1 //===- InstructionSimplify.cpp - Fold instruction operands ----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements routines for folding instructions into simpler forms
10 // that do not require creating new instructions.  This does constant folding
11 // ("add i32 1, 1" -> "2") but can also handle non-constant operands, either
12 // returning a constant ("and i32 %x, 0" -> "0") or an already existing value
13 // ("and i32 %x, %x" -> "%x").  All operands are assumed to have already been
14 // simplified: This is usually true and assuming it simplifies the logic (if
15 // they have not been simplified then results are correct but maybe suboptimal).
16 //
17 //===----------------------------------------------------------------------===//
18 
19 #include "llvm/Analysis/InstructionSimplify.h"
20 
21 #include "llvm/ADT/STLExtras.h"
22 #include "llvm/ADT/SetVector.h"
23 #include "llvm/ADT/SmallPtrSet.h"
24 #include "llvm/ADT/Statistic.h"
25 #include "llvm/Analysis/AliasAnalysis.h"
26 #include "llvm/Analysis/AssumptionCache.h"
27 #include "llvm/Analysis/CaptureTracking.h"
28 #include "llvm/Analysis/CmpInstAnalysis.h"
29 #include "llvm/Analysis/ConstantFolding.h"
30 #include "llvm/Analysis/LoopAnalysisManager.h"
31 #include "llvm/Analysis/MemoryBuiltins.h"
32 #include "llvm/Analysis/OverflowInstAnalysis.h"
33 #include "llvm/Analysis/ValueTracking.h"
34 #include "llvm/Analysis/VectorUtils.h"
35 #include "llvm/IR/ConstantRange.h"
36 #include "llvm/IR/DataLayout.h"
37 #include "llvm/IR/Dominators.h"
38 #include "llvm/IR/GetElementPtrTypeIterator.h"
39 #include "llvm/IR/GlobalAlias.h"
40 #include "llvm/IR/InstrTypes.h"
41 #include "llvm/IR/Instructions.h"
42 #include "llvm/IR/Operator.h"
43 #include "llvm/IR/PatternMatch.h"
44 #include "llvm/IR/ValueHandle.h"
45 #include "llvm/Support/KnownBits.h"
46 #include <algorithm>
47 using namespace llvm;
48 using namespace llvm::PatternMatch;
49 
50 #define DEBUG_TYPE "instsimplify"
51 
52 enum { RecursionLimit = 3 };
53 
54 STATISTIC(NumExpand,  "Number of expansions");
55 STATISTIC(NumReassoc, "Number of reassociations");
56 
57 static Value *SimplifyAndInst(Value *, Value *, const SimplifyQuery &, unsigned);
58 static Value *simplifyUnOp(unsigned, Value *, const SimplifyQuery &, unsigned);
59 static Value *simplifyFPUnOp(unsigned, Value *, const FastMathFlags &,
60                              const SimplifyQuery &, unsigned);
61 static Value *SimplifyBinOp(unsigned, Value *, Value *, const SimplifyQuery &,
62                             unsigned);
63 static Value *SimplifyBinOp(unsigned, Value *, Value *, const FastMathFlags &,
64                             const SimplifyQuery &, unsigned);
65 static Value *SimplifyCmpInst(unsigned, Value *, Value *, const SimplifyQuery &,
66                               unsigned);
67 static Value *SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS,
68                                const SimplifyQuery &Q, unsigned MaxRecurse);
69 static Value *SimplifyOrInst(Value *, Value *, const SimplifyQuery &, unsigned);
70 static Value *SimplifyXorInst(Value *, Value *, const SimplifyQuery &, unsigned);
71 static Value *SimplifyCastInst(unsigned, Value *, Type *,
72                                const SimplifyQuery &, unsigned);
73 static Value *SimplifyGEPInst(Type *, ArrayRef<Value *>, bool,
74                               const SimplifyQuery &, unsigned);
75 static Value *SimplifySelectInst(Value *, Value *, Value *,
76                                  const SimplifyQuery &, unsigned);
77 
78 static Value *foldSelectWithBinaryOp(Value *Cond, Value *TrueVal,
79                                      Value *FalseVal) {
80   BinaryOperator::BinaryOps BinOpCode;
81   if (auto *BO = dyn_cast<BinaryOperator>(Cond))
82     BinOpCode = BO->getOpcode();
83   else
84     return nullptr;
85 
86   CmpInst::Predicate ExpectedPred, Pred1, Pred2;
87   if (BinOpCode == BinaryOperator::Or) {
88     ExpectedPred = ICmpInst::ICMP_NE;
89   } else if (BinOpCode == BinaryOperator::And) {
90     ExpectedPred = ICmpInst::ICMP_EQ;
91   } else
92     return nullptr;
93 
94   // %A = icmp eq %TV, %FV
95   // %B = icmp eq %X, %Y (and one of these is a select operand)
96   // %C = and %A, %B
97   // %D = select %C, %TV, %FV
98   // -->
99   // %FV
100 
101   // %A = icmp ne %TV, %FV
102   // %B = icmp ne %X, %Y (and one of these is a select operand)
103   // %C = or %A, %B
104   // %D = select %C, %TV, %FV
105   // -->
106   // %TV
107   Value *X, *Y;
108   if (!match(Cond, m_c_BinOp(m_c_ICmp(Pred1, m_Specific(TrueVal),
109                                       m_Specific(FalseVal)),
110                              m_ICmp(Pred2, m_Value(X), m_Value(Y)))) ||
111       Pred1 != Pred2 || Pred1 != ExpectedPred)
112     return nullptr;
113 
114   if (X == TrueVal || X == FalseVal || Y == TrueVal || Y == FalseVal)
115     return BinOpCode == BinaryOperator::Or ? TrueVal : FalseVal;
116 
117   return nullptr;
118 }
119 
120 /// For a boolean type or a vector of boolean type, return false or a vector
121 /// with every element false.
122 static Constant *getFalse(Type *Ty) {
123   return ConstantInt::getFalse(Ty);
124 }
125 
126 /// For a boolean type or a vector of boolean type, return true or a vector
127 /// with every element true.
128 static Constant *getTrue(Type *Ty) {
129   return ConstantInt::getTrue(Ty);
130 }
131 
132 /// isSameCompare - Is V equivalent to the comparison "LHS Pred RHS"?
133 static bool isSameCompare(Value *V, CmpInst::Predicate Pred, Value *LHS,
134                           Value *RHS) {
135   CmpInst *Cmp = dyn_cast<CmpInst>(V);
136   if (!Cmp)
137     return false;
138   CmpInst::Predicate CPred = Cmp->getPredicate();
139   Value *CLHS = Cmp->getOperand(0), *CRHS = Cmp->getOperand(1);
140   if (CPred == Pred && CLHS == LHS && CRHS == RHS)
141     return true;
142   return CPred == CmpInst::getSwappedPredicate(Pred) && CLHS == RHS &&
143     CRHS == LHS;
144 }
145 
146 /// Simplify comparison with true or false branch of select:
147 ///  %sel = select i1 %cond, i32 %tv, i32 %fv
148 ///  %cmp = icmp sle i32 %sel, %rhs
149 /// Compose new comparison by substituting %sel with either %tv or %fv
150 /// and see if it simplifies.
151 static Value *simplifyCmpSelCase(CmpInst::Predicate Pred, Value *LHS,
152                                  Value *RHS, Value *Cond,
153                                  const SimplifyQuery &Q, unsigned MaxRecurse,
154                                  Constant *TrueOrFalse) {
155   Value *SimplifiedCmp = SimplifyCmpInst(Pred, LHS, RHS, Q, MaxRecurse);
156   if (SimplifiedCmp == Cond) {
157     // %cmp simplified to the select condition (%cond).
158     return TrueOrFalse;
159   } else if (!SimplifiedCmp && isSameCompare(Cond, Pred, LHS, RHS)) {
160     // It didn't simplify. However, if composed comparison is equivalent
161     // to the select condition (%cond) then we can replace it.
162     return TrueOrFalse;
163   }
164   return SimplifiedCmp;
165 }
166 
167 /// Simplify comparison with true branch of select
168 static Value *simplifyCmpSelTrueCase(CmpInst::Predicate Pred, Value *LHS,
169                                      Value *RHS, Value *Cond,
170                                      const SimplifyQuery &Q,
171                                      unsigned MaxRecurse) {
172   return simplifyCmpSelCase(Pred, LHS, RHS, Cond, Q, MaxRecurse,
173                             getTrue(Cond->getType()));
174 }
175 
176 /// Simplify comparison with false branch of select
177 static Value *simplifyCmpSelFalseCase(CmpInst::Predicate Pred, Value *LHS,
178                                       Value *RHS, Value *Cond,
179                                       const SimplifyQuery &Q,
180                                       unsigned MaxRecurse) {
181   return simplifyCmpSelCase(Pred, LHS, RHS, Cond, Q, MaxRecurse,
182                             getFalse(Cond->getType()));
183 }
184 
185 /// We know comparison with both branches of select can be simplified, but they
186 /// are not equal. This routine handles some logical simplifications.
187 static Value *handleOtherCmpSelSimplifications(Value *TCmp, Value *FCmp,
188                                                Value *Cond,
189                                                const SimplifyQuery &Q,
190                                                unsigned MaxRecurse) {
191   // If the false value simplified to false, then the result of the compare
192   // is equal to "Cond && TCmp".  This also catches the case when the false
193   // value simplified to false and the true value to true, returning "Cond".
194   // Folding select to and/or isn't poison-safe in general; impliesPoison
195   // checks whether folding it does not convert a well-defined value into
196   // poison.
197   if (match(FCmp, m_Zero()) && impliesPoison(TCmp, Cond))
198     if (Value *V = SimplifyAndInst(Cond, TCmp, Q, MaxRecurse))
199       return V;
200   // If the true value simplified to true, then the result of the compare
201   // is equal to "Cond || FCmp".
202   if (match(TCmp, m_One()) && impliesPoison(FCmp, Cond))
203     if (Value *V = SimplifyOrInst(Cond, FCmp, Q, MaxRecurse))
204       return V;
205   // Finally, if the false value simplified to true and the true value to
206   // false, then the result of the compare is equal to "!Cond".
207   if (match(FCmp, m_One()) && match(TCmp, m_Zero()))
208     if (Value *V = SimplifyXorInst(
209             Cond, Constant::getAllOnesValue(Cond->getType()), Q, MaxRecurse))
210       return V;
211   return nullptr;
212 }
213 
214 /// Does the given value dominate the specified phi node?
215 static bool valueDominatesPHI(Value *V, PHINode *P, const DominatorTree *DT) {
216   Instruction *I = dyn_cast<Instruction>(V);
217   if (!I)
218     // Arguments and constants dominate all instructions.
219     return true;
220 
221   // If we are processing instructions (and/or basic blocks) that have not been
222   // fully added to a function, the parent nodes may still be null. Simply
223   // return the conservative answer in these cases.
224   if (!I->getParent() || !P->getParent() || !I->getFunction())
225     return false;
226 
227   // If we have a DominatorTree then do a precise test.
228   if (DT)
229     return DT->dominates(I, P);
230 
231   // Otherwise, if the instruction is in the entry block and is not an invoke,
232   // then it obviously dominates all phi nodes.
233   if (I->getParent()->isEntryBlock() && !isa<InvokeInst>(I) &&
234       !isa<CallBrInst>(I))
235     return true;
236 
237   return false;
238 }
239 
240 /// Try to simplify a binary operator of form "V op OtherOp" where V is
241 /// "(B0 opex B1)" by distributing 'op' across 'opex' as
242 /// "(B0 op OtherOp) opex (B1 op OtherOp)".
243 static Value *expandBinOp(Instruction::BinaryOps Opcode, Value *V,
244                           Value *OtherOp, Instruction::BinaryOps OpcodeToExpand,
245                           const SimplifyQuery &Q, unsigned MaxRecurse) {
246   auto *B = dyn_cast<BinaryOperator>(V);
247   if (!B || B->getOpcode() != OpcodeToExpand)
248     return nullptr;
249   Value *B0 = B->getOperand(0), *B1 = B->getOperand(1);
250   Value *L = SimplifyBinOp(Opcode, B0, OtherOp, Q.getWithoutUndef(),
251                            MaxRecurse);
252   if (!L)
253     return nullptr;
254   Value *R = SimplifyBinOp(Opcode, B1, OtherOp, Q.getWithoutUndef(),
255                            MaxRecurse);
256   if (!R)
257     return nullptr;
258 
259   // Does the expanded pair of binops simplify to the existing binop?
260   if ((L == B0 && R == B1) ||
261       (Instruction::isCommutative(OpcodeToExpand) && L == B1 && R == B0)) {
262     ++NumExpand;
263     return B;
264   }
265 
266   // Otherwise, return "L op' R" if it simplifies.
267   Value *S = SimplifyBinOp(OpcodeToExpand, L, R, Q, MaxRecurse);
268   if (!S)
269     return nullptr;
270 
271   ++NumExpand;
272   return S;
273 }
274 
275 /// Try to simplify binops of form "A op (B op' C)" or the commuted variant by
276 /// distributing op over op'.
277 static Value *expandCommutativeBinOp(Instruction::BinaryOps Opcode,
278                                      Value *L, Value *R,
279                                      Instruction::BinaryOps OpcodeToExpand,
280                                      const SimplifyQuery &Q,
281                                      unsigned MaxRecurse) {
282   // Recursion is always used, so bail out at once if we already hit the limit.
283   if (!MaxRecurse--)
284     return nullptr;
285 
286   if (Value *V = expandBinOp(Opcode, L, R, OpcodeToExpand, Q, MaxRecurse))
287     return V;
288   if (Value *V = expandBinOp(Opcode, R, L, OpcodeToExpand, Q, MaxRecurse))
289     return V;
290   return nullptr;
291 }
292 
293 /// Generic simplifications for associative binary operations.
294 /// Returns the simpler value, or null if none was found.
295 static Value *SimplifyAssociativeBinOp(Instruction::BinaryOps Opcode,
296                                        Value *LHS, Value *RHS,
297                                        const SimplifyQuery &Q,
298                                        unsigned MaxRecurse) {
299   assert(Instruction::isAssociative(Opcode) && "Not an associative operation!");
300 
301   // Recursion is always used, so bail out at once if we already hit the limit.
302   if (!MaxRecurse--)
303     return nullptr;
304 
305   BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS);
306   BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS);
307 
308   // Transform: "(A op B) op C" ==> "A op (B op C)" if it simplifies completely.
309   if (Op0 && Op0->getOpcode() == Opcode) {
310     Value *A = Op0->getOperand(0);
311     Value *B = Op0->getOperand(1);
312     Value *C = RHS;
313 
314     // Does "B op C" simplify?
315     if (Value *V = SimplifyBinOp(Opcode, B, C, Q, MaxRecurse)) {
316       // It does!  Return "A op V" if it simplifies or is already available.
317       // If V equals B then "A op V" is just the LHS.
318       if (V == B) return LHS;
319       // Otherwise return "A op V" if it simplifies.
320       if (Value *W = SimplifyBinOp(Opcode, A, V, Q, MaxRecurse)) {
321         ++NumReassoc;
322         return W;
323       }
324     }
325   }
326 
327   // Transform: "A op (B op C)" ==> "(A op B) op C" if it simplifies completely.
328   if (Op1 && Op1->getOpcode() == Opcode) {
329     Value *A = LHS;
330     Value *B = Op1->getOperand(0);
331     Value *C = Op1->getOperand(1);
332 
333     // Does "A op B" simplify?
334     if (Value *V = SimplifyBinOp(Opcode, A, B, Q, MaxRecurse)) {
335       // It does!  Return "V op C" if it simplifies or is already available.
336       // If V equals B then "V op C" is just the RHS.
337       if (V == B) return RHS;
338       // Otherwise return "V op C" if it simplifies.
339       if (Value *W = SimplifyBinOp(Opcode, V, C, Q, MaxRecurse)) {
340         ++NumReassoc;
341         return W;
342       }
343     }
344   }
345 
346   // The remaining transforms require commutativity as well as associativity.
347   if (!Instruction::isCommutative(Opcode))
348     return nullptr;
349 
350   // Transform: "(A op B) op C" ==> "(C op A) op B" if it simplifies completely.
351   if (Op0 && Op0->getOpcode() == Opcode) {
352     Value *A = Op0->getOperand(0);
353     Value *B = Op0->getOperand(1);
354     Value *C = RHS;
355 
356     // Does "C op A" simplify?
357     if (Value *V = SimplifyBinOp(Opcode, C, A, Q, MaxRecurse)) {
358       // It does!  Return "V op B" if it simplifies or is already available.
359       // If V equals A then "V op B" is just the LHS.
360       if (V == A) return LHS;
361       // Otherwise return "V op B" if it simplifies.
362       if (Value *W = SimplifyBinOp(Opcode, V, B, Q, MaxRecurse)) {
363         ++NumReassoc;
364         return W;
365       }
366     }
367   }
368 
369   // Transform: "A op (B op C)" ==> "B op (C op A)" if it simplifies completely.
370   if (Op1 && Op1->getOpcode() == Opcode) {
371     Value *A = LHS;
372     Value *B = Op1->getOperand(0);
373     Value *C = Op1->getOperand(1);
374 
375     // Does "C op A" simplify?
376     if (Value *V = SimplifyBinOp(Opcode, C, A, Q, MaxRecurse)) {
377       // It does!  Return "B op V" if it simplifies or is already available.
378       // If V equals C then "B op V" is just the RHS.
379       if (V == C) return RHS;
380       // Otherwise return "B op V" if it simplifies.
381       if (Value *W = SimplifyBinOp(Opcode, B, V, Q, MaxRecurse)) {
382         ++NumReassoc;
383         return W;
384       }
385     }
386   }
387 
388   return nullptr;
389 }
390 
391 /// In the case of a binary operation with a select instruction as an operand,
392 /// try to simplify the binop by seeing whether evaluating it on both branches
393 /// of the select results in the same value. Returns the common value if so,
394 /// otherwise returns null.
395 static Value *ThreadBinOpOverSelect(Instruction::BinaryOps Opcode, Value *LHS,
396                                     Value *RHS, const SimplifyQuery &Q,
397                                     unsigned MaxRecurse) {
398   // Recursion is always used, so bail out at once if we already hit the limit.
399   if (!MaxRecurse--)
400     return nullptr;
401 
402   SelectInst *SI;
403   if (isa<SelectInst>(LHS)) {
404     SI = cast<SelectInst>(LHS);
405   } else {
406     assert(isa<SelectInst>(RHS) && "No select instruction operand!");
407     SI = cast<SelectInst>(RHS);
408   }
409 
410   // Evaluate the BinOp on the true and false branches of the select.
411   Value *TV;
412   Value *FV;
413   if (SI == LHS) {
414     TV = SimplifyBinOp(Opcode, SI->getTrueValue(), RHS, Q, MaxRecurse);
415     FV = SimplifyBinOp(Opcode, SI->getFalseValue(), RHS, Q, MaxRecurse);
416   } else {
417     TV = SimplifyBinOp(Opcode, LHS, SI->getTrueValue(), Q, MaxRecurse);
418     FV = SimplifyBinOp(Opcode, LHS, SI->getFalseValue(), Q, MaxRecurse);
419   }
420 
421   // If they simplified to the same value, then return the common value.
422   // If they both failed to simplify then return null.
423   if (TV == FV)
424     return TV;
425 
426   // If one branch simplified to undef, return the other one.
427   if (TV && Q.isUndefValue(TV))
428     return FV;
429   if (FV && Q.isUndefValue(FV))
430     return TV;
431 
432   // If applying the operation did not change the true and false select values,
433   // then the result of the binop is the select itself.
434   if (TV == SI->getTrueValue() && FV == SI->getFalseValue())
435     return SI;
436 
437   // If one branch simplified and the other did not, and the simplified
438   // value is equal to the unsimplified one, return the simplified value.
439   // For example, select (cond, X, X & Z) & Z -> X & Z.
440   if ((FV && !TV) || (TV && !FV)) {
441     // Check that the simplified value has the form "X op Y" where "op" is the
442     // same as the original operation.
443     Instruction *Simplified = dyn_cast<Instruction>(FV ? FV : TV);
444     if (Simplified && Simplified->getOpcode() == unsigned(Opcode)) {
445       // The value that didn't simplify is "UnsimplifiedLHS op UnsimplifiedRHS".
446       // We already know that "op" is the same as for the simplified value.  See
447       // if the operands match too.  If so, return the simplified value.
448       Value *UnsimplifiedBranch = FV ? SI->getTrueValue() : SI->getFalseValue();
449       Value *UnsimplifiedLHS = SI == LHS ? UnsimplifiedBranch : LHS;
450       Value *UnsimplifiedRHS = SI == LHS ? RHS : UnsimplifiedBranch;
451       if (Simplified->getOperand(0) == UnsimplifiedLHS &&
452           Simplified->getOperand(1) == UnsimplifiedRHS)
453         return Simplified;
454       if (Simplified->isCommutative() &&
455           Simplified->getOperand(1) == UnsimplifiedLHS &&
456           Simplified->getOperand(0) == UnsimplifiedRHS)
457         return Simplified;
458     }
459   }
460 
461   return nullptr;
462 }
463 
464 /// In the case of a comparison with a select instruction, try to simplify the
465 /// comparison by seeing whether both branches of the select result in the same
466 /// value. Returns the common value if so, otherwise returns null.
467 /// For example, if we have:
468 ///  %tmp = select i1 %cmp, i32 1, i32 2
469 ///  %cmp1 = icmp sle i32 %tmp, 3
470 /// We can simplify %cmp1 to true, because both branches of select are
471 /// less than 3. We compose new comparison by substituting %tmp with both
472 /// branches of select and see if it can be simplified.
473 static Value *ThreadCmpOverSelect(CmpInst::Predicate Pred, Value *LHS,
474                                   Value *RHS, const SimplifyQuery &Q,
475                                   unsigned MaxRecurse) {
476   // Recursion is always used, so bail out at once if we already hit the limit.
477   if (!MaxRecurse--)
478     return nullptr;
479 
480   // Make sure the select is on the LHS.
481   if (!isa<SelectInst>(LHS)) {
482     std::swap(LHS, RHS);
483     Pred = CmpInst::getSwappedPredicate(Pred);
484   }
485   assert(isa<SelectInst>(LHS) && "Not comparing with a select instruction!");
486   SelectInst *SI = cast<SelectInst>(LHS);
487   Value *Cond = SI->getCondition();
488   Value *TV = SI->getTrueValue();
489   Value *FV = SI->getFalseValue();
490 
491   // Now that we have "cmp select(Cond, TV, FV), RHS", analyse it.
492   // Does "cmp TV, RHS" simplify?
493   Value *TCmp = simplifyCmpSelTrueCase(Pred, TV, RHS, Cond, Q, MaxRecurse);
494   if (!TCmp)
495     return nullptr;
496 
497   // Does "cmp FV, RHS" simplify?
498   Value *FCmp = simplifyCmpSelFalseCase(Pred, FV, RHS, Cond, Q, MaxRecurse);
499   if (!FCmp)
500     return nullptr;
501 
502   // If both sides simplified to the same value, then use it as the result of
503   // the original comparison.
504   if (TCmp == FCmp)
505     return TCmp;
506 
507   // The remaining cases only make sense if the select condition has the same
508   // type as the result of the comparison, so bail out if this is not so.
509   if (Cond->getType()->isVectorTy() == RHS->getType()->isVectorTy())
510     return handleOtherCmpSelSimplifications(TCmp, FCmp, Cond, Q, MaxRecurse);
511 
512   return nullptr;
513 }
514 
515 /// In the case of a binary operation with an operand that is a PHI instruction,
516 /// try to simplify the binop by seeing whether evaluating it on the incoming
517 /// phi values yields the same result for every value. If so returns the common
518 /// value, otherwise returns null.
519 static Value *ThreadBinOpOverPHI(Instruction::BinaryOps Opcode, Value *LHS,
520                                  Value *RHS, const SimplifyQuery &Q,
521                                  unsigned MaxRecurse) {
522   // Recursion is always used, so bail out at once if we already hit the limit.
523   if (!MaxRecurse--)
524     return nullptr;
525 
526   PHINode *PI;
527   if (isa<PHINode>(LHS)) {
528     PI = cast<PHINode>(LHS);
529     // Bail out if RHS and the phi may be mutually interdependent due to a loop.
530     if (!valueDominatesPHI(RHS, PI, Q.DT))
531       return nullptr;
532   } else {
533     assert(isa<PHINode>(RHS) && "No PHI instruction operand!");
534     PI = cast<PHINode>(RHS);
535     // Bail out if LHS and the phi may be mutually interdependent due to a loop.
536     if (!valueDominatesPHI(LHS, PI, Q.DT))
537       return nullptr;
538   }
539 
540   // Evaluate the BinOp on the incoming phi values.
541   Value *CommonValue = nullptr;
542   for (Value *Incoming : PI->incoming_values()) {
543     // If the incoming value is the phi node itself, it can safely be skipped.
544     if (Incoming == PI) continue;
545     Value *V = PI == LHS ?
546       SimplifyBinOp(Opcode, Incoming, RHS, Q, MaxRecurse) :
547       SimplifyBinOp(Opcode, LHS, Incoming, Q, MaxRecurse);
548     // If the operation failed to simplify, or simplified to a different value
549     // to previously, then give up.
550     if (!V || (CommonValue && V != CommonValue))
551       return nullptr;
552     CommonValue = V;
553   }
554 
555   return CommonValue;
556 }
557 
558 /// In the case of a comparison with a PHI instruction, try to simplify the
559 /// comparison by seeing whether comparing with all of the incoming phi values
560 /// yields the same result every time. If so returns the common result,
561 /// otherwise returns null.
562 static Value *ThreadCmpOverPHI(CmpInst::Predicate Pred, Value *LHS, Value *RHS,
563                                const SimplifyQuery &Q, unsigned MaxRecurse) {
564   // Recursion is always used, so bail out at once if we already hit the limit.
565   if (!MaxRecurse--)
566     return nullptr;
567 
568   // Make sure the phi is on the LHS.
569   if (!isa<PHINode>(LHS)) {
570     std::swap(LHS, RHS);
571     Pred = CmpInst::getSwappedPredicate(Pred);
572   }
573   assert(isa<PHINode>(LHS) && "Not comparing with a phi instruction!");
574   PHINode *PI = cast<PHINode>(LHS);
575 
576   // Bail out if RHS and the phi may be mutually interdependent due to a loop.
577   if (!valueDominatesPHI(RHS, PI, Q.DT))
578     return nullptr;
579 
580   // Evaluate the BinOp on the incoming phi values.
581   Value *CommonValue = nullptr;
582   for (unsigned u = 0, e = PI->getNumIncomingValues(); u < e; ++u) {
583     Value *Incoming = PI->getIncomingValue(u);
584     Instruction *InTI = PI->getIncomingBlock(u)->getTerminator();
585     // If the incoming value is the phi node itself, it can safely be skipped.
586     if (Incoming == PI) continue;
587     // Change the context instruction to the "edge" that flows into the phi.
588     // This is important because that is where incoming is actually "evaluated"
589     // even though it is used later somewhere else.
590     Value *V = SimplifyCmpInst(Pred, Incoming, RHS, Q.getWithInstruction(InTI),
591                                MaxRecurse);
592     // If the operation failed to simplify, or simplified to a different value
593     // to previously, then give up.
594     if (!V || (CommonValue && V != CommonValue))
595       return nullptr;
596     CommonValue = V;
597   }
598 
599   return CommonValue;
600 }
601 
602 static Constant *foldOrCommuteConstant(Instruction::BinaryOps Opcode,
603                                        Value *&Op0, Value *&Op1,
604                                        const SimplifyQuery &Q) {
605   if (auto *CLHS = dyn_cast<Constant>(Op0)) {
606     if (auto *CRHS = dyn_cast<Constant>(Op1))
607       return ConstantFoldBinaryOpOperands(Opcode, CLHS, CRHS, Q.DL);
608 
609     // Canonicalize the constant to the RHS if this is a commutative operation.
610     if (Instruction::isCommutative(Opcode))
611       std::swap(Op0, Op1);
612   }
613   return nullptr;
614 }
615 
616 /// Given operands for an Add, see if we can fold the result.
617 /// If not, this returns null.
618 static Value *SimplifyAddInst(Value *Op0, Value *Op1, bool IsNSW, bool IsNUW,
619                               const SimplifyQuery &Q, unsigned MaxRecurse) {
620   if (Constant *C = foldOrCommuteConstant(Instruction::Add, Op0, Op1, Q))
621     return C;
622 
623   // X + undef -> undef
624   if (Q.isUndefValue(Op1))
625     return Op1;
626 
627   // X + 0 -> X
628   if (match(Op1, m_Zero()))
629     return Op0;
630 
631   // If two operands are negative, return 0.
632   if (isKnownNegation(Op0, Op1))
633     return Constant::getNullValue(Op0->getType());
634 
635   // X + (Y - X) -> Y
636   // (Y - X) + X -> Y
637   // Eg: X + -X -> 0
638   Value *Y = nullptr;
639   if (match(Op1, m_Sub(m_Value(Y), m_Specific(Op0))) ||
640       match(Op0, m_Sub(m_Value(Y), m_Specific(Op1))))
641     return Y;
642 
643   // X + ~X -> -1   since   ~X = -X-1
644   Type *Ty = Op0->getType();
645   if (match(Op0, m_Not(m_Specific(Op1))) ||
646       match(Op1, m_Not(m_Specific(Op0))))
647     return Constant::getAllOnesValue(Ty);
648 
649   // add nsw/nuw (xor Y, signmask), signmask --> Y
650   // The no-wrapping add guarantees that the top bit will be set by the add.
651   // Therefore, the xor must be clearing the already set sign bit of Y.
652   if ((IsNSW || IsNUW) && match(Op1, m_SignMask()) &&
653       match(Op0, m_Xor(m_Value(Y), m_SignMask())))
654     return Y;
655 
656   // add nuw %x, -1  ->  -1, because %x can only be 0.
657   if (IsNUW && match(Op1, m_AllOnes()))
658     return Op1; // Which is -1.
659 
660   /// i1 add -> xor.
661   if (MaxRecurse && Op0->getType()->isIntOrIntVectorTy(1))
662     if (Value *V = SimplifyXorInst(Op0, Op1, Q, MaxRecurse-1))
663       return V;
664 
665   // Try some generic simplifications for associative operations.
666   if (Value *V = SimplifyAssociativeBinOp(Instruction::Add, Op0, Op1, Q,
667                                           MaxRecurse))
668     return V;
669 
670   // Threading Add over selects and phi nodes is pointless, so don't bother.
671   // Threading over the select in "A + select(cond, B, C)" means evaluating
672   // "A+B" and "A+C" and seeing if they are equal; but they are equal if and
673   // only if B and C are equal.  If B and C are equal then (since we assume
674   // that operands have already been simplified) "select(cond, B, C)" should
675   // have been simplified to the common value of B and C already.  Analysing
676   // "A+B" and "A+C" thus gains nothing, but costs compile time.  Similarly
677   // for threading over phi nodes.
678 
679   return nullptr;
680 }
681 
682 Value *llvm::SimplifyAddInst(Value *Op0, Value *Op1, bool IsNSW, bool IsNUW,
683                              const SimplifyQuery &Query) {
684   return ::SimplifyAddInst(Op0, Op1, IsNSW, IsNUW, Query, RecursionLimit);
685 }
686 
687 /// Compute the base pointer and cumulative constant offsets for V.
688 ///
689 /// This strips all constant offsets off of V, leaving it the base pointer, and
690 /// accumulates the total constant offset applied in the returned constant. It
691 /// returns 0 if V is not a pointer, and returns the constant '0' if there are
692 /// no constant offsets applied.
693 ///
694 /// This is very similar to GetPointerBaseWithConstantOffset except it doesn't
695 /// follow non-inbounds geps. This allows it to remain usable for icmp ult/etc.
696 /// folding.
697 static Constant *stripAndComputeConstantOffsets(const DataLayout &DL, Value *&V,
698                                                 bool AllowNonInbounds = false) {
699   assert(V->getType()->isPtrOrPtrVectorTy());
700 
701   APInt Offset = APInt::getZero(DL.getIndexTypeSizeInBits(V->getType()));
702 
703   V = V->stripAndAccumulateConstantOffsets(DL, Offset, AllowNonInbounds);
704   // As that strip may trace through `addrspacecast`, need to sext or trunc
705   // the offset calculated.
706   Type *IntIdxTy = DL.getIndexType(V->getType())->getScalarType();
707   Offset = Offset.sextOrTrunc(IntIdxTy->getIntegerBitWidth());
708 
709   Constant *OffsetIntPtr = ConstantInt::get(IntIdxTy, Offset);
710   if (VectorType *VecTy = dyn_cast<VectorType>(V->getType()))
711     return ConstantVector::getSplat(VecTy->getElementCount(), OffsetIntPtr);
712   return OffsetIntPtr;
713 }
714 
715 /// Compute the constant difference between two pointer values.
716 /// If the difference is not a constant, returns zero.
717 static Constant *computePointerDifference(const DataLayout &DL, Value *LHS,
718                                           Value *RHS) {
719   Constant *LHSOffset = stripAndComputeConstantOffsets(DL, LHS);
720   Constant *RHSOffset = stripAndComputeConstantOffsets(DL, RHS);
721 
722   // If LHS and RHS are not related via constant offsets to the same base
723   // value, there is nothing we can do here.
724   if (LHS != RHS)
725     return nullptr;
726 
727   // Otherwise, the difference of LHS - RHS can be computed as:
728   //    LHS - RHS
729   //  = (LHSOffset + Base) - (RHSOffset + Base)
730   //  = LHSOffset - RHSOffset
731   return ConstantExpr::getSub(LHSOffset, RHSOffset);
732 }
733 
734 /// Given operands for a Sub, see if we can fold the result.
735 /// If not, this returns null.
736 static Value *SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
737                               const SimplifyQuery &Q, unsigned MaxRecurse) {
738   if (Constant *C = foldOrCommuteConstant(Instruction::Sub, Op0, Op1, Q))
739     return C;
740 
741   // X - poison -> poison
742   // poison - X -> poison
743   if (isa<PoisonValue>(Op0) || isa<PoisonValue>(Op1))
744     return PoisonValue::get(Op0->getType());
745 
746   // X - undef -> undef
747   // undef - X -> undef
748   if (Q.isUndefValue(Op0) || Q.isUndefValue(Op1))
749     return UndefValue::get(Op0->getType());
750 
751   // X - 0 -> X
752   if (match(Op1, m_Zero()))
753     return Op0;
754 
755   // X - X -> 0
756   if (Op0 == Op1)
757     return Constant::getNullValue(Op0->getType());
758 
759   // Is this a negation?
760   if (match(Op0, m_Zero())) {
761     // 0 - X -> 0 if the sub is NUW.
762     if (isNUW)
763       return Constant::getNullValue(Op0->getType());
764 
765     KnownBits Known = computeKnownBits(Op1, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
766     if (Known.Zero.isMaxSignedValue()) {
767       // Op1 is either 0 or the minimum signed value. If the sub is NSW, then
768       // Op1 must be 0 because negating the minimum signed value is undefined.
769       if (isNSW)
770         return Constant::getNullValue(Op0->getType());
771 
772       // 0 - X -> X if X is 0 or the minimum signed value.
773       return Op1;
774     }
775   }
776 
777   // (X + Y) - Z -> X + (Y - Z) or Y + (X - Z) if everything simplifies.
778   // For example, (X + Y) - Y -> X; (Y + X) - Y -> X
779   Value *X = nullptr, *Y = nullptr, *Z = Op1;
780   if (MaxRecurse && match(Op0, m_Add(m_Value(X), m_Value(Y)))) { // (X + Y) - Z
781     // See if "V === Y - Z" simplifies.
782     if (Value *V = SimplifyBinOp(Instruction::Sub, Y, Z, Q, MaxRecurse-1))
783       // It does!  Now see if "X + V" simplifies.
784       if (Value *W = SimplifyBinOp(Instruction::Add, X, V, Q, MaxRecurse-1)) {
785         // It does, we successfully reassociated!
786         ++NumReassoc;
787         return W;
788       }
789     // See if "V === X - Z" simplifies.
790     if (Value *V = SimplifyBinOp(Instruction::Sub, X, Z, Q, MaxRecurse-1))
791       // It does!  Now see if "Y + V" simplifies.
792       if (Value *W = SimplifyBinOp(Instruction::Add, Y, V, Q, MaxRecurse-1)) {
793         // It does, we successfully reassociated!
794         ++NumReassoc;
795         return W;
796       }
797   }
798 
799   // X - (Y + Z) -> (X - Y) - Z or (X - Z) - Y if everything simplifies.
800   // For example, X - (X + 1) -> -1
801   X = Op0;
802   if (MaxRecurse && match(Op1, m_Add(m_Value(Y), m_Value(Z)))) { // X - (Y + Z)
803     // See if "V === X - Y" simplifies.
804     if (Value *V = SimplifyBinOp(Instruction::Sub, X, Y, Q, MaxRecurse-1))
805       // It does!  Now see if "V - Z" simplifies.
806       if (Value *W = SimplifyBinOp(Instruction::Sub, V, Z, Q, MaxRecurse-1)) {
807         // It does, we successfully reassociated!
808         ++NumReassoc;
809         return W;
810       }
811     // See if "V === X - Z" simplifies.
812     if (Value *V = SimplifyBinOp(Instruction::Sub, X, Z, Q, MaxRecurse-1))
813       // It does!  Now see if "V - Y" simplifies.
814       if (Value *W = SimplifyBinOp(Instruction::Sub, V, Y, Q, MaxRecurse-1)) {
815         // It does, we successfully reassociated!
816         ++NumReassoc;
817         return W;
818       }
819   }
820 
821   // Z - (X - Y) -> (Z - X) + Y if everything simplifies.
822   // For example, X - (X - Y) -> Y.
823   Z = Op0;
824   if (MaxRecurse && match(Op1, m_Sub(m_Value(X), m_Value(Y)))) // Z - (X - Y)
825     // See if "V === Z - X" simplifies.
826     if (Value *V = SimplifyBinOp(Instruction::Sub, Z, X, Q, MaxRecurse-1))
827       // It does!  Now see if "V + Y" simplifies.
828       if (Value *W = SimplifyBinOp(Instruction::Add, V, Y, Q, MaxRecurse-1)) {
829         // It does, we successfully reassociated!
830         ++NumReassoc;
831         return W;
832       }
833 
834   // trunc(X) - trunc(Y) -> trunc(X - Y) if everything simplifies.
835   if (MaxRecurse && match(Op0, m_Trunc(m_Value(X))) &&
836       match(Op1, m_Trunc(m_Value(Y))))
837     if (X->getType() == Y->getType())
838       // See if "V === X - Y" simplifies.
839       if (Value *V = SimplifyBinOp(Instruction::Sub, X, Y, Q, MaxRecurse-1))
840         // It does!  Now see if "trunc V" simplifies.
841         if (Value *W = SimplifyCastInst(Instruction::Trunc, V, Op0->getType(),
842                                         Q, MaxRecurse - 1))
843           // It does, return the simplified "trunc V".
844           return W;
845 
846   // Variations on GEP(base, I, ...) - GEP(base, i, ...) -> GEP(null, I-i, ...).
847   if (match(Op0, m_PtrToInt(m_Value(X))) &&
848       match(Op1, m_PtrToInt(m_Value(Y))))
849     if (Constant *Result = computePointerDifference(Q.DL, X, Y))
850       return ConstantExpr::getIntegerCast(Result, Op0->getType(), true);
851 
852   // i1 sub -> xor.
853   if (MaxRecurse && Op0->getType()->isIntOrIntVectorTy(1))
854     if (Value *V = SimplifyXorInst(Op0, Op1, Q, MaxRecurse-1))
855       return V;
856 
857   // Threading Sub over selects and phi nodes is pointless, so don't bother.
858   // Threading over the select in "A - select(cond, B, C)" means evaluating
859   // "A-B" and "A-C" and seeing if they are equal; but they are equal if and
860   // only if B and C are equal.  If B and C are equal then (since we assume
861   // that operands have already been simplified) "select(cond, B, C)" should
862   // have been simplified to the common value of B and C already.  Analysing
863   // "A-B" and "A-C" thus gains nothing, but costs compile time.  Similarly
864   // for threading over phi nodes.
865 
866   return nullptr;
867 }
868 
869 Value *llvm::SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
870                              const SimplifyQuery &Q) {
871   return ::SimplifySubInst(Op0, Op1, isNSW, isNUW, Q, RecursionLimit);
872 }
873 
874 /// Given operands for a Mul, see if we can fold the result.
875 /// If not, this returns null.
876 static Value *SimplifyMulInst(Value *Op0, Value *Op1, const SimplifyQuery &Q,
877                               unsigned MaxRecurse) {
878   if (Constant *C = foldOrCommuteConstant(Instruction::Mul, Op0, Op1, Q))
879     return C;
880 
881   // X * poison -> poison
882   if (isa<PoisonValue>(Op1))
883     return Op1;
884 
885   // X * undef -> 0
886   // X * 0 -> 0
887   if (Q.isUndefValue(Op1) || match(Op1, m_Zero()))
888     return Constant::getNullValue(Op0->getType());
889 
890   // X * 1 -> X
891   if (match(Op1, m_One()))
892     return Op0;
893 
894   // (X / Y) * Y -> X if the division is exact.
895   Value *X = nullptr;
896   if (Q.IIQ.UseInstrInfo &&
897       (match(Op0,
898              m_Exact(m_IDiv(m_Value(X), m_Specific(Op1)))) ||     // (X / Y) * Y
899        match(Op1, m_Exact(m_IDiv(m_Value(X), m_Specific(Op0)))))) // Y * (X / Y)
900     return X;
901 
902   // i1 mul -> and.
903   if (MaxRecurse && Op0->getType()->isIntOrIntVectorTy(1))
904     if (Value *V = SimplifyAndInst(Op0, Op1, Q, MaxRecurse-1))
905       return V;
906 
907   // Try some generic simplifications for associative operations.
908   if (Value *V = SimplifyAssociativeBinOp(Instruction::Mul, Op0, Op1, Q,
909                                           MaxRecurse))
910     return V;
911 
912   // Mul distributes over Add. Try some generic simplifications based on this.
913   if (Value *V = expandCommutativeBinOp(Instruction::Mul, Op0, Op1,
914                                         Instruction::Add, Q, MaxRecurse))
915     return V;
916 
917   // If the operation is with the result of a select instruction, check whether
918   // operating on either branch of the select always yields the same value.
919   if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
920     if (Value *V = ThreadBinOpOverSelect(Instruction::Mul, Op0, Op1, Q,
921                                          MaxRecurse))
922       return V;
923 
924   // If the operation is with the result of a phi instruction, check whether
925   // operating on all incoming values of the phi always yields the same value.
926   if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
927     if (Value *V = ThreadBinOpOverPHI(Instruction::Mul, Op0, Op1, Q,
928                                       MaxRecurse))
929       return V;
930 
931   return nullptr;
932 }
933 
934 Value *llvm::SimplifyMulInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) {
935   return ::SimplifyMulInst(Op0, Op1, Q, RecursionLimit);
936 }
937 
938 /// Check for common or similar folds of integer division or integer remainder.
939 /// This applies to all 4 opcodes (sdiv/udiv/srem/urem).
940 static Value *simplifyDivRem(Instruction::BinaryOps Opcode, Value *Op0,
941                              Value *Op1, const SimplifyQuery &Q) {
942   bool IsDiv = (Opcode == Instruction::SDiv || Opcode == Instruction::UDiv);
943   bool IsSigned = (Opcode == Instruction::SDiv || Opcode == Instruction::SRem);
944 
945   Type *Ty = Op0->getType();
946 
947   // X / undef -> poison
948   // X % undef -> poison
949   if (Q.isUndefValue(Op1))
950     return PoisonValue::get(Ty);
951 
952   // X / 0 -> poison
953   // X % 0 -> poison
954   // We don't need to preserve faults!
955   if (match(Op1, m_Zero()))
956     return PoisonValue::get(Ty);
957 
958   // If any element of a constant divisor fixed width vector is zero or undef
959   // the behavior is undefined and we can fold the whole op to poison.
960   auto *Op1C = dyn_cast<Constant>(Op1);
961   auto *VTy = dyn_cast<FixedVectorType>(Ty);
962   if (Op1C && VTy) {
963     unsigned NumElts = VTy->getNumElements();
964     for (unsigned i = 0; i != NumElts; ++i) {
965       Constant *Elt = Op1C->getAggregateElement(i);
966       if (Elt && (Elt->isNullValue() || Q.isUndefValue(Elt)))
967         return PoisonValue::get(Ty);
968     }
969   }
970 
971   // poison / X -> poison
972   // poison % X -> poison
973   if (isa<PoisonValue>(Op0))
974     return Op0;
975 
976   // undef / X -> 0
977   // undef % X -> 0
978   if (Q.isUndefValue(Op0))
979     return Constant::getNullValue(Ty);
980 
981   // 0 / X -> 0
982   // 0 % X -> 0
983   if (match(Op0, m_Zero()))
984     return Constant::getNullValue(Op0->getType());
985 
986   // X / X -> 1
987   // X % X -> 0
988   if (Op0 == Op1)
989     return IsDiv ? ConstantInt::get(Ty, 1) : Constant::getNullValue(Ty);
990 
991   // X / 1 -> X
992   // X % 1 -> 0
993   // If this is a boolean op (single-bit element type), we can't have
994   // division-by-zero or remainder-by-zero, so assume the divisor is 1.
995   // Similarly, if we're zero-extending a boolean divisor, then assume it's a 1.
996   Value *X;
997   if (match(Op1, m_One()) || Ty->isIntOrIntVectorTy(1) ||
998       (match(Op1, m_ZExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)))
999     return IsDiv ? Op0 : Constant::getNullValue(Ty);
1000 
1001   // If X * Y does not overflow, then:
1002   //   X * Y / Y -> X
1003   //   X * Y % Y -> 0
1004   if (match(Op0, m_c_Mul(m_Value(X), m_Specific(Op1)))) {
1005     auto *Mul = cast<OverflowingBinaryOperator>(Op0);
1006     // The multiplication can't overflow if it is defined not to, or if
1007     // X == A / Y for some A.
1008     if ((IsSigned && Q.IIQ.hasNoSignedWrap(Mul)) ||
1009         (!IsSigned && Q.IIQ.hasNoUnsignedWrap(Mul)) ||
1010         (IsSigned && match(X, m_SDiv(m_Value(), m_Specific(Op1)))) ||
1011         (!IsSigned && match(X, m_UDiv(m_Value(), m_Specific(Op1))))) {
1012       return IsDiv ? X : Constant::getNullValue(Op0->getType());
1013     }
1014   }
1015 
1016   return nullptr;
1017 }
1018 
1019 /// Given a predicate and two operands, return true if the comparison is true.
1020 /// This is a helper for div/rem simplification where we return some other value
1021 /// when we can prove a relationship between the operands.
1022 static bool isICmpTrue(ICmpInst::Predicate Pred, Value *LHS, Value *RHS,
1023                        const SimplifyQuery &Q, unsigned MaxRecurse) {
1024   Value *V = SimplifyICmpInst(Pred, LHS, RHS, Q, MaxRecurse);
1025   Constant *C = dyn_cast_or_null<Constant>(V);
1026   return (C && C->isAllOnesValue());
1027 }
1028 
1029 /// Return true if we can simplify X / Y to 0. Remainder can adapt that answer
1030 /// to simplify X % Y to X.
1031 static bool isDivZero(Value *X, Value *Y, const SimplifyQuery &Q,
1032                       unsigned MaxRecurse, bool IsSigned) {
1033   // Recursion is always used, so bail out at once if we already hit the limit.
1034   if (!MaxRecurse--)
1035     return false;
1036 
1037   if (IsSigned) {
1038     // |X| / |Y| --> 0
1039     //
1040     // We require that 1 operand is a simple constant. That could be extended to
1041     // 2 variables if we computed the sign bit for each.
1042     //
1043     // Make sure that a constant is not the minimum signed value because taking
1044     // the abs() of that is undefined.
1045     Type *Ty = X->getType();
1046     const APInt *C;
1047     if (match(X, m_APInt(C)) && !C->isMinSignedValue()) {
1048       // Is the variable divisor magnitude always greater than the constant
1049       // dividend magnitude?
1050       // |Y| > |C| --> Y < -abs(C) or Y > abs(C)
1051       Constant *PosDividendC = ConstantInt::get(Ty, C->abs());
1052       Constant *NegDividendC = ConstantInt::get(Ty, -C->abs());
1053       if (isICmpTrue(CmpInst::ICMP_SLT, Y, NegDividendC, Q, MaxRecurse) ||
1054           isICmpTrue(CmpInst::ICMP_SGT, Y, PosDividendC, Q, MaxRecurse))
1055         return true;
1056     }
1057     if (match(Y, m_APInt(C))) {
1058       // Special-case: we can't take the abs() of a minimum signed value. If
1059       // that's the divisor, then all we have to do is prove that the dividend
1060       // is also not the minimum signed value.
1061       if (C->isMinSignedValue())
1062         return isICmpTrue(CmpInst::ICMP_NE, X, Y, Q, MaxRecurse);
1063 
1064       // Is the variable dividend magnitude always less than the constant
1065       // divisor magnitude?
1066       // |X| < |C| --> X > -abs(C) and X < abs(C)
1067       Constant *PosDivisorC = ConstantInt::get(Ty, C->abs());
1068       Constant *NegDivisorC = ConstantInt::get(Ty, -C->abs());
1069       if (isICmpTrue(CmpInst::ICMP_SGT, X, NegDivisorC, Q, MaxRecurse) &&
1070           isICmpTrue(CmpInst::ICMP_SLT, X, PosDivisorC, Q, MaxRecurse))
1071         return true;
1072     }
1073     return false;
1074   }
1075 
1076   // IsSigned == false.
1077   // Is the dividend unsigned less than the divisor?
1078   return isICmpTrue(ICmpInst::ICMP_ULT, X, Y, Q, MaxRecurse);
1079 }
1080 
1081 /// These are simplifications common to SDiv and UDiv.
1082 static Value *simplifyDiv(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1,
1083                           const SimplifyQuery &Q, unsigned MaxRecurse) {
1084   if (Constant *C = foldOrCommuteConstant(Opcode, Op0, Op1, Q))
1085     return C;
1086 
1087   if (Value *V = simplifyDivRem(Opcode, Op0, Op1, Q))
1088     return V;
1089 
1090   bool IsSigned = Opcode == Instruction::SDiv;
1091 
1092   // (X rem Y) / Y -> 0
1093   if ((IsSigned && match(Op0, m_SRem(m_Value(), m_Specific(Op1)))) ||
1094       (!IsSigned && match(Op0, m_URem(m_Value(), m_Specific(Op1)))))
1095     return Constant::getNullValue(Op0->getType());
1096 
1097   // (X /u C1) /u C2 -> 0 if C1 * C2 overflow
1098   ConstantInt *C1, *C2;
1099   if (!IsSigned && match(Op0, m_UDiv(m_Value(), m_ConstantInt(C1))) &&
1100       match(Op1, m_ConstantInt(C2))) {
1101     bool Overflow;
1102     (void)C1->getValue().umul_ov(C2->getValue(), Overflow);
1103     if (Overflow)
1104       return Constant::getNullValue(Op0->getType());
1105   }
1106 
1107   // If the operation is with the result of a select instruction, check whether
1108   // operating on either branch of the select always yields the same value.
1109   if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
1110     if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse))
1111       return V;
1112 
1113   // If the operation is with the result of a phi instruction, check whether
1114   // operating on all incoming values of the phi always yields the same value.
1115   if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
1116     if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse))
1117       return V;
1118 
1119   if (isDivZero(Op0, Op1, Q, MaxRecurse, IsSigned))
1120     return Constant::getNullValue(Op0->getType());
1121 
1122   return nullptr;
1123 }
1124 
1125 /// These are simplifications common to SRem and URem.
1126 static Value *simplifyRem(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1,
1127                           const SimplifyQuery &Q, unsigned MaxRecurse) {
1128   if (Constant *C = foldOrCommuteConstant(Opcode, Op0, Op1, Q))
1129     return C;
1130 
1131   if (Value *V = simplifyDivRem(Opcode, Op0, Op1, Q))
1132     return V;
1133 
1134   // (X % Y) % Y -> X % Y
1135   if ((Opcode == Instruction::SRem &&
1136        match(Op0, m_SRem(m_Value(), m_Specific(Op1)))) ||
1137       (Opcode == Instruction::URem &&
1138        match(Op0, m_URem(m_Value(), m_Specific(Op1)))))
1139     return Op0;
1140 
1141   // (X << Y) % X -> 0
1142   if (Q.IIQ.UseInstrInfo &&
1143       ((Opcode == Instruction::SRem &&
1144         match(Op0, m_NSWShl(m_Specific(Op1), m_Value()))) ||
1145        (Opcode == Instruction::URem &&
1146         match(Op0, m_NUWShl(m_Specific(Op1), m_Value())))))
1147     return Constant::getNullValue(Op0->getType());
1148 
1149   // If the operation is with the result of a select instruction, check whether
1150   // operating on either branch of the select always yields the same value.
1151   if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
1152     if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse))
1153       return V;
1154 
1155   // If the operation is with the result of a phi instruction, check whether
1156   // operating on all incoming values of the phi always yields the same value.
1157   if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
1158     if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse))
1159       return V;
1160 
1161   // If X / Y == 0, then X % Y == X.
1162   if (isDivZero(Op0, Op1, Q, MaxRecurse, Opcode == Instruction::SRem))
1163     return Op0;
1164 
1165   return nullptr;
1166 }
1167 
1168 /// Given operands for an SDiv, see if we can fold the result.
1169 /// If not, this returns null.
1170 static Value *SimplifySDivInst(Value *Op0, Value *Op1, const SimplifyQuery &Q,
1171                                unsigned MaxRecurse) {
1172   // If two operands are negated and no signed overflow, return -1.
1173   if (isKnownNegation(Op0, Op1, /*NeedNSW=*/true))
1174     return Constant::getAllOnesValue(Op0->getType());
1175 
1176   return simplifyDiv(Instruction::SDiv, Op0, Op1, Q, MaxRecurse);
1177 }
1178 
1179 Value *llvm::SimplifySDivInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) {
1180   return ::SimplifySDivInst(Op0, Op1, Q, RecursionLimit);
1181 }
1182 
1183 /// Given operands for a UDiv, see if we can fold the result.
1184 /// If not, this returns null.
1185 static Value *SimplifyUDivInst(Value *Op0, Value *Op1, const SimplifyQuery &Q,
1186                                unsigned MaxRecurse) {
1187   return simplifyDiv(Instruction::UDiv, Op0, Op1, Q, MaxRecurse);
1188 }
1189 
1190 Value *llvm::SimplifyUDivInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) {
1191   return ::SimplifyUDivInst(Op0, Op1, Q, RecursionLimit);
1192 }
1193 
1194 /// Given operands for an SRem, see if we can fold the result.
1195 /// If not, this returns null.
1196 static Value *SimplifySRemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q,
1197                                unsigned MaxRecurse) {
1198   // If the divisor is 0, the result is undefined, so assume the divisor is -1.
1199   // srem Op0, (sext i1 X) --> srem Op0, -1 --> 0
1200   Value *X;
1201   if (match(Op1, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1))
1202     return ConstantInt::getNullValue(Op0->getType());
1203 
1204   // If the two operands are negated, return 0.
1205   if (isKnownNegation(Op0, Op1))
1206     return ConstantInt::getNullValue(Op0->getType());
1207 
1208   return simplifyRem(Instruction::SRem, Op0, Op1, Q, MaxRecurse);
1209 }
1210 
1211 Value *llvm::SimplifySRemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) {
1212   return ::SimplifySRemInst(Op0, Op1, Q, RecursionLimit);
1213 }
1214 
1215 /// Given operands for a URem, see if we can fold the result.
1216 /// If not, this returns null.
1217 static Value *SimplifyURemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q,
1218                                unsigned MaxRecurse) {
1219   return simplifyRem(Instruction::URem, Op0, Op1, Q, MaxRecurse);
1220 }
1221 
1222 Value *llvm::SimplifyURemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) {
1223   return ::SimplifyURemInst(Op0, Op1, Q, RecursionLimit);
1224 }
1225 
1226 /// Returns true if a shift by \c Amount always yields poison.
1227 static bool isPoisonShift(Value *Amount, const SimplifyQuery &Q) {
1228   Constant *C = dyn_cast<Constant>(Amount);
1229   if (!C)
1230     return false;
1231 
1232   // X shift by undef -> poison because it may shift by the bitwidth.
1233   if (Q.isUndefValue(C))
1234     return true;
1235 
1236   // Shifting by the bitwidth or more is undefined.
1237   if (ConstantInt *CI = dyn_cast<ConstantInt>(C))
1238     if (CI->getValue().uge(CI->getType()->getScalarSizeInBits()))
1239       return true;
1240 
1241   // If all lanes of a vector shift are undefined the whole shift is.
1242   if (isa<ConstantVector>(C) || isa<ConstantDataVector>(C)) {
1243     for (unsigned I = 0,
1244                   E = cast<FixedVectorType>(C->getType())->getNumElements();
1245          I != E; ++I)
1246       if (!isPoisonShift(C->getAggregateElement(I), Q))
1247         return false;
1248     return true;
1249   }
1250 
1251   return false;
1252 }
1253 
1254 /// Given operands for an Shl, LShr or AShr, see if we can fold the result.
1255 /// If not, this returns null.
1256 static Value *SimplifyShift(Instruction::BinaryOps Opcode, Value *Op0,
1257                             Value *Op1, bool IsNSW, const SimplifyQuery &Q,
1258                             unsigned MaxRecurse) {
1259   if (Constant *C = foldOrCommuteConstant(Opcode, Op0, Op1, Q))
1260     return C;
1261 
1262   // poison shift by X -> poison
1263   if (isa<PoisonValue>(Op0))
1264     return Op0;
1265 
1266   // 0 shift by X -> 0
1267   if (match(Op0, m_Zero()))
1268     return Constant::getNullValue(Op0->getType());
1269 
1270   // X shift by 0 -> X
1271   // Shift-by-sign-extended bool must be shift-by-0 because shift-by-all-ones
1272   // would be poison.
1273   Value *X;
1274   if (match(Op1, m_Zero()) ||
1275       (match(Op1, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)))
1276     return Op0;
1277 
1278   // Fold undefined shifts.
1279   if (isPoisonShift(Op1, Q))
1280     return PoisonValue::get(Op0->getType());
1281 
1282   // If the operation is with the result of a select instruction, check whether
1283   // operating on either branch of the select always yields the same value.
1284   if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
1285     if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse))
1286       return V;
1287 
1288   // If the operation is with the result of a phi instruction, check whether
1289   // operating on all incoming values of the phi always yields the same value.
1290   if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
1291     if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse))
1292       return V;
1293 
1294   // If any bits in the shift amount make that value greater than or equal to
1295   // the number of bits in the type, the shift is undefined.
1296   KnownBits KnownAmt = computeKnownBits(Op1, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
1297   if (KnownAmt.getMinValue().uge(KnownAmt.getBitWidth()))
1298     return PoisonValue::get(Op0->getType());
1299 
1300   // If all valid bits in the shift amount are known zero, the first operand is
1301   // unchanged.
1302   unsigned NumValidShiftBits = Log2_32_Ceil(KnownAmt.getBitWidth());
1303   if (KnownAmt.countMinTrailingZeros() >= NumValidShiftBits)
1304     return Op0;
1305 
1306   // Check for nsw shl leading to a poison value.
1307   if (IsNSW) {
1308     assert(Opcode == Instruction::Shl && "Expected shl for nsw instruction");
1309     KnownBits KnownVal = computeKnownBits(Op0, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
1310     KnownBits KnownShl = KnownBits::shl(KnownVal, KnownAmt);
1311 
1312     if (KnownVal.Zero.isSignBitSet())
1313       KnownShl.Zero.setSignBit();
1314     if (KnownVal.One.isSignBitSet())
1315       KnownShl.One.setSignBit();
1316 
1317     if (KnownShl.hasConflict())
1318       return PoisonValue::get(Op0->getType());
1319   }
1320 
1321   return nullptr;
1322 }
1323 
1324 /// Given operands for an Shl, LShr or AShr, see if we can
1325 /// fold the result.  If not, this returns null.
1326 static Value *SimplifyRightShift(Instruction::BinaryOps Opcode, Value *Op0,
1327                                  Value *Op1, bool isExact, const SimplifyQuery &Q,
1328                                  unsigned MaxRecurse) {
1329   if (Value *V =
1330           SimplifyShift(Opcode, Op0, Op1, /*IsNSW*/ false, Q, MaxRecurse))
1331     return V;
1332 
1333   // X >> X -> 0
1334   if (Op0 == Op1)
1335     return Constant::getNullValue(Op0->getType());
1336 
1337   // undef >> X -> 0
1338   // undef >> X -> undef (if it's exact)
1339   if (Q.isUndefValue(Op0))
1340     return isExact ? Op0 : Constant::getNullValue(Op0->getType());
1341 
1342   // The low bit cannot be shifted out of an exact shift if it is set.
1343   if (isExact) {
1344     KnownBits Op0Known = computeKnownBits(Op0, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT);
1345     if (Op0Known.One[0])
1346       return Op0;
1347   }
1348 
1349   return nullptr;
1350 }
1351 
1352 /// Given operands for an Shl, see if we can fold the result.
1353 /// If not, this returns null.
1354 static Value *SimplifyShlInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
1355                               const SimplifyQuery &Q, unsigned MaxRecurse) {
1356   if (Value *V =
1357           SimplifyShift(Instruction::Shl, Op0, Op1, isNSW, Q, MaxRecurse))
1358     return V;
1359 
1360   // undef << X -> 0
1361   // undef << X -> undef if (if it's NSW/NUW)
1362   if (Q.isUndefValue(Op0))
1363     return isNSW || isNUW ? Op0 : Constant::getNullValue(Op0->getType());
1364 
1365   // (X >> A) << A -> X
1366   Value *X;
1367   if (Q.IIQ.UseInstrInfo &&
1368       match(Op0, m_Exact(m_Shr(m_Value(X), m_Specific(Op1)))))
1369     return X;
1370 
1371   // shl nuw i8 C, %x  ->  C  iff C has sign bit set.
1372   if (isNUW && match(Op0, m_Negative()))
1373     return Op0;
1374   // NOTE: could use computeKnownBits() / LazyValueInfo,
1375   // but the cost-benefit analysis suggests it isn't worth it.
1376 
1377   return nullptr;
1378 }
1379 
1380 Value *llvm::SimplifyShlInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
1381                              const SimplifyQuery &Q) {
1382   return ::SimplifyShlInst(Op0, Op1, isNSW, isNUW, Q, RecursionLimit);
1383 }
1384 
1385 /// Given operands for an LShr, see if we can fold the result.
1386 /// If not, this returns null.
1387 static Value *SimplifyLShrInst(Value *Op0, Value *Op1, bool isExact,
1388                                const SimplifyQuery &Q, unsigned MaxRecurse) {
1389   if (Value *V = SimplifyRightShift(Instruction::LShr, Op0, Op1, isExact, Q,
1390                                     MaxRecurse))
1391       return V;
1392 
1393   // (X << A) >> A -> X
1394   Value *X;
1395   if (match(Op0, m_NUWShl(m_Value(X), m_Specific(Op1))))
1396     return X;
1397 
1398   // ((X << A) | Y) >> A -> X  if effective width of Y is not larger than A.
1399   // We can return X as we do in the above case since OR alters no bits in X.
1400   // SimplifyDemandedBits in InstCombine can do more general optimization for
1401   // bit manipulation. This pattern aims to provide opportunities for other
1402   // optimizers by supporting a simple but common case in InstSimplify.
1403   Value *Y;
1404   const APInt *ShRAmt, *ShLAmt;
1405   if (match(Op1, m_APInt(ShRAmt)) &&
1406       match(Op0, m_c_Or(m_NUWShl(m_Value(X), m_APInt(ShLAmt)), m_Value(Y))) &&
1407       *ShRAmt == *ShLAmt) {
1408     const KnownBits YKnown = computeKnownBits(Y, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
1409     const unsigned EffWidthY = YKnown.countMaxActiveBits();
1410     if (ShRAmt->uge(EffWidthY))
1411       return X;
1412   }
1413 
1414   return nullptr;
1415 }
1416 
1417 Value *llvm::SimplifyLShrInst(Value *Op0, Value *Op1, bool isExact,
1418                               const SimplifyQuery &Q) {
1419   return ::SimplifyLShrInst(Op0, Op1, isExact, Q, RecursionLimit);
1420 }
1421 
1422 /// Given operands for an AShr, see if we can fold the result.
1423 /// If not, this returns null.
1424 static Value *SimplifyAShrInst(Value *Op0, Value *Op1, bool isExact,
1425                                const SimplifyQuery &Q, unsigned MaxRecurse) {
1426   if (Value *V = SimplifyRightShift(Instruction::AShr, Op0, Op1, isExact, Q,
1427                                     MaxRecurse))
1428     return V;
1429 
1430   // -1 >>a X --> -1
1431   // (-1 << X) a>> X --> -1
1432   // Do not return Op0 because it may contain undef elements if it's a vector.
1433   if (match(Op0, m_AllOnes()) ||
1434       match(Op0, m_Shl(m_AllOnes(), m_Specific(Op1))))
1435     return Constant::getAllOnesValue(Op0->getType());
1436 
1437   // (X << A) >> A -> X
1438   Value *X;
1439   if (Q.IIQ.UseInstrInfo && match(Op0, m_NSWShl(m_Value(X), m_Specific(Op1))))
1440     return X;
1441 
1442   // Arithmetic shifting an all-sign-bit value is a no-op.
1443   unsigned NumSignBits = ComputeNumSignBits(Op0, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
1444   if (NumSignBits == Op0->getType()->getScalarSizeInBits())
1445     return Op0;
1446 
1447   return nullptr;
1448 }
1449 
1450 Value *llvm::SimplifyAShrInst(Value *Op0, Value *Op1, bool isExact,
1451                               const SimplifyQuery &Q) {
1452   return ::SimplifyAShrInst(Op0, Op1, isExact, Q, RecursionLimit);
1453 }
1454 
1455 /// Commuted variants are assumed to be handled by calling this function again
1456 /// with the parameters swapped.
1457 static Value *simplifyUnsignedRangeCheck(ICmpInst *ZeroICmp,
1458                                          ICmpInst *UnsignedICmp, bool IsAnd,
1459                                          const SimplifyQuery &Q) {
1460   Value *X, *Y;
1461 
1462   ICmpInst::Predicate EqPred;
1463   if (!match(ZeroICmp, m_ICmp(EqPred, m_Value(Y), m_Zero())) ||
1464       !ICmpInst::isEquality(EqPred))
1465     return nullptr;
1466 
1467   ICmpInst::Predicate UnsignedPred;
1468 
1469   Value *A, *B;
1470   // Y = (A - B);
1471   if (match(Y, m_Sub(m_Value(A), m_Value(B)))) {
1472     if (match(UnsignedICmp,
1473               m_c_ICmp(UnsignedPred, m_Specific(A), m_Specific(B))) &&
1474         ICmpInst::isUnsigned(UnsignedPred)) {
1475       // A >=/<= B || (A - B) != 0  <-->  true
1476       if ((UnsignedPred == ICmpInst::ICMP_UGE ||
1477            UnsignedPred == ICmpInst::ICMP_ULE) &&
1478           EqPred == ICmpInst::ICMP_NE && !IsAnd)
1479         return ConstantInt::getTrue(UnsignedICmp->getType());
1480       // A </> B && (A - B) == 0  <-->  false
1481       if ((UnsignedPred == ICmpInst::ICMP_ULT ||
1482            UnsignedPred == ICmpInst::ICMP_UGT) &&
1483           EqPred == ICmpInst::ICMP_EQ && IsAnd)
1484         return ConstantInt::getFalse(UnsignedICmp->getType());
1485 
1486       // A </> B && (A - B) != 0  <-->  A </> B
1487       // A </> B || (A - B) != 0  <-->  (A - B) != 0
1488       if (EqPred == ICmpInst::ICMP_NE && (UnsignedPred == ICmpInst::ICMP_ULT ||
1489                                           UnsignedPred == ICmpInst::ICMP_UGT))
1490         return IsAnd ? UnsignedICmp : ZeroICmp;
1491 
1492       // A <=/>= B && (A - B) == 0  <-->  (A - B) == 0
1493       // A <=/>= B || (A - B) == 0  <-->  A <=/>= B
1494       if (EqPred == ICmpInst::ICMP_EQ && (UnsignedPred == ICmpInst::ICMP_ULE ||
1495                                           UnsignedPred == ICmpInst::ICMP_UGE))
1496         return IsAnd ? ZeroICmp : UnsignedICmp;
1497     }
1498 
1499     // Given  Y = (A - B)
1500     //   Y >= A && Y != 0  --> Y >= A  iff B != 0
1501     //   Y <  A || Y == 0  --> Y <  A  iff B != 0
1502     if (match(UnsignedICmp,
1503               m_c_ICmp(UnsignedPred, m_Specific(Y), m_Specific(A)))) {
1504       if (UnsignedPred == ICmpInst::ICMP_UGE && IsAnd &&
1505           EqPred == ICmpInst::ICMP_NE &&
1506           isKnownNonZero(B, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT))
1507         return UnsignedICmp;
1508       if (UnsignedPred == ICmpInst::ICMP_ULT && !IsAnd &&
1509           EqPred == ICmpInst::ICMP_EQ &&
1510           isKnownNonZero(B, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT))
1511         return UnsignedICmp;
1512     }
1513   }
1514 
1515   if (match(UnsignedICmp, m_ICmp(UnsignedPred, m_Value(X), m_Specific(Y))) &&
1516       ICmpInst::isUnsigned(UnsignedPred))
1517     ;
1518   else if (match(UnsignedICmp,
1519                  m_ICmp(UnsignedPred, m_Specific(Y), m_Value(X))) &&
1520            ICmpInst::isUnsigned(UnsignedPred))
1521     UnsignedPred = ICmpInst::getSwappedPredicate(UnsignedPred);
1522   else
1523     return nullptr;
1524 
1525   // X > Y && Y == 0  -->  Y == 0  iff X != 0
1526   // X > Y || Y == 0  -->  X > Y   iff X != 0
1527   if (UnsignedPred == ICmpInst::ICMP_UGT && EqPred == ICmpInst::ICMP_EQ &&
1528       isKnownNonZero(X, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT))
1529     return IsAnd ? ZeroICmp : UnsignedICmp;
1530 
1531   // X <= Y && Y != 0  -->  X <= Y  iff X != 0
1532   // X <= Y || Y != 0  -->  Y != 0  iff X != 0
1533   if (UnsignedPred == ICmpInst::ICMP_ULE && EqPred == ICmpInst::ICMP_NE &&
1534       isKnownNonZero(X, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT))
1535     return IsAnd ? UnsignedICmp : ZeroICmp;
1536 
1537   // The transforms below here are expected to be handled more generally with
1538   // simplifyAndOrOfICmpsWithLimitConst() or in InstCombine's
1539   // foldAndOrOfICmpsWithConstEq(). If we are looking to trim optimizer overlap,
1540   // these are candidates for removal.
1541 
1542   // X < Y && Y != 0  -->  X < Y
1543   // X < Y || Y != 0  -->  Y != 0
1544   if (UnsignedPred == ICmpInst::ICMP_ULT && EqPred == ICmpInst::ICMP_NE)
1545     return IsAnd ? UnsignedICmp : ZeroICmp;
1546 
1547   // X >= Y && Y == 0  -->  Y == 0
1548   // X >= Y || Y == 0  -->  X >= Y
1549   if (UnsignedPred == ICmpInst::ICMP_UGE && EqPred == ICmpInst::ICMP_EQ)
1550     return IsAnd ? ZeroICmp : UnsignedICmp;
1551 
1552   // X < Y && Y == 0  -->  false
1553   if (UnsignedPred == ICmpInst::ICMP_ULT && EqPred == ICmpInst::ICMP_EQ &&
1554       IsAnd)
1555     return getFalse(UnsignedICmp->getType());
1556 
1557   // X >= Y || Y != 0  -->  true
1558   if (UnsignedPred == ICmpInst::ICMP_UGE && EqPred == ICmpInst::ICMP_NE &&
1559       !IsAnd)
1560     return getTrue(UnsignedICmp->getType());
1561 
1562   return nullptr;
1563 }
1564 
1565 /// Commuted variants are assumed to be handled by calling this function again
1566 /// with the parameters swapped.
1567 static Value *simplifyAndOfICmpsWithSameOperands(ICmpInst *Op0, ICmpInst *Op1) {
1568   ICmpInst::Predicate Pred0, Pred1;
1569   Value *A ,*B;
1570   if (!match(Op0, m_ICmp(Pred0, m_Value(A), m_Value(B))) ||
1571       !match(Op1, m_ICmp(Pred1, m_Specific(A), m_Specific(B))))
1572     return nullptr;
1573 
1574   // We have (icmp Pred0, A, B) & (icmp Pred1, A, B).
1575   // If Op1 is always implied true by Op0, then Op0 is a subset of Op1, and we
1576   // can eliminate Op1 from this 'and'.
1577   if (ICmpInst::isImpliedTrueByMatchingCmp(Pred0, Pred1))
1578     return Op0;
1579 
1580   // Check for any combination of predicates that are guaranteed to be disjoint.
1581   if ((Pred0 == ICmpInst::getInversePredicate(Pred1)) ||
1582       (Pred0 == ICmpInst::ICMP_EQ && ICmpInst::isFalseWhenEqual(Pred1)) ||
1583       (Pred0 == ICmpInst::ICMP_SLT && Pred1 == ICmpInst::ICMP_SGT) ||
1584       (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_UGT))
1585     return getFalse(Op0->getType());
1586 
1587   return nullptr;
1588 }
1589 
1590 /// Commuted variants are assumed to be handled by calling this function again
1591 /// with the parameters swapped.
1592 static Value *simplifyOrOfICmpsWithSameOperands(ICmpInst *Op0, ICmpInst *Op1) {
1593   ICmpInst::Predicate Pred0, Pred1;
1594   Value *A ,*B;
1595   if (!match(Op0, m_ICmp(Pred0, m_Value(A), m_Value(B))) ||
1596       !match(Op1, m_ICmp(Pred1, m_Specific(A), m_Specific(B))))
1597     return nullptr;
1598 
1599   // We have (icmp Pred0, A, B) | (icmp Pred1, A, B).
1600   // If Op1 is always implied true by Op0, then Op0 is a subset of Op1, and we
1601   // can eliminate Op0 from this 'or'.
1602   if (ICmpInst::isImpliedTrueByMatchingCmp(Pred0, Pred1))
1603     return Op1;
1604 
1605   // Check for any combination of predicates that cover the entire range of
1606   // possibilities.
1607   if ((Pred0 == ICmpInst::getInversePredicate(Pred1)) ||
1608       (Pred0 == ICmpInst::ICMP_NE && ICmpInst::isTrueWhenEqual(Pred1)) ||
1609       (Pred0 == ICmpInst::ICMP_SLE && Pred1 == ICmpInst::ICMP_SGE) ||
1610       (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_UGE))
1611     return getTrue(Op0->getType());
1612 
1613   return nullptr;
1614 }
1615 
1616 /// Test if a pair of compares with a shared operand and 2 constants has an
1617 /// empty set intersection, full set union, or if one compare is a superset of
1618 /// the other.
1619 static Value *simplifyAndOrOfICmpsWithConstants(ICmpInst *Cmp0, ICmpInst *Cmp1,
1620                                                 bool IsAnd) {
1621   // Look for this pattern: {and/or} (icmp X, C0), (icmp X, C1)).
1622   if (Cmp0->getOperand(0) != Cmp1->getOperand(0))
1623     return nullptr;
1624 
1625   const APInt *C0, *C1;
1626   if (!match(Cmp0->getOperand(1), m_APInt(C0)) ||
1627       !match(Cmp1->getOperand(1), m_APInt(C1)))
1628     return nullptr;
1629 
1630   auto Range0 = ConstantRange::makeExactICmpRegion(Cmp0->getPredicate(), *C0);
1631   auto Range1 = ConstantRange::makeExactICmpRegion(Cmp1->getPredicate(), *C1);
1632 
1633   // For and-of-compares, check if the intersection is empty:
1634   // (icmp X, C0) && (icmp X, C1) --> empty set --> false
1635   if (IsAnd && Range0.intersectWith(Range1).isEmptySet())
1636     return getFalse(Cmp0->getType());
1637 
1638   // For or-of-compares, check if the union is full:
1639   // (icmp X, C0) || (icmp X, C1) --> full set --> true
1640   if (!IsAnd && Range0.unionWith(Range1).isFullSet())
1641     return getTrue(Cmp0->getType());
1642 
1643   // Is one range a superset of the other?
1644   // If this is and-of-compares, take the smaller set:
1645   // (icmp sgt X, 4) && (icmp sgt X, 42) --> icmp sgt X, 42
1646   // If this is or-of-compares, take the larger set:
1647   // (icmp sgt X, 4) || (icmp sgt X, 42) --> icmp sgt X, 4
1648   if (Range0.contains(Range1))
1649     return IsAnd ? Cmp1 : Cmp0;
1650   if (Range1.contains(Range0))
1651     return IsAnd ? Cmp0 : Cmp1;
1652 
1653   return nullptr;
1654 }
1655 
1656 static Value *simplifyAndOrOfICmpsWithZero(ICmpInst *Cmp0, ICmpInst *Cmp1,
1657                                            bool IsAnd) {
1658   ICmpInst::Predicate P0 = Cmp0->getPredicate(), P1 = Cmp1->getPredicate();
1659   if (!match(Cmp0->getOperand(1), m_Zero()) ||
1660       !match(Cmp1->getOperand(1), m_Zero()) || P0 != P1)
1661     return nullptr;
1662 
1663   if ((IsAnd && P0 != ICmpInst::ICMP_NE) || (!IsAnd && P1 != ICmpInst::ICMP_EQ))
1664     return nullptr;
1665 
1666   // We have either "(X == 0 || Y == 0)" or "(X != 0 && Y != 0)".
1667   Value *X = Cmp0->getOperand(0);
1668   Value *Y = Cmp1->getOperand(0);
1669 
1670   // If one of the compares is a masked version of a (not) null check, then
1671   // that compare implies the other, so we eliminate the other. Optionally, look
1672   // through a pointer-to-int cast to match a null check of a pointer type.
1673 
1674   // (X == 0) || (([ptrtoint] X & ?) == 0) --> ([ptrtoint] X & ?) == 0
1675   // (X == 0) || ((? & [ptrtoint] X) == 0) --> (? & [ptrtoint] X) == 0
1676   // (X != 0) && (([ptrtoint] X & ?) != 0) --> ([ptrtoint] X & ?) != 0
1677   // (X != 0) && ((? & [ptrtoint] X) != 0) --> (? & [ptrtoint] X) != 0
1678   if (match(Y, m_c_And(m_Specific(X), m_Value())) ||
1679       match(Y, m_c_And(m_PtrToInt(m_Specific(X)), m_Value())))
1680     return Cmp1;
1681 
1682   // (([ptrtoint] Y & ?) == 0) || (Y == 0) --> ([ptrtoint] Y & ?) == 0
1683   // ((? & [ptrtoint] Y) == 0) || (Y == 0) --> (? & [ptrtoint] Y) == 0
1684   // (([ptrtoint] Y & ?) != 0) && (Y != 0) --> ([ptrtoint] Y & ?) != 0
1685   // ((? & [ptrtoint] Y) != 0) && (Y != 0) --> (? & [ptrtoint] Y) != 0
1686   if (match(X, m_c_And(m_Specific(Y), m_Value())) ||
1687       match(X, m_c_And(m_PtrToInt(m_Specific(Y)), m_Value())))
1688     return Cmp0;
1689 
1690   return nullptr;
1691 }
1692 
1693 static Value *simplifyAndOfICmpsWithAdd(ICmpInst *Op0, ICmpInst *Op1,
1694                                         const InstrInfoQuery &IIQ) {
1695   // (icmp (add V, C0), C1) & (icmp V, C0)
1696   ICmpInst::Predicate Pred0, Pred1;
1697   const APInt *C0, *C1;
1698   Value *V;
1699   if (!match(Op0, m_ICmp(Pred0, m_Add(m_Value(V), m_APInt(C0)), m_APInt(C1))))
1700     return nullptr;
1701 
1702   if (!match(Op1, m_ICmp(Pred1, m_Specific(V), m_Value())))
1703     return nullptr;
1704 
1705   auto *AddInst = cast<OverflowingBinaryOperator>(Op0->getOperand(0));
1706   if (AddInst->getOperand(1) != Op1->getOperand(1))
1707     return nullptr;
1708 
1709   Type *ITy = Op0->getType();
1710   bool isNSW = IIQ.hasNoSignedWrap(AddInst);
1711   bool isNUW = IIQ.hasNoUnsignedWrap(AddInst);
1712 
1713   const APInt Delta = *C1 - *C0;
1714   if (C0->isStrictlyPositive()) {
1715     if (Delta == 2) {
1716       if (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_SGT)
1717         return getFalse(ITy);
1718       if (Pred0 == ICmpInst::ICMP_SLT && Pred1 == ICmpInst::ICMP_SGT && isNSW)
1719         return getFalse(ITy);
1720     }
1721     if (Delta == 1) {
1722       if (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_SGT)
1723         return getFalse(ITy);
1724       if (Pred0 == ICmpInst::ICMP_SLE && Pred1 == ICmpInst::ICMP_SGT && isNSW)
1725         return getFalse(ITy);
1726     }
1727   }
1728   if (C0->getBoolValue() && isNUW) {
1729     if (Delta == 2)
1730       if (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_UGT)
1731         return getFalse(ITy);
1732     if (Delta == 1)
1733       if (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_UGT)
1734         return getFalse(ITy);
1735   }
1736 
1737   return nullptr;
1738 }
1739 
1740 /// Try to eliminate compares with signed or unsigned min/max constants.
1741 static Value *simplifyAndOrOfICmpsWithLimitConst(ICmpInst *Cmp0, ICmpInst *Cmp1,
1742                                                  bool IsAnd) {
1743   // Canonicalize an equality compare as Cmp0.
1744   if (Cmp1->isEquality())
1745     std::swap(Cmp0, Cmp1);
1746   if (!Cmp0->isEquality())
1747     return nullptr;
1748 
1749   // The non-equality compare must include a common operand (X). Canonicalize
1750   // the common operand as operand 0 (the predicate is swapped if the common
1751   // operand was operand 1).
1752   ICmpInst::Predicate Pred0 = Cmp0->getPredicate();
1753   Value *X = Cmp0->getOperand(0);
1754   ICmpInst::Predicate Pred1;
1755   bool HasNotOp = match(Cmp1, m_c_ICmp(Pred1, m_Not(m_Specific(X)), m_Value()));
1756   if (!HasNotOp && !match(Cmp1, m_c_ICmp(Pred1, m_Specific(X), m_Value())))
1757     return nullptr;
1758   if (ICmpInst::isEquality(Pred1))
1759     return nullptr;
1760 
1761   // The equality compare must be against a constant. Flip bits if we matched
1762   // a bitwise not. Convert a null pointer constant to an integer zero value.
1763   APInt MinMaxC;
1764   const APInt *C;
1765   if (match(Cmp0->getOperand(1), m_APInt(C)))
1766     MinMaxC = HasNotOp ? ~*C : *C;
1767   else if (isa<ConstantPointerNull>(Cmp0->getOperand(1)))
1768     MinMaxC = APInt::getZero(8);
1769   else
1770     return nullptr;
1771 
1772   // DeMorganize if this is 'or': P0 || P1 --> !P0 && !P1.
1773   if (!IsAnd) {
1774     Pred0 = ICmpInst::getInversePredicate(Pred0);
1775     Pred1 = ICmpInst::getInversePredicate(Pred1);
1776   }
1777 
1778   // Normalize to unsigned compare and unsigned min/max value.
1779   // Example for 8-bit: -128 + 128 -> 0; 127 + 128 -> 255
1780   if (ICmpInst::isSigned(Pred1)) {
1781     Pred1 = ICmpInst::getUnsignedPredicate(Pred1);
1782     MinMaxC += APInt::getSignedMinValue(MinMaxC.getBitWidth());
1783   }
1784 
1785   // (X != MAX) && (X < Y) --> X < Y
1786   // (X == MAX) || (X >= Y) --> X >= Y
1787   if (MinMaxC.isMaxValue())
1788     if (Pred0 == ICmpInst::ICMP_NE && Pred1 == ICmpInst::ICMP_ULT)
1789       return Cmp1;
1790 
1791   // (X != MIN) && (X > Y) -->  X > Y
1792   // (X == MIN) || (X <= Y) --> X <= Y
1793   if (MinMaxC.isMinValue())
1794     if (Pred0 == ICmpInst::ICMP_NE && Pred1 == ICmpInst::ICMP_UGT)
1795       return Cmp1;
1796 
1797   return nullptr;
1798 }
1799 
1800 static Value *simplifyAndOfICmps(ICmpInst *Op0, ICmpInst *Op1,
1801                                  const SimplifyQuery &Q) {
1802   if (Value *X = simplifyUnsignedRangeCheck(Op0, Op1, /*IsAnd=*/true, Q))
1803     return X;
1804   if (Value *X = simplifyUnsignedRangeCheck(Op1, Op0, /*IsAnd=*/true, Q))
1805     return X;
1806 
1807   if (Value *X = simplifyAndOfICmpsWithSameOperands(Op0, Op1))
1808     return X;
1809   if (Value *X = simplifyAndOfICmpsWithSameOperands(Op1, Op0))
1810     return X;
1811 
1812   if (Value *X = simplifyAndOrOfICmpsWithConstants(Op0, Op1, true))
1813     return X;
1814 
1815   if (Value *X = simplifyAndOrOfICmpsWithLimitConst(Op0, Op1, true))
1816     return X;
1817 
1818   if (Value *X = simplifyAndOrOfICmpsWithZero(Op0, Op1, true))
1819     return X;
1820 
1821   if (Value *X = simplifyAndOfICmpsWithAdd(Op0, Op1, Q.IIQ))
1822     return X;
1823   if (Value *X = simplifyAndOfICmpsWithAdd(Op1, Op0, Q.IIQ))
1824     return X;
1825 
1826   return nullptr;
1827 }
1828 
1829 static Value *simplifyOrOfICmpsWithAdd(ICmpInst *Op0, ICmpInst *Op1,
1830                                        const InstrInfoQuery &IIQ) {
1831   // (icmp (add V, C0), C1) | (icmp V, C0)
1832   ICmpInst::Predicate Pred0, Pred1;
1833   const APInt *C0, *C1;
1834   Value *V;
1835   if (!match(Op0, m_ICmp(Pred0, m_Add(m_Value(V), m_APInt(C0)), m_APInt(C1))))
1836     return nullptr;
1837 
1838   if (!match(Op1, m_ICmp(Pred1, m_Specific(V), m_Value())))
1839     return nullptr;
1840 
1841   auto *AddInst = cast<BinaryOperator>(Op0->getOperand(0));
1842   if (AddInst->getOperand(1) != Op1->getOperand(1))
1843     return nullptr;
1844 
1845   Type *ITy = Op0->getType();
1846   bool isNSW = IIQ.hasNoSignedWrap(AddInst);
1847   bool isNUW = IIQ.hasNoUnsignedWrap(AddInst);
1848 
1849   const APInt Delta = *C1 - *C0;
1850   if (C0->isStrictlyPositive()) {
1851     if (Delta == 2) {
1852       if (Pred0 == ICmpInst::ICMP_UGE && Pred1 == ICmpInst::ICMP_SLE)
1853         return getTrue(ITy);
1854       if (Pred0 == ICmpInst::ICMP_SGE && Pred1 == ICmpInst::ICMP_SLE && isNSW)
1855         return getTrue(ITy);
1856     }
1857     if (Delta == 1) {
1858       if (Pred0 == ICmpInst::ICMP_UGT && Pred1 == ICmpInst::ICMP_SLE)
1859         return getTrue(ITy);
1860       if (Pred0 == ICmpInst::ICMP_SGT && Pred1 == ICmpInst::ICMP_SLE && isNSW)
1861         return getTrue(ITy);
1862     }
1863   }
1864   if (C0->getBoolValue() && isNUW) {
1865     if (Delta == 2)
1866       if (Pred0 == ICmpInst::ICMP_UGE && Pred1 == ICmpInst::ICMP_ULE)
1867         return getTrue(ITy);
1868     if (Delta == 1)
1869       if (Pred0 == ICmpInst::ICMP_UGT && Pred1 == ICmpInst::ICMP_ULE)
1870         return getTrue(ITy);
1871   }
1872 
1873   return nullptr;
1874 }
1875 
1876 static Value *simplifyOrOfICmps(ICmpInst *Op0, ICmpInst *Op1,
1877                                 const SimplifyQuery &Q) {
1878   if (Value *X = simplifyUnsignedRangeCheck(Op0, Op1, /*IsAnd=*/false, Q))
1879     return X;
1880   if (Value *X = simplifyUnsignedRangeCheck(Op1, Op0, /*IsAnd=*/false, Q))
1881     return X;
1882 
1883   if (Value *X = simplifyOrOfICmpsWithSameOperands(Op0, Op1))
1884     return X;
1885   if (Value *X = simplifyOrOfICmpsWithSameOperands(Op1, Op0))
1886     return X;
1887 
1888   if (Value *X = simplifyAndOrOfICmpsWithConstants(Op0, Op1, false))
1889     return X;
1890 
1891   if (Value *X = simplifyAndOrOfICmpsWithLimitConst(Op0, Op1, false))
1892     return X;
1893 
1894   if (Value *X = simplifyAndOrOfICmpsWithZero(Op0, Op1, false))
1895     return X;
1896 
1897   if (Value *X = simplifyOrOfICmpsWithAdd(Op0, Op1, Q.IIQ))
1898     return X;
1899   if (Value *X = simplifyOrOfICmpsWithAdd(Op1, Op0, Q.IIQ))
1900     return X;
1901 
1902   return nullptr;
1903 }
1904 
1905 static Value *simplifyAndOrOfFCmps(const TargetLibraryInfo *TLI,
1906                                    FCmpInst *LHS, FCmpInst *RHS, bool IsAnd) {
1907   Value *LHS0 = LHS->getOperand(0), *LHS1 = LHS->getOperand(1);
1908   Value *RHS0 = RHS->getOperand(0), *RHS1 = RHS->getOperand(1);
1909   if (LHS0->getType() != RHS0->getType())
1910     return nullptr;
1911 
1912   FCmpInst::Predicate PredL = LHS->getPredicate(), PredR = RHS->getPredicate();
1913   if ((PredL == FCmpInst::FCMP_ORD && PredR == FCmpInst::FCMP_ORD && IsAnd) ||
1914       (PredL == FCmpInst::FCMP_UNO && PredR == FCmpInst::FCMP_UNO && !IsAnd)) {
1915     // (fcmp ord NNAN, X) & (fcmp ord X, Y) --> fcmp ord X, Y
1916     // (fcmp ord NNAN, X) & (fcmp ord Y, X) --> fcmp ord Y, X
1917     // (fcmp ord X, NNAN) & (fcmp ord X, Y) --> fcmp ord X, Y
1918     // (fcmp ord X, NNAN) & (fcmp ord Y, X) --> fcmp ord Y, X
1919     // (fcmp uno NNAN, X) | (fcmp uno X, Y) --> fcmp uno X, Y
1920     // (fcmp uno NNAN, X) | (fcmp uno Y, X) --> fcmp uno Y, X
1921     // (fcmp uno X, NNAN) | (fcmp uno X, Y) --> fcmp uno X, Y
1922     // (fcmp uno X, NNAN) | (fcmp uno Y, X) --> fcmp uno Y, X
1923     if ((isKnownNeverNaN(LHS0, TLI) && (LHS1 == RHS0 || LHS1 == RHS1)) ||
1924         (isKnownNeverNaN(LHS1, TLI) && (LHS0 == RHS0 || LHS0 == RHS1)))
1925       return RHS;
1926 
1927     // (fcmp ord X, Y) & (fcmp ord NNAN, X) --> fcmp ord X, Y
1928     // (fcmp ord Y, X) & (fcmp ord NNAN, X) --> fcmp ord Y, X
1929     // (fcmp ord X, Y) & (fcmp ord X, NNAN) --> fcmp ord X, Y
1930     // (fcmp ord Y, X) & (fcmp ord X, NNAN) --> fcmp ord Y, X
1931     // (fcmp uno X, Y) | (fcmp uno NNAN, X) --> fcmp uno X, Y
1932     // (fcmp uno Y, X) | (fcmp uno NNAN, X) --> fcmp uno Y, X
1933     // (fcmp uno X, Y) | (fcmp uno X, NNAN) --> fcmp uno X, Y
1934     // (fcmp uno Y, X) | (fcmp uno X, NNAN) --> fcmp uno Y, X
1935     if ((isKnownNeverNaN(RHS0, TLI) && (RHS1 == LHS0 || RHS1 == LHS1)) ||
1936         (isKnownNeverNaN(RHS1, TLI) && (RHS0 == LHS0 || RHS0 == LHS1)))
1937       return LHS;
1938   }
1939 
1940   return nullptr;
1941 }
1942 
1943 static Value *simplifyAndOrOfCmps(const SimplifyQuery &Q,
1944                                   Value *Op0, Value *Op1, bool IsAnd) {
1945   // Look through casts of the 'and' operands to find compares.
1946   auto *Cast0 = dyn_cast<CastInst>(Op0);
1947   auto *Cast1 = dyn_cast<CastInst>(Op1);
1948   if (Cast0 && Cast1 && Cast0->getOpcode() == Cast1->getOpcode() &&
1949       Cast0->getSrcTy() == Cast1->getSrcTy()) {
1950     Op0 = Cast0->getOperand(0);
1951     Op1 = Cast1->getOperand(0);
1952   }
1953 
1954   Value *V = nullptr;
1955   auto *ICmp0 = dyn_cast<ICmpInst>(Op0);
1956   auto *ICmp1 = dyn_cast<ICmpInst>(Op1);
1957   if (ICmp0 && ICmp1)
1958     V = IsAnd ? simplifyAndOfICmps(ICmp0, ICmp1, Q)
1959               : simplifyOrOfICmps(ICmp0, ICmp1, Q);
1960 
1961   auto *FCmp0 = dyn_cast<FCmpInst>(Op0);
1962   auto *FCmp1 = dyn_cast<FCmpInst>(Op1);
1963   if (FCmp0 && FCmp1)
1964     V = simplifyAndOrOfFCmps(Q.TLI, FCmp0, FCmp1, IsAnd);
1965 
1966   if (!V)
1967     return nullptr;
1968   if (!Cast0)
1969     return V;
1970 
1971   // If we looked through casts, we can only handle a constant simplification
1972   // because we are not allowed to create a cast instruction here.
1973   if (auto *C = dyn_cast<Constant>(V))
1974     return ConstantExpr::getCast(Cast0->getOpcode(), C, Cast0->getType());
1975 
1976   return nullptr;
1977 }
1978 
1979 /// Given a bitwise logic op, check if the operands are add/sub with a common
1980 /// source value and inverted constant (identity: C - X -> ~(X + ~C)).
1981 static Value *simplifyLogicOfAddSub(Value *Op0, Value *Op1,
1982                                     Instruction::BinaryOps Opcode) {
1983   assert(Op0->getType() == Op1->getType() && "Mismatched binop types");
1984   assert(BinaryOperator::isBitwiseLogicOp(Opcode) && "Expected logic op");
1985   Value *X;
1986   Constant *C1, *C2;
1987   if ((match(Op0, m_Add(m_Value(X), m_Constant(C1))) &&
1988        match(Op1, m_Sub(m_Constant(C2), m_Specific(X)))) ||
1989       (match(Op1, m_Add(m_Value(X), m_Constant(C1))) &&
1990        match(Op0, m_Sub(m_Constant(C2), m_Specific(X))))) {
1991     if (ConstantExpr::getNot(C1) == C2) {
1992       // (X + C) & (~C - X) --> (X + C) & ~(X + C) --> 0
1993       // (X + C) | (~C - X) --> (X + C) | ~(X + C) --> -1
1994       // (X + C) ^ (~C - X) --> (X + C) ^ ~(X + C) --> -1
1995       Type *Ty = Op0->getType();
1996       return Opcode == Instruction::And ? ConstantInt::getNullValue(Ty)
1997                                         : ConstantInt::getAllOnesValue(Ty);
1998     }
1999   }
2000   return nullptr;
2001 }
2002 
2003 /// Given operands for an And, see if we can fold the result.
2004 /// If not, this returns null.
2005 static Value *SimplifyAndInst(Value *Op0, Value *Op1, const SimplifyQuery &Q,
2006                               unsigned MaxRecurse) {
2007   if (Constant *C = foldOrCommuteConstant(Instruction::And, Op0, Op1, Q))
2008     return C;
2009 
2010   // X & poison -> poison
2011   if (isa<PoisonValue>(Op1))
2012     return Op1;
2013 
2014   // X & undef -> 0
2015   if (Q.isUndefValue(Op1))
2016     return Constant::getNullValue(Op0->getType());
2017 
2018   // X & X = X
2019   if (Op0 == Op1)
2020     return Op0;
2021 
2022   // X & 0 = 0
2023   if (match(Op1, m_Zero()))
2024     return Constant::getNullValue(Op0->getType());
2025 
2026   // X & -1 = X
2027   if (match(Op1, m_AllOnes()))
2028     return Op0;
2029 
2030   // A & ~A  =  ~A & A  =  0
2031   if (match(Op0, m_Not(m_Specific(Op1))) ||
2032       match(Op1, m_Not(m_Specific(Op0))))
2033     return Constant::getNullValue(Op0->getType());
2034 
2035   // (A | ?) & A = A
2036   if (match(Op0, m_c_Or(m_Specific(Op1), m_Value())))
2037     return Op1;
2038 
2039   // A & (A | ?) = A
2040   if (match(Op1, m_c_Or(m_Specific(Op0), m_Value())))
2041     return Op0;
2042 
2043   // (X | Y) & (X | ~Y) --> X (commuted 8 ways)
2044   Value *X, *Y;
2045   if (match(Op0, m_c_Or(m_Value(X), m_Not(m_Value(Y)))) &&
2046       match(Op1, m_c_Or(m_Deferred(X), m_Deferred(Y))))
2047     return X;
2048   if (match(Op1, m_c_Or(m_Value(X), m_Not(m_Value(Y)))) &&
2049       match(Op0, m_c_Or(m_Deferred(X), m_Deferred(Y))))
2050     return X;
2051 
2052   if (Value *V = simplifyLogicOfAddSub(Op0, Op1, Instruction::And))
2053     return V;
2054 
2055   // A mask that only clears known zeros of a shifted value is a no-op.
2056   const APInt *Mask;
2057   const APInt *ShAmt;
2058   if (match(Op1, m_APInt(Mask))) {
2059     // If all bits in the inverted and shifted mask are clear:
2060     // and (shl X, ShAmt), Mask --> shl X, ShAmt
2061     if (match(Op0, m_Shl(m_Value(X), m_APInt(ShAmt))) &&
2062         (~(*Mask)).lshr(*ShAmt).isZero())
2063       return Op0;
2064 
2065     // If all bits in the inverted and shifted mask are clear:
2066     // and (lshr X, ShAmt), Mask --> lshr X, ShAmt
2067     if (match(Op0, m_LShr(m_Value(X), m_APInt(ShAmt))) &&
2068         (~(*Mask)).shl(*ShAmt).isZero())
2069       return Op0;
2070   }
2071 
2072   // If we have a multiplication overflow check that is being 'and'ed with a
2073   // check that one of the multipliers is not zero, we can omit the 'and', and
2074   // only keep the overflow check.
2075   if (isCheckForZeroAndMulWithOverflow(Op0, Op1, true))
2076     return Op1;
2077   if (isCheckForZeroAndMulWithOverflow(Op1, Op0, true))
2078     return Op0;
2079 
2080   // A & (-A) = A if A is a power of two or zero.
2081   if (match(Op0, m_Neg(m_Specific(Op1))) ||
2082       match(Op1, m_Neg(m_Specific(Op0)))) {
2083     if (isKnownToBeAPowerOfTwo(Op0, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI,
2084                                Q.DT))
2085       return Op0;
2086     if (isKnownToBeAPowerOfTwo(Op1, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI,
2087                                Q.DT))
2088       return Op1;
2089   }
2090 
2091   // This is a similar pattern used for checking if a value is a power-of-2:
2092   // (A - 1) & A --> 0 (if A is a power-of-2 or 0)
2093   // A & (A - 1) --> 0 (if A is a power-of-2 or 0)
2094   if (match(Op0, m_Add(m_Specific(Op1), m_AllOnes())) &&
2095       isKnownToBeAPowerOfTwo(Op1, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI, Q.DT))
2096     return Constant::getNullValue(Op1->getType());
2097   if (match(Op1, m_Add(m_Specific(Op0), m_AllOnes())) &&
2098       isKnownToBeAPowerOfTwo(Op0, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI, Q.DT))
2099     return Constant::getNullValue(Op0->getType());
2100 
2101   if (Value *V = simplifyAndOrOfCmps(Q, Op0, Op1, true))
2102     return V;
2103 
2104   // Try some generic simplifications for associative operations.
2105   if (Value *V = SimplifyAssociativeBinOp(Instruction::And, Op0, Op1, Q,
2106                                           MaxRecurse))
2107     return V;
2108 
2109   // And distributes over Or.  Try some generic simplifications based on this.
2110   if (Value *V = expandCommutativeBinOp(Instruction::And, Op0, Op1,
2111                                         Instruction::Or, Q, MaxRecurse))
2112     return V;
2113 
2114   // And distributes over Xor.  Try some generic simplifications based on this.
2115   if (Value *V = expandCommutativeBinOp(Instruction::And, Op0, Op1,
2116                                         Instruction::Xor, Q, MaxRecurse))
2117     return V;
2118 
2119   if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) {
2120     if (Op0->getType()->isIntOrIntVectorTy(1)) {
2121       // A & (A && B) -> A && B
2122       if (match(Op1, m_Select(m_Specific(Op0), m_Value(), m_Zero())))
2123         return Op1;
2124       else if (match(Op0, m_Select(m_Specific(Op1), m_Value(), m_Zero())))
2125         return Op0;
2126     }
2127     // If the operation is with the result of a select instruction, check
2128     // whether operating on either branch of the select always yields the same
2129     // value.
2130     if (Value *V = ThreadBinOpOverSelect(Instruction::And, Op0, Op1, Q,
2131                                          MaxRecurse))
2132       return V;
2133   }
2134 
2135   // If the operation is with the result of a phi instruction, check whether
2136   // operating on all incoming values of the phi always yields the same value.
2137   if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
2138     if (Value *V = ThreadBinOpOverPHI(Instruction::And, Op0, Op1, Q,
2139                                       MaxRecurse))
2140       return V;
2141 
2142   // Assuming the effective width of Y is not larger than A, i.e. all bits
2143   // from X and Y are disjoint in (X << A) | Y,
2144   // if the mask of this AND op covers all bits of X or Y, while it covers
2145   // no bits from the other, we can bypass this AND op. E.g.,
2146   // ((X << A) | Y) & Mask -> Y,
2147   //     if Mask = ((1 << effective_width_of(Y)) - 1)
2148   // ((X << A) | Y) & Mask -> X << A,
2149   //     if Mask = ((1 << effective_width_of(X)) - 1) << A
2150   // SimplifyDemandedBits in InstCombine can optimize the general case.
2151   // This pattern aims to help other passes for a common case.
2152   Value *XShifted;
2153   if (match(Op1, m_APInt(Mask)) &&
2154       match(Op0, m_c_Or(m_CombineAnd(m_NUWShl(m_Value(X), m_APInt(ShAmt)),
2155                                      m_Value(XShifted)),
2156                         m_Value(Y)))) {
2157     const unsigned Width = Op0->getType()->getScalarSizeInBits();
2158     const unsigned ShftCnt = ShAmt->getLimitedValue(Width);
2159     const KnownBits YKnown = computeKnownBits(Y, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
2160     const unsigned EffWidthY = YKnown.countMaxActiveBits();
2161     if (EffWidthY <= ShftCnt) {
2162       const KnownBits XKnown = computeKnownBits(X, Q.DL, 0, Q.AC, Q.CxtI,
2163                                                 Q.DT);
2164       const unsigned EffWidthX = XKnown.countMaxActiveBits();
2165       const APInt EffBitsY = APInt::getLowBitsSet(Width, EffWidthY);
2166       const APInt EffBitsX = APInt::getLowBitsSet(Width, EffWidthX) << ShftCnt;
2167       // If the mask is extracting all bits from X or Y as is, we can skip
2168       // this AND op.
2169       if (EffBitsY.isSubsetOf(*Mask) && !EffBitsX.intersects(*Mask))
2170         return Y;
2171       if (EffBitsX.isSubsetOf(*Mask) && !EffBitsY.intersects(*Mask))
2172         return XShifted;
2173     }
2174   }
2175 
2176   return nullptr;
2177 }
2178 
2179 Value *llvm::SimplifyAndInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) {
2180   return ::SimplifyAndInst(Op0, Op1, Q, RecursionLimit);
2181 }
2182 
2183 /// Given operands for an Or, see if we can fold the result.
2184 /// If not, this returns null.
2185 static Value *SimplifyOrInst(Value *Op0, Value *Op1, const SimplifyQuery &Q,
2186                              unsigned MaxRecurse) {
2187   if (Constant *C = foldOrCommuteConstant(Instruction::Or, Op0, Op1, Q))
2188     return C;
2189 
2190   // X | poison -> poison
2191   if (isa<PoisonValue>(Op1))
2192     return Op1;
2193 
2194   // X | undef -> -1
2195   // X | -1 = -1
2196   // Do not return Op1 because it may contain undef elements if it's a vector.
2197   if (Q.isUndefValue(Op1) || match(Op1, m_AllOnes()))
2198     return Constant::getAllOnesValue(Op0->getType());
2199 
2200   // X | X = X
2201   // X | 0 = X
2202   if (Op0 == Op1 || match(Op1, m_Zero()))
2203     return Op0;
2204 
2205   // A | ~A  =  ~A | A  =  -1
2206   if (match(Op0, m_Not(m_Specific(Op1))) ||
2207       match(Op1, m_Not(m_Specific(Op0))))
2208     return Constant::getAllOnesValue(Op0->getType());
2209 
2210   // (A & ?) | A = A
2211   if (match(Op0, m_c_And(m_Specific(Op1), m_Value())))
2212     return Op1;
2213 
2214   // A | (A & ?) = A
2215   if (match(Op1, m_c_And(m_Specific(Op0), m_Value())))
2216     return Op0;
2217 
2218   // ~(A & ?) | A = -1
2219   if (match(Op0, m_Not(m_c_And(m_Specific(Op1), m_Value()))))
2220     return Constant::getAllOnesValue(Op1->getType());
2221 
2222   // A | ~(A & ?) = -1
2223   if (match(Op1, m_Not(m_c_And(m_Specific(Op0), m_Value()))))
2224     return Constant::getAllOnesValue(Op0->getType());
2225 
2226   if (Value *V = simplifyLogicOfAddSub(Op0, Op1, Instruction::Or))
2227     return V;
2228 
2229   Value *A, *B, *NotA;
2230   // (A & ~B) | (A ^ B) -> (A ^ B)
2231   // (~B & A) | (A ^ B) -> (A ^ B)
2232   // (A & ~B) | (B ^ A) -> (B ^ A)
2233   // (~B & A) | (B ^ A) -> (B ^ A)
2234   if (match(Op1, m_Xor(m_Value(A), m_Value(B))) &&
2235       (match(Op0, m_c_And(m_Specific(A), m_Not(m_Specific(B)))) ||
2236        match(Op0, m_c_And(m_Not(m_Specific(A)), m_Specific(B)))))
2237     return Op1;
2238 
2239   // Commute the 'or' operands.
2240   // (A ^ B) | (A & ~B) -> (A ^ B)
2241   // (A ^ B) | (~B & A) -> (A ^ B)
2242   // (B ^ A) | (A & ~B) -> (B ^ A)
2243   // (B ^ A) | (~B & A) -> (B ^ A)
2244   if (match(Op0, m_Xor(m_Value(A), m_Value(B))) &&
2245       (match(Op1, m_c_And(m_Specific(A), m_Not(m_Specific(B)))) ||
2246        match(Op1, m_c_And(m_Not(m_Specific(A)), m_Specific(B)))))
2247     return Op0;
2248 
2249   // (A & B) | (~A ^ B) -> (~A ^ B)
2250   // (B & A) | (~A ^ B) -> (~A ^ B)
2251   // (A & B) | (B ^ ~A) -> (B ^ ~A)
2252   // (B & A) | (B ^ ~A) -> (B ^ ~A)
2253   if (match(Op0, m_And(m_Value(A), m_Value(B))) &&
2254       (match(Op1, m_c_Xor(m_Specific(A), m_Not(m_Specific(B)))) ||
2255        match(Op1, m_c_Xor(m_Not(m_Specific(A)), m_Specific(B)))))
2256     return Op1;
2257 
2258   // Commute the 'or' operands.
2259   // (~A ^ B) | (A & B) -> (~A ^ B)
2260   // (~A ^ B) | (B & A) -> (~A ^ B)
2261   // (B ^ ~A) | (A & B) -> (B ^ ~A)
2262   // (B ^ ~A) | (B & A) -> (B ^ ~A)
2263   if (match(Op1, m_And(m_Value(A), m_Value(B))) &&
2264       (match(Op0, m_c_Xor(m_Specific(A), m_Not(m_Specific(B)))) ||
2265        match(Op0, m_c_Xor(m_Not(m_Specific(A)), m_Specific(B)))))
2266     return Op0;
2267 
2268   // (~A & B) | ~(A | B) --> ~A
2269   // (~A & B) | ~(B | A) --> ~A
2270   // (B & ~A) | ~(A | B) --> ~A
2271   // (B & ~A) | ~(B | A) --> ~A
2272   if (match(Op0, m_c_And(m_CombineAnd(m_Value(NotA), m_Not(m_Value(A))),
2273                          m_Value(B))) &&
2274       match(Op1, m_Not(m_c_Or(m_Specific(A), m_Specific(B)))))
2275     return NotA;
2276 
2277   // Commute the 'or' operands.
2278   // ~(A | B) | (~A & B) --> ~A
2279   // ~(B | A) | (~A & B) --> ~A
2280   // ~(A | B) | (B & ~A) --> ~A
2281   // ~(B | A) | (B & ~A) --> ~A
2282   if (match(Op1, m_c_And(m_CombineAnd(m_Value(NotA), m_Not(m_Value(A))),
2283                          m_Value(B))) &&
2284       match(Op0, m_Not(m_c_Or(m_Specific(A), m_Specific(B)))))
2285     return NotA;
2286 
2287   // Rotated -1 is still -1:
2288   // (-1 << X) | (-1 >> (C - X)) --> -1
2289   // (-1 >> X) | (-1 << (C - X)) --> -1
2290   // ...with C <= bitwidth (and commuted variants).
2291   Value *X, *Y;
2292   if ((match(Op0, m_Shl(m_AllOnes(), m_Value(X))) &&
2293        match(Op1, m_LShr(m_AllOnes(), m_Value(Y)))) ||
2294       (match(Op1, m_Shl(m_AllOnes(), m_Value(X))) &&
2295        match(Op0, m_LShr(m_AllOnes(), m_Value(Y))))) {
2296     const APInt *C;
2297     if ((match(X, m_Sub(m_APInt(C), m_Specific(Y))) ||
2298          match(Y, m_Sub(m_APInt(C), m_Specific(X)))) &&
2299         C->ule(X->getType()->getScalarSizeInBits())) {
2300       return ConstantInt::getAllOnesValue(X->getType());
2301     }
2302   }
2303 
2304   if (Value *V = simplifyAndOrOfCmps(Q, Op0, Op1, false))
2305     return V;
2306 
2307   // If we have a multiplication overflow check that is being 'and'ed with a
2308   // check that one of the multipliers is not zero, we can omit the 'and', and
2309   // only keep the overflow check.
2310   if (isCheckForZeroAndMulWithOverflow(Op0, Op1, false))
2311     return Op1;
2312   if (isCheckForZeroAndMulWithOverflow(Op1, Op0, false))
2313     return Op0;
2314 
2315   // Try some generic simplifications for associative operations.
2316   if (Value *V = SimplifyAssociativeBinOp(Instruction::Or, Op0, Op1, Q,
2317                                           MaxRecurse))
2318     return V;
2319 
2320   // Or distributes over And.  Try some generic simplifications based on this.
2321   if (Value *V = expandCommutativeBinOp(Instruction::Or, Op0, Op1,
2322                                         Instruction::And, Q, MaxRecurse))
2323     return V;
2324 
2325   if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) {
2326     if (Op0->getType()->isIntOrIntVectorTy(1)) {
2327       // A | (A || B) -> A || B
2328       if (match(Op1, m_Select(m_Specific(Op0), m_One(), m_Value())))
2329         return Op1;
2330       else if (match(Op0, m_Select(m_Specific(Op1), m_One(), m_Value())))
2331         return Op0;
2332     }
2333     // If the operation is with the result of a select instruction, check
2334     // whether operating on either branch of the select always yields the same
2335     // value.
2336     if (Value *V = ThreadBinOpOverSelect(Instruction::Or, Op0, Op1, Q,
2337                                          MaxRecurse))
2338       return V;
2339   }
2340 
2341   // (A & C1)|(B & C2)
2342   const APInt *C1, *C2;
2343   if (match(Op0, m_And(m_Value(A), m_APInt(C1))) &&
2344       match(Op1, m_And(m_Value(B), m_APInt(C2)))) {
2345     if (*C1 == ~*C2) {
2346       // (A & C1)|(B & C2)
2347       // If we have: ((V + N) & C1) | (V & C2)
2348       // .. and C2 = ~C1 and C2 is 0+1+ and (N & C2) == 0
2349       // replace with V+N.
2350       Value *N;
2351       if (C2->isMask() && // C2 == 0+1+
2352           match(A, m_c_Add(m_Specific(B), m_Value(N)))) {
2353         // Add commutes, try both ways.
2354         if (MaskedValueIsZero(N, *C2, Q.DL, 0, Q.AC, Q.CxtI, Q.DT))
2355           return A;
2356       }
2357       // Or commutes, try both ways.
2358       if (C1->isMask() &&
2359           match(B, m_c_Add(m_Specific(A), m_Value(N)))) {
2360         // Add commutes, try both ways.
2361         if (MaskedValueIsZero(N, *C1, Q.DL, 0, Q.AC, Q.CxtI, Q.DT))
2362           return B;
2363       }
2364     }
2365   }
2366 
2367   // If the operation is with the result of a phi instruction, check whether
2368   // operating on all incoming values of the phi always yields the same value.
2369   if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
2370     if (Value *V = ThreadBinOpOverPHI(Instruction::Or, Op0, Op1, Q, MaxRecurse))
2371       return V;
2372 
2373   return nullptr;
2374 }
2375 
2376 Value *llvm::SimplifyOrInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) {
2377   return ::SimplifyOrInst(Op0, Op1, Q, RecursionLimit);
2378 }
2379 
2380 /// Given operands for a Xor, see if we can fold the result.
2381 /// If not, this returns null.
2382 static Value *SimplifyXorInst(Value *Op0, Value *Op1, const SimplifyQuery &Q,
2383                               unsigned MaxRecurse) {
2384   if (Constant *C = foldOrCommuteConstant(Instruction::Xor, Op0, Op1, Q))
2385     return C;
2386 
2387   // A ^ undef -> undef
2388   if (Q.isUndefValue(Op1))
2389     return Op1;
2390 
2391   // A ^ 0 = A
2392   if (match(Op1, m_Zero()))
2393     return Op0;
2394 
2395   // A ^ A = 0
2396   if (Op0 == Op1)
2397     return Constant::getNullValue(Op0->getType());
2398 
2399   // A ^ ~A  =  ~A ^ A  =  -1
2400   if (match(Op0, m_Not(m_Specific(Op1))) ||
2401       match(Op1, m_Not(m_Specific(Op0))))
2402     return Constant::getAllOnesValue(Op0->getType());
2403 
2404   if (Value *V = simplifyLogicOfAddSub(Op0, Op1, Instruction::Xor))
2405     return V;
2406 
2407   // Try some generic simplifications for associative operations.
2408   if (Value *V = SimplifyAssociativeBinOp(Instruction::Xor, Op0, Op1, Q,
2409                                           MaxRecurse))
2410     return V;
2411 
2412   // Threading Xor over selects and phi nodes is pointless, so don't bother.
2413   // Threading over the select in "A ^ select(cond, B, C)" means evaluating
2414   // "A^B" and "A^C" and seeing if they are equal; but they are equal if and
2415   // only if B and C are equal.  If B and C are equal then (since we assume
2416   // that operands have already been simplified) "select(cond, B, C)" should
2417   // have been simplified to the common value of B and C already.  Analysing
2418   // "A^B" and "A^C" thus gains nothing, but costs compile time.  Similarly
2419   // for threading over phi nodes.
2420 
2421   return nullptr;
2422 }
2423 
2424 Value *llvm::SimplifyXorInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) {
2425   return ::SimplifyXorInst(Op0, Op1, Q, RecursionLimit);
2426 }
2427 
2428 
2429 static Type *GetCompareTy(Value *Op) {
2430   return CmpInst::makeCmpResultType(Op->getType());
2431 }
2432 
2433 /// Rummage around inside V looking for something equivalent to the comparison
2434 /// "LHS Pred RHS". Return such a value if found, otherwise return null.
2435 /// Helper function for analyzing max/min idioms.
2436 static Value *ExtractEquivalentCondition(Value *V, CmpInst::Predicate Pred,
2437                                          Value *LHS, Value *RHS) {
2438   SelectInst *SI = dyn_cast<SelectInst>(V);
2439   if (!SI)
2440     return nullptr;
2441   CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition());
2442   if (!Cmp)
2443     return nullptr;
2444   Value *CmpLHS = Cmp->getOperand(0), *CmpRHS = Cmp->getOperand(1);
2445   if (Pred == Cmp->getPredicate() && LHS == CmpLHS && RHS == CmpRHS)
2446     return Cmp;
2447   if (Pred == CmpInst::getSwappedPredicate(Cmp->getPredicate()) &&
2448       LHS == CmpRHS && RHS == CmpLHS)
2449     return Cmp;
2450   return nullptr;
2451 }
2452 
2453 // A significant optimization not implemented here is assuming that alloca
2454 // addresses are not equal to incoming argument values. They don't *alias*,
2455 // as we say, but that doesn't mean they aren't equal, so we take a
2456 // conservative approach.
2457 //
2458 // This is inspired in part by C++11 5.10p1:
2459 //   "Two pointers of the same type compare equal if and only if they are both
2460 //    null, both point to the same function, or both represent the same
2461 //    address."
2462 //
2463 // This is pretty permissive.
2464 //
2465 // It's also partly due to C11 6.5.9p6:
2466 //   "Two pointers compare equal if and only if both are null pointers, both are
2467 //    pointers to the same object (including a pointer to an object and a
2468 //    subobject at its beginning) or function, both are pointers to one past the
2469 //    last element of the same array object, or one is a pointer to one past the
2470 //    end of one array object and the other is a pointer to the start of a
2471 //    different array object that happens to immediately follow the first array
2472 //    object in the address space.)
2473 //
2474 // C11's version is more restrictive, however there's no reason why an argument
2475 // couldn't be a one-past-the-end value for a stack object in the caller and be
2476 // equal to the beginning of a stack object in the callee.
2477 //
2478 // If the C and C++ standards are ever made sufficiently restrictive in this
2479 // area, it may be possible to update LLVM's semantics accordingly and reinstate
2480 // this optimization.
2481 static Constant *
2482 computePointerICmp(CmpInst::Predicate Pred, Value *LHS, Value *RHS,
2483                    const SimplifyQuery &Q) {
2484   const DataLayout &DL = Q.DL;
2485   const TargetLibraryInfo *TLI = Q.TLI;
2486   const DominatorTree *DT = Q.DT;
2487   const Instruction *CxtI = Q.CxtI;
2488   const InstrInfoQuery &IIQ = Q.IIQ;
2489 
2490   // First, skip past any trivial no-ops.
2491   LHS = LHS->stripPointerCasts();
2492   RHS = RHS->stripPointerCasts();
2493 
2494   // A non-null pointer is not equal to a null pointer.
2495   if (isa<ConstantPointerNull>(RHS) && ICmpInst::isEquality(Pred) &&
2496       llvm::isKnownNonZero(LHS, DL, 0, nullptr, nullptr, nullptr,
2497                            IIQ.UseInstrInfo))
2498     return ConstantInt::get(GetCompareTy(LHS),
2499                             !CmpInst::isTrueWhenEqual(Pred));
2500 
2501   // We can only fold certain predicates on pointer comparisons.
2502   switch (Pred) {
2503   default:
2504     return nullptr;
2505 
2506     // Equality comaprisons are easy to fold.
2507   case CmpInst::ICMP_EQ:
2508   case CmpInst::ICMP_NE:
2509     break;
2510 
2511     // We can only handle unsigned relational comparisons because 'inbounds' on
2512     // a GEP only protects against unsigned wrapping.
2513   case CmpInst::ICMP_UGT:
2514   case CmpInst::ICMP_UGE:
2515   case CmpInst::ICMP_ULT:
2516   case CmpInst::ICMP_ULE:
2517     // However, we have to switch them to their signed variants to handle
2518     // negative indices from the base pointer.
2519     Pred = ICmpInst::getSignedPredicate(Pred);
2520     break;
2521   }
2522 
2523   // Strip off any constant offsets so that we can reason about them.
2524   // It's tempting to use getUnderlyingObject or even just stripInBoundsOffsets
2525   // here and compare base addresses like AliasAnalysis does, however there are
2526   // numerous hazards. AliasAnalysis and its utilities rely on special rules
2527   // governing loads and stores which don't apply to icmps. Also, AliasAnalysis
2528   // doesn't need to guarantee pointer inequality when it says NoAlias.
2529   Constant *LHSOffset = stripAndComputeConstantOffsets(DL, LHS);
2530   Constant *RHSOffset = stripAndComputeConstantOffsets(DL, RHS);
2531 
2532   // If LHS and RHS are related via constant offsets to the same base
2533   // value, we can replace it with an icmp which just compares the offsets.
2534   if (LHS == RHS)
2535     return ConstantExpr::getICmp(Pred, LHSOffset, RHSOffset);
2536 
2537   // Various optimizations for (in)equality comparisons.
2538   if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE) {
2539     // Different non-empty allocations that exist at the same time have
2540     // different addresses (if the program can tell). Global variables always
2541     // exist, so they always exist during the lifetime of each other and all
2542     // allocas. Two different allocas usually have different addresses...
2543     //
2544     // However, if there's an @llvm.stackrestore dynamically in between two
2545     // allocas, they may have the same address. It's tempting to reduce the
2546     // scope of the problem by only looking at *static* allocas here. That would
2547     // cover the majority of allocas while significantly reducing the likelihood
2548     // of having an @llvm.stackrestore pop up in the middle. However, it's not
2549     // actually impossible for an @llvm.stackrestore to pop up in the middle of
2550     // an entry block. Also, if we have a block that's not attached to a
2551     // function, we can't tell if it's "static" under the current definition.
2552     // Theoretically, this problem could be fixed by creating a new kind of
2553     // instruction kind specifically for static allocas. Such a new instruction
2554     // could be required to be at the top of the entry block, thus preventing it
2555     // from being subject to a @llvm.stackrestore. Instcombine could even
2556     // convert regular allocas into these special allocas. It'd be nifty.
2557     // However, until then, this problem remains open.
2558     //
2559     // So, we'll assume that two non-empty allocas have different addresses
2560     // for now.
2561     //
2562     // With all that, if the offsets are within the bounds of their allocations
2563     // (and not one-past-the-end! so we can't use inbounds!), and their
2564     // allocations aren't the same, the pointers are not equal.
2565     //
2566     // Note that it's not necessary to check for LHS being a global variable
2567     // address, due to canonicalization and constant folding.
2568     if (isa<AllocaInst>(LHS) &&
2569         (isa<AllocaInst>(RHS) || isa<GlobalVariable>(RHS))) {
2570       ConstantInt *LHSOffsetCI = dyn_cast<ConstantInt>(LHSOffset);
2571       ConstantInt *RHSOffsetCI = dyn_cast<ConstantInt>(RHSOffset);
2572       uint64_t LHSSize, RHSSize;
2573       ObjectSizeOpts Opts;
2574       Opts.NullIsUnknownSize =
2575           NullPointerIsDefined(cast<AllocaInst>(LHS)->getFunction());
2576       if (LHSOffsetCI && RHSOffsetCI &&
2577           getObjectSize(LHS, LHSSize, DL, TLI, Opts) &&
2578           getObjectSize(RHS, RHSSize, DL, TLI, Opts)) {
2579         const APInt &LHSOffsetValue = LHSOffsetCI->getValue();
2580         const APInt &RHSOffsetValue = RHSOffsetCI->getValue();
2581         if (!LHSOffsetValue.isNegative() &&
2582             !RHSOffsetValue.isNegative() &&
2583             LHSOffsetValue.ult(LHSSize) &&
2584             RHSOffsetValue.ult(RHSSize)) {
2585           return ConstantInt::get(GetCompareTy(LHS),
2586                                   !CmpInst::isTrueWhenEqual(Pred));
2587         }
2588       }
2589 
2590       // Repeat the above check but this time without depending on DataLayout
2591       // or being able to compute a precise size.
2592       if (!cast<PointerType>(LHS->getType())->isEmptyTy() &&
2593           !cast<PointerType>(RHS->getType())->isEmptyTy() &&
2594           LHSOffset->isNullValue() &&
2595           RHSOffset->isNullValue())
2596         return ConstantInt::get(GetCompareTy(LHS),
2597                                 !CmpInst::isTrueWhenEqual(Pred));
2598     }
2599 
2600     // Even if an non-inbounds GEP occurs along the path we can still optimize
2601     // equality comparisons concerning the result. We avoid walking the whole
2602     // chain again by starting where the last calls to
2603     // stripAndComputeConstantOffsets left off and accumulate the offsets.
2604     Constant *LHSNoBound = stripAndComputeConstantOffsets(DL, LHS, true);
2605     Constant *RHSNoBound = stripAndComputeConstantOffsets(DL, RHS, true);
2606     if (LHS == RHS)
2607       return ConstantExpr::getICmp(Pred,
2608                                    ConstantExpr::getAdd(LHSOffset, LHSNoBound),
2609                                    ConstantExpr::getAdd(RHSOffset, RHSNoBound));
2610 
2611     // If one side of the equality comparison must come from a noalias call
2612     // (meaning a system memory allocation function), and the other side must
2613     // come from a pointer that cannot overlap with dynamically-allocated
2614     // memory within the lifetime of the current function (allocas, byval
2615     // arguments, globals), then determine the comparison result here.
2616     SmallVector<const Value *, 8> LHSUObjs, RHSUObjs;
2617     getUnderlyingObjects(LHS, LHSUObjs);
2618     getUnderlyingObjects(RHS, RHSUObjs);
2619 
2620     // Is the set of underlying objects all noalias calls?
2621     auto IsNAC = [](ArrayRef<const Value *> Objects) {
2622       return all_of(Objects, isNoAliasCall);
2623     };
2624 
2625     // Is the set of underlying objects all things which must be disjoint from
2626     // noalias calls. For allocas, we consider only static ones (dynamic
2627     // allocas might be transformed into calls to malloc not simultaneously
2628     // live with the compared-to allocation). For globals, we exclude symbols
2629     // that might be resolve lazily to symbols in another dynamically-loaded
2630     // library (and, thus, could be malloc'ed by the implementation).
2631     auto IsAllocDisjoint = [](ArrayRef<const Value *> Objects) {
2632       return all_of(Objects, [](const Value *V) {
2633         if (const AllocaInst *AI = dyn_cast<AllocaInst>(V))
2634           return AI->getParent() && AI->getFunction() && AI->isStaticAlloca();
2635         if (const GlobalValue *GV = dyn_cast<GlobalValue>(V))
2636           return (GV->hasLocalLinkage() || GV->hasHiddenVisibility() ||
2637                   GV->hasProtectedVisibility() || GV->hasGlobalUnnamedAddr()) &&
2638                  !GV->isThreadLocal();
2639         if (const Argument *A = dyn_cast<Argument>(V))
2640           return A->hasByValAttr();
2641         return false;
2642       });
2643     };
2644 
2645     if ((IsNAC(LHSUObjs) && IsAllocDisjoint(RHSUObjs)) ||
2646         (IsNAC(RHSUObjs) && IsAllocDisjoint(LHSUObjs)))
2647         return ConstantInt::get(GetCompareTy(LHS),
2648                                 !CmpInst::isTrueWhenEqual(Pred));
2649 
2650     // Fold comparisons for non-escaping pointer even if the allocation call
2651     // cannot be elided. We cannot fold malloc comparison to null. Also, the
2652     // dynamic allocation call could be either of the operands.
2653     Value *MI = nullptr;
2654     if (isAllocLikeFn(LHS, TLI) &&
2655         llvm::isKnownNonZero(RHS, DL, 0, nullptr, CxtI, DT))
2656       MI = LHS;
2657     else if (isAllocLikeFn(RHS, TLI) &&
2658              llvm::isKnownNonZero(LHS, DL, 0, nullptr, CxtI, DT))
2659       MI = RHS;
2660     // FIXME: We should also fold the compare when the pointer escapes, but the
2661     // compare dominates the pointer escape
2662     if (MI && !PointerMayBeCaptured(MI, true, true))
2663       return ConstantInt::get(GetCompareTy(LHS),
2664                               CmpInst::isFalseWhenEqual(Pred));
2665   }
2666 
2667   // Otherwise, fail.
2668   return nullptr;
2669 }
2670 
2671 /// Fold an icmp when its operands have i1 scalar type.
2672 static Value *simplifyICmpOfBools(CmpInst::Predicate Pred, Value *LHS,
2673                                   Value *RHS, const SimplifyQuery &Q) {
2674   Type *ITy = GetCompareTy(LHS); // The return type.
2675   Type *OpTy = LHS->getType();   // The operand type.
2676   if (!OpTy->isIntOrIntVectorTy(1))
2677     return nullptr;
2678 
2679   // A boolean compared to true/false can be simplified in 14 out of the 20
2680   // (10 predicates * 2 constants) possible combinations. Cases not handled here
2681   // require a 'not' of the LHS, so those must be transformed in InstCombine.
2682   if (match(RHS, m_Zero())) {
2683     switch (Pred) {
2684     case CmpInst::ICMP_NE:  // X !=  0 -> X
2685     case CmpInst::ICMP_UGT: // X >u  0 -> X
2686     case CmpInst::ICMP_SLT: // X <s  0 -> X
2687       return LHS;
2688 
2689     case CmpInst::ICMP_ULT: // X <u  0 -> false
2690     case CmpInst::ICMP_SGT: // X >s  0 -> false
2691       return getFalse(ITy);
2692 
2693     case CmpInst::ICMP_UGE: // X >=u 0 -> true
2694     case CmpInst::ICMP_SLE: // X <=s 0 -> true
2695       return getTrue(ITy);
2696 
2697     default: break;
2698     }
2699   } else if (match(RHS, m_One())) {
2700     switch (Pred) {
2701     case CmpInst::ICMP_EQ:  // X ==   1 -> X
2702     case CmpInst::ICMP_UGE: // X >=u  1 -> X
2703     case CmpInst::ICMP_SLE: // X <=s -1 -> X
2704       return LHS;
2705 
2706     case CmpInst::ICMP_UGT: // X >u   1 -> false
2707     case CmpInst::ICMP_SLT: // X <s  -1 -> false
2708       return getFalse(ITy);
2709 
2710     case CmpInst::ICMP_ULE: // X <=u  1 -> true
2711     case CmpInst::ICMP_SGE: // X >=s -1 -> true
2712       return getTrue(ITy);
2713 
2714     default: break;
2715     }
2716   }
2717 
2718   switch (Pred) {
2719   default:
2720     break;
2721   case ICmpInst::ICMP_UGE:
2722     if (isImpliedCondition(RHS, LHS, Q.DL).getValueOr(false))
2723       return getTrue(ITy);
2724     break;
2725   case ICmpInst::ICMP_SGE:
2726     /// For signed comparison, the values for an i1 are 0 and -1
2727     /// respectively. This maps into a truth table of:
2728     /// LHS | RHS | LHS >=s RHS   | LHS implies RHS
2729     ///  0  |  0  |  1 (0 >= 0)   |  1
2730     ///  0  |  1  |  1 (0 >= -1)  |  1
2731     ///  1  |  0  |  0 (-1 >= 0)  |  0
2732     ///  1  |  1  |  1 (-1 >= -1) |  1
2733     if (isImpliedCondition(LHS, RHS, Q.DL).getValueOr(false))
2734       return getTrue(ITy);
2735     break;
2736   case ICmpInst::ICMP_ULE:
2737     if (isImpliedCondition(LHS, RHS, Q.DL).getValueOr(false))
2738       return getTrue(ITy);
2739     break;
2740   }
2741 
2742   return nullptr;
2743 }
2744 
2745 /// Try hard to fold icmp with zero RHS because this is a common case.
2746 static Value *simplifyICmpWithZero(CmpInst::Predicate Pred, Value *LHS,
2747                                    Value *RHS, const SimplifyQuery &Q) {
2748   if (!match(RHS, m_Zero()))
2749     return nullptr;
2750 
2751   Type *ITy = GetCompareTy(LHS); // The return type.
2752   switch (Pred) {
2753   default:
2754     llvm_unreachable("Unknown ICmp predicate!");
2755   case ICmpInst::ICMP_ULT:
2756     return getFalse(ITy);
2757   case ICmpInst::ICMP_UGE:
2758     return getTrue(ITy);
2759   case ICmpInst::ICMP_EQ:
2760   case ICmpInst::ICMP_ULE:
2761     if (isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT, Q.IIQ.UseInstrInfo))
2762       return getFalse(ITy);
2763     break;
2764   case ICmpInst::ICMP_NE:
2765   case ICmpInst::ICMP_UGT:
2766     if (isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT, Q.IIQ.UseInstrInfo))
2767       return getTrue(ITy);
2768     break;
2769   case ICmpInst::ICMP_SLT: {
2770     KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
2771     if (LHSKnown.isNegative())
2772       return getTrue(ITy);
2773     if (LHSKnown.isNonNegative())
2774       return getFalse(ITy);
2775     break;
2776   }
2777   case ICmpInst::ICMP_SLE: {
2778     KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
2779     if (LHSKnown.isNegative())
2780       return getTrue(ITy);
2781     if (LHSKnown.isNonNegative() &&
2782         isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT))
2783       return getFalse(ITy);
2784     break;
2785   }
2786   case ICmpInst::ICMP_SGE: {
2787     KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
2788     if (LHSKnown.isNegative())
2789       return getFalse(ITy);
2790     if (LHSKnown.isNonNegative())
2791       return getTrue(ITy);
2792     break;
2793   }
2794   case ICmpInst::ICMP_SGT: {
2795     KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
2796     if (LHSKnown.isNegative())
2797       return getFalse(ITy);
2798     if (LHSKnown.isNonNegative() &&
2799         isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT))
2800       return getTrue(ITy);
2801     break;
2802   }
2803   }
2804 
2805   return nullptr;
2806 }
2807 
2808 static Value *simplifyICmpWithConstant(CmpInst::Predicate Pred, Value *LHS,
2809                                        Value *RHS, const InstrInfoQuery &IIQ) {
2810   Type *ITy = GetCompareTy(RHS); // The return type.
2811 
2812   Value *X;
2813   // Sign-bit checks can be optimized to true/false after unsigned
2814   // floating-point casts:
2815   // icmp slt (bitcast (uitofp X)),  0 --> false
2816   // icmp sgt (bitcast (uitofp X)), -1 --> true
2817   if (match(LHS, m_BitCast(m_UIToFP(m_Value(X))))) {
2818     if (Pred == ICmpInst::ICMP_SLT && match(RHS, m_Zero()))
2819       return ConstantInt::getFalse(ITy);
2820     if (Pred == ICmpInst::ICMP_SGT && match(RHS, m_AllOnes()))
2821       return ConstantInt::getTrue(ITy);
2822   }
2823 
2824   const APInt *C;
2825   if (!match(RHS, m_APIntAllowUndef(C)))
2826     return nullptr;
2827 
2828   // Rule out tautological comparisons (eg., ult 0 or uge 0).
2829   ConstantRange RHS_CR = ConstantRange::makeExactICmpRegion(Pred, *C);
2830   if (RHS_CR.isEmptySet())
2831     return ConstantInt::getFalse(ITy);
2832   if (RHS_CR.isFullSet())
2833     return ConstantInt::getTrue(ITy);
2834 
2835   ConstantRange LHS_CR = computeConstantRange(LHS, IIQ.UseInstrInfo);
2836   if (!LHS_CR.isFullSet()) {
2837     if (RHS_CR.contains(LHS_CR))
2838       return ConstantInt::getTrue(ITy);
2839     if (RHS_CR.inverse().contains(LHS_CR))
2840       return ConstantInt::getFalse(ITy);
2841   }
2842 
2843   // (mul nuw/nsw X, MulC) != C --> true  (if C is not a multiple of MulC)
2844   // (mul nuw/nsw X, MulC) == C --> false (if C is not a multiple of MulC)
2845   const APInt *MulC;
2846   if (ICmpInst::isEquality(Pred) &&
2847       ((match(LHS, m_NUWMul(m_Value(), m_APIntAllowUndef(MulC))) &&
2848         *MulC != 0 && C->urem(*MulC) != 0) ||
2849        (match(LHS, m_NSWMul(m_Value(), m_APIntAllowUndef(MulC))) &&
2850         *MulC != 0 && C->srem(*MulC) != 0)))
2851     return ConstantInt::get(ITy, Pred == ICmpInst::ICMP_NE);
2852 
2853   return nullptr;
2854 }
2855 
2856 static Value *simplifyICmpWithBinOpOnLHS(
2857     CmpInst::Predicate Pred, BinaryOperator *LBO, Value *RHS,
2858     const SimplifyQuery &Q, unsigned MaxRecurse) {
2859   Type *ITy = GetCompareTy(RHS); // The return type.
2860 
2861   Value *Y = nullptr;
2862   // icmp pred (or X, Y), X
2863   if (match(LBO, m_c_Or(m_Value(Y), m_Specific(RHS)))) {
2864     if (Pred == ICmpInst::ICMP_ULT)
2865       return getFalse(ITy);
2866     if (Pred == ICmpInst::ICMP_UGE)
2867       return getTrue(ITy);
2868 
2869     if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SGE) {
2870       KnownBits RHSKnown = computeKnownBits(RHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
2871       KnownBits YKnown = computeKnownBits(Y, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
2872       if (RHSKnown.isNonNegative() && YKnown.isNegative())
2873         return Pred == ICmpInst::ICMP_SLT ? getTrue(ITy) : getFalse(ITy);
2874       if (RHSKnown.isNegative() || YKnown.isNonNegative())
2875         return Pred == ICmpInst::ICMP_SLT ? getFalse(ITy) : getTrue(ITy);
2876     }
2877   }
2878 
2879   // icmp pred (and X, Y), X
2880   if (match(LBO, m_c_And(m_Value(), m_Specific(RHS)))) {
2881     if (Pred == ICmpInst::ICMP_UGT)
2882       return getFalse(ITy);
2883     if (Pred == ICmpInst::ICMP_ULE)
2884       return getTrue(ITy);
2885   }
2886 
2887   // icmp pred (urem X, Y), Y
2888   if (match(LBO, m_URem(m_Value(), m_Specific(RHS)))) {
2889     switch (Pred) {
2890     default:
2891       break;
2892     case ICmpInst::ICMP_SGT:
2893     case ICmpInst::ICMP_SGE: {
2894       KnownBits Known = computeKnownBits(RHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
2895       if (!Known.isNonNegative())
2896         break;
2897       LLVM_FALLTHROUGH;
2898     }
2899     case ICmpInst::ICMP_EQ:
2900     case ICmpInst::ICMP_UGT:
2901     case ICmpInst::ICMP_UGE:
2902       return getFalse(ITy);
2903     case ICmpInst::ICMP_SLT:
2904     case ICmpInst::ICMP_SLE: {
2905       KnownBits Known = computeKnownBits(RHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
2906       if (!Known.isNonNegative())
2907         break;
2908       LLVM_FALLTHROUGH;
2909     }
2910     case ICmpInst::ICMP_NE:
2911     case ICmpInst::ICMP_ULT:
2912     case ICmpInst::ICMP_ULE:
2913       return getTrue(ITy);
2914     }
2915   }
2916 
2917   // icmp pred (urem X, Y), X
2918   if (match(LBO, m_URem(m_Specific(RHS), m_Value()))) {
2919     if (Pred == ICmpInst::ICMP_ULE)
2920       return getTrue(ITy);
2921     if (Pred == ICmpInst::ICMP_UGT)
2922       return getFalse(ITy);
2923   }
2924 
2925   // x >> y <=u x
2926   // x udiv y <=u x.
2927   if (match(LBO, m_LShr(m_Specific(RHS), m_Value())) ||
2928       match(LBO, m_UDiv(m_Specific(RHS), m_Value()))) {
2929     // icmp pred (X op Y), X
2930     if (Pred == ICmpInst::ICMP_UGT)
2931       return getFalse(ITy);
2932     if (Pred == ICmpInst::ICMP_ULE)
2933       return getTrue(ITy);
2934   }
2935 
2936   // (x*C1)/C2 <= x for C1 <= C2.
2937   // This holds even if the multiplication overflows: Assume that x != 0 and
2938   // arithmetic is modulo M. For overflow to occur we must have C1 >= M/x and
2939   // thus C2 >= M/x. It follows that (x*C1)/C2 <= (M-1)/C2 <= ((M-1)*x)/M < x.
2940   //
2941   // Additionally, either the multiplication and division might be represented
2942   // as shifts:
2943   // (x*C1)>>C2 <= x for C1 < 2**C2.
2944   // (x<<C1)/C2 <= x for 2**C1 < C2.
2945   const APInt *C1, *C2;
2946   if ((match(LBO, m_UDiv(m_Mul(m_Specific(RHS), m_APInt(C1)), m_APInt(C2))) &&
2947        C1->ule(*C2)) ||
2948       (match(LBO, m_LShr(m_Mul(m_Specific(RHS), m_APInt(C1)), m_APInt(C2))) &&
2949        C1->ule(APInt(C2->getBitWidth(), 1) << *C2)) ||
2950       (match(LBO, m_UDiv(m_Shl(m_Specific(RHS), m_APInt(C1)), m_APInt(C2))) &&
2951        (APInt(C1->getBitWidth(), 1) << *C1).ule(*C2))) {
2952     if (Pred == ICmpInst::ICMP_UGT)
2953       return getFalse(ITy);
2954     if (Pred == ICmpInst::ICMP_ULE)
2955       return getTrue(ITy);
2956   }
2957 
2958   return nullptr;
2959 }
2960 
2961 
2962 // If only one of the icmp's operands has NSW flags, try to prove that:
2963 //
2964 //   icmp slt (x + C1), (x +nsw C2)
2965 //
2966 // is equivalent to:
2967 //
2968 //   icmp slt C1, C2
2969 //
2970 // which is true if x + C2 has the NSW flags set and:
2971 // *) C1 < C2 && C1 >= 0, or
2972 // *) C2 < C1 && C1 <= 0.
2973 //
2974 static bool trySimplifyICmpWithAdds(CmpInst::Predicate Pred, Value *LHS,
2975                                     Value *RHS) {
2976   // TODO: only support icmp slt for now.
2977   if (Pred != CmpInst::ICMP_SLT)
2978     return false;
2979 
2980   // Canonicalize nsw add as RHS.
2981   if (!match(RHS, m_NSWAdd(m_Value(), m_Value())))
2982     std::swap(LHS, RHS);
2983   if (!match(RHS, m_NSWAdd(m_Value(), m_Value())))
2984     return false;
2985 
2986   Value *X;
2987   const APInt *C1, *C2;
2988   if (!match(LHS, m_c_Add(m_Value(X), m_APInt(C1))) ||
2989       !match(RHS, m_c_Add(m_Specific(X), m_APInt(C2))))
2990     return false;
2991 
2992   return (C1->slt(*C2) && C1->isNonNegative()) ||
2993          (C2->slt(*C1) && C1->isNonPositive());
2994 }
2995 
2996 
2997 /// TODO: A large part of this logic is duplicated in InstCombine's
2998 /// foldICmpBinOp(). We should be able to share that and avoid the code
2999 /// duplication.
3000 static Value *simplifyICmpWithBinOp(CmpInst::Predicate Pred, Value *LHS,
3001                                     Value *RHS, const SimplifyQuery &Q,
3002                                     unsigned MaxRecurse) {
3003   BinaryOperator *LBO = dyn_cast<BinaryOperator>(LHS);
3004   BinaryOperator *RBO = dyn_cast<BinaryOperator>(RHS);
3005   if (MaxRecurse && (LBO || RBO)) {
3006     // Analyze the case when either LHS or RHS is an add instruction.
3007     Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr;
3008     // LHS = A + B (or A and B are null); RHS = C + D (or C and D are null).
3009     bool NoLHSWrapProblem = false, NoRHSWrapProblem = false;
3010     if (LBO && LBO->getOpcode() == Instruction::Add) {
3011       A = LBO->getOperand(0);
3012       B = LBO->getOperand(1);
3013       NoLHSWrapProblem =
3014           ICmpInst::isEquality(Pred) ||
3015           (CmpInst::isUnsigned(Pred) &&
3016            Q.IIQ.hasNoUnsignedWrap(cast<OverflowingBinaryOperator>(LBO))) ||
3017           (CmpInst::isSigned(Pred) &&
3018            Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(LBO)));
3019     }
3020     if (RBO && RBO->getOpcode() == Instruction::Add) {
3021       C = RBO->getOperand(0);
3022       D = RBO->getOperand(1);
3023       NoRHSWrapProblem =
3024           ICmpInst::isEquality(Pred) ||
3025           (CmpInst::isUnsigned(Pred) &&
3026            Q.IIQ.hasNoUnsignedWrap(cast<OverflowingBinaryOperator>(RBO))) ||
3027           (CmpInst::isSigned(Pred) &&
3028            Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(RBO)));
3029     }
3030 
3031     // icmp (X+Y), X -> icmp Y, 0 for equalities or if there is no overflow.
3032     if ((A == RHS || B == RHS) && NoLHSWrapProblem)
3033       if (Value *V = SimplifyICmpInst(Pred, A == RHS ? B : A,
3034                                       Constant::getNullValue(RHS->getType()), Q,
3035                                       MaxRecurse - 1))
3036         return V;
3037 
3038     // icmp X, (X+Y) -> icmp 0, Y for equalities or if there is no overflow.
3039     if ((C == LHS || D == LHS) && NoRHSWrapProblem)
3040       if (Value *V =
3041               SimplifyICmpInst(Pred, Constant::getNullValue(LHS->getType()),
3042                                C == LHS ? D : C, Q, MaxRecurse - 1))
3043         return V;
3044 
3045     // icmp (X+Y), (X+Z) -> icmp Y,Z for equalities or if there is no overflow.
3046     bool CanSimplify = (NoLHSWrapProblem && NoRHSWrapProblem) ||
3047                        trySimplifyICmpWithAdds(Pred, LHS, RHS);
3048     if (A && C && (A == C || A == D || B == C || B == D) && CanSimplify) {
3049       // Determine Y and Z in the form icmp (X+Y), (X+Z).
3050       Value *Y, *Z;
3051       if (A == C) {
3052         // C + B == C + D  ->  B == D
3053         Y = B;
3054         Z = D;
3055       } else if (A == D) {
3056         // D + B == C + D  ->  B == C
3057         Y = B;
3058         Z = C;
3059       } else if (B == C) {
3060         // A + C == C + D  ->  A == D
3061         Y = A;
3062         Z = D;
3063       } else {
3064         assert(B == D);
3065         // A + D == C + D  ->  A == C
3066         Y = A;
3067         Z = C;
3068       }
3069       if (Value *V = SimplifyICmpInst(Pred, Y, Z, Q, MaxRecurse - 1))
3070         return V;
3071     }
3072   }
3073 
3074   if (LBO)
3075     if (Value *V = simplifyICmpWithBinOpOnLHS(Pred, LBO, RHS, Q, MaxRecurse))
3076       return V;
3077 
3078   if (RBO)
3079     if (Value *V = simplifyICmpWithBinOpOnLHS(
3080             ICmpInst::getSwappedPredicate(Pred), RBO, LHS, Q, MaxRecurse))
3081       return V;
3082 
3083   // 0 - (zext X) pred C
3084   if (!CmpInst::isUnsigned(Pred) && match(LHS, m_Neg(m_ZExt(m_Value())))) {
3085     const APInt *C;
3086     if (match(RHS, m_APInt(C))) {
3087       if (C->isStrictlyPositive()) {
3088         if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_NE)
3089           return ConstantInt::getTrue(GetCompareTy(RHS));
3090         if (Pred == ICmpInst::ICMP_SGE || Pred == ICmpInst::ICMP_EQ)
3091           return ConstantInt::getFalse(GetCompareTy(RHS));
3092       }
3093       if (C->isNonNegative()) {
3094         if (Pred == ICmpInst::ICMP_SLE)
3095           return ConstantInt::getTrue(GetCompareTy(RHS));
3096         if (Pred == ICmpInst::ICMP_SGT)
3097           return ConstantInt::getFalse(GetCompareTy(RHS));
3098       }
3099     }
3100   }
3101 
3102   //   If C2 is a power-of-2 and C is not:
3103   //   (C2 << X) == C --> false
3104   //   (C2 << X) != C --> true
3105   const APInt *C;
3106   if (match(LHS, m_Shl(m_Power2(), m_Value())) &&
3107       match(RHS, m_APIntAllowUndef(C)) && !C->isPowerOf2()) {
3108     // C2 << X can equal zero in some circumstances.
3109     // This simplification might be unsafe if C is zero.
3110     //
3111     // We know it is safe if:
3112     // - The shift is nsw. We can't shift out the one bit.
3113     // - The shift is nuw. We can't shift out the one bit.
3114     // - C2 is one.
3115     // - C isn't zero.
3116     if (Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(LBO)) ||
3117         Q.IIQ.hasNoUnsignedWrap(cast<OverflowingBinaryOperator>(LBO)) ||
3118         match(LHS, m_Shl(m_One(), m_Value())) || !C->isZero()) {
3119       if (Pred == ICmpInst::ICMP_EQ)
3120         return ConstantInt::getFalse(GetCompareTy(RHS));
3121       if (Pred == ICmpInst::ICMP_NE)
3122         return ConstantInt::getTrue(GetCompareTy(RHS));
3123     }
3124   }
3125 
3126   // TODO: This is overly constrained. LHS can be any power-of-2.
3127   // (1 << X)  >u 0x8000 --> false
3128   // (1 << X) <=u 0x8000 --> true
3129   if (match(LHS, m_Shl(m_One(), m_Value())) && match(RHS, m_SignMask())) {
3130     if (Pred == ICmpInst::ICMP_UGT)
3131       return ConstantInt::getFalse(GetCompareTy(RHS));
3132     if (Pred == ICmpInst::ICMP_ULE)
3133       return ConstantInt::getTrue(GetCompareTy(RHS));
3134   }
3135 
3136   if (MaxRecurse && LBO && RBO && LBO->getOpcode() == RBO->getOpcode() &&
3137       LBO->getOperand(1) == RBO->getOperand(1)) {
3138     switch (LBO->getOpcode()) {
3139     default:
3140       break;
3141     case Instruction::UDiv:
3142     case Instruction::LShr:
3143       if (ICmpInst::isSigned(Pred) || !Q.IIQ.isExact(LBO) ||
3144           !Q.IIQ.isExact(RBO))
3145         break;
3146       if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0),
3147                                       RBO->getOperand(0), Q, MaxRecurse - 1))
3148           return V;
3149       break;
3150     case Instruction::SDiv:
3151       if (!ICmpInst::isEquality(Pred) || !Q.IIQ.isExact(LBO) ||
3152           !Q.IIQ.isExact(RBO))
3153         break;
3154       if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0),
3155                                       RBO->getOperand(0), Q, MaxRecurse - 1))
3156         return V;
3157       break;
3158     case Instruction::AShr:
3159       if (!Q.IIQ.isExact(LBO) || !Q.IIQ.isExact(RBO))
3160         break;
3161       if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0),
3162                                       RBO->getOperand(0), Q, MaxRecurse - 1))
3163         return V;
3164       break;
3165     case Instruction::Shl: {
3166       bool NUW = Q.IIQ.hasNoUnsignedWrap(LBO) && Q.IIQ.hasNoUnsignedWrap(RBO);
3167       bool NSW = Q.IIQ.hasNoSignedWrap(LBO) && Q.IIQ.hasNoSignedWrap(RBO);
3168       if (!NUW && !NSW)
3169         break;
3170       if (!NSW && ICmpInst::isSigned(Pred))
3171         break;
3172       if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0),
3173                                       RBO->getOperand(0), Q, MaxRecurse - 1))
3174         return V;
3175       break;
3176     }
3177     }
3178   }
3179   return nullptr;
3180 }
3181 
3182 /// Simplify integer comparisons where at least one operand of the compare
3183 /// matches an integer min/max idiom.
3184 static Value *simplifyICmpWithMinMax(CmpInst::Predicate Pred, Value *LHS,
3185                                      Value *RHS, const SimplifyQuery &Q,
3186                                      unsigned MaxRecurse) {
3187   Type *ITy = GetCompareTy(LHS); // The return type.
3188   Value *A, *B;
3189   CmpInst::Predicate P = CmpInst::BAD_ICMP_PREDICATE;
3190   CmpInst::Predicate EqP; // Chosen so that "A == max/min(A,B)" iff "A EqP B".
3191 
3192   // Signed variants on "max(a,b)>=a -> true".
3193   if (match(LHS, m_SMax(m_Value(A), m_Value(B))) && (A == RHS || B == RHS)) {
3194     if (A != RHS)
3195       std::swap(A, B);       // smax(A, B) pred A.
3196     EqP = CmpInst::ICMP_SGE; // "A == smax(A, B)" iff "A sge B".
3197     // We analyze this as smax(A, B) pred A.
3198     P = Pred;
3199   } else if (match(RHS, m_SMax(m_Value(A), m_Value(B))) &&
3200              (A == LHS || B == LHS)) {
3201     if (A != LHS)
3202       std::swap(A, B);       // A pred smax(A, B).
3203     EqP = CmpInst::ICMP_SGE; // "A == smax(A, B)" iff "A sge B".
3204     // We analyze this as smax(A, B) swapped-pred A.
3205     P = CmpInst::getSwappedPredicate(Pred);
3206   } else if (match(LHS, m_SMin(m_Value(A), m_Value(B))) &&
3207              (A == RHS || B == RHS)) {
3208     if (A != RHS)
3209       std::swap(A, B);       // smin(A, B) pred A.
3210     EqP = CmpInst::ICMP_SLE; // "A == smin(A, B)" iff "A sle B".
3211     // We analyze this as smax(-A, -B) swapped-pred -A.
3212     // Note that we do not need to actually form -A or -B thanks to EqP.
3213     P = CmpInst::getSwappedPredicate(Pred);
3214   } else if (match(RHS, m_SMin(m_Value(A), m_Value(B))) &&
3215              (A == LHS || B == LHS)) {
3216     if (A != LHS)
3217       std::swap(A, B);       // A pred smin(A, B).
3218     EqP = CmpInst::ICMP_SLE; // "A == smin(A, B)" iff "A sle B".
3219     // We analyze this as smax(-A, -B) pred -A.
3220     // Note that we do not need to actually form -A or -B thanks to EqP.
3221     P = Pred;
3222   }
3223   if (P != CmpInst::BAD_ICMP_PREDICATE) {
3224     // Cases correspond to "max(A, B) p A".
3225     switch (P) {
3226     default:
3227       break;
3228     case CmpInst::ICMP_EQ:
3229     case CmpInst::ICMP_SLE:
3230       // Equivalent to "A EqP B".  This may be the same as the condition tested
3231       // in the max/min; if so, we can just return that.
3232       if (Value *V = ExtractEquivalentCondition(LHS, EqP, A, B))
3233         return V;
3234       if (Value *V = ExtractEquivalentCondition(RHS, EqP, A, B))
3235         return V;
3236       // Otherwise, see if "A EqP B" simplifies.
3237       if (MaxRecurse)
3238         if (Value *V = SimplifyICmpInst(EqP, A, B, Q, MaxRecurse - 1))
3239           return V;
3240       break;
3241     case CmpInst::ICMP_NE:
3242     case CmpInst::ICMP_SGT: {
3243       CmpInst::Predicate InvEqP = CmpInst::getInversePredicate(EqP);
3244       // Equivalent to "A InvEqP B".  This may be the same as the condition
3245       // tested in the max/min; if so, we can just return that.
3246       if (Value *V = ExtractEquivalentCondition(LHS, InvEqP, A, B))
3247         return V;
3248       if (Value *V = ExtractEquivalentCondition(RHS, InvEqP, A, B))
3249         return V;
3250       // Otherwise, see if "A InvEqP B" simplifies.
3251       if (MaxRecurse)
3252         if (Value *V = SimplifyICmpInst(InvEqP, A, B, Q, MaxRecurse - 1))
3253           return V;
3254       break;
3255     }
3256     case CmpInst::ICMP_SGE:
3257       // Always true.
3258       return getTrue(ITy);
3259     case CmpInst::ICMP_SLT:
3260       // Always false.
3261       return getFalse(ITy);
3262     }
3263   }
3264 
3265   // Unsigned variants on "max(a,b)>=a -> true".
3266   P = CmpInst::BAD_ICMP_PREDICATE;
3267   if (match(LHS, m_UMax(m_Value(A), m_Value(B))) && (A == RHS || B == RHS)) {
3268     if (A != RHS)
3269       std::swap(A, B);       // umax(A, B) pred A.
3270     EqP = CmpInst::ICMP_UGE; // "A == umax(A, B)" iff "A uge B".
3271     // We analyze this as umax(A, B) pred A.
3272     P = Pred;
3273   } else if (match(RHS, m_UMax(m_Value(A), m_Value(B))) &&
3274              (A == LHS || B == LHS)) {
3275     if (A != LHS)
3276       std::swap(A, B);       // A pred umax(A, B).
3277     EqP = CmpInst::ICMP_UGE; // "A == umax(A, B)" iff "A uge B".
3278     // We analyze this as umax(A, B) swapped-pred A.
3279     P = CmpInst::getSwappedPredicate(Pred);
3280   } else if (match(LHS, m_UMin(m_Value(A), m_Value(B))) &&
3281              (A == RHS || B == RHS)) {
3282     if (A != RHS)
3283       std::swap(A, B);       // umin(A, B) pred A.
3284     EqP = CmpInst::ICMP_ULE; // "A == umin(A, B)" iff "A ule B".
3285     // We analyze this as umax(-A, -B) swapped-pred -A.
3286     // Note that we do not need to actually form -A or -B thanks to EqP.
3287     P = CmpInst::getSwappedPredicate(Pred);
3288   } else if (match(RHS, m_UMin(m_Value(A), m_Value(B))) &&
3289              (A == LHS || B == LHS)) {
3290     if (A != LHS)
3291       std::swap(A, B);       // A pred umin(A, B).
3292     EqP = CmpInst::ICMP_ULE; // "A == umin(A, B)" iff "A ule B".
3293     // We analyze this as umax(-A, -B) pred -A.
3294     // Note that we do not need to actually form -A or -B thanks to EqP.
3295     P = Pred;
3296   }
3297   if (P != CmpInst::BAD_ICMP_PREDICATE) {
3298     // Cases correspond to "max(A, B) p A".
3299     switch (P) {
3300     default:
3301       break;
3302     case CmpInst::ICMP_EQ:
3303     case CmpInst::ICMP_ULE:
3304       // Equivalent to "A EqP B".  This may be the same as the condition tested
3305       // in the max/min; if so, we can just return that.
3306       if (Value *V = ExtractEquivalentCondition(LHS, EqP, A, B))
3307         return V;
3308       if (Value *V = ExtractEquivalentCondition(RHS, EqP, A, B))
3309         return V;
3310       // Otherwise, see if "A EqP B" simplifies.
3311       if (MaxRecurse)
3312         if (Value *V = SimplifyICmpInst(EqP, A, B, Q, MaxRecurse - 1))
3313           return V;
3314       break;
3315     case CmpInst::ICMP_NE:
3316     case CmpInst::ICMP_UGT: {
3317       CmpInst::Predicate InvEqP = CmpInst::getInversePredicate(EqP);
3318       // Equivalent to "A InvEqP B".  This may be the same as the condition
3319       // tested in the max/min; if so, we can just return that.
3320       if (Value *V = ExtractEquivalentCondition(LHS, InvEqP, A, B))
3321         return V;
3322       if (Value *V = ExtractEquivalentCondition(RHS, InvEqP, A, B))
3323         return V;
3324       // Otherwise, see if "A InvEqP B" simplifies.
3325       if (MaxRecurse)
3326         if (Value *V = SimplifyICmpInst(InvEqP, A, B, Q, MaxRecurse - 1))
3327           return V;
3328       break;
3329     }
3330     case CmpInst::ICMP_UGE:
3331       return getTrue(ITy);
3332     case CmpInst::ICMP_ULT:
3333       return getFalse(ITy);
3334     }
3335   }
3336 
3337   // Comparing 1 each of min/max with a common operand?
3338   // Canonicalize min operand to RHS.
3339   if (match(LHS, m_UMin(m_Value(), m_Value())) ||
3340       match(LHS, m_SMin(m_Value(), m_Value()))) {
3341     std::swap(LHS, RHS);
3342     Pred = ICmpInst::getSwappedPredicate(Pred);
3343   }
3344 
3345   Value *C, *D;
3346   if (match(LHS, m_SMax(m_Value(A), m_Value(B))) &&
3347       match(RHS, m_SMin(m_Value(C), m_Value(D))) &&
3348       (A == C || A == D || B == C || B == D)) {
3349     // smax(A, B) >=s smin(A, D) --> true
3350     if (Pred == CmpInst::ICMP_SGE)
3351       return getTrue(ITy);
3352     // smax(A, B) <s smin(A, D) --> false
3353     if (Pred == CmpInst::ICMP_SLT)
3354       return getFalse(ITy);
3355   } else if (match(LHS, m_UMax(m_Value(A), m_Value(B))) &&
3356              match(RHS, m_UMin(m_Value(C), m_Value(D))) &&
3357              (A == C || A == D || B == C || B == D)) {
3358     // umax(A, B) >=u umin(A, D) --> true
3359     if (Pred == CmpInst::ICMP_UGE)
3360       return getTrue(ITy);
3361     // umax(A, B) <u umin(A, D) --> false
3362     if (Pred == CmpInst::ICMP_ULT)
3363       return getFalse(ITy);
3364   }
3365 
3366   return nullptr;
3367 }
3368 
3369 static Value *simplifyICmpWithDominatingAssume(CmpInst::Predicate Predicate,
3370                                                Value *LHS, Value *RHS,
3371                                                const SimplifyQuery &Q) {
3372   // Gracefully handle instructions that have not been inserted yet.
3373   if (!Q.AC || !Q.CxtI || !Q.CxtI->getParent())
3374     return nullptr;
3375 
3376   for (Value *AssumeBaseOp : {LHS, RHS}) {
3377     for (auto &AssumeVH : Q.AC->assumptionsFor(AssumeBaseOp)) {
3378       if (!AssumeVH)
3379         continue;
3380 
3381       CallInst *Assume = cast<CallInst>(AssumeVH);
3382       if (Optional<bool> Imp =
3383               isImpliedCondition(Assume->getArgOperand(0), Predicate, LHS, RHS,
3384                                  Q.DL))
3385         if (isValidAssumeForContext(Assume, Q.CxtI, Q.DT))
3386           return ConstantInt::get(GetCompareTy(LHS), *Imp);
3387     }
3388   }
3389 
3390   return nullptr;
3391 }
3392 
3393 /// Given operands for an ICmpInst, see if we can fold the result.
3394 /// If not, this returns null.
3395 static Value *SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS,
3396                                const SimplifyQuery &Q, unsigned MaxRecurse) {
3397   CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate;
3398   assert(CmpInst::isIntPredicate(Pred) && "Not an integer compare!");
3399 
3400   if (Constant *CLHS = dyn_cast<Constant>(LHS)) {
3401     if (Constant *CRHS = dyn_cast<Constant>(RHS))
3402       return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, Q.DL, Q.TLI);
3403 
3404     // If we have a constant, make sure it is on the RHS.
3405     std::swap(LHS, RHS);
3406     Pred = CmpInst::getSwappedPredicate(Pred);
3407   }
3408   assert(!isa<UndefValue>(LHS) && "Unexpected icmp undef,%X");
3409 
3410   Type *ITy = GetCompareTy(LHS); // The return type.
3411 
3412   // icmp poison, X -> poison
3413   if (isa<PoisonValue>(RHS))
3414     return PoisonValue::get(ITy);
3415 
3416   // For EQ and NE, we can always pick a value for the undef to make the
3417   // predicate pass or fail, so we can return undef.
3418   // Matches behavior in llvm::ConstantFoldCompareInstruction.
3419   if (Q.isUndefValue(RHS) && ICmpInst::isEquality(Pred))
3420     return UndefValue::get(ITy);
3421 
3422   // icmp X, X -> true/false
3423   // icmp X, undef -> true/false because undef could be X.
3424   if (LHS == RHS || Q.isUndefValue(RHS))
3425     return ConstantInt::get(ITy, CmpInst::isTrueWhenEqual(Pred));
3426 
3427   if (Value *V = simplifyICmpOfBools(Pred, LHS, RHS, Q))
3428     return V;
3429 
3430   // TODO: Sink/common this with other potentially expensive calls that use
3431   //       ValueTracking? See comment below for isKnownNonEqual().
3432   if (Value *V = simplifyICmpWithZero(Pred, LHS, RHS, Q))
3433     return V;
3434 
3435   if (Value *V = simplifyICmpWithConstant(Pred, LHS, RHS, Q.IIQ))
3436     return V;
3437 
3438   // If both operands have range metadata, use the metadata
3439   // to simplify the comparison.
3440   if (isa<Instruction>(RHS) && isa<Instruction>(LHS)) {
3441     auto RHS_Instr = cast<Instruction>(RHS);
3442     auto LHS_Instr = cast<Instruction>(LHS);
3443 
3444     if (Q.IIQ.getMetadata(RHS_Instr, LLVMContext::MD_range) &&
3445         Q.IIQ.getMetadata(LHS_Instr, LLVMContext::MD_range)) {
3446       auto RHS_CR = getConstantRangeFromMetadata(
3447           *RHS_Instr->getMetadata(LLVMContext::MD_range));
3448       auto LHS_CR = getConstantRangeFromMetadata(
3449           *LHS_Instr->getMetadata(LLVMContext::MD_range));
3450 
3451       if (LHS_CR.icmp(Pred, RHS_CR))
3452         return ConstantInt::getTrue(RHS->getContext());
3453 
3454       if (LHS_CR.icmp(CmpInst::getInversePredicate(Pred), RHS_CR))
3455         return ConstantInt::getFalse(RHS->getContext());
3456     }
3457   }
3458 
3459   // Compare of cast, for example (zext X) != 0 -> X != 0
3460   if (isa<CastInst>(LHS) && (isa<Constant>(RHS) || isa<CastInst>(RHS))) {
3461     Instruction *LI = cast<CastInst>(LHS);
3462     Value *SrcOp = LI->getOperand(0);
3463     Type *SrcTy = SrcOp->getType();
3464     Type *DstTy = LI->getType();
3465 
3466     // Turn icmp (ptrtoint x), (ptrtoint/constant) into a compare of the input
3467     // if the integer type is the same size as the pointer type.
3468     if (MaxRecurse && isa<PtrToIntInst>(LI) &&
3469         Q.DL.getTypeSizeInBits(SrcTy) == DstTy->getPrimitiveSizeInBits()) {
3470       if (Constant *RHSC = dyn_cast<Constant>(RHS)) {
3471         // Transfer the cast to the constant.
3472         if (Value *V = SimplifyICmpInst(Pred, SrcOp,
3473                                         ConstantExpr::getIntToPtr(RHSC, SrcTy),
3474                                         Q, MaxRecurse-1))
3475           return V;
3476       } else if (PtrToIntInst *RI = dyn_cast<PtrToIntInst>(RHS)) {
3477         if (RI->getOperand(0)->getType() == SrcTy)
3478           // Compare without the cast.
3479           if (Value *V = SimplifyICmpInst(Pred, SrcOp, RI->getOperand(0),
3480                                           Q, MaxRecurse-1))
3481             return V;
3482       }
3483     }
3484 
3485     if (isa<ZExtInst>(LHS)) {
3486       // Turn icmp (zext X), (zext Y) into a compare of X and Y if they have the
3487       // same type.
3488       if (ZExtInst *RI = dyn_cast<ZExtInst>(RHS)) {
3489         if (MaxRecurse && SrcTy == RI->getOperand(0)->getType())
3490           // Compare X and Y.  Note that signed predicates become unsigned.
3491           if (Value *V = SimplifyICmpInst(ICmpInst::getUnsignedPredicate(Pred),
3492                                           SrcOp, RI->getOperand(0), Q,
3493                                           MaxRecurse-1))
3494             return V;
3495       }
3496       // Fold (zext X) ule (sext X), (zext X) sge (sext X) to true.
3497       else if (SExtInst *RI = dyn_cast<SExtInst>(RHS)) {
3498         if (SrcOp == RI->getOperand(0)) {
3499           if (Pred == ICmpInst::ICMP_ULE || Pred == ICmpInst::ICMP_SGE)
3500             return ConstantInt::getTrue(ITy);
3501           if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_SLT)
3502             return ConstantInt::getFalse(ITy);
3503         }
3504       }
3505       // Turn icmp (zext X), Cst into a compare of X and Cst if Cst is extended
3506       // too.  If not, then try to deduce the result of the comparison.
3507       else if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
3508         // Compute the constant that would happen if we truncated to SrcTy then
3509         // reextended to DstTy.
3510         Constant *Trunc = ConstantExpr::getTrunc(CI, SrcTy);
3511         Constant *RExt = ConstantExpr::getCast(CastInst::ZExt, Trunc, DstTy);
3512 
3513         // If the re-extended constant didn't change then this is effectively
3514         // also a case of comparing two zero-extended values.
3515         if (RExt == CI && MaxRecurse)
3516           if (Value *V = SimplifyICmpInst(ICmpInst::getUnsignedPredicate(Pred),
3517                                         SrcOp, Trunc, Q, MaxRecurse-1))
3518             return V;
3519 
3520         // Otherwise the upper bits of LHS are zero while RHS has a non-zero bit
3521         // there.  Use this to work out the result of the comparison.
3522         if (RExt != CI) {
3523           switch (Pred) {
3524           default: llvm_unreachable("Unknown ICmp predicate!");
3525           // LHS <u RHS.
3526           case ICmpInst::ICMP_EQ:
3527           case ICmpInst::ICMP_UGT:
3528           case ICmpInst::ICMP_UGE:
3529             return ConstantInt::getFalse(CI->getContext());
3530 
3531           case ICmpInst::ICMP_NE:
3532           case ICmpInst::ICMP_ULT:
3533           case ICmpInst::ICMP_ULE:
3534             return ConstantInt::getTrue(CI->getContext());
3535 
3536           // LHS is non-negative.  If RHS is negative then LHS >s LHS.  If RHS
3537           // is non-negative then LHS <s RHS.
3538           case ICmpInst::ICMP_SGT:
3539           case ICmpInst::ICMP_SGE:
3540             return CI->getValue().isNegative() ?
3541               ConstantInt::getTrue(CI->getContext()) :
3542               ConstantInt::getFalse(CI->getContext());
3543 
3544           case ICmpInst::ICMP_SLT:
3545           case ICmpInst::ICMP_SLE:
3546             return CI->getValue().isNegative() ?
3547               ConstantInt::getFalse(CI->getContext()) :
3548               ConstantInt::getTrue(CI->getContext());
3549           }
3550         }
3551       }
3552     }
3553 
3554     if (isa<SExtInst>(LHS)) {
3555       // Turn icmp (sext X), (sext Y) into a compare of X and Y if they have the
3556       // same type.
3557       if (SExtInst *RI = dyn_cast<SExtInst>(RHS)) {
3558         if (MaxRecurse && SrcTy == RI->getOperand(0)->getType())
3559           // Compare X and Y.  Note that the predicate does not change.
3560           if (Value *V = SimplifyICmpInst(Pred, SrcOp, RI->getOperand(0),
3561                                           Q, MaxRecurse-1))
3562             return V;
3563       }
3564       // Fold (sext X) uge (zext X), (sext X) sle (zext X) to true.
3565       else if (ZExtInst *RI = dyn_cast<ZExtInst>(RHS)) {
3566         if (SrcOp == RI->getOperand(0)) {
3567           if (Pred == ICmpInst::ICMP_UGE || Pred == ICmpInst::ICMP_SLE)
3568             return ConstantInt::getTrue(ITy);
3569           if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_SGT)
3570             return ConstantInt::getFalse(ITy);
3571         }
3572       }
3573       // Turn icmp (sext X), Cst into a compare of X and Cst if Cst is extended
3574       // too.  If not, then try to deduce the result of the comparison.
3575       else if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
3576         // Compute the constant that would happen if we truncated to SrcTy then
3577         // reextended to DstTy.
3578         Constant *Trunc = ConstantExpr::getTrunc(CI, SrcTy);
3579         Constant *RExt = ConstantExpr::getCast(CastInst::SExt, Trunc, DstTy);
3580 
3581         // If the re-extended constant didn't change then this is effectively
3582         // also a case of comparing two sign-extended values.
3583         if (RExt == CI && MaxRecurse)
3584           if (Value *V = SimplifyICmpInst(Pred, SrcOp, Trunc, Q, MaxRecurse-1))
3585             return V;
3586 
3587         // Otherwise the upper bits of LHS are all equal, while RHS has varying
3588         // bits there.  Use this to work out the result of the comparison.
3589         if (RExt != CI) {
3590           switch (Pred) {
3591           default: llvm_unreachable("Unknown ICmp predicate!");
3592           case ICmpInst::ICMP_EQ:
3593             return ConstantInt::getFalse(CI->getContext());
3594           case ICmpInst::ICMP_NE:
3595             return ConstantInt::getTrue(CI->getContext());
3596 
3597           // If RHS is non-negative then LHS <s RHS.  If RHS is negative then
3598           // LHS >s RHS.
3599           case ICmpInst::ICMP_SGT:
3600           case ICmpInst::ICMP_SGE:
3601             return CI->getValue().isNegative() ?
3602               ConstantInt::getTrue(CI->getContext()) :
3603               ConstantInt::getFalse(CI->getContext());
3604           case ICmpInst::ICMP_SLT:
3605           case ICmpInst::ICMP_SLE:
3606             return CI->getValue().isNegative() ?
3607               ConstantInt::getFalse(CI->getContext()) :
3608               ConstantInt::getTrue(CI->getContext());
3609 
3610           // If LHS is non-negative then LHS <u RHS.  If LHS is negative then
3611           // LHS >u RHS.
3612           case ICmpInst::ICMP_UGT:
3613           case ICmpInst::ICMP_UGE:
3614             // Comparison is true iff the LHS <s 0.
3615             if (MaxRecurse)
3616               if (Value *V = SimplifyICmpInst(ICmpInst::ICMP_SLT, SrcOp,
3617                                               Constant::getNullValue(SrcTy),
3618                                               Q, MaxRecurse-1))
3619                 return V;
3620             break;
3621           case ICmpInst::ICMP_ULT:
3622           case ICmpInst::ICMP_ULE:
3623             // Comparison is true iff the LHS >=s 0.
3624             if (MaxRecurse)
3625               if (Value *V = SimplifyICmpInst(ICmpInst::ICMP_SGE, SrcOp,
3626                                               Constant::getNullValue(SrcTy),
3627                                               Q, MaxRecurse-1))
3628                 return V;
3629             break;
3630           }
3631         }
3632       }
3633     }
3634   }
3635 
3636   // icmp eq|ne X, Y -> false|true if X != Y
3637   // This is potentially expensive, and we have already computedKnownBits for
3638   // compares with 0 above here, so only try this for a non-zero compare.
3639   if (ICmpInst::isEquality(Pred) && !match(RHS, m_Zero()) &&
3640       isKnownNonEqual(LHS, RHS, Q.DL, Q.AC, Q.CxtI, Q.DT, Q.IIQ.UseInstrInfo)) {
3641     return Pred == ICmpInst::ICMP_NE ? getTrue(ITy) : getFalse(ITy);
3642   }
3643 
3644   if (Value *V = simplifyICmpWithBinOp(Pred, LHS, RHS, Q, MaxRecurse))
3645     return V;
3646 
3647   if (Value *V = simplifyICmpWithMinMax(Pred, LHS, RHS, Q, MaxRecurse))
3648     return V;
3649 
3650   if (Value *V = simplifyICmpWithDominatingAssume(Pred, LHS, RHS, Q))
3651     return V;
3652 
3653   // Simplify comparisons of related pointers using a powerful, recursive
3654   // GEP-walk when we have target data available..
3655   if (LHS->getType()->isPointerTy())
3656     if (auto *C = computePointerICmp(Pred, LHS, RHS, Q))
3657       return C;
3658   if (auto *CLHS = dyn_cast<PtrToIntOperator>(LHS))
3659     if (auto *CRHS = dyn_cast<PtrToIntOperator>(RHS))
3660       if (Q.DL.getTypeSizeInBits(CLHS->getPointerOperandType()) ==
3661               Q.DL.getTypeSizeInBits(CLHS->getType()) &&
3662           Q.DL.getTypeSizeInBits(CRHS->getPointerOperandType()) ==
3663               Q.DL.getTypeSizeInBits(CRHS->getType()))
3664         if (auto *C = computePointerICmp(Pred, CLHS->getPointerOperand(),
3665                                          CRHS->getPointerOperand(), Q))
3666           return C;
3667 
3668   // If the comparison is with the result of a select instruction, check whether
3669   // comparing with either branch of the select always yields the same value.
3670   if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS))
3671     if (Value *V = ThreadCmpOverSelect(Pred, LHS, RHS, Q, MaxRecurse))
3672       return V;
3673 
3674   // If the comparison is with the result of a phi instruction, check whether
3675   // doing the compare with each incoming phi value yields a common result.
3676   if (isa<PHINode>(LHS) || isa<PHINode>(RHS))
3677     if (Value *V = ThreadCmpOverPHI(Pred, LHS, RHS, Q, MaxRecurse))
3678       return V;
3679 
3680   return nullptr;
3681 }
3682 
3683 Value *llvm::SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS,
3684                               const SimplifyQuery &Q) {
3685   return ::SimplifyICmpInst(Predicate, LHS, RHS, Q, RecursionLimit);
3686 }
3687 
3688 /// Given operands for an FCmpInst, see if we can fold the result.
3689 /// If not, this returns null.
3690 static Value *SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
3691                                FastMathFlags FMF, const SimplifyQuery &Q,
3692                                unsigned MaxRecurse) {
3693   CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate;
3694   assert(CmpInst::isFPPredicate(Pred) && "Not an FP compare!");
3695 
3696   if (Constant *CLHS = dyn_cast<Constant>(LHS)) {
3697     if (Constant *CRHS = dyn_cast<Constant>(RHS))
3698       return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, Q.DL, Q.TLI);
3699 
3700     // If we have a constant, make sure it is on the RHS.
3701     std::swap(LHS, RHS);
3702     Pred = CmpInst::getSwappedPredicate(Pred);
3703   }
3704 
3705   // Fold trivial predicates.
3706   Type *RetTy = GetCompareTy(LHS);
3707   if (Pred == FCmpInst::FCMP_FALSE)
3708     return getFalse(RetTy);
3709   if (Pred == FCmpInst::FCMP_TRUE)
3710     return getTrue(RetTy);
3711 
3712   // Fold (un)ordered comparison if we can determine there are no NaNs.
3713   if (Pred == FCmpInst::FCMP_UNO || Pred == FCmpInst::FCMP_ORD)
3714     if (FMF.noNaNs() ||
3715         (isKnownNeverNaN(LHS, Q.TLI) && isKnownNeverNaN(RHS, Q.TLI)))
3716       return ConstantInt::get(RetTy, Pred == FCmpInst::FCMP_ORD);
3717 
3718   // NaN is unordered; NaN is not ordered.
3719   assert((FCmpInst::isOrdered(Pred) || FCmpInst::isUnordered(Pred)) &&
3720          "Comparison must be either ordered or unordered");
3721   if (match(RHS, m_NaN()))
3722     return ConstantInt::get(RetTy, CmpInst::isUnordered(Pred));
3723 
3724   // fcmp pred x, poison and  fcmp pred poison, x
3725   // fold to poison
3726   if (isa<PoisonValue>(LHS) || isa<PoisonValue>(RHS))
3727     return PoisonValue::get(RetTy);
3728 
3729   // fcmp pred x, undef  and  fcmp pred undef, x
3730   // fold to true if unordered, false if ordered
3731   if (Q.isUndefValue(LHS) || Q.isUndefValue(RHS)) {
3732     // Choosing NaN for the undef will always make unordered comparison succeed
3733     // and ordered comparison fail.
3734     return ConstantInt::get(RetTy, CmpInst::isUnordered(Pred));
3735   }
3736 
3737   // fcmp x,x -> true/false.  Not all compares are foldable.
3738   if (LHS == RHS) {
3739     if (CmpInst::isTrueWhenEqual(Pred))
3740       return getTrue(RetTy);
3741     if (CmpInst::isFalseWhenEqual(Pred))
3742       return getFalse(RetTy);
3743   }
3744 
3745   // Handle fcmp with constant RHS.
3746   // TODO: Use match with a specific FP value, so these work with vectors with
3747   // undef lanes.
3748   const APFloat *C;
3749   if (match(RHS, m_APFloat(C))) {
3750     // Check whether the constant is an infinity.
3751     if (C->isInfinity()) {
3752       if (C->isNegative()) {
3753         switch (Pred) {
3754         case FCmpInst::FCMP_OLT:
3755           // No value is ordered and less than negative infinity.
3756           return getFalse(RetTy);
3757         case FCmpInst::FCMP_UGE:
3758           // All values are unordered with or at least negative infinity.
3759           return getTrue(RetTy);
3760         default:
3761           break;
3762         }
3763       } else {
3764         switch (Pred) {
3765         case FCmpInst::FCMP_OGT:
3766           // No value is ordered and greater than infinity.
3767           return getFalse(RetTy);
3768         case FCmpInst::FCMP_ULE:
3769           // All values are unordered with and at most infinity.
3770           return getTrue(RetTy);
3771         default:
3772           break;
3773         }
3774       }
3775 
3776       // LHS == Inf
3777       if (Pred == FCmpInst::FCMP_OEQ && isKnownNeverInfinity(LHS, Q.TLI))
3778         return getFalse(RetTy);
3779       // LHS != Inf
3780       if (Pred == FCmpInst::FCMP_UNE && isKnownNeverInfinity(LHS, Q.TLI))
3781         return getTrue(RetTy);
3782       // LHS == Inf || LHS == NaN
3783       if (Pred == FCmpInst::FCMP_UEQ && isKnownNeverInfinity(LHS, Q.TLI) &&
3784           isKnownNeverNaN(LHS, Q.TLI))
3785         return getFalse(RetTy);
3786       // LHS != Inf && LHS != NaN
3787       if (Pred == FCmpInst::FCMP_ONE && isKnownNeverInfinity(LHS, Q.TLI) &&
3788           isKnownNeverNaN(LHS, Q.TLI))
3789         return getTrue(RetTy);
3790     }
3791     if (C->isNegative() && !C->isNegZero()) {
3792       assert(!C->isNaN() && "Unexpected NaN constant!");
3793       // TODO: We can catch more cases by using a range check rather than
3794       //       relying on CannotBeOrderedLessThanZero.
3795       switch (Pred) {
3796       case FCmpInst::FCMP_UGE:
3797       case FCmpInst::FCMP_UGT:
3798       case FCmpInst::FCMP_UNE:
3799         // (X >= 0) implies (X > C) when (C < 0)
3800         if (CannotBeOrderedLessThanZero(LHS, Q.TLI))
3801           return getTrue(RetTy);
3802         break;
3803       case FCmpInst::FCMP_OEQ:
3804       case FCmpInst::FCMP_OLE:
3805       case FCmpInst::FCMP_OLT:
3806         // (X >= 0) implies !(X < C) when (C < 0)
3807         if (CannotBeOrderedLessThanZero(LHS, Q.TLI))
3808           return getFalse(RetTy);
3809         break;
3810       default:
3811         break;
3812       }
3813     }
3814 
3815     // Check comparison of [minnum/maxnum with constant] with other constant.
3816     const APFloat *C2;
3817     if ((match(LHS, m_Intrinsic<Intrinsic::minnum>(m_Value(), m_APFloat(C2))) &&
3818          *C2 < *C) ||
3819         (match(LHS, m_Intrinsic<Intrinsic::maxnum>(m_Value(), m_APFloat(C2))) &&
3820          *C2 > *C)) {
3821       bool IsMaxNum =
3822           cast<IntrinsicInst>(LHS)->getIntrinsicID() == Intrinsic::maxnum;
3823       // The ordered relationship and minnum/maxnum guarantee that we do not
3824       // have NaN constants, so ordered/unordered preds are handled the same.
3825       switch (Pred) {
3826       case FCmpInst::FCMP_OEQ: case FCmpInst::FCMP_UEQ:
3827         // minnum(X, LesserC)  == C --> false
3828         // maxnum(X, GreaterC) == C --> false
3829         return getFalse(RetTy);
3830       case FCmpInst::FCMP_ONE: case FCmpInst::FCMP_UNE:
3831         // minnum(X, LesserC)  != C --> true
3832         // maxnum(X, GreaterC) != C --> true
3833         return getTrue(RetTy);
3834       case FCmpInst::FCMP_OGE: case FCmpInst::FCMP_UGE:
3835       case FCmpInst::FCMP_OGT: case FCmpInst::FCMP_UGT:
3836         // minnum(X, LesserC)  >= C --> false
3837         // minnum(X, LesserC)  >  C --> false
3838         // maxnum(X, GreaterC) >= C --> true
3839         // maxnum(X, GreaterC) >  C --> true
3840         return ConstantInt::get(RetTy, IsMaxNum);
3841       case FCmpInst::FCMP_OLE: case FCmpInst::FCMP_ULE:
3842       case FCmpInst::FCMP_OLT: case FCmpInst::FCMP_ULT:
3843         // minnum(X, LesserC)  <= C --> true
3844         // minnum(X, LesserC)  <  C --> true
3845         // maxnum(X, GreaterC) <= C --> false
3846         // maxnum(X, GreaterC) <  C --> false
3847         return ConstantInt::get(RetTy, !IsMaxNum);
3848       default:
3849         // TRUE/FALSE/ORD/UNO should be handled before this.
3850         llvm_unreachable("Unexpected fcmp predicate");
3851       }
3852     }
3853   }
3854 
3855   if (match(RHS, m_AnyZeroFP())) {
3856     switch (Pred) {
3857     case FCmpInst::FCMP_OGE:
3858     case FCmpInst::FCMP_ULT:
3859       // Positive or zero X >= 0.0 --> true
3860       // Positive or zero X <  0.0 --> false
3861       if ((FMF.noNaNs() || isKnownNeverNaN(LHS, Q.TLI)) &&
3862           CannotBeOrderedLessThanZero(LHS, Q.TLI))
3863         return Pred == FCmpInst::FCMP_OGE ? getTrue(RetTy) : getFalse(RetTy);
3864       break;
3865     case FCmpInst::FCMP_UGE:
3866     case FCmpInst::FCMP_OLT:
3867       // Positive or zero or nan X >= 0.0 --> true
3868       // Positive or zero or nan X <  0.0 --> false
3869       if (CannotBeOrderedLessThanZero(LHS, Q.TLI))
3870         return Pred == FCmpInst::FCMP_UGE ? getTrue(RetTy) : getFalse(RetTy);
3871       break;
3872     default:
3873       break;
3874     }
3875   }
3876 
3877   // If the comparison is with the result of a select instruction, check whether
3878   // comparing with either branch of the select always yields the same value.
3879   if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS))
3880     if (Value *V = ThreadCmpOverSelect(Pred, LHS, RHS, Q, MaxRecurse))
3881       return V;
3882 
3883   // If the comparison is with the result of a phi instruction, check whether
3884   // doing the compare with each incoming phi value yields a common result.
3885   if (isa<PHINode>(LHS) || isa<PHINode>(RHS))
3886     if (Value *V = ThreadCmpOverPHI(Pred, LHS, RHS, Q, MaxRecurse))
3887       return V;
3888 
3889   return nullptr;
3890 }
3891 
3892 Value *llvm::SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
3893                               FastMathFlags FMF, const SimplifyQuery &Q) {
3894   return ::SimplifyFCmpInst(Predicate, LHS, RHS, FMF, Q, RecursionLimit);
3895 }
3896 
3897 static Value *simplifyWithOpReplaced(Value *V, Value *Op, Value *RepOp,
3898                                      const SimplifyQuery &Q,
3899                                      bool AllowRefinement,
3900                                      unsigned MaxRecurse) {
3901   assert(!Op->getType()->isVectorTy() && "This is not safe for vectors");
3902 
3903   // Trivial replacement.
3904   if (V == Op)
3905     return RepOp;
3906 
3907   // We cannot replace a constant, and shouldn't even try.
3908   if (isa<Constant>(Op))
3909     return nullptr;
3910 
3911   auto *I = dyn_cast<Instruction>(V);
3912   if (!I || !is_contained(I->operands(), Op))
3913     return nullptr;
3914 
3915   // Replace Op with RepOp in instruction operands.
3916   SmallVector<Value *, 8> NewOps(I->getNumOperands());
3917   transform(I->operands(), NewOps.begin(),
3918             [&](Value *V) { return V == Op ? RepOp : V; });
3919 
3920   if (!AllowRefinement) {
3921     // General InstSimplify functions may refine the result, e.g. by returning
3922     // a constant for a potentially poison value. To avoid this, implement only
3923     // a few non-refining but profitable transforms here.
3924 
3925     if (auto *BO = dyn_cast<BinaryOperator>(I)) {
3926       unsigned Opcode = BO->getOpcode();
3927       // id op x -> x, x op id -> x
3928       if (NewOps[0] == ConstantExpr::getBinOpIdentity(Opcode, I->getType()))
3929         return NewOps[1];
3930       if (NewOps[1] == ConstantExpr::getBinOpIdentity(Opcode, I->getType(),
3931                                                       /* RHS */ true))
3932         return NewOps[0];
3933 
3934       // x & x -> x, x | x -> x
3935       if ((Opcode == Instruction::And || Opcode == Instruction::Or) &&
3936           NewOps[0] == NewOps[1])
3937         return NewOps[0];
3938     }
3939 
3940     if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) {
3941       // getelementptr x, 0 -> x
3942       if (NewOps.size() == 2 && match(NewOps[1], m_Zero()) &&
3943           !GEP->isInBounds())
3944         return NewOps[0];
3945     }
3946   } else if (MaxRecurse) {
3947     // The simplification queries below may return the original value. Consider:
3948     //   %div = udiv i32 %arg, %arg2
3949     //   %mul = mul nsw i32 %div, %arg2
3950     //   %cmp = icmp eq i32 %mul, %arg
3951     //   %sel = select i1 %cmp, i32 %div, i32 undef
3952     // Replacing %arg by %mul, %div becomes "udiv i32 %mul, %arg2", which
3953     // simplifies back to %arg. This can only happen because %mul does not
3954     // dominate %div. To ensure a consistent return value contract, we make sure
3955     // that this case returns nullptr as well.
3956     auto PreventSelfSimplify = [V](Value *Simplified) {
3957       return Simplified != V ? Simplified : nullptr;
3958     };
3959 
3960     if (auto *B = dyn_cast<BinaryOperator>(I))
3961       return PreventSelfSimplify(SimplifyBinOp(B->getOpcode(), NewOps[0],
3962                                                NewOps[1], Q, MaxRecurse - 1));
3963 
3964     if (CmpInst *C = dyn_cast<CmpInst>(I))
3965       return PreventSelfSimplify(SimplifyCmpInst(C->getPredicate(), NewOps[0],
3966                                                  NewOps[1], Q, MaxRecurse - 1));
3967 
3968     if (auto *GEP = dyn_cast<GetElementPtrInst>(I))
3969       return PreventSelfSimplify(SimplifyGEPInst(GEP->getSourceElementType(),
3970                                                  NewOps, GEP->isInBounds(), Q,
3971                                                  MaxRecurse - 1));
3972 
3973     if (isa<SelectInst>(I))
3974       return PreventSelfSimplify(
3975           SimplifySelectInst(NewOps[0], NewOps[1], NewOps[2], Q,
3976                              MaxRecurse - 1));
3977     // TODO: We could hand off more cases to instsimplify here.
3978   }
3979 
3980   // If all operands are constant after substituting Op for RepOp then we can
3981   // constant fold the instruction.
3982   SmallVector<Constant *, 8> ConstOps;
3983   for (Value *NewOp : NewOps) {
3984     if (Constant *ConstOp = dyn_cast<Constant>(NewOp))
3985       ConstOps.push_back(ConstOp);
3986     else
3987       return nullptr;
3988   }
3989 
3990   // Consider:
3991   //   %cmp = icmp eq i32 %x, 2147483647
3992   //   %add = add nsw i32 %x, 1
3993   //   %sel = select i1 %cmp, i32 -2147483648, i32 %add
3994   //
3995   // We can't replace %sel with %add unless we strip away the flags (which
3996   // will be done in InstCombine).
3997   // TODO: This may be unsound, because it only catches some forms of
3998   // refinement.
3999   if (!AllowRefinement && canCreatePoison(cast<Operator>(I)))
4000     return nullptr;
4001 
4002   if (CmpInst *C = dyn_cast<CmpInst>(I))
4003     return ConstantFoldCompareInstOperands(C->getPredicate(), ConstOps[0],
4004                                            ConstOps[1], Q.DL, Q.TLI);
4005 
4006   if (LoadInst *LI = dyn_cast<LoadInst>(I))
4007     if (!LI->isVolatile())
4008       return ConstantFoldLoadFromConstPtr(ConstOps[0], LI->getType(), Q.DL);
4009 
4010   return ConstantFoldInstOperands(I, ConstOps, Q.DL, Q.TLI);
4011 }
4012 
4013 Value *llvm::simplifyWithOpReplaced(Value *V, Value *Op, Value *RepOp,
4014                                     const SimplifyQuery &Q,
4015                                     bool AllowRefinement) {
4016   return ::simplifyWithOpReplaced(V, Op, RepOp, Q, AllowRefinement,
4017                                   RecursionLimit);
4018 }
4019 
4020 /// Try to simplify a select instruction when its condition operand is an
4021 /// integer comparison where one operand of the compare is a constant.
4022 static Value *simplifySelectBitTest(Value *TrueVal, Value *FalseVal, Value *X,
4023                                     const APInt *Y, bool TrueWhenUnset) {
4024   const APInt *C;
4025 
4026   // (X & Y) == 0 ? X & ~Y : X  --> X
4027   // (X & Y) != 0 ? X & ~Y : X  --> X & ~Y
4028   if (FalseVal == X && match(TrueVal, m_And(m_Specific(X), m_APInt(C))) &&
4029       *Y == ~*C)
4030     return TrueWhenUnset ? FalseVal : TrueVal;
4031 
4032   // (X & Y) == 0 ? X : X & ~Y  --> X & ~Y
4033   // (X & Y) != 0 ? X : X & ~Y  --> X
4034   if (TrueVal == X && match(FalseVal, m_And(m_Specific(X), m_APInt(C))) &&
4035       *Y == ~*C)
4036     return TrueWhenUnset ? FalseVal : TrueVal;
4037 
4038   if (Y->isPowerOf2()) {
4039     // (X & Y) == 0 ? X | Y : X  --> X | Y
4040     // (X & Y) != 0 ? X | Y : X  --> X
4041     if (FalseVal == X && match(TrueVal, m_Or(m_Specific(X), m_APInt(C))) &&
4042         *Y == *C)
4043       return TrueWhenUnset ? TrueVal : FalseVal;
4044 
4045     // (X & Y) == 0 ? X : X | Y  --> X
4046     // (X & Y) != 0 ? X : X | Y  --> X | Y
4047     if (TrueVal == X && match(FalseVal, m_Or(m_Specific(X), m_APInt(C))) &&
4048         *Y == *C)
4049       return TrueWhenUnset ? TrueVal : FalseVal;
4050   }
4051 
4052   return nullptr;
4053 }
4054 
4055 /// An alternative way to test if a bit is set or not uses sgt/slt instead of
4056 /// eq/ne.
4057 static Value *simplifySelectWithFakeICmpEq(Value *CmpLHS, Value *CmpRHS,
4058                                            ICmpInst::Predicate Pred,
4059                                            Value *TrueVal, Value *FalseVal) {
4060   Value *X;
4061   APInt Mask;
4062   if (!decomposeBitTestICmp(CmpLHS, CmpRHS, Pred, X, Mask))
4063     return nullptr;
4064 
4065   return simplifySelectBitTest(TrueVal, FalseVal, X, &Mask,
4066                                Pred == ICmpInst::ICMP_EQ);
4067 }
4068 
4069 /// Try to simplify a select instruction when its condition operand is an
4070 /// integer comparison.
4071 static Value *simplifySelectWithICmpCond(Value *CondVal, Value *TrueVal,
4072                                          Value *FalseVal, const SimplifyQuery &Q,
4073                                          unsigned MaxRecurse) {
4074   ICmpInst::Predicate Pred;
4075   Value *CmpLHS, *CmpRHS;
4076   if (!match(CondVal, m_ICmp(Pred, m_Value(CmpLHS), m_Value(CmpRHS))))
4077     return nullptr;
4078 
4079   // Canonicalize ne to eq predicate.
4080   if (Pred == ICmpInst::ICMP_NE) {
4081     Pred = ICmpInst::ICMP_EQ;
4082     std::swap(TrueVal, FalseVal);
4083   }
4084 
4085   // Check for integer min/max with a limit constant:
4086   // X > MIN_INT ? X : MIN_INT --> X
4087   // X < MAX_INT ? X : MAX_INT --> X
4088   if (TrueVal->getType()->isIntOrIntVectorTy()) {
4089     Value *X, *Y;
4090     SelectPatternFlavor SPF =
4091         matchDecomposedSelectPattern(cast<ICmpInst>(CondVal), TrueVal, FalseVal,
4092                                      X, Y).Flavor;
4093     if (SelectPatternResult::isMinOrMax(SPF) && Pred == getMinMaxPred(SPF)) {
4094       APInt LimitC = getMinMaxLimit(getInverseMinMaxFlavor(SPF),
4095                                     X->getType()->getScalarSizeInBits());
4096       if (match(Y, m_SpecificInt(LimitC)))
4097         return X;
4098     }
4099   }
4100 
4101   if (Pred == ICmpInst::ICMP_EQ && match(CmpRHS, m_Zero())) {
4102     Value *X;
4103     const APInt *Y;
4104     if (match(CmpLHS, m_And(m_Value(X), m_APInt(Y))))
4105       if (Value *V = simplifySelectBitTest(TrueVal, FalseVal, X, Y,
4106                                            /*TrueWhenUnset=*/true))
4107         return V;
4108 
4109     // Test for a bogus zero-shift-guard-op around funnel-shift or rotate.
4110     Value *ShAmt;
4111     auto isFsh = m_CombineOr(m_FShl(m_Value(X), m_Value(), m_Value(ShAmt)),
4112                              m_FShr(m_Value(), m_Value(X), m_Value(ShAmt)));
4113     // (ShAmt == 0) ? fshl(X, *, ShAmt) : X --> X
4114     // (ShAmt == 0) ? fshr(*, X, ShAmt) : X --> X
4115     if (match(TrueVal, isFsh) && FalseVal == X && CmpLHS == ShAmt)
4116       return X;
4117 
4118     // Test for a zero-shift-guard-op around rotates. These are used to
4119     // avoid UB from oversized shifts in raw IR rotate patterns, but the
4120     // intrinsics do not have that problem.
4121     // We do not allow this transform for the general funnel shift case because
4122     // that would not preserve the poison safety of the original code.
4123     auto isRotate =
4124         m_CombineOr(m_FShl(m_Value(X), m_Deferred(X), m_Value(ShAmt)),
4125                     m_FShr(m_Value(X), m_Deferred(X), m_Value(ShAmt)));
4126     // (ShAmt == 0) ? X : fshl(X, X, ShAmt) --> fshl(X, X, ShAmt)
4127     // (ShAmt == 0) ? X : fshr(X, X, ShAmt) --> fshr(X, X, ShAmt)
4128     if (match(FalseVal, isRotate) && TrueVal == X && CmpLHS == ShAmt &&
4129         Pred == ICmpInst::ICMP_EQ)
4130       return FalseVal;
4131 
4132     // X == 0 ? abs(X) : -abs(X) --> -abs(X)
4133     // X == 0 ? -abs(X) : abs(X) --> abs(X)
4134     if (match(TrueVal, m_Intrinsic<Intrinsic::abs>(m_Specific(CmpLHS))) &&
4135         match(FalseVal, m_Neg(m_Intrinsic<Intrinsic::abs>(m_Specific(CmpLHS)))))
4136       return FalseVal;
4137     if (match(TrueVal,
4138               m_Neg(m_Intrinsic<Intrinsic::abs>(m_Specific(CmpLHS)))) &&
4139         match(FalseVal, m_Intrinsic<Intrinsic::abs>(m_Specific(CmpLHS))))
4140       return FalseVal;
4141   }
4142 
4143   // Check for other compares that behave like bit test.
4144   if (Value *V = simplifySelectWithFakeICmpEq(CmpLHS, CmpRHS, Pred,
4145                                               TrueVal, FalseVal))
4146     return V;
4147 
4148   // If we have a scalar equality comparison, then we know the value in one of
4149   // the arms of the select. See if substituting this value into the arm and
4150   // simplifying the result yields the same value as the other arm.
4151   // Note that the equivalence/replacement opportunity does not hold for vectors
4152   // because each element of a vector select is chosen independently.
4153   if (Pred == ICmpInst::ICMP_EQ && !CondVal->getType()->isVectorTy()) {
4154     if (simplifyWithOpReplaced(FalseVal, CmpLHS, CmpRHS, Q,
4155                                /* AllowRefinement */ false, MaxRecurse) ==
4156             TrueVal ||
4157         simplifyWithOpReplaced(FalseVal, CmpRHS, CmpLHS, Q,
4158                                /* AllowRefinement */ false, MaxRecurse) ==
4159             TrueVal)
4160       return FalseVal;
4161     if (simplifyWithOpReplaced(TrueVal, CmpLHS, CmpRHS, Q,
4162                                /* AllowRefinement */ true, MaxRecurse) ==
4163             FalseVal ||
4164         simplifyWithOpReplaced(TrueVal, CmpRHS, CmpLHS, Q,
4165                                /* AllowRefinement */ true, MaxRecurse) ==
4166             FalseVal)
4167       return FalseVal;
4168   }
4169 
4170   return nullptr;
4171 }
4172 
4173 /// Try to simplify a select instruction when its condition operand is a
4174 /// floating-point comparison.
4175 static Value *simplifySelectWithFCmp(Value *Cond, Value *T, Value *F,
4176                                      const SimplifyQuery &Q) {
4177   FCmpInst::Predicate Pred;
4178   if (!match(Cond, m_FCmp(Pred, m_Specific(T), m_Specific(F))) &&
4179       !match(Cond, m_FCmp(Pred, m_Specific(F), m_Specific(T))))
4180     return nullptr;
4181 
4182   // This transform is safe if we do not have (do not care about) -0.0 or if
4183   // at least one operand is known to not be -0.0. Otherwise, the select can
4184   // change the sign of a zero operand.
4185   bool HasNoSignedZeros = Q.CxtI && isa<FPMathOperator>(Q.CxtI) &&
4186                           Q.CxtI->hasNoSignedZeros();
4187   const APFloat *C;
4188   if (HasNoSignedZeros || (match(T, m_APFloat(C)) && C->isNonZero()) ||
4189                           (match(F, m_APFloat(C)) && C->isNonZero())) {
4190     // (T == F) ? T : F --> F
4191     // (F == T) ? T : F --> F
4192     if (Pred == FCmpInst::FCMP_OEQ)
4193       return F;
4194 
4195     // (T != F) ? T : F --> T
4196     // (F != T) ? T : F --> T
4197     if (Pred == FCmpInst::FCMP_UNE)
4198       return T;
4199   }
4200 
4201   return nullptr;
4202 }
4203 
4204 /// Given operands for a SelectInst, see if we can fold the result.
4205 /// If not, this returns null.
4206 static Value *SimplifySelectInst(Value *Cond, Value *TrueVal, Value *FalseVal,
4207                                  const SimplifyQuery &Q, unsigned MaxRecurse) {
4208   if (auto *CondC = dyn_cast<Constant>(Cond)) {
4209     if (auto *TrueC = dyn_cast<Constant>(TrueVal))
4210       if (auto *FalseC = dyn_cast<Constant>(FalseVal))
4211         return ConstantFoldSelectInstruction(CondC, TrueC, FalseC);
4212 
4213     // select poison, X, Y -> poison
4214     if (isa<PoisonValue>(CondC))
4215       return PoisonValue::get(TrueVal->getType());
4216 
4217     // select undef, X, Y -> X or Y
4218     if (Q.isUndefValue(CondC))
4219       return isa<Constant>(FalseVal) ? FalseVal : TrueVal;
4220 
4221     // select true,  X, Y --> X
4222     // select false, X, Y --> Y
4223     // For vectors, allow undef/poison elements in the condition to match the
4224     // defined elements, so we can eliminate the select.
4225     if (match(CondC, m_One()))
4226       return TrueVal;
4227     if (match(CondC, m_Zero()))
4228       return FalseVal;
4229   }
4230 
4231   assert(Cond->getType()->isIntOrIntVectorTy(1) &&
4232          "Select must have bool or bool vector condition");
4233   assert(TrueVal->getType() == FalseVal->getType() &&
4234          "Select must have same types for true/false ops");
4235 
4236   if (Cond->getType() == TrueVal->getType()) {
4237     // select i1 Cond, i1 true, i1 false --> i1 Cond
4238     if (match(TrueVal, m_One()) && match(FalseVal, m_ZeroInt()))
4239       return Cond;
4240 
4241     // (X || Y) && (X || !Y) --> X (commuted 8 ways)
4242     Value *X, *Y;
4243     if (match(FalseVal, m_ZeroInt())) {
4244       if (match(Cond, m_c_LogicalOr(m_Value(X), m_Not(m_Value(Y)))) &&
4245           match(TrueVal, m_c_LogicalOr(m_Specific(X), m_Specific(Y))))
4246         return X;
4247       if (match(TrueVal, m_c_LogicalOr(m_Value(X), m_Not(m_Value(Y)))) &&
4248           match(Cond, m_c_LogicalOr(m_Specific(X), m_Specific(Y))))
4249         return X;
4250     }
4251   }
4252 
4253   // select ?, X, X -> X
4254   if (TrueVal == FalseVal)
4255     return TrueVal;
4256 
4257   // If the true or false value is poison, we can fold to the other value.
4258   // If the true or false value is undef, we can fold to the other value as
4259   // long as the other value isn't poison.
4260   // select ?, poison, X -> X
4261   // select ?, undef,  X -> X
4262   if (isa<PoisonValue>(TrueVal) ||
4263       (Q.isUndefValue(TrueVal) &&
4264        isGuaranteedNotToBePoison(FalseVal, Q.AC, Q.CxtI, Q.DT)))
4265     return FalseVal;
4266   // select ?, X, poison -> X
4267   // select ?, X, undef  -> X
4268   if (isa<PoisonValue>(FalseVal) ||
4269       (Q.isUndefValue(FalseVal) &&
4270        isGuaranteedNotToBePoison(TrueVal, Q.AC, Q.CxtI, Q.DT)))
4271     return TrueVal;
4272 
4273   // Deal with partial undef vector constants: select ?, VecC, VecC' --> VecC''
4274   Constant *TrueC, *FalseC;
4275   if (isa<FixedVectorType>(TrueVal->getType()) &&
4276       match(TrueVal, m_Constant(TrueC)) &&
4277       match(FalseVal, m_Constant(FalseC))) {
4278     unsigned NumElts =
4279         cast<FixedVectorType>(TrueC->getType())->getNumElements();
4280     SmallVector<Constant *, 16> NewC;
4281     for (unsigned i = 0; i != NumElts; ++i) {
4282       // Bail out on incomplete vector constants.
4283       Constant *TEltC = TrueC->getAggregateElement(i);
4284       Constant *FEltC = FalseC->getAggregateElement(i);
4285       if (!TEltC || !FEltC)
4286         break;
4287 
4288       // If the elements match (undef or not), that value is the result. If only
4289       // one element is undef, choose the defined element as the safe result.
4290       if (TEltC == FEltC)
4291         NewC.push_back(TEltC);
4292       else if (isa<PoisonValue>(TEltC) ||
4293                (Q.isUndefValue(TEltC) && isGuaranteedNotToBePoison(FEltC)))
4294         NewC.push_back(FEltC);
4295       else if (isa<PoisonValue>(FEltC) ||
4296                (Q.isUndefValue(FEltC) && isGuaranteedNotToBePoison(TEltC)))
4297         NewC.push_back(TEltC);
4298       else
4299         break;
4300     }
4301     if (NewC.size() == NumElts)
4302       return ConstantVector::get(NewC);
4303   }
4304 
4305   if (Value *V =
4306           simplifySelectWithICmpCond(Cond, TrueVal, FalseVal, Q, MaxRecurse))
4307     return V;
4308 
4309   if (Value *V = simplifySelectWithFCmp(Cond, TrueVal, FalseVal, Q))
4310     return V;
4311 
4312   if (Value *V = foldSelectWithBinaryOp(Cond, TrueVal, FalseVal))
4313     return V;
4314 
4315   Optional<bool> Imp = isImpliedByDomCondition(Cond, Q.CxtI, Q.DL);
4316   if (Imp)
4317     return *Imp ? TrueVal : FalseVal;
4318 
4319   return nullptr;
4320 }
4321 
4322 Value *llvm::SimplifySelectInst(Value *Cond, Value *TrueVal, Value *FalseVal,
4323                                 const SimplifyQuery &Q) {
4324   return ::SimplifySelectInst(Cond, TrueVal, FalseVal, Q, RecursionLimit);
4325 }
4326 
4327 /// Given operands for an GetElementPtrInst, see if we can fold the result.
4328 /// If not, this returns null.
4329 static Value *SimplifyGEPInst(Type *SrcTy, ArrayRef<Value *> Ops, bool InBounds,
4330                               const SimplifyQuery &Q, unsigned) {
4331   // The type of the GEP pointer operand.
4332   unsigned AS =
4333       cast<PointerType>(Ops[0]->getType()->getScalarType())->getAddressSpace();
4334 
4335   // getelementptr P -> P.
4336   if (Ops.size() == 1)
4337     return Ops[0];
4338 
4339   // Compute the (pointer) type returned by the GEP instruction.
4340   Type *LastType = GetElementPtrInst::getIndexedType(SrcTy, Ops.slice(1));
4341   Type *GEPTy = PointerType::get(LastType, AS);
4342   for (Value *Op : Ops) {
4343     // If one of the operands is a vector, the result type is a vector of
4344     // pointers. All vector operands must have the same number of elements.
4345     if (VectorType *VT = dyn_cast<VectorType>(Op->getType())) {
4346       GEPTy = VectorType::get(GEPTy, VT->getElementCount());
4347       break;
4348     }
4349   }
4350 
4351   // getelementptr poison, idx -> poison
4352   // getelementptr baseptr, poison -> poison
4353   if (any_of(Ops, [](const auto *V) { return isa<PoisonValue>(V); }))
4354     return PoisonValue::get(GEPTy);
4355 
4356   if (Q.isUndefValue(Ops[0]))
4357     return UndefValue::get(GEPTy);
4358 
4359   bool IsScalableVec =
4360       isa<ScalableVectorType>(SrcTy) || any_of(Ops, [](const Value *V) {
4361         return isa<ScalableVectorType>(V->getType());
4362       });
4363 
4364   if (Ops.size() == 2) {
4365     // getelementptr P, 0 -> P.
4366     if (match(Ops[1], m_Zero()) && Ops[0]->getType() == GEPTy)
4367       return Ops[0];
4368 
4369     Type *Ty = SrcTy;
4370     if (!IsScalableVec && Ty->isSized()) {
4371       Value *P;
4372       uint64_t C;
4373       uint64_t TyAllocSize = Q.DL.getTypeAllocSize(Ty);
4374       // getelementptr P, N -> P if P points to a type of zero size.
4375       if (TyAllocSize == 0 && Ops[0]->getType() == GEPTy)
4376         return Ops[0];
4377 
4378       // The following transforms are only safe if the ptrtoint cast
4379       // doesn't truncate the pointers.
4380       if (Ops[1]->getType()->getScalarSizeInBits() ==
4381           Q.DL.getPointerSizeInBits(AS)) {
4382         auto CanSimplify = [GEPTy, &P, V = Ops[0]]() -> bool {
4383           return P->getType() == GEPTy &&
4384                  getUnderlyingObject(P) == getUnderlyingObject(V);
4385         };
4386         // getelementptr V, (sub P, V) -> P if P points to a type of size 1.
4387         if (TyAllocSize == 1 &&
4388             match(Ops[1], m_Sub(m_PtrToInt(m_Value(P)),
4389                                 m_PtrToInt(m_Specific(Ops[0])))) &&
4390             CanSimplify())
4391           return P;
4392 
4393         // getelementptr V, (ashr (sub P, V), C) -> P if P points to a type of
4394         // size 1 << C.
4395         if (match(Ops[1], m_AShr(m_Sub(m_PtrToInt(m_Value(P)),
4396                                        m_PtrToInt(m_Specific(Ops[0]))),
4397                                  m_ConstantInt(C))) &&
4398             TyAllocSize == 1ULL << C && CanSimplify())
4399           return P;
4400 
4401         // getelementptr V, (sdiv (sub P, V), C) -> P if P points to a type of
4402         // size C.
4403         if (match(Ops[1], m_SDiv(m_Sub(m_PtrToInt(m_Value(P)),
4404                                        m_PtrToInt(m_Specific(Ops[0]))),
4405                                  m_SpecificInt(TyAllocSize))) &&
4406             CanSimplify())
4407           return P;
4408       }
4409     }
4410   }
4411 
4412   if (!IsScalableVec && Q.DL.getTypeAllocSize(LastType) == 1 &&
4413       all_of(Ops.slice(1).drop_back(1),
4414              [](Value *Idx) { return match(Idx, m_Zero()); })) {
4415     unsigned IdxWidth =
4416         Q.DL.getIndexSizeInBits(Ops[0]->getType()->getPointerAddressSpace());
4417     if (Q.DL.getTypeSizeInBits(Ops.back()->getType()) == IdxWidth) {
4418       APInt BasePtrOffset(IdxWidth, 0);
4419       Value *StrippedBasePtr =
4420           Ops[0]->stripAndAccumulateInBoundsConstantOffsets(Q.DL,
4421                                                             BasePtrOffset);
4422 
4423       // Avoid creating inttoptr of zero here: While LLVMs treatment of
4424       // inttoptr is generally conservative, this particular case is folded to
4425       // a null pointer, which will have incorrect provenance.
4426 
4427       // gep (gep V, C), (sub 0, V) -> C
4428       if (match(Ops.back(),
4429                 m_Sub(m_Zero(), m_PtrToInt(m_Specific(StrippedBasePtr)))) &&
4430           !BasePtrOffset.isZero()) {
4431         auto *CI = ConstantInt::get(GEPTy->getContext(), BasePtrOffset);
4432         return ConstantExpr::getIntToPtr(CI, GEPTy);
4433       }
4434       // gep (gep V, C), (xor V, -1) -> C-1
4435       if (match(Ops.back(),
4436                 m_Xor(m_PtrToInt(m_Specific(StrippedBasePtr)), m_AllOnes())) &&
4437           !BasePtrOffset.isOne()) {
4438         auto *CI = ConstantInt::get(GEPTy->getContext(), BasePtrOffset - 1);
4439         return ConstantExpr::getIntToPtr(CI, GEPTy);
4440       }
4441     }
4442   }
4443 
4444   // Check to see if this is constant foldable.
4445   if (!all_of(Ops, [](Value *V) { return isa<Constant>(V); }))
4446     return nullptr;
4447 
4448   auto *CE = ConstantExpr::getGetElementPtr(SrcTy, cast<Constant>(Ops[0]),
4449                                             Ops.slice(1), InBounds);
4450   return ConstantFoldConstant(CE, Q.DL);
4451 }
4452 
4453 Value *llvm::SimplifyGEPInst(Type *SrcTy, ArrayRef<Value *> Ops, bool InBounds,
4454                              const SimplifyQuery &Q) {
4455   return ::SimplifyGEPInst(SrcTy, Ops, InBounds, Q, RecursionLimit);
4456 }
4457 
4458 /// Given operands for an InsertValueInst, see if we can fold the result.
4459 /// If not, this returns null.
4460 static Value *SimplifyInsertValueInst(Value *Agg, Value *Val,
4461                                       ArrayRef<unsigned> Idxs, const SimplifyQuery &Q,
4462                                       unsigned) {
4463   if (Constant *CAgg = dyn_cast<Constant>(Agg))
4464     if (Constant *CVal = dyn_cast<Constant>(Val))
4465       return ConstantFoldInsertValueInstruction(CAgg, CVal, Idxs);
4466 
4467   // insertvalue x, undef, n -> x
4468   if (Q.isUndefValue(Val))
4469     return Agg;
4470 
4471   // insertvalue x, (extractvalue y, n), n
4472   if (ExtractValueInst *EV = dyn_cast<ExtractValueInst>(Val))
4473     if (EV->getAggregateOperand()->getType() == Agg->getType() &&
4474         EV->getIndices() == Idxs) {
4475       // insertvalue undef, (extractvalue y, n), n -> y
4476       if (Q.isUndefValue(Agg))
4477         return EV->getAggregateOperand();
4478 
4479       // insertvalue y, (extractvalue y, n), n -> y
4480       if (Agg == EV->getAggregateOperand())
4481         return Agg;
4482     }
4483 
4484   return nullptr;
4485 }
4486 
4487 Value *llvm::SimplifyInsertValueInst(Value *Agg, Value *Val,
4488                                      ArrayRef<unsigned> Idxs,
4489                                      const SimplifyQuery &Q) {
4490   return ::SimplifyInsertValueInst(Agg, Val, Idxs, Q, RecursionLimit);
4491 }
4492 
4493 Value *llvm::SimplifyInsertElementInst(Value *Vec, Value *Val, Value *Idx,
4494                                        const SimplifyQuery &Q) {
4495   // Try to constant fold.
4496   auto *VecC = dyn_cast<Constant>(Vec);
4497   auto *ValC = dyn_cast<Constant>(Val);
4498   auto *IdxC = dyn_cast<Constant>(Idx);
4499   if (VecC && ValC && IdxC)
4500     return ConstantExpr::getInsertElement(VecC, ValC, IdxC);
4501 
4502   // For fixed-length vector, fold into poison if index is out of bounds.
4503   if (auto *CI = dyn_cast<ConstantInt>(Idx)) {
4504     if (isa<FixedVectorType>(Vec->getType()) &&
4505         CI->uge(cast<FixedVectorType>(Vec->getType())->getNumElements()))
4506       return PoisonValue::get(Vec->getType());
4507   }
4508 
4509   // If index is undef, it might be out of bounds (see above case)
4510   if (Q.isUndefValue(Idx))
4511     return PoisonValue::get(Vec->getType());
4512 
4513   // If the scalar is poison, or it is undef and there is no risk of
4514   // propagating poison from the vector value, simplify to the vector value.
4515   if (isa<PoisonValue>(Val) ||
4516       (Q.isUndefValue(Val) && isGuaranteedNotToBePoison(Vec)))
4517     return Vec;
4518 
4519   // If we are extracting a value from a vector, then inserting it into the same
4520   // place, that's the input vector:
4521   // insertelt Vec, (extractelt Vec, Idx), Idx --> Vec
4522   if (match(Val, m_ExtractElt(m_Specific(Vec), m_Specific(Idx))))
4523     return Vec;
4524 
4525   return nullptr;
4526 }
4527 
4528 /// Given operands for an ExtractValueInst, see if we can fold the result.
4529 /// If not, this returns null.
4530 static Value *SimplifyExtractValueInst(Value *Agg, ArrayRef<unsigned> Idxs,
4531                                        const SimplifyQuery &, unsigned) {
4532   if (auto *CAgg = dyn_cast<Constant>(Agg))
4533     return ConstantFoldExtractValueInstruction(CAgg, Idxs);
4534 
4535   // extractvalue x, (insertvalue y, elt, n), n -> elt
4536   unsigned NumIdxs = Idxs.size();
4537   for (auto *IVI = dyn_cast<InsertValueInst>(Agg); IVI != nullptr;
4538        IVI = dyn_cast<InsertValueInst>(IVI->getAggregateOperand())) {
4539     ArrayRef<unsigned> InsertValueIdxs = IVI->getIndices();
4540     unsigned NumInsertValueIdxs = InsertValueIdxs.size();
4541     unsigned NumCommonIdxs = std::min(NumInsertValueIdxs, NumIdxs);
4542     if (InsertValueIdxs.slice(0, NumCommonIdxs) ==
4543         Idxs.slice(0, NumCommonIdxs)) {
4544       if (NumIdxs == NumInsertValueIdxs)
4545         return IVI->getInsertedValueOperand();
4546       break;
4547     }
4548   }
4549 
4550   return nullptr;
4551 }
4552 
4553 Value *llvm::SimplifyExtractValueInst(Value *Agg, ArrayRef<unsigned> Idxs,
4554                                       const SimplifyQuery &Q) {
4555   return ::SimplifyExtractValueInst(Agg, Idxs, Q, RecursionLimit);
4556 }
4557 
4558 /// Given operands for an ExtractElementInst, see if we can fold the result.
4559 /// If not, this returns null.
4560 static Value *SimplifyExtractElementInst(Value *Vec, Value *Idx,
4561                                          const SimplifyQuery &Q, unsigned) {
4562   auto *VecVTy = cast<VectorType>(Vec->getType());
4563   if (auto *CVec = dyn_cast<Constant>(Vec)) {
4564     if (auto *CIdx = dyn_cast<Constant>(Idx))
4565       return ConstantExpr::getExtractElement(CVec, CIdx);
4566 
4567     if (Q.isUndefValue(Vec))
4568       return UndefValue::get(VecVTy->getElementType());
4569   }
4570 
4571   // An undef extract index can be arbitrarily chosen to be an out-of-range
4572   // index value, which would result in the instruction being poison.
4573   if (Q.isUndefValue(Idx))
4574     return PoisonValue::get(VecVTy->getElementType());
4575 
4576   // If extracting a specified index from the vector, see if we can recursively
4577   // find a previously computed scalar that was inserted into the vector.
4578   if (auto *IdxC = dyn_cast<ConstantInt>(Idx)) {
4579     // For fixed-length vector, fold into undef if index is out of bounds.
4580     unsigned MinNumElts = VecVTy->getElementCount().getKnownMinValue();
4581     if (isa<FixedVectorType>(VecVTy) && IdxC->getValue().uge(MinNumElts))
4582       return PoisonValue::get(VecVTy->getElementType());
4583     // Handle case where an element is extracted from a splat.
4584     if (IdxC->getValue().ult(MinNumElts))
4585       if (auto *Splat = getSplatValue(Vec))
4586         return Splat;
4587     if (Value *Elt = findScalarElement(Vec, IdxC->getZExtValue()))
4588       return Elt;
4589   } else {
4590     // The index is not relevant if our vector is a splat.
4591     if (Value *Splat = getSplatValue(Vec))
4592       return Splat;
4593   }
4594   return nullptr;
4595 }
4596 
4597 Value *llvm::SimplifyExtractElementInst(Value *Vec, Value *Idx,
4598                                         const SimplifyQuery &Q) {
4599   return ::SimplifyExtractElementInst(Vec, Idx, Q, RecursionLimit);
4600 }
4601 
4602 /// See if we can fold the given phi. If not, returns null.
4603 static Value *SimplifyPHINode(PHINode *PN, ArrayRef<Value *> IncomingValues,
4604                               const SimplifyQuery &Q) {
4605   // WARNING: no matter how worthwhile it may seem, we can not perform PHI CSE
4606   //          here, because the PHI we may succeed simplifying to was not
4607   //          def-reachable from the original PHI!
4608 
4609   // If all of the PHI's incoming values are the same then replace the PHI node
4610   // with the common value.
4611   Value *CommonValue = nullptr;
4612   bool HasUndefInput = false;
4613   for (Value *Incoming : IncomingValues) {
4614     // If the incoming value is the phi node itself, it can safely be skipped.
4615     if (Incoming == PN) continue;
4616     if (Q.isUndefValue(Incoming)) {
4617       // Remember that we saw an undef value, but otherwise ignore them.
4618       HasUndefInput = true;
4619       continue;
4620     }
4621     if (CommonValue && Incoming != CommonValue)
4622       return nullptr;  // Not the same, bail out.
4623     CommonValue = Incoming;
4624   }
4625 
4626   // If CommonValue is null then all of the incoming values were either undef or
4627   // equal to the phi node itself.
4628   if (!CommonValue)
4629     return UndefValue::get(PN->getType());
4630 
4631   // If we have a PHI node like phi(X, undef, X), where X is defined by some
4632   // instruction, we cannot return X as the result of the PHI node unless it
4633   // dominates the PHI block.
4634   if (HasUndefInput)
4635     return valueDominatesPHI(CommonValue, PN, Q.DT) ? CommonValue : nullptr;
4636 
4637   return CommonValue;
4638 }
4639 
4640 static Value *SimplifyCastInst(unsigned CastOpc, Value *Op,
4641                                Type *Ty, const SimplifyQuery &Q, unsigned MaxRecurse) {
4642   if (auto *C = dyn_cast<Constant>(Op))
4643     return ConstantFoldCastOperand(CastOpc, C, Ty, Q.DL);
4644 
4645   if (auto *CI = dyn_cast<CastInst>(Op)) {
4646     auto *Src = CI->getOperand(0);
4647     Type *SrcTy = Src->getType();
4648     Type *MidTy = CI->getType();
4649     Type *DstTy = Ty;
4650     if (Src->getType() == Ty) {
4651       auto FirstOp = static_cast<Instruction::CastOps>(CI->getOpcode());
4652       auto SecondOp = static_cast<Instruction::CastOps>(CastOpc);
4653       Type *SrcIntPtrTy =
4654           SrcTy->isPtrOrPtrVectorTy() ? Q.DL.getIntPtrType(SrcTy) : nullptr;
4655       Type *MidIntPtrTy =
4656           MidTy->isPtrOrPtrVectorTy() ? Q.DL.getIntPtrType(MidTy) : nullptr;
4657       Type *DstIntPtrTy =
4658           DstTy->isPtrOrPtrVectorTy() ? Q.DL.getIntPtrType(DstTy) : nullptr;
4659       if (CastInst::isEliminableCastPair(FirstOp, SecondOp, SrcTy, MidTy, DstTy,
4660                                          SrcIntPtrTy, MidIntPtrTy,
4661                                          DstIntPtrTy) == Instruction::BitCast)
4662         return Src;
4663     }
4664   }
4665 
4666   // bitcast x -> x
4667   if (CastOpc == Instruction::BitCast)
4668     if (Op->getType() == Ty)
4669       return Op;
4670 
4671   return nullptr;
4672 }
4673 
4674 Value *llvm::SimplifyCastInst(unsigned CastOpc, Value *Op, Type *Ty,
4675                               const SimplifyQuery &Q) {
4676   return ::SimplifyCastInst(CastOpc, Op, Ty, Q, RecursionLimit);
4677 }
4678 
4679 /// For the given destination element of a shuffle, peek through shuffles to
4680 /// match a root vector source operand that contains that element in the same
4681 /// vector lane (ie, the same mask index), so we can eliminate the shuffle(s).
4682 static Value *foldIdentityShuffles(int DestElt, Value *Op0, Value *Op1,
4683                                    int MaskVal, Value *RootVec,
4684                                    unsigned MaxRecurse) {
4685   if (!MaxRecurse--)
4686     return nullptr;
4687 
4688   // Bail out if any mask value is undefined. That kind of shuffle may be
4689   // simplified further based on demanded bits or other folds.
4690   if (MaskVal == -1)
4691     return nullptr;
4692 
4693   // The mask value chooses which source operand we need to look at next.
4694   int InVecNumElts = cast<FixedVectorType>(Op0->getType())->getNumElements();
4695   int RootElt = MaskVal;
4696   Value *SourceOp = Op0;
4697   if (MaskVal >= InVecNumElts) {
4698     RootElt = MaskVal - InVecNumElts;
4699     SourceOp = Op1;
4700   }
4701 
4702   // If the source operand is a shuffle itself, look through it to find the
4703   // matching root vector.
4704   if (auto *SourceShuf = dyn_cast<ShuffleVectorInst>(SourceOp)) {
4705     return foldIdentityShuffles(
4706         DestElt, SourceShuf->getOperand(0), SourceShuf->getOperand(1),
4707         SourceShuf->getMaskValue(RootElt), RootVec, MaxRecurse);
4708   }
4709 
4710   // TODO: Look through bitcasts? What if the bitcast changes the vector element
4711   // size?
4712 
4713   // The source operand is not a shuffle. Initialize the root vector value for
4714   // this shuffle if that has not been done yet.
4715   if (!RootVec)
4716     RootVec = SourceOp;
4717 
4718   // Give up as soon as a source operand does not match the existing root value.
4719   if (RootVec != SourceOp)
4720     return nullptr;
4721 
4722   // The element must be coming from the same lane in the source vector
4723   // (although it may have crossed lanes in intermediate shuffles).
4724   if (RootElt != DestElt)
4725     return nullptr;
4726 
4727   return RootVec;
4728 }
4729 
4730 static Value *SimplifyShuffleVectorInst(Value *Op0, Value *Op1,
4731                                         ArrayRef<int> Mask, Type *RetTy,
4732                                         const SimplifyQuery &Q,
4733                                         unsigned MaxRecurse) {
4734   if (all_of(Mask, [](int Elem) { return Elem == UndefMaskElem; }))
4735     return UndefValue::get(RetTy);
4736 
4737   auto *InVecTy = cast<VectorType>(Op0->getType());
4738   unsigned MaskNumElts = Mask.size();
4739   ElementCount InVecEltCount = InVecTy->getElementCount();
4740 
4741   bool Scalable = InVecEltCount.isScalable();
4742 
4743   SmallVector<int, 32> Indices;
4744   Indices.assign(Mask.begin(), Mask.end());
4745 
4746   // Canonicalization: If mask does not select elements from an input vector,
4747   // replace that input vector with poison.
4748   if (!Scalable) {
4749     bool MaskSelects0 = false, MaskSelects1 = false;
4750     unsigned InVecNumElts = InVecEltCount.getKnownMinValue();
4751     for (unsigned i = 0; i != MaskNumElts; ++i) {
4752       if (Indices[i] == -1)
4753         continue;
4754       if ((unsigned)Indices[i] < InVecNumElts)
4755         MaskSelects0 = true;
4756       else
4757         MaskSelects1 = true;
4758     }
4759     if (!MaskSelects0)
4760       Op0 = PoisonValue::get(InVecTy);
4761     if (!MaskSelects1)
4762       Op1 = PoisonValue::get(InVecTy);
4763   }
4764 
4765   auto *Op0Const = dyn_cast<Constant>(Op0);
4766   auto *Op1Const = dyn_cast<Constant>(Op1);
4767 
4768   // If all operands are constant, constant fold the shuffle. This
4769   // transformation depends on the value of the mask which is not known at
4770   // compile time for scalable vectors
4771   if (Op0Const && Op1Const)
4772     return ConstantExpr::getShuffleVector(Op0Const, Op1Const, Mask);
4773 
4774   // Canonicalization: if only one input vector is constant, it shall be the
4775   // second one. This transformation depends on the value of the mask which
4776   // is not known at compile time for scalable vectors
4777   if (!Scalable && Op0Const && !Op1Const) {
4778     std::swap(Op0, Op1);
4779     ShuffleVectorInst::commuteShuffleMask(Indices,
4780                                           InVecEltCount.getKnownMinValue());
4781   }
4782 
4783   // A splat of an inserted scalar constant becomes a vector constant:
4784   // shuf (inselt ?, C, IndexC), undef, <IndexC, IndexC...> --> <C, C...>
4785   // NOTE: We may have commuted above, so analyze the updated Indices, not the
4786   //       original mask constant.
4787   // NOTE: This transformation depends on the value of the mask which is not
4788   // known at compile time for scalable vectors
4789   Constant *C;
4790   ConstantInt *IndexC;
4791   if (!Scalable && match(Op0, m_InsertElt(m_Value(), m_Constant(C),
4792                                           m_ConstantInt(IndexC)))) {
4793     // Match a splat shuffle mask of the insert index allowing undef elements.
4794     int InsertIndex = IndexC->getZExtValue();
4795     if (all_of(Indices, [InsertIndex](int MaskElt) {
4796           return MaskElt == InsertIndex || MaskElt == -1;
4797         })) {
4798       assert(isa<UndefValue>(Op1) && "Expected undef operand 1 for splat");
4799 
4800       // Shuffle mask undefs become undefined constant result elements.
4801       SmallVector<Constant *, 16> VecC(MaskNumElts, C);
4802       for (unsigned i = 0; i != MaskNumElts; ++i)
4803         if (Indices[i] == -1)
4804           VecC[i] = UndefValue::get(C->getType());
4805       return ConstantVector::get(VecC);
4806     }
4807   }
4808 
4809   // A shuffle of a splat is always the splat itself. Legal if the shuffle's
4810   // value type is same as the input vectors' type.
4811   if (auto *OpShuf = dyn_cast<ShuffleVectorInst>(Op0))
4812     if (Q.isUndefValue(Op1) && RetTy == InVecTy &&
4813         is_splat(OpShuf->getShuffleMask()))
4814       return Op0;
4815 
4816   // All remaining transformation depend on the value of the mask, which is
4817   // not known at compile time for scalable vectors.
4818   if (Scalable)
4819     return nullptr;
4820 
4821   // Don't fold a shuffle with undef mask elements. This may get folded in a
4822   // better way using demanded bits or other analysis.
4823   // TODO: Should we allow this?
4824   if (is_contained(Indices, -1))
4825     return nullptr;
4826 
4827   // Check if every element of this shuffle can be mapped back to the
4828   // corresponding element of a single root vector. If so, we don't need this
4829   // shuffle. This handles simple identity shuffles as well as chains of
4830   // shuffles that may widen/narrow and/or move elements across lanes and back.
4831   Value *RootVec = nullptr;
4832   for (unsigned i = 0; i != MaskNumElts; ++i) {
4833     // Note that recursion is limited for each vector element, so if any element
4834     // exceeds the limit, this will fail to simplify.
4835     RootVec =
4836         foldIdentityShuffles(i, Op0, Op1, Indices[i], RootVec, MaxRecurse);
4837 
4838     // We can't replace a widening/narrowing shuffle with one of its operands.
4839     if (!RootVec || RootVec->getType() != RetTy)
4840       return nullptr;
4841   }
4842   return RootVec;
4843 }
4844 
4845 /// Given operands for a ShuffleVectorInst, fold the result or return null.
4846 Value *llvm::SimplifyShuffleVectorInst(Value *Op0, Value *Op1,
4847                                        ArrayRef<int> Mask, Type *RetTy,
4848                                        const SimplifyQuery &Q) {
4849   return ::SimplifyShuffleVectorInst(Op0, Op1, Mask, RetTy, Q, RecursionLimit);
4850 }
4851 
4852 static Constant *foldConstant(Instruction::UnaryOps Opcode,
4853                               Value *&Op, const SimplifyQuery &Q) {
4854   if (auto *C = dyn_cast<Constant>(Op))
4855     return ConstantFoldUnaryOpOperand(Opcode, C, Q.DL);
4856   return nullptr;
4857 }
4858 
4859 /// Given the operand for an FNeg, see if we can fold the result.  If not, this
4860 /// returns null.
4861 static Value *simplifyFNegInst(Value *Op, FastMathFlags FMF,
4862                                const SimplifyQuery &Q, unsigned MaxRecurse) {
4863   if (Constant *C = foldConstant(Instruction::FNeg, Op, Q))
4864     return C;
4865 
4866   Value *X;
4867   // fneg (fneg X) ==> X
4868   if (match(Op, m_FNeg(m_Value(X))))
4869     return X;
4870 
4871   return nullptr;
4872 }
4873 
4874 Value *llvm::SimplifyFNegInst(Value *Op, FastMathFlags FMF,
4875                               const SimplifyQuery &Q) {
4876   return ::simplifyFNegInst(Op, FMF, Q, RecursionLimit);
4877 }
4878 
4879 static Constant *propagateNaN(Constant *In) {
4880   // If the input is a vector with undef elements, just return a default NaN.
4881   if (!In->isNaN())
4882     return ConstantFP::getNaN(In->getType());
4883 
4884   // Propagate the existing NaN constant when possible.
4885   // TODO: Should we quiet a signaling NaN?
4886   return In;
4887 }
4888 
4889 /// Perform folds that are common to any floating-point operation. This implies
4890 /// transforms based on poison/undef/NaN because the operation itself makes no
4891 /// difference to the result.
4892 static Constant *simplifyFPOp(ArrayRef<Value *> Ops, FastMathFlags FMF,
4893                               const SimplifyQuery &Q,
4894                               fp::ExceptionBehavior ExBehavior,
4895                               RoundingMode Rounding) {
4896   // Poison is independent of anything else. It always propagates from an
4897   // operand to a math result.
4898   if (any_of(Ops, [](Value *V) { return match(V, m_Poison()); }))
4899     return PoisonValue::get(Ops[0]->getType());
4900 
4901   for (Value *V : Ops) {
4902     bool IsNan = match(V, m_NaN());
4903     bool IsInf = match(V, m_Inf());
4904     bool IsUndef = Q.isUndefValue(V);
4905 
4906     // If this operation has 'nnan' or 'ninf' and at least 1 disallowed operand
4907     // (an undef operand can be chosen to be Nan/Inf), then the result of
4908     // this operation is poison.
4909     if (FMF.noNaNs() && (IsNan || IsUndef))
4910       return PoisonValue::get(V->getType());
4911     if (FMF.noInfs() && (IsInf || IsUndef))
4912       return PoisonValue::get(V->getType());
4913 
4914     if (isDefaultFPEnvironment(ExBehavior, Rounding)) {
4915       if (IsUndef || IsNan)
4916         return propagateNaN(cast<Constant>(V));
4917     } else if (ExBehavior != fp::ebStrict) {
4918       if (IsNan)
4919         return propagateNaN(cast<Constant>(V));
4920     }
4921   }
4922   return nullptr;
4923 }
4924 
4925 // TODO: Move this out to a header file:
4926 static inline bool canIgnoreSNaN(fp::ExceptionBehavior EB, FastMathFlags FMF) {
4927   return (EB == fp::ebIgnore || FMF.noNaNs());
4928 }
4929 
4930 /// Given operands for an FAdd, see if we can fold the result.  If not, this
4931 /// returns null.
4932 static Value *
4933 SimplifyFAddInst(Value *Op0, Value *Op1, FastMathFlags FMF,
4934                  const SimplifyQuery &Q, unsigned MaxRecurse,
4935                  fp::ExceptionBehavior ExBehavior = fp::ebIgnore,
4936                  RoundingMode Rounding = RoundingMode::NearestTiesToEven) {
4937   if (isDefaultFPEnvironment(ExBehavior, Rounding))
4938     if (Constant *C = foldOrCommuteConstant(Instruction::FAdd, Op0, Op1, Q))
4939       return C;
4940 
4941   if (Constant *C = simplifyFPOp({Op0, Op1}, FMF, Q, ExBehavior, Rounding))
4942     return C;
4943 
4944   // fadd X, -0 ==> X
4945   // With strict/constrained FP, we have these possible edge cases that do
4946   // not simplify to Op0:
4947   // fadd SNaN, -0.0 --> QNaN
4948   // fadd +0.0, -0.0 --> -0.0 (but only with round toward negative)
4949   if (canIgnoreSNaN(ExBehavior, FMF) &&
4950       (!canRoundingModeBe(Rounding, RoundingMode::TowardNegative) ||
4951        FMF.noSignedZeros()))
4952     if (match(Op1, m_NegZeroFP()))
4953       return Op0;
4954 
4955   // fadd X, 0 ==> X, when we know X is not -0
4956   if (canIgnoreSNaN(ExBehavior, FMF))
4957     if (match(Op1, m_PosZeroFP()) &&
4958         (FMF.noSignedZeros() || CannotBeNegativeZero(Op0, Q.TLI)))
4959       return Op0;
4960 
4961   if (!isDefaultFPEnvironment(ExBehavior, Rounding))
4962     return nullptr;
4963 
4964   // With nnan: -X + X --> 0.0 (and commuted variant)
4965   // We don't have to explicitly exclude infinities (ninf): INF + -INF == NaN.
4966   // Negative zeros are allowed because we always end up with positive zero:
4967   // X = -0.0: (-0.0 - (-0.0)) + (-0.0) == ( 0.0) + (-0.0) == 0.0
4968   // X = -0.0: ( 0.0 - (-0.0)) + (-0.0) == ( 0.0) + (-0.0) == 0.0
4969   // X =  0.0: (-0.0 - ( 0.0)) + ( 0.0) == (-0.0) + ( 0.0) == 0.0
4970   // X =  0.0: ( 0.0 - ( 0.0)) + ( 0.0) == ( 0.0) + ( 0.0) == 0.0
4971   if (FMF.noNaNs()) {
4972     if (match(Op0, m_FSub(m_AnyZeroFP(), m_Specific(Op1))) ||
4973         match(Op1, m_FSub(m_AnyZeroFP(), m_Specific(Op0))))
4974       return ConstantFP::getNullValue(Op0->getType());
4975 
4976     if (match(Op0, m_FNeg(m_Specific(Op1))) ||
4977         match(Op1, m_FNeg(m_Specific(Op0))))
4978       return ConstantFP::getNullValue(Op0->getType());
4979   }
4980 
4981   // (X - Y) + Y --> X
4982   // Y + (X - Y) --> X
4983   Value *X;
4984   if (FMF.noSignedZeros() && FMF.allowReassoc() &&
4985       (match(Op0, m_FSub(m_Value(X), m_Specific(Op1))) ||
4986        match(Op1, m_FSub(m_Value(X), m_Specific(Op0)))))
4987     return X;
4988 
4989   return nullptr;
4990 }
4991 
4992 /// Given operands for an FSub, see if we can fold the result.  If not, this
4993 /// returns null.
4994 static Value *
4995 SimplifyFSubInst(Value *Op0, Value *Op1, FastMathFlags FMF,
4996                  const SimplifyQuery &Q, unsigned MaxRecurse,
4997                  fp::ExceptionBehavior ExBehavior = fp::ebIgnore,
4998                  RoundingMode Rounding = RoundingMode::NearestTiesToEven) {
4999   if (isDefaultFPEnvironment(ExBehavior, Rounding))
5000     if (Constant *C = foldOrCommuteConstant(Instruction::FSub, Op0, Op1, Q))
5001       return C;
5002 
5003   if (Constant *C = simplifyFPOp({Op0, Op1}, FMF, Q, ExBehavior, Rounding))
5004     return C;
5005 
5006   if (!isDefaultFPEnvironment(ExBehavior, Rounding))
5007     return nullptr;
5008 
5009   // fsub X, +0 ==> X
5010   if (match(Op1, m_PosZeroFP()))
5011     return Op0;
5012 
5013   // fsub X, -0 ==> X, when we know X is not -0
5014   if (match(Op1, m_NegZeroFP()) &&
5015       (FMF.noSignedZeros() || CannotBeNegativeZero(Op0, Q.TLI)))
5016     return Op0;
5017 
5018   // fsub -0.0, (fsub -0.0, X) ==> X
5019   // fsub -0.0, (fneg X) ==> X
5020   Value *X;
5021   if (match(Op0, m_NegZeroFP()) &&
5022       match(Op1, m_FNeg(m_Value(X))))
5023     return X;
5024 
5025   // fsub 0.0, (fsub 0.0, X) ==> X if signed zeros are ignored.
5026   // fsub 0.0, (fneg X) ==> X if signed zeros are ignored.
5027   if (FMF.noSignedZeros() && match(Op0, m_AnyZeroFP()) &&
5028       (match(Op1, m_FSub(m_AnyZeroFP(), m_Value(X))) ||
5029        match(Op1, m_FNeg(m_Value(X)))))
5030     return X;
5031 
5032   // fsub nnan x, x ==> 0.0
5033   if (FMF.noNaNs() && Op0 == Op1)
5034     return Constant::getNullValue(Op0->getType());
5035 
5036   // Y - (Y - X) --> X
5037   // (X + Y) - Y --> X
5038   if (FMF.noSignedZeros() && FMF.allowReassoc() &&
5039       (match(Op1, m_FSub(m_Specific(Op0), m_Value(X))) ||
5040        match(Op0, m_c_FAdd(m_Specific(Op1), m_Value(X)))))
5041     return X;
5042 
5043   return nullptr;
5044 }
5045 
5046 static Value *SimplifyFMAFMul(Value *Op0, Value *Op1, FastMathFlags FMF,
5047                               const SimplifyQuery &Q, unsigned MaxRecurse,
5048                               fp::ExceptionBehavior ExBehavior,
5049                               RoundingMode Rounding) {
5050   if (Constant *C = simplifyFPOp({Op0, Op1}, FMF, Q, ExBehavior, Rounding))
5051     return C;
5052 
5053   if (!isDefaultFPEnvironment(ExBehavior, Rounding))
5054     return nullptr;
5055 
5056   // fmul X, 1.0 ==> X
5057   if (match(Op1, m_FPOne()))
5058     return Op0;
5059 
5060   // fmul 1.0, X ==> X
5061   if (match(Op0, m_FPOne()))
5062     return Op1;
5063 
5064   // fmul nnan nsz X, 0 ==> 0
5065   if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op1, m_AnyZeroFP()))
5066     return ConstantFP::getNullValue(Op0->getType());
5067 
5068   // fmul nnan nsz 0, X ==> 0
5069   if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op0, m_AnyZeroFP()))
5070     return ConstantFP::getNullValue(Op1->getType());
5071 
5072   // sqrt(X) * sqrt(X) --> X, if we can:
5073   // 1. Remove the intermediate rounding (reassociate).
5074   // 2. Ignore non-zero negative numbers because sqrt would produce NAN.
5075   // 3. Ignore -0.0 because sqrt(-0.0) == -0.0, but -0.0 * -0.0 == 0.0.
5076   Value *X;
5077   if (Op0 == Op1 && match(Op0, m_Intrinsic<Intrinsic::sqrt>(m_Value(X))) &&
5078       FMF.allowReassoc() && FMF.noNaNs() && FMF.noSignedZeros())
5079     return X;
5080 
5081   return nullptr;
5082 }
5083 
5084 /// Given the operands for an FMul, see if we can fold the result
5085 static Value *
5086 SimplifyFMulInst(Value *Op0, Value *Op1, FastMathFlags FMF,
5087                  const SimplifyQuery &Q, unsigned MaxRecurse,
5088                  fp::ExceptionBehavior ExBehavior = fp::ebIgnore,
5089                  RoundingMode Rounding = RoundingMode::NearestTiesToEven) {
5090   if (isDefaultFPEnvironment(ExBehavior, Rounding))
5091     if (Constant *C = foldOrCommuteConstant(Instruction::FMul, Op0, Op1, Q))
5092       return C;
5093 
5094   // Now apply simplifications that do not require rounding.
5095   return SimplifyFMAFMul(Op0, Op1, FMF, Q, MaxRecurse, ExBehavior, Rounding);
5096 }
5097 
5098 Value *llvm::SimplifyFAddInst(Value *Op0, Value *Op1, FastMathFlags FMF,
5099                               const SimplifyQuery &Q,
5100                               fp::ExceptionBehavior ExBehavior,
5101                               RoundingMode Rounding) {
5102   return ::SimplifyFAddInst(Op0, Op1, FMF, Q, RecursionLimit, ExBehavior,
5103                             Rounding);
5104 }
5105 
5106 Value *llvm::SimplifyFSubInst(Value *Op0, Value *Op1, FastMathFlags FMF,
5107                               const SimplifyQuery &Q,
5108                               fp::ExceptionBehavior ExBehavior,
5109                               RoundingMode Rounding) {
5110   return ::SimplifyFSubInst(Op0, Op1, FMF, Q, RecursionLimit, ExBehavior,
5111                             Rounding);
5112 }
5113 
5114 Value *llvm::SimplifyFMulInst(Value *Op0, Value *Op1, FastMathFlags FMF,
5115                               const SimplifyQuery &Q,
5116                               fp::ExceptionBehavior ExBehavior,
5117                               RoundingMode Rounding) {
5118   return ::SimplifyFMulInst(Op0, Op1, FMF, Q, RecursionLimit, ExBehavior,
5119                             Rounding);
5120 }
5121 
5122 Value *llvm::SimplifyFMAFMul(Value *Op0, Value *Op1, FastMathFlags FMF,
5123                              const SimplifyQuery &Q,
5124                              fp::ExceptionBehavior ExBehavior,
5125                              RoundingMode Rounding) {
5126   return ::SimplifyFMAFMul(Op0, Op1, FMF, Q, RecursionLimit, ExBehavior,
5127                            Rounding);
5128 }
5129 
5130 static Value *
5131 SimplifyFDivInst(Value *Op0, Value *Op1, FastMathFlags FMF,
5132                  const SimplifyQuery &Q, unsigned,
5133                  fp::ExceptionBehavior ExBehavior = fp::ebIgnore,
5134                  RoundingMode Rounding = RoundingMode::NearestTiesToEven) {
5135   if (isDefaultFPEnvironment(ExBehavior, Rounding))
5136     if (Constant *C = foldOrCommuteConstant(Instruction::FDiv, Op0, Op1, Q))
5137       return C;
5138 
5139   if (Constant *C = simplifyFPOp({Op0, Op1}, FMF, Q, ExBehavior, Rounding))
5140     return C;
5141 
5142   if (!isDefaultFPEnvironment(ExBehavior, Rounding))
5143     return nullptr;
5144 
5145   // X / 1.0 -> X
5146   if (match(Op1, m_FPOne()))
5147     return Op0;
5148 
5149   // 0 / X -> 0
5150   // Requires that NaNs are off (X could be zero) and signed zeroes are
5151   // ignored (X could be positive or negative, so the output sign is unknown).
5152   if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op0, m_AnyZeroFP()))
5153     return ConstantFP::getNullValue(Op0->getType());
5154 
5155   if (FMF.noNaNs()) {
5156     // X / X -> 1.0 is legal when NaNs are ignored.
5157     // We can ignore infinities because INF/INF is NaN.
5158     if (Op0 == Op1)
5159       return ConstantFP::get(Op0->getType(), 1.0);
5160 
5161     // (X * Y) / Y --> X if we can reassociate to the above form.
5162     Value *X;
5163     if (FMF.allowReassoc() && match(Op0, m_c_FMul(m_Value(X), m_Specific(Op1))))
5164       return X;
5165 
5166     // -X /  X -> -1.0 and
5167     //  X / -X -> -1.0 are legal when NaNs are ignored.
5168     // We can ignore signed zeros because +-0.0/+-0.0 is NaN and ignored.
5169     if (match(Op0, m_FNegNSZ(m_Specific(Op1))) ||
5170         match(Op1, m_FNegNSZ(m_Specific(Op0))))
5171       return ConstantFP::get(Op0->getType(), -1.0);
5172   }
5173 
5174   return nullptr;
5175 }
5176 
5177 Value *llvm::SimplifyFDivInst(Value *Op0, Value *Op1, FastMathFlags FMF,
5178                               const SimplifyQuery &Q,
5179                               fp::ExceptionBehavior ExBehavior,
5180                               RoundingMode Rounding) {
5181   return ::SimplifyFDivInst(Op0, Op1, FMF, Q, RecursionLimit, ExBehavior,
5182                             Rounding);
5183 }
5184 
5185 static Value *
5186 SimplifyFRemInst(Value *Op0, Value *Op1, FastMathFlags FMF,
5187                  const SimplifyQuery &Q, unsigned,
5188                  fp::ExceptionBehavior ExBehavior = fp::ebIgnore,
5189                  RoundingMode Rounding = RoundingMode::NearestTiesToEven) {
5190   if (isDefaultFPEnvironment(ExBehavior, Rounding))
5191     if (Constant *C = foldOrCommuteConstant(Instruction::FRem, Op0, Op1, Q))
5192       return C;
5193 
5194   if (Constant *C = simplifyFPOp({Op0, Op1}, FMF, Q, ExBehavior, Rounding))
5195     return C;
5196 
5197   if (!isDefaultFPEnvironment(ExBehavior, Rounding))
5198     return nullptr;
5199 
5200   // Unlike fdiv, the result of frem always matches the sign of the dividend.
5201   // The constant match may include undef elements in a vector, so return a full
5202   // zero constant as the result.
5203   if (FMF.noNaNs()) {
5204     // +0 % X -> 0
5205     if (match(Op0, m_PosZeroFP()))
5206       return ConstantFP::getNullValue(Op0->getType());
5207     // -0 % X -> -0
5208     if (match(Op0, m_NegZeroFP()))
5209       return ConstantFP::getNegativeZero(Op0->getType());
5210   }
5211 
5212   return nullptr;
5213 }
5214 
5215 Value *llvm::SimplifyFRemInst(Value *Op0, Value *Op1, FastMathFlags FMF,
5216                               const SimplifyQuery &Q,
5217                               fp::ExceptionBehavior ExBehavior,
5218                               RoundingMode Rounding) {
5219   return ::SimplifyFRemInst(Op0, Op1, FMF, Q, RecursionLimit, ExBehavior,
5220                             Rounding);
5221 }
5222 
5223 //=== Helper functions for higher up the class hierarchy.
5224 
5225 /// Given the operand for a UnaryOperator, see if we can fold the result.
5226 /// If not, this returns null.
5227 static Value *simplifyUnOp(unsigned Opcode, Value *Op, const SimplifyQuery &Q,
5228                            unsigned MaxRecurse) {
5229   switch (Opcode) {
5230   case Instruction::FNeg:
5231     return simplifyFNegInst(Op, FastMathFlags(), Q, MaxRecurse);
5232   default:
5233     llvm_unreachable("Unexpected opcode");
5234   }
5235 }
5236 
5237 /// Given the operand for a UnaryOperator, see if we can fold the result.
5238 /// If not, this returns null.
5239 /// Try to use FastMathFlags when folding the result.
5240 static Value *simplifyFPUnOp(unsigned Opcode, Value *Op,
5241                              const FastMathFlags &FMF,
5242                              const SimplifyQuery &Q, unsigned MaxRecurse) {
5243   switch (Opcode) {
5244   case Instruction::FNeg:
5245     return simplifyFNegInst(Op, FMF, Q, MaxRecurse);
5246   default:
5247     return simplifyUnOp(Opcode, Op, Q, MaxRecurse);
5248   }
5249 }
5250 
5251 Value *llvm::SimplifyUnOp(unsigned Opcode, Value *Op, const SimplifyQuery &Q) {
5252   return ::simplifyUnOp(Opcode, Op, Q, RecursionLimit);
5253 }
5254 
5255 Value *llvm::SimplifyUnOp(unsigned Opcode, Value *Op, FastMathFlags FMF,
5256                           const SimplifyQuery &Q) {
5257   return ::simplifyFPUnOp(Opcode, Op, FMF, Q, RecursionLimit);
5258 }
5259 
5260 /// Given operands for a BinaryOperator, see if we can fold the result.
5261 /// If not, this returns null.
5262 static Value *SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS,
5263                             const SimplifyQuery &Q, unsigned MaxRecurse) {
5264   switch (Opcode) {
5265   case Instruction::Add:
5266     return SimplifyAddInst(LHS, RHS, false, false, Q, MaxRecurse);
5267   case Instruction::Sub:
5268     return SimplifySubInst(LHS, RHS, false, false, Q, MaxRecurse);
5269   case Instruction::Mul:
5270     return SimplifyMulInst(LHS, RHS, Q, MaxRecurse);
5271   case Instruction::SDiv:
5272     return SimplifySDivInst(LHS, RHS, Q, MaxRecurse);
5273   case Instruction::UDiv:
5274     return SimplifyUDivInst(LHS, RHS, Q, MaxRecurse);
5275   case Instruction::SRem:
5276     return SimplifySRemInst(LHS, RHS, Q, MaxRecurse);
5277   case Instruction::URem:
5278     return SimplifyURemInst(LHS, RHS, Q, MaxRecurse);
5279   case Instruction::Shl:
5280     return SimplifyShlInst(LHS, RHS, false, false, Q, MaxRecurse);
5281   case Instruction::LShr:
5282     return SimplifyLShrInst(LHS, RHS, false, Q, MaxRecurse);
5283   case Instruction::AShr:
5284     return SimplifyAShrInst(LHS, RHS, false, Q, MaxRecurse);
5285   case Instruction::And:
5286     return SimplifyAndInst(LHS, RHS, Q, MaxRecurse);
5287   case Instruction::Or:
5288     return SimplifyOrInst(LHS, RHS, Q, MaxRecurse);
5289   case Instruction::Xor:
5290     return SimplifyXorInst(LHS, RHS, Q, MaxRecurse);
5291   case Instruction::FAdd:
5292     return SimplifyFAddInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse);
5293   case Instruction::FSub:
5294     return SimplifyFSubInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse);
5295   case Instruction::FMul:
5296     return SimplifyFMulInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse);
5297   case Instruction::FDiv:
5298     return SimplifyFDivInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse);
5299   case Instruction::FRem:
5300     return SimplifyFRemInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse);
5301   default:
5302     llvm_unreachable("Unexpected opcode");
5303   }
5304 }
5305 
5306 /// Given operands for a BinaryOperator, see if we can fold the result.
5307 /// If not, this returns null.
5308 /// Try to use FastMathFlags when folding the result.
5309 static Value *SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS,
5310                             const FastMathFlags &FMF, const SimplifyQuery &Q,
5311                             unsigned MaxRecurse) {
5312   switch (Opcode) {
5313   case Instruction::FAdd:
5314     return SimplifyFAddInst(LHS, RHS, FMF, Q, MaxRecurse);
5315   case Instruction::FSub:
5316     return SimplifyFSubInst(LHS, RHS, FMF, Q, MaxRecurse);
5317   case Instruction::FMul:
5318     return SimplifyFMulInst(LHS, RHS, FMF, Q, MaxRecurse);
5319   case Instruction::FDiv:
5320     return SimplifyFDivInst(LHS, RHS, FMF, Q, MaxRecurse);
5321   default:
5322     return SimplifyBinOp(Opcode, LHS, RHS, Q, MaxRecurse);
5323   }
5324 }
5325 
5326 Value *llvm::SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS,
5327                            const SimplifyQuery &Q) {
5328   return ::SimplifyBinOp(Opcode, LHS, RHS, Q, RecursionLimit);
5329 }
5330 
5331 Value *llvm::SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS,
5332                            FastMathFlags FMF, const SimplifyQuery &Q) {
5333   return ::SimplifyBinOp(Opcode, LHS, RHS, FMF, Q, RecursionLimit);
5334 }
5335 
5336 /// Given operands for a CmpInst, see if we can fold the result.
5337 static Value *SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
5338                               const SimplifyQuery &Q, unsigned MaxRecurse) {
5339   if (CmpInst::isIntPredicate((CmpInst::Predicate)Predicate))
5340     return SimplifyICmpInst(Predicate, LHS, RHS, Q, MaxRecurse);
5341   return SimplifyFCmpInst(Predicate, LHS, RHS, FastMathFlags(), Q, MaxRecurse);
5342 }
5343 
5344 Value *llvm::SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
5345                              const SimplifyQuery &Q) {
5346   return ::SimplifyCmpInst(Predicate, LHS, RHS, Q, RecursionLimit);
5347 }
5348 
5349 static bool IsIdempotent(Intrinsic::ID ID) {
5350   switch (ID) {
5351   default: return false;
5352 
5353   // Unary idempotent: f(f(x)) = f(x)
5354   case Intrinsic::fabs:
5355   case Intrinsic::floor:
5356   case Intrinsic::ceil:
5357   case Intrinsic::trunc:
5358   case Intrinsic::rint:
5359   case Intrinsic::nearbyint:
5360   case Intrinsic::round:
5361   case Intrinsic::roundeven:
5362   case Intrinsic::canonicalize:
5363     return true;
5364   }
5365 }
5366 
5367 static Value *SimplifyRelativeLoad(Constant *Ptr, Constant *Offset,
5368                                    const DataLayout &DL) {
5369   GlobalValue *PtrSym;
5370   APInt PtrOffset;
5371   if (!IsConstantOffsetFromGlobal(Ptr, PtrSym, PtrOffset, DL))
5372     return nullptr;
5373 
5374   Type *Int8PtrTy = Type::getInt8PtrTy(Ptr->getContext());
5375   Type *Int32Ty = Type::getInt32Ty(Ptr->getContext());
5376   Type *Int32PtrTy = Int32Ty->getPointerTo();
5377   Type *Int64Ty = Type::getInt64Ty(Ptr->getContext());
5378 
5379   auto *OffsetConstInt = dyn_cast<ConstantInt>(Offset);
5380   if (!OffsetConstInt || OffsetConstInt->getType()->getBitWidth() > 64)
5381     return nullptr;
5382 
5383   uint64_t OffsetInt = OffsetConstInt->getSExtValue();
5384   if (OffsetInt % 4 != 0)
5385     return nullptr;
5386 
5387   Constant *C = ConstantExpr::getGetElementPtr(
5388       Int32Ty, ConstantExpr::getBitCast(Ptr, Int32PtrTy),
5389       ConstantInt::get(Int64Ty, OffsetInt / 4));
5390   Constant *Loaded = ConstantFoldLoadFromConstPtr(C, Int32Ty, DL);
5391   if (!Loaded)
5392     return nullptr;
5393 
5394   auto *LoadedCE = dyn_cast<ConstantExpr>(Loaded);
5395   if (!LoadedCE)
5396     return nullptr;
5397 
5398   if (LoadedCE->getOpcode() == Instruction::Trunc) {
5399     LoadedCE = dyn_cast<ConstantExpr>(LoadedCE->getOperand(0));
5400     if (!LoadedCE)
5401       return nullptr;
5402   }
5403 
5404   if (LoadedCE->getOpcode() != Instruction::Sub)
5405     return nullptr;
5406 
5407   auto *LoadedLHS = dyn_cast<ConstantExpr>(LoadedCE->getOperand(0));
5408   if (!LoadedLHS || LoadedLHS->getOpcode() != Instruction::PtrToInt)
5409     return nullptr;
5410   auto *LoadedLHSPtr = LoadedLHS->getOperand(0);
5411 
5412   Constant *LoadedRHS = LoadedCE->getOperand(1);
5413   GlobalValue *LoadedRHSSym;
5414   APInt LoadedRHSOffset;
5415   if (!IsConstantOffsetFromGlobal(LoadedRHS, LoadedRHSSym, LoadedRHSOffset,
5416                                   DL) ||
5417       PtrSym != LoadedRHSSym || PtrOffset != LoadedRHSOffset)
5418     return nullptr;
5419 
5420   return ConstantExpr::getBitCast(LoadedLHSPtr, Int8PtrTy);
5421 }
5422 
5423 static Value *simplifyUnaryIntrinsic(Function *F, Value *Op0,
5424                                      const SimplifyQuery &Q) {
5425   // Idempotent functions return the same result when called repeatedly.
5426   Intrinsic::ID IID = F->getIntrinsicID();
5427   if (IsIdempotent(IID))
5428     if (auto *II = dyn_cast<IntrinsicInst>(Op0))
5429       if (II->getIntrinsicID() == IID)
5430         return II;
5431 
5432   Value *X;
5433   switch (IID) {
5434   case Intrinsic::fabs:
5435     if (SignBitMustBeZero(Op0, Q.TLI)) return Op0;
5436     break;
5437   case Intrinsic::bswap:
5438     // bswap(bswap(x)) -> x
5439     if (match(Op0, m_BSwap(m_Value(X)))) return X;
5440     break;
5441   case Intrinsic::bitreverse:
5442     // bitreverse(bitreverse(x)) -> x
5443     if (match(Op0, m_BitReverse(m_Value(X)))) return X;
5444     break;
5445   case Intrinsic::ctpop: {
5446     // If everything but the lowest bit is zero, that bit is the pop-count. Ex:
5447     // ctpop(and X, 1) --> and X, 1
5448     unsigned BitWidth = Op0->getType()->getScalarSizeInBits();
5449     if (MaskedValueIsZero(Op0, APInt::getHighBitsSet(BitWidth, BitWidth - 1),
5450                           Q.DL, 0, Q.AC, Q.CxtI, Q.DT))
5451       return Op0;
5452     break;
5453   }
5454   case Intrinsic::exp:
5455     // exp(log(x)) -> x
5456     if (Q.CxtI->hasAllowReassoc() &&
5457         match(Op0, m_Intrinsic<Intrinsic::log>(m_Value(X)))) return X;
5458     break;
5459   case Intrinsic::exp2:
5460     // exp2(log2(x)) -> x
5461     if (Q.CxtI->hasAllowReassoc() &&
5462         match(Op0, m_Intrinsic<Intrinsic::log2>(m_Value(X)))) return X;
5463     break;
5464   case Intrinsic::log:
5465     // log(exp(x)) -> x
5466     if (Q.CxtI->hasAllowReassoc() &&
5467         match(Op0, m_Intrinsic<Intrinsic::exp>(m_Value(X)))) return X;
5468     break;
5469   case Intrinsic::log2:
5470     // log2(exp2(x)) -> x
5471     if (Q.CxtI->hasAllowReassoc() &&
5472         (match(Op0, m_Intrinsic<Intrinsic::exp2>(m_Value(X))) ||
5473          match(Op0, m_Intrinsic<Intrinsic::pow>(m_SpecificFP(2.0),
5474                                                 m_Value(X))))) return X;
5475     break;
5476   case Intrinsic::log10:
5477     // log10(pow(10.0, x)) -> x
5478     if (Q.CxtI->hasAllowReassoc() &&
5479         match(Op0, m_Intrinsic<Intrinsic::pow>(m_SpecificFP(10.0),
5480                                                m_Value(X)))) return X;
5481     break;
5482   case Intrinsic::floor:
5483   case Intrinsic::trunc:
5484   case Intrinsic::ceil:
5485   case Intrinsic::round:
5486   case Intrinsic::roundeven:
5487   case Intrinsic::nearbyint:
5488   case Intrinsic::rint: {
5489     // floor (sitofp x) -> sitofp x
5490     // floor (uitofp x) -> uitofp x
5491     //
5492     // Converting from int always results in a finite integral number or
5493     // infinity. For either of those inputs, these rounding functions always
5494     // return the same value, so the rounding can be eliminated.
5495     if (match(Op0, m_SIToFP(m_Value())) || match(Op0, m_UIToFP(m_Value())))
5496       return Op0;
5497     break;
5498   }
5499   case Intrinsic::experimental_vector_reverse:
5500     // experimental.vector.reverse(experimental.vector.reverse(x)) -> x
5501     if (match(Op0,
5502               m_Intrinsic<Intrinsic::experimental_vector_reverse>(m_Value(X))))
5503       return X;
5504     // experimental.vector.reverse(splat(X)) -> splat(X)
5505     if (isSplatValue(Op0))
5506       return Op0;
5507     break;
5508   default:
5509     break;
5510   }
5511 
5512   return nullptr;
5513 }
5514 
5515 static APInt getMaxMinLimit(Intrinsic::ID IID, unsigned BitWidth) {
5516   switch (IID) {
5517   case Intrinsic::smax: return APInt::getSignedMaxValue(BitWidth);
5518   case Intrinsic::smin: return APInt::getSignedMinValue(BitWidth);
5519   case Intrinsic::umax: return APInt::getMaxValue(BitWidth);
5520   case Intrinsic::umin: return APInt::getMinValue(BitWidth);
5521   default: llvm_unreachable("Unexpected intrinsic");
5522   }
5523 }
5524 
5525 static ICmpInst::Predicate getMaxMinPredicate(Intrinsic::ID IID) {
5526   switch (IID) {
5527   case Intrinsic::smax: return ICmpInst::ICMP_SGE;
5528   case Intrinsic::smin: return ICmpInst::ICMP_SLE;
5529   case Intrinsic::umax: return ICmpInst::ICMP_UGE;
5530   case Intrinsic::umin: return ICmpInst::ICMP_ULE;
5531   default: llvm_unreachable("Unexpected intrinsic");
5532   }
5533 }
5534 
5535 /// Given a min/max intrinsic, see if it can be removed based on having an
5536 /// operand that is another min/max intrinsic with shared operand(s). The caller
5537 /// is expected to swap the operand arguments to handle commutation.
5538 static Value *foldMinMaxSharedOp(Intrinsic::ID IID, Value *Op0, Value *Op1) {
5539   Value *X, *Y;
5540   if (!match(Op0, m_MaxOrMin(m_Value(X), m_Value(Y))))
5541     return nullptr;
5542 
5543   auto *MM0 = dyn_cast<IntrinsicInst>(Op0);
5544   if (!MM0)
5545     return nullptr;
5546   Intrinsic::ID IID0 = MM0->getIntrinsicID();
5547 
5548   if (Op1 == X || Op1 == Y ||
5549       match(Op1, m_c_MaxOrMin(m_Specific(X), m_Specific(Y)))) {
5550     // max (max X, Y), X --> max X, Y
5551     if (IID0 == IID)
5552       return MM0;
5553     // max (min X, Y), X --> X
5554     if (IID0 == getInverseMinMaxIntrinsic(IID))
5555       return Op1;
5556   }
5557   return nullptr;
5558 }
5559 
5560 static Value *simplifyBinaryIntrinsic(Function *F, Value *Op0, Value *Op1,
5561                                       const SimplifyQuery &Q) {
5562   Intrinsic::ID IID = F->getIntrinsicID();
5563   Type *ReturnType = F->getReturnType();
5564   unsigned BitWidth = ReturnType->getScalarSizeInBits();
5565   switch (IID) {
5566   case Intrinsic::abs:
5567     // abs(abs(x)) -> abs(x). We don't need to worry about the nsw arg here.
5568     // It is always ok to pick the earlier abs. We'll just lose nsw if its only
5569     // on the outer abs.
5570     if (match(Op0, m_Intrinsic<Intrinsic::abs>(m_Value(), m_Value())))
5571       return Op0;
5572     break;
5573 
5574   case Intrinsic::cttz: {
5575     Value *X;
5576     if (match(Op0, m_Shl(m_One(), m_Value(X))))
5577       return X;
5578     break;
5579   }
5580   case Intrinsic::ctlz: {
5581     Value *X;
5582     if (match(Op0, m_LShr(m_Negative(), m_Value(X))))
5583       return X;
5584     if (match(Op0, m_AShr(m_Negative(), m_Value())))
5585       return Constant::getNullValue(ReturnType);
5586     break;
5587   }
5588   case Intrinsic::smax:
5589   case Intrinsic::smin:
5590   case Intrinsic::umax:
5591   case Intrinsic::umin: {
5592     // If the arguments are the same, this is a no-op.
5593     if (Op0 == Op1)
5594       return Op0;
5595 
5596     // Canonicalize constant operand as Op1.
5597     if (isa<Constant>(Op0))
5598       std::swap(Op0, Op1);
5599 
5600     // Assume undef is the limit value.
5601     if (Q.isUndefValue(Op1))
5602       return ConstantInt::get(ReturnType, getMaxMinLimit(IID, BitWidth));
5603 
5604     const APInt *C;
5605     if (match(Op1, m_APIntAllowUndef(C))) {
5606       // Clamp to limit value. For example:
5607       // umax(i8 %x, i8 255) --> 255
5608       if (*C == getMaxMinLimit(IID, BitWidth))
5609         return ConstantInt::get(ReturnType, *C);
5610 
5611       // If the constant op is the opposite of the limit value, the other must
5612       // be larger/smaller or equal. For example:
5613       // umin(i8 %x, i8 255) --> %x
5614       if (*C == getMaxMinLimit(getInverseMinMaxIntrinsic(IID), BitWidth))
5615         return Op0;
5616 
5617       // Remove nested call if constant operands allow it. Example:
5618       // max (max X, 7), 5 -> max X, 7
5619       auto *MinMax0 = dyn_cast<IntrinsicInst>(Op0);
5620       if (MinMax0 && MinMax0->getIntrinsicID() == IID) {
5621         // TODO: loosen undef/splat restrictions for vector constants.
5622         Value *M00 = MinMax0->getOperand(0), *M01 = MinMax0->getOperand(1);
5623         const APInt *InnerC;
5624         if ((match(M00, m_APInt(InnerC)) || match(M01, m_APInt(InnerC))) &&
5625             ((IID == Intrinsic::smax && InnerC->sge(*C)) ||
5626              (IID == Intrinsic::smin && InnerC->sle(*C)) ||
5627              (IID == Intrinsic::umax && InnerC->uge(*C)) ||
5628              (IID == Intrinsic::umin && InnerC->ule(*C))))
5629           return Op0;
5630       }
5631     }
5632 
5633     if (Value *V = foldMinMaxSharedOp(IID, Op0, Op1))
5634       return V;
5635     if (Value *V = foldMinMaxSharedOp(IID, Op1, Op0))
5636       return V;
5637 
5638     ICmpInst::Predicate Pred = getMaxMinPredicate(IID);
5639     if (isICmpTrue(Pred, Op0, Op1, Q.getWithoutUndef(), RecursionLimit))
5640       return Op0;
5641     if (isICmpTrue(Pred, Op1, Op0, Q.getWithoutUndef(), RecursionLimit))
5642       return Op1;
5643 
5644     if (Optional<bool> Imp =
5645             isImpliedByDomCondition(Pred, Op0, Op1, Q.CxtI, Q.DL))
5646       return *Imp ? Op0 : Op1;
5647     if (Optional<bool> Imp =
5648             isImpliedByDomCondition(Pred, Op1, Op0, Q.CxtI, Q.DL))
5649       return *Imp ? Op1 : Op0;
5650 
5651     break;
5652   }
5653   case Intrinsic::usub_with_overflow:
5654   case Intrinsic::ssub_with_overflow:
5655     // X - X -> { 0, false }
5656     // X - undef -> { 0, false }
5657     // undef - X -> { 0, false }
5658     if (Op0 == Op1 || Q.isUndefValue(Op0) || Q.isUndefValue(Op1))
5659       return Constant::getNullValue(ReturnType);
5660     break;
5661   case Intrinsic::uadd_with_overflow:
5662   case Intrinsic::sadd_with_overflow:
5663     // X + undef -> { -1, false }
5664     // undef + x -> { -1, false }
5665     if (Q.isUndefValue(Op0) || Q.isUndefValue(Op1)) {
5666       return ConstantStruct::get(
5667           cast<StructType>(ReturnType),
5668           {Constant::getAllOnesValue(ReturnType->getStructElementType(0)),
5669            Constant::getNullValue(ReturnType->getStructElementType(1))});
5670     }
5671     break;
5672   case Intrinsic::umul_with_overflow:
5673   case Intrinsic::smul_with_overflow:
5674     // 0 * X -> { 0, false }
5675     // X * 0 -> { 0, false }
5676     if (match(Op0, m_Zero()) || match(Op1, m_Zero()))
5677       return Constant::getNullValue(ReturnType);
5678     // undef * X -> { 0, false }
5679     // X * undef -> { 0, false }
5680     if (Q.isUndefValue(Op0) || Q.isUndefValue(Op1))
5681       return Constant::getNullValue(ReturnType);
5682     break;
5683   case Intrinsic::uadd_sat:
5684     // sat(MAX + X) -> MAX
5685     // sat(X + MAX) -> MAX
5686     if (match(Op0, m_AllOnes()) || match(Op1, m_AllOnes()))
5687       return Constant::getAllOnesValue(ReturnType);
5688     LLVM_FALLTHROUGH;
5689   case Intrinsic::sadd_sat:
5690     // sat(X + undef) -> -1
5691     // sat(undef + X) -> -1
5692     // For unsigned: Assume undef is MAX, thus we saturate to MAX (-1).
5693     // For signed: Assume undef is ~X, in which case X + ~X = -1.
5694     if (Q.isUndefValue(Op0) || Q.isUndefValue(Op1))
5695       return Constant::getAllOnesValue(ReturnType);
5696 
5697     // X + 0 -> X
5698     if (match(Op1, m_Zero()))
5699       return Op0;
5700     // 0 + X -> X
5701     if (match(Op0, m_Zero()))
5702       return Op1;
5703     break;
5704   case Intrinsic::usub_sat:
5705     // sat(0 - X) -> 0, sat(X - MAX) -> 0
5706     if (match(Op0, m_Zero()) || match(Op1, m_AllOnes()))
5707       return Constant::getNullValue(ReturnType);
5708     LLVM_FALLTHROUGH;
5709   case Intrinsic::ssub_sat:
5710     // X - X -> 0, X - undef -> 0, undef - X -> 0
5711     if (Op0 == Op1 || Q.isUndefValue(Op0) || Q.isUndefValue(Op1))
5712       return Constant::getNullValue(ReturnType);
5713     // X - 0 -> X
5714     if (match(Op1, m_Zero()))
5715       return Op0;
5716     break;
5717   case Intrinsic::load_relative:
5718     if (auto *C0 = dyn_cast<Constant>(Op0))
5719       if (auto *C1 = dyn_cast<Constant>(Op1))
5720         return SimplifyRelativeLoad(C0, C1, Q.DL);
5721     break;
5722   case Intrinsic::powi:
5723     if (auto *Power = dyn_cast<ConstantInt>(Op1)) {
5724       // powi(x, 0) -> 1.0
5725       if (Power->isZero())
5726         return ConstantFP::get(Op0->getType(), 1.0);
5727       // powi(x, 1) -> x
5728       if (Power->isOne())
5729         return Op0;
5730     }
5731     break;
5732   case Intrinsic::copysign:
5733     // copysign X, X --> X
5734     if (Op0 == Op1)
5735       return Op0;
5736     // copysign -X, X --> X
5737     // copysign X, -X --> -X
5738     if (match(Op0, m_FNeg(m_Specific(Op1))) ||
5739         match(Op1, m_FNeg(m_Specific(Op0))))
5740       return Op1;
5741     break;
5742   case Intrinsic::maxnum:
5743   case Intrinsic::minnum:
5744   case Intrinsic::maximum:
5745   case Intrinsic::minimum: {
5746     // If the arguments are the same, this is a no-op.
5747     if (Op0 == Op1) return Op0;
5748 
5749     // Canonicalize constant operand as Op1.
5750     if (isa<Constant>(Op0))
5751       std::swap(Op0, Op1);
5752 
5753     // If an argument is undef, return the other argument.
5754     if (Q.isUndefValue(Op1))
5755       return Op0;
5756 
5757     bool PropagateNaN = IID == Intrinsic::minimum || IID == Intrinsic::maximum;
5758     bool IsMin = IID == Intrinsic::minimum || IID == Intrinsic::minnum;
5759 
5760     // minnum(X, nan) -> X
5761     // maxnum(X, nan) -> X
5762     // minimum(X, nan) -> nan
5763     // maximum(X, nan) -> nan
5764     if (match(Op1, m_NaN()))
5765       return PropagateNaN ? propagateNaN(cast<Constant>(Op1)) : Op0;
5766 
5767     // In the following folds, inf can be replaced with the largest finite
5768     // float, if the ninf flag is set.
5769     const APFloat *C;
5770     if (match(Op1, m_APFloat(C)) &&
5771         (C->isInfinity() || (Q.CxtI->hasNoInfs() && C->isLargest()))) {
5772       // minnum(X, -inf) -> -inf
5773       // maxnum(X, +inf) -> +inf
5774       // minimum(X, -inf) -> -inf if nnan
5775       // maximum(X, +inf) -> +inf if nnan
5776       if (C->isNegative() == IsMin && (!PropagateNaN || Q.CxtI->hasNoNaNs()))
5777         return ConstantFP::get(ReturnType, *C);
5778 
5779       // minnum(X, +inf) -> X if nnan
5780       // maxnum(X, -inf) -> X if nnan
5781       // minimum(X, +inf) -> X
5782       // maximum(X, -inf) -> X
5783       if (C->isNegative() != IsMin && (PropagateNaN || Q.CxtI->hasNoNaNs()))
5784         return Op0;
5785     }
5786 
5787     // Min/max of the same operation with common operand:
5788     // m(m(X, Y)), X --> m(X, Y) (4 commuted variants)
5789     if (auto *M0 = dyn_cast<IntrinsicInst>(Op0))
5790       if (M0->getIntrinsicID() == IID &&
5791           (M0->getOperand(0) == Op1 || M0->getOperand(1) == Op1))
5792         return Op0;
5793     if (auto *M1 = dyn_cast<IntrinsicInst>(Op1))
5794       if (M1->getIntrinsicID() == IID &&
5795           (M1->getOperand(0) == Op0 || M1->getOperand(1) == Op0))
5796         return Op1;
5797 
5798     break;
5799   }
5800   case Intrinsic::experimental_vector_extract: {
5801     Type *ReturnType = F->getReturnType();
5802 
5803     // (extract_vector (insert_vector _, X, 0), 0) -> X
5804     unsigned IdxN = cast<ConstantInt>(Op1)->getZExtValue();
5805     Value *X = nullptr;
5806     if (match(Op0, m_Intrinsic<Intrinsic::experimental_vector_insert>(
5807                        m_Value(), m_Value(X), m_Zero())) &&
5808         IdxN == 0 && X->getType() == ReturnType)
5809       return X;
5810 
5811     break;
5812   }
5813   default:
5814     break;
5815   }
5816 
5817   return nullptr;
5818 }
5819 
5820 static Value *simplifyIntrinsic(CallBase *Call, const SimplifyQuery &Q) {
5821 
5822   unsigned NumOperands = Call->arg_size();
5823   Function *F = cast<Function>(Call->getCalledFunction());
5824   Intrinsic::ID IID = F->getIntrinsicID();
5825 
5826   // Most of the intrinsics with no operands have some kind of side effect.
5827   // Don't simplify.
5828   if (!NumOperands) {
5829     switch (IID) {
5830     case Intrinsic::vscale: {
5831       // Call may not be inserted into the IR yet at point of calling simplify.
5832       if (!Call->getParent() || !Call->getParent()->getParent())
5833         return nullptr;
5834       auto Attr = Call->getFunction()->getFnAttribute(Attribute::VScaleRange);
5835       if (!Attr.isValid())
5836         return nullptr;
5837       unsigned VScaleMin, VScaleMax;
5838       std::tie(VScaleMin, VScaleMax) = Attr.getVScaleRangeArgs();
5839       if (VScaleMin == VScaleMax && VScaleMax != 0)
5840         return ConstantInt::get(F->getReturnType(), VScaleMin);
5841       return nullptr;
5842     }
5843     default:
5844       return nullptr;
5845     }
5846   }
5847 
5848   if (NumOperands == 1)
5849     return simplifyUnaryIntrinsic(F, Call->getArgOperand(0), Q);
5850 
5851   if (NumOperands == 2)
5852     return simplifyBinaryIntrinsic(F, Call->getArgOperand(0),
5853                                    Call->getArgOperand(1), Q);
5854 
5855   // Handle intrinsics with 3 or more arguments.
5856   switch (IID) {
5857   case Intrinsic::masked_load:
5858   case Intrinsic::masked_gather: {
5859     Value *MaskArg = Call->getArgOperand(2);
5860     Value *PassthruArg = Call->getArgOperand(3);
5861     // If the mask is all zeros or undef, the "passthru" argument is the result.
5862     if (maskIsAllZeroOrUndef(MaskArg))
5863       return PassthruArg;
5864     return nullptr;
5865   }
5866   case Intrinsic::fshl:
5867   case Intrinsic::fshr: {
5868     Value *Op0 = Call->getArgOperand(0), *Op1 = Call->getArgOperand(1),
5869           *ShAmtArg = Call->getArgOperand(2);
5870 
5871     // If both operands are undef, the result is undef.
5872     if (Q.isUndefValue(Op0) && Q.isUndefValue(Op1))
5873       return UndefValue::get(F->getReturnType());
5874 
5875     // If shift amount is undef, assume it is zero.
5876     if (Q.isUndefValue(ShAmtArg))
5877       return Call->getArgOperand(IID == Intrinsic::fshl ? 0 : 1);
5878 
5879     const APInt *ShAmtC;
5880     if (match(ShAmtArg, m_APInt(ShAmtC))) {
5881       // If there's effectively no shift, return the 1st arg or 2nd arg.
5882       APInt BitWidth = APInt(ShAmtC->getBitWidth(), ShAmtC->getBitWidth());
5883       if (ShAmtC->urem(BitWidth).isZero())
5884         return Call->getArgOperand(IID == Intrinsic::fshl ? 0 : 1);
5885     }
5886 
5887     // Rotating zero by anything is zero.
5888     if (match(Op0, m_Zero()) && match(Op1, m_Zero()))
5889       return ConstantInt::getNullValue(F->getReturnType());
5890 
5891     // Rotating -1 by anything is -1.
5892     if (match(Op0, m_AllOnes()) && match(Op1, m_AllOnes()))
5893       return ConstantInt::getAllOnesValue(F->getReturnType());
5894 
5895     return nullptr;
5896   }
5897   case Intrinsic::experimental_constrained_fma: {
5898     Value *Op0 = Call->getArgOperand(0);
5899     Value *Op1 = Call->getArgOperand(1);
5900     Value *Op2 = Call->getArgOperand(2);
5901     auto *FPI = cast<ConstrainedFPIntrinsic>(Call);
5902     if (Value *V = simplifyFPOp({Op0, Op1, Op2}, {}, Q,
5903                                 FPI->getExceptionBehavior().getValue(),
5904                                 FPI->getRoundingMode().getValue()))
5905       return V;
5906     return nullptr;
5907   }
5908   case Intrinsic::fma:
5909   case Intrinsic::fmuladd: {
5910     Value *Op0 = Call->getArgOperand(0);
5911     Value *Op1 = Call->getArgOperand(1);
5912     Value *Op2 = Call->getArgOperand(2);
5913     if (Value *V = simplifyFPOp({Op0, Op1, Op2}, {}, Q, fp::ebIgnore,
5914                                 RoundingMode::NearestTiesToEven))
5915       return V;
5916     return nullptr;
5917   }
5918   case Intrinsic::smul_fix:
5919   case Intrinsic::smul_fix_sat: {
5920     Value *Op0 = Call->getArgOperand(0);
5921     Value *Op1 = Call->getArgOperand(1);
5922     Value *Op2 = Call->getArgOperand(2);
5923     Type *ReturnType = F->getReturnType();
5924 
5925     // Canonicalize constant operand as Op1 (ConstantFolding handles the case
5926     // when both Op0 and Op1 are constant so we do not care about that special
5927     // case here).
5928     if (isa<Constant>(Op0))
5929       std::swap(Op0, Op1);
5930 
5931     // X * 0 -> 0
5932     if (match(Op1, m_Zero()))
5933       return Constant::getNullValue(ReturnType);
5934 
5935     // X * undef -> 0
5936     if (Q.isUndefValue(Op1))
5937       return Constant::getNullValue(ReturnType);
5938 
5939     // X * (1 << Scale) -> X
5940     APInt ScaledOne =
5941         APInt::getOneBitSet(ReturnType->getScalarSizeInBits(),
5942                             cast<ConstantInt>(Op2)->getZExtValue());
5943     if (ScaledOne.isNonNegative() && match(Op1, m_SpecificInt(ScaledOne)))
5944       return Op0;
5945 
5946     return nullptr;
5947   }
5948   case Intrinsic::experimental_vector_insert: {
5949     Value *Vec = Call->getArgOperand(0);
5950     Value *SubVec = Call->getArgOperand(1);
5951     Value *Idx = Call->getArgOperand(2);
5952     Type *ReturnType = F->getReturnType();
5953 
5954     // (insert_vector Y, (extract_vector X, 0), 0) -> X
5955     // where: Y is X, or Y is undef
5956     unsigned IdxN = cast<ConstantInt>(Idx)->getZExtValue();
5957     Value *X = nullptr;
5958     if (match(SubVec, m_Intrinsic<Intrinsic::experimental_vector_extract>(
5959                           m_Value(X), m_Zero())) &&
5960         (Q.isUndefValue(Vec) || Vec == X) && IdxN == 0 &&
5961         X->getType() == ReturnType)
5962       return X;
5963 
5964     return nullptr;
5965   }
5966   case Intrinsic::experimental_constrained_fadd: {
5967     auto *FPI = cast<ConstrainedFPIntrinsic>(Call);
5968     return SimplifyFAddInst(FPI->getArgOperand(0), FPI->getArgOperand(1),
5969                             FPI->getFastMathFlags(), Q,
5970                             FPI->getExceptionBehavior().getValue(),
5971                             FPI->getRoundingMode().getValue());
5972     break;
5973   }
5974   case Intrinsic::experimental_constrained_fsub: {
5975     auto *FPI = cast<ConstrainedFPIntrinsic>(Call);
5976     return SimplifyFSubInst(FPI->getArgOperand(0), FPI->getArgOperand(1),
5977                             FPI->getFastMathFlags(), Q,
5978                             FPI->getExceptionBehavior().getValue(),
5979                             FPI->getRoundingMode().getValue());
5980     break;
5981   }
5982   case Intrinsic::experimental_constrained_fmul: {
5983     auto *FPI = cast<ConstrainedFPIntrinsic>(Call);
5984     return SimplifyFMulInst(FPI->getArgOperand(0), FPI->getArgOperand(1),
5985                             FPI->getFastMathFlags(), Q,
5986                             FPI->getExceptionBehavior().getValue(),
5987                             FPI->getRoundingMode().getValue());
5988     break;
5989   }
5990   case Intrinsic::experimental_constrained_fdiv: {
5991     auto *FPI = cast<ConstrainedFPIntrinsic>(Call);
5992     return SimplifyFDivInst(FPI->getArgOperand(0), FPI->getArgOperand(1),
5993                             FPI->getFastMathFlags(), Q,
5994                             FPI->getExceptionBehavior().getValue(),
5995                             FPI->getRoundingMode().getValue());
5996     break;
5997   }
5998   case Intrinsic::experimental_constrained_frem: {
5999     auto *FPI = cast<ConstrainedFPIntrinsic>(Call);
6000     return SimplifyFRemInst(FPI->getArgOperand(0), FPI->getArgOperand(1),
6001                             FPI->getFastMathFlags(), Q,
6002                             FPI->getExceptionBehavior().getValue(),
6003                             FPI->getRoundingMode().getValue());
6004     break;
6005   }
6006   default:
6007     return nullptr;
6008   }
6009 }
6010 
6011 static Value *tryConstantFoldCall(CallBase *Call, const SimplifyQuery &Q) {
6012   auto *F = dyn_cast<Function>(Call->getCalledOperand());
6013   if (!F || !canConstantFoldCallTo(Call, F))
6014     return nullptr;
6015 
6016   SmallVector<Constant *, 4> ConstantArgs;
6017   unsigned NumArgs = Call->arg_size();
6018   ConstantArgs.reserve(NumArgs);
6019   for (auto &Arg : Call->args()) {
6020     Constant *C = dyn_cast<Constant>(&Arg);
6021     if (!C) {
6022       if (isa<MetadataAsValue>(Arg.get()))
6023         continue;
6024       return nullptr;
6025     }
6026     ConstantArgs.push_back(C);
6027   }
6028 
6029   return ConstantFoldCall(Call, F, ConstantArgs, Q.TLI);
6030 }
6031 
6032 Value *llvm::SimplifyCall(CallBase *Call, const SimplifyQuery &Q) {
6033   // musttail calls can only be simplified if they are also DCEd.
6034   // As we can't guarantee this here, don't simplify them.
6035   if (Call->isMustTailCall())
6036     return nullptr;
6037 
6038   // call undef -> poison
6039   // call null -> poison
6040   Value *Callee = Call->getCalledOperand();
6041   if (isa<UndefValue>(Callee) || isa<ConstantPointerNull>(Callee))
6042     return PoisonValue::get(Call->getType());
6043 
6044   if (Value *V = tryConstantFoldCall(Call, Q))
6045     return V;
6046 
6047   auto *F = dyn_cast<Function>(Callee);
6048   if (F && F->isIntrinsic())
6049     if (Value *Ret = simplifyIntrinsic(Call, Q))
6050       return Ret;
6051 
6052   return nullptr;
6053 }
6054 
6055 /// Given operands for a Freeze, see if we can fold the result.
6056 static Value *SimplifyFreezeInst(Value *Op0, const SimplifyQuery &Q) {
6057   // Use a utility function defined in ValueTracking.
6058   if (llvm::isGuaranteedNotToBeUndefOrPoison(Op0, Q.AC, Q.CxtI, Q.DT))
6059     return Op0;
6060   // We have room for improvement.
6061   return nullptr;
6062 }
6063 
6064 Value *llvm::SimplifyFreezeInst(Value *Op0, const SimplifyQuery &Q) {
6065   return ::SimplifyFreezeInst(Op0, Q);
6066 }
6067 
6068 static Value *SimplifyLoadInst(LoadInst *LI, Value *PtrOp,
6069                                const SimplifyQuery &Q) {
6070   if (LI->isVolatile())
6071     return nullptr;
6072 
6073   APInt Offset(Q.DL.getIndexTypeSizeInBits(PtrOp->getType()), 0);
6074   auto *PtrOpC = dyn_cast<Constant>(PtrOp);
6075   // Try to convert operand into a constant by stripping offsets while looking
6076   // through invariant.group intrinsics. Don't bother if the underlying object
6077   // is not constant, as calculating GEP offsets is expensive.
6078   if (!PtrOpC && isa<Constant>(getUnderlyingObject(PtrOp))) {
6079     PtrOp = PtrOp->stripAndAccumulateConstantOffsets(
6080         Q.DL, Offset, /* AllowNonInbounts */ true,
6081         /* AllowInvariantGroup */ true);
6082     // Index size may have changed due to address space casts.
6083     Offset = Offset.sextOrTrunc(Q.DL.getIndexTypeSizeInBits(PtrOp->getType()));
6084     PtrOpC = dyn_cast<Constant>(PtrOp);
6085   }
6086 
6087   if (PtrOpC)
6088     return ConstantFoldLoadFromConstPtr(PtrOpC, LI->getType(), Offset, Q.DL);
6089   return nullptr;
6090 }
6091 
6092 /// See if we can compute a simplified version of this instruction.
6093 /// If not, this returns null.
6094 
6095 static Value *simplifyInstructionWithOperands(Instruction *I,
6096                                               ArrayRef<Value *> NewOps,
6097                                               const SimplifyQuery &SQ,
6098                                               OptimizationRemarkEmitter *ORE) {
6099   const SimplifyQuery Q = SQ.CxtI ? SQ : SQ.getWithInstruction(I);
6100   Value *Result = nullptr;
6101 
6102   switch (I->getOpcode()) {
6103   default:
6104     if (llvm::all_of(NewOps, [](Value *V) { return isa<Constant>(V); })) {
6105       SmallVector<Constant *, 8> NewConstOps(NewOps.size());
6106       transform(NewOps, NewConstOps.begin(),
6107                 [](Value *V) { return cast<Constant>(V); });
6108       Result = ConstantFoldInstOperands(I, NewConstOps, Q.DL, Q.TLI);
6109     }
6110     break;
6111   case Instruction::FNeg:
6112     Result = SimplifyFNegInst(NewOps[0], I->getFastMathFlags(), Q);
6113     break;
6114   case Instruction::FAdd:
6115     Result = SimplifyFAddInst(NewOps[0], NewOps[1], I->getFastMathFlags(), Q);
6116     break;
6117   case Instruction::Add:
6118     Result = SimplifyAddInst(
6119         NewOps[0], NewOps[1], Q.IIQ.hasNoSignedWrap(cast<BinaryOperator>(I)),
6120         Q.IIQ.hasNoUnsignedWrap(cast<BinaryOperator>(I)), Q);
6121     break;
6122   case Instruction::FSub:
6123     Result = SimplifyFSubInst(NewOps[0], NewOps[1], I->getFastMathFlags(), Q);
6124     break;
6125   case Instruction::Sub:
6126     Result = SimplifySubInst(
6127         NewOps[0], NewOps[1], Q.IIQ.hasNoSignedWrap(cast<BinaryOperator>(I)),
6128         Q.IIQ.hasNoUnsignedWrap(cast<BinaryOperator>(I)), Q);
6129     break;
6130   case Instruction::FMul:
6131     Result = SimplifyFMulInst(NewOps[0], NewOps[1], I->getFastMathFlags(), Q);
6132     break;
6133   case Instruction::Mul:
6134     Result = SimplifyMulInst(NewOps[0], NewOps[1], Q);
6135     break;
6136   case Instruction::SDiv:
6137     Result = SimplifySDivInst(NewOps[0], NewOps[1], Q);
6138     break;
6139   case Instruction::UDiv:
6140     Result = SimplifyUDivInst(NewOps[0], NewOps[1], Q);
6141     break;
6142   case Instruction::FDiv:
6143     Result = SimplifyFDivInst(NewOps[0], NewOps[1], I->getFastMathFlags(), Q);
6144     break;
6145   case Instruction::SRem:
6146     Result = SimplifySRemInst(NewOps[0], NewOps[1], Q);
6147     break;
6148   case Instruction::URem:
6149     Result = SimplifyURemInst(NewOps[0], NewOps[1], Q);
6150     break;
6151   case Instruction::FRem:
6152     Result = SimplifyFRemInst(NewOps[0], NewOps[1], I->getFastMathFlags(), Q);
6153     break;
6154   case Instruction::Shl:
6155     Result = SimplifyShlInst(
6156         NewOps[0], NewOps[1], Q.IIQ.hasNoSignedWrap(cast<BinaryOperator>(I)),
6157         Q.IIQ.hasNoUnsignedWrap(cast<BinaryOperator>(I)), Q);
6158     break;
6159   case Instruction::LShr:
6160     Result = SimplifyLShrInst(NewOps[0], NewOps[1],
6161                               Q.IIQ.isExact(cast<BinaryOperator>(I)), Q);
6162     break;
6163   case Instruction::AShr:
6164     Result = SimplifyAShrInst(NewOps[0], NewOps[1],
6165                               Q.IIQ.isExact(cast<BinaryOperator>(I)), Q);
6166     break;
6167   case Instruction::And:
6168     Result = SimplifyAndInst(NewOps[0], NewOps[1], Q);
6169     break;
6170   case Instruction::Or:
6171     Result = SimplifyOrInst(NewOps[0], NewOps[1], Q);
6172     break;
6173   case Instruction::Xor:
6174     Result = SimplifyXorInst(NewOps[0], NewOps[1], Q);
6175     break;
6176   case Instruction::ICmp:
6177     Result = SimplifyICmpInst(cast<ICmpInst>(I)->getPredicate(), NewOps[0],
6178                               NewOps[1], Q);
6179     break;
6180   case Instruction::FCmp:
6181     Result = SimplifyFCmpInst(cast<FCmpInst>(I)->getPredicate(), NewOps[0],
6182                               NewOps[1], I->getFastMathFlags(), Q);
6183     break;
6184   case Instruction::Select:
6185     Result = SimplifySelectInst(NewOps[0], NewOps[1], NewOps[2], Q);
6186     break;
6187   case Instruction::GetElementPtr: {
6188     auto *GEPI = cast<GetElementPtrInst>(I);
6189     Result = SimplifyGEPInst(GEPI->getSourceElementType(), NewOps,
6190                              GEPI->isInBounds(), Q);
6191     break;
6192   }
6193   case Instruction::InsertValue: {
6194     InsertValueInst *IV = cast<InsertValueInst>(I);
6195     Result = SimplifyInsertValueInst(NewOps[0], NewOps[1], IV->getIndices(), Q);
6196     break;
6197   }
6198   case Instruction::InsertElement: {
6199     Result = SimplifyInsertElementInst(NewOps[0], NewOps[1], NewOps[2], Q);
6200     break;
6201   }
6202   case Instruction::ExtractValue: {
6203     auto *EVI = cast<ExtractValueInst>(I);
6204     Result = SimplifyExtractValueInst(NewOps[0], EVI->getIndices(), Q);
6205     break;
6206   }
6207   case Instruction::ExtractElement: {
6208     Result = SimplifyExtractElementInst(NewOps[0], NewOps[1], Q);
6209     break;
6210   }
6211   case Instruction::ShuffleVector: {
6212     auto *SVI = cast<ShuffleVectorInst>(I);
6213     Result = SimplifyShuffleVectorInst(
6214         NewOps[0], NewOps[1], SVI->getShuffleMask(), SVI->getType(), Q);
6215     break;
6216   }
6217   case Instruction::PHI:
6218     Result = SimplifyPHINode(cast<PHINode>(I), NewOps, Q);
6219     break;
6220   case Instruction::Call: {
6221     // TODO: Use NewOps
6222     Result = SimplifyCall(cast<CallInst>(I), Q);
6223     break;
6224   }
6225   case Instruction::Freeze:
6226     Result = llvm::SimplifyFreezeInst(NewOps[0], Q);
6227     break;
6228 #define HANDLE_CAST_INST(num, opc, clas) case Instruction::opc:
6229 #include "llvm/IR/Instruction.def"
6230 #undef HANDLE_CAST_INST
6231     Result = SimplifyCastInst(I->getOpcode(), NewOps[0], I->getType(), Q);
6232     break;
6233   case Instruction::Alloca:
6234     // No simplifications for Alloca and it can't be constant folded.
6235     Result = nullptr;
6236     break;
6237   case Instruction::Load:
6238     Result = SimplifyLoadInst(cast<LoadInst>(I), NewOps[0], Q);
6239     break;
6240   }
6241 
6242   /// If called on unreachable code, the above logic may report that the
6243   /// instruction simplified to itself.  Make life easier for users by
6244   /// detecting that case here, returning a safe value instead.
6245   return Result == I ? UndefValue::get(I->getType()) : Result;
6246 }
6247 
6248 Value *llvm::SimplifyInstructionWithOperands(Instruction *I,
6249                                              ArrayRef<Value *> NewOps,
6250                                              const SimplifyQuery &SQ,
6251                                              OptimizationRemarkEmitter *ORE) {
6252   assert(NewOps.size() == I->getNumOperands() &&
6253          "Number of operands should match the instruction!");
6254   return ::simplifyInstructionWithOperands(I, NewOps, SQ, ORE);
6255 }
6256 
6257 Value *llvm::SimplifyInstruction(Instruction *I, const SimplifyQuery &SQ,
6258                                  OptimizationRemarkEmitter *ORE) {
6259   SmallVector<Value *, 8> Ops(I->operands());
6260   return ::simplifyInstructionWithOperands(I, Ops, SQ, ORE);
6261 }
6262 
6263 /// Implementation of recursive simplification through an instruction's
6264 /// uses.
6265 ///
6266 /// This is the common implementation of the recursive simplification routines.
6267 /// If we have a pre-simplified value in 'SimpleV', that is forcibly used to
6268 /// replace the instruction 'I'. Otherwise, we simply add 'I' to the list of
6269 /// instructions to process and attempt to simplify it using
6270 /// InstructionSimplify. Recursively visited users which could not be
6271 /// simplified themselves are to the optional UnsimplifiedUsers set for
6272 /// further processing by the caller.
6273 ///
6274 /// This routine returns 'true' only when *it* simplifies something. The passed
6275 /// in simplified value does not count toward this.
6276 static bool replaceAndRecursivelySimplifyImpl(
6277     Instruction *I, Value *SimpleV, const TargetLibraryInfo *TLI,
6278     const DominatorTree *DT, AssumptionCache *AC,
6279     SmallSetVector<Instruction *, 8> *UnsimplifiedUsers = nullptr) {
6280   bool Simplified = false;
6281   SmallSetVector<Instruction *, 8> Worklist;
6282   const DataLayout &DL = I->getModule()->getDataLayout();
6283 
6284   // If we have an explicit value to collapse to, do that round of the
6285   // simplification loop by hand initially.
6286   if (SimpleV) {
6287     for (User *U : I->users())
6288       if (U != I)
6289         Worklist.insert(cast<Instruction>(U));
6290 
6291     // Replace the instruction with its simplified value.
6292     I->replaceAllUsesWith(SimpleV);
6293 
6294     // Gracefully handle edge cases where the instruction is not wired into any
6295     // parent block.
6296     if (I->getParent() && !I->isEHPad() && !I->isTerminator() &&
6297         !I->mayHaveSideEffects())
6298       I->eraseFromParent();
6299   } else {
6300     Worklist.insert(I);
6301   }
6302 
6303   // Note that we must test the size on each iteration, the worklist can grow.
6304   for (unsigned Idx = 0; Idx != Worklist.size(); ++Idx) {
6305     I = Worklist[Idx];
6306 
6307     // See if this instruction simplifies.
6308     SimpleV = SimplifyInstruction(I, {DL, TLI, DT, AC});
6309     if (!SimpleV) {
6310       if (UnsimplifiedUsers)
6311         UnsimplifiedUsers->insert(I);
6312       continue;
6313     }
6314 
6315     Simplified = true;
6316 
6317     // Stash away all the uses of the old instruction so we can check them for
6318     // recursive simplifications after a RAUW. This is cheaper than checking all
6319     // uses of To on the recursive step in most cases.
6320     for (User *U : I->users())
6321       Worklist.insert(cast<Instruction>(U));
6322 
6323     // Replace the instruction with its simplified value.
6324     I->replaceAllUsesWith(SimpleV);
6325 
6326     // Gracefully handle edge cases where the instruction is not wired into any
6327     // parent block.
6328     if (I->getParent() && !I->isEHPad() && !I->isTerminator() &&
6329         !I->mayHaveSideEffects())
6330       I->eraseFromParent();
6331   }
6332   return Simplified;
6333 }
6334 
6335 bool llvm::replaceAndRecursivelySimplify(
6336     Instruction *I, Value *SimpleV, const TargetLibraryInfo *TLI,
6337     const DominatorTree *DT, AssumptionCache *AC,
6338     SmallSetVector<Instruction *, 8> *UnsimplifiedUsers) {
6339   assert(I != SimpleV && "replaceAndRecursivelySimplify(X,X) is not valid!");
6340   assert(SimpleV && "Must provide a simplified value.");
6341   return replaceAndRecursivelySimplifyImpl(I, SimpleV, TLI, DT, AC,
6342                                            UnsimplifiedUsers);
6343 }
6344 
6345 namespace llvm {
6346 const SimplifyQuery getBestSimplifyQuery(Pass &P, Function &F) {
6347   auto *DTWP = P.getAnalysisIfAvailable<DominatorTreeWrapperPass>();
6348   auto *DT = DTWP ? &DTWP->getDomTree() : nullptr;
6349   auto *TLIWP = P.getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>();
6350   auto *TLI = TLIWP ? &TLIWP->getTLI(F) : nullptr;
6351   auto *ACWP = P.getAnalysisIfAvailable<AssumptionCacheTracker>();
6352   auto *AC = ACWP ? &ACWP->getAssumptionCache(F) : nullptr;
6353   return {F.getParent()->getDataLayout(), TLI, DT, AC};
6354 }
6355 
6356 const SimplifyQuery getBestSimplifyQuery(LoopStandardAnalysisResults &AR,
6357                                          const DataLayout &DL) {
6358   return {DL, &AR.TLI, &AR.DT, &AR.AC};
6359 }
6360 
6361 template <class T, class... TArgs>
6362 const SimplifyQuery getBestSimplifyQuery(AnalysisManager<T, TArgs...> &AM,
6363                                          Function &F) {
6364   auto *DT = AM.template getCachedResult<DominatorTreeAnalysis>(F);
6365   auto *TLI = AM.template getCachedResult<TargetLibraryAnalysis>(F);
6366   auto *AC = AM.template getCachedResult<AssumptionAnalysis>(F);
6367   return {F.getParent()->getDataLayout(), TLI, DT, AC};
6368 }
6369 template const SimplifyQuery getBestSimplifyQuery(AnalysisManager<Function> &,
6370                                                   Function &);
6371 }
6372