1 //===- InstructionSimplify.cpp - Fold instruction operands ----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements routines for folding instructions into simpler forms 10 // that do not require creating new instructions. This does constant folding 11 // ("add i32 1, 1" -> "2") but can also handle non-constant operands, either 12 // returning a constant ("and i32 %x, 0" -> "0") or an already existing value 13 // ("and i32 %x, %x" -> "%x"). All operands are assumed to have already been 14 // simplified: This is usually true and assuming it simplifies the logic (if 15 // they have not been simplified then results are correct but maybe suboptimal). 16 // 17 //===----------------------------------------------------------------------===// 18 19 #include "llvm/Analysis/InstructionSimplify.h" 20 #include "llvm/ADT/SetVector.h" 21 #include "llvm/ADT/Statistic.h" 22 #include "llvm/Analysis/AliasAnalysis.h" 23 #include "llvm/Analysis/AssumptionCache.h" 24 #include "llvm/Analysis/CaptureTracking.h" 25 #include "llvm/Analysis/CmpInstAnalysis.h" 26 #include "llvm/Analysis/ConstantFolding.h" 27 #include "llvm/Analysis/LoopAnalysisManager.h" 28 #include "llvm/Analysis/MemoryBuiltins.h" 29 #include "llvm/Analysis/ValueTracking.h" 30 #include "llvm/Analysis/VectorUtils.h" 31 #include "llvm/IR/ConstantRange.h" 32 #include "llvm/IR/DataLayout.h" 33 #include "llvm/IR/Dominators.h" 34 #include "llvm/IR/GetElementPtrTypeIterator.h" 35 #include "llvm/IR/GlobalAlias.h" 36 #include "llvm/IR/InstrTypes.h" 37 #include "llvm/IR/Instructions.h" 38 #include "llvm/IR/Operator.h" 39 #include "llvm/IR/PatternMatch.h" 40 #include "llvm/IR/ValueHandle.h" 41 #include "llvm/Support/KnownBits.h" 42 #include <algorithm> 43 using namespace llvm; 44 using namespace llvm::PatternMatch; 45 46 #define DEBUG_TYPE "instsimplify" 47 48 enum { RecursionLimit = 3 }; 49 50 STATISTIC(NumExpand, "Number of expansions"); 51 STATISTIC(NumReassoc, "Number of reassociations"); 52 53 static Value *SimplifyAndInst(Value *, Value *, const SimplifyQuery &, unsigned); 54 static Value *simplifyUnOp(unsigned, Value *, const SimplifyQuery &, unsigned); 55 static Value *simplifyFPUnOp(unsigned, Value *, const FastMathFlags &, 56 const SimplifyQuery &, unsigned); 57 static Value *SimplifyBinOp(unsigned, Value *, Value *, const SimplifyQuery &, 58 unsigned); 59 static Value *SimplifyFPBinOp(unsigned, Value *, Value *, const FastMathFlags &, 60 const SimplifyQuery &, unsigned); 61 static Value *SimplifyCmpInst(unsigned, Value *, Value *, const SimplifyQuery &, 62 unsigned); 63 static Value *SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS, 64 const SimplifyQuery &Q, unsigned MaxRecurse); 65 static Value *SimplifyOrInst(Value *, Value *, const SimplifyQuery &, unsigned); 66 static Value *SimplifyXorInst(Value *, Value *, const SimplifyQuery &, unsigned); 67 static Value *SimplifyCastInst(unsigned, Value *, Type *, 68 const SimplifyQuery &, unsigned); 69 static Value *SimplifyGEPInst(Type *, ArrayRef<Value *>, const SimplifyQuery &, 70 unsigned); 71 72 static Value *foldSelectWithBinaryOp(Value *Cond, Value *TrueVal, 73 Value *FalseVal) { 74 BinaryOperator::BinaryOps BinOpCode; 75 if (auto *BO = dyn_cast<BinaryOperator>(Cond)) 76 BinOpCode = BO->getOpcode(); 77 else 78 return nullptr; 79 80 CmpInst::Predicate ExpectedPred, Pred1, Pred2; 81 if (BinOpCode == BinaryOperator::Or) { 82 ExpectedPred = ICmpInst::ICMP_NE; 83 } else if (BinOpCode == BinaryOperator::And) { 84 ExpectedPred = ICmpInst::ICMP_EQ; 85 } else 86 return nullptr; 87 88 // %A = icmp eq %TV, %FV 89 // %B = icmp eq %X, %Y (and one of these is a select operand) 90 // %C = and %A, %B 91 // %D = select %C, %TV, %FV 92 // --> 93 // %FV 94 95 // %A = icmp ne %TV, %FV 96 // %B = icmp ne %X, %Y (and one of these is a select operand) 97 // %C = or %A, %B 98 // %D = select %C, %TV, %FV 99 // --> 100 // %TV 101 Value *X, *Y; 102 if (!match(Cond, m_c_BinOp(m_c_ICmp(Pred1, m_Specific(TrueVal), 103 m_Specific(FalseVal)), 104 m_ICmp(Pred2, m_Value(X), m_Value(Y)))) || 105 Pred1 != Pred2 || Pred1 != ExpectedPred) 106 return nullptr; 107 108 if (X == TrueVal || X == FalseVal || Y == TrueVal || Y == FalseVal) 109 return BinOpCode == BinaryOperator::Or ? TrueVal : FalseVal; 110 111 return nullptr; 112 } 113 114 /// For a boolean type or a vector of boolean type, return false or a vector 115 /// with every element false. 116 static Constant *getFalse(Type *Ty) { 117 return ConstantInt::getFalse(Ty); 118 } 119 120 /// For a boolean type or a vector of boolean type, return true or a vector 121 /// with every element true. 122 static Constant *getTrue(Type *Ty) { 123 return ConstantInt::getTrue(Ty); 124 } 125 126 /// isSameCompare - Is V equivalent to the comparison "LHS Pred RHS"? 127 static bool isSameCompare(Value *V, CmpInst::Predicate Pred, Value *LHS, 128 Value *RHS) { 129 CmpInst *Cmp = dyn_cast<CmpInst>(V); 130 if (!Cmp) 131 return false; 132 CmpInst::Predicate CPred = Cmp->getPredicate(); 133 Value *CLHS = Cmp->getOperand(0), *CRHS = Cmp->getOperand(1); 134 if (CPred == Pred && CLHS == LHS && CRHS == RHS) 135 return true; 136 return CPred == CmpInst::getSwappedPredicate(Pred) && CLHS == RHS && 137 CRHS == LHS; 138 } 139 140 /// Does the given value dominate the specified phi node? 141 static bool valueDominatesPHI(Value *V, PHINode *P, const DominatorTree *DT) { 142 Instruction *I = dyn_cast<Instruction>(V); 143 if (!I) 144 // Arguments and constants dominate all instructions. 145 return true; 146 147 // If we are processing instructions (and/or basic blocks) that have not been 148 // fully added to a function, the parent nodes may still be null. Simply 149 // return the conservative answer in these cases. 150 if (!I->getParent() || !P->getParent() || !I->getFunction()) 151 return false; 152 153 // If we have a DominatorTree then do a precise test. 154 if (DT) 155 return DT->dominates(I, P); 156 157 // Otherwise, if the instruction is in the entry block and is not an invoke, 158 // then it obviously dominates all phi nodes. 159 if (I->getParent() == &I->getFunction()->getEntryBlock() && 160 !isa<InvokeInst>(I)) 161 return true; 162 163 return false; 164 } 165 166 /// Simplify "A op (B op' C)" by distributing op over op', turning it into 167 /// "(A op B) op' (A op C)". Here "op" is given by Opcode and "op'" is 168 /// given by OpcodeToExpand, while "A" corresponds to LHS and "B op' C" to RHS. 169 /// Also performs the transform "(A op' B) op C" -> "(A op C) op' (B op C)". 170 /// Returns the simplified value, or null if no simplification was performed. 171 static Value *ExpandBinOp(Instruction::BinaryOps Opcode, Value *LHS, Value *RHS, 172 Instruction::BinaryOps OpcodeToExpand, 173 const SimplifyQuery &Q, unsigned MaxRecurse) { 174 // Recursion is always used, so bail out at once if we already hit the limit. 175 if (!MaxRecurse--) 176 return nullptr; 177 178 // Check whether the expression has the form "(A op' B) op C". 179 if (BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS)) 180 if (Op0->getOpcode() == OpcodeToExpand) { 181 // It does! Try turning it into "(A op C) op' (B op C)". 182 Value *A = Op0->getOperand(0), *B = Op0->getOperand(1), *C = RHS; 183 // Do "A op C" and "B op C" both simplify? 184 if (Value *L = SimplifyBinOp(Opcode, A, C, Q, MaxRecurse)) 185 if (Value *R = SimplifyBinOp(Opcode, B, C, Q, MaxRecurse)) { 186 // They do! Return "L op' R" if it simplifies or is already available. 187 // If "L op' R" equals "A op' B" then "L op' R" is just the LHS. 188 if ((L == A && R == B) || (Instruction::isCommutative(OpcodeToExpand) 189 && L == B && R == A)) { 190 ++NumExpand; 191 return LHS; 192 } 193 // Otherwise return "L op' R" if it simplifies. 194 if (Value *V = SimplifyBinOp(OpcodeToExpand, L, R, Q, MaxRecurse)) { 195 ++NumExpand; 196 return V; 197 } 198 } 199 } 200 201 // Check whether the expression has the form "A op (B op' C)". 202 if (BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS)) 203 if (Op1->getOpcode() == OpcodeToExpand) { 204 // It does! Try turning it into "(A op B) op' (A op C)". 205 Value *A = LHS, *B = Op1->getOperand(0), *C = Op1->getOperand(1); 206 // Do "A op B" and "A op C" both simplify? 207 if (Value *L = SimplifyBinOp(Opcode, A, B, Q, MaxRecurse)) 208 if (Value *R = SimplifyBinOp(Opcode, A, C, Q, MaxRecurse)) { 209 // They do! Return "L op' R" if it simplifies or is already available. 210 // If "L op' R" equals "B op' C" then "L op' R" is just the RHS. 211 if ((L == B && R == C) || (Instruction::isCommutative(OpcodeToExpand) 212 && L == C && R == B)) { 213 ++NumExpand; 214 return RHS; 215 } 216 // Otherwise return "L op' R" if it simplifies. 217 if (Value *V = SimplifyBinOp(OpcodeToExpand, L, R, Q, MaxRecurse)) { 218 ++NumExpand; 219 return V; 220 } 221 } 222 } 223 224 return nullptr; 225 } 226 227 /// Generic simplifications for associative binary operations. 228 /// Returns the simpler value, or null if none was found. 229 static Value *SimplifyAssociativeBinOp(Instruction::BinaryOps Opcode, 230 Value *LHS, Value *RHS, 231 const SimplifyQuery &Q, 232 unsigned MaxRecurse) { 233 assert(Instruction::isAssociative(Opcode) && "Not an associative operation!"); 234 235 // Recursion is always used, so bail out at once if we already hit the limit. 236 if (!MaxRecurse--) 237 return nullptr; 238 239 BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS); 240 BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS); 241 242 // Transform: "(A op B) op C" ==> "A op (B op C)" if it simplifies completely. 243 if (Op0 && Op0->getOpcode() == Opcode) { 244 Value *A = Op0->getOperand(0); 245 Value *B = Op0->getOperand(1); 246 Value *C = RHS; 247 248 // Does "B op C" simplify? 249 if (Value *V = SimplifyBinOp(Opcode, B, C, Q, MaxRecurse)) { 250 // It does! Return "A op V" if it simplifies or is already available. 251 // If V equals B then "A op V" is just the LHS. 252 if (V == B) return LHS; 253 // Otherwise return "A op V" if it simplifies. 254 if (Value *W = SimplifyBinOp(Opcode, A, V, Q, MaxRecurse)) { 255 ++NumReassoc; 256 return W; 257 } 258 } 259 } 260 261 // Transform: "A op (B op C)" ==> "(A op B) op C" if it simplifies completely. 262 if (Op1 && Op1->getOpcode() == Opcode) { 263 Value *A = LHS; 264 Value *B = Op1->getOperand(0); 265 Value *C = Op1->getOperand(1); 266 267 // Does "A op B" simplify? 268 if (Value *V = SimplifyBinOp(Opcode, A, B, Q, MaxRecurse)) { 269 // It does! Return "V op C" if it simplifies or is already available. 270 // If V equals B then "V op C" is just the RHS. 271 if (V == B) return RHS; 272 // Otherwise return "V op C" if it simplifies. 273 if (Value *W = SimplifyBinOp(Opcode, V, C, Q, MaxRecurse)) { 274 ++NumReassoc; 275 return W; 276 } 277 } 278 } 279 280 // The remaining transforms require commutativity as well as associativity. 281 if (!Instruction::isCommutative(Opcode)) 282 return nullptr; 283 284 // Transform: "(A op B) op C" ==> "(C op A) op B" if it simplifies completely. 285 if (Op0 && Op0->getOpcode() == Opcode) { 286 Value *A = Op0->getOperand(0); 287 Value *B = Op0->getOperand(1); 288 Value *C = RHS; 289 290 // Does "C op A" simplify? 291 if (Value *V = SimplifyBinOp(Opcode, C, A, Q, MaxRecurse)) { 292 // It does! Return "V op B" if it simplifies or is already available. 293 // If V equals A then "V op B" is just the LHS. 294 if (V == A) return LHS; 295 // Otherwise return "V op B" if it simplifies. 296 if (Value *W = SimplifyBinOp(Opcode, V, B, Q, MaxRecurse)) { 297 ++NumReassoc; 298 return W; 299 } 300 } 301 } 302 303 // Transform: "A op (B op C)" ==> "B op (C op A)" if it simplifies completely. 304 if (Op1 && Op1->getOpcode() == Opcode) { 305 Value *A = LHS; 306 Value *B = Op1->getOperand(0); 307 Value *C = Op1->getOperand(1); 308 309 // Does "C op A" simplify? 310 if (Value *V = SimplifyBinOp(Opcode, C, A, Q, MaxRecurse)) { 311 // It does! Return "B op V" if it simplifies or is already available. 312 // If V equals C then "B op V" is just the RHS. 313 if (V == C) return RHS; 314 // Otherwise return "B op V" if it simplifies. 315 if (Value *W = SimplifyBinOp(Opcode, B, V, Q, MaxRecurse)) { 316 ++NumReassoc; 317 return W; 318 } 319 } 320 } 321 322 return nullptr; 323 } 324 325 /// In the case of a binary operation with a select instruction as an operand, 326 /// try to simplify the binop by seeing whether evaluating it on both branches 327 /// of the select results in the same value. Returns the common value if so, 328 /// otherwise returns null. 329 static Value *ThreadBinOpOverSelect(Instruction::BinaryOps Opcode, Value *LHS, 330 Value *RHS, const SimplifyQuery &Q, 331 unsigned MaxRecurse) { 332 // Recursion is always used, so bail out at once if we already hit the limit. 333 if (!MaxRecurse--) 334 return nullptr; 335 336 SelectInst *SI; 337 if (isa<SelectInst>(LHS)) { 338 SI = cast<SelectInst>(LHS); 339 } else { 340 assert(isa<SelectInst>(RHS) && "No select instruction operand!"); 341 SI = cast<SelectInst>(RHS); 342 } 343 344 // Evaluate the BinOp on the true and false branches of the select. 345 Value *TV; 346 Value *FV; 347 if (SI == LHS) { 348 TV = SimplifyBinOp(Opcode, SI->getTrueValue(), RHS, Q, MaxRecurse); 349 FV = SimplifyBinOp(Opcode, SI->getFalseValue(), RHS, Q, MaxRecurse); 350 } else { 351 TV = SimplifyBinOp(Opcode, LHS, SI->getTrueValue(), Q, MaxRecurse); 352 FV = SimplifyBinOp(Opcode, LHS, SI->getFalseValue(), Q, MaxRecurse); 353 } 354 355 // If they simplified to the same value, then return the common value. 356 // If they both failed to simplify then return null. 357 if (TV == FV) 358 return TV; 359 360 // If one branch simplified to undef, return the other one. 361 if (TV && isa<UndefValue>(TV)) 362 return FV; 363 if (FV && isa<UndefValue>(FV)) 364 return TV; 365 366 // If applying the operation did not change the true and false select values, 367 // then the result of the binop is the select itself. 368 if (TV == SI->getTrueValue() && FV == SI->getFalseValue()) 369 return SI; 370 371 // If one branch simplified and the other did not, and the simplified 372 // value is equal to the unsimplified one, return the simplified value. 373 // For example, select (cond, X, X & Z) & Z -> X & Z. 374 if ((FV && !TV) || (TV && !FV)) { 375 // Check that the simplified value has the form "X op Y" where "op" is the 376 // same as the original operation. 377 Instruction *Simplified = dyn_cast<Instruction>(FV ? FV : TV); 378 if (Simplified && Simplified->getOpcode() == unsigned(Opcode)) { 379 // The value that didn't simplify is "UnsimplifiedLHS op UnsimplifiedRHS". 380 // We already know that "op" is the same as for the simplified value. See 381 // if the operands match too. If so, return the simplified value. 382 Value *UnsimplifiedBranch = FV ? SI->getTrueValue() : SI->getFalseValue(); 383 Value *UnsimplifiedLHS = SI == LHS ? UnsimplifiedBranch : LHS; 384 Value *UnsimplifiedRHS = SI == LHS ? RHS : UnsimplifiedBranch; 385 if (Simplified->getOperand(0) == UnsimplifiedLHS && 386 Simplified->getOperand(1) == UnsimplifiedRHS) 387 return Simplified; 388 if (Simplified->isCommutative() && 389 Simplified->getOperand(1) == UnsimplifiedLHS && 390 Simplified->getOperand(0) == UnsimplifiedRHS) 391 return Simplified; 392 } 393 } 394 395 return nullptr; 396 } 397 398 /// In the case of a comparison with a select instruction, try to simplify the 399 /// comparison by seeing whether both branches of the select result in the same 400 /// value. Returns the common value if so, otherwise returns null. 401 static Value *ThreadCmpOverSelect(CmpInst::Predicate Pred, Value *LHS, 402 Value *RHS, const SimplifyQuery &Q, 403 unsigned MaxRecurse) { 404 // Recursion is always used, so bail out at once if we already hit the limit. 405 if (!MaxRecurse--) 406 return nullptr; 407 408 // Make sure the select is on the LHS. 409 if (!isa<SelectInst>(LHS)) { 410 std::swap(LHS, RHS); 411 Pred = CmpInst::getSwappedPredicate(Pred); 412 } 413 assert(isa<SelectInst>(LHS) && "Not comparing with a select instruction!"); 414 SelectInst *SI = cast<SelectInst>(LHS); 415 Value *Cond = SI->getCondition(); 416 Value *TV = SI->getTrueValue(); 417 Value *FV = SI->getFalseValue(); 418 419 // Now that we have "cmp select(Cond, TV, FV), RHS", analyse it. 420 // Does "cmp TV, RHS" simplify? 421 Value *TCmp = SimplifyCmpInst(Pred, TV, RHS, Q, MaxRecurse); 422 if (TCmp == Cond) { 423 // It not only simplified, it simplified to the select condition. Replace 424 // it with 'true'. 425 TCmp = getTrue(Cond->getType()); 426 } else if (!TCmp) { 427 // It didn't simplify. However if "cmp TV, RHS" is equal to the select 428 // condition then we can replace it with 'true'. Otherwise give up. 429 if (!isSameCompare(Cond, Pred, TV, RHS)) 430 return nullptr; 431 TCmp = getTrue(Cond->getType()); 432 } 433 434 // Does "cmp FV, RHS" simplify? 435 Value *FCmp = SimplifyCmpInst(Pred, FV, RHS, Q, MaxRecurse); 436 if (FCmp == Cond) { 437 // It not only simplified, it simplified to the select condition. Replace 438 // it with 'false'. 439 FCmp = getFalse(Cond->getType()); 440 } else if (!FCmp) { 441 // It didn't simplify. However if "cmp FV, RHS" is equal to the select 442 // condition then we can replace it with 'false'. Otherwise give up. 443 if (!isSameCompare(Cond, Pred, FV, RHS)) 444 return nullptr; 445 FCmp = getFalse(Cond->getType()); 446 } 447 448 // If both sides simplified to the same value, then use it as the result of 449 // the original comparison. 450 if (TCmp == FCmp) 451 return TCmp; 452 453 // The remaining cases only make sense if the select condition has the same 454 // type as the result of the comparison, so bail out if this is not so. 455 if (Cond->getType()->isVectorTy() != RHS->getType()->isVectorTy()) 456 return nullptr; 457 // If the false value simplified to false, then the result of the compare 458 // is equal to "Cond && TCmp". This also catches the case when the false 459 // value simplified to false and the true value to true, returning "Cond". 460 if (match(FCmp, m_Zero())) 461 if (Value *V = SimplifyAndInst(Cond, TCmp, Q, MaxRecurse)) 462 return V; 463 // If the true value simplified to true, then the result of the compare 464 // is equal to "Cond || FCmp". 465 if (match(TCmp, m_One())) 466 if (Value *V = SimplifyOrInst(Cond, FCmp, Q, MaxRecurse)) 467 return V; 468 // Finally, if the false value simplified to true and the true value to 469 // false, then the result of the compare is equal to "!Cond". 470 if (match(FCmp, m_One()) && match(TCmp, m_Zero())) 471 if (Value *V = 472 SimplifyXorInst(Cond, Constant::getAllOnesValue(Cond->getType()), 473 Q, MaxRecurse)) 474 return V; 475 476 return nullptr; 477 } 478 479 /// In the case of a binary operation with an operand that is a PHI instruction, 480 /// try to simplify the binop by seeing whether evaluating it on the incoming 481 /// phi values yields the same result for every value. If so returns the common 482 /// value, otherwise returns null. 483 static Value *ThreadBinOpOverPHI(Instruction::BinaryOps Opcode, Value *LHS, 484 Value *RHS, const SimplifyQuery &Q, 485 unsigned MaxRecurse) { 486 // Recursion is always used, so bail out at once if we already hit the limit. 487 if (!MaxRecurse--) 488 return nullptr; 489 490 PHINode *PI; 491 if (isa<PHINode>(LHS)) { 492 PI = cast<PHINode>(LHS); 493 // Bail out if RHS and the phi may be mutually interdependent due to a loop. 494 if (!valueDominatesPHI(RHS, PI, Q.DT)) 495 return nullptr; 496 } else { 497 assert(isa<PHINode>(RHS) && "No PHI instruction operand!"); 498 PI = cast<PHINode>(RHS); 499 // Bail out if LHS and the phi may be mutually interdependent due to a loop. 500 if (!valueDominatesPHI(LHS, PI, Q.DT)) 501 return nullptr; 502 } 503 504 // Evaluate the BinOp on the incoming phi values. 505 Value *CommonValue = nullptr; 506 for (Value *Incoming : PI->incoming_values()) { 507 // If the incoming value is the phi node itself, it can safely be skipped. 508 if (Incoming == PI) continue; 509 Value *V = PI == LHS ? 510 SimplifyBinOp(Opcode, Incoming, RHS, Q, MaxRecurse) : 511 SimplifyBinOp(Opcode, LHS, Incoming, Q, MaxRecurse); 512 // If the operation failed to simplify, or simplified to a different value 513 // to previously, then give up. 514 if (!V || (CommonValue && V != CommonValue)) 515 return nullptr; 516 CommonValue = V; 517 } 518 519 return CommonValue; 520 } 521 522 /// In the case of a comparison with a PHI instruction, try to simplify the 523 /// comparison by seeing whether comparing with all of the incoming phi values 524 /// yields the same result every time. If so returns the common result, 525 /// otherwise returns null. 526 static Value *ThreadCmpOverPHI(CmpInst::Predicate Pred, Value *LHS, Value *RHS, 527 const SimplifyQuery &Q, unsigned MaxRecurse) { 528 // Recursion is always used, so bail out at once if we already hit the limit. 529 if (!MaxRecurse--) 530 return nullptr; 531 532 // Make sure the phi is on the LHS. 533 if (!isa<PHINode>(LHS)) { 534 std::swap(LHS, RHS); 535 Pred = CmpInst::getSwappedPredicate(Pred); 536 } 537 assert(isa<PHINode>(LHS) && "Not comparing with a phi instruction!"); 538 PHINode *PI = cast<PHINode>(LHS); 539 540 // Bail out if RHS and the phi may be mutually interdependent due to a loop. 541 if (!valueDominatesPHI(RHS, PI, Q.DT)) 542 return nullptr; 543 544 // Evaluate the BinOp on the incoming phi values. 545 Value *CommonValue = nullptr; 546 for (Value *Incoming : PI->incoming_values()) { 547 // If the incoming value is the phi node itself, it can safely be skipped. 548 if (Incoming == PI) continue; 549 Value *V = SimplifyCmpInst(Pred, Incoming, RHS, Q, MaxRecurse); 550 // If the operation failed to simplify, or simplified to a different value 551 // to previously, then give up. 552 if (!V || (CommonValue && V != CommonValue)) 553 return nullptr; 554 CommonValue = V; 555 } 556 557 return CommonValue; 558 } 559 560 static Constant *foldOrCommuteConstant(Instruction::BinaryOps Opcode, 561 Value *&Op0, Value *&Op1, 562 const SimplifyQuery &Q) { 563 if (auto *CLHS = dyn_cast<Constant>(Op0)) { 564 if (auto *CRHS = dyn_cast<Constant>(Op1)) 565 return ConstantFoldBinaryOpOperands(Opcode, CLHS, CRHS, Q.DL); 566 567 // Canonicalize the constant to the RHS if this is a commutative operation. 568 if (Instruction::isCommutative(Opcode)) 569 std::swap(Op0, Op1); 570 } 571 return nullptr; 572 } 573 574 /// Given operands for an Add, see if we can fold the result. 575 /// If not, this returns null. 576 static Value *SimplifyAddInst(Value *Op0, Value *Op1, bool IsNSW, bool IsNUW, 577 const SimplifyQuery &Q, unsigned MaxRecurse) { 578 if (Constant *C = foldOrCommuteConstant(Instruction::Add, Op0, Op1, Q)) 579 return C; 580 581 // X + undef -> undef 582 if (match(Op1, m_Undef())) 583 return Op1; 584 585 // X + 0 -> X 586 if (match(Op1, m_Zero())) 587 return Op0; 588 589 // If two operands are negative, return 0. 590 if (isKnownNegation(Op0, Op1)) 591 return Constant::getNullValue(Op0->getType()); 592 593 // X + (Y - X) -> Y 594 // (Y - X) + X -> Y 595 // Eg: X + -X -> 0 596 Value *Y = nullptr; 597 if (match(Op1, m_Sub(m_Value(Y), m_Specific(Op0))) || 598 match(Op0, m_Sub(m_Value(Y), m_Specific(Op1)))) 599 return Y; 600 601 // X + ~X -> -1 since ~X = -X-1 602 Type *Ty = Op0->getType(); 603 if (match(Op0, m_Not(m_Specific(Op1))) || 604 match(Op1, m_Not(m_Specific(Op0)))) 605 return Constant::getAllOnesValue(Ty); 606 607 // add nsw/nuw (xor Y, signmask), signmask --> Y 608 // The no-wrapping add guarantees that the top bit will be set by the add. 609 // Therefore, the xor must be clearing the already set sign bit of Y. 610 if ((IsNSW || IsNUW) && match(Op1, m_SignMask()) && 611 match(Op0, m_Xor(m_Value(Y), m_SignMask()))) 612 return Y; 613 614 // add nuw %x, -1 -> -1, because %x can only be 0. 615 if (IsNUW && match(Op1, m_AllOnes())) 616 return Op1; // Which is -1. 617 618 /// i1 add -> xor. 619 if (MaxRecurse && Op0->getType()->isIntOrIntVectorTy(1)) 620 if (Value *V = SimplifyXorInst(Op0, Op1, Q, MaxRecurse-1)) 621 return V; 622 623 // Try some generic simplifications for associative operations. 624 if (Value *V = SimplifyAssociativeBinOp(Instruction::Add, Op0, Op1, Q, 625 MaxRecurse)) 626 return V; 627 628 // Threading Add over selects and phi nodes is pointless, so don't bother. 629 // Threading over the select in "A + select(cond, B, C)" means evaluating 630 // "A+B" and "A+C" and seeing if they are equal; but they are equal if and 631 // only if B and C are equal. If B and C are equal then (since we assume 632 // that operands have already been simplified) "select(cond, B, C)" should 633 // have been simplified to the common value of B and C already. Analysing 634 // "A+B" and "A+C" thus gains nothing, but costs compile time. Similarly 635 // for threading over phi nodes. 636 637 return nullptr; 638 } 639 640 Value *llvm::SimplifyAddInst(Value *Op0, Value *Op1, bool IsNSW, bool IsNUW, 641 const SimplifyQuery &Query) { 642 return ::SimplifyAddInst(Op0, Op1, IsNSW, IsNUW, Query, RecursionLimit); 643 } 644 645 /// Compute the base pointer and cumulative constant offsets for V. 646 /// 647 /// This strips all constant offsets off of V, leaving it the base pointer, and 648 /// accumulates the total constant offset applied in the returned constant. It 649 /// returns 0 if V is not a pointer, and returns the constant '0' if there are 650 /// no constant offsets applied. 651 /// 652 /// This is very similar to GetPointerBaseWithConstantOffset except it doesn't 653 /// follow non-inbounds geps. This allows it to remain usable for icmp ult/etc. 654 /// folding. 655 static Constant *stripAndComputeConstantOffsets(const DataLayout &DL, Value *&V, 656 bool AllowNonInbounds = false) { 657 assert(V->getType()->isPtrOrPtrVectorTy()); 658 659 Type *IntPtrTy = DL.getIntPtrType(V->getType())->getScalarType(); 660 APInt Offset = APInt::getNullValue(IntPtrTy->getIntegerBitWidth()); 661 662 // Even though we don't look through PHI nodes, we could be called on an 663 // instruction in an unreachable block, which may be on a cycle. 664 SmallPtrSet<Value *, 4> Visited; 665 Visited.insert(V); 666 do { 667 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 668 if ((!AllowNonInbounds && !GEP->isInBounds()) || 669 !GEP->accumulateConstantOffset(DL, Offset)) 670 break; 671 V = GEP->getPointerOperand(); 672 } else if (Operator::getOpcode(V) == Instruction::BitCast) { 673 V = cast<Operator>(V)->getOperand(0); 674 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 675 if (GA->isInterposable()) 676 break; 677 V = GA->getAliasee(); 678 } else { 679 if (auto *Call = dyn_cast<CallBase>(V)) 680 if (Value *RV = Call->getReturnedArgOperand()) { 681 V = RV; 682 continue; 683 } 684 break; 685 } 686 assert(V->getType()->isPtrOrPtrVectorTy() && "Unexpected operand type!"); 687 } while (Visited.insert(V).second); 688 689 Constant *OffsetIntPtr = ConstantInt::get(IntPtrTy, Offset); 690 if (V->getType()->isVectorTy()) 691 return ConstantVector::getSplat(V->getType()->getVectorNumElements(), 692 OffsetIntPtr); 693 return OffsetIntPtr; 694 } 695 696 /// Compute the constant difference between two pointer values. 697 /// If the difference is not a constant, returns zero. 698 static Constant *computePointerDifference(const DataLayout &DL, Value *LHS, 699 Value *RHS) { 700 Constant *LHSOffset = stripAndComputeConstantOffsets(DL, LHS); 701 Constant *RHSOffset = stripAndComputeConstantOffsets(DL, RHS); 702 703 // If LHS and RHS are not related via constant offsets to the same base 704 // value, there is nothing we can do here. 705 if (LHS != RHS) 706 return nullptr; 707 708 // Otherwise, the difference of LHS - RHS can be computed as: 709 // LHS - RHS 710 // = (LHSOffset + Base) - (RHSOffset + Base) 711 // = LHSOffset - RHSOffset 712 return ConstantExpr::getSub(LHSOffset, RHSOffset); 713 } 714 715 /// Given operands for a Sub, see if we can fold the result. 716 /// If not, this returns null. 717 static Value *SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, 718 const SimplifyQuery &Q, unsigned MaxRecurse) { 719 if (Constant *C = foldOrCommuteConstant(Instruction::Sub, Op0, Op1, Q)) 720 return C; 721 722 // X - undef -> undef 723 // undef - X -> undef 724 if (match(Op0, m_Undef()) || match(Op1, m_Undef())) 725 return UndefValue::get(Op0->getType()); 726 727 // X - 0 -> X 728 if (match(Op1, m_Zero())) 729 return Op0; 730 731 // X - X -> 0 732 if (Op0 == Op1) 733 return Constant::getNullValue(Op0->getType()); 734 735 // Is this a negation? 736 if (match(Op0, m_Zero())) { 737 // 0 - X -> 0 if the sub is NUW. 738 if (isNUW) 739 return Constant::getNullValue(Op0->getType()); 740 741 KnownBits Known = computeKnownBits(Op1, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 742 if (Known.Zero.isMaxSignedValue()) { 743 // Op1 is either 0 or the minimum signed value. If the sub is NSW, then 744 // Op1 must be 0 because negating the minimum signed value is undefined. 745 if (isNSW) 746 return Constant::getNullValue(Op0->getType()); 747 748 // 0 - X -> X if X is 0 or the minimum signed value. 749 return Op1; 750 } 751 } 752 753 // (X + Y) - Z -> X + (Y - Z) or Y + (X - Z) if everything simplifies. 754 // For example, (X + Y) - Y -> X; (Y + X) - Y -> X 755 Value *X = nullptr, *Y = nullptr, *Z = Op1; 756 if (MaxRecurse && match(Op0, m_Add(m_Value(X), m_Value(Y)))) { // (X + Y) - Z 757 // See if "V === Y - Z" simplifies. 758 if (Value *V = SimplifyBinOp(Instruction::Sub, Y, Z, Q, MaxRecurse-1)) 759 // It does! Now see if "X + V" simplifies. 760 if (Value *W = SimplifyBinOp(Instruction::Add, X, V, Q, MaxRecurse-1)) { 761 // It does, we successfully reassociated! 762 ++NumReassoc; 763 return W; 764 } 765 // See if "V === X - Z" simplifies. 766 if (Value *V = SimplifyBinOp(Instruction::Sub, X, Z, Q, MaxRecurse-1)) 767 // It does! Now see if "Y + V" simplifies. 768 if (Value *W = SimplifyBinOp(Instruction::Add, Y, V, Q, MaxRecurse-1)) { 769 // It does, we successfully reassociated! 770 ++NumReassoc; 771 return W; 772 } 773 } 774 775 // X - (Y + Z) -> (X - Y) - Z or (X - Z) - Y if everything simplifies. 776 // For example, X - (X + 1) -> -1 777 X = Op0; 778 if (MaxRecurse && match(Op1, m_Add(m_Value(Y), m_Value(Z)))) { // X - (Y + Z) 779 // See if "V === X - Y" simplifies. 780 if (Value *V = SimplifyBinOp(Instruction::Sub, X, Y, Q, MaxRecurse-1)) 781 // It does! Now see if "V - Z" simplifies. 782 if (Value *W = SimplifyBinOp(Instruction::Sub, V, Z, Q, MaxRecurse-1)) { 783 // It does, we successfully reassociated! 784 ++NumReassoc; 785 return W; 786 } 787 // See if "V === X - Z" simplifies. 788 if (Value *V = SimplifyBinOp(Instruction::Sub, X, Z, Q, MaxRecurse-1)) 789 // It does! Now see if "V - Y" simplifies. 790 if (Value *W = SimplifyBinOp(Instruction::Sub, V, Y, Q, MaxRecurse-1)) { 791 // It does, we successfully reassociated! 792 ++NumReassoc; 793 return W; 794 } 795 } 796 797 // Z - (X - Y) -> (Z - X) + Y if everything simplifies. 798 // For example, X - (X - Y) -> Y. 799 Z = Op0; 800 if (MaxRecurse && match(Op1, m_Sub(m_Value(X), m_Value(Y)))) // Z - (X - Y) 801 // See if "V === Z - X" simplifies. 802 if (Value *V = SimplifyBinOp(Instruction::Sub, Z, X, Q, MaxRecurse-1)) 803 // It does! Now see if "V + Y" simplifies. 804 if (Value *W = SimplifyBinOp(Instruction::Add, V, Y, Q, MaxRecurse-1)) { 805 // It does, we successfully reassociated! 806 ++NumReassoc; 807 return W; 808 } 809 810 // trunc(X) - trunc(Y) -> trunc(X - Y) if everything simplifies. 811 if (MaxRecurse && match(Op0, m_Trunc(m_Value(X))) && 812 match(Op1, m_Trunc(m_Value(Y)))) 813 if (X->getType() == Y->getType()) 814 // See if "V === X - Y" simplifies. 815 if (Value *V = SimplifyBinOp(Instruction::Sub, X, Y, Q, MaxRecurse-1)) 816 // It does! Now see if "trunc V" simplifies. 817 if (Value *W = SimplifyCastInst(Instruction::Trunc, V, Op0->getType(), 818 Q, MaxRecurse - 1)) 819 // It does, return the simplified "trunc V". 820 return W; 821 822 // Variations on GEP(base, I, ...) - GEP(base, i, ...) -> GEP(null, I-i, ...). 823 if (match(Op0, m_PtrToInt(m_Value(X))) && 824 match(Op1, m_PtrToInt(m_Value(Y)))) 825 if (Constant *Result = computePointerDifference(Q.DL, X, Y)) 826 return ConstantExpr::getIntegerCast(Result, Op0->getType(), true); 827 828 // i1 sub -> xor. 829 if (MaxRecurse && Op0->getType()->isIntOrIntVectorTy(1)) 830 if (Value *V = SimplifyXorInst(Op0, Op1, Q, MaxRecurse-1)) 831 return V; 832 833 // Threading Sub over selects and phi nodes is pointless, so don't bother. 834 // Threading over the select in "A - select(cond, B, C)" means evaluating 835 // "A-B" and "A-C" and seeing if they are equal; but they are equal if and 836 // only if B and C are equal. If B and C are equal then (since we assume 837 // that operands have already been simplified) "select(cond, B, C)" should 838 // have been simplified to the common value of B and C already. Analysing 839 // "A-B" and "A-C" thus gains nothing, but costs compile time. Similarly 840 // for threading over phi nodes. 841 842 return nullptr; 843 } 844 845 Value *llvm::SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, 846 const SimplifyQuery &Q) { 847 return ::SimplifySubInst(Op0, Op1, isNSW, isNUW, Q, RecursionLimit); 848 } 849 850 /// Given operands for a Mul, see if we can fold the result. 851 /// If not, this returns null. 852 static Value *SimplifyMulInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 853 unsigned MaxRecurse) { 854 if (Constant *C = foldOrCommuteConstant(Instruction::Mul, Op0, Op1, Q)) 855 return C; 856 857 // X * undef -> 0 858 // X * 0 -> 0 859 if (match(Op1, m_CombineOr(m_Undef(), m_Zero()))) 860 return Constant::getNullValue(Op0->getType()); 861 862 // X * 1 -> X 863 if (match(Op1, m_One())) 864 return Op0; 865 866 // (X / Y) * Y -> X if the division is exact. 867 Value *X = nullptr; 868 if (Q.IIQ.UseInstrInfo && 869 (match(Op0, 870 m_Exact(m_IDiv(m_Value(X), m_Specific(Op1)))) || // (X / Y) * Y 871 match(Op1, m_Exact(m_IDiv(m_Value(X), m_Specific(Op0)))))) // Y * (X / Y) 872 return X; 873 874 // i1 mul -> and. 875 if (MaxRecurse && Op0->getType()->isIntOrIntVectorTy(1)) 876 if (Value *V = SimplifyAndInst(Op0, Op1, Q, MaxRecurse-1)) 877 return V; 878 879 // Try some generic simplifications for associative operations. 880 if (Value *V = SimplifyAssociativeBinOp(Instruction::Mul, Op0, Op1, Q, 881 MaxRecurse)) 882 return V; 883 884 // Mul distributes over Add. Try some generic simplifications based on this. 885 if (Value *V = ExpandBinOp(Instruction::Mul, Op0, Op1, Instruction::Add, 886 Q, MaxRecurse)) 887 return V; 888 889 // If the operation is with the result of a select instruction, check whether 890 // operating on either branch of the select always yields the same value. 891 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 892 if (Value *V = ThreadBinOpOverSelect(Instruction::Mul, Op0, Op1, Q, 893 MaxRecurse)) 894 return V; 895 896 // If the operation is with the result of a phi instruction, check whether 897 // operating on all incoming values of the phi always yields the same value. 898 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 899 if (Value *V = ThreadBinOpOverPHI(Instruction::Mul, Op0, Op1, Q, 900 MaxRecurse)) 901 return V; 902 903 return nullptr; 904 } 905 906 Value *llvm::SimplifyMulInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 907 return ::SimplifyMulInst(Op0, Op1, Q, RecursionLimit); 908 } 909 910 /// Check for common or similar folds of integer division or integer remainder. 911 /// This applies to all 4 opcodes (sdiv/udiv/srem/urem). 912 static Value *simplifyDivRem(Value *Op0, Value *Op1, bool IsDiv) { 913 Type *Ty = Op0->getType(); 914 915 // X / undef -> undef 916 // X % undef -> undef 917 if (match(Op1, m_Undef())) 918 return Op1; 919 920 // X / 0 -> undef 921 // X % 0 -> undef 922 // We don't need to preserve faults! 923 if (match(Op1, m_Zero())) 924 return UndefValue::get(Ty); 925 926 // If any element of a constant divisor vector is zero or undef, the whole op 927 // is undef. 928 auto *Op1C = dyn_cast<Constant>(Op1); 929 if (Op1C && Ty->isVectorTy()) { 930 unsigned NumElts = Ty->getVectorNumElements(); 931 for (unsigned i = 0; i != NumElts; ++i) { 932 Constant *Elt = Op1C->getAggregateElement(i); 933 if (Elt && (Elt->isNullValue() || isa<UndefValue>(Elt))) 934 return UndefValue::get(Ty); 935 } 936 } 937 938 // undef / X -> 0 939 // undef % X -> 0 940 if (match(Op0, m_Undef())) 941 return Constant::getNullValue(Ty); 942 943 // 0 / X -> 0 944 // 0 % X -> 0 945 if (match(Op0, m_Zero())) 946 return Constant::getNullValue(Op0->getType()); 947 948 // X / X -> 1 949 // X % X -> 0 950 if (Op0 == Op1) 951 return IsDiv ? ConstantInt::get(Ty, 1) : Constant::getNullValue(Ty); 952 953 // X / 1 -> X 954 // X % 1 -> 0 955 // If this is a boolean op (single-bit element type), we can't have 956 // division-by-zero or remainder-by-zero, so assume the divisor is 1. 957 // Similarly, if we're zero-extending a boolean divisor, then assume it's a 1. 958 Value *X; 959 if (match(Op1, m_One()) || Ty->isIntOrIntVectorTy(1) || 960 (match(Op1, m_ZExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1))) 961 return IsDiv ? Op0 : Constant::getNullValue(Ty); 962 963 return nullptr; 964 } 965 966 /// Given a predicate and two operands, return true if the comparison is true. 967 /// This is a helper for div/rem simplification where we return some other value 968 /// when we can prove a relationship between the operands. 969 static bool isICmpTrue(ICmpInst::Predicate Pred, Value *LHS, Value *RHS, 970 const SimplifyQuery &Q, unsigned MaxRecurse) { 971 Value *V = SimplifyICmpInst(Pred, LHS, RHS, Q, MaxRecurse); 972 Constant *C = dyn_cast_or_null<Constant>(V); 973 return (C && C->isAllOnesValue()); 974 } 975 976 /// Return true if we can simplify X / Y to 0. Remainder can adapt that answer 977 /// to simplify X % Y to X. 978 static bool isDivZero(Value *X, Value *Y, const SimplifyQuery &Q, 979 unsigned MaxRecurse, bool IsSigned) { 980 // Recursion is always used, so bail out at once if we already hit the limit. 981 if (!MaxRecurse--) 982 return false; 983 984 if (IsSigned) { 985 // |X| / |Y| --> 0 986 // 987 // We require that 1 operand is a simple constant. That could be extended to 988 // 2 variables if we computed the sign bit for each. 989 // 990 // Make sure that a constant is not the minimum signed value because taking 991 // the abs() of that is undefined. 992 Type *Ty = X->getType(); 993 const APInt *C; 994 if (match(X, m_APInt(C)) && !C->isMinSignedValue()) { 995 // Is the variable divisor magnitude always greater than the constant 996 // dividend magnitude? 997 // |Y| > |C| --> Y < -abs(C) or Y > abs(C) 998 Constant *PosDividendC = ConstantInt::get(Ty, C->abs()); 999 Constant *NegDividendC = ConstantInt::get(Ty, -C->abs()); 1000 if (isICmpTrue(CmpInst::ICMP_SLT, Y, NegDividendC, Q, MaxRecurse) || 1001 isICmpTrue(CmpInst::ICMP_SGT, Y, PosDividendC, Q, MaxRecurse)) 1002 return true; 1003 } 1004 if (match(Y, m_APInt(C))) { 1005 // Special-case: we can't take the abs() of a minimum signed value. If 1006 // that's the divisor, then all we have to do is prove that the dividend 1007 // is also not the minimum signed value. 1008 if (C->isMinSignedValue()) 1009 return isICmpTrue(CmpInst::ICMP_NE, X, Y, Q, MaxRecurse); 1010 1011 // Is the variable dividend magnitude always less than the constant 1012 // divisor magnitude? 1013 // |X| < |C| --> X > -abs(C) and X < abs(C) 1014 Constant *PosDivisorC = ConstantInt::get(Ty, C->abs()); 1015 Constant *NegDivisorC = ConstantInt::get(Ty, -C->abs()); 1016 if (isICmpTrue(CmpInst::ICMP_SGT, X, NegDivisorC, Q, MaxRecurse) && 1017 isICmpTrue(CmpInst::ICMP_SLT, X, PosDivisorC, Q, MaxRecurse)) 1018 return true; 1019 } 1020 return false; 1021 } 1022 1023 // IsSigned == false. 1024 // Is the dividend unsigned less than the divisor? 1025 return isICmpTrue(ICmpInst::ICMP_ULT, X, Y, Q, MaxRecurse); 1026 } 1027 1028 /// These are simplifications common to SDiv and UDiv. 1029 static Value *simplifyDiv(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1, 1030 const SimplifyQuery &Q, unsigned MaxRecurse) { 1031 if (Constant *C = foldOrCommuteConstant(Opcode, Op0, Op1, Q)) 1032 return C; 1033 1034 if (Value *V = simplifyDivRem(Op0, Op1, true)) 1035 return V; 1036 1037 bool IsSigned = Opcode == Instruction::SDiv; 1038 1039 // (X * Y) / Y -> X if the multiplication does not overflow. 1040 Value *X; 1041 if (match(Op0, m_c_Mul(m_Value(X), m_Specific(Op1)))) { 1042 auto *Mul = cast<OverflowingBinaryOperator>(Op0); 1043 // If the Mul does not overflow, then we are good to go. 1044 if ((IsSigned && Q.IIQ.hasNoSignedWrap(Mul)) || 1045 (!IsSigned && Q.IIQ.hasNoUnsignedWrap(Mul))) 1046 return X; 1047 // If X has the form X = A / Y, then X * Y cannot overflow. 1048 if ((IsSigned && match(X, m_SDiv(m_Value(), m_Specific(Op1)))) || 1049 (!IsSigned && match(X, m_UDiv(m_Value(), m_Specific(Op1))))) 1050 return X; 1051 } 1052 1053 // (X rem Y) / Y -> 0 1054 if ((IsSigned && match(Op0, m_SRem(m_Value(), m_Specific(Op1)))) || 1055 (!IsSigned && match(Op0, m_URem(m_Value(), m_Specific(Op1))))) 1056 return Constant::getNullValue(Op0->getType()); 1057 1058 // (X /u C1) /u C2 -> 0 if C1 * C2 overflow 1059 ConstantInt *C1, *C2; 1060 if (!IsSigned && match(Op0, m_UDiv(m_Value(X), m_ConstantInt(C1))) && 1061 match(Op1, m_ConstantInt(C2))) { 1062 bool Overflow; 1063 (void)C1->getValue().umul_ov(C2->getValue(), Overflow); 1064 if (Overflow) 1065 return Constant::getNullValue(Op0->getType()); 1066 } 1067 1068 // If the operation is with the result of a select instruction, check whether 1069 // operating on either branch of the select always yields the same value. 1070 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 1071 if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse)) 1072 return V; 1073 1074 // If the operation is with the result of a phi instruction, check whether 1075 // operating on all incoming values of the phi always yields the same value. 1076 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 1077 if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse)) 1078 return V; 1079 1080 if (isDivZero(Op0, Op1, Q, MaxRecurse, IsSigned)) 1081 return Constant::getNullValue(Op0->getType()); 1082 1083 return nullptr; 1084 } 1085 1086 /// These are simplifications common to SRem and URem. 1087 static Value *simplifyRem(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1, 1088 const SimplifyQuery &Q, unsigned MaxRecurse) { 1089 if (Constant *C = foldOrCommuteConstant(Opcode, Op0, Op1, Q)) 1090 return C; 1091 1092 if (Value *V = simplifyDivRem(Op0, Op1, false)) 1093 return V; 1094 1095 // (X % Y) % Y -> X % Y 1096 if ((Opcode == Instruction::SRem && 1097 match(Op0, m_SRem(m_Value(), m_Specific(Op1)))) || 1098 (Opcode == Instruction::URem && 1099 match(Op0, m_URem(m_Value(), m_Specific(Op1))))) 1100 return Op0; 1101 1102 // (X << Y) % X -> 0 1103 if (Q.IIQ.UseInstrInfo && 1104 ((Opcode == Instruction::SRem && 1105 match(Op0, m_NSWShl(m_Specific(Op1), m_Value()))) || 1106 (Opcode == Instruction::URem && 1107 match(Op0, m_NUWShl(m_Specific(Op1), m_Value()))))) 1108 return Constant::getNullValue(Op0->getType()); 1109 1110 // If the operation is with the result of a select instruction, check whether 1111 // operating on either branch of the select always yields the same value. 1112 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 1113 if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse)) 1114 return V; 1115 1116 // If the operation is with the result of a phi instruction, check whether 1117 // operating on all incoming values of the phi always yields the same value. 1118 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 1119 if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse)) 1120 return V; 1121 1122 // If X / Y == 0, then X % Y == X. 1123 if (isDivZero(Op0, Op1, Q, MaxRecurse, Opcode == Instruction::SRem)) 1124 return Op0; 1125 1126 return nullptr; 1127 } 1128 1129 /// Given operands for an SDiv, see if we can fold the result. 1130 /// If not, this returns null. 1131 static Value *SimplifySDivInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 1132 unsigned MaxRecurse) { 1133 // If two operands are negated and no signed overflow, return -1. 1134 if (isKnownNegation(Op0, Op1, /*NeedNSW=*/true)) 1135 return Constant::getAllOnesValue(Op0->getType()); 1136 1137 return simplifyDiv(Instruction::SDiv, Op0, Op1, Q, MaxRecurse); 1138 } 1139 1140 Value *llvm::SimplifySDivInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 1141 return ::SimplifySDivInst(Op0, Op1, Q, RecursionLimit); 1142 } 1143 1144 /// Given operands for a UDiv, see if we can fold the result. 1145 /// If not, this returns null. 1146 static Value *SimplifyUDivInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 1147 unsigned MaxRecurse) { 1148 return simplifyDiv(Instruction::UDiv, Op0, Op1, Q, MaxRecurse); 1149 } 1150 1151 Value *llvm::SimplifyUDivInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 1152 return ::SimplifyUDivInst(Op0, Op1, Q, RecursionLimit); 1153 } 1154 1155 /// Given operands for an SRem, see if we can fold the result. 1156 /// If not, this returns null. 1157 static Value *SimplifySRemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 1158 unsigned MaxRecurse) { 1159 // If the divisor is 0, the result is undefined, so assume the divisor is -1. 1160 // srem Op0, (sext i1 X) --> srem Op0, -1 --> 0 1161 Value *X; 1162 if (match(Op1, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)) 1163 return ConstantInt::getNullValue(Op0->getType()); 1164 1165 // If the two operands are negated, return 0. 1166 if (isKnownNegation(Op0, Op1)) 1167 return ConstantInt::getNullValue(Op0->getType()); 1168 1169 return simplifyRem(Instruction::SRem, Op0, Op1, Q, MaxRecurse); 1170 } 1171 1172 Value *llvm::SimplifySRemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 1173 return ::SimplifySRemInst(Op0, Op1, Q, RecursionLimit); 1174 } 1175 1176 /// Given operands for a URem, see if we can fold the result. 1177 /// If not, this returns null. 1178 static Value *SimplifyURemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 1179 unsigned MaxRecurse) { 1180 return simplifyRem(Instruction::URem, Op0, Op1, Q, MaxRecurse); 1181 } 1182 1183 Value *llvm::SimplifyURemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 1184 return ::SimplifyURemInst(Op0, Op1, Q, RecursionLimit); 1185 } 1186 1187 /// Returns true if a shift by \c Amount always yields undef. 1188 static bool isUndefShift(Value *Amount) { 1189 Constant *C = dyn_cast<Constant>(Amount); 1190 if (!C) 1191 return false; 1192 1193 // X shift by undef -> undef because it may shift by the bitwidth. 1194 if (isa<UndefValue>(C)) 1195 return true; 1196 1197 // Shifting by the bitwidth or more is undefined. 1198 if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1199 if (CI->getValue().getLimitedValue() >= 1200 CI->getType()->getScalarSizeInBits()) 1201 return true; 1202 1203 // If all lanes of a vector shift are undefined the whole shift is. 1204 if (isa<ConstantVector>(C) || isa<ConstantDataVector>(C)) { 1205 for (unsigned I = 0, E = C->getType()->getVectorNumElements(); I != E; ++I) 1206 if (!isUndefShift(C->getAggregateElement(I))) 1207 return false; 1208 return true; 1209 } 1210 1211 return false; 1212 } 1213 1214 /// Given operands for an Shl, LShr or AShr, see if we can fold the result. 1215 /// If not, this returns null. 1216 static Value *SimplifyShift(Instruction::BinaryOps Opcode, Value *Op0, 1217 Value *Op1, const SimplifyQuery &Q, unsigned MaxRecurse) { 1218 if (Constant *C = foldOrCommuteConstant(Opcode, Op0, Op1, Q)) 1219 return C; 1220 1221 // 0 shift by X -> 0 1222 if (match(Op0, m_Zero())) 1223 return Constant::getNullValue(Op0->getType()); 1224 1225 // X shift by 0 -> X 1226 // Shift-by-sign-extended bool must be shift-by-0 because shift-by-all-ones 1227 // would be poison. 1228 Value *X; 1229 if (match(Op1, m_Zero()) || 1230 (match(Op1, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1))) 1231 return Op0; 1232 1233 // Fold undefined shifts. 1234 if (isUndefShift(Op1)) 1235 return UndefValue::get(Op0->getType()); 1236 1237 // If the operation is with the result of a select instruction, check whether 1238 // operating on either branch of the select always yields the same value. 1239 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 1240 if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse)) 1241 return V; 1242 1243 // If the operation is with the result of a phi instruction, check whether 1244 // operating on all incoming values of the phi always yields the same value. 1245 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 1246 if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse)) 1247 return V; 1248 1249 // If any bits in the shift amount make that value greater than or equal to 1250 // the number of bits in the type, the shift is undefined. 1251 KnownBits Known = computeKnownBits(Op1, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 1252 if (Known.One.getLimitedValue() >= Known.getBitWidth()) 1253 return UndefValue::get(Op0->getType()); 1254 1255 // If all valid bits in the shift amount are known zero, the first operand is 1256 // unchanged. 1257 unsigned NumValidShiftBits = Log2_32_Ceil(Known.getBitWidth()); 1258 if (Known.countMinTrailingZeros() >= NumValidShiftBits) 1259 return Op0; 1260 1261 return nullptr; 1262 } 1263 1264 /// Given operands for an Shl, LShr or AShr, see if we can 1265 /// fold the result. If not, this returns null. 1266 static Value *SimplifyRightShift(Instruction::BinaryOps Opcode, Value *Op0, 1267 Value *Op1, bool isExact, const SimplifyQuery &Q, 1268 unsigned MaxRecurse) { 1269 if (Value *V = SimplifyShift(Opcode, Op0, Op1, Q, MaxRecurse)) 1270 return V; 1271 1272 // X >> X -> 0 1273 if (Op0 == Op1) 1274 return Constant::getNullValue(Op0->getType()); 1275 1276 // undef >> X -> 0 1277 // undef >> X -> undef (if it's exact) 1278 if (match(Op0, m_Undef())) 1279 return isExact ? Op0 : Constant::getNullValue(Op0->getType()); 1280 1281 // The low bit cannot be shifted out of an exact shift if it is set. 1282 if (isExact) { 1283 KnownBits Op0Known = computeKnownBits(Op0, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT); 1284 if (Op0Known.One[0]) 1285 return Op0; 1286 } 1287 1288 return nullptr; 1289 } 1290 1291 /// Given operands for an Shl, see if we can fold the result. 1292 /// If not, this returns null. 1293 static Value *SimplifyShlInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, 1294 const SimplifyQuery &Q, unsigned MaxRecurse) { 1295 if (Value *V = SimplifyShift(Instruction::Shl, Op0, Op1, Q, MaxRecurse)) 1296 return V; 1297 1298 // undef << X -> 0 1299 // undef << X -> undef if (if it's NSW/NUW) 1300 if (match(Op0, m_Undef())) 1301 return isNSW || isNUW ? Op0 : Constant::getNullValue(Op0->getType()); 1302 1303 // (X >> A) << A -> X 1304 Value *X; 1305 if (Q.IIQ.UseInstrInfo && 1306 match(Op0, m_Exact(m_Shr(m_Value(X), m_Specific(Op1))))) 1307 return X; 1308 1309 // shl nuw i8 C, %x -> C iff C has sign bit set. 1310 if (isNUW && match(Op0, m_Negative())) 1311 return Op0; 1312 // NOTE: could use computeKnownBits() / LazyValueInfo, 1313 // but the cost-benefit analysis suggests it isn't worth it. 1314 1315 return nullptr; 1316 } 1317 1318 Value *llvm::SimplifyShlInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, 1319 const SimplifyQuery &Q) { 1320 return ::SimplifyShlInst(Op0, Op1, isNSW, isNUW, Q, RecursionLimit); 1321 } 1322 1323 /// Given operands for an LShr, see if we can fold the result. 1324 /// If not, this returns null. 1325 static Value *SimplifyLShrInst(Value *Op0, Value *Op1, bool isExact, 1326 const SimplifyQuery &Q, unsigned MaxRecurse) { 1327 if (Value *V = SimplifyRightShift(Instruction::LShr, Op0, Op1, isExact, Q, 1328 MaxRecurse)) 1329 return V; 1330 1331 // (X << A) >> A -> X 1332 Value *X; 1333 if (match(Op0, m_NUWShl(m_Value(X), m_Specific(Op1)))) 1334 return X; 1335 1336 // ((X << A) | Y) >> A -> X if effective width of Y is not larger than A. 1337 // We can return X as we do in the above case since OR alters no bits in X. 1338 // SimplifyDemandedBits in InstCombine can do more general optimization for 1339 // bit manipulation. This pattern aims to provide opportunities for other 1340 // optimizers by supporting a simple but common case in InstSimplify. 1341 Value *Y; 1342 const APInt *ShRAmt, *ShLAmt; 1343 if (match(Op1, m_APInt(ShRAmt)) && 1344 match(Op0, m_c_Or(m_NUWShl(m_Value(X), m_APInt(ShLAmt)), m_Value(Y))) && 1345 *ShRAmt == *ShLAmt) { 1346 const KnownBits YKnown = computeKnownBits(Y, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 1347 const unsigned Width = Op0->getType()->getScalarSizeInBits(); 1348 const unsigned EffWidthY = Width - YKnown.countMinLeadingZeros(); 1349 if (ShRAmt->uge(EffWidthY)) 1350 return X; 1351 } 1352 1353 return nullptr; 1354 } 1355 1356 Value *llvm::SimplifyLShrInst(Value *Op0, Value *Op1, bool isExact, 1357 const SimplifyQuery &Q) { 1358 return ::SimplifyLShrInst(Op0, Op1, isExact, Q, RecursionLimit); 1359 } 1360 1361 /// Given operands for an AShr, see if we can fold the result. 1362 /// If not, this returns null. 1363 static Value *SimplifyAShrInst(Value *Op0, Value *Op1, bool isExact, 1364 const SimplifyQuery &Q, unsigned MaxRecurse) { 1365 if (Value *V = SimplifyRightShift(Instruction::AShr, Op0, Op1, isExact, Q, 1366 MaxRecurse)) 1367 return V; 1368 1369 // all ones >>a X -> -1 1370 // Do not return Op0 because it may contain undef elements if it's a vector. 1371 if (match(Op0, m_AllOnes())) 1372 return Constant::getAllOnesValue(Op0->getType()); 1373 1374 // (X << A) >> A -> X 1375 Value *X; 1376 if (Q.IIQ.UseInstrInfo && match(Op0, m_NSWShl(m_Value(X), m_Specific(Op1)))) 1377 return X; 1378 1379 // Arithmetic shifting an all-sign-bit value is a no-op. 1380 unsigned NumSignBits = ComputeNumSignBits(Op0, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 1381 if (NumSignBits == Op0->getType()->getScalarSizeInBits()) 1382 return Op0; 1383 1384 return nullptr; 1385 } 1386 1387 Value *llvm::SimplifyAShrInst(Value *Op0, Value *Op1, bool isExact, 1388 const SimplifyQuery &Q) { 1389 return ::SimplifyAShrInst(Op0, Op1, isExact, Q, RecursionLimit); 1390 } 1391 1392 /// Commuted variants are assumed to be handled by calling this function again 1393 /// with the parameters swapped. 1394 static Value *simplifyUnsignedRangeCheck(ICmpInst *ZeroICmp, 1395 ICmpInst *UnsignedICmp, bool IsAnd) { 1396 Value *X, *Y; 1397 1398 ICmpInst::Predicate EqPred; 1399 if (!match(ZeroICmp, m_ICmp(EqPred, m_Value(Y), m_Zero())) || 1400 !ICmpInst::isEquality(EqPred)) 1401 return nullptr; 1402 1403 ICmpInst::Predicate UnsignedPred; 1404 if (match(UnsignedICmp, m_ICmp(UnsignedPred, m_Value(X), m_Specific(Y))) && 1405 ICmpInst::isUnsigned(UnsignedPred)) 1406 ; 1407 else if (match(UnsignedICmp, 1408 m_ICmp(UnsignedPred, m_Specific(Y), m_Value(X))) && 1409 ICmpInst::isUnsigned(UnsignedPred)) 1410 UnsignedPred = ICmpInst::getSwappedPredicate(UnsignedPred); 1411 else 1412 return nullptr; 1413 1414 // X < Y && Y != 0 --> X < Y 1415 // X < Y || Y != 0 --> Y != 0 1416 if (UnsignedPred == ICmpInst::ICMP_ULT && EqPred == ICmpInst::ICMP_NE) 1417 return IsAnd ? UnsignedICmp : ZeroICmp; 1418 1419 // X >= Y || Y != 0 --> true 1420 // X >= Y || Y == 0 --> X >= Y 1421 if (UnsignedPred == ICmpInst::ICMP_UGE && !IsAnd) { 1422 if (EqPred == ICmpInst::ICMP_NE) 1423 return getTrue(UnsignedICmp->getType()); 1424 return UnsignedICmp; 1425 } 1426 1427 // X < Y && Y == 0 --> false 1428 if (UnsignedPred == ICmpInst::ICMP_ULT && EqPred == ICmpInst::ICMP_EQ && 1429 IsAnd) 1430 return getFalse(UnsignedICmp->getType()); 1431 1432 return nullptr; 1433 } 1434 1435 /// Commuted variants are assumed to be handled by calling this function again 1436 /// with the parameters swapped. 1437 static Value *simplifyAndOfICmpsWithSameOperands(ICmpInst *Op0, ICmpInst *Op1) { 1438 ICmpInst::Predicate Pred0, Pred1; 1439 Value *A ,*B; 1440 if (!match(Op0, m_ICmp(Pred0, m_Value(A), m_Value(B))) || 1441 !match(Op1, m_ICmp(Pred1, m_Specific(A), m_Specific(B)))) 1442 return nullptr; 1443 1444 // We have (icmp Pred0, A, B) & (icmp Pred1, A, B). 1445 // If Op1 is always implied true by Op0, then Op0 is a subset of Op1, and we 1446 // can eliminate Op1 from this 'and'. 1447 if (ICmpInst::isImpliedTrueByMatchingCmp(Pred0, Pred1)) 1448 return Op0; 1449 1450 // Check for any combination of predicates that are guaranteed to be disjoint. 1451 if ((Pred0 == ICmpInst::getInversePredicate(Pred1)) || 1452 (Pred0 == ICmpInst::ICMP_EQ && ICmpInst::isFalseWhenEqual(Pred1)) || 1453 (Pred0 == ICmpInst::ICMP_SLT && Pred1 == ICmpInst::ICMP_SGT) || 1454 (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_UGT)) 1455 return getFalse(Op0->getType()); 1456 1457 return nullptr; 1458 } 1459 1460 /// Commuted variants are assumed to be handled by calling this function again 1461 /// with the parameters swapped. 1462 static Value *simplifyOrOfICmpsWithSameOperands(ICmpInst *Op0, ICmpInst *Op1) { 1463 ICmpInst::Predicate Pred0, Pred1; 1464 Value *A ,*B; 1465 if (!match(Op0, m_ICmp(Pred0, m_Value(A), m_Value(B))) || 1466 !match(Op1, m_ICmp(Pred1, m_Specific(A), m_Specific(B)))) 1467 return nullptr; 1468 1469 // We have (icmp Pred0, A, B) | (icmp Pred1, A, B). 1470 // If Op1 is always implied true by Op0, then Op0 is a subset of Op1, and we 1471 // can eliminate Op0 from this 'or'. 1472 if (ICmpInst::isImpliedTrueByMatchingCmp(Pred0, Pred1)) 1473 return Op1; 1474 1475 // Check for any combination of predicates that cover the entire range of 1476 // possibilities. 1477 if ((Pred0 == ICmpInst::getInversePredicate(Pred1)) || 1478 (Pred0 == ICmpInst::ICMP_NE && ICmpInst::isTrueWhenEqual(Pred1)) || 1479 (Pred0 == ICmpInst::ICMP_SLE && Pred1 == ICmpInst::ICMP_SGE) || 1480 (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_UGE)) 1481 return getTrue(Op0->getType()); 1482 1483 return nullptr; 1484 } 1485 1486 /// Test if a pair of compares with a shared operand and 2 constants has an 1487 /// empty set intersection, full set union, or if one compare is a superset of 1488 /// the other. 1489 static Value *simplifyAndOrOfICmpsWithConstants(ICmpInst *Cmp0, ICmpInst *Cmp1, 1490 bool IsAnd) { 1491 // Look for this pattern: {and/or} (icmp X, C0), (icmp X, C1)). 1492 if (Cmp0->getOperand(0) != Cmp1->getOperand(0)) 1493 return nullptr; 1494 1495 const APInt *C0, *C1; 1496 if (!match(Cmp0->getOperand(1), m_APInt(C0)) || 1497 !match(Cmp1->getOperand(1), m_APInt(C1))) 1498 return nullptr; 1499 1500 auto Range0 = ConstantRange::makeExactICmpRegion(Cmp0->getPredicate(), *C0); 1501 auto Range1 = ConstantRange::makeExactICmpRegion(Cmp1->getPredicate(), *C1); 1502 1503 // For and-of-compares, check if the intersection is empty: 1504 // (icmp X, C0) && (icmp X, C1) --> empty set --> false 1505 if (IsAnd && Range0.intersectWith(Range1).isEmptySet()) 1506 return getFalse(Cmp0->getType()); 1507 1508 // For or-of-compares, check if the union is full: 1509 // (icmp X, C0) || (icmp X, C1) --> full set --> true 1510 if (!IsAnd && Range0.unionWith(Range1).isFullSet()) 1511 return getTrue(Cmp0->getType()); 1512 1513 // Is one range a superset of the other? 1514 // If this is and-of-compares, take the smaller set: 1515 // (icmp sgt X, 4) && (icmp sgt X, 42) --> icmp sgt X, 42 1516 // If this is or-of-compares, take the larger set: 1517 // (icmp sgt X, 4) || (icmp sgt X, 42) --> icmp sgt X, 4 1518 if (Range0.contains(Range1)) 1519 return IsAnd ? Cmp1 : Cmp0; 1520 if (Range1.contains(Range0)) 1521 return IsAnd ? Cmp0 : Cmp1; 1522 1523 return nullptr; 1524 } 1525 1526 static Value *simplifyAndOrOfICmpsWithZero(ICmpInst *Cmp0, ICmpInst *Cmp1, 1527 bool IsAnd) { 1528 ICmpInst::Predicate P0 = Cmp0->getPredicate(), P1 = Cmp1->getPredicate(); 1529 if (!match(Cmp0->getOperand(1), m_Zero()) || 1530 !match(Cmp1->getOperand(1), m_Zero()) || P0 != P1) 1531 return nullptr; 1532 1533 if ((IsAnd && P0 != ICmpInst::ICMP_NE) || (!IsAnd && P1 != ICmpInst::ICMP_EQ)) 1534 return nullptr; 1535 1536 // We have either "(X == 0 || Y == 0)" or "(X != 0 && Y != 0)". 1537 Value *X = Cmp0->getOperand(0); 1538 Value *Y = Cmp1->getOperand(0); 1539 1540 // If one of the compares is a masked version of a (not) null check, then 1541 // that compare implies the other, so we eliminate the other. Optionally, look 1542 // through a pointer-to-int cast to match a null check of a pointer type. 1543 1544 // (X == 0) || (([ptrtoint] X & ?) == 0) --> ([ptrtoint] X & ?) == 0 1545 // (X == 0) || ((? & [ptrtoint] X) == 0) --> (? & [ptrtoint] X) == 0 1546 // (X != 0) && (([ptrtoint] X & ?) != 0) --> ([ptrtoint] X & ?) != 0 1547 // (X != 0) && ((? & [ptrtoint] X) != 0) --> (? & [ptrtoint] X) != 0 1548 if (match(Y, m_c_And(m_Specific(X), m_Value())) || 1549 match(Y, m_c_And(m_PtrToInt(m_Specific(X)), m_Value()))) 1550 return Cmp1; 1551 1552 // (([ptrtoint] Y & ?) == 0) || (Y == 0) --> ([ptrtoint] Y & ?) == 0 1553 // ((? & [ptrtoint] Y) == 0) || (Y == 0) --> (? & [ptrtoint] Y) == 0 1554 // (([ptrtoint] Y & ?) != 0) && (Y != 0) --> ([ptrtoint] Y & ?) != 0 1555 // ((? & [ptrtoint] Y) != 0) && (Y != 0) --> (? & [ptrtoint] Y) != 0 1556 if (match(X, m_c_And(m_Specific(Y), m_Value())) || 1557 match(X, m_c_And(m_PtrToInt(m_Specific(Y)), m_Value()))) 1558 return Cmp0; 1559 1560 return nullptr; 1561 } 1562 1563 static Value *simplifyAndOfICmpsWithAdd(ICmpInst *Op0, ICmpInst *Op1, 1564 const InstrInfoQuery &IIQ) { 1565 // (icmp (add V, C0), C1) & (icmp V, C0) 1566 ICmpInst::Predicate Pred0, Pred1; 1567 const APInt *C0, *C1; 1568 Value *V; 1569 if (!match(Op0, m_ICmp(Pred0, m_Add(m_Value(V), m_APInt(C0)), m_APInt(C1)))) 1570 return nullptr; 1571 1572 if (!match(Op1, m_ICmp(Pred1, m_Specific(V), m_Value()))) 1573 return nullptr; 1574 1575 auto *AddInst = cast<OverflowingBinaryOperator>(Op0->getOperand(0)); 1576 if (AddInst->getOperand(1) != Op1->getOperand(1)) 1577 return nullptr; 1578 1579 Type *ITy = Op0->getType(); 1580 bool isNSW = IIQ.hasNoSignedWrap(AddInst); 1581 bool isNUW = IIQ.hasNoUnsignedWrap(AddInst); 1582 1583 const APInt Delta = *C1 - *C0; 1584 if (C0->isStrictlyPositive()) { 1585 if (Delta == 2) { 1586 if (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_SGT) 1587 return getFalse(ITy); 1588 if (Pred0 == ICmpInst::ICMP_SLT && Pred1 == ICmpInst::ICMP_SGT && isNSW) 1589 return getFalse(ITy); 1590 } 1591 if (Delta == 1) { 1592 if (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_SGT) 1593 return getFalse(ITy); 1594 if (Pred0 == ICmpInst::ICMP_SLE && Pred1 == ICmpInst::ICMP_SGT && isNSW) 1595 return getFalse(ITy); 1596 } 1597 } 1598 if (C0->getBoolValue() && isNUW) { 1599 if (Delta == 2) 1600 if (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_UGT) 1601 return getFalse(ITy); 1602 if (Delta == 1) 1603 if (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_UGT) 1604 return getFalse(ITy); 1605 } 1606 1607 return nullptr; 1608 } 1609 1610 static Value *simplifyAndOfICmps(ICmpInst *Op0, ICmpInst *Op1, 1611 const InstrInfoQuery &IIQ) { 1612 if (Value *X = simplifyUnsignedRangeCheck(Op0, Op1, /*IsAnd=*/true)) 1613 return X; 1614 if (Value *X = simplifyUnsignedRangeCheck(Op1, Op0, /*IsAnd=*/true)) 1615 return X; 1616 1617 if (Value *X = simplifyAndOfICmpsWithSameOperands(Op0, Op1)) 1618 return X; 1619 if (Value *X = simplifyAndOfICmpsWithSameOperands(Op1, Op0)) 1620 return X; 1621 1622 if (Value *X = simplifyAndOrOfICmpsWithConstants(Op0, Op1, true)) 1623 return X; 1624 1625 if (Value *X = simplifyAndOrOfICmpsWithZero(Op0, Op1, true)) 1626 return X; 1627 1628 if (Value *X = simplifyAndOfICmpsWithAdd(Op0, Op1, IIQ)) 1629 return X; 1630 if (Value *X = simplifyAndOfICmpsWithAdd(Op1, Op0, IIQ)) 1631 return X; 1632 1633 return nullptr; 1634 } 1635 1636 static Value *simplifyOrOfICmpsWithAdd(ICmpInst *Op0, ICmpInst *Op1, 1637 const InstrInfoQuery &IIQ) { 1638 // (icmp (add V, C0), C1) | (icmp V, C0) 1639 ICmpInst::Predicate Pred0, Pred1; 1640 const APInt *C0, *C1; 1641 Value *V; 1642 if (!match(Op0, m_ICmp(Pred0, m_Add(m_Value(V), m_APInt(C0)), m_APInt(C1)))) 1643 return nullptr; 1644 1645 if (!match(Op1, m_ICmp(Pred1, m_Specific(V), m_Value()))) 1646 return nullptr; 1647 1648 auto *AddInst = cast<BinaryOperator>(Op0->getOperand(0)); 1649 if (AddInst->getOperand(1) != Op1->getOperand(1)) 1650 return nullptr; 1651 1652 Type *ITy = Op0->getType(); 1653 bool isNSW = IIQ.hasNoSignedWrap(AddInst); 1654 bool isNUW = IIQ.hasNoUnsignedWrap(AddInst); 1655 1656 const APInt Delta = *C1 - *C0; 1657 if (C0->isStrictlyPositive()) { 1658 if (Delta == 2) { 1659 if (Pred0 == ICmpInst::ICMP_UGE && Pred1 == ICmpInst::ICMP_SLE) 1660 return getTrue(ITy); 1661 if (Pred0 == ICmpInst::ICMP_SGE && Pred1 == ICmpInst::ICMP_SLE && isNSW) 1662 return getTrue(ITy); 1663 } 1664 if (Delta == 1) { 1665 if (Pred0 == ICmpInst::ICMP_UGT && Pred1 == ICmpInst::ICMP_SLE) 1666 return getTrue(ITy); 1667 if (Pred0 == ICmpInst::ICMP_SGT && Pred1 == ICmpInst::ICMP_SLE && isNSW) 1668 return getTrue(ITy); 1669 } 1670 } 1671 if (C0->getBoolValue() && isNUW) { 1672 if (Delta == 2) 1673 if (Pred0 == ICmpInst::ICMP_UGE && Pred1 == ICmpInst::ICMP_ULE) 1674 return getTrue(ITy); 1675 if (Delta == 1) 1676 if (Pred0 == ICmpInst::ICMP_UGT && Pred1 == ICmpInst::ICMP_ULE) 1677 return getTrue(ITy); 1678 } 1679 1680 return nullptr; 1681 } 1682 1683 static Value *simplifyOrOfICmps(ICmpInst *Op0, ICmpInst *Op1, 1684 const InstrInfoQuery &IIQ) { 1685 if (Value *X = simplifyUnsignedRangeCheck(Op0, Op1, /*IsAnd=*/false)) 1686 return X; 1687 if (Value *X = simplifyUnsignedRangeCheck(Op1, Op0, /*IsAnd=*/false)) 1688 return X; 1689 1690 if (Value *X = simplifyOrOfICmpsWithSameOperands(Op0, Op1)) 1691 return X; 1692 if (Value *X = simplifyOrOfICmpsWithSameOperands(Op1, Op0)) 1693 return X; 1694 1695 if (Value *X = simplifyAndOrOfICmpsWithConstants(Op0, Op1, false)) 1696 return X; 1697 1698 if (Value *X = simplifyAndOrOfICmpsWithZero(Op0, Op1, false)) 1699 return X; 1700 1701 if (Value *X = simplifyOrOfICmpsWithAdd(Op0, Op1, IIQ)) 1702 return X; 1703 if (Value *X = simplifyOrOfICmpsWithAdd(Op1, Op0, IIQ)) 1704 return X; 1705 1706 return nullptr; 1707 } 1708 1709 static Value *simplifyAndOrOfFCmps(const TargetLibraryInfo *TLI, 1710 FCmpInst *LHS, FCmpInst *RHS, bool IsAnd) { 1711 Value *LHS0 = LHS->getOperand(0), *LHS1 = LHS->getOperand(1); 1712 Value *RHS0 = RHS->getOperand(0), *RHS1 = RHS->getOperand(1); 1713 if (LHS0->getType() != RHS0->getType()) 1714 return nullptr; 1715 1716 FCmpInst::Predicate PredL = LHS->getPredicate(), PredR = RHS->getPredicate(); 1717 if ((PredL == FCmpInst::FCMP_ORD && PredR == FCmpInst::FCMP_ORD && IsAnd) || 1718 (PredL == FCmpInst::FCMP_UNO && PredR == FCmpInst::FCMP_UNO && !IsAnd)) { 1719 // (fcmp ord NNAN, X) & (fcmp ord X, Y) --> fcmp ord X, Y 1720 // (fcmp ord NNAN, X) & (fcmp ord Y, X) --> fcmp ord Y, X 1721 // (fcmp ord X, NNAN) & (fcmp ord X, Y) --> fcmp ord X, Y 1722 // (fcmp ord X, NNAN) & (fcmp ord Y, X) --> fcmp ord Y, X 1723 // (fcmp uno NNAN, X) | (fcmp uno X, Y) --> fcmp uno X, Y 1724 // (fcmp uno NNAN, X) | (fcmp uno Y, X) --> fcmp uno Y, X 1725 // (fcmp uno X, NNAN) | (fcmp uno X, Y) --> fcmp uno X, Y 1726 // (fcmp uno X, NNAN) | (fcmp uno Y, X) --> fcmp uno Y, X 1727 if ((isKnownNeverNaN(LHS0, TLI) && (LHS1 == RHS0 || LHS1 == RHS1)) || 1728 (isKnownNeverNaN(LHS1, TLI) && (LHS0 == RHS0 || LHS0 == RHS1))) 1729 return RHS; 1730 1731 // (fcmp ord X, Y) & (fcmp ord NNAN, X) --> fcmp ord X, Y 1732 // (fcmp ord Y, X) & (fcmp ord NNAN, X) --> fcmp ord Y, X 1733 // (fcmp ord X, Y) & (fcmp ord X, NNAN) --> fcmp ord X, Y 1734 // (fcmp ord Y, X) & (fcmp ord X, NNAN) --> fcmp ord Y, X 1735 // (fcmp uno X, Y) | (fcmp uno NNAN, X) --> fcmp uno X, Y 1736 // (fcmp uno Y, X) | (fcmp uno NNAN, X) --> fcmp uno Y, X 1737 // (fcmp uno X, Y) | (fcmp uno X, NNAN) --> fcmp uno X, Y 1738 // (fcmp uno Y, X) | (fcmp uno X, NNAN) --> fcmp uno Y, X 1739 if ((isKnownNeverNaN(RHS0, TLI) && (RHS1 == LHS0 || RHS1 == LHS1)) || 1740 (isKnownNeverNaN(RHS1, TLI) && (RHS0 == LHS0 || RHS0 == LHS1))) 1741 return LHS; 1742 } 1743 1744 return nullptr; 1745 } 1746 1747 static Value *simplifyAndOrOfCmps(const SimplifyQuery &Q, 1748 Value *Op0, Value *Op1, bool IsAnd) { 1749 // Look through casts of the 'and' operands to find compares. 1750 auto *Cast0 = dyn_cast<CastInst>(Op0); 1751 auto *Cast1 = dyn_cast<CastInst>(Op1); 1752 if (Cast0 && Cast1 && Cast0->getOpcode() == Cast1->getOpcode() && 1753 Cast0->getSrcTy() == Cast1->getSrcTy()) { 1754 Op0 = Cast0->getOperand(0); 1755 Op1 = Cast1->getOperand(0); 1756 } 1757 1758 Value *V = nullptr; 1759 auto *ICmp0 = dyn_cast<ICmpInst>(Op0); 1760 auto *ICmp1 = dyn_cast<ICmpInst>(Op1); 1761 if (ICmp0 && ICmp1) 1762 V = IsAnd ? simplifyAndOfICmps(ICmp0, ICmp1, Q.IIQ) 1763 : simplifyOrOfICmps(ICmp0, ICmp1, Q.IIQ); 1764 1765 auto *FCmp0 = dyn_cast<FCmpInst>(Op0); 1766 auto *FCmp1 = dyn_cast<FCmpInst>(Op1); 1767 if (FCmp0 && FCmp1) 1768 V = simplifyAndOrOfFCmps(Q.TLI, FCmp0, FCmp1, IsAnd); 1769 1770 if (!V) 1771 return nullptr; 1772 if (!Cast0) 1773 return V; 1774 1775 // If we looked through casts, we can only handle a constant simplification 1776 // because we are not allowed to create a cast instruction here. 1777 if (auto *C = dyn_cast<Constant>(V)) 1778 return ConstantExpr::getCast(Cast0->getOpcode(), C, Cast0->getType()); 1779 1780 return nullptr; 1781 } 1782 1783 /// Given operands for an And, see if we can fold the result. 1784 /// If not, this returns null. 1785 static Value *SimplifyAndInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 1786 unsigned MaxRecurse) { 1787 if (Constant *C = foldOrCommuteConstant(Instruction::And, Op0, Op1, Q)) 1788 return C; 1789 1790 // X & undef -> 0 1791 if (match(Op1, m_Undef())) 1792 return Constant::getNullValue(Op0->getType()); 1793 1794 // X & X = X 1795 if (Op0 == Op1) 1796 return Op0; 1797 1798 // X & 0 = 0 1799 if (match(Op1, m_Zero())) 1800 return Constant::getNullValue(Op0->getType()); 1801 1802 // X & -1 = X 1803 if (match(Op1, m_AllOnes())) 1804 return Op0; 1805 1806 // A & ~A = ~A & A = 0 1807 if (match(Op0, m_Not(m_Specific(Op1))) || 1808 match(Op1, m_Not(m_Specific(Op0)))) 1809 return Constant::getNullValue(Op0->getType()); 1810 1811 // (A | ?) & A = A 1812 if (match(Op0, m_c_Or(m_Specific(Op1), m_Value()))) 1813 return Op1; 1814 1815 // A & (A | ?) = A 1816 if (match(Op1, m_c_Or(m_Specific(Op0), m_Value()))) 1817 return Op0; 1818 1819 // A mask that only clears known zeros of a shifted value is a no-op. 1820 Value *X; 1821 const APInt *Mask; 1822 const APInt *ShAmt; 1823 if (match(Op1, m_APInt(Mask))) { 1824 // If all bits in the inverted and shifted mask are clear: 1825 // and (shl X, ShAmt), Mask --> shl X, ShAmt 1826 if (match(Op0, m_Shl(m_Value(X), m_APInt(ShAmt))) && 1827 (~(*Mask)).lshr(*ShAmt).isNullValue()) 1828 return Op0; 1829 1830 // If all bits in the inverted and shifted mask are clear: 1831 // and (lshr X, ShAmt), Mask --> lshr X, ShAmt 1832 if (match(Op0, m_LShr(m_Value(X), m_APInt(ShAmt))) && 1833 (~(*Mask)).shl(*ShAmt).isNullValue()) 1834 return Op0; 1835 } 1836 1837 // A & (-A) = A if A is a power of two or zero. 1838 if (match(Op0, m_Neg(m_Specific(Op1))) || 1839 match(Op1, m_Neg(m_Specific(Op0)))) { 1840 if (isKnownToBeAPowerOfTwo(Op0, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI, 1841 Q.DT)) 1842 return Op0; 1843 if (isKnownToBeAPowerOfTwo(Op1, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI, 1844 Q.DT)) 1845 return Op1; 1846 } 1847 1848 if (Value *V = simplifyAndOrOfCmps(Q, Op0, Op1, true)) 1849 return V; 1850 1851 // Try some generic simplifications for associative operations. 1852 if (Value *V = SimplifyAssociativeBinOp(Instruction::And, Op0, Op1, Q, 1853 MaxRecurse)) 1854 return V; 1855 1856 // And distributes over Or. Try some generic simplifications based on this. 1857 if (Value *V = ExpandBinOp(Instruction::And, Op0, Op1, Instruction::Or, 1858 Q, MaxRecurse)) 1859 return V; 1860 1861 // And distributes over Xor. Try some generic simplifications based on this. 1862 if (Value *V = ExpandBinOp(Instruction::And, Op0, Op1, Instruction::Xor, 1863 Q, MaxRecurse)) 1864 return V; 1865 1866 // If the operation is with the result of a select instruction, check whether 1867 // operating on either branch of the select always yields the same value. 1868 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 1869 if (Value *V = ThreadBinOpOverSelect(Instruction::And, Op0, Op1, Q, 1870 MaxRecurse)) 1871 return V; 1872 1873 // If the operation is with the result of a phi instruction, check whether 1874 // operating on all incoming values of the phi always yields the same value. 1875 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 1876 if (Value *V = ThreadBinOpOverPHI(Instruction::And, Op0, Op1, Q, 1877 MaxRecurse)) 1878 return V; 1879 1880 // Assuming the effective width of Y is not larger than A, i.e. all bits 1881 // from X and Y are disjoint in (X << A) | Y, 1882 // if the mask of this AND op covers all bits of X or Y, while it covers 1883 // no bits from the other, we can bypass this AND op. E.g., 1884 // ((X << A) | Y) & Mask -> Y, 1885 // if Mask = ((1 << effective_width_of(Y)) - 1) 1886 // ((X << A) | Y) & Mask -> X << A, 1887 // if Mask = ((1 << effective_width_of(X)) - 1) << A 1888 // SimplifyDemandedBits in InstCombine can optimize the general case. 1889 // This pattern aims to help other passes for a common case. 1890 Value *Y, *XShifted; 1891 if (match(Op1, m_APInt(Mask)) && 1892 match(Op0, m_c_Or(m_CombineAnd(m_NUWShl(m_Value(X), m_APInt(ShAmt)), 1893 m_Value(XShifted)), 1894 m_Value(Y)))) { 1895 const unsigned Width = Op0->getType()->getScalarSizeInBits(); 1896 const unsigned ShftCnt = ShAmt->getLimitedValue(Width); 1897 const KnownBits YKnown = computeKnownBits(Y, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 1898 const unsigned EffWidthY = Width - YKnown.countMinLeadingZeros(); 1899 if (EffWidthY <= ShftCnt) { 1900 const KnownBits XKnown = computeKnownBits(X, Q.DL, 0, Q.AC, Q.CxtI, 1901 Q.DT); 1902 const unsigned EffWidthX = Width - XKnown.countMinLeadingZeros(); 1903 const APInt EffBitsY = APInt::getLowBitsSet(Width, EffWidthY); 1904 const APInt EffBitsX = APInt::getLowBitsSet(Width, EffWidthX) << ShftCnt; 1905 // If the mask is extracting all bits from X or Y as is, we can skip 1906 // this AND op. 1907 if (EffBitsY.isSubsetOf(*Mask) && !EffBitsX.intersects(*Mask)) 1908 return Y; 1909 if (EffBitsX.isSubsetOf(*Mask) && !EffBitsY.intersects(*Mask)) 1910 return XShifted; 1911 } 1912 } 1913 1914 return nullptr; 1915 } 1916 1917 Value *llvm::SimplifyAndInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 1918 return ::SimplifyAndInst(Op0, Op1, Q, RecursionLimit); 1919 } 1920 1921 /// Given operands for an Or, see if we can fold the result. 1922 /// If not, this returns null. 1923 static Value *SimplifyOrInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 1924 unsigned MaxRecurse) { 1925 if (Constant *C = foldOrCommuteConstant(Instruction::Or, Op0, Op1, Q)) 1926 return C; 1927 1928 // X | undef -> -1 1929 // X | -1 = -1 1930 // Do not return Op1 because it may contain undef elements if it's a vector. 1931 if (match(Op1, m_Undef()) || match(Op1, m_AllOnes())) 1932 return Constant::getAllOnesValue(Op0->getType()); 1933 1934 // X | X = X 1935 // X | 0 = X 1936 if (Op0 == Op1 || match(Op1, m_Zero())) 1937 return Op0; 1938 1939 // A | ~A = ~A | A = -1 1940 if (match(Op0, m_Not(m_Specific(Op1))) || 1941 match(Op1, m_Not(m_Specific(Op0)))) 1942 return Constant::getAllOnesValue(Op0->getType()); 1943 1944 // (A & ?) | A = A 1945 if (match(Op0, m_c_And(m_Specific(Op1), m_Value()))) 1946 return Op1; 1947 1948 // A | (A & ?) = A 1949 if (match(Op1, m_c_And(m_Specific(Op0), m_Value()))) 1950 return Op0; 1951 1952 // ~(A & ?) | A = -1 1953 if (match(Op0, m_Not(m_c_And(m_Specific(Op1), m_Value())))) 1954 return Constant::getAllOnesValue(Op1->getType()); 1955 1956 // A | ~(A & ?) = -1 1957 if (match(Op1, m_Not(m_c_And(m_Specific(Op1), m_Value())))) 1958 return Constant::getAllOnesValue(Op0->getType()); 1959 1960 Value *A, *B; 1961 // (A & ~B) | (A ^ B) -> (A ^ B) 1962 // (~B & A) | (A ^ B) -> (A ^ B) 1963 // (A & ~B) | (B ^ A) -> (B ^ A) 1964 // (~B & A) | (B ^ A) -> (B ^ A) 1965 if (match(Op1, m_Xor(m_Value(A), m_Value(B))) && 1966 (match(Op0, m_c_And(m_Specific(A), m_Not(m_Specific(B)))) || 1967 match(Op0, m_c_And(m_Not(m_Specific(A)), m_Specific(B))))) 1968 return Op1; 1969 1970 // Commute the 'or' operands. 1971 // (A ^ B) | (A & ~B) -> (A ^ B) 1972 // (A ^ B) | (~B & A) -> (A ^ B) 1973 // (B ^ A) | (A & ~B) -> (B ^ A) 1974 // (B ^ A) | (~B & A) -> (B ^ A) 1975 if (match(Op0, m_Xor(m_Value(A), m_Value(B))) && 1976 (match(Op1, m_c_And(m_Specific(A), m_Not(m_Specific(B)))) || 1977 match(Op1, m_c_And(m_Not(m_Specific(A)), m_Specific(B))))) 1978 return Op0; 1979 1980 // (A & B) | (~A ^ B) -> (~A ^ B) 1981 // (B & A) | (~A ^ B) -> (~A ^ B) 1982 // (A & B) | (B ^ ~A) -> (B ^ ~A) 1983 // (B & A) | (B ^ ~A) -> (B ^ ~A) 1984 if (match(Op0, m_And(m_Value(A), m_Value(B))) && 1985 (match(Op1, m_c_Xor(m_Specific(A), m_Not(m_Specific(B)))) || 1986 match(Op1, m_c_Xor(m_Not(m_Specific(A)), m_Specific(B))))) 1987 return Op1; 1988 1989 // (~A ^ B) | (A & B) -> (~A ^ B) 1990 // (~A ^ B) | (B & A) -> (~A ^ B) 1991 // (B ^ ~A) | (A & B) -> (B ^ ~A) 1992 // (B ^ ~A) | (B & A) -> (B ^ ~A) 1993 if (match(Op1, m_And(m_Value(A), m_Value(B))) && 1994 (match(Op0, m_c_Xor(m_Specific(A), m_Not(m_Specific(B)))) || 1995 match(Op0, m_c_Xor(m_Not(m_Specific(A)), m_Specific(B))))) 1996 return Op0; 1997 1998 if (Value *V = simplifyAndOrOfCmps(Q, Op0, Op1, false)) 1999 return V; 2000 2001 // Try some generic simplifications for associative operations. 2002 if (Value *V = SimplifyAssociativeBinOp(Instruction::Or, Op0, Op1, Q, 2003 MaxRecurse)) 2004 return V; 2005 2006 // Or distributes over And. Try some generic simplifications based on this. 2007 if (Value *V = ExpandBinOp(Instruction::Or, Op0, Op1, Instruction::And, Q, 2008 MaxRecurse)) 2009 return V; 2010 2011 // If the operation is with the result of a select instruction, check whether 2012 // operating on either branch of the select always yields the same value. 2013 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 2014 if (Value *V = ThreadBinOpOverSelect(Instruction::Or, Op0, Op1, Q, 2015 MaxRecurse)) 2016 return V; 2017 2018 // (A & C1)|(B & C2) 2019 const APInt *C1, *C2; 2020 if (match(Op0, m_And(m_Value(A), m_APInt(C1))) && 2021 match(Op1, m_And(m_Value(B), m_APInt(C2)))) { 2022 if (*C1 == ~*C2) { 2023 // (A & C1)|(B & C2) 2024 // If we have: ((V + N) & C1) | (V & C2) 2025 // .. and C2 = ~C1 and C2 is 0+1+ and (N & C2) == 0 2026 // replace with V+N. 2027 Value *N; 2028 if (C2->isMask() && // C2 == 0+1+ 2029 match(A, m_c_Add(m_Specific(B), m_Value(N)))) { 2030 // Add commutes, try both ways. 2031 if (MaskedValueIsZero(N, *C2, Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 2032 return A; 2033 } 2034 // Or commutes, try both ways. 2035 if (C1->isMask() && 2036 match(B, m_c_Add(m_Specific(A), m_Value(N)))) { 2037 // Add commutes, try both ways. 2038 if (MaskedValueIsZero(N, *C1, Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 2039 return B; 2040 } 2041 } 2042 } 2043 2044 // If the operation is with the result of a phi instruction, check whether 2045 // operating on all incoming values of the phi always yields the same value. 2046 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 2047 if (Value *V = ThreadBinOpOverPHI(Instruction::Or, Op0, Op1, Q, MaxRecurse)) 2048 return V; 2049 2050 return nullptr; 2051 } 2052 2053 Value *llvm::SimplifyOrInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 2054 return ::SimplifyOrInst(Op0, Op1, Q, RecursionLimit); 2055 } 2056 2057 /// Given operands for a Xor, see if we can fold the result. 2058 /// If not, this returns null. 2059 static Value *SimplifyXorInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 2060 unsigned MaxRecurse) { 2061 if (Constant *C = foldOrCommuteConstant(Instruction::Xor, Op0, Op1, Q)) 2062 return C; 2063 2064 // A ^ undef -> undef 2065 if (match(Op1, m_Undef())) 2066 return Op1; 2067 2068 // A ^ 0 = A 2069 if (match(Op1, m_Zero())) 2070 return Op0; 2071 2072 // A ^ A = 0 2073 if (Op0 == Op1) 2074 return Constant::getNullValue(Op0->getType()); 2075 2076 // A ^ ~A = ~A ^ A = -1 2077 if (match(Op0, m_Not(m_Specific(Op1))) || 2078 match(Op1, m_Not(m_Specific(Op0)))) 2079 return Constant::getAllOnesValue(Op0->getType()); 2080 2081 // Try some generic simplifications for associative operations. 2082 if (Value *V = SimplifyAssociativeBinOp(Instruction::Xor, Op0, Op1, Q, 2083 MaxRecurse)) 2084 return V; 2085 2086 // Threading Xor over selects and phi nodes is pointless, so don't bother. 2087 // Threading over the select in "A ^ select(cond, B, C)" means evaluating 2088 // "A^B" and "A^C" and seeing if they are equal; but they are equal if and 2089 // only if B and C are equal. If B and C are equal then (since we assume 2090 // that operands have already been simplified) "select(cond, B, C)" should 2091 // have been simplified to the common value of B and C already. Analysing 2092 // "A^B" and "A^C" thus gains nothing, but costs compile time. Similarly 2093 // for threading over phi nodes. 2094 2095 return nullptr; 2096 } 2097 2098 Value *llvm::SimplifyXorInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 2099 return ::SimplifyXorInst(Op0, Op1, Q, RecursionLimit); 2100 } 2101 2102 2103 static Type *GetCompareTy(Value *Op) { 2104 return CmpInst::makeCmpResultType(Op->getType()); 2105 } 2106 2107 /// Rummage around inside V looking for something equivalent to the comparison 2108 /// "LHS Pred RHS". Return such a value if found, otherwise return null. 2109 /// Helper function for analyzing max/min idioms. 2110 static Value *ExtractEquivalentCondition(Value *V, CmpInst::Predicate Pred, 2111 Value *LHS, Value *RHS) { 2112 SelectInst *SI = dyn_cast<SelectInst>(V); 2113 if (!SI) 2114 return nullptr; 2115 CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition()); 2116 if (!Cmp) 2117 return nullptr; 2118 Value *CmpLHS = Cmp->getOperand(0), *CmpRHS = Cmp->getOperand(1); 2119 if (Pred == Cmp->getPredicate() && LHS == CmpLHS && RHS == CmpRHS) 2120 return Cmp; 2121 if (Pred == CmpInst::getSwappedPredicate(Cmp->getPredicate()) && 2122 LHS == CmpRHS && RHS == CmpLHS) 2123 return Cmp; 2124 return nullptr; 2125 } 2126 2127 // A significant optimization not implemented here is assuming that alloca 2128 // addresses are not equal to incoming argument values. They don't *alias*, 2129 // as we say, but that doesn't mean they aren't equal, so we take a 2130 // conservative approach. 2131 // 2132 // This is inspired in part by C++11 5.10p1: 2133 // "Two pointers of the same type compare equal if and only if they are both 2134 // null, both point to the same function, or both represent the same 2135 // address." 2136 // 2137 // This is pretty permissive. 2138 // 2139 // It's also partly due to C11 6.5.9p6: 2140 // "Two pointers compare equal if and only if both are null pointers, both are 2141 // pointers to the same object (including a pointer to an object and a 2142 // subobject at its beginning) or function, both are pointers to one past the 2143 // last element of the same array object, or one is a pointer to one past the 2144 // end of one array object and the other is a pointer to the start of a 2145 // different array object that happens to immediately follow the first array 2146 // object in the address space.) 2147 // 2148 // C11's version is more restrictive, however there's no reason why an argument 2149 // couldn't be a one-past-the-end value for a stack object in the caller and be 2150 // equal to the beginning of a stack object in the callee. 2151 // 2152 // If the C and C++ standards are ever made sufficiently restrictive in this 2153 // area, it may be possible to update LLVM's semantics accordingly and reinstate 2154 // this optimization. 2155 static Constant * 2156 computePointerICmp(const DataLayout &DL, const TargetLibraryInfo *TLI, 2157 const DominatorTree *DT, CmpInst::Predicate Pred, 2158 AssumptionCache *AC, const Instruction *CxtI, 2159 const InstrInfoQuery &IIQ, Value *LHS, Value *RHS) { 2160 // First, skip past any trivial no-ops. 2161 LHS = LHS->stripPointerCasts(); 2162 RHS = RHS->stripPointerCasts(); 2163 2164 // A non-null pointer is not equal to a null pointer. 2165 if (llvm::isKnownNonZero(LHS, DL, 0, nullptr, nullptr, nullptr, 2166 IIQ.UseInstrInfo) && 2167 isa<ConstantPointerNull>(RHS) && 2168 (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE)) 2169 return ConstantInt::get(GetCompareTy(LHS), 2170 !CmpInst::isTrueWhenEqual(Pred)); 2171 2172 // We can only fold certain predicates on pointer comparisons. 2173 switch (Pred) { 2174 default: 2175 return nullptr; 2176 2177 // Equality comaprisons are easy to fold. 2178 case CmpInst::ICMP_EQ: 2179 case CmpInst::ICMP_NE: 2180 break; 2181 2182 // We can only handle unsigned relational comparisons because 'inbounds' on 2183 // a GEP only protects against unsigned wrapping. 2184 case CmpInst::ICMP_UGT: 2185 case CmpInst::ICMP_UGE: 2186 case CmpInst::ICMP_ULT: 2187 case CmpInst::ICMP_ULE: 2188 // However, we have to switch them to their signed variants to handle 2189 // negative indices from the base pointer. 2190 Pred = ICmpInst::getSignedPredicate(Pred); 2191 break; 2192 } 2193 2194 // Strip off any constant offsets so that we can reason about them. 2195 // It's tempting to use getUnderlyingObject or even just stripInBoundsOffsets 2196 // here and compare base addresses like AliasAnalysis does, however there are 2197 // numerous hazards. AliasAnalysis and its utilities rely on special rules 2198 // governing loads and stores which don't apply to icmps. Also, AliasAnalysis 2199 // doesn't need to guarantee pointer inequality when it says NoAlias. 2200 Constant *LHSOffset = stripAndComputeConstantOffsets(DL, LHS); 2201 Constant *RHSOffset = stripAndComputeConstantOffsets(DL, RHS); 2202 2203 // If LHS and RHS are related via constant offsets to the same base 2204 // value, we can replace it with an icmp which just compares the offsets. 2205 if (LHS == RHS) 2206 return ConstantExpr::getICmp(Pred, LHSOffset, RHSOffset); 2207 2208 // Various optimizations for (in)equality comparisons. 2209 if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE) { 2210 // Different non-empty allocations that exist at the same time have 2211 // different addresses (if the program can tell). Global variables always 2212 // exist, so they always exist during the lifetime of each other and all 2213 // allocas. Two different allocas usually have different addresses... 2214 // 2215 // However, if there's an @llvm.stackrestore dynamically in between two 2216 // allocas, they may have the same address. It's tempting to reduce the 2217 // scope of the problem by only looking at *static* allocas here. That would 2218 // cover the majority of allocas while significantly reducing the likelihood 2219 // of having an @llvm.stackrestore pop up in the middle. However, it's not 2220 // actually impossible for an @llvm.stackrestore to pop up in the middle of 2221 // an entry block. Also, if we have a block that's not attached to a 2222 // function, we can't tell if it's "static" under the current definition. 2223 // Theoretically, this problem could be fixed by creating a new kind of 2224 // instruction kind specifically for static allocas. Such a new instruction 2225 // could be required to be at the top of the entry block, thus preventing it 2226 // from being subject to a @llvm.stackrestore. Instcombine could even 2227 // convert regular allocas into these special allocas. It'd be nifty. 2228 // However, until then, this problem remains open. 2229 // 2230 // So, we'll assume that two non-empty allocas have different addresses 2231 // for now. 2232 // 2233 // With all that, if the offsets are within the bounds of their allocations 2234 // (and not one-past-the-end! so we can't use inbounds!), and their 2235 // allocations aren't the same, the pointers are not equal. 2236 // 2237 // Note that it's not necessary to check for LHS being a global variable 2238 // address, due to canonicalization and constant folding. 2239 if (isa<AllocaInst>(LHS) && 2240 (isa<AllocaInst>(RHS) || isa<GlobalVariable>(RHS))) { 2241 ConstantInt *LHSOffsetCI = dyn_cast<ConstantInt>(LHSOffset); 2242 ConstantInt *RHSOffsetCI = dyn_cast<ConstantInt>(RHSOffset); 2243 uint64_t LHSSize, RHSSize; 2244 ObjectSizeOpts Opts; 2245 Opts.NullIsUnknownSize = 2246 NullPointerIsDefined(cast<AllocaInst>(LHS)->getFunction()); 2247 if (LHSOffsetCI && RHSOffsetCI && 2248 getObjectSize(LHS, LHSSize, DL, TLI, Opts) && 2249 getObjectSize(RHS, RHSSize, DL, TLI, Opts)) { 2250 const APInt &LHSOffsetValue = LHSOffsetCI->getValue(); 2251 const APInt &RHSOffsetValue = RHSOffsetCI->getValue(); 2252 if (!LHSOffsetValue.isNegative() && 2253 !RHSOffsetValue.isNegative() && 2254 LHSOffsetValue.ult(LHSSize) && 2255 RHSOffsetValue.ult(RHSSize)) { 2256 return ConstantInt::get(GetCompareTy(LHS), 2257 !CmpInst::isTrueWhenEqual(Pred)); 2258 } 2259 } 2260 2261 // Repeat the above check but this time without depending on DataLayout 2262 // or being able to compute a precise size. 2263 if (!cast<PointerType>(LHS->getType())->isEmptyTy() && 2264 !cast<PointerType>(RHS->getType())->isEmptyTy() && 2265 LHSOffset->isNullValue() && 2266 RHSOffset->isNullValue()) 2267 return ConstantInt::get(GetCompareTy(LHS), 2268 !CmpInst::isTrueWhenEqual(Pred)); 2269 } 2270 2271 // Even if an non-inbounds GEP occurs along the path we can still optimize 2272 // equality comparisons concerning the result. We avoid walking the whole 2273 // chain again by starting where the last calls to 2274 // stripAndComputeConstantOffsets left off and accumulate the offsets. 2275 Constant *LHSNoBound = stripAndComputeConstantOffsets(DL, LHS, true); 2276 Constant *RHSNoBound = stripAndComputeConstantOffsets(DL, RHS, true); 2277 if (LHS == RHS) 2278 return ConstantExpr::getICmp(Pred, 2279 ConstantExpr::getAdd(LHSOffset, LHSNoBound), 2280 ConstantExpr::getAdd(RHSOffset, RHSNoBound)); 2281 2282 // If one side of the equality comparison must come from a noalias call 2283 // (meaning a system memory allocation function), and the other side must 2284 // come from a pointer that cannot overlap with dynamically-allocated 2285 // memory within the lifetime of the current function (allocas, byval 2286 // arguments, globals), then determine the comparison result here. 2287 SmallVector<const Value *, 8> LHSUObjs, RHSUObjs; 2288 GetUnderlyingObjects(LHS, LHSUObjs, DL); 2289 GetUnderlyingObjects(RHS, RHSUObjs, DL); 2290 2291 // Is the set of underlying objects all noalias calls? 2292 auto IsNAC = [](ArrayRef<const Value *> Objects) { 2293 return all_of(Objects, isNoAliasCall); 2294 }; 2295 2296 // Is the set of underlying objects all things which must be disjoint from 2297 // noalias calls. For allocas, we consider only static ones (dynamic 2298 // allocas might be transformed into calls to malloc not simultaneously 2299 // live with the compared-to allocation). For globals, we exclude symbols 2300 // that might be resolve lazily to symbols in another dynamically-loaded 2301 // library (and, thus, could be malloc'ed by the implementation). 2302 auto IsAllocDisjoint = [](ArrayRef<const Value *> Objects) { 2303 return all_of(Objects, [](const Value *V) { 2304 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) 2305 return AI->getParent() && AI->getFunction() && AI->isStaticAlloca(); 2306 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) 2307 return (GV->hasLocalLinkage() || GV->hasHiddenVisibility() || 2308 GV->hasProtectedVisibility() || GV->hasGlobalUnnamedAddr()) && 2309 !GV->isThreadLocal(); 2310 if (const Argument *A = dyn_cast<Argument>(V)) 2311 return A->hasByValAttr(); 2312 return false; 2313 }); 2314 }; 2315 2316 if ((IsNAC(LHSUObjs) && IsAllocDisjoint(RHSUObjs)) || 2317 (IsNAC(RHSUObjs) && IsAllocDisjoint(LHSUObjs))) 2318 return ConstantInt::get(GetCompareTy(LHS), 2319 !CmpInst::isTrueWhenEqual(Pred)); 2320 2321 // Fold comparisons for non-escaping pointer even if the allocation call 2322 // cannot be elided. We cannot fold malloc comparison to null. Also, the 2323 // dynamic allocation call could be either of the operands. 2324 Value *MI = nullptr; 2325 if (isAllocLikeFn(LHS, TLI) && 2326 llvm::isKnownNonZero(RHS, DL, 0, nullptr, CxtI, DT)) 2327 MI = LHS; 2328 else if (isAllocLikeFn(RHS, TLI) && 2329 llvm::isKnownNonZero(LHS, DL, 0, nullptr, CxtI, DT)) 2330 MI = RHS; 2331 // FIXME: We should also fold the compare when the pointer escapes, but the 2332 // compare dominates the pointer escape 2333 if (MI && !PointerMayBeCaptured(MI, true, true)) 2334 return ConstantInt::get(GetCompareTy(LHS), 2335 CmpInst::isFalseWhenEqual(Pred)); 2336 } 2337 2338 // Otherwise, fail. 2339 return nullptr; 2340 } 2341 2342 /// Fold an icmp when its operands have i1 scalar type. 2343 static Value *simplifyICmpOfBools(CmpInst::Predicate Pred, Value *LHS, 2344 Value *RHS, const SimplifyQuery &Q) { 2345 Type *ITy = GetCompareTy(LHS); // The return type. 2346 Type *OpTy = LHS->getType(); // The operand type. 2347 if (!OpTy->isIntOrIntVectorTy(1)) 2348 return nullptr; 2349 2350 // A boolean compared to true/false can be simplified in 14 out of the 20 2351 // (10 predicates * 2 constants) possible combinations. Cases not handled here 2352 // require a 'not' of the LHS, so those must be transformed in InstCombine. 2353 if (match(RHS, m_Zero())) { 2354 switch (Pred) { 2355 case CmpInst::ICMP_NE: // X != 0 -> X 2356 case CmpInst::ICMP_UGT: // X >u 0 -> X 2357 case CmpInst::ICMP_SLT: // X <s 0 -> X 2358 return LHS; 2359 2360 case CmpInst::ICMP_ULT: // X <u 0 -> false 2361 case CmpInst::ICMP_SGT: // X >s 0 -> false 2362 return getFalse(ITy); 2363 2364 case CmpInst::ICMP_UGE: // X >=u 0 -> true 2365 case CmpInst::ICMP_SLE: // X <=s 0 -> true 2366 return getTrue(ITy); 2367 2368 default: break; 2369 } 2370 } else if (match(RHS, m_One())) { 2371 switch (Pred) { 2372 case CmpInst::ICMP_EQ: // X == 1 -> X 2373 case CmpInst::ICMP_UGE: // X >=u 1 -> X 2374 case CmpInst::ICMP_SLE: // X <=s -1 -> X 2375 return LHS; 2376 2377 case CmpInst::ICMP_UGT: // X >u 1 -> false 2378 case CmpInst::ICMP_SLT: // X <s -1 -> false 2379 return getFalse(ITy); 2380 2381 case CmpInst::ICMP_ULE: // X <=u 1 -> true 2382 case CmpInst::ICMP_SGE: // X >=s -1 -> true 2383 return getTrue(ITy); 2384 2385 default: break; 2386 } 2387 } 2388 2389 switch (Pred) { 2390 default: 2391 break; 2392 case ICmpInst::ICMP_UGE: 2393 if (isImpliedCondition(RHS, LHS, Q.DL).getValueOr(false)) 2394 return getTrue(ITy); 2395 break; 2396 case ICmpInst::ICMP_SGE: 2397 /// For signed comparison, the values for an i1 are 0 and -1 2398 /// respectively. This maps into a truth table of: 2399 /// LHS | RHS | LHS >=s RHS | LHS implies RHS 2400 /// 0 | 0 | 1 (0 >= 0) | 1 2401 /// 0 | 1 | 1 (0 >= -1) | 1 2402 /// 1 | 0 | 0 (-1 >= 0) | 0 2403 /// 1 | 1 | 1 (-1 >= -1) | 1 2404 if (isImpliedCondition(LHS, RHS, Q.DL).getValueOr(false)) 2405 return getTrue(ITy); 2406 break; 2407 case ICmpInst::ICMP_ULE: 2408 if (isImpliedCondition(LHS, RHS, Q.DL).getValueOr(false)) 2409 return getTrue(ITy); 2410 break; 2411 } 2412 2413 return nullptr; 2414 } 2415 2416 /// Try hard to fold icmp with zero RHS because this is a common case. 2417 static Value *simplifyICmpWithZero(CmpInst::Predicate Pred, Value *LHS, 2418 Value *RHS, const SimplifyQuery &Q) { 2419 if (!match(RHS, m_Zero())) 2420 return nullptr; 2421 2422 Type *ITy = GetCompareTy(LHS); // The return type. 2423 switch (Pred) { 2424 default: 2425 llvm_unreachable("Unknown ICmp predicate!"); 2426 case ICmpInst::ICMP_ULT: 2427 return getFalse(ITy); 2428 case ICmpInst::ICMP_UGE: 2429 return getTrue(ITy); 2430 case ICmpInst::ICMP_EQ: 2431 case ICmpInst::ICMP_ULE: 2432 if (isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT, Q.IIQ.UseInstrInfo)) 2433 return getFalse(ITy); 2434 break; 2435 case ICmpInst::ICMP_NE: 2436 case ICmpInst::ICMP_UGT: 2437 if (isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT, Q.IIQ.UseInstrInfo)) 2438 return getTrue(ITy); 2439 break; 2440 case ICmpInst::ICMP_SLT: { 2441 KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2442 if (LHSKnown.isNegative()) 2443 return getTrue(ITy); 2444 if (LHSKnown.isNonNegative()) 2445 return getFalse(ITy); 2446 break; 2447 } 2448 case ICmpInst::ICMP_SLE: { 2449 KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2450 if (LHSKnown.isNegative()) 2451 return getTrue(ITy); 2452 if (LHSKnown.isNonNegative() && 2453 isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 2454 return getFalse(ITy); 2455 break; 2456 } 2457 case ICmpInst::ICMP_SGE: { 2458 KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2459 if (LHSKnown.isNegative()) 2460 return getFalse(ITy); 2461 if (LHSKnown.isNonNegative()) 2462 return getTrue(ITy); 2463 break; 2464 } 2465 case ICmpInst::ICMP_SGT: { 2466 KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2467 if (LHSKnown.isNegative()) 2468 return getFalse(ITy); 2469 if (LHSKnown.isNonNegative() && 2470 isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 2471 return getTrue(ITy); 2472 break; 2473 } 2474 } 2475 2476 return nullptr; 2477 } 2478 2479 static Value *simplifyICmpWithConstant(CmpInst::Predicate Pred, Value *LHS, 2480 Value *RHS, const InstrInfoQuery &IIQ) { 2481 Type *ITy = GetCompareTy(RHS); // The return type. 2482 2483 Value *X; 2484 // Sign-bit checks can be optimized to true/false after unsigned 2485 // floating-point casts: 2486 // icmp slt (bitcast (uitofp X)), 0 --> false 2487 // icmp sgt (bitcast (uitofp X)), -1 --> true 2488 if (match(LHS, m_BitCast(m_UIToFP(m_Value(X))))) { 2489 if (Pred == ICmpInst::ICMP_SLT && match(RHS, m_Zero())) 2490 return ConstantInt::getFalse(ITy); 2491 if (Pred == ICmpInst::ICMP_SGT && match(RHS, m_AllOnes())) 2492 return ConstantInt::getTrue(ITy); 2493 } 2494 2495 const APInt *C; 2496 if (!match(RHS, m_APInt(C))) 2497 return nullptr; 2498 2499 // Rule out tautological comparisons (eg., ult 0 or uge 0). 2500 ConstantRange RHS_CR = ConstantRange::makeExactICmpRegion(Pred, *C); 2501 if (RHS_CR.isEmptySet()) 2502 return ConstantInt::getFalse(ITy); 2503 if (RHS_CR.isFullSet()) 2504 return ConstantInt::getTrue(ITy); 2505 2506 ConstantRange LHS_CR = computeConstantRange(LHS, IIQ.UseInstrInfo); 2507 if (!LHS_CR.isFullSet()) { 2508 if (RHS_CR.contains(LHS_CR)) 2509 return ConstantInt::getTrue(ITy); 2510 if (RHS_CR.inverse().contains(LHS_CR)) 2511 return ConstantInt::getFalse(ITy); 2512 } 2513 2514 return nullptr; 2515 } 2516 2517 /// TODO: A large part of this logic is duplicated in InstCombine's 2518 /// foldICmpBinOp(). We should be able to share that and avoid the code 2519 /// duplication. 2520 static Value *simplifyICmpWithBinOp(CmpInst::Predicate Pred, Value *LHS, 2521 Value *RHS, const SimplifyQuery &Q, 2522 unsigned MaxRecurse) { 2523 Type *ITy = GetCompareTy(LHS); // The return type. 2524 2525 BinaryOperator *LBO = dyn_cast<BinaryOperator>(LHS); 2526 BinaryOperator *RBO = dyn_cast<BinaryOperator>(RHS); 2527 if (MaxRecurse && (LBO || RBO)) { 2528 // Analyze the case when either LHS or RHS is an add instruction. 2529 Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr; 2530 // LHS = A + B (or A and B are null); RHS = C + D (or C and D are null). 2531 bool NoLHSWrapProblem = false, NoRHSWrapProblem = false; 2532 if (LBO && LBO->getOpcode() == Instruction::Add) { 2533 A = LBO->getOperand(0); 2534 B = LBO->getOperand(1); 2535 NoLHSWrapProblem = 2536 ICmpInst::isEquality(Pred) || 2537 (CmpInst::isUnsigned(Pred) && 2538 Q.IIQ.hasNoUnsignedWrap(cast<OverflowingBinaryOperator>(LBO))) || 2539 (CmpInst::isSigned(Pred) && 2540 Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(LBO))); 2541 } 2542 if (RBO && RBO->getOpcode() == Instruction::Add) { 2543 C = RBO->getOperand(0); 2544 D = RBO->getOperand(1); 2545 NoRHSWrapProblem = 2546 ICmpInst::isEquality(Pred) || 2547 (CmpInst::isUnsigned(Pred) && 2548 Q.IIQ.hasNoUnsignedWrap(cast<OverflowingBinaryOperator>(RBO))) || 2549 (CmpInst::isSigned(Pred) && 2550 Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(RBO))); 2551 } 2552 2553 // icmp (X+Y), X -> icmp Y, 0 for equalities or if there is no overflow. 2554 if ((A == RHS || B == RHS) && NoLHSWrapProblem) 2555 if (Value *V = SimplifyICmpInst(Pred, A == RHS ? B : A, 2556 Constant::getNullValue(RHS->getType()), Q, 2557 MaxRecurse - 1)) 2558 return V; 2559 2560 // icmp X, (X+Y) -> icmp 0, Y for equalities or if there is no overflow. 2561 if ((C == LHS || D == LHS) && NoRHSWrapProblem) 2562 if (Value *V = 2563 SimplifyICmpInst(Pred, Constant::getNullValue(LHS->getType()), 2564 C == LHS ? D : C, Q, MaxRecurse - 1)) 2565 return V; 2566 2567 // icmp (X+Y), (X+Z) -> icmp Y,Z for equalities or if there is no overflow. 2568 if (A && C && (A == C || A == D || B == C || B == D) && NoLHSWrapProblem && 2569 NoRHSWrapProblem) { 2570 // Determine Y and Z in the form icmp (X+Y), (X+Z). 2571 Value *Y, *Z; 2572 if (A == C) { 2573 // C + B == C + D -> B == D 2574 Y = B; 2575 Z = D; 2576 } else if (A == D) { 2577 // D + B == C + D -> B == C 2578 Y = B; 2579 Z = C; 2580 } else if (B == C) { 2581 // A + C == C + D -> A == D 2582 Y = A; 2583 Z = D; 2584 } else { 2585 assert(B == D); 2586 // A + D == C + D -> A == C 2587 Y = A; 2588 Z = C; 2589 } 2590 if (Value *V = SimplifyICmpInst(Pred, Y, Z, Q, MaxRecurse - 1)) 2591 return V; 2592 } 2593 } 2594 2595 { 2596 Value *Y = nullptr; 2597 // icmp pred (or X, Y), X 2598 if (LBO && match(LBO, m_c_Or(m_Value(Y), m_Specific(RHS)))) { 2599 if (Pred == ICmpInst::ICMP_ULT) 2600 return getFalse(ITy); 2601 if (Pred == ICmpInst::ICMP_UGE) 2602 return getTrue(ITy); 2603 2604 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SGE) { 2605 KnownBits RHSKnown = computeKnownBits(RHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2606 KnownBits YKnown = computeKnownBits(Y, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2607 if (RHSKnown.isNonNegative() && YKnown.isNegative()) 2608 return Pred == ICmpInst::ICMP_SLT ? getTrue(ITy) : getFalse(ITy); 2609 if (RHSKnown.isNegative() || YKnown.isNonNegative()) 2610 return Pred == ICmpInst::ICMP_SLT ? getFalse(ITy) : getTrue(ITy); 2611 } 2612 } 2613 // icmp pred X, (or X, Y) 2614 if (RBO && match(RBO, m_c_Or(m_Value(Y), m_Specific(LHS)))) { 2615 if (Pred == ICmpInst::ICMP_ULE) 2616 return getTrue(ITy); 2617 if (Pred == ICmpInst::ICMP_UGT) 2618 return getFalse(ITy); 2619 2620 if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SLE) { 2621 KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2622 KnownBits YKnown = computeKnownBits(Y, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2623 if (LHSKnown.isNonNegative() && YKnown.isNegative()) 2624 return Pred == ICmpInst::ICMP_SGT ? getTrue(ITy) : getFalse(ITy); 2625 if (LHSKnown.isNegative() || YKnown.isNonNegative()) 2626 return Pred == ICmpInst::ICMP_SGT ? getFalse(ITy) : getTrue(ITy); 2627 } 2628 } 2629 } 2630 2631 // icmp pred (and X, Y), X 2632 if (LBO && match(LBO, m_c_And(m_Value(), m_Specific(RHS)))) { 2633 if (Pred == ICmpInst::ICMP_UGT) 2634 return getFalse(ITy); 2635 if (Pred == ICmpInst::ICMP_ULE) 2636 return getTrue(ITy); 2637 } 2638 // icmp pred X, (and X, Y) 2639 if (RBO && match(RBO, m_c_And(m_Value(), m_Specific(LHS)))) { 2640 if (Pred == ICmpInst::ICMP_UGE) 2641 return getTrue(ITy); 2642 if (Pred == ICmpInst::ICMP_ULT) 2643 return getFalse(ITy); 2644 } 2645 2646 // 0 - (zext X) pred C 2647 if (!CmpInst::isUnsigned(Pred) && match(LHS, m_Neg(m_ZExt(m_Value())))) { 2648 if (ConstantInt *RHSC = dyn_cast<ConstantInt>(RHS)) { 2649 if (RHSC->getValue().isStrictlyPositive()) { 2650 if (Pred == ICmpInst::ICMP_SLT) 2651 return ConstantInt::getTrue(RHSC->getContext()); 2652 if (Pred == ICmpInst::ICMP_SGE) 2653 return ConstantInt::getFalse(RHSC->getContext()); 2654 if (Pred == ICmpInst::ICMP_EQ) 2655 return ConstantInt::getFalse(RHSC->getContext()); 2656 if (Pred == ICmpInst::ICMP_NE) 2657 return ConstantInt::getTrue(RHSC->getContext()); 2658 } 2659 if (RHSC->getValue().isNonNegative()) { 2660 if (Pred == ICmpInst::ICMP_SLE) 2661 return ConstantInt::getTrue(RHSC->getContext()); 2662 if (Pred == ICmpInst::ICMP_SGT) 2663 return ConstantInt::getFalse(RHSC->getContext()); 2664 } 2665 } 2666 } 2667 2668 // icmp pred (urem X, Y), Y 2669 if (LBO && match(LBO, m_URem(m_Value(), m_Specific(RHS)))) { 2670 switch (Pred) { 2671 default: 2672 break; 2673 case ICmpInst::ICMP_SGT: 2674 case ICmpInst::ICMP_SGE: { 2675 KnownBits Known = computeKnownBits(RHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2676 if (!Known.isNonNegative()) 2677 break; 2678 LLVM_FALLTHROUGH; 2679 } 2680 case ICmpInst::ICMP_EQ: 2681 case ICmpInst::ICMP_UGT: 2682 case ICmpInst::ICMP_UGE: 2683 return getFalse(ITy); 2684 case ICmpInst::ICMP_SLT: 2685 case ICmpInst::ICMP_SLE: { 2686 KnownBits Known = computeKnownBits(RHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2687 if (!Known.isNonNegative()) 2688 break; 2689 LLVM_FALLTHROUGH; 2690 } 2691 case ICmpInst::ICMP_NE: 2692 case ICmpInst::ICMP_ULT: 2693 case ICmpInst::ICMP_ULE: 2694 return getTrue(ITy); 2695 } 2696 } 2697 2698 // icmp pred X, (urem Y, X) 2699 if (RBO && match(RBO, m_URem(m_Value(), m_Specific(LHS)))) { 2700 switch (Pred) { 2701 default: 2702 break; 2703 case ICmpInst::ICMP_SGT: 2704 case ICmpInst::ICMP_SGE: { 2705 KnownBits Known = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2706 if (!Known.isNonNegative()) 2707 break; 2708 LLVM_FALLTHROUGH; 2709 } 2710 case ICmpInst::ICMP_NE: 2711 case ICmpInst::ICMP_UGT: 2712 case ICmpInst::ICMP_UGE: 2713 return getTrue(ITy); 2714 case ICmpInst::ICMP_SLT: 2715 case ICmpInst::ICMP_SLE: { 2716 KnownBits Known = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2717 if (!Known.isNonNegative()) 2718 break; 2719 LLVM_FALLTHROUGH; 2720 } 2721 case ICmpInst::ICMP_EQ: 2722 case ICmpInst::ICMP_ULT: 2723 case ICmpInst::ICMP_ULE: 2724 return getFalse(ITy); 2725 } 2726 } 2727 2728 // x >> y <=u x 2729 // x udiv y <=u x. 2730 if (LBO && (match(LBO, m_LShr(m_Specific(RHS), m_Value())) || 2731 match(LBO, m_UDiv(m_Specific(RHS), m_Value())))) { 2732 // icmp pred (X op Y), X 2733 if (Pred == ICmpInst::ICMP_UGT) 2734 return getFalse(ITy); 2735 if (Pred == ICmpInst::ICMP_ULE) 2736 return getTrue(ITy); 2737 } 2738 2739 // x >=u x >> y 2740 // x >=u x udiv y. 2741 if (RBO && (match(RBO, m_LShr(m_Specific(LHS), m_Value())) || 2742 match(RBO, m_UDiv(m_Specific(LHS), m_Value())))) { 2743 // icmp pred X, (X op Y) 2744 if (Pred == ICmpInst::ICMP_ULT) 2745 return getFalse(ITy); 2746 if (Pred == ICmpInst::ICMP_UGE) 2747 return getTrue(ITy); 2748 } 2749 2750 // handle: 2751 // CI2 << X == CI 2752 // CI2 << X != CI 2753 // 2754 // where CI2 is a power of 2 and CI isn't 2755 if (auto *CI = dyn_cast<ConstantInt>(RHS)) { 2756 const APInt *CI2Val, *CIVal = &CI->getValue(); 2757 if (LBO && match(LBO, m_Shl(m_APInt(CI2Val), m_Value())) && 2758 CI2Val->isPowerOf2()) { 2759 if (!CIVal->isPowerOf2()) { 2760 // CI2 << X can equal zero in some circumstances, 2761 // this simplification is unsafe if CI is zero. 2762 // 2763 // We know it is safe if: 2764 // - The shift is nsw, we can't shift out the one bit. 2765 // - The shift is nuw, we can't shift out the one bit. 2766 // - CI2 is one 2767 // - CI isn't zero 2768 if (Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(LBO)) || 2769 Q.IIQ.hasNoUnsignedWrap(cast<OverflowingBinaryOperator>(LBO)) || 2770 CI2Val->isOneValue() || !CI->isZero()) { 2771 if (Pred == ICmpInst::ICMP_EQ) 2772 return ConstantInt::getFalse(RHS->getContext()); 2773 if (Pred == ICmpInst::ICMP_NE) 2774 return ConstantInt::getTrue(RHS->getContext()); 2775 } 2776 } 2777 if (CIVal->isSignMask() && CI2Val->isOneValue()) { 2778 if (Pred == ICmpInst::ICMP_UGT) 2779 return ConstantInt::getFalse(RHS->getContext()); 2780 if (Pred == ICmpInst::ICMP_ULE) 2781 return ConstantInt::getTrue(RHS->getContext()); 2782 } 2783 } 2784 } 2785 2786 if (MaxRecurse && LBO && RBO && LBO->getOpcode() == RBO->getOpcode() && 2787 LBO->getOperand(1) == RBO->getOperand(1)) { 2788 switch (LBO->getOpcode()) { 2789 default: 2790 break; 2791 case Instruction::UDiv: 2792 case Instruction::LShr: 2793 if (ICmpInst::isSigned(Pred) || !Q.IIQ.isExact(LBO) || 2794 !Q.IIQ.isExact(RBO)) 2795 break; 2796 if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0), 2797 RBO->getOperand(0), Q, MaxRecurse - 1)) 2798 return V; 2799 break; 2800 case Instruction::SDiv: 2801 if (!ICmpInst::isEquality(Pred) || !Q.IIQ.isExact(LBO) || 2802 !Q.IIQ.isExact(RBO)) 2803 break; 2804 if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0), 2805 RBO->getOperand(0), Q, MaxRecurse - 1)) 2806 return V; 2807 break; 2808 case Instruction::AShr: 2809 if (!Q.IIQ.isExact(LBO) || !Q.IIQ.isExact(RBO)) 2810 break; 2811 if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0), 2812 RBO->getOperand(0), Q, MaxRecurse - 1)) 2813 return V; 2814 break; 2815 case Instruction::Shl: { 2816 bool NUW = Q.IIQ.hasNoUnsignedWrap(LBO) && Q.IIQ.hasNoUnsignedWrap(RBO); 2817 bool NSW = Q.IIQ.hasNoSignedWrap(LBO) && Q.IIQ.hasNoSignedWrap(RBO); 2818 if (!NUW && !NSW) 2819 break; 2820 if (!NSW && ICmpInst::isSigned(Pred)) 2821 break; 2822 if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0), 2823 RBO->getOperand(0), Q, MaxRecurse - 1)) 2824 return V; 2825 break; 2826 } 2827 } 2828 } 2829 return nullptr; 2830 } 2831 2832 /// Simplify integer comparisons where at least one operand of the compare 2833 /// matches an integer min/max idiom. 2834 static Value *simplifyICmpWithMinMax(CmpInst::Predicate Pred, Value *LHS, 2835 Value *RHS, const SimplifyQuery &Q, 2836 unsigned MaxRecurse) { 2837 Type *ITy = GetCompareTy(LHS); // The return type. 2838 Value *A, *B; 2839 CmpInst::Predicate P = CmpInst::BAD_ICMP_PREDICATE; 2840 CmpInst::Predicate EqP; // Chosen so that "A == max/min(A,B)" iff "A EqP B". 2841 2842 // Signed variants on "max(a,b)>=a -> true". 2843 if (match(LHS, m_SMax(m_Value(A), m_Value(B))) && (A == RHS || B == RHS)) { 2844 if (A != RHS) 2845 std::swap(A, B); // smax(A, B) pred A. 2846 EqP = CmpInst::ICMP_SGE; // "A == smax(A, B)" iff "A sge B". 2847 // We analyze this as smax(A, B) pred A. 2848 P = Pred; 2849 } else if (match(RHS, m_SMax(m_Value(A), m_Value(B))) && 2850 (A == LHS || B == LHS)) { 2851 if (A != LHS) 2852 std::swap(A, B); // A pred smax(A, B). 2853 EqP = CmpInst::ICMP_SGE; // "A == smax(A, B)" iff "A sge B". 2854 // We analyze this as smax(A, B) swapped-pred A. 2855 P = CmpInst::getSwappedPredicate(Pred); 2856 } else if (match(LHS, m_SMin(m_Value(A), m_Value(B))) && 2857 (A == RHS || B == RHS)) { 2858 if (A != RHS) 2859 std::swap(A, B); // smin(A, B) pred A. 2860 EqP = CmpInst::ICMP_SLE; // "A == smin(A, B)" iff "A sle B". 2861 // We analyze this as smax(-A, -B) swapped-pred -A. 2862 // Note that we do not need to actually form -A or -B thanks to EqP. 2863 P = CmpInst::getSwappedPredicate(Pred); 2864 } else if (match(RHS, m_SMin(m_Value(A), m_Value(B))) && 2865 (A == LHS || B == LHS)) { 2866 if (A != LHS) 2867 std::swap(A, B); // A pred smin(A, B). 2868 EqP = CmpInst::ICMP_SLE; // "A == smin(A, B)" iff "A sle B". 2869 // We analyze this as smax(-A, -B) pred -A. 2870 // Note that we do not need to actually form -A or -B thanks to EqP. 2871 P = Pred; 2872 } 2873 if (P != CmpInst::BAD_ICMP_PREDICATE) { 2874 // Cases correspond to "max(A, B) p A". 2875 switch (P) { 2876 default: 2877 break; 2878 case CmpInst::ICMP_EQ: 2879 case CmpInst::ICMP_SLE: 2880 // Equivalent to "A EqP B". This may be the same as the condition tested 2881 // in the max/min; if so, we can just return that. 2882 if (Value *V = ExtractEquivalentCondition(LHS, EqP, A, B)) 2883 return V; 2884 if (Value *V = ExtractEquivalentCondition(RHS, EqP, A, B)) 2885 return V; 2886 // Otherwise, see if "A EqP B" simplifies. 2887 if (MaxRecurse) 2888 if (Value *V = SimplifyICmpInst(EqP, A, B, Q, MaxRecurse - 1)) 2889 return V; 2890 break; 2891 case CmpInst::ICMP_NE: 2892 case CmpInst::ICMP_SGT: { 2893 CmpInst::Predicate InvEqP = CmpInst::getInversePredicate(EqP); 2894 // Equivalent to "A InvEqP B". This may be the same as the condition 2895 // tested in the max/min; if so, we can just return that. 2896 if (Value *V = ExtractEquivalentCondition(LHS, InvEqP, A, B)) 2897 return V; 2898 if (Value *V = ExtractEquivalentCondition(RHS, InvEqP, A, B)) 2899 return V; 2900 // Otherwise, see if "A InvEqP B" simplifies. 2901 if (MaxRecurse) 2902 if (Value *V = SimplifyICmpInst(InvEqP, A, B, Q, MaxRecurse - 1)) 2903 return V; 2904 break; 2905 } 2906 case CmpInst::ICMP_SGE: 2907 // Always true. 2908 return getTrue(ITy); 2909 case CmpInst::ICMP_SLT: 2910 // Always false. 2911 return getFalse(ITy); 2912 } 2913 } 2914 2915 // Unsigned variants on "max(a,b)>=a -> true". 2916 P = CmpInst::BAD_ICMP_PREDICATE; 2917 if (match(LHS, m_UMax(m_Value(A), m_Value(B))) && (A == RHS || B == RHS)) { 2918 if (A != RHS) 2919 std::swap(A, B); // umax(A, B) pred A. 2920 EqP = CmpInst::ICMP_UGE; // "A == umax(A, B)" iff "A uge B". 2921 // We analyze this as umax(A, B) pred A. 2922 P = Pred; 2923 } else if (match(RHS, m_UMax(m_Value(A), m_Value(B))) && 2924 (A == LHS || B == LHS)) { 2925 if (A != LHS) 2926 std::swap(A, B); // A pred umax(A, B). 2927 EqP = CmpInst::ICMP_UGE; // "A == umax(A, B)" iff "A uge B". 2928 // We analyze this as umax(A, B) swapped-pred A. 2929 P = CmpInst::getSwappedPredicate(Pred); 2930 } else if (match(LHS, m_UMin(m_Value(A), m_Value(B))) && 2931 (A == RHS || B == RHS)) { 2932 if (A != RHS) 2933 std::swap(A, B); // umin(A, B) pred A. 2934 EqP = CmpInst::ICMP_ULE; // "A == umin(A, B)" iff "A ule B". 2935 // We analyze this as umax(-A, -B) swapped-pred -A. 2936 // Note that we do not need to actually form -A or -B thanks to EqP. 2937 P = CmpInst::getSwappedPredicate(Pred); 2938 } else if (match(RHS, m_UMin(m_Value(A), m_Value(B))) && 2939 (A == LHS || B == LHS)) { 2940 if (A != LHS) 2941 std::swap(A, B); // A pred umin(A, B). 2942 EqP = CmpInst::ICMP_ULE; // "A == umin(A, B)" iff "A ule B". 2943 // We analyze this as umax(-A, -B) pred -A. 2944 // Note that we do not need to actually form -A or -B thanks to EqP. 2945 P = Pred; 2946 } 2947 if (P != CmpInst::BAD_ICMP_PREDICATE) { 2948 // Cases correspond to "max(A, B) p A". 2949 switch (P) { 2950 default: 2951 break; 2952 case CmpInst::ICMP_EQ: 2953 case CmpInst::ICMP_ULE: 2954 // Equivalent to "A EqP B". This may be the same as the condition tested 2955 // in the max/min; if so, we can just return that. 2956 if (Value *V = ExtractEquivalentCondition(LHS, EqP, A, B)) 2957 return V; 2958 if (Value *V = ExtractEquivalentCondition(RHS, EqP, A, B)) 2959 return V; 2960 // Otherwise, see if "A EqP B" simplifies. 2961 if (MaxRecurse) 2962 if (Value *V = SimplifyICmpInst(EqP, A, B, Q, MaxRecurse - 1)) 2963 return V; 2964 break; 2965 case CmpInst::ICMP_NE: 2966 case CmpInst::ICMP_UGT: { 2967 CmpInst::Predicate InvEqP = CmpInst::getInversePredicate(EqP); 2968 // Equivalent to "A InvEqP B". This may be the same as the condition 2969 // tested in the max/min; if so, we can just return that. 2970 if (Value *V = ExtractEquivalentCondition(LHS, InvEqP, A, B)) 2971 return V; 2972 if (Value *V = ExtractEquivalentCondition(RHS, InvEqP, A, B)) 2973 return V; 2974 // Otherwise, see if "A InvEqP B" simplifies. 2975 if (MaxRecurse) 2976 if (Value *V = SimplifyICmpInst(InvEqP, A, B, Q, MaxRecurse - 1)) 2977 return V; 2978 break; 2979 } 2980 case CmpInst::ICMP_UGE: 2981 // Always true. 2982 return getTrue(ITy); 2983 case CmpInst::ICMP_ULT: 2984 // Always false. 2985 return getFalse(ITy); 2986 } 2987 } 2988 2989 // Variants on "max(x,y) >= min(x,z)". 2990 Value *C, *D; 2991 if (match(LHS, m_SMax(m_Value(A), m_Value(B))) && 2992 match(RHS, m_SMin(m_Value(C), m_Value(D))) && 2993 (A == C || A == D || B == C || B == D)) { 2994 // max(x, ?) pred min(x, ?). 2995 if (Pred == CmpInst::ICMP_SGE) 2996 // Always true. 2997 return getTrue(ITy); 2998 if (Pred == CmpInst::ICMP_SLT) 2999 // Always false. 3000 return getFalse(ITy); 3001 } else if (match(LHS, m_SMin(m_Value(A), m_Value(B))) && 3002 match(RHS, m_SMax(m_Value(C), m_Value(D))) && 3003 (A == C || A == D || B == C || B == D)) { 3004 // min(x, ?) pred max(x, ?). 3005 if (Pred == CmpInst::ICMP_SLE) 3006 // Always true. 3007 return getTrue(ITy); 3008 if (Pred == CmpInst::ICMP_SGT) 3009 // Always false. 3010 return getFalse(ITy); 3011 } else if (match(LHS, m_UMax(m_Value(A), m_Value(B))) && 3012 match(RHS, m_UMin(m_Value(C), m_Value(D))) && 3013 (A == C || A == D || B == C || B == D)) { 3014 // max(x, ?) pred min(x, ?). 3015 if (Pred == CmpInst::ICMP_UGE) 3016 // Always true. 3017 return getTrue(ITy); 3018 if (Pred == CmpInst::ICMP_ULT) 3019 // Always false. 3020 return getFalse(ITy); 3021 } else if (match(LHS, m_UMin(m_Value(A), m_Value(B))) && 3022 match(RHS, m_UMax(m_Value(C), m_Value(D))) && 3023 (A == C || A == D || B == C || B == D)) { 3024 // min(x, ?) pred max(x, ?). 3025 if (Pred == CmpInst::ICMP_ULE) 3026 // Always true. 3027 return getTrue(ITy); 3028 if (Pred == CmpInst::ICMP_UGT) 3029 // Always false. 3030 return getFalse(ITy); 3031 } 3032 3033 return nullptr; 3034 } 3035 3036 /// Given operands for an ICmpInst, see if we can fold the result. 3037 /// If not, this returns null. 3038 static Value *SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS, 3039 const SimplifyQuery &Q, unsigned MaxRecurse) { 3040 CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate; 3041 assert(CmpInst::isIntPredicate(Pred) && "Not an integer compare!"); 3042 3043 if (Constant *CLHS = dyn_cast<Constant>(LHS)) { 3044 if (Constant *CRHS = dyn_cast<Constant>(RHS)) 3045 return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, Q.DL, Q.TLI); 3046 3047 // If we have a constant, make sure it is on the RHS. 3048 std::swap(LHS, RHS); 3049 Pred = CmpInst::getSwappedPredicate(Pred); 3050 } 3051 assert(!isa<UndefValue>(LHS) && "Unexpected icmp undef,%X"); 3052 3053 Type *ITy = GetCompareTy(LHS); // The return type. 3054 3055 // For EQ and NE, we can always pick a value for the undef to make the 3056 // predicate pass or fail, so we can return undef. 3057 // Matches behavior in llvm::ConstantFoldCompareInstruction. 3058 if (isa<UndefValue>(RHS) && ICmpInst::isEquality(Pred)) 3059 return UndefValue::get(ITy); 3060 3061 // icmp X, X -> true/false 3062 // icmp X, undef -> true/false because undef could be X. 3063 if (LHS == RHS || isa<UndefValue>(RHS)) 3064 return ConstantInt::get(ITy, CmpInst::isTrueWhenEqual(Pred)); 3065 3066 if (Value *V = simplifyICmpOfBools(Pred, LHS, RHS, Q)) 3067 return V; 3068 3069 if (Value *V = simplifyICmpWithZero(Pred, LHS, RHS, Q)) 3070 return V; 3071 3072 if (Value *V = simplifyICmpWithConstant(Pred, LHS, RHS, Q.IIQ)) 3073 return V; 3074 3075 // If both operands have range metadata, use the metadata 3076 // to simplify the comparison. 3077 if (isa<Instruction>(RHS) && isa<Instruction>(LHS)) { 3078 auto RHS_Instr = cast<Instruction>(RHS); 3079 auto LHS_Instr = cast<Instruction>(LHS); 3080 3081 if (Q.IIQ.getMetadata(RHS_Instr, LLVMContext::MD_range) && 3082 Q.IIQ.getMetadata(LHS_Instr, LLVMContext::MD_range)) { 3083 auto RHS_CR = getConstantRangeFromMetadata( 3084 *RHS_Instr->getMetadata(LLVMContext::MD_range)); 3085 auto LHS_CR = getConstantRangeFromMetadata( 3086 *LHS_Instr->getMetadata(LLVMContext::MD_range)); 3087 3088 auto Satisfied_CR = ConstantRange::makeSatisfyingICmpRegion(Pred, RHS_CR); 3089 if (Satisfied_CR.contains(LHS_CR)) 3090 return ConstantInt::getTrue(RHS->getContext()); 3091 3092 auto InversedSatisfied_CR = ConstantRange::makeSatisfyingICmpRegion( 3093 CmpInst::getInversePredicate(Pred), RHS_CR); 3094 if (InversedSatisfied_CR.contains(LHS_CR)) 3095 return ConstantInt::getFalse(RHS->getContext()); 3096 } 3097 } 3098 3099 // Compare of cast, for example (zext X) != 0 -> X != 0 3100 if (isa<CastInst>(LHS) && (isa<Constant>(RHS) || isa<CastInst>(RHS))) { 3101 Instruction *LI = cast<CastInst>(LHS); 3102 Value *SrcOp = LI->getOperand(0); 3103 Type *SrcTy = SrcOp->getType(); 3104 Type *DstTy = LI->getType(); 3105 3106 // Turn icmp (ptrtoint x), (ptrtoint/constant) into a compare of the input 3107 // if the integer type is the same size as the pointer type. 3108 if (MaxRecurse && isa<PtrToIntInst>(LI) && 3109 Q.DL.getTypeSizeInBits(SrcTy) == DstTy->getPrimitiveSizeInBits()) { 3110 if (Constant *RHSC = dyn_cast<Constant>(RHS)) { 3111 // Transfer the cast to the constant. 3112 if (Value *V = SimplifyICmpInst(Pred, SrcOp, 3113 ConstantExpr::getIntToPtr(RHSC, SrcTy), 3114 Q, MaxRecurse-1)) 3115 return V; 3116 } else if (PtrToIntInst *RI = dyn_cast<PtrToIntInst>(RHS)) { 3117 if (RI->getOperand(0)->getType() == SrcTy) 3118 // Compare without the cast. 3119 if (Value *V = SimplifyICmpInst(Pred, SrcOp, RI->getOperand(0), 3120 Q, MaxRecurse-1)) 3121 return V; 3122 } 3123 } 3124 3125 if (isa<ZExtInst>(LHS)) { 3126 // Turn icmp (zext X), (zext Y) into a compare of X and Y if they have the 3127 // same type. 3128 if (ZExtInst *RI = dyn_cast<ZExtInst>(RHS)) { 3129 if (MaxRecurse && SrcTy == RI->getOperand(0)->getType()) 3130 // Compare X and Y. Note that signed predicates become unsigned. 3131 if (Value *V = SimplifyICmpInst(ICmpInst::getUnsignedPredicate(Pred), 3132 SrcOp, RI->getOperand(0), Q, 3133 MaxRecurse-1)) 3134 return V; 3135 } 3136 // Turn icmp (zext X), Cst into a compare of X and Cst if Cst is extended 3137 // too. If not, then try to deduce the result of the comparison. 3138 else if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) { 3139 // Compute the constant that would happen if we truncated to SrcTy then 3140 // reextended to DstTy. 3141 Constant *Trunc = ConstantExpr::getTrunc(CI, SrcTy); 3142 Constant *RExt = ConstantExpr::getCast(CastInst::ZExt, Trunc, DstTy); 3143 3144 // If the re-extended constant didn't change then this is effectively 3145 // also a case of comparing two zero-extended values. 3146 if (RExt == CI && MaxRecurse) 3147 if (Value *V = SimplifyICmpInst(ICmpInst::getUnsignedPredicate(Pred), 3148 SrcOp, Trunc, Q, MaxRecurse-1)) 3149 return V; 3150 3151 // Otherwise the upper bits of LHS are zero while RHS has a non-zero bit 3152 // there. Use this to work out the result of the comparison. 3153 if (RExt != CI) { 3154 switch (Pred) { 3155 default: llvm_unreachable("Unknown ICmp predicate!"); 3156 // LHS <u RHS. 3157 case ICmpInst::ICMP_EQ: 3158 case ICmpInst::ICMP_UGT: 3159 case ICmpInst::ICMP_UGE: 3160 return ConstantInt::getFalse(CI->getContext()); 3161 3162 case ICmpInst::ICMP_NE: 3163 case ICmpInst::ICMP_ULT: 3164 case ICmpInst::ICMP_ULE: 3165 return ConstantInt::getTrue(CI->getContext()); 3166 3167 // LHS is non-negative. If RHS is negative then LHS >s LHS. If RHS 3168 // is non-negative then LHS <s RHS. 3169 case ICmpInst::ICMP_SGT: 3170 case ICmpInst::ICMP_SGE: 3171 return CI->getValue().isNegative() ? 3172 ConstantInt::getTrue(CI->getContext()) : 3173 ConstantInt::getFalse(CI->getContext()); 3174 3175 case ICmpInst::ICMP_SLT: 3176 case ICmpInst::ICMP_SLE: 3177 return CI->getValue().isNegative() ? 3178 ConstantInt::getFalse(CI->getContext()) : 3179 ConstantInt::getTrue(CI->getContext()); 3180 } 3181 } 3182 } 3183 } 3184 3185 if (isa<SExtInst>(LHS)) { 3186 // Turn icmp (sext X), (sext Y) into a compare of X and Y if they have the 3187 // same type. 3188 if (SExtInst *RI = dyn_cast<SExtInst>(RHS)) { 3189 if (MaxRecurse && SrcTy == RI->getOperand(0)->getType()) 3190 // Compare X and Y. Note that the predicate does not change. 3191 if (Value *V = SimplifyICmpInst(Pred, SrcOp, RI->getOperand(0), 3192 Q, MaxRecurse-1)) 3193 return V; 3194 } 3195 // Turn icmp (sext X), Cst into a compare of X and Cst if Cst is extended 3196 // too. If not, then try to deduce the result of the comparison. 3197 else if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) { 3198 // Compute the constant that would happen if we truncated to SrcTy then 3199 // reextended to DstTy. 3200 Constant *Trunc = ConstantExpr::getTrunc(CI, SrcTy); 3201 Constant *RExt = ConstantExpr::getCast(CastInst::SExt, Trunc, DstTy); 3202 3203 // If the re-extended constant didn't change then this is effectively 3204 // also a case of comparing two sign-extended values. 3205 if (RExt == CI && MaxRecurse) 3206 if (Value *V = SimplifyICmpInst(Pred, SrcOp, Trunc, Q, MaxRecurse-1)) 3207 return V; 3208 3209 // Otherwise the upper bits of LHS are all equal, while RHS has varying 3210 // bits there. Use this to work out the result of the comparison. 3211 if (RExt != CI) { 3212 switch (Pred) { 3213 default: llvm_unreachable("Unknown ICmp predicate!"); 3214 case ICmpInst::ICMP_EQ: 3215 return ConstantInt::getFalse(CI->getContext()); 3216 case ICmpInst::ICMP_NE: 3217 return ConstantInt::getTrue(CI->getContext()); 3218 3219 // If RHS is non-negative then LHS <s RHS. If RHS is negative then 3220 // LHS >s RHS. 3221 case ICmpInst::ICMP_SGT: 3222 case ICmpInst::ICMP_SGE: 3223 return CI->getValue().isNegative() ? 3224 ConstantInt::getTrue(CI->getContext()) : 3225 ConstantInt::getFalse(CI->getContext()); 3226 case ICmpInst::ICMP_SLT: 3227 case ICmpInst::ICMP_SLE: 3228 return CI->getValue().isNegative() ? 3229 ConstantInt::getFalse(CI->getContext()) : 3230 ConstantInt::getTrue(CI->getContext()); 3231 3232 // If LHS is non-negative then LHS <u RHS. If LHS is negative then 3233 // LHS >u RHS. 3234 case ICmpInst::ICMP_UGT: 3235 case ICmpInst::ICMP_UGE: 3236 // Comparison is true iff the LHS <s 0. 3237 if (MaxRecurse) 3238 if (Value *V = SimplifyICmpInst(ICmpInst::ICMP_SLT, SrcOp, 3239 Constant::getNullValue(SrcTy), 3240 Q, MaxRecurse-1)) 3241 return V; 3242 break; 3243 case ICmpInst::ICMP_ULT: 3244 case ICmpInst::ICMP_ULE: 3245 // Comparison is true iff the LHS >=s 0. 3246 if (MaxRecurse) 3247 if (Value *V = SimplifyICmpInst(ICmpInst::ICMP_SGE, SrcOp, 3248 Constant::getNullValue(SrcTy), 3249 Q, MaxRecurse-1)) 3250 return V; 3251 break; 3252 } 3253 } 3254 } 3255 } 3256 } 3257 3258 // icmp eq|ne X, Y -> false|true if X != Y 3259 if (ICmpInst::isEquality(Pred) && 3260 isKnownNonEqual(LHS, RHS, Q.DL, Q.AC, Q.CxtI, Q.DT, Q.IIQ.UseInstrInfo)) { 3261 return Pred == ICmpInst::ICMP_NE ? getTrue(ITy) : getFalse(ITy); 3262 } 3263 3264 if (Value *V = simplifyICmpWithBinOp(Pred, LHS, RHS, Q, MaxRecurse)) 3265 return V; 3266 3267 if (Value *V = simplifyICmpWithMinMax(Pred, LHS, RHS, Q, MaxRecurse)) 3268 return V; 3269 3270 // Simplify comparisons of related pointers using a powerful, recursive 3271 // GEP-walk when we have target data available.. 3272 if (LHS->getType()->isPointerTy()) 3273 if (auto *C = computePointerICmp(Q.DL, Q.TLI, Q.DT, Pred, Q.AC, Q.CxtI, 3274 Q.IIQ, LHS, RHS)) 3275 return C; 3276 if (auto *CLHS = dyn_cast<PtrToIntOperator>(LHS)) 3277 if (auto *CRHS = dyn_cast<PtrToIntOperator>(RHS)) 3278 if (Q.DL.getTypeSizeInBits(CLHS->getPointerOperandType()) == 3279 Q.DL.getTypeSizeInBits(CLHS->getType()) && 3280 Q.DL.getTypeSizeInBits(CRHS->getPointerOperandType()) == 3281 Q.DL.getTypeSizeInBits(CRHS->getType())) 3282 if (auto *C = computePointerICmp(Q.DL, Q.TLI, Q.DT, Pred, Q.AC, Q.CxtI, 3283 Q.IIQ, CLHS->getPointerOperand(), 3284 CRHS->getPointerOperand())) 3285 return C; 3286 3287 if (GetElementPtrInst *GLHS = dyn_cast<GetElementPtrInst>(LHS)) { 3288 if (GEPOperator *GRHS = dyn_cast<GEPOperator>(RHS)) { 3289 if (GLHS->getPointerOperand() == GRHS->getPointerOperand() && 3290 GLHS->hasAllConstantIndices() && GRHS->hasAllConstantIndices() && 3291 (ICmpInst::isEquality(Pred) || 3292 (GLHS->isInBounds() && GRHS->isInBounds() && 3293 Pred == ICmpInst::getSignedPredicate(Pred)))) { 3294 // The bases are equal and the indices are constant. Build a constant 3295 // expression GEP with the same indices and a null base pointer to see 3296 // what constant folding can make out of it. 3297 Constant *Null = Constant::getNullValue(GLHS->getPointerOperandType()); 3298 SmallVector<Value *, 4> IndicesLHS(GLHS->idx_begin(), GLHS->idx_end()); 3299 Constant *NewLHS = ConstantExpr::getGetElementPtr( 3300 GLHS->getSourceElementType(), Null, IndicesLHS); 3301 3302 SmallVector<Value *, 4> IndicesRHS(GRHS->idx_begin(), GRHS->idx_end()); 3303 Constant *NewRHS = ConstantExpr::getGetElementPtr( 3304 GLHS->getSourceElementType(), Null, IndicesRHS); 3305 return ConstantExpr::getICmp(Pred, NewLHS, NewRHS); 3306 } 3307 } 3308 } 3309 3310 // If the comparison is with the result of a select instruction, check whether 3311 // comparing with either branch of the select always yields the same value. 3312 if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS)) 3313 if (Value *V = ThreadCmpOverSelect(Pred, LHS, RHS, Q, MaxRecurse)) 3314 return V; 3315 3316 // If the comparison is with the result of a phi instruction, check whether 3317 // doing the compare with each incoming phi value yields a common result. 3318 if (isa<PHINode>(LHS) || isa<PHINode>(RHS)) 3319 if (Value *V = ThreadCmpOverPHI(Pred, LHS, RHS, Q, MaxRecurse)) 3320 return V; 3321 3322 return nullptr; 3323 } 3324 3325 Value *llvm::SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS, 3326 const SimplifyQuery &Q) { 3327 return ::SimplifyICmpInst(Predicate, LHS, RHS, Q, RecursionLimit); 3328 } 3329 3330 /// Given operands for an FCmpInst, see if we can fold the result. 3331 /// If not, this returns null. 3332 static Value *SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS, 3333 FastMathFlags FMF, const SimplifyQuery &Q, 3334 unsigned MaxRecurse) { 3335 CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate; 3336 assert(CmpInst::isFPPredicate(Pred) && "Not an FP compare!"); 3337 3338 if (Constant *CLHS = dyn_cast<Constant>(LHS)) { 3339 if (Constant *CRHS = dyn_cast<Constant>(RHS)) 3340 return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, Q.DL, Q.TLI); 3341 3342 // If we have a constant, make sure it is on the RHS. 3343 std::swap(LHS, RHS); 3344 Pred = CmpInst::getSwappedPredicate(Pred); 3345 } 3346 3347 // Fold trivial predicates. 3348 Type *RetTy = GetCompareTy(LHS); 3349 if (Pred == FCmpInst::FCMP_FALSE) 3350 return getFalse(RetTy); 3351 if (Pred == FCmpInst::FCMP_TRUE) 3352 return getTrue(RetTy); 3353 3354 // Fold (un)ordered comparison if we can determine there are no NaNs. 3355 if (Pred == FCmpInst::FCMP_UNO || Pred == FCmpInst::FCMP_ORD) 3356 if (FMF.noNaNs() || 3357 (isKnownNeverNaN(LHS, Q.TLI) && isKnownNeverNaN(RHS, Q.TLI))) 3358 return ConstantInt::get(RetTy, Pred == FCmpInst::FCMP_ORD); 3359 3360 // NaN is unordered; NaN is not ordered. 3361 assert((FCmpInst::isOrdered(Pred) || FCmpInst::isUnordered(Pred)) && 3362 "Comparison must be either ordered or unordered"); 3363 if (match(RHS, m_NaN())) 3364 return ConstantInt::get(RetTy, CmpInst::isUnordered(Pred)); 3365 3366 // fcmp pred x, undef and fcmp pred undef, x 3367 // fold to true if unordered, false if ordered 3368 if (isa<UndefValue>(LHS) || isa<UndefValue>(RHS)) { 3369 // Choosing NaN for the undef will always make unordered comparison succeed 3370 // and ordered comparison fail. 3371 return ConstantInt::get(RetTy, CmpInst::isUnordered(Pred)); 3372 } 3373 3374 // fcmp x,x -> true/false. Not all compares are foldable. 3375 if (LHS == RHS) { 3376 if (CmpInst::isTrueWhenEqual(Pred)) 3377 return getTrue(RetTy); 3378 if (CmpInst::isFalseWhenEqual(Pred)) 3379 return getFalse(RetTy); 3380 } 3381 3382 // Handle fcmp with constant RHS. 3383 // TODO: Use match with a specific FP value, so these work with vectors with 3384 // undef lanes. 3385 const APFloat *C; 3386 if (match(RHS, m_APFloat(C))) { 3387 // Check whether the constant is an infinity. 3388 if (C->isInfinity()) { 3389 if (C->isNegative()) { 3390 switch (Pred) { 3391 case FCmpInst::FCMP_OLT: 3392 // No value is ordered and less than negative infinity. 3393 return getFalse(RetTy); 3394 case FCmpInst::FCMP_UGE: 3395 // All values are unordered with or at least negative infinity. 3396 return getTrue(RetTy); 3397 default: 3398 break; 3399 } 3400 } else { 3401 switch (Pred) { 3402 case FCmpInst::FCMP_OGT: 3403 // No value is ordered and greater than infinity. 3404 return getFalse(RetTy); 3405 case FCmpInst::FCMP_ULE: 3406 // All values are unordered with and at most infinity. 3407 return getTrue(RetTy); 3408 default: 3409 break; 3410 } 3411 } 3412 } 3413 if (C->isNegative() && !C->isNegZero()) { 3414 assert(!C->isNaN() && "Unexpected NaN constant!"); 3415 // TODO: We can catch more cases by using a range check rather than 3416 // relying on CannotBeOrderedLessThanZero. 3417 switch (Pred) { 3418 case FCmpInst::FCMP_UGE: 3419 case FCmpInst::FCMP_UGT: 3420 case FCmpInst::FCMP_UNE: 3421 // (X >= 0) implies (X > C) when (C < 0) 3422 if (CannotBeOrderedLessThanZero(LHS, Q.TLI)) 3423 return getTrue(RetTy); 3424 break; 3425 case FCmpInst::FCMP_OEQ: 3426 case FCmpInst::FCMP_OLE: 3427 case FCmpInst::FCMP_OLT: 3428 // (X >= 0) implies !(X < C) when (C < 0) 3429 if (CannotBeOrderedLessThanZero(LHS, Q.TLI)) 3430 return getFalse(RetTy); 3431 break; 3432 default: 3433 break; 3434 } 3435 } 3436 3437 // Check comparison of constant with minnum with smaller constant. 3438 // TODO: Add the related transform for maxnum. 3439 const APFloat *MinC; 3440 if (match(LHS, 3441 m_Intrinsic<Intrinsic::minnum>(m_Value(), m_APFloat(MinC))) && 3442 MinC->compare(*C) == APFloat::cmpLessThan) { 3443 // The 'less-than' relationship and minnum guarantee that we do not have 3444 // NaN constants, so ordered and unordered preds are handled the same. 3445 switch (Pred) { 3446 case FCmpInst::FCMP_OEQ: case FCmpInst::FCMP_UEQ: 3447 case FCmpInst::FCMP_OGE: case FCmpInst::FCMP_UGE: 3448 case FCmpInst::FCMP_OGT: case FCmpInst::FCMP_UGT: 3449 // minnum(X, LesserC) == C --> false 3450 // minnum(X, LesserC) >= C --> false 3451 // minnum(X, LesserC) > C --> false 3452 return getFalse(RetTy); 3453 case FCmpInst::FCMP_ONE: case FCmpInst::FCMP_UNE: 3454 case FCmpInst::FCMP_OLE: case FCmpInst::FCMP_ULE: 3455 case FCmpInst::FCMP_OLT: case FCmpInst::FCMP_ULT: 3456 // minnum(X, LesserC) != C --> true 3457 // minnum(X, LesserC) <= C --> true 3458 // minnum(X, LesserC) < C --> true 3459 return getTrue(RetTy); 3460 default: 3461 // TRUE/FALSE/ORD/UNO should be handled before this. 3462 llvm_unreachable("Unexpected fcmp predicate"); 3463 } 3464 } 3465 } 3466 3467 if (match(RHS, m_AnyZeroFP())) { 3468 switch (Pred) { 3469 case FCmpInst::FCMP_OGE: 3470 if (FMF.noNaNs() && CannotBeOrderedLessThanZero(LHS, Q.TLI)) 3471 return getTrue(RetTy); 3472 break; 3473 case FCmpInst::FCMP_UGE: 3474 if (CannotBeOrderedLessThanZero(LHS, Q.TLI)) 3475 return getTrue(RetTy); 3476 break; 3477 case FCmpInst::FCMP_ULT: 3478 if (FMF.noNaNs() && CannotBeOrderedLessThanZero(LHS, Q.TLI)) 3479 return getFalse(RetTy); 3480 break; 3481 case FCmpInst::FCMP_OLT: 3482 if (CannotBeOrderedLessThanZero(LHS, Q.TLI)) 3483 return getFalse(RetTy); 3484 break; 3485 default: 3486 break; 3487 } 3488 } 3489 3490 // If the comparison is with the result of a select instruction, check whether 3491 // comparing with either branch of the select always yields the same value. 3492 if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS)) 3493 if (Value *V = ThreadCmpOverSelect(Pred, LHS, RHS, Q, MaxRecurse)) 3494 return V; 3495 3496 // If the comparison is with the result of a phi instruction, check whether 3497 // doing the compare with each incoming phi value yields a common result. 3498 if (isa<PHINode>(LHS) || isa<PHINode>(RHS)) 3499 if (Value *V = ThreadCmpOverPHI(Pred, LHS, RHS, Q, MaxRecurse)) 3500 return V; 3501 3502 return nullptr; 3503 } 3504 3505 Value *llvm::SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS, 3506 FastMathFlags FMF, const SimplifyQuery &Q) { 3507 return ::SimplifyFCmpInst(Predicate, LHS, RHS, FMF, Q, RecursionLimit); 3508 } 3509 3510 /// See if V simplifies when its operand Op is replaced with RepOp. 3511 static const Value *SimplifyWithOpReplaced(Value *V, Value *Op, Value *RepOp, 3512 const SimplifyQuery &Q, 3513 unsigned MaxRecurse) { 3514 // Trivial replacement. 3515 if (V == Op) 3516 return RepOp; 3517 3518 // We cannot replace a constant, and shouldn't even try. 3519 if (isa<Constant>(Op)) 3520 return nullptr; 3521 3522 auto *I = dyn_cast<Instruction>(V); 3523 if (!I) 3524 return nullptr; 3525 3526 // If this is a binary operator, try to simplify it with the replaced op. 3527 if (auto *B = dyn_cast<BinaryOperator>(I)) { 3528 // Consider: 3529 // %cmp = icmp eq i32 %x, 2147483647 3530 // %add = add nsw i32 %x, 1 3531 // %sel = select i1 %cmp, i32 -2147483648, i32 %add 3532 // 3533 // We can't replace %sel with %add unless we strip away the flags. 3534 if (isa<OverflowingBinaryOperator>(B)) 3535 if (Q.IIQ.hasNoSignedWrap(B) || Q.IIQ.hasNoUnsignedWrap(B)) 3536 return nullptr; 3537 if (isa<PossiblyExactOperator>(B) && Q.IIQ.isExact(B)) 3538 return nullptr; 3539 3540 if (MaxRecurse) { 3541 if (B->getOperand(0) == Op) 3542 return SimplifyBinOp(B->getOpcode(), RepOp, B->getOperand(1), Q, 3543 MaxRecurse - 1); 3544 if (B->getOperand(1) == Op) 3545 return SimplifyBinOp(B->getOpcode(), B->getOperand(0), RepOp, Q, 3546 MaxRecurse - 1); 3547 } 3548 } 3549 3550 // Same for CmpInsts. 3551 if (CmpInst *C = dyn_cast<CmpInst>(I)) { 3552 if (MaxRecurse) { 3553 if (C->getOperand(0) == Op) 3554 return SimplifyCmpInst(C->getPredicate(), RepOp, C->getOperand(1), Q, 3555 MaxRecurse - 1); 3556 if (C->getOperand(1) == Op) 3557 return SimplifyCmpInst(C->getPredicate(), C->getOperand(0), RepOp, Q, 3558 MaxRecurse - 1); 3559 } 3560 } 3561 3562 // Same for GEPs. 3563 if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) { 3564 if (MaxRecurse) { 3565 SmallVector<Value *, 8> NewOps(GEP->getNumOperands()); 3566 transform(GEP->operands(), NewOps.begin(), 3567 [&](Value *V) { return V == Op ? RepOp : V; }); 3568 return SimplifyGEPInst(GEP->getSourceElementType(), NewOps, Q, 3569 MaxRecurse - 1); 3570 } 3571 } 3572 3573 // TODO: We could hand off more cases to instsimplify here. 3574 3575 // If all operands are constant after substituting Op for RepOp then we can 3576 // constant fold the instruction. 3577 if (Constant *CRepOp = dyn_cast<Constant>(RepOp)) { 3578 // Build a list of all constant operands. 3579 SmallVector<Constant *, 8> ConstOps; 3580 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 3581 if (I->getOperand(i) == Op) 3582 ConstOps.push_back(CRepOp); 3583 else if (Constant *COp = dyn_cast<Constant>(I->getOperand(i))) 3584 ConstOps.push_back(COp); 3585 else 3586 break; 3587 } 3588 3589 // All operands were constants, fold it. 3590 if (ConstOps.size() == I->getNumOperands()) { 3591 if (CmpInst *C = dyn_cast<CmpInst>(I)) 3592 return ConstantFoldCompareInstOperands(C->getPredicate(), ConstOps[0], 3593 ConstOps[1], Q.DL, Q.TLI); 3594 3595 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 3596 if (!LI->isVolatile()) 3597 return ConstantFoldLoadFromConstPtr(ConstOps[0], LI->getType(), Q.DL); 3598 3599 return ConstantFoldInstOperands(I, ConstOps, Q.DL, Q.TLI); 3600 } 3601 } 3602 3603 return nullptr; 3604 } 3605 3606 /// Try to simplify a select instruction when its condition operand is an 3607 /// integer comparison where one operand of the compare is a constant. 3608 static Value *simplifySelectBitTest(Value *TrueVal, Value *FalseVal, Value *X, 3609 const APInt *Y, bool TrueWhenUnset) { 3610 const APInt *C; 3611 3612 // (X & Y) == 0 ? X & ~Y : X --> X 3613 // (X & Y) != 0 ? X & ~Y : X --> X & ~Y 3614 if (FalseVal == X && match(TrueVal, m_And(m_Specific(X), m_APInt(C))) && 3615 *Y == ~*C) 3616 return TrueWhenUnset ? FalseVal : TrueVal; 3617 3618 // (X & Y) == 0 ? X : X & ~Y --> X & ~Y 3619 // (X & Y) != 0 ? X : X & ~Y --> X 3620 if (TrueVal == X && match(FalseVal, m_And(m_Specific(X), m_APInt(C))) && 3621 *Y == ~*C) 3622 return TrueWhenUnset ? FalseVal : TrueVal; 3623 3624 if (Y->isPowerOf2()) { 3625 // (X & Y) == 0 ? X | Y : X --> X | Y 3626 // (X & Y) != 0 ? X | Y : X --> X 3627 if (FalseVal == X && match(TrueVal, m_Or(m_Specific(X), m_APInt(C))) && 3628 *Y == *C) 3629 return TrueWhenUnset ? TrueVal : FalseVal; 3630 3631 // (X & Y) == 0 ? X : X | Y --> X 3632 // (X & Y) != 0 ? X : X | Y --> X | Y 3633 if (TrueVal == X && match(FalseVal, m_Or(m_Specific(X), m_APInt(C))) && 3634 *Y == *C) 3635 return TrueWhenUnset ? TrueVal : FalseVal; 3636 } 3637 3638 return nullptr; 3639 } 3640 3641 /// An alternative way to test if a bit is set or not uses sgt/slt instead of 3642 /// eq/ne. 3643 static Value *simplifySelectWithFakeICmpEq(Value *CmpLHS, Value *CmpRHS, 3644 ICmpInst::Predicate Pred, 3645 Value *TrueVal, Value *FalseVal) { 3646 Value *X; 3647 APInt Mask; 3648 if (!decomposeBitTestICmp(CmpLHS, CmpRHS, Pred, X, Mask)) 3649 return nullptr; 3650 3651 return simplifySelectBitTest(TrueVal, FalseVal, X, &Mask, 3652 Pred == ICmpInst::ICMP_EQ); 3653 } 3654 3655 /// Try to simplify a select instruction when its condition operand is an 3656 /// integer comparison. 3657 static Value *simplifySelectWithICmpCond(Value *CondVal, Value *TrueVal, 3658 Value *FalseVal, const SimplifyQuery &Q, 3659 unsigned MaxRecurse) { 3660 ICmpInst::Predicate Pred; 3661 Value *CmpLHS, *CmpRHS; 3662 if (!match(CondVal, m_ICmp(Pred, m_Value(CmpLHS), m_Value(CmpRHS)))) 3663 return nullptr; 3664 3665 if (ICmpInst::isEquality(Pred) && match(CmpRHS, m_Zero())) { 3666 Value *X; 3667 const APInt *Y; 3668 if (match(CmpLHS, m_And(m_Value(X), m_APInt(Y)))) 3669 if (Value *V = simplifySelectBitTest(TrueVal, FalseVal, X, Y, 3670 Pred == ICmpInst::ICMP_EQ)) 3671 return V; 3672 3673 // Test for a bogus zero-shift-guard-op around funnel-shift or rotate. 3674 Value *ShAmt; 3675 auto isFsh = m_CombineOr(m_Intrinsic<Intrinsic::fshl>(m_Value(X), m_Value(), 3676 m_Value(ShAmt)), 3677 m_Intrinsic<Intrinsic::fshr>(m_Value(), m_Value(X), 3678 m_Value(ShAmt))); 3679 // (ShAmt == 0) ? fshl(X, *, ShAmt) : X --> X 3680 // (ShAmt == 0) ? fshr(*, X, ShAmt) : X --> X 3681 if (match(TrueVal, isFsh) && FalseVal == X && CmpLHS == ShAmt && 3682 Pred == ICmpInst::ICMP_EQ) 3683 return X; 3684 // (ShAmt != 0) ? X : fshl(X, *, ShAmt) --> X 3685 // (ShAmt != 0) ? X : fshr(*, X, ShAmt) --> X 3686 if (match(FalseVal, isFsh) && TrueVal == X && CmpLHS == ShAmt && 3687 Pred == ICmpInst::ICMP_NE) 3688 return X; 3689 3690 // Test for a zero-shift-guard-op around rotates. These are used to 3691 // avoid UB from oversized shifts in raw IR rotate patterns, but the 3692 // intrinsics do not have that problem. 3693 // We do not allow this transform for the general funnel shift case because 3694 // that would not preserve the poison safety of the original code. 3695 auto isRotate = m_CombineOr(m_Intrinsic<Intrinsic::fshl>(m_Value(X), 3696 m_Deferred(X), 3697 m_Value(ShAmt)), 3698 m_Intrinsic<Intrinsic::fshr>(m_Value(X), 3699 m_Deferred(X), 3700 m_Value(ShAmt))); 3701 // (ShAmt != 0) ? fshl(X, X, ShAmt) : X --> fshl(X, X, ShAmt) 3702 // (ShAmt != 0) ? fshr(X, X, ShAmt) : X --> fshr(X, X, ShAmt) 3703 if (match(TrueVal, isRotate) && FalseVal == X && CmpLHS == ShAmt && 3704 Pred == ICmpInst::ICMP_NE) 3705 return TrueVal; 3706 // (ShAmt == 0) ? X : fshl(X, X, ShAmt) --> fshl(X, X, ShAmt) 3707 // (ShAmt == 0) ? X : fshr(X, X, ShAmt) --> fshr(X, X, ShAmt) 3708 if (match(FalseVal, isRotate) && TrueVal == X && CmpLHS == ShAmt && 3709 Pred == ICmpInst::ICMP_EQ) 3710 return FalseVal; 3711 } 3712 3713 // Check for other compares that behave like bit test. 3714 if (Value *V = simplifySelectWithFakeICmpEq(CmpLHS, CmpRHS, Pred, 3715 TrueVal, FalseVal)) 3716 return V; 3717 3718 // If we have an equality comparison, then we know the value in one of the 3719 // arms of the select. See if substituting this value into the arm and 3720 // simplifying the result yields the same value as the other arm. 3721 if (Pred == ICmpInst::ICMP_EQ) { 3722 if (SimplifyWithOpReplaced(FalseVal, CmpLHS, CmpRHS, Q, MaxRecurse) == 3723 TrueVal || 3724 SimplifyWithOpReplaced(FalseVal, CmpRHS, CmpLHS, Q, MaxRecurse) == 3725 TrueVal) 3726 return FalseVal; 3727 if (SimplifyWithOpReplaced(TrueVal, CmpLHS, CmpRHS, Q, MaxRecurse) == 3728 FalseVal || 3729 SimplifyWithOpReplaced(TrueVal, CmpRHS, CmpLHS, Q, MaxRecurse) == 3730 FalseVal) 3731 return FalseVal; 3732 } else if (Pred == ICmpInst::ICMP_NE) { 3733 if (SimplifyWithOpReplaced(TrueVal, CmpLHS, CmpRHS, Q, MaxRecurse) == 3734 FalseVal || 3735 SimplifyWithOpReplaced(TrueVal, CmpRHS, CmpLHS, Q, MaxRecurse) == 3736 FalseVal) 3737 return TrueVal; 3738 if (SimplifyWithOpReplaced(FalseVal, CmpLHS, CmpRHS, Q, MaxRecurse) == 3739 TrueVal || 3740 SimplifyWithOpReplaced(FalseVal, CmpRHS, CmpLHS, Q, MaxRecurse) == 3741 TrueVal) 3742 return TrueVal; 3743 } 3744 3745 return nullptr; 3746 } 3747 3748 /// Try to simplify a select instruction when its condition operand is a 3749 /// floating-point comparison. 3750 static Value *simplifySelectWithFCmp(Value *Cond, Value *T, Value *F) { 3751 FCmpInst::Predicate Pred; 3752 if (!match(Cond, m_FCmp(Pred, m_Specific(T), m_Specific(F))) && 3753 !match(Cond, m_FCmp(Pred, m_Specific(F), m_Specific(T)))) 3754 return nullptr; 3755 3756 // TODO: The transform may not be valid with -0.0. An incomplete way of 3757 // testing for that possibility is to check if at least one operand is a 3758 // non-zero constant. 3759 const APFloat *C; 3760 if ((match(T, m_APFloat(C)) && C->isNonZero()) || 3761 (match(F, m_APFloat(C)) && C->isNonZero())) { 3762 // (T == F) ? T : F --> F 3763 // (F == T) ? T : F --> F 3764 if (Pred == FCmpInst::FCMP_OEQ) 3765 return F; 3766 3767 // (T != F) ? T : F --> T 3768 // (F != T) ? T : F --> T 3769 if (Pred == FCmpInst::FCMP_UNE) 3770 return T; 3771 } 3772 3773 return nullptr; 3774 } 3775 3776 /// Given operands for a SelectInst, see if we can fold the result. 3777 /// If not, this returns null. 3778 static Value *SimplifySelectInst(Value *Cond, Value *TrueVal, Value *FalseVal, 3779 const SimplifyQuery &Q, unsigned MaxRecurse) { 3780 if (auto *CondC = dyn_cast<Constant>(Cond)) { 3781 if (auto *TrueC = dyn_cast<Constant>(TrueVal)) 3782 if (auto *FalseC = dyn_cast<Constant>(FalseVal)) 3783 return ConstantFoldSelectInstruction(CondC, TrueC, FalseC); 3784 3785 // select undef, X, Y -> X or Y 3786 if (isa<UndefValue>(CondC)) 3787 return isa<Constant>(FalseVal) ? FalseVal : TrueVal; 3788 3789 // TODO: Vector constants with undef elements don't simplify. 3790 3791 // select true, X, Y -> X 3792 if (CondC->isAllOnesValue()) 3793 return TrueVal; 3794 // select false, X, Y -> Y 3795 if (CondC->isNullValue()) 3796 return FalseVal; 3797 } 3798 3799 // select ?, X, X -> X 3800 if (TrueVal == FalseVal) 3801 return TrueVal; 3802 3803 if (isa<UndefValue>(TrueVal)) // select ?, undef, X -> X 3804 return FalseVal; 3805 if (isa<UndefValue>(FalseVal)) // select ?, X, undef -> X 3806 return TrueVal; 3807 3808 if (Value *V = 3809 simplifySelectWithICmpCond(Cond, TrueVal, FalseVal, Q, MaxRecurse)) 3810 return V; 3811 3812 if (Value *V = simplifySelectWithFCmp(Cond, TrueVal, FalseVal)) 3813 return V; 3814 3815 if (Value *V = foldSelectWithBinaryOp(Cond, TrueVal, FalseVal)) 3816 return V; 3817 3818 Optional<bool> Imp = isImpliedByDomCondition(Cond, Q.CxtI, Q.DL); 3819 if (Imp) 3820 return *Imp ? TrueVal : FalseVal; 3821 3822 return nullptr; 3823 } 3824 3825 Value *llvm::SimplifySelectInst(Value *Cond, Value *TrueVal, Value *FalseVal, 3826 const SimplifyQuery &Q) { 3827 return ::SimplifySelectInst(Cond, TrueVal, FalseVal, Q, RecursionLimit); 3828 } 3829 3830 /// Given operands for an GetElementPtrInst, see if we can fold the result. 3831 /// If not, this returns null. 3832 static Value *SimplifyGEPInst(Type *SrcTy, ArrayRef<Value *> Ops, 3833 const SimplifyQuery &Q, unsigned) { 3834 // The type of the GEP pointer operand. 3835 unsigned AS = 3836 cast<PointerType>(Ops[0]->getType()->getScalarType())->getAddressSpace(); 3837 3838 // getelementptr P -> P. 3839 if (Ops.size() == 1) 3840 return Ops[0]; 3841 3842 // Compute the (pointer) type returned by the GEP instruction. 3843 Type *LastType = GetElementPtrInst::getIndexedType(SrcTy, Ops.slice(1)); 3844 Type *GEPTy = PointerType::get(LastType, AS); 3845 if (VectorType *VT = dyn_cast<VectorType>(Ops[0]->getType())) 3846 GEPTy = VectorType::get(GEPTy, VT->getNumElements()); 3847 else if (VectorType *VT = dyn_cast<VectorType>(Ops[1]->getType())) 3848 GEPTy = VectorType::get(GEPTy, VT->getNumElements()); 3849 3850 if (isa<UndefValue>(Ops[0])) 3851 return UndefValue::get(GEPTy); 3852 3853 if (Ops.size() == 2) { 3854 // getelementptr P, 0 -> P. 3855 if (match(Ops[1], m_Zero()) && Ops[0]->getType() == GEPTy) 3856 return Ops[0]; 3857 3858 Type *Ty = SrcTy; 3859 if (Ty->isSized()) { 3860 Value *P; 3861 uint64_t C; 3862 uint64_t TyAllocSize = Q.DL.getTypeAllocSize(Ty); 3863 // getelementptr P, N -> P if P points to a type of zero size. 3864 if (TyAllocSize == 0 && Ops[0]->getType() == GEPTy) 3865 return Ops[0]; 3866 3867 // The following transforms are only safe if the ptrtoint cast 3868 // doesn't truncate the pointers. 3869 if (Ops[1]->getType()->getScalarSizeInBits() == 3870 Q.DL.getIndexSizeInBits(AS)) { 3871 auto PtrToIntOrZero = [GEPTy](Value *P) -> Value * { 3872 if (match(P, m_Zero())) 3873 return Constant::getNullValue(GEPTy); 3874 Value *Temp; 3875 if (match(P, m_PtrToInt(m_Value(Temp)))) 3876 if (Temp->getType() == GEPTy) 3877 return Temp; 3878 return nullptr; 3879 }; 3880 3881 // getelementptr V, (sub P, V) -> P if P points to a type of size 1. 3882 if (TyAllocSize == 1 && 3883 match(Ops[1], m_Sub(m_Value(P), m_PtrToInt(m_Specific(Ops[0]))))) 3884 if (Value *R = PtrToIntOrZero(P)) 3885 return R; 3886 3887 // getelementptr V, (ashr (sub P, V), C) -> Q 3888 // if P points to a type of size 1 << C. 3889 if (match(Ops[1], 3890 m_AShr(m_Sub(m_Value(P), m_PtrToInt(m_Specific(Ops[0]))), 3891 m_ConstantInt(C))) && 3892 TyAllocSize == 1ULL << C) 3893 if (Value *R = PtrToIntOrZero(P)) 3894 return R; 3895 3896 // getelementptr V, (sdiv (sub P, V), C) -> Q 3897 // if P points to a type of size C. 3898 if (match(Ops[1], 3899 m_SDiv(m_Sub(m_Value(P), m_PtrToInt(m_Specific(Ops[0]))), 3900 m_SpecificInt(TyAllocSize)))) 3901 if (Value *R = PtrToIntOrZero(P)) 3902 return R; 3903 } 3904 } 3905 } 3906 3907 if (Q.DL.getTypeAllocSize(LastType) == 1 && 3908 all_of(Ops.slice(1).drop_back(1), 3909 [](Value *Idx) { return match(Idx, m_Zero()); })) { 3910 unsigned IdxWidth = 3911 Q.DL.getIndexSizeInBits(Ops[0]->getType()->getPointerAddressSpace()); 3912 if (Q.DL.getTypeSizeInBits(Ops.back()->getType()) == IdxWidth) { 3913 APInt BasePtrOffset(IdxWidth, 0); 3914 Value *StrippedBasePtr = 3915 Ops[0]->stripAndAccumulateInBoundsConstantOffsets(Q.DL, 3916 BasePtrOffset); 3917 3918 // gep (gep V, C), (sub 0, V) -> C 3919 if (match(Ops.back(), 3920 m_Sub(m_Zero(), m_PtrToInt(m_Specific(StrippedBasePtr))))) { 3921 auto *CI = ConstantInt::get(GEPTy->getContext(), BasePtrOffset); 3922 return ConstantExpr::getIntToPtr(CI, GEPTy); 3923 } 3924 // gep (gep V, C), (xor V, -1) -> C-1 3925 if (match(Ops.back(), 3926 m_Xor(m_PtrToInt(m_Specific(StrippedBasePtr)), m_AllOnes()))) { 3927 auto *CI = ConstantInt::get(GEPTy->getContext(), BasePtrOffset - 1); 3928 return ConstantExpr::getIntToPtr(CI, GEPTy); 3929 } 3930 } 3931 } 3932 3933 // Check to see if this is constant foldable. 3934 if (!all_of(Ops, [](Value *V) { return isa<Constant>(V); })) 3935 return nullptr; 3936 3937 auto *CE = ConstantExpr::getGetElementPtr(SrcTy, cast<Constant>(Ops[0]), 3938 Ops.slice(1)); 3939 if (auto *CEFolded = ConstantFoldConstant(CE, Q.DL)) 3940 return CEFolded; 3941 return CE; 3942 } 3943 3944 Value *llvm::SimplifyGEPInst(Type *SrcTy, ArrayRef<Value *> Ops, 3945 const SimplifyQuery &Q) { 3946 return ::SimplifyGEPInst(SrcTy, Ops, Q, RecursionLimit); 3947 } 3948 3949 /// Given operands for an InsertValueInst, see if we can fold the result. 3950 /// If not, this returns null. 3951 static Value *SimplifyInsertValueInst(Value *Agg, Value *Val, 3952 ArrayRef<unsigned> Idxs, const SimplifyQuery &Q, 3953 unsigned) { 3954 if (Constant *CAgg = dyn_cast<Constant>(Agg)) 3955 if (Constant *CVal = dyn_cast<Constant>(Val)) 3956 return ConstantFoldInsertValueInstruction(CAgg, CVal, Idxs); 3957 3958 // insertvalue x, undef, n -> x 3959 if (match(Val, m_Undef())) 3960 return Agg; 3961 3962 // insertvalue x, (extractvalue y, n), n 3963 if (ExtractValueInst *EV = dyn_cast<ExtractValueInst>(Val)) 3964 if (EV->getAggregateOperand()->getType() == Agg->getType() && 3965 EV->getIndices() == Idxs) { 3966 // insertvalue undef, (extractvalue y, n), n -> y 3967 if (match(Agg, m_Undef())) 3968 return EV->getAggregateOperand(); 3969 3970 // insertvalue y, (extractvalue y, n), n -> y 3971 if (Agg == EV->getAggregateOperand()) 3972 return Agg; 3973 } 3974 3975 return nullptr; 3976 } 3977 3978 Value *llvm::SimplifyInsertValueInst(Value *Agg, Value *Val, 3979 ArrayRef<unsigned> Idxs, 3980 const SimplifyQuery &Q) { 3981 return ::SimplifyInsertValueInst(Agg, Val, Idxs, Q, RecursionLimit); 3982 } 3983 3984 Value *llvm::SimplifyInsertElementInst(Value *Vec, Value *Val, Value *Idx, 3985 const SimplifyQuery &Q) { 3986 // Try to constant fold. 3987 auto *VecC = dyn_cast<Constant>(Vec); 3988 auto *ValC = dyn_cast<Constant>(Val); 3989 auto *IdxC = dyn_cast<Constant>(Idx); 3990 if (VecC && ValC && IdxC) 3991 return ConstantFoldInsertElementInstruction(VecC, ValC, IdxC); 3992 3993 // Fold into undef if index is out of bounds. 3994 if (auto *CI = dyn_cast<ConstantInt>(Idx)) { 3995 uint64_t NumElements = cast<VectorType>(Vec->getType())->getNumElements(); 3996 if (CI->uge(NumElements)) 3997 return UndefValue::get(Vec->getType()); 3998 } 3999 4000 // If index is undef, it might be out of bounds (see above case) 4001 if (isa<UndefValue>(Idx)) 4002 return UndefValue::get(Vec->getType()); 4003 4004 return nullptr; 4005 } 4006 4007 /// Given operands for an ExtractValueInst, see if we can fold the result. 4008 /// If not, this returns null. 4009 static Value *SimplifyExtractValueInst(Value *Agg, ArrayRef<unsigned> Idxs, 4010 const SimplifyQuery &, unsigned) { 4011 if (auto *CAgg = dyn_cast<Constant>(Agg)) 4012 return ConstantFoldExtractValueInstruction(CAgg, Idxs); 4013 4014 // extractvalue x, (insertvalue y, elt, n), n -> elt 4015 unsigned NumIdxs = Idxs.size(); 4016 for (auto *IVI = dyn_cast<InsertValueInst>(Agg); IVI != nullptr; 4017 IVI = dyn_cast<InsertValueInst>(IVI->getAggregateOperand())) { 4018 ArrayRef<unsigned> InsertValueIdxs = IVI->getIndices(); 4019 unsigned NumInsertValueIdxs = InsertValueIdxs.size(); 4020 unsigned NumCommonIdxs = std::min(NumInsertValueIdxs, NumIdxs); 4021 if (InsertValueIdxs.slice(0, NumCommonIdxs) == 4022 Idxs.slice(0, NumCommonIdxs)) { 4023 if (NumIdxs == NumInsertValueIdxs) 4024 return IVI->getInsertedValueOperand(); 4025 break; 4026 } 4027 } 4028 4029 return nullptr; 4030 } 4031 4032 Value *llvm::SimplifyExtractValueInst(Value *Agg, ArrayRef<unsigned> Idxs, 4033 const SimplifyQuery &Q) { 4034 return ::SimplifyExtractValueInst(Agg, Idxs, Q, RecursionLimit); 4035 } 4036 4037 /// Given operands for an ExtractElementInst, see if we can fold the result. 4038 /// If not, this returns null. 4039 static Value *SimplifyExtractElementInst(Value *Vec, Value *Idx, const SimplifyQuery &, 4040 unsigned) { 4041 if (auto *CVec = dyn_cast<Constant>(Vec)) { 4042 if (auto *CIdx = dyn_cast<Constant>(Idx)) 4043 return ConstantFoldExtractElementInstruction(CVec, CIdx); 4044 4045 // The index is not relevant if our vector is a splat. 4046 if (auto *Splat = CVec->getSplatValue()) 4047 return Splat; 4048 4049 if (isa<UndefValue>(Vec)) 4050 return UndefValue::get(Vec->getType()->getVectorElementType()); 4051 } 4052 4053 // If extracting a specified index from the vector, see if we can recursively 4054 // find a previously computed scalar that was inserted into the vector. 4055 if (auto *IdxC = dyn_cast<ConstantInt>(Idx)) { 4056 if (IdxC->getValue().uge(Vec->getType()->getVectorNumElements())) 4057 // definitely out of bounds, thus undefined result 4058 return UndefValue::get(Vec->getType()->getVectorElementType()); 4059 if (Value *Elt = findScalarElement(Vec, IdxC->getZExtValue())) 4060 return Elt; 4061 } 4062 4063 // An undef extract index can be arbitrarily chosen to be an out-of-range 4064 // index value, which would result in the instruction being undef. 4065 if (isa<UndefValue>(Idx)) 4066 return UndefValue::get(Vec->getType()->getVectorElementType()); 4067 4068 return nullptr; 4069 } 4070 4071 Value *llvm::SimplifyExtractElementInst(Value *Vec, Value *Idx, 4072 const SimplifyQuery &Q) { 4073 return ::SimplifyExtractElementInst(Vec, Idx, Q, RecursionLimit); 4074 } 4075 4076 /// See if we can fold the given phi. If not, returns null. 4077 static Value *SimplifyPHINode(PHINode *PN, const SimplifyQuery &Q) { 4078 // If all of the PHI's incoming values are the same then replace the PHI node 4079 // with the common value. 4080 Value *CommonValue = nullptr; 4081 bool HasUndefInput = false; 4082 for (Value *Incoming : PN->incoming_values()) { 4083 // If the incoming value is the phi node itself, it can safely be skipped. 4084 if (Incoming == PN) continue; 4085 if (isa<UndefValue>(Incoming)) { 4086 // Remember that we saw an undef value, but otherwise ignore them. 4087 HasUndefInput = true; 4088 continue; 4089 } 4090 if (CommonValue && Incoming != CommonValue) 4091 return nullptr; // Not the same, bail out. 4092 CommonValue = Incoming; 4093 } 4094 4095 // If CommonValue is null then all of the incoming values were either undef or 4096 // equal to the phi node itself. 4097 if (!CommonValue) 4098 return UndefValue::get(PN->getType()); 4099 4100 // If we have a PHI node like phi(X, undef, X), where X is defined by some 4101 // instruction, we cannot return X as the result of the PHI node unless it 4102 // dominates the PHI block. 4103 if (HasUndefInput) 4104 return valueDominatesPHI(CommonValue, PN, Q.DT) ? CommonValue : nullptr; 4105 4106 return CommonValue; 4107 } 4108 4109 static Value *SimplifyCastInst(unsigned CastOpc, Value *Op, 4110 Type *Ty, const SimplifyQuery &Q, unsigned MaxRecurse) { 4111 if (auto *C = dyn_cast<Constant>(Op)) 4112 return ConstantFoldCastOperand(CastOpc, C, Ty, Q.DL); 4113 4114 if (auto *CI = dyn_cast<CastInst>(Op)) { 4115 auto *Src = CI->getOperand(0); 4116 Type *SrcTy = Src->getType(); 4117 Type *MidTy = CI->getType(); 4118 Type *DstTy = Ty; 4119 if (Src->getType() == Ty) { 4120 auto FirstOp = static_cast<Instruction::CastOps>(CI->getOpcode()); 4121 auto SecondOp = static_cast<Instruction::CastOps>(CastOpc); 4122 Type *SrcIntPtrTy = 4123 SrcTy->isPtrOrPtrVectorTy() ? Q.DL.getIntPtrType(SrcTy) : nullptr; 4124 Type *MidIntPtrTy = 4125 MidTy->isPtrOrPtrVectorTy() ? Q.DL.getIntPtrType(MidTy) : nullptr; 4126 Type *DstIntPtrTy = 4127 DstTy->isPtrOrPtrVectorTy() ? Q.DL.getIntPtrType(DstTy) : nullptr; 4128 if (CastInst::isEliminableCastPair(FirstOp, SecondOp, SrcTy, MidTy, DstTy, 4129 SrcIntPtrTy, MidIntPtrTy, 4130 DstIntPtrTy) == Instruction::BitCast) 4131 return Src; 4132 } 4133 } 4134 4135 // bitcast x -> x 4136 if (CastOpc == Instruction::BitCast) 4137 if (Op->getType() == Ty) 4138 return Op; 4139 4140 return nullptr; 4141 } 4142 4143 Value *llvm::SimplifyCastInst(unsigned CastOpc, Value *Op, Type *Ty, 4144 const SimplifyQuery &Q) { 4145 return ::SimplifyCastInst(CastOpc, Op, Ty, Q, RecursionLimit); 4146 } 4147 4148 /// For the given destination element of a shuffle, peek through shuffles to 4149 /// match a root vector source operand that contains that element in the same 4150 /// vector lane (ie, the same mask index), so we can eliminate the shuffle(s). 4151 static Value *foldIdentityShuffles(int DestElt, Value *Op0, Value *Op1, 4152 int MaskVal, Value *RootVec, 4153 unsigned MaxRecurse) { 4154 if (!MaxRecurse--) 4155 return nullptr; 4156 4157 // Bail out if any mask value is undefined. That kind of shuffle may be 4158 // simplified further based on demanded bits or other folds. 4159 if (MaskVal == -1) 4160 return nullptr; 4161 4162 // The mask value chooses which source operand we need to look at next. 4163 int InVecNumElts = Op0->getType()->getVectorNumElements(); 4164 int RootElt = MaskVal; 4165 Value *SourceOp = Op0; 4166 if (MaskVal >= InVecNumElts) { 4167 RootElt = MaskVal - InVecNumElts; 4168 SourceOp = Op1; 4169 } 4170 4171 // If the source operand is a shuffle itself, look through it to find the 4172 // matching root vector. 4173 if (auto *SourceShuf = dyn_cast<ShuffleVectorInst>(SourceOp)) { 4174 return foldIdentityShuffles( 4175 DestElt, SourceShuf->getOperand(0), SourceShuf->getOperand(1), 4176 SourceShuf->getMaskValue(RootElt), RootVec, MaxRecurse); 4177 } 4178 4179 // TODO: Look through bitcasts? What if the bitcast changes the vector element 4180 // size? 4181 4182 // The source operand is not a shuffle. Initialize the root vector value for 4183 // this shuffle if that has not been done yet. 4184 if (!RootVec) 4185 RootVec = SourceOp; 4186 4187 // Give up as soon as a source operand does not match the existing root value. 4188 if (RootVec != SourceOp) 4189 return nullptr; 4190 4191 // The element must be coming from the same lane in the source vector 4192 // (although it may have crossed lanes in intermediate shuffles). 4193 if (RootElt != DestElt) 4194 return nullptr; 4195 4196 return RootVec; 4197 } 4198 4199 static Value *SimplifyShuffleVectorInst(Value *Op0, Value *Op1, Constant *Mask, 4200 Type *RetTy, const SimplifyQuery &Q, 4201 unsigned MaxRecurse) { 4202 if (isa<UndefValue>(Mask)) 4203 return UndefValue::get(RetTy); 4204 4205 Type *InVecTy = Op0->getType(); 4206 unsigned MaskNumElts = Mask->getType()->getVectorNumElements(); 4207 unsigned InVecNumElts = InVecTy->getVectorNumElements(); 4208 4209 SmallVector<int, 32> Indices; 4210 ShuffleVectorInst::getShuffleMask(Mask, Indices); 4211 assert(MaskNumElts == Indices.size() && 4212 "Size of Indices not same as number of mask elements?"); 4213 4214 // Canonicalization: If mask does not select elements from an input vector, 4215 // replace that input vector with undef. 4216 bool MaskSelects0 = false, MaskSelects1 = false; 4217 for (unsigned i = 0; i != MaskNumElts; ++i) { 4218 if (Indices[i] == -1) 4219 continue; 4220 if ((unsigned)Indices[i] < InVecNumElts) 4221 MaskSelects0 = true; 4222 else 4223 MaskSelects1 = true; 4224 } 4225 if (!MaskSelects0) 4226 Op0 = UndefValue::get(InVecTy); 4227 if (!MaskSelects1) 4228 Op1 = UndefValue::get(InVecTy); 4229 4230 auto *Op0Const = dyn_cast<Constant>(Op0); 4231 auto *Op1Const = dyn_cast<Constant>(Op1); 4232 4233 // If all operands are constant, constant fold the shuffle. 4234 if (Op0Const && Op1Const) 4235 return ConstantFoldShuffleVectorInstruction(Op0Const, Op1Const, Mask); 4236 4237 // Canonicalization: if only one input vector is constant, it shall be the 4238 // second one. 4239 if (Op0Const && !Op1Const) { 4240 std::swap(Op0, Op1); 4241 ShuffleVectorInst::commuteShuffleMask(Indices, InVecNumElts); 4242 } 4243 4244 // A shuffle of a splat is always the splat itself. Legal if the shuffle's 4245 // value type is same as the input vectors' type. 4246 if (auto *OpShuf = dyn_cast<ShuffleVectorInst>(Op0)) 4247 if (isa<UndefValue>(Op1) && RetTy == InVecTy && 4248 OpShuf->getMask()->getSplatValue()) 4249 return Op0; 4250 4251 // Don't fold a shuffle with undef mask elements. This may get folded in a 4252 // better way using demanded bits or other analysis. 4253 // TODO: Should we allow this? 4254 if (find(Indices, -1) != Indices.end()) 4255 return nullptr; 4256 4257 // Check if every element of this shuffle can be mapped back to the 4258 // corresponding element of a single root vector. If so, we don't need this 4259 // shuffle. This handles simple identity shuffles as well as chains of 4260 // shuffles that may widen/narrow and/or move elements across lanes and back. 4261 Value *RootVec = nullptr; 4262 for (unsigned i = 0; i != MaskNumElts; ++i) { 4263 // Note that recursion is limited for each vector element, so if any element 4264 // exceeds the limit, this will fail to simplify. 4265 RootVec = 4266 foldIdentityShuffles(i, Op0, Op1, Indices[i], RootVec, MaxRecurse); 4267 4268 // We can't replace a widening/narrowing shuffle with one of its operands. 4269 if (!RootVec || RootVec->getType() != RetTy) 4270 return nullptr; 4271 } 4272 return RootVec; 4273 } 4274 4275 /// Given operands for a ShuffleVectorInst, fold the result or return null. 4276 Value *llvm::SimplifyShuffleVectorInst(Value *Op0, Value *Op1, Constant *Mask, 4277 Type *RetTy, const SimplifyQuery &Q) { 4278 return ::SimplifyShuffleVectorInst(Op0, Op1, Mask, RetTy, Q, RecursionLimit); 4279 } 4280 4281 static Constant *foldConstant(Instruction::UnaryOps Opcode, 4282 Value *&Op, const SimplifyQuery &Q) { 4283 if (auto *C = dyn_cast<Constant>(Op)) 4284 return ConstantFoldUnaryOpOperand(Opcode, C, Q.DL); 4285 return nullptr; 4286 } 4287 4288 /// Given the operand for an FNeg, see if we can fold the result. If not, this 4289 /// returns null. 4290 static Value *simplifyFNegInst(Value *Op, FastMathFlags FMF, 4291 const SimplifyQuery &Q, unsigned MaxRecurse) { 4292 if (Constant *C = foldConstant(Instruction::FNeg, Op, Q)) 4293 return C; 4294 4295 Value *X; 4296 // fneg (fneg X) ==> X 4297 if (match(Op, m_FNeg(m_Value(X)))) 4298 return X; 4299 4300 return nullptr; 4301 } 4302 4303 Value *llvm::SimplifyFNegInst(Value *Op, FastMathFlags FMF, 4304 const SimplifyQuery &Q) { 4305 return ::simplifyFNegInst(Op, FMF, Q, RecursionLimit); 4306 } 4307 4308 static Constant *propagateNaN(Constant *In) { 4309 // If the input is a vector with undef elements, just return a default NaN. 4310 if (!In->isNaN()) 4311 return ConstantFP::getNaN(In->getType()); 4312 4313 // Propagate the existing NaN constant when possible. 4314 // TODO: Should we quiet a signaling NaN? 4315 return In; 4316 } 4317 4318 static Constant *simplifyFPBinop(Value *Op0, Value *Op1) { 4319 if (isa<UndefValue>(Op0) || isa<UndefValue>(Op1)) 4320 return ConstantFP::getNaN(Op0->getType()); 4321 4322 if (match(Op0, m_NaN())) 4323 return propagateNaN(cast<Constant>(Op0)); 4324 if (match(Op1, m_NaN())) 4325 return propagateNaN(cast<Constant>(Op1)); 4326 4327 return nullptr; 4328 } 4329 4330 /// Given operands for an FAdd, see if we can fold the result. If not, this 4331 /// returns null. 4332 static Value *SimplifyFAddInst(Value *Op0, Value *Op1, FastMathFlags FMF, 4333 const SimplifyQuery &Q, unsigned MaxRecurse) { 4334 if (Constant *C = foldOrCommuteConstant(Instruction::FAdd, Op0, Op1, Q)) 4335 return C; 4336 4337 if (Constant *C = simplifyFPBinop(Op0, Op1)) 4338 return C; 4339 4340 // fadd X, -0 ==> X 4341 if (match(Op1, m_NegZeroFP())) 4342 return Op0; 4343 4344 // fadd X, 0 ==> X, when we know X is not -0 4345 if (match(Op1, m_PosZeroFP()) && 4346 (FMF.noSignedZeros() || CannotBeNegativeZero(Op0, Q.TLI))) 4347 return Op0; 4348 4349 // With nnan: -X + X --> 0.0 (and commuted variant) 4350 // We don't have to explicitly exclude infinities (ninf): INF + -INF == NaN. 4351 // Negative zeros are allowed because we always end up with positive zero: 4352 // X = -0.0: (-0.0 - (-0.0)) + (-0.0) == ( 0.0) + (-0.0) == 0.0 4353 // X = -0.0: ( 0.0 - (-0.0)) + (-0.0) == ( 0.0) + (-0.0) == 0.0 4354 // X = 0.0: (-0.0 - ( 0.0)) + ( 0.0) == (-0.0) + ( 0.0) == 0.0 4355 // X = 0.0: ( 0.0 - ( 0.0)) + ( 0.0) == ( 0.0) + ( 0.0) == 0.0 4356 if (FMF.noNaNs()) { 4357 if (match(Op0, m_FSub(m_AnyZeroFP(), m_Specific(Op1))) || 4358 match(Op1, m_FSub(m_AnyZeroFP(), m_Specific(Op0)))) 4359 return ConstantFP::getNullValue(Op0->getType()); 4360 4361 if (match(Op0, m_FNeg(m_Specific(Op1))) || 4362 match(Op1, m_FNeg(m_Specific(Op0)))) 4363 return ConstantFP::getNullValue(Op0->getType()); 4364 } 4365 4366 // (X - Y) + Y --> X 4367 // Y + (X - Y) --> X 4368 Value *X; 4369 if (FMF.noSignedZeros() && FMF.allowReassoc() && 4370 (match(Op0, m_FSub(m_Value(X), m_Specific(Op1))) || 4371 match(Op1, m_FSub(m_Value(X), m_Specific(Op0))))) 4372 return X; 4373 4374 return nullptr; 4375 } 4376 4377 /// Given operands for an FSub, see if we can fold the result. If not, this 4378 /// returns null. 4379 static Value *SimplifyFSubInst(Value *Op0, Value *Op1, FastMathFlags FMF, 4380 const SimplifyQuery &Q, unsigned MaxRecurse) { 4381 if (Constant *C = foldOrCommuteConstant(Instruction::FSub, Op0, Op1, Q)) 4382 return C; 4383 4384 if (Constant *C = simplifyFPBinop(Op0, Op1)) 4385 return C; 4386 4387 // fsub X, +0 ==> X 4388 if (match(Op1, m_PosZeroFP())) 4389 return Op0; 4390 4391 // fsub X, -0 ==> X, when we know X is not -0 4392 if (match(Op1, m_NegZeroFP()) && 4393 (FMF.noSignedZeros() || CannotBeNegativeZero(Op0, Q.TLI))) 4394 return Op0; 4395 4396 // fsub -0.0, (fsub -0.0, X) ==> X 4397 Value *X; 4398 if (match(Op0, m_NegZeroFP()) && 4399 match(Op1, m_FSub(m_NegZeroFP(), m_Value(X)))) 4400 return X; 4401 4402 // fsub 0.0, (fsub 0.0, X) ==> X if signed zeros are ignored. 4403 if (FMF.noSignedZeros() && match(Op0, m_AnyZeroFP()) && 4404 match(Op1, m_FSub(m_AnyZeroFP(), m_Value(X)))) 4405 return X; 4406 4407 // fsub nnan x, x ==> 0.0 4408 if (FMF.noNaNs() && Op0 == Op1) 4409 return Constant::getNullValue(Op0->getType()); 4410 4411 // Y - (Y - X) --> X 4412 // (X + Y) - Y --> X 4413 if (FMF.noSignedZeros() && FMF.allowReassoc() && 4414 (match(Op1, m_FSub(m_Specific(Op0), m_Value(X))) || 4415 match(Op0, m_c_FAdd(m_Specific(Op1), m_Value(X))))) 4416 return X; 4417 4418 return nullptr; 4419 } 4420 4421 /// Given the operands for an FMul, see if we can fold the result 4422 static Value *SimplifyFMulInst(Value *Op0, Value *Op1, FastMathFlags FMF, 4423 const SimplifyQuery &Q, unsigned MaxRecurse) { 4424 if (Constant *C = foldOrCommuteConstant(Instruction::FMul, Op0, Op1, Q)) 4425 return C; 4426 4427 if (Constant *C = simplifyFPBinop(Op0, Op1)) 4428 return C; 4429 4430 // fmul X, 1.0 ==> X 4431 if (match(Op1, m_FPOne())) 4432 return Op0; 4433 4434 // fmul nnan nsz X, 0 ==> 0 4435 if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op1, m_AnyZeroFP())) 4436 return ConstantFP::getNullValue(Op0->getType()); 4437 4438 // sqrt(X) * sqrt(X) --> X, if we can: 4439 // 1. Remove the intermediate rounding (reassociate). 4440 // 2. Ignore non-zero negative numbers because sqrt would produce NAN. 4441 // 3. Ignore -0.0 because sqrt(-0.0) == -0.0, but -0.0 * -0.0 == 0.0. 4442 Value *X; 4443 if (Op0 == Op1 && match(Op0, m_Intrinsic<Intrinsic::sqrt>(m_Value(X))) && 4444 FMF.allowReassoc() && FMF.noNaNs() && FMF.noSignedZeros()) 4445 return X; 4446 4447 return nullptr; 4448 } 4449 4450 Value *llvm::SimplifyFAddInst(Value *Op0, Value *Op1, FastMathFlags FMF, 4451 const SimplifyQuery &Q) { 4452 return ::SimplifyFAddInst(Op0, Op1, FMF, Q, RecursionLimit); 4453 } 4454 4455 4456 Value *llvm::SimplifyFSubInst(Value *Op0, Value *Op1, FastMathFlags FMF, 4457 const SimplifyQuery &Q) { 4458 return ::SimplifyFSubInst(Op0, Op1, FMF, Q, RecursionLimit); 4459 } 4460 4461 Value *llvm::SimplifyFMulInst(Value *Op0, Value *Op1, FastMathFlags FMF, 4462 const SimplifyQuery &Q) { 4463 return ::SimplifyFMulInst(Op0, Op1, FMF, Q, RecursionLimit); 4464 } 4465 4466 static Value *SimplifyFDivInst(Value *Op0, Value *Op1, FastMathFlags FMF, 4467 const SimplifyQuery &Q, unsigned) { 4468 if (Constant *C = foldOrCommuteConstant(Instruction::FDiv, Op0, Op1, Q)) 4469 return C; 4470 4471 if (Constant *C = simplifyFPBinop(Op0, Op1)) 4472 return C; 4473 4474 // X / 1.0 -> X 4475 if (match(Op1, m_FPOne())) 4476 return Op0; 4477 4478 // 0 / X -> 0 4479 // Requires that NaNs are off (X could be zero) and signed zeroes are 4480 // ignored (X could be positive or negative, so the output sign is unknown). 4481 if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op0, m_AnyZeroFP())) 4482 return ConstantFP::getNullValue(Op0->getType()); 4483 4484 if (FMF.noNaNs()) { 4485 // X / X -> 1.0 is legal when NaNs are ignored. 4486 // We can ignore infinities because INF/INF is NaN. 4487 if (Op0 == Op1) 4488 return ConstantFP::get(Op0->getType(), 1.0); 4489 4490 // (X * Y) / Y --> X if we can reassociate to the above form. 4491 Value *X; 4492 if (FMF.allowReassoc() && match(Op0, m_c_FMul(m_Value(X), m_Specific(Op1)))) 4493 return X; 4494 4495 // -X / X -> -1.0 and 4496 // X / -X -> -1.0 are legal when NaNs are ignored. 4497 // We can ignore signed zeros because +-0.0/+-0.0 is NaN and ignored. 4498 if (match(Op0, m_FNegNSZ(m_Specific(Op1))) || 4499 match(Op1, m_FNegNSZ(m_Specific(Op0)))) 4500 return ConstantFP::get(Op0->getType(), -1.0); 4501 } 4502 4503 return nullptr; 4504 } 4505 4506 Value *llvm::SimplifyFDivInst(Value *Op0, Value *Op1, FastMathFlags FMF, 4507 const SimplifyQuery &Q) { 4508 return ::SimplifyFDivInst(Op0, Op1, FMF, Q, RecursionLimit); 4509 } 4510 4511 static Value *SimplifyFRemInst(Value *Op0, Value *Op1, FastMathFlags FMF, 4512 const SimplifyQuery &Q, unsigned) { 4513 if (Constant *C = foldOrCommuteConstant(Instruction::FRem, Op0, Op1, Q)) 4514 return C; 4515 4516 if (Constant *C = simplifyFPBinop(Op0, Op1)) 4517 return C; 4518 4519 // Unlike fdiv, the result of frem always matches the sign of the dividend. 4520 // The constant match may include undef elements in a vector, so return a full 4521 // zero constant as the result. 4522 if (FMF.noNaNs()) { 4523 // +0 % X -> 0 4524 if (match(Op0, m_PosZeroFP())) 4525 return ConstantFP::getNullValue(Op0->getType()); 4526 // -0 % X -> -0 4527 if (match(Op0, m_NegZeroFP())) 4528 return ConstantFP::getNegativeZero(Op0->getType()); 4529 } 4530 4531 return nullptr; 4532 } 4533 4534 Value *llvm::SimplifyFRemInst(Value *Op0, Value *Op1, FastMathFlags FMF, 4535 const SimplifyQuery &Q) { 4536 return ::SimplifyFRemInst(Op0, Op1, FMF, Q, RecursionLimit); 4537 } 4538 4539 //=== Helper functions for higher up the class hierarchy. 4540 4541 /// Given the operand for a UnaryOperator, see if we can fold the result. 4542 /// If not, this returns null. 4543 static Value *simplifyUnOp(unsigned Opcode, Value *Op, const SimplifyQuery &Q, 4544 unsigned MaxRecurse) { 4545 switch (Opcode) { 4546 case Instruction::FNeg: 4547 return simplifyFNegInst(Op, FastMathFlags(), Q, MaxRecurse); 4548 default: 4549 llvm_unreachable("Unexpected opcode"); 4550 } 4551 } 4552 4553 /// Given the operand for a UnaryOperator, see if we can fold the result. 4554 /// If not, this returns null. 4555 /// In contrast to SimplifyUnOp, try to use FastMathFlag when folding the 4556 /// result. In case we don't need FastMathFlags, simply fall to SimplifyUnOp. 4557 static Value *simplifyFPUnOp(unsigned Opcode, Value *Op, 4558 const FastMathFlags &FMF, 4559 const SimplifyQuery &Q, unsigned MaxRecurse) { 4560 switch (Opcode) { 4561 case Instruction::FNeg: 4562 return simplifyFNegInst(Op, FMF, Q, MaxRecurse); 4563 default: 4564 return simplifyUnOp(Opcode, Op, Q, MaxRecurse); 4565 } 4566 } 4567 4568 Value *llvm::SimplifyFPUnOp(unsigned Opcode, Value *Op, FastMathFlags FMF, 4569 const SimplifyQuery &Q) { 4570 return ::simplifyFPUnOp(Opcode, Op, FMF, Q, RecursionLimit); 4571 } 4572 4573 /// Given operands for a BinaryOperator, see if we can fold the result. 4574 /// If not, this returns null. 4575 static Value *SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS, 4576 const SimplifyQuery &Q, unsigned MaxRecurse) { 4577 switch (Opcode) { 4578 case Instruction::Add: 4579 return SimplifyAddInst(LHS, RHS, false, false, Q, MaxRecurse); 4580 case Instruction::Sub: 4581 return SimplifySubInst(LHS, RHS, false, false, Q, MaxRecurse); 4582 case Instruction::Mul: 4583 return SimplifyMulInst(LHS, RHS, Q, MaxRecurse); 4584 case Instruction::SDiv: 4585 return SimplifySDivInst(LHS, RHS, Q, MaxRecurse); 4586 case Instruction::UDiv: 4587 return SimplifyUDivInst(LHS, RHS, Q, MaxRecurse); 4588 case Instruction::SRem: 4589 return SimplifySRemInst(LHS, RHS, Q, MaxRecurse); 4590 case Instruction::URem: 4591 return SimplifyURemInst(LHS, RHS, Q, MaxRecurse); 4592 case Instruction::Shl: 4593 return SimplifyShlInst(LHS, RHS, false, false, Q, MaxRecurse); 4594 case Instruction::LShr: 4595 return SimplifyLShrInst(LHS, RHS, false, Q, MaxRecurse); 4596 case Instruction::AShr: 4597 return SimplifyAShrInst(LHS, RHS, false, Q, MaxRecurse); 4598 case Instruction::And: 4599 return SimplifyAndInst(LHS, RHS, Q, MaxRecurse); 4600 case Instruction::Or: 4601 return SimplifyOrInst(LHS, RHS, Q, MaxRecurse); 4602 case Instruction::Xor: 4603 return SimplifyXorInst(LHS, RHS, Q, MaxRecurse); 4604 case Instruction::FAdd: 4605 return SimplifyFAddInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse); 4606 case Instruction::FSub: 4607 return SimplifyFSubInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse); 4608 case Instruction::FMul: 4609 return SimplifyFMulInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse); 4610 case Instruction::FDiv: 4611 return SimplifyFDivInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse); 4612 case Instruction::FRem: 4613 return SimplifyFRemInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse); 4614 default: 4615 llvm_unreachable("Unexpected opcode"); 4616 } 4617 } 4618 4619 /// Given operands for a BinaryOperator, see if we can fold the result. 4620 /// If not, this returns null. 4621 /// In contrast to SimplifyBinOp, try to use FastMathFlag when folding the 4622 /// result. In case we don't need FastMathFlags, simply fall to SimplifyBinOp. 4623 static Value *SimplifyFPBinOp(unsigned Opcode, Value *LHS, Value *RHS, 4624 const FastMathFlags &FMF, const SimplifyQuery &Q, 4625 unsigned MaxRecurse) { 4626 switch (Opcode) { 4627 case Instruction::FAdd: 4628 return SimplifyFAddInst(LHS, RHS, FMF, Q, MaxRecurse); 4629 case Instruction::FSub: 4630 return SimplifyFSubInst(LHS, RHS, FMF, Q, MaxRecurse); 4631 case Instruction::FMul: 4632 return SimplifyFMulInst(LHS, RHS, FMF, Q, MaxRecurse); 4633 case Instruction::FDiv: 4634 return SimplifyFDivInst(LHS, RHS, FMF, Q, MaxRecurse); 4635 default: 4636 return SimplifyBinOp(Opcode, LHS, RHS, Q, MaxRecurse); 4637 } 4638 } 4639 4640 Value *llvm::SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS, 4641 const SimplifyQuery &Q) { 4642 return ::SimplifyBinOp(Opcode, LHS, RHS, Q, RecursionLimit); 4643 } 4644 4645 Value *llvm::SimplifyFPBinOp(unsigned Opcode, Value *LHS, Value *RHS, 4646 FastMathFlags FMF, const SimplifyQuery &Q) { 4647 return ::SimplifyFPBinOp(Opcode, LHS, RHS, FMF, Q, RecursionLimit); 4648 } 4649 4650 /// Given operands for a CmpInst, see if we can fold the result. 4651 static Value *SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS, 4652 const SimplifyQuery &Q, unsigned MaxRecurse) { 4653 if (CmpInst::isIntPredicate((CmpInst::Predicate)Predicate)) 4654 return SimplifyICmpInst(Predicate, LHS, RHS, Q, MaxRecurse); 4655 return SimplifyFCmpInst(Predicate, LHS, RHS, FastMathFlags(), Q, MaxRecurse); 4656 } 4657 4658 Value *llvm::SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS, 4659 const SimplifyQuery &Q) { 4660 return ::SimplifyCmpInst(Predicate, LHS, RHS, Q, RecursionLimit); 4661 } 4662 4663 static bool IsIdempotent(Intrinsic::ID ID) { 4664 switch (ID) { 4665 default: return false; 4666 4667 // Unary idempotent: f(f(x)) = f(x) 4668 case Intrinsic::fabs: 4669 case Intrinsic::floor: 4670 case Intrinsic::ceil: 4671 case Intrinsic::trunc: 4672 case Intrinsic::rint: 4673 case Intrinsic::nearbyint: 4674 case Intrinsic::round: 4675 case Intrinsic::canonicalize: 4676 return true; 4677 } 4678 } 4679 4680 static Value *SimplifyRelativeLoad(Constant *Ptr, Constant *Offset, 4681 const DataLayout &DL) { 4682 GlobalValue *PtrSym; 4683 APInt PtrOffset; 4684 if (!IsConstantOffsetFromGlobal(Ptr, PtrSym, PtrOffset, DL)) 4685 return nullptr; 4686 4687 Type *Int8PtrTy = Type::getInt8PtrTy(Ptr->getContext()); 4688 Type *Int32Ty = Type::getInt32Ty(Ptr->getContext()); 4689 Type *Int32PtrTy = Int32Ty->getPointerTo(); 4690 Type *Int64Ty = Type::getInt64Ty(Ptr->getContext()); 4691 4692 auto *OffsetConstInt = dyn_cast<ConstantInt>(Offset); 4693 if (!OffsetConstInt || OffsetConstInt->getType()->getBitWidth() > 64) 4694 return nullptr; 4695 4696 uint64_t OffsetInt = OffsetConstInt->getSExtValue(); 4697 if (OffsetInt % 4 != 0) 4698 return nullptr; 4699 4700 Constant *C = ConstantExpr::getGetElementPtr( 4701 Int32Ty, ConstantExpr::getBitCast(Ptr, Int32PtrTy), 4702 ConstantInt::get(Int64Ty, OffsetInt / 4)); 4703 Constant *Loaded = ConstantFoldLoadFromConstPtr(C, Int32Ty, DL); 4704 if (!Loaded) 4705 return nullptr; 4706 4707 auto *LoadedCE = dyn_cast<ConstantExpr>(Loaded); 4708 if (!LoadedCE) 4709 return nullptr; 4710 4711 if (LoadedCE->getOpcode() == Instruction::Trunc) { 4712 LoadedCE = dyn_cast<ConstantExpr>(LoadedCE->getOperand(0)); 4713 if (!LoadedCE) 4714 return nullptr; 4715 } 4716 4717 if (LoadedCE->getOpcode() != Instruction::Sub) 4718 return nullptr; 4719 4720 auto *LoadedLHS = dyn_cast<ConstantExpr>(LoadedCE->getOperand(0)); 4721 if (!LoadedLHS || LoadedLHS->getOpcode() != Instruction::PtrToInt) 4722 return nullptr; 4723 auto *LoadedLHSPtr = LoadedLHS->getOperand(0); 4724 4725 Constant *LoadedRHS = LoadedCE->getOperand(1); 4726 GlobalValue *LoadedRHSSym; 4727 APInt LoadedRHSOffset; 4728 if (!IsConstantOffsetFromGlobal(LoadedRHS, LoadedRHSSym, LoadedRHSOffset, 4729 DL) || 4730 PtrSym != LoadedRHSSym || PtrOffset != LoadedRHSOffset) 4731 return nullptr; 4732 4733 return ConstantExpr::getBitCast(LoadedLHSPtr, Int8PtrTy); 4734 } 4735 4736 static Value *simplifyUnaryIntrinsic(Function *F, Value *Op0, 4737 const SimplifyQuery &Q) { 4738 // Idempotent functions return the same result when called repeatedly. 4739 Intrinsic::ID IID = F->getIntrinsicID(); 4740 if (IsIdempotent(IID)) 4741 if (auto *II = dyn_cast<IntrinsicInst>(Op0)) 4742 if (II->getIntrinsicID() == IID) 4743 return II; 4744 4745 Value *X; 4746 switch (IID) { 4747 case Intrinsic::fabs: 4748 if (SignBitMustBeZero(Op0, Q.TLI)) return Op0; 4749 break; 4750 case Intrinsic::bswap: 4751 // bswap(bswap(x)) -> x 4752 if (match(Op0, m_BSwap(m_Value(X)))) return X; 4753 break; 4754 case Intrinsic::bitreverse: 4755 // bitreverse(bitreverse(x)) -> x 4756 if (match(Op0, m_BitReverse(m_Value(X)))) return X; 4757 break; 4758 case Intrinsic::exp: 4759 // exp(log(x)) -> x 4760 if (Q.CxtI->hasAllowReassoc() && 4761 match(Op0, m_Intrinsic<Intrinsic::log>(m_Value(X)))) return X; 4762 break; 4763 case Intrinsic::exp2: 4764 // exp2(log2(x)) -> x 4765 if (Q.CxtI->hasAllowReassoc() && 4766 match(Op0, m_Intrinsic<Intrinsic::log2>(m_Value(X)))) return X; 4767 break; 4768 case Intrinsic::log: 4769 // log(exp(x)) -> x 4770 if (Q.CxtI->hasAllowReassoc() && 4771 match(Op0, m_Intrinsic<Intrinsic::exp>(m_Value(X)))) return X; 4772 break; 4773 case Intrinsic::log2: 4774 // log2(exp2(x)) -> x 4775 if (Q.CxtI->hasAllowReassoc() && 4776 (match(Op0, m_Intrinsic<Intrinsic::exp2>(m_Value(X))) || 4777 match(Op0, m_Intrinsic<Intrinsic::pow>(m_SpecificFP(2.0), 4778 m_Value(X))))) return X; 4779 break; 4780 case Intrinsic::log10: 4781 // log10(pow(10.0, x)) -> x 4782 if (Q.CxtI->hasAllowReassoc() && 4783 match(Op0, m_Intrinsic<Intrinsic::pow>(m_SpecificFP(10.0), 4784 m_Value(X)))) return X; 4785 break; 4786 case Intrinsic::floor: 4787 case Intrinsic::trunc: 4788 case Intrinsic::ceil: 4789 case Intrinsic::round: 4790 case Intrinsic::nearbyint: 4791 case Intrinsic::rint: { 4792 // floor (sitofp x) -> sitofp x 4793 // floor (uitofp x) -> uitofp x 4794 // 4795 // Converting from int always results in a finite integral number or 4796 // infinity. For either of those inputs, these rounding functions always 4797 // return the same value, so the rounding can be eliminated. 4798 if (match(Op0, m_SIToFP(m_Value())) || match(Op0, m_UIToFP(m_Value()))) 4799 return Op0; 4800 break; 4801 } 4802 default: 4803 break; 4804 } 4805 4806 return nullptr; 4807 } 4808 4809 static Value *simplifyBinaryIntrinsic(Function *F, Value *Op0, Value *Op1, 4810 const SimplifyQuery &Q) { 4811 Intrinsic::ID IID = F->getIntrinsicID(); 4812 Type *ReturnType = F->getReturnType(); 4813 switch (IID) { 4814 case Intrinsic::usub_with_overflow: 4815 case Intrinsic::ssub_with_overflow: 4816 // X - X -> { 0, false } 4817 if (Op0 == Op1) 4818 return Constant::getNullValue(ReturnType); 4819 // X - undef -> undef 4820 // undef - X -> undef 4821 if (isa<UndefValue>(Op0) || isa<UndefValue>(Op1)) 4822 return UndefValue::get(ReturnType); 4823 break; 4824 case Intrinsic::uadd_with_overflow: 4825 case Intrinsic::sadd_with_overflow: 4826 // X + undef -> undef 4827 if (isa<UndefValue>(Op0) || isa<UndefValue>(Op1)) 4828 return UndefValue::get(ReturnType); 4829 break; 4830 case Intrinsic::umul_with_overflow: 4831 case Intrinsic::smul_with_overflow: 4832 // 0 * X -> { 0, false } 4833 // X * 0 -> { 0, false } 4834 if (match(Op0, m_Zero()) || match(Op1, m_Zero())) 4835 return Constant::getNullValue(ReturnType); 4836 // undef * X -> { 0, false } 4837 // X * undef -> { 0, false } 4838 if (match(Op0, m_Undef()) || match(Op1, m_Undef())) 4839 return Constant::getNullValue(ReturnType); 4840 break; 4841 case Intrinsic::uadd_sat: 4842 // sat(MAX + X) -> MAX 4843 // sat(X + MAX) -> MAX 4844 if (match(Op0, m_AllOnes()) || match(Op1, m_AllOnes())) 4845 return Constant::getAllOnesValue(ReturnType); 4846 LLVM_FALLTHROUGH; 4847 case Intrinsic::sadd_sat: 4848 // sat(X + undef) -> -1 4849 // sat(undef + X) -> -1 4850 // For unsigned: Assume undef is MAX, thus we saturate to MAX (-1). 4851 // For signed: Assume undef is ~X, in which case X + ~X = -1. 4852 if (match(Op0, m_Undef()) || match(Op1, m_Undef())) 4853 return Constant::getAllOnesValue(ReturnType); 4854 4855 // X + 0 -> X 4856 if (match(Op1, m_Zero())) 4857 return Op0; 4858 // 0 + X -> X 4859 if (match(Op0, m_Zero())) 4860 return Op1; 4861 break; 4862 case Intrinsic::usub_sat: 4863 // sat(0 - X) -> 0, sat(X - MAX) -> 0 4864 if (match(Op0, m_Zero()) || match(Op1, m_AllOnes())) 4865 return Constant::getNullValue(ReturnType); 4866 LLVM_FALLTHROUGH; 4867 case Intrinsic::ssub_sat: 4868 // X - X -> 0, X - undef -> 0, undef - X -> 0 4869 if (Op0 == Op1 || match(Op0, m_Undef()) || match(Op1, m_Undef())) 4870 return Constant::getNullValue(ReturnType); 4871 // X - 0 -> X 4872 if (match(Op1, m_Zero())) 4873 return Op0; 4874 break; 4875 case Intrinsic::load_relative: 4876 if (auto *C0 = dyn_cast<Constant>(Op0)) 4877 if (auto *C1 = dyn_cast<Constant>(Op1)) 4878 return SimplifyRelativeLoad(C0, C1, Q.DL); 4879 break; 4880 case Intrinsic::powi: 4881 if (auto *Power = dyn_cast<ConstantInt>(Op1)) { 4882 // powi(x, 0) -> 1.0 4883 if (Power->isZero()) 4884 return ConstantFP::get(Op0->getType(), 1.0); 4885 // powi(x, 1) -> x 4886 if (Power->isOne()) 4887 return Op0; 4888 } 4889 break; 4890 case Intrinsic::maxnum: 4891 case Intrinsic::minnum: 4892 case Intrinsic::maximum: 4893 case Intrinsic::minimum: { 4894 // If the arguments are the same, this is a no-op. 4895 if (Op0 == Op1) return Op0; 4896 4897 // If one argument is undef, return the other argument. 4898 if (match(Op0, m_Undef())) 4899 return Op1; 4900 if (match(Op1, m_Undef())) 4901 return Op0; 4902 4903 // If one argument is NaN, return other or NaN appropriately. 4904 bool PropagateNaN = IID == Intrinsic::minimum || IID == Intrinsic::maximum; 4905 if (match(Op0, m_NaN())) 4906 return PropagateNaN ? Op0 : Op1; 4907 if (match(Op1, m_NaN())) 4908 return PropagateNaN ? Op1 : Op0; 4909 4910 // Min/max of the same operation with common operand: 4911 // m(m(X, Y)), X --> m(X, Y) (4 commuted variants) 4912 if (auto *M0 = dyn_cast<IntrinsicInst>(Op0)) 4913 if (M0->getIntrinsicID() == IID && 4914 (M0->getOperand(0) == Op1 || M0->getOperand(1) == Op1)) 4915 return Op0; 4916 if (auto *M1 = dyn_cast<IntrinsicInst>(Op1)) 4917 if (M1->getIntrinsicID() == IID && 4918 (M1->getOperand(0) == Op0 || M1->getOperand(1) == Op0)) 4919 return Op1; 4920 4921 // min(X, -Inf) --> -Inf (and commuted variant) 4922 // max(X, +Inf) --> +Inf (and commuted variant) 4923 bool UseNegInf = IID == Intrinsic::minnum || IID == Intrinsic::minimum; 4924 const APFloat *C; 4925 if ((match(Op0, m_APFloat(C)) && C->isInfinity() && 4926 C->isNegative() == UseNegInf) || 4927 (match(Op1, m_APFloat(C)) && C->isInfinity() && 4928 C->isNegative() == UseNegInf)) 4929 return ConstantFP::getInfinity(ReturnType, UseNegInf); 4930 4931 // TODO: minnum(nnan x, inf) -> x 4932 // TODO: minnum(nnan ninf x, flt_max) -> x 4933 // TODO: maxnum(nnan x, -inf) -> x 4934 // TODO: maxnum(nnan ninf x, -flt_max) -> x 4935 break; 4936 } 4937 default: 4938 break; 4939 } 4940 4941 return nullptr; 4942 } 4943 4944 template <typename IterTy> 4945 static Value *simplifyIntrinsic(Function *F, IterTy ArgBegin, IterTy ArgEnd, 4946 const SimplifyQuery &Q) { 4947 // Intrinsics with no operands have some kind of side effect. Don't simplify. 4948 unsigned NumOperands = std::distance(ArgBegin, ArgEnd); 4949 if (NumOperands == 0) 4950 return nullptr; 4951 4952 Intrinsic::ID IID = F->getIntrinsicID(); 4953 if (NumOperands == 1) 4954 return simplifyUnaryIntrinsic(F, ArgBegin[0], Q); 4955 4956 if (NumOperands == 2) 4957 return simplifyBinaryIntrinsic(F, ArgBegin[0], ArgBegin[1], Q); 4958 4959 // Handle intrinsics with 3 or more arguments. 4960 switch (IID) { 4961 case Intrinsic::masked_load: 4962 case Intrinsic::masked_gather: { 4963 Value *MaskArg = ArgBegin[2]; 4964 Value *PassthruArg = ArgBegin[3]; 4965 // If the mask is all zeros or undef, the "passthru" argument is the result. 4966 if (maskIsAllZeroOrUndef(MaskArg)) 4967 return PassthruArg; 4968 return nullptr; 4969 } 4970 case Intrinsic::fshl: 4971 case Intrinsic::fshr: { 4972 Value *Op0 = ArgBegin[0], *Op1 = ArgBegin[1], *ShAmtArg = ArgBegin[2]; 4973 4974 // If both operands are undef, the result is undef. 4975 if (match(Op0, m_Undef()) && match(Op1, m_Undef())) 4976 return UndefValue::get(F->getReturnType()); 4977 4978 // If shift amount is undef, assume it is zero. 4979 if (match(ShAmtArg, m_Undef())) 4980 return ArgBegin[IID == Intrinsic::fshl ? 0 : 1]; 4981 4982 const APInt *ShAmtC; 4983 if (match(ShAmtArg, m_APInt(ShAmtC))) { 4984 // If there's effectively no shift, return the 1st arg or 2nd arg. 4985 APInt BitWidth = APInt(ShAmtC->getBitWidth(), ShAmtC->getBitWidth()); 4986 if (ShAmtC->urem(BitWidth).isNullValue()) 4987 return ArgBegin[IID == Intrinsic::fshl ? 0 : 1]; 4988 } 4989 return nullptr; 4990 } 4991 default: 4992 return nullptr; 4993 } 4994 } 4995 4996 template <typename IterTy> 4997 static Value *SimplifyCall(CallBase *Call, Value *V, IterTy ArgBegin, 4998 IterTy ArgEnd, const SimplifyQuery &Q, 4999 unsigned MaxRecurse) { 5000 Type *Ty = V->getType(); 5001 if (PointerType *PTy = dyn_cast<PointerType>(Ty)) 5002 Ty = PTy->getElementType(); 5003 FunctionType *FTy = cast<FunctionType>(Ty); 5004 5005 // call undef -> undef 5006 // call null -> undef 5007 if (isa<UndefValue>(V) || isa<ConstantPointerNull>(V)) 5008 return UndefValue::get(FTy->getReturnType()); 5009 5010 Function *F = dyn_cast<Function>(V); 5011 if (!F) 5012 return nullptr; 5013 5014 if (F->isIntrinsic()) 5015 if (Value *Ret = simplifyIntrinsic(F, ArgBegin, ArgEnd, Q)) 5016 return Ret; 5017 5018 if (!canConstantFoldCallTo(Call, F)) 5019 return nullptr; 5020 5021 SmallVector<Constant *, 4> ConstantArgs; 5022 ConstantArgs.reserve(ArgEnd - ArgBegin); 5023 for (IterTy I = ArgBegin, E = ArgEnd; I != E; ++I) { 5024 Constant *C = dyn_cast<Constant>(*I); 5025 if (!C) 5026 return nullptr; 5027 ConstantArgs.push_back(C); 5028 } 5029 5030 return ConstantFoldCall(Call, F, ConstantArgs, Q.TLI); 5031 } 5032 5033 Value *llvm::SimplifyCall(CallBase *Call, Value *V, User::op_iterator ArgBegin, 5034 User::op_iterator ArgEnd, const SimplifyQuery &Q) { 5035 return ::SimplifyCall(Call, V, ArgBegin, ArgEnd, Q, RecursionLimit); 5036 } 5037 5038 Value *llvm::SimplifyCall(CallBase *Call, Value *V, ArrayRef<Value *> Args, 5039 const SimplifyQuery &Q) { 5040 return ::SimplifyCall(Call, V, Args.begin(), Args.end(), Q, RecursionLimit); 5041 } 5042 5043 Value *llvm::SimplifyCall(CallBase *Call, const SimplifyQuery &Q) { 5044 return ::SimplifyCall(Call, Call->getCalledValue(), Call->arg_begin(), 5045 Call->arg_end(), Q, RecursionLimit); 5046 } 5047 5048 /// See if we can compute a simplified version of this instruction. 5049 /// If not, this returns null. 5050 5051 Value *llvm::SimplifyInstruction(Instruction *I, const SimplifyQuery &SQ, 5052 OptimizationRemarkEmitter *ORE) { 5053 const SimplifyQuery Q = SQ.CxtI ? SQ : SQ.getWithInstruction(I); 5054 Value *Result; 5055 5056 switch (I->getOpcode()) { 5057 default: 5058 Result = ConstantFoldInstruction(I, Q.DL, Q.TLI); 5059 break; 5060 case Instruction::FNeg: 5061 Result = SimplifyFNegInst(I->getOperand(0), I->getFastMathFlags(), Q); 5062 break; 5063 case Instruction::FAdd: 5064 Result = SimplifyFAddInst(I->getOperand(0), I->getOperand(1), 5065 I->getFastMathFlags(), Q); 5066 break; 5067 case Instruction::Add: 5068 Result = 5069 SimplifyAddInst(I->getOperand(0), I->getOperand(1), 5070 Q.IIQ.hasNoSignedWrap(cast<BinaryOperator>(I)), 5071 Q.IIQ.hasNoUnsignedWrap(cast<BinaryOperator>(I)), Q); 5072 break; 5073 case Instruction::FSub: 5074 Result = SimplifyFSubInst(I->getOperand(0), I->getOperand(1), 5075 I->getFastMathFlags(), Q); 5076 break; 5077 case Instruction::Sub: 5078 Result = 5079 SimplifySubInst(I->getOperand(0), I->getOperand(1), 5080 Q.IIQ.hasNoSignedWrap(cast<BinaryOperator>(I)), 5081 Q.IIQ.hasNoUnsignedWrap(cast<BinaryOperator>(I)), Q); 5082 break; 5083 case Instruction::FMul: 5084 Result = SimplifyFMulInst(I->getOperand(0), I->getOperand(1), 5085 I->getFastMathFlags(), Q); 5086 break; 5087 case Instruction::Mul: 5088 Result = SimplifyMulInst(I->getOperand(0), I->getOperand(1), Q); 5089 break; 5090 case Instruction::SDiv: 5091 Result = SimplifySDivInst(I->getOperand(0), I->getOperand(1), Q); 5092 break; 5093 case Instruction::UDiv: 5094 Result = SimplifyUDivInst(I->getOperand(0), I->getOperand(1), Q); 5095 break; 5096 case Instruction::FDiv: 5097 Result = SimplifyFDivInst(I->getOperand(0), I->getOperand(1), 5098 I->getFastMathFlags(), Q); 5099 break; 5100 case Instruction::SRem: 5101 Result = SimplifySRemInst(I->getOperand(0), I->getOperand(1), Q); 5102 break; 5103 case Instruction::URem: 5104 Result = SimplifyURemInst(I->getOperand(0), I->getOperand(1), Q); 5105 break; 5106 case Instruction::FRem: 5107 Result = SimplifyFRemInst(I->getOperand(0), I->getOperand(1), 5108 I->getFastMathFlags(), Q); 5109 break; 5110 case Instruction::Shl: 5111 Result = 5112 SimplifyShlInst(I->getOperand(0), I->getOperand(1), 5113 Q.IIQ.hasNoSignedWrap(cast<BinaryOperator>(I)), 5114 Q.IIQ.hasNoUnsignedWrap(cast<BinaryOperator>(I)), Q); 5115 break; 5116 case Instruction::LShr: 5117 Result = SimplifyLShrInst(I->getOperand(0), I->getOperand(1), 5118 Q.IIQ.isExact(cast<BinaryOperator>(I)), Q); 5119 break; 5120 case Instruction::AShr: 5121 Result = SimplifyAShrInst(I->getOperand(0), I->getOperand(1), 5122 Q.IIQ.isExact(cast<BinaryOperator>(I)), Q); 5123 break; 5124 case Instruction::And: 5125 Result = SimplifyAndInst(I->getOperand(0), I->getOperand(1), Q); 5126 break; 5127 case Instruction::Or: 5128 Result = SimplifyOrInst(I->getOperand(0), I->getOperand(1), Q); 5129 break; 5130 case Instruction::Xor: 5131 Result = SimplifyXorInst(I->getOperand(0), I->getOperand(1), Q); 5132 break; 5133 case Instruction::ICmp: 5134 Result = SimplifyICmpInst(cast<ICmpInst>(I)->getPredicate(), 5135 I->getOperand(0), I->getOperand(1), Q); 5136 break; 5137 case Instruction::FCmp: 5138 Result = 5139 SimplifyFCmpInst(cast<FCmpInst>(I)->getPredicate(), I->getOperand(0), 5140 I->getOperand(1), I->getFastMathFlags(), Q); 5141 break; 5142 case Instruction::Select: 5143 Result = SimplifySelectInst(I->getOperand(0), I->getOperand(1), 5144 I->getOperand(2), Q); 5145 break; 5146 case Instruction::GetElementPtr: { 5147 SmallVector<Value *, 8> Ops(I->op_begin(), I->op_end()); 5148 Result = SimplifyGEPInst(cast<GetElementPtrInst>(I)->getSourceElementType(), 5149 Ops, Q); 5150 break; 5151 } 5152 case Instruction::InsertValue: { 5153 InsertValueInst *IV = cast<InsertValueInst>(I); 5154 Result = SimplifyInsertValueInst(IV->getAggregateOperand(), 5155 IV->getInsertedValueOperand(), 5156 IV->getIndices(), Q); 5157 break; 5158 } 5159 case Instruction::InsertElement: { 5160 auto *IE = cast<InsertElementInst>(I); 5161 Result = SimplifyInsertElementInst(IE->getOperand(0), IE->getOperand(1), 5162 IE->getOperand(2), Q); 5163 break; 5164 } 5165 case Instruction::ExtractValue: { 5166 auto *EVI = cast<ExtractValueInst>(I); 5167 Result = SimplifyExtractValueInst(EVI->getAggregateOperand(), 5168 EVI->getIndices(), Q); 5169 break; 5170 } 5171 case Instruction::ExtractElement: { 5172 auto *EEI = cast<ExtractElementInst>(I); 5173 Result = SimplifyExtractElementInst(EEI->getVectorOperand(), 5174 EEI->getIndexOperand(), Q); 5175 break; 5176 } 5177 case Instruction::ShuffleVector: { 5178 auto *SVI = cast<ShuffleVectorInst>(I); 5179 Result = SimplifyShuffleVectorInst(SVI->getOperand(0), SVI->getOperand(1), 5180 SVI->getMask(), SVI->getType(), Q); 5181 break; 5182 } 5183 case Instruction::PHI: 5184 Result = SimplifyPHINode(cast<PHINode>(I), Q); 5185 break; 5186 case Instruction::Call: { 5187 Result = SimplifyCall(cast<CallInst>(I), Q); 5188 break; 5189 } 5190 #define HANDLE_CAST_INST(num, opc, clas) case Instruction::opc: 5191 #include "llvm/IR/Instruction.def" 5192 #undef HANDLE_CAST_INST 5193 Result = 5194 SimplifyCastInst(I->getOpcode(), I->getOperand(0), I->getType(), Q); 5195 break; 5196 case Instruction::Alloca: 5197 // No simplifications for Alloca and it can't be constant folded. 5198 Result = nullptr; 5199 break; 5200 } 5201 5202 // In general, it is possible for computeKnownBits to determine all bits in a 5203 // value even when the operands are not all constants. 5204 if (!Result && I->getType()->isIntOrIntVectorTy()) { 5205 KnownBits Known = computeKnownBits(I, Q.DL, /*Depth*/ 0, Q.AC, I, Q.DT, ORE); 5206 if (Known.isConstant()) 5207 Result = ConstantInt::get(I->getType(), Known.getConstant()); 5208 } 5209 5210 /// If called on unreachable code, the above logic may report that the 5211 /// instruction simplified to itself. Make life easier for users by 5212 /// detecting that case here, returning a safe value instead. 5213 return Result == I ? UndefValue::get(I->getType()) : Result; 5214 } 5215 5216 /// Implementation of recursive simplification through an instruction's 5217 /// uses. 5218 /// 5219 /// This is the common implementation of the recursive simplification routines. 5220 /// If we have a pre-simplified value in 'SimpleV', that is forcibly used to 5221 /// replace the instruction 'I'. Otherwise, we simply add 'I' to the list of 5222 /// instructions to process and attempt to simplify it using 5223 /// InstructionSimplify. 5224 /// 5225 /// This routine returns 'true' only when *it* simplifies something. The passed 5226 /// in simplified value does not count toward this. 5227 static bool replaceAndRecursivelySimplifyImpl(Instruction *I, Value *SimpleV, 5228 const TargetLibraryInfo *TLI, 5229 const DominatorTree *DT, 5230 AssumptionCache *AC) { 5231 bool Simplified = false; 5232 SmallSetVector<Instruction *, 8> Worklist; 5233 const DataLayout &DL = I->getModule()->getDataLayout(); 5234 5235 // If we have an explicit value to collapse to, do that round of the 5236 // simplification loop by hand initially. 5237 if (SimpleV) { 5238 for (User *U : I->users()) 5239 if (U != I) 5240 Worklist.insert(cast<Instruction>(U)); 5241 5242 // Replace the instruction with its simplified value. 5243 I->replaceAllUsesWith(SimpleV); 5244 5245 // Gracefully handle edge cases where the instruction is not wired into any 5246 // parent block. 5247 if (I->getParent() && !I->isEHPad() && !I->isTerminator() && 5248 !I->mayHaveSideEffects()) 5249 I->eraseFromParent(); 5250 } else { 5251 Worklist.insert(I); 5252 } 5253 5254 // Note that we must test the size on each iteration, the worklist can grow. 5255 for (unsigned Idx = 0; Idx != Worklist.size(); ++Idx) { 5256 I = Worklist[Idx]; 5257 5258 // See if this instruction simplifies. 5259 SimpleV = SimplifyInstruction(I, {DL, TLI, DT, AC}); 5260 if (!SimpleV) 5261 continue; 5262 5263 Simplified = true; 5264 5265 // Stash away all the uses of the old instruction so we can check them for 5266 // recursive simplifications after a RAUW. This is cheaper than checking all 5267 // uses of To on the recursive step in most cases. 5268 for (User *U : I->users()) 5269 Worklist.insert(cast<Instruction>(U)); 5270 5271 // Replace the instruction with its simplified value. 5272 I->replaceAllUsesWith(SimpleV); 5273 5274 // Gracefully handle edge cases where the instruction is not wired into any 5275 // parent block. 5276 if (I->getParent() && !I->isEHPad() && !I->isTerminator() && 5277 !I->mayHaveSideEffects()) 5278 I->eraseFromParent(); 5279 } 5280 return Simplified; 5281 } 5282 5283 bool llvm::recursivelySimplifyInstruction(Instruction *I, 5284 const TargetLibraryInfo *TLI, 5285 const DominatorTree *DT, 5286 AssumptionCache *AC) { 5287 return replaceAndRecursivelySimplifyImpl(I, nullptr, TLI, DT, AC); 5288 } 5289 5290 bool llvm::replaceAndRecursivelySimplify(Instruction *I, Value *SimpleV, 5291 const TargetLibraryInfo *TLI, 5292 const DominatorTree *DT, 5293 AssumptionCache *AC) { 5294 assert(I != SimpleV && "replaceAndRecursivelySimplify(X,X) is not valid!"); 5295 assert(SimpleV && "Must provide a simplified value."); 5296 return replaceAndRecursivelySimplifyImpl(I, SimpleV, TLI, DT, AC); 5297 } 5298 5299 namespace llvm { 5300 const SimplifyQuery getBestSimplifyQuery(Pass &P, Function &F) { 5301 auto *DTWP = P.getAnalysisIfAvailable<DominatorTreeWrapperPass>(); 5302 auto *DT = DTWP ? &DTWP->getDomTree() : nullptr; 5303 auto *TLIWP = P.getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 5304 auto *TLI = TLIWP ? &TLIWP->getTLI() : nullptr; 5305 auto *ACWP = P.getAnalysisIfAvailable<AssumptionCacheTracker>(); 5306 auto *AC = ACWP ? &ACWP->getAssumptionCache(F) : nullptr; 5307 return {F.getParent()->getDataLayout(), TLI, DT, AC}; 5308 } 5309 5310 const SimplifyQuery getBestSimplifyQuery(LoopStandardAnalysisResults &AR, 5311 const DataLayout &DL) { 5312 return {DL, &AR.TLI, &AR.DT, &AR.AC}; 5313 } 5314 5315 template <class T, class... TArgs> 5316 const SimplifyQuery getBestSimplifyQuery(AnalysisManager<T, TArgs...> &AM, 5317 Function &F) { 5318 auto *DT = AM.template getCachedResult<DominatorTreeAnalysis>(F); 5319 auto *TLI = AM.template getCachedResult<TargetLibraryAnalysis>(F); 5320 auto *AC = AM.template getCachedResult<AssumptionAnalysis>(F); 5321 return {F.getParent()->getDataLayout(), TLI, DT, AC}; 5322 } 5323 template const SimplifyQuery getBestSimplifyQuery(AnalysisManager<Function> &, 5324 Function &); 5325 } 5326