1 //===- InstructionSimplify.cpp - Fold instruction operands ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements routines for folding instructions into simpler forms 11 // that do not require creating new instructions. This does constant folding 12 // ("add i32 1, 1" -> "2") but can also handle non-constant operands, either 13 // returning a constant ("and i32 %x, 0" -> "0") or an already existing value 14 // ("and i32 %x, %x" -> "%x"). All operands are assumed to have already been 15 // simplified: This is usually true and assuming it simplifies the logic (if 16 // they have not been simplified then results are correct but maybe suboptimal). 17 // 18 //===----------------------------------------------------------------------===// 19 20 #include "llvm/Analysis/InstructionSimplify.h" 21 #include "llvm/ADT/SetVector.h" 22 #include "llvm/ADT/Statistic.h" 23 #include "llvm/Analysis/AliasAnalysis.h" 24 #include "llvm/Analysis/ConstantFolding.h" 25 #include "llvm/Analysis/MemoryBuiltins.h" 26 #include "llvm/Analysis/ValueTracking.h" 27 #include "llvm/Analysis/VectorUtils.h" 28 #include "llvm/IR/ConstantRange.h" 29 #include "llvm/IR/DataLayout.h" 30 #include "llvm/IR/Dominators.h" 31 #include "llvm/IR/GetElementPtrTypeIterator.h" 32 #include "llvm/IR/GlobalAlias.h" 33 #include "llvm/IR/Operator.h" 34 #include "llvm/IR/PatternMatch.h" 35 #include "llvm/IR/ValueHandle.h" 36 #include <algorithm> 37 using namespace llvm; 38 using namespace llvm::PatternMatch; 39 40 #define DEBUG_TYPE "instsimplify" 41 42 enum { RecursionLimit = 3 }; 43 44 STATISTIC(NumExpand, "Number of expansions"); 45 STATISTIC(NumReassoc, "Number of reassociations"); 46 47 namespace { 48 struct Query { 49 const DataLayout &DL; 50 const TargetLibraryInfo *TLI; 51 const DominatorTree *DT; 52 AssumptionCache *AC; 53 const Instruction *CxtI; 54 55 Query(const DataLayout &DL, const TargetLibraryInfo *tli, 56 const DominatorTree *dt, AssumptionCache *ac = nullptr, 57 const Instruction *cxti = nullptr) 58 : DL(DL), TLI(tli), DT(dt), AC(ac), CxtI(cxti) {} 59 }; 60 } // end anonymous namespace 61 62 static Value *SimplifyAndInst(Value *, Value *, const Query &, unsigned); 63 static Value *SimplifyBinOp(unsigned, Value *, Value *, const Query &, 64 unsigned); 65 static Value *SimplifyFPBinOp(unsigned, Value *, Value *, const FastMathFlags &, 66 const Query &, unsigned); 67 static Value *SimplifyCmpInst(unsigned, Value *, Value *, const Query &, 68 unsigned); 69 static Value *SimplifyOrInst(Value *, Value *, const Query &, unsigned); 70 static Value *SimplifyXorInst(Value *, Value *, const Query &, unsigned); 71 static Value *SimplifyTruncInst(Value *, Type *, const Query &, unsigned); 72 73 /// For a boolean type, or a vector of boolean type, return false, or 74 /// a vector with every element false, as appropriate for the type. 75 static Constant *getFalse(Type *Ty) { 76 assert(Ty->getScalarType()->isIntegerTy(1) && 77 "Expected i1 type or a vector of i1!"); 78 return Constant::getNullValue(Ty); 79 } 80 81 /// For a boolean type, or a vector of boolean type, return true, or 82 /// a vector with every element true, as appropriate for the type. 83 static Constant *getTrue(Type *Ty) { 84 assert(Ty->getScalarType()->isIntegerTy(1) && 85 "Expected i1 type or a vector of i1!"); 86 return Constant::getAllOnesValue(Ty); 87 } 88 89 /// isSameCompare - Is V equivalent to the comparison "LHS Pred RHS"? 90 static bool isSameCompare(Value *V, CmpInst::Predicate Pred, Value *LHS, 91 Value *RHS) { 92 CmpInst *Cmp = dyn_cast<CmpInst>(V); 93 if (!Cmp) 94 return false; 95 CmpInst::Predicate CPred = Cmp->getPredicate(); 96 Value *CLHS = Cmp->getOperand(0), *CRHS = Cmp->getOperand(1); 97 if (CPred == Pred && CLHS == LHS && CRHS == RHS) 98 return true; 99 return CPred == CmpInst::getSwappedPredicate(Pred) && CLHS == RHS && 100 CRHS == LHS; 101 } 102 103 /// Does the given value dominate the specified phi node? 104 static bool ValueDominatesPHI(Value *V, PHINode *P, const DominatorTree *DT) { 105 Instruction *I = dyn_cast<Instruction>(V); 106 if (!I) 107 // Arguments and constants dominate all instructions. 108 return true; 109 110 // If we are processing instructions (and/or basic blocks) that have not been 111 // fully added to a function, the parent nodes may still be null. Simply 112 // return the conservative answer in these cases. 113 if (!I->getParent() || !P->getParent() || !I->getParent()->getParent()) 114 return false; 115 116 // If we have a DominatorTree then do a precise test. 117 if (DT) { 118 if (!DT->isReachableFromEntry(P->getParent())) 119 return true; 120 if (!DT->isReachableFromEntry(I->getParent())) 121 return false; 122 return DT->dominates(I, P); 123 } 124 125 // Otherwise, if the instruction is in the entry block and is not an invoke, 126 // then it obviously dominates all phi nodes. 127 if (I->getParent() == &I->getParent()->getParent()->getEntryBlock() && 128 !isa<InvokeInst>(I)) 129 return true; 130 131 return false; 132 } 133 134 /// Simplify "A op (B op' C)" by distributing op over op', turning it into 135 /// "(A op B) op' (A op C)". Here "op" is given by Opcode and "op'" is 136 /// given by OpcodeToExpand, while "A" corresponds to LHS and "B op' C" to RHS. 137 /// Also performs the transform "(A op' B) op C" -> "(A op C) op' (B op C)". 138 /// Returns the simplified value, or null if no simplification was performed. 139 static Value *ExpandBinOp(unsigned Opcode, Value *LHS, Value *RHS, 140 unsigned OpcToExpand, const Query &Q, 141 unsigned MaxRecurse) { 142 Instruction::BinaryOps OpcodeToExpand = (Instruction::BinaryOps)OpcToExpand; 143 // Recursion is always used, so bail out at once if we already hit the limit. 144 if (!MaxRecurse--) 145 return nullptr; 146 147 // Check whether the expression has the form "(A op' B) op C". 148 if (BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS)) 149 if (Op0->getOpcode() == OpcodeToExpand) { 150 // It does! Try turning it into "(A op C) op' (B op C)". 151 Value *A = Op0->getOperand(0), *B = Op0->getOperand(1), *C = RHS; 152 // Do "A op C" and "B op C" both simplify? 153 if (Value *L = SimplifyBinOp(Opcode, A, C, Q, MaxRecurse)) 154 if (Value *R = SimplifyBinOp(Opcode, B, C, Q, MaxRecurse)) { 155 // They do! Return "L op' R" if it simplifies or is already available. 156 // If "L op' R" equals "A op' B" then "L op' R" is just the LHS. 157 if ((L == A && R == B) || (Instruction::isCommutative(OpcodeToExpand) 158 && L == B && R == A)) { 159 ++NumExpand; 160 return LHS; 161 } 162 // Otherwise return "L op' R" if it simplifies. 163 if (Value *V = SimplifyBinOp(OpcodeToExpand, L, R, Q, MaxRecurse)) { 164 ++NumExpand; 165 return V; 166 } 167 } 168 } 169 170 // Check whether the expression has the form "A op (B op' C)". 171 if (BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS)) 172 if (Op1->getOpcode() == OpcodeToExpand) { 173 // It does! Try turning it into "(A op B) op' (A op C)". 174 Value *A = LHS, *B = Op1->getOperand(0), *C = Op1->getOperand(1); 175 // Do "A op B" and "A op C" both simplify? 176 if (Value *L = SimplifyBinOp(Opcode, A, B, Q, MaxRecurse)) 177 if (Value *R = SimplifyBinOp(Opcode, A, C, Q, MaxRecurse)) { 178 // They do! Return "L op' R" if it simplifies or is already available. 179 // If "L op' R" equals "B op' C" then "L op' R" is just the RHS. 180 if ((L == B && R == C) || (Instruction::isCommutative(OpcodeToExpand) 181 && L == C && R == B)) { 182 ++NumExpand; 183 return RHS; 184 } 185 // Otherwise return "L op' R" if it simplifies. 186 if (Value *V = SimplifyBinOp(OpcodeToExpand, L, R, Q, MaxRecurse)) { 187 ++NumExpand; 188 return V; 189 } 190 } 191 } 192 193 return nullptr; 194 } 195 196 /// Generic simplifications for associative binary operations. 197 /// Returns the simpler value, or null if none was found. 198 static Value *SimplifyAssociativeBinOp(unsigned Opc, Value *LHS, Value *RHS, 199 const Query &Q, unsigned MaxRecurse) { 200 Instruction::BinaryOps Opcode = (Instruction::BinaryOps)Opc; 201 assert(Instruction::isAssociative(Opcode) && "Not an associative operation!"); 202 203 // Recursion is always used, so bail out at once if we already hit the limit. 204 if (!MaxRecurse--) 205 return nullptr; 206 207 BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS); 208 BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS); 209 210 // Transform: "(A op B) op C" ==> "A op (B op C)" if it simplifies completely. 211 if (Op0 && Op0->getOpcode() == Opcode) { 212 Value *A = Op0->getOperand(0); 213 Value *B = Op0->getOperand(1); 214 Value *C = RHS; 215 216 // Does "B op C" simplify? 217 if (Value *V = SimplifyBinOp(Opcode, B, C, Q, MaxRecurse)) { 218 // It does! Return "A op V" if it simplifies or is already available. 219 // If V equals B then "A op V" is just the LHS. 220 if (V == B) return LHS; 221 // Otherwise return "A op V" if it simplifies. 222 if (Value *W = SimplifyBinOp(Opcode, A, V, Q, MaxRecurse)) { 223 ++NumReassoc; 224 return W; 225 } 226 } 227 } 228 229 // Transform: "A op (B op C)" ==> "(A op B) op C" if it simplifies completely. 230 if (Op1 && Op1->getOpcode() == Opcode) { 231 Value *A = LHS; 232 Value *B = Op1->getOperand(0); 233 Value *C = Op1->getOperand(1); 234 235 // Does "A op B" simplify? 236 if (Value *V = SimplifyBinOp(Opcode, A, B, Q, MaxRecurse)) { 237 // It does! Return "V op C" if it simplifies or is already available. 238 // If V equals B then "V op C" is just the RHS. 239 if (V == B) return RHS; 240 // Otherwise return "V op C" if it simplifies. 241 if (Value *W = SimplifyBinOp(Opcode, V, C, Q, MaxRecurse)) { 242 ++NumReassoc; 243 return W; 244 } 245 } 246 } 247 248 // The remaining transforms require commutativity as well as associativity. 249 if (!Instruction::isCommutative(Opcode)) 250 return nullptr; 251 252 // Transform: "(A op B) op C" ==> "(C op A) op B" if it simplifies completely. 253 if (Op0 && Op0->getOpcode() == Opcode) { 254 Value *A = Op0->getOperand(0); 255 Value *B = Op0->getOperand(1); 256 Value *C = RHS; 257 258 // Does "C op A" simplify? 259 if (Value *V = SimplifyBinOp(Opcode, C, A, Q, MaxRecurse)) { 260 // It does! Return "V op B" if it simplifies or is already available. 261 // If V equals A then "V op B" is just the LHS. 262 if (V == A) return LHS; 263 // Otherwise return "V op B" if it simplifies. 264 if (Value *W = SimplifyBinOp(Opcode, V, B, Q, MaxRecurse)) { 265 ++NumReassoc; 266 return W; 267 } 268 } 269 } 270 271 // Transform: "A op (B op C)" ==> "B op (C op A)" if it simplifies completely. 272 if (Op1 && Op1->getOpcode() == Opcode) { 273 Value *A = LHS; 274 Value *B = Op1->getOperand(0); 275 Value *C = Op1->getOperand(1); 276 277 // Does "C op A" simplify? 278 if (Value *V = SimplifyBinOp(Opcode, C, A, Q, MaxRecurse)) { 279 // It does! Return "B op V" if it simplifies or is already available. 280 // If V equals C then "B op V" is just the RHS. 281 if (V == C) return RHS; 282 // Otherwise return "B op V" if it simplifies. 283 if (Value *W = SimplifyBinOp(Opcode, B, V, Q, MaxRecurse)) { 284 ++NumReassoc; 285 return W; 286 } 287 } 288 } 289 290 return nullptr; 291 } 292 293 /// In the case of a binary operation with a select instruction as an operand, 294 /// try to simplify the binop by seeing whether evaluating it on both branches 295 /// of the select results in the same value. Returns the common value if so, 296 /// otherwise returns null. 297 static Value *ThreadBinOpOverSelect(unsigned Opcode, Value *LHS, Value *RHS, 298 const Query &Q, unsigned MaxRecurse) { 299 // Recursion is always used, so bail out at once if we already hit the limit. 300 if (!MaxRecurse--) 301 return nullptr; 302 303 SelectInst *SI; 304 if (isa<SelectInst>(LHS)) { 305 SI = cast<SelectInst>(LHS); 306 } else { 307 assert(isa<SelectInst>(RHS) && "No select instruction operand!"); 308 SI = cast<SelectInst>(RHS); 309 } 310 311 // Evaluate the BinOp on the true and false branches of the select. 312 Value *TV; 313 Value *FV; 314 if (SI == LHS) { 315 TV = SimplifyBinOp(Opcode, SI->getTrueValue(), RHS, Q, MaxRecurse); 316 FV = SimplifyBinOp(Opcode, SI->getFalseValue(), RHS, Q, MaxRecurse); 317 } else { 318 TV = SimplifyBinOp(Opcode, LHS, SI->getTrueValue(), Q, MaxRecurse); 319 FV = SimplifyBinOp(Opcode, LHS, SI->getFalseValue(), Q, MaxRecurse); 320 } 321 322 // If they simplified to the same value, then return the common value. 323 // If they both failed to simplify then return null. 324 if (TV == FV) 325 return TV; 326 327 // If one branch simplified to undef, return the other one. 328 if (TV && isa<UndefValue>(TV)) 329 return FV; 330 if (FV && isa<UndefValue>(FV)) 331 return TV; 332 333 // If applying the operation did not change the true and false select values, 334 // then the result of the binop is the select itself. 335 if (TV == SI->getTrueValue() && FV == SI->getFalseValue()) 336 return SI; 337 338 // If one branch simplified and the other did not, and the simplified 339 // value is equal to the unsimplified one, return the simplified value. 340 // For example, select (cond, X, X & Z) & Z -> X & Z. 341 if ((FV && !TV) || (TV && !FV)) { 342 // Check that the simplified value has the form "X op Y" where "op" is the 343 // same as the original operation. 344 Instruction *Simplified = dyn_cast<Instruction>(FV ? FV : TV); 345 if (Simplified && Simplified->getOpcode() == Opcode) { 346 // The value that didn't simplify is "UnsimplifiedLHS op UnsimplifiedRHS". 347 // We already know that "op" is the same as for the simplified value. See 348 // if the operands match too. If so, return the simplified value. 349 Value *UnsimplifiedBranch = FV ? SI->getTrueValue() : SI->getFalseValue(); 350 Value *UnsimplifiedLHS = SI == LHS ? UnsimplifiedBranch : LHS; 351 Value *UnsimplifiedRHS = SI == LHS ? RHS : UnsimplifiedBranch; 352 if (Simplified->getOperand(0) == UnsimplifiedLHS && 353 Simplified->getOperand(1) == UnsimplifiedRHS) 354 return Simplified; 355 if (Simplified->isCommutative() && 356 Simplified->getOperand(1) == UnsimplifiedLHS && 357 Simplified->getOperand(0) == UnsimplifiedRHS) 358 return Simplified; 359 } 360 } 361 362 return nullptr; 363 } 364 365 /// In the case of a comparison with a select instruction, try to simplify the 366 /// comparison by seeing whether both branches of the select result in the same 367 /// value. Returns the common value if so, otherwise returns null. 368 static Value *ThreadCmpOverSelect(CmpInst::Predicate Pred, Value *LHS, 369 Value *RHS, const Query &Q, 370 unsigned MaxRecurse) { 371 // Recursion is always used, so bail out at once if we already hit the limit. 372 if (!MaxRecurse--) 373 return nullptr; 374 375 // Make sure the select is on the LHS. 376 if (!isa<SelectInst>(LHS)) { 377 std::swap(LHS, RHS); 378 Pred = CmpInst::getSwappedPredicate(Pred); 379 } 380 assert(isa<SelectInst>(LHS) && "Not comparing with a select instruction!"); 381 SelectInst *SI = cast<SelectInst>(LHS); 382 Value *Cond = SI->getCondition(); 383 Value *TV = SI->getTrueValue(); 384 Value *FV = SI->getFalseValue(); 385 386 // Now that we have "cmp select(Cond, TV, FV), RHS", analyse it. 387 // Does "cmp TV, RHS" simplify? 388 Value *TCmp = SimplifyCmpInst(Pred, TV, RHS, Q, MaxRecurse); 389 if (TCmp == Cond) { 390 // It not only simplified, it simplified to the select condition. Replace 391 // it with 'true'. 392 TCmp = getTrue(Cond->getType()); 393 } else if (!TCmp) { 394 // It didn't simplify. However if "cmp TV, RHS" is equal to the select 395 // condition then we can replace it with 'true'. Otherwise give up. 396 if (!isSameCompare(Cond, Pred, TV, RHS)) 397 return nullptr; 398 TCmp = getTrue(Cond->getType()); 399 } 400 401 // Does "cmp FV, RHS" simplify? 402 Value *FCmp = SimplifyCmpInst(Pred, FV, RHS, Q, MaxRecurse); 403 if (FCmp == Cond) { 404 // It not only simplified, it simplified to the select condition. Replace 405 // it with 'false'. 406 FCmp = getFalse(Cond->getType()); 407 } else if (!FCmp) { 408 // It didn't simplify. However if "cmp FV, RHS" is equal to the select 409 // condition then we can replace it with 'false'. Otherwise give up. 410 if (!isSameCompare(Cond, Pred, FV, RHS)) 411 return nullptr; 412 FCmp = getFalse(Cond->getType()); 413 } 414 415 // If both sides simplified to the same value, then use it as the result of 416 // the original comparison. 417 if (TCmp == FCmp) 418 return TCmp; 419 420 // The remaining cases only make sense if the select condition has the same 421 // type as the result of the comparison, so bail out if this is not so. 422 if (Cond->getType()->isVectorTy() != RHS->getType()->isVectorTy()) 423 return nullptr; 424 // If the false value simplified to false, then the result of the compare 425 // is equal to "Cond && TCmp". This also catches the case when the false 426 // value simplified to false and the true value to true, returning "Cond". 427 if (match(FCmp, m_Zero())) 428 if (Value *V = SimplifyAndInst(Cond, TCmp, Q, MaxRecurse)) 429 return V; 430 // If the true value simplified to true, then the result of the compare 431 // is equal to "Cond || FCmp". 432 if (match(TCmp, m_One())) 433 if (Value *V = SimplifyOrInst(Cond, FCmp, Q, MaxRecurse)) 434 return V; 435 // Finally, if the false value simplified to true and the true value to 436 // false, then the result of the compare is equal to "!Cond". 437 if (match(FCmp, m_One()) && match(TCmp, m_Zero())) 438 if (Value *V = 439 SimplifyXorInst(Cond, Constant::getAllOnesValue(Cond->getType()), 440 Q, MaxRecurse)) 441 return V; 442 443 return nullptr; 444 } 445 446 /// In the case of a binary operation with an operand that is a PHI instruction, 447 /// try to simplify the binop by seeing whether evaluating it on the incoming 448 /// phi values yields the same result for every value. If so returns the common 449 /// value, otherwise returns null. 450 static Value *ThreadBinOpOverPHI(unsigned Opcode, Value *LHS, Value *RHS, 451 const Query &Q, unsigned MaxRecurse) { 452 // Recursion is always used, so bail out at once if we already hit the limit. 453 if (!MaxRecurse--) 454 return nullptr; 455 456 PHINode *PI; 457 if (isa<PHINode>(LHS)) { 458 PI = cast<PHINode>(LHS); 459 // Bail out if RHS and the phi may be mutually interdependent due to a loop. 460 if (!ValueDominatesPHI(RHS, PI, Q.DT)) 461 return nullptr; 462 } else { 463 assert(isa<PHINode>(RHS) && "No PHI instruction operand!"); 464 PI = cast<PHINode>(RHS); 465 // Bail out if LHS and the phi may be mutually interdependent due to a loop. 466 if (!ValueDominatesPHI(LHS, PI, Q.DT)) 467 return nullptr; 468 } 469 470 // Evaluate the BinOp on the incoming phi values. 471 Value *CommonValue = nullptr; 472 for (Value *Incoming : PI->incoming_values()) { 473 // If the incoming value is the phi node itself, it can safely be skipped. 474 if (Incoming == PI) continue; 475 Value *V = PI == LHS ? 476 SimplifyBinOp(Opcode, Incoming, RHS, Q, MaxRecurse) : 477 SimplifyBinOp(Opcode, LHS, Incoming, Q, MaxRecurse); 478 // If the operation failed to simplify, or simplified to a different value 479 // to previously, then give up. 480 if (!V || (CommonValue && V != CommonValue)) 481 return nullptr; 482 CommonValue = V; 483 } 484 485 return CommonValue; 486 } 487 488 /// In the case of a comparison with a PHI instruction, try to simplify the 489 /// comparison by seeing whether comparing with all of the incoming phi values 490 /// yields the same result every time. If so returns the common result, 491 /// otherwise returns null. 492 static Value *ThreadCmpOverPHI(CmpInst::Predicate Pred, Value *LHS, Value *RHS, 493 const Query &Q, unsigned MaxRecurse) { 494 // Recursion is always used, so bail out at once if we already hit the limit. 495 if (!MaxRecurse--) 496 return nullptr; 497 498 // Make sure the phi is on the LHS. 499 if (!isa<PHINode>(LHS)) { 500 std::swap(LHS, RHS); 501 Pred = CmpInst::getSwappedPredicate(Pred); 502 } 503 assert(isa<PHINode>(LHS) && "Not comparing with a phi instruction!"); 504 PHINode *PI = cast<PHINode>(LHS); 505 506 // Bail out if RHS and the phi may be mutually interdependent due to a loop. 507 if (!ValueDominatesPHI(RHS, PI, Q.DT)) 508 return nullptr; 509 510 // Evaluate the BinOp on the incoming phi values. 511 Value *CommonValue = nullptr; 512 for (Value *Incoming : PI->incoming_values()) { 513 // If the incoming value is the phi node itself, it can safely be skipped. 514 if (Incoming == PI) continue; 515 Value *V = SimplifyCmpInst(Pred, Incoming, RHS, Q, MaxRecurse); 516 // If the operation failed to simplify, or simplified to a different value 517 // to previously, then give up. 518 if (!V || (CommonValue && V != CommonValue)) 519 return nullptr; 520 CommonValue = V; 521 } 522 523 return CommonValue; 524 } 525 526 /// Given operands for an Add, see if we can fold the result. 527 /// If not, this returns null. 528 static Value *SimplifyAddInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, 529 const Query &Q, unsigned MaxRecurse) { 530 if (Constant *CLHS = dyn_cast<Constant>(Op0)) { 531 if (Constant *CRHS = dyn_cast<Constant>(Op1)) 532 return ConstantFoldBinaryOpOperands(Instruction::Add, CLHS, CRHS, Q.DL); 533 534 // Canonicalize the constant to the RHS. 535 std::swap(Op0, Op1); 536 } 537 538 // X + undef -> undef 539 if (match(Op1, m_Undef())) 540 return Op1; 541 542 // X + 0 -> X 543 if (match(Op1, m_Zero())) 544 return Op0; 545 546 // X + (Y - X) -> Y 547 // (Y - X) + X -> Y 548 // Eg: X + -X -> 0 549 Value *Y = nullptr; 550 if (match(Op1, m_Sub(m_Value(Y), m_Specific(Op0))) || 551 match(Op0, m_Sub(m_Value(Y), m_Specific(Op1)))) 552 return Y; 553 554 // X + ~X -> -1 since ~X = -X-1 555 if (match(Op0, m_Not(m_Specific(Op1))) || 556 match(Op1, m_Not(m_Specific(Op0)))) 557 return Constant::getAllOnesValue(Op0->getType()); 558 559 /// i1 add -> xor. 560 if (MaxRecurse && Op0->getType()->isIntegerTy(1)) 561 if (Value *V = SimplifyXorInst(Op0, Op1, Q, MaxRecurse-1)) 562 return V; 563 564 // Try some generic simplifications for associative operations. 565 if (Value *V = SimplifyAssociativeBinOp(Instruction::Add, Op0, Op1, Q, 566 MaxRecurse)) 567 return V; 568 569 // Threading Add over selects and phi nodes is pointless, so don't bother. 570 // Threading over the select in "A + select(cond, B, C)" means evaluating 571 // "A+B" and "A+C" and seeing if they are equal; but they are equal if and 572 // only if B and C are equal. If B and C are equal then (since we assume 573 // that operands have already been simplified) "select(cond, B, C)" should 574 // have been simplified to the common value of B and C already. Analysing 575 // "A+B" and "A+C" thus gains nothing, but costs compile time. Similarly 576 // for threading over phi nodes. 577 578 return nullptr; 579 } 580 581 Value *llvm::SimplifyAddInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, 582 const DataLayout &DL, const TargetLibraryInfo *TLI, 583 const DominatorTree *DT, AssumptionCache *AC, 584 const Instruction *CxtI) { 585 return ::SimplifyAddInst(Op0, Op1, isNSW, isNUW, Query(DL, TLI, DT, AC, CxtI), 586 RecursionLimit); 587 } 588 589 /// \brief Compute the base pointer and cumulative constant offsets for V. 590 /// 591 /// This strips all constant offsets off of V, leaving it the base pointer, and 592 /// accumulates the total constant offset applied in the returned constant. It 593 /// returns 0 if V is not a pointer, and returns the constant '0' if there are 594 /// no constant offsets applied. 595 /// 596 /// This is very similar to GetPointerBaseWithConstantOffset except it doesn't 597 /// follow non-inbounds geps. This allows it to remain usable for icmp ult/etc. 598 /// folding. 599 static Constant *stripAndComputeConstantOffsets(const DataLayout &DL, Value *&V, 600 bool AllowNonInbounds = false) { 601 assert(V->getType()->getScalarType()->isPointerTy()); 602 603 Type *IntPtrTy = DL.getIntPtrType(V->getType())->getScalarType(); 604 APInt Offset = APInt::getNullValue(IntPtrTy->getIntegerBitWidth()); 605 606 // Even though we don't look through PHI nodes, we could be called on an 607 // instruction in an unreachable block, which may be on a cycle. 608 SmallPtrSet<Value *, 4> Visited; 609 Visited.insert(V); 610 do { 611 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 612 if ((!AllowNonInbounds && !GEP->isInBounds()) || 613 !GEP->accumulateConstantOffset(DL, Offset)) 614 break; 615 V = GEP->getPointerOperand(); 616 } else if (Operator::getOpcode(V) == Instruction::BitCast) { 617 V = cast<Operator>(V)->getOperand(0); 618 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 619 if (GA->isInterposable()) 620 break; 621 V = GA->getAliasee(); 622 } else { 623 break; 624 } 625 assert(V->getType()->getScalarType()->isPointerTy() && 626 "Unexpected operand type!"); 627 } while (Visited.insert(V).second); 628 629 Constant *OffsetIntPtr = ConstantInt::get(IntPtrTy, Offset); 630 if (V->getType()->isVectorTy()) 631 return ConstantVector::getSplat(V->getType()->getVectorNumElements(), 632 OffsetIntPtr); 633 return OffsetIntPtr; 634 } 635 636 /// \brief Compute the constant difference between two pointer values. 637 /// If the difference is not a constant, returns zero. 638 static Constant *computePointerDifference(const DataLayout &DL, Value *LHS, 639 Value *RHS) { 640 Constant *LHSOffset = stripAndComputeConstantOffsets(DL, LHS); 641 Constant *RHSOffset = stripAndComputeConstantOffsets(DL, RHS); 642 643 // If LHS and RHS are not related via constant offsets to the same base 644 // value, there is nothing we can do here. 645 if (LHS != RHS) 646 return nullptr; 647 648 // Otherwise, the difference of LHS - RHS can be computed as: 649 // LHS - RHS 650 // = (LHSOffset + Base) - (RHSOffset + Base) 651 // = LHSOffset - RHSOffset 652 return ConstantExpr::getSub(LHSOffset, RHSOffset); 653 } 654 655 /// Given operands for a Sub, see if we can fold the result. 656 /// If not, this returns null. 657 static Value *SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, 658 const Query &Q, unsigned MaxRecurse) { 659 if (Constant *CLHS = dyn_cast<Constant>(Op0)) 660 if (Constant *CRHS = dyn_cast<Constant>(Op1)) 661 return ConstantFoldBinaryOpOperands(Instruction::Sub, CLHS, CRHS, Q.DL); 662 663 // X - undef -> undef 664 // undef - X -> undef 665 if (match(Op0, m_Undef()) || match(Op1, m_Undef())) 666 return UndefValue::get(Op0->getType()); 667 668 // X - 0 -> X 669 if (match(Op1, m_Zero())) 670 return Op0; 671 672 // X - X -> 0 673 if (Op0 == Op1) 674 return Constant::getNullValue(Op0->getType()); 675 676 // 0 - X -> 0 if the sub is NUW. 677 if (isNUW && match(Op0, m_Zero())) 678 return Op0; 679 680 // (X + Y) - Z -> X + (Y - Z) or Y + (X - Z) if everything simplifies. 681 // For example, (X + Y) - Y -> X; (Y + X) - Y -> X 682 Value *X = nullptr, *Y = nullptr, *Z = Op1; 683 if (MaxRecurse && match(Op0, m_Add(m_Value(X), m_Value(Y)))) { // (X + Y) - Z 684 // See if "V === Y - Z" simplifies. 685 if (Value *V = SimplifyBinOp(Instruction::Sub, Y, Z, Q, MaxRecurse-1)) 686 // It does! Now see if "X + V" simplifies. 687 if (Value *W = SimplifyBinOp(Instruction::Add, X, V, Q, MaxRecurse-1)) { 688 // It does, we successfully reassociated! 689 ++NumReassoc; 690 return W; 691 } 692 // See if "V === X - Z" simplifies. 693 if (Value *V = SimplifyBinOp(Instruction::Sub, X, Z, Q, MaxRecurse-1)) 694 // It does! Now see if "Y + V" simplifies. 695 if (Value *W = SimplifyBinOp(Instruction::Add, Y, V, Q, MaxRecurse-1)) { 696 // It does, we successfully reassociated! 697 ++NumReassoc; 698 return W; 699 } 700 } 701 702 // X - (Y + Z) -> (X - Y) - Z or (X - Z) - Y if everything simplifies. 703 // For example, X - (X + 1) -> -1 704 X = Op0; 705 if (MaxRecurse && match(Op1, m_Add(m_Value(Y), m_Value(Z)))) { // X - (Y + Z) 706 // See if "V === X - Y" simplifies. 707 if (Value *V = SimplifyBinOp(Instruction::Sub, X, Y, Q, MaxRecurse-1)) 708 // It does! Now see if "V - Z" simplifies. 709 if (Value *W = SimplifyBinOp(Instruction::Sub, V, Z, Q, MaxRecurse-1)) { 710 // It does, we successfully reassociated! 711 ++NumReassoc; 712 return W; 713 } 714 // See if "V === X - Z" simplifies. 715 if (Value *V = SimplifyBinOp(Instruction::Sub, X, Z, Q, MaxRecurse-1)) 716 // It does! Now see if "V - Y" simplifies. 717 if (Value *W = SimplifyBinOp(Instruction::Sub, V, Y, Q, MaxRecurse-1)) { 718 // It does, we successfully reassociated! 719 ++NumReassoc; 720 return W; 721 } 722 } 723 724 // Z - (X - Y) -> (Z - X) + Y if everything simplifies. 725 // For example, X - (X - Y) -> Y. 726 Z = Op0; 727 if (MaxRecurse && match(Op1, m_Sub(m_Value(X), m_Value(Y)))) // Z - (X - Y) 728 // See if "V === Z - X" simplifies. 729 if (Value *V = SimplifyBinOp(Instruction::Sub, Z, X, Q, MaxRecurse-1)) 730 // It does! Now see if "V + Y" simplifies. 731 if (Value *W = SimplifyBinOp(Instruction::Add, V, Y, Q, MaxRecurse-1)) { 732 // It does, we successfully reassociated! 733 ++NumReassoc; 734 return W; 735 } 736 737 // trunc(X) - trunc(Y) -> trunc(X - Y) if everything simplifies. 738 if (MaxRecurse && match(Op0, m_Trunc(m_Value(X))) && 739 match(Op1, m_Trunc(m_Value(Y)))) 740 if (X->getType() == Y->getType()) 741 // See if "V === X - Y" simplifies. 742 if (Value *V = SimplifyBinOp(Instruction::Sub, X, Y, Q, MaxRecurse-1)) 743 // It does! Now see if "trunc V" simplifies. 744 if (Value *W = SimplifyTruncInst(V, Op0->getType(), Q, MaxRecurse-1)) 745 // It does, return the simplified "trunc V". 746 return W; 747 748 // Variations on GEP(base, I, ...) - GEP(base, i, ...) -> GEP(null, I-i, ...). 749 if (match(Op0, m_PtrToInt(m_Value(X))) && 750 match(Op1, m_PtrToInt(m_Value(Y)))) 751 if (Constant *Result = computePointerDifference(Q.DL, X, Y)) 752 return ConstantExpr::getIntegerCast(Result, Op0->getType(), true); 753 754 // i1 sub -> xor. 755 if (MaxRecurse && Op0->getType()->isIntegerTy(1)) 756 if (Value *V = SimplifyXorInst(Op0, Op1, Q, MaxRecurse-1)) 757 return V; 758 759 // Threading Sub over selects and phi nodes is pointless, so don't bother. 760 // Threading over the select in "A - select(cond, B, C)" means evaluating 761 // "A-B" and "A-C" and seeing if they are equal; but they are equal if and 762 // only if B and C are equal. If B and C are equal then (since we assume 763 // that operands have already been simplified) "select(cond, B, C)" should 764 // have been simplified to the common value of B and C already. Analysing 765 // "A-B" and "A-C" thus gains nothing, but costs compile time. Similarly 766 // for threading over phi nodes. 767 768 return nullptr; 769 } 770 771 Value *llvm::SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, 772 const DataLayout &DL, const TargetLibraryInfo *TLI, 773 const DominatorTree *DT, AssumptionCache *AC, 774 const Instruction *CxtI) { 775 return ::SimplifySubInst(Op0, Op1, isNSW, isNUW, Query(DL, TLI, DT, AC, CxtI), 776 RecursionLimit); 777 } 778 779 /// Given operands for an FAdd, see if we can fold the result. If not, this 780 /// returns null. 781 static Value *SimplifyFAddInst(Value *Op0, Value *Op1, FastMathFlags FMF, 782 const Query &Q, unsigned MaxRecurse) { 783 if (Constant *CLHS = dyn_cast<Constant>(Op0)) { 784 if (Constant *CRHS = dyn_cast<Constant>(Op1)) 785 return ConstantFoldBinaryOpOperands(Instruction::FAdd, CLHS, CRHS, Q.DL); 786 787 // Canonicalize the constant to the RHS. 788 std::swap(Op0, Op1); 789 } 790 791 // fadd X, -0 ==> X 792 if (match(Op1, m_NegZero())) 793 return Op0; 794 795 // fadd X, 0 ==> X, when we know X is not -0 796 if (match(Op1, m_Zero()) && 797 (FMF.noSignedZeros() || CannotBeNegativeZero(Op0))) 798 return Op0; 799 800 // fadd [nnan ninf] X, (fsub [nnan ninf] 0, X) ==> 0 801 // where nnan and ninf have to occur at least once somewhere in this 802 // expression 803 Value *SubOp = nullptr; 804 if (match(Op1, m_FSub(m_AnyZero(), m_Specific(Op0)))) 805 SubOp = Op1; 806 else if (match(Op0, m_FSub(m_AnyZero(), m_Specific(Op1)))) 807 SubOp = Op0; 808 if (SubOp) { 809 Instruction *FSub = cast<Instruction>(SubOp); 810 if ((FMF.noNaNs() || FSub->hasNoNaNs()) && 811 (FMF.noInfs() || FSub->hasNoInfs())) 812 return Constant::getNullValue(Op0->getType()); 813 } 814 815 return nullptr; 816 } 817 818 /// Given operands for an FSub, see if we can fold the result. If not, this 819 /// returns null. 820 static Value *SimplifyFSubInst(Value *Op0, Value *Op1, FastMathFlags FMF, 821 const Query &Q, unsigned MaxRecurse) { 822 if (Constant *CLHS = dyn_cast<Constant>(Op0)) { 823 if (Constant *CRHS = dyn_cast<Constant>(Op1)) 824 return ConstantFoldBinaryOpOperands(Instruction::FSub, CLHS, CRHS, Q.DL); 825 } 826 827 // fsub X, 0 ==> X 828 if (match(Op1, m_Zero())) 829 return Op0; 830 831 // fsub X, -0 ==> X, when we know X is not -0 832 if (match(Op1, m_NegZero()) && 833 (FMF.noSignedZeros() || CannotBeNegativeZero(Op0))) 834 return Op0; 835 836 // fsub -0.0, (fsub -0.0, X) ==> X 837 Value *X; 838 if (match(Op0, m_NegZero()) && match(Op1, m_FSub(m_NegZero(), m_Value(X)))) 839 return X; 840 841 // fsub 0.0, (fsub 0.0, X) ==> X if signed zeros are ignored. 842 if (FMF.noSignedZeros() && match(Op0, m_AnyZero()) && 843 match(Op1, m_FSub(m_AnyZero(), m_Value(X)))) 844 return X; 845 846 // fsub nnan x, x ==> 0.0 847 if (FMF.noNaNs() && Op0 == Op1) 848 return Constant::getNullValue(Op0->getType()); 849 850 return nullptr; 851 } 852 853 /// Given the operands for an FMul, see if we can fold the result 854 static Value *SimplifyFMulInst(Value *Op0, Value *Op1, 855 FastMathFlags FMF, 856 const Query &Q, 857 unsigned MaxRecurse) { 858 if (Constant *CLHS = dyn_cast<Constant>(Op0)) { 859 if (Constant *CRHS = dyn_cast<Constant>(Op1)) 860 return ConstantFoldBinaryOpOperands(Instruction::FMul, CLHS, CRHS, Q.DL); 861 862 // Canonicalize the constant to the RHS. 863 std::swap(Op0, Op1); 864 } 865 866 // fmul X, 1.0 ==> X 867 if (match(Op1, m_FPOne())) 868 return Op0; 869 870 // fmul nnan nsz X, 0 ==> 0 871 if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op1, m_AnyZero())) 872 return Op1; 873 874 return nullptr; 875 } 876 877 /// Given operands for a Mul, see if we can fold the result. 878 /// If not, this returns null. 879 static Value *SimplifyMulInst(Value *Op0, Value *Op1, const Query &Q, 880 unsigned MaxRecurse) { 881 if (Constant *CLHS = dyn_cast<Constant>(Op0)) { 882 if (Constant *CRHS = dyn_cast<Constant>(Op1)) 883 return ConstantFoldBinaryOpOperands(Instruction::Mul, CLHS, CRHS, Q.DL); 884 885 // Canonicalize the constant to the RHS. 886 std::swap(Op0, Op1); 887 } 888 889 // X * undef -> 0 890 if (match(Op1, m_Undef())) 891 return Constant::getNullValue(Op0->getType()); 892 893 // X * 0 -> 0 894 if (match(Op1, m_Zero())) 895 return Op1; 896 897 // X * 1 -> X 898 if (match(Op1, m_One())) 899 return Op0; 900 901 // (X / Y) * Y -> X if the division is exact. 902 Value *X = nullptr; 903 if (match(Op0, m_Exact(m_IDiv(m_Value(X), m_Specific(Op1)))) || // (X / Y) * Y 904 match(Op1, m_Exact(m_IDiv(m_Value(X), m_Specific(Op0))))) // Y * (X / Y) 905 return X; 906 907 // i1 mul -> and. 908 if (MaxRecurse && Op0->getType()->isIntegerTy(1)) 909 if (Value *V = SimplifyAndInst(Op0, Op1, Q, MaxRecurse-1)) 910 return V; 911 912 // Try some generic simplifications for associative operations. 913 if (Value *V = SimplifyAssociativeBinOp(Instruction::Mul, Op0, Op1, Q, 914 MaxRecurse)) 915 return V; 916 917 // Mul distributes over Add. Try some generic simplifications based on this. 918 if (Value *V = ExpandBinOp(Instruction::Mul, Op0, Op1, Instruction::Add, 919 Q, MaxRecurse)) 920 return V; 921 922 // If the operation is with the result of a select instruction, check whether 923 // operating on either branch of the select always yields the same value. 924 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 925 if (Value *V = ThreadBinOpOverSelect(Instruction::Mul, Op0, Op1, Q, 926 MaxRecurse)) 927 return V; 928 929 // If the operation is with the result of a phi instruction, check whether 930 // operating on all incoming values of the phi always yields the same value. 931 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 932 if (Value *V = ThreadBinOpOverPHI(Instruction::Mul, Op0, Op1, Q, 933 MaxRecurse)) 934 return V; 935 936 return nullptr; 937 } 938 939 Value *llvm::SimplifyFAddInst(Value *Op0, Value *Op1, FastMathFlags FMF, 940 const DataLayout &DL, 941 const TargetLibraryInfo *TLI, 942 const DominatorTree *DT, AssumptionCache *AC, 943 const Instruction *CxtI) { 944 return ::SimplifyFAddInst(Op0, Op1, FMF, Query(DL, TLI, DT, AC, CxtI), 945 RecursionLimit); 946 } 947 948 Value *llvm::SimplifyFSubInst(Value *Op0, Value *Op1, FastMathFlags FMF, 949 const DataLayout &DL, 950 const TargetLibraryInfo *TLI, 951 const DominatorTree *DT, AssumptionCache *AC, 952 const Instruction *CxtI) { 953 return ::SimplifyFSubInst(Op0, Op1, FMF, Query(DL, TLI, DT, AC, CxtI), 954 RecursionLimit); 955 } 956 957 Value *llvm::SimplifyFMulInst(Value *Op0, Value *Op1, FastMathFlags FMF, 958 const DataLayout &DL, 959 const TargetLibraryInfo *TLI, 960 const DominatorTree *DT, AssumptionCache *AC, 961 const Instruction *CxtI) { 962 return ::SimplifyFMulInst(Op0, Op1, FMF, Query(DL, TLI, DT, AC, CxtI), 963 RecursionLimit); 964 } 965 966 Value *llvm::SimplifyMulInst(Value *Op0, Value *Op1, const DataLayout &DL, 967 const TargetLibraryInfo *TLI, 968 const DominatorTree *DT, AssumptionCache *AC, 969 const Instruction *CxtI) { 970 return ::SimplifyMulInst(Op0, Op1, Query(DL, TLI, DT, AC, CxtI), 971 RecursionLimit); 972 } 973 974 /// Given operands for an SDiv or UDiv, see if we can fold the result. 975 /// If not, this returns null. 976 static Value *SimplifyDiv(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1, 977 const Query &Q, unsigned MaxRecurse) { 978 if (Constant *C0 = dyn_cast<Constant>(Op0)) 979 if (Constant *C1 = dyn_cast<Constant>(Op1)) 980 return ConstantFoldBinaryOpOperands(Opcode, C0, C1, Q.DL); 981 982 bool isSigned = Opcode == Instruction::SDiv; 983 984 // X / undef -> undef 985 if (match(Op1, m_Undef())) 986 return Op1; 987 988 // X / 0 -> undef, we don't need to preserve faults! 989 if (match(Op1, m_Zero())) 990 return UndefValue::get(Op1->getType()); 991 992 // undef / X -> 0 993 if (match(Op0, m_Undef())) 994 return Constant::getNullValue(Op0->getType()); 995 996 // 0 / X -> 0, we don't need to preserve faults! 997 if (match(Op0, m_Zero())) 998 return Op0; 999 1000 // X / 1 -> X 1001 if (match(Op1, m_One())) 1002 return Op0; 1003 1004 if (Op0->getType()->isIntegerTy(1)) 1005 // It can't be division by zero, hence it must be division by one. 1006 return Op0; 1007 1008 // X / X -> 1 1009 if (Op0 == Op1) 1010 return ConstantInt::get(Op0->getType(), 1); 1011 1012 // (X * Y) / Y -> X if the multiplication does not overflow. 1013 Value *X = nullptr, *Y = nullptr; 1014 if (match(Op0, m_Mul(m_Value(X), m_Value(Y))) && (X == Op1 || Y == Op1)) { 1015 if (Y != Op1) std::swap(X, Y); // Ensure expression is (X * Y) / Y, Y = Op1 1016 OverflowingBinaryOperator *Mul = cast<OverflowingBinaryOperator>(Op0); 1017 // If the Mul knows it does not overflow, then we are good to go. 1018 if ((isSigned && Mul->hasNoSignedWrap()) || 1019 (!isSigned && Mul->hasNoUnsignedWrap())) 1020 return X; 1021 // If X has the form X = A / Y then X * Y cannot overflow. 1022 if (BinaryOperator *Div = dyn_cast<BinaryOperator>(X)) 1023 if (Div->getOpcode() == Opcode && Div->getOperand(1) == Y) 1024 return X; 1025 } 1026 1027 // (X rem Y) / Y -> 0 1028 if ((isSigned && match(Op0, m_SRem(m_Value(), m_Specific(Op1)))) || 1029 (!isSigned && match(Op0, m_URem(m_Value(), m_Specific(Op1))))) 1030 return Constant::getNullValue(Op0->getType()); 1031 1032 // (X /u C1) /u C2 -> 0 if C1 * C2 overflow 1033 ConstantInt *C1, *C2; 1034 if (!isSigned && match(Op0, m_UDiv(m_Value(X), m_ConstantInt(C1))) && 1035 match(Op1, m_ConstantInt(C2))) { 1036 bool Overflow; 1037 C1->getValue().umul_ov(C2->getValue(), Overflow); 1038 if (Overflow) 1039 return Constant::getNullValue(Op0->getType()); 1040 } 1041 1042 // If the operation is with the result of a select instruction, check whether 1043 // operating on either branch of the select always yields the same value. 1044 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 1045 if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse)) 1046 return V; 1047 1048 // If the operation is with the result of a phi instruction, check whether 1049 // operating on all incoming values of the phi always yields the same value. 1050 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 1051 if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse)) 1052 return V; 1053 1054 return nullptr; 1055 } 1056 1057 /// Given operands for an SDiv, see if we can fold the result. 1058 /// If not, this returns null. 1059 static Value *SimplifySDivInst(Value *Op0, Value *Op1, const Query &Q, 1060 unsigned MaxRecurse) { 1061 if (Value *V = SimplifyDiv(Instruction::SDiv, Op0, Op1, Q, MaxRecurse)) 1062 return V; 1063 1064 return nullptr; 1065 } 1066 1067 Value *llvm::SimplifySDivInst(Value *Op0, Value *Op1, const DataLayout &DL, 1068 const TargetLibraryInfo *TLI, 1069 const DominatorTree *DT, AssumptionCache *AC, 1070 const Instruction *CxtI) { 1071 return ::SimplifySDivInst(Op0, Op1, Query(DL, TLI, DT, AC, CxtI), 1072 RecursionLimit); 1073 } 1074 1075 /// Given operands for a UDiv, see if we can fold the result. 1076 /// If not, this returns null. 1077 static Value *SimplifyUDivInst(Value *Op0, Value *Op1, const Query &Q, 1078 unsigned MaxRecurse) { 1079 if (Value *V = SimplifyDiv(Instruction::UDiv, Op0, Op1, Q, MaxRecurse)) 1080 return V; 1081 1082 return nullptr; 1083 } 1084 1085 Value *llvm::SimplifyUDivInst(Value *Op0, Value *Op1, const DataLayout &DL, 1086 const TargetLibraryInfo *TLI, 1087 const DominatorTree *DT, AssumptionCache *AC, 1088 const Instruction *CxtI) { 1089 return ::SimplifyUDivInst(Op0, Op1, Query(DL, TLI, DT, AC, CxtI), 1090 RecursionLimit); 1091 } 1092 1093 static Value *SimplifyFDivInst(Value *Op0, Value *Op1, FastMathFlags FMF, 1094 const Query &Q, unsigned) { 1095 // undef / X -> undef (the undef could be a snan). 1096 if (match(Op0, m_Undef())) 1097 return Op0; 1098 1099 // X / undef -> undef 1100 if (match(Op1, m_Undef())) 1101 return Op1; 1102 1103 // 0 / X -> 0 1104 // Requires that NaNs are off (X could be zero) and signed zeroes are 1105 // ignored (X could be positive or negative, so the output sign is unknown). 1106 if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op0, m_AnyZero())) 1107 return Op0; 1108 1109 if (FMF.noNaNs()) { 1110 // X / X -> 1.0 is legal when NaNs are ignored. 1111 if (Op0 == Op1) 1112 return ConstantFP::get(Op0->getType(), 1.0); 1113 1114 // -X / X -> -1.0 and 1115 // X / -X -> -1.0 are legal when NaNs are ignored. 1116 // We can ignore signed zeros because +-0.0/+-0.0 is NaN and ignored. 1117 if ((BinaryOperator::isFNeg(Op0, /*IgnoreZeroSign=*/true) && 1118 BinaryOperator::getFNegArgument(Op0) == Op1) || 1119 (BinaryOperator::isFNeg(Op1, /*IgnoreZeroSign=*/true) && 1120 BinaryOperator::getFNegArgument(Op1) == Op0)) 1121 return ConstantFP::get(Op0->getType(), -1.0); 1122 } 1123 1124 return nullptr; 1125 } 1126 1127 Value *llvm::SimplifyFDivInst(Value *Op0, Value *Op1, FastMathFlags FMF, 1128 const DataLayout &DL, 1129 const TargetLibraryInfo *TLI, 1130 const DominatorTree *DT, AssumptionCache *AC, 1131 const Instruction *CxtI) { 1132 return ::SimplifyFDivInst(Op0, Op1, FMF, Query(DL, TLI, DT, AC, CxtI), 1133 RecursionLimit); 1134 } 1135 1136 /// Given operands for an SRem or URem, see if we can fold the result. 1137 /// If not, this returns null. 1138 static Value *SimplifyRem(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1, 1139 const Query &Q, unsigned MaxRecurse) { 1140 if (Constant *C0 = dyn_cast<Constant>(Op0)) 1141 if (Constant *C1 = dyn_cast<Constant>(Op1)) 1142 return ConstantFoldBinaryOpOperands(Opcode, C0, C1, Q.DL); 1143 1144 // X % undef -> undef 1145 if (match(Op1, m_Undef())) 1146 return Op1; 1147 1148 // undef % X -> 0 1149 if (match(Op0, m_Undef())) 1150 return Constant::getNullValue(Op0->getType()); 1151 1152 // 0 % X -> 0, we don't need to preserve faults! 1153 if (match(Op0, m_Zero())) 1154 return Op0; 1155 1156 // X % 0 -> undef, we don't need to preserve faults! 1157 if (match(Op1, m_Zero())) 1158 return UndefValue::get(Op0->getType()); 1159 1160 // X % 1 -> 0 1161 if (match(Op1, m_One())) 1162 return Constant::getNullValue(Op0->getType()); 1163 1164 if (Op0->getType()->isIntegerTy(1)) 1165 // It can't be remainder by zero, hence it must be remainder by one. 1166 return Constant::getNullValue(Op0->getType()); 1167 1168 // X % X -> 0 1169 if (Op0 == Op1) 1170 return Constant::getNullValue(Op0->getType()); 1171 1172 // (X % Y) % Y -> X % Y 1173 if ((Opcode == Instruction::SRem && 1174 match(Op0, m_SRem(m_Value(), m_Specific(Op1)))) || 1175 (Opcode == Instruction::URem && 1176 match(Op0, m_URem(m_Value(), m_Specific(Op1))))) 1177 return Op0; 1178 1179 // If the operation is with the result of a select instruction, check whether 1180 // operating on either branch of the select always yields the same value. 1181 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 1182 if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse)) 1183 return V; 1184 1185 // If the operation is with the result of a phi instruction, check whether 1186 // operating on all incoming values of the phi always yields the same value. 1187 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 1188 if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse)) 1189 return V; 1190 1191 return nullptr; 1192 } 1193 1194 /// Given operands for an SRem, see if we can fold the result. 1195 /// If not, this returns null. 1196 static Value *SimplifySRemInst(Value *Op0, Value *Op1, const Query &Q, 1197 unsigned MaxRecurse) { 1198 if (Value *V = SimplifyRem(Instruction::SRem, Op0, Op1, Q, MaxRecurse)) 1199 return V; 1200 1201 return nullptr; 1202 } 1203 1204 Value *llvm::SimplifySRemInst(Value *Op0, Value *Op1, const DataLayout &DL, 1205 const TargetLibraryInfo *TLI, 1206 const DominatorTree *DT, AssumptionCache *AC, 1207 const Instruction *CxtI) { 1208 return ::SimplifySRemInst(Op0, Op1, Query(DL, TLI, DT, AC, CxtI), 1209 RecursionLimit); 1210 } 1211 1212 /// Given operands for a URem, see if we can fold the result. 1213 /// If not, this returns null. 1214 static Value *SimplifyURemInst(Value *Op0, Value *Op1, const Query &Q, 1215 unsigned MaxRecurse) { 1216 if (Value *V = SimplifyRem(Instruction::URem, Op0, Op1, Q, MaxRecurse)) 1217 return V; 1218 1219 return nullptr; 1220 } 1221 1222 Value *llvm::SimplifyURemInst(Value *Op0, Value *Op1, const DataLayout &DL, 1223 const TargetLibraryInfo *TLI, 1224 const DominatorTree *DT, AssumptionCache *AC, 1225 const Instruction *CxtI) { 1226 return ::SimplifyURemInst(Op0, Op1, Query(DL, TLI, DT, AC, CxtI), 1227 RecursionLimit); 1228 } 1229 1230 static Value *SimplifyFRemInst(Value *Op0, Value *Op1, FastMathFlags FMF, 1231 const Query &, unsigned) { 1232 // undef % X -> undef (the undef could be a snan). 1233 if (match(Op0, m_Undef())) 1234 return Op0; 1235 1236 // X % undef -> undef 1237 if (match(Op1, m_Undef())) 1238 return Op1; 1239 1240 // 0 % X -> 0 1241 // Requires that NaNs are off (X could be zero) and signed zeroes are 1242 // ignored (X could be positive or negative, so the output sign is unknown). 1243 if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op0, m_AnyZero())) 1244 return Op0; 1245 1246 return nullptr; 1247 } 1248 1249 Value *llvm::SimplifyFRemInst(Value *Op0, Value *Op1, FastMathFlags FMF, 1250 const DataLayout &DL, 1251 const TargetLibraryInfo *TLI, 1252 const DominatorTree *DT, AssumptionCache *AC, 1253 const Instruction *CxtI) { 1254 return ::SimplifyFRemInst(Op0, Op1, FMF, Query(DL, TLI, DT, AC, CxtI), 1255 RecursionLimit); 1256 } 1257 1258 /// Returns true if a shift by \c Amount always yields undef. 1259 static bool isUndefShift(Value *Amount) { 1260 Constant *C = dyn_cast<Constant>(Amount); 1261 if (!C) 1262 return false; 1263 1264 // X shift by undef -> undef because it may shift by the bitwidth. 1265 if (isa<UndefValue>(C)) 1266 return true; 1267 1268 // Shifting by the bitwidth or more is undefined. 1269 if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1270 if (CI->getValue().getLimitedValue() >= 1271 CI->getType()->getScalarSizeInBits()) 1272 return true; 1273 1274 // If all lanes of a vector shift are undefined the whole shift is. 1275 if (isa<ConstantVector>(C) || isa<ConstantDataVector>(C)) { 1276 for (unsigned I = 0, E = C->getType()->getVectorNumElements(); I != E; ++I) 1277 if (!isUndefShift(C->getAggregateElement(I))) 1278 return false; 1279 return true; 1280 } 1281 1282 return false; 1283 } 1284 1285 /// Given operands for an Shl, LShr or AShr, see if we can fold the result. 1286 /// If not, this returns null. 1287 static Value *SimplifyShift(unsigned Opcode, Value *Op0, Value *Op1, 1288 const Query &Q, unsigned MaxRecurse) { 1289 if (Constant *C0 = dyn_cast<Constant>(Op0)) 1290 if (Constant *C1 = dyn_cast<Constant>(Op1)) 1291 return ConstantFoldBinaryOpOperands(Opcode, C0, C1, Q.DL); 1292 1293 // 0 shift by X -> 0 1294 if (match(Op0, m_Zero())) 1295 return Op0; 1296 1297 // X shift by 0 -> X 1298 if (match(Op1, m_Zero())) 1299 return Op0; 1300 1301 // Fold undefined shifts. 1302 if (isUndefShift(Op1)) 1303 return UndefValue::get(Op0->getType()); 1304 1305 // If the operation is with the result of a select instruction, check whether 1306 // operating on either branch of the select always yields the same value. 1307 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 1308 if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse)) 1309 return V; 1310 1311 // If the operation is with the result of a phi instruction, check whether 1312 // operating on all incoming values of the phi always yields the same value. 1313 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 1314 if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse)) 1315 return V; 1316 1317 return nullptr; 1318 } 1319 1320 /// \brief Given operands for an Shl, LShr or AShr, see if we can 1321 /// fold the result. If not, this returns null. 1322 static Value *SimplifyRightShift(unsigned Opcode, Value *Op0, Value *Op1, 1323 bool isExact, const Query &Q, 1324 unsigned MaxRecurse) { 1325 if (Value *V = SimplifyShift(Opcode, Op0, Op1, Q, MaxRecurse)) 1326 return V; 1327 1328 // X >> X -> 0 1329 if (Op0 == Op1) 1330 return Constant::getNullValue(Op0->getType()); 1331 1332 // undef >> X -> 0 1333 // undef >> X -> undef (if it's exact) 1334 if (match(Op0, m_Undef())) 1335 return isExact ? Op0 : Constant::getNullValue(Op0->getType()); 1336 1337 // The low bit cannot be shifted out of an exact shift if it is set. 1338 if (isExact) { 1339 unsigned BitWidth = Op0->getType()->getScalarSizeInBits(); 1340 APInt Op0KnownZero(BitWidth, 0); 1341 APInt Op0KnownOne(BitWidth, 0); 1342 computeKnownBits(Op0, Op0KnownZero, Op0KnownOne, Q.DL, /*Depth=*/0, Q.AC, 1343 Q.CxtI, Q.DT); 1344 if (Op0KnownOne[0]) 1345 return Op0; 1346 } 1347 1348 return nullptr; 1349 } 1350 1351 /// Given operands for an Shl, see if we can fold the result. 1352 /// If not, this returns null. 1353 static Value *SimplifyShlInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, 1354 const Query &Q, unsigned MaxRecurse) { 1355 if (Value *V = SimplifyShift(Instruction::Shl, Op0, Op1, Q, MaxRecurse)) 1356 return V; 1357 1358 // undef << X -> 0 1359 // undef << X -> undef if (if it's NSW/NUW) 1360 if (match(Op0, m_Undef())) 1361 return isNSW || isNUW ? Op0 : Constant::getNullValue(Op0->getType()); 1362 1363 // (X >> A) << A -> X 1364 Value *X; 1365 if (match(Op0, m_Exact(m_Shr(m_Value(X), m_Specific(Op1))))) 1366 return X; 1367 return nullptr; 1368 } 1369 1370 Value *llvm::SimplifyShlInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, 1371 const DataLayout &DL, const TargetLibraryInfo *TLI, 1372 const DominatorTree *DT, AssumptionCache *AC, 1373 const Instruction *CxtI) { 1374 return ::SimplifyShlInst(Op0, Op1, isNSW, isNUW, Query(DL, TLI, DT, AC, CxtI), 1375 RecursionLimit); 1376 } 1377 1378 /// Given operands for an LShr, see if we can fold the result. 1379 /// If not, this returns null. 1380 static Value *SimplifyLShrInst(Value *Op0, Value *Op1, bool isExact, 1381 const Query &Q, unsigned MaxRecurse) { 1382 if (Value *V = SimplifyRightShift(Instruction::LShr, Op0, Op1, isExact, Q, 1383 MaxRecurse)) 1384 return V; 1385 1386 // (X << A) >> A -> X 1387 Value *X; 1388 if (match(Op0, m_NUWShl(m_Value(X), m_Specific(Op1)))) 1389 return X; 1390 1391 return nullptr; 1392 } 1393 1394 Value *llvm::SimplifyLShrInst(Value *Op0, Value *Op1, bool isExact, 1395 const DataLayout &DL, 1396 const TargetLibraryInfo *TLI, 1397 const DominatorTree *DT, AssumptionCache *AC, 1398 const Instruction *CxtI) { 1399 return ::SimplifyLShrInst(Op0, Op1, isExact, Query(DL, TLI, DT, AC, CxtI), 1400 RecursionLimit); 1401 } 1402 1403 /// Given operands for an AShr, see if we can fold the result. 1404 /// If not, this returns null. 1405 static Value *SimplifyAShrInst(Value *Op0, Value *Op1, bool isExact, 1406 const Query &Q, unsigned MaxRecurse) { 1407 if (Value *V = SimplifyRightShift(Instruction::AShr, Op0, Op1, isExact, Q, 1408 MaxRecurse)) 1409 return V; 1410 1411 // all ones >>a X -> all ones 1412 if (match(Op0, m_AllOnes())) 1413 return Op0; 1414 1415 // (X << A) >> A -> X 1416 Value *X; 1417 if (match(Op0, m_NSWShl(m_Value(X), m_Specific(Op1)))) 1418 return X; 1419 1420 // Arithmetic shifting an all-sign-bit value is a no-op. 1421 unsigned NumSignBits = ComputeNumSignBits(Op0, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 1422 if (NumSignBits == Op0->getType()->getScalarSizeInBits()) 1423 return Op0; 1424 1425 return nullptr; 1426 } 1427 1428 Value *llvm::SimplifyAShrInst(Value *Op0, Value *Op1, bool isExact, 1429 const DataLayout &DL, 1430 const TargetLibraryInfo *TLI, 1431 const DominatorTree *DT, AssumptionCache *AC, 1432 const Instruction *CxtI) { 1433 return ::SimplifyAShrInst(Op0, Op1, isExact, Query(DL, TLI, DT, AC, CxtI), 1434 RecursionLimit); 1435 } 1436 1437 static Value *simplifyUnsignedRangeCheck(ICmpInst *ZeroICmp, 1438 ICmpInst *UnsignedICmp, bool IsAnd) { 1439 Value *X, *Y; 1440 1441 ICmpInst::Predicate EqPred; 1442 if (!match(ZeroICmp, m_ICmp(EqPred, m_Value(Y), m_Zero())) || 1443 !ICmpInst::isEquality(EqPred)) 1444 return nullptr; 1445 1446 ICmpInst::Predicate UnsignedPred; 1447 if (match(UnsignedICmp, m_ICmp(UnsignedPred, m_Value(X), m_Specific(Y))) && 1448 ICmpInst::isUnsigned(UnsignedPred)) 1449 ; 1450 else if (match(UnsignedICmp, 1451 m_ICmp(UnsignedPred, m_Value(Y), m_Specific(X))) && 1452 ICmpInst::isUnsigned(UnsignedPred)) 1453 UnsignedPred = ICmpInst::getSwappedPredicate(UnsignedPred); 1454 else 1455 return nullptr; 1456 1457 // X < Y && Y != 0 --> X < Y 1458 // X < Y || Y != 0 --> Y != 0 1459 if (UnsignedPred == ICmpInst::ICMP_ULT && EqPred == ICmpInst::ICMP_NE) 1460 return IsAnd ? UnsignedICmp : ZeroICmp; 1461 1462 // X >= Y || Y != 0 --> true 1463 // X >= Y || Y == 0 --> X >= Y 1464 if (UnsignedPred == ICmpInst::ICMP_UGE && !IsAnd) { 1465 if (EqPred == ICmpInst::ICMP_NE) 1466 return getTrue(UnsignedICmp->getType()); 1467 return UnsignedICmp; 1468 } 1469 1470 // X < Y && Y == 0 --> false 1471 if (UnsignedPred == ICmpInst::ICMP_ULT && EqPred == ICmpInst::ICMP_EQ && 1472 IsAnd) 1473 return getFalse(UnsignedICmp->getType()); 1474 1475 return nullptr; 1476 } 1477 1478 /// Simplify (and (icmp ...) (icmp ...)) to true when we can tell that the range 1479 /// of possible values cannot be satisfied. 1480 static Value *SimplifyAndOfICmps(ICmpInst *Op0, ICmpInst *Op1) { 1481 ICmpInst::Predicate Pred0, Pred1; 1482 ConstantInt *CI1, *CI2; 1483 Value *V; 1484 1485 if (Value *X = simplifyUnsignedRangeCheck(Op0, Op1, /*IsAnd=*/true)) 1486 return X; 1487 1488 if (!match(Op0, m_ICmp(Pred0, m_Add(m_Value(V), m_ConstantInt(CI1)), 1489 m_ConstantInt(CI2)))) 1490 return nullptr; 1491 1492 if (!match(Op1, m_ICmp(Pred1, m_Specific(V), m_Specific(CI1)))) 1493 return nullptr; 1494 1495 Type *ITy = Op0->getType(); 1496 1497 auto *AddInst = cast<BinaryOperator>(Op0->getOperand(0)); 1498 bool isNSW = AddInst->hasNoSignedWrap(); 1499 bool isNUW = AddInst->hasNoUnsignedWrap(); 1500 1501 const APInt &CI1V = CI1->getValue(); 1502 const APInt &CI2V = CI2->getValue(); 1503 const APInt Delta = CI2V - CI1V; 1504 if (CI1V.isStrictlyPositive()) { 1505 if (Delta == 2) { 1506 if (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_SGT) 1507 return getFalse(ITy); 1508 if (Pred0 == ICmpInst::ICMP_SLT && Pred1 == ICmpInst::ICMP_SGT && isNSW) 1509 return getFalse(ITy); 1510 } 1511 if (Delta == 1) { 1512 if (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_SGT) 1513 return getFalse(ITy); 1514 if (Pred0 == ICmpInst::ICMP_SLE && Pred1 == ICmpInst::ICMP_SGT && isNSW) 1515 return getFalse(ITy); 1516 } 1517 } 1518 if (CI1V.getBoolValue() && isNUW) { 1519 if (Delta == 2) 1520 if (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_UGT) 1521 return getFalse(ITy); 1522 if (Delta == 1) 1523 if (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_UGT) 1524 return getFalse(ITy); 1525 } 1526 1527 return nullptr; 1528 } 1529 1530 /// Given operands for an And, see if we can fold the result. 1531 /// If not, this returns null. 1532 static Value *SimplifyAndInst(Value *Op0, Value *Op1, const Query &Q, 1533 unsigned MaxRecurse) { 1534 if (Constant *CLHS = dyn_cast<Constant>(Op0)) { 1535 if (Constant *CRHS = dyn_cast<Constant>(Op1)) 1536 return ConstantFoldBinaryOpOperands(Instruction::And, CLHS, CRHS, Q.DL); 1537 1538 // Canonicalize the constant to the RHS. 1539 std::swap(Op0, Op1); 1540 } 1541 1542 // X & undef -> 0 1543 if (match(Op1, m_Undef())) 1544 return Constant::getNullValue(Op0->getType()); 1545 1546 // X & X = X 1547 if (Op0 == Op1) 1548 return Op0; 1549 1550 // X & 0 = 0 1551 if (match(Op1, m_Zero())) 1552 return Op1; 1553 1554 // X & -1 = X 1555 if (match(Op1, m_AllOnes())) 1556 return Op0; 1557 1558 // A & ~A = ~A & A = 0 1559 if (match(Op0, m_Not(m_Specific(Op1))) || 1560 match(Op1, m_Not(m_Specific(Op0)))) 1561 return Constant::getNullValue(Op0->getType()); 1562 1563 // (A | ?) & A = A 1564 Value *A = nullptr, *B = nullptr; 1565 if (match(Op0, m_Or(m_Value(A), m_Value(B))) && 1566 (A == Op1 || B == Op1)) 1567 return Op1; 1568 1569 // A & (A | ?) = A 1570 if (match(Op1, m_Or(m_Value(A), m_Value(B))) && 1571 (A == Op0 || B == Op0)) 1572 return Op0; 1573 1574 // A & (-A) = A if A is a power of two or zero. 1575 if (match(Op0, m_Neg(m_Specific(Op1))) || 1576 match(Op1, m_Neg(m_Specific(Op0)))) { 1577 if (isKnownToBeAPowerOfTwo(Op0, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI, 1578 Q.DT)) 1579 return Op0; 1580 if (isKnownToBeAPowerOfTwo(Op1, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI, 1581 Q.DT)) 1582 return Op1; 1583 } 1584 1585 if (auto *ICILHS = dyn_cast<ICmpInst>(Op0)) { 1586 if (auto *ICIRHS = dyn_cast<ICmpInst>(Op1)) { 1587 if (Value *V = SimplifyAndOfICmps(ICILHS, ICIRHS)) 1588 return V; 1589 if (Value *V = SimplifyAndOfICmps(ICIRHS, ICILHS)) 1590 return V; 1591 } 1592 } 1593 1594 // Try some generic simplifications for associative operations. 1595 if (Value *V = SimplifyAssociativeBinOp(Instruction::And, Op0, Op1, Q, 1596 MaxRecurse)) 1597 return V; 1598 1599 // And distributes over Or. Try some generic simplifications based on this. 1600 if (Value *V = ExpandBinOp(Instruction::And, Op0, Op1, Instruction::Or, 1601 Q, MaxRecurse)) 1602 return V; 1603 1604 // And distributes over Xor. Try some generic simplifications based on this. 1605 if (Value *V = ExpandBinOp(Instruction::And, Op0, Op1, Instruction::Xor, 1606 Q, MaxRecurse)) 1607 return V; 1608 1609 // If the operation is with the result of a select instruction, check whether 1610 // operating on either branch of the select always yields the same value. 1611 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 1612 if (Value *V = ThreadBinOpOverSelect(Instruction::And, Op0, Op1, Q, 1613 MaxRecurse)) 1614 return V; 1615 1616 // If the operation is with the result of a phi instruction, check whether 1617 // operating on all incoming values of the phi always yields the same value. 1618 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 1619 if (Value *V = ThreadBinOpOverPHI(Instruction::And, Op0, Op1, Q, 1620 MaxRecurse)) 1621 return V; 1622 1623 return nullptr; 1624 } 1625 1626 Value *llvm::SimplifyAndInst(Value *Op0, Value *Op1, const DataLayout &DL, 1627 const TargetLibraryInfo *TLI, 1628 const DominatorTree *DT, AssumptionCache *AC, 1629 const Instruction *CxtI) { 1630 return ::SimplifyAndInst(Op0, Op1, Query(DL, TLI, DT, AC, CxtI), 1631 RecursionLimit); 1632 } 1633 1634 /// Simplify (or (icmp ...) (icmp ...)) to true when we can tell that the union 1635 /// contains all possible values. 1636 static Value *SimplifyOrOfICmps(ICmpInst *Op0, ICmpInst *Op1) { 1637 ICmpInst::Predicate Pred0, Pred1; 1638 ConstantInt *CI1, *CI2; 1639 Value *V; 1640 1641 if (Value *X = simplifyUnsignedRangeCheck(Op0, Op1, /*IsAnd=*/false)) 1642 return X; 1643 1644 if (!match(Op0, m_ICmp(Pred0, m_Add(m_Value(V), m_ConstantInt(CI1)), 1645 m_ConstantInt(CI2)))) 1646 return nullptr; 1647 1648 if (!match(Op1, m_ICmp(Pred1, m_Specific(V), m_Specific(CI1)))) 1649 return nullptr; 1650 1651 Type *ITy = Op0->getType(); 1652 1653 auto *AddInst = cast<BinaryOperator>(Op0->getOperand(0)); 1654 bool isNSW = AddInst->hasNoSignedWrap(); 1655 bool isNUW = AddInst->hasNoUnsignedWrap(); 1656 1657 const APInt &CI1V = CI1->getValue(); 1658 const APInt &CI2V = CI2->getValue(); 1659 const APInt Delta = CI2V - CI1V; 1660 if (CI1V.isStrictlyPositive()) { 1661 if (Delta == 2) { 1662 if (Pred0 == ICmpInst::ICMP_UGE && Pred1 == ICmpInst::ICMP_SLE) 1663 return getTrue(ITy); 1664 if (Pred0 == ICmpInst::ICMP_SGE && Pred1 == ICmpInst::ICMP_SLE && isNSW) 1665 return getTrue(ITy); 1666 } 1667 if (Delta == 1) { 1668 if (Pred0 == ICmpInst::ICMP_UGT && Pred1 == ICmpInst::ICMP_SLE) 1669 return getTrue(ITy); 1670 if (Pred0 == ICmpInst::ICMP_SGT && Pred1 == ICmpInst::ICMP_SLE && isNSW) 1671 return getTrue(ITy); 1672 } 1673 } 1674 if (CI1V.getBoolValue() && isNUW) { 1675 if (Delta == 2) 1676 if (Pred0 == ICmpInst::ICMP_UGE && Pred1 == ICmpInst::ICMP_ULE) 1677 return getTrue(ITy); 1678 if (Delta == 1) 1679 if (Pred0 == ICmpInst::ICMP_UGT && Pred1 == ICmpInst::ICMP_ULE) 1680 return getTrue(ITy); 1681 } 1682 1683 return nullptr; 1684 } 1685 1686 /// Given operands for an Or, see if we can fold the result. 1687 /// If not, this returns null. 1688 static Value *SimplifyOrInst(Value *Op0, Value *Op1, const Query &Q, 1689 unsigned MaxRecurse) { 1690 if (Constant *CLHS = dyn_cast<Constant>(Op0)) { 1691 if (Constant *CRHS = dyn_cast<Constant>(Op1)) 1692 return ConstantFoldBinaryOpOperands(Instruction::Or, CLHS, CRHS, Q.DL); 1693 1694 // Canonicalize the constant to the RHS. 1695 std::swap(Op0, Op1); 1696 } 1697 1698 // X | undef -> -1 1699 if (match(Op1, m_Undef())) 1700 return Constant::getAllOnesValue(Op0->getType()); 1701 1702 // X | X = X 1703 if (Op0 == Op1) 1704 return Op0; 1705 1706 // X | 0 = X 1707 if (match(Op1, m_Zero())) 1708 return Op0; 1709 1710 // X | -1 = -1 1711 if (match(Op1, m_AllOnes())) 1712 return Op1; 1713 1714 // A | ~A = ~A | A = -1 1715 if (match(Op0, m_Not(m_Specific(Op1))) || 1716 match(Op1, m_Not(m_Specific(Op0)))) 1717 return Constant::getAllOnesValue(Op0->getType()); 1718 1719 // (A & ?) | A = A 1720 Value *A = nullptr, *B = nullptr; 1721 if (match(Op0, m_And(m_Value(A), m_Value(B))) && 1722 (A == Op1 || B == Op1)) 1723 return Op1; 1724 1725 // A | (A & ?) = A 1726 if (match(Op1, m_And(m_Value(A), m_Value(B))) && 1727 (A == Op0 || B == Op0)) 1728 return Op0; 1729 1730 // ~(A & ?) | A = -1 1731 if (match(Op0, m_Not(m_And(m_Value(A), m_Value(B)))) && 1732 (A == Op1 || B == Op1)) 1733 return Constant::getAllOnesValue(Op1->getType()); 1734 1735 // A | ~(A & ?) = -1 1736 if (match(Op1, m_Not(m_And(m_Value(A), m_Value(B)))) && 1737 (A == Op0 || B == Op0)) 1738 return Constant::getAllOnesValue(Op0->getType()); 1739 1740 if (auto *ICILHS = dyn_cast<ICmpInst>(Op0)) { 1741 if (auto *ICIRHS = dyn_cast<ICmpInst>(Op1)) { 1742 if (Value *V = SimplifyOrOfICmps(ICILHS, ICIRHS)) 1743 return V; 1744 if (Value *V = SimplifyOrOfICmps(ICIRHS, ICILHS)) 1745 return V; 1746 } 1747 } 1748 1749 // Try some generic simplifications for associative operations. 1750 if (Value *V = SimplifyAssociativeBinOp(Instruction::Or, Op0, Op1, Q, 1751 MaxRecurse)) 1752 return V; 1753 1754 // Or distributes over And. Try some generic simplifications based on this. 1755 if (Value *V = ExpandBinOp(Instruction::Or, Op0, Op1, Instruction::And, Q, 1756 MaxRecurse)) 1757 return V; 1758 1759 // If the operation is with the result of a select instruction, check whether 1760 // operating on either branch of the select always yields the same value. 1761 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 1762 if (Value *V = ThreadBinOpOverSelect(Instruction::Or, Op0, Op1, Q, 1763 MaxRecurse)) 1764 return V; 1765 1766 // (A & C)|(B & D) 1767 Value *C = nullptr, *D = nullptr; 1768 if (match(Op0, m_And(m_Value(A), m_Value(C))) && 1769 match(Op1, m_And(m_Value(B), m_Value(D)))) { 1770 ConstantInt *C1 = dyn_cast<ConstantInt>(C); 1771 ConstantInt *C2 = dyn_cast<ConstantInt>(D); 1772 if (C1 && C2 && (C1->getValue() == ~C2->getValue())) { 1773 // (A & C1)|(B & C2) 1774 // If we have: ((V + N) & C1) | (V & C2) 1775 // .. and C2 = ~C1 and C2 is 0+1+ and (N & C2) == 0 1776 // replace with V+N. 1777 Value *V1, *V2; 1778 if ((C2->getValue() & (C2->getValue() + 1)) == 0 && // C2 == 0+1+ 1779 match(A, m_Add(m_Value(V1), m_Value(V2)))) { 1780 // Add commutes, try both ways. 1781 if (V1 == B && 1782 MaskedValueIsZero(V2, C2->getValue(), Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 1783 return A; 1784 if (V2 == B && 1785 MaskedValueIsZero(V1, C2->getValue(), Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 1786 return A; 1787 } 1788 // Or commutes, try both ways. 1789 if ((C1->getValue() & (C1->getValue() + 1)) == 0 && 1790 match(B, m_Add(m_Value(V1), m_Value(V2)))) { 1791 // Add commutes, try both ways. 1792 if (V1 == A && 1793 MaskedValueIsZero(V2, C1->getValue(), Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 1794 return B; 1795 if (V2 == A && 1796 MaskedValueIsZero(V1, C1->getValue(), Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 1797 return B; 1798 } 1799 } 1800 } 1801 1802 // If the operation is with the result of a phi instruction, check whether 1803 // operating on all incoming values of the phi always yields the same value. 1804 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 1805 if (Value *V = ThreadBinOpOverPHI(Instruction::Or, Op0, Op1, Q, MaxRecurse)) 1806 return V; 1807 1808 return nullptr; 1809 } 1810 1811 Value *llvm::SimplifyOrInst(Value *Op0, Value *Op1, const DataLayout &DL, 1812 const TargetLibraryInfo *TLI, 1813 const DominatorTree *DT, AssumptionCache *AC, 1814 const Instruction *CxtI) { 1815 return ::SimplifyOrInst(Op0, Op1, Query(DL, TLI, DT, AC, CxtI), 1816 RecursionLimit); 1817 } 1818 1819 /// Given operands for a Xor, see if we can fold the result. 1820 /// If not, this returns null. 1821 static Value *SimplifyXorInst(Value *Op0, Value *Op1, const Query &Q, 1822 unsigned MaxRecurse) { 1823 if (Constant *CLHS = dyn_cast<Constant>(Op0)) { 1824 if (Constant *CRHS = dyn_cast<Constant>(Op1)) 1825 return ConstantFoldBinaryOpOperands(Instruction::Xor, CLHS, CRHS, Q.DL); 1826 1827 // Canonicalize the constant to the RHS. 1828 std::swap(Op0, Op1); 1829 } 1830 1831 // A ^ undef -> undef 1832 if (match(Op1, m_Undef())) 1833 return Op1; 1834 1835 // A ^ 0 = A 1836 if (match(Op1, m_Zero())) 1837 return Op0; 1838 1839 // A ^ A = 0 1840 if (Op0 == Op1) 1841 return Constant::getNullValue(Op0->getType()); 1842 1843 // A ^ ~A = ~A ^ A = -1 1844 if (match(Op0, m_Not(m_Specific(Op1))) || 1845 match(Op1, m_Not(m_Specific(Op0)))) 1846 return Constant::getAllOnesValue(Op0->getType()); 1847 1848 // Try some generic simplifications for associative operations. 1849 if (Value *V = SimplifyAssociativeBinOp(Instruction::Xor, Op0, Op1, Q, 1850 MaxRecurse)) 1851 return V; 1852 1853 // Threading Xor over selects and phi nodes is pointless, so don't bother. 1854 // Threading over the select in "A ^ select(cond, B, C)" means evaluating 1855 // "A^B" and "A^C" and seeing if they are equal; but they are equal if and 1856 // only if B and C are equal. If B and C are equal then (since we assume 1857 // that operands have already been simplified) "select(cond, B, C)" should 1858 // have been simplified to the common value of B and C already. Analysing 1859 // "A^B" and "A^C" thus gains nothing, but costs compile time. Similarly 1860 // for threading over phi nodes. 1861 1862 return nullptr; 1863 } 1864 1865 Value *llvm::SimplifyXorInst(Value *Op0, Value *Op1, const DataLayout &DL, 1866 const TargetLibraryInfo *TLI, 1867 const DominatorTree *DT, AssumptionCache *AC, 1868 const Instruction *CxtI) { 1869 return ::SimplifyXorInst(Op0, Op1, Query(DL, TLI, DT, AC, CxtI), 1870 RecursionLimit); 1871 } 1872 1873 static Type *GetCompareTy(Value *Op) { 1874 return CmpInst::makeCmpResultType(Op->getType()); 1875 } 1876 1877 /// Rummage around inside V looking for something equivalent to the comparison 1878 /// "LHS Pred RHS". Return such a value if found, otherwise return null. 1879 /// Helper function for analyzing max/min idioms. 1880 static Value *ExtractEquivalentCondition(Value *V, CmpInst::Predicate Pred, 1881 Value *LHS, Value *RHS) { 1882 SelectInst *SI = dyn_cast<SelectInst>(V); 1883 if (!SI) 1884 return nullptr; 1885 CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition()); 1886 if (!Cmp) 1887 return nullptr; 1888 Value *CmpLHS = Cmp->getOperand(0), *CmpRHS = Cmp->getOperand(1); 1889 if (Pred == Cmp->getPredicate() && LHS == CmpLHS && RHS == CmpRHS) 1890 return Cmp; 1891 if (Pred == CmpInst::getSwappedPredicate(Cmp->getPredicate()) && 1892 LHS == CmpRHS && RHS == CmpLHS) 1893 return Cmp; 1894 return nullptr; 1895 } 1896 1897 // A significant optimization not implemented here is assuming that alloca 1898 // addresses are not equal to incoming argument values. They don't *alias*, 1899 // as we say, but that doesn't mean they aren't equal, so we take a 1900 // conservative approach. 1901 // 1902 // This is inspired in part by C++11 5.10p1: 1903 // "Two pointers of the same type compare equal if and only if they are both 1904 // null, both point to the same function, or both represent the same 1905 // address." 1906 // 1907 // This is pretty permissive. 1908 // 1909 // It's also partly due to C11 6.5.9p6: 1910 // "Two pointers compare equal if and only if both are null pointers, both are 1911 // pointers to the same object (including a pointer to an object and a 1912 // subobject at its beginning) or function, both are pointers to one past the 1913 // last element of the same array object, or one is a pointer to one past the 1914 // end of one array object and the other is a pointer to the start of a 1915 // different array object that happens to immediately follow the first array 1916 // object in the address space.) 1917 // 1918 // C11's version is more restrictive, however there's no reason why an argument 1919 // couldn't be a one-past-the-end value for a stack object in the caller and be 1920 // equal to the beginning of a stack object in the callee. 1921 // 1922 // If the C and C++ standards are ever made sufficiently restrictive in this 1923 // area, it may be possible to update LLVM's semantics accordingly and reinstate 1924 // this optimization. 1925 static Constant *computePointerICmp(const DataLayout &DL, 1926 const TargetLibraryInfo *TLI, 1927 CmpInst::Predicate Pred, Value *LHS, 1928 Value *RHS) { 1929 // First, skip past any trivial no-ops. 1930 LHS = LHS->stripPointerCasts(); 1931 RHS = RHS->stripPointerCasts(); 1932 1933 // A non-null pointer is not equal to a null pointer. 1934 if (llvm::isKnownNonNull(LHS, TLI) && isa<ConstantPointerNull>(RHS) && 1935 (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE)) 1936 return ConstantInt::get(GetCompareTy(LHS), 1937 !CmpInst::isTrueWhenEqual(Pred)); 1938 1939 // We can only fold certain predicates on pointer comparisons. 1940 switch (Pred) { 1941 default: 1942 return nullptr; 1943 1944 // Equality comaprisons are easy to fold. 1945 case CmpInst::ICMP_EQ: 1946 case CmpInst::ICMP_NE: 1947 break; 1948 1949 // We can only handle unsigned relational comparisons because 'inbounds' on 1950 // a GEP only protects against unsigned wrapping. 1951 case CmpInst::ICMP_UGT: 1952 case CmpInst::ICMP_UGE: 1953 case CmpInst::ICMP_ULT: 1954 case CmpInst::ICMP_ULE: 1955 // However, we have to switch them to their signed variants to handle 1956 // negative indices from the base pointer. 1957 Pred = ICmpInst::getSignedPredicate(Pred); 1958 break; 1959 } 1960 1961 // Strip off any constant offsets so that we can reason about them. 1962 // It's tempting to use getUnderlyingObject or even just stripInBoundsOffsets 1963 // here and compare base addresses like AliasAnalysis does, however there are 1964 // numerous hazards. AliasAnalysis and its utilities rely on special rules 1965 // governing loads and stores which don't apply to icmps. Also, AliasAnalysis 1966 // doesn't need to guarantee pointer inequality when it says NoAlias. 1967 Constant *LHSOffset = stripAndComputeConstantOffsets(DL, LHS); 1968 Constant *RHSOffset = stripAndComputeConstantOffsets(DL, RHS); 1969 1970 // If LHS and RHS are related via constant offsets to the same base 1971 // value, we can replace it with an icmp which just compares the offsets. 1972 if (LHS == RHS) 1973 return ConstantExpr::getICmp(Pred, LHSOffset, RHSOffset); 1974 1975 // Various optimizations for (in)equality comparisons. 1976 if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE) { 1977 // Different non-empty allocations that exist at the same time have 1978 // different addresses (if the program can tell). Global variables always 1979 // exist, so they always exist during the lifetime of each other and all 1980 // allocas. Two different allocas usually have different addresses... 1981 // 1982 // However, if there's an @llvm.stackrestore dynamically in between two 1983 // allocas, they may have the same address. It's tempting to reduce the 1984 // scope of the problem by only looking at *static* allocas here. That would 1985 // cover the majority of allocas while significantly reducing the likelihood 1986 // of having an @llvm.stackrestore pop up in the middle. However, it's not 1987 // actually impossible for an @llvm.stackrestore to pop up in the middle of 1988 // an entry block. Also, if we have a block that's not attached to a 1989 // function, we can't tell if it's "static" under the current definition. 1990 // Theoretically, this problem could be fixed by creating a new kind of 1991 // instruction kind specifically for static allocas. Such a new instruction 1992 // could be required to be at the top of the entry block, thus preventing it 1993 // from being subject to a @llvm.stackrestore. Instcombine could even 1994 // convert regular allocas into these special allocas. It'd be nifty. 1995 // However, until then, this problem remains open. 1996 // 1997 // So, we'll assume that two non-empty allocas have different addresses 1998 // for now. 1999 // 2000 // With all that, if the offsets are within the bounds of their allocations 2001 // (and not one-past-the-end! so we can't use inbounds!), and their 2002 // allocations aren't the same, the pointers are not equal. 2003 // 2004 // Note that it's not necessary to check for LHS being a global variable 2005 // address, due to canonicalization and constant folding. 2006 if (isa<AllocaInst>(LHS) && 2007 (isa<AllocaInst>(RHS) || isa<GlobalVariable>(RHS))) { 2008 ConstantInt *LHSOffsetCI = dyn_cast<ConstantInt>(LHSOffset); 2009 ConstantInt *RHSOffsetCI = dyn_cast<ConstantInt>(RHSOffset); 2010 uint64_t LHSSize, RHSSize; 2011 if (LHSOffsetCI && RHSOffsetCI && 2012 getObjectSize(LHS, LHSSize, DL, TLI) && 2013 getObjectSize(RHS, RHSSize, DL, TLI)) { 2014 const APInt &LHSOffsetValue = LHSOffsetCI->getValue(); 2015 const APInt &RHSOffsetValue = RHSOffsetCI->getValue(); 2016 if (!LHSOffsetValue.isNegative() && 2017 !RHSOffsetValue.isNegative() && 2018 LHSOffsetValue.ult(LHSSize) && 2019 RHSOffsetValue.ult(RHSSize)) { 2020 return ConstantInt::get(GetCompareTy(LHS), 2021 !CmpInst::isTrueWhenEqual(Pred)); 2022 } 2023 } 2024 2025 // Repeat the above check but this time without depending on DataLayout 2026 // or being able to compute a precise size. 2027 if (!cast<PointerType>(LHS->getType())->isEmptyTy() && 2028 !cast<PointerType>(RHS->getType())->isEmptyTy() && 2029 LHSOffset->isNullValue() && 2030 RHSOffset->isNullValue()) 2031 return ConstantInt::get(GetCompareTy(LHS), 2032 !CmpInst::isTrueWhenEqual(Pred)); 2033 } 2034 2035 // Even if an non-inbounds GEP occurs along the path we can still optimize 2036 // equality comparisons concerning the result. We avoid walking the whole 2037 // chain again by starting where the last calls to 2038 // stripAndComputeConstantOffsets left off and accumulate the offsets. 2039 Constant *LHSNoBound = stripAndComputeConstantOffsets(DL, LHS, true); 2040 Constant *RHSNoBound = stripAndComputeConstantOffsets(DL, RHS, true); 2041 if (LHS == RHS) 2042 return ConstantExpr::getICmp(Pred, 2043 ConstantExpr::getAdd(LHSOffset, LHSNoBound), 2044 ConstantExpr::getAdd(RHSOffset, RHSNoBound)); 2045 2046 // If one side of the equality comparison must come from a noalias call 2047 // (meaning a system memory allocation function), and the other side must 2048 // come from a pointer that cannot overlap with dynamically-allocated 2049 // memory within the lifetime of the current function (allocas, byval 2050 // arguments, globals), then determine the comparison result here. 2051 SmallVector<Value *, 8> LHSUObjs, RHSUObjs; 2052 GetUnderlyingObjects(LHS, LHSUObjs, DL); 2053 GetUnderlyingObjects(RHS, RHSUObjs, DL); 2054 2055 // Is the set of underlying objects all noalias calls? 2056 auto IsNAC = [](SmallVectorImpl<Value *> &Objects) { 2057 return std::all_of(Objects.begin(), Objects.end(), isNoAliasCall); 2058 }; 2059 2060 // Is the set of underlying objects all things which must be disjoint from 2061 // noalias calls. For allocas, we consider only static ones (dynamic 2062 // allocas might be transformed into calls to malloc not simultaneously 2063 // live with the compared-to allocation). For globals, we exclude symbols 2064 // that might be resolve lazily to symbols in another dynamically-loaded 2065 // library (and, thus, could be malloc'ed by the implementation). 2066 auto IsAllocDisjoint = [](SmallVectorImpl<Value *> &Objects) { 2067 return std::all_of(Objects.begin(), Objects.end(), [](Value *V) { 2068 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) 2069 return AI->getParent() && AI->getFunction() && AI->isStaticAlloca(); 2070 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) 2071 return (GV->hasLocalLinkage() || GV->hasHiddenVisibility() || 2072 GV->hasProtectedVisibility() || GV->hasUnnamedAddr()) && 2073 !GV->isThreadLocal(); 2074 if (const Argument *A = dyn_cast<Argument>(V)) 2075 return A->hasByValAttr(); 2076 return false; 2077 }); 2078 }; 2079 2080 if ((IsNAC(LHSUObjs) && IsAllocDisjoint(RHSUObjs)) || 2081 (IsNAC(RHSUObjs) && IsAllocDisjoint(LHSUObjs))) 2082 return ConstantInt::get(GetCompareTy(LHS), 2083 !CmpInst::isTrueWhenEqual(Pred)); 2084 } 2085 2086 // Otherwise, fail. 2087 return nullptr; 2088 } 2089 2090 /// Given operands for an ICmpInst, see if we can fold the result. 2091 /// If not, this returns null. 2092 static Value *SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS, 2093 const Query &Q, unsigned MaxRecurse) { 2094 CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate; 2095 assert(CmpInst::isIntPredicate(Pred) && "Not an integer compare!"); 2096 2097 if (Constant *CLHS = dyn_cast<Constant>(LHS)) { 2098 if (Constant *CRHS = dyn_cast<Constant>(RHS)) 2099 return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, Q.DL, Q.TLI); 2100 2101 // If we have a constant, make sure it is on the RHS. 2102 std::swap(LHS, RHS); 2103 Pred = CmpInst::getSwappedPredicate(Pred); 2104 } 2105 2106 Type *ITy = GetCompareTy(LHS); // The return type. 2107 Type *OpTy = LHS->getType(); // The operand type. 2108 2109 // icmp X, X -> true/false 2110 // X icmp undef -> true/false. For example, icmp ugt %X, undef -> false 2111 // because X could be 0. 2112 if (LHS == RHS || isa<UndefValue>(RHS)) 2113 return ConstantInt::get(ITy, CmpInst::isTrueWhenEqual(Pred)); 2114 2115 // Special case logic when the operands have i1 type. 2116 if (OpTy->getScalarType()->isIntegerTy(1)) { 2117 switch (Pred) { 2118 default: break; 2119 case ICmpInst::ICMP_EQ: 2120 // X == 1 -> X 2121 if (match(RHS, m_One())) 2122 return LHS; 2123 break; 2124 case ICmpInst::ICMP_NE: 2125 // X != 0 -> X 2126 if (match(RHS, m_Zero())) 2127 return LHS; 2128 break; 2129 case ICmpInst::ICMP_UGT: 2130 // X >u 0 -> X 2131 if (match(RHS, m_Zero())) 2132 return LHS; 2133 break; 2134 case ICmpInst::ICMP_UGE: 2135 // X >=u 1 -> X 2136 if (match(RHS, m_One())) 2137 return LHS; 2138 if (isImpliedCondition(RHS, LHS, Q.DL)) 2139 return getTrue(ITy); 2140 break; 2141 case ICmpInst::ICMP_SGE: 2142 /// For signed comparison, the values for an i1 are 0 and -1 2143 /// respectively. This maps into a truth table of: 2144 /// LHS | RHS | LHS >=s RHS | LHS implies RHS 2145 /// 0 | 0 | 1 (0 >= 0) | 1 2146 /// 0 | 1 | 1 (0 >= -1) | 1 2147 /// 1 | 0 | 0 (-1 >= 0) | 0 2148 /// 1 | 1 | 1 (-1 >= -1) | 1 2149 if (isImpliedCondition(LHS, RHS, Q.DL)) 2150 return getTrue(ITy); 2151 break; 2152 case ICmpInst::ICMP_SLT: 2153 // X <s 0 -> X 2154 if (match(RHS, m_Zero())) 2155 return LHS; 2156 break; 2157 case ICmpInst::ICMP_SLE: 2158 // X <=s -1 -> X 2159 if (match(RHS, m_One())) 2160 return LHS; 2161 break; 2162 case ICmpInst::ICMP_ULE: 2163 if (isImpliedCondition(LHS, RHS, Q.DL)) 2164 return getTrue(ITy); 2165 break; 2166 } 2167 } 2168 2169 // If we are comparing with zero then try hard since this is a common case. 2170 if (match(RHS, m_Zero())) { 2171 bool LHSKnownNonNegative, LHSKnownNegative; 2172 switch (Pred) { 2173 default: llvm_unreachable("Unknown ICmp predicate!"); 2174 case ICmpInst::ICMP_ULT: 2175 return getFalse(ITy); 2176 case ICmpInst::ICMP_UGE: 2177 return getTrue(ITy); 2178 case ICmpInst::ICMP_EQ: 2179 case ICmpInst::ICMP_ULE: 2180 if (isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 2181 return getFalse(ITy); 2182 break; 2183 case ICmpInst::ICMP_NE: 2184 case ICmpInst::ICMP_UGT: 2185 if (isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 2186 return getTrue(ITy); 2187 break; 2188 case ICmpInst::ICMP_SLT: 2189 ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, Q.DL, 0, Q.AC, 2190 Q.CxtI, Q.DT); 2191 if (LHSKnownNegative) 2192 return getTrue(ITy); 2193 if (LHSKnownNonNegative) 2194 return getFalse(ITy); 2195 break; 2196 case ICmpInst::ICMP_SLE: 2197 ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, Q.DL, 0, Q.AC, 2198 Q.CxtI, Q.DT); 2199 if (LHSKnownNegative) 2200 return getTrue(ITy); 2201 if (LHSKnownNonNegative && 2202 isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 2203 return getFalse(ITy); 2204 break; 2205 case ICmpInst::ICMP_SGE: 2206 ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, Q.DL, 0, Q.AC, 2207 Q.CxtI, Q.DT); 2208 if (LHSKnownNegative) 2209 return getFalse(ITy); 2210 if (LHSKnownNonNegative) 2211 return getTrue(ITy); 2212 break; 2213 case ICmpInst::ICMP_SGT: 2214 ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, Q.DL, 0, Q.AC, 2215 Q.CxtI, Q.DT); 2216 if (LHSKnownNegative) 2217 return getFalse(ITy); 2218 if (LHSKnownNonNegative && 2219 isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 2220 return getTrue(ITy); 2221 break; 2222 } 2223 } 2224 2225 // See if we are doing a comparison with a constant integer. 2226 if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) { 2227 // Rule out tautological comparisons (eg., ult 0 or uge 0). 2228 ConstantRange RHS_CR = ICmpInst::makeConstantRange(Pred, CI->getValue()); 2229 if (RHS_CR.isEmptySet()) 2230 return ConstantInt::getFalse(CI->getContext()); 2231 if (RHS_CR.isFullSet()) 2232 return ConstantInt::getTrue(CI->getContext()); 2233 2234 // Many binary operators with constant RHS have easy to compute constant 2235 // range. Use them to check whether the comparison is a tautology. 2236 unsigned Width = CI->getBitWidth(); 2237 APInt Lower = APInt(Width, 0); 2238 APInt Upper = APInt(Width, 0); 2239 ConstantInt *CI2; 2240 if (match(LHS, m_URem(m_Value(), m_ConstantInt(CI2)))) { 2241 // 'urem x, CI2' produces [0, CI2). 2242 Upper = CI2->getValue(); 2243 } else if (match(LHS, m_SRem(m_Value(), m_ConstantInt(CI2)))) { 2244 // 'srem x, CI2' produces (-|CI2|, |CI2|). 2245 Upper = CI2->getValue().abs(); 2246 Lower = (-Upper) + 1; 2247 } else if (match(LHS, m_UDiv(m_ConstantInt(CI2), m_Value()))) { 2248 // 'udiv CI2, x' produces [0, CI2]. 2249 Upper = CI2->getValue() + 1; 2250 } else if (match(LHS, m_UDiv(m_Value(), m_ConstantInt(CI2)))) { 2251 // 'udiv x, CI2' produces [0, UINT_MAX / CI2]. 2252 APInt NegOne = APInt::getAllOnesValue(Width); 2253 if (!CI2->isZero()) 2254 Upper = NegOne.udiv(CI2->getValue()) + 1; 2255 } else if (match(LHS, m_SDiv(m_ConstantInt(CI2), m_Value()))) { 2256 if (CI2->isMinSignedValue()) { 2257 // 'sdiv INT_MIN, x' produces [INT_MIN, INT_MIN / -2]. 2258 Lower = CI2->getValue(); 2259 Upper = Lower.lshr(1) + 1; 2260 } else { 2261 // 'sdiv CI2, x' produces [-|CI2|, |CI2|]. 2262 Upper = CI2->getValue().abs() + 1; 2263 Lower = (-Upper) + 1; 2264 } 2265 } else if (match(LHS, m_SDiv(m_Value(), m_ConstantInt(CI2)))) { 2266 APInt IntMin = APInt::getSignedMinValue(Width); 2267 APInt IntMax = APInt::getSignedMaxValue(Width); 2268 APInt Val = CI2->getValue(); 2269 if (Val.isAllOnesValue()) { 2270 // 'sdiv x, -1' produces [INT_MIN + 1, INT_MAX] 2271 // where CI2 != -1 and CI2 != 0 and CI2 != 1 2272 Lower = IntMin + 1; 2273 Upper = IntMax + 1; 2274 } else if (Val.countLeadingZeros() < Width - 1) { 2275 // 'sdiv x, CI2' produces [INT_MIN / CI2, INT_MAX / CI2] 2276 // where CI2 != -1 and CI2 != 0 and CI2 != 1 2277 Lower = IntMin.sdiv(Val); 2278 Upper = IntMax.sdiv(Val); 2279 if (Lower.sgt(Upper)) 2280 std::swap(Lower, Upper); 2281 Upper = Upper + 1; 2282 assert(Upper != Lower && "Upper part of range has wrapped!"); 2283 } 2284 } else if (match(LHS, m_NUWShl(m_ConstantInt(CI2), m_Value()))) { 2285 // 'shl nuw CI2, x' produces [CI2, CI2 << CLZ(CI2)] 2286 Lower = CI2->getValue(); 2287 Upper = Lower.shl(Lower.countLeadingZeros()) + 1; 2288 } else if (match(LHS, m_NSWShl(m_ConstantInt(CI2), m_Value()))) { 2289 if (CI2->isNegative()) { 2290 // 'shl nsw CI2, x' produces [CI2 << CLO(CI2)-1, CI2] 2291 unsigned ShiftAmount = CI2->getValue().countLeadingOnes() - 1; 2292 Lower = CI2->getValue().shl(ShiftAmount); 2293 Upper = CI2->getValue() + 1; 2294 } else { 2295 // 'shl nsw CI2, x' produces [CI2, CI2 << CLZ(CI2)-1] 2296 unsigned ShiftAmount = CI2->getValue().countLeadingZeros() - 1; 2297 Lower = CI2->getValue(); 2298 Upper = CI2->getValue().shl(ShiftAmount) + 1; 2299 } 2300 } else if (match(LHS, m_LShr(m_Value(), m_ConstantInt(CI2)))) { 2301 // 'lshr x, CI2' produces [0, UINT_MAX >> CI2]. 2302 APInt NegOne = APInt::getAllOnesValue(Width); 2303 if (CI2->getValue().ult(Width)) 2304 Upper = NegOne.lshr(CI2->getValue()) + 1; 2305 } else if (match(LHS, m_LShr(m_ConstantInt(CI2), m_Value()))) { 2306 // 'lshr CI2, x' produces [CI2 >> (Width-1), CI2]. 2307 unsigned ShiftAmount = Width - 1; 2308 if (!CI2->isZero() && cast<BinaryOperator>(LHS)->isExact()) 2309 ShiftAmount = CI2->getValue().countTrailingZeros(); 2310 Lower = CI2->getValue().lshr(ShiftAmount); 2311 Upper = CI2->getValue() + 1; 2312 } else if (match(LHS, m_AShr(m_Value(), m_ConstantInt(CI2)))) { 2313 // 'ashr x, CI2' produces [INT_MIN >> CI2, INT_MAX >> CI2]. 2314 APInt IntMin = APInt::getSignedMinValue(Width); 2315 APInt IntMax = APInt::getSignedMaxValue(Width); 2316 if (CI2->getValue().ult(Width)) { 2317 Lower = IntMin.ashr(CI2->getValue()); 2318 Upper = IntMax.ashr(CI2->getValue()) + 1; 2319 } 2320 } else if (match(LHS, m_AShr(m_ConstantInt(CI2), m_Value()))) { 2321 unsigned ShiftAmount = Width - 1; 2322 if (!CI2->isZero() && cast<BinaryOperator>(LHS)->isExact()) 2323 ShiftAmount = CI2->getValue().countTrailingZeros(); 2324 if (CI2->isNegative()) { 2325 // 'ashr CI2, x' produces [CI2, CI2 >> (Width-1)] 2326 Lower = CI2->getValue(); 2327 Upper = CI2->getValue().ashr(ShiftAmount) + 1; 2328 } else { 2329 // 'ashr CI2, x' produces [CI2 >> (Width-1), CI2] 2330 Lower = CI2->getValue().ashr(ShiftAmount); 2331 Upper = CI2->getValue() + 1; 2332 } 2333 } else if (match(LHS, m_Or(m_Value(), m_ConstantInt(CI2)))) { 2334 // 'or x, CI2' produces [CI2, UINT_MAX]. 2335 Lower = CI2->getValue(); 2336 } else if (match(LHS, m_And(m_Value(), m_ConstantInt(CI2)))) { 2337 // 'and x, CI2' produces [0, CI2]. 2338 Upper = CI2->getValue() + 1; 2339 } else if (match(LHS, m_NUWAdd(m_Value(), m_ConstantInt(CI2)))) { 2340 // 'add nuw x, CI2' produces [CI2, UINT_MAX]. 2341 Lower = CI2->getValue(); 2342 } 2343 2344 ConstantRange LHS_CR = Lower != Upper ? ConstantRange(Lower, Upper) 2345 : ConstantRange(Width, true); 2346 2347 if (auto *I = dyn_cast<Instruction>(LHS)) 2348 if (auto *Ranges = I->getMetadata(LLVMContext::MD_range)) 2349 LHS_CR = LHS_CR.intersectWith(getConstantRangeFromMetadata(*Ranges)); 2350 2351 if (!LHS_CR.isFullSet()) { 2352 if (RHS_CR.contains(LHS_CR)) 2353 return ConstantInt::getTrue(RHS->getContext()); 2354 if (RHS_CR.inverse().contains(LHS_CR)) 2355 return ConstantInt::getFalse(RHS->getContext()); 2356 } 2357 } 2358 2359 // If both operands have range metadata, use the metadata 2360 // to simplify the comparison. 2361 if (isa<Instruction>(RHS) && isa<Instruction>(LHS)) { 2362 auto RHS_Instr = dyn_cast<Instruction>(RHS); 2363 auto LHS_Instr = dyn_cast<Instruction>(LHS); 2364 2365 if (RHS_Instr->getMetadata(LLVMContext::MD_range) && 2366 LHS_Instr->getMetadata(LLVMContext::MD_range)) { 2367 auto RHS_CR = getConstantRangeFromMetadata( 2368 *RHS_Instr->getMetadata(LLVMContext::MD_range)); 2369 auto LHS_CR = getConstantRangeFromMetadata( 2370 *LHS_Instr->getMetadata(LLVMContext::MD_range)); 2371 2372 auto Satisfied_CR = ConstantRange::makeSatisfyingICmpRegion(Pred, RHS_CR); 2373 if (Satisfied_CR.contains(LHS_CR)) 2374 return ConstantInt::getTrue(RHS->getContext()); 2375 2376 auto InversedSatisfied_CR = ConstantRange::makeSatisfyingICmpRegion( 2377 CmpInst::getInversePredicate(Pred), RHS_CR); 2378 if (InversedSatisfied_CR.contains(LHS_CR)) 2379 return ConstantInt::getFalse(RHS->getContext()); 2380 } 2381 } 2382 2383 // Compare of cast, for example (zext X) != 0 -> X != 0 2384 if (isa<CastInst>(LHS) && (isa<Constant>(RHS) || isa<CastInst>(RHS))) { 2385 Instruction *LI = cast<CastInst>(LHS); 2386 Value *SrcOp = LI->getOperand(0); 2387 Type *SrcTy = SrcOp->getType(); 2388 Type *DstTy = LI->getType(); 2389 2390 // Turn icmp (ptrtoint x), (ptrtoint/constant) into a compare of the input 2391 // if the integer type is the same size as the pointer type. 2392 if (MaxRecurse && isa<PtrToIntInst>(LI) && 2393 Q.DL.getTypeSizeInBits(SrcTy) == DstTy->getPrimitiveSizeInBits()) { 2394 if (Constant *RHSC = dyn_cast<Constant>(RHS)) { 2395 // Transfer the cast to the constant. 2396 if (Value *V = SimplifyICmpInst(Pred, SrcOp, 2397 ConstantExpr::getIntToPtr(RHSC, SrcTy), 2398 Q, MaxRecurse-1)) 2399 return V; 2400 } else if (PtrToIntInst *RI = dyn_cast<PtrToIntInst>(RHS)) { 2401 if (RI->getOperand(0)->getType() == SrcTy) 2402 // Compare without the cast. 2403 if (Value *V = SimplifyICmpInst(Pred, SrcOp, RI->getOperand(0), 2404 Q, MaxRecurse-1)) 2405 return V; 2406 } 2407 } 2408 2409 if (isa<ZExtInst>(LHS)) { 2410 // Turn icmp (zext X), (zext Y) into a compare of X and Y if they have the 2411 // same type. 2412 if (ZExtInst *RI = dyn_cast<ZExtInst>(RHS)) { 2413 if (MaxRecurse && SrcTy == RI->getOperand(0)->getType()) 2414 // Compare X and Y. Note that signed predicates become unsigned. 2415 if (Value *V = SimplifyICmpInst(ICmpInst::getUnsignedPredicate(Pred), 2416 SrcOp, RI->getOperand(0), Q, 2417 MaxRecurse-1)) 2418 return V; 2419 } 2420 // Turn icmp (zext X), Cst into a compare of X and Cst if Cst is extended 2421 // too. If not, then try to deduce the result of the comparison. 2422 else if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) { 2423 // Compute the constant that would happen if we truncated to SrcTy then 2424 // reextended to DstTy. 2425 Constant *Trunc = ConstantExpr::getTrunc(CI, SrcTy); 2426 Constant *RExt = ConstantExpr::getCast(CastInst::ZExt, Trunc, DstTy); 2427 2428 // If the re-extended constant didn't change then this is effectively 2429 // also a case of comparing two zero-extended values. 2430 if (RExt == CI && MaxRecurse) 2431 if (Value *V = SimplifyICmpInst(ICmpInst::getUnsignedPredicate(Pred), 2432 SrcOp, Trunc, Q, MaxRecurse-1)) 2433 return V; 2434 2435 // Otherwise the upper bits of LHS are zero while RHS has a non-zero bit 2436 // there. Use this to work out the result of the comparison. 2437 if (RExt != CI) { 2438 switch (Pred) { 2439 default: llvm_unreachable("Unknown ICmp predicate!"); 2440 // LHS <u RHS. 2441 case ICmpInst::ICMP_EQ: 2442 case ICmpInst::ICMP_UGT: 2443 case ICmpInst::ICMP_UGE: 2444 return ConstantInt::getFalse(CI->getContext()); 2445 2446 case ICmpInst::ICMP_NE: 2447 case ICmpInst::ICMP_ULT: 2448 case ICmpInst::ICMP_ULE: 2449 return ConstantInt::getTrue(CI->getContext()); 2450 2451 // LHS is non-negative. If RHS is negative then LHS >s LHS. If RHS 2452 // is non-negative then LHS <s RHS. 2453 case ICmpInst::ICMP_SGT: 2454 case ICmpInst::ICMP_SGE: 2455 return CI->getValue().isNegative() ? 2456 ConstantInt::getTrue(CI->getContext()) : 2457 ConstantInt::getFalse(CI->getContext()); 2458 2459 case ICmpInst::ICMP_SLT: 2460 case ICmpInst::ICMP_SLE: 2461 return CI->getValue().isNegative() ? 2462 ConstantInt::getFalse(CI->getContext()) : 2463 ConstantInt::getTrue(CI->getContext()); 2464 } 2465 } 2466 } 2467 } 2468 2469 if (isa<SExtInst>(LHS)) { 2470 // Turn icmp (sext X), (sext Y) into a compare of X and Y if they have the 2471 // same type. 2472 if (SExtInst *RI = dyn_cast<SExtInst>(RHS)) { 2473 if (MaxRecurse && SrcTy == RI->getOperand(0)->getType()) 2474 // Compare X and Y. Note that the predicate does not change. 2475 if (Value *V = SimplifyICmpInst(Pred, SrcOp, RI->getOperand(0), 2476 Q, MaxRecurse-1)) 2477 return V; 2478 } 2479 // Turn icmp (sext X), Cst into a compare of X and Cst if Cst is extended 2480 // too. If not, then try to deduce the result of the comparison. 2481 else if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) { 2482 // Compute the constant that would happen if we truncated to SrcTy then 2483 // reextended to DstTy. 2484 Constant *Trunc = ConstantExpr::getTrunc(CI, SrcTy); 2485 Constant *RExt = ConstantExpr::getCast(CastInst::SExt, Trunc, DstTy); 2486 2487 // If the re-extended constant didn't change then this is effectively 2488 // also a case of comparing two sign-extended values. 2489 if (RExt == CI && MaxRecurse) 2490 if (Value *V = SimplifyICmpInst(Pred, SrcOp, Trunc, Q, MaxRecurse-1)) 2491 return V; 2492 2493 // Otherwise the upper bits of LHS are all equal, while RHS has varying 2494 // bits there. Use this to work out the result of the comparison. 2495 if (RExt != CI) { 2496 switch (Pred) { 2497 default: llvm_unreachable("Unknown ICmp predicate!"); 2498 case ICmpInst::ICMP_EQ: 2499 return ConstantInt::getFalse(CI->getContext()); 2500 case ICmpInst::ICMP_NE: 2501 return ConstantInt::getTrue(CI->getContext()); 2502 2503 // If RHS is non-negative then LHS <s RHS. If RHS is negative then 2504 // LHS >s RHS. 2505 case ICmpInst::ICMP_SGT: 2506 case ICmpInst::ICMP_SGE: 2507 return CI->getValue().isNegative() ? 2508 ConstantInt::getTrue(CI->getContext()) : 2509 ConstantInt::getFalse(CI->getContext()); 2510 case ICmpInst::ICMP_SLT: 2511 case ICmpInst::ICMP_SLE: 2512 return CI->getValue().isNegative() ? 2513 ConstantInt::getFalse(CI->getContext()) : 2514 ConstantInt::getTrue(CI->getContext()); 2515 2516 // If LHS is non-negative then LHS <u RHS. If LHS is negative then 2517 // LHS >u RHS. 2518 case ICmpInst::ICMP_UGT: 2519 case ICmpInst::ICMP_UGE: 2520 // Comparison is true iff the LHS <s 0. 2521 if (MaxRecurse) 2522 if (Value *V = SimplifyICmpInst(ICmpInst::ICMP_SLT, SrcOp, 2523 Constant::getNullValue(SrcTy), 2524 Q, MaxRecurse-1)) 2525 return V; 2526 break; 2527 case ICmpInst::ICMP_ULT: 2528 case ICmpInst::ICMP_ULE: 2529 // Comparison is true iff the LHS >=s 0. 2530 if (MaxRecurse) 2531 if (Value *V = SimplifyICmpInst(ICmpInst::ICMP_SGE, SrcOp, 2532 Constant::getNullValue(SrcTy), 2533 Q, MaxRecurse-1)) 2534 return V; 2535 break; 2536 } 2537 } 2538 } 2539 } 2540 } 2541 2542 // icmp eq|ne X, Y -> false|true if X != Y 2543 if ((Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_NE) && 2544 isKnownNonEqual(LHS, RHS, Q.DL, Q.AC, Q.CxtI, Q.DT)) { 2545 LLVMContext &Ctx = LHS->getType()->getContext(); 2546 return Pred == ICmpInst::ICMP_NE ? 2547 ConstantInt::getTrue(Ctx) : ConstantInt::getFalse(Ctx); 2548 } 2549 2550 // Special logic for binary operators. 2551 BinaryOperator *LBO = dyn_cast<BinaryOperator>(LHS); 2552 BinaryOperator *RBO = dyn_cast<BinaryOperator>(RHS); 2553 if (MaxRecurse && (LBO || RBO)) { 2554 // Analyze the case when either LHS or RHS is an add instruction. 2555 Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr; 2556 // LHS = A + B (or A and B are null); RHS = C + D (or C and D are null). 2557 bool NoLHSWrapProblem = false, NoRHSWrapProblem = false; 2558 if (LBO && LBO->getOpcode() == Instruction::Add) { 2559 A = LBO->getOperand(0); B = LBO->getOperand(1); 2560 NoLHSWrapProblem = ICmpInst::isEquality(Pred) || 2561 (CmpInst::isUnsigned(Pred) && LBO->hasNoUnsignedWrap()) || 2562 (CmpInst::isSigned(Pred) && LBO->hasNoSignedWrap()); 2563 } 2564 if (RBO && RBO->getOpcode() == Instruction::Add) { 2565 C = RBO->getOperand(0); D = RBO->getOperand(1); 2566 NoRHSWrapProblem = ICmpInst::isEquality(Pred) || 2567 (CmpInst::isUnsigned(Pred) && RBO->hasNoUnsignedWrap()) || 2568 (CmpInst::isSigned(Pred) && RBO->hasNoSignedWrap()); 2569 } 2570 2571 // icmp (X+Y), X -> icmp Y, 0 for equalities or if there is no overflow. 2572 if ((A == RHS || B == RHS) && NoLHSWrapProblem) 2573 if (Value *V = SimplifyICmpInst(Pred, A == RHS ? B : A, 2574 Constant::getNullValue(RHS->getType()), 2575 Q, MaxRecurse-1)) 2576 return V; 2577 2578 // icmp X, (X+Y) -> icmp 0, Y for equalities or if there is no overflow. 2579 if ((C == LHS || D == LHS) && NoRHSWrapProblem) 2580 if (Value *V = SimplifyICmpInst(Pred, 2581 Constant::getNullValue(LHS->getType()), 2582 C == LHS ? D : C, Q, MaxRecurse-1)) 2583 return V; 2584 2585 // icmp (X+Y), (X+Z) -> icmp Y,Z for equalities or if there is no overflow. 2586 if (A && C && (A == C || A == D || B == C || B == D) && 2587 NoLHSWrapProblem && NoRHSWrapProblem) { 2588 // Determine Y and Z in the form icmp (X+Y), (X+Z). 2589 Value *Y, *Z; 2590 if (A == C) { 2591 // C + B == C + D -> B == D 2592 Y = B; 2593 Z = D; 2594 } else if (A == D) { 2595 // D + B == C + D -> B == C 2596 Y = B; 2597 Z = C; 2598 } else if (B == C) { 2599 // A + C == C + D -> A == D 2600 Y = A; 2601 Z = D; 2602 } else { 2603 assert(B == D); 2604 // A + D == C + D -> A == C 2605 Y = A; 2606 Z = C; 2607 } 2608 if (Value *V = SimplifyICmpInst(Pred, Y, Z, Q, MaxRecurse-1)) 2609 return V; 2610 } 2611 } 2612 2613 // icmp pred (or X, Y), X 2614 if (LBO && match(LBO, m_CombineOr(m_Or(m_Value(), m_Specific(RHS)), 2615 m_Or(m_Specific(RHS), m_Value())))) { 2616 if (Pred == ICmpInst::ICMP_ULT) 2617 return getFalse(ITy); 2618 if (Pred == ICmpInst::ICMP_UGE) 2619 return getTrue(ITy); 2620 } 2621 // icmp pred X, (or X, Y) 2622 if (RBO && match(RBO, m_CombineOr(m_Or(m_Value(), m_Specific(LHS)), 2623 m_Or(m_Specific(LHS), m_Value())))) { 2624 if (Pred == ICmpInst::ICMP_ULE) 2625 return getTrue(ITy); 2626 if (Pred == ICmpInst::ICMP_UGT) 2627 return getFalse(ITy); 2628 } 2629 2630 // icmp pred (and X, Y), X 2631 if (LBO && match(LBO, m_CombineOr(m_And(m_Value(), m_Specific(RHS)), 2632 m_And(m_Specific(RHS), m_Value())))) { 2633 if (Pred == ICmpInst::ICMP_UGT) 2634 return getFalse(ITy); 2635 if (Pred == ICmpInst::ICMP_ULE) 2636 return getTrue(ITy); 2637 } 2638 // icmp pred X, (and X, Y) 2639 if (RBO && match(RBO, m_CombineOr(m_And(m_Value(), m_Specific(LHS)), 2640 m_And(m_Specific(LHS), m_Value())))) { 2641 if (Pred == ICmpInst::ICMP_UGE) 2642 return getTrue(ITy); 2643 if (Pred == ICmpInst::ICMP_ULT) 2644 return getFalse(ITy); 2645 } 2646 2647 // 0 - (zext X) pred C 2648 if (!CmpInst::isUnsigned(Pred) && match(LHS, m_Neg(m_ZExt(m_Value())))) { 2649 if (ConstantInt *RHSC = dyn_cast<ConstantInt>(RHS)) { 2650 if (RHSC->getValue().isStrictlyPositive()) { 2651 if (Pred == ICmpInst::ICMP_SLT) 2652 return ConstantInt::getTrue(RHSC->getContext()); 2653 if (Pred == ICmpInst::ICMP_SGE) 2654 return ConstantInt::getFalse(RHSC->getContext()); 2655 if (Pred == ICmpInst::ICMP_EQ) 2656 return ConstantInt::getFalse(RHSC->getContext()); 2657 if (Pred == ICmpInst::ICMP_NE) 2658 return ConstantInt::getTrue(RHSC->getContext()); 2659 } 2660 if (RHSC->getValue().isNonNegative()) { 2661 if (Pred == ICmpInst::ICMP_SLE) 2662 return ConstantInt::getTrue(RHSC->getContext()); 2663 if (Pred == ICmpInst::ICMP_SGT) 2664 return ConstantInt::getFalse(RHSC->getContext()); 2665 } 2666 } 2667 } 2668 2669 // icmp pred (urem X, Y), Y 2670 if (LBO && match(LBO, m_URem(m_Value(), m_Specific(RHS)))) { 2671 bool KnownNonNegative, KnownNegative; 2672 switch (Pred) { 2673 default: 2674 break; 2675 case ICmpInst::ICMP_SGT: 2676 case ICmpInst::ICMP_SGE: 2677 ComputeSignBit(RHS, KnownNonNegative, KnownNegative, Q.DL, 0, Q.AC, 2678 Q.CxtI, Q.DT); 2679 if (!KnownNonNegative) 2680 break; 2681 // fall-through 2682 case ICmpInst::ICMP_EQ: 2683 case ICmpInst::ICMP_UGT: 2684 case ICmpInst::ICMP_UGE: 2685 return getFalse(ITy); 2686 case ICmpInst::ICMP_SLT: 2687 case ICmpInst::ICMP_SLE: 2688 ComputeSignBit(RHS, KnownNonNegative, KnownNegative, Q.DL, 0, Q.AC, 2689 Q.CxtI, Q.DT); 2690 if (!KnownNonNegative) 2691 break; 2692 // fall-through 2693 case ICmpInst::ICMP_NE: 2694 case ICmpInst::ICMP_ULT: 2695 case ICmpInst::ICMP_ULE: 2696 return getTrue(ITy); 2697 } 2698 } 2699 2700 // icmp pred X, (urem Y, X) 2701 if (RBO && match(RBO, m_URem(m_Value(), m_Specific(LHS)))) { 2702 bool KnownNonNegative, KnownNegative; 2703 switch (Pred) { 2704 default: 2705 break; 2706 case ICmpInst::ICMP_SGT: 2707 case ICmpInst::ICMP_SGE: 2708 ComputeSignBit(LHS, KnownNonNegative, KnownNegative, Q.DL, 0, Q.AC, 2709 Q.CxtI, Q.DT); 2710 if (!KnownNonNegative) 2711 break; 2712 // fall-through 2713 case ICmpInst::ICMP_NE: 2714 case ICmpInst::ICMP_UGT: 2715 case ICmpInst::ICMP_UGE: 2716 return getTrue(ITy); 2717 case ICmpInst::ICMP_SLT: 2718 case ICmpInst::ICMP_SLE: 2719 ComputeSignBit(LHS, KnownNonNegative, KnownNegative, Q.DL, 0, Q.AC, 2720 Q.CxtI, Q.DT); 2721 if (!KnownNonNegative) 2722 break; 2723 // fall-through 2724 case ICmpInst::ICMP_EQ: 2725 case ICmpInst::ICMP_ULT: 2726 case ICmpInst::ICMP_ULE: 2727 return getFalse(ITy); 2728 } 2729 } 2730 2731 // x >> y <=u x 2732 // x udiv y <=u x. 2733 if (LBO && (match(LBO, m_LShr(m_Specific(RHS), m_Value())) || 2734 match(LBO, m_UDiv(m_Specific(RHS), m_Value())))) { 2735 // icmp pred (X op Y), X 2736 if (Pred == ICmpInst::ICMP_UGT) 2737 return getFalse(ITy); 2738 if (Pred == ICmpInst::ICMP_ULE) 2739 return getTrue(ITy); 2740 } 2741 2742 // handle: 2743 // CI2 << X == CI 2744 // CI2 << X != CI 2745 // 2746 // where CI2 is a power of 2 and CI isn't 2747 if (auto *CI = dyn_cast<ConstantInt>(RHS)) { 2748 const APInt *CI2Val, *CIVal = &CI->getValue(); 2749 if (LBO && match(LBO, m_Shl(m_APInt(CI2Val), m_Value())) && 2750 CI2Val->isPowerOf2()) { 2751 if (!CIVal->isPowerOf2()) { 2752 // CI2 << X can equal zero in some circumstances, 2753 // this simplification is unsafe if CI is zero. 2754 // 2755 // We know it is safe if: 2756 // - The shift is nsw, we can't shift out the one bit. 2757 // - The shift is nuw, we can't shift out the one bit. 2758 // - CI2 is one 2759 // - CI isn't zero 2760 if (LBO->hasNoSignedWrap() || LBO->hasNoUnsignedWrap() || 2761 *CI2Val == 1 || !CI->isZero()) { 2762 if (Pred == ICmpInst::ICMP_EQ) 2763 return ConstantInt::getFalse(RHS->getContext()); 2764 if (Pred == ICmpInst::ICMP_NE) 2765 return ConstantInt::getTrue(RHS->getContext()); 2766 } 2767 } 2768 if (CIVal->isSignBit() && *CI2Val == 1) { 2769 if (Pred == ICmpInst::ICMP_UGT) 2770 return ConstantInt::getFalse(RHS->getContext()); 2771 if (Pred == ICmpInst::ICMP_ULE) 2772 return ConstantInt::getTrue(RHS->getContext()); 2773 } 2774 } 2775 } 2776 2777 if (MaxRecurse && LBO && RBO && LBO->getOpcode() == RBO->getOpcode() && 2778 LBO->getOperand(1) == RBO->getOperand(1)) { 2779 switch (LBO->getOpcode()) { 2780 default: break; 2781 case Instruction::UDiv: 2782 case Instruction::LShr: 2783 if (ICmpInst::isSigned(Pred)) 2784 break; 2785 // fall-through 2786 case Instruction::SDiv: 2787 case Instruction::AShr: 2788 if (!LBO->isExact() || !RBO->isExact()) 2789 break; 2790 if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0), 2791 RBO->getOperand(0), Q, MaxRecurse-1)) 2792 return V; 2793 break; 2794 case Instruction::Shl: { 2795 bool NUW = LBO->hasNoUnsignedWrap() && RBO->hasNoUnsignedWrap(); 2796 bool NSW = LBO->hasNoSignedWrap() && RBO->hasNoSignedWrap(); 2797 if (!NUW && !NSW) 2798 break; 2799 if (!NSW && ICmpInst::isSigned(Pred)) 2800 break; 2801 if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0), 2802 RBO->getOperand(0), Q, MaxRecurse-1)) 2803 return V; 2804 break; 2805 } 2806 } 2807 } 2808 2809 // Simplify comparisons involving max/min. 2810 Value *A, *B; 2811 CmpInst::Predicate P = CmpInst::BAD_ICMP_PREDICATE; 2812 CmpInst::Predicate EqP; // Chosen so that "A == max/min(A,B)" iff "A EqP B". 2813 2814 // Signed variants on "max(a,b)>=a -> true". 2815 if (match(LHS, m_SMax(m_Value(A), m_Value(B))) && (A == RHS || B == RHS)) { 2816 if (A != RHS) std::swap(A, B); // smax(A, B) pred A. 2817 EqP = CmpInst::ICMP_SGE; // "A == smax(A, B)" iff "A sge B". 2818 // We analyze this as smax(A, B) pred A. 2819 P = Pred; 2820 } else if (match(RHS, m_SMax(m_Value(A), m_Value(B))) && 2821 (A == LHS || B == LHS)) { 2822 if (A != LHS) std::swap(A, B); // A pred smax(A, B). 2823 EqP = CmpInst::ICMP_SGE; // "A == smax(A, B)" iff "A sge B". 2824 // We analyze this as smax(A, B) swapped-pred A. 2825 P = CmpInst::getSwappedPredicate(Pred); 2826 } else if (match(LHS, m_SMin(m_Value(A), m_Value(B))) && 2827 (A == RHS || B == RHS)) { 2828 if (A != RHS) std::swap(A, B); // smin(A, B) pred A. 2829 EqP = CmpInst::ICMP_SLE; // "A == smin(A, B)" iff "A sle B". 2830 // We analyze this as smax(-A, -B) swapped-pred -A. 2831 // Note that we do not need to actually form -A or -B thanks to EqP. 2832 P = CmpInst::getSwappedPredicate(Pred); 2833 } else if (match(RHS, m_SMin(m_Value(A), m_Value(B))) && 2834 (A == LHS || B == LHS)) { 2835 if (A != LHS) std::swap(A, B); // A pred smin(A, B). 2836 EqP = CmpInst::ICMP_SLE; // "A == smin(A, B)" iff "A sle B". 2837 // We analyze this as smax(-A, -B) pred -A. 2838 // Note that we do not need to actually form -A or -B thanks to EqP. 2839 P = Pred; 2840 } 2841 if (P != CmpInst::BAD_ICMP_PREDICATE) { 2842 // Cases correspond to "max(A, B) p A". 2843 switch (P) { 2844 default: 2845 break; 2846 case CmpInst::ICMP_EQ: 2847 case CmpInst::ICMP_SLE: 2848 // Equivalent to "A EqP B". This may be the same as the condition tested 2849 // in the max/min; if so, we can just return that. 2850 if (Value *V = ExtractEquivalentCondition(LHS, EqP, A, B)) 2851 return V; 2852 if (Value *V = ExtractEquivalentCondition(RHS, EqP, A, B)) 2853 return V; 2854 // Otherwise, see if "A EqP B" simplifies. 2855 if (MaxRecurse) 2856 if (Value *V = SimplifyICmpInst(EqP, A, B, Q, MaxRecurse-1)) 2857 return V; 2858 break; 2859 case CmpInst::ICMP_NE: 2860 case CmpInst::ICMP_SGT: { 2861 CmpInst::Predicate InvEqP = CmpInst::getInversePredicate(EqP); 2862 // Equivalent to "A InvEqP B". This may be the same as the condition 2863 // tested in the max/min; if so, we can just return that. 2864 if (Value *V = ExtractEquivalentCondition(LHS, InvEqP, A, B)) 2865 return V; 2866 if (Value *V = ExtractEquivalentCondition(RHS, InvEqP, A, B)) 2867 return V; 2868 // Otherwise, see if "A InvEqP B" simplifies. 2869 if (MaxRecurse) 2870 if (Value *V = SimplifyICmpInst(InvEqP, A, B, Q, MaxRecurse-1)) 2871 return V; 2872 break; 2873 } 2874 case CmpInst::ICMP_SGE: 2875 // Always true. 2876 return getTrue(ITy); 2877 case CmpInst::ICMP_SLT: 2878 // Always false. 2879 return getFalse(ITy); 2880 } 2881 } 2882 2883 // Unsigned variants on "max(a,b)>=a -> true". 2884 P = CmpInst::BAD_ICMP_PREDICATE; 2885 if (match(LHS, m_UMax(m_Value(A), m_Value(B))) && (A == RHS || B == RHS)) { 2886 if (A != RHS) std::swap(A, B); // umax(A, B) pred A. 2887 EqP = CmpInst::ICMP_UGE; // "A == umax(A, B)" iff "A uge B". 2888 // We analyze this as umax(A, B) pred A. 2889 P = Pred; 2890 } else if (match(RHS, m_UMax(m_Value(A), m_Value(B))) && 2891 (A == LHS || B == LHS)) { 2892 if (A != LHS) std::swap(A, B); // A pred umax(A, B). 2893 EqP = CmpInst::ICMP_UGE; // "A == umax(A, B)" iff "A uge B". 2894 // We analyze this as umax(A, B) swapped-pred A. 2895 P = CmpInst::getSwappedPredicate(Pred); 2896 } else if (match(LHS, m_UMin(m_Value(A), m_Value(B))) && 2897 (A == RHS || B == RHS)) { 2898 if (A != RHS) std::swap(A, B); // umin(A, B) pred A. 2899 EqP = CmpInst::ICMP_ULE; // "A == umin(A, B)" iff "A ule B". 2900 // We analyze this as umax(-A, -B) swapped-pred -A. 2901 // Note that we do not need to actually form -A or -B thanks to EqP. 2902 P = CmpInst::getSwappedPredicate(Pred); 2903 } else if (match(RHS, m_UMin(m_Value(A), m_Value(B))) && 2904 (A == LHS || B == LHS)) { 2905 if (A != LHS) std::swap(A, B); // A pred umin(A, B). 2906 EqP = CmpInst::ICMP_ULE; // "A == umin(A, B)" iff "A ule B". 2907 // We analyze this as umax(-A, -B) pred -A. 2908 // Note that we do not need to actually form -A or -B thanks to EqP. 2909 P = Pred; 2910 } 2911 if (P != CmpInst::BAD_ICMP_PREDICATE) { 2912 // Cases correspond to "max(A, B) p A". 2913 switch (P) { 2914 default: 2915 break; 2916 case CmpInst::ICMP_EQ: 2917 case CmpInst::ICMP_ULE: 2918 // Equivalent to "A EqP B". This may be the same as the condition tested 2919 // in the max/min; if so, we can just return that. 2920 if (Value *V = ExtractEquivalentCondition(LHS, EqP, A, B)) 2921 return V; 2922 if (Value *V = ExtractEquivalentCondition(RHS, EqP, A, B)) 2923 return V; 2924 // Otherwise, see if "A EqP B" simplifies. 2925 if (MaxRecurse) 2926 if (Value *V = SimplifyICmpInst(EqP, A, B, Q, MaxRecurse-1)) 2927 return V; 2928 break; 2929 case CmpInst::ICMP_NE: 2930 case CmpInst::ICMP_UGT: { 2931 CmpInst::Predicate InvEqP = CmpInst::getInversePredicate(EqP); 2932 // Equivalent to "A InvEqP B". This may be the same as the condition 2933 // tested in the max/min; if so, we can just return that. 2934 if (Value *V = ExtractEquivalentCondition(LHS, InvEqP, A, B)) 2935 return V; 2936 if (Value *V = ExtractEquivalentCondition(RHS, InvEqP, A, B)) 2937 return V; 2938 // Otherwise, see if "A InvEqP B" simplifies. 2939 if (MaxRecurse) 2940 if (Value *V = SimplifyICmpInst(InvEqP, A, B, Q, MaxRecurse-1)) 2941 return V; 2942 break; 2943 } 2944 case CmpInst::ICMP_UGE: 2945 // Always true. 2946 return getTrue(ITy); 2947 case CmpInst::ICMP_ULT: 2948 // Always false. 2949 return getFalse(ITy); 2950 } 2951 } 2952 2953 // Variants on "max(x,y) >= min(x,z)". 2954 Value *C, *D; 2955 if (match(LHS, m_SMax(m_Value(A), m_Value(B))) && 2956 match(RHS, m_SMin(m_Value(C), m_Value(D))) && 2957 (A == C || A == D || B == C || B == D)) { 2958 // max(x, ?) pred min(x, ?). 2959 if (Pred == CmpInst::ICMP_SGE) 2960 // Always true. 2961 return getTrue(ITy); 2962 if (Pred == CmpInst::ICMP_SLT) 2963 // Always false. 2964 return getFalse(ITy); 2965 } else if (match(LHS, m_SMin(m_Value(A), m_Value(B))) && 2966 match(RHS, m_SMax(m_Value(C), m_Value(D))) && 2967 (A == C || A == D || B == C || B == D)) { 2968 // min(x, ?) pred max(x, ?). 2969 if (Pred == CmpInst::ICMP_SLE) 2970 // Always true. 2971 return getTrue(ITy); 2972 if (Pred == CmpInst::ICMP_SGT) 2973 // Always false. 2974 return getFalse(ITy); 2975 } else if (match(LHS, m_UMax(m_Value(A), m_Value(B))) && 2976 match(RHS, m_UMin(m_Value(C), m_Value(D))) && 2977 (A == C || A == D || B == C || B == D)) { 2978 // max(x, ?) pred min(x, ?). 2979 if (Pred == CmpInst::ICMP_UGE) 2980 // Always true. 2981 return getTrue(ITy); 2982 if (Pred == CmpInst::ICMP_ULT) 2983 // Always false. 2984 return getFalse(ITy); 2985 } else if (match(LHS, m_UMin(m_Value(A), m_Value(B))) && 2986 match(RHS, m_UMax(m_Value(C), m_Value(D))) && 2987 (A == C || A == D || B == C || B == D)) { 2988 // min(x, ?) pred max(x, ?). 2989 if (Pred == CmpInst::ICMP_ULE) 2990 // Always true. 2991 return getTrue(ITy); 2992 if (Pred == CmpInst::ICMP_UGT) 2993 // Always false. 2994 return getFalse(ITy); 2995 } 2996 2997 // Simplify comparisons of related pointers using a powerful, recursive 2998 // GEP-walk when we have target data available.. 2999 if (LHS->getType()->isPointerTy()) 3000 if (Constant *C = computePointerICmp(Q.DL, Q.TLI, Pred, LHS, RHS)) 3001 return C; 3002 3003 if (GetElementPtrInst *GLHS = dyn_cast<GetElementPtrInst>(LHS)) { 3004 if (GEPOperator *GRHS = dyn_cast<GEPOperator>(RHS)) { 3005 if (GLHS->getPointerOperand() == GRHS->getPointerOperand() && 3006 GLHS->hasAllConstantIndices() && GRHS->hasAllConstantIndices() && 3007 (ICmpInst::isEquality(Pred) || 3008 (GLHS->isInBounds() && GRHS->isInBounds() && 3009 Pred == ICmpInst::getSignedPredicate(Pred)))) { 3010 // The bases are equal and the indices are constant. Build a constant 3011 // expression GEP with the same indices and a null base pointer to see 3012 // what constant folding can make out of it. 3013 Constant *Null = Constant::getNullValue(GLHS->getPointerOperandType()); 3014 SmallVector<Value *, 4> IndicesLHS(GLHS->idx_begin(), GLHS->idx_end()); 3015 Constant *NewLHS = ConstantExpr::getGetElementPtr( 3016 GLHS->getSourceElementType(), Null, IndicesLHS); 3017 3018 SmallVector<Value *, 4> IndicesRHS(GRHS->idx_begin(), GRHS->idx_end()); 3019 Constant *NewRHS = ConstantExpr::getGetElementPtr( 3020 GLHS->getSourceElementType(), Null, IndicesRHS); 3021 return ConstantExpr::getICmp(Pred, NewLHS, NewRHS); 3022 } 3023 } 3024 } 3025 3026 // If a bit is known to be zero for A and known to be one for B, 3027 // then A and B cannot be equal. 3028 if (ICmpInst::isEquality(Pred)) { 3029 if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) { 3030 uint32_t BitWidth = CI->getBitWidth(); 3031 APInt LHSKnownZero(BitWidth, 0); 3032 APInt LHSKnownOne(BitWidth, 0); 3033 computeKnownBits(LHS, LHSKnownZero, LHSKnownOne, Q.DL, /*Depth=*/0, Q.AC, 3034 Q.CxtI, Q.DT); 3035 const APInt &RHSVal = CI->getValue(); 3036 if (((LHSKnownZero & RHSVal) != 0) || ((LHSKnownOne & ~RHSVal) != 0)) 3037 return Pred == ICmpInst::ICMP_EQ 3038 ? ConstantInt::getFalse(CI->getContext()) 3039 : ConstantInt::getTrue(CI->getContext()); 3040 } 3041 } 3042 3043 // If the comparison is with the result of a select instruction, check whether 3044 // comparing with either branch of the select always yields the same value. 3045 if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS)) 3046 if (Value *V = ThreadCmpOverSelect(Pred, LHS, RHS, Q, MaxRecurse)) 3047 return V; 3048 3049 // If the comparison is with the result of a phi instruction, check whether 3050 // doing the compare with each incoming phi value yields a common result. 3051 if (isa<PHINode>(LHS) || isa<PHINode>(RHS)) 3052 if (Value *V = ThreadCmpOverPHI(Pred, LHS, RHS, Q, MaxRecurse)) 3053 return V; 3054 3055 return nullptr; 3056 } 3057 3058 Value *llvm::SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS, 3059 const DataLayout &DL, 3060 const TargetLibraryInfo *TLI, 3061 const DominatorTree *DT, AssumptionCache *AC, 3062 const Instruction *CxtI) { 3063 return ::SimplifyICmpInst(Predicate, LHS, RHS, Query(DL, TLI, DT, AC, CxtI), 3064 RecursionLimit); 3065 } 3066 3067 /// Given operands for an FCmpInst, see if we can fold the result. 3068 /// If not, this returns null. 3069 static Value *SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS, 3070 FastMathFlags FMF, const Query &Q, 3071 unsigned MaxRecurse) { 3072 CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate; 3073 assert(CmpInst::isFPPredicate(Pred) && "Not an FP compare!"); 3074 3075 if (Constant *CLHS = dyn_cast<Constant>(LHS)) { 3076 if (Constant *CRHS = dyn_cast<Constant>(RHS)) 3077 return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, Q.DL, Q.TLI); 3078 3079 // If we have a constant, make sure it is on the RHS. 3080 std::swap(LHS, RHS); 3081 Pred = CmpInst::getSwappedPredicate(Pred); 3082 } 3083 3084 // Fold trivial predicates. 3085 if (Pred == FCmpInst::FCMP_FALSE) 3086 return ConstantInt::get(GetCompareTy(LHS), 0); 3087 if (Pred == FCmpInst::FCMP_TRUE) 3088 return ConstantInt::get(GetCompareTy(LHS), 1); 3089 3090 // UNO/ORD predicates can be trivially folded if NaNs are ignored. 3091 if (FMF.noNaNs()) { 3092 if (Pred == FCmpInst::FCMP_UNO) 3093 return ConstantInt::get(GetCompareTy(LHS), 0); 3094 if (Pred == FCmpInst::FCMP_ORD) 3095 return ConstantInt::get(GetCompareTy(LHS), 1); 3096 } 3097 3098 // fcmp pred x, undef and fcmp pred undef, x 3099 // fold to true if unordered, false if ordered 3100 if (isa<UndefValue>(LHS) || isa<UndefValue>(RHS)) { 3101 // Choosing NaN for the undef will always make unordered comparison succeed 3102 // and ordered comparison fail. 3103 return ConstantInt::get(GetCompareTy(LHS), CmpInst::isUnordered(Pred)); 3104 } 3105 3106 // fcmp x,x -> true/false. Not all compares are foldable. 3107 if (LHS == RHS) { 3108 if (CmpInst::isTrueWhenEqual(Pred)) 3109 return ConstantInt::get(GetCompareTy(LHS), 1); 3110 if (CmpInst::isFalseWhenEqual(Pred)) 3111 return ConstantInt::get(GetCompareTy(LHS), 0); 3112 } 3113 3114 // Handle fcmp with constant RHS 3115 if (ConstantFP *CFP = dyn_cast<ConstantFP>(RHS)) { 3116 // If the constant is a nan, see if we can fold the comparison based on it. 3117 if (CFP->getValueAPF().isNaN()) { 3118 if (FCmpInst::isOrdered(Pred)) // True "if ordered and foo" 3119 return ConstantInt::getFalse(CFP->getContext()); 3120 assert(FCmpInst::isUnordered(Pred) && 3121 "Comparison must be either ordered or unordered!"); 3122 // True if unordered. 3123 return ConstantInt::getTrue(CFP->getContext()); 3124 } 3125 // Check whether the constant is an infinity. 3126 if (CFP->getValueAPF().isInfinity()) { 3127 if (CFP->getValueAPF().isNegative()) { 3128 switch (Pred) { 3129 case FCmpInst::FCMP_OLT: 3130 // No value is ordered and less than negative infinity. 3131 return ConstantInt::getFalse(CFP->getContext()); 3132 case FCmpInst::FCMP_UGE: 3133 // All values are unordered with or at least negative infinity. 3134 return ConstantInt::getTrue(CFP->getContext()); 3135 default: 3136 break; 3137 } 3138 } else { 3139 switch (Pred) { 3140 case FCmpInst::FCMP_OGT: 3141 // No value is ordered and greater than infinity. 3142 return ConstantInt::getFalse(CFP->getContext()); 3143 case FCmpInst::FCMP_ULE: 3144 // All values are unordered with and at most infinity. 3145 return ConstantInt::getTrue(CFP->getContext()); 3146 default: 3147 break; 3148 } 3149 } 3150 } 3151 if (CFP->getValueAPF().isZero()) { 3152 switch (Pred) { 3153 case FCmpInst::FCMP_UGE: 3154 if (CannotBeOrderedLessThanZero(LHS)) 3155 return ConstantInt::getTrue(CFP->getContext()); 3156 break; 3157 case FCmpInst::FCMP_OLT: 3158 // X < 0 3159 if (CannotBeOrderedLessThanZero(LHS)) 3160 return ConstantInt::getFalse(CFP->getContext()); 3161 break; 3162 default: 3163 break; 3164 } 3165 } 3166 } 3167 3168 // If the comparison is with the result of a select instruction, check whether 3169 // comparing with either branch of the select always yields the same value. 3170 if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS)) 3171 if (Value *V = ThreadCmpOverSelect(Pred, LHS, RHS, Q, MaxRecurse)) 3172 return V; 3173 3174 // If the comparison is with the result of a phi instruction, check whether 3175 // doing the compare with each incoming phi value yields a common result. 3176 if (isa<PHINode>(LHS) || isa<PHINode>(RHS)) 3177 if (Value *V = ThreadCmpOverPHI(Pred, LHS, RHS, Q, MaxRecurse)) 3178 return V; 3179 3180 return nullptr; 3181 } 3182 3183 Value *llvm::SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS, 3184 FastMathFlags FMF, const DataLayout &DL, 3185 const TargetLibraryInfo *TLI, 3186 const DominatorTree *DT, AssumptionCache *AC, 3187 const Instruction *CxtI) { 3188 return ::SimplifyFCmpInst(Predicate, LHS, RHS, FMF, 3189 Query(DL, TLI, DT, AC, CxtI), RecursionLimit); 3190 } 3191 3192 /// See if V simplifies when its operand Op is replaced with RepOp. 3193 static const Value *SimplifyWithOpReplaced(Value *V, Value *Op, Value *RepOp, 3194 const Query &Q, 3195 unsigned MaxRecurse) { 3196 // Trivial replacement. 3197 if (V == Op) 3198 return RepOp; 3199 3200 auto *I = dyn_cast<Instruction>(V); 3201 if (!I) 3202 return nullptr; 3203 3204 // If this is a binary operator, try to simplify it with the replaced op. 3205 if (auto *B = dyn_cast<BinaryOperator>(I)) { 3206 // Consider: 3207 // %cmp = icmp eq i32 %x, 2147483647 3208 // %add = add nsw i32 %x, 1 3209 // %sel = select i1 %cmp, i32 -2147483648, i32 %add 3210 // 3211 // We can't replace %sel with %add unless we strip away the flags. 3212 if (isa<OverflowingBinaryOperator>(B)) 3213 if (B->hasNoSignedWrap() || B->hasNoUnsignedWrap()) 3214 return nullptr; 3215 if (isa<PossiblyExactOperator>(B)) 3216 if (B->isExact()) 3217 return nullptr; 3218 3219 if (MaxRecurse) { 3220 if (B->getOperand(0) == Op) 3221 return SimplifyBinOp(B->getOpcode(), RepOp, B->getOperand(1), Q, 3222 MaxRecurse - 1); 3223 if (B->getOperand(1) == Op) 3224 return SimplifyBinOp(B->getOpcode(), B->getOperand(0), RepOp, Q, 3225 MaxRecurse - 1); 3226 } 3227 } 3228 3229 // Same for CmpInsts. 3230 if (CmpInst *C = dyn_cast<CmpInst>(I)) { 3231 if (MaxRecurse) { 3232 if (C->getOperand(0) == Op) 3233 return SimplifyCmpInst(C->getPredicate(), RepOp, C->getOperand(1), Q, 3234 MaxRecurse - 1); 3235 if (C->getOperand(1) == Op) 3236 return SimplifyCmpInst(C->getPredicate(), C->getOperand(0), RepOp, Q, 3237 MaxRecurse - 1); 3238 } 3239 } 3240 3241 // TODO: We could hand off more cases to instsimplify here. 3242 3243 // If all operands are constant after substituting Op for RepOp then we can 3244 // constant fold the instruction. 3245 if (Constant *CRepOp = dyn_cast<Constant>(RepOp)) { 3246 // Build a list of all constant operands. 3247 SmallVector<Constant *, 8> ConstOps; 3248 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 3249 if (I->getOperand(i) == Op) 3250 ConstOps.push_back(CRepOp); 3251 else if (Constant *COp = dyn_cast<Constant>(I->getOperand(i))) 3252 ConstOps.push_back(COp); 3253 else 3254 break; 3255 } 3256 3257 // All operands were constants, fold it. 3258 if (ConstOps.size() == I->getNumOperands()) { 3259 if (CmpInst *C = dyn_cast<CmpInst>(I)) 3260 return ConstantFoldCompareInstOperands(C->getPredicate(), ConstOps[0], 3261 ConstOps[1], Q.DL, Q.TLI); 3262 3263 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 3264 if (!LI->isVolatile()) 3265 return ConstantFoldLoadFromConstPtr(ConstOps[0], LI->getType(), Q.DL); 3266 3267 return ConstantFoldInstOperands(I, ConstOps, Q.DL, Q.TLI); 3268 } 3269 } 3270 3271 return nullptr; 3272 } 3273 3274 /// Given operands for a SelectInst, see if we can fold the result. 3275 /// If not, this returns null. 3276 static Value *SimplifySelectInst(Value *CondVal, Value *TrueVal, 3277 Value *FalseVal, const Query &Q, 3278 unsigned MaxRecurse) { 3279 // select true, X, Y -> X 3280 // select false, X, Y -> Y 3281 if (Constant *CB = dyn_cast<Constant>(CondVal)) { 3282 if (CB->isAllOnesValue()) 3283 return TrueVal; 3284 if (CB->isNullValue()) 3285 return FalseVal; 3286 } 3287 3288 // select C, X, X -> X 3289 if (TrueVal == FalseVal) 3290 return TrueVal; 3291 3292 if (isa<UndefValue>(CondVal)) { // select undef, X, Y -> X or Y 3293 if (isa<Constant>(TrueVal)) 3294 return TrueVal; 3295 return FalseVal; 3296 } 3297 if (isa<UndefValue>(TrueVal)) // select C, undef, X -> X 3298 return FalseVal; 3299 if (isa<UndefValue>(FalseVal)) // select C, X, undef -> X 3300 return TrueVal; 3301 3302 if (const auto *ICI = dyn_cast<ICmpInst>(CondVal)) { 3303 unsigned BitWidth = Q.DL.getTypeSizeInBits(TrueVal->getType()); 3304 ICmpInst::Predicate Pred = ICI->getPredicate(); 3305 Value *CmpLHS = ICI->getOperand(0); 3306 Value *CmpRHS = ICI->getOperand(1); 3307 APInt MinSignedValue = APInt::getSignBit(BitWidth); 3308 Value *X; 3309 const APInt *Y; 3310 bool TrueWhenUnset; 3311 bool IsBitTest = false; 3312 if (ICmpInst::isEquality(Pred) && 3313 match(CmpLHS, m_And(m_Value(X), m_APInt(Y))) && 3314 match(CmpRHS, m_Zero())) { 3315 IsBitTest = true; 3316 TrueWhenUnset = Pred == ICmpInst::ICMP_EQ; 3317 } else if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, m_Zero())) { 3318 X = CmpLHS; 3319 Y = &MinSignedValue; 3320 IsBitTest = true; 3321 TrueWhenUnset = false; 3322 } else if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, m_AllOnes())) { 3323 X = CmpLHS; 3324 Y = &MinSignedValue; 3325 IsBitTest = true; 3326 TrueWhenUnset = true; 3327 } 3328 if (IsBitTest) { 3329 const APInt *C; 3330 // (X & Y) == 0 ? X & ~Y : X --> X 3331 // (X & Y) != 0 ? X & ~Y : X --> X & ~Y 3332 if (FalseVal == X && match(TrueVal, m_And(m_Specific(X), m_APInt(C))) && 3333 *Y == ~*C) 3334 return TrueWhenUnset ? FalseVal : TrueVal; 3335 // (X & Y) == 0 ? X : X & ~Y --> X & ~Y 3336 // (X & Y) != 0 ? X : X & ~Y --> X 3337 if (TrueVal == X && match(FalseVal, m_And(m_Specific(X), m_APInt(C))) && 3338 *Y == ~*C) 3339 return TrueWhenUnset ? FalseVal : TrueVal; 3340 3341 if (Y->isPowerOf2()) { 3342 // (X & Y) == 0 ? X | Y : X --> X | Y 3343 // (X & Y) != 0 ? X | Y : X --> X 3344 if (FalseVal == X && match(TrueVal, m_Or(m_Specific(X), m_APInt(C))) && 3345 *Y == *C) 3346 return TrueWhenUnset ? TrueVal : FalseVal; 3347 // (X & Y) == 0 ? X : X | Y --> X 3348 // (X & Y) != 0 ? X : X | Y --> X | Y 3349 if (TrueVal == X && match(FalseVal, m_Or(m_Specific(X), m_APInt(C))) && 3350 *Y == *C) 3351 return TrueWhenUnset ? TrueVal : FalseVal; 3352 } 3353 } 3354 if (ICI->hasOneUse()) { 3355 const APInt *C; 3356 if (match(CmpRHS, m_APInt(C))) { 3357 // X < MIN ? T : F --> F 3358 if (Pred == ICmpInst::ICMP_SLT && C->isMinSignedValue()) 3359 return FalseVal; 3360 // X < MIN ? T : F --> F 3361 if (Pred == ICmpInst::ICMP_ULT && C->isMinValue()) 3362 return FalseVal; 3363 // X > MAX ? T : F --> F 3364 if (Pred == ICmpInst::ICMP_SGT && C->isMaxSignedValue()) 3365 return FalseVal; 3366 // X > MAX ? T : F --> F 3367 if (Pred == ICmpInst::ICMP_UGT && C->isMaxValue()) 3368 return FalseVal; 3369 } 3370 } 3371 3372 // If we have an equality comparison then we know the value in one of the 3373 // arms of the select. See if substituting this value into the arm and 3374 // simplifying the result yields the same value as the other arm. 3375 if (Pred == ICmpInst::ICMP_EQ) { 3376 if (SimplifyWithOpReplaced(FalseVal, CmpLHS, CmpRHS, Q, MaxRecurse) == 3377 TrueVal || 3378 SimplifyWithOpReplaced(FalseVal, CmpRHS, CmpLHS, Q, MaxRecurse) == 3379 TrueVal) 3380 return FalseVal; 3381 if (SimplifyWithOpReplaced(TrueVal, CmpLHS, CmpRHS, Q, MaxRecurse) == 3382 FalseVal || 3383 SimplifyWithOpReplaced(TrueVal, CmpRHS, CmpLHS, Q, MaxRecurse) == 3384 FalseVal) 3385 return FalseVal; 3386 } else if (Pred == ICmpInst::ICMP_NE) { 3387 if (SimplifyWithOpReplaced(TrueVal, CmpLHS, CmpRHS, Q, MaxRecurse) == 3388 FalseVal || 3389 SimplifyWithOpReplaced(TrueVal, CmpRHS, CmpLHS, Q, MaxRecurse) == 3390 FalseVal) 3391 return TrueVal; 3392 if (SimplifyWithOpReplaced(FalseVal, CmpLHS, CmpRHS, Q, MaxRecurse) == 3393 TrueVal || 3394 SimplifyWithOpReplaced(FalseVal, CmpRHS, CmpLHS, Q, MaxRecurse) == 3395 TrueVal) 3396 return TrueVal; 3397 } 3398 } 3399 3400 return nullptr; 3401 } 3402 3403 Value *llvm::SimplifySelectInst(Value *Cond, Value *TrueVal, Value *FalseVal, 3404 const DataLayout &DL, 3405 const TargetLibraryInfo *TLI, 3406 const DominatorTree *DT, AssumptionCache *AC, 3407 const Instruction *CxtI) { 3408 return ::SimplifySelectInst(Cond, TrueVal, FalseVal, 3409 Query(DL, TLI, DT, AC, CxtI), RecursionLimit); 3410 } 3411 3412 /// Given operands for an GetElementPtrInst, see if we can fold the result. 3413 /// If not, this returns null. 3414 static Value *SimplifyGEPInst(Type *SrcTy, ArrayRef<Value *> Ops, 3415 const Query &Q, unsigned) { 3416 // The type of the GEP pointer operand. 3417 unsigned AS = 3418 cast<PointerType>(Ops[0]->getType()->getScalarType())->getAddressSpace(); 3419 3420 // getelementptr P -> P. 3421 if (Ops.size() == 1) 3422 return Ops[0]; 3423 3424 // Compute the (pointer) type returned by the GEP instruction. 3425 Type *LastType = GetElementPtrInst::getIndexedType(SrcTy, Ops.slice(1)); 3426 Type *GEPTy = PointerType::get(LastType, AS); 3427 if (VectorType *VT = dyn_cast<VectorType>(Ops[0]->getType())) 3428 GEPTy = VectorType::get(GEPTy, VT->getNumElements()); 3429 3430 if (isa<UndefValue>(Ops[0])) 3431 return UndefValue::get(GEPTy); 3432 3433 if (Ops.size() == 2) { 3434 // getelementptr P, 0 -> P. 3435 if (match(Ops[1], m_Zero())) 3436 return Ops[0]; 3437 3438 Type *Ty = SrcTy; 3439 if (Ty->isSized()) { 3440 Value *P; 3441 uint64_t C; 3442 uint64_t TyAllocSize = Q.DL.getTypeAllocSize(Ty); 3443 // getelementptr P, N -> P if P points to a type of zero size. 3444 if (TyAllocSize == 0) 3445 return Ops[0]; 3446 3447 // The following transforms are only safe if the ptrtoint cast 3448 // doesn't truncate the pointers. 3449 if (Ops[1]->getType()->getScalarSizeInBits() == 3450 Q.DL.getPointerSizeInBits(AS)) { 3451 auto PtrToIntOrZero = [GEPTy](Value *P) -> Value * { 3452 if (match(P, m_Zero())) 3453 return Constant::getNullValue(GEPTy); 3454 Value *Temp; 3455 if (match(P, m_PtrToInt(m_Value(Temp)))) 3456 if (Temp->getType() == GEPTy) 3457 return Temp; 3458 return nullptr; 3459 }; 3460 3461 // getelementptr V, (sub P, V) -> P if P points to a type of size 1. 3462 if (TyAllocSize == 1 && 3463 match(Ops[1], m_Sub(m_Value(P), m_PtrToInt(m_Specific(Ops[0]))))) 3464 if (Value *R = PtrToIntOrZero(P)) 3465 return R; 3466 3467 // getelementptr V, (ashr (sub P, V), C) -> Q 3468 // if P points to a type of size 1 << C. 3469 if (match(Ops[1], 3470 m_AShr(m_Sub(m_Value(P), m_PtrToInt(m_Specific(Ops[0]))), 3471 m_ConstantInt(C))) && 3472 TyAllocSize == 1ULL << C) 3473 if (Value *R = PtrToIntOrZero(P)) 3474 return R; 3475 3476 // getelementptr V, (sdiv (sub P, V), C) -> Q 3477 // if P points to a type of size C. 3478 if (match(Ops[1], 3479 m_SDiv(m_Sub(m_Value(P), m_PtrToInt(m_Specific(Ops[0]))), 3480 m_SpecificInt(TyAllocSize)))) 3481 if (Value *R = PtrToIntOrZero(P)) 3482 return R; 3483 } 3484 } 3485 } 3486 3487 // Check to see if this is constant foldable. 3488 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 3489 if (!isa<Constant>(Ops[i])) 3490 return nullptr; 3491 3492 return ConstantExpr::getGetElementPtr(SrcTy, cast<Constant>(Ops[0]), 3493 Ops.slice(1)); 3494 } 3495 3496 Value *llvm::SimplifyGEPInst(Type *SrcTy, ArrayRef<Value *> Ops, 3497 const DataLayout &DL, 3498 const TargetLibraryInfo *TLI, 3499 const DominatorTree *DT, AssumptionCache *AC, 3500 const Instruction *CxtI) { 3501 return ::SimplifyGEPInst(SrcTy, Ops, 3502 Query(DL, TLI, DT, AC, CxtI), RecursionLimit); 3503 } 3504 3505 /// Given operands for an InsertValueInst, see if we can fold the result. 3506 /// If not, this returns null. 3507 static Value *SimplifyInsertValueInst(Value *Agg, Value *Val, 3508 ArrayRef<unsigned> Idxs, const Query &Q, 3509 unsigned) { 3510 if (Constant *CAgg = dyn_cast<Constant>(Agg)) 3511 if (Constant *CVal = dyn_cast<Constant>(Val)) 3512 return ConstantFoldInsertValueInstruction(CAgg, CVal, Idxs); 3513 3514 // insertvalue x, undef, n -> x 3515 if (match(Val, m_Undef())) 3516 return Agg; 3517 3518 // insertvalue x, (extractvalue y, n), n 3519 if (ExtractValueInst *EV = dyn_cast<ExtractValueInst>(Val)) 3520 if (EV->getAggregateOperand()->getType() == Agg->getType() && 3521 EV->getIndices() == Idxs) { 3522 // insertvalue undef, (extractvalue y, n), n -> y 3523 if (match(Agg, m_Undef())) 3524 return EV->getAggregateOperand(); 3525 3526 // insertvalue y, (extractvalue y, n), n -> y 3527 if (Agg == EV->getAggregateOperand()) 3528 return Agg; 3529 } 3530 3531 return nullptr; 3532 } 3533 3534 Value *llvm::SimplifyInsertValueInst( 3535 Value *Agg, Value *Val, ArrayRef<unsigned> Idxs, const DataLayout &DL, 3536 const TargetLibraryInfo *TLI, const DominatorTree *DT, AssumptionCache *AC, 3537 const Instruction *CxtI) { 3538 return ::SimplifyInsertValueInst(Agg, Val, Idxs, Query(DL, TLI, DT, AC, CxtI), 3539 RecursionLimit); 3540 } 3541 3542 /// Given operands for an ExtractValueInst, see if we can fold the result. 3543 /// If not, this returns null. 3544 static Value *SimplifyExtractValueInst(Value *Agg, ArrayRef<unsigned> Idxs, 3545 const Query &, unsigned) { 3546 if (auto *CAgg = dyn_cast<Constant>(Agg)) 3547 return ConstantFoldExtractValueInstruction(CAgg, Idxs); 3548 3549 // extractvalue x, (insertvalue y, elt, n), n -> elt 3550 unsigned NumIdxs = Idxs.size(); 3551 for (auto *IVI = dyn_cast<InsertValueInst>(Agg); IVI != nullptr; 3552 IVI = dyn_cast<InsertValueInst>(IVI->getAggregateOperand())) { 3553 ArrayRef<unsigned> InsertValueIdxs = IVI->getIndices(); 3554 unsigned NumInsertValueIdxs = InsertValueIdxs.size(); 3555 unsigned NumCommonIdxs = std::min(NumInsertValueIdxs, NumIdxs); 3556 if (InsertValueIdxs.slice(0, NumCommonIdxs) == 3557 Idxs.slice(0, NumCommonIdxs)) { 3558 if (NumIdxs == NumInsertValueIdxs) 3559 return IVI->getInsertedValueOperand(); 3560 break; 3561 } 3562 } 3563 3564 return nullptr; 3565 } 3566 3567 Value *llvm::SimplifyExtractValueInst(Value *Agg, ArrayRef<unsigned> Idxs, 3568 const DataLayout &DL, 3569 const TargetLibraryInfo *TLI, 3570 const DominatorTree *DT, 3571 AssumptionCache *AC, 3572 const Instruction *CxtI) { 3573 return ::SimplifyExtractValueInst(Agg, Idxs, Query(DL, TLI, DT, AC, CxtI), 3574 RecursionLimit); 3575 } 3576 3577 /// Given operands for an ExtractElementInst, see if we can fold the result. 3578 /// If not, this returns null. 3579 static Value *SimplifyExtractElementInst(Value *Vec, Value *Idx, const Query &, 3580 unsigned) { 3581 if (auto *CVec = dyn_cast<Constant>(Vec)) { 3582 if (auto *CIdx = dyn_cast<Constant>(Idx)) 3583 return ConstantFoldExtractElementInstruction(CVec, CIdx); 3584 3585 // The index is not relevant if our vector is a splat. 3586 if (auto *Splat = CVec->getSplatValue()) 3587 return Splat; 3588 3589 if (isa<UndefValue>(Vec)) 3590 return UndefValue::get(Vec->getType()->getVectorElementType()); 3591 } 3592 3593 // If extracting a specified index from the vector, see if we can recursively 3594 // find a previously computed scalar that was inserted into the vector. 3595 if (auto *IdxC = dyn_cast<ConstantInt>(Idx)) 3596 if (Value *Elt = findScalarElement(Vec, IdxC->getZExtValue())) 3597 return Elt; 3598 3599 return nullptr; 3600 } 3601 3602 Value *llvm::SimplifyExtractElementInst( 3603 Value *Vec, Value *Idx, const DataLayout &DL, const TargetLibraryInfo *TLI, 3604 const DominatorTree *DT, AssumptionCache *AC, const Instruction *CxtI) { 3605 return ::SimplifyExtractElementInst(Vec, Idx, Query(DL, TLI, DT, AC, CxtI), 3606 RecursionLimit); 3607 } 3608 3609 /// See if we can fold the given phi. If not, returns null. 3610 static Value *SimplifyPHINode(PHINode *PN, const Query &Q) { 3611 // If all of the PHI's incoming values are the same then replace the PHI node 3612 // with the common value. 3613 Value *CommonValue = nullptr; 3614 bool HasUndefInput = false; 3615 for (Value *Incoming : PN->incoming_values()) { 3616 // If the incoming value is the phi node itself, it can safely be skipped. 3617 if (Incoming == PN) continue; 3618 if (isa<UndefValue>(Incoming)) { 3619 // Remember that we saw an undef value, but otherwise ignore them. 3620 HasUndefInput = true; 3621 continue; 3622 } 3623 if (CommonValue && Incoming != CommonValue) 3624 return nullptr; // Not the same, bail out. 3625 CommonValue = Incoming; 3626 } 3627 3628 // If CommonValue is null then all of the incoming values were either undef or 3629 // equal to the phi node itself. 3630 if (!CommonValue) 3631 return UndefValue::get(PN->getType()); 3632 3633 // If we have a PHI node like phi(X, undef, X), where X is defined by some 3634 // instruction, we cannot return X as the result of the PHI node unless it 3635 // dominates the PHI block. 3636 if (HasUndefInput) 3637 return ValueDominatesPHI(CommonValue, PN, Q.DT) ? CommonValue : nullptr; 3638 3639 return CommonValue; 3640 } 3641 3642 static Value *SimplifyTruncInst(Value *Op, Type *Ty, const Query &Q, unsigned) { 3643 if (Constant *C = dyn_cast<Constant>(Op)) 3644 return ConstantFoldCastOperand(Instruction::Trunc, C, Ty, Q.DL); 3645 3646 return nullptr; 3647 } 3648 3649 Value *llvm::SimplifyTruncInst(Value *Op, Type *Ty, const DataLayout &DL, 3650 const TargetLibraryInfo *TLI, 3651 const DominatorTree *DT, AssumptionCache *AC, 3652 const Instruction *CxtI) { 3653 return ::SimplifyTruncInst(Op, Ty, Query(DL, TLI, DT, AC, CxtI), 3654 RecursionLimit); 3655 } 3656 3657 //=== Helper functions for higher up the class hierarchy. 3658 3659 /// Given operands for a BinaryOperator, see if we can fold the result. 3660 /// If not, this returns null. 3661 static Value *SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS, 3662 const Query &Q, unsigned MaxRecurse) { 3663 switch (Opcode) { 3664 case Instruction::Add: 3665 return SimplifyAddInst(LHS, RHS, /*isNSW*/false, /*isNUW*/false, 3666 Q, MaxRecurse); 3667 case Instruction::FAdd: 3668 return SimplifyFAddInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse); 3669 3670 case Instruction::Sub: 3671 return SimplifySubInst(LHS, RHS, /*isNSW*/false, /*isNUW*/false, 3672 Q, MaxRecurse); 3673 case Instruction::FSub: 3674 return SimplifyFSubInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse); 3675 3676 case Instruction::Mul: return SimplifyMulInst (LHS, RHS, Q, MaxRecurse); 3677 case Instruction::FMul: 3678 return SimplifyFMulInst (LHS, RHS, FastMathFlags(), Q, MaxRecurse); 3679 case Instruction::SDiv: return SimplifySDivInst(LHS, RHS, Q, MaxRecurse); 3680 case Instruction::UDiv: return SimplifyUDivInst(LHS, RHS, Q, MaxRecurse); 3681 case Instruction::FDiv: 3682 return SimplifyFDivInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse); 3683 case Instruction::SRem: return SimplifySRemInst(LHS, RHS, Q, MaxRecurse); 3684 case Instruction::URem: return SimplifyURemInst(LHS, RHS, Q, MaxRecurse); 3685 case Instruction::FRem: 3686 return SimplifyFRemInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse); 3687 case Instruction::Shl: 3688 return SimplifyShlInst(LHS, RHS, /*isNSW*/false, /*isNUW*/false, 3689 Q, MaxRecurse); 3690 case Instruction::LShr: 3691 return SimplifyLShrInst(LHS, RHS, /*isExact*/false, Q, MaxRecurse); 3692 case Instruction::AShr: 3693 return SimplifyAShrInst(LHS, RHS, /*isExact*/false, Q, MaxRecurse); 3694 case Instruction::And: return SimplifyAndInst(LHS, RHS, Q, MaxRecurse); 3695 case Instruction::Or: return SimplifyOrInst (LHS, RHS, Q, MaxRecurse); 3696 case Instruction::Xor: return SimplifyXorInst(LHS, RHS, Q, MaxRecurse); 3697 default: 3698 if (Constant *CLHS = dyn_cast<Constant>(LHS)) 3699 if (Constant *CRHS = dyn_cast<Constant>(RHS)) 3700 return ConstantFoldBinaryOpOperands(Opcode, CLHS, CRHS, Q.DL); 3701 3702 // If the operation is associative, try some generic simplifications. 3703 if (Instruction::isAssociative(Opcode)) 3704 if (Value *V = SimplifyAssociativeBinOp(Opcode, LHS, RHS, Q, MaxRecurse)) 3705 return V; 3706 3707 // If the operation is with the result of a select instruction check whether 3708 // operating on either branch of the select always yields the same value. 3709 if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS)) 3710 if (Value *V = ThreadBinOpOverSelect(Opcode, LHS, RHS, Q, MaxRecurse)) 3711 return V; 3712 3713 // If the operation is with the result of a phi instruction, check whether 3714 // operating on all incoming values of the phi always yields the same value. 3715 if (isa<PHINode>(LHS) || isa<PHINode>(RHS)) 3716 if (Value *V = ThreadBinOpOverPHI(Opcode, LHS, RHS, Q, MaxRecurse)) 3717 return V; 3718 3719 return nullptr; 3720 } 3721 } 3722 3723 /// Given operands for a BinaryOperator, see if we can fold the result. 3724 /// If not, this returns null. 3725 /// In contrast to SimplifyBinOp, try to use FastMathFlag when folding the 3726 /// result. In case we don't need FastMathFlags, simply fall to SimplifyBinOp. 3727 static Value *SimplifyFPBinOp(unsigned Opcode, Value *LHS, Value *RHS, 3728 const FastMathFlags &FMF, const Query &Q, 3729 unsigned MaxRecurse) { 3730 switch (Opcode) { 3731 case Instruction::FAdd: 3732 return SimplifyFAddInst(LHS, RHS, FMF, Q, MaxRecurse); 3733 case Instruction::FSub: 3734 return SimplifyFSubInst(LHS, RHS, FMF, Q, MaxRecurse); 3735 case Instruction::FMul: 3736 return SimplifyFMulInst(LHS, RHS, FMF, Q, MaxRecurse); 3737 default: 3738 return SimplifyBinOp(Opcode, LHS, RHS, Q, MaxRecurse); 3739 } 3740 } 3741 3742 Value *llvm::SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS, 3743 const DataLayout &DL, const TargetLibraryInfo *TLI, 3744 const DominatorTree *DT, AssumptionCache *AC, 3745 const Instruction *CxtI) { 3746 return ::SimplifyBinOp(Opcode, LHS, RHS, Query(DL, TLI, DT, AC, CxtI), 3747 RecursionLimit); 3748 } 3749 3750 Value *llvm::SimplifyFPBinOp(unsigned Opcode, Value *LHS, Value *RHS, 3751 const FastMathFlags &FMF, const DataLayout &DL, 3752 const TargetLibraryInfo *TLI, 3753 const DominatorTree *DT, AssumptionCache *AC, 3754 const Instruction *CxtI) { 3755 return ::SimplifyFPBinOp(Opcode, LHS, RHS, FMF, Query(DL, TLI, DT, AC, CxtI), 3756 RecursionLimit); 3757 } 3758 3759 /// Given operands for a CmpInst, see if we can fold the result. 3760 static Value *SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS, 3761 const Query &Q, unsigned MaxRecurse) { 3762 if (CmpInst::isIntPredicate((CmpInst::Predicate)Predicate)) 3763 return SimplifyICmpInst(Predicate, LHS, RHS, Q, MaxRecurse); 3764 return SimplifyFCmpInst(Predicate, LHS, RHS, FastMathFlags(), Q, MaxRecurse); 3765 } 3766 3767 Value *llvm::SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS, 3768 const DataLayout &DL, const TargetLibraryInfo *TLI, 3769 const DominatorTree *DT, AssumptionCache *AC, 3770 const Instruction *CxtI) { 3771 return ::SimplifyCmpInst(Predicate, LHS, RHS, Query(DL, TLI, DT, AC, CxtI), 3772 RecursionLimit); 3773 } 3774 3775 static bool IsIdempotent(Intrinsic::ID ID) { 3776 switch (ID) { 3777 default: return false; 3778 3779 // Unary idempotent: f(f(x)) = f(x) 3780 case Intrinsic::fabs: 3781 case Intrinsic::floor: 3782 case Intrinsic::ceil: 3783 case Intrinsic::trunc: 3784 case Intrinsic::rint: 3785 case Intrinsic::nearbyint: 3786 case Intrinsic::round: 3787 return true; 3788 } 3789 } 3790 3791 template <typename IterTy> 3792 static Value *SimplifyIntrinsic(Function *F, IterTy ArgBegin, IterTy ArgEnd, 3793 const Query &Q, unsigned MaxRecurse) { 3794 Intrinsic::ID IID = F->getIntrinsicID(); 3795 unsigned NumOperands = std::distance(ArgBegin, ArgEnd); 3796 Type *ReturnType = F->getReturnType(); 3797 3798 // Binary Ops 3799 if (NumOperands == 2) { 3800 Value *LHS = *ArgBegin; 3801 Value *RHS = *(ArgBegin + 1); 3802 if (IID == Intrinsic::usub_with_overflow || 3803 IID == Intrinsic::ssub_with_overflow) { 3804 // X - X -> { 0, false } 3805 if (LHS == RHS) 3806 return Constant::getNullValue(ReturnType); 3807 3808 // X - undef -> undef 3809 // undef - X -> undef 3810 if (isa<UndefValue>(LHS) || isa<UndefValue>(RHS)) 3811 return UndefValue::get(ReturnType); 3812 } 3813 3814 if (IID == Intrinsic::uadd_with_overflow || 3815 IID == Intrinsic::sadd_with_overflow) { 3816 // X + undef -> undef 3817 if (isa<UndefValue>(RHS)) 3818 return UndefValue::get(ReturnType); 3819 } 3820 3821 if (IID == Intrinsic::umul_with_overflow || 3822 IID == Intrinsic::smul_with_overflow) { 3823 // X * 0 -> { 0, false } 3824 if (match(RHS, m_Zero())) 3825 return Constant::getNullValue(ReturnType); 3826 3827 // X * undef -> { 0, false } 3828 if (match(RHS, m_Undef())) 3829 return Constant::getNullValue(ReturnType); 3830 } 3831 } 3832 3833 // Perform idempotent optimizations 3834 if (!IsIdempotent(IID)) 3835 return nullptr; 3836 3837 // Unary Ops 3838 if (NumOperands == 1) 3839 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(*ArgBegin)) 3840 if (II->getIntrinsicID() == IID) 3841 return II; 3842 3843 return nullptr; 3844 } 3845 3846 template <typename IterTy> 3847 static Value *SimplifyCall(Value *V, IterTy ArgBegin, IterTy ArgEnd, 3848 const Query &Q, unsigned MaxRecurse) { 3849 Type *Ty = V->getType(); 3850 if (PointerType *PTy = dyn_cast<PointerType>(Ty)) 3851 Ty = PTy->getElementType(); 3852 FunctionType *FTy = cast<FunctionType>(Ty); 3853 3854 // call undef -> undef 3855 if (isa<UndefValue>(V)) 3856 return UndefValue::get(FTy->getReturnType()); 3857 3858 Function *F = dyn_cast<Function>(V); 3859 if (!F) 3860 return nullptr; 3861 3862 if (F->isIntrinsic()) 3863 if (Value *Ret = SimplifyIntrinsic(F, ArgBegin, ArgEnd, Q, MaxRecurse)) 3864 return Ret; 3865 3866 if (!canConstantFoldCallTo(F)) 3867 return nullptr; 3868 3869 SmallVector<Constant *, 4> ConstantArgs; 3870 ConstantArgs.reserve(ArgEnd - ArgBegin); 3871 for (IterTy I = ArgBegin, E = ArgEnd; I != E; ++I) { 3872 Constant *C = dyn_cast<Constant>(*I); 3873 if (!C) 3874 return nullptr; 3875 ConstantArgs.push_back(C); 3876 } 3877 3878 return ConstantFoldCall(F, ConstantArgs, Q.TLI); 3879 } 3880 3881 Value *llvm::SimplifyCall(Value *V, User::op_iterator ArgBegin, 3882 User::op_iterator ArgEnd, const DataLayout &DL, 3883 const TargetLibraryInfo *TLI, const DominatorTree *DT, 3884 AssumptionCache *AC, const Instruction *CxtI) { 3885 return ::SimplifyCall(V, ArgBegin, ArgEnd, Query(DL, TLI, DT, AC, CxtI), 3886 RecursionLimit); 3887 } 3888 3889 Value *llvm::SimplifyCall(Value *V, ArrayRef<Value *> Args, 3890 const DataLayout &DL, const TargetLibraryInfo *TLI, 3891 const DominatorTree *DT, AssumptionCache *AC, 3892 const Instruction *CxtI) { 3893 return ::SimplifyCall(V, Args.begin(), Args.end(), 3894 Query(DL, TLI, DT, AC, CxtI), RecursionLimit); 3895 } 3896 3897 /// See if we can compute a simplified version of this instruction. 3898 /// If not, this returns null. 3899 Value *llvm::SimplifyInstruction(Instruction *I, const DataLayout &DL, 3900 const TargetLibraryInfo *TLI, 3901 const DominatorTree *DT, AssumptionCache *AC) { 3902 Value *Result; 3903 3904 switch (I->getOpcode()) { 3905 default: 3906 Result = ConstantFoldInstruction(I, DL, TLI); 3907 break; 3908 case Instruction::FAdd: 3909 Result = SimplifyFAddInst(I->getOperand(0), I->getOperand(1), 3910 I->getFastMathFlags(), DL, TLI, DT, AC, I); 3911 break; 3912 case Instruction::Add: 3913 Result = SimplifyAddInst(I->getOperand(0), I->getOperand(1), 3914 cast<BinaryOperator>(I)->hasNoSignedWrap(), 3915 cast<BinaryOperator>(I)->hasNoUnsignedWrap(), DL, 3916 TLI, DT, AC, I); 3917 break; 3918 case Instruction::FSub: 3919 Result = SimplifyFSubInst(I->getOperand(0), I->getOperand(1), 3920 I->getFastMathFlags(), DL, TLI, DT, AC, I); 3921 break; 3922 case Instruction::Sub: 3923 Result = SimplifySubInst(I->getOperand(0), I->getOperand(1), 3924 cast<BinaryOperator>(I)->hasNoSignedWrap(), 3925 cast<BinaryOperator>(I)->hasNoUnsignedWrap(), DL, 3926 TLI, DT, AC, I); 3927 break; 3928 case Instruction::FMul: 3929 Result = SimplifyFMulInst(I->getOperand(0), I->getOperand(1), 3930 I->getFastMathFlags(), DL, TLI, DT, AC, I); 3931 break; 3932 case Instruction::Mul: 3933 Result = 3934 SimplifyMulInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT, AC, I); 3935 break; 3936 case Instruction::SDiv: 3937 Result = SimplifySDivInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT, 3938 AC, I); 3939 break; 3940 case Instruction::UDiv: 3941 Result = SimplifyUDivInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT, 3942 AC, I); 3943 break; 3944 case Instruction::FDiv: 3945 Result = SimplifyFDivInst(I->getOperand(0), I->getOperand(1), 3946 I->getFastMathFlags(), DL, TLI, DT, AC, I); 3947 break; 3948 case Instruction::SRem: 3949 Result = SimplifySRemInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT, 3950 AC, I); 3951 break; 3952 case Instruction::URem: 3953 Result = SimplifyURemInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT, 3954 AC, I); 3955 break; 3956 case Instruction::FRem: 3957 Result = SimplifyFRemInst(I->getOperand(0), I->getOperand(1), 3958 I->getFastMathFlags(), DL, TLI, DT, AC, I); 3959 break; 3960 case Instruction::Shl: 3961 Result = SimplifyShlInst(I->getOperand(0), I->getOperand(1), 3962 cast<BinaryOperator>(I)->hasNoSignedWrap(), 3963 cast<BinaryOperator>(I)->hasNoUnsignedWrap(), DL, 3964 TLI, DT, AC, I); 3965 break; 3966 case Instruction::LShr: 3967 Result = SimplifyLShrInst(I->getOperand(0), I->getOperand(1), 3968 cast<BinaryOperator>(I)->isExact(), DL, TLI, DT, 3969 AC, I); 3970 break; 3971 case Instruction::AShr: 3972 Result = SimplifyAShrInst(I->getOperand(0), I->getOperand(1), 3973 cast<BinaryOperator>(I)->isExact(), DL, TLI, DT, 3974 AC, I); 3975 break; 3976 case Instruction::And: 3977 Result = 3978 SimplifyAndInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT, AC, I); 3979 break; 3980 case Instruction::Or: 3981 Result = 3982 SimplifyOrInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT, AC, I); 3983 break; 3984 case Instruction::Xor: 3985 Result = 3986 SimplifyXorInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT, AC, I); 3987 break; 3988 case Instruction::ICmp: 3989 Result = 3990 SimplifyICmpInst(cast<ICmpInst>(I)->getPredicate(), I->getOperand(0), 3991 I->getOperand(1), DL, TLI, DT, AC, I); 3992 break; 3993 case Instruction::FCmp: 3994 Result = SimplifyFCmpInst(cast<FCmpInst>(I)->getPredicate(), 3995 I->getOperand(0), I->getOperand(1), 3996 I->getFastMathFlags(), DL, TLI, DT, AC, I); 3997 break; 3998 case Instruction::Select: 3999 Result = SimplifySelectInst(I->getOperand(0), I->getOperand(1), 4000 I->getOperand(2), DL, TLI, DT, AC, I); 4001 break; 4002 case Instruction::GetElementPtr: { 4003 SmallVector<Value*, 8> Ops(I->op_begin(), I->op_end()); 4004 Result = SimplifyGEPInst(cast<GetElementPtrInst>(I)->getSourceElementType(), 4005 Ops, DL, TLI, DT, AC, I); 4006 break; 4007 } 4008 case Instruction::InsertValue: { 4009 InsertValueInst *IV = cast<InsertValueInst>(I); 4010 Result = SimplifyInsertValueInst(IV->getAggregateOperand(), 4011 IV->getInsertedValueOperand(), 4012 IV->getIndices(), DL, TLI, DT, AC, I); 4013 break; 4014 } 4015 case Instruction::ExtractValue: { 4016 auto *EVI = cast<ExtractValueInst>(I); 4017 Result = SimplifyExtractValueInst(EVI->getAggregateOperand(), 4018 EVI->getIndices(), DL, TLI, DT, AC, I); 4019 break; 4020 } 4021 case Instruction::ExtractElement: { 4022 auto *EEI = cast<ExtractElementInst>(I); 4023 Result = SimplifyExtractElementInst( 4024 EEI->getVectorOperand(), EEI->getIndexOperand(), DL, TLI, DT, AC, I); 4025 break; 4026 } 4027 case Instruction::PHI: 4028 Result = SimplifyPHINode(cast<PHINode>(I), Query(DL, TLI, DT, AC, I)); 4029 break; 4030 case Instruction::Call: { 4031 CallSite CS(cast<CallInst>(I)); 4032 Result = SimplifyCall(CS.getCalledValue(), CS.arg_begin(), CS.arg_end(), DL, 4033 TLI, DT, AC, I); 4034 break; 4035 } 4036 case Instruction::Trunc: 4037 Result = 4038 SimplifyTruncInst(I->getOperand(0), I->getType(), DL, TLI, DT, AC, I); 4039 break; 4040 } 4041 4042 // In general, it is possible for computeKnownBits to determine all bits in a 4043 // value even when the operands are not all constants. 4044 if (!Result && I->getType()->isIntegerTy()) { 4045 unsigned BitWidth = I->getType()->getScalarSizeInBits(); 4046 APInt KnownZero(BitWidth, 0); 4047 APInt KnownOne(BitWidth, 0); 4048 computeKnownBits(I, KnownZero, KnownOne, DL, /*Depth*/0, AC, I, DT); 4049 if ((KnownZero | KnownOne).isAllOnesValue()) 4050 Result = ConstantInt::get(I->getContext(), KnownOne); 4051 } 4052 4053 /// If called on unreachable code, the above logic may report that the 4054 /// instruction simplified to itself. Make life easier for users by 4055 /// detecting that case here, returning a safe value instead. 4056 return Result == I ? UndefValue::get(I->getType()) : Result; 4057 } 4058 4059 /// \brief Implementation of recursive simplification through an instruction's 4060 /// uses. 4061 /// 4062 /// This is the common implementation of the recursive simplification routines. 4063 /// If we have a pre-simplified value in 'SimpleV', that is forcibly used to 4064 /// replace the instruction 'I'. Otherwise, we simply add 'I' to the list of 4065 /// instructions to process and attempt to simplify it using 4066 /// InstructionSimplify. 4067 /// 4068 /// This routine returns 'true' only when *it* simplifies something. The passed 4069 /// in simplified value does not count toward this. 4070 static bool replaceAndRecursivelySimplifyImpl(Instruction *I, Value *SimpleV, 4071 const TargetLibraryInfo *TLI, 4072 const DominatorTree *DT, 4073 AssumptionCache *AC) { 4074 bool Simplified = false; 4075 SmallSetVector<Instruction *, 8> Worklist; 4076 const DataLayout &DL = I->getModule()->getDataLayout(); 4077 4078 // If we have an explicit value to collapse to, do that round of the 4079 // simplification loop by hand initially. 4080 if (SimpleV) { 4081 for (User *U : I->users()) 4082 if (U != I) 4083 Worklist.insert(cast<Instruction>(U)); 4084 4085 // Replace the instruction with its simplified value. 4086 I->replaceAllUsesWith(SimpleV); 4087 4088 // Gracefully handle edge cases where the instruction is not wired into any 4089 // parent block. 4090 if (I->getParent()) 4091 I->eraseFromParent(); 4092 } else { 4093 Worklist.insert(I); 4094 } 4095 4096 // Note that we must test the size on each iteration, the worklist can grow. 4097 for (unsigned Idx = 0; Idx != Worklist.size(); ++Idx) { 4098 I = Worklist[Idx]; 4099 4100 // See if this instruction simplifies. 4101 SimpleV = SimplifyInstruction(I, DL, TLI, DT, AC); 4102 if (!SimpleV) 4103 continue; 4104 4105 Simplified = true; 4106 4107 // Stash away all the uses of the old instruction so we can check them for 4108 // recursive simplifications after a RAUW. This is cheaper than checking all 4109 // uses of To on the recursive step in most cases. 4110 for (User *U : I->users()) 4111 Worklist.insert(cast<Instruction>(U)); 4112 4113 // Replace the instruction with its simplified value. 4114 I->replaceAllUsesWith(SimpleV); 4115 4116 // Gracefully handle edge cases where the instruction is not wired into any 4117 // parent block. 4118 if (I->getParent()) 4119 I->eraseFromParent(); 4120 } 4121 return Simplified; 4122 } 4123 4124 bool llvm::recursivelySimplifyInstruction(Instruction *I, 4125 const TargetLibraryInfo *TLI, 4126 const DominatorTree *DT, 4127 AssumptionCache *AC) { 4128 return replaceAndRecursivelySimplifyImpl(I, nullptr, TLI, DT, AC); 4129 } 4130 4131 bool llvm::replaceAndRecursivelySimplify(Instruction *I, Value *SimpleV, 4132 const TargetLibraryInfo *TLI, 4133 const DominatorTree *DT, 4134 AssumptionCache *AC) { 4135 assert(I != SimpleV && "replaceAndRecursivelySimplify(X,X) is not valid!"); 4136 assert(SimpleV && "Must provide a simplified value."); 4137 return replaceAndRecursivelySimplifyImpl(I, SimpleV, TLI, DT, AC); 4138 } 4139