1 //===- InstructionSimplify.cpp - Fold instruction operands ----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements routines for folding instructions into simpler forms 10 // that do not require creating new instructions. This does constant folding 11 // ("add i32 1, 1" -> "2") but can also handle non-constant operands, either 12 // returning a constant ("and i32 %x, 0" -> "0") or an already existing value 13 // ("and i32 %x, %x" -> "%x"). All operands are assumed to have already been 14 // simplified: This is usually true and assuming it simplifies the logic (if 15 // they have not been simplified then results are correct but maybe suboptimal). 16 // 17 //===----------------------------------------------------------------------===// 18 19 #include "llvm/Analysis/InstructionSimplify.h" 20 21 #include "llvm/ADT/STLExtras.h" 22 #include "llvm/ADT/SetVector.h" 23 #include "llvm/ADT/SmallPtrSet.h" 24 #include "llvm/ADT/Statistic.h" 25 #include "llvm/Analysis/AliasAnalysis.h" 26 #include "llvm/Analysis/AssumptionCache.h" 27 #include "llvm/Analysis/CaptureTracking.h" 28 #include "llvm/Analysis/CmpInstAnalysis.h" 29 #include "llvm/Analysis/ConstantFolding.h" 30 #include "llvm/Analysis/LoopAnalysisManager.h" 31 #include "llvm/Analysis/MemoryBuiltins.h" 32 #include "llvm/Analysis/OverflowInstAnalysis.h" 33 #include "llvm/Analysis/ValueTracking.h" 34 #include "llvm/Analysis/VectorUtils.h" 35 #include "llvm/IR/ConstantRange.h" 36 #include "llvm/IR/DataLayout.h" 37 #include "llvm/IR/Dominators.h" 38 #include "llvm/IR/GetElementPtrTypeIterator.h" 39 #include "llvm/IR/GlobalAlias.h" 40 #include "llvm/IR/InstrTypes.h" 41 #include "llvm/IR/Instructions.h" 42 #include "llvm/IR/Operator.h" 43 #include "llvm/IR/PatternMatch.h" 44 #include "llvm/IR/ValueHandle.h" 45 #include "llvm/Support/KnownBits.h" 46 #include <algorithm> 47 using namespace llvm; 48 using namespace llvm::PatternMatch; 49 50 #define DEBUG_TYPE "instsimplify" 51 52 enum { RecursionLimit = 3 }; 53 54 STATISTIC(NumExpand, "Number of expansions"); 55 STATISTIC(NumReassoc, "Number of reassociations"); 56 57 static Value *SimplifyAndInst(Value *, Value *, const SimplifyQuery &, unsigned); 58 static Value *simplifyUnOp(unsigned, Value *, const SimplifyQuery &, unsigned); 59 static Value *simplifyFPUnOp(unsigned, Value *, const FastMathFlags &, 60 const SimplifyQuery &, unsigned); 61 static Value *SimplifyBinOp(unsigned, Value *, Value *, const SimplifyQuery &, 62 unsigned); 63 static Value *SimplifyBinOp(unsigned, Value *, Value *, const FastMathFlags &, 64 const SimplifyQuery &, unsigned); 65 static Value *SimplifyCmpInst(unsigned, Value *, Value *, const SimplifyQuery &, 66 unsigned); 67 static Value *SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS, 68 const SimplifyQuery &Q, unsigned MaxRecurse); 69 static Value *SimplifyOrInst(Value *, Value *, const SimplifyQuery &, unsigned); 70 static Value *SimplifyXorInst(Value *, Value *, const SimplifyQuery &, unsigned); 71 static Value *SimplifyCastInst(unsigned, Value *, Type *, 72 const SimplifyQuery &, unsigned); 73 static Value *SimplifyGEPInst(Type *, ArrayRef<Value *>, bool, 74 const SimplifyQuery &, unsigned); 75 static Value *SimplifySelectInst(Value *, Value *, Value *, 76 const SimplifyQuery &, unsigned); 77 78 static Value *foldSelectWithBinaryOp(Value *Cond, Value *TrueVal, 79 Value *FalseVal) { 80 BinaryOperator::BinaryOps BinOpCode; 81 if (auto *BO = dyn_cast<BinaryOperator>(Cond)) 82 BinOpCode = BO->getOpcode(); 83 else 84 return nullptr; 85 86 CmpInst::Predicate ExpectedPred, Pred1, Pred2; 87 if (BinOpCode == BinaryOperator::Or) { 88 ExpectedPred = ICmpInst::ICMP_NE; 89 } else if (BinOpCode == BinaryOperator::And) { 90 ExpectedPred = ICmpInst::ICMP_EQ; 91 } else 92 return nullptr; 93 94 // %A = icmp eq %TV, %FV 95 // %B = icmp eq %X, %Y (and one of these is a select operand) 96 // %C = and %A, %B 97 // %D = select %C, %TV, %FV 98 // --> 99 // %FV 100 101 // %A = icmp ne %TV, %FV 102 // %B = icmp ne %X, %Y (and one of these is a select operand) 103 // %C = or %A, %B 104 // %D = select %C, %TV, %FV 105 // --> 106 // %TV 107 Value *X, *Y; 108 if (!match(Cond, m_c_BinOp(m_c_ICmp(Pred1, m_Specific(TrueVal), 109 m_Specific(FalseVal)), 110 m_ICmp(Pred2, m_Value(X), m_Value(Y)))) || 111 Pred1 != Pred2 || Pred1 != ExpectedPred) 112 return nullptr; 113 114 if (X == TrueVal || X == FalseVal || Y == TrueVal || Y == FalseVal) 115 return BinOpCode == BinaryOperator::Or ? TrueVal : FalseVal; 116 117 return nullptr; 118 } 119 120 /// For a boolean type or a vector of boolean type, return false or a vector 121 /// with every element false. 122 static Constant *getFalse(Type *Ty) { 123 return ConstantInt::getFalse(Ty); 124 } 125 126 /// For a boolean type or a vector of boolean type, return true or a vector 127 /// with every element true. 128 static Constant *getTrue(Type *Ty) { 129 return ConstantInt::getTrue(Ty); 130 } 131 132 /// isSameCompare - Is V equivalent to the comparison "LHS Pred RHS"? 133 static bool isSameCompare(Value *V, CmpInst::Predicate Pred, Value *LHS, 134 Value *RHS) { 135 CmpInst *Cmp = dyn_cast<CmpInst>(V); 136 if (!Cmp) 137 return false; 138 CmpInst::Predicate CPred = Cmp->getPredicate(); 139 Value *CLHS = Cmp->getOperand(0), *CRHS = Cmp->getOperand(1); 140 if (CPred == Pred && CLHS == LHS && CRHS == RHS) 141 return true; 142 return CPred == CmpInst::getSwappedPredicate(Pred) && CLHS == RHS && 143 CRHS == LHS; 144 } 145 146 /// Simplify comparison with true or false branch of select: 147 /// %sel = select i1 %cond, i32 %tv, i32 %fv 148 /// %cmp = icmp sle i32 %sel, %rhs 149 /// Compose new comparison by substituting %sel with either %tv or %fv 150 /// and see if it simplifies. 151 static Value *simplifyCmpSelCase(CmpInst::Predicate Pred, Value *LHS, 152 Value *RHS, Value *Cond, 153 const SimplifyQuery &Q, unsigned MaxRecurse, 154 Constant *TrueOrFalse) { 155 Value *SimplifiedCmp = SimplifyCmpInst(Pred, LHS, RHS, Q, MaxRecurse); 156 if (SimplifiedCmp == Cond) { 157 // %cmp simplified to the select condition (%cond). 158 return TrueOrFalse; 159 } else if (!SimplifiedCmp && isSameCompare(Cond, Pred, LHS, RHS)) { 160 // It didn't simplify. However, if composed comparison is equivalent 161 // to the select condition (%cond) then we can replace it. 162 return TrueOrFalse; 163 } 164 return SimplifiedCmp; 165 } 166 167 /// Simplify comparison with true branch of select 168 static Value *simplifyCmpSelTrueCase(CmpInst::Predicate Pred, Value *LHS, 169 Value *RHS, Value *Cond, 170 const SimplifyQuery &Q, 171 unsigned MaxRecurse) { 172 return simplifyCmpSelCase(Pred, LHS, RHS, Cond, Q, MaxRecurse, 173 getTrue(Cond->getType())); 174 } 175 176 /// Simplify comparison with false branch of select 177 static Value *simplifyCmpSelFalseCase(CmpInst::Predicate Pred, Value *LHS, 178 Value *RHS, Value *Cond, 179 const SimplifyQuery &Q, 180 unsigned MaxRecurse) { 181 return simplifyCmpSelCase(Pred, LHS, RHS, Cond, Q, MaxRecurse, 182 getFalse(Cond->getType())); 183 } 184 185 /// We know comparison with both branches of select can be simplified, but they 186 /// are not equal. This routine handles some logical simplifications. 187 static Value *handleOtherCmpSelSimplifications(Value *TCmp, Value *FCmp, 188 Value *Cond, 189 const SimplifyQuery &Q, 190 unsigned MaxRecurse) { 191 // If the false value simplified to false, then the result of the compare 192 // is equal to "Cond && TCmp". This also catches the case when the false 193 // value simplified to false and the true value to true, returning "Cond". 194 // Folding select to and/or isn't poison-safe in general; impliesPoison 195 // checks whether folding it does not convert a well-defined value into 196 // poison. 197 if (match(FCmp, m_Zero()) && impliesPoison(TCmp, Cond)) 198 if (Value *V = SimplifyAndInst(Cond, TCmp, Q, MaxRecurse)) 199 return V; 200 // If the true value simplified to true, then the result of the compare 201 // is equal to "Cond || FCmp". 202 if (match(TCmp, m_One()) && impliesPoison(FCmp, Cond)) 203 if (Value *V = SimplifyOrInst(Cond, FCmp, Q, MaxRecurse)) 204 return V; 205 // Finally, if the false value simplified to true and the true value to 206 // false, then the result of the compare is equal to "!Cond". 207 if (match(FCmp, m_One()) && match(TCmp, m_Zero())) 208 if (Value *V = SimplifyXorInst( 209 Cond, Constant::getAllOnesValue(Cond->getType()), Q, MaxRecurse)) 210 return V; 211 return nullptr; 212 } 213 214 /// Does the given value dominate the specified phi node? 215 static bool valueDominatesPHI(Value *V, PHINode *P, const DominatorTree *DT) { 216 Instruction *I = dyn_cast<Instruction>(V); 217 if (!I) 218 // Arguments and constants dominate all instructions. 219 return true; 220 221 // If we are processing instructions (and/or basic blocks) that have not been 222 // fully added to a function, the parent nodes may still be null. Simply 223 // return the conservative answer in these cases. 224 if (!I->getParent() || !P->getParent() || !I->getFunction()) 225 return false; 226 227 // If we have a DominatorTree then do a precise test. 228 if (DT) 229 return DT->dominates(I, P); 230 231 // Otherwise, if the instruction is in the entry block and is not an invoke, 232 // then it obviously dominates all phi nodes. 233 if (I->getParent()->isEntryBlock() && !isa<InvokeInst>(I) && 234 !isa<CallBrInst>(I)) 235 return true; 236 237 return false; 238 } 239 240 /// Try to simplify a binary operator of form "V op OtherOp" where V is 241 /// "(B0 opex B1)" by distributing 'op' across 'opex' as 242 /// "(B0 op OtherOp) opex (B1 op OtherOp)". 243 static Value *expandBinOp(Instruction::BinaryOps Opcode, Value *V, 244 Value *OtherOp, Instruction::BinaryOps OpcodeToExpand, 245 const SimplifyQuery &Q, unsigned MaxRecurse) { 246 auto *B = dyn_cast<BinaryOperator>(V); 247 if (!B || B->getOpcode() != OpcodeToExpand) 248 return nullptr; 249 Value *B0 = B->getOperand(0), *B1 = B->getOperand(1); 250 Value *L = SimplifyBinOp(Opcode, B0, OtherOp, Q.getWithoutUndef(), 251 MaxRecurse); 252 if (!L) 253 return nullptr; 254 Value *R = SimplifyBinOp(Opcode, B1, OtherOp, Q.getWithoutUndef(), 255 MaxRecurse); 256 if (!R) 257 return nullptr; 258 259 // Does the expanded pair of binops simplify to the existing binop? 260 if ((L == B0 && R == B1) || 261 (Instruction::isCommutative(OpcodeToExpand) && L == B1 && R == B0)) { 262 ++NumExpand; 263 return B; 264 } 265 266 // Otherwise, return "L op' R" if it simplifies. 267 Value *S = SimplifyBinOp(OpcodeToExpand, L, R, Q, MaxRecurse); 268 if (!S) 269 return nullptr; 270 271 ++NumExpand; 272 return S; 273 } 274 275 /// Try to simplify binops of form "A op (B op' C)" or the commuted variant by 276 /// distributing op over op'. 277 static Value *expandCommutativeBinOp(Instruction::BinaryOps Opcode, 278 Value *L, Value *R, 279 Instruction::BinaryOps OpcodeToExpand, 280 const SimplifyQuery &Q, 281 unsigned MaxRecurse) { 282 // Recursion is always used, so bail out at once if we already hit the limit. 283 if (!MaxRecurse--) 284 return nullptr; 285 286 if (Value *V = expandBinOp(Opcode, L, R, OpcodeToExpand, Q, MaxRecurse)) 287 return V; 288 if (Value *V = expandBinOp(Opcode, R, L, OpcodeToExpand, Q, MaxRecurse)) 289 return V; 290 return nullptr; 291 } 292 293 /// Generic simplifications for associative binary operations. 294 /// Returns the simpler value, or null if none was found. 295 static Value *SimplifyAssociativeBinOp(Instruction::BinaryOps Opcode, 296 Value *LHS, Value *RHS, 297 const SimplifyQuery &Q, 298 unsigned MaxRecurse) { 299 assert(Instruction::isAssociative(Opcode) && "Not an associative operation!"); 300 301 // Recursion is always used, so bail out at once if we already hit the limit. 302 if (!MaxRecurse--) 303 return nullptr; 304 305 BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS); 306 BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS); 307 308 // Transform: "(A op B) op C" ==> "A op (B op C)" if it simplifies completely. 309 if (Op0 && Op0->getOpcode() == Opcode) { 310 Value *A = Op0->getOperand(0); 311 Value *B = Op0->getOperand(1); 312 Value *C = RHS; 313 314 // Does "B op C" simplify? 315 if (Value *V = SimplifyBinOp(Opcode, B, C, Q, MaxRecurse)) { 316 // It does! Return "A op V" if it simplifies or is already available. 317 // If V equals B then "A op V" is just the LHS. 318 if (V == B) return LHS; 319 // Otherwise return "A op V" if it simplifies. 320 if (Value *W = SimplifyBinOp(Opcode, A, V, Q, MaxRecurse)) { 321 ++NumReassoc; 322 return W; 323 } 324 } 325 } 326 327 // Transform: "A op (B op C)" ==> "(A op B) op C" if it simplifies completely. 328 if (Op1 && Op1->getOpcode() == Opcode) { 329 Value *A = LHS; 330 Value *B = Op1->getOperand(0); 331 Value *C = Op1->getOperand(1); 332 333 // Does "A op B" simplify? 334 if (Value *V = SimplifyBinOp(Opcode, A, B, Q, MaxRecurse)) { 335 // It does! Return "V op C" if it simplifies or is already available. 336 // If V equals B then "V op C" is just the RHS. 337 if (V == B) return RHS; 338 // Otherwise return "V op C" if it simplifies. 339 if (Value *W = SimplifyBinOp(Opcode, V, C, Q, MaxRecurse)) { 340 ++NumReassoc; 341 return W; 342 } 343 } 344 } 345 346 // The remaining transforms require commutativity as well as associativity. 347 if (!Instruction::isCommutative(Opcode)) 348 return nullptr; 349 350 // Transform: "(A op B) op C" ==> "(C op A) op B" if it simplifies completely. 351 if (Op0 && Op0->getOpcode() == Opcode) { 352 Value *A = Op0->getOperand(0); 353 Value *B = Op0->getOperand(1); 354 Value *C = RHS; 355 356 // Does "C op A" simplify? 357 if (Value *V = SimplifyBinOp(Opcode, C, A, Q, MaxRecurse)) { 358 // It does! Return "V op B" if it simplifies or is already available. 359 // If V equals A then "V op B" is just the LHS. 360 if (V == A) return LHS; 361 // Otherwise return "V op B" if it simplifies. 362 if (Value *W = SimplifyBinOp(Opcode, V, B, Q, MaxRecurse)) { 363 ++NumReassoc; 364 return W; 365 } 366 } 367 } 368 369 // Transform: "A op (B op C)" ==> "B op (C op A)" if it simplifies completely. 370 if (Op1 && Op1->getOpcode() == Opcode) { 371 Value *A = LHS; 372 Value *B = Op1->getOperand(0); 373 Value *C = Op1->getOperand(1); 374 375 // Does "C op A" simplify? 376 if (Value *V = SimplifyBinOp(Opcode, C, A, Q, MaxRecurse)) { 377 // It does! Return "B op V" if it simplifies or is already available. 378 // If V equals C then "B op V" is just the RHS. 379 if (V == C) return RHS; 380 // Otherwise return "B op V" if it simplifies. 381 if (Value *W = SimplifyBinOp(Opcode, B, V, Q, MaxRecurse)) { 382 ++NumReassoc; 383 return W; 384 } 385 } 386 } 387 388 return nullptr; 389 } 390 391 /// In the case of a binary operation with a select instruction as an operand, 392 /// try to simplify the binop by seeing whether evaluating it on both branches 393 /// of the select results in the same value. Returns the common value if so, 394 /// otherwise returns null. 395 static Value *ThreadBinOpOverSelect(Instruction::BinaryOps Opcode, Value *LHS, 396 Value *RHS, const SimplifyQuery &Q, 397 unsigned MaxRecurse) { 398 // Recursion is always used, so bail out at once if we already hit the limit. 399 if (!MaxRecurse--) 400 return nullptr; 401 402 SelectInst *SI; 403 if (isa<SelectInst>(LHS)) { 404 SI = cast<SelectInst>(LHS); 405 } else { 406 assert(isa<SelectInst>(RHS) && "No select instruction operand!"); 407 SI = cast<SelectInst>(RHS); 408 } 409 410 // Evaluate the BinOp on the true and false branches of the select. 411 Value *TV; 412 Value *FV; 413 if (SI == LHS) { 414 TV = SimplifyBinOp(Opcode, SI->getTrueValue(), RHS, Q, MaxRecurse); 415 FV = SimplifyBinOp(Opcode, SI->getFalseValue(), RHS, Q, MaxRecurse); 416 } else { 417 TV = SimplifyBinOp(Opcode, LHS, SI->getTrueValue(), Q, MaxRecurse); 418 FV = SimplifyBinOp(Opcode, LHS, SI->getFalseValue(), Q, MaxRecurse); 419 } 420 421 // If they simplified to the same value, then return the common value. 422 // If they both failed to simplify then return null. 423 if (TV == FV) 424 return TV; 425 426 // If one branch simplified to undef, return the other one. 427 if (TV && Q.isUndefValue(TV)) 428 return FV; 429 if (FV && Q.isUndefValue(FV)) 430 return TV; 431 432 // If applying the operation did not change the true and false select values, 433 // then the result of the binop is the select itself. 434 if (TV == SI->getTrueValue() && FV == SI->getFalseValue()) 435 return SI; 436 437 // If one branch simplified and the other did not, and the simplified 438 // value is equal to the unsimplified one, return the simplified value. 439 // For example, select (cond, X, X & Z) & Z -> X & Z. 440 if ((FV && !TV) || (TV && !FV)) { 441 // Check that the simplified value has the form "X op Y" where "op" is the 442 // same as the original operation. 443 Instruction *Simplified = dyn_cast<Instruction>(FV ? FV : TV); 444 if (Simplified && Simplified->getOpcode() == unsigned(Opcode)) { 445 // The value that didn't simplify is "UnsimplifiedLHS op UnsimplifiedRHS". 446 // We already know that "op" is the same as for the simplified value. See 447 // if the operands match too. If so, return the simplified value. 448 Value *UnsimplifiedBranch = FV ? SI->getTrueValue() : SI->getFalseValue(); 449 Value *UnsimplifiedLHS = SI == LHS ? UnsimplifiedBranch : LHS; 450 Value *UnsimplifiedRHS = SI == LHS ? RHS : UnsimplifiedBranch; 451 if (Simplified->getOperand(0) == UnsimplifiedLHS && 452 Simplified->getOperand(1) == UnsimplifiedRHS) 453 return Simplified; 454 if (Simplified->isCommutative() && 455 Simplified->getOperand(1) == UnsimplifiedLHS && 456 Simplified->getOperand(0) == UnsimplifiedRHS) 457 return Simplified; 458 } 459 } 460 461 return nullptr; 462 } 463 464 /// In the case of a comparison with a select instruction, try to simplify the 465 /// comparison by seeing whether both branches of the select result in the same 466 /// value. Returns the common value if so, otherwise returns null. 467 /// For example, if we have: 468 /// %tmp = select i1 %cmp, i32 1, i32 2 469 /// %cmp1 = icmp sle i32 %tmp, 3 470 /// We can simplify %cmp1 to true, because both branches of select are 471 /// less than 3. We compose new comparison by substituting %tmp with both 472 /// branches of select and see if it can be simplified. 473 static Value *ThreadCmpOverSelect(CmpInst::Predicate Pred, Value *LHS, 474 Value *RHS, const SimplifyQuery &Q, 475 unsigned MaxRecurse) { 476 // Recursion is always used, so bail out at once if we already hit the limit. 477 if (!MaxRecurse--) 478 return nullptr; 479 480 // Make sure the select is on the LHS. 481 if (!isa<SelectInst>(LHS)) { 482 std::swap(LHS, RHS); 483 Pred = CmpInst::getSwappedPredicate(Pred); 484 } 485 assert(isa<SelectInst>(LHS) && "Not comparing with a select instruction!"); 486 SelectInst *SI = cast<SelectInst>(LHS); 487 Value *Cond = SI->getCondition(); 488 Value *TV = SI->getTrueValue(); 489 Value *FV = SI->getFalseValue(); 490 491 // Now that we have "cmp select(Cond, TV, FV), RHS", analyse it. 492 // Does "cmp TV, RHS" simplify? 493 Value *TCmp = simplifyCmpSelTrueCase(Pred, TV, RHS, Cond, Q, MaxRecurse); 494 if (!TCmp) 495 return nullptr; 496 497 // Does "cmp FV, RHS" simplify? 498 Value *FCmp = simplifyCmpSelFalseCase(Pred, FV, RHS, Cond, Q, MaxRecurse); 499 if (!FCmp) 500 return nullptr; 501 502 // If both sides simplified to the same value, then use it as the result of 503 // the original comparison. 504 if (TCmp == FCmp) 505 return TCmp; 506 507 // The remaining cases only make sense if the select condition has the same 508 // type as the result of the comparison, so bail out if this is not so. 509 if (Cond->getType()->isVectorTy() == RHS->getType()->isVectorTy()) 510 return handleOtherCmpSelSimplifications(TCmp, FCmp, Cond, Q, MaxRecurse); 511 512 return nullptr; 513 } 514 515 /// In the case of a binary operation with an operand that is a PHI instruction, 516 /// try to simplify the binop by seeing whether evaluating it on the incoming 517 /// phi values yields the same result for every value. If so returns the common 518 /// value, otherwise returns null. 519 static Value *ThreadBinOpOverPHI(Instruction::BinaryOps Opcode, Value *LHS, 520 Value *RHS, const SimplifyQuery &Q, 521 unsigned MaxRecurse) { 522 // Recursion is always used, so bail out at once if we already hit the limit. 523 if (!MaxRecurse--) 524 return nullptr; 525 526 PHINode *PI; 527 if (isa<PHINode>(LHS)) { 528 PI = cast<PHINode>(LHS); 529 // Bail out if RHS and the phi may be mutually interdependent due to a loop. 530 if (!valueDominatesPHI(RHS, PI, Q.DT)) 531 return nullptr; 532 } else { 533 assert(isa<PHINode>(RHS) && "No PHI instruction operand!"); 534 PI = cast<PHINode>(RHS); 535 // Bail out if LHS and the phi may be mutually interdependent due to a loop. 536 if (!valueDominatesPHI(LHS, PI, Q.DT)) 537 return nullptr; 538 } 539 540 // Evaluate the BinOp on the incoming phi values. 541 Value *CommonValue = nullptr; 542 for (Value *Incoming : PI->incoming_values()) { 543 // If the incoming value is the phi node itself, it can safely be skipped. 544 if (Incoming == PI) continue; 545 Value *V = PI == LHS ? 546 SimplifyBinOp(Opcode, Incoming, RHS, Q, MaxRecurse) : 547 SimplifyBinOp(Opcode, LHS, Incoming, Q, MaxRecurse); 548 // If the operation failed to simplify, or simplified to a different value 549 // to previously, then give up. 550 if (!V || (CommonValue && V != CommonValue)) 551 return nullptr; 552 CommonValue = V; 553 } 554 555 return CommonValue; 556 } 557 558 /// In the case of a comparison with a PHI instruction, try to simplify the 559 /// comparison by seeing whether comparing with all of the incoming phi values 560 /// yields the same result every time. If so returns the common result, 561 /// otherwise returns null. 562 static Value *ThreadCmpOverPHI(CmpInst::Predicate Pred, Value *LHS, Value *RHS, 563 const SimplifyQuery &Q, unsigned MaxRecurse) { 564 // Recursion is always used, so bail out at once if we already hit the limit. 565 if (!MaxRecurse--) 566 return nullptr; 567 568 // Make sure the phi is on the LHS. 569 if (!isa<PHINode>(LHS)) { 570 std::swap(LHS, RHS); 571 Pred = CmpInst::getSwappedPredicate(Pred); 572 } 573 assert(isa<PHINode>(LHS) && "Not comparing with a phi instruction!"); 574 PHINode *PI = cast<PHINode>(LHS); 575 576 // Bail out if RHS and the phi may be mutually interdependent due to a loop. 577 if (!valueDominatesPHI(RHS, PI, Q.DT)) 578 return nullptr; 579 580 // Evaluate the BinOp on the incoming phi values. 581 Value *CommonValue = nullptr; 582 for (unsigned u = 0, e = PI->getNumIncomingValues(); u < e; ++u) { 583 Value *Incoming = PI->getIncomingValue(u); 584 Instruction *InTI = PI->getIncomingBlock(u)->getTerminator(); 585 // If the incoming value is the phi node itself, it can safely be skipped. 586 if (Incoming == PI) continue; 587 // Change the context instruction to the "edge" that flows into the phi. 588 // This is important because that is where incoming is actually "evaluated" 589 // even though it is used later somewhere else. 590 Value *V = SimplifyCmpInst(Pred, Incoming, RHS, Q.getWithInstruction(InTI), 591 MaxRecurse); 592 // If the operation failed to simplify, or simplified to a different value 593 // to previously, then give up. 594 if (!V || (CommonValue && V != CommonValue)) 595 return nullptr; 596 CommonValue = V; 597 } 598 599 return CommonValue; 600 } 601 602 static Constant *foldOrCommuteConstant(Instruction::BinaryOps Opcode, 603 Value *&Op0, Value *&Op1, 604 const SimplifyQuery &Q) { 605 if (auto *CLHS = dyn_cast<Constant>(Op0)) { 606 if (auto *CRHS = dyn_cast<Constant>(Op1)) 607 return ConstantFoldBinaryOpOperands(Opcode, CLHS, CRHS, Q.DL); 608 609 // Canonicalize the constant to the RHS if this is a commutative operation. 610 if (Instruction::isCommutative(Opcode)) 611 std::swap(Op0, Op1); 612 } 613 return nullptr; 614 } 615 616 /// Given operands for an Add, see if we can fold the result. 617 /// If not, this returns null. 618 static Value *SimplifyAddInst(Value *Op0, Value *Op1, bool IsNSW, bool IsNUW, 619 const SimplifyQuery &Q, unsigned MaxRecurse) { 620 if (Constant *C = foldOrCommuteConstant(Instruction::Add, Op0, Op1, Q)) 621 return C; 622 623 // X + undef -> undef 624 if (Q.isUndefValue(Op1)) 625 return Op1; 626 627 // X + 0 -> X 628 if (match(Op1, m_Zero())) 629 return Op0; 630 631 // If two operands are negative, return 0. 632 if (isKnownNegation(Op0, Op1)) 633 return Constant::getNullValue(Op0->getType()); 634 635 // X + (Y - X) -> Y 636 // (Y - X) + X -> Y 637 // Eg: X + -X -> 0 638 Value *Y = nullptr; 639 if (match(Op1, m_Sub(m_Value(Y), m_Specific(Op0))) || 640 match(Op0, m_Sub(m_Value(Y), m_Specific(Op1)))) 641 return Y; 642 643 // X + ~X -> -1 since ~X = -X-1 644 Type *Ty = Op0->getType(); 645 if (match(Op0, m_Not(m_Specific(Op1))) || 646 match(Op1, m_Not(m_Specific(Op0)))) 647 return Constant::getAllOnesValue(Ty); 648 649 // add nsw/nuw (xor Y, signmask), signmask --> Y 650 // The no-wrapping add guarantees that the top bit will be set by the add. 651 // Therefore, the xor must be clearing the already set sign bit of Y. 652 if ((IsNSW || IsNUW) && match(Op1, m_SignMask()) && 653 match(Op0, m_Xor(m_Value(Y), m_SignMask()))) 654 return Y; 655 656 // add nuw %x, -1 -> -1, because %x can only be 0. 657 if (IsNUW && match(Op1, m_AllOnes())) 658 return Op1; // Which is -1. 659 660 /// i1 add -> xor. 661 if (MaxRecurse && Op0->getType()->isIntOrIntVectorTy(1)) 662 if (Value *V = SimplifyXorInst(Op0, Op1, Q, MaxRecurse-1)) 663 return V; 664 665 // Try some generic simplifications for associative operations. 666 if (Value *V = SimplifyAssociativeBinOp(Instruction::Add, Op0, Op1, Q, 667 MaxRecurse)) 668 return V; 669 670 // Threading Add over selects and phi nodes is pointless, so don't bother. 671 // Threading over the select in "A + select(cond, B, C)" means evaluating 672 // "A+B" and "A+C" and seeing if they are equal; but they are equal if and 673 // only if B and C are equal. If B and C are equal then (since we assume 674 // that operands have already been simplified) "select(cond, B, C)" should 675 // have been simplified to the common value of B and C already. Analysing 676 // "A+B" and "A+C" thus gains nothing, but costs compile time. Similarly 677 // for threading over phi nodes. 678 679 return nullptr; 680 } 681 682 Value *llvm::SimplifyAddInst(Value *Op0, Value *Op1, bool IsNSW, bool IsNUW, 683 const SimplifyQuery &Query) { 684 return ::SimplifyAddInst(Op0, Op1, IsNSW, IsNUW, Query, RecursionLimit); 685 } 686 687 /// Compute the base pointer and cumulative constant offsets for V. 688 /// 689 /// This strips all constant offsets off of V, leaving it the base pointer, and 690 /// accumulates the total constant offset applied in the returned constant. It 691 /// returns 0 if V is not a pointer, and returns the constant '0' if there are 692 /// no constant offsets applied. 693 /// 694 /// This is very similar to GetPointerBaseWithConstantOffset except it doesn't 695 /// follow non-inbounds geps. This allows it to remain usable for icmp ult/etc. 696 /// folding. 697 static Constant *stripAndComputeConstantOffsets(const DataLayout &DL, Value *&V, 698 bool AllowNonInbounds = false) { 699 assert(V->getType()->isPtrOrPtrVectorTy()); 700 701 APInt Offset = APInt::getZero(DL.getIndexTypeSizeInBits(V->getType())); 702 703 V = V->stripAndAccumulateConstantOffsets(DL, Offset, AllowNonInbounds); 704 // As that strip may trace through `addrspacecast`, need to sext or trunc 705 // the offset calculated. 706 Type *IntIdxTy = DL.getIndexType(V->getType())->getScalarType(); 707 Offset = Offset.sextOrTrunc(IntIdxTy->getIntegerBitWidth()); 708 709 Constant *OffsetIntPtr = ConstantInt::get(IntIdxTy, Offset); 710 if (VectorType *VecTy = dyn_cast<VectorType>(V->getType())) 711 return ConstantVector::getSplat(VecTy->getElementCount(), OffsetIntPtr); 712 return OffsetIntPtr; 713 } 714 715 /// Compute the constant difference between two pointer values. 716 /// If the difference is not a constant, returns zero. 717 static Constant *computePointerDifference(const DataLayout &DL, Value *LHS, 718 Value *RHS) { 719 Constant *LHSOffset = stripAndComputeConstantOffsets(DL, LHS); 720 Constant *RHSOffset = stripAndComputeConstantOffsets(DL, RHS); 721 722 // If LHS and RHS are not related via constant offsets to the same base 723 // value, there is nothing we can do here. 724 if (LHS != RHS) 725 return nullptr; 726 727 // Otherwise, the difference of LHS - RHS can be computed as: 728 // LHS - RHS 729 // = (LHSOffset + Base) - (RHSOffset + Base) 730 // = LHSOffset - RHSOffset 731 return ConstantExpr::getSub(LHSOffset, RHSOffset); 732 } 733 734 /// Given operands for a Sub, see if we can fold the result. 735 /// If not, this returns null. 736 static Value *SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, 737 const SimplifyQuery &Q, unsigned MaxRecurse) { 738 if (Constant *C = foldOrCommuteConstant(Instruction::Sub, Op0, Op1, Q)) 739 return C; 740 741 // X - poison -> poison 742 // poison - X -> poison 743 if (isa<PoisonValue>(Op0) || isa<PoisonValue>(Op1)) 744 return PoisonValue::get(Op0->getType()); 745 746 // X - undef -> undef 747 // undef - X -> undef 748 if (Q.isUndefValue(Op0) || Q.isUndefValue(Op1)) 749 return UndefValue::get(Op0->getType()); 750 751 // X - 0 -> X 752 if (match(Op1, m_Zero())) 753 return Op0; 754 755 // X - X -> 0 756 if (Op0 == Op1) 757 return Constant::getNullValue(Op0->getType()); 758 759 // Is this a negation? 760 if (match(Op0, m_Zero())) { 761 // 0 - X -> 0 if the sub is NUW. 762 if (isNUW) 763 return Constant::getNullValue(Op0->getType()); 764 765 KnownBits Known = computeKnownBits(Op1, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 766 if (Known.Zero.isMaxSignedValue()) { 767 // Op1 is either 0 or the minimum signed value. If the sub is NSW, then 768 // Op1 must be 0 because negating the minimum signed value is undefined. 769 if (isNSW) 770 return Constant::getNullValue(Op0->getType()); 771 772 // 0 - X -> X if X is 0 or the minimum signed value. 773 return Op1; 774 } 775 } 776 777 // (X + Y) - Z -> X + (Y - Z) or Y + (X - Z) if everything simplifies. 778 // For example, (X + Y) - Y -> X; (Y + X) - Y -> X 779 Value *X = nullptr, *Y = nullptr, *Z = Op1; 780 if (MaxRecurse && match(Op0, m_Add(m_Value(X), m_Value(Y)))) { // (X + Y) - Z 781 // See if "V === Y - Z" simplifies. 782 if (Value *V = SimplifyBinOp(Instruction::Sub, Y, Z, Q, MaxRecurse-1)) 783 // It does! Now see if "X + V" simplifies. 784 if (Value *W = SimplifyBinOp(Instruction::Add, X, V, Q, MaxRecurse-1)) { 785 // It does, we successfully reassociated! 786 ++NumReassoc; 787 return W; 788 } 789 // See if "V === X - Z" simplifies. 790 if (Value *V = SimplifyBinOp(Instruction::Sub, X, Z, Q, MaxRecurse-1)) 791 // It does! Now see if "Y + V" simplifies. 792 if (Value *W = SimplifyBinOp(Instruction::Add, Y, V, Q, MaxRecurse-1)) { 793 // It does, we successfully reassociated! 794 ++NumReassoc; 795 return W; 796 } 797 } 798 799 // X - (Y + Z) -> (X - Y) - Z or (X - Z) - Y if everything simplifies. 800 // For example, X - (X + 1) -> -1 801 X = Op0; 802 if (MaxRecurse && match(Op1, m_Add(m_Value(Y), m_Value(Z)))) { // X - (Y + Z) 803 // See if "V === X - Y" simplifies. 804 if (Value *V = SimplifyBinOp(Instruction::Sub, X, Y, Q, MaxRecurse-1)) 805 // It does! Now see if "V - Z" simplifies. 806 if (Value *W = SimplifyBinOp(Instruction::Sub, V, Z, Q, MaxRecurse-1)) { 807 // It does, we successfully reassociated! 808 ++NumReassoc; 809 return W; 810 } 811 // See if "V === X - Z" simplifies. 812 if (Value *V = SimplifyBinOp(Instruction::Sub, X, Z, Q, MaxRecurse-1)) 813 // It does! Now see if "V - Y" simplifies. 814 if (Value *W = SimplifyBinOp(Instruction::Sub, V, Y, Q, MaxRecurse-1)) { 815 // It does, we successfully reassociated! 816 ++NumReassoc; 817 return W; 818 } 819 } 820 821 // Z - (X - Y) -> (Z - X) + Y if everything simplifies. 822 // For example, X - (X - Y) -> Y. 823 Z = Op0; 824 if (MaxRecurse && match(Op1, m_Sub(m_Value(X), m_Value(Y)))) // Z - (X - Y) 825 // See if "V === Z - X" simplifies. 826 if (Value *V = SimplifyBinOp(Instruction::Sub, Z, X, Q, MaxRecurse-1)) 827 // It does! Now see if "V + Y" simplifies. 828 if (Value *W = SimplifyBinOp(Instruction::Add, V, Y, Q, MaxRecurse-1)) { 829 // It does, we successfully reassociated! 830 ++NumReassoc; 831 return W; 832 } 833 834 // trunc(X) - trunc(Y) -> trunc(X - Y) if everything simplifies. 835 if (MaxRecurse && match(Op0, m_Trunc(m_Value(X))) && 836 match(Op1, m_Trunc(m_Value(Y)))) 837 if (X->getType() == Y->getType()) 838 // See if "V === X - Y" simplifies. 839 if (Value *V = SimplifyBinOp(Instruction::Sub, X, Y, Q, MaxRecurse-1)) 840 // It does! Now see if "trunc V" simplifies. 841 if (Value *W = SimplifyCastInst(Instruction::Trunc, V, Op0->getType(), 842 Q, MaxRecurse - 1)) 843 // It does, return the simplified "trunc V". 844 return W; 845 846 // Variations on GEP(base, I, ...) - GEP(base, i, ...) -> GEP(null, I-i, ...). 847 if (match(Op0, m_PtrToInt(m_Value(X))) && 848 match(Op1, m_PtrToInt(m_Value(Y)))) 849 if (Constant *Result = computePointerDifference(Q.DL, X, Y)) 850 return ConstantExpr::getIntegerCast(Result, Op0->getType(), true); 851 852 // i1 sub -> xor. 853 if (MaxRecurse && Op0->getType()->isIntOrIntVectorTy(1)) 854 if (Value *V = SimplifyXorInst(Op0, Op1, Q, MaxRecurse-1)) 855 return V; 856 857 // Threading Sub over selects and phi nodes is pointless, so don't bother. 858 // Threading over the select in "A - select(cond, B, C)" means evaluating 859 // "A-B" and "A-C" and seeing if they are equal; but they are equal if and 860 // only if B and C are equal. If B and C are equal then (since we assume 861 // that operands have already been simplified) "select(cond, B, C)" should 862 // have been simplified to the common value of B and C already. Analysing 863 // "A-B" and "A-C" thus gains nothing, but costs compile time. Similarly 864 // for threading over phi nodes. 865 866 return nullptr; 867 } 868 869 Value *llvm::SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, 870 const SimplifyQuery &Q) { 871 return ::SimplifySubInst(Op0, Op1, isNSW, isNUW, Q, RecursionLimit); 872 } 873 874 /// Given operands for a Mul, see if we can fold the result. 875 /// If not, this returns null. 876 static Value *SimplifyMulInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 877 unsigned MaxRecurse) { 878 if (Constant *C = foldOrCommuteConstant(Instruction::Mul, Op0, Op1, Q)) 879 return C; 880 881 // X * poison -> poison 882 if (isa<PoisonValue>(Op1)) 883 return Op1; 884 885 // X * undef -> 0 886 // X * 0 -> 0 887 if (Q.isUndefValue(Op1) || match(Op1, m_Zero())) 888 return Constant::getNullValue(Op0->getType()); 889 890 // X * 1 -> X 891 if (match(Op1, m_One())) 892 return Op0; 893 894 // (X / Y) * Y -> X if the division is exact. 895 Value *X = nullptr; 896 if (Q.IIQ.UseInstrInfo && 897 (match(Op0, 898 m_Exact(m_IDiv(m_Value(X), m_Specific(Op1)))) || // (X / Y) * Y 899 match(Op1, m_Exact(m_IDiv(m_Value(X), m_Specific(Op0)))))) // Y * (X / Y) 900 return X; 901 902 // i1 mul -> and. 903 if (MaxRecurse && Op0->getType()->isIntOrIntVectorTy(1)) 904 if (Value *V = SimplifyAndInst(Op0, Op1, Q, MaxRecurse-1)) 905 return V; 906 907 // Try some generic simplifications for associative operations. 908 if (Value *V = SimplifyAssociativeBinOp(Instruction::Mul, Op0, Op1, Q, 909 MaxRecurse)) 910 return V; 911 912 // Mul distributes over Add. Try some generic simplifications based on this. 913 if (Value *V = expandCommutativeBinOp(Instruction::Mul, Op0, Op1, 914 Instruction::Add, Q, MaxRecurse)) 915 return V; 916 917 // If the operation is with the result of a select instruction, check whether 918 // operating on either branch of the select always yields the same value. 919 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 920 if (Value *V = ThreadBinOpOverSelect(Instruction::Mul, Op0, Op1, Q, 921 MaxRecurse)) 922 return V; 923 924 // If the operation is with the result of a phi instruction, check whether 925 // operating on all incoming values of the phi always yields the same value. 926 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 927 if (Value *V = ThreadBinOpOverPHI(Instruction::Mul, Op0, Op1, Q, 928 MaxRecurse)) 929 return V; 930 931 return nullptr; 932 } 933 934 Value *llvm::SimplifyMulInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 935 return ::SimplifyMulInst(Op0, Op1, Q, RecursionLimit); 936 } 937 938 /// Check for common or similar folds of integer division or integer remainder. 939 /// This applies to all 4 opcodes (sdiv/udiv/srem/urem). 940 static Value *simplifyDivRem(Instruction::BinaryOps Opcode, Value *Op0, 941 Value *Op1, const SimplifyQuery &Q) { 942 bool IsDiv = (Opcode == Instruction::SDiv || Opcode == Instruction::UDiv); 943 bool IsSigned = (Opcode == Instruction::SDiv || Opcode == Instruction::SRem); 944 945 Type *Ty = Op0->getType(); 946 947 // X / undef -> poison 948 // X % undef -> poison 949 if (Q.isUndefValue(Op1)) 950 return PoisonValue::get(Ty); 951 952 // X / 0 -> poison 953 // X % 0 -> poison 954 // We don't need to preserve faults! 955 if (match(Op1, m_Zero())) 956 return PoisonValue::get(Ty); 957 958 // If any element of a constant divisor fixed width vector is zero or undef 959 // the behavior is undefined and we can fold the whole op to poison. 960 auto *Op1C = dyn_cast<Constant>(Op1); 961 auto *VTy = dyn_cast<FixedVectorType>(Ty); 962 if (Op1C && VTy) { 963 unsigned NumElts = VTy->getNumElements(); 964 for (unsigned i = 0; i != NumElts; ++i) { 965 Constant *Elt = Op1C->getAggregateElement(i); 966 if (Elt && (Elt->isNullValue() || Q.isUndefValue(Elt))) 967 return PoisonValue::get(Ty); 968 } 969 } 970 971 // poison / X -> poison 972 // poison % X -> poison 973 if (isa<PoisonValue>(Op0)) 974 return Op0; 975 976 // undef / X -> 0 977 // undef % X -> 0 978 if (Q.isUndefValue(Op0)) 979 return Constant::getNullValue(Ty); 980 981 // 0 / X -> 0 982 // 0 % X -> 0 983 if (match(Op0, m_Zero())) 984 return Constant::getNullValue(Op0->getType()); 985 986 // X / X -> 1 987 // X % X -> 0 988 if (Op0 == Op1) 989 return IsDiv ? ConstantInt::get(Ty, 1) : Constant::getNullValue(Ty); 990 991 // X / 1 -> X 992 // X % 1 -> 0 993 // If this is a boolean op (single-bit element type), we can't have 994 // division-by-zero or remainder-by-zero, so assume the divisor is 1. 995 // Similarly, if we're zero-extending a boolean divisor, then assume it's a 1. 996 Value *X; 997 if (match(Op1, m_One()) || Ty->isIntOrIntVectorTy(1) || 998 (match(Op1, m_ZExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1))) 999 return IsDiv ? Op0 : Constant::getNullValue(Ty); 1000 1001 // If X * Y does not overflow, then: 1002 // X * Y / Y -> X 1003 // X * Y % Y -> 0 1004 if (match(Op0, m_c_Mul(m_Value(X), m_Specific(Op1)))) { 1005 auto *Mul = cast<OverflowingBinaryOperator>(Op0); 1006 // The multiplication can't overflow if it is defined not to, or if 1007 // X == A / Y for some A. 1008 if ((IsSigned && Q.IIQ.hasNoSignedWrap(Mul)) || 1009 (!IsSigned && Q.IIQ.hasNoUnsignedWrap(Mul)) || 1010 (IsSigned && match(X, m_SDiv(m_Value(), m_Specific(Op1)))) || 1011 (!IsSigned && match(X, m_UDiv(m_Value(), m_Specific(Op1))))) { 1012 return IsDiv ? X : Constant::getNullValue(Op0->getType()); 1013 } 1014 } 1015 1016 return nullptr; 1017 } 1018 1019 /// Given a predicate and two operands, return true if the comparison is true. 1020 /// This is a helper for div/rem simplification where we return some other value 1021 /// when we can prove a relationship between the operands. 1022 static bool isICmpTrue(ICmpInst::Predicate Pred, Value *LHS, Value *RHS, 1023 const SimplifyQuery &Q, unsigned MaxRecurse) { 1024 Value *V = SimplifyICmpInst(Pred, LHS, RHS, Q, MaxRecurse); 1025 Constant *C = dyn_cast_or_null<Constant>(V); 1026 return (C && C->isAllOnesValue()); 1027 } 1028 1029 /// Return true if we can simplify X / Y to 0. Remainder can adapt that answer 1030 /// to simplify X % Y to X. 1031 static bool isDivZero(Value *X, Value *Y, const SimplifyQuery &Q, 1032 unsigned MaxRecurse, bool IsSigned) { 1033 // Recursion is always used, so bail out at once if we already hit the limit. 1034 if (!MaxRecurse--) 1035 return false; 1036 1037 if (IsSigned) { 1038 // |X| / |Y| --> 0 1039 // 1040 // We require that 1 operand is a simple constant. That could be extended to 1041 // 2 variables if we computed the sign bit for each. 1042 // 1043 // Make sure that a constant is not the minimum signed value because taking 1044 // the abs() of that is undefined. 1045 Type *Ty = X->getType(); 1046 const APInt *C; 1047 if (match(X, m_APInt(C)) && !C->isMinSignedValue()) { 1048 // Is the variable divisor magnitude always greater than the constant 1049 // dividend magnitude? 1050 // |Y| > |C| --> Y < -abs(C) or Y > abs(C) 1051 Constant *PosDividendC = ConstantInt::get(Ty, C->abs()); 1052 Constant *NegDividendC = ConstantInt::get(Ty, -C->abs()); 1053 if (isICmpTrue(CmpInst::ICMP_SLT, Y, NegDividendC, Q, MaxRecurse) || 1054 isICmpTrue(CmpInst::ICMP_SGT, Y, PosDividendC, Q, MaxRecurse)) 1055 return true; 1056 } 1057 if (match(Y, m_APInt(C))) { 1058 // Special-case: we can't take the abs() of a minimum signed value. If 1059 // that's the divisor, then all we have to do is prove that the dividend 1060 // is also not the minimum signed value. 1061 if (C->isMinSignedValue()) 1062 return isICmpTrue(CmpInst::ICMP_NE, X, Y, Q, MaxRecurse); 1063 1064 // Is the variable dividend magnitude always less than the constant 1065 // divisor magnitude? 1066 // |X| < |C| --> X > -abs(C) and X < abs(C) 1067 Constant *PosDivisorC = ConstantInt::get(Ty, C->abs()); 1068 Constant *NegDivisorC = ConstantInt::get(Ty, -C->abs()); 1069 if (isICmpTrue(CmpInst::ICMP_SGT, X, NegDivisorC, Q, MaxRecurse) && 1070 isICmpTrue(CmpInst::ICMP_SLT, X, PosDivisorC, Q, MaxRecurse)) 1071 return true; 1072 } 1073 return false; 1074 } 1075 1076 // IsSigned == false. 1077 // Is the dividend unsigned less than the divisor? 1078 return isICmpTrue(ICmpInst::ICMP_ULT, X, Y, Q, MaxRecurse); 1079 } 1080 1081 /// These are simplifications common to SDiv and UDiv. 1082 static Value *simplifyDiv(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1, 1083 const SimplifyQuery &Q, unsigned MaxRecurse) { 1084 if (Constant *C = foldOrCommuteConstant(Opcode, Op0, Op1, Q)) 1085 return C; 1086 1087 if (Value *V = simplifyDivRem(Opcode, Op0, Op1, Q)) 1088 return V; 1089 1090 bool IsSigned = Opcode == Instruction::SDiv; 1091 1092 // (X rem Y) / Y -> 0 1093 if ((IsSigned && match(Op0, m_SRem(m_Value(), m_Specific(Op1)))) || 1094 (!IsSigned && match(Op0, m_URem(m_Value(), m_Specific(Op1))))) 1095 return Constant::getNullValue(Op0->getType()); 1096 1097 // (X /u C1) /u C2 -> 0 if C1 * C2 overflow 1098 ConstantInt *C1, *C2; 1099 if (!IsSigned && match(Op0, m_UDiv(m_Value(), m_ConstantInt(C1))) && 1100 match(Op1, m_ConstantInt(C2))) { 1101 bool Overflow; 1102 (void)C1->getValue().umul_ov(C2->getValue(), Overflow); 1103 if (Overflow) 1104 return Constant::getNullValue(Op0->getType()); 1105 } 1106 1107 // If the operation is with the result of a select instruction, check whether 1108 // operating on either branch of the select always yields the same value. 1109 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 1110 if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse)) 1111 return V; 1112 1113 // If the operation is with the result of a phi instruction, check whether 1114 // operating on all incoming values of the phi always yields the same value. 1115 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 1116 if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse)) 1117 return V; 1118 1119 if (isDivZero(Op0, Op1, Q, MaxRecurse, IsSigned)) 1120 return Constant::getNullValue(Op0->getType()); 1121 1122 return nullptr; 1123 } 1124 1125 /// These are simplifications common to SRem and URem. 1126 static Value *simplifyRem(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1, 1127 const SimplifyQuery &Q, unsigned MaxRecurse) { 1128 if (Constant *C = foldOrCommuteConstant(Opcode, Op0, Op1, Q)) 1129 return C; 1130 1131 if (Value *V = simplifyDivRem(Opcode, Op0, Op1, Q)) 1132 return V; 1133 1134 // (X % Y) % Y -> X % Y 1135 if ((Opcode == Instruction::SRem && 1136 match(Op0, m_SRem(m_Value(), m_Specific(Op1)))) || 1137 (Opcode == Instruction::URem && 1138 match(Op0, m_URem(m_Value(), m_Specific(Op1))))) 1139 return Op0; 1140 1141 // (X << Y) % X -> 0 1142 if (Q.IIQ.UseInstrInfo && 1143 ((Opcode == Instruction::SRem && 1144 match(Op0, m_NSWShl(m_Specific(Op1), m_Value()))) || 1145 (Opcode == Instruction::URem && 1146 match(Op0, m_NUWShl(m_Specific(Op1), m_Value()))))) 1147 return Constant::getNullValue(Op0->getType()); 1148 1149 // If the operation is with the result of a select instruction, check whether 1150 // operating on either branch of the select always yields the same value. 1151 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 1152 if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse)) 1153 return V; 1154 1155 // If the operation is with the result of a phi instruction, check whether 1156 // operating on all incoming values of the phi always yields the same value. 1157 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 1158 if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse)) 1159 return V; 1160 1161 // If X / Y == 0, then X % Y == X. 1162 if (isDivZero(Op0, Op1, Q, MaxRecurse, Opcode == Instruction::SRem)) 1163 return Op0; 1164 1165 return nullptr; 1166 } 1167 1168 /// Given operands for an SDiv, see if we can fold the result. 1169 /// If not, this returns null. 1170 static Value *SimplifySDivInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 1171 unsigned MaxRecurse) { 1172 // If two operands are negated and no signed overflow, return -1. 1173 if (isKnownNegation(Op0, Op1, /*NeedNSW=*/true)) 1174 return Constant::getAllOnesValue(Op0->getType()); 1175 1176 return simplifyDiv(Instruction::SDiv, Op0, Op1, Q, MaxRecurse); 1177 } 1178 1179 Value *llvm::SimplifySDivInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 1180 return ::SimplifySDivInst(Op0, Op1, Q, RecursionLimit); 1181 } 1182 1183 /// Given operands for a UDiv, see if we can fold the result. 1184 /// If not, this returns null. 1185 static Value *SimplifyUDivInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 1186 unsigned MaxRecurse) { 1187 return simplifyDiv(Instruction::UDiv, Op0, Op1, Q, MaxRecurse); 1188 } 1189 1190 Value *llvm::SimplifyUDivInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 1191 return ::SimplifyUDivInst(Op0, Op1, Q, RecursionLimit); 1192 } 1193 1194 /// Given operands for an SRem, see if we can fold the result. 1195 /// If not, this returns null. 1196 static Value *SimplifySRemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 1197 unsigned MaxRecurse) { 1198 // If the divisor is 0, the result is undefined, so assume the divisor is -1. 1199 // srem Op0, (sext i1 X) --> srem Op0, -1 --> 0 1200 Value *X; 1201 if (match(Op1, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)) 1202 return ConstantInt::getNullValue(Op0->getType()); 1203 1204 // If the two operands are negated, return 0. 1205 if (isKnownNegation(Op0, Op1)) 1206 return ConstantInt::getNullValue(Op0->getType()); 1207 1208 return simplifyRem(Instruction::SRem, Op0, Op1, Q, MaxRecurse); 1209 } 1210 1211 Value *llvm::SimplifySRemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 1212 return ::SimplifySRemInst(Op0, Op1, Q, RecursionLimit); 1213 } 1214 1215 /// Given operands for a URem, see if we can fold the result. 1216 /// If not, this returns null. 1217 static Value *SimplifyURemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 1218 unsigned MaxRecurse) { 1219 return simplifyRem(Instruction::URem, Op0, Op1, Q, MaxRecurse); 1220 } 1221 1222 Value *llvm::SimplifyURemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 1223 return ::SimplifyURemInst(Op0, Op1, Q, RecursionLimit); 1224 } 1225 1226 /// Returns true if a shift by \c Amount always yields poison. 1227 static bool isPoisonShift(Value *Amount, const SimplifyQuery &Q) { 1228 Constant *C = dyn_cast<Constant>(Amount); 1229 if (!C) 1230 return false; 1231 1232 // X shift by undef -> poison because it may shift by the bitwidth. 1233 if (Q.isUndefValue(C)) 1234 return true; 1235 1236 // Shifting by the bitwidth or more is undefined. 1237 if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1238 if (CI->getValue().uge(CI->getType()->getScalarSizeInBits())) 1239 return true; 1240 1241 // If all lanes of a vector shift are undefined the whole shift is. 1242 if (isa<ConstantVector>(C) || isa<ConstantDataVector>(C)) { 1243 for (unsigned I = 0, 1244 E = cast<FixedVectorType>(C->getType())->getNumElements(); 1245 I != E; ++I) 1246 if (!isPoisonShift(C->getAggregateElement(I), Q)) 1247 return false; 1248 return true; 1249 } 1250 1251 return false; 1252 } 1253 1254 /// Given operands for an Shl, LShr or AShr, see if we can fold the result. 1255 /// If not, this returns null. 1256 static Value *SimplifyShift(Instruction::BinaryOps Opcode, Value *Op0, 1257 Value *Op1, bool IsNSW, const SimplifyQuery &Q, 1258 unsigned MaxRecurse) { 1259 if (Constant *C = foldOrCommuteConstant(Opcode, Op0, Op1, Q)) 1260 return C; 1261 1262 // poison shift by X -> poison 1263 if (isa<PoisonValue>(Op0)) 1264 return Op0; 1265 1266 // 0 shift by X -> 0 1267 if (match(Op0, m_Zero())) 1268 return Constant::getNullValue(Op0->getType()); 1269 1270 // X shift by 0 -> X 1271 // Shift-by-sign-extended bool must be shift-by-0 because shift-by-all-ones 1272 // would be poison. 1273 Value *X; 1274 if (match(Op1, m_Zero()) || 1275 (match(Op1, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1))) 1276 return Op0; 1277 1278 // Fold undefined shifts. 1279 if (isPoisonShift(Op1, Q)) 1280 return PoisonValue::get(Op0->getType()); 1281 1282 // If the operation is with the result of a select instruction, check whether 1283 // operating on either branch of the select always yields the same value. 1284 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 1285 if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse)) 1286 return V; 1287 1288 // If the operation is with the result of a phi instruction, check whether 1289 // operating on all incoming values of the phi always yields the same value. 1290 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 1291 if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse)) 1292 return V; 1293 1294 // If any bits in the shift amount make that value greater than or equal to 1295 // the number of bits in the type, the shift is undefined. 1296 KnownBits KnownAmt = computeKnownBits(Op1, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 1297 if (KnownAmt.getMinValue().uge(KnownAmt.getBitWidth())) 1298 return PoisonValue::get(Op0->getType()); 1299 1300 // If all valid bits in the shift amount are known zero, the first operand is 1301 // unchanged. 1302 unsigned NumValidShiftBits = Log2_32_Ceil(KnownAmt.getBitWidth()); 1303 if (KnownAmt.countMinTrailingZeros() >= NumValidShiftBits) 1304 return Op0; 1305 1306 // Check for nsw shl leading to a poison value. 1307 if (IsNSW) { 1308 assert(Opcode == Instruction::Shl && "Expected shl for nsw instruction"); 1309 KnownBits KnownVal = computeKnownBits(Op0, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 1310 KnownBits KnownShl = KnownBits::shl(KnownVal, KnownAmt); 1311 1312 if (KnownVal.Zero.isSignBitSet()) 1313 KnownShl.Zero.setSignBit(); 1314 if (KnownVal.One.isSignBitSet()) 1315 KnownShl.One.setSignBit(); 1316 1317 if (KnownShl.hasConflict()) 1318 return PoisonValue::get(Op0->getType()); 1319 } 1320 1321 return nullptr; 1322 } 1323 1324 /// Given operands for an Shl, LShr or AShr, see if we can 1325 /// fold the result. If not, this returns null. 1326 static Value *SimplifyRightShift(Instruction::BinaryOps Opcode, Value *Op0, 1327 Value *Op1, bool isExact, const SimplifyQuery &Q, 1328 unsigned MaxRecurse) { 1329 if (Value *V = 1330 SimplifyShift(Opcode, Op0, Op1, /*IsNSW*/ false, Q, MaxRecurse)) 1331 return V; 1332 1333 // X >> X -> 0 1334 if (Op0 == Op1) 1335 return Constant::getNullValue(Op0->getType()); 1336 1337 // undef >> X -> 0 1338 // undef >> X -> undef (if it's exact) 1339 if (Q.isUndefValue(Op0)) 1340 return isExact ? Op0 : Constant::getNullValue(Op0->getType()); 1341 1342 // The low bit cannot be shifted out of an exact shift if it is set. 1343 if (isExact) { 1344 KnownBits Op0Known = computeKnownBits(Op0, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT); 1345 if (Op0Known.One[0]) 1346 return Op0; 1347 } 1348 1349 return nullptr; 1350 } 1351 1352 /// Given operands for an Shl, see if we can fold the result. 1353 /// If not, this returns null. 1354 static Value *SimplifyShlInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, 1355 const SimplifyQuery &Q, unsigned MaxRecurse) { 1356 if (Value *V = 1357 SimplifyShift(Instruction::Shl, Op0, Op1, isNSW, Q, MaxRecurse)) 1358 return V; 1359 1360 // undef << X -> 0 1361 // undef << X -> undef if (if it's NSW/NUW) 1362 if (Q.isUndefValue(Op0)) 1363 return isNSW || isNUW ? Op0 : Constant::getNullValue(Op0->getType()); 1364 1365 // (X >> A) << A -> X 1366 Value *X; 1367 if (Q.IIQ.UseInstrInfo && 1368 match(Op0, m_Exact(m_Shr(m_Value(X), m_Specific(Op1))))) 1369 return X; 1370 1371 // shl nuw i8 C, %x -> C iff C has sign bit set. 1372 if (isNUW && match(Op0, m_Negative())) 1373 return Op0; 1374 // NOTE: could use computeKnownBits() / LazyValueInfo, 1375 // but the cost-benefit analysis suggests it isn't worth it. 1376 1377 return nullptr; 1378 } 1379 1380 Value *llvm::SimplifyShlInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, 1381 const SimplifyQuery &Q) { 1382 return ::SimplifyShlInst(Op0, Op1, isNSW, isNUW, Q, RecursionLimit); 1383 } 1384 1385 /// Given operands for an LShr, see if we can fold the result. 1386 /// If not, this returns null. 1387 static Value *SimplifyLShrInst(Value *Op0, Value *Op1, bool isExact, 1388 const SimplifyQuery &Q, unsigned MaxRecurse) { 1389 if (Value *V = SimplifyRightShift(Instruction::LShr, Op0, Op1, isExact, Q, 1390 MaxRecurse)) 1391 return V; 1392 1393 // (X << A) >> A -> X 1394 Value *X; 1395 if (match(Op0, m_NUWShl(m_Value(X), m_Specific(Op1)))) 1396 return X; 1397 1398 // ((X << A) | Y) >> A -> X if effective width of Y is not larger than A. 1399 // We can return X as we do in the above case since OR alters no bits in X. 1400 // SimplifyDemandedBits in InstCombine can do more general optimization for 1401 // bit manipulation. This pattern aims to provide opportunities for other 1402 // optimizers by supporting a simple but common case in InstSimplify. 1403 Value *Y; 1404 const APInt *ShRAmt, *ShLAmt; 1405 if (match(Op1, m_APInt(ShRAmt)) && 1406 match(Op0, m_c_Or(m_NUWShl(m_Value(X), m_APInt(ShLAmt)), m_Value(Y))) && 1407 *ShRAmt == *ShLAmt) { 1408 const KnownBits YKnown = computeKnownBits(Y, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 1409 const unsigned EffWidthY = YKnown.countMaxActiveBits(); 1410 if (ShRAmt->uge(EffWidthY)) 1411 return X; 1412 } 1413 1414 return nullptr; 1415 } 1416 1417 Value *llvm::SimplifyLShrInst(Value *Op0, Value *Op1, bool isExact, 1418 const SimplifyQuery &Q) { 1419 return ::SimplifyLShrInst(Op0, Op1, isExact, Q, RecursionLimit); 1420 } 1421 1422 /// Given operands for an AShr, see if we can fold the result. 1423 /// If not, this returns null. 1424 static Value *SimplifyAShrInst(Value *Op0, Value *Op1, bool isExact, 1425 const SimplifyQuery &Q, unsigned MaxRecurse) { 1426 if (Value *V = SimplifyRightShift(Instruction::AShr, Op0, Op1, isExact, Q, 1427 MaxRecurse)) 1428 return V; 1429 1430 // -1 >>a X --> -1 1431 // (-1 << X) a>> X --> -1 1432 // Do not return Op0 because it may contain undef elements if it's a vector. 1433 if (match(Op0, m_AllOnes()) || 1434 match(Op0, m_Shl(m_AllOnes(), m_Specific(Op1)))) 1435 return Constant::getAllOnesValue(Op0->getType()); 1436 1437 // (X << A) >> A -> X 1438 Value *X; 1439 if (Q.IIQ.UseInstrInfo && match(Op0, m_NSWShl(m_Value(X), m_Specific(Op1)))) 1440 return X; 1441 1442 // Arithmetic shifting an all-sign-bit value is a no-op. 1443 unsigned NumSignBits = ComputeNumSignBits(Op0, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 1444 if (NumSignBits == Op0->getType()->getScalarSizeInBits()) 1445 return Op0; 1446 1447 return nullptr; 1448 } 1449 1450 Value *llvm::SimplifyAShrInst(Value *Op0, Value *Op1, bool isExact, 1451 const SimplifyQuery &Q) { 1452 return ::SimplifyAShrInst(Op0, Op1, isExact, Q, RecursionLimit); 1453 } 1454 1455 /// Commuted variants are assumed to be handled by calling this function again 1456 /// with the parameters swapped. 1457 static Value *simplifyUnsignedRangeCheck(ICmpInst *ZeroICmp, 1458 ICmpInst *UnsignedICmp, bool IsAnd, 1459 const SimplifyQuery &Q) { 1460 Value *X, *Y; 1461 1462 ICmpInst::Predicate EqPred; 1463 if (!match(ZeroICmp, m_ICmp(EqPred, m_Value(Y), m_Zero())) || 1464 !ICmpInst::isEquality(EqPred)) 1465 return nullptr; 1466 1467 ICmpInst::Predicate UnsignedPred; 1468 1469 Value *A, *B; 1470 // Y = (A - B); 1471 if (match(Y, m_Sub(m_Value(A), m_Value(B)))) { 1472 if (match(UnsignedICmp, 1473 m_c_ICmp(UnsignedPred, m_Specific(A), m_Specific(B))) && 1474 ICmpInst::isUnsigned(UnsignedPred)) { 1475 // A >=/<= B || (A - B) != 0 <--> true 1476 if ((UnsignedPred == ICmpInst::ICMP_UGE || 1477 UnsignedPred == ICmpInst::ICMP_ULE) && 1478 EqPred == ICmpInst::ICMP_NE && !IsAnd) 1479 return ConstantInt::getTrue(UnsignedICmp->getType()); 1480 // A </> B && (A - B) == 0 <--> false 1481 if ((UnsignedPred == ICmpInst::ICMP_ULT || 1482 UnsignedPred == ICmpInst::ICMP_UGT) && 1483 EqPred == ICmpInst::ICMP_EQ && IsAnd) 1484 return ConstantInt::getFalse(UnsignedICmp->getType()); 1485 1486 // A </> B && (A - B) != 0 <--> A </> B 1487 // A </> B || (A - B) != 0 <--> (A - B) != 0 1488 if (EqPred == ICmpInst::ICMP_NE && (UnsignedPred == ICmpInst::ICMP_ULT || 1489 UnsignedPred == ICmpInst::ICMP_UGT)) 1490 return IsAnd ? UnsignedICmp : ZeroICmp; 1491 1492 // A <=/>= B && (A - B) == 0 <--> (A - B) == 0 1493 // A <=/>= B || (A - B) == 0 <--> A <=/>= B 1494 if (EqPred == ICmpInst::ICMP_EQ && (UnsignedPred == ICmpInst::ICMP_ULE || 1495 UnsignedPred == ICmpInst::ICMP_UGE)) 1496 return IsAnd ? ZeroICmp : UnsignedICmp; 1497 } 1498 1499 // Given Y = (A - B) 1500 // Y >= A && Y != 0 --> Y >= A iff B != 0 1501 // Y < A || Y == 0 --> Y < A iff B != 0 1502 if (match(UnsignedICmp, 1503 m_c_ICmp(UnsignedPred, m_Specific(Y), m_Specific(A)))) { 1504 if (UnsignedPred == ICmpInst::ICMP_UGE && IsAnd && 1505 EqPred == ICmpInst::ICMP_NE && 1506 isKnownNonZero(B, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT)) 1507 return UnsignedICmp; 1508 if (UnsignedPred == ICmpInst::ICMP_ULT && !IsAnd && 1509 EqPred == ICmpInst::ICMP_EQ && 1510 isKnownNonZero(B, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT)) 1511 return UnsignedICmp; 1512 } 1513 } 1514 1515 if (match(UnsignedICmp, m_ICmp(UnsignedPred, m_Value(X), m_Specific(Y))) && 1516 ICmpInst::isUnsigned(UnsignedPred)) 1517 ; 1518 else if (match(UnsignedICmp, 1519 m_ICmp(UnsignedPred, m_Specific(Y), m_Value(X))) && 1520 ICmpInst::isUnsigned(UnsignedPred)) 1521 UnsignedPred = ICmpInst::getSwappedPredicate(UnsignedPred); 1522 else 1523 return nullptr; 1524 1525 // X > Y && Y == 0 --> Y == 0 iff X != 0 1526 // X > Y || Y == 0 --> X > Y iff X != 0 1527 if (UnsignedPred == ICmpInst::ICMP_UGT && EqPred == ICmpInst::ICMP_EQ && 1528 isKnownNonZero(X, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT)) 1529 return IsAnd ? ZeroICmp : UnsignedICmp; 1530 1531 // X <= Y && Y != 0 --> X <= Y iff X != 0 1532 // X <= Y || Y != 0 --> Y != 0 iff X != 0 1533 if (UnsignedPred == ICmpInst::ICMP_ULE && EqPred == ICmpInst::ICMP_NE && 1534 isKnownNonZero(X, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT)) 1535 return IsAnd ? UnsignedICmp : ZeroICmp; 1536 1537 // The transforms below here are expected to be handled more generally with 1538 // simplifyAndOrOfICmpsWithLimitConst() or in InstCombine's 1539 // foldAndOrOfICmpsWithConstEq(). If we are looking to trim optimizer overlap, 1540 // these are candidates for removal. 1541 1542 // X < Y && Y != 0 --> X < Y 1543 // X < Y || Y != 0 --> Y != 0 1544 if (UnsignedPred == ICmpInst::ICMP_ULT && EqPred == ICmpInst::ICMP_NE) 1545 return IsAnd ? UnsignedICmp : ZeroICmp; 1546 1547 // X >= Y && Y == 0 --> Y == 0 1548 // X >= Y || Y == 0 --> X >= Y 1549 if (UnsignedPred == ICmpInst::ICMP_UGE && EqPred == ICmpInst::ICMP_EQ) 1550 return IsAnd ? ZeroICmp : UnsignedICmp; 1551 1552 // X < Y && Y == 0 --> false 1553 if (UnsignedPred == ICmpInst::ICMP_ULT && EqPred == ICmpInst::ICMP_EQ && 1554 IsAnd) 1555 return getFalse(UnsignedICmp->getType()); 1556 1557 // X >= Y || Y != 0 --> true 1558 if (UnsignedPred == ICmpInst::ICMP_UGE && EqPred == ICmpInst::ICMP_NE && 1559 !IsAnd) 1560 return getTrue(UnsignedICmp->getType()); 1561 1562 return nullptr; 1563 } 1564 1565 /// Commuted variants are assumed to be handled by calling this function again 1566 /// with the parameters swapped. 1567 static Value *simplifyAndOfICmpsWithSameOperands(ICmpInst *Op0, ICmpInst *Op1) { 1568 ICmpInst::Predicate Pred0, Pred1; 1569 Value *A ,*B; 1570 if (!match(Op0, m_ICmp(Pred0, m_Value(A), m_Value(B))) || 1571 !match(Op1, m_ICmp(Pred1, m_Specific(A), m_Specific(B)))) 1572 return nullptr; 1573 1574 // We have (icmp Pred0, A, B) & (icmp Pred1, A, B). 1575 // If Op1 is always implied true by Op0, then Op0 is a subset of Op1, and we 1576 // can eliminate Op1 from this 'and'. 1577 if (ICmpInst::isImpliedTrueByMatchingCmp(Pred0, Pred1)) 1578 return Op0; 1579 1580 // Check for any combination of predicates that are guaranteed to be disjoint. 1581 if ((Pred0 == ICmpInst::getInversePredicate(Pred1)) || 1582 (Pred0 == ICmpInst::ICMP_EQ && ICmpInst::isFalseWhenEqual(Pred1)) || 1583 (Pred0 == ICmpInst::ICMP_SLT && Pred1 == ICmpInst::ICMP_SGT) || 1584 (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_UGT)) 1585 return getFalse(Op0->getType()); 1586 1587 return nullptr; 1588 } 1589 1590 /// Commuted variants are assumed to be handled by calling this function again 1591 /// with the parameters swapped. 1592 static Value *simplifyOrOfICmpsWithSameOperands(ICmpInst *Op0, ICmpInst *Op1) { 1593 ICmpInst::Predicate Pred0, Pred1; 1594 Value *A ,*B; 1595 if (!match(Op0, m_ICmp(Pred0, m_Value(A), m_Value(B))) || 1596 !match(Op1, m_ICmp(Pred1, m_Specific(A), m_Specific(B)))) 1597 return nullptr; 1598 1599 // We have (icmp Pred0, A, B) | (icmp Pred1, A, B). 1600 // If Op1 is always implied true by Op0, then Op0 is a subset of Op1, and we 1601 // can eliminate Op0 from this 'or'. 1602 if (ICmpInst::isImpliedTrueByMatchingCmp(Pred0, Pred1)) 1603 return Op1; 1604 1605 // Check for any combination of predicates that cover the entire range of 1606 // possibilities. 1607 if ((Pred0 == ICmpInst::getInversePredicate(Pred1)) || 1608 (Pred0 == ICmpInst::ICMP_NE && ICmpInst::isTrueWhenEqual(Pred1)) || 1609 (Pred0 == ICmpInst::ICMP_SLE && Pred1 == ICmpInst::ICMP_SGE) || 1610 (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_UGE)) 1611 return getTrue(Op0->getType()); 1612 1613 return nullptr; 1614 } 1615 1616 /// Test if a pair of compares with a shared operand and 2 constants has an 1617 /// empty set intersection, full set union, or if one compare is a superset of 1618 /// the other. 1619 static Value *simplifyAndOrOfICmpsWithConstants(ICmpInst *Cmp0, ICmpInst *Cmp1, 1620 bool IsAnd) { 1621 // Look for this pattern: {and/or} (icmp X, C0), (icmp X, C1)). 1622 if (Cmp0->getOperand(0) != Cmp1->getOperand(0)) 1623 return nullptr; 1624 1625 const APInt *C0, *C1; 1626 if (!match(Cmp0->getOperand(1), m_APInt(C0)) || 1627 !match(Cmp1->getOperand(1), m_APInt(C1))) 1628 return nullptr; 1629 1630 auto Range0 = ConstantRange::makeExactICmpRegion(Cmp0->getPredicate(), *C0); 1631 auto Range1 = ConstantRange::makeExactICmpRegion(Cmp1->getPredicate(), *C1); 1632 1633 // For and-of-compares, check if the intersection is empty: 1634 // (icmp X, C0) && (icmp X, C1) --> empty set --> false 1635 if (IsAnd && Range0.intersectWith(Range1).isEmptySet()) 1636 return getFalse(Cmp0->getType()); 1637 1638 // For or-of-compares, check if the union is full: 1639 // (icmp X, C0) || (icmp X, C1) --> full set --> true 1640 if (!IsAnd && Range0.unionWith(Range1).isFullSet()) 1641 return getTrue(Cmp0->getType()); 1642 1643 // Is one range a superset of the other? 1644 // If this is and-of-compares, take the smaller set: 1645 // (icmp sgt X, 4) && (icmp sgt X, 42) --> icmp sgt X, 42 1646 // If this is or-of-compares, take the larger set: 1647 // (icmp sgt X, 4) || (icmp sgt X, 42) --> icmp sgt X, 4 1648 if (Range0.contains(Range1)) 1649 return IsAnd ? Cmp1 : Cmp0; 1650 if (Range1.contains(Range0)) 1651 return IsAnd ? Cmp0 : Cmp1; 1652 1653 return nullptr; 1654 } 1655 1656 static Value *simplifyAndOrOfICmpsWithZero(ICmpInst *Cmp0, ICmpInst *Cmp1, 1657 bool IsAnd) { 1658 ICmpInst::Predicate P0 = Cmp0->getPredicate(), P1 = Cmp1->getPredicate(); 1659 if (!match(Cmp0->getOperand(1), m_Zero()) || 1660 !match(Cmp1->getOperand(1), m_Zero()) || P0 != P1) 1661 return nullptr; 1662 1663 if ((IsAnd && P0 != ICmpInst::ICMP_NE) || (!IsAnd && P1 != ICmpInst::ICMP_EQ)) 1664 return nullptr; 1665 1666 // We have either "(X == 0 || Y == 0)" or "(X != 0 && Y != 0)". 1667 Value *X = Cmp0->getOperand(0); 1668 Value *Y = Cmp1->getOperand(0); 1669 1670 // If one of the compares is a masked version of a (not) null check, then 1671 // that compare implies the other, so we eliminate the other. Optionally, look 1672 // through a pointer-to-int cast to match a null check of a pointer type. 1673 1674 // (X == 0) || (([ptrtoint] X & ?) == 0) --> ([ptrtoint] X & ?) == 0 1675 // (X == 0) || ((? & [ptrtoint] X) == 0) --> (? & [ptrtoint] X) == 0 1676 // (X != 0) && (([ptrtoint] X & ?) != 0) --> ([ptrtoint] X & ?) != 0 1677 // (X != 0) && ((? & [ptrtoint] X) != 0) --> (? & [ptrtoint] X) != 0 1678 if (match(Y, m_c_And(m_Specific(X), m_Value())) || 1679 match(Y, m_c_And(m_PtrToInt(m_Specific(X)), m_Value()))) 1680 return Cmp1; 1681 1682 // (([ptrtoint] Y & ?) == 0) || (Y == 0) --> ([ptrtoint] Y & ?) == 0 1683 // ((? & [ptrtoint] Y) == 0) || (Y == 0) --> (? & [ptrtoint] Y) == 0 1684 // (([ptrtoint] Y & ?) != 0) && (Y != 0) --> ([ptrtoint] Y & ?) != 0 1685 // ((? & [ptrtoint] Y) != 0) && (Y != 0) --> (? & [ptrtoint] Y) != 0 1686 if (match(X, m_c_And(m_Specific(Y), m_Value())) || 1687 match(X, m_c_And(m_PtrToInt(m_Specific(Y)), m_Value()))) 1688 return Cmp0; 1689 1690 return nullptr; 1691 } 1692 1693 static Value *simplifyAndOfICmpsWithAdd(ICmpInst *Op0, ICmpInst *Op1, 1694 const InstrInfoQuery &IIQ) { 1695 // (icmp (add V, C0), C1) & (icmp V, C0) 1696 ICmpInst::Predicate Pred0, Pred1; 1697 const APInt *C0, *C1; 1698 Value *V; 1699 if (!match(Op0, m_ICmp(Pred0, m_Add(m_Value(V), m_APInt(C0)), m_APInt(C1)))) 1700 return nullptr; 1701 1702 if (!match(Op1, m_ICmp(Pred1, m_Specific(V), m_Value()))) 1703 return nullptr; 1704 1705 auto *AddInst = cast<OverflowingBinaryOperator>(Op0->getOperand(0)); 1706 if (AddInst->getOperand(1) != Op1->getOperand(1)) 1707 return nullptr; 1708 1709 Type *ITy = Op0->getType(); 1710 bool isNSW = IIQ.hasNoSignedWrap(AddInst); 1711 bool isNUW = IIQ.hasNoUnsignedWrap(AddInst); 1712 1713 const APInt Delta = *C1 - *C0; 1714 if (C0->isStrictlyPositive()) { 1715 if (Delta == 2) { 1716 if (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_SGT) 1717 return getFalse(ITy); 1718 if (Pred0 == ICmpInst::ICMP_SLT && Pred1 == ICmpInst::ICMP_SGT && isNSW) 1719 return getFalse(ITy); 1720 } 1721 if (Delta == 1) { 1722 if (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_SGT) 1723 return getFalse(ITy); 1724 if (Pred0 == ICmpInst::ICMP_SLE && Pred1 == ICmpInst::ICMP_SGT && isNSW) 1725 return getFalse(ITy); 1726 } 1727 } 1728 if (C0->getBoolValue() && isNUW) { 1729 if (Delta == 2) 1730 if (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_UGT) 1731 return getFalse(ITy); 1732 if (Delta == 1) 1733 if (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_UGT) 1734 return getFalse(ITy); 1735 } 1736 1737 return nullptr; 1738 } 1739 1740 /// Try to eliminate compares with signed or unsigned min/max constants. 1741 static Value *simplifyAndOrOfICmpsWithLimitConst(ICmpInst *Cmp0, ICmpInst *Cmp1, 1742 bool IsAnd) { 1743 // Canonicalize an equality compare as Cmp0. 1744 if (Cmp1->isEquality()) 1745 std::swap(Cmp0, Cmp1); 1746 if (!Cmp0->isEquality()) 1747 return nullptr; 1748 1749 // The non-equality compare must include a common operand (X). Canonicalize 1750 // the common operand as operand 0 (the predicate is swapped if the common 1751 // operand was operand 1). 1752 ICmpInst::Predicate Pred0 = Cmp0->getPredicate(); 1753 Value *X = Cmp0->getOperand(0); 1754 ICmpInst::Predicate Pred1; 1755 bool HasNotOp = match(Cmp1, m_c_ICmp(Pred1, m_Not(m_Specific(X)), m_Value())); 1756 if (!HasNotOp && !match(Cmp1, m_c_ICmp(Pred1, m_Specific(X), m_Value()))) 1757 return nullptr; 1758 if (ICmpInst::isEquality(Pred1)) 1759 return nullptr; 1760 1761 // The equality compare must be against a constant. Flip bits if we matched 1762 // a bitwise not. Convert a null pointer constant to an integer zero value. 1763 APInt MinMaxC; 1764 const APInt *C; 1765 if (match(Cmp0->getOperand(1), m_APInt(C))) 1766 MinMaxC = HasNotOp ? ~*C : *C; 1767 else if (isa<ConstantPointerNull>(Cmp0->getOperand(1))) 1768 MinMaxC = APInt::getZero(8); 1769 else 1770 return nullptr; 1771 1772 // DeMorganize if this is 'or': P0 || P1 --> !P0 && !P1. 1773 if (!IsAnd) { 1774 Pred0 = ICmpInst::getInversePredicate(Pred0); 1775 Pred1 = ICmpInst::getInversePredicate(Pred1); 1776 } 1777 1778 // Normalize to unsigned compare and unsigned min/max value. 1779 // Example for 8-bit: -128 + 128 -> 0; 127 + 128 -> 255 1780 if (ICmpInst::isSigned(Pred1)) { 1781 Pred1 = ICmpInst::getUnsignedPredicate(Pred1); 1782 MinMaxC += APInt::getSignedMinValue(MinMaxC.getBitWidth()); 1783 } 1784 1785 // (X != MAX) && (X < Y) --> X < Y 1786 // (X == MAX) || (X >= Y) --> X >= Y 1787 if (MinMaxC.isMaxValue()) 1788 if (Pred0 == ICmpInst::ICMP_NE && Pred1 == ICmpInst::ICMP_ULT) 1789 return Cmp1; 1790 1791 // (X != MIN) && (X > Y) --> X > Y 1792 // (X == MIN) || (X <= Y) --> X <= Y 1793 if (MinMaxC.isMinValue()) 1794 if (Pred0 == ICmpInst::ICMP_NE && Pred1 == ICmpInst::ICMP_UGT) 1795 return Cmp1; 1796 1797 return nullptr; 1798 } 1799 1800 static Value *simplifyAndOfICmps(ICmpInst *Op0, ICmpInst *Op1, 1801 const SimplifyQuery &Q) { 1802 if (Value *X = simplifyUnsignedRangeCheck(Op0, Op1, /*IsAnd=*/true, Q)) 1803 return X; 1804 if (Value *X = simplifyUnsignedRangeCheck(Op1, Op0, /*IsAnd=*/true, Q)) 1805 return X; 1806 1807 if (Value *X = simplifyAndOfICmpsWithSameOperands(Op0, Op1)) 1808 return X; 1809 if (Value *X = simplifyAndOfICmpsWithSameOperands(Op1, Op0)) 1810 return X; 1811 1812 if (Value *X = simplifyAndOrOfICmpsWithConstants(Op0, Op1, true)) 1813 return X; 1814 1815 if (Value *X = simplifyAndOrOfICmpsWithLimitConst(Op0, Op1, true)) 1816 return X; 1817 1818 if (Value *X = simplifyAndOrOfICmpsWithZero(Op0, Op1, true)) 1819 return X; 1820 1821 if (Value *X = simplifyAndOfICmpsWithAdd(Op0, Op1, Q.IIQ)) 1822 return X; 1823 if (Value *X = simplifyAndOfICmpsWithAdd(Op1, Op0, Q.IIQ)) 1824 return X; 1825 1826 return nullptr; 1827 } 1828 1829 static Value *simplifyOrOfICmpsWithAdd(ICmpInst *Op0, ICmpInst *Op1, 1830 const InstrInfoQuery &IIQ) { 1831 // (icmp (add V, C0), C1) | (icmp V, C0) 1832 ICmpInst::Predicate Pred0, Pred1; 1833 const APInt *C0, *C1; 1834 Value *V; 1835 if (!match(Op0, m_ICmp(Pred0, m_Add(m_Value(V), m_APInt(C0)), m_APInt(C1)))) 1836 return nullptr; 1837 1838 if (!match(Op1, m_ICmp(Pred1, m_Specific(V), m_Value()))) 1839 return nullptr; 1840 1841 auto *AddInst = cast<BinaryOperator>(Op0->getOperand(0)); 1842 if (AddInst->getOperand(1) != Op1->getOperand(1)) 1843 return nullptr; 1844 1845 Type *ITy = Op0->getType(); 1846 bool isNSW = IIQ.hasNoSignedWrap(AddInst); 1847 bool isNUW = IIQ.hasNoUnsignedWrap(AddInst); 1848 1849 const APInt Delta = *C1 - *C0; 1850 if (C0->isStrictlyPositive()) { 1851 if (Delta == 2) { 1852 if (Pred0 == ICmpInst::ICMP_UGE && Pred1 == ICmpInst::ICMP_SLE) 1853 return getTrue(ITy); 1854 if (Pred0 == ICmpInst::ICMP_SGE && Pred1 == ICmpInst::ICMP_SLE && isNSW) 1855 return getTrue(ITy); 1856 } 1857 if (Delta == 1) { 1858 if (Pred0 == ICmpInst::ICMP_UGT && Pred1 == ICmpInst::ICMP_SLE) 1859 return getTrue(ITy); 1860 if (Pred0 == ICmpInst::ICMP_SGT && Pred1 == ICmpInst::ICMP_SLE && isNSW) 1861 return getTrue(ITy); 1862 } 1863 } 1864 if (C0->getBoolValue() && isNUW) { 1865 if (Delta == 2) 1866 if (Pred0 == ICmpInst::ICMP_UGE && Pred1 == ICmpInst::ICMP_ULE) 1867 return getTrue(ITy); 1868 if (Delta == 1) 1869 if (Pred0 == ICmpInst::ICMP_UGT && Pred1 == ICmpInst::ICMP_ULE) 1870 return getTrue(ITy); 1871 } 1872 1873 return nullptr; 1874 } 1875 1876 static Value *simplifyOrOfICmps(ICmpInst *Op0, ICmpInst *Op1, 1877 const SimplifyQuery &Q) { 1878 if (Value *X = simplifyUnsignedRangeCheck(Op0, Op1, /*IsAnd=*/false, Q)) 1879 return X; 1880 if (Value *X = simplifyUnsignedRangeCheck(Op1, Op0, /*IsAnd=*/false, Q)) 1881 return X; 1882 1883 if (Value *X = simplifyOrOfICmpsWithSameOperands(Op0, Op1)) 1884 return X; 1885 if (Value *X = simplifyOrOfICmpsWithSameOperands(Op1, Op0)) 1886 return X; 1887 1888 if (Value *X = simplifyAndOrOfICmpsWithConstants(Op0, Op1, false)) 1889 return X; 1890 1891 if (Value *X = simplifyAndOrOfICmpsWithLimitConst(Op0, Op1, false)) 1892 return X; 1893 1894 if (Value *X = simplifyAndOrOfICmpsWithZero(Op0, Op1, false)) 1895 return X; 1896 1897 if (Value *X = simplifyOrOfICmpsWithAdd(Op0, Op1, Q.IIQ)) 1898 return X; 1899 if (Value *X = simplifyOrOfICmpsWithAdd(Op1, Op0, Q.IIQ)) 1900 return X; 1901 1902 return nullptr; 1903 } 1904 1905 static Value *simplifyAndOrOfFCmps(const TargetLibraryInfo *TLI, 1906 FCmpInst *LHS, FCmpInst *RHS, bool IsAnd) { 1907 Value *LHS0 = LHS->getOperand(0), *LHS1 = LHS->getOperand(1); 1908 Value *RHS0 = RHS->getOperand(0), *RHS1 = RHS->getOperand(1); 1909 if (LHS0->getType() != RHS0->getType()) 1910 return nullptr; 1911 1912 FCmpInst::Predicate PredL = LHS->getPredicate(), PredR = RHS->getPredicate(); 1913 if ((PredL == FCmpInst::FCMP_ORD && PredR == FCmpInst::FCMP_ORD && IsAnd) || 1914 (PredL == FCmpInst::FCMP_UNO && PredR == FCmpInst::FCMP_UNO && !IsAnd)) { 1915 // (fcmp ord NNAN, X) & (fcmp ord X, Y) --> fcmp ord X, Y 1916 // (fcmp ord NNAN, X) & (fcmp ord Y, X) --> fcmp ord Y, X 1917 // (fcmp ord X, NNAN) & (fcmp ord X, Y) --> fcmp ord X, Y 1918 // (fcmp ord X, NNAN) & (fcmp ord Y, X) --> fcmp ord Y, X 1919 // (fcmp uno NNAN, X) | (fcmp uno X, Y) --> fcmp uno X, Y 1920 // (fcmp uno NNAN, X) | (fcmp uno Y, X) --> fcmp uno Y, X 1921 // (fcmp uno X, NNAN) | (fcmp uno X, Y) --> fcmp uno X, Y 1922 // (fcmp uno X, NNAN) | (fcmp uno Y, X) --> fcmp uno Y, X 1923 if ((isKnownNeverNaN(LHS0, TLI) && (LHS1 == RHS0 || LHS1 == RHS1)) || 1924 (isKnownNeverNaN(LHS1, TLI) && (LHS0 == RHS0 || LHS0 == RHS1))) 1925 return RHS; 1926 1927 // (fcmp ord X, Y) & (fcmp ord NNAN, X) --> fcmp ord X, Y 1928 // (fcmp ord Y, X) & (fcmp ord NNAN, X) --> fcmp ord Y, X 1929 // (fcmp ord X, Y) & (fcmp ord X, NNAN) --> fcmp ord X, Y 1930 // (fcmp ord Y, X) & (fcmp ord X, NNAN) --> fcmp ord Y, X 1931 // (fcmp uno X, Y) | (fcmp uno NNAN, X) --> fcmp uno X, Y 1932 // (fcmp uno Y, X) | (fcmp uno NNAN, X) --> fcmp uno Y, X 1933 // (fcmp uno X, Y) | (fcmp uno X, NNAN) --> fcmp uno X, Y 1934 // (fcmp uno Y, X) | (fcmp uno X, NNAN) --> fcmp uno Y, X 1935 if ((isKnownNeverNaN(RHS0, TLI) && (RHS1 == LHS0 || RHS1 == LHS1)) || 1936 (isKnownNeverNaN(RHS1, TLI) && (RHS0 == LHS0 || RHS0 == LHS1))) 1937 return LHS; 1938 } 1939 1940 return nullptr; 1941 } 1942 1943 static Value *simplifyAndOrOfCmps(const SimplifyQuery &Q, 1944 Value *Op0, Value *Op1, bool IsAnd) { 1945 // Look through casts of the 'and' operands to find compares. 1946 auto *Cast0 = dyn_cast<CastInst>(Op0); 1947 auto *Cast1 = dyn_cast<CastInst>(Op1); 1948 if (Cast0 && Cast1 && Cast0->getOpcode() == Cast1->getOpcode() && 1949 Cast0->getSrcTy() == Cast1->getSrcTy()) { 1950 Op0 = Cast0->getOperand(0); 1951 Op1 = Cast1->getOperand(0); 1952 } 1953 1954 Value *V = nullptr; 1955 auto *ICmp0 = dyn_cast<ICmpInst>(Op0); 1956 auto *ICmp1 = dyn_cast<ICmpInst>(Op1); 1957 if (ICmp0 && ICmp1) 1958 V = IsAnd ? simplifyAndOfICmps(ICmp0, ICmp1, Q) 1959 : simplifyOrOfICmps(ICmp0, ICmp1, Q); 1960 1961 auto *FCmp0 = dyn_cast<FCmpInst>(Op0); 1962 auto *FCmp1 = dyn_cast<FCmpInst>(Op1); 1963 if (FCmp0 && FCmp1) 1964 V = simplifyAndOrOfFCmps(Q.TLI, FCmp0, FCmp1, IsAnd); 1965 1966 if (!V) 1967 return nullptr; 1968 if (!Cast0) 1969 return V; 1970 1971 // If we looked through casts, we can only handle a constant simplification 1972 // because we are not allowed to create a cast instruction here. 1973 if (auto *C = dyn_cast<Constant>(V)) 1974 return ConstantExpr::getCast(Cast0->getOpcode(), C, Cast0->getType()); 1975 1976 return nullptr; 1977 } 1978 1979 /// Given a bitwise logic op, check if the operands are add/sub with a common 1980 /// source value and inverted constant (identity: C - X -> ~(X + ~C)). 1981 static Value *simplifyLogicOfAddSub(Value *Op0, Value *Op1, 1982 Instruction::BinaryOps Opcode) { 1983 assert(Op0->getType() == Op1->getType() && "Mismatched binop types"); 1984 assert(BinaryOperator::isBitwiseLogicOp(Opcode) && "Expected logic op"); 1985 Value *X; 1986 Constant *C1, *C2; 1987 if ((match(Op0, m_Add(m_Value(X), m_Constant(C1))) && 1988 match(Op1, m_Sub(m_Constant(C2), m_Specific(X)))) || 1989 (match(Op1, m_Add(m_Value(X), m_Constant(C1))) && 1990 match(Op0, m_Sub(m_Constant(C2), m_Specific(X))))) { 1991 if (ConstantExpr::getNot(C1) == C2) { 1992 // (X + C) & (~C - X) --> (X + C) & ~(X + C) --> 0 1993 // (X + C) | (~C - X) --> (X + C) | ~(X + C) --> -1 1994 // (X + C) ^ (~C - X) --> (X + C) ^ ~(X + C) --> -1 1995 Type *Ty = Op0->getType(); 1996 return Opcode == Instruction::And ? ConstantInt::getNullValue(Ty) 1997 : ConstantInt::getAllOnesValue(Ty); 1998 } 1999 } 2000 return nullptr; 2001 } 2002 2003 /// Given operands for an And, see if we can fold the result. 2004 /// If not, this returns null. 2005 static Value *SimplifyAndInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 2006 unsigned MaxRecurse) { 2007 if (Constant *C = foldOrCommuteConstant(Instruction::And, Op0, Op1, Q)) 2008 return C; 2009 2010 // X & poison -> poison 2011 if (isa<PoisonValue>(Op1)) 2012 return Op1; 2013 2014 // X & undef -> 0 2015 if (Q.isUndefValue(Op1)) 2016 return Constant::getNullValue(Op0->getType()); 2017 2018 // X & X = X 2019 if (Op0 == Op1) 2020 return Op0; 2021 2022 // X & 0 = 0 2023 if (match(Op1, m_Zero())) 2024 return Constant::getNullValue(Op0->getType()); 2025 2026 // X & -1 = X 2027 if (match(Op1, m_AllOnes())) 2028 return Op0; 2029 2030 // A & ~A = ~A & A = 0 2031 if (match(Op0, m_Not(m_Specific(Op1))) || 2032 match(Op1, m_Not(m_Specific(Op0)))) 2033 return Constant::getNullValue(Op0->getType()); 2034 2035 // (A | ?) & A = A 2036 if (match(Op0, m_c_Or(m_Specific(Op1), m_Value()))) 2037 return Op1; 2038 2039 // A & (A | ?) = A 2040 if (match(Op1, m_c_Or(m_Specific(Op0), m_Value()))) 2041 return Op0; 2042 2043 // (X | Y) & (X | ~Y) --> X (commuted 8 ways) 2044 Value *X, *Y; 2045 if (match(Op0, m_c_Or(m_Value(X), m_Not(m_Value(Y)))) && 2046 match(Op1, m_c_Or(m_Deferred(X), m_Deferred(Y)))) 2047 return X; 2048 if (match(Op1, m_c_Or(m_Value(X), m_Not(m_Value(Y)))) && 2049 match(Op0, m_c_Or(m_Deferred(X), m_Deferred(Y)))) 2050 return X; 2051 2052 if (Value *V = simplifyLogicOfAddSub(Op0, Op1, Instruction::And)) 2053 return V; 2054 2055 // A mask that only clears known zeros of a shifted value is a no-op. 2056 const APInt *Mask; 2057 const APInt *ShAmt; 2058 if (match(Op1, m_APInt(Mask))) { 2059 // If all bits in the inverted and shifted mask are clear: 2060 // and (shl X, ShAmt), Mask --> shl X, ShAmt 2061 if (match(Op0, m_Shl(m_Value(X), m_APInt(ShAmt))) && 2062 (~(*Mask)).lshr(*ShAmt).isZero()) 2063 return Op0; 2064 2065 // If all bits in the inverted and shifted mask are clear: 2066 // and (lshr X, ShAmt), Mask --> lshr X, ShAmt 2067 if (match(Op0, m_LShr(m_Value(X), m_APInt(ShAmt))) && 2068 (~(*Mask)).shl(*ShAmt).isZero()) 2069 return Op0; 2070 } 2071 2072 // If we have a multiplication overflow check that is being 'and'ed with a 2073 // check that one of the multipliers is not zero, we can omit the 'and', and 2074 // only keep the overflow check. 2075 if (isCheckForZeroAndMulWithOverflow(Op0, Op1, true)) 2076 return Op1; 2077 if (isCheckForZeroAndMulWithOverflow(Op1, Op0, true)) 2078 return Op0; 2079 2080 // A & (-A) = A if A is a power of two or zero. 2081 if (match(Op0, m_Neg(m_Specific(Op1))) || 2082 match(Op1, m_Neg(m_Specific(Op0)))) { 2083 if (isKnownToBeAPowerOfTwo(Op0, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI, 2084 Q.DT)) 2085 return Op0; 2086 if (isKnownToBeAPowerOfTwo(Op1, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI, 2087 Q.DT)) 2088 return Op1; 2089 } 2090 2091 // This is a similar pattern used for checking if a value is a power-of-2: 2092 // (A - 1) & A --> 0 (if A is a power-of-2 or 0) 2093 // A & (A - 1) --> 0 (if A is a power-of-2 or 0) 2094 if (match(Op0, m_Add(m_Specific(Op1), m_AllOnes())) && 2095 isKnownToBeAPowerOfTwo(Op1, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI, Q.DT)) 2096 return Constant::getNullValue(Op1->getType()); 2097 if (match(Op1, m_Add(m_Specific(Op0), m_AllOnes())) && 2098 isKnownToBeAPowerOfTwo(Op0, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI, Q.DT)) 2099 return Constant::getNullValue(Op0->getType()); 2100 2101 if (Value *V = simplifyAndOrOfCmps(Q, Op0, Op1, true)) 2102 return V; 2103 2104 // Try some generic simplifications for associative operations. 2105 if (Value *V = SimplifyAssociativeBinOp(Instruction::And, Op0, Op1, Q, 2106 MaxRecurse)) 2107 return V; 2108 2109 // And distributes over Or. Try some generic simplifications based on this. 2110 if (Value *V = expandCommutativeBinOp(Instruction::And, Op0, Op1, 2111 Instruction::Or, Q, MaxRecurse)) 2112 return V; 2113 2114 // And distributes over Xor. Try some generic simplifications based on this. 2115 if (Value *V = expandCommutativeBinOp(Instruction::And, Op0, Op1, 2116 Instruction::Xor, Q, MaxRecurse)) 2117 return V; 2118 2119 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) { 2120 if (Op0->getType()->isIntOrIntVectorTy(1)) { 2121 // A & (A && B) -> A && B 2122 if (match(Op1, m_Select(m_Specific(Op0), m_Value(), m_Zero()))) 2123 return Op1; 2124 else if (match(Op0, m_Select(m_Specific(Op1), m_Value(), m_Zero()))) 2125 return Op0; 2126 } 2127 // If the operation is with the result of a select instruction, check 2128 // whether operating on either branch of the select always yields the same 2129 // value. 2130 if (Value *V = ThreadBinOpOverSelect(Instruction::And, Op0, Op1, Q, 2131 MaxRecurse)) 2132 return V; 2133 } 2134 2135 // If the operation is with the result of a phi instruction, check whether 2136 // operating on all incoming values of the phi always yields the same value. 2137 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 2138 if (Value *V = ThreadBinOpOverPHI(Instruction::And, Op0, Op1, Q, 2139 MaxRecurse)) 2140 return V; 2141 2142 // Assuming the effective width of Y is not larger than A, i.e. all bits 2143 // from X and Y are disjoint in (X << A) | Y, 2144 // if the mask of this AND op covers all bits of X or Y, while it covers 2145 // no bits from the other, we can bypass this AND op. E.g., 2146 // ((X << A) | Y) & Mask -> Y, 2147 // if Mask = ((1 << effective_width_of(Y)) - 1) 2148 // ((X << A) | Y) & Mask -> X << A, 2149 // if Mask = ((1 << effective_width_of(X)) - 1) << A 2150 // SimplifyDemandedBits in InstCombine can optimize the general case. 2151 // This pattern aims to help other passes for a common case. 2152 Value *XShifted; 2153 if (match(Op1, m_APInt(Mask)) && 2154 match(Op0, m_c_Or(m_CombineAnd(m_NUWShl(m_Value(X), m_APInt(ShAmt)), 2155 m_Value(XShifted)), 2156 m_Value(Y)))) { 2157 const unsigned Width = Op0->getType()->getScalarSizeInBits(); 2158 const unsigned ShftCnt = ShAmt->getLimitedValue(Width); 2159 const KnownBits YKnown = computeKnownBits(Y, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2160 const unsigned EffWidthY = YKnown.countMaxActiveBits(); 2161 if (EffWidthY <= ShftCnt) { 2162 const KnownBits XKnown = computeKnownBits(X, Q.DL, 0, Q.AC, Q.CxtI, 2163 Q.DT); 2164 const unsigned EffWidthX = XKnown.countMaxActiveBits(); 2165 const APInt EffBitsY = APInt::getLowBitsSet(Width, EffWidthY); 2166 const APInt EffBitsX = APInt::getLowBitsSet(Width, EffWidthX) << ShftCnt; 2167 // If the mask is extracting all bits from X or Y as is, we can skip 2168 // this AND op. 2169 if (EffBitsY.isSubsetOf(*Mask) && !EffBitsX.intersects(*Mask)) 2170 return Y; 2171 if (EffBitsX.isSubsetOf(*Mask) && !EffBitsY.intersects(*Mask)) 2172 return XShifted; 2173 } 2174 } 2175 2176 return nullptr; 2177 } 2178 2179 Value *llvm::SimplifyAndInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 2180 return ::SimplifyAndInst(Op0, Op1, Q, RecursionLimit); 2181 } 2182 2183 /// Given operands for an Or, see if we can fold the result. 2184 /// If not, this returns null. 2185 static Value *SimplifyOrInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 2186 unsigned MaxRecurse) { 2187 if (Constant *C = foldOrCommuteConstant(Instruction::Or, Op0, Op1, Q)) 2188 return C; 2189 2190 // X | poison -> poison 2191 if (isa<PoisonValue>(Op1)) 2192 return Op1; 2193 2194 // X | undef -> -1 2195 // X | -1 = -1 2196 // Do not return Op1 because it may contain undef elements if it's a vector. 2197 if (Q.isUndefValue(Op1) || match(Op1, m_AllOnes())) 2198 return Constant::getAllOnesValue(Op0->getType()); 2199 2200 // X | X = X 2201 // X | 0 = X 2202 if (Op0 == Op1 || match(Op1, m_Zero())) 2203 return Op0; 2204 2205 // A | ~A = ~A | A = -1 2206 if (match(Op0, m_Not(m_Specific(Op1))) || 2207 match(Op1, m_Not(m_Specific(Op0)))) 2208 return Constant::getAllOnesValue(Op0->getType()); 2209 2210 // (A & ?) | A = A 2211 if (match(Op0, m_c_And(m_Specific(Op1), m_Value()))) 2212 return Op1; 2213 2214 // A | (A & ?) = A 2215 if (match(Op1, m_c_And(m_Specific(Op0), m_Value()))) 2216 return Op0; 2217 2218 // ~(A & ?) | A = -1 2219 if (match(Op0, m_Not(m_c_And(m_Specific(Op1), m_Value())))) 2220 return Constant::getAllOnesValue(Op1->getType()); 2221 2222 // A | ~(A & ?) = -1 2223 if (match(Op1, m_Not(m_c_And(m_Specific(Op0), m_Value())))) 2224 return Constant::getAllOnesValue(Op0->getType()); 2225 2226 if (Value *V = simplifyLogicOfAddSub(Op0, Op1, Instruction::Or)) 2227 return V; 2228 2229 Value *A, *B, *NotA; 2230 // (A & ~B) | (A ^ B) -> (A ^ B) 2231 // (~B & A) | (A ^ B) -> (A ^ B) 2232 // (A & ~B) | (B ^ A) -> (B ^ A) 2233 // (~B & A) | (B ^ A) -> (B ^ A) 2234 if (match(Op1, m_Xor(m_Value(A), m_Value(B))) && 2235 (match(Op0, m_c_And(m_Specific(A), m_Not(m_Specific(B)))) || 2236 match(Op0, m_c_And(m_Not(m_Specific(A)), m_Specific(B))))) 2237 return Op1; 2238 2239 // Commute the 'or' operands. 2240 // (A ^ B) | (A & ~B) -> (A ^ B) 2241 // (A ^ B) | (~B & A) -> (A ^ B) 2242 // (B ^ A) | (A & ~B) -> (B ^ A) 2243 // (B ^ A) | (~B & A) -> (B ^ A) 2244 if (match(Op0, m_Xor(m_Value(A), m_Value(B))) && 2245 (match(Op1, m_c_And(m_Specific(A), m_Not(m_Specific(B)))) || 2246 match(Op1, m_c_And(m_Not(m_Specific(A)), m_Specific(B))))) 2247 return Op0; 2248 2249 // (A & B) | (~A ^ B) -> (~A ^ B) 2250 // (B & A) | (~A ^ B) -> (~A ^ B) 2251 // (A & B) | (B ^ ~A) -> (B ^ ~A) 2252 // (B & A) | (B ^ ~A) -> (B ^ ~A) 2253 if (match(Op0, m_And(m_Value(A), m_Value(B))) && 2254 (match(Op1, m_c_Xor(m_Specific(A), m_Not(m_Specific(B)))) || 2255 match(Op1, m_c_Xor(m_Not(m_Specific(A)), m_Specific(B))))) 2256 return Op1; 2257 2258 // Commute the 'or' operands. 2259 // (~A ^ B) | (A & B) -> (~A ^ B) 2260 // (~A ^ B) | (B & A) -> (~A ^ B) 2261 // (B ^ ~A) | (A & B) -> (B ^ ~A) 2262 // (B ^ ~A) | (B & A) -> (B ^ ~A) 2263 if (match(Op1, m_And(m_Value(A), m_Value(B))) && 2264 (match(Op0, m_c_Xor(m_Specific(A), m_Not(m_Specific(B)))) || 2265 match(Op0, m_c_Xor(m_Not(m_Specific(A)), m_Specific(B))))) 2266 return Op0; 2267 2268 // (~A & B) | ~(A | B) --> ~A 2269 // (~A & B) | ~(B | A) --> ~A 2270 // (B & ~A) | ~(A | B) --> ~A 2271 // (B & ~A) | ~(B | A) --> ~A 2272 if (match(Op0, m_c_And(m_CombineAnd(m_Value(NotA), m_Not(m_Value(A))), 2273 m_Value(B))) && 2274 match(Op1, m_Not(m_c_Or(m_Specific(A), m_Specific(B))))) 2275 return NotA; 2276 2277 // Commute the 'or' operands. 2278 // ~(A | B) | (~A & B) --> ~A 2279 // ~(B | A) | (~A & B) --> ~A 2280 // ~(A | B) | (B & ~A) --> ~A 2281 // ~(B | A) | (B & ~A) --> ~A 2282 if (match(Op1, m_c_And(m_CombineAnd(m_Value(NotA), m_Not(m_Value(A))), 2283 m_Value(B))) && 2284 match(Op0, m_Not(m_c_Or(m_Specific(A), m_Specific(B))))) 2285 return NotA; 2286 2287 // Rotated -1 is still -1: 2288 // (-1 << X) | (-1 >> (C - X)) --> -1 2289 // (-1 >> X) | (-1 << (C - X)) --> -1 2290 // ...with C <= bitwidth (and commuted variants). 2291 Value *X, *Y; 2292 if ((match(Op0, m_Shl(m_AllOnes(), m_Value(X))) && 2293 match(Op1, m_LShr(m_AllOnes(), m_Value(Y)))) || 2294 (match(Op1, m_Shl(m_AllOnes(), m_Value(X))) && 2295 match(Op0, m_LShr(m_AllOnes(), m_Value(Y))))) { 2296 const APInt *C; 2297 if ((match(X, m_Sub(m_APInt(C), m_Specific(Y))) || 2298 match(Y, m_Sub(m_APInt(C), m_Specific(X)))) && 2299 C->ule(X->getType()->getScalarSizeInBits())) { 2300 return ConstantInt::getAllOnesValue(X->getType()); 2301 } 2302 } 2303 2304 if (Value *V = simplifyAndOrOfCmps(Q, Op0, Op1, false)) 2305 return V; 2306 2307 // If we have a multiplication overflow check that is being 'and'ed with a 2308 // check that one of the multipliers is not zero, we can omit the 'and', and 2309 // only keep the overflow check. 2310 if (isCheckForZeroAndMulWithOverflow(Op0, Op1, false)) 2311 return Op1; 2312 if (isCheckForZeroAndMulWithOverflow(Op1, Op0, false)) 2313 return Op0; 2314 2315 // Try some generic simplifications for associative operations. 2316 if (Value *V = SimplifyAssociativeBinOp(Instruction::Or, Op0, Op1, Q, 2317 MaxRecurse)) 2318 return V; 2319 2320 // Or distributes over And. Try some generic simplifications based on this. 2321 if (Value *V = expandCommutativeBinOp(Instruction::Or, Op0, Op1, 2322 Instruction::And, Q, MaxRecurse)) 2323 return V; 2324 2325 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) { 2326 if (Op0->getType()->isIntOrIntVectorTy(1)) { 2327 // A | (A || B) -> A || B 2328 if (match(Op1, m_Select(m_Specific(Op0), m_One(), m_Value()))) 2329 return Op1; 2330 else if (match(Op0, m_Select(m_Specific(Op1), m_One(), m_Value()))) 2331 return Op0; 2332 } 2333 // If the operation is with the result of a select instruction, check 2334 // whether operating on either branch of the select always yields the same 2335 // value. 2336 if (Value *V = ThreadBinOpOverSelect(Instruction::Or, Op0, Op1, Q, 2337 MaxRecurse)) 2338 return V; 2339 } 2340 2341 // (A & C1)|(B & C2) 2342 const APInt *C1, *C2; 2343 if (match(Op0, m_And(m_Value(A), m_APInt(C1))) && 2344 match(Op1, m_And(m_Value(B), m_APInt(C2)))) { 2345 if (*C1 == ~*C2) { 2346 // (A & C1)|(B & C2) 2347 // If we have: ((V + N) & C1) | (V & C2) 2348 // .. and C2 = ~C1 and C2 is 0+1+ and (N & C2) == 0 2349 // replace with V+N. 2350 Value *N; 2351 if (C2->isMask() && // C2 == 0+1+ 2352 match(A, m_c_Add(m_Specific(B), m_Value(N)))) { 2353 // Add commutes, try both ways. 2354 if (MaskedValueIsZero(N, *C2, Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 2355 return A; 2356 } 2357 // Or commutes, try both ways. 2358 if (C1->isMask() && 2359 match(B, m_c_Add(m_Specific(A), m_Value(N)))) { 2360 // Add commutes, try both ways. 2361 if (MaskedValueIsZero(N, *C1, Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 2362 return B; 2363 } 2364 } 2365 } 2366 2367 // If the operation is with the result of a phi instruction, check whether 2368 // operating on all incoming values of the phi always yields the same value. 2369 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 2370 if (Value *V = ThreadBinOpOverPHI(Instruction::Or, Op0, Op1, Q, MaxRecurse)) 2371 return V; 2372 2373 return nullptr; 2374 } 2375 2376 Value *llvm::SimplifyOrInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 2377 return ::SimplifyOrInst(Op0, Op1, Q, RecursionLimit); 2378 } 2379 2380 /// Given operands for a Xor, see if we can fold the result. 2381 /// If not, this returns null. 2382 static Value *SimplifyXorInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 2383 unsigned MaxRecurse) { 2384 if (Constant *C = foldOrCommuteConstant(Instruction::Xor, Op0, Op1, Q)) 2385 return C; 2386 2387 // A ^ undef -> undef 2388 if (Q.isUndefValue(Op1)) 2389 return Op1; 2390 2391 // A ^ 0 = A 2392 if (match(Op1, m_Zero())) 2393 return Op0; 2394 2395 // A ^ A = 0 2396 if (Op0 == Op1) 2397 return Constant::getNullValue(Op0->getType()); 2398 2399 // A ^ ~A = ~A ^ A = -1 2400 if (match(Op0, m_Not(m_Specific(Op1))) || 2401 match(Op1, m_Not(m_Specific(Op0)))) 2402 return Constant::getAllOnesValue(Op0->getType()); 2403 2404 if (Value *V = simplifyLogicOfAddSub(Op0, Op1, Instruction::Xor)) 2405 return V; 2406 2407 // Try some generic simplifications for associative operations. 2408 if (Value *V = SimplifyAssociativeBinOp(Instruction::Xor, Op0, Op1, Q, 2409 MaxRecurse)) 2410 return V; 2411 2412 // Threading Xor over selects and phi nodes is pointless, so don't bother. 2413 // Threading over the select in "A ^ select(cond, B, C)" means evaluating 2414 // "A^B" and "A^C" and seeing if they are equal; but they are equal if and 2415 // only if B and C are equal. If B and C are equal then (since we assume 2416 // that operands have already been simplified) "select(cond, B, C)" should 2417 // have been simplified to the common value of B and C already. Analysing 2418 // "A^B" and "A^C" thus gains nothing, but costs compile time. Similarly 2419 // for threading over phi nodes. 2420 2421 return nullptr; 2422 } 2423 2424 Value *llvm::SimplifyXorInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 2425 return ::SimplifyXorInst(Op0, Op1, Q, RecursionLimit); 2426 } 2427 2428 2429 static Type *GetCompareTy(Value *Op) { 2430 return CmpInst::makeCmpResultType(Op->getType()); 2431 } 2432 2433 /// Rummage around inside V looking for something equivalent to the comparison 2434 /// "LHS Pred RHS". Return such a value if found, otherwise return null. 2435 /// Helper function for analyzing max/min idioms. 2436 static Value *ExtractEquivalentCondition(Value *V, CmpInst::Predicate Pred, 2437 Value *LHS, Value *RHS) { 2438 SelectInst *SI = dyn_cast<SelectInst>(V); 2439 if (!SI) 2440 return nullptr; 2441 CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition()); 2442 if (!Cmp) 2443 return nullptr; 2444 Value *CmpLHS = Cmp->getOperand(0), *CmpRHS = Cmp->getOperand(1); 2445 if (Pred == Cmp->getPredicate() && LHS == CmpLHS && RHS == CmpRHS) 2446 return Cmp; 2447 if (Pred == CmpInst::getSwappedPredicate(Cmp->getPredicate()) && 2448 LHS == CmpRHS && RHS == CmpLHS) 2449 return Cmp; 2450 return nullptr; 2451 } 2452 2453 // A significant optimization not implemented here is assuming that alloca 2454 // addresses are not equal to incoming argument values. They don't *alias*, 2455 // as we say, but that doesn't mean they aren't equal, so we take a 2456 // conservative approach. 2457 // 2458 // This is inspired in part by C++11 5.10p1: 2459 // "Two pointers of the same type compare equal if and only if they are both 2460 // null, both point to the same function, or both represent the same 2461 // address." 2462 // 2463 // This is pretty permissive. 2464 // 2465 // It's also partly due to C11 6.5.9p6: 2466 // "Two pointers compare equal if and only if both are null pointers, both are 2467 // pointers to the same object (including a pointer to an object and a 2468 // subobject at its beginning) or function, both are pointers to one past the 2469 // last element of the same array object, or one is a pointer to one past the 2470 // end of one array object and the other is a pointer to the start of a 2471 // different array object that happens to immediately follow the first array 2472 // object in the address space.) 2473 // 2474 // C11's version is more restrictive, however there's no reason why an argument 2475 // couldn't be a one-past-the-end value for a stack object in the caller and be 2476 // equal to the beginning of a stack object in the callee. 2477 // 2478 // If the C and C++ standards are ever made sufficiently restrictive in this 2479 // area, it may be possible to update LLVM's semantics accordingly and reinstate 2480 // this optimization. 2481 static Constant * 2482 computePointerICmp(CmpInst::Predicate Pred, Value *LHS, Value *RHS, 2483 const SimplifyQuery &Q) { 2484 const DataLayout &DL = Q.DL; 2485 const TargetLibraryInfo *TLI = Q.TLI; 2486 const DominatorTree *DT = Q.DT; 2487 const Instruction *CxtI = Q.CxtI; 2488 const InstrInfoQuery &IIQ = Q.IIQ; 2489 2490 // First, skip past any trivial no-ops. 2491 LHS = LHS->stripPointerCasts(); 2492 RHS = RHS->stripPointerCasts(); 2493 2494 // A non-null pointer is not equal to a null pointer. 2495 if (isa<ConstantPointerNull>(RHS) && ICmpInst::isEquality(Pred) && 2496 llvm::isKnownNonZero(LHS, DL, 0, nullptr, nullptr, nullptr, 2497 IIQ.UseInstrInfo)) 2498 return ConstantInt::get(GetCompareTy(LHS), 2499 !CmpInst::isTrueWhenEqual(Pred)); 2500 2501 // We can only fold certain predicates on pointer comparisons. 2502 switch (Pred) { 2503 default: 2504 return nullptr; 2505 2506 // Equality comaprisons are easy to fold. 2507 case CmpInst::ICMP_EQ: 2508 case CmpInst::ICMP_NE: 2509 break; 2510 2511 // We can only handle unsigned relational comparisons because 'inbounds' on 2512 // a GEP only protects against unsigned wrapping. 2513 case CmpInst::ICMP_UGT: 2514 case CmpInst::ICMP_UGE: 2515 case CmpInst::ICMP_ULT: 2516 case CmpInst::ICMP_ULE: 2517 // However, we have to switch them to their signed variants to handle 2518 // negative indices from the base pointer. 2519 Pred = ICmpInst::getSignedPredicate(Pred); 2520 break; 2521 } 2522 2523 // Strip off any constant offsets so that we can reason about them. 2524 // It's tempting to use getUnderlyingObject or even just stripInBoundsOffsets 2525 // here and compare base addresses like AliasAnalysis does, however there are 2526 // numerous hazards. AliasAnalysis and its utilities rely on special rules 2527 // governing loads and stores which don't apply to icmps. Also, AliasAnalysis 2528 // doesn't need to guarantee pointer inequality when it says NoAlias. 2529 Constant *LHSOffset = stripAndComputeConstantOffsets(DL, LHS); 2530 Constant *RHSOffset = stripAndComputeConstantOffsets(DL, RHS); 2531 2532 // If LHS and RHS are related via constant offsets to the same base 2533 // value, we can replace it with an icmp which just compares the offsets. 2534 if (LHS == RHS) 2535 return ConstantExpr::getICmp(Pred, LHSOffset, RHSOffset); 2536 2537 // Various optimizations for (in)equality comparisons. 2538 if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE) { 2539 // Different non-empty allocations that exist at the same time have 2540 // different addresses (if the program can tell). Global variables always 2541 // exist, so they always exist during the lifetime of each other and all 2542 // allocas. Two different allocas usually have different addresses... 2543 // 2544 // However, if there's an @llvm.stackrestore dynamically in between two 2545 // allocas, they may have the same address. It's tempting to reduce the 2546 // scope of the problem by only looking at *static* allocas here. That would 2547 // cover the majority of allocas while significantly reducing the likelihood 2548 // of having an @llvm.stackrestore pop up in the middle. However, it's not 2549 // actually impossible for an @llvm.stackrestore to pop up in the middle of 2550 // an entry block. Also, if we have a block that's not attached to a 2551 // function, we can't tell if it's "static" under the current definition. 2552 // Theoretically, this problem could be fixed by creating a new kind of 2553 // instruction kind specifically for static allocas. Such a new instruction 2554 // could be required to be at the top of the entry block, thus preventing it 2555 // from being subject to a @llvm.stackrestore. Instcombine could even 2556 // convert regular allocas into these special allocas. It'd be nifty. 2557 // However, until then, this problem remains open. 2558 // 2559 // So, we'll assume that two non-empty allocas have different addresses 2560 // for now. 2561 // 2562 // With all that, if the offsets are within the bounds of their allocations 2563 // (and not one-past-the-end! so we can't use inbounds!), and their 2564 // allocations aren't the same, the pointers are not equal. 2565 // 2566 // Note that it's not necessary to check for LHS being a global variable 2567 // address, due to canonicalization and constant folding. 2568 if (isa<AllocaInst>(LHS) && 2569 (isa<AllocaInst>(RHS) || isa<GlobalVariable>(RHS))) { 2570 ConstantInt *LHSOffsetCI = dyn_cast<ConstantInt>(LHSOffset); 2571 ConstantInt *RHSOffsetCI = dyn_cast<ConstantInt>(RHSOffset); 2572 uint64_t LHSSize, RHSSize; 2573 ObjectSizeOpts Opts; 2574 Opts.NullIsUnknownSize = 2575 NullPointerIsDefined(cast<AllocaInst>(LHS)->getFunction()); 2576 if (LHSOffsetCI && RHSOffsetCI && 2577 getObjectSize(LHS, LHSSize, DL, TLI, Opts) && 2578 getObjectSize(RHS, RHSSize, DL, TLI, Opts)) { 2579 const APInt &LHSOffsetValue = LHSOffsetCI->getValue(); 2580 const APInt &RHSOffsetValue = RHSOffsetCI->getValue(); 2581 if (!LHSOffsetValue.isNegative() && 2582 !RHSOffsetValue.isNegative() && 2583 LHSOffsetValue.ult(LHSSize) && 2584 RHSOffsetValue.ult(RHSSize)) { 2585 return ConstantInt::get(GetCompareTy(LHS), 2586 !CmpInst::isTrueWhenEqual(Pred)); 2587 } 2588 } 2589 2590 // Repeat the above check but this time without depending on DataLayout 2591 // or being able to compute a precise size. 2592 if (!cast<PointerType>(LHS->getType())->isEmptyTy() && 2593 !cast<PointerType>(RHS->getType())->isEmptyTy() && 2594 LHSOffset->isNullValue() && 2595 RHSOffset->isNullValue()) 2596 return ConstantInt::get(GetCompareTy(LHS), 2597 !CmpInst::isTrueWhenEqual(Pred)); 2598 } 2599 2600 // Even if an non-inbounds GEP occurs along the path we can still optimize 2601 // equality comparisons concerning the result. We avoid walking the whole 2602 // chain again by starting where the last calls to 2603 // stripAndComputeConstantOffsets left off and accumulate the offsets. 2604 Constant *LHSNoBound = stripAndComputeConstantOffsets(DL, LHS, true); 2605 Constant *RHSNoBound = stripAndComputeConstantOffsets(DL, RHS, true); 2606 if (LHS == RHS) 2607 return ConstantExpr::getICmp(Pred, 2608 ConstantExpr::getAdd(LHSOffset, LHSNoBound), 2609 ConstantExpr::getAdd(RHSOffset, RHSNoBound)); 2610 2611 // If one side of the equality comparison must come from a noalias call 2612 // (meaning a system memory allocation function), and the other side must 2613 // come from a pointer that cannot overlap with dynamically-allocated 2614 // memory within the lifetime of the current function (allocas, byval 2615 // arguments, globals), then determine the comparison result here. 2616 SmallVector<const Value *, 8> LHSUObjs, RHSUObjs; 2617 getUnderlyingObjects(LHS, LHSUObjs); 2618 getUnderlyingObjects(RHS, RHSUObjs); 2619 2620 // Is the set of underlying objects all noalias calls? 2621 auto IsNAC = [](ArrayRef<const Value *> Objects) { 2622 return all_of(Objects, isNoAliasCall); 2623 }; 2624 2625 // Is the set of underlying objects all things which must be disjoint from 2626 // noalias calls. For allocas, we consider only static ones (dynamic 2627 // allocas might be transformed into calls to malloc not simultaneously 2628 // live with the compared-to allocation). For globals, we exclude symbols 2629 // that might be resolve lazily to symbols in another dynamically-loaded 2630 // library (and, thus, could be malloc'ed by the implementation). 2631 auto IsAllocDisjoint = [](ArrayRef<const Value *> Objects) { 2632 return all_of(Objects, [](const Value *V) { 2633 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) 2634 return AI->getParent() && AI->getFunction() && AI->isStaticAlloca(); 2635 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) 2636 return (GV->hasLocalLinkage() || GV->hasHiddenVisibility() || 2637 GV->hasProtectedVisibility() || GV->hasGlobalUnnamedAddr()) && 2638 !GV->isThreadLocal(); 2639 if (const Argument *A = dyn_cast<Argument>(V)) 2640 return A->hasByValAttr(); 2641 return false; 2642 }); 2643 }; 2644 2645 if ((IsNAC(LHSUObjs) && IsAllocDisjoint(RHSUObjs)) || 2646 (IsNAC(RHSUObjs) && IsAllocDisjoint(LHSUObjs))) 2647 return ConstantInt::get(GetCompareTy(LHS), 2648 !CmpInst::isTrueWhenEqual(Pred)); 2649 2650 // Fold comparisons for non-escaping pointer even if the allocation call 2651 // cannot be elided. We cannot fold malloc comparison to null. Also, the 2652 // dynamic allocation call could be either of the operands. 2653 Value *MI = nullptr; 2654 if (isAllocLikeFn(LHS, TLI) && 2655 llvm::isKnownNonZero(RHS, DL, 0, nullptr, CxtI, DT)) 2656 MI = LHS; 2657 else if (isAllocLikeFn(RHS, TLI) && 2658 llvm::isKnownNonZero(LHS, DL, 0, nullptr, CxtI, DT)) 2659 MI = RHS; 2660 // FIXME: We should also fold the compare when the pointer escapes, but the 2661 // compare dominates the pointer escape 2662 if (MI && !PointerMayBeCaptured(MI, true, true)) 2663 return ConstantInt::get(GetCompareTy(LHS), 2664 CmpInst::isFalseWhenEqual(Pred)); 2665 } 2666 2667 // Otherwise, fail. 2668 return nullptr; 2669 } 2670 2671 /// Fold an icmp when its operands have i1 scalar type. 2672 static Value *simplifyICmpOfBools(CmpInst::Predicate Pred, Value *LHS, 2673 Value *RHS, const SimplifyQuery &Q) { 2674 Type *ITy = GetCompareTy(LHS); // The return type. 2675 Type *OpTy = LHS->getType(); // The operand type. 2676 if (!OpTy->isIntOrIntVectorTy(1)) 2677 return nullptr; 2678 2679 // A boolean compared to true/false can be simplified in 14 out of the 20 2680 // (10 predicates * 2 constants) possible combinations. Cases not handled here 2681 // require a 'not' of the LHS, so those must be transformed in InstCombine. 2682 if (match(RHS, m_Zero())) { 2683 switch (Pred) { 2684 case CmpInst::ICMP_NE: // X != 0 -> X 2685 case CmpInst::ICMP_UGT: // X >u 0 -> X 2686 case CmpInst::ICMP_SLT: // X <s 0 -> X 2687 return LHS; 2688 2689 case CmpInst::ICMP_ULT: // X <u 0 -> false 2690 case CmpInst::ICMP_SGT: // X >s 0 -> false 2691 return getFalse(ITy); 2692 2693 case CmpInst::ICMP_UGE: // X >=u 0 -> true 2694 case CmpInst::ICMP_SLE: // X <=s 0 -> true 2695 return getTrue(ITy); 2696 2697 default: break; 2698 } 2699 } else if (match(RHS, m_One())) { 2700 switch (Pred) { 2701 case CmpInst::ICMP_EQ: // X == 1 -> X 2702 case CmpInst::ICMP_UGE: // X >=u 1 -> X 2703 case CmpInst::ICMP_SLE: // X <=s -1 -> X 2704 return LHS; 2705 2706 case CmpInst::ICMP_UGT: // X >u 1 -> false 2707 case CmpInst::ICMP_SLT: // X <s -1 -> false 2708 return getFalse(ITy); 2709 2710 case CmpInst::ICMP_ULE: // X <=u 1 -> true 2711 case CmpInst::ICMP_SGE: // X >=s -1 -> true 2712 return getTrue(ITy); 2713 2714 default: break; 2715 } 2716 } 2717 2718 switch (Pred) { 2719 default: 2720 break; 2721 case ICmpInst::ICMP_UGE: 2722 if (isImpliedCondition(RHS, LHS, Q.DL).getValueOr(false)) 2723 return getTrue(ITy); 2724 break; 2725 case ICmpInst::ICMP_SGE: 2726 /// For signed comparison, the values for an i1 are 0 and -1 2727 /// respectively. This maps into a truth table of: 2728 /// LHS | RHS | LHS >=s RHS | LHS implies RHS 2729 /// 0 | 0 | 1 (0 >= 0) | 1 2730 /// 0 | 1 | 1 (0 >= -1) | 1 2731 /// 1 | 0 | 0 (-1 >= 0) | 0 2732 /// 1 | 1 | 1 (-1 >= -1) | 1 2733 if (isImpliedCondition(LHS, RHS, Q.DL).getValueOr(false)) 2734 return getTrue(ITy); 2735 break; 2736 case ICmpInst::ICMP_ULE: 2737 if (isImpliedCondition(LHS, RHS, Q.DL).getValueOr(false)) 2738 return getTrue(ITy); 2739 break; 2740 } 2741 2742 return nullptr; 2743 } 2744 2745 /// Try hard to fold icmp with zero RHS because this is a common case. 2746 static Value *simplifyICmpWithZero(CmpInst::Predicate Pred, Value *LHS, 2747 Value *RHS, const SimplifyQuery &Q) { 2748 if (!match(RHS, m_Zero())) 2749 return nullptr; 2750 2751 Type *ITy = GetCompareTy(LHS); // The return type. 2752 switch (Pred) { 2753 default: 2754 llvm_unreachable("Unknown ICmp predicate!"); 2755 case ICmpInst::ICMP_ULT: 2756 return getFalse(ITy); 2757 case ICmpInst::ICMP_UGE: 2758 return getTrue(ITy); 2759 case ICmpInst::ICMP_EQ: 2760 case ICmpInst::ICMP_ULE: 2761 if (isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT, Q.IIQ.UseInstrInfo)) 2762 return getFalse(ITy); 2763 break; 2764 case ICmpInst::ICMP_NE: 2765 case ICmpInst::ICMP_UGT: 2766 if (isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT, Q.IIQ.UseInstrInfo)) 2767 return getTrue(ITy); 2768 break; 2769 case ICmpInst::ICMP_SLT: { 2770 KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2771 if (LHSKnown.isNegative()) 2772 return getTrue(ITy); 2773 if (LHSKnown.isNonNegative()) 2774 return getFalse(ITy); 2775 break; 2776 } 2777 case ICmpInst::ICMP_SLE: { 2778 KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2779 if (LHSKnown.isNegative()) 2780 return getTrue(ITy); 2781 if (LHSKnown.isNonNegative() && 2782 isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 2783 return getFalse(ITy); 2784 break; 2785 } 2786 case ICmpInst::ICMP_SGE: { 2787 KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2788 if (LHSKnown.isNegative()) 2789 return getFalse(ITy); 2790 if (LHSKnown.isNonNegative()) 2791 return getTrue(ITy); 2792 break; 2793 } 2794 case ICmpInst::ICMP_SGT: { 2795 KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2796 if (LHSKnown.isNegative()) 2797 return getFalse(ITy); 2798 if (LHSKnown.isNonNegative() && 2799 isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 2800 return getTrue(ITy); 2801 break; 2802 } 2803 } 2804 2805 return nullptr; 2806 } 2807 2808 static Value *simplifyICmpWithConstant(CmpInst::Predicate Pred, Value *LHS, 2809 Value *RHS, const InstrInfoQuery &IIQ) { 2810 Type *ITy = GetCompareTy(RHS); // The return type. 2811 2812 Value *X; 2813 // Sign-bit checks can be optimized to true/false after unsigned 2814 // floating-point casts: 2815 // icmp slt (bitcast (uitofp X)), 0 --> false 2816 // icmp sgt (bitcast (uitofp X)), -1 --> true 2817 if (match(LHS, m_BitCast(m_UIToFP(m_Value(X))))) { 2818 if (Pred == ICmpInst::ICMP_SLT && match(RHS, m_Zero())) 2819 return ConstantInt::getFalse(ITy); 2820 if (Pred == ICmpInst::ICMP_SGT && match(RHS, m_AllOnes())) 2821 return ConstantInt::getTrue(ITy); 2822 } 2823 2824 const APInt *C; 2825 if (!match(RHS, m_APIntAllowUndef(C))) 2826 return nullptr; 2827 2828 // Rule out tautological comparisons (eg., ult 0 or uge 0). 2829 ConstantRange RHS_CR = ConstantRange::makeExactICmpRegion(Pred, *C); 2830 if (RHS_CR.isEmptySet()) 2831 return ConstantInt::getFalse(ITy); 2832 if (RHS_CR.isFullSet()) 2833 return ConstantInt::getTrue(ITy); 2834 2835 ConstantRange LHS_CR = computeConstantRange(LHS, IIQ.UseInstrInfo); 2836 if (!LHS_CR.isFullSet()) { 2837 if (RHS_CR.contains(LHS_CR)) 2838 return ConstantInt::getTrue(ITy); 2839 if (RHS_CR.inverse().contains(LHS_CR)) 2840 return ConstantInt::getFalse(ITy); 2841 } 2842 2843 // (mul nuw/nsw X, MulC) != C --> true (if C is not a multiple of MulC) 2844 // (mul nuw/nsw X, MulC) == C --> false (if C is not a multiple of MulC) 2845 const APInt *MulC; 2846 if (ICmpInst::isEquality(Pred) && 2847 ((match(LHS, m_NUWMul(m_Value(), m_APIntAllowUndef(MulC))) && 2848 *MulC != 0 && C->urem(*MulC) != 0) || 2849 (match(LHS, m_NSWMul(m_Value(), m_APIntAllowUndef(MulC))) && 2850 *MulC != 0 && C->srem(*MulC) != 0))) 2851 return ConstantInt::get(ITy, Pred == ICmpInst::ICMP_NE); 2852 2853 return nullptr; 2854 } 2855 2856 static Value *simplifyICmpWithBinOpOnLHS( 2857 CmpInst::Predicate Pred, BinaryOperator *LBO, Value *RHS, 2858 const SimplifyQuery &Q, unsigned MaxRecurse) { 2859 Type *ITy = GetCompareTy(RHS); // The return type. 2860 2861 Value *Y = nullptr; 2862 // icmp pred (or X, Y), X 2863 if (match(LBO, m_c_Or(m_Value(Y), m_Specific(RHS)))) { 2864 if (Pred == ICmpInst::ICMP_ULT) 2865 return getFalse(ITy); 2866 if (Pred == ICmpInst::ICMP_UGE) 2867 return getTrue(ITy); 2868 2869 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SGE) { 2870 KnownBits RHSKnown = computeKnownBits(RHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2871 KnownBits YKnown = computeKnownBits(Y, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2872 if (RHSKnown.isNonNegative() && YKnown.isNegative()) 2873 return Pred == ICmpInst::ICMP_SLT ? getTrue(ITy) : getFalse(ITy); 2874 if (RHSKnown.isNegative() || YKnown.isNonNegative()) 2875 return Pred == ICmpInst::ICMP_SLT ? getFalse(ITy) : getTrue(ITy); 2876 } 2877 } 2878 2879 // icmp pred (and X, Y), X 2880 if (match(LBO, m_c_And(m_Value(), m_Specific(RHS)))) { 2881 if (Pred == ICmpInst::ICMP_UGT) 2882 return getFalse(ITy); 2883 if (Pred == ICmpInst::ICMP_ULE) 2884 return getTrue(ITy); 2885 } 2886 2887 // icmp pred (urem X, Y), Y 2888 if (match(LBO, m_URem(m_Value(), m_Specific(RHS)))) { 2889 switch (Pred) { 2890 default: 2891 break; 2892 case ICmpInst::ICMP_SGT: 2893 case ICmpInst::ICMP_SGE: { 2894 KnownBits Known = computeKnownBits(RHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2895 if (!Known.isNonNegative()) 2896 break; 2897 LLVM_FALLTHROUGH; 2898 } 2899 case ICmpInst::ICMP_EQ: 2900 case ICmpInst::ICMP_UGT: 2901 case ICmpInst::ICMP_UGE: 2902 return getFalse(ITy); 2903 case ICmpInst::ICMP_SLT: 2904 case ICmpInst::ICMP_SLE: { 2905 KnownBits Known = computeKnownBits(RHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2906 if (!Known.isNonNegative()) 2907 break; 2908 LLVM_FALLTHROUGH; 2909 } 2910 case ICmpInst::ICMP_NE: 2911 case ICmpInst::ICMP_ULT: 2912 case ICmpInst::ICMP_ULE: 2913 return getTrue(ITy); 2914 } 2915 } 2916 2917 // icmp pred (urem X, Y), X 2918 if (match(LBO, m_URem(m_Specific(RHS), m_Value()))) { 2919 if (Pred == ICmpInst::ICMP_ULE) 2920 return getTrue(ITy); 2921 if (Pred == ICmpInst::ICMP_UGT) 2922 return getFalse(ITy); 2923 } 2924 2925 // x >> y <=u x 2926 // x udiv y <=u x. 2927 if (match(LBO, m_LShr(m_Specific(RHS), m_Value())) || 2928 match(LBO, m_UDiv(m_Specific(RHS), m_Value()))) { 2929 // icmp pred (X op Y), X 2930 if (Pred == ICmpInst::ICMP_UGT) 2931 return getFalse(ITy); 2932 if (Pred == ICmpInst::ICMP_ULE) 2933 return getTrue(ITy); 2934 } 2935 2936 // (x*C1)/C2 <= x for C1 <= C2. 2937 // This holds even if the multiplication overflows: Assume that x != 0 and 2938 // arithmetic is modulo M. For overflow to occur we must have C1 >= M/x and 2939 // thus C2 >= M/x. It follows that (x*C1)/C2 <= (M-1)/C2 <= ((M-1)*x)/M < x. 2940 // 2941 // Additionally, either the multiplication and division might be represented 2942 // as shifts: 2943 // (x*C1)>>C2 <= x for C1 < 2**C2. 2944 // (x<<C1)/C2 <= x for 2**C1 < C2. 2945 const APInt *C1, *C2; 2946 if ((match(LBO, m_UDiv(m_Mul(m_Specific(RHS), m_APInt(C1)), m_APInt(C2))) && 2947 C1->ule(*C2)) || 2948 (match(LBO, m_LShr(m_Mul(m_Specific(RHS), m_APInt(C1)), m_APInt(C2))) && 2949 C1->ule(APInt(C2->getBitWidth(), 1) << *C2)) || 2950 (match(LBO, m_UDiv(m_Shl(m_Specific(RHS), m_APInt(C1)), m_APInt(C2))) && 2951 (APInt(C1->getBitWidth(), 1) << *C1).ule(*C2))) { 2952 if (Pred == ICmpInst::ICMP_UGT) 2953 return getFalse(ITy); 2954 if (Pred == ICmpInst::ICMP_ULE) 2955 return getTrue(ITy); 2956 } 2957 2958 return nullptr; 2959 } 2960 2961 2962 // If only one of the icmp's operands has NSW flags, try to prove that: 2963 // 2964 // icmp slt (x + C1), (x +nsw C2) 2965 // 2966 // is equivalent to: 2967 // 2968 // icmp slt C1, C2 2969 // 2970 // which is true if x + C2 has the NSW flags set and: 2971 // *) C1 < C2 && C1 >= 0, or 2972 // *) C2 < C1 && C1 <= 0. 2973 // 2974 static bool trySimplifyICmpWithAdds(CmpInst::Predicate Pred, Value *LHS, 2975 Value *RHS) { 2976 // TODO: only support icmp slt for now. 2977 if (Pred != CmpInst::ICMP_SLT) 2978 return false; 2979 2980 // Canonicalize nsw add as RHS. 2981 if (!match(RHS, m_NSWAdd(m_Value(), m_Value()))) 2982 std::swap(LHS, RHS); 2983 if (!match(RHS, m_NSWAdd(m_Value(), m_Value()))) 2984 return false; 2985 2986 Value *X; 2987 const APInt *C1, *C2; 2988 if (!match(LHS, m_c_Add(m_Value(X), m_APInt(C1))) || 2989 !match(RHS, m_c_Add(m_Specific(X), m_APInt(C2)))) 2990 return false; 2991 2992 return (C1->slt(*C2) && C1->isNonNegative()) || 2993 (C2->slt(*C1) && C1->isNonPositive()); 2994 } 2995 2996 2997 /// TODO: A large part of this logic is duplicated in InstCombine's 2998 /// foldICmpBinOp(). We should be able to share that and avoid the code 2999 /// duplication. 3000 static Value *simplifyICmpWithBinOp(CmpInst::Predicate Pred, Value *LHS, 3001 Value *RHS, const SimplifyQuery &Q, 3002 unsigned MaxRecurse) { 3003 BinaryOperator *LBO = dyn_cast<BinaryOperator>(LHS); 3004 BinaryOperator *RBO = dyn_cast<BinaryOperator>(RHS); 3005 if (MaxRecurse && (LBO || RBO)) { 3006 // Analyze the case when either LHS or RHS is an add instruction. 3007 Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr; 3008 // LHS = A + B (or A and B are null); RHS = C + D (or C and D are null). 3009 bool NoLHSWrapProblem = false, NoRHSWrapProblem = false; 3010 if (LBO && LBO->getOpcode() == Instruction::Add) { 3011 A = LBO->getOperand(0); 3012 B = LBO->getOperand(1); 3013 NoLHSWrapProblem = 3014 ICmpInst::isEquality(Pred) || 3015 (CmpInst::isUnsigned(Pred) && 3016 Q.IIQ.hasNoUnsignedWrap(cast<OverflowingBinaryOperator>(LBO))) || 3017 (CmpInst::isSigned(Pred) && 3018 Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(LBO))); 3019 } 3020 if (RBO && RBO->getOpcode() == Instruction::Add) { 3021 C = RBO->getOperand(0); 3022 D = RBO->getOperand(1); 3023 NoRHSWrapProblem = 3024 ICmpInst::isEquality(Pred) || 3025 (CmpInst::isUnsigned(Pred) && 3026 Q.IIQ.hasNoUnsignedWrap(cast<OverflowingBinaryOperator>(RBO))) || 3027 (CmpInst::isSigned(Pred) && 3028 Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(RBO))); 3029 } 3030 3031 // icmp (X+Y), X -> icmp Y, 0 for equalities or if there is no overflow. 3032 if ((A == RHS || B == RHS) && NoLHSWrapProblem) 3033 if (Value *V = SimplifyICmpInst(Pred, A == RHS ? B : A, 3034 Constant::getNullValue(RHS->getType()), Q, 3035 MaxRecurse - 1)) 3036 return V; 3037 3038 // icmp X, (X+Y) -> icmp 0, Y for equalities or if there is no overflow. 3039 if ((C == LHS || D == LHS) && NoRHSWrapProblem) 3040 if (Value *V = 3041 SimplifyICmpInst(Pred, Constant::getNullValue(LHS->getType()), 3042 C == LHS ? D : C, Q, MaxRecurse - 1)) 3043 return V; 3044 3045 // icmp (X+Y), (X+Z) -> icmp Y,Z for equalities or if there is no overflow. 3046 bool CanSimplify = (NoLHSWrapProblem && NoRHSWrapProblem) || 3047 trySimplifyICmpWithAdds(Pred, LHS, RHS); 3048 if (A && C && (A == C || A == D || B == C || B == D) && CanSimplify) { 3049 // Determine Y and Z in the form icmp (X+Y), (X+Z). 3050 Value *Y, *Z; 3051 if (A == C) { 3052 // C + B == C + D -> B == D 3053 Y = B; 3054 Z = D; 3055 } else if (A == D) { 3056 // D + B == C + D -> B == C 3057 Y = B; 3058 Z = C; 3059 } else if (B == C) { 3060 // A + C == C + D -> A == D 3061 Y = A; 3062 Z = D; 3063 } else { 3064 assert(B == D); 3065 // A + D == C + D -> A == C 3066 Y = A; 3067 Z = C; 3068 } 3069 if (Value *V = SimplifyICmpInst(Pred, Y, Z, Q, MaxRecurse - 1)) 3070 return V; 3071 } 3072 } 3073 3074 if (LBO) 3075 if (Value *V = simplifyICmpWithBinOpOnLHS(Pred, LBO, RHS, Q, MaxRecurse)) 3076 return V; 3077 3078 if (RBO) 3079 if (Value *V = simplifyICmpWithBinOpOnLHS( 3080 ICmpInst::getSwappedPredicate(Pred), RBO, LHS, Q, MaxRecurse)) 3081 return V; 3082 3083 // 0 - (zext X) pred C 3084 if (!CmpInst::isUnsigned(Pred) && match(LHS, m_Neg(m_ZExt(m_Value())))) { 3085 const APInt *C; 3086 if (match(RHS, m_APInt(C))) { 3087 if (C->isStrictlyPositive()) { 3088 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_NE) 3089 return ConstantInt::getTrue(GetCompareTy(RHS)); 3090 if (Pred == ICmpInst::ICMP_SGE || Pred == ICmpInst::ICMP_EQ) 3091 return ConstantInt::getFalse(GetCompareTy(RHS)); 3092 } 3093 if (C->isNonNegative()) { 3094 if (Pred == ICmpInst::ICMP_SLE) 3095 return ConstantInt::getTrue(GetCompareTy(RHS)); 3096 if (Pred == ICmpInst::ICMP_SGT) 3097 return ConstantInt::getFalse(GetCompareTy(RHS)); 3098 } 3099 } 3100 } 3101 3102 // If C2 is a power-of-2 and C is not: 3103 // (C2 << X) == C --> false 3104 // (C2 << X) != C --> true 3105 const APInt *C; 3106 if (match(LHS, m_Shl(m_Power2(), m_Value())) && 3107 match(RHS, m_APIntAllowUndef(C)) && !C->isPowerOf2()) { 3108 // C2 << X can equal zero in some circumstances. 3109 // This simplification might be unsafe if C is zero. 3110 // 3111 // We know it is safe if: 3112 // - The shift is nsw. We can't shift out the one bit. 3113 // - The shift is nuw. We can't shift out the one bit. 3114 // - C2 is one. 3115 // - C isn't zero. 3116 if (Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(LBO)) || 3117 Q.IIQ.hasNoUnsignedWrap(cast<OverflowingBinaryOperator>(LBO)) || 3118 match(LHS, m_Shl(m_One(), m_Value())) || !C->isZero()) { 3119 if (Pred == ICmpInst::ICMP_EQ) 3120 return ConstantInt::getFalse(GetCompareTy(RHS)); 3121 if (Pred == ICmpInst::ICMP_NE) 3122 return ConstantInt::getTrue(GetCompareTy(RHS)); 3123 } 3124 } 3125 3126 // TODO: This is overly constrained. LHS can be any power-of-2. 3127 // (1 << X) >u 0x8000 --> false 3128 // (1 << X) <=u 0x8000 --> true 3129 if (match(LHS, m_Shl(m_One(), m_Value())) && match(RHS, m_SignMask())) { 3130 if (Pred == ICmpInst::ICMP_UGT) 3131 return ConstantInt::getFalse(GetCompareTy(RHS)); 3132 if (Pred == ICmpInst::ICMP_ULE) 3133 return ConstantInt::getTrue(GetCompareTy(RHS)); 3134 } 3135 3136 if (MaxRecurse && LBO && RBO && LBO->getOpcode() == RBO->getOpcode() && 3137 LBO->getOperand(1) == RBO->getOperand(1)) { 3138 switch (LBO->getOpcode()) { 3139 default: 3140 break; 3141 case Instruction::UDiv: 3142 case Instruction::LShr: 3143 if (ICmpInst::isSigned(Pred) || !Q.IIQ.isExact(LBO) || 3144 !Q.IIQ.isExact(RBO)) 3145 break; 3146 if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0), 3147 RBO->getOperand(0), Q, MaxRecurse - 1)) 3148 return V; 3149 break; 3150 case Instruction::SDiv: 3151 if (!ICmpInst::isEquality(Pred) || !Q.IIQ.isExact(LBO) || 3152 !Q.IIQ.isExact(RBO)) 3153 break; 3154 if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0), 3155 RBO->getOperand(0), Q, MaxRecurse - 1)) 3156 return V; 3157 break; 3158 case Instruction::AShr: 3159 if (!Q.IIQ.isExact(LBO) || !Q.IIQ.isExact(RBO)) 3160 break; 3161 if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0), 3162 RBO->getOperand(0), Q, MaxRecurse - 1)) 3163 return V; 3164 break; 3165 case Instruction::Shl: { 3166 bool NUW = Q.IIQ.hasNoUnsignedWrap(LBO) && Q.IIQ.hasNoUnsignedWrap(RBO); 3167 bool NSW = Q.IIQ.hasNoSignedWrap(LBO) && Q.IIQ.hasNoSignedWrap(RBO); 3168 if (!NUW && !NSW) 3169 break; 3170 if (!NSW && ICmpInst::isSigned(Pred)) 3171 break; 3172 if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0), 3173 RBO->getOperand(0), Q, MaxRecurse - 1)) 3174 return V; 3175 break; 3176 } 3177 } 3178 } 3179 return nullptr; 3180 } 3181 3182 /// Simplify integer comparisons where at least one operand of the compare 3183 /// matches an integer min/max idiom. 3184 static Value *simplifyICmpWithMinMax(CmpInst::Predicate Pred, Value *LHS, 3185 Value *RHS, const SimplifyQuery &Q, 3186 unsigned MaxRecurse) { 3187 Type *ITy = GetCompareTy(LHS); // The return type. 3188 Value *A, *B; 3189 CmpInst::Predicate P = CmpInst::BAD_ICMP_PREDICATE; 3190 CmpInst::Predicate EqP; // Chosen so that "A == max/min(A,B)" iff "A EqP B". 3191 3192 // Signed variants on "max(a,b)>=a -> true". 3193 if (match(LHS, m_SMax(m_Value(A), m_Value(B))) && (A == RHS || B == RHS)) { 3194 if (A != RHS) 3195 std::swap(A, B); // smax(A, B) pred A. 3196 EqP = CmpInst::ICMP_SGE; // "A == smax(A, B)" iff "A sge B". 3197 // We analyze this as smax(A, B) pred A. 3198 P = Pred; 3199 } else if (match(RHS, m_SMax(m_Value(A), m_Value(B))) && 3200 (A == LHS || B == LHS)) { 3201 if (A != LHS) 3202 std::swap(A, B); // A pred smax(A, B). 3203 EqP = CmpInst::ICMP_SGE; // "A == smax(A, B)" iff "A sge B". 3204 // We analyze this as smax(A, B) swapped-pred A. 3205 P = CmpInst::getSwappedPredicate(Pred); 3206 } else if (match(LHS, m_SMin(m_Value(A), m_Value(B))) && 3207 (A == RHS || B == RHS)) { 3208 if (A != RHS) 3209 std::swap(A, B); // smin(A, B) pred A. 3210 EqP = CmpInst::ICMP_SLE; // "A == smin(A, B)" iff "A sle B". 3211 // We analyze this as smax(-A, -B) swapped-pred -A. 3212 // Note that we do not need to actually form -A or -B thanks to EqP. 3213 P = CmpInst::getSwappedPredicate(Pred); 3214 } else if (match(RHS, m_SMin(m_Value(A), m_Value(B))) && 3215 (A == LHS || B == LHS)) { 3216 if (A != LHS) 3217 std::swap(A, B); // A pred smin(A, B). 3218 EqP = CmpInst::ICMP_SLE; // "A == smin(A, B)" iff "A sle B". 3219 // We analyze this as smax(-A, -B) pred -A. 3220 // Note that we do not need to actually form -A or -B thanks to EqP. 3221 P = Pred; 3222 } 3223 if (P != CmpInst::BAD_ICMP_PREDICATE) { 3224 // Cases correspond to "max(A, B) p A". 3225 switch (P) { 3226 default: 3227 break; 3228 case CmpInst::ICMP_EQ: 3229 case CmpInst::ICMP_SLE: 3230 // Equivalent to "A EqP B". This may be the same as the condition tested 3231 // in the max/min; if so, we can just return that. 3232 if (Value *V = ExtractEquivalentCondition(LHS, EqP, A, B)) 3233 return V; 3234 if (Value *V = ExtractEquivalentCondition(RHS, EqP, A, B)) 3235 return V; 3236 // Otherwise, see if "A EqP B" simplifies. 3237 if (MaxRecurse) 3238 if (Value *V = SimplifyICmpInst(EqP, A, B, Q, MaxRecurse - 1)) 3239 return V; 3240 break; 3241 case CmpInst::ICMP_NE: 3242 case CmpInst::ICMP_SGT: { 3243 CmpInst::Predicate InvEqP = CmpInst::getInversePredicate(EqP); 3244 // Equivalent to "A InvEqP B". This may be the same as the condition 3245 // tested in the max/min; if so, we can just return that. 3246 if (Value *V = ExtractEquivalentCondition(LHS, InvEqP, A, B)) 3247 return V; 3248 if (Value *V = ExtractEquivalentCondition(RHS, InvEqP, A, B)) 3249 return V; 3250 // Otherwise, see if "A InvEqP B" simplifies. 3251 if (MaxRecurse) 3252 if (Value *V = SimplifyICmpInst(InvEqP, A, B, Q, MaxRecurse - 1)) 3253 return V; 3254 break; 3255 } 3256 case CmpInst::ICMP_SGE: 3257 // Always true. 3258 return getTrue(ITy); 3259 case CmpInst::ICMP_SLT: 3260 // Always false. 3261 return getFalse(ITy); 3262 } 3263 } 3264 3265 // Unsigned variants on "max(a,b)>=a -> true". 3266 P = CmpInst::BAD_ICMP_PREDICATE; 3267 if (match(LHS, m_UMax(m_Value(A), m_Value(B))) && (A == RHS || B == RHS)) { 3268 if (A != RHS) 3269 std::swap(A, B); // umax(A, B) pred A. 3270 EqP = CmpInst::ICMP_UGE; // "A == umax(A, B)" iff "A uge B". 3271 // We analyze this as umax(A, B) pred A. 3272 P = Pred; 3273 } else if (match(RHS, m_UMax(m_Value(A), m_Value(B))) && 3274 (A == LHS || B == LHS)) { 3275 if (A != LHS) 3276 std::swap(A, B); // A pred umax(A, B). 3277 EqP = CmpInst::ICMP_UGE; // "A == umax(A, B)" iff "A uge B". 3278 // We analyze this as umax(A, B) swapped-pred A. 3279 P = CmpInst::getSwappedPredicate(Pred); 3280 } else if (match(LHS, m_UMin(m_Value(A), m_Value(B))) && 3281 (A == RHS || B == RHS)) { 3282 if (A != RHS) 3283 std::swap(A, B); // umin(A, B) pred A. 3284 EqP = CmpInst::ICMP_ULE; // "A == umin(A, B)" iff "A ule B". 3285 // We analyze this as umax(-A, -B) swapped-pred -A. 3286 // Note that we do not need to actually form -A or -B thanks to EqP. 3287 P = CmpInst::getSwappedPredicate(Pred); 3288 } else if (match(RHS, m_UMin(m_Value(A), m_Value(B))) && 3289 (A == LHS || B == LHS)) { 3290 if (A != LHS) 3291 std::swap(A, B); // A pred umin(A, B). 3292 EqP = CmpInst::ICMP_ULE; // "A == umin(A, B)" iff "A ule B". 3293 // We analyze this as umax(-A, -B) pred -A. 3294 // Note that we do not need to actually form -A or -B thanks to EqP. 3295 P = Pred; 3296 } 3297 if (P != CmpInst::BAD_ICMP_PREDICATE) { 3298 // Cases correspond to "max(A, B) p A". 3299 switch (P) { 3300 default: 3301 break; 3302 case CmpInst::ICMP_EQ: 3303 case CmpInst::ICMP_ULE: 3304 // Equivalent to "A EqP B". This may be the same as the condition tested 3305 // in the max/min; if so, we can just return that. 3306 if (Value *V = ExtractEquivalentCondition(LHS, EqP, A, B)) 3307 return V; 3308 if (Value *V = ExtractEquivalentCondition(RHS, EqP, A, B)) 3309 return V; 3310 // Otherwise, see if "A EqP B" simplifies. 3311 if (MaxRecurse) 3312 if (Value *V = SimplifyICmpInst(EqP, A, B, Q, MaxRecurse - 1)) 3313 return V; 3314 break; 3315 case CmpInst::ICMP_NE: 3316 case CmpInst::ICMP_UGT: { 3317 CmpInst::Predicate InvEqP = CmpInst::getInversePredicate(EqP); 3318 // Equivalent to "A InvEqP B". This may be the same as the condition 3319 // tested in the max/min; if so, we can just return that. 3320 if (Value *V = ExtractEquivalentCondition(LHS, InvEqP, A, B)) 3321 return V; 3322 if (Value *V = ExtractEquivalentCondition(RHS, InvEqP, A, B)) 3323 return V; 3324 // Otherwise, see if "A InvEqP B" simplifies. 3325 if (MaxRecurse) 3326 if (Value *V = SimplifyICmpInst(InvEqP, A, B, Q, MaxRecurse - 1)) 3327 return V; 3328 break; 3329 } 3330 case CmpInst::ICMP_UGE: 3331 return getTrue(ITy); 3332 case CmpInst::ICMP_ULT: 3333 return getFalse(ITy); 3334 } 3335 } 3336 3337 // Comparing 1 each of min/max with a common operand? 3338 // Canonicalize min operand to RHS. 3339 if (match(LHS, m_UMin(m_Value(), m_Value())) || 3340 match(LHS, m_SMin(m_Value(), m_Value()))) { 3341 std::swap(LHS, RHS); 3342 Pred = ICmpInst::getSwappedPredicate(Pred); 3343 } 3344 3345 Value *C, *D; 3346 if (match(LHS, m_SMax(m_Value(A), m_Value(B))) && 3347 match(RHS, m_SMin(m_Value(C), m_Value(D))) && 3348 (A == C || A == D || B == C || B == D)) { 3349 // smax(A, B) >=s smin(A, D) --> true 3350 if (Pred == CmpInst::ICMP_SGE) 3351 return getTrue(ITy); 3352 // smax(A, B) <s smin(A, D) --> false 3353 if (Pred == CmpInst::ICMP_SLT) 3354 return getFalse(ITy); 3355 } else if (match(LHS, m_UMax(m_Value(A), m_Value(B))) && 3356 match(RHS, m_UMin(m_Value(C), m_Value(D))) && 3357 (A == C || A == D || B == C || B == D)) { 3358 // umax(A, B) >=u umin(A, D) --> true 3359 if (Pred == CmpInst::ICMP_UGE) 3360 return getTrue(ITy); 3361 // umax(A, B) <u umin(A, D) --> false 3362 if (Pred == CmpInst::ICMP_ULT) 3363 return getFalse(ITy); 3364 } 3365 3366 return nullptr; 3367 } 3368 3369 static Value *simplifyICmpWithDominatingAssume(CmpInst::Predicate Predicate, 3370 Value *LHS, Value *RHS, 3371 const SimplifyQuery &Q) { 3372 // Gracefully handle instructions that have not been inserted yet. 3373 if (!Q.AC || !Q.CxtI || !Q.CxtI->getParent()) 3374 return nullptr; 3375 3376 for (Value *AssumeBaseOp : {LHS, RHS}) { 3377 for (auto &AssumeVH : Q.AC->assumptionsFor(AssumeBaseOp)) { 3378 if (!AssumeVH) 3379 continue; 3380 3381 CallInst *Assume = cast<CallInst>(AssumeVH); 3382 if (Optional<bool> Imp = 3383 isImpliedCondition(Assume->getArgOperand(0), Predicate, LHS, RHS, 3384 Q.DL)) 3385 if (isValidAssumeForContext(Assume, Q.CxtI, Q.DT)) 3386 return ConstantInt::get(GetCompareTy(LHS), *Imp); 3387 } 3388 } 3389 3390 return nullptr; 3391 } 3392 3393 /// Given operands for an ICmpInst, see if we can fold the result. 3394 /// If not, this returns null. 3395 static Value *SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS, 3396 const SimplifyQuery &Q, unsigned MaxRecurse) { 3397 CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate; 3398 assert(CmpInst::isIntPredicate(Pred) && "Not an integer compare!"); 3399 3400 if (Constant *CLHS = dyn_cast<Constant>(LHS)) { 3401 if (Constant *CRHS = dyn_cast<Constant>(RHS)) 3402 return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, Q.DL, Q.TLI); 3403 3404 // If we have a constant, make sure it is on the RHS. 3405 std::swap(LHS, RHS); 3406 Pred = CmpInst::getSwappedPredicate(Pred); 3407 } 3408 assert(!isa<UndefValue>(LHS) && "Unexpected icmp undef,%X"); 3409 3410 Type *ITy = GetCompareTy(LHS); // The return type. 3411 3412 // icmp poison, X -> poison 3413 if (isa<PoisonValue>(RHS)) 3414 return PoisonValue::get(ITy); 3415 3416 // For EQ and NE, we can always pick a value for the undef to make the 3417 // predicate pass or fail, so we can return undef. 3418 // Matches behavior in llvm::ConstantFoldCompareInstruction. 3419 if (Q.isUndefValue(RHS) && ICmpInst::isEquality(Pred)) 3420 return UndefValue::get(ITy); 3421 3422 // icmp X, X -> true/false 3423 // icmp X, undef -> true/false because undef could be X. 3424 if (LHS == RHS || Q.isUndefValue(RHS)) 3425 return ConstantInt::get(ITy, CmpInst::isTrueWhenEqual(Pred)); 3426 3427 if (Value *V = simplifyICmpOfBools(Pred, LHS, RHS, Q)) 3428 return V; 3429 3430 // TODO: Sink/common this with other potentially expensive calls that use 3431 // ValueTracking? See comment below for isKnownNonEqual(). 3432 if (Value *V = simplifyICmpWithZero(Pred, LHS, RHS, Q)) 3433 return V; 3434 3435 if (Value *V = simplifyICmpWithConstant(Pred, LHS, RHS, Q.IIQ)) 3436 return V; 3437 3438 // If both operands have range metadata, use the metadata 3439 // to simplify the comparison. 3440 if (isa<Instruction>(RHS) && isa<Instruction>(LHS)) { 3441 auto RHS_Instr = cast<Instruction>(RHS); 3442 auto LHS_Instr = cast<Instruction>(LHS); 3443 3444 if (Q.IIQ.getMetadata(RHS_Instr, LLVMContext::MD_range) && 3445 Q.IIQ.getMetadata(LHS_Instr, LLVMContext::MD_range)) { 3446 auto RHS_CR = getConstantRangeFromMetadata( 3447 *RHS_Instr->getMetadata(LLVMContext::MD_range)); 3448 auto LHS_CR = getConstantRangeFromMetadata( 3449 *LHS_Instr->getMetadata(LLVMContext::MD_range)); 3450 3451 if (LHS_CR.icmp(Pred, RHS_CR)) 3452 return ConstantInt::getTrue(RHS->getContext()); 3453 3454 if (LHS_CR.icmp(CmpInst::getInversePredicate(Pred), RHS_CR)) 3455 return ConstantInt::getFalse(RHS->getContext()); 3456 } 3457 } 3458 3459 // Compare of cast, for example (zext X) != 0 -> X != 0 3460 if (isa<CastInst>(LHS) && (isa<Constant>(RHS) || isa<CastInst>(RHS))) { 3461 Instruction *LI = cast<CastInst>(LHS); 3462 Value *SrcOp = LI->getOperand(0); 3463 Type *SrcTy = SrcOp->getType(); 3464 Type *DstTy = LI->getType(); 3465 3466 // Turn icmp (ptrtoint x), (ptrtoint/constant) into a compare of the input 3467 // if the integer type is the same size as the pointer type. 3468 if (MaxRecurse && isa<PtrToIntInst>(LI) && 3469 Q.DL.getTypeSizeInBits(SrcTy) == DstTy->getPrimitiveSizeInBits()) { 3470 if (Constant *RHSC = dyn_cast<Constant>(RHS)) { 3471 // Transfer the cast to the constant. 3472 if (Value *V = SimplifyICmpInst(Pred, SrcOp, 3473 ConstantExpr::getIntToPtr(RHSC, SrcTy), 3474 Q, MaxRecurse-1)) 3475 return V; 3476 } else if (PtrToIntInst *RI = dyn_cast<PtrToIntInst>(RHS)) { 3477 if (RI->getOperand(0)->getType() == SrcTy) 3478 // Compare without the cast. 3479 if (Value *V = SimplifyICmpInst(Pred, SrcOp, RI->getOperand(0), 3480 Q, MaxRecurse-1)) 3481 return V; 3482 } 3483 } 3484 3485 if (isa<ZExtInst>(LHS)) { 3486 // Turn icmp (zext X), (zext Y) into a compare of X and Y if they have the 3487 // same type. 3488 if (ZExtInst *RI = dyn_cast<ZExtInst>(RHS)) { 3489 if (MaxRecurse && SrcTy == RI->getOperand(0)->getType()) 3490 // Compare X and Y. Note that signed predicates become unsigned. 3491 if (Value *V = SimplifyICmpInst(ICmpInst::getUnsignedPredicate(Pred), 3492 SrcOp, RI->getOperand(0), Q, 3493 MaxRecurse-1)) 3494 return V; 3495 } 3496 // Fold (zext X) ule (sext X), (zext X) sge (sext X) to true. 3497 else if (SExtInst *RI = dyn_cast<SExtInst>(RHS)) { 3498 if (SrcOp == RI->getOperand(0)) { 3499 if (Pred == ICmpInst::ICMP_ULE || Pred == ICmpInst::ICMP_SGE) 3500 return ConstantInt::getTrue(ITy); 3501 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_SLT) 3502 return ConstantInt::getFalse(ITy); 3503 } 3504 } 3505 // Turn icmp (zext X), Cst into a compare of X and Cst if Cst is extended 3506 // too. If not, then try to deduce the result of the comparison. 3507 else if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) { 3508 // Compute the constant that would happen if we truncated to SrcTy then 3509 // reextended to DstTy. 3510 Constant *Trunc = ConstantExpr::getTrunc(CI, SrcTy); 3511 Constant *RExt = ConstantExpr::getCast(CastInst::ZExt, Trunc, DstTy); 3512 3513 // If the re-extended constant didn't change then this is effectively 3514 // also a case of comparing two zero-extended values. 3515 if (RExt == CI && MaxRecurse) 3516 if (Value *V = SimplifyICmpInst(ICmpInst::getUnsignedPredicate(Pred), 3517 SrcOp, Trunc, Q, MaxRecurse-1)) 3518 return V; 3519 3520 // Otherwise the upper bits of LHS are zero while RHS has a non-zero bit 3521 // there. Use this to work out the result of the comparison. 3522 if (RExt != CI) { 3523 switch (Pred) { 3524 default: llvm_unreachable("Unknown ICmp predicate!"); 3525 // LHS <u RHS. 3526 case ICmpInst::ICMP_EQ: 3527 case ICmpInst::ICMP_UGT: 3528 case ICmpInst::ICMP_UGE: 3529 return ConstantInt::getFalse(CI->getContext()); 3530 3531 case ICmpInst::ICMP_NE: 3532 case ICmpInst::ICMP_ULT: 3533 case ICmpInst::ICMP_ULE: 3534 return ConstantInt::getTrue(CI->getContext()); 3535 3536 // LHS is non-negative. If RHS is negative then LHS >s LHS. If RHS 3537 // is non-negative then LHS <s RHS. 3538 case ICmpInst::ICMP_SGT: 3539 case ICmpInst::ICMP_SGE: 3540 return CI->getValue().isNegative() ? 3541 ConstantInt::getTrue(CI->getContext()) : 3542 ConstantInt::getFalse(CI->getContext()); 3543 3544 case ICmpInst::ICMP_SLT: 3545 case ICmpInst::ICMP_SLE: 3546 return CI->getValue().isNegative() ? 3547 ConstantInt::getFalse(CI->getContext()) : 3548 ConstantInt::getTrue(CI->getContext()); 3549 } 3550 } 3551 } 3552 } 3553 3554 if (isa<SExtInst>(LHS)) { 3555 // Turn icmp (sext X), (sext Y) into a compare of X and Y if they have the 3556 // same type. 3557 if (SExtInst *RI = dyn_cast<SExtInst>(RHS)) { 3558 if (MaxRecurse && SrcTy == RI->getOperand(0)->getType()) 3559 // Compare X and Y. Note that the predicate does not change. 3560 if (Value *V = SimplifyICmpInst(Pred, SrcOp, RI->getOperand(0), 3561 Q, MaxRecurse-1)) 3562 return V; 3563 } 3564 // Fold (sext X) uge (zext X), (sext X) sle (zext X) to true. 3565 else if (ZExtInst *RI = dyn_cast<ZExtInst>(RHS)) { 3566 if (SrcOp == RI->getOperand(0)) { 3567 if (Pred == ICmpInst::ICMP_UGE || Pred == ICmpInst::ICMP_SLE) 3568 return ConstantInt::getTrue(ITy); 3569 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_SGT) 3570 return ConstantInt::getFalse(ITy); 3571 } 3572 } 3573 // Turn icmp (sext X), Cst into a compare of X and Cst if Cst is extended 3574 // too. If not, then try to deduce the result of the comparison. 3575 else if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) { 3576 // Compute the constant that would happen if we truncated to SrcTy then 3577 // reextended to DstTy. 3578 Constant *Trunc = ConstantExpr::getTrunc(CI, SrcTy); 3579 Constant *RExt = ConstantExpr::getCast(CastInst::SExt, Trunc, DstTy); 3580 3581 // If the re-extended constant didn't change then this is effectively 3582 // also a case of comparing two sign-extended values. 3583 if (RExt == CI && MaxRecurse) 3584 if (Value *V = SimplifyICmpInst(Pred, SrcOp, Trunc, Q, MaxRecurse-1)) 3585 return V; 3586 3587 // Otherwise the upper bits of LHS are all equal, while RHS has varying 3588 // bits there. Use this to work out the result of the comparison. 3589 if (RExt != CI) { 3590 switch (Pred) { 3591 default: llvm_unreachable("Unknown ICmp predicate!"); 3592 case ICmpInst::ICMP_EQ: 3593 return ConstantInt::getFalse(CI->getContext()); 3594 case ICmpInst::ICMP_NE: 3595 return ConstantInt::getTrue(CI->getContext()); 3596 3597 // If RHS is non-negative then LHS <s RHS. If RHS is negative then 3598 // LHS >s RHS. 3599 case ICmpInst::ICMP_SGT: 3600 case ICmpInst::ICMP_SGE: 3601 return CI->getValue().isNegative() ? 3602 ConstantInt::getTrue(CI->getContext()) : 3603 ConstantInt::getFalse(CI->getContext()); 3604 case ICmpInst::ICMP_SLT: 3605 case ICmpInst::ICMP_SLE: 3606 return CI->getValue().isNegative() ? 3607 ConstantInt::getFalse(CI->getContext()) : 3608 ConstantInt::getTrue(CI->getContext()); 3609 3610 // If LHS is non-negative then LHS <u RHS. If LHS is negative then 3611 // LHS >u RHS. 3612 case ICmpInst::ICMP_UGT: 3613 case ICmpInst::ICMP_UGE: 3614 // Comparison is true iff the LHS <s 0. 3615 if (MaxRecurse) 3616 if (Value *V = SimplifyICmpInst(ICmpInst::ICMP_SLT, SrcOp, 3617 Constant::getNullValue(SrcTy), 3618 Q, MaxRecurse-1)) 3619 return V; 3620 break; 3621 case ICmpInst::ICMP_ULT: 3622 case ICmpInst::ICMP_ULE: 3623 // Comparison is true iff the LHS >=s 0. 3624 if (MaxRecurse) 3625 if (Value *V = SimplifyICmpInst(ICmpInst::ICMP_SGE, SrcOp, 3626 Constant::getNullValue(SrcTy), 3627 Q, MaxRecurse-1)) 3628 return V; 3629 break; 3630 } 3631 } 3632 } 3633 } 3634 } 3635 3636 // icmp eq|ne X, Y -> false|true if X != Y 3637 // This is potentially expensive, and we have already computedKnownBits for 3638 // compares with 0 above here, so only try this for a non-zero compare. 3639 if (ICmpInst::isEquality(Pred) && !match(RHS, m_Zero()) && 3640 isKnownNonEqual(LHS, RHS, Q.DL, Q.AC, Q.CxtI, Q.DT, Q.IIQ.UseInstrInfo)) { 3641 return Pred == ICmpInst::ICMP_NE ? getTrue(ITy) : getFalse(ITy); 3642 } 3643 3644 if (Value *V = simplifyICmpWithBinOp(Pred, LHS, RHS, Q, MaxRecurse)) 3645 return V; 3646 3647 if (Value *V = simplifyICmpWithMinMax(Pred, LHS, RHS, Q, MaxRecurse)) 3648 return V; 3649 3650 if (Value *V = simplifyICmpWithDominatingAssume(Pred, LHS, RHS, Q)) 3651 return V; 3652 3653 // Simplify comparisons of related pointers using a powerful, recursive 3654 // GEP-walk when we have target data available.. 3655 if (LHS->getType()->isPointerTy()) 3656 if (auto *C = computePointerICmp(Pred, LHS, RHS, Q)) 3657 return C; 3658 if (auto *CLHS = dyn_cast<PtrToIntOperator>(LHS)) 3659 if (auto *CRHS = dyn_cast<PtrToIntOperator>(RHS)) 3660 if (Q.DL.getTypeSizeInBits(CLHS->getPointerOperandType()) == 3661 Q.DL.getTypeSizeInBits(CLHS->getType()) && 3662 Q.DL.getTypeSizeInBits(CRHS->getPointerOperandType()) == 3663 Q.DL.getTypeSizeInBits(CRHS->getType())) 3664 if (auto *C = computePointerICmp(Pred, CLHS->getPointerOperand(), 3665 CRHS->getPointerOperand(), Q)) 3666 return C; 3667 3668 // If the comparison is with the result of a select instruction, check whether 3669 // comparing with either branch of the select always yields the same value. 3670 if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS)) 3671 if (Value *V = ThreadCmpOverSelect(Pred, LHS, RHS, Q, MaxRecurse)) 3672 return V; 3673 3674 // If the comparison is with the result of a phi instruction, check whether 3675 // doing the compare with each incoming phi value yields a common result. 3676 if (isa<PHINode>(LHS) || isa<PHINode>(RHS)) 3677 if (Value *V = ThreadCmpOverPHI(Pred, LHS, RHS, Q, MaxRecurse)) 3678 return V; 3679 3680 return nullptr; 3681 } 3682 3683 Value *llvm::SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS, 3684 const SimplifyQuery &Q) { 3685 return ::SimplifyICmpInst(Predicate, LHS, RHS, Q, RecursionLimit); 3686 } 3687 3688 /// Given operands for an FCmpInst, see if we can fold the result. 3689 /// If not, this returns null. 3690 static Value *SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS, 3691 FastMathFlags FMF, const SimplifyQuery &Q, 3692 unsigned MaxRecurse) { 3693 CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate; 3694 assert(CmpInst::isFPPredicate(Pred) && "Not an FP compare!"); 3695 3696 if (Constant *CLHS = dyn_cast<Constant>(LHS)) { 3697 if (Constant *CRHS = dyn_cast<Constant>(RHS)) 3698 return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, Q.DL, Q.TLI); 3699 3700 // If we have a constant, make sure it is on the RHS. 3701 std::swap(LHS, RHS); 3702 Pred = CmpInst::getSwappedPredicate(Pred); 3703 } 3704 3705 // Fold trivial predicates. 3706 Type *RetTy = GetCompareTy(LHS); 3707 if (Pred == FCmpInst::FCMP_FALSE) 3708 return getFalse(RetTy); 3709 if (Pred == FCmpInst::FCMP_TRUE) 3710 return getTrue(RetTy); 3711 3712 // Fold (un)ordered comparison if we can determine there are no NaNs. 3713 if (Pred == FCmpInst::FCMP_UNO || Pred == FCmpInst::FCMP_ORD) 3714 if (FMF.noNaNs() || 3715 (isKnownNeverNaN(LHS, Q.TLI) && isKnownNeverNaN(RHS, Q.TLI))) 3716 return ConstantInt::get(RetTy, Pred == FCmpInst::FCMP_ORD); 3717 3718 // NaN is unordered; NaN is not ordered. 3719 assert((FCmpInst::isOrdered(Pred) || FCmpInst::isUnordered(Pred)) && 3720 "Comparison must be either ordered or unordered"); 3721 if (match(RHS, m_NaN())) 3722 return ConstantInt::get(RetTy, CmpInst::isUnordered(Pred)); 3723 3724 // fcmp pred x, poison and fcmp pred poison, x 3725 // fold to poison 3726 if (isa<PoisonValue>(LHS) || isa<PoisonValue>(RHS)) 3727 return PoisonValue::get(RetTy); 3728 3729 // fcmp pred x, undef and fcmp pred undef, x 3730 // fold to true if unordered, false if ordered 3731 if (Q.isUndefValue(LHS) || Q.isUndefValue(RHS)) { 3732 // Choosing NaN for the undef will always make unordered comparison succeed 3733 // and ordered comparison fail. 3734 return ConstantInt::get(RetTy, CmpInst::isUnordered(Pred)); 3735 } 3736 3737 // fcmp x,x -> true/false. Not all compares are foldable. 3738 if (LHS == RHS) { 3739 if (CmpInst::isTrueWhenEqual(Pred)) 3740 return getTrue(RetTy); 3741 if (CmpInst::isFalseWhenEqual(Pred)) 3742 return getFalse(RetTy); 3743 } 3744 3745 // Handle fcmp with constant RHS. 3746 // TODO: Use match with a specific FP value, so these work with vectors with 3747 // undef lanes. 3748 const APFloat *C; 3749 if (match(RHS, m_APFloat(C))) { 3750 // Check whether the constant is an infinity. 3751 if (C->isInfinity()) { 3752 if (C->isNegative()) { 3753 switch (Pred) { 3754 case FCmpInst::FCMP_OLT: 3755 // No value is ordered and less than negative infinity. 3756 return getFalse(RetTy); 3757 case FCmpInst::FCMP_UGE: 3758 // All values are unordered with or at least negative infinity. 3759 return getTrue(RetTy); 3760 default: 3761 break; 3762 } 3763 } else { 3764 switch (Pred) { 3765 case FCmpInst::FCMP_OGT: 3766 // No value is ordered and greater than infinity. 3767 return getFalse(RetTy); 3768 case FCmpInst::FCMP_ULE: 3769 // All values are unordered with and at most infinity. 3770 return getTrue(RetTy); 3771 default: 3772 break; 3773 } 3774 } 3775 3776 // LHS == Inf 3777 if (Pred == FCmpInst::FCMP_OEQ && isKnownNeverInfinity(LHS, Q.TLI)) 3778 return getFalse(RetTy); 3779 // LHS != Inf 3780 if (Pred == FCmpInst::FCMP_UNE && isKnownNeverInfinity(LHS, Q.TLI)) 3781 return getTrue(RetTy); 3782 // LHS == Inf || LHS == NaN 3783 if (Pred == FCmpInst::FCMP_UEQ && isKnownNeverInfinity(LHS, Q.TLI) && 3784 isKnownNeverNaN(LHS, Q.TLI)) 3785 return getFalse(RetTy); 3786 // LHS != Inf && LHS != NaN 3787 if (Pred == FCmpInst::FCMP_ONE && isKnownNeverInfinity(LHS, Q.TLI) && 3788 isKnownNeverNaN(LHS, Q.TLI)) 3789 return getTrue(RetTy); 3790 } 3791 if (C->isNegative() && !C->isNegZero()) { 3792 assert(!C->isNaN() && "Unexpected NaN constant!"); 3793 // TODO: We can catch more cases by using a range check rather than 3794 // relying on CannotBeOrderedLessThanZero. 3795 switch (Pred) { 3796 case FCmpInst::FCMP_UGE: 3797 case FCmpInst::FCMP_UGT: 3798 case FCmpInst::FCMP_UNE: 3799 // (X >= 0) implies (X > C) when (C < 0) 3800 if (CannotBeOrderedLessThanZero(LHS, Q.TLI)) 3801 return getTrue(RetTy); 3802 break; 3803 case FCmpInst::FCMP_OEQ: 3804 case FCmpInst::FCMP_OLE: 3805 case FCmpInst::FCMP_OLT: 3806 // (X >= 0) implies !(X < C) when (C < 0) 3807 if (CannotBeOrderedLessThanZero(LHS, Q.TLI)) 3808 return getFalse(RetTy); 3809 break; 3810 default: 3811 break; 3812 } 3813 } 3814 3815 // Check comparison of [minnum/maxnum with constant] with other constant. 3816 const APFloat *C2; 3817 if ((match(LHS, m_Intrinsic<Intrinsic::minnum>(m_Value(), m_APFloat(C2))) && 3818 *C2 < *C) || 3819 (match(LHS, m_Intrinsic<Intrinsic::maxnum>(m_Value(), m_APFloat(C2))) && 3820 *C2 > *C)) { 3821 bool IsMaxNum = 3822 cast<IntrinsicInst>(LHS)->getIntrinsicID() == Intrinsic::maxnum; 3823 // The ordered relationship and minnum/maxnum guarantee that we do not 3824 // have NaN constants, so ordered/unordered preds are handled the same. 3825 switch (Pred) { 3826 case FCmpInst::FCMP_OEQ: case FCmpInst::FCMP_UEQ: 3827 // minnum(X, LesserC) == C --> false 3828 // maxnum(X, GreaterC) == C --> false 3829 return getFalse(RetTy); 3830 case FCmpInst::FCMP_ONE: case FCmpInst::FCMP_UNE: 3831 // minnum(X, LesserC) != C --> true 3832 // maxnum(X, GreaterC) != C --> true 3833 return getTrue(RetTy); 3834 case FCmpInst::FCMP_OGE: case FCmpInst::FCMP_UGE: 3835 case FCmpInst::FCMP_OGT: case FCmpInst::FCMP_UGT: 3836 // minnum(X, LesserC) >= C --> false 3837 // minnum(X, LesserC) > C --> false 3838 // maxnum(X, GreaterC) >= C --> true 3839 // maxnum(X, GreaterC) > C --> true 3840 return ConstantInt::get(RetTy, IsMaxNum); 3841 case FCmpInst::FCMP_OLE: case FCmpInst::FCMP_ULE: 3842 case FCmpInst::FCMP_OLT: case FCmpInst::FCMP_ULT: 3843 // minnum(X, LesserC) <= C --> true 3844 // minnum(X, LesserC) < C --> true 3845 // maxnum(X, GreaterC) <= C --> false 3846 // maxnum(X, GreaterC) < C --> false 3847 return ConstantInt::get(RetTy, !IsMaxNum); 3848 default: 3849 // TRUE/FALSE/ORD/UNO should be handled before this. 3850 llvm_unreachable("Unexpected fcmp predicate"); 3851 } 3852 } 3853 } 3854 3855 if (match(RHS, m_AnyZeroFP())) { 3856 switch (Pred) { 3857 case FCmpInst::FCMP_OGE: 3858 case FCmpInst::FCMP_ULT: 3859 // Positive or zero X >= 0.0 --> true 3860 // Positive or zero X < 0.0 --> false 3861 if ((FMF.noNaNs() || isKnownNeverNaN(LHS, Q.TLI)) && 3862 CannotBeOrderedLessThanZero(LHS, Q.TLI)) 3863 return Pred == FCmpInst::FCMP_OGE ? getTrue(RetTy) : getFalse(RetTy); 3864 break; 3865 case FCmpInst::FCMP_UGE: 3866 case FCmpInst::FCMP_OLT: 3867 // Positive or zero or nan X >= 0.0 --> true 3868 // Positive or zero or nan X < 0.0 --> false 3869 if (CannotBeOrderedLessThanZero(LHS, Q.TLI)) 3870 return Pred == FCmpInst::FCMP_UGE ? getTrue(RetTy) : getFalse(RetTy); 3871 break; 3872 default: 3873 break; 3874 } 3875 } 3876 3877 // If the comparison is with the result of a select instruction, check whether 3878 // comparing with either branch of the select always yields the same value. 3879 if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS)) 3880 if (Value *V = ThreadCmpOverSelect(Pred, LHS, RHS, Q, MaxRecurse)) 3881 return V; 3882 3883 // If the comparison is with the result of a phi instruction, check whether 3884 // doing the compare with each incoming phi value yields a common result. 3885 if (isa<PHINode>(LHS) || isa<PHINode>(RHS)) 3886 if (Value *V = ThreadCmpOverPHI(Pred, LHS, RHS, Q, MaxRecurse)) 3887 return V; 3888 3889 return nullptr; 3890 } 3891 3892 Value *llvm::SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS, 3893 FastMathFlags FMF, const SimplifyQuery &Q) { 3894 return ::SimplifyFCmpInst(Predicate, LHS, RHS, FMF, Q, RecursionLimit); 3895 } 3896 3897 static Value *simplifyWithOpReplaced(Value *V, Value *Op, Value *RepOp, 3898 const SimplifyQuery &Q, 3899 bool AllowRefinement, 3900 unsigned MaxRecurse) { 3901 assert(!Op->getType()->isVectorTy() && "This is not safe for vectors"); 3902 3903 // Trivial replacement. 3904 if (V == Op) 3905 return RepOp; 3906 3907 // We cannot replace a constant, and shouldn't even try. 3908 if (isa<Constant>(Op)) 3909 return nullptr; 3910 3911 auto *I = dyn_cast<Instruction>(V); 3912 if (!I || !is_contained(I->operands(), Op)) 3913 return nullptr; 3914 3915 // Replace Op with RepOp in instruction operands. 3916 SmallVector<Value *, 8> NewOps(I->getNumOperands()); 3917 transform(I->operands(), NewOps.begin(), 3918 [&](Value *V) { return V == Op ? RepOp : V; }); 3919 3920 if (!AllowRefinement) { 3921 // General InstSimplify functions may refine the result, e.g. by returning 3922 // a constant for a potentially poison value. To avoid this, implement only 3923 // a few non-refining but profitable transforms here. 3924 3925 if (auto *BO = dyn_cast<BinaryOperator>(I)) { 3926 unsigned Opcode = BO->getOpcode(); 3927 // id op x -> x, x op id -> x 3928 if (NewOps[0] == ConstantExpr::getBinOpIdentity(Opcode, I->getType())) 3929 return NewOps[1]; 3930 if (NewOps[1] == ConstantExpr::getBinOpIdentity(Opcode, I->getType(), 3931 /* RHS */ true)) 3932 return NewOps[0]; 3933 3934 // x & x -> x, x | x -> x 3935 if ((Opcode == Instruction::And || Opcode == Instruction::Or) && 3936 NewOps[0] == NewOps[1]) 3937 return NewOps[0]; 3938 } 3939 3940 if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) { 3941 // getelementptr x, 0 -> x 3942 if (NewOps.size() == 2 && match(NewOps[1], m_Zero()) && 3943 !GEP->isInBounds()) 3944 return NewOps[0]; 3945 } 3946 } else if (MaxRecurse) { 3947 // The simplification queries below may return the original value. Consider: 3948 // %div = udiv i32 %arg, %arg2 3949 // %mul = mul nsw i32 %div, %arg2 3950 // %cmp = icmp eq i32 %mul, %arg 3951 // %sel = select i1 %cmp, i32 %div, i32 undef 3952 // Replacing %arg by %mul, %div becomes "udiv i32 %mul, %arg2", which 3953 // simplifies back to %arg. This can only happen because %mul does not 3954 // dominate %div. To ensure a consistent return value contract, we make sure 3955 // that this case returns nullptr as well. 3956 auto PreventSelfSimplify = [V](Value *Simplified) { 3957 return Simplified != V ? Simplified : nullptr; 3958 }; 3959 3960 if (auto *B = dyn_cast<BinaryOperator>(I)) 3961 return PreventSelfSimplify(SimplifyBinOp(B->getOpcode(), NewOps[0], 3962 NewOps[1], Q, MaxRecurse - 1)); 3963 3964 if (CmpInst *C = dyn_cast<CmpInst>(I)) 3965 return PreventSelfSimplify(SimplifyCmpInst(C->getPredicate(), NewOps[0], 3966 NewOps[1], Q, MaxRecurse - 1)); 3967 3968 if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) 3969 return PreventSelfSimplify(SimplifyGEPInst(GEP->getSourceElementType(), 3970 NewOps, GEP->isInBounds(), Q, 3971 MaxRecurse - 1)); 3972 3973 if (isa<SelectInst>(I)) 3974 return PreventSelfSimplify( 3975 SimplifySelectInst(NewOps[0], NewOps[1], NewOps[2], Q, 3976 MaxRecurse - 1)); 3977 // TODO: We could hand off more cases to instsimplify here. 3978 } 3979 3980 // If all operands are constant after substituting Op for RepOp then we can 3981 // constant fold the instruction. 3982 SmallVector<Constant *, 8> ConstOps; 3983 for (Value *NewOp : NewOps) { 3984 if (Constant *ConstOp = dyn_cast<Constant>(NewOp)) 3985 ConstOps.push_back(ConstOp); 3986 else 3987 return nullptr; 3988 } 3989 3990 // Consider: 3991 // %cmp = icmp eq i32 %x, 2147483647 3992 // %add = add nsw i32 %x, 1 3993 // %sel = select i1 %cmp, i32 -2147483648, i32 %add 3994 // 3995 // We can't replace %sel with %add unless we strip away the flags (which 3996 // will be done in InstCombine). 3997 // TODO: This may be unsound, because it only catches some forms of 3998 // refinement. 3999 if (!AllowRefinement && canCreatePoison(cast<Operator>(I))) 4000 return nullptr; 4001 4002 if (CmpInst *C = dyn_cast<CmpInst>(I)) 4003 return ConstantFoldCompareInstOperands(C->getPredicate(), ConstOps[0], 4004 ConstOps[1], Q.DL, Q.TLI); 4005 4006 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 4007 if (!LI->isVolatile()) 4008 return ConstantFoldLoadFromConstPtr(ConstOps[0], LI->getType(), Q.DL); 4009 4010 return ConstantFoldInstOperands(I, ConstOps, Q.DL, Q.TLI); 4011 } 4012 4013 Value *llvm::simplifyWithOpReplaced(Value *V, Value *Op, Value *RepOp, 4014 const SimplifyQuery &Q, 4015 bool AllowRefinement) { 4016 return ::simplifyWithOpReplaced(V, Op, RepOp, Q, AllowRefinement, 4017 RecursionLimit); 4018 } 4019 4020 /// Try to simplify a select instruction when its condition operand is an 4021 /// integer comparison where one operand of the compare is a constant. 4022 static Value *simplifySelectBitTest(Value *TrueVal, Value *FalseVal, Value *X, 4023 const APInt *Y, bool TrueWhenUnset) { 4024 const APInt *C; 4025 4026 // (X & Y) == 0 ? X & ~Y : X --> X 4027 // (X & Y) != 0 ? X & ~Y : X --> X & ~Y 4028 if (FalseVal == X && match(TrueVal, m_And(m_Specific(X), m_APInt(C))) && 4029 *Y == ~*C) 4030 return TrueWhenUnset ? FalseVal : TrueVal; 4031 4032 // (X & Y) == 0 ? X : X & ~Y --> X & ~Y 4033 // (X & Y) != 0 ? X : X & ~Y --> X 4034 if (TrueVal == X && match(FalseVal, m_And(m_Specific(X), m_APInt(C))) && 4035 *Y == ~*C) 4036 return TrueWhenUnset ? FalseVal : TrueVal; 4037 4038 if (Y->isPowerOf2()) { 4039 // (X & Y) == 0 ? X | Y : X --> X | Y 4040 // (X & Y) != 0 ? X | Y : X --> X 4041 if (FalseVal == X && match(TrueVal, m_Or(m_Specific(X), m_APInt(C))) && 4042 *Y == *C) 4043 return TrueWhenUnset ? TrueVal : FalseVal; 4044 4045 // (X & Y) == 0 ? X : X | Y --> X 4046 // (X & Y) != 0 ? X : X | Y --> X | Y 4047 if (TrueVal == X && match(FalseVal, m_Or(m_Specific(X), m_APInt(C))) && 4048 *Y == *C) 4049 return TrueWhenUnset ? TrueVal : FalseVal; 4050 } 4051 4052 return nullptr; 4053 } 4054 4055 /// An alternative way to test if a bit is set or not uses sgt/slt instead of 4056 /// eq/ne. 4057 static Value *simplifySelectWithFakeICmpEq(Value *CmpLHS, Value *CmpRHS, 4058 ICmpInst::Predicate Pred, 4059 Value *TrueVal, Value *FalseVal) { 4060 Value *X; 4061 APInt Mask; 4062 if (!decomposeBitTestICmp(CmpLHS, CmpRHS, Pred, X, Mask)) 4063 return nullptr; 4064 4065 return simplifySelectBitTest(TrueVal, FalseVal, X, &Mask, 4066 Pred == ICmpInst::ICMP_EQ); 4067 } 4068 4069 /// Try to simplify a select instruction when its condition operand is an 4070 /// integer comparison. 4071 static Value *simplifySelectWithICmpCond(Value *CondVal, Value *TrueVal, 4072 Value *FalseVal, const SimplifyQuery &Q, 4073 unsigned MaxRecurse) { 4074 ICmpInst::Predicate Pred; 4075 Value *CmpLHS, *CmpRHS; 4076 if (!match(CondVal, m_ICmp(Pred, m_Value(CmpLHS), m_Value(CmpRHS)))) 4077 return nullptr; 4078 4079 // Canonicalize ne to eq predicate. 4080 if (Pred == ICmpInst::ICMP_NE) { 4081 Pred = ICmpInst::ICMP_EQ; 4082 std::swap(TrueVal, FalseVal); 4083 } 4084 4085 // Check for integer min/max with a limit constant: 4086 // X > MIN_INT ? X : MIN_INT --> X 4087 // X < MAX_INT ? X : MAX_INT --> X 4088 if (TrueVal->getType()->isIntOrIntVectorTy()) { 4089 Value *X, *Y; 4090 SelectPatternFlavor SPF = 4091 matchDecomposedSelectPattern(cast<ICmpInst>(CondVal), TrueVal, FalseVal, 4092 X, Y).Flavor; 4093 if (SelectPatternResult::isMinOrMax(SPF) && Pred == getMinMaxPred(SPF)) { 4094 APInt LimitC = getMinMaxLimit(getInverseMinMaxFlavor(SPF), 4095 X->getType()->getScalarSizeInBits()); 4096 if (match(Y, m_SpecificInt(LimitC))) 4097 return X; 4098 } 4099 } 4100 4101 if (Pred == ICmpInst::ICMP_EQ && match(CmpRHS, m_Zero())) { 4102 Value *X; 4103 const APInt *Y; 4104 if (match(CmpLHS, m_And(m_Value(X), m_APInt(Y)))) 4105 if (Value *V = simplifySelectBitTest(TrueVal, FalseVal, X, Y, 4106 /*TrueWhenUnset=*/true)) 4107 return V; 4108 4109 // Test for a bogus zero-shift-guard-op around funnel-shift or rotate. 4110 Value *ShAmt; 4111 auto isFsh = m_CombineOr(m_FShl(m_Value(X), m_Value(), m_Value(ShAmt)), 4112 m_FShr(m_Value(), m_Value(X), m_Value(ShAmt))); 4113 // (ShAmt == 0) ? fshl(X, *, ShAmt) : X --> X 4114 // (ShAmt == 0) ? fshr(*, X, ShAmt) : X --> X 4115 if (match(TrueVal, isFsh) && FalseVal == X && CmpLHS == ShAmt) 4116 return X; 4117 4118 // Test for a zero-shift-guard-op around rotates. These are used to 4119 // avoid UB from oversized shifts in raw IR rotate patterns, but the 4120 // intrinsics do not have that problem. 4121 // We do not allow this transform for the general funnel shift case because 4122 // that would not preserve the poison safety of the original code. 4123 auto isRotate = 4124 m_CombineOr(m_FShl(m_Value(X), m_Deferred(X), m_Value(ShAmt)), 4125 m_FShr(m_Value(X), m_Deferred(X), m_Value(ShAmt))); 4126 // (ShAmt == 0) ? X : fshl(X, X, ShAmt) --> fshl(X, X, ShAmt) 4127 // (ShAmt == 0) ? X : fshr(X, X, ShAmt) --> fshr(X, X, ShAmt) 4128 if (match(FalseVal, isRotate) && TrueVal == X && CmpLHS == ShAmt && 4129 Pred == ICmpInst::ICMP_EQ) 4130 return FalseVal; 4131 4132 // X == 0 ? abs(X) : -abs(X) --> -abs(X) 4133 // X == 0 ? -abs(X) : abs(X) --> abs(X) 4134 if (match(TrueVal, m_Intrinsic<Intrinsic::abs>(m_Specific(CmpLHS))) && 4135 match(FalseVal, m_Neg(m_Intrinsic<Intrinsic::abs>(m_Specific(CmpLHS))))) 4136 return FalseVal; 4137 if (match(TrueVal, 4138 m_Neg(m_Intrinsic<Intrinsic::abs>(m_Specific(CmpLHS)))) && 4139 match(FalseVal, m_Intrinsic<Intrinsic::abs>(m_Specific(CmpLHS)))) 4140 return FalseVal; 4141 } 4142 4143 // Check for other compares that behave like bit test. 4144 if (Value *V = simplifySelectWithFakeICmpEq(CmpLHS, CmpRHS, Pred, 4145 TrueVal, FalseVal)) 4146 return V; 4147 4148 // If we have a scalar equality comparison, then we know the value in one of 4149 // the arms of the select. See if substituting this value into the arm and 4150 // simplifying the result yields the same value as the other arm. 4151 // Note that the equivalence/replacement opportunity does not hold for vectors 4152 // because each element of a vector select is chosen independently. 4153 if (Pred == ICmpInst::ICMP_EQ && !CondVal->getType()->isVectorTy()) { 4154 if (simplifyWithOpReplaced(FalseVal, CmpLHS, CmpRHS, Q, 4155 /* AllowRefinement */ false, MaxRecurse) == 4156 TrueVal || 4157 simplifyWithOpReplaced(FalseVal, CmpRHS, CmpLHS, Q, 4158 /* AllowRefinement */ false, MaxRecurse) == 4159 TrueVal) 4160 return FalseVal; 4161 if (simplifyWithOpReplaced(TrueVal, CmpLHS, CmpRHS, Q, 4162 /* AllowRefinement */ true, MaxRecurse) == 4163 FalseVal || 4164 simplifyWithOpReplaced(TrueVal, CmpRHS, CmpLHS, Q, 4165 /* AllowRefinement */ true, MaxRecurse) == 4166 FalseVal) 4167 return FalseVal; 4168 } 4169 4170 return nullptr; 4171 } 4172 4173 /// Try to simplify a select instruction when its condition operand is a 4174 /// floating-point comparison. 4175 static Value *simplifySelectWithFCmp(Value *Cond, Value *T, Value *F, 4176 const SimplifyQuery &Q) { 4177 FCmpInst::Predicate Pred; 4178 if (!match(Cond, m_FCmp(Pred, m_Specific(T), m_Specific(F))) && 4179 !match(Cond, m_FCmp(Pred, m_Specific(F), m_Specific(T)))) 4180 return nullptr; 4181 4182 // This transform is safe if we do not have (do not care about) -0.0 or if 4183 // at least one operand is known to not be -0.0. Otherwise, the select can 4184 // change the sign of a zero operand. 4185 bool HasNoSignedZeros = Q.CxtI && isa<FPMathOperator>(Q.CxtI) && 4186 Q.CxtI->hasNoSignedZeros(); 4187 const APFloat *C; 4188 if (HasNoSignedZeros || (match(T, m_APFloat(C)) && C->isNonZero()) || 4189 (match(F, m_APFloat(C)) && C->isNonZero())) { 4190 // (T == F) ? T : F --> F 4191 // (F == T) ? T : F --> F 4192 if (Pred == FCmpInst::FCMP_OEQ) 4193 return F; 4194 4195 // (T != F) ? T : F --> T 4196 // (F != T) ? T : F --> T 4197 if (Pred == FCmpInst::FCMP_UNE) 4198 return T; 4199 } 4200 4201 return nullptr; 4202 } 4203 4204 /// Given operands for a SelectInst, see if we can fold the result. 4205 /// If not, this returns null. 4206 static Value *SimplifySelectInst(Value *Cond, Value *TrueVal, Value *FalseVal, 4207 const SimplifyQuery &Q, unsigned MaxRecurse) { 4208 if (auto *CondC = dyn_cast<Constant>(Cond)) { 4209 if (auto *TrueC = dyn_cast<Constant>(TrueVal)) 4210 if (auto *FalseC = dyn_cast<Constant>(FalseVal)) 4211 return ConstantFoldSelectInstruction(CondC, TrueC, FalseC); 4212 4213 // select poison, X, Y -> poison 4214 if (isa<PoisonValue>(CondC)) 4215 return PoisonValue::get(TrueVal->getType()); 4216 4217 // select undef, X, Y -> X or Y 4218 if (Q.isUndefValue(CondC)) 4219 return isa<Constant>(FalseVal) ? FalseVal : TrueVal; 4220 4221 // select true, X, Y --> X 4222 // select false, X, Y --> Y 4223 // For vectors, allow undef/poison elements in the condition to match the 4224 // defined elements, so we can eliminate the select. 4225 if (match(CondC, m_One())) 4226 return TrueVal; 4227 if (match(CondC, m_Zero())) 4228 return FalseVal; 4229 } 4230 4231 assert(Cond->getType()->isIntOrIntVectorTy(1) && 4232 "Select must have bool or bool vector condition"); 4233 assert(TrueVal->getType() == FalseVal->getType() && 4234 "Select must have same types for true/false ops"); 4235 4236 if (Cond->getType() == TrueVal->getType()) { 4237 // select i1 Cond, i1 true, i1 false --> i1 Cond 4238 if (match(TrueVal, m_One()) && match(FalseVal, m_ZeroInt())) 4239 return Cond; 4240 4241 // (X || Y) && (X || !Y) --> X (commuted 8 ways) 4242 Value *X, *Y; 4243 if (match(FalseVal, m_ZeroInt())) { 4244 if (match(Cond, m_c_LogicalOr(m_Value(X), m_Not(m_Value(Y)))) && 4245 match(TrueVal, m_c_LogicalOr(m_Specific(X), m_Specific(Y)))) 4246 return X; 4247 if (match(TrueVal, m_c_LogicalOr(m_Value(X), m_Not(m_Value(Y)))) && 4248 match(Cond, m_c_LogicalOr(m_Specific(X), m_Specific(Y)))) 4249 return X; 4250 } 4251 } 4252 4253 // select ?, X, X -> X 4254 if (TrueVal == FalseVal) 4255 return TrueVal; 4256 4257 // If the true or false value is poison, we can fold to the other value. 4258 // If the true or false value is undef, we can fold to the other value as 4259 // long as the other value isn't poison. 4260 // select ?, poison, X -> X 4261 // select ?, undef, X -> X 4262 if (isa<PoisonValue>(TrueVal) || 4263 (Q.isUndefValue(TrueVal) && 4264 isGuaranteedNotToBePoison(FalseVal, Q.AC, Q.CxtI, Q.DT))) 4265 return FalseVal; 4266 // select ?, X, poison -> X 4267 // select ?, X, undef -> X 4268 if (isa<PoisonValue>(FalseVal) || 4269 (Q.isUndefValue(FalseVal) && 4270 isGuaranteedNotToBePoison(TrueVal, Q.AC, Q.CxtI, Q.DT))) 4271 return TrueVal; 4272 4273 // Deal with partial undef vector constants: select ?, VecC, VecC' --> VecC'' 4274 Constant *TrueC, *FalseC; 4275 if (isa<FixedVectorType>(TrueVal->getType()) && 4276 match(TrueVal, m_Constant(TrueC)) && 4277 match(FalseVal, m_Constant(FalseC))) { 4278 unsigned NumElts = 4279 cast<FixedVectorType>(TrueC->getType())->getNumElements(); 4280 SmallVector<Constant *, 16> NewC; 4281 for (unsigned i = 0; i != NumElts; ++i) { 4282 // Bail out on incomplete vector constants. 4283 Constant *TEltC = TrueC->getAggregateElement(i); 4284 Constant *FEltC = FalseC->getAggregateElement(i); 4285 if (!TEltC || !FEltC) 4286 break; 4287 4288 // If the elements match (undef or not), that value is the result. If only 4289 // one element is undef, choose the defined element as the safe result. 4290 if (TEltC == FEltC) 4291 NewC.push_back(TEltC); 4292 else if (isa<PoisonValue>(TEltC) || 4293 (Q.isUndefValue(TEltC) && isGuaranteedNotToBePoison(FEltC))) 4294 NewC.push_back(FEltC); 4295 else if (isa<PoisonValue>(FEltC) || 4296 (Q.isUndefValue(FEltC) && isGuaranteedNotToBePoison(TEltC))) 4297 NewC.push_back(TEltC); 4298 else 4299 break; 4300 } 4301 if (NewC.size() == NumElts) 4302 return ConstantVector::get(NewC); 4303 } 4304 4305 if (Value *V = 4306 simplifySelectWithICmpCond(Cond, TrueVal, FalseVal, Q, MaxRecurse)) 4307 return V; 4308 4309 if (Value *V = simplifySelectWithFCmp(Cond, TrueVal, FalseVal, Q)) 4310 return V; 4311 4312 if (Value *V = foldSelectWithBinaryOp(Cond, TrueVal, FalseVal)) 4313 return V; 4314 4315 Optional<bool> Imp = isImpliedByDomCondition(Cond, Q.CxtI, Q.DL); 4316 if (Imp) 4317 return *Imp ? TrueVal : FalseVal; 4318 4319 return nullptr; 4320 } 4321 4322 Value *llvm::SimplifySelectInst(Value *Cond, Value *TrueVal, Value *FalseVal, 4323 const SimplifyQuery &Q) { 4324 return ::SimplifySelectInst(Cond, TrueVal, FalseVal, Q, RecursionLimit); 4325 } 4326 4327 /// Given operands for an GetElementPtrInst, see if we can fold the result. 4328 /// If not, this returns null. 4329 static Value *SimplifyGEPInst(Type *SrcTy, ArrayRef<Value *> Ops, bool InBounds, 4330 const SimplifyQuery &Q, unsigned) { 4331 // The type of the GEP pointer operand. 4332 unsigned AS = 4333 cast<PointerType>(Ops[0]->getType()->getScalarType())->getAddressSpace(); 4334 4335 // getelementptr P -> P. 4336 if (Ops.size() == 1) 4337 return Ops[0]; 4338 4339 // Compute the (pointer) type returned by the GEP instruction. 4340 Type *LastType = GetElementPtrInst::getIndexedType(SrcTy, Ops.slice(1)); 4341 Type *GEPTy = PointerType::get(LastType, AS); 4342 for (Value *Op : Ops) { 4343 // If one of the operands is a vector, the result type is a vector of 4344 // pointers. All vector operands must have the same number of elements. 4345 if (VectorType *VT = dyn_cast<VectorType>(Op->getType())) { 4346 GEPTy = VectorType::get(GEPTy, VT->getElementCount()); 4347 break; 4348 } 4349 } 4350 4351 // getelementptr poison, idx -> poison 4352 // getelementptr baseptr, poison -> poison 4353 if (any_of(Ops, [](const auto *V) { return isa<PoisonValue>(V); })) 4354 return PoisonValue::get(GEPTy); 4355 4356 if (Q.isUndefValue(Ops[0])) 4357 return UndefValue::get(GEPTy); 4358 4359 bool IsScalableVec = 4360 isa<ScalableVectorType>(SrcTy) || any_of(Ops, [](const Value *V) { 4361 return isa<ScalableVectorType>(V->getType()); 4362 }); 4363 4364 if (Ops.size() == 2) { 4365 // getelementptr P, 0 -> P. 4366 if (match(Ops[1], m_Zero()) && Ops[0]->getType() == GEPTy) 4367 return Ops[0]; 4368 4369 Type *Ty = SrcTy; 4370 if (!IsScalableVec && Ty->isSized()) { 4371 Value *P; 4372 uint64_t C; 4373 uint64_t TyAllocSize = Q.DL.getTypeAllocSize(Ty); 4374 // getelementptr P, N -> P if P points to a type of zero size. 4375 if (TyAllocSize == 0 && Ops[0]->getType() == GEPTy) 4376 return Ops[0]; 4377 4378 // The following transforms are only safe if the ptrtoint cast 4379 // doesn't truncate the pointers. 4380 if (Ops[1]->getType()->getScalarSizeInBits() == 4381 Q.DL.getPointerSizeInBits(AS)) { 4382 auto CanSimplify = [GEPTy, &P, V = Ops[0]]() -> bool { 4383 return P->getType() == GEPTy && 4384 getUnderlyingObject(P) == getUnderlyingObject(V); 4385 }; 4386 // getelementptr V, (sub P, V) -> P if P points to a type of size 1. 4387 if (TyAllocSize == 1 && 4388 match(Ops[1], m_Sub(m_PtrToInt(m_Value(P)), 4389 m_PtrToInt(m_Specific(Ops[0])))) && 4390 CanSimplify()) 4391 return P; 4392 4393 // getelementptr V, (ashr (sub P, V), C) -> P if P points to a type of 4394 // size 1 << C. 4395 if (match(Ops[1], m_AShr(m_Sub(m_PtrToInt(m_Value(P)), 4396 m_PtrToInt(m_Specific(Ops[0]))), 4397 m_ConstantInt(C))) && 4398 TyAllocSize == 1ULL << C && CanSimplify()) 4399 return P; 4400 4401 // getelementptr V, (sdiv (sub P, V), C) -> P if P points to a type of 4402 // size C. 4403 if (match(Ops[1], m_SDiv(m_Sub(m_PtrToInt(m_Value(P)), 4404 m_PtrToInt(m_Specific(Ops[0]))), 4405 m_SpecificInt(TyAllocSize))) && 4406 CanSimplify()) 4407 return P; 4408 } 4409 } 4410 } 4411 4412 if (!IsScalableVec && Q.DL.getTypeAllocSize(LastType) == 1 && 4413 all_of(Ops.slice(1).drop_back(1), 4414 [](Value *Idx) { return match(Idx, m_Zero()); })) { 4415 unsigned IdxWidth = 4416 Q.DL.getIndexSizeInBits(Ops[0]->getType()->getPointerAddressSpace()); 4417 if (Q.DL.getTypeSizeInBits(Ops.back()->getType()) == IdxWidth) { 4418 APInt BasePtrOffset(IdxWidth, 0); 4419 Value *StrippedBasePtr = 4420 Ops[0]->stripAndAccumulateInBoundsConstantOffsets(Q.DL, 4421 BasePtrOffset); 4422 4423 // Avoid creating inttoptr of zero here: While LLVMs treatment of 4424 // inttoptr is generally conservative, this particular case is folded to 4425 // a null pointer, which will have incorrect provenance. 4426 4427 // gep (gep V, C), (sub 0, V) -> C 4428 if (match(Ops.back(), 4429 m_Sub(m_Zero(), m_PtrToInt(m_Specific(StrippedBasePtr)))) && 4430 !BasePtrOffset.isZero()) { 4431 auto *CI = ConstantInt::get(GEPTy->getContext(), BasePtrOffset); 4432 return ConstantExpr::getIntToPtr(CI, GEPTy); 4433 } 4434 // gep (gep V, C), (xor V, -1) -> C-1 4435 if (match(Ops.back(), 4436 m_Xor(m_PtrToInt(m_Specific(StrippedBasePtr)), m_AllOnes())) && 4437 !BasePtrOffset.isOne()) { 4438 auto *CI = ConstantInt::get(GEPTy->getContext(), BasePtrOffset - 1); 4439 return ConstantExpr::getIntToPtr(CI, GEPTy); 4440 } 4441 } 4442 } 4443 4444 // Check to see if this is constant foldable. 4445 if (!all_of(Ops, [](Value *V) { return isa<Constant>(V); })) 4446 return nullptr; 4447 4448 auto *CE = ConstantExpr::getGetElementPtr(SrcTy, cast<Constant>(Ops[0]), 4449 Ops.slice(1), InBounds); 4450 return ConstantFoldConstant(CE, Q.DL); 4451 } 4452 4453 Value *llvm::SimplifyGEPInst(Type *SrcTy, ArrayRef<Value *> Ops, bool InBounds, 4454 const SimplifyQuery &Q) { 4455 return ::SimplifyGEPInst(SrcTy, Ops, InBounds, Q, RecursionLimit); 4456 } 4457 4458 /// Given operands for an InsertValueInst, see if we can fold the result. 4459 /// If not, this returns null. 4460 static Value *SimplifyInsertValueInst(Value *Agg, Value *Val, 4461 ArrayRef<unsigned> Idxs, const SimplifyQuery &Q, 4462 unsigned) { 4463 if (Constant *CAgg = dyn_cast<Constant>(Agg)) 4464 if (Constant *CVal = dyn_cast<Constant>(Val)) 4465 return ConstantFoldInsertValueInstruction(CAgg, CVal, Idxs); 4466 4467 // insertvalue x, undef, n -> x 4468 if (Q.isUndefValue(Val)) 4469 return Agg; 4470 4471 // insertvalue x, (extractvalue y, n), n 4472 if (ExtractValueInst *EV = dyn_cast<ExtractValueInst>(Val)) 4473 if (EV->getAggregateOperand()->getType() == Agg->getType() && 4474 EV->getIndices() == Idxs) { 4475 // insertvalue undef, (extractvalue y, n), n -> y 4476 if (Q.isUndefValue(Agg)) 4477 return EV->getAggregateOperand(); 4478 4479 // insertvalue y, (extractvalue y, n), n -> y 4480 if (Agg == EV->getAggregateOperand()) 4481 return Agg; 4482 } 4483 4484 return nullptr; 4485 } 4486 4487 Value *llvm::SimplifyInsertValueInst(Value *Agg, Value *Val, 4488 ArrayRef<unsigned> Idxs, 4489 const SimplifyQuery &Q) { 4490 return ::SimplifyInsertValueInst(Agg, Val, Idxs, Q, RecursionLimit); 4491 } 4492 4493 Value *llvm::SimplifyInsertElementInst(Value *Vec, Value *Val, Value *Idx, 4494 const SimplifyQuery &Q) { 4495 // Try to constant fold. 4496 auto *VecC = dyn_cast<Constant>(Vec); 4497 auto *ValC = dyn_cast<Constant>(Val); 4498 auto *IdxC = dyn_cast<Constant>(Idx); 4499 if (VecC && ValC && IdxC) 4500 return ConstantExpr::getInsertElement(VecC, ValC, IdxC); 4501 4502 // For fixed-length vector, fold into poison if index is out of bounds. 4503 if (auto *CI = dyn_cast<ConstantInt>(Idx)) { 4504 if (isa<FixedVectorType>(Vec->getType()) && 4505 CI->uge(cast<FixedVectorType>(Vec->getType())->getNumElements())) 4506 return PoisonValue::get(Vec->getType()); 4507 } 4508 4509 // If index is undef, it might be out of bounds (see above case) 4510 if (Q.isUndefValue(Idx)) 4511 return PoisonValue::get(Vec->getType()); 4512 4513 // If the scalar is poison, or it is undef and there is no risk of 4514 // propagating poison from the vector value, simplify to the vector value. 4515 if (isa<PoisonValue>(Val) || 4516 (Q.isUndefValue(Val) && isGuaranteedNotToBePoison(Vec))) 4517 return Vec; 4518 4519 // If we are extracting a value from a vector, then inserting it into the same 4520 // place, that's the input vector: 4521 // insertelt Vec, (extractelt Vec, Idx), Idx --> Vec 4522 if (match(Val, m_ExtractElt(m_Specific(Vec), m_Specific(Idx)))) 4523 return Vec; 4524 4525 return nullptr; 4526 } 4527 4528 /// Given operands for an ExtractValueInst, see if we can fold the result. 4529 /// If not, this returns null. 4530 static Value *SimplifyExtractValueInst(Value *Agg, ArrayRef<unsigned> Idxs, 4531 const SimplifyQuery &, unsigned) { 4532 if (auto *CAgg = dyn_cast<Constant>(Agg)) 4533 return ConstantFoldExtractValueInstruction(CAgg, Idxs); 4534 4535 // extractvalue x, (insertvalue y, elt, n), n -> elt 4536 unsigned NumIdxs = Idxs.size(); 4537 for (auto *IVI = dyn_cast<InsertValueInst>(Agg); IVI != nullptr; 4538 IVI = dyn_cast<InsertValueInst>(IVI->getAggregateOperand())) { 4539 ArrayRef<unsigned> InsertValueIdxs = IVI->getIndices(); 4540 unsigned NumInsertValueIdxs = InsertValueIdxs.size(); 4541 unsigned NumCommonIdxs = std::min(NumInsertValueIdxs, NumIdxs); 4542 if (InsertValueIdxs.slice(0, NumCommonIdxs) == 4543 Idxs.slice(0, NumCommonIdxs)) { 4544 if (NumIdxs == NumInsertValueIdxs) 4545 return IVI->getInsertedValueOperand(); 4546 break; 4547 } 4548 } 4549 4550 return nullptr; 4551 } 4552 4553 Value *llvm::SimplifyExtractValueInst(Value *Agg, ArrayRef<unsigned> Idxs, 4554 const SimplifyQuery &Q) { 4555 return ::SimplifyExtractValueInst(Agg, Idxs, Q, RecursionLimit); 4556 } 4557 4558 /// Given operands for an ExtractElementInst, see if we can fold the result. 4559 /// If not, this returns null. 4560 static Value *SimplifyExtractElementInst(Value *Vec, Value *Idx, 4561 const SimplifyQuery &Q, unsigned) { 4562 auto *VecVTy = cast<VectorType>(Vec->getType()); 4563 if (auto *CVec = dyn_cast<Constant>(Vec)) { 4564 if (auto *CIdx = dyn_cast<Constant>(Idx)) 4565 return ConstantExpr::getExtractElement(CVec, CIdx); 4566 4567 if (Q.isUndefValue(Vec)) 4568 return UndefValue::get(VecVTy->getElementType()); 4569 } 4570 4571 // An undef extract index can be arbitrarily chosen to be an out-of-range 4572 // index value, which would result in the instruction being poison. 4573 if (Q.isUndefValue(Idx)) 4574 return PoisonValue::get(VecVTy->getElementType()); 4575 4576 // If extracting a specified index from the vector, see if we can recursively 4577 // find a previously computed scalar that was inserted into the vector. 4578 if (auto *IdxC = dyn_cast<ConstantInt>(Idx)) { 4579 // For fixed-length vector, fold into undef if index is out of bounds. 4580 unsigned MinNumElts = VecVTy->getElementCount().getKnownMinValue(); 4581 if (isa<FixedVectorType>(VecVTy) && IdxC->getValue().uge(MinNumElts)) 4582 return PoisonValue::get(VecVTy->getElementType()); 4583 // Handle case where an element is extracted from a splat. 4584 if (IdxC->getValue().ult(MinNumElts)) 4585 if (auto *Splat = getSplatValue(Vec)) 4586 return Splat; 4587 if (Value *Elt = findScalarElement(Vec, IdxC->getZExtValue())) 4588 return Elt; 4589 } else { 4590 // The index is not relevant if our vector is a splat. 4591 if (Value *Splat = getSplatValue(Vec)) 4592 return Splat; 4593 } 4594 return nullptr; 4595 } 4596 4597 Value *llvm::SimplifyExtractElementInst(Value *Vec, Value *Idx, 4598 const SimplifyQuery &Q) { 4599 return ::SimplifyExtractElementInst(Vec, Idx, Q, RecursionLimit); 4600 } 4601 4602 /// See if we can fold the given phi. If not, returns null. 4603 static Value *SimplifyPHINode(PHINode *PN, ArrayRef<Value *> IncomingValues, 4604 const SimplifyQuery &Q) { 4605 // WARNING: no matter how worthwhile it may seem, we can not perform PHI CSE 4606 // here, because the PHI we may succeed simplifying to was not 4607 // def-reachable from the original PHI! 4608 4609 // If all of the PHI's incoming values are the same then replace the PHI node 4610 // with the common value. 4611 Value *CommonValue = nullptr; 4612 bool HasUndefInput = false; 4613 for (Value *Incoming : IncomingValues) { 4614 // If the incoming value is the phi node itself, it can safely be skipped. 4615 if (Incoming == PN) continue; 4616 if (Q.isUndefValue(Incoming)) { 4617 // Remember that we saw an undef value, but otherwise ignore them. 4618 HasUndefInput = true; 4619 continue; 4620 } 4621 if (CommonValue && Incoming != CommonValue) 4622 return nullptr; // Not the same, bail out. 4623 CommonValue = Incoming; 4624 } 4625 4626 // If CommonValue is null then all of the incoming values were either undef or 4627 // equal to the phi node itself. 4628 if (!CommonValue) 4629 return UndefValue::get(PN->getType()); 4630 4631 // If we have a PHI node like phi(X, undef, X), where X is defined by some 4632 // instruction, we cannot return X as the result of the PHI node unless it 4633 // dominates the PHI block. 4634 if (HasUndefInput) 4635 return valueDominatesPHI(CommonValue, PN, Q.DT) ? CommonValue : nullptr; 4636 4637 return CommonValue; 4638 } 4639 4640 static Value *SimplifyCastInst(unsigned CastOpc, Value *Op, 4641 Type *Ty, const SimplifyQuery &Q, unsigned MaxRecurse) { 4642 if (auto *C = dyn_cast<Constant>(Op)) 4643 return ConstantFoldCastOperand(CastOpc, C, Ty, Q.DL); 4644 4645 if (auto *CI = dyn_cast<CastInst>(Op)) { 4646 auto *Src = CI->getOperand(0); 4647 Type *SrcTy = Src->getType(); 4648 Type *MidTy = CI->getType(); 4649 Type *DstTy = Ty; 4650 if (Src->getType() == Ty) { 4651 auto FirstOp = static_cast<Instruction::CastOps>(CI->getOpcode()); 4652 auto SecondOp = static_cast<Instruction::CastOps>(CastOpc); 4653 Type *SrcIntPtrTy = 4654 SrcTy->isPtrOrPtrVectorTy() ? Q.DL.getIntPtrType(SrcTy) : nullptr; 4655 Type *MidIntPtrTy = 4656 MidTy->isPtrOrPtrVectorTy() ? Q.DL.getIntPtrType(MidTy) : nullptr; 4657 Type *DstIntPtrTy = 4658 DstTy->isPtrOrPtrVectorTy() ? Q.DL.getIntPtrType(DstTy) : nullptr; 4659 if (CastInst::isEliminableCastPair(FirstOp, SecondOp, SrcTy, MidTy, DstTy, 4660 SrcIntPtrTy, MidIntPtrTy, 4661 DstIntPtrTy) == Instruction::BitCast) 4662 return Src; 4663 } 4664 } 4665 4666 // bitcast x -> x 4667 if (CastOpc == Instruction::BitCast) 4668 if (Op->getType() == Ty) 4669 return Op; 4670 4671 return nullptr; 4672 } 4673 4674 Value *llvm::SimplifyCastInst(unsigned CastOpc, Value *Op, Type *Ty, 4675 const SimplifyQuery &Q) { 4676 return ::SimplifyCastInst(CastOpc, Op, Ty, Q, RecursionLimit); 4677 } 4678 4679 /// For the given destination element of a shuffle, peek through shuffles to 4680 /// match a root vector source operand that contains that element in the same 4681 /// vector lane (ie, the same mask index), so we can eliminate the shuffle(s). 4682 static Value *foldIdentityShuffles(int DestElt, Value *Op0, Value *Op1, 4683 int MaskVal, Value *RootVec, 4684 unsigned MaxRecurse) { 4685 if (!MaxRecurse--) 4686 return nullptr; 4687 4688 // Bail out if any mask value is undefined. That kind of shuffle may be 4689 // simplified further based on demanded bits or other folds. 4690 if (MaskVal == -1) 4691 return nullptr; 4692 4693 // The mask value chooses which source operand we need to look at next. 4694 int InVecNumElts = cast<FixedVectorType>(Op0->getType())->getNumElements(); 4695 int RootElt = MaskVal; 4696 Value *SourceOp = Op0; 4697 if (MaskVal >= InVecNumElts) { 4698 RootElt = MaskVal - InVecNumElts; 4699 SourceOp = Op1; 4700 } 4701 4702 // If the source operand is a shuffle itself, look through it to find the 4703 // matching root vector. 4704 if (auto *SourceShuf = dyn_cast<ShuffleVectorInst>(SourceOp)) { 4705 return foldIdentityShuffles( 4706 DestElt, SourceShuf->getOperand(0), SourceShuf->getOperand(1), 4707 SourceShuf->getMaskValue(RootElt), RootVec, MaxRecurse); 4708 } 4709 4710 // TODO: Look through bitcasts? What if the bitcast changes the vector element 4711 // size? 4712 4713 // The source operand is not a shuffle. Initialize the root vector value for 4714 // this shuffle if that has not been done yet. 4715 if (!RootVec) 4716 RootVec = SourceOp; 4717 4718 // Give up as soon as a source operand does not match the existing root value. 4719 if (RootVec != SourceOp) 4720 return nullptr; 4721 4722 // The element must be coming from the same lane in the source vector 4723 // (although it may have crossed lanes in intermediate shuffles). 4724 if (RootElt != DestElt) 4725 return nullptr; 4726 4727 return RootVec; 4728 } 4729 4730 static Value *SimplifyShuffleVectorInst(Value *Op0, Value *Op1, 4731 ArrayRef<int> Mask, Type *RetTy, 4732 const SimplifyQuery &Q, 4733 unsigned MaxRecurse) { 4734 if (all_of(Mask, [](int Elem) { return Elem == UndefMaskElem; })) 4735 return UndefValue::get(RetTy); 4736 4737 auto *InVecTy = cast<VectorType>(Op0->getType()); 4738 unsigned MaskNumElts = Mask.size(); 4739 ElementCount InVecEltCount = InVecTy->getElementCount(); 4740 4741 bool Scalable = InVecEltCount.isScalable(); 4742 4743 SmallVector<int, 32> Indices; 4744 Indices.assign(Mask.begin(), Mask.end()); 4745 4746 // Canonicalization: If mask does not select elements from an input vector, 4747 // replace that input vector with poison. 4748 if (!Scalable) { 4749 bool MaskSelects0 = false, MaskSelects1 = false; 4750 unsigned InVecNumElts = InVecEltCount.getKnownMinValue(); 4751 for (unsigned i = 0; i != MaskNumElts; ++i) { 4752 if (Indices[i] == -1) 4753 continue; 4754 if ((unsigned)Indices[i] < InVecNumElts) 4755 MaskSelects0 = true; 4756 else 4757 MaskSelects1 = true; 4758 } 4759 if (!MaskSelects0) 4760 Op0 = PoisonValue::get(InVecTy); 4761 if (!MaskSelects1) 4762 Op1 = PoisonValue::get(InVecTy); 4763 } 4764 4765 auto *Op0Const = dyn_cast<Constant>(Op0); 4766 auto *Op1Const = dyn_cast<Constant>(Op1); 4767 4768 // If all operands are constant, constant fold the shuffle. This 4769 // transformation depends on the value of the mask which is not known at 4770 // compile time for scalable vectors 4771 if (Op0Const && Op1Const) 4772 return ConstantExpr::getShuffleVector(Op0Const, Op1Const, Mask); 4773 4774 // Canonicalization: if only one input vector is constant, it shall be the 4775 // second one. This transformation depends on the value of the mask which 4776 // is not known at compile time for scalable vectors 4777 if (!Scalable && Op0Const && !Op1Const) { 4778 std::swap(Op0, Op1); 4779 ShuffleVectorInst::commuteShuffleMask(Indices, 4780 InVecEltCount.getKnownMinValue()); 4781 } 4782 4783 // A splat of an inserted scalar constant becomes a vector constant: 4784 // shuf (inselt ?, C, IndexC), undef, <IndexC, IndexC...> --> <C, C...> 4785 // NOTE: We may have commuted above, so analyze the updated Indices, not the 4786 // original mask constant. 4787 // NOTE: This transformation depends on the value of the mask which is not 4788 // known at compile time for scalable vectors 4789 Constant *C; 4790 ConstantInt *IndexC; 4791 if (!Scalable && match(Op0, m_InsertElt(m_Value(), m_Constant(C), 4792 m_ConstantInt(IndexC)))) { 4793 // Match a splat shuffle mask of the insert index allowing undef elements. 4794 int InsertIndex = IndexC->getZExtValue(); 4795 if (all_of(Indices, [InsertIndex](int MaskElt) { 4796 return MaskElt == InsertIndex || MaskElt == -1; 4797 })) { 4798 assert(isa<UndefValue>(Op1) && "Expected undef operand 1 for splat"); 4799 4800 // Shuffle mask undefs become undefined constant result elements. 4801 SmallVector<Constant *, 16> VecC(MaskNumElts, C); 4802 for (unsigned i = 0; i != MaskNumElts; ++i) 4803 if (Indices[i] == -1) 4804 VecC[i] = UndefValue::get(C->getType()); 4805 return ConstantVector::get(VecC); 4806 } 4807 } 4808 4809 // A shuffle of a splat is always the splat itself. Legal if the shuffle's 4810 // value type is same as the input vectors' type. 4811 if (auto *OpShuf = dyn_cast<ShuffleVectorInst>(Op0)) 4812 if (Q.isUndefValue(Op1) && RetTy == InVecTy && 4813 is_splat(OpShuf->getShuffleMask())) 4814 return Op0; 4815 4816 // All remaining transformation depend on the value of the mask, which is 4817 // not known at compile time for scalable vectors. 4818 if (Scalable) 4819 return nullptr; 4820 4821 // Don't fold a shuffle with undef mask elements. This may get folded in a 4822 // better way using demanded bits or other analysis. 4823 // TODO: Should we allow this? 4824 if (is_contained(Indices, -1)) 4825 return nullptr; 4826 4827 // Check if every element of this shuffle can be mapped back to the 4828 // corresponding element of a single root vector. If so, we don't need this 4829 // shuffle. This handles simple identity shuffles as well as chains of 4830 // shuffles that may widen/narrow and/or move elements across lanes and back. 4831 Value *RootVec = nullptr; 4832 for (unsigned i = 0; i != MaskNumElts; ++i) { 4833 // Note that recursion is limited for each vector element, so if any element 4834 // exceeds the limit, this will fail to simplify. 4835 RootVec = 4836 foldIdentityShuffles(i, Op0, Op1, Indices[i], RootVec, MaxRecurse); 4837 4838 // We can't replace a widening/narrowing shuffle with one of its operands. 4839 if (!RootVec || RootVec->getType() != RetTy) 4840 return nullptr; 4841 } 4842 return RootVec; 4843 } 4844 4845 /// Given operands for a ShuffleVectorInst, fold the result or return null. 4846 Value *llvm::SimplifyShuffleVectorInst(Value *Op0, Value *Op1, 4847 ArrayRef<int> Mask, Type *RetTy, 4848 const SimplifyQuery &Q) { 4849 return ::SimplifyShuffleVectorInst(Op0, Op1, Mask, RetTy, Q, RecursionLimit); 4850 } 4851 4852 static Constant *foldConstant(Instruction::UnaryOps Opcode, 4853 Value *&Op, const SimplifyQuery &Q) { 4854 if (auto *C = dyn_cast<Constant>(Op)) 4855 return ConstantFoldUnaryOpOperand(Opcode, C, Q.DL); 4856 return nullptr; 4857 } 4858 4859 /// Given the operand for an FNeg, see if we can fold the result. If not, this 4860 /// returns null. 4861 static Value *simplifyFNegInst(Value *Op, FastMathFlags FMF, 4862 const SimplifyQuery &Q, unsigned MaxRecurse) { 4863 if (Constant *C = foldConstant(Instruction::FNeg, Op, Q)) 4864 return C; 4865 4866 Value *X; 4867 // fneg (fneg X) ==> X 4868 if (match(Op, m_FNeg(m_Value(X)))) 4869 return X; 4870 4871 return nullptr; 4872 } 4873 4874 Value *llvm::SimplifyFNegInst(Value *Op, FastMathFlags FMF, 4875 const SimplifyQuery &Q) { 4876 return ::simplifyFNegInst(Op, FMF, Q, RecursionLimit); 4877 } 4878 4879 static Constant *propagateNaN(Constant *In) { 4880 // If the input is a vector with undef elements, just return a default NaN. 4881 if (!In->isNaN()) 4882 return ConstantFP::getNaN(In->getType()); 4883 4884 // Propagate the existing NaN constant when possible. 4885 // TODO: Should we quiet a signaling NaN? 4886 return In; 4887 } 4888 4889 /// Perform folds that are common to any floating-point operation. This implies 4890 /// transforms based on poison/undef/NaN because the operation itself makes no 4891 /// difference to the result. 4892 static Constant *simplifyFPOp(ArrayRef<Value *> Ops, FastMathFlags FMF, 4893 const SimplifyQuery &Q, 4894 fp::ExceptionBehavior ExBehavior, 4895 RoundingMode Rounding) { 4896 // Poison is independent of anything else. It always propagates from an 4897 // operand to a math result. 4898 if (any_of(Ops, [](Value *V) { return match(V, m_Poison()); })) 4899 return PoisonValue::get(Ops[0]->getType()); 4900 4901 for (Value *V : Ops) { 4902 bool IsNan = match(V, m_NaN()); 4903 bool IsInf = match(V, m_Inf()); 4904 bool IsUndef = Q.isUndefValue(V); 4905 4906 // If this operation has 'nnan' or 'ninf' and at least 1 disallowed operand 4907 // (an undef operand can be chosen to be Nan/Inf), then the result of 4908 // this operation is poison. 4909 if (FMF.noNaNs() && (IsNan || IsUndef)) 4910 return PoisonValue::get(V->getType()); 4911 if (FMF.noInfs() && (IsInf || IsUndef)) 4912 return PoisonValue::get(V->getType()); 4913 4914 if (isDefaultFPEnvironment(ExBehavior, Rounding)) { 4915 if (IsUndef || IsNan) 4916 return propagateNaN(cast<Constant>(V)); 4917 } else if (ExBehavior != fp::ebStrict) { 4918 if (IsNan) 4919 return propagateNaN(cast<Constant>(V)); 4920 } 4921 } 4922 return nullptr; 4923 } 4924 4925 // TODO: Move this out to a header file: 4926 static inline bool canIgnoreSNaN(fp::ExceptionBehavior EB, FastMathFlags FMF) { 4927 return (EB == fp::ebIgnore || FMF.noNaNs()); 4928 } 4929 4930 /// Given operands for an FAdd, see if we can fold the result. If not, this 4931 /// returns null. 4932 static Value * 4933 SimplifyFAddInst(Value *Op0, Value *Op1, FastMathFlags FMF, 4934 const SimplifyQuery &Q, unsigned MaxRecurse, 4935 fp::ExceptionBehavior ExBehavior = fp::ebIgnore, 4936 RoundingMode Rounding = RoundingMode::NearestTiesToEven) { 4937 if (isDefaultFPEnvironment(ExBehavior, Rounding)) 4938 if (Constant *C = foldOrCommuteConstant(Instruction::FAdd, Op0, Op1, Q)) 4939 return C; 4940 4941 if (Constant *C = simplifyFPOp({Op0, Op1}, FMF, Q, ExBehavior, Rounding)) 4942 return C; 4943 4944 // fadd X, -0 ==> X 4945 // With strict/constrained FP, we have these possible edge cases that do 4946 // not simplify to Op0: 4947 // fadd SNaN, -0.0 --> QNaN 4948 // fadd +0.0, -0.0 --> -0.0 (but only with round toward negative) 4949 if (canIgnoreSNaN(ExBehavior, FMF) && 4950 (!canRoundingModeBe(Rounding, RoundingMode::TowardNegative) || 4951 FMF.noSignedZeros())) 4952 if (match(Op1, m_NegZeroFP())) 4953 return Op0; 4954 4955 // fadd X, 0 ==> X, when we know X is not -0 4956 if (canIgnoreSNaN(ExBehavior, FMF)) 4957 if (match(Op1, m_PosZeroFP()) && 4958 (FMF.noSignedZeros() || CannotBeNegativeZero(Op0, Q.TLI))) 4959 return Op0; 4960 4961 if (!isDefaultFPEnvironment(ExBehavior, Rounding)) 4962 return nullptr; 4963 4964 // With nnan: -X + X --> 0.0 (and commuted variant) 4965 // We don't have to explicitly exclude infinities (ninf): INF + -INF == NaN. 4966 // Negative zeros are allowed because we always end up with positive zero: 4967 // X = -0.0: (-0.0 - (-0.0)) + (-0.0) == ( 0.0) + (-0.0) == 0.0 4968 // X = -0.0: ( 0.0 - (-0.0)) + (-0.0) == ( 0.0) + (-0.0) == 0.0 4969 // X = 0.0: (-0.0 - ( 0.0)) + ( 0.0) == (-0.0) + ( 0.0) == 0.0 4970 // X = 0.0: ( 0.0 - ( 0.0)) + ( 0.0) == ( 0.0) + ( 0.0) == 0.0 4971 if (FMF.noNaNs()) { 4972 if (match(Op0, m_FSub(m_AnyZeroFP(), m_Specific(Op1))) || 4973 match(Op1, m_FSub(m_AnyZeroFP(), m_Specific(Op0)))) 4974 return ConstantFP::getNullValue(Op0->getType()); 4975 4976 if (match(Op0, m_FNeg(m_Specific(Op1))) || 4977 match(Op1, m_FNeg(m_Specific(Op0)))) 4978 return ConstantFP::getNullValue(Op0->getType()); 4979 } 4980 4981 // (X - Y) + Y --> X 4982 // Y + (X - Y) --> X 4983 Value *X; 4984 if (FMF.noSignedZeros() && FMF.allowReassoc() && 4985 (match(Op0, m_FSub(m_Value(X), m_Specific(Op1))) || 4986 match(Op1, m_FSub(m_Value(X), m_Specific(Op0))))) 4987 return X; 4988 4989 return nullptr; 4990 } 4991 4992 /// Given operands for an FSub, see if we can fold the result. If not, this 4993 /// returns null. 4994 static Value * 4995 SimplifyFSubInst(Value *Op0, Value *Op1, FastMathFlags FMF, 4996 const SimplifyQuery &Q, unsigned MaxRecurse, 4997 fp::ExceptionBehavior ExBehavior = fp::ebIgnore, 4998 RoundingMode Rounding = RoundingMode::NearestTiesToEven) { 4999 if (isDefaultFPEnvironment(ExBehavior, Rounding)) 5000 if (Constant *C = foldOrCommuteConstant(Instruction::FSub, Op0, Op1, Q)) 5001 return C; 5002 5003 if (Constant *C = simplifyFPOp({Op0, Op1}, FMF, Q, ExBehavior, Rounding)) 5004 return C; 5005 5006 if (!isDefaultFPEnvironment(ExBehavior, Rounding)) 5007 return nullptr; 5008 5009 // fsub X, +0 ==> X 5010 if (match(Op1, m_PosZeroFP())) 5011 return Op0; 5012 5013 // fsub X, -0 ==> X, when we know X is not -0 5014 if (match(Op1, m_NegZeroFP()) && 5015 (FMF.noSignedZeros() || CannotBeNegativeZero(Op0, Q.TLI))) 5016 return Op0; 5017 5018 // fsub -0.0, (fsub -0.0, X) ==> X 5019 // fsub -0.0, (fneg X) ==> X 5020 Value *X; 5021 if (match(Op0, m_NegZeroFP()) && 5022 match(Op1, m_FNeg(m_Value(X)))) 5023 return X; 5024 5025 // fsub 0.0, (fsub 0.0, X) ==> X if signed zeros are ignored. 5026 // fsub 0.0, (fneg X) ==> X if signed zeros are ignored. 5027 if (FMF.noSignedZeros() && match(Op0, m_AnyZeroFP()) && 5028 (match(Op1, m_FSub(m_AnyZeroFP(), m_Value(X))) || 5029 match(Op1, m_FNeg(m_Value(X))))) 5030 return X; 5031 5032 // fsub nnan x, x ==> 0.0 5033 if (FMF.noNaNs() && Op0 == Op1) 5034 return Constant::getNullValue(Op0->getType()); 5035 5036 // Y - (Y - X) --> X 5037 // (X + Y) - Y --> X 5038 if (FMF.noSignedZeros() && FMF.allowReassoc() && 5039 (match(Op1, m_FSub(m_Specific(Op0), m_Value(X))) || 5040 match(Op0, m_c_FAdd(m_Specific(Op1), m_Value(X))))) 5041 return X; 5042 5043 return nullptr; 5044 } 5045 5046 static Value *SimplifyFMAFMul(Value *Op0, Value *Op1, FastMathFlags FMF, 5047 const SimplifyQuery &Q, unsigned MaxRecurse, 5048 fp::ExceptionBehavior ExBehavior, 5049 RoundingMode Rounding) { 5050 if (Constant *C = simplifyFPOp({Op0, Op1}, FMF, Q, ExBehavior, Rounding)) 5051 return C; 5052 5053 if (!isDefaultFPEnvironment(ExBehavior, Rounding)) 5054 return nullptr; 5055 5056 // fmul X, 1.0 ==> X 5057 if (match(Op1, m_FPOne())) 5058 return Op0; 5059 5060 // fmul 1.0, X ==> X 5061 if (match(Op0, m_FPOne())) 5062 return Op1; 5063 5064 // fmul nnan nsz X, 0 ==> 0 5065 if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op1, m_AnyZeroFP())) 5066 return ConstantFP::getNullValue(Op0->getType()); 5067 5068 // fmul nnan nsz 0, X ==> 0 5069 if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op0, m_AnyZeroFP())) 5070 return ConstantFP::getNullValue(Op1->getType()); 5071 5072 // sqrt(X) * sqrt(X) --> X, if we can: 5073 // 1. Remove the intermediate rounding (reassociate). 5074 // 2. Ignore non-zero negative numbers because sqrt would produce NAN. 5075 // 3. Ignore -0.0 because sqrt(-0.0) == -0.0, but -0.0 * -0.0 == 0.0. 5076 Value *X; 5077 if (Op0 == Op1 && match(Op0, m_Intrinsic<Intrinsic::sqrt>(m_Value(X))) && 5078 FMF.allowReassoc() && FMF.noNaNs() && FMF.noSignedZeros()) 5079 return X; 5080 5081 return nullptr; 5082 } 5083 5084 /// Given the operands for an FMul, see if we can fold the result 5085 static Value * 5086 SimplifyFMulInst(Value *Op0, Value *Op1, FastMathFlags FMF, 5087 const SimplifyQuery &Q, unsigned MaxRecurse, 5088 fp::ExceptionBehavior ExBehavior = fp::ebIgnore, 5089 RoundingMode Rounding = RoundingMode::NearestTiesToEven) { 5090 if (isDefaultFPEnvironment(ExBehavior, Rounding)) 5091 if (Constant *C = foldOrCommuteConstant(Instruction::FMul, Op0, Op1, Q)) 5092 return C; 5093 5094 // Now apply simplifications that do not require rounding. 5095 return SimplifyFMAFMul(Op0, Op1, FMF, Q, MaxRecurse, ExBehavior, Rounding); 5096 } 5097 5098 Value *llvm::SimplifyFAddInst(Value *Op0, Value *Op1, FastMathFlags FMF, 5099 const SimplifyQuery &Q, 5100 fp::ExceptionBehavior ExBehavior, 5101 RoundingMode Rounding) { 5102 return ::SimplifyFAddInst(Op0, Op1, FMF, Q, RecursionLimit, ExBehavior, 5103 Rounding); 5104 } 5105 5106 Value *llvm::SimplifyFSubInst(Value *Op0, Value *Op1, FastMathFlags FMF, 5107 const SimplifyQuery &Q, 5108 fp::ExceptionBehavior ExBehavior, 5109 RoundingMode Rounding) { 5110 return ::SimplifyFSubInst(Op0, Op1, FMF, Q, RecursionLimit, ExBehavior, 5111 Rounding); 5112 } 5113 5114 Value *llvm::SimplifyFMulInst(Value *Op0, Value *Op1, FastMathFlags FMF, 5115 const SimplifyQuery &Q, 5116 fp::ExceptionBehavior ExBehavior, 5117 RoundingMode Rounding) { 5118 return ::SimplifyFMulInst(Op0, Op1, FMF, Q, RecursionLimit, ExBehavior, 5119 Rounding); 5120 } 5121 5122 Value *llvm::SimplifyFMAFMul(Value *Op0, Value *Op1, FastMathFlags FMF, 5123 const SimplifyQuery &Q, 5124 fp::ExceptionBehavior ExBehavior, 5125 RoundingMode Rounding) { 5126 return ::SimplifyFMAFMul(Op0, Op1, FMF, Q, RecursionLimit, ExBehavior, 5127 Rounding); 5128 } 5129 5130 static Value * 5131 SimplifyFDivInst(Value *Op0, Value *Op1, FastMathFlags FMF, 5132 const SimplifyQuery &Q, unsigned, 5133 fp::ExceptionBehavior ExBehavior = fp::ebIgnore, 5134 RoundingMode Rounding = RoundingMode::NearestTiesToEven) { 5135 if (isDefaultFPEnvironment(ExBehavior, Rounding)) 5136 if (Constant *C = foldOrCommuteConstant(Instruction::FDiv, Op0, Op1, Q)) 5137 return C; 5138 5139 if (Constant *C = simplifyFPOp({Op0, Op1}, FMF, Q, ExBehavior, Rounding)) 5140 return C; 5141 5142 if (!isDefaultFPEnvironment(ExBehavior, Rounding)) 5143 return nullptr; 5144 5145 // X / 1.0 -> X 5146 if (match(Op1, m_FPOne())) 5147 return Op0; 5148 5149 // 0 / X -> 0 5150 // Requires that NaNs are off (X could be zero) and signed zeroes are 5151 // ignored (X could be positive or negative, so the output sign is unknown). 5152 if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op0, m_AnyZeroFP())) 5153 return ConstantFP::getNullValue(Op0->getType()); 5154 5155 if (FMF.noNaNs()) { 5156 // X / X -> 1.0 is legal when NaNs are ignored. 5157 // We can ignore infinities because INF/INF is NaN. 5158 if (Op0 == Op1) 5159 return ConstantFP::get(Op0->getType(), 1.0); 5160 5161 // (X * Y) / Y --> X if we can reassociate to the above form. 5162 Value *X; 5163 if (FMF.allowReassoc() && match(Op0, m_c_FMul(m_Value(X), m_Specific(Op1)))) 5164 return X; 5165 5166 // -X / X -> -1.0 and 5167 // X / -X -> -1.0 are legal when NaNs are ignored. 5168 // We can ignore signed zeros because +-0.0/+-0.0 is NaN and ignored. 5169 if (match(Op0, m_FNegNSZ(m_Specific(Op1))) || 5170 match(Op1, m_FNegNSZ(m_Specific(Op0)))) 5171 return ConstantFP::get(Op0->getType(), -1.0); 5172 } 5173 5174 return nullptr; 5175 } 5176 5177 Value *llvm::SimplifyFDivInst(Value *Op0, Value *Op1, FastMathFlags FMF, 5178 const SimplifyQuery &Q, 5179 fp::ExceptionBehavior ExBehavior, 5180 RoundingMode Rounding) { 5181 return ::SimplifyFDivInst(Op0, Op1, FMF, Q, RecursionLimit, ExBehavior, 5182 Rounding); 5183 } 5184 5185 static Value * 5186 SimplifyFRemInst(Value *Op0, Value *Op1, FastMathFlags FMF, 5187 const SimplifyQuery &Q, unsigned, 5188 fp::ExceptionBehavior ExBehavior = fp::ebIgnore, 5189 RoundingMode Rounding = RoundingMode::NearestTiesToEven) { 5190 if (isDefaultFPEnvironment(ExBehavior, Rounding)) 5191 if (Constant *C = foldOrCommuteConstant(Instruction::FRem, Op0, Op1, Q)) 5192 return C; 5193 5194 if (Constant *C = simplifyFPOp({Op0, Op1}, FMF, Q, ExBehavior, Rounding)) 5195 return C; 5196 5197 if (!isDefaultFPEnvironment(ExBehavior, Rounding)) 5198 return nullptr; 5199 5200 // Unlike fdiv, the result of frem always matches the sign of the dividend. 5201 // The constant match may include undef elements in a vector, so return a full 5202 // zero constant as the result. 5203 if (FMF.noNaNs()) { 5204 // +0 % X -> 0 5205 if (match(Op0, m_PosZeroFP())) 5206 return ConstantFP::getNullValue(Op0->getType()); 5207 // -0 % X -> -0 5208 if (match(Op0, m_NegZeroFP())) 5209 return ConstantFP::getNegativeZero(Op0->getType()); 5210 } 5211 5212 return nullptr; 5213 } 5214 5215 Value *llvm::SimplifyFRemInst(Value *Op0, Value *Op1, FastMathFlags FMF, 5216 const SimplifyQuery &Q, 5217 fp::ExceptionBehavior ExBehavior, 5218 RoundingMode Rounding) { 5219 return ::SimplifyFRemInst(Op0, Op1, FMF, Q, RecursionLimit, ExBehavior, 5220 Rounding); 5221 } 5222 5223 //=== Helper functions for higher up the class hierarchy. 5224 5225 /// Given the operand for a UnaryOperator, see if we can fold the result. 5226 /// If not, this returns null. 5227 static Value *simplifyUnOp(unsigned Opcode, Value *Op, const SimplifyQuery &Q, 5228 unsigned MaxRecurse) { 5229 switch (Opcode) { 5230 case Instruction::FNeg: 5231 return simplifyFNegInst(Op, FastMathFlags(), Q, MaxRecurse); 5232 default: 5233 llvm_unreachable("Unexpected opcode"); 5234 } 5235 } 5236 5237 /// Given the operand for a UnaryOperator, see if we can fold the result. 5238 /// If not, this returns null. 5239 /// Try to use FastMathFlags when folding the result. 5240 static Value *simplifyFPUnOp(unsigned Opcode, Value *Op, 5241 const FastMathFlags &FMF, 5242 const SimplifyQuery &Q, unsigned MaxRecurse) { 5243 switch (Opcode) { 5244 case Instruction::FNeg: 5245 return simplifyFNegInst(Op, FMF, Q, MaxRecurse); 5246 default: 5247 return simplifyUnOp(Opcode, Op, Q, MaxRecurse); 5248 } 5249 } 5250 5251 Value *llvm::SimplifyUnOp(unsigned Opcode, Value *Op, const SimplifyQuery &Q) { 5252 return ::simplifyUnOp(Opcode, Op, Q, RecursionLimit); 5253 } 5254 5255 Value *llvm::SimplifyUnOp(unsigned Opcode, Value *Op, FastMathFlags FMF, 5256 const SimplifyQuery &Q) { 5257 return ::simplifyFPUnOp(Opcode, Op, FMF, Q, RecursionLimit); 5258 } 5259 5260 /// Given operands for a BinaryOperator, see if we can fold the result. 5261 /// If not, this returns null. 5262 static Value *SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS, 5263 const SimplifyQuery &Q, unsigned MaxRecurse) { 5264 switch (Opcode) { 5265 case Instruction::Add: 5266 return SimplifyAddInst(LHS, RHS, false, false, Q, MaxRecurse); 5267 case Instruction::Sub: 5268 return SimplifySubInst(LHS, RHS, false, false, Q, MaxRecurse); 5269 case Instruction::Mul: 5270 return SimplifyMulInst(LHS, RHS, Q, MaxRecurse); 5271 case Instruction::SDiv: 5272 return SimplifySDivInst(LHS, RHS, Q, MaxRecurse); 5273 case Instruction::UDiv: 5274 return SimplifyUDivInst(LHS, RHS, Q, MaxRecurse); 5275 case Instruction::SRem: 5276 return SimplifySRemInst(LHS, RHS, Q, MaxRecurse); 5277 case Instruction::URem: 5278 return SimplifyURemInst(LHS, RHS, Q, MaxRecurse); 5279 case Instruction::Shl: 5280 return SimplifyShlInst(LHS, RHS, false, false, Q, MaxRecurse); 5281 case Instruction::LShr: 5282 return SimplifyLShrInst(LHS, RHS, false, Q, MaxRecurse); 5283 case Instruction::AShr: 5284 return SimplifyAShrInst(LHS, RHS, false, Q, MaxRecurse); 5285 case Instruction::And: 5286 return SimplifyAndInst(LHS, RHS, Q, MaxRecurse); 5287 case Instruction::Or: 5288 return SimplifyOrInst(LHS, RHS, Q, MaxRecurse); 5289 case Instruction::Xor: 5290 return SimplifyXorInst(LHS, RHS, Q, MaxRecurse); 5291 case Instruction::FAdd: 5292 return SimplifyFAddInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse); 5293 case Instruction::FSub: 5294 return SimplifyFSubInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse); 5295 case Instruction::FMul: 5296 return SimplifyFMulInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse); 5297 case Instruction::FDiv: 5298 return SimplifyFDivInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse); 5299 case Instruction::FRem: 5300 return SimplifyFRemInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse); 5301 default: 5302 llvm_unreachable("Unexpected opcode"); 5303 } 5304 } 5305 5306 /// Given operands for a BinaryOperator, see if we can fold the result. 5307 /// If not, this returns null. 5308 /// Try to use FastMathFlags when folding the result. 5309 static Value *SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS, 5310 const FastMathFlags &FMF, const SimplifyQuery &Q, 5311 unsigned MaxRecurse) { 5312 switch (Opcode) { 5313 case Instruction::FAdd: 5314 return SimplifyFAddInst(LHS, RHS, FMF, Q, MaxRecurse); 5315 case Instruction::FSub: 5316 return SimplifyFSubInst(LHS, RHS, FMF, Q, MaxRecurse); 5317 case Instruction::FMul: 5318 return SimplifyFMulInst(LHS, RHS, FMF, Q, MaxRecurse); 5319 case Instruction::FDiv: 5320 return SimplifyFDivInst(LHS, RHS, FMF, Q, MaxRecurse); 5321 default: 5322 return SimplifyBinOp(Opcode, LHS, RHS, Q, MaxRecurse); 5323 } 5324 } 5325 5326 Value *llvm::SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS, 5327 const SimplifyQuery &Q) { 5328 return ::SimplifyBinOp(Opcode, LHS, RHS, Q, RecursionLimit); 5329 } 5330 5331 Value *llvm::SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS, 5332 FastMathFlags FMF, const SimplifyQuery &Q) { 5333 return ::SimplifyBinOp(Opcode, LHS, RHS, FMF, Q, RecursionLimit); 5334 } 5335 5336 /// Given operands for a CmpInst, see if we can fold the result. 5337 static Value *SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS, 5338 const SimplifyQuery &Q, unsigned MaxRecurse) { 5339 if (CmpInst::isIntPredicate((CmpInst::Predicate)Predicate)) 5340 return SimplifyICmpInst(Predicate, LHS, RHS, Q, MaxRecurse); 5341 return SimplifyFCmpInst(Predicate, LHS, RHS, FastMathFlags(), Q, MaxRecurse); 5342 } 5343 5344 Value *llvm::SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS, 5345 const SimplifyQuery &Q) { 5346 return ::SimplifyCmpInst(Predicate, LHS, RHS, Q, RecursionLimit); 5347 } 5348 5349 static bool IsIdempotent(Intrinsic::ID ID) { 5350 switch (ID) { 5351 default: return false; 5352 5353 // Unary idempotent: f(f(x)) = f(x) 5354 case Intrinsic::fabs: 5355 case Intrinsic::floor: 5356 case Intrinsic::ceil: 5357 case Intrinsic::trunc: 5358 case Intrinsic::rint: 5359 case Intrinsic::nearbyint: 5360 case Intrinsic::round: 5361 case Intrinsic::roundeven: 5362 case Intrinsic::canonicalize: 5363 return true; 5364 } 5365 } 5366 5367 static Value *SimplifyRelativeLoad(Constant *Ptr, Constant *Offset, 5368 const DataLayout &DL) { 5369 GlobalValue *PtrSym; 5370 APInt PtrOffset; 5371 if (!IsConstantOffsetFromGlobal(Ptr, PtrSym, PtrOffset, DL)) 5372 return nullptr; 5373 5374 Type *Int8PtrTy = Type::getInt8PtrTy(Ptr->getContext()); 5375 Type *Int32Ty = Type::getInt32Ty(Ptr->getContext()); 5376 Type *Int32PtrTy = Int32Ty->getPointerTo(); 5377 Type *Int64Ty = Type::getInt64Ty(Ptr->getContext()); 5378 5379 auto *OffsetConstInt = dyn_cast<ConstantInt>(Offset); 5380 if (!OffsetConstInt || OffsetConstInt->getType()->getBitWidth() > 64) 5381 return nullptr; 5382 5383 uint64_t OffsetInt = OffsetConstInt->getSExtValue(); 5384 if (OffsetInt % 4 != 0) 5385 return nullptr; 5386 5387 Constant *C = ConstantExpr::getGetElementPtr( 5388 Int32Ty, ConstantExpr::getBitCast(Ptr, Int32PtrTy), 5389 ConstantInt::get(Int64Ty, OffsetInt / 4)); 5390 Constant *Loaded = ConstantFoldLoadFromConstPtr(C, Int32Ty, DL); 5391 if (!Loaded) 5392 return nullptr; 5393 5394 auto *LoadedCE = dyn_cast<ConstantExpr>(Loaded); 5395 if (!LoadedCE) 5396 return nullptr; 5397 5398 if (LoadedCE->getOpcode() == Instruction::Trunc) { 5399 LoadedCE = dyn_cast<ConstantExpr>(LoadedCE->getOperand(0)); 5400 if (!LoadedCE) 5401 return nullptr; 5402 } 5403 5404 if (LoadedCE->getOpcode() != Instruction::Sub) 5405 return nullptr; 5406 5407 auto *LoadedLHS = dyn_cast<ConstantExpr>(LoadedCE->getOperand(0)); 5408 if (!LoadedLHS || LoadedLHS->getOpcode() != Instruction::PtrToInt) 5409 return nullptr; 5410 auto *LoadedLHSPtr = LoadedLHS->getOperand(0); 5411 5412 Constant *LoadedRHS = LoadedCE->getOperand(1); 5413 GlobalValue *LoadedRHSSym; 5414 APInt LoadedRHSOffset; 5415 if (!IsConstantOffsetFromGlobal(LoadedRHS, LoadedRHSSym, LoadedRHSOffset, 5416 DL) || 5417 PtrSym != LoadedRHSSym || PtrOffset != LoadedRHSOffset) 5418 return nullptr; 5419 5420 return ConstantExpr::getBitCast(LoadedLHSPtr, Int8PtrTy); 5421 } 5422 5423 static Value *simplifyUnaryIntrinsic(Function *F, Value *Op0, 5424 const SimplifyQuery &Q) { 5425 // Idempotent functions return the same result when called repeatedly. 5426 Intrinsic::ID IID = F->getIntrinsicID(); 5427 if (IsIdempotent(IID)) 5428 if (auto *II = dyn_cast<IntrinsicInst>(Op0)) 5429 if (II->getIntrinsicID() == IID) 5430 return II; 5431 5432 Value *X; 5433 switch (IID) { 5434 case Intrinsic::fabs: 5435 if (SignBitMustBeZero(Op0, Q.TLI)) return Op0; 5436 break; 5437 case Intrinsic::bswap: 5438 // bswap(bswap(x)) -> x 5439 if (match(Op0, m_BSwap(m_Value(X)))) return X; 5440 break; 5441 case Intrinsic::bitreverse: 5442 // bitreverse(bitreverse(x)) -> x 5443 if (match(Op0, m_BitReverse(m_Value(X)))) return X; 5444 break; 5445 case Intrinsic::ctpop: { 5446 // If everything but the lowest bit is zero, that bit is the pop-count. Ex: 5447 // ctpop(and X, 1) --> and X, 1 5448 unsigned BitWidth = Op0->getType()->getScalarSizeInBits(); 5449 if (MaskedValueIsZero(Op0, APInt::getHighBitsSet(BitWidth, BitWidth - 1), 5450 Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 5451 return Op0; 5452 break; 5453 } 5454 case Intrinsic::exp: 5455 // exp(log(x)) -> x 5456 if (Q.CxtI->hasAllowReassoc() && 5457 match(Op0, m_Intrinsic<Intrinsic::log>(m_Value(X)))) return X; 5458 break; 5459 case Intrinsic::exp2: 5460 // exp2(log2(x)) -> x 5461 if (Q.CxtI->hasAllowReassoc() && 5462 match(Op0, m_Intrinsic<Intrinsic::log2>(m_Value(X)))) return X; 5463 break; 5464 case Intrinsic::log: 5465 // log(exp(x)) -> x 5466 if (Q.CxtI->hasAllowReassoc() && 5467 match(Op0, m_Intrinsic<Intrinsic::exp>(m_Value(X)))) return X; 5468 break; 5469 case Intrinsic::log2: 5470 // log2(exp2(x)) -> x 5471 if (Q.CxtI->hasAllowReassoc() && 5472 (match(Op0, m_Intrinsic<Intrinsic::exp2>(m_Value(X))) || 5473 match(Op0, m_Intrinsic<Intrinsic::pow>(m_SpecificFP(2.0), 5474 m_Value(X))))) return X; 5475 break; 5476 case Intrinsic::log10: 5477 // log10(pow(10.0, x)) -> x 5478 if (Q.CxtI->hasAllowReassoc() && 5479 match(Op0, m_Intrinsic<Intrinsic::pow>(m_SpecificFP(10.0), 5480 m_Value(X)))) return X; 5481 break; 5482 case Intrinsic::floor: 5483 case Intrinsic::trunc: 5484 case Intrinsic::ceil: 5485 case Intrinsic::round: 5486 case Intrinsic::roundeven: 5487 case Intrinsic::nearbyint: 5488 case Intrinsic::rint: { 5489 // floor (sitofp x) -> sitofp x 5490 // floor (uitofp x) -> uitofp x 5491 // 5492 // Converting from int always results in a finite integral number or 5493 // infinity. For either of those inputs, these rounding functions always 5494 // return the same value, so the rounding can be eliminated. 5495 if (match(Op0, m_SIToFP(m_Value())) || match(Op0, m_UIToFP(m_Value()))) 5496 return Op0; 5497 break; 5498 } 5499 case Intrinsic::experimental_vector_reverse: 5500 // experimental.vector.reverse(experimental.vector.reverse(x)) -> x 5501 if (match(Op0, 5502 m_Intrinsic<Intrinsic::experimental_vector_reverse>(m_Value(X)))) 5503 return X; 5504 // experimental.vector.reverse(splat(X)) -> splat(X) 5505 if (isSplatValue(Op0)) 5506 return Op0; 5507 break; 5508 default: 5509 break; 5510 } 5511 5512 return nullptr; 5513 } 5514 5515 static APInt getMaxMinLimit(Intrinsic::ID IID, unsigned BitWidth) { 5516 switch (IID) { 5517 case Intrinsic::smax: return APInt::getSignedMaxValue(BitWidth); 5518 case Intrinsic::smin: return APInt::getSignedMinValue(BitWidth); 5519 case Intrinsic::umax: return APInt::getMaxValue(BitWidth); 5520 case Intrinsic::umin: return APInt::getMinValue(BitWidth); 5521 default: llvm_unreachable("Unexpected intrinsic"); 5522 } 5523 } 5524 5525 static ICmpInst::Predicate getMaxMinPredicate(Intrinsic::ID IID) { 5526 switch (IID) { 5527 case Intrinsic::smax: return ICmpInst::ICMP_SGE; 5528 case Intrinsic::smin: return ICmpInst::ICMP_SLE; 5529 case Intrinsic::umax: return ICmpInst::ICMP_UGE; 5530 case Intrinsic::umin: return ICmpInst::ICMP_ULE; 5531 default: llvm_unreachable("Unexpected intrinsic"); 5532 } 5533 } 5534 5535 /// Given a min/max intrinsic, see if it can be removed based on having an 5536 /// operand that is another min/max intrinsic with shared operand(s). The caller 5537 /// is expected to swap the operand arguments to handle commutation. 5538 static Value *foldMinMaxSharedOp(Intrinsic::ID IID, Value *Op0, Value *Op1) { 5539 Value *X, *Y; 5540 if (!match(Op0, m_MaxOrMin(m_Value(X), m_Value(Y)))) 5541 return nullptr; 5542 5543 auto *MM0 = dyn_cast<IntrinsicInst>(Op0); 5544 if (!MM0) 5545 return nullptr; 5546 Intrinsic::ID IID0 = MM0->getIntrinsicID(); 5547 5548 if (Op1 == X || Op1 == Y || 5549 match(Op1, m_c_MaxOrMin(m_Specific(X), m_Specific(Y)))) { 5550 // max (max X, Y), X --> max X, Y 5551 if (IID0 == IID) 5552 return MM0; 5553 // max (min X, Y), X --> X 5554 if (IID0 == getInverseMinMaxIntrinsic(IID)) 5555 return Op1; 5556 } 5557 return nullptr; 5558 } 5559 5560 static Value *simplifyBinaryIntrinsic(Function *F, Value *Op0, Value *Op1, 5561 const SimplifyQuery &Q) { 5562 Intrinsic::ID IID = F->getIntrinsicID(); 5563 Type *ReturnType = F->getReturnType(); 5564 unsigned BitWidth = ReturnType->getScalarSizeInBits(); 5565 switch (IID) { 5566 case Intrinsic::abs: 5567 // abs(abs(x)) -> abs(x). We don't need to worry about the nsw arg here. 5568 // It is always ok to pick the earlier abs. We'll just lose nsw if its only 5569 // on the outer abs. 5570 if (match(Op0, m_Intrinsic<Intrinsic::abs>(m_Value(), m_Value()))) 5571 return Op0; 5572 break; 5573 5574 case Intrinsic::cttz: { 5575 Value *X; 5576 if (match(Op0, m_Shl(m_One(), m_Value(X)))) 5577 return X; 5578 break; 5579 } 5580 case Intrinsic::ctlz: { 5581 Value *X; 5582 if (match(Op0, m_LShr(m_Negative(), m_Value(X)))) 5583 return X; 5584 if (match(Op0, m_AShr(m_Negative(), m_Value()))) 5585 return Constant::getNullValue(ReturnType); 5586 break; 5587 } 5588 case Intrinsic::smax: 5589 case Intrinsic::smin: 5590 case Intrinsic::umax: 5591 case Intrinsic::umin: { 5592 // If the arguments are the same, this is a no-op. 5593 if (Op0 == Op1) 5594 return Op0; 5595 5596 // Canonicalize constant operand as Op1. 5597 if (isa<Constant>(Op0)) 5598 std::swap(Op0, Op1); 5599 5600 // Assume undef is the limit value. 5601 if (Q.isUndefValue(Op1)) 5602 return ConstantInt::get(ReturnType, getMaxMinLimit(IID, BitWidth)); 5603 5604 const APInt *C; 5605 if (match(Op1, m_APIntAllowUndef(C))) { 5606 // Clamp to limit value. For example: 5607 // umax(i8 %x, i8 255) --> 255 5608 if (*C == getMaxMinLimit(IID, BitWidth)) 5609 return ConstantInt::get(ReturnType, *C); 5610 5611 // If the constant op is the opposite of the limit value, the other must 5612 // be larger/smaller or equal. For example: 5613 // umin(i8 %x, i8 255) --> %x 5614 if (*C == getMaxMinLimit(getInverseMinMaxIntrinsic(IID), BitWidth)) 5615 return Op0; 5616 5617 // Remove nested call if constant operands allow it. Example: 5618 // max (max X, 7), 5 -> max X, 7 5619 auto *MinMax0 = dyn_cast<IntrinsicInst>(Op0); 5620 if (MinMax0 && MinMax0->getIntrinsicID() == IID) { 5621 // TODO: loosen undef/splat restrictions for vector constants. 5622 Value *M00 = MinMax0->getOperand(0), *M01 = MinMax0->getOperand(1); 5623 const APInt *InnerC; 5624 if ((match(M00, m_APInt(InnerC)) || match(M01, m_APInt(InnerC))) && 5625 ((IID == Intrinsic::smax && InnerC->sge(*C)) || 5626 (IID == Intrinsic::smin && InnerC->sle(*C)) || 5627 (IID == Intrinsic::umax && InnerC->uge(*C)) || 5628 (IID == Intrinsic::umin && InnerC->ule(*C)))) 5629 return Op0; 5630 } 5631 } 5632 5633 if (Value *V = foldMinMaxSharedOp(IID, Op0, Op1)) 5634 return V; 5635 if (Value *V = foldMinMaxSharedOp(IID, Op1, Op0)) 5636 return V; 5637 5638 ICmpInst::Predicate Pred = getMaxMinPredicate(IID); 5639 if (isICmpTrue(Pred, Op0, Op1, Q.getWithoutUndef(), RecursionLimit)) 5640 return Op0; 5641 if (isICmpTrue(Pred, Op1, Op0, Q.getWithoutUndef(), RecursionLimit)) 5642 return Op1; 5643 5644 if (Optional<bool> Imp = 5645 isImpliedByDomCondition(Pred, Op0, Op1, Q.CxtI, Q.DL)) 5646 return *Imp ? Op0 : Op1; 5647 if (Optional<bool> Imp = 5648 isImpliedByDomCondition(Pred, Op1, Op0, Q.CxtI, Q.DL)) 5649 return *Imp ? Op1 : Op0; 5650 5651 break; 5652 } 5653 case Intrinsic::usub_with_overflow: 5654 case Intrinsic::ssub_with_overflow: 5655 // X - X -> { 0, false } 5656 // X - undef -> { 0, false } 5657 // undef - X -> { 0, false } 5658 if (Op0 == Op1 || Q.isUndefValue(Op0) || Q.isUndefValue(Op1)) 5659 return Constant::getNullValue(ReturnType); 5660 break; 5661 case Intrinsic::uadd_with_overflow: 5662 case Intrinsic::sadd_with_overflow: 5663 // X + undef -> { -1, false } 5664 // undef + x -> { -1, false } 5665 if (Q.isUndefValue(Op0) || Q.isUndefValue(Op1)) { 5666 return ConstantStruct::get( 5667 cast<StructType>(ReturnType), 5668 {Constant::getAllOnesValue(ReturnType->getStructElementType(0)), 5669 Constant::getNullValue(ReturnType->getStructElementType(1))}); 5670 } 5671 break; 5672 case Intrinsic::umul_with_overflow: 5673 case Intrinsic::smul_with_overflow: 5674 // 0 * X -> { 0, false } 5675 // X * 0 -> { 0, false } 5676 if (match(Op0, m_Zero()) || match(Op1, m_Zero())) 5677 return Constant::getNullValue(ReturnType); 5678 // undef * X -> { 0, false } 5679 // X * undef -> { 0, false } 5680 if (Q.isUndefValue(Op0) || Q.isUndefValue(Op1)) 5681 return Constant::getNullValue(ReturnType); 5682 break; 5683 case Intrinsic::uadd_sat: 5684 // sat(MAX + X) -> MAX 5685 // sat(X + MAX) -> MAX 5686 if (match(Op0, m_AllOnes()) || match(Op1, m_AllOnes())) 5687 return Constant::getAllOnesValue(ReturnType); 5688 LLVM_FALLTHROUGH; 5689 case Intrinsic::sadd_sat: 5690 // sat(X + undef) -> -1 5691 // sat(undef + X) -> -1 5692 // For unsigned: Assume undef is MAX, thus we saturate to MAX (-1). 5693 // For signed: Assume undef is ~X, in which case X + ~X = -1. 5694 if (Q.isUndefValue(Op0) || Q.isUndefValue(Op1)) 5695 return Constant::getAllOnesValue(ReturnType); 5696 5697 // X + 0 -> X 5698 if (match(Op1, m_Zero())) 5699 return Op0; 5700 // 0 + X -> X 5701 if (match(Op0, m_Zero())) 5702 return Op1; 5703 break; 5704 case Intrinsic::usub_sat: 5705 // sat(0 - X) -> 0, sat(X - MAX) -> 0 5706 if (match(Op0, m_Zero()) || match(Op1, m_AllOnes())) 5707 return Constant::getNullValue(ReturnType); 5708 LLVM_FALLTHROUGH; 5709 case Intrinsic::ssub_sat: 5710 // X - X -> 0, X - undef -> 0, undef - X -> 0 5711 if (Op0 == Op1 || Q.isUndefValue(Op0) || Q.isUndefValue(Op1)) 5712 return Constant::getNullValue(ReturnType); 5713 // X - 0 -> X 5714 if (match(Op1, m_Zero())) 5715 return Op0; 5716 break; 5717 case Intrinsic::load_relative: 5718 if (auto *C0 = dyn_cast<Constant>(Op0)) 5719 if (auto *C1 = dyn_cast<Constant>(Op1)) 5720 return SimplifyRelativeLoad(C0, C1, Q.DL); 5721 break; 5722 case Intrinsic::powi: 5723 if (auto *Power = dyn_cast<ConstantInt>(Op1)) { 5724 // powi(x, 0) -> 1.0 5725 if (Power->isZero()) 5726 return ConstantFP::get(Op0->getType(), 1.0); 5727 // powi(x, 1) -> x 5728 if (Power->isOne()) 5729 return Op0; 5730 } 5731 break; 5732 case Intrinsic::copysign: 5733 // copysign X, X --> X 5734 if (Op0 == Op1) 5735 return Op0; 5736 // copysign -X, X --> X 5737 // copysign X, -X --> -X 5738 if (match(Op0, m_FNeg(m_Specific(Op1))) || 5739 match(Op1, m_FNeg(m_Specific(Op0)))) 5740 return Op1; 5741 break; 5742 case Intrinsic::maxnum: 5743 case Intrinsic::minnum: 5744 case Intrinsic::maximum: 5745 case Intrinsic::minimum: { 5746 // If the arguments are the same, this is a no-op. 5747 if (Op0 == Op1) return Op0; 5748 5749 // Canonicalize constant operand as Op1. 5750 if (isa<Constant>(Op0)) 5751 std::swap(Op0, Op1); 5752 5753 // If an argument is undef, return the other argument. 5754 if (Q.isUndefValue(Op1)) 5755 return Op0; 5756 5757 bool PropagateNaN = IID == Intrinsic::minimum || IID == Intrinsic::maximum; 5758 bool IsMin = IID == Intrinsic::minimum || IID == Intrinsic::minnum; 5759 5760 // minnum(X, nan) -> X 5761 // maxnum(X, nan) -> X 5762 // minimum(X, nan) -> nan 5763 // maximum(X, nan) -> nan 5764 if (match(Op1, m_NaN())) 5765 return PropagateNaN ? propagateNaN(cast<Constant>(Op1)) : Op0; 5766 5767 // In the following folds, inf can be replaced with the largest finite 5768 // float, if the ninf flag is set. 5769 const APFloat *C; 5770 if (match(Op1, m_APFloat(C)) && 5771 (C->isInfinity() || (Q.CxtI->hasNoInfs() && C->isLargest()))) { 5772 // minnum(X, -inf) -> -inf 5773 // maxnum(X, +inf) -> +inf 5774 // minimum(X, -inf) -> -inf if nnan 5775 // maximum(X, +inf) -> +inf if nnan 5776 if (C->isNegative() == IsMin && (!PropagateNaN || Q.CxtI->hasNoNaNs())) 5777 return ConstantFP::get(ReturnType, *C); 5778 5779 // minnum(X, +inf) -> X if nnan 5780 // maxnum(X, -inf) -> X if nnan 5781 // minimum(X, +inf) -> X 5782 // maximum(X, -inf) -> X 5783 if (C->isNegative() != IsMin && (PropagateNaN || Q.CxtI->hasNoNaNs())) 5784 return Op0; 5785 } 5786 5787 // Min/max of the same operation with common operand: 5788 // m(m(X, Y)), X --> m(X, Y) (4 commuted variants) 5789 if (auto *M0 = dyn_cast<IntrinsicInst>(Op0)) 5790 if (M0->getIntrinsicID() == IID && 5791 (M0->getOperand(0) == Op1 || M0->getOperand(1) == Op1)) 5792 return Op0; 5793 if (auto *M1 = dyn_cast<IntrinsicInst>(Op1)) 5794 if (M1->getIntrinsicID() == IID && 5795 (M1->getOperand(0) == Op0 || M1->getOperand(1) == Op0)) 5796 return Op1; 5797 5798 break; 5799 } 5800 case Intrinsic::experimental_vector_extract: { 5801 Type *ReturnType = F->getReturnType(); 5802 5803 // (extract_vector (insert_vector _, X, 0), 0) -> X 5804 unsigned IdxN = cast<ConstantInt>(Op1)->getZExtValue(); 5805 Value *X = nullptr; 5806 if (match(Op0, m_Intrinsic<Intrinsic::experimental_vector_insert>( 5807 m_Value(), m_Value(X), m_Zero())) && 5808 IdxN == 0 && X->getType() == ReturnType) 5809 return X; 5810 5811 break; 5812 } 5813 default: 5814 break; 5815 } 5816 5817 return nullptr; 5818 } 5819 5820 static Value *simplifyIntrinsic(CallBase *Call, const SimplifyQuery &Q) { 5821 5822 unsigned NumOperands = Call->arg_size(); 5823 Function *F = cast<Function>(Call->getCalledFunction()); 5824 Intrinsic::ID IID = F->getIntrinsicID(); 5825 5826 // Most of the intrinsics with no operands have some kind of side effect. 5827 // Don't simplify. 5828 if (!NumOperands) { 5829 switch (IID) { 5830 case Intrinsic::vscale: { 5831 // Call may not be inserted into the IR yet at point of calling simplify. 5832 if (!Call->getParent() || !Call->getParent()->getParent()) 5833 return nullptr; 5834 auto Attr = Call->getFunction()->getFnAttribute(Attribute::VScaleRange); 5835 if (!Attr.isValid()) 5836 return nullptr; 5837 unsigned VScaleMin, VScaleMax; 5838 std::tie(VScaleMin, VScaleMax) = Attr.getVScaleRangeArgs(); 5839 if (VScaleMin == VScaleMax && VScaleMax != 0) 5840 return ConstantInt::get(F->getReturnType(), VScaleMin); 5841 return nullptr; 5842 } 5843 default: 5844 return nullptr; 5845 } 5846 } 5847 5848 if (NumOperands == 1) 5849 return simplifyUnaryIntrinsic(F, Call->getArgOperand(0), Q); 5850 5851 if (NumOperands == 2) 5852 return simplifyBinaryIntrinsic(F, Call->getArgOperand(0), 5853 Call->getArgOperand(1), Q); 5854 5855 // Handle intrinsics with 3 or more arguments. 5856 switch (IID) { 5857 case Intrinsic::masked_load: 5858 case Intrinsic::masked_gather: { 5859 Value *MaskArg = Call->getArgOperand(2); 5860 Value *PassthruArg = Call->getArgOperand(3); 5861 // If the mask is all zeros or undef, the "passthru" argument is the result. 5862 if (maskIsAllZeroOrUndef(MaskArg)) 5863 return PassthruArg; 5864 return nullptr; 5865 } 5866 case Intrinsic::fshl: 5867 case Intrinsic::fshr: { 5868 Value *Op0 = Call->getArgOperand(0), *Op1 = Call->getArgOperand(1), 5869 *ShAmtArg = Call->getArgOperand(2); 5870 5871 // If both operands are undef, the result is undef. 5872 if (Q.isUndefValue(Op0) && Q.isUndefValue(Op1)) 5873 return UndefValue::get(F->getReturnType()); 5874 5875 // If shift amount is undef, assume it is zero. 5876 if (Q.isUndefValue(ShAmtArg)) 5877 return Call->getArgOperand(IID == Intrinsic::fshl ? 0 : 1); 5878 5879 const APInt *ShAmtC; 5880 if (match(ShAmtArg, m_APInt(ShAmtC))) { 5881 // If there's effectively no shift, return the 1st arg or 2nd arg. 5882 APInt BitWidth = APInt(ShAmtC->getBitWidth(), ShAmtC->getBitWidth()); 5883 if (ShAmtC->urem(BitWidth).isZero()) 5884 return Call->getArgOperand(IID == Intrinsic::fshl ? 0 : 1); 5885 } 5886 5887 // Rotating zero by anything is zero. 5888 if (match(Op0, m_Zero()) && match(Op1, m_Zero())) 5889 return ConstantInt::getNullValue(F->getReturnType()); 5890 5891 // Rotating -1 by anything is -1. 5892 if (match(Op0, m_AllOnes()) && match(Op1, m_AllOnes())) 5893 return ConstantInt::getAllOnesValue(F->getReturnType()); 5894 5895 return nullptr; 5896 } 5897 case Intrinsic::experimental_constrained_fma: { 5898 Value *Op0 = Call->getArgOperand(0); 5899 Value *Op1 = Call->getArgOperand(1); 5900 Value *Op2 = Call->getArgOperand(2); 5901 auto *FPI = cast<ConstrainedFPIntrinsic>(Call); 5902 if (Value *V = simplifyFPOp({Op0, Op1, Op2}, {}, Q, 5903 FPI->getExceptionBehavior().getValue(), 5904 FPI->getRoundingMode().getValue())) 5905 return V; 5906 return nullptr; 5907 } 5908 case Intrinsic::fma: 5909 case Intrinsic::fmuladd: { 5910 Value *Op0 = Call->getArgOperand(0); 5911 Value *Op1 = Call->getArgOperand(1); 5912 Value *Op2 = Call->getArgOperand(2); 5913 if (Value *V = simplifyFPOp({Op0, Op1, Op2}, {}, Q, fp::ebIgnore, 5914 RoundingMode::NearestTiesToEven)) 5915 return V; 5916 return nullptr; 5917 } 5918 case Intrinsic::smul_fix: 5919 case Intrinsic::smul_fix_sat: { 5920 Value *Op0 = Call->getArgOperand(0); 5921 Value *Op1 = Call->getArgOperand(1); 5922 Value *Op2 = Call->getArgOperand(2); 5923 Type *ReturnType = F->getReturnType(); 5924 5925 // Canonicalize constant operand as Op1 (ConstantFolding handles the case 5926 // when both Op0 and Op1 are constant so we do not care about that special 5927 // case here). 5928 if (isa<Constant>(Op0)) 5929 std::swap(Op0, Op1); 5930 5931 // X * 0 -> 0 5932 if (match(Op1, m_Zero())) 5933 return Constant::getNullValue(ReturnType); 5934 5935 // X * undef -> 0 5936 if (Q.isUndefValue(Op1)) 5937 return Constant::getNullValue(ReturnType); 5938 5939 // X * (1 << Scale) -> X 5940 APInt ScaledOne = 5941 APInt::getOneBitSet(ReturnType->getScalarSizeInBits(), 5942 cast<ConstantInt>(Op2)->getZExtValue()); 5943 if (ScaledOne.isNonNegative() && match(Op1, m_SpecificInt(ScaledOne))) 5944 return Op0; 5945 5946 return nullptr; 5947 } 5948 case Intrinsic::experimental_vector_insert: { 5949 Value *Vec = Call->getArgOperand(0); 5950 Value *SubVec = Call->getArgOperand(1); 5951 Value *Idx = Call->getArgOperand(2); 5952 Type *ReturnType = F->getReturnType(); 5953 5954 // (insert_vector Y, (extract_vector X, 0), 0) -> X 5955 // where: Y is X, or Y is undef 5956 unsigned IdxN = cast<ConstantInt>(Idx)->getZExtValue(); 5957 Value *X = nullptr; 5958 if (match(SubVec, m_Intrinsic<Intrinsic::experimental_vector_extract>( 5959 m_Value(X), m_Zero())) && 5960 (Q.isUndefValue(Vec) || Vec == X) && IdxN == 0 && 5961 X->getType() == ReturnType) 5962 return X; 5963 5964 return nullptr; 5965 } 5966 case Intrinsic::experimental_constrained_fadd: { 5967 auto *FPI = cast<ConstrainedFPIntrinsic>(Call); 5968 return SimplifyFAddInst(FPI->getArgOperand(0), FPI->getArgOperand(1), 5969 FPI->getFastMathFlags(), Q, 5970 FPI->getExceptionBehavior().getValue(), 5971 FPI->getRoundingMode().getValue()); 5972 break; 5973 } 5974 case Intrinsic::experimental_constrained_fsub: { 5975 auto *FPI = cast<ConstrainedFPIntrinsic>(Call); 5976 return SimplifyFSubInst(FPI->getArgOperand(0), FPI->getArgOperand(1), 5977 FPI->getFastMathFlags(), Q, 5978 FPI->getExceptionBehavior().getValue(), 5979 FPI->getRoundingMode().getValue()); 5980 break; 5981 } 5982 case Intrinsic::experimental_constrained_fmul: { 5983 auto *FPI = cast<ConstrainedFPIntrinsic>(Call); 5984 return SimplifyFMulInst(FPI->getArgOperand(0), FPI->getArgOperand(1), 5985 FPI->getFastMathFlags(), Q, 5986 FPI->getExceptionBehavior().getValue(), 5987 FPI->getRoundingMode().getValue()); 5988 break; 5989 } 5990 case Intrinsic::experimental_constrained_fdiv: { 5991 auto *FPI = cast<ConstrainedFPIntrinsic>(Call); 5992 return SimplifyFDivInst(FPI->getArgOperand(0), FPI->getArgOperand(1), 5993 FPI->getFastMathFlags(), Q, 5994 FPI->getExceptionBehavior().getValue(), 5995 FPI->getRoundingMode().getValue()); 5996 break; 5997 } 5998 case Intrinsic::experimental_constrained_frem: { 5999 auto *FPI = cast<ConstrainedFPIntrinsic>(Call); 6000 return SimplifyFRemInst(FPI->getArgOperand(0), FPI->getArgOperand(1), 6001 FPI->getFastMathFlags(), Q, 6002 FPI->getExceptionBehavior().getValue(), 6003 FPI->getRoundingMode().getValue()); 6004 break; 6005 } 6006 default: 6007 return nullptr; 6008 } 6009 } 6010 6011 static Value *tryConstantFoldCall(CallBase *Call, const SimplifyQuery &Q) { 6012 auto *F = dyn_cast<Function>(Call->getCalledOperand()); 6013 if (!F || !canConstantFoldCallTo(Call, F)) 6014 return nullptr; 6015 6016 SmallVector<Constant *, 4> ConstantArgs; 6017 unsigned NumArgs = Call->arg_size(); 6018 ConstantArgs.reserve(NumArgs); 6019 for (auto &Arg : Call->args()) { 6020 Constant *C = dyn_cast<Constant>(&Arg); 6021 if (!C) { 6022 if (isa<MetadataAsValue>(Arg.get())) 6023 continue; 6024 return nullptr; 6025 } 6026 ConstantArgs.push_back(C); 6027 } 6028 6029 return ConstantFoldCall(Call, F, ConstantArgs, Q.TLI); 6030 } 6031 6032 Value *llvm::SimplifyCall(CallBase *Call, const SimplifyQuery &Q) { 6033 // musttail calls can only be simplified if they are also DCEd. 6034 // As we can't guarantee this here, don't simplify them. 6035 if (Call->isMustTailCall()) 6036 return nullptr; 6037 6038 // call undef -> poison 6039 // call null -> poison 6040 Value *Callee = Call->getCalledOperand(); 6041 if (isa<UndefValue>(Callee) || isa<ConstantPointerNull>(Callee)) 6042 return PoisonValue::get(Call->getType()); 6043 6044 if (Value *V = tryConstantFoldCall(Call, Q)) 6045 return V; 6046 6047 auto *F = dyn_cast<Function>(Callee); 6048 if (F && F->isIntrinsic()) 6049 if (Value *Ret = simplifyIntrinsic(Call, Q)) 6050 return Ret; 6051 6052 return nullptr; 6053 } 6054 6055 /// Given operands for a Freeze, see if we can fold the result. 6056 static Value *SimplifyFreezeInst(Value *Op0, const SimplifyQuery &Q) { 6057 // Use a utility function defined in ValueTracking. 6058 if (llvm::isGuaranteedNotToBeUndefOrPoison(Op0, Q.AC, Q.CxtI, Q.DT)) 6059 return Op0; 6060 // We have room for improvement. 6061 return nullptr; 6062 } 6063 6064 Value *llvm::SimplifyFreezeInst(Value *Op0, const SimplifyQuery &Q) { 6065 return ::SimplifyFreezeInst(Op0, Q); 6066 } 6067 6068 static Value *SimplifyLoadInst(LoadInst *LI, Value *PtrOp, 6069 const SimplifyQuery &Q) { 6070 if (LI->isVolatile()) 6071 return nullptr; 6072 6073 APInt Offset(Q.DL.getIndexTypeSizeInBits(PtrOp->getType()), 0); 6074 auto *PtrOpC = dyn_cast<Constant>(PtrOp); 6075 // Try to convert operand into a constant by stripping offsets while looking 6076 // through invariant.group intrinsics. Don't bother if the underlying object 6077 // is not constant, as calculating GEP offsets is expensive. 6078 if (!PtrOpC && isa<Constant>(getUnderlyingObject(PtrOp))) { 6079 PtrOp = PtrOp->stripAndAccumulateConstantOffsets( 6080 Q.DL, Offset, /* AllowNonInbounts */ true, 6081 /* AllowInvariantGroup */ true); 6082 // Index size may have changed due to address space casts. 6083 Offset = Offset.sextOrTrunc(Q.DL.getIndexTypeSizeInBits(PtrOp->getType())); 6084 PtrOpC = dyn_cast<Constant>(PtrOp); 6085 } 6086 6087 if (PtrOpC) 6088 return ConstantFoldLoadFromConstPtr(PtrOpC, LI->getType(), Offset, Q.DL); 6089 return nullptr; 6090 } 6091 6092 /// See if we can compute a simplified version of this instruction. 6093 /// If not, this returns null. 6094 6095 static Value *simplifyInstructionWithOperands(Instruction *I, 6096 ArrayRef<Value *> NewOps, 6097 const SimplifyQuery &SQ, 6098 OptimizationRemarkEmitter *ORE) { 6099 const SimplifyQuery Q = SQ.CxtI ? SQ : SQ.getWithInstruction(I); 6100 Value *Result = nullptr; 6101 6102 switch (I->getOpcode()) { 6103 default: 6104 if (llvm::all_of(NewOps, [](Value *V) { return isa<Constant>(V); })) { 6105 SmallVector<Constant *, 8> NewConstOps(NewOps.size()); 6106 transform(NewOps, NewConstOps.begin(), 6107 [](Value *V) { return cast<Constant>(V); }); 6108 Result = ConstantFoldInstOperands(I, NewConstOps, Q.DL, Q.TLI); 6109 } 6110 break; 6111 case Instruction::FNeg: 6112 Result = SimplifyFNegInst(NewOps[0], I->getFastMathFlags(), Q); 6113 break; 6114 case Instruction::FAdd: 6115 Result = SimplifyFAddInst(NewOps[0], NewOps[1], I->getFastMathFlags(), Q); 6116 break; 6117 case Instruction::Add: 6118 Result = SimplifyAddInst( 6119 NewOps[0], NewOps[1], Q.IIQ.hasNoSignedWrap(cast<BinaryOperator>(I)), 6120 Q.IIQ.hasNoUnsignedWrap(cast<BinaryOperator>(I)), Q); 6121 break; 6122 case Instruction::FSub: 6123 Result = SimplifyFSubInst(NewOps[0], NewOps[1], I->getFastMathFlags(), Q); 6124 break; 6125 case Instruction::Sub: 6126 Result = SimplifySubInst( 6127 NewOps[0], NewOps[1], Q.IIQ.hasNoSignedWrap(cast<BinaryOperator>(I)), 6128 Q.IIQ.hasNoUnsignedWrap(cast<BinaryOperator>(I)), Q); 6129 break; 6130 case Instruction::FMul: 6131 Result = SimplifyFMulInst(NewOps[0], NewOps[1], I->getFastMathFlags(), Q); 6132 break; 6133 case Instruction::Mul: 6134 Result = SimplifyMulInst(NewOps[0], NewOps[1], Q); 6135 break; 6136 case Instruction::SDiv: 6137 Result = SimplifySDivInst(NewOps[0], NewOps[1], Q); 6138 break; 6139 case Instruction::UDiv: 6140 Result = SimplifyUDivInst(NewOps[0], NewOps[1], Q); 6141 break; 6142 case Instruction::FDiv: 6143 Result = SimplifyFDivInst(NewOps[0], NewOps[1], I->getFastMathFlags(), Q); 6144 break; 6145 case Instruction::SRem: 6146 Result = SimplifySRemInst(NewOps[0], NewOps[1], Q); 6147 break; 6148 case Instruction::URem: 6149 Result = SimplifyURemInst(NewOps[0], NewOps[1], Q); 6150 break; 6151 case Instruction::FRem: 6152 Result = SimplifyFRemInst(NewOps[0], NewOps[1], I->getFastMathFlags(), Q); 6153 break; 6154 case Instruction::Shl: 6155 Result = SimplifyShlInst( 6156 NewOps[0], NewOps[1], Q.IIQ.hasNoSignedWrap(cast<BinaryOperator>(I)), 6157 Q.IIQ.hasNoUnsignedWrap(cast<BinaryOperator>(I)), Q); 6158 break; 6159 case Instruction::LShr: 6160 Result = SimplifyLShrInst(NewOps[0], NewOps[1], 6161 Q.IIQ.isExact(cast<BinaryOperator>(I)), Q); 6162 break; 6163 case Instruction::AShr: 6164 Result = SimplifyAShrInst(NewOps[0], NewOps[1], 6165 Q.IIQ.isExact(cast<BinaryOperator>(I)), Q); 6166 break; 6167 case Instruction::And: 6168 Result = SimplifyAndInst(NewOps[0], NewOps[1], Q); 6169 break; 6170 case Instruction::Or: 6171 Result = SimplifyOrInst(NewOps[0], NewOps[1], Q); 6172 break; 6173 case Instruction::Xor: 6174 Result = SimplifyXorInst(NewOps[0], NewOps[1], Q); 6175 break; 6176 case Instruction::ICmp: 6177 Result = SimplifyICmpInst(cast<ICmpInst>(I)->getPredicate(), NewOps[0], 6178 NewOps[1], Q); 6179 break; 6180 case Instruction::FCmp: 6181 Result = SimplifyFCmpInst(cast<FCmpInst>(I)->getPredicate(), NewOps[0], 6182 NewOps[1], I->getFastMathFlags(), Q); 6183 break; 6184 case Instruction::Select: 6185 Result = SimplifySelectInst(NewOps[0], NewOps[1], NewOps[2], Q); 6186 break; 6187 case Instruction::GetElementPtr: { 6188 auto *GEPI = cast<GetElementPtrInst>(I); 6189 Result = SimplifyGEPInst(GEPI->getSourceElementType(), NewOps, 6190 GEPI->isInBounds(), Q); 6191 break; 6192 } 6193 case Instruction::InsertValue: { 6194 InsertValueInst *IV = cast<InsertValueInst>(I); 6195 Result = SimplifyInsertValueInst(NewOps[0], NewOps[1], IV->getIndices(), Q); 6196 break; 6197 } 6198 case Instruction::InsertElement: { 6199 Result = SimplifyInsertElementInst(NewOps[0], NewOps[1], NewOps[2], Q); 6200 break; 6201 } 6202 case Instruction::ExtractValue: { 6203 auto *EVI = cast<ExtractValueInst>(I); 6204 Result = SimplifyExtractValueInst(NewOps[0], EVI->getIndices(), Q); 6205 break; 6206 } 6207 case Instruction::ExtractElement: { 6208 Result = SimplifyExtractElementInst(NewOps[0], NewOps[1], Q); 6209 break; 6210 } 6211 case Instruction::ShuffleVector: { 6212 auto *SVI = cast<ShuffleVectorInst>(I); 6213 Result = SimplifyShuffleVectorInst( 6214 NewOps[0], NewOps[1], SVI->getShuffleMask(), SVI->getType(), Q); 6215 break; 6216 } 6217 case Instruction::PHI: 6218 Result = SimplifyPHINode(cast<PHINode>(I), NewOps, Q); 6219 break; 6220 case Instruction::Call: { 6221 // TODO: Use NewOps 6222 Result = SimplifyCall(cast<CallInst>(I), Q); 6223 break; 6224 } 6225 case Instruction::Freeze: 6226 Result = llvm::SimplifyFreezeInst(NewOps[0], Q); 6227 break; 6228 #define HANDLE_CAST_INST(num, opc, clas) case Instruction::opc: 6229 #include "llvm/IR/Instruction.def" 6230 #undef HANDLE_CAST_INST 6231 Result = SimplifyCastInst(I->getOpcode(), NewOps[0], I->getType(), Q); 6232 break; 6233 case Instruction::Alloca: 6234 // No simplifications for Alloca and it can't be constant folded. 6235 Result = nullptr; 6236 break; 6237 case Instruction::Load: 6238 Result = SimplifyLoadInst(cast<LoadInst>(I), NewOps[0], Q); 6239 break; 6240 } 6241 6242 /// If called on unreachable code, the above logic may report that the 6243 /// instruction simplified to itself. Make life easier for users by 6244 /// detecting that case here, returning a safe value instead. 6245 return Result == I ? UndefValue::get(I->getType()) : Result; 6246 } 6247 6248 Value *llvm::SimplifyInstructionWithOperands(Instruction *I, 6249 ArrayRef<Value *> NewOps, 6250 const SimplifyQuery &SQ, 6251 OptimizationRemarkEmitter *ORE) { 6252 assert(NewOps.size() == I->getNumOperands() && 6253 "Number of operands should match the instruction!"); 6254 return ::simplifyInstructionWithOperands(I, NewOps, SQ, ORE); 6255 } 6256 6257 Value *llvm::SimplifyInstruction(Instruction *I, const SimplifyQuery &SQ, 6258 OptimizationRemarkEmitter *ORE) { 6259 SmallVector<Value *, 8> Ops(I->operands()); 6260 return ::simplifyInstructionWithOperands(I, Ops, SQ, ORE); 6261 } 6262 6263 /// Implementation of recursive simplification through an instruction's 6264 /// uses. 6265 /// 6266 /// This is the common implementation of the recursive simplification routines. 6267 /// If we have a pre-simplified value in 'SimpleV', that is forcibly used to 6268 /// replace the instruction 'I'. Otherwise, we simply add 'I' to the list of 6269 /// instructions to process and attempt to simplify it using 6270 /// InstructionSimplify. Recursively visited users which could not be 6271 /// simplified themselves are to the optional UnsimplifiedUsers set for 6272 /// further processing by the caller. 6273 /// 6274 /// This routine returns 'true' only when *it* simplifies something. The passed 6275 /// in simplified value does not count toward this. 6276 static bool replaceAndRecursivelySimplifyImpl( 6277 Instruction *I, Value *SimpleV, const TargetLibraryInfo *TLI, 6278 const DominatorTree *DT, AssumptionCache *AC, 6279 SmallSetVector<Instruction *, 8> *UnsimplifiedUsers = nullptr) { 6280 bool Simplified = false; 6281 SmallSetVector<Instruction *, 8> Worklist; 6282 const DataLayout &DL = I->getModule()->getDataLayout(); 6283 6284 // If we have an explicit value to collapse to, do that round of the 6285 // simplification loop by hand initially. 6286 if (SimpleV) { 6287 for (User *U : I->users()) 6288 if (U != I) 6289 Worklist.insert(cast<Instruction>(U)); 6290 6291 // Replace the instruction with its simplified value. 6292 I->replaceAllUsesWith(SimpleV); 6293 6294 // Gracefully handle edge cases where the instruction is not wired into any 6295 // parent block. 6296 if (I->getParent() && !I->isEHPad() && !I->isTerminator() && 6297 !I->mayHaveSideEffects()) 6298 I->eraseFromParent(); 6299 } else { 6300 Worklist.insert(I); 6301 } 6302 6303 // Note that we must test the size on each iteration, the worklist can grow. 6304 for (unsigned Idx = 0; Idx != Worklist.size(); ++Idx) { 6305 I = Worklist[Idx]; 6306 6307 // See if this instruction simplifies. 6308 SimpleV = SimplifyInstruction(I, {DL, TLI, DT, AC}); 6309 if (!SimpleV) { 6310 if (UnsimplifiedUsers) 6311 UnsimplifiedUsers->insert(I); 6312 continue; 6313 } 6314 6315 Simplified = true; 6316 6317 // Stash away all the uses of the old instruction so we can check them for 6318 // recursive simplifications after a RAUW. This is cheaper than checking all 6319 // uses of To on the recursive step in most cases. 6320 for (User *U : I->users()) 6321 Worklist.insert(cast<Instruction>(U)); 6322 6323 // Replace the instruction with its simplified value. 6324 I->replaceAllUsesWith(SimpleV); 6325 6326 // Gracefully handle edge cases where the instruction is not wired into any 6327 // parent block. 6328 if (I->getParent() && !I->isEHPad() && !I->isTerminator() && 6329 !I->mayHaveSideEffects()) 6330 I->eraseFromParent(); 6331 } 6332 return Simplified; 6333 } 6334 6335 bool llvm::replaceAndRecursivelySimplify( 6336 Instruction *I, Value *SimpleV, const TargetLibraryInfo *TLI, 6337 const DominatorTree *DT, AssumptionCache *AC, 6338 SmallSetVector<Instruction *, 8> *UnsimplifiedUsers) { 6339 assert(I != SimpleV && "replaceAndRecursivelySimplify(X,X) is not valid!"); 6340 assert(SimpleV && "Must provide a simplified value."); 6341 return replaceAndRecursivelySimplifyImpl(I, SimpleV, TLI, DT, AC, 6342 UnsimplifiedUsers); 6343 } 6344 6345 namespace llvm { 6346 const SimplifyQuery getBestSimplifyQuery(Pass &P, Function &F) { 6347 auto *DTWP = P.getAnalysisIfAvailable<DominatorTreeWrapperPass>(); 6348 auto *DT = DTWP ? &DTWP->getDomTree() : nullptr; 6349 auto *TLIWP = P.getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 6350 auto *TLI = TLIWP ? &TLIWP->getTLI(F) : nullptr; 6351 auto *ACWP = P.getAnalysisIfAvailable<AssumptionCacheTracker>(); 6352 auto *AC = ACWP ? &ACWP->getAssumptionCache(F) : nullptr; 6353 return {F.getParent()->getDataLayout(), TLI, DT, AC}; 6354 } 6355 6356 const SimplifyQuery getBestSimplifyQuery(LoopStandardAnalysisResults &AR, 6357 const DataLayout &DL) { 6358 return {DL, &AR.TLI, &AR.DT, &AR.AC}; 6359 } 6360 6361 template <class T, class... TArgs> 6362 const SimplifyQuery getBestSimplifyQuery(AnalysisManager<T, TArgs...> &AM, 6363 Function &F) { 6364 auto *DT = AM.template getCachedResult<DominatorTreeAnalysis>(F); 6365 auto *TLI = AM.template getCachedResult<TargetLibraryAnalysis>(F); 6366 auto *AC = AM.template getCachedResult<AssumptionAnalysis>(F); 6367 return {F.getParent()->getDataLayout(), TLI, DT, AC}; 6368 } 6369 template const SimplifyQuery getBestSimplifyQuery(AnalysisManager<Function> &, 6370 Function &); 6371 } 6372