1 //===- InstructionSimplify.cpp - Fold instruction operands ----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements routines for folding instructions into simpler forms
10 // that do not require creating new instructions.  This does constant folding
11 // ("add i32 1, 1" -> "2") but can also handle non-constant operands, either
12 // returning a constant ("and i32 %x, 0" -> "0") or an already existing value
13 // ("and i32 %x, %x" -> "%x").  All operands are assumed to have already been
14 // simplified: This is usually true and assuming it simplifies the logic (if
15 // they have not been simplified then results are correct but maybe suboptimal).
16 //
17 //===----------------------------------------------------------------------===//
18 
19 #include "llvm/Analysis/InstructionSimplify.h"
20 
21 #include "llvm/ADT/STLExtras.h"
22 #include "llvm/ADT/SetVector.h"
23 #include "llvm/ADT/SmallPtrSet.h"
24 #include "llvm/ADT/Statistic.h"
25 #include "llvm/Analysis/AliasAnalysis.h"
26 #include "llvm/Analysis/AssumptionCache.h"
27 #include "llvm/Analysis/CaptureTracking.h"
28 #include "llvm/Analysis/CmpInstAnalysis.h"
29 #include "llvm/Analysis/ConstantFolding.h"
30 #include "llvm/Analysis/LoopAnalysisManager.h"
31 #include "llvm/Analysis/MemoryBuiltins.h"
32 #include "llvm/Analysis/OverflowInstAnalysis.h"
33 #include "llvm/Analysis/ValueTracking.h"
34 #include "llvm/Analysis/VectorUtils.h"
35 #include "llvm/IR/ConstantRange.h"
36 #include "llvm/IR/DataLayout.h"
37 #include "llvm/IR/Dominators.h"
38 #include "llvm/IR/GetElementPtrTypeIterator.h"
39 #include "llvm/IR/GlobalAlias.h"
40 #include "llvm/IR/InstrTypes.h"
41 #include "llvm/IR/Instructions.h"
42 #include "llvm/IR/Operator.h"
43 #include "llvm/IR/PatternMatch.h"
44 #include "llvm/IR/ValueHandle.h"
45 #include "llvm/Support/KnownBits.h"
46 #include <algorithm>
47 using namespace llvm;
48 using namespace llvm::PatternMatch;
49 
50 #define DEBUG_TYPE "instsimplify"
51 
52 enum { RecursionLimit = 3 };
53 
54 STATISTIC(NumExpand,  "Number of expansions");
55 STATISTIC(NumReassoc, "Number of reassociations");
56 
57 static Value *SimplifyAndInst(Value *, Value *, const SimplifyQuery &, unsigned);
58 static Value *simplifyUnOp(unsigned, Value *, const SimplifyQuery &, unsigned);
59 static Value *simplifyFPUnOp(unsigned, Value *, const FastMathFlags &,
60                              const SimplifyQuery &, unsigned);
61 static Value *SimplifyBinOp(unsigned, Value *, Value *, const SimplifyQuery &,
62                             unsigned);
63 static Value *SimplifyBinOp(unsigned, Value *, Value *, const FastMathFlags &,
64                             const SimplifyQuery &, unsigned);
65 static Value *SimplifyCmpInst(unsigned, Value *, Value *, const SimplifyQuery &,
66                               unsigned);
67 static Value *SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS,
68                                const SimplifyQuery &Q, unsigned MaxRecurse);
69 static Value *SimplifyOrInst(Value *, Value *, const SimplifyQuery &, unsigned);
70 static Value *SimplifyXorInst(Value *, Value *, const SimplifyQuery &, unsigned);
71 static Value *SimplifyCastInst(unsigned, Value *, Type *,
72                                const SimplifyQuery &, unsigned);
73 static Value *SimplifyGEPInst(Type *, ArrayRef<Value *>, bool,
74                               const SimplifyQuery &, unsigned);
75 static Value *SimplifySelectInst(Value *, Value *, Value *,
76                                  const SimplifyQuery &, unsigned);
77 
78 static Value *foldSelectWithBinaryOp(Value *Cond, Value *TrueVal,
79                                      Value *FalseVal) {
80   BinaryOperator::BinaryOps BinOpCode;
81   if (auto *BO = dyn_cast<BinaryOperator>(Cond))
82     BinOpCode = BO->getOpcode();
83   else
84     return nullptr;
85 
86   CmpInst::Predicate ExpectedPred, Pred1, Pred2;
87   if (BinOpCode == BinaryOperator::Or) {
88     ExpectedPred = ICmpInst::ICMP_NE;
89   } else if (BinOpCode == BinaryOperator::And) {
90     ExpectedPred = ICmpInst::ICMP_EQ;
91   } else
92     return nullptr;
93 
94   // %A = icmp eq %TV, %FV
95   // %B = icmp eq %X, %Y (and one of these is a select operand)
96   // %C = and %A, %B
97   // %D = select %C, %TV, %FV
98   // -->
99   // %FV
100 
101   // %A = icmp ne %TV, %FV
102   // %B = icmp ne %X, %Y (and one of these is a select operand)
103   // %C = or %A, %B
104   // %D = select %C, %TV, %FV
105   // -->
106   // %TV
107   Value *X, *Y;
108   if (!match(Cond, m_c_BinOp(m_c_ICmp(Pred1, m_Specific(TrueVal),
109                                       m_Specific(FalseVal)),
110                              m_ICmp(Pred2, m_Value(X), m_Value(Y)))) ||
111       Pred1 != Pred2 || Pred1 != ExpectedPred)
112     return nullptr;
113 
114   if (X == TrueVal || X == FalseVal || Y == TrueVal || Y == FalseVal)
115     return BinOpCode == BinaryOperator::Or ? TrueVal : FalseVal;
116 
117   return nullptr;
118 }
119 
120 /// For a boolean type or a vector of boolean type, return false or a vector
121 /// with every element false.
122 static Constant *getFalse(Type *Ty) {
123   return ConstantInt::getFalse(Ty);
124 }
125 
126 /// For a boolean type or a vector of boolean type, return true or a vector
127 /// with every element true.
128 static Constant *getTrue(Type *Ty) {
129   return ConstantInt::getTrue(Ty);
130 }
131 
132 /// isSameCompare - Is V equivalent to the comparison "LHS Pred RHS"?
133 static bool isSameCompare(Value *V, CmpInst::Predicate Pred, Value *LHS,
134                           Value *RHS) {
135   CmpInst *Cmp = dyn_cast<CmpInst>(V);
136   if (!Cmp)
137     return false;
138   CmpInst::Predicate CPred = Cmp->getPredicate();
139   Value *CLHS = Cmp->getOperand(0), *CRHS = Cmp->getOperand(1);
140   if (CPred == Pred && CLHS == LHS && CRHS == RHS)
141     return true;
142   return CPred == CmpInst::getSwappedPredicate(Pred) && CLHS == RHS &&
143     CRHS == LHS;
144 }
145 
146 /// Simplify comparison with true or false branch of select:
147 ///  %sel = select i1 %cond, i32 %tv, i32 %fv
148 ///  %cmp = icmp sle i32 %sel, %rhs
149 /// Compose new comparison by substituting %sel with either %tv or %fv
150 /// and see if it simplifies.
151 static Value *simplifyCmpSelCase(CmpInst::Predicate Pred, Value *LHS,
152                                  Value *RHS, Value *Cond,
153                                  const SimplifyQuery &Q, unsigned MaxRecurse,
154                                  Constant *TrueOrFalse) {
155   Value *SimplifiedCmp = SimplifyCmpInst(Pred, LHS, RHS, Q, MaxRecurse);
156   if (SimplifiedCmp == Cond) {
157     // %cmp simplified to the select condition (%cond).
158     return TrueOrFalse;
159   } else if (!SimplifiedCmp && isSameCompare(Cond, Pred, LHS, RHS)) {
160     // It didn't simplify. However, if composed comparison is equivalent
161     // to the select condition (%cond) then we can replace it.
162     return TrueOrFalse;
163   }
164   return SimplifiedCmp;
165 }
166 
167 /// Simplify comparison with true branch of select
168 static Value *simplifyCmpSelTrueCase(CmpInst::Predicate Pred, Value *LHS,
169                                      Value *RHS, Value *Cond,
170                                      const SimplifyQuery &Q,
171                                      unsigned MaxRecurse) {
172   return simplifyCmpSelCase(Pred, LHS, RHS, Cond, Q, MaxRecurse,
173                             getTrue(Cond->getType()));
174 }
175 
176 /// Simplify comparison with false branch of select
177 static Value *simplifyCmpSelFalseCase(CmpInst::Predicate Pred, Value *LHS,
178                                       Value *RHS, Value *Cond,
179                                       const SimplifyQuery &Q,
180                                       unsigned MaxRecurse) {
181   return simplifyCmpSelCase(Pred, LHS, RHS, Cond, Q, MaxRecurse,
182                             getFalse(Cond->getType()));
183 }
184 
185 /// We know comparison with both branches of select can be simplified, but they
186 /// are not equal. This routine handles some logical simplifications.
187 static Value *handleOtherCmpSelSimplifications(Value *TCmp, Value *FCmp,
188                                                Value *Cond,
189                                                const SimplifyQuery &Q,
190                                                unsigned MaxRecurse) {
191   // If the false value simplified to false, then the result of the compare
192   // is equal to "Cond && TCmp".  This also catches the case when the false
193   // value simplified to false and the true value to true, returning "Cond".
194   // Folding select to and/or isn't poison-safe in general; impliesPoison
195   // checks whether folding it does not convert a well-defined value into
196   // poison.
197   if (match(FCmp, m_Zero()) && impliesPoison(TCmp, Cond))
198     if (Value *V = SimplifyAndInst(Cond, TCmp, Q, MaxRecurse))
199       return V;
200   // If the true value simplified to true, then the result of the compare
201   // is equal to "Cond || FCmp".
202   if (match(TCmp, m_One()) && impliesPoison(FCmp, Cond))
203     if (Value *V = SimplifyOrInst(Cond, FCmp, Q, MaxRecurse))
204       return V;
205   // Finally, if the false value simplified to true and the true value to
206   // false, then the result of the compare is equal to "!Cond".
207   if (match(FCmp, m_One()) && match(TCmp, m_Zero()))
208     if (Value *V = SimplifyXorInst(
209             Cond, Constant::getAllOnesValue(Cond->getType()), Q, MaxRecurse))
210       return V;
211   return nullptr;
212 }
213 
214 /// Does the given value dominate the specified phi node?
215 static bool valueDominatesPHI(Value *V, PHINode *P, const DominatorTree *DT) {
216   Instruction *I = dyn_cast<Instruction>(V);
217   if (!I)
218     // Arguments and constants dominate all instructions.
219     return true;
220 
221   // If we are processing instructions (and/or basic blocks) that have not been
222   // fully added to a function, the parent nodes may still be null. Simply
223   // return the conservative answer in these cases.
224   if (!I->getParent() || !P->getParent() || !I->getFunction())
225     return false;
226 
227   // If we have a DominatorTree then do a precise test.
228   if (DT)
229     return DT->dominates(I, P);
230 
231   // Otherwise, if the instruction is in the entry block and is not an invoke,
232   // then it obviously dominates all phi nodes.
233   if (I->getParent()->isEntryBlock() && !isa<InvokeInst>(I) &&
234       !isa<CallBrInst>(I))
235     return true;
236 
237   return false;
238 }
239 
240 /// Try to simplify a binary operator of form "V op OtherOp" where V is
241 /// "(B0 opex B1)" by distributing 'op' across 'opex' as
242 /// "(B0 op OtherOp) opex (B1 op OtherOp)".
243 static Value *expandBinOp(Instruction::BinaryOps Opcode, Value *V,
244                           Value *OtherOp, Instruction::BinaryOps OpcodeToExpand,
245                           const SimplifyQuery &Q, unsigned MaxRecurse) {
246   auto *B = dyn_cast<BinaryOperator>(V);
247   if (!B || B->getOpcode() != OpcodeToExpand)
248     return nullptr;
249   Value *B0 = B->getOperand(0), *B1 = B->getOperand(1);
250   Value *L = SimplifyBinOp(Opcode, B0, OtherOp, Q.getWithoutUndef(),
251                            MaxRecurse);
252   if (!L)
253     return nullptr;
254   Value *R = SimplifyBinOp(Opcode, B1, OtherOp, Q.getWithoutUndef(),
255                            MaxRecurse);
256   if (!R)
257     return nullptr;
258 
259   // Does the expanded pair of binops simplify to the existing binop?
260   if ((L == B0 && R == B1) ||
261       (Instruction::isCommutative(OpcodeToExpand) && L == B1 && R == B0)) {
262     ++NumExpand;
263     return B;
264   }
265 
266   // Otherwise, return "L op' R" if it simplifies.
267   Value *S = SimplifyBinOp(OpcodeToExpand, L, R, Q, MaxRecurse);
268   if (!S)
269     return nullptr;
270 
271   ++NumExpand;
272   return S;
273 }
274 
275 /// Try to simplify binops of form "A op (B op' C)" or the commuted variant by
276 /// distributing op over op'.
277 static Value *expandCommutativeBinOp(Instruction::BinaryOps Opcode,
278                                      Value *L, Value *R,
279                                      Instruction::BinaryOps OpcodeToExpand,
280                                      const SimplifyQuery &Q,
281                                      unsigned MaxRecurse) {
282   // Recursion is always used, so bail out at once if we already hit the limit.
283   if (!MaxRecurse--)
284     return nullptr;
285 
286   if (Value *V = expandBinOp(Opcode, L, R, OpcodeToExpand, Q, MaxRecurse))
287     return V;
288   if (Value *V = expandBinOp(Opcode, R, L, OpcodeToExpand, Q, MaxRecurse))
289     return V;
290   return nullptr;
291 }
292 
293 /// Generic simplifications for associative binary operations.
294 /// Returns the simpler value, or null if none was found.
295 static Value *SimplifyAssociativeBinOp(Instruction::BinaryOps Opcode,
296                                        Value *LHS, Value *RHS,
297                                        const SimplifyQuery &Q,
298                                        unsigned MaxRecurse) {
299   assert(Instruction::isAssociative(Opcode) && "Not an associative operation!");
300 
301   // Recursion is always used, so bail out at once if we already hit the limit.
302   if (!MaxRecurse--)
303     return nullptr;
304 
305   BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS);
306   BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS);
307 
308   // Transform: "(A op B) op C" ==> "A op (B op C)" if it simplifies completely.
309   if (Op0 && Op0->getOpcode() == Opcode) {
310     Value *A = Op0->getOperand(0);
311     Value *B = Op0->getOperand(1);
312     Value *C = RHS;
313 
314     // Does "B op C" simplify?
315     if (Value *V = SimplifyBinOp(Opcode, B, C, Q, MaxRecurse)) {
316       // It does!  Return "A op V" if it simplifies or is already available.
317       // If V equals B then "A op V" is just the LHS.
318       if (V == B) return LHS;
319       // Otherwise return "A op V" if it simplifies.
320       if (Value *W = SimplifyBinOp(Opcode, A, V, Q, MaxRecurse)) {
321         ++NumReassoc;
322         return W;
323       }
324     }
325   }
326 
327   // Transform: "A op (B op C)" ==> "(A op B) op C" if it simplifies completely.
328   if (Op1 && Op1->getOpcode() == Opcode) {
329     Value *A = LHS;
330     Value *B = Op1->getOperand(0);
331     Value *C = Op1->getOperand(1);
332 
333     // Does "A op B" simplify?
334     if (Value *V = SimplifyBinOp(Opcode, A, B, Q, MaxRecurse)) {
335       // It does!  Return "V op C" if it simplifies or is already available.
336       // If V equals B then "V op C" is just the RHS.
337       if (V == B) return RHS;
338       // Otherwise return "V op C" if it simplifies.
339       if (Value *W = SimplifyBinOp(Opcode, V, C, Q, MaxRecurse)) {
340         ++NumReassoc;
341         return W;
342       }
343     }
344   }
345 
346   // The remaining transforms require commutativity as well as associativity.
347   if (!Instruction::isCommutative(Opcode))
348     return nullptr;
349 
350   // Transform: "(A op B) op C" ==> "(C op A) op B" if it simplifies completely.
351   if (Op0 && Op0->getOpcode() == Opcode) {
352     Value *A = Op0->getOperand(0);
353     Value *B = Op0->getOperand(1);
354     Value *C = RHS;
355 
356     // Does "C op A" simplify?
357     if (Value *V = SimplifyBinOp(Opcode, C, A, Q, MaxRecurse)) {
358       // It does!  Return "V op B" if it simplifies or is already available.
359       // If V equals A then "V op B" is just the LHS.
360       if (V == A) return LHS;
361       // Otherwise return "V op B" if it simplifies.
362       if (Value *W = SimplifyBinOp(Opcode, V, B, Q, MaxRecurse)) {
363         ++NumReassoc;
364         return W;
365       }
366     }
367   }
368 
369   // Transform: "A op (B op C)" ==> "B op (C op A)" if it simplifies completely.
370   if (Op1 && Op1->getOpcode() == Opcode) {
371     Value *A = LHS;
372     Value *B = Op1->getOperand(0);
373     Value *C = Op1->getOperand(1);
374 
375     // Does "C op A" simplify?
376     if (Value *V = SimplifyBinOp(Opcode, C, A, Q, MaxRecurse)) {
377       // It does!  Return "B op V" if it simplifies or is already available.
378       // If V equals C then "B op V" is just the RHS.
379       if (V == C) return RHS;
380       // Otherwise return "B op V" if it simplifies.
381       if (Value *W = SimplifyBinOp(Opcode, B, V, Q, MaxRecurse)) {
382         ++NumReassoc;
383         return W;
384       }
385     }
386   }
387 
388   return nullptr;
389 }
390 
391 /// In the case of a binary operation with a select instruction as an operand,
392 /// try to simplify the binop by seeing whether evaluating it on both branches
393 /// of the select results in the same value. Returns the common value if so,
394 /// otherwise returns null.
395 static Value *ThreadBinOpOverSelect(Instruction::BinaryOps Opcode, Value *LHS,
396                                     Value *RHS, const SimplifyQuery &Q,
397                                     unsigned MaxRecurse) {
398   // Recursion is always used, so bail out at once if we already hit the limit.
399   if (!MaxRecurse--)
400     return nullptr;
401 
402   SelectInst *SI;
403   if (isa<SelectInst>(LHS)) {
404     SI = cast<SelectInst>(LHS);
405   } else {
406     assert(isa<SelectInst>(RHS) && "No select instruction operand!");
407     SI = cast<SelectInst>(RHS);
408   }
409 
410   // Evaluate the BinOp on the true and false branches of the select.
411   Value *TV;
412   Value *FV;
413   if (SI == LHS) {
414     TV = SimplifyBinOp(Opcode, SI->getTrueValue(), RHS, Q, MaxRecurse);
415     FV = SimplifyBinOp(Opcode, SI->getFalseValue(), RHS, Q, MaxRecurse);
416   } else {
417     TV = SimplifyBinOp(Opcode, LHS, SI->getTrueValue(), Q, MaxRecurse);
418     FV = SimplifyBinOp(Opcode, LHS, SI->getFalseValue(), Q, MaxRecurse);
419   }
420 
421   // If they simplified to the same value, then return the common value.
422   // If they both failed to simplify then return null.
423   if (TV == FV)
424     return TV;
425 
426   // If one branch simplified to undef, return the other one.
427   if (TV && Q.isUndefValue(TV))
428     return FV;
429   if (FV && Q.isUndefValue(FV))
430     return TV;
431 
432   // If applying the operation did not change the true and false select values,
433   // then the result of the binop is the select itself.
434   if (TV == SI->getTrueValue() && FV == SI->getFalseValue())
435     return SI;
436 
437   // If one branch simplified and the other did not, and the simplified
438   // value is equal to the unsimplified one, return the simplified value.
439   // For example, select (cond, X, X & Z) & Z -> X & Z.
440   if ((FV && !TV) || (TV && !FV)) {
441     // Check that the simplified value has the form "X op Y" where "op" is the
442     // same as the original operation.
443     Instruction *Simplified = dyn_cast<Instruction>(FV ? FV : TV);
444     if (Simplified && Simplified->getOpcode() == unsigned(Opcode)) {
445       // The value that didn't simplify is "UnsimplifiedLHS op UnsimplifiedRHS".
446       // We already know that "op" is the same as for the simplified value.  See
447       // if the operands match too.  If so, return the simplified value.
448       Value *UnsimplifiedBranch = FV ? SI->getTrueValue() : SI->getFalseValue();
449       Value *UnsimplifiedLHS = SI == LHS ? UnsimplifiedBranch : LHS;
450       Value *UnsimplifiedRHS = SI == LHS ? RHS : UnsimplifiedBranch;
451       if (Simplified->getOperand(0) == UnsimplifiedLHS &&
452           Simplified->getOperand(1) == UnsimplifiedRHS)
453         return Simplified;
454       if (Simplified->isCommutative() &&
455           Simplified->getOperand(1) == UnsimplifiedLHS &&
456           Simplified->getOperand(0) == UnsimplifiedRHS)
457         return Simplified;
458     }
459   }
460 
461   return nullptr;
462 }
463 
464 /// In the case of a comparison with a select instruction, try to simplify the
465 /// comparison by seeing whether both branches of the select result in the same
466 /// value. Returns the common value if so, otherwise returns null.
467 /// For example, if we have:
468 ///  %tmp = select i1 %cmp, i32 1, i32 2
469 ///  %cmp1 = icmp sle i32 %tmp, 3
470 /// We can simplify %cmp1 to true, because both branches of select are
471 /// less than 3. We compose new comparison by substituting %tmp with both
472 /// branches of select and see if it can be simplified.
473 static Value *ThreadCmpOverSelect(CmpInst::Predicate Pred, Value *LHS,
474                                   Value *RHS, const SimplifyQuery &Q,
475                                   unsigned MaxRecurse) {
476   // Recursion is always used, so bail out at once if we already hit the limit.
477   if (!MaxRecurse--)
478     return nullptr;
479 
480   // Make sure the select is on the LHS.
481   if (!isa<SelectInst>(LHS)) {
482     std::swap(LHS, RHS);
483     Pred = CmpInst::getSwappedPredicate(Pred);
484   }
485   assert(isa<SelectInst>(LHS) && "Not comparing with a select instruction!");
486   SelectInst *SI = cast<SelectInst>(LHS);
487   Value *Cond = SI->getCondition();
488   Value *TV = SI->getTrueValue();
489   Value *FV = SI->getFalseValue();
490 
491   // Now that we have "cmp select(Cond, TV, FV), RHS", analyse it.
492   // Does "cmp TV, RHS" simplify?
493   Value *TCmp = simplifyCmpSelTrueCase(Pred, TV, RHS, Cond, Q, MaxRecurse);
494   if (!TCmp)
495     return nullptr;
496 
497   // Does "cmp FV, RHS" simplify?
498   Value *FCmp = simplifyCmpSelFalseCase(Pred, FV, RHS, Cond, Q, MaxRecurse);
499   if (!FCmp)
500     return nullptr;
501 
502   // If both sides simplified to the same value, then use it as the result of
503   // the original comparison.
504   if (TCmp == FCmp)
505     return TCmp;
506 
507   // The remaining cases only make sense if the select condition has the same
508   // type as the result of the comparison, so bail out if this is not so.
509   if (Cond->getType()->isVectorTy() == RHS->getType()->isVectorTy())
510     return handleOtherCmpSelSimplifications(TCmp, FCmp, Cond, Q, MaxRecurse);
511 
512   return nullptr;
513 }
514 
515 /// In the case of a binary operation with an operand that is a PHI instruction,
516 /// try to simplify the binop by seeing whether evaluating it on the incoming
517 /// phi values yields the same result for every value. If so returns the common
518 /// value, otherwise returns null.
519 static Value *ThreadBinOpOverPHI(Instruction::BinaryOps Opcode, Value *LHS,
520                                  Value *RHS, const SimplifyQuery &Q,
521                                  unsigned MaxRecurse) {
522   // Recursion is always used, so bail out at once if we already hit the limit.
523   if (!MaxRecurse--)
524     return nullptr;
525 
526   PHINode *PI;
527   if (isa<PHINode>(LHS)) {
528     PI = cast<PHINode>(LHS);
529     // Bail out if RHS and the phi may be mutually interdependent due to a loop.
530     if (!valueDominatesPHI(RHS, PI, Q.DT))
531       return nullptr;
532   } else {
533     assert(isa<PHINode>(RHS) && "No PHI instruction operand!");
534     PI = cast<PHINode>(RHS);
535     // Bail out if LHS and the phi may be mutually interdependent due to a loop.
536     if (!valueDominatesPHI(LHS, PI, Q.DT))
537       return nullptr;
538   }
539 
540   // Evaluate the BinOp on the incoming phi values.
541   Value *CommonValue = nullptr;
542   for (Value *Incoming : PI->incoming_values()) {
543     // If the incoming value is the phi node itself, it can safely be skipped.
544     if (Incoming == PI) continue;
545     Value *V = PI == LHS ?
546       SimplifyBinOp(Opcode, Incoming, RHS, Q, MaxRecurse) :
547       SimplifyBinOp(Opcode, LHS, Incoming, Q, MaxRecurse);
548     // If the operation failed to simplify, or simplified to a different value
549     // to previously, then give up.
550     if (!V || (CommonValue && V != CommonValue))
551       return nullptr;
552     CommonValue = V;
553   }
554 
555   return CommonValue;
556 }
557 
558 /// In the case of a comparison with a PHI instruction, try to simplify the
559 /// comparison by seeing whether comparing with all of the incoming phi values
560 /// yields the same result every time. If so returns the common result,
561 /// otherwise returns null.
562 static Value *ThreadCmpOverPHI(CmpInst::Predicate Pred, Value *LHS, Value *RHS,
563                                const SimplifyQuery &Q, unsigned MaxRecurse) {
564   // Recursion is always used, so bail out at once if we already hit the limit.
565   if (!MaxRecurse--)
566     return nullptr;
567 
568   // Make sure the phi is on the LHS.
569   if (!isa<PHINode>(LHS)) {
570     std::swap(LHS, RHS);
571     Pred = CmpInst::getSwappedPredicate(Pred);
572   }
573   assert(isa<PHINode>(LHS) && "Not comparing with a phi instruction!");
574   PHINode *PI = cast<PHINode>(LHS);
575 
576   // Bail out if RHS and the phi may be mutually interdependent due to a loop.
577   if (!valueDominatesPHI(RHS, PI, Q.DT))
578     return nullptr;
579 
580   // Evaluate the BinOp on the incoming phi values.
581   Value *CommonValue = nullptr;
582   for (unsigned u = 0, e = PI->getNumIncomingValues(); u < e; ++u) {
583     Value *Incoming = PI->getIncomingValue(u);
584     Instruction *InTI = PI->getIncomingBlock(u)->getTerminator();
585     // If the incoming value is the phi node itself, it can safely be skipped.
586     if (Incoming == PI) continue;
587     // Change the context instruction to the "edge" that flows into the phi.
588     // This is important because that is where incoming is actually "evaluated"
589     // even though it is used later somewhere else.
590     Value *V = SimplifyCmpInst(Pred, Incoming, RHS, Q.getWithInstruction(InTI),
591                                MaxRecurse);
592     // If the operation failed to simplify, or simplified to a different value
593     // to previously, then give up.
594     if (!V || (CommonValue && V != CommonValue))
595       return nullptr;
596     CommonValue = V;
597   }
598 
599   return CommonValue;
600 }
601 
602 static Constant *foldOrCommuteConstant(Instruction::BinaryOps Opcode,
603                                        Value *&Op0, Value *&Op1,
604                                        const SimplifyQuery &Q) {
605   if (auto *CLHS = dyn_cast<Constant>(Op0)) {
606     if (auto *CRHS = dyn_cast<Constant>(Op1))
607       return ConstantFoldBinaryOpOperands(Opcode, CLHS, CRHS, Q.DL);
608 
609     // Canonicalize the constant to the RHS if this is a commutative operation.
610     if (Instruction::isCommutative(Opcode))
611       std::swap(Op0, Op1);
612   }
613   return nullptr;
614 }
615 
616 /// Given operands for an Add, see if we can fold the result.
617 /// If not, this returns null.
618 static Value *SimplifyAddInst(Value *Op0, Value *Op1, bool IsNSW, bool IsNUW,
619                               const SimplifyQuery &Q, unsigned MaxRecurse) {
620   if (Constant *C = foldOrCommuteConstant(Instruction::Add, Op0, Op1, Q))
621     return C;
622 
623   // X + undef -> undef
624   if (Q.isUndefValue(Op1))
625     return Op1;
626 
627   // X + 0 -> X
628   if (match(Op1, m_Zero()))
629     return Op0;
630 
631   // If two operands are negative, return 0.
632   if (isKnownNegation(Op0, Op1))
633     return Constant::getNullValue(Op0->getType());
634 
635   // X + (Y - X) -> Y
636   // (Y - X) + X -> Y
637   // Eg: X + -X -> 0
638   Value *Y = nullptr;
639   if (match(Op1, m_Sub(m_Value(Y), m_Specific(Op0))) ||
640       match(Op0, m_Sub(m_Value(Y), m_Specific(Op1))))
641     return Y;
642 
643   // X + ~X -> -1   since   ~X = -X-1
644   Type *Ty = Op0->getType();
645   if (match(Op0, m_Not(m_Specific(Op1))) ||
646       match(Op1, m_Not(m_Specific(Op0))))
647     return Constant::getAllOnesValue(Ty);
648 
649   // add nsw/nuw (xor Y, signmask), signmask --> Y
650   // The no-wrapping add guarantees that the top bit will be set by the add.
651   // Therefore, the xor must be clearing the already set sign bit of Y.
652   if ((IsNSW || IsNUW) && match(Op1, m_SignMask()) &&
653       match(Op0, m_Xor(m_Value(Y), m_SignMask())))
654     return Y;
655 
656   // add nuw %x, -1  ->  -1, because %x can only be 0.
657   if (IsNUW && match(Op1, m_AllOnes()))
658     return Op1; // Which is -1.
659 
660   /// i1 add -> xor.
661   if (MaxRecurse && Op0->getType()->isIntOrIntVectorTy(1))
662     if (Value *V = SimplifyXorInst(Op0, Op1, Q, MaxRecurse-1))
663       return V;
664 
665   // Try some generic simplifications for associative operations.
666   if (Value *V = SimplifyAssociativeBinOp(Instruction::Add, Op0, Op1, Q,
667                                           MaxRecurse))
668     return V;
669 
670   // Threading Add over selects and phi nodes is pointless, so don't bother.
671   // Threading over the select in "A + select(cond, B, C)" means evaluating
672   // "A+B" and "A+C" and seeing if they are equal; but they are equal if and
673   // only if B and C are equal.  If B and C are equal then (since we assume
674   // that operands have already been simplified) "select(cond, B, C)" should
675   // have been simplified to the common value of B and C already.  Analysing
676   // "A+B" and "A+C" thus gains nothing, but costs compile time.  Similarly
677   // for threading over phi nodes.
678 
679   return nullptr;
680 }
681 
682 Value *llvm::SimplifyAddInst(Value *Op0, Value *Op1, bool IsNSW, bool IsNUW,
683                              const SimplifyQuery &Query) {
684   return ::SimplifyAddInst(Op0, Op1, IsNSW, IsNUW, Query, RecursionLimit);
685 }
686 
687 /// Compute the base pointer and cumulative constant offsets for V.
688 ///
689 /// This strips all constant offsets off of V, leaving it the base pointer, and
690 /// accumulates the total constant offset applied in the returned constant. It
691 /// returns 0 if V is not a pointer, and returns the constant '0' if there are
692 /// no constant offsets applied.
693 ///
694 /// This is very similar to GetPointerBaseWithConstantOffset except it doesn't
695 /// follow non-inbounds geps. This allows it to remain usable for icmp ult/etc.
696 /// folding.
697 static Constant *stripAndComputeConstantOffsets(const DataLayout &DL, Value *&V,
698                                                 bool AllowNonInbounds = false) {
699   assert(V->getType()->isPtrOrPtrVectorTy());
700 
701   APInt Offset = APInt::getZero(DL.getIndexTypeSizeInBits(V->getType()));
702 
703   V = V->stripAndAccumulateConstantOffsets(DL, Offset, AllowNonInbounds);
704   // As that strip may trace through `addrspacecast`, need to sext or trunc
705   // the offset calculated.
706   Type *IntIdxTy = DL.getIndexType(V->getType())->getScalarType();
707   Offset = Offset.sextOrTrunc(IntIdxTy->getIntegerBitWidth());
708 
709   Constant *OffsetIntPtr = ConstantInt::get(IntIdxTy, Offset);
710   if (VectorType *VecTy = dyn_cast<VectorType>(V->getType()))
711     return ConstantVector::getSplat(VecTy->getElementCount(), OffsetIntPtr);
712   return OffsetIntPtr;
713 }
714 
715 /// Compute the constant difference between two pointer values.
716 /// If the difference is not a constant, returns zero.
717 static Constant *computePointerDifference(const DataLayout &DL, Value *LHS,
718                                           Value *RHS) {
719   Constant *LHSOffset = stripAndComputeConstantOffsets(DL, LHS);
720   Constant *RHSOffset = stripAndComputeConstantOffsets(DL, RHS);
721 
722   // If LHS and RHS are not related via constant offsets to the same base
723   // value, there is nothing we can do here.
724   if (LHS != RHS)
725     return nullptr;
726 
727   // Otherwise, the difference of LHS - RHS can be computed as:
728   //    LHS - RHS
729   //  = (LHSOffset + Base) - (RHSOffset + Base)
730   //  = LHSOffset - RHSOffset
731   return ConstantExpr::getSub(LHSOffset, RHSOffset);
732 }
733 
734 /// Given operands for a Sub, see if we can fold the result.
735 /// If not, this returns null.
736 static Value *SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
737                               const SimplifyQuery &Q, unsigned MaxRecurse) {
738   if (Constant *C = foldOrCommuteConstant(Instruction::Sub, Op0, Op1, Q))
739     return C;
740 
741   // X - poison -> poison
742   // poison - X -> poison
743   if (isa<PoisonValue>(Op0) || isa<PoisonValue>(Op1))
744     return PoisonValue::get(Op0->getType());
745 
746   // X - undef -> undef
747   // undef - X -> undef
748   if (Q.isUndefValue(Op0) || Q.isUndefValue(Op1))
749     return UndefValue::get(Op0->getType());
750 
751   // X - 0 -> X
752   if (match(Op1, m_Zero()))
753     return Op0;
754 
755   // X - X -> 0
756   if (Op0 == Op1)
757     return Constant::getNullValue(Op0->getType());
758 
759   // Is this a negation?
760   if (match(Op0, m_Zero())) {
761     // 0 - X -> 0 if the sub is NUW.
762     if (isNUW)
763       return Constant::getNullValue(Op0->getType());
764 
765     KnownBits Known = computeKnownBits(Op1, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
766     if (Known.Zero.isMaxSignedValue()) {
767       // Op1 is either 0 or the minimum signed value. If the sub is NSW, then
768       // Op1 must be 0 because negating the minimum signed value is undefined.
769       if (isNSW)
770         return Constant::getNullValue(Op0->getType());
771 
772       // 0 - X -> X if X is 0 or the minimum signed value.
773       return Op1;
774     }
775   }
776 
777   // (X + Y) - Z -> X + (Y - Z) or Y + (X - Z) if everything simplifies.
778   // For example, (X + Y) - Y -> X; (Y + X) - Y -> X
779   Value *X = nullptr, *Y = nullptr, *Z = Op1;
780   if (MaxRecurse && match(Op0, m_Add(m_Value(X), m_Value(Y)))) { // (X + Y) - Z
781     // See if "V === Y - Z" simplifies.
782     if (Value *V = SimplifyBinOp(Instruction::Sub, Y, Z, Q, MaxRecurse-1))
783       // It does!  Now see if "X + V" simplifies.
784       if (Value *W = SimplifyBinOp(Instruction::Add, X, V, Q, MaxRecurse-1)) {
785         // It does, we successfully reassociated!
786         ++NumReassoc;
787         return W;
788       }
789     // See if "V === X - Z" simplifies.
790     if (Value *V = SimplifyBinOp(Instruction::Sub, X, Z, Q, MaxRecurse-1))
791       // It does!  Now see if "Y + V" simplifies.
792       if (Value *W = SimplifyBinOp(Instruction::Add, Y, V, Q, MaxRecurse-1)) {
793         // It does, we successfully reassociated!
794         ++NumReassoc;
795         return W;
796       }
797   }
798 
799   // X - (Y + Z) -> (X - Y) - Z or (X - Z) - Y if everything simplifies.
800   // For example, X - (X + 1) -> -1
801   X = Op0;
802   if (MaxRecurse && match(Op1, m_Add(m_Value(Y), m_Value(Z)))) { // X - (Y + Z)
803     // See if "V === X - Y" simplifies.
804     if (Value *V = SimplifyBinOp(Instruction::Sub, X, Y, Q, MaxRecurse-1))
805       // It does!  Now see if "V - Z" simplifies.
806       if (Value *W = SimplifyBinOp(Instruction::Sub, V, Z, Q, MaxRecurse-1)) {
807         // It does, we successfully reassociated!
808         ++NumReassoc;
809         return W;
810       }
811     // See if "V === X - Z" simplifies.
812     if (Value *V = SimplifyBinOp(Instruction::Sub, X, Z, Q, MaxRecurse-1))
813       // It does!  Now see if "V - Y" simplifies.
814       if (Value *W = SimplifyBinOp(Instruction::Sub, V, Y, Q, MaxRecurse-1)) {
815         // It does, we successfully reassociated!
816         ++NumReassoc;
817         return W;
818       }
819   }
820 
821   // Z - (X - Y) -> (Z - X) + Y if everything simplifies.
822   // For example, X - (X - Y) -> Y.
823   Z = Op0;
824   if (MaxRecurse && match(Op1, m_Sub(m_Value(X), m_Value(Y)))) // Z - (X - Y)
825     // See if "V === Z - X" simplifies.
826     if (Value *V = SimplifyBinOp(Instruction::Sub, Z, X, Q, MaxRecurse-1))
827       // It does!  Now see if "V + Y" simplifies.
828       if (Value *W = SimplifyBinOp(Instruction::Add, V, Y, Q, MaxRecurse-1)) {
829         // It does, we successfully reassociated!
830         ++NumReassoc;
831         return W;
832       }
833 
834   // trunc(X) - trunc(Y) -> trunc(X - Y) if everything simplifies.
835   if (MaxRecurse && match(Op0, m_Trunc(m_Value(X))) &&
836       match(Op1, m_Trunc(m_Value(Y))))
837     if (X->getType() == Y->getType())
838       // See if "V === X - Y" simplifies.
839       if (Value *V = SimplifyBinOp(Instruction::Sub, X, Y, Q, MaxRecurse-1))
840         // It does!  Now see if "trunc V" simplifies.
841         if (Value *W = SimplifyCastInst(Instruction::Trunc, V, Op0->getType(),
842                                         Q, MaxRecurse - 1))
843           // It does, return the simplified "trunc V".
844           return W;
845 
846   // Variations on GEP(base, I, ...) - GEP(base, i, ...) -> GEP(null, I-i, ...).
847   if (match(Op0, m_PtrToInt(m_Value(X))) &&
848       match(Op1, m_PtrToInt(m_Value(Y))))
849     if (Constant *Result = computePointerDifference(Q.DL, X, Y))
850       return ConstantExpr::getIntegerCast(Result, Op0->getType(), true);
851 
852   // i1 sub -> xor.
853   if (MaxRecurse && Op0->getType()->isIntOrIntVectorTy(1))
854     if (Value *V = SimplifyXorInst(Op0, Op1, Q, MaxRecurse-1))
855       return V;
856 
857   // Threading Sub over selects and phi nodes is pointless, so don't bother.
858   // Threading over the select in "A - select(cond, B, C)" means evaluating
859   // "A-B" and "A-C" and seeing if they are equal; but they are equal if and
860   // only if B and C are equal.  If B and C are equal then (since we assume
861   // that operands have already been simplified) "select(cond, B, C)" should
862   // have been simplified to the common value of B and C already.  Analysing
863   // "A-B" and "A-C" thus gains nothing, but costs compile time.  Similarly
864   // for threading over phi nodes.
865 
866   return nullptr;
867 }
868 
869 Value *llvm::SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
870                              const SimplifyQuery &Q) {
871   return ::SimplifySubInst(Op0, Op1, isNSW, isNUW, Q, RecursionLimit);
872 }
873 
874 /// Given operands for a Mul, see if we can fold the result.
875 /// If not, this returns null.
876 static Value *SimplifyMulInst(Value *Op0, Value *Op1, const SimplifyQuery &Q,
877                               unsigned MaxRecurse) {
878   if (Constant *C = foldOrCommuteConstant(Instruction::Mul, Op0, Op1, Q))
879     return C;
880 
881   // X * poison -> poison
882   if (isa<PoisonValue>(Op1))
883     return Op1;
884 
885   // X * undef -> 0
886   // X * 0 -> 0
887   if (Q.isUndefValue(Op1) || match(Op1, m_Zero()))
888     return Constant::getNullValue(Op0->getType());
889 
890   // X * 1 -> X
891   if (match(Op1, m_One()))
892     return Op0;
893 
894   // (X / Y) * Y -> X if the division is exact.
895   Value *X = nullptr;
896   if (Q.IIQ.UseInstrInfo &&
897       (match(Op0,
898              m_Exact(m_IDiv(m_Value(X), m_Specific(Op1)))) ||     // (X / Y) * Y
899        match(Op1, m_Exact(m_IDiv(m_Value(X), m_Specific(Op0)))))) // Y * (X / Y)
900     return X;
901 
902   // i1 mul -> and.
903   if (MaxRecurse && Op0->getType()->isIntOrIntVectorTy(1))
904     if (Value *V = SimplifyAndInst(Op0, Op1, Q, MaxRecurse-1))
905       return V;
906 
907   // Try some generic simplifications for associative operations.
908   if (Value *V = SimplifyAssociativeBinOp(Instruction::Mul, Op0, Op1, Q,
909                                           MaxRecurse))
910     return V;
911 
912   // Mul distributes over Add. Try some generic simplifications based on this.
913   if (Value *V = expandCommutativeBinOp(Instruction::Mul, Op0, Op1,
914                                         Instruction::Add, Q, MaxRecurse))
915     return V;
916 
917   // If the operation is with the result of a select instruction, check whether
918   // operating on either branch of the select always yields the same value.
919   if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
920     if (Value *V = ThreadBinOpOverSelect(Instruction::Mul, Op0, Op1, Q,
921                                          MaxRecurse))
922       return V;
923 
924   // If the operation is with the result of a phi instruction, check whether
925   // operating on all incoming values of the phi always yields the same value.
926   if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
927     if (Value *V = ThreadBinOpOverPHI(Instruction::Mul, Op0, Op1, Q,
928                                       MaxRecurse))
929       return V;
930 
931   return nullptr;
932 }
933 
934 Value *llvm::SimplifyMulInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) {
935   return ::SimplifyMulInst(Op0, Op1, Q, RecursionLimit);
936 }
937 
938 /// Check for common or similar folds of integer division or integer remainder.
939 /// This applies to all 4 opcodes (sdiv/udiv/srem/urem).
940 static Value *simplifyDivRem(Instruction::BinaryOps Opcode, Value *Op0,
941                              Value *Op1, const SimplifyQuery &Q) {
942   bool IsDiv = (Opcode == Instruction::SDiv || Opcode == Instruction::UDiv);
943   bool IsSigned = (Opcode == Instruction::SDiv || Opcode == Instruction::SRem);
944 
945   Type *Ty = Op0->getType();
946 
947   // X / undef -> poison
948   // X % undef -> poison
949   if (Q.isUndefValue(Op1))
950     return PoisonValue::get(Ty);
951 
952   // X / 0 -> poison
953   // X % 0 -> poison
954   // We don't need to preserve faults!
955   if (match(Op1, m_Zero()))
956     return PoisonValue::get(Ty);
957 
958   // If any element of a constant divisor fixed width vector is zero or undef
959   // the behavior is undefined and we can fold the whole op to poison.
960   auto *Op1C = dyn_cast<Constant>(Op1);
961   auto *VTy = dyn_cast<FixedVectorType>(Ty);
962   if (Op1C && VTy) {
963     unsigned NumElts = VTy->getNumElements();
964     for (unsigned i = 0; i != NumElts; ++i) {
965       Constant *Elt = Op1C->getAggregateElement(i);
966       if (Elt && (Elt->isNullValue() || Q.isUndefValue(Elt)))
967         return PoisonValue::get(Ty);
968     }
969   }
970 
971   // poison / X -> poison
972   // poison % X -> poison
973   if (isa<PoisonValue>(Op0))
974     return Op0;
975 
976   // undef / X -> 0
977   // undef % X -> 0
978   if (Q.isUndefValue(Op0))
979     return Constant::getNullValue(Ty);
980 
981   // 0 / X -> 0
982   // 0 % X -> 0
983   if (match(Op0, m_Zero()))
984     return Constant::getNullValue(Op0->getType());
985 
986   // X / X -> 1
987   // X % X -> 0
988   if (Op0 == Op1)
989     return IsDiv ? ConstantInt::get(Ty, 1) : Constant::getNullValue(Ty);
990 
991   // X / 1 -> X
992   // X % 1 -> 0
993   // If this is a boolean op (single-bit element type), we can't have
994   // division-by-zero or remainder-by-zero, so assume the divisor is 1.
995   // Similarly, if we're zero-extending a boolean divisor, then assume it's a 1.
996   Value *X;
997   if (match(Op1, m_One()) || Ty->isIntOrIntVectorTy(1) ||
998       (match(Op1, m_ZExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)))
999     return IsDiv ? Op0 : Constant::getNullValue(Ty);
1000 
1001   // If X * Y does not overflow, then:
1002   //   X * Y / Y -> X
1003   //   X * Y % Y -> 0
1004   if (match(Op0, m_c_Mul(m_Value(X), m_Specific(Op1)))) {
1005     auto *Mul = cast<OverflowingBinaryOperator>(Op0);
1006     // The multiplication can't overflow if it is defined not to, or if
1007     // X == A / Y for some A.
1008     if ((IsSigned && Q.IIQ.hasNoSignedWrap(Mul)) ||
1009         (!IsSigned && Q.IIQ.hasNoUnsignedWrap(Mul)) ||
1010         (IsSigned && match(X, m_SDiv(m_Value(), m_Specific(Op1)))) ||
1011         (!IsSigned && match(X, m_UDiv(m_Value(), m_Specific(Op1))))) {
1012       return IsDiv ? X : Constant::getNullValue(Op0->getType());
1013     }
1014   }
1015 
1016   return nullptr;
1017 }
1018 
1019 /// Given a predicate and two operands, return true if the comparison is true.
1020 /// This is a helper for div/rem simplification where we return some other value
1021 /// when we can prove a relationship between the operands.
1022 static bool isICmpTrue(ICmpInst::Predicate Pred, Value *LHS, Value *RHS,
1023                        const SimplifyQuery &Q, unsigned MaxRecurse) {
1024   Value *V = SimplifyICmpInst(Pred, LHS, RHS, Q, MaxRecurse);
1025   Constant *C = dyn_cast_or_null<Constant>(V);
1026   return (C && C->isAllOnesValue());
1027 }
1028 
1029 /// Return true if we can simplify X / Y to 0. Remainder can adapt that answer
1030 /// to simplify X % Y to X.
1031 static bool isDivZero(Value *X, Value *Y, const SimplifyQuery &Q,
1032                       unsigned MaxRecurse, bool IsSigned) {
1033   // Recursion is always used, so bail out at once if we already hit the limit.
1034   if (!MaxRecurse--)
1035     return false;
1036 
1037   if (IsSigned) {
1038     // |X| / |Y| --> 0
1039     //
1040     // We require that 1 operand is a simple constant. That could be extended to
1041     // 2 variables if we computed the sign bit for each.
1042     //
1043     // Make sure that a constant is not the minimum signed value because taking
1044     // the abs() of that is undefined.
1045     Type *Ty = X->getType();
1046     const APInt *C;
1047     if (match(X, m_APInt(C)) && !C->isMinSignedValue()) {
1048       // Is the variable divisor magnitude always greater than the constant
1049       // dividend magnitude?
1050       // |Y| > |C| --> Y < -abs(C) or Y > abs(C)
1051       Constant *PosDividendC = ConstantInt::get(Ty, C->abs());
1052       Constant *NegDividendC = ConstantInt::get(Ty, -C->abs());
1053       if (isICmpTrue(CmpInst::ICMP_SLT, Y, NegDividendC, Q, MaxRecurse) ||
1054           isICmpTrue(CmpInst::ICMP_SGT, Y, PosDividendC, Q, MaxRecurse))
1055         return true;
1056     }
1057     if (match(Y, m_APInt(C))) {
1058       // Special-case: we can't take the abs() of a minimum signed value. If
1059       // that's the divisor, then all we have to do is prove that the dividend
1060       // is also not the minimum signed value.
1061       if (C->isMinSignedValue())
1062         return isICmpTrue(CmpInst::ICMP_NE, X, Y, Q, MaxRecurse);
1063 
1064       // Is the variable dividend magnitude always less than the constant
1065       // divisor magnitude?
1066       // |X| < |C| --> X > -abs(C) and X < abs(C)
1067       Constant *PosDivisorC = ConstantInt::get(Ty, C->abs());
1068       Constant *NegDivisorC = ConstantInt::get(Ty, -C->abs());
1069       if (isICmpTrue(CmpInst::ICMP_SGT, X, NegDivisorC, Q, MaxRecurse) &&
1070           isICmpTrue(CmpInst::ICMP_SLT, X, PosDivisorC, Q, MaxRecurse))
1071         return true;
1072     }
1073     return false;
1074   }
1075 
1076   // IsSigned == false.
1077   // Is the dividend unsigned less than the divisor?
1078   return isICmpTrue(ICmpInst::ICMP_ULT, X, Y, Q, MaxRecurse);
1079 }
1080 
1081 /// These are simplifications common to SDiv and UDiv.
1082 static Value *simplifyDiv(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1,
1083                           const SimplifyQuery &Q, unsigned MaxRecurse) {
1084   if (Constant *C = foldOrCommuteConstant(Opcode, Op0, Op1, Q))
1085     return C;
1086 
1087   if (Value *V = simplifyDivRem(Opcode, Op0, Op1, Q))
1088     return V;
1089 
1090   bool IsSigned = Opcode == Instruction::SDiv;
1091 
1092   // (X rem Y) / Y -> 0
1093   if ((IsSigned && match(Op0, m_SRem(m_Value(), m_Specific(Op1)))) ||
1094       (!IsSigned && match(Op0, m_URem(m_Value(), m_Specific(Op1)))))
1095     return Constant::getNullValue(Op0->getType());
1096 
1097   // (X /u C1) /u C2 -> 0 if C1 * C2 overflow
1098   ConstantInt *C1, *C2;
1099   if (!IsSigned && match(Op0, m_UDiv(m_Value(), m_ConstantInt(C1))) &&
1100       match(Op1, m_ConstantInt(C2))) {
1101     bool Overflow;
1102     (void)C1->getValue().umul_ov(C2->getValue(), Overflow);
1103     if (Overflow)
1104       return Constant::getNullValue(Op0->getType());
1105   }
1106 
1107   // If the operation is with the result of a select instruction, check whether
1108   // operating on either branch of the select always yields the same value.
1109   if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
1110     if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse))
1111       return V;
1112 
1113   // If the operation is with the result of a phi instruction, check whether
1114   // operating on all incoming values of the phi always yields the same value.
1115   if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
1116     if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse))
1117       return V;
1118 
1119   if (isDivZero(Op0, Op1, Q, MaxRecurse, IsSigned))
1120     return Constant::getNullValue(Op0->getType());
1121 
1122   return nullptr;
1123 }
1124 
1125 /// These are simplifications common to SRem and URem.
1126 static Value *simplifyRem(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1,
1127                           const SimplifyQuery &Q, unsigned MaxRecurse) {
1128   if (Constant *C = foldOrCommuteConstant(Opcode, Op0, Op1, Q))
1129     return C;
1130 
1131   if (Value *V = simplifyDivRem(Opcode, Op0, Op1, Q))
1132     return V;
1133 
1134   // (X % Y) % Y -> X % Y
1135   if ((Opcode == Instruction::SRem &&
1136        match(Op0, m_SRem(m_Value(), m_Specific(Op1)))) ||
1137       (Opcode == Instruction::URem &&
1138        match(Op0, m_URem(m_Value(), m_Specific(Op1)))))
1139     return Op0;
1140 
1141   // (X << Y) % X -> 0
1142   if (Q.IIQ.UseInstrInfo &&
1143       ((Opcode == Instruction::SRem &&
1144         match(Op0, m_NSWShl(m_Specific(Op1), m_Value()))) ||
1145        (Opcode == Instruction::URem &&
1146         match(Op0, m_NUWShl(m_Specific(Op1), m_Value())))))
1147     return Constant::getNullValue(Op0->getType());
1148 
1149   // If the operation is with the result of a select instruction, check whether
1150   // operating on either branch of the select always yields the same value.
1151   if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
1152     if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse))
1153       return V;
1154 
1155   // If the operation is with the result of a phi instruction, check whether
1156   // operating on all incoming values of the phi always yields the same value.
1157   if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
1158     if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse))
1159       return V;
1160 
1161   // If X / Y == 0, then X % Y == X.
1162   if (isDivZero(Op0, Op1, Q, MaxRecurse, Opcode == Instruction::SRem))
1163     return Op0;
1164 
1165   return nullptr;
1166 }
1167 
1168 /// Given operands for an SDiv, see if we can fold the result.
1169 /// If not, this returns null.
1170 static Value *SimplifySDivInst(Value *Op0, Value *Op1, const SimplifyQuery &Q,
1171                                unsigned MaxRecurse) {
1172   // If two operands are negated and no signed overflow, return -1.
1173   if (isKnownNegation(Op0, Op1, /*NeedNSW=*/true))
1174     return Constant::getAllOnesValue(Op0->getType());
1175 
1176   return simplifyDiv(Instruction::SDiv, Op0, Op1, Q, MaxRecurse);
1177 }
1178 
1179 Value *llvm::SimplifySDivInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) {
1180   return ::SimplifySDivInst(Op0, Op1, Q, RecursionLimit);
1181 }
1182 
1183 /// Given operands for a UDiv, see if we can fold the result.
1184 /// If not, this returns null.
1185 static Value *SimplifyUDivInst(Value *Op0, Value *Op1, const SimplifyQuery &Q,
1186                                unsigned MaxRecurse) {
1187   return simplifyDiv(Instruction::UDiv, Op0, Op1, Q, MaxRecurse);
1188 }
1189 
1190 Value *llvm::SimplifyUDivInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) {
1191   return ::SimplifyUDivInst(Op0, Op1, Q, RecursionLimit);
1192 }
1193 
1194 /// Given operands for an SRem, see if we can fold the result.
1195 /// If not, this returns null.
1196 static Value *SimplifySRemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q,
1197                                unsigned MaxRecurse) {
1198   // If the divisor is 0, the result is undefined, so assume the divisor is -1.
1199   // srem Op0, (sext i1 X) --> srem Op0, -1 --> 0
1200   Value *X;
1201   if (match(Op1, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1))
1202     return ConstantInt::getNullValue(Op0->getType());
1203 
1204   // If the two operands are negated, return 0.
1205   if (isKnownNegation(Op0, Op1))
1206     return ConstantInt::getNullValue(Op0->getType());
1207 
1208   return simplifyRem(Instruction::SRem, Op0, Op1, Q, MaxRecurse);
1209 }
1210 
1211 Value *llvm::SimplifySRemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) {
1212   return ::SimplifySRemInst(Op0, Op1, Q, RecursionLimit);
1213 }
1214 
1215 /// Given operands for a URem, see if we can fold the result.
1216 /// If not, this returns null.
1217 static Value *SimplifyURemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q,
1218                                unsigned MaxRecurse) {
1219   return simplifyRem(Instruction::URem, Op0, Op1, Q, MaxRecurse);
1220 }
1221 
1222 Value *llvm::SimplifyURemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) {
1223   return ::SimplifyURemInst(Op0, Op1, Q, RecursionLimit);
1224 }
1225 
1226 /// Returns true if a shift by \c Amount always yields poison.
1227 static bool isPoisonShift(Value *Amount, const SimplifyQuery &Q) {
1228   Constant *C = dyn_cast<Constant>(Amount);
1229   if (!C)
1230     return false;
1231 
1232   // X shift by undef -> poison because it may shift by the bitwidth.
1233   if (Q.isUndefValue(C))
1234     return true;
1235 
1236   // Shifting by the bitwidth or more is undefined.
1237   if (ConstantInt *CI = dyn_cast<ConstantInt>(C))
1238     if (CI->getValue().uge(CI->getType()->getScalarSizeInBits()))
1239       return true;
1240 
1241   // If all lanes of a vector shift are undefined the whole shift is.
1242   if (isa<ConstantVector>(C) || isa<ConstantDataVector>(C)) {
1243     for (unsigned I = 0,
1244                   E = cast<FixedVectorType>(C->getType())->getNumElements();
1245          I != E; ++I)
1246       if (!isPoisonShift(C->getAggregateElement(I), Q))
1247         return false;
1248     return true;
1249   }
1250 
1251   return false;
1252 }
1253 
1254 /// Given operands for an Shl, LShr or AShr, see if we can fold the result.
1255 /// If not, this returns null.
1256 static Value *SimplifyShift(Instruction::BinaryOps Opcode, Value *Op0,
1257                             Value *Op1, bool IsNSW, const SimplifyQuery &Q,
1258                             unsigned MaxRecurse) {
1259   if (Constant *C = foldOrCommuteConstant(Opcode, Op0, Op1, Q))
1260     return C;
1261 
1262   // poison shift by X -> poison
1263   if (isa<PoisonValue>(Op0))
1264     return Op0;
1265 
1266   // 0 shift by X -> 0
1267   if (match(Op0, m_Zero()))
1268     return Constant::getNullValue(Op0->getType());
1269 
1270   // X shift by 0 -> X
1271   // Shift-by-sign-extended bool must be shift-by-0 because shift-by-all-ones
1272   // would be poison.
1273   Value *X;
1274   if (match(Op1, m_Zero()) ||
1275       (match(Op1, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)))
1276     return Op0;
1277 
1278   // Fold undefined shifts.
1279   if (isPoisonShift(Op1, Q))
1280     return PoisonValue::get(Op0->getType());
1281 
1282   // If the operation is with the result of a select instruction, check whether
1283   // operating on either branch of the select always yields the same value.
1284   if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
1285     if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse))
1286       return V;
1287 
1288   // If the operation is with the result of a phi instruction, check whether
1289   // operating on all incoming values of the phi always yields the same value.
1290   if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
1291     if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse))
1292       return V;
1293 
1294   // If any bits in the shift amount make that value greater than or equal to
1295   // the number of bits in the type, the shift is undefined.
1296   KnownBits KnownAmt = computeKnownBits(Op1, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
1297   if (KnownAmt.getMinValue().uge(KnownAmt.getBitWidth()))
1298     return PoisonValue::get(Op0->getType());
1299 
1300   // If all valid bits in the shift amount are known zero, the first operand is
1301   // unchanged.
1302   unsigned NumValidShiftBits = Log2_32_Ceil(KnownAmt.getBitWidth());
1303   if (KnownAmt.countMinTrailingZeros() >= NumValidShiftBits)
1304     return Op0;
1305 
1306   // Check for nsw shl leading to a poison value.
1307   if (IsNSW) {
1308     assert(Opcode == Instruction::Shl && "Expected shl for nsw instruction");
1309     KnownBits KnownVal = computeKnownBits(Op0, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
1310     KnownBits KnownShl = KnownBits::shl(KnownVal, KnownAmt);
1311 
1312     if (KnownVal.Zero.isSignBitSet())
1313       KnownShl.Zero.setSignBit();
1314     if (KnownVal.One.isSignBitSet())
1315       KnownShl.One.setSignBit();
1316 
1317     if (KnownShl.hasConflict())
1318       return PoisonValue::get(Op0->getType());
1319   }
1320 
1321   return nullptr;
1322 }
1323 
1324 /// Given operands for an Shl, LShr or AShr, see if we can
1325 /// fold the result.  If not, this returns null.
1326 static Value *SimplifyRightShift(Instruction::BinaryOps Opcode, Value *Op0,
1327                                  Value *Op1, bool isExact, const SimplifyQuery &Q,
1328                                  unsigned MaxRecurse) {
1329   if (Value *V =
1330           SimplifyShift(Opcode, Op0, Op1, /*IsNSW*/ false, Q, MaxRecurse))
1331     return V;
1332 
1333   // X >> X -> 0
1334   if (Op0 == Op1)
1335     return Constant::getNullValue(Op0->getType());
1336 
1337   // undef >> X -> 0
1338   // undef >> X -> undef (if it's exact)
1339   if (Q.isUndefValue(Op0))
1340     return isExact ? Op0 : Constant::getNullValue(Op0->getType());
1341 
1342   // The low bit cannot be shifted out of an exact shift if it is set.
1343   if (isExact) {
1344     KnownBits Op0Known = computeKnownBits(Op0, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT);
1345     if (Op0Known.One[0])
1346       return Op0;
1347   }
1348 
1349   return nullptr;
1350 }
1351 
1352 /// Given operands for an Shl, see if we can fold the result.
1353 /// If not, this returns null.
1354 static Value *SimplifyShlInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
1355                               const SimplifyQuery &Q, unsigned MaxRecurse) {
1356   if (Value *V =
1357           SimplifyShift(Instruction::Shl, Op0, Op1, isNSW, Q, MaxRecurse))
1358     return V;
1359 
1360   // undef << X -> 0
1361   // undef << X -> undef if (if it's NSW/NUW)
1362   if (Q.isUndefValue(Op0))
1363     return isNSW || isNUW ? Op0 : Constant::getNullValue(Op0->getType());
1364 
1365   // (X >> A) << A -> X
1366   Value *X;
1367   if (Q.IIQ.UseInstrInfo &&
1368       match(Op0, m_Exact(m_Shr(m_Value(X), m_Specific(Op1)))))
1369     return X;
1370 
1371   // shl nuw i8 C, %x  ->  C  iff C has sign bit set.
1372   if (isNUW && match(Op0, m_Negative()))
1373     return Op0;
1374   // NOTE: could use computeKnownBits() / LazyValueInfo,
1375   // but the cost-benefit analysis suggests it isn't worth it.
1376 
1377   return nullptr;
1378 }
1379 
1380 Value *llvm::SimplifyShlInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
1381                              const SimplifyQuery &Q) {
1382   return ::SimplifyShlInst(Op0, Op1, isNSW, isNUW, Q, RecursionLimit);
1383 }
1384 
1385 /// Given operands for an LShr, see if we can fold the result.
1386 /// If not, this returns null.
1387 static Value *SimplifyLShrInst(Value *Op0, Value *Op1, bool isExact,
1388                                const SimplifyQuery &Q, unsigned MaxRecurse) {
1389   if (Value *V = SimplifyRightShift(Instruction::LShr, Op0, Op1, isExact, Q,
1390                                     MaxRecurse))
1391       return V;
1392 
1393   // (X << A) >> A -> X
1394   Value *X;
1395   if (match(Op0, m_NUWShl(m_Value(X), m_Specific(Op1))))
1396     return X;
1397 
1398   // ((X << A) | Y) >> A -> X  if effective width of Y is not larger than A.
1399   // We can return X as we do in the above case since OR alters no bits in X.
1400   // SimplifyDemandedBits in InstCombine can do more general optimization for
1401   // bit manipulation. This pattern aims to provide opportunities for other
1402   // optimizers by supporting a simple but common case in InstSimplify.
1403   Value *Y;
1404   const APInt *ShRAmt, *ShLAmt;
1405   if (match(Op1, m_APInt(ShRAmt)) &&
1406       match(Op0, m_c_Or(m_NUWShl(m_Value(X), m_APInt(ShLAmt)), m_Value(Y))) &&
1407       *ShRAmt == *ShLAmt) {
1408     const KnownBits YKnown = computeKnownBits(Y, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
1409     const unsigned EffWidthY = YKnown.countMaxActiveBits();
1410     if (ShRAmt->uge(EffWidthY))
1411       return X;
1412   }
1413 
1414   return nullptr;
1415 }
1416 
1417 Value *llvm::SimplifyLShrInst(Value *Op0, Value *Op1, bool isExact,
1418                               const SimplifyQuery &Q) {
1419   return ::SimplifyLShrInst(Op0, Op1, isExact, Q, RecursionLimit);
1420 }
1421 
1422 /// Given operands for an AShr, see if we can fold the result.
1423 /// If not, this returns null.
1424 static Value *SimplifyAShrInst(Value *Op0, Value *Op1, bool isExact,
1425                                const SimplifyQuery &Q, unsigned MaxRecurse) {
1426   if (Value *V = SimplifyRightShift(Instruction::AShr, Op0, Op1, isExact, Q,
1427                                     MaxRecurse))
1428     return V;
1429 
1430   // -1 >>a X --> -1
1431   // (-1 << X) a>> X --> -1
1432   // Do not return Op0 because it may contain undef elements if it's a vector.
1433   if (match(Op0, m_AllOnes()) ||
1434       match(Op0, m_Shl(m_AllOnes(), m_Specific(Op1))))
1435     return Constant::getAllOnesValue(Op0->getType());
1436 
1437   // (X << A) >> A -> X
1438   Value *X;
1439   if (Q.IIQ.UseInstrInfo && match(Op0, m_NSWShl(m_Value(X), m_Specific(Op1))))
1440     return X;
1441 
1442   // Arithmetic shifting an all-sign-bit value is a no-op.
1443   unsigned NumSignBits = ComputeNumSignBits(Op0, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
1444   if (NumSignBits == Op0->getType()->getScalarSizeInBits())
1445     return Op0;
1446 
1447   return nullptr;
1448 }
1449 
1450 Value *llvm::SimplifyAShrInst(Value *Op0, Value *Op1, bool isExact,
1451                               const SimplifyQuery &Q) {
1452   return ::SimplifyAShrInst(Op0, Op1, isExact, Q, RecursionLimit);
1453 }
1454 
1455 /// Commuted variants are assumed to be handled by calling this function again
1456 /// with the parameters swapped.
1457 static Value *simplifyUnsignedRangeCheck(ICmpInst *ZeroICmp,
1458                                          ICmpInst *UnsignedICmp, bool IsAnd,
1459                                          const SimplifyQuery &Q) {
1460   Value *X, *Y;
1461 
1462   ICmpInst::Predicate EqPred;
1463   if (!match(ZeroICmp, m_ICmp(EqPred, m_Value(Y), m_Zero())) ||
1464       !ICmpInst::isEquality(EqPred))
1465     return nullptr;
1466 
1467   ICmpInst::Predicate UnsignedPred;
1468 
1469   Value *A, *B;
1470   // Y = (A - B);
1471   if (match(Y, m_Sub(m_Value(A), m_Value(B)))) {
1472     if (match(UnsignedICmp,
1473               m_c_ICmp(UnsignedPred, m_Specific(A), m_Specific(B))) &&
1474         ICmpInst::isUnsigned(UnsignedPred)) {
1475       // A >=/<= B || (A - B) != 0  <-->  true
1476       if ((UnsignedPred == ICmpInst::ICMP_UGE ||
1477            UnsignedPred == ICmpInst::ICMP_ULE) &&
1478           EqPred == ICmpInst::ICMP_NE && !IsAnd)
1479         return ConstantInt::getTrue(UnsignedICmp->getType());
1480       // A </> B && (A - B) == 0  <-->  false
1481       if ((UnsignedPred == ICmpInst::ICMP_ULT ||
1482            UnsignedPred == ICmpInst::ICMP_UGT) &&
1483           EqPred == ICmpInst::ICMP_EQ && IsAnd)
1484         return ConstantInt::getFalse(UnsignedICmp->getType());
1485 
1486       // A </> B && (A - B) != 0  <-->  A </> B
1487       // A </> B || (A - B) != 0  <-->  (A - B) != 0
1488       if (EqPred == ICmpInst::ICMP_NE && (UnsignedPred == ICmpInst::ICMP_ULT ||
1489                                           UnsignedPred == ICmpInst::ICMP_UGT))
1490         return IsAnd ? UnsignedICmp : ZeroICmp;
1491 
1492       // A <=/>= B && (A - B) == 0  <-->  (A - B) == 0
1493       // A <=/>= B || (A - B) == 0  <-->  A <=/>= B
1494       if (EqPred == ICmpInst::ICMP_EQ && (UnsignedPred == ICmpInst::ICMP_ULE ||
1495                                           UnsignedPred == ICmpInst::ICMP_UGE))
1496         return IsAnd ? ZeroICmp : UnsignedICmp;
1497     }
1498 
1499     // Given  Y = (A - B)
1500     //   Y >= A && Y != 0  --> Y >= A  iff B != 0
1501     //   Y <  A || Y == 0  --> Y <  A  iff B != 0
1502     if (match(UnsignedICmp,
1503               m_c_ICmp(UnsignedPred, m_Specific(Y), m_Specific(A)))) {
1504       if (UnsignedPred == ICmpInst::ICMP_UGE && IsAnd &&
1505           EqPred == ICmpInst::ICMP_NE &&
1506           isKnownNonZero(B, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT))
1507         return UnsignedICmp;
1508       if (UnsignedPred == ICmpInst::ICMP_ULT && !IsAnd &&
1509           EqPred == ICmpInst::ICMP_EQ &&
1510           isKnownNonZero(B, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT))
1511         return UnsignedICmp;
1512     }
1513   }
1514 
1515   if (match(UnsignedICmp, m_ICmp(UnsignedPred, m_Value(X), m_Specific(Y))) &&
1516       ICmpInst::isUnsigned(UnsignedPred))
1517     ;
1518   else if (match(UnsignedICmp,
1519                  m_ICmp(UnsignedPred, m_Specific(Y), m_Value(X))) &&
1520            ICmpInst::isUnsigned(UnsignedPred))
1521     UnsignedPred = ICmpInst::getSwappedPredicate(UnsignedPred);
1522   else
1523     return nullptr;
1524 
1525   // X > Y && Y == 0  -->  Y == 0  iff X != 0
1526   // X > Y || Y == 0  -->  X > Y   iff X != 0
1527   if (UnsignedPred == ICmpInst::ICMP_UGT && EqPred == ICmpInst::ICMP_EQ &&
1528       isKnownNonZero(X, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT))
1529     return IsAnd ? ZeroICmp : UnsignedICmp;
1530 
1531   // X <= Y && Y != 0  -->  X <= Y  iff X != 0
1532   // X <= Y || Y != 0  -->  Y != 0  iff X != 0
1533   if (UnsignedPred == ICmpInst::ICMP_ULE && EqPred == ICmpInst::ICMP_NE &&
1534       isKnownNonZero(X, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT))
1535     return IsAnd ? UnsignedICmp : ZeroICmp;
1536 
1537   // The transforms below here are expected to be handled more generally with
1538   // simplifyAndOrOfICmpsWithLimitConst() or in InstCombine's
1539   // foldAndOrOfICmpsWithConstEq(). If we are looking to trim optimizer overlap,
1540   // these are candidates for removal.
1541 
1542   // X < Y && Y != 0  -->  X < Y
1543   // X < Y || Y != 0  -->  Y != 0
1544   if (UnsignedPred == ICmpInst::ICMP_ULT && EqPred == ICmpInst::ICMP_NE)
1545     return IsAnd ? UnsignedICmp : ZeroICmp;
1546 
1547   // X >= Y && Y == 0  -->  Y == 0
1548   // X >= Y || Y == 0  -->  X >= Y
1549   if (UnsignedPred == ICmpInst::ICMP_UGE && EqPred == ICmpInst::ICMP_EQ)
1550     return IsAnd ? ZeroICmp : UnsignedICmp;
1551 
1552   // X < Y && Y == 0  -->  false
1553   if (UnsignedPred == ICmpInst::ICMP_ULT && EqPred == ICmpInst::ICMP_EQ &&
1554       IsAnd)
1555     return getFalse(UnsignedICmp->getType());
1556 
1557   // X >= Y || Y != 0  -->  true
1558   if (UnsignedPred == ICmpInst::ICMP_UGE && EqPred == ICmpInst::ICMP_NE &&
1559       !IsAnd)
1560     return getTrue(UnsignedICmp->getType());
1561 
1562   return nullptr;
1563 }
1564 
1565 /// Commuted variants are assumed to be handled by calling this function again
1566 /// with the parameters swapped.
1567 static Value *simplifyAndOfICmpsWithSameOperands(ICmpInst *Op0, ICmpInst *Op1) {
1568   ICmpInst::Predicate Pred0, Pred1;
1569   Value *A ,*B;
1570   if (!match(Op0, m_ICmp(Pred0, m_Value(A), m_Value(B))) ||
1571       !match(Op1, m_ICmp(Pred1, m_Specific(A), m_Specific(B))))
1572     return nullptr;
1573 
1574   // We have (icmp Pred0, A, B) & (icmp Pred1, A, B).
1575   // If Op1 is always implied true by Op0, then Op0 is a subset of Op1, and we
1576   // can eliminate Op1 from this 'and'.
1577   if (ICmpInst::isImpliedTrueByMatchingCmp(Pred0, Pred1))
1578     return Op0;
1579 
1580   // Check for any combination of predicates that are guaranteed to be disjoint.
1581   if ((Pred0 == ICmpInst::getInversePredicate(Pred1)) ||
1582       (Pred0 == ICmpInst::ICMP_EQ && ICmpInst::isFalseWhenEqual(Pred1)) ||
1583       (Pred0 == ICmpInst::ICMP_SLT && Pred1 == ICmpInst::ICMP_SGT) ||
1584       (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_UGT))
1585     return getFalse(Op0->getType());
1586 
1587   return nullptr;
1588 }
1589 
1590 /// Commuted variants are assumed to be handled by calling this function again
1591 /// with the parameters swapped.
1592 static Value *simplifyOrOfICmpsWithSameOperands(ICmpInst *Op0, ICmpInst *Op1) {
1593   ICmpInst::Predicate Pred0, Pred1;
1594   Value *A ,*B;
1595   if (!match(Op0, m_ICmp(Pred0, m_Value(A), m_Value(B))) ||
1596       !match(Op1, m_ICmp(Pred1, m_Specific(A), m_Specific(B))))
1597     return nullptr;
1598 
1599   // We have (icmp Pred0, A, B) | (icmp Pred1, A, B).
1600   // If Op1 is always implied true by Op0, then Op0 is a subset of Op1, and we
1601   // can eliminate Op0 from this 'or'.
1602   if (ICmpInst::isImpliedTrueByMatchingCmp(Pred0, Pred1))
1603     return Op1;
1604 
1605   // Check for any combination of predicates that cover the entire range of
1606   // possibilities.
1607   if ((Pred0 == ICmpInst::getInversePredicate(Pred1)) ||
1608       (Pred0 == ICmpInst::ICMP_NE && ICmpInst::isTrueWhenEqual(Pred1)) ||
1609       (Pred0 == ICmpInst::ICMP_SLE && Pred1 == ICmpInst::ICMP_SGE) ||
1610       (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_UGE))
1611     return getTrue(Op0->getType());
1612 
1613   return nullptr;
1614 }
1615 
1616 /// Test if a pair of compares with a shared operand and 2 constants has an
1617 /// empty set intersection, full set union, or if one compare is a superset of
1618 /// the other.
1619 static Value *simplifyAndOrOfICmpsWithConstants(ICmpInst *Cmp0, ICmpInst *Cmp1,
1620                                                 bool IsAnd) {
1621   // Look for this pattern: {and/or} (icmp X, C0), (icmp X, C1)).
1622   if (Cmp0->getOperand(0) != Cmp1->getOperand(0))
1623     return nullptr;
1624 
1625   const APInt *C0, *C1;
1626   if (!match(Cmp0->getOperand(1), m_APInt(C0)) ||
1627       !match(Cmp1->getOperand(1), m_APInt(C1)))
1628     return nullptr;
1629 
1630   auto Range0 = ConstantRange::makeExactICmpRegion(Cmp0->getPredicate(), *C0);
1631   auto Range1 = ConstantRange::makeExactICmpRegion(Cmp1->getPredicate(), *C1);
1632 
1633   // For and-of-compares, check if the intersection is empty:
1634   // (icmp X, C0) && (icmp X, C1) --> empty set --> false
1635   if (IsAnd && Range0.intersectWith(Range1).isEmptySet())
1636     return getFalse(Cmp0->getType());
1637 
1638   // For or-of-compares, check if the union is full:
1639   // (icmp X, C0) || (icmp X, C1) --> full set --> true
1640   if (!IsAnd && Range0.unionWith(Range1).isFullSet())
1641     return getTrue(Cmp0->getType());
1642 
1643   // Is one range a superset of the other?
1644   // If this is and-of-compares, take the smaller set:
1645   // (icmp sgt X, 4) && (icmp sgt X, 42) --> icmp sgt X, 42
1646   // If this is or-of-compares, take the larger set:
1647   // (icmp sgt X, 4) || (icmp sgt X, 42) --> icmp sgt X, 4
1648   if (Range0.contains(Range1))
1649     return IsAnd ? Cmp1 : Cmp0;
1650   if (Range1.contains(Range0))
1651     return IsAnd ? Cmp0 : Cmp1;
1652 
1653   return nullptr;
1654 }
1655 
1656 static Value *simplifyAndOrOfICmpsWithZero(ICmpInst *Cmp0, ICmpInst *Cmp1,
1657                                            bool IsAnd) {
1658   ICmpInst::Predicate P0 = Cmp0->getPredicate(), P1 = Cmp1->getPredicate();
1659   if (!match(Cmp0->getOperand(1), m_Zero()) ||
1660       !match(Cmp1->getOperand(1), m_Zero()) || P0 != P1)
1661     return nullptr;
1662 
1663   if ((IsAnd && P0 != ICmpInst::ICMP_NE) || (!IsAnd && P1 != ICmpInst::ICMP_EQ))
1664     return nullptr;
1665 
1666   // We have either "(X == 0 || Y == 0)" or "(X != 0 && Y != 0)".
1667   Value *X = Cmp0->getOperand(0);
1668   Value *Y = Cmp1->getOperand(0);
1669 
1670   // If one of the compares is a masked version of a (not) null check, then
1671   // that compare implies the other, so we eliminate the other. Optionally, look
1672   // through a pointer-to-int cast to match a null check of a pointer type.
1673 
1674   // (X == 0) || (([ptrtoint] X & ?) == 0) --> ([ptrtoint] X & ?) == 0
1675   // (X == 0) || ((? & [ptrtoint] X) == 0) --> (? & [ptrtoint] X) == 0
1676   // (X != 0) && (([ptrtoint] X & ?) != 0) --> ([ptrtoint] X & ?) != 0
1677   // (X != 0) && ((? & [ptrtoint] X) != 0) --> (? & [ptrtoint] X) != 0
1678   if (match(Y, m_c_And(m_Specific(X), m_Value())) ||
1679       match(Y, m_c_And(m_PtrToInt(m_Specific(X)), m_Value())))
1680     return Cmp1;
1681 
1682   // (([ptrtoint] Y & ?) == 0) || (Y == 0) --> ([ptrtoint] Y & ?) == 0
1683   // ((? & [ptrtoint] Y) == 0) || (Y == 0) --> (? & [ptrtoint] Y) == 0
1684   // (([ptrtoint] Y & ?) != 0) && (Y != 0) --> ([ptrtoint] Y & ?) != 0
1685   // ((? & [ptrtoint] Y) != 0) && (Y != 0) --> (? & [ptrtoint] Y) != 0
1686   if (match(X, m_c_And(m_Specific(Y), m_Value())) ||
1687       match(X, m_c_And(m_PtrToInt(m_Specific(Y)), m_Value())))
1688     return Cmp0;
1689 
1690   return nullptr;
1691 }
1692 
1693 static Value *simplifyAndOfICmpsWithAdd(ICmpInst *Op0, ICmpInst *Op1,
1694                                         const InstrInfoQuery &IIQ) {
1695   // (icmp (add V, C0), C1) & (icmp V, C0)
1696   ICmpInst::Predicate Pred0, Pred1;
1697   const APInt *C0, *C1;
1698   Value *V;
1699   if (!match(Op0, m_ICmp(Pred0, m_Add(m_Value(V), m_APInt(C0)), m_APInt(C1))))
1700     return nullptr;
1701 
1702   if (!match(Op1, m_ICmp(Pred1, m_Specific(V), m_Value())))
1703     return nullptr;
1704 
1705   auto *AddInst = cast<OverflowingBinaryOperator>(Op0->getOperand(0));
1706   if (AddInst->getOperand(1) != Op1->getOperand(1))
1707     return nullptr;
1708 
1709   Type *ITy = Op0->getType();
1710   bool isNSW = IIQ.hasNoSignedWrap(AddInst);
1711   bool isNUW = IIQ.hasNoUnsignedWrap(AddInst);
1712 
1713   const APInt Delta = *C1 - *C0;
1714   if (C0->isStrictlyPositive()) {
1715     if (Delta == 2) {
1716       if (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_SGT)
1717         return getFalse(ITy);
1718       if (Pred0 == ICmpInst::ICMP_SLT && Pred1 == ICmpInst::ICMP_SGT && isNSW)
1719         return getFalse(ITy);
1720     }
1721     if (Delta == 1) {
1722       if (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_SGT)
1723         return getFalse(ITy);
1724       if (Pred0 == ICmpInst::ICMP_SLE && Pred1 == ICmpInst::ICMP_SGT && isNSW)
1725         return getFalse(ITy);
1726     }
1727   }
1728   if (C0->getBoolValue() && isNUW) {
1729     if (Delta == 2)
1730       if (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_UGT)
1731         return getFalse(ITy);
1732     if (Delta == 1)
1733       if (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_UGT)
1734         return getFalse(ITy);
1735   }
1736 
1737   return nullptr;
1738 }
1739 
1740 /// Try to eliminate compares with signed or unsigned min/max constants.
1741 static Value *simplifyAndOrOfICmpsWithLimitConst(ICmpInst *Cmp0, ICmpInst *Cmp1,
1742                                                  bool IsAnd) {
1743   // Canonicalize an equality compare as Cmp0.
1744   if (Cmp1->isEquality())
1745     std::swap(Cmp0, Cmp1);
1746   if (!Cmp0->isEquality())
1747     return nullptr;
1748 
1749   // The non-equality compare must include a common operand (X). Canonicalize
1750   // the common operand as operand 0 (the predicate is swapped if the common
1751   // operand was operand 1).
1752   ICmpInst::Predicate Pred0 = Cmp0->getPredicate();
1753   Value *X = Cmp0->getOperand(0);
1754   ICmpInst::Predicate Pred1;
1755   bool HasNotOp = match(Cmp1, m_c_ICmp(Pred1, m_Not(m_Specific(X)), m_Value()));
1756   if (!HasNotOp && !match(Cmp1, m_c_ICmp(Pred1, m_Specific(X), m_Value())))
1757     return nullptr;
1758   if (ICmpInst::isEquality(Pred1))
1759     return nullptr;
1760 
1761   // The equality compare must be against a constant. Flip bits if we matched
1762   // a bitwise not. Convert a null pointer constant to an integer zero value.
1763   APInt MinMaxC;
1764   const APInt *C;
1765   if (match(Cmp0->getOperand(1), m_APInt(C)))
1766     MinMaxC = HasNotOp ? ~*C : *C;
1767   else if (isa<ConstantPointerNull>(Cmp0->getOperand(1)))
1768     MinMaxC = APInt::getZero(8);
1769   else
1770     return nullptr;
1771 
1772   // DeMorganize if this is 'or': P0 || P1 --> !P0 && !P1.
1773   if (!IsAnd) {
1774     Pred0 = ICmpInst::getInversePredicate(Pred0);
1775     Pred1 = ICmpInst::getInversePredicate(Pred1);
1776   }
1777 
1778   // Normalize to unsigned compare and unsigned min/max value.
1779   // Example for 8-bit: -128 + 128 -> 0; 127 + 128 -> 255
1780   if (ICmpInst::isSigned(Pred1)) {
1781     Pred1 = ICmpInst::getUnsignedPredicate(Pred1);
1782     MinMaxC += APInt::getSignedMinValue(MinMaxC.getBitWidth());
1783   }
1784 
1785   // (X != MAX) && (X < Y) --> X < Y
1786   // (X == MAX) || (X >= Y) --> X >= Y
1787   if (MinMaxC.isMaxValue())
1788     if (Pred0 == ICmpInst::ICMP_NE && Pred1 == ICmpInst::ICMP_ULT)
1789       return Cmp1;
1790 
1791   // (X != MIN) && (X > Y) -->  X > Y
1792   // (X == MIN) || (X <= Y) --> X <= Y
1793   if (MinMaxC.isMinValue())
1794     if (Pred0 == ICmpInst::ICMP_NE && Pred1 == ICmpInst::ICMP_UGT)
1795       return Cmp1;
1796 
1797   return nullptr;
1798 }
1799 
1800 static Value *simplifyAndOfICmps(ICmpInst *Op0, ICmpInst *Op1,
1801                                  const SimplifyQuery &Q) {
1802   if (Value *X = simplifyUnsignedRangeCheck(Op0, Op1, /*IsAnd=*/true, Q))
1803     return X;
1804   if (Value *X = simplifyUnsignedRangeCheck(Op1, Op0, /*IsAnd=*/true, Q))
1805     return X;
1806 
1807   if (Value *X = simplifyAndOfICmpsWithSameOperands(Op0, Op1))
1808     return X;
1809   if (Value *X = simplifyAndOfICmpsWithSameOperands(Op1, Op0))
1810     return X;
1811 
1812   if (Value *X = simplifyAndOrOfICmpsWithConstants(Op0, Op1, true))
1813     return X;
1814 
1815   if (Value *X = simplifyAndOrOfICmpsWithLimitConst(Op0, Op1, true))
1816     return X;
1817 
1818   if (Value *X = simplifyAndOrOfICmpsWithZero(Op0, Op1, true))
1819     return X;
1820 
1821   if (Value *X = simplifyAndOfICmpsWithAdd(Op0, Op1, Q.IIQ))
1822     return X;
1823   if (Value *X = simplifyAndOfICmpsWithAdd(Op1, Op0, Q.IIQ))
1824     return X;
1825 
1826   return nullptr;
1827 }
1828 
1829 static Value *simplifyOrOfICmpsWithAdd(ICmpInst *Op0, ICmpInst *Op1,
1830                                        const InstrInfoQuery &IIQ) {
1831   // (icmp (add V, C0), C1) | (icmp V, C0)
1832   ICmpInst::Predicate Pred0, Pred1;
1833   const APInt *C0, *C1;
1834   Value *V;
1835   if (!match(Op0, m_ICmp(Pred0, m_Add(m_Value(V), m_APInt(C0)), m_APInt(C1))))
1836     return nullptr;
1837 
1838   if (!match(Op1, m_ICmp(Pred1, m_Specific(V), m_Value())))
1839     return nullptr;
1840 
1841   auto *AddInst = cast<BinaryOperator>(Op0->getOperand(0));
1842   if (AddInst->getOperand(1) != Op1->getOperand(1))
1843     return nullptr;
1844 
1845   Type *ITy = Op0->getType();
1846   bool isNSW = IIQ.hasNoSignedWrap(AddInst);
1847   bool isNUW = IIQ.hasNoUnsignedWrap(AddInst);
1848 
1849   const APInt Delta = *C1 - *C0;
1850   if (C0->isStrictlyPositive()) {
1851     if (Delta == 2) {
1852       if (Pred0 == ICmpInst::ICMP_UGE && Pred1 == ICmpInst::ICMP_SLE)
1853         return getTrue(ITy);
1854       if (Pred0 == ICmpInst::ICMP_SGE && Pred1 == ICmpInst::ICMP_SLE && isNSW)
1855         return getTrue(ITy);
1856     }
1857     if (Delta == 1) {
1858       if (Pred0 == ICmpInst::ICMP_UGT && Pred1 == ICmpInst::ICMP_SLE)
1859         return getTrue(ITy);
1860       if (Pred0 == ICmpInst::ICMP_SGT && Pred1 == ICmpInst::ICMP_SLE && isNSW)
1861         return getTrue(ITy);
1862     }
1863   }
1864   if (C0->getBoolValue() && isNUW) {
1865     if (Delta == 2)
1866       if (Pred0 == ICmpInst::ICMP_UGE && Pred1 == ICmpInst::ICMP_ULE)
1867         return getTrue(ITy);
1868     if (Delta == 1)
1869       if (Pred0 == ICmpInst::ICMP_UGT && Pred1 == ICmpInst::ICMP_ULE)
1870         return getTrue(ITy);
1871   }
1872 
1873   return nullptr;
1874 }
1875 
1876 static Value *simplifyOrOfICmps(ICmpInst *Op0, ICmpInst *Op1,
1877                                 const SimplifyQuery &Q) {
1878   if (Value *X = simplifyUnsignedRangeCheck(Op0, Op1, /*IsAnd=*/false, Q))
1879     return X;
1880   if (Value *X = simplifyUnsignedRangeCheck(Op1, Op0, /*IsAnd=*/false, Q))
1881     return X;
1882 
1883   if (Value *X = simplifyOrOfICmpsWithSameOperands(Op0, Op1))
1884     return X;
1885   if (Value *X = simplifyOrOfICmpsWithSameOperands(Op1, Op0))
1886     return X;
1887 
1888   if (Value *X = simplifyAndOrOfICmpsWithConstants(Op0, Op1, false))
1889     return X;
1890 
1891   if (Value *X = simplifyAndOrOfICmpsWithLimitConst(Op0, Op1, false))
1892     return X;
1893 
1894   if (Value *X = simplifyAndOrOfICmpsWithZero(Op0, Op1, false))
1895     return X;
1896 
1897   if (Value *X = simplifyOrOfICmpsWithAdd(Op0, Op1, Q.IIQ))
1898     return X;
1899   if (Value *X = simplifyOrOfICmpsWithAdd(Op1, Op0, Q.IIQ))
1900     return X;
1901 
1902   return nullptr;
1903 }
1904 
1905 static Value *simplifyAndOrOfFCmps(const TargetLibraryInfo *TLI,
1906                                    FCmpInst *LHS, FCmpInst *RHS, bool IsAnd) {
1907   Value *LHS0 = LHS->getOperand(0), *LHS1 = LHS->getOperand(1);
1908   Value *RHS0 = RHS->getOperand(0), *RHS1 = RHS->getOperand(1);
1909   if (LHS0->getType() != RHS0->getType())
1910     return nullptr;
1911 
1912   FCmpInst::Predicate PredL = LHS->getPredicate(), PredR = RHS->getPredicate();
1913   if ((PredL == FCmpInst::FCMP_ORD && PredR == FCmpInst::FCMP_ORD && IsAnd) ||
1914       (PredL == FCmpInst::FCMP_UNO && PredR == FCmpInst::FCMP_UNO && !IsAnd)) {
1915     // (fcmp ord NNAN, X) & (fcmp ord X, Y) --> fcmp ord X, Y
1916     // (fcmp ord NNAN, X) & (fcmp ord Y, X) --> fcmp ord Y, X
1917     // (fcmp ord X, NNAN) & (fcmp ord X, Y) --> fcmp ord X, Y
1918     // (fcmp ord X, NNAN) & (fcmp ord Y, X) --> fcmp ord Y, X
1919     // (fcmp uno NNAN, X) | (fcmp uno X, Y) --> fcmp uno X, Y
1920     // (fcmp uno NNAN, X) | (fcmp uno Y, X) --> fcmp uno Y, X
1921     // (fcmp uno X, NNAN) | (fcmp uno X, Y) --> fcmp uno X, Y
1922     // (fcmp uno X, NNAN) | (fcmp uno Y, X) --> fcmp uno Y, X
1923     if ((isKnownNeverNaN(LHS0, TLI) && (LHS1 == RHS0 || LHS1 == RHS1)) ||
1924         (isKnownNeverNaN(LHS1, TLI) && (LHS0 == RHS0 || LHS0 == RHS1)))
1925       return RHS;
1926 
1927     // (fcmp ord X, Y) & (fcmp ord NNAN, X) --> fcmp ord X, Y
1928     // (fcmp ord Y, X) & (fcmp ord NNAN, X) --> fcmp ord Y, X
1929     // (fcmp ord X, Y) & (fcmp ord X, NNAN) --> fcmp ord X, Y
1930     // (fcmp ord Y, X) & (fcmp ord X, NNAN) --> fcmp ord Y, X
1931     // (fcmp uno X, Y) | (fcmp uno NNAN, X) --> fcmp uno X, Y
1932     // (fcmp uno Y, X) | (fcmp uno NNAN, X) --> fcmp uno Y, X
1933     // (fcmp uno X, Y) | (fcmp uno X, NNAN) --> fcmp uno X, Y
1934     // (fcmp uno Y, X) | (fcmp uno X, NNAN) --> fcmp uno Y, X
1935     if ((isKnownNeverNaN(RHS0, TLI) && (RHS1 == LHS0 || RHS1 == LHS1)) ||
1936         (isKnownNeverNaN(RHS1, TLI) && (RHS0 == LHS0 || RHS0 == LHS1)))
1937       return LHS;
1938   }
1939 
1940   return nullptr;
1941 }
1942 
1943 static Value *simplifyAndOrOfCmps(const SimplifyQuery &Q,
1944                                   Value *Op0, Value *Op1, bool IsAnd) {
1945   // Look through casts of the 'and' operands to find compares.
1946   auto *Cast0 = dyn_cast<CastInst>(Op0);
1947   auto *Cast1 = dyn_cast<CastInst>(Op1);
1948   if (Cast0 && Cast1 && Cast0->getOpcode() == Cast1->getOpcode() &&
1949       Cast0->getSrcTy() == Cast1->getSrcTy()) {
1950     Op0 = Cast0->getOperand(0);
1951     Op1 = Cast1->getOperand(0);
1952   }
1953 
1954   Value *V = nullptr;
1955   auto *ICmp0 = dyn_cast<ICmpInst>(Op0);
1956   auto *ICmp1 = dyn_cast<ICmpInst>(Op1);
1957   if (ICmp0 && ICmp1)
1958     V = IsAnd ? simplifyAndOfICmps(ICmp0, ICmp1, Q)
1959               : simplifyOrOfICmps(ICmp0, ICmp1, Q);
1960 
1961   auto *FCmp0 = dyn_cast<FCmpInst>(Op0);
1962   auto *FCmp1 = dyn_cast<FCmpInst>(Op1);
1963   if (FCmp0 && FCmp1)
1964     V = simplifyAndOrOfFCmps(Q.TLI, FCmp0, FCmp1, IsAnd);
1965 
1966   if (!V)
1967     return nullptr;
1968   if (!Cast0)
1969     return V;
1970 
1971   // If we looked through casts, we can only handle a constant simplification
1972   // because we are not allowed to create a cast instruction here.
1973   if (auto *C = dyn_cast<Constant>(V))
1974     return ConstantExpr::getCast(Cast0->getOpcode(), C, Cast0->getType());
1975 
1976   return nullptr;
1977 }
1978 
1979 /// Given a bitwise logic op, check if the operands are add/sub with a common
1980 /// source value and inverted constant (identity: C - X -> ~(X + ~C)).
1981 static Value *simplifyLogicOfAddSub(Value *Op0, Value *Op1,
1982                                     Instruction::BinaryOps Opcode) {
1983   assert(Op0->getType() == Op1->getType() && "Mismatched binop types");
1984   assert(BinaryOperator::isBitwiseLogicOp(Opcode) && "Expected logic op");
1985   Value *X;
1986   Constant *C1, *C2;
1987   if ((match(Op0, m_Add(m_Value(X), m_Constant(C1))) &&
1988        match(Op1, m_Sub(m_Constant(C2), m_Specific(X)))) ||
1989       (match(Op1, m_Add(m_Value(X), m_Constant(C1))) &&
1990        match(Op0, m_Sub(m_Constant(C2), m_Specific(X))))) {
1991     if (ConstantExpr::getNot(C1) == C2) {
1992       // (X + C) & (~C - X) --> (X + C) & ~(X + C) --> 0
1993       // (X + C) | (~C - X) --> (X + C) | ~(X + C) --> -1
1994       // (X + C) ^ (~C - X) --> (X + C) ^ ~(X + C) --> -1
1995       Type *Ty = Op0->getType();
1996       return Opcode == Instruction::And ? ConstantInt::getNullValue(Ty)
1997                                         : ConstantInt::getAllOnesValue(Ty);
1998     }
1999   }
2000   return nullptr;
2001 }
2002 
2003 /// Given operands for an And, see if we can fold the result.
2004 /// If not, this returns null.
2005 static Value *SimplifyAndInst(Value *Op0, Value *Op1, const SimplifyQuery &Q,
2006                               unsigned MaxRecurse) {
2007   if (Constant *C = foldOrCommuteConstant(Instruction::And, Op0, Op1, Q))
2008     return C;
2009 
2010   // X & poison -> poison
2011   if (isa<PoisonValue>(Op1))
2012     return Op1;
2013 
2014   // X & undef -> 0
2015   if (Q.isUndefValue(Op1))
2016     return Constant::getNullValue(Op0->getType());
2017 
2018   // X & X = X
2019   if (Op0 == Op1)
2020     return Op0;
2021 
2022   // X & 0 = 0
2023   if (match(Op1, m_Zero()))
2024     return Constant::getNullValue(Op0->getType());
2025 
2026   // X & -1 = X
2027   if (match(Op1, m_AllOnes()))
2028     return Op0;
2029 
2030   // A & ~A  =  ~A & A  =  0
2031   if (match(Op0, m_Not(m_Specific(Op1))) ||
2032       match(Op1, m_Not(m_Specific(Op0))))
2033     return Constant::getNullValue(Op0->getType());
2034 
2035   // (A | ?) & A = A
2036   if (match(Op0, m_c_Or(m_Specific(Op1), m_Value())))
2037     return Op1;
2038 
2039   // A & (A | ?) = A
2040   if (match(Op1, m_c_Or(m_Specific(Op0), m_Value())))
2041     return Op0;
2042 
2043   // (X | Y) & (X | ~Y) --> X (commuted 8 ways)
2044   Value *X, *Y;
2045   if (match(Op0, m_c_Or(m_Value(X), m_Not(m_Value(Y)))) &&
2046       match(Op1, m_c_Or(m_Deferred(X), m_Deferred(Y))))
2047     return X;
2048   if (match(Op1, m_c_Or(m_Value(X), m_Not(m_Value(Y)))) &&
2049       match(Op0, m_c_Or(m_Deferred(X), m_Deferred(Y))))
2050     return X;
2051 
2052   if (Value *V = simplifyLogicOfAddSub(Op0, Op1, Instruction::And))
2053     return V;
2054 
2055   // A mask that only clears known zeros of a shifted value is a no-op.
2056   const APInt *Mask;
2057   const APInt *ShAmt;
2058   if (match(Op1, m_APInt(Mask))) {
2059     // If all bits in the inverted and shifted mask are clear:
2060     // and (shl X, ShAmt), Mask --> shl X, ShAmt
2061     if (match(Op0, m_Shl(m_Value(X), m_APInt(ShAmt))) &&
2062         (~(*Mask)).lshr(*ShAmt).isZero())
2063       return Op0;
2064 
2065     // If all bits in the inverted and shifted mask are clear:
2066     // and (lshr X, ShAmt), Mask --> lshr X, ShAmt
2067     if (match(Op0, m_LShr(m_Value(X), m_APInt(ShAmt))) &&
2068         (~(*Mask)).shl(*ShAmt).isZero())
2069       return Op0;
2070   }
2071 
2072   // If we have a multiplication overflow check that is being 'and'ed with a
2073   // check that one of the multipliers is not zero, we can omit the 'and', and
2074   // only keep the overflow check.
2075   if (isCheckForZeroAndMulWithOverflow(Op0, Op1, true))
2076     return Op1;
2077   if (isCheckForZeroAndMulWithOverflow(Op1, Op0, true))
2078     return Op0;
2079 
2080   // A & (-A) = A if A is a power of two or zero.
2081   if (match(Op0, m_Neg(m_Specific(Op1))) ||
2082       match(Op1, m_Neg(m_Specific(Op0)))) {
2083     if (isKnownToBeAPowerOfTwo(Op0, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI,
2084                                Q.DT))
2085       return Op0;
2086     if (isKnownToBeAPowerOfTwo(Op1, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI,
2087                                Q.DT))
2088       return Op1;
2089   }
2090 
2091   // This is a similar pattern used for checking if a value is a power-of-2:
2092   // (A - 1) & A --> 0 (if A is a power-of-2 or 0)
2093   // A & (A - 1) --> 0 (if A is a power-of-2 or 0)
2094   if (match(Op0, m_Add(m_Specific(Op1), m_AllOnes())) &&
2095       isKnownToBeAPowerOfTwo(Op1, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI, Q.DT))
2096     return Constant::getNullValue(Op1->getType());
2097   if (match(Op1, m_Add(m_Specific(Op0), m_AllOnes())) &&
2098       isKnownToBeAPowerOfTwo(Op0, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI, Q.DT))
2099     return Constant::getNullValue(Op0->getType());
2100 
2101   if (Value *V = simplifyAndOrOfCmps(Q, Op0, Op1, true))
2102     return V;
2103 
2104   // Try some generic simplifications for associative operations.
2105   if (Value *V = SimplifyAssociativeBinOp(Instruction::And, Op0, Op1, Q,
2106                                           MaxRecurse))
2107     return V;
2108 
2109   // And distributes over Or.  Try some generic simplifications based on this.
2110   if (Value *V = expandCommutativeBinOp(Instruction::And, Op0, Op1,
2111                                         Instruction::Or, Q, MaxRecurse))
2112     return V;
2113 
2114   // And distributes over Xor.  Try some generic simplifications based on this.
2115   if (Value *V = expandCommutativeBinOp(Instruction::And, Op0, Op1,
2116                                         Instruction::Xor, Q, MaxRecurse))
2117     return V;
2118 
2119   if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) {
2120     if (Op0->getType()->isIntOrIntVectorTy(1)) {
2121       // A & (A && B) -> A && B
2122       if (match(Op1, m_Select(m_Specific(Op0), m_Value(), m_Zero())))
2123         return Op1;
2124       else if (match(Op0, m_Select(m_Specific(Op1), m_Value(), m_Zero())))
2125         return Op0;
2126     }
2127     // If the operation is with the result of a select instruction, check
2128     // whether operating on either branch of the select always yields the same
2129     // value.
2130     if (Value *V = ThreadBinOpOverSelect(Instruction::And, Op0, Op1, Q,
2131                                          MaxRecurse))
2132       return V;
2133   }
2134 
2135   // If the operation is with the result of a phi instruction, check whether
2136   // operating on all incoming values of the phi always yields the same value.
2137   if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
2138     if (Value *V = ThreadBinOpOverPHI(Instruction::And, Op0, Op1, Q,
2139                                       MaxRecurse))
2140       return V;
2141 
2142   // Assuming the effective width of Y is not larger than A, i.e. all bits
2143   // from X and Y are disjoint in (X << A) | Y,
2144   // if the mask of this AND op covers all bits of X or Y, while it covers
2145   // no bits from the other, we can bypass this AND op. E.g.,
2146   // ((X << A) | Y) & Mask -> Y,
2147   //     if Mask = ((1 << effective_width_of(Y)) - 1)
2148   // ((X << A) | Y) & Mask -> X << A,
2149   //     if Mask = ((1 << effective_width_of(X)) - 1) << A
2150   // SimplifyDemandedBits in InstCombine can optimize the general case.
2151   // This pattern aims to help other passes for a common case.
2152   Value *XShifted;
2153   if (match(Op1, m_APInt(Mask)) &&
2154       match(Op0, m_c_Or(m_CombineAnd(m_NUWShl(m_Value(X), m_APInt(ShAmt)),
2155                                      m_Value(XShifted)),
2156                         m_Value(Y)))) {
2157     const unsigned Width = Op0->getType()->getScalarSizeInBits();
2158     const unsigned ShftCnt = ShAmt->getLimitedValue(Width);
2159     const KnownBits YKnown = computeKnownBits(Y, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
2160     const unsigned EffWidthY = YKnown.countMaxActiveBits();
2161     if (EffWidthY <= ShftCnt) {
2162       const KnownBits XKnown = computeKnownBits(X, Q.DL, 0, Q.AC, Q.CxtI,
2163                                                 Q.DT);
2164       const unsigned EffWidthX = XKnown.countMaxActiveBits();
2165       const APInt EffBitsY = APInt::getLowBitsSet(Width, EffWidthY);
2166       const APInt EffBitsX = APInt::getLowBitsSet(Width, EffWidthX) << ShftCnt;
2167       // If the mask is extracting all bits from X or Y as is, we can skip
2168       // this AND op.
2169       if (EffBitsY.isSubsetOf(*Mask) && !EffBitsX.intersects(*Mask))
2170         return Y;
2171       if (EffBitsX.isSubsetOf(*Mask) && !EffBitsY.intersects(*Mask))
2172         return XShifted;
2173     }
2174   }
2175 
2176   return nullptr;
2177 }
2178 
2179 Value *llvm::SimplifyAndInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) {
2180   return ::SimplifyAndInst(Op0, Op1, Q, RecursionLimit);
2181 }
2182 
2183 static Value *simplifyOrLogic(Value *X, Value *Y) {
2184   assert(X->getType() == Y->getType() && "Expected same type for 'or' ops");
2185   Type *Ty = X->getType();
2186 
2187   // X | ~X --> -1
2188   if (match(Y, m_Not(m_Specific(X))))
2189     return ConstantInt::getAllOnesValue(Ty);
2190 
2191   // X | ~(X & ?) = -1
2192   if (match(Y, m_Not(m_c_And(m_Specific(X), m_Value()))))
2193     return ConstantInt::getAllOnesValue(Ty);
2194 
2195   // X | (X & ?) --> X
2196   if (match(Y, m_c_And(m_Specific(X), m_Value())))
2197     return X;
2198 
2199   Value *A, *B;
2200 
2201   // (A ^ B) | (A | B) --> A | B
2202   // (A ^ B) | (B | A) --> B | A
2203   if (match(X, m_Xor(m_Value(A), m_Value(B))) &&
2204       match(Y, m_c_Or(m_Specific(A), m_Specific(B))))
2205     return Y;
2206 
2207   // ~(A ^ B) | (A | B) --> -1
2208   // ~(A ^ B) | (B | A) --> -1
2209   if (match(X, m_Not(m_Xor(m_Value(A), m_Value(B)))) &&
2210       match(Y, m_c_Or(m_Specific(A), m_Specific(B))))
2211     return ConstantInt::getAllOnesValue(Ty);
2212 
2213   // (A & ~B) | (A ^ B) --> A ^ B
2214   // (~B & A) | (A ^ B) --> A ^ B
2215   // (A & ~B) | (B ^ A) --> B ^ A
2216   // (~B & A) | (B ^ A) --> B ^ A
2217   if (match(X, m_c_And(m_Value(A), m_Not(m_Value(B)))) &&
2218       match(Y, m_c_Xor(m_Specific(A), m_Specific(B))))
2219     return Y;
2220 
2221   // (~A ^ B) | (A & B) --> ~A ^ B
2222   // (B ^ ~A) | (A & B) --> B ^ ~A
2223   // (~A ^ B) | (B & A) --> ~A ^ B
2224   // (B ^ ~A) | (B & A) --> B ^ ~A
2225   if (match(X, m_c_Xor(m_Not(m_Value(A)), m_Value(B))) &&
2226       match(Y, m_c_And(m_Specific(A), m_Specific(B))))
2227     return X;
2228 
2229   // (~A | B) | (A ^ B) --> -1
2230   // (~A | B) | (B ^ A) --> -1
2231   // (B | ~A) | (A ^ B) --> -1
2232   // (B | ~A) | (B ^ A) --> -1
2233   if (match(X, m_c_Or(m_Not(m_Value(A)), m_Value(B))) &&
2234       match(Y, m_c_Xor(m_Specific(A), m_Specific(B))))
2235     return ConstantInt::getAllOnesValue(Ty);
2236 
2237   // (~A & B) | ~(A | B) --> ~A
2238   // (~A & B) | ~(B | A) --> ~A
2239   // (B & ~A) | ~(A | B) --> ~A
2240   // (B & ~A) | ~(B | A) --> ~A
2241   Value *NotA;
2242   if (match(X,
2243             m_c_And(m_CombineAnd(m_Value(NotA), m_NotForbidUndef(m_Value(A))),
2244                     m_Value(B))) &&
2245       match(Y, m_Not(m_c_Or(m_Specific(A), m_Specific(B)))))
2246     return NotA;
2247 
2248   return nullptr;
2249 }
2250 
2251 /// Given operands for an Or, see if we can fold the result.
2252 /// If not, this returns null.
2253 static Value *SimplifyOrInst(Value *Op0, Value *Op1, const SimplifyQuery &Q,
2254                              unsigned MaxRecurse) {
2255   if (Constant *C = foldOrCommuteConstant(Instruction::Or, Op0, Op1, Q))
2256     return C;
2257 
2258   // X | poison -> poison
2259   if (isa<PoisonValue>(Op1))
2260     return Op1;
2261 
2262   // X | undef -> -1
2263   // X | -1 = -1
2264   // Do not return Op1 because it may contain undef elements if it's a vector.
2265   if (Q.isUndefValue(Op1) || match(Op1, m_AllOnes()))
2266     return Constant::getAllOnesValue(Op0->getType());
2267 
2268   // X | X = X
2269   // X | 0 = X
2270   if (Op0 == Op1 || match(Op1, m_Zero()))
2271     return Op0;
2272 
2273   if (Value *R = simplifyOrLogic(Op0, Op1))
2274     return R;
2275   if (Value *R = simplifyOrLogic(Op1, Op0))
2276     return R;
2277 
2278   if (Value *V = simplifyLogicOfAddSub(Op0, Op1, Instruction::Or))
2279     return V;
2280 
2281   // Rotated -1 is still -1:
2282   // (-1 << X) | (-1 >> (C - X)) --> -1
2283   // (-1 >> X) | (-1 << (C - X)) --> -1
2284   // ...with C <= bitwidth (and commuted variants).
2285   Value *X, *Y;
2286   if ((match(Op0, m_Shl(m_AllOnes(), m_Value(X))) &&
2287        match(Op1, m_LShr(m_AllOnes(), m_Value(Y)))) ||
2288       (match(Op1, m_Shl(m_AllOnes(), m_Value(X))) &&
2289        match(Op0, m_LShr(m_AllOnes(), m_Value(Y))))) {
2290     const APInt *C;
2291     if ((match(X, m_Sub(m_APInt(C), m_Specific(Y))) ||
2292          match(Y, m_Sub(m_APInt(C), m_Specific(X)))) &&
2293         C->ule(X->getType()->getScalarSizeInBits())) {
2294       return ConstantInt::getAllOnesValue(X->getType());
2295     }
2296   }
2297 
2298   if (Value *V = simplifyAndOrOfCmps(Q, Op0, Op1, false))
2299     return V;
2300 
2301   // If we have a multiplication overflow check that is being 'and'ed with a
2302   // check that one of the multipliers is not zero, we can omit the 'and', and
2303   // only keep the overflow check.
2304   if (isCheckForZeroAndMulWithOverflow(Op0, Op1, false))
2305     return Op1;
2306   if (isCheckForZeroAndMulWithOverflow(Op1, Op0, false))
2307     return Op0;
2308 
2309   // Try some generic simplifications for associative operations.
2310   if (Value *V = SimplifyAssociativeBinOp(Instruction::Or, Op0, Op1, Q,
2311                                           MaxRecurse))
2312     return V;
2313 
2314   // Or distributes over And.  Try some generic simplifications based on this.
2315   if (Value *V = expandCommutativeBinOp(Instruction::Or, Op0, Op1,
2316                                         Instruction::And, Q, MaxRecurse))
2317     return V;
2318 
2319   if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) {
2320     if (Op0->getType()->isIntOrIntVectorTy(1)) {
2321       // A | (A || B) -> A || B
2322       if (match(Op1, m_Select(m_Specific(Op0), m_One(), m_Value())))
2323         return Op1;
2324       else if (match(Op0, m_Select(m_Specific(Op1), m_One(), m_Value())))
2325         return Op0;
2326     }
2327     // If the operation is with the result of a select instruction, check
2328     // whether operating on either branch of the select always yields the same
2329     // value.
2330     if (Value *V = ThreadBinOpOverSelect(Instruction::Or, Op0, Op1, Q,
2331                                          MaxRecurse))
2332       return V;
2333   }
2334 
2335   // (A & C1)|(B & C2)
2336   Value *A, *B;
2337   const APInt *C1, *C2;
2338   if (match(Op0, m_And(m_Value(A), m_APInt(C1))) &&
2339       match(Op1, m_And(m_Value(B), m_APInt(C2)))) {
2340     if (*C1 == ~*C2) {
2341       // (A & C1)|(B & C2)
2342       // If we have: ((V + N) & C1) | (V & C2)
2343       // .. and C2 = ~C1 and C2 is 0+1+ and (N & C2) == 0
2344       // replace with V+N.
2345       Value *N;
2346       if (C2->isMask() && // C2 == 0+1+
2347           match(A, m_c_Add(m_Specific(B), m_Value(N)))) {
2348         // Add commutes, try both ways.
2349         if (MaskedValueIsZero(N, *C2, Q.DL, 0, Q.AC, Q.CxtI, Q.DT))
2350           return A;
2351       }
2352       // Or commutes, try both ways.
2353       if (C1->isMask() &&
2354           match(B, m_c_Add(m_Specific(A), m_Value(N)))) {
2355         // Add commutes, try both ways.
2356         if (MaskedValueIsZero(N, *C1, Q.DL, 0, Q.AC, Q.CxtI, Q.DT))
2357           return B;
2358       }
2359     }
2360   }
2361 
2362   // If the operation is with the result of a phi instruction, check whether
2363   // operating on all incoming values of the phi always yields the same value.
2364   if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
2365     if (Value *V = ThreadBinOpOverPHI(Instruction::Or, Op0, Op1, Q, MaxRecurse))
2366       return V;
2367 
2368   return nullptr;
2369 }
2370 
2371 Value *llvm::SimplifyOrInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) {
2372   return ::SimplifyOrInst(Op0, Op1, Q, RecursionLimit);
2373 }
2374 
2375 /// Given operands for a Xor, see if we can fold the result.
2376 /// If not, this returns null.
2377 static Value *SimplifyXorInst(Value *Op0, Value *Op1, const SimplifyQuery &Q,
2378                               unsigned MaxRecurse) {
2379   if (Constant *C = foldOrCommuteConstant(Instruction::Xor, Op0, Op1, Q))
2380     return C;
2381 
2382   // A ^ undef -> undef
2383   if (Q.isUndefValue(Op1))
2384     return Op1;
2385 
2386   // A ^ 0 = A
2387   if (match(Op1, m_Zero()))
2388     return Op0;
2389 
2390   // A ^ A = 0
2391   if (Op0 == Op1)
2392     return Constant::getNullValue(Op0->getType());
2393 
2394   // A ^ ~A  =  ~A ^ A  =  -1
2395   if (match(Op0, m_Not(m_Specific(Op1))) ||
2396       match(Op1, m_Not(m_Specific(Op0))))
2397     return Constant::getAllOnesValue(Op0->getType());
2398 
2399   auto foldAndOrNot = [](Value *X, Value *Y) -> Value * {
2400     Value *A, *B;
2401     // (~A & B) ^ (A | B) --> A -- There are 8 commuted variants.
2402     if (match(X, m_c_And(m_Not(m_Value(A)), m_Value(B))) &&
2403         match(Y, m_c_Or(m_Specific(A), m_Specific(B))))
2404       return A;
2405 
2406     // (~A | B) ^ (A & B) --> ~A -- There are 8 commuted variants.
2407     // The 'not' op must contain a complete -1 operand (no undef elements for
2408     // vector) for the transform to be safe.
2409     Value *NotA;
2410     if (match(X,
2411               m_c_Or(m_CombineAnd(m_NotForbidUndef(m_Value(A)), m_Value(NotA)),
2412                      m_Value(B))) &&
2413         match(Y, m_c_And(m_Specific(A), m_Specific(B))))
2414       return NotA;
2415 
2416     return nullptr;
2417   };
2418   if (Value *R = foldAndOrNot(Op0, Op1))
2419     return R;
2420   if (Value *R = foldAndOrNot(Op1, Op0))
2421     return R;
2422 
2423   if (Value *V = simplifyLogicOfAddSub(Op0, Op1, Instruction::Xor))
2424     return V;
2425 
2426   // Try some generic simplifications for associative operations.
2427   if (Value *V = SimplifyAssociativeBinOp(Instruction::Xor, Op0, Op1, Q,
2428                                           MaxRecurse))
2429     return V;
2430 
2431   // Threading Xor over selects and phi nodes is pointless, so don't bother.
2432   // Threading over the select in "A ^ select(cond, B, C)" means evaluating
2433   // "A^B" and "A^C" and seeing if they are equal; but they are equal if and
2434   // only if B and C are equal.  If B and C are equal then (since we assume
2435   // that operands have already been simplified) "select(cond, B, C)" should
2436   // have been simplified to the common value of B and C already.  Analysing
2437   // "A^B" and "A^C" thus gains nothing, but costs compile time.  Similarly
2438   // for threading over phi nodes.
2439 
2440   return nullptr;
2441 }
2442 
2443 Value *llvm::SimplifyXorInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) {
2444   return ::SimplifyXorInst(Op0, Op1, Q, RecursionLimit);
2445 }
2446 
2447 
2448 static Type *GetCompareTy(Value *Op) {
2449   return CmpInst::makeCmpResultType(Op->getType());
2450 }
2451 
2452 /// Rummage around inside V looking for something equivalent to the comparison
2453 /// "LHS Pred RHS". Return such a value if found, otherwise return null.
2454 /// Helper function for analyzing max/min idioms.
2455 static Value *ExtractEquivalentCondition(Value *V, CmpInst::Predicate Pred,
2456                                          Value *LHS, Value *RHS) {
2457   SelectInst *SI = dyn_cast<SelectInst>(V);
2458   if (!SI)
2459     return nullptr;
2460   CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition());
2461   if (!Cmp)
2462     return nullptr;
2463   Value *CmpLHS = Cmp->getOperand(0), *CmpRHS = Cmp->getOperand(1);
2464   if (Pred == Cmp->getPredicate() && LHS == CmpLHS && RHS == CmpRHS)
2465     return Cmp;
2466   if (Pred == CmpInst::getSwappedPredicate(Cmp->getPredicate()) &&
2467       LHS == CmpRHS && RHS == CmpLHS)
2468     return Cmp;
2469   return nullptr;
2470 }
2471 
2472 // A significant optimization not implemented here is assuming that alloca
2473 // addresses are not equal to incoming argument values. They don't *alias*,
2474 // as we say, but that doesn't mean they aren't equal, so we take a
2475 // conservative approach.
2476 //
2477 // This is inspired in part by C++11 5.10p1:
2478 //   "Two pointers of the same type compare equal if and only if they are both
2479 //    null, both point to the same function, or both represent the same
2480 //    address."
2481 //
2482 // This is pretty permissive.
2483 //
2484 // It's also partly due to C11 6.5.9p6:
2485 //   "Two pointers compare equal if and only if both are null pointers, both are
2486 //    pointers to the same object (including a pointer to an object and a
2487 //    subobject at its beginning) or function, both are pointers to one past the
2488 //    last element of the same array object, or one is a pointer to one past the
2489 //    end of one array object and the other is a pointer to the start of a
2490 //    different array object that happens to immediately follow the first array
2491 //    object in the address space.)
2492 //
2493 // C11's version is more restrictive, however there's no reason why an argument
2494 // couldn't be a one-past-the-end value for a stack object in the caller and be
2495 // equal to the beginning of a stack object in the callee.
2496 //
2497 // If the C and C++ standards are ever made sufficiently restrictive in this
2498 // area, it may be possible to update LLVM's semantics accordingly and reinstate
2499 // this optimization.
2500 static Constant *
2501 computePointerICmp(CmpInst::Predicate Pred, Value *LHS, Value *RHS,
2502                    const SimplifyQuery &Q) {
2503   const DataLayout &DL = Q.DL;
2504   const TargetLibraryInfo *TLI = Q.TLI;
2505   const DominatorTree *DT = Q.DT;
2506   const Instruction *CxtI = Q.CxtI;
2507   const InstrInfoQuery &IIQ = Q.IIQ;
2508 
2509   // First, skip past any trivial no-ops.
2510   LHS = LHS->stripPointerCasts();
2511   RHS = RHS->stripPointerCasts();
2512 
2513   // A non-null pointer is not equal to a null pointer.
2514   if (isa<ConstantPointerNull>(RHS) && ICmpInst::isEquality(Pred) &&
2515       llvm::isKnownNonZero(LHS, DL, 0, nullptr, nullptr, nullptr,
2516                            IIQ.UseInstrInfo))
2517     return ConstantInt::get(GetCompareTy(LHS),
2518                             !CmpInst::isTrueWhenEqual(Pred));
2519 
2520   // We can only fold certain predicates on pointer comparisons.
2521   switch (Pred) {
2522   default:
2523     return nullptr;
2524 
2525     // Equality comaprisons are easy to fold.
2526   case CmpInst::ICMP_EQ:
2527   case CmpInst::ICMP_NE:
2528     break;
2529 
2530     // We can only handle unsigned relational comparisons because 'inbounds' on
2531     // a GEP only protects against unsigned wrapping.
2532   case CmpInst::ICMP_UGT:
2533   case CmpInst::ICMP_UGE:
2534   case CmpInst::ICMP_ULT:
2535   case CmpInst::ICMP_ULE:
2536     // However, we have to switch them to their signed variants to handle
2537     // negative indices from the base pointer.
2538     Pred = ICmpInst::getSignedPredicate(Pred);
2539     break;
2540   }
2541 
2542   // Strip off any constant offsets so that we can reason about them.
2543   // It's tempting to use getUnderlyingObject or even just stripInBoundsOffsets
2544   // here and compare base addresses like AliasAnalysis does, however there are
2545   // numerous hazards. AliasAnalysis and its utilities rely on special rules
2546   // governing loads and stores which don't apply to icmps. Also, AliasAnalysis
2547   // doesn't need to guarantee pointer inequality when it says NoAlias.
2548   Constant *LHSOffset = stripAndComputeConstantOffsets(DL, LHS);
2549   Constant *RHSOffset = stripAndComputeConstantOffsets(DL, RHS);
2550 
2551   // If LHS and RHS are related via constant offsets to the same base
2552   // value, we can replace it with an icmp which just compares the offsets.
2553   if (LHS == RHS)
2554     return ConstantExpr::getICmp(Pred, LHSOffset, RHSOffset);
2555 
2556   // Various optimizations for (in)equality comparisons.
2557   if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE) {
2558     // Different non-empty allocations that exist at the same time have
2559     // different addresses (if the program can tell). Global variables always
2560     // exist, so they always exist during the lifetime of each other and all
2561     // allocas. Two different allocas usually have different addresses...
2562     //
2563     // However, if there's an @llvm.stackrestore dynamically in between two
2564     // allocas, they may have the same address. It's tempting to reduce the
2565     // scope of the problem by only looking at *static* allocas here. That would
2566     // cover the majority of allocas while significantly reducing the likelihood
2567     // of having an @llvm.stackrestore pop up in the middle. However, it's not
2568     // actually impossible for an @llvm.stackrestore to pop up in the middle of
2569     // an entry block. Also, if we have a block that's not attached to a
2570     // function, we can't tell if it's "static" under the current definition.
2571     // Theoretically, this problem could be fixed by creating a new kind of
2572     // instruction kind specifically for static allocas. Such a new instruction
2573     // could be required to be at the top of the entry block, thus preventing it
2574     // from being subject to a @llvm.stackrestore. Instcombine could even
2575     // convert regular allocas into these special allocas. It'd be nifty.
2576     // However, until then, this problem remains open.
2577     //
2578     // So, we'll assume that two non-empty allocas have different addresses
2579     // for now.
2580     //
2581     // With all that, if the offsets are within the bounds of their allocations
2582     // (and not one-past-the-end! so we can't use inbounds!), and their
2583     // allocations aren't the same, the pointers are not equal.
2584     //
2585     // Note that it's not necessary to check for LHS being a global variable
2586     // address, due to canonicalization and constant folding.
2587     if (isa<AllocaInst>(LHS) &&
2588         (isa<AllocaInst>(RHS) || isa<GlobalVariable>(RHS))) {
2589       ConstantInt *LHSOffsetCI = dyn_cast<ConstantInt>(LHSOffset);
2590       ConstantInt *RHSOffsetCI = dyn_cast<ConstantInt>(RHSOffset);
2591       uint64_t LHSSize, RHSSize;
2592       ObjectSizeOpts Opts;
2593       Opts.NullIsUnknownSize =
2594           NullPointerIsDefined(cast<AllocaInst>(LHS)->getFunction());
2595       if (LHSOffsetCI && RHSOffsetCI &&
2596           getObjectSize(LHS, LHSSize, DL, TLI, Opts) &&
2597           getObjectSize(RHS, RHSSize, DL, TLI, Opts)) {
2598         const APInt &LHSOffsetValue = LHSOffsetCI->getValue();
2599         const APInt &RHSOffsetValue = RHSOffsetCI->getValue();
2600         if (!LHSOffsetValue.isNegative() &&
2601             !RHSOffsetValue.isNegative() &&
2602             LHSOffsetValue.ult(LHSSize) &&
2603             RHSOffsetValue.ult(RHSSize)) {
2604           return ConstantInt::get(GetCompareTy(LHS),
2605                                   !CmpInst::isTrueWhenEqual(Pred));
2606         }
2607       }
2608 
2609       // Repeat the above check but this time without depending on DataLayout
2610       // or being able to compute a precise size.
2611       if (!cast<PointerType>(LHS->getType())->isEmptyTy() &&
2612           !cast<PointerType>(RHS->getType())->isEmptyTy() &&
2613           LHSOffset->isNullValue() &&
2614           RHSOffset->isNullValue())
2615         return ConstantInt::get(GetCompareTy(LHS),
2616                                 !CmpInst::isTrueWhenEqual(Pred));
2617     }
2618 
2619     // Even if an non-inbounds GEP occurs along the path we can still optimize
2620     // equality comparisons concerning the result. We avoid walking the whole
2621     // chain again by starting where the last calls to
2622     // stripAndComputeConstantOffsets left off and accumulate the offsets.
2623     Constant *LHSNoBound = stripAndComputeConstantOffsets(DL, LHS, true);
2624     Constant *RHSNoBound = stripAndComputeConstantOffsets(DL, RHS, true);
2625     if (LHS == RHS)
2626       return ConstantExpr::getICmp(Pred,
2627                                    ConstantExpr::getAdd(LHSOffset, LHSNoBound),
2628                                    ConstantExpr::getAdd(RHSOffset, RHSNoBound));
2629 
2630     // If one side of the equality comparison must come from a noalias call
2631     // (meaning a system memory allocation function), and the other side must
2632     // come from a pointer that cannot overlap with dynamically-allocated
2633     // memory within the lifetime of the current function (allocas, byval
2634     // arguments, globals), then determine the comparison result here.
2635     SmallVector<const Value *, 8> LHSUObjs, RHSUObjs;
2636     getUnderlyingObjects(LHS, LHSUObjs);
2637     getUnderlyingObjects(RHS, RHSUObjs);
2638 
2639     // Is the set of underlying objects all noalias calls?
2640     auto IsNAC = [](ArrayRef<const Value *> Objects) {
2641       return all_of(Objects, isNoAliasCall);
2642     };
2643 
2644     // Is the set of underlying objects all things which must be disjoint from
2645     // noalias calls. For allocas, we consider only static ones (dynamic
2646     // allocas might be transformed into calls to malloc not simultaneously
2647     // live with the compared-to allocation). For globals, we exclude symbols
2648     // that might be resolve lazily to symbols in another dynamically-loaded
2649     // library (and, thus, could be malloc'ed by the implementation).
2650     auto IsAllocDisjoint = [](ArrayRef<const Value *> Objects) {
2651       return all_of(Objects, [](const Value *V) {
2652         if (const AllocaInst *AI = dyn_cast<AllocaInst>(V))
2653           return AI->getParent() && AI->getFunction() && AI->isStaticAlloca();
2654         if (const GlobalValue *GV = dyn_cast<GlobalValue>(V))
2655           return (GV->hasLocalLinkage() || GV->hasHiddenVisibility() ||
2656                   GV->hasProtectedVisibility() || GV->hasGlobalUnnamedAddr()) &&
2657                  !GV->isThreadLocal();
2658         if (const Argument *A = dyn_cast<Argument>(V))
2659           return A->hasByValAttr();
2660         return false;
2661       });
2662     };
2663 
2664     if ((IsNAC(LHSUObjs) && IsAllocDisjoint(RHSUObjs)) ||
2665         (IsNAC(RHSUObjs) && IsAllocDisjoint(LHSUObjs)))
2666         return ConstantInt::get(GetCompareTy(LHS),
2667                                 !CmpInst::isTrueWhenEqual(Pred));
2668 
2669     // Fold comparisons for non-escaping pointer even if the allocation call
2670     // cannot be elided. We cannot fold malloc comparison to null. Also, the
2671     // dynamic allocation call could be either of the operands.
2672     Value *MI = nullptr;
2673     if (isAllocLikeFn(LHS, TLI) &&
2674         llvm::isKnownNonZero(RHS, DL, 0, nullptr, CxtI, DT))
2675       MI = LHS;
2676     else if (isAllocLikeFn(RHS, TLI) &&
2677              llvm::isKnownNonZero(LHS, DL, 0, nullptr, CxtI, DT))
2678       MI = RHS;
2679     // FIXME: We should also fold the compare when the pointer escapes, but the
2680     // compare dominates the pointer escape
2681     if (MI && !PointerMayBeCaptured(MI, true, true))
2682       return ConstantInt::get(GetCompareTy(LHS),
2683                               CmpInst::isFalseWhenEqual(Pred));
2684   }
2685 
2686   // Otherwise, fail.
2687   return nullptr;
2688 }
2689 
2690 /// Fold an icmp when its operands have i1 scalar type.
2691 static Value *simplifyICmpOfBools(CmpInst::Predicate Pred, Value *LHS,
2692                                   Value *RHS, const SimplifyQuery &Q) {
2693   Type *ITy = GetCompareTy(LHS); // The return type.
2694   Type *OpTy = LHS->getType();   // The operand type.
2695   if (!OpTy->isIntOrIntVectorTy(1))
2696     return nullptr;
2697 
2698   // A boolean compared to true/false can be simplified in 14 out of the 20
2699   // (10 predicates * 2 constants) possible combinations. Cases not handled here
2700   // require a 'not' of the LHS, so those must be transformed in InstCombine.
2701   if (match(RHS, m_Zero())) {
2702     switch (Pred) {
2703     case CmpInst::ICMP_NE:  // X !=  0 -> X
2704     case CmpInst::ICMP_UGT: // X >u  0 -> X
2705     case CmpInst::ICMP_SLT: // X <s  0 -> X
2706       return LHS;
2707 
2708     case CmpInst::ICMP_ULT: // X <u  0 -> false
2709     case CmpInst::ICMP_SGT: // X >s  0 -> false
2710       return getFalse(ITy);
2711 
2712     case CmpInst::ICMP_UGE: // X >=u 0 -> true
2713     case CmpInst::ICMP_SLE: // X <=s 0 -> true
2714       return getTrue(ITy);
2715 
2716     default: break;
2717     }
2718   } else if (match(RHS, m_One())) {
2719     switch (Pred) {
2720     case CmpInst::ICMP_EQ:  // X ==   1 -> X
2721     case CmpInst::ICMP_UGE: // X >=u  1 -> X
2722     case CmpInst::ICMP_SLE: // X <=s -1 -> X
2723       return LHS;
2724 
2725     case CmpInst::ICMP_UGT: // X >u   1 -> false
2726     case CmpInst::ICMP_SLT: // X <s  -1 -> false
2727       return getFalse(ITy);
2728 
2729     case CmpInst::ICMP_ULE: // X <=u  1 -> true
2730     case CmpInst::ICMP_SGE: // X >=s -1 -> true
2731       return getTrue(ITy);
2732 
2733     default: break;
2734     }
2735   }
2736 
2737   switch (Pred) {
2738   default:
2739     break;
2740   case ICmpInst::ICMP_UGE:
2741     if (isImpliedCondition(RHS, LHS, Q.DL).getValueOr(false))
2742       return getTrue(ITy);
2743     break;
2744   case ICmpInst::ICMP_SGE:
2745     /// For signed comparison, the values for an i1 are 0 and -1
2746     /// respectively. This maps into a truth table of:
2747     /// LHS | RHS | LHS >=s RHS   | LHS implies RHS
2748     ///  0  |  0  |  1 (0 >= 0)   |  1
2749     ///  0  |  1  |  1 (0 >= -1)  |  1
2750     ///  1  |  0  |  0 (-1 >= 0)  |  0
2751     ///  1  |  1  |  1 (-1 >= -1) |  1
2752     if (isImpliedCondition(LHS, RHS, Q.DL).getValueOr(false))
2753       return getTrue(ITy);
2754     break;
2755   case ICmpInst::ICMP_ULE:
2756     if (isImpliedCondition(LHS, RHS, Q.DL).getValueOr(false))
2757       return getTrue(ITy);
2758     break;
2759   }
2760 
2761   return nullptr;
2762 }
2763 
2764 /// Try hard to fold icmp with zero RHS because this is a common case.
2765 static Value *simplifyICmpWithZero(CmpInst::Predicate Pred, Value *LHS,
2766                                    Value *RHS, const SimplifyQuery &Q) {
2767   if (!match(RHS, m_Zero()))
2768     return nullptr;
2769 
2770   Type *ITy = GetCompareTy(LHS); // The return type.
2771   switch (Pred) {
2772   default:
2773     llvm_unreachable("Unknown ICmp predicate!");
2774   case ICmpInst::ICMP_ULT:
2775     return getFalse(ITy);
2776   case ICmpInst::ICMP_UGE:
2777     return getTrue(ITy);
2778   case ICmpInst::ICMP_EQ:
2779   case ICmpInst::ICMP_ULE:
2780     if (isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT, Q.IIQ.UseInstrInfo))
2781       return getFalse(ITy);
2782     break;
2783   case ICmpInst::ICMP_NE:
2784   case ICmpInst::ICMP_UGT:
2785     if (isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT, Q.IIQ.UseInstrInfo))
2786       return getTrue(ITy);
2787     break;
2788   case ICmpInst::ICMP_SLT: {
2789     KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
2790     if (LHSKnown.isNegative())
2791       return getTrue(ITy);
2792     if (LHSKnown.isNonNegative())
2793       return getFalse(ITy);
2794     break;
2795   }
2796   case ICmpInst::ICMP_SLE: {
2797     KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
2798     if (LHSKnown.isNegative())
2799       return getTrue(ITy);
2800     if (LHSKnown.isNonNegative() &&
2801         isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT))
2802       return getFalse(ITy);
2803     break;
2804   }
2805   case ICmpInst::ICMP_SGE: {
2806     KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
2807     if (LHSKnown.isNegative())
2808       return getFalse(ITy);
2809     if (LHSKnown.isNonNegative())
2810       return getTrue(ITy);
2811     break;
2812   }
2813   case ICmpInst::ICMP_SGT: {
2814     KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
2815     if (LHSKnown.isNegative())
2816       return getFalse(ITy);
2817     if (LHSKnown.isNonNegative() &&
2818         isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT))
2819       return getTrue(ITy);
2820     break;
2821   }
2822   }
2823 
2824   return nullptr;
2825 }
2826 
2827 static Value *simplifyICmpWithConstant(CmpInst::Predicate Pred, Value *LHS,
2828                                        Value *RHS, const InstrInfoQuery &IIQ) {
2829   Type *ITy = GetCompareTy(RHS); // The return type.
2830 
2831   Value *X;
2832   // Sign-bit checks can be optimized to true/false after unsigned
2833   // floating-point casts:
2834   // icmp slt (bitcast (uitofp X)),  0 --> false
2835   // icmp sgt (bitcast (uitofp X)), -1 --> true
2836   if (match(LHS, m_BitCast(m_UIToFP(m_Value(X))))) {
2837     if (Pred == ICmpInst::ICMP_SLT && match(RHS, m_Zero()))
2838       return ConstantInt::getFalse(ITy);
2839     if (Pred == ICmpInst::ICMP_SGT && match(RHS, m_AllOnes()))
2840       return ConstantInt::getTrue(ITy);
2841   }
2842 
2843   const APInt *C;
2844   if (!match(RHS, m_APIntAllowUndef(C)))
2845     return nullptr;
2846 
2847   // Rule out tautological comparisons (eg., ult 0 or uge 0).
2848   ConstantRange RHS_CR = ConstantRange::makeExactICmpRegion(Pred, *C);
2849   if (RHS_CR.isEmptySet())
2850     return ConstantInt::getFalse(ITy);
2851   if (RHS_CR.isFullSet())
2852     return ConstantInt::getTrue(ITy);
2853 
2854   ConstantRange LHS_CR = computeConstantRange(LHS, IIQ.UseInstrInfo);
2855   if (!LHS_CR.isFullSet()) {
2856     if (RHS_CR.contains(LHS_CR))
2857       return ConstantInt::getTrue(ITy);
2858     if (RHS_CR.inverse().contains(LHS_CR))
2859       return ConstantInt::getFalse(ITy);
2860   }
2861 
2862   // (mul nuw/nsw X, MulC) != C --> true  (if C is not a multiple of MulC)
2863   // (mul nuw/nsw X, MulC) == C --> false (if C is not a multiple of MulC)
2864   const APInt *MulC;
2865   if (ICmpInst::isEquality(Pred) &&
2866       ((match(LHS, m_NUWMul(m_Value(), m_APIntAllowUndef(MulC))) &&
2867         *MulC != 0 && C->urem(*MulC) != 0) ||
2868        (match(LHS, m_NSWMul(m_Value(), m_APIntAllowUndef(MulC))) &&
2869         *MulC != 0 && C->srem(*MulC) != 0)))
2870     return ConstantInt::get(ITy, Pred == ICmpInst::ICMP_NE);
2871 
2872   return nullptr;
2873 }
2874 
2875 static Value *simplifyICmpWithBinOpOnLHS(
2876     CmpInst::Predicate Pred, BinaryOperator *LBO, Value *RHS,
2877     const SimplifyQuery &Q, unsigned MaxRecurse) {
2878   Type *ITy = GetCompareTy(RHS); // The return type.
2879 
2880   Value *Y = nullptr;
2881   // icmp pred (or X, Y), X
2882   if (match(LBO, m_c_Or(m_Value(Y), m_Specific(RHS)))) {
2883     if (Pred == ICmpInst::ICMP_ULT)
2884       return getFalse(ITy);
2885     if (Pred == ICmpInst::ICMP_UGE)
2886       return getTrue(ITy);
2887 
2888     if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SGE) {
2889       KnownBits RHSKnown = computeKnownBits(RHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
2890       KnownBits YKnown = computeKnownBits(Y, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
2891       if (RHSKnown.isNonNegative() && YKnown.isNegative())
2892         return Pred == ICmpInst::ICMP_SLT ? getTrue(ITy) : getFalse(ITy);
2893       if (RHSKnown.isNegative() || YKnown.isNonNegative())
2894         return Pred == ICmpInst::ICMP_SLT ? getFalse(ITy) : getTrue(ITy);
2895     }
2896   }
2897 
2898   // icmp pred (and X, Y), X
2899   if (match(LBO, m_c_And(m_Value(), m_Specific(RHS)))) {
2900     if (Pred == ICmpInst::ICMP_UGT)
2901       return getFalse(ITy);
2902     if (Pred == ICmpInst::ICMP_ULE)
2903       return getTrue(ITy);
2904   }
2905 
2906   // icmp pred (urem X, Y), Y
2907   if (match(LBO, m_URem(m_Value(), m_Specific(RHS)))) {
2908     switch (Pred) {
2909     default:
2910       break;
2911     case ICmpInst::ICMP_SGT:
2912     case ICmpInst::ICMP_SGE: {
2913       KnownBits Known = computeKnownBits(RHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
2914       if (!Known.isNonNegative())
2915         break;
2916       LLVM_FALLTHROUGH;
2917     }
2918     case ICmpInst::ICMP_EQ:
2919     case ICmpInst::ICMP_UGT:
2920     case ICmpInst::ICMP_UGE:
2921       return getFalse(ITy);
2922     case ICmpInst::ICMP_SLT:
2923     case ICmpInst::ICMP_SLE: {
2924       KnownBits Known = computeKnownBits(RHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
2925       if (!Known.isNonNegative())
2926         break;
2927       LLVM_FALLTHROUGH;
2928     }
2929     case ICmpInst::ICMP_NE:
2930     case ICmpInst::ICMP_ULT:
2931     case ICmpInst::ICMP_ULE:
2932       return getTrue(ITy);
2933     }
2934   }
2935 
2936   // icmp pred (urem X, Y), X
2937   if (match(LBO, m_URem(m_Specific(RHS), m_Value()))) {
2938     if (Pred == ICmpInst::ICMP_ULE)
2939       return getTrue(ITy);
2940     if (Pred == ICmpInst::ICMP_UGT)
2941       return getFalse(ITy);
2942   }
2943 
2944   // x >>u y <=u x --> true.
2945   // x >>u y >u  x --> false.
2946   // x udiv y <=u x --> true.
2947   // x udiv y >u  x --> false.
2948   if (match(LBO, m_LShr(m_Specific(RHS), m_Value())) ||
2949       match(LBO, m_UDiv(m_Specific(RHS), m_Value()))) {
2950     // icmp pred (X op Y), X
2951     if (Pred == ICmpInst::ICMP_UGT)
2952       return getFalse(ITy);
2953     if (Pred == ICmpInst::ICMP_ULE)
2954       return getTrue(ITy);
2955   }
2956 
2957   // If x is nonzero:
2958   // x >>u C <u  x --> true  for C != 0.
2959   // x >>u C !=  x --> true  for C != 0.
2960   // x >>u C >=u x --> false for C != 0.
2961   // x >>u C ==  x --> false for C != 0.
2962   // x udiv C <u  x --> true  for C != 1.
2963   // x udiv C !=  x --> true  for C != 1.
2964   // x udiv C >=u x --> false for C != 1.
2965   // x udiv C ==  x --> false for C != 1.
2966   // TODO: allow non-constant shift amount/divisor
2967   const APInt *C;
2968   if ((match(LBO, m_LShr(m_Specific(RHS), m_APInt(C))) && *C != 0) ||
2969       (match(LBO, m_UDiv(m_Specific(RHS), m_APInt(C))) && *C != 1)) {
2970     if (isKnownNonZero(RHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) {
2971       switch (Pred) {
2972       default:
2973         break;
2974       case ICmpInst::ICMP_EQ:
2975       case ICmpInst::ICMP_UGE:
2976         return getFalse(ITy);
2977       case ICmpInst::ICMP_NE:
2978       case ICmpInst::ICMP_ULT:
2979         return getTrue(ITy);
2980       case ICmpInst::ICMP_UGT:
2981       case ICmpInst::ICMP_ULE:
2982         // UGT/ULE are handled by the more general case just above
2983         llvm_unreachable("Unexpected UGT/ULE, should have been handled");
2984       }
2985     }
2986   }
2987 
2988   // (x*C1)/C2 <= x for C1 <= C2.
2989   // This holds even if the multiplication overflows: Assume that x != 0 and
2990   // arithmetic is modulo M. For overflow to occur we must have C1 >= M/x and
2991   // thus C2 >= M/x. It follows that (x*C1)/C2 <= (M-1)/C2 <= ((M-1)*x)/M < x.
2992   //
2993   // Additionally, either the multiplication and division might be represented
2994   // as shifts:
2995   // (x*C1)>>C2 <= x for C1 < 2**C2.
2996   // (x<<C1)/C2 <= x for 2**C1 < C2.
2997   const APInt *C1, *C2;
2998   if ((match(LBO, m_UDiv(m_Mul(m_Specific(RHS), m_APInt(C1)), m_APInt(C2))) &&
2999        C1->ule(*C2)) ||
3000       (match(LBO, m_LShr(m_Mul(m_Specific(RHS), m_APInt(C1)), m_APInt(C2))) &&
3001        C1->ule(APInt(C2->getBitWidth(), 1) << *C2)) ||
3002       (match(LBO, m_UDiv(m_Shl(m_Specific(RHS), m_APInt(C1)), m_APInt(C2))) &&
3003        (APInt(C1->getBitWidth(), 1) << *C1).ule(*C2))) {
3004     if (Pred == ICmpInst::ICMP_UGT)
3005       return getFalse(ITy);
3006     if (Pred == ICmpInst::ICMP_ULE)
3007       return getTrue(ITy);
3008   }
3009 
3010   return nullptr;
3011 }
3012 
3013 
3014 // If only one of the icmp's operands has NSW flags, try to prove that:
3015 //
3016 //   icmp slt (x + C1), (x +nsw C2)
3017 //
3018 // is equivalent to:
3019 //
3020 //   icmp slt C1, C2
3021 //
3022 // which is true if x + C2 has the NSW flags set and:
3023 // *) C1 < C2 && C1 >= 0, or
3024 // *) C2 < C1 && C1 <= 0.
3025 //
3026 static bool trySimplifyICmpWithAdds(CmpInst::Predicate Pred, Value *LHS,
3027                                     Value *RHS) {
3028   // TODO: only support icmp slt for now.
3029   if (Pred != CmpInst::ICMP_SLT)
3030     return false;
3031 
3032   // Canonicalize nsw add as RHS.
3033   if (!match(RHS, m_NSWAdd(m_Value(), m_Value())))
3034     std::swap(LHS, RHS);
3035   if (!match(RHS, m_NSWAdd(m_Value(), m_Value())))
3036     return false;
3037 
3038   Value *X;
3039   const APInt *C1, *C2;
3040   if (!match(LHS, m_c_Add(m_Value(X), m_APInt(C1))) ||
3041       !match(RHS, m_c_Add(m_Specific(X), m_APInt(C2))))
3042     return false;
3043 
3044   return (C1->slt(*C2) && C1->isNonNegative()) ||
3045          (C2->slt(*C1) && C1->isNonPositive());
3046 }
3047 
3048 
3049 /// TODO: A large part of this logic is duplicated in InstCombine's
3050 /// foldICmpBinOp(). We should be able to share that and avoid the code
3051 /// duplication.
3052 static Value *simplifyICmpWithBinOp(CmpInst::Predicate Pred, Value *LHS,
3053                                     Value *RHS, const SimplifyQuery &Q,
3054                                     unsigned MaxRecurse) {
3055   BinaryOperator *LBO = dyn_cast<BinaryOperator>(LHS);
3056   BinaryOperator *RBO = dyn_cast<BinaryOperator>(RHS);
3057   if (MaxRecurse && (LBO || RBO)) {
3058     // Analyze the case when either LHS or RHS is an add instruction.
3059     Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr;
3060     // LHS = A + B (or A and B are null); RHS = C + D (or C and D are null).
3061     bool NoLHSWrapProblem = false, NoRHSWrapProblem = false;
3062     if (LBO && LBO->getOpcode() == Instruction::Add) {
3063       A = LBO->getOperand(0);
3064       B = LBO->getOperand(1);
3065       NoLHSWrapProblem =
3066           ICmpInst::isEquality(Pred) ||
3067           (CmpInst::isUnsigned(Pred) &&
3068            Q.IIQ.hasNoUnsignedWrap(cast<OverflowingBinaryOperator>(LBO))) ||
3069           (CmpInst::isSigned(Pred) &&
3070            Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(LBO)));
3071     }
3072     if (RBO && RBO->getOpcode() == Instruction::Add) {
3073       C = RBO->getOperand(0);
3074       D = RBO->getOperand(1);
3075       NoRHSWrapProblem =
3076           ICmpInst::isEquality(Pred) ||
3077           (CmpInst::isUnsigned(Pred) &&
3078            Q.IIQ.hasNoUnsignedWrap(cast<OverflowingBinaryOperator>(RBO))) ||
3079           (CmpInst::isSigned(Pred) &&
3080            Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(RBO)));
3081     }
3082 
3083     // icmp (X+Y), X -> icmp Y, 0 for equalities or if there is no overflow.
3084     if ((A == RHS || B == RHS) && NoLHSWrapProblem)
3085       if (Value *V = SimplifyICmpInst(Pred, A == RHS ? B : A,
3086                                       Constant::getNullValue(RHS->getType()), Q,
3087                                       MaxRecurse - 1))
3088         return V;
3089 
3090     // icmp X, (X+Y) -> icmp 0, Y for equalities or if there is no overflow.
3091     if ((C == LHS || D == LHS) && NoRHSWrapProblem)
3092       if (Value *V =
3093               SimplifyICmpInst(Pred, Constant::getNullValue(LHS->getType()),
3094                                C == LHS ? D : C, Q, MaxRecurse - 1))
3095         return V;
3096 
3097     // icmp (X+Y), (X+Z) -> icmp Y,Z for equalities or if there is no overflow.
3098     bool CanSimplify = (NoLHSWrapProblem && NoRHSWrapProblem) ||
3099                        trySimplifyICmpWithAdds(Pred, LHS, RHS);
3100     if (A && C && (A == C || A == D || B == C || B == D) && CanSimplify) {
3101       // Determine Y and Z in the form icmp (X+Y), (X+Z).
3102       Value *Y, *Z;
3103       if (A == C) {
3104         // C + B == C + D  ->  B == D
3105         Y = B;
3106         Z = D;
3107       } else if (A == D) {
3108         // D + B == C + D  ->  B == C
3109         Y = B;
3110         Z = C;
3111       } else if (B == C) {
3112         // A + C == C + D  ->  A == D
3113         Y = A;
3114         Z = D;
3115       } else {
3116         assert(B == D);
3117         // A + D == C + D  ->  A == C
3118         Y = A;
3119         Z = C;
3120       }
3121       if (Value *V = SimplifyICmpInst(Pred, Y, Z, Q, MaxRecurse - 1))
3122         return V;
3123     }
3124   }
3125 
3126   if (LBO)
3127     if (Value *V = simplifyICmpWithBinOpOnLHS(Pred, LBO, RHS, Q, MaxRecurse))
3128       return V;
3129 
3130   if (RBO)
3131     if (Value *V = simplifyICmpWithBinOpOnLHS(
3132             ICmpInst::getSwappedPredicate(Pred), RBO, LHS, Q, MaxRecurse))
3133       return V;
3134 
3135   // 0 - (zext X) pred C
3136   if (!CmpInst::isUnsigned(Pred) && match(LHS, m_Neg(m_ZExt(m_Value())))) {
3137     const APInt *C;
3138     if (match(RHS, m_APInt(C))) {
3139       if (C->isStrictlyPositive()) {
3140         if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_NE)
3141           return ConstantInt::getTrue(GetCompareTy(RHS));
3142         if (Pred == ICmpInst::ICMP_SGE || Pred == ICmpInst::ICMP_EQ)
3143           return ConstantInt::getFalse(GetCompareTy(RHS));
3144       }
3145       if (C->isNonNegative()) {
3146         if (Pred == ICmpInst::ICMP_SLE)
3147           return ConstantInt::getTrue(GetCompareTy(RHS));
3148         if (Pred == ICmpInst::ICMP_SGT)
3149           return ConstantInt::getFalse(GetCompareTy(RHS));
3150       }
3151     }
3152   }
3153 
3154   //   If C2 is a power-of-2 and C is not:
3155   //   (C2 << X) == C --> false
3156   //   (C2 << X) != C --> true
3157   const APInt *C;
3158   if (match(LHS, m_Shl(m_Power2(), m_Value())) &&
3159       match(RHS, m_APIntAllowUndef(C)) && !C->isPowerOf2()) {
3160     // C2 << X can equal zero in some circumstances.
3161     // This simplification might be unsafe if C is zero.
3162     //
3163     // We know it is safe if:
3164     // - The shift is nsw. We can't shift out the one bit.
3165     // - The shift is nuw. We can't shift out the one bit.
3166     // - C2 is one.
3167     // - C isn't zero.
3168     if (Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(LBO)) ||
3169         Q.IIQ.hasNoUnsignedWrap(cast<OverflowingBinaryOperator>(LBO)) ||
3170         match(LHS, m_Shl(m_One(), m_Value())) || !C->isZero()) {
3171       if (Pred == ICmpInst::ICMP_EQ)
3172         return ConstantInt::getFalse(GetCompareTy(RHS));
3173       if (Pred == ICmpInst::ICMP_NE)
3174         return ConstantInt::getTrue(GetCompareTy(RHS));
3175     }
3176   }
3177 
3178   // TODO: This is overly constrained. LHS can be any power-of-2.
3179   // (1 << X)  >u 0x8000 --> false
3180   // (1 << X) <=u 0x8000 --> true
3181   if (match(LHS, m_Shl(m_One(), m_Value())) && match(RHS, m_SignMask())) {
3182     if (Pred == ICmpInst::ICMP_UGT)
3183       return ConstantInt::getFalse(GetCompareTy(RHS));
3184     if (Pred == ICmpInst::ICMP_ULE)
3185       return ConstantInt::getTrue(GetCompareTy(RHS));
3186   }
3187 
3188   if (MaxRecurse && LBO && RBO && LBO->getOpcode() == RBO->getOpcode() &&
3189       LBO->getOperand(1) == RBO->getOperand(1)) {
3190     switch (LBO->getOpcode()) {
3191     default:
3192       break;
3193     case Instruction::UDiv:
3194     case Instruction::LShr:
3195       if (ICmpInst::isSigned(Pred) || !Q.IIQ.isExact(LBO) ||
3196           !Q.IIQ.isExact(RBO))
3197         break;
3198       if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0),
3199                                       RBO->getOperand(0), Q, MaxRecurse - 1))
3200           return V;
3201       break;
3202     case Instruction::SDiv:
3203       if (!ICmpInst::isEquality(Pred) || !Q.IIQ.isExact(LBO) ||
3204           !Q.IIQ.isExact(RBO))
3205         break;
3206       if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0),
3207                                       RBO->getOperand(0), Q, MaxRecurse - 1))
3208         return V;
3209       break;
3210     case Instruction::AShr:
3211       if (!Q.IIQ.isExact(LBO) || !Q.IIQ.isExact(RBO))
3212         break;
3213       if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0),
3214                                       RBO->getOperand(0), Q, MaxRecurse - 1))
3215         return V;
3216       break;
3217     case Instruction::Shl: {
3218       bool NUW = Q.IIQ.hasNoUnsignedWrap(LBO) && Q.IIQ.hasNoUnsignedWrap(RBO);
3219       bool NSW = Q.IIQ.hasNoSignedWrap(LBO) && Q.IIQ.hasNoSignedWrap(RBO);
3220       if (!NUW && !NSW)
3221         break;
3222       if (!NSW && ICmpInst::isSigned(Pred))
3223         break;
3224       if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0),
3225                                       RBO->getOperand(0), Q, MaxRecurse - 1))
3226         return V;
3227       break;
3228     }
3229     }
3230   }
3231   return nullptr;
3232 }
3233 
3234 /// Simplify integer comparisons where at least one operand of the compare
3235 /// matches an integer min/max idiom.
3236 static Value *simplifyICmpWithMinMax(CmpInst::Predicate Pred, Value *LHS,
3237                                      Value *RHS, const SimplifyQuery &Q,
3238                                      unsigned MaxRecurse) {
3239   Type *ITy = GetCompareTy(LHS); // The return type.
3240   Value *A, *B;
3241   CmpInst::Predicate P = CmpInst::BAD_ICMP_PREDICATE;
3242   CmpInst::Predicate EqP; // Chosen so that "A == max/min(A,B)" iff "A EqP B".
3243 
3244   // Signed variants on "max(a,b)>=a -> true".
3245   if (match(LHS, m_SMax(m_Value(A), m_Value(B))) && (A == RHS || B == RHS)) {
3246     if (A != RHS)
3247       std::swap(A, B);       // smax(A, B) pred A.
3248     EqP = CmpInst::ICMP_SGE; // "A == smax(A, B)" iff "A sge B".
3249     // We analyze this as smax(A, B) pred A.
3250     P = Pred;
3251   } else if (match(RHS, m_SMax(m_Value(A), m_Value(B))) &&
3252              (A == LHS || B == LHS)) {
3253     if (A != LHS)
3254       std::swap(A, B);       // A pred smax(A, B).
3255     EqP = CmpInst::ICMP_SGE; // "A == smax(A, B)" iff "A sge B".
3256     // We analyze this as smax(A, B) swapped-pred A.
3257     P = CmpInst::getSwappedPredicate(Pred);
3258   } else if (match(LHS, m_SMin(m_Value(A), m_Value(B))) &&
3259              (A == RHS || B == RHS)) {
3260     if (A != RHS)
3261       std::swap(A, B);       // smin(A, B) pred A.
3262     EqP = CmpInst::ICMP_SLE; // "A == smin(A, B)" iff "A sle B".
3263     // We analyze this as smax(-A, -B) swapped-pred -A.
3264     // Note that we do not need to actually form -A or -B thanks to EqP.
3265     P = CmpInst::getSwappedPredicate(Pred);
3266   } else if (match(RHS, m_SMin(m_Value(A), m_Value(B))) &&
3267              (A == LHS || B == LHS)) {
3268     if (A != LHS)
3269       std::swap(A, B);       // A pred smin(A, B).
3270     EqP = CmpInst::ICMP_SLE; // "A == smin(A, B)" iff "A sle B".
3271     // We analyze this as smax(-A, -B) pred -A.
3272     // Note that we do not need to actually form -A or -B thanks to EqP.
3273     P = Pred;
3274   }
3275   if (P != CmpInst::BAD_ICMP_PREDICATE) {
3276     // Cases correspond to "max(A, B) p A".
3277     switch (P) {
3278     default:
3279       break;
3280     case CmpInst::ICMP_EQ:
3281     case CmpInst::ICMP_SLE:
3282       // Equivalent to "A EqP B".  This may be the same as the condition tested
3283       // in the max/min; if so, we can just return that.
3284       if (Value *V = ExtractEquivalentCondition(LHS, EqP, A, B))
3285         return V;
3286       if (Value *V = ExtractEquivalentCondition(RHS, EqP, A, B))
3287         return V;
3288       // Otherwise, see if "A EqP B" simplifies.
3289       if (MaxRecurse)
3290         if (Value *V = SimplifyICmpInst(EqP, A, B, Q, MaxRecurse - 1))
3291           return V;
3292       break;
3293     case CmpInst::ICMP_NE:
3294     case CmpInst::ICMP_SGT: {
3295       CmpInst::Predicate InvEqP = CmpInst::getInversePredicate(EqP);
3296       // Equivalent to "A InvEqP B".  This may be the same as the condition
3297       // tested in the max/min; if so, we can just return that.
3298       if (Value *V = ExtractEquivalentCondition(LHS, InvEqP, A, B))
3299         return V;
3300       if (Value *V = ExtractEquivalentCondition(RHS, InvEqP, A, B))
3301         return V;
3302       // Otherwise, see if "A InvEqP B" simplifies.
3303       if (MaxRecurse)
3304         if (Value *V = SimplifyICmpInst(InvEqP, A, B, Q, MaxRecurse - 1))
3305           return V;
3306       break;
3307     }
3308     case CmpInst::ICMP_SGE:
3309       // Always true.
3310       return getTrue(ITy);
3311     case CmpInst::ICMP_SLT:
3312       // Always false.
3313       return getFalse(ITy);
3314     }
3315   }
3316 
3317   // Unsigned variants on "max(a,b)>=a -> true".
3318   P = CmpInst::BAD_ICMP_PREDICATE;
3319   if (match(LHS, m_UMax(m_Value(A), m_Value(B))) && (A == RHS || B == RHS)) {
3320     if (A != RHS)
3321       std::swap(A, B);       // umax(A, B) pred A.
3322     EqP = CmpInst::ICMP_UGE; // "A == umax(A, B)" iff "A uge B".
3323     // We analyze this as umax(A, B) pred A.
3324     P = Pred;
3325   } else if (match(RHS, m_UMax(m_Value(A), m_Value(B))) &&
3326              (A == LHS || B == LHS)) {
3327     if (A != LHS)
3328       std::swap(A, B);       // A pred umax(A, B).
3329     EqP = CmpInst::ICMP_UGE; // "A == umax(A, B)" iff "A uge B".
3330     // We analyze this as umax(A, B) swapped-pred A.
3331     P = CmpInst::getSwappedPredicate(Pred);
3332   } else if (match(LHS, m_UMin(m_Value(A), m_Value(B))) &&
3333              (A == RHS || B == RHS)) {
3334     if (A != RHS)
3335       std::swap(A, B);       // umin(A, B) pred A.
3336     EqP = CmpInst::ICMP_ULE; // "A == umin(A, B)" iff "A ule B".
3337     // We analyze this as umax(-A, -B) swapped-pred -A.
3338     // Note that we do not need to actually form -A or -B thanks to EqP.
3339     P = CmpInst::getSwappedPredicate(Pred);
3340   } else if (match(RHS, m_UMin(m_Value(A), m_Value(B))) &&
3341              (A == LHS || B == LHS)) {
3342     if (A != LHS)
3343       std::swap(A, B);       // A pred umin(A, B).
3344     EqP = CmpInst::ICMP_ULE; // "A == umin(A, B)" iff "A ule B".
3345     // We analyze this as umax(-A, -B) pred -A.
3346     // Note that we do not need to actually form -A or -B thanks to EqP.
3347     P = Pred;
3348   }
3349   if (P != CmpInst::BAD_ICMP_PREDICATE) {
3350     // Cases correspond to "max(A, B) p A".
3351     switch (P) {
3352     default:
3353       break;
3354     case CmpInst::ICMP_EQ:
3355     case CmpInst::ICMP_ULE:
3356       // Equivalent to "A EqP B".  This may be the same as the condition tested
3357       // in the max/min; if so, we can just return that.
3358       if (Value *V = ExtractEquivalentCondition(LHS, EqP, A, B))
3359         return V;
3360       if (Value *V = ExtractEquivalentCondition(RHS, EqP, A, B))
3361         return V;
3362       // Otherwise, see if "A EqP B" simplifies.
3363       if (MaxRecurse)
3364         if (Value *V = SimplifyICmpInst(EqP, A, B, Q, MaxRecurse - 1))
3365           return V;
3366       break;
3367     case CmpInst::ICMP_NE:
3368     case CmpInst::ICMP_UGT: {
3369       CmpInst::Predicate InvEqP = CmpInst::getInversePredicate(EqP);
3370       // Equivalent to "A InvEqP B".  This may be the same as the condition
3371       // tested in the max/min; if so, we can just return that.
3372       if (Value *V = ExtractEquivalentCondition(LHS, InvEqP, A, B))
3373         return V;
3374       if (Value *V = ExtractEquivalentCondition(RHS, InvEqP, A, B))
3375         return V;
3376       // Otherwise, see if "A InvEqP B" simplifies.
3377       if (MaxRecurse)
3378         if (Value *V = SimplifyICmpInst(InvEqP, A, B, Q, MaxRecurse - 1))
3379           return V;
3380       break;
3381     }
3382     case CmpInst::ICMP_UGE:
3383       return getTrue(ITy);
3384     case CmpInst::ICMP_ULT:
3385       return getFalse(ITy);
3386     }
3387   }
3388 
3389   // Comparing 1 each of min/max with a common operand?
3390   // Canonicalize min operand to RHS.
3391   if (match(LHS, m_UMin(m_Value(), m_Value())) ||
3392       match(LHS, m_SMin(m_Value(), m_Value()))) {
3393     std::swap(LHS, RHS);
3394     Pred = ICmpInst::getSwappedPredicate(Pred);
3395   }
3396 
3397   Value *C, *D;
3398   if (match(LHS, m_SMax(m_Value(A), m_Value(B))) &&
3399       match(RHS, m_SMin(m_Value(C), m_Value(D))) &&
3400       (A == C || A == D || B == C || B == D)) {
3401     // smax(A, B) >=s smin(A, D) --> true
3402     if (Pred == CmpInst::ICMP_SGE)
3403       return getTrue(ITy);
3404     // smax(A, B) <s smin(A, D) --> false
3405     if (Pred == CmpInst::ICMP_SLT)
3406       return getFalse(ITy);
3407   } else if (match(LHS, m_UMax(m_Value(A), m_Value(B))) &&
3408              match(RHS, m_UMin(m_Value(C), m_Value(D))) &&
3409              (A == C || A == D || B == C || B == D)) {
3410     // umax(A, B) >=u umin(A, D) --> true
3411     if (Pred == CmpInst::ICMP_UGE)
3412       return getTrue(ITy);
3413     // umax(A, B) <u umin(A, D) --> false
3414     if (Pred == CmpInst::ICMP_ULT)
3415       return getFalse(ITy);
3416   }
3417 
3418   return nullptr;
3419 }
3420 
3421 static Value *simplifyICmpWithDominatingAssume(CmpInst::Predicate Predicate,
3422                                                Value *LHS, Value *RHS,
3423                                                const SimplifyQuery &Q) {
3424   // Gracefully handle instructions that have not been inserted yet.
3425   if (!Q.AC || !Q.CxtI || !Q.CxtI->getParent())
3426     return nullptr;
3427 
3428   for (Value *AssumeBaseOp : {LHS, RHS}) {
3429     for (auto &AssumeVH : Q.AC->assumptionsFor(AssumeBaseOp)) {
3430       if (!AssumeVH)
3431         continue;
3432 
3433       CallInst *Assume = cast<CallInst>(AssumeVH);
3434       if (Optional<bool> Imp =
3435               isImpliedCondition(Assume->getArgOperand(0), Predicate, LHS, RHS,
3436                                  Q.DL))
3437         if (isValidAssumeForContext(Assume, Q.CxtI, Q.DT))
3438           return ConstantInt::get(GetCompareTy(LHS), *Imp);
3439     }
3440   }
3441 
3442   return nullptr;
3443 }
3444 
3445 /// Given operands for an ICmpInst, see if we can fold the result.
3446 /// If not, this returns null.
3447 static Value *SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS,
3448                                const SimplifyQuery &Q, unsigned MaxRecurse) {
3449   CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate;
3450   assert(CmpInst::isIntPredicate(Pred) && "Not an integer compare!");
3451 
3452   if (Constant *CLHS = dyn_cast<Constant>(LHS)) {
3453     if (Constant *CRHS = dyn_cast<Constant>(RHS))
3454       return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, Q.DL, Q.TLI);
3455 
3456     // If we have a constant, make sure it is on the RHS.
3457     std::swap(LHS, RHS);
3458     Pred = CmpInst::getSwappedPredicate(Pred);
3459   }
3460   assert(!isa<UndefValue>(LHS) && "Unexpected icmp undef,%X");
3461 
3462   Type *ITy = GetCompareTy(LHS); // The return type.
3463 
3464   // icmp poison, X -> poison
3465   if (isa<PoisonValue>(RHS))
3466     return PoisonValue::get(ITy);
3467 
3468   // For EQ and NE, we can always pick a value for the undef to make the
3469   // predicate pass or fail, so we can return undef.
3470   // Matches behavior in llvm::ConstantFoldCompareInstruction.
3471   if (Q.isUndefValue(RHS) && ICmpInst::isEquality(Pred))
3472     return UndefValue::get(ITy);
3473 
3474   // icmp X, X -> true/false
3475   // icmp X, undef -> true/false because undef could be X.
3476   if (LHS == RHS || Q.isUndefValue(RHS))
3477     return ConstantInt::get(ITy, CmpInst::isTrueWhenEqual(Pred));
3478 
3479   if (Value *V = simplifyICmpOfBools(Pred, LHS, RHS, Q))
3480     return V;
3481 
3482   // TODO: Sink/common this with other potentially expensive calls that use
3483   //       ValueTracking? See comment below for isKnownNonEqual().
3484   if (Value *V = simplifyICmpWithZero(Pred, LHS, RHS, Q))
3485     return V;
3486 
3487   if (Value *V = simplifyICmpWithConstant(Pred, LHS, RHS, Q.IIQ))
3488     return V;
3489 
3490   // If both operands have range metadata, use the metadata
3491   // to simplify the comparison.
3492   if (isa<Instruction>(RHS) && isa<Instruction>(LHS)) {
3493     auto RHS_Instr = cast<Instruction>(RHS);
3494     auto LHS_Instr = cast<Instruction>(LHS);
3495 
3496     if (Q.IIQ.getMetadata(RHS_Instr, LLVMContext::MD_range) &&
3497         Q.IIQ.getMetadata(LHS_Instr, LLVMContext::MD_range)) {
3498       auto RHS_CR = getConstantRangeFromMetadata(
3499           *RHS_Instr->getMetadata(LLVMContext::MD_range));
3500       auto LHS_CR = getConstantRangeFromMetadata(
3501           *LHS_Instr->getMetadata(LLVMContext::MD_range));
3502 
3503       if (LHS_CR.icmp(Pred, RHS_CR))
3504         return ConstantInt::getTrue(RHS->getContext());
3505 
3506       if (LHS_CR.icmp(CmpInst::getInversePredicate(Pred), RHS_CR))
3507         return ConstantInt::getFalse(RHS->getContext());
3508     }
3509   }
3510 
3511   // Compare of cast, for example (zext X) != 0 -> X != 0
3512   if (isa<CastInst>(LHS) && (isa<Constant>(RHS) || isa<CastInst>(RHS))) {
3513     Instruction *LI = cast<CastInst>(LHS);
3514     Value *SrcOp = LI->getOperand(0);
3515     Type *SrcTy = SrcOp->getType();
3516     Type *DstTy = LI->getType();
3517 
3518     // Turn icmp (ptrtoint x), (ptrtoint/constant) into a compare of the input
3519     // if the integer type is the same size as the pointer type.
3520     if (MaxRecurse && isa<PtrToIntInst>(LI) &&
3521         Q.DL.getTypeSizeInBits(SrcTy) == DstTy->getPrimitiveSizeInBits()) {
3522       if (Constant *RHSC = dyn_cast<Constant>(RHS)) {
3523         // Transfer the cast to the constant.
3524         if (Value *V = SimplifyICmpInst(Pred, SrcOp,
3525                                         ConstantExpr::getIntToPtr(RHSC, SrcTy),
3526                                         Q, MaxRecurse-1))
3527           return V;
3528       } else if (PtrToIntInst *RI = dyn_cast<PtrToIntInst>(RHS)) {
3529         if (RI->getOperand(0)->getType() == SrcTy)
3530           // Compare without the cast.
3531           if (Value *V = SimplifyICmpInst(Pred, SrcOp, RI->getOperand(0),
3532                                           Q, MaxRecurse-1))
3533             return V;
3534       }
3535     }
3536 
3537     if (isa<ZExtInst>(LHS)) {
3538       // Turn icmp (zext X), (zext Y) into a compare of X and Y if they have the
3539       // same type.
3540       if (ZExtInst *RI = dyn_cast<ZExtInst>(RHS)) {
3541         if (MaxRecurse && SrcTy == RI->getOperand(0)->getType())
3542           // Compare X and Y.  Note that signed predicates become unsigned.
3543           if (Value *V = SimplifyICmpInst(ICmpInst::getUnsignedPredicate(Pred),
3544                                           SrcOp, RI->getOperand(0), Q,
3545                                           MaxRecurse-1))
3546             return V;
3547       }
3548       // Fold (zext X) ule (sext X), (zext X) sge (sext X) to true.
3549       else if (SExtInst *RI = dyn_cast<SExtInst>(RHS)) {
3550         if (SrcOp == RI->getOperand(0)) {
3551           if (Pred == ICmpInst::ICMP_ULE || Pred == ICmpInst::ICMP_SGE)
3552             return ConstantInt::getTrue(ITy);
3553           if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_SLT)
3554             return ConstantInt::getFalse(ITy);
3555         }
3556       }
3557       // Turn icmp (zext X), Cst into a compare of X and Cst if Cst is extended
3558       // too.  If not, then try to deduce the result of the comparison.
3559       else if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
3560         // Compute the constant that would happen if we truncated to SrcTy then
3561         // reextended to DstTy.
3562         Constant *Trunc = ConstantExpr::getTrunc(CI, SrcTy);
3563         Constant *RExt = ConstantExpr::getCast(CastInst::ZExt, Trunc, DstTy);
3564 
3565         // If the re-extended constant didn't change then this is effectively
3566         // also a case of comparing two zero-extended values.
3567         if (RExt == CI && MaxRecurse)
3568           if (Value *V = SimplifyICmpInst(ICmpInst::getUnsignedPredicate(Pred),
3569                                         SrcOp, Trunc, Q, MaxRecurse-1))
3570             return V;
3571 
3572         // Otherwise the upper bits of LHS are zero while RHS has a non-zero bit
3573         // there.  Use this to work out the result of the comparison.
3574         if (RExt != CI) {
3575           switch (Pred) {
3576           default: llvm_unreachable("Unknown ICmp predicate!");
3577           // LHS <u RHS.
3578           case ICmpInst::ICMP_EQ:
3579           case ICmpInst::ICMP_UGT:
3580           case ICmpInst::ICMP_UGE:
3581             return ConstantInt::getFalse(CI->getContext());
3582 
3583           case ICmpInst::ICMP_NE:
3584           case ICmpInst::ICMP_ULT:
3585           case ICmpInst::ICMP_ULE:
3586             return ConstantInt::getTrue(CI->getContext());
3587 
3588           // LHS is non-negative.  If RHS is negative then LHS >s LHS.  If RHS
3589           // is non-negative then LHS <s RHS.
3590           case ICmpInst::ICMP_SGT:
3591           case ICmpInst::ICMP_SGE:
3592             return CI->getValue().isNegative() ?
3593               ConstantInt::getTrue(CI->getContext()) :
3594               ConstantInt::getFalse(CI->getContext());
3595 
3596           case ICmpInst::ICMP_SLT:
3597           case ICmpInst::ICMP_SLE:
3598             return CI->getValue().isNegative() ?
3599               ConstantInt::getFalse(CI->getContext()) :
3600               ConstantInt::getTrue(CI->getContext());
3601           }
3602         }
3603       }
3604     }
3605 
3606     if (isa<SExtInst>(LHS)) {
3607       // Turn icmp (sext X), (sext Y) into a compare of X and Y if they have the
3608       // same type.
3609       if (SExtInst *RI = dyn_cast<SExtInst>(RHS)) {
3610         if (MaxRecurse && SrcTy == RI->getOperand(0)->getType())
3611           // Compare X and Y.  Note that the predicate does not change.
3612           if (Value *V = SimplifyICmpInst(Pred, SrcOp, RI->getOperand(0),
3613                                           Q, MaxRecurse-1))
3614             return V;
3615       }
3616       // Fold (sext X) uge (zext X), (sext X) sle (zext X) to true.
3617       else if (ZExtInst *RI = dyn_cast<ZExtInst>(RHS)) {
3618         if (SrcOp == RI->getOperand(0)) {
3619           if (Pred == ICmpInst::ICMP_UGE || Pred == ICmpInst::ICMP_SLE)
3620             return ConstantInt::getTrue(ITy);
3621           if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_SGT)
3622             return ConstantInt::getFalse(ITy);
3623         }
3624       }
3625       // Turn icmp (sext X), Cst into a compare of X and Cst if Cst is extended
3626       // too.  If not, then try to deduce the result of the comparison.
3627       else if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
3628         // Compute the constant that would happen if we truncated to SrcTy then
3629         // reextended to DstTy.
3630         Constant *Trunc = ConstantExpr::getTrunc(CI, SrcTy);
3631         Constant *RExt = ConstantExpr::getCast(CastInst::SExt, Trunc, DstTy);
3632 
3633         // If the re-extended constant didn't change then this is effectively
3634         // also a case of comparing two sign-extended values.
3635         if (RExt == CI && MaxRecurse)
3636           if (Value *V = SimplifyICmpInst(Pred, SrcOp, Trunc, Q, MaxRecurse-1))
3637             return V;
3638 
3639         // Otherwise the upper bits of LHS are all equal, while RHS has varying
3640         // bits there.  Use this to work out the result of the comparison.
3641         if (RExt != CI) {
3642           switch (Pred) {
3643           default: llvm_unreachable("Unknown ICmp predicate!");
3644           case ICmpInst::ICMP_EQ:
3645             return ConstantInt::getFalse(CI->getContext());
3646           case ICmpInst::ICMP_NE:
3647             return ConstantInt::getTrue(CI->getContext());
3648 
3649           // If RHS is non-negative then LHS <s RHS.  If RHS is negative then
3650           // LHS >s RHS.
3651           case ICmpInst::ICMP_SGT:
3652           case ICmpInst::ICMP_SGE:
3653             return CI->getValue().isNegative() ?
3654               ConstantInt::getTrue(CI->getContext()) :
3655               ConstantInt::getFalse(CI->getContext());
3656           case ICmpInst::ICMP_SLT:
3657           case ICmpInst::ICMP_SLE:
3658             return CI->getValue().isNegative() ?
3659               ConstantInt::getFalse(CI->getContext()) :
3660               ConstantInt::getTrue(CI->getContext());
3661 
3662           // If LHS is non-negative then LHS <u RHS.  If LHS is negative then
3663           // LHS >u RHS.
3664           case ICmpInst::ICMP_UGT:
3665           case ICmpInst::ICMP_UGE:
3666             // Comparison is true iff the LHS <s 0.
3667             if (MaxRecurse)
3668               if (Value *V = SimplifyICmpInst(ICmpInst::ICMP_SLT, SrcOp,
3669                                               Constant::getNullValue(SrcTy),
3670                                               Q, MaxRecurse-1))
3671                 return V;
3672             break;
3673           case ICmpInst::ICMP_ULT:
3674           case ICmpInst::ICMP_ULE:
3675             // Comparison is true iff the LHS >=s 0.
3676             if (MaxRecurse)
3677               if (Value *V = SimplifyICmpInst(ICmpInst::ICMP_SGE, SrcOp,
3678                                               Constant::getNullValue(SrcTy),
3679                                               Q, MaxRecurse-1))
3680                 return V;
3681             break;
3682           }
3683         }
3684       }
3685     }
3686   }
3687 
3688   // icmp eq|ne X, Y -> false|true if X != Y
3689   // This is potentially expensive, and we have already computedKnownBits for
3690   // compares with 0 above here, so only try this for a non-zero compare.
3691   if (ICmpInst::isEquality(Pred) && !match(RHS, m_Zero()) &&
3692       isKnownNonEqual(LHS, RHS, Q.DL, Q.AC, Q.CxtI, Q.DT, Q.IIQ.UseInstrInfo)) {
3693     return Pred == ICmpInst::ICMP_NE ? getTrue(ITy) : getFalse(ITy);
3694   }
3695 
3696   if (Value *V = simplifyICmpWithBinOp(Pred, LHS, RHS, Q, MaxRecurse))
3697     return V;
3698 
3699   if (Value *V = simplifyICmpWithMinMax(Pred, LHS, RHS, Q, MaxRecurse))
3700     return V;
3701 
3702   if (Value *V = simplifyICmpWithDominatingAssume(Pred, LHS, RHS, Q))
3703     return V;
3704 
3705   // Simplify comparisons of related pointers using a powerful, recursive
3706   // GEP-walk when we have target data available..
3707   if (LHS->getType()->isPointerTy())
3708     if (auto *C = computePointerICmp(Pred, LHS, RHS, Q))
3709       return C;
3710   if (auto *CLHS = dyn_cast<PtrToIntOperator>(LHS))
3711     if (auto *CRHS = dyn_cast<PtrToIntOperator>(RHS))
3712       if (Q.DL.getTypeSizeInBits(CLHS->getPointerOperandType()) ==
3713               Q.DL.getTypeSizeInBits(CLHS->getType()) &&
3714           Q.DL.getTypeSizeInBits(CRHS->getPointerOperandType()) ==
3715               Q.DL.getTypeSizeInBits(CRHS->getType()))
3716         if (auto *C = computePointerICmp(Pred, CLHS->getPointerOperand(),
3717                                          CRHS->getPointerOperand(), Q))
3718           return C;
3719 
3720   // If the comparison is with the result of a select instruction, check whether
3721   // comparing with either branch of the select always yields the same value.
3722   if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS))
3723     if (Value *V = ThreadCmpOverSelect(Pred, LHS, RHS, Q, MaxRecurse))
3724       return V;
3725 
3726   // If the comparison is with the result of a phi instruction, check whether
3727   // doing the compare with each incoming phi value yields a common result.
3728   if (isa<PHINode>(LHS) || isa<PHINode>(RHS))
3729     if (Value *V = ThreadCmpOverPHI(Pred, LHS, RHS, Q, MaxRecurse))
3730       return V;
3731 
3732   return nullptr;
3733 }
3734 
3735 Value *llvm::SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS,
3736                               const SimplifyQuery &Q) {
3737   return ::SimplifyICmpInst(Predicate, LHS, RHS, Q, RecursionLimit);
3738 }
3739 
3740 /// Given operands for an FCmpInst, see if we can fold the result.
3741 /// If not, this returns null.
3742 static Value *SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
3743                                FastMathFlags FMF, const SimplifyQuery &Q,
3744                                unsigned MaxRecurse) {
3745   CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate;
3746   assert(CmpInst::isFPPredicate(Pred) && "Not an FP compare!");
3747 
3748   if (Constant *CLHS = dyn_cast<Constant>(LHS)) {
3749     if (Constant *CRHS = dyn_cast<Constant>(RHS))
3750       return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, Q.DL, Q.TLI);
3751 
3752     // If we have a constant, make sure it is on the RHS.
3753     std::swap(LHS, RHS);
3754     Pred = CmpInst::getSwappedPredicate(Pred);
3755   }
3756 
3757   // Fold trivial predicates.
3758   Type *RetTy = GetCompareTy(LHS);
3759   if (Pred == FCmpInst::FCMP_FALSE)
3760     return getFalse(RetTy);
3761   if (Pred == FCmpInst::FCMP_TRUE)
3762     return getTrue(RetTy);
3763 
3764   // Fold (un)ordered comparison if we can determine there are no NaNs.
3765   if (Pred == FCmpInst::FCMP_UNO || Pred == FCmpInst::FCMP_ORD)
3766     if (FMF.noNaNs() ||
3767         (isKnownNeverNaN(LHS, Q.TLI) && isKnownNeverNaN(RHS, Q.TLI)))
3768       return ConstantInt::get(RetTy, Pred == FCmpInst::FCMP_ORD);
3769 
3770   // NaN is unordered; NaN is not ordered.
3771   assert((FCmpInst::isOrdered(Pred) || FCmpInst::isUnordered(Pred)) &&
3772          "Comparison must be either ordered or unordered");
3773   if (match(RHS, m_NaN()))
3774     return ConstantInt::get(RetTy, CmpInst::isUnordered(Pred));
3775 
3776   // fcmp pred x, poison and  fcmp pred poison, x
3777   // fold to poison
3778   if (isa<PoisonValue>(LHS) || isa<PoisonValue>(RHS))
3779     return PoisonValue::get(RetTy);
3780 
3781   // fcmp pred x, undef  and  fcmp pred undef, x
3782   // fold to true if unordered, false if ordered
3783   if (Q.isUndefValue(LHS) || Q.isUndefValue(RHS)) {
3784     // Choosing NaN for the undef will always make unordered comparison succeed
3785     // and ordered comparison fail.
3786     return ConstantInt::get(RetTy, CmpInst::isUnordered(Pred));
3787   }
3788 
3789   // fcmp x,x -> true/false.  Not all compares are foldable.
3790   if (LHS == RHS) {
3791     if (CmpInst::isTrueWhenEqual(Pred))
3792       return getTrue(RetTy);
3793     if (CmpInst::isFalseWhenEqual(Pred))
3794       return getFalse(RetTy);
3795   }
3796 
3797   // Handle fcmp with constant RHS.
3798   // TODO: Use match with a specific FP value, so these work with vectors with
3799   // undef lanes.
3800   const APFloat *C;
3801   if (match(RHS, m_APFloat(C))) {
3802     // Check whether the constant is an infinity.
3803     if (C->isInfinity()) {
3804       if (C->isNegative()) {
3805         switch (Pred) {
3806         case FCmpInst::FCMP_OLT:
3807           // No value is ordered and less than negative infinity.
3808           return getFalse(RetTy);
3809         case FCmpInst::FCMP_UGE:
3810           // All values are unordered with or at least negative infinity.
3811           return getTrue(RetTy);
3812         default:
3813           break;
3814         }
3815       } else {
3816         switch (Pred) {
3817         case FCmpInst::FCMP_OGT:
3818           // No value is ordered and greater than infinity.
3819           return getFalse(RetTy);
3820         case FCmpInst::FCMP_ULE:
3821           // All values are unordered with and at most infinity.
3822           return getTrue(RetTy);
3823         default:
3824           break;
3825         }
3826       }
3827 
3828       // LHS == Inf
3829       if (Pred == FCmpInst::FCMP_OEQ && isKnownNeverInfinity(LHS, Q.TLI))
3830         return getFalse(RetTy);
3831       // LHS != Inf
3832       if (Pred == FCmpInst::FCMP_UNE && isKnownNeverInfinity(LHS, Q.TLI))
3833         return getTrue(RetTy);
3834       // LHS == Inf || LHS == NaN
3835       if (Pred == FCmpInst::FCMP_UEQ && isKnownNeverInfinity(LHS, Q.TLI) &&
3836           isKnownNeverNaN(LHS, Q.TLI))
3837         return getFalse(RetTy);
3838       // LHS != Inf && LHS != NaN
3839       if (Pred == FCmpInst::FCMP_ONE && isKnownNeverInfinity(LHS, Q.TLI) &&
3840           isKnownNeverNaN(LHS, Q.TLI))
3841         return getTrue(RetTy);
3842     }
3843     if (C->isNegative() && !C->isNegZero()) {
3844       assert(!C->isNaN() && "Unexpected NaN constant!");
3845       // TODO: We can catch more cases by using a range check rather than
3846       //       relying on CannotBeOrderedLessThanZero.
3847       switch (Pred) {
3848       case FCmpInst::FCMP_UGE:
3849       case FCmpInst::FCMP_UGT:
3850       case FCmpInst::FCMP_UNE:
3851         // (X >= 0) implies (X > C) when (C < 0)
3852         if (CannotBeOrderedLessThanZero(LHS, Q.TLI))
3853           return getTrue(RetTy);
3854         break;
3855       case FCmpInst::FCMP_OEQ:
3856       case FCmpInst::FCMP_OLE:
3857       case FCmpInst::FCMP_OLT:
3858         // (X >= 0) implies !(X < C) when (C < 0)
3859         if (CannotBeOrderedLessThanZero(LHS, Q.TLI))
3860           return getFalse(RetTy);
3861         break;
3862       default:
3863         break;
3864       }
3865     }
3866 
3867     // Check comparison of [minnum/maxnum with constant] with other constant.
3868     const APFloat *C2;
3869     if ((match(LHS, m_Intrinsic<Intrinsic::minnum>(m_Value(), m_APFloat(C2))) &&
3870          *C2 < *C) ||
3871         (match(LHS, m_Intrinsic<Intrinsic::maxnum>(m_Value(), m_APFloat(C2))) &&
3872          *C2 > *C)) {
3873       bool IsMaxNum =
3874           cast<IntrinsicInst>(LHS)->getIntrinsicID() == Intrinsic::maxnum;
3875       // The ordered relationship and minnum/maxnum guarantee that we do not
3876       // have NaN constants, so ordered/unordered preds are handled the same.
3877       switch (Pred) {
3878       case FCmpInst::FCMP_OEQ: case FCmpInst::FCMP_UEQ:
3879         // minnum(X, LesserC)  == C --> false
3880         // maxnum(X, GreaterC) == C --> false
3881         return getFalse(RetTy);
3882       case FCmpInst::FCMP_ONE: case FCmpInst::FCMP_UNE:
3883         // minnum(X, LesserC)  != C --> true
3884         // maxnum(X, GreaterC) != C --> true
3885         return getTrue(RetTy);
3886       case FCmpInst::FCMP_OGE: case FCmpInst::FCMP_UGE:
3887       case FCmpInst::FCMP_OGT: case FCmpInst::FCMP_UGT:
3888         // minnum(X, LesserC)  >= C --> false
3889         // minnum(X, LesserC)  >  C --> false
3890         // maxnum(X, GreaterC) >= C --> true
3891         // maxnum(X, GreaterC) >  C --> true
3892         return ConstantInt::get(RetTy, IsMaxNum);
3893       case FCmpInst::FCMP_OLE: case FCmpInst::FCMP_ULE:
3894       case FCmpInst::FCMP_OLT: case FCmpInst::FCMP_ULT:
3895         // minnum(X, LesserC)  <= C --> true
3896         // minnum(X, LesserC)  <  C --> true
3897         // maxnum(X, GreaterC) <= C --> false
3898         // maxnum(X, GreaterC) <  C --> false
3899         return ConstantInt::get(RetTy, !IsMaxNum);
3900       default:
3901         // TRUE/FALSE/ORD/UNO should be handled before this.
3902         llvm_unreachable("Unexpected fcmp predicate");
3903       }
3904     }
3905   }
3906 
3907   if (match(RHS, m_AnyZeroFP())) {
3908     switch (Pred) {
3909     case FCmpInst::FCMP_OGE:
3910     case FCmpInst::FCMP_ULT:
3911       // Positive or zero X >= 0.0 --> true
3912       // Positive or zero X <  0.0 --> false
3913       if ((FMF.noNaNs() || isKnownNeverNaN(LHS, Q.TLI)) &&
3914           CannotBeOrderedLessThanZero(LHS, Q.TLI))
3915         return Pred == FCmpInst::FCMP_OGE ? getTrue(RetTy) : getFalse(RetTy);
3916       break;
3917     case FCmpInst::FCMP_UGE:
3918     case FCmpInst::FCMP_OLT:
3919       // Positive or zero or nan X >= 0.0 --> true
3920       // Positive or zero or nan X <  0.0 --> false
3921       if (CannotBeOrderedLessThanZero(LHS, Q.TLI))
3922         return Pred == FCmpInst::FCMP_UGE ? getTrue(RetTy) : getFalse(RetTy);
3923       break;
3924     default:
3925       break;
3926     }
3927   }
3928 
3929   // If the comparison is with the result of a select instruction, check whether
3930   // comparing with either branch of the select always yields the same value.
3931   if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS))
3932     if (Value *V = ThreadCmpOverSelect(Pred, LHS, RHS, Q, MaxRecurse))
3933       return V;
3934 
3935   // If the comparison is with the result of a phi instruction, check whether
3936   // doing the compare with each incoming phi value yields a common result.
3937   if (isa<PHINode>(LHS) || isa<PHINode>(RHS))
3938     if (Value *V = ThreadCmpOverPHI(Pred, LHS, RHS, Q, MaxRecurse))
3939       return V;
3940 
3941   return nullptr;
3942 }
3943 
3944 Value *llvm::SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
3945                               FastMathFlags FMF, const SimplifyQuery &Q) {
3946   return ::SimplifyFCmpInst(Predicate, LHS, RHS, FMF, Q, RecursionLimit);
3947 }
3948 
3949 static Value *simplifyWithOpReplaced(Value *V, Value *Op, Value *RepOp,
3950                                      const SimplifyQuery &Q,
3951                                      bool AllowRefinement,
3952                                      unsigned MaxRecurse) {
3953   assert(!Op->getType()->isVectorTy() && "This is not safe for vectors");
3954 
3955   // Trivial replacement.
3956   if (V == Op)
3957     return RepOp;
3958 
3959   // We cannot replace a constant, and shouldn't even try.
3960   if (isa<Constant>(Op))
3961     return nullptr;
3962 
3963   auto *I = dyn_cast<Instruction>(V);
3964   if (!I || !is_contained(I->operands(), Op))
3965     return nullptr;
3966 
3967   // Replace Op with RepOp in instruction operands.
3968   SmallVector<Value *, 8> NewOps(I->getNumOperands());
3969   transform(I->operands(), NewOps.begin(),
3970             [&](Value *V) { return V == Op ? RepOp : V; });
3971 
3972   if (!AllowRefinement) {
3973     // General InstSimplify functions may refine the result, e.g. by returning
3974     // a constant for a potentially poison value. To avoid this, implement only
3975     // a few non-refining but profitable transforms here.
3976 
3977     if (auto *BO = dyn_cast<BinaryOperator>(I)) {
3978       unsigned Opcode = BO->getOpcode();
3979       // id op x -> x, x op id -> x
3980       if (NewOps[0] == ConstantExpr::getBinOpIdentity(Opcode, I->getType()))
3981         return NewOps[1];
3982       if (NewOps[1] == ConstantExpr::getBinOpIdentity(Opcode, I->getType(),
3983                                                       /* RHS */ true))
3984         return NewOps[0];
3985 
3986       // x & x -> x, x | x -> x
3987       if ((Opcode == Instruction::And || Opcode == Instruction::Or) &&
3988           NewOps[0] == NewOps[1])
3989         return NewOps[0];
3990     }
3991 
3992     if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) {
3993       // getelementptr x, 0 -> x
3994       if (NewOps.size() == 2 && match(NewOps[1], m_Zero()) &&
3995           !GEP->isInBounds())
3996         return NewOps[0];
3997     }
3998   } else if (MaxRecurse) {
3999     // The simplification queries below may return the original value. Consider:
4000     //   %div = udiv i32 %arg, %arg2
4001     //   %mul = mul nsw i32 %div, %arg2
4002     //   %cmp = icmp eq i32 %mul, %arg
4003     //   %sel = select i1 %cmp, i32 %div, i32 undef
4004     // Replacing %arg by %mul, %div becomes "udiv i32 %mul, %arg2", which
4005     // simplifies back to %arg. This can only happen because %mul does not
4006     // dominate %div. To ensure a consistent return value contract, we make sure
4007     // that this case returns nullptr as well.
4008     auto PreventSelfSimplify = [V](Value *Simplified) {
4009       return Simplified != V ? Simplified : nullptr;
4010     };
4011 
4012     if (auto *B = dyn_cast<BinaryOperator>(I))
4013       return PreventSelfSimplify(SimplifyBinOp(B->getOpcode(), NewOps[0],
4014                                                NewOps[1], Q, MaxRecurse - 1));
4015 
4016     if (CmpInst *C = dyn_cast<CmpInst>(I))
4017       return PreventSelfSimplify(SimplifyCmpInst(C->getPredicate(), NewOps[0],
4018                                                  NewOps[1], Q, MaxRecurse - 1));
4019 
4020     if (auto *GEP = dyn_cast<GetElementPtrInst>(I))
4021       return PreventSelfSimplify(SimplifyGEPInst(GEP->getSourceElementType(),
4022                                                  NewOps, GEP->isInBounds(), Q,
4023                                                  MaxRecurse - 1));
4024 
4025     if (isa<SelectInst>(I))
4026       return PreventSelfSimplify(
4027           SimplifySelectInst(NewOps[0], NewOps[1], NewOps[2], Q,
4028                              MaxRecurse - 1));
4029     // TODO: We could hand off more cases to instsimplify here.
4030   }
4031 
4032   // If all operands are constant after substituting Op for RepOp then we can
4033   // constant fold the instruction.
4034   SmallVector<Constant *, 8> ConstOps;
4035   for (Value *NewOp : NewOps) {
4036     if (Constant *ConstOp = dyn_cast<Constant>(NewOp))
4037       ConstOps.push_back(ConstOp);
4038     else
4039       return nullptr;
4040   }
4041 
4042   // Consider:
4043   //   %cmp = icmp eq i32 %x, 2147483647
4044   //   %add = add nsw i32 %x, 1
4045   //   %sel = select i1 %cmp, i32 -2147483648, i32 %add
4046   //
4047   // We can't replace %sel with %add unless we strip away the flags (which
4048   // will be done in InstCombine).
4049   // TODO: This may be unsound, because it only catches some forms of
4050   // refinement.
4051   if (!AllowRefinement && canCreatePoison(cast<Operator>(I)))
4052     return nullptr;
4053 
4054   if (CmpInst *C = dyn_cast<CmpInst>(I))
4055     return ConstantFoldCompareInstOperands(C->getPredicate(), ConstOps[0],
4056                                            ConstOps[1], Q.DL, Q.TLI);
4057 
4058   if (LoadInst *LI = dyn_cast<LoadInst>(I))
4059     if (!LI->isVolatile())
4060       return ConstantFoldLoadFromConstPtr(ConstOps[0], LI->getType(), Q.DL);
4061 
4062   return ConstantFoldInstOperands(I, ConstOps, Q.DL, Q.TLI);
4063 }
4064 
4065 Value *llvm::simplifyWithOpReplaced(Value *V, Value *Op, Value *RepOp,
4066                                     const SimplifyQuery &Q,
4067                                     bool AllowRefinement) {
4068   return ::simplifyWithOpReplaced(V, Op, RepOp, Q, AllowRefinement,
4069                                   RecursionLimit);
4070 }
4071 
4072 /// Try to simplify a select instruction when its condition operand is an
4073 /// integer comparison where one operand of the compare is a constant.
4074 static Value *simplifySelectBitTest(Value *TrueVal, Value *FalseVal, Value *X,
4075                                     const APInt *Y, bool TrueWhenUnset) {
4076   const APInt *C;
4077 
4078   // (X & Y) == 0 ? X & ~Y : X  --> X
4079   // (X & Y) != 0 ? X & ~Y : X  --> X & ~Y
4080   if (FalseVal == X && match(TrueVal, m_And(m_Specific(X), m_APInt(C))) &&
4081       *Y == ~*C)
4082     return TrueWhenUnset ? FalseVal : TrueVal;
4083 
4084   // (X & Y) == 0 ? X : X & ~Y  --> X & ~Y
4085   // (X & Y) != 0 ? X : X & ~Y  --> X
4086   if (TrueVal == X && match(FalseVal, m_And(m_Specific(X), m_APInt(C))) &&
4087       *Y == ~*C)
4088     return TrueWhenUnset ? FalseVal : TrueVal;
4089 
4090   if (Y->isPowerOf2()) {
4091     // (X & Y) == 0 ? X | Y : X  --> X | Y
4092     // (X & Y) != 0 ? X | Y : X  --> X
4093     if (FalseVal == X && match(TrueVal, m_Or(m_Specific(X), m_APInt(C))) &&
4094         *Y == *C)
4095       return TrueWhenUnset ? TrueVal : FalseVal;
4096 
4097     // (X & Y) == 0 ? X : X | Y  --> X
4098     // (X & Y) != 0 ? X : X | Y  --> X | Y
4099     if (TrueVal == X && match(FalseVal, m_Or(m_Specific(X), m_APInt(C))) &&
4100         *Y == *C)
4101       return TrueWhenUnset ? TrueVal : FalseVal;
4102   }
4103 
4104   return nullptr;
4105 }
4106 
4107 /// An alternative way to test if a bit is set or not uses sgt/slt instead of
4108 /// eq/ne.
4109 static Value *simplifySelectWithFakeICmpEq(Value *CmpLHS, Value *CmpRHS,
4110                                            ICmpInst::Predicate Pred,
4111                                            Value *TrueVal, Value *FalseVal) {
4112   Value *X;
4113   APInt Mask;
4114   if (!decomposeBitTestICmp(CmpLHS, CmpRHS, Pred, X, Mask))
4115     return nullptr;
4116 
4117   return simplifySelectBitTest(TrueVal, FalseVal, X, &Mask,
4118                                Pred == ICmpInst::ICMP_EQ);
4119 }
4120 
4121 /// Try to simplify a select instruction when its condition operand is an
4122 /// integer comparison.
4123 static Value *simplifySelectWithICmpCond(Value *CondVal, Value *TrueVal,
4124                                          Value *FalseVal, const SimplifyQuery &Q,
4125                                          unsigned MaxRecurse) {
4126   ICmpInst::Predicate Pred;
4127   Value *CmpLHS, *CmpRHS;
4128   if (!match(CondVal, m_ICmp(Pred, m_Value(CmpLHS), m_Value(CmpRHS))))
4129     return nullptr;
4130 
4131   // Canonicalize ne to eq predicate.
4132   if (Pred == ICmpInst::ICMP_NE) {
4133     Pred = ICmpInst::ICMP_EQ;
4134     std::swap(TrueVal, FalseVal);
4135   }
4136 
4137   // Check for integer min/max with a limit constant:
4138   // X > MIN_INT ? X : MIN_INT --> X
4139   // X < MAX_INT ? X : MAX_INT --> X
4140   if (TrueVal->getType()->isIntOrIntVectorTy()) {
4141     Value *X, *Y;
4142     SelectPatternFlavor SPF =
4143         matchDecomposedSelectPattern(cast<ICmpInst>(CondVal), TrueVal, FalseVal,
4144                                      X, Y).Flavor;
4145     if (SelectPatternResult::isMinOrMax(SPF) && Pred == getMinMaxPred(SPF)) {
4146       APInt LimitC = getMinMaxLimit(getInverseMinMaxFlavor(SPF),
4147                                     X->getType()->getScalarSizeInBits());
4148       if (match(Y, m_SpecificInt(LimitC)))
4149         return X;
4150     }
4151   }
4152 
4153   if (Pred == ICmpInst::ICMP_EQ && match(CmpRHS, m_Zero())) {
4154     Value *X;
4155     const APInt *Y;
4156     if (match(CmpLHS, m_And(m_Value(X), m_APInt(Y))))
4157       if (Value *V = simplifySelectBitTest(TrueVal, FalseVal, X, Y,
4158                                            /*TrueWhenUnset=*/true))
4159         return V;
4160 
4161     // Test for a bogus zero-shift-guard-op around funnel-shift or rotate.
4162     Value *ShAmt;
4163     auto isFsh = m_CombineOr(m_FShl(m_Value(X), m_Value(), m_Value(ShAmt)),
4164                              m_FShr(m_Value(), m_Value(X), m_Value(ShAmt)));
4165     // (ShAmt == 0) ? fshl(X, *, ShAmt) : X --> X
4166     // (ShAmt == 0) ? fshr(*, X, ShAmt) : X --> X
4167     if (match(TrueVal, isFsh) && FalseVal == X && CmpLHS == ShAmt)
4168       return X;
4169 
4170     // Test for a zero-shift-guard-op around rotates. These are used to
4171     // avoid UB from oversized shifts in raw IR rotate patterns, but the
4172     // intrinsics do not have that problem.
4173     // We do not allow this transform for the general funnel shift case because
4174     // that would not preserve the poison safety of the original code.
4175     auto isRotate =
4176         m_CombineOr(m_FShl(m_Value(X), m_Deferred(X), m_Value(ShAmt)),
4177                     m_FShr(m_Value(X), m_Deferred(X), m_Value(ShAmt)));
4178     // (ShAmt == 0) ? X : fshl(X, X, ShAmt) --> fshl(X, X, ShAmt)
4179     // (ShAmt == 0) ? X : fshr(X, X, ShAmt) --> fshr(X, X, ShAmt)
4180     if (match(FalseVal, isRotate) && TrueVal == X && CmpLHS == ShAmt &&
4181         Pred == ICmpInst::ICMP_EQ)
4182       return FalseVal;
4183 
4184     // X == 0 ? abs(X) : -abs(X) --> -abs(X)
4185     // X == 0 ? -abs(X) : abs(X) --> abs(X)
4186     if (match(TrueVal, m_Intrinsic<Intrinsic::abs>(m_Specific(CmpLHS))) &&
4187         match(FalseVal, m_Neg(m_Intrinsic<Intrinsic::abs>(m_Specific(CmpLHS)))))
4188       return FalseVal;
4189     if (match(TrueVal,
4190               m_Neg(m_Intrinsic<Intrinsic::abs>(m_Specific(CmpLHS)))) &&
4191         match(FalseVal, m_Intrinsic<Intrinsic::abs>(m_Specific(CmpLHS))))
4192       return FalseVal;
4193   }
4194 
4195   // Check for other compares that behave like bit test.
4196   if (Value *V = simplifySelectWithFakeICmpEq(CmpLHS, CmpRHS, Pred,
4197                                               TrueVal, FalseVal))
4198     return V;
4199 
4200   // If we have a scalar equality comparison, then we know the value in one of
4201   // the arms of the select. See if substituting this value into the arm and
4202   // simplifying the result yields the same value as the other arm.
4203   // Note that the equivalence/replacement opportunity does not hold for vectors
4204   // because each element of a vector select is chosen independently.
4205   if (Pred == ICmpInst::ICMP_EQ && !CondVal->getType()->isVectorTy()) {
4206     if (simplifyWithOpReplaced(FalseVal, CmpLHS, CmpRHS, Q,
4207                                /* AllowRefinement */ false, MaxRecurse) ==
4208             TrueVal ||
4209         simplifyWithOpReplaced(FalseVal, CmpRHS, CmpLHS, Q,
4210                                /* AllowRefinement */ false, MaxRecurse) ==
4211             TrueVal)
4212       return FalseVal;
4213     if (simplifyWithOpReplaced(TrueVal, CmpLHS, CmpRHS, Q,
4214                                /* AllowRefinement */ true, MaxRecurse) ==
4215             FalseVal ||
4216         simplifyWithOpReplaced(TrueVal, CmpRHS, CmpLHS, Q,
4217                                /* AllowRefinement */ true, MaxRecurse) ==
4218             FalseVal)
4219       return FalseVal;
4220   }
4221 
4222   return nullptr;
4223 }
4224 
4225 /// Try to simplify a select instruction when its condition operand is a
4226 /// floating-point comparison.
4227 static Value *simplifySelectWithFCmp(Value *Cond, Value *T, Value *F,
4228                                      const SimplifyQuery &Q) {
4229   FCmpInst::Predicate Pred;
4230   if (!match(Cond, m_FCmp(Pred, m_Specific(T), m_Specific(F))) &&
4231       !match(Cond, m_FCmp(Pred, m_Specific(F), m_Specific(T))))
4232     return nullptr;
4233 
4234   // This transform is safe if we do not have (do not care about) -0.0 or if
4235   // at least one operand is known to not be -0.0. Otherwise, the select can
4236   // change the sign of a zero operand.
4237   bool HasNoSignedZeros = Q.CxtI && isa<FPMathOperator>(Q.CxtI) &&
4238                           Q.CxtI->hasNoSignedZeros();
4239   const APFloat *C;
4240   if (HasNoSignedZeros || (match(T, m_APFloat(C)) && C->isNonZero()) ||
4241                           (match(F, m_APFloat(C)) && C->isNonZero())) {
4242     // (T == F) ? T : F --> F
4243     // (F == T) ? T : F --> F
4244     if (Pred == FCmpInst::FCMP_OEQ)
4245       return F;
4246 
4247     // (T != F) ? T : F --> T
4248     // (F != T) ? T : F --> T
4249     if (Pred == FCmpInst::FCMP_UNE)
4250       return T;
4251   }
4252 
4253   return nullptr;
4254 }
4255 
4256 /// Given operands for a SelectInst, see if we can fold the result.
4257 /// If not, this returns null.
4258 static Value *SimplifySelectInst(Value *Cond, Value *TrueVal, Value *FalseVal,
4259                                  const SimplifyQuery &Q, unsigned MaxRecurse) {
4260   if (auto *CondC = dyn_cast<Constant>(Cond)) {
4261     if (auto *TrueC = dyn_cast<Constant>(TrueVal))
4262       if (auto *FalseC = dyn_cast<Constant>(FalseVal))
4263         return ConstantFoldSelectInstruction(CondC, TrueC, FalseC);
4264 
4265     // select poison, X, Y -> poison
4266     if (isa<PoisonValue>(CondC))
4267       return PoisonValue::get(TrueVal->getType());
4268 
4269     // select undef, X, Y -> X or Y
4270     if (Q.isUndefValue(CondC))
4271       return isa<Constant>(FalseVal) ? FalseVal : TrueVal;
4272 
4273     // select true,  X, Y --> X
4274     // select false, X, Y --> Y
4275     // For vectors, allow undef/poison elements in the condition to match the
4276     // defined elements, so we can eliminate the select.
4277     if (match(CondC, m_One()))
4278       return TrueVal;
4279     if (match(CondC, m_Zero()))
4280       return FalseVal;
4281   }
4282 
4283   assert(Cond->getType()->isIntOrIntVectorTy(1) &&
4284          "Select must have bool or bool vector condition");
4285   assert(TrueVal->getType() == FalseVal->getType() &&
4286          "Select must have same types for true/false ops");
4287 
4288   if (Cond->getType() == TrueVal->getType()) {
4289     // select i1 Cond, i1 true, i1 false --> i1 Cond
4290     if (match(TrueVal, m_One()) && match(FalseVal, m_ZeroInt()))
4291       return Cond;
4292 
4293     // (X || Y) && (X || !Y) --> X (commuted 8 ways)
4294     Value *X, *Y;
4295     if (match(FalseVal, m_ZeroInt())) {
4296       if (match(Cond, m_c_LogicalOr(m_Value(X), m_Not(m_Value(Y)))) &&
4297           match(TrueVal, m_c_LogicalOr(m_Specific(X), m_Specific(Y))))
4298         return X;
4299       if (match(TrueVal, m_c_LogicalOr(m_Value(X), m_Not(m_Value(Y)))) &&
4300           match(Cond, m_c_LogicalOr(m_Specific(X), m_Specific(Y))))
4301         return X;
4302     }
4303   }
4304 
4305   // select ?, X, X -> X
4306   if (TrueVal == FalseVal)
4307     return TrueVal;
4308 
4309   // If the true or false value is poison, we can fold to the other value.
4310   // If the true or false value is undef, we can fold to the other value as
4311   // long as the other value isn't poison.
4312   // select ?, poison, X -> X
4313   // select ?, undef,  X -> X
4314   if (isa<PoisonValue>(TrueVal) ||
4315       (Q.isUndefValue(TrueVal) &&
4316        isGuaranteedNotToBePoison(FalseVal, Q.AC, Q.CxtI, Q.DT)))
4317     return FalseVal;
4318   // select ?, X, poison -> X
4319   // select ?, X, undef  -> X
4320   if (isa<PoisonValue>(FalseVal) ||
4321       (Q.isUndefValue(FalseVal) &&
4322        isGuaranteedNotToBePoison(TrueVal, Q.AC, Q.CxtI, Q.DT)))
4323     return TrueVal;
4324 
4325   // Deal with partial undef vector constants: select ?, VecC, VecC' --> VecC''
4326   Constant *TrueC, *FalseC;
4327   if (isa<FixedVectorType>(TrueVal->getType()) &&
4328       match(TrueVal, m_Constant(TrueC)) &&
4329       match(FalseVal, m_Constant(FalseC))) {
4330     unsigned NumElts =
4331         cast<FixedVectorType>(TrueC->getType())->getNumElements();
4332     SmallVector<Constant *, 16> NewC;
4333     for (unsigned i = 0; i != NumElts; ++i) {
4334       // Bail out on incomplete vector constants.
4335       Constant *TEltC = TrueC->getAggregateElement(i);
4336       Constant *FEltC = FalseC->getAggregateElement(i);
4337       if (!TEltC || !FEltC)
4338         break;
4339 
4340       // If the elements match (undef or not), that value is the result. If only
4341       // one element is undef, choose the defined element as the safe result.
4342       if (TEltC == FEltC)
4343         NewC.push_back(TEltC);
4344       else if (isa<PoisonValue>(TEltC) ||
4345                (Q.isUndefValue(TEltC) && isGuaranteedNotToBePoison(FEltC)))
4346         NewC.push_back(FEltC);
4347       else if (isa<PoisonValue>(FEltC) ||
4348                (Q.isUndefValue(FEltC) && isGuaranteedNotToBePoison(TEltC)))
4349         NewC.push_back(TEltC);
4350       else
4351         break;
4352     }
4353     if (NewC.size() == NumElts)
4354       return ConstantVector::get(NewC);
4355   }
4356 
4357   if (Value *V =
4358           simplifySelectWithICmpCond(Cond, TrueVal, FalseVal, Q, MaxRecurse))
4359     return V;
4360 
4361   if (Value *V = simplifySelectWithFCmp(Cond, TrueVal, FalseVal, Q))
4362     return V;
4363 
4364   if (Value *V = foldSelectWithBinaryOp(Cond, TrueVal, FalseVal))
4365     return V;
4366 
4367   Optional<bool> Imp = isImpliedByDomCondition(Cond, Q.CxtI, Q.DL);
4368   if (Imp)
4369     return *Imp ? TrueVal : FalseVal;
4370 
4371   return nullptr;
4372 }
4373 
4374 Value *llvm::SimplifySelectInst(Value *Cond, Value *TrueVal, Value *FalseVal,
4375                                 const SimplifyQuery &Q) {
4376   return ::SimplifySelectInst(Cond, TrueVal, FalseVal, Q, RecursionLimit);
4377 }
4378 
4379 /// Given operands for an GetElementPtrInst, see if we can fold the result.
4380 /// If not, this returns null.
4381 static Value *SimplifyGEPInst(Type *SrcTy, ArrayRef<Value *> Ops, bool InBounds,
4382                               const SimplifyQuery &Q, unsigned) {
4383   // The type of the GEP pointer operand.
4384   unsigned AS =
4385       cast<PointerType>(Ops[0]->getType()->getScalarType())->getAddressSpace();
4386 
4387   // getelementptr P -> P.
4388   if (Ops.size() == 1)
4389     return Ops[0];
4390 
4391   // Compute the (pointer) type returned by the GEP instruction.
4392   Type *LastType = GetElementPtrInst::getIndexedType(SrcTy, Ops.slice(1));
4393   Type *GEPTy = PointerType::get(LastType, AS);
4394   for (Value *Op : Ops) {
4395     // If one of the operands is a vector, the result type is a vector of
4396     // pointers. All vector operands must have the same number of elements.
4397     if (VectorType *VT = dyn_cast<VectorType>(Op->getType())) {
4398       GEPTy = VectorType::get(GEPTy, VT->getElementCount());
4399       break;
4400     }
4401   }
4402 
4403   // getelementptr poison, idx -> poison
4404   // getelementptr baseptr, poison -> poison
4405   if (any_of(Ops, [](const auto *V) { return isa<PoisonValue>(V); }))
4406     return PoisonValue::get(GEPTy);
4407 
4408   if (Q.isUndefValue(Ops[0]))
4409     return UndefValue::get(GEPTy);
4410 
4411   bool IsScalableVec =
4412       isa<ScalableVectorType>(SrcTy) || any_of(Ops, [](const Value *V) {
4413         return isa<ScalableVectorType>(V->getType());
4414       });
4415 
4416   if (Ops.size() == 2) {
4417     // getelementptr P, 0 -> P.
4418     if (match(Ops[1], m_Zero()) && Ops[0]->getType() == GEPTy)
4419       return Ops[0];
4420 
4421     Type *Ty = SrcTy;
4422     if (!IsScalableVec && Ty->isSized()) {
4423       Value *P;
4424       uint64_t C;
4425       uint64_t TyAllocSize = Q.DL.getTypeAllocSize(Ty);
4426       // getelementptr P, N -> P if P points to a type of zero size.
4427       if (TyAllocSize == 0 && Ops[0]->getType() == GEPTy)
4428         return Ops[0];
4429 
4430       // The following transforms are only safe if the ptrtoint cast
4431       // doesn't truncate the pointers.
4432       if (Ops[1]->getType()->getScalarSizeInBits() ==
4433           Q.DL.getPointerSizeInBits(AS)) {
4434         auto CanSimplify = [GEPTy, &P, V = Ops[0]]() -> bool {
4435           return P->getType() == GEPTy &&
4436                  getUnderlyingObject(P) == getUnderlyingObject(V);
4437         };
4438         // getelementptr V, (sub P, V) -> P if P points to a type of size 1.
4439         if (TyAllocSize == 1 &&
4440             match(Ops[1], m_Sub(m_PtrToInt(m_Value(P)),
4441                                 m_PtrToInt(m_Specific(Ops[0])))) &&
4442             CanSimplify())
4443           return P;
4444 
4445         // getelementptr V, (ashr (sub P, V), C) -> P if P points to a type of
4446         // size 1 << C.
4447         if (match(Ops[1], m_AShr(m_Sub(m_PtrToInt(m_Value(P)),
4448                                        m_PtrToInt(m_Specific(Ops[0]))),
4449                                  m_ConstantInt(C))) &&
4450             TyAllocSize == 1ULL << C && CanSimplify())
4451           return P;
4452 
4453         // getelementptr V, (sdiv (sub P, V), C) -> P if P points to a type of
4454         // size C.
4455         if (match(Ops[1], m_SDiv(m_Sub(m_PtrToInt(m_Value(P)),
4456                                        m_PtrToInt(m_Specific(Ops[0]))),
4457                                  m_SpecificInt(TyAllocSize))) &&
4458             CanSimplify())
4459           return P;
4460       }
4461     }
4462   }
4463 
4464   if (!IsScalableVec && Q.DL.getTypeAllocSize(LastType) == 1 &&
4465       all_of(Ops.slice(1).drop_back(1),
4466              [](Value *Idx) { return match(Idx, m_Zero()); })) {
4467     unsigned IdxWidth =
4468         Q.DL.getIndexSizeInBits(Ops[0]->getType()->getPointerAddressSpace());
4469     if (Q.DL.getTypeSizeInBits(Ops.back()->getType()) == IdxWidth) {
4470       APInt BasePtrOffset(IdxWidth, 0);
4471       Value *StrippedBasePtr =
4472           Ops[0]->stripAndAccumulateInBoundsConstantOffsets(Q.DL,
4473                                                             BasePtrOffset);
4474 
4475       // Avoid creating inttoptr of zero here: While LLVMs treatment of
4476       // inttoptr is generally conservative, this particular case is folded to
4477       // a null pointer, which will have incorrect provenance.
4478 
4479       // gep (gep V, C), (sub 0, V) -> C
4480       if (match(Ops.back(),
4481                 m_Sub(m_Zero(), m_PtrToInt(m_Specific(StrippedBasePtr)))) &&
4482           !BasePtrOffset.isZero()) {
4483         auto *CI = ConstantInt::get(GEPTy->getContext(), BasePtrOffset);
4484         return ConstantExpr::getIntToPtr(CI, GEPTy);
4485       }
4486       // gep (gep V, C), (xor V, -1) -> C-1
4487       if (match(Ops.back(),
4488                 m_Xor(m_PtrToInt(m_Specific(StrippedBasePtr)), m_AllOnes())) &&
4489           !BasePtrOffset.isOne()) {
4490         auto *CI = ConstantInt::get(GEPTy->getContext(), BasePtrOffset - 1);
4491         return ConstantExpr::getIntToPtr(CI, GEPTy);
4492       }
4493     }
4494   }
4495 
4496   // Check to see if this is constant foldable.
4497   if (!all_of(Ops, [](Value *V) { return isa<Constant>(V); }))
4498     return nullptr;
4499 
4500   auto *CE = ConstantExpr::getGetElementPtr(SrcTy, cast<Constant>(Ops[0]),
4501                                             Ops.slice(1), InBounds);
4502   return ConstantFoldConstant(CE, Q.DL);
4503 }
4504 
4505 Value *llvm::SimplifyGEPInst(Type *SrcTy, ArrayRef<Value *> Ops, bool InBounds,
4506                              const SimplifyQuery &Q) {
4507   return ::SimplifyGEPInst(SrcTy, Ops, InBounds, Q, RecursionLimit);
4508 }
4509 
4510 /// Given operands for an InsertValueInst, see if we can fold the result.
4511 /// If not, this returns null.
4512 static Value *SimplifyInsertValueInst(Value *Agg, Value *Val,
4513                                       ArrayRef<unsigned> Idxs, const SimplifyQuery &Q,
4514                                       unsigned) {
4515   if (Constant *CAgg = dyn_cast<Constant>(Agg))
4516     if (Constant *CVal = dyn_cast<Constant>(Val))
4517       return ConstantFoldInsertValueInstruction(CAgg, CVal, Idxs);
4518 
4519   // insertvalue x, undef, n -> x
4520   if (Q.isUndefValue(Val))
4521     return Agg;
4522 
4523   // insertvalue x, (extractvalue y, n), n
4524   if (ExtractValueInst *EV = dyn_cast<ExtractValueInst>(Val))
4525     if (EV->getAggregateOperand()->getType() == Agg->getType() &&
4526         EV->getIndices() == Idxs) {
4527       // insertvalue undef, (extractvalue y, n), n -> y
4528       if (Q.isUndefValue(Agg))
4529         return EV->getAggregateOperand();
4530 
4531       // insertvalue y, (extractvalue y, n), n -> y
4532       if (Agg == EV->getAggregateOperand())
4533         return Agg;
4534     }
4535 
4536   return nullptr;
4537 }
4538 
4539 Value *llvm::SimplifyInsertValueInst(Value *Agg, Value *Val,
4540                                      ArrayRef<unsigned> Idxs,
4541                                      const SimplifyQuery &Q) {
4542   return ::SimplifyInsertValueInst(Agg, Val, Idxs, Q, RecursionLimit);
4543 }
4544 
4545 Value *llvm::SimplifyInsertElementInst(Value *Vec, Value *Val, Value *Idx,
4546                                        const SimplifyQuery &Q) {
4547   // Try to constant fold.
4548   auto *VecC = dyn_cast<Constant>(Vec);
4549   auto *ValC = dyn_cast<Constant>(Val);
4550   auto *IdxC = dyn_cast<Constant>(Idx);
4551   if (VecC && ValC && IdxC)
4552     return ConstantExpr::getInsertElement(VecC, ValC, IdxC);
4553 
4554   // For fixed-length vector, fold into poison if index is out of bounds.
4555   if (auto *CI = dyn_cast<ConstantInt>(Idx)) {
4556     if (isa<FixedVectorType>(Vec->getType()) &&
4557         CI->uge(cast<FixedVectorType>(Vec->getType())->getNumElements()))
4558       return PoisonValue::get(Vec->getType());
4559   }
4560 
4561   // If index is undef, it might be out of bounds (see above case)
4562   if (Q.isUndefValue(Idx))
4563     return PoisonValue::get(Vec->getType());
4564 
4565   // If the scalar is poison, or it is undef and there is no risk of
4566   // propagating poison from the vector value, simplify to the vector value.
4567   if (isa<PoisonValue>(Val) ||
4568       (Q.isUndefValue(Val) && isGuaranteedNotToBePoison(Vec)))
4569     return Vec;
4570 
4571   // If we are extracting a value from a vector, then inserting it into the same
4572   // place, that's the input vector:
4573   // insertelt Vec, (extractelt Vec, Idx), Idx --> Vec
4574   if (match(Val, m_ExtractElt(m_Specific(Vec), m_Specific(Idx))))
4575     return Vec;
4576 
4577   return nullptr;
4578 }
4579 
4580 /// Given operands for an ExtractValueInst, see if we can fold the result.
4581 /// If not, this returns null.
4582 static Value *SimplifyExtractValueInst(Value *Agg, ArrayRef<unsigned> Idxs,
4583                                        const SimplifyQuery &, unsigned) {
4584   if (auto *CAgg = dyn_cast<Constant>(Agg))
4585     return ConstantFoldExtractValueInstruction(CAgg, Idxs);
4586 
4587   // extractvalue x, (insertvalue y, elt, n), n -> elt
4588   unsigned NumIdxs = Idxs.size();
4589   for (auto *IVI = dyn_cast<InsertValueInst>(Agg); IVI != nullptr;
4590        IVI = dyn_cast<InsertValueInst>(IVI->getAggregateOperand())) {
4591     ArrayRef<unsigned> InsertValueIdxs = IVI->getIndices();
4592     unsigned NumInsertValueIdxs = InsertValueIdxs.size();
4593     unsigned NumCommonIdxs = std::min(NumInsertValueIdxs, NumIdxs);
4594     if (InsertValueIdxs.slice(0, NumCommonIdxs) ==
4595         Idxs.slice(0, NumCommonIdxs)) {
4596       if (NumIdxs == NumInsertValueIdxs)
4597         return IVI->getInsertedValueOperand();
4598       break;
4599     }
4600   }
4601 
4602   return nullptr;
4603 }
4604 
4605 Value *llvm::SimplifyExtractValueInst(Value *Agg, ArrayRef<unsigned> Idxs,
4606                                       const SimplifyQuery &Q) {
4607   return ::SimplifyExtractValueInst(Agg, Idxs, Q, RecursionLimit);
4608 }
4609 
4610 /// Given operands for an ExtractElementInst, see if we can fold the result.
4611 /// If not, this returns null.
4612 static Value *SimplifyExtractElementInst(Value *Vec, Value *Idx,
4613                                          const SimplifyQuery &Q, unsigned) {
4614   auto *VecVTy = cast<VectorType>(Vec->getType());
4615   if (auto *CVec = dyn_cast<Constant>(Vec)) {
4616     if (auto *CIdx = dyn_cast<Constant>(Idx))
4617       return ConstantExpr::getExtractElement(CVec, CIdx);
4618 
4619     if (Q.isUndefValue(Vec))
4620       return UndefValue::get(VecVTy->getElementType());
4621   }
4622 
4623   // An undef extract index can be arbitrarily chosen to be an out-of-range
4624   // index value, which would result in the instruction being poison.
4625   if (Q.isUndefValue(Idx))
4626     return PoisonValue::get(VecVTy->getElementType());
4627 
4628   // If extracting a specified index from the vector, see if we can recursively
4629   // find a previously computed scalar that was inserted into the vector.
4630   if (auto *IdxC = dyn_cast<ConstantInt>(Idx)) {
4631     // For fixed-length vector, fold into undef if index is out of bounds.
4632     unsigned MinNumElts = VecVTy->getElementCount().getKnownMinValue();
4633     if (isa<FixedVectorType>(VecVTy) && IdxC->getValue().uge(MinNumElts))
4634       return PoisonValue::get(VecVTy->getElementType());
4635     // Handle case where an element is extracted from a splat.
4636     if (IdxC->getValue().ult(MinNumElts))
4637       if (auto *Splat = getSplatValue(Vec))
4638         return Splat;
4639     if (Value *Elt = findScalarElement(Vec, IdxC->getZExtValue()))
4640       return Elt;
4641   } else {
4642     // The index is not relevant if our vector is a splat.
4643     if (Value *Splat = getSplatValue(Vec))
4644       return Splat;
4645   }
4646   return nullptr;
4647 }
4648 
4649 Value *llvm::SimplifyExtractElementInst(Value *Vec, Value *Idx,
4650                                         const SimplifyQuery &Q) {
4651   return ::SimplifyExtractElementInst(Vec, Idx, Q, RecursionLimit);
4652 }
4653 
4654 /// See if we can fold the given phi. If not, returns null.
4655 static Value *SimplifyPHINode(PHINode *PN, ArrayRef<Value *> IncomingValues,
4656                               const SimplifyQuery &Q) {
4657   // WARNING: no matter how worthwhile it may seem, we can not perform PHI CSE
4658   //          here, because the PHI we may succeed simplifying to was not
4659   //          def-reachable from the original PHI!
4660 
4661   // If all of the PHI's incoming values are the same then replace the PHI node
4662   // with the common value.
4663   Value *CommonValue = nullptr;
4664   bool HasUndefInput = false;
4665   for (Value *Incoming : IncomingValues) {
4666     // If the incoming value is the phi node itself, it can safely be skipped.
4667     if (Incoming == PN) continue;
4668     if (Q.isUndefValue(Incoming)) {
4669       // Remember that we saw an undef value, but otherwise ignore them.
4670       HasUndefInput = true;
4671       continue;
4672     }
4673     if (CommonValue && Incoming != CommonValue)
4674       return nullptr;  // Not the same, bail out.
4675     CommonValue = Incoming;
4676   }
4677 
4678   // If CommonValue is null then all of the incoming values were either undef or
4679   // equal to the phi node itself.
4680   if (!CommonValue)
4681     return UndefValue::get(PN->getType());
4682 
4683   // If we have a PHI node like phi(X, undef, X), where X is defined by some
4684   // instruction, we cannot return X as the result of the PHI node unless it
4685   // dominates the PHI block.
4686   if (HasUndefInput)
4687     return valueDominatesPHI(CommonValue, PN, Q.DT) ? CommonValue : nullptr;
4688 
4689   return CommonValue;
4690 }
4691 
4692 static Value *SimplifyCastInst(unsigned CastOpc, Value *Op,
4693                                Type *Ty, const SimplifyQuery &Q, unsigned MaxRecurse) {
4694   if (auto *C = dyn_cast<Constant>(Op))
4695     return ConstantFoldCastOperand(CastOpc, C, Ty, Q.DL);
4696 
4697   if (auto *CI = dyn_cast<CastInst>(Op)) {
4698     auto *Src = CI->getOperand(0);
4699     Type *SrcTy = Src->getType();
4700     Type *MidTy = CI->getType();
4701     Type *DstTy = Ty;
4702     if (Src->getType() == Ty) {
4703       auto FirstOp = static_cast<Instruction::CastOps>(CI->getOpcode());
4704       auto SecondOp = static_cast<Instruction::CastOps>(CastOpc);
4705       Type *SrcIntPtrTy =
4706           SrcTy->isPtrOrPtrVectorTy() ? Q.DL.getIntPtrType(SrcTy) : nullptr;
4707       Type *MidIntPtrTy =
4708           MidTy->isPtrOrPtrVectorTy() ? Q.DL.getIntPtrType(MidTy) : nullptr;
4709       Type *DstIntPtrTy =
4710           DstTy->isPtrOrPtrVectorTy() ? Q.DL.getIntPtrType(DstTy) : nullptr;
4711       if (CastInst::isEliminableCastPair(FirstOp, SecondOp, SrcTy, MidTy, DstTy,
4712                                          SrcIntPtrTy, MidIntPtrTy,
4713                                          DstIntPtrTy) == Instruction::BitCast)
4714         return Src;
4715     }
4716   }
4717 
4718   // bitcast x -> x
4719   if (CastOpc == Instruction::BitCast)
4720     if (Op->getType() == Ty)
4721       return Op;
4722 
4723   return nullptr;
4724 }
4725 
4726 Value *llvm::SimplifyCastInst(unsigned CastOpc, Value *Op, Type *Ty,
4727                               const SimplifyQuery &Q) {
4728   return ::SimplifyCastInst(CastOpc, Op, Ty, Q, RecursionLimit);
4729 }
4730 
4731 /// For the given destination element of a shuffle, peek through shuffles to
4732 /// match a root vector source operand that contains that element in the same
4733 /// vector lane (ie, the same mask index), so we can eliminate the shuffle(s).
4734 static Value *foldIdentityShuffles(int DestElt, Value *Op0, Value *Op1,
4735                                    int MaskVal, Value *RootVec,
4736                                    unsigned MaxRecurse) {
4737   if (!MaxRecurse--)
4738     return nullptr;
4739 
4740   // Bail out if any mask value is undefined. That kind of shuffle may be
4741   // simplified further based on demanded bits or other folds.
4742   if (MaskVal == -1)
4743     return nullptr;
4744 
4745   // The mask value chooses which source operand we need to look at next.
4746   int InVecNumElts = cast<FixedVectorType>(Op0->getType())->getNumElements();
4747   int RootElt = MaskVal;
4748   Value *SourceOp = Op0;
4749   if (MaskVal >= InVecNumElts) {
4750     RootElt = MaskVal - InVecNumElts;
4751     SourceOp = Op1;
4752   }
4753 
4754   // If the source operand is a shuffle itself, look through it to find the
4755   // matching root vector.
4756   if (auto *SourceShuf = dyn_cast<ShuffleVectorInst>(SourceOp)) {
4757     return foldIdentityShuffles(
4758         DestElt, SourceShuf->getOperand(0), SourceShuf->getOperand(1),
4759         SourceShuf->getMaskValue(RootElt), RootVec, MaxRecurse);
4760   }
4761 
4762   // TODO: Look through bitcasts? What if the bitcast changes the vector element
4763   // size?
4764 
4765   // The source operand is not a shuffle. Initialize the root vector value for
4766   // this shuffle if that has not been done yet.
4767   if (!RootVec)
4768     RootVec = SourceOp;
4769 
4770   // Give up as soon as a source operand does not match the existing root value.
4771   if (RootVec != SourceOp)
4772     return nullptr;
4773 
4774   // The element must be coming from the same lane in the source vector
4775   // (although it may have crossed lanes in intermediate shuffles).
4776   if (RootElt != DestElt)
4777     return nullptr;
4778 
4779   return RootVec;
4780 }
4781 
4782 static Value *SimplifyShuffleVectorInst(Value *Op0, Value *Op1,
4783                                         ArrayRef<int> Mask, Type *RetTy,
4784                                         const SimplifyQuery &Q,
4785                                         unsigned MaxRecurse) {
4786   if (all_of(Mask, [](int Elem) { return Elem == UndefMaskElem; }))
4787     return UndefValue::get(RetTy);
4788 
4789   auto *InVecTy = cast<VectorType>(Op0->getType());
4790   unsigned MaskNumElts = Mask.size();
4791   ElementCount InVecEltCount = InVecTy->getElementCount();
4792 
4793   bool Scalable = InVecEltCount.isScalable();
4794 
4795   SmallVector<int, 32> Indices;
4796   Indices.assign(Mask.begin(), Mask.end());
4797 
4798   // Canonicalization: If mask does not select elements from an input vector,
4799   // replace that input vector with poison.
4800   if (!Scalable) {
4801     bool MaskSelects0 = false, MaskSelects1 = false;
4802     unsigned InVecNumElts = InVecEltCount.getKnownMinValue();
4803     for (unsigned i = 0; i != MaskNumElts; ++i) {
4804       if (Indices[i] == -1)
4805         continue;
4806       if ((unsigned)Indices[i] < InVecNumElts)
4807         MaskSelects0 = true;
4808       else
4809         MaskSelects1 = true;
4810     }
4811     if (!MaskSelects0)
4812       Op0 = PoisonValue::get(InVecTy);
4813     if (!MaskSelects1)
4814       Op1 = PoisonValue::get(InVecTy);
4815   }
4816 
4817   auto *Op0Const = dyn_cast<Constant>(Op0);
4818   auto *Op1Const = dyn_cast<Constant>(Op1);
4819 
4820   // If all operands are constant, constant fold the shuffle. This
4821   // transformation depends on the value of the mask which is not known at
4822   // compile time for scalable vectors
4823   if (Op0Const && Op1Const)
4824     return ConstantExpr::getShuffleVector(Op0Const, Op1Const, Mask);
4825 
4826   // Canonicalization: if only one input vector is constant, it shall be the
4827   // second one. This transformation depends on the value of the mask which
4828   // is not known at compile time for scalable vectors
4829   if (!Scalable && Op0Const && !Op1Const) {
4830     std::swap(Op0, Op1);
4831     ShuffleVectorInst::commuteShuffleMask(Indices,
4832                                           InVecEltCount.getKnownMinValue());
4833   }
4834 
4835   // A splat of an inserted scalar constant becomes a vector constant:
4836   // shuf (inselt ?, C, IndexC), undef, <IndexC, IndexC...> --> <C, C...>
4837   // NOTE: We may have commuted above, so analyze the updated Indices, not the
4838   //       original mask constant.
4839   // NOTE: This transformation depends on the value of the mask which is not
4840   // known at compile time for scalable vectors
4841   Constant *C;
4842   ConstantInt *IndexC;
4843   if (!Scalable && match(Op0, m_InsertElt(m_Value(), m_Constant(C),
4844                                           m_ConstantInt(IndexC)))) {
4845     // Match a splat shuffle mask of the insert index allowing undef elements.
4846     int InsertIndex = IndexC->getZExtValue();
4847     if (all_of(Indices, [InsertIndex](int MaskElt) {
4848           return MaskElt == InsertIndex || MaskElt == -1;
4849         })) {
4850       assert(isa<UndefValue>(Op1) && "Expected undef operand 1 for splat");
4851 
4852       // Shuffle mask undefs become undefined constant result elements.
4853       SmallVector<Constant *, 16> VecC(MaskNumElts, C);
4854       for (unsigned i = 0; i != MaskNumElts; ++i)
4855         if (Indices[i] == -1)
4856           VecC[i] = UndefValue::get(C->getType());
4857       return ConstantVector::get(VecC);
4858     }
4859   }
4860 
4861   // A shuffle of a splat is always the splat itself. Legal if the shuffle's
4862   // value type is same as the input vectors' type.
4863   if (auto *OpShuf = dyn_cast<ShuffleVectorInst>(Op0))
4864     if (Q.isUndefValue(Op1) && RetTy == InVecTy &&
4865         is_splat(OpShuf->getShuffleMask()))
4866       return Op0;
4867 
4868   // All remaining transformation depend on the value of the mask, which is
4869   // not known at compile time for scalable vectors.
4870   if (Scalable)
4871     return nullptr;
4872 
4873   // Don't fold a shuffle with undef mask elements. This may get folded in a
4874   // better way using demanded bits or other analysis.
4875   // TODO: Should we allow this?
4876   if (is_contained(Indices, -1))
4877     return nullptr;
4878 
4879   // Check if every element of this shuffle can be mapped back to the
4880   // corresponding element of a single root vector. If so, we don't need this
4881   // shuffle. This handles simple identity shuffles as well as chains of
4882   // shuffles that may widen/narrow and/or move elements across lanes and back.
4883   Value *RootVec = nullptr;
4884   for (unsigned i = 0; i != MaskNumElts; ++i) {
4885     // Note that recursion is limited for each vector element, so if any element
4886     // exceeds the limit, this will fail to simplify.
4887     RootVec =
4888         foldIdentityShuffles(i, Op0, Op1, Indices[i], RootVec, MaxRecurse);
4889 
4890     // We can't replace a widening/narrowing shuffle with one of its operands.
4891     if (!RootVec || RootVec->getType() != RetTy)
4892       return nullptr;
4893   }
4894   return RootVec;
4895 }
4896 
4897 /// Given operands for a ShuffleVectorInst, fold the result or return null.
4898 Value *llvm::SimplifyShuffleVectorInst(Value *Op0, Value *Op1,
4899                                        ArrayRef<int> Mask, Type *RetTy,
4900                                        const SimplifyQuery &Q) {
4901   return ::SimplifyShuffleVectorInst(Op0, Op1, Mask, RetTy, Q, RecursionLimit);
4902 }
4903 
4904 static Constant *foldConstant(Instruction::UnaryOps Opcode,
4905                               Value *&Op, const SimplifyQuery &Q) {
4906   if (auto *C = dyn_cast<Constant>(Op))
4907     return ConstantFoldUnaryOpOperand(Opcode, C, Q.DL);
4908   return nullptr;
4909 }
4910 
4911 /// Given the operand for an FNeg, see if we can fold the result.  If not, this
4912 /// returns null.
4913 static Value *simplifyFNegInst(Value *Op, FastMathFlags FMF,
4914                                const SimplifyQuery &Q, unsigned MaxRecurse) {
4915   if (Constant *C = foldConstant(Instruction::FNeg, Op, Q))
4916     return C;
4917 
4918   Value *X;
4919   // fneg (fneg X) ==> X
4920   if (match(Op, m_FNeg(m_Value(X))))
4921     return X;
4922 
4923   return nullptr;
4924 }
4925 
4926 Value *llvm::SimplifyFNegInst(Value *Op, FastMathFlags FMF,
4927                               const SimplifyQuery &Q) {
4928   return ::simplifyFNegInst(Op, FMF, Q, RecursionLimit);
4929 }
4930 
4931 static Constant *propagateNaN(Constant *In) {
4932   // If the input is a vector with undef elements, just return a default NaN.
4933   if (!In->isNaN())
4934     return ConstantFP::getNaN(In->getType());
4935 
4936   // Propagate the existing NaN constant when possible.
4937   // TODO: Should we quiet a signaling NaN?
4938   return In;
4939 }
4940 
4941 /// Perform folds that are common to any floating-point operation. This implies
4942 /// transforms based on poison/undef/NaN because the operation itself makes no
4943 /// difference to the result.
4944 static Constant *simplifyFPOp(ArrayRef<Value *> Ops, FastMathFlags FMF,
4945                               const SimplifyQuery &Q,
4946                               fp::ExceptionBehavior ExBehavior,
4947                               RoundingMode Rounding) {
4948   // Poison is independent of anything else. It always propagates from an
4949   // operand to a math result.
4950   if (any_of(Ops, [](Value *V) { return match(V, m_Poison()); }))
4951     return PoisonValue::get(Ops[0]->getType());
4952 
4953   for (Value *V : Ops) {
4954     bool IsNan = match(V, m_NaN());
4955     bool IsInf = match(V, m_Inf());
4956     bool IsUndef = Q.isUndefValue(V);
4957 
4958     // If this operation has 'nnan' or 'ninf' and at least 1 disallowed operand
4959     // (an undef operand can be chosen to be Nan/Inf), then the result of
4960     // this operation is poison.
4961     if (FMF.noNaNs() && (IsNan || IsUndef))
4962       return PoisonValue::get(V->getType());
4963     if (FMF.noInfs() && (IsInf || IsUndef))
4964       return PoisonValue::get(V->getType());
4965 
4966     if (isDefaultFPEnvironment(ExBehavior, Rounding)) {
4967       if (IsUndef || IsNan)
4968         return propagateNaN(cast<Constant>(V));
4969     } else if (ExBehavior != fp::ebStrict) {
4970       if (IsNan)
4971         return propagateNaN(cast<Constant>(V));
4972     }
4973   }
4974   return nullptr;
4975 }
4976 
4977 // TODO: Move this out to a header file:
4978 static inline bool canIgnoreSNaN(fp::ExceptionBehavior EB, FastMathFlags FMF) {
4979   return (EB == fp::ebIgnore || FMF.noNaNs());
4980 }
4981 
4982 /// Given operands for an FAdd, see if we can fold the result.  If not, this
4983 /// returns null.
4984 static Value *
4985 SimplifyFAddInst(Value *Op0, Value *Op1, FastMathFlags FMF,
4986                  const SimplifyQuery &Q, unsigned MaxRecurse,
4987                  fp::ExceptionBehavior ExBehavior = fp::ebIgnore,
4988                  RoundingMode Rounding = RoundingMode::NearestTiesToEven) {
4989   if (isDefaultFPEnvironment(ExBehavior, Rounding))
4990     if (Constant *C = foldOrCommuteConstant(Instruction::FAdd, Op0, Op1, Q))
4991       return C;
4992 
4993   if (Constant *C = simplifyFPOp({Op0, Op1}, FMF, Q, ExBehavior, Rounding))
4994     return C;
4995 
4996   // fadd X, -0 ==> X
4997   // With strict/constrained FP, we have these possible edge cases that do
4998   // not simplify to Op0:
4999   // fadd SNaN, -0.0 --> QNaN
5000   // fadd +0.0, -0.0 --> -0.0 (but only with round toward negative)
5001   if (canIgnoreSNaN(ExBehavior, FMF) &&
5002       (!canRoundingModeBe(Rounding, RoundingMode::TowardNegative) ||
5003        FMF.noSignedZeros()))
5004     if (match(Op1, m_NegZeroFP()))
5005       return Op0;
5006 
5007   // fadd X, 0 ==> X, when we know X is not -0
5008   if (canIgnoreSNaN(ExBehavior, FMF))
5009     if (match(Op1, m_PosZeroFP()) &&
5010         (FMF.noSignedZeros() || CannotBeNegativeZero(Op0, Q.TLI)))
5011       return Op0;
5012 
5013   if (!isDefaultFPEnvironment(ExBehavior, Rounding))
5014     return nullptr;
5015 
5016   // With nnan: -X + X --> 0.0 (and commuted variant)
5017   // We don't have to explicitly exclude infinities (ninf): INF + -INF == NaN.
5018   // Negative zeros are allowed because we always end up with positive zero:
5019   // X = -0.0: (-0.0 - (-0.0)) + (-0.0) == ( 0.0) + (-0.0) == 0.0
5020   // X = -0.0: ( 0.0 - (-0.0)) + (-0.0) == ( 0.0) + (-0.0) == 0.0
5021   // X =  0.0: (-0.0 - ( 0.0)) + ( 0.0) == (-0.0) + ( 0.0) == 0.0
5022   // X =  0.0: ( 0.0 - ( 0.0)) + ( 0.0) == ( 0.0) + ( 0.0) == 0.0
5023   if (FMF.noNaNs()) {
5024     if (match(Op0, m_FSub(m_AnyZeroFP(), m_Specific(Op1))) ||
5025         match(Op1, m_FSub(m_AnyZeroFP(), m_Specific(Op0))))
5026       return ConstantFP::getNullValue(Op0->getType());
5027 
5028     if (match(Op0, m_FNeg(m_Specific(Op1))) ||
5029         match(Op1, m_FNeg(m_Specific(Op0))))
5030       return ConstantFP::getNullValue(Op0->getType());
5031   }
5032 
5033   // (X - Y) + Y --> X
5034   // Y + (X - Y) --> X
5035   Value *X;
5036   if (FMF.noSignedZeros() && FMF.allowReassoc() &&
5037       (match(Op0, m_FSub(m_Value(X), m_Specific(Op1))) ||
5038        match(Op1, m_FSub(m_Value(X), m_Specific(Op0)))))
5039     return X;
5040 
5041   return nullptr;
5042 }
5043 
5044 /// Given operands for an FSub, see if we can fold the result.  If not, this
5045 /// returns null.
5046 static Value *
5047 SimplifyFSubInst(Value *Op0, Value *Op1, FastMathFlags FMF,
5048                  const SimplifyQuery &Q, unsigned MaxRecurse,
5049                  fp::ExceptionBehavior ExBehavior = fp::ebIgnore,
5050                  RoundingMode Rounding = RoundingMode::NearestTiesToEven) {
5051   if (isDefaultFPEnvironment(ExBehavior, Rounding))
5052     if (Constant *C = foldOrCommuteConstant(Instruction::FSub, Op0, Op1, Q))
5053       return C;
5054 
5055   if (Constant *C = simplifyFPOp({Op0, Op1}, FMF, Q, ExBehavior, Rounding))
5056     return C;
5057 
5058   if (!isDefaultFPEnvironment(ExBehavior, Rounding))
5059     return nullptr;
5060 
5061   // fsub X, +0 ==> X
5062   if (match(Op1, m_PosZeroFP()))
5063     return Op0;
5064 
5065   // fsub X, -0 ==> X, when we know X is not -0
5066   if (match(Op1, m_NegZeroFP()) &&
5067       (FMF.noSignedZeros() || CannotBeNegativeZero(Op0, Q.TLI)))
5068     return Op0;
5069 
5070   // fsub -0.0, (fsub -0.0, X) ==> X
5071   // fsub -0.0, (fneg X) ==> X
5072   Value *X;
5073   if (match(Op0, m_NegZeroFP()) &&
5074       match(Op1, m_FNeg(m_Value(X))))
5075     return X;
5076 
5077   // fsub 0.0, (fsub 0.0, X) ==> X if signed zeros are ignored.
5078   // fsub 0.0, (fneg X) ==> X if signed zeros are ignored.
5079   if (FMF.noSignedZeros() && match(Op0, m_AnyZeroFP()) &&
5080       (match(Op1, m_FSub(m_AnyZeroFP(), m_Value(X))) ||
5081        match(Op1, m_FNeg(m_Value(X)))))
5082     return X;
5083 
5084   // fsub nnan x, x ==> 0.0
5085   if (FMF.noNaNs() && Op0 == Op1)
5086     return Constant::getNullValue(Op0->getType());
5087 
5088   // Y - (Y - X) --> X
5089   // (X + Y) - Y --> X
5090   if (FMF.noSignedZeros() && FMF.allowReassoc() &&
5091       (match(Op1, m_FSub(m_Specific(Op0), m_Value(X))) ||
5092        match(Op0, m_c_FAdd(m_Specific(Op1), m_Value(X)))))
5093     return X;
5094 
5095   return nullptr;
5096 }
5097 
5098 static Value *SimplifyFMAFMul(Value *Op0, Value *Op1, FastMathFlags FMF,
5099                               const SimplifyQuery &Q, unsigned MaxRecurse,
5100                               fp::ExceptionBehavior ExBehavior,
5101                               RoundingMode Rounding) {
5102   if (Constant *C = simplifyFPOp({Op0, Op1}, FMF, Q, ExBehavior, Rounding))
5103     return C;
5104 
5105   if (!isDefaultFPEnvironment(ExBehavior, Rounding))
5106     return nullptr;
5107 
5108   // fmul X, 1.0 ==> X
5109   if (match(Op1, m_FPOne()))
5110     return Op0;
5111 
5112   // fmul 1.0, X ==> X
5113   if (match(Op0, m_FPOne()))
5114     return Op1;
5115 
5116   // fmul nnan nsz X, 0 ==> 0
5117   if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op1, m_AnyZeroFP()))
5118     return ConstantFP::getNullValue(Op0->getType());
5119 
5120   // fmul nnan nsz 0, X ==> 0
5121   if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op0, m_AnyZeroFP()))
5122     return ConstantFP::getNullValue(Op1->getType());
5123 
5124   // sqrt(X) * sqrt(X) --> X, if we can:
5125   // 1. Remove the intermediate rounding (reassociate).
5126   // 2. Ignore non-zero negative numbers because sqrt would produce NAN.
5127   // 3. Ignore -0.0 because sqrt(-0.0) == -0.0, but -0.0 * -0.0 == 0.0.
5128   Value *X;
5129   if (Op0 == Op1 && match(Op0, m_Intrinsic<Intrinsic::sqrt>(m_Value(X))) &&
5130       FMF.allowReassoc() && FMF.noNaNs() && FMF.noSignedZeros())
5131     return X;
5132 
5133   return nullptr;
5134 }
5135 
5136 /// Given the operands for an FMul, see if we can fold the result
5137 static Value *
5138 SimplifyFMulInst(Value *Op0, Value *Op1, FastMathFlags FMF,
5139                  const SimplifyQuery &Q, unsigned MaxRecurse,
5140                  fp::ExceptionBehavior ExBehavior = fp::ebIgnore,
5141                  RoundingMode Rounding = RoundingMode::NearestTiesToEven) {
5142   if (isDefaultFPEnvironment(ExBehavior, Rounding))
5143     if (Constant *C = foldOrCommuteConstant(Instruction::FMul, Op0, Op1, Q))
5144       return C;
5145 
5146   // Now apply simplifications that do not require rounding.
5147   return SimplifyFMAFMul(Op0, Op1, FMF, Q, MaxRecurse, ExBehavior, Rounding);
5148 }
5149 
5150 Value *llvm::SimplifyFAddInst(Value *Op0, Value *Op1, FastMathFlags FMF,
5151                               const SimplifyQuery &Q,
5152                               fp::ExceptionBehavior ExBehavior,
5153                               RoundingMode Rounding) {
5154   return ::SimplifyFAddInst(Op0, Op1, FMF, Q, RecursionLimit, ExBehavior,
5155                             Rounding);
5156 }
5157 
5158 Value *llvm::SimplifyFSubInst(Value *Op0, Value *Op1, FastMathFlags FMF,
5159                               const SimplifyQuery &Q,
5160                               fp::ExceptionBehavior ExBehavior,
5161                               RoundingMode Rounding) {
5162   return ::SimplifyFSubInst(Op0, Op1, FMF, Q, RecursionLimit, ExBehavior,
5163                             Rounding);
5164 }
5165 
5166 Value *llvm::SimplifyFMulInst(Value *Op0, Value *Op1, FastMathFlags FMF,
5167                               const SimplifyQuery &Q,
5168                               fp::ExceptionBehavior ExBehavior,
5169                               RoundingMode Rounding) {
5170   return ::SimplifyFMulInst(Op0, Op1, FMF, Q, RecursionLimit, ExBehavior,
5171                             Rounding);
5172 }
5173 
5174 Value *llvm::SimplifyFMAFMul(Value *Op0, Value *Op1, FastMathFlags FMF,
5175                              const SimplifyQuery &Q,
5176                              fp::ExceptionBehavior ExBehavior,
5177                              RoundingMode Rounding) {
5178   return ::SimplifyFMAFMul(Op0, Op1, FMF, Q, RecursionLimit, ExBehavior,
5179                            Rounding);
5180 }
5181 
5182 static Value *
5183 SimplifyFDivInst(Value *Op0, Value *Op1, FastMathFlags FMF,
5184                  const SimplifyQuery &Q, unsigned,
5185                  fp::ExceptionBehavior ExBehavior = fp::ebIgnore,
5186                  RoundingMode Rounding = RoundingMode::NearestTiesToEven) {
5187   if (isDefaultFPEnvironment(ExBehavior, Rounding))
5188     if (Constant *C = foldOrCommuteConstant(Instruction::FDiv, Op0, Op1, Q))
5189       return C;
5190 
5191   if (Constant *C = simplifyFPOp({Op0, Op1}, FMF, Q, ExBehavior, Rounding))
5192     return C;
5193 
5194   if (!isDefaultFPEnvironment(ExBehavior, Rounding))
5195     return nullptr;
5196 
5197   // X / 1.0 -> X
5198   if (match(Op1, m_FPOne()))
5199     return Op0;
5200 
5201   // 0 / X -> 0
5202   // Requires that NaNs are off (X could be zero) and signed zeroes are
5203   // ignored (X could be positive or negative, so the output sign is unknown).
5204   if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op0, m_AnyZeroFP()))
5205     return ConstantFP::getNullValue(Op0->getType());
5206 
5207   if (FMF.noNaNs()) {
5208     // X / X -> 1.0 is legal when NaNs are ignored.
5209     // We can ignore infinities because INF/INF is NaN.
5210     if (Op0 == Op1)
5211       return ConstantFP::get(Op0->getType(), 1.0);
5212 
5213     // (X * Y) / Y --> X if we can reassociate to the above form.
5214     Value *X;
5215     if (FMF.allowReassoc() && match(Op0, m_c_FMul(m_Value(X), m_Specific(Op1))))
5216       return X;
5217 
5218     // -X /  X -> -1.0 and
5219     //  X / -X -> -1.0 are legal when NaNs are ignored.
5220     // We can ignore signed zeros because +-0.0/+-0.0 is NaN and ignored.
5221     if (match(Op0, m_FNegNSZ(m_Specific(Op1))) ||
5222         match(Op1, m_FNegNSZ(m_Specific(Op0))))
5223       return ConstantFP::get(Op0->getType(), -1.0);
5224   }
5225 
5226   return nullptr;
5227 }
5228 
5229 Value *llvm::SimplifyFDivInst(Value *Op0, Value *Op1, FastMathFlags FMF,
5230                               const SimplifyQuery &Q,
5231                               fp::ExceptionBehavior ExBehavior,
5232                               RoundingMode Rounding) {
5233   return ::SimplifyFDivInst(Op0, Op1, FMF, Q, RecursionLimit, ExBehavior,
5234                             Rounding);
5235 }
5236 
5237 static Value *
5238 SimplifyFRemInst(Value *Op0, Value *Op1, FastMathFlags FMF,
5239                  const SimplifyQuery &Q, unsigned,
5240                  fp::ExceptionBehavior ExBehavior = fp::ebIgnore,
5241                  RoundingMode Rounding = RoundingMode::NearestTiesToEven) {
5242   if (isDefaultFPEnvironment(ExBehavior, Rounding))
5243     if (Constant *C = foldOrCommuteConstant(Instruction::FRem, Op0, Op1, Q))
5244       return C;
5245 
5246   if (Constant *C = simplifyFPOp({Op0, Op1}, FMF, Q, ExBehavior, Rounding))
5247     return C;
5248 
5249   if (!isDefaultFPEnvironment(ExBehavior, Rounding))
5250     return nullptr;
5251 
5252   // Unlike fdiv, the result of frem always matches the sign of the dividend.
5253   // The constant match may include undef elements in a vector, so return a full
5254   // zero constant as the result.
5255   if (FMF.noNaNs()) {
5256     // +0 % X -> 0
5257     if (match(Op0, m_PosZeroFP()))
5258       return ConstantFP::getNullValue(Op0->getType());
5259     // -0 % X -> -0
5260     if (match(Op0, m_NegZeroFP()))
5261       return ConstantFP::getNegativeZero(Op0->getType());
5262   }
5263 
5264   return nullptr;
5265 }
5266 
5267 Value *llvm::SimplifyFRemInst(Value *Op0, Value *Op1, FastMathFlags FMF,
5268                               const SimplifyQuery &Q,
5269                               fp::ExceptionBehavior ExBehavior,
5270                               RoundingMode Rounding) {
5271   return ::SimplifyFRemInst(Op0, Op1, FMF, Q, RecursionLimit, ExBehavior,
5272                             Rounding);
5273 }
5274 
5275 //=== Helper functions for higher up the class hierarchy.
5276 
5277 /// Given the operand for a UnaryOperator, see if we can fold the result.
5278 /// If not, this returns null.
5279 static Value *simplifyUnOp(unsigned Opcode, Value *Op, const SimplifyQuery &Q,
5280                            unsigned MaxRecurse) {
5281   switch (Opcode) {
5282   case Instruction::FNeg:
5283     return simplifyFNegInst(Op, FastMathFlags(), Q, MaxRecurse);
5284   default:
5285     llvm_unreachable("Unexpected opcode");
5286   }
5287 }
5288 
5289 /// Given the operand for a UnaryOperator, see if we can fold the result.
5290 /// If not, this returns null.
5291 /// Try to use FastMathFlags when folding the result.
5292 static Value *simplifyFPUnOp(unsigned Opcode, Value *Op,
5293                              const FastMathFlags &FMF,
5294                              const SimplifyQuery &Q, unsigned MaxRecurse) {
5295   switch (Opcode) {
5296   case Instruction::FNeg:
5297     return simplifyFNegInst(Op, FMF, Q, MaxRecurse);
5298   default:
5299     return simplifyUnOp(Opcode, Op, Q, MaxRecurse);
5300   }
5301 }
5302 
5303 Value *llvm::SimplifyUnOp(unsigned Opcode, Value *Op, const SimplifyQuery &Q) {
5304   return ::simplifyUnOp(Opcode, Op, Q, RecursionLimit);
5305 }
5306 
5307 Value *llvm::SimplifyUnOp(unsigned Opcode, Value *Op, FastMathFlags FMF,
5308                           const SimplifyQuery &Q) {
5309   return ::simplifyFPUnOp(Opcode, Op, FMF, Q, RecursionLimit);
5310 }
5311 
5312 /// Given operands for a BinaryOperator, see if we can fold the result.
5313 /// If not, this returns null.
5314 static Value *SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS,
5315                             const SimplifyQuery &Q, unsigned MaxRecurse) {
5316   switch (Opcode) {
5317   case Instruction::Add:
5318     return SimplifyAddInst(LHS, RHS, false, false, Q, MaxRecurse);
5319   case Instruction::Sub:
5320     return SimplifySubInst(LHS, RHS, false, false, Q, MaxRecurse);
5321   case Instruction::Mul:
5322     return SimplifyMulInst(LHS, RHS, Q, MaxRecurse);
5323   case Instruction::SDiv:
5324     return SimplifySDivInst(LHS, RHS, Q, MaxRecurse);
5325   case Instruction::UDiv:
5326     return SimplifyUDivInst(LHS, RHS, Q, MaxRecurse);
5327   case Instruction::SRem:
5328     return SimplifySRemInst(LHS, RHS, Q, MaxRecurse);
5329   case Instruction::URem:
5330     return SimplifyURemInst(LHS, RHS, Q, MaxRecurse);
5331   case Instruction::Shl:
5332     return SimplifyShlInst(LHS, RHS, false, false, Q, MaxRecurse);
5333   case Instruction::LShr:
5334     return SimplifyLShrInst(LHS, RHS, false, Q, MaxRecurse);
5335   case Instruction::AShr:
5336     return SimplifyAShrInst(LHS, RHS, false, Q, MaxRecurse);
5337   case Instruction::And:
5338     return SimplifyAndInst(LHS, RHS, Q, MaxRecurse);
5339   case Instruction::Or:
5340     return SimplifyOrInst(LHS, RHS, Q, MaxRecurse);
5341   case Instruction::Xor:
5342     return SimplifyXorInst(LHS, RHS, Q, MaxRecurse);
5343   case Instruction::FAdd:
5344     return SimplifyFAddInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse);
5345   case Instruction::FSub:
5346     return SimplifyFSubInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse);
5347   case Instruction::FMul:
5348     return SimplifyFMulInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse);
5349   case Instruction::FDiv:
5350     return SimplifyFDivInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse);
5351   case Instruction::FRem:
5352     return SimplifyFRemInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse);
5353   default:
5354     llvm_unreachable("Unexpected opcode");
5355   }
5356 }
5357 
5358 /// Given operands for a BinaryOperator, see if we can fold the result.
5359 /// If not, this returns null.
5360 /// Try to use FastMathFlags when folding the result.
5361 static Value *SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS,
5362                             const FastMathFlags &FMF, const SimplifyQuery &Q,
5363                             unsigned MaxRecurse) {
5364   switch (Opcode) {
5365   case Instruction::FAdd:
5366     return SimplifyFAddInst(LHS, RHS, FMF, Q, MaxRecurse);
5367   case Instruction::FSub:
5368     return SimplifyFSubInst(LHS, RHS, FMF, Q, MaxRecurse);
5369   case Instruction::FMul:
5370     return SimplifyFMulInst(LHS, RHS, FMF, Q, MaxRecurse);
5371   case Instruction::FDiv:
5372     return SimplifyFDivInst(LHS, RHS, FMF, Q, MaxRecurse);
5373   default:
5374     return SimplifyBinOp(Opcode, LHS, RHS, Q, MaxRecurse);
5375   }
5376 }
5377 
5378 Value *llvm::SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS,
5379                            const SimplifyQuery &Q) {
5380   return ::SimplifyBinOp(Opcode, LHS, RHS, Q, RecursionLimit);
5381 }
5382 
5383 Value *llvm::SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS,
5384                            FastMathFlags FMF, const SimplifyQuery &Q) {
5385   return ::SimplifyBinOp(Opcode, LHS, RHS, FMF, Q, RecursionLimit);
5386 }
5387 
5388 /// Given operands for a CmpInst, see if we can fold the result.
5389 static Value *SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
5390                               const SimplifyQuery &Q, unsigned MaxRecurse) {
5391   if (CmpInst::isIntPredicate((CmpInst::Predicate)Predicate))
5392     return SimplifyICmpInst(Predicate, LHS, RHS, Q, MaxRecurse);
5393   return SimplifyFCmpInst(Predicate, LHS, RHS, FastMathFlags(), Q, MaxRecurse);
5394 }
5395 
5396 Value *llvm::SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
5397                              const SimplifyQuery &Q) {
5398   return ::SimplifyCmpInst(Predicate, LHS, RHS, Q, RecursionLimit);
5399 }
5400 
5401 static bool IsIdempotent(Intrinsic::ID ID) {
5402   switch (ID) {
5403   default: return false;
5404 
5405   // Unary idempotent: f(f(x)) = f(x)
5406   case Intrinsic::fabs:
5407   case Intrinsic::floor:
5408   case Intrinsic::ceil:
5409   case Intrinsic::trunc:
5410   case Intrinsic::rint:
5411   case Intrinsic::nearbyint:
5412   case Intrinsic::round:
5413   case Intrinsic::roundeven:
5414   case Intrinsic::canonicalize:
5415     return true;
5416   }
5417 }
5418 
5419 static Value *SimplifyRelativeLoad(Constant *Ptr, Constant *Offset,
5420                                    const DataLayout &DL) {
5421   GlobalValue *PtrSym;
5422   APInt PtrOffset;
5423   if (!IsConstantOffsetFromGlobal(Ptr, PtrSym, PtrOffset, DL))
5424     return nullptr;
5425 
5426   Type *Int8PtrTy = Type::getInt8PtrTy(Ptr->getContext());
5427   Type *Int32Ty = Type::getInt32Ty(Ptr->getContext());
5428   Type *Int32PtrTy = Int32Ty->getPointerTo();
5429   Type *Int64Ty = Type::getInt64Ty(Ptr->getContext());
5430 
5431   auto *OffsetConstInt = dyn_cast<ConstantInt>(Offset);
5432   if (!OffsetConstInt || OffsetConstInt->getType()->getBitWidth() > 64)
5433     return nullptr;
5434 
5435   uint64_t OffsetInt = OffsetConstInt->getSExtValue();
5436   if (OffsetInt % 4 != 0)
5437     return nullptr;
5438 
5439   Constant *C = ConstantExpr::getGetElementPtr(
5440       Int32Ty, ConstantExpr::getBitCast(Ptr, Int32PtrTy),
5441       ConstantInt::get(Int64Ty, OffsetInt / 4));
5442   Constant *Loaded = ConstantFoldLoadFromConstPtr(C, Int32Ty, DL);
5443   if (!Loaded)
5444     return nullptr;
5445 
5446   auto *LoadedCE = dyn_cast<ConstantExpr>(Loaded);
5447   if (!LoadedCE)
5448     return nullptr;
5449 
5450   if (LoadedCE->getOpcode() == Instruction::Trunc) {
5451     LoadedCE = dyn_cast<ConstantExpr>(LoadedCE->getOperand(0));
5452     if (!LoadedCE)
5453       return nullptr;
5454   }
5455 
5456   if (LoadedCE->getOpcode() != Instruction::Sub)
5457     return nullptr;
5458 
5459   auto *LoadedLHS = dyn_cast<ConstantExpr>(LoadedCE->getOperand(0));
5460   if (!LoadedLHS || LoadedLHS->getOpcode() != Instruction::PtrToInt)
5461     return nullptr;
5462   auto *LoadedLHSPtr = LoadedLHS->getOperand(0);
5463 
5464   Constant *LoadedRHS = LoadedCE->getOperand(1);
5465   GlobalValue *LoadedRHSSym;
5466   APInt LoadedRHSOffset;
5467   if (!IsConstantOffsetFromGlobal(LoadedRHS, LoadedRHSSym, LoadedRHSOffset,
5468                                   DL) ||
5469       PtrSym != LoadedRHSSym || PtrOffset != LoadedRHSOffset)
5470     return nullptr;
5471 
5472   return ConstantExpr::getBitCast(LoadedLHSPtr, Int8PtrTy);
5473 }
5474 
5475 static Value *simplifyUnaryIntrinsic(Function *F, Value *Op0,
5476                                      const SimplifyQuery &Q) {
5477   // Idempotent functions return the same result when called repeatedly.
5478   Intrinsic::ID IID = F->getIntrinsicID();
5479   if (IsIdempotent(IID))
5480     if (auto *II = dyn_cast<IntrinsicInst>(Op0))
5481       if (II->getIntrinsicID() == IID)
5482         return II;
5483 
5484   Value *X;
5485   switch (IID) {
5486   case Intrinsic::fabs:
5487     if (SignBitMustBeZero(Op0, Q.TLI)) return Op0;
5488     break;
5489   case Intrinsic::bswap:
5490     // bswap(bswap(x)) -> x
5491     if (match(Op0, m_BSwap(m_Value(X)))) return X;
5492     break;
5493   case Intrinsic::bitreverse:
5494     // bitreverse(bitreverse(x)) -> x
5495     if (match(Op0, m_BitReverse(m_Value(X)))) return X;
5496     break;
5497   case Intrinsic::ctpop: {
5498     // If everything but the lowest bit is zero, that bit is the pop-count. Ex:
5499     // ctpop(and X, 1) --> and X, 1
5500     unsigned BitWidth = Op0->getType()->getScalarSizeInBits();
5501     if (MaskedValueIsZero(Op0, APInt::getHighBitsSet(BitWidth, BitWidth - 1),
5502                           Q.DL, 0, Q.AC, Q.CxtI, Q.DT))
5503       return Op0;
5504     break;
5505   }
5506   case Intrinsic::exp:
5507     // exp(log(x)) -> x
5508     if (Q.CxtI->hasAllowReassoc() &&
5509         match(Op0, m_Intrinsic<Intrinsic::log>(m_Value(X)))) return X;
5510     break;
5511   case Intrinsic::exp2:
5512     // exp2(log2(x)) -> x
5513     if (Q.CxtI->hasAllowReassoc() &&
5514         match(Op0, m_Intrinsic<Intrinsic::log2>(m_Value(X)))) return X;
5515     break;
5516   case Intrinsic::log:
5517     // log(exp(x)) -> x
5518     if (Q.CxtI->hasAllowReassoc() &&
5519         match(Op0, m_Intrinsic<Intrinsic::exp>(m_Value(X)))) return X;
5520     break;
5521   case Intrinsic::log2:
5522     // log2(exp2(x)) -> x
5523     if (Q.CxtI->hasAllowReassoc() &&
5524         (match(Op0, m_Intrinsic<Intrinsic::exp2>(m_Value(X))) ||
5525          match(Op0, m_Intrinsic<Intrinsic::pow>(m_SpecificFP(2.0),
5526                                                 m_Value(X))))) return X;
5527     break;
5528   case Intrinsic::log10:
5529     // log10(pow(10.0, x)) -> x
5530     if (Q.CxtI->hasAllowReassoc() &&
5531         match(Op0, m_Intrinsic<Intrinsic::pow>(m_SpecificFP(10.0),
5532                                                m_Value(X)))) return X;
5533     break;
5534   case Intrinsic::floor:
5535   case Intrinsic::trunc:
5536   case Intrinsic::ceil:
5537   case Intrinsic::round:
5538   case Intrinsic::roundeven:
5539   case Intrinsic::nearbyint:
5540   case Intrinsic::rint: {
5541     // floor (sitofp x) -> sitofp x
5542     // floor (uitofp x) -> uitofp x
5543     //
5544     // Converting from int always results in a finite integral number or
5545     // infinity. For either of those inputs, these rounding functions always
5546     // return the same value, so the rounding can be eliminated.
5547     if (match(Op0, m_SIToFP(m_Value())) || match(Op0, m_UIToFP(m_Value())))
5548       return Op0;
5549     break;
5550   }
5551   case Intrinsic::experimental_vector_reverse:
5552     // experimental.vector.reverse(experimental.vector.reverse(x)) -> x
5553     if (match(Op0,
5554               m_Intrinsic<Intrinsic::experimental_vector_reverse>(m_Value(X))))
5555       return X;
5556     // experimental.vector.reverse(splat(X)) -> splat(X)
5557     if (isSplatValue(Op0))
5558       return Op0;
5559     break;
5560   default:
5561     break;
5562   }
5563 
5564   return nullptr;
5565 }
5566 
5567 static APInt getMaxMinLimit(Intrinsic::ID IID, unsigned BitWidth) {
5568   switch (IID) {
5569   case Intrinsic::smax: return APInt::getSignedMaxValue(BitWidth);
5570   case Intrinsic::smin: return APInt::getSignedMinValue(BitWidth);
5571   case Intrinsic::umax: return APInt::getMaxValue(BitWidth);
5572   case Intrinsic::umin: return APInt::getMinValue(BitWidth);
5573   default: llvm_unreachable("Unexpected intrinsic");
5574   }
5575 }
5576 
5577 static ICmpInst::Predicate getMaxMinPredicate(Intrinsic::ID IID) {
5578   switch (IID) {
5579   case Intrinsic::smax: return ICmpInst::ICMP_SGE;
5580   case Intrinsic::smin: return ICmpInst::ICMP_SLE;
5581   case Intrinsic::umax: return ICmpInst::ICMP_UGE;
5582   case Intrinsic::umin: return ICmpInst::ICMP_ULE;
5583   default: llvm_unreachable("Unexpected intrinsic");
5584   }
5585 }
5586 
5587 /// Given a min/max intrinsic, see if it can be removed based on having an
5588 /// operand that is another min/max intrinsic with shared operand(s). The caller
5589 /// is expected to swap the operand arguments to handle commutation.
5590 static Value *foldMinMaxSharedOp(Intrinsic::ID IID, Value *Op0, Value *Op1) {
5591   Value *X, *Y;
5592   if (!match(Op0, m_MaxOrMin(m_Value(X), m_Value(Y))))
5593     return nullptr;
5594 
5595   auto *MM0 = dyn_cast<IntrinsicInst>(Op0);
5596   if (!MM0)
5597     return nullptr;
5598   Intrinsic::ID IID0 = MM0->getIntrinsicID();
5599 
5600   if (Op1 == X || Op1 == Y ||
5601       match(Op1, m_c_MaxOrMin(m_Specific(X), m_Specific(Y)))) {
5602     // max (max X, Y), X --> max X, Y
5603     if (IID0 == IID)
5604       return MM0;
5605     // max (min X, Y), X --> X
5606     if (IID0 == getInverseMinMaxIntrinsic(IID))
5607       return Op1;
5608   }
5609   return nullptr;
5610 }
5611 
5612 static Value *simplifyBinaryIntrinsic(Function *F, Value *Op0, Value *Op1,
5613                                       const SimplifyQuery &Q) {
5614   Intrinsic::ID IID = F->getIntrinsicID();
5615   Type *ReturnType = F->getReturnType();
5616   unsigned BitWidth = ReturnType->getScalarSizeInBits();
5617   switch (IID) {
5618   case Intrinsic::abs:
5619     // abs(abs(x)) -> abs(x). We don't need to worry about the nsw arg here.
5620     // It is always ok to pick the earlier abs. We'll just lose nsw if its only
5621     // on the outer abs.
5622     if (match(Op0, m_Intrinsic<Intrinsic::abs>(m_Value(), m_Value())))
5623       return Op0;
5624     break;
5625 
5626   case Intrinsic::cttz: {
5627     Value *X;
5628     if (match(Op0, m_Shl(m_One(), m_Value(X))))
5629       return X;
5630     break;
5631   }
5632   case Intrinsic::ctlz: {
5633     Value *X;
5634     if (match(Op0, m_LShr(m_Negative(), m_Value(X))))
5635       return X;
5636     if (match(Op0, m_AShr(m_Negative(), m_Value())))
5637       return Constant::getNullValue(ReturnType);
5638     break;
5639   }
5640   case Intrinsic::smax:
5641   case Intrinsic::smin:
5642   case Intrinsic::umax:
5643   case Intrinsic::umin: {
5644     // If the arguments are the same, this is a no-op.
5645     if (Op0 == Op1)
5646       return Op0;
5647 
5648     // Canonicalize constant operand as Op1.
5649     if (isa<Constant>(Op0))
5650       std::swap(Op0, Op1);
5651 
5652     // Assume undef is the limit value.
5653     if (Q.isUndefValue(Op1))
5654       return ConstantInt::get(ReturnType, getMaxMinLimit(IID, BitWidth));
5655 
5656     const APInt *C;
5657     if (match(Op1, m_APIntAllowUndef(C))) {
5658       // Clamp to limit value. For example:
5659       // umax(i8 %x, i8 255) --> 255
5660       if (*C == getMaxMinLimit(IID, BitWidth))
5661         return ConstantInt::get(ReturnType, *C);
5662 
5663       // If the constant op is the opposite of the limit value, the other must
5664       // be larger/smaller or equal. For example:
5665       // umin(i8 %x, i8 255) --> %x
5666       if (*C == getMaxMinLimit(getInverseMinMaxIntrinsic(IID), BitWidth))
5667         return Op0;
5668 
5669       // Remove nested call if constant operands allow it. Example:
5670       // max (max X, 7), 5 -> max X, 7
5671       auto *MinMax0 = dyn_cast<IntrinsicInst>(Op0);
5672       if (MinMax0 && MinMax0->getIntrinsicID() == IID) {
5673         // TODO: loosen undef/splat restrictions for vector constants.
5674         Value *M00 = MinMax0->getOperand(0), *M01 = MinMax0->getOperand(1);
5675         const APInt *InnerC;
5676         if ((match(M00, m_APInt(InnerC)) || match(M01, m_APInt(InnerC))) &&
5677             ((IID == Intrinsic::smax && InnerC->sge(*C)) ||
5678              (IID == Intrinsic::smin && InnerC->sle(*C)) ||
5679              (IID == Intrinsic::umax && InnerC->uge(*C)) ||
5680              (IID == Intrinsic::umin && InnerC->ule(*C))))
5681           return Op0;
5682       }
5683     }
5684 
5685     if (Value *V = foldMinMaxSharedOp(IID, Op0, Op1))
5686       return V;
5687     if (Value *V = foldMinMaxSharedOp(IID, Op1, Op0))
5688       return V;
5689 
5690     ICmpInst::Predicate Pred = getMaxMinPredicate(IID);
5691     if (isICmpTrue(Pred, Op0, Op1, Q.getWithoutUndef(), RecursionLimit))
5692       return Op0;
5693     if (isICmpTrue(Pred, Op1, Op0, Q.getWithoutUndef(), RecursionLimit))
5694       return Op1;
5695 
5696     if (Optional<bool> Imp =
5697             isImpliedByDomCondition(Pred, Op0, Op1, Q.CxtI, Q.DL))
5698       return *Imp ? Op0 : Op1;
5699     if (Optional<bool> Imp =
5700             isImpliedByDomCondition(Pred, Op1, Op0, Q.CxtI, Q.DL))
5701       return *Imp ? Op1 : Op0;
5702 
5703     break;
5704   }
5705   case Intrinsic::usub_with_overflow:
5706   case Intrinsic::ssub_with_overflow:
5707     // X - X -> { 0, false }
5708     // X - undef -> { 0, false }
5709     // undef - X -> { 0, false }
5710     if (Op0 == Op1 || Q.isUndefValue(Op0) || Q.isUndefValue(Op1))
5711       return Constant::getNullValue(ReturnType);
5712     break;
5713   case Intrinsic::uadd_with_overflow:
5714   case Intrinsic::sadd_with_overflow:
5715     // X + undef -> { -1, false }
5716     // undef + x -> { -1, false }
5717     if (Q.isUndefValue(Op0) || Q.isUndefValue(Op1)) {
5718       return ConstantStruct::get(
5719           cast<StructType>(ReturnType),
5720           {Constant::getAllOnesValue(ReturnType->getStructElementType(0)),
5721            Constant::getNullValue(ReturnType->getStructElementType(1))});
5722     }
5723     break;
5724   case Intrinsic::umul_with_overflow:
5725   case Intrinsic::smul_with_overflow:
5726     // 0 * X -> { 0, false }
5727     // X * 0 -> { 0, false }
5728     if (match(Op0, m_Zero()) || match(Op1, m_Zero()))
5729       return Constant::getNullValue(ReturnType);
5730     // undef * X -> { 0, false }
5731     // X * undef -> { 0, false }
5732     if (Q.isUndefValue(Op0) || Q.isUndefValue(Op1))
5733       return Constant::getNullValue(ReturnType);
5734     break;
5735   case Intrinsic::uadd_sat:
5736     // sat(MAX + X) -> MAX
5737     // sat(X + MAX) -> MAX
5738     if (match(Op0, m_AllOnes()) || match(Op1, m_AllOnes()))
5739       return Constant::getAllOnesValue(ReturnType);
5740     LLVM_FALLTHROUGH;
5741   case Intrinsic::sadd_sat:
5742     // sat(X + undef) -> -1
5743     // sat(undef + X) -> -1
5744     // For unsigned: Assume undef is MAX, thus we saturate to MAX (-1).
5745     // For signed: Assume undef is ~X, in which case X + ~X = -1.
5746     if (Q.isUndefValue(Op0) || Q.isUndefValue(Op1))
5747       return Constant::getAllOnesValue(ReturnType);
5748 
5749     // X + 0 -> X
5750     if (match(Op1, m_Zero()))
5751       return Op0;
5752     // 0 + X -> X
5753     if (match(Op0, m_Zero()))
5754       return Op1;
5755     break;
5756   case Intrinsic::usub_sat:
5757     // sat(0 - X) -> 0, sat(X - MAX) -> 0
5758     if (match(Op0, m_Zero()) || match(Op1, m_AllOnes()))
5759       return Constant::getNullValue(ReturnType);
5760     LLVM_FALLTHROUGH;
5761   case Intrinsic::ssub_sat:
5762     // X - X -> 0, X - undef -> 0, undef - X -> 0
5763     if (Op0 == Op1 || Q.isUndefValue(Op0) || Q.isUndefValue(Op1))
5764       return Constant::getNullValue(ReturnType);
5765     // X - 0 -> X
5766     if (match(Op1, m_Zero()))
5767       return Op0;
5768     break;
5769   case Intrinsic::load_relative:
5770     if (auto *C0 = dyn_cast<Constant>(Op0))
5771       if (auto *C1 = dyn_cast<Constant>(Op1))
5772         return SimplifyRelativeLoad(C0, C1, Q.DL);
5773     break;
5774   case Intrinsic::powi:
5775     if (auto *Power = dyn_cast<ConstantInt>(Op1)) {
5776       // powi(x, 0) -> 1.0
5777       if (Power->isZero())
5778         return ConstantFP::get(Op0->getType(), 1.0);
5779       // powi(x, 1) -> x
5780       if (Power->isOne())
5781         return Op0;
5782     }
5783     break;
5784   case Intrinsic::copysign:
5785     // copysign X, X --> X
5786     if (Op0 == Op1)
5787       return Op0;
5788     // copysign -X, X --> X
5789     // copysign X, -X --> -X
5790     if (match(Op0, m_FNeg(m_Specific(Op1))) ||
5791         match(Op1, m_FNeg(m_Specific(Op0))))
5792       return Op1;
5793     break;
5794   case Intrinsic::maxnum:
5795   case Intrinsic::minnum:
5796   case Intrinsic::maximum:
5797   case Intrinsic::minimum: {
5798     // If the arguments are the same, this is a no-op.
5799     if (Op0 == Op1) return Op0;
5800 
5801     // Canonicalize constant operand as Op1.
5802     if (isa<Constant>(Op0))
5803       std::swap(Op0, Op1);
5804 
5805     // If an argument is undef, return the other argument.
5806     if (Q.isUndefValue(Op1))
5807       return Op0;
5808 
5809     bool PropagateNaN = IID == Intrinsic::minimum || IID == Intrinsic::maximum;
5810     bool IsMin = IID == Intrinsic::minimum || IID == Intrinsic::minnum;
5811 
5812     // minnum(X, nan) -> X
5813     // maxnum(X, nan) -> X
5814     // minimum(X, nan) -> nan
5815     // maximum(X, nan) -> nan
5816     if (match(Op1, m_NaN()))
5817       return PropagateNaN ? propagateNaN(cast<Constant>(Op1)) : Op0;
5818 
5819     // In the following folds, inf can be replaced with the largest finite
5820     // float, if the ninf flag is set.
5821     const APFloat *C;
5822     if (match(Op1, m_APFloat(C)) &&
5823         (C->isInfinity() || (Q.CxtI->hasNoInfs() && C->isLargest()))) {
5824       // minnum(X, -inf) -> -inf
5825       // maxnum(X, +inf) -> +inf
5826       // minimum(X, -inf) -> -inf if nnan
5827       // maximum(X, +inf) -> +inf if nnan
5828       if (C->isNegative() == IsMin && (!PropagateNaN || Q.CxtI->hasNoNaNs()))
5829         return ConstantFP::get(ReturnType, *C);
5830 
5831       // minnum(X, +inf) -> X if nnan
5832       // maxnum(X, -inf) -> X if nnan
5833       // minimum(X, +inf) -> X
5834       // maximum(X, -inf) -> X
5835       if (C->isNegative() != IsMin && (PropagateNaN || Q.CxtI->hasNoNaNs()))
5836         return Op0;
5837     }
5838 
5839     // Min/max of the same operation with common operand:
5840     // m(m(X, Y)), X --> m(X, Y) (4 commuted variants)
5841     if (auto *M0 = dyn_cast<IntrinsicInst>(Op0))
5842       if (M0->getIntrinsicID() == IID &&
5843           (M0->getOperand(0) == Op1 || M0->getOperand(1) == Op1))
5844         return Op0;
5845     if (auto *M1 = dyn_cast<IntrinsicInst>(Op1))
5846       if (M1->getIntrinsicID() == IID &&
5847           (M1->getOperand(0) == Op0 || M1->getOperand(1) == Op0))
5848         return Op1;
5849 
5850     break;
5851   }
5852   case Intrinsic::experimental_vector_extract: {
5853     Type *ReturnType = F->getReturnType();
5854 
5855     // (extract_vector (insert_vector _, X, 0), 0) -> X
5856     unsigned IdxN = cast<ConstantInt>(Op1)->getZExtValue();
5857     Value *X = nullptr;
5858     if (match(Op0, m_Intrinsic<Intrinsic::experimental_vector_insert>(
5859                        m_Value(), m_Value(X), m_Zero())) &&
5860         IdxN == 0 && X->getType() == ReturnType)
5861       return X;
5862 
5863     break;
5864   }
5865   default:
5866     break;
5867   }
5868 
5869   return nullptr;
5870 }
5871 
5872 static Value *simplifyIntrinsic(CallBase *Call, const SimplifyQuery &Q) {
5873 
5874   unsigned NumOperands = Call->arg_size();
5875   Function *F = cast<Function>(Call->getCalledFunction());
5876   Intrinsic::ID IID = F->getIntrinsicID();
5877 
5878   // Most of the intrinsics with no operands have some kind of side effect.
5879   // Don't simplify.
5880   if (!NumOperands) {
5881     switch (IID) {
5882     case Intrinsic::vscale: {
5883       // Call may not be inserted into the IR yet at point of calling simplify.
5884       if (!Call->getParent() || !Call->getParent()->getParent())
5885         return nullptr;
5886       auto Attr = Call->getFunction()->getFnAttribute(Attribute::VScaleRange);
5887       if (!Attr.isValid())
5888         return nullptr;
5889       unsigned VScaleMin, VScaleMax;
5890       std::tie(VScaleMin, VScaleMax) = Attr.getVScaleRangeArgs();
5891       if (VScaleMin == VScaleMax && VScaleMax != 0)
5892         return ConstantInt::get(F->getReturnType(), VScaleMin);
5893       return nullptr;
5894     }
5895     default:
5896       return nullptr;
5897     }
5898   }
5899 
5900   if (NumOperands == 1)
5901     return simplifyUnaryIntrinsic(F, Call->getArgOperand(0), Q);
5902 
5903   if (NumOperands == 2)
5904     return simplifyBinaryIntrinsic(F, Call->getArgOperand(0),
5905                                    Call->getArgOperand(1), Q);
5906 
5907   // Handle intrinsics with 3 or more arguments.
5908   switch (IID) {
5909   case Intrinsic::masked_load:
5910   case Intrinsic::masked_gather: {
5911     Value *MaskArg = Call->getArgOperand(2);
5912     Value *PassthruArg = Call->getArgOperand(3);
5913     // If the mask is all zeros or undef, the "passthru" argument is the result.
5914     if (maskIsAllZeroOrUndef(MaskArg))
5915       return PassthruArg;
5916     return nullptr;
5917   }
5918   case Intrinsic::fshl:
5919   case Intrinsic::fshr: {
5920     Value *Op0 = Call->getArgOperand(0), *Op1 = Call->getArgOperand(1),
5921           *ShAmtArg = Call->getArgOperand(2);
5922 
5923     // If both operands are undef, the result is undef.
5924     if (Q.isUndefValue(Op0) && Q.isUndefValue(Op1))
5925       return UndefValue::get(F->getReturnType());
5926 
5927     // If shift amount is undef, assume it is zero.
5928     if (Q.isUndefValue(ShAmtArg))
5929       return Call->getArgOperand(IID == Intrinsic::fshl ? 0 : 1);
5930 
5931     const APInt *ShAmtC;
5932     if (match(ShAmtArg, m_APInt(ShAmtC))) {
5933       // If there's effectively no shift, return the 1st arg or 2nd arg.
5934       APInt BitWidth = APInt(ShAmtC->getBitWidth(), ShAmtC->getBitWidth());
5935       if (ShAmtC->urem(BitWidth).isZero())
5936         return Call->getArgOperand(IID == Intrinsic::fshl ? 0 : 1);
5937     }
5938 
5939     // Rotating zero by anything is zero.
5940     if (match(Op0, m_Zero()) && match(Op1, m_Zero()))
5941       return ConstantInt::getNullValue(F->getReturnType());
5942 
5943     // Rotating -1 by anything is -1.
5944     if (match(Op0, m_AllOnes()) && match(Op1, m_AllOnes()))
5945       return ConstantInt::getAllOnesValue(F->getReturnType());
5946 
5947     return nullptr;
5948   }
5949   case Intrinsic::experimental_constrained_fma: {
5950     Value *Op0 = Call->getArgOperand(0);
5951     Value *Op1 = Call->getArgOperand(1);
5952     Value *Op2 = Call->getArgOperand(2);
5953     auto *FPI = cast<ConstrainedFPIntrinsic>(Call);
5954     if (Value *V = simplifyFPOp({Op0, Op1, Op2}, {}, Q,
5955                                 FPI->getExceptionBehavior().getValue(),
5956                                 FPI->getRoundingMode().getValue()))
5957       return V;
5958     return nullptr;
5959   }
5960   case Intrinsic::fma:
5961   case Intrinsic::fmuladd: {
5962     Value *Op0 = Call->getArgOperand(0);
5963     Value *Op1 = Call->getArgOperand(1);
5964     Value *Op2 = Call->getArgOperand(2);
5965     if (Value *V = simplifyFPOp({Op0, Op1, Op2}, {}, Q, fp::ebIgnore,
5966                                 RoundingMode::NearestTiesToEven))
5967       return V;
5968     return nullptr;
5969   }
5970   case Intrinsic::smul_fix:
5971   case Intrinsic::smul_fix_sat: {
5972     Value *Op0 = Call->getArgOperand(0);
5973     Value *Op1 = Call->getArgOperand(1);
5974     Value *Op2 = Call->getArgOperand(2);
5975     Type *ReturnType = F->getReturnType();
5976 
5977     // Canonicalize constant operand as Op1 (ConstantFolding handles the case
5978     // when both Op0 and Op1 are constant so we do not care about that special
5979     // case here).
5980     if (isa<Constant>(Op0))
5981       std::swap(Op0, Op1);
5982 
5983     // X * 0 -> 0
5984     if (match(Op1, m_Zero()))
5985       return Constant::getNullValue(ReturnType);
5986 
5987     // X * undef -> 0
5988     if (Q.isUndefValue(Op1))
5989       return Constant::getNullValue(ReturnType);
5990 
5991     // X * (1 << Scale) -> X
5992     APInt ScaledOne =
5993         APInt::getOneBitSet(ReturnType->getScalarSizeInBits(),
5994                             cast<ConstantInt>(Op2)->getZExtValue());
5995     if (ScaledOne.isNonNegative() && match(Op1, m_SpecificInt(ScaledOne)))
5996       return Op0;
5997 
5998     return nullptr;
5999   }
6000   case Intrinsic::experimental_vector_insert: {
6001     Value *Vec = Call->getArgOperand(0);
6002     Value *SubVec = Call->getArgOperand(1);
6003     Value *Idx = Call->getArgOperand(2);
6004     Type *ReturnType = F->getReturnType();
6005 
6006     // (insert_vector Y, (extract_vector X, 0), 0) -> X
6007     // where: Y is X, or Y is undef
6008     unsigned IdxN = cast<ConstantInt>(Idx)->getZExtValue();
6009     Value *X = nullptr;
6010     if (match(SubVec, m_Intrinsic<Intrinsic::experimental_vector_extract>(
6011                           m_Value(X), m_Zero())) &&
6012         (Q.isUndefValue(Vec) || Vec == X) && IdxN == 0 &&
6013         X->getType() == ReturnType)
6014       return X;
6015 
6016     return nullptr;
6017   }
6018   case Intrinsic::experimental_constrained_fadd: {
6019     auto *FPI = cast<ConstrainedFPIntrinsic>(Call);
6020     return SimplifyFAddInst(FPI->getArgOperand(0), FPI->getArgOperand(1),
6021                             FPI->getFastMathFlags(), Q,
6022                             FPI->getExceptionBehavior().getValue(),
6023                             FPI->getRoundingMode().getValue());
6024     break;
6025   }
6026   case Intrinsic::experimental_constrained_fsub: {
6027     auto *FPI = cast<ConstrainedFPIntrinsic>(Call);
6028     return SimplifyFSubInst(FPI->getArgOperand(0), FPI->getArgOperand(1),
6029                             FPI->getFastMathFlags(), Q,
6030                             FPI->getExceptionBehavior().getValue(),
6031                             FPI->getRoundingMode().getValue());
6032     break;
6033   }
6034   case Intrinsic::experimental_constrained_fmul: {
6035     auto *FPI = cast<ConstrainedFPIntrinsic>(Call);
6036     return SimplifyFMulInst(FPI->getArgOperand(0), FPI->getArgOperand(1),
6037                             FPI->getFastMathFlags(), Q,
6038                             FPI->getExceptionBehavior().getValue(),
6039                             FPI->getRoundingMode().getValue());
6040     break;
6041   }
6042   case Intrinsic::experimental_constrained_fdiv: {
6043     auto *FPI = cast<ConstrainedFPIntrinsic>(Call);
6044     return SimplifyFDivInst(FPI->getArgOperand(0), FPI->getArgOperand(1),
6045                             FPI->getFastMathFlags(), Q,
6046                             FPI->getExceptionBehavior().getValue(),
6047                             FPI->getRoundingMode().getValue());
6048     break;
6049   }
6050   case Intrinsic::experimental_constrained_frem: {
6051     auto *FPI = cast<ConstrainedFPIntrinsic>(Call);
6052     return SimplifyFRemInst(FPI->getArgOperand(0), FPI->getArgOperand(1),
6053                             FPI->getFastMathFlags(), Q,
6054                             FPI->getExceptionBehavior().getValue(),
6055                             FPI->getRoundingMode().getValue());
6056     break;
6057   }
6058   default:
6059     return nullptr;
6060   }
6061 }
6062 
6063 static Value *tryConstantFoldCall(CallBase *Call, const SimplifyQuery &Q) {
6064   auto *F = dyn_cast<Function>(Call->getCalledOperand());
6065   if (!F || !canConstantFoldCallTo(Call, F))
6066     return nullptr;
6067 
6068   SmallVector<Constant *, 4> ConstantArgs;
6069   unsigned NumArgs = Call->arg_size();
6070   ConstantArgs.reserve(NumArgs);
6071   for (auto &Arg : Call->args()) {
6072     Constant *C = dyn_cast<Constant>(&Arg);
6073     if (!C) {
6074       if (isa<MetadataAsValue>(Arg.get()))
6075         continue;
6076       return nullptr;
6077     }
6078     ConstantArgs.push_back(C);
6079   }
6080 
6081   return ConstantFoldCall(Call, F, ConstantArgs, Q.TLI);
6082 }
6083 
6084 Value *llvm::SimplifyCall(CallBase *Call, const SimplifyQuery &Q) {
6085   // musttail calls can only be simplified if they are also DCEd.
6086   // As we can't guarantee this here, don't simplify them.
6087   if (Call->isMustTailCall())
6088     return nullptr;
6089 
6090   // call undef -> poison
6091   // call null -> poison
6092   Value *Callee = Call->getCalledOperand();
6093   if (isa<UndefValue>(Callee) || isa<ConstantPointerNull>(Callee))
6094     return PoisonValue::get(Call->getType());
6095 
6096   if (Value *V = tryConstantFoldCall(Call, Q))
6097     return V;
6098 
6099   auto *F = dyn_cast<Function>(Callee);
6100   if (F && F->isIntrinsic())
6101     if (Value *Ret = simplifyIntrinsic(Call, Q))
6102       return Ret;
6103 
6104   return nullptr;
6105 }
6106 
6107 /// Given operands for a Freeze, see if we can fold the result.
6108 static Value *SimplifyFreezeInst(Value *Op0, const SimplifyQuery &Q) {
6109   // Use a utility function defined in ValueTracking.
6110   if (llvm::isGuaranteedNotToBeUndefOrPoison(Op0, Q.AC, Q.CxtI, Q.DT))
6111     return Op0;
6112   // We have room for improvement.
6113   return nullptr;
6114 }
6115 
6116 Value *llvm::SimplifyFreezeInst(Value *Op0, const SimplifyQuery &Q) {
6117   return ::SimplifyFreezeInst(Op0, Q);
6118 }
6119 
6120 static Value *SimplifyLoadInst(LoadInst *LI, Value *PtrOp,
6121                                const SimplifyQuery &Q) {
6122   if (LI->isVolatile())
6123     return nullptr;
6124 
6125   APInt Offset(Q.DL.getIndexTypeSizeInBits(PtrOp->getType()), 0);
6126   auto *PtrOpC = dyn_cast<Constant>(PtrOp);
6127   // Try to convert operand into a constant by stripping offsets while looking
6128   // through invariant.group intrinsics. Don't bother if the underlying object
6129   // is not constant, as calculating GEP offsets is expensive.
6130   if (!PtrOpC && isa<Constant>(getUnderlyingObject(PtrOp))) {
6131     PtrOp = PtrOp->stripAndAccumulateConstantOffsets(
6132         Q.DL, Offset, /* AllowNonInbounts */ true,
6133         /* AllowInvariantGroup */ true);
6134     // Index size may have changed due to address space casts.
6135     Offset = Offset.sextOrTrunc(Q.DL.getIndexTypeSizeInBits(PtrOp->getType()));
6136     PtrOpC = dyn_cast<Constant>(PtrOp);
6137   }
6138 
6139   if (PtrOpC)
6140     return ConstantFoldLoadFromConstPtr(PtrOpC, LI->getType(), Offset, Q.DL);
6141   return nullptr;
6142 }
6143 
6144 /// See if we can compute a simplified version of this instruction.
6145 /// If not, this returns null.
6146 
6147 static Value *simplifyInstructionWithOperands(Instruction *I,
6148                                               ArrayRef<Value *> NewOps,
6149                                               const SimplifyQuery &SQ,
6150                                               OptimizationRemarkEmitter *ORE) {
6151   const SimplifyQuery Q = SQ.CxtI ? SQ : SQ.getWithInstruction(I);
6152   Value *Result = nullptr;
6153 
6154   switch (I->getOpcode()) {
6155   default:
6156     if (llvm::all_of(NewOps, [](Value *V) { return isa<Constant>(V); })) {
6157       SmallVector<Constant *, 8> NewConstOps(NewOps.size());
6158       transform(NewOps, NewConstOps.begin(),
6159                 [](Value *V) { return cast<Constant>(V); });
6160       Result = ConstantFoldInstOperands(I, NewConstOps, Q.DL, Q.TLI);
6161     }
6162     break;
6163   case Instruction::FNeg:
6164     Result = SimplifyFNegInst(NewOps[0], I->getFastMathFlags(), Q);
6165     break;
6166   case Instruction::FAdd:
6167     Result = SimplifyFAddInst(NewOps[0], NewOps[1], I->getFastMathFlags(), Q);
6168     break;
6169   case Instruction::Add:
6170     Result = SimplifyAddInst(
6171         NewOps[0], NewOps[1], Q.IIQ.hasNoSignedWrap(cast<BinaryOperator>(I)),
6172         Q.IIQ.hasNoUnsignedWrap(cast<BinaryOperator>(I)), Q);
6173     break;
6174   case Instruction::FSub:
6175     Result = SimplifyFSubInst(NewOps[0], NewOps[1], I->getFastMathFlags(), Q);
6176     break;
6177   case Instruction::Sub:
6178     Result = SimplifySubInst(
6179         NewOps[0], NewOps[1], Q.IIQ.hasNoSignedWrap(cast<BinaryOperator>(I)),
6180         Q.IIQ.hasNoUnsignedWrap(cast<BinaryOperator>(I)), Q);
6181     break;
6182   case Instruction::FMul:
6183     Result = SimplifyFMulInst(NewOps[0], NewOps[1], I->getFastMathFlags(), Q);
6184     break;
6185   case Instruction::Mul:
6186     Result = SimplifyMulInst(NewOps[0], NewOps[1], Q);
6187     break;
6188   case Instruction::SDiv:
6189     Result = SimplifySDivInst(NewOps[0], NewOps[1], Q);
6190     break;
6191   case Instruction::UDiv:
6192     Result = SimplifyUDivInst(NewOps[0], NewOps[1], Q);
6193     break;
6194   case Instruction::FDiv:
6195     Result = SimplifyFDivInst(NewOps[0], NewOps[1], I->getFastMathFlags(), Q);
6196     break;
6197   case Instruction::SRem:
6198     Result = SimplifySRemInst(NewOps[0], NewOps[1], Q);
6199     break;
6200   case Instruction::URem:
6201     Result = SimplifyURemInst(NewOps[0], NewOps[1], Q);
6202     break;
6203   case Instruction::FRem:
6204     Result = SimplifyFRemInst(NewOps[0], NewOps[1], I->getFastMathFlags(), Q);
6205     break;
6206   case Instruction::Shl:
6207     Result = SimplifyShlInst(
6208         NewOps[0], NewOps[1], Q.IIQ.hasNoSignedWrap(cast<BinaryOperator>(I)),
6209         Q.IIQ.hasNoUnsignedWrap(cast<BinaryOperator>(I)), Q);
6210     break;
6211   case Instruction::LShr:
6212     Result = SimplifyLShrInst(NewOps[0], NewOps[1],
6213                               Q.IIQ.isExact(cast<BinaryOperator>(I)), Q);
6214     break;
6215   case Instruction::AShr:
6216     Result = SimplifyAShrInst(NewOps[0], NewOps[1],
6217                               Q.IIQ.isExact(cast<BinaryOperator>(I)), Q);
6218     break;
6219   case Instruction::And:
6220     Result = SimplifyAndInst(NewOps[0], NewOps[1], Q);
6221     break;
6222   case Instruction::Or:
6223     Result = SimplifyOrInst(NewOps[0], NewOps[1], Q);
6224     break;
6225   case Instruction::Xor:
6226     Result = SimplifyXorInst(NewOps[0], NewOps[1], Q);
6227     break;
6228   case Instruction::ICmp:
6229     Result = SimplifyICmpInst(cast<ICmpInst>(I)->getPredicate(), NewOps[0],
6230                               NewOps[1], Q);
6231     break;
6232   case Instruction::FCmp:
6233     Result = SimplifyFCmpInst(cast<FCmpInst>(I)->getPredicate(), NewOps[0],
6234                               NewOps[1], I->getFastMathFlags(), Q);
6235     break;
6236   case Instruction::Select:
6237     Result = SimplifySelectInst(NewOps[0], NewOps[1], NewOps[2], Q);
6238     break;
6239   case Instruction::GetElementPtr: {
6240     auto *GEPI = cast<GetElementPtrInst>(I);
6241     Result = SimplifyGEPInst(GEPI->getSourceElementType(), NewOps,
6242                              GEPI->isInBounds(), Q);
6243     break;
6244   }
6245   case Instruction::InsertValue: {
6246     InsertValueInst *IV = cast<InsertValueInst>(I);
6247     Result = SimplifyInsertValueInst(NewOps[0], NewOps[1], IV->getIndices(), Q);
6248     break;
6249   }
6250   case Instruction::InsertElement: {
6251     Result = SimplifyInsertElementInst(NewOps[0], NewOps[1], NewOps[2], Q);
6252     break;
6253   }
6254   case Instruction::ExtractValue: {
6255     auto *EVI = cast<ExtractValueInst>(I);
6256     Result = SimplifyExtractValueInst(NewOps[0], EVI->getIndices(), Q);
6257     break;
6258   }
6259   case Instruction::ExtractElement: {
6260     Result = SimplifyExtractElementInst(NewOps[0], NewOps[1], Q);
6261     break;
6262   }
6263   case Instruction::ShuffleVector: {
6264     auto *SVI = cast<ShuffleVectorInst>(I);
6265     Result = SimplifyShuffleVectorInst(
6266         NewOps[0], NewOps[1], SVI->getShuffleMask(), SVI->getType(), Q);
6267     break;
6268   }
6269   case Instruction::PHI:
6270     Result = SimplifyPHINode(cast<PHINode>(I), NewOps, Q);
6271     break;
6272   case Instruction::Call: {
6273     // TODO: Use NewOps
6274     Result = SimplifyCall(cast<CallInst>(I), Q);
6275     break;
6276   }
6277   case Instruction::Freeze:
6278     Result = llvm::SimplifyFreezeInst(NewOps[0], Q);
6279     break;
6280 #define HANDLE_CAST_INST(num, opc, clas) case Instruction::opc:
6281 #include "llvm/IR/Instruction.def"
6282 #undef HANDLE_CAST_INST
6283     Result = SimplifyCastInst(I->getOpcode(), NewOps[0], I->getType(), Q);
6284     break;
6285   case Instruction::Alloca:
6286     // No simplifications for Alloca and it can't be constant folded.
6287     Result = nullptr;
6288     break;
6289   case Instruction::Load:
6290     Result = SimplifyLoadInst(cast<LoadInst>(I), NewOps[0], Q);
6291     break;
6292   }
6293 
6294   /// If called on unreachable code, the above logic may report that the
6295   /// instruction simplified to itself.  Make life easier for users by
6296   /// detecting that case here, returning a safe value instead.
6297   return Result == I ? UndefValue::get(I->getType()) : Result;
6298 }
6299 
6300 Value *llvm::SimplifyInstructionWithOperands(Instruction *I,
6301                                              ArrayRef<Value *> NewOps,
6302                                              const SimplifyQuery &SQ,
6303                                              OptimizationRemarkEmitter *ORE) {
6304   assert(NewOps.size() == I->getNumOperands() &&
6305          "Number of operands should match the instruction!");
6306   return ::simplifyInstructionWithOperands(I, NewOps, SQ, ORE);
6307 }
6308 
6309 Value *llvm::SimplifyInstruction(Instruction *I, const SimplifyQuery &SQ,
6310                                  OptimizationRemarkEmitter *ORE) {
6311   SmallVector<Value *, 8> Ops(I->operands());
6312   return ::simplifyInstructionWithOperands(I, Ops, SQ, ORE);
6313 }
6314 
6315 /// Implementation of recursive simplification through an instruction's
6316 /// uses.
6317 ///
6318 /// This is the common implementation of the recursive simplification routines.
6319 /// If we have a pre-simplified value in 'SimpleV', that is forcibly used to
6320 /// replace the instruction 'I'. Otherwise, we simply add 'I' to the list of
6321 /// instructions to process and attempt to simplify it using
6322 /// InstructionSimplify. Recursively visited users which could not be
6323 /// simplified themselves are to the optional UnsimplifiedUsers set for
6324 /// further processing by the caller.
6325 ///
6326 /// This routine returns 'true' only when *it* simplifies something. The passed
6327 /// in simplified value does not count toward this.
6328 static bool replaceAndRecursivelySimplifyImpl(
6329     Instruction *I, Value *SimpleV, const TargetLibraryInfo *TLI,
6330     const DominatorTree *DT, AssumptionCache *AC,
6331     SmallSetVector<Instruction *, 8> *UnsimplifiedUsers = nullptr) {
6332   bool Simplified = false;
6333   SmallSetVector<Instruction *, 8> Worklist;
6334   const DataLayout &DL = I->getModule()->getDataLayout();
6335 
6336   // If we have an explicit value to collapse to, do that round of the
6337   // simplification loop by hand initially.
6338   if (SimpleV) {
6339     for (User *U : I->users())
6340       if (U != I)
6341         Worklist.insert(cast<Instruction>(U));
6342 
6343     // Replace the instruction with its simplified value.
6344     I->replaceAllUsesWith(SimpleV);
6345 
6346     // Gracefully handle edge cases where the instruction is not wired into any
6347     // parent block.
6348     if (I->getParent() && !I->isEHPad() && !I->isTerminator() &&
6349         !I->mayHaveSideEffects())
6350       I->eraseFromParent();
6351   } else {
6352     Worklist.insert(I);
6353   }
6354 
6355   // Note that we must test the size on each iteration, the worklist can grow.
6356   for (unsigned Idx = 0; Idx != Worklist.size(); ++Idx) {
6357     I = Worklist[Idx];
6358 
6359     // See if this instruction simplifies.
6360     SimpleV = SimplifyInstruction(I, {DL, TLI, DT, AC});
6361     if (!SimpleV) {
6362       if (UnsimplifiedUsers)
6363         UnsimplifiedUsers->insert(I);
6364       continue;
6365     }
6366 
6367     Simplified = true;
6368 
6369     // Stash away all the uses of the old instruction so we can check them for
6370     // recursive simplifications after a RAUW. This is cheaper than checking all
6371     // uses of To on the recursive step in most cases.
6372     for (User *U : I->users())
6373       Worklist.insert(cast<Instruction>(U));
6374 
6375     // Replace the instruction with its simplified value.
6376     I->replaceAllUsesWith(SimpleV);
6377 
6378     // Gracefully handle edge cases where the instruction is not wired into any
6379     // parent block.
6380     if (I->getParent() && !I->isEHPad() && !I->isTerminator() &&
6381         !I->mayHaveSideEffects())
6382       I->eraseFromParent();
6383   }
6384   return Simplified;
6385 }
6386 
6387 bool llvm::replaceAndRecursivelySimplify(
6388     Instruction *I, Value *SimpleV, const TargetLibraryInfo *TLI,
6389     const DominatorTree *DT, AssumptionCache *AC,
6390     SmallSetVector<Instruction *, 8> *UnsimplifiedUsers) {
6391   assert(I != SimpleV && "replaceAndRecursivelySimplify(X,X) is not valid!");
6392   assert(SimpleV && "Must provide a simplified value.");
6393   return replaceAndRecursivelySimplifyImpl(I, SimpleV, TLI, DT, AC,
6394                                            UnsimplifiedUsers);
6395 }
6396 
6397 namespace llvm {
6398 const SimplifyQuery getBestSimplifyQuery(Pass &P, Function &F) {
6399   auto *DTWP = P.getAnalysisIfAvailable<DominatorTreeWrapperPass>();
6400   auto *DT = DTWP ? &DTWP->getDomTree() : nullptr;
6401   auto *TLIWP = P.getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>();
6402   auto *TLI = TLIWP ? &TLIWP->getTLI(F) : nullptr;
6403   auto *ACWP = P.getAnalysisIfAvailable<AssumptionCacheTracker>();
6404   auto *AC = ACWP ? &ACWP->getAssumptionCache(F) : nullptr;
6405   return {F.getParent()->getDataLayout(), TLI, DT, AC};
6406 }
6407 
6408 const SimplifyQuery getBestSimplifyQuery(LoopStandardAnalysisResults &AR,
6409                                          const DataLayout &DL) {
6410   return {DL, &AR.TLI, &AR.DT, &AR.AC};
6411 }
6412 
6413 template <class T, class... TArgs>
6414 const SimplifyQuery getBestSimplifyQuery(AnalysisManager<T, TArgs...> &AM,
6415                                          Function &F) {
6416   auto *DT = AM.template getCachedResult<DominatorTreeAnalysis>(F);
6417   auto *TLI = AM.template getCachedResult<TargetLibraryAnalysis>(F);
6418   auto *AC = AM.template getCachedResult<AssumptionAnalysis>(F);
6419   return {F.getParent()->getDataLayout(), TLI, DT, AC};
6420 }
6421 template const SimplifyQuery getBestSimplifyQuery(AnalysisManager<Function> &,
6422                                                   Function &);
6423 }
6424