1 //===- InstructionSimplify.cpp - Fold instruction operands ----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements routines for folding instructions into simpler forms 10 // that do not require creating new instructions. This does constant folding 11 // ("add i32 1, 1" -> "2") but can also handle non-constant operands, either 12 // returning a constant ("and i32 %x, 0" -> "0") or an already existing value 13 // ("and i32 %x, %x" -> "%x"). All operands are assumed to have already been 14 // simplified: This is usually true and assuming it simplifies the logic (if 15 // they have not been simplified then results are correct but maybe suboptimal). 16 // 17 //===----------------------------------------------------------------------===// 18 19 #include "llvm/Analysis/InstructionSimplify.h" 20 21 #include "llvm/ADT/STLExtras.h" 22 #include "llvm/ADT/SetVector.h" 23 #include "llvm/ADT/SmallPtrSet.h" 24 #include "llvm/ADT/Statistic.h" 25 #include "llvm/Analysis/AliasAnalysis.h" 26 #include "llvm/Analysis/AssumptionCache.h" 27 #include "llvm/Analysis/CaptureTracking.h" 28 #include "llvm/Analysis/CmpInstAnalysis.h" 29 #include "llvm/Analysis/ConstantFolding.h" 30 #include "llvm/Analysis/InstSimplifyFolder.h" 31 #include "llvm/Analysis/LoopAnalysisManager.h" 32 #include "llvm/Analysis/MemoryBuiltins.h" 33 #include "llvm/Analysis/OverflowInstAnalysis.h" 34 #include "llvm/Analysis/ValueTracking.h" 35 #include "llvm/Analysis/VectorUtils.h" 36 #include "llvm/IR/ConstantRange.h" 37 #include "llvm/IR/DataLayout.h" 38 #include "llvm/IR/Dominators.h" 39 #include "llvm/IR/GetElementPtrTypeIterator.h" 40 #include "llvm/IR/GlobalAlias.h" 41 #include "llvm/IR/InstrTypes.h" 42 #include "llvm/IR/Instructions.h" 43 #include "llvm/IR/Operator.h" 44 #include "llvm/IR/PatternMatch.h" 45 #include "llvm/IR/ValueHandle.h" 46 #include "llvm/Support/KnownBits.h" 47 #include <algorithm> 48 using namespace llvm; 49 using namespace llvm::PatternMatch; 50 51 #define DEBUG_TYPE "instsimplify" 52 53 enum { RecursionLimit = 3 }; 54 55 STATISTIC(NumExpand, "Number of expansions"); 56 STATISTIC(NumReassoc, "Number of reassociations"); 57 58 static Value *SimplifyAndInst(Value *, Value *, const SimplifyQuery &, unsigned); 59 static Value *simplifyUnOp(unsigned, Value *, const SimplifyQuery &, unsigned); 60 static Value *simplifyFPUnOp(unsigned, Value *, const FastMathFlags &, 61 const SimplifyQuery &, unsigned); 62 static Value *SimplifyBinOp(unsigned, Value *, Value *, const SimplifyQuery &, 63 unsigned); 64 static Value *SimplifyBinOp(unsigned, Value *, Value *, const FastMathFlags &, 65 const SimplifyQuery &, unsigned); 66 static Value *SimplifyCmpInst(unsigned, Value *, Value *, const SimplifyQuery &, 67 unsigned); 68 static Value *SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS, 69 const SimplifyQuery &Q, unsigned MaxRecurse); 70 static Value *SimplifyOrInst(Value *, Value *, const SimplifyQuery &, unsigned); 71 static Value *SimplifyXorInst(Value *, Value *, const SimplifyQuery &, unsigned); 72 static Value *SimplifyCastInst(unsigned, Value *, Type *, 73 const SimplifyQuery &, unsigned); 74 static Value *SimplifyGEPInst(Type *, Value *, ArrayRef<Value *>, bool, 75 const SimplifyQuery &, unsigned); 76 static Value *SimplifySelectInst(Value *, Value *, Value *, 77 const SimplifyQuery &, unsigned); 78 79 static Value *foldSelectWithBinaryOp(Value *Cond, Value *TrueVal, 80 Value *FalseVal) { 81 BinaryOperator::BinaryOps BinOpCode; 82 if (auto *BO = dyn_cast<BinaryOperator>(Cond)) 83 BinOpCode = BO->getOpcode(); 84 else 85 return nullptr; 86 87 CmpInst::Predicate ExpectedPred, Pred1, Pred2; 88 if (BinOpCode == BinaryOperator::Or) { 89 ExpectedPred = ICmpInst::ICMP_NE; 90 } else if (BinOpCode == BinaryOperator::And) { 91 ExpectedPred = ICmpInst::ICMP_EQ; 92 } else 93 return nullptr; 94 95 // %A = icmp eq %TV, %FV 96 // %B = icmp eq %X, %Y (and one of these is a select operand) 97 // %C = and %A, %B 98 // %D = select %C, %TV, %FV 99 // --> 100 // %FV 101 102 // %A = icmp ne %TV, %FV 103 // %B = icmp ne %X, %Y (and one of these is a select operand) 104 // %C = or %A, %B 105 // %D = select %C, %TV, %FV 106 // --> 107 // %TV 108 Value *X, *Y; 109 if (!match(Cond, m_c_BinOp(m_c_ICmp(Pred1, m_Specific(TrueVal), 110 m_Specific(FalseVal)), 111 m_ICmp(Pred2, m_Value(X), m_Value(Y)))) || 112 Pred1 != Pred2 || Pred1 != ExpectedPred) 113 return nullptr; 114 115 if (X == TrueVal || X == FalseVal || Y == TrueVal || Y == FalseVal) 116 return BinOpCode == BinaryOperator::Or ? TrueVal : FalseVal; 117 118 return nullptr; 119 } 120 121 /// For a boolean type or a vector of boolean type, return false or a vector 122 /// with every element false. 123 static Constant *getFalse(Type *Ty) { 124 return ConstantInt::getFalse(Ty); 125 } 126 127 /// For a boolean type or a vector of boolean type, return true or a vector 128 /// with every element true. 129 static Constant *getTrue(Type *Ty) { 130 return ConstantInt::getTrue(Ty); 131 } 132 133 /// isSameCompare - Is V equivalent to the comparison "LHS Pred RHS"? 134 static bool isSameCompare(Value *V, CmpInst::Predicate Pred, Value *LHS, 135 Value *RHS) { 136 CmpInst *Cmp = dyn_cast<CmpInst>(V); 137 if (!Cmp) 138 return false; 139 CmpInst::Predicate CPred = Cmp->getPredicate(); 140 Value *CLHS = Cmp->getOperand(0), *CRHS = Cmp->getOperand(1); 141 if (CPred == Pred && CLHS == LHS && CRHS == RHS) 142 return true; 143 return CPred == CmpInst::getSwappedPredicate(Pred) && CLHS == RHS && 144 CRHS == LHS; 145 } 146 147 /// Simplify comparison with true or false branch of select: 148 /// %sel = select i1 %cond, i32 %tv, i32 %fv 149 /// %cmp = icmp sle i32 %sel, %rhs 150 /// Compose new comparison by substituting %sel with either %tv or %fv 151 /// and see if it simplifies. 152 static Value *simplifyCmpSelCase(CmpInst::Predicate Pred, Value *LHS, 153 Value *RHS, Value *Cond, 154 const SimplifyQuery &Q, unsigned MaxRecurse, 155 Constant *TrueOrFalse) { 156 Value *SimplifiedCmp = SimplifyCmpInst(Pred, LHS, RHS, Q, MaxRecurse); 157 if (SimplifiedCmp == Cond) { 158 // %cmp simplified to the select condition (%cond). 159 return TrueOrFalse; 160 } else if (!SimplifiedCmp && isSameCompare(Cond, Pred, LHS, RHS)) { 161 // It didn't simplify. However, if composed comparison is equivalent 162 // to the select condition (%cond) then we can replace it. 163 return TrueOrFalse; 164 } 165 return SimplifiedCmp; 166 } 167 168 /// Simplify comparison with true branch of select 169 static Value *simplifyCmpSelTrueCase(CmpInst::Predicate Pred, Value *LHS, 170 Value *RHS, Value *Cond, 171 const SimplifyQuery &Q, 172 unsigned MaxRecurse) { 173 return simplifyCmpSelCase(Pred, LHS, RHS, Cond, Q, MaxRecurse, 174 getTrue(Cond->getType())); 175 } 176 177 /// Simplify comparison with false branch of select 178 static Value *simplifyCmpSelFalseCase(CmpInst::Predicate Pred, Value *LHS, 179 Value *RHS, Value *Cond, 180 const SimplifyQuery &Q, 181 unsigned MaxRecurse) { 182 return simplifyCmpSelCase(Pred, LHS, RHS, Cond, Q, MaxRecurse, 183 getFalse(Cond->getType())); 184 } 185 186 /// We know comparison with both branches of select can be simplified, but they 187 /// are not equal. This routine handles some logical simplifications. 188 static Value *handleOtherCmpSelSimplifications(Value *TCmp, Value *FCmp, 189 Value *Cond, 190 const SimplifyQuery &Q, 191 unsigned MaxRecurse) { 192 // If the false value simplified to false, then the result of the compare 193 // is equal to "Cond && TCmp". This also catches the case when the false 194 // value simplified to false and the true value to true, returning "Cond". 195 // Folding select to and/or isn't poison-safe in general; impliesPoison 196 // checks whether folding it does not convert a well-defined value into 197 // poison. 198 if (match(FCmp, m_Zero()) && impliesPoison(TCmp, Cond)) 199 if (Value *V = SimplifyAndInst(Cond, TCmp, Q, MaxRecurse)) 200 return V; 201 // If the true value simplified to true, then the result of the compare 202 // is equal to "Cond || FCmp". 203 if (match(TCmp, m_One()) && impliesPoison(FCmp, Cond)) 204 if (Value *V = SimplifyOrInst(Cond, FCmp, Q, MaxRecurse)) 205 return V; 206 // Finally, if the false value simplified to true and the true value to 207 // false, then the result of the compare is equal to "!Cond". 208 if (match(FCmp, m_One()) && match(TCmp, m_Zero())) 209 if (Value *V = SimplifyXorInst( 210 Cond, Constant::getAllOnesValue(Cond->getType()), Q, MaxRecurse)) 211 return V; 212 return nullptr; 213 } 214 215 /// Does the given value dominate the specified phi node? 216 static bool valueDominatesPHI(Value *V, PHINode *P, const DominatorTree *DT) { 217 Instruction *I = dyn_cast<Instruction>(V); 218 if (!I) 219 // Arguments and constants dominate all instructions. 220 return true; 221 222 // If we are processing instructions (and/or basic blocks) that have not been 223 // fully added to a function, the parent nodes may still be null. Simply 224 // return the conservative answer in these cases. 225 if (!I->getParent() || !P->getParent() || !I->getFunction()) 226 return false; 227 228 // If we have a DominatorTree then do a precise test. 229 if (DT) 230 return DT->dominates(I, P); 231 232 // Otherwise, if the instruction is in the entry block and is not an invoke, 233 // then it obviously dominates all phi nodes. 234 if (I->getParent()->isEntryBlock() && !isa<InvokeInst>(I) && 235 !isa<CallBrInst>(I)) 236 return true; 237 238 return false; 239 } 240 241 /// Try to simplify a binary operator of form "V op OtherOp" where V is 242 /// "(B0 opex B1)" by distributing 'op' across 'opex' as 243 /// "(B0 op OtherOp) opex (B1 op OtherOp)". 244 static Value *expandBinOp(Instruction::BinaryOps Opcode, Value *V, 245 Value *OtherOp, Instruction::BinaryOps OpcodeToExpand, 246 const SimplifyQuery &Q, unsigned MaxRecurse) { 247 auto *B = dyn_cast<BinaryOperator>(V); 248 if (!B || B->getOpcode() != OpcodeToExpand) 249 return nullptr; 250 Value *B0 = B->getOperand(0), *B1 = B->getOperand(1); 251 Value *L = SimplifyBinOp(Opcode, B0, OtherOp, Q.getWithoutUndef(), 252 MaxRecurse); 253 if (!L) 254 return nullptr; 255 Value *R = SimplifyBinOp(Opcode, B1, OtherOp, Q.getWithoutUndef(), 256 MaxRecurse); 257 if (!R) 258 return nullptr; 259 260 // Does the expanded pair of binops simplify to the existing binop? 261 if ((L == B0 && R == B1) || 262 (Instruction::isCommutative(OpcodeToExpand) && L == B1 && R == B0)) { 263 ++NumExpand; 264 return B; 265 } 266 267 // Otherwise, return "L op' R" if it simplifies. 268 Value *S = SimplifyBinOp(OpcodeToExpand, L, R, Q, MaxRecurse); 269 if (!S) 270 return nullptr; 271 272 ++NumExpand; 273 return S; 274 } 275 276 /// Try to simplify binops of form "A op (B op' C)" or the commuted variant by 277 /// distributing op over op'. 278 static Value *expandCommutativeBinOp(Instruction::BinaryOps Opcode, 279 Value *L, Value *R, 280 Instruction::BinaryOps OpcodeToExpand, 281 const SimplifyQuery &Q, 282 unsigned MaxRecurse) { 283 // Recursion is always used, so bail out at once if we already hit the limit. 284 if (!MaxRecurse--) 285 return nullptr; 286 287 if (Value *V = expandBinOp(Opcode, L, R, OpcodeToExpand, Q, MaxRecurse)) 288 return V; 289 if (Value *V = expandBinOp(Opcode, R, L, OpcodeToExpand, Q, MaxRecurse)) 290 return V; 291 return nullptr; 292 } 293 294 /// Generic simplifications for associative binary operations. 295 /// Returns the simpler value, or null if none was found. 296 static Value *SimplifyAssociativeBinOp(Instruction::BinaryOps Opcode, 297 Value *LHS, Value *RHS, 298 const SimplifyQuery &Q, 299 unsigned MaxRecurse) { 300 assert(Instruction::isAssociative(Opcode) && "Not an associative operation!"); 301 302 // Recursion is always used, so bail out at once if we already hit the limit. 303 if (!MaxRecurse--) 304 return nullptr; 305 306 BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS); 307 BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS); 308 309 // Transform: "(A op B) op C" ==> "A op (B op C)" if it simplifies completely. 310 if (Op0 && Op0->getOpcode() == Opcode) { 311 Value *A = Op0->getOperand(0); 312 Value *B = Op0->getOperand(1); 313 Value *C = RHS; 314 315 // Does "B op C" simplify? 316 if (Value *V = SimplifyBinOp(Opcode, B, C, Q, MaxRecurse)) { 317 // It does! Return "A op V" if it simplifies or is already available. 318 // If V equals B then "A op V" is just the LHS. 319 if (V == B) return LHS; 320 // Otherwise return "A op V" if it simplifies. 321 if (Value *W = SimplifyBinOp(Opcode, A, V, Q, MaxRecurse)) { 322 ++NumReassoc; 323 return W; 324 } 325 } 326 } 327 328 // Transform: "A op (B op C)" ==> "(A op B) op C" if it simplifies completely. 329 if (Op1 && Op1->getOpcode() == Opcode) { 330 Value *A = LHS; 331 Value *B = Op1->getOperand(0); 332 Value *C = Op1->getOperand(1); 333 334 // Does "A op B" simplify? 335 if (Value *V = SimplifyBinOp(Opcode, A, B, Q, MaxRecurse)) { 336 // It does! Return "V op C" if it simplifies or is already available. 337 // If V equals B then "V op C" is just the RHS. 338 if (V == B) return RHS; 339 // Otherwise return "V op C" if it simplifies. 340 if (Value *W = SimplifyBinOp(Opcode, V, C, Q, MaxRecurse)) { 341 ++NumReassoc; 342 return W; 343 } 344 } 345 } 346 347 // The remaining transforms require commutativity as well as associativity. 348 if (!Instruction::isCommutative(Opcode)) 349 return nullptr; 350 351 // Transform: "(A op B) op C" ==> "(C op A) op B" if it simplifies completely. 352 if (Op0 && Op0->getOpcode() == Opcode) { 353 Value *A = Op0->getOperand(0); 354 Value *B = Op0->getOperand(1); 355 Value *C = RHS; 356 357 // Does "C op A" simplify? 358 if (Value *V = SimplifyBinOp(Opcode, C, A, Q, MaxRecurse)) { 359 // It does! Return "V op B" if it simplifies or is already available. 360 // If V equals A then "V op B" is just the LHS. 361 if (V == A) return LHS; 362 // Otherwise return "V op B" if it simplifies. 363 if (Value *W = SimplifyBinOp(Opcode, V, B, Q, MaxRecurse)) { 364 ++NumReassoc; 365 return W; 366 } 367 } 368 } 369 370 // Transform: "A op (B op C)" ==> "B op (C op A)" if it simplifies completely. 371 if (Op1 && Op1->getOpcode() == Opcode) { 372 Value *A = LHS; 373 Value *B = Op1->getOperand(0); 374 Value *C = Op1->getOperand(1); 375 376 // Does "C op A" simplify? 377 if (Value *V = SimplifyBinOp(Opcode, C, A, Q, MaxRecurse)) { 378 // It does! Return "B op V" if it simplifies or is already available. 379 // If V equals C then "B op V" is just the RHS. 380 if (V == C) return RHS; 381 // Otherwise return "B op V" if it simplifies. 382 if (Value *W = SimplifyBinOp(Opcode, B, V, Q, MaxRecurse)) { 383 ++NumReassoc; 384 return W; 385 } 386 } 387 } 388 389 return nullptr; 390 } 391 392 /// In the case of a binary operation with a select instruction as an operand, 393 /// try to simplify the binop by seeing whether evaluating it on both branches 394 /// of the select results in the same value. Returns the common value if so, 395 /// otherwise returns null. 396 static Value *ThreadBinOpOverSelect(Instruction::BinaryOps Opcode, Value *LHS, 397 Value *RHS, const SimplifyQuery &Q, 398 unsigned MaxRecurse) { 399 // Recursion is always used, so bail out at once if we already hit the limit. 400 if (!MaxRecurse--) 401 return nullptr; 402 403 SelectInst *SI; 404 if (isa<SelectInst>(LHS)) { 405 SI = cast<SelectInst>(LHS); 406 } else { 407 assert(isa<SelectInst>(RHS) && "No select instruction operand!"); 408 SI = cast<SelectInst>(RHS); 409 } 410 411 // Evaluate the BinOp on the true and false branches of the select. 412 Value *TV; 413 Value *FV; 414 if (SI == LHS) { 415 TV = SimplifyBinOp(Opcode, SI->getTrueValue(), RHS, Q, MaxRecurse); 416 FV = SimplifyBinOp(Opcode, SI->getFalseValue(), RHS, Q, MaxRecurse); 417 } else { 418 TV = SimplifyBinOp(Opcode, LHS, SI->getTrueValue(), Q, MaxRecurse); 419 FV = SimplifyBinOp(Opcode, LHS, SI->getFalseValue(), Q, MaxRecurse); 420 } 421 422 // If they simplified to the same value, then return the common value. 423 // If they both failed to simplify then return null. 424 if (TV == FV) 425 return TV; 426 427 // If one branch simplified to undef, return the other one. 428 if (TV && Q.isUndefValue(TV)) 429 return FV; 430 if (FV && Q.isUndefValue(FV)) 431 return TV; 432 433 // If applying the operation did not change the true and false select values, 434 // then the result of the binop is the select itself. 435 if (TV == SI->getTrueValue() && FV == SI->getFalseValue()) 436 return SI; 437 438 // If one branch simplified and the other did not, and the simplified 439 // value is equal to the unsimplified one, return the simplified value. 440 // For example, select (cond, X, X & Z) & Z -> X & Z. 441 if ((FV && !TV) || (TV && !FV)) { 442 // Check that the simplified value has the form "X op Y" where "op" is the 443 // same as the original operation. 444 Instruction *Simplified = dyn_cast<Instruction>(FV ? FV : TV); 445 if (Simplified && Simplified->getOpcode() == unsigned(Opcode)) { 446 // The value that didn't simplify is "UnsimplifiedLHS op UnsimplifiedRHS". 447 // We already know that "op" is the same as for the simplified value. See 448 // if the operands match too. If so, return the simplified value. 449 Value *UnsimplifiedBranch = FV ? SI->getTrueValue() : SI->getFalseValue(); 450 Value *UnsimplifiedLHS = SI == LHS ? UnsimplifiedBranch : LHS; 451 Value *UnsimplifiedRHS = SI == LHS ? RHS : UnsimplifiedBranch; 452 if (Simplified->getOperand(0) == UnsimplifiedLHS && 453 Simplified->getOperand(1) == UnsimplifiedRHS) 454 return Simplified; 455 if (Simplified->isCommutative() && 456 Simplified->getOperand(1) == UnsimplifiedLHS && 457 Simplified->getOperand(0) == UnsimplifiedRHS) 458 return Simplified; 459 } 460 } 461 462 return nullptr; 463 } 464 465 /// In the case of a comparison with a select instruction, try to simplify the 466 /// comparison by seeing whether both branches of the select result in the same 467 /// value. Returns the common value if so, otherwise returns null. 468 /// For example, if we have: 469 /// %tmp = select i1 %cmp, i32 1, i32 2 470 /// %cmp1 = icmp sle i32 %tmp, 3 471 /// We can simplify %cmp1 to true, because both branches of select are 472 /// less than 3. We compose new comparison by substituting %tmp with both 473 /// branches of select and see if it can be simplified. 474 static Value *ThreadCmpOverSelect(CmpInst::Predicate Pred, Value *LHS, 475 Value *RHS, const SimplifyQuery &Q, 476 unsigned MaxRecurse) { 477 // Recursion is always used, so bail out at once if we already hit the limit. 478 if (!MaxRecurse--) 479 return nullptr; 480 481 // Make sure the select is on the LHS. 482 if (!isa<SelectInst>(LHS)) { 483 std::swap(LHS, RHS); 484 Pred = CmpInst::getSwappedPredicate(Pred); 485 } 486 assert(isa<SelectInst>(LHS) && "Not comparing with a select instruction!"); 487 SelectInst *SI = cast<SelectInst>(LHS); 488 Value *Cond = SI->getCondition(); 489 Value *TV = SI->getTrueValue(); 490 Value *FV = SI->getFalseValue(); 491 492 // Now that we have "cmp select(Cond, TV, FV), RHS", analyse it. 493 // Does "cmp TV, RHS" simplify? 494 Value *TCmp = simplifyCmpSelTrueCase(Pred, TV, RHS, Cond, Q, MaxRecurse); 495 if (!TCmp) 496 return nullptr; 497 498 // Does "cmp FV, RHS" simplify? 499 Value *FCmp = simplifyCmpSelFalseCase(Pred, FV, RHS, Cond, Q, MaxRecurse); 500 if (!FCmp) 501 return nullptr; 502 503 // If both sides simplified to the same value, then use it as the result of 504 // the original comparison. 505 if (TCmp == FCmp) 506 return TCmp; 507 508 // The remaining cases only make sense if the select condition has the same 509 // type as the result of the comparison, so bail out if this is not so. 510 if (Cond->getType()->isVectorTy() == RHS->getType()->isVectorTy()) 511 return handleOtherCmpSelSimplifications(TCmp, FCmp, Cond, Q, MaxRecurse); 512 513 return nullptr; 514 } 515 516 /// In the case of a binary operation with an operand that is a PHI instruction, 517 /// try to simplify the binop by seeing whether evaluating it on the incoming 518 /// phi values yields the same result for every value. If so returns the common 519 /// value, otherwise returns null. 520 static Value *ThreadBinOpOverPHI(Instruction::BinaryOps Opcode, Value *LHS, 521 Value *RHS, const SimplifyQuery &Q, 522 unsigned MaxRecurse) { 523 // Recursion is always used, so bail out at once if we already hit the limit. 524 if (!MaxRecurse--) 525 return nullptr; 526 527 PHINode *PI; 528 if (isa<PHINode>(LHS)) { 529 PI = cast<PHINode>(LHS); 530 // Bail out if RHS and the phi may be mutually interdependent due to a loop. 531 if (!valueDominatesPHI(RHS, PI, Q.DT)) 532 return nullptr; 533 } else { 534 assert(isa<PHINode>(RHS) && "No PHI instruction operand!"); 535 PI = cast<PHINode>(RHS); 536 // Bail out if LHS and the phi may be mutually interdependent due to a loop. 537 if (!valueDominatesPHI(LHS, PI, Q.DT)) 538 return nullptr; 539 } 540 541 // Evaluate the BinOp on the incoming phi values. 542 Value *CommonValue = nullptr; 543 for (Value *Incoming : PI->incoming_values()) { 544 // If the incoming value is the phi node itself, it can safely be skipped. 545 if (Incoming == PI) continue; 546 Value *V = PI == LHS ? 547 SimplifyBinOp(Opcode, Incoming, RHS, Q, MaxRecurse) : 548 SimplifyBinOp(Opcode, LHS, Incoming, Q, MaxRecurse); 549 // If the operation failed to simplify, or simplified to a different value 550 // to previously, then give up. 551 if (!V || (CommonValue && V != CommonValue)) 552 return nullptr; 553 CommonValue = V; 554 } 555 556 return CommonValue; 557 } 558 559 /// In the case of a comparison with a PHI instruction, try to simplify the 560 /// comparison by seeing whether comparing with all of the incoming phi values 561 /// yields the same result every time. If so returns the common result, 562 /// otherwise returns null. 563 static Value *ThreadCmpOverPHI(CmpInst::Predicate Pred, Value *LHS, Value *RHS, 564 const SimplifyQuery &Q, unsigned MaxRecurse) { 565 // Recursion is always used, so bail out at once if we already hit the limit. 566 if (!MaxRecurse--) 567 return nullptr; 568 569 // Make sure the phi is on the LHS. 570 if (!isa<PHINode>(LHS)) { 571 std::swap(LHS, RHS); 572 Pred = CmpInst::getSwappedPredicate(Pred); 573 } 574 assert(isa<PHINode>(LHS) && "Not comparing with a phi instruction!"); 575 PHINode *PI = cast<PHINode>(LHS); 576 577 // Bail out if RHS and the phi may be mutually interdependent due to a loop. 578 if (!valueDominatesPHI(RHS, PI, Q.DT)) 579 return nullptr; 580 581 // Evaluate the BinOp on the incoming phi values. 582 Value *CommonValue = nullptr; 583 for (unsigned u = 0, e = PI->getNumIncomingValues(); u < e; ++u) { 584 Value *Incoming = PI->getIncomingValue(u); 585 Instruction *InTI = PI->getIncomingBlock(u)->getTerminator(); 586 // If the incoming value is the phi node itself, it can safely be skipped. 587 if (Incoming == PI) continue; 588 // Change the context instruction to the "edge" that flows into the phi. 589 // This is important because that is where incoming is actually "evaluated" 590 // even though it is used later somewhere else. 591 Value *V = SimplifyCmpInst(Pred, Incoming, RHS, Q.getWithInstruction(InTI), 592 MaxRecurse); 593 // If the operation failed to simplify, or simplified to a different value 594 // to previously, then give up. 595 if (!V || (CommonValue && V != CommonValue)) 596 return nullptr; 597 CommonValue = V; 598 } 599 600 return CommonValue; 601 } 602 603 static Constant *foldOrCommuteConstant(Instruction::BinaryOps Opcode, 604 Value *&Op0, Value *&Op1, 605 const SimplifyQuery &Q) { 606 if (auto *CLHS = dyn_cast<Constant>(Op0)) { 607 if (auto *CRHS = dyn_cast<Constant>(Op1)) 608 return ConstantFoldBinaryOpOperands(Opcode, CLHS, CRHS, Q.DL); 609 610 // Canonicalize the constant to the RHS if this is a commutative operation. 611 if (Instruction::isCommutative(Opcode)) 612 std::swap(Op0, Op1); 613 } 614 return nullptr; 615 } 616 617 /// Given operands for an Add, see if we can fold the result. 618 /// If not, this returns null. 619 static Value *SimplifyAddInst(Value *Op0, Value *Op1, bool IsNSW, bool IsNUW, 620 const SimplifyQuery &Q, unsigned MaxRecurse) { 621 if (Constant *C = foldOrCommuteConstant(Instruction::Add, Op0, Op1, Q)) 622 return C; 623 624 // X + poison -> poison 625 if (isa<PoisonValue>(Op1)) 626 return Op1; 627 628 // X + undef -> undef 629 if (Q.isUndefValue(Op1)) 630 return Op1; 631 632 // X + 0 -> X 633 if (match(Op1, m_Zero())) 634 return Op0; 635 636 // If two operands are negative, return 0. 637 if (isKnownNegation(Op0, Op1)) 638 return Constant::getNullValue(Op0->getType()); 639 640 // X + (Y - X) -> Y 641 // (Y - X) + X -> Y 642 // Eg: X + -X -> 0 643 Value *Y = nullptr; 644 if (match(Op1, m_Sub(m_Value(Y), m_Specific(Op0))) || 645 match(Op0, m_Sub(m_Value(Y), m_Specific(Op1)))) 646 return Y; 647 648 // X + ~X -> -1 since ~X = -X-1 649 Type *Ty = Op0->getType(); 650 if (match(Op0, m_Not(m_Specific(Op1))) || 651 match(Op1, m_Not(m_Specific(Op0)))) 652 return Constant::getAllOnesValue(Ty); 653 654 // add nsw/nuw (xor Y, signmask), signmask --> Y 655 // The no-wrapping add guarantees that the top bit will be set by the add. 656 // Therefore, the xor must be clearing the already set sign bit of Y. 657 if ((IsNSW || IsNUW) && match(Op1, m_SignMask()) && 658 match(Op0, m_Xor(m_Value(Y), m_SignMask()))) 659 return Y; 660 661 // add nuw %x, -1 -> -1, because %x can only be 0. 662 if (IsNUW && match(Op1, m_AllOnes())) 663 return Op1; // Which is -1. 664 665 /// i1 add -> xor. 666 if (MaxRecurse && Op0->getType()->isIntOrIntVectorTy(1)) 667 if (Value *V = SimplifyXorInst(Op0, Op1, Q, MaxRecurse-1)) 668 return V; 669 670 // Try some generic simplifications for associative operations. 671 if (Value *V = SimplifyAssociativeBinOp(Instruction::Add, Op0, Op1, Q, 672 MaxRecurse)) 673 return V; 674 675 // Threading Add over selects and phi nodes is pointless, so don't bother. 676 // Threading over the select in "A + select(cond, B, C)" means evaluating 677 // "A+B" and "A+C" and seeing if they are equal; but they are equal if and 678 // only if B and C are equal. If B and C are equal then (since we assume 679 // that operands have already been simplified) "select(cond, B, C)" should 680 // have been simplified to the common value of B and C already. Analysing 681 // "A+B" and "A+C" thus gains nothing, but costs compile time. Similarly 682 // for threading over phi nodes. 683 684 return nullptr; 685 } 686 687 Value *llvm::SimplifyAddInst(Value *Op0, Value *Op1, bool IsNSW, bool IsNUW, 688 const SimplifyQuery &Query) { 689 return ::SimplifyAddInst(Op0, Op1, IsNSW, IsNUW, Query, RecursionLimit); 690 } 691 692 /// Compute the base pointer and cumulative constant offsets for V. 693 /// 694 /// This strips all constant offsets off of V, leaving it the base pointer, and 695 /// accumulates the total constant offset applied in the returned constant. 696 /// It returns zero if there are no constant offsets applied. 697 /// 698 /// This is very similar to stripAndAccumulateConstantOffsets(), except it 699 /// normalizes the offset bitwidth to the stripped pointer type, not the 700 /// original pointer type. 701 static APInt stripAndComputeConstantOffsets(const DataLayout &DL, Value *&V, 702 bool AllowNonInbounds = false) { 703 assert(V->getType()->isPtrOrPtrVectorTy()); 704 705 APInt Offset = APInt::getZero(DL.getIndexTypeSizeInBits(V->getType())); 706 V = V->stripAndAccumulateConstantOffsets(DL, Offset, AllowNonInbounds); 707 // As that strip may trace through `addrspacecast`, need to sext or trunc 708 // the offset calculated. 709 return Offset.sextOrTrunc(DL.getIndexTypeSizeInBits(V->getType())); 710 } 711 712 /// Compute the constant difference between two pointer values. 713 /// If the difference is not a constant, returns zero. 714 static Constant *computePointerDifference(const DataLayout &DL, Value *LHS, 715 Value *RHS) { 716 APInt LHSOffset = stripAndComputeConstantOffsets(DL, LHS); 717 APInt RHSOffset = stripAndComputeConstantOffsets(DL, RHS); 718 719 // If LHS and RHS are not related via constant offsets to the same base 720 // value, there is nothing we can do here. 721 if (LHS != RHS) 722 return nullptr; 723 724 // Otherwise, the difference of LHS - RHS can be computed as: 725 // LHS - RHS 726 // = (LHSOffset + Base) - (RHSOffset + Base) 727 // = LHSOffset - RHSOffset 728 Constant *Res = ConstantInt::get(LHS->getContext(), LHSOffset - RHSOffset); 729 if (auto *VecTy = dyn_cast<VectorType>(LHS->getType())) 730 Res = ConstantVector::getSplat(VecTy->getElementCount(), Res); 731 return Res; 732 } 733 734 /// Given operands for a Sub, see if we can fold the result. 735 /// If not, this returns null. 736 static Value *SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, 737 const SimplifyQuery &Q, unsigned MaxRecurse) { 738 if (Constant *C = foldOrCommuteConstant(Instruction::Sub, Op0, Op1, Q)) 739 return C; 740 741 // X - poison -> poison 742 // poison - X -> poison 743 if (isa<PoisonValue>(Op0) || isa<PoisonValue>(Op1)) 744 return PoisonValue::get(Op0->getType()); 745 746 // X - undef -> undef 747 // undef - X -> undef 748 if (Q.isUndefValue(Op0) || Q.isUndefValue(Op1)) 749 return UndefValue::get(Op0->getType()); 750 751 // X - 0 -> X 752 if (match(Op1, m_Zero())) 753 return Op0; 754 755 // X - X -> 0 756 if (Op0 == Op1) 757 return Constant::getNullValue(Op0->getType()); 758 759 // Is this a negation? 760 if (match(Op0, m_Zero())) { 761 // 0 - X -> 0 if the sub is NUW. 762 if (isNUW) 763 return Constant::getNullValue(Op0->getType()); 764 765 KnownBits Known = computeKnownBits(Op1, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 766 if (Known.Zero.isMaxSignedValue()) { 767 // Op1 is either 0 or the minimum signed value. If the sub is NSW, then 768 // Op1 must be 0 because negating the minimum signed value is undefined. 769 if (isNSW) 770 return Constant::getNullValue(Op0->getType()); 771 772 // 0 - X -> X if X is 0 or the minimum signed value. 773 return Op1; 774 } 775 } 776 777 // (X + Y) - Z -> X + (Y - Z) or Y + (X - Z) if everything simplifies. 778 // For example, (X + Y) - Y -> X; (Y + X) - Y -> X 779 Value *X = nullptr, *Y = nullptr, *Z = Op1; 780 if (MaxRecurse && match(Op0, m_Add(m_Value(X), m_Value(Y)))) { // (X + Y) - Z 781 // See if "V === Y - Z" simplifies. 782 if (Value *V = SimplifyBinOp(Instruction::Sub, Y, Z, Q, MaxRecurse-1)) 783 // It does! Now see if "X + V" simplifies. 784 if (Value *W = SimplifyBinOp(Instruction::Add, X, V, Q, MaxRecurse-1)) { 785 // It does, we successfully reassociated! 786 ++NumReassoc; 787 return W; 788 } 789 // See if "V === X - Z" simplifies. 790 if (Value *V = SimplifyBinOp(Instruction::Sub, X, Z, Q, MaxRecurse-1)) 791 // It does! Now see if "Y + V" simplifies. 792 if (Value *W = SimplifyBinOp(Instruction::Add, Y, V, Q, MaxRecurse-1)) { 793 // It does, we successfully reassociated! 794 ++NumReassoc; 795 return W; 796 } 797 } 798 799 // X - (Y + Z) -> (X - Y) - Z or (X - Z) - Y if everything simplifies. 800 // For example, X - (X + 1) -> -1 801 X = Op0; 802 if (MaxRecurse && match(Op1, m_Add(m_Value(Y), m_Value(Z)))) { // X - (Y + Z) 803 // See if "V === X - Y" simplifies. 804 if (Value *V = SimplifyBinOp(Instruction::Sub, X, Y, Q, MaxRecurse-1)) 805 // It does! Now see if "V - Z" simplifies. 806 if (Value *W = SimplifyBinOp(Instruction::Sub, V, Z, Q, MaxRecurse-1)) { 807 // It does, we successfully reassociated! 808 ++NumReassoc; 809 return W; 810 } 811 // See if "V === X - Z" simplifies. 812 if (Value *V = SimplifyBinOp(Instruction::Sub, X, Z, Q, MaxRecurse-1)) 813 // It does! Now see if "V - Y" simplifies. 814 if (Value *W = SimplifyBinOp(Instruction::Sub, V, Y, Q, MaxRecurse-1)) { 815 // It does, we successfully reassociated! 816 ++NumReassoc; 817 return W; 818 } 819 } 820 821 // Z - (X - Y) -> (Z - X) + Y if everything simplifies. 822 // For example, X - (X - Y) -> Y. 823 Z = Op0; 824 if (MaxRecurse && match(Op1, m_Sub(m_Value(X), m_Value(Y)))) // Z - (X - Y) 825 // See if "V === Z - X" simplifies. 826 if (Value *V = SimplifyBinOp(Instruction::Sub, Z, X, Q, MaxRecurse-1)) 827 // It does! Now see if "V + Y" simplifies. 828 if (Value *W = SimplifyBinOp(Instruction::Add, V, Y, Q, MaxRecurse-1)) { 829 // It does, we successfully reassociated! 830 ++NumReassoc; 831 return W; 832 } 833 834 // trunc(X) - trunc(Y) -> trunc(X - Y) if everything simplifies. 835 if (MaxRecurse && match(Op0, m_Trunc(m_Value(X))) && 836 match(Op1, m_Trunc(m_Value(Y)))) 837 if (X->getType() == Y->getType()) 838 // See if "V === X - Y" simplifies. 839 if (Value *V = SimplifyBinOp(Instruction::Sub, X, Y, Q, MaxRecurse-1)) 840 // It does! Now see if "trunc V" simplifies. 841 if (Value *W = SimplifyCastInst(Instruction::Trunc, V, Op0->getType(), 842 Q, MaxRecurse - 1)) 843 // It does, return the simplified "trunc V". 844 return W; 845 846 // Variations on GEP(base, I, ...) - GEP(base, i, ...) -> GEP(null, I-i, ...). 847 if (match(Op0, m_PtrToInt(m_Value(X))) && 848 match(Op1, m_PtrToInt(m_Value(Y)))) 849 if (Constant *Result = computePointerDifference(Q.DL, X, Y)) 850 return ConstantExpr::getIntegerCast(Result, Op0->getType(), true); 851 852 // i1 sub -> xor. 853 if (MaxRecurse && Op0->getType()->isIntOrIntVectorTy(1)) 854 if (Value *V = SimplifyXorInst(Op0, Op1, Q, MaxRecurse-1)) 855 return V; 856 857 // Threading Sub over selects and phi nodes is pointless, so don't bother. 858 // Threading over the select in "A - select(cond, B, C)" means evaluating 859 // "A-B" and "A-C" and seeing if they are equal; but they are equal if and 860 // only if B and C are equal. If B and C are equal then (since we assume 861 // that operands have already been simplified) "select(cond, B, C)" should 862 // have been simplified to the common value of B and C already. Analysing 863 // "A-B" and "A-C" thus gains nothing, but costs compile time. Similarly 864 // for threading over phi nodes. 865 866 return nullptr; 867 } 868 869 Value *llvm::SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, 870 const SimplifyQuery &Q) { 871 return ::SimplifySubInst(Op0, Op1, isNSW, isNUW, Q, RecursionLimit); 872 } 873 874 /// Given operands for a Mul, see if we can fold the result. 875 /// If not, this returns null. 876 static Value *SimplifyMulInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 877 unsigned MaxRecurse) { 878 if (Constant *C = foldOrCommuteConstant(Instruction::Mul, Op0, Op1, Q)) 879 return C; 880 881 // X * poison -> poison 882 if (isa<PoisonValue>(Op1)) 883 return Op1; 884 885 // X * undef -> 0 886 // X * 0 -> 0 887 if (Q.isUndefValue(Op1) || match(Op1, m_Zero())) 888 return Constant::getNullValue(Op0->getType()); 889 890 // X * 1 -> X 891 if (match(Op1, m_One())) 892 return Op0; 893 894 // (X / Y) * Y -> X if the division is exact. 895 Value *X = nullptr; 896 if (Q.IIQ.UseInstrInfo && 897 (match(Op0, 898 m_Exact(m_IDiv(m_Value(X), m_Specific(Op1)))) || // (X / Y) * Y 899 match(Op1, m_Exact(m_IDiv(m_Value(X), m_Specific(Op0)))))) // Y * (X / Y) 900 return X; 901 902 // i1 mul -> and. 903 if (MaxRecurse && Op0->getType()->isIntOrIntVectorTy(1)) 904 if (Value *V = SimplifyAndInst(Op0, Op1, Q, MaxRecurse-1)) 905 return V; 906 907 // Try some generic simplifications for associative operations. 908 if (Value *V = SimplifyAssociativeBinOp(Instruction::Mul, Op0, Op1, Q, 909 MaxRecurse)) 910 return V; 911 912 // Mul distributes over Add. Try some generic simplifications based on this. 913 if (Value *V = expandCommutativeBinOp(Instruction::Mul, Op0, Op1, 914 Instruction::Add, Q, MaxRecurse)) 915 return V; 916 917 // If the operation is with the result of a select instruction, check whether 918 // operating on either branch of the select always yields the same value. 919 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 920 if (Value *V = ThreadBinOpOverSelect(Instruction::Mul, Op0, Op1, Q, 921 MaxRecurse)) 922 return V; 923 924 // If the operation is with the result of a phi instruction, check whether 925 // operating on all incoming values of the phi always yields the same value. 926 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 927 if (Value *V = ThreadBinOpOverPHI(Instruction::Mul, Op0, Op1, Q, 928 MaxRecurse)) 929 return V; 930 931 return nullptr; 932 } 933 934 Value *llvm::SimplifyMulInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 935 return ::SimplifyMulInst(Op0, Op1, Q, RecursionLimit); 936 } 937 938 /// Check for common or similar folds of integer division or integer remainder. 939 /// This applies to all 4 opcodes (sdiv/udiv/srem/urem). 940 static Value *simplifyDivRem(Instruction::BinaryOps Opcode, Value *Op0, 941 Value *Op1, const SimplifyQuery &Q) { 942 bool IsDiv = (Opcode == Instruction::SDiv || Opcode == Instruction::UDiv); 943 bool IsSigned = (Opcode == Instruction::SDiv || Opcode == Instruction::SRem); 944 945 Type *Ty = Op0->getType(); 946 947 // X / undef -> poison 948 // X % undef -> poison 949 if (Q.isUndefValue(Op1) || isa<PoisonValue>(Op1)) 950 return PoisonValue::get(Ty); 951 952 // X / 0 -> poison 953 // X % 0 -> poison 954 // We don't need to preserve faults! 955 if (match(Op1, m_Zero())) 956 return PoisonValue::get(Ty); 957 958 // If any element of a constant divisor fixed width vector is zero or undef 959 // the behavior is undefined and we can fold the whole op to poison. 960 auto *Op1C = dyn_cast<Constant>(Op1); 961 auto *VTy = dyn_cast<FixedVectorType>(Ty); 962 if (Op1C && VTy) { 963 unsigned NumElts = VTy->getNumElements(); 964 for (unsigned i = 0; i != NumElts; ++i) { 965 Constant *Elt = Op1C->getAggregateElement(i); 966 if (Elt && (Elt->isNullValue() || Q.isUndefValue(Elt))) 967 return PoisonValue::get(Ty); 968 } 969 } 970 971 // poison / X -> poison 972 // poison % X -> poison 973 if (isa<PoisonValue>(Op0)) 974 return Op0; 975 976 // undef / X -> 0 977 // undef % X -> 0 978 if (Q.isUndefValue(Op0)) 979 return Constant::getNullValue(Ty); 980 981 // 0 / X -> 0 982 // 0 % X -> 0 983 if (match(Op0, m_Zero())) 984 return Constant::getNullValue(Op0->getType()); 985 986 // X / X -> 1 987 // X % X -> 0 988 if (Op0 == Op1) 989 return IsDiv ? ConstantInt::get(Ty, 1) : Constant::getNullValue(Ty); 990 991 // X / 1 -> X 992 // X % 1 -> 0 993 // If this is a boolean op (single-bit element type), we can't have 994 // division-by-zero or remainder-by-zero, so assume the divisor is 1. 995 // Similarly, if we're zero-extending a boolean divisor, then assume it's a 1. 996 Value *X; 997 if (match(Op1, m_One()) || Ty->isIntOrIntVectorTy(1) || 998 (match(Op1, m_ZExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1))) 999 return IsDiv ? Op0 : Constant::getNullValue(Ty); 1000 1001 // If X * Y does not overflow, then: 1002 // X * Y / Y -> X 1003 // X * Y % Y -> 0 1004 if (match(Op0, m_c_Mul(m_Value(X), m_Specific(Op1)))) { 1005 auto *Mul = cast<OverflowingBinaryOperator>(Op0); 1006 // The multiplication can't overflow if it is defined not to, or if 1007 // X == A / Y for some A. 1008 if ((IsSigned && Q.IIQ.hasNoSignedWrap(Mul)) || 1009 (!IsSigned && Q.IIQ.hasNoUnsignedWrap(Mul)) || 1010 (IsSigned && match(X, m_SDiv(m_Value(), m_Specific(Op1)))) || 1011 (!IsSigned && match(X, m_UDiv(m_Value(), m_Specific(Op1))))) { 1012 return IsDiv ? X : Constant::getNullValue(Op0->getType()); 1013 } 1014 } 1015 1016 return nullptr; 1017 } 1018 1019 /// Given a predicate and two operands, return true if the comparison is true. 1020 /// This is a helper for div/rem simplification where we return some other value 1021 /// when we can prove a relationship between the operands. 1022 static bool isICmpTrue(ICmpInst::Predicate Pred, Value *LHS, Value *RHS, 1023 const SimplifyQuery &Q, unsigned MaxRecurse) { 1024 Value *V = SimplifyICmpInst(Pred, LHS, RHS, Q, MaxRecurse); 1025 Constant *C = dyn_cast_or_null<Constant>(V); 1026 return (C && C->isAllOnesValue()); 1027 } 1028 1029 /// Return true if we can simplify X / Y to 0. Remainder can adapt that answer 1030 /// to simplify X % Y to X. 1031 static bool isDivZero(Value *X, Value *Y, const SimplifyQuery &Q, 1032 unsigned MaxRecurse, bool IsSigned) { 1033 // Recursion is always used, so bail out at once if we already hit the limit. 1034 if (!MaxRecurse--) 1035 return false; 1036 1037 if (IsSigned) { 1038 // |X| / |Y| --> 0 1039 // 1040 // We require that 1 operand is a simple constant. That could be extended to 1041 // 2 variables if we computed the sign bit for each. 1042 // 1043 // Make sure that a constant is not the minimum signed value because taking 1044 // the abs() of that is undefined. 1045 Type *Ty = X->getType(); 1046 const APInt *C; 1047 if (match(X, m_APInt(C)) && !C->isMinSignedValue()) { 1048 // Is the variable divisor magnitude always greater than the constant 1049 // dividend magnitude? 1050 // |Y| > |C| --> Y < -abs(C) or Y > abs(C) 1051 Constant *PosDividendC = ConstantInt::get(Ty, C->abs()); 1052 Constant *NegDividendC = ConstantInt::get(Ty, -C->abs()); 1053 if (isICmpTrue(CmpInst::ICMP_SLT, Y, NegDividendC, Q, MaxRecurse) || 1054 isICmpTrue(CmpInst::ICMP_SGT, Y, PosDividendC, Q, MaxRecurse)) 1055 return true; 1056 } 1057 if (match(Y, m_APInt(C))) { 1058 // Special-case: we can't take the abs() of a minimum signed value. If 1059 // that's the divisor, then all we have to do is prove that the dividend 1060 // is also not the minimum signed value. 1061 if (C->isMinSignedValue()) 1062 return isICmpTrue(CmpInst::ICMP_NE, X, Y, Q, MaxRecurse); 1063 1064 // Is the variable dividend magnitude always less than the constant 1065 // divisor magnitude? 1066 // |X| < |C| --> X > -abs(C) and X < abs(C) 1067 Constant *PosDivisorC = ConstantInt::get(Ty, C->abs()); 1068 Constant *NegDivisorC = ConstantInt::get(Ty, -C->abs()); 1069 if (isICmpTrue(CmpInst::ICMP_SGT, X, NegDivisorC, Q, MaxRecurse) && 1070 isICmpTrue(CmpInst::ICMP_SLT, X, PosDivisorC, Q, MaxRecurse)) 1071 return true; 1072 } 1073 return false; 1074 } 1075 1076 // IsSigned == false. 1077 1078 // Is the unsigned dividend known to be less than a constant divisor? 1079 // TODO: Convert this (and above) to range analysis 1080 // ("computeConstantRangeIncludingKnownBits")? 1081 const APInt *C; 1082 if (match(Y, m_APInt(C)) && 1083 computeKnownBits(X, Q.DL, 0, Q.AC, Q.CxtI, Q.DT).getMaxValue().ult(*C)) 1084 return true; 1085 1086 // Try again for any divisor: 1087 // Is the dividend unsigned less than the divisor? 1088 return isICmpTrue(ICmpInst::ICMP_ULT, X, Y, Q, MaxRecurse); 1089 } 1090 1091 /// These are simplifications common to SDiv and UDiv. 1092 static Value *simplifyDiv(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1, 1093 const SimplifyQuery &Q, unsigned MaxRecurse) { 1094 if (Constant *C = foldOrCommuteConstant(Opcode, Op0, Op1, Q)) 1095 return C; 1096 1097 if (Value *V = simplifyDivRem(Opcode, Op0, Op1, Q)) 1098 return V; 1099 1100 bool IsSigned = Opcode == Instruction::SDiv; 1101 1102 // (X rem Y) / Y -> 0 1103 if ((IsSigned && match(Op0, m_SRem(m_Value(), m_Specific(Op1)))) || 1104 (!IsSigned && match(Op0, m_URem(m_Value(), m_Specific(Op1))))) 1105 return Constant::getNullValue(Op0->getType()); 1106 1107 // (X /u C1) /u C2 -> 0 if C1 * C2 overflow 1108 ConstantInt *C1, *C2; 1109 if (!IsSigned && match(Op0, m_UDiv(m_Value(), m_ConstantInt(C1))) && 1110 match(Op1, m_ConstantInt(C2))) { 1111 bool Overflow; 1112 (void)C1->getValue().umul_ov(C2->getValue(), Overflow); 1113 if (Overflow) 1114 return Constant::getNullValue(Op0->getType()); 1115 } 1116 1117 // If the operation is with the result of a select instruction, check whether 1118 // operating on either branch of the select always yields the same value. 1119 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 1120 if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse)) 1121 return V; 1122 1123 // If the operation is with the result of a phi instruction, check whether 1124 // operating on all incoming values of the phi always yields the same value. 1125 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 1126 if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse)) 1127 return V; 1128 1129 if (isDivZero(Op0, Op1, Q, MaxRecurse, IsSigned)) 1130 return Constant::getNullValue(Op0->getType()); 1131 1132 return nullptr; 1133 } 1134 1135 /// These are simplifications common to SRem and URem. 1136 static Value *simplifyRem(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1, 1137 const SimplifyQuery &Q, unsigned MaxRecurse) { 1138 if (Constant *C = foldOrCommuteConstant(Opcode, Op0, Op1, Q)) 1139 return C; 1140 1141 if (Value *V = simplifyDivRem(Opcode, Op0, Op1, Q)) 1142 return V; 1143 1144 // (X % Y) % Y -> X % Y 1145 if ((Opcode == Instruction::SRem && 1146 match(Op0, m_SRem(m_Value(), m_Specific(Op1)))) || 1147 (Opcode == Instruction::URem && 1148 match(Op0, m_URem(m_Value(), m_Specific(Op1))))) 1149 return Op0; 1150 1151 // (X << Y) % X -> 0 1152 if (Q.IIQ.UseInstrInfo && 1153 ((Opcode == Instruction::SRem && 1154 match(Op0, m_NSWShl(m_Specific(Op1), m_Value()))) || 1155 (Opcode == Instruction::URem && 1156 match(Op0, m_NUWShl(m_Specific(Op1), m_Value()))))) 1157 return Constant::getNullValue(Op0->getType()); 1158 1159 // If the operation is with the result of a select instruction, check whether 1160 // operating on either branch of the select always yields the same value. 1161 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 1162 if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse)) 1163 return V; 1164 1165 // If the operation is with the result of a phi instruction, check whether 1166 // operating on all incoming values of the phi always yields the same value. 1167 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 1168 if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse)) 1169 return V; 1170 1171 // If X / Y == 0, then X % Y == X. 1172 if (isDivZero(Op0, Op1, Q, MaxRecurse, Opcode == Instruction::SRem)) 1173 return Op0; 1174 1175 return nullptr; 1176 } 1177 1178 /// Given operands for an SDiv, see if we can fold the result. 1179 /// If not, this returns null. 1180 static Value *SimplifySDivInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 1181 unsigned MaxRecurse) { 1182 // If two operands are negated and no signed overflow, return -1. 1183 if (isKnownNegation(Op0, Op1, /*NeedNSW=*/true)) 1184 return Constant::getAllOnesValue(Op0->getType()); 1185 1186 return simplifyDiv(Instruction::SDiv, Op0, Op1, Q, MaxRecurse); 1187 } 1188 1189 Value *llvm::SimplifySDivInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 1190 return ::SimplifySDivInst(Op0, Op1, Q, RecursionLimit); 1191 } 1192 1193 /// Given operands for a UDiv, see if we can fold the result. 1194 /// If not, this returns null. 1195 static Value *SimplifyUDivInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 1196 unsigned MaxRecurse) { 1197 return simplifyDiv(Instruction::UDiv, Op0, Op1, Q, MaxRecurse); 1198 } 1199 1200 Value *llvm::SimplifyUDivInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 1201 return ::SimplifyUDivInst(Op0, Op1, Q, RecursionLimit); 1202 } 1203 1204 /// Given operands for an SRem, see if we can fold the result. 1205 /// If not, this returns null. 1206 static Value *SimplifySRemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 1207 unsigned MaxRecurse) { 1208 // If the divisor is 0, the result is undefined, so assume the divisor is -1. 1209 // srem Op0, (sext i1 X) --> srem Op0, -1 --> 0 1210 Value *X; 1211 if (match(Op1, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)) 1212 return ConstantInt::getNullValue(Op0->getType()); 1213 1214 // If the two operands are negated, return 0. 1215 if (isKnownNegation(Op0, Op1)) 1216 return ConstantInt::getNullValue(Op0->getType()); 1217 1218 return simplifyRem(Instruction::SRem, Op0, Op1, Q, MaxRecurse); 1219 } 1220 1221 Value *llvm::SimplifySRemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 1222 return ::SimplifySRemInst(Op0, Op1, Q, RecursionLimit); 1223 } 1224 1225 /// Given operands for a URem, see if we can fold the result. 1226 /// If not, this returns null. 1227 static Value *SimplifyURemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 1228 unsigned MaxRecurse) { 1229 return simplifyRem(Instruction::URem, Op0, Op1, Q, MaxRecurse); 1230 } 1231 1232 Value *llvm::SimplifyURemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 1233 return ::SimplifyURemInst(Op0, Op1, Q, RecursionLimit); 1234 } 1235 1236 /// Returns true if a shift by \c Amount always yields poison. 1237 static bool isPoisonShift(Value *Amount, const SimplifyQuery &Q) { 1238 Constant *C = dyn_cast<Constant>(Amount); 1239 if (!C) 1240 return false; 1241 1242 // X shift by undef -> poison because it may shift by the bitwidth. 1243 if (Q.isUndefValue(C)) 1244 return true; 1245 1246 // Shifting by the bitwidth or more is undefined. 1247 if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1248 if (CI->getValue().uge(CI->getType()->getScalarSizeInBits())) 1249 return true; 1250 1251 // If all lanes of a vector shift are undefined the whole shift is. 1252 if (isa<ConstantVector>(C) || isa<ConstantDataVector>(C)) { 1253 for (unsigned I = 0, 1254 E = cast<FixedVectorType>(C->getType())->getNumElements(); 1255 I != E; ++I) 1256 if (!isPoisonShift(C->getAggregateElement(I), Q)) 1257 return false; 1258 return true; 1259 } 1260 1261 return false; 1262 } 1263 1264 /// Given operands for an Shl, LShr or AShr, see if we can fold the result. 1265 /// If not, this returns null. 1266 static Value *SimplifyShift(Instruction::BinaryOps Opcode, Value *Op0, 1267 Value *Op1, bool IsNSW, const SimplifyQuery &Q, 1268 unsigned MaxRecurse) { 1269 if (Constant *C = foldOrCommuteConstant(Opcode, Op0, Op1, Q)) 1270 return C; 1271 1272 // poison shift by X -> poison 1273 if (isa<PoisonValue>(Op0)) 1274 return Op0; 1275 1276 // 0 shift by X -> 0 1277 if (match(Op0, m_Zero())) 1278 return Constant::getNullValue(Op0->getType()); 1279 1280 // X shift by 0 -> X 1281 // Shift-by-sign-extended bool must be shift-by-0 because shift-by-all-ones 1282 // would be poison. 1283 Value *X; 1284 if (match(Op1, m_Zero()) || 1285 (match(Op1, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1))) 1286 return Op0; 1287 1288 // Fold undefined shifts. 1289 if (isPoisonShift(Op1, Q)) 1290 return PoisonValue::get(Op0->getType()); 1291 1292 // If the operation is with the result of a select instruction, check whether 1293 // operating on either branch of the select always yields the same value. 1294 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 1295 if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse)) 1296 return V; 1297 1298 // If the operation is with the result of a phi instruction, check whether 1299 // operating on all incoming values of the phi always yields the same value. 1300 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 1301 if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse)) 1302 return V; 1303 1304 // If any bits in the shift amount make that value greater than or equal to 1305 // the number of bits in the type, the shift is undefined. 1306 KnownBits KnownAmt = computeKnownBits(Op1, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 1307 if (KnownAmt.getMinValue().uge(KnownAmt.getBitWidth())) 1308 return PoisonValue::get(Op0->getType()); 1309 1310 // If all valid bits in the shift amount are known zero, the first operand is 1311 // unchanged. 1312 unsigned NumValidShiftBits = Log2_32_Ceil(KnownAmt.getBitWidth()); 1313 if (KnownAmt.countMinTrailingZeros() >= NumValidShiftBits) 1314 return Op0; 1315 1316 // Check for nsw shl leading to a poison value. 1317 if (IsNSW) { 1318 assert(Opcode == Instruction::Shl && "Expected shl for nsw instruction"); 1319 KnownBits KnownVal = computeKnownBits(Op0, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 1320 KnownBits KnownShl = KnownBits::shl(KnownVal, KnownAmt); 1321 1322 if (KnownVal.Zero.isSignBitSet()) 1323 KnownShl.Zero.setSignBit(); 1324 if (KnownVal.One.isSignBitSet()) 1325 KnownShl.One.setSignBit(); 1326 1327 if (KnownShl.hasConflict()) 1328 return PoisonValue::get(Op0->getType()); 1329 } 1330 1331 return nullptr; 1332 } 1333 1334 /// Given operands for an Shl, LShr or AShr, see if we can 1335 /// fold the result. If not, this returns null. 1336 static Value *SimplifyRightShift(Instruction::BinaryOps Opcode, Value *Op0, 1337 Value *Op1, bool isExact, const SimplifyQuery &Q, 1338 unsigned MaxRecurse) { 1339 if (Value *V = 1340 SimplifyShift(Opcode, Op0, Op1, /*IsNSW*/ false, Q, MaxRecurse)) 1341 return V; 1342 1343 // X >> X -> 0 1344 if (Op0 == Op1) 1345 return Constant::getNullValue(Op0->getType()); 1346 1347 // undef >> X -> 0 1348 // undef >> X -> undef (if it's exact) 1349 if (Q.isUndefValue(Op0)) 1350 return isExact ? Op0 : Constant::getNullValue(Op0->getType()); 1351 1352 // The low bit cannot be shifted out of an exact shift if it is set. 1353 if (isExact) { 1354 KnownBits Op0Known = computeKnownBits(Op0, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT); 1355 if (Op0Known.One[0]) 1356 return Op0; 1357 } 1358 1359 return nullptr; 1360 } 1361 1362 /// Given operands for an Shl, see if we can fold the result. 1363 /// If not, this returns null. 1364 static Value *SimplifyShlInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, 1365 const SimplifyQuery &Q, unsigned MaxRecurse) { 1366 if (Value *V = 1367 SimplifyShift(Instruction::Shl, Op0, Op1, isNSW, Q, MaxRecurse)) 1368 return V; 1369 1370 // undef << X -> 0 1371 // undef << X -> undef if (if it's NSW/NUW) 1372 if (Q.isUndefValue(Op0)) 1373 return isNSW || isNUW ? Op0 : Constant::getNullValue(Op0->getType()); 1374 1375 // (X >> A) << A -> X 1376 Value *X; 1377 if (Q.IIQ.UseInstrInfo && 1378 match(Op0, m_Exact(m_Shr(m_Value(X), m_Specific(Op1))))) 1379 return X; 1380 1381 // shl nuw i8 C, %x -> C iff C has sign bit set. 1382 if (isNUW && match(Op0, m_Negative())) 1383 return Op0; 1384 // NOTE: could use computeKnownBits() / LazyValueInfo, 1385 // but the cost-benefit analysis suggests it isn't worth it. 1386 1387 return nullptr; 1388 } 1389 1390 Value *llvm::SimplifyShlInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, 1391 const SimplifyQuery &Q) { 1392 return ::SimplifyShlInst(Op0, Op1, isNSW, isNUW, Q, RecursionLimit); 1393 } 1394 1395 /// Given operands for an LShr, see if we can fold the result. 1396 /// If not, this returns null. 1397 static Value *SimplifyLShrInst(Value *Op0, Value *Op1, bool isExact, 1398 const SimplifyQuery &Q, unsigned MaxRecurse) { 1399 if (Value *V = SimplifyRightShift(Instruction::LShr, Op0, Op1, isExact, Q, 1400 MaxRecurse)) 1401 return V; 1402 1403 // (X << A) >> A -> X 1404 Value *X; 1405 if (match(Op0, m_NUWShl(m_Value(X), m_Specific(Op1)))) 1406 return X; 1407 1408 // ((X << A) | Y) >> A -> X if effective width of Y is not larger than A. 1409 // We can return X as we do in the above case since OR alters no bits in X. 1410 // SimplifyDemandedBits in InstCombine can do more general optimization for 1411 // bit manipulation. This pattern aims to provide opportunities for other 1412 // optimizers by supporting a simple but common case in InstSimplify. 1413 Value *Y; 1414 const APInt *ShRAmt, *ShLAmt; 1415 if (match(Op1, m_APInt(ShRAmt)) && 1416 match(Op0, m_c_Or(m_NUWShl(m_Value(X), m_APInt(ShLAmt)), m_Value(Y))) && 1417 *ShRAmt == *ShLAmt) { 1418 const KnownBits YKnown = computeKnownBits(Y, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 1419 const unsigned EffWidthY = YKnown.countMaxActiveBits(); 1420 if (ShRAmt->uge(EffWidthY)) 1421 return X; 1422 } 1423 1424 return nullptr; 1425 } 1426 1427 Value *llvm::SimplifyLShrInst(Value *Op0, Value *Op1, bool isExact, 1428 const SimplifyQuery &Q) { 1429 return ::SimplifyLShrInst(Op0, Op1, isExact, Q, RecursionLimit); 1430 } 1431 1432 /// Given operands for an AShr, see if we can fold the result. 1433 /// If not, this returns null. 1434 static Value *SimplifyAShrInst(Value *Op0, Value *Op1, bool isExact, 1435 const SimplifyQuery &Q, unsigned MaxRecurse) { 1436 if (Value *V = SimplifyRightShift(Instruction::AShr, Op0, Op1, isExact, Q, 1437 MaxRecurse)) 1438 return V; 1439 1440 // -1 >>a X --> -1 1441 // (-1 << X) a>> X --> -1 1442 // Do not return Op0 because it may contain undef elements if it's a vector. 1443 if (match(Op0, m_AllOnes()) || 1444 match(Op0, m_Shl(m_AllOnes(), m_Specific(Op1)))) 1445 return Constant::getAllOnesValue(Op0->getType()); 1446 1447 // (X << A) >> A -> X 1448 Value *X; 1449 if (Q.IIQ.UseInstrInfo && match(Op0, m_NSWShl(m_Value(X), m_Specific(Op1)))) 1450 return X; 1451 1452 // Arithmetic shifting an all-sign-bit value is a no-op. 1453 unsigned NumSignBits = ComputeNumSignBits(Op0, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 1454 if (NumSignBits == Op0->getType()->getScalarSizeInBits()) 1455 return Op0; 1456 1457 return nullptr; 1458 } 1459 1460 Value *llvm::SimplifyAShrInst(Value *Op0, Value *Op1, bool isExact, 1461 const SimplifyQuery &Q) { 1462 return ::SimplifyAShrInst(Op0, Op1, isExact, Q, RecursionLimit); 1463 } 1464 1465 /// Commuted variants are assumed to be handled by calling this function again 1466 /// with the parameters swapped. 1467 static Value *simplifyUnsignedRangeCheck(ICmpInst *ZeroICmp, 1468 ICmpInst *UnsignedICmp, bool IsAnd, 1469 const SimplifyQuery &Q) { 1470 Value *X, *Y; 1471 1472 ICmpInst::Predicate EqPred; 1473 if (!match(ZeroICmp, m_ICmp(EqPred, m_Value(Y), m_Zero())) || 1474 !ICmpInst::isEquality(EqPred)) 1475 return nullptr; 1476 1477 ICmpInst::Predicate UnsignedPred; 1478 1479 Value *A, *B; 1480 // Y = (A - B); 1481 if (match(Y, m_Sub(m_Value(A), m_Value(B)))) { 1482 if (match(UnsignedICmp, 1483 m_c_ICmp(UnsignedPred, m_Specific(A), m_Specific(B))) && 1484 ICmpInst::isUnsigned(UnsignedPred)) { 1485 // A >=/<= B || (A - B) != 0 <--> true 1486 if ((UnsignedPred == ICmpInst::ICMP_UGE || 1487 UnsignedPred == ICmpInst::ICMP_ULE) && 1488 EqPred == ICmpInst::ICMP_NE && !IsAnd) 1489 return ConstantInt::getTrue(UnsignedICmp->getType()); 1490 // A </> B && (A - B) == 0 <--> false 1491 if ((UnsignedPred == ICmpInst::ICMP_ULT || 1492 UnsignedPred == ICmpInst::ICMP_UGT) && 1493 EqPred == ICmpInst::ICMP_EQ && IsAnd) 1494 return ConstantInt::getFalse(UnsignedICmp->getType()); 1495 1496 // A </> B && (A - B) != 0 <--> A </> B 1497 // A </> B || (A - B) != 0 <--> (A - B) != 0 1498 if (EqPred == ICmpInst::ICMP_NE && (UnsignedPred == ICmpInst::ICMP_ULT || 1499 UnsignedPred == ICmpInst::ICMP_UGT)) 1500 return IsAnd ? UnsignedICmp : ZeroICmp; 1501 1502 // A <=/>= B && (A - B) == 0 <--> (A - B) == 0 1503 // A <=/>= B || (A - B) == 0 <--> A <=/>= B 1504 if (EqPred == ICmpInst::ICMP_EQ && (UnsignedPred == ICmpInst::ICMP_ULE || 1505 UnsignedPred == ICmpInst::ICMP_UGE)) 1506 return IsAnd ? ZeroICmp : UnsignedICmp; 1507 } 1508 1509 // Given Y = (A - B) 1510 // Y >= A && Y != 0 --> Y >= A iff B != 0 1511 // Y < A || Y == 0 --> Y < A iff B != 0 1512 if (match(UnsignedICmp, 1513 m_c_ICmp(UnsignedPred, m_Specific(Y), m_Specific(A)))) { 1514 if (UnsignedPred == ICmpInst::ICMP_UGE && IsAnd && 1515 EqPred == ICmpInst::ICMP_NE && 1516 isKnownNonZero(B, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT)) 1517 return UnsignedICmp; 1518 if (UnsignedPred == ICmpInst::ICMP_ULT && !IsAnd && 1519 EqPred == ICmpInst::ICMP_EQ && 1520 isKnownNonZero(B, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT)) 1521 return UnsignedICmp; 1522 } 1523 } 1524 1525 if (match(UnsignedICmp, m_ICmp(UnsignedPred, m_Value(X), m_Specific(Y))) && 1526 ICmpInst::isUnsigned(UnsignedPred)) 1527 ; 1528 else if (match(UnsignedICmp, 1529 m_ICmp(UnsignedPred, m_Specific(Y), m_Value(X))) && 1530 ICmpInst::isUnsigned(UnsignedPred)) 1531 UnsignedPred = ICmpInst::getSwappedPredicate(UnsignedPred); 1532 else 1533 return nullptr; 1534 1535 // X > Y && Y == 0 --> Y == 0 iff X != 0 1536 // X > Y || Y == 0 --> X > Y iff X != 0 1537 if (UnsignedPred == ICmpInst::ICMP_UGT && EqPred == ICmpInst::ICMP_EQ && 1538 isKnownNonZero(X, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT)) 1539 return IsAnd ? ZeroICmp : UnsignedICmp; 1540 1541 // X <= Y && Y != 0 --> X <= Y iff X != 0 1542 // X <= Y || Y != 0 --> Y != 0 iff X != 0 1543 if (UnsignedPred == ICmpInst::ICMP_ULE && EqPred == ICmpInst::ICMP_NE && 1544 isKnownNonZero(X, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT)) 1545 return IsAnd ? UnsignedICmp : ZeroICmp; 1546 1547 // The transforms below here are expected to be handled more generally with 1548 // simplifyAndOrOfICmpsWithLimitConst() or in InstCombine's 1549 // foldAndOrOfICmpsWithConstEq(). If we are looking to trim optimizer overlap, 1550 // these are candidates for removal. 1551 1552 // X < Y && Y != 0 --> X < Y 1553 // X < Y || Y != 0 --> Y != 0 1554 if (UnsignedPred == ICmpInst::ICMP_ULT && EqPred == ICmpInst::ICMP_NE) 1555 return IsAnd ? UnsignedICmp : ZeroICmp; 1556 1557 // X >= Y && Y == 0 --> Y == 0 1558 // X >= Y || Y == 0 --> X >= Y 1559 if (UnsignedPred == ICmpInst::ICMP_UGE && EqPred == ICmpInst::ICMP_EQ) 1560 return IsAnd ? ZeroICmp : UnsignedICmp; 1561 1562 // X < Y && Y == 0 --> false 1563 if (UnsignedPred == ICmpInst::ICMP_ULT && EqPred == ICmpInst::ICMP_EQ && 1564 IsAnd) 1565 return getFalse(UnsignedICmp->getType()); 1566 1567 // X >= Y || Y != 0 --> true 1568 if (UnsignedPred == ICmpInst::ICMP_UGE && EqPred == ICmpInst::ICMP_NE && 1569 !IsAnd) 1570 return getTrue(UnsignedICmp->getType()); 1571 1572 return nullptr; 1573 } 1574 1575 /// Commuted variants are assumed to be handled by calling this function again 1576 /// with the parameters swapped. 1577 static Value *simplifyAndOfICmpsWithSameOperands(ICmpInst *Op0, ICmpInst *Op1) { 1578 ICmpInst::Predicate Pred0, Pred1; 1579 Value *A ,*B; 1580 if (!match(Op0, m_ICmp(Pred0, m_Value(A), m_Value(B))) || 1581 !match(Op1, m_ICmp(Pred1, m_Specific(A), m_Specific(B)))) 1582 return nullptr; 1583 1584 // We have (icmp Pred0, A, B) & (icmp Pred1, A, B). 1585 // If Op1 is always implied true by Op0, then Op0 is a subset of Op1, and we 1586 // can eliminate Op1 from this 'and'. 1587 if (ICmpInst::isImpliedTrueByMatchingCmp(Pred0, Pred1)) 1588 return Op0; 1589 1590 // Check for any combination of predicates that are guaranteed to be disjoint. 1591 if ((Pred0 == ICmpInst::getInversePredicate(Pred1)) || 1592 (Pred0 == ICmpInst::ICMP_EQ && ICmpInst::isFalseWhenEqual(Pred1)) || 1593 (Pred0 == ICmpInst::ICMP_SLT && Pred1 == ICmpInst::ICMP_SGT) || 1594 (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_UGT)) 1595 return getFalse(Op0->getType()); 1596 1597 return nullptr; 1598 } 1599 1600 /// Commuted variants are assumed to be handled by calling this function again 1601 /// with the parameters swapped. 1602 static Value *simplifyOrOfICmpsWithSameOperands(ICmpInst *Op0, ICmpInst *Op1) { 1603 ICmpInst::Predicate Pred0, Pred1; 1604 Value *A ,*B; 1605 if (!match(Op0, m_ICmp(Pred0, m_Value(A), m_Value(B))) || 1606 !match(Op1, m_ICmp(Pred1, m_Specific(A), m_Specific(B)))) 1607 return nullptr; 1608 1609 // We have (icmp Pred0, A, B) | (icmp Pred1, A, B). 1610 // If Op1 is always implied true by Op0, then Op0 is a subset of Op1, and we 1611 // can eliminate Op0 from this 'or'. 1612 if (ICmpInst::isImpliedTrueByMatchingCmp(Pred0, Pred1)) 1613 return Op1; 1614 1615 // Check for any combination of predicates that cover the entire range of 1616 // possibilities. 1617 if ((Pred0 == ICmpInst::getInversePredicate(Pred1)) || 1618 (Pred0 == ICmpInst::ICMP_NE && ICmpInst::isTrueWhenEqual(Pred1)) || 1619 (Pred0 == ICmpInst::ICMP_SLE && Pred1 == ICmpInst::ICMP_SGE) || 1620 (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_UGE)) 1621 return getTrue(Op0->getType()); 1622 1623 return nullptr; 1624 } 1625 1626 /// Test if a pair of compares with a shared operand and 2 constants has an 1627 /// empty set intersection, full set union, or if one compare is a superset of 1628 /// the other. 1629 static Value *simplifyAndOrOfICmpsWithConstants(ICmpInst *Cmp0, ICmpInst *Cmp1, 1630 bool IsAnd) { 1631 // Look for this pattern: {and/or} (icmp X, C0), (icmp X, C1)). 1632 if (Cmp0->getOperand(0) != Cmp1->getOperand(0)) 1633 return nullptr; 1634 1635 const APInt *C0, *C1; 1636 if (!match(Cmp0->getOperand(1), m_APInt(C0)) || 1637 !match(Cmp1->getOperand(1), m_APInt(C1))) 1638 return nullptr; 1639 1640 auto Range0 = ConstantRange::makeExactICmpRegion(Cmp0->getPredicate(), *C0); 1641 auto Range1 = ConstantRange::makeExactICmpRegion(Cmp1->getPredicate(), *C1); 1642 1643 // For and-of-compares, check if the intersection is empty: 1644 // (icmp X, C0) && (icmp X, C1) --> empty set --> false 1645 if (IsAnd && Range0.intersectWith(Range1).isEmptySet()) 1646 return getFalse(Cmp0->getType()); 1647 1648 // For or-of-compares, check if the union is full: 1649 // (icmp X, C0) || (icmp X, C1) --> full set --> true 1650 if (!IsAnd && Range0.unionWith(Range1).isFullSet()) 1651 return getTrue(Cmp0->getType()); 1652 1653 // Is one range a superset of the other? 1654 // If this is and-of-compares, take the smaller set: 1655 // (icmp sgt X, 4) && (icmp sgt X, 42) --> icmp sgt X, 42 1656 // If this is or-of-compares, take the larger set: 1657 // (icmp sgt X, 4) || (icmp sgt X, 42) --> icmp sgt X, 4 1658 if (Range0.contains(Range1)) 1659 return IsAnd ? Cmp1 : Cmp0; 1660 if (Range1.contains(Range0)) 1661 return IsAnd ? Cmp0 : Cmp1; 1662 1663 return nullptr; 1664 } 1665 1666 static Value *simplifyAndOrOfICmpsWithZero(ICmpInst *Cmp0, ICmpInst *Cmp1, 1667 bool IsAnd) { 1668 ICmpInst::Predicate P0 = Cmp0->getPredicate(), P1 = Cmp1->getPredicate(); 1669 if (!match(Cmp0->getOperand(1), m_Zero()) || 1670 !match(Cmp1->getOperand(1), m_Zero()) || P0 != P1) 1671 return nullptr; 1672 1673 if ((IsAnd && P0 != ICmpInst::ICMP_NE) || (!IsAnd && P1 != ICmpInst::ICMP_EQ)) 1674 return nullptr; 1675 1676 // We have either "(X == 0 || Y == 0)" or "(X != 0 && Y != 0)". 1677 Value *X = Cmp0->getOperand(0); 1678 Value *Y = Cmp1->getOperand(0); 1679 1680 // If one of the compares is a masked version of a (not) null check, then 1681 // that compare implies the other, so we eliminate the other. Optionally, look 1682 // through a pointer-to-int cast to match a null check of a pointer type. 1683 1684 // (X == 0) || (([ptrtoint] X & ?) == 0) --> ([ptrtoint] X & ?) == 0 1685 // (X == 0) || ((? & [ptrtoint] X) == 0) --> (? & [ptrtoint] X) == 0 1686 // (X != 0) && (([ptrtoint] X & ?) != 0) --> ([ptrtoint] X & ?) != 0 1687 // (X != 0) && ((? & [ptrtoint] X) != 0) --> (? & [ptrtoint] X) != 0 1688 if (match(Y, m_c_And(m_Specific(X), m_Value())) || 1689 match(Y, m_c_And(m_PtrToInt(m_Specific(X)), m_Value()))) 1690 return Cmp1; 1691 1692 // (([ptrtoint] Y & ?) == 0) || (Y == 0) --> ([ptrtoint] Y & ?) == 0 1693 // ((? & [ptrtoint] Y) == 0) || (Y == 0) --> (? & [ptrtoint] Y) == 0 1694 // (([ptrtoint] Y & ?) != 0) && (Y != 0) --> ([ptrtoint] Y & ?) != 0 1695 // ((? & [ptrtoint] Y) != 0) && (Y != 0) --> (? & [ptrtoint] Y) != 0 1696 if (match(X, m_c_And(m_Specific(Y), m_Value())) || 1697 match(X, m_c_And(m_PtrToInt(m_Specific(Y)), m_Value()))) 1698 return Cmp0; 1699 1700 return nullptr; 1701 } 1702 1703 static Value *simplifyAndOfICmpsWithAdd(ICmpInst *Op0, ICmpInst *Op1, 1704 const InstrInfoQuery &IIQ) { 1705 // (icmp (add V, C0), C1) & (icmp V, C0) 1706 ICmpInst::Predicate Pred0, Pred1; 1707 const APInt *C0, *C1; 1708 Value *V; 1709 if (!match(Op0, m_ICmp(Pred0, m_Add(m_Value(V), m_APInt(C0)), m_APInt(C1)))) 1710 return nullptr; 1711 1712 if (!match(Op1, m_ICmp(Pred1, m_Specific(V), m_Value()))) 1713 return nullptr; 1714 1715 auto *AddInst = cast<OverflowingBinaryOperator>(Op0->getOperand(0)); 1716 if (AddInst->getOperand(1) != Op1->getOperand(1)) 1717 return nullptr; 1718 1719 Type *ITy = Op0->getType(); 1720 bool isNSW = IIQ.hasNoSignedWrap(AddInst); 1721 bool isNUW = IIQ.hasNoUnsignedWrap(AddInst); 1722 1723 const APInt Delta = *C1 - *C0; 1724 if (C0->isStrictlyPositive()) { 1725 if (Delta == 2) { 1726 if (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_SGT) 1727 return getFalse(ITy); 1728 if (Pred0 == ICmpInst::ICMP_SLT && Pred1 == ICmpInst::ICMP_SGT && isNSW) 1729 return getFalse(ITy); 1730 } 1731 if (Delta == 1) { 1732 if (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_SGT) 1733 return getFalse(ITy); 1734 if (Pred0 == ICmpInst::ICMP_SLE && Pred1 == ICmpInst::ICMP_SGT && isNSW) 1735 return getFalse(ITy); 1736 } 1737 } 1738 if (C0->getBoolValue() && isNUW) { 1739 if (Delta == 2) 1740 if (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_UGT) 1741 return getFalse(ITy); 1742 if (Delta == 1) 1743 if (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_UGT) 1744 return getFalse(ITy); 1745 } 1746 1747 return nullptr; 1748 } 1749 1750 /// Try to eliminate compares with signed or unsigned min/max constants. 1751 static Value *simplifyAndOrOfICmpsWithLimitConst(ICmpInst *Cmp0, ICmpInst *Cmp1, 1752 bool IsAnd) { 1753 // Canonicalize an equality compare as Cmp0. 1754 if (Cmp1->isEquality()) 1755 std::swap(Cmp0, Cmp1); 1756 if (!Cmp0->isEquality()) 1757 return nullptr; 1758 1759 // The non-equality compare must include a common operand (X). Canonicalize 1760 // the common operand as operand 0 (the predicate is swapped if the common 1761 // operand was operand 1). 1762 ICmpInst::Predicate Pred0 = Cmp0->getPredicate(); 1763 Value *X = Cmp0->getOperand(0); 1764 ICmpInst::Predicate Pred1; 1765 bool HasNotOp = match(Cmp1, m_c_ICmp(Pred1, m_Not(m_Specific(X)), m_Value())); 1766 if (!HasNotOp && !match(Cmp1, m_c_ICmp(Pred1, m_Specific(X), m_Value()))) 1767 return nullptr; 1768 if (ICmpInst::isEquality(Pred1)) 1769 return nullptr; 1770 1771 // The equality compare must be against a constant. Flip bits if we matched 1772 // a bitwise not. Convert a null pointer constant to an integer zero value. 1773 APInt MinMaxC; 1774 const APInt *C; 1775 if (match(Cmp0->getOperand(1), m_APInt(C))) 1776 MinMaxC = HasNotOp ? ~*C : *C; 1777 else if (isa<ConstantPointerNull>(Cmp0->getOperand(1))) 1778 MinMaxC = APInt::getZero(8); 1779 else 1780 return nullptr; 1781 1782 // DeMorganize if this is 'or': P0 || P1 --> !P0 && !P1. 1783 if (!IsAnd) { 1784 Pred0 = ICmpInst::getInversePredicate(Pred0); 1785 Pred1 = ICmpInst::getInversePredicate(Pred1); 1786 } 1787 1788 // Normalize to unsigned compare and unsigned min/max value. 1789 // Example for 8-bit: -128 + 128 -> 0; 127 + 128 -> 255 1790 if (ICmpInst::isSigned(Pred1)) { 1791 Pred1 = ICmpInst::getUnsignedPredicate(Pred1); 1792 MinMaxC += APInt::getSignedMinValue(MinMaxC.getBitWidth()); 1793 } 1794 1795 // (X != MAX) && (X < Y) --> X < Y 1796 // (X == MAX) || (X >= Y) --> X >= Y 1797 if (MinMaxC.isMaxValue()) 1798 if (Pred0 == ICmpInst::ICMP_NE && Pred1 == ICmpInst::ICMP_ULT) 1799 return Cmp1; 1800 1801 // (X != MIN) && (X > Y) --> X > Y 1802 // (X == MIN) || (X <= Y) --> X <= Y 1803 if (MinMaxC.isMinValue()) 1804 if (Pred0 == ICmpInst::ICMP_NE && Pred1 == ICmpInst::ICMP_UGT) 1805 return Cmp1; 1806 1807 return nullptr; 1808 } 1809 1810 static Value *simplifyAndOfICmps(ICmpInst *Op0, ICmpInst *Op1, 1811 const SimplifyQuery &Q) { 1812 if (Value *X = simplifyUnsignedRangeCheck(Op0, Op1, /*IsAnd=*/true, Q)) 1813 return X; 1814 if (Value *X = simplifyUnsignedRangeCheck(Op1, Op0, /*IsAnd=*/true, Q)) 1815 return X; 1816 1817 if (Value *X = simplifyAndOfICmpsWithSameOperands(Op0, Op1)) 1818 return X; 1819 if (Value *X = simplifyAndOfICmpsWithSameOperands(Op1, Op0)) 1820 return X; 1821 1822 if (Value *X = simplifyAndOrOfICmpsWithConstants(Op0, Op1, true)) 1823 return X; 1824 1825 if (Value *X = simplifyAndOrOfICmpsWithLimitConst(Op0, Op1, true)) 1826 return X; 1827 1828 if (Value *X = simplifyAndOrOfICmpsWithZero(Op0, Op1, true)) 1829 return X; 1830 1831 if (Value *X = simplifyAndOfICmpsWithAdd(Op0, Op1, Q.IIQ)) 1832 return X; 1833 if (Value *X = simplifyAndOfICmpsWithAdd(Op1, Op0, Q.IIQ)) 1834 return X; 1835 1836 return nullptr; 1837 } 1838 1839 static Value *simplifyOrOfICmpsWithAdd(ICmpInst *Op0, ICmpInst *Op1, 1840 const InstrInfoQuery &IIQ) { 1841 // (icmp (add V, C0), C1) | (icmp V, C0) 1842 ICmpInst::Predicate Pred0, Pred1; 1843 const APInt *C0, *C1; 1844 Value *V; 1845 if (!match(Op0, m_ICmp(Pred0, m_Add(m_Value(V), m_APInt(C0)), m_APInt(C1)))) 1846 return nullptr; 1847 1848 if (!match(Op1, m_ICmp(Pred1, m_Specific(V), m_Value()))) 1849 return nullptr; 1850 1851 auto *AddInst = cast<BinaryOperator>(Op0->getOperand(0)); 1852 if (AddInst->getOperand(1) != Op1->getOperand(1)) 1853 return nullptr; 1854 1855 Type *ITy = Op0->getType(); 1856 bool isNSW = IIQ.hasNoSignedWrap(AddInst); 1857 bool isNUW = IIQ.hasNoUnsignedWrap(AddInst); 1858 1859 const APInt Delta = *C1 - *C0; 1860 if (C0->isStrictlyPositive()) { 1861 if (Delta == 2) { 1862 if (Pred0 == ICmpInst::ICMP_UGE && Pred1 == ICmpInst::ICMP_SLE) 1863 return getTrue(ITy); 1864 if (Pred0 == ICmpInst::ICMP_SGE && Pred1 == ICmpInst::ICMP_SLE && isNSW) 1865 return getTrue(ITy); 1866 } 1867 if (Delta == 1) { 1868 if (Pred0 == ICmpInst::ICMP_UGT && Pred1 == ICmpInst::ICMP_SLE) 1869 return getTrue(ITy); 1870 if (Pred0 == ICmpInst::ICMP_SGT && Pred1 == ICmpInst::ICMP_SLE && isNSW) 1871 return getTrue(ITy); 1872 } 1873 } 1874 if (C0->getBoolValue() && isNUW) { 1875 if (Delta == 2) 1876 if (Pred0 == ICmpInst::ICMP_UGE && Pred1 == ICmpInst::ICMP_ULE) 1877 return getTrue(ITy); 1878 if (Delta == 1) 1879 if (Pred0 == ICmpInst::ICMP_UGT && Pred1 == ICmpInst::ICMP_ULE) 1880 return getTrue(ITy); 1881 } 1882 1883 return nullptr; 1884 } 1885 1886 static Value *simplifyOrOfICmps(ICmpInst *Op0, ICmpInst *Op1, 1887 const SimplifyQuery &Q) { 1888 if (Value *X = simplifyUnsignedRangeCheck(Op0, Op1, /*IsAnd=*/false, Q)) 1889 return X; 1890 if (Value *X = simplifyUnsignedRangeCheck(Op1, Op0, /*IsAnd=*/false, Q)) 1891 return X; 1892 1893 if (Value *X = simplifyOrOfICmpsWithSameOperands(Op0, Op1)) 1894 return X; 1895 if (Value *X = simplifyOrOfICmpsWithSameOperands(Op1, Op0)) 1896 return X; 1897 1898 if (Value *X = simplifyAndOrOfICmpsWithConstants(Op0, Op1, false)) 1899 return X; 1900 1901 if (Value *X = simplifyAndOrOfICmpsWithLimitConst(Op0, Op1, false)) 1902 return X; 1903 1904 if (Value *X = simplifyAndOrOfICmpsWithZero(Op0, Op1, false)) 1905 return X; 1906 1907 if (Value *X = simplifyOrOfICmpsWithAdd(Op0, Op1, Q.IIQ)) 1908 return X; 1909 if (Value *X = simplifyOrOfICmpsWithAdd(Op1, Op0, Q.IIQ)) 1910 return X; 1911 1912 return nullptr; 1913 } 1914 1915 static Value *simplifyAndOrOfFCmps(const TargetLibraryInfo *TLI, 1916 FCmpInst *LHS, FCmpInst *RHS, bool IsAnd) { 1917 Value *LHS0 = LHS->getOperand(0), *LHS1 = LHS->getOperand(1); 1918 Value *RHS0 = RHS->getOperand(0), *RHS1 = RHS->getOperand(1); 1919 if (LHS0->getType() != RHS0->getType()) 1920 return nullptr; 1921 1922 FCmpInst::Predicate PredL = LHS->getPredicate(), PredR = RHS->getPredicate(); 1923 if ((PredL == FCmpInst::FCMP_ORD && PredR == FCmpInst::FCMP_ORD && IsAnd) || 1924 (PredL == FCmpInst::FCMP_UNO && PredR == FCmpInst::FCMP_UNO && !IsAnd)) { 1925 // (fcmp ord NNAN, X) & (fcmp ord X, Y) --> fcmp ord X, Y 1926 // (fcmp ord NNAN, X) & (fcmp ord Y, X) --> fcmp ord Y, X 1927 // (fcmp ord X, NNAN) & (fcmp ord X, Y) --> fcmp ord X, Y 1928 // (fcmp ord X, NNAN) & (fcmp ord Y, X) --> fcmp ord Y, X 1929 // (fcmp uno NNAN, X) | (fcmp uno X, Y) --> fcmp uno X, Y 1930 // (fcmp uno NNAN, X) | (fcmp uno Y, X) --> fcmp uno Y, X 1931 // (fcmp uno X, NNAN) | (fcmp uno X, Y) --> fcmp uno X, Y 1932 // (fcmp uno X, NNAN) | (fcmp uno Y, X) --> fcmp uno Y, X 1933 if ((isKnownNeverNaN(LHS0, TLI) && (LHS1 == RHS0 || LHS1 == RHS1)) || 1934 (isKnownNeverNaN(LHS1, TLI) && (LHS0 == RHS0 || LHS0 == RHS1))) 1935 return RHS; 1936 1937 // (fcmp ord X, Y) & (fcmp ord NNAN, X) --> fcmp ord X, Y 1938 // (fcmp ord Y, X) & (fcmp ord NNAN, X) --> fcmp ord Y, X 1939 // (fcmp ord X, Y) & (fcmp ord X, NNAN) --> fcmp ord X, Y 1940 // (fcmp ord Y, X) & (fcmp ord X, NNAN) --> fcmp ord Y, X 1941 // (fcmp uno X, Y) | (fcmp uno NNAN, X) --> fcmp uno X, Y 1942 // (fcmp uno Y, X) | (fcmp uno NNAN, X) --> fcmp uno Y, X 1943 // (fcmp uno X, Y) | (fcmp uno X, NNAN) --> fcmp uno X, Y 1944 // (fcmp uno Y, X) | (fcmp uno X, NNAN) --> fcmp uno Y, X 1945 if ((isKnownNeverNaN(RHS0, TLI) && (RHS1 == LHS0 || RHS1 == LHS1)) || 1946 (isKnownNeverNaN(RHS1, TLI) && (RHS0 == LHS0 || RHS0 == LHS1))) 1947 return LHS; 1948 } 1949 1950 return nullptr; 1951 } 1952 1953 static Value *simplifyAndOrOfCmps(const SimplifyQuery &Q, 1954 Value *Op0, Value *Op1, bool IsAnd) { 1955 // Look through casts of the 'and' operands to find compares. 1956 auto *Cast0 = dyn_cast<CastInst>(Op0); 1957 auto *Cast1 = dyn_cast<CastInst>(Op1); 1958 if (Cast0 && Cast1 && Cast0->getOpcode() == Cast1->getOpcode() && 1959 Cast0->getSrcTy() == Cast1->getSrcTy()) { 1960 Op0 = Cast0->getOperand(0); 1961 Op1 = Cast1->getOperand(0); 1962 } 1963 1964 Value *V = nullptr; 1965 auto *ICmp0 = dyn_cast<ICmpInst>(Op0); 1966 auto *ICmp1 = dyn_cast<ICmpInst>(Op1); 1967 if (ICmp0 && ICmp1) 1968 V = IsAnd ? simplifyAndOfICmps(ICmp0, ICmp1, Q) 1969 : simplifyOrOfICmps(ICmp0, ICmp1, Q); 1970 1971 auto *FCmp0 = dyn_cast<FCmpInst>(Op0); 1972 auto *FCmp1 = dyn_cast<FCmpInst>(Op1); 1973 if (FCmp0 && FCmp1) 1974 V = simplifyAndOrOfFCmps(Q.TLI, FCmp0, FCmp1, IsAnd); 1975 1976 if (!V) 1977 return nullptr; 1978 if (!Cast0) 1979 return V; 1980 1981 // If we looked through casts, we can only handle a constant simplification 1982 // because we are not allowed to create a cast instruction here. 1983 if (auto *C = dyn_cast<Constant>(V)) 1984 return ConstantExpr::getCast(Cast0->getOpcode(), C, Cast0->getType()); 1985 1986 return nullptr; 1987 } 1988 1989 /// Given a bitwise logic op, check if the operands are add/sub with a common 1990 /// source value and inverted constant (identity: C - X -> ~(X + ~C)). 1991 static Value *simplifyLogicOfAddSub(Value *Op0, Value *Op1, 1992 Instruction::BinaryOps Opcode) { 1993 assert(Op0->getType() == Op1->getType() && "Mismatched binop types"); 1994 assert(BinaryOperator::isBitwiseLogicOp(Opcode) && "Expected logic op"); 1995 Value *X; 1996 Constant *C1, *C2; 1997 if ((match(Op0, m_Add(m_Value(X), m_Constant(C1))) && 1998 match(Op1, m_Sub(m_Constant(C2), m_Specific(X)))) || 1999 (match(Op1, m_Add(m_Value(X), m_Constant(C1))) && 2000 match(Op0, m_Sub(m_Constant(C2), m_Specific(X))))) { 2001 if (ConstantExpr::getNot(C1) == C2) { 2002 // (X + C) & (~C - X) --> (X + C) & ~(X + C) --> 0 2003 // (X + C) | (~C - X) --> (X + C) | ~(X + C) --> -1 2004 // (X + C) ^ (~C - X) --> (X + C) ^ ~(X + C) --> -1 2005 Type *Ty = Op0->getType(); 2006 return Opcode == Instruction::And ? ConstantInt::getNullValue(Ty) 2007 : ConstantInt::getAllOnesValue(Ty); 2008 } 2009 } 2010 return nullptr; 2011 } 2012 2013 /// Given operands for an And, see if we can fold the result. 2014 /// If not, this returns null. 2015 static Value *SimplifyAndInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 2016 unsigned MaxRecurse) { 2017 if (Constant *C = foldOrCommuteConstant(Instruction::And, Op0, Op1, Q)) 2018 return C; 2019 2020 // X & poison -> poison 2021 if (isa<PoisonValue>(Op1)) 2022 return Op1; 2023 2024 // X & undef -> 0 2025 if (Q.isUndefValue(Op1)) 2026 return Constant::getNullValue(Op0->getType()); 2027 2028 // X & X = X 2029 if (Op0 == Op1) 2030 return Op0; 2031 2032 // X & 0 = 0 2033 if (match(Op1, m_Zero())) 2034 return Constant::getNullValue(Op0->getType()); 2035 2036 // X & -1 = X 2037 if (match(Op1, m_AllOnes())) 2038 return Op0; 2039 2040 // A & ~A = ~A & A = 0 2041 if (match(Op0, m_Not(m_Specific(Op1))) || 2042 match(Op1, m_Not(m_Specific(Op0)))) 2043 return Constant::getNullValue(Op0->getType()); 2044 2045 // (A | ?) & A = A 2046 if (match(Op0, m_c_Or(m_Specific(Op1), m_Value()))) 2047 return Op1; 2048 2049 // A & (A | ?) = A 2050 if (match(Op1, m_c_Or(m_Specific(Op0), m_Value()))) 2051 return Op0; 2052 2053 // (X | Y) & (X | ~Y) --> X (commuted 8 ways) 2054 Value *X, *Y; 2055 if (match(Op0, m_c_Or(m_Value(X), m_Not(m_Value(Y)))) && 2056 match(Op1, m_c_Or(m_Deferred(X), m_Deferred(Y)))) 2057 return X; 2058 if (match(Op1, m_c_Or(m_Value(X), m_Not(m_Value(Y)))) && 2059 match(Op0, m_c_Or(m_Deferred(X), m_Deferred(Y)))) 2060 return X; 2061 2062 if (Value *V = simplifyLogicOfAddSub(Op0, Op1, Instruction::And)) 2063 return V; 2064 2065 // A mask that only clears known zeros of a shifted value is a no-op. 2066 const APInt *Mask; 2067 const APInt *ShAmt; 2068 if (match(Op1, m_APInt(Mask))) { 2069 // If all bits in the inverted and shifted mask are clear: 2070 // and (shl X, ShAmt), Mask --> shl X, ShAmt 2071 if (match(Op0, m_Shl(m_Value(X), m_APInt(ShAmt))) && 2072 (~(*Mask)).lshr(*ShAmt).isZero()) 2073 return Op0; 2074 2075 // If all bits in the inverted and shifted mask are clear: 2076 // and (lshr X, ShAmt), Mask --> lshr X, ShAmt 2077 if (match(Op0, m_LShr(m_Value(X), m_APInt(ShAmt))) && 2078 (~(*Mask)).shl(*ShAmt).isZero()) 2079 return Op0; 2080 } 2081 2082 // If we have a multiplication overflow check that is being 'and'ed with a 2083 // check that one of the multipliers is not zero, we can omit the 'and', and 2084 // only keep the overflow check. 2085 if (isCheckForZeroAndMulWithOverflow(Op0, Op1, true)) 2086 return Op1; 2087 if (isCheckForZeroAndMulWithOverflow(Op1, Op0, true)) 2088 return Op0; 2089 2090 // A & (-A) = A if A is a power of two or zero. 2091 if (match(Op0, m_Neg(m_Specific(Op1))) || 2092 match(Op1, m_Neg(m_Specific(Op0)))) { 2093 if (isKnownToBeAPowerOfTwo(Op0, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI, 2094 Q.DT)) 2095 return Op0; 2096 if (isKnownToBeAPowerOfTwo(Op1, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI, 2097 Q.DT)) 2098 return Op1; 2099 } 2100 2101 // This is a similar pattern used for checking if a value is a power-of-2: 2102 // (A - 1) & A --> 0 (if A is a power-of-2 or 0) 2103 // A & (A - 1) --> 0 (if A is a power-of-2 or 0) 2104 if (match(Op0, m_Add(m_Specific(Op1), m_AllOnes())) && 2105 isKnownToBeAPowerOfTwo(Op1, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI, Q.DT)) 2106 return Constant::getNullValue(Op1->getType()); 2107 if (match(Op1, m_Add(m_Specific(Op0), m_AllOnes())) && 2108 isKnownToBeAPowerOfTwo(Op0, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI, Q.DT)) 2109 return Constant::getNullValue(Op0->getType()); 2110 2111 if (Value *V = simplifyAndOrOfCmps(Q, Op0, Op1, true)) 2112 return V; 2113 2114 // Try some generic simplifications for associative operations. 2115 if (Value *V = SimplifyAssociativeBinOp(Instruction::And, Op0, Op1, Q, 2116 MaxRecurse)) 2117 return V; 2118 2119 // And distributes over Or. Try some generic simplifications based on this. 2120 if (Value *V = expandCommutativeBinOp(Instruction::And, Op0, Op1, 2121 Instruction::Or, Q, MaxRecurse)) 2122 return V; 2123 2124 // And distributes over Xor. Try some generic simplifications based on this. 2125 if (Value *V = expandCommutativeBinOp(Instruction::And, Op0, Op1, 2126 Instruction::Xor, Q, MaxRecurse)) 2127 return V; 2128 2129 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) { 2130 if (Op0->getType()->isIntOrIntVectorTy(1)) { 2131 // A & (A && B) -> A && B 2132 if (match(Op1, m_Select(m_Specific(Op0), m_Value(), m_Zero()))) 2133 return Op1; 2134 else if (match(Op0, m_Select(m_Specific(Op1), m_Value(), m_Zero()))) 2135 return Op0; 2136 } 2137 // If the operation is with the result of a select instruction, check 2138 // whether operating on either branch of the select always yields the same 2139 // value. 2140 if (Value *V = ThreadBinOpOverSelect(Instruction::And, Op0, Op1, Q, 2141 MaxRecurse)) 2142 return V; 2143 } 2144 2145 // If the operation is with the result of a phi instruction, check whether 2146 // operating on all incoming values of the phi always yields the same value. 2147 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 2148 if (Value *V = ThreadBinOpOverPHI(Instruction::And, Op0, Op1, Q, 2149 MaxRecurse)) 2150 return V; 2151 2152 // Assuming the effective width of Y is not larger than A, i.e. all bits 2153 // from X and Y are disjoint in (X << A) | Y, 2154 // if the mask of this AND op covers all bits of X or Y, while it covers 2155 // no bits from the other, we can bypass this AND op. E.g., 2156 // ((X << A) | Y) & Mask -> Y, 2157 // if Mask = ((1 << effective_width_of(Y)) - 1) 2158 // ((X << A) | Y) & Mask -> X << A, 2159 // if Mask = ((1 << effective_width_of(X)) - 1) << A 2160 // SimplifyDemandedBits in InstCombine can optimize the general case. 2161 // This pattern aims to help other passes for a common case. 2162 Value *XShifted; 2163 if (match(Op1, m_APInt(Mask)) && 2164 match(Op0, m_c_Or(m_CombineAnd(m_NUWShl(m_Value(X), m_APInt(ShAmt)), 2165 m_Value(XShifted)), 2166 m_Value(Y)))) { 2167 const unsigned Width = Op0->getType()->getScalarSizeInBits(); 2168 const unsigned ShftCnt = ShAmt->getLimitedValue(Width); 2169 const KnownBits YKnown = computeKnownBits(Y, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2170 const unsigned EffWidthY = YKnown.countMaxActiveBits(); 2171 if (EffWidthY <= ShftCnt) { 2172 const KnownBits XKnown = computeKnownBits(X, Q.DL, 0, Q.AC, Q.CxtI, 2173 Q.DT); 2174 const unsigned EffWidthX = XKnown.countMaxActiveBits(); 2175 const APInt EffBitsY = APInt::getLowBitsSet(Width, EffWidthY); 2176 const APInt EffBitsX = APInt::getLowBitsSet(Width, EffWidthX) << ShftCnt; 2177 // If the mask is extracting all bits from X or Y as is, we can skip 2178 // this AND op. 2179 if (EffBitsY.isSubsetOf(*Mask) && !EffBitsX.intersects(*Mask)) 2180 return Y; 2181 if (EffBitsX.isSubsetOf(*Mask) && !EffBitsY.intersects(*Mask)) 2182 return XShifted; 2183 } 2184 } 2185 2186 // ((X | Y) ^ X ) & ((X | Y) ^ Y) --> 0 2187 // ((X | Y) ^ Y ) & ((X | Y) ^ X) --> 0 2188 BinaryOperator *Or; 2189 if (match(Op0, m_c_Xor(m_Value(X), 2190 m_CombineAnd(m_BinOp(Or), 2191 m_c_Or(m_Deferred(X), m_Value(Y))))) && 2192 match(Op1, m_c_Xor(m_Specific(Or), m_Specific(Y)))) 2193 return Constant::getNullValue(Op0->getType()); 2194 2195 return nullptr; 2196 } 2197 2198 Value *llvm::SimplifyAndInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 2199 return ::SimplifyAndInst(Op0, Op1, Q, RecursionLimit); 2200 } 2201 2202 static Value *simplifyOrLogic(Value *X, Value *Y) { 2203 assert(X->getType() == Y->getType() && "Expected same type for 'or' ops"); 2204 Type *Ty = X->getType(); 2205 2206 // X | ~X --> -1 2207 if (match(Y, m_Not(m_Specific(X)))) 2208 return ConstantInt::getAllOnesValue(Ty); 2209 2210 // X | ~(X & ?) = -1 2211 if (match(Y, m_Not(m_c_And(m_Specific(X), m_Value())))) 2212 return ConstantInt::getAllOnesValue(Ty); 2213 2214 // X | (X & ?) --> X 2215 if (match(Y, m_c_And(m_Specific(X), m_Value()))) 2216 return X; 2217 2218 Value *A, *B; 2219 2220 // (A ^ B) | (A | B) --> A | B 2221 // (A ^ B) | (B | A) --> B | A 2222 if (match(X, m_Xor(m_Value(A), m_Value(B))) && 2223 match(Y, m_c_Or(m_Specific(A), m_Specific(B)))) 2224 return Y; 2225 2226 // ~(A ^ B) | (A | B) --> -1 2227 // ~(A ^ B) | (B | A) --> -1 2228 if (match(X, m_Not(m_Xor(m_Value(A), m_Value(B)))) && 2229 match(Y, m_c_Or(m_Specific(A), m_Specific(B)))) 2230 return ConstantInt::getAllOnesValue(Ty); 2231 2232 // (A & ~B) | (A ^ B) --> A ^ B 2233 // (~B & A) | (A ^ B) --> A ^ B 2234 // (A & ~B) | (B ^ A) --> B ^ A 2235 // (~B & A) | (B ^ A) --> B ^ A 2236 if (match(X, m_c_And(m_Value(A), m_Not(m_Value(B)))) && 2237 match(Y, m_c_Xor(m_Specific(A), m_Specific(B)))) 2238 return Y; 2239 2240 // (~A ^ B) | (A & B) --> ~A ^ B 2241 // (B ^ ~A) | (A & B) --> B ^ ~A 2242 // (~A ^ B) | (B & A) --> ~A ^ B 2243 // (B ^ ~A) | (B & A) --> B ^ ~A 2244 if (match(X, m_c_Xor(m_Not(m_Value(A)), m_Value(B))) && 2245 match(Y, m_c_And(m_Specific(A), m_Specific(B)))) 2246 return X; 2247 2248 // (~A | B) | (A ^ B) --> -1 2249 // (~A | B) | (B ^ A) --> -1 2250 // (B | ~A) | (A ^ B) --> -1 2251 // (B | ~A) | (B ^ A) --> -1 2252 if (match(X, m_c_Or(m_Not(m_Value(A)), m_Value(B))) && 2253 match(Y, m_c_Xor(m_Specific(A), m_Specific(B)))) 2254 return ConstantInt::getAllOnesValue(Ty); 2255 2256 // (~A & B) | ~(A | B) --> ~A 2257 // (~A & B) | ~(B | A) --> ~A 2258 // (B & ~A) | ~(A | B) --> ~A 2259 // (B & ~A) | ~(B | A) --> ~A 2260 Value *NotA; 2261 if (match(X, 2262 m_c_And(m_CombineAnd(m_Value(NotA), m_NotForbidUndef(m_Value(A))), 2263 m_Value(B))) && 2264 match(Y, m_Not(m_c_Or(m_Specific(A), m_Specific(B))))) 2265 return NotA; 2266 2267 // ~(A ^ B) | (A & B) --> ~(A ^ B) 2268 // ~(A ^ B) | (B & A) --> ~(A ^ B) 2269 Value *NotAB; 2270 if (match(X, m_CombineAnd(m_NotForbidUndef(m_Xor(m_Value(A), m_Value(B))), 2271 m_Value(NotAB))) && 2272 match(Y, m_c_And(m_Specific(A), m_Specific(B)))) 2273 return NotAB; 2274 2275 // ~(A & B) | (A ^ B) --> ~(A & B) 2276 // ~(A & B) | (B ^ A) --> ~(A & B) 2277 if (match(X, m_CombineAnd(m_NotForbidUndef(m_And(m_Value(A), m_Value(B))), 2278 m_Value(NotAB))) && 2279 match(Y, m_c_Xor(m_Specific(A), m_Specific(B)))) 2280 return NotAB; 2281 2282 return nullptr; 2283 } 2284 2285 /// Given operands for an Or, see if we can fold the result. 2286 /// If not, this returns null. 2287 static Value *SimplifyOrInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 2288 unsigned MaxRecurse) { 2289 if (Constant *C = foldOrCommuteConstant(Instruction::Or, Op0, Op1, Q)) 2290 return C; 2291 2292 // X | poison -> poison 2293 if (isa<PoisonValue>(Op1)) 2294 return Op1; 2295 2296 // X | undef -> -1 2297 // X | -1 = -1 2298 // Do not return Op1 because it may contain undef elements if it's a vector. 2299 if (Q.isUndefValue(Op1) || match(Op1, m_AllOnes())) 2300 return Constant::getAllOnesValue(Op0->getType()); 2301 2302 // X | X = X 2303 // X | 0 = X 2304 if (Op0 == Op1 || match(Op1, m_Zero())) 2305 return Op0; 2306 2307 if (Value *R = simplifyOrLogic(Op0, Op1)) 2308 return R; 2309 if (Value *R = simplifyOrLogic(Op1, Op0)) 2310 return R; 2311 2312 if (Value *V = simplifyLogicOfAddSub(Op0, Op1, Instruction::Or)) 2313 return V; 2314 2315 // Rotated -1 is still -1: 2316 // (-1 << X) | (-1 >> (C - X)) --> -1 2317 // (-1 >> X) | (-1 << (C - X)) --> -1 2318 // ...with C <= bitwidth (and commuted variants). 2319 Value *X, *Y; 2320 if ((match(Op0, m_Shl(m_AllOnes(), m_Value(X))) && 2321 match(Op1, m_LShr(m_AllOnes(), m_Value(Y)))) || 2322 (match(Op1, m_Shl(m_AllOnes(), m_Value(X))) && 2323 match(Op0, m_LShr(m_AllOnes(), m_Value(Y))))) { 2324 const APInt *C; 2325 if ((match(X, m_Sub(m_APInt(C), m_Specific(Y))) || 2326 match(Y, m_Sub(m_APInt(C), m_Specific(X)))) && 2327 C->ule(X->getType()->getScalarSizeInBits())) { 2328 return ConstantInt::getAllOnesValue(X->getType()); 2329 } 2330 } 2331 2332 // A funnel shift (rotate) can be decomposed into simpler shifts. See if we 2333 // are mixing in another shift that is redundant with the funnel shift. 2334 2335 // (fshl X, ?, Y) | (shl X, Y) --> fshl X, ?, Y 2336 // (shl X, Y) | (fshl X, ?, Y) --> fshl X, ?, Y 2337 if (match(Op0, 2338 m_Intrinsic<Intrinsic::fshl>(m_Value(X), m_Value(), m_Value(Y))) && 2339 match(Op1, m_Shl(m_Specific(X), m_Specific(Y)))) 2340 return Op0; 2341 if (match(Op1, 2342 m_Intrinsic<Intrinsic::fshl>(m_Value(X), m_Value(), m_Value(Y))) && 2343 match(Op0, m_Shl(m_Specific(X), m_Specific(Y)))) 2344 return Op1; 2345 2346 // (fshr ?, X, Y) | (lshr X, Y) --> fshr ?, X, Y 2347 // (lshr X, Y) | (fshr ?, X, Y) --> fshr ?, X, Y 2348 if (match(Op0, 2349 m_Intrinsic<Intrinsic::fshr>(m_Value(), m_Value(X), m_Value(Y))) && 2350 match(Op1, m_LShr(m_Specific(X), m_Specific(Y)))) 2351 return Op0; 2352 if (match(Op1, 2353 m_Intrinsic<Intrinsic::fshr>(m_Value(), m_Value(X), m_Value(Y))) && 2354 match(Op0, m_LShr(m_Specific(X), m_Specific(Y)))) 2355 return Op1; 2356 2357 if (Value *V = simplifyAndOrOfCmps(Q, Op0, Op1, false)) 2358 return V; 2359 2360 // If we have a multiplication overflow check that is being 'and'ed with a 2361 // check that one of the multipliers is not zero, we can omit the 'and', and 2362 // only keep the overflow check. 2363 if (isCheckForZeroAndMulWithOverflow(Op0, Op1, false)) 2364 return Op1; 2365 if (isCheckForZeroAndMulWithOverflow(Op1, Op0, false)) 2366 return Op0; 2367 2368 // Try some generic simplifications for associative operations. 2369 if (Value *V = SimplifyAssociativeBinOp(Instruction::Or, Op0, Op1, Q, 2370 MaxRecurse)) 2371 return V; 2372 2373 // Or distributes over And. Try some generic simplifications based on this. 2374 if (Value *V = expandCommutativeBinOp(Instruction::Or, Op0, Op1, 2375 Instruction::And, Q, MaxRecurse)) 2376 return V; 2377 2378 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) { 2379 if (Op0->getType()->isIntOrIntVectorTy(1)) { 2380 // A | (A || B) -> A || B 2381 if (match(Op1, m_Select(m_Specific(Op0), m_One(), m_Value()))) 2382 return Op1; 2383 else if (match(Op0, m_Select(m_Specific(Op1), m_One(), m_Value()))) 2384 return Op0; 2385 } 2386 // If the operation is with the result of a select instruction, check 2387 // whether operating on either branch of the select always yields the same 2388 // value. 2389 if (Value *V = ThreadBinOpOverSelect(Instruction::Or, Op0, Op1, Q, 2390 MaxRecurse)) 2391 return V; 2392 } 2393 2394 // (A & C1)|(B & C2) 2395 Value *A, *B; 2396 const APInt *C1, *C2; 2397 if (match(Op0, m_And(m_Value(A), m_APInt(C1))) && 2398 match(Op1, m_And(m_Value(B), m_APInt(C2)))) { 2399 if (*C1 == ~*C2) { 2400 // (A & C1)|(B & C2) 2401 // If we have: ((V + N) & C1) | (V & C2) 2402 // .. and C2 = ~C1 and C2 is 0+1+ and (N & C2) == 0 2403 // replace with V+N. 2404 Value *N; 2405 if (C2->isMask() && // C2 == 0+1+ 2406 match(A, m_c_Add(m_Specific(B), m_Value(N)))) { 2407 // Add commutes, try both ways. 2408 if (MaskedValueIsZero(N, *C2, Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 2409 return A; 2410 } 2411 // Or commutes, try both ways. 2412 if (C1->isMask() && 2413 match(B, m_c_Add(m_Specific(A), m_Value(N)))) { 2414 // Add commutes, try both ways. 2415 if (MaskedValueIsZero(N, *C1, Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 2416 return B; 2417 } 2418 } 2419 } 2420 2421 // If the operation is with the result of a phi instruction, check whether 2422 // operating on all incoming values of the phi always yields the same value. 2423 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 2424 if (Value *V = ThreadBinOpOverPHI(Instruction::Or, Op0, Op1, Q, MaxRecurse)) 2425 return V; 2426 2427 return nullptr; 2428 } 2429 2430 Value *llvm::SimplifyOrInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 2431 return ::SimplifyOrInst(Op0, Op1, Q, RecursionLimit); 2432 } 2433 2434 /// Given operands for a Xor, see if we can fold the result. 2435 /// If not, this returns null. 2436 static Value *SimplifyXorInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 2437 unsigned MaxRecurse) { 2438 if (Constant *C = foldOrCommuteConstant(Instruction::Xor, Op0, Op1, Q)) 2439 return C; 2440 2441 // X ^ poison -> poison 2442 if (isa<PoisonValue>(Op1)) 2443 return Op1; 2444 2445 // A ^ undef -> undef 2446 if (Q.isUndefValue(Op1)) 2447 return Op1; 2448 2449 // A ^ 0 = A 2450 if (match(Op1, m_Zero())) 2451 return Op0; 2452 2453 // A ^ A = 0 2454 if (Op0 == Op1) 2455 return Constant::getNullValue(Op0->getType()); 2456 2457 // A ^ ~A = ~A ^ A = -1 2458 if (match(Op0, m_Not(m_Specific(Op1))) || 2459 match(Op1, m_Not(m_Specific(Op0)))) 2460 return Constant::getAllOnesValue(Op0->getType()); 2461 2462 auto foldAndOrNot = [](Value *X, Value *Y) -> Value * { 2463 Value *A, *B; 2464 // (~A & B) ^ (A | B) --> A -- There are 8 commuted variants. 2465 if (match(X, m_c_And(m_Not(m_Value(A)), m_Value(B))) && 2466 match(Y, m_c_Or(m_Specific(A), m_Specific(B)))) 2467 return A; 2468 2469 // (~A | B) ^ (A & B) --> ~A -- There are 8 commuted variants. 2470 // The 'not' op must contain a complete -1 operand (no undef elements for 2471 // vector) for the transform to be safe. 2472 Value *NotA; 2473 if (match(X, 2474 m_c_Or(m_CombineAnd(m_NotForbidUndef(m_Value(A)), m_Value(NotA)), 2475 m_Value(B))) && 2476 match(Y, m_c_And(m_Specific(A), m_Specific(B)))) 2477 return NotA; 2478 2479 return nullptr; 2480 }; 2481 if (Value *R = foldAndOrNot(Op0, Op1)) 2482 return R; 2483 if (Value *R = foldAndOrNot(Op1, Op0)) 2484 return R; 2485 2486 if (Value *V = simplifyLogicOfAddSub(Op0, Op1, Instruction::Xor)) 2487 return V; 2488 2489 // Try some generic simplifications for associative operations. 2490 if (Value *V = SimplifyAssociativeBinOp(Instruction::Xor, Op0, Op1, Q, 2491 MaxRecurse)) 2492 return V; 2493 2494 // Threading Xor over selects and phi nodes is pointless, so don't bother. 2495 // Threading over the select in "A ^ select(cond, B, C)" means evaluating 2496 // "A^B" and "A^C" and seeing if they are equal; but they are equal if and 2497 // only if B and C are equal. If B and C are equal then (since we assume 2498 // that operands have already been simplified) "select(cond, B, C)" should 2499 // have been simplified to the common value of B and C already. Analysing 2500 // "A^B" and "A^C" thus gains nothing, but costs compile time. Similarly 2501 // for threading over phi nodes. 2502 2503 return nullptr; 2504 } 2505 2506 Value *llvm::SimplifyXorInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 2507 return ::SimplifyXorInst(Op0, Op1, Q, RecursionLimit); 2508 } 2509 2510 2511 static Type *GetCompareTy(Value *Op) { 2512 return CmpInst::makeCmpResultType(Op->getType()); 2513 } 2514 2515 /// Rummage around inside V looking for something equivalent to the comparison 2516 /// "LHS Pred RHS". Return such a value if found, otherwise return null. 2517 /// Helper function for analyzing max/min idioms. 2518 static Value *ExtractEquivalentCondition(Value *V, CmpInst::Predicate Pred, 2519 Value *LHS, Value *RHS) { 2520 SelectInst *SI = dyn_cast<SelectInst>(V); 2521 if (!SI) 2522 return nullptr; 2523 CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition()); 2524 if (!Cmp) 2525 return nullptr; 2526 Value *CmpLHS = Cmp->getOperand(0), *CmpRHS = Cmp->getOperand(1); 2527 if (Pred == Cmp->getPredicate() && LHS == CmpLHS && RHS == CmpRHS) 2528 return Cmp; 2529 if (Pred == CmpInst::getSwappedPredicate(Cmp->getPredicate()) && 2530 LHS == CmpRHS && RHS == CmpLHS) 2531 return Cmp; 2532 return nullptr; 2533 } 2534 2535 /// Return true if the underlying object (storage) must be disjoint from 2536 /// storage returned by any noalias return call. 2537 static bool IsAllocDisjoint(const Value *V) { 2538 // For allocas, we consider only static ones (dynamic 2539 // allocas might be transformed into calls to malloc not simultaneously 2540 // live with the compared-to allocation). For globals, we exclude symbols 2541 // that might be resolve lazily to symbols in another dynamically-loaded 2542 // library (and, thus, could be malloc'ed by the implementation). 2543 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) 2544 return AI->getParent() && AI->getFunction() && AI->isStaticAlloca(); 2545 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) 2546 return (GV->hasLocalLinkage() || GV->hasHiddenVisibility() || 2547 GV->hasProtectedVisibility() || GV->hasGlobalUnnamedAddr()) && 2548 !GV->isThreadLocal(); 2549 if (const Argument *A = dyn_cast<Argument>(V)) 2550 return A->hasByValAttr(); 2551 return false; 2552 } 2553 2554 /// Return true if V1 and V2 are each the base of some distict storage region 2555 /// [V, object_size(V)] which do not overlap. Note that zero sized regions 2556 /// *are* possible, and that zero sized regions do not overlap with any other. 2557 static bool HaveNonOverlappingStorage(const Value *V1, const Value *V2) { 2558 // Global variables always exist, so they always exist during the lifetime 2559 // of each other and all allocas. Global variables themselves usually have 2560 // non-overlapping storage, but since their addresses are constants, the 2561 // case involving two globals does not reach here and is instead handled in 2562 // constant folding. 2563 // 2564 // Two different allocas usually have different addresses... 2565 // 2566 // However, if there's an @llvm.stackrestore dynamically in between two 2567 // allocas, they may have the same address. It's tempting to reduce the 2568 // scope of the problem by only looking at *static* allocas here. That would 2569 // cover the majority of allocas while significantly reducing the likelihood 2570 // of having an @llvm.stackrestore pop up in the middle. However, it's not 2571 // actually impossible for an @llvm.stackrestore to pop up in the middle of 2572 // an entry block. Also, if we have a block that's not attached to a 2573 // function, we can't tell if it's "static" under the current definition. 2574 // Theoretically, this problem could be fixed by creating a new kind of 2575 // instruction kind specifically for static allocas. Such a new instruction 2576 // could be required to be at the top of the entry block, thus preventing it 2577 // from being subject to a @llvm.stackrestore. Instcombine could even 2578 // convert regular allocas into these special allocas. It'd be nifty. 2579 // However, until then, this problem remains open. 2580 // 2581 // So, we'll assume that two non-empty allocas have different addresses 2582 // for now. 2583 auto isByValArg = [](const Value *V) { 2584 const Argument *A = dyn_cast<Argument>(V); 2585 return A && A->hasByValAttr(); 2586 }; 2587 2588 // Byval args are backed by store which does not overlap with each other, 2589 // allocas, or globals. 2590 if (isByValArg(V1)) 2591 return isa<AllocaInst>(V2) || isa<GlobalVariable>(V2) || isByValArg(V2); 2592 if (isByValArg(V2)) 2593 return isa<AllocaInst>(V1) || isa<GlobalVariable>(V1) || isByValArg(V1); 2594 2595 return isa<AllocaInst>(V1) && 2596 (isa<AllocaInst>(V2) || isa<GlobalVariable>(V2)); 2597 } 2598 2599 // A significant optimization not implemented here is assuming that alloca 2600 // addresses are not equal to incoming argument values. They don't *alias*, 2601 // as we say, but that doesn't mean they aren't equal, so we take a 2602 // conservative approach. 2603 // 2604 // This is inspired in part by C++11 5.10p1: 2605 // "Two pointers of the same type compare equal if and only if they are both 2606 // null, both point to the same function, or both represent the same 2607 // address." 2608 // 2609 // This is pretty permissive. 2610 // 2611 // It's also partly due to C11 6.5.9p6: 2612 // "Two pointers compare equal if and only if both are null pointers, both are 2613 // pointers to the same object (including a pointer to an object and a 2614 // subobject at its beginning) or function, both are pointers to one past the 2615 // last element of the same array object, or one is a pointer to one past the 2616 // end of one array object and the other is a pointer to the start of a 2617 // different array object that happens to immediately follow the first array 2618 // object in the address space.) 2619 // 2620 // C11's version is more restrictive, however there's no reason why an argument 2621 // couldn't be a one-past-the-end value for a stack object in the caller and be 2622 // equal to the beginning of a stack object in the callee. 2623 // 2624 // If the C and C++ standards are ever made sufficiently restrictive in this 2625 // area, it may be possible to update LLVM's semantics accordingly and reinstate 2626 // this optimization. 2627 static Constant * 2628 computePointerICmp(CmpInst::Predicate Pred, Value *LHS, Value *RHS, 2629 const SimplifyQuery &Q) { 2630 const DataLayout &DL = Q.DL; 2631 const TargetLibraryInfo *TLI = Q.TLI; 2632 const DominatorTree *DT = Q.DT; 2633 const Instruction *CxtI = Q.CxtI; 2634 const InstrInfoQuery &IIQ = Q.IIQ; 2635 2636 // First, skip past any trivial no-ops. 2637 LHS = LHS->stripPointerCasts(); 2638 RHS = RHS->stripPointerCasts(); 2639 2640 // A non-null pointer is not equal to a null pointer. 2641 if (isa<ConstantPointerNull>(RHS) && ICmpInst::isEquality(Pred) && 2642 llvm::isKnownNonZero(LHS, DL, 0, nullptr, nullptr, nullptr, 2643 IIQ.UseInstrInfo)) 2644 return ConstantInt::get(GetCompareTy(LHS), 2645 !CmpInst::isTrueWhenEqual(Pred)); 2646 2647 // We can only fold certain predicates on pointer comparisons. 2648 switch (Pred) { 2649 default: 2650 return nullptr; 2651 2652 // Equality comaprisons are easy to fold. 2653 case CmpInst::ICMP_EQ: 2654 case CmpInst::ICMP_NE: 2655 break; 2656 2657 // We can only handle unsigned relational comparisons because 'inbounds' on 2658 // a GEP only protects against unsigned wrapping. 2659 case CmpInst::ICMP_UGT: 2660 case CmpInst::ICMP_UGE: 2661 case CmpInst::ICMP_ULT: 2662 case CmpInst::ICMP_ULE: 2663 // However, we have to switch them to their signed variants to handle 2664 // negative indices from the base pointer. 2665 Pred = ICmpInst::getSignedPredicate(Pred); 2666 break; 2667 } 2668 2669 // Strip off any constant offsets so that we can reason about them. 2670 // It's tempting to use getUnderlyingObject or even just stripInBoundsOffsets 2671 // here and compare base addresses like AliasAnalysis does, however there are 2672 // numerous hazards. AliasAnalysis and its utilities rely on special rules 2673 // governing loads and stores which don't apply to icmps. Also, AliasAnalysis 2674 // doesn't need to guarantee pointer inequality when it says NoAlias. 2675 2676 // Even if an non-inbounds GEP occurs along the path we can still optimize 2677 // equality comparisons concerning the result. 2678 bool AllowNonInbounds = ICmpInst::isEquality(Pred); 2679 APInt LHSOffset = stripAndComputeConstantOffsets(DL, LHS, AllowNonInbounds); 2680 APInt RHSOffset = stripAndComputeConstantOffsets(DL, RHS, AllowNonInbounds); 2681 2682 // If LHS and RHS are related via constant offsets to the same base 2683 // value, we can replace it with an icmp which just compares the offsets. 2684 if (LHS == RHS) 2685 return ConstantInt::get( 2686 GetCompareTy(LHS), ICmpInst::compare(LHSOffset, RHSOffset, Pred)); 2687 2688 // Various optimizations for (in)equality comparisons. 2689 if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE) { 2690 // Different non-empty allocations that exist at the same time have 2691 // different addresses (if the program can tell). If the offsets are 2692 // within the bounds of their allocations (and not one-past-the-end! 2693 // so we can't use inbounds!), and their allocations aren't the same, 2694 // the pointers are not equal. 2695 if (HaveNonOverlappingStorage(LHS, RHS)) { 2696 uint64_t LHSSize, RHSSize; 2697 ObjectSizeOpts Opts; 2698 Opts.EvalMode = ObjectSizeOpts::Mode::Min; 2699 auto *F = [](Value *V) { 2700 if (auto *I = dyn_cast<Instruction>(V)) 2701 return I->getFunction(); 2702 return cast<Argument>(V)->getParent(); 2703 }(LHS); 2704 Opts.NullIsUnknownSize = NullPointerIsDefined(F); 2705 if (getObjectSize(LHS, LHSSize, DL, TLI, Opts) && 2706 getObjectSize(RHS, RHSSize, DL, TLI, Opts) && 2707 !LHSOffset.isNegative() && !RHSOffset.isNegative() && 2708 LHSOffset.ult(LHSSize) && RHSOffset.ult(RHSSize)) { 2709 return ConstantInt::get(GetCompareTy(LHS), 2710 !CmpInst::isTrueWhenEqual(Pred)); 2711 } 2712 } 2713 2714 // If one side of the equality comparison must come from a noalias call 2715 // (meaning a system memory allocation function), and the other side must 2716 // come from a pointer that cannot overlap with dynamically-allocated 2717 // memory within the lifetime of the current function (allocas, byval 2718 // arguments, globals), then determine the comparison result here. 2719 SmallVector<const Value *, 8> LHSUObjs, RHSUObjs; 2720 getUnderlyingObjects(LHS, LHSUObjs); 2721 getUnderlyingObjects(RHS, RHSUObjs); 2722 2723 // Is the set of underlying objects all noalias calls? 2724 auto IsNAC = [](ArrayRef<const Value *> Objects) { 2725 return all_of(Objects, isNoAliasCall); 2726 }; 2727 2728 // Is the set of underlying objects all things which must be disjoint from 2729 // noalias calls. We assume that indexing from such disjoint storage 2730 // into the heap is undefined, and thus offsets can be safely ignored. 2731 auto IsAllocDisjoint = [](ArrayRef<const Value *> Objects) { 2732 return all_of(Objects, ::IsAllocDisjoint); 2733 }; 2734 2735 if ((IsNAC(LHSUObjs) && IsAllocDisjoint(RHSUObjs)) || 2736 (IsNAC(RHSUObjs) && IsAllocDisjoint(LHSUObjs))) 2737 return ConstantInt::get(GetCompareTy(LHS), 2738 !CmpInst::isTrueWhenEqual(Pred)); 2739 2740 // Fold comparisons for non-escaping pointer even if the allocation call 2741 // cannot be elided. We cannot fold malloc comparison to null. Also, the 2742 // dynamic allocation call could be either of the operands. Note that 2743 // the other operand can not be based on the alloc - if it were, then 2744 // the cmp itself would be a capture. 2745 Value *MI = nullptr; 2746 if (isAllocLikeFn(LHS, TLI) && 2747 llvm::isKnownNonZero(RHS, DL, 0, nullptr, CxtI, DT)) 2748 MI = LHS; 2749 else if (isAllocLikeFn(RHS, TLI) && 2750 llvm::isKnownNonZero(LHS, DL, 0, nullptr, CxtI, DT)) 2751 MI = RHS; 2752 // FIXME: We should also fold the compare when the pointer escapes, but the 2753 // compare dominates the pointer escape 2754 if (MI && !PointerMayBeCaptured(MI, true, true)) 2755 return ConstantInt::get(GetCompareTy(LHS), 2756 CmpInst::isFalseWhenEqual(Pred)); 2757 } 2758 2759 // Otherwise, fail. 2760 return nullptr; 2761 } 2762 2763 /// Fold an icmp when its operands have i1 scalar type. 2764 static Value *simplifyICmpOfBools(CmpInst::Predicate Pred, Value *LHS, 2765 Value *RHS, const SimplifyQuery &Q) { 2766 Type *ITy = GetCompareTy(LHS); // The return type. 2767 Type *OpTy = LHS->getType(); // The operand type. 2768 if (!OpTy->isIntOrIntVectorTy(1)) 2769 return nullptr; 2770 2771 // A boolean compared to true/false can be reduced in 14 out of the 20 2772 // (10 predicates * 2 constants) possible combinations. The other 2773 // 6 cases require a 'not' of the LHS. 2774 2775 auto ExtractNotLHS = [](Value *V) -> Value * { 2776 Value *X; 2777 if (match(V, m_Not(m_Value(X)))) 2778 return X; 2779 return nullptr; 2780 }; 2781 2782 if (match(RHS, m_Zero())) { 2783 switch (Pred) { 2784 case CmpInst::ICMP_NE: // X != 0 -> X 2785 case CmpInst::ICMP_UGT: // X >u 0 -> X 2786 case CmpInst::ICMP_SLT: // X <s 0 -> X 2787 return LHS; 2788 2789 case CmpInst::ICMP_EQ: // not(X) == 0 -> X != 0 -> X 2790 case CmpInst::ICMP_ULE: // not(X) <=u 0 -> X >u 0 -> X 2791 case CmpInst::ICMP_SGE: // not(X) >=s 0 -> X <s 0 -> X 2792 if (Value *X = ExtractNotLHS(LHS)) 2793 return X; 2794 break; 2795 2796 case CmpInst::ICMP_ULT: // X <u 0 -> false 2797 case CmpInst::ICMP_SGT: // X >s 0 -> false 2798 return getFalse(ITy); 2799 2800 case CmpInst::ICMP_UGE: // X >=u 0 -> true 2801 case CmpInst::ICMP_SLE: // X <=s 0 -> true 2802 return getTrue(ITy); 2803 2804 default: break; 2805 } 2806 } else if (match(RHS, m_One())) { 2807 switch (Pred) { 2808 case CmpInst::ICMP_EQ: // X == 1 -> X 2809 case CmpInst::ICMP_UGE: // X >=u 1 -> X 2810 case CmpInst::ICMP_SLE: // X <=s -1 -> X 2811 return LHS; 2812 2813 case CmpInst::ICMP_NE: // not(X) != 1 -> X == 1 -> X 2814 case CmpInst::ICMP_ULT: // not(X) <=u 1 -> X >=u 1 -> X 2815 case CmpInst::ICMP_SGT: // not(X) >s 1 -> X <=s -1 -> X 2816 if (Value *X = ExtractNotLHS(LHS)) 2817 return X; 2818 break; 2819 2820 case CmpInst::ICMP_UGT: // X >u 1 -> false 2821 case CmpInst::ICMP_SLT: // X <s -1 -> false 2822 return getFalse(ITy); 2823 2824 case CmpInst::ICMP_ULE: // X <=u 1 -> true 2825 case CmpInst::ICMP_SGE: // X >=s -1 -> true 2826 return getTrue(ITy); 2827 2828 default: break; 2829 } 2830 } 2831 2832 switch (Pred) { 2833 default: 2834 break; 2835 case ICmpInst::ICMP_UGE: 2836 if (isImpliedCondition(RHS, LHS, Q.DL).getValueOr(false)) 2837 return getTrue(ITy); 2838 break; 2839 case ICmpInst::ICMP_SGE: 2840 /// For signed comparison, the values for an i1 are 0 and -1 2841 /// respectively. This maps into a truth table of: 2842 /// LHS | RHS | LHS >=s RHS | LHS implies RHS 2843 /// 0 | 0 | 1 (0 >= 0) | 1 2844 /// 0 | 1 | 1 (0 >= -1) | 1 2845 /// 1 | 0 | 0 (-1 >= 0) | 0 2846 /// 1 | 1 | 1 (-1 >= -1) | 1 2847 if (isImpliedCondition(LHS, RHS, Q.DL).getValueOr(false)) 2848 return getTrue(ITy); 2849 break; 2850 case ICmpInst::ICMP_ULE: 2851 if (isImpliedCondition(LHS, RHS, Q.DL).getValueOr(false)) 2852 return getTrue(ITy); 2853 break; 2854 } 2855 2856 return nullptr; 2857 } 2858 2859 /// Try hard to fold icmp with zero RHS because this is a common case. 2860 static Value *simplifyICmpWithZero(CmpInst::Predicate Pred, Value *LHS, 2861 Value *RHS, const SimplifyQuery &Q) { 2862 if (!match(RHS, m_Zero())) 2863 return nullptr; 2864 2865 Type *ITy = GetCompareTy(LHS); // The return type. 2866 switch (Pred) { 2867 default: 2868 llvm_unreachable("Unknown ICmp predicate!"); 2869 case ICmpInst::ICMP_ULT: 2870 return getFalse(ITy); 2871 case ICmpInst::ICMP_UGE: 2872 return getTrue(ITy); 2873 case ICmpInst::ICMP_EQ: 2874 case ICmpInst::ICMP_ULE: 2875 if (isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT, Q.IIQ.UseInstrInfo)) 2876 return getFalse(ITy); 2877 break; 2878 case ICmpInst::ICMP_NE: 2879 case ICmpInst::ICMP_UGT: 2880 if (isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT, Q.IIQ.UseInstrInfo)) 2881 return getTrue(ITy); 2882 break; 2883 case ICmpInst::ICMP_SLT: { 2884 KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2885 if (LHSKnown.isNegative()) 2886 return getTrue(ITy); 2887 if (LHSKnown.isNonNegative()) 2888 return getFalse(ITy); 2889 break; 2890 } 2891 case ICmpInst::ICMP_SLE: { 2892 KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2893 if (LHSKnown.isNegative()) 2894 return getTrue(ITy); 2895 if (LHSKnown.isNonNegative() && 2896 isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 2897 return getFalse(ITy); 2898 break; 2899 } 2900 case ICmpInst::ICMP_SGE: { 2901 KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2902 if (LHSKnown.isNegative()) 2903 return getFalse(ITy); 2904 if (LHSKnown.isNonNegative()) 2905 return getTrue(ITy); 2906 break; 2907 } 2908 case ICmpInst::ICMP_SGT: { 2909 KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2910 if (LHSKnown.isNegative()) 2911 return getFalse(ITy); 2912 if (LHSKnown.isNonNegative() && 2913 isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 2914 return getTrue(ITy); 2915 break; 2916 } 2917 } 2918 2919 return nullptr; 2920 } 2921 2922 static Value *simplifyICmpWithConstant(CmpInst::Predicate Pred, Value *LHS, 2923 Value *RHS, const InstrInfoQuery &IIQ) { 2924 Type *ITy = GetCompareTy(RHS); // The return type. 2925 2926 Value *X; 2927 // Sign-bit checks can be optimized to true/false after unsigned 2928 // floating-point casts: 2929 // icmp slt (bitcast (uitofp X)), 0 --> false 2930 // icmp sgt (bitcast (uitofp X)), -1 --> true 2931 if (match(LHS, m_BitCast(m_UIToFP(m_Value(X))))) { 2932 if (Pred == ICmpInst::ICMP_SLT && match(RHS, m_Zero())) 2933 return ConstantInt::getFalse(ITy); 2934 if (Pred == ICmpInst::ICMP_SGT && match(RHS, m_AllOnes())) 2935 return ConstantInt::getTrue(ITy); 2936 } 2937 2938 const APInt *C; 2939 if (!match(RHS, m_APIntAllowUndef(C))) 2940 return nullptr; 2941 2942 // Rule out tautological comparisons (eg., ult 0 or uge 0). 2943 ConstantRange RHS_CR = ConstantRange::makeExactICmpRegion(Pred, *C); 2944 if (RHS_CR.isEmptySet()) 2945 return ConstantInt::getFalse(ITy); 2946 if (RHS_CR.isFullSet()) 2947 return ConstantInt::getTrue(ITy); 2948 2949 ConstantRange LHS_CR = 2950 computeConstantRange(LHS, CmpInst::isSigned(Pred), IIQ.UseInstrInfo); 2951 if (!LHS_CR.isFullSet()) { 2952 if (RHS_CR.contains(LHS_CR)) 2953 return ConstantInt::getTrue(ITy); 2954 if (RHS_CR.inverse().contains(LHS_CR)) 2955 return ConstantInt::getFalse(ITy); 2956 } 2957 2958 // (mul nuw/nsw X, MulC) != C --> true (if C is not a multiple of MulC) 2959 // (mul nuw/nsw X, MulC) == C --> false (if C is not a multiple of MulC) 2960 const APInt *MulC; 2961 if (ICmpInst::isEquality(Pred) && 2962 ((match(LHS, m_NUWMul(m_Value(), m_APIntAllowUndef(MulC))) && 2963 *MulC != 0 && C->urem(*MulC) != 0) || 2964 (match(LHS, m_NSWMul(m_Value(), m_APIntAllowUndef(MulC))) && 2965 *MulC != 0 && C->srem(*MulC) != 0))) 2966 return ConstantInt::get(ITy, Pred == ICmpInst::ICMP_NE); 2967 2968 return nullptr; 2969 } 2970 2971 static Value *simplifyICmpWithBinOpOnLHS( 2972 CmpInst::Predicate Pred, BinaryOperator *LBO, Value *RHS, 2973 const SimplifyQuery &Q, unsigned MaxRecurse) { 2974 Type *ITy = GetCompareTy(RHS); // The return type. 2975 2976 Value *Y = nullptr; 2977 // icmp pred (or X, Y), X 2978 if (match(LBO, m_c_Or(m_Value(Y), m_Specific(RHS)))) { 2979 if (Pred == ICmpInst::ICMP_ULT) 2980 return getFalse(ITy); 2981 if (Pred == ICmpInst::ICMP_UGE) 2982 return getTrue(ITy); 2983 2984 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SGE) { 2985 KnownBits RHSKnown = computeKnownBits(RHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2986 KnownBits YKnown = computeKnownBits(Y, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2987 if (RHSKnown.isNonNegative() && YKnown.isNegative()) 2988 return Pred == ICmpInst::ICMP_SLT ? getTrue(ITy) : getFalse(ITy); 2989 if (RHSKnown.isNegative() || YKnown.isNonNegative()) 2990 return Pred == ICmpInst::ICMP_SLT ? getFalse(ITy) : getTrue(ITy); 2991 } 2992 } 2993 2994 // icmp pred (and X, Y), X 2995 if (match(LBO, m_c_And(m_Value(), m_Specific(RHS)))) { 2996 if (Pred == ICmpInst::ICMP_UGT) 2997 return getFalse(ITy); 2998 if (Pred == ICmpInst::ICMP_ULE) 2999 return getTrue(ITy); 3000 } 3001 3002 // icmp pred (urem X, Y), Y 3003 if (match(LBO, m_URem(m_Value(), m_Specific(RHS)))) { 3004 switch (Pred) { 3005 default: 3006 break; 3007 case ICmpInst::ICMP_SGT: 3008 case ICmpInst::ICMP_SGE: { 3009 KnownBits Known = computeKnownBits(RHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 3010 if (!Known.isNonNegative()) 3011 break; 3012 LLVM_FALLTHROUGH; 3013 } 3014 case ICmpInst::ICMP_EQ: 3015 case ICmpInst::ICMP_UGT: 3016 case ICmpInst::ICMP_UGE: 3017 return getFalse(ITy); 3018 case ICmpInst::ICMP_SLT: 3019 case ICmpInst::ICMP_SLE: { 3020 KnownBits Known = computeKnownBits(RHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 3021 if (!Known.isNonNegative()) 3022 break; 3023 LLVM_FALLTHROUGH; 3024 } 3025 case ICmpInst::ICMP_NE: 3026 case ICmpInst::ICMP_ULT: 3027 case ICmpInst::ICMP_ULE: 3028 return getTrue(ITy); 3029 } 3030 } 3031 3032 // icmp pred (urem X, Y), X 3033 if (match(LBO, m_URem(m_Specific(RHS), m_Value()))) { 3034 if (Pred == ICmpInst::ICMP_ULE) 3035 return getTrue(ITy); 3036 if (Pred == ICmpInst::ICMP_UGT) 3037 return getFalse(ITy); 3038 } 3039 3040 // x >>u y <=u x --> true. 3041 // x >>u y >u x --> false. 3042 // x udiv y <=u x --> true. 3043 // x udiv y >u x --> false. 3044 if (match(LBO, m_LShr(m_Specific(RHS), m_Value())) || 3045 match(LBO, m_UDiv(m_Specific(RHS), m_Value()))) { 3046 // icmp pred (X op Y), X 3047 if (Pred == ICmpInst::ICMP_UGT) 3048 return getFalse(ITy); 3049 if (Pred == ICmpInst::ICMP_ULE) 3050 return getTrue(ITy); 3051 } 3052 3053 // If x is nonzero: 3054 // x >>u C <u x --> true for C != 0. 3055 // x >>u C != x --> true for C != 0. 3056 // x >>u C >=u x --> false for C != 0. 3057 // x >>u C == x --> false for C != 0. 3058 // x udiv C <u x --> true for C != 1. 3059 // x udiv C != x --> true for C != 1. 3060 // x udiv C >=u x --> false for C != 1. 3061 // x udiv C == x --> false for C != 1. 3062 // TODO: allow non-constant shift amount/divisor 3063 const APInt *C; 3064 if ((match(LBO, m_LShr(m_Specific(RHS), m_APInt(C))) && *C != 0) || 3065 (match(LBO, m_UDiv(m_Specific(RHS), m_APInt(C))) && *C != 1)) { 3066 if (isKnownNonZero(RHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) { 3067 switch (Pred) { 3068 default: 3069 break; 3070 case ICmpInst::ICMP_EQ: 3071 case ICmpInst::ICMP_UGE: 3072 return getFalse(ITy); 3073 case ICmpInst::ICMP_NE: 3074 case ICmpInst::ICMP_ULT: 3075 return getTrue(ITy); 3076 case ICmpInst::ICMP_UGT: 3077 case ICmpInst::ICMP_ULE: 3078 // UGT/ULE are handled by the more general case just above 3079 llvm_unreachable("Unexpected UGT/ULE, should have been handled"); 3080 } 3081 } 3082 } 3083 3084 // (x*C1)/C2 <= x for C1 <= C2. 3085 // This holds even if the multiplication overflows: Assume that x != 0 and 3086 // arithmetic is modulo M. For overflow to occur we must have C1 >= M/x and 3087 // thus C2 >= M/x. It follows that (x*C1)/C2 <= (M-1)/C2 <= ((M-1)*x)/M < x. 3088 // 3089 // Additionally, either the multiplication and division might be represented 3090 // as shifts: 3091 // (x*C1)>>C2 <= x for C1 < 2**C2. 3092 // (x<<C1)/C2 <= x for 2**C1 < C2. 3093 const APInt *C1, *C2; 3094 if ((match(LBO, m_UDiv(m_Mul(m_Specific(RHS), m_APInt(C1)), m_APInt(C2))) && 3095 C1->ule(*C2)) || 3096 (match(LBO, m_LShr(m_Mul(m_Specific(RHS), m_APInt(C1)), m_APInt(C2))) && 3097 C1->ule(APInt(C2->getBitWidth(), 1) << *C2)) || 3098 (match(LBO, m_UDiv(m_Shl(m_Specific(RHS), m_APInt(C1)), m_APInt(C2))) && 3099 (APInt(C1->getBitWidth(), 1) << *C1).ule(*C2))) { 3100 if (Pred == ICmpInst::ICMP_UGT) 3101 return getFalse(ITy); 3102 if (Pred == ICmpInst::ICMP_ULE) 3103 return getTrue(ITy); 3104 } 3105 3106 return nullptr; 3107 } 3108 3109 3110 // If only one of the icmp's operands has NSW flags, try to prove that: 3111 // 3112 // icmp slt (x + C1), (x +nsw C2) 3113 // 3114 // is equivalent to: 3115 // 3116 // icmp slt C1, C2 3117 // 3118 // which is true if x + C2 has the NSW flags set and: 3119 // *) C1 < C2 && C1 >= 0, or 3120 // *) C2 < C1 && C1 <= 0. 3121 // 3122 static bool trySimplifyICmpWithAdds(CmpInst::Predicate Pred, Value *LHS, 3123 Value *RHS) { 3124 // TODO: only support icmp slt for now. 3125 if (Pred != CmpInst::ICMP_SLT) 3126 return false; 3127 3128 // Canonicalize nsw add as RHS. 3129 if (!match(RHS, m_NSWAdd(m_Value(), m_Value()))) 3130 std::swap(LHS, RHS); 3131 if (!match(RHS, m_NSWAdd(m_Value(), m_Value()))) 3132 return false; 3133 3134 Value *X; 3135 const APInt *C1, *C2; 3136 if (!match(LHS, m_c_Add(m_Value(X), m_APInt(C1))) || 3137 !match(RHS, m_c_Add(m_Specific(X), m_APInt(C2)))) 3138 return false; 3139 3140 return (C1->slt(*C2) && C1->isNonNegative()) || 3141 (C2->slt(*C1) && C1->isNonPositive()); 3142 } 3143 3144 3145 /// TODO: A large part of this logic is duplicated in InstCombine's 3146 /// foldICmpBinOp(). We should be able to share that and avoid the code 3147 /// duplication. 3148 static Value *simplifyICmpWithBinOp(CmpInst::Predicate Pred, Value *LHS, 3149 Value *RHS, const SimplifyQuery &Q, 3150 unsigned MaxRecurse) { 3151 BinaryOperator *LBO = dyn_cast<BinaryOperator>(LHS); 3152 BinaryOperator *RBO = dyn_cast<BinaryOperator>(RHS); 3153 if (MaxRecurse && (LBO || RBO)) { 3154 // Analyze the case when either LHS or RHS is an add instruction. 3155 Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr; 3156 // LHS = A + B (or A and B are null); RHS = C + D (or C and D are null). 3157 bool NoLHSWrapProblem = false, NoRHSWrapProblem = false; 3158 if (LBO && LBO->getOpcode() == Instruction::Add) { 3159 A = LBO->getOperand(0); 3160 B = LBO->getOperand(1); 3161 NoLHSWrapProblem = 3162 ICmpInst::isEquality(Pred) || 3163 (CmpInst::isUnsigned(Pred) && 3164 Q.IIQ.hasNoUnsignedWrap(cast<OverflowingBinaryOperator>(LBO))) || 3165 (CmpInst::isSigned(Pred) && 3166 Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(LBO))); 3167 } 3168 if (RBO && RBO->getOpcode() == Instruction::Add) { 3169 C = RBO->getOperand(0); 3170 D = RBO->getOperand(1); 3171 NoRHSWrapProblem = 3172 ICmpInst::isEquality(Pred) || 3173 (CmpInst::isUnsigned(Pred) && 3174 Q.IIQ.hasNoUnsignedWrap(cast<OverflowingBinaryOperator>(RBO))) || 3175 (CmpInst::isSigned(Pred) && 3176 Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(RBO))); 3177 } 3178 3179 // icmp (X+Y), X -> icmp Y, 0 for equalities or if there is no overflow. 3180 if ((A == RHS || B == RHS) && NoLHSWrapProblem) 3181 if (Value *V = SimplifyICmpInst(Pred, A == RHS ? B : A, 3182 Constant::getNullValue(RHS->getType()), Q, 3183 MaxRecurse - 1)) 3184 return V; 3185 3186 // icmp X, (X+Y) -> icmp 0, Y for equalities or if there is no overflow. 3187 if ((C == LHS || D == LHS) && NoRHSWrapProblem) 3188 if (Value *V = 3189 SimplifyICmpInst(Pred, Constant::getNullValue(LHS->getType()), 3190 C == LHS ? D : C, Q, MaxRecurse - 1)) 3191 return V; 3192 3193 // icmp (X+Y), (X+Z) -> icmp Y,Z for equalities or if there is no overflow. 3194 bool CanSimplify = (NoLHSWrapProblem && NoRHSWrapProblem) || 3195 trySimplifyICmpWithAdds(Pred, LHS, RHS); 3196 if (A && C && (A == C || A == D || B == C || B == D) && CanSimplify) { 3197 // Determine Y and Z in the form icmp (X+Y), (X+Z). 3198 Value *Y, *Z; 3199 if (A == C) { 3200 // C + B == C + D -> B == D 3201 Y = B; 3202 Z = D; 3203 } else if (A == D) { 3204 // D + B == C + D -> B == C 3205 Y = B; 3206 Z = C; 3207 } else if (B == C) { 3208 // A + C == C + D -> A == D 3209 Y = A; 3210 Z = D; 3211 } else { 3212 assert(B == D); 3213 // A + D == C + D -> A == C 3214 Y = A; 3215 Z = C; 3216 } 3217 if (Value *V = SimplifyICmpInst(Pred, Y, Z, Q, MaxRecurse - 1)) 3218 return V; 3219 } 3220 } 3221 3222 if (LBO) 3223 if (Value *V = simplifyICmpWithBinOpOnLHS(Pred, LBO, RHS, Q, MaxRecurse)) 3224 return V; 3225 3226 if (RBO) 3227 if (Value *V = simplifyICmpWithBinOpOnLHS( 3228 ICmpInst::getSwappedPredicate(Pred), RBO, LHS, Q, MaxRecurse)) 3229 return V; 3230 3231 // 0 - (zext X) pred C 3232 if (!CmpInst::isUnsigned(Pred) && match(LHS, m_Neg(m_ZExt(m_Value())))) { 3233 const APInt *C; 3234 if (match(RHS, m_APInt(C))) { 3235 if (C->isStrictlyPositive()) { 3236 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_NE) 3237 return ConstantInt::getTrue(GetCompareTy(RHS)); 3238 if (Pred == ICmpInst::ICMP_SGE || Pred == ICmpInst::ICMP_EQ) 3239 return ConstantInt::getFalse(GetCompareTy(RHS)); 3240 } 3241 if (C->isNonNegative()) { 3242 if (Pred == ICmpInst::ICMP_SLE) 3243 return ConstantInt::getTrue(GetCompareTy(RHS)); 3244 if (Pred == ICmpInst::ICMP_SGT) 3245 return ConstantInt::getFalse(GetCompareTy(RHS)); 3246 } 3247 } 3248 } 3249 3250 // If C2 is a power-of-2 and C is not: 3251 // (C2 << X) == C --> false 3252 // (C2 << X) != C --> true 3253 const APInt *C; 3254 if (match(LHS, m_Shl(m_Power2(), m_Value())) && 3255 match(RHS, m_APIntAllowUndef(C)) && !C->isPowerOf2()) { 3256 // C2 << X can equal zero in some circumstances. 3257 // This simplification might be unsafe if C is zero. 3258 // 3259 // We know it is safe if: 3260 // - The shift is nsw. We can't shift out the one bit. 3261 // - The shift is nuw. We can't shift out the one bit. 3262 // - C2 is one. 3263 // - C isn't zero. 3264 if (Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(LBO)) || 3265 Q.IIQ.hasNoUnsignedWrap(cast<OverflowingBinaryOperator>(LBO)) || 3266 match(LHS, m_Shl(m_One(), m_Value())) || !C->isZero()) { 3267 if (Pred == ICmpInst::ICMP_EQ) 3268 return ConstantInt::getFalse(GetCompareTy(RHS)); 3269 if (Pred == ICmpInst::ICMP_NE) 3270 return ConstantInt::getTrue(GetCompareTy(RHS)); 3271 } 3272 } 3273 3274 // TODO: This is overly constrained. LHS can be any power-of-2. 3275 // (1 << X) >u 0x8000 --> false 3276 // (1 << X) <=u 0x8000 --> true 3277 if (match(LHS, m_Shl(m_One(), m_Value())) && match(RHS, m_SignMask())) { 3278 if (Pred == ICmpInst::ICMP_UGT) 3279 return ConstantInt::getFalse(GetCompareTy(RHS)); 3280 if (Pred == ICmpInst::ICMP_ULE) 3281 return ConstantInt::getTrue(GetCompareTy(RHS)); 3282 } 3283 3284 if (MaxRecurse && LBO && RBO && LBO->getOpcode() == RBO->getOpcode() && 3285 LBO->getOperand(1) == RBO->getOperand(1)) { 3286 switch (LBO->getOpcode()) { 3287 default: 3288 break; 3289 case Instruction::UDiv: 3290 case Instruction::LShr: 3291 if (ICmpInst::isSigned(Pred) || !Q.IIQ.isExact(LBO) || 3292 !Q.IIQ.isExact(RBO)) 3293 break; 3294 if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0), 3295 RBO->getOperand(0), Q, MaxRecurse - 1)) 3296 return V; 3297 break; 3298 case Instruction::SDiv: 3299 if (!ICmpInst::isEquality(Pred) || !Q.IIQ.isExact(LBO) || 3300 !Q.IIQ.isExact(RBO)) 3301 break; 3302 if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0), 3303 RBO->getOperand(0), Q, MaxRecurse - 1)) 3304 return V; 3305 break; 3306 case Instruction::AShr: 3307 if (!Q.IIQ.isExact(LBO) || !Q.IIQ.isExact(RBO)) 3308 break; 3309 if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0), 3310 RBO->getOperand(0), Q, MaxRecurse - 1)) 3311 return V; 3312 break; 3313 case Instruction::Shl: { 3314 bool NUW = Q.IIQ.hasNoUnsignedWrap(LBO) && Q.IIQ.hasNoUnsignedWrap(RBO); 3315 bool NSW = Q.IIQ.hasNoSignedWrap(LBO) && Q.IIQ.hasNoSignedWrap(RBO); 3316 if (!NUW && !NSW) 3317 break; 3318 if (!NSW && ICmpInst::isSigned(Pred)) 3319 break; 3320 if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0), 3321 RBO->getOperand(0), Q, MaxRecurse - 1)) 3322 return V; 3323 break; 3324 } 3325 } 3326 } 3327 return nullptr; 3328 } 3329 3330 /// Simplify integer comparisons where at least one operand of the compare 3331 /// matches an integer min/max idiom. 3332 static Value *simplifyICmpWithMinMax(CmpInst::Predicate Pred, Value *LHS, 3333 Value *RHS, const SimplifyQuery &Q, 3334 unsigned MaxRecurse) { 3335 Type *ITy = GetCompareTy(LHS); // The return type. 3336 Value *A, *B; 3337 CmpInst::Predicate P = CmpInst::BAD_ICMP_PREDICATE; 3338 CmpInst::Predicate EqP; // Chosen so that "A == max/min(A,B)" iff "A EqP B". 3339 3340 // Signed variants on "max(a,b)>=a -> true". 3341 if (match(LHS, m_SMax(m_Value(A), m_Value(B))) && (A == RHS || B == RHS)) { 3342 if (A != RHS) 3343 std::swap(A, B); // smax(A, B) pred A. 3344 EqP = CmpInst::ICMP_SGE; // "A == smax(A, B)" iff "A sge B". 3345 // We analyze this as smax(A, B) pred A. 3346 P = Pred; 3347 } else if (match(RHS, m_SMax(m_Value(A), m_Value(B))) && 3348 (A == LHS || B == LHS)) { 3349 if (A != LHS) 3350 std::swap(A, B); // A pred smax(A, B). 3351 EqP = CmpInst::ICMP_SGE; // "A == smax(A, B)" iff "A sge B". 3352 // We analyze this as smax(A, B) swapped-pred A. 3353 P = CmpInst::getSwappedPredicate(Pred); 3354 } else if (match(LHS, m_SMin(m_Value(A), m_Value(B))) && 3355 (A == RHS || B == RHS)) { 3356 if (A != RHS) 3357 std::swap(A, B); // smin(A, B) pred A. 3358 EqP = CmpInst::ICMP_SLE; // "A == smin(A, B)" iff "A sle B". 3359 // We analyze this as smax(-A, -B) swapped-pred -A. 3360 // Note that we do not need to actually form -A or -B thanks to EqP. 3361 P = CmpInst::getSwappedPredicate(Pred); 3362 } else if (match(RHS, m_SMin(m_Value(A), m_Value(B))) && 3363 (A == LHS || B == LHS)) { 3364 if (A != LHS) 3365 std::swap(A, B); // A pred smin(A, B). 3366 EqP = CmpInst::ICMP_SLE; // "A == smin(A, B)" iff "A sle B". 3367 // We analyze this as smax(-A, -B) pred -A. 3368 // Note that we do not need to actually form -A or -B thanks to EqP. 3369 P = Pred; 3370 } 3371 if (P != CmpInst::BAD_ICMP_PREDICATE) { 3372 // Cases correspond to "max(A, B) p A". 3373 switch (P) { 3374 default: 3375 break; 3376 case CmpInst::ICMP_EQ: 3377 case CmpInst::ICMP_SLE: 3378 // Equivalent to "A EqP B". This may be the same as the condition tested 3379 // in the max/min; if so, we can just return that. 3380 if (Value *V = ExtractEquivalentCondition(LHS, EqP, A, B)) 3381 return V; 3382 if (Value *V = ExtractEquivalentCondition(RHS, EqP, A, B)) 3383 return V; 3384 // Otherwise, see if "A EqP B" simplifies. 3385 if (MaxRecurse) 3386 if (Value *V = SimplifyICmpInst(EqP, A, B, Q, MaxRecurse - 1)) 3387 return V; 3388 break; 3389 case CmpInst::ICMP_NE: 3390 case CmpInst::ICMP_SGT: { 3391 CmpInst::Predicate InvEqP = CmpInst::getInversePredicate(EqP); 3392 // Equivalent to "A InvEqP B". This may be the same as the condition 3393 // tested in the max/min; if so, we can just return that. 3394 if (Value *V = ExtractEquivalentCondition(LHS, InvEqP, A, B)) 3395 return V; 3396 if (Value *V = ExtractEquivalentCondition(RHS, InvEqP, A, B)) 3397 return V; 3398 // Otherwise, see if "A InvEqP B" simplifies. 3399 if (MaxRecurse) 3400 if (Value *V = SimplifyICmpInst(InvEqP, A, B, Q, MaxRecurse - 1)) 3401 return V; 3402 break; 3403 } 3404 case CmpInst::ICMP_SGE: 3405 // Always true. 3406 return getTrue(ITy); 3407 case CmpInst::ICMP_SLT: 3408 // Always false. 3409 return getFalse(ITy); 3410 } 3411 } 3412 3413 // Unsigned variants on "max(a,b)>=a -> true". 3414 P = CmpInst::BAD_ICMP_PREDICATE; 3415 if (match(LHS, m_UMax(m_Value(A), m_Value(B))) && (A == RHS || B == RHS)) { 3416 if (A != RHS) 3417 std::swap(A, B); // umax(A, B) pred A. 3418 EqP = CmpInst::ICMP_UGE; // "A == umax(A, B)" iff "A uge B". 3419 // We analyze this as umax(A, B) pred A. 3420 P = Pred; 3421 } else if (match(RHS, m_UMax(m_Value(A), m_Value(B))) && 3422 (A == LHS || B == LHS)) { 3423 if (A != LHS) 3424 std::swap(A, B); // A pred umax(A, B). 3425 EqP = CmpInst::ICMP_UGE; // "A == umax(A, B)" iff "A uge B". 3426 // We analyze this as umax(A, B) swapped-pred A. 3427 P = CmpInst::getSwappedPredicate(Pred); 3428 } else if (match(LHS, m_UMin(m_Value(A), m_Value(B))) && 3429 (A == RHS || B == RHS)) { 3430 if (A != RHS) 3431 std::swap(A, B); // umin(A, B) pred A. 3432 EqP = CmpInst::ICMP_ULE; // "A == umin(A, B)" iff "A ule B". 3433 // We analyze this as umax(-A, -B) swapped-pred -A. 3434 // Note that we do not need to actually form -A or -B thanks to EqP. 3435 P = CmpInst::getSwappedPredicate(Pred); 3436 } else if (match(RHS, m_UMin(m_Value(A), m_Value(B))) && 3437 (A == LHS || B == LHS)) { 3438 if (A != LHS) 3439 std::swap(A, B); // A pred umin(A, B). 3440 EqP = CmpInst::ICMP_ULE; // "A == umin(A, B)" iff "A ule B". 3441 // We analyze this as umax(-A, -B) pred -A. 3442 // Note that we do not need to actually form -A or -B thanks to EqP. 3443 P = Pred; 3444 } 3445 if (P != CmpInst::BAD_ICMP_PREDICATE) { 3446 // Cases correspond to "max(A, B) p A". 3447 switch (P) { 3448 default: 3449 break; 3450 case CmpInst::ICMP_EQ: 3451 case CmpInst::ICMP_ULE: 3452 // Equivalent to "A EqP B". This may be the same as the condition tested 3453 // in the max/min; if so, we can just return that. 3454 if (Value *V = ExtractEquivalentCondition(LHS, EqP, A, B)) 3455 return V; 3456 if (Value *V = ExtractEquivalentCondition(RHS, EqP, A, B)) 3457 return V; 3458 // Otherwise, see if "A EqP B" simplifies. 3459 if (MaxRecurse) 3460 if (Value *V = SimplifyICmpInst(EqP, A, B, Q, MaxRecurse - 1)) 3461 return V; 3462 break; 3463 case CmpInst::ICMP_NE: 3464 case CmpInst::ICMP_UGT: { 3465 CmpInst::Predicate InvEqP = CmpInst::getInversePredicate(EqP); 3466 // Equivalent to "A InvEqP B". This may be the same as the condition 3467 // tested in the max/min; if so, we can just return that. 3468 if (Value *V = ExtractEquivalentCondition(LHS, InvEqP, A, B)) 3469 return V; 3470 if (Value *V = ExtractEquivalentCondition(RHS, InvEqP, A, B)) 3471 return V; 3472 // Otherwise, see if "A InvEqP B" simplifies. 3473 if (MaxRecurse) 3474 if (Value *V = SimplifyICmpInst(InvEqP, A, B, Q, MaxRecurse - 1)) 3475 return V; 3476 break; 3477 } 3478 case CmpInst::ICMP_UGE: 3479 return getTrue(ITy); 3480 case CmpInst::ICMP_ULT: 3481 return getFalse(ITy); 3482 } 3483 } 3484 3485 // Comparing 1 each of min/max with a common operand? 3486 // Canonicalize min operand to RHS. 3487 if (match(LHS, m_UMin(m_Value(), m_Value())) || 3488 match(LHS, m_SMin(m_Value(), m_Value()))) { 3489 std::swap(LHS, RHS); 3490 Pred = ICmpInst::getSwappedPredicate(Pred); 3491 } 3492 3493 Value *C, *D; 3494 if (match(LHS, m_SMax(m_Value(A), m_Value(B))) && 3495 match(RHS, m_SMin(m_Value(C), m_Value(D))) && 3496 (A == C || A == D || B == C || B == D)) { 3497 // smax(A, B) >=s smin(A, D) --> true 3498 if (Pred == CmpInst::ICMP_SGE) 3499 return getTrue(ITy); 3500 // smax(A, B) <s smin(A, D) --> false 3501 if (Pred == CmpInst::ICMP_SLT) 3502 return getFalse(ITy); 3503 } else if (match(LHS, m_UMax(m_Value(A), m_Value(B))) && 3504 match(RHS, m_UMin(m_Value(C), m_Value(D))) && 3505 (A == C || A == D || B == C || B == D)) { 3506 // umax(A, B) >=u umin(A, D) --> true 3507 if (Pred == CmpInst::ICMP_UGE) 3508 return getTrue(ITy); 3509 // umax(A, B) <u umin(A, D) --> false 3510 if (Pred == CmpInst::ICMP_ULT) 3511 return getFalse(ITy); 3512 } 3513 3514 return nullptr; 3515 } 3516 3517 static Value *simplifyICmpWithDominatingAssume(CmpInst::Predicate Predicate, 3518 Value *LHS, Value *RHS, 3519 const SimplifyQuery &Q) { 3520 // Gracefully handle instructions that have not been inserted yet. 3521 if (!Q.AC || !Q.CxtI || !Q.CxtI->getParent()) 3522 return nullptr; 3523 3524 for (Value *AssumeBaseOp : {LHS, RHS}) { 3525 for (auto &AssumeVH : Q.AC->assumptionsFor(AssumeBaseOp)) { 3526 if (!AssumeVH) 3527 continue; 3528 3529 CallInst *Assume = cast<CallInst>(AssumeVH); 3530 if (Optional<bool> Imp = 3531 isImpliedCondition(Assume->getArgOperand(0), Predicate, LHS, RHS, 3532 Q.DL)) 3533 if (isValidAssumeForContext(Assume, Q.CxtI, Q.DT)) 3534 return ConstantInt::get(GetCompareTy(LHS), *Imp); 3535 } 3536 } 3537 3538 return nullptr; 3539 } 3540 3541 /// Given operands for an ICmpInst, see if we can fold the result. 3542 /// If not, this returns null. 3543 static Value *SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS, 3544 const SimplifyQuery &Q, unsigned MaxRecurse) { 3545 CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate; 3546 assert(CmpInst::isIntPredicate(Pred) && "Not an integer compare!"); 3547 3548 if (Constant *CLHS = dyn_cast<Constant>(LHS)) { 3549 if (Constant *CRHS = dyn_cast<Constant>(RHS)) 3550 return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, Q.DL, Q.TLI); 3551 3552 // If we have a constant, make sure it is on the RHS. 3553 std::swap(LHS, RHS); 3554 Pred = CmpInst::getSwappedPredicate(Pred); 3555 } 3556 assert(!isa<UndefValue>(LHS) && "Unexpected icmp undef,%X"); 3557 3558 Type *ITy = GetCompareTy(LHS); // The return type. 3559 3560 // icmp poison, X -> poison 3561 if (isa<PoisonValue>(RHS)) 3562 return PoisonValue::get(ITy); 3563 3564 // For EQ and NE, we can always pick a value for the undef to make the 3565 // predicate pass or fail, so we can return undef. 3566 // Matches behavior in llvm::ConstantFoldCompareInstruction. 3567 if (Q.isUndefValue(RHS) && ICmpInst::isEquality(Pred)) 3568 return UndefValue::get(ITy); 3569 3570 // icmp X, X -> true/false 3571 // icmp X, undef -> true/false because undef could be X. 3572 if (LHS == RHS || Q.isUndefValue(RHS)) 3573 return ConstantInt::get(ITy, CmpInst::isTrueWhenEqual(Pred)); 3574 3575 if (Value *V = simplifyICmpOfBools(Pred, LHS, RHS, Q)) 3576 return V; 3577 3578 // TODO: Sink/common this with other potentially expensive calls that use 3579 // ValueTracking? See comment below for isKnownNonEqual(). 3580 if (Value *V = simplifyICmpWithZero(Pred, LHS, RHS, Q)) 3581 return V; 3582 3583 if (Value *V = simplifyICmpWithConstant(Pred, LHS, RHS, Q.IIQ)) 3584 return V; 3585 3586 // If both operands have range metadata, use the metadata 3587 // to simplify the comparison. 3588 if (isa<Instruction>(RHS) && isa<Instruction>(LHS)) { 3589 auto RHS_Instr = cast<Instruction>(RHS); 3590 auto LHS_Instr = cast<Instruction>(LHS); 3591 3592 if (Q.IIQ.getMetadata(RHS_Instr, LLVMContext::MD_range) && 3593 Q.IIQ.getMetadata(LHS_Instr, LLVMContext::MD_range)) { 3594 auto RHS_CR = getConstantRangeFromMetadata( 3595 *RHS_Instr->getMetadata(LLVMContext::MD_range)); 3596 auto LHS_CR = getConstantRangeFromMetadata( 3597 *LHS_Instr->getMetadata(LLVMContext::MD_range)); 3598 3599 if (LHS_CR.icmp(Pred, RHS_CR)) 3600 return ConstantInt::getTrue(RHS->getContext()); 3601 3602 if (LHS_CR.icmp(CmpInst::getInversePredicate(Pred), RHS_CR)) 3603 return ConstantInt::getFalse(RHS->getContext()); 3604 } 3605 } 3606 3607 // Compare of cast, for example (zext X) != 0 -> X != 0 3608 if (isa<CastInst>(LHS) && (isa<Constant>(RHS) || isa<CastInst>(RHS))) { 3609 Instruction *LI = cast<CastInst>(LHS); 3610 Value *SrcOp = LI->getOperand(0); 3611 Type *SrcTy = SrcOp->getType(); 3612 Type *DstTy = LI->getType(); 3613 3614 // Turn icmp (ptrtoint x), (ptrtoint/constant) into a compare of the input 3615 // if the integer type is the same size as the pointer type. 3616 if (MaxRecurse && isa<PtrToIntInst>(LI) && 3617 Q.DL.getTypeSizeInBits(SrcTy) == DstTy->getPrimitiveSizeInBits()) { 3618 if (Constant *RHSC = dyn_cast<Constant>(RHS)) { 3619 // Transfer the cast to the constant. 3620 if (Value *V = SimplifyICmpInst(Pred, SrcOp, 3621 ConstantExpr::getIntToPtr(RHSC, SrcTy), 3622 Q, MaxRecurse-1)) 3623 return V; 3624 } else if (PtrToIntInst *RI = dyn_cast<PtrToIntInst>(RHS)) { 3625 if (RI->getOperand(0)->getType() == SrcTy) 3626 // Compare without the cast. 3627 if (Value *V = SimplifyICmpInst(Pred, SrcOp, RI->getOperand(0), 3628 Q, MaxRecurse-1)) 3629 return V; 3630 } 3631 } 3632 3633 if (isa<ZExtInst>(LHS)) { 3634 // Turn icmp (zext X), (zext Y) into a compare of X and Y if they have the 3635 // same type. 3636 if (ZExtInst *RI = dyn_cast<ZExtInst>(RHS)) { 3637 if (MaxRecurse && SrcTy == RI->getOperand(0)->getType()) 3638 // Compare X and Y. Note that signed predicates become unsigned. 3639 if (Value *V = SimplifyICmpInst(ICmpInst::getUnsignedPredicate(Pred), 3640 SrcOp, RI->getOperand(0), Q, 3641 MaxRecurse-1)) 3642 return V; 3643 } 3644 // Fold (zext X) ule (sext X), (zext X) sge (sext X) to true. 3645 else if (SExtInst *RI = dyn_cast<SExtInst>(RHS)) { 3646 if (SrcOp == RI->getOperand(0)) { 3647 if (Pred == ICmpInst::ICMP_ULE || Pred == ICmpInst::ICMP_SGE) 3648 return ConstantInt::getTrue(ITy); 3649 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_SLT) 3650 return ConstantInt::getFalse(ITy); 3651 } 3652 } 3653 // Turn icmp (zext X), Cst into a compare of X and Cst if Cst is extended 3654 // too. If not, then try to deduce the result of the comparison. 3655 else if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) { 3656 // Compute the constant that would happen if we truncated to SrcTy then 3657 // reextended to DstTy. 3658 Constant *Trunc = ConstantExpr::getTrunc(CI, SrcTy); 3659 Constant *RExt = ConstantExpr::getCast(CastInst::ZExt, Trunc, DstTy); 3660 3661 // If the re-extended constant didn't change then this is effectively 3662 // also a case of comparing two zero-extended values. 3663 if (RExt == CI && MaxRecurse) 3664 if (Value *V = SimplifyICmpInst(ICmpInst::getUnsignedPredicate(Pred), 3665 SrcOp, Trunc, Q, MaxRecurse-1)) 3666 return V; 3667 3668 // Otherwise the upper bits of LHS are zero while RHS has a non-zero bit 3669 // there. Use this to work out the result of the comparison. 3670 if (RExt != CI) { 3671 switch (Pred) { 3672 default: llvm_unreachable("Unknown ICmp predicate!"); 3673 // LHS <u RHS. 3674 case ICmpInst::ICMP_EQ: 3675 case ICmpInst::ICMP_UGT: 3676 case ICmpInst::ICMP_UGE: 3677 return ConstantInt::getFalse(CI->getContext()); 3678 3679 case ICmpInst::ICMP_NE: 3680 case ICmpInst::ICMP_ULT: 3681 case ICmpInst::ICMP_ULE: 3682 return ConstantInt::getTrue(CI->getContext()); 3683 3684 // LHS is non-negative. If RHS is negative then LHS >s LHS. If RHS 3685 // is non-negative then LHS <s RHS. 3686 case ICmpInst::ICMP_SGT: 3687 case ICmpInst::ICMP_SGE: 3688 return CI->getValue().isNegative() ? 3689 ConstantInt::getTrue(CI->getContext()) : 3690 ConstantInt::getFalse(CI->getContext()); 3691 3692 case ICmpInst::ICMP_SLT: 3693 case ICmpInst::ICMP_SLE: 3694 return CI->getValue().isNegative() ? 3695 ConstantInt::getFalse(CI->getContext()) : 3696 ConstantInt::getTrue(CI->getContext()); 3697 } 3698 } 3699 } 3700 } 3701 3702 if (isa<SExtInst>(LHS)) { 3703 // Turn icmp (sext X), (sext Y) into a compare of X and Y if they have the 3704 // same type. 3705 if (SExtInst *RI = dyn_cast<SExtInst>(RHS)) { 3706 if (MaxRecurse && SrcTy == RI->getOperand(0)->getType()) 3707 // Compare X and Y. Note that the predicate does not change. 3708 if (Value *V = SimplifyICmpInst(Pred, SrcOp, RI->getOperand(0), 3709 Q, MaxRecurse-1)) 3710 return V; 3711 } 3712 // Fold (sext X) uge (zext X), (sext X) sle (zext X) to true. 3713 else if (ZExtInst *RI = dyn_cast<ZExtInst>(RHS)) { 3714 if (SrcOp == RI->getOperand(0)) { 3715 if (Pred == ICmpInst::ICMP_UGE || Pred == ICmpInst::ICMP_SLE) 3716 return ConstantInt::getTrue(ITy); 3717 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_SGT) 3718 return ConstantInt::getFalse(ITy); 3719 } 3720 } 3721 // Turn icmp (sext X), Cst into a compare of X and Cst if Cst is extended 3722 // too. If not, then try to deduce the result of the comparison. 3723 else if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) { 3724 // Compute the constant that would happen if we truncated to SrcTy then 3725 // reextended to DstTy. 3726 Constant *Trunc = ConstantExpr::getTrunc(CI, SrcTy); 3727 Constant *RExt = ConstantExpr::getCast(CastInst::SExt, Trunc, DstTy); 3728 3729 // If the re-extended constant didn't change then this is effectively 3730 // also a case of comparing two sign-extended values. 3731 if (RExt == CI && MaxRecurse) 3732 if (Value *V = SimplifyICmpInst(Pred, SrcOp, Trunc, Q, MaxRecurse-1)) 3733 return V; 3734 3735 // Otherwise the upper bits of LHS are all equal, while RHS has varying 3736 // bits there. Use this to work out the result of the comparison. 3737 if (RExt != CI) { 3738 switch (Pred) { 3739 default: llvm_unreachable("Unknown ICmp predicate!"); 3740 case ICmpInst::ICMP_EQ: 3741 return ConstantInt::getFalse(CI->getContext()); 3742 case ICmpInst::ICMP_NE: 3743 return ConstantInt::getTrue(CI->getContext()); 3744 3745 // If RHS is non-negative then LHS <s RHS. If RHS is negative then 3746 // LHS >s RHS. 3747 case ICmpInst::ICMP_SGT: 3748 case ICmpInst::ICMP_SGE: 3749 return CI->getValue().isNegative() ? 3750 ConstantInt::getTrue(CI->getContext()) : 3751 ConstantInt::getFalse(CI->getContext()); 3752 case ICmpInst::ICMP_SLT: 3753 case ICmpInst::ICMP_SLE: 3754 return CI->getValue().isNegative() ? 3755 ConstantInt::getFalse(CI->getContext()) : 3756 ConstantInt::getTrue(CI->getContext()); 3757 3758 // If LHS is non-negative then LHS <u RHS. If LHS is negative then 3759 // LHS >u RHS. 3760 case ICmpInst::ICMP_UGT: 3761 case ICmpInst::ICMP_UGE: 3762 // Comparison is true iff the LHS <s 0. 3763 if (MaxRecurse) 3764 if (Value *V = SimplifyICmpInst(ICmpInst::ICMP_SLT, SrcOp, 3765 Constant::getNullValue(SrcTy), 3766 Q, MaxRecurse-1)) 3767 return V; 3768 break; 3769 case ICmpInst::ICMP_ULT: 3770 case ICmpInst::ICMP_ULE: 3771 // Comparison is true iff the LHS >=s 0. 3772 if (MaxRecurse) 3773 if (Value *V = SimplifyICmpInst(ICmpInst::ICMP_SGE, SrcOp, 3774 Constant::getNullValue(SrcTy), 3775 Q, MaxRecurse-1)) 3776 return V; 3777 break; 3778 } 3779 } 3780 } 3781 } 3782 } 3783 3784 // icmp eq|ne X, Y -> false|true if X != Y 3785 // This is potentially expensive, and we have already computedKnownBits for 3786 // compares with 0 above here, so only try this for a non-zero compare. 3787 if (ICmpInst::isEquality(Pred) && !match(RHS, m_Zero()) && 3788 isKnownNonEqual(LHS, RHS, Q.DL, Q.AC, Q.CxtI, Q.DT, Q.IIQ.UseInstrInfo)) { 3789 return Pred == ICmpInst::ICMP_NE ? getTrue(ITy) : getFalse(ITy); 3790 } 3791 3792 if (Value *V = simplifyICmpWithBinOp(Pred, LHS, RHS, Q, MaxRecurse)) 3793 return V; 3794 3795 if (Value *V = simplifyICmpWithMinMax(Pred, LHS, RHS, Q, MaxRecurse)) 3796 return V; 3797 3798 if (Value *V = simplifyICmpWithDominatingAssume(Pred, LHS, RHS, Q)) 3799 return V; 3800 3801 // Simplify comparisons of related pointers using a powerful, recursive 3802 // GEP-walk when we have target data available.. 3803 if (LHS->getType()->isPointerTy()) 3804 if (auto *C = computePointerICmp(Pred, LHS, RHS, Q)) 3805 return C; 3806 if (auto *CLHS = dyn_cast<PtrToIntOperator>(LHS)) 3807 if (auto *CRHS = dyn_cast<PtrToIntOperator>(RHS)) 3808 if (Q.DL.getTypeSizeInBits(CLHS->getPointerOperandType()) == 3809 Q.DL.getTypeSizeInBits(CLHS->getType()) && 3810 Q.DL.getTypeSizeInBits(CRHS->getPointerOperandType()) == 3811 Q.DL.getTypeSizeInBits(CRHS->getType())) 3812 if (auto *C = computePointerICmp(Pred, CLHS->getPointerOperand(), 3813 CRHS->getPointerOperand(), Q)) 3814 return C; 3815 3816 // If the comparison is with the result of a select instruction, check whether 3817 // comparing with either branch of the select always yields the same value. 3818 if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS)) 3819 if (Value *V = ThreadCmpOverSelect(Pred, LHS, RHS, Q, MaxRecurse)) 3820 return V; 3821 3822 // If the comparison is with the result of a phi instruction, check whether 3823 // doing the compare with each incoming phi value yields a common result. 3824 if (isa<PHINode>(LHS) || isa<PHINode>(RHS)) 3825 if (Value *V = ThreadCmpOverPHI(Pred, LHS, RHS, Q, MaxRecurse)) 3826 return V; 3827 3828 return nullptr; 3829 } 3830 3831 Value *llvm::SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS, 3832 const SimplifyQuery &Q) { 3833 return ::SimplifyICmpInst(Predicate, LHS, RHS, Q, RecursionLimit); 3834 } 3835 3836 /// Given operands for an FCmpInst, see if we can fold the result. 3837 /// If not, this returns null. 3838 static Value *SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS, 3839 FastMathFlags FMF, const SimplifyQuery &Q, 3840 unsigned MaxRecurse) { 3841 CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate; 3842 assert(CmpInst::isFPPredicate(Pred) && "Not an FP compare!"); 3843 3844 if (Constant *CLHS = dyn_cast<Constant>(LHS)) { 3845 if (Constant *CRHS = dyn_cast<Constant>(RHS)) 3846 return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, Q.DL, Q.TLI); 3847 3848 // If we have a constant, make sure it is on the RHS. 3849 std::swap(LHS, RHS); 3850 Pred = CmpInst::getSwappedPredicate(Pred); 3851 } 3852 3853 // Fold trivial predicates. 3854 Type *RetTy = GetCompareTy(LHS); 3855 if (Pred == FCmpInst::FCMP_FALSE) 3856 return getFalse(RetTy); 3857 if (Pred == FCmpInst::FCMP_TRUE) 3858 return getTrue(RetTy); 3859 3860 // Fold (un)ordered comparison if we can determine there are no NaNs. 3861 if (Pred == FCmpInst::FCMP_UNO || Pred == FCmpInst::FCMP_ORD) 3862 if (FMF.noNaNs() || 3863 (isKnownNeverNaN(LHS, Q.TLI) && isKnownNeverNaN(RHS, Q.TLI))) 3864 return ConstantInt::get(RetTy, Pred == FCmpInst::FCMP_ORD); 3865 3866 // NaN is unordered; NaN is not ordered. 3867 assert((FCmpInst::isOrdered(Pred) || FCmpInst::isUnordered(Pred)) && 3868 "Comparison must be either ordered or unordered"); 3869 if (match(RHS, m_NaN())) 3870 return ConstantInt::get(RetTy, CmpInst::isUnordered(Pred)); 3871 3872 // fcmp pred x, poison and fcmp pred poison, x 3873 // fold to poison 3874 if (isa<PoisonValue>(LHS) || isa<PoisonValue>(RHS)) 3875 return PoisonValue::get(RetTy); 3876 3877 // fcmp pred x, undef and fcmp pred undef, x 3878 // fold to true if unordered, false if ordered 3879 if (Q.isUndefValue(LHS) || Q.isUndefValue(RHS)) { 3880 // Choosing NaN for the undef will always make unordered comparison succeed 3881 // and ordered comparison fail. 3882 return ConstantInt::get(RetTy, CmpInst::isUnordered(Pred)); 3883 } 3884 3885 // fcmp x,x -> true/false. Not all compares are foldable. 3886 if (LHS == RHS) { 3887 if (CmpInst::isTrueWhenEqual(Pred)) 3888 return getTrue(RetTy); 3889 if (CmpInst::isFalseWhenEqual(Pred)) 3890 return getFalse(RetTy); 3891 } 3892 3893 // Handle fcmp with constant RHS. 3894 // TODO: Use match with a specific FP value, so these work with vectors with 3895 // undef lanes. 3896 const APFloat *C; 3897 if (match(RHS, m_APFloat(C))) { 3898 // Check whether the constant is an infinity. 3899 if (C->isInfinity()) { 3900 if (C->isNegative()) { 3901 switch (Pred) { 3902 case FCmpInst::FCMP_OLT: 3903 // No value is ordered and less than negative infinity. 3904 return getFalse(RetTy); 3905 case FCmpInst::FCMP_UGE: 3906 // All values are unordered with or at least negative infinity. 3907 return getTrue(RetTy); 3908 default: 3909 break; 3910 } 3911 } else { 3912 switch (Pred) { 3913 case FCmpInst::FCMP_OGT: 3914 // No value is ordered and greater than infinity. 3915 return getFalse(RetTy); 3916 case FCmpInst::FCMP_ULE: 3917 // All values are unordered with and at most infinity. 3918 return getTrue(RetTy); 3919 default: 3920 break; 3921 } 3922 } 3923 3924 // LHS == Inf 3925 if (Pred == FCmpInst::FCMP_OEQ && isKnownNeverInfinity(LHS, Q.TLI)) 3926 return getFalse(RetTy); 3927 // LHS != Inf 3928 if (Pred == FCmpInst::FCMP_UNE && isKnownNeverInfinity(LHS, Q.TLI)) 3929 return getTrue(RetTy); 3930 // LHS == Inf || LHS == NaN 3931 if (Pred == FCmpInst::FCMP_UEQ && isKnownNeverInfinity(LHS, Q.TLI) && 3932 isKnownNeverNaN(LHS, Q.TLI)) 3933 return getFalse(RetTy); 3934 // LHS != Inf && LHS != NaN 3935 if (Pred == FCmpInst::FCMP_ONE && isKnownNeverInfinity(LHS, Q.TLI) && 3936 isKnownNeverNaN(LHS, Q.TLI)) 3937 return getTrue(RetTy); 3938 } 3939 if (C->isNegative() && !C->isNegZero()) { 3940 assert(!C->isNaN() && "Unexpected NaN constant!"); 3941 // TODO: We can catch more cases by using a range check rather than 3942 // relying on CannotBeOrderedLessThanZero. 3943 switch (Pred) { 3944 case FCmpInst::FCMP_UGE: 3945 case FCmpInst::FCMP_UGT: 3946 case FCmpInst::FCMP_UNE: 3947 // (X >= 0) implies (X > C) when (C < 0) 3948 if (CannotBeOrderedLessThanZero(LHS, Q.TLI)) 3949 return getTrue(RetTy); 3950 break; 3951 case FCmpInst::FCMP_OEQ: 3952 case FCmpInst::FCMP_OLE: 3953 case FCmpInst::FCMP_OLT: 3954 // (X >= 0) implies !(X < C) when (C < 0) 3955 if (CannotBeOrderedLessThanZero(LHS, Q.TLI)) 3956 return getFalse(RetTy); 3957 break; 3958 default: 3959 break; 3960 } 3961 } 3962 3963 // Check comparison of [minnum/maxnum with constant] with other constant. 3964 const APFloat *C2; 3965 if ((match(LHS, m_Intrinsic<Intrinsic::minnum>(m_Value(), m_APFloat(C2))) && 3966 *C2 < *C) || 3967 (match(LHS, m_Intrinsic<Intrinsic::maxnum>(m_Value(), m_APFloat(C2))) && 3968 *C2 > *C)) { 3969 bool IsMaxNum = 3970 cast<IntrinsicInst>(LHS)->getIntrinsicID() == Intrinsic::maxnum; 3971 // The ordered relationship and minnum/maxnum guarantee that we do not 3972 // have NaN constants, so ordered/unordered preds are handled the same. 3973 switch (Pred) { 3974 case FCmpInst::FCMP_OEQ: case FCmpInst::FCMP_UEQ: 3975 // minnum(X, LesserC) == C --> false 3976 // maxnum(X, GreaterC) == C --> false 3977 return getFalse(RetTy); 3978 case FCmpInst::FCMP_ONE: case FCmpInst::FCMP_UNE: 3979 // minnum(X, LesserC) != C --> true 3980 // maxnum(X, GreaterC) != C --> true 3981 return getTrue(RetTy); 3982 case FCmpInst::FCMP_OGE: case FCmpInst::FCMP_UGE: 3983 case FCmpInst::FCMP_OGT: case FCmpInst::FCMP_UGT: 3984 // minnum(X, LesserC) >= C --> false 3985 // minnum(X, LesserC) > C --> false 3986 // maxnum(X, GreaterC) >= C --> true 3987 // maxnum(X, GreaterC) > C --> true 3988 return ConstantInt::get(RetTy, IsMaxNum); 3989 case FCmpInst::FCMP_OLE: case FCmpInst::FCMP_ULE: 3990 case FCmpInst::FCMP_OLT: case FCmpInst::FCMP_ULT: 3991 // minnum(X, LesserC) <= C --> true 3992 // minnum(X, LesserC) < C --> true 3993 // maxnum(X, GreaterC) <= C --> false 3994 // maxnum(X, GreaterC) < C --> false 3995 return ConstantInt::get(RetTy, !IsMaxNum); 3996 default: 3997 // TRUE/FALSE/ORD/UNO should be handled before this. 3998 llvm_unreachable("Unexpected fcmp predicate"); 3999 } 4000 } 4001 } 4002 4003 if (match(RHS, m_AnyZeroFP())) { 4004 switch (Pred) { 4005 case FCmpInst::FCMP_OGE: 4006 case FCmpInst::FCMP_ULT: 4007 // Positive or zero X >= 0.0 --> true 4008 // Positive or zero X < 0.0 --> false 4009 if ((FMF.noNaNs() || isKnownNeverNaN(LHS, Q.TLI)) && 4010 CannotBeOrderedLessThanZero(LHS, Q.TLI)) 4011 return Pred == FCmpInst::FCMP_OGE ? getTrue(RetTy) : getFalse(RetTy); 4012 break; 4013 case FCmpInst::FCMP_UGE: 4014 case FCmpInst::FCMP_OLT: 4015 // Positive or zero or nan X >= 0.0 --> true 4016 // Positive or zero or nan X < 0.0 --> false 4017 if (CannotBeOrderedLessThanZero(LHS, Q.TLI)) 4018 return Pred == FCmpInst::FCMP_UGE ? getTrue(RetTy) : getFalse(RetTy); 4019 break; 4020 default: 4021 break; 4022 } 4023 } 4024 4025 // If the comparison is with the result of a select instruction, check whether 4026 // comparing with either branch of the select always yields the same value. 4027 if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS)) 4028 if (Value *V = ThreadCmpOverSelect(Pred, LHS, RHS, Q, MaxRecurse)) 4029 return V; 4030 4031 // If the comparison is with the result of a phi instruction, check whether 4032 // doing the compare with each incoming phi value yields a common result. 4033 if (isa<PHINode>(LHS) || isa<PHINode>(RHS)) 4034 if (Value *V = ThreadCmpOverPHI(Pred, LHS, RHS, Q, MaxRecurse)) 4035 return V; 4036 4037 return nullptr; 4038 } 4039 4040 Value *llvm::SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS, 4041 FastMathFlags FMF, const SimplifyQuery &Q) { 4042 return ::SimplifyFCmpInst(Predicate, LHS, RHS, FMF, Q, RecursionLimit); 4043 } 4044 4045 static Value *simplifyWithOpReplaced(Value *V, Value *Op, Value *RepOp, 4046 const SimplifyQuery &Q, 4047 bool AllowRefinement, 4048 unsigned MaxRecurse) { 4049 assert(!Op->getType()->isVectorTy() && "This is not safe for vectors"); 4050 4051 // Trivial replacement. 4052 if (V == Op) 4053 return RepOp; 4054 4055 // We cannot replace a constant, and shouldn't even try. 4056 if (isa<Constant>(Op)) 4057 return nullptr; 4058 4059 auto *I = dyn_cast<Instruction>(V); 4060 if (!I || !is_contained(I->operands(), Op)) 4061 return nullptr; 4062 4063 // Replace Op with RepOp in instruction operands. 4064 SmallVector<Value *, 8> NewOps(I->getNumOperands()); 4065 transform(I->operands(), NewOps.begin(), 4066 [&](Value *V) { return V == Op ? RepOp : V; }); 4067 4068 if (!AllowRefinement) { 4069 // General InstSimplify functions may refine the result, e.g. by returning 4070 // a constant for a potentially poison value. To avoid this, implement only 4071 // a few non-refining but profitable transforms here. 4072 4073 if (auto *BO = dyn_cast<BinaryOperator>(I)) { 4074 unsigned Opcode = BO->getOpcode(); 4075 // id op x -> x, x op id -> x 4076 if (NewOps[0] == ConstantExpr::getBinOpIdentity(Opcode, I->getType())) 4077 return NewOps[1]; 4078 if (NewOps[1] == ConstantExpr::getBinOpIdentity(Opcode, I->getType(), 4079 /* RHS */ true)) 4080 return NewOps[0]; 4081 4082 // x & x -> x, x | x -> x 4083 if ((Opcode == Instruction::And || Opcode == Instruction::Or) && 4084 NewOps[0] == NewOps[1]) 4085 return NewOps[0]; 4086 } 4087 4088 if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) { 4089 // getelementptr x, 0 -> x 4090 if (NewOps.size() == 2 && match(NewOps[1], m_Zero()) && 4091 !GEP->isInBounds()) 4092 return NewOps[0]; 4093 } 4094 } else if (MaxRecurse) { 4095 // The simplification queries below may return the original value. Consider: 4096 // %div = udiv i32 %arg, %arg2 4097 // %mul = mul nsw i32 %div, %arg2 4098 // %cmp = icmp eq i32 %mul, %arg 4099 // %sel = select i1 %cmp, i32 %div, i32 undef 4100 // Replacing %arg by %mul, %div becomes "udiv i32 %mul, %arg2", which 4101 // simplifies back to %arg. This can only happen because %mul does not 4102 // dominate %div. To ensure a consistent return value contract, we make sure 4103 // that this case returns nullptr as well. 4104 auto PreventSelfSimplify = [V](Value *Simplified) { 4105 return Simplified != V ? Simplified : nullptr; 4106 }; 4107 4108 if (auto *B = dyn_cast<BinaryOperator>(I)) 4109 return PreventSelfSimplify(SimplifyBinOp(B->getOpcode(), NewOps[0], 4110 NewOps[1], Q, MaxRecurse - 1)); 4111 4112 if (CmpInst *C = dyn_cast<CmpInst>(I)) 4113 return PreventSelfSimplify(SimplifyCmpInst(C->getPredicate(), NewOps[0], 4114 NewOps[1], Q, MaxRecurse - 1)); 4115 4116 if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) 4117 return PreventSelfSimplify(SimplifyGEPInst( 4118 GEP->getSourceElementType(), NewOps[0], makeArrayRef(NewOps).slice(1), 4119 GEP->isInBounds(), Q, MaxRecurse - 1)); 4120 4121 if (isa<SelectInst>(I)) 4122 return PreventSelfSimplify( 4123 SimplifySelectInst(NewOps[0], NewOps[1], NewOps[2], Q, 4124 MaxRecurse - 1)); 4125 // TODO: We could hand off more cases to instsimplify here. 4126 } 4127 4128 // If all operands are constant after substituting Op for RepOp then we can 4129 // constant fold the instruction. 4130 SmallVector<Constant *, 8> ConstOps; 4131 for (Value *NewOp : NewOps) { 4132 if (Constant *ConstOp = dyn_cast<Constant>(NewOp)) 4133 ConstOps.push_back(ConstOp); 4134 else 4135 return nullptr; 4136 } 4137 4138 // Consider: 4139 // %cmp = icmp eq i32 %x, 2147483647 4140 // %add = add nsw i32 %x, 1 4141 // %sel = select i1 %cmp, i32 -2147483648, i32 %add 4142 // 4143 // We can't replace %sel with %add unless we strip away the flags (which 4144 // will be done in InstCombine). 4145 // TODO: This may be unsound, because it only catches some forms of 4146 // refinement. 4147 if (!AllowRefinement && canCreatePoison(cast<Operator>(I))) 4148 return nullptr; 4149 4150 if (CmpInst *C = dyn_cast<CmpInst>(I)) 4151 return ConstantFoldCompareInstOperands(C->getPredicate(), ConstOps[0], 4152 ConstOps[1], Q.DL, Q.TLI); 4153 4154 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 4155 if (!LI->isVolatile()) 4156 return ConstantFoldLoadFromConstPtr(ConstOps[0], LI->getType(), Q.DL); 4157 4158 return ConstantFoldInstOperands(I, ConstOps, Q.DL, Q.TLI); 4159 } 4160 4161 Value *llvm::simplifyWithOpReplaced(Value *V, Value *Op, Value *RepOp, 4162 const SimplifyQuery &Q, 4163 bool AllowRefinement) { 4164 return ::simplifyWithOpReplaced(V, Op, RepOp, Q, AllowRefinement, 4165 RecursionLimit); 4166 } 4167 4168 /// Try to simplify a select instruction when its condition operand is an 4169 /// integer comparison where one operand of the compare is a constant. 4170 static Value *simplifySelectBitTest(Value *TrueVal, Value *FalseVal, Value *X, 4171 const APInt *Y, bool TrueWhenUnset) { 4172 const APInt *C; 4173 4174 // (X & Y) == 0 ? X & ~Y : X --> X 4175 // (X & Y) != 0 ? X & ~Y : X --> X & ~Y 4176 if (FalseVal == X && match(TrueVal, m_And(m_Specific(X), m_APInt(C))) && 4177 *Y == ~*C) 4178 return TrueWhenUnset ? FalseVal : TrueVal; 4179 4180 // (X & Y) == 0 ? X : X & ~Y --> X & ~Y 4181 // (X & Y) != 0 ? X : X & ~Y --> X 4182 if (TrueVal == X && match(FalseVal, m_And(m_Specific(X), m_APInt(C))) && 4183 *Y == ~*C) 4184 return TrueWhenUnset ? FalseVal : TrueVal; 4185 4186 if (Y->isPowerOf2()) { 4187 // (X & Y) == 0 ? X | Y : X --> X | Y 4188 // (X & Y) != 0 ? X | Y : X --> X 4189 if (FalseVal == X && match(TrueVal, m_Or(m_Specific(X), m_APInt(C))) && 4190 *Y == *C) 4191 return TrueWhenUnset ? TrueVal : FalseVal; 4192 4193 // (X & Y) == 0 ? X : X | Y --> X 4194 // (X & Y) != 0 ? X : X | Y --> X | Y 4195 if (TrueVal == X && match(FalseVal, m_Or(m_Specific(X), m_APInt(C))) && 4196 *Y == *C) 4197 return TrueWhenUnset ? TrueVal : FalseVal; 4198 } 4199 4200 return nullptr; 4201 } 4202 4203 /// An alternative way to test if a bit is set or not uses sgt/slt instead of 4204 /// eq/ne. 4205 static Value *simplifySelectWithFakeICmpEq(Value *CmpLHS, Value *CmpRHS, 4206 ICmpInst::Predicate Pred, 4207 Value *TrueVal, Value *FalseVal) { 4208 Value *X; 4209 APInt Mask; 4210 if (!decomposeBitTestICmp(CmpLHS, CmpRHS, Pred, X, Mask)) 4211 return nullptr; 4212 4213 return simplifySelectBitTest(TrueVal, FalseVal, X, &Mask, 4214 Pred == ICmpInst::ICMP_EQ); 4215 } 4216 4217 /// Try to simplify a select instruction when its condition operand is an 4218 /// integer comparison. 4219 static Value *simplifySelectWithICmpCond(Value *CondVal, Value *TrueVal, 4220 Value *FalseVal, const SimplifyQuery &Q, 4221 unsigned MaxRecurse) { 4222 ICmpInst::Predicate Pred; 4223 Value *CmpLHS, *CmpRHS; 4224 if (!match(CondVal, m_ICmp(Pred, m_Value(CmpLHS), m_Value(CmpRHS)))) 4225 return nullptr; 4226 4227 // Canonicalize ne to eq predicate. 4228 if (Pred == ICmpInst::ICMP_NE) { 4229 Pred = ICmpInst::ICMP_EQ; 4230 std::swap(TrueVal, FalseVal); 4231 } 4232 4233 // Check for integer min/max with a limit constant: 4234 // X > MIN_INT ? X : MIN_INT --> X 4235 // X < MAX_INT ? X : MAX_INT --> X 4236 if (TrueVal->getType()->isIntOrIntVectorTy()) { 4237 Value *X, *Y; 4238 SelectPatternFlavor SPF = 4239 matchDecomposedSelectPattern(cast<ICmpInst>(CondVal), TrueVal, FalseVal, 4240 X, Y).Flavor; 4241 if (SelectPatternResult::isMinOrMax(SPF) && Pred == getMinMaxPred(SPF)) { 4242 APInt LimitC = getMinMaxLimit(getInverseMinMaxFlavor(SPF), 4243 X->getType()->getScalarSizeInBits()); 4244 if (match(Y, m_SpecificInt(LimitC))) 4245 return X; 4246 } 4247 } 4248 4249 if (Pred == ICmpInst::ICMP_EQ && match(CmpRHS, m_Zero())) { 4250 Value *X; 4251 const APInt *Y; 4252 if (match(CmpLHS, m_And(m_Value(X), m_APInt(Y)))) 4253 if (Value *V = simplifySelectBitTest(TrueVal, FalseVal, X, Y, 4254 /*TrueWhenUnset=*/true)) 4255 return V; 4256 4257 // Test for a bogus zero-shift-guard-op around funnel-shift or rotate. 4258 Value *ShAmt; 4259 auto isFsh = m_CombineOr(m_FShl(m_Value(X), m_Value(), m_Value(ShAmt)), 4260 m_FShr(m_Value(), m_Value(X), m_Value(ShAmt))); 4261 // (ShAmt == 0) ? fshl(X, *, ShAmt) : X --> X 4262 // (ShAmt == 0) ? fshr(*, X, ShAmt) : X --> X 4263 if (match(TrueVal, isFsh) && FalseVal == X && CmpLHS == ShAmt) 4264 return X; 4265 4266 // Test for a zero-shift-guard-op around rotates. These are used to 4267 // avoid UB from oversized shifts in raw IR rotate patterns, but the 4268 // intrinsics do not have that problem. 4269 // We do not allow this transform for the general funnel shift case because 4270 // that would not preserve the poison safety of the original code. 4271 auto isRotate = 4272 m_CombineOr(m_FShl(m_Value(X), m_Deferred(X), m_Value(ShAmt)), 4273 m_FShr(m_Value(X), m_Deferred(X), m_Value(ShAmt))); 4274 // (ShAmt == 0) ? X : fshl(X, X, ShAmt) --> fshl(X, X, ShAmt) 4275 // (ShAmt == 0) ? X : fshr(X, X, ShAmt) --> fshr(X, X, ShAmt) 4276 if (match(FalseVal, isRotate) && TrueVal == X && CmpLHS == ShAmt && 4277 Pred == ICmpInst::ICMP_EQ) 4278 return FalseVal; 4279 4280 // X == 0 ? abs(X) : -abs(X) --> -abs(X) 4281 // X == 0 ? -abs(X) : abs(X) --> abs(X) 4282 if (match(TrueVal, m_Intrinsic<Intrinsic::abs>(m_Specific(CmpLHS))) && 4283 match(FalseVal, m_Neg(m_Intrinsic<Intrinsic::abs>(m_Specific(CmpLHS))))) 4284 return FalseVal; 4285 if (match(TrueVal, 4286 m_Neg(m_Intrinsic<Intrinsic::abs>(m_Specific(CmpLHS)))) && 4287 match(FalseVal, m_Intrinsic<Intrinsic::abs>(m_Specific(CmpLHS)))) 4288 return FalseVal; 4289 } 4290 4291 // Check for other compares that behave like bit test. 4292 if (Value *V = simplifySelectWithFakeICmpEq(CmpLHS, CmpRHS, Pred, 4293 TrueVal, FalseVal)) 4294 return V; 4295 4296 // If we have a scalar equality comparison, then we know the value in one of 4297 // the arms of the select. See if substituting this value into the arm and 4298 // simplifying the result yields the same value as the other arm. 4299 // Note that the equivalence/replacement opportunity does not hold for vectors 4300 // because each element of a vector select is chosen independently. 4301 if (Pred == ICmpInst::ICMP_EQ && !CondVal->getType()->isVectorTy()) { 4302 if (simplifyWithOpReplaced(FalseVal, CmpLHS, CmpRHS, Q, 4303 /* AllowRefinement */ false, MaxRecurse) == 4304 TrueVal || 4305 simplifyWithOpReplaced(FalseVal, CmpRHS, CmpLHS, Q, 4306 /* AllowRefinement */ false, MaxRecurse) == 4307 TrueVal) 4308 return FalseVal; 4309 if (simplifyWithOpReplaced(TrueVal, CmpLHS, CmpRHS, Q, 4310 /* AllowRefinement */ true, MaxRecurse) == 4311 FalseVal || 4312 simplifyWithOpReplaced(TrueVal, CmpRHS, CmpLHS, Q, 4313 /* AllowRefinement */ true, MaxRecurse) == 4314 FalseVal) 4315 return FalseVal; 4316 } 4317 4318 return nullptr; 4319 } 4320 4321 /// Try to simplify a select instruction when its condition operand is a 4322 /// floating-point comparison. 4323 static Value *simplifySelectWithFCmp(Value *Cond, Value *T, Value *F, 4324 const SimplifyQuery &Q) { 4325 FCmpInst::Predicate Pred; 4326 if (!match(Cond, m_FCmp(Pred, m_Specific(T), m_Specific(F))) && 4327 !match(Cond, m_FCmp(Pred, m_Specific(F), m_Specific(T)))) 4328 return nullptr; 4329 4330 // This transform is safe if we do not have (do not care about) -0.0 or if 4331 // at least one operand is known to not be -0.0. Otherwise, the select can 4332 // change the sign of a zero operand. 4333 bool HasNoSignedZeros = Q.CxtI && isa<FPMathOperator>(Q.CxtI) && 4334 Q.CxtI->hasNoSignedZeros(); 4335 const APFloat *C; 4336 if (HasNoSignedZeros || (match(T, m_APFloat(C)) && C->isNonZero()) || 4337 (match(F, m_APFloat(C)) && C->isNonZero())) { 4338 // (T == F) ? T : F --> F 4339 // (F == T) ? T : F --> F 4340 if (Pred == FCmpInst::FCMP_OEQ) 4341 return F; 4342 4343 // (T != F) ? T : F --> T 4344 // (F != T) ? T : F --> T 4345 if (Pred == FCmpInst::FCMP_UNE) 4346 return T; 4347 } 4348 4349 return nullptr; 4350 } 4351 4352 /// Given operands for a SelectInst, see if we can fold the result. 4353 /// If not, this returns null. 4354 static Value *SimplifySelectInst(Value *Cond, Value *TrueVal, Value *FalseVal, 4355 const SimplifyQuery &Q, unsigned MaxRecurse) { 4356 if (auto *CondC = dyn_cast<Constant>(Cond)) { 4357 if (auto *TrueC = dyn_cast<Constant>(TrueVal)) 4358 if (auto *FalseC = dyn_cast<Constant>(FalseVal)) 4359 return ConstantFoldSelectInstruction(CondC, TrueC, FalseC); 4360 4361 // select poison, X, Y -> poison 4362 if (isa<PoisonValue>(CondC)) 4363 return PoisonValue::get(TrueVal->getType()); 4364 4365 // select undef, X, Y -> X or Y 4366 if (Q.isUndefValue(CondC)) 4367 return isa<Constant>(FalseVal) ? FalseVal : TrueVal; 4368 4369 // select true, X, Y --> X 4370 // select false, X, Y --> Y 4371 // For vectors, allow undef/poison elements in the condition to match the 4372 // defined elements, so we can eliminate the select. 4373 if (match(CondC, m_One())) 4374 return TrueVal; 4375 if (match(CondC, m_Zero())) 4376 return FalseVal; 4377 } 4378 4379 assert(Cond->getType()->isIntOrIntVectorTy(1) && 4380 "Select must have bool or bool vector condition"); 4381 assert(TrueVal->getType() == FalseVal->getType() && 4382 "Select must have same types for true/false ops"); 4383 4384 if (Cond->getType() == TrueVal->getType()) { 4385 // select i1 Cond, i1 true, i1 false --> i1 Cond 4386 if (match(TrueVal, m_One()) && match(FalseVal, m_ZeroInt())) 4387 return Cond; 4388 4389 // (X || Y) && (X || !Y) --> X (commuted 8 ways) 4390 Value *X, *Y; 4391 if (match(FalseVal, m_ZeroInt())) { 4392 if (match(Cond, m_c_LogicalOr(m_Value(X), m_Not(m_Value(Y)))) && 4393 match(TrueVal, m_c_LogicalOr(m_Specific(X), m_Specific(Y)))) 4394 return X; 4395 if (match(TrueVal, m_c_LogicalOr(m_Value(X), m_Not(m_Value(Y)))) && 4396 match(Cond, m_c_LogicalOr(m_Specific(X), m_Specific(Y)))) 4397 return X; 4398 } 4399 } 4400 4401 // select ?, X, X -> X 4402 if (TrueVal == FalseVal) 4403 return TrueVal; 4404 4405 // If the true or false value is poison, we can fold to the other value. 4406 // If the true or false value is undef, we can fold to the other value as 4407 // long as the other value isn't poison. 4408 // select ?, poison, X -> X 4409 // select ?, undef, X -> X 4410 if (isa<PoisonValue>(TrueVal) || 4411 (Q.isUndefValue(TrueVal) && 4412 isGuaranteedNotToBePoison(FalseVal, Q.AC, Q.CxtI, Q.DT))) 4413 return FalseVal; 4414 // select ?, X, poison -> X 4415 // select ?, X, undef -> X 4416 if (isa<PoisonValue>(FalseVal) || 4417 (Q.isUndefValue(FalseVal) && 4418 isGuaranteedNotToBePoison(TrueVal, Q.AC, Q.CxtI, Q.DT))) 4419 return TrueVal; 4420 4421 // Deal with partial undef vector constants: select ?, VecC, VecC' --> VecC'' 4422 Constant *TrueC, *FalseC; 4423 if (isa<FixedVectorType>(TrueVal->getType()) && 4424 match(TrueVal, m_Constant(TrueC)) && 4425 match(FalseVal, m_Constant(FalseC))) { 4426 unsigned NumElts = 4427 cast<FixedVectorType>(TrueC->getType())->getNumElements(); 4428 SmallVector<Constant *, 16> NewC; 4429 for (unsigned i = 0; i != NumElts; ++i) { 4430 // Bail out on incomplete vector constants. 4431 Constant *TEltC = TrueC->getAggregateElement(i); 4432 Constant *FEltC = FalseC->getAggregateElement(i); 4433 if (!TEltC || !FEltC) 4434 break; 4435 4436 // If the elements match (undef or not), that value is the result. If only 4437 // one element is undef, choose the defined element as the safe result. 4438 if (TEltC == FEltC) 4439 NewC.push_back(TEltC); 4440 else if (isa<PoisonValue>(TEltC) || 4441 (Q.isUndefValue(TEltC) && isGuaranteedNotToBePoison(FEltC))) 4442 NewC.push_back(FEltC); 4443 else if (isa<PoisonValue>(FEltC) || 4444 (Q.isUndefValue(FEltC) && isGuaranteedNotToBePoison(TEltC))) 4445 NewC.push_back(TEltC); 4446 else 4447 break; 4448 } 4449 if (NewC.size() == NumElts) 4450 return ConstantVector::get(NewC); 4451 } 4452 4453 if (Value *V = 4454 simplifySelectWithICmpCond(Cond, TrueVal, FalseVal, Q, MaxRecurse)) 4455 return V; 4456 4457 if (Value *V = simplifySelectWithFCmp(Cond, TrueVal, FalseVal, Q)) 4458 return V; 4459 4460 if (Value *V = foldSelectWithBinaryOp(Cond, TrueVal, FalseVal)) 4461 return V; 4462 4463 Optional<bool> Imp = isImpliedByDomCondition(Cond, Q.CxtI, Q.DL); 4464 if (Imp) 4465 return *Imp ? TrueVal : FalseVal; 4466 4467 return nullptr; 4468 } 4469 4470 Value *llvm::SimplifySelectInst(Value *Cond, Value *TrueVal, Value *FalseVal, 4471 const SimplifyQuery &Q) { 4472 return ::SimplifySelectInst(Cond, TrueVal, FalseVal, Q, RecursionLimit); 4473 } 4474 4475 /// Given operands for an GetElementPtrInst, see if we can fold the result. 4476 /// If not, this returns null. 4477 static Value *SimplifyGEPInst(Type *SrcTy, Value *Ptr, 4478 ArrayRef<Value *> Indices, bool InBounds, 4479 const SimplifyQuery &Q, unsigned) { 4480 // The type of the GEP pointer operand. 4481 unsigned AS = 4482 cast<PointerType>(Ptr->getType()->getScalarType())->getAddressSpace(); 4483 4484 // getelementptr P -> P. 4485 if (Indices.empty()) 4486 return Ptr; 4487 4488 // Compute the (pointer) type returned by the GEP instruction. 4489 Type *LastType = GetElementPtrInst::getIndexedType(SrcTy, Indices); 4490 Type *GEPTy = PointerType::get(LastType, AS); 4491 if (VectorType *VT = dyn_cast<VectorType>(Ptr->getType())) 4492 GEPTy = VectorType::get(GEPTy, VT->getElementCount()); 4493 else { 4494 for (Value *Op : Indices) { 4495 // If one of the operands is a vector, the result type is a vector of 4496 // pointers. All vector operands must have the same number of elements. 4497 if (VectorType *VT = dyn_cast<VectorType>(Op->getType())) { 4498 GEPTy = VectorType::get(GEPTy, VT->getElementCount()); 4499 break; 4500 } 4501 } 4502 } 4503 4504 // For opaque pointers an all-zero GEP is a no-op. For typed pointers, 4505 // it may be equivalent to a bitcast. 4506 if (Ptr->getType()->isOpaquePointerTy() && 4507 all_of(Indices, [](const auto *V) { return match(V, m_Zero()); })) 4508 return Ptr; 4509 4510 // getelementptr poison, idx -> poison 4511 // getelementptr baseptr, poison -> poison 4512 if (isa<PoisonValue>(Ptr) || 4513 any_of(Indices, [](const auto *V) { return isa<PoisonValue>(V); })) 4514 return PoisonValue::get(GEPTy); 4515 4516 if (Q.isUndefValue(Ptr)) 4517 // If inbounds, we can choose an out-of-bounds pointer as a base pointer. 4518 return InBounds ? PoisonValue::get(GEPTy) : UndefValue::get(GEPTy); 4519 4520 bool IsScalableVec = 4521 isa<ScalableVectorType>(SrcTy) || any_of(Indices, [](const Value *V) { 4522 return isa<ScalableVectorType>(V->getType()); 4523 }); 4524 4525 if (Indices.size() == 1) { 4526 // getelementptr P, 0 -> P. 4527 if (match(Indices[0], m_Zero()) && Ptr->getType() == GEPTy) 4528 return Ptr; 4529 4530 Type *Ty = SrcTy; 4531 if (!IsScalableVec && Ty->isSized()) { 4532 Value *P; 4533 uint64_t C; 4534 uint64_t TyAllocSize = Q.DL.getTypeAllocSize(Ty); 4535 // getelementptr P, N -> P if P points to a type of zero size. 4536 if (TyAllocSize == 0 && Ptr->getType() == GEPTy) 4537 return Ptr; 4538 4539 // The following transforms are only safe if the ptrtoint cast 4540 // doesn't truncate the pointers. 4541 if (Indices[0]->getType()->getScalarSizeInBits() == 4542 Q.DL.getPointerSizeInBits(AS)) { 4543 auto CanSimplify = [GEPTy, &P, Ptr]() -> bool { 4544 return P->getType() == GEPTy && 4545 getUnderlyingObject(P) == getUnderlyingObject(Ptr); 4546 }; 4547 // getelementptr V, (sub P, V) -> P if P points to a type of size 1. 4548 if (TyAllocSize == 1 && 4549 match(Indices[0], 4550 m_Sub(m_PtrToInt(m_Value(P)), m_PtrToInt(m_Specific(Ptr)))) && 4551 CanSimplify()) 4552 return P; 4553 4554 // getelementptr V, (ashr (sub P, V), C) -> P if P points to a type of 4555 // size 1 << C. 4556 if (match(Indices[0], m_AShr(m_Sub(m_PtrToInt(m_Value(P)), 4557 m_PtrToInt(m_Specific(Ptr))), 4558 m_ConstantInt(C))) && 4559 TyAllocSize == 1ULL << C && CanSimplify()) 4560 return P; 4561 4562 // getelementptr V, (sdiv (sub P, V), C) -> P if P points to a type of 4563 // size C. 4564 if (match(Indices[0], m_SDiv(m_Sub(m_PtrToInt(m_Value(P)), 4565 m_PtrToInt(m_Specific(Ptr))), 4566 m_SpecificInt(TyAllocSize))) && 4567 CanSimplify()) 4568 return P; 4569 } 4570 } 4571 } 4572 4573 if (!IsScalableVec && Q.DL.getTypeAllocSize(LastType) == 1 && 4574 all_of(Indices.drop_back(1), 4575 [](Value *Idx) { return match(Idx, m_Zero()); })) { 4576 unsigned IdxWidth = 4577 Q.DL.getIndexSizeInBits(Ptr->getType()->getPointerAddressSpace()); 4578 if (Q.DL.getTypeSizeInBits(Indices.back()->getType()) == IdxWidth) { 4579 APInt BasePtrOffset(IdxWidth, 0); 4580 Value *StrippedBasePtr = 4581 Ptr->stripAndAccumulateInBoundsConstantOffsets(Q.DL, BasePtrOffset); 4582 4583 // Avoid creating inttoptr of zero here: While LLVMs treatment of 4584 // inttoptr is generally conservative, this particular case is folded to 4585 // a null pointer, which will have incorrect provenance. 4586 4587 // gep (gep V, C), (sub 0, V) -> C 4588 if (match(Indices.back(), 4589 m_Sub(m_Zero(), m_PtrToInt(m_Specific(StrippedBasePtr)))) && 4590 !BasePtrOffset.isZero()) { 4591 auto *CI = ConstantInt::get(GEPTy->getContext(), BasePtrOffset); 4592 return ConstantExpr::getIntToPtr(CI, GEPTy); 4593 } 4594 // gep (gep V, C), (xor V, -1) -> C-1 4595 if (match(Indices.back(), 4596 m_Xor(m_PtrToInt(m_Specific(StrippedBasePtr)), m_AllOnes())) && 4597 !BasePtrOffset.isOne()) { 4598 auto *CI = ConstantInt::get(GEPTy->getContext(), BasePtrOffset - 1); 4599 return ConstantExpr::getIntToPtr(CI, GEPTy); 4600 } 4601 } 4602 } 4603 4604 // Check to see if this is constant foldable. 4605 if (!isa<Constant>(Ptr) || 4606 !all_of(Indices, [](Value *V) { return isa<Constant>(V); })) 4607 return nullptr; 4608 4609 auto *CE = ConstantExpr::getGetElementPtr(SrcTy, cast<Constant>(Ptr), Indices, 4610 InBounds); 4611 return ConstantFoldConstant(CE, Q.DL); 4612 } 4613 4614 Value *llvm::SimplifyGEPInst(Type *SrcTy, Value *Ptr, ArrayRef<Value *> Indices, 4615 bool InBounds, const SimplifyQuery &Q) { 4616 return ::SimplifyGEPInst(SrcTy, Ptr, Indices, InBounds, Q, RecursionLimit); 4617 } 4618 4619 /// Given operands for an InsertValueInst, see if we can fold the result. 4620 /// If not, this returns null. 4621 static Value *SimplifyInsertValueInst(Value *Agg, Value *Val, 4622 ArrayRef<unsigned> Idxs, const SimplifyQuery &Q, 4623 unsigned) { 4624 if (Constant *CAgg = dyn_cast<Constant>(Agg)) 4625 if (Constant *CVal = dyn_cast<Constant>(Val)) 4626 return ConstantFoldInsertValueInstruction(CAgg, CVal, Idxs); 4627 4628 // insertvalue x, undef, n -> x 4629 if (Q.isUndefValue(Val)) 4630 return Agg; 4631 4632 // insertvalue x, (extractvalue y, n), n 4633 if (ExtractValueInst *EV = dyn_cast<ExtractValueInst>(Val)) 4634 if (EV->getAggregateOperand()->getType() == Agg->getType() && 4635 EV->getIndices() == Idxs) { 4636 // insertvalue undef, (extractvalue y, n), n -> y 4637 if (Q.isUndefValue(Agg)) 4638 return EV->getAggregateOperand(); 4639 4640 // insertvalue y, (extractvalue y, n), n -> y 4641 if (Agg == EV->getAggregateOperand()) 4642 return Agg; 4643 } 4644 4645 return nullptr; 4646 } 4647 4648 Value *llvm::SimplifyInsertValueInst(Value *Agg, Value *Val, 4649 ArrayRef<unsigned> Idxs, 4650 const SimplifyQuery &Q) { 4651 return ::SimplifyInsertValueInst(Agg, Val, Idxs, Q, RecursionLimit); 4652 } 4653 4654 Value *llvm::SimplifyInsertElementInst(Value *Vec, Value *Val, Value *Idx, 4655 const SimplifyQuery &Q) { 4656 // Try to constant fold. 4657 auto *VecC = dyn_cast<Constant>(Vec); 4658 auto *ValC = dyn_cast<Constant>(Val); 4659 auto *IdxC = dyn_cast<Constant>(Idx); 4660 if (VecC && ValC && IdxC) 4661 return ConstantExpr::getInsertElement(VecC, ValC, IdxC); 4662 4663 // For fixed-length vector, fold into poison if index is out of bounds. 4664 if (auto *CI = dyn_cast<ConstantInt>(Idx)) { 4665 if (isa<FixedVectorType>(Vec->getType()) && 4666 CI->uge(cast<FixedVectorType>(Vec->getType())->getNumElements())) 4667 return PoisonValue::get(Vec->getType()); 4668 } 4669 4670 // If index is undef, it might be out of bounds (see above case) 4671 if (Q.isUndefValue(Idx)) 4672 return PoisonValue::get(Vec->getType()); 4673 4674 // If the scalar is poison, or it is undef and there is no risk of 4675 // propagating poison from the vector value, simplify to the vector value. 4676 if (isa<PoisonValue>(Val) || 4677 (Q.isUndefValue(Val) && isGuaranteedNotToBePoison(Vec))) 4678 return Vec; 4679 4680 // If we are extracting a value from a vector, then inserting it into the same 4681 // place, that's the input vector: 4682 // insertelt Vec, (extractelt Vec, Idx), Idx --> Vec 4683 if (match(Val, m_ExtractElt(m_Specific(Vec), m_Specific(Idx)))) 4684 return Vec; 4685 4686 return nullptr; 4687 } 4688 4689 /// Given operands for an ExtractValueInst, see if we can fold the result. 4690 /// If not, this returns null. 4691 static Value *SimplifyExtractValueInst(Value *Agg, ArrayRef<unsigned> Idxs, 4692 const SimplifyQuery &, unsigned) { 4693 if (auto *CAgg = dyn_cast<Constant>(Agg)) 4694 return ConstantFoldExtractValueInstruction(CAgg, Idxs); 4695 4696 // extractvalue x, (insertvalue y, elt, n), n -> elt 4697 unsigned NumIdxs = Idxs.size(); 4698 for (auto *IVI = dyn_cast<InsertValueInst>(Agg); IVI != nullptr; 4699 IVI = dyn_cast<InsertValueInst>(IVI->getAggregateOperand())) { 4700 ArrayRef<unsigned> InsertValueIdxs = IVI->getIndices(); 4701 unsigned NumInsertValueIdxs = InsertValueIdxs.size(); 4702 unsigned NumCommonIdxs = std::min(NumInsertValueIdxs, NumIdxs); 4703 if (InsertValueIdxs.slice(0, NumCommonIdxs) == 4704 Idxs.slice(0, NumCommonIdxs)) { 4705 if (NumIdxs == NumInsertValueIdxs) 4706 return IVI->getInsertedValueOperand(); 4707 break; 4708 } 4709 } 4710 4711 return nullptr; 4712 } 4713 4714 Value *llvm::SimplifyExtractValueInst(Value *Agg, ArrayRef<unsigned> Idxs, 4715 const SimplifyQuery &Q) { 4716 return ::SimplifyExtractValueInst(Agg, Idxs, Q, RecursionLimit); 4717 } 4718 4719 /// Given operands for an ExtractElementInst, see if we can fold the result. 4720 /// If not, this returns null. 4721 static Value *SimplifyExtractElementInst(Value *Vec, Value *Idx, 4722 const SimplifyQuery &Q, unsigned) { 4723 auto *VecVTy = cast<VectorType>(Vec->getType()); 4724 if (auto *CVec = dyn_cast<Constant>(Vec)) { 4725 if (auto *CIdx = dyn_cast<Constant>(Idx)) 4726 return ConstantExpr::getExtractElement(CVec, CIdx); 4727 4728 if (Q.isUndefValue(Vec)) 4729 return UndefValue::get(VecVTy->getElementType()); 4730 } 4731 4732 // An undef extract index can be arbitrarily chosen to be an out-of-range 4733 // index value, which would result in the instruction being poison. 4734 if (Q.isUndefValue(Idx)) 4735 return PoisonValue::get(VecVTy->getElementType()); 4736 4737 // If extracting a specified index from the vector, see if we can recursively 4738 // find a previously computed scalar that was inserted into the vector. 4739 if (auto *IdxC = dyn_cast<ConstantInt>(Idx)) { 4740 // For fixed-length vector, fold into undef if index is out of bounds. 4741 unsigned MinNumElts = VecVTy->getElementCount().getKnownMinValue(); 4742 if (isa<FixedVectorType>(VecVTy) && IdxC->getValue().uge(MinNumElts)) 4743 return PoisonValue::get(VecVTy->getElementType()); 4744 // Handle case where an element is extracted from a splat. 4745 if (IdxC->getValue().ult(MinNumElts)) 4746 if (auto *Splat = getSplatValue(Vec)) 4747 return Splat; 4748 if (Value *Elt = findScalarElement(Vec, IdxC->getZExtValue())) 4749 return Elt; 4750 } else { 4751 // The index is not relevant if our vector is a splat. 4752 if (Value *Splat = getSplatValue(Vec)) 4753 return Splat; 4754 } 4755 return nullptr; 4756 } 4757 4758 Value *llvm::SimplifyExtractElementInst(Value *Vec, Value *Idx, 4759 const SimplifyQuery &Q) { 4760 return ::SimplifyExtractElementInst(Vec, Idx, Q, RecursionLimit); 4761 } 4762 4763 /// See if we can fold the given phi. If not, returns null. 4764 static Value *SimplifyPHINode(PHINode *PN, ArrayRef<Value *> IncomingValues, 4765 const SimplifyQuery &Q) { 4766 // WARNING: no matter how worthwhile it may seem, we can not perform PHI CSE 4767 // here, because the PHI we may succeed simplifying to was not 4768 // def-reachable from the original PHI! 4769 4770 // If all of the PHI's incoming values are the same then replace the PHI node 4771 // with the common value. 4772 Value *CommonValue = nullptr; 4773 bool HasUndefInput = false; 4774 for (Value *Incoming : IncomingValues) { 4775 // If the incoming value is the phi node itself, it can safely be skipped. 4776 if (Incoming == PN) continue; 4777 if (Q.isUndefValue(Incoming)) { 4778 // Remember that we saw an undef value, but otherwise ignore them. 4779 HasUndefInput = true; 4780 continue; 4781 } 4782 if (CommonValue && Incoming != CommonValue) 4783 return nullptr; // Not the same, bail out. 4784 CommonValue = Incoming; 4785 } 4786 4787 // If CommonValue is null then all of the incoming values were either undef or 4788 // equal to the phi node itself. 4789 if (!CommonValue) 4790 return UndefValue::get(PN->getType()); 4791 4792 // If we have a PHI node like phi(X, undef, X), where X is defined by some 4793 // instruction, we cannot return X as the result of the PHI node unless it 4794 // dominates the PHI block. 4795 if (HasUndefInput) 4796 return valueDominatesPHI(CommonValue, PN, Q.DT) ? CommonValue : nullptr; 4797 4798 return CommonValue; 4799 } 4800 4801 static Value *SimplifyCastInst(unsigned CastOpc, Value *Op, 4802 Type *Ty, const SimplifyQuery &Q, unsigned MaxRecurse) { 4803 if (auto *C = dyn_cast<Constant>(Op)) 4804 return ConstantFoldCastOperand(CastOpc, C, Ty, Q.DL); 4805 4806 if (auto *CI = dyn_cast<CastInst>(Op)) { 4807 auto *Src = CI->getOperand(0); 4808 Type *SrcTy = Src->getType(); 4809 Type *MidTy = CI->getType(); 4810 Type *DstTy = Ty; 4811 if (Src->getType() == Ty) { 4812 auto FirstOp = static_cast<Instruction::CastOps>(CI->getOpcode()); 4813 auto SecondOp = static_cast<Instruction::CastOps>(CastOpc); 4814 Type *SrcIntPtrTy = 4815 SrcTy->isPtrOrPtrVectorTy() ? Q.DL.getIntPtrType(SrcTy) : nullptr; 4816 Type *MidIntPtrTy = 4817 MidTy->isPtrOrPtrVectorTy() ? Q.DL.getIntPtrType(MidTy) : nullptr; 4818 Type *DstIntPtrTy = 4819 DstTy->isPtrOrPtrVectorTy() ? Q.DL.getIntPtrType(DstTy) : nullptr; 4820 if (CastInst::isEliminableCastPair(FirstOp, SecondOp, SrcTy, MidTy, DstTy, 4821 SrcIntPtrTy, MidIntPtrTy, 4822 DstIntPtrTy) == Instruction::BitCast) 4823 return Src; 4824 } 4825 } 4826 4827 // bitcast x -> x 4828 if (CastOpc == Instruction::BitCast) 4829 if (Op->getType() == Ty) 4830 return Op; 4831 4832 return nullptr; 4833 } 4834 4835 Value *llvm::SimplifyCastInst(unsigned CastOpc, Value *Op, Type *Ty, 4836 const SimplifyQuery &Q) { 4837 return ::SimplifyCastInst(CastOpc, Op, Ty, Q, RecursionLimit); 4838 } 4839 4840 /// For the given destination element of a shuffle, peek through shuffles to 4841 /// match a root vector source operand that contains that element in the same 4842 /// vector lane (ie, the same mask index), so we can eliminate the shuffle(s). 4843 static Value *foldIdentityShuffles(int DestElt, Value *Op0, Value *Op1, 4844 int MaskVal, Value *RootVec, 4845 unsigned MaxRecurse) { 4846 if (!MaxRecurse--) 4847 return nullptr; 4848 4849 // Bail out if any mask value is undefined. That kind of shuffle may be 4850 // simplified further based on demanded bits or other folds. 4851 if (MaskVal == -1) 4852 return nullptr; 4853 4854 // The mask value chooses which source operand we need to look at next. 4855 int InVecNumElts = cast<FixedVectorType>(Op0->getType())->getNumElements(); 4856 int RootElt = MaskVal; 4857 Value *SourceOp = Op0; 4858 if (MaskVal >= InVecNumElts) { 4859 RootElt = MaskVal - InVecNumElts; 4860 SourceOp = Op1; 4861 } 4862 4863 // If the source operand is a shuffle itself, look through it to find the 4864 // matching root vector. 4865 if (auto *SourceShuf = dyn_cast<ShuffleVectorInst>(SourceOp)) { 4866 return foldIdentityShuffles( 4867 DestElt, SourceShuf->getOperand(0), SourceShuf->getOperand(1), 4868 SourceShuf->getMaskValue(RootElt), RootVec, MaxRecurse); 4869 } 4870 4871 // TODO: Look through bitcasts? What if the bitcast changes the vector element 4872 // size? 4873 4874 // The source operand is not a shuffle. Initialize the root vector value for 4875 // this shuffle if that has not been done yet. 4876 if (!RootVec) 4877 RootVec = SourceOp; 4878 4879 // Give up as soon as a source operand does not match the existing root value. 4880 if (RootVec != SourceOp) 4881 return nullptr; 4882 4883 // The element must be coming from the same lane in the source vector 4884 // (although it may have crossed lanes in intermediate shuffles). 4885 if (RootElt != DestElt) 4886 return nullptr; 4887 4888 return RootVec; 4889 } 4890 4891 static Value *SimplifyShuffleVectorInst(Value *Op0, Value *Op1, 4892 ArrayRef<int> Mask, Type *RetTy, 4893 const SimplifyQuery &Q, 4894 unsigned MaxRecurse) { 4895 if (all_of(Mask, [](int Elem) { return Elem == UndefMaskElem; })) 4896 return UndefValue::get(RetTy); 4897 4898 auto *InVecTy = cast<VectorType>(Op0->getType()); 4899 unsigned MaskNumElts = Mask.size(); 4900 ElementCount InVecEltCount = InVecTy->getElementCount(); 4901 4902 bool Scalable = InVecEltCount.isScalable(); 4903 4904 SmallVector<int, 32> Indices; 4905 Indices.assign(Mask.begin(), Mask.end()); 4906 4907 // Canonicalization: If mask does not select elements from an input vector, 4908 // replace that input vector with poison. 4909 if (!Scalable) { 4910 bool MaskSelects0 = false, MaskSelects1 = false; 4911 unsigned InVecNumElts = InVecEltCount.getKnownMinValue(); 4912 for (unsigned i = 0; i != MaskNumElts; ++i) { 4913 if (Indices[i] == -1) 4914 continue; 4915 if ((unsigned)Indices[i] < InVecNumElts) 4916 MaskSelects0 = true; 4917 else 4918 MaskSelects1 = true; 4919 } 4920 if (!MaskSelects0) 4921 Op0 = PoisonValue::get(InVecTy); 4922 if (!MaskSelects1) 4923 Op1 = PoisonValue::get(InVecTy); 4924 } 4925 4926 auto *Op0Const = dyn_cast<Constant>(Op0); 4927 auto *Op1Const = dyn_cast<Constant>(Op1); 4928 4929 // If all operands are constant, constant fold the shuffle. This 4930 // transformation depends on the value of the mask which is not known at 4931 // compile time for scalable vectors 4932 if (Op0Const && Op1Const) 4933 return ConstantExpr::getShuffleVector(Op0Const, Op1Const, Mask); 4934 4935 // Canonicalization: if only one input vector is constant, it shall be the 4936 // second one. This transformation depends on the value of the mask which 4937 // is not known at compile time for scalable vectors 4938 if (!Scalable && Op0Const && !Op1Const) { 4939 std::swap(Op0, Op1); 4940 ShuffleVectorInst::commuteShuffleMask(Indices, 4941 InVecEltCount.getKnownMinValue()); 4942 } 4943 4944 // A splat of an inserted scalar constant becomes a vector constant: 4945 // shuf (inselt ?, C, IndexC), undef, <IndexC, IndexC...> --> <C, C...> 4946 // NOTE: We may have commuted above, so analyze the updated Indices, not the 4947 // original mask constant. 4948 // NOTE: This transformation depends on the value of the mask which is not 4949 // known at compile time for scalable vectors 4950 Constant *C; 4951 ConstantInt *IndexC; 4952 if (!Scalable && match(Op0, m_InsertElt(m_Value(), m_Constant(C), 4953 m_ConstantInt(IndexC)))) { 4954 // Match a splat shuffle mask of the insert index allowing undef elements. 4955 int InsertIndex = IndexC->getZExtValue(); 4956 if (all_of(Indices, [InsertIndex](int MaskElt) { 4957 return MaskElt == InsertIndex || MaskElt == -1; 4958 })) { 4959 assert(isa<UndefValue>(Op1) && "Expected undef operand 1 for splat"); 4960 4961 // Shuffle mask undefs become undefined constant result elements. 4962 SmallVector<Constant *, 16> VecC(MaskNumElts, C); 4963 for (unsigned i = 0; i != MaskNumElts; ++i) 4964 if (Indices[i] == -1) 4965 VecC[i] = UndefValue::get(C->getType()); 4966 return ConstantVector::get(VecC); 4967 } 4968 } 4969 4970 // A shuffle of a splat is always the splat itself. Legal if the shuffle's 4971 // value type is same as the input vectors' type. 4972 if (auto *OpShuf = dyn_cast<ShuffleVectorInst>(Op0)) 4973 if (Q.isUndefValue(Op1) && RetTy == InVecTy && 4974 is_splat(OpShuf->getShuffleMask())) 4975 return Op0; 4976 4977 // All remaining transformation depend on the value of the mask, which is 4978 // not known at compile time for scalable vectors. 4979 if (Scalable) 4980 return nullptr; 4981 4982 // Don't fold a shuffle with undef mask elements. This may get folded in a 4983 // better way using demanded bits or other analysis. 4984 // TODO: Should we allow this? 4985 if (is_contained(Indices, -1)) 4986 return nullptr; 4987 4988 // Check if every element of this shuffle can be mapped back to the 4989 // corresponding element of a single root vector. If so, we don't need this 4990 // shuffle. This handles simple identity shuffles as well as chains of 4991 // shuffles that may widen/narrow and/or move elements across lanes and back. 4992 Value *RootVec = nullptr; 4993 for (unsigned i = 0; i != MaskNumElts; ++i) { 4994 // Note that recursion is limited for each vector element, so if any element 4995 // exceeds the limit, this will fail to simplify. 4996 RootVec = 4997 foldIdentityShuffles(i, Op0, Op1, Indices[i], RootVec, MaxRecurse); 4998 4999 // We can't replace a widening/narrowing shuffle with one of its operands. 5000 if (!RootVec || RootVec->getType() != RetTy) 5001 return nullptr; 5002 } 5003 return RootVec; 5004 } 5005 5006 /// Given operands for a ShuffleVectorInst, fold the result or return null. 5007 Value *llvm::SimplifyShuffleVectorInst(Value *Op0, Value *Op1, 5008 ArrayRef<int> Mask, Type *RetTy, 5009 const SimplifyQuery &Q) { 5010 return ::SimplifyShuffleVectorInst(Op0, Op1, Mask, RetTy, Q, RecursionLimit); 5011 } 5012 5013 static Constant *foldConstant(Instruction::UnaryOps Opcode, 5014 Value *&Op, const SimplifyQuery &Q) { 5015 if (auto *C = dyn_cast<Constant>(Op)) 5016 return ConstantFoldUnaryOpOperand(Opcode, C, Q.DL); 5017 return nullptr; 5018 } 5019 5020 /// Given the operand for an FNeg, see if we can fold the result. If not, this 5021 /// returns null. 5022 static Value *simplifyFNegInst(Value *Op, FastMathFlags FMF, 5023 const SimplifyQuery &Q, unsigned MaxRecurse) { 5024 if (Constant *C = foldConstant(Instruction::FNeg, Op, Q)) 5025 return C; 5026 5027 Value *X; 5028 // fneg (fneg X) ==> X 5029 if (match(Op, m_FNeg(m_Value(X)))) 5030 return X; 5031 5032 return nullptr; 5033 } 5034 5035 Value *llvm::SimplifyFNegInst(Value *Op, FastMathFlags FMF, 5036 const SimplifyQuery &Q) { 5037 return ::simplifyFNegInst(Op, FMF, Q, RecursionLimit); 5038 } 5039 5040 static Constant *propagateNaN(Constant *In) { 5041 // If the input is a vector with undef elements, just return a default NaN. 5042 if (!In->isNaN()) 5043 return ConstantFP::getNaN(In->getType()); 5044 5045 // Propagate the existing NaN constant when possible. 5046 // TODO: Should we quiet a signaling NaN? 5047 return In; 5048 } 5049 5050 /// Perform folds that are common to any floating-point operation. This implies 5051 /// transforms based on poison/undef/NaN because the operation itself makes no 5052 /// difference to the result. 5053 static Constant *simplifyFPOp(ArrayRef<Value *> Ops, FastMathFlags FMF, 5054 const SimplifyQuery &Q, 5055 fp::ExceptionBehavior ExBehavior, 5056 RoundingMode Rounding) { 5057 // Poison is independent of anything else. It always propagates from an 5058 // operand to a math result. 5059 if (any_of(Ops, [](Value *V) { return match(V, m_Poison()); })) 5060 return PoisonValue::get(Ops[0]->getType()); 5061 5062 for (Value *V : Ops) { 5063 bool IsNan = match(V, m_NaN()); 5064 bool IsInf = match(V, m_Inf()); 5065 bool IsUndef = Q.isUndefValue(V); 5066 5067 // If this operation has 'nnan' or 'ninf' and at least 1 disallowed operand 5068 // (an undef operand can be chosen to be Nan/Inf), then the result of 5069 // this operation is poison. 5070 if (FMF.noNaNs() && (IsNan || IsUndef)) 5071 return PoisonValue::get(V->getType()); 5072 if (FMF.noInfs() && (IsInf || IsUndef)) 5073 return PoisonValue::get(V->getType()); 5074 5075 if (isDefaultFPEnvironment(ExBehavior, Rounding)) { 5076 if (IsUndef || IsNan) 5077 return propagateNaN(cast<Constant>(V)); 5078 } else if (ExBehavior != fp::ebStrict) { 5079 if (IsNan) 5080 return propagateNaN(cast<Constant>(V)); 5081 } 5082 } 5083 return nullptr; 5084 } 5085 5086 /// Given operands for an FAdd, see if we can fold the result. If not, this 5087 /// returns null. 5088 static Value * 5089 SimplifyFAddInst(Value *Op0, Value *Op1, FastMathFlags FMF, 5090 const SimplifyQuery &Q, unsigned MaxRecurse, 5091 fp::ExceptionBehavior ExBehavior = fp::ebIgnore, 5092 RoundingMode Rounding = RoundingMode::NearestTiesToEven) { 5093 if (isDefaultFPEnvironment(ExBehavior, Rounding)) 5094 if (Constant *C = foldOrCommuteConstant(Instruction::FAdd, Op0, Op1, Q)) 5095 return C; 5096 5097 if (Constant *C = simplifyFPOp({Op0, Op1}, FMF, Q, ExBehavior, Rounding)) 5098 return C; 5099 5100 // fadd X, -0 ==> X 5101 // With strict/constrained FP, we have these possible edge cases that do 5102 // not simplify to Op0: 5103 // fadd SNaN, -0.0 --> QNaN 5104 // fadd +0.0, -0.0 --> -0.0 (but only with round toward negative) 5105 if (canIgnoreSNaN(ExBehavior, FMF) && 5106 (!canRoundingModeBe(Rounding, RoundingMode::TowardNegative) || 5107 FMF.noSignedZeros())) 5108 if (match(Op1, m_NegZeroFP())) 5109 return Op0; 5110 5111 // fadd X, 0 ==> X, when we know X is not -0 5112 if (canIgnoreSNaN(ExBehavior, FMF)) 5113 if (match(Op1, m_PosZeroFP()) && 5114 (FMF.noSignedZeros() || CannotBeNegativeZero(Op0, Q.TLI))) 5115 return Op0; 5116 5117 if (!isDefaultFPEnvironment(ExBehavior, Rounding)) 5118 return nullptr; 5119 5120 // With nnan: -X + X --> 0.0 (and commuted variant) 5121 // We don't have to explicitly exclude infinities (ninf): INF + -INF == NaN. 5122 // Negative zeros are allowed because we always end up with positive zero: 5123 // X = -0.0: (-0.0 - (-0.0)) + (-0.0) == ( 0.0) + (-0.0) == 0.0 5124 // X = -0.0: ( 0.0 - (-0.0)) + (-0.0) == ( 0.0) + (-0.0) == 0.0 5125 // X = 0.0: (-0.0 - ( 0.0)) + ( 0.0) == (-0.0) + ( 0.0) == 0.0 5126 // X = 0.0: ( 0.0 - ( 0.0)) + ( 0.0) == ( 0.0) + ( 0.0) == 0.0 5127 if (FMF.noNaNs()) { 5128 if (match(Op0, m_FSub(m_AnyZeroFP(), m_Specific(Op1))) || 5129 match(Op1, m_FSub(m_AnyZeroFP(), m_Specific(Op0)))) 5130 return ConstantFP::getNullValue(Op0->getType()); 5131 5132 if (match(Op0, m_FNeg(m_Specific(Op1))) || 5133 match(Op1, m_FNeg(m_Specific(Op0)))) 5134 return ConstantFP::getNullValue(Op0->getType()); 5135 } 5136 5137 // (X - Y) + Y --> X 5138 // Y + (X - Y) --> X 5139 Value *X; 5140 if (FMF.noSignedZeros() && FMF.allowReassoc() && 5141 (match(Op0, m_FSub(m_Value(X), m_Specific(Op1))) || 5142 match(Op1, m_FSub(m_Value(X), m_Specific(Op0))))) 5143 return X; 5144 5145 return nullptr; 5146 } 5147 5148 /// Given operands for an FSub, see if we can fold the result. If not, this 5149 /// returns null. 5150 static Value * 5151 SimplifyFSubInst(Value *Op0, Value *Op1, FastMathFlags FMF, 5152 const SimplifyQuery &Q, unsigned MaxRecurse, 5153 fp::ExceptionBehavior ExBehavior = fp::ebIgnore, 5154 RoundingMode Rounding = RoundingMode::NearestTiesToEven) { 5155 if (isDefaultFPEnvironment(ExBehavior, Rounding)) 5156 if (Constant *C = foldOrCommuteConstant(Instruction::FSub, Op0, Op1, Q)) 5157 return C; 5158 5159 if (Constant *C = simplifyFPOp({Op0, Op1}, FMF, Q, ExBehavior, Rounding)) 5160 return C; 5161 5162 // fsub X, +0 ==> X 5163 if (canIgnoreSNaN(ExBehavior, FMF) && 5164 (!canRoundingModeBe(Rounding, RoundingMode::TowardNegative) || 5165 FMF.noSignedZeros())) 5166 if (match(Op1, m_PosZeroFP())) 5167 return Op0; 5168 5169 // fsub X, -0 ==> X, when we know X is not -0 5170 if (canIgnoreSNaN(ExBehavior, FMF)) 5171 if (match(Op1, m_NegZeroFP()) && 5172 (FMF.noSignedZeros() || CannotBeNegativeZero(Op0, Q.TLI))) 5173 return Op0; 5174 5175 if (!isDefaultFPEnvironment(ExBehavior, Rounding)) 5176 return nullptr; 5177 5178 // fsub -0.0, (fsub -0.0, X) ==> X 5179 // fsub -0.0, (fneg X) ==> X 5180 Value *X; 5181 if (match(Op0, m_NegZeroFP()) && 5182 match(Op1, m_FNeg(m_Value(X)))) 5183 return X; 5184 5185 // fsub 0.0, (fsub 0.0, X) ==> X if signed zeros are ignored. 5186 // fsub 0.0, (fneg X) ==> X if signed zeros are ignored. 5187 if (FMF.noSignedZeros() && match(Op0, m_AnyZeroFP()) && 5188 (match(Op1, m_FSub(m_AnyZeroFP(), m_Value(X))) || 5189 match(Op1, m_FNeg(m_Value(X))))) 5190 return X; 5191 5192 // fsub nnan x, x ==> 0.0 5193 if (FMF.noNaNs() && Op0 == Op1) 5194 return Constant::getNullValue(Op0->getType()); 5195 5196 // Y - (Y - X) --> X 5197 // (X + Y) - Y --> X 5198 if (FMF.noSignedZeros() && FMF.allowReassoc() && 5199 (match(Op1, m_FSub(m_Specific(Op0), m_Value(X))) || 5200 match(Op0, m_c_FAdd(m_Specific(Op1), m_Value(X))))) 5201 return X; 5202 5203 return nullptr; 5204 } 5205 5206 static Value *SimplifyFMAFMul(Value *Op0, Value *Op1, FastMathFlags FMF, 5207 const SimplifyQuery &Q, unsigned MaxRecurse, 5208 fp::ExceptionBehavior ExBehavior, 5209 RoundingMode Rounding) { 5210 if (Constant *C = simplifyFPOp({Op0, Op1}, FMF, Q, ExBehavior, Rounding)) 5211 return C; 5212 5213 if (!isDefaultFPEnvironment(ExBehavior, Rounding)) 5214 return nullptr; 5215 5216 // fmul X, 1.0 ==> X 5217 if (match(Op1, m_FPOne())) 5218 return Op0; 5219 5220 // fmul 1.0, X ==> X 5221 if (match(Op0, m_FPOne())) 5222 return Op1; 5223 5224 // fmul nnan nsz X, 0 ==> 0 5225 if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op1, m_AnyZeroFP())) 5226 return ConstantFP::getNullValue(Op0->getType()); 5227 5228 // fmul nnan nsz 0, X ==> 0 5229 if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op0, m_AnyZeroFP())) 5230 return ConstantFP::getNullValue(Op1->getType()); 5231 5232 // sqrt(X) * sqrt(X) --> X, if we can: 5233 // 1. Remove the intermediate rounding (reassociate). 5234 // 2. Ignore non-zero negative numbers because sqrt would produce NAN. 5235 // 3. Ignore -0.0 because sqrt(-0.0) == -0.0, but -0.0 * -0.0 == 0.0. 5236 Value *X; 5237 if (Op0 == Op1 && match(Op0, m_Intrinsic<Intrinsic::sqrt>(m_Value(X))) && 5238 FMF.allowReassoc() && FMF.noNaNs() && FMF.noSignedZeros()) 5239 return X; 5240 5241 return nullptr; 5242 } 5243 5244 /// Given the operands for an FMul, see if we can fold the result 5245 static Value * 5246 SimplifyFMulInst(Value *Op0, Value *Op1, FastMathFlags FMF, 5247 const SimplifyQuery &Q, unsigned MaxRecurse, 5248 fp::ExceptionBehavior ExBehavior = fp::ebIgnore, 5249 RoundingMode Rounding = RoundingMode::NearestTiesToEven) { 5250 if (isDefaultFPEnvironment(ExBehavior, Rounding)) 5251 if (Constant *C = foldOrCommuteConstant(Instruction::FMul, Op0, Op1, Q)) 5252 return C; 5253 5254 // Now apply simplifications that do not require rounding. 5255 return SimplifyFMAFMul(Op0, Op1, FMF, Q, MaxRecurse, ExBehavior, Rounding); 5256 } 5257 5258 Value *llvm::SimplifyFAddInst(Value *Op0, Value *Op1, FastMathFlags FMF, 5259 const SimplifyQuery &Q, 5260 fp::ExceptionBehavior ExBehavior, 5261 RoundingMode Rounding) { 5262 return ::SimplifyFAddInst(Op0, Op1, FMF, Q, RecursionLimit, ExBehavior, 5263 Rounding); 5264 } 5265 5266 Value *llvm::SimplifyFSubInst(Value *Op0, Value *Op1, FastMathFlags FMF, 5267 const SimplifyQuery &Q, 5268 fp::ExceptionBehavior ExBehavior, 5269 RoundingMode Rounding) { 5270 return ::SimplifyFSubInst(Op0, Op1, FMF, Q, RecursionLimit, ExBehavior, 5271 Rounding); 5272 } 5273 5274 Value *llvm::SimplifyFMulInst(Value *Op0, Value *Op1, FastMathFlags FMF, 5275 const SimplifyQuery &Q, 5276 fp::ExceptionBehavior ExBehavior, 5277 RoundingMode Rounding) { 5278 return ::SimplifyFMulInst(Op0, Op1, FMF, Q, RecursionLimit, ExBehavior, 5279 Rounding); 5280 } 5281 5282 Value *llvm::SimplifyFMAFMul(Value *Op0, Value *Op1, FastMathFlags FMF, 5283 const SimplifyQuery &Q, 5284 fp::ExceptionBehavior ExBehavior, 5285 RoundingMode Rounding) { 5286 return ::SimplifyFMAFMul(Op0, Op1, FMF, Q, RecursionLimit, ExBehavior, 5287 Rounding); 5288 } 5289 5290 static Value * 5291 SimplifyFDivInst(Value *Op0, Value *Op1, FastMathFlags FMF, 5292 const SimplifyQuery &Q, unsigned, 5293 fp::ExceptionBehavior ExBehavior = fp::ebIgnore, 5294 RoundingMode Rounding = RoundingMode::NearestTiesToEven) { 5295 if (isDefaultFPEnvironment(ExBehavior, Rounding)) 5296 if (Constant *C = foldOrCommuteConstant(Instruction::FDiv, Op0, Op1, Q)) 5297 return C; 5298 5299 if (Constant *C = simplifyFPOp({Op0, Op1}, FMF, Q, ExBehavior, Rounding)) 5300 return C; 5301 5302 if (!isDefaultFPEnvironment(ExBehavior, Rounding)) 5303 return nullptr; 5304 5305 // X / 1.0 -> X 5306 if (match(Op1, m_FPOne())) 5307 return Op0; 5308 5309 // 0 / X -> 0 5310 // Requires that NaNs are off (X could be zero) and signed zeroes are 5311 // ignored (X could be positive or negative, so the output sign is unknown). 5312 if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op0, m_AnyZeroFP())) 5313 return ConstantFP::getNullValue(Op0->getType()); 5314 5315 if (FMF.noNaNs()) { 5316 // X / X -> 1.0 is legal when NaNs are ignored. 5317 // We can ignore infinities because INF/INF is NaN. 5318 if (Op0 == Op1) 5319 return ConstantFP::get(Op0->getType(), 1.0); 5320 5321 // (X * Y) / Y --> X if we can reassociate to the above form. 5322 Value *X; 5323 if (FMF.allowReassoc() && match(Op0, m_c_FMul(m_Value(X), m_Specific(Op1)))) 5324 return X; 5325 5326 // -X / X -> -1.0 and 5327 // X / -X -> -1.0 are legal when NaNs are ignored. 5328 // We can ignore signed zeros because +-0.0/+-0.0 is NaN and ignored. 5329 if (match(Op0, m_FNegNSZ(m_Specific(Op1))) || 5330 match(Op1, m_FNegNSZ(m_Specific(Op0)))) 5331 return ConstantFP::get(Op0->getType(), -1.0); 5332 } 5333 5334 return nullptr; 5335 } 5336 5337 Value *llvm::SimplifyFDivInst(Value *Op0, Value *Op1, FastMathFlags FMF, 5338 const SimplifyQuery &Q, 5339 fp::ExceptionBehavior ExBehavior, 5340 RoundingMode Rounding) { 5341 return ::SimplifyFDivInst(Op0, Op1, FMF, Q, RecursionLimit, ExBehavior, 5342 Rounding); 5343 } 5344 5345 static Value * 5346 SimplifyFRemInst(Value *Op0, Value *Op1, FastMathFlags FMF, 5347 const SimplifyQuery &Q, unsigned, 5348 fp::ExceptionBehavior ExBehavior = fp::ebIgnore, 5349 RoundingMode Rounding = RoundingMode::NearestTiesToEven) { 5350 if (isDefaultFPEnvironment(ExBehavior, Rounding)) 5351 if (Constant *C = foldOrCommuteConstant(Instruction::FRem, Op0, Op1, Q)) 5352 return C; 5353 5354 if (Constant *C = simplifyFPOp({Op0, Op1}, FMF, Q, ExBehavior, Rounding)) 5355 return C; 5356 5357 if (!isDefaultFPEnvironment(ExBehavior, Rounding)) 5358 return nullptr; 5359 5360 // Unlike fdiv, the result of frem always matches the sign of the dividend. 5361 // The constant match may include undef elements in a vector, so return a full 5362 // zero constant as the result. 5363 if (FMF.noNaNs()) { 5364 // +0 % X -> 0 5365 if (match(Op0, m_PosZeroFP())) 5366 return ConstantFP::getNullValue(Op0->getType()); 5367 // -0 % X -> -0 5368 if (match(Op0, m_NegZeroFP())) 5369 return ConstantFP::getNegativeZero(Op0->getType()); 5370 } 5371 5372 return nullptr; 5373 } 5374 5375 Value *llvm::SimplifyFRemInst(Value *Op0, Value *Op1, FastMathFlags FMF, 5376 const SimplifyQuery &Q, 5377 fp::ExceptionBehavior ExBehavior, 5378 RoundingMode Rounding) { 5379 return ::SimplifyFRemInst(Op0, Op1, FMF, Q, RecursionLimit, ExBehavior, 5380 Rounding); 5381 } 5382 5383 //=== Helper functions for higher up the class hierarchy. 5384 5385 /// Given the operand for a UnaryOperator, see if we can fold the result. 5386 /// If not, this returns null. 5387 static Value *simplifyUnOp(unsigned Opcode, Value *Op, const SimplifyQuery &Q, 5388 unsigned MaxRecurse) { 5389 switch (Opcode) { 5390 case Instruction::FNeg: 5391 return simplifyFNegInst(Op, FastMathFlags(), Q, MaxRecurse); 5392 default: 5393 llvm_unreachable("Unexpected opcode"); 5394 } 5395 } 5396 5397 /// Given the operand for a UnaryOperator, see if we can fold the result. 5398 /// If not, this returns null. 5399 /// Try to use FastMathFlags when folding the result. 5400 static Value *simplifyFPUnOp(unsigned Opcode, Value *Op, 5401 const FastMathFlags &FMF, 5402 const SimplifyQuery &Q, unsigned MaxRecurse) { 5403 switch (Opcode) { 5404 case Instruction::FNeg: 5405 return simplifyFNegInst(Op, FMF, Q, MaxRecurse); 5406 default: 5407 return simplifyUnOp(Opcode, Op, Q, MaxRecurse); 5408 } 5409 } 5410 5411 Value *llvm::SimplifyUnOp(unsigned Opcode, Value *Op, const SimplifyQuery &Q) { 5412 return ::simplifyUnOp(Opcode, Op, Q, RecursionLimit); 5413 } 5414 5415 Value *llvm::SimplifyUnOp(unsigned Opcode, Value *Op, FastMathFlags FMF, 5416 const SimplifyQuery &Q) { 5417 return ::simplifyFPUnOp(Opcode, Op, FMF, Q, RecursionLimit); 5418 } 5419 5420 /// Given operands for a BinaryOperator, see if we can fold the result. 5421 /// If not, this returns null. 5422 static Value *SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS, 5423 const SimplifyQuery &Q, unsigned MaxRecurse) { 5424 switch (Opcode) { 5425 case Instruction::Add: 5426 return SimplifyAddInst(LHS, RHS, false, false, Q, MaxRecurse); 5427 case Instruction::Sub: 5428 return SimplifySubInst(LHS, RHS, false, false, Q, MaxRecurse); 5429 case Instruction::Mul: 5430 return SimplifyMulInst(LHS, RHS, Q, MaxRecurse); 5431 case Instruction::SDiv: 5432 return SimplifySDivInst(LHS, RHS, Q, MaxRecurse); 5433 case Instruction::UDiv: 5434 return SimplifyUDivInst(LHS, RHS, Q, MaxRecurse); 5435 case Instruction::SRem: 5436 return SimplifySRemInst(LHS, RHS, Q, MaxRecurse); 5437 case Instruction::URem: 5438 return SimplifyURemInst(LHS, RHS, Q, MaxRecurse); 5439 case Instruction::Shl: 5440 return SimplifyShlInst(LHS, RHS, false, false, Q, MaxRecurse); 5441 case Instruction::LShr: 5442 return SimplifyLShrInst(LHS, RHS, false, Q, MaxRecurse); 5443 case Instruction::AShr: 5444 return SimplifyAShrInst(LHS, RHS, false, Q, MaxRecurse); 5445 case Instruction::And: 5446 return SimplifyAndInst(LHS, RHS, Q, MaxRecurse); 5447 case Instruction::Or: 5448 return SimplifyOrInst(LHS, RHS, Q, MaxRecurse); 5449 case Instruction::Xor: 5450 return SimplifyXorInst(LHS, RHS, Q, MaxRecurse); 5451 case Instruction::FAdd: 5452 return SimplifyFAddInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse); 5453 case Instruction::FSub: 5454 return SimplifyFSubInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse); 5455 case Instruction::FMul: 5456 return SimplifyFMulInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse); 5457 case Instruction::FDiv: 5458 return SimplifyFDivInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse); 5459 case Instruction::FRem: 5460 return SimplifyFRemInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse); 5461 default: 5462 llvm_unreachable("Unexpected opcode"); 5463 } 5464 } 5465 5466 /// Given operands for a BinaryOperator, see if we can fold the result. 5467 /// If not, this returns null. 5468 /// Try to use FastMathFlags when folding the result. 5469 static Value *SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS, 5470 const FastMathFlags &FMF, const SimplifyQuery &Q, 5471 unsigned MaxRecurse) { 5472 switch (Opcode) { 5473 case Instruction::FAdd: 5474 return SimplifyFAddInst(LHS, RHS, FMF, Q, MaxRecurse); 5475 case Instruction::FSub: 5476 return SimplifyFSubInst(LHS, RHS, FMF, Q, MaxRecurse); 5477 case Instruction::FMul: 5478 return SimplifyFMulInst(LHS, RHS, FMF, Q, MaxRecurse); 5479 case Instruction::FDiv: 5480 return SimplifyFDivInst(LHS, RHS, FMF, Q, MaxRecurse); 5481 default: 5482 return SimplifyBinOp(Opcode, LHS, RHS, Q, MaxRecurse); 5483 } 5484 } 5485 5486 Value *llvm::SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS, 5487 const SimplifyQuery &Q) { 5488 return ::SimplifyBinOp(Opcode, LHS, RHS, Q, RecursionLimit); 5489 } 5490 5491 Value *llvm::SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS, 5492 FastMathFlags FMF, const SimplifyQuery &Q) { 5493 return ::SimplifyBinOp(Opcode, LHS, RHS, FMF, Q, RecursionLimit); 5494 } 5495 5496 /// Given operands for a CmpInst, see if we can fold the result. 5497 static Value *SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS, 5498 const SimplifyQuery &Q, unsigned MaxRecurse) { 5499 if (CmpInst::isIntPredicate((CmpInst::Predicate)Predicate)) 5500 return SimplifyICmpInst(Predicate, LHS, RHS, Q, MaxRecurse); 5501 return SimplifyFCmpInst(Predicate, LHS, RHS, FastMathFlags(), Q, MaxRecurse); 5502 } 5503 5504 Value *llvm::SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS, 5505 const SimplifyQuery &Q) { 5506 return ::SimplifyCmpInst(Predicate, LHS, RHS, Q, RecursionLimit); 5507 } 5508 5509 static bool IsIdempotent(Intrinsic::ID ID) { 5510 switch (ID) { 5511 default: return false; 5512 5513 // Unary idempotent: f(f(x)) = f(x) 5514 case Intrinsic::fabs: 5515 case Intrinsic::floor: 5516 case Intrinsic::ceil: 5517 case Intrinsic::trunc: 5518 case Intrinsic::rint: 5519 case Intrinsic::nearbyint: 5520 case Intrinsic::round: 5521 case Intrinsic::roundeven: 5522 case Intrinsic::canonicalize: 5523 return true; 5524 } 5525 } 5526 5527 static Value *SimplifyRelativeLoad(Constant *Ptr, Constant *Offset, 5528 const DataLayout &DL) { 5529 GlobalValue *PtrSym; 5530 APInt PtrOffset; 5531 if (!IsConstantOffsetFromGlobal(Ptr, PtrSym, PtrOffset, DL)) 5532 return nullptr; 5533 5534 Type *Int8PtrTy = Type::getInt8PtrTy(Ptr->getContext()); 5535 Type *Int32Ty = Type::getInt32Ty(Ptr->getContext()); 5536 Type *Int32PtrTy = Int32Ty->getPointerTo(); 5537 Type *Int64Ty = Type::getInt64Ty(Ptr->getContext()); 5538 5539 auto *OffsetConstInt = dyn_cast<ConstantInt>(Offset); 5540 if (!OffsetConstInt || OffsetConstInt->getType()->getBitWidth() > 64) 5541 return nullptr; 5542 5543 uint64_t OffsetInt = OffsetConstInt->getSExtValue(); 5544 if (OffsetInt % 4 != 0) 5545 return nullptr; 5546 5547 Constant *C = ConstantExpr::getGetElementPtr( 5548 Int32Ty, ConstantExpr::getBitCast(Ptr, Int32PtrTy), 5549 ConstantInt::get(Int64Ty, OffsetInt / 4)); 5550 Constant *Loaded = ConstantFoldLoadFromConstPtr(C, Int32Ty, DL); 5551 if (!Loaded) 5552 return nullptr; 5553 5554 auto *LoadedCE = dyn_cast<ConstantExpr>(Loaded); 5555 if (!LoadedCE) 5556 return nullptr; 5557 5558 if (LoadedCE->getOpcode() == Instruction::Trunc) { 5559 LoadedCE = dyn_cast<ConstantExpr>(LoadedCE->getOperand(0)); 5560 if (!LoadedCE) 5561 return nullptr; 5562 } 5563 5564 if (LoadedCE->getOpcode() != Instruction::Sub) 5565 return nullptr; 5566 5567 auto *LoadedLHS = dyn_cast<ConstantExpr>(LoadedCE->getOperand(0)); 5568 if (!LoadedLHS || LoadedLHS->getOpcode() != Instruction::PtrToInt) 5569 return nullptr; 5570 auto *LoadedLHSPtr = LoadedLHS->getOperand(0); 5571 5572 Constant *LoadedRHS = LoadedCE->getOperand(1); 5573 GlobalValue *LoadedRHSSym; 5574 APInt LoadedRHSOffset; 5575 if (!IsConstantOffsetFromGlobal(LoadedRHS, LoadedRHSSym, LoadedRHSOffset, 5576 DL) || 5577 PtrSym != LoadedRHSSym || PtrOffset != LoadedRHSOffset) 5578 return nullptr; 5579 5580 return ConstantExpr::getBitCast(LoadedLHSPtr, Int8PtrTy); 5581 } 5582 5583 static Value *simplifyUnaryIntrinsic(Function *F, Value *Op0, 5584 const SimplifyQuery &Q) { 5585 // Idempotent functions return the same result when called repeatedly. 5586 Intrinsic::ID IID = F->getIntrinsicID(); 5587 if (IsIdempotent(IID)) 5588 if (auto *II = dyn_cast<IntrinsicInst>(Op0)) 5589 if (II->getIntrinsicID() == IID) 5590 return II; 5591 5592 Value *X; 5593 switch (IID) { 5594 case Intrinsic::fabs: 5595 if (SignBitMustBeZero(Op0, Q.TLI)) return Op0; 5596 break; 5597 case Intrinsic::bswap: 5598 // bswap(bswap(x)) -> x 5599 if (match(Op0, m_BSwap(m_Value(X)))) return X; 5600 break; 5601 case Intrinsic::bitreverse: 5602 // bitreverse(bitreverse(x)) -> x 5603 if (match(Op0, m_BitReverse(m_Value(X)))) return X; 5604 break; 5605 case Intrinsic::ctpop: { 5606 // If everything but the lowest bit is zero, that bit is the pop-count. Ex: 5607 // ctpop(and X, 1) --> and X, 1 5608 unsigned BitWidth = Op0->getType()->getScalarSizeInBits(); 5609 if (MaskedValueIsZero(Op0, APInt::getHighBitsSet(BitWidth, BitWidth - 1), 5610 Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 5611 return Op0; 5612 break; 5613 } 5614 case Intrinsic::exp: 5615 // exp(log(x)) -> x 5616 if (Q.CxtI->hasAllowReassoc() && 5617 match(Op0, m_Intrinsic<Intrinsic::log>(m_Value(X)))) return X; 5618 break; 5619 case Intrinsic::exp2: 5620 // exp2(log2(x)) -> x 5621 if (Q.CxtI->hasAllowReassoc() && 5622 match(Op0, m_Intrinsic<Intrinsic::log2>(m_Value(X)))) return X; 5623 break; 5624 case Intrinsic::log: 5625 // log(exp(x)) -> x 5626 if (Q.CxtI->hasAllowReassoc() && 5627 match(Op0, m_Intrinsic<Intrinsic::exp>(m_Value(X)))) return X; 5628 break; 5629 case Intrinsic::log2: 5630 // log2(exp2(x)) -> x 5631 if (Q.CxtI->hasAllowReassoc() && 5632 (match(Op0, m_Intrinsic<Intrinsic::exp2>(m_Value(X))) || 5633 match(Op0, m_Intrinsic<Intrinsic::pow>(m_SpecificFP(2.0), 5634 m_Value(X))))) return X; 5635 break; 5636 case Intrinsic::log10: 5637 // log10(pow(10.0, x)) -> x 5638 if (Q.CxtI->hasAllowReassoc() && 5639 match(Op0, m_Intrinsic<Intrinsic::pow>(m_SpecificFP(10.0), 5640 m_Value(X)))) return X; 5641 break; 5642 case Intrinsic::floor: 5643 case Intrinsic::trunc: 5644 case Intrinsic::ceil: 5645 case Intrinsic::round: 5646 case Intrinsic::roundeven: 5647 case Intrinsic::nearbyint: 5648 case Intrinsic::rint: { 5649 // floor (sitofp x) -> sitofp x 5650 // floor (uitofp x) -> uitofp x 5651 // 5652 // Converting from int always results in a finite integral number or 5653 // infinity. For either of those inputs, these rounding functions always 5654 // return the same value, so the rounding can be eliminated. 5655 if (match(Op0, m_SIToFP(m_Value())) || match(Op0, m_UIToFP(m_Value()))) 5656 return Op0; 5657 break; 5658 } 5659 case Intrinsic::experimental_vector_reverse: 5660 // experimental.vector.reverse(experimental.vector.reverse(x)) -> x 5661 if (match(Op0, 5662 m_Intrinsic<Intrinsic::experimental_vector_reverse>(m_Value(X)))) 5663 return X; 5664 // experimental.vector.reverse(splat(X)) -> splat(X) 5665 if (isSplatValue(Op0)) 5666 return Op0; 5667 break; 5668 default: 5669 break; 5670 } 5671 5672 return nullptr; 5673 } 5674 5675 /// Given a min/max intrinsic, see if it can be removed based on having an 5676 /// operand that is another min/max intrinsic with shared operand(s). The caller 5677 /// is expected to swap the operand arguments to handle commutation. 5678 static Value *foldMinMaxSharedOp(Intrinsic::ID IID, Value *Op0, Value *Op1) { 5679 Value *X, *Y; 5680 if (!match(Op0, m_MaxOrMin(m_Value(X), m_Value(Y)))) 5681 return nullptr; 5682 5683 auto *MM0 = dyn_cast<IntrinsicInst>(Op0); 5684 if (!MM0) 5685 return nullptr; 5686 Intrinsic::ID IID0 = MM0->getIntrinsicID(); 5687 5688 if (Op1 == X || Op1 == Y || 5689 match(Op1, m_c_MaxOrMin(m_Specific(X), m_Specific(Y)))) { 5690 // max (max X, Y), X --> max X, Y 5691 if (IID0 == IID) 5692 return MM0; 5693 // max (min X, Y), X --> X 5694 if (IID0 == getInverseMinMaxIntrinsic(IID)) 5695 return Op1; 5696 } 5697 return nullptr; 5698 } 5699 5700 static Value *simplifyBinaryIntrinsic(Function *F, Value *Op0, Value *Op1, 5701 const SimplifyQuery &Q) { 5702 Intrinsic::ID IID = F->getIntrinsicID(); 5703 Type *ReturnType = F->getReturnType(); 5704 unsigned BitWidth = ReturnType->getScalarSizeInBits(); 5705 switch (IID) { 5706 case Intrinsic::abs: 5707 // abs(abs(x)) -> abs(x). We don't need to worry about the nsw arg here. 5708 // It is always ok to pick the earlier abs. We'll just lose nsw if its only 5709 // on the outer abs. 5710 if (match(Op0, m_Intrinsic<Intrinsic::abs>(m_Value(), m_Value()))) 5711 return Op0; 5712 break; 5713 5714 case Intrinsic::cttz: { 5715 Value *X; 5716 if (match(Op0, m_Shl(m_One(), m_Value(X)))) 5717 return X; 5718 break; 5719 } 5720 case Intrinsic::ctlz: { 5721 Value *X; 5722 if (match(Op0, m_LShr(m_Negative(), m_Value(X)))) 5723 return X; 5724 if (match(Op0, m_AShr(m_Negative(), m_Value()))) 5725 return Constant::getNullValue(ReturnType); 5726 break; 5727 } 5728 case Intrinsic::smax: 5729 case Intrinsic::smin: 5730 case Intrinsic::umax: 5731 case Intrinsic::umin: { 5732 // If the arguments are the same, this is a no-op. 5733 if (Op0 == Op1) 5734 return Op0; 5735 5736 // Canonicalize constant operand as Op1. 5737 if (isa<Constant>(Op0)) 5738 std::swap(Op0, Op1); 5739 5740 // Assume undef is the limit value. 5741 if (Q.isUndefValue(Op1)) 5742 return ConstantInt::get( 5743 ReturnType, MinMaxIntrinsic::getSaturationPoint(IID, BitWidth)); 5744 5745 const APInt *C; 5746 if (match(Op1, m_APIntAllowUndef(C))) { 5747 // Clamp to limit value. For example: 5748 // umax(i8 %x, i8 255) --> 255 5749 if (*C == MinMaxIntrinsic::getSaturationPoint(IID, BitWidth)) 5750 return ConstantInt::get(ReturnType, *C); 5751 5752 // If the constant op is the opposite of the limit value, the other must 5753 // be larger/smaller or equal. For example: 5754 // umin(i8 %x, i8 255) --> %x 5755 if (*C == MinMaxIntrinsic::getSaturationPoint( 5756 getInverseMinMaxIntrinsic(IID), BitWidth)) 5757 return Op0; 5758 5759 // Remove nested call if constant operands allow it. Example: 5760 // max (max X, 7), 5 -> max X, 7 5761 auto *MinMax0 = dyn_cast<IntrinsicInst>(Op0); 5762 if (MinMax0 && MinMax0->getIntrinsicID() == IID) { 5763 // TODO: loosen undef/splat restrictions for vector constants. 5764 Value *M00 = MinMax0->getOperand(0), *M01 = MinMax0->getOperand(1); 5765 const APInt *InnerC; 5766 if ((match(M00, m_APInt(InnerC)) || match(M01, m_APInt(InnerC))) && 5767 ICmpInst::compare(*InnerC, *C, 5768 ICmpInst::getNonStrictPredicate( 5769 MinMaxIntrinsic::getPredicate(IID)))) 5770 return Op0; 5771 } 5772 } 5773 5774 if (Value *V = foldMinMaxSharedOp(IID, Op0, Op1)) 5775 return V; 5776 if (Value *V = foldMinMaxSharedOp(IID, Op1, Op0)) 5777 return V; 5778 5779 ICmpInst::Predicate Pred = 5780 ICmpInst::getNonStrictPredicate(MinMaxIntrinsic::getPredicate(IID)); 5781 if (isICmpTrue(Pred, Op0, Op1, Q.getWithoutUndef(), RecursionLimit)) 5782 return Op0; 5783 if (isICmpTrue(Pred, Op1, Op0, Q.getWithoutUndef(), RecursionLimit)) 5784 return Op1; 5785 5786 if (Optional<bool> Imp = 5787 isImpliedByDomCondition(Pred, Op0, Op1, Q.CxtI, Q.DL)) 5788 return *Imp ? Op0 : Op1; 5789 if (Optional<bool> Imp = 5790 isImpliedByDomCondition(Pred, Op1, Op0, Q.CxtI, Q.DL)) 5791 return *Imp ? Op1 : Op0; 5792 5793 break; 5794 } 5795 case Intrinsic::usub_with_overflow: 5796 case Intrinsic::ssub_with_overflow: 5797 // X - X -> { 0, false } 5798 // X - undef -> { 0, false } 5799 // undef - X -> { 0, false } 5800 if (Op0 == Op1 || Q.isUndefValue(Op0) || Q.isUndefValue(Op1)) 5801 return Constant::getNullValue(ReturnType); 5802 break; 5803 case Intrinsic::uadd_with_overflow: 5804 case Intrinsic::sadd_with_overflow: 5805 // X + undef -> { -1, false } 5806 // undef + x -> { -1, false } 5807 if (Q.isUndefValue(Op0) || Q.isUndefValue(Op1)) { 5808 return ConstantStruct::get( 5809 cast<StructType>(ReturnType), 5810 {Constant::getAllOnesValue(ReturnType->getStructElementType(0)), 5811 Constant::getNullValue(ReturnType->getStructElementType(1))}); 5812 } 5813 break; 5814 case Intrinsic::umul_with_overflow: 5815 case Intrinsic::smul_with_overflow: 5816 // 0 * X -> { 0, false } 5817 // X * 0 -> { 0, false } 5818 if (match(Op0, m_Zero()) || match(Op1, m_Zero())) 5819 return Constant::getNullValue(ReturnType); 5820 // undef * X -> { 0, false } 5821 // X * undef -> { 0, false } 5822 if (Q.isUndefValue(Op0) || Q.isUndefValue(Op1)) 5823 return Constant::getNullValue(ReturnType); 5824 break; 5825 case Intrinsic::uadd_sat: 5826 // sat(MAX + X) -> MAX 5827 // sat(X + MAX) -> MAX 5828 if (match(Op0, m_AllOnes()) || match(Op1, m_AllOnes())) 5829 return Constant::getAllOnesValue(ReturnType); 5830 LLVM_FALLTHROUGH; 5831 case Intrinsic::sadd_sat: 5832 // sat(X + undef) -> -1 5833 // sat(undef + X) -> -1 5834 // For unsigned: Assume undef is MAX, thus we saturate to MAX (-1). 5835 // For signed: Assume undef is ~X, in which case X + ~X = -1. 5836 if (Q.isUndefValue(Op0) || Q.isUndefValue(Op1)) 5837 return Constant::getAllOnesValue(ReturnType); 5838 5839 // X + 0 -> X 5840 if (match(Op1, m_Zero())) 5841 return Op0; 5842 // 0 + X -> X 5843 if (match(Op0, m_Zero())) 5844 return Op1; 5845 break; 5846 case Intrinsic::usub_sat: 5847 // sat(0 - X) -> 0, sat(X - MAX) -> 0 5848 if (match(Op0, m_Zero()) || match(Op1, m_AllOnes())) 5849 return Constant::getNullValue(ReturnType); 5850 LLVM_FALLTHROUGH; 5851 case Intrinsic::ssub_sat: 5852 // X - X -> 0, X - undef -> 0, undef - X -> 0 5853 if (Op0 == Op1 || Q.isUndefValue(Op0) || Q.isUndefValue(Op1)) 5854 return Constant::getNullValue(ReturnType); 5855 // X - 0 -> X 5856 if (match(Op1, m_Zero())) 5857 return Op0; 5858 break; 5859 case Intrinsic::load_relative: 5860 if (auto *C0 = dyn_cast<Constant>(Op0)) 5861 if (auto *C1 = dyn_cast<Constant>(Op1)) 5862 return SimplifyRelativeLoad(C0, C1, Q.DL); 5863 break; 5864 case Intrinsic::powi: 5865 if (auto *Power = dyn_cast<ConstantInt>(Op1)) { 5866 // powi(x, 0) -> 1.0 5867 if (Power->isZero()) 5868 return ConstantFP::get(Op0->getType(), 1.0); 5869 // powi(x, 1) -> x 5870 if (Power->isOne()) 5871 return Op0; 5872 } 5873 break; 5874 case Intrinsic::copysign: 5875 // copysign X, X --> X 5876 if (Op0 == Op1) 5877 return Op0; 5878 // copysign -X, X --> X 5879 // copysign X, -X --> -X 5880 if (match(Op0, m_FNeg(m_Specific(Op1))) || 5881 match(Op1, m_FNeg(m_Specific(Op0)))) 5882 return Op1; 5883 break; 5884 case Intrinsic::maxnum: 5885 case Intrinsic::minnum: 5886 case Intrinsic::maximum: 5887 case Intrinsic::minimum: { 5888 // If the arguments are the same, this is a no-op. 5889 if (Op0 == Op1) return Op0; 5890 5891 // Canonicalize constant operand as Op1. 5892 if (isa<Constant>(Op0)) 5893 std::swap(Op0, Op1); 5894 5895 // If an argument is undef, return the other argument. 5896 if (Q.isUndefValue(Op1)) 5897 return Op0; 5898 5899 bool PropagateNaN = IID == Intrinsic::minimum || IID == Intrinsic::maximum; 5900 bool IsMin = IID == Intrinsic::minimum || IID == Intrinsic::minnum; 5901 5902 // minnum(X, nan) -> X 5903 // maxnum(X, nan) -> X 5904 // minimum(X, nan) -> nan 5905 // maximum(X, nan) -> nan 5906 if (match(Op1, m_NaN())) 5907 return PropagateNaN ? propagateNaN(cast<Constant>(Op1)) : Op0; 5908 5909 // In the following folds, inf can be replaced with the largest finite 5910 // float, if the ninf flag is set. 5911 const APFloat *C; 5912 if (match(Op1, m_APFloat(C)) && 5913 (C->isInfinity() || (Q.CxtI->hasNoInfs() && C->isLargest()))) { 5914 // minnum(X, -inf) -> -inf 5915 // maxnum(X, +inf) -> +inf 5916 // minimum(X, -inf) -> -inf if nnan 5917 // maximum(X, +inf) -> +inf if nnan 5918 if (C->isNegative() == IsMin && (!PropagateNaN || Q.CxtI->hasNoNaNs())) 5919 return ConstantFP::get(ReturnType, *C); 5920 5921 // minnum(X, +inf) -> X if nnan 5922 // maxnum(X, -inf) -> X if nnan 5923 // minimum(X, +inf) -> X 5924 // maximum(X, -inf) -> X 5925 if (C->isNegative() != IsMin && (PropagateNaN || Q.CxtI->hasNoNaNs())) 5926 return Op0; 5927 } 5928 5929 // Min/max of the same operation with common operand: 5930 // m(m(X, Y)), X --> m(X, Y) (4 commuted variants) 5931 if (auto *M0 = dyn_cast<IntrinsicInst>(Op0)) 5932 if (M0->getIntrinsicID() == IID && 5933 (M0->getOperand(0) == Op1 || M0->getOperand(1) == Op1)) 5934 return Op0; 5935 if (auto *M1 = dyn_cast<IntrinsicInst>(Op1)) 5936 if (M1->getIntrinsicID() == IID && 5937 (M1->getOperand(0) == Op0 || M1->getOperand(1) == Op0)) 5938 return Op1; 5939 5940 break; 5941 } 5942 case Intrinsic::experimental_vector_extract: { 5943 Type *ReturnType = F->getReturnType(); 5944 5945 // (extract_vector (insert_vector _, X, 0), 0) -> X 5946 unsigned IdxN = cast<ConstantInt>(Op1)->getZExtValue(); 5947 Value *X = nullptr; 5948 if (match(Op0, m_Intrinsic<Intrinsic::experimental_vector_insert>( 5949 m_Value(), m_Value(X), m_Zero())) && 5950 IdxN == 0 && X->getType() == ReturnType) 5951 return X; 5952 5953 break; 5954 } 5955 default: 5956 break; 5957 } 5958 5959 return nullptr; 5960 } 5961 5962 static Value *simplifyIntrinsic(CallBase *Call, const SimplifyQuery &Q) { 5963 5964 unsigned NumOperands = Call->arg_size(); 5965 Function *F = cast<Function>(Call->getCalledFunction()); 5966 Intrinsic::ID IID = F->getIntrinsicID(); 5967 5968 // Most of the intrinsics with no operands have some kind of side effect. 5969 // Don't simplify. 5970 if (!NumOperands) { 5971 switch (IID) { 5972 case Intrinsic::vscale: { 5973 // Call may not be inserted into the IR yet at point of calling simplify. 5974 if (!Call->getParent() || !Call->getParent()->getParent()) 5975 return nullptr; 5976 auto Attr = Call->getFunction()->getFnAttribute(Attribute::VScaleRange); 5977 if (!Attr.isValid()) 5978 return nullptr; 5979 unsigned VScaleMin = Attr.getVScaleRangeMin(); 5980 Optional<unsigned> VScaleMax = Attr.getVScaleRangeMax(); 5981 if (VScaleMax && VScaleMin == VScaleMax) 5982 return ConstantInt::get(F->getReturnType(), VScaleMin); 5983 return nullptr; 5984 } 5985 default: 5986 return nullptr; 5987 } 5988 } 5989 5990 if (NumOperands == 1) 5991 return simplifyUnaryIntrinsic(F, Call->getArgOperand(0), Q); 5992 5993 if (NumOperands == 2) 5994 return simplifyBinaryIntrinsic(F, Call->getArgOperand(0), 5995 Call->getArgOperand(1), Q); 5996 5997 // Handle intrinsics with 3 or more arguments. 5998 switch (IID) { 5999 case Intrinsic::masked_load: 6000 case Intrinsic::masked_gather: { 6001 Value *MaskArg = Call->getArgOperand(2); 6002 Value *PassthruArg = Call->getArgOperand(3); 6003 // If the mask is all zeros or undef, the "passthru" argument is the result. 6004 if (maskIsAllZeroOrUndef(MaskArg)) 6005 return PassthruArg; 6006 return nullptr; 6007 } 6008 case Intrinsic::fshl: 6009 case Intrinsic::fshr: { 6010 Value *Op0 = Call->getArgOperand(0), *Op1 = Call->getArgOperand(1), 6011 *ShAmtArg = Call->getArgOperand(2); 6012 6013 // If both operands are undef, the result is undef. 6014 if (Q.isUndefValue(Op0) && Q.isUndefValue(Op1)) 6015 return UndefValue::get(F->getReturnType()); 6016 6017 // If shift amount is undef, assume it is zero. 6018 if (Q.isUndefValue(ShAmtArg)) 6019 return Call->getArgOperand(IID == Intrinsic::fshl ? 0 : 1); 6020 6021 const APInt *ShAmtC; 6022 if (match(ShAmtArg, m_APInt(ShAmtC))) { 6023 // If there's effectively no shift, return the 1st arg or 2nd arg. 6024 APInt BitWidth = APInt(ShAmtC->getBitWidth(), ShAmtC->getBitWidth()); 6025 if (ShAmtC->urem(BitWidth).isZero()) 6026 return Call->getArgOperand(IID == Intrinsic::fshl ? 0 : 1); 6027 } 6028 6029 // Rotating zero by anything is zero. 6030 if (match(Op0, m_Zero()) && match(Op1, m_Zero())) 6031 return ConstantInt::getNullValue(F->getReturnType()); 6032 6033 // Rotating -1 by anything is -1. 6034 if (match(Op0, m_AllOnes()) && match(Op1, m_AllOnes())) 6035 return ConstantInt::getAllOnesValue(F->getReturnType()); 6036 6037 return nullptr; 6038 } 6039 case Intrinsic::experimental_constrained_fma: { 6040 Value *Op0 = Call->getArgOperand(0); 6041 Value *Op1 = Call->getArgOperand(1); 6042 Value *Op2 = Call->getArgOperand(2); 6043 auto *FPI = cast<ConstrainedFPIntrinsic>(Call); 6044 if (Value *V = simplifyFPOp({Op0, Op1, Op2}, {}, Q, 6045 FPI->getExceptionBehavior().getValue(), 6046 FPI->getRoundingMode().getValue())) 6047 return V; 6048 return nullptr; 6049 } 6050 case Intrinsic::fma: 6051 case Intrinsic::fmuladd: { 6052 Value *Op0 = Call->getArgOperand(0); 6053 Value *Op1 = Call->getArgOperand(1); 6054 Value *Op2 = Call->getArgOperand(2); 6055 if (Value *V = simplifyFPOp({Op0, Op1, Op2}, {}, Q, fp::ebIgnore, 6056 RoundingMode::NearestTiesToEven)) 6057 return V; 6058 return nullptr; 6059 } 6060 case Intrinsic::smul_fix: 6061 case Intrinsic::smul_fix_sat: { 6062 Value *Op0 = Call->getArgOperand(0); 6063 Value *Op1 = Call->getArgOperand(1); 6064 Value *Op2 = Call->getArgOperand(2); 6065 Type *ReturnType = F->getReturnType(); 6066 6067 // Canonicalize constant operand as Op1 (ConstantFolding handles the case 6068 // when both Op0 and Op1 are constant so we do not care about that special 6069 // case here). 6070 if (isa<Constant>(Op0)) 6071 std::swap(Op0, Op1); 6072 6073 // X * 0 -> 0 6074 if (match(Op1, m_Zero())) 6075 return Constant::getNullValue(ReturnType); 6076 6077 // X * undef -> 0 6078 if (Q.isUndefValue(Op1)) 6079 return Constant::getNullValue(ReturnType); 6080 6081 // X * (1 << Scale) -> X 6082 APInt ScaledOne = 6083 APInt::getOneBitSet(ReturnType->getScalarSizeInBits(), 6084 cast<ConstantInt>(Op2)->getZExtValue()); 6085 if (ScaledOne.isNonNegative() && match(Op1, m_SpecificInt(ScaledOne))) 6086 return Op0; 6087 6088 return nullptr; 6089 } 6090 case Intrinsic::experimental_vector_insert: { 6091 Value *Vec = Call->getArgOperand(0); 6092 Value *SubVec = Call->getArgOperand(1); 6093 Value *Idx = Call->getArgOperand(2); 6094 Type *ReturnType = F->getReturnType(); 6095 6096 // (insert_vector Y, (extract_vector X, 0), 0) -> X 6097 // where: Y is X, or Y is undef 6098 unsigned IdxN = cast<ConstantInt>(Idx)->getZExtValue(); 6099 Value *X = nullptr; 6100 if (match(SubVec, m_Intrinsic<Intrinsic::experimental_vector_extract>( 6101 m_Value(X), m_Zero())) && 6102 (Q.isUndefValue(Vec) || Vec == X) && IdxN == 0 && 6103 X->getType() == ReturnType) 6104 return X; 6105 6106 return nullptr; 6107 } 6108 case Intrinsic::experimental_constrained_fadd: { 6109 auto *FPI = cast<ConstrainedFPIntrinsic>(Call); 6110 return SimplifyFAddInst(FPI->getArgOperand(0), FPI->getArgOperand(1), 6111 FPI->getFastMathFlags(), Q, 6112 FPI->getExceptionBehavior().getValue(), 6113 FPI->getRoundingMode().getValue()); 6114 break; 6115 } 6116 case Intrinsic::experimental_constrained_fsub: { 6117 auto *FPI = cast<ConstrainedFPIntrinsic>(Call); 6118 return SimplifyFSubInst(FPI->getArgOperand(0), FPI->getArgOperand(1), 6119 FPI->getFastMathFlags(), Q, 6120 FPI->getExceptionBehavior().getValue(), 6121 FPI->getRoundingMode().getValue()); 6122 break; 6123 } 6124 case Intrinsic::experimental_constrained_fmul: { 6125 auto *FPI = cast<ConstrainedFPIntrinsic>(Call); 6126 return SimplifyFMulInst(FPI->getArgOperand(0), FPI->getArgOperand(1), 6127 FPI->getFastMathFlags(), Q, 6128 FPI->getExceptionBehavior().getValue(), 6129 FPI->getRoundingMode().getValue()); 6130 break; 6131 } 6132 case Intrinsic::experimental_constrained_fdiv: { 6133 auto *FPI = cast<ConstrainedFPIntrinsic>(Call); 6134 return SimplifyFDivInst(FPI->getArgOperand(0), FPI->getArgOperand(1), 6135 FPI->getFastMathFlags(), Q, 6136 FPI->getExceptionBehavior().getValue(), 6137 FPI->getRoundingMode().getValue()); 6138 break; 6139 } 6140 case Intrinsic::experimental_constrained_frem: { 6141 auto *FPI = cast<ConstrainedFPIntrinsic>(Call); 6142 return SimplifyFRemInst(FPI->getArgOperand(0), FPI->getArgOperand(1), 6143 FPI->getFastMathFlags(), Q, 6144 FPI->getExceptionBehavior().getValue(), 6145 FPI->getRoundingMode().getValue()); 6146 break; 6147 } 6148 default: 6149 return nullptr; 6150 } 6151 } 6152 6153 static Value *tryConstantFoldCall(CallBase *Call, const SimplifyQuery &Q) { 6154 auto *F = dyn_cast<Function>(Call->getCalledOperand()); 6155 if (!F || !canConstantFoldCallTo(Call, F)) 6156 return nullptr; 6157 6158 SmallVector<Constant *, 4> ConstantArgs; 6159 unsigned NumArgs = Call->arg_size(); 6160 ConstantArgs.reserve(NumArgs); 6161 for (auto &Arg : Call->args()) { 6162 Constant *C = dyn_cast<Constant>(&Arg); 6163 if (!C) { 6164 if (isa<MetadataAsValue>(Arg.get())) 6165 continue; 6166 return nullptr; 6167 } 6168 ConstantArgs.push_back(C); 6169 } 6170 6171 return ConstantFoldCall(Call, F, ConstantArgs, Q.TLI); 6172 } 6173 6174 Value *llvm::SimplifyCall(CallBase *Call, const SimplifyQuery &Q) { 6175 // musttail calls can only be simplified if they are also DCEd. 6176 // As we can't guarantee this here, don't simplify them. 6177 if (Call->isMustTailCall()) 6178 return nullptr; 6179 6180 // call undef -> poison 6181 // call null -> poison 6182 Value *Callee = Call->getCalledOperand(); 6183 if (isa<UndefValue>(Callee) || isa<ConstantPointerNull>(Callee)) 6184 return PoisonValue::get(Call->getType()); 6185 6186 if (Value *V = tryConstantFoldCall(Call, Q)) 6187 return V; 6188 6189 auto *F = dyn_cast<Function>(Callee); 6190 if (F && F->isIntrinsic()) 6191 if (Value *Ret = simplifyIntrinsic(Call, Q)) 6192 return Ret; 6193 6194 return nullptr; 6195 } 6196 6197 /// Given operands for a Freeze, see if we can fold the result. 6198 static Value *SimplifyFreezeInst(Value *Op0, const SimplifyQuery &Q) { 6199 // Use a utility function defined in ValueTracking. 6200 if (llvm::isGuaranteedNotToBeUndefOrPoison(Op0, Q.AC, Q.CxtI, Q.DT)) 6201 return Op0; 6202 // We have room for improvement. 6203 return nullptr; 6204 } 6205 6206 Value *llvm::SimplifyFreezeInst(Value *Op0, const SimplifyQuery &Q) { 6207 return ::SimplifyFreezeInst(Op0, Q); 6208 } 6209 6210 static Value *SimplifyLoadInst(LoadInst *LI, Value *PtrOp, 6211 const SimplifyQuery &Q) { 6212 if (LI->isVolatile()) 6213 return nullptr; 6214 6215 APInt Offset(Q.DL.getIndexTypeSizeInBits(PtrOp->getType()), 0); 6216 auto *PtrOpC = dyn_cast<Constant>(PtrOp); 6217 // Try to convert operand into a constant by stripping offsets while looking 6218 // through invariant.group intrinsics. Don't bother if the underlying object 6219 // is not constant, as calculating GEP offsets is expensive. 6220 if (!PtrOpC && isa<Constant>(getUnderlyingObject(PtrOp))) { 6221 PtrOp = PtrOp->stripAndAccumulateConstantOffsets( 6222 Q.DL, Offset, /* AllowNonInbounts */ true, 6223 /* AllowInvariantGroup */ true); 6224 // Index size may have changed due to address space casts. 6225 Offset = Offset.sextOrTrunc(Q.DL.getIndexTypeSizeInBits(PtrOp->getType())); 6226 PtrOpC = dyn_cast<Constant>(PtrOp); 6227 } 6228 6229 if (PtrOpC) 6230 return ConstantFoldLoadFromConstPtr(PtrOpC, LI->getType(), Offset, Q.DL); 6231 return nullptr; 6232 } 6233 6234 /// See if we can compute a simplified version of this instruction. 6235 /// If not, this returns null. 6236 6237 static Value *simplifyInstructionWithOperands(Instruction *I, 6238 ArrayRef<Value *> NewOps, 6239 const SimplifyQuery &SQ, 6240 OptimizationRemarkEmitter *ORE) { 6241 const SimplifyQuery Q = SQ.CxtI ? SQ : SQ.getWithInstruction(I); 6242 Value *Result = nullptr; 6243 6244 switch (I->getOpcode()) { 6245 default: 6246 if (llvm::all_of(NewOps, [](Value *V) { return isa<Constant>(V); })) { 6247 SmallVector<Constant *, 8> NewConstOps(NewOps.size()); 6248 transform(NewOps, NewConstOps.begin(), 6249 [](Value *V) { return cast<Constant>(V); }); 6250 Result = ConstantFoldInstOperands(I, NewConstOps, Q.DL, Q.TLI); 6251 } 6252 break; 6253 case Instruction::FNeg: 6254 Result = SimplifyFNegInst(NewOps[0], I->getFastMathFlags(), Q); 6255 break; 6256 case Instruction::FAdd: 6257 Result = SimplifyFAddInst(NewOps[0], NewOps[1], I->getFastMathFlags(), Q); 6258 break; 6259 case Instruction::Add: 6260 Result = SimplifyAddInst( 6261 NewOps[0], NewOps[1], Q.IIQ.hasNoSignedWrap(cast<BinaryOperator>(I)), 6262 Q.IIQ.hasNoUnsignedWrap(cast<BinaryOperator>(I)), Q); 6263 break; 6264 case Instruction::FSub: 6265 Result = SimplifyFSubInst(NewOps[0], NewOps[1], I->getFastMathFlags(), Q); 6266 break; 6267 case Instruction::Sub: 6268 Result = SimplifySubInst( 6269 NewOps[0], NewOps[1], Q.IIQ.hasNoSignedWrap(cast<BinaryOperator>(I)), 6270 Q.IIQ.hasNoUnsignedWrap(cast<BinaryOperator>(I)), Q); 6271 break; 6272 case Instruction::FMul: 6273 Result = SimplifyFMulInst(NewOps[0], NewOps[1], I->getFastMathFlags(), Q); 6274 break; 6275 case Instruction::Mul: 6276 Result = SimplifyMulInst(NewOps[0], NewOps[1], Q); 6277 break; 6278 case Instruction::SDiv: 6279 Result = SimplifySDivInst(NewOps[0], NewOps[1], Q); 6280 break; 6281 case Instruction::UDiv: 6282 Result = SimplifyUDivInst(NewOps[0], NewOps[1], Q); 6283 break; 6284 case Instruction::FDiv: 6285 Result = SimplifyFDivInst(NewOps[0], NewOps[1], I->getFastMathFlags(), Q); 6286 break; 6287 case Instruction::SRem: 6288 Result = SimplifySRemInst(NewOps[0], NewOps[1], Q); 6289 break; 6290 case Instruction::URem: 6291 Result = SimplifyURemInst(NewOps[0], NewOps[1], Q); 6292 break; 6293 case Instruction::FRem: 6294 Result = SimplifyFRemInst(NewOps[0], NewOps[1], I->getFastMathFlags(), Q); 6295 break; 6296 case Instruction::Shl: 6297 Result = SimplifyShlInst( 6298 NewOps[0], NewOps[1], Q.IIQ.hasNoSignedWrap(cast<BinaryOperator>(I)), 6299 Q.IIQ.hasNoUnsignedWrap(cast<BinaryOperator>(I)), Q); 6300 break; 6301 case Instruction::LShr: 6302 Result = SimplifyLShrInst(NewOps[0], NewOps[1], 6303 Q.IIQ.isExact(cast<BinaryOperator>(I)), Q); 6304 break; 6305 case Instruction::AShr: 6306 Result = SimplifyAShrInst(NewOps[0], NewOps[1], 6307 Q.IIQ.isExact(cast<BinaryOperator>(I)), Q); 6308 break; 6309 case Instruction::And: 6310 Result = SimplifyAndInst(NewOps[0], NewOps[1], Q); 6311 break; 6312 case Instruction::Or: 6313 Result = SimplifyOrInst(NewOps[0], NewOps[1], Q); 6314 break; 6315 case Instruction::Xor: 6316 Result = SimplifyXorInst(NewOps[0], NewOps[1], Q); 6317 break; 6318 case Instruction::ICmp: 6319 Result = SimplifyICmpInst(cast<ICmpInst>(I)->getPredicate(), NewOps[0], 6320 NewOps[1], Q); 6321 break; 6322 case Instruction::FCmp: 6323 Result = SimplifyFCmpInst(cast<FCmpInst>(I)->getPredicate(), NewOps[0], 6324 NewOps[1], I->getFastMathFlags(), Q); 6325 break; 6326 case Instruction::Select: 6327 Result = SimplifySelectInst(NewOps[0], NewOps[1], NewOps[2], Q); 6328 break; 6329 case Instruction::GetElementPtr: { 6330 auto *GEPI = cast<GetElementPtrInst>(I); 6331 Result = 6332 SimplifyGEPInst(GEPI->getSourceElementType(), NewOps[0], 6333 makeArrayRef(NewOps).slice(1), GEPI->isInBounds(), Q); 6334 break; 6335 } 6336 case Instruction::InsertValue: { 6337 InsertValueInst *IV = cast<InsertValueInst>(I); 6338 Result = SimplifyInsertValueInst(NewOps[0], NewOps[1], IV->getIndices(), Q); 6339 break; 6340 } 6341 case Instruction::InsertElement: { 6342 Result = SimplifyInsertElementInst(NewOps[0], NewOps[1], NewOps[2], Q); 6343 break; 6344 } 6345 case Instruction::ExtractValue: { 6346 auto *EVI = cast<ExtractValueInst>(I); 6347 Result = SimplifyExtractValueInst(NewOps[0], EVI->getIndices(), Q); 6348 break; 6349 } 6350 case Instruction::ExtractElement: { 6351 Result = SimplifyExtractElementInst(NewOps[0], NewOps[1], Q); 6352 break; 6353 } 6354 case Instruction::ShuffleVector: { 6355 auto *SVI = cast<ShuffleVectorInst>(I); 6356 Result = SimplifyShuffleVectorInst( 6357 NewOps[0], NewOps[1], SVI->getShuffleMask(), SVI->getType(), Q); 6358 break; 6359 } 6360 case Instruction::PHI: 6361 Result = SimplifyPHINode(cast<PHINode>(I), NewOps, Q); 6362 break; 6363 case Instruction::Call: { 6364 // TODO: Use NewOps 6365 Result = SimplifyCall(cast<CallInst>(I), Q); 6366 break; 6367 } 6368 case Instruction::Freeze: 6369 Result = llvm::SimplifyFreezeInst(NewOps[0], Q); 6370 break; 6371 #define HANDLE_CAST_INST(num, opc, clas) case Instruction::opc: 6372 #include "llvm/IR/Instruction.def" 6373 #undef HANDLE_CAST_INST 6374 Result = SimplifyCastInst(I->getOpcode(), NewOps[0], I->getType(), Q); 6375 break; 6376 case Instruction::Alloca: 6377 // No simplifications for Alloca and it can't be constant folded. 6378 Result = nullptr; 6379 break; 6380 case Instruction::Load: 6381 Result = SimplifyLoadInst(cast<LoadInst>(I), NewOps[0], Q); 6382 break; 6383 } 6384 6385 /// If called on unreachable code, the above logic may report that the 6386 /// instruction simplified to itself. Make life easier for users by 6387 /// detecting that case here, returning a safe value instead. 6388 return Result == I ? UndefValue::get(I->getType()) : Result; 6389 } 6390 6391 Value *llvm::SimplifyInstructionWithOperands(Instruction *I, 6392 ArrayRef<Value *> NewOps, 6393 const SimplifyQuery &SQ, 6394 OptimizationRemarkEmitter *ORE) { 6395 assert(NewOps.size() == I->getNumOperands() && 6396 "Number of operands should match the instruction!"); 6397 return ::simplifyInstructionWithOperands(I, NewOps, SQ, ORE); 6398 } 6399 6400 Value *llvm::SimplifyInstruction(Instruction *I, const SimplifyQuery &SQ, 6401 OptimizationRemarkEmitter *ORE) { 6402 SmallVector<Value *, 8> Ops(I->operands()); 6403 return ::simplifyInstructionWithOperands(I, Ops, SQ, ORE); 6404 } 6405 6406 /// Implementation of recursive simplification through an instruction's 6407 /// uses. 6408 /// 6409 /// This is the common implementation of the recursive simplification routines. 6410 /// If we have a pre-simplified value in 'SimpleV', that is forcibly used to 6411 /// replace the instruction 'I'. Otherwise, we simply add 'I' to the list of 6412 /// instructions to process and attempt to simplify it using 6413 /// InstructionSimplify. Recursively visited users which could not be 6414 /// simplified themselves are to the optional UnsimplifiedUsers set for 6415 /// further processing by the caller. 6416 /// 6417 /// This routine returns 'true' only when *it* simplifies something. The passed 6418 /// in simplified value does not count toward this. 6419 static bool replaceAndRecursivelySimplifyImpl( 6420 Instruction *I, Value *SimpleV, const TargetLibraryInfo *TLI, 6421 const DominatorTree *DT, AssumptionCache *AC, 6422 SmallSetVector<Instruction *, 8> *UnsimplifiedUsers = nullptr) { 6423 bool Simplified = false; 6424 SmallSetVector<Instruction *, 8> Worklist; 6425 const DataLayout &DL = I->getModule()->getDataLayout(); 6426 6427 // If we have an explicit value to collapse to, do that round of the 6428 // simplification loop by hand initially. 6429 if (SimpleV) { 6430 for (User *U : I->users()) 6431 if (U != I) 6432 Worklist.insert(cast<Instruction>(U)); 6433 6434 // Replace the instruction with its simplified value. 6435 I->replaceAllUsesWith(SimpleV); 6436 6437 // Gracefully handle edge cases where the instruction is not wired into any 6438 // parent block. 6439 if (I->getParent() && !I->isEHPad() && !I->isTerminator() && 6440 !I->mayHaveSideEffects()) 6441 I->eraseFromParent(); 6442 } else { 6443 Worklist.insert(I); 6444 } 6445 6446 // Note that we must test the size on each iteration, the worklist can grow. 6447 for (unsigned Idx = 0; Idx != Worklist.size(); ++Idx) { 6448 I = Worklist[Idx]; 6449 6450 // See if this instruction simplifies. 6451 SimpleV = SimplifyInstruction(I, {DL, TLI, DT, AC}); 6452 if (!SimpleV) { 6453 if (UnsimplifiedUsers) 6454 UnsimplifiedUsers->insert(I); 6455 continue; 6456 } 6457 6458 Simplified = true; 6459 6460 // Stash away all the uses of the old instruction so we can check them for 6461 // recursive simplifications after a RAUW. This is cheaper than checking all 6462 // uses of To on the recursive step in most cases. 6463 for (User *U : I->users()) 6464 Worklist.insert(cast<Instruction>(U)); 6465 6466 // Replace the instruction with its simplified value. 6467 I->replaceAllUsesWith(SimpleV); 6468 6469 // Gracefully handle edge cases where the instruction is not wired into any 6470 // parent block. 6471 if (I->getParent() && !I->isEHPad() && !I->isTerminator() && 6472 !I->mayHaveSideEffects()) 6473 I->eraseFromParent(); 6474 } 6475 return Simplified; 6476 } 6477 6478 bool llvm::replaceAndRecursivelySimplify( 6479 Instruction *I, Value *SimpleV, const TargetLibraryInfo *TLI, 6480 const DominatorTree *DT, AssumptionCache *AC, 6481 SmallSetVector<Instruction *, 8> *UnsimplifiedUsers) { 6482 assert(I != SimpleV && "replaceAndRecursivelySimplify(X,X) is not valid!"); 6483 assert(SimpleV && "Must provide a simplified value."); 6484 return replaceAndRecursivelySimplifyImpl(I, SimpleV, TLI, DT, AC, 6485 UnsimplifiedUsers); 6486 } 6487 6488 namespace llvm { 6489 const SimplifyQuery getBestSimplifyQuery(Pass &P, Function &F) { 6490 auto *DTWP = P.getAnalysisIfAvailable<DominatorTreeWrapperPass>(); 6491 auto *DT = DTWP ? &DTWP->getDomTree() : nullptr; 6492 auto *TLIWP = P.getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 6493 auto *TLI = TLIWP ? &TLIWP->getTLI(F) : nullptr; 6494 auto *ACWP = P.getAnalysisIfAvailable<AssumptionCacheTracker>(); 6495 auto *AC = ACWP ? &ACWP->getAssumptionCache(F) : nullptr; 6496 return {F.getParent()->getDataLayout(), TLI, DT, AC}; 6497 } 6498 6499 const SimplifyQuery getBestSimplifyQuery(LoopStandardAnalysisResults &AR, 6500 const DataLayout &DL) { 6501 return {DL, &AR.TLI, &AR.DT, &AR.AC}; 6502 } 6503 6504 template <class T, class... TArgs> 6505 const SimplifyQuery getBestSimplifyQuery(AnalysisManager<T, TArgs...> &AM, 6506 Function &F) { 6507 auto *DT = AM.template getCachedResult<DominatorTreeAnalysis>(F); 6508 auto *TLI = AM.template getCachedResult<TargetLibraryAnalysis>(F); 6509 auto *AC = AM.template getCachedResult<AssumptionAnalysis>(F); 6510 return {F.getParent()->getDataLayout(), TLI, DT, AC}; 6511 } 6512 template const SimplifyQuery getBestSimplifyQuery(AnalysisManager<Function> &, 6513 Function &); 6514 } 6515 6516 void InstSimplifyFolder::anchor() {} 6517