1 //===- InstructionSimplify.cpp - Fold instruction operands ----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements routines for folding instructions into simpler forms
10 // that do not require creating new instructions.  This does constant folding
11 // ("add i32 1, 1" -> "2") but can also handle non-constant operands, either
12 // returning a constant ("and i32 %x, 0" -> "0") or an already existing value
13 // ("and i32 %x, %x" -> "%x").  All operands are assumed to have already been
14 // simplified: This is usually true and assuming it simplifies the logic (if
15 // they have not been simplified then results are correct but maybe suboptimal).
16 //
17 //===----------------------------------------------------------------------===//
18 
19 #include "llvm/Analysis/InstructionSimplify.h"
20 #include "llvm/ADT/SetVector.h"
21 #include "llvm/ADT/Statistic.h"
22 #include "llvm/Analysis/AliasAnalysis.h"
23 #include "llvm/Analysis/AssumptionCache.h"
24 #include "llvm/Analysis/CaptureTracking.h"
25 #include "llvm/Analysis/CmpInstAnalysis.h"
26 #include "llvm/Analysis/ConstantFolding.h"
27 #include "llvm/Analysis/LoopAnalysisManager.h"
28 #include "llvm/Analysis/MemoryBuiltins.h"
29 #include "llvm/Analysis/ValueTracking.h"
30 #include "llvm/Analysis/VectorUtils.h"
31 #include "llvm/IR/ConstantRange.h"
32 #include "llvm/IR/DataLayout.h"
33 #include "llvm/IR/Dominators.h"
34 #include "llvm/IR/GetElementPtrTypeIterator.h"
35 #include "llvm/IR/GlobalAlias.h"
36 #include "llvm/IR/InstrTypes.h"
37 #include "llvm/IR/Instructions.h"
38 #include "llvm/IR/Operator.h"
39 #include "llvm/IR/PatternMatch.h"
40 #include "llvm/IR/ValueHandle.h"
41 #include "llvm/Support/KnownBits.h"
42 #include <algorithm>
43 using namespace llvm;
44 using namespace llvm::PatternMatch;
45 
46 #define DEBUG_TYPE "instsimplify"
47 
48 enum { RecursionLimit = 3 };
49 
50 STATISTIC(NumExpand,  "Number of expansions");
51 STATISTIC(NumReassoc, "Number of reassociations");
52 
53 static Value *SimplifyAndInst(Value *, Value *, const SimplifyQuery &, unsigned);
54 static Value *simplifyUnOp(unsigned, Value *, const SimplifyQuery &, unsigned);
55 static Value *simplifyFPUnOp(unsigned, Value *, const FastMathFlags &,
56                              const SimplifyQuery &, unsigned);
57 static Value *SimplifyBinOp(unsigned, Value *, Value *, const SimplifyQuery &,
58                             unsigned);
59 static Value *SimplifyFPBinOp(unsigned, Value *, Value *, const FastMathFlags &,
60                               const SimplifyQuery &, unsigned);
61 static Value *SimplifyCmpInst(unsigned, Value *, Value *, const SimplifyQuery &,
62                               unsigned);
63 static Value *SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS,
64                                const SimplifyQuery &Q, unsigned MaxRecurse);
65 static Value *SimplifyOrInst(Value *, Value *, const SimplifyQuery &, unsigned);
66 static Value *SimplifyXorInst(Value *, Value *, const SimplifyQuery &, unsigned);
67 static Value *SimplifyCastInst(unsigned, Value *, Type *,
68                                const SimplifyQuery &, unsigned);
69 static Value *SimplifyGEPInst(Type *, ArrayRef<Value *>, const SimplifyQuery &,
70                               unsigned);
71 
72 static Value *foldSelectWithBinaryOp(Value *Cond, Value *TrueVal,
73                                      Value *FalseVal) {
74   BinaryOperator::BinaryOps BinOpCode;
75   if (auto *BO = dyn_cast<BinaryOperator>(Cond))
76     BinOpCode = BO->getOpcode();
77   else
78     return nullptr;
79 
80   CmpInst::Predicate ExpectedPred, Pred1, Pred2;
81   if (BinOpCode == BinaryOperator::Or) {
82     ExpectedPred = ICmpInst::ICMP_NE;
83   } else if (BinOpCode == BinaryOperator::And) {
84     ExpectedPred = ICmpInst::ICMP_EQ;
85   } else
86     return nullptr;
87 
88   // %A = icmp eq %TV, %FV
89   // %B = icmp eq %X, %Y (and one of these is a select operand)
90   // %C = and %A, %B
91   // %D = select %C, %TV, %FV
92   // -->
93   // %FV
94 
95   // %A = icmp ne %TV, %FV
96   // %B = icmp ne %X, %Y (and one of these is a select operand)
97   // %C = or %A, %B
98   // %D = select %C, %TV, %FV
99   // -->
100   // %TV
101   Value *X, *Y;
102   if (!match(Cond, m_c_BinOp(m_c_ICmp(Pred1, m_Specific(TrueVal),
103                                       m_Specific(FalseVal)),
104                              m_ICmp(Pred2, m_Value(X), m_Value(Y)))) ||
105       Pred1 != Pred2 || Pred1 != ExpectedPred)
106     return nullptr;
107 
108   if (X == TrueVal || X == FalseVal || Y == TrueVal || Y == FalseVal)
109     return BinOpCode == BinaryOperator::Or ? TrueVal : FalseVal;
110 
111   return nullptr;
112 }
113 
114 /// For a boolean type or a vector of boolean type, return false or a vector
115 /// with every element false.
116 static Constant *getFalse(Type *Ty) {
117   return ConstantInt::getFalse(Ty);
118 }
119 
120 /// For a boolean type or a vector of boolean type, return true or a vector
121 /// with every element true.
122 static Constant *getTrue(Type *Ty) {
123   return ConstantInt::getTrue(Ty);
124 }
125 
126 /// isSameCompare - Is V equivalent to the comparison "LHS Pred RHS"?
127 static bool isSameCompare(Value *V, CmpInst::Predicate Pred, Value *LHS,
128                           Value *RHS) {
129   CmpInst *Cmp = dyn_cast<CmpInst>(V);
130   if (!Cmp)
131     return false;
132   CmpInst::Predicate CPred = Cmp->getPredicate();
133   Value *CLHS = Cmp->getOperand(0), *CRHS = Cmp->getOperand(1);
134   if (CPred == Pred && CLHS == LHS && CRHS == RHS)
135     return true;
136   return CPred == CmpInst::getSwappedPredicate(Pred) && CLHS == RHS &&
137     CRHS == LHS;
138 }
139 
140 /// Does the given value dominate the specified phi node?
141 static bool valueDominatesPHI(Value *V, PHINode *P, const DominatorTree *DT) {
142   Instruction *I = dyn_cast<Instruction>(V);
143   if (!I)
144     // Arguments and constants dominate all instructions.
145     return true;
146 
147   // If we are processing instructions (and/or basic blocks) that have not been
148   // fully added to a function, the parent nodes may still be null. Simply
149   // return the conservative answer in these cases.
150   if (!I->getParent() || !P->getParent() || !I->getFunction())
151     return false;
152 
153   // If we have a DominatorTree then do a precise test.
154   if (DT)
155     return DT->dominates(I, P);
156 
157   // Otherwise, if the instruction is in the entry block and is not an invoke,
158   // then it obviously dominates all phi nodes.
159   if (I->getParent() == &I->getFunction()->getEntryBlock() &&
160       !isa<InvokeInst>(I))
161     return true;
162 
163   return false;
164 }
165 
166 /// Simplify "A op (B op' C)" by distributing op over op', turning it into
167 /// "(A op B) op' (A op C)".  Here "op" is given by Opcode and "op'" is
168 /// given by OpcodeToExpand, while "A" corresponds to LHS and "B op' C" to RHS.
169 /// Also performs the transform "(A op' B) op C" -> "(A op C) op' (B op C)".
170 /// Returns the simplified value, or null if no simplification was performed.
171 static Value *ExpandBinOp(Instruction::BinaryOps Opcode, Value *LHS, Value *RHS,
172                           Instruction::BinaryOps OpcodeToExpand,
173                           const SimplifyQuery &Q, unsigned MaxRecurse) {
174   // Recursion is always used, so bail out at once if we already hit the limit.
175   if (!MaxRecurse--)
176     return nullptr;
177 
178   // Check whether the expression has the form "(A op' B) op C".
179   if (BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS))
180     if (Op0->getOpcode() == OpcodeToExpand) {
181       // It does!  Try turning it into "(A op C) op' (B op C)".
182       Value *A = Op0->getOperand(0), *B = Op0->getOperand(1), *C = RHS;
183       // Do "A op C" and "B op C" both simplify?
184       if (Value *L = SimplifyBinOp(Opcode, A, C, Q, MaxRecurse))
185         if (Value *R = SimplifyBinOp(Opcode, B, C, Q, MaxRecurse)) {
186           // They do! Return "L op' R" if it simplifies or is already available.
187           // If "L op' R" equals "A op' B" then "L op' R" is just the LHS.
188           if ((L == A && R == B) || (Instruction::isCommutative(OpcodeToExpand)
189                                      && L == B && R == A)) {
190             ++NumExpand;
191             return LHS;
192           }
193           // Otherwise return "L op' R" if it simplifies.
194           if (Value *V = SimplifyBinOp(OpcodeToExpand, L, R, Q, MaxRecurse)) {
195             ++NumExpand;
196             return V;
197           }
198         }
199     }
200 
201   // Check whether the expression has the form "A op (B op' C)".
202   if (BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS))
203     if (Op1->getOpcode() == OpcodeToExpand) {
204       // It does!  Try turning it into "(A op B) op' (A op C)".
205       Value *A = LHS, *B = Op1->getOperand(0), *C = Op1->getOperand(1);
206       // Do "A op B" and "A op C" both simplify?
207       if (Value *L = SimplifyBinOp(Opcode, A, B, Q, MaxRecurse))
208         if (Value *R = SimplifyBinOp(Opcode, A, C, Q, MaxRecurse)) {
209           // They do! Return "L op' R" if it simplifies or is already available.
210           // If "L op' R" equals "B op' C" then "L op' R" is just the RHS.
211           if ((L == B && R == C) || (Instruction::isCommutative(OpcodeToExpand)
212                                      && L == C && R == B)) {
213             ++NumExpand;
214             return RHS;
215           }
216           // Otherwise return "L op' R" if it simplifies.
217           if (Value *V = SimplifyBinOp(OpcodeToExpand, L, R, Q, MaxRecurse)) {
218             ++NumExpand;
219             return V;
220           }
221         }
222     }
223 
224   return nullptr;
225 }
226 
227 /// Generic simplifications for associative binary operations.
228 /// Returns the simpler value, or null if none was found.
229 static Value *SimplifyAssociativeBinOp(Instruction::BinaryOps Opcode,
230                                        Value *LHS, Value *RHS,
231                                        const SimplifyQuery &Q,
232                                        unsigned MaxRecurse) {
233   assert(Instruction::isAssociative(Opcode) && "Not an associative operation!");
234 
235   // Recursion is always used, so bail out at once if we already hit the limit.
236   if (!MaxRecurse--)
237     return nullptr;
238 
239   BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS);
240   BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS);
241 
242   // Transform: "(A op B) op C" ==> "A op (B op C)" if it simplifies completely.
243   if (Op0 && Op0->getOpcode() == Opcode) {
244     Value *A = Op0->getOperand(0);
245     Value *B = Op0->getOperand(1);
246     Value *C = RHS;
247 
248     // Does "B op C" simplify?
249     if (Value *V = SimplifyBinOp(Opcode, B, C, Q, MaxRecurse)) {
250       // It does!  Return "A op V" if it simplifies or is already available.
251       // If V equals B then "A op V" is just the LHS.
252       if (V == B) return LHS;
253       // Otherwise return "A op V" if it simplifies.
254       if (Value *W = SimplifyBinOp(Opcode, A, V, Q, MaxRecurse)) {
255         ++NumReassoc;
256         return W;
257       }
258     }
259   }
260 
261   // Transform: "A op (B op C)" ==> "(A op B) op C" if it simplifies completely.
262   if (Op1 && Op1->getOpcode() == Opcode) {
263     Value *A = LHS;
264     Value *B = Op1->getOperand(0);
265     Value *C = Op1->getOperand(1);
266 
267     // Does "A op B" simplify?
268     if (Value *V = SimplifyBinOp(Opcode, A, B, Q, MaxRecurse)) {
269       // It does!  Return "V op C" if it simplifies or is already available.
270       // If V equals B then "V op C" is just the RHS.
271       if (V == B) return RHS;
272       // Otherwise return "V op C" if it simplifies.
273       if (Value *W = SimplifyBinOp(Opcode, V, C, Q, MaxRecurse)) {
274         ++NumReassoc;
275         return W;
276       }
277     }
278   }
279 
280   // The remaining transforms require commutativity as well as associativity.
281   if (!Instruction::isCommutative(Opcode))
282     return nullptr;
283 
284   // Transform: "(A op B) op C" ==> "(C op A) op B" if it simplifies completely.
285   if (Op0 && Op0->getOpcode() == Opcode) {
286     Value *A = Op0->getOperand(0);
287     Value *B = Op0->getOperand(1);
288     Value *C = RHS;
289 
290     // Does "C op A" simplify?
291     if (Value *V = SimplifyBinOp(Opcode, C, A, Q, MaxRecurse)) {
292       // It does!  Return "V op B" if it simplifies or is already available.
293       // If V equals A then "V op B" is just the LHS.
294       if (V == A) return LHS;
295       // Otherwise return "V op B" if it simplifies.
296       if (Value *W = SimplifyBinOp(Opcode, V, B, Q, MaxRecurse)) {
297         ++NumReassoc;
298         return W;
299       }
300     }
301   }
302 
303   // Transform: "A op (B op C)" ==> "B op (C op A)" if it simplifies completely.
304   if (Op1 && Op1->getOpcode() == Opcode) {
305     Value *A = LHS;
306     Value *B = Op1->getOperand(0);
307     Value *C = Op1->getOperand(1);
308 
309     // Does "C op A" simplify?
310     if (Value *V = SimplifyBinOp(Opcode, C, A, Q, MaxRecurse)) {
311       // It does!  Return "B op V" if it simplifies or is already available.
312       // If V equals C then "B op V" is just the RHS.
313       if (V == C) return RHS;
314       // Otherwise return "B op V" if it simplifies.
315       if (Value *W = SimplifyBinOp(Opcode, B, V, Q, MaxRecurse)) {
316         ++NumReassoc;
317         return W;
318       }
319     }
320   }
321 
322   return nullptr;
323 }
324 
325 /// In the case of a binary operation with a select instruction as an operand,
326 /// try to simplify the binop by seeing whether evaluating it on both branches
327 /// of the select results in the same value. Returns the common value if so,
328 /// otherwise returns null.
329 static Value *ThreadBinOpOverSelect(Instruction::BinaryOps Opcode, Value *LHS,
330                                     Value *RHS, const SimplifyQuery &Q,
331                                     unsigned MaxRecurse) {
332   // Recursion is always used, so bail out at once if we already hit the limit.
333   if (!MaxRecurse--)
334     return nullptr;
335 
336   SelectInst *SI;
337   if (isa<SelectInst>(LHS)) {
338     SI = cast<SelectInst>(LHS);
339   } else {
340     assert(isa<SelectInst>(RHS) && "No select instruction operand!");
341     SI = cast<SelectInst>(RHS);
342   }
343 
344   // Evaluate the BinOp on the true and false branches of the select.
345   Value *TV;
346   Value *FV;
347   if (SI == LHS) {
348     TV = SimplifyBinOp(Opcode, SI->getTrueValue(), RHS, Q, MaxRecurse);
349     FV = SimplifyBinOp(Opcode, SI->getFalseValue(), RHS, Q, MaxRecurse);
350   } else {
351     TV = SimplifyBinOp(Opcode, LHS, SI->getTrueValue(), Q, MaxRecurse);
352     FV = SimplifyBinOp(Opcode, LHS, SI->getFalseValue(), Q, MaxRecurse);
353   }
354 
355   // If they simplified to the same value, then return the common value.
356   // If they both failed to simplify then return null.
357   if (TV == FV)
358     return TV;
359 
360   // If one branch simplified to undef, return the other one.
361   if (TV && isa<UndefValue>(TV))
362     return FV;
363   if (FV && isa<UndefValue>(FV))
364     return TV;
365 
366   // If applying the operation did not change the true and false select values,
367   // then the result of the binop is the select itself.
368   if (TV == SI->getTrueValue() && FV == SI->getFalseValue())
369     return SI;
370 
371   // If one branch simplified and the other did not, and the simplified
372   // value is equal to the unsimplified one, return the simplified value.
373   // For example, select (cond, X, X & Z) & Z -> X & Z.
374   if ((FV && !TV) || (TV && !FV)) {
375     // Check that the simplified value has the form "X op Y" where "op" is the
376     // same as the original operation.
377     Instruction *Simplified = dyn_cast<Instruction>(FV ? FV : TV);
378     if (Simplified && Simplified->getOpcode() == unsigned(Opcode)) {
379       // The value that didn't simplify is "UnsimplifiedLHS op UnsimplifiedRHS".
380       // We already know that "op" is the same as for the simplified value.  See
381       // if the operands match too.  If so, return the simplified value.
382       Value *UnsimplifiedBranch = FV ? SI->getTrueValue() : SI->getFalseValue();
383       Value *UnsimplifiedLHS = SI == LHS ? UnsimplifiedBranch : LHS;
384       Value *UnsimplifiedRHS = SI == LHS ? RHS : UnsimplifiedBranch;
385       if (Simplified->getOperand(0) == UnsimplifiedLHS &&
386           Simplified->getOperand(1) == UnsimplifiedRHS)
387         return Simplified;
388       if (Simplified->isCommutative() &&
389           Simplified->getOperand(1) == UnsimplifiedLHS &&
390           Simplified->getOperand(0) == UnsimplifiedRHS)
391         return Simplified;
392     }
393   }
394 
395   return nullptr;
396 }
397 
398 /// In the case of a comparison with a select instruction, try to simplify the
399 /// comparison by seeing whether both branches of the select result in the same
400 /// value. Returns the common value if so, otherwise returns null.
401 static Value *ThreadCmpOverSelect(CmpInst::Predicate Pred, Value *LHS,
402                                   Value *RHS, const SimplifyQuery &Q,
403                                   unsigned MaxRecurse) {
404   // Recursion is always used, so bail out at once if we already hit the limit.
405   if (!MaxRecurse--)
406     return nullptr;
407 
408   // Make sure the select is on the LHS.
409   if (!isa<SelectInst>(LHS)) {
410     std::swap(LHS, RHS);
411     Pred = CmpInst::getSwappedPredicate(Pred);
412   }
413   assert(isa<SelectInst>(LHS) && "Not comparing with a select instruction!");
414   SelectInst *SI = cast<SelectInst>(LHS);
415   Value *Cond = SI->getCondition();
416   Value *TV = SI->getTrueValue();
417   Value *FV = SI->getFalseValue();
418 
419   // Now that we have "cmp select(Cond, TV, FV), RHS", analyse it.
420   // Does "cmp TV, RHS" simplify?
421   Value *TCmp = SimplifyCmpInst(Pred, TV, RHS, Q, MaxRecurse);
422   if (TCmp == Cond) {
423     // It not only simplified, it simplified to the select condition.  Replace
424     // it with 'true'.
425     TCmp = getTrue(Cond->getType());
426   } else if (!TCmp) {
427     // It didn't simplify.  However if "cmp TV, RHS" is equal to the select
428     // condition then we can replace it with 'true'.  Otherwise give up.
429     if (!isSameCompare(Cond, Pred, TV, RHS))
430       return nullptr;
431     TCmp = getTrue(Cond->getType());
432   }
433 
434   // Does "cmp FV, RHS" simplify?
435   Value *FCmp = SimplifyCmpInst(Pred, FV, RHS, Q, MaxRecurse);
436   if (FCmp == Cond) {
437     // It not only simplified, it simplified to the select condition.  Replace
438     // it with 'false'.
439     FCmp = getFalse(Cond->getType());
440   } else if (!FCmp) {
441     // It didn't simplify.  However if "cmp FV, RHS" is equal to the select
442     // condition then we can replace it with 'false'.  Otherwise give up.
443     if (!isSameCompare(Cond, Pred, FV, RHS))
444       return nullptr;
445     FCmp = getFalse(Cond->getType());
446   }
447 
448   // If both sides simplified to the same value, then use it as the result of
449   // the original comparison.
450   if (TCmp == FCmp)
451     return TCmp;
452 
453   // The remaining cases only make sense if the select condition has the same
454   // type as the result of the comparison, so bail out if this is not so.
455   if (Cond->getType()->isVectorTy() != RHS->getType()->isVectorTy())
456     return nullptr;
457   // If the false value simplified to false, then the result of the compare
458   // is equal to "Cond && TCmp".  This also catches the case when the false
459   // value simplified to false and the true value to true, returning "Cond".
460   if (match(FCmp, m_Zero()))
461     if (Value *V = SimplifyAndInst(Cond, TCmp, Q, MaxRecurse))
462       return V;
463   // If the true value simplified to true, then the result of the compare
464   // is equal to "Cond || FCmp".
465   if (match(TCmp, m_One()))
466     if (Value *V = SimplifyOrInst(Cond, FCmp, Q, MaxRecurse))
467       return V;
468   // Finally, if the false value simplified to true and the true value to
469   // false, then the result of the compare is equal to "!Cond".
470   if (match(FCmp, m_One()) && match(TCmp, m_Zero()))
471     if (Value *V =
472         SimplifyXorInst(Cond, Constant::getAllOnesValue(Cond->getType()),
473                         Q, MaxRecurse))
474       return V;
475 
476   return nullptr;
477 }
478 
479 /// In the case of a binary operation with an operand that is a PHI instruction,
480 /// try to simplify the binop by seeing whether evaluating it on the incoming
481 /// phi values yields the same result for every value. If so returns the common
482 /// value, otherwise returns null.
483 static Value *ThreadBinOpOverPHI(Instruction::BinaryOps Opcode, Value *LHS,
484                                  Value *RHS, const SimplifyQuery &Q,
485                                  unsigned MaxRecurse) {
486   // Recursion is always used, so bail out at once if we already hit the limit.
487   if (!MaxRecurse--)
488     return nullptr;
489 
490   PHINode *PI;
491   if (isa<PHINode>(LHS)) {
492     PI = cast<PHINode>(LHS);
493     // Bail out if RHS and the phi may be mutually interdependent due to a loop.
494     if (!valueDominatesPHI(RHS, PI, Q.DT))
495       return nullptr;
496   } else {
497     assert(isa<PHINode>(RHS) && "No PHI instruction operand!");
498     PI = cast<PHINode>(RHS);
499     // Bail out if LHS and the phi may be mutually interdependent due to a loop.
500     if (!valueDominatesPHI(LHS, PI, Q.DT))
501       return nullptr;
502   }
503 
504   // Evaluate the BinOp on the incoming phi values.
505   Value *CommonValue = nullptr;
506   for (Value *Incoming : PI->incoming_values()) {
507     // If the incoming value is the phi node itself, it can safely be skipped.
508     if (Incoming == PI) continue;
509     Value *V = PI == LHS ?
510       SimplifyBinOp(Opcode, Incoming, RHS, Q, MaxRecurse) :
511       SimplifyBinOp(Opcode, LHS, Incoming, Q, MaxRecurse);
512     // If the operation failed to simplify, or simplified to a different value
513     // to previously, then give up.
514     if (!V || (CommonValue && V != CommonValue))
515       return nullptr;
516     CommonValue = V;
517   }
518 
519   return CommonValue;
520 }
521 
522 /// In the case of a comparison with a PHI instruction, try to simplify the
523 /// comparison by seeing whether comparing with all of the incoming phi values
524 /// yields the same result every time. If so returns the common result,
525 /// otherwise returns null.
526 static Value *ThreadCmpOverPHI(CmpInst::Predicate Pred, Value *LHS, Value *RHS,
527                                const SimplifyQuery &Q, unsigned MaxRecurse) {
528   // Recursion is always used, so bail out at once if we already hit the limit.
529   if (!MaxRecurse--)
530     return nullptr;
531 
532   // Make sure the phi is on the LHS.
533   if (!isa<PHINode>(LHS)) {
534     std::swap(LHS, RHS);
535     Pred = CmpInst::getSwappedPredicate(Pred);
536   }
537   assert(isa<PHINode>(LHS) && "Not comparing with a phi instruction!");
538   PHINode *PI = cast<PHINode>(LHS);
539 
540   // Bail out if RHS and the phi may be mutually interdependent due to a loop.
541   if (!valueDominatesPHI(RHS, PI, Q.DT))
542     return nullptr;
543 
544   // Evaluate the BinOp on the incoming phi values.
545   Value *CommonValue = nullptr;
546   for (Value *Incoming : PI->incoming_values()) {
547     // If the incoming value is the phi node itself, it can safely be skipped.
548     if (Incoming == PI) continue;
549     Value *V = SimplifyCmpInst(Pred, Incoming, RHS, Q, MaxRecurse);
550     // If the operation failed to simplify, or simplified to a different value
551     // to previously, then give up.
552     if (!V || (CommonValue && V != CommonValue))
553       return nullptr;
554     CommonValue = V;
555   }
556 
557   return CommonValue;
558 }
559 
560 static Constant *foldOrCommuteConstant(Instruction::BinaryOps Opcode,
561                                        Value *&Op0, Value *&Op1,
562                                        const SimplifyQuery &Q) {
563   if (auto *CLHS = dyn_cast<Constant>(Op0)) {
564     if (auto *CRHS = dyn_cast<Constant>(Op1))
565       return ConstantFoldBinaryOpOperands(Opcode, CLHS, CRHS, Q.DL);
566 
567     // Canonicalize the constant to the RHS if this is a commutative operation.
568     if (Instruction::isCommutative(Opcode))
569       std::swap(Op0, Op1);
570   }
571   return nullptr;
572 }
573 
574 /// Given operands for an Add, see if we can fold the result.
575 /// If not, this returns null.
576 static Value *SimplifyAddInst(Value *Op0, Value *Op1, bool IsNSW, bool IsNUW,
577                               const SimplifyQuery &Q, unsigned MaxRecurse) {
578   if (Constant *C = foldOrCommuteConstant(Instruction::Add, Op0, Op1, Q))
579     return C;
580 
581   // X + undef -> undef
582   if (match(Op1, m_Undef()))
583     return Op1;
584 
585   // X + 0 -> X
586   if (match(Op1, m_Zero()))
587     return Op0;
588 
589   // If two operands are negative, return 0.
590   if (isKnownNegation(Op0, Op1))
591     return Constant::getNullValue(Op0->getType());
592 
593   // X + (Y - X) -> Y
594   // (Y - X) + X -> Y
595   // Eg: X + -X -> 0
596   Value *Y = nullptr;
597   if (match(Op1, m_Sub(m_Value(Y), m_Specific(Op0))) ||
598       match(Op0, m_Sub(m_Value(Y), m_Specific(Op1))))
599     return Y;
600 
601   // X + ~X -> -1   since   ~X = -X-1
602   Type *Ty = Op0->getType();
603   if (match(Op0, m_Not(m_Specific(Op1))) ||
604       match(Op1, m_Not(m_Specific(Op0))))
605     return Constant::getAllOnesValue(Ty);
606 
607   // add nsw/nuw (xor Y, signmask), signmask --> Y
608   // The no-wrapping add guarantees that the top bit will be set by the add.
609   // Therefore, the xor must be clearing the already set sign bit of Y.
610   if ((IsNSW || IsNUW) && match(Op1, m_SignMask()) &&
611       match(Op0, m_Xor(m_Value(Y), m_SignMask())))
612     return Y;
613 
614   // add nuw %x, -1  ->  -1, because %x can only be 0.
615   if (IsNUW && match(Op1, m_AllOnes()))
616     return Op1; // Which is -1.
617 
618   /// i1 add -> xor.
619   if (MaxRecurse && Op0->getType()->isIntOrIntVectorTy(1))
620     if (Value *V = SimplifyXorInst(Op0, Op1, Q, MaxRecurse-1))
621       return V;
622 
623   // Try some generic simplifications for associative operations.
624   if (Value *V = SimplifyAssociativeBinOp(Instruction::Add, Op0, Op1, Q,
625                                           MaxRecurse))
626     return V;
627 
628   // Threading Add over selects and phi nodes is pointless, so don't bother.
629   // Threading over the select in "A + select(cond, B, C)" means evaluating
630   // "A+B" and "A+C" and seeing if they are equal; but they are equal if and
631   // only if B and C are equal.  If B and C are equal then (since we assume
632   // that operands have already been simplified) "select(cond, B, C)" should
633   // have been simplified to the common value of B and C already.  Analysing
634   // "A+B" and "A+C" thus gains nothing, but costs compile time.  Similarly
635   // for threading over phi nodes.
636 
637   return nullptr;
638 }
639 
640 Value *llvm::SimplifyAddInst(Value *Op0, Value *Op1, bool IsNSW, bool IsNUW,
641                              const SimplifyQuery &Query) {
642   return ::SimplifyAddInst(Op0, Op1, IsNSW, IsNUW, Query, RecursionLimit);
643 }
644 
645 /// Compute the base pointer and cumulative constant offsets for V.
646 ///
647 /// This strips all constant offsets off of V, leaving it the base pointer, and
648 /// accumulates the total constant offset applied in the returned constant. It
649 /// returns 0 if V is not a pointer, and returns the constant '0' if there are
650 /// no constant offsets applied.
651 ///
652 /// This is very similar to GetPointerBaseWithConstantOffset except it doesn't
653 /// follow non-inbounds geps. This allows it to remain usable for icmp ult/etc.
654 /// folding.
655 static Constant *stripAndComputeConstantOffsets(const DataLayout &DL, Value *&V,
656                                                 bool AllowNonInbounds = false) {
657   assert(V->getType()->isPtrOrPtrVectorTy());
658 
659   Type *IntPtrTy = DL.getIntPtrType(V->getType())->getScalarType();
660   APInt Offset = APInt::getNullValue(IntPtrTy->getIntegerBitWidth());
661 
662   // Even though we don't look through PHI nodes, we could be called on an
663   // instruction in an unreachable block, which may be on a cycle.
664   SmallPtrSet<Value *, 4> Visited;
665   Visited.insert(V);
666   do {
667     if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
668       if ((!AllowNonInbounds && !GEP->isInBounds()) ||
669           !GEP->accumulateConstantOffset(DL, Offset))
670         break;
671       V = GEP->getPointerOperand();
672     } else if (Operator::getOpcode(V) == Instruction::BitCast) {
673       V = cast<Operator>(V)->getOperand(0);
674     } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
675       if (GA->isInterposable())
676         break;
677       V = GA->getAliasee();
678     } else {
679       if (auto *Call = dyn_cast<CallBase>(V))
680         if (Value *RV = Call->getReturnedArgOperand()) {
681           V = RV;
682           continue;
683         }
684       break;
685     }
686     assert(V->getType()->isPtrOrPtrVectorTy() && "Unexpected operand type!");
687   } while (Visited.insert(V).second);
688 
689   Constant *OffsetIntPtr = ConstantInt::get(IntPtrTy, Offset);
690   if (V->getType()->isVectorTy())
691     return ConstantVector::getSplat(V->getType()->getVectorNumElements(),
692                                     OffsetIntPtr);
693   return OffsetIntPtr;
694 }
695 
696 /// Compute the constant difference between two pointer values.
697 /// If the difference is not a constant, returns zero.
698 static Constant *computePointerDifference(const DataLayout &DL, Value *LHS,
699                                           Value *RHS) {
700   Constant *LHSOffset = stripAndComputeConstantOffsets(DL, LHS);
701   Constant *RHSOffset = stripAndComputeConstantOffsets(DL, RHS);
702 
703   // If LHS and RHS are not related via constant offsets to the same base
704   // value, there is nothing we can do here.
705   if (LHS != RHS)
706     return nullptr;
707 
708   // Otherwise, the difference of LHS - RHS can be computed as:
709   //    LHS - RHS
710   //  = (LHSOffset + Base) - (RHSOffset + Base)
711   //  = LHSOffset - RHSOffset
712   return ConstantExpr::getSub(LHSOffset, RHSOffset);
713 }
714 
715 /// Given operands for a Sub, see if we can fold the result.
716 /// If not, this returns null.
717 static Value *SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
718                               const SimplifyQuery &Q, unsigned MaxRecurse) {
719   if (Constant *C = foldOrCommuteConstant(Instruction::Sub, Op0, Op1, Q))
720     return C;
721 
722   // X - undef -> undef
723   // undef - X -> undef
724   if (match(Op0, m_Undef()) || match(Op1, m_Undef()))
725     return UndefValue::get(Op0->getType());
726 
727   // X - 0 -> X
728   if (match(Op1, m_Zero()))
729     return Op0;
730 
731   // X - X -> 0
732   if (Op0 == Op1)
733     return Constant::getNullValue(Op0->getType());
734 
735   // Is this a negation?
736   if (match(Op0, m_Zero())) {
737     // 0 - X -> 0 if the sub is NUW.
738     if (isNUW)
739       return Constant::getNullValue(Op0->getType());
740 
741     KnownBits Known = computeKnownBits(Op1, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
742     if (Known.Zero.isMaxSignedValue()) {
743       // Op1 is either 0 or the minimum signed value. If the sub is NSW, then
744       // Op1 must be 0 because negating the minimum signed value is undefined.
745       if (isNSW)
746         return Constant::getNullValue(Op0->getType());
747 
748       // 0 - X -> X if X is 0 or the minimum signed value.
749       return Op1;
750     }
751   }
752 
753   // (X + Y) - Z -> X + (Y - Z) or Y + (X - Z) if everything simplifies.
754   // For example, (X + Y) - Y -> X; (Y + X) - Y -> X
755   Value *X = nullptr, *Y = nullptr, *Z = Op1;
756   if (MaxRecurse && match(Op0, m_Add(m_Value(X), m_Value(Y)))) { // (X + Y) - Z
757     // See if "V === Y - Z" simplifies.
758     if (Value *V = SimplifyBinOp(Instruction::Sub, Y, Z, Q, MaxRecurse-1))
759       // It does!  Now see if "X + V" simplifies.
760       if (Value *W = SimplifyBinOp(Instruction::Add, X, V, Q, MaxRecurse-1)) {
761         // It does, we successfully reassociated!
762         ++NumReassoc;
763         return W;
764       }
765     // See if "V === X - Z" simplifies.
766     if (Value *V = SimplifyBinOp(Instruction::Sub, X, Z, Q, MaxRecurse-1))
767       // It does!  Now see if "Y + V" simplifies.
768       if (Value *W = SimplifyBinOp(Instruction::Add, Y, V, Q, MaxRecurse-1)) {
769         // It does, we successfully reassociated!
770         ++NumReassoc;
771         return W;
772       }
773   }
774 
775   // X - (Y + Z) -> (X - Y) - Z or (X - Z) - Y if everything simplifies.
776   // For example, X - (X + 1) -> -1
777   X = Op0;
778   if (MaxRecurse && match(Op1, m_Add(m_Value(Y), m_Value(Z)))) { // X - (Y + Z)
779     // See if "V === X - Y" simplifies.
780     if (Value *V = SimplifyBinOp(Instruction::Sub, X, Y, Q, MaxRecurse-1))
781       // It does!  Now see if "V - Z" simplifies.
782       if (Value *W = SimplifyBinOp(Instruction::Sub, V, Z, Q, MaxRecurse-1)) {
783         // It does, we successfully reassociated!
784         ++NumReassoc;
785         return W;
786       }
787     // See if "V === X - Z" simplifies.
788     if (Value *V = SimplifyBinOp(Instruction::Sub, X, Z, Q, MaxRecurse-1))
789       // It does!  Now see if "V - Y" simplifies.
790       if (Value *W = SimplifyBinOp(Instruction::Sub, V, Y, Q, MaxRecurse-1)) {
791         // It does, we successfully reassociated!
792         ++NumReassoc;
793         return W;
794       }
795   }
796 
797   // Z - (X - Y) -> (Z - X) + Y if everything simplifies.
798   // For example, X - (X - Y) -> Y.
799   Z = Op0;
800   if (MaxRecurse && match(Op1, m_Sub(m_Value(X), m_Value(Y)))) // Z - (X - Y)
801     // See if "V === Z - X" simplifies.
802     if (Value *V = SimplifyBinOp(Instruction::Sub, Z, X, Q, MaxRecurse-1))
803       // It does!  Now see if "V + Y" simplifies.
804       if (Value *W = SimplifyBinOp(Instruction::Add, V, Y, Q, MaxRecurse-1)) {
805         // It does, we successfully reassociated!
806         ++NumReassoc;
807         return W;
808       }
809 
810   // trunc(X) - trunc(Y) -> trunc(X - Y) if everything simplifies.
811   if (MaxRecurse && match(Op0, m_Trunc(m_Value(X))) &&
812       match(Op1, m_Trunc(m_Value(Y))))
813     if (X->getType() == Y->getType())
814       // See if "V === X - Y" simplifies.
815       if (Value *V = SimplifyBinOp(Instruction::Sub, X, Y, Q, MaxRecurse-1))
816         // It does!  Now see if "trunc V" simplifies.
817         if (Value *W = SimplifyCastInst(Instruction::Trunc, V, Op0->getType(),
818                                         Q, MaxRecurse - 1))
819           // It does, return the simplified "trunc V".
820           return W;
821 
822   // Variations on GEP(base, I, ...) - GEP(base, i, ...) -> GEP(null, I-i, ...).
823   if (match(Op0, m_PtrToInt(m_Value(X))) &&
824       match(Op1, m_PtrToInt(m_Value(Y))))
825     if (Constant *Result = computePointerDifference(Q.DL, X, Y))
826       return ConstantExpr::getIntegerCast(Result, Op0->getType(), true);
827 
828   // i1 sub -> xor.
829   if (MaxRecurse && Op0->getType()->isIntOrIntVectorTy(1))
830     if (Value *V = SimplifyXorInst(Op0, Op1, Q, MaxRecurse-1))
831       return V;
832 
833   // Threading Sub over selects and phi nodes is pointless, so don't bother.
834   // Threading over the select in "A - select(cond, B, C)" means evaluating
835   // "A-B" and "A-C" and seeing if they are equal; but they are equal if and
836   // only if B and C are equal.  If B and C are equal then (since we assume
837   // that operands have already been simplified) "select(cond, B, C)" should
838   // have been simplified to the common value of B and C already.  Analysing
839   // "A-B" and "A-C" thus gains nothing, but costs compile time.  Similarly
840   // for threading over phi nodes.
841 
842   return nullptr;
843 }
844 
845 Value *llvm::SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
846                              const SimplifyQuery &Q) {
847   return ::SimplifySubInst(Op0, Op1, isNSW, isNUW, Q, RecursionLimit);
848 }
849 
850 /// Given operands for a Mul, see if we can fold the result.
851 /// If not, this returns null.
852 static Value *SimplifyMulInst(Value *Op0, Value *Op1, const SimplifyQuery &Q,
853                               unsigned MaxRecurse) {
854   if (Constant *C = foldOrCommuteConstant(Instruction::Mul, Op0, Op1, Q))
855     return C;
856 
857   // X * undef -> 0
858   // X * 0 -> 0
859   if (match(Op1, m_CombineOr(m_Undef(), m_Zero())))
860     return Constant::getNullValue(Op0->getType());
861 
862   // X * 1 -> X
863   if (match(Op1, m_One()))
864     return Op0;
865 
866   // (X / Y) * Y -> X if the division is exact.
867   Value *X = nullptr;
868   if (Q.IIQ.UseInstrInfo &&
869       (match(Op0,
870              m_Exact(m_IDiv(m_Value(X), m_Specific(Op1)))) ||     // (X / Y) * Y
871        match(Op1, m_Exact(m_IDiv(m_Value(X), m_Specific(Op0)))))) // Y * (X / Y)
872     return X;
873 
874   // i1 mul -> and.
875   if (MaxRecurse && Op0->getType()->isIntOrIntVectorTy(1))
876     if (Value *V = SimplifyAndInst(Op0, Op1, Q, MaxRecurse-1))
877       return V;
878 
879   // Try some generic simplifications for associative operations.
880   if (Value *V = SimplifyAssociativeBinOp(Instruction::Mul, Op0, Op1, Q,
881                                           MaxRecurse))
882     return V;
883 
884   // Mul distributes over Add. Try some generic simplifications based on this.
885   if (Value *V = ExpandBinOp(Instruction::Mul, Op0, Op1, Instruction::Add,
886                              Q, MaxRecurse))
887     return V;
888 
889   // If the operation is with the result of a select instruction, check whether
890   // operating on either branch of the select always yields the same value.
891   if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
892     if (Value *V = ThreadBinOpOverSelect(Instruction::Mul, Op0, Op1, Q,
893                                          MaxRecurse))
894       return V;
895 
896   // If the operation is with the result of a phi instruction, check whether
897   // operating on all incoming values of the phi always yields the same value.
898   if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
899     if (Value *V = ThreadBinOpOverPHI(Instruction::Mul, Op0, Op1, Q,
900                                       MaxRecurse))
901       return V;
902 
903   return nullptr;
904 }
905 
906 Value *llvm::SimplifyMulInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) {
907   return ::SimplifyMulInst(Op0, Op1, Q, RecursionLimit);
908 }
909 
910 /// Check for common or similar folds of integer division or integer remainder.
911 /// This applies to all 4 opcodes (sdiv/udiv/srem/urem).
912 static Value *simplifyDivRem(Value *Op0, Value *Op1, bool IsDiv) {
913   Type *Ty = Op0->getType();
914 
915   // X / undef -> undef
916   // X % undef -> undef
917   if (match(Op1, m_Undef()))
918     return Op1;
919 
920   // X / 0 -> undef
921   // X % 0 -> undef
922   // We don't need to preserve faults!
923   if (match(Op1, m_Zero()))
924     return UndefValue::get(Ty);
925 
926   // If any element of a constant divisor vector is zero or undef, the whole op
927   // is undef.
928   auto *Op1C = dyn_cast<Constant>(Op1);
929   if (Op1C && Ty->isVectorTy()) {
930     unsigned NumElts = Ty->getVectorNumElements();
931     for (unsigned i = 0; i != NumElts; ++i) {
932       Constant *Elt = Op1C->getAggregateElement(i);
933       if (Elt && (Elt->isNullValue() || isa<UndefValue>(Elt)))
934         return UndefValue::get(Ty);
935     }
936   }
937 
938   // undef / X -> 0
939   // undef % X -> 0
940   if (match(Op0, m_Undef()))
941     return Constant::getNullValue(Ty);
942 
943   // 0 / X -> 0
944   // 0 % X -> 0
945   if (match(Op0, m_Zero()))
946     return Constant::getNullValue(Op0->getType());
947 
948   // X / X -> 1
949   // X % X -> 0
950   if (Op0 == Op1)
951     return IsDiv ? ConstantInt::get(Ty, 1) : Constant::getNullValue(Ty);
952 
953   // X / 1 -> X
954   // X % 1 -> 0
955   // If this is a boolean op (single-bit element type), we can't have
956   // division-by-zero or remainder-by-zero, so assume the divisor is 1.
957   // Similarly, if we're zero-extending a boolean divisor, then assume it's a 1.
958   Value *X;
959   if (match(Op1, m_One()) || Ty->isIntOrIntVectorTy(1) ||
960       (match(Op1, m_ZExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)))
961     return IsDiv ? Op0 : Constant::getNullValue(Ty);
962 
963   return nullptr;
964 }
965 
966 /// Given a predicate and two operands, return true if the comparison is true.
967 /// This is a helper for div/rem simplification where we return some other value
968 /// when we can prove a relationship between the operands.
969 static bool isICmpTrue(ICmpInst::Predicate Pred, Value *LHS, Value *RHS,
970                        const SimplifyQuery &Q, unsigned MaxRecurse) {
971   Value *V = SimplifyICmpInst(Pred, LHS, RHS, Q, MaxRecurse);
972   Constant *C = dyn_cast_or_null<Constant>(V);
973   return (C && C->isAllOnesValue());
974 }
975 
976 /// Return true if we can simplify X / Y to 0. Remainder can adapt that answer
977 /// to simplify X % Y to X.
978 static bool isDivZero(Value *X, Value *Y, const SimplifyQuery &Q,
979                       unsigned MaxRecurse, bool IsSigned) {
980   // Recursion is always used, so bail out at once if we already hit the limit.
981   if (!MaxRecurse--)
982     return false;
983 
984   if (IsSigned) {
985     // |X| / |Y| --> 0
986     //
987     // We require that 1 operand is a simple constant. That could be extended to
988     // 2 variables if we computed the sign bit for each.
989     //
990     // Make sure that a constant is not the minimum signed value because taking
991     // the abs() of that is undefined.
992     Type *Ty = X->getType();
993     const APInt *C;
994     if (match(X, m_APInt(C)) && !C->isMinSignedValue()) {
995       // Is the variable divisor magnitude always greater than the constant
996       // dividend magnitude?
997       // |Y| > |C| --> Y < -abs(C) or Y > abs(C)
998       Constant *PosDividendC = ConstantInt::get(Ty, C->abs());
999       Constant *NegDividendC = ConstantInt::get(Ty, -C->abs());
1000       if (isICmpTrue(CmpInst::ICMP_SLT, Y, NegDividendC, Q, MaxRecurse) ||
1001           isICmpTrue(CmpInst::ICMP_SGT, Y, PosDividendC, Q, MaxRecurse))
1002         return true;
1003     }
1004     if (match(Y, m_APInt(C))) {
1005       // Special-case: we can't take the abs() of a minimum signed value. If
1006       // that's the divisor, then all we have to do is prove that the dividend
1007       // is also not the minimum signed value.
1008       if (C->isMinSignedValue())
1009         return isICmpTrue(CmpInst::ICMP_NE, X, Y, Q, MaxRecurse);
1010 
1011       // Is the variable dividend magnitude always less than the constant
1012       // divisor magnitude?
1013       // |X| < |C| --> X > -abs(C) and X < abs(C)
1014       Constant *PosDivisorC = ConstantInt::get(Ty, C->abs());
1015       Constant *NegDivisorC = ConstantInt::get(Ty, -C->abs());
1016       if (isICmpTrue(CmpInst::ICMP_SGT, X, NegDivisorC, Q, MaxRecurse) &&
1017           isICmpTrue(CmpInst::ICMP_SLT, X, PosDivisorC, Q, MaxRecurse))
1018         return true;
1019     }
1020     return false;
1021   }
1022 
1023   // IsSigned == false.
1024   // Is the dividend unsigned less than the divisor?
1025   return isICmpTrue(ICmpInst::ICMP_ULT, X, Y, Q, MaxRecurse);
1026 }
1027 
1028 /// These are simplifications common to SDiv and UDiv.
1029 static Value *simplifyDiv(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1,
1030                           const SimplifyQuery &Q, unsigned MaxRecurse) {
1031   if (Constant *C = foldOrCommuteConstant(Opcode, Op0, Op1, Q))
1032     return C;
1033 
1034   if (Value *V = simplifyDivRem(Op0, Op1, true))
1035     return V;
1036 
1037   bool IsSigned = Opcode == Instruction::SDiv;
1038 
1039   // (X * Y) / Y -> X if the multiplication does not overflow.
1040   Value *X;
1041   if (match(Op0, m_c_Mul(m_Value(X), m_Specific(Op1)))) {
1042     auto *Mul = cast<OverflowingBinaryOperator>(Op0);
1043     // If the Mul does not overflow, then we are good to go.
1044     if ((IsSigned && Q.IIQ.hasNoSignedWrap(Mul)) ||
1045         (!IsSigned && Q.IIQ.hasNoUnsignedWrap(Mul)))
1046       return X;
1047     // If X has the form X = A / Y, then X * Y cannot overflow.
1048     if ((IsSigned && match(X, m_SDiv(m_Value(), m_Specific(Op1)))) ||
1049         (!IsSigned && match(X, m_UDiv(m_Value(), m_Specific(Op1)))))
1050       return X;
1051   }
1052 
1053   // (X rem Y) / Y -> 0
1054   if ((IsSigned && match(Op0, m_SRem(m_Value(), m_Specific(Op1)))) ||
1055       (!IsSigned && match(Op0, m_URem(m_Value(), m_Specific(Op1)))))
1056     return Constant::getNullValue(Op0->getType());
1057 
1058   // (X /u C1) /u C2 -> 0 if C1 * C2 overflow
1059   ConstantInt *C1, *C2;
1060   if (!IsSigned && match(Op0, m_UDiv(m_Value(X), m_ConstantInt(C1))) &&
1061       match(Op1, m_ConstantInt(C2))) {
1062     bool Overflow;
1063     (void)C1->getValue().umul_ov(C2->getValue(), Overflow);
1064     if (Overflow)
1065       return Constant::getNullValue(Op0->getType());
1066   }
1067 
1068   // If the operation is with the result of a select instruction, check whether
1069   // operating on either branch of the select always yields the same value.
1070   if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
1071     if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse))
1072       return V;
1073 
1074   // If the operation is with the result of a phi instruction, check whether
1075   // operating on all incoming values of the phi always yields the same value.
1076   if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
1077     if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse))
1078       return V;
1079 
1080   if (isDivZero(Op0, Op1, Q, MaxRecurse, IsSigned))
1081     return Constant::getNullValue(Op0->getType());
1082 
1083   return nullptr;
1084 }
1085 
1086 /// These are simplifications common to SRem and URem.
1087 static Value *simplifyRem(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1,
1088                           const SimplifyQuery &Q, unsigned MaxRecurse) {
1089   if (Constant *C = foldOrCommuteConstant(Opcode, Op0, Op1, Q))
1090     return C;
1091 
1092   if (Value *V = simplifyDivRem(Op0, Op1, false))
1093     return V;
1094 
1095   // (X % Y) % Y -> X % Y
1096   if ((Opcode == Instruction::SRem &&
1097        match(Op0, m_SRem(m_Value(), m_Specific(Op1)))) ||
1098       (Opcode == Instruction::URem &&
1099        match(Op0, m_URem(m_Value(), m_Specific(Op1)))))
1100     return Op0;
1101 
1102   // (X << Y) % X -> 0
1103   if (Q.IIQ.UseInstrInfo &&
1104       ((Opcode == Instruction::SRem &&
1105         match(Op0, m_NSWShl(m_Specific(Op1), m_Value()))) ||
1106        (Opcode == Instruction::URem &&
1107         match(Op0, m_NUWShl(m_Specific(Op1), m_Value())))))
1108     return Constant::getNullValue(Op0->getType());
1109 
1110   // If the operation is with the result of a select instruction, check whether
1111   // operating on either branch of the select always yields the same value.
1112   if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
1113     if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse))
1114       return V;
1115 
1116   // If the operation is with the result of a phi instruction, check whether
1117   // operating on all incoming values of the phi always yields the same value.
1118   if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
1119     if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse))
1120       return V;
1121 
1122   // If X / Y == 0, then X % Y == X.
1123   if (isDivZero(Op0, Op1, Q, MaxRecurse, Opcode == Instruction::SRem))
1124     return Op0;
1125 
1126   return nullptr;
1127 }
1128 
1129 /// Given operands for an SDiv, see if we can fold the result.
1130 /// If not, this returns null.
1131 static Value *SimplifySDivInst(Value *Op0, Value *Op1, const SimplifyQuery &Q,
1132                                unsigned MaxRecurse) {
1133   // If two operands are negated and no signed overflow, return -1.
1134   if (isKnownNegation(Op0, Op1, /*NeedNSW=*/true))
1135     return Constant::getAllOnesValue(Op0->getType());
1136 
1137   return simplifyDiv(Instruction::SDiv, Op0, Op1, Q, MaxRecurse);
1138 }
1139 
1140 Value *llvm::SimplifySDivInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) {
1141   return ::SimplifySDivInst(Op0, Op1, Q, RecursionLimit);
1142 }
1143 
1144 /// Given operands for a UDiv, see if we can fold the result.
1145 /// If not, this returns null.
1146 static Value *SimplifyUDivInst(Value *Op0, Value *Op1, const SimplifyQuery &Q,
1147                                unsigned MaxRecurse) {
1148   return simplifyDiv(Instruction::UDiv, Op0, Op1, Q, MaxRecurse);
1149 }
1150 
1151 Value *llvm::SimplifyUDivInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) {
1152   return ::SimplifyUDivInst(Op0, Op1, Q, RecursionLimit);
1153 }
1154 
1155 /// Given operands for an SRem, see if we can fold the result.
1156 /// If not, this returns null.
1157 static Value *SimplifySRemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q,
1158                                unsigned MaxRecurse) {
1159   // If the divisor is 0, the result is undefined, so assume the divisor is -1.
1160   // srem Op0, (sext i1 X) --> srem Op0, -1 --> 0
1161   Value *X;
1162   if (match(Op1, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1))
1163     return ConstantInt::getNullValue(Op0->getType());
1164 
1165   // If the two operands are negated, return 0.
1166   if (isKnownNegation(Op0, Op1))
1167     return ConstantInt::getNullValue(Op0->getType());
1168 
1169   return simplifyRem(Instruction::SRem, Op0, Op1, Q, MaxRecurse);
1170 }
1171 
1172 Value *llvm::SimplifySRemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) {
1173   return ::SimplifySRemInst(Op0, Op1, Q, RecursionLimit);
1174 }
1175 
1176 /// Given operands for a URem, see if we can fold the result.
1177 /// If not, this returns null.
1178 static Value *SimplifyURemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q,
1179                                unsigned MaxRecurse) {
1180   return simplifyRem(Instruction::URem, Op0, Op1, Q, MaxRecurse);
1181 }
1182 
1183 Value *llvm::SimplifyURemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) {
1184   return ::SimplifyURemInst(Op0, Op1, Q, RecursionLimit);
1185 }
1186 
1187 /// Returns true if a shift by \c Amount always yields undef.
1188 static bool isUndefShift(Value *Amount) {
1189   Constant *C = dyn_cast<Constant>(Amount);
1190   if (!C)
1191     return false;
1192 
1193   // X shift by undef -> undef because it may shift by the bitwidth.
1194   if (isa<UndefValue>(C))
1195     return true;
1196 
1197   // Shifting by the bitwidth or more is undefined.
1198   if (ConstantInt *CI = dyn_cast<ConstantInt>(C))
1199     if (CI->getValue().getLimitedValue() >=
1200         CI->getType()->getScalarSizeInBits())
1201       return true;
1202 
1203   // If all lanes of a vector shift are undefined the whole shift is.
1204   if (isa<ConstantVector>(C) || isa<ConstantDataVector>(C)) {
1205     for (unsigned I = 0, E = C->getType()->getVectorNumElements(); I != E; ++I)
1206       if (!isUndefShift(C->getAggregateElement(I)))
1207         return false;
1208     return true;
1209   }
1210 
1211   return false;
1212 }
1213 
1214 /// Given operands for an Shl, LShr or AShr, see if we can fold the result.
1215 /// If not, this returns null.
1216 static Value *SimplifyShift(Instruction::BinaryOps Opcode, Value *Op0,
1217                             Value *Op1, const SimplifyQuery &Q, unsigned MaxRecurse) {
1218   if (Constant *C = foldOrCommuteConstant(Opcode, Op0, Op1, Q))
1219     return C;
1220 
1221   // 0 shift by X -> 0
1222   if (match(Op0, m_Zero()))
1223     return Constant::getNullValue(Op0->getType());
1224 
1225   // X shift by 0 -> X
1226   // Shift-by-sign-extended bool must be shift-by-0 because shift-by-all-ones
1227   // would be poison.
1228   Value *X;
1229   if (match(Op1, m_Zero()) ||
1230       (match(Op1, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)))
1231     return Op0;
1232 
1233   // Fold undefined shifts.
1234   if (isUndefShift(Op1))
1235     return UndefValue::get(Op0->getType());
1236 
1237   // If the operation is with the result of a select instruction, check whether
1238   // operating on either branch of the select always yields the same value.
1239   if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
1240     if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse))
1241       return V;
1242 
1243   // If the operation is with the result of a phi instruction, check whether
1244   // operating on all incoming values of the phi always yields the same value.
1245   if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
1246     if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse))
1247       return V;
1248 
1249   // If any bits in the shift amount make that value greater than or equal to
1250   // the number of bits in the type, the shift is undefined.
1251   KnownBits Known = computeKnownBits(Op1, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
1252   if (Known.One.getLimitedValue() >= Known.getBitWidth())
1253     return UndefValue::get(Op0->getType());
1254 
1255   // If all valid bits in the shift amount are known zero, the first operand is
1256   // unchanged.
1257   unsigned NumValidShiftBits = Log2_32_Ceil(Known.getBitWidth());
1258   if (Known.countMinTrailingZeros() >= NumValidShiftBits)
1259     return Op0;
1260 
1261   return nullptr;
1262 }
1263 
1264 /// Given operands for an Shl, LShr or AShr, see if we can
1265 /// fold the result.  If not, this returns null.
1266 static Value *SimplifyRightShift(Instruction::BinaryOps Opcode, Value *Op0,
1267                                  Value *Op1, bool isExact, const SimplifyQuery &Q,
1268                                  unsigned MaxRecurse) {
1269   if (Value *V = SimplifyShift(Opcode, Op0, Op1, Q, MaxRecurse))
1270     return V;
1271 
1272   // X >> X -> 0
1273   if (Op0 == Op1)
1274     return Constant::getNullValue(Op0->getType());
1275 
1276   // undef >> X -> 0
1277   // undef >> X -> undef (if it's exact)
1278   if (match(Op0, m_Undef()))
1279     return isExact ? Op0 : Constant::getNullValue(Op0->getType());
1280 
1281   // The low bit cannot be shifted out of an exact shift if it is set.
1282   if (isExact) {
1283     KnownBits Op0Known = computeKnownBits(Op0, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT);
1284     if (Op0Known.One[0])
1285       return Op0;
1286   }
1287 
1288   return nullptr;
1289 }
1290 
1291 /// Given operands for an Shl, see if we can fold the result.
1292 /// If not, this returns null.
1293 static Value *SimplifyShlInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
1294                               const SimplifyQuery &Q, unsigned MaxRecurse) {
1295   if (Value *V = SimplifyShift(Instruction::Shl, Op0, Op1, Q, MaxRecurse))
1296     return V;
1297 
1298   // undef << X -> 0
1299   // undef << X -> undef if (if it's NSW/NUW)
1300   if (match(Op0, m_Undef()))
1301     return isNSW || isNUW ? Op0 : Constant::getNullValue(Op0->getType());
1302 
1303   // (X >> A) << A -> X
1304   Value *X;
1305   if (Q.IIQ.UseInstrInfo &&
1306       match(Op0, m_Exact(m_Shr(m_Value(X), m_Specific(Op1)))))
1307     return X;
1308 
1309   // shl nuw i8 C, %x  ->  C  iff C has sign bit set.
1310   if (isNUW && match(Op0, m_Negative()))
1311     return Op0;
1312   // NOTE: could use computeKnownBits() / LazyValueInfo,
1313   // but the cost-benefit analysis suggests it isn't worth it.
1314 
1315   return nullptr;
1316 }
1317 
1318 Value *llvm::SimplifyShlInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
1319                              const SimplifyQuery &Q) {
1320   return ::SimplifyShlInst(Op0, Op1, isNSW, isNUW, Q, RecursionLimit);
1321 }
1322 
1323 /// Given operands for an LShr, see if we can fold the result.
1324 /// If not, this returns null.
1325 static Value *SimplifyLShrInst(Value *Op0, Value *Op1, bool isExact,
1326                                const SimplifyQuery &Q, unsigned MaxRecurse) {
1327   if (Value *V = SimplifyRightShift(Instruction::LShr, Op0, Op1, isExact, Q,
1328                                     MaxRecurse))
1329       return V;
1330 
1331   // (X << A) >> A -> X
1332   Value *X;
1333   if (match(Op0, m_NUWShl(m_Value(X), m_Specific(Op1))))
1334     return X;
1335 
1336   // ((X << A) | Y) >> A -> X  if effective width of Y is not larger than A.
1337   // We can return X as we do in the above case since OR alters no bits in X.
1338   // SimplifyDemandedBits in InstCombine can do more general optimization for
1339   // bit manipulation. This pattern aims to provide opportunities for other
1340   // optimizers by supporting a simple but common case in InstSimplify.
1341   Value *Y;
1342   const APInt *ShRAmt, *ShLAmt;
1343   if (match(Op1, m_APInt(ShRAmt)) &&
1344       match(Op0, m_c_Or(m_NUWShl(m_Value(X), m_APInt(ShLAmt)), m_Value(Y))) &&
1345       *ShRAmt == *ShLAmt) {
1346     const KnownBits YKnown = computeKnownBits(Y, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
1347     const unsigned Width = Op0->getType()->getScalarSizeInBits();
1348     const unsigned EffWidthY = Width - YKnown.countMinLeadingZeros();
1349     if (ShRAmt->uge(EffWidthY))
1350       return X;
1351   }
1352 
1353   return nullptr;
1354 }
1355 
1356 Value *llvm::SimplifyLShrInst(Value *Op0, Value *Op1, bool isExact,
1357                               const SimplifyQuery &Q) {
1358   return ::SimplifyLShrInst(Op0, Op1, isExact, Q, RecursionLimit);
1359 }
1360 
1361 /// Given operands for an AShr, see if we can fold the result.
1362 /// If not, this returns null.
1363 static Value *SimplifyAShrInst(Value *Op0, Value *Op1, bool isExact,
1364                                const SimplifyQuery &Q, unsigned MaxRecurse) {
1365   if (Value *V = SimplifyRightShift(Instruction::AShr, Op0, Op1, isExact, Q,
1366                                     MaxRecurse))
1367     return V;
1368 
1369   // all ones >>a X -> -1
1370   // Do not return Op0 because it may contain undef elements if it's a vector.
1371   if (match(Op0, m_AllOnes()))
1372     return Constant::getAllOnesValue(Op0->getType());
1373 
1374   // (X << A) >> A -> X
1375   Value *X;
1376   if (Q.IIQ.UseInstrInfo && match(Op0, m_NSWShl(m_Value(X), m_Specific(Op1))))
1377     return X;
1378 
1379   // Arithmetic shifting an all-sign-bit value is a no-op.
1380   unsigned NumSignBits = ComputeNumSignBits(Op0, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
1381   if (NumSignBits == Op0->getType()->getScalarSizeInBits())
1382     return Op0;
1383 
1384   return nullptr;
1385 }
1386 
1387 Value *llvm::SimplifyAShrInst(Value *Op0, Value *Op1, bool isExact,
1388                               const SimplifyQuery &Q) {
1389   return ::SimplifyAShrInst(Op0, Op1, isExact, Q, RecursionLimit);
1390 }
1391 
1392 /// Commuted variants are assumed to be handled by calling this function again
1393 /// with the parameters swapped.
1394 static Value *simplifyUnsignedRangeCheck(ICmpInst *ZeroICmp,
1395                                          ICmpInst *UnsignedICmp, bool IsAnd) {
1396   Value *X, *Y;
1397 
1398   ICmpInst::Predicate EqPred;
1399   if (!match(ZeroICmp, m_ICmp(EqPred, m_Value(Y), m_Zero())) ||
1400       !ICmpInst::isEquality(EqPred))
1401     return nullptr;
1402 
1403   ICmpInst::Predicate UnsignedPred;
1404   if (match(UnsignedICmp, m_ICmp(UnsignedPred, m_Value(X), m_Specific(Y))) &&
1405       ICmpInst::isUnsigned(UnsignedPred))
1406     ;
1407   else if (match(UnsignedICmp,
1408                  m_ICmp(UnsignedPred, m_Specific(Y), m_Value(X))) &&
1409            ICmpInst::isUnsigned(UnsignedPred))
1410     UnsignedPred = ICmpInst::getSwappedPredicate(UnsignedPred);
1411   else
1412     return nullptr;
1413 
1414   // X < Y && Y != 0  -->  X < Y
1415   // X < Y || Y != 0  -->  Y != 0
1416   if (UnsignedPred == ICmpInst::ICMP_ULT && EqPred == ICmpInst::ICMP_NE)
1417     return IsAnd ? UnsignedICmp : ZeroICmp;
1418 
1419   // X >= Y || Y != 0  -->  true
1420   // X >= Y || Y == 0  -->  X >= Y
1421   if (UnsignedPred == ICmpInst::ICMP_UGE && !IsAnd) {
1422     if (EqPred == ICmpInst::ICMP_NE)
1423       return getTrue(UnsignedICmp->getType());
1424     return UnsignedICmp;
1425   }
1426 
1427   // X < Y && Y == 0  -->  false
1428   if (UnsignedPred == ICmpInst::ICMP_ULT && EqPred == ICmpInst::ICMP_EQ &&
1429       IsAnd)
1430     return getFalse(UnsignedICmp->getType());
1431 
1432   return nullptr;
1433 }
1434 
1435 /// Commuted variants are assumed to be handled by calling this function again
1436 /// with the parameters swapped.
1437 static Value *simplifyAndOfICmpsWithSameOperands(ICmpInst *Op0, ICmpInst *Op1) {
1438   ICmpInst::Predicate Pred0, Pred1;
1439   Value *A ,*B;
1440   if (!match(Op0, m_ICmp(Pred0, m_Value(A), m_Value(B))) ||
1441       !match(Op1, m_ICmp(Pred1, m_Specific(A), m_Specific(B))))
1442     return nullptr;
1443 
1444   // We have (icmp Pred0, A, B) & (icmp Pred1, A, B).
1445   // If Op1 is always implied true by Op0, then Op0 is a subset of Op1, and we
1446   // can eliminate Op1 from this 'and'.
1447   if (ICmpInst::isImpliedTrueByMatchingCmp(Pred0, Pred1))
1448     return Op0;
1449 
1450   // Check for any combination of predicates that are guaranteed to be disjoint.
1451   if ((Pred0 == ICmpInst::getInversePredicate(Pred1)) ||
1452       (Pred0 == ICmpInst::ICMP_EQ && ICmpInst::isFalseWhenEqual(Pred1)) ||
1453       (Pred0 == ICmpInst::ICMP_SLT && Pred1 == ICmpInst::ICMP_SGT) ||
1454       (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_UGT))
1455     return getFalse(Op0->getType());
1456 
1457   return nullptr;
1458 }
1459 
1460 /// Commuted variants are assumed to be handled by calling this function again
1461 /// with the parameters swapped.
1462 static Value *simplifyOrOfICmpsWithSameOperands(ICmpInst *Op0, ICmpInst *Op1) {
1463   ICmpInst::Predicate Pred0, Pred1;
1464   Value *A ,*B;
1465   if (!match(Op0, m_ICmp(Pred0, m_Value(A), m_Value(B))) ||
1466       !match(Op1, m_ICmp(Pred1, m_Specific(A), m_Specific(B))))
1467     return nullptr;
1468 
1469   // We have (icmp Pred0, A, B) | (icmp Pred1, A, B).
1470   // If Op1 is always implied true by Op0, then Op0 is a subset of Op1, and we
1471   // can eliminate Op0 from this 'or'.
1472   if (ICmpInst::isImpliedTrueByMatchingCmp(Pred0, Pred1))
1473     return Op1;
1474 
1475   // Check for any combination of predicates that cover the entire range of
1476   // possibilities.
1477   if ((Pred0 == ICmpInst::getInversePredicate(Pred1)) ||
1478       (Pred0 == ICmpInst::ICMP_NE && ICmpInst::isTrueWhenEqual(Pred1)) ||
1479       (Pred0 == ICmpInst::ICMP_SLE && Pred1 == ICmpInst::ICMP_SGE) ||
1480       (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_UGE))
1481     return getTrue(Op0->getType());
1482 
1483   return nullptr;
1484 }
1485 
1486 /// Test if a pair of compares with a shared operand and 2 constants has an
1487 /// empty set intersection, full set union, or if one compare is a superset of
1488 /// the other.
1489 static Value *simplifyAndOrOfICmpsWithConstants(ICmpInst *Cmp0, ICmpInst *Cmp1,
1490                                                 bool IsAnd) {
1491   // Look for this pattern: {and/or} (icmp X, C0), (icmp X, C1)).
1492   if (Cmp0->getOperand(0) != Cmp1->getOperand(0))
1493     return nullptr;
1494 
1495   const APInt *C0, *C1;
1496   if (!match(Cmp0->getOperand(1), m_APInt(C0)) ||
1497       !match(Cmp1->getOperand(1), m_APInt(C1)))
1498     return nullptr;
1499 
1500   auto Range0 = ConstantRange::makeExactICmpRegion(Cmp0->getPredicate(), *C0);
1501   auto Range1 = ConstantRange::makeExactICmpRegion(Cmp1->getPredicate(), *C1);
1502 
1503   // For and-of-compares, check if the intersection is empty:
1504   // (icmp X, C0) && (icmp X, C1) --> empty set --> false
1505   if (IsAnd && Range0.intersectWith(Range1).isEmptySet())
1506     return getFalse(Cmp0->getType());
1507 
1508   // For or-of-compares, check if the union is full:
1509   // (icmp X, C0) || (icmp X, C1) --> full set --> true
1510   if (!IsAnd && Range0.unionWith(Range1).isFullSet())
1511     return getTrue(Cmp0->getType());
1512 
1513   // Is one range a superset of the other?
1514   // If this is and-of-compares, take the smaller set:
1515   // (icmp sgt X, 4) && (icmp sgt X, 42) --> icmp sgt X, 42
1516   // If this is or-of-compares, take the larger set:
1517   // (icmp sgt X, 4) || (icmp sgt X, 42) --> icmp sgt X, 4
1518   if (Range0.contains(Range1))
1519     return IsAnd ? Cmp1 : Cmp0;
1520   if (Range1.contains(Range0))
1521     return IsAnd ? Cmp0 : Cmp1;
1522 
1523   return nullptr;
1524 }
1525 
1526 static Value *simplifyAndOrOfICmpsWithZero(ICmpInst *Cmp0, ICmpInst *Cmp1,
1527                                            bool IsAnd) {
1528   ICmpInst::Predicate P0 = Cmp0->getPredicate(), P1 = Cmp1->getPredicate();
1529   if (!match(Cmp0->getOperand(1), m_Zero()) ||
1530       !match(Cmp1->getOperand(1), m_Zero()) || P0 != P1)
1531     return nullptr;
1532 
1533   if ((IsAnd && P0 != ICmpInst::ICMP_NE) || (!IsAnd && P1 != ICmpInst::ICMP_EQ))
1534     return nullptr;
1535 
1536   // We have either "(X == 0 || Y == 0)" or "(X != 0 && Y != 0)".
1537   Value *X = Cmp0->getOperand(0);
1538   Value *Y = Cmp1->getOperand(0);
1539 
1540   // If one of the compares is a masked version of a (not) null check, then
1541   // that compare implies the other, so we eliminate the other. Optionally, look
1542   // through a pointer-to-int cast to match a null check of a pointer type.
1543 
1544   // (X == 0) || (([ptrtoint] X & ?) == 0) --> ([ptrtoint] X & ?) == 0
1545   // (X == 0) || ((? & [ptrtoint] X) == 0) --> (? & [ptrtoint] X) == 0
1546   // (X != 0) && (([ptrtoint] X & ?) != 0) --> ([ptrtoint] X & ?) != 0
1547   // (X != 0) && ((? & [ptrtoint] X) != 0) --> (? & [ptrtoint] X) != 0
1548   if (match(Y, m_c_And(m_Specific(X), m_Value())) ||
1549       match(Y, m_c_And(m_PtrToInt(m_Specific(X)), m_Value())))
1550     return Cmp1;
1551 
1552   // (([ptrtoint] Y & ?) == 0) || (Y == 0) --> ([ptrtoint] Y & ?) == 0
1553   // ((? & [ptrtoint] Y) == 0) || (Y == 0) --> (? & [ptrtoint] Y) == 0
1554   // (([ptrtoint] Y & ?) != 0) && (Y != 0) --> ([ptrtoint] Y & ?) != 0
1555   // ((? & [ptrtoint] Y) != 0) && (Y != 0) --> (? & [ptrtoint] Y) != 0
1556   if (match(X, m_c_And(m_Specific(Y), m_Value())) ||
1557       match(X, m_c_And(m_PtrToInt(m_Specific(Y)), m_Value())))
1558     return Cmp0;
1559 
1560   return nullptr;
1561 }
1562 
1563 static Value *simplifyAndOfICmpsWithAdd(ICmpInst *Op0, ICmpInst *Op1,
1564                                         const InstrInfoQuery &IIQ) {
1565   // (icmp (add V, C0), C1) & (icmp V, C0)
1566   ICmpInst::Predicate Pred0, Pred1;
1567   const APInt *C0, *C1;
1568   Value *V;
1569   if (!match(Op0, m_ICmp(Pred0, m_Add(m_Value(V), m_APInt(C0)), m_APInt(C1))))
1570     return nullptr;
1571 
1572   if (!match(Op1, m_ICmp(Pred1, m_Specific(V), m_Value())))
1573     return nullptr;
1574 
1575   auto *AddInst = cast<OverflowingBinaryOperator>(Op0->getOperand(0));
1576   if (AddInst->getOperand(1) != Op1->getOperand(1))
1577     return nullptr;
1578 
1579   Type *ITy = Op0->getType();
1580   bool isNSW = IIQ.hasNoSignedWrap(AddInst);
1581   bool isNUW = IIQ.hasNoUnsignedWrap(AddInst);
1582 
1583   const APInt Delta = *C1 - *C0;
1584   if (C0->isStrictlyPositive()) {
1585     if (Delta == 2) {
1586       if (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_SGT)
1587         return getFalse(ITy);
1588       if (Pred0 == ICmpInst::ICMP_SLT && Pred1 == ICmpInst::ICMP_SGT && isNSW)
1589         return getFalse(ITy);
1590     }
1591     if (Delta == 1) {
1592       if (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_SGT)
1593         return getFalse(ITy);
1594       if (Pred0 == ICmpInst::ICMP_SLE && Pred1 == ICmpInst::ICMP_SGT && isNSW)
1595         return getFalse(ITy);
1596     }
1597   }
1598   if (C0->getBoolValue() && isNUW) {
1599     if (Delta == 2)
1600       if (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_UGT)
1601         return getFalse(ITy);
1602     if (Delta == 1)
1603       if (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_UGT)
1604         return getFalse(ITy);
1605   }
1606 
1607   return nullptr;
1608 }
1609 
1610 static Value *simplifyAndOfICmps(ICmpInst *Op0, ICmpInst *Op1,
1611                                  const InstrInfoQuery &IIQ) {
1612   if (Value *X = simplifyUnsignedRangeCheck(Op0, Op1, /*IsAnd=*/true))
1613     return X;
1614   if (Value *X = simplifyUnsignedRangeCheck(Op1, Op0, /*IsAnd=*/true))
1615     return X;
1616 
1617   if (Value *X = simplifyAndOfICmpsWithSameOperands(Op0, Op1))
1618     return X;
1619   if (Value *X = simplifyAndOfICmpsWithSameOperands(Op1, Op0))
1620     return X;
1621 
1622   if (Value *X = simplifyAndOrOfICmpsWithConstants(Op0, Op1, true))
1623     return X;
1624 
1625   if (Value *X = simplifyAndOrOfICmpsWithZero(Op0, Op1, true))
1626     return X;
1627 
1628   if (Value *X = simplifyAndOfICmpsWithAdd(Op0, Op1, IIQ))
1629     return X;
1630   if (Value *X = simplifyAndOfICmpsWithAdd(Op1, Op0, IIQ))
1631     return X;
1632 
1633   return nullptr;
1634 }
1635 
1636 static Value *simplifyOrOfICmpsWithAdd(ICmpInst *Op0, ICmpInst *Op1,
1637                                        const InstrInfoQuery &IIQ) {
1638   // (icmp (add V, C0), C1) | (icmp V, C0)
1639   ICmpInst::Predicate Pred0, Pred1;
1640   const APInt *C0, *C1;
1641   Value *V;
1642   if (!match(Op0, m_ICmp(Pred0, m_Add(m_Value(V), m_APInt(C0)), m_APInt(C1))))
1643     return nullptr;
1644 
1645   if (!match(Op1, m_ICmp(Pred1, m_Specific(V), m_Value())))
1646     return nullptr;
1647 
1648   auto *AddInst = cast<BinaryOperator>(Op0->getOperand(0));
1649   if (AddInst->getOperand(1) != Op1->getOperand(1))
1650     return nullptr;
1651 
1652   Type *ITy = Op0->getType();
1653   bool isNSW = IIQ.hasNoSignedWrap(AddInst);
1654   bool isNUW = IIQ.hasNoUnsignedWrap(AddInst);
1655 
1656   const APInt Delta = *C1 - *C0;
1657   if (C0->isStrictlyPositive()) {
1658     if (Delta == 2) {
1659       if (Pred0 == ICmpInst::ICMP_UGE && Pred1 == ICmpInst::ICMP_SLE)
1660         return getTrue(ITy);
1661       if (Pred0 == ICmpInst::ICMP_SGE && Pred1 == ICmpInst::ICMP_SLE && isNSW)
1662         return getTrue(ITy);
1663     }
1664     if (Delta == 1) {
1665       if (Pred0 == ICmpInst::ICMP_UGT && Pred1 == ICmpInst::ICMP_SLE)
1666         return getTrue(ITy);
1667       if (Pred0 == ICmpInst::ICMP_SGT && Pred1 == ICmpInst::ICMP_SLE && isNSW)
1668         return getTrue(ITy);
1669     }
1670   }
1671   if (C0->getBoolValue() && isNUW) {
1672     if (Delta == 2)
1673       if (Pred0 == ICmpInst::ICMP_UGE && Pred1 == ICmpInst::ICMP_ULE)
1674         return getTrue(ITy);
1675     if (Delta == 1)
1676       if (Pred0 == ICmpInst::ICMP_UGT && Pred1 == ICmpInst::ICMP_ULE)
1677         return getTrue(ITy);
1678   }
1679 
1680   return nullptr;
1681 }
1682 
1683 static Value *simplifyOrOfICmps(ICmpInst *Op0, ICmpInst *Op1,
1684                                 const InstrInfoQuery &IIQ) {
1685   if (Value *X = simplifyUnsignedRangeCheck(Op0, Op1, /*IsAnd=*/false))
1686     return X;
1687   if (Value *X = simplifyUnsignedRangeCheck(Op1, Op0, /*IsAnd=*/false))
1688     return X;
1689 
1690   if (Value *X = simplifyOrOfICmpsWithSameOperands(Op0, Op1))
1691     return X;
1692   if (Value *X = simplifyOrOfICmpsWithSameOperands(Op1, Op0))
1693     return X;
1694 
1695   if (Value *X = simplifyAndOrOfICmpsWithConstants(Op0, Op1, false))
1696     return X;
1697 
1698   if (Value *X = simplifyAndOrOfICmpsWithZero(Op0, Op1, false))
1699     return X;
1700 
1701   if (Value *X = simplifyOrOfICmpsWithAdd(Op0, Op1, IIQ))
1702     return X;
1703   if (Value *X = simplifyOrOfICmpsWithAdd(Op1, Op0, IIQ))
1704     return X;
1705 
1706   return nullptr;
1707 }
1708 
1709 static Value *simplifyAndOrOfFCmps(const TargetLibraryInfo *TLI,
1710                                    FCmpInst *LHS, FCmpInst *RHS, bool IsAnd) {
1711   Value *LHS0 = LHS->getOperand(0), *LHS1 = LHS->getOperand(1);
1712   Value *RHS0 = RHS->getOperand(0), *RHS1 = RHS->getOperand(1);
1713   if (LHS0->getType() != RHS0->getType())
1714     return nullptr;
1715 
1716   FCmpInst::Predicate PredL = LHS->getPredicate(), PredR = RHS->getPredicate();
1717   if ((PredL == FCmpInst::FCMP_ORD && PredR == FCmpInst::FCMP_ORD && IsAnd) ||
1718       (PredL == FCmpInst::FCMP_UNO && PredR == FCmpInst::FCMP_UNO && !IsAnd)) {
1719     // (fcmp ord NNAN, X) & (fcmp ord X, Y) --> fcmp ord X, Y
1720     // (fcmp ord NNAN, X) & (fcmp ord Y, X) --> fcmp ord Y, X
1721     // (fcmp ord X, NNAN) & (fcmp ord X, Y) --> fcmp ord X, Y
1722     // (fcmp ord X, NNAN) & (fcmp ord Y, X) --> fcmp ord Y, X
1723     // (fcmp uno NNAN, X) | (fcmp uno X, Y) --> fcmp uno X, Y
1724     // (fcmp uno NNAN, X) | (fcmp uno Y, X) --> fcmp uno Y, X
1725     // (fcmp uno X, NNAN) | (fcmp uno X, Y) --> fcmp uno X, Y
1726     // (fcmp uno X, NNAN) | (fcmp uno Y, X) --> fcmp uno Y, X
1727     if ((isKnownNeverNaN(LHS0, TLI) && (LHS1 == RHS0 || LHS1 == RHS1)) ||
1728         (isKnownNeverNaN(LHS1, TLI) && (LHS0 == RHS0 || LHS0 == RHS1)))
1729       return RHS;
1730 
1731     // (fcmp ord X, Y) & (fcmp ord NNAN, X) --> fcmp ord X, Y
1732     // (fcmp ord Y, X) & (fcmp ord NNAN, X) --> fcmp ord Y, X
1733     // (fcmp ord X, Y) & (fcmp ord X, NNAN) --> fcmp ord X, Y
1734     // (fcmp ord Y, X) & (fcmp ord X, NNAN) --> fcmp ord Y, X
1735     // (fcmp uno X, Y) | (fcmp uno NNAN, X) --> fcmp uno X, Y
1736     // (fcmp uno Y, X) | (fcmp uno NNAN, X) --> fcmp uno Y, X
1737     // (fcmp uno X, Y) | (fcmp uno X, NNAN) --> fcmp uno X, Y
1738     // (fcmp uno Y, X) | (fcmp uno X, NNAN) --> fcmp uno Y, X
1739     if ((isKnownNeverNaN(RHS0, TLI) && (RHS1 == LHS0 || RHS1 == LHS1)) ||
1740         (isKnownNeverNaN(RHS1, TLI) && (RHS0 == LHS0 || RHS0 == LHS1)))
1741       return LHS;
1742   }
1743 
1744   return nullptr;
1745 }
1746 
1747 static Value *simplifyAndOrOfCmps(const SimplifyQuery &Q,
1748                                   Value *Op0, Value *Op1, bool IsAnd) {
1749   // Look through casts of the 'and' operands to find compares.
1750   auto *Cast0 = dyn_cast<CastInst>(Op0);
1751   auto *Cast1 = dyn_cast<CastInst>(Op1);
1752   if (Cast0 && Cast1 && Cast0->getOpcode() == Cast1->getOpcode() &&
1753       Cast0->getSrcTy() == Cast1->getSrcTy()) {
1754     Op0 = Cast0->getOperand(0);
1755     Op1 = Cast1->getOperand(0);
1756   }
1757 
1758   Value *V = nullptr;
1759   auto *ICmp0 = dyn_cast<ICmpInst>(Op0);
1760   auto *ICmp1 = dyn_cast<ICmpInst>(Op1);
1761   if (ICmp0 && ICmp1)
1762     V = IsAnd ? simplifyAndOfICmps(ICmp0, ICmp1, Q.IIQ)
1763               : simplifyOrOfICmps(ICmp0, ICmp1, Q.IIQ);
1764 
1765   auto *FCmp0 = dyn_cast<FCmpInst>(Op0);
1766   auto *FCmp1 = dyn_cast<FCmpInst>(Op1);
1767   if (FCmp0 && FCmp1)
1768     V = simplifyAndOrOfFCmps(Q.TLI, FCmp0, FCmp1, IsAnd);
1769 
1770   if (!V)
1771     return nullptr;
1772   if (!Cast0)
1773     return V;
1774 
1775   // If we looked through casts, we can only handle a constant simplification
1776   // because we are not allowed to create a cast instruction here.
1777   if (auto *C = dyn_cast<Constant>(V))
1778     return ConstantExpr::getCast(Cast0->getOpcode(), C, Cast0->getType());
1779 
1780   return nullptr;
1781 }
1782 
1783 /// Given operands for an And, see if we can fold the result.
1784 /// If not, this returns null.
1785 static Value *SimplifyAndInst(Value *Op0, Value *Op1, const SimplifyQuery &Q,
1786                               unsigned MaxRecurse) {
1787   if (Constant *C = foldOrCommuteConstant(Instruction::And, Op0, Op1, Q))
1788     return C;
1789 
1790   // X & undef -> 0
1791   if (match(Op1, m_Undef()))
1792     return Constant::getNullValue(Op0->getType());
1793 
1794   // X & X = X
1795   if (Op0 == Op1)
1796     return Op0;
1797 
1798   // X & 0 = 0
1799   if (match(Op1, m_Zero()))
1800     return Constant::getNullValue(Op0->getType());
1801 
1802   // X & -1 = X
1803   if (match(Op1, m_AllOnes()))
1804     return Op0;
1805 
1806   // A & ~A  =  ~A & A  =  0
1807   if (match(Op0, m_Not(m_Specific(Op1))) ||
1808       match(Op1, m_Not(m_Specific(Op0))))
1809     return Constant::getNullValue(Op0->getType());
1810 
1811   // (A | ?) & A = A
1812   if (match(Op0, m_c_Or(m_Specific(Op1), m_Value())))
1813     return Op1;
1814 
1815   // A & (A | ?) = A
1816   if (match(Op1, m_c_Or(m_Specific(Op0), m_Value())))
1817     return Op0;
1818 
1819   // A mask that only clears known zeros of a shifted value is a no-op.
1820   Value *X;
1821   const APInt *Mask;
1822   const APInt *ShAmt;
1823   if (match(Op1, m_APInt(Mask))) {
1824     // If all bits in the inverted and shifted mask are clear:
1825     // and (shl X, ShAmt), Mask --> shl X, ShAmt
1826     if (match(Op0, m_Shl(m_Value(X), m_APInt(ShAmt))) &&
1827         (~(*Mask)).lshr(*ShAmt).isNullValue())
1828       return Op0;
1829 
1830     // If all bits in the inverted and shifted mask are clear:
1831     // and (lshr X, ShAmt), Mask --> lshr X, ShAmt
1832     if (match(Op0, m_LShr(m_Value(X), m_APInt(ShAmt))) &&
1833         (~(*Mask)).shl(*ShAmt).isNullValue())
1834       return Op0;
1835   }
1836 
1837   // A & (-A) = A if A is a power of two or zero.
1838   if (match(Op0, m_Neg(m_Specific(Op1))) ||
1839       match(Op1, m_Neg(m_Specific(Op0)))) {
1840     if (isKnownToBeAPowerOfTwo(Op0, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI,
1841                                Q.DT))
1842       return Op0;
1843     if (isKnownToBeAPowerOfTwo(Op1, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI,
1844                                Q.DT))
1845       return Op1;
1846   }
1847 
1848   if (Value *V = simplifyAndOrOfCmps(Q, Op0, Op1, true))
1849     return V;
1850 
1851   // Try some generic simplifications for associative operations.
1852   if (Value *V = SimplifyAssociativeBinOp(Instruction::And, Op0, Op1, Q,
1853                                           MaxRecurse))
1854     return V;
1855 
1856   // And distributes over Or.  Try some generic simplifications based on this.
1857   if (Value *V = ExpandBinOp(Instruction::And, Op0, Op1, Instruction::Or,
1858                              Q, MaxRecurse))
1859     return V;
1860 
1861   // And distributes over Xor.  Try some generic simplifications based on this.
1862   if (Value *V = ExpandBinOp(Instruction::And, Op0, Op1, Instruction::Xor,
1863                              Q, MaxRecurse))
1864     return V;
1865 
1866   // If the operation is with the result of a select instruction, check whether
1867   // operating on either branch of the select always yields the same value.
1868   if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
1869     if (Value *V = ThreadBinOpOverSelect(Instruction::And, Op0, Op1, Q,
1870                                          MaxRecurse))
1871       return V;
1872 
1873   // If the operation is with the result of a phi instruction, check whether
1874   // operating on all incoming values of the phi always yields the same value.
1875   if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
1876     if (Value *V = ThreadBinOpOverPHI(Instruction::And, Op0, Op1, Q,
1877                                       MaxRecurse))
1878       return V;
1879 
1880   // Assuming the effective width of Y is not larger than A, i.e. all bits
1881   // from X and Y are disjoint in (X << A) | Y,
1882   // if the mask of this AND op covers all bits of X or Y, while it covers
1883   // no bits from the other, we can bypass this AND op. E.g.,
1884   // ((X << A) | Y) & Mask -> Y,
1885   //     if Mask = ((1 << effective_width_of(Y)) - 1)
1886   // ((X << A) | Y) & Mask -> X << A,
1887   //     if Mask = ((1 << effective_width_of(X)) - 1) << A
1888   // SimplifyDemandedBits in InstCombine can optimize the general case.
1889   // This pattern aims to help other passes for a common case.
1890   Value *Y, *XShifted;
1891   if (match(Op1, m_APInt(Mask)) &&
1892       match(Op0, m_c_Or(m_CombineAnd(m_NUWShl(m_Value(X), m_APInt(ShAmt)),
1893                                      m_Value(XShifted)),
1894                         m_Value(Y)))) {
1895     const unsigned Width = Op0->getType()->getScalarSizeInBits();
1896     const unsigned ShftCnt = ShAmt->getLimitedValue(Width);
1897     const KnownBits YKnown = computeKnownBits(Y, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
1898     const unsigned EffWidthY = Width - YKnown.countMinLeadingZeros();
1899     if (EffWidthY <= ShftCnt) {
1900       const KnownBits XKnown = computeKnownBits(X, Q.DL, 0, Q.AC, Q.CxtI,
1901                                                 Q.DT);
1902       const unsigned EffWidthX = Width - XKnown.countMinLeadingZeros();
1903       const APInt EffBitsY = APInt::getLowBitsSet(Width, EffWidthY);
1904       const APInt EffBitsX = APInt::getLowBitsSet(Width, EffWidthX) << ShftCnt;
1905       // If the mask is extracting all bits from X or Y as is, we can skip
1906       // this AND op.
1907       if (EffBitsY.isSubsetOf(*Mask) && !EffBitsX.intersects(*Mask))
1908         return Y;
1909       if (EffBitsX.isSubsetOf(*Mask) && !EffBitsY.intersects(*Mask))
1910         return XShifted;
1911     }
1912   }
1913 
1914   return nullptr;
1915 }
1916 
1917 Value *llvm::SimplifyAndInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) {
1918   return ::SimplifyAndInst(Op0, Op1, Q, RecursionLimit);
1919 }
1920 
1921 /// Given operands for an Or, see if we can fold the result.
1922 /// If not, this returns null.
1923 static Value *SimplifyOrInst(Value *Op0, Value *Op1, const SimplifyQuery &Q,
1924                              unsigned MaxRecurse) {
1925   if (Constant *C = foldOrCommuteConstant(Instruction::Or, Op0, Op1, Q))
1926     return C;
1927 
1928   // X | undef -> -1
1929   // X | -1 = -1
1930   // Do not return Op1 because it may contain undef elements if it's a vector.
1931   if (match(Op1, m_Undef()) || match(Op1, m_AllOnes()))
1932     return Constant::getAllOnesValue(Op0->getType());
1933 
1934   // X | X = X
1935   // X | 0 = X
1936   if (Op0 == Op1 || match(Op1, m_Zero()))
1937     return Op0;
1938 
1939   // A | ~A  =  ~A | A  =  -1
1940   if (match(Op0, m_Not(m_Specific(Op1))) ||
1941       match(Op1, m_Not(m_Specific(Op0))))
1942     return Constant::getAllOnesValue(Op0->getType());
1943 
1944   // (A & ?) | A = A
1945   if (match(Op0, m_c_And(m_Specific(Op1), m_Value())))
1946     return Op1;
1947 
1948   // A | (A & ?) = A
1949   if (match(Op1, m_c_And(m_Specific(Op0), m_Value())))
1950     return Op0;
1951 
1952   // ~(A & ?) | A = -1
1953   if (match(Op0, m_Not(m_c_And(m_Specific(Op1), m_Value()))))
1954     return Constant::getAllOnesValue(Op1->getType());
1955 
1956   // A | ~(A & ?) = -1
1957   if (match(Op1, m_Not(m_c_And(m_Specific(Op1), m_Value()))))
1958     return Constant::getAllOnesValue(Op0->getType());
1959 
1960   Value *A, *B;
1961   // (A & ~B) | (A ^ B) -> (A ^ B)
1962   // (~B & A) | (A ^ B) -> (A ^ B)
1963   // (A & ~B) | (B ^ A) -> (B ^ A)
1964   // (~B & A) | (B ^ A) -> (B ^ A)
1965   if (match(Op1, m_Xor(m_Value(A), m_Value(B))) &&
1966       (match(Op0, m_c_And(m_Specific(A), m_Not(m_Specific(B)))) ||
1967        match(Op0, m_c_And(m_Not(m_Specific(A)), m_Specific(B)))))
1968     return Op1;
1969 
1970   // Commute the 'or' operands.
1971   // (A ^ B) | (A & ~B) -> (A ^ B)
1972   // (A ^ B) | (~B & A) -> (A ^ B)
1973   // (B ^ A) | (A & ~B) -> (B ^ A)
1974   // (B ^ A) | (~B & A) -> (B ^ A)
1975   if (match(Op0, m_Xor(m_Value(A), m_Value(B))) &&
1976       (match(Op1, m_c_And(m_Specific(A), m_Not(m_Specific(B)))) ||
1977        match(Op1, m_c_And(m_Not(m_Specific(A)), m_Specific(B)))))
1978     return Op0;
1979 
1980   // (A & B) | (~A ^ B) -> (~A ^ B)
1981   // (B & A) | (~A ^ B) -> (~A ^ B)
1982   // (A & B) | (B ^ ~A) -> (B ^ ~A)
1983   // (B & A) | (B ^ ~A) -> (B ^ ~A)
1984   if (match(Op0, m_And(m_Value(A), m_Value(B))) &&
1985       (match(Op1, m_c_Xor(m_Specific(A), m_Not(m_Specific(B)))) ||
1986        match(Op1, m_c_Xor(m_Not(m_Specific(A)), m_Specific(B)))))
1987     return Op1;
1988 
1989   // (~A ^ B) | (A & B) -> (~A ^ B)
1990   // (~A ^ B) | (B & A) -> (~A ^ B)
1991   // (B ^ ~A) | (A & B) -> (B ^ ~A)
1992   // (B ^ ~A) | (B & A) -> (B ^ ~A)
1993   if (match(Op1, m_And(m_Value(A), m_Value(B))) &&
1994       (match(Op0, m_c_Xor(m_Specific(A), m_Not(m_Specific(B)))) ||
1995        match(Op0, m_c_Xor(m_Not(m_Specific(A)), m_Specific(B)))))
1996     return Op0;
1997 
1998   if (Value *V = simplifyAndOrOfCmps(Q, Op0, Op1, false))
1999     return V;
2000 
2001   // Try some generic simplifications for associative operations.
2002   if (Value *V = SimplifyAssociativeBinOp(Instruction::Or, Op0, Op1, Q,
2003                                           MaxRecurse))
2004     return V;
2005 
2006   // Or distributes over And.  Try some generic simplifications based on this.
2007   if (Value *V = ExpandBinOp(Instruction::Or, Op0, Op1, Instruction::And, Q,
2008                              MaxRecurse))
2009     return V;
2010 
2011   // If the operation is with the result of a select instruction, check whether
2012   // operating on either branch of the select always yields the same value.
2013   if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
2014     if (Value *V = ThreadBinOpOverSelect(Instruction::Or, Op0, Op1, Q,
2015                                          MaxRecurse))
2016       return V;
2017 
2018   // (A & C1)|(B & C2)
2019   const APInt *C1, *C2;
2020   if (match(Op0, m_And(m_Value(A), m_APInt(C1))) &&
2021       match(Op1, m_And(m_Value(B), m_APInt(C2)))) {
2022     if (*C1 == ~*C2) {
2023       // (A & C1)|(B & C2)
2024       // If we have: ((V + N) & C1) | (V & C2)
2025       // .. and C2 = ~C1 and C2 is 0+1+ and (N & C2) == 0
2026       // replace with V+N.
2027       Value *N;
2028       if (C2->isMask() && // C2 == 0+1+
2029           match(A, m_c_Add(m_Specific(B), m_Value(N)))) {
2030         // Add commutes, try both ways.
2031         if (MaskedValueIsZero(N, *C2, Q.DL, 0, Q.AC, Q.CxtI, Q.DT))
2032           return A;
2033       }
2034       // Or commutes, try both ways.
2035       if (C1->isMask() &&
2036           match(B, m_c_Add(m_Specific(A), m_Value(N)))) {
2037         // Add commutes, try both ways.
2038         if (MaskedValueIsZero(N, *C1, Q.DL, 0, Q.AC, Q.CxtI, Q.DT))
2039           return B;
2040       }
2041     }
2042   }
2043 
2044   // If the operation is with the result of a phi instruction, check whether
2045   // operating on all incoming values of the phi always yields the same value.
2046   if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
2047     if (Value *V = ThreadBinOpOverPHI(Instruction::Or, Op0, Op1, Q, MaxRecurse))
2048       return V;
2049 
2050   return nullptr;
2051 }
2052 
2053 Value *llvm::SimplifyOrInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) {
2054   return ::SimplifyOrInst(Op0, Op1, Q, RecursionLimit);
2055 }
2056 
2057 /// Given operands for a Xor, see if we can fold the result.
2058 /// If not, this returns null.
2059 static Value *SimplifyXorInst(Value *Op0, Value *Op1, const SimplifyQuery &Q,
2060                               unsigned MaxRecurse) {
2061   if (Constant *C = foldOrCommuteConstant(Instruction::Xor, Op0, Op1, Q))
2062     return C;
2063 
2064   // A ^ undef -> undef
2065   if (match(Op1, m_Undef()))
2066     return Op1;
2067 
2068   // A ^ 0 = A
2069   if (match(Op1, m_Zero()))
2070     return Op0;
2071 
2072   // A ^ A = 0
2073   if (Op0 == Op1)
2074     return Constant::getNullValue(Op0->getType());
2075 
2076   // A ^ ~A  =  ~A ^ A  =  -1
2077   if (match(Op0, m_Not(m_Specific(Op1))) ||
2078       match(Op1, m_Not(m_Specific(Op0))))
2079     return Constant::getAllOnesValue(Op0->getType());
2080 
2081   // Try some generic simplifications for associative operations.
2082   if (Value *V = SimplifyAssociativeBinOp(Instruction::Xor, Op0, Op1, Q,
2083                                           MaxRecurse))
2084     return V;
2085 
2086   // Threading Xor over selects and phi nodes is pointless, so don't bother.
2087   // Threading over the select in "A ^ select(cond, B, C)" means evaluating
2088   // "A^B" and "A^C" and seeing if they are equal; but they are equal if and
2089   // only if B and C are equal.  If B and C are equal then (since we assume
2090   // that operands have already been simplified) "select(cond, B, C)" should
2091   // have been simplified to the common value of B and C already.  Analysing
2092   // "A^B" and "A^C" thus gains nothing, but costs compile time.  Similarly
2093   // for threading over phi nodes.
2094 
2095   return nullptr;
2096 }
2097 
2098 Value *llvm::SimplifyXorInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) {
2099   return ::SimplifyXorInst(Op0, Op1, Q, RecursionLimit);
2100 }
2101 
2102 
2103 static Type *GetCompareTy(Value *Op) {
2104   return CmpInst::makeCmpResultType(Op->getType());
2105 }
2106 
2107 /// Rummage around inside V looking for something equivalent to the comparison
2108 /// "LHS Pred RHS". Return such a value if found, otherwise return null.
2109 /// Helper function for analyzing max/min idioms.
2110 static Value *ExtractEquivalentCondition(Value *V, CmpInst::Predicate Pred,
2111                                          Value *LHS, Value *RHS) {
2112   SelectInst *SI = dyn_cast<SelectInst>(V);
2113   if (!SI)
2114     return nullptr;
2115   CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition());
2116   if (!Cmp)
2117     return nullptr;
2118   Value *CmpLHS = Cmp->getOperand(0), *CmpRHS = Cmp->getOperand(1);
2119   if (Pred == Cmp->getPredicate() && LHS == CmpLHS && RHS == CmpRHS)
2120     return Cmp;
2121   if (Pred == CmpInst::getSwappedPredicate(Cmp->getPredicate()) &&
2122       LHS == CmpRHS && RHS == CmpLHS)
2123     return Cmp;
2124   return nullptr;
2125 }
2126 
2127 // A significant optimization not implemented here is assuming that alloca
2128 // addresses are not equal to incoming argument values. They don't *alias*,
2129 // as we say, but that doesn't mean they aren't equal, so we take a
2130 // conservative approach.
2131 //
2132 // This is inspired in part by C++11 5.10p1:
2133 //   "Two pointers of the same type compare equal if and only if they are both
2134 //    null, both point to the same function, or both represent the same
2135 //    address."
2136 //
2137 // This is pretty permissive.
2138 //
2139 // It's also partly due to C11 6.5.9p6:
2140 //   "Two pointers compare equal if and only if both are null pointers, both are
2141 //    pointers to the same object (including a pointer to an object and a
2142 //    subobject at its beginning) or function, both are pointers to one past the
2143 //    last element of the same array object, or one is a pointer to one past the
2144 //    end of one array object and the other is a pointer to the start of a
2145 //    different array object that happens to immediately follow the first array
2146 //    object in the address space.)
2147 //
2148 // C11's version is more restrictive, however there's no reason why an argument
2149 // couldn't be a one-past-the-end value for a stack object in the caller and be
2150 // equal to the beginning of a stack object in the callee.
2151 //
2152 // If the C and C++ standards are ever made sufficiently restrictive in this
2153 // area, it may be possible to update LLVM's semantics accordingly and reinstate
2154 // this optimization.
2155 static Constant *
2156 computePointerICmp(const DataLayout &DL, const TargetLibraryInfo *TLI,
2157                    const DominatorTree *DT, CmpInst::Predicate Pred,
2158                    AssumptionCache *AC, const Instruction *CxtI,
2159                    const InstrInfoQuery &IIQ, Value *LHS, Value *RHS) {
2160   // First, skip past any trivial no-ops.
2161   LHS = LHS->stripPointerCasts();
2162   RHS = RHS->stripPointerCasts();
2163 
2164   // A non-null pointer is not equal to a null pointer.
2165   if (llvm::isKnownNonZero(LHS, DL, 0, nullptr, nullptr, nullptr,
2166                            IIQ.UseInstrInfo) &&
2167       isa<ConstantPointerNull>(RHS) &&
2168       (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE))
2169     return ConstantInt::get(GetCompareTy(LHS),
2170                             !CmpInst::isTrueWhenEqual(Pred));
2171 
2172   // We can only fold certain predicates on pointer comparisons.
2173   switch (Pred) {
2174   default:
2175     return nullptr;
2176 
2177     // Equality comaprisons are easy to fold.
2178   case CmpInst::ICMP_EQ:
2179   case CmpInst::ICMP_NE:
2180     break;
2181 
2182     // We can only handle unsigned relational comparisons because 'inbounds' on
2183     // a GEP only protects against unsigned wrapping.
2184   case CmpInst::ICMP_UGT:
2185   case CmpInst::ICMP_UGE:
2186   case CmpInst::ICMP_ULT:
2187   case CmpInst::ICMP_ULE:
2188     // However, we have to switch them to their signed variants to handle
2189     // negative indices from the base pointer.
2190     Pred = ICmpInst::getSignedPredicate(Pred);
2191     break;
2192   }
2193 
2194   // Strip off any constant offsets so that we can reason about them.
2195   // It's tempting to use getUnderlyingObject or even just stripInBoundsOffsets
2196   // here and compare base addresses like AliasAnalysis does, however there are
2197   // numerous hazards. AliasAnalysis and its utilities rely on special rules
2198   // governing loads and stores which don't apply to icmps. Also, AliasAnalysis
2199   // doesn't need to guarantee pointer inequality when it says NoAlias.
2200   Constant *LHSOffset = stripAndComputeConstantOffsets(DL, LHS);
2201   Constant *RHSOffset = stripAndComputeConstantOffsets(DL, RHS);
2202 
2203   // If LHS and RHS are related via constant offsets to the same base
2204   // value, we can replace it with an icmp which just compares the offsets.
2205   if (LHS == RHS)
2206     return ConstantExpr::getICmp(Pred, LHSOffset, RHSOffset);
2207 
2208   // Various optimizations for (in)equality comparisons.
2209   if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE) {
2210     // Different non-empty allocations that exist at the same time have
2211     // different addresses (if the program can tell). Global variables always
2212     // exist, so they always exist during the lifetime of each other and all
2213     // allocas. Two different allocas usually have different addresses...
2214     //
2215     // However, if there's an @llvm.stackrestore dynamically in between two
2216     // allocas, they may have the same address. It's tempting to reduce the
2217     // scope of the problem by only looking at *static* allocas here. That would
2218     // cover the majority of allocas while significantly reducing the likelihood
2219     // of having an @llvm.stackrestore pop up in the middle. However, it's not
2220     // actually impossible for an @llvm.stackrestore to pop up in the middle of
2221     // an entry block. Also, if we have a block that's not attached to a
2222     // function, we can't tell if it's "static" under the current definition.
2223     // Theoretically, this problem could be fixed by creating a new kind of
2224     // instruction kind specifically for static allocas. Such a new instruction
2225     // could be required to be at the top of the entry block, thus preventing it
2226     // from being subject to a @llvm.stackrestore. Instcombine could even
2227     // convert regular allocas into these special allocas. It'd be nifty.
2228     // However, until then, this problem remains open.
2229     //
2230     // So, we'll assume that two non-empty allocas have different addresses
2231     // for now.
2232     //
2233     // With all that, if the offsets are within the bounds of their allocations
2234     // (and not one-past-the-end! so we can't use inbounds!), and their
2235     // allocations aren't the same, the pointers are not equal.
2236     //
2237     // Note that it's not necessary to check for LHS being a global variable
2238     // address, due to canonicalization and constant folding.
2239     if (isa<AllocaInst>(LHS) &&
2240         (isa<AllocaInst>(RHS) || isa<GlobalVariable>(RHS))) {
2241       ConstantInt *LHSOffsetCI = dyn_cast<ConstantInt>(LHSOffset);
2242       ConstantInt *RHSOffsetCI = dyn_cast<ConstantInt>(RHSOffset);
2243       uint64_t LHSSize, RHSSize;
2244       ObjectSizeOpts Opts;
2245       Opts.NullIsUnknownSize =
2246           NullPointerIsDefined(cast<AllocaInst>(LHS)->getFunction());
2247       if (LHSOffsetCI && RHSOffsetCI &&
2248           getObjectSize(LHS, LHSSize, DL, TLI, Opts) &&
2249           getObjectSize(RHS, RHSSize, DL, TLI, Opts)) {
2250         const APInt &LHSOffsetValue = LHSOffsetCI->getValue();
2251         const APInt &RHSOffsetValue = RHSOffsetCI->getValue();
2252         if (!LHSOffsetValue.isNegative() &&
2253             !RHSOffsetValue.isNegative() &&
2254             LHSOffsetValue.ult(LHSSize) &&
2255             RHSOffsetValue.ult(RHSSize)) {
2256           return ConstantInt::get(GetCompareTy(LHS),
2257                                   !CmpInst::isTrueWhenEqual(Pred));
2258         }
2259       }
2260 
2261       // Repeat the above check but this time without depending on DataLayout
2262       // or being able to compute a precise size.
2263       if (!cast<PointerType>(LHS->getType())->isEmptyTy() &&
2264           !cast<PointerType>(RHS->getType())->isEmptyTy() &&
2265           LHSOffset->isNullValue() &&
2266           RHSOffset->isNullValue())
2267         return ConstantInt::get(GetCompareTy(LHS),
2268                                 !CmpInst::isTrueWhenEqual(Pred));
2269     }
2270 
2271     // Even if an non-inbounds GEP occurs along the path we can still optimize
2272     // equality comparisons concerning the result. We avoid walking the whole
2273     // chain again by starting where the last calls to
2274     // stripAndComputeConstantOffsets left off and accumulate the offsets.
2275     Constant *LHSNoBound = stripAndComputeConstantOffsets(DL, LHS, true);
2276     Constant *RHSNoBound = stripAndComputeConstantOffsets(DL, RHS, true);
2277     if (LHS == RHS)
2278       return ConstantExpr::getICmp(Pred,
2279                                    ConstantExpr::getAdd(LHSOffset, LHSNoBound),
2280                                    ConstantExpr::getAdd(RHSOffset, RHSNoBound));
2281 
2282     // If one side of the equality comparison must come from a noalias call
2283     // (meaning a system memory allocation function), and the other side must
2284     // come from a pointer that cannot overlap with dynamically-allocated
2285     // memory within the lifetime of the current function (allocas, byval
2286     // arguments, globals), then determine the comparison result here.
2287     SmallVector<const Value *, 8> LHSUObjs, RHSUObjs;
2288     GetUnderlyingObjects(LHS, LHSUObjs, DL);
2289     GetUnderlyingObjects(RHS, RHSUObjs, DL);
2290 
2291     // Is the set of underlying objects all noalias calls?
2292     auto IsNAC = [](ArrayRef<const Value *> Objects) {
2293       return all_of(Objects, isNoAliasCall);
2294     };
2295 
2296     // Is the set of underlying objects all things which must be disjoint from
2297     // noalias calls. For allocas, we consider only static ones (dynamic
2298     // allocas might be transformed into calls to malloc not simultaneously
2299     // live with the compared-to allocation). For globals, we exclude symbols
2300     // that might be resolve lazily to symbols in another dynamically-loaded
2301     // library (and, thus, could be malloc'ed by the implementation).
2302     auto IsAllocDisjoint = [](ArrayRef<const Value *> Objects) {
2303       return all_of(Objects, [](const Value *V) {
2304         if (const AllocaInst *AI = dyn_cast<AllocaInst>(V))
2305           return AI->getParent() && AI->getFunction() && AI->isStaticAlloca();
2306         if (const GlobalValue *GV = dyn_cast<GlobalValue>(V))
2307           return (GV->hasLocalLinkage() || GV->hasHiddenVisibility() ||
2308                   GV->hasProtectedVisibility() || GV->hasGlobalUnnamedAddr()) &&
2309                  !GV->isThreadLocal();
2310         if (const Argument *A = dyn_cast<Argument>(V))
2311           return A->hasByValAttr();
2312         return false;
2313       });
2314     };
2315 
2316     if ((IsNAC(LHSUObjs) && IsAllocDisjoint(RHSUObjs)) ||
2317         (IsNAC(RHSUObjs) && IsAllocDisjoint(LHSUObjs)))
2318         return ConstantInt::get(GetCompareTy(LHS),
2319                                 !CmpInst::isTrueWhenEqual(Pred));
2320 
2321     // Fold comparisons for non-escaping pointer even if the allocation call
2322     // cannot be elided. We cannot fold malloc comparison to null. Also, the
2323     // dynamic allocation call could be either of the operands.
2324     Value *MI = nullptr;
2325     if (isAllocLikeFn(LHS, TLI) &&
2326         llvm::isKnownNonZero(RHS, DL, 0, nullptr, CxtI, DT))
2327       MI = LHS;
2328     else if (isAllocLikeFn(RHS, TLI) &&
2329              llvm::isKnownNonZero(LHS, DL, 0, nullptr, CxtI, DT))
2330       MI = RHS;
2331     // FIXME: We should also fold the compare when the pointer escapes, but the
2332     // compare dominates the pointer escape
2333     if (MI && !PointerMayBeCaptured(MI, true, true))
2334       return ConstantInt::get(GetCompareTy(LHS),
2335                               CmpInst::isFalseWhenEqual(Pred));
2336   }
2337 
2338   // Otherwise, fail.
2339   return nullptr;
2340 }
2341 
2342 /// Fold an icmp when its operands have i1 scalar type.
2343 static Value *simplifyICmpOfBools(CmpInst::Predicate Pred, Value *LHS,
2344                                   Value *RHS, const SimplifyQuery &Q) {
2345   Type *ITy = GetCompareTy(LHS); // The return type.
2346   Type *OpTy = LHS->getType();   // The operand type.
2347   if (!OpTy->isIntOrIntVectorTy(1))
2348     return nullptr;
2349 
2350   // A boolean compared to true/false can be simplified in 14 out of the 20
2351   // (10 predicates * 2 constants) possible combinations. Cases not handled here
2352   // require a 'not' of the LHS, so those must be transformed in InstCombine.
2353   if (match(RHS, m_Zero())) {
2354     switch (Pred) {
2355     case CmpInst::ICMP_NE:  // X !=  0 -> X
2356     case CmpInst::ICMP_UGT: // X >u  0 -> X
2357     case CmpInst::ICMP_SLT: // X <s  0 -> X
2358       return LHS;
2359 
2360     case CmpInst::ICMP_ULT: // X <u  0 -> false
2361     case CmpInst::ICMP_SGT: // X >s  0 -> false
2362       return getFalse(ITy);
2363 
2364     case CmpInst::ICMP_UGE: // X >=u 0 -> true
2365     case CmpInst::ICMP_SLE: // X <=s 0 -> true
2366       return getTrue(ITy);
2367 
2368     default: break;
2369     }
2370   } else if (match(RHS, m_One())) {
2371     switch (Pred) {
2372     case CmpInst::ICMP_EQ:  // X ==   1 -> X
2373     case CmpInst::ICMP_UGE: // X >=u  1 -> X
2374     case CmpInst::ICMP_SLE: // X <=s -1 -> X
2375       return LHS;
2376 
2377     case CmpInst::ICMP_UGT: // X >u   1 -> false
2378     case CmpInst::ICMP_SLT: // X <s  -1 -> false
2379       return getFalse(ITy);
2380 
2381     case CmpInst::ICMP_ULE: // X <=u  1 -> true
2382     case CmpInst::ICMP_SGE: // X >=s -1 -> true
2383       return getTrue(ITy);
2384 
2385     default: break;
2386     }
2387   }
2388 
2389   switch (Pred) {
2390   default:
2391     break;
2392   case ICmpInst::ICMP_UGE:
2393     if (isImpliedCondition(RHS, LHS, Q.DL).getValueOr(false))
2394       return getTrue(ITy);
2395     break;
2396   case ICmpInst::ICMP_SGE:
2397     /// For signed comparison, the values for an i1 are 0 and -1
2398     /// respectively. This maps into a truth table of:
2399     /// LHS | RHS | LHS >=s RHS   | LHS implies RHS
2400     ///  0  |  0  |  1 (0 >= 0)   |  1
2401     ///  0  |  1  |  1 (0 >= -1)  |  1
2402     ///  1  |  0  |  0 (-1 >= 0)  |  0
2403     ///  1  |  1  |  1 (-1 >= -1) |  1
2404     if (isImpliedCondition(LHS, RHS, Q.DL).getValueOr(false))
2405       return getTrue(ITy);
2406     break;
2407   case ICmpInst::ICMP_ULE:
2408     if (isImpliedCondition(LHS, RHS, Q.DL).getValueOr(false))
2409       return getTrue(ITy);
2410     break;
2411   }
2412 
2413   return nullptr;
2414 }
2415 
2416 /// Try hard to fold icmp with zero RHS because this is a common case.
2417 static Value *simplifyICmpWithZero(CmpInst::Predicate Pred, Value *LHS,
2418                                    Value *RHS, const SimplifyQuery &Q) {
2419   if (!match(RHS, m_Zero()))
2420     return nullptr;
2421 
2422   Type *ITy = GetCompareTy(LHS); // The return type.
2423   switch (Pred) {
2424   default:
2425     llvm_unreachable("Unknown ICmp predicate!");
2426   case ICmpInst::ICMP_ULT:
2427     return getFalse(ITy);
2428   case ICmpInst::ICMP_UGE:
2429     return getTrue(ITy);
2430   case ICmpInst::ICMP_EQ:
2431   case ICmpInst::ICMP_ULE:
2432     if (isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT, Q.IIQ.UseInstrInfo))
2433       return getFalse(ITy);
2434     break;
2435   case ICmpInst::ICMP_NE:
2436   case ICmpInst::ICMP_UGT:
2437     if (isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT, Q.IIQ.UseInstrInfo))
2438       return getTrue(ITy);
2439     break;
2440   case ICmpInst::ICMP_SLT: {
2441     KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
2442     if (LHSKnown.isNegative())
2443       return getTrue(ITy);
2444     if (LHSKnown.isNonNegative())
2445       return getFalse(ITy);
2446     break;
2447   }
2448   case ICmpInst::ICMP_SLE: {
2449     KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
2450     if (LHSKnown.isNegative())
2451       return getTrue(ITy);
2452     if (LHSKnown.isNonNegative() &&
2453         isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT))
2454       return getFalse(ITy);
2455     break;
2456   }
2457   case ICmpInst::ICMP_SGE: {
2458     KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
2459     if (LHSKnown.isNegative())
2460       return getFalse(ITy);
2461     if (LHSKnown.isNonNegative())
2462       return getTrue(ITy);
2463     break;
2464   }
2465   case ICmpInst::ICMP_SGT: {
2466     KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
2467     if (LHSKnown.isNegative())
2468       return getFalse(ITy);
2469     if (LHSKnown.isNonNegative() &&
2470         isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT))
2471       return getTrue(ITy);
2472     break;
2473   }
2474   }
2475 
2476   return nullptr;
2477 }
2478 
2479 static Value *simplifyICmpWithConstant(CmpInst::Predicate Pred, Value *LHS,
2480                                        Value *RHS, const InstrInfoQuery &IIQ) {
2481   Type *ITy = GetCompareTy(RHS); // The return type.
2482 
2483   Value *X;
2484   // Sign-bit checks can be optimized to true/false after unsigned
2485   // floating-point casts:
2486   // icmp slt (bitcast (uitofp X)),  0 --> false
2487   // icmp sgt (bitcast (uitofp X)), -1 --> true
2488   if (match(LHS, m_BitCast(m_UIToFP(m_Value(X))))) {
2489     if (Pred == ICmpInst::ICMP_SLT && match(RHS, m_Zero()))
2490       return ConstantInt::getFalse(ITy);
2491     if (Pred == ICmpInst::ICMP_SGT && match(RHS, m_AllOnes()))
2492       return ConstantInt::getTrue(ITy);
2493   }
2494 
2495   const APInt *C;
2496   if (!match(RHS, m_APInt(C)))
2497     return nullptr;
2498 
2499   // Rule out tautological comparisons (eg., ult 0 or uge 0).
2500   ConstantRange RHS_CR = ConstantRange::makeExactICmpRegion(Pred, *C);
2501   if (RHS_CR.isEmptySet())
2502     return ConstantInt::getFalse(ITy);
2503   if (RHS_CR.isFullSet())
2504     return ConstantInt::getTrue(ITy);
2505 
2506   ConstantRange LHS_CR = computeConstantRange(LHS, IIQ.UseInstrInfo);
2507   if (!LHS_CR.isFullSet()) {
2508     if (RHS_CR.contains(LHS_CR))
2509       return ConstantInt::getTrue(ITy);
2510     if (RHS_CR.inverse().contains(LHS_CR))
2511       return ConstantInt::getFalse(ITy);
2512   }
2513 
2514   return nullptr;
2515 }
2516 
2517 /// TODO: A large part of this logic is duplicated in InstCombine's
2518 /// foldICmpBinOp(). We should be able to share that and avoid the code
2519 /// duplication.
2520 static Value *simplifyICmpWithBinOp(CmpInst::Predicate Pred, Value *LHS,
2521                                     Value *RHS, const SimplifyQuery &Q,
2522                                     unsigned MaxRecurse) {
2523   Type *ITy = GetCompareTy(LHS); // The return type.
2524 
2525   BinaryOperator *LBO = dyn_cast<BinaryOperator>(LHS);
2526   BinaryOperator *RBO = dyn_cast<BinaryOperator>(RHS);
2527   if (MaxRecurse && (LBO || RBO)) {
2528     // Analyze the case when either LHS or RHS is an add instruction.
2529     Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr;
2530     // LHS = A + B (or A and B are null); RHS = C + D (or C and D are null).
2531     bool NoLHSWrapProblem = false, NoRHSWrapProblem = false;
2532     if (LBO && LBO->getOpcode() == Instruction::Add) {
2533       A = LBO->getOperand(0);
2534       B = LBO->getOperand(1);
2535       NoLHSWrapProblem =
2536           ICmpInst::isEquality(Pred) ||
2537           (CmpInst::isUnsigned(Pred) &&
2538            Q.IIQ.hasNoUnsignedWrap(cast<OverflowingBinaryOperator>(LBO))) ||
2539           (CmpInst::isSigned(Pred) &&
2540            Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(LBO)));
2541     }
2542     if (RBO && RBO->getOpcode() == Instruction::Add) {
2543       C = RBO->getOperand(0);
2544       D = RBO->getOperand(1);
2545       NoRHSWrapProblem =
2546           ICmpInst::isEquality(Pred) ||
2547           (CmpInst::isUnsigned(Pred) &&
2548            Q.IIQ.hasNoUnsignedWrap(cast<OverflowingBinaryOperator>(RBO))) ||
2549           (CmpInst::isSigned(Pred) &&
2550            Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(RBO)));
2551     }
2552 
2553     // icmp (X+Y), X -> icmp Y, 0 for equalities or if there is no overflow.
2554     if ((A == RHS || B == RHS) && NoLHSWrapProblem)
2555       if (Value *V = SimplifyICmpInst(Pred, A == RHS ? B : A,
2556                                       Constant::getNullValue(RHS->getType()), Q,
2557                                       MaxRecurse - 1))
2558         return V;
2559 
2560     // icmp X, (X+Y) -> icmp 0, Y for equalities or if there is no overflow.
2561     if ((C == LHS || D == LHS) && NoRHSWrapProblem)
2562       if (Value *V =
2563               SimplifyICmpInst(Pred, Constant::getNullValue(LHS->getType()),
2564                                C == LHS ? D : C, Q, MaxRecurse - 1))
2565         return V;
2566 
2567     // icmp (X+Y), (X+Z) -> icmp Y,Z for equalities or if there is no overflow.
2568     if (A && C && (A == C || A == D || B == C || B == D) && NoLHSWrapProblem &&
2569         NoRHSWrapProblem) {
2570       // Determine Y and Z in the form icmp (X+Y), (X+Z).
2571       Value *Y, *Z;
2572       if (A == C) {
2573         // C + B == C + D  ->  B == D
2574         Y = B;
2575         Z = D;
2576       } else if (A == D) {
2577         // D + B == C + D  ->  B == C
2578         Y = B;
2579         Z = C;
2580       } else if (B == C) {
2581         // A + C == C + D  ->  A == D
2582         Y = A;
2583         Z = D;
2584       } else {
2585         assert(B == D);
2586         // A + D == C + D  ->  A == C
2587         Y = A;
2588         Z = C;
2589       }
2590       if (Value *V = SimplifyICmpInst(Pred, Y, Z, Q, MaxRecurse - 1))
2591         return V;
2592     }
2593   }
2594 
2595   {
2596     Value *Y = nullptr;
2597     // icmp pred (or X, Y), X
2598     if (LBO && match(LBO, m_c_Or(m_Value(Y), m_Specific(RHS)))) {
2599       if (Pred == ICmpInst::ICMP_ULT)
2600         return getFalse(ITy);
2601       if (Pred == ICmpInst::ICMP_UGE)
2602         return getTrue(ITy);
2603 
2604       if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SGE) {
2605         KnownBits RHSKnown = computeKnownBits(RHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
2606         KnownBits YKnown = computeKnownBits(Y, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
2607         if (RHSKnown.isNonNegative() && YKnown.isNegative())
2608           return Pred == ICmpInst::ICMP_SLT ? getTrue(ITy) : getFalse(ITy);
2609         if (RHSKnown.isNegative() || YKnown.isNonNegative())
2610           return Pred == ICmpInst::ICMP_SLT ? getFalse(ITy) : getTrue(ITy);
2611       }
2612     }
2613     // icmp pred X, (or X, Y)
2614     if (RBO && match(RBO, m_c_Or(m_Value(Y), m_Specific(LHS)))) {
2615       if (Pred == ICmpInst::ICMP_ULE)
2616         return getTrue(ITy);
2617       if (Pred == ICmpInst::ICMP_UGT)
2618         return getFalse(ITy);
2619 
2620       if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SLE) {
2621         KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
2622         KnownBits YKnown = computeKnownBits(Y, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
2623         if (LHSKnown.isNonNegative() && YKnown.isNegative())
2624           return Pred == ICmpInst::ICMP_SGT ? getTrue(ITy) : getFalse(ITy);
2625         if (LHSKnown.isNegative() || YKnown.isNonNegative())
2626           return Pred == ICmpInst::ICMP_SGT ? getFalse(ITy) : getTrue(ITy);
2627       }
2628     }
2629   }
2630 
2631   // icmp pred (and X, Y), X
2632   if (LBO && match(LBO, m_c_And(m_Value(), m_Specific(RHS)))) {
2633     if (Pred == ICmpInst::ICMP_UGT)
2634       return getFalse(ITy);
2635     if (Pred == ICmpInst::ICMP_ULE)
2636       return getTrue(ITy);
2637   }
2638   // icmp pred X, (and X, Y)
2639   if (RBO && match(RBO, m_c_And(m_Value(), m_Specific(LHS)))) {
2640     if (Pred == ICmpInst::ICMP_UGE)
2641       return getTrue(ITy);
2642     if (Pred == ICmpInst::ICMP_ULT)
2643       return getFalse(ITy);
2644   }
2645 
2646   // 0 - (zext X) pred C
2647   if (!CmpInst::isUnsigned(Pred) && match(LHS, m_Neg(m_ZExt(m_Value())))) {
2648     if (ConstantInt *RHSC = dyn_cast<ConstantInt>(RHS)) {
2649       if (RHSC->getValue().isStrictlyPositive()) {
2650         if (Pred == ICmpInst::ICMP_SLT)
2651           return ConstantInt::getTrue(RHSC->getContext());
2652         if (Pred == ICmpInst::ICMP_SGE)
2653           return ConstantInt::getFalse(RHSC->getContext());
2654         if (Pred == ICmpInst::ICMP_EQ)
2655           return ConstantInt::getFalse(RHSC->getContext());
2656         if (Pred == ICmpInst::ICMP_NE)
2657           return ConstantInt::getTrue(RHSC->getContext());
2658       }
2659       if (RHSC->getValue().isNonNegative()) {
2660         if (Pred == ICmpInst::ICMP_SLE)
2661           return ConstantInt::getTrue(RHSC->getContext());
2662         if (Pred == ICmpInst::ICMP_SGT)
2663           return ConstantInt::getFalse(RHSC->getContext());
2664       }
2665     }
2666   }
2667 
2668   // icmp pred (urem X, Y), Y
2669   if (LBO && match(LBO, m_URem(m_Value(), m_Specific(RHS)))) {
2670     switch (Pred) {
2671     default:
2672       break;
2673     case ICmpInst::ICMP_SGT:
2674     case ICmpInst::ICMP_SGE: {
2675       KnownBits Known = computeKnownBits(RHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
2676       if (!Known.isNonNegative())
2677         break;
2678       LLVM_FALLTHROUGH;
2679     }
2680     case ICmpInst::ICMP_EQ:
2681     case ICmpInst::ICMP_UGT:
2682     case ICmpInst::ICMP_UGE:
2683       return getFalse(ITy);
2684     case ICmpInst::ICMP_SLT:
2685     case ICmpInst::ICMP_SLE: {
2686       KnownBits Known = computeKnownBits(RHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
2687       if (!Known.isNonNegative())
2688         break;
2689       LLVM_FALLTHROUGH;
2690     }
2691     case ICmpInst::ICMP_NE:
2692     case ICmpInst::ICMP_ULT:
2693     case ICmpInst::ICMP_ULE:
2694       return getTrue(ITy);
2695     }
2696   }
2697 
2698   // icmp pred X, (urem Y, X)
2699   if (RBO && match(RBO, m_URem(m_Value(), m_Specific(LHS)))) {
2700     switch (Pred) {
2701     default:
2702       break;
2703     case ICmpInst::ICMP_SGT:
2704     case ICmpInst::ICMP_SGE: {
2705       KnownBits Known = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
2706       if (!Known.isNonNegative())
2707         break;
2708       LLVM_FALLTHROUGH;
2709     }
2710     case ICmpInst::ICMP_NE:
2711     case ICmpInst::ICMP_UGT:
2712     case ICmpInst::ICMP_UGE:
2713       return getTrue(ITy);
2714     case ICmpInst::ICMP_SLT:
2715     case ICmpInst::ICMP_SLE: {
2716       KnownBits Known = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
2717       if (!Known.isNonNegative())
2718         break;
2719       LLVM_FALLTHROUGH;
2720     }
2721     case ICmpInst::ICMP_EQ:
2722     case ICmpInst::ICMP_ULT:
2723     case ICmpInst::ICMP_ULE:
2724       return getFalse(ITy);
2725     }
2726   }
2727 
2728   // x >> y <=u x
2729   // x udiv y <=u x.
2730   if (LBO && (match(LBO, m_LShr(m_Specific(RHS), m_Value())) ||
2731               match(LBO, m_UDiv(m_Specific(RHS), m_Value())))) {
2732     // icmp pred (X op Y), X
2733     if (Pred == ICmpInst::ICMP_UGT)
2734       return getFalse(ITy);
2735     if (Pred == ICmpInst::ICMP_ULE)
2736       return getTrue(ITy);
2737   }
2738 
2739   // x >=u x >> y
2740   // x >=u x udiv y.
2741   if (RBO && (match(RBO, m_LShr(m_Specific(LHS), m_Value())) ||
2742               match(RBO, m_UDiv(m_Specific(LHS), m_Value())))) {
2743     // icmp pred X, (X op Y)
2744     if (Pred == ICmpInst::ICMP_ULT)
2745       return getFalse(ITy);
2746     if (Pred == ICmpInst::ICMP_UGE)
2747       return getTrue(ITy);
2748   }
2749 
2750   // handle:
2751   //   CI2 << X == CI
2752   //   CI2 << X != CI
2753   //
2754   //   where CI2 is a power of 2 and CI isn't
2755   if (auto *CI = dyn_cast<ConstantInt>(RHS)) {
2756     const APInt *CI2Val, *CIVal = &CI->getValue();
2757     if (LBO && match(LBO, m_Shl(m_APInt(CI2Val), m_Value())) &&
2758         CI2Val->isPowerOf2()) {
2759       if (!CIVal->isPowerOf2()) {
2760         // CI2 << X can equal zero in some circumstances,
2761         // this simplification is unsafe if CI is zero.
2762         //
2763         // We know it is safe if:
2764         // - The shift is nsw, we can't shift out the one bit.
2765         // - The shift is nuw, we can't shift out the one bit.
2766         // - CI2 is one
2767         // - CI isn't zero
2768         if (Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(LBO)) ||
2769             Q.IIQ.hasNoUnsignedWrap(cast<OverflowingBinaryOperator>(LBO)) ||
2770             CI2Val->isOneValue() || !CI->isZero()) {
2771           if (Pred == ICmpInst::ICMP_EQ)
2772             return ConstantInt::getFalse(RHS->getContext());
2773           if (Pred == ICmpInst::ICMP_NE)
2774             return ConstantInt::getTrue(RHS->getContext());
2775         }
2776       }
2777       if (CIVal->isSignMask() && CI2Val->isOneValue()) {
2778         if (Pred == ICmpInst::ICMP_UGT)
2779           return ConstantInt::getFalse(RHS->getContext());
2780         if (Pred == ICmpInst::ICMP_ULE)
2781           return ConstantInt::getTrue(RHS->getContext());
2782       }
2783     }
2784   }
2785 
2786   if (MaxRecurse && LBO && RBO && LBO->getOpcode() == RBO->getOpcode() &&
2787       LBO->getOperand(1) == RBO->getOperand(1)) {
2788     switch (LBO->getOpcode()) {
2789     default:
2790       break;
2791     case Instruction::UDiv:
2792     case Instruction::LShr:
2793       if (ICmpInst::isSigned(Pred) || !Q.IIQ.isExact(LBO) ||
2794           !Q.IIQ.isExact(RBO))
2795         break;
2796       if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0),
2797                                       RBO->getOperand(0), Q, MaxRecurse - 1))
2798           return V;
2799       break;
2800     case Instruction::SDiv:
2801       if (!ICmpInst::isEquality(Pred) || !Q.IIQ.isExact(LBO) ||
2802           !Q.IIQ.isExact(RBO))
2803         break;
2804       if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0),
2805                                       RBO->getOperand(0), Q, MaxRecurse - 1))
2806         return V;
2807       break;
2808     case Instruction::AShr:
2809       if (!Q.IIQ.isExact(LBO) || !Q.IIQ.isExact(RBO))
2810         break;
2811       if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0),
2812                                       RBO->getOperand(0), Q, MaxRecurse - 1))
2813         return V;
2814       break;
2815     case Instruction::Shl: {
2816       bool NUW = Q.IIQ.hasNoUnsignedWrap(LBO) && Q.IIQ.hasNoUnsignedWrap(RBO);
2817       bool NSW = Q.IIQ.hasNoSignedWrap(LBO) && Q.IIQ.hasNoSignedWrap(RBO);
2818       if (!NUW && !NSW)
2819         break;
2820       if (!NSW && ICmpInst::isSigned(Pred))
2821         break;
2822       if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0),
2823                                       RBO->getOperand(0), Q, MaxRecurse - 1))
2824         return V;
2825       break;
2826     }
2827     }
2828   }
2829   return nullptr;
2830 }
2831 
2832 /// Simplify integer comparisons where at least one operand of the compare
2833 /// matches an integer min/max idiom.
2834 static Value *simplifyICmpWithMinMax(CmpInst::Predicate Pred, Value *LHS,
2835                                      Value *RHS, const SimplifyQuery &Q,
2836                                      unsigned MaxRecurse) {
2837   Type *ITy = GetCompareTy(LHS); // The return type.
2838   Value *A, *B;
2839   CmpInst::Predicate P = CmpInst::BAD_ICMP_PREDICATE;
2840   CmpInst::Predicate EqP; // Chosen so that "A == max/min(A,B)" iff "A EqP B".
2841 
2842   // Signed variants on "max(a,b)>=a -> true".
2843   if (match(LHS, m_SMax(m_Value(A), m_Value(B))) && (A == RHS || B == RHS)) {
2844     if (A != RHS)
2845       std::swap(A, B);       // smax(A, B) pred A.
2846     EqP = CmpInst::ICMP_SGE; // "A == smax(A, B)" iff "A sge B".
2847     // We analyze this as smax(A, B) pred A.
2848     P = Pred;
2849   } else if (match(RHS, m_SMax(m_Value(A), m_Value(B))) &&
2850              (A == LHS || B == LHS)) {
2851     if (A != LHS)
2852       std::swap(A, B);       // A pred smax(A, B).
2853     EqP = CmpInst::ICMP_SGE; // "A == smax(A, B)" iff "A sge B".
2854     // We analyze this as smax(A, B) swapped-pred A.
2855     P = CmpInst::getSwappedPredicate(Pred);
2856   } else if (match(LHS, m_SMin(m_Value(A), m_Value(B))) &&
2857              (A == RHS || B == RHS)) {
2858     if (A != RHS)
2859       std::swap(A, B);       // smin(A, B) pred A.
2860     EqP = CmpInst::ICMP_SLE; // "A == smin(A, B)" iff "A sle B".
2861     // We analyze this as smax(-A, -B) swapped-pred -A.
2862     // Note that we do not need to actually form -A or -B thanks to EqP.
2863     P = CmpInst::getSwappedPredicate(Pred);
2864   } else if (match(RHS, m_SMin(m_Value(A), m_Value(B))) &&
2865              (A == LHS || B == LHS)) {
2866     if (A != LHS)
2867       std::swap(A, B);       // A pred smin(A, B).
2868     EqP = CmpInst::ICMP_SLE; // "A == smin(A, B)" iff "A sle B".
2869     // We analyze this as smax(-A, -B) pred -A.
2870     // Note that we do not need to actually form -A or -B thanks to EqP.
2871     P = Pred;
2872   }
2873   if (P != CmpInst::BAD_ICMP_PREDICATE) {
2874     // Cases correspond to "max(A, B) p A".
2875     switch (P) {
2876     default:
2877       break;
2878     case CmpInst::ICMP_EQ:
2879     case CmpInst::ICMP_SLE:
2880       // Equivalent to "A EqP B".  This may be the same as the condition tested
2881       // in the max/min; if so, we can just return that.
2882       if (Value *V = ExtractEquivalentCondition(LHS, EqP, A, B))
2883         return V;
2884       if (Value *V = ExtractEquivalentCondition(RHS, EqP, A, B))
2885         return V;
2886       // Otherwise, see if "A EqP B" simplifies.
2887       if (MaxRecurse)
2888         if (Value *V = SimplifyICmpInst(EqP, A, B, Q, MaxRecurse - 1))
2889           return V;
2890       break;
2891     case CmpInst::ICMP_NE:
2892     case CmpInst::ICMP_SGT: {
2893       CmpInst::Predicate InvEqP = CmpInst::getInversePredicate(EqP);
2894       // Equivalent to "A InvEqP B".  This may be the same as the condition
2895       // tested in the max/min; if so, we can just return that.
2896       if (Value *V = ExtractEquivalentCondition(LHS, InvEqP, A, B))
2897         return V;
2898       if (Value *V = ExtractEquivalentCondition(RHS, InvEqP, A, B))
2899         return V;
2900       // Otherwise, see if "A InvEqP B" simplifies.
2901       if (MaxRecurse)
2902         if (Value *V = SimplifyICmpInst(InvEqP, A, B, Q, MaxRecurse - 1))
2903           return V;
2904       break;
2905     }
2906     case CmpInst::ICMP_SGE:
2907       // Always true.
2908       return getTrue(ITy);
2909     case CmpInst::ICMP_SLT:
2910       // Always false.
2911       return getFalse(ITy);
2912     }
2913   }
2914 
2915   // Unsigned variants on "max(a,b)>=a -> true".
2916   P = CmpInst::BAD_ICMP_PREDICATE;
2917   if (match(LHS, m_UMax(m_Value(A), m_Value(B))) && (A == RHS || B == RHS)) {
2918     if (A != RHS)
2919       std::swap(A, B);       // umax(A, B) pred A.
2920     EqP = CmpInst::ICMP_UGE; // "A == umax(A, B)" iff "A uge B".
2921     // We analyze this as umax(A, B) pred A.
2922     P = Pred;
2923   } else if (match(RHS, m_UMax(m_Value(A), m_Value(B))) &&
2924              (A == LHS || B == LHS)) {
2925     if (A != LHS)
2926       std::swap(A, B);       // A pred umax(A, B).
2927     EqP = CmpInst::ICMP_UGE; // "A == umax(A, B)" iff "A uge B".
2928     // We analyze this as umax(A, B) swapped-pred A.
2929     P = CmpInst::getSwappedPredicate(Pred);
2930   } else if (match(LHS, m_UMin(m_Value(A), m_Value(B))) &&
2931              (A == RHS || B == RHS)) {
2932     if (A != RHS)
2933       std::swap(A, B);       // umin(A, B) pred A.
2934     EqP = CmpInst::ICMP_ULE; // "A == umin(A, B)" iff "A ule B".
2935     // We analyze this as umax(-A, -B) swapped-pred -A.
2936     // Note that we do not need to actually form -A or -B thanks to EqP.
2937     P = CmpInst::getSwappedPredicate(Pred);
2938   } else if (match(RHS, m_UMin(m_Value(A), m_Value(B))) &&
2939              (A == LHS || B == LHS)) {
2940     if (A != LHS)
2941       std::swap(A, B);       // A pred umin(A, B).
2942     EqP = CmpInst::ICMP_ULE; // "A == umin(A, B)" iff "A ule B".
2943     // We analyze this as umax(-A, -B) pred -A.
2944     // Note that we do not need to actually form -A or -B thanks to EqP.
2945     P = Pred;
2946   }
2947   if (P != CmpInst::BAD_ICMP_PREDICATE) {
2948     // Cases correspond to "max(A, B) p A".
2949     switch (P) {
2950     default:
2951       break;
2952     case CmpInst::ICMP_EQ:
2953     case CmpInst::ICMP_ULE:
2954       // Equivalent to "A EqP B".  This may be the same as the condition tested
2955       // in the max/min; if so, we can just return that.
2956       if (Value *V = ExtractEquivalentCondition(LHS, EqP, A, B))
2957         return V;
2958       if (Value *V = ExtractEquivalentCondition(RHS, EqP, A, B))
2959         return V;
2960       // Otherwise, see if "A EqP B" simplifies.
2961       if (MaxRecurse)
2962         if (Value *V = SimplifyICmpInst(EqP, A, B, Q, MaxRecurse - 1))
2963           return V;
2964       break;
2965     case CmpInst::ICMP_NE:
2966     case CmpInst::ICMP_UGT: {
2967       CmpInst::Predicate InvEqP = CmpInst::getInversePredicate(EqP);
2968       // Equivalent to "A InvEqP B".  This may be the same as the condition
2969       // tested in the max/min; if so, we can just return that.
2970       if (Value *V = ExtractEquivalentCondition(LHS, InvEqP, A, B))
2971         return V;
2972       if (Value *V = ExtractEquivalentCondition(RHS, InvEqP, A, B))
2973         return V;
2974       // Otherwise, see if "A InvEqP B" simplifies.
2975       if (MaxRecurse)
2976         if (Value *V = SimplifyICmpInst(InvEqP, A, B, Q, MaxRecurse - 1))
2977           return V;
2978       break;
2979     }
2980     case CmpInst::ICMP_UGE:
2981       // Always true.
2982       return getTrue(ITy);
2983     case CmpInst::ICMP_ULT:
2984       // Always false.
2985       return getFalse(ITy);
2986     }
2987   }
2988 
2989   // Variants on "max(x,y) >= min(x,z)".
2990   Value *C, *D;
2991   if (match(LHS, m_SMax(m_Value(A), m_Value(B))) &&
2992       match(RHS, m_SMin(m_Value(C), m_Value(D))) &&
2993       (A == C || A == D || B == C || B == D)) {
2994     // max(x, ?) pred min(x, ?).
2995     if (Pred == CmpInst::ICMP_SGE)
2996       // Always true.
2997       return getTrue(ITy);
2998     if (Pred == CmpInst::ICMP_SLT)
2999       // Always false.
3000       return getFalse(ITy);
3001   } else if (match(LHS, m_SMin(m_Value(A), m_Value(B))) &&
3002              match(RHS, m_SMax(m_Value(C), m_Value(D))) &&
3003              (A == C || A == D || B == C || B == D)) {
3004     // min(x, ?) pred max(x, ?).
3005     if (Pred == CmpInst::ICMP_SLE)
3006       // Always true.
3007       return getTrue(ITy);
3008     if (Pred == CmpInst::ICMP_SGT)
3009       // Always false.
3010       return getFalse(ITy);
3011   } else if (match(LHS, m_UMax(m_Value(A), m_Value(B))) &&
3012              match(RHS, m_UMin(m_Value(C), m_Value(D))) &&
3013              (A == C || A == D || B == C || B == D)) {
3014     // max(x, ?) pred min(x, ?).
3015     if (Pred == CmpInst::ICMP_UGE)
3016       // Always true.
3017       return getTrue(ITy);
3018     if (Pred == CmpInst::ICMP_ULT)
3019       // Always false.
3020       return getFalse(ITy);
3021   } else if (match(LHS, m_UMin(m_Value(A), m_Value(B))) &&
3022              match(RHS, m_UMax(m_Value(C), m_Value(D))) &&
3023              (A == C || A == D || B == C || B == D)) {
3024     // min(x, ?) pred max(x, ?).
3025     if (Pred == CmpInst::ICMP_ULE)
3026       // Always true.
3027       return getTrue(ITy);
3028     if (Pred == CmpInst::ICMP_UGT)
3029       // Always false.
3030       return getFalse(ITy);
3031   }
3032 
3033   return nullptr;
3034 }
3035 
3036 /// Given operands for an ICmpInst, see if we can fold the result.
3037 /// If not, this returns null.
3038 static Value *SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS,
3039                                const SimplifyQuery &Q, unsigned MaxRecurse) {
3040   CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate;
3041   assert(CmpInst::isIntPredicate(Pred) && "Not an integer compare!");
3042 
3043   if (Constant *CLHS = dyn_cast<Constant>(LHS)) {
3044     if (Constant *CRHS = dyn_cast<Constant>(RHS))
3045       return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, Q.DL, Q.TLI);
3046 
3047     // If we have a constant, make sure it is on the RHS.
3048     std::swap(LHS, RHS);
3049     Pred = CmpInst::getSwappedPredicate(Pred);
3050   }
3051   assert(!isa<UndefValue>(LHS) && "Unexpected icmp undef,%X");
3052 
3053   Type *ITy = GetCompareTy(LHS); // The return type.
3054 
3055   // For EQ and NE, we can always pick a value for the undef to make the
3056   // predicate pass or fail, so we can return undef.
3057   // Matches behavior in llvm::ConstantFoldCompareInstruction.
3058   if (isa<UndefValue>(RHS) && ICmpInst::isEquality(Pred))
3059     return UndefValue::get(ITy);
3060 
3061   // icmp X, X -> true/false
3062   // icmp X, undef -> true/false because undef could be X.
3063   if (LHS == RHS || isa<UndefValue>(RHS))
3064     return ConstantInt::get(ITy, CmpInst::isTrueWhenEqual(Pred));
3065 
3066   if (Value *V = simplifyICmpOfBools(Pred, LHS, RHS, Q))
3067     return V;
3068 
3069   if (Value *V = simplifyICmpWithZero(Pred, LHS, RHS, Q))
3070     return V;
3071 
3072   if (Value *V = simplifyICmpWithConstant(Pred, LHS, RHS, Q.IIQ))
3073     return V;
3074 
3075   // If both operands have range metadata, use the metadata
3076   // to simplify the comparison.
3077   if (isa<Instruction>(RHS) && isa<Instruction>(LHS)) {
3078     auto RHS_Instr = cast<Instruction>(RHS);
3079     auto LHS_Instr = cast<Instruction>(LHS);
3080 
3081     if (Q.IIQ.getMetadata(RHS_Instr, LLVMContext::MD_range) &&
3082         Q.IIQ.getMetadata(LHS_Instr, LLVMContext::MD_range)) {
3083       auto RHS_CR = getConstantRangeFromMetadata(
3084           *RHS_Instr->getMetadata(LLVMContext::MD_range));
3085       auto LHS_CR = getConstantRangeFromMetadata(
3086           *LHS_Instr->getMetadata(LLVMContext::MD_range));
3087 
3088       auto Satisfied_CR = ConstantRange::makeSatisfyingICmpRegion(Pred, RHS_CR);
3089       if (Satisfied_CR.contains(LHS_CR))
3090         return ConstantInt::getTrue(RHS->getContext());
3091 
3092       auto InversedSatisfied_CR = ConstantRange::makeSatisfyingICmpRegion(
3093                 CmpInst::getInversePredicate(Pred), RHS_CR);
3094       if (InversedSatisfied_CR.contains(LHS_CR))
3095         return ConstantInt::getFalse(RHS->getContext());
3096     }
3097   }
3098 
3099   // Compare of cast, for example (zext X) != 0 -> X != 0
3100   if (isa<CastInst>(LHS) && (isa<Constant>(RHS) || isa<CastInst>(RHS))) {
3101     Instruction *LI = cast<CastInst>(LHS);
3102     Value *SrcOp = LI->getOperand(0);
3103     Type *SrcTy = SrcOp->getType();
3104     Type *DstTy = LI->getType();
3105 
3106     // Turn icmp (ptrtoint x), (ptrtoint/constant) into a compare of the input
3107     // if the integer type is the same size as the pointer type.
3108     if (MaxRecurse && isa<PtrToIntInst>(LI) &&
3109         Q.DL.getTypeSizeInBits(SrcTy) == DstTy->getPrimitiveSizeInBits()) {
3110       if (Constant *RHSC = dyn_cast<Constant>(RHS)) {
3111         // Transfer the cast to the constant.
3112         if (Value *V = SimplifyICmpInst(Pred, SrcOp,
3113                                         ConstantExpr::getIntToPtr(RHSC, SrcTy),
3114                                         Q, MaxRecurse-1))
3115           return V;
3116       } else if (PtrToIntInst *RI = dyn_cast<PtrToIntInst>(RHS)) {
3117         if (RI->getOperand(0)->getType() == SrcTy)
3118           // Compare without the cast.
3119           if (Value *V = SimplifyICmpInst(Pred, SrcOp, RI->getOperand(0),
3120                                           Q, MaxRecurse-1))
3121             return V;
3122       }
3123     }
3124 
3125     if (isa<ZExtInst>(LHS)) {
3126       // Turn icmp (zext X), (zext Y) into a compare of X and Y if they have the
3127       // same type.
3128       if (ZExtInst *RI = dyn_cast<ZExtInst>(RHS)) {
3129         if (MaxRecurse && SrcTy == RI->getOperand(0)->getType())
3130           // Compare X and Y.  Note that signed predicates become unsigned.
3131           if (Value *V = SimplifyICmpInst(ICmpInst::getUnsignedPredicate(Pred),
3132                                           SrcOp, RI->getOperand(0), Q,
3133                                           MaxRecurse-1))
3134             return V;
3135       }
3136       // Turn icmp (zext X), Cst into a compare of X and Cst if Cst is extended
3137       // too.  If not, then try to deduce the result of the comparison.
3138       else if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
3139         // Compute the constant that would happen if we truncated to SrcTy then
3140         // reextended to DstTy.
3141         Constant *Trunc = ConstantExpr::getTrunc(CI, SrcTy);
3142         Constant *RExt = ConstantExpr::getCast(CastInst::ZExt, Trunc, DstTy);
3143 
3144         // If the re-extended constant didn't change then this is effectively
3145         // also a case of comparing two zero-extended values.
3146         if (RExt == CI && MaxRecurse)
3147           if (Value *V = SimplifyICmpInst(ICmpInst::getUnsignedPredicate(Pred),
3148                                         SrcOp, Trunc, Q, MaxRecurse-1))
3149             return V;
3150 
3151         // Otherwise the upper bits of LHS are zero while RHS has a non-zero bit
3152         // there.  Use this to work out the result of the comparison.
3153         if (RExt != CI) {
3154           switch (Pred) {
3155           default: llvm_unreachable("Unknown ICmp predicate!");
3156           // LHS <u RHS.
3157           case ICmpInst::ICMP_EQ:
3158           case ICmpInst::ICMP_UGT:
3159           case ICmpInst::ICMP_UGE:
3160             return ConstantInt::getFalse(CI->getContext());
3161 
3162           case ICmpInst::ICMP_NE:
3163           case ICmpInst::ICMP_ULT:
3164           case ICmpInst::ICMP_ULE:
3165             return ConstantInt::getTrue(CI->getContext());
3166 
3167           // LHS is non-negative.  If RHS is negative then LHS >s LHS.  If RHS
3168           // is non-negative then LHS <s RHS.
3169           case ICmpInst::ICMP_SGT:
3170           case ICmpInst::ICMP_SGE:
3171             return CI->getValue().isNegative() ?
3172               ConstantInt::getTrue(CI->getContext()) :
3173               ConstantInt::getFalse(CI->getContext());
3174 
3175           case ICmpInst::ICMP_SLT:
3176           case ICmpInst::ICMP_SLE:
3177             return CI->getValue().isNegative() ?
3178               ConstantInt::getFalse(CI->getContext()) :
3179               ConstantInt::getTrue(CI->getContext());
3180           }
3181         }
3182       }
3183     }
3184 
3185     if (isa<SExtInst>(LHS)) {
3186       // Turn icmp (sext X), (sext Y) into a compare of X and Y if they have the
3187       // same type.
3188       if (SExtInst *RI = dyn_cast<SExtInst>(RHS)) {
3189         if (MaxRecurse && SrcTy == RI->getOperand(0)->getType())
3190           // Compare X and Y.  Note that the predicate does not change.
3191           if (Value *V = SimplifyICmpInst(Pred, SrcOp, RI->getOperand(0),
3192                                           Q, MaxRecurse-1))
3193             return V;
3194       }
3195       // Turn icmp (sext X), Cst into a compare of X and Cst if Cst is extended
3196       // too.  If not, then try to deduce the result of the comparison.
3197       else if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
3198         // Compute the constant that would happen if we truncated to SrcTy then
3199         // reextended to DstTy.
3200         Constant *Trunc = ConstantExpr::getTrunc(CI, SrcTy);
3201         Constant *RExt = ConstantExpr::getCast(CastInst::SExt, Trunc, DstTy);
3202 
3203         // If the re-extended constant didn't change then this is effectively
3204         // also a case of comparing two sign-extended values.
3205         if (RExt == CI && MaxRecurse)
3206           if (Value *V = SimplifyICmpInst(Pred, SrcOp, Trunc, Q, MaxRecurse-1))
3207             return V;
3208 
3209         // Otherwise the upper bits of LHS are all equal, while RHS has varying
3210         // bits there.  Use this to work out the result of the comparison.
3211         if (RExt != CI) {
3212           switch (Pred) {
3213           default: llvm_unreachable("Unknown ICmp predicate!");
3214           case ICmpInst::ICMP_EQ:
3215             return ConstantInt::getFalse(CI->getContext());
3216           case ICmpInst::ICMP_NE:
3217             return ConstantInt::getTrue(CI->getContext());
3218 
3219           // If RHS is non-negative then LHS <s RHS.  If RHS is negative then
3220           // LHS >s RHS.
3221           case ICmpInst::ICMP_SGT:
3222           case ICmpInst::ICMP_SGE:
3223             return CI->getValue().isNegative() ?
3224               ConstantInt::getTrue(CI->getContext()) :
3225               ConstantInt::getFalse(CI->getContext());
3226           case ICmpInst::ICMP_SLT:
3227           case ICmpInst::ICMP_SLE:
3228             return CI->getValue().isNegative() ?
3229               ConstantInt::getFalse(CI->getContext()) :
3230               ConstantInt::getTrue(CI->getContext());
3231 
3232           // If LHS is non-negative then LHS <u RHS.  If LHS is negative then
3233           // LHS >u RHS.
3234           case ICmpInst::ICMP_UGT:
3235           case ICmpInst::ICMP_UGE:
3236             // Comparison is true iff the LHS <s 0.
3237             if (MaxRecurse)
3238               if (Value *V = SimplifyICmpInst(ICmpInst::ICMP_SLT, SrcOp,
3239                                               Constant::getNullValue(SrcTy),
3240                                               Q, MaxRecurse-1))
3241                 return V;
3242             break;
3243           case ICmpInst::ICMP_ULT:
3244           case ICmpInst::ICMP_ULE:
3245             // Comparison is true iff the LHS >=s 0.
3246             if (MaxRecurse)
3247               if (Value *V = SimplifyICmpInst(ICmpInst::ICMP_SGE, SrcOp,
3248                                               Constant::getNullValue(SrcTy),
3249                                               Q, MaxRecurse-1))
3250                 return V;
3251             break;
3252           }
3253         }
3254       }
3255     }
3256   }
3257 
3258   // icmp eq|ne X, Y -> false|true if X != Y
3259   if (ICmpInst::isEquality(Pred) &&
3260       isKnownNonEqual(LHS, RHS, Q.DL, Q.AC, Q.CxtI, Q.DT, Q.IIQ.UseInstrInfo)) {
3261     return Pred == ICmpInst::ICMP_NE ? getTrue(ITy) : getFalse(ITy);
3262   }
3263 
3264   if (Value *V = simplifyICmpWithBinOp(Pred, LHS, RHS, Q, MaxRecurse))
3265     return V;
3266 
3267   if (Value *V = simplifyICmpWithMinMax(Pred, LHS, RHS, Q, MaxRecurse))
3268     return V;
3269 
3270   // Simplify comparisons of related pointers using a powerful, recursive
3271   // GEP-walk when we have target data available..
3272   if (LHS->getType()->isPointerTy())
3273     if (auto *C = computePointerICmp(Q.DL, Q.TLI, Q.DT, Pred, Q.AC, Q.CxtI,
3274                                      Q.IIQ, LHS, RHS))
3275       return C;
3276   if (auto *CLHS = dyn_cast<PtrToIntOperator>(LHS))
3277     if (auto *CRHS = dyn_cast<PtrToIntOperator>(RHS))
3278       if (Q.DL.getTypeSizeInBits(CLHS->getPointerOperandType()) ==
3279               Q.DL.getTypeSizeInBits(CLHS->getType()) &&
3280           Q.DL.getTypeSizeInBits(CRHS->getPointerOperandType()) ==
3281               Q.DL.getTypeSizeInBits(CRHS->getType()))
3282         if (auto *C = computePointerICmp(Q.DL, Q.TLI, Q.DT, Pred, Q.AC, Q.CxtI,
3283                                          Q.IIQ, CLHS->getPointerOperand(),
3284                                          CRHS->getPointerOperand()))
3285           return C;
3286 
3287   if (GetElementPtrInst *GLHS = dyn_cast<GetElementPtrInst>(LHS)) {
3288     if (GEPOperator *GRHS = dyn_cast<GEPOperator>(RHS)) {
3289       if (GLHS->getPointerOperand() == GRHS->getPointerOperand() &&
3290           GLHS->hasAllConstantIndices() && GRHS->hasAllConstantIndices() &&
3291           (ICmpInst::isEquality(Pred) ||
3292            (GLHS->isInBounds() && GRHS->isInBounds() &&
3293             Pred == ICmpInst::getSignedPredicate(Pred)))) {
3294         // The bases are equal and the indices are constant.  Build a constant
3295         // expression GEP with the same indices and a null base pointer to see
3296         // what constant folding can make out of it.
3297         Constant *Null = Constant::getNullValue(GLHS->getPointerOperandType());
3298         SmallVector<Value *, 4> IndicesLHS(GLHS->idx_begin(), GLHS->idx_end());
3299         Constant *NewLHS = ConstantExpr::getGetElementPtr(
3300             GLHS->getSourceElementType(), Null, IndicesLHS);
3301 
3302         SmallVector<Value *, 4> IndicesRHS(GRHS->idx_begin(), GRHS->idx_end());
3303         Constant *NewRHS = ConstantExpr::getGetElementPtr(
3304             GLHS->getSourceElementType(), Null, IndicesRHS);
3305         return ConstantExpr::getICmp(Pred, NewLHS, NewRHS);
3306       }
3307     }
3308   }
3309 
3310   // If the comparison is with the result of a select instruction, check whether
3311   // comparing with either branch of the select always yields the same value.
3312   if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS))
3313     if (Value *V = ThreadCmpOverSelect(Pred, LHS, RHS, Q, MaxRecurse))
3314       return V;
3315 
3316   // If the comparison is with the result of a phi instruction, check whether
3317   // doing the compare with each incoming phi value yields a common result.
3318   if (isa<PHINode>(LHS) || isa<PHINode>(RHS))
3319     if (Value *V = ThreadCmpOverPHI(Pred, LHS, RHS, Q, MaxRecurse))
3320       return V;
3321 
3322   return nullptr;
3323 }
3324 
3325 Value *llvm::SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS,
3326                               const SimplifyQuery &Q) {
3327   return ::SimplifyICmpInst(Predicate, LHS, RHS, Q, RecursionLimit);
3328 }
3329 
3330 /// Given operands for an FCmpInst, see if we can fold the result.
3331 /// If not, this returns null.
3332 static Value *SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
3333                                FastMathFlags FMF, const SimplifyQuery &Q,
3334                                unsigned MaxRecurse) {
3335   CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate;
3336   assert(CmpInst::isFPPredicate(Pred) && "Not an FP compare!");
3337 
3338   if (Constant *CLHS = dyn_cast<Constant>(LHS)) {
3339     if (Constant *CRHS = dyn_cast<Constant>(RHS))
3340       return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, Q.DL, Q.TLI);
3341 
3342     // If we have a constant, make sure it is on the RHS.
3343     std::swap(LHS, RHS);
3344     Pred = CmpInst::getSwappedPredicate(Pred);
3345   }
3346 
3347   // Fold trivial predicates.
3348   Type *RetTy = GetCompareTy(LHS);
3349   if (Pred == FCmpInst::FCMP_FALSE)
3350     return getFalse(RetTy);
3351   if (Pred == FCmpInst::FCMP_TRUE)
3352     return getTrue(RetTy);
3353 
3354   // Fold (un)ordered comparison if we can determine there are no NaNs.
3355   if (Pred == FCmpInst::FCMP_UNO || Pred == FCmpInst::FCMP_ORD)
3356     if (FMF.noNaNs() ||
3357         (isKnownNeverNaN(LHS, Q.TLI) && isKnownNeverNaN(RHS, Q.TLI)))
3358       return ConstantInt::get(RetTy, Pred == FCmpInst::FCMP_ORD);
3359 
3360   // NaN is unordered; NaN is not ordered.
3361   assert((FCmpInst::isOrdered(Pred) || FCmpInst::isUnordered(Pred)) &&
3362          "Comparison must be either ordered or unordered");
3363   if (match(RHS, m_NaN()))
3364     return ConstantInt::get(RetTy, CmpInst::isUnordered(Pred));
3365 
3366   // fcmp pred x, undef  and  fcmp pred undef, x
3367   // fold to true if unordered, false if ordered
3368   if (isa<UndefValue>(LHS) || isa<UndefValue>(RHS)) {
3369     // Choosing NaN for the undef will always make unordered comparison succeed
3370     // and ordered comparison fail.
3371     return ConstantInt::get(RetTy, CmpInst::isUnordered(Pred));
3372   }
3373 
3374   // fcmp x,x -> true/false.  Not all compares are foldable.
3375   if (LHS == RHS) {
3376     if (CmpInst::isTrueWhenEqual(Pred))
3377       return getTrue(RetTy);
3378     if (CmpInst::isFalseWhenEqual(Pred))
3379       return getFalse(RetTy);
3380   }
3381 
3382   // Handle fcmp with constant RHS.
3383   // TODO: Use match with a specific FP value, so these work with vectors with
3384   // undef lanes.
3385   const APFloat *C;
3386   if (match(RHS, m_APFloat(C))) {
3387     // Check whether the constant is an infinity.
3388     if (C->isInfinity()) {
3389       if (C->isNegative()) {
3390         switch (Pred) {
3391         case FCmpInst::FCMP_OLT:
3392           // No value is ordered and less than negative infinity.
3393           return getFalse(RetTy);
3394         case FCmpInst::FCMP_UGE:
3395           // All values are unordered with or at least negative infinity.
3396           return getTrue(RetTy);
3397         default:
3398           break;
3399         }
3400       } else {
3401         switch (Pred) {
3402         case FCmpInst::FCMP_OGT:
3403           // No value is ordered and greater than infinity.
3404           return getFalse(RetTy);
3405         case FCmpInst::FCMP_ULE:
3406           // All values are unordered with and at most infinity.
3407           return getTrue(RetTy);
3408         default:
3409           break;
3410         }
3411       }
3412     }
3413     if (C->isNegative() && !C->isNegZero()) {
3414       assert(!C->isNaN() && "Unexpected NaN constant!");
3415       // TODO: We can catch more cases by using a range check rather than
3416       //       relying on CannotBeOrderedLessThanZero.
3417       switch (Pred) {
3418       case FCmpInst::FCMP_UGE:
3419       case FCmpInst::FCMP_UGT:
3420       case FCmpInst::FCMP_UNE:
3421         // (X >= 0) implies (X > C) when (C < 0)
3422         if (CannotBeOrderedLessThanZero(LHS, Q.TLI))
3423           return getTrue(RetTy);
3424         break;
3425       case FCmpInst::FCMP_OEQ:
3426       case FCmpInst::FCMP_OLE:
3427       case FCmpInst::FCMP_OLT:
3428         // (X >= 0) implies !(X < C) when (C < 0)
3429         if (CannotBeOrderedLessThanZero(LHS, Q.TLI))
3430           return getFalse(RetTy);
3431         break;
3432       default:
3433         break;
3434       }
3435     }
3436 
3437     // Check comparison of constant with minnum with smaller constant.
3438     // TODO: Add the related transform for maxnum.
3439     const APFloat *MinC;
3440     if (match(LHS,
3441               m_Intrinsic<Intrinsic::minnum>(m_Value(), m_APFloat(MinC))) &&
3442         MinC->compare(*C) == APFloat::cmpLessThan) {
3443       // The 'less-than' relationship and minnum guarantee that we do not have
3444       // NaN constants, so ordered and unordered preds are handled the same.
3445       switch (Pred) {
3446       case FCmpInst::FCMP_OEQ: case FCmpInst::FCMP_UEQ:
3447       case FCmpInst::FCMP_OGE: case FCmpInst::FCMP_UGE:
3448       case FCmpInst::FCMP_OGT: case FCmpInst::FCMP_UGT:
3449         // minnum(X, LesserC) == C --> false
3450         // minnum(X, LesserC) >= C --> false
3451         // minnum(X, LesserC) >  C --> false
3452         return getFalse(RetTy);
3453       case FCmpInst::FCMP_ONE: case FCmpInst::FCMP_UNE:
3454       case FCmpInst::FCMP_OLE: case FCmpInst::FCMP_ULE:
3455       case FCmpInst::FCMP_OLT: case FCmpInst::FCMP_ULT:
3456         // minnum(X, LesserC) != C --> true
3457         // minnum(X, LesserC) <= C --> true
3458         // minnum(X, LesserC) <  C --> true
3459         return getTrue(RetTy);
3460       default:
3461         // TRUE/FALSE/ORD/UNO should be handled before this.
3462         llvm_unreachable("Unexpected fcmp predicate");
3463       }
3464     }
3465   }
3466 
3467   if (match(RHS, m_AnyZeroFP())) {
3468     switch (Pred) {
3469     case FCmpInst::FCMP_OGE:
3470       if (FMF.noNaNs() && CannotBeOrderedLessThanZero(LHS, Q.TLI))
3471         return getTrue(RetTy);
3472       break;
3473     case FCmpInst::FCMP_UGE:
3474       if (CannotBeOrderedLessThanZero(LHS, Q.TLI))
3475         return getTrue(RetTy);
3476       break;
3477     case FCmpInst::FCMP_ULT:
3478       if (FMF.noNaNs() && CannotBeOrderedLessThanZero(LHS, Q.TLI))
3479         return getFalse(RetTy);
3480       break;
3481     case FCmpInst::FCMP_OLT:
3482       if (CannotBeOrderedLessThanZero(LHS, Q.TLI))
3483         return getFalse(RetTy);
3484       break;
3485     default:
3486       break;
3487     }
3488   }
3489 
3490   // If the comparison is with the result of a select instruction, check whether
3491   // comparing with either branch of the select always yields the same value.
3492   if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS))
3493     if (Value *V = ThreadCmpOverSelect(Pred, LHS, RHS, Q, MaxRecurse))
3494       return V;
3495 
3496   // If the comparison is with the result of a phi instruction, check whether
3497   // doing the compare with each incoming phi value yields a common result.
3498   if (isa<PHINode>(LHS) || isa<PHINode>(RHS))
3499     if (Value *V = ThreadCmpOverPHI(Pred, LHS, RHS, Q, MaxRecurse))
3500       return V;
3501 
3502   return nullptr;
3503 }
3504 
3505 Value *llvm::SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
3506                               FastMathFlags FMF, const SimplifyQuery &Q) {
3507   return ::SimplifyFCmpInst(Predicate, LHS, RHS, FMF, Q, RecursionLimit);
3508 }
3509 
3510 /// See if V simplifies when its operand Op is replaced with RepOp.
3511 static const Value *SimplifyWithOpReplaced(Value *V, Value *Op, Value *RepOp,
3512                                            const SimplifyQuery &Q,
3513                                            unsigned MaxRecurse) {
3514   // Trivial replacement.
3515   if (V == Op)
3516     return RepOp;
3517 
3518   // We cannot replace a constant, and shouldn't even try.
3519   if (isa<Constant>(Op))
3520     return nullptr;
3521 
3522   auto *I = dyn_cast<Instruction>(V);
3523   if (!I)
3524     return nullptr;
3525 
3526   // If this is a binary operator, try to simplify it with the replaced op.
3527   if (auto *B = dyn_cast<BinaryOperator>(I)) {
3528     // Consider:
3529     //   %cmp = icmp eq i32 %x, 2147483647
3530     //   %add = add nsw i32 %x, 1
3531     //   %sel = select i1 %cmp, i32 -2147483648, i32 %add
3532     //
3533     // We can't replace %sel with %add unless we strip away the flags.
3534     if (isa<OverflowingBinaryOperator>(B))
3535       if (Q.IIQ.hasNoSignedWrap(B) || Q.IIQ.hasNoUnsignedWrap(B))
3536         return nullptr;
3537     if (isa<PossiblyExactOperator>(B) && Q.IIQ.isExact(B))
3538       return nullptr;
3539 
3540     if (MaxRecurse) {
3541       if (B->getOperand(0) == Op)
3542         return SimplifyBinOp(B->getOpcode(), RepOp, B->getOperand(1), Q,
3543                              MaxRecurse - 1);
3544       if (B->getOperand(1) == Op)
3545         return SimplifyBinOp(B->getOpcode(), B->getOperand(0), RepOp, Q,
3546                              MaxRecurse - 1);
3547     }
3548   }
3549 
3550   // Same for CmpInsts.
3551   if (CmpInst *C = dyn_cast<CmpInst>(I)) {
3552     if (MaxRecurse) {
3553       if (C->getOperand(0) == Op)
3554         return SimplifyCmpInst(C->getPredicate(), RepOp, C->getOperand(1), Q,
3555                                MaxRecurse - 1);
3556       if (C->getOperand(1) == Op)
3557         return SimplifyCmpInst(C->getPredicate(), C->getOperand(0), RepOp, Q,
3558                                MaxRecurse - 1);
3559     }
3560   }
3561 
3562   // Same for GEPs.
3563   if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) {
3564     if (MaxRecurse) {
3565       SmallVector<Value *, 8> NewOps(GEP->getNumOperands());
3566       transform(GEP->operands(), NewOps.begin(),
3567                 [&](Value *V) { return V == Op ? RepOp : V; });
3568       return SimplifyGEPInst(GEP->getSourceElementType(), NewOps, Q,
3569                              MaxRecurse - 1);
3570     }
3571   }
3572 
3573   // TODO: We could hand off more cases to instsimplify here.
3574 
3575   // If all operands are constant after substituting Op for RepOp then we can
3576   // constant fold the instruction.
3577   if (Constant *CRepOp = dyn_cast<Constant>(RepOp)) {
3578     // Build a list of all constant operands.
3579     SmallVector<Constant *, 8> ConstOps;
3580     for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
3581       if (I->getOperand(i) == Op)
3582         ConstOps.push_back(CRepOp);
3583       else if (Constant *COp = dyn_cast<Constant>(I->getOperand(i)))
3584         ConstOps.push_back(COp);
3585       else
3586         break;
3587     }
3588 
3589     // All operands were constants, fold it.
3590     if (ConstOps.size() == I->getNumOperands()) {
3591       if (CmpInst *C = dyn_cast<CmpInst>(I))
3592         return ConstantFoldCompareInstOperands(C->getPredicate(), ConstOps[0],
3593                                                ConstOps[1], Q.DL, Q.TLI);
3594 
3595       if (LoadInst *LI = dyn_cast<LoadInst>(I))
3596         if (!LI->isVolatile())
3597           return ConstantFoldLoadFromConstPtr(ConstOps[0], LI->getType(), Q.DL);
3598 
3599       return ConstantFoldInstOperands(I, ConstOps, Q.DL, Q.TLI);
3600     }
3601   }
3602 
3603   return nullptr;
3604 }
3605 
3606 /// Try to simplify a select instruction when its condition operand is an
3607 /// integer comparison where one operand of the compare is a constant.
3608 static Value *simplifySelectBitTest(Value *TrueVal, Value *FalseVal, Value *X,
3609                                     const APInt *Y, bool TrueWhenUnset) {
3610   const APInt *C;
3611 
3612   // (X & Y) == 0 ? X & ~Y : X  --> X
3613   // (X & Y) != 0 ? X & ~Y : X  --> X & ~Y
3614   if (FalseVal == X && match(TrueVal, m_And(m_Specific(X), m_APInt(C))) &&
3615       *Y == ~*C)
3616     return TrueWhenUnset ? FalseVal : TrueVal;
3617 
3618   // (X & Y) == 0 ? X : X & ~Y  --> X & ~Y
3619   // (X & Y) != 0 ? X : X & ~Y  --> X
3620   if (TrueVal == X && match(FalseVal, m_And(m_Specific(X), m_APInt(C))) &&
3621       *Y == ~*C)
3622     return TrueWhenUnset ? FalseVal : TrueVal;
3623 
3624   if (Y->isPowerOf2()) {
3625     // (X & Y) == 0 ? X | Y : X  --> X | Y
3626     // (X & Y) != 0 ? X | Y : X  --> X
3627     if (FalseVal == X && match(TrueVal, m_Or(m_Specific(X), m_APInt(C))) &&
3628         *Y == *C)
3629       return TrueWhenUnset ? TrueVal : FalseVal;
3630 
3631     // (X & Y) == 0 ? X : X | Y  --> X
3632     // (X & Y) != 0 ? X : X | Y  --> X | Y
3633     if (TrueVal == X && match(FalseVal, m_Or(m_Specific(X), m_APInt(C))) &&
3634         *Y == *C)
3635       return TrueWhenUnset ? TrueVal : FalseVal;
3636   }
3637 
3638   return nullptr;
3639 }
3640 
3641 /// An alternative way to test if a bit is set or not uses sgt/slt instead of
3642 /// eq/ne.
3643 static Value *simplifySelectWithFakeICmpEq(Value *CmpLHS, Value *CmpRHS,
3644                                            ICmpInst::Predicate Pred,
3645                                            Value *TrueVal, Value *FalseVal) {
3646   Value *X;
3647   APInt Mask;
3648   if (!decomposeBitTestICmp(CmpLHS, CmpRHS, Pred, X, Mask))
3649     return nullptr;
3650 
3651   return simplifySelectBitTest(TrueVal, FalseVal, X, &Mask,
3652                                Pred == ICmpInst::ICMP_EQ);
3653 }
3654 
3655 /// Try to simplify a select instruction when its condition operand is an
3656 /// integer comparison.
3657 static Value *simplifySelectWithICmpCond(Value *CondVal, Value *TrueVal,
3658                                          Value *FalseVal, const SimplifyQuery &Q,
3659                                          unsigned MaxRecurse) {
3660   ICmpInst::Predicate Pred;
3661   Value *CmpLHS, *CmpRHS;
3662   if (!match(CondVal, m_ICmp(Pred, m_Value(CmpLHS), m_Value(CmpRHS))))
3663     return nullptr;
3664 
3665   if (ICmpInst::isEquality(Pred) && match(CmpRHS, m_Zero())) {
3666     Value *X;
3667     const APInt *Y;
3668     if (match(CmpLHS, m_And(m_Value(X), m_APInt(Y))))
3669       if (Value *V = simplifySelectBitTest(TrueVal, FalseVal, X, Y,
3670                                            Pred == ICmpInst::ICMP_EQ))
3671         return V;
3672 
3673     // Test for a bogus zero-shift-guard-op around funnel-shift or rotate.
3674     Value *ShAmt;
3675     auto isFsh = m_CombineOr(m_Intrinsic<Intrinsic::fshl>(m_Value(X), m_Value(),
3676                                                           m_Value(ShAmt)),
3677                              m_Intrinsic<Intrinsic::fshr>(m_Value(), m_Value(X),
3678                                                           m_Value(ShAmt)));
3679     // (ShAmt == 0) ? fshl(X, *, ShAmt) : X --> X
3680     // (ShAmt == 0) ? fshr(*, X, ShAmt) : X --> X
3681     if (match(TrueVal, isFsh) && FalseVal == X && CmpLHS == ShAmt &&
3682         Pred == ICmpInst::ICMP_EQ)
3683       return X;
3684     // (ShAmt != 0) ? X : fshl(X, *, ShAmt) --> X
3685     // (ShAmt != 0) ? X : fshr(*, X, ShAmt) --> X
3686     if (match(FalseVal, isFsh) && TrueVal == X && CmpLHS == ShAmt &&
3687         Pred == ICmpInst::ICMP_NE)
3688       return X;
3689 
3690     // Test for a zero-shift-guard-op around rotates. These are used to
3691     // avoid UB from oversized shifts in raw IR rotate patterns, but the
3692     // intrinsics do not have that problem.
3693     // We do not allow this transform for the general funnel shift case because
3694     // that would not preserve the poison safety of the original code.
3695     auto isRotate = m_CombineOr(m_Intrinsic<Intrinsic::fshl>(m_Value(X),
3696                                                              m_Deferred(X),
3697                                                              m_Value(ShAmt)),
3698                                 m_Intrinsic<Intrinsic::fshr>(m_Value(X),
3699                                                              m_Deferred(X),
3700                                                              m_Value(ShAmt)));
3701     // (ShAmt != 0) ? fshl(X, X, ShAmt) : X --> fshl(X, X, ShAmt)
3702     // (ShAmt != 0) ? fshr(X, X, ShAmt) : X --> fshr(X, X, ShAmt)
3703     if (match(TrueVal, isRotate) && FalseVal == X && CmpLHS == ShAmt &&
3704         Pred == ICmpInst::ICMP_NE)
3705       return TrueVal;
3706     // (ShAmt == 0) ? X : fshl(X, X, ShAmt) --> fshl(X, X, ShAmt)
3707     // (ShAmt == 0) ? X : fshr(X, X, ShAmt) --> fshr(X, X, ShAmt)
3708     if (match(FalseVal, isRotate) && TrueVal == X && CmpLHS == ShAmt &&
3709         Pred == ICmpInst::ICMP_EQ)
3710       return FalseVal;
3711   }
3712 
3713   // Check for other compares that behave like bit test.
3714   if (Value *V = simplifySelectWithFakeICmpEq(CmpLHS, CmpRHS, Pred,
3715                                               TrueVal, FalseVal))
3716     return V;
3717 
3718   // If we have an equality comparison, then we know the value in one of the
3719   // arms of the select. See if substituting this value into the arm and
3720   // simplifying the result yields the same value as the other arm.
3721   if (Pred == ICmpInst::ICMP_EQ) {
3722     if (SimplifyWithOpReplaced(FalseVal, CmpLHS, CmpRHS, Q, MaxRecurse) ==
3723             TrueVal ||
3724         SimplifyWithOpReplaced(FalseVal, CmpRHS, CmpLHS, Q, MaxRecurse) ==
3725             TrueVal)
3726       return FalseVal;
3727     if (SimplifyWithOpReplaced(TrueVal, CmpLHS, CmpRHS, Q, MaxRecurse) ==
3728             FalseVal ||
3729         SimplifyWithOpReplaced(TrueVal, CmpRHS, CmpLHS, Q, MaxRecurse) ==
3730             FalseVal)
3731       return FalseVal;
3732   } else if (Pred == ICmpInst::ICMP_NE) {
3733     if (SimplifyWithOpReplaced(TrueVal, CmpLHS, CmpRHS, Q, MaxRecurse) ==
3734             FalseVal ||
3735         SimplifyWithOpReplaced(TrueVal, CmpRHS, CmpLHS, Q, MaxRecurse) ==
3736             FalseVal)
3737       return TrueVal;
3738     if (SimplifyWithOpReplaced(FalseVal, CmpLHS, CmpRHS, Q, MaxRecurse) ==
3739             TrueVal ||
3740         SimplifyWithOpReplaced(FalseVal, CmpRHS, CmpLHS, Q, MaxRecurse) ==
3741             TrueVal)
3742       return TrueVal;
3743   }
3744 
3745   return nullptr;
3746 }
3747 
3748 /// Try to simplify a select instruction when its condition operand is a
3749 /// floating-point comparison.
3750 static Value *simplifySelectWithFCmp(Value *Cond, Value *T, Value *F) {
3751   FCmpInst::Predicate Pred;
3752   if (!match(Cond, m_FCmp(Pred, m_Specific(T), m_Specific(F))) &&
3753       !match(Cond, m_FCmp(Pred, m_Specific(F), m_Specific(T))))
3754     return nullptr;
3755 
3756   // TODO: The transform may not be valid with -0.0. An incomplete way of
3757   // testing for that possibility is to check if at least one operand is a
3758   // non-zero constant.
3759   const APFloat *C;
3760   if ((match(T, m_APFloat(C)) && C->isNonZero()) ||
3761       (match(F, m_APFloat(C)) && C->isNonZero())) {
3762     // (T == F) ? T : F --> F
3763     // (F == T) ? T : F --> F
3764     if (Pred == FCmpInst::FCMP_OEQ)
3765       return F;
3766 
3767     // (T != F) ? T : F --> T
3768     // (F != T) ? T : F --> T
3769     if (Pred == FCmpInst::FCMP_UNE)
3770       return T;
3771   }
3772 
3773   return nullptr;
3774 }
3775 
3776 /// Given operands for a SelectInst, see if we can fold the result.
3777 /// If not, this returns null.
3778 static Value *SimplifySelectInst(Value *Cond, Value *TrueVal, Value *FalseVal,
3779                                  const SimplifyQuery &Q, unsigned MaxRecurse) {
3780   if (auto *CondC = dyn_cast<Constant>(Cond)) {
3781     if (auto *TrueC = dyn_cast<Constant>(TrueVal))
3782       if (auto *FalseC = dyn_cast<Constant>(FalseVal))
3783         return ConstantFoldSelectInstruction(CondC, TrueC, FalseC);
3784 
3785     // select undef, X, Y -> X or Y
3786     if (isa<UndefValue>(CondC))
3787       return isa<Constant>(FalseVal) ? FalseVal : TrueVal;
3788 
3789     // TODO: Vector constants with undef elements don't simplify.
3790 
3791     // select true, X, Y  -> X
3792     if (CondC->isAllOnesValue())
3793       return TrueVal;
3794     // select false, X, Y -> Y
3795     if (CondC->isNullValue())
3796       return FalseVal;
3797   }
3798 
3799   // select ?, X, X -> X
3800   if (TrueVal == FalseVal)
3801     return TrueVal;
3802 
3803   if (isa<UndefValue>(TrueVal))   // select ?, undef, X -> X
3804     return FalseVal;
3805   if (isa<UndefValue>(FalseVal))   // select ?, X, undef -> X
3806     return TrueVal;
3807 
3808   if (Value *V =
3809           simplifySelectWithICmpCond(Cond, TrueVal, FalseVal, Q, MaxRecurse))
3810     return V;
3811 
3812   if (Value *V = simplifySelectWithFCmp(Cond, TrueVal, FalseVal))
3813     return V;
3814 
3815   if (Value *V = foldSelectWithBinaryOp(Cond, TrueVal, FalseVal))
3816     return V;
3817 
3818   Optional<bool> Imp = isImpliedByDomCondition(Cond, Q.CxtI, Q.DL);
3819   if (Imp)
3820     return *Imp ? TrueVal : FalseVal;
3821 
3822   return nullptr;
3823 }
3824 
3825 Value *llvm::SimplifySelectInst(Value *Cond, Value *TrueVal, Value *FalseVal,
3826                                 const SimplifyQuery &Q) {
3827   return ::SimplifySelectInst(Cond, TrueVal, FalseVal, Q, RecursionLimit);
3828 }
3829 
3830 /// Given operands for an GetElementPtrInst, see if we can fold the result.
3831 /// If not, this returns null.
3832 static Value *SimplifyGEPInst(Type *SrcTy, ArrayRef<Value *> Ops,
3833                               const SimplifyQuery &Q, unsigned) {
3834   // The type of the GEP pointer operand.
3835   unsigned AS =
3836       cast<PointerType>(Ops[0]->getType()->getScalarType())->getAddressSpace();
3837 
3838   // getelementptr P -> P.
3839   if (Ops.size() == 1)
3840     return Ops[0];
3841 
3842   // Compute the (pointer) type returned by the GEP instruction.
3843   Type *LastType = GetElementPtrInst::getIndexedType(SrcTy, Ops.slice(1));
3844   Type *GEPTy = PointerType::get(LastType, AS);
3845   if (VectorType *VT = dyn_cast<VectorType>(Ops[0]->getType()))
3846     GEPTy = VectorType::get(GEPTy, VT->getNumElements());
3847   else if (VectorType *VT = dyn_cast<VectorType>(Ops[1]->getType()))
3848     GEPTy = VectorType::get(GEPTy, VT->getNumElements());
3849 
3850   if (isa<UndefValue>(Ops[0]))
3851     return UndefValue::get(GEPTy);
3852 
3853   if (Ops.size() == 2) {
3854     // getelementptr P, 0 -> P.
3855     if (match(Ops[1], m_Zero()) && Ops[0]->getType() == GEPTy)
3856       return Ops[0];
3857 
3858     Type *Ty = SrcTy;
3859     if (Ty->isSized()) {
3860       Value *P;
3861       uint64_t C;
3862       uint64_t TyAllocSize = Q.DL.getTypeAllocSize(Ty);
3863       // getelementptr P, N -> P if P points to a type of zero size.
3864       if (TyAllocSize == 0 && Ops[0]->getType() == GEPTy)
3865         return Ops[0];
3866 
3867       // The following transforms are only safe if the ptrtoint cast
3868       // doesn't truncate the pointers.
3869       if (Ops[1]->getType()->getScalarSizeInBits() ==
3870           Q.DL.getIndexSizeInBits(AS)) {
3871         auto PtrToIntOrZero = [GEPTy](Value *P) -> Value * {
3872           if (match(P, m_Zero()))
3873             return Constant::getNullValue(GEPTy);
3874           Value *Temp;
3875           if (match(P, m_PtrToInt(m_Value(Temp))))
3876             if (Temp->getType() == GEPTy)
3877               return Temp;
3878           return nullptr;
3879         };
3880 
3881         // getelementptr V, (sub P, V) -> P if P points to a type of size 1.
3882         if (TyAllocSize == 1 &&
3883             match(Ops[1], m_Sub(m_Value(P), m_PtrToInt(m_Specific(Ops[0])))))
3884           if (Value *R = PtrToIntOrZero(P))
3885             return R;
3886 
3887         // getelementptr V, (ashr (sub P, V), C) -> Q
3888         // if P points to a type of size 1 << C.
3889         if (match(Ops[1],
3890                   m_AShr(m_Sub(m_Value(P), m_PtrToInt(m_Specific(Ops[0]))),
3891                          m_ConstantInt(C))) &&
3892             TyAllocSize == 1ULL << C)
3893           if (Value *R = PtrToIntOrZero(P))
3894             return R;
3895 
3896         // getelementptr V, (sdiv (sub P, V), C) -> Q
3897         // if P points to a type of size C.
3898         if (match(Ops[1],
3899                   m_SDiv(m_Sub(m_Value(P), m_PtrToInt(m_Specific(Ops[0]))),
3900                          m_SpecificInt(TyAllocSize))))
3901           if (Value *R = PtrToIntOrZero(P))
3902             return R;
3903       }
3904     }
3905   }
3906 
3907   if (Q.DL.getTypeAllocSize(LastType) == 1 &&
3908       all_of(Ops.slice(1).drop_back(1),
3909              [](Value *Idx) { return match(Idx, m_Zero()); })) {
3910     unsigned IdxWidth =
3911         Q.DL.getIndexSizeInBits(Ops[0]->getType()->getPointerAddressSpace());
3912     if (Q.DL.getTypeSizeInBits(Ops.back()->getType()) == IdxWidth) {
3913       APInt BasePtrOffset(IdxWidth, 0);
3914       Value *StrippedBasePtr =
3915           Ops[0]->stripAndAccumulateInBoundsConstantOffsets(Q.DL,
3916                                                             BasePtrOffset);
3917 
3918       // gep (gep V, C), (sub 0, V) -> C
3919       if (match(Ops.back(),
3920                 m_Sub(m_Zero(), m_PtrToInt(m_Specific(StrippedBasePtr))))) {
3921         auto *CI = ConstantInt::get(GEPTy->getContext(), BasePtrOffset);
3922         return ConstantExpr::getIntToPtr(CI, GEPTy);
3923       }
3924       // gep (gep V, C), (xor V, -1) -> C-1
3925       if (match(Ops.back(),
3926                 m_Xor(m_PtrToInt(m_Specific(StrippedBasePtr)), m_AllOnes()))) {
3927         auto *CI = ConstantInt::get(GEPTy->getContext(), BasePtrOffset - 1);
3928         return ConstantExpr::getIntToPtr(CI, GEPTy);
3929       }
3930     }
3931   }
3932 
3933   // Check to see if this is constant foldable.
3934   if (!all_of(Ops, [](Value *V) { return isa<Constant>(V); }))
3935     return nullptr;
3936 
3937   auto *CE = ConstantExpr::getGetElementPtr(SrcTy, cast<Constant>(Ops[0]),
3938                                             Ops.slice(1));
3939   if (auto *CEFolded = ConstantFoldConstant(CE, Q.DL))
3940     return CEFolded;
3941   return CE;
3942 }
3943 
3944 Value *llvm::SimplifyGEPInst(Type *SrcTy, ArrayRef<Value *> Ops,
3945                              const SimplifyQuery &Q) {
3946   return ::SimplifyGEPInst(SrcTy, Ops, Q, RecursionLimit);
3947 }
3948 
3949 /// Given operands for an InsertValueInst, see if we can fold the result.
3950 /// If not, this returns null.
3951 static Value *SimplifyInsertValueInst(Value *Agg, Value *Val,
3952                                       ArrayRef<unsigned> Idxs, const SimplifyQuery &Q,
3953                                       unsigned) {
3954   if (Constant *CAgg = dyn_cast<Constant>(Agg))
3955     if (Constant *CVal = dyn_cast<Constant>(Val))
3956       return ConstantFoldInsertValueInstruction(CAgg, CVal, Idxs);
3957 
3958   // insertvalue x, undef, n -> x
3959   if (match(Val, m_Undef()))
3960     return Agg;
3961 
3962   // insertvalue x, (extractvalue y, n), n
3963   if (ExtractValueInst *EV = dyn_cast<ExtractValueInst>(Val))
3964     if (EV->getAggregateOperand()->getType() == Agg->getType() &&
3965         EV->getIndices() == Idxs) {
3966       // insertvalue undef, (extractvalue y, n), n -> y
3967       if (match(Agg, m_Undef()))
3968         return EV->getAggregateOperand();
3969 
3970       // insertvalue y, (extractvalue y, n), n -> y
3971       if (Agg == EV->getAggregateOperand())
3972         return Agg;
3973     }
3974 
3975   return nullptr;
3976 }
3977 
3978 Value *llvm::SimplifyInsertValueInst(Value *Agg, Value *Val,
3979                                      ArrayRef<unsigned> Idxs,
3980                                      const SimplifyQuery &Q) {
3981   return ::SimplifyInsertValueInst(Agg, Val, Idxs, Q, RecursionLimit);
3982 }
3983 
3984 Value *llvm::SimplifyInsertElementInst(Value *Vec, Value *Val, Value *Idx,
3985                                        const SimplifyQuery &Q) {
3986   // Try to constant fold.
3987   auto *VecC = dyn_cast<Constant>(Vec);
3988   auto *ValC = dyn_cast<Constant>(Val);
3989   auto *IdxC = dyn_cast<Constant>(Idx);
3990   if (VecC && ValC && IdxC)
3991     return ConstantFoldInsertElementInstruction(VecC, ValC, IdxC);
3992 
3993   // Fold into undef if index is out of bounds.
3994   if (auto *CI = dyn_cast<ConstantInt>(Idx)) {
3995     uint64_t NumElements = cast<VectorType>(Vec->getType())->getNumElements();
3996     if (CI->uge(NumElements))
3997       return UndefValue::get(Vec->getType());
3998   }
3999 
4000   // If index is undef, it might be out of bounds (see above case)
4001   if (isa<UndefValue>(Idx))
4002     return UndefValue::get(Vec->getType());
4003 
4004   return nullptr;
4005 }
4006 
4007 /// Given operands for an ExtractValueInst, see if we can fold the result.
4008 /// If not, this returns null.
4009 static Value *SimplifyExtractValueInst(Value *Agg, ArrayRef<unsigned> Idxs,
4010                                        const SimplifyQuery &, unsigned) {
4011   if (auto *CAgg = dyn_cast<Constant>(Agg))
4012     return ConstantFoldExtractValueInstruction(CAgg, Idxs);
4013 
4014   // extractvalue x, (insertvalue y, elt, n), n -> elt
4015   unsigned NumIdxs = Idxs.size();
4016   for (auto *IVI = dyn_cast<InsertValueInst>(Agg); IVI != nullptr;
4017        IVI = dyn_cast<InsertValueInst>(IVI->getAggregateOperand())) {
4018     ArrayRef<unsigned> InsertValueIdxs = IVI->getIndices();
4019     unsigned NumInsertValueIdxs = InsertValueIdxs.size();
4020     unsigned NumCommonIdxs = std::min(NumInsertValueIdxs, NumIdxs);
4021     if (InsertValueIdxs.slice(0, NumCommonIdxs) ==
4022         Idxs.slice(0, NumCommonIdxs)) {
4023       if (NumIdxs == NumInsertValueIdxs)
4024         return IVI->getInsertedValueOperand();
4025       break;
4026     }
4027   }
4028 
4029   return nullptr;
4030 }
4031 
4032 Value *llvm::SimplifyExtractValueInst(Value *Agg, ArrayRef<unsigned> Idxs,
4033                                       const SimplifyQuery &Q) {
4034   return ::SimplifyExtractValueInst(Agg, Idxs, Q, RecursionLimit);
4035 }
4036 
4037 /// Given operands for an ExtractElementInst, see if we can fold the result.
4038 /// If not, this returns null.
4039 static Value *SimplifyExtractElementInst(Value *Vec, Value *Idx, const SimplifyQuery &,
4040                                          unsigned) {
4041   if (auto *CVec = dyn_cast<Constant>(Vec)) {
4042     if (auto *CIdx = dyn_cast<Constant>(Idx))
4043       return ConstantFoldExtractElementInstruction(CVec, CIdx);
4044 
4045     // The index is not relevant if our vector is a splat.
4046     if (auto *Splat = CVec->getSplatValue())
4047       return Splat;
4048 
4049     if (isa<UndefValue>(Vec))
4050       return UndefValue::get(Vec->getType()->getVectorElementType());
4051   }
4052 
4053   // If extracting a specified index from the vector, see if we can recursively
4054   // find a previously computed scalar that was inserted into the vector.
4055   if (auto *IdxC = dyn_cast<ConstantInt>(Idx)) {
4056     if (IdxC->getValue().uge(Vec->getType()->getVectorNumElements()))
4057       // definitely out of bounds, thus undefined result
4058       return UndefValue::get(Vec->getType()->getVectorElementType());
4059     if (Value *Elt = findScalarElement(Vec, IdxC->getZExtValue()))
4060       return Elt;
4061   }
4062 
4063   // An undef extract index can be arbitrarily chosen to be an out-of-range
4064   // index value, which would result in the instruction being undef.
4065   if (isa<UndefValue>(Idx))
4066     return UndefValue::get(Vec->getType()->getVectorElementType());
4067 
4068   return nullptr;
4069 }
4070 
4071 Value *llvm::SimplifyExtractElementInst(Value *Vec, Value *Idx,
4072                                         const SimplifyQuery &Q) {
4073   return ::SimplifyExtractElementInst(Vec, Idx, Q, RecursionLimit);
4074 }
4075 
4076 /// See if we can fold the given phi. If not, returns null.
4077 static Value *SimplifyPHINode(PHINode *PN, const SimplifyQuery &Q) {
4078   // If all of the PHI's incoming values are the same then replace the PHI node
4079   // with the common value.
4080   Value *CommonValue = nullptr;
4081   bool HasUndefInput = false;
4082   for (Value *Incoming : PN->incoming_values()) {
4083     // If the incoming value is the phi node itself, it can safely be skipped.
4084     if (Incoming == PN) continue;
4085     if (isa<UndefValue>(Incoming)) {
4086       // Remember that we saw an undef value, but otherwise ignore them.
4087       HasUndefInput = true;
4088       continue;
4089     }
4090     if (CommonValue && Incoming != CommonValue)
4091       return nullptr;  // Not the same, bail out.
4092     CommonValue = Incoming;
4093   }
4094 
4095   // If CommonValue is null then all of the incoming values were either undef or
4096   // equal to the phi node itself.
4097   if (!CommonValue)
4098     return UndefValue::get(PN->getType());
4099 
4100   // If we have a PHI node like phi(X, undef, X), where X is defined by some
4101   // instruction, we cannot return X as the result of the PHI node unless it
4102   // dominates the PHI block.
4103   if (HasUndefInput)
4104     return valueDominatesPHI(CommonValue, PN, Q.DT) ? CommonValue : nullptr;
4105 
4106   return CommonValue;
4107 }
4108 
4109 static Value *SimplifyCastInst(unsigned CastOpc, Value *Op,
4110                                Type *Ty, const SimplifyQuery &Q, unsigned MaxRecurse) {
4111   if (auto *C = dyn_cast<Constant>(Op))
4112     return ConstantFoldCastOperand(CastOpc, C, Ty, Q.DL);
4113 
4114   if (auto *CI = dyn_cast<CastInst>(Op)) {
4115     auto *Src = CI->getOperand(0);
4116     Type *SrcTy = Src->getType();
4117     Type *MidTy = CI->getType();
4118     Type *DstTy = Ty;
4119     if (Src->getType() == Ty) {
4120       auto FirstOp = static_cast<Instruction::CastOps>(CI->getOpcode());
4121       auto SecondOp = static_cast<Instruction::CastOps>(CastOpc);
4122       Type *SrcIntPtrTy =
4123           SrcTy->isPtrOrPtrVectorTy() ? Q.DL.getIntPtrType(SrcTy) : nullptr;
4124       Type *MidIntPtrTy =
4125           MidTy->isPtrOrPtrVectorTy() ? Q.DL.getIntPtrType(MidTy) : nullptr;
4126       Type *DstIntPtrTy =
4127           DstTy->isPtrOrPtrVectorTy() ? Q.DL.getIntPtrType(DstTy) : nullptr;
4128       if (CastInst::isEliminableCastPair(FirstOp, SecondOp, SrcTy, MidTy, DstTy,
4129                                          SrcIntPtrTy, MidIntPtrTy,
4130                                          DstIntPtrTy) == Instruction::BitCast)
4131         return Src;
4132     }
4133   }
4134 
4135   // bitcast x -> x
4136   if (CastOpc == Instruction::BitCast)
4137     if (Op->getType() == Ty)
4138       return Op;
4139 
4140   return nullptr;
4141 }
4142 
4143 Value *llvm::SimplifyCastInst(unsigned CastOpc, Value *Op, Type *Ty,
4144                               const SimplifyQuery &Q) {
4145   return ::SimplifyCastInst(CastOpc, Op, Ty, Q, RecursionLimit);
4146 }
4147 
4148 /// For the given destination element of a shuffle, peek through shuffles to
4149 /// match a root vector source operand that contains that element in the same
4150 /// vector lane (ie, the same mask index), so we can eliminate the shuffle(s).
4151 static Value *foldIdentityShuffles(int DestElt, Value *Op0, Value *Op1,
4152                                    int MaskVal, Value *RootVec,
4153                                    unsigned MaxRecurse) {
4154   if (!MaxRecurse--)
4155     return nullptr;
4156 
4157   // Bail out if any mask value is undefined. That kind of shuffle may be
4158   // simplified further based on demanded bits or other folds.
4159   if (MaskVal == -1)
4160     return nullptr;
4161 
4162   // The mask value chooses which source operand we need to look at next.
4163   int InVecNumElts = Op0->getType()->getVectorNumElements();
4164   int RootElt = MaskVal;
4165   Value *SourceOp = Op0;
4166   if (MaskVal >= InVecNumElts) {
4167     RootElt = MaskVal - InVecNumElts;
4168     SourceOp = Op1;
4169   }
4170 
4171   // If the source operand is a shuffle itself, look through it to find the
4172   // matching root vector.
4173   if (auto *SourceShuf = dyn_cast<ShuffleVectorInst>(SourceOp)) {
4174     return foldIdentityShuffles(
4175         DestElt, SourceShuf->getOperand(0), SourceShuf->getOperand(1),
4176         SourceShuf->getMaskValue(RootElt), RootVec, MaxRecurse);
4177   }
4178 
4179   // TODO: Look through bitcasts? What if the bitcast changes the vector element
4180   // size?
4181 
4182   // The source operand is not a shuffle. Initialize the root vector value for
4183   // this shuffle if that has not been done yet.
4184   if (!RootVec)
4185     RootVec = SourceOp;
4186 
4187   // Give up as soon as a source operand does not match the existing root value.
4188   if (RootVec != SourceOp)
4189     return nullptr;
4190 
4191   // The element must be coming from the same lane in the source vector
4192   // (although it may have crossed lanes in intermediate shuffles).
4193   if (RootElt != DestElt)
4194     return nullptr;
4195 
4196   return RootVec;
4197 }
4198 
4199 static Value *SimplifyShuffleVectorInst(Value *Op0, Value *Op1, Constant *Mask,
4200                                         Type *RetTy, const SimplifyQuery &Q,
4201                                         unsigned MaxRecurse) {
4202   if (isa<UndefValue>(Mask))
4203     return UndefValue::get(RetTy);
4204 
4205   Type *InVecTy = Op0->getType();
4206   unsigned MaskNumElts = Mask->getType()->getVectorNumElements();
4207   unsigned InVecNumElts = InVecTy->getVectorNumElements();
4208 
4209   SmallVector<int, 32> Indices;
4210   ShuffleVectorInst::getShuffleMask(Mask, Indices);
4211   assert(MaskNumElts == Indices.size() &&
4212          "Size of Indices not same as number of mask elements?");
4213 
4214   // Canonicalization: If mask does not select elements from an input vector,
4215   // replace that input vector with undef.
4216   bool MaskSelects0 = false, MaskSelects1 = false;
4217   for (unsigned i = 0; i != MaskNumElts; ++i) {
4218     if (Indices[i] == -1)
4219       continue;
4220     if ((unsigned)Indices[i] < InVecNumElts)
4221       MaskSelects0 = true;
4222     else
4223       MaskSelects1 = true;
4224   }
4225   if (!MaskSelects0)
4226     Op0 = UndefValue::get(InVecTy);
4227   if (!MaskSelects1)
4228     Op1 = UndefValue::get(InVecTy);
4229 
4230   auto *Op0Const = dyn_cast<Constant>(Op0);
4231   auto *Op1Const = dyn_cast<Constant>(Op1);
4232 
4233   // If all operands are constant, constant fold the shuffle.
4234   if (Op0Const && Op1Const)
4235     return ConstantFoldShuffleVectorInstruction(Op0Const, Op1Const, Mask);
4236 
4237   // Canonicalization: if only one input vector is constant, it shall be the
4238   // second one.
4239   if (Op0Const && !Op1Const) {
4240     std::swap(Op0, Op1);
4241     ShuffleVectorInst::commuteShuffleMask(Indices, InVecNumElts);
4242   }
4243 
4244   // A shuffle of a splat is always the splat itself. Legal if the shuffle's
4245   // value type is same as the input vectors' type.
4246   if (auto *OpShuf = dyn_cast<ShuffleVectorInst>(Op0))
4247     if (isa<UndefValue>(Op1) && RetTy == InVecTy &&
4248         OpShuf->getMask()->getSplatValue())
4249       return Op0;
4250 
4251   // Don't fold a shuffle with undef mask elements. This may get folded in a
4252   // better way using demanded bits or other analysis.
4253   // TODO: Should we allow this?
4254   if (find(Indices, -1) != Indices.end())
4255     return nullptr;
4256 
4257   // Check if every element of this shuffle can be mapped back to the
4258   // corresponding element of a single root vector. If so, we don't need this
4259   // shuffle. This handles simple identity shuffles as well as chains of
4260   // shuffles that may widen/narrow and/or move elements across lanes and back.
4261   Value *RootVec = nullptr;
4262   for (unsigned i = 0; i != MaskNumElts; ++i) {
4263     // Note that recursion is limited for each vector element, so if any element
4264     // exceeds the limit, this will fail to simplify.
4265     RootVec =
4266         foldIdentityShuffles(i, Op0, Op1, Indices[i], RootVec, MaxRecurse);
4267 
4268     // We can't replace a widening/narrowing shuffle with one of its operands.
4269     if (!RootVec || RootVec->getType() != RetTy)
4270       return nullptr;
4271   }
4272   return RootVec;
4273 }
4274 
4275 /// Given operands for a ShuffleVectorInst, fold the result or return null.
4276 Value *llvm::SimplifyShuffleVectorInst(Value *Op0, Value *Op1, Constant *Mask,
4277                                        Type *RetTy, const SimplifyQuery &Q) {
4278   return ::SimplifyShuffleVectorInst(Op0, Op1, Mask, RetTy, Q, RecursionLimit);
4279 }
4280 
4281 static Constant *foldConstant(Instruction::UnaryOps Opcode,
4282                               Value *&Op, const SimplifyQuery &Q) {
4283   if (auto *C = dyn_cast<Constant>(Op))
4284     return ConstantFoldUnaryOpOperand(Opcode, C, Q.DL);
4285   return nullptr;
4286 }
4287 
4288 /// Given the operand for an FNeg, see if we can fold the result.  If not, this
4289 /// returns null.
4290 static Value *simplifyFNegInst(Value *Op, FastMathFlags FMF,
4291                                const SimplifyQuery &Q, unsigned MaxRecurse) {
4292   if (Constant *C = foldConstant(Instruction::FNeg, Op, Q))
4293     return C;
4294 
4295   Value *X;
4296   // fneg (fneg X) ==> X
4297   if (match(Op, m_FNeg(m_Value(X))))
4298     return X;
4299 
4300   return nullptr;
4301 }
4302 
4303 Value *llvm::SimplifyFNegInst(Value *Op, FastMathFlags FMF,
4304                               const SimplifyQuery &Q) {
4305   return ::simplifyFNegInst(Op, FMF, Q, RecursionLimit);
4306 }
4307 
4308 static Constant *propagateNaN(Constant *In) {
4309   // If the input is a vector with undef elements, just return a default NaN.
4310   if (!In->isNaN())
4311     return ConstantFP::getNaN(In->getType());
4312 
4313   // Propagate the existing NaN constant when possible.
4314   // TODO: Should we quiet a signaling NaN?
4315   return In;
4316 }
4317 
4318 static Constant *simplifyFPBinop(Value *Op0, Value *Op1) {
4319   if (isa<UndefValue>(Op0) || isa<UndefValue>(Op1))
4320     return ConstantFP::getNaN(Op0->getType());
4321 
4322   if (match(Op0, m_NaN()))
4323     return propagateNaN(cast<Constant>(Op0));
4324   if (match(Op1, m_NaN()))
4325     return propagateNaN(cast<Constant>(Op1));
4326 
4327   return nullptr;
4328 }
4329 
4330 /// Given operands for an FAdd, see if we can fold the result.  If not, this
4331 /// returns null.
4332 static Value *SimplifyFAddInst(Value *Op0, Value *Op1, FastMathFlags FMF,
4333                                const SimplifyQuery &Q, unsigned MaxRecurse) {
4334   if (Constant *C = foldOrCommuteConstant(Instruction::FAdd, Op0, Op1, Q))
4335     return C;
4336 
4337   if (Constant *C = simplifyFPBinop(Op0, Op1))
4338     return C;
4339 
4340   // fadd X, -0 ==> X
4341   if (match(Op1, m_NegZeroFP()))
4342     return Op0;
4343 
4344   // fadd X, 0 ==> X, when we know X is not -0
4345   if (match(Op1, m_PosZeroFP()) &&
4346       (FMF.noSignedZeros() || CannotBeNegativeZero(Op0, Q.TLI)))
4347     return Op0;
4348 
4349   // With nnan: -X + X --> 0.0 (and commuted variant)
4350   // We don't have to explicitly exclude infinities (ninf): INF + -INF == NaN.
4351   // Negative zeros are allowed because we always end up with positive zero:
4352   // X = -0.0: (-0.0 - (-0.0)) + (-0.0) == ( 0.0) + (-0.0) == 0.0
4353   // X = -0.0: ( 0.0 - (-0.0)) + (-0.0) == ( 0.0) + (-0.0) == 0.0
4354   // X =  0.0: (-0.0 - ( 0.0)) + ( 0.0) == (-0.0) + ( 0.0) == 0.0
4355   // X =  0.0: ( 0.0 - ( 0.0)) + ( 0.0) == ( 0.0) + ( 0.0) == 0.0
4356   if (FMF.noNaNs()) {
4357     if (match(Op0, m_FSub(m_AnyZeroFP(), m_Specific(Op1))) ||
4358         match(Op1, m_FSub(m_AnyZeroFP(), m_Specific(Op0))))
4359       return ConstantFP::getNullValue(Op0->getType());
4360 
4361     if (match(Op0, m_FNeg(m_Specific(Op1))) ||
4362         match(Op1, m_FNeg(m_Specific(Op0))))
4363       return ConstantFP::getNullValue(Op0->getType());
4364   }
4365 
4366   // (X - Y) + Y --> X
4367   // Y + (X - Y) --> X
4368   Value *X;
4369   if (FMF.noSignedZeros() && FMF.allowReassoc() &&
4370       (match(Op0, m_FSub(m_Value(X), m_Specific(Op1))) ||
4371        match(Op1, m_FSub(m_Value(X), m_Specific(Op0)))))
4372     return X;
4373 
4374   return nullptr;
4375 }
4376 
4377 /// Given operands for an FSub, see if we can fold the result.  If not, this
4378 /// returns null.
4379 static Value *SimplifyFSubInst(Value *Op0, Value *Op1, FastMathFlags FMF,
4380                                const SimplifyQuery &Q, unsigned MaxRecurse) {
4381   if (Constant *C = foldOrCommuteConstant(Instruction::FSub, Op0, Op1, Q))
4382     return C;
4383 
4384   if (Constant *C = simplifyFPBinop(Op0, Op1))
4385     return C;
4386 
4387   // fsub X, +0 ==> X
4388   if (match(Op1, m_PosZeroFP()))
4389     return Op0;
4390 
4391   // fsub X, -0 ==> X, when we know X is not -0
4392   if (match(Op1, m_NegZeroFP()) &&
4393       (FMF.noSignedZeros() || CannotBeNegativeZero(Op0, Q.TLI)))
4394     return Op0;
4395 
4396   // fsub -0.0, (fsub -0.0, X) ==> X
4397   Value *X;
4398   if (match(Op0, m_NegZeroFP()) &&
4399       match(Op1, m_FSub(m_NegZeroFP(), m_Value(X))))
4400     return X;
4401 
4402   // fsub 0.0, (fsub 0.0, X) ==> X if signed zeros are ignored.
4403   if (FMF.noSignedZeros() && match(Op0, m_AnyZeroFP()) &&
4404       match(Op1, m_FSub(m_AnyZeroFP(), m_Value(X))))
4405     return X;
4406 
4407   // fsub nnan x, x ==> 0.0
4408   if (FMF.noNaNs() && Op0 == Op1)
4409     return Constant::getNullValue(Op0->getType());
4410 
4411   // Y - (Y - X) --> X
4412   // (X + Y) - Y --> X
4413   if (FMF.noSignedZeros() && FMF.allowReassoc() &&
4414       (match(Op1, m_FSub(m_Specific(Op0), m_Value(X))) ||
4415        match(Op0, m_c_FAdd(m_Specific(Op1), m_Value(X)))))
4416     return X;
4417 
4418   return nullptr;
4419 }
4420 
4421 /// Given the operands for an FMul, see if we can fold the result
4422 static Value *SimplifyFMulInst(Value *Op0, Value *Op1, FastMathFlags FMF,
4423                                const SimplifyQuery &Q, unsigned MaxRecurse) {
4424   if (Constant *C = foldOrCommuteConstant(Instruction::FMul, Op0, Op1, Q))
4425     return C;
4426 
4427   if (Constant *C = simplifyFPBinop(Op0, Op1))
4428     return C;
4429 
4430   // fmul X, 1.0 ==> X
4431   if (match(Op1, m_FPOne()))
4432     return Op0;
4433 
4434   // fmul nnan nsz X, 0 ==> 0
4435   if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op1, m_AnyZeroFP()))
4436     return ConstantFP::getNullValue(Op0->getType());
4437 
4438   // sqrt(X) * sqrt(X) --> X, if we can:
4439   // 1. Remove the intermediate rounding (reassociate).
4440   // 2. Ignore non-zero negative numbers because sqrt would produce NAN.
4441   // 3. Ignore -0.0 because sqrt(-0.0) == -0.0, but -0.0 * -0.0 == 0.0.
4442   Value *X;
4443   if (Op0 == Op1 && match(Op0, m_Intrinsic<Intrinsic::sqrt>(m_Value(X))) &&
4444       FMF.allowReassoc() && FMF.noNaNs() && FMF.noSignedZeros())
4445     return X;
4446 
4447   return nullptr;
4448 }
4449 
4450 Value *llvm::SimplifyFAddInst(Value *Op0, Value *Op1, FastMathFlags FMF,
4451                               const SimplifyQuery &Q) {
4452   return ::SimplifyFAddInst(Op0, Op1, FMF, Q, RecursionLimit);
4453 }
4454 
4455 
4456 Value *llvm::SimplifyFSubInst(Value *Op0, Value *Op1, FastMathFlags FMF,
4457                               const SimplifyQuery &Q) {
4458   return ::SimplifyFSubInst(Op0, Op1, FMF, Q, RecursionLimit);
4459 }
4460 
4461 Value *llvm::SimplifyFMulInst(Value *Op0, Value *Op1, FastMathFlags FMF,
4462                               const SimplifyQuery &Q) {
4463   return ::SimplifyFMulInst(Op0, Op1, FMF, Q, RecursionLimit);
4464 }
4465 
4466 static Value *SimplifyFDivInst(Value *Op0, Value *Op1, FastMathFlags FMF,
4467                                const SimplifyQuery &Q, unsigned) {
4468   if (Constant *C = foldOrCommuteConstant(Instruction::FDiv, Op0, Op1, Q))
4469     return C;
4470 
4471   if (Constant *C = simplifyFPBinop(Op0, Op1))
4472     return C;
4473 
4474   // X / 1.0 -> X
4475   if (match(Op1, m_FPOne()))
4476     return Op0;
4477 
4478   // 0 / X -> 0
4479   // Requires that NaNs are off (X could be zero) and signed zeroes are
4480   // ignored (X could be positive or negative, so the output sign is unknown).
4481   if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op0, m_AnyZeroFP()))
4482     return ConstantFP::getNullValue(Op0->getType());
4483 
4484   if (FMF.noNaNs()) {
4485     // X / X -> 1.0 is legal when NaNs are ignored.
4486     // We can ignore infinities because INF/INF is NaN.
4487     if (Op0 == Op1)
4488       return ConstantFP::get(Op0->getType(), 1.0);
4489 
4490     // (X * Y) / Y --> X if we can reassociate to the above form.
4491     Value *X;
4492     if (FMF.allowReassoc() && match(Op0, m_c_FMul(m_Value(X), m_Specific(Op1))))
4493       return X;
4494 
4495     // -X /  X -> -1.0 and
4496     //  X / -X -> -1.0 are legal when NaNs are ignored.
4497     // We can ignore signed zeros because +-0.0/+-0.0 is NaN and ignored.
4498     if (match(Op0, m_FNegNSZ(m_Specific(Op1))) ||
4499         match(Op1, m_FNegNSZ(m_Specific(Op0))))
4500       return ConstantFP::get(Op0->getType(), -1.0);
4501   }
4502 
4503   return nullptr;
4504 }
4505 
4506 Value *llvm::SimplifyFDivInst(Value *Op0, Value *Op1, FastMathFlags FMF,
4507                               const SimplifyQuery &Q) {
4508   return ::SimplifyFDivInst(Op0, Op1, FMF, Q, RecursionLimit);
4509 }
4510 
4511 static Value *SimplifyFRemInst(Value *Op0, Value *Op1, FastMathFlags FMF,
4512                                const SimplifyQuery &Q, unsigned) {
4513   if (Constant *C = foldOrCommuteConstant(Instruction::FRem, Op0, Op1, Q))
4514     return C;
4515 
4516   if (Constant *C = simplifyFPBinop(Op0, Op1))
4517     return C;
4518 
4519   // Unlike fdiv, the result of frem always matches the sign of the dividend.
4520   // The constant match may include undef elements in a vector, so return a full
4521   // zero constant as the result.
4522   if (FMF.noNaNs()) {
4523     // +0 % X -> 0
4524     if (match(Op0, m_PosZeroFP()))
4525       return ConstantFP::getNullValue(Op0->getType());
4526     // -0 % X -> -0
4527     if (match(Op0, m_NegZeroFP()))
4528       return ConstantFP::getNegativeZero(Op0->getType());
4529   }
4530 
4531   return nullptr;
4532 }
4533 
4534 Value *llvm::SimplifyFRemInst(Value *Op0, Value *Op1, FastMathFlags FMF,
4535                               const SimplifyQuery &Q) {
4536   return ::SimplifyFRemInst(Op0, Op1, FMF, Q, RecursionLimit);
4537 }
4538 
4539 //=== Helper functions for higher up the class hierarchy.
4540 
4541 /// Given the operand for a UnaryOperator, see if we can fold the result.
4542 /// If not, this returns null.
4543 static Value *simplifyUnOp(unsigned Opcode, Value *Op, const SimplifyQuery &Q,
4544                            unsigned MaxRecurse) {
4545   switch (Opcode) {
4546   case Instruction::FNeg:
4547     return simplifyFNegInst(Op, FastMathFlags(), Q, MaxRecurse);
4548   default:
4549     llvm_unreachable("Unexpected opcode");
4550   }
4551 }
4552 
4553 /// Given the operand for a UnaryOperator, see if we can fold the result.
4554 /// If not, this returns null.
4555 /// In contrast to SimplifyUnOp, try to use FastMathFlag when folding the
4556 /// result. In case we don't need FastMathFlags, simply fall to SimplifyUnOp.
4557 static Value *simplifyFPUnOp(unsigned Opcode, Value *Op,
4558                              const FastMathFlags &FMF,
4559                              const SimplifyQuery &Q, unsigned MaxRecurse) {
4560   switch (Opcode) {
4561   case Instruction::FNeg:
4562     return simplifyFNegInst(Op, FMF, Q, MaxRecurse);
4563   default:
4564     return simplifyUnOp(Opcode, Op, Q, MaxRecurse);
4565   }
4566 }
4567 
4568 Value *llvm::SimplifyFPUnOp(unsigned Opcode, Value *Op, FastMathFlags FMF,
4569                             const SimplifyQuery &Q) {
4570   return ::simplifyFPUnOp(Opcode, Op, FMF, Q, RecursionLimit);
4571 }
4572 
4573 /// Given operands for a BinaryOperator, see if we can fold the result.
4574 /// If not, this returns null.
4575 static Value *SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS,
4576                             const SimplifyQuery &Q, unsigned MaxRecurse) {
4577   switch (Opcode) {
4578   case Instruction::Add:
4579     return SimplifyAddInst(LHS, RHS, false, false, Q, MaxRecurse);
4580   case Instruction::Sub:
4581     return SimplifySubInst(LHS, RHS, false, false, Q, MaxRecurse);
4582   case Instruction::Mul:
4583     return SimplifyMulInst(LHS, RHS, Q, MaxRecurse);
4584   case Instruction::SDiv:
4585     return SimplifySDivInst(LHS, RHS, Q, MaxRecurse);
4586   case Instruction::UDiv:
4587     return SimplifyUDivInst(LHS, RHS, Q, MaxRecurse);
4588   case Instruction::SRem:
4589     return SimplifySRemInst(LHS, RHS, Q, MaxRecurse);
4590   case Instruction::URem:
4591     return SimplifyURemInst(LHS, RHS, Q, MaxRecurse);
4592   case Instruction::Shl:
4593     return SimplifyShlInst(LHS, RHS, false, false, Q, MaxRecurse);
4594   case Instruction::LShr:
4595     return SimplifyLShrInst(LHS, RHS, false, Q, MaxRecurse);
4596   case Instruction::AShr:
4597     return SimplifyAShrInst(LHS, RHS, false, Q, MaxRecurse);
4598   case Instruction::And:
4599     return SimplifyAndInst(LHS, RHS, Q, MaxRecurse);
4600   case Instruction::Or:
4601     return SimplifyOrInst(LHS, RHS, Q, MaxRecurse);
4602   case Instruction::Xor:
4603     return SimplifyXorInst(LHS, RHS, Q, MaxRecurse);
4604   case Instruction::FAdd:
4605     return SimplifyFAddInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse);
4606   case Instruction::FSub:
4607     return SimplifyFSubInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse);
4608   case Instruction::FMul:
4609     return SimplifyFMulInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse);
4610   case Instruction::FDiv:
4611     return SimplifyFDivInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse);
4612   case Instruction::FRem:
4613     return SimplifyFRemInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse);
4614   default:
4615     llvm_unreachable("Unexpected opcode");
4616   }
4617 }
4618 
4619 /// Given operands for a BinaryOperator, see if we can fold the result.
4620 /// If not, this returns null.
4621 /// In contrast to SimplifyBinOp, try to use FastMathFlag when folding the
4622 /// result. In case we don't need FastMathFlags, simply fall to SimplifyBinOp.
4623 static Value *SimplifyFPBinOp(unsigned Opcode, Value *LHS, Value *RHS,
4624                               const FastMathFlags &FMF, const SimplifyQuery &Q,
4625                               unsigned MaxRecurse) {
4626   switch (Opcode) {
4627   case Instruction::FAdd:
4628     return SimplifyFAddInst(LHS, RHS, FMF, Q, MaxRecurse);
4629   case Instruction::FSub:
4630     return SimplifyFSubInst(LHS, RHS, FMF, Q, MaxRecurse);
4631   case Instruction::FMul:
4632     return SimplifyFMulInst(LHS, RHS, FMF, Q, MaxRecurse);
4633   case Instruction::FDiv:
4634     return SimplifyFDivInst(LHS, RHS, FMF, Q, MaxRecurse);
4635   default:
4636     return SimplifyBinOp(Opcode, LHS, RHS, Q, MaxRecurse);
4637   }
4638 }
4639 
4640 Value *llvm::SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS,
4641                            const SimplifyQuery &Q) {
4642   return ::SimplifyBinOp(Opcode, LHS, RHS, Q, RecursionLimit);
4643 }
4644 
4645 Value *llvm::SimplifyFPBinOp(unsigned Opcode, Value *LHS, Value *RHS,
4646                              FastMathFlags FMF, const SimplifyQuery &Q) {
4647   return ::SimplifyFPBinOp(Opcode, LHS, RHS, FMF, Q, RecursionLimit);
4648 }
4649 
4650 /// Given operands for a CmpInst, see if we can fold the result.
4651 static Value *SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
4652                               const SimplifyQuery &Q, unsigned MaxRecurse) {
4653   if (CmpInst::isIntPredicate((CmpInst::Predicate)Predicate))
4654     return SimplifyICmpInst(Predicate, LHS, RHS, Q, MaxRecurse);
4655   return SimplifyFCmpInst(Predicate, LHS, RHS, FastMathFlags(), Q, MaxRecurse);
4656 }
4657 
4658 Value *llvm::SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
4659                              const SimplifyQuery &Q) {
4660   return ::SimplifyCmpInst(Predicate, LHS, RHS, Q, RecursionLimit);
4661 }
4662 
4663 static bool IsIdempotent(Intrinsic::ID ID) {
4664   switch (ID) {
4665   default: return false;
4666 
4667   // Unary idempotent: f(f(x)) = f(x)
4668   case Intrinsic::fabs:
4669   case Intrinsic::floor:
4670   case Intrinsic::ceil:
4671   case Intrinsic::trunc:
4672   case Intrinsic::rint:
4673   case Intrinsic::nearbyint:
4674   case Intrinsic::round:
4675   case Intrinsic::canonicalize:
4676     return true;
4677   }
4678 }
4679 
4680 static Value *SimplifyRelativeLoad(Constant *Ptr, Constant *Offset,
4681                                    const DataLayout &DL) {
4682   GlobalValue *PtrSym;
4683   APInt PtrOffset;
4684   if (!IsConstantOffsetFromGlobal(Ptr, PtrSym, PtrOffset, DL))
4685     return nullptr;
4686 
4687   Type *Int8PtrTy = Type::getInt8PtrTy(Ptr->getContext());
4688   Type *Int32Ty = Type::getInt32Ty(Ptr->getContext());
4689   Type *Int32PtrTy = Int32Ty->getPointerTo();
4690   Type *Int64Ty = Type::getInt64Ty(Ptr->getContext());
4691 
4692   auto *OffsetConstInt = dyn_cast<ConstantInt>(Offset);
4693   if (!OffsetConstInt || OffsetConstInt->getType()->getBitWidth() > 64)
4694     return nullptr;
4695 
4696   uint64_t OffsetInt = OffsetConstInt->getSExtValue();
4697   if (OffsetInt % 4 != 0)
4698     return nullptr;
4699 
4700   Constant *C = ConstantExpr::getGetElementPtr(
4701       Int32Ty, ConstantExpr::getBitCast(Ptr, Int32PtrTy),
4702       ConstantInt::get(Int64Ty, OffsetInt / 4));
4703   Constant *Loaded = ConstantFoldLoadFromConstPtr(C, Int32Ty, DL);
4704   if (!Loaded)
4705     return nullptr;
4706 
4707   auto *LoadedCE = dyn_cast<ConstantExpr>(Loaded);
4708   if (!LoadedCE)
4709     return nullptr;
4710 
4711   if (LoadedCE->getOpcode() == Instruction::Trunc) {
4712     LoadedCE = dyn_cast<ConstantExpr>(LoadedCE->getOperand(0));
4713     if (!LoadedCE)
4714       return nullptr;
4715   }
4716 
4717   if (LoadedCE->getOpcode() != Instruction::Sub)
4718     return nullptr;
4719 
4720   auto *LoadedLHS = dyn_cast<ConstantExpr>(LoadedCE->getOperand(0));
4721   if (!LoadedLHS || LoadedLHS->getOpcode() != Instruction::PtrToInt)
4722     return nullptr;
4723   auto *LoadedLHSPtr = LoadedLHS->getOperand(0);
4724 
4725   Constant *LoadedRHS = LoadedCE->getOperand(1);
4726   GlobalValue *LoadedRHSSym;
4727   APInt LoadedRHSOffset;
4728   if (!IsConstantOffsetFromGlobal(LoadedRHS, LoadedRHSSym, LoadedRHSOffset,
4729                                   DL) ||
4730       PtrSym != LoadedRHSSym || PtrOffset != LoadedRHSOffset)
4731     return nullptr;
4732 
4733   return ConstantExpr::getBitCast(LoadedLHSPtr, Int8PtrTy);
4734 }
4735 
4736 static Value *simplifyUnaryIntrinsic(Function *F, Value *Op0,
4737                                      const SimplifyQuery &Q) {
4738   // Idempotent functions return the same result when called repeatedly.
4739   Intrinsic::ID IID = F->getIntrinsicID();
4740   if (IsIdempotent(IID))
4741     if (auto *II = dyn_cast<IntrinsicInst>(Op0))
4742       if (II->getIntrinsicID() == IID)
4743         return II;
4744 
4745   Value *X;
4746   switch (IID) {
4747   case Intrinsic::fabs:
4748     if (SignBitMustBeZero(Op0, Q.TLI)) return Op0;
4749     break;
4750   case Intrinsic::bswap:
4751     // bswap(bswap(x)) -> x
4752     if (match(Op0, m_BSwap(m_Value(X)))) return X;
4753     break;
4754   case Intrinsic::bitreverse:
4755     // bitreverse(bitreverse(x)) -> x
4756     if (match(Op0, m_BitReverse(m_Value(X)))) return X;
4757     break;
4758   case Intrinsic::exp:
4759     // exp(log(x)) -> x
4760     if (Q.CxtI->hasAllowReassoc() &&
4761         match(Op0, m_Intrinsic<Intrinsic::log>(m_Value(X)))) return X;
4762     break;
4763   case Intrinsic::exp2:
4764     // exp2(log2(x)) -> x
4765     if (Q.CxtI->hasAllowReassoc() &&
4766         match(Op0, m_Intrinsic<Intrinsic::log2>(m_Value(X)))) return X;
4767     break;
4768   case Intrinsic::log:
4769     // log(exp(x)) -> x
4770     if (Q.CxtI->hasAllowReassoc() &&
4771         match(Op0, m_Intrinsic<Intrinsic::exp>(m_Value(X)))) return X;
4772     break;
4773   case Intrinsic::log2:
4774     // log2(exp2(x)) -> x
4775     if (Q.CxtI->hasAllowReassoc() &&
4776         (match(Op0, m_Intrinsic<Intrinsic::exp2>(m_Value(X))) ||
4777          match(Op0, m_Intrinsic<Intrinsic::pow>(m_SpecificFP(2.0),
4778                                                 m_Value(X))))) return X;
4779     break;
4780   case Intrinsic::log10:
4781     // log10(pow(10.0, x)) -> x
4782     if (Q.CxtI->hasAllowReassoc() &&
4783         match(Op0, m_Intrinsic<Intrinsic::pow>(m_SpecificFP(10.0),
4784                                                m_Value(X)))) return X;
4785     break;
4786   case Intrinsic::floor:
4787   case Intrinsic::trunc:
4788   case Intrinsic::ceil:
4789   case Intrinsic::round:
4790   case Intrinsic::nearbyint:
4791   case Intrinsic::rint: {
4792     // floor (sitofp x) -> sitofp x
4793     // floor (uitofp x) -> uitofp x
4794     //
4795     // Converting from int always results in a finite integral number or
4796     // infinity. For either of those inputs, these rounding functions always
4797     // return the same value, so the rounding can be eliminated.
4798     if (match(Op0, m_SIToFP(m_Value())) || match(Op0, m_UIToFP(m_Value())))
4799       return Op0;
4800     break;
4801   }
4802   default:
4803     break;
4804   }
4805 
4806   return nullptr;
4807 }
4808 
4809 static Value *simplifyBinaryIntrinsic(Function *F, Value *Op0, Value *Op1,
4810                                       const SimplifyQuery &Q) {
4811   Intrinsic::ID IID = F->getIntrinsicID();
4812   Type *ReturnType = F->getReturnType();
4813   switch (IID) {
4814   case Intrinsic::usub_with_overflow:
4815   case Intrinsic::ssub_with_overflow:
4816     // X - X -> { 0, false }
4817     if (Op0 == Op1)
4818       return Constant::getNullValue(ReturnType);
4819     // X - undef -> undef
4820     // undef - X -> undef
4821     if (isa<UndefValue>(Op0) || isa<UndefValue>(Op1))
4822       return UndefValue::get(ReturnType);
4823     break;
4824   case Intrinsic::uadd_with_overflow:
4825   case Intrinsic::sadd_with_overflow:
4826     // X + undef -> undef
4827     if (isa<UndefValue>(Op0) || isa<UndefValue>(Op1))
4828       return UndefValue::get(ReturnType);
4829     break;
4830   case Intrinsic::umul_with_overflow:
4831   case Intrinsic::smul_with_overflow:
4832     // 0 * X -> { 0, false }
4833     // X * 0 -> { 0, false }
4834     if (match(Op0, m_Zero()) || match(Op1, m_Zero()))
4835       return Constant::getNullValue(ReturnType);
4836     // undef * X -> { 0, false }
4837     // X * undef -> { 0, false }
4838     if (match(Op0, m_Undef()) || match(Op1, m_Undef()))
4839       return Constant::getNullValue(ReturnType);
4840     break;
4841   case Intrinsic::uadd_sat:
4842     // sat(MAX + X) -> MAX
4843     // sat(X + MAX) -> MAX
4844     if (match(Op0, m_AllOnes()) || match(Op1, m_AllOnes()))
4845       return Constant::getAllOnesValue(ReturnType);
4846     LLVM_FALLTHROUGH;
4847   case Intrinsic::sadd_sat:
4848     // sat(X + undef) -> -1
4849     // sat(undef + X) -> -1
4850     // For unsigned: Assume undef is MAX, thus we saturate to MAX (-1).
4851     // For signed: Assume undef is ~X, in which case X + ~X = -1.
4852     if (match(Op0, m_Undef()) || match(Op1, m_Undef()))
4853       return Constant::getAllOnesValue(ReturnType);
4854 
4855     // X + 0 -> X
4856     if (match(Op1, m_Zero()))
4857       return Op0;
4858     // 0 + X -> X
4859     if (match(Op0, m_Zero()))
4860       return Op1;
4861     break;
4862   case Intrinsic::usub_sat:
4863     // sat(0 - X) -> 0, sat(X - MAX) -> 0
4864     if (match(Op0, m_Zero()) || match(Op1, m_AllOnes()))
4865       return Constant::getNullValue(ReturnType);
4866     LLVM_FALLTHROUGH;
4867   case Intrinsic::ssub_sat:
4868     // X - X -> 0, X - undef -> 0, undef - X -> 0
4869     if (Op0 == Op1 || match(Op0, m_Undef()) || match(Op1, m_Undef()))
4870       return Constant::getNullValue(ReturnType);
4871     // X - 0 -> X
4872     if (match(Op1, m_Zero()))
4873       return Op0;
4874     break;
4875   case Intrinsic::load_relative:
4876     if (auto *C0 = dyn_cast<Constant>(Op0))
4877       if (auto *C1 = dyn_cast<Constant>(Op1))
4878         return SimplifyRelativeLoad(C0, C1, Q.DL);
4879     break;
4880   case Intrinsic::powi:
4881     if (auto *Power = dyn_cast<ConstantInt>(Op1)) {
4882       // powi(x, 0) -> 1.0
4883       if (Power->isZero())
4884         return ConstantFP::get(Op0->getType(), 1.0);
4885       // powi(x, 1) -> x
4886       if (Power->isOne())
4887         return Op0;
4888     }
4889     break;
4890   case Intrinsic::maxnum:
4891   case Intrinsic::minnum:
4892   case Intrinsic::maximum:
4893   case Intrinsic::minimum: {
4894     // If the arguments are the same, this is a no-op.
4895     if (Op0 == Op1) return Op0;
4896 
4897     // If one argument is undef, return the other argument.
4898     if (match(Op0, m_Undef()))
4899       return Op1;
4900     if (match(Op1, m_Undef()))
4901       return Op0;
4902 
4903     // If one argument is NaN, return other or NaN appropriately.
4904     bool PropagateNaN = IID == Intrinsic::minimum || IID == Intrinsic::maximum;
4905     if (match(Op0, m_NaN()))
4906       return PropagateNaN ? Op0 : Op1;
4907     if (match(Op1, m_NaN()))
4908       return PropagateNaN ? Op1 : Op0;
4909 
4910     // Min/max of the same operation with common operand:
4911     // m(m(X, Y)), X --> m(X, Y) (4 commuted variants)
4912     if (auto *M0 = dyn_cast<IntrinsicInst>(Op0))
4913       if (M0->getIntrinsicID() == IID &&
4914           (M0->getOperand(0) == Op1 || M0->getOperand(1) == Op1))
4915         return Op0;
4916     if (auto *M1 = dyn_cast<IntrinsicInst>(Op1))
4917       if (M1->getIntrinsicID() == IID &&
4918           (M1->getOperand(0) == Op0 || M1->getOperand(1) == Op0))
4919         return Op1;
4920 
4921     // min(X, -Inf) --> -Inf (and commuted variant)
4922     // max(X, +Inf) --> +Inf (and commuted variant)
4923     bool UseNegInf = IID == Intrinsic::minnum || IID == Intrinsic::minimum;
4924     const APFloat *C;
4925     if ((match(Op0, m_APFloat(C)) && C->isInfinity() &&
4926          C->isNegative() == UseNegInf) ||
4927         (match(Op1, m_APFloat(C)) && C->isInfinity() &&
4928          C->isNegative() == UseNegInf))
4929       return ConstantFP::getInfinity(ReturnType, UseNegInf);
4930 
4931     // TODO: minnum(nnan x, inf) -> x
4932     // TODO: minnum(nnan ninf x, flt_max) -> x
4933     // TODO: maxnum(nnan x, -inf) -> x
4934     // TODO: maxnum(nnan ninf x, -flt_max) -> x
4935     break;
4936   }
4937   default:
4938     break;
4939   }
4940 
4941   return nullptr;
4942 }
4943 
4944 template <typename IterTy>
4945 static Value *simplifyIntrinsic(Function *F, IterTy ArgBegin, IterTy ArgEnd,
4946                                 const SimplifyQuery &Q) {
4947   // Intrinsics with no operands have some kind of side effect. Don't simplify.
4948   unsigned NumOperands = std::distance(ArgBegin, ArgEnd);
4949   if (NumOperands == 0)
4950     return nullptr;
4951 
4952   Intrinsic::ID IID = F->getIntrinsicID();
4953   if (NumOperands == 1)
4954     return simplifyUnaryIntrinsic(F, ArgBegin[0], Q);
4955 
4956   if (NumOperands == 2)
4957     return simplifyBinaryIntrinsic(F, ArgBegin[0], ArgBegin[1], Q);
4958 
4959   // Handle intrinsics with 3 or more arguments.
4960   switch (IID) {
4961   case Intrinsic::masked_load:
4962   case Intrinsic::masked_gather: {
4963     Value *MaskArg = ArgBegin[2];
4964     Value *PassthruArg = ArgBegin[3];
4965     // If the mask is all zeros or undef, the "passthru" argument is the result.
4966     if (maskIsAllZeroOrUndef(MaskArg))
4967       return PassthruArg;
4968     return nullptr;
4969   }
4970   case Intrinsic::fshl:
4971   case Intrinsic::fshr: {
4972     Value *Op0 = ArgBegin[0], *Op1 = ArgBegin[1], *ShAmtArg = ArgBegin[2];
4973 
4974     // If both operands are undef, the result is undef.
4975     if (match(Op0, m_Undef()) && match(Op1, m_Undef()))
4976       return UndefValue::get(F->getReturnType());
4977 
4978     // If shift amount is undef, assume it is zero.
4979     if (match(ShAmtArg, m_Undef()))
4980       return ArgBegin[IID == Intrinsic::fshl ? 0 : 1];
4981 
4982     const APInt *ShAmtC;
4983     if (match(ShAmtArg, m_APInt(ShAmtC))) {
4984       // If there's effectively no shift, return the 1st arg or 2nd arg.
4985       APInt BitWidth = APInt(ShAmtC->getBitWidth(), ShAmtC->getBitWidth());
4986       if (ShAmtC->urem(BitWidth).isNullValue())
4987         return ArgBegin[IID == Intrinsic::fshl ? 0 : 1];
4988     }
4989     return nullptr;
4990   }
4991   default:
4992     return nullptr;
4993   }
4994 }
4995 
4996 template <typename IterTy>
4997 static Value *SimplifyCall(CallBase *Call, Value *V, IterTy ArgBegin,
4998                            IterTy ArgEnd, const SimplifyQuery &Q,
4999                            unsigned MaxRecurse) {
5000   Type *Ty = V->getType();
5001   if (PointerType *PTy = dyn_cast<PointerType>(Ty))
5002     Ty = PTy->getElementType();
5003   FunctionType *FTy = cast<FunctionType>(Ty);
5004 
5005   // call undef -> undef
5006   // call null -> undef
5007   if (isa<UndefValue>(V) || isa<ConstantPointerNull>(V))
5008     return UndefValue::get(FTy->getReturnType());
5009 
5010   Function *F = dyn_cast<Function>(V);
5011   if (!F)
5012     return nullptr;
5013 
5014   if (F->isIntrinsic())
5015     if (Value *Ret = simplifyIntrinsic(F, ArgBegin, ArgEnd, Q))
5016       return Ret;
5017 
5018   if (!canConstantFoldCallTo(Call, F))
5019     return nullptr;
5020 
5021   SmallVector<Constant *, 4> ConstantArgs;
5022   ConstantArgs.reserve(ArgEnd - ArgBegin);
5023   for (IterTy I = ArgBegin, E = ArgEnd; I != E; ++I) {
5024     Constant *C = dyn_cast<Constant>(*I);
5025     if (!C)
5026       return nullptr;
5027     ConstantArgs.push_back(C);
5028   }
5029 
5030   return ConstantFoldCall(Call, F, ConstantArgs, Q.TLI);
5031 }
5032 
5033 Value *llvm::SimplifyCall(CallBase *Call, Value *V, User::op_iterator ArgBegin,
5034                           User::op_iterator ArgEnd, const SimplifyQuery &Q) {
5035   return ::SimplifyCall(Call, V, ArgBegin, ArgEnd, Q, RecursionLimit);
5036 }
5037 
5038 Value *llvm::SimplifyCall(CallBase *Call, Value *V, ArrayRef<Value *> Args,
5039                           const SimplifyQuery &Q) {
5040   return ::SimplifyCall(Call, V, Args.begin(), Args.end(), Q, RecursionLimit);
5041 }
5042 
5043 Value *llvm::SimplifyCall(CallBase *Call, const SimplifyQuery &Q) {
5044   return ::SimplifyCall(Call, Call->getCalledValue(), Call->arg_begin(),
5045                         Call->arg_end(), Q, RecursionLimit);
5046 }
5047 
5048 /// See if we can compute a simplified version of this instruction.
5049 /// If not, this returns null.
5050 
5051 Value *llvm::SimplifyInstruction(Instruction *I, const SimplifyQuery &SQ,
5052                                  OptimizationRemarkEmitter *ORE) {
5053   const SimplifyQuery Q = SQ.CxtI ? SQ : SQ.getWithInstruction(I);
5054   Value *Result;
5055 
5056   switch (I->getOpcode()) {
5057   default:
5058     Result = ConstantFoldInstruction(I, Q.DL, Q.TLI);
5059     break;
5060   case Instruction::FNeg:
5061     Result = SimplifyFNegInst(I->getOperand(0), I->getFastMathFlags(), Q);
5062     break;
5063   case Instruction::FAdd:
5064     Result = SimplifyFAddInst(I->getOperand(0), I->getOperand(1),
5065                               I->getFastMathFlags(), Q);
5066     break;
5067   case Instruction::Add:
5068     Result =
5069         SimplifyAddInst(I->getOperand(0), I->getOperand(1),
5070                         Q.IIQ.hasNoSignedWrap(cast<BinaryOperator>(I)),
5071                         Q.IIQ.hasNoUnsignedWrap(cast<BinaryOperator>(I)), Q);
5072     break;
5073   case Instruction::FSub:
5074     Result = SimplifyFSubInst(I->getOperand(0), I->getOperand(1),
5075                               I->getFastMathFlags(), Q);
5076     break;
5077   case Instruction::Sub:
5078     Result =
5079         SimplifySubInst(I->getOperand(0), I->getOperand(1),
5080                         Q.IIQ.hasNoSignedWrap(cast<BinaryOperator>(I)),
5081                         Q.IIQ.hasNoUnsignedWrap(cast<BinaryOperator>(I)), Q);
5082     break;
5083   case Instruction::FMul:
5084     Result = SimplifyFMulInst(I->getOperand(0), I->getOperand(1),
5085                               I->getFastMathFlags(), Q);
5086     break;
5087   case Instruction::Mul:
5088     Result = SimplifyMulInst(I->getOperand(0), I->getOperand(1), Q);
5089     break;
5090   case Instruction::SDiv:
5091     Result = SimplifySDivInst(I->getOperand(0), I->getOperand(1), Q);
5092     break;
5093   case Instruction::UDiv:
5094     Result = SimplifyUDivInst(I->getOperand(0), I->getOperand(1), Q);
5095     break;
5096   case Instruction::FDiv:
5097     Result = SimplifyFDivInst(I->getOperand(0), I->getOperand(1),
5098                               I->getFastMathFlags(), Q);
5099     break;
5100   case Instruction::SRem:
5101     Result = SimplifySRemInst(I->getOperand(0), I->getOperand(1), Q);
5102     break;
5103   case Instruction::URem:
5104     Result = SimplifyURemInst(I->getOperand(0), I->getOperand(1), Q);
5105     break;
5106   case Instruction::FRem:
5107     Result = SimplifyFRemInst(I->getOperand(0), I->getOperand(1),
5108                               I->getFastMathFlags(), Q);
5109     break;
5110   case Instruction::Shl:
5111     Result =
5112         SimplifyShlInst(I->getOperand(0), I->getOperand(1),
5113                         Q.IIQ.hasNoSignedWrap(cast<BinaryOperator>(I)),
5114                         Q.IIQ.hasNoUnsignedWrap(cast<BinaryOperator>(I)), Q);
5115     break;
5116   case Instruction::LShr:
5117     Result = SimplifyLShrInst(I->getOperand(0), I->getOperand(1),
5118                               Q.IIQ.isExact(cast<BinaryOperator>(I)), Q);
5119     break;
5120   case Instruction::AShr:
5121     Result = SimplifyAShrInst(I->getOperand(0), I->getOperand(1),
5122                               Q.IIQ.isExact(cast<BinaryOperator>(I)), Q);
5123     break;
5124   case Instruction::And:
5125     Result = SimplifyAndInst(I->getOperand(0), I->getOperand(1), Q);
5126     break;
5127   case Instruction::Or:
5128     Result = SimplifyOrInst(I->getOperand(0), I->getOperand(1), Q);
5129     break;
5130   case Instruction::Xor:
5131     Result = SimplifyXorInst(I->getOperand(0), I->getOperand(1), Q);
5132     break;
5133   case Instruction::ICmp:
5134     Result = SimplifyICmpInst(cast<ICmpInst>(I)->getPredicate(),
5135                               I->getOperand(0), I->getOperand(1), Q);
5136     break;
5137   case Instruction::FCmp:
5138     Result =
5139         SimplifyFCmpInst(cast<FCmpInst>(I)->getPredicate(), I->getOperand(0),
5140                          I->getOperand(1), I->getFastMathFlags(), Q);
5141     break;
5142   case Instruction::Select:
5143     Result = SimplifySelectInst(I->getOperand(0), I->getOperand(1),
5144                                 I->getOperand(2), Q);
5145     break;
5146   case Instruction::GetElementPtr: {
5147     SmallVector<Value *, 8> Ops(I->op_begin(), I->op_end());
5148     Result = SimplifyGEPInst(cast<GetElementPtrInst>(I)->getSourceElementType(),
5149                              Ops, Q);
5150     break;
5151   }
5152   case Instruction::InsertValue: {
5153     InsertValueInst *IV = cast<InsertValueInst>(I);
5154     Result = SimplifyInsertValueInst(IV->getAggregateOperand(),
5155                                      IV->getInsertedValueOperand(),
5156                                      IV->getIndices(), Q);
5157     break;
5158   }
5159   case Instruction::InsertElement: {
5160     auto *IE = cast<InsertElementInst>(I);
5161     Result = SimplifyInsertElementInst(IE->getOperand(0), IE->getOperand(1),
5162                                        IE->getOperand(2), Q);
5163     break;
5164   }
5165   case Instruction::ExtractValue: {
5166     auto *EVI = cast<ExtractValueInst>(I);
5167     Result = SimplifyExtractValueInst(EVI->getAggregateOperand(),
5168                                       EVI->getIndices(), Q);
5169     break;
5170   }
5171   case Instruction::ExtractElement: {
5172     auto *EEI = cast<ExtractElementInst>(I);
5173     Result = SimplifyExtractElementInst(EEI->getVectorOperand(),
5174                                         EEI->getIndexOperand(), Q);
5175     break;
5176   }
5177   case Instruction::ShuffleVector: {
5178     auto *SVI = cast<ShuffleVectorInst>(I);
5179     Result = SimplifyShuffleVectorInst(SVI->getOperand(0), SVI->getOperand(1),
5180                                        SVI->getMask(), SVI->getType(), Q);
5181     break;
5182   }
5183   case Instruction::PHI:
5184     Result = SimplifyPHINode(cast<PHINode>(I), Q);
5185     break;
5186   case Instruction::Call: {
5187     Result = SimplifyCall(cast<CallInst>(I), Q);
5188     break;
5189   }
5190 #define HANDLE_CAST_INST(num, opc, clas) case Instruction::opc:
5191 #include "llvm/IR/Instruction.def"
5192 #undef HANDLE_CAST_INST
5193     Result =
5194         SimplifyCastInst(I->getOpcode(), I->getOperand(0), I->getType(), Q);
5195     break;
5196   case Instruction::Alloca:
5197     // No simplifications for Alloca and it can't be constant folded.
5198     Result = nullptr;
5199     break;
5200   }
5201 
5202   // In general, it is possible for computeKnownBits to determine all bits in a
5203   // value even when the operands are not all constants.
5204   if (!Result && I->getType()->isIntOrIntVectorTy()) {
5205     KnownBits Known = computeKnownBits(I, Q.DL, /*Depth*/ 0, Q.AC, I, Q.DT, ORE);
5206     if (Known.isConstant())
5207       Result = ConstantInt::get(I->getType(), Known.getConstant());
5208   }
5209 
5210   /// If called on unreachable code, the above logic may report that the
5211   /// instruction simplified to itself.  Make life easier for users by
5212   /// detecting that case here, returning a safe value instead.
5213   return Result == I ? UndefValue::get(I->getType()) : Result;
5214 }
5215 
5216 /// Implementation of recursive simplification through an instruction's
5217 /// uses.
5218 ///
5219 /// This is the common implementation of the recursive simplification routines.
5220 /// If we have a pre-simplified value in 'SimpleV', that is forcibly used to
5221 /// replace the instruction 'I'. Otherwise, we simply add 'I' to the list of
5222 /// instructions to process and attempt to simplify it using
5223 /// InstructionSimplify.
5224 ///
5225 /// This routine returns 'true' only when *it* simplifies something. The passed
5226 /// in simplified value does not count toward this.
5227 static bool replaceAndRecursivelySimplifyImpl(Instruction *I, Value *SimpleV,
5228                                               const TargetLibraryInfo *TLI,
5229                                               const DominatorTree *DT,
5230                                               AssumptionCache *AC) {
5231   bool Simplified = false;
5232   SmallSetVector<Instruction *, 8> Worklist;
5233   const DataLayout &DL = I->getModule()->getDataLayout();
5234 
5235   // If we have an explicit value to collapse to, do that round of the
5236   // simplification loop by hand initially.
5237   if (SimpleV) {
5238     for (User *U : I->users())
5239       if (U != I)
5240         Worklist.insert(cast<Instruction>(U));
5241 
5242     // Replace the instruction with its simplified value.
5243     I->replaceAllUsesWith(SimpleV);
5244 
5245     // Gracefully handle edge cases where the instruction is not wired into any
5246     // parent block.
5247     if (I->getParent() && !I->isEHPad() && !I->isTerminator() &&
5248         !I->mayHaveSideEffects())
5249       I->eraseFromParent();
5250   } else {
5251     Worklist.insert(I);
5252   }
5253 
5254   // Note that we must test the size on each iteration, the worklist can grow.
5255   for (unsigned Idx = 0; Idx != Worklist.size(); ++Idx) {
5256     I = Worklist[Idx];
5257 
5258     // See if this instruction simplifies.
5259     SimpleV = SimplifyInstruction(I, {DL, TLI, DT, AC});
5260     if (!SimpleV)
5261       continue;
5262 
5263     Simplified = true;
5264 
5265     // Stash away all the uses of the old instruction so we can check them for
5266     // recursive simplifications after a RAUW. This is cheaper than checking all
5267     // uses of To on the recursive step in most cases.
5268     for (User *U : I->users())
5269       Worklist.insert(cast<Instruction>(U));
5270 
5271     // Replace the instruction with its simplified value.
5272     I->replaceAllUsesWith(SimpleV);
5273 
5274     // Gracefully handle edge cases where the instruction is not wired into any
5275     // parent block.
5276     if (I->getParent() && !I->isEHPad() && !I->isTerminator() &&
5277         !I->mayHaveSideEffects())
5278       I->eraseFromParent();
5279   }
5280   return Simplified;
5281 }
5282 
5283 bool llvm::recursivelySimplifyInstruction(Instruction *I,
5284                                           const TargetLibraryInfo *TLI,
5285                                           const DominatorTree *DT,
5286                                           AssumptionCache *AC) {
5287   return replaceAndRecursivelySimplifyImpl(I, nullptr, TLI, DT, AC);
5288 }
5289 
5290 bool llvm::replaceAndRecursivelySimplify(Instruction *I, Value *SimpleV,
5291                                          const TargetLibraryInfo *TLI,
5292                                          const DominatorTree *DT,
5293                                          AssumptionCache *AC) {
5294   assert(I != SimpleV && "replaceAndRecursivelySimplify(X,X) is not valid!");
5295   assert(SimpleV && "Must provide a simplified value.");
5296   return replaceAndRecursivelySimplifyImpl(I, SimpleV, TLI, DT, AC);
5297 }
5298 
5299 namespace llvm {
5300 const SimplifyQuery getBestSimplifyQuery(Pass &P, Function &F) {
5301   auto *DTWP = P.getAnalysisIfAvailable<DominatorTreeWrapperPass>();
5302   auto *DT = DTWP ? &DTWP->getDomTree() : nullptr;
5303   auto *TLIWP = P.getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>();
5304   auto *TLI = TLIWP ? &TLIWP->getTLI() : nullptr;
5305   auto *ACWP = P.getAnalysisIfAvailable<AssumptionCacheTracker>();
5306   auto *AC = ACWP ? &ACWP->getAssumptionCache(F) : nullptr;
5307   return {F.getParent()->getDataLayout(), TLI, DT, AC};
5308 }
5309 
5310 const SimplifyQuery getBestSimplifyQuery(LoopStandardAnalysisResults &AR,
5311                                          const DataLayout &DL) {
5312   return {DL, &AR.TLI, &AR.DT, &AR.AC};
5313 }
5314 
5315 template <class T, class... TArgs>
5316 const SimplifyQuery getBestSimplifyQuery(AnalysisManager<T, TArgs...> &AM,
5317                                          Function &F) {
5318   auto *DT = AM.template getCachedResult<DominatorTreeAnalysis>(F);
5319   auto *TLI = AM.template getCachedResult<TargetLibraryAnalysis>(F);
5320   auto *AC = AM.template getCachedResult<AssumptionAnalysis>(F);
5321   return {F.getParent()->getDataLayout(), TLI, DT, AC};
5322 }
5323 template const SimplifyQuery getBestSimplifyQuery(AnalysisManager<Function> &,
5324                                                   Function &);
5325 }
5326