1 //===- InstructionSimplify.cpp - Fold instruction operands ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements routines for folding instructions into simpler forms 11 // that do not require creating new instructions. This does constant folding 12 // ("add i32 1, 1" -> "2") but can also handle non-constant operands, either 13 // returning a constant ("and i32 %x, 0" -> "0") or an already existing value 14 // ("and i32 %x, %x" -> "%x"). All operands are assumed to have already been 15 // simplified: This is usually true and assuming it simplifies the logic (if 16 // they have not been simplified then results are correct but maybe suboptimal). 17 // 18 //===----------------------------------------------------------------------===// 19 20 #include "llvm/Analysis/InstructionSimplify.h" 21 #include "llvm/ADT/SetVector.h" 22 #include "llvm/ADT/Statistic.h" 23 #include "llvm/Analysis/AliasAnalysis.h" 24 #include "llvm/Analysis/AssumptionCache.h" 25 #include "llvm/Analysis/CaptureTracking.h" 26 #include "llvm/Analysis/CmpInstAnalysis.h" 27 #include "llvm/Analysis/ConstantFolding.h" 28 #include "llvm/Analysis/LoopAnalysisManager.h" 29 #include "llvm/Analysis/MemoryBuiltins.h" 30 #include "llvm/Analysis/OptimizationDiagnosticInfo.h" 31 #include "llvm/Analysis/ValueTracking.h" 32 #include "llvm/Analysis/VectorUtils.h" 33 #include "llvm/IR/ConstantRange.h" 34 #include "llvm/IR/DataLayout.h" 35 #include "llvm/IR/Dominators.h" 36 #include "llvm/IR/GetElementPtrTypeIterator.h" 37 #include "llvm/IR/GlobalAlias.h" 38 #include "llvm/IR/Operator.h" 39 #include "llvm/IR/PatternMatch.h" 40 #include "llvm/IR/ValueHandle.h" 41 #include "llvm/Support/KnownBits.h" 42 #include <algorithm> 43 using namespace llvm; 44 using namespace llvm::PatternMatch; 45 46 #define DEBUG_TYPE "instsimplify" 47 48 enum { RecursionLimit = 3 }; 49 50 STATISTIC(NumExpand, "Number of expansions"); 51 STATISTIC(NumReassoc, "Number of reassociations"); 52 53 static Value *SimplifyAndInst(Value *, Value *, const SimplifyQuery &, unsigned); 54 static Value *SimplifyBinOp(unsigned, Value *, Value *, const SimplifyQuery &, 55 unsigned); 56 static Value *SimplifyFPBinOp(unsigned, Value *, Value *, const FastMathFlags &, 57 const SimplifyQuery &, unsigned); 58 static Value *SimplifyCmpInst(unsigned, Value *, Value *, const SimplifyQuery &, 59 unsigned); 60 static Value *SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS, 61 const SimplifyQuery &Q, unsigned MaxRecurse); 62 static Value *SimplifyOrInst(Value *, Value *, const SimplifyQuery &, unsigned); 63 static Value *SimplifyXorInst(Value *, Value *, const SimplifyQuery &, unsigned); 64 static Value *SimplifyCastInst(unsigned, Value *, Type *, 65 const SimplifyQuery &, unsigned); 66 67 /// For a boolean type or a vector of boolean type, return false or a vector 68 /// with every element false. 69 static Constant *getFalse(Type *Ty) { 70 return ConstantInt::getFalse(Ty); 71 } 72 73 /// For a boolean type or a vector of boolean type, return true or a vector 74 /// with every element true. 75 static Constant *getTrue(Type *Ty) { 76 return ConstantInt::getTrue(Ty); 77 } 78 79 /// isSameCompare - Is V equivalent to the comparison "LHS Pred RHS"? 80 static bool isSameCompare(Value *V, CmpInst::Predicate Pred, Value *LHS, 81 Value *RHS) { 82 CmpInst *Cmp = dyn_cast<CmpInst>(V); 83 if (!Cmp) 84 return false; 85 CmpInst::Predicate CPred = Cmp->getPredicate(); 86 Value *CLHS = Cmp->getOperand(0), *CRHS = Cmp->getOperand(1); 87 if (CPred == Pred && CLHS == LHS && CRHS == RHS) 88 return true; 89 return CPred == CmpInst::getSwappedPredicate(Pred) && CLHS == RHS && 90 CRHS == LHS; 91 } 92 93 /// Does the given value dominate the specified phi node? 94 static bool ValueDominatesPHI(Value *V, PHINode *P, const DominatorTree *DT) { 95 Instruction *I = dyn_cast<Instruction>(V); 96 if (!I) 97 // Arguments and constants dominate all instructions. 98 return true; 99 100 // If we are processing instructions (and/or basic blocks) that have not been 101 // fully added to a function, the parent nodes may still be null. Simply 102 // return the conservative answer in these cases. 103 if (!I->getParent() || !P->getParent() || !I->getParent()->getParent()) 104 return false; 105 106 // If we have a DominatorTree then do a precise test. 107 if (DT) 108 return DT->dominates(I, P); 109 110 // Otherwise, if the instruction is in the entry block and is not an invoke, 111 // then it obviously dominates all phi nodes. 112 if (I->getParent() == &I->getParent()->getParent()->getEntryBlock() && 113 !isa<InvokeInst>(I)) 114 return true; 115 116 return false; 117 } 118 119 /// Simplify "A op (B op' C)" by distributing op over op', turning it into 120 /// "(A op B) op' (A op C)". Here "op" is given by Opcode and "op'" is 121 /// given by OpcodeToExpand, while "A" corresponds to LHS and "B op' C" to RHS. 122 /// Also performs the transform "(A op' B) op C" -> "(A op C) op' (B op C)". 123 /// Returns the simplified value, or null if no simplification was performed. 124 static Value *ExpandBinOp(Instruction::BinaryOps Opcode, Value *LHS, Value *RHS, 125 Instruction::BinaryOps OpcodeToExpand, 126 const SimplifyQuery &Q, unsigned MaxRecurse) { 127 // Recursion is always used, so bail out at once if we already hit the limit. 128 if (!MaxRecurse--) 129 return nullptr; 130 131 // Check whether the expression has the form "(A op' B) op C". 132 if (BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS)) 133 if (Op0->getOpcode() == OpcodeToExpand) { 134 // It does! Try turning it into "(A op C) op' (B op C)". 135 Value *A = Op0->getOperand(0), *B = Op0->getOperand(1), *C = RHS; 136 // Do "A op C" and "B op C" both simplify? 137 if (Value *L = SimplifyBinOp(Opcode, A, C, Q, MaxRecurse)) 138 if (Value *R = SimplifyBinOp(Opcode, B, C, Q, MaxRecurse)) { 139 // They do! Return "L op' R" if it simplifies or is already available. 140 // If "L op' R" equals "A op' B" then "L op' R" is just the LHS. 141 if ((L == A && R == B) || (Instruction::isCommutative(OpcodeToExpand) 142 && L == B && R == A)) { 143 ++NumExpand; 144 return LHS; 145 } 146 // Otherwise return "L op' R" if it simplifies. 147 if (Value *V = SimplifyBinOp(OpcodeToExpand, L, R, Q, MaxRecurse)) { 148 ++NumExpand; 149 return V; 150 } 151 } 152 } 153 154 // Check whether the expression has the form "A op (B op' C)". 155 if (BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS)) 156 if (Op1->getOpcode() == OpcodeToExpand) { 157 // It does! Try turning it into "(A op B) op' (A op C)". 158 Value *A = LHS, *B = Op1->getOperand(0), *C = Op1->getOperand(1); 159 // Do "A op B" and "A op C" both simplify? 160 if (Value *L = SimplifyBinOp(Opcode, A, B, Q, MaxRecurse)) 161 if (Value *R = SimplifyBinOp(Opcode, A, C, Q, MaxRecurse)) { 162 // They do! Return "L op' R" if it simplifies or is already available. 163 // If "L op' R" equals "B op' C" then "L op' R" is just the RHS. 164 if ((L == B && R == C) || (Instruction::isCommutative(OpcodeToExpand) 165 && L == C && R == B)) { 166 ++NumExpand; 167 return RHS; 168 } 169 // Otherwise return "L op' R" if it simplifies. 170 if (Value *V = SimplifyBinOp(OpcodeToExpand, L, R, Q, MaxRecurse)) { 171 ++NumExpand; 172 return V; 173 } 174 } 175 } 176 177 return nullptr; 178 } 179 180 /// Generic simplifications for associative binary operations. 181 /// Returns the simpler value, or null if none was found. 182 static Value *SimplifyAssociativeBinOp(Instruction::BinaryOps Opcode, 183 Value *LHS, Value *RHS, 184 const SimplifyQuery &Q, 185 unsigned MaxRecurse) { 186 assert(Instruction::isAssociative(Opcode) && "Not an associative operation!"); 187 188 // Recursion is always used, so bail out at once if we already hit the limit. 189 if (!MaxRecurse--) 190 return nullptr; 191 192 BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS); 193 BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS); 194 195 // Transform: "(A op B) op C" ==> "A op (B op C)" if it simplifies completely. 196 if (Op0 && Op0->getOpcode() == Opcode) { 197 Value *A = Op0->getOperand(0); 198 Value *B = Op0->getOperand(1); 199 Value *C = RHS; 200 201 // Does "B op C" simplify? 202 if (Value *V = SimplifyBinOp(Opcode, B, C, Q, MaxRecurse)) { 203 // It does! Return "A op V" if it simplifies or is already available. 204 // If V equals B then "A op V" is just the LHS. 205 if (V == B) return LHS; 206 // Otherwise return "A op V" if it simplifies. 207 if (Value *W = SimplifyBinOp(Opcode, A, V, Q, MaxRecurse)) { 208 ++NumReassoc; 209 return W; 210 } 211 } 212 } 213 214 // Transform: "A op (B op C)" ==> "(A op B) op C" if it simplifies completely. 215 if (Op1 && Op1->getOpcode() == Opcode) { 216 Value *A = LHS; 217 Value *B = Op1->getOperand(0); 218 Value *C = Op1->getOperand(1); 219 220 // Does "A op B" simplify? 221 if (Value *V = SimplifyBinOp(Opcode, A, B, Q, MaxRecurse)) { 222 // It does! Return "V op C" if it simplifies or is already available. 223 // If V equals B then "V op C" is just the RHS. 224 if (V == B) return RHS; 225 // Otherwise return "V op C" if it simplifies. 226 if (Value *W = SimplifyBinOp(Opcode, V, C, Q, MaxRecurse)) { 227 ++NumReassoc; 228 return W; 229 } 230 } 231 } 232 233 // The remaining transforms require commutativity as well as associativity. 234 if (!Instruction::isCommutative(Opcode)) 235 return nullptr; 236 237 // Transform: "(A op B) op C" ==> "(C op A) op B" if it simplifies completely. 238 if (Op0 && Op0->getOpcode() == Opcode) { 239 Value *A = Op0->getOperand(0); 240 Value *B = Op0->getOperand(1); 241 Value *C = RHS; 242 243 // Does "C op A" simplify? 244 if (Value *V = SimplifyBinOp(Opcode, C, A, Q, MaxRecurse)) { 245 // It does! Return "V op B" if it simplifies or is already available. 246 // If V equals A then "V op B" is just the LHS. 247 if (V == A) return LHS; 248 // Otherwise return "V op B" if it simplifies. 249 if (Value *W = SimplifyBinOp(Opcode, V, B, Q, MaxRecurse)) { 250 ++NumReassoc; 251 return W; 252 } 253 } 254 } 255 256 // Transform: "A op (B op C)" ==> "B op (C op A)" if it simplifies completely. 257 if (Op1 && Op1->getOpcode() == Opcode) { 258 Value *A = LHS; 259 Value *B = Op1->getOperand(0); 260 Value *C = Op1->getOperand(1); 261 262 // Does "C op A" simplify? 263 if (Value *V = SimplifyBinOp(Opcode, C, A, Q, MaxRecurse)) { 264 // It does! Return "B op V" if it simplifies or is already available. 265 // If V equals C then "B op V" is just the RHS. 266 if (V == C) return RHS; 267 // Otherwise return "B op V" if it simplifies. 268 if (Value *W = SimplifyBinOp(Opcode, B, V, Q, MaxRecurse)) { 269 ++NumReassoc; 270 return W; 271 } 272 } 273 } 274 275 return nullptr; 276 } 277 278 /// In the case of a binary operation with a select instruction as an operand, 279 /// try to simplify the binop by seeing whether evaluating it on both branches 280 /// of the select results in the same value. Returns the common value if so, 281 /// otherwise returns null. 282 static Value *ThreadBinOpOverSelect(Instruction::BinaryOps Opcode, Value *LHS, 283 Value *RHS, const SimplifyQuery &Q, 284 unsigned MaxRecurse) { 285 // Recursion is always used, so bail out at once if we already hit the limit. 286 if (!MaxRecurse--) 287 return nullptr; 288 289 SelectInst *SI; 290 if (isa<SelectInst>(LHS)) { 291 SI = cast<SelectInst>(LHS); 292 } else { 293 assert(isa<SelectInst>(RHS) && "No select instruction operand!"); 294 SI = cast<SelectInst>(RHS); 295 } 296 297 // Evaluate the BinOp on the true and false branches of the select. 298 Value *TV; 299 Value *FV; 300 if (SI == LHS) { 301 TV = SimplifyBinOp(Opcode, SI->getTrueValue(), RHS, Q, MaxRecurse); 302 FV = SimplifyBinOp(Opcode, SI->getFalseValue(), RHS, Q, MaxRecurse); 303 } else { 304 TV = SimplifyBinOp(Opcode, LHS, SI->getTrueValue(), Q, MaxRecurse); 305 FV = SimplifyBinOp(Opcode, LHS, SI->getFalseValue(), Q, MaxRecurse); 306 } 307 308 // If they simplified to the same value, then return the common value. 309 // If they both failed to simplify then return null. 310 if (TV == FV) 311 return TV; 312 313 // If one branch simplified to undef, return the other one. 314 if (TV && isa<UndefValue>(TV)) 315 return FV; 316 if (FV && isa<UndefValue>(FV)) 317 return TV; 318 319 // If applying the operation did not change the true and false select values, 320 // then the result of the binop is the select itself. 321 if (TV == SI->getTrueValue() && FV == SI->getFalseValue()) 322 return SI; 323 324 // If one branch simplified and the other did not, and the simplified 325 // value is equal to the unsimplified one, return the simplified value. 326 // For example, select (cond, X, X & Z) & Z -> X & Z. 327 if ((FV && !TV) || (TV && !FV)) { 328 // Check that the simplified value has the form "X op Y" where "op" is the 329 // same as the original operation. 330 Instruction *Simplified = dyn_cast<Instruction>(FV ? FV : TV); 331 if (Simplified && Simplified->getOpcode() == Opcode) { 332 // The value that didn't simplify is "UnsimplifiedLHS op UnsimplifiedRHS". 333 // We already know that "op" is the same as for the simplified value. See 334 // if the operands match too. If so, return the simplified value. 335 Value *UnsimplifiedBranch = FV ? SI->getTrueValue() : SI->getFalseValue(); 336 Value *UnsimplifiedLHS = SI == LHS ? UnsimplifiedBranch : LHS; 337 Value *UnsimplifiedRHS = SI == LHS ? RHS : UnsimplifiedBranch; 338 if (Simplified->getOperand(0) == UnsimplifiedLHS && 339 Simplified->getOperand(1) == UnsimplifiedRHS) 340 return Simplified; 341 if (Simplified->isCommutative() && 342 Simplified->getOperand(1) == UnsimplifiedLHS && 343 Simplified->getOperand(0) == UnsimplifiedRHS) 344 return Simplified; 345 } 346 } 347 348 return nullptr; 349 } 350 351 /// In the case of a comparison with a select instruction, try to simplify the 352 /// comparison by seeing whether both branches of the select result in the same 353 /// value. Returns the common value if so, otherwise returns null. 354 static Value *ThreadCmpOverSelect(CmpInst::Predicate Pred, Value *LHS, 355 Value *RHS, const SimplifyQuery &Q, 356 unsigned MaxRecurse) { 357 // Recursion is always used, so bail out at once if we already hit the limit. 358 if (!MaxRecurse--) 359 return nullptr; 360 361 // Make sure the select is on the LHS. 362 if (!isa<SelectInst>(LHS)) { 363 std::swap(LHS, RHS); 364 Pred = CmpInst::getSwappedPredicate(Pred); 365 } 366 assert(isa<SelectInst>(LHS) && "Not comparing with a select instruction!"); 367 SelectInst *SI = cast<SelectInst>(LHS); 368 Value *Cond = SI->getCondition(); 369 Value *TV = SI->getTrueValue(); 370 Value *FV = SI->getFalseValue(); 371 372 // Now that we have "cmp select(Cond, TV, FV), RHS", analyse it. 373 // Does "cmp TV, RHS" simplify? 374 Value *TCmp = SimplifyCmpInst(Pred, TV, RHS, Q, MaxRecurse); 375 if (TCmp == Cond) { 376 // It not only simplified, it simplified to the select condition. Replace 377 // it with 'true'. 378 TCmp = getTrue(Cond->getType()); 379 } else if (!TCmp) { 380 // It didn't simplify. However if "cmp TV, RHS" is equal to the select 381 // condition then we can replace it with 'true'. Otherwise give up. 382 if (!isSameCompare(Cond, Pred, TV, RHS)) 383 return nullptr; 384 TCmp = getTrue(Cond->getType()); 385 } 386 387 // Does "cmp FV, RHS" simplify? 388 Value *FCmp = SimplifyCmpInst(Pred, FV, RHS, Q, MaxRecurse); 389 if (FCmp == Cond) { 390 // It not only simplified, it simplified to the select condition. Replace 391 // it with 'false'. 392 FCmp = getFalse(Cond->getType()); 393 } else if (!FCmp) { 394 // It didn't simplify. However if "cmp FV, RHS" is equal to the select 395 // condition then we can replace it with 'false'. Otherwise give up. 396 if (!isSameCompare(Cond, Pred, FV, RHS)) 397 return nullptr; 398 FCmp = getFalse(Cond->getType()); 399 } 400 401 // If both sides simplified to the same value, then use it as the result of 402 // the original comparison. 403 if (TCmp == FCmp) 404 return TCmp; 405 406 // The remaining cases only make sense if the select condition has the same 407 // type as the result of the comparison, so bail out if this is not so. 408 if (Cond->getType()->isVectorTy() != RHS->getType()->isVectorTy()) 409 return nullptr; 410 // If the false value simplified to false, then the result of the compare 411 // is equal to "Cond && TCmp". This also catches the case when the false 412 // value simplified to false and the true value to true, returning "Cond". 413 if (match(FCmp, m_Zero())) 414 if (Value *V = SimplifyAndInst(Cond, TCmp, Q, MaxRecurse)) 415 return V; 416 // If the true value simplified to true, then the result of the compare 417 // is equal to "Cond || FCmp". 418 if (match(TCmp, m_One())) 419 if (Value *V = SimplifyOrInst(Cond, FCmp, Q, MaxRecurse)) 420 return V; 421 // Finally, if the false value simplified to true and the true value to 422 // false, then the result of the compare is equal to "!Cond". 423 if (match(FCmp, m_One()) && match(TCmp, m_Zero())) 424 if (Value *V = 425 SimplifyXorInst(Cond, Constant::getAllOnesValue(Cond->getType()), 426 Q, MaxRecurse)) 427 return V; 428 429 return nullptr; 430 } 431 432 /// In the case of a binary operation with an operand that is a PHI instruction, 433 /// try to simplify the binop by seeing whether evaluating it on the incoming 434 /// phi values yields the same result for every value. If so returns the common 435 /// value, otherwise returns null. 436 static Value *ThreadBinOpOverPHI(Instruction::BinaryOps Opcode, Value *LHS, 437 Value *RHS, const SimplifyQuery &Q, 438 unsigned MaxRecurse) { 439 // Recursion is always used, so bail out at once if we already hit the limit. 440 if (!MaxRecurse--) 441 return nullptr; 442 443 PHINode *PI; 444 if (isa<PHINode>(LHS)) { 445 PI = cast<PHINode>(LHS); 446 // Bail out if RHS and the phi may be mutually interdependent due to a loop. 447 if (!ValueDominatesPHI(RHS, PI, Q.DT)) 448 return nullptr; 449 } else { 450 assert(isa<PHINode>(RHS) && "No PHI instruction operand!"); 451 PI = cast<PHINode>(RHS); 452 // Bail out if LHS and the phi may be mutually interdependent due to a loop. 453 if (!ValueDominatesPHI(LHS, PI, Q.DT)) 454 return nullptr; 455 } 456 457 // Evaluate the BinOp on the incoming phi values. 458 Value *CommonValue = nullptr; 459 for (Value *Incoming : PI->incoming_values()) { 460 // If the incoming value is the phi node itself, it can safely be skipped. 461 if (Incoming == PI) continue; 462 Value *V = PI == LHS ? 463 SimplifyBinOp(Opcode, Incoming, RHS, Q, MaxRecurse) : 464 SimplifyBinOp(Opcode, LHS, Incoming, Q, MaxRecurse); 465 // If the operation failed to simplify, or simplified to a different value 466 // to previously, then give up. 467 if (!V || (CommonValue && V != CommonValue)) 468 return nullptr; 469 CommonValue = V; 470 } 471 472 return CommonValue; 473 } 474 475 /// In the case of a comparison with a PHI instruction, try to simplify the 476 /// comparison by seeing whether comparing with all of the incoming phi values 477 /// yields the same result every time. If so returns the common result, 478 /// otherwise returns null. 479 static Value *ThreadCmpOverPHI(CmpInst::Predicate Pred, Value *LHS, Value *RHS, 480 const SimplifyQuery &Q, unsigned MaxRecurse) { 481 // Recursion is always used, so bail out at once if we already hit the limit. 482 if (!MaxRecurse--) 483 return nullptr; 484 485 // Make sure the phi is on the LHS. 486 if (!isa<PHINode>(LHS)) { 487 std::swap(LHS, RHS); 488 Pred = CmpInst::getSwappedPredicate(Pred); 489 } 490 assert(isa<PHINode>(LHS) && "Not comparing with a phi instruction!"); 491 PHINode *PI = cast<PHINode>(LHS); 492 493 // Bail out if RHS and the phi may be mutually interdependent due to a loop. 494 if (!ValueDominatesPHI(RHS, PI, Q.DT)) 495 return nullptr; 496 497 // Evaluate the BinOp on the incoming phi values. 498 Value *CommonValue = nullptr; 499 for (Value *Incoming : PI->incoming_values()) { 500 // If the incoming value is the phi node itself, it can safely be skipped. 501 if (Incoming == PI) continue; 502 Value *V = SimplifyCmpInst(Pred, Incoming, RHS, Q, MaxRecurse); 503 // If the operation failed to simplify, or simplified to a different value 504 // to previously, then give up. 505 if (!V || (CommonValue && V != CommonValue)) 506 return nullptr; 507 CommonValue = V; 508 } 509 510 return CommonValue; 511 } 512 513 static Constant *foldOrCommuteConstant(Instruction::BinaryOps Opcode, 514 Value *&Op0, Value *&Op1, 515 const SimplifyQuery &Q) { 516 if (auto *CLHS = dyn_cast<Constant>(Op0)) { 517 if (auto *CRHS = dyn_cast<Constant>(Op1)) 518 return ConstantFoldBinaryOpOperands(Opcode, CLHS, CRHS, Q.DL); 519 520 // Canonicalize the constant to the RHS if this is a commutative operation. 521 if (Instruction::isCommutative(Opcode)) 522 std::swap(Op0, Op1); 523 } 524 return nullptr; 525 } 526 527 /// Given operands for an Add, see if we can fold the result. 528 /// If not, this returns null. 529 static Value *SimplifyAddInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, 530 const SimplifyQuery &Q, unsigned MaxRecurse) { 531 if (Constant *C = foldOrCommuteConstant(Instruction::Add, Op0, Op1, Q)) 532 return C; 533 534 // X + undef -> undef 535 if (match(Op1, m_Undef())) 536 return Op1; 537 538 // X + 0 -> X 539 if (match(Op1, m_Zero())) 540 return Op0; 541 542 // X + (Y - X) -> Y 543 // (Y - X) + X -> Y 544 // Eg: X + -X -> 0 545 Value *Y = nullptr; 546 if (match(Op1, m_Sub(m_Value(Y), m_Specific(Op0))) || 547 match(Op0, m_Sub(m_Value(Y), m_Specific(Op1)))) 548 return Y; 549 550 // X + ~X -> -1 since ~X = -X-1 551 Type *Ty = Op0->getType(); 552 if (match(Op0, m_Not(m_Specific(Op1))) || 553 match(Op1, m_Not(m_Specific(Op0)))) 554 return Constant::getAllOnesValue(Ty); 555 556 // add nsw/nuw (xor Y, signmask), signmask --> Y 557 // The no-wrapping add guarantees that the top bit will be set by the add. 558 // Therefore, the xor must be clearing the already set sign bit of Y. 559 if ((isNSW || isNUW) && match(Op1, m_SignMask()) && 560 match(Op0, m_Xor(m_Value(Y), m_SignMask()))) 561 return Y; 562 563 /// i1 add -> xor. 564 if (MaxRecurse && Op0->getType()->isIntOrIntVectorTy(1)) 565 if (Value *V = SimplifyXorInst(Op0, Op1, Q, MaxRecurse-1)) 566 return V; 567 568 // Try some generic simplifications for associative operations. 569 if (Value *V = SimplifyAssociativeBinOp(Instruction::Add, Op0, Op1, Q, 570 MaxRecurse)) 571 return V; 572 573 // Threading Add over selects and phi nodes is pointless, so don't bother. 574 // Threading over the select in "A + select(cond, B, C)" means evaluating 575 // "A+B" and "A+C" and seeing if they are equal; but they are equal if and 576 // only if B and C are equal. If B and C are equal then (since we assume 577 // that operands have already been simplified) "select(cond, B, C)" should 578 // have been simplified to the common value of B and C already. Analysing 579 // "A+B" and "A+C" thus gains nothing, but costs compile time. Similarly 580 // for threading over phi nodes. 581 582 return nullptr; 583 } 584 585 Value *llvm::SimplifyAddInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, 586 const SimplifyQuery &Query) { 587 return ::SimplifyAddInst(Op0, Op1, isNSW, isNUW, Query, RecursionLimit); 588 } 589 590 /// \brief Compute the base pointer and cumulative constant offsets for V. 591 /// 592 /// This strips all constant offsets off of V, leaving it the base pointer, and 593 /// accumulates the total constant offset applied in the returned constant. It 594 /// returns 0 if V is not a pointer, and returns the constant '0' if there are 595 /// no constant offsets applied. 596 /// 597 /// This is very similar to GetPointerBaseWithConstantOffset except it doesn't 598 /// follow non-inbounds geps. This allows it to remain usable for icmp ult/etc. 599 /// folding. 600 static Constant *stripAndComputeConstantOffsets(const DataLayout &DL, Value *&V, 601 bool AllowNonInbounds = false) { 602 assert(V->getType()->isPtrOrPtrVectorTy()); 603 604 Type *IntPtrTy = DL.getIntPtrType(V->getType())->getScalarType(); 605 APInt Offset = APInt::getNullValue(IntPtrTy->getIntegerBitWidth()); 606 607 // Even though we don't look through PHI nodes, we could be called on an 608 // instruction in an unreachable block, which may be on a cycle. 609 SmallPtrSet<Value *, 4> Visited; 610 Visited.insert(V); 611 do { 612 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 613 if ((!AllowNonInbounds && !GEP->isInBounds()) || 614 !GEP->accumulateConstantOffset(DL, Offset)) 615 break; 616 V = GEP->getPointerOperand(); 617 } else if (Operator::getOpcode(V) == Instruction::BitCast) { 618 V = cast<Operator>(V)->getOperand(0); 619 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 620 if (GA->isInterposable()) 621 break; 622 V = GA->getAliasee(); 623 } else { 624 if (auto CS = CallSite(V)) 625 if (Value *RV = CS.getReturnedArgOperand()) { 626 V = RV; 627 continue; 628 } 629 break; 630 } 631 assert(V->getType()->isPtrOrPtrVectorTy() && "Unexpected operand type!"); 632 } while (Visited.insert(V).second); 633 634 Constant *OffsetIntPtr = ConstantInt::get(IntPtrTy, Offset); 635 if (V->getType()->isVectorTy()) 636 return ConstantVector::getSplat(V->getType()->getVectorNumElements(), 637 OffsetIntPtr); 638 return OffsetIntPtr; 639 } 640 641 /// \brief Compute the constant difference between two pointer values. 642 /// If the difference is not a constant, returns zero. 643 static Constant *computePointerDifference(const DataLayout &DL, Value *LHS, 644 Value *RHS) { 645 Constant *LHSOffset = stripAndComputeConstantOffsets(DL, LHS); 646 Constant *RHSOffset = stripAndComputeConstantOffsets(DL, RHS); 647 648 // If LHS and RHS are not related via constant offsets to the same base 649 // value, there is nothing we can do here. 650 if (LHS != RHS) 651 return nullptr; 652 653 // Otherwise, the difference of LHS - RHS can be computed as: 654 // LHS - RHS 655 // = (LHSOffset + Base) - (RHSOffset + Base) 656 // = LHSOffset - RHSOffset 657 return ConstantExpr::getSub(LHSOffset, RHSOffset); 658 } 659 660 /// Given operands for a Sub, see if we can fold the result. 661 /// If not, this returns null. 662 static Value *SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, 663 const SimplifyQuery &Q, unsigned MaxRecurse) { 664 if (Constant *C = foldOrCommuteConstant(Instruction::Sub, Op0, Op1, Q)) 665 return C; 666 667 // X - undef -> undef 668 // undef - X -> undef 669 if (match(Op0, m_Undef()) || match(Op1, m_Undef())) 670 return UndefValue::get(Op0->getType()); 671 672 // X - 0 -> X 673 if (match(Op1, m_Zero())) 674 return Op0; 675 676 // X - X -> 0 677 if (Op0 == Op1) 678 return Constant::getNullValue(Op0->getType()); 679 680 // Is this a negation? 681 if (match(Op0, m_Zero())) { 682 // 0 - X -> 0 if the sub is NUW. 683 if (isNUW) 684 return Op0; 685 686 KnownBits Known = computeKnownBits(Op1, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 687 if (Known.Zero.isMaxSignedValue()) { 688 // Op1 is either 0 or the minimum signed value. If the sub is NSW, then 689 // Op1 must be 0 because negating the minimum signed value is undefined. 690 if (isNSW) 691 return Op0; 692 693 // 0 - X -> X if X is 0 or the minimum signed value. 694 return Op1; 695 } 696 } 697 698 // (X + Y) - Z -> X + (Y - Z) or Y + (X - Z) if everything simplifies. 699 // For example, (X + Y) - Y -> X; (Y + X) - Y -> X 700 Value *X = nullptr, *Y = nullptr, *Z = Op1; 701 if (MaxRecurse && match(Op0, m_Add(m_Value(X), m_Value(Y)))) { // (X + Y) - Z 702 // See if "V === Y - Z" simplifies. 703 if (Value *V = SimplifyBinOp(Instruction::Sub, Y, Z, Q, MaxRecurse-1)) 704 // It does! Now see if "X + V" simplifies. 705 if (Value *W = SimplifyBinOp(Instruction::Add, X, V, Q, MaxRecurse-1)) { 706 // It does, we successfully reassociated! 707 ++NumReassoc; 708 return W; 709 } 710 // See if "V === X - Z" simplifies. 711 if (Value *V = SimplifyBinOp(Instruction::Sub, X, Z, Q, MaxRecurse-1)) 712 // It does! Now see if "Y + V" simplifies. 713 if (Value *W = SimplifyBinOp(Instruction::Add, Y, V, Q, MaxRecurse-1)) { 714 // It does, we successfully reassociated! 715 ++NumReassoc; 716 return W; 717 } 718 } 719 720 // X - (Y + Z) -> (X - Y) - Z or (X - Z) - Y if everything simplifies. 721 // For example, X - (X + 1) -> -1 722 X = Op0; 723 if (MaxRecurse && match(Op1, m_Add(m_Value(Y), m_Value(Z)))) { // X - (Y + Z) 724 // See if "V === X - Y" simplifies. 725 if (Value *V = SimplifyBinOp(Instruction::Sub, X, Y, Q, MaxRecurse-1)) 726 // It does! Now see if "V - Z" simplifies. 727 if (Value *W = SimplifyBinOp(Instruction::Sub, V, Z, Q, MaxRecurse-1)) { 728 // It does, we successfully reassociated! 729 ++NumReassoc; 730 return W; 731 } 732 // See if "V === X - Z" simplifies. 733 if (Value *V = SimplifyBinOp(Instruction::Sub, X, Z, Q, MaxRecurse-1)) 734 // It does! Now see if "V - Y" simplifies. 735 if (Value *W = SimplifyBinOp(Instruction::Sub, V, Y, Q, MaxRecurse-1)) { 736 // It does, we successfully reassociated! 737 ++NumReassoc; 738 return W; 739 } 740 } 741 742 // Z - (X - Y) -> (Z - X) + Y if everything simplifies. 743 // For example, X - (X - Y) -> Y. 744 Z = Op0; 745 if (MaxRecurse && match(Op1, m_Sub(m_Value(X), m_Value(Y)))) // Z - (X - Y) 746 // See if "V === Z - X" simplifies. 747 if (Value *V = SimplifyBinOp(Instruction::Sub, Z, X, Q, MaxRecurse-1)) 748 // It does! Now see if "V + Y" simplifies. 749 if (Value *W = SimplifyBinOp(Instruction::Add, V, Y, Q, MaxRecurse-1)) { 750 // It does, we successfully reassociated! 751 ++NumReassoc; 752 return W; 753 } 754 755 // trunc(X) - trunc(Y) -> trunc(X - Y) if everything simplifies. 756 if (MaxRecurse && match(Op0, m_Trunc(m_Value(X))) && 757 match(Op1, m_Trunc(m_Value(Y)))) 758 if (X->getType() == Y->getType()) 759 // See if "V === X - Y" simplifies. 760 if (Value *V = SimplifyBinOp(Instruction::Sub, X, Y, Q, MaxRecurse-1)) 761 // It does! Now see if "trunc V" simplifies. 762 if (Value *W = SimplifyCastInst(Instruction::Trunc, V, Op0->getType(), 763 Q, MaxRecurse - 1)) 764 // It does, return the simplified "trunc V". 765 return W; 766 767 // Variations on GEP(base, I, ...) - GEP(base, i, ...) -> GEP(null, I-i, ...). 768 if (match(Op0, m_PtrToInt(m_Value(X))) && 769 match(Op1, m_PtrToInt(m_Value(Y)))) 770 if (Constant *Result = computePointerDifference(Q.DL, X, Y)) 771 return ConstantExpr::getIntegerCast(Result, Op0->getType(), true); 772 773 // i1 sub -> xor. 774 if (MaxRecurse && Op0->getType()->isIntOrIntVectorTy(1)) 775 if (Value *V = SimplifyXorInst(Op0, Op1, Q, MaxRecurse-1)) 776 return V; 777 778 // Threading Sub over selects and phi nodes is pointless, so don't bother. 779 // Threading over the select in "A - select(cond, B, C)" means evaluating 780 // "A-B" and "A-C" and seeing if they are equal; but they are equal if and 781 // only if B and C are equal. If B and C are equal then (since we assume 782 // that operands have already been simplified) "select(cond, B, C)" should 783 // have been simplified to the common value of B and C already. Analysing 784 // "A-B" and "A-C" thus gains nothing, but costs compile time. Similarly 785 // for threading over phi nodes. 786 787 return nullptr; 788 } 789 790 Value *llvm::SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, 791 const SimplifyQuery &Q) { 792 return ::SimplifySubInst(Op0, Op1, isNSW, isNUW, Q, RecursionLimit); 793 } 794 795 /// Given operands for a Mul, see if we can fold the result. 796 /// If not, this returns null. 797 static Value *SimplifyMulInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 798 unsigned MaxRecurse) { 799 if (Constant *C = foldOrCommuteConstant(Instruction::Mul, Op0, Op1, Q)) 800 return C; 801 802 // X * undef -> 0 803 if (match(Op1, m_Undef())) 804 return Constant::getNullValue(Op0->getType()); 805 806 // X * 0 -> 0 807 if (match(Op1, m_Zero())) 808 return Op1; 809 810 // X * 1 -> X 811 if (match(Op1, m_One())) 812 return Op0; 813 814 // (X / Y) * Y -> X if the division is exact. 815 Value *X = nullptr; 816 if (match(Op0, m_Exact(m_IDiv(m_Value(X), m_Specific(Op1)))) || // (X / Y) * Y 817 match(Op1, m_Exact(m_IDiv(m_Value(X), m_Specific(Op0))))) // Y * (X / Y) 818 return X; 819 820 // i1 mul -> and. 821 if (MaxRecurse && Op0->getType()->isIntOrIntVectorTy(1)) 822 if (Value *V = SimplifyAndInst(Op0, Op1, Q, MaxRecurse-1)) 823 return V; 824 825 // Try some generic simplifications for associative operations. 826 if (Value *V = SimplifyAssociativeBinOp(Instruction::Mul, Op0, Op1, Q, 827 MaxRecurse)) 828 return V; 829 830 // Mul distributes over Add. Try some generic simplifications based on this. 831 if (Value *V = ExpandBinOp(Instruction::Mul, Op0, Op1, Instruction::Add, 832 Q, MaxRecurse)) 833 return V; 834 835 // If the operation is with the result of a select instruction, check whether 836 // operating on either branch of the select always yields the same value. 837 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 838 if (Value *V = ThreadBinOpOverSelect(Instruction::Mul, Op0, Op1, Q, 839 MaxRecurse)) 840 return V; 841 842 // If the operation is with the result of a phi instruction, check whether 843 // operating on all incoming values of the phi always yields the same value. 844 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 845 if (Value *V = ThreadBinOpOverPHI(Instruction::Mul, Op0, Op1, Q, 846 MaxRecurse)) 847 return V; 848 849 return nullptr; 850 } 851 852 Value *llvm::SimplifyMulInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 853 return ::SimplifyMulInst(Op0, Op1, Q, RecursionLimit); 854 } 855 856 /// Check for common or similar folds of integer division or integer remainder. 857 /// This applies to all 4 opcodes (sdiv/udiv/srem/urem). 858 static Value *simplifyDivRem(Value *Op0, Value *Op1, bool IsDiv) { 859 Type *Ty = Op0->getType(); 860 861 // X / undef -> undef 862 // X % undef -> undef 863 if (match(Op1, m_Undef())) 864 return Op1; 865 866 // X / 0 -> undef 867 // X % 0 -> undef 868 // We don't need to preserve faults! 869 if (match(Op1, m_Zero())) 870 return UndefValue::get(Ty); 871 872 // If any element of a constant divisor vector is zero, the whole op is undef. 873 auto *Op1C = dyn_cast<Constant>(Op1); 874 if (Op1C && Ty->isVectorTy()) { 875 unsigned NumElts = Ty->getVectorNumElements(); 876 for (unsigned i = 0; i != NumElts; ++i) { 877 Constant *Elt = Op1C->getAggregateElement(i); 878 if (Elt && Elt->isNullValue()) 879 return UndefValue::get(Ty); 880 } 881 } 882 883 // undef / X -> 0 884 // undef % X -> 0 885 if (match(Op0, m_Undef())) 886 return Constant::getNullValue(Ty); 887 888 // 0 / X -> 0 889 // 0 % X -> 0 890 if (match(Op0, m_Zero())) 891 return Op0; 892 893 // X / X -> 1 894 // X % X -> 0 895 if (Op0 == Op1) 896 return IsDiv ? ConstantInt::get(Ty, 1) : Constant::getNullValue(Ty); 897 898 // X / 1 -> X 899 // X % 1 -> 0 900 // If this is a boolean op (single-bit element type), we can't have 901 // division-by-zero or remainder-by-zero, so assume the divisor is 1. 902 if (match(Op1, m_One()) || Ty->isIntOrIntVectorTy(1)) 903 return IsDiv ? Op0 : Constant::getNullValue(Ty); 904 905 return nullptr; 906 } 907 908 /// These are simplifications common to SDiv and UDiv. 909 static Value *simplifyDiv(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1, 910 const SimplifyQuery &Q, unsigned MaxRecurse) { 911 if (Constant *C = foldOrCommuteConstant(Opcode, Op0, Op1, Q)) 912 return C; 913 914 if (Value *V = simplifyDivRem(Op0, Op1, true)) 915 return V; 916 917 bool isSigned = Opcode == Instruction::SDiv; 918 919 // (X * Y) / Y -> X if the multiplication does not overflow. 920 Value *X = nullptr, *Y = nullptr; 921 if (match(Op0, m_Mul(m_Value(X), m_Value(Y))) && (X == Op1 || Y == Op1)) { 922 if (Y != Op1) std::swap(X, Y); // Ensure expression is (X * Y) / Y, Y = Op1 923 OverflowingBinaryOperator *Mul = cast<OverflowingBinaryOperator>(Op0); 924 // If the Mul knows it does not overflow, then we are good to go. 925 if ((isSigned && Mul->hasNoSignedWrap()) || 926 (!isSigned && Mul->hasNoUnsignedWrap())) 927 return X; 928 // If X has the form X = A / Y then X * Y cannot overflow. 929 if (BinaryOperator *Div = dyn_cast<BinaryOperator>(X)) 930 if (Div->getOpcode() == Opcode && Div->getOperand(1) == Y) 931 return X; 932 } 933 934 // (X rem Y) / Y -> 0 935 if ((isSigned && match(Op0, m_SRem(m_Value(), m_Specific(Op1)))) || 936 (!isSigned && match(Op0, m_URem(m_Value(), m_Specific(Op1))))) 937 return Constant::getNullValue(Op0->getType()); 938 939 // (X /u C1) /u C2 -> 0 if C1 * C2 overflow 940 ConstantInt *C1, *C2; 941 if (!isSigned && match(Op0, m_UDiv(m_Value(X), m_ConstantInt(C1))) && 942 match(Op1, m_ConstantInt(C2))) { 943 bool Overflow; 944 (void)C1->getValue().umul_ov(C2->getValue(), Overflow); 945 if (Overflow) 946 return Constant::getNullValue(Op0->getType()); 947 } 948 949 // If the operation is with the result of a select instruction, check whether 950 // operating on either branch of the select always yields the same value. 951 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 952 if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse)) 953 return V; 954 955 // If the operation is with the result of a phi instruction, check whether 956 // operating on all incoming values of the phi always yields the same value. 957 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 958 if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse)) 959 return V; 960 961 return nullptr; 962 } 963 964 /// These are simplifications common to SRem and URem. 965 static Value *simplifyRem(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1, 966 const SimplifyQuery &Q, unsigned MaxRecurse) { 967 if (Constant *C = foldOrCommuteConstant(Opcode, Op0, Op1, Q)) 968 return C; 969 970 if (Value *V = simplifyDivRem(Op0, Op1, false)) 971 return V; 972 973 // (X % Y) % Y -> X % Y 974 if ((Opcode == Instruction::SRem && 975 match(Op0, m_SRem(m_Value(), m_Specific(Op1)))) || 976 (Opcode == Instruction::URem && 977 match(Op0, m_URem(m_Value(), m_Specific(Op1))))) 978 return Op0; 979 980 // If the operation is with the result of a select instruction, check whether 981 // operating on either branch of the select always yields the same value. 982 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 983 if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse)) 984 return V; 985 986 // If the operation is with the result of a phi instruction, check whether 987 // operating on all incoming values of the phi always yields the same value. 988 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 989 if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse)) 990 return V; 991 992 return nullptr; 993 } 994 995 /// Given a predicate and two operands, return true if the comparison is true. 996 /// This is a helper for div/rem simplification where we return some other value 997 /// when we can prove a relationship between the operands. 998 static bool isICmpTrue(ICmpInst::Predicate Pred, Value *LHS, Value *RHS, 999 const SimplifyQuery &Q, unsigned MaxRecurse) { 1000 Value *V = SimplifyICmpInst(Pred, LHS, RHS, Q, MaxRecurse); 1001 Constant *C = dyn_cast_or_null<Constant>(V); 1002 return (C && C->isAllOnesValue()); 1003 } 1004 1005 static Value *simplifyUnsignedDivRem(Value *Op0, Value *Op1, 1006 const SimplifyQuery &Q, 1007 unsigned MaxRecurse, bool IsDiv) { 1008 // Recursion is always used, so bail out at once if we already hit the limit. 1009 if (!MaxRecurse--) 1010 return nullptr; 1011 1012 // If we can prove that the quotient is unsigned less than the divisor, then 1013 // we know the answer: 1014 // X / Y --> 0 1015 // X % Y --> X 1016 if (isICmpTrue(ICmpInst::ICMP_ULT, Op0, Op1, Q, MaxRecurse)) 1017 return IsDiv ? Constant::getNullValue(Op0->getType()) : Op0; 1018 1019 return nullptr; 1020 } 1021 1022 /// Given operands for an SDiv, see if we can fold the result. 1023 /// If not, this returns null. 1024 static Value *SimplifySDivInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 1025 unsigned MaxRecurse) { 1026 if (Value *V = simplifyDiv(Instruction::SDiv, Op0, Op1, Q, MaxRecurse)) 1027 return V; 1028 1029 return nullptr; 1030 } 1031 1032 Value *llvm::SimplifySDivInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 1033 return ::SimplifySDivInst(Op0, Op1, Q, RecursionLimit); 1034 } 1035 1036 /// Given operands for a UDiv, see if we can fold the result. 1037 /// If not, this returns null. 1038 static Value *SimplifyUDivInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 1039 unsigned MaxRecurse) { 1040 if (Value *V = simplifyDiv(Instruction::UDiv, Op0, Op1, Q, MaxRecurse)) 1041 return V; 1042 1043 if (Value *V = simplifyUnsignedDivRem(Op0, Op1, Q, MaxRecurse, true)) 1044 return V; 1045 1046 return nullptr; 1047 } 1048 1049 Value *llvm::SimplifyUDivInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 1050 return ::SimplifyUDivInst(Op0, Op1, Q, RecursionLimit); 1051 } 1052 1053 /// Given operands for an SRem, see if we can fold the result. 1054 /// If not, this returns null. 1055 static Value *SimplifySRemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 1056 unsigned MaxRecurse) { 1057 if (Value *V = simplifyRem(Instruction::SRem, Op0, Op1, Q, MaxRecurse)) 1058 return V; 1059 1060 return nullptr; 1061 } 1062 1063 Value *llvm::SimplifySRemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 1064 return ::SimplifySRemInst(Op0, Op1, Q, RecursionLimit); 1065 } 1066 1067 /// Given operands for a URem, see if we can fold the result. 1068 /// If not, this returns null. 1069 static Value *SimplifyURemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 1070 unsigned MaxRecurse) { 1071 if (Value *V = simplifyRem(Instruction::URem, Op0, Op1, Q, MaxRecurse)) 1072 return V; 1073 1074 if (Value *V = simplifyUnsignedDivRem(Op0, Op1, Q, MaxRecurse, false)) 1075 return V; 1076 1077 return nullptr; 1078 } 1079 1080 Value *llvm::SimplifyURemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 1081 return ::SimplifyURemInst(Op0, Op1, Q, RecursionLimit); 1082 } 1083 1084 /// Returns true if a shift by \c Amount always yields undef. 1085 static bool isUndefShift(Value *Amount) { 1086 Constant *C = dyn_cast<Constant>(Amount); 1087 if (!C) 1088 return false; 1089 1090 // X shift by undef -> undef because it may shift by the bitwidth. 1091 if (isa<UndefValue>(C)) 1092 return true; 1093 1094 // Shifting by the bitwidth or more is undefined. 1095 if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1096 if (CI->getValue().getLimitedValue() >= 1097 CI->getType()->getScalarSizeInBits()) 1098 return true; 1099 1100 // If all lanes of a vector shift are undefined the whole shift is. 1101 if (isa<ConstantVector>(C) || isa<ConstantDataVector>(C)) { 1102 for (unsigned I = 0, E = C->getType()->getVectorNumElements(); I != E; ++I) 1103 if (!isUndefShift(C->getAggregateElement(I))) 1104 return false; 1105 return true; 1106 } 1107 1108 return false; 1109 } 1110 1111 /// Given operands for an Shl, LShr or AShr, see if we can fold the result. 1112 /// If not, this returns null. 1113 static Value *SimplifyShift(Instruction::BinaryOps Opcode, Value *Op0, 1114 Value *Op1, const SimplifyQuery &Q, unsigned MaxRecurse) { 1115 if (Constant *C = foldOrCommuteConstant(Opcode, Op0, Op1, Q)) 1116 return C; 1117 1118 // 0 shift by X -> 0 1119 if (match(Op0, m_Zero())) 1120 return Op0; 1121 1122 // X shift by 0 -> X 1123 if (match(Op1, m_Zero())) 1124 return Op0; 1125 1126 // Fold undefined shifts. 1127 if (isUndefShift(Op1)) 1128 return UndefValue::get(Op0->getType()); 1129 1130 // If the operation is with the result of a select instruction, check whether 1131 // operating on either branch of the select always yields the same value. 1132 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 1133 if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse)) 1134 return V; 1135 1136 // If the operation is with the result of a phi instruction, check whether 1137 // operating on all incoming values of the phi always yields the same value. 1138 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 1139 if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse)) 1140 return V; 1141 1142 // If any bits in the shift amount make that value greater than or equal to 1143 // the number of bits in the type, the shift is undefined. 1144 KnownBits Known = computeKnownBits(Op1, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 1145 if (Known.One.getLimitedValue() >= Known.getBitWidth()) 1146 return UndefValue::get(Op0->getType()); 1147 1148 // If all valid bits in the shift amount are known zero, the first operand is 1149 // unchanged. 1150 unsigned NumValidShiftBits = Log2_32_Ceil(Known.getBitWidth()); 1151 if (Known.countMinTrailingZeros() >= NumValidShiftBits) 1152 return Op0; 1153 1154 return nullptr; 1155 } 1156 1157 /// \brief Given operands for an Shl, LShr or AShr, see if we can 1158 /// fold the result. If not, this returns null. 1159 static Value *SimplifyRightShift(Instruction::BinaryOps Opcode, Value *Op0, 1160 Value *Op1, bool isExact, const SimplifyQuery &Q, 1161 unsigned MaxRecurse) { 1162 if (Value *V = SimplifyShift(Opcode, Op0, Op1, Q, MaxRecurse)) 1163 return V; 1164 1165 // X >> X -> 0 1166 if (Op0 == Op1) 1167 return Constant::getNullValue(Op0->getType()); 1168 1169 // undef >> X -> 0 1170 // undef >> X -> undef (if it's exact) 1171 if (match(Op0, m_Undef())) 1172 return isExact ? Op0 : Constant::getNullValue(Op0->getType()); 1173 1174 // The low bit cannot be shifted out of an exact shift if it is set. 1175 if (isExact) { 1176 KnownBits Op0Known = computeKnownBits(Op0, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT); 1177 if (Op0Known.One[0]) 1178 return Op0; 1179 } 1180 1181 return nullptr; 1182 } 1183 1184 /// Given operands for an Shl, see if we can fold the result. 1185 /// If not, this returns null. 1186 static Value *SimplifyShlInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, 1187 const SimplifyQuery &Q, unsigned MaxRecurse) { 1188 if (Value *V = SimplifyShift(Instruction::Shl, Op0, Op1, Q, MaxRecurse)) 1189 return V; 1190 1191 // undef << X -> 0 1192 // undef << X -> undef if (if it's NSW/NUW) 1193 if (match(Op0, m_Undef())) 1194 return isNSW || isNUW ? Op0 : Constant::getNullValue(Op0->getType()); 1195 1196 // (X >> A) << A -> X 1197 Value *X; 1198 if (match(Op0, m_Exact(m_Shr(m_Value(X), m_Specific(Op1))))) 1199 return X; 1200 return nullptr; 1201 } 1202 1203 Value *llvm::SimplifyShlInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, 1204 const SimplifyQuery &Q) { 1205 return ::SimplifyShlInst(Op0, Op1, isNSW, isNUW, Q, RecursionLimit); 1206 } 1207 1208 /// Given operands for an LShr, see if we can fold the result. 1209 /// If not, this returns null. 1210 static Value *SimplifyLShrInst(Value *Op0, Value *Op1, bool isExact, 1211 const SimplifyQuery &Q, unsigned MaxRecurse) { 1212 if (Value *V = SimplifyRightShift(Instruction::LShr, Op0, Op1, isExact, Q, 1213 MaxRecurse)) 1214 return V; 1215 1216 // (X << A) >> A -> X 1217 Value *X; 1218 if (match(Op0, m_NUWShl(m_Value(X), m_Specific(Op1)))) 1219 return X; 1220 1221 return nullptr; 1222 } 1223 1224 Value *llvm::SimplifyLShrInst(Value *Op0, Value *Op1, bool isExact, 1225 const SimplifyQuery &Q) { 1226 return ::SimplifyLShrInst(Op0, Op1, isExact, Q, RecursionLimit); 1227 } 1228 1229 /// Given operands for an AShr, see if we can fold the result. 1230 /// If not, this returns null. 1231 static Value *SimplifyAShrInst(Value *Op0, Value *Op1, bool isExact, 1232 const SimplifyQuery &Q, unsigned MaxRecurse) { 1233 if (Value *V = SimplifyRightShift(Instruction::AShr, Op0, Op1, isExact, Q, 1234 MaxRecurse)) 1235 return V; 1236 1237 // all ones >>a X -> all ones 1238 if (match(Op0, m_AllOnes())) 1239 return Op0; 1240 1241 // (X << A) >> A -> X 1242 Value *X; 1243 if (match(Op0, m_NSWShl(m_Value(X), m_Specific(Op1)))) 1244 return X; 1245 1246 // Arithmetic shifting an all-sign-bit value is a no-op. 1247 unsigned NumSignBits = ComputeNumSignBits(Op0, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 1248 if (NumSignBits == Op0->getType()->getScalarSizeInBits()) 1249 return Op0; 1250 1251 return nullptr; 1252 } 1253 1254 Value *llvm::SimplifyAShrInst(Value *Op0, Value *Op1, bool isExact, 1255 const SimplifyQuery &Q) { 1256 return ::SimplifyAShrInst(Op0, Op1, isExact, Q, RecursionLimit); 1257 } 1258 1259 /// Commuted variants are assumed to be handled by calling this function again 1260 /// with the parameters swapped. 1261 static Value *simplifyUnsignedRangeCheck(ICmpInst *ZeroICmp, 1262 ICmpInst *UnsignedICmp, bool IsAnd) { 1263 Value *X, *Y; 1264 1265 ICmpInst::Predicate EqPred; 1266 if (!match(ZeroICmp, m_ICmp(EqPred, m_Value(Y), m_Zero())) || 1267 !ICmpInst::isEquality(EqPred)) 1268 return nullptr; 1269 1270 ICmpInst::Predicate UnsignedPred; 1271 if (match(UnsignedICmp, m_ICmp(UnsignedPred, m_Value(X), m_Specific(Y))) && 1272 ICmpInst::isUnsigned(UnsignedPred)) 1273 ; 1274 else if (match(UnsignedICmp, 1275 m_ICmp(UnsignedPred, m_Value(Y), m_Specific(X))) && 1276 ICmpInst::isUnsigned(UnsignedPred)) 1277 UnsignedPred = ICmpInst::getSwappedPredicate(UnsignedPred); 1278 else 1279 return nullptr; 1280 1281 // X < Y && Y != 0 --> X < Y 1282 // X < Y || Y != 0 --> Y != 0 1283 if (UnsignedPred == ICmpInst::ICMP_ULT && EqPred == ICmpInst::ICMP_NE) 1284 return IsAnd ? UnsignedICmp : ZeroICmp; 1285 1286 // X >= Y || Y != 0 --> true 1287 // X >= Y || Y == 0 --> X >= Y 1288 if (UnsignedPred == ICmpInst::ICMP_UGE && !IsAnd) { 1289 if (EqPred == ICmpInst::ICMP_NE) 1290 return getTrue(UnsignedICmp->getType()); 1291 return UnsignedICmp; 1292 } 1293 1294 // X < Y && Y == 0 --> false 1295 if (UnsignedPred == ICmpInst::ICMP_ULT && EqPred == ICmpInst::ICMP_EQ && 1296 IsAnd) 1297 return getFalse(UnsignedICmp->getType()); 1298 1299 return nullptr; 1300 } 1301 1302 /// Commuted variants are assumed to be handled by calling this function again 1303 /// with the parameters swapped. 1304 static Value *simplifyAndOfICmpsWithSameOperands(ICmpInst *Op0, ICmpInst *Op1) { 1305 ICmpInst::Predicate Pred0, Pred1; 1306 Value *A ,*B; 1307 if (!match(Op0, m_ICmp(Pred0, m_Value(A), m_Value(B))) || 1308 !match(Op1, m_ICmp(Pred1, m_Specific(A), m_Specific(B)))) 1309 return nullptr; 1310 1311 // We have (icmp Pred0, A, B) & (icmp Pred1, A, B). 1312 // If Op1 is always implied true by Op0, then Op0 is a subset of Op1, and we 1313 // can eliminate Op1 from this 'and'. 1314 if (ICmpInst::isImpliedTrueByMatchingCmp(Pred0, Pred1)) 1315 return Op0; 1316 1317 // Check for any combination of predicates that are guaranteed to be disjoint. 1318 if ((Pred0 == ICmpInst::getInversePredicate(Pred1)) || 1319 (Pred0 == ICmpInst::ICMP_EQ && ICmpInst::isFalseWhenEqual(Pred1)) || 1320 (Pred0 == ICmpInst::ICMP_SLT && Pred1 == ICmpInst::ICMP_SGT) || 1321 (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_UGT)) 1322 return getFalse(Op0->getType()); 1323 1324 return nullptr; 1325 } 1326 1327 /// Commuted variants are assumed to be handled by calling this function again 1328 /// with the parameters swapped. 1329 static Value *simplifyOrOfICmpsWithSameOperands(ICmpInst *Op0, ICmpInst *Op1) { 1330 ICmpInst::Predicate Pred0, Pred1; 1331 Value *A ,*B; 1332 if (!match(Op0, m_ICmp(Pred0, m_Value(A), m_Value(B))) || 1333 !match(Op1, m_ICmp(Pred1, m_Specific(A), m_Specific(B)))) 1334 return nullptr; 1335 1336 // We have (icmp Pred0, A, B) | (icmp Pred1, A, B). 1337 // If Op1 is always implied true by Op0, then Op0 is a subset of Op1, and we 1338 // can eliminate Op0 from this 'or'. 1339 if (ICmpInst::isImpliedTrueByMatchingCmp(Pred0, Pred1)) 1340 return Op1; 1341 1342 // Check for any combination of predicates that cover the entire range of 1343 // possibilities. 1344 if ((Pred0 == ICmpInst::getInversePredicate(Pred1)) || 1345 (Pred0 == ICmpInst::ICMP_NE && ICmpInst::isTrueWhenEqual(Pred1)) || 1346 (Pred0 == ICmpInst::ICMP_SLE && Pred1 == ICmpInst::ICMP_SGE) || 1347 (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_UGE)) 1348 return getTrue(Op0->getType()); 1349 1350 return nullptr; 1351 } 1352 1353 /// Test if a pair of compares with a shared operand and 2 constants has an 1354 /// empty set intersection, full set union, or if one compare is a superset of 1355 /// the other. 1356 static Value *simplifyAndOrOfICmpsWithConstants(ICmpInst *Cmp0, ICmpInst *Cmp1, 1357 bool IsAnd) { 1358 // Look for this pattern: {and/or} (icmp X, C0), (icmp X, C1)). 1359 if (Cmp0->getOperand(0) != Cmp1->getOperand(0)) 1360 return nullptr; 1361 1362 const APInt *C0, *C1; 1363 if (!match(Cmp0->getOperand(1), m_APInt(C0)) || 1364 !match(Cmp1->getOperand(1), m_APInt(C1))) 1365 return nullptr; 1366 1367 auto Range0 = ConstantRange::makeExactICmpRegion(Cmp0->getPredicate(), *C0); 1368 auto Range1 = ConstantRange::makeExactICmpRegion(Cmp1->getPredicate(), *C1); 1369 1370 // For and-of-compares, check if the intersection is empty: 1371 // (icmp X, C0) && (icmp X, C1) --> empty set --> false 1372 if (IsAnd && Range0.intersectWith(Range1).isEmptySet()) 1373 return getFalse(Cmp0->getType()); 1374 1375 // For or-of-compares, check if the union is full: 1376 // (icmp X, C0) || (icmp X, C1) --> full set --> true 1377 if (!IsAnd && Range0.unionWith(Range1).isFullSet()) 1378 return getTrue(Cmp0->getType()); 1379 1380 // Is one range a superset of the other? 1381 // If this is and-of-compares, take the smaller set: 1382 // (icmp sgt X, 4) && (icmp sgt X, 42) --> icmp sgt X, 42 1383 // If this is or-of-compares, take the larger set: 1384 // (icmp sgt X, 4) || (icmp sgt X, 42) --> icmp sgt X, 4 1385 if (Range0.contains(Range1)) 1386 return IsAnd ? Cmp1 : Cmp0; 1387 if (Range1.contains(Range0)) 1388 return IsAnd ? Cmp0 : Cmp1; 1389 1390 return nullptr; 1391 } 1392 1393 static Value *simplifyAndOfICmpsWithAdd(ICmpInst *Op0, ICmpInst *Op1) { 1394 // (icmp (add V, C0), C1) & (icmp V, C0) 1395 ICmpInst::Predicate Pred0, Pred1; 1396 const APInt *C0, *C1; 1397 Value *V; 1398 if (!match(Op0, m_ICmp(Pred0, m_Add(m_Value(V), m_APInt(C0)), m_APInt(C1)))) 1399 return nullptr; 1400 1401 if (!match(Op1, m_ICmp(Pred1, m_Specific(V), m_Value()))) 1402 return nullptr; 1403 1404 auto *AddInst = cast<BinaryOperator>(Op0->getOperand(0)); 1405 if (AddInst->getOperand(1) != Op1->getOperand(1)) 1406 return nullptr; 1407 1408 Type *ITy = Op0->getType(); 1409 bool isNSW = AddInst->hasNoSignedWrap(); 1410 bool isNUW = AddInst->hasNoUnsignedWrap(); 1411 1412 const APInt Delta = *C1 - *C0; 1413 if (C0->isStrictlyPositive()) { 1414 if (Delta == 2) { 1415 if (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_SGT) 1416 return getFalse(ITy); 1417 if (Pred0 == ICmpInst::ICMP_SLT && Pred1 == ICmpInst::ICMP_SGT && isNSW) 1418 return getFalse(ITy); 1419 } 1420 if (Delta == 1) { 1421 if (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_SGT) 1422 return getFalse(ITy); 1423 if (Pred0 == ICmpInst::ICMP_SLE && Pred1 == ICmpInst::ICMP_SGT && isNSW) 1424 return getFalse(ITy); 1425 } 1426 } 1427 if (C0->getBoolValue() && isNUW) { 1428 if (Delta == 2) 1429 if (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_UGT) 1430 return getFalse(ITy); 1431 if (Delta == 1) 1432 if (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_UGT) 1433 return getFalse(ITy); 1434 } 1435 1436 return nullptr; 1437 } 1438 1439 static Value *simplifyAndOfICmps(ICmpInst *Op0, ICmpInst *Op1) { 1440 if (Value *X = simplifyUnsignedRangeCheck(Op0, Op1, /*IsAnd=*/true)) 1441 return X; 1442 if (Value *X = simplifyUnsignedRangeCheck(Op1, Op0, /*IsAnd=*/true)) 1443 return X; 1444 1445 if (Value *X = simplifyAndOfICmpsWithSameOperands(Op0, Op1)) 1446 return X; 1447 if (Value *X = simplifyAndOfICmpsWithSameOperands(Op1, Op0)) 1448 return X; 1449 1450 if (Value *X = simplifyAndOrOfICmpsWithConstants(Op0, Op1, true)) 1451 return X; 1452 1453 if (Value *X = simplifyAndOfICmpsWithAdd(Op0, Op1)) 1454 return X; 1455 if (Value *X = simplifyAndOfICmpsWithAdd(Op1, Op0)) 1456 return X; 1457 1458 return nullptr; 1459 } 1460 1461 static Value *simplifyOrOfICmpsWithAdd(ICmpInst *Op0, ICmpInst *Op1) { 1462 // (icmp (add V, C0), C1) | (icmp V, C0) 1463 ICmpInst::Predicate Pred0, Pred1; 1464 const APInt *C0, *C1; 1465 Value *V; 1466 if (!match(Op0, m_ICmp(Pred0, m_Add(m_Value(V), m_APInt(C0)), m_APInt(C1)))) 1467 return nullptr; 1468 1469 if (!match(Op1, m_ICmp(Pred1, m_Specific(V), m_Value()))) 1470 return nullptr; 1471 1472 auto *AddInst = cast<BinaryOperator>(Op0->getOperand(0)); 1473 if (AddInst->getOperand(1) != Op1->getOperand(1)) 1474 return nullptr; 1475 1476 Type *ITy = Op0->getType(); 1477 bool isNSW = AddInst->hasNoSignedWrap(); 1478 bool isNUW = AddInst->hasNoUnsignedWrap(); 1479 1480 const APInt Delta = *C1 - *C0; 1481 if (C0->isStrictlyPositive()) { 1482 if (Delta == 2) { 1483 if (Pred0 == ICmpInst::ICMP_UGE && Pred1 == ICmpInst::ICMP_SLE) 1484 return getTrue(ITy); 1485 if (Pred0 == ICmpInst::ICMP_SGE && Pred1 == ICmpInst::ICMP_SLE && isNSW) 1486 return getTrue(ITy); 1487 } 1488 if (Delta == 1) { 1489 if (Pred0 == ICmpInst::ICMP_UGT && Pred1 == ICmpInst::ICMP_SLE) 1490 return getTrue(ITy); 1491 if (Pred0 == ICmpInst::ICMP_SGT && Pred1 == ICmpInst::ICMP_SLE && isNSW) 1492 return getTrue(ITy); 1493 } 1494 } 1495 if (C0->getBoolValue() && isNUW) { 1496 if (Delta == 2) 1497 if (Pred0 == ICmpInst::ICMP_UGE && Pred1 == ICmpInst::ICMP_ULE) 1498 return getTrue(ITy); 1499 if (Delta == 1) 1500 if (Pred0 == ICmpInst::ICMP_UGT && Pred1 == ICmpInst::ICMP_ULE) 1501 return getTrue(ITy); 1502 } 1503 1504 return nullptr; 1505 } 1506 1507 static Value *simplifyOrOfICmps(ICmpInst *Op0, ICmpInst *Op1) { 1508 if (Value *X = simplifyUnsignedRangeCheck(Op0, Op1, /*IsAnd=*/false)) 1509 return X; 1510 if (Value *X = simplifyUnsignedRangeCheck(Op1, Op0, /*IsAnd=*/false)) 1511 return X; 1512 1513 if (Value *X = simplifyOrOfICmpsWithSameOperands(Op0, Op1)) 1514 return X; 1515 if (Value *X = simplifyOrOfICmpsWithSameOperands(Op1, Op0)) 1516 return X; 1517 1518 if (Value *X = simplifyAndOrOfICmpsWithConstants(Op0, Op1, false)) 1519 return X; 1520 1521 if (Value *X = simplifyOrOfICmpsWithAdd(Op0, Op1)) 1522 return X; 1523 if (Value *X = simplifyOrOfICmpsWithAdd(Op1, Op0)) 1524 return X; 1525 1526 return nullptr; 1527 } 1528 1529 static Value *simplifyAndOrOfICmps(Value *Op0, Value *Op1, bool IsAnd) { 1530 // Look through casts of the 'and' operands to find compares. 1531 auto *Cast0 = dyn_cast<CastInst>(Op0); 1532 auto *Cast1 = dyn_cast<CastInst>(Op1); 1533 if (Cast0 && Cast1 && Cast0->getOpcode() == Cast1->getOpcode() && 1534 Cast0->getSrcTy() == Cast1->getSrcTy()) { 1535 Op0 = Cast0->getOperand(0); 1536 Op1 = Cast1->getOperand(0); 1537 } 1538 1539 auto *Cmp0 = dyn_cast<ICmpInst>(Op0); 1540 auto *Cmp1 = dyn_cast<ICmpInst>(Op1); 1541 if (!Cmp0 || !Cmp1) 1542 return nullptr; 1543 1544 Value *V = 1545 IsAnd ? simplifyAndOfICmps(Cmp0, Cmp1) : simplifyOrOfICmps(Cmp0, Cmp1); 1546 if (!V) 1547 return nullptr; 1548 if (!Cast0) 1549 return V; 1550 1551 // If we looked through casts, we can only handle a constant simplification 1552 // because we are not allowed to create a cast instruction here. 1553 if (auto *C = dyn_cast<Constant>(V)) 1554 return ConstantExpr::getCast(Cast0->getOpcode(), C, Cast0->getType()); 1555 1556 return nullptr; 1557 } 1558 1559 /// Given operands for an And, see if we can fold the result. 1560 /// If not, this returns null. 1561 static Value *SimplifyAndInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 1562 unsigned MaxRecurse) { 1563 if (Constant *C = foldOrCommuteConstant(Instruction::And, Op0, Op1, Q)) 1564 return C; 1565 1566 // X & undef -> 0 1567 if (match(Op1, m_Undef())) 1568 return Constant::getNullValue(Op0->getType()); 1569 1570 // X & X = X 1571 if (Op0 == Op1) 1572 return Op0; 1573 1574 // X & 0 = 0 1575 if (match(Op1, m_Zero())) 1576 return Op1; 1577 1578 // X & -1 = X 1579 if (match(Op1, m_AllOnes())) 1580 return Op0; 1581 1582 // A & ~A = ~A & A = 0 1583 if (match(Op0, m_Not(m_Specific(Op1))) || 1584 match(Op1, m_Not(m_Specific(Op0)))) 1585 return Constant::getNullValue(Op0->getType()); 1586 1587 // (A | ?) & A = A 1588 if (match(Op0, m_c_Or(m_Specific(Op1), m_Value()))) 1589 return Op1; 1590 1591 // A & (A | ?) = A 1592 if (match(Op1, m_c_Or(m_Specific(Op0), m_Value()))) 1593 return Op0; 1594 1595 // A mask that only clears known zeros of a shifted value is a no-op. 1596 Value *X; 1597 const APInt *Mask; 1598 const APInt *ShAmt; 1599 if (match(Op1, m_APInt(Mask))) { 1600 // If all bits in the inverted and shifted mask are clear: 1601 // and (shl X, ShAmt), Mask --> shl X, ShAmt 1602 if (match(Op0, m_Shl(m_Value(X), m_APInt(ShAmt))) && 1603 (~(*Mask)).lshr(*ShAmt).isNullValue()) 1604 return Op0; 1605 1606 // If all bits in the inverted and shifted mask are clear: 1607 // and (lshr X, ShAmt), Mask --> lshr X, ShAmt 1608 if (match(Op0, m_LShr(m_Value(X), m_APInt(ShAmt))) && 1609 (~(*Mask)).shl(*ShAmt).isNullValue()) 1610 return Op0; 1611 } 1612 1613 // A & (-A) = A if A is a power of two or zero. 1614 if (match(Op0, m_Neg(m_Specific(Op1))) || 1615 match(Op1, m_Neg(m_Specific(Op0)))) { 1616 if (isKnownToBeAPowerOfTwo(Op0, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI, 1617 Q.DT)) 1618 return Op0; 1619 if (isKnownToBeAPowerOfTwo(Op1, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI, 1620 Q.DT)) 1621 return Op1; 1622 } 1623 1624 if (Value *V = simplifyAndOrOfICmps(Op0, Op1, true)) 1625 return V; 1626 1627 // Try some generic simplifications for associative operations. 1628 if (Value *V = SimplifyAssociativeBinOp(Instruction::And, Op0, Op1, Q, 1629 MaxRecurse)) 1630 return V; 1631 1632 // And distributes over Or. Try some generic simplifications based on this. 1633 if (Value *V = ExpandBinOp(Instruction::And, Op0, Op1, Instruction::Or, 1634 Q, MaxRecurse)) 1635 return V; 1636 1637 // And distributes over Xor. Try some generic simplifications based on this. 1638 if (Value *V = ExpandBinOp(Instruction::And, Op0, Op1, Instruction::Xor, 1639 Q, MaxRecurse)) 1640 return V; 1641 1642 // If the operation is with the result of a select instruction, check whether 1643 // operating on either branch of the select always yields the same value. 1644 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 1645 if (Value *V = ThreadBinOpOverSelect(Instruction::And, Op0, Op1, Q, 1646 MaxRecurse)) 1647 return V; 1648 1649 // If the operation is with the result of a phi instruction, check whether 1650 // operating on all incoming values of the phi always yields the same value. 1651 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 1652 if (Value *V = ThreadBinOpOverPHI(Instruction::And, Op0, Op1, Q, 1653 MaxRecurse)) 1654 return V; 1655 1656 return nullptr; 1657 } 1658 1659 Value *llvm::SimplifyAndInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 1660 return ::SimplifyAndInst(Op0, Op1, Q, RecursionLimit); 1661 } 1662 1663 /// Given operands for an Or, see if we can fold the result. 1664 /// If not, this returns null. 1665 static Value *SimplifyOrInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 1666 unsigned MaxRecurse) { 1667 if (Constant *C = foldOrCommuteConstant(Instruction::Or, Op0, Op1, Q)) 1668 return C; 1669 1670 // X | undef -> -1 1671 if (match(Op1, m_Undef())) 1672 return Constant::getAllOnesValue(Op0->getType()); 1673 1674 // X | X = X 1675 if (Op0 == Op1) 1676 return Op0; 1677 1678 // X | 0 = X 1679 if (match(Op1, m_Zero())) 1680 return Op0; 1681 1682 // X | -1 = -1 1683 if (match(Op1, m_AllOnes())) 1684 return Op1; 1685 1686 // A | ~A = ~A | A = -1 1687 if (match(Op0, m_Not(m_Specific(Op1))) || 1688 match(Op1, m_Not(m_Specific(Op0)))) 1689 return Constant::getAllOnesValue(Op0->getType()); 1690 1691 // (A & ?) | A = A 1692 if (match(Op0, m_c_And(m_Specific(Op1), m_Value()))) 1693 return Op1; 1694 1695 // A | (A & ?) = A 1696 if (match(Op1, m_c_And(m_Specific(Op0), m_Value()))) 1697 return Op0; 1698 1699 // ~(A & ?) | A = -1 1700 if (match(Op0, m_Not(m_c_And(m_Specific(Op1), m_Value())))) 1701 return Constant::getAllOnesValue(Op1->getType()); 1702 1703 // A | ~(A & ?) = -1 1704 if (match(Op1, m_Not(m_c_And(m_Specific(Op1), m_Value())))) 1705 return Constant::getAllOnesValue(Op0->getType()); 1706 1707 Value *A, *B; 1708 // (A & ~B) | (A ^ B) -> (A ^ B) 1709 // (~B & A) | (A ^ B) -> (A ^ B) 1710 // (A & ~B) | (B ^ A) -> (B ^ A) 1711 // (~B & A) | (B ^ A) -> (B ^ A) 1712 if (match(Op1, m_Xor(m_Value(A), m_Value(B))) && 1713 (match(Op0, m_c_And(m_Specific(A), m_Not(m_Specific(B)))) || 1714 match(Op0, m_c_And(m_Not(m_Specific(A)), m_Specific(B))))) 1715 return Op1; 1716 1717 // Commute the 'or' operands. 1718 // (A ^ B) | (A & ~B) -> (A ^ B) 1719 // (A ^ B) | (~B & A) -> (A ^ B) 1720 // (B ^ A) | (A & ~B) -> (B ^ A) 1721 // (B ^ A) | (~B & A) -> (B ^ A) 1722 if (match(Op0, m_Xor(m_Value(A), m_Value(B))) && 1723 (match(Op1, m_c_And(m_Specific(A), m_Not(m_Specific(B)))) || 1724 match(Op1, m_c_And(m_Not(m_Specific(A)), m_Specific(B))))) 1725 return Op0; 1726 1727 // (A & B) | (~A ^ B) -> (~A ^ B) 1728 // (B & A) | (~A ^ B) -> (~A ^ B) 1729 // (A & B) | (B ^ ~A) -> (B ^ ~A) 1730 // (B & A) | (B ^ ~A) -> (B ^ ~A) 1731 if (match(Op0, m_And(m_Value(A), m_Value(B))) && 1732 (match(Op1, m_c_Xor(m_Specific(A), m_Not(m_Specific(B)))) || 1733 match(Op1, m_c_Xor(m_Not(m_Specific(A)), m_Specific(B))))) 1734 return Op1; 1735 1736 // (~A ^ B) | (A & B) -> (~A ^ B) 1737 // (~A ^ B) | (B & A) -> (~A ^ B) 1738 // (B ^ ~A) | (A & B) -> (B ^ ~A) 1739 // (B ^ ~A) | (B & A) -> (B ^ ~A) 1740 if (match(Op1, m_And(m_Value(A), m_Value(B))) && 1741 (match(Op0, m_c_Xor(m_Specific(A), m_Not(m_Specific(B)))) || 1742 match(Op0, m_c_Xor(m_Not(m_Specific(A)), m_Specific(B))))) 1743 return Op0; 1744 1745 if (Value *V = simplifyAndOrOfICmps(Op0, Op1, false)) 1746 return V; 1747 1748 // Try some generic simplifications for associative operations. 1749 if (Value *V = SimplifyAssociativeBinOp(Instruction::Or, Op0, Op1, Q, 1750 MaxRecurse)) 1751 return V; 1752 1753 // Or distributes over And. Try some generic simplifications based on this. 1754 if (Value *V = ExpandBinOp(Instruction::Or, Op0, Op1, Instruction::And, Q, 1755 MaxRecurse)) 1756 return V; 1757 1758 // If the operation is with the result of a select instruction, check whether 1759 // operating on either branch of the select always yields the same value. 1760 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 1761 if (Value *V = ThreadBinOpOverSelect(Instruction::Or, Op0, Op1, Q, 1762 MaxRecurse)) 1763 return V; 1764 1765 // (A & C1)|(B & C2) 1766 const APInt *C1, *C2; 1767 if (match(Op0, m_And(m_Value(A), m_APInt(C1))) && 1768 match(Op1, m_And(m_Value(B), m_APInt(C2)))) { 1769 if (*C1 == ~*C2) { 1770 // (A & C1)|(B & C2) 1771 // If we have: ((V + N) & C1) | (V & C2) 1772 // .. and C2 = ~C1 and C2 is 0+1+ and (N & C2) == 0 1773 // replace with V+N. 1774 Value *N; 1775 if (C2->isMask() && // C2 == 0+1+ 1776 match(A, m_c_Add(m_Specific(B), m_Value(N)))) { 1777 // Add commutes, try both ways. 1778 if (MaskedValueIsZero(N, *C2, Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 1779 return A; 1780 } 1781 // Or commutes, try both ways. 1782 if (C1->isMask() && 1783 match(B, m_c_Add(m_Specific(A), m_Value(N)))) { 1784 // Add commutes, try both ways. 1785 if (MaskedValueIsZero(N, *C1, Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 1786 return B; 1787 } 1788 } 1789 } 1790 1791 // If the operation is with the result of a phi instruction, check whether 1792 // operating on all incoming values of the phi always yields the same value. 1793 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 1794 if (Value *V = ThreadBinOpOverPHI(Instruction::Or, Op0, Op1, Q, MaxRecurse)) 1795 return V; 1796 1797 return nullptr; 1798 } 1799 1800 Value *llvm::SimplifyOrInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 1801 return ::SimplifyOrInst(Op0, Op1, Q, RecursionLimit); 1802 } 1803 1804 /// Given operands for a Xor, see if we can fold the result. 1805 /// If not, this returns null. 1806 static Value *SimplifyXorInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 1807 unsigned MaxRecurse) { 1808 if (Constant *C = foldOrCommuteConstant(Instruction::Xor, Op0, Op1, Q)) 1809 return C; 1810 1811 // A ^ undef -> undef 1812 if (match(Op1, m_Undef())) 1813 return Op1; 1814 1815 // A ^ 0 = A 1816 if (match(Op1, m_Zero())) 1817 return Op0; 1818 1819 // A ^ A = 0 1820 if (Op0 == Op1) 1821 return Constant::getNullValue(Op0->getType()); 1822 1823 // A ^ ~A = ~A ^ A = -1 1824 if (match(Op0, m_Not(m_Specific(Op1))) || 1825 match(Op1, m_Not(m_Specific(Op0)))) 1826 return Constant::getAllOnesValue(Op0->getType()); 1827 1828 // Try some generic simplifications for associative operations. 1829 if (Value *V = SimplifyAssociativeBinOp(Instruction::Xor, Op0, Op1, Q, 1830 MaxRecurse)) 1831 return V; 1832 1833 // Threading Xor over selects and phi nodes is pointless, so don't bother. 1834 // Threading over the select in "A ^ select(cond, B, C)" means evaluating 1835 // "A^B" and "A^C" and seeing if they are equal; but they are equal if and 1836 // only if B and C are equal. If B and C are equal then (since we assume 1837 // that operands have already been simplified) "select(cond, B, C)" should 1838 // have been simplified to the common value of B and C already. Analysing 1839 // "A^B" and "A^C" thus gains nothing, but costs compile time. Similarly 1840 // for threading over phi nodes. 1841 1842 return nullptr; 1843 } 1844 1845 Value *llvm::SimplifyXorInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 1846 return ::SimplifyXorInst(Op0, Op1, Q, RecursionLimit); 1847 } 1848 1849 1850 static Type *GetCompareTy(Value *Op) { 1851 return CmpInst::makeCmpResultType(Op->getType()); 1852 } 1853 1854 /// Rummage around inside V looking for something equivalent to the comparison 1855 /// "LHS Pred RHS". Return such a value if found, otherwise return null. 1856 /// Helper function for analyzing max/min idioms. 1857 static Value *ExtractEquivalentCondition(Value *V, CmpInst::Predicate Pred, 1858 Value *LHS, Value *RHS) { 1859 SelectInst *SI = dyn_cast<SelectInst>(V); 1860 if (!SI) 1861 return nullptr; 1862 CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition()); 1863 if (!Cmp) 1864 return nullptr; 1865 Value *CmpLHS = Cmp->getOperand(0), *CmpRHS = Cmp->getOperand(1); 1866 if (Pred == Cmp->getPredicate() && LHS == CmpLHS && RHS == CmpRHS) 1867 return Cmp; 1868 if (Pred == CmpInst::getSwappedPredicate(Cmp->getPredicate()) && 1869 LHS == CmpRHS && RHS == CmpLHS) 1870 return Cmp; 1871 return nullptr; 1872 } 1873 1874 // A significant optimization not implemented here is assuming that alloca 1875 // addresses are not equal to incoming argument values. They don't *alias*, 1876 // as we say, but that doesn't mean they aren't equal, so we take a 1877 // conservative approach. 1878 // 1879 // This is inspired in part by C++11 5.10p1: 1880 // "Two pointers of the same type compare equal if and only if they are both 1881 // null, both point to the same function, or both represent the same 1882 // address." 1883 // 1884 // This is pretty permissive. 1885 // 1886 // It's also partly due to C11 6.5.9p6: 1887 // "Two pointers compare equal if and only if both are null pointers, both are 1888 // pointers to the same object (including a pointer to an object and a 1889 // subobject at its beginning) or function, both are pointers to one past the 1890 // last element of the same array object, or one is a pointer to one past the 1891 // end of one array object and the other is a pointer to the start of a 1892 // different array object that happens to immediately follow the first array 1893 // object in the address space.) 1894 // 1895 // C11's version is more restrictive, however there's no reason why an argument 1896 // couldn't be a one-past-the-end value for a stack object in the caller and be 1897 // equal to the beginning of a stack object in the callee. 1898 // 1899 // If the C and C++ standards are ever made sufficiently restrictive in this 1900 // area, it may be possible to update LLVM's semantics accordingly and reinstate 1901 // this optimization. 1902 static Constant * 1903 computePointerICmp(const DataLayout &DL, const TargetLibraryInfo *TLI, 1904 const DominatorTree *DT, CmpInst::Predicate Pred, 1905 AssumptionCache *AC, const Instruction *CxtI, 1906 Value *LHS, Value *RHS) { 1907 // First, skip past any trivial no-ops. 1908 LHS = LHS->stripPointerCasts(); 1909 RHS = RHS->stripPointerCasts(); 1910 1911 // A non-null pointer is not equal to a null pointer. 1912 if (llvm::isKnownNonZero(LHS, DL) && isa<ConstantPointerNull>(RHS) && 1913 (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE)) 1914 return ConstantInt::get(GetCompareTy(LHS), 1915 !CmpInst::isTrueWhenEqual(Pred)); 1916 1917 // We can only fold certain predicates on pointer comparisons. 1918 switch (Pred) { 1919 default: 1920 return nullptr; 1921 1922 // Equality comaprisons are easy to fold. 1923 case CmpInst::ICMP_EQ: 1924 case CmpInst::ICMP_NE: 1925 break; 1926 1927 // We can only handle unsigned relational comparisons because 'inbounds' on 1928 // a GEP only protects against unsigned wrapping. 1929 case CmpInst::ICMP_UGT: 1930 case CmpInst::ICMP_UGE: 1931 case CmpInst::ICMP_ULT: 1932 case CmpInst::ICMP_ULE: 1933 // However, we have to switch them to their signed variants to handle 1934 // negative indices from the base pointer. 1935 Pred = ICmpInst::getSignedPredicate(Pred); 1936 break; 1937 } 1938 1939 // Strip off any constant offsets so that we can reason about them. 1940 // It's tempting to use getUnderlyingObject or even just stripInBoundsOffsets 1941 // here and compare base addresses like AliasAnalysis does, however there are 1942 // numerous hazards. AliasAnalysis and its utilities rely on special rules 1943 // governing loads and stores which don't apply to icmps. Also, AliasAnalysis 1944 // doesn't need to guarantee pointer inequality when it says NoAlias. 1945 Constant *LHSOffset = stripAndComputeConstantOffsets(DL, LHS); 1946 Constant *RHSOffset = stripAndComputeConstantOffsets(DL, RHS); 1947 1948 // If LHS and RHS are related via constant offsets to the same base 1949 // value, we can replace it with an icmp which just compares the offsets. 1950 if (LHS == RHS) 1951 return ConstantExpr::getICmp(Pred, LHSOffset, RHSOffset); 1952 1953 // Various optimizations for (in)equality comparisons. 1954 if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE) { 1955 // Different non-empty allocations that exist at the same time have 1956 // different addresses (if the program can tell). Global variables always 1957 // exist, so they always exist during the lifetime of each other and all 1958 // allocas. Two different allocas usually have different addresses... 1959 // 1960 // However, if there's an @llvm.stackrestore dynamically in between two 1961 // allocas, they may have the same address. It's tempting to reduce the 1962 // scope of the problem by only looking at *static* allocas here. That would 1963 // cover the majority of allocas while significantly reducing the likelihood 1964 // of having an @llvm.stackrestore pop up in the middle. However, it's not 1965 // actually impossible for an @llvm.stackrestore to pop up in the middle of 1966 // an entry block. Also, if we have a block that's not attached to a 1967 // function, we can't tell if it's "static" under the current definition. 1968 // Theoretically, this problem could be fixed by creating a new kind of 1969 // instruction kind specifically for static allocas. Such a new instruction 1970 // could be required to be at the top of the entry block, thus preventing it 1971 // from being subject to a @llvm.stackrestore. Instcombine could even 1972 // convert regular allocas into these special allocas. It'd be nifty. 1973 // However, until then, this problem remains open. 1974 // 1975 // So, we'll assume that two non-empty allocas have different addresses 1976 // for now. 1977 // 1978 // With all that, if the offsets are within the bounds of their allocations 1979 // (and not one-past-the-end! so we can't use inbounds!), and their 1980 // allocations aren't the same, the pointers are not equal. 1981 // 1982 // Note that it's not necessary to check for LHS being a global variable 1983 // address, due to canonicalization and constant folding. 1984 if (isa<AllocaInst>(LHS) && 1985 (isa<AllocaInst>(RHS) || isa<GlobalVariable>(RHS))) { 1986 ConstantInt *LHSOffsetCI = dyn_cast<ConstantInt>(LHSOffset); 1987 ConstantInt *RHSOffsetCI = dyn_cast<ConstantInt>(RHSOffset); 1988 uint64_t LHSSize, RHSSize; 1989 if (LHSOffsetCI && RHSOffsetCI && 1990 getObjectSize(LHS, LHSSize, DL, TLI) && 1991 getObjectSize(RHS, RHSSize, DL, TLI)) { 1992 const APInt &LHSOffsetValue = LHSOffsetCI->getValue(); 1993 const APInt &RHSOffsetValue = RHSOffsetCI->getValue(); 1994 if (!LHSOffsetValue.isNegative() && 1995 !RHSOffsetValue.isNegative() && 1996 LHSOffsetValue.ult(LHSSize) && 1997 RHSOffsetValue.ult(RHSSize)) { 1998 return ConstantInt::get(GetCompareTy(LHS), 1999 !CmpInst::isTrueWhenEqual(Pred)); 2000 } 2001 } 2002 2003 // Repeat the above check but this time without depending on DataLayout 2004 // or being able to compute a precise size. 2005 if (!cast<PointerType>(LHS->getType())->isEmptyTy() && 2006 !cast<PointerType>(RHS->getType())->isEmptyTy() && 2007 LHSOffset->isNullValue() && 2008 RHSOffset->isNullValue()) 2009 return ConstantInt::get(GetCompareTy(LHS), 2010 !CmpInst::isTrueWhenEqual(Pred)); 2011 } 2012 2013 // Even if an non-inbounds GEP occurs along the path we can still optimize 2014 // equality comparisons concerning the result. We avoid walking the whole 2015 // chain again by starting where the last calls to 2016 // stripAndComputeConstantOffsets left off and accumulate the offsets. 2017 Constant *LHSNoBound = stripAndComputeConstantOffsets(DL, LHS, true); 2018 Constant *RHSNoBound = stripAndComputeConstantOffsets(DL, RHS, true); 2019 if (LHS == RHS) 2020 return ConstantExpr::getICmp(Pred, 2021 ConstantExpr::getAdd(LHSOffset, LHSNoBound), 2022 ConstantExpr::getAdd(RHSOffset, RHSNoBound)); 2023 2024 // If one side of the equality comparison must come from a noalias call 2025 // (meaning a system memory allocation function), and the other side must 2026 // come from a pointer that cannot overlap with dynamically-allocated 2027 // memory within the lifetime of the current function (allocas, byval 2028 // arguments, globals), then determine the comparison result here. 2029 SmallVector<Value *, 8> LHSUObjs, RHSUObjs; 2030 GetUnderlyingObjects(LHS, LHSUObjs, DL); 2031 GetUnderlyingObjects(RHS, RHSUObjs, DL); 2032 2033 // Is the set of underlying objects all noalias calls? 2034 auto IsNAC = [](ArrayRef<Value *> Objects) { 2035 return all_of(Objects, isNoAliasCall); 2036 }; 2037 2038 // Is the set of underlying objects all things which must be disjoint from 2039 // noalias calls. For allocas, we consider only static ones (dynamic 2040 // allocas might be transformed into calls to malloc not simultaneously 2041 // live with the compared-to allocation). For globals, we exclude symbols 2042 // that might be resolve lazily to symbols in another dynamically-loaded 2043 // library (and, thus, could be malloc'ed by the implementation). 2044 auto IsAllocDisjoint = [](ArrayRef<Value *> Objects) { 2045 return all_of(Objects, [](Value *V) { 2046 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) 2047 return AI->getParent() && AI->getFunction() && AI->isStaticAlloca(); 2048 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) 2049 return (GV->hasLocalLinkage() || GV->hasHiddenVisibility() || 2050 GV->hasProtectedVisibility() || GV->hasGlobalUnnamedAddr()) && 2051 !GV->isThreadLocal(); 2052 if (const Argument *A = dyn_cast<Argument>(V)) 2053 return A->hasByValAttr(); 2054 return false; 2055 }); 2056 }; 2057 2058 if ((IsNAC(LHSUObjs) && IsAllocDisjoint(RHSUObjs)) || 2059 (IsNAC(RHSUObjs) && IsAllocDisjoint(LHSUObjs))) 2060 return ConstantInt::get(GetCompareTy(LHS), 2061 !CmpInst::isTrueWhenEqual(Pred)); 2062 2063 // Fold comparisons for non-escaping pointer even if the allocation call 2064 // cannot be elided. We cannot fold malloc comparison to null. Also, the 2065 // dynamic allocation call could be either of the operands. 2066 Value *MI = nullptr; 2067 if (isAllocLikeFn(LHS, TLI) && 2068 llvm::isKnownNonZero(RHS, DL, 0, nullptr, CxtI, DT)) 2069 MI = LHS; 2070 else if (isAllocLikeFn(RHS, TLI) && 2071 llvm::isKnownNonZero(LHS, DL, 0, nullptr, CxtI, DT)) 2072 MI = RHS; 2073 // FIXME: We should also fold the compare when the pointer escapes, but the 2074 // compare dominates the pointer escape 2075 if (MI && !PointerMayBeCaptured(MI, true, true)) 2076 return ConstantInt::get(GetCompareTy(LHS), 2077 CmpInst::isFalseWhenEqual(Pred)); 2078 } 2079 2080 // Otherwise, fail. 2081 return nullptr; 2082 } 2083 2084 /// Fold an icmp when its operands have i1 scalar type. 2085 static Value *simplifyICmpOfBools(CmpInst::Predicate Pred, Value *LHS, 2086 Value *RHS, const SimplifyQuery &Q) { 2087 Type *ITy = GetCompareTy(LHS); // The return type. 2088 Type *OpTy = LHS->getType(); // The operand type. 2089 if (!OpTy->isIntOrIntVectorTy(1)) 2090 return nullptr; 2091 2092 // A boolean compared to true/false can be simplified in 14 out of the 20 2093 // (10 predicates * 2 constants) possible combinations. Cases not handled here 2094 // require a 'not' of the LHS, so those must be transformed in InstCombine. 2095 if (match(RHS, m_Zero())) { 2096 switch (Pred) { 2097 case CmpInst::ICMP_NE: // X != 0 -> X 2098 case CmpInst::ICMP_UGT: // X >u 0 -> X 2099 case CmpInst::ICMP_SLT: // X <s 0 -> X 2100 return LHS; 2101 2102 case CmpInst::ICMP_ULT: // X <u 0 -> false 2103 case CmpInst::ICMP_SGT: // X >s 0 -> false 2104 return getFalse(ITy); 2105 2106 case CmpInst::ICMP_UGE: // X >=u 0 -> true 2107 case CmpInst::ICMP_SLE: // X <=s 0 -> true 2108 return getTrue(ITy); 2109 2110 default: break; 2111 } 2112 } else if (match(RHS, m_One())) { 2113 switch (Pred) { 2114 case CmpInst::ICMP_EQ: // X == 1 -> X 2115 case CmpInst::ICMP_UGE: // X >=u 1 -> X 2116 case CmpInst::ICMP_SLE: // X <=s -1 -> X 2117 return LHS; 2118 2119 case CmpInst::ICMP_UGT: // X >u 1 -> false 2120 case CmpInst::ICMP_SLT: // X <s -1 -> false 2121 return getFalse(ITy); 2122 2123 case CmpInst::ICMP_ULE: // X <=u 1 -> true 2124 case CmpInst::ICMP_SGE: // X >=s -1 -> true 2125 return getTrue(ITy); 2126 2127 default: break; 2128 } 2129 } 2130 2131 switch (Pred) { 2132 default: 2133 break; 2134 case ICmpInst::ICMP_UGE: 2135 if (isImpliedCondition(RHS, LHS, Q.DL).getValueOr(false)) 2136 return getTrue(ITy); 2137 break; 2138 case ICmpInst::ICMP_SGE: 2139 /// For signed comparison, the values for an i1 are 0 and -1 2140 /// respectively. This maps into a truth table of: 2141 /// LHS | RHS | LHS >=s RHS | LHS implies RHS 2142 /// 0 | 0 | 1 (0 >= 0) | 1 2143 /// 0 | 1 | 1 (0 >= -1) | 1 2144 /// 1 | 0 | 0 (-1 >= 0) | 0 2145 /// 1 | 1 | 1 (-1 >= -1) | 1 2146 if (isImpliedCondition(LHS, RHS, Q.DL).getValueOr(false)) 2147 return getTrue(ITy); 2148 break; 2149 case ICmpInst::ICMP_ULE: 2150 if (isImpliedCondition(LHS, RHS, Q.DL).getValueOr(false)) 2151 return getTrue(ITy); 2152 break; 2153 } 2154 2155 return nullptr; 2156 } 2157 2158 /// Try hard to fold icmp with zero RHS because this is a common case. 2159 static Value *simplifyICmpWithZero(CmpInst::Predicate Pred, Value *LHS, 2160 Value *RHS, const SimplifyQuery &Q) { 2161 if (!match(RHS, m_Zero())) 2162 return nullptr; 2163 2164 Type *ITy = GetCompareTy(LHS); // The return type. 2165 switch (Pred) { 2166 default: 2167 llvm_unreachable("Unknown ICmp predicate!"); 2168 case ICmpInst::ICMP_ULT: 2169 return getFalse(ITy); 2170 case ICmpInst::ICMP_UGE: 2171 return getTrue(ITy); 2172 case ICmpInst::ICMP_EQ: 2173 case ICmpInst::ICMP_ULE: 2174 if (isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 2175 return getFalse(ITy); 2176 break; 2177 case ICmpInst::ICMP_NE: 2178 case ICmpInst::ICMP_UGT: 2179 if (isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 2180 return getTrue(ITy); 2181 break; 2182 case ICmpInst::ICMP_SLT: { 2183 KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2184 if (LHSKnown.isNegative()) 2185 return getTrue(ITy); 2186 if (LHSKnown.isNonNegative()) 2187 return getFalse(ITy); 2188 break; 2189 } 2190 case ICmpInst::ICMP_SLE: { 2191 KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2192 if (LHSKnown.isNegative()) 2193 return getTrue(ITy); 2194 if (LHSKnown.isNonNegative() && 2195 isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 2196 return getFalse(ITy); 2197 break; 2198 } 2199 case ICmpInst::ICMP_SGE: { 2200 KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2201 if (LHSKnown.isNegative()) 2202 return getFalse(ITy); 2203 if (LHSKnown.isNonNegative()) 2204 return getTrue(ITy); 2205 break; 2206 } 2207 case ICmpInst::ICMP_SGT: { 2208 KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2209 if (LHSKnown.isNegative()) 2210 return getFalse(ITy); 2211 if (LHSKnown.isNonNegative() && 2212 isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 2213 return getTrue(ITy); 2214 break; 2215 } 2216 } 2217 2218 return nullptr; 2219 } 2220 2221 /// Many binary operators with a constant operand have an easy-to-compute 2222 /// range of outputs. This can be used to fold a comparison to always true or 2223 /// always false. 2224 static void setLimitsForBinOp(BinaryOperator &BO, APInt &Lower, APInt &Upper) { 2225 unsigned Width = Lower.getBitWidth(); 2226 const APInt *C; 2227 switch (BO.getOpcode()) { 2228 case Instruction::Add: 2229 if (match(BO.getOperand(1), m_APInt(C)) && !C->isNullValue()) { 2230 // FIXME: If we have both nuw and nsw, we should reduce the range further. 2231 if (BO.hasNoUnsignedWrap()) { 2232 // 'add nuw x, C' produces [C, UINT_MAX]. 2233 Lower = *C; 2234 } else if (BO.hasNoSignedWrap()) { 2235 if (C->isNegative()) { 2236 // 'add nsw x, -C' produces [SINT_MIN, SINT_MAX - C]. 2237 Lower = APInt::getSignedMinValue(Width); 2238 Upper = APInt::getSignedMaxValue(Width) + *C + 1; 2239 } else { 2240 // 'add nsw x, +C' produces [SINT_MIN + C, SINT_MAX]. 2241 Lower = APInt::getSignedMinValue(Width) + *C; 2242 Upper = APInt::getSignedMaxValue(Width) + 1; 2243 } 2244 } 2245 } 2246 break; 2247 2248 case Instruction::And: 2249 if (match(BO.getOperand(1), m_APInt(C))) 2250 // 'and x, C' produces [0, C]. 2251 Upper = *C + 1; 2252 break; 2253 2254 case Instruction::Or: 2255 if (match(BO.getOperand(1), m_APInt(C))) 2256 // 'or x, C' produces [C, UINT_MAX]. 2257 Lower = *C; 2258 break; 2259 2260 case Instruction::AShr: 2261 if (match(BO.getOperand(1), m_APInt(C)) && C->ult(Width)) { 2262 // 'ashr x, C' produces [INT_MIN >> C, INT_MAX >> C]. 2263 Lower = APInt::getSignedMinValue(Width).ashr(*C); 2264 Upper = APInt::getSignedMaxValue(Width).ashr(*C) + 1; 2265 } else if (match(BO.getOperand(0), m_APInt(C))) { 2266 unsigned ShiftAmount = Width - 1; 2267 if (!C->isNullValue() && BO.isExact()) 2268 ShiftAmount = C->countTrailingZeros(); 2269 if (C->isNegative()) { 2270 // 'ashr C, x' produces [C, C >> (Width-1)] 2271 Lower = *C; 2272 Upper = C->ashr(ShiftAmount) + 1; 2273 } else { 2274 // 'ashr C, x' produces [C >> (Width-1), C] 2275 Lower = C->ashr(ShiftAmount); 2276 Upper = *C + 1; 2277 } 2278 } 2279 break; 2280 2281 case Instruction::LShr: 2282 if (match(BO.getOperand(1), m_APInt(C)) && C->ult(Width)) { 2283 // 'lshr x, C' produces [0, UINT_MAX >> C]. 2284 Upper = APInt::getAllOnesValue(Width).lshr(*C) + 1; 2285 } else if (match(BO.getOperand(0), m_APInt(C))) { 2286 // 'lshr C, x' produces [C >> (Width-1), C]. 2287 unsigned ShiftAmount = Width - 1; 2288 if (!C->isNullValue() && BO.isExact()) 2289 ShiftAmount = C->countTrailingZeros(); 2290 Lower = C->lshr(ShiftAmount); 2291 Upper = *C + 1; 2292 } 2293 break; 2294 2295 case Instruction::Shl: 2296 if (match(BO.getOperand(0), m_APInt(C))) { 2297 if (BO.hasNoUnsignedWrap()) { 2298 // 'shl nuw C, x' produces [C, C << CLZ(C)] 2299 Lower = *C; 2300 Upper = Lower.shl(Lower.countLeadingZeros()) + 1; 2301 } else if (BO.hasNoSignedWrap()) { // TODO: What if both nuw+nsw? 2302 if (C->isNegative()) { 2303 // 'shl nsw C, x' produces [C << CLO(C)-1, C] 2304 unsigned ShiftAmount = C->countLeadingOnes() - 1; 2305 Lower = C->shl(ShiftAmount); 2306 Upper = *C + 1; 2307 } else { 2308 // 'shl nsw C, x' produces [C, C << CLZ(C)-1] 2309 unsigned ShiftAmount = C->countLeadingZeros() - 1; 2310 Lower = *C; 2311 Upper = C->shl(ShiftAmount) + 1; 2312 } 2313 } 2314 } 2315 break; 2316 2317 case Instruction::SDiv: 2318 if (match(BO.getOperand(1), m_APInt(C))) { 2319 APInt IntMin = APInt::getSignedMinValue(Width); 2320 APInt IntMax = APInt::getSignedMaxValue(Width); 2321 if (C->isAllOnesValue()) { 2322 // 'sdiv x, -1' produces [INT_MIN + 1, INT_MAX] 2323 // where C != -1 and C != 0 and C != 1 2324 Lower = IntMin + 1; 2325 Upper = IntMax + 1; 2326 } else if (C->countLeadingZeros() < Width - 1) { 2327 // 'sdiv x, C' produces [INT_MIN / C, INT_MAX / C] 2328 // where C != -1 and C != 0 and C != 1 2329 Lower = IntMin.sdiv(*C); 2330 Upper = IntMax.sdiv(*C); 2331 if (Lower.sgt(Upper)) 2332 std::swap(Lower, Upper); 2333 Upper = Upper + 1; 2334 assert(Upper != Lower && "Upper part of range has wrapped!"); 2335 } 2336 } else if (match(BO.getOperand(0), m_APInt(C))) { 2337 if (C->isMinSignedValue()) { 2338 // 'sdiv INT_MIN, x' produces [INT_MIN, INT_MIN / -2]. 2339 Lower = *C; 2340 Upper = Lower.lshr(1) + 1; 2341 } else { 2342 // 'sdiv C, x' produces [-|C|, |C|]. 2343 Upper = C->abs() + 1; 2344 Lower = (-Upper) + 1; 2345 } 2346 } 2347 break; 2348 2349 case Instruction::UDiv: 2350 if (match(BO.getOperand(1), m_APInt(C)) && !C->isNullValue()) { 2351 // 'udiv x, C' produces [0, UINT_MAX / C]. 2352 Upper = APInt::getMaxValue(Width).udiv(*C) + 1; 2353 } else if (match(BO.getOperand(0), m_APInt(C))) { 2354 // 'udiv C, x' produces [0, C]. 2355 Upper = *C + 1; 2356 } 2357 break; 2358 2359 case Instruction::SRem: 2360 if (match(BO.getOperand(1), m_APInt(C))) { 2361 // 'srem x, C' produces (-|C|, |C|). 2362 Upper = C->abs(); 2363 Lower = (-Upper) + 1; 2364 } 2365 break; 2366 2367 case Instruction::URem: 2368 if (match(BO.getOperand(1), m_APInt(C))) 2369 // 'urem x, C' produces [0, C). 2370 Upper = *C; 2371 break; 2372 2373 default: 2374 break; 2375 } 2376 } 2377 2378 static Value *simplifyICmpWithConstant(CmpInst::Predicate Pred, Value *LHS, 2379 Value *RHS) { 2380 const APInt *C; 2381 if (!match(RHS, m_APInt(C))) 2382 return nullptr; 2383 2384 // Rule out tautological comparisons (eg., ult 0 or uge 0). 2385 ConstantRange RHS_CR = ConstantRange::makeExactICmpRegion(Pred, *C); 2386 if (RHS_CR.isEmptySet()) 2387 return ConstantInt::getFalse(GetCompareTy(RHS)); 2388 if (RHS_CR.isFullSet()) 2389 return ConstantInt::getTrue(GetCompareTy(RHS)); 2390 2391 // Find the range of possible values for binary operators. 2392 unsigned Width = C->getBitWidth(); 2393 APInt Lower = APInt(Width, 0); 2394 APInt Upper = APInt(Width, 0); 2395 if (auto *BO = dyn_cast<BinaryOperator>(LHS)) 2396 setLimitsForBinOp(*BO, Lower, Upper); 2397 2398 ConstantRange LHS_CR = 2399 Lower != Upper ? ConstantRange(Lower, Upper) : ConstantRange(Width, true); 2400 2401 if (auto *I = dyn_cast<Instruction>(LHS)) 2402 if (auto *Ranges = I->getMetadata(LLVMContext::MD_range)) 2403 LHS_CR = LHS_CR.intersectWith(getConstantRangeFromMetadata(*Ranges)); 2404 2405 if (!LHS_CR.isFullSet()) { 2406 if (RHS_CR.contains(LHS_CR)) 2407 return ConstantInt::getTrue(GetCompareTy(RHS)); 2408 if (RHS_CR.inverse().contains(LHS_CR)) 2409 return ConstantInt::getFalse(GetCompareTy(RHS)); 2410 } 2411 2412 return nullptr; 2413 } 2414 2415 /// TODO: A large part of this logic is duplicated in InstCombine's 2416 /// foldICmpBinOp(). We should be able to share that and avoid the code 2417 /// duplication. 2418 static Value *simplifyICmpWithBinOp(CmpInst::Predicate Pred, Value *LHS, 2419 Value *RHS, const SimplifyQuery &Q, 2420 unsigned MaxRecurse) { 2421 Type *ITy = GetCompareTy(LHS); // The return type. 2422 2423 BinaryOperator *LBO = dyn_cast<BinaryOperator>(LHS); 2424 BinaryOperator *RBO = dyn_cast<BinaryOperator>(RHS); 2425 if (MaxRecurse && (LBO || RBO)) { 2426 // Analyze the case when either LHS or RHS is an add instruction. 2427 Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr; 2428 // LHS = A + B (or A and B are null); RHS = C + D (or C and D are null). 2429 bool NoLHSWrapProblem = false, NoRHSWrapProblem = false; 2430 if (LBO && LBO->getOpcode() == Instruction::Add) { 2431 A = LBO->getOperand(0); 2432 B = LBO->getOperand(1); 2433 NoLHSWrapProblem = 2434 ICmpInst::isEquality(Pred) || 2435 (CmpInst::isUnsigned(Pred) && LBO->hasNoUnsignedWrap()) || 2436 (CmpInst::isSigned(Pred) && LBO->hasNoSignedWrap()); 2437 } 2438 if (RBO && RBO->getOpcode() == Instruction::Add) { 2439 C = RBO->getOperand(0); 2440 D = RBO->getOperand(1); 2441 NoRHSWrapProblem = 2442 ICmpInst::isEquality(Pred) || 2443 (CmpInst::isUnsigned(Pred) && RBO->hasNoUnsignedWrap()) || 2444 (CmpInst::isSigned(Pred) && RBO->hasNoSignedWrap()); 2445 } 2446 2447 // icmp (X+Y), X -> icmp Y, 0 for equalities or if there is no overflow. 2448 if ((A == RHS || B == RHS) && NoLHSWrapProblem) 2449 if (Value *V = SimplifyICmpInst(Pred, A == RHS ? B : A, 2450 Constant::getNullValue(RHS->getType()), Q, 2451 MaxRecurse - 1)) 2452 return V; 2453 2454 // icmp X, (X+Y) -> icmp 0, Y for equalities or if there is no overflow. 2455 if ((C == LHS || D == LHS) && NoRHSWrapProblem) 2456 if (Value *V = 2457 SimplifyICmpInst(Pred, Constant::getNullValue(LHS->getType()), 2458 C == LHS ? D : C, Q, MaxRecurse - 1)) 2459 return V; 2460 2461 // icmp (X+Y), (X+Z) -> icmp Y,Z for equalities or if there is no overflow. 2462 if (A && C && (A == C || A == D || B == C || B == D) && NoLHSWrapProblem && 2463 NoRHSWrapProblem) { 2464 // Determine Y and Z in the form icmp (X+Y), (X+Z). 2465 Value *Y, *Z; 2466 if (A == C) { 2467 // C + B == C + D -> B == D 2468 Y = B; 2469 Z = D; 2470 } else if (A == D) { 2471 // D + B == C + D -> B == C 2472 Y = B; 2473 Z = C; 2474 } else if (B == C) { 2475 // A + C == C + D -> A == D 2476 Y = A; 2477 Z = D; 2478 } else { 2479 assert(B == D); 2480 // A + D == C + D -> A == C 2481 Y = A; 2482 Z = C; 2483 } 2484 if (Value *V = SimplifyICmpInst(Pred, Y, Z, Q, MaxRecurse - 1)) 2485 return V; 2486 } 2487 } 2488 2489 { 2490 Value *Y = nullptr; 2491 // icmp pred (or X, Y), X 2492 if (LBO && match(LBO, m_c_Or(m_Value(Y), m_Specific(RHS)))) { 2493 if (Pred == ICmpInst::ICMP_ULT) 2494 return getFalse(ITy); 2495 if (Pred == ICmpInst::ICMP_UGE) 2496 return getTrue(ITy); 2497 2498 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SGE) { 2499 KnownBits RHSKnown = computeKnownBits(RHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2500 KnownBits YKnown = computeKnownBits(Y, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2501 if (RHSKnown.isNonNegative() && YKnown.isNegative()) 2502 return Pred == ICmpInst::ICMP_SLT ? getTrue(ITy) : getFalse(ITy); 2503 if (RHSKnown.isNegative() || YKnown.isNonNegative()) 2504 return Pred == ICmpInst::ICMP_SLT ? getFalse(ITy) : getTrue(ITy); 2505 } 2506 } 2507 // icmp pred X, (or X, Y) 2508 if (RBO && match(RBO, m_c_Or(m_Value(Y), m_Specific(LHS)))) { 2509 if (Pred == ICmpInst::ICMP_ULE) 2510 return getTrue(ITy); 2511 if (Pred == ICmpInst::ICMP_UGT) 2512 return getFalse(ITy); 2513 2514 if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SLE) { 2515 KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2516 KnownBits YKnown = computeKnownBits(Y, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2517 if (LHSKnown.isNonNegative() && YKnown.isNegative()) 2518 return Pred == ICmpInst::ICMP_SGT ? getTrue(ITy) : getFalse(ITy); 2519 if (LHSKnown.isNegative() || YKnown.isNonNegative()) 2520 return Pred == ICmpInst::ICMP_SGT ? getFalse(ITy) : getTrue(ITy); 2521 } 2522 } 2523 } 2524 2525 // icmp pred (and X, Y), X 2526 if (LBO && match(LBO, m_c_And(m_Value(), m_Specific(RHS)))) { 2527 if (Pred == ICmpInst::ICMP_UGT) 2528 return getFalse(ITy); 2529 if (Pred == ICmpInst::ICMP_ULE) 2530 return getTrue(ITy); 2531 } 2532 // icmp pred X, (and X, Y) 2533 if (RBO && match(RBO, m_c_And(m_Value(), m_Specific(LHS)))) { 2534 if (Pred == ICmpInst::ICMP_UGE) 2535 return getTrue(ITy); 2536 if (Pred == ICmpInst::ICMP_ULT) 2537 return getFalse(ITy); 2538 } 2539 2540 // 0 - (zext X) pred C 2541 if (!CmpInst::isUnsigned(Pred) && match(LHS, m_Neg(m_ZExt(m_Value())))) { 2542 if (ConstantInt *RHSC = dyn_cast<ConstantInt>(RHS)) { 2543 if (RHSC->getValue().isStrictlyPositive()) { 2544 if (Pred == ICmpInst::ICMP_SLT) 2545 return ConstantInt::getTrue(RHSC->getContext()); 2546 if (Pred == ICmpInst::ICMP_SGE) 2547 return ConstantInt::getFalse(RHSC->getContext()); 2548 if (Pred == ICmpInst::ICMP_EQ) 2549 return ConstantInt::getFalse(RHSC->getContext()); 2550 if (Pred == ICmpInst::ICMP_NE) 2551 return ConstantInt::getTrue(RHSC->getContext()); 2552 } 2553 if (RHSC->getValue().isNonNegative()) { 2554 if (Pred == ICmpInst::ICMP_SLE) 2555 return ConstantInt::getTrue(RHSC->getContext()); 2556 if (Pred == ICmpInst::ICMP_SGT) 2557 return ConstantInt::getFalse(RHSC->getContext()); 2558 } 2559 } 2560 } 2561 2562 // icmp pred (urem X, Y), Y 2563 if (LBO && match(LBO, m_URem(m_Value(), m_Specific(RHS)))) { 2564 switch (Pred) { 2565 default: 2566 break; 2567 case ICmpInst::ICMP_SGT: 2568 case ICmpInst::ICMP_SGE: { 2569 KnownBits Known = computeKnownBits(RHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2570 if (!Known.isNonNegative()) 2571 break; 2572 LLVM_FALLTHROUGH; 2573 } 2574 case ICmpInst::ICMP_EQ: 2575 case ICmpInst::ICMP_UGT: 2576 case ICmpInst::ICMP_UGE: 2577 return getFalse(ITy); 2578 case ICmpInst::ICMP_SLT: 2579 case ICmpInst::ICMP_SLE: { 2580 KnownBits Known = computeKnownBits(RHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2581 if (!Known.isNonNegative()) 2582 break; 2583 LLVM_FALLTHROUGH; 2584 } 2585 case ICmpInst::ICMP_NE: 2586 case ICmpInst::ICMP_ULT: 2587 case ICmpInst::ICMP_ULE: 2588 return getTrue(ITy); 2589 } 2590 } 2591 2592 // icmp pred X, (urem Y, X) 2593 if (RBO && match(RBO, m_URem(m_Value(), m_Specific(LHS)))) { 2594 switch (Pred) { 2595 default: 2596 break; 2597 case ICmpInst::ICMP_SGT: 2598 case ICmpInst::ICMP_SGE: { 2599 KnownBits Known = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2600 if (!Known.isNonNegative()) 2601 break; 2602 LLVM_FALLTHROUGH; 2603 } 2604 case ICmpInst::ICMP_NE: 2605 case ICmpInst::ICMP_UGT: 2606 case ICmpInst::ICMP_UGE: 2607 return getTrue(ITy); 2608 case ICmpInst::ICMP_SLT: 2609 case ICmpInst::ICMP_SLE: { 2610 KnownBits Known = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2611 if (!Known.isNonNegative()) 2612 break; 2613 LLVM_FALLTHROUGH; 2614 } 2615 case ICmpInst::ICMP_EQ: 2616 case ICmpInst::ICMP_ULT: 2617 case ICmpInst::ICMP_ULE: 2618 return getFalse(ITy); 2619 } 2620 } 2621 2622 // x >> y <=u x 2623 // x udiv y <=u x. 2624 if (LBO && (match(LBO, m_LShr(m_Specific(RHS), m_Value())) || 2625 match(LBO, m_UDiv(m_Specific(RHS), m_Value())))) { 2626 // icmp pred (X op Y), X 2627 if (Pred == ICmpInst::ICMP_UGT) 2628 return getFalse(ITy); 2629 if (Pred == ICmpInst::ICMP_ULE) 2630 return getTrue(ITy); 2631 } 2632 2633 // x >=u x >> y 2634 // x >=u x udiv y. 2635 if (RBO && (match(RBO, m_LShr(m_Specific(LHS), m_Value())) || 2636 match(RBO, m_UDiv(m_Specific(LHS), m_Value())))) { 2637 // icmp pred X, (X op Y) 2638 if (Pred == ICmpInst::ICMP_ULT) 2639 return getFalse(ITy); 2640 if (Pred == ICmpInst::ICMP_UGE) 2641 return getTrue(ITy); 2642 } 2643 2644 // handle: 2645 // CI2 << X == CI 2646 // CI2 << X != CI 2647 // 2648 // where CI2 is a power of 2 and CI isn't 2649 if (auto *CI = dyn_cast<ConstantInt>(RHS)) { 2650 const APInt *CI2Val, *CIVal = &CI->getValue(); 2651 if (LBO && match(LBO, m_Shl(m_APInt(CI2Val), m_Value())) && 2652 CI2Val->isPowerOf2()) { 2653 if (!CIVal->isPowerOf2()) { 2654 // CI2 << X can equal zero in some circumstances, 2655 // this simplification is unsafe if CI is zero. 2656 // 2657 // We know it is safe if: 2658 // - The shift is nsw, we can't shift out the one bit. 2659 // - The shift is nuw, we can't shift out the one bit. 2660 // - CI2 is one 2661 // - CI isn't zero 2662 if (LBO->hasNoSignedWrap() || LBO->hasNoUnsignedWrap() || 2663 CI2Val->isOneValue() || !CI->isZero()) { 2664 if (Pred == ICmpInst::ICMP_EQ) 2665 return ConstantInt::getFalse(RHS->getContext()); 2666 if (Pred == ICmpInst::ICMP_NE) 2667 return ConstantInt::getTrue(RHS->getContext()); 2668 } 2669 } 2670 if (CIVal->isSignMask() && CI2Val->isOneValue()) { 2671 if (Pred == ICmpInst::ICMP_UGT) 2672 return ConstantInt::getFalse(RHS->getContext()); 2673 if (Pred == ICmpInst::ICMP_ULE) 2674 return ConstantInt::getTrue(RHS->getContext()); 2675 } 2676 } 2677 } 2678 2679 if (MaxRecurse && LBO && RBO && LBO->getOpcode() == RBO->getOpcode() && 2680 LBO->getOperand(1) == RBO->getOperand(1)) { 2681 switch (LBO->getOpcode()) { 2682 default: 2683 break; 2684 case Instruction::UDiv: 2685 case Instruction::LShr: 2686 if (ICmpInst::isSigned(Pred) || !LBO->isExact() || !RBO->isExact()) 2687 break; 2688 if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0), 2689 RBO->getOperand(0), Q, MaxRecurse - 1)) 2690 return V; 2691 break; 2692 case Instruction::SDiv: 2693 if (!ICmpInst::isEquality(Pred) || !LBO->isExact() || !RBO->isExact()) 2694 break; 2695 if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0), 2696 RBO->getOperand(0), Q, MaxRecurse - 1)) 2697 return V; 2698 break; 2699 case Instruction::AShr: 2700 if (!LBO->isExact() || !RBO->isExact()) 2701 break; 2702 if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0), 2703 RBO->getOperand(0), Q, MaxRecurse - 1)) 2704 return V; 2705 break; 2706 case Instruction::Shl: { 2707 bool NUW = LBO->hasNoUnsignedWrap() && RBO->hasNoUnsignedWrap(); 2708 bool NSW = LBO->hasNoSignedWrap() && RBO->hasNoSignedWrap(); 2709 if (!NUW && !NSW) 2710 break; 2711 if (!NSW && ICmpInst::isSigned(Pred)) 2712 break; 2713 if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0), 2714 RBO->getOperand(0), Q, MaxRecurse - 1)) 2715 return V; 2716 break; 2717 } 2718 } 2719 } 2720 return nullptr; 2721 } 2722 2723 /// Simplify integer comparisons where at least one operand of the compare 2724 /// matches an integer min/max idiom. 2725 static Value *simplifyICmpWithMinMax(CmpInst::Predicate Pred, Value *LHS, 2726 Value *RHS, const SimplifyQuery &Q, 2727 unsigned MaxRecurse) { 2728 Type *ITy = GetCompareTy(LHS); // The return type. 2729 Value *A, *B; 2730 CmpInst::Predicate P = CmpInst::BAD_ICMP_PREDICATE; 2731 CmpInst::Predicate EqP; // Chosen so that "A == max/min(A,B)" iff "A EqP B". 2732 2733 // Signed variants on "max(a,b)>=a -> true". 2734 if (match(LHS, m_SMax(m_Value(A), m_Value(B))) && (A == RHS || B == RHS)) { 2735 if (A != RHS) 2736 std::swap(A, B); // smax(A, B) pred A. 2737 EqP = CmpInst::ICMP_SGE; // "A == smax(A, B)" iff "A sge B". 2738 // We analyze this as smax(A, B) pred A. 2739 P = Pred; 2740 } else if (match(RHS, m_SMax(m_Value(A), m_Value(B))) && 2741 (A == LHS || B == LHS)) { 2742 if (A != LHS) 2743 std::swap(A, B); // A pred smax(A, B). 2744 EqP = CmpInst::ICMP_SGE; // "A == smax(A, B)" iff "A sge B". 2745 // We analyze this as smax(A, B) swapped-pred A. 2746 P = CmpInst::getSwappedPredicate(Pred); 2747 } else if (match(LHS, m_SMin(m_Value(A), m_Value(B))) && 2748 (A == RHS || B == RHS)) { 2749 if (A != RHS) 2750 std::swap(A, B); // smin(A, B) pred A. 2751 EqP = CmpInst::ICMP_SLE; // "A == smin(A, B)" iff "A sle B". 2752 // We analyze this as smax(-A, -B) swapped-pred -A. 2753 // Note that we do not need to actually form -A or -B thanks to EqP. 2754 P = CmpInst::getSwappedPredicate(Pred); 2755 } else if (match(RHS, m_SMin(m_Value(A), m_Value(B))) && 2756 (A == LHS || B == LHS)) { 2757 if (A != LHS) 2758 std::swap(A, B); // A pred smin(A, B). 2759 EqP = CmpInst::ICMP_SLE; // "A == smin(A, B)" iff "A sle B". 2760 // We analyze this as smax(-A, -B) pred -A. 2761 // Note that we do not need to actually form -A or -B thanks to EqP. 2762 P = Pred; 2763 } 2764 if (P != CmpInst::BAD_ICMP_PREDICATE) { 2765 // Cases correspond to "max(A, B) p A". 2766 switch (P) { 2767 default: 2768 break; 2769 case CmpInst::ICMP_EQ: 2770 case CmpInst::ICMP_SLE: 2771 // Equivalent to "A EqP B". This may be the same as the condition tested 2772 // in the max/min; if so, we can just return that. 2773 if (Value *V = ExtractEquivalentCondition(LHS, EqP, A, B)) 2774 return V; 2775 if (Value *V = ExtractEquivalentCondition(RHS, EqP, A, B)) 2776 return V; 2777 // Otherwise, see if "A EqP B" simplifies. 2778 if (MaxRecurse) 2779 if (Value *V = SimplifyICmpInst(EqP, A, B, Q, MaxRecurse - 1)) 2780 return V; 2781 break; 2782 case CmpInst::ICMP_NE: 2783 case CmpInst::ICMP_SGT: { 2784 CmpInst::Predicate InvEqP = CmpInst::getInversePredicate(EqP); 2785 // Equivalent to "A InvEqP B". This may be the same as the condition 2786 // tested in the max/min; if so, we can just return that. 2787 if (Value *V = ExtractEquivalentCondition(LHS, InvEqP, A, B)) 2788 return V; 2789 if (Value *V = ExtractEquivalentCondition(RHS, InvEqP, A, B)) 2790 return V; 2791 // Otherwise, see if "A InvEqP B" simplifies. 2792 if (MaxRecurse) 2793 if (Value *V = SimplifyICmpInst(InvEqP, A, B, Q, MaxRecurse - 1)) 2794 return V; 2795 break; 2796 } 2797 case CmpInst::ICMP_SGE: 2798 // Always true. 2799 return getTrue(ITy); 2800 case CmpInst::ICMP_SLT: 2801 // Always false. 2802 return getFalse(ITy); 2803 } 2804 } 2805 2806 // Unsigned variants on "max(a,b)>=a -> true". 2807 P = CmpInst::BAD_ICMP_PREDICATE; 2808 if (match(LHS, m_UMax(m_Value(A), m_Value(B))) && (A == RHS || B == RHS)) { 2809 if (A != RHS) 2810 std::swap(A, B); // umax(A, B) pred A. 2811 EqP = CmpInst::ICMP_UGE; // "A == umax(A, B)" iff "A uge B". 2812 // We analyze this as umax(A, B) pred A. 2813 P = Pred; 2814 } else if (match(RHS, m_UMax(m_Value(A), m_Value(B))) && 2815 (A == LHS || B == LHS)) { 2816 if (A != LHS) 2817 std::swap(A, B); // A pred umax(A, B). 2818 EqP = CmpInst::ICMP_UGE; // "A == umax(A, B)" iff "A uge B". 2819 // We analyze this as umax(A, B) swapped-pred A. 2820 P = CmpInst::getSwappedPredicate(Pred); 2821 } else if (match(LHS, m_UMin(m_Value(A), m_Value(B))) && 2822 (A == RHS || B == RHS)) { 2823 if (A != RHS) 2824 std::swap(A, B); // umin(A, B) pred A. 2825 EqP = CmpInst::ICMP_ULE; // "A == umin(A, B)" iff "A ule B". 2826 // We analyze this as umax(-A, -B) swapped-pred -A. 2827 // Note that we do not need to actually form -A or -B thanks to EqP. 2828 P = CmpInst::getSwappedPredicate(Pred); 2829 } else if (match(RHS, m_UMin(m_Value(A), m_Value(B))) && 2830 (A == LHS || B == LHS)) { 2831 if (A != LHS) 2832 std::swap(A, B); // A pred umin(A, B). 2833 EqP = CmpInst::ICMP_ULE; // "A == umin(A, B)" iff "A ule B". 2834 // We analyze this as umax(-A, -B) pred -A. 2835 // Note that we do not need to actually form -A or -B thanks to EqP. 2836 P = Pred; 2837 } 2838 if (P != CmpInst::BAD_ICMP_PREDICATE) { 2839 // Cases correspond to "max(A, B) p A". 2840 switch (P) { 2841 default: 2842 break; 2843 case CmpInst::ICMP_EQ: 2844 case CmpInst::ICMP_ULE: 2845 // Equivalent to "A EqP B". This may be the same as the condition tested 2846 // in the max/min; if so, we can just return that. 2847 if (Value *V = ExtractEquivalentCondition(LHS, EqP, A, B)) 2848 return V; 2849 if (Value *V = ExtractEquivalentCondition(RHS, EqP, A, B)) 2850 return V; 2851 // Otherwise, see if "A EqP B" simplifies. 2852 if (MaxRecurse) 2853 if (Value *V = SimplifyICmpInst(EqP, A, B, Q, MaxRecurse - 1)) 2854 return V; 2855 break; 2856 case CmpInst::ICMP_NE: 2857 case CmpInst::ICMP_UGT: { 2858 CmpInst::Predicate InvEqP = CmpInst::getInversePredicate(EqP); 2859 // Equivalent to "A InvEqP B". This may be the same as the condition 2860 // tested in the max/min; if so, we can just return that. 2861 if (Value *V = ExtractEquivalentCondition(LHS, InvEqP, A, B)) 2862 return V; 2863 if (Value *V = ExtractEquivalentCondition(RHS, InvEqP, A, B)) 2864 return V; 2865 // Otherwise, see if "A InvEqP B" simplifies. 2866 if (MaxRecurse) 2867 if (Value *V = SimplifyICmpInst(InvEqP, A, B, Q, MaxRecurse - 1)) 2868 return V; 2869 break; 2870 } 2871 case CmpInst::ICMP_UGE: 2872 // Always true. 2873 return getTrue(ITy); 2874 case CmpInst::ICMP_ULT: 2875 // Always false. 2876 return getFalse(ITy); 2877 } 2878 } 2879 2880 // Variants on "max(x,y) >= min(x,z)". 2881 Value *C, *D; 2882 if (match(LHS, m_SMax(m_Value(A), m_Value(B))) && 2883 match(RHS, m_SMin(m_Value(C), m_Value(D))) && 2884 (A == C || A == D || B == C || B == D)) { 2885 // max(x, ?) pred min(x, ?). 2886 if (Pred == CmpInst::ICMP_SGE) 2887 // Always true. 2888 return getTrue(ITy); 2889 if (Pred == CmpInst::ICMP_SLT) 2890 // Always false. 2891 return getFalse(ITy); 2892 } else if (match(LHS, m_SMin(m_Value(A), m_Value(B))) && 2893 match(RHS, m_SMax(m_Value(C), m_Value(D))) && 2894 (A == C || A == D || B == C || B == D)) { 2895 // min(x, ?) pred max(x, ?). 2896 if (Pred == CmpInst::ICMP_SLE) 2897 // Always true. 2898 return getTrue(ITy); 2899 if (Pred == CmpInst::ICMP_SGT) 2900 // Always false. 2901 return getFalse(ITy); 2902 } else if (match(LHS, m_UMax(m_Value(A), m_Value(B))) && 2903 match(RHS, m_UMin(m_Value(C), m_Value(D))) && 2904 (A == C || A == D || B == C || B == D)) { 2905 // max(x, ?) pred min(x, ?). 2906 if (Pred == CmpInst::ICMP_UGE) 2907 // Always true. 2908 return getTrue(ITy); 2909 if (Pred == CmpInst::ICMP_ULT) 2910 // Always false. 2911 return getFalse(ITy); 2912 } else if (match(LHS, m_UMin(m_Value(A), m_Value(B))) && 2913 match(RHS, m_UMax(m_Value(C), m_Value(D))) && 2914 (A == C || A == D || B == C || B == D)) { 2915 // min(x, ?) pred max(x, ?). 2916 if (Pred == CmpInst::ICMP_ULE) 2917 // Always true. 2918 return getTrue(ITy); 2919 if (Pred == CmpInst::ICMP_UGT) 2920 // Always false. 2921 return getFalse(ITy); 2922 } 2923 2924 return nullptr; 2925 } 2926 2927 /// Given operands for an ICmpInst, see if we can fold the result. 2928 /// If not, this returns null. 2929 static Value *SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS, 2930 const SimplifyQuery &Q, unsigned MaxRecurse) { 2931 CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate; 2932 assert(CmpInst::isIntPredicate(Pred) && "Not an integer compare!"); 2933 2934 if (Constant *CLHS = dyn_cast<Constant>(LHS)) { 2935 if (Constant *CRHS = dyn_cast<Constant>(RHS)) 2936 return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, Q.DL, Q.TLI); 2937 2938 // If we have a constant, make sure it is on the RHS. 2939 std::swap(LHS, RHS); 2940 Pred = CmpInst::getSwappedPredicate(Pred); 2941 } 2942 2943 Type *ITy = GetCompareTy(LHS); // The return type. 2944 2945 // icmp X, X -> true/false 2946 // X icmp undef -> true/false. For example, icmp ugt %X, undef -> false 2947 // because X could be 0. 2948 if (LHS == RHS || isa<UndefValue>(RHS)) 2949 return ConstantInt::get(ITy, CmpInst::isTrueWhenEqual(Pred)); 2950 2951 if (Value *V = simplifyICmpOfBools(Pred, LHS, RHS, Q)) 2952 return V; 2953 2954 if (Value *V = simplifyICmpWithZero(Pred, LHS, RHS, Q)) 2955 return V; 2956 2957 if (Value *V = simplifyICmpWithConstant(Pred, LHS, RHS)) 2958 return V; 2959 2960 // If both operands have range metadata, use the metadata 2961 // to simplify the comparison. 2962 if (isa<Instruction>(RHS) && isa<Instruction>(LHS)) { 2963 auto RHS_Instr = cast<Instruction>(RHS); 2964 auto LHS_Instr = cast<Instruction>(LHS); 2965 2966 if (RHS_Instr->getMetadata(LLVMContext::MD_range) && 2967 LHS_Instr->getMetadata(LLVMContext::MD_range)) { 2968 auto RHS_CR = getConstantRangeFromMetadata( 2969 *RHS_Instr->getMetadata(LLVMContext::MD_range)); 2970 auto LHS_CR = getConstantRangeFromMetadata( 2971 *LHS_Instr->getMetadata(LLVMContext::MD_range)); 2972 2973 auto Satisfied_CR = ConstantRange::makeSatisfyingICmpRegion(Pred, RHS_CR); 2974 if (Satisfied_CR.contains(LHS_CR)) 2975 return ConstantInt::getTrue(RHS->getContext()); 2976 2977 auto InversedSatisfied_CR = ConstantRange::makeSatisfyingICmpRegion( 2978 CmpInst::getInversePredicate(Pred), RHS_CR); 2979 if (InversedSatisfied_CR.contains(LHS_CR)) 2980 return ConstantInt::getFalse(RHS->getContext()); 2981 } 2982 } 2983 2984 // Compare of cast, for example (zext X) != 0 -> X != 0 2985 if (isa<CastInst>(LHS) && (isa<Constant>(RHS) || isa<CastInst>(RHS))) { 2986 Instruction *LI = cast<CastInst>(LHS); 2987 Value *SrcOp = LI->getOperand(0); 2988 Type *SrcTy = SrcOp->getType(); 2989 Type *DstTy = LI->getType(); 2990 2991 // Turn icmp (ptrtoint x), (ptrtoint/constant) into a compare of the input 2992 // if the integer type is the same size as the pointer type. 2993 if (MaxRecurse && isa<PtrToIntInst>(LI) && 2994 Q.DL.getTypeSizeInBits(SrcTy) == DstTy->getPrimitiveSizeInBits()) { 2995 if (Constant *RHSC = dyn_cast<Constant>(RHS)) { 2996 // Transfer the cast to the constant. 2997 if (Value *V = SimplifyICmpInst(Pred, SrcOp, 2998 ConstantExpr::getIntToPtr(RHSC, SrcTy), 2999 Q, MaxRecurse-1)) 3000 return V; 3001 } else if (PtrToIntInst *RI = dyn_cast<PtrToIntInst>(RHS)) { 3002 if (RI->getOperand(0)->getType() == SrcTy) 3003 // Compare without the cast. 3004 if (Value *V = SimplifyICmpInst(Pred, SrcOp, RI->getOperand(0), 3005 Q, MaxRecurse-1)) 3006 return V; 3007 } 3008 } 3009 3010 if (isa<ZExtInst>(LHS)) { 3011 // Turn icmp (zext X), (zext Y) into a compare of X and Y if they have the 3012 // same type. 3013 if (ZExtInst *RI = dyn_cast<ZExtInst>(RHS)) { 3014 if (MaxRecurse && SrcTy == RI->getOperand(0)->getType()) 3015 // Compare X and Y. Note that signed predicates become unsigned. 3016 if (Value *V = SimplifyICmpInst(ICmpInst::getUnsignedPredicate(Pred), 3017 SrcOp, RI->getOperand(0), Q, 3018 MaxRecurse-1)) 3019 return V; 3020 } 3021 // Turn icmp (zext X), Cst into a compare of X and Cst if Cst is extended 3022 // too. If not, then try to deduce the result of the comparison. 3023 else if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) { 3024 // Compute the constant that would happen if we truncated to SrcTy then 3025 // reextended to DstTy. 3026 Constant *Trunc = ConstantExpr::getTrunc(CI, SrcTy); 3027 Constant *RExt = ConstantExpr::getCast(CastInst::ZExt, Trunc, DstTy); 3028 3029 // If the re-extended constant didn't change then this is effectively 3030 // also a case of comparing two zero-extended values. 3031 if (RExt == CI && MaxRecurse) 3032 if (Value *V = SimplifyICmpInst(ICmpInst::getUnsignedPredicate(Pred), 3033 SrcOp, Trunc, Q, MaxRecurse-1)) 3034 return V; 3035 3036 // Otherwise the upper bits of LHS are zero while RHS has a non-zero bit 3037 // there. Use this to work out the result of the comparison. 3038 if (RExt != CI) { 3039 switch (Pred) { 3040 default: llvm_unreachable("Unknown ICmp predicate!"); 3041 // LHS <u RHS. 3042 case ICmpInst::ICMP_EQ: 3043 case ICmpInst::ICMP_UGT: 3044 case ICmpInst::ICMP_UGE: 3045 return ConstantInt::getFalse(CI->getContext()); 3046 3047 case ICmpInst::ICMP_NE: 3048 case ICmpInst::ICMP_ULT: 3049 case ICmpInst::ICMP_ULE: 3050 return ConstantInt::getTrue(CI->getContext()); 3051 3052 // LHS is non-negative. If RHS is negative then LHS >s LHS. If RHS 3053 // is non-negative then LHS <s RHS. 3054 case ICmpInst::ICMP_SGT: 3055 case ICmpInst::ICMP_SGE: 3056 return CI->getValue().isNegative() ? 3057 ConstantInt::getTrue(CI->getContext()) : 3058 ConstantInt::getFalse(CI->getContext()); 3059 3060 case ICmpInst::ICMP_SLT: 3061 case ICmpInst::ICMP_SLE: 3062 return CI->getValue().isNegative() ? 3063 ConstantInt::getFalse(CI->getContext()) : 3064 ConstantInt::getTrue(CI->getContext()); 3065 } 3066 } 3067 } 3068 } 3069 3070 if (isa<SExtInst>(LHS)) { 3071 // Turn icmp (sext X), (sext Y) into a compare of X and Y if they have the 3072 // same type. 3073 if (SExtInst *RI = dyn_cast<SExtInst>(RHS)) { 3074 if (MaxRecurse && SrcTy == RI->getOperand(0)->getType()) 3075 // Compare X and Y. Note that the predicate does not change. 3076 if (Value *V = SimplifyICmpInst(Pred, SrcOp, RI->getOperand(0), 3077 Q, MaxRecurse-1)) 3078 return V; 3079 } 3080 // Turn icmp (sext X), Cst into a compare of X and Cst if Cst is extended 3081 // too. If not, then try to deduce the result of the comparison. 3082 else if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) { 3083 // Compute the constant that would happen if we truncated to SrcTy then 3084 // reextended to DstTy. 3085 Constant *Trunc = ConstantExpr::getTrunc(CI, SrcTy); 3086 Constant *RExt = ConstantExpr::getCast(CastInst::SExt, Trunc, DstTy); 3087 3088 // If the re-extended constant didn't change then this is effectively 3089 // also a case of comparing two sign-extended values. 3090 if (RExt == CI && MaxRecurse) 3091 if (Value *V = SimplifyICmpInst(Pred, SrcOp, Trunc, Q, MaxRecurse-1)) 3092 return V; 3093 3094 // Otherwise the upper bits of LHS are all equal, while RHS has varying 3095 // bits there. Use this to work out the result of the comparison. 3096 if (RExt != CI) { 3097 switch (Pred) { 3098 default: llvm_unreachable("Unknown ICmp predicate!"); 3099 case ICmpInst::ICMP_EQ: 3100 return ConstantInt::getFalse(CI->getContext()); 3101 case ICmpInst::ICMP_NE: 3102 return ConstantInt::getTrue(CI->getContext()); 3103 3104 // If RHS is non-negative then LHS <s RHS. If RHS is negative then 3105 // LHS >s RHS. 3106 case ICmpInst::ICMP_SGT: 3107 case ICmpInst::ICMP_SGE: 3108 return CI->getValue().isNegative() ? 3109 ConstantInt::getTrue(CI->getContext()) : 3110 ConstantInt::getFalse(CI->getContext()); 3111 case ICmpInst::ICMP_SLT: 3112 case ICmpInst::ICMP_SLE: 3113 return CI->getValue().isNegative() ? 3114 ConstantInt::getFalse(CI->getContext()) : 3115 ConstantInt::getTrue(CI->getContext()); 3116 3117 // If LHS is non-negative then LHS <u RHS. If LHS is negative then 3118 // LHS >u RHS. 3119 case ICmpInst::ICMP_UGT: 3120 case ICmpInst::ICMP_UGE: 3121 // Comparison is true iff the LHS <s 0. 3122 if (MaxRecurse) 3123 if (Value *V = SimplifyICmpInst(ICmpInst::ICMP_SLT, SrcOp, 3124 Constant::getNullValue(SrcTy), 3125 Q, MaxRecurse-1)) 3126 return V; 3127 break; 3128 case ICmpInst::ICMP_ULT: 3129 case ICmpInst::ICMP_ULE: 3130 // Comparison is true iff the LHS >=s 0. 3131 if (MaxRecurse) 3132 if (Value *V = SimplifyICmpInst(ICmpInst::ICMP_SGE, SrcOp, 3133 Constant::getNullValue(SrcTy), 3134 Q, MaxRecurse-1)) 3135 return V; 3136 break; 3137 } 3138 } 3139 } 3140 } 3141 } 3142 3143 // icmp eq|ne X, Y -> false|true if X != Y 3144 if (ICmpInst::isEquality(Pred) && 3145 isKnownNonEqual(LHS, RHS, Q.DL, Q.AC, Q.CxtI, Q.DT)) { 3146 return Pred == ICmpInst::ICMP_NE ? getTrue(ITy) : getFalse(ITy); 3147 } 3148 3149 if (Value *V = simplifyICmpWithBinOp(Pred, LHS, RHS, Q, MaxRecurse)) 3150 return V; 3151 3152 if (Value *V = simplifyICmpWithMinMax(Pred, LHS, RHS, Q, MaxRecurse)) 3153 return V; 3154 3155 // Simplify comparisons of related pointers using a powerful, recursive 3156 // GEP-walk when we have target data available.. 3157 if (LHS->getType()->isPointerTy()) 3158 if (auto *C = computePointerICmp(Q.DL, Q.TLI, Q.DT, Pred, Q.AC, Q.CxtI, LHS, 3159 RHS)) 3160 return C; 3161 if (auto *CLHS = dyn_cast<PtrToIntOperator>(LHS)) 3162 if (auto *CRHS = dyn_cast<PtrToIntOperator>(RHS)) 3163 if (Q.DL.getTypeSizeInBits(CLHS->getPointerOperandType()) == 3164 Q.DL.getTypeSizeInBits(CLHS->getType()) && 3165 Q.DL.getTypeSizeInBits(CRHS->getPointerOperandType()) == 3166 Q.DL.getTypeSizeInBits(CRHS->getType())) 3167 if (auto *C = computePointerICmp(Q.DL, Q.TLI, Q.DT, Pred, Q.AC, Q.CxtI, 3168 CLHS->getPointerOperand(), 3169 CRHS->getPointerOperand())) 3170 return C; 3171 3172 if (GetElementPtrInst *GLHS = dyn_cast<GetElementPtrInst>(LHS)) { 3173 if (GEPOperator *GRHS = dyn_cast<GEPOperator>(RHS)) { 3174 if (GLHS->getPointerOperand() == GRHS->getPointerOperand() && 3175 GLHS->hasAllConstantIndices() && GRHS->hasAllConstantIndices() && 3176 (ICmpInst::isEquality(Pred) || 3177 (GLHS->isInBounds() && GRHS->isInBounds() && 3178 Pred == ICmpInst::getSignedPredicate(Pred)))) { 3179 // The bases are equal and the indices are constant. Build a constant 3180 // expression GEP with the same indices and a null base pointer to see 3181 // what constant folding can make out of it. 3182 Constant *Null = Constant::getNullValue(GLHS->getPointerOperandType()); 3183 SmallVector<Value *, 4> IndicesLHS(GLHS->idx_begin(), GLHS->idx_end()); 3184 Constant *NewLHS = ConstantExpr::getGetElementPtr( 3185 GLHS->getSourceElementType(), Null, IndicesLHS); 3186 3187 SmallVector<Value *, 4> IndicesRHS(GRHS->idx_begin(), GRHS->idx_end()); 3188 Constant *NewRHS = ConstantExpr::getGetElementPtr( 3189 GLHS->getSourceElementType(), Null, IndicesRHS); 3190 return ConstantExpr::getICmp(Pred, NewLHS, NewRHS); 3191 } 3192 } 3193 } 3194 3195 // If the comparison is with the result of a select instruction, check whether 3196 // comparing with either branch of the select always yields the same value. 3197 if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS)) 3198 if (Value *V = ThreadCmpOverSelect(Pred, LHS, RHS, Q, MaxRecurse)) 3199 return V; 3200 3201 // If the comparison is with the result of a phi instruction, check whether 3202 // doing the compare with each incoming phi value yields a common result. 3203 if (isa<PHINode>(LHS) || isa<PHINode>(RHS)) 3204 if (Value *V = ThreadCmpOverPHI(Pred, LHS, RHS, Q, MaxRecurse)) 3205 return V; 3206 3207 return nullptr; 3208 } 3209 3210 Value *llvm::SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS, 3211 const SimplifyQuery &Q) { 3212 return ::SimplifyICmpInst(Predicate, LHS, RHS, Q, RecursionLimit); 3213 } 3214 3215 /// Given operands for an FCmpInst, see if we can fold the result. 3216 /// If not, this returns null. 3217 static Value *SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS, 3218 FastMathFlags FMF, const SimplifyQuery &Q, 3219 unsigned MaxRecurse) { 3220 CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate; 3221 assert(CmpInst::isFPPredicate(Pred) && "Not an FP compare!"); 3222 3223 if (Constant *CLHS = dyn_cast<Constant>(LHS)) { 3224 if (Constant *CRHS = dyn_cast<Constant>(RHS)) 3225 return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, Q.DL, Q.TLI); 3226 3227 // If we have a constant, make sure it is on the RHS. 3228 std::swap(LHS, RHS); 3229 Pred = CmpInst::getSwappedPredicate(Pred); 3230 } 3231 3232 // Fold trivial predicates. 3233 Type *RetTy = GetCompareTy(LHS); 3234 if (Pred == FCmpInst::FCMP_FALSE) 3235 return getFalse(RetTy); 3236 if (Pred == FCmpInst::FCMP_TRUE) 3237 return getTrue(RetTy); 3238 3239 // UNO/ORD predicates can be trivially folded if NaNs are ignored. 3240 if (FMF.noNaNs()) { 3241 if (Pred == FCmpInst::FCMP_UNO) 3242 return getFalse(RetTy); 3243 if (Pred == FCmpInst::FCMP_ORD) 3244 return getTrue(RetTy); 3245 } 3246 3247 // fcmp pred x, undef and fcmp pred undef, x 3248 // fold to true if unordered, false if ordered 3249 if (isa<UndefValue>(LHS) || isa<UndefValue>(RHS)) { 3250 // Choosing NaN for the undef will always make unordered comparison succeed 3251 // and ordered comparison fail. 3252 return ConstantInt::get(RetTy, CmpInst::isUnordered(Pred)); 3253 } 3254 3255 // fcmp x,x -> true/false. Not all compares are foldable. 3256 if (LHS == RHS) { 3257 if (CmpInst::isTrueWhenEqual(Pred)) 3258 return getTrue(RetTy); 3259 if (CmpInst::isFalseWhenEqual(Pred)) 3260 return getFalse(RetTy); 3261 } 3262 3263 // Handle fcmp with constant RHS 3264 const ConstantFP *CFP = nullptr; 3265 if (const auto *RHSC = dyn_cast<Constant>(RHS)) { 3266 if (RHS->getType()->isVectorTy()) 3267 CFP = dyn_cast_or_null<ConstantFP>(RHSC->getSplatValue()); 3268 else 3269 CFP = dyn_cast<ConstantFP>(RHSC); 3270 } 3271 if (CFP) { 3272 // If the constant is a nan, see if we can fold the comparison based on it. 3273 if (CFP->getValueAPF().isNaN()) { 3274 if (FCmpInst::isOrdered(Pred)) // True "if ordered and foo" 3275 return getFalse(RetTy); 3276 assert(FCmpInst::isUnordered(Pred) && 3277 "Comparison must be either ordered or unordered!"); 3278 // True if unordered. 3279 return getTrue(RetTy); 3280 } 3281 // Check whether the constant is an infinity. 3282 if (CFP->getValueAPF().isInfinity()) { 3283 if (CFP->getValueAPF().isNegative()) { 3284 switch (Pred) { 3285 case FCmpInst::FCMP_OLT: 3286 // No value is ordered and less than negative infinity. 3287 return getFalse(RetTy); 3288 case FCmpInst::FCMP_UGE: 3289 // All values are unordered with or at least negative infinity. 3290 return getTrue(RetTy); 3291 default: 3292 break; 3293 } 3294 } else { 3295 switch (Pred) { 3296 case FCmpInst::FCMP_OGT: 3297 // No value is ordered and greater than infinity. 3298 return getFalse(RetTy); 3299 case FCmpInst::FCMP_ULE: 3300 // All values are unordered with and at most infinity. 3301 return getTrue(RetTy); 3302 default: 3303 break; 3304 } 3305 } 3306 } 3307 if (CFP->getValueAPF().isZero()) { 3308 switch (Pred) { 3309 case FCmpInst::FCMP_UGE: 3310 if (CannotBeOrderedLessThanZero(LHS, Q.TLI)) 3311 return getTrue(RetTy); 3312 break; 3313 case FCmpInst::FCMP_OLT: 3314 // X < 0 3315 if (CannotBeOrderedLessThanZero(LHS, Q.TLI)) 3316 return getFalse(RetTy); 3317 break; 3318 default: 3319 break; 3320 } 3321 } 3322 } 3323 3324 // If the comparison is with the result of a select instruction, check whether 3325 // comparing with either branch of the select always yields the same value. 3326 if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS)) 3327 if (Value *V = ThreadCmpOverSelect(Pred, LHS, RHS, Q, MaxRecurse)) 3328 return V; 3329 3330 // If the comparison is with the result of a phi instruction, check whether 3331 // doing the compare with each incoming phi value yields a common result. 3332 if (isa<PHINode>(LHS) || isa<PHINode>(RHS)) 3333 if (Value *V = ThreadCmpOverPHI(Pred, LHS, RHS, Q, MaxRecurse)) 3334 return V; 3335 3336 return nullptr; 3337 } 3338 3339 Value *llvm::SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS, 3340 FastMathFlags FMF, const SimplifyQuery &Q) { 3341 return ::SimplifyFCmpInst(Predicate, LHS, RHS, FMF, Q, RecursionLimit); 3342 } 3343 3344 /// See if V simplifies when its operand Op is replaced with RepOp. 3345 static const Value *SimplifyWithOpReplaced(Value *V, Value *Op, Value *RepOp, 3346 const SimplifyQuery &Q, 3347 unsigned MaxRecurse) { 3348 // Trivial replacement. 3349 if (V == Op) 3350 return RepOp; 3351 3352 // We cannot replace a constant, and shouldn't even try. 3353 if (isa<Constant>(Op)) 3354 return nullptr; 3355 3356 auto *I = dyn_cast<Instruction>(V); 3357 if (!I) 3358 return nullptr; 3359 3360 // If this is a binary operator, try to simplify it with the replaced op. 3361 if (auto *B = dyn_cast<BinaryOperator>(I)) { 3362 // Consider: 3363 // %cmp = icmp eq i32 %x, 2147483647 3364 // %add = add nsw i32 %x, 1 3365 // %sel = select i1 %cmp, i32 -2147483648, i32 %add 3366 // 3367 // We can't replace %sel with %add unless we strip away the flags. 3368 if (isa<OverflowingBinaryOperator>(B)) 3369 if (B->hasNoSignedWrap() || B->hasNoUnsignedWrap()) 3370 return nullptr; 3371 if (isa<PossiblyExactOperator>(B)) 3372 if (B->isExact()) 3373 return nullptr; 3374 3375 if (MaxRecurse) { 3376 if (B->getOperand(0) == Op) 3377 return SimplifyBinOp(B->getOpcode(), RepOp, B->getOperand(1), Q, 3378 MaxRecurse - 1); 3379 if (B->getOperand(1) == Op) 3380 return SimplifyBinOp(B->getOpcode(), B->getOperand(0), RepOp, Q, 3381 MaxRecurse - 1); 3382 } 3383 } 3384 3385 // Same for CmpInsts. 3386 if (CmpInst *C = dyn_cast<CmpInst>(I)) { 3387 if (MaxRecurse) { 3388 if (C->getOperand(0) == Op) 3389 return SimplifyCmpInst(C->getPredicate(), RepOp, C->getOperand(1), Q, 3390 MaxRecurse - 1); 3391 if (C->getOperand(1) == Op) 3392 return SimplifyCmpInst(C->getPredicate(), C->getOperand(0), RepOp, Q, 3393 MaxRecurse - 1); 3394 } 3395 } 3396 3397 // TODO: We could hand off more cases to instsimplify here. 3398 3399 // If all operands are constant after substituting Op for RepOp then we can 3400 // constant fold the instruction. 3401 if (Constant *CRepOp = dyn_cast<Constant>(RepOp)) { 3402 // Build a list of all constant operands. 3403 SmallVector<Constant *, 8> ConstOps; 3404 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 3405 if (I->getOperand(i) == Op) 3406 ConstOps.push_back(CRepOp); 3407 else if (Constant *COp = dyn_cast<Constant>(I->getOperand(i))) 3408 ConstOps.push_back(COp); 3409 else 3410 break; 3411 } 3412 3413 // All operands were constants, fold it. 3414 if (ConstOps.size() == I->getNumOperands()) { 3415 if (CmpInst *C = dyn_cast<CmpInst>(I)) 3416 return ConstantFoldCompareInstOperands(C->getPredicate(), ConstOps[0], 3417 ConstOps[1], Q.DL, Q.TLI); 3418 3419 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 3420 if (!LI->isVolatile()) 3421 return ConstantFoldLoadFromConstPtr(ConstOps[0], LI->getType(), Q.DL); 3422 3423 return ConstantFoldInstOperands(I, ConstOps, Q.DL, Q.TLI); 3424 } 3425 } 3426 3427 return nullptr; 3428 } 3429 3430 /// Try to simplify a select instruction when its condition operand is an 3431 /// integer comparison where one operand of the compare is a constant. 3432 static Value *simplifySelectBitTest(Value *TrueVal, Value *FalseVal, Value *X, 3433 const APInt *Y, bool TrueWhenUnset) { 3434 const APInt *C; 3435 3436 // (X & Y) == 0 ? X & ~Y : X --> X 3437 // (X & Y) != 0 ? X & ~Y : X --> X & ~Y 3438 if (FalseVal == X && match(TrueVal, m_And(m_Specific(X), m_APInt(C))) && 3439 *Y == ~*C) 3440 return TrueWhenUnset ? FalseVal : TrueVal; 3441 3442 // (X & Y) == 0 ? X : X & ~Y --> X & ~Y 3443 // (X & Y) != 0 ? X : X & ~Y --> X 3444 if (TrueVal == X && match(FalseVal, m_And(m_Specific(X), m_APInt(C))) && 3445 *Y == ~*C) 3446 return TrueWhenUnset ? FalseVal : TrueVal; 3447 3448 if (Y->isPowerOf2()) { 3449 // (X & Y) == 0 ? X | Y : X --> X | Y 3450 // (X & Y) != 0 ? X | Y : X --> X 3451 if (FalseVal == X && match(TrueVal, m_Or(m_Specific(X), m_APInt(C))) && 3452 *Y == *C) 3453 return TrueWhenUnset ? TrueVal : FalseVal; 3454 3455 // (X & Y) == 0 ? X : X | Y --> X 3456 // (X & Y) != 0 ? X : X | Y --> X | Y 3457 if (TrueVal == X && match(FalseVal, m_Or(m_Specific(X), m_APInt(C))) && 3458 *Y == *C) 3459 return TrueWhenUnset ? TrueVal : FalseVal; 3460 } 3461 3462 return nullptr; 3463 } 3464 3465 /// An alternative way to test if a bit is set or not uses sgt/slt instead of 3466 /// eq/ne. 3467 static Value *simplifySelectWithFakeICmpEq(Value *CmpLHS, Value *CmpRHS, 3468 ICmpInst::Predicate Pred, 3469 Value *TrueVal, Value *FalseVal) { 3470 Value *X; 3471 APInt Mask; 3472 if (!decomposeBitTestICmp(CmpLHS, CmpRHS, Pred, X, Mask)) 3473 return nullptr; 3474 3475 return simplifySelectBitTest(TrueVal, FalseVal, X, &Mask, 3476 Pred == ICmpInst::ICMP_EQ); 3477 } 3478 3479 /// Try to simplify a select instruction when its condition operand is an 3480 /// integer comparison. 3481 static Value *simplifySelectWithICmpCond(Value *CondVal, Value *TrueVal, 3482 Value *FalseVal, const SimplifyQuery &Q, 3483 unsigned MaxRecurse) { 3484 ICmpInst::Predicate Pred; 3485 Value *CmpLHS, *CmpRHS; 3486 if (!match(CondVal, m_ICmp(Pred, m_Value(CmpLHS), m_Value(CmpRHS)))) 3487 return nullptr; 3488 3489 if (ICmpInst::isEquality(Pred) && match(CmpRHS, m_Zero())) { 3490 Value *X; 3491 const APInt *Y; 3492 if (match(CmpLHS, m_And(m_Value(X), m_APInt(Y)))) 3493 if (Value *V = simplifySelectBitTest(TrueVal, FalseVal, X, Y, 3494 Pred == ICmpInst::ICMP_EQ)) 3495 return V; 3496 } 3497 3498 // Check for other compares that behave like bit test. 3499 if (Value *V = simplifySelectWithFakeICmpEq(CmpLHS, CmpRHS, Pred, 3500 TrueVal, FalseVal)) 3501 return V; 3502 3503 if (CondVal->hasOneUse()) { 3504 const APInt *C; 3505 if (match(CmpRHS, m_APInt(C))) { 3506 // X < MIN ? T : F --> F 3507 if (Pred == ICmpInst::ICMP_SLT && C->isMinSignedValue()) 3508 return FalseVal; 3509 // X < MIN ? T : F --> F 3510 if (Pred == ICmpInst::ICMP_ULT && C->isMinValue()) 3511 return FalseVal; 3512 // X > MAX ? T : F --> F 3513 if (Pred == ICmpInst::ICMP_SGT && C->isMaxSignedValue()) 3514 return FalseVal; 3515 // X > MAX ? T : F --> F 3516 if (Pred == ICmpInst::ICMP_UGT && C->isMaxValue()) 3517 return FalseVal; 3518 } 3519 } 3520 3521 // If we have an equality comparison, then we know the value in one of the 3522 // arms of the select. See if substituting this value into the arm and 3523 // simplifying the result yields the same value as the other arm. 3524 if (Pred == ICmpInst::ICMP_EQ) { 3525 if (SimplifyWithOpReplaced(FalseVal, CmpLHS, CmpRHS, Q, MaxRecurse) == 3526 TrueVal || 3527 SimplifyWithOpReplaced(FalseVal, CmpRHS, CmpLHS, Q, MaxRecurse) == 3528 TrueVal) 3529 return FalseVal; 3530 if (SimplifyWithOpReplaced(TrueVal, CmpLHS, CmpRHS, Q, MaxRecurse) == 3531 FalseVal || 3532 SimplifyWithOpReplaced(TrueVal, CmpRHS, CmpLHS, Q, MaxRecurse) == 3533 FalseVal) 3534 return FalseVal; 3535 } else if (Pred == ICmpInst::ICMP_NE) { 3536 if (SimplifyWithOpReplaced(TrueVal, CmpLHS, CmpRHS, Q, MaxRecurse) == 3537 FalseVal || 3538 SimplifyWithOpReplaced(TrueVal, CmpRHS, CmpLHS, Q, MaxRecurse) == 3539 FalseVal) 3540 return TrueVal; 3541 if (SimplifyWithOpReplaced(FalseVal, CmpLHS, CmpRHS, Q, MaxRecurse) == 3542 TrueVal || 3543 SimplifyWithOpReplaced(FalseVal, CmpRHS, CmpLHS, Q, MaxRecurse) == 3544 TrueVal) 3545 return TrueVal; 3546 } 3547 3548 return nullptr; 3549 } 3550 3551 /// Given operands for a SelectInst, see if we can fold the result. 3552 /// If not, this returns null. 3553 static Value *SimplifySelectInst(Value *CondVal, Value *TrueVal, 3554 Value *FalseVal, const SimplifyQuery &Q, 3555 unsigned MaxRecurse) { 3556 // select true, X, Y -> X 3557 // select false, X, Y -> Y 3558 if (Constant *CB = dyn_cast<Constant>(CondVal)) { 3559 if (CB->isAllOnesValue()) 3560 return TrueVal; 3561 if (CB->isNullValue()) 3562 return FalseVal; 3563 } 3564 3565 // select C, X, X -> X 3566 if (TrueVal == FalseVal) 3567 return TrueVal; 3568 3569 if (isa<UndefValue>(CondVal)) { // select undef, X, Y -> X or Y 3570 if (isa<Constant>(FalseVal)) 3571 return FalseVal; 3572 return TrueVal; 3573 } 3574 if (isa<UndefValue>(TrueVal)) // select C, undef, X -> X 3575 return FalseVal; 3576 if (isa<UndefValue>(FalseVal)) // select C, X, undef -> X 3577 return TrueVal; 3578 3579 if (Value *V = 3580 simplifySelectWithICmpCond(CondVal, TrueVal, FalseVal, Q, MaxRecurse)) 3581 return V; 3582 3583 return nullptr; 3584 } 3585 3586 Value *llvm::SimplifySelectInst(Value *Cond, Value *TrueVal, Value *FalseVal, 3587 const SimplifyQuery &Q) { 3588 return ::SimplifySelectInst(Cond, TrueVal, FalseVal, Q, RecursionLimit); 3589 } 3590 3591 /// Given operands for an GetElementPtrInst, see if we can fold the result. 3592 /// If not, this returns null. 3593 static Value *SimplifyGEPInst(Type *SrcTy, ArrayRef<Value *> Ops, 3594 const SimplifyQuery &Q, unsigned) { 3595 // The type of the GEP pointer operand. 3596 unsigned AS = 3597 cast<PointerType>(Ops[0]->getType()->getScalarType())->getAddressSpace(); 3598 3599 // getelementptr P -> P. 3600 if (Ops.size() == 1) 3601 return Ops[0]; 3602 3603 // Compute the (pointer) type returned by the GEP instruction. 3604 Type *LastType = GetElementPtrInst::getIndexedType(SrcTy, Ops.slice(1)); 3605 Type *GEPTy = PointerType::get(LastType, AS); 3606 if (VectorType *VT = dyn_cast<VectorType>(Ops[0]->getType())) 3607 GEPTy = VectorType::get(GEPTy, VT->getNumElements()); 3608 else if (VectorType *VT = dyn_cast<VectorType>(Ops[1]->getType())) 3609 GEPTy = VectorType::get(GEPTy, VT->getNumElements()); 3610 3611 if (isa<UndefValue>(Ops[0])) 3612 return UndefValue::get(GEPTy); 3613 3614 if (Ops.size() == 2) { 3615 // getelementptr P, 0 -> P. 3616 if (match(Ops[1], m_Zero())) 3617 return Ops[0]; 3618 3619 Type *Ty = SrcTy; 3620 if (Ty->isSized()) { 3621 Value *P; 3622 uint64_t C; 3623 uint64_t TyAllocSize = Q.DL.getTypeAllocSize(Ty); 3624 // getelementptr P, N -> P if P points to a type of zero size. 3625 if (TyAllocSize == 0) 3626 return Ops[0]; 3627 3628 // The following transforms are only safe if the ptrtoint cast 3629 // doesn't truncate the pointers. 3630 if (Ops[1]->getType()->getScalarSizeInBits() == 3631 Q.DL.getPointerSizeInBits(AS)) { 3632 auto PtrToIntOrZero = [GEPTy](Value *P) -> Value * { 3633 if (match(P, m_Zero())) 3634 return Constant::getNullValue(GEPTy); 3635 Value *Temp; 3636 if (match(P, m_PtrToInt(m_Value(Temp)))) 3637 if (Temp->getType() == GEPTy) 3638 return Temp; 3639 return nullptr; 3640 }; 3641 3642 // getelementptr V, (sub P, V) -> P if P points to a type of size 1. 3643 if (TyAllocSize == 1 && 3644 match(Ops[1], m_Sub(m_Value(P), m_PtrToInt(m_Specific(Ops[0]))))) 3645 if (Value *R = PtrToIntOrZero(P)) 3646 return R; 3647 3648 // getelementptr V, (ashr (sub P, V), C) -> Q 3649 // if P points to a type of size 1 << C. 3650 if (match(Ops[1], 3651 m_AShr(m_Sub(m_Value(P), m_PtrToInt(m_Specific(Ops[0]))), 3652 m_ConstantInt(C))) && 3653 TyAllocSize == 1ULL << C) 3654 if (Value *R = PtrToIntOrZero(P)) 3655 return R; 3656 3657 // getelementptr V, (sdiv (sub P, V), C) -> Q 3658 // if P points to a type of size C. 3659 if (match(Ops[1], 3660 m_SDiv(m_Sub(m_Value(P), m_PtrToInt(m_Specific(Ops[0]))), 3661 m_SpecificInt(TyAllocSize)))) 3662 if (Value *R = PtrToIntOrZero(P)) 3663 return R; 3664 } 3665 } 3666 } 3667 3668 if (Q.DL.getTypeAllocSize(LastType) == 1 && 3669 all_of(Ops.slice(1).drop_back(1), 3670 [](Value *Idx) { return match(Idx, m_Zero()); })) { 3671 unsigned PtrWidth = 3672 Q.DL.getPointerSizeInBits(Ops[0]->getType()->getPointerAddressSpace()); 3673 if (Q.DL.getTypeSizeInBits(Ops.back()->getType()) == PtrWidth) { 3674 APInt BasePtrOffset(PtrWidth, 0); 3675 Value *StrippedBasePtr = 3676 Ops[0]->stripAndAccumulateInBoundsConstantOffsets(Q.DL, 3677 BasePtrOffset); 3678 3679 // gep (gep V, C), (sub 0, V) -> C 3680 if (match(Ops.back(), 3681 m_Sub(m_Zero(), m_PtrToInt(m_Specific(StrippedBasePtr))))) { 3682 auto *CI = ConstantInt::get(GEPTy->getContext(), BasePtrOffset); 3683 return ConstantExpr::getIntToPtr(CI, GEPTy); 3684 } 3685 // gep (gep V, C), (xor V, -1) -> C-1 3686 if (match(Ops.back(), 3687 m_Xor(m_PtrToInt(m_Specific(StrippedBasePtr)), m_AllOnes()))) { 3688 auto *CI = ConstantInt::get(GEPTy->getContext(), BasePtrOffset - 1); 3689 return ConstantExpr::getIntToPtr(CI, GEPTy); 3690 } 3691 } 3692 } 3693 3694 // Check to see if this is constant foldable. 3695 if (!all_of(Ops, [](Value *V) { return isa<Constant>(V); })) 3696 return nullptr; 3697 3698 auto *CE = ConstantExpr::getGetElementPtr(SrcTy, cast<Constant>(Ops[0]), 3699 Ops.slice(1)); 3700 if (auto *CEFolded = ConstantFoldConstant(CE, Q.DL)) 3701 return CEFolded; 3702 return CE; 3703 } 3704 3705 Value *llvm::SimplifyGEPInst(Type *SrcTy, ArrayRef<Value *> Ops, 3706 const SimplifyQuery &Q) { 3707 return ::SimplifyGEPInst(SrcTy, Ops, Q, RecursionLimit); 3708 } 3709 3710 /// Given operands for an InsertValueInst, see if we can fold the result. 3711 /// If not, this returns null. 3712 static Value *SimplifyInsertValueInst(Value *Agg, Value *Val, 3713 ArrayRef<unsigned> Idxs, const SimplifyQuery &Q, 3714 unsigned) { 3715 if (Constant *CAgg = dyn_cast<Constant>(Agg)) 3716 if (Constant *CVal = dyn_cast<Constant>(Val)) 3717 return ConstantFoldInsertValueInstruction(CAgg, CVal, Idxs); 3718 3719 // insertvalue x, undef, n -> x 3720 if (match(Val, m_Undef())) 3721 return Agg; 3722 3723 // insertvalue x, (extractvalue y, n), n 3724 if (ExtractValueInst *EV = dyn_cast<ExtractValueInst>(Val)) 3725 if (EV->getAggregateOperand()->getType() == Agg->getType() && 3726 EV->getIndices() == Idxs) { 3727 // insertvalue undef, (extractvalue y, n), n -> y 3728 if (match(Agg, m_Undef())) 3729 return EV->getAggregateOperand(); 3730 3731 // insertvalue y, (extractvalue y, n), n -> y 3732 if (Agg == EV->getAggregateOperand()) 3733 return Agg; 3734 } 3735 3736 return nullptr; 3737 } 3738 3739 Value *llvm::SimplifyInsertValueInst(Value *Agg, Value *Val, 3740 ArrayRef<unsigned> Idxs, 3741 const SimplifyQuery &Q) { 3742 return ::SimplifyInsertValueInst(Agg, Val, Idxs, Q, RecursionLimit); 3743 } 3744 3745 /// Given operands for an ExtractValueInst, see if we can fold the result. 3746 /// If not, this returns null. 3747 static Value *SimplifyExtractValueInst(Value *Agg, ArrayRef<unsigned> Idxs, 3748 const SimplifyQuery &, unsigned) { 3749 if (auto *CAgg = dyn_cast<Constant>(Agg)) 3750 return ConstantFoldExtractValueInstruction(CAgg, Idxs); 3751 3752 // extractvalue x, (insertvalue y, elt, n), n -> elt 3753 unsigned NumIdxs = Idxs.size(); 3754 for (auto *IVI = dyn_cast<InsertValueInst>(Agg); IVI != nullptr; 3755 IVI = dyn_cast<InsertValueInst>(IVI->getAggregateOperand())) { 3756 ArrayRef<unsigned> InsertValueIdxs = IVI->getIndices(); 3757 unsigned NumInsertValueIdxs = InsertValueIdxs.size(); 3758 unsigned NumCommonIdxs = std::min(NumInsertValueIdxs, NumIdxs); 3759 if (InsertValueIdxs.slice(0, NumCommonIdxs) == 3760 Idxs.slice(0, NumCommonIdxs)) { 3761 if (NumIdxs == NumInsertValueIdxs) 3762 return IVI->getInsertedValueOperand(); 3763 break; 3764 } 3765 } 3766 3767 return nullptr; 3768 } 3769 3770 Value *llvm::SimplifyExtractValueInst(Value *Agg, ArrayRef<unsigned> Idxs, 3771 const SimplifyQuery &Q) { 3772 return ::SimplifyExtractValueInst(Agg, Idxs, Q, RecursionLimit); 3773 } 3774 3775 /// Given operands for an ExtractElementInst, see if we can fold the result. 3776 /// If not, this returns null. 3777 static Value *SimplifyExtractElementInst(Value *Vec, Value *Idx, const SimplifyQuery &, 3778 unsigned) { 3779 if (auto *CVec = dyn_cast<Constant>(Vec)) { 3780 if (auto *CIdx = dyn_cast<Constant>(Idx)) 3781 return ConstantFoldExtractElementInstruction(CVec, CIdx); 3782 3783 // The index is not relevant if our vector is a splat. 3784 if (auto *Splat = CVec->getSplatValue()) 3785 return Splat; 3786 3787 if (isa<UndefValue>(Vec)) 3788 return UndefValue::get(Vec->getType()->getVectorElementType()); 3789 } 3790 3791 // If extracting a specified index from the vector, see if we can recursively 3792 // find a previously computed scalar that was inserted into the vector. 3793 if (auto *IdxC = dyn_cast<ConstantInt>(Idx)) 3794 if (Value *Elt = findScalarElement(Vec, IdxC->getZExtValue())) 3795 return Elt; 3796 3797 return nullptr; 3798 } 3799 3800 Value *llvm::SimplifyExtractElementInst(Value *Vec, Value *Idx, 3801 const SimplifyQuery &Q) { 3802 return ::SimplifyExtractElementInst(Vec, Idx, Q, RecursionLimit); 3803 } 3804 3805 /// See if we can fold the given phi. If not, returns null. 3806 static Value *SimplifyPHINode(PHINode *PN, const SimplifyQuery &Q) { 3807 // If all of the PHI's incoming values are the same then replace the PHI node 3808 // with the common value. 3809 Value *CommonValue = nullptr; 3810 bool HasUndefInput = false; 3811 for (Value *Incoming : PN->incoming_values()) { 3812 // If the incoming value is the phi node itself, it can safely be skipped. 3813 if (Incoming == PN) continue; 3814 if (isa<UndefValue>(Incoming)) { 3815 // Remember that we saw an undef value, but otherwise ignore them. 3816 HasUndefInput = true; 3817 continue; 3818 } 3819 if (CommonValue && Incoming != CommonValue) 3820 return nullptr; // Not the same, bail out. 3821 CommonValue = Incoming; 3822 } 3823 3824 // If CommonValue is null then all of the incoming values were either undef or 3825 // equal to the phi node itself. 3826 if (!CommonValue) 3827 return UndefValue::get(PN->getType()); 3828 3829 // If we have a PHI node like phi(X, undef, X), where X is defined by some 3830 // instruction, we cannot return X as the result of the PHI node unless it 3831 // dominates the PHI block. 3832 if (HasUndefInput) 3833 return ValueDominatesPHI(CommonValue, PN, Q.DT) ? CommonValue : nullptr; 3834 3835 return CommonValue; 3836 } 3837 3838 static Value *SimplifyCastInst(unsigned CastOpc, Value *Op, 3839 Type *Ty, const SimplifyQuery &Q, unsigned MaxRecurse) { 3840 if (auto *C = dyn_cast<Constant>(Op)) 3841 return ConstantFoldCastOperand(CastOpc, C, Ty, Q.DL); 3842 3843 if (auto *CI = dyn_cast<CastInst>(Op)) { 3844 auto *Src = CI->getOperand(0); 3845 Type *SrcTy = Src->getType(); 3846 Type *MidTy = CI->getType(); 3847 Type *DstTy = Ty; 3848 if (Src->getType() == Ty) { 3849 auto FirstOp = static_cast<Instruction::CastOps>(CI->getOpcode()); 3850 auto SecondOp = static_cast<Instruction::CastOps>(CastOpc); 3851 Type *SrcIntPtrTy = 3852 SrcTy->isPtrOrPtrVectorTy() ? Q.DL.getIntPtrType(SrcTy) : nullptr; 3853 Type *MidIntPtrTy = 3854 MidTy->isPtrOrPtrVectorTy() ? Q.DL.getIntPtrType(MidTy) : nullptr; 3855 Type *DstIntPtrTy = 3856 DstTy->isPtrOrPtrVectorTy() ? Q.DL.getIntPtrType(DstTy) : nullptr; 3857 if (CastInst::isEliminableCastPair(FirstOp, SecondOp, SrcTy, MidTy, DstTy, 3858 SrcIntPtrTy, MidIntPtrTy, 3859 DstIntPtrTy) == Instruction::BitCast) 3860 return Src; 3861 } 3862 } 3863 3864 // bitcast x -> x 3865 if (CastOpc == Instruction::BitCast) 3866 if (Op->getType() == Ty) 3867 return Op; 3868 3869 return nullptr; 3870 } 3871 3872 Value *llvm::SimplifyCastInst(unsigned CastOpc, Value *Op, Type *Ty, 3873 const SimplifyQuery &Q) { 3874 return ::SimplifyCastInst(CastOpc, Op, Ty, Q, RecursionLimit); 3875 } 3876 3877 /// For the given destination element of a shuffle, peek through shuffles to 3878 /// match a root vector source operand that contains that element in the same 3879 /// vector lane (ie, the same mask index), so we can eliminate the shuffle(s). 3880 static Value *foldIdentityShuffles(int DestElt, Value *Op0, Value *Op1, 3881 int MaskVal, Value *RootVec, 3882 unsigned MaxRecurse) { 3883 if (!MaxRecurse--) 3884 return nullptr; 3885 3886 // Bail out if any mask value is undefined. That kind of shuffle may be 3887 // simplified further based on demanded bits or other folds. 3888 if (MaskVal == -1) 3889 return nullptr; 3890 3891 // The mask value chooses which source operand we need to look at next. 3892 int InVecNumElts = Op0->getType()->getVectorNumElements(); 3893 int RootElt = MaskVal; 3894 Value *SourceOp = Op0; 3895 if (MaskVal >= InVecNumElts) { 3896 RootElt = MaskVal - InVecNumElts; 3897 SourceOp = Op1; 3898 } 3899 3900 // If the source operand is a shuffle itself, look through it to find the 3901 // matching root vector. 3902 if (auto *SourceShuf = dyn_cast<ShuffleVectorInst>(SourceOp)) { 3903 return foldIdentityShuffles( 3904 DestElt, SourceShuf->getOperand(0), SourceShuf->getOperand(1), 3905 SourceShuf->getMaskValue(RootElt), RootVec, MaxRecurse); 3906 } 3907 3908 // TODO: Look through bitcasts? What if the bitcast changes the vector element 3909 // size? 3910 3911 // The source operand is not a shuffle. Initialize the root vector value for 3912 // this shuffle if that has not been done yet. 3913 if (!RootVec) 3914 RootVec = SourceOp; 3915 3916 // Give up as soon as a source operand does not match the existing root value. 3917 if (RootVec != SourceOp) 3918 return nullptr; 3919 3920 // The element must be coming from the same lane in the source vector 3921 // (although it may have crossed lanes in intermediate shuffles). 3922 if (RootElt != DestElt) 3923 return nullptr; 3924 3925 return RootVec; 3926 } 3927 3928 static Value *SimplifyShuffleVectorInst(Value *Op0, Value *Op1, Constant *Mask, 3929 Type *RetTy, const SimplifyQuery &Q, 3930 unsigned MaxRecurse) { 3931 if (isa<UndefValue>(Mask)) 3932 return UndefValue::get(RetTy); 3933 3934 Type *InVecTy = Op0->getType(); 3935 unsigned MaskNumElts = Mask->getType()->getVectorNumElements(); 3936 unsigned InVecNumElts = InVecTy->getVectorNumElements(); 3937 3938 SmallVector<int, 32> Indices; 3939 ShuffleVectorInst::getShuffleMask(Mask, Indices); 3940 assert(MaskNumElts == Indices.size() && 3941 "Size of Indices not same as number of mask elements?"); 3942 3943 // Canonicalization: If mask does not select elements from an input vector, 3944 // replace that input vector with undef. 3945 bool MaskSelects0 = false, MaskSelects1 = false; 3946 for (unsigned i = 0; i != MaskNumElts; ++i) { 3947 if (Indices[i] == -1) 3948 continue; 3949 if ((unsigned)Indices[i] < InVecNumElts) 3950 MaskSelects0 = true; 3951 else 3952 MaskSelects1 = true; 3953 } 3954 if (!MaskSelects0) 3955 Op0 = UndefValue::get(InVecTy); 3956 if (!MaskSelects1) 3957 Op1 = UndefValue::get(InVecTy); 3958 3959 auto *Op0Const = dyn_cast<Constant>(Op0); 3960 auto *Op1Const = dyn_cast<Constant>(Op1); 3961 3962 // If all operands are constant, constant fold the shuffle. 3963 if (Op0Const && Op1Const) 3964 return ConstantFoldShuffleVectorInstruction(Op0Const, Op1Const, Mask); 3965 3966 // Canonicalization: if only one input vector is constant, it shall be the 3967 // second one. 3968 if (Op0Const && !Op1Const) { 3969 std::swap(Op0, Op1); 3970 ShuffleVectorInst::commuteShuffleMask(Indices, InVecNumElts); 3971 } 3972 3973 // A shuffle of a splat is always the splat itself. Legal if the shuffle's 3974 // value type is same as the input vectors' type. 3975 if (auto *OpShuf = dyn_cast<ShuffleVectorInst>(Op0)) 3976 if (isa<UndefValue>(Op1) && RetTy == InVecTy && 3977 OpShuf->getMask()->getSplatValue()) 3978 return Op0; 3979 3980 // Don't fold a shuffle with undef mask elements. This may get folded in a 3981 // better way using demanded bits or other analysis. 3982 // TODO: Should we allow this? 3983 if (find(Indices, -1) != Indices.end()) 3984 return nullptr; 3985 3986 // Check if every element of this shuffle can be mapped back to the 3987 // corresponding element of a single root vector. If so, we don't need this 3988 // shuffle. This handles simple identity shuffles as well as chains of 3989 // shuffles that may widen/narrow and/or move elements across lanes and back. 3990 Value *RootVec = nullptr; 3991 for (unsigned i = 0; i != MaskNumElts; ++i) { 3992 // Note that recursion is limited for each vector element, so if any element 3993 // exceeds the limit, this will fail to simplify. 3994 RootVec = 3995 foldIdentityShuffles(i, Op0, Op1, Indices[i], RootVec, MaxRecurse); 3996 3997 // We can't replace a widening/narrowing shuffle with one of its operands. 3998 if (!RootVec || RootVec->getType() != RetTy) 3999 return nullptr; 4000 } 4001 return RootVec; 4002 } 4003 4004 /// Given operands for a ShuffleVectorInst, fold the result or return null. 4005 Value *llvm::SimplifyShuffleVectorInst(Value *Op0, Value *Op1, Constant *Mask, 4006 Type *RetTy, const SimplifyQuery &Q) { 4007 return ::SimplifyShuffleVectorInst(Op0, Op1, Mask, RetTy, Q, RecursionLimit); 4008 } 4009 4010 /// Given operands for an FAdd, see if we can fold the result. If not, this 4011 /// returns null. 4012 static Value *SimplifyFAddInst(Value *Op0, Value *Op1, FastMathFlags FMF, 4013 const SimplifyQuery &Q, unsigned MaxRecurse) { 4014 if (Constant *C = foldOrCommuteConstant(Instruction::FAdd, Op0, Op1, Q)) 4015 return C; 4016 4017 // fadd X, -0 ==> X 4018 if (match(Op1, m_NegZero())) 4019 return Op0; 4020 4021 // fadd X, 0 ==> X, when we know X is not -0 4022 if (match(Op1, m_Zero()) && 4023 (FMF.noSignedZeros() || CannotBeNegativeZero(Op0, Q.TLI))) 4024 return Op0; 4025 4026 // fadd [nnan ninf] X, (fsub [nnan ninf] 0, X) ==> 0 4027 // where nnan and ninf have to occur at least once somewhere in this 4028 // expression 4029 Value *SubOp = nullptr; 4030 if (match(Op1, m_FSub(m_AnyZero(), m_Specific(Op0)))) 4031 SubOp = Op1; 4032 else if (match(Op0, m_FSub(m_AnyZero(), m_Specific(Op1)))) 4033 SubOp = Op0; 4034 if (SubOp) { 4035 Instruction *FSub = cast<Instruction>(SubOp); 4036 if ((FMF.noNaNs() || FSub->hasNoNaNs()) && 4037 (FMF.noInfs() || FSub->hasNoInfs())) 4038 return Constant::getNullValue(Op0->getType()); 4039 } 4040 4041 return nullptr; 4042 } 4043 4044 /// Given operands for an FSub, see if we can fold the result. If not, this 4045 /// returns null. 4046 static Value *SimplifyFSubInst(Value *Op0, Value *Op1, FastMathFlags FMF, 4047 const SimplifyQuery &Q, unsigned MaxRecurse) { 4048 if (Constant *C = foldOrCommuteConstant(Instruction::FSub, Op0, Op1, Q)) 4049 return C; 4050 4051 // fsub X, 0 ==> X 4052 if (match(Op1, m_Zero())) 4053 return Op0; 4054 4055 // fsub X, -0 ==> X, when we know X is not -0 4056 if (match(Op1, m_NegZero()) && 4057 (FMF.noSignedZeros() || CannotBeNegativeZero(Op0, Q.TLI))) 4058 return Op0; 4059 4060 // fsub -0.0, (fsub -0.0, X) ==> X 4061 Value *X; 4062 if (match(Op0, m_NegZero()) && match(Op1, m_FSub(m_NegZero(), m_Value(X)))) 4063 return X; 4064 4065 // fsub 0.0, (fsub 0.0, X) ==> X if signed zeros are ignored. 4066 if (FMF.noSignedZeros() && match(Op0, m_AnyZero()) && 4067 match(Op1, m_FSub(m_AnyZero(), m_Value(X)))) 4068 return X; 4069 4070 // fsub nnan x, x ==> 0.0 4071 if (FMF.noNaNs() && Op0 == Op1) 4072 return Constant::getNullValue(Op0->getType()); 4073 4074 return nullptr; 4075 } 4076 4077 /// Given the operands for an FMul, see if we can fold the result 4078 static Value *SimplifyFMulInst(Value *Op0, Value *Op1, FastMathFlags FMF, 4079 const SimplifyQuery &Q, unsigned MaxRecurse) { 4080 if (Constant *C = foldOrCommuteConstant(Instruction::FMul, Op0, Op1, Q)) 4081 return C; 4082 4083 // fmul X, 1.0 ==> X 4084 if (match(Op1, m_FPOne())) 4085 return Op0; 4086 4087 // fmul nnan nsz X, 0 ==> 0 4088 if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op1, m_AnyZero())) 4089 return Op1; 4090 4091 return nullptr; 4092 } 4093 4094 Value *llvm::SimplifyFAddInst(Value *Op0, Value *Op1, FastMathFlags FMF, 4095 const SimplifyQuery &Q) { 4096 return ::SimplifyFAddInst(Op0, Op1, FMF, Q, RecursionLimit); 4097 } 4098 4099 4100 Value *llvm::SimplifyFSubInst(Value *Op0, Value *Op1, FastMathFlags FMF, 4101 const SimplifyQuery &Q) { 4102 return ::SimplifyFSubInst(Op0, Op1, FMF, Q, RecursionLimit); 4103 } 4104 4105 Value *llvm::SimplifyFMulInst(Value *Op0, Value *Op1, FastMathFlags FMF, 4106 const SimplifyQuery &Q) { 4107 return ::SimplifyFMulInst(Op0, Op1, FMF, Q, RecursionLimit); 4108 } 4109 4110 static Value *SimplifyFDivInst(Value *Op0, Value *Op1, FastMathFlags FMF, 4111 const SimplifyQuery &Q, unsigned) { 4112 if (Constant *C = foldOrCommuteConstant(Instruction::FDiv, Op0, Op1, Q)) 4113 return C; 4114 4115 // undef / X -> undef (the undef could be a snan). 4116 if (match(Op0, m_Undef())) 4117 return Op0; 4118 4119 // X / undef -> undef 4120 if (match(Op1, m_Undef())) 4121 return Op1; 4122 4123 // X / 1.0 -> X 4124 if (match(Op1, m_FPOne())) 4125 return Op0; 4126 4127 // 0 / X -> 0 4128 // Requires that NaNs are off (X could be zero) and signed zeroes are 4129 // ignored (X could be positive or negative, so the output sign is unknown). 4130 if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op0, m_AnyZero())) 4131 return Op0; 4132 4133 if (FMF.noNaNs()) { 4134 // X / X -> 1.0 is legal when NaNs are ignored. 4135 if (Op0 == Op1) 4136 return ConstantFP::get(Op0->getType(), 1.0); 4137 4138 // -X / X -> -1.0 and 4139 // X / -X -> -1.0 are legal when NaNs are ignored. 4140 // We can ignore signed zeros because +-0.0/+-0.0 is NaN and ignored. 4141 if ((BinaryOperator::isFNeg(Op0, /*IgnoreZeroSign=*/true) && 4142 BinaryOperator::getFNegArgument(Op0) == Op1) || 4143 (BinaryOperator::isFNeg(Op1, /*IgnoreZeroSign=*/true) && 4144 BinaryOperator::getFNegArgument(Op1) == Op0)) 4145 return ConstantFP::get(Op0->getType(), -1.0); 4146 } 4147 4148 return nullptr; 4149 } 4150 4151 Value *llvm::SimplifyFDivInst(Value *Op0, Value *Op1, FastMathFlags FMF, 4152 const SimplifyQuery &Q) { 4153 return ::SimplifyFDivInst(Op0, Op1, FMF, Q, RecursionLimit); 4154 } 4155 4156 static Value *SimplifyFRemInst(Value *Op0, Value *Op1, FastMathFlags FMF, 4157 const SimplifyQuery &Q, unsigned) { 4158 if (Constant *C = foldOrCommuteConstant(Instruction::FRem, Op0, Op1, Q)) 4159 return C; 4160 4161 // undef % X -> undef (the undef could be a snan). 4162 if (match(Op0, m_Undef())) 4163 return Op0; 4164 4165 // X % undef -> undef 4166 if (match(Op1, m_Undef())) 4167 return Op1; 4168 4169 // 0 % X -> 0 4170 // Requires that NaNs are off (X could be zero) and signed zeroes are 4171 // ignored (X could be positive or negative, so the output sign is unknown). 4172 if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op0, m_AnyZero())) 4173 return Op0; 4174 4175 return nullptr; 4176 } 4177 4178 Value *llvm::SimplifyFRemInst(Value *Op0, Value *Op1, FastMathFlags FMF, 4179 const SimplifyQuery &Q) { 4180 return ::SimplifyFRemInst(Op0, Op1, FMF, Q, RecursionLimit); 4181 } 4182 4183 //=== Helper functions for higher up the class hierarchy. 4184 4185 /// Given operands for a BinaryOperator, see if we can fold the result. 4186 /// If not, this returns null. 4187 static Value *SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS, 4188 const SimplifyQuery &Q, unsigned MaxRecurse) { 4189 switch (Opcode) { 4190 case Instruction::Add: 4191 return SimplifyAddInst(LHS, RHS, false, false, Q, MaxRecurse); 4192 case Instruction::Sub: 4193 return SimplifySubInst(LHS, RHS, false, false, Q, MaxRecurse); 4194 case Instruction::Mul: 4195 return SimplifyMulInst(LHS, RHS, Q, MaxRecurse); 4196 case Instruction::SDiv: 4197 return SimplifySDivInst(LHS, RHS, Q, MaxRecurse); 4198 case Instruction::UDiv: 4199 return SimplifyUDivInst(LHS, RHS, Q, MaxRecurse); 4200 case Instruction::SRem: 4201 return SimplifySRemInst(LHS, RHS, Q, MaxRecurse); 4202 case Instruction::URem: 4203 return SimplifyURemInst(LHS, RHS, Q, MaxRecurse); 4204 case Instruction::Shl: 4205 return SimplifyShlInst(LHS, RHS, false, false, Q, MaxRecurse); 4206 case Instruction::LShr: 4207 return SimplifyLShrInst(LHS, RHS, false, Q, MaxRecurse); 4208 case Instruction::AShr: 4209 return SimplifyAShrInst(LHS, RHS, false, Q, MaxRecurse); 4210 case Instruction::And: 4211 return SimplifyAndInst(LHS, RHS, Q, MaxRecurse); 4212 case Instruction::Or: 4213 return SimplifyOrInst(LHS, RHS, Q, MaxRecurse); 4214 case Instruction::Xor: 4215 return SimplifyXorInst(LHS, RHS, Q, MaxRecurse); 4216 case Instruction::FAdd: 4217 return SimplifyFAddInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse); 4218 case Instruction::FSub: 4219 return SimplifyFSubInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse); 4220 case Instruction::FMul: 4221 return SimplifyFMulInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse); 4222 case Instruction::FDiv: 4223 return SimplifyFDivInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse); 4224 case Instruction::FRem: 4225 return SimplifyFRemInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse); 4226 default: 4227 llvm_unreachable("Unexpected opcode"); 4228 } 4229 } 4230 4231 /// Given operands for a BinaryOperator, see if we can fold the result. 4232 /// If not, this returns null. 4233 /// In contrast to SimplifyBinOp, try to use FastMathFlag when folding the 4234 /// result. In case we don't need FastMathFlags, simply fall to SimplifyBinOp. 4235 static Value *SimplifyFPBinOp(unsigned Opcode, Value *LHS, Value *RHS, 4236 const FastMathFlags &FMF, const SimplifyQuery &Q, 4237 unsigned MaxRecurse) { 4238 switch (Opcode) { 4239 case Instruction::FAdd: 4240 return SimplifyFAddInst(LHS, RHS, FMF, Q, MaxRecurse); 4241 case Instruction::FSub: 4242 return SimplifyFSubInst(LHS, RHS, FMF, Q, MaxRecurse); 4243 case Instruction::FMul: 4244 return SimplifyFMulInst(LHS, RHS, FMF, Q, MaxRecurse); 4245 case Instruction::FDiv: 4246 return SimplifyFDivInst(LHS, RHS, FMF, Q, MaxRecurse); 4247 default: 4248 return SimplifyBinOp(Opcode, LHS, RHS, Q, MaxRecurse); 4249 } 4250 } 4251 4252 Value *llvm::SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS, 4253 const SimplifyQuery &Q) { 4254 return ::SimplifyBinOp(Opcode, LHS, RHS, Q, RecursionLimit); 4255 } 4256 4257 Value *llvm::SimplifyFPBinOp(unsigned Opcode, Value *LHS, Value *RHS, 4258 FastMathFlags FMF, const SimplifyQuery &Q) { 4259 return ::SimplifyFPBinOp(Opcode, LHS, RHS, FMF, Q, RecursionLimit); 4260 } 4261 4262 /// Given operands for a CmpInst, see if we can fold the result. 4263 static Value *SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS, 4264 const SimplifyQuery &Q, unsigned MaxRecurse) { 4265 if (CmpInst::isIntPredicate((CmpInst::Predicate)Predicate)) 4266 return SimplifyICmpInst(Predicate, LHS, RHS, Q, MaxRecurse); 4267 return SimplifyFCmpInst(Predicate, LHS, RHS, FastMathFlags(), Q, MaxRecurse); 4268 } 4269 4270 Value *llvm::SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS, 4271 const SimplifyQuery &Q) { 4272 return ::SimplifyCmpInst(Predicate, LHS, RHS, Q, RecursionLimit); 4273 } 4274 4275 static bool IsIdempotent(Intrinsic::ID ID) { 4276 switch (ID) { 4277 default: return false; 4278 4279 // Unary idempotent: f(f(x)) = f(x) 4280 case Intrinsic::fabs: 4281 case Intrinsic::floor: 4282 case Intrinsic::ceil: 4283 case Intrinsic::trunc: 4284 case Intrinsic::rint: 4285 case Intrinsic::nearbyint: 4286 case Intrinsic::round: 4287 case Intrinsic::canonicalize: 4288 return true; 4289 } 4290 } 4291 4292 static Value *SimplifyRelativeLoad(Constant *Ptr, Constant *Offset, 4293 const DataLayout &DL) { 4294 GlobalValue *PtrSym; 4295 APInt PtrOffset; 4296 if (!IsConstantOffsetFromGlobal(Ptr, PtrSym, PtrOffset, DL)) 4297 return nullptr; 4298 4299 Type *Int8PtrTy = Type::getInt8PtrTy(Ptr->getContext()); 4300 Type *Int32Ty = Type::getInt32Ty(Ptr->getContext()); 4301 Type *Int32PtrTy = Int32Ty->getPointerTo(); 4302 Type *Int64Ty = Type::getInt64Ty(Ptr->getContext()); 4303 4304 auto *OffsetConstInt = dyn_cast<ConstantInt>(Offset); 4305 if (!OffsetConstInt || OffsetConstInt->getType()->getBitWidth() > 64) 4306 return nullptr; 4307 4308 uint64_t OffsetInt = OffsetConstInt->getSExtValue(); 4309 if (OffsetInt % 4 != 0) 4310 return nullptr; 4311 4312 Constant *C = ConstantExpr::getGetElementPtr( 4313 Int32Ty, ConstantExpr::getBitCast(Ptr, Int32PtrTy), 4314 ConstantInt::get(Int64Ty, OffsetInt / 4)); 4315 Constant *Loaded = ConstantFoldLoadFromConstPtr(C, Int32Ty, DL); 4316 if (!Loaded) 4317 return nullptr; 4318 4319 auto *LoadedCE = dyn_cast<ConstantExpr>(Loaded); 4320 if (!LoadedCE) 4321 return nullptr; 4322 4323 if (LoadedCE->getOpcode() == Instruction::Trunc) { 4324 LoadedCE = dyn_cast<ConstantExpr>(LoadedCE->getOperand(0)); 4325 if (!LoadedCE) 4326 return nullptr; 4327 } 4328 4329 if (LoadedCE->getOpcode() != Instruction::Sub) 4330 return nullptr; 4331 4332 auto *LoadedLHS = dyn_cast<ConstantExpr>(LoadedCE->getOperand(0)); 4333 if (!LoadedLHS || LoadedLHS->getOpcode() != Instruction::PtrToInt) 4334 return nullptr; 4335 auto *LoadedLHSPtr = LoadedLHS->getOperand(0); 4336 4337 Constant *LoadedRHS = LoadedCE->getOperand(1); 4338 GlobalValue *LoadedRHSSym; 4339 APInt LoadedRHSOffset; 4340 if (!IsConstantOffsetFromGlobal(LoadedRHS, LoadedRHSSym, LoadedRHSOffset, 4341 DL) || 4342 PtrSym != LoadedRHSSym || PtrOffset != LoadedRHSOffset) 4343 return nullptr; 4344 4345 return ConstantExpr::getBitCast(LoadedLHSPtr, Int8PtrTy); 4346 } 4347 4348 static bool maskIsAllZeroOrUndef(Value *Mask) { 4349 auto *ConstMask = dyn_cast<Constant>(Mask); 4350 if (!ConstMask) 4351 return false; 4352 if (ConstMask->isNullValue() || isa<UndefValue>(ConstMask)) 4353 return true; 4354 for (unsigned I = 0, E = ConstMask->getType()->getVectorNumElements(); I != E; 4355 ++I) { 4356 if (auto *MaskElt = ConstMask->getAggregateElement(I)) 4357 if (MaskElt->isNullValue() || isa<UndefValue>(MaskElt)) 4358 continue; 4359 return false; 4360 } 4361 return true; 4362 } 4363 4364 template <typename IterTy> 4365 static Value *SimplifyIntrinsic(Function *F, IterTy ArgBegin, IterTy ArgEnd, 4366 const SimplifyQuery &Q, unsigned MaxRecurse) { 4367 Intrinsic::ID IID = F->getIntrinsicID(); 4368 unsigned NumOperands = std::distance(ArgBegin, ArgEnd); 4369 4370 // Unary Ops 4371 if (NumOperands == 1) { 4372 // Perform idempotent optimizations 4373 if (IsIdempotent(IID)) { 4374 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(*ArgBegin)) { 4375 if (II->getIntrinsicID() == IID) 4376 return II; 4377 } 4378 } 4379 4380 switch (IID) { 4381 case Intrinsic::fabs: { 4382 if (SignBitMustBeZero(*ArgBegin, Q.TLI)) 4383 return *ArgBegin; 4384 return nullptr; 4385 } 4386 default: 4387 return nullptr; 4388 } 4389 } 4390 4391 // Binary Ops 4392 if (NumOperands == 2) { 4393 Value *LHS = *ArgBegin; 4394 Value *RHS = *(ArgBegin + 1); 4395 Type *ReturnType = F->getReturnType(); 4396 4397 switch (IID) { 4398 case Intrinsic::usub_with_overflow: 4399 case Intrinsic::ssub_with_overflow: { 4400 // X - X -> { 0, false } 4401 if (LHS == RHS) 4402 return Constant::getNullValue(ReturnType); 4403 4404 // X - undef -> undef 4405 // undef - X -> undef 4406 if (isa<UndefValue>(LHS) || isa<UndefValue>(RHS)) 4407 return UndefValue::get(ReturnType); 4408 4409 return nullptr; 4410 } 4411 case Intrinsic::uadd_with_overflow: 4412 case Intrinsic::sadd_with_overflow: { 4413 // X + undef -> undef 4414 if (isa<UndefValue>(LHS) || isa<UndefValue>(RHS)) 4415 return UndefValue::get(ReturnType); 4416 4417 return nullptr; 4418 } 4419 case Intrinsic::umul_with_overflow: 4420 case Intrinsic::smul_with_overflow: { 4421 // 0 * X -> { 0, false } 4422 // X * 0 -> { 0, false } 4423 if (match(LHS, m_Zero()) || match(RHS, m_Zero())) 4424 return Constant::getNullValue(ReturnType); 4425 4426 // undef * X -> { 0, false } 4427 // X * undef -> { 0, false } 4428 if (match(LHS, m_Undef()) || match(RHS, m_Undef())) 4429 return Constant::getNullValue(ReturnType); 4430 4431 return nullptr; 4432 } 4433 case Intrinsic::load_relative: { 4434 Constant *C0 = dyn_cast<Constant>(LHS); 4435 Constant *C1 = dyn_cast<Constant>(RHS); 4436 if (C0 && C1) 4437 return SimplifyRelativeLoad(C0, C1, Q.DL); 4438 return nullptr; 4439 } 4440 default: 4441 return nullptr; 4442 } 4443 } 4444 4445 // Simplify calls to llvm.masked.load.* 4446 switch (IID) { 4447 case Intrinsic::masked_load: { 4448 Value *MaskArg = ArgBegin[2]; 4449 Value *PassthruArg = ArgBegin[3]; 4450 // If the mask is all zeros or undef, the "passthru" argument is the result. 4451 if (maskIsAllZeroOrUndef(MaskArg)) 4452 return PassthruArg; 4453 return nullptr; 4454 } 4455 default: 4456 return nullptr; 4457 } 4458 } 4459 4460 template <typename IterTy> 4461 static Value *SimplifyCall(ImmutableCallSite CS, Value *V, IterTy ArgBegin, 4462 IterTy ArgEnd, const SimplifyQuery &Q, 4463 unsigned MaxRecurse) { 4464 Type *Ty = V->getType(); 4465 if (PointerType *PTy = dyn_cast<PointerType>(Ty)) 4466 Ty = PTy->getElementType(); 4467 FunctionType *FTy = cast<FunctionType>(Ty); 4468 4469 // call undef -> undef 4470 // call null -> undef 4471 if (isa<UndefValue>(V) || isa<ConstantPointerNull>(V)) 4472 return UndefValue::get(FTy->getReturnType()); 4473 4474 Function *F = dyn_cast<Function>(V); 4475 if (!F) 4476 return nullptr; 4477 4478 if (F->isIntrinsic()) 4479 if (Value *Ret = SimplifyIntrinsic(F, ArgBegin, ArgEnd, Q, MaxRecurse)) 4480 return Ret; 4481 4482 if (!canConstantFoldCallTo(CS, F)) 4483 return nullptr; 4484 4485 SmallVector<Constant *, 4> ConstantArgs; 4486 ConstantArgs.reserve(ArgEnd - ArgBegin); 4487 for (IterTy I = ArgBegin, E = ArgEnd; I != E; ++I) { 4488 Constant *C = dyn_cast<Constant>(*I); 4489 if (!C) 4490 return nullptr; 4491 ConstantArgs.push_back(C); 4492 } 4493 4494 return ConstantFoldCall(CS, F, ConstantArgs, Q.TLI); 4495 } 4496 4497 Value *llvm::SimplifyCall(ImmutableCallSite CS, Value *V, 4498 User::op_iterator ArgBegin, User::op_iterator ArgEnd, 4499 const SimplifyQuery &Q) { 4500 return ::SimplifyCall(CS, V, ArgBegin, ArgEnd, Q, RecursionLimit); 4501 } 4502 4503 Value *llvm::SimplifyCall(ImmutableCallSite CS, Value *V, 4504 ArrayRef<Value *> Args, const SimplifyQuery &Q) { 4505 return ::SimplifyCall(CS, V, Args.begin(), Args.end(), Q, RecursionLimit); 4506 } 4507 4508 /// See if we can compute a simplified version of this instruction. 4509 /// If not, this returns null. 4510 4511 Value *llvm::SimplifyInstruction(Instruction *I, const SimplifyQuery &SQ, 4512 OptimizationRemarkEmitter *ORE) { 4513 const SimplifyQuery Q = SQ.CxtI ? SQ : SQ.getWithInstruction(I); 4514 Value *Result; 4515 4516 switch (I->getOpcode()) { 4517 default: 4518 Result = ConstantFoldInstruction(I, Q.DL, Q.TLI); 4519 break; 4520 case Instruction::FAdd: 4521 Result = SimplifyFAddInst(I->getOperand(0), I->getOperand(1), 4522 I->getFastMathFlags(), Q); 4523 break; 4524 case Instruction::Add: 4525 Result = SimplifyAddInst(I->getOperand(0), I->getOperand(1), 4526 cast<BinaryOperator>(I)->hasNoSignedWrap(), 4527 cast<BinaryOperator>(I)->hasNoUnsignedWrap(), Q); 4528 break; 4529 case Instruction::FSub: 4530 Result = SimplifyFSubInst(I->getOperand(0), I->getOperand(1), 4531 I->getFastMathFlags(), Q); 4532 break; 4533 case Instruction::Sub: 4534 Result = SimplifySubInst(I->getOperand(0), I->getOperand(1), 4535 cast<BinaryOperator>(I)->hasNoSignedWrap(), 4536 cast<BinaryOperator>(I)->hasNoUnsignedWrap(), Q); 4537 break; 4538 case Instruction::FMul: 4539 Result = SimplifyFMulInst(I->getOperand(0), I->getOperand(1), 4540 I->getFastMathFlags(), Q); 4541 break; 4542 case Instruction::Mul: 4543 Result = SimplifyMulInst(I->getOperand(0), I->getOperand(1), Q); 4544 break; 4545 case Instruction::SDiv: 4546 Result = SimplifySDivInst(I->getOperand(0), I->getOperand(1), Q); 4547 break; 4548 case Instruction::UDiv: 4549 Result = SimplifyUDivInst(I->getOperand(0), I->getOperand(1), Q); 4550 break; 4551 case Instruction::FDiv: 4552 Result = SimplifyFDivInst(I->getOperand(0), I->getOperand(1), 4553 I->getFastMathFlags(), Q); 4554 break; 4555 case Instruction::SRem: 4556 Result = SimplifySRemInst(I->getOperand(0), I->getOperand(1), Q); 4557 break; 4558 case Instruction::URem: 4559 Result = SimplifyURemInst(I->getOperand(0), I->getOperand(1), Q); 4560 break; 4561 case Instruction::FRem: 4562 Result = SimplifyFRemInst(I->getOperand(0), I->getOperand(1), 4563 I->getFastMathFlags(), Q); 4564 break; 4565 case Instruction::Shl: 4566 Result = SimplifyShlInst(I->getOperand(0), I->getOperand(1), 4567 cast<BinaryOperator>(I)->hasNoSignedWrap(), 4568 cast<BinaryOperator>(I)->hasNoUnsignedWrap(), Q); 4569 break; 4570 case Instruction::LShr: 4571 Result = SimplifyLShrInst(I->getOperand(0), I->getOperand(1), 4572 cast<BinaryOperator>(I)->isExact(), Q); 4573 break; 4574 case Instruction::AShr: 4575 Result = SimplifyAShrInst(I->getOperand(0), I->getOperand(1), 4576 cast<BinaryOperator>(I)->isExact(), Q); 4577 break; 4578 case Instruction::And: 4579 Result = SimplifyAndInst(I->getOperand(0), I->getOperand(1), Q); 4580 break; 4581 case Instruction::Or: 4582 Result = SimplifyOrInst(I->getOperand(0), I->getOperand(1), Q); 4583 break; 4584 case Instruction::Xor: 4585 Result = SimplifyXorInst(I->getOperand(0), I->getOperand(1), Q); 4586 break; 4587 case Instruction::ICmp: 4588 Result = SimplifyICmpInst(cast<ICmpInst>(I)->getPredicate(), 4589 I->getOperand(0), I->getOperand(1), Q); 4590 break; 4591 case Instruction::FCmp: 4592 Result = 4593 SimplifyFCmpInst(cast<FCmpInst>(I)->getPredicate(), I->getOperand(0), 4594 I->getOperand(1), I->getFastMathFlags(), Q); 4595 break; 4596 case Instruction::Select: 4597 Result = SimplifySelectInst(I->getOperand(0), I->getOperand(1), 4598 I->getOperand(2), Q); 4599 break; 4600 case Instruction::GetElementPtr: { 4601 SmallVector<Value *, 8> Ops(I->op_begin(), I->op_end()); 4602 Result = SimplifyGEPInst(cast<GetElementPtrInst>(I)->getSourceElementType(), 4603 Ops, Q); 4604 break; 4605 } 4606 case Instruction::InsertValue: { 4607 InsertValueInst *IV = cast<InsertValueInst>(I); 4608 Result = SimplifyInsertValueInst(IV->getAggregateOperand(), 4609 IV->getInsertedValueOperand(), 4610 IV->getIndices(), Q); 4611 break; 4612 } 4613 case Instruction::ExtractValue: { 4614 auto *EVI = cast<ExtractValueInst>(I); 4615 Result = SimplifyExtractValueInst(EVI->getAggregateOperand(), 4616 EVI->getIndices(), Q); 4617 break; 4618 } 4619 case Instruction::ExtractElement: { 4620 auto *EEI = cast<ExtractElementInst>(I); 4621 Result = SimplifyExtractElementInst(EEI->getVectorOperand(), 4622 EEI->getIndexOperand(), Q); 4623 break; 4624 } 4625 case Instruction::ShuffleVector: { 4626 auto *SVI = cast<ShuffleVectorInst>(I); 4627 Result = SimplifyShuffleVectorInst(SVI->getOperand(0), SVI->getOperand(1), 4628 SVI->getMask(), SVI->getType(), Q); 4629 break; 4630 } 4631 case Instruction::PHI: 4632 Result = SimplifyPHINode(cast<PHINode>(I), Q); 4633 break; 4634 case Instruction::Call: { 4635 CallSite CS(cast<CallInst>(I)); 4636 Result = SimplifyCall(CS, CS.getCalledValue(), CS.arg_begin(), CS.arg_end(), 4637 Q); 4638 break; 4639 } 4640 #define HANDLE_CAST_INST(num, opc, clas) case Instruction::opc: 4641 #include "llvm/IR/Instruction.def" 4642 #undef HANDLE_CAST_INST 4643 Result = 4644 SimplifyCastInst(I->getOpcode(), I->getOperand(0), I->getType(), Q); 4645 break; 4646 case Instruction::Alloca: 4647 // No simplifications for Alloca and it can't be constant folded. 4648 Result = nullptr; 4649 break; 4650 } 4651 4652 // In general, it is possible for computeKnownBits to determine all bits in a 4653 // value even when the operands are not all constants. 4654 if (!Result && I->getType()->isIntOrIntVectorTy()) { 4655 KnownBits Known = computeKnownBits(I, Q.DL, /*Depth*/ 0, Q.AC, I, Q.DT, ORE); 4656 if (Known.isConstant()) 4657 Result = ConstantInt::get(I->getType(), Known.getConstant()); 4658 } 4659 4660 /// If called on unreachable code, the above logic may report that the 4661 /// instruction simplified to itself. Make life easier for users by 4662 /// detecting that case here, returning a safe value instead. 4663 return Result == I ? UndefValue::get(I->getType()) : Result; 4664 } 4665 4666 /// \brief Implementation of recursive simplification through an instruction's 4667 /// uses. 4668 /// 4669 /// This is the common implementation of the recursive simplification routines. 4670 /// If we have a pre-simplified value in 'SimpleV', that is forcibly used to 4671 /// replace the instruction 'I'. Otherwise, we simply add 'I' to the list of 4672 /// instructions to process and attempt to simplify it using 4673 /// InstructionSimplify. 4674 /// 4675 /// This routine returns 'true' only when *it* simplifies something. The passed 4676 /// in simplified value does not count toward this. 4677 static bool replaceAndRecursivelySimplifyImpl(Instruction *I, Value *SimpleV, 4678 const TargetLibraryInfo *TLI, 4679 const DominatorTree *DT, 4680 AssumptionCache *AC) { 4681 bool Simplified = false; 4682 SmallSetVector<Instruction *, 8> Worklist; 4683 const DataLayout &DL = I->getModule()->getDataLayout(); 4684 4685 // If we have an explicit value to collapse to, do that round of the 4686 // simplification loop by hand initially. 4687 if (SimpleV) { 4688 for (User *U : I->users()) 4689 if (U != I) 4690 Worklist.insert(cast<Instruction>(U)); 4691 4692 // Replace the instruction with its simplified value. 4693 I->replaceAllUsesWith(SimpleV); 4694 4695 // Gracefully handle edge cases where the instruction is not wired into any 4696 // parent block. 4697 if (I->getParent() && !I->isEHPad() && !isa<TerminatorInst>(I) && 4698 !I->mayHaveSideEffects()) 4699 I->eraseFromParent(); 4700 } else { 4701 Worklist.insert(I); 4702 } 4703 4704 // Note that we must test the size on each iteration, the worklist can grow. 4705 for (unsigned Idx = 0; Idx != Worklist.size(); ++Idx) { 4706 I = Worklist[Idx]; 4707 4708 // See if this instruction simplifies. 4709 SimpleV = SimplifyInstruction(I, {DL, TLI, DT, AC}); 4710 if (!SimpleV) 4711 continue; 4712 4713 Simplified = true; 4714 4715 // Stash away all the uses of the old instruction so we can check them for 4716 // recursive simplifications after a RAUW. This is cheaper than checking all 4717 // uses of To on the recursive step in most cases. 4718 for (User *U : I->users()) 4719 Worklist.insert(cast<Instruction>(U)); 4720 4721 // Replace the instruction with its simplified value. 4722 I->replaceAllUsesWith(SimpleV); 4723 4724 // Gracefully handle edge cases where the instruction is not wired into any 4725 // parent block. 4726 if (I->getParent() && !I->isEHPad() && !isa<TerminatorInst>(I) && 4727 !I->mayHaveSideEffects()) 4728 I->eraseFromParent(); 4729 } 4730 return Simplified; 4731 } 4732 4733 bool llvm::recursivelySimplifyInstruction(Instruction *I, 4734 const TargetLibraryInfo *TLI, 4735 const DominatorTree *DT, 4736 AssumptionCache *AC) { 4737 return replaceAndRecursivelySimplifyImpl(I, nullptr, TLI, DT, AC); 4738 } 4739 4740 bool llvm::replaceAndRecursivelySimplify(Instruction *I, Value *SimpleV, 4741 const TargetLibraryInfo *TLI, 4742 const DominatorTree *DT, 4743 AssumptionCache *AC) { 4744 assert(I != SimpleV && "replaceAndRecursivelySimplify(X,X) is not valid!"); 4745 assert(SimpleV && "Must provide a simplified value."); 4746 return replaceAndRecursivelySimplifyImpl(I, SimpleV, TLI, DT, AC); 4747 } 4748 4749 namespace llvm { 4750 const SimplifyQuery getBestSimplifyQuery(Pass &P, Function &F) { 4751 auto *DTWP = P.getAnalysisIfAvailable<DominatorTreeWrapperPass>(); 4752 auto *DT = DTWP ? &DTWP->getDomTree() : nullptr; 4753 auto *TLIWP = P.getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 4754 auto *TLI = TLIWP ? &TLIWP->getTLI() : nullptr; 4755 auto *ACWP = P.getAnalysisIfAvailable<AssumptionCacheTracker>(); 4756 auto *AC = ACWP ? &ACWP->getAssumptionCache(F) : nullptr; 4757 return {F.getParent()->getDataLayout(), TLI, DT, AC}; 4758 } 4759 4760 const SimplifyQuery getBestSimplifyQuery(LoopStandardAnalysisResults &AR, 4761 const DataLayout &DL) { 4762 return {DL, &AR.TLI, &AR.DT, &AR.AC}; 4763 } 4764 4765 template <class T, class... TArgs> 4766 const SimplifyQuery getBestSimplifyQuery(AnalysisManager<T, TArgs...> &AM, 4767 Function &F) { 4768 auto *DT = AM.template getCachedResult<DominatorTreeAnalysis>(F); 4769 auto *TLI = AM.template getCachedResult<TargetLibraryAnalysis>(F); 4770 auto *AC = AM.template getCachedResult<AssumptionAnalysis>(F); 4771 return {F.getParent()->getDataLayout(), TLI, DT, AC}; 4772 } 4773 template const SimplifyQuery getBestSimplifyQuery(AnalysisManager<Function> &, 4774 Function &); 4775 } 4776