642 return Pred == ICmpInst::ICMP_SGT ? getTrue(ITy) : getFalse(ITy); 2643 if (LHSKnown.isNegative() || YKnown.isNonNegative()) 2644 return Pred == ICmpInst::ICMP_SGT ? getFalse(ITy) : getTrue(ITy); 2645 } 2646 } 2647 } 2648 2649 // icmp pred (and X, Y), X 2650 if (LBO && match(LBO, m_c_And(m_Value(), m_Specific(RHS)))) { 2651 if (Pred == ICmpInst::ICMP_UGT) 2652 return getFalse(ITy); 2653 if (Pred == ICmpInst::ICMP_ULE) 2654 return getTrue(ITy); 2655 } 2656 // icmp pred X, (and X, Y) 2657 if (RBO && match(RBO, m_c_And(m_Value(), m_Specific(LHS)))) { 2658 if (Pred == ICmpInst::ICMP_UGE) 2659 return getTrue(ITy); 2660 if (Pred == ICmpInst::ICMP_ULT) 2661 return getFalse(ITy); 2662 } 2663 2664 // 0 - (zext X) pred C 2665 if (!CmpInst::isUnsigned(Pred) && match(LHS, m_Neg(m_ZExt(m_Value())))) { 2666 if (ConstantInt *RHSC = dyn_cast<ConstantInt>(RHS)) { 2667 if (RHSC->getValue().isStrictlyPositive()) { 2668 if (Pred == ICmpInst::ICMP_SLT) 2669 return ConstantInt::getTrue(RHSC->getContext()); 2670 if (Pred == ICmpInst::ICMP_SGE) 2671 return ConstantInt::getFalse(RHSC->getContext()); 2672 if (Pred == ICmpInst::ICMP_EQ) 2673 return ConstantInt::getFalse(RHSC->getContext()); 2674 if (Pred == ICmpInst::ICMP_NE) 2675 return ConstantInt::getTrue(RHSC->getContext()); 2676 } 2677 if (RHSC->getValue().isNonNegative()) { 2678 if (Pred == ICmpInst::ICMP_SLE) 2679 return ConstantInt::getTrue(RHSC->getContext()); 2680 if (Pred == ICmpInst::ICMP_SGT) 2681 return ConstantInt::getFalse(RHSC->getContext()); 2682 } 2683 } 2684 } 2685 2686 // icmp pred (urem X, Y), Y 2687 if (LBO && match(LBO, m_URem(m_Value(), m_Specific(RHS)))) { 2688 switch (Pred) { 2689 default: 2690 break; 2691 case ICmpInst::ICMP_SGT: 2692 case ICmpInst::ICMP_SGE: { 2693 KnownBits Known = computeKnownBits(RHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2694 if (!Known.isNonNegative()) 2695 break; 2696 LLVM_FALLTHROUGH; 2697 } 2698 case ICmpInst::ICMP_EQ: 2699 case ICmpInst::ICMP_UGT: 2700 case ICmpInst::ICMP_UGE: 2701 return getFalse(ITy); 2702 case ICmpInst::ICMP_SLT: 2703 case ICmpInst::ICMP_SLE: { 2704 KnownBits Known = computeKnownBits(RHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2705 if (!Known.isNonNegative()) 2706 break; 2707 LLVM_FALLTHROUGH; 2708 } 2709 case ICmpInst::ICMP_NE: 2710 case ICmpInst::ICMP_ULT: 2711 case ICmpInst::ICMP_ULE: 2712 return getTrue(ITy); 2713 } 2714 } 2715 2716 // icmp pred X, (urem Y, X) 2717 if (RBO && match(RBO, m_URem(m_Value(), m_Specific(LHS)))) { 2718 switch (Pred) { 2719 default: 2720 break; 2721 case ICmpInst::ICMP_SGT: 2722 case ICmpInst::ICMP_SGE: { 2723 KnownBits Known = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2724 if (!Known.isNonNegative()) 2725 break; 2726 LLVM_FALLTHROUGH; 2727 } 2728 case ICmpInst::ICMP_NE: 2729 case ICmpInst::ICMP_UGT: 2730 case ICmpInst::ICMP_UGE: 2731 return getTrue(ITy); 2732 case ICmpInst::ICMP_SLT: 2733 case ICmpInst::ICMP_SLE: { 2734 KnownBits Known = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2735 if (!Known.isNonNegative()) 2736 break; 2737 LLVM_FALLTHROUGH; 2738 } 2739 case ICmpInst::ICMP_EQ: 2740 case ICmpInst::ICMP_ULT: 2741 case ICmpInst::ICMP_ULE: 2742 return getFalse(ITy); 2743 } 2744 } 2745 2746 // x >> y <=u x 2747 // x udiv y <=u x. 2748 if (LBO && (match(LBO, m_LShr(m_Specific(RHS), m_Value())) || 2749 match(LBO, m_UDiv(m_Specific(RHS), m_Value())))) { 2750 // icmp pred (X op Y), X 2751 if (Pred == ICmpInst::ICMP_UGT) 2752 return getFalse(ITy); 2753 if (Pred == ICmpInst::ICMP_ULE) 2754 return getTrue(ITy); 2755 } 2756 2757 // x >=u x >> y 2758 // x >=u x udiv y. 2759 if (RBO && (match(RBO, m_LShr(m_Specific(LHS), m_Value())) || 2760 match(RBO, m_UDiv(m_Specific(LHS), m_Value())))) { 2761 // icmp pred X, (X op Y) 2762 if (Pred == ICmpInst::ICMP_ULT) 2763 return getFalse(ITy); 2764 if (Pred == ICmpInst::ICMP_UGE) 2765 return getTrue(ITy); 2766 } 2767 2768 // handle: 2769 // CI2 << X == CI 2770 // CI2 << X != CI 2771 // 2772 // where CI2 is a power of 2 and CI isn't 2773 if (auto *CI = dyn_cast<ConstantInt>(RHS)) { 2774 const APInt *CI2Val, *CIVal = &CI->getValue(); 2775 if (LBO && match(LBO, m_Shl(m_APInt(CI2Val), m_Value())) && 2776 CI2Val->isPowerOf2()) { 2777 if (!CIVal->isPowerOf2()) { 2778 // CI2 << X can equal zero in some circumstances, 2779 // this simplification is unsafe if CI is zero. 2780 // 2781 // We know it is safe if: 2782 // - The shift is nsw, we can't shift out the one bit. 2783 // - The shift is nuw, we can't shift out the one bit. 2784 // - CI2 is one 2785 // - CI isn't zero 2786 if (LBO->hasNoSignedWrap() || LBO->hasNoUnsignedWrap() || 2787 CI2Val->isOneValue() || !CI->isZero()) { 2788 if (Pred == ICmpInst::ICMP_EQ) 2789 return ConstantInt::getFalse(RHS->getContext()); 2790 if (Pred == ICmpInst::ICMP_NE) 2791 return ConstantInt::getTrue(RHS->getContext()); 2792 } 2793 } 2794 if (CIVal->isSignMask() && CI2Val->isOneValue()) { 2795 if (Pred == ICmpInst::ICMP_UGT) 2796 return ConstantInt::getFalse(RHS->getContext()); 2797 if (Pred == ICmpInst::ICMP_ULE) 2798 return ConstantInt::getTrue(RHS->getContext()); 2799 } 2800 } 2801 } 2802 2803 if (MaxRecurse && LBO && RBO && LBO->getOpcode() == RBO->getOpcode() && 2804 LBO->getOperand(1) == RBO->getOperand(1)) { 2805 switch (LBO->getOpcode()) { 2806 default: 2807 break; 2808 case Instruction::UDiv: 2809 case Instruction::LShr: 2810 if (ICmpInst::isSigned(Pred) || !LBO->isExact() || !RBO->isExact()) 2811 break; 2812 if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0), 2813 RBO->getOperand(0), Q, MaxRecurse - 1)) 2814 return V; 2815 break; 2816 case Instruction::SDiv: 2817 if (!ICmpInst::isEquality(Pred) || !LBO->isExact() || !RBO->isExact()) 2818 break; 2819 if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0), 2820 RBO->getOperand(0), Q, MaxRecurse - 1)) 2821 return V; 2822 break; 2823 case Instruction::AShr: 2824 if (!LBO->isExact() || !RBO->isExact()) 2825 break; 2826 if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0), 2827 RBO->getOperand(0), Q, MaxRecurse - 1)) 2828 return V; 2829 break; 2830 case Instruction::Shl: { 2831 bool NUW = LBO->hasNoUnsignedWrap() && RBO->hasNoUnsignedWrap(); 2832 bool NSW = LBO->hasNoSignedWrap() && RBO->hasNoSignedWrap(); 2833 if (!NUW && !NSW) 2834 break; 2835 if (!NSW && ICmpInst::isSigned(Pred)) 2836 break; 2837 if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0), 2838 RBO->getOperand(0), Q, MaxRecurse - 1)) 2839 return V; 2840 break; 2841 } 2842 } 2843 } 2844 return nullptr; 2845 } 2846 2847 /// Simplify integer comparisons where at least one operand of the compare 2848 /// matches an integer min/max idiom. 2849 static Value *simplifyICmpWithMinMax(CmpInst::Predicate Pred, Value *LHS, 2850 Value *RHS, const SimplifyQuery &Q, 2851 unsigned MaxRecurse) { 2852 Type *ITy = GetCompareTy(LHS); // The return type. 2853 Value *A, *B; 2854 CmpInst::Predicate P = CmpInst::BAD_ICMP_PREDICATE; 2855 CmpInst::Predicate EqP; // Chosen so that "A == max/min(A,B)" iff "A EqP B". 2856 2857 // Signed variants on "max(a,b)>=a -> true". 2858 if (match(LHS, m_SMax(m_Value(A), m_Value(B))) && (A == RHS || B == RHS)) { 2859 if (A != RHS) 2860 std::swap(A, B); // smax(A, B) pred A. 2861 EqP = CmpInst::ICMP_SGE; // "A == smax(A, B)" iff "A sge B". 2862 // We analyze this as smax(A, B) pred A. 2863 P = Pred; 2864 } else if (match(RHS, m_SMax(m_Value(A), m_Value(B))) && 2865 (A == LHS || B == LHS)) { 2866 if (A != LHS) 2867 std::swap(A, B); // A pred smax(A, B). 2868 EqP = CmpInst::ICMP_SGE; // "A == smax(A, B)" iff "A sge B". 2869 // We analyze this as smax(A, B) swapped-pred A. 2870 P = CmpInst::getSwappedPredicate(Pred); 2871 } else if (match(LHS, m_SMin(m_Value(A), m_Value(B))) && 2872 (A == RHS || B == RHS)) { 2873 if (A != RHS) 2874 std::swap(A, B); // smin(A, B) pred A. 2875 EqP = CmpInst::ICMP_SLE; // "A == smin(A, B)" iff "A sle B". 2876 // We analyze this as smax(-A, -B) swapped-pred -A. 2877 // Note that we do not need to actually form -A or -B thanks to EqP. 2878 P = CmpInst::getSwappedPredicate(Pred); 2879 } else if (match(RHS, m_SMin(m_Value(A), m_Value(B))) && 2880 (A == LHS || B == LHS)) { 2881 if (A != LHS) 2882 std::swap(A, B); // A pred smin(A, B). 2883 EqP = CmpInst::ICMP_SLE; // "A == smin(A, B)" iff "A sle B". 2884 // We analyze this as smax(-A, -B) pred -A. 2885 // Note that we do not need to actually form -A or -B thanks to EqP. 2886 P = Pred; 2887 } 2888 if (P != CmpInst::BAD_ICMP_PREDICATE) { 2889 // Cases correspond to "max(A, B) p A". 2890 switch (P) { 2891 default: 2892 break; 2893 case CmpInst::ICMP_EQ: 2894 case CmpInst::ICMP_SLE: 2895 // Equivalent to "A EqP B". This may be the same as the condition tested 2896 // in the max/min; if so, we can just return that. 2897 if (Value *V = ExtractEquivalentCondition(LHS, EqP, A, B)) 2898 return V; 2899 if (Value *V = ExtractEquivalentCondition(RHS, EqP, A, B)) 2900 return V; 2901 // Otherwise, see if "A EqP B" simplifies. 2902 if (MaxRecurse) 2903 if (Value *V = SimplifyICmpInst(EqP, A, B, Q, MaxRecurse - 1)) 2904 return V; 2905 break; 2906 case CmpInst::ICMP_NE: 2907 case CmpInst::ICMP_SGT: { 2908 CmpInst::Predicate InvEqP = CmpInst::getInversePredicate(EqP); 2909 // Equivalent to "A InvEqP B". This may be the same as the condition 2910 // tested in the max/min; if so, we can just return that. 2911 if (Value *V = ExtractEquivalentCondition(LHS, InvEqP, A, B)) 2912 return V; 2913 if (Value *V = ExtractEquivalentCondition(RHS, InvEqP, A, B)) 2914 return V; 2915 // Otherwise, see if "A InvEqP B" simplifies. 2916 if (MaxRecurse) 2917 if (Value *V = SimplifyICmpInst(InvEqP, A, B, Q, MaxRecurse - 1)) 2918 return V; 2919 break; 2920 } 2921 case CmpInst::ICMP_SGE: 2922 // Always true. 2923 return getTrue(ITy); 2924 case CmpInst::ICMP_SLT: 2925 // Always false. 2926 return getFalse(ITy); 2927 } 2928 } 2929 2930 // Unsigned variants on "max(a,b)>=a -> true". 2931 P = CmpInst::BAD_ICMP_PREDICATE; 2932 if (match(LHS, m_UMax(m_Value(A), m_Value(B))) && (A == RHS || B == RHS)) { 2933 if (A != RHS) 2934 std::swap(A, B); // umax(A, B) pred A. 2935 EqP = CmpInst::ICMP_UGE; // "A == umax(A, B)" iff "A uge B". 2936 // We analyze this as umax(A, B) pred A. 2937 P = Pred; 2938 } else if (match(RHS, m_UMax(m_Value(A), m_Value(B))) && 2939 (A == LHS || B == LHS)) { 2940 if (A != LHS) 2941 std::swap(A, B); // A pred umax(A, B). 2942 EqP = CmpInst::ICMP_UGE; // "A == umax(A, B)" iff "A uge B". 2943 // We analyze this as umax(A, B) swapped-pred A. 2944 P = CmpInst::getSwappedPredicate(Pred); 2945 } else if (match(LHS, m_UMin(m_Value(A), m_Value(B))) && 2946 (A == RHS || B == RHS)) { 2947 if (A != RHS) 2948 std::swap(A, B); // umin(A, B) pred A. 2949 EqP = CmpInst::ICMP_ULE; // "A == umin(A, B)" iff "A ule B". 2950 // We analyze this as umax(-A, -B) swapped-pred -A. 2951 // Note that we do not need to actually form -A or -B thanks to EqP. 2952 P = CmpInst::getSwappedPredicate(Pred); 2953 } else if (match(RHS, m_UMin(m_Value(A), m_Value(B))) && 2954 (A == LHS || B == LHS)) { 2955 if (A != LHS) 2956 std::swap(A, B); // A pred umin(A, B). 2957 EqP = CmpInst::ICMP_ULE; // "A == umin(A, B)" iff "A ule B". 2958 // We analyze this as umax(-A, -B) pred -A. 2959 // Note that we do not need to actually form -A or -B thanks to EqP. 2960 P = Pred; 2961 } 2962 if (P != CmpInst::BAD_ICMP_PREDICATE) { 2963 // Cases correspond to "max(A, B) p A". 2964 switch (P) { 2965 default: 2966 break; 2967 case CmpInst::ICMP_EQ: 2968 case CmpInst::ICMP_ULE: 2969 // Equivalent to "A EqP B". This may be the same as the condition tested 2970 // in the max/min; if so, we can just return that. 2971 if (Value *V = ExtractEquivalentCondition(LHS, EqP, A, B)) 2972 return V; 2973 if (Value *V = ExtractEquivalentCondition(RHS, EqP, A, B)) 2974 return V; 2975 // Otherwise, see if "A EqP B" simplifies. 2976 if (MaxRecurse) 2977 if (Value *V = SimplifyICmpInst(EqP, A, B, Q, MaxRecurse - 1)) 2978 return V; 2979 break; 2980 case CmpInst::ICMP_NE: 2981 case CmpInst::ICMP_UGT: { 2982 CmpInst::Predicate InvEqP = CmpInst::getInversePredicate(EqP); 2983 // Equivalent to "A InvEqP B". This may be the same as the condition 2984 // tested in the max/min; if so, we can just return that. 2985 if (Value *V = ExtractEquivalentCondition(LHS, InvEqP, A, B)) 2986 return V; 2987 if (Value *V = ExtractEquivalentCondition(RHS, InvEqP, A, B)) 2988 return V; 2989 // Otherwise, see if "A InvEqP B" simplifies. 2990 if (MaxRecurse) 2991 if (Value *V = SimplifyICmpInst(InvEqP, A, B, Q, MaxRecurse - 1)) 2992 return V; 2993 break; 2994 } 2995 case CmpInst::ICMP_UGE: 2996 // Always true. 2997 return getTrue(ITy); 2998 case CmpInst::ICMP_ULT: 2999 // Always false. 3000 return getFalse(ITy); 3001 } 3002 } 3003 3004 // Variants on "max(x,y) >= min(x,z)". 3005 Value *C, *D; 3006 if (match(LHS, m_SMax(m_Value(A), m_Value(B))) && 3007 match(RHS, m_SMin(m_Value(C), m_Value(D))) && 3008 (A == C || A == D || B == C || B == D)) { 3009 // max(x, ?) pred min(x, ?). 3010 if (Pred == CmpInst::ICMP_SGE) 3011 // Always true. 3012 return getTrue(ITy); 3013 if (Pred == CmpInst::ICMP_SLT) 3014 // Always false. 3015 return getFalse(ITy); 3016 } else if (match(LHS, m_SMin(m_Value(A), m_Value(B))) && 3017 match(RHS, m_SMax(m_Value(C), m_Value(D))) && 3018 (A == C || A == D || B == C || B == D)) { 3019 // min(x, ?) pred max(x, ?). 3020 if (Pred == CmpInst::ICMP_SLE) 3021 // Always true. 3022 return getTrue(ITy); 3023 if (Pred == CmpInst::ICMP_SGT) 3024 // Always false. 3025 return getFalse(ITy); 3026 } else if (match(LHS, m_UMax(m_Value(A), m_Value(B))) && 3027 match(RHS, m_UMin(m_Value(C), m_Value(D))) && 3028 (A == C || A == D || B == C || B == D)) { 3029 // max(x, ?) pred min(x, ?). 3030 if (Pred == CmpInst::ICMP_UGE) 3031 // Always true. 3032 return getTrue(ITy); 3033 if (Pred == CmpInst::ICMP_ULT) 3034 // Always false. 3035 return getFalse(ITy); 3036 } else if (match(LHS, m_UMin(m_Value(A), m_Value(B))) && 3037 match(RHS, m_UMax(m_Value(C), m_Value(D))) && 3038 (A == C || A == D || B == C || B == D)) { 3039 // min(x, ?) pred max(x, ?). 3040 if (Pred == CmpInst::ICMP_ULE) 3041 // Always true. 3042 return getTrue(ITy); 3043 if (Pred == CmpInst::ICMP_UGT) 3044 // Always false. 3045 return getFalse(ITy); 3046 } 3047 3048 return nullptr; 3049 } 3050 3051 /// Given operands for an ICmpInst, see if we can fold the result. 3052 /// If not, this returns null. 3053 static Value *SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS, 3054 const SimplifyQuery &Q, unsigned MaxRecurse) { 3055 CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate; 3056 assert(CmpInst::isIntPredicate(Pred) && "Not an integer compare!"); 3057 3058 if (Constant *CLHS = dyn_cast<Constant>(LHS)) { 3059 if (Constant *CRHS = dyn_cast<Constant>(RHS)) 3060 return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, Q.DL, Q.TLI); 3061 3062 // If we have a constant, make sure it is on the RHS. 3063 std::swap(LHS, RHS); 3064 Pred = CmpInst::getSwappedPredicate(Pred); 3065 } 3066 3067 Type *ITy = GetCompareTy(LHS); // The return type. 3068 3069 // icmp X, X -> true/false 3070 // icmp X, undef -> true/false because undef could be X. 3071 if (LHS == RHS || isa<UndefValue>(RHS)) 3072 return ConstantInt::get(ITy, CmpInst::isTrueWhenEqual(Pred)); 3073 3074 if (Value *V = simplifyICmpOfBools(Pred, LHS, RHS, Q)) 3075 return V; 3076 3077 if (Value *V = simplifyICmpWithZero(Pred, LHS, RHS, Q)) 3078 return V; 3079 3080 if (Value *V = simplifyICmpWithConstant(Pred, LHS, RHS)) 3081 return V; 3082 3083 // If both operands have range metadata, use the metadata 3084 // to simplify the comparison. 3085 if (isa<Instruction>(RHS) && isa<Instruction>(LHS)) { 3086 auto RHS_Instr = cast<Instruction>(RHS); 3087 auto LHS_Instr = cast<Instruction>(LHS); 3088 3089 if (RHS_Instr->getMetadata(LLVMContext::MD_range) && 3090 LHS_Instr->getMetadata(LLVMContext::MD_range)) { 3091 auto RHS_CR = getConstantRangeFromMetadata( 3092 *RHS_Instr->getMetadata(LLVMContext::MD_range)); 3093 auto LHS_CR = getConstantRangeFromMetadata( 3094 *LHS_Instr->getMetadata(LLVMContext::MD_range)); 3095 3096 auto Satisfied_CR = ConstantRange::makeSatisfyingICmpRegion(Pred, RHS_CR); 3097 if (Satisfied_CR.contains(LHS_CR)) 3098 return ConstantInt::getTrue(RHS->getContext()); 3099 3100 auto InversedSatisfied_CR = ConstantRange::makeSatisfyingICmpRegion( 3101 CmpInst::getInversePredicate(Pred), RHS_CR); 3102 if (InversedSatisfied_CR.contains(LHS_CR)) 3103 return ConstantInt::getFalse(RHS->getContext()); 3104 } 3105 } 3106 3107 // Compare of cast, for example (zext X) != 0 -> X != 0 3108 if (isa<CastInst>(LHS) && (isa<Constant>(RHS) || isa<CastInst>(RHS))) { 3109 Instruction *LI = cast<CastInst>(LHS); 3110 Value *SrcOp = LI->getOperand(0); 3111 Type *SrcTy = SrcOp->getType(); 3112 Type *DstTy = LI->getType(); 3113 3114 // Turn icmp (ptrtoint x), (ptrtoint/constant) into a compare of the input 3115 // if the integer type is the same size as the pointer type. 3116 if (MaxRecurse && isa<PtrToIntInst>(LI) && 3117 Q.DL.getTypeSizeInBits(SrcTy) == DstTy->getPrimitiveSizeInBits()) { 3118 if (Constant *RHSC = dyn_cast<Constant>(RHS)) { 3119 // Transfer the cast to the constant. 3120 if (Value *V = SimplifyICmpInst(Pred, SrcOp, 3121 ConstantExpr::getIntToPtr(RHSC, SrcTy), 3122 Q, MaxRecurse-1)) 3123 return V; 3124 } else if (PtrToIntInst *RI = dyn_cast<PtrToIntInst>(RHS)) { 3125 if (RI->getOperand(0)->getType() == SrcTy) 3126 // Compare without the cast. 3127 if (Value *V = SimplifyICmpInst(Pred, SrcOp, RI->getOperand(0), 3128 Q, MaxRecurse-1)) 3129 return V; 3130 } 3131 } 3132 3133 if (isa<ZExtInst>(LHS)) { 3134 // Turn icmp (zext X), (zext Y) into a compare of X and Y if they have the 3135 // same type. 3136 if (ZExtInst *RI = dyn_cast<ZExtInst>(RHS)) { 3137 if (MaxRecurse && SrcTy == RI->getOperand(0)->getType()) 3138 // Compare X and Y. Note that signed predicates become unsigned. 3139 if (Value *V = SimplifyICmpInst(ICmpInst::getUnsignedPredicate(Pred), 3140 SrcOp, RI->getOperand(0), Q, 3141 MaxRecurse-1)) 3142 return V; 3143 } 3144 // Turn icmp (zext X), Cst into a compare of X and Cst if Cst is extended 3145 // too. If not, then try to deduce the result of the comparison. 3146 else if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) { 3147 // Compute the constant that would happen if we truncated to SrcTy then 3148 // reextended to DstTy. 3149 Constant *Trunc = ConstantExpr::getTrunc(CI, SrcTy); 3150 Constant *RExt = ConstantExpr::getCast(CastInst::ZExt, Trunc, DstTy); 3151 3152 // If the re-extended constant didn't change then this is effectively 3153 // also a case of comparing two zero-extended values. 3154 if (RExt == CI && MaxRecurse) 3155 if (Value *V = SimplifyICmpInst(ICmpInst::getUnsignedPredicate(Pred), 3156 SrcOp, Trunc, Q, MaxRecurse-1)) 3157 return V; 3158 3159 // Otherwise the upper bits of LHS are zero while RHS has a non-zero bit 3160 // there. Use this to work out the result of the comparison. 3161 if (RExt != CI) { 3162 switch (Pred) { 3163 default: llvm_unreachable("Unknown ICmp predicate!"); 3164 // LHS <u RHS. 3165 case ICmpInst::ICMP_EQ: 3166 case ICmpInst::ICMP_UGT: 3167 case ICmpInst::ICMP_UGE: 3168 return ConstantInt::getFalse(CI->getContext()); 3169 3170 case ICmpInst::ICMP_NE: 3171 case ICmpInst::ICMP_ULT: 3172 case ICmpInst::ICMP_ULE: 3173 return ConstantInt::getTrue(CI->getContext()); 3174 3175 // LHS is non-negative. If RHS is negative then LHS >s LHS. If RHS 3176 // is non-negative then LHS <s RHS. 3177 case ICmpInst::ICMP_SGT: 3178 case ICmpInst::ICMP_SGE: 3179 return CI->getValue().isNegative() ? 3180 ConstantInt::getTrue(CI->getContext()) : 3181 ConstantInt::getFalse(CI->getContext()); 3182 3183 case ICmpInst::ICMP_SLT: 3184 case ICmpInst::ICMP_SLE: 3185 return CI->getValue().isNegative() ? 3186 ConstantInt::getFalse(CI->getContext()) : 3187 ConstantInt::getTrue(CI->getContext()); 3188 } 3189 } 3190 } 3191 } 3192 3193 if (isa<SExtInst>(LHS)) { 3194 // Turn icmp (sext X), (sext Y) into a compare of X and Y if they have the 3195 // same type. 3196 if (SExtInst *RI = dyn_cast<SExtInst>(RHS)) { 3197 if (MaxRecurse && SrcTy == RI->getOperand(0)->getType()) 3198 // Compare X and Y. Note that the predicate does not change. 3199 if (Value *V = SimplifyICmpInst(Pred, SrcOp, RI->getOperand(0), 3200 Q, MaxRecurse-1)) 3201 return V; 3202 } 3203 // Turn icmp (sext X), Cst into a compare of X and Cst if Cst is extended 3204 // too. If not, then try to deduce the result of the comparison. 3205 else if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) { 3206 // Compute the constant that would happen if we truncated to SrcTy then 3207 // reextended to DstTy. 3208 Constant *Trunc = ConstantExpr::getTrunc(CI, SrcTy); 3209 Constant *RExt = ConstantExpr::getCast(CastInst::SExt, Trunc, DstTy); 3210 3211 // If the re-extended constant didn't change then this is effectively 3212 // also a case of comparing two sign-extended values. 3213 if (RExt == CI && MaxRecurse) 3214 if (Value *V = SimplifyICmpInst(Pred, SrcOp, Trunc, Q, MaxRecurse-1)) 3215 return V; 3216 3217 // Otherwise the upper bits of LHS are all equal, while RHS has varying 3218 // bits there. Use this to work out the result of the comparison. 3219 if (RExt != CI) { 3220 switch (Pred) { 3221 default: llvm_unreachable("Unknown ICmp predicate!"); 3222 case ICmpInst::ICMP_EQ: 3223 return ConstantInt::getFalse(CI->getContext()); 3224 case ICmpInst::ICMP_NE: 3225 return ConstantInt::getTrue(CI->getContext()); 3226 3227 // If RHS is non-negative then LHS <s RHS. If RHS is negative then 3228 // LHS >s RHS. 3229 case ICmpInst::ICMP_SGT: 3230 case ICmpInst::ICMP_SGE: 3231 return CI->getValue().isNegative() ? 3232 ConstantInt::getTrue(CI->getContext()) : 3233 ConstantInt::getFalse(CI->getContext()); 3234 case ICmpInst::ICMP_SLT: 3235 case ICmpInst::ICMP_SLE: 3236 return CI->getValue().isNegative() ? 3237 ConstantInt::getFalse(CI->getContext()) : 3238 ConstantInt::getTrue(CI->getContext()); 3239 3240 // If LHS is non-negative then LHS <u RHS. If LHS is negative then 3241 // LHS >u RHS. 3242 case ICmpInst::ICMP_UGT: 3243 case ICmpInst::ICMP_UGE: 3244 // Comparison is true iff the LHS <s 0. 3245 if (MaxRecurse) 3246 if (Value *V = SimplifyICmpInst(ICmpInst::ICMP_SLT, SrcOp, 3247 Constant::getNullValue(SrcTy), 3248 Q, MaxRecurse-1)) 3249 return V; 3250 break; 3251 case ICmpInst::ICMP_ULT: 3252 case ICmpInst::ICMP_ULE: 3253 // Comparison is true iff the LHS >=s 0. 3254 if (MaxRecurse) 3255 if (Value *V = SimplifyICmpInst(ICmpInst::ICMP_SGE, SrcOp, 3256 Constant::getNullValue(SrcTy), 3257 Q, MaxRecurse-1)) 3258 return V; 3259 break; 3260 } 3261 } 3262 } 3263 } 3264 } 3265 3266 // icmp eq|ne X, Y -> false|true if X != Y 3267 if (ICmpInst::isEquality(Pred) && 3268 isKnownNonEqual(LHS, RHS, Q.DL, Q.AC, Q.CxtI, Q.DT)) { 3269 return Pred == ICmpInst::ICMP_NE ? getTrue(ITy) : getFalse(ITy); 3270 } 3271 3272 if (Value *V = simplifyICmpWithBinOp(Pred, LHS, RHS, Q, MaxRecurse)) 3273 return V; 3274 3275 if (Value *V = simplifyICmpWithMinMax(Pred, LHS, RHS, Q, MaxRecurse)) 3276 return V; 3277 3278 // Simplify comparisons of related pointers using a powerful, recursive 3279 // GEP-walk when we have target data available.. 3280 if (LHS->getType()->isPointerTy()) 3281 if (auto *C = computePointerICmp(Q.DL, Q.TLI, Q.DT, Pred, Q.AC, Q.CxtI, LHS, 3282 RHS)) 3283 return C; 3284 if (auto *CLHS = dyn_cast<PtrToIntOperator>(LHS)) 3285 if (auto *CRHS = dyn_cast<PtrToIntOperator>(RHS)) 3286 if (Q.DL.getTypeSizeInBits(CLHS->getPointerOperandType()) == 3287 Q.DL.getTypeSizeInBits(CLHS->getType()) && 3288 Q.DL.getTypeSizeInBits(CRHS->getPointerOperandType()) == 3289 Q.DL.getTypeSizeInBits(CRHS->getType())) 3290 if (auto *C = computePointerICmp(Q.DL, Q.TLI, Q.DT, Pred, Q.AC, Q.CxtI, 3291 CLHS->getPointerOperand(), 3292 CRHS->getPointerOperand())) 3293 return C; 3294 3295 if (GetElementPtrInst *GLHS = dyn_cast<GetElementPtrInst>(LHS)) { 3296 if (GEPOperator *GRHS = dyn_cast<GEPOperator>(RHS)) { 3297 if (GLHS->getPointerOperand() == GRHS->getPointerOperand() && 3298 GLHS->hasAllConstantIndices() && GRHS->hasAllConstantIndices() && 3299 (ICmpInst::isEquality(Pred) || 3300 (GLHS->isInBounds() && GRHS->isInBounds() && 3301 Pred == ICmpInst::getSignedPredicate(Pred)))) { 3302 // The bases are equal and the indices are constant. Build a constant 3303 // expression GEP with the same indices and a null base pointer to see 3304 // what constant folding can make out of it. 3305 Constant *Null = Constant::getNullValue(GLHS->getPointerOperandType()); 3306 SmallVector<Value *, 4> IndicesLHS(GLHS->idx_begin(), GLHS->idx_end()); 3307 Constant *NewLHS = ConstantExpr::getGetElementPtr( 3308 GLHS->getSourceElementType(), Null, IndicesLHS); 3309 3310 SmallVector<Value *, 4> IndicesRHS(GRHS->idx_begin(), GRHS->idx_end()); 3311 Constant *NewRHS = ConstantExpr::getGetElementPtr( 3312 GLHS->getSourceElementType(), Null, IndicesRHS); 3313 return ConstantExpr::getICmp(Pred, NewLHS, NewRHS); 3314 } 3315 } 3316 } 3317 3318 // If the comparison is with the result of a select instruction, check whether 3319 // comparing with either branch of the select always yields the same value. 3320 if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS)) 3321 if (Value *V = ThreadCmpOverSelect(Pred, LHS, RHS, Q, MaxRecurse)) 3322 return V; 3323 3324 // If the comparison is with the result of a phi instruction, check whether 3325 // doing the compare with each incoming phi value yields a common result. 3326 if (isa<PHINode>(LHS) || isa<PHINode>(RHS)) 3327 if (Value *V = ThreadCmpOverPHI(Pred, LHS, RHS, Q, MaxRecurse)) 3328 return V; 3329 3330 return nullptr; 3331 } 3332 3333 Value *llvm::SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS, 3334 const SimplifyQuery &Q) { 3335 return ::SimplifyICmpInst(Predicate, LHS, RHS, Q, RecursionLimit); 3336 } 3337 3338 /// Given operands for an FCmpInst, see if we can fold the result. 3339 /// If not, this returns null. 3340 static Value *SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS, 3341 FastMathFlags FMF, const SimplifyQuery &Q, 3342 unsigned MaxRecurse) { 3343 CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate; 3344 assert(CmpInst::isFPPredicate(Pred) && "Not an FP compare!"); 3345 3346 if (Constant *CLHS = dyn_cast<Constant>(LHS)) { 3347 if (Constant *CRHS = dyn_cast<Constant>(RHS)) 3348 return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, Q.DL, Q.TLI); 3349 3350 // If we have a constant, make sure it is on the RHS. 3351 std::swap(LHS, RHS); 3352 Pred = CmpInst::getSwappedPredicate(Pred); 3353 } 3354 3355 // Fold trivial predicates. 3356 Type *RetTy = GetCompareTy(LHS); 3357 if (Pred == FCmpInst::FCMP_FALSE) 3358 return getFalse(RetTy); 3359 if (Pred == FCmpInst::FCMP_TRUE) 3360 return getTrue(RetTy); 3361 3362 // UNO/ORD predicates can be trivially folded if NaNs are ignored. 3363 if (FMF.noNaNs()) { 3364 if (Pred == FCmpInst::FCMP_UNO) 3365 return getFalse(RetTy); 3366 if (Pred == FCmpInst::FCMP_ORD) 3367 return getTrue(RetTy); 3368 } 3369 3370 // NaN is unordered; NaN is not ordered. 3371 assert((FCmpInst::isOrdered(Pred) || FCmpInst::isUnordered(Pred)) && 3372 "Comparison must be either ordered or unordered"); 3373 if (match(RHS, m_NaN())) 3374 return ConstantInt::get(RetTy, CmpInst::isUnordered(Pred)); 3375 3376 // fcmp pred x, undef and fcmp pred undef, x 3377 // fold to true if unordered, false if ordered 3378 if (isa<UndefValue>(LHS) || isa<UndefValue>(RHS)) { 3379 // Choosing NaN for the undef will always make unordered comparison succeed 3380 // and ordered comparison fail. 3381 return ConstantInt::get(RetTy, CmpInst::isUnordered(Pred)); 3382 } 3383 3384 // fcmp x,x -> true/false. Not all compares are foldable. 3385 if (LHS == RHS) { 3386 if (CmpInst::isTrueWhenEqual(Pred)) 3387 return getTrue(RetTy); 3388 if (CmpInst::isFalseWhenEqual(Pred)) 3389 return getFalse(RetTy); 3390 } 3391 3392 // Handle fcmp with constant RHS. 3393 const APFloat *C; 3394 if (match(RHS, m_APFloat(C))) { 3395 // Check whether the constant is an infinity. 3396 if (C->isInfinity()) { 3397 if (C->isNegative()) { 3398 switch (Pred) { 3399 case FCmpInst::FCMP_OLT: 3400 // No value is ordered and less than negative infinity. 3401 return getFalse(RetTy); 3402 case FCmpInst::FCMP_UGE: 3403 // All values are unordered with or at least negative infinity. 3404 return getTrue(RetTy); 3405 default: 3406 break; 3407 } 3408 } else { 3409 switch (Pred) { 3410 case FCmpInst::FCMP_OGT: 3411 // No value is ordered and greater than infinity. 3412 return getFalse(RetTy); 3413 case FCmpInst::FCMP_ULE: 3414 // All values are unordered with and at most infinity. 3415 return getTrue(RetTy); 3416 default: 3417 break; 3418 } 3419 } 3420 } 3421 if (C->isZero()) { 3422 switch (Pred) { 3423 case FCmpInst::FCMP_UGE: 3424 if (CannotBeOrderedLessThanZero(LHS, Q.TLI)) 3425 return getTrue(RetTy); 3426 break; 3427 case FCmpInst::FCMP_OLT: 3428 // X < 0 3429 if (CannotBeOrderedLessThanZero(LHS, Q.TLI)) 3430 return getFalse(RetTy); 3431 break; 3432 default: 3433 break; 3434 } 3435 } else if (C->isNegative()) { 3436 assert(!C->isNaN() && "Unexpected NaN constant!"); 3437 // TODO: We can catch more cases by using a range check rather than 3438 // relying on CannotBeOrderedLessThanZero. 3439 switch (Pred) { 3440 case FCmpInst::FCMP_UGE: 3441 case FCmpInst::FCMP_UGT: 3442 case FCmpInst::FCMP_UNE: 3443 // (X >= 0) implies (X > C) when (C < 0) 3444 if (CannotBeOrderedLessThanZero(LHS, Q.TLI)) 3445 return getTrue(RetTy); 3446 break; 3447 case FCmpInst::FCMP_OEQ: 3448 case FCmpInst::FCMP_OLE: 3449 case FCmpInst::FCMP_OLT: 3450 // (X >= 0) implies !(X < C) when (C < 0) 3451 if (CannotBeOrderedLessThanZero(LHS, Q.TLI)) 3452 return getFalse(RetTy); 3453 break; 3454 default: 3455 break; 3456 } 3457 } 3458 } 3459 3460 // If the comparison is with the result of a select instruction, check whether 3461 // comparing with either branch of the select always yields the same value. 3462 if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS)) 3463 if (Value *V = ThreadCmpOverSelect(Pred, LHS, RHS, Q, MaxRecurse)) 3464 return V; 3465 3466 // If the comparison is with the result of a phi instruction, check whether 3467 // doing the compare with each incoming phi value yields a common result. 3468 if (isa<PHINode>(LHS) || isa<PHINode>(RHS)) 3469 if (Value *V = ThreadCmpOverPHI(Pred, LHS, RHS, Q, MaxRecurse)) 3470 return V; 3471 3472 return nullptr; 3473 } 3474 3475 Value *llvm::SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS, 3476 FastMathFlags FMF, const SimplifyQuery &Q) { 3477 return ::SimplifyFCmpInst(Predicate, LHS, RHS, FMF, Q, RecursionLimit); 3478 } 3479 3480 /// See if V simplifies when its operand Op is replaced with RepOp. 3481 static const Value *SimplifyWithOpReplaced(Value *V, Value *Op, Value *RepOp, 3482 const SimplifyQuery &Q, 3483 unsigned MaxRecurse) { 3484 // Trivial replacement. 3485 if (V == Op) 3486 return RepOp; 3487 3488 // We cannot replace a constant, and shouldn't even try. 3489 if (isa<Constant>(Op)) 3490 return nullptr; 3491 3492 auto *I = dyn_cast<Instruction>(V); 3493 if (!I) 3494 return nullptr; 3495 3496 // If this is a binary operator, try to simplify it with the replaced op. 3497 if (auto *B = dyn_cast<BinaryOperator>(I)) { 3498 // Consider: 3499 // %cmp = icmp eq i32 %x, 2147483647 3500 // %add = add nsw i32 %x, 1 3501 // %sel = select i1 %cmp, i32 -2147483648, i32 %add 3502 // 3503 // We can't replace %sel with %add unless we strip away the flags. 3504 if (isa<OverflowingBinaryOperator>(B)) 3505 if (B->hasNoSignedWrap() || B->hasNoUnsignedWrap()) 3506 return nullptr; 3507 if (isa<PossiblyExactOperator>(B)) 3508 if (B->isExact()) 3509 return nullptr; 3510 3511 if (MaxRecurse) { 3512 if (B->getOperand(0) == Op) 3513 return SimplifyBinOp(B->getOpcode(), RepOp, B->getOperand(1), Q, 3514 MaxRecurse - 1); 3515 if (B->getOperand(1) == Op) 3516 return SimplifyBinOp(B->getOpcode(), B->getOperand(0), RepOp, Q, 3517 MaxRecurse - 1); 3518 } 3519 } 3520 3521 // Same for CmpInsts. 3522 if (CmpInst *C = dyn_cast<CmpInst>(I)) { 3523 if (MaxRecurse) { 3524 if (C->getOperand(0) == Op) 3525 return SimplifyCmpInst(C->getPredicate(), RepOp, C->getOperand(1), Q, 3526 MaxRecurse - 1); 3527 if (C->getOperand(1) == Op) 3528 return SimplifyCmpInst(C->getPredicate(), C->getOperand(0), RepOp, Q, 3529 MaxRecurse - 1); 3530 } 3531 } 3532 3533 // Same for GEPs. 3534 if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) { 3535 if (MaxRecurse) { 3536 SmallVector<Value *, 8> NewOps(GEP->getNumOperands()); 3537 transform(GEP->operands(), NewOps.begin(), 3538 [&](Value *V) { return V == Op ? RepOp : V; }); 3539 return SimplifyGEPInst(GEP->getSourceElementType(), NewOps, Q, 3540 MaxRecurse - 1); 3541 } 3542 } 3543 3544 // TODO: We could hand off more cases to instsimplify here. 3545 3546 // If all operands are constant after substituting Op for RepOp then we can 3547 // constant fold the instruction. 3548 if (Constant *CRepOp = dyn_cast<Constant>(RepOp)) { 3549 // Build a list of all constant operands. 3550 SmallVector<Constant *, 8> ConstOps; 3551 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 3552 if (I->getOperand(i) == Op) 3553 ConstOps.push_back(CRepOp); 3554 else if (Constant *COp = dyn_cast<Constant>(I->getOperand(i))) 3555 ConstOps.push_back(COp); 3556 else 3557 break; 3558 } 3559 3560 // All operands were constants, fold it. 3561 if (ConstOps.size() == I->getNumOperands()) { 3562 if (CmpInst *C = dyn_cast<CmpInst>(I)) 3563 return ConstantFoldCompareInstOperands(C->getPredicate(), ConstOps[0], 3564 ConstOps[1], Q.DL, Q.TLI); 3565 3566 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 3567 if (!LI->isVolatile()) 3568 return ConstantFoldLoadFromConstPtr(ConstOps[0], LI->getType(), Q.DL); 3569 3570 return ConstantFoldInstOperands(I, ConstOps, Q.DL, Q.TLI); 3571 } 3572 } 3573 3574 return nullptr; 3575 } 3576 3577 /// Try to simplify a select instruction when its condition operand is an 3578 /// integer comparison where one operand of the compare is a constant. 3579 static Value *simplifySelectBitTest(Value *TrueVal, Value *FalseVal, Value *X, 3580 const APInt *Y, bool TrueWhenUnset) { 3581 const APInt *C; 3582 3583 // (X & Y) == 0 ? X & ~Y : X --> X 3584 // (X & Y) != 0 ? X & ~Y : X --> X & ~Y 3585 if (FalseVal == X && match(TrueVal, m_And(m_Specific(X), m_APInt(C))) && 3586 *Y == ~*C) 3587 return TrueWhenUnset ? FalseVal : TrueVal; 3588 3589 // (X & Y) == 0 ? X : X & ~Y --> X & ~Y 3590 // (X & Y) != 0 ? X : X & ~Y --> X 3591 if (TrueVal == X && match(FalseVal, m_And(m_Specific(X), m_APInt(C))) && 3592 *Y == ~*C) 3593 return TrueWhenUnset ? FalseVal : TrueVal; 3594 3595 if (Y->isPowerOf2()) { 3596 // (X & Y) == 0 ? X | Y : X --> X | Y 3597 // (X & Y) != 0 ? X | Y : X --> X 3598 if (FalseVal == X && match(TrueVal, m_Or(m_Specific(X), m_APInt(C))) && 3599 *Y == *C) 3600 return TrueWhenUnset ? TrueVal : FalseVal; 3601 3602 // (X & Y) == 0 ? X : X | Y --> X 3603 // (X & Y) != 0 ? X : X | Y --> X | Y 3604 if (TrueVal == X && match(FalseVal, m_Or(m_Specific(X), m_APInt(C))) && 3605 *Y == *C) 3606 return TrueWhenUnset ? TrueVal : FalseVal; 3607 } 3608 3609 return nullptr; 3610 } 3611 3612 /// An alternative way to test if a bit is set or not uses sgt/slt instead of 3613 /// eq/ne. 3614 static Value *simplifySelectWithFakeICmpEq(Value *CmpLHS, Value *CmpRHS, 3615 ICmpInst::Predicate Pred, 3616 Value *TrueVal, Value *FalseVal) { 3617 Value *X; 3618 APInt Mask; 3619 if (!decomposeBitTestICmp(CmpLHS, CmpRHS, Pred, X, Mask)) 3620 return nullptr; 3621 3622 return simplifySelectBitTest(TrueVal, FalseVal, X, &Mask, 3623 Pred == ICmpInst::ICMP_EQ); 3624 } 3625 3626 /// Try to simplify a select instruction when its condition operand is an 3627 /// integer comparison. 3628 static Value *simplifySelectWithICmpCond(Value *CondVal, Value *TrueVal, 3629 Value *FalseVal, const SimplifyQuery &Q, 3630 unsigned MaxRecurse) { 3631 ICmpInst::Predicate Pred; 3632 Value *CmpLHS, *CmpRHS; 3633 if (!match(CondVal, m_ICmp(Pred, m_Value(CmpLHS), m_Value(CmpRHS)))) 3634 return nullptr; 3635 3636 if (ICmpInst::isEquality(Pred) && match(CmpRHS, m_Zero())) { 3637 Value *X; 3638 const APInt *Y; 3639 if (match(CmpLHS, m_And(m_Value(X), m_APInt(Y)))) 3640 if (Value *V = simplifySelectBitTest(TrueVal, FalseVal, X, Y, 3641 Pred == ICmpInst::ICMP_EQ)) 3642 return V; 3643 } 3644 3645 // Check for other compares that behave like bit test. 3646 if (Value *V = simplifySelectWithFakeICmpEq(CmpLHS, CmpRHS, Pred, 3647 TrueVal, FalseVal)) 3648 return V; 3649 3650 // If we have an equality comparison, then we know the value in one of the 3651 // arms of the select. See if substituting this value into the arm and 3652 // simplifying the result yields the same value as the other arm. 3653 if (Pred == ICmpInst::ICMP_EQ) { 3654 if (SimplifyWithOpReplaced(FalseVal, CmpLHS, CmpRHS, Q, MaxRecurse) == 3655 TrueVal || 3656 SimplifyWithOpReplaced(FalseVal, CmpRHS, CmpLHS, Q, MaxRecurse) == 3657 TrueVal) 3658 return FalseVal; 3659 if (SimplifyWithOpReplaced(TrueVal, CmpLHS, CmpRHS, Q, MaxRecurse) == 3660 FalseVal || 3661 SimplifyWithOpReplaced(TrueVal, CmpRHS, CmpLHS, Q, MaxRecurse) == 3662 FalseVal) 3663 return FalseVal; 3664 } else if (Pred == ICmpInst::ICMP_NE) { 3665 if (SimplifyWithOpReplaced(TrueVal, CmpLHS, CmpRHS, Q, MaxRecurse) == 3666 FalseVal || 3667 SimplifyWithOpReplaced(TrueVal, CmpRHS, CmpLHS, Q, MaxRecurse) == 3668 FalseVal) 3669 return TrueVal; 3670 if (SimplifyWithOpReplaced(FalseVal, CmpLHS, CmpRHS, Q, MaxRecurse) == 3671 TrueVal || 3672 SimplifyWithOpReplaced(FalseVal, CmpRHS, CmpLHS, Q, MaxRecurse) == 3673 TrueVal) 3674 return TrueVal; 3675 } 3676 3677 return nullptr; 3678 } 3679 3680 /// Given operands for a SelectInst, see if we can fold the result. 3681 /// If not, this returns null. 3682 static Value *SimplifySelectInst(Value *Cond, Value *TrueVal, Value *FalseVal, 3683 const SimplifyQuery &Q, unsigned MaxRecurse) { 3684 if (auto *CondC = dyn_cast<Constant>(Cond)) { 3685 if (auto *TrueC = dyn_cast<Constant>(TrueVal)) 3686 if (auto *FalseC = dyn_cast<Constant>(FalseVal)) 3687 return ConstantFoldSelectInstruction(CondC, TrueC, FalseC); 3688 3689 // select undef, X, Y -> X or Y 3690 if (isa<UndefValue>(CondC)) 3691 return isa<Constant>(FalseVal) ? FalseVal : TrueVal; 3692 3693 // TODO: Vector constants with undef elements don't simplify. 3694 3695 // select true, X, Y -> X 3696 if (CondC->isAllOnesValue()) 3697 return TrueVal; 3698 // select false, X, Y -> Y 3699 if (CondC->isNullValue()) 3700 return FalseVal; 3701 } 3702 3703 // select ?, X, X -> X 3704 if (TrueVal == FalseVal) 3705 return TrueVal; 3706 3707 if (isa<UndefValue>(TrueVal)) // select ?, undef, X -> X 3708 return FalseVal; 3709 if (isa<UndefValue>(FalseVal)) // select ?, X, undef -> X 3710 return TrueVal; 3711 3712 if (Value *V = 3713 simplifySelectWithICmpCond(Cond, TrueVal, FalseVal, Q, MaxRecurse)) 3714 return V; 3715 3716 return nullptr; 3717 } 3718 3719 Value *llvm::SimplifySelectInst(Value *Cond, Value *TrueVal, Value *FalseVal, 3720 const SimplifyQuery &Q) { 3721 return ::SimplifySelectInst(Cond, TrueVal, FalseVal, Q, RecursionLimit); 3722 } 3723 3724 /// Given operands for an GetElementPtrInst, see if we can fold the result. 3725 /// If not, this returns null. 3726 static Value *SimplifyGEPInst(Type *SrcTy, ArrayRef<Value *> Ops, 3727 const SimplifyQuery &Q, unsigned) { 3728 // The type of the GEP pointer operand. 3729 unsigned AS = 3730 cast<PointerType>(Ops[0]->getType()->getScalarType())->getAddressSpace(); 3731 3732 // getelementptr P -> P. 3733 if (Ops.size() == 1) 3734 return Ops[0]; 3735 3736 // Compute the (pointer) type returned by the GEP instruction. 3737 Type *LastType = GetElementPtrInst::getIndexedType(SrcTy, Ops.slice(1)); 3738 Type *GEPTy = PointerType::get(LastType, AS); 3739 if (VectorType *VT = dyn_cast<VectorType>(Ops[0]->getType())) 3740 GEPTy = VectorType::get(GEPTy, VT->getNumElements()); 3741 else if (VectorType *VT = dyn_cast<VectorType>(Ops[1]->getType())) 3742 GEPTy = VectorType::get(GEPTy, VT->getNumElements()); 3743 3744 if (isa<UndefValue>(Ops[0])) 3745 return UndefValue::get(GEPTy); 3746 3747 if (Ops.size() == 2) { 3748 // getelementptr P, 0 -> P. 3749 if (match(Ops[1], m_Zero()) && Ops[0]->getType() == GEPTy) 3750 return Ops[0]; 3751 3752 Type *Ty = SrcTy; 3753 if (Ty->isSized()) { 3754 Value *P; 3755 uint64_t C; 3756 uint64_t TyAllocSize = Q.DL.getTypeAllocSize(Ty); 3757 // getelementptr P, N -> P if P points to a type of zero size. 3758 if (TyAllocSize == 0 && Ops[0]->getType() == GEPTy) 3759 return Ops[0]; 3760 3761 // The following transforms are only safe if the ptrtoint cast 3762 // doesn't truncate the pointers. 3763 if (Ops[1]->getType()->getScalarSizeInBits() == 3764 Q.DL.getIndexSizeInBits(AS)) { 3765 auto PtrToIntOrZero = [GEPTy](Value *P) -> Value * { 3766 if (match(P, m_Zero())) 3767 return Constant::getNullValue(GEPTy); 3768 Value *Temp; 3769 if (match(P, m_PtrToInt(m_Value(Temp)))) 3770 if (Temp->getType() == GEPTy) 3771 return Temp; 3772 return nullptr; 3773 }; 3774 3775 // getelementptr V, (sub P, V) -> P if P points to a type of size 1. 3776 if (TyAllocSize == 1 && 3777 match(Ops[1], m_Sub(m_Value(P), m_PtrToInt(m_Specific(Ops[0]))))) 3778 if (Value *R = PtrToIntOrZero(P)) 3779 return R; 3780 3781 // getelementptr V, (ashr (sub P, V), C) -> Q 3782 // if P points to a type of size 1 << C. 3783 if (match(Ops[1], 3784 m_AShr(m_Sub(m_Value(P), m_PtrToInt(m_Specific(Ops[0]))), 3785 m_ConstantInt(C))) && 3786 TyAllocSize == 1ULL << C) 3787 if (Value *R = PtrToIntOrZero(P)) 3788 return R; 3789 3790 // getelementptr V, (sdiv (sub P, V), C) -> Q 3791 // if P points to a type of size C. 3792 if (match(Ops[1], 3793 m_SDiv(m_Sub(m_Value(P), m_PtrToInt(m_Specific(Ops[0]))), 3794 m_SpecificInt(TyAllocSize)))) 3795 if (Value *R = PtrToIntOrZero(P)) 3796 return R; 3797 } 3798 } 3799 } 3800 3801 if (Q.DL.getTypeAllocSize(LastType) == 1 && 3802 all_of(Ops.slice(1).drop_back(1), 3803 [](Value *Idx) { return match(Idx, m_Zero()); })) { 3804 unsigned IdxWidth = 3805 Q.DL.getIndexSizeInBits(Ops[0]->getType()->getPointerAddressSpace()); 3806 if (Q.DL.getTypeSizeInBits(Ops.back()->getType()) == IdxWidth) { 3807 APInt BasePtrOffset(IdxWidth, 0); 3808 Value *StrippedBasePtr = 3809 Ops[0]->stripAndAccumulateInBoundsConstantOffsets(Q.DL, 3810 BasePtrOffset); 3811 3812 // gep (gep V, C), (sub 0, V) -> C 3813 if (match(Ops.back(), 3814 m_Sub(m_Zero(), m_PtrToInt(m_Specific(StrippedBasePtr))))) { 3815 auto *CI = ConstantInt::get(GEPTy->getContext(), BasePtrOffset); 3816 return ConstantExpr::getIntToPtr(CI, GEPTy); 3817 } 3818 // gep (gep V, C), (xor V, -1) -> C-1 3819 if (match(Ops.back(), 3820 m_Xor(m_PtrToInt(m_Specific(StrippedBasePtr)), m_AllOnes()))) { 3821 auto *CI = ConstantInt::get(GEPTy->getContext(), BasePtrOffset - 1); 3822 return ConstantExpr::getIntToPtr(CI, GEPTy); 3823 } 3824 } 3825 } 3826 3827 // Check to see if this is constant foldable. 3828 if (!all_of(Ops, [](Value *V) { return isa<Constant>(V); })) 3829 return nullptr; 3830 3831 auto *CE = ConstantExpr::getGetElementPtr(SrcTy, cast<Constant>(Ops[0]), 3832 Ops.slice(1)); 3833 if (auto *CEFolded = ConstantFoldConstant(CE, Q.DL)) 3834 return CEFolded; 3835 return CE; 3836 } 3837 3838 Value *llvm::SimplifyGEPInst(Type *SrcTy, ArrayRef<Value *> Ops, 3839 const SimplifyQuery &Q) { 3840 return ::SimplifyGEPInst(SrcTy, Ops, Q, RecursionLimit); 3841 } 3842 3843 /// Given operands for an InsertValueInst, see if we can fold the result. 3844 /// If not, this returns null. 3845 static Value *SimplifyInsertValueInst(Value *Agg, Value *Val, 3846 ArrayRef<unsigned> Idxs, const SimplifyQuery &Q, 3847 unsigned) { 3848 if (Constant *CAgg = dyn_cast<Constant>(Agg)) 3849 if (Constant *CVal = dyn_cast<Constant>(Val)) 3850 return ConstantFoldInsertValueInstruction(CAgg, CVal, Idxs); 3851 3852 // insertvalue x, undef, n -> x 3853 if (match(Val, m_Undef())) 3854 return Agg; 3855 3856 // insertvalue x, (extractvalue y, n), n 3857 if (ExtractValueInst *EV = dyn_cast<ExtractValueInst>(Val)) 3858 if (EV->getAggregateOperand()->getType() == Agg->getType() && 3859 EV->getIndices() == Idxs) { 3860 // insertvalue undef, (extractvalue y, n), n -> y 3861 if (match(Agg, m_Undef())) 3862 return EV->getAggregateOperand(); 3863 3864 // insertvalue y, (extractvalue y, n), n -> y 3865 if (Agg == EV->getAggregateOperand()) 3866 return Agg; 3867 } 3868 3869 return nullptr; 3870 } 3871 3872 Value *llvm::SimplifyInsertValueInst(Value *Agg, Value *Val, 3873 ArrayRef<unsigned> Idxs, 3874 const SimplifyQuery &Q) { 3875 return ::SimplifyInsertValueInst(Agg, Val, Idxs, Q, RecursionLimit); 3876 } 3877 3878 Value *llvm::SimplifyInsertElementInst(Value *Vec, Value *Val, Value *Idx, 3879 const SimplifyQuery &Q) { 3880 // Try to constant fold. 3881 auto *VecC = dyn_cast<Constant>(Vec); 3882 auto *ValC = dyn_cast<Constant>(Val); 3883 auto *IdxC = dyn_cast<Constant>(Idx); 3884 if (VecC && ValC && IdxC) 3885 return ConstantFoldInsertElementInstruction(VecC, ValC, IdxC); 3886 3887 // Fold into undef if index is out of bounds. 3888 if (auto *CI = dyn_cast<ConstantInt>(Idx)) { 3889 uint64_t NumElements = cast<VectorType>(Vec->getType())->getNumElements(); 3890 if (CI->uge(NumElements)) 3891 return UndefValue::get(Vec->getType()); 3892 } 3893 3894 // If index is undef, it might be out of bounds (see above case) 3895 if (isa<UndefValue>(Idx)) 3896 return UndefValue::get(Vec->getType()); 3897 3898 return nullptr; 3899 } 3900 3901 /// Given operands for an ExtractValueInst, see if we can fold the result. 3902 /// If not, this returns null. 3903 static Value *SimplifyExtractValueInst(Value *Agg, ArrayRef<unsigned> Idxs, 3904 const SimplifyQuery &, unsigned) { 3905 if (auto *CAgg = dyn_cast<Constant>(Agg)) 3906 return ConstantFoldExtractValueInstruction(CAgg, Idxs); 3907 3908 // extractvalue x, (insertvalue y, elt, n), n -> elt 3909 unsigned NumIdxs = Idxs.size(); 3910 for (auto *IVI = dyn_cast<InsertValueInst>(Agg); IVI != nullptr; 3911 IVI = dyn_cast<InsertValueInst>(IVI->getAggregateOperand())) { 3912 ArrayRef<unsigned> InsertValueIdxs = IVI->getIndices(); 3913 unsigned NumInsertValueIdxs = InsertValueIdxs.size(); 3914 unsigned NumCommonIdxs = std::min(NumInsertValueIdxs, NumIdxs); 3915 if (InsertValueIdxs.slice(0, NumCommonIdxs) == 3916 Idxs.slice(0, NumCommonIdxs)) { 3917 if (NumIdxs == NumInsertValueIdxs) 3918 return IVI->getInsertedValueOperand(); 3919 break; 3920 } 3921 } 3922 3923 return nullptr; 3924 } 3925 3926 Value *llvm::SimplifyExtractValueInst(Value *Agg, ArrayRef<unsigned> Idxs, 3927 const SimplifyQuery &Q) { 3928 return ::SimplifyExtractValueInst(Agg, Idxs, Q, RecursionLimit); 3929 } 3930 3931 /// Given operands for an ExtractElementInst, see if we can fold the result. 3932 /// If not, this returns null. 3933 static Value *SimplifyExtractElementInst(Value *Vec, Value *Idx, const SimplifyQuery &, 3934 unsigned) { 3935 if (auto *CVec = dyn_cast<Constant>(Vec)) { 3936 if (auto *CIdx = dyn_cast<Constant>(Idx)) 3937 return ConstantFoldExtractElementInstruction(CVec, CIdx); 3938 3939 // The index is not relevant if our vector is a splat. 3940 if (auto *Splat = CVec->getSplatValue()) 3941 return Splat; 3942 3943 if (isa<UndefValue>(Vec)) 3944 return UndefValue::get(Vec->getType()->getVectorElementType()); 3945 } 3946 3947 // If extracting a specified index from the vector, see if we can recursively 3948 // find a previously computed scalar that was inserted into the vector. 3949 if (auto *IdxC = dyn_cast<ConstantInt>(Idx)) { 3950 if (IdxC->getValue().uge(Vec->getType()->getVectorNumElements())) 3951 // definitely out of bounds, thus undefined result 3952 return UndefValue::get(Vec->getType()->getVectorElementType()); 3953 if (Value *Elt = findScalarElement(Vec, IdxC->getZExtValue())) 3954 return Elt; 3955 } 3956 3957 // An undef extract index can be arbitrarily chosen to be an out-of-range 3958 // index value, which would result in the instruction being undef. 3959 if (isa<UndefValue>(Idx)) 3960 return UndefValue::get(Vec->getType()->getVectorElementType()); 3961 3962 return nullptr; 3963 } 3964 3965 Value *llvm::SimplifyExtractElementInst(Value *Vec, Value *Idx, 3966 const SimplifyQuery &Q) { 3967 return ::SimplifyExtractElementInst(Vec, Idx, Q, RecursionLimit); 3968 } 3969 3970 /// See if we can fold the given phi. If not, returns null. 3971 static Value *SimplifyPHINode(PHINode *PN, const SimplifyQuery &Q) { 3972 // If all of the PHI's incoming values are the same then replace the PHI node 3973 // with the common value. 3974 Value *CommonValue = nullptr; 3975 bool HasUndefInput = false; 3976 for (Value *Incoming : PN->incoming_values()) { 3977 // If the incoming value is the phi node itself, it can safely be skipped. 3978 if (Incoming == PN) continue; 3979 if (isa<UndefValue>(Incoming)) { 3980 // Remember that we saw an undef value, but otherwise ignore them. 3981 HasUndefInput = true; 3982 continue; 3983 } 3984 if (CommonValue && Incoming != CommonValue) 3985 return nullptr; // Not the same, bail out. 3986 CommonValue = Incoming; 3987 } 3988 3989 // If CommonValue is null then all of the incoming values were either undef or 3990 // equal to the phi node itself. 3991 if (!CommonValue) 3992 return UndefValue::get(PN->getType()); 3993 3994 // If we have a PHI node like phi(X, undef, X), where X is defined by some 3995 // instruction, we cannot return X as the result of the PHI node unless it 3996 // dominates the PHI block. 3997 if (HasUndefInput) 3998 return valueDominatesPHI(CommonValue, PN, Q.DT) ? CommonValue : nullptr; 3999 4000 return CommonValue; 4001 } 4002 4003 static Value *SimplifyCastInst(unsigned CastOpc, Value *Op, 4004 Type *Ty, const SimplifyQuery &Q, unsigned MaxRecurse) { 4005 if (auto *C = dyn_cast<Constant>(Op)) 4006 return ConstantFoldCastOperand(CastOpc, C, Ty, Q.DL); 4007 4008 if (auto *CI = dyn_cast<CastInst>(Op)) { 4009 auto *Src = CI->getOperand(0); 4010 Type *SrcTy = Src->getType(); 4011 Type *MidTy = CI->getType(); 4012 Type *DstTy = Ty; 4013 if (Src->getType() == Ty) { 4014 auto FirstOp = static_cast<Instruction::CastOps>(CI->getOpcode()); 4015 auto SecondOp = static_cast<Instruction::CastOps>(CastOpc); 4016 Type *SrcIntPtrTy = 4017 SrcTy->isPtrOrPtrVectorTy() ? Q.DL.getIntPtrType(SrcTy) : nullptr; 4018 Type *MidIntPtrTy = 4019 MidTy->isPtrOrPtrVectorTy() ? Q.DL.getIntPtrType(MidTy) : nullptr; 4020 Type *DstIntPtrTy = 4021 DstTy->isPtrOrPtrVectorTy() ? Q.DL.getIntPtrType(DstTy) : nullptr; 4022 if (CastInst::isEliminableCastPair(FirstOp, SecondOp, SrcTy, MidTy, DstTy, 4023 SrcIntPtrTy, MidIntPtrTy, 4024 DstIntPtrTy) == Instruction::BitCast) 4025 return Src; 4026 } 4027 } 4028 4029 // bitcast x -> x 4030 if (CastOpc == Instruction::BitCast) 4031 if (Op->getType() == Ty) 4032 return Op; 4033 4034 return nullptr; 4035 } 4036 4037 Value *llvm::SimplifyCastInst(unsigned CastOpc, Value *Op, Type *Ty, 4038 const SimplifyQuery &Q) { 4039 return ::SimplifyCastInst(CastOpc, Op, Ty, Q, RecursionLimit); 4040 } 4041 4042 /// For the given destination element of a shuffle, peek through shuffles to 4043 /// match a root vector source operand that contains that element in the same 4044 /// vector lane (ie, the same mask index), so we can eliminate the shuffle(s). 4045 static Value *foldIdentityShuffles(int DestElt, Value *Op0, Value *Op1, 4046 int MaskVal, Value *RootVec, 4047 unsigned MaxRecurse) { 4048 if (!MaxRecurse--) 4049 return nullptr; 4050 4051 // Bail out if any mask value is undefined. That kind of shuffle may be 4052 // simplified further based on demanded bits or other folds. 4053 if (MaskVal == -1) 4054 return nullptr; 4055 4056 // The mask value chooses which source operand we need to look at next. 4057 int InVecNumElts = Op0->getType()->getVectorNumElements(); 4058 int RootElt = MaskVal; 4059 Value *SourceOp = Op0; 4060 if (MaskVal >= InVecNumElts) { 4061 RootElt = MaskVal - InVecNumElts; 4062 SourceOp = Op1; 4063 } 4064 4065 // If the source operand is a shuffle itself, look through it to find the 4066 // matching root vector. 4067 if (auto *SourceShuf = dyn_cast<ShuffleVectorInst>(SourceOp)) { 4068 return foldIdentityShuffles( 4069 DestElt, SourceShuf->getOperand(0), SourceShuf->getOperand(1), 4070 SourceShuf->getMaskValue(RootElt), RootVec, MaxRecurse); 4071 } 4072 4073 // TODO: Look through bitcasts? What if the bitcast changes the vector element 4074 // size? 4075 4076 // The source operand is not a shuffle. Initialize the root vector value for 4077 // this shuffle if that has not been done yet. 4078 if (!RootVec) 4079 RootVec = SourceOp; 4080 4081 // Give up as soon as a source operand does not match the existing root value. 4082 if (RootVec != SourceOp) 4083 return nullptr; 4084 4085 // The element must be coming from the same lane in the source vector 4086 // (although it may have crossed lanes in intermediate shuffles). 4087 if (RootElt != DestElt) 4088 return nullptr; 4089 4090 return RootVec; 4091 } 4092 4093 static Value *SimplifyShuffleVectorInst(Value *Op0, Value *Op1, Constant *Mask, 4094 Type *RetTy, const SimplifyQuery &Q, 4095 unsigned MaxRecurse) { 4096 if (isa<UndefValue>(Mask)) 4097 return UndefValue::get(RetTy); 4098 4099 Type *InVecTy = Op0->getType(); 4100 unsigned MaskNumElts = Mask->getType()->getVectorNumElements(); 4101 unsigned InVecNumElts = InVecTy->getVectorNumElements(); 4102 4103 SmallVector<int, 32> Indices; 4104 ShuffleVectorInst::getShuffleMask(Mask, Indices); 4105 assert(MaskNumElts == Indices.size() && 4106 "Size of Indices not same as number of mask elements?"); 4107 4108 // Canonicalization: If mask does not select elements from an input vector, 4109 // replace that input vector with undef. 4110 bool MaskSelects0 = false, MaskSelects1 = false; 4111 for (unsigned i = 0; i != MaskNumElts; ++i) { 4112 if (Indices[i] == -1) 4113 continue; 4114 if ((unsigned)Indices[i] < InVecNumElts) 4115 MaskSelects0 = true; 4116 else 4117 MaskSelects1 = true; 4118 } 4119 if (!MaskSelects0) 4120 Op0 = UndefValue::get(InVecTy); 4121 if (!MaskSelects1) 4122 Op1 = UndefValue::get(InVecTy); 4123 4124 auto *Op0Const = dyn_cast<Constant>(Op0); 4125 auto *Op1Const = dyn_cast<Constant>(Op1); 4126 4127 // If all operands are constant, constant fold the shuffle. 4128 if (Op0Const && Op1Const) 4129 return ConstantFoldShuffleVectorInstruction(Op0Const, Op1Const, Mask); 4130 4131 // Canonicalization: if only one input vector is constant, it shall be the 4132 // second one. 4133 if (Op0Const && !Op1Const) { 4134 std::swap(Op0, Op1); 4135 ShuffleVectorInst::commuteShuffleMask(Indices, InVecNumElts); 4136 } 4137 4138 // A shuffle of a splat is always the splat itself. Legal if the shuffle's 4139 // value type is same as the input vectors' type. 4140 if (auto *OpShuf = dyn_cast<ShuffleVectorInst>(Op0)) 4141 if (isa<UndefValue>(Op1) && RetTy == InVecTy && 4142 OpShuf->getMask()->getSplatValue()) 4143 return Op0; 4144 4145 // Don't fold a shuffle with undef mask elements. This may get folded in a 4146 // better way using demanded bits or other analysis. 4147 // TODO: Should we allow this? 4148 if (find(Indices, -1) != Indices.end()) 4149 return nullptr; 4150 4151 // Check if every element of this shuffle can be mapped back to the 4152 // corresponding element of a single root vector. If so, we don't need this 4153 // shuffle. This handles simple identity shuffles as well as chains of 4154 // shuffles that may widen/narrow and/or move elements across lanes and back. 4155 Value *RootVec = nullptr; 4156 for (unsigned i = 0; i != MaskNumElts; ++i) { 4157 // Note that recursion is limited for each vector element, so if any element 4158 // exceeds the limit, this will fail to simplify. 4159 RootVec = 4160 foldIdentityShuffles(i, Op0, Op1, Indices[i], RootVec, MaxRecurse); 4161 4162 // We can't replace a widening/narrowing shuffle with one of its operands. 4163 if (!RootVec || RootVec->getType() != RetTy) 4164 return nullptr; 4165 } 4166 return RootVec; 4167 } 4168 4169 /// Given operands for a ShuffleVectorInst, fold the result or return null. 4170 Value *llvm::SimplifyShuffleVectorInst(Value *Op0, Value *Op1, Constant *Mask, 4171 Type *RetTy, const SimplifyQuery &Q) { 4172 return ::SimplifyShuffleVectorInst(Op0, Op1, Mask, RetTy, Q, RecursionLimit); 4173 } 4174 4175 static Constant *propagateNaN(Constant *In) { 4176 // If the input is a vector with undef elements, just return a default NaN. 4177 if (!In->isNaN()) 4178 return ConstantFP::getNaN(In->getType()); 4179 4180 // Propagate the existing NaN constant when possible. 4181 // TODO: Should we quiet a signaling NaN? 4182 return In; 4183 } 4184 4185 static Constant *simplifyFPBinop(Value *Op0, Value *Op1) { 4186 if (isa<UndefValue>(Op0) || isa<UndefValue>(Op1)) 4187 return ConstantFP::getNaN(Op0->getType()); 4188 4189 if (match(Op0, m_NaN())) 4190 return propagateNaN(cast<Constant>(Op0)); 4191 if (match(Op1, m_NaN())) 4192 return propagateNaN(cast<Constant>(Op1)); 4193 4194 return nullptr; 4195 } 4196 4197 /// Given operands for an FAdd, see if we can fold the result. If not, this 4198 /// returns null. 4199 static Value *SimplifyFAddInst(Value *Op0, Value *Op1, FastMathFlags FMF, 4200 const SimplifyQuery &Q, unsigned MaxRecurse) { 4201 if (Constant *C = foldOrCommuteConstant(Instruction::FAdd, Op0, Op1, Q)) 4202 return C; 4203 4204 if (Constant *C = simplifyFPBinop(Op0, Op1)) 4205 return C; 4206 4207 // fadd X, -0 ==> X 4208 if (match(Op1, m_NegZeroFP())) 4209 return Op0; 4210 4211 // fadd X, 0 ==> X, when we know X is not -0 4212 if (match(Op1, m_PosZeroFP()) && 4213 (FMF.noSignedZeros() || CannotBeNegativeZero(Op0, Q.TLI))) 4214 return Op0; 4215 4216 // With nnan: (+/-0.0 - X) + X --> 0.0 (and commuted variant) 4217 // We don't have to explicitly exclude infinities (ninf): INF + -INF == NaN. 4218 // Negative zeros are allowed because we always end up with positive zero: 4219 // X = -0.0: (-0.0 - (-0.0)) + (-0.0) == ( 0.0) + (-0.0) == 0.0 4220 // X = -0.0: ( 0.0 - (-0.0)) + (-0.0) == ( 0.0) + (-0.0) == 0.0 4221 // X = 0.0: (-0.0 - ( 0.0)) + ( 0.0) == (-0.0) + ( 0.0) == 0.0 4222 // X = 0.0: ( 0.0 - ( 0.0)) + ( 0.0) == ( 0.0) + ( 0.0) == 0.0 4223 if (FMF.noNaNs() && (match(Op0, m_FSub(m_AnyZeroFP(), m_Specific(Op1))) || 4224 match(Op1, m_FSub(m_AnyZeroFP(), m_Specific(Op0))))) 4225 return ConstantFP::getNullValue(Op0->getType()); 4226 4227 return nullptr; 4228 } 4229 4230 /// Given operands for an FSub, see if we can fold the result. If not, this 4231 /// returns null. 4232 static Value *SimplifyFSubInst(Value *Op0, Value *Op1, FastMathFlags FMF, 4233 const SimplifyQuery &Q, unsigned MaxRecurse) { 4234 if (Constant *C = foldOrCommuteConstant(Instruction::FSub, Op0, Op1, Q)) 4235 return C; 4236 4237 if (Constant *C = simplifyFPBinop(Op0, Op1)) 4238 return C; 4239 4240 // fsub X, +0 ==> X 4241 if (match(Op1, m_PosZeroFP())) 4242 return Op0; 4243 4244 // fsub X, -0 ==> X, when we know X is not -0 4245 if (match(Op1, m_NegZeroFP()) && 4246 (FMF.noSignedZeros() || CannotBeNegativeZero(Op0, Q.TLI))) 4247 return Op0; 4248 4249 // fsub -0.0, (fsub -0.0, X) ==> X 4250 Value *X; 4251 if (match(Op0, m_NegZeroFP()) && 4252 match(Op1, m_FSub(m_NegZeroFP(), m_Value(X)))) 4253 return X; 4254 4255 // fsub 0.0, (fsub 0.0, X) ==> X if signed zeros are ignored. 4256 if (FMF.noSignedZeros() && match(Op0, m_AnyZeroFP()) && 4257 match(Op1, m_FSub(m_AnyZeroFP(), m_Value(X)))) 4258 return X; 4259 4260 // fsub nnan x, x ==> 0.0 4261 if (FMF.noNaNs() && Op0 == Op1) 4262 return Constant::getNullValue(Op0->getType()); 4263 4264 return nullptr; 4265 } 4266 4267 /// Given the operands for an FMul, see if we can fold the result 4268 static Value *SimplifyFMulInst(Value *Op0, Value *Op1, FastMathFlags FMF, 4269 const SimplifyQuery &Q, unsigned MaxRecurse) { 4270 if (Constant *C = foldOrCommuteConstant(Instruction::FMul, Op0, Op1, Q)) 4271 return C; 4272 4273 if (Constant *C = simplifyFPBinop(Op0, Op1)) 4274 return C; 4275 4276 // fmul X, 1.0 ==> X 4277 if (match(Op1, m_FPOne())) 4278 return Op0; 4279 4280 // fmul nnan nsz X, 0 ==> 0 4281 if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op1, m_AnyZeroFP())) 4282 return ConstantFP::getNullValue(Op0->getType()); 4283 4284 // sqrt(X) * sqrt(X) --> X, if we can: 4285 // 1. Remove the intermediate rounding (reassociate). 4286 // 2. Ignore non-zero negative numbers because sqrt would produce NAN. 4287 // 3. Ignore -0.0 because sqrt(-0.0) == -0.0, but -0.0 * -0.0 == 0.0. 4288 Value *X; 4289 if (Op0 == Op1 && match(Op0, m_Intrinsic<Intrinsic::sqrt>(m_Value(X))) && 4290 FMF.allowReassoc() && FMF.noNaNs() && FMF.noSignedZeros()) 4291 return X; 4292 4293 return nullptr; 4294 } 4295 4296 Value *llvm::SimplifyFAddInst(Value *Op0, Value *Op1, FastMathFlags FMF, 4297 const SimplifyQuery &Q) { 4298 return ::SimplifyFAddInst(Op0, Op1, FMF, Q, RecursionLimit); 4299 } 4300 4301 4302 Value *llvm::SimplifyFSubInst(Value *Op0, Value *Op1, FastMathFlags FMF, 4303 const SimplifyQuery &Q) { 4304 return ::SimplifyFSubInst(Op0, Op1, FMF, Q, RecursionLimit); 4305 } 4306 4307 Value *llvm::SimplifyFMulInst(Value *Op0, Value *Op1, FastMathFlags FMF, 4308 const SimplifyQuery &Q) { 4309 return ::SimplifyFMulInst(Op0, Op1, FMF, Q, RecursionLimit); 4310 } 4311 4312 static Value *SimplifyFDivInst(Value *Op0, Value *Op1, FastMathFlags FMF, 4313 const SimplifyQuery &Q, unsigned) { 4314 if (Constant *C = foldOrCommuteConstant(Instruction::FDiv, Op0, Op1, Q)) 4315 return C; 4316 4317 if (Constant *C = simplifyFPBinop(Op0, Op1)) 4318 return C; 4319 4320 // X / 1.0 -> X 4321 if (match(Op1, m_FPOne())) 4322 return Op0; 4323 4324 // 0 / X -> 0 4325 // Requires that NaNs are off (X could be zero) and signed zeroes are 4326 // ignored (X could be positive or negative, so the output sign is unknown). 4327 if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op0, m_AnyZeroFP())) 4328 return ConstantFP::getNullValue(Op0->getType()); 4329 4330 if (FMF.noNaNs()) { 4331 // X / X -> 1.0 is legal when NaNs are ignored. 4332 // We can ignore infinities because INF/INF is NaN. 4333 if (Op0 == Op1) 4334 return ConstantFP::get(Op0->getType(), 1.0); 4335 4336 // (X * Y) / Y --> X if we can reassociate to the above form. 4337 Value *X; 4338 if (FMF.allowReassoc() && match(Op0, m_c_FMul(m_Value(X), m_Specific(Op1)))) 4339 return X; 4340 4341 // -X / X -> -1.0 and 4342 // X / -X -> -1.0 are legal when NaNs are ignored. 4343 // We can ignore signed zeros because +-0.0/+-0.0 is NaN and ignored. 4344 if ((BinaryOperator::isFNeg(Op0, /*IgnoreZeroSign=*/true) && 4345 BinaryOperator::getFNegArgument(Op0) == Op1) || 4346 (BinaryOperator::isFNeg(Op1, /*IgnoreZeroSign=*/true) && 4347 BinaryOperator::getFNegArgument(Op1) == Op0)) 4348 return ConstantFP::get(Op0->getType(), -1.0); 4349 } 4350 4351 return nullptr; 4352 } 4353 4354 Value *llvm::SimplifyFDivInst(Value *Op0, Value *Op1, FastMathFlags FMF, 4355 const SimplifyQuery &Q) { 4356 return ::SimplifyFDivInst(Op0, Op1, FMF, Q, RecursionLimit); 4357 } 4358 4359 static Value *SimplifyFRemInst(Value *Op0, Value *Op1, FastMathFlags FMF, 4360 const SimplifyQuery &Q, unsigned) { 4361 if (Constant *C = foldOrCommuteConstant(Instruction::FRem, Op0, Op1, Q)) 4362 return C; 4363 4364 if (Constant *C = simplifyFPBinop(Op0, Op1)) 4365 return C; 4366 4367 // Unlike fdiv, the result of frem always matches the sign of the dividend. 4368 // The constant match may include undef elements in a vector, so return a full 4369 // zero constant as the result. 4370 if (FMF.noNaNs()) { 4371 // +0 % X -> 0 4372 if (match(Op0, m_PosZeroFP())) 4373 return ConstantFP::getNullValue(Op0->getType()); 4374 // -0 % X -> -0 4375 if (match(Op0, m_NegZeroFP())) 4376 return ConstantFP::getNegativeZero(Op0->getType()); 4377 } 4378 4379 return nullptr; 4380 } 4381 4382 Value *llvm::SimplifyFRemInst(Value *Op0, Value *Op1, FastMathFlags FMF, 4383 const SimplifyQuery &Q) { 4384 return ::SimplifyFRemInst(Op0, Op1, FMF, Q, RecursionLimit); 4385 } 4386 4387 //=== Helper functions for higher up the class hierarchy. 4388 4389 /// Given operands for a BinaryOperator, see if we can fold the result. 4390 /// If not, this returns null. 4391 static Value *SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS, 4392 const SimplifyQuery &Q, unsigned MaxRecurse) { 4393 switch (Opcode) { 4394 case Instruction::Add: 4395 return SimplifyAddInst(LHS, RHS, false, false, Q, MaxRecurse); 4396 case Instruction::Sub: 4397 return SimplifySubInst(LHS, RHS, false, false, Q, MaxRecurse); 4398 case Instruction::Mul: 4399 return SimplifyMulInst(LHS, RHS, Q, MaxRecurse); 4400 case Instruction::SDiv: 4401 return SimplifySDivInst(LHS, RHS, Q, MaxRecurse); 4402 case Instruction::UDiv: 4403 return SimplifyUDivInst(LHS, RHS, Q, MaxRecurse); 4404 case Instruction::SRem: 4405 return SimplifySRemInst(LHS, RHS, Q, MaxRecurse); 4406 case Instruction::URem: 4407 return SimplifyURemInst(LHS, RHS, Q, MaxRecurse); 4408 case Instruction::Shl: 4409 return SimplifyShlInst(LHS, RHS, false, false, Q, MaxRecurse); 4410 case Instruction::LShr: 4411 return SimplifyLShrInst(LHS, RHS, false, Q, MaxRecurse); 4412 case Instruction::AShr: 4413 return SimplifyAShrInst(LHS, RHS, false, Q, MaxRecurse); 4414 case Instruction::And: 4415 return SimplifyAndInst(LHS, RHS, Q, MaxRecurse); 4416 case Instruction::Or: 4417 return SimplifyOrInst(LHS, RHS, Q, MaxRecurse); 4418 case Instruction::Xor: 4419 return SimplifyXorInst(LHS, RHS, Q, MaxRecurse); 4420 case Instruction::FAdd: 4421 return SimplifyFAddInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse); 4422 case Instruction::FSub: 4423 return SimplifyFSubInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse); 4424 case Instruction::FMul: 4425 return SimplifyFMulInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse); 4426 case Instruction::FDiv: 4427 return SimplifyFDivInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse); 4428 case Instruction::FRem: 4429 return SimplifyFRemInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse); 4430 default: 4431 llvm_unreachable("Unexpected opcode"); 4432 } 4433 } 4434 4435 /// Given operands for a BinaryOperator, see if we can fold the result. 4436 /// If not, this returns null. 4437 /// In contrast to SimplifyBinOp, try to use FastMathFlag when folding the 4438 /// result. In case we don't need FastMathFlags, simply fall to SimplifyBinOp. 4439 static Value *SimplifyFPBinOp(unsigned Opcode, Value *LHS, Value *RHS, 4440 const FastMathFlags &FMF, const SimplifyQuery &Q, 4441 unsigned MaxRecurse) { 4442 switch (Opcode) { 4443 case Instruction::FAdd: 4444 return SimplifyFAddInst(LHS, RHS, FMF, Q, MaxRecurse); 4445 case Instruction::FSub: 4446 return SimplifyFSubInst(LHS, RHS, FMF, Q, MaxRecurse); 4447 case Instruction::FMul: 4448 return SimplifyFMulInst(LHS, RHS, FMF, Q, MaxRecurse); 4449 case Instruction::FDiv: 4450 return SimplifyFDivInst(LHS, RHS, FMF, Q, MaxRecurse); 4451 default: 4452 return SimplifyBinOp(Opcode, LHS, RHS, Q, MaxRecurse); 4453 } 4454 } 4455 4456 Value *llvm::SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS, 4457 const SimplifyQuery &Q) { 4458 return ::SimplifyBinOp(Opcode, LHS, RHS, Q, RecursionLimit); 4459 } 4460 4461 Value *llvm::SimplifyFPBinOp(unsigned Opcode, Value *LHS, Value *RHS, 4462 FastMathFlags FMF, const SimplifyQuery &Q) { 4463 return ::SimplifyFPBinOp(Opcode, LHS, RHS, FMF, Q, RecursionLimit); 4464 } 4465 4466 /// Given operands for a CmpInst, see if we can fold the result. 4467 static Value *SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS, 4468 const SimplifyQuery &Q, unsigned MaxRecurse) { 4469 if (CmpInst::isIntPredicate((CmpInst::Predicate)Predicate)) 4470 return SimplifyICmpInst(Predicate, LHS, RHS, Q, MaxRecurse); 4471 return SimplifyFCmpInst(Predicate, LHS, RHS, FastMathFlags(), Q, MaxRecurse); 4472 } 4473 4474 Value *llvm::SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS, 4475 const SimplifyQuery &Q) { 4476 return ::SimplifyCmpInst(Predicate, LHS, RHS, Q, RecursionLimit); 4477 } 4478 4479 static bool IsIdempotent(Intrinsic::ID ID) { 4480 switch (ID) { 4481 default: return false; 4482 4483 // Unary idempotent: f(f(x)) = f(x) 4484 case Intrinsic::fabs: 4485 case Intrinsic::floor: 4486 case Intrinsic::ceil: 4487 case Intrinsic::trunc: 4488 case Intrinsic::rint: 4489 case Intrinsic::nearbyint: 4490 case Intrinsic::round: 4491 case Intrinsic::canonicalize: 4492 return true; 4493 } 4494 } 4495 4496 static Value *SimplifyRelativeLoad(Constant *Ptr, Constant *Offset, 4497 const DataLayout &DL) { 4498 GlobalValue *PtrSym; 4499 APInt PtrOffset; 4500 if (!IsConstantOffsetFromGlobal(Ptr, PtrSym, PtrOffset, DL)) 4501 return nullptr; 4502 4503 Type *Int8PtrTy = Type::getInt8PtrTy(Ptr->getContext()); 4504 Type *Int32Ty = Type::getInt32Ty(Ptr->getContext()); 4505 Type *Int32PtrTy = Int32Ty->getPointerTo(); 4506 Type *Int64Ty = Type::getInt64Ty(Ptr->getContext()); 4507 4508 auto *OffsetConstInt = dyn_cast<ConstantInt>(Offset); 4509 if (!OffsetConstInt || OffsetConstInt->getType()->getBitWidth() > 64) 4510 return nullptr; 4511 4512 uint64_t OffsetInt = OffsetConstInt->getSExtValue(); 4513 if (OffsetInt % 4 != 0) 4514 return nullptr; 4515 4516 Constant *C = ConstantExpr::getGetElementPtr( 4517 Int32Ty, ConstantExpr::getBitCast(Ptr, Int32PtrTy), 4518 ConstantInt::get(Int64Ty, OffsetInt / 4)); 4519 Constant *Loaded = ConstantFoldLoadFromConstPtr(C, Int32Ty, DL); 4520 if (!Loaded) 4521 return nullptr; 4522 4523 auto *LoadedCE = dyn_cast<ConstantExpr>(Loaded); 4524 if (!LoadedCE) 4525 return nullptr; 4526 4527 if (LoadedCE->getOpcode() == Instruction::Trunc) { 4528 LoadedCE = dyn_cast<ConstantExpr>(LoadedCE->getOperand(0)); 4529 if (!LoadedCE) 4530 return nullptr; 4531 } 4532 4533 if (LoadedCE->getOpcode() != Instruction::Sub) 4534 return nullptr; 4535 4536 auto *LoadedLHS = dyn_cast<ConstantExpr>(LoadedCE->getOperand(0)); 4537 if (!LoadedLHS || LoadedLHS->getOpcode() != Instruction::PtrToInt) 4538 return nullptr; 4539 auto *LoadedLHSPtr = LoadedLHS->getOperand(0); 4540 4541 Constant *LoadedRHS = LoadedCE->getOperand(1); 4542 GlobalValue *LoadedRHSSym; 4543 APInt LoadedRHSOffset; 4544 if (!IsConstantOffsetFromGlobal(LoadedRHS, LoadedRHSSym, LoadedRHSOffset, 4545 DL) || 4546 PtrSym != LoadedRHSSym || PtrOffset != LoadedRHSOffset) 4547 return nullptr; 4548 4549 return ConstantExpr::getBitCast(LoadedLHSPtr, Int8PtrTy); 4550 } 4551 4552 static bool maskIsAllZeroOrUndef(Value *Mask) { 4553 auto *ConstMask = dyn_cast<Constant>(Mask); 4554 if (!ConstMask) 4555 return false; 4556 if (ConstMask->isNullValue() || isa<UndefValue>(ConstMask)) 4557 return true; 4558 for (unsigned I = 0, E = ConstMask->getType()->getVectorNumElements(); I != E; 4559 ++I) { 4560 if (auto *MaskElt = ConstMask->getAggregateElement(I)) 4561 if (MaskElt->isNullValue() || isa<UndefValue>(MaskElt)) 4562 continue; 4563 return false; 4564 } 4565 return true; 4566 } 4567 4568 template <typename IterTy> 4569 static Value *SimplifyIntrinsic(Function *F, IterTy ArgBegin, IterTy ArgEnd, 4570 const SimplifyQuery &Q, unsigned MaxRecurse) { 4571 Intrinsic::ID IID = F->getIntrinsicID(); 4572 unsigned NumOperands = std::distance(ArgBegin, ArgEnd); 4573 4574 // Unary Ops 4575 if (NumOperands == 1) { 4576 // Perform idempotent optimizations 4577 if (IsIdempotent(IID)) { 4578 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(*ArgBegin)) { 4579 if (II->getIntrinsicID() == IID) 4580 return II; 4581 } 4582 } 4583 4584 Value *IIOperand = *ArgBegin; 4585 Value *X; 4586 switch (IID) { 4587 case Intrinsic::fabs: { 4588 if (SignBitMustBeZero(IIOperand, Q.TLI)) 4589 return IIOperand; 4590 return nullptr; 4591 } 4592 case Intrinsic::bswap: { 4593 // bswap(bswap(x)) -> x 4594 if (match(IIOperand, m_BSwap(m_Value(X)))) 4595 return X; 4596 return nullptr; 4597 } 4598 case Intrinsic::bitreverse: { 4599 // bitreverse(bitreverse(x)) -> x 4600 if (match(IIOperand, m_BitReverse(m_Value(X)))) 4601 return X; 4602 return nullptr; 4603 } 4604 case Intrinsic::exp: { 4605 // exp(log(x)) -> x 4606 if (Q.CxtI->hasAllowReassoc() && 4607 match(IIOperand, m_Intrinsic<Intrinsic::log>(m_Value(X)))) 4608 return X; 4609 return nullptr; 4610 } 4611 case Intrinsic::exp2: { 4612 // exp2(log2(x)) -> x 4613 if (Q.CxtI->hasAllowReassoc() && 4614 match(IIOperand, m_Intrinsic<Intrinsic::log2>(m_Value(X)))) 4615 return X; 4616 return nullptr; 4617 } 4618 case Intrinsic::log: { 4619 // log(exp(x)) -> x 4620 if (Q.CxtI->hasAllowReassoc() && 4621 match(IIOperand, m_Intrinsic<Intrinsic::exp>(m_Value(X)))) 4622 return X; 4623 return nullptr; 4624 } 4625 case Intrinsic::log2: { 4626 // log2(exp2(x)) -> x 4627 if (Q.CxtI->hasAllowReassoc() && 4628 match(IIOperand, m_Intrinsic<Intrinsic::exp2>(m_Value(X)))) { 4629 return X; 4630 } 4631 return nullptr; 4632 } 4633 default: 4634 return nullptr; 4635 } 4636 } 4637 4638 // Binary Ops 4639 if (NumOperands == 2) { 4640 Value *LHS = *ArgBegin; 4641 Value *RHS = *(ArgBegin + 1); 4642 Type *ReturnType = F->getReturnType(); 4643 4644 switch (IID) { 4645 case Intrinsic::usub_with_overflow: 4646 case Intrinsic::ssub_with_overflow: { 4647 // X - X -> { 0, false } 4648 if (LHS == RHS) 4649 return Constant::getNullValue(ReturnType); 4650 4651 // X - undef -> undef 4652 // undef - X -> undef 4653 if (isa<UndefValue>(LHS) || isa<UndefValue>(RHS)) 4654 return UndefValue::get(ReturnType); 4655 4656 return nullptr; 4657 } 4658 case Intrinsic::uadd_with_overflow: 4659 case Intrinsic::sadd_with_overflow: { 4660 // X + undef -> undef 4661 if (isa<UndefValue>(LHS) || isa<UndefValue>(RHS)) 4662 return UndefValue::get(ReturnType); 4663 4664 return nullptr; 4665 } 4666 case Intrinsic::umul_with_overflow: 4667 case Intrinsic::smul_with_overflow: { 4668 // 0 * X -> { 0, false } 4669 // X * 0 -> { 0, false } 4670 if (match(LHS, m_Zero()) || match(RHS, m_Zero())) 4671 return Constant::getNullValue(ReturnType); 4672 4673 // undef * X -> { 0, false } 4674 // X * undef -> { 0, false } 4675 if (match(LHS, m_Undef()) || match(RHS, m_Undef())) 4676 return Constant::getNullValue(ReturnType); 4677 4678 return nullptr; 4679 } 4680 case Intrinsic::load_relative: { 4681 Constant *C0 = dyn_cast<Constant>(LHS); 4682 Constant *C1 = dyn_cast<Constant>(RHS); 4683 if (C0 && C1) 4684 return SimplifyRelativeLoad(C0, C1, Q.DL); 4685 return nullptr; 4686 } 4687 case Intrinsic::powi: 4688 if (ConstantInt *Power = dyn_cast<ConstantInt>(RHS)) { 4689 // powi(x, 0) -> 1.0 4690 if (Power->isZero()) 4691 return ConstantFP::get(LHS->getType(), 1.0); 4692 // powi(x, 1) -> x 4693 if (Power->isOne()) 4694 return LHS; 4695 } 4696 return nullptr; 4697 default: 4698 return nullptr; 4699 } 4700 } 4701 4702 // Simplify calls to llvm.masked.load.* 4703 switch (IID) { 4704 case Intrinsic::masked_load: { 4705 Value *MaskArg = ArgBegin[2]; 4706 Value *PassthruArg = ArgBegin[3]; 4707 // If the mask is all zeros or undef, the "passthru" argument is the result. 4708 if (maskIsAllZeroOrUndef(MaskArg)) 4709 return PassthruArg; 4710 return nullptr; 4711 } 4712 default: 4713 return nullptr; 4714 } 4715 } 4716 4717 template <typename IterTy> 4718 static Value *SimplifyCall(ImmutableCallSite CS, Value *V, IterTy ArgBegin, 4719 IterTy ArgEnd, const SimplifyQuery &Q, 4720 unsigned MaxRecurse) { 4721 Type *Ty = V->getType(); 4722 if (PointerType *PTy = dyn_cast<PointerType>(Ty)) 4723 Ty = PTy->getElementType(); 4724 FunctionType *FTy = cast<FunctionType>(Ty); 4725 4726 // call undef -> undef 4727 // call null -> undef 4728 if (isa<UndefValue>(V) || isa<ConstantPointerNull>(V)) 4729 return UndefValue::get(FTy->getReturnType()); 4730 4731 Function *F = dyn_cast<Function>(V); 4732 if (!F) 4733 return nullptr; 4734 4735 if (F->isIntrinsic()) 4736 if (Value *Ret = SimplifyIntrinsic(F, ArgBegin, ArgEnd, Q, MaxRecurse)) 4737 return Ret; 4738 4739 if (!canConstantFoldCallTo(CS, F)) 4740 return nullptr; 4741 4742 SmallVector<Constant *, 4> ConstantArgs; 4743 ConstantArgs.reserve(ArgEnd - ArgBegin); 4744 for (IterTy I = ArgBegin, E = ArgEnd; I != E; ++I) { 4745 Constant *C = dyn_cast<Constant>(*I); 4746 if (!C) 4747 return nullptr; 4748 ConstantArgs.push_back(C); 4749 } 4750 4751 return ConstantFoldCall(CS, F, ConstantArgs, Q.TLI); 4752 } 4753 4754 Value *llvm::SimplifyCall(ImmutableCallSite CS, Value *V, 4755 User::op_iterator ArgBegin, User::op_iterator ArgEnd, 4756 const SimplifyQuery &Q) { 4757 return ::SimplifyCall(CS, V, ArgBegin, ArgEnd, Q, RecursionLimit); 4758 } 4759 4760 Value *llvm::SimplifyCall(ImmutableCallSite CS, Value *V, 4761 ArrayRef<Value *> Args, const SimplifyQuery &Q) { 4762 return ::SimplifyCall(CS, V, Args.begin(), Args.end(), Q, RecursionLimit); 4763 } 4764 4765 Value *llvm::SimplifyCall(ImmutableCallSite ICS, const SimplifyQuery &Q) { 4766 CallSite CS(const_cast<Instruction*>(ICS.getInstruction())); 4767 return ::SimplifyCall(CS, CS.getCalledValue(), CS.arg_begin(), CS.arg_end(), 4768 Q, RecursionLimit); 4769 } 4770 4771 /// See if we can compute a simplified version of this instruction. 4772 /// If not, this returns null. 4773 4774 Value *llvm::SimplifyInstruction(Instruction *I, const SimplifyQuery &SQ, 4775 OptimizationRemarkEmitter *ORE) { 4776 const SimplifyQuery Q = SQ.CxtI ? SQ : SQ.getWithInstruction(I); 4777 Value *Result; 4778 4779 switch (I->getOpcode()) { 4780 default: 4781 Result = ConstantFoldInstruction(I, Q.DL, Q.TLI); 4782 break; 4783 case Instruction::FAdd: 4784 Result = SimplifyFAddInst(I->getOperand(0), I->getOperand(1), 4785 I->getFastMathFlags(), Q); 4786 break; 4787 case Instruction::Add: 4788 Result = SimplifyAddInst(I->getOperand(0), I->getOperand(1), 4789 cast<BinaryOperator>(I)->hasNoSignedWrap(), 4790 cast<BinaryOperator>(I)->hasNoUnsignedWrap(), Q); 4791 break; 4792 case Instruction::FSub: 4793 Result = SimplifyFSubInst(I->getOperand(0), I->getOperand(1), 4794 I->getFastMathFlags(), Q); 4795 break; 4796 case Instruction::Sub: 4797 Result = SimplifySubInst(I->getOperand(0), I->getOperand(1), 4798 cast<BinaryOperator>(I)->hasNoSignedWrap(), 4799 cast<BinaryOperator>(I)->hasNoUnsignedWrap(), Q); 4800 break; 4801 case Instruction::FMul: 4802 Result = SimplifyFMulInst(I->getOperand(0), I->getOperand(1), 4803 I->getFastMathFlags(), Q); 4804 break; 4805 case Instruction::Mul: 4806 Result = SimplifyMulInst(I->getOperand(0), I->getOperand(1), Q); 4807 break; 4808 case Instruction::SDiv: 4809 Result = SimplifySDivInst(I->getOperand(0), I->getOperand(1), Q); 4810 break; 4811 case Instruction::UDiv: 4812 Result = SimplifyUDivInst(I->getOperand(0), I->getOperand(1), Q); 4813 break; 4814 case Instruction::FDiv: 4815 Result = SimplifyFDivInst(I->getOperand(0), I->getOperand(1), 4816 I->getFastMathFlags(), Q); 4817 break; 4818 case Instruction::SRem: 4819 Result = SimplifySRemInst(I->getOperand(0), I->getOperand(1), Q); 4820 break; 4821 case Instruction::URem: 4822 Result = SimplifyURemInst(I->getOperand(0), I->getOperand(1), Q); 4823 break; 4824 case Instruction::FRem: 4825 Result = SimplifyFRemInst(I->getOperand(0), I->getOperand(1), 4826 I->getFastMathFlags(), Q); 4827 break; 4828 case Instruction::Shl: 4829 Result = SimplifyShlInst(I->getOperand(0), I->getOperand(1), 4830 cast<BinaryOperator>(I)->hasNoSignedWrap(), 4831 cast<BinaryOperator>(I)->hasNoUnsignedWrap(), Q); 4832 break; 4833 case Instruction::LShr: 4834 Result = SimplifyLShrInst(I->getOperand(0), I->getOperand(1), 4835 cast<BinaryOperator>(I)->isExact(), Q); 4836 break; 4837 case Instruction::AShr: 4838 Result = SimplifyAShrInst(I->getOperand(0), I->getOperand(1), 4839 cast<BinaryOperator>(I)->isExact(), Q); 4840 break; 4841 case Instruction::And: 4842 Result = SimplifyAndInst(I->getOperand(0), I->getOperand(1), Q); 4843 break; 4844 case Instruction::Or: 4845 Result = SimplifyOrInst(I->getOperand(0), I->getOperand(1), Q); 4846 break; 4847 case Instruction::Xor: 4848 Result = SimplifyXorInst(I->getOperand(0), I->getOperand(1), Q); 4849 break; 4850 case Instruction::ICmp: 4851 Result = SimplifyICmpInst(cast<ICmpInst>(I)->getPredicate(), 4852 I->getOperand(0), I->getOperand(1), Q); 4853 break; 4854 case Instruction::FCmp: 4855 Result = 4856 SimplifyFCmpInst(cast<FCmpInst>(I)->getPredicate(), I->getOperand(0), 4857 I->getOperand(1), I->getFastMathFlags(), Q); 4858 break; 4859 case Instruction::Select: 4860 Result = SimplifySelectInst(I->getOperand(0), I->getOperand(1), 4861 I->getOperand(2), Q); 4862 break; 4863 case Instruction::GetElementPtr: { 4864 SmallVector<Value *, 8> Ops(I->op_begin(), I->op_end()); 4865 Result = SimplifyGEPInst(cast<GetElementPtrInst>(I)->getSourceElementType(), 4866 Ops, Q); 4867 break; 4868 } 4869 case Instruction::InsertValue: { 4870 InsertValueInst *IV = cast<InsertValueInst>(I); 4871 Result = SimplifyInsertValueInst(IV->getAggregateOperand(), 4872 IV->getInsertedValueOperand(), 4873 IV->getIndices(), Q); 4874 break; 4875 } 4876 case Instruction::InsertElement: { 4877 auto *IE = cast<InsertElementInst>(I); 4878 Result = SimplifyInsertElementInst(IE->getOperand(0), IE->getOperand(1), 4879 IE->getOperand(2), Q); 4880 break; 4881 } 4882 case Instruction::ExtractValue: { 4883 auto *EVI = cast<ExtractValueInst>(I); 4884 Result = SimplifyExtractValueInst(EVI->getAggregateOperand(), 4885 EVI->getIndices(), Q); 4886 break; 4887 } 4888 case Instruction::ExtractElement: { 4889 auto *EEI = cast<ExtractElementInst>(I); 4890 Result = SimplifyExtractElementInst(EEI->getVectorOperand(), 4891 EEI->getIndexOperand(), Q); 4892 break; 4893 } 4894 case Instruction::ShuffleVector: { 4895 auto *SVI = cast<ShuffleVectorInst>(I); 4896 Result = SimplifyShuffleVectorInst(SVI->getOperand(0), SVI->getOperand(1), 4897 SVI->getMask(), SVI->getType(), Q); 4898 break; 4899 } 4900 case Instruction::PHI: 4901 Result = SimplifyPHINode(cast<PHINode>(I), Q); 4902 break; 4903 case Instruction::Call: { 4904 CallSite CS(cast<CallInst>(I)); 4905 Result = SimplifyCall(CS, Q); 4906 break; 4907 } 4908 #define HANDLE_CAST_INST(num, opc, clas) case Instruction::opc: 4909 #include "llvm/IR/Instruction.def" 4910 #undef HANDLE_CAST_INST 4911 Result = 4912 SimplifyCastInst(I->getOpcode(), I->getOperand(0), I->getType(), Q); 4913 break; 4914 case Instruction::Alloca: 4915 // No simplifications for Alloca and it can't be constant folded. 4916 Result = nullptr; 4917 break; 4918 } 4919 4920 // In general, it is possible for computeKnownBits to determine all bits in a 4921 // value even when the operands are not all constants. 4922 if (!Result && I->getType()->isIntOrIntVectorTy()) { 4923 KnownBits Known = computeKnownBits(I, Q.DL, /*Depth*/ 0, Q.AC, I, Q.DT, ORE); 4924 if (Known.isConstant()) 4925 Result = ConstantInt::get(I->getType(), Known.getConstant()); 4926 } 4927 4928 /// If called on unreachable code, the above logic may report that the 4929 /// instruction simplified to itself. Make life easier for users by 4930 /// detecting that case here, returning a safe value instead. 4931 return Result == I ? UndefValue::get(I->getType()) : Result; 4932 } 4933 4934 /// Implementation of recursive simplification through an instruction's 4935 /// uses. 4936 /// 4937 /// This is the common implementation of the recursive simplification routines. 4938 /// If we have a pre-simplified value in 'SimpleV', that is forcibly used to 4939 /// replace the instruction 'I'. Otherwise, we simply add 'I' to the list of 4940 /// instructions to process and attempt to simplify it using 4941 /// InstructionSimplify. 4942 /// 4943 /// This routine returns 'true' only when *it* simplifies something. The passed 4944 /// in simplified value does not count toward this. 4945 static bool replaceAndRecursivelySimplifyImpl(Instruction *I, Value *SimpleV, 4946 const TargetLibraryInfo *TLI, 4947 const DominatorTree *DT, 4948 AssumptionCache *AC) { 4949 bool Simplified = false; 4950 SmallSetVector<Instruction *, 8> Worklist; 4951 const DataLayout &DL = I->getModule()->getDataLayout(); 4952 4953 // If we have an explicit value to collapse to, do that round of the 4954 // simplification loop by hand initially. 4955 if (SimpleV) { 4956 for (User *U : I->users()) 4957 if (U != I) 4958 Worklist.insert(cast<Instruction>(U)); 4959 4960 // Replace the instruction with its simplified value. 4961 I->replaceAllUsesWith(SimpleV); 4962 4963 // Gracefully handle edge cases where the instruction is not wired into any 4964 // parent block. 4965 if (I->getParent() && !I->isEHPad() && !isa<TerminatorInst>(I) && 4966 !I->mayHaveSideEffects()) 4967 I->eraseFromParent(); 4968 } else { 4969 Worklist.insert(I); 4970 } 4971 4972 // Note that we must test the size on each iteration, the worklist can grow. 4973 for (unsigned Idx = 0; Idx != Worklist.size(); ++Idx) { 4974 I = Worklist[Idx]; 4975 4976 // See if this instruction simplifies. 4977 SimpleV = SimplifyInstruction(I, {DL, TLI, DT, AC}); 4978 if (!SimpleV) 4979 continue; 4980 4981 Simplified = true; 4982 4983 // Stash away all the uses of the old instruction so we can check them for 4984 // recursive simplifications after a RAUW. This is cheaper than checking all 4985 // uses of To on the recursive step in most cases. 4986 for (User *U : I->users()) 4987 Worklist.insert(cast<Instruction>(U)); 4988 4989 // Replace the instruction with its simplified value. 4990 I->replaceAllUsesWith(SimpleV); 4991 4992 // Gracefully handle edge cases where the instruction is not wired into any 4993 // parent block. 4994 if (I->getParent() && !I->isEHPad() && !isa<TerminatorInst>(I) && 4995 !I->mayHaveSideEffects()) 4996 I->eraseFromParent(); 4997 } 4998 return Simplified; 4999 } 5000 5001 bool llvm::recursivelySimplifyInstruction(Instruction *I, 5002 const TargetLibraryInfo *TLI, 5003 const DominatorTree *DT, 5004 AssumptionCache *AC) { 5005 return replaceAndRecursivelySimplifyImpl(I, nullptr, TLI, DT, AC); 5006 } 5007 5008 bool llvm::replaceAndRecursivelySimplify(Instruction *I, Value *SimpleV, 5009 const TargetLibraryInfo *TLI, 5010 const DominatorTree *DT, 5011 AssumptionCache *AC) { 5012 assert(I != SimpleV && "replaceAndRecursivelySimplify(X,X) is not valid!"); 5013 assert(SimpleV && "Must provide a simplified value."); 5014 return replaceAndRecursivelySimplifyImpl(I, SimpleV, TLI, DT, AC); 5015 } 5016 5017 namespace llvm { 5018 const SimplifyQuery getBestSimplifyQuery(Pass &P, Function &F) { 5019 auto *DTWP = P.getAnalysisIfAvailable<DominatorTreeWrapperPass>(); 5020 auto *DT = DTWP ? &DTWP->getDomTree() : nullptr; 5021 auto *TLIWP = P.getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 5022 auto *TLI = TLIWP ? &TLIWP->getTLI() : nullptr; 5023 auto *ACWP = P.getAnalysisIfAvailable<AssumptionCacheTracker>(); 5024 auto *AC = ACWP ? &ACWP->getAssumptionCache(F) : nullptr; 5025 return {F.getParent()->getDataLayout(), TLI, DT, AC}; 5026 } 5027 5028 const SimplifyQuery getBestSimplifyQuery(LoopStandardAnalysisResults &AR, 5029 const DataLayout &DL) { 5030 return {DL, &AR.TLI, &AR.DT, &AR.AC}; 5031 } 5032 5033 template <class T, class... TArgs> 5034 const SimplifyQuery getBestSimplifyQuery(AnalysisManager<T, TArgs...> &AM, 5035 Function &F) { 5036 auto *DT = AM.template getCachedResult<DominatorTreeAnalysis>(F); 5037 auto *TLI = AM.template getCachedResult<TargetLibraryAnalysis>(F); 5038 auto *AC = AM.template getCachedResult<AssumptionAnalysis>(F); 5039 return {F.getParent()->getDataLayout(), TLI, DT, AC}; 5040 } 5041 template const SimplifyQuery getBestSimplifyQuery(AnalysisManager<Function> &, 5042 Function &); 5043 } 5044