1 //===- InstructionSimplify.cpp - Fold instruction operands ----------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements routines for folding instructions into simpler forms
11 // that do not require creating new instructions.  This does constant folding
12 // ("add i32 1, 1" -> "2") but can also handle non-constant operands, either
13 // returning a constant ("and i32 %x, 0" -> "0") or an already existing value
14 // ("and i32 %x, %x" -> "%x").  All operands are assumed to have already been
15 // simplified: This is usually true and assuming it simplifies the logic (if
16 // they have not been simplified then results are correct but maybe suboptimal).
17 //
18 //===----------------------------------------------------------------------===//
19 
20 #include "llvm/Analysis/InstructionSimplify.h"
21 #include "llvm/ADT/SetVector.h"
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/Analysis/AliasAnalysis.h"
24 #include "llvm/Analysis/AssumptionCache.h"
25 #include "llvm/Analysis/CaptureTracking.h"
26 #include "llvm/Analysis/CmpInstAnalysis.h"
27 #include "llvm/Analysis/ConstantFolding.h"
28 #include "llvm/Analysis/LoopAnalysisManager.h"
29 #include "llvm/Analysis/MemoryBuiltins.h"
30 #include "llvm/Analysis/OptimizationDiagnosticInfo.h"
31 #include "llvm/Analysis/ValueTracking.h"
32 #include "llvm/Analysis/VectorUtils.h"
33 #include "llvm/IR/ConstantRange.h"
34 #include "llvm/IR/DataLayout.h"
35 #include "llvm/IR/Dominators.h"
36 #include "llvm/IR/GetElementPtrTypeIterator.h"
37 #include "llvm/IR/GlobalAlias.h"
38 #include "llvm/IR/Operator.h"
39 #include "llvm/IR/PatternMatch.h"
40 #include "llvm/IR/ValueHandle.h"
41 #include "llvm/Support/KnownBits.h"
42 #include <algorithm>
43 using namespace llvm;
44 using namespace llvm::PatternMatch;
45 
46 #define DEBUG_TYPE "instsimplify"
47 
48 enum { RecursionLimit = 3 };
49 
50 STATISTIC(NumExpand,  "Number of expansions");
51 STATISTIC(NumReassoc, "Number of reassociations");
52 
53 static Value *SimplifyAndInst(Value *, Value *, const SimplifyQuery &, unsigned);
54 static Value *SimplifyBinOp(unsigned, Value *, Value *, const SimplifyQuery &,
55                             unsigned);
56 static Value *SimplifyFPBinOp(unsigned, Value *, Value *, const FastMathFlags &,
57                               const SimplifyQuery &, unsigned);
58 static Value *SimplifyCmpInst(unsigned, Value *, Value *, const SimplifyQuery &,
59                               unsigned);
60 static Value *SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS,
61                                const SimplifyQuery &Q, unsigned MaxRecurse);
62 static Value *SimplifyOrInst(Value *, Value *, const SimplifyQuery &, unsigned);
63 static Value *SimplifyXorInst(Value *, Value *, const SimplifyQuery &, unsigned);
64 static Value *SimplifyCastInst(unsigned, Value *, Type *,
65                                const SimplifyQuery &, unsigned);
66 
67 /// For a boolean type or a vector of boolean type, return false or a vector
68 /// with every element false.
69 static Constant *getFalse(Type *Ty) {
70   return ConstantInt::getFalse(Ty);
71 }
72 
73 /// For a boolean type or a vector of boolean type, return true or a vector
74 /// with every element true.
75 static Constant *getTrue(Type *Ty) {
76   return ConstantInt::getTrue(Ty);
77 }
78 
79 /// isSameCompare - Is V equivalent to the comparison "LHS Pred RHS"?
80 static bool isSameCompare(Value *V, CmpInst::Predicate Pred, Value *LHS,
81                           Value *RHS) {
82   CmpInst *Cmp = dyn_cast<CmpInst>(V);
83   if (!Cmp)
84     return false;
85   CmpInst::Predicate CPred = Cmp->getPredicate();
86   Value *CLHS = Cmp->getOperand(0), *CRHS = Cmp->getOperand(1);
87   if (CPred == Pred && CLHS == LHS && CRHS == RHS)
88     return true;
89   return CPred == CmpInst::getSwappedPredicate(Pred) && CLHS == RHS &&
90     CRHS == LHS;
91 }
92 
93 /// Does the given value dominate the specified phi node?
94 static bool ValueDominatesPHI(Value *V, PHINode *P, const DominatorTree *DT) {
95   Instruction *I = dyn_cast<Instruction>(V);
96   if (!I)
97     // Arguments and constants dominate all instructions.
98     return true;
99 
100   // If we are processing instructions (and/or basic blocks) that have not been
101   // fully added to a function, the parent nodes may still be null. Simply
102   // return the conservative answer in these cases.
103   if (!I->getParent() || !P->getParent() || !I->getParent()->getParent())
104     return false;
105 
106   // If we have a DominatorTree then do a precise test.
107   if (DT)
108     return DT->dominates(I, P);
109 
110   // Otherwise, if the instruction is in the entry block and is not an invoke,
111   // then it obviously dominates all phi nodes.
112   if (I->getParent() == &I->getParent()->getParent()->getEntryBlock() &&
113       !isa<InvokeInst>(I))
114     return true;
115 
116   return false;
117 }
118 
119 /// Simplify "A op (B op' C)" by distributing op over op', turning it into
120 /// "(A op B) op' (A op C)".  Here "op" is given by Opcode and "op'" is
121 /// given by OpcodeToExpand, while "A" corresponds to LHS and "B op' C" to RHS.
122 /// Also performs the transform "(A op' B) op C" -> "(A op C) op' (B op C)".
123 /// Returns the simplified value, or null if no simplification was performed.
124 static Value *ExpandBinOp(Instruction::BinaryOps Opcode, Value *LHS, Value *RHS,
125                           Instruction::BinaryOps OpcodeToExpand,
126                           const SimplifyQuery &Q, unsigned MaxRecurse) {
127   // Recursion is always used, so bail out at once if we already hit the limit.
128   if (!MaxRecurse--)
129     return nullptr;
130 
131   // Check whether the expression has the form "(A op' B) op C".
132   if (BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS))
133     if (Op0->getOpcode() == OpcodeToExpand) {
134       // It does!  Try turning it into "(A op C) op' (B op C)".
135       Value *A = Op0->getOperand(0), *B = Op0->getOperand(1), *C = RHS;
136       // Do "A op C" and "B op C" both simplify?
137       if (Value *L = SimplifyBinOp(Opcode, A, C, Q, MaxRecurse))
138         if (Value *R = SimplifyBinOp(Opcode, B, C, Q, MaxRecurse)) {
139           // They do! Return "L op' R" if it simplifies or is already available.
140           // If "L op' R" equals "A op' B" then "L op' R" is just the LHS.
141           if ((L == A && R == B) || (Instruction::isCommutative(OpcodeToExpand)
142                                      && L == B && R == A)) {
143             ++NumExpand;
144             return LHS;
145           }
146           // Otherwise return "L op' R" if it simplifies.
147           if (Value *V = SimplifyBinOp(OpcodeToExpand, L, R, Q, MaxRecurse)) {
148             ++NumExpand;
149             return V;
150           }
151         }
152     }
153 
154   // Check whether the expression has the form "A op (B op' C)".
155   if (BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS))
156     if (Op1->getOpcode() == OpcodeToExpand) {
157       // It does!  Try turning it into "(A op B) op' (A op C)".
158       Value *A = LHS, *B = Op1->getOperand(0), *C = Op1->getOperand(1);
159       // Do "A op B" and "A op C" both simplify?
160       if (Value *L = SimplifyBinOp(Opcode, A, B, Q, MaxRecurse))
161         if (Value *R = SimplifyBinOp(Opcode, A, C, Q, MaxRecurse)) {
162           // They do! Return "L op' R" if it simplifies or is already available.
163           // If "L op' R" equals "B op' C" then "L op' R" is just the RHS.
164           if ((L == B && R == C) || (Instruction::isCommutative(OpcodeToExpand)
165                                      && L == C && R == B)) {
166             ++NumExpand;
167             return RHS;
168           }
169           // Otherwise return "L op' R" if it simplifies.
170           if (Value *V = SimplifyBinOp(OpcodeToExpand, L, R, Q, MaxRecurse)) {
171             ++NumExpand;
172             return V;
173           }
174         }
175     }
176 
177   return nullptr;
178 }
179 
180 /// Generic simplifications for associative binary operations.
181 /// Returns the simpler value, or null if none was found.
182 static Value *SimplifyAssociativeBinOp(Instruction::BinaryOps Opcode,
183                                        Value *LHS, Value *RHS,
184                                        const SimplifyQuery &Q,
185                                        unsigned MaxRecurse) {
186   assert(Instruction::isAssociative(Opcode) && "Not an associative operation!");
187 
188   // Recursion is always used, so bail out at once if we already hit the limit.
189   if (!MaxRecurse--)
190     return nullptr;
191 
192   BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS);
193   BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS);
194 
195   // Transform: "(A op B) op C" ==> "A op (B op C)" if it simplifies completely.
196   if (Op0 && Op0->getOpcode() == Opcode) {
197     Value *A = Op0->getOperand(0);
198     Value *B = Op0->getOperand(1);
199     Value *C = RHS;
200 
201     // Does "B op C" simplify?
202     if (Value *V = SimplifyBinOp(Opcode, B, C, Q, MaxRecurse)) {
203       // It does!  Return "A op V" if it simplifies or is already available.
204       // If V equals B then "A op V" is just the LHS.
205       if (V == B) return LHS;
206       // Otherwise return "A op V" if it simplifies.
207       if (Value *W = SimplifyBinOp(Opcode, A, V, Q, MaxRecurse)) {
208         ++NumReassoc;
209         return W;
210       }
211     }
212   }
213 
214   // Transform: "A op (B op C)" ==> "(A op B) op C" if it simplifies completely.
215   if (Op1 && Op1->getOpcode() == Opcode) {
216     Value *A = LHS;
217     Value *B = Op1->getOperand(0);
218     Value *C = Op1->getOperand(1);
219 
220     // Does "A op B" simplify?
221     if (Value *V = SimplifyBinOp(Opcode, A, B, Q, MaxRecurse)) {
222       // It does!  Return "V op C" if it simplifies or is already available.
223       // If V equals B then "V op C" is just the RHS.
224       if (V == B) return RHS;
225       // Otherwise return "V op C" if it simplifies.
226       if (Value *W = SimplifyBinOp(Opcode, V, C, Q, MaxRecurse)) {
227         ++NumReassoc;
228         return W;
229       }
230     }
231   }
232 
233   // The remaining transforms require commutativity as well as associativity.
234   if (!Instruction::isCommutative(Opcode))
235     return nullptr;
236 
237   // Transform: "(A op B) op C" ==> "(C op A) op B" if it simplifies completely.
238   if (Op0 && Op0->getOpcode() == Opcode) {
239     Value *A = Op0->getOperand(0);
240     Value *B = Op0->getOperand(1);
241     Value *C = RHS;
242 
243     // Does "C op A" simplify?
244     if (Value *V = SimplifyBinOp(Opcode, C, A, Q, MaxRecurse)) {
245       // It does!  Return "V op B" if it simplifies or is already available.
246       // If V equals A then "V op B" is just the LHS.
247       if (V == A) return LHS;
248       // Otherwise return "V op B" if it simplifies.
249       if (Value *W = SimplifyBinOp(Opcode, V, B, Q, MaxRecurse)) {
250         ++NumReassoc;
251         return W;
252       }
253     }
254   }
255 
256   // Transform: "A op (B op C)" ==> "B op (C op A)" if it simplifies completely.
257   if (Op1 && Op1->getOpcode() == Opcode) {
258     Value *A = LHS;
259     Value *B = Op1->getOperand(0);
260     Value *C = Op1->getOperand(1);
261 
262     // Does "C op A" simplify?
263     if (Value *V = SimplifyBinOp(Opcode, C, A, Q, MaxRecurse)) {
264       // It does!  Return "B op V" if it simplifies or is already available.
265       // If V equals C then "B op V" is just the RHS.
266       if (V == C) return RHS;
267       // Otherwise return "B op V" if it simplifies.
268       if (Value *W = SimplifyBinOp(Opcode, B, V, Q, MaxRecurse)) {
269         ++NumReassoc;
270         return W;
271       }
272     }
273   }
274 
275   return nullptr;
276 }
277 
278 /// In the case of a binary operation with a select instruction as an operand,
279 /// try to simplify the binop by seeing whether evaluating it on both branches
280 /// of the select results in the same value. Returns the common value if so,
281 /// otherwise returns null.
282 static Value *ThreadBinOpOverSelect(Instruction::BinaryOps Opcode, Value *LHS,
283                                     Value *RHS, const SimplifyQuery &Q,
284                                     unsigned MaxRecurse) {
285   // Recursion is always used, so bail out at once if we already hit the limit.
286   if (!MaxRecurse--)
287     return nullptr;
288 
289   SelectInst *SI;
290   if (isa<SelectInst>(LHS)) {
291     SI = cast<SelectInst>(LHS);
292   } else {
293     assert(isa<SelectInst>(RHS) && "No select instruction operand!");
294     SI = cast<SelectInst>(RHS);
295   }
296 
297   // Evaluate the BinOp on the true and false branches of the select.
298   Value *TV;
299   Value *FV;
300   if (SI == LHS) {
301     TV = SimplifyBinOp(Opcode, SI->getTrueValue(), RHS, Q, MaxRecurse);
302     FV = SimplifyBinOp(Opcode, SI->getFalseValue(), RHS, Q, MaxRecurse);
303   } else {
304     TV = SimplifyBinOp(Opcode, LHS, SI->getTrueValue(), Q, MaxRecurse);
305     FV = SimplifyBinOp(Opcode, LHS, SI->getFalseValue(), Q, MaxRecurse);
306   }
307 
308   // If they simplified to the same value, then return the common value.
309   // If they both failed to simplify then return null.
310   if (TV == FV)
311     return TV;
312 
313   // If one branch simplified to undef, return the other one.
314   if (TV && isa<UndefValue>(TV))
315     return FV;
316   if (FV && isa<UndefValue>(FV))
317     return TV;
318 
319   // If applying the operation did not change the true and false select values,
320   // then the result of the binop is the select itself.
321   if (TV == SI->getTrueValue() && FV == SI->getFalseValue())
322     return SI;
323 
324   // If one branch simplified and the other did not, and the simplified
325   // value is equal to the unsimplified one, return the simplified value.
326   // For example, select (cond, X, X & Z) & Z -> X & Z.
327   if ((FV && !TV) || (TV && !FV)) {
328     // Check that the simplified value has the form "X op Y" where "op" is the
329     // same as the original operation.
330     Instruction *Simplified = dyn_cast<Instruction>(FV ? FV : TV);
331     if (Simplified && Simplified->getOpcode() == Opcode) {
332       // The value that didn't simplify is "UnsimplifiedLHS op UnsimplifiedRHS".
333       // We already know that "op" is the same as for the simplified value.  See
334       // if the operands match too.  If so, return the simplified value.
335       Value *UnsimplifiedBranch = FV ? SI->getTrueValue() : SI->getFalseValue();
336       Value *UnsimplifiedLHS = SI == LHS ? UnsimplifiedBranch : LHS;
337       Value *UnsimplifiedRHS = SI == LHS ? RHS : UnsimplifiedBranch;
338       if (Simplified->getOperand(0) == UnsimplifiedLHS &&
339           Simplified->getOperand(1) == UnsimplifiedRHS)
340         return Simplified;
341       if (Simplified->isCommutative() &&
342           Simplified->getOperand(1) == UnsimplifiedLHS &&
343           Simplified->getOperand(0) == UnsimplifiedRHS)
344         return Simplified;
345     }
346   }
347 
348   return nullptr;
349 }
350 
351 /// In the case of a comparison with a select instruction, try to simplify the
352 /// comparison by seeing whether both branches of the select result in the same
353 /// value. Returns the common value if so, otherwise returns null.
354 static Value *ThreadCmpOverSelect(CmpInst::Predicate Pred, Value *LHS,
355                                   Value *RHS, const SimplifyQuery &Q,
356                                   unsigned MaxRecurse) {
357   // Recursion is always used, so bail out at once if we already hit the limit.
358   if (!MaxRecurse--)
359     return nullptr;
360 
361   // Make sure the select is on the LHS.
362   if (!isa<SelectInst>(LHS)) {
363     std::swap(LHS, RHS);
364     Pred = CmpInst::getSwappedPredicate(Pred);
365   }
366   assert(isa<SelectInst>(LHS) && "Not comparing with a select instruction!");
367   SelectInst *SI = cast<SelectInst>(LHS);
368   Value *Cond = SI->getCondition();
369   Value *TV = SI->getTrueValue();
370   Value *FV = SI->getFalseValue();
371 
372   // Now that we have "cmp select(Cond, TV, FV), RHS", analyse it.
373   // Does "cmp TV, RHS" simplify?
374   Value *TCmp = SimplifyCmpInst(Pred, TV, RHS, Q, MaxRecurse);
375   if (TCmp == Cond) {
376     // It not only simplified, it simplified to the select condition.  Replace
377     // it with 'true'.
378     TCmp = getTrue(Cond->getType());
379   } else if (!TCmp) {
380     // It didn't simplify.  However if "cmp TV, RHS" is equal to the select
381     // condition then we can replace it with 'true'.  Otherwise give up.
382     if (!isSameCompare(Cond, Pred, TV, RHS))
383       return nullptr;
384     TCmp = getTrue(Cond->getType());
385   }
386 
387   // Does "cmp FV, RHS" simplify?
388   Value *FCmp = SimplifyCmpInst(Pred, FV, RHS, Q, MaxRecurse);
389   if (FCmp == Cond) {
390     // It not only simplified, it simplified to the select condition.  Replace
391     // it with 'false'.
392     FCmp = getFalse(Cond->getType());
393   } else if (!FCmp) {
394     // It didn't simplify.  However if "cmp FV, RHS" is equal to the select
395     // condition then we can replace it with 'false'.  Otherwise give up.
396     if (!isSameCompare(Cond, Pred, FV, RHS))
397       return nullptr;
398     FCmp = getFalse(Cond->getType());
399   }
400 
401   // If both sides simplified to the same value, then use it as the result of
402   // the original comparison.
403   if (TCmp == FCmp)
404     return TCmp;
405 
406   // The remaining cases only make sense if the select condition has the same
407   // type as the result of the comparison, so bail out if this is not so.
408   if (Cond->getType()->isVectorTy() != RHS->getType()->isVectorTy())
409     return nullptr;
410   // If the false value simplified to false, then the result of the compare
411   // is equal to "Cond && TCmp".  This also catches the case when the false
412   // value simplified to false and the true value to true, returning "Cond".
413   if (match(FCmp, m_Zero()))
414     if (Value *V = SimplifyAndInst(Cond, TCmp, Q, MaxRecurse))
415       return V;
416   // If the true value simplified to true, then the result of the compare
417   // is equal to "Cond || FCmp".
418   if (match(TCmp, m_One()))
419     if (Value *V = SimplifyOrInst(Cond, FCmp, Q, MaxRecurse))
420       return V;
421   // Finally, if the false value simplified to true and the true value to
422   // false, then the result of the compare is equal to "!Cond".
423   if (match(FCmp, m_One()) && match(TCmp, m_Zero()))
424     if (Value *V =
425         SimplifyXorInst(Cond, Constant::getAllOnesValue(Cond->getType()),
426                         Q, MaxRecurse))
427       return V;
428 
429   return nullptr;
430 }
431 
432 /// In the case of a binary operation with an operand that is a PHI instruction,
433 /// try to simplify the binop by seeing whether evaluating it on the incoming
434 /// phi values yields the same result for every value. If so returns the common
435 /// value, otherwise returns null.
436 static Value *ThreadBinOpOverPHI(Instruction::BinaryOps Opcode, Value *LHS,
437                                  Value *RHS, const SimplifyQuery &Q,
438                                  unsigned MaxRecurse) {
439   // Recursion is always used, so bail out at once if we already hit the limit.
440   if (!MaxRecurse--)
441     return nullptr;
442 
443   PHINode *PI;
444   if (isa<PHINode>(LHS)) {
445     PI = cast<PHINode>(LHS);
446     // Bail out if RHS and the phi may be mutually interdependent due to a loop.
447     if (!ValueDominatesPHI(RHS, PI, Q.DT))
448       return nullptr;
449   } else {
450     assert(isa<PHINode>(RHS) && "No PHI instruction operand!");
451     PI = cast<PHINode>(RHS);
452     // Bail out if LHS and the phi may be mutually interdependent due to a loop.
453     if (!ValueDominatesPHI(LHS, PI, Q.DT))
454       return nullptr;
455   }
456 
457   // Evaluate the BinOp on the incoming phi values.
458   Value *CommonValue = nullptr;
459   for (Value *Incoming : PI->incoming_values()) {
460     // If the incoming value is the phi node itself, it can safely be skipped.
461     if (Incoming == PI) continue;
462     Value *V = PI == LHS ?
463       SimplifyBinOp(Opcode, Incoming, RHS, Q, MaxRecurse) :
464       SimplifyBinOp(Opcode, LHS, Incoming, Q, MaxRecurse);
465     // If the operation failed to simplify, or simplified to a different value
466     // to previously, then give up.
467     if (!V || (CommonValue && V != CommonValue))
468       return nullptr;
469     CommonValue = V;
470   }
471 
472   return CommonValue;
473 }
474 
475 /// In the case of a comparison with a PHI instruction, try to simplify the
476 /// comparison by seeing whether comparing with all of the incoming phi values
477 /// yields the same result every time. If so returns the common result,
478 /// otherwise returns null.
479 static Value *ThreadCmpOverPHI(CmpInst::Predicate Pred, Value *LHS, Value *RHS,
480                                const SimplifyQuery &Q, unsigned MaxRecurse) {
481   // Recursion is always used, so bail out at once if we already hit the limit.
482   if (!MaxRecurse--)
483     return nullptr;
484 
485   // Make sure the phi is on the LHS.
486   if (!isa<PHINode>(LHS)) {
487     std::swap(LHS, RHS);
488     Pred = CmpInst::getSwappedPredicate(Pred);
489   }
490   assert(isa<PHINode>(LHS) && "Not comparing with a phi instruction!");
491   PHINode *PI = cast<PHINode>(LHS);
492 
493   // Bail out if RHS and the phi may be mutually interdependent due to a loop.
494   if (!ValueDominatesPHI(RHS, PI, Q.DT))
495     return nullptr;
496 
497   // Evaluate the BinOp on the incoming phi values.
498   Value *CommonValue = nullptr;
499   for (Value *Incoming : PI->incoming_values()) {
500     // If the incoming value is the phi node itself, it can safely be skipped.
501     if (Incoming == PI) continue;
502     Value *V = SimplifyCmpInst(Pred, Incoming, RHS, Q, MaxRecurse);
503     // If the operation failed to simplify, or simplified to a different value
504     // to previously, then give up.
505     if (!V || (CommonValue && V != CommonValue))
506       return nullptr;
507     CommonValue = V;
508   }
509 
510   return CommonValue;
511 }
512 
513 static Constant *foldOrCommuteConstant(Instruction::BinaryOps Opcode,
514                                        Value *&Op0, Value *&Op1,
515                                        const SimplifyQuery &Q) {
516   if (auto *CLHS = dyn_cast<Constant>(Op0)) {
517     if (auto *CRHS = dyn_cast<Constant>(Op1))
518       return ConstantFoldBinaryOpOperands(Opcode, CLHS, CRHS, Q.DL);
519 
520     // Canonicalize the constant to the RHS if this is a commutative operation.
521     if (Instruction::isCommutative(Opcode))
522       std::swap(Op0, Op1);
523   }
524   return nullptr;
525 }
526 
527 /// Given operands for an Add, see if we can fold the result.
528 /// If not, this returns null.
529 static Value *SimplifyAddInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
530                               const SimplifyQuery &Q, unsigned MaxRecurse) {
531   if (Constant *C = foldOrCommuteConstant(Instruction::Add, Op0, Op1, Q))
532     return C;
533 
534   // X + undef -> undef
535   if (match(Op1, m_Undef()))
536     return Op1;
537 
538   // X + 0 -> X
539   if (match(Op1, m_Zero()))
540     return Op0;
541 
542   // X + (Y - X) -> Y
543   // (Y - X) + X -> Y
544   // Eg: X + -X -> 0
545   Value *Y = nullptr;
546   if (match(Op1, m_Sub(m_Value(Y), m_Specific(Op0))) ||
547       match(Op0, m_Sub(m_Value(Y), m_Specific(Op1))))
548     return Y;
549 
550   // X + ~X -> -1   since   ~X = -X-1
551   Type *Ty = Op0->getType();
552   if (match(Op0, m_Not(m_Specific(Op1))) ||
553       match(Op1, m_Not(m_Specific(Op0))))
554     return Constant::getAllOnesValue(Ty);
555 
556   // add nsw/nuw (xor Y, signmask), signmask --> Y
557   // The no-wrapping add guarantees that the top bit will be set by the add.
558   // Therefore, the xor must be clearing the already set sign bit of Y.
559   if ((isNSW || isNUW) && match(Op1, m_SignMask()) &&
560       match(Op0, m_Xor(m_Value(Y), m_SignMask())))
561     return Y;
562 
563   /// i1 add -> xor.
564   if (MaxRecurse && Op0->getType()->isIntOrIntVectorTy(1))
565     if (Value *V = SimplifyXorInst(Op0, Op1, Q, MaxRecurse-1))
566       return V;
567 
568   // Try some generic simplifications for associative operations.
569   if (Value *V = SimplifyAssociativeBinOp(Instruction::Add, Op0, Op1, Q,
570                                           MaxRecurse))
571     return V;
572 
573   // Threading Add over selects and phi nodes is pointless, so don't bother.
574   // Threading over the select in "A + select(cond, B, C)" means evaluating
575   // "A+B" and "A+C" and seeing if they are equal; but they are equal if and
576   // only if B and C are equal.  If B and C are equal then (since we assume
577   // that operands have already been simplified) "select(cond, B, C)" should
578   // have been simplified to the common value of B and C already.  Analysing
579   // "A+B" and "A+C" thus gains nothing, but costs compile time.  Similarly
580   // for threading over phi nodes.
581 
582   return nullptr;
583 }
584 
585 Value *llvm::SimplifyAddInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
586                              const SimplifyQuery &Query) {
587   return ::SimplifyAddInst(Op0, Op1, isNSW, isNUW, Query, RecursionLimit);
588 }
589 
590 /// \brief Compute the base pointer and cumulative constant offsets for V.
591 ///
592 /// This strips all constant offsets off of V, leaving it the base pointer, and
593 /// accumulates the total constant offset applied in the returned constant. It
594 /// returns 0 if V is not a pointer, and returns the constant '0' if there are
595 /// no constant offsets applied.
596 ///
597 /// This is very similar to GetPointerBaseWithConstantOffset except it doesn't
598 /// follow non-inbounds geps. This allows it to remain usable for icmp ult/etc.
599 /// folding.
600 static Constant *stripAndComputeConstantOffsets(const DataLayout &DL, Value *&V,
601                                                 bool AllowNonInbounds = false) {
602   assert(V->getType()->isPtrOrPtrVectorTy());
603 
604   Type *IntPtrTy = DL.getIntPtrType(V->getType())->getScalarType();
605   APInt Offset = APInt::getNullValue(IntPtrTy->getIntegerBitWidth());
606 
607   // Even though we don't look through PHI nodes, we could be called on an
608   // instruction in an unreachable block, which may be on a cycle.
609   SmallPtrSet<Value *, 4> Visited;
610   Visited.insert(V);
611   do {
612     if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
613       if ((!AllowNonInbounds && !GEP->isInBounds()) ||
614           !GEP->accumulateConstantOffset(DL, Offset))
615         break;
616       V = GEP->getPointerOperand();
617     } else if (Operator::getOpcode(V) == Instruction::BitCast) {
618       V = cast<Operator>(V)->getOperand(0);
619     } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
620       if (GA->isInterposable())
621         break;
622       V = GA->getAliasee();
623     } else {
624       if (auto CS = CallSite(V))
625         if (Value *RV = CS.getReturnedArgOperand()) {
626           V = RV;
627           continue;
628         }
629       break;
630     }
631     assert(V->getType()->isPtrOrPtrVectorTy() && "Unexpected operand type!");
632   } while (Visited.insert(V).second);
633 
634   Constant *OffsetIntPtr = ConstantInt::get(IntPtrTy, Offset);
635   if (V->getType()->isVectorTy())
636     return ConstantVector::getSplat(V->getType()->getVectorNumElements(),
637                                     OffsetIntPtr);
638   return OffsetIntPtr;
639 }
640 
641 /// \brief Compute the constant difference between two pointer values.
642 /// If the difference is not a constant, returns zero.
643 static Constant *computePointerDifference(const DataLayout &DL, Value *LHS,
644                                           Value *RHS) {
645   Constant *LHSOffset = stripAndComputeConstantOffsets(DL, LHS);
646   Constant *RHSOffset = stripAndComputeConstantOffsets(DL, RHS);
647 
648   // If LHS and RHS are not related via constant offsets to the same base
649   // value, there is nothing we can do here.
650   if (LHS != RHS)
651     return nullptr;
652 
653   // Otherwise, the difference of LHS - RHS can be computed as:
654   //    LHS - RHS
655   //  = (LHSOffset + Base) - (RHSOffset + Base)
656   //  = LHSOffset - RHSOffset
657   return ConstantExpr::getSub(LHSOffset, RHSOffset);
658 }
659 
660 /// Given operands for a Sub, see if we can fold the result.
661 /// If not, this returns null.
662 static Value *SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
663                               const SimplifyQuery &Q, unsigned MaxRecurse) {
664   if (Constant *C = foldOrCommuteConstant(Instruction::Sub, Op0, Op1, Q))
665     return C;
666 
667   // X - undef -> undef
668   // undef - X -> undef
669   if (match(Op0, m_Undef()) || match(Op1, m_Undef()))
670     return UndefValue::get(Op0->getType());
671 
672   // X - 0 -> X
673   if (match(Op1, m_Zero()))
674     return Op0;
675 
676   // X - X -> 0
677   if (Op0 == Op1)
678     return Constant::getNullValue(Op0->getType());
679 
680   // Is this a negation?
681   if (match(Op0, m_Zero())) {
682     // 0 - X -> 0 if the sub is NUW.
683     if (isNUW)
684       return Op0;
685 
686     KnownBits Known = computeKnownBits(Op1, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
687     if (Known.Zero.isMaxSignedValue()) {
688       // Op1 is either 0 or the minimum signed value. If the sub is NSW, then
689       // Op1 must be 0 because negating the minimum signed value is undefined.
690       if (isNSW)
691         return Op0;
692 
693       // 0 - X -> X if X is 0 or the minimum signed value.
694       return Op1;
695     }
696   }
697 
698   // (X + Y) - Z -> X + (Y - Z) or Y + (X - Z) if everything simplifies.
699   // For example, (X + Y) - Y -> X; (Y + X) - Y -> X
700   Value *X = nullptr, *Y = nullptr, *Z = Op1;
701   if (MaxRecurse && match(Op0, m_Add(m_Value(X), m_Value(Y)))) { // (X + Y) - Z
702     // See if "V === Y - Z" simplifies.
703     if (Value *V = SimplifyBinOp(Instruction::Sub, Y, Z, Q, MaxRecurse-1))
704       // It does!  Now see if "X + V" simplifies.
705       if (Value *W = SimplifyBinOp(Instruction::Add, X, V, Q, MaxRecurse-1)) {
706         // It does, we successfully reassociated!
707         ++NumReassoc;
708         return W;
709       }
710     // See if "V === X - Z" simplifies.
711     if (Value *V = SimplifyBinOp(Instruction::Sub, X, Z, Q, MaxRecurse-1))
712       // It does!  Now see if "Y + V" simplifies.
713       if (Value *W = SimplifyBinOp(Instruction::Add, Y, V, Q, MaxRecurse-1)) {
714         // It does, we successfully reassociated!
715         ++NumReassoc;
716         return W;
717       }
718   }
719 
720   // X - (Y + Z) -> (X - Y) - Z or (X - Z) - Y if everything simplifies.
721   // For example, X - (X + 1) -> -1
722   X = Op0;
723   if (MaxRecurse && match(Op1, m_Add(m_Value(Y), m_Value(Z)))) { // X - (Y + Z)
724     // See if "V === X - Y" simplifies.
725     if (Value *V = SimplifyBinOp(Instruction::Sub, X, Y, Q, MaxRecurse-1))
726       // It does!  Now see if "V - Z" simplifies.
727       if (Value *W = SimplifyBinOp(Instruction::Sub, V, Z, Q, MaxRecurse-1)) {
728         // It does, we successfully reassociated!
729         ++NumReassoc;
730         return W;
731       }
732     // See if "V === X - Z" simplifies.
733     if (Value *V = SimplifyBinOp(Instruction::Sub, X, Z, Q, MaxRecurse-1))
734       // It does!  Now see if "V - Y" simplifies.
735       if (Value *W = SimplifyBinOp(Instruction::Sub, V, Y, Q, MaxRecurse-1)) {
736         // It does, we successfully reassociated!
737         ++NumReassoc;
738         return W;
739       }
740   }
741 
742   // Z - (X - Y) -> (Z - X) + Y if everything simplifies.
743   // For example, X - (X - Y) -> Y.
744   Z = Op0;
745   if (MaxRecurse && match(Op1, m_Sub(m_Value(X), m_Value(Y)))) // Z - (X - Y)
746     // See if "V === Z - X" simplifies.
747     if (Value *V = SimplifyBinOp(Instruction::Sub, Z, X, Q, MaxRecurse-1))
748       // It does!  Now see if "V + Y" simplifies.
749       if (Value *W = SimplifyBinOp(Instruction::Add, V, Y, Q, MaxRecurse-1)) {
750         // It does, we successfully reassociated!
751         ++NumReassoc;
752         return W;
753       }
754 
755   // trunc(X) - trunc(Y) -> trunc(X - Y) if everything simplifies.
756   if (MaxRecurse && match(Op0, m_Trunc(m_Value(X))) &&
757       match(Op1, m_Trunc(m_Value(Y))))
758     if (X->getType() == Y->getType())
759       // See if "V === X - Y" simplifies.
760       if (Value *V = SimplifyBinOp(Instruction::Sub, X, Y, Q, MaxRecurse-1))
761         // It does!  Now see if "trunc V" simplifies.
762         if (Value *W = SimplifyCastInst(Instruction::Trunc, V, Op0->getType(),
763                                         Q, MaxRecurse - 1))
764           // It does, return the simplified "trunc V".
765           return W;
766 
767   // Variations on GEP(base, I, ...) - GEP(base, i, ...) -> GEP(null, I-i, ...).
768   if (match(Op0, m_PtrToInt(m_Value(X))) &&
769       match(Op1, m_PtrToInt(m_Value(Y))))
770     if (Constant *Result = computePointerDifference(Q.DL, X, Y))
771       return ConstantExpr::getIntegerCast(Result, Op0->getType(), true);
772 
773   // i1 sub -> xor.
774   if (MaxRecurse && Op0->getType()->isIntOrIntVectorTy(1))
775     if (Value *V = SimplifyXorInst(Op0, Op1, Q, MaxRecurse-1))
776       return V;
777 
778   // Threading Sub over selects and phi nodes is pointless, so don't bother.
779   // Threading over the select in "A - select(cond, B, C)" means evaluating
780   // "A-B" and "A-C" and seeing if they are equal; but they are equal if and
781   // only if B and C are equal.  If B and C are equal then (since we assume
782   // that operands have already been simplified) "select(cond, B, C)" should
783   // have been simplified to the common value of B and C already.  Analysing
784   // "A-B" and "A-C" thus gains nothing, but costs compile time.  Similarly
785   // for threading over phi nodes.
786 
787   return nullptr;
788 }
789 
790 Value *llvm::SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
791                              const SimplifyQuery &Q) {
792   return ::SimplifySubInst(Op0, Op1, isNSW, isNUW, Q, RecursionLimit);
793 }
794 
795 /// Given operands for a Mul, see if we can fold the result.
796 /// If not, this returns null.
797 static Value *SimplifyMulInst(Value *Op0, Value *Op1, const SimplifyQuery &Q,
798                               unsigned MaxRecurse) {
799   if (Constant *C = foldOrCommuteConstant(Instruction::Mul, Op0, Op1, Q))
800     return C;
801 
802   // X * undef -> 0
803   if (match(Op1, m_Undef()))
804     return Constant::getNullValue(Op0->getType());
805 
806   // X * 0 -> 0
807   if (match(Op1, m_Zero()))
808     return Op1;
809 
810   // X * 1 -> X
811   if (match(Op1, m_One()))
812     return Op0;
813 
814   // (X / Y) * Y -> X if the division is exact.
815   Value *X = nullptr;
816   if (match(Op0, m_Exact(m_IDiv(m_Value(X), m_Specific(Op1)))) || // (X / Y) * Y
817       match(Op1, m_Exact(m_IDiv(m_Value(X), m_Specific(Op0)))))   // Y * (X / Y)
818     return X;
819 
820   // i1 mul -> and.
821   if (MaxRecurse && Op0->getType()->isIntOrIntVectorTy(1))
822     if (Value *V = SimplifyAndInst(Op0, Op1, Q, MaxRecurse-1))
823       return V;
824 
825   // Try some generic simplifications for associative operations.
826   if (Value *V = SimplifyAssociativeBinOp(Instruction::Mul, Op0, Op1, Q,
827                                           MaxRecurse))
828     return V;
829 
830   // Mul distributes over Add.  Try some generic simplifications based on this.
831   if (Value *V = ExpandBinOp(Instruction::Mul, Op0, Op1, Instruction::Add,
832                              Q, MaxRecurse))
833     return V;
834 
835   // If the operation is with the result of a select instruction, check whether
836   // operating on either branch of the select always yields the same value.
837   if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
838     if (Value *V = ThreadBinOpOverSelect(Instruction::Mul, Op0, Op1, Q,
839                                          MaxRecurse))
840       return V;
841 
842   // If the operation is with the result of a phi instruction, check whether
843   // operating on all incoming values of the phi always yields the same value.
844   if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
845     if (Value *V = ThreadBinOpOverPHI(Instruction::Mul, Op0, Op1, Q,
846                                       MaxRecurse))
847       return V;
848 
849   return nullptr;
850 }
851 
852 Value *llvm::SimplifyMulInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) {
853   return ::SimplifyMulInst(Op0, Op1, Q, RecursionLimit);
854 }
855 
856 /// Check for common or similar folds of integer division or integer remainder.
857 /// This applies to all 4 opcodes (sdiv/udiv/srem/urem).
858 static Value *simplifyDivRem(Value *Op0, Value *Op1, bool IsDiv) {
859   Type *Ty = Op0->getType();
860 
861   // X / undef -> undef
862   // X % undef -> undef
863   if (match(Op1, m_Undef()))
864     return Op1;
865 
866   // X / 0 -> undef
867   // X % 0 -> undef
868   // We don't need to preserve faults!
869   if (match(Op1, m_Zero()))
870     return UndefValue::get(Ty);
871 
872   // If any element of a constant divisor vector is zero, the whole op is undef.
873   auto *Op1C = dyn_cast<Constant>(Op1);
874   if (Op1C && Ty->isVectorTy()) {
875     unsigned NumElts = Ty->getVectorNumElements();
876     for (unsigned i = 0; i != NumElts; ++i) {
877       Constant *Elt = Op1C->getAggregateElement(i);
878       if (Elt && Elt->isNullValue())
879         return UndefValue::get(Ty);
880     }
881   }
882 
883   // undef / X -> 0
884   // undef % X -> 0
885   if (match(Op0, m_Undef()))
886     return Constant::getNullValue(Ty);
887 
888   // 0 / X -> 0
889   // 0 % X -> 0
890   if (match(Op0, m_Zero()))
891     return Op0;
892 
893   // X / X -> 1
894   // X % X -> 0
895   if (Op0 == Op1)
896     return IsDiv ? ConstantInt::get(Ty, 1) : Constant::getNullValue(Ty);
897 
898   // X / 1 -> X
899   // X % 1 -> 0
900   // If this is a boolean op (single-bit element type), we can't have
901   // division-by-zero or remainder-by-zero, so assume the divisor is 1.
902   if (match(Op1, m_One()) || Ty->isIntOrIntVectorTy(1))
903     return IsDiv ? Op0 : Constant::getNullValue(Ty);
904 
905   return nullptr;
906 }
907 
908 /// These are simplifications common to SDiv and UDiv.
909 static Value *simplifyDiv(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1,
910                           const SimplifyQuery &Q, unsigned MaxRecurse) {
911   if (Constant *C = foldOrCommuteConstant(Opcode, Op0, Op1, Q))
912     return C;
913 
914   if (Value *V = simplifyDivRem(Op0, Op1, true))
915     return V;
916 
917   bool isSigned = Opcode == Instruction::SDiv;
918 
919   // (X * Y) / Y -> X if the multiplication does not overflow.
920   Value *X = nullptr, *Y = nullptr;
921   if (match(Op0, m_Mul(m_Value(X), m_Value(Y))) && (X == Op1 || Y == Op1)) {
922     if (Y != Op1) std::swap(X, Y); // Ensure expression is (X * Y) / Y, Y = Op1
923     OverflowingBinaryOperator *Mul = cast<OverflowingBinaryOperator>(Op0);
924     // If the Mul knows it does not overflow, then we are good to go.
925     if ((isSigned && Mul->hasNoSignedWrap()) ||
926         (!isSigned && Mul->hasNoUnsignedWrap()))
927       return X;
928     // If X has the form X = A / Y then X * Y cannot overflow.
929     if (BinaryOperator *Div = dyn_cast<BinaryOperator>(X))
930       if (Div->getOpcode() == Opcode && Div->getOperand(1) == Y)
931         return X;
932   }
933 
934   // (X rem Y) / Y -> 0
935   if ((isSigned && match(Op0, m_SRem(m_Value(), m_Specific(Op1)))) ||
936       (!isSigned && match(Op0, m_URem(m_Value(), m_Specific(Op1)))))
937     return Constant::getNullValue(Op0->getType());
938 
939   // (X /u C1) /u C2 -> 0 if C1 * C2 overflow
940   ConstantInt *C1, *C2;
941   if (!isSigned && match(Op0, m_UDiv(m_Value(X), m_ConstantInt(C1))) &&
942       match(Op1, m_ConstantInt(C2))) {
943     bool Overflow;
944     (void)C1->getValue().umul_ov(C2->getValue(), Overflow);
945     if (Overflow)
946       return Constant::getNullValue(Op0->getType());
947   }
948 
949   // If the operation is with the result of a select instruction, check whether
950   // operating on either branch of the select always yields the same value.
951   if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
952     if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse))
953       return V;
954 
955   // If the operation is with the result of a phi instruction, check whether
956   // operating on all incoming values of the phi always yields the same value.
957   if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
958     if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse))
959       return V;
960 
961   return nullptr;
962 }
963 
964 /// These are simplifications common to SRem and URem.
965 static Value *simplifyRem(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1,
966                           const SimplifyQuery &Q, unsigned MaxRecurse) {
967   if (Constant *C = foldOrCommuteConstant(Opcode, Op0, Op1, Q))
968     return C;
969 
970   if (Value *V = simplifyDivRem(Op0, Op1, false))
971     return V;
972 
973   // (X % Y) % Y -> X % Y
974   if ((Opcode == Instruction::SRem &&
975        match(Op0, m_SRem(m_Value(), m_Specific(Op1)))) ||
976       (Opcode == Instruction::URem &&
977        match(Op0, m_URem(m_Value(), m_Specific(Op1)))))
978     return Op0;
979 
980   // If the operation is with the result of a select instruction, check whether
981   // operating on either branch of the select always yields the same value.
982   if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
983     if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse))
984       return V;
985 
986   // If the operation is with the result of a phi instruction, check whether
987   // operating on all incoming values of the phi always yields the same value.
988   if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
989     if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse))
990       return V;
991 
992   return nullptr;
993 }
994 
995 /// Given a predicate and two operands, return true if the comparison is true.
996 /// This is a helper for div/rem simplification where we return some other value
997 /// when we can prove a relationship between the operands.
998 static bool isICmpTrue(ICmpInst::Predicate Pred, Value *LHS, Value *RHS,
999                        const SimplifyQuery &Q, unsigned MaxRecurse) {
1000   Value *V = SimplifyICmpInst(Pred, LHS, RHS, Q, MaxRecurse);
1001   Constant *C = dyn_cast_or_null<Constant>(V);
1002   return (C && C->isAllOnesValue());
1003 }
1004 
1005 static Value *simplifyUnsignedDivRem(Value *Op0, Value *Op1,
1006                                      const SimplifyQuery &Q,
1007                                      unsigned MaxRecurse, bool IsDiv) {
1008   // Recursion is always used, so bail out at once if we already hit the limit.
1009   if (!MaxRecurse--)
1010     return nullptr;
1011 
1012   // If we can prove that the quotient is unsigned less than the divisor, then
1013   // we know the answer:
1014   // X / Y --> 0
1015   // X % Y --> X
1016   if (isICmpTrue(ICmpInst::ICMP_ULT, Op0, Op1, Q, MaxRecurse))
1017     return IsDiv ? Constant::getNullValue(Op0->getType()) : Op0;
1018 
1019   return nullptr;
1020 }
1021 
1022 /// Given operands for an SDiv, see if we can fold the result.
1023 /// If not, this returns null.
1024 static Value *SimplifySDivInst(Value *Op0, Value *Op1, const SimplifyQuery &Q,
1025                                unsigned MaxRecurse) {
1026   if (Value *V = simplifyDiv(Instruction::SDiv, Op0, Op1, Q, MaxRecurse))
1027     return V;
1028 
1029   return nullptr;
1030 }
1031 
1032 Value *llvm::SimplifySDivInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) {
1033   return ::SimplifySDivInst(Op0, Op1, Q, RecursionLimit);
1034 }
1035 
1036 /// Given operands for a UDiv, see if we can fold the result.
1037 /// If not, this returns null.
1038 static Value *SimplifyUDivInst(Value *Op0, Value *Op1, const SimplifyQuery &Q,
1039                                unsigned MaxRecurse) {
1040   if (Value *V = simplifyDiv(Instruction::UDiv, Op0, Op1, Q, MaxRecurse))
1041     return V;
1042 
1043   if (Value *V = simplifyUnsignedDivRem(Op0, Op1, Q, MaxRecurse, true))
1044     return V;
1045 
1046   return nullptr;
1047 }
1048 
1049 Value *llvm::SimplifyUDivInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) {
1050   return ::SimplifyUDivInst(Op0, Op1, Q, RecursionLimit);
1051 }
1052 
1053 /// Given operands for an SRem, see if we can fold the result.
1054 /// If not, this returns null.
1055 static Value *SimplifySRemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q,
1056                                unsigned MaxRecurse) {
1057   if (Value *V = simplifyRem(Instruction::SRem, Op0, Op1, Q, MaxRecurse))
1058     return V;
1059 
1060   return nullptr;
1061 }
1062 
1063 Value *llvm::SimplifySRemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) {
1064   return ::SimplifySRemInst(Op0, Op1, Q, RecursionLimit);
1065 }
1066 
1067 /// Given operands for a URem, see if we can fold the result.
1068 /// If not, this returns null.
1069 static Value *SimplifyURemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q,
1070                                unsigned MaxRecurse) {
1071   if (Value *V = simplifyRem(Instruction::URem, Op0, Op1, Q, MaxRecurse))
1072     return V;
1073 
1074   if (Value *V = simplifyUnsignedDivRem(Op0, Op1, Q, MaxRecurse, false))
1075     return V;
1076 
1077   return nullptr;
1078 }
1079 
1080 Value *llvm::SimplifyURemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) {
1081   return ::SimplifyURemInst(Op0, Op1, Q, RecursionLimit);
1082 }
1083 
1084 /// Returns true if a shift by \c Amount always yields undef.
1085 static bool isUndefShift(Value *Amount) {
1086   Constant *C = dyn_cast<Constant>(Amount);
1087   if (!C)
1088     return false;
1089 
1090   // X shift by undef -> undef because it may shift by the bitwidth.
1091   if (isa<UndefValue>(C))
1092     return true;
1093 
1094   // Shifting by the bitwidth or more is undefined.
1095   if (ConstantInt *CI = dyn_cast<ConstantInt>(C))
1096     if (CI->getValue().getLimitedValue() >=
1097         CI->getType()->getScalarSizeInBits())
1098       return true;
1099 
1100   // If all lanes of a vector shift are undefined the whole shift is.
1101   if (isa<ConstantVector>(C) || isa<ConstantDataVector>(C)) {
1102     for (unsigned I = 0, E = C->getType()->getVectorNumElements(); I != E; ++I)
1103       if (!isUndefShift(C->getAggregateElement(I)))
1104         return false;
1105     return true;
1106   }
1107 
1108   return false;
1109 }
1110 
1111 /// Given operands for an Shl, LShr or AShr, see if we can fold the result.
1112 /// If not, this returns null.
1113 static Value *SimplifyShift(Instruction::BinaryOps Opcode, Value *Op0,
1114                             Value *Op1, const SimplifyQuery &Q, unsigned MaxRecurse) {
1115   if (Constant *C = foldOrCommuteConstant(Opcode, Op0, Op1, Q))
1116     return C;
1117 
1118   // 0 shift by X -> 0
1119   if (match(Op0, m_Zero()))
1120     return Op0;
1121 
1122   // X shift by 0 -> X
1123   if (match(Op1, m_Zero()))
1124     return Op0;
1125 
1126   // Fold undefined shifts.
1127   if (isUndefShift(Op1))
1128     return UndefValue::get(Op0->getType());
1129 
1130   // If the operation is with the result of a select instruction, check whether
1131   // operating on either branch of the select always yields the same value.
1132   if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
1133     if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse))
1134       return V;
1135 
1136   // If the operation is with the result of a phi instruction, check whether
1137   // operating on all incoming values of the phi always yields the same value.
1138   if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
1139     if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse))
1140       return V;
1141 
1142   // If any bits in the shift amount make that value greater than or equal to
1143   // the number of bits in the type, the shift is undefined.
1144   KnownBits Known = computeKnownBits(Op1, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
1145   if (Known.One.getLimitedValue() >= Known.getBitWidth())
1146     return UndefValue::get(Op0->getType());
1147 
1148   // If all valid bits in the shift amount are known zero, the first operand is
1149   // unchanged.
1150   unsigned NumValidShiftBits = Log2_32_Ceil(Known.getBitWidth());
1151   if (Known.countMinTrailingZeros() >= NumValidShiftBits)
1152     return Op0;
1153 
1154   return nullptr;
1155 }
1156 
1157 /// \brief Given operands for an Shl, LShr or AShr, see if we can
1158 /// fold the result.  If not, this returns null.
1159 static Value *SimplifyRightShift(Instruction::BinaryOps Opcode, Value *Op0,
1160                                  Value *Op1, bool isExact, const SimplifyQuery &Q,
1161                                  unsigned MaxRecurse) {
1162   if (Value *V = SimplifyShift(Opcode, Op0, Op1, Q, MaxRecurse))
1163     return V;
1164 
1165   // X >> X -> 0
1166   if (Op0 == Op1)
1167     return Constant::getNullValue(Op0->getType());
1168 
1169   // undef >> X -> 0
1170   // undef >> X -> undef (if it's exact)
1171   if (match(Op0, m_Undef()))
1172     return isExact ? Op0 : Constant::getNullValue(Op0->getType());
1173 
1174   // The low bit cannot be shifted out of an exact shift if it is set.
1175   if (isExact) {
1176     KnownBits Op0Known = computeKnownBits(Op0, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT);
1177     if (Op0Known.One[0])
1178       return Op0;
1179   }
1180 
1181   return nullptr;
1182 }
1183 
1184 /// Given operands for an Shl, see if we can fold the result.
1185 /// If not, this returns null.
1186 static Value *SimplifyShlInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
1187                               const SimplifyQuery &Q, unsigned MaxRecurse) {
1188   if (Value *V = SimplifyShift(Instruction::Shl, Op0, Op1, Q, MaxRecurse))
1189     return V;
1190 
1191   // undef << X -> 0
1192   // undef << X -> undef if (if it's NSW/NUW)
1193   if (match(Op0, m_Undef()))
1194     return isNSW || isNUW ? Op0 : Constant::getNullValue(Op0->getType());
1195 
1196   // (X >> A) << A -> X
1197   Value *X;
1198   if (match(Op0, m_Exact(m_Shr(m_Value(X), m_Specific(Op1)))))
1199     return X;
1200   return nullptr;
1201 }
1202 
1203 Value *llvm::SimplifyShlInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
1204                              const SimplifyQuery &Q) {
1205   return ::SimplifyShlInst(Op0, Op1, isNSW, isNUW, Q, RecursionLimit);
1206 }
1207 
1208 /// Given operands for an LShr, see if we can fold the result.
1209 /// If not, this returns null.
1210 static Value *SimplifyLShrInst(Value *Op0, Value *Op1, bool isExact,
1211                                const SimplifyQuery &Q, unsigned MaxRecurse) {
1212   if (Value *V = SimplifyRightShift(Instruction::LShr, Op0, Op1, isExact, Q,
1213                                     MaxRecurse))
1214       return V;
1215 
1216   // (X << A) >> A -> X
1217   Value *X;
1218   if (match(Op0, m_NUWShl(m_Value(X), m_Specific(Op1))))
1219     return X;
1220 
1221   return nullptr;
1222 }
1223 
1224 Value *llvm::SimplifyLShrInst(Value *Op0, Value *Op1, bool isExact,
1225                               const SimplifyQuery &Q) {
1226   return ::SimplifyLShrInst(Op0, Op1, isExact, Q, RecursionLimit);
1227 }
1228 
1229 /// Given operands for an AShr, see if we can fold the result.
1230 /// If not, this returns null.
1231 static Value *SimplifyAShrInst(Value *Op0, Value *Op1, bool isExact,
1232                                const SimplifyQuery &Q, unsigned MaxRecurse) {
1233   if (Value *V = SimplifyRightShift(Instruction::AShr, Op0, Op1, isExact, Q,
1234                                     MaxRecurse))
1235     return V;
1236 
1237   // all ones >>a X -> all ones
1238   if (match(Op0, m_AllOnes()))
1239     return Op0;
1240 
1241   // (X << A) >> A -> X
1242   Value *X;
1243   if (match(Op0, m_NSWShl(m_Value(X), m_Specific(Op1))))
1244     return X;
1245 
1246   // Arithmetic shifting an all-sign-bit value is a no-op.
1247   unsigned NumSignBits = ComputeNumSignBits(Op0, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
1248   if (NumSignBits == Op0->getType()->getScalarSizeInBits())
1249     return Op0;
1250 
1251   return nullptr;
1252 }
1253 
1254 Value *llvm::SimplifyAShrInst(Value *Op0, Value *Op1, bool isExact,
1255                               const SimplifyQuery &Q) {
1256   return ::SimplifyAShrInst(Op0, Op1, isExact, Q, RecursionLimit);
1257 }
1258 
1259 /// Commuted variants are assumed to be handled by calling this function again
1260 /// with the parameters swapped.
1261 static Value *simplifyUnsignedRangeCheck(ICmpInst *ZeroICmp,
1262                                          ICmpInst *UnsignedICmp, bool IsAnd) {
1263   Value *X, *Y;
1264 
1265   ICmpInst::Predicate EqPred;
1266   if (!match(ZeroICmp, m_ICmp(EqPred, m_Value(Y), m_Zero())) ||
1267       !ICmpInst::isEquality(EqPred))
1268     return nullptr;
1269 
1270   ICmpInst::Predicate UnsignedPred;
1271   if (match(UnsignedICmp, m_ICmp(UnsignedPred, m_Value(X), m_Specific(Y))) &&
1272       ICmpInst::isUnsigned(UnsignedPred))
1273     ;
1274   else if (match(UnsignedICmp,
1275                  m_ICmp(UnsignedPred, m_Value(Y), m_Specific(X))) &&
1276            ICmpInst::isUnsigned(UnsignedPred))
1277     UnsignedPred = ICmpInst::getSwappedPredicate(UnsignedPred);
1278   else
1279     return nullptr;
1280 
1281   // X < Y && Y != 0  -->  X < Y
1282   // X < Y || Y != 0  -->  Y != 0
1283   if (UnsignedPred == ICmpInst::ICMP_ULT && EqPred == ICmpInst::ICMP_NE)
1284     return IsAnd ? UnsignedICmp : ZeroICmp;
1285 
1286   // X >= Y || Y != 0  -->  true
1287   // X >= Y || Y == 0  -->  X >= Y
1288   if (UnsignedPred == ICmpInst::ICMP_UGE && !IsAnd) {
1289     if (EqPred == ICmpInst::ICMP_NE)
1290       return getTrue(UnsignedICmp->getType());
1291     return UnsignedICmp;
1292   }
1293 
1294   // X < Y && Y == 0  -->  false
1295   if (UnsignedPred == ICmpInst::ICMP_ULT && EqPred == ICmpInst::ICMP_EQ &&
1296       IsAnd)
1297     return getFalse(UnsignedICmp->getType());
1298 
1299   return nullptr;
1300 }
1301 
1302 /// Commuted variants are assumed to be handled by calling this function again
1303 /// with the parameters swapped.
1304 static Value *simplifyAndOfICmpsWithSameOperands(ICmpInst *Op0, ICmpInst *Op1) {
1305   ICmpInst::Predicate Pred0, Pred1;
1306   Value *A ,*B;
1307   if (!match(Op0, m_ICmp(Pred0, m_Value(A), m_Value(B))) ||
1308       !match(Op1, m_ICmp(Pred1, m_Specific(A), m_Specific(B))))
1309     return nullptr;
1310 
1311   // We have (icmp Pred0, A, B) & (icmp Pred1, A, B).
1312   // If Op1 is always implied true by Op0, then Op0 is a subset of Op1, and we
1313   // can eliminate Op1 from this 'and'.
1314   if (ICmpInst::isImpliedTrueByMatchingCmp(Pred0, Pred1))
1315     return Op0;
1316 
1317   // Check for any combination of predicates that are guaranteed to be disjoint.
1318   if ((Pred0 == ICmpInst::getInversePredicate(Pred1)) ||
1319       (Pred0 == ICmpInst::ICMP_EQ && ICmpInst::isFalseWhenEqual(Pred1)) ||
1320       (Pred0 == ICmpInst::ICMP_SLT && Pred1 == ICmpInst::ICMP_SGT) ||
1321       (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_UGT))
1322     return getFalse(Op0->getType());
1323 
1324   return nullptr;
1325 }
1326 
1327 /// Commuted variants are assumed to be handled by calling this function again
1328 /// with the parameters swapped.
1329 static Value *simplifyOrOfICmpsWithSameOperands(ICmpInst *Op0, ICmpInst *Op1) {
1330   ICmpInst::Predicate Pred0, Pred1;
1331   Value *A ,*B;
1332   if (!match(Op0, m_ICmp(Pred0, m_Value(A), m_Value(B))) ||
1333       !match(Op1, m_ICmp(Pred1, m_Specific(A), m_Specific(B))))
1334     return nullptr;
1335 
1336   // We have (icmp Pred0, A, B) | (icmp Pred1, A, B).
1337   // If Op1 is always implied true by Op0, then Op0 is a subset of Op1, and we
1338   // can eliminate Op0 from this 'or'.
1339   if (ICmpInst::isImpliedTrueByMatchingCmp(Pred0, Pred1))
1340     return Op1;
1341 
1342   // Check for any combination of predicates that cover the entire range of
1343   // possibilities.
1344   if ((Pred0 == ICmpInst::getInversePredicate(Pred1)) ||
1345       (Pred0 == ICmpInst::ICMP_NE && ICmpInst::isTrueWhenEqual(Pred1)) ||
1346       (Pred0 == ICmpInst::ICMP_SLE && Pred1 == ICmpInst::ICMP_SGE) ||
1347       (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_UGE))
1348     return getTrue(Op0->getType());
1349 
1350   return nullptr;
1351 }
1352 
1353 /// Test if a pair of compares with a shared operand and 2 constants has an
1354 /// empty set intersection, full set union, or if one compare is a superset of
1355 /// the other.
1356 static Value *simplifyAndOrOfICmpsWithConstants(ICmpInst *Cmp0, ICmpInst *Cmp1,
1357                                                 bool IsAnd) {
1358   // Look for this pattern: {and/or} (icmp X, C0), (icmp X, C1)).
1359   if (Cmp0->getOperand(0) != Cmp1->getOperand(0))
1360     return nullptr;
1361 
1362   const APInt *C0, *C1;
1363   if (!match(Cmp0->getOperand(1), m_APInt(C0)) ||
1364       !match(Cmp1->getOperand(1), m_APInt(C1)))
1365     return nullptr;
1366 
1367   auto Range0 = ConstantRange::makeExactICmpRegion(Cmp0->getPredicate(), *C0);
1368   auto Range1 = ConstantRange::makeExactICmpRegion(Cmp1->getPredicate(), *C1);
1369 
1370   // For and-of-compares, check if the intersection is empty:
1371   // (icmp X, C0) && (icmp X, C1) --> empty set --> false
1372   if (IsAnd && Range0.intersectWith(Range1).isEmptySet())
1373     return getFalse(Cmp0->getType());
1374 
1375   // For or-of-compares, check if the union is full:
1376   // (icmp X, C0) || (icmp X, C1) --> full set --> true
1377   if (!IsAnd && Range0.unionWith(Range1).isFullSet())
1378     return getTrue(Cmp0->getType());
1379 
1380   // Is one range a superset of the other?
1381   // If this is and-of-compares, take the smaller set:
1382   // (icmp sgt X, 4) && (icmp sgt X, 42) --> icmp sgt X, 42
1383   // If this is or-of-compares, take the larger set:
1384   // (icmp sgt X, 4) || (icmp sgt X, 42) --> icmp sgt X, 4
1385   if (Range0.contains(Range1))
1386     return IsAnd ? Cmp1 : Cmp0;
1387   if (Range1.contains(Range0))
1388     return IsAnd ? Cmp0 : Cmp1;
1389 
1390   return nullptr;
1391 }
1392 
1393 static Value *simplifyAndOfICmpsWithAdd(ICmpInst *Op0, ICmpInst *Op1) {
1394   // (icmp (add V, C0), C1) & (icmp V, C0)
1395   ICmpInst::Predicate Pred0, Pred1;
1396   const APInt *C0, *C1;
1397   Value *V;
1398   if (!match(Op0, m_ICmp(Pred0, m_Add(m_Value(V), m_APInt(C0)), m_APInt(C1))))
1399     return nullptr;
1400 
1401   if (!match(Op1, m_ICmp(Pred1, m_Specific(V), m_Value())))
1402     return nullptr;
1403 
1404   auto *AddInst = cast<BinaryOperator>(Op0->getOperand(0));
1405   if (AddInst->getOperand(1) != Op1->getOperand(1))
1406     return nullptr;
1407 
1408   Type *ITy = Op0->getType();
1409   bool isNSW = AddInst->hasNoSignedWrap();
1410   bool isNUW = AddInst->hasNoUnsignedWrap();
1411 
1412   const APInt Delta = *C1 - *C0;
1413   if (C0->isStrictlyPositive()) {
1414     if (Delta == 2) {
1415       if (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_SGT)
1416         return getFalse(ITy);
1417       if (Pred0 == ICmpInst::ICMP_SLT && Pred1 == ICmpInst::ICMP_SGT && isNSW)
1418         return getFalse(ITy);
1419     }
1420     if (Delta == 1) {
1421       if (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_SGT)
1422         return getFalse(ITy);
1423       if (Pred0 == ICmpInst::ICMP_SLE && Pred1 == ICmpInst::ICMP_SGT && isNSW)
1424         return getFalse(ITy);
1425     }
1426   }
1427   if (C0->getBoolValue() && isNUW) {
1428     if (Delta == 2)
1429       if (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_UGT)
1430         return getFalse(ITy);
1431     if (Delta == 1)
1432       if (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_UGT)
1433         return getFalse(ITy);
1434   }
1435 
1436   return nullptr;
1437 }
1438 
1439 static Value *simplifyAndOfICmps(ICmpInst *Op0, ICmpInst *Op1) {
1440   if (Value *X = simplifyUnsignedRangeCheck(Op0, Op1, /*IsAnd=*/true))
1441     return X;
1442   if (Value *X = simplifyUnsignedRangeCheck(Op1, Op0, /*IsAnd=*/true))
1443     return X;
1444 
1445   if (Value *X = simplifyAndOfICmpsWithSameOperands(Op0, Op1))
1446     return X;
1447   if (Value *X = simplifyAndOfICmpsWithSameOperands(Op1, Op0))
1448     return X;
1449 
1450   if (Value *X = simplifyAndOrOfICmpsWithConstants(Op0, Op1, true))
1451     return X;
1452 
1453   if (Value *X = simplifyAndOfICmpsWithAdd(Op0, Op1))
1454     return X;
1455   if (Value *X = simplifyAndOfICmpsWithAdd(Op1, Op0))
1456     return X;
1457 
1458   return nullptr;
1459 }
1460 
1461 static Value *simplifyOrOfICmpsWithAdd(ICmpInst *Op0, ICmpInst *Op1) {
1462   // (icmp (add V, C0), C1) | (icmp V, C0)
1463   ICmpInst::Predicate Pred0, Pred1;
1464   const APInt *C0, *C1;
1465   Value *V;
1466   if (!match(Op0, m_ICmp(Pred0, m_Add(m_Value(V), m_APInt(C0)), m_APInt(C1))))
1467     return nullptr;
1468 
1469   if (!match(Op1, m_ICmp(Pred1, m_Specific(V), m_Value())))
1470     return nullptr;
1471 
1472   auto *AddInst = cast<BinaryOperator>(Op0->getOperand(0));
1473   if (AddInst->getOperand(1) != Op1->getOperand(1))
1474     return nullptr;
1475 
1476   Type *ITy = Op0->getType();
1477   bool isNSW = AddInst->hasNoSignedWrap();
1478   bool isNUW = AddInst->hasNoUnsignedWrap();
1479 
1480   const APInt Delta = *C1 - *C0;
1481   if (C0->isStrictlyPositive()) {
1482     if (Delta == 2) {
1483       if (Pred0 == ICmpInst::ICMP_UGE && Pred1 == ICmpInst::ICMP_SLE)
1484         return getTrue(ITy);
1485       if (Pred0 == ICmpInst::ICMP_SGE && Pred1 == ICmpInst::ICMP_SLE && isNSW)
1486         return getTrue(ITy);
1487     }
1488     if (Delta == 1) {
1489       if (Pred0 == ICmpInst::ICMP_UGT && Pred1 == ICmpInst::ICMP_SLE)
1490         return getTrue(ITy);
1491       if (Pred0 == ICmpInst::ICMP_SGT && Pred1 == ICmpInst::ICMP_SLE && isNSW)
1492         return getTrue(ITy);
1493     }
1494   }
1495   if (C0->getBoolValue() && isNUW) {
1496     if (Delta == 2)
1497       if (Pred0 == ICmpInst::ICMP_UGE && Pred1 == ICmpInst::ICMP_ULE)
1498         return getTrue(ITy);
1499     if (Delta == 1)
1500       if (Pred0 == ICmpInst::ICMP_UGT && Pred1 == ICmpInst::ICMP_ULE)
1501         return getTrue(ITy);
1502   }
1503 
1504   return nullptr;
1505 }
1506 
1507 static Value *simplifyOrOfICmps(ICmpInst *Op0, ICmpInst *Op1) {
1508   if (Value *X = simplifyUnsignedRangeCheck(Op0, Op1, /*IsAnd=*/false))
1509     return X;
1510   if (Value *X = simplifyUnsignedRangeCheck(Op1, Op0, /*IsAnd=*/false))
1511     return X;
1512 
1513   if (Value *X = simplifyOrOfICmpsWithSameOperands(Op0, Op1))
1514     return X;
1515   if (Value *X = simplifyOrOfICmpsWithSameOperands(Op1, Op0))
1516     return X;
1517 
1518   if (Value *X = simplifyAndOrOfICmpsWithConstants(Op0, Op1, false))
1519     return X;
1520 
1521   if (Value *X = simplifyOrOfICmpsWithAdd(Op0, Op1))
1522     return X;
1523   if (Value *X = simplifyOrOfICmpsWithAdd(Op1, Op0))
1524     return X;
1525 
1526   return nullptr;
1527 }
1528 
1529 static Value *simplifyAndOrOfICmps(Value *Op0, Value *Op1, bool IsAnd) {
1530   // Look through casts of the 'and' operands to find compares.
1531   auto *Cast0 = dyn_cast<CastInst>(Op0);
1532   auto *Cast1 = dyn_cast<CastInst>(Op1);
1533   if (Cast0 && Cast1 && Cast0->getOpcode() == Cast1->getOpcode() &&
1534       Cast0->getSrcTy() == Cast1->getSrcTy()) {
1535     Op0 = Cast0->getOperand(0);
1536     Op1 = Cast1->getOperand(0);
1537   }
1538 
1539   auto *Cmp0 = dyn_cast<ICmpInst>(Op0);
1540   auto *Cmp1 = dyn_cast<ICmpInst>(Op1);
1541   if (!Cmp0 || !Cmp1)
1542     return nullptr;
1543 
1544   Value *V =
1545       IsAnd ? simplifyAndOfICmps(Cmp0, Cmp1) : simplifyOrOfICmps(Cmp0, Cmp1);
1546   if (!V)
1547     return nullptr;
1548   if (!Cast0)
1549     return V;
1550 
1551   // If we looked through casts, we can only handle a constant simplification
1552   // because we are not allowed to create a cast instruction here.
1553   if (auto *C = dyn_cast<Constant>(V))
1554     return ConstantExpr::getCast(Cast0->getOpcode(), C, Cast0->getType());
1555 
1556   return nullptr;
1557 }
1558 
1559 /// Given operands for an And, see if we can fold the result.
1560 /// If not, this returns null.
1561 static Value *SimplifyAndInst(Value *Op0, Value *Op1, const SimplifyQuery &Q,
1562                               unsigned MaxRecurse) {
1563   if (Constant *C = foldOrCommuteConstant(Instruction::And, Op0, Op1, Q))
1564     return C;
1565 
1566   // X & undef -> 0
1567   if (match(Op1, m_Undef()))
1568     return Constant::getNullValue(Op0->getType());
1569 
1570   // X & X = X
1571   if (Op0 == Op1)
1572     return Op0;
1573 
1574   // X & 0 = 0
1575   if (match(Op1, m_Zero()))
1576     return Op1;
1577 
1578   // X & -1 = X
1579   if (match(Op1, m_AllOnes()))
1580     return Op0;
1581 
1582   // A & ~A  =  ~A & A  =  0
1583   if (match(Op0, m_Not(m_Specific(Op1))) ||
1584       match(Op1, m_Not(m_Specific(Op0))))
1585     return Constant::getNullValue(Op0->getType());
1586 
1587   // (A | ?) & A = A
1588   if (match(Op0, m_c_Or(m_Specific(Op1), m_Value())))
1589     return Op1;
1590 
1591   // A & (A | ?) = A
1592   if (match(Op1, m_c_Or(m_Specific(Op0), m_Value())))
1593     return Op0;
1594 
1595   // A mask that only clears known zeros of a shifted value is a no-op.
1596   Value *X;
1597   const APInt *Mask;
1598   const APInt *ShAmt;
1599   if (match(Op1, m_APInt(Mask))) {
1600     // If all bits in the inverted and shifted mask are clear:
1601     // and (shl X, ShAmt), Mask --> shl X, ShAmt
1602     if (match(Op0, m_Shl(m_Value(X), m_APInt(ShAmt))) &&
1603         (~(*Mask)).lshr(*ShAmt).isNullValue())
1604       return Op0;
1605 
1606     // If all bits in the inverted and shifted mask are clear:
1607     // and (lshr X, ShAmt), Mask --> lshr X, ShAmt
1608     if (match(Op0, m_LShr(m_Value(X), m_APInt(ShAmt))) &&
1609         (~(*Mask)).shl(*ShAmt).isNullValue())
1610       return Op0;
1611   }
1612 
1613   // A & (-A) = A if A is a power of two or zero.
1614   if (match(Op0, m_Neg(m_Specific(Op1))) ||
1615       match(Op1, m_Neg(m_Specific(Op0)))) {
1616     if (isKnownToBeAPowerOfTwo(Op0, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI,
1617                                Q.DT))
1618       return Op0;
1619     if (isKnownToBeAPowerOfTwo(Op1, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI,
1620                                Q.DT))
1621       return Op1;
1622   }
1623 
1624   if (Value *V = simplifyAndOrOfICmps(Op0, Op1, true))
1625     return V;
1626 
1627   // Try some generic simplifications for associative operations.
1628   if (Value *V = SimplifyAssociativeBinOp(Instruction::And, Op0, Op1, Q,
1629                                           MaxRecurse))
1630     return V;
1631 
1632   // And distributes over Or.  Try some generic simplifications based on this.
1633   if (Value *V = ExpandBinOp(Instruction::And, Op0, Op1, Instruction::Or,
1634                              Q, MaxRecurse))
1635     return V;
1636 
1637   // And distributes over Xor.  Try some generic simplifications based on this.
1638   if (Value *V = ExpandBinOp(Instruction::And, Op0, Op1, Instruction::Xor,
1639                              Q, MaxRecurse))
1640     return V;
1641 
1642   // If the operation is with the result of a select instruction, check whether
1643   // operating on either branch of the select always yields the same value.
1644   if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
1645     if (Value *V = ThreadBinOpOverSelect(Instruction::And, Op0, Op1, Q,
1646                                          MaxRecurse))
1647       return V;
1648 
1649   // If the operation is with the result of a phi instruction, check whether
1650   // operating on all incoming values of the phi always yields the same value.
1651   if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
1652     if (Value *V = ThreadBinOpOverPHI(Instruction::And, Op0, Op1, Q,
1653                                       MaxRecurse))
1654       return V;
1655 
1656   return nullptr;
1657 }
1658 
1659 Value *llvm::SimplifyAndInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) {
1660   return ::SimplifyAndInst(Op0, Op1, Q, RecursionLimit);
1661 }
1662 
1663 /// Given operands for an Or, see if we can fold the result.
1664 /// If not, this returns null.
1665 static Value *SimplifyOrInst(Value *Op0, Value *Op1, const SimplifyQuery &Q,
1666                              unsigned MaxRecurse) {
1667   if (Constant *C = foldOrCommuteConstant(Instruction::Or, Op0, Op1, Q))
1668     return C;
1669 
1670   // X | undef -> -1
1671   if (match(Op1, m_Undef()))
1672     return Constant::getAllOnesValue(Op0->getType());
1673 
1674   // X | X = X
1675   if (Op0 == Op1)
1676     return Op0;
1677 
1678   // X | 0 = X
1679   if (match(Op1, m_Zero()))
1680     return Op0;
1681 
1682   // X | -1 = -1
1683   if (match(Op1, m_AllOnes()))
1684     return Op1;
1685 
1686   // A | ~A  =  ~A | A  =  -1
1687   if (match(Op0, m_Not(m_Specific(Op1))) ||
1688       match(Op1, m_Not(m_Specific(Op0))))
1689     return Constant::getAllOnesValue(Op0->getType());
1690 
1691   // (A & ?) | A = A
1692   if (match(Op0, m_c_And(m_Specific(Op1), m_Value())))
1693     return Op1;
1694 
1695   // A | (A & ?) = A
1696   if (match(Op1, m_c_And(m_Specific(Op0), m_Value())))
1697     return Op0;
1698 
1699   // ~(A & ?) | A = -1
1700   if (match(Op0, m_Not(m_c_And(m_Specific(Op1), m_Value()))))
1701     return Constant::getAllOnesValue(Op1->getType());
1702 
1703   // A | ~(A & ?) = -1
1704   if (match(Op1, m_Not(m_c_And(m_Specific(Op1), m_Value()))))
1705     return Constant::getAllOnesValue(Op0->getType());
1706 
1707   Value *A, *B;
1708   // (A & ~B) | (A ^ B) -> (A ^ B)
1709   // (~B & A) | (A ^ B) -> (A ^ B)
1710   // (A & ~B) | (B ^ A) -> (B ^ A)
1711   // (~B & A) | (B ^ A) -> (B ^ A)
1712   if (match(Op1, m_Xor(m_Value(A), m_Value(B))) &&
1713       (match(Op0, m_c_And(m_Specific(A), m_Not(m_Specific(B)))) ||
1714        match(Op0, m_c_And(m_Not(m_Specific(A)), m_Specific(B)))))
1715     return Op1;
1716 
1717   // Commute the 'or' operands.
1718   // (A ^ B) | (A & ~B) -> (A ^ B)
1719   // (A ^ B) | (~B & A) -> (A ^ B)
1720   // (B ^ A) | (A & ~B) -> (B ^ A)
1721   // (B ^ A) | (~B & A) -> (B ^ A)
1722   if (match(Op0, m_Xor(m_Value(A), m_Value(B))) &&
1723       (match(Op1, m_c_And(m_Specific(A), m_Not(m_Specific(B)))) ||
1724        match(Op1, m_c_And(m_Not(m_Specific(A)), m_Specific(B)))))
1725     return Op0;
1726 
1727   // (A & B) | (~A ^ B) -> (~A ^ B)
1728   // (B & A) | (~A ^ B) -> (~A ^ B)
1729   // (A & B) | (B ^ ~A) -> (B ^ ~A)
1730   // (B & A) | (B ^ ~A) -> (B ^ ~A)
1731   if (match(Op0, m_And(m_Value(A), m_Value(B))) &&
1732       (match(Op1, m_c_Xor(m_Specific(A), m_Not(m_Specific(B)))) ||
1733        match(Op1, m_c_Xor(m_Not(m_Specific(A)), m_Specific(B)))))
1734     return Op1;
1735 
1736   // (~A ^ B) | (A & B) -> (~A ^ B)
1737   // (~A ^ B) | (B & A) -> (~A ^ B)
1738   // (B ^ ~A) | (A & B) -> (B ^ ~A)
1739   // (B ^ ~A) | (B & A) -> (B ^ ~A)
1740   if (match(Op1, m_And(m_Value(A), m_Value(B))) &&
1741       (match(Op0, m_c_Xor(m_Specific(A), m_Not(m_Specific(B)))) ||
1742        match(Op0, m_c_Xor(m_Not(m_Specific(A)), m_Specific(B)))))
1743     return Op0;
1744 
1745   if (Value *V = simplifyAndOrOfICmps(Op0, Op1, false))
1746     return V;
1747 
1748   // Try some generic simplifications for associative operations.
1749   if (Value *V = SimplifyAssociativeBinOp(Instruction::Or, Op0, Op1, Q,
1750                                           MaxRecurse))
1751     return V;
1752 
1753   // Or distributes over And.  Try some generic simplifications based on this.
1754   if (Value *V = ExpandBinOp(Instruction::Or, Op0, Op1, Instruction::And, Q,
1755                              MaxRecurse))
1756     return V;
1757 
1758   // If the operation is with the result of a select instruction, check whether
1759   // operating on either branch of the select always yields the same value.
1760   if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
1761     if (Value *V = ThreadBinOpOverSelect(Instruction::Or, Op0, Op1, Q,
1762                                          MaxRecurse))
1763       return V;
1764 
1765   // (A & C1)|(B & C2)
1766   const APInt *C1, *C2;
1767   if (match(Op0, m_And(m_Value(A), m_APInt(C1))) &&
1768       match(Op1, m_And(m_Value(B), m_APInt(C2)))) {
1769     if (*C1 == ~*C2) {
1770       // (A & C1)|(B & C2)
1771       // If we have: ((V + N) & C1) | (V & C2)
1772       // .. and C2 = ~C1 and C2 is 0+1+ and (N & C2) == 0
1773       // replace with V+N.
1774       Value *N;
1775       if (C2->isMask() && // C2 == 0+1+
1776           match(A, m_c_Add(m_Specific(B), m_Value(N)))) {
1777         // Add commutes, try both ways.
1778         if (MaskedValueIsZero(N, *C2, Q.DL, 0, Q.AC, Q.CxtI, Q.DT))
1779           return A;
1780       }
1781       // Or commutes, try both ways.
1782       if (C1->isMask() &&
1783           match(B, m_c_Add(m_Specific(A), m_Value(N)))) {
1784         // Add commutes, try both ways.
1785         if (MaskedValueIsZero(N, *C1, Q.DL, 0, Q.AC, Q.CxtI, Q.DT))
1786           return B;
1787       }
1788     }
1789   }
1790 
1791   // If the operation is with the result of a phi instruction, check whether
1792   // operating on all incoming values of the phi always yields the same value.
1793   if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
1794     if (Value *V = ThreadBinOpOverPHI(Instruction::Or, Op0, Op1, Q, MaxRecurse))
1795       return V;
1796 
1797   return nullptr;
1798 }
1799 
1800 Value *llvm::SimplifyOrInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) {
1801   return ::SimplifyOrInst(Op0, Op1, Q, RecursionLimit);
1802 }
1803 
1804 /// Given operands for a Xor, see if we can fold the result.
1805 /// If not, this returns null.
1806 static Value *SimplifyXorInst(Value *Op0, Value *Op1, const SimplifyQuery &Q,
1807                               unsigned MaxRecurse) {
1808   if (Constant *C = foldOrCommuteConstant(Instruction::Xor, Op0, Op1, Q))
1809     return C;
1810 
1811   // A ^ undef -> undef
1812   if (match(Op1, m_Undef()))
1813     return Op1;
1814 
1815   // A ^ 0 = A
1816   if (match(Op1, m_Zero()))
1817     return Op0;
1818 
1819   // A ^ A = 0
1820   if (Op0 == Op1)
1821     return Constant::getNullValue(Op0->getType());
1822 
1823   // A ^ ~A  =  ~A ^ A  =  -1
1824   if (match(Op0, m_Not(m_Specific(Op1))) ||
1825       match(Op1, m_Not(m_Specific(Op0))))
1826     return Constant::getAllOnesValue(Op0->getType());
1827 
1828   // Try some generic simplifications for associative operations.
1829   if (Value *V = SimplifyAssociativeBinOp(Instruction::Xor, Op0, Op1, Q,
1830                                           MaxRecurse))
1831     return V;
1832 
1833   // Threading Xor over selects and phi nodes is pointless, so don't bother.
1834   // Threading over the select in "A ^ select(cond, B, C)" means evaluating
1835   // "A^B" and "A^C" and seeing if they are equal; but they are equal if and
1836   // only if B and C are equal.  If B and C are equal then (since we assume
1837   // that operands have already been simplified) "select(cond, B, C)" should
1838   // have been simplified to the common value of B and C already.  Analysing
1839   // "A^B" and "A^C" thus gains nothing, but costs compile time.  Similarly
1840   // for threading over phi nodes.
1841 
1842   return nullptr;
1843 }
1844 
1845 Value *llvm::SimplifyXorInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) {
1846   return ::SimplifyXorInst(Op0, Op1, Q, RecursionLimit);
1847 }
1848 
1849 
1850 static Type *GetCompareTy(Value *Op) {
1851   return CmpInst::makeCmpResultType(Op->getType());
1852 }
1853 
1854 /// Rummage around inside V looking for something equivalent to the comparison
1855 /// "LHS Pred RHS". Return such a value if found, otherwise return null.
1856 /// Helper function for analyzing max/min idioms.
1857 static Value *ExtractEquivalentCondition(Value *V, CmpInst::Predicate Pred,
1858                                          Value *LHS, Value *RHS) {
1859   SelectInst *SI = dyn_cast<SelectInst>(V);
1860   if (!SI)
1861     return nullptr;
1862   CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition());
1863   if (!Cmp)
1864     return nullptr;
1865   Value *CmpLHS = Cmp->getOperand(0), *CmpRHS = Cmp->getOperand(1);
1866   if (Pred == Cmp->getPredicate() && LHS == CmpLHS && RHS == CmpRHS)
1867     return Cmp;
1868   if (Pred == CmpInst::getSwappedPredicate(Cmp->getPredicate()) &&
1869       LHS == CmpRHS && RHS == CmpLHS)
1870     return Cmp;
1871   return nullptr;
1872 }
1873 
1874 // A significant optimization not implemented here is assuming that alloca
1875 // addresses are not equal to incoming argument values. They don't *alias*,
1876 // as we say, but that doesn't mean they aren't equal, so we take a
1877 // conservative approach.
1878 //
1879 // This is inspired in part by C++11 5.10p1:
1880 //   "Two pointers of the same type compare equal if and only if they are both
1881 //    null, both point to the same function, or both represent the same
1882 //    address."
1883 //
1884 // This is pretty permissive.
1885 //
1886 // It's also partly due to C11 6.5.9p6:
1887 //   "Two pointers compare equal if and only if both are null pointers, both are
1888 //    pointers to the same object (including a pointer to an object and a
1889 //    subobject at its beginning) or function, both are pointers to one past the
1890 //    last element of the same array object, or one is a pointer to one past the
1891 //    end of one array object and the other is a pointer to the start of a
1892 //    different array object that happens to immediately follow the first array
1893 //    object in the address space.)
1894 //
1895 // C11's version is more restrictive, however there's no reason why an argument
1896 // couldn't be a one-past-the-end value for a stack object in the caller and be
1897 // equal to the beginning of a stack object in the callee.
1898 //
1899 // If the C and C++ standards are ever made sufficiently restrictive in this
1900 // area, it may be possible to update LLVM's semantics accordingly and reinstate
1901 // this optimization.
1902 static Constant *
1903 computePointerICmp(const DataLayout &DL, const TargetLibraryInfo *TLI,
1904                    const DominatorTree *DT, CmpInst::Predicate Pred,
1905                    AssumptionCache *AC, const Instruction *CxtI,
1906                    Value *LHS, Value *RHS) {
1907   // First, skip past any trivial no-ops.
1908   LHS = LHS->stripPointerCasts();
1909   RHS = RHS->stripPointerCasts();
1910 
1911   // A non-null pointer is not equal to a null pointer.
1912   if (llvm::isKnownNonZero(LHS, DL) && isa<ConstantPointerNull>(RHS) &&
1913       (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE))
1914     return ConstantInt::get(GetCompareTy(LHS),
1915                             !CmpInst::isTrueWhenEqual(Pred));
1916 
1917   // We can only fold certain predicates on pointer comparisons.
1918   switch (Pred) {
1919   default:
1920     return nullptr;
1921 
1922     // Equality comaprisons are easy to fold.
1923   case CmpInst::ICMP_EQ:
1924   case CmpInst::ICMP_NE:
1925     break;
1926 
1927     // We can only handle unsigned relational comparisons because 'inbounds' on
1928     // a GEP only protects against unsigned wrapping.
1929   case CmpInst::ICMP_UGT:
1930   case CmpInst::ICMP_UGE:
1931   case CmpInst::ICMP_ULT:
1932   case CmpInst::ICMP_ULE:
1933     // However, we have to switch them to their signed variants to handle
1934     // negative indices from the base pointer.
1935     Pred = ICmpInst::getSignedPredicate(Pred);
1936     break;
1937   }
1938 
1939   // Strip off any constant offsets so that we can reason about them.
1940   // It's tempting to use getUnderlyingObject or even just stripInBoundsOffsets
1941   // here and compare base addresses like AliasAnalysis does, however there are
1942   // numerous hazards. AliasAnalysis and its utilities rely on special rules
1943   // governing loads and stores which don't apply to icmps. Also, AliasAnalysis
1944   // doesn't need to guarantee pointer inequality when it says NoAlias.
1945   Constant *LHSOffset = stripAndComputeConstantOffsets(DL, LHS);
1946   Constant *RHSOffset = stripAndComputeConstantOffsets(DL, RHS);
1947 
1948   // If LHS and RHS are related via constant offsets to the same base
1949   // value, we can replace it with an icmp which just compares the offsets.
1950   if (LHS == RHS)
1951     return ConstantExpr::getICmp(Pred, LHSOffset, RHSOffset);
1952 
1953   // Various optimizations for (in)equality comparisons.
1954   if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE) {
1955     // Different non-empty allocations that exist at the same time have
1956     // different addresses (if the program can tell). Global variables always
1957     // exist, so they always exist during the lifetime of each other and all
1958     // allocas. Two different allocas usually have different addresses...
1959     //
1960     // However, if there's an @llvm.stackrestore dynamically in between two
1961     // allocas, they may have the same address. It's tempting to reduce the
1962     // scope of the problem by only looking at *static* allocas here. That would
1963     // cover the majority of allocas while significantly reducing the likelihood
1964     // of having an @llvm.stackrestore pop up in the middle. However, it's not
1965     // actually impossible for an @llvm.stackrestore to pop up in the middle of
1966     // an entry block. Also, if we have a block that's not attached to a
1967     // function, we can't tell if it's "static" under the current definition.
1968     // Theoretically, this problem could be fixed by creating a new kind of
1969     // instruction kind specifically for static allocas. Such a new instruction
1970     // could be required to be at the top of the entry block, thus preventing it
1971     // from being subject to a @llvm.stackrestore. Instcombine could even
1972     // convert regular allocas into these special allocas. It'd be nifty.
1973     // However, until then, this problem remains open.
1974     //
1975     // So, we'll assume that two non-empty allocas have different addresses
1976     // for now.
1977     //
1978     // With all that, if the offsets are within the bounds of their allocations
1979     // (and not one-past-the-end! so we can't use inbounds!), and their
1980     // allocations aren't the same, the pointers are not equal.
1981     //
1982     // Note that it's not necessary to check for LHS being a global variable
1983     // address, due to canonicalization and constant folding.
1984     if (isa<AllocaInst>(LHS) &&
1985         (isa<AllocaInst>(RHS) || isa<GlobalVariable>(RHS))) {
1986       ConstantInt *LHSOffsetCI = dyn_cast<ConstantInt>(LHSOffset);
1987       ConstantInt *RHSOffsetCI = dyn_cast<ConstantInt>(RHSOffset);
1988       uint64_t LHSSize, RHSSize;
1989       if (LHSOffsetCI && RHSOffsetCI &&
1990           getObjectSize(LHS, LHSSize, DL, TLI) &&
1991           getObjectSize(RHS, RHSSize, DL, TLI)) {
1992         const APInt &LHSOffsetValue = LHSOffsetCI->getValue();
1993         const APInt &RHSOffsetValue = RHSOffsetCI->getValue();
1994         if (!LHSOffsetValue.isNegative() &&
1995             !RHSOffsetValue.isNegative() &&
1996             LHSOffsetValue.ult(LHSSize) &&
1997             RHSOffsetValue.ult(RHSSize)) {
1998           return ConstantInt::get(GetCompareTy(LHS),
1999                                   !CmpInst::isTrueWhenEqual(Pred));
2000         }
2001       }
2002 
2003       // Repeat the above check but this time without depending on DataLayout
2004       // or being able to compute a precise size.
2005       if (!cast<PointerType>(LHS->getType())->isEmptyTy() &&
2006           !cast<PointerType>(RHS->getType())->isEmptyTy() &&
2007           LHSOffset->isNullValue() &&
2008           RHSOffset->isNullValue())
2009         return ConstantInt::get(GetCompareTy(LHS),
2010                                 !CmpInst::isTrueWhenEqual(Pred));
2011     }
2012 
2013     // Even if an non-inbounds GEP occurs along the path we can still optimize
2014     // equality comparisons concerning the result. We avoid walking the whole
2015     // chain again by starting where the last calls to
2016     // stripAndComputeConstantOffsets left off and accumulate the offsets.
2017     Constant *LHSNoBound = stripAndComputeConstantOffsets(DL, LHS, true);
2018     Constant *RHSNoBound = stripAndComputeConstantOffsets(DL, RHS, true);
2019     if (LHS == RHS)
2020       return ConstantExpr::getICmp(Pred,
2021                                    ConstantExpr::getAdd(LHSOffset, LHSNoBound),
2022                                    ConstantExpr::getAdd(RHSOffset, RHSNoBound));
2023 
2024     // If one side of the equality comparison must come from a noalias call
2025     // (meaning a system memory allocation function), and the other side must
2026     // come from a pointer that cannot overlap with dynamically-allocated
2027     // memory within the lifetime of the current function (allocas, byval
2028     // arguments, globals), then determine the comparison result here.
2029     SmallVector<Value *, 8> LHSUObjs, RHSUObjs;
2030     GetUnderlyingObjects(LHS, LHSUObjs, DL);
2031     GetUnderlyingObjects(RHS, RHSUObjs, DL);
2032 
2033     // Is the set of underlying objects all noalias calls?
2034     auto IsNAC = [](ArrayRef<Value *> Objects) {
2035       return all_of(Objects, isNoAliasCall);
2036     };
2037 
2038     // Is the set of underlying objects all things which must be disjoint from
2039     // noalias calls. For allocas, we consider only static ones (dynamic
2040     // allocas might be transformed into calls to malloc not simultaneously
2041     // live with the compared-to allocation). For globals, we exclude symbols
2042     // that might be resolve lazily to symbols in another dynamically-loaded
2043     // library (and, thus, could be malloc'ed by the implementation).
2044     auto IsAllocDisjoint = [](ArrayRef<Value *> Objects) {
2045       return all_of(Objects, [](Value *V) {
2046         if (const AllocaInst *AI = dyn_cast<AllocaInst>(V))
2047           return AI->getParent() && AI->getFunction() && AI->isStaticAlloca();
2048         if (const GlobalValue *GV = dyn_cast<GlobalValue>(V))
2049           return (GV->hasLocalLinkage() || GV->hasHiddenVisibility() ||
2050                   GV->hasProtectedVisibility() || GV->hasGlobalUnnamedAddr()) &&
2051                  !GV->isThreadLocal();
2052         if (const Argument *A = dyn_cast<Argument>(V))
2053           return A->hasByValAttr();
2054         return false;
2055       });
2056     };
2057 
2058     if ((IsNAC(LHSUObjs) && IsAllocDisjoint(RHSUObjs)) ||
2059         (IsNAC(RHSUObjs) && IsAllocDisjoint(LHSUObjs)))
2060         return ConstantInt::get(GetCompareTy(LHS),
2061                                 !CmpInst::isTrueWhenEqual(Pred));
2062 
2063     // Fold comparisons for non-escaping pointer even if the allocation call
2064     // cannot be elided. We cannot fold malloc comparison to null. Also, the
2065     // dynamic allocation call could be either of the operands.
2066     Value *MI = nullptr;
2067     if (isAllocLikeFn(LHS, TLI) &&
2068         llvm::isKnownNonZero(RHS, DL, 0, nullptr, CxtI, DT))
2069       MI = LHS;
2070     else if (isAllocLikeFn(RHS, TLI) &&
2071              llvm::isKnownNonZero(LHS, DL, 0, nullptr, CxtI, DT))
2072       MI = RHS;
2073     // FIXME: We should also fold the compare when the pointer escapes, but the
2074     // compare dominates the pointer escape
2075     if (MI && !PointerMayBeCaptured(MI, true, true))
2076       return ConstantInt::get(GetCompareTy(LHS),
2077                               CmpInst::isFalseWhenEqual(Pred));
2078   }
2079 
2080   // Otherwise, fail.
2081   return nullptr;
2082 }
2083 
2084 /// Fold an icmp when its operands have i1 scalar type.
2085 static Value *simplifyICmpOfBools(CmpInst::Predicate Pred, Value *LHS,
2086                                   Value *RHS, const SimplifyQuery &Q) {
2087   Type *ITy = GetCompareTy(LHS); // The return type.
2088   Type *OpTy = LHS->getType();   // The operand type.
2089   if (!OpTy->isIntOrIntVectorTy(1))
2090     return nullptr;
2091 
2092   // A boolean compared to true/false can be simplified in 14 out of the 20
2093   // (10 predicates * 2 constants) possible combinations. Cases not handled here
2094   // require a 'not' of the LHS, so those must be transformed in InstCombine.
2095   if (match(RHS, m_Zero())) {
2096     switch (Pred) {
2097     case CmpInst::ICMP_NE:  // X !=  0 -> X
2098     case CmpInst::ICMP_UGT: // X >u  0 -> X
2099     case CmpInst::ICMP_SLT: // X <s  0 -> X
2100       return LHS;
2101 
2102     case CmpInst::ICMP_ULT: // X <u  0 -> false
2103     case CmpInst::ICMP_SGT: // X >s  0 -> false
2104       return getFalse(ITy);
2105 
2106     case CmpInst::ICMP_UGE: // X >=u 0 -> true
2107     case CmpInst::ICMP_SLE: // X <=s 0 -> true
2108       return getTrue(ITy);
2109 
2110     default: break;
2111     }
2112   } else if (match(RHS, m_One())) {
2113     switch (Pred) {
2114     case CmpInst::ICMP_EQ:  // X ==   1 -> X
2115     case CmpInst::ICMP_UGE: // X >=u  1 -> X
2116     case CmpInst::ICMP_SLE: // X <=s -1 -> X
2117       return LHS;
2118 
2119     case CmpInst::ICMP_UGT: // X >u   1 -> false
2120     case CmpInst::ICMP_SLT: // X <s  -1 -> false
2121       return getFalse(ITy);
2122 
2123     case CmpInst::ICMP_ULE: // X <=u  1 -> true
2124     case CmpInst::ICMP_SGE: // X >=s -1 -> true
2125       return getTrue(ITy);
2126 
2127     default: break;
2128     }
2129   }
2130 
2131   switch (Pred) {
2132   default:
2133     break;
2134   case ICmpInst::ICMP_UGE:
2135     if (isImpliedCondition(RHS, LHS, Q.DL).getValueOr(false))
2136       return getTrue(ITy);
2137     break;
2138   case ICmpInst::ICMP_SGE:
2139     /// For signed comparison, the values for an i1 are 0 and -1
2140     /// respectively. This maps into a truth table of:
2141     /// LHS | RHS | LHS >=s RHS   | LHS implies RHS
2142     ///  0  |  0  |  1 (0 >= 0)   |  1
2143     ///  0  |  1  |  1 (0 >= -1)  |  1
2144     ///  1  |  0  |  0 (-1 >= 0)  |  0
2145     ///  1  |  1  |  1 (-1 >= -1) |  1
2146     if (isImpliedCondition(LHS, RHS, Q.DL).getValueOr(false))
2147       return getTrue(ITy);
2148     break;
2149   case ICmpInst::ICMP_ULE:
2150     if (isImpliedCondition(LHS, RHS, Q.DL).getValueOr(false))
2151       return getTrue(ITy);
2152     break;
2153   }
2154 
2155   return nullptr;
2156 }
2157 
2158 /// Try hard to fold icmp with zero RHS because this is a common case.
2159 static Value *simplifyICmpWithZero(CmpInst::Predicate Pred, Value *LHS,
2160                                    Value *RHS, const SimplifyQuery &Q) {
2161   if (!match(RHS, m_Zero()))
2162     return nullptr;
2163 
2164   Type *ITy = GetCompareTy(LHS); // The return type.
2165   switch (Pred) {
2166   default:
2167     llvm_unreachable("Unknown ICmp predicate!");
2168   case ICmpInst::ICMP_ULT:
2169     return getFalse(ITy);
2170   case ICmpInst::ICMP_UGE:
2171     return getTrue(ITy);
2172   case ICmpInst::ICMP_EQ:
2173   case ICmpInst::ICMP_ULE:
2174     if (isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT))
2175       return getFalse(ITy);
2176     break;
2177   case ICmpInst::ICMP_NE:
2178   case ICmpInst::ICMP_UGT:
2179     if (isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT))
2180       return getTrue(ITy);
2181     break;
2182   case ICmpInst::ICMP_SLT: {
2183     KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
2184     if (LHSKnown.isNegative())
2185       return getTrue(ITy);
2186     if (LHSKnown.isNonNegative())
2187       return getFalse(ITy);
2188     break;
2189   }
2190   case ICmpInst::ICMP_SLE: {
2191     KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
2192     if (LHSKnown.isNegative())
2193       return getTrue(ITy);
2194     if (LHSKnown.isNonNegative() &&
2195         isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT))
2196       return getFalse(ITy);
2197     break;
2198   }
2199   case ICmpInst::ICMP_SGE: {
2200     KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
2201     if (LHSKnown.isNegative())
2202       return getFalse(ITy);
2203     if (LHSKnown.isNonNegative())
2204       return getTrue(ITy);
2205     break;
2206   }
2207   case ICmpInst::ICMP_SGT: {
2208     KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
2209     if (LHSKnown.isNegative())
2210       return getFalse(ITy);
2211     if (LHSKnown.isNonNegative() &&
2212         isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT))
2213       return getTrue(ITy);
2214     break;
2215   }
2216   }
2217 
2218   return nullptr;
2219 }
2220 
2221 /// Many binary operators with a constant operand have an easy-to-compute
2222 /// range of outputs. This can be used to fold a comparison to always true or
2223 /// always false.
2224 static void setLimitsForBinOp(BinaryOperator &BO, APInt &Lower, APInt &Upper) {
2225   unsigned Width = Lower.getBitWidth();
2226   const APInt *C;
2227   switch (BO.getOpcode()) {
2228   case Instruction::Add:
2229     if (match(BO.getOperand(1), m_APInt(C)) && !C->isNullValue()) {
2230       // FIXME: If we have both nuw and nsw, we should reduce the range further.
2231       if (BO.hasNoUnsignedWrap()) {
2232         // 'add nuw x, C' produces [C, UINT_MAX].
2233         Lower = *C;
2234       } else if (BO.hasNoSignedWrap()) {
2235         if (C->isNegative()) {
2236           // 'add nsw x, -C' produces [SINT_MIN, SINT_MAX - C].
2237           Lower = APInt::getSignedMinValue(Width);
2238           Upper = APInt::getSignedMaxValue(Width) + *C + 1;
2239         } else {
2240           // 'add nsw x, +C' produces [SINT_MIN + C, SINT_MAX].
2241           Lower = APInt::getSignedMinValue(Width) + *C;
2242           Upper = APInt::getSignedMaxValue(Width) + 1;
2243         }
2244       }
2245     }
2246     break;
2247 
2248   case Instruction::And:
2249     if (match(BO.getOperand(1), m_APInt(C)))
2250       // 'and x, C' produces [0, C].
2251       Upper = *C + 1;
2252     break;
2253 
2254   case Instruction::Or:
2255     if (match(BO.getOperand(1), m_APInt(C)))
2256       // 'or x, C' produces [C, UINT_MAX].
2257       Lower = *C;
2258     break;
2259 
2260   case Instruction::AShr:
2261     if (match(BO.getOperand(1), m_APInt(C)) && C->ult(Width)) {
2262       // 'ashr x, C' produces [INT_MIN >> C, INT_MAX >> C].
2263       Lower = APInt::getSignedMinValue(Width).ashr(*C);
2264       Upper = APInt::getSignedMaxValue(Width).ashr(*C) + 1;
2265     } else if (match(BO.getOperand(0), m_APInt(C))) {
2266       unsigned ShiftAmount = Width - 1;
2267       if (!C->isNullValue() && BO.isExact())
2268         ShiftAmount = C->countTrailingZeros();
2269       if (C->isNegative()) {
2270         // 'ashr C, x' produces [C, C >> (Width-1)]
2271         Lower = *C;
2272         Upper = C->ashr(ShiftAmount) + 1;
2273       } else {
2274         // 'ashr C, x' produces [C >> (Width-1), C]
2275         Lower = C->ashr(ShiftAmount);
2276         Upper = *C + 1;
2277       }
2278     }
2279     break;
2280 
2281   case Instruction::LShr:
2282     if (match(BO.getOperand(1), m_APInt(C)) && C->ult(Width)) {
2283       // 'lshr x, C' produces [0, UINT_MAX >> C].
2284       Upper = APInt::getAllOnesValue(Width).lshr(*C) + 1;
2285     } else if (match(BO.getOperand(0), m_APInt(C))) {
2286       // 'lshr C, x' produces [C >> (Width-1), C].
2287       unsigned ShiftAmount = Width - 1;
2288       if (!C->isNullValue() && BO.isExact())
2289         ShiftAmount = C->countTrailingZeros();
2290       Lower = C->lshr(ShiftAmount);
2291       Upper = *C + 1;
2292     }
2293     break;
2294 
2295   case Instruction::Shl:
2296     if (match(BO.getOperand(0), m_APInt(C))) {
2297       if (BO.hasNoUnsignedWrap()) {
2298         // 'shl nuw C, x' produces [C, C << CLZ(C)]
2299         Lower = *C;
2300         Upper = Lower.shl(Lower.countLeadingZeros()) + 1;
2301       } else if (BO.hasNoSignedWrap()) { // TODO: What if both nuw+nsw?
2302         if (C->isNegative()) {
2303           // 'shl nsw C, x' produces [C << CLO(C)-1, C]
2304           unsigned ShiftAmount = C->countLeadingOnes() - 1;
2305           Lower = C->shl(ShiftAmount);
2306           Upper = *C + 1;
2307         } else {
2308           // 'shl nsw C, x' produces [C, C << CLZ(C)-1]
2309           unsigned ShiftAmount = C->countLeadingZeros() - 1;
2310           Lower = *C;
2311           Upper = C->shl(ShiftAmount) + 1;
2312         }
2313       }
2314     }
2315     break;
2316 
2317   case Instruction::SDiv:
2318     if (match(BO.getOperand(1), m_APInt(C))) {
2319       APInt IntMin = APInt::getSignedMinValue(Width);
2320       APInt IntMax = APInt::getSignedMaxValue(Width);
2321       if (C->isAllOnesValue()) {
2322         // 'sdiv x, -1' produces [INT_MIN + 1, INT_MAX]
2323         //    where C != -1 and C != 0 and C != 1
2324         Lower = IntMin + 1;
2325         Upper = IntMax + 1;
2326       } else if (C->countLeadingZeros() < Width - 1) {
2327         // 'sdiv x, C' produces [INT_MIN / C, INT_MAX / C]
2328         //    where C != -1 and C != 0 and C != 1
2329         Lower = IntMin.sdiv(*C);
2330         Upper = IntMax.sdiv(*C);
2331         if (Lower.sgt(Upper))
2332           std::swap(Lower, Upper);
2333         Upper = Upper + 1;
2334         assert(Upper != Lower && "Upper part of range has wrapped!");
2335       }
2336     } else if (match(BO.getOperand(0), m_APInt(C))) {
2337       if (C->isMinSignedValue()) {
2338         // 'sdiv INT_MIN, x' produces [INT_MIN, INT_MIN / -2].
2339         Lower = *C;
2340         Upper = Lower.lshr(1) + 1;
2341       } else {
2342         // 'sdiv C, x' produces [-|C|, |C|].
2343         Upper = C->abs() + 1;
2344         Lower = (-Upper) + 1;
2345       }
2346     }
2347     break;
2348 
2349   case Instruction::UDiv:
2350     if (match(BO.getOperand(1), m_APInt(C)) && !C->isNullValue()) {
2351       // 'udiv x, C' produces [0, UINT_MAX / C].
2352       Upper = APInt::getMaxValue(Width).udiv(*C) + 1;
2353     } else if (match(BO.getOperand(0), m_APInt(C))) {
2354       // 'udiv C, x' produces [0, C].
2355       Upper = *C + 1;
2356     }
2357     break;
2358 
2359   case Instruction::SRem:
2360     if (match(BO.getOperand(1), m_APInt(C))) {
2361       // 'srem x, C' produces (-|C|, |C|).
2362       Upper = C->abs();
2363       Lower = (-Upper) + 1;
2364     }
2365     break;
2366 
2367   case Instruction::URem:
2368     if (match(BO.getOperand(1), m_APInt(C)))
2369       // 'urem x, C' produces [0, C).
2370       Upper = *C;
2371     break;
2372 
2373   default:
2374     break;
2375   }
2376 }
2377 
2378 static Value *simplifyICmpWithConstant(CmpInst::Predicate Pred, Value *LHS,
2379                                        Value *RHS) {
2380   const APInt *C;
2381   if (!match(RHS, m_APInt(C)))
2382     return nullptr;
2383 
2384   // Rule out tautological comparisons (eg., ult 0 or uge 0).
2385   ConstantRange RHS_CR = ConstantRange::makeExactICmpRegion(Pred, *C);
2386   if (RHS_CR.isEmptySet())
2387     return ConstantInt::getFalse(GetCompareTy(RHS));
2388   if (RHS_CR.isFullSet())
2389     return ConstantInt::getTrue(GetCompareTy(RHS));
2390 
2391   // Find the range of possible values for binary operators.
2392   unsigned Width = C->getBitWidth();
2393   APInt Lower = APInt(Width, 0);
2394   APInt Upper = APInt(Width, 0);
2395   if (auto *BO = dyn_cast<BinaryOperator>(LHS))
2396     setLimitsForBinOp(*BO, Lower, Upper);
2397 
2398   ConstantRange LHS_CR =
2399       Lower != Upper ? ConstantRange(Lower, Upper) : ConstantRange(Width, true);
2400 
2401   if (auto *I = dyn_cast<Instruction>(LHS))
2402     if (auto *Ranges = I->getMetadata(LLVMContext::MD_range))
2403       LHS_CR = LHS_CR.intersectWith(getConstantRangeFromMetadata(*Ranges));
2404 
2405   if (!LHS_CR.isFullSet()) {
2406     if (RHS_CR.contains(LHS_CR))
2407       return ConstantInt::getTrue(GetCompareTy(RHS));
2408     if (RHS_CR.inverse().contains(LHS_CR))
2409       return ConstantInt::getFalse(GetCompareTy(RHS));
2410   }
2411 
2412   return nullptr;
2413 }
2414 
2415 /// TODO: A large part of this logic is duplicated in InstCombine's
2416 /// foldICmpBinOp(). We should be able to share that and avoid the code
2417 /// duplication.
2418 static Value *simplifyICmpWithBinOp(CmpInst::Predicate Pred, Value *LHS,
2419                                     Value *RHS, const SimplifyQuery &Q,
2420                                     unsigned MaxRecurse) {
2421   Type *ITy = GetCompareTy(LHS); // The return type.
2422 
2423   BinaryOperator *LBO = dyn_cast<BinaryOperator>(LHS);
2424   BinaryOperator *RBO = dyn_cast<BinaryOperator>(RHS);
2425   if (MaxRecurse && (LBO || RBO)) {
2426     // Analyze the case when either LHS or RHS is an add instruction.
2427     Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr;
2428     // LHS = A + B (or A and B are null); RHS = C + D (or C and D are null).
2429     bool NoLHSWrapProblem = false, NoRHSWrapProblem = false;
2430     if (LBO && LBO->getOpcode() == Instruction::Add) {
2431       A = LBO->getOperand(0);
2432       B = LBO->getOperand(1);
2433       NoLHSWrapProblem =
2434           ICmpInst::isEquality(Pred) ||
2435           (CmpInst::isUnsigned(Pred) && LBO->hasNoUnsignedWrap()) ||
2436           (CmpInst::isSigned(Pred) && LBO->hasNoSignedWrap());
2437     }
2438     if (RBO && RBO->getOpcode() == Instruction::Add) {
2439       C = RBO->getOperand(0);
2440       D = RBO->getOperand(1);
2441       NoRHSWrapProblem =
2442           ICmpInst::isEquality(Pred) ||
2443           (CmpInst::isUnsigned(Pred) && RBO->hasNoUnsignedWrap()) ||
2444           (CmpInst::isSigned(Pred) && RBO->hasNoSignedWrap());
2445     }
2446 
2447     // icmp (X+Y), X -> icmp Y, 0 for equalities or if there is no overflow.
2448     if ((A == RHS || B == RHS) && NoLHSWrapProblem)
2449       if (Value *V = SimplifyICmpInst(Pred, A == RHS ? B : A,
2450                                       Constant::getNullValue(RHS->getType()), Q,
2451                                       MaxRecurse - 1))
2452         return V;
2453 
2454     // icmp X, (X+Y) -> icmp 0, Y for equalities or if there is no overflow.
2455     if ((C == LHS || D == LHS) && NoRHSWrapProblem)
2456       if (Value *V =
2457               SimplifyICmpInst(Pred, Constant::getNullValue(LHS->getType()),
2458                                C == LHS ? D : C, Q, MaxRecurse - 1))
2459         return V;
2460 
2461     // icmp (X+Y), (X+Z) -> icmp Y,Z for equalities or if there is no overflow.
2462     if (A && C && (A == C || A == D || B == C || B == D) && NoLHSWrapProblem &&
2463         NoRHSWrapProblem) {
2464       // Determine Y and Z in the form icmp (X+Y), (X+Z).
2465       Value *Y, *Z;
2466       if (A == C) {
2467         // C + B == C + D  ->  B == D
2468         Y = B;
2469         Z = D;
2470       } else if (A == D) {
2471         // D + B == C + D  ->  B == C
2472         Y = B;
2473         Z = C;
2474       } else if (B == C) {
2475         // A + C == C + D  ->  A == D
2476         Y = A;
2477         Z = D;
2478       } else {
2479         assert(B == D);
2480         // A + D == C + D  ->  A == C
2481         Y = A;
2482         Z = C;
2483       }
2484       if (Value *V = SimplifyICmpInst(Pred, Y, Z, Q, MaxRecurse - 1))
2485         return V;
2486     }
2487   }
2488 
2489   {
2490     Value *Y = nullptr;
2491     // icmp pred (or X, Y), X
2492     if (LBO && match(LBO, m_c_Or(m_Value(Y), m_Specific(RHS)))) {
2493       if (Pred == ICmpInst::ICMP_ULT)
2494         return getFalse(ITy);
2495       if (Pred == ICmpInst::ICMP_UGE)
2496         return getTrue(ITy);
2497 
2498       if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SGE) {
2499         KnownBits RHSKnown = computeKnownBits(RHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
2500         KnownBits YKnown = computeKnownBits(Y, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
2501         if (RHSKnown.isNonNegative() && YKnown.isNegative())
2502           return Pred == ICmpInst::ICMP_SLT ? getTrue(ITy) : getFalse(ITy);
2503         if (RHSKnown.isNegative() || YKnown.isNonNegative())
2504           return Pred == ICmpInst::ICMP_SLT ? getFalse(ITy) : getTrue(ITy);
2505       }
2506     }
2507     // icmp pred X, (or X, Y)
2508     if (RBO && match(RBO, m_c_Or(m_Value(Y), m_Specific(LHS)))) {
2509       if (Pred == ICmpInst::ICMP_ULE)
2510         return getTrue(ITy);
2511       if (Pred == ICmpInst::ICMP_UGT)
2512         return getFalse(ITy);
2513 
2514       if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SLE) {
2515         KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
2516         KnownBits YKnown = computeKnownBits(Y, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
2517         if (LHSKnown.isNonNegative() && YKnown.isNegative())
2518           return Pred == ICmpInst::ICMP_SGT ? getTrue(ITy) : getFalse(ITy);
2519         if (LHSKnown.isNegative() || YKnown.isNonNegative())
2520           return Pred == ICmpInst::ICMP_SGT ? getFalse(ITy) : getTrue(ITy);
2521       }
2522     }
2523   }
2524 
2525   // icmp pred (and X, Y), X
2526   if (LBO && match(LBO, m_c_And(m_Value(), m_Specific(RHS)))) {
2527     if (Pred == ICmpInst::ICMP_UGT)
2528       return getFalse(ITy);
2529     if (Pred == ICmpInst::ICMP_ULE)
2530       return getTrue(ITy);
2531   }
2532   // icmp pred X, (and X, Y)
2533   if (RBO && match(RBO, m_c_And(m_Value(), m_Specific(LHS)))) {
2534     if (Pred == ICmpInst::ICMP_UGE)
2535       return getTrue(ITy);
2536     if (Pred == ICmpInst::ICMP_ULT)
2537       return getFalse(ITy);
2538   }
2539 
2540   // 0 - (zext X) pred C
2541   if (!CmpInst::isUnsigned(Pred) && match(LHS, m_Neg(m_ZExt(m_Value())))) {
2542     if (ConstantInt *RHSC = dyn_cast<ConstantInt>(RHS)) {
2543       if (RHSC->getValue().isStrictlyPositive()) {
2544         if (Pred == ICmpInst::ICMP_SLT)
2545           return ConstantInt::getTrue(RHSC->getContext());
2546         if (Pred == ICmpInst::ICMP_SGE)
2547           return ConstantInt::getFalse(RHSC->getContext());
2548         if (Pred == ICmpInst::ICMP_EQ)
2549           return ConstantInt::getFalse(RHSC->getContext());
2550         if (Pred == ICmpInst::ICMP_NE)
2551           return ConstantInt::getTrue(RHSC->getContext());
2552       }
2553       if (RHSC->getValue().isNonNegative()) {
2554         if (Pred == ICmpInst::ICMP_SLE)
2555           return ConstantInt::getTrue(RHSC->getContext());
2556         if (Pred == ICmpInst::ICMP_SGT)
2557           return ConstantInt::getFalse(RHSC->getContext());
2558       }
2559     }
2560   }
2561 
2562   // icmp pred (urem X, Y), Y
2563   if (LBO && match(LBO, m_URem(m_Value(), m_Specific(RHS)))) {
2564     switch (Pred) {
2565     default:
2566       break;
2567     case ICmpInst::ICMP_SGT:
2568     case ICmpInst::ICMP_SGE: {
2569       KnownBits Known = computeKnownBits(RHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
2570       if (!Known.isNonNegative())
2571         break;
2572       LLVM_FALLTHROUGH;
2573     }
2574     case ICmpInst::ICMP_EQ:
2575     case ICmpInst::ICMP_UGT:
2576     case ICmpInst::ICMP_UGE:
2577       return getFalse(ITy);
2578     case ICmpInst::ICMP_SLT:
2579     case ICmpInst::ICMP_SLE: {
2580       KnownBits Known = computeKnownBits(RHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
2581       if (!Known.isNonNegative())
2582         break;
2583       LLVM_FALLTHROUGH;
2584     }
2585     case ICmpInst::ICMP_NE:
2586     case ICmpInst::ICMP_ULT:
2587     case ICmpInst::ICMP_ULE:
2588       return getTrue(ITy);
2589     }
2590   }
2591 
2592   // icmp pred X, (urem Y, X)
2593   if (RBO && match(RBO, m_URem(m_Value(), m_Specific(LHS)))) {
2594     switch (Pred) {
2595     default:
2596       break;
2597     case ICmpInst::ICMP_SGT:
2598     case ICmpInst::ICMP_SGE: {
2599       KnownBits Known = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
2600       if (!Known.isNonNegative())
2601         break;
2602       LLVM_FALLTHROUGH;
2603     }
2604     case ICmpInst::ICMP_NE:
2605     case ICmpInst::ICMP_UGT:
2606     case ICmpInst::ICMP_UGE:
2607       return getTrue(ITy);
2608     case ICmpInst::ICMP_SLT:
2609     case ICmpInst::ICMP_SLE: {
2610       KnownBits Known = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
2611       if (!Known.isNonNegative())
2612         break;
2613       LLVM_FALLTHROUGH;
2614     }
2615     case ICmpInst::ICMP_EQ:
2616     case ICmpInst::ICMP_ULT:
2617     case ICmpInst::ICMP_ULE:
2618       return getFalse(ITy);
2619     }
2620   }
2621 
2622   // x >> y <=u x
2623   // x udiv y <=u x.
2624   if (LBO && (match(LBO, m_LShr(m_Specific(RHS), m_Value())) ||
2625               match(LBO, m_UDiv(m_Specific(RHS), m_Value())))) {
2626     // icmp pred (X op Y), X
2627     if (Pred == ICmpInst::ICMP_UGT)
2628       return getFalse(ITy);
2629     if (Pred == ICmpInst::ICMP_ULE)
2630       return getTrue(ITy);
2631   }
2632 
2633   // x >=u x >> y
2634   // x >=u x udiv y.
2635   if (RBO && (match(RBO, m_LShr(m_Specific(LHS), m_Value())) ||
2636               match(RBO, m_UDiv(m_Specific(LHS), m_Value())))) {
2637     // icmp pred X, (X op Y)
2638     if (Pred == ICmpInst::ICMP_ULT)
2639       return getFalse(ITy);
2640     if (Pred == ICmpInst::ICMP_UGE)
2641       return getTrue(ITy);
2642   }
2643 
2644   // handle:
2645   //   CI2 << X == CI
2646   //   CI2 << X != CI
2647   //
2648   //   where CI2 is a power of 2 and CI isn't
2649   if (auto *CI = dyn_cast<ConstantInt>(RHS)) {
2650     const APInt *CI2Val, *CIVal = &CI->getValue();
2651     if (LBO && match(LBO, m_Shl(m_APInt(CI2Val), m_Value())) &&
2652         CI2Val->isPowerOf2()) {
2653       if (!CIVal->isPowerOf2()) {
2654         // CI2 << X can equal zero in some circumstances,
2655         // this simplification is unsafe if CI is zero.
2656         //
2657         // We know it is safe if:
2658         // - The shift is nsw, we can't shift out the one bit.
2659         // - The shift is nuw, we can't shift out the one bit.
2660         // - CI2 is one
2661         // - CI isn't zero
2662         if (LBO->hasNoSignedWrap() || LBO->hasNoUnsignedWrap() ||
2663             CI2Val->isOneValue() || !CI->isZero()) {
2664           if (Pred == ICmpInst::ICMP_EQ)
2665             return ConstantInt::getFalse(RHS->getContext());
2666           if (Pred == ICmpInst::ICMP_NE)
2667             return ConstantInt::getTrue(RHS->getContext());
2668         }
2669       }
2670       if (CIVal->isSignMask() && CI2Val->isOneValue()) {
2671         if (Pred == ICmpInst::ICMP_UGT)
2672           return ConstantInt::getFalse(RHS->getContext());
2673         if (Pred == ICmpInst::ICMP_ULE)
2674           return ConstantInt::getTrue(RHS->getContext());
2675       }
2676     }
2677   }
2678 
2679   if (MaxRecurse && LBO && RBO && LBO->getOpcode() == RBO->getOpcode() &&
2680       LBO->getOperand(1) == RBO->getOperand(1)) {
2681     switch (LBO->getOpcode()) {
2682     default:
2683       break;
2684     case Instruction::UDiv:
2685     case Instruction::LShr:
2686       if (ICmpInst::isSigned(Pred) || !LBO->isExact() || !RBO->isExact())
2687         break;
2688       if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0),
2689                                       RBO->getOperand(0), Q, MaxRecurse - 1))
2690           return V;
2691       break;
2692     case Instruction::SDiv:
2693       if (!ICmpInst::isEquality(Pred) || !LBO->isExact() || !RBO->isExact())
2694         break;
2695       if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0),
2696                                       RBO->getOperand(0), Q, MaxRecurse - 1))
2697         return V;
2698       break;
2699     case Instruction::AShr:
2700       if (!LBO->isExact() || !RBO->isExact())
2701         break;
2702       if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0),
2703                                       RBO->getOperand(0), Q, MaxRecurse - 1))
2704         return V;
2705       break;
2706     case Instruction::Shl: {
2707       bool NUW = LBO->hasNoUnsignedWrap() && RBO->hasNoUnsignedWrap();
2708       bool NSW = LBO->hasNoSignedWrap() && RBO->hasNoSignedWrap();
2709       if (!NUW && !NSW)
2710         break;
2711       if (!NSW && ICmpInst::isSigned(Pred))
2712         break;
2713       if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0),
2714                                       RBO->getOperand(0), Q, MaxRecurse - 1))
2715         return V;
2716       break;
2717     }
2718     }
2719   }
2720   return nullptr;
2721 }
2722 
2723 /// Simplify integer comparisons where at least one operand of the compare
2724 /// matches an integer min/max idiom.
2725 static Value *simplifyICmpWithMinMax(CmpInst::Predicate Pred, Value *LHS,
2726                                      Value *RHS, const SimplifyQuery &Q,
2727                                      unsigned MaxRecurse) {
2728   Type *ITy = GetCompareTy(LHS); // The return type.
2729   Value *A, *B;
2730   CmpInst::Predicate P = CmpInst::BAD_ICMP_PREDICATE;
2731   CmpInst::Predicate EqP; // Chosen so that "A == max/min(A,B)" iff "A EqP B".
2732 
2733   // Signed variants on "max(a,b)>=a -> true".
2734   if (match(LHS, m_SMax(m_Value(A), m_Value(B))) && (A == RHS || B == RHS)) {
2735     if (A != RHS)
2736       std::swap(A, B);       // smax(A, B) pred A.
2737     EqP = CmpInst::ICMP_SGE; // "A == smax(A, B)" iff "A sge B".
2738     // We analyze this as smax(A, B) pred A.
2739     P = Pred;
2740   } else if (match(RHS, m_SMax(m_Value(A), m_Value(B))) &&
2741              (A == LHS || B == LHS)) {
2742     if (A != LHS)
2743       std::swap(A, B);       // A pred smax(A, B).
2744     EqP = CmpInst::ICMP_SGE; // "A == smax(A, B)" iff "A sge B".
2745     // We analyze this as smax(A, B) swapped-pred A.
2746     P = CmpInst::getSwappedPredicate(Pred);
2747   } else if (match(LHS, m_SMin(m_Value(A), m_Value(B))) &&
2748              (A == RHS || B == RHS)) {
2749     if (A != RHS)
2750       std::swap(A, B);       // smin(A, B) pred A.
2751     EqP = CmpInst::ICMP_SLE; // "A == smin(A, B)" iff "A sle B".
2752     // We analyze this as smax(-A, -B) swapped-pred -A.
2753     // Note that we do not need to actually form -A or -B thanks to EqP.
2754     P = CmpInst::getSwappedPredicate(Pred);
2755   } else if (match(RHS, m_SMin(m_Value(A), m_Value(B))) &&
2756              (A == LHS || B == LHS)) {
2757     if (A != LHS)
2758       std::swap(A, B);       // A pred smin(A, B).
2759     EqP = CmpInst::ICMP_SLE; // "A == smin(A, B)" iff "A sle B".
2760     // We analyze this as smax(-A, -B) pred -A.
2761     // Note that we do not need to actually form -A or -B thanks to EqP.
2762     P = Pred;
2763   }
2764   if (P != CmpInst::BAD_ICMP_PREDICATE) {
2765     // Cases correspond to "max(A, B) p A".
2766     switch (P) {
2767     default:
2768       break;
2769     case CmpInst::ICMP_EQ:
2770     case CmpInst::ICMP_SLE:
2771       // Equivalent to "A EqP B".  This may be the same as the condition tested
2772       // in the max/min; if so, we can just return that.
2773       if (Value *V = ExtractEquivalentCondition(LHS, EqP, A, B))
2774         return V;
2775       if (Value *V = ExtractEquivalentCondition(RHS, EqP, A, B))
2776         return V;
2777       // Otherwise, see if "A EqP B" simplifies.
2778       if (MaxRecurse)
2779         if (Value *V = SimplifyICmpInst(EqP, A, B, Q, MaxRecurse - 1))
2780           return V;
2781       break;
2782     case CmpInst::ICMP_NE:
2783     case CmpInst::ICMP_SGT: {
2784       CmpInst::Predicate InvEqP = CmpInst::getInversePredicate(EqP);
2785       // Equivalent to "A InvEqP B".  This may be the same as the condition
2786       // tested in the max/min; if so, we can just return that.
2787       if (Value *V = ExtractEquivalentCondition(LHS, InvEqP, A, B))
2788         return V;
2789       if (Value *V = ExtractEquivalentCondition(RHS, InvEqP, A, B))
2790         return V;
2791       // Otherwise, see if "A InvEqP B" simplifies.
2792       if (MaxRecurse)
2793         if (Value *V = SimplifyICmpInst(InvEqP, A, B, Q, MaxRecurse - 1))
2794           return V;
2795       break;
2796     }
2797     case CmpInst::ICMP_SGE:
2798       // Always true.
2799       return getTrue(ITy);
2800     case CmpInst::ICMP_SLT:
2801       // Always false.
2802       return getFalse(ITy);
2803     }
2804   }
2805 
2806   // Unsigned variants on "max(a,b)>=a -> true".
2807   P = CmpInst::BAD_ICMP_PREDICATE;
2808   if (match(LHS, m_UMax(m_Value(A), m_Value(B))) && (A == RHS || B == RHS)) {
2809     if (A != RHS)
2810       std::swap(A, B);       // umax(A, B) pred A.
2811     EqP = CmpInst::ICMP_UGE; // "A == umax(A, B)" iff "A uge B".
2812     // We analyze this as umax(A, B) pred A.
2813     P = Pred;
2814   } else if (match(RHS, m_UMax(m_Value(A), m_Value(B))) &&
2815              (A == LHS || B == LHS)) {
2816     if (A != LHS)
2817       std::swap(A, B);       // A pred umax(A, B).
2818     EqP = CmpInst::ICMP_UGE; // "A == umax(A, B)" iff "A uge B".
2819     // We analyze this as umax(A, B) swapped-pred A.
2820     P = CmpInst::getSwappedPredicate(Pred);
2821   } else if (match(LHS, m_UMin(m_Value(A), m_Value(B))) &&
2822              (A == RHS || B == RHS)) {
2823     if (A != RHS)
2824       std::swap(A, B);       // umin(A, B) pred A.
2825     EqP = CmpInst::ICMP_ULE; // "A == umin(A, B)" iff "A ule B".
2826     // We analyze this as umax(-A, -B) swapped-pred -A.
2827     // Note that we do not need to actually form -A or -B thanks to EqP.
2828     P = CmpInst::getSwappedPredicate(Pred);
2829   } else if (match(RHS, m_UMin(m_Value(A), m_Value(B))) &&
2830              (A == LHS || B == LHS)) {
2831     if (A != LHS)
2832       std::swap(A, B);       // A pred umin(A, B).
2833     EqP = CmpInst::ICMP_ULE; // "A == umin(A, B)" iff "A ule B".
2834     // We analyze this as umax(-A, -B) pred -A.
2835     // Note that we do not need to actually form -A or -B thanks to EqP.
2836     P = Pred;
2837   }
2838   if (P != CmpInst::BAD_ICMP_PREDICATE) {
2839     // Cases correspond to "max(A, B) p A".
2840     switch (P) {
2841     default:
2842       break;
2843     case CmpInst::ICMP_EQ:
2844     case CmpInst::ICMP_ULE:
2845       // Equivalent to "A EqP B".  This may be the same as the condition tested
2846       // in the max/min; if so, we can just return that.
2847       if (Value *V = ExtractEquivalentCondition(LHS, EqP, A, B))
2848         return V;
2849       if (Value *V = ExtractEquivalentCondition(RHS, EqP, A, B))
2850         return V;
2851       // Otherwise, see if "A EqP B" simplifies.
2852       if (MaxRecurse)
2853         if (Value *V = SimplifyICmpInst(EqP, A, B, Q, MaxRecurse - 1))
2854           return V;
2855       break;
2856     case CmpInst::ICMP_NE:
2857     case CmpInst::ICMP_UGT: {
2858       CmpInst::Predicate InvEqP = CmpInst::getInversePredicate(EqP);
2859       // Equivalent to "A InvEqP B".  This may be the same as the condition
2860       // tested in the max/min; if so, we can just return that.
2861       if (Value *V = ExtractEquivalentCondition(LHS, InvEqP, A, B))
2862         return V;
2863       if (Value *V = ExtractEquivalentCondition(RHS, InvEqP, A, B))
2864         return V;
2865       // Otherwise, see if "A InvEqP B" simplifies.
2866       if (MaxRecurse)
2867         if (Value *V = SimplifyICmpInst(InvEqP, A, B, Q, MaxRecurse - 1))
2868           return V;
2869       break;
2870     }
2871     case CmpInst::ICMP_UGE:
2872       // Always true.
2873       return getTrue(ITy);
2874     case CmpInst::ICMP_ULT:
2875       // Always false.
2876       return getFalse(ITy);
2877     }
2878   }
2879 
2880   // Variants on "max(x,y) >= min(x,z)".
2881   Value *C, *D;
2882   if (match(LHS, m_SMax(m_Value(A), m_Value(B))) &&
2883       match(RHS, m_SMin(m_Value(C), m_Value(D))) &&
2884       (A == C || A == D || B == C || B == D)) {
2885     // max(x, ?) pred min(x, ?).
2886     if (Pred == CmpInst::ICMP_SGE)
2887       // Always true.
2888       return getTrue(ITy);
2889     if (Pred == CmpInst::ICMP_SLT)
2890       // Always false.
2891       return getFalse(ITy);
2892   } else if (match(LHS, m_SMin(m_Value(A), m_Value(B))) &&
2893              match(RHS, m_SMax(m_Value(C), m_Value(D))) &&
2894              (A == C || A == D || B == C || B == D)) {
2895     // min(x, ?) pred max(x, ?).
2896     if (Pred == CmpInst::ICMP_SLE)
2897       // Always true.
2898       return getTrue(ITy);
2899     if (Pred == CmpInst::ICMP_SGT)
2900       // Always false.
2901       return getFalse(ITy);
2902   } else if (match(LHS, m_UMax(m_Value(A), m_Value(B))) &&
2903              match(RHS, m_UMin(m_Value(C), m_Value(D))) &&
2904              (A == C || A == D || B == C || B == D)) {
2905     // max(x, ?) pred min(x, ?).
2906     if (Pred == CmpInst::ICMP_UGE)
2907       // Always true.
2908       return getTrue(ITy);
2909     if (Pred == CmpInst::ICMP_ULT)
2910       // Always false.
2911       return getFalse(ITy);
2912   } else if (match(LHS, m_UMin(m_Value(A), m_Value(B))) &&
2913              match(RHS, m_UMax(m_Value(C), m_Value(D))) &&
2914              (A == C || A == D || B == C || B == D)) {
2915     // min(x, ?) pred max(x, ?).
2916     if (Pred == CmpInst::ICMP_ULE)
2917       // Always true.
2918       return getTrue(ITy);
2919     if (Pred == CmpInst::ICMP_UGT)
2920       // Always false.
2921       return getFalse(ITy);
2922   }
2923 
2924   return nullptr;
2925 }
2926 
2927 /// Given operands for an ICmpInst, see if we can fold the result.
2928 /// If not, this returns null.
2929 static Value *SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS,
2930                                const SimplifyQuery &Q, unsigned MaxRecurse) {
2931   CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate;
2932   assert(CmpInst::isIntPredicate(Pred) && "Not an integer compare!");
2933 
2934   if (Constant *CLHS = dyn_cast<Constant>(LHS)) {
2935     if (Constant *CRHS = dyn_cast<Constant>(RHS))
2936       return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, Q.DL, Q.TLI);
2937 
2938     // If we have a constant, make sure it is on the RHS.
2939     std::swap(LHS, RHS);
2940     Pred = CmpInst::getSwappedPredicate(Pred);
2941   }
2942 
2943   Type *ITy = GetCompareTy(LHS); // The return type.
2944 
2945   // icmp X, X -> true/false
2946   // X icmp undef -> true/false.  For example, icmp ugt %X, undef -> false
2947   // because X could be 0.
2948   if (LHS == RHS || isa<UndefValue>(RHS))
2949     return ConstantInt::get(ITy, CmpInst::isTrueWhenEqual(Pred));
2950 
2951   if (Value *V = simplifyICmpOfBools(Pred, LHS, RHS, Q))
2952     return V;
2953 
2954   if (Value *V = simplifyICmpWithZero(Pred, LHS, RHS, Q))
2955     return V;
2956 
2957   if (Value *V = simplifyICmpWithConstant(Pred, LHS, RHS))
2958     return V;
2959 
2960   // If both operands have range metadata, use the metadata
2961   // to simplify the comparison.
2962   if (isa<Instruction>(RHS) && isa<Instruction>(LHS)) {
2963     auto RHS_Instr = cast<Instruction>(RHS);
2964     auto LHS_Instr = cast<Instruction>(LHS);
2965 
2966     if (RHS_Instr->getMetadata(LLVMContext::MD_range) &&
2967         LHS_Instr->getMetadata(LLVMContext::MD_range)) {
2968       auto RHS_CR = getConstantRangeFromMetadata(
2969           *RHS_Instr->getMetadata(LLVMContext::MD_range));
2970       auto LHS_CR = getConstantRangeFromMetadata(
2971           *LHS_Instr->getMetadata(LLVMContext::MD_range));
2972 
2973       auto Satisfied_CR = ConstantRange::makeSatisfyingICmpRegion(Pred, RHS_CR);
2974       if (Satisfied_CR.contains(LHS_CR))
2975         return ConstantInt::getTrue(RHS->getContext());
2976 
2977       auto InversedSatisfied_CR = ConstantRange::makeSatisfyingICmpRegion(
2978                 CmpInst::getInversePredicate(Pred), RHS_CR);
2979       if (InversedSatisfied_CR.contains(LHS_CR))
2980         return ConstantInt::getFalse(RHS->getContext());
2981     }
2982   }
2983 
2984   // Compare of cast, for example (zext X) != 0 -> X != 0
2985   if (isa<CastInst>(LHS) && (isa<Constant>(RHS) || isa<CastInst>(RHS))) {
2986     Instruction *LI = cast<CastInst>(LHS);
2987     Value *SrcOp = LI->getOperand(0);
2988     Type *SrcTy = SrcOp->getType();
2989     Type *DstTy = LI->getType();
2990 
2991     // Turn icmp (ptrtoint x), (ptrtoint/constant) into a compare of the input
2992     // if the integer type is the same size as the pointer type.
2993     if (MaxRecurse && isa<PtrToIntInst>(LI) &&
2994         Q.DL.getTypeSizeInBits(SrcTy) == DstTy->getPrimitiveSizeInBits()) {
2995       if (Constant *RHSC = dyn_cast<Constant>(RHS)) {
2996         // Transfer the cast to the constant.
2997         if (Value *V = SimplifyICmpInst(Pred, SrcOp,
2998                                         ConstantExpr::getIntToPtr(RHSC, SrcTy),
2999                                         Q, MaxRecurse-1))
3000           return V;
3001       } else if (PtrToIntInst *RI = dyn_cast<PtrToIntInst>(RHS)) {
3002         if (RI->getOperand(0)->getType() == SrcTy)
3003           // Compare without the cast.
3004           if (Value *V = SimplifyICmpInst(Pred, SrcOp, RI->getOperand(0),
3005                                           Q, MaxRecurse-1))
3006             return V;
3007       }
3008     }
3009 
3010     if (isa<ZExtInst>(LHS)) {
3011       // Turn icmp (zext X), (zext Y) into a compare of X and Y if they have the
3012       // same type.
3013       if (ZExtInst *RI = dyn_cast<ZExtInst>(RHS)) {
3014         if (MaxRecurse && SrcTy == RI->getOperand(0)->getType())
3015           // Compare X and Y.  Note that signed predicates become unsigned.
3016           if (Value *V = SimplifyICmpInst(ICmpInst::getUnsignedPredicate(Pred),
3017                                           SrcOp, RI->getOperand(0), Q,
3018                                           MaxRecurse-1))
3019             return V;
3020       }
3021       // Turn icmp (zext X), Cst into a compare of X and Cst if Cst is extended
3022       // too.  If not, then try to deduce the result of the comparison.
3023       else if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
3024         // Compute the constant that would happen if we truncated to SrcTy then
3025         // reextended to DstTy.
3026         Constant *Trunc = ConstantExpr::getTrunc(CI, SrcTy);
3027         Constant *RExt = ConstantExpr::getCast(CastInst::ZExt, Trunc, DstTy);
3028 
3029         // If the re-extended constant didn't change then this is effectively
3030         // also a case of comparing two zero-extended values.
3031         if (RExt == CI && MaxRecurse)
3032           if (Value *V = SimplifyICmpInst(ICmpInst::getUnsignedPredicate(Pred),
3033                                         SrcOp, Trunc, Q, MaxRecurse-1))
3034             return V;
3035 
3036         // Otherwise the upper bits of LHS are zero while RHS has a non-zero bit
3037         // there.  Use this to work out the result of the comparison.
3038         if (RExt != CI) {
3039           switch (Pred) {
3040           default: llvm_unreachable("Unknown ICmp predicate!");
3041           // LHS <u RHS.
3042           case ICmpInst::ICMP_EQ:
3043           case ICmpInst::ICMP_UGT:
3044           case ICmpInst::ICMP_UGE:
3045             return ConstantInt::getFalse(CI->getContext());
3046 
3047           case ICmpInst::ICMP_NE:
3048           case ICmpInst::ICMP_ULT:
3049           case ICmpInst::ICMP_ULE:
3050             return ConstantInt::getTrue(CI->getContext());
3051 
3052           // LHS is non-negative.  If RHS is negative then LHS >s LHS.  If RHS
3053           // is non-negative then LHS <s RHS.
3054           case ICmpInst::ICMP_SGT:
3055           case ICmpInst::ICMP_SGE:
3056             return CI->getValue().isNegative() ?
3057               ConstantInt::getTrue(CI->getContext()) :
3058               ConstantInt::getFalse(CI->getContext());
3059 
3060           case ICmpInst::ICMP_SLT:
3061           case ICmpInst::ICMP_SLE:
3062             return CI->getValue().isNegative() ?
3063               ConstantInt::getFalse(CI->getContext()) :
3064               ConstantInt::getTrue(CI->getContext());
3065           }
3066         }
3067       }
3068     }
3069 
3070     if (isa<SExtInst>(LHS)) {
3071       // Turn icmp (sext X), (sext Y) into a compare of X and Y if they have the
3072       // same type.
3073       if (SExtInst *RI = dyn_cast<SExtInst>(RHS)) {
3074         if (MaxRecurse && SrcTy == RI->getOperand(0)->getType())
3075           // Compare X and Y.  Note that the predicate does not change.
3076           if (Value *V = SimplifyICmpInst(Pred, SrcOp, RI->getOperand(0),
3077                                           Q, MaxRecurse-1))
3078             return V;
3079       }
3080       // Turn icmp (sext X), Cst into a compare of X and Cst if Cst is extended
3081       // too.  If not, then try to deduce the result of the comparison.
3082       else if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
3083         // Compute the constant that would happen if we truncated to SrcTy then
3084         // reextended to DstTy.
3085         Constant *Trunc = ConstantExpr::getTrunc(CI, SrcTy);
3086         Constant *RExt = ConstantExpr::getCast(CastInst::SExt, Trunc, DstTy);
3087 
3088         // If the re-extended constant didn't change then this is effectively
3089         // also a case of comparing two sign-extended values.
3090         if (RExt == CI && MaxRecurse)
3091           if (Value *V = SimplifyICmpInst(Pred, SrcOp, Trunc, Q, MaxRecurse-1))
3092             return V;
3093 
3094         // Otherwise the upper bits of LHS are all equal, while RHS has varying
3095         // bits there.  Use this to work out the result of the comparison.
3096         if (RExt != CI) {
3097           switch (Pred) {
3098           default: llvm_unreachable("Unknown ICmp predicate!");
3099           case ICmpInst::ICMP_EQ:
3100             return ConstantInt::getFalse(CI->getContext());
3101           case ICmpInst::ICMP_NE:
3102             return ConstantInt::getTrue(CI->getContext());
3103 
3104           // If RHS is non-negative then LHS <s RHS.  If RHS is negative then
3105           // LHS >s RHS.
3106           case ICmpInst::ICMP_SGT:
3107           case ICmpInst::ICMP_SGE:
3108             return CI->getValue().isNegative() ?
3109               ConstantInt::getTrue(CI->getContext()) :
3110               ConstantInt::getFalse(CI->getContext());
3111           case ICmpInst::ICMP_SLT:
3112           case ICmpInst::ICMP_SLE:
3113             return CI->getValue().isNegative() ?
3114               ConstantInt::getFalse(CI->getContext()) :
3115               ConstantInt::getTrue(CI->getContext());
3116 
3117           // If LHS is non-negative then LHS <u RHS.  If LHS is negative then
3118           // LHS >u RHS.
3119           case ICmpInst::ICMP_UGT:
3120           case ICmpInst::ICMP_UGE:
3121             // Comparison is true iff the LHS <s 0.
3122             if (MaxRecurse)
3123               if (Value *V = SimplifyICmpInst(ICmpInst::ICMP_SLT, SrcOp,
3124                                               Constant::getNullValue(SrcTy),
3125                                               Q, MaxRecurse-1))
3126                 return V;
3127             break;
3128           case ICmpInst::ICMP_ULT:
3129           case ICmpInst::ICMP_ULE:
3130             // Comparison is true iff the LHS >=s 0.
3131             if (MaxRecurse)
3132               if (Value *V = SimplifyICmpInst(ICmpInst::ICMP_SGE, SrcOp,
3133                                               Constant::getNullValue(SrcTy),
3134                                               Q, MaxRecurse-1))
3135                 return V;
3136             break;
3137           }
3138         }
3139       }
3140     }
3141   }
3142 
3143   // icmp eq|ne X, Y -> false|true if X != Y
3144   if (ICmpInst::isEquality(Pred) &&
3145       isKnownNonEqual(LHS, RHS, Q.DL, Q.AC, Q.CxtI, Q.DT)) {
3146     return Pred == ICmpInst::ICMP_NE ? getTrue(ITy) : getFalse(ITy);
3147   }
3148 
3149   if (Value *V = simplifyICmpWithBinOp(Pred, LHS, RHS, Q, MaxRecurse))
3150     return V;
3151 
3152   if (Value *V = simplifyICmpWithMinMax(Pred, LHS, RHS, Q, MaxRecurse))
3153     return V;
3154 
3155   // Simplify comparisons of related pointers using a powerful, recursive
3156   // GEP-walk when we have target data available..
3157   if (LHS->getType()->isPointerTy())
3158     if (auto *C = computePointerICmp(Q.DL, Q.TLI, Q.DT, Pred, Q.AC, Q.CxtI, LHS,
3159                                      RHS))
3160       return C;
3161   if (auto *CLHS = dyn_cast<PtrToIntOperator>(LHS))
3162     if (auto *CRHS = dyn_cast<PtrToIntOperator>(RHS))
3163       if (Q.DL.getTypeSizeInBits(CLHS->getPointerOperandType()) ==
3164               Q.DL.getTypeSizeInBits(CLHS->getType()) &&
3165           Q.DL.getTypeSizeInBits(CRHS->getPointerOperandType()) ==
3166               Q.DL.getTypeSizeInBits(CRHS->getType()))
3167         if (auto *C = computePointerICmp(Q.DL, Q.TLI, Q.DT, Pred, Q.AC, Q.CxtI,
3168                                          CLHS->getPointerOperand(),
3169                                          CRHS->getPointerOperand()))
3170           return C;
3171 
3172   if (GetElementPtrInst *GLHS = dyn_cast<GetElementPtrInst>(LHS)) {
3173     if (GEPOperator *GRHS = dyn_cast<GEPOperator>(RHS)) {
3174       if (GLHS->getPointerOperand() == GRHS->getPointerOperand() &&
3175           GLHS->hasAllConstantIndices() && GRHS->hasAllConstantIndices() &&
3176           (ICmpInst::isEquality(Pred) ||
3177            (GLHS->isInBounds() && GRHS->isInBounds() &&
3178             Pred == ICmpInst::getSignedPredicate(Pred)))) {
3179         // The bases are equal and the indices are constant.  Build a constant
3180         // expression GEP with the same indices and a null base pointer to see
3181         // what constant folding can make out of it.
3182         Constant *Null = Constant::getNullValue(GLHS->getPointerOperandType());
3183         SmallVector<Value *, 4> IndicesLHS(GLHS->idx_begin(), GLHS->idx_end());
3184         Constant *NewLHS = ConstantExpr::getGetElementPtr(
3185             GLHS->getSourceElementType(), Null, IndicesLHS);
3186 
3187         SmallVector<Value *, 4> IndicesRHS(GRHS->idx_begin(), GRHS->idx_end());
3188         Constant *NewRHS = ConstantExpr::getGetElementPtr(
3189             GLHS->getSourceElementType(), Null, IndicesRHS);
3190         return ConstantExpr::getICmp(Pred, NewLHS, NewRHS);
3191       }
3192     }
3193   }
3194 
3195   // If the comparison is with the result of a select instruction, check whether
3196   // comparing with either branch of the select always yields the same value.
3197   if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS))
3198     if (Value *V = ThreadCmpOverSelect(Pred, LHS, RHS, Q, MaxRecurse))
3199       return V;
3200 
3201   // If the comparison is with the result of a phi instruction, check whether
3202   // doing the compare with each incoming phi value yields a common result.
3203   if (isa<PHINode>(LHS) || isa<PHINode>(RHS))
3204     if (Value *V = ThreadCmpOverPHI(Pred, LHS, RHS, Q, MaxRecurse))
3205       return V;
3206 
3207   return nullptr;
3208 }
3209 
3210 Value *llvm::SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS,
3211                               const SimplifyQuery &Q) {
3212   return ::SimplifyICmpInst(Predicate, LHS, RHS, Q, RecursionLimit);
3213 }
3214 
3215 /// Given operands for an FCmpInst, see if we can fold the result.
3216 /// If not, this returns null.
3217 static Value *SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
3218                                FastMathFlags FMF, const SimplifyQuery &Q,
3219                                unsigned MaxRecurse) {
3220   CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate;
3221   assert(CmpInst::isFPPredicate(Pred) && "Not an FP compare!");
3222 
3223   if (Constant *CLHS = dyn_cast<Constant>(LHS)) {
3224     if (Constant *CRHS = dyn_cast<Constant>(RHS))
3225       return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, Q.DL, Q.TLI);
3226 
3227     // If we have a constant, make sure it is on the RHS.
3228     std::swap(LHS, RHS);
3229     Pred = CmpInst::getSwappedPredicate(Pred);
3230   }
3231 
3232   // Fold trivial predicates.
3233   Type *RetTy = GetCompareTy(LHS);
3234   if (Pred == FCmpInst::FCMP_FALSE)
3235     return getFalse(RetTy);
3236   if (Pred == FCmpInst::FCMP_TRUE)
3237     return getTrue(RetTy);
3238 
3239   // UNO/ORD predicates can be trivially folded if NaNs are ignored.
3240   if (FMF.noNaNs()) {
3241     if (Pred == FCmpInst::FCMP_UNO)
3242       return getFalse(RetTy);
3243     if (Pred == FCmpInst::FCMP_ORD)
3244       return getTrue(RetTy);
3245   }
3246 
3247   // fcmp pred x, undef  and  fcmp pred undef, x
3248   // fold to true if unordered, false if ordered
3249   if (isa<UndefValue>(LHS) || isa<UndefValue>(RHS)) {
3250     // Choosing NaN for the undef will always make unordered comparison succeed
3251     // and ordered comparison fail.
3252     return ConstantInt::get(RetTy, CmpInst::isUnordered(Pred));
3253   }
3254 
3255   // fcmp x,x -> true/false.  Not all compares are foldable.
3256   if (LHS == RHS) {
3257     if (CmpInst::isTrueWhenEqual(Pred))
3258       return getTrue(RetTy);
3259     if (CmpInst::isFalseWhenEqual(Pred))
3260       return getFalse(RetTy);
3261   }
3262 
3263   // Handle fcmp with constant RHS
3264   const ConstantFP *CFP = nullptr;
3265   if (const auto *RHSC = dyn_cast<Constant>(RHS)) {
3266     if (RHS->getType()->isVectorTy())
3267       CFP = dyn_cast_or_null<ConstantFP>(RHSC->getSplatValue());
3268     else
3269       CFP = dyn_cast<ConstantFP>(RHSC);
3270   }
3271   if (CFP) {
3272     // If the constant is a nan, see if we can fold the comparison based on it.
3273     if (CFP->getValueAPF().isNaN()) {
3274       if (FCmpInst::isOrdered(Pred)) // True "if ordered and foo"
3275         return getFalse(RetTy);
3276       assert(FCmpInst::isUnordered(Pred) &&
3277              "Comparison must be either ordered or unordered!");
3278       // True if unordered.
3279       return getTrue(RetTy);
3280     }
3281     // Check whether the constant is an infinity.
3282     if (CFP->getValueAPF().isInfinity()) {
3283       if (CFP->getValueAPF().isNegative()) {
3284         switch (Pred) {
3285         case FCmpInst::FCMP_OLT:
3286           // No value is ordered and less than negative infinity.
3287           return getFalse(RetTy);
3288         case FCmpInst::FCMP_UGE:
3289           // All values are unordered with or at least negative infinity.
3290           return getTrue(RetTy);
3291         default:
3292           break;
3293         }
3294       } else {
3295         switch (Pred) {
3296         case FCmpInst::FCMP_OGT:
3297           // No value is ordered and greater than infinity.
3298           return getFalse(RetTy);
3299         case FCmpInst::FCMP_ULE:
3300           // All values are unordered with and at most infinity.
3301           return getTrue(RetTy);
3302         default:
3303           break;
3304         }
3305       }
3306     }
3307     if (CFP->getValueAPF().isZero()) {
3308       switch (Pred) {
3309       case FCmpInst::FCMP_UGE:
3310         if (CannotBeOrderedLessThanZero(LHS, Q.TLI))
3311           return getTrue(RetTy);
3312         break;
3313       case FCmpInst::FCMP_OLT:
3314         // X < 0
3315         if (CannotBeOrderedLessThanZero(LHS, Q.TLI))
3316           return getFalse(RetTy);
3317         break;
3318       default:
3319         break;
3320       }
3321     }
3322   }
3323 
3324   // If the comparison is with the result of a select instruction, check whether
3325   // comparing with either branch of the select always yields the same value.
3326   if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS))
3327     if (Value *V = ThreadCmpOverSelect(Pred, LHS, RHS, Q, MaxRecurse))
3328       return V;
3329 
3330   // If the comparison is with the result of a phi instruction, check whether
3331   // doing the compare with each incoming phi value yields a common result.
3332   if (isa<PHINode>(LHS) || isa<PHINode>(RHS))
3333     if (Value *V = ThreadCmpOverPHI(Pred, LHS, RHS, Q, MaxRecurse))
3334       return V;
3335 
3336   return nullptr;
3337 }
3338 
3339 Value *llvm::SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
3340                               FastMathFlags FMF, const SimplifyQuery &Q) {
3341   return ::SimplifyFCmpInst(Predicate, LHS, RHS, FMF, Q, RecursionLimit);
3342 }
3343 
3344 /// See if V simplifies when its operand Op is replaced with RepOp.
3345 static const Value *SimplifyWithOpReplaced(Value *V, Value *Op, Value *RepOp,
3346                                            const SimplifyQuery &Q,
3347                                            unsigned MaxRecurse) {
3348   // Trivial replacement.
3349   if (V == Op)
3350     return RepOp;
3351 
3352   // We cannot replace a constant, and shouldn't even try.
3353   if (isa<Constant>(Op))
3354     return nullptr;
3355 
3356   auto *I = dyn_cast<Instruction>(V);
3357   if (!I)
3358     return nullptr;
3359 
3360   // If this is a binary operator, try to simplify it with the replaced op.
3361   if (auto *B = dyn_cast<BinaryOperator>(I)) {
3362     // Consider:
3363     //   %cmp = icmp eq i32 %x, 2147483647
3364     //   %add = add nsw i32 %x, 1
3365     //   %sel = select i1 %cmp, i32 -2147483648, i32 %add
3366     //
3367     // We can't replace %sel with %add unless we strip away the flags.
3368     if (isa<OverflowingBinaryOperator>(B))
3369       if (B->hasNoSignedWrap() || B->hasNoUnsignedWrap())
3370         return nullptr;
3371     if (isa<PossiblyExactOperator>(B))
3372       if (B->isExact())
3373         return nullptr;
3374 
3375     if (MaxRecurse) {
3376       if (B->getOperand(0) == Op)
3377         return SimplifyBinOp(B->getOpcode(), RepOp, B->getOperand(1), Q,
3378                              MaxRecurse - 1);
3379       if (B->getOperand(1) == Op)
3380         return SimplifyBinOp(B->getOpcode(), B->getOperand(0), RepOp, Q,
3381                              MaxRecurse - 1);
3382     }
3383   }
3384 
3385   // Same for CmpInsts.
3386   if (CmpInst *C = dyn_cast<CmpInst>(I)) {
3387     if (MaxRecurse) {
3388       if (C->getOperand(0) == Op)
3389         return SimplifyCmpInst(C->getPredicate(), RepOp, C->getOperand(1), Q,
3390                                MaxRecurse - 1);
3391       if (C->getOperand(1) == Op)
3392         return SimplifyCmpInst(C->getPredicate(), C->getOperand(0), RepOp, Q,
3393                                MaxRecurse - 1);
3394     }
3395   }
3396 
3397   // TODO: We could hand off more cases to instsimplify here.
3398 
3399   // If all operands are constant after substituting Op for RepOp then we can
3400   // constant fold the instruction.
3401   if (Constant *CRepOp = dyn_cast<Constant>(RepOp)) {
3402     // Build a list of all constant operands.
3403     SmallVector<Constant *, 8> ConstOps;
3404     for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
3405       if (I->getOperand(i) == Op)
3406         ConstOps.push_back(CRepOp);
3407       else if (Constant *COp = dyn_cast<Constant>(I->getOperand(i)))
3408         ConstOps.push_back(COp);
3409       else
3410         break;
3411     }
3412 
3413     // All operands were constants, fold it.
3414     if (ConstOps.size() == I->getNumOperands()) {
3415       if (CmpInst *C = dyn_cast<CmpInst>(I))
3416         return ConstantFoldCompareInstOperands(C->getPredicate(), ConstOps[0],
3417                                                ConstOps[1], Q.DL, Q.TLI);
3418 
3419       if (LoadInst *LI = dyn_cast<LoadInst>(I))
3420         if (!LI->isVolatile())
3421           return ConstantFoldLoadFromConstPtr(ConstOps[0], LI->getType(), Q.DL);
3422 
3423       return ConstantFoldInstOperands(I, ConstOps, Q.DL, Q.TLI);
3424     }
3425   }
3426 
3427   return nullptr;
3428 }
3429 
3430 /// Try to simplify a select instruction when its condition operand is an
3431 /// integer comparison where one operand of the compare is a constant.
3432 static Value *simplifySelectBitTest(Value *TrueVal, Value *FalseVal, Value *X,
3433                                     const APInt *Y, bool TrueWhenUnset) {
3434   const APInt *C;
3435 
3436   // (X & Y) == 0 ? X & ~Y : X  --> X
3437   // (X & Y) != 0 ? X & ~Y : X  --> X & ~Y
3438   if (FalseVal == X && match(TrueVal, m_And(m_Specific(X), m_APInt(C))) &&
3439       *Y == ~*C)
3440     return TrueWhenUnset ? FalseVal : TrueVal;
3441 
3442   // (X & Y) == 0 ? X : X & ~Y  --> X & ~Y
3443   // (X & Y) != 0 ? X : X & ~Y  --> X
3444   if (TrueVal == X && match(FalseVal, m_And(m_Specific(X), m_APInt(C))) &&
3445       *Y == ~*C)
3446     return TrueWhenUnset ? FalseVal : TrueVal;
3447 
3448   if (Y->isPowerOf2()) {
3449     // (X & Y) == 0 ? X | Y : X  --> X | Y
3450     // (X & Y) != 0 ? X | Y : X  --> X
3451     if (FalseVal == X && match(TrueVal, m_Or(m_Specific(X), m_APInt(C))) &&
3452         *Y == *C)
3453       return TrueWhenUnset ? TrueVal : FalseVal;
3454 
3455     // (X & Y) == 0 ? X : X | Y  --> X
3456     // (X & Y) != 0 ? X : X | Y  --> X | Y
3457     if (TrueVal == X && match(FalseVal, m_Or(m_Specific(X), m_APInt(C))) &&
3458         *Y == *C)
3459       return TrueWhenUnset ? TrueVal : FalseVal;
3460   }
3461 
3462   return nullptr;
3463 }
3464 
3465 /// An alternative way to test if a bit is set or not uses sgt/slt instead of
3466 /// eq/ne.
3467 static Value *simplifySelectWithFakeICmpEq(Value *CmpLHS, Value *CmpRHS,
3468                                            ICmpInst::Predicate Pred,
3469                                            Value *TrueVal, Value *FalseVal) {
3470   Value *X;
3471   APInt Mask;
3472   if (!decomposeBitTestICmp(CmpLHS, CmpRHS, Pred, X, Mask))
3473     return nullptr;
3474 
3475   return simplifySelectBitTest(TrueVal, FalseVal, X, &Mask,
3476                                Pred == ICmpInst::ICMP_EQ);
3477 }
3478 
3479 /// Try to simplify a select instruction when its condition operand is an
3480 /// integer comparison.
3481 static Value *simplifySelectWithICmpCond(Value *CondVal, Value *TrueVal,
3482                                          Value *FalseVal, const SimplifyQuery &Q,
3483                                          unsigned MaxRecurse) {
3484   ICmpInst::Predicate Pred;
3485   Value *CmpLHS, *CmpRHS;
3486   if (!match(CondVal, m_ICmp(Pred, m_Value(CmpLHS), m_Value(CmpRHS))))
3487     return nullptr;
3488 
3489   if (ICmpInst::isEquality(Pred) && match(CmpRHS, m_Zero())) {
3490     Value *X;
3491     const APInt *Y;
3492     if (match(CmpLHS, m_And(m_Value(X), m_APInt(Y))))
3493       if (Value *V = simplifySelectBitTest(TrueVal, FalseVal, X, Y,
3494                                            Pred == ICmpInst::ICMP_EQ))
3495         return V;
3496   }
3497 
3498   // Check for other compares that behave like bit test.
3499   if (Value *V = simplifySelectWithFakeICmpEq(CmpLHS, CmpRHS, Pred,
3500                                               TrueVal, FalseVal))
3501     return V;
3502 
3503   if (CondVal->hasOneUse()) {
3504     const APInt *C;
3505     if (match(CmpRHS, m_APInt(C))) {
3506       // X < MIN ? T : F  -->  F
3507       if (Pred == ICmpInst::ICMP_SLT && C->isMinSignedValue())
3508         return FalseVal;
3509       // X < MIN ? T : F  -->  F
3510       if (Pred == ICmpInst::ICMP_ULT && C->isMinValue())
3511         return FalseVal;
3512       // X > MAX ? T : F  -->  F
3513       if (Pred == ICmpInst::ICMP_SGT && C->isMaxSignedValue())
3514         return FalseVal;
3515       // X > MAX ? T : F  -->  F
3516       if (Pred == ICmpInst::ICMP_UGT && C->isMaxValue())
3517         return FalseVal;
3518     }
3519   }
3520 
3521   // If we have an equality comparison, then we know the value in one of the
3522   // arms of the select. See if substituting this value into the arm and
3523   // simplifying the result yields the same value as the other arm.
3524   if (Pred == ICmpInst::ICMP_EQ) {
3525     if (SimplifyWithOpReplaced(FalseVal, CmpLHS, CmpRHS, Q, MaxRecurse) ==
3526             TrueVal ||
3527         SimplifyWithOpReplaced(FalseVal, CmpRHS, CmpLHS, Q, MaxRecurse) ==
3528             TrueVal)
3529       return FalseVal;
3530     if (SimplifyWithOpReplaced(TrueVal, CmpLHS, CmpRHS, Q, MaxRecurse) ==
3531             FalseVal ||
3532         SimplifyWithOpReplaced(TrueVal, CmpRHS, CmpLHS, Q, MaxRecurse) ==
3533             FalseVal)
3534       return FalseVal;
3535   } else if (Pred == ICmpInst::ICMP_NE) {
3536     if (SimplifyWithOpReplaced(TrueVal, CmpLHS, CmpRHS, Q, MaxRecurse) ==
3537             FalseVal ||
3538         SimplifyWithOpReplaced(TrueVal, CmpRHS, CmpLHS, Q, MaxRecurse) ==
3539             FalseVal)
3540       return TrueVal;
3541     if (SimplifyWithOpReplaced(FalseVal, CmpLHS, CmpRHS, Q, MaxRecurse) ==
3542             TrueVal ||
3543         SimplifyWithOpReplaced(FalseVal, CmpRHS, CmpLHS, Q, MaxRecurse) ==
3544             TrueVal)
3545       return TrueVal;
3546   }
3547 
3548   return nullptr;
3549 }
3550 
3551 /// Given operands for a SelectInst, see if we can fold the result.
3552 /// If not, this returns null.
3553 static Value *SimplifySelectInst(Value *CondVal, Value *TrueVal,
3554                                  Value *FalseVal, const SimplifyQuery &Q,
3555                                  unsigned MaxRecurse) {
3556   // select true, X, Y  -> X
3557   // select false, X, Y -> Y
3558   if (Constant *CB = dyn_cast<Constant>(CondVal)) {
3559     if (CB->isAllOnesValue())
3560       return TrueVal;
3561     if (CB->isNullValue())
3562       return FalseVal;
3563   }
3564 
3565   // select C, X, X -> X
3566   if (TrueVal == FalseVal)
3567     return TrueVal;
3568 
3569   if (isa<UndefValue>(CondVal)) {  // select undef, X, Y -> X or Y
3570     if (isa<Constant>(FalseVal))
3571       return FalseVal;
3572     return TrueVal;
3573   }
3574   if (isa<UndefValue>(TrueVal))   // select C, undef, X -> X
3575     return FalseVal;
3576   if (isa<UndefValue>(FalseVal))   // select C, X, undef -> X
3577     return TrueVal;
3578 
3579   if (Value *V =
3580           simplifySelectWithICmpCond(CondVal, TrueVal, FalseVal, Q, MaxRecurse))
3581     return V;
3582 
3583   return nullptr;
3584 }
3585 
3586 Value *llvm::SimplifySelectInst(Value *Cond, Value *TrueVal, Value *FalseVal,
3587                                 const SimplifyQuery &Q) {
3588   return ::SimplifySelectInst(Cond, TrueVal, FalseVal, Q, RecursionLimit);
3589 }
3590 
3591 /// Given operands for an GetElementPtrInst, see if we can fold the result.
3592 /// If not, this returns null.
3593 static Value *SimplifyGEPInst(Type *SrcTy, ArrayRef<Value *> Ops,
3594                               const SimplifyQuery &Q, unsigned) {
3595   // The type of the GEP pointer operand.
3596   unsigned AS =
3597       cast<PointerType>(Ops[0]->getType()->getScalarType())->getAddressSpace();
3598 
3599   // getelementptr P -> P.
3600   if (Ops.size() == 1)
3601     return Ops[0];
3602 
3603   // Compute the (pointer) type returned by the GEP instruction.
3604   Type *LastType = GetElementPtrInst::getIndexedType(SrcTy, Ops.slice(1));
3605   Type *GEPTy = PointerType::get(LastType, AS);
3606   if (VectorType *VT = dyn_cast<VectorType>(Ops[0]->getType()))
3607     GEPTy = VectorType::get(GEPTy, VT->getNumElements());
3608   else if (VectorType *VT = dyn_cast<VectorType>(Ops[1]->getType()))
3609     GEPTy = VectorType::get(GEPTy, VT->getNumElements());
3610 
3611   if (isa<UndefValue>(Ops[0]))
3612     return UndefValue::get(GEPTy);
3613 
3614   if (Ops.size() == 2) {
3615     // getelementptr P, 0 -> P.
3616     if (match(Ops[1], m_Zero()))
3617       return Ops[0];
3618 
3619     Type *Ty = SrcTy;
3620     if (Ty->isSized()) {
3621       Value *P;
3622       uint64_t C;
3623       uint64_t TyAllocSize = Q.DL.getTypeAllocSize(Ty);
3624       // getelementptr P, N -> P if P points to a type of zero size.
3625       if (TyAllocSize == 0)
3626         return Ops[0];
3627 
3628       // The following transforms are only safe if the ptrtoint cast
3629       // doesn't truncate the pointers.
3630       if (Ops[1]->getType()->getScalarSizeInBits() ==
3631           Q.DL.getPointerSizeInBits(AS)) {
3632         auto PtrToIntOrZero = [GEPTy](Value *P) -> Value * {
3633           if (match(P, m_Zero()))
3634             return Constant::getNullValue(GEPTy);
3635           Value *Temp;
3636           if (match(P, m_PtrToInt(m_Value(Temp))))
3637             if (Temp->getType() == GEPTy)
3638               return Temp;
3639           return nullptr;
3640         };
3641 
3642         // getelementptr V, (sub P, V) -> P if P points to a type of size 1.
3643         if (TyAllocSize == 1 &&
3644             match(Ops[1], m_Sub(m_Value(P), m_PtrToInt(m_Specific(Ops[0])))))
3645           if (Value *R = PtrToIntOrZero(P))
3646             return R;
3647 
3648         // getelementptr V, (ashr (sub P, V), C) -> Q
3649         // if P points to a type of size 1 << C.
3650         if (match(Ops[1],
3651                   m_AShr(m_Sub(m_Value(P), m_PtrToInt(m_Specific(Ops[0]))),
3652                          m_ConstantInt(C))) &&
3653             TyAllocSize == 1ULL << C)
3654           if (Value *R = PtrToIntOrZero(P))
3655             return R;
3656 
3657         // getelementptr V, (sdiv (sub P, V), C) -> Q
3658         // if P points to a type of size C.
3659         if (match(Ops[1],
3660                   m_SDiv(m_Sub(m_Value(P), m_PtrToInt(m_Specific(Ops[0]))),
3661                          m_SpecificInt(TyAllocSize))))
3662           if (Value *R = PtrToIntOrZero(P))
3663             return R;
3664       }
3665     }
3666   }
3667 
3668   if (Q.DL.getTypeAllocSize(LastType) == 1 &&
3669       all_of(Ops.slice(1).drop_back(1),
3670              [](Value *Idx) { return match(Idx, m_Zero()); })) {
3671     unsigned PtrWidth =
3672         Q.DL.getPointerSizeInBits(Ops[0]->getType()->getPointerAddressSpace());
3673     if (Q.DL.getTypeSizeInBits(Ops.back()->getType()) == PtrWidth) {
3674       APInt BasePtrOffset(PtrWidth, 0);
3675       Value *StrippedBasePtr =
3676           Ops[0]->stripAndAccumulateInBoundsConstantOffsets(Q.DL,
3677                                                             BasePtrOffset);
3678 
3679       // gep (gep V, C), (sub 0, V) -> C
3680       if (match(Ops.back(),
3681                 m_Sub(m_Zero(), m_PtrToInt(m_Specific(StrippedBasePtr))))) {
3682         auto *CI = ConstantInt::get(GEPTy->getContext(), BasePtrOffset);
3683         return ConstantExpr::getIntToPtr(CI, GEPTy);
3684       }
3685       // gep (gep V, C), (xor V, -1) -> C-1
3686       if (match(Ops.back(),
3687                 m_Xor(m_PtrToInt(m_Specific(StrippedBasePtr)), m_AllOnes()))) {
3688         auto *CI = ConstantInt::get(GEPTy->getContext(), BasePtrOffset - 1);
3689         return ConstantExpr::getIntToPtr(CI, GEPTy);
3690       }
3691     }
3692   }
3693 
3694   // Check to see if this is constant foldable.
3695   if (!all_of(Ops, [](Value *V) { return isa<Constant>(V); }))
3696     return nullptr;
3697 
3698   auto *CE = ConstantExpr::getGetElementPtr(SrcTy, cast<Constant>(Ops[0]),
3699                                             Ops.slice(1));
3700   if (auto *CEFolded = ConstantFoldConstant(CE, Q.DL))
3701     return CEFolded;
3702   return CE;
3703 }
3704 
3705 Value *llvm::SimplifyGEPInst(Type *SrcTy, ArrayRef<Value *> Ops,
3706                              const SimplifyQuery &Q) {
3707   return ::SimplifyGEPInst(SrcTy, Ops, Q, RecursionLimit);
3708 }
3709 
3710 /// Given operands for an InsertValueInst, see if we can fold the result.
3711 /// If not, this returns null.
3712 static Value *SimplifyInsertValueInst(Value *Agg, Value *Val,
3713                                       ArrayRef<unsigned> Idxs, const SimplifyQuery &Q,
3714                                       unsigned) {
3715   if (Constant *CAgg = dyn_cast<Constant>(Agg))
3716     if (Constant *CVal = dyn_cast<Constant>(Val))
3717       return ConstantFoldInsertValueInstruction(CAgg, CVal, Idxs);
3718 
3719   // insertvalue x, undef, n -> x
3720   if (match(Val, m_Undef()))
3721     return Agg;
3722 
3723   // insertvalue x, (extractvalue y, n), n
3724   if (ExtractValueInst *EV = dyn_cast<ExtractValueInst>(Val))
3725     if (EV->getAggregateOperand()->getType() == Agg->getType() &&
3726         EV->getIndices() == Idxs) {
3727       // insertvalue undef, (extractvalue y, n), n -> y
3728       if (match(Agg, m_Undef()))
3729         return EV->getAggregateOperand();
3730 
3731       // insertvalue y, (extractvalue y, n), n -> y
3732       if (Agg == EV->getAggregateOperand())
3733         return Agg;
3734     }
3735 
3736   return nullptr;
3737 }
3738 
3739 Value *llvm::SimplifyInsertValueInst(Value *Agg, Value *Val,
3740                                      ArrayRef<unsigned> Idxs,
3741                                      const SimplifyQuery &Q) {
3742   return ::SimplifyInsertValueInst(Agg, Val, Idxs, Q, RecursionLimit);
3743 }
3744 
3745 /// Given operands for an ExtractValueInst, see if we can fold the result.
3746 /// If not, this returns null.
3747 static Value *SimplifyExtractValueInst(Value *Agg, ArrayRef<unsigned> Idxs,
3748                                        const SimplifyQuery &, unsigned) {
3749   if (auto *CAgg = dyn_cast<Constant>(Agg))
3750     return ConstantFoldExtractValueInstruction(CAgg, Idxs);
3751 
3752   // extractvalue x, (insertvalue y, elt, n), n -> elt
3753   unsigned NumIdxs = Idxs.size();
3754   for (auto *IVI = dyn_cast<InsertValueInst>(Agg); IVI != nullptr;
3755        IVI = dyn_cast<InsertValueInst>(IVI->getAggregateOperand())) {
3756     ArrayRef<unsigned> InsertValueIdxs = IVI->getIndices();
3757     unsigned NumInsertValueIdxs = InsertValueIdxs.size();
3758     unsigned NumCommonIdxs = std::min(NumInsertValueIdxs, NumIdxs);
3759     if (InsertValueIdxs.slice(0, NumCommonIdxs) ==
3760         Idxs.slice(0, NumCommonIdxs)) {
3761       if (NumIdxs == NumInsertValueIdxs)
3762         return IVI->getInsertedValueOperand();
3763       break;
3764     }
3765   }
3766 
3767   return nullptr;
3768 }
3769 
3770 Value *llvm::SimplifyExtractValueInst(Value *Agg, ArrayRef<unsigned> Idxs,
3771                                       const SimplifyQuery &Q) {
3772   return ::SimplifyExtractValueInst(Agg, Idxs, Q, RecursionLimit);
3773 }
3774 
3775 /// Given operands for an ExtractElementInst, see if we can fold the result.
3776 /// If not, this returns null.
3777 static Value *SimplifyExtractElementInst(Value *Vec, Value *Idx, const SimplifyQuery &,
3778                                          unsigned) {
3779   if (auto *CVec = dyn_cast<Constant>(Vec)) {
3780     if (auto *CIdx = dyn_cast<Constant>(Idx))
3781       return ConstantFoldExtractElementInstruction(CVec, CIdx);
3782 
3783     // The index is not relevant if our vector is a splat.
3784     if (auto *Splat = CVec->getSplatValue())
3785       return Splat;
3786 
3787     if (isa<UndefValue>(Vec))
3788       return UndefValue::get(Vec->getType()->getVectorElementType());
3789   }
3790 
3791   // If extracting a specified index from the vector, see if we can recursively
3792   // find a previously computed scalar that was inserted into the vector.
3793   if (auto *IdxC = dyn_cast<ConstantInt>(Idx))
3794     if (Value *Elt = findScalarElement(Vec, IdxC->getZExtValue()))
3795       return Elt;
3796 
3797   return nullptr;
3798 }
3799 
3800 Value *llvm::SimplifyExtractElementInst(Value *Vec, Value *Idx,
3801                                         const SimplifyQuery &Q) {
3802   return ::SimplifyExtractElementInst(Vec, Idx, Q, RecursionLimit);
3803 }
3804 
3805 /// See if we can fold the given phi. If not, returns null.
3806 static Value *SimplifyPHINode(PHINode *PN, const SimplifyQuery &Q) {
3807   // If all of the PHI's incoming values are the same then replace the PHI node
3808   // with the common value.
3809   Value *CommonValue = nullptr;
3810   bool HasUndefInput = false;
3811   for (Value *Incoming : PN->incoming_values()) {
3812     // If the incoming value is the phi node itself, it can safely be skipped.
3813     if (Incoming == PN) continue;
3814     if (isa<UndefValue>(Incoming)) {
3815       // Remember that we saw an undef value, but otherwise ignore them.
3816       HasUndefInput = true;
3817       continue;
3818     }
3819     if (CommonValue && Incoming != CommonValue)
3820       return nullptr;  // Not the same, bail out.
3821     CommonValue = Incoming;
3822   }
3823 
3824   // If CommonValue is null then all of the incoming values were either undef or
3825   // equal to the phi node itself.
3826   if (!CommonValue)
3827     return UndefValue::get(PN->getType());
3828 
3829   // If we have a PHI node like phi(X, undef, X), where X is defined by some
3830   // instruction, we cannot return X as the result of the PHI node unless it
3831   // dominates the PHI block.
3832   if (HasUndefInput)
3833     return ValueDominatesPHI(CommonValue, PN, Q.DT) ? CommonValue : nullptr;
3834 
3835   return CommonValue;
3836 }
3837 
3838 static Value *SimplifyCastInst(unsigned CastOpc, Value *Op,
3839                                Type *Ty, const SimplifyQuery &Q, unsigned MaxRecurse) {
3840   if (auto *C = dyn_cast<Constant>(Op))
3841     return ConstantFoldCastOperand(CastOpc, C, Ty, Q.DL);
3842 
3843   if (auto *CI = dyn_cast<CastInst>(Op)) {
3844     auto *Src = CI->getOperand(0);
3845     Type *SrcTy = Src->getType();
3846     Type *MidTy = CI->getType();
3847     Type *DstTy = Ty;
3848     if (Src->getType() == Ty) {
3849       auto FirstOp = static_cast<Instruction::CastOps>(CI->getOpcode());
3850       auto SecondOp = static_cast<Instruction::CastOps>(CastOpc);
3851       Type *SrcIntPtrTy =
3852           SrcTy->isPtrOrPtrVectorTy() ? Q.DL.getIntPtrType(SrcTy) : nullptr;
3853       Type *MidIntPtrTy =
3854           MidTy->isPtrOrPtrVectorTy() ? Q.DL.getIntPtrType(MidTy) : nullptr;
3855       Type *DstIntPtrTy =
3856           DstTy->isPtrOrPtrVectorTy() ? Q.DL.getIntPtrType(DstTy) : nullptr;
3857       if (CastInst::isEliminableCastPair(FirstOp, SecondOp, SrcTy, MidTy, DstTy,
3858                                          SrcIntPtrTy, MidIntPtrTy,
3859                                          DstIntPtrTy) == Instruction::BitCast)
3860         return Src;
3861     }
3862   }
3863 
3864   // bitcast x -> x
3865   if (CastOpc == Instruction::BitCast)
3866     if (Op->getType() == Ty)
3867       return Op;
3868 
3869   return nullptr;
3870 }
3871 
3872 Value *llvm::SimplifyCastInst(unsigned CastOpc, Value *Op, Type *Ty,
3873                               const SimplifyQuery &Q) {
3874   return ::SimplifyCastInst(CastOpc, Op, Ty, Q, RecursionLimit);
3875 }
3876 
3877 /// For the given destination element of a shuffle, peek through shuffles to
3878 /// match a root vector source operand that contains that element in the same
3879 /// vector lane (ie, the same mask index), so we can eliminate the shuffle(s).
3880 static Value *foldIdentityShuffles(int DestElt, Value *Op0, Value *Op1,
3881                                    int MaskVal, Value *RootVec,
3882                                    unsigned MaxRecurse) {
3883   if (!MaxRecurse--)
3884     return nullptr;
3885 
3886   // Bail out if any mask value is undefined. That kind of shuffle may be
3887   // simplified further based on demanded bits or other folds.
3888   if (MaskVal == -1)
3889     return nullptr;
3890 
3891   // The mask value chooses which source operand we need to look at next.
3892   int InVecNumElts = Op0->getType()->getVectorNumElements();
3893   int RootElt = MaskVal;
3894   Value *SourceOp = Op0;
3895   if (MaskVal >= InVecNumElts) {
3896     RootElt = MaskVal - InVecNumElts;
3897     SourceOp = Op1;
3898   }
3899 
3900   // If the source operand is a shuffle itself, look through it to find the
3901   // matching root vector.
3902   if (auto *SourceShuf = dyn_cast<ShuffleVectorInst>(SourceOp)) {
3903     return foldIdentityShuffles(
3904         DestElt, SourceShuf->getOperand(0), SourceShuf->getOperand(1),
3905         SourceShuf->getMaskValue(RootElt), RootVec, MaxRecurse);
3906   }
3907 
3908   // TODO: Look through bitcasts? What if the bitcast changes the vector element
3909   // size?
3910 
3911   // The source operand is not a shuffle. Initialize the root vector value for
3912   // this shuffle if that has not been done yet.
3913   if (!RootVec)
3914     RootVec = SourceOp;
3915 
3916   // Give up as soon as a source operand does not match the existing root value.
3917   if (RootVec != SourceOp)
3918     return nullptr;
3919 
3920   // The element must be coming from the same lane in the source vector
3921   // (although it may have crossed lanes in intermediate shuffles).
3922   if (RootElt != DestElt)
3923     return nullptr;
3924 
3925   return RootVec;
3926 }
3927 
3928 static Value *SimplifyShuffleVectorInst(Value *Op0, Value *Op1, Constant *Mask,
3929                                         Type *RetTy, const SimplifyQuery &Q,
3930                                         unsigned MaxRecurse) {
3931   if (isa<UndefValue>(Mask))
3932     return UndefValue::get(RetTy);
3933 
3934   Type *InVecTy = Op0->getType();
3935   unsigned MaskNumElts = Mask->getType()->getVectorNumElements();
3936   unsigned InVecNumElts = InVecTy->getVectorNumElements();
3937 
3938   SmallVector<int, 32> Indices;
3939   ShuffleVectorInst::getShuffleMask(Mask, Indices);
3940   assert(MaskNumElts == Indices.size() &&
3941          "Size of Indices not same as number of mask elements?");
3942 
3943   // Canonicalization: If mask does not select elements from an input vector,
3944   // replace that input vector with undef.
3945   bool MaskSelects0 = false, MaskSelects1 = false;
3946   for (unsigned i = 0; i != MaskNumElts; ++i) {
3947     if (Indices[i] == -1)
3948       continue;
3949     if ((unsigned)Indices[i] < InVecNumElts)
3950       MaskSelects0 = true;
3951     else
3952       MaskSelects1 = true;
3953   }
3954   if (!MaskSelects0)
3955     Op0 = UndefValue::get(InVecTy);
3956   if (!MaskSelects1)
3957     Op1 = UndefValue::get(InVecTy);
3958 
3959   auto *Op0Const = dyn_cast<Constant>(Op0);
3960   auto *Op1Const = dyn_cast<Constant>(Op1);
3961 
3962   // If all operands are constant, constant fold the shuffle.
3963   if (Op0Const && Op1Const)
3964     return ConstantFoldShuffleVectorInstruction(Op0Const, Op1Const, Mask);
3965 
3966   // Canonicalization: if only one input vector is constant, it shall be the
3967   // second one.
3968   if (Op0Const && !Op1Const) {
3969     std::swap(Op0, Op1);
3970     ShuffleVectorInst::commuteShuffleMask(Indices, InVecNumElts);
3971   }
3972 
3973   // A shuffle of a splat is always the splat itself. Legal if the shuffle's
3974   // value type is same as the input vectors' type.
3975   if (auto *OpShuf = dyn_cast<ShuffleVectorInst>(Op0))
3976     if (isa<UndefValue>(Op1) && RetTy == InVecTy &&
3977         OpShuf->getMask()->getSplatValue())
3978       return Op0;
3979 
3980   // Don't fold a shuffle with undef mask elements. This may get folded in a
3981   // better way using demanded bits or other analysis.
3982   // TODO: Should we allow this?
3983   if (find(Indices, -1) != Indices.end())
3984     return nullptr;
3985 
3986   // Check if every element of this shuffle can be mapped back to the
3987   // corresponding element of a single root vector. If so, we don't need this
3988   // shuffle. This handles simple identity shuffles as well as chains of
3989   // shuffles that may widen/narrow and/or move elements across lanes and back.
3990   Value *RootVec = nullptr;
3991   for (unsigned i = 0; i != MaskNumElts; ++i) {
3992     // Note that recursion is limited for each vector element, so if any element
3993     // exceeds the limit, this will fail to simplify.
3994     RootVec =
3995         foldIdentityShuffles(i, Op0, Op1, Indices[i], RootVec, MaxRecurse);
3996 
3997     // We can't replace a widening/narrowing shuffle with one of its operands.
3998     if (!RootVec || RootVec->getType() != RetTy)
3999       return nullptr;
4000   }
4001   return RootVec;
4002 }
4003 
4004 /// Given operands for a ShuffleVectorInst, fold the result or return null.
4005 Value *llvm::SimplifyShuffleVectorInst(Value *Op0, Value *Op1, Constant *Mask,
4006                                        Type *RetTy, const SimplifyQuery &Q) {
4007   return ::SimplifyShuffleVectorInst(Op0, Op1, Mask, RetTy, Q, RecursionLimit);
4008 }
4009 
4010 /// Given operands for an FAdd, see if we can fold the result.  If not, this
4011 /// returns null.
4012 static Value *SimplifyFAddInst(Value *Op0, Value *Op1, FastMathFlags FMF,
4013                                const SimplifyQuery &Q, unsigned MaxRecurse) {
4014   if (Constant *C = foldOrCommuteConstant(Instruction::FAdd, Op0, Op1, Q))
4015     return C;
4016 
4017   // fadd X, -0 ==> X
4018   if (match(Op1, m_NegZero()))
4019     return Op0;
4020 
4021   // fadd X, 0 ==> X, when we know X is not -0
4022   if (match(Op1, m_Zero()) &&
4023       (FMF.noSignedZeros() || CannotBeNegativeZero(Op0, Q.TLI)))
4024     return Op0;
4025 
4026   // fadd [nnan ninf] X, (fsub [nnan ninf] 0, X) ==> 0
4027   //   where nnan and ninf have to occur at least once somewhere in this
4028   //   expression
4029   Value *SubOp = nullptr;
4030   if (match(Op1, m_FSub(m_AnyZero(), m_Specific(Op0))))
4031     SubOp = Op1;
4032   else if (match(Op0, m_FSub(m_AnyZero(), m_Specific(Op1))))
4033     SubOp = Op0;
4034   if (SubOp) {
4035     Instruction *FSub = cast<Instruction>(SubOp);
4036     if ((FMF.noNaNs() || FSub->hasNoNaNs()) &&
4037         (FMF.noInfs() || FSub->hasNoInfs()))
4038       return Constant::getNullValue(Op0->getType());
4039   }
4040 
4041   return nullptr;
4042 }
4043 
4044 /// Given operands for an FSub, see if we can fold the result.  If not, this
4045 /// returns null.
4046 static Value *SimplifyFSubInst(Value *Op0, Value *Op1, FastMathFlags FMF,
4047                                const SimplifyQuery &Q, unsigned MaxRecurse) {
4048   if (Constant *C = foldOrCommuteConstant(Instruction::FSub, Op0, Op1, Q))
4049     return C;
4050 
4051   // fsub X, 0 ==> X
4052   if (match(Op1, m_Zero()))
4053     return Op0;
4054 
4055   // fsub X, -0 ==> X, when we know X is not -0
4056   if (match(Op1, m_NegZero()) &&
4057       (FMF.noSignedZeros() || CannotBeNegativeZero(Op0, Q.TLI)))
4058     return Op0;
4059 
4060   // fsub -0.0, (fsub -0.0, X) ==> X
4061   Value *X;
4062   if (match(Op0, m_NegZero()) && match(Op1, m_FSub(m_NegZero(), m_Value(X))))
4063     return X;
4064 
4065   // fsub 0.0, (fsub 0.0, X) ==> X if signed zeros are ignored.
4066   if (FMF.noSignedZeros() && match(Op0, m_AnyZero()) &&
4067       match(Op1, m_FSub(m_AnyZero(), m_Value(X))))
4068     return X;
4069 
4070   // fsub nnan x, x ==> 0.0
4071   if (FMF.noNaNs() && Op0 == Op1)
4072     return Constant::getNullValue(Op0->getType());
4073 
4074   return nullptr;
4075 }
4076 
4077 /// Given the operands for an FMul, see if we can fold the result
4078 static Value *SimplifyFMulInst(Value *Op0, Value *Op1, FastMathFlags FMF,
4079                                const SimplifyQuery &Q, unsigned MaxRecurse) {
4080   if (Constant *C = foldOrCommuteConstant(Instruction::FMul, Op0, Op1, Q))
4081     return C;
4082 
4083   // fmul X, 1.0 ==> X
4084   if (match(Op1, m_FPOne()))
4085     return Op0;
4086 
4087   // fmul nnan nsz X, 0 ==> 0
4088   if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op1, m_AnyZero()))
4089     return Op1;
4090 
4091   return nullptr;
4092 }
4093 
4094 Value *llvm::SimplifyFAddInst(Value *Op0, Value *Op1, FastMathFlags FMF,
4095                               const SimplifyQuery &Q) {
4096   return ::SimplifyFAddInst(Op0, Op1, FMF, Q, RecursionLimit);
4097 }
4098 
4099 
4100 Value *llvm::SimplifyFSubInst(Value *Op0, Value *Op1, FastMathFlags FMF,
4101                               const SimplifyQuery &Q) {
4102   return ::SimplifyFSubInst(Op0, Op1, FMF, Q, RecursionLimit);
4103 }
4104 
4105 Value *llvm::SimplifyFMulInst(Value *Op0, Value *Op1, FastMathFlags FMF,
4106                               const SimplifyQuery &Q) {
4107   return ::SimplifyFMulInst(Op0, Op1, FMF, Q, RecursionLimit);
4108 }
4109 
4110 static Value *SimplifyFDivInst(Value *Op0, Value *Op1, FastMathFlags FMF,
4111                                const SimplifyQuery &Q, unsigned) {
4112   if (Constant *C = foldOrCommuteConstant(Instruction::FDiv, Op0, Op1, Q))
4113     return C;
4114 
4115   // undef / X -> undef    (the undef could be a snan).
4116   if (match(Op0, m_Undef()))
4117     return Op0;
4118 
4119   // X / undef -> undef
4120   if (match(Op1, m_Undef()))
4121     return Op1;
4122 
4123   // X / 1.0 -> X
4124   if (match(Op1, m_FPOne()))
4125     return Op0;
4126 
4127   // 0 / X -> 0
4128   // Requires that NaNs are off (X could be zero) and signed zeroes are
4129   // ignored (X could be positive or negative, so the output sign is unknown).
4130   if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op0, m_AnyZero()))
4131     return Op0;
4132 
4133   if (FMF.noNaNs()) {
4134     // X / X -> 1.0 is legal when NaNs are ignored.
4135     if (Op0 == Op1)
4136       return ConstantFP::get(Op0->getType(), 1.0);
4137 
4138     // -X /  X -> -1.0 and
4139     //  X / -X -> -1.0 are legal when NaNs are ignored.
4140     // We can ignore signed zeros because +-0.0/+-0.0 is NaN and ignored.
4141     if ((BinaryOperator::isFNeg(Op0, /*IgnoreZeroSign=*/true) &&
4142          BinaryOperator::getFNegArgument(Op0) == Op1) ||
4143         (BinaryOperator::isFNeg(Op1, /*IgnoreZeroSign=*/true) &&
4144          BinaryOperator::getFNegArgument(Op1) == Op0))
4145       return ConstantFP::get(Op0->getType(), -1.0);
4146   }
4147 
4148   return nullptr;
4149 }
4150 
4151 Value *llvm::SimplifyFDivInst(Value *Op0, Value *Op1, FastMathFlags FMF,
4152                               const SimplifyQuery &Q) {
4153   return ::SimplifyFDivInst(Op0, Op1, FMF, Q, RecursionLimit);
4154 }
4155 
4156 static Value *SimplifyFRemInst(Value *Op0, Value *Op1, FastMathFlags FMF,
4157                                const SimplifyQuery &Q, unsigned) {
4158   if (Constant *C = foldOrCommuteConstant(Instruction::FRem, Op0, Op1, Q))
4159     return C;
4160 
4161   // undef % X -> undef    (the undef could be a snan).
4162   if (match(Op0, m_Undef()))
4163     return Op0;
4164 
4165   // X % undef -> undef
4166   if (match(Op1, m_Undef()))
4167     return Op1;
4168 
4169   // 0 % X -> 0
4170   // Requires that NaNs are off (X could be zero) and signed zeroes are
4171   // ignored (X could be positive or negative, so the output sign is unknown).
4172   if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op0, m_AnyZero()))
4173     return Op0;
4174 
4175   return nullptr;
4176 }
4177 
4178 Value *llvm::SimplifyFRemInst(Value *Op0, Value *Op1, FastMathFlags FMF,
4179                               const SimplifyQuery &Q) {
4180   return ::SimplifyFRemInst(Op0, Op1, FMF, Q, RecursionLimit);
4181 }
4182 
4183 //=== Helper functions for higher up the class hierarchy.
4184 
4185 /// Given operands for a BinaryOperator, see if we can fold the result.
4186 /// If not, this returns null.
4187 static Value *SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS,
4188                             const SimplifyQuery &Q, unsigned MaxRecurse) {
4189   switch (Opcode) {
4190   case Instruction::Add:
4191     return SimplifyAddInst(LHS, RHS, false, false, Q, MaxRecurse);
4192   case Instruction::Sub:
4193     return SimplifySubInst(LHS, RHS, false, false, Q, MaxRecurse);
4194   case Instruction::Mul:
4195     return SimplifyMulInst(LHS, RHS, Q, MaxRecurse);
4196   case Instruction::SDiv:
4197     return SimplifySDivInst(LHS, RHS, Q, MaxRecurse);
4198   case Instruction::UDiv:
4199     return SimplifyUDivInst(LHS, RHS, Q, MaxRecurse);
4200   case Instruction::SRem:
4201     return SimplifySRemInst(LHS, RHS, Q, MaxRecurse);
4202   case Instruction::URem:
4203     return SimplifyURemInst(LHS, RHS, Q, MaxRecurse);
4204   case Instruction::Shl:
4205     return SimplifyShlInst(LHS, RHS, false, false, Q, MaxRecurse);
4206   case Instruction::LShr:
4207     return SimplifyLShrInst(LHS, RHS, false, Q, MaxRecurse);
4208   case Instruction::AShr:
4209     return SimplifyAShrInst(LHS, RHS, false, Q, MaxRecurse);
4210   case Instruction::And:
4211     return SimplifyAndInst(LHS, RHS, Q, MaxRecurse);
4212   case Instruction::Or:
4213     return SimplifyOrInst(LHS, RHS, Q, MaxRecurse);
4214   case Instruction::Xor:
4215     return SimplifyXorInst(LHS, RHS, Q, MaxRecurse);
4216   case Instruction::FAdd:
4217     return SimplifyFAddInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse);
4218   case Instruction::FSub:
4219     return SimplifyFSubInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse);
4220   case Instruction::FMul:
4221     return SimplifyFMulInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse);
4222   case Instruction::FDiv:
4223     return SimplifyFDivInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse);
4224   case Instruction::FRem:
4225     return SimplifyFRemInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse);
4226   default:
4227     llvm_unreachable("Unexpected opcode");
4228   }
4229 }
4230 
4231 /// Given operands for a BinaryOperator, see if we can fold the result.
4232 /// If not, this returns null.
4233 /// In contrast to SimplifyBinOp, try to use FastMathFlag when folding the
4234 /// result. In case we don't need FastMathFlags, simply fall to SimplifyBinOp.
4235 static Value *SimplifyFPBinOp(unsigned Opcode, Value *LHS, Value *RHS,
4236                               const FastMathFlags &FMF, const SimplifyQuery &Q,
4237                               unsigned MaxRecurse) {
4238   switch (Opcode) {
4239   case Instruction::FAdd:
4240     return SimplifyFAddInst(LHS, RHS, FMF, Q, MaxRecurse);
4241   case Instruction::FSub:
4242     return SimplifyFSubInst(LHS, RHS, FMF, Q, MaxRecurse);
4243   case Instruction::FMul:
4244     return SimplifyFMulInst(LHS, RHS, FMF, Q, MaxRecurse);
4245   case Instruction::FDiv:
4246     return SimplifyFDivInst(LHS, RHS, FMF, Q, MaxRecurse);
4247   default:
4248     return SimplifyBinOp(Opcode, LHS, RHS, Q, MaxRecurse);
4249   }
4250 }
4251 
4252 Value *llvm::SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS,
4253                            const SimplifyQuery &Q) {
4254   return ::SimplifyBinOp(Opcode, LHS, RHS, Q, RecursionLimit);
4255 }
4256 
4257 Value *llvm::SimplifyFPBinOp(unsigned Opcode, Value *LHS, Value *RHS,
4258                              FastMathFlags FMF, const SimplifyQuery &Q) {
4259   return ::SimplifyFPBinOp(Opcode, LHS, RHS, FMF, Q, RecursionLimit);
4260 }
4261 
4262 /// Given operands for a CmpInst, see if we can fold the result.
4263 static Value *SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
4264                               const SimplifyQuery &Q, unsigned MaxRecurse) {
4265   if (CmpInst::isIntPredicate((CmpInst::Predicate)Predicate))
4266     return SimplifyICmpInst(Predicate, LHS, RHS, Q, MaxRecurse);
4267   return SimplifyFCmpInst(Predicate, LHS, RHS, FastMathFlags(), Q, MaxRecurse);
4268 }
4269 
4270 Value *llvm::SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
4271                              const SimplifyQuery &Q) {
4272   return ::SimplifyCmpInst(Predicate, LHS, RHS, Q, RecursionLimit);
4273 }
4274 
4275 static bool IsIdempotent(Intrinsic::ID ID) {
4276   switch (ID) {
4277   default: return false;
4278 
4279   // Unary idempotent: f(f(x)) = f(x)
4280   case Intrinsic::fabs:
4281   case Intrinsic::floor:
4282   case Intrinsic::ceil:
4283   case Intrinsic::trunc:
4284   case Intrinsic::rint:
4285   case Intrinsic::nearbyint:
4286   case Intrinsic::round:
4287   case Intrinsic::canonicalize:
4288     return true;
4289   }
4290 }
4291 
4292 static Value *SimplifyRelativeLoad(Constant *Ptr, Constant *Offset,
4293                                    const DataLayout &DL) {
4294   GlobalValue *PtrSym;
4295   APInt PtrOffset;
4296   if (!IsConstantOffsetFromGlobal(Ptr, PtrSym, PtrOffset, DL))
4297     return nullptr;
4298 
4299   Type *Int8PtrTy = Type::getInt8PtrTy(Ptr->getContext());
4300   Type *Int32Ty = Type::getInt32Ty(Ptr->getContext());
4301   Type *Int32PtrTy = Int32Ty->getPointerTo();
4302   Type *Int64Ty = Type::getInt64Ty(Ptr->getContext());
4303 
4304   auto *OffsetConstInt = dyn_cast<ConstantInt>(Offset);
4305   if (!OffsetConstInt || OffsetConstInt->getType()->getBitWidth() > 64)
4306     return nullptr;
4307 
4308   uint64_t OffsetInt = OffsetConstInt->getSExtValue();
4309   if (OffsetInt % 4 != 0)
4310     return nullptr;
4311 
4312   Constant *C = ConstantExpr::getGetElementPtr(
4313       Int32Ty, ConstantExpr::getBitCast(Ptr, Int32PtrTy),
4314       ConstantInt::get(Int64Ty, OffsetInt / 4));
4315   Constant *Loaded = ConstantFoldLoadFromConstPtr(C, Int32Ty, DL);
4316   if (!Loaded)
4317     return nullptr;
4318 
4319   auto *LoadedCE = dyn_cast<ConstantExpr>(Loaded);
4320   if (!LoadedCE)
4321     return nullptr;
4322 
4323   if (LoadedCE->getOpcode() == Instruction::Trunc) {
4324     LoadedCE = dyn_cast<ConstantExpr>(LoadedCE->getOperand(0));
4325     if (!LoadedCE)
4326       return nullptr;
4327   }
4328 
4329   if (LoadedCE->getOpcode() != Instruction::Sub)
4330     return nullptr;
4331 
4332   auto *LoadedLHS = dyn_cast<ConstantExpr>(LoadedCE->getOperand(0));
4333   if (!LoadedLHS || LoadedLHS->getOpcode() != Instruction::PtrToInt)
4334     return nullptr;
4335   auto *LoadedLHSPtr = LoadedLHS->getOperand(0);
4336 
4337   Constant *LoadedRHS = LoadedCE->getOperand(1);
4338   GlobalValue *LoadedRHSSym;
4339   APInt LoadedRHSOffset;
4340   if (!IsConstantOffsetFromGlobal(LoadedRHS, LoadedRHSSym, LoadedRHSOffset,
4341                                   DL) ||
4342       PtrSym != LoadedRHSSym || PtrOffset != LoadedRHSOffset)
4343     return nullptr;
4344 
4345   return ConstantExpr::getBitCast(LoadedLHSPtr, Int8PtrTy);
4346 }
4347 
4348 static bool maskIsAllZeroOrUndef(Value *Mask) {
4349   auto *ConstMask = dyn_cast<Constant>(Mask);
4350   if (!ConstMask)
4351     return false;
4352   if (ConstMask->isNullValue() || isa<UndefValue>(ConstMask))
4353     return true;
4354   for (unsigned I = 0, E = ConstMask->getType()->getVectorNumElements(); I != E;
4355        ++I) {
4356     if (auto *MaskElt = ConstMask->getAggregateElement(I))
4357       if (MaskElt->isNullValue() || isa<UndefValue>(MaskElt))
4358         continue;
4359     return false;
4360   }
4361   return true;
4362 }
4363 
4364 template <typename IterTy>
4365 static Value *SimplifyIntrinsic(Function *F, IterTy ArgBegin, IterTy ArgEnd,
4366                                 const SimplifyQuery &Q, unsigned MaxRecurse) {
4367   Intrinsic::ID IID = F->getIntrinsicID();
4368   unsigned NumOperands = std::distance(ArgBegin, ArgEnd);
4369 
4370   // Unary Ops
4371   if (NumOperands == 1) {
4372     // Perform idempotent optimizations
4373     if (IsIdempotent(IID)) {
4374       if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(*ArgBegin)) {
4375         if (II->getIntrinsicID() == IID)
4376           return II;
4377       }
4378     }
4379 
4380     switch (IID) {
4381     case Intrinsic::fabs: {
4382       if (SignBitMustBeZero(*ArgBegin, Q.TLI))
4383         return *ArgBegin;
4384       return nullptr;
4385     }
4386     default:
4387       return nullptr;
4388     }
4389   }
4390 
4391   // Binary Ops
4392   if (NumOperands == 2) {
4393     Value *LHS = *ArgBegin;
4394     Value *RHS = *(ArgBegin + 1);
4395     Type *ReturnType = F->getReturnType();
4396 
4397     switch (IID) {
4398     case Intrinsic::usub_with_overflow:
4399     case Intrinsic::ssub_with_overflow: {
4400       // X - X -> { 0, false }
4401       if (LHS == RHS)
4402         return Constant::getNullValue(ReturnType);
4403 
4404       // X - undef -> undef
4405       // undef - X -> undef
4406       if (isa<UndefValue>(LHS) || isa<UndefValue>(RHS))
4407         return UndefValue::get(ReturnType);
4408 
4409       return nullptr;
4410     }
4411     case Intrinsic::uadd_with_overflow:
4412     case Intrinsic::sadd_with_overflow: {
4413       // X + undef -> undef
4414       if (isa<UndefValue>(LHS) || isa<UndefValue>(RHS))
4415         return UndefValue::get(ReturnType);
4416 
4417       return nullptr;
4418     }
4419     case Intrinsic::umul_with_overflow:
4420     case Intrinsic::smul_with_overflow: {
4421       // 0 * X -> { 0, false }
4422       // X * 0 -> { 0, false }
4423       if (match(LHS, m_Zero()) || match(RHS, m_Zero()))
4424         return Constant::getNullValue(ReturnType);
4425 
4426       // undef * X -> { 0, false }
4427       // X * undef -> { 0, false }
4428       if (match(LHS, m_Undef()) || match(RHS, m_Undef()))
4429         return Constant::getNullValue(ReturnType);
4430 
4431       return nullptr;
4432     }
4433     case Intrinsic::load_relative: {
4434       Constant *C0 = dyn_cast<Constant>(LHS);
4435       Constant *C1 = dyn_cast<Constant>(RHS);
4436       if (C0 && C1)
4437         return SimplifyRelativeLoad(C0, C1, Q.DL);
4438       return nullptr;
4439     }
4440     default:
4441       return nullptr;
4442     }
4443   }
4444 
4445   // Simplify calls to llvm.masked.load.*
4446   switch (IID) {
4447   case Intrinsic::masked_load: {
4448     Value *MaskArg = ArgBegin[2];
4449     Value *PassthruArg = ArgBegin[3];
4450     // If the mask is all zeros or undef, the "passthru" argument is the result.
4451     if (maskIsAllZeroOrUndef(MaskArg))
4452       return PassthruArg;
4453     return nullptr;
4454   }
4455   default:
4456     return nullptr;
4457   }
4458 }
4459 
4460 template <typename IterTy>
4461 static Value *SimplifyCall(ImmutableCallSite CS, Value *V, IterTy ArgBegin,
4462                            IterTy ArgEnd, const SimplifyQuery &Q,
4463                            unsigned MaxRecurse) {
4464   Type *Ty = V->getType();
4465   if (PointerType *PTy = dyn_cast<PointerType>(Ty))
4466     Ty = PTy->getElementType();
4467   FunctionType *FTy = cast<FunctionType>(Ty);
4468 
4469   // call undef -> undef
4470   // call null -> undef
4471   if (isa<UndefValue>(V) || isa<ConstantPointerNull>(V))
4472     return UndefValue::get(FTy->getReturnType());
4473 
4474   Function *F = dyn_cast<Function>(V);
4475   if (!F)
4476     return nullptr;
4477 
4478   if (F->isIntrinsic())
4479     if (Value *Ret = SimplifyIntrinsic(F, ArgBegin, ArgEnd, Q, MaxRecurse))
4480       return Ret;
4481 
4482   if (!canConstantFoldCallTo(CS, F))
4483     return nullptr;
4484 
4485   SmallVector<Constant *, 4> ConstantArgs;
4486   ConstantArgs.reserve(ArgEnd - ArgBegin);
4487   for (IterTy I = ArgBegin, E = ArgEnd; I != E; ++I) {
4488     Constant *C = dyn_cast<Constant>(*I);
4489     if (!C)
4490       return nullptr;
4491     ConstantArgs.push_back(C);
4492   }
4493 
4494   return ConstantFoldCall(CS, F, ConstantArgs, Q.TLI);
4495 }
4496 
4497 Value *llvm::SimplifyCall(ImmutableCallSite CS, Value *V,
4498                           User::op_iterator ArgBegin, User::op_iterator ArgEnd,
4499                           const SimplifyQuery &Q) {
4500   return ::SimplifyCall(CS, V, ArgBegin, ArgEnd, Q, RecursionLimit);
4501 }
4502 
4503 Value *llvm::SimplifyCall(ImmutableCallSite CS, Value *V,
4504                           ArrayRef<Value *> Args, const SimplifyQuery &Q) {
4505   return ::SimplifyCall(CS, V, Args.begin(), Args.end(), Q, RecursionLimit);
4506 }
4507 
4508 /// See if we can compute a simplified version of this instruction.
4509 /// If not, this returns null.
4510 
4511 Value *llvm::SimplifyInstruction(Instruction *I, const SimplifyQuery &SQ,
4512                                  OptimizationRemarkEmitter *ORE) {
4513   const SimplifyQuery Q = SQ.CxtI ? SQ : SQ.getWithInstruction(I);
4514   Value *Result;
4515 
4516   switch (I->getOpcode()) {
4517   default:
4518     Result = ConstantFoldInstruction(I, Q.DL, Q.TLI);
4519     break;
4520   case Instruction::FAdd:
4521     Result = SimplifyFAddInst(I->getOperand(0), I->getOperand(1),
4522                               I->getFastMathFlags(), Q);
4523     break;
4524   case Instruction::Add:
4525     Result = SimplifyAddInst(I->getOperand(0), I->getOperand(1),
4526                              cast<BinaryOperator>(I)->hasNoSignedWrap(),
4527                              cast<BinaryOperator>(I)->hasNoUnsignedWrap(), Q);
4528     break;
4529   case Instruction::FSub:
4530     Result = SimplifyFSubInst(I->getOperand(0), I->getOperand(1),
4531                               I->getFastMathFlags(), Q);
4532     break;
4533   case Instruction::Sub:
4534     Result = SimplifySubInst(I->getOperand(0), I->getOperand(1),
4535                              cast<BinaryOperator>(I)->hasNoSignedWrap(),
4536                              cast<BinaryOperator>(I)->hasNoUnsignedWrap(), Q);
4537     break;
4538   case Instruction::FMul:
4539     Result = SimplifyFMulInst(I->getOperand(0), I->getOperand(1),
4540                               I->getFastMathFlags(), Q);
4541     break;
4542   case Instruction::Mul:
4543     Result = SimplifyMulInst(I->getOperand(0), I->getOperand(1), Q);
4544     break;
4545   case Instruction::SDiv:
4546     Result = SimplifySDivInst(I->getOperand(0), I->getOperand(1), Q);
4547     break;
4548   case Instruction::UDiv:
4549     Result = SimplifyUDivInst(I->getOperand(0), I->getOperand(1), Q);
4550     break;
4551   case Instruction::FDiv:
4552     Result = SimplifyFDivInst(I->getOperand(0), I->getOperand(1),
4553                               I->getFastMathFlags(), Q);
4554     break;
4555   case Instruction::SRem:
4556     Result = SimplifySRemInst(I->getOperand(0), I->getOperand(1), Q);
4557     break;
4558   case Instruction::URem:
4559     Result = SimplifyURemInst(I->getOperand(0), I->getOperand(1), Q);
4560     break;
4561   case Instruction::FRem:
4562     Result = SimplifyFRemInst(I->getOperand(0), I->getOperand(1),
4563                               I->getFastMathFlags(), Q);
4564     break;
4565   case Instruction::Shl:
4566     Result = SimplifyShlInst(I->getOperand(0), I->getOperand(1),
4567                              cast<BinaryOperator>(I)->hasNoSignedWrap(),
4568                              cast<BinaryOperator>(I)->hasNoUnsignedWrap(), Q);
4569     break;
4570   case Instruction::LShr:
4571     Result = SimplifyLShrInst(I->getOperand(0), I->getOperand(1),
4572                               cast<BinaryOperator>(I)->isExact(), Q);
4573     break;
4574   case Instruction::AShr:
4575     Result = SimplifyAShrInst(I->getOperand(0), I->getOperand(1),
4576                               cast<BinaryOperator>(I)->isExact(), Q);
4577     break;
4578   case Instruction::And:
4579     Result = SimplifyAndInst(I->getOperand(0), I->getOperand(1), Q);
4580     break;
4581   case Instruction::Or:
4582     Result = SimplifyOrInst(I->getOperand(0), I->getOperand(1), Q);
4583     break;
4584   case Instruction::Xor:
4585     Result = SimplifyXorInst(I->getOperand(0), I->getOperand(1), Q);
4586     break;
4587   case Instruction::ICmp:
4588     Result = SimplifyICmpInst(cast<ICmpInst>(I)->getPredicate(),
4589                               I->getOperand(0), I->getOperand(1), Q);
4590     break;
4591   case Instruction::FCmp:
4592     Result =
4593         SimplifyFCmpInst(cast<FCmpInst>(I)->getPredicate(), I->getOperand(0),
4594                          I->getOperand(1), I->getFastMathFlags(), Q);
4595     break;
4596   case Instruction::Select:
4597     Result = SimplifySelectInst(I->getOperand(0), I->getOperand(1),
4598                                 I->getOperand(2), Q);
4599     break;
4600   case Instruction::GetElementPtr: {
4601     SmallVector<Value *, 8> Ops(I->op_begin(), I->op_end());
4602     Result = SimplifyGEPInst(cast<GetElementPtrInst>(I)->getSourceElementType(),
4603                              Ops, Q);
4604     break;
4605   }
4606   case Instruction::InsertValue: {
4607     InsertValueInst *IV = cast<InsertValueInst>(I);
4608     Result = SimplifyInsertValueInst(IV->getAggregateOperand(),
4609                                      IV->getInsertedValueOperand(),
4610                                      IV->getIndices(), Q);
4611     break;
4612   }
4613   case Instruction::ExtractValue: {
4614     auto *EVI = cast<ExtractValueInst>(I);
4615     Result = SimplifyExtractValueInst(EVI->getAggregateOperand(),
4616                                       EVI->getIndices(), Q);
4617     break;
4618   }
4619   case Instruction::ExtractElement: {
4620     auto *EEI = cast<ExtractElementInst>(I);
4621     Result = SimplifyExtractElementInst(EEI->getVectorOperand(),
4622                                         EEI->getIndexOperand(), Q);
4623     break;
4624   }
4625   case Instruction::ShuffleVector: {
4626     auto *SVI = cast<ShuffleVectorInst>(I);
4627     Result = SimplifyShuffleVectorInst(SVI->getOperand(0), SVI->getOperand(1),
4628                                        SVI->getMask(), SVI->getType(), Q);
4629     break;
4630   }
4631   case Instruction::PHI:
4632     Result = SimplifyPHINode(cast<PHINode>(I), Q);
4633     break;
4634   case Instruction::Call: {
4635     CallSite CS(cast<CallInst>(I));
4636     Result = SimplifyCall(CS, CS.getCalledValue(), CS.arg_begin(), CS.arg_end(),
4637                           Q);
4638     break;
4639   }
4640 #define HANDLE_CAST_INST(num, opc, clas) case Instruction::opc:
4641 #include "llvm/IR/Instruction.def"
4642 #undef HANDLE_CAST_INST
4643     Result =
4644         SimplifyCastInst(I->getOpcode(), I->getOperand(0), I->getType(), Q);
4645     break;
4646   case Instruction::Alloca:
4647     // No simplifications for Alloca and it can't be constant folded.
4648     Result = nullptr;
4649     break;
4650   }
4651 
4652   // In general, it is possible for computeKnownBits to determine all bits in a
4653   // value even when the operands are not all constants.
4654   if (!Result && I->getType()->isIntOrIntVectorTy()) {
4655     KnownBits Known = computeKnownBits(I, Q.DL, /*Depth*/ 0, Q.AC, I, Q.DT, ORE);
4656     if (Known.isConstant())
4657       Result = ConstantInt::get(I->getType(), Known.getConstant());
4658   }
4659 
4660   /// If called on unreachable code, the above logic may report that the
4661   /// instruction simplified to itself.  Make life easier for users by
4662   /// detecting that case here, returning a safe value instead.
4663   return Result == I ? UndefValue::get(I->getType()) : Result;
4664 }
4665 
4666 /// \brief Implementation of recursive simplification through an instruction's
4667 /// uses.
4668 ///
4669 /// This is the common implementation of the recursive simplification routines.
4670 /// If we have a pre-simplified value in 'SimpleV', that is forcibly used to
4671 /// replace the instruction 'I'. Otherwise, we simply add 'I' to the list of
4672 /// instructions to process and attempt to simplify it using
4673 /// InstructionSimplify.
4674 ///
4675 /// This routine returns 'true' only when *it* simplifies something. The passed
4676 /// in simplified value does not count toward this.
4677 static bool replaceAndRecursivelySimplifyImpl(Instruction *I, Value *SimpleV,
4678                                               const TargetLibraryInfo *TLI,
4679                                               const DominatorTree *DT,
4680                                               AssumptionCache *AC) {
4681   bool Simplified = false;
4682   SmallSetVector<Instruction *, 8> Worklist;
4683   const DataLayout &DL = I->getModule()->getDataLayout();
4684 
4685   // If we have an explicit value to collapse to, do that round of the
4686   // simplification loop by hand initially.
4687   if (SimpleV) {
4688     for (User *U : I->users())
4689       if (U != I)
4690         Worklist.insert(cast<Instruction>(U));
4691 
4692     // Replace the instruction with its simplified value.
4693     I->replaceAllUsesWith(SimpleV);
4694 
4695     // Gracefully handle edge cases where the instruction is not wired into any
4696     // parent block.
4697     if (I->getParent() && !I->isEHPad() && !isa<TerminatorInst>(I) &&
4698         !I->mayHaveSideEffects())
4699       I->eraseFromParent();
4700   } else {
4701     Worklist.insert(I);
4702   }
4703 
4704   // Note that we must test the size on each iteration, the worklist can grow.
4705   for (unsigned Idx = 0; Idx != Worklist.size(); ++Idx) {
4706     I = Worklist[Idx];
4707 
4708     // See if this instruction simplifies.
4709     SimpleV = SimplifyInstruction(I, {DL, TLI, DT, AC});
4710     if (!SimpleV)
4711       continue;
4712 
4713     Simplified = true;
4714 
4715     // Stash away all the uses of the old instruction so we can check them for
4716     // recursive simplifications after a RAUW. This is cheaper than checking all
4717     // uses of To on the recursive step in most cases.
4718     for (User *U : I->users())
4719       Worklist.insert(cast<Instruction>(U));
4720 
4721     // Replace the instruction with its simplified value.
4722     I->replaceAllUsesWith(SimpleV);
4723 
4724     // Gracefully handle edge cases where the instruction is not wired into any
4725     // parent block.
4726     if (I->getParent() && !I->isEHPad() && !isa<TerminatorInst>(I) &&
4727         !I->mayHaveSideEffects())
4728       I->eraseFromParent();
4729   }
4730   return Simplified;
4731 }
4732 
4733 bool llvm::recursivelySimplifyInstruction(Instruction *I,
4734                                           const TargetLibraryInfo *TLI,
4735                                           const DominatorTree *DT,
4736                                           AssumptionCache *AC) {
4737   return replaceAndRecursivelySimplifyImpl(I, nullptr, TLI, DT, AC);
4738 }
4739 
4740 bool llvm::replaceAndRecursivelySimplify(Instruction *I, Value *SimpleV,
4741                                          const TargetLibraryInfo *TLI,
4742                                          const DominatorTree *DT,
4743                                          AssumptionCache *AC) {
4744   assert(I != SimpleV && "replaceAndRecursivelySimplify(X,X) is not valid!");
4745   assert(SimpleV && "Must provide a simplified value.");
4746   return replaceAndRecursivelySimplifyImpl(I, SimpleV, TLI, DT, AC);
4747 }
4748 
4749 namespace llvm {
4750 const SimplifyQuery getBestSimplifyQuery(Pass &P, Function &F) {
4751   auto *DTWP = P.getAnalysisIfAvailable<DominatorTreeWrapperPass>();
4752   auto *DT = DTWP ? &DTWP->getDomTree() : nullptr;
4753   auto *TLIWP = P.getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>();
4754   auto *TLI = TLIWP ? &TLIWP->getTLI() : nullptr;
4755   auto *ACWP = P.getAnalysisIfAvailable<AssumptionCacheTracker>();
4756   auto *AC = ACWP ? &ACWP->getAssumptionCache(F) : nullptr;
4757   return {F.getParent()->getDataLayout(), TLI, DT, AC};
4758 }
4759 
4760 const SimplifyQuery getBestSimplifyQuery(LoopStandardAnalysisResults &AR,
4761                                          const DataLayout &DL) {
4762   return {DL, &AR.TLI, &AR.DT, &AR.AC};
4763 }
4764 
4765 template <class T, class... TArgs>
4766 const SimplifyQuery getBestSimplifyQuery(AnalysisManager<T, TArgs...> &AM,
4767                                          Function &F) {
4768   auto *DT = AM.template getCachedResult<DominatorTreeAnalysis>(F);
4769   auto *TLI = AM.template getCachedResult<TargetLibraryAnalysis>(F);
4770   auto *AC = AM.template getCachedResult<AssumptionAnalysis>(F);
4771   return {F.getParent()->getDataLayout(), TLI, DT, AC};
4772 }
4773 template const SimplifyQuery getBestSimplifyQuery(AnalysisManager<Function> &,
4774                                                   Function &);
4775 }
4776