1 //===- InstructionSimplify.cpp - Fold instruction operands ----------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements routines for folding instructions into simpler forms
11 // that do not require creating new instructions.  This does constant folding
12 // ("add i32 1, 1" -> "2") but can also handle non-constant operands, either
13 // returning a constant ("and i32 %x, 0" -> "0") or an already existing value
14 // ("and i32 %x, %x" -> "%x").  All operands are assumed to have already been
15 // simplified: This is usually true and assuming it simplifies the logic (if
16 // they have not been simplified then results are correct but maybe suboptimal).
17 //
18 //===----------------------------------------------------------------------===//
19 
20 #include "llvm/Analysis/InstructionSimplify.h"
21 #include "llvm/ADT/SetVector.h"
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/Analysis/AliasAnalysis.h"
24 #include "llvm/Analysis/ConstantFolding.h"
25 #include "llvm/Analysis/MemoryBuiltins.h"
26 #include "llvm/Analysis/ValueTracking.h"
27 #include "llvm/Analysis/VectorUtils.h"
28 #include "llvm/IR/ConstantRange.h"
29 #include "llvm/IR/DataLayout.h"
30 #include "llvm/IR/Dominators.h"
31 #include "llvm/IR/GetElementPtrTypeIterator.h"
32 #include "llvm/IR/GlobalAlias.h"
33 #include "llvm/IR/Operator.h"
34 #include "llvm/IR/PatternMatch.h"
35 #include "llvm/IR/ValueHandle.h"
36 #include <algorithm>
37 using namespace llvm;
38 using namespace llvm::PatternMatch;
39 
40 #define DEBUG_TYPE "instsimplify"
41 
42 enum { RecursionLimit = 3 };
43 
44 STATISTIC(NumExpand,  "Number of expansions");
45 STATISTIC(NumReassoc, "Number of reassociations");
46 
47 namespace {
48 struct Query {
49   const DataLayout &DL;
50   const TargetLibraryInfo *TLI;
51   const DominatorTree *DT;
52   AssumptionCache *AC;
53   const Instruction *CxtI;
54 
55   Query(const DataLayout &DL, const TargetLibraryInfo *tli,
56         const DominatorTree *dt, AssumptionCache *ac = nullptr,
57         const Instruction *cxti = nullptr)
58       : DL(DL), TLI(tli), DT(dt), AC(ac), CxtI(cxti) {}
59 };
60 } // end anonymous namespace
61 
62 static Value *SimplifyAndInst(Value *, Value *, const Query &, unsigned);
63 static Value *SimplifyBinOp(unsigned, Value *, Value *, const Query &,
64                             unsigned);
65 static Value *SimplifyFPBinOp(unsigned, Value *, Value *, const FastMathFlags &,
66                               const Query &, unsigned);
67 static Value *SimplifyCmpInst(unsigned, Value *, Value *, const Query &,
68                               unsigned);
69 static Value *SimplifyOrInst(Value *, Value *, const Query &, unsigned);
70 static Value *SimplifyXorInst(Value *, Value *, const Query &, unsigned);
71 static Value *SimplifyTruncInst(Value *, Type *, const Query &, unsigned);
72 
73 /// For a boolean type, or a vector of boolean type, return false, or
74 /// a vector with every element false, as appropriate for the type.
75 static Constant *getFalse(Type *Ty) {
76   assert(Ty->getScalarType()->isIntegerTy(1) &&
77          "Expected i1 type or a vector of i1!");
78   return Constant::getNullValue(Ty);
79 }
80 
81 /// For a boolean type, or a vector of boolean type, return true, or
82 /// a vector with every element true, as appropriate for the type.
83 static Constant *getTrue(Type *Ty) {
84   assert(Ty->getScalarType()->isIntegerTy(1) &&
85          "Expected i1 type or a vector of i1!");
86   return Constant::getAllOnesValue(Ty);
87 }
88 
89 /// isSameCompare - Is V equivalent to the comparison "LHS Pred RHS"?
90 static bool isSameCompare(Value *V, CmpInst::Predicate Pred, Value *LHS,
91                           Value *RHS) {
92   CmpInst *Cmp = dyn_cast<CmpInst>(V);
93   if (!Cmp)
94     return false;
95   CmpInst::Predicate CPred = Cmp->getPredicate();
96   Value *CLHS = Cmp->getOperand(0), *CRHS = Cmp->getOperand(1);
97   if (CPred == Pred && CLHS == LHS && CRHS == RHS)
98     return true;
99   return CPred == CmpInst::getSwappedPredicate(Pred) && CLHS == RHS &&
100     CRHS == LHS;
101 }
102 
103 /// Does the given value dominate the specified phi node?
104 static bool ValueDominatesPHI(Value *V, PHINode *P, const DominatorTree *DT) {
105   Instruction *I = dyn_cast<Instruction>(V);
106   if (!I)
107     // Arguments and constants dominate all instructions.
108     return true;
109 
110   // If we are processing instructions (and/or basic blocks) that have not been
111   // fully added to a function, the parent nodes may still be null. Simply
112   // return the conservative answer in these cases.
113   if (!I->getParent() || !P->getParent() || !I->getParent()->getParent())
114     return false;
115 
116   // If we have a DominatorTree then do a precise test.
117   if (DT) {
118     if (!DT->isReachableFromEntry(P->getParent()))
119       return true;
120     if (!DT->isReachableFromEntry(I->getParent()))
121       return false;
122     return DT->dominates(I, P);
123   }
124 
125   // Otherwise, if the instruction is in the entry block and is not an invoke,
126   // then it obviously dominates all phi nodes.
127   if (I->getParent() == &I->getParent()->getParent()->getEntryBlock() &&
128       !isa<InvokeInst>(I))
129     return true;
130 
131   return false;
132 }
133 
134 /// Simplify "A op (B op' C)" by distributing op over op', turning it into
135 /// "(A op B) op' (A op C)".  Here "op" is given by Opcode and "op'" is
136 /// given by OpcodeToExpand, while "A" corresponds to LHS and "B op' C" to RHS.
137 /// Also performs the transform "(A op' B) op C" -> "(A op C) op' (B op C)".
138 /// Returns the simplified value, or null if no simplification was performed.
139 static Value *ExpandBinOp(unsigned Opcode, Value *LHS, Value *RHS,
140                           unsigned OpcToExpand, const Query &Q,
141                           unsigned MaxRecurse) {
142   Instruction::BinaryOps OpcodeToExpand = (Instruction::BinaryOps)OpcToExpand;
143   // Recursion is always used, so bail out at once if we already hit the limit.
144   if (!MaxRecurse--)
145     return nullptr;
146 
147   // Check whether the expression has the form "(A op' B) op C".
148   if (BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS))
149     if (Op0->getOpcode() == OpcodeToExpand) {
150       // It does!  Try turning it into "(A op C) op' (B op C)".
151       Value *A = Op0->getOperand(0), *B = Op0->getOperand(1), *C = RHS;
152       // Do "A op C" and "B op C" both simplify?
153       if (Value *L = SimplifyBinOp(Opcode, A, C, Q, MaxRecurse))
154         if (Value *R = SimplifyBinOp(Opcode, B, C, Q, MaxRecurse)) {
155           // They do! Return "L op' R" if it simplifies or is already available.
156           // If "L op' R" equals "A op' B" then "L op' R" is just the LHS.
157           if ((L == A && R == B) || (Instruction::isCommutative(OpcodeToExpand)
158                                      && L == B && R == A)) {
159             ++NumExpand;
160             return LHS;
161           }
162           // Otherwise return "L op' R" if it simplifies.
163           if (Value *V = SimplifyBinOp(OpcodeToExpand, L, R, Q, MaxRecurse)) {
164             ++NumExpand;
165             return V;
166           }
167         }
168     }
169 
170   // Check whether the expression has the form "A op (B op' C)".
171   if (BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS))
172     if (Op1->getOpcode() == OpcodeToExpand) {
173       // It does!  Try turning it into "(A op B) op' (A op C)".
174       Value *A = LHS, *B = Op1->getOperand(0), *C = Op1->getOperand(1);
175       // Do "A op B" and "A op C" both simplify?
176       if (Value *L = SimplifyBinOp(Opcode, A, B, Q, MaxRecurse))
177         if (Value *R = SimplifyBinOp(Opcode, A, C, Q, MaxRecurse)) {
178           // They do! Return "L op' R" if it simplifies or is already available.
179           // If "L op' R" equals "B op' C" then "L op' R" is just the RHS.
180           if ((L == B && R == C) || (Instruction::isCommutative(OpcodeToExpand)
181                                      && L == C && R == B)) {
182             ++NumExpand;
183             return RHS;
184           }
185           // Otherwise return "L op' R" if it simplifies.
186           if (Value *V = SimplifyBinOp(OpcodeToExpand, L, R, Q, MaxRecurse)) {
187             ++NumExpand;
188             return V;
189           }
190         }
191     }
192 
193   return nullptr;
194 }
195 
196 /// Generic simplifications for associative binary operations.
197 /// Returns the simpler value, or null if none was found.
198 static Value *SimplifyAssociativeBinOp(unsigned Opc, Value *LHS, Value *RHS,
199                                        const Query &Q, unsigned MaxRecurse) {
200   Instruction::BinaryOps Opcode = (Instruction::BinaryOps)Opc;
201   assert(Instruction::isAssociative(Opcode) && "Not an associative operation!");
202 
203   // Recursion is always used, so bail out at once if we already hit the limit.
204   if (!MaxRecurse--)
205     return nullptr;
206 
207   BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS);
208   BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS);
209 
210   // Transform: "(A op B) op C" ==> "A op (B op C)" if it simplifies completely.
211   if (Op0 && Op0->getOpcode() == Opcode) {
212     Value *A = Op0->getOperand(0);
213     Value *B = Op0->getOperand(1);
214     Value *C = RHS;
215 
216     // Does "B op C" simplify?
217     if (Value *V = SimplifyBinOp(Opcode, B, C, Q, MaxRecurse)) {
218       // It does!  Return "A op V" if it simplifies or is already available.
219       // If V equals B then "A op V" is just the LHS.
220       if (V == B) return LHS;
221       // Otherwise return "A op V" if it simplifies.
222       if (Value *W = SimplifyBinOp(Opcode, A, V, Q, MaxRecurse)) {
223         ++NumReassoc;
224         return W;
225       }
226     }
227   }
228 
229   // Transform: "A op (B op C)" ==> "(A op B) op C" if it simplifies completely.
230   if (Op1 && Op1->getOpcode() == Opcode) {
231     Value *A = LHS;
232     Value *B = Op1->getOperand(0);
233     Value *C = Op1->getOperand(1);
234 
235     // Does "A op B" simplify?
236     if (Value *V = SimplifyBinOp(Opcode, A, B, Q, MaxRecurse)) {
237       // It does!  Return "V op C" if it simplifies or is already available.
238       // If V equals B then "V op C" is just the RHS.
239       if (V == B) return RHS;
240       // Otherwise return "V op C" if it simplifies.
241       if (Value *W = SimplifyBinOp(Opcode, V, C, Q, MaxRecurse)) {
242         ++NumReassoc;
243         return W;
244       }
245     }
246   }
247 
248   // The remaining transforms require commutativity as well as associativity.
249   if (!Instruction::isCommutative(Opcode))
250     return nullptr;
251 
252   // Transform: "(A op B) op C" ==> "(C op A) op B" if it simplifies completely.
253   if (Op0 && Op0->getOpcode() == Opcode) {
254     Value *A = Op0->getOperand(0);
255     Value *B = Op0->getOperand(1);
256     Value *C = RHS;
257 
258     // Does "C op A" simplify?
259     if (Value *V = SimplifyBinOp(Opcode, C, A, Q, MaxRecurse)) {
260       // It does!  Return "V op B" if it simplifies or is already available.
261       // If V equals A then "V op B" is just the LHS.
262       if (V == A) return LHS;
263       // Otherwise return "V op B" if it simplifies.
264       if (Value *W = SimplifyBinOp(Opcode, V, B, Q, MaxRecurse)) {
265         ++NumReassoc;
266         return W;
267       }
268     }
269   }
270 
271   // Transform: "A op (B op C)" ==> "B op (C op A)" if it simplifies completely.
272   if (Op1 && Op1->getOpcode() == Opcode) {
273     Value *A = LHS;
274     Value *B = Op1->getOperand(0);
275     Value *C = Op1->getOperand(1);
276 
277     // Does "C op A" simplify?
278     if (Value *V = SimplifyBinOp(Opcode, C, A, Q, MaxRecurse)) {
279       // It does!  Return "B op V" if it simplifies or is already available.
280       // If V equals C then "B op V" is just the RHS.
281       if (V == C) return RHS;
282       // Otherwise return "B op V" if it simplifies.
283       if (Value *W = SimplifyBinOp(Opcode, B, V, Q, MaxRecurse)) {
284         ++NumReassoc;
285         return W;
286       }
287     }
288   }
289 
290   return nullptr;
291 }
292 
293 /// In the case of a binary operation with a select instruction as an operand,
294 /// try to simplify the binop by seeing whether evaluating it on both branches
295 /// of the select results in the same value. Returns the common value if so,
296 /// otherwise returns null.
297 static Value *ThreadBinOpOverSelect(unsigned Opcode, Value *LHS, Value *RHS,
298                                     const Query &Q, unsigned MaxRecurse) {
299   // Recursion is always used, so bail out at once if we already hit the limit.
300   if (!MaxRecurse--)
301     return nullptr;
302 
303   SelectInst *SI;
304   if (isa<SelectInst>(LHS)) {
305     SI = cast<SelectInst>(LHS);
306   } else {
307     assert(isa<SelectInst>(RHS) && "No select instruction operand!");
308     SI = cast<SelectInst>(RHS);
309   }
310 
311   // Evaluate the BinOp on the true and false branches of the select.
312   Value *TV;
313   Value *FV;
314   if (SI == LHS) {
315     TV = SimplifyBinOp(Opcode, SI->getTrueValue(), RHS, Q, MaxRecurse);
316     FV = SimplifyBinOp(Opcode, SI->getFalseValue(), RHS, Q, MaxRecurse);
317   } else {
318     TV = SimplifyBinOp(Opcode, LHS, SI->getTrueValue(), Q, MaxRecurse);
319     FV = SimplifyBinOp(Opcode, LHS, SI->getFalseValue(), Q, MaxRecurse);
320   }
321 
322   // If they simplified to the same value, then return the common value.
323   // If they both failed to simplify then return null.
324   if (TV == FV)
325     return TV;
326 
327   // If one branch simplified to undef, return the other one.
328   if (TV && isa<UndefValue>(TV))
329     return FV;
330   if (FV && isa<UndefValue>(FV))
331     return TV;
332 
333   // If applying the operation did not change the true and false select values,
334   // then the result of the binop is the select itself.
335   if (TV == SI->getTrueValue() && FV == SI->getFalseValue())
336     return SI;
337 
338   // If one branch simplified and the other did not, and the simplified
339   // value is equal to the unsimplified one, return the simplified value.
340   // For example, select (cond, X, X & Z) & Z -> X & Z.
341   if ((FV && !TV) || (TV && !FV)) {
342     // Check that the simplified value has the form "X op Y" where "op" is the
343     // same as the original operation.
344     Instruction *Simplified = dyn_cast<Instruction>(FV ? FV : TV);
345     if (Simplified && Simplified->getOpcode() == Opcode) {
346       // The value that didn't simplify is "UnsimplifiedLHS op UnsimplifiedRHS".
347       // We already know that "op" is the same as for the simplified value.  See
348       // if the operands match too.  If so, return the simplified value.
349       Value *UnsimplifiedBranch = FV ? SI->getTrueValue() : SI->getFalseValue();
350       Value *UnsimplifiedLHS = SI == LHS ? UnsimplifiedBranch : LHS;
351       Value *UnsimplifiedRHS = SI == LHS ? RHS : UnsimplifiedBranch;
352       if (Simplified->getOperand(0) == UnsimplifiedLHS &&
353           Simplified->getOperand(1) == UnsimplifiedRHS)
354         return Simplified;
355       if (Simplified->isCommutative() &&
356           Simplified->getOperand(1) == UnsimplifiedLHS &&
357           Simplified->getOperand(0) == UnsimplifiedRHS)
358         return Simplified;
359     }
360   }
361 
362   return nullptr;
363 }
364 
365 /// In the case of a comparison with a select instruction, try to simplify the
366 /// comparison by seeing whether both branches of the select result in the same
367 /// value. Returns the common value if so, otherwise returns null.
368 static Value *ThreadCmpOverSelect(CmpInst::Predicate Pred, Value *LHS,
369                                   Value *RHS, const Query &Q,
370                                   unsigned MaxRecurse) {
371   // Recursion is always used, so bail out at once if we already hit the limit.
372   if (!MaxRecurse--)
373     return nullptr;
374 
375   // Make sure the select is on the LHS.
376   if (!isa<SelectInst>(LHS)) {
377     std::swap(LHS, RHS);
378     Pred = CmpInst::getSwappedPredicate(Pred);
379   }
380   assert(isa<SelectInst>(LHS) && "Not comparing with a select instruction!");
381   SelectInst *SI = cast<SelectInst>(LHS);
382   Value *Cond = SI->getCondition();
383   Value *TV = SI->getTrueValue();
384   Value *FV = SI->getFalseValue();
385 
386   // Now that we have "cmp select(Cond, TV, FV), RHS", analyse it.
387   // Does "cmp TV, RHS" simplify?
388   Value *TCmp = SimplifyCmpInst(Pred, TV, RHS, Q, MaxRecurse);
389   if (TCmp == Cond) {
390     // It not only simplified, it simplified to the select condition.  Replace
391     // it with 'true'.
392     TCmp = getTrue(Cond->getType());
393   } else if (!TCmp) {
394     // It didn't simplify.  However if "cmp TV, RHS" is equal to the select
395     // condition then we can replace it with 'true'.  Otherwise give up.
396     if (!isSameCompare(Cond, Pred, TV, RHS))
397       return nullptr;
398     TCmp = getTrue(Cond->getType());
399   }
400 
401   // Does "cmp FV, RHS" simplify?
402   Value *FCmp = SimplifyCmpInst(Pred, FV, RHS, Q, MaxRecurse);
403   if (FCmp == Cond) {
404     // It not only simplified, it simplified to the select condition.  Replace
405     // it with 'false'.
406     FCmp = getFalse(Cond->getType());
407   } else if (!FCmp) {
408     // It didn't simplify.  However if "cmp FV, RHS" is equal to the select
409     // condition then we can replace it with 'false'.  Otherwise give up.
410     if (!isSameCompare(Cond, Pred, FV, RHS))
411       return nullptr;
412     FCmp = getFalse(Cond->getType());
413   }
414 
415   // If both sides simplified to the same value, then use it as the result of
416   // the original comparison.
417   if (TCmp == FCmp)
418     return TCmp;
419 
420   // The remaining cases only make sense if the select condition has the same
421   // type as the result of the comparison, so bail out if this is not so.
422   if (Cond->getType()->isVectorTy() != RHS->getType()->isVectorTy())
423     return nullptr;
424   // If the false value simplified to false, then the result of the compare
425   // is equal to "Cond && TCmp".  This also catches the case when the false
426   // value simplified to false and the true value to true, returning "Cond".
427   if (match(FCmp, m_Zero()))
428     if (Value *V = SimplifyAndInst(Cond, TCmp, Q, MaxRecurse))
429       return V;
430   // If the true value simplified to true, then the result of the compare
431   // is equal to "Cond || FCmp".
432   if (match(TCmp, m_One()))
433     if (Value *V = SimplifyOrInst(Cond, FCmp, Q, MaxRecurse))
434       return V;
435   // Finally, if the false value simplified to true and the true value to
436   // false, then the result of the compare is equal to "!Cond".
437   if (match(FCmp, m_One()) && match(TCmp, m_Zero()))
438     if (Value *V =
439         SimplifyXorInst(Cond, Constant::getAllOnesValue(Cond->getType()),
440                         Q, MaxRecurse))
441       return V;
442 
443   return nullptr;
444 }
445 
446 /// In the case of a binary operation with an operand that is a PHI instruction,
447 /// try to simplify the binop by seeing whether evaluating it on the incoming
448 /// phi values yields the same result for every value. If so returns the common
449 /// value, otherwise returns null.
450 static Value *ThreadBinOpOverPHI(unsigned Opcode, Value *LHS, Value *RHS,
451                                  const Query &Q, unsigned MaxRecurse) {
452   // Recursion is always used, so bail out at once if we already hit the limit.
453   if (!MaxRecurse--)
454     return nullptr;
455 
456   PHINode *PI;
457   if (isa<PHINode>(LHS)) {
458     PI = cast<PHINode>(LHS);
459     // Bail out if RHS and the phi may be mutually interdependent due to a loop.
460     if (!ValueDominatesPHI(RHS, PI, Q.DT))
461       return nullptr;
462   } else {
463     assert(isa<PHINode>(RHS) && "No PHI instruction operand!");
464     PI = cast<PHINode>(RHS);
465     // Bail out if LHS and the phi may be mutually interdependent due to a loop.
466     if (!ValueDominatesPHI(LHS, PI, Q.DT))
467       return nullptr;
468   }
469 
470   // Evaluate the BinOp on the incoming phi values.
471   Value *CommonValue = nullptr;
472   for (Value *Incoming : PI->incoming_values()) {
473     // If the incoming value is the phi node itself, it can safely be skipped.
474     if (Incoming == PI) continue;
475     Value *V = PI == LHS ?
476       SimplifyBinOp(Opcode, Incoming, RHS, Q, MaxRecurse) :
477       SimplifyBinOp(Opcode, LHS, Incoming, Q, MaxRecurse);
478     // If the operation failed to simplify, or simplified to a different value
479     // to previously, then give up.
480     if (!V || (CommonValue && V != CommonValue))
481       return nullptr;
482     CommonValue = V;
483   }
484 
485   return CommonValue;
486 }
487 
488 /// In the case of a comparison with a PHI instruction, try to simplify the
489 /// comparison by seeing whether comparing with all of the incoming phi values
490 /// yields the same result every time. If so returns the common result,
491 /// otherwise returns null.
492 static Value *ThreadCmpOverPHI(CmpInst::Predicate Pred, Value *LHS, Value *RHS,
493                                const Query &Q, unsigned MaxRecurse) {
494   // Recursion is always used, so bail out at once if we already hit the limit.
495   if (!MaxRecurse--)
496     return nullptr;
497 
498   // Make sure the phi is on the LHS.
499   if (!isa<PHINode>(LHS)) {
500     std::swap(LHS, RHS);
501     Pred = CmpInst::getSwappedPredicate(Pred);
502   }
503   assert(isa<PHINode>(LHS) && "Not comparing with a phi instruction!");
504   PHINode *PI = cast<PHINode>(LHS);
505 
506   // Bail out if RHS and the phi may be mutually interdependent due to a loop.
507   if (!ValueDominatesPHI(RHS, PI, Q.DT))
508     return nullptr;
509 
510   // Evaluate the BinOp on the incoming phi values.
511   Value *CommonValue = nullptr;
512   for (Value *Incoming : PI->incoming_values()) {
513     // If the incoming value is the phi node itself, it can safely be skipped.
514     if (Incoming == PI) continue;
515     Value *V = SimplifyCmpInst(Pred, Incoming, RHS, Q, MaxRecurse);
516     // If the operation failed to simplify, or simplified to a different value
517     // to previously, then give up.
518     if (!V || (CommonValue && V != CommonValue))
519       return nullptr;
520     CommonValue = V;
521   }
522 
523   return CommonValue;
524 }
525 
526 /// Given operands for an Add, see if we can fold the result.
527 /// If not, this returns null.
528 static Value *SimplifyAddInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
529                               const Query &Q, unsigned MaxRecurse) {
530   if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
531     if (Constant *CRHS = dyn_cast<Constant>(Op1))
532       return ConstantFoldBinaryOpOperands(Instruction::Add, CLHS, CRHS, Q.DL);
533 
534     // Canonicalize the constant to the RHS.
535     std::swap(Op0, Op1);
536   }
537 
538   // X + undef -> undef
539   if (match(Op1, m_Undef()))
540     return Op1;
541 
542   // X + 0 -> X
543   if (match(Op1, m_Zero()))
544     return Op0;
545 
546   // X + (Y - X) -> Y
547   // (Y - X) + X -> Y
548   // Eg: X + -X -> 0
549   Value *Y = nullptr;
550   if (match(Op1, m_Sub(m_Value(Y), m_Specific(Op0))) ||
551       match(Op0, m_Sub(m_Value(Y), m_Specific(Op1))))
552     return Y;
553 
554   // X + ~X -> -1   since   ~X = -X-1
555   if (match(Op0, m_Not(m_Specific(Op1))) ||
556       match(Op1, m_Not(m_Specific(Op0))))
557     return Constant::getAllOnesValue(Op0->getType());
558 
559   /// i1 add -> xor.
560   if (MaxRecurse && Op0->getType()->isIntegerTy(1))
561     if (Value *V = SimplifyXorInst(Op0, Op1, Q, MaxRecurse-1))
562       return V;
563 
564   // Try some generic simplifications for associative operations.
565   if (Value *V = SimplifyAssociativeBinOp(Instruction::Add, Op0, Op1, Q,
566                                           MaxRecurse))
567     return V;
568 
569   // Threading Add over selects and phi nodes is pointless, so don't bother.
570   // Threading over the select in "A + select(cond, B, C)" means evaluating
571   // "A+B" and "A+C" and seeing if they are equal; but they are equal if and
572   // only if B and C are equal.  If B and C are equal then (since we assume
573   // that operands have already been simplified) "select(cond, B, C)" should
574   // have been simplified to the common value of B and C already.  Analysing
575   // "A+B" and "A+C" thus gains nothing, but costs compile time.  Similarly
576   // for threading over phi nodes.
577 
578   return nullptr;
579 }
580 
581 Value *llvm::SimplifyAddInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
582                              const DataLayout &DL, const TargetLibraryInfo *TLI,
583                              const DominatorTree *DT, AssumptionCache *AC,
584                              const Instruction *CxtI) {
585   return ::SimplifyAddInst(Op0, Op1, isNSW, isNUW, Query(DL, TLI, DT, AC, CxtI),
586                            RecursionLimit);
587 }
588 
589 /// \brief Compute the base pointer and cumulative constant offsets for V.
590 ///
591 /// This strips all constant offsets off of V, leaving it the base pointer, and
592 /// accumulates the total constant offset applied in the returned constant. It
593 /// returns 0 if V is not a pointer, and returns the constant '0' if there are
594 /// no constant offsets applied.
595 ///
596 /// This is very similar to GetPointerBaseWithConstantOffset except it doesn't
597 /// follow non-inbounds geps. This allows it to remain usable for icmp ult/etc.
598 /// folding.
599 static Constant *stripAndComputeConstantOffsets(const DataLayout &DL, Value *&V,
600                                                 bool AllowNonInbounds = false) {
601   assert(V->getType()->getScalarType()->isPointerTy());
602 
603   Type *IntPtrTy = DL.getIntPtrType(V->getType())->getScalarType();
604   APInt Offset = APInt::getNullValue(IntPtrTy->getIntegerBitWidth());
605 
606   // Even though we don't look through PHI nodes, we could be called on an
607   // instruction in an unreachable block, which may be on a cycle.
608   SmallPtrSet<Value *, 4> Visited;
609   Visited.insert(V);
610   do {
611     if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
612       if ((!AllowNonInbounds && !GEP->isInBounds()) ||
613           !GEP->accumulateConstantOffset(DL, Offset))
614         break;
615       V = GEP->getPointerOperand();
616     } else if (Operator::getOpcode(V) == Instruction::BitCast) {
617       V = cast<Operator>(V)->getOperand(0);
618     } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
619       if (GA->isInterposable())
620         break;
621       V = GA->getAliasee();
622     } else {
623       break;
624     }
625     assert(V->getType()->getScalarType()->isPointerTy() &&
626            "Unexpected operand type!");
627   } while (Visited.insert(V).second);
628 
629   Constant *OffsetIntPtr = ConstantInt::get(IntPtrTy, Offset);
630   if (V->getType()->isVectorTy())
631     return ConstantVector::getSplat(V->getType()->getVectorNumElements(),
632                                     OffsetIntPtr);
633   return OffsetIntPtr;
634 }
635 
636 /// \brief Compute the constant difference between two pointer values.
637 /// If the difference is not a constant, returns zero.
638 static Constant *computePointerDifference(const DataLayout &DL, Value *LHS,
639                                           Value *RHS) {
640   Constant *LHSOffset = stripAndComputeConstantOffsets(DL, LHS);
641   Constant *RHSOffset = stripAndComputeConstantOffsets(DL, RHS);
642 
643   // If LHS and RHS are not related via constant offsets to the same base
644   // value, there is nothing we can do here.
645   if (LHS != RHS)
646     return nullptr;
647 
648   // Otherwise, the difference of LHS - RHS can be computed as:
649   //    LHS - RHS
650   //  = (LHSOffset + Base) - (RHSOffset + Base)
651   //  = LHSOffset - RHSOffset
652   return ConstantExpr::getSub(LHSOffset, RHSOffset);
653 }
654 
655 /// Given operands for a Sub, see if we can fold the result.
656 /// If not, this returns null.
657 static Value *SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
658                               const Query &Q, unsigned MaxRecurse) {
659   if (Constant *CLHS = dyn_cast<Constant>(Op0))
660     if (Constant *CRHS = dyn_cast<Constant>(Op1))
661       return ConstantFoldBinaryOpOperands(Instruction::Sub, CLHS, CRHS, Q.DL);
662 
663   // X - undef -> undef
664   // undef - X -> undef
665   if (match(Op0, m_Undef()) || match(Op1, m_Undef()))
666     return UndefValue::get(Op0->getType());
667 
668   // X - 0 -> X
669   if (match(Op1, m_Zero()))
670     return Op0;
671 
672   // X - X -> 0
673   if (Op0 == Op1)
674     return Constant::getNullValue(Op0->getType());
675 
676   // 0 - X -> 0 if the sub is NUW.
677   if (isNUW && match(Op0, m_Zero()))
678     return Op0;
679 
680   // (X + Y) - Z -> X + (Y - Z) or Y + (X - Z) if everything simplifies.
681   // For example, (X + Y) - Y -> X; (Y + X) - Y -> X
682   Value *X = nullptr, *Y = nullptr, *Z = Op1;
683   if (MaxRecurse && match(Op0, m_Add(m_Value(X), m_Value(Y)))) { // (X + Y) - Z
684     // See if "V === Y - Z" simplifies.
685     if (Value *V = SimplifyBinOp(Instruction::Sub, Y, Z, Q, MaxRecurse-1))
686       // It does!  Now see if "X + V" simplifies.
687       if (Value *W = SimplifyBinOp(Instruction::Add, X, V, Q, MaxRecurse-1)) {
688         // It does, we successfully reassociated!
689         ++NumReassoc;
690         return W;
691       }
692     // See if "V === X - Z" simplifies.
693     if (Value *V = SimplifyBinOp(Instruction::Sub, X, Z, Q, MaxRecurse-1))
694       // It does!  Now see if "Y + V" simplifies.
695       if (Value *W = SimplifyBinOp(Instruction::Add, Y, V, Q, MaxRecurse-1)) {
696         // It does, we successfully reassociated!
697         ++NumReassoc;
698         return W;
699       }
700   }
701 
702   // X - (Y + Z) -> (X - Y) - Z or (X - Z) - Y if everything simplifies.
703   // For example, X - (X + 1) -> -1
704   X = Op0;
705   if (MaxRecurse && match(Op1, m_Add(m_Value(Y), m_Value(Z)))) { // X - (Y + Z)
706     // See if "V === X - Y" simplifies.
707     if (Value *V = SimplifyBinOp(Instruction::Sub, X, Y, Q, MaxRecurse-1))
708       // It does!  Now see if "V - Z" simplifies.
709       if (Value *W = SimplifyBinOp(Instruction::Sub, V, Z, Q, MaxRecurse-1)) {
710         // It does, we successfully reassociated!
711         ++NumReassoc;
712         return W;
713       }
714     // See if "V === X - Z" simplifies.
715     if (Value *V = SimplifyBinOp(Instruction::Sub, X, Z, Q, MaxRecurse-1))
716       // It does!  Now see if "V - Y" simplifies.
717       if (Value *W = SimplifyBinOp(Instruction::Sub, V, Y, Q, MaxRecurse-1)) {
718         // It does, we successfully reassociated!
719         ++NumReassoc;
720         return W;
721       }
722   }
723 
724   // Z - (X - Y) -> (Z - X) + Y if everything simplifies.
725   // For example, X - (X - Y) -> Y.
726   Z = Op0;
727   if (MaxRecurse && match(Op1, m_Sub(m_Value(X), m_Value(Y)))) // Z - (X - Y)
728     // See if "V === Z - X" simplifies.
729     if (Value *V = SimplifyBinOp(Instruction::Sub, Z, X, Q, MaxRecurse-1))
730       // It does!  Now see if "V + Y" simplifies.
731       if (Value *W = SimplifyBinOp(Instruction::Add, V, Y, Q, MaxRecurse-1)) {
732         // It does, we successfully reassociated!
733         ++NumReassoc;
734         return W;
735       }
736 
737   // trunc(X) - trunc(Y) -> trunc(X - Y) if everything simplifies.
738   if (MaxRecurse && match(Op0, m_Trunc(m_Value(X))) &&
739       match(Op1, m_Trunc(m_Value(Y))))
740     if (X->getType() == Y->getType())
741       // See if "V === X - Y" simplifies.
742       if (Value *V = SimplifyBinOp(Instruction::Sub, X, Y, Q, MaxRecurse-1))
743         // It does!  Now see if "trunc V" simplifies.
744         if (Value *W = SimplifyTruncInst(V, Op0->getType(), Q, MaxRecurse-1))
745           // It does, return the simplified "trunc V".
746           return W;
747 
748   // Variations on GEP(base, I, ...) - GEP(base, i, ...) -> GEP(null, I-i, ...).
749   if (match(Op0, m_PtrToInt(m_Value(X))) &&
750       match(Op1, m_PtrToInt(m_Value(Y))))
751     if (Constant *Result = computePointerDifference(Q.DL, X, Y))
752       return ConstantExpr::getIntegerCast(Result, Op0->getType(), true);
753 
754   // i1 sub -> xor.
755   if (MaxRecurse && Op0->getType()->isIntegerTy(1))
756     if (Value *V = SimplifyXorInst(Op0, Op1, Q, MaxRecurse-1))
757       return V;
758 
759   // Threading Sub over selects and phi nodes is pointless, so don't bother.
760   // Threading over the select in "A - select(cond, B, C)" means evaluating
761   // "A-B" and "A-C" and seeing if they are equal; but they are equal if and
762   // only if B and C are equal.  If B and C are equal then (since we assume
763   // that operands have already been simplified) "select(cond, B, C)" should
764   // have been simplified to the common value of B and C already.  Analysing
765   // "A-B" and "A-C" thus gains nothing, but costs compile time.  Similarly
766   // for threading over phi nodes.
767 
768   return nullptr;
769 }
770 
771 Value *llvm::SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
772                              const DataLayout &DL, const TargetLibraryInfo *TLI,
773                              const DominatorTree *DT, AssumptionCache *AC,
774                              const Instruction *CxtI) {
775   return ::SimplifySubInst(Op0, Op1, isNSW, isNUW, Query(DL, TLI, DT, AC, CxtI),
776                            RecursionLimit);
777 }
778 
779 /// Given operands for an FAdd, see if we can fold the result.  If not, this
780 /// returns null.
781 static Value *SimplifyFAddInst(Value *Op0, Value *Op1, FastMathFlags FMF,
782                               const Query &Q, unsigned MaxRecurse) {
783   if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
784     if (Constant *CRHS = dyn_cast<Constant>(Op1))
785       return ConstantFoldBinaryOpOperands(Instruction::FAdd, CLHS, CRHS, Q.DL);
786 
787     // Canonicalize the constant to the RHS.
788     std::swap(Op0, Op1);
789   }
790 
791   // fadd X, -0 ==> X
792   if (match(Op1, m_NegZero()))
793     return Op0;
794 
795   // fadd X, 0 ==> X, when we know X is not -0
796   if (match(Op1, m_Zero()) &&
797       (FMF.noSignedZeros() || CannotBeNegativeZero(Op0)))
798     return Op0;
799 
800   // fadd [nnan ninf] X, (fsub [nnan ninf] 0, X) ==> 0
801   //   where nnan and ninf have to occur at least once somewhere in this
802   //   expression
803   Value *SubOp = nullptr;
804   if (match(Op1, m_FSub(m_AnyZero(), m_Specific(Op0))))
805     SubOp = Op1;
806   else if (match(Op0, m_FSub(m_AnyZero(), m_Specific(Op1))))
807     SubOp = Op0;
808   if (SubOp) {
809     Instruction *FSub = cast<Instruction>(SubOp);
810     if ((FMF.noNaNs() || FSub->hasNoNaNs()) &&
811         (FMF.noInfs() || FSub->hasNoInfs()))
812       return Constant::getNullValue(Op0->getType());
813   }
814 
815   return nullptr;
816 }
817 
818 /// Given operands for an FSub, see if we can fold the result.  If not, this
819 /// returns null.
820 static Value *SimplifyFSubInst(Value *Op0, Value *Op1, FastMathFlags FMF,
821                               const Query &Q, unsigned MaxRecurse) {
822   if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
823     if (Constant *CRHS = dyn_cast<Constant>(Op1))
824       return ConstantFoldBinaryOpOperands(Instruction::FSub, CLHS, CRHS, Q.DL);
825   }
826 
827   // fsub X, 0 ==> X
828   if (match(Op1, m_Zero()))
829     return Op0;
830 
831   // fsub X, -0 ==> X, when we know X is not -0
832   if (match(Op1, m_NegZero()) &&
833       (FMF.noSignedZeros() || CannotBeNegativeZero(Op0)))
834     return Op0;
835 
836   // fsub -0.0, (fsub -0.0, X) ==> X
837   Value *X;
838   if (match(Op0, m_NegZero()) && match(Op1, m_FSub(m_NegZero(), m_Value(X))))
839     return X;
840 
841   // fsub 0.0, (fsub 0.0, X) ==> X if signed zeros are ignored.
842   if (FMF.noSignedZeros() && match(Op0, m_AnyZero()) &&
843       match(Op1, m_FSub(m_AnyZero(), m_Value(X))))
844     return X;
845 
846   // fsub nnan x, x ==> 0.0
847   if (FMF.noNaNs() && Op0 == Op1)
848     return Constant::getNullValue(Op0->getType());
849 
850   return nullptr;
851 }
852 
853 /// Given the operands for an FMul, see if we can fold the result
854 static Value *SimplifyFMulInst(Value *Op0, Value *Op1,
855                                FastMathFlags FMF,
856                                const Query &Q,
857                                unsigned MaxRecurse) {
858  if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
859     if (Constant *CRHS = dyn_cast<Constant>(Op1))
860       return ConstantFoldBinaryOpOperands(Instruction::FMul, CLHS, CRHS, Q.DL);
861 
862     // Canonicalize the constant to the RHS.
863     std::swap(Op0, Op1);
864  }
865 
866  // fmul X, 1.0 ==> X
867  if (match(Op1, m_FPOne()))
868    return Op0;
869 
870  // fmul nnan nsz X, 0 ==> 0
871  if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op1, m_AnyZero()))
872    return Op1;
873 
874  return nullptr;
875 }
876 
877 /// Given operands for a Mul, see if we can fold the result.
878 /// If not, this returns null.
879 static Value *SimplifyMulInst(Value *Op0, Value *Op1, const Query &Q,
880                               unsigned MaxRecurse) {
881   if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
882     if (Constant *CRHS = dyn_cast<Constant>(Op1))
883       return ConstantFoldBinaryOpOperands(Instruction::Mul, CLHS, CRHS, Q.DL);
884 
885     // Canonicalize the constant to the RHS.
886     std::swap(Op0, Op1);
887   }
888 
889   // X * undef -> 0
890   if (match(Op1, m_Undef()))
891     return Constant::getNullValue(Op0->getType());
892 
893   // X * 0 -> 0
894   if (match(Op1, m_Zero()))
895     return Op1;
896 
897   // X * 1 -> X
898   if (match(Op1, m_One()))
899     return Op0;
900 
901   // (X / Y) * Y -> X if the division is exact.
902   Value *X = nullptr;
903   if (match(Op0, m_Exact(m_IDiv(m_Value(X), m_Specific(Op1)))) || // (X / Y) * Y
904       match(Op1, m_Exact(m_IDiv(m_Value(X), m_Specific(Op0)))))   // Y * (X / Y)
905     return X;
906 
907   // i1 mul -> and.
908   if (MaxRecurse && Op0->getType()->isIntegerTy(1))
909     if (Value *V = SimplifyAndInst(Op0, Op1, Q, MaxRecurse-1))
910       return V;
911 
912   // Try some generic simplifications for associative operations.
913   if (Value *V = SimplifyAssociativeBinOp(Instruction::Mul, Op0, Op1, Q,
914                                           MaxRecurse))
915     return V;
916 
917   // Mul distributes over Add.  Try some generic simplifications based on this.
918   if (Value *V = ExpandBinOp(Instruction::Mul, Op0, Op1, Instruction::Add,
919                              Q, MaxRecurse))
920     return V;
921 
922   // If the operation is with the result of a select instruction, check whether
923   // operating on either branch of the select always yields the same value.
924   if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
925     if (Value *V = ThreadBinOpOverSelect(Instruction::Mul, Op0, Op1, Q,
926                                          MaxRecurse))
927       return V;
928 
929   // If the operation is with the result of a phi instruction, check whether
930   // operating on all incoming values of the phi always yields the same value.
931   if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
932     if (Value *V = ThreadBinOpOverPHI(Instruction::Mul, Op0, Op1, Q,
933                                       MaxRecurse))
934       return V;
935 
936   return nullptr;
937 }
938 
939 Value *llvm::SimplifyFAddInst(Value *Op0, Value *Op1, FastMathFlags FMF,
940                               const DataLayout &DL,
941                               const TargetLibraryInfo *TLI,
942                               const DominatorTree *DT, AssumptionCache *AC,
943                               const Instruction *CxtI) {
944   return ::SimplifyFAddInst(Op0, Op1, FMF, Query(DL, TLI, DT, AC, CxtI),
945                             RecursionLimit);
946 }
947 
948 Value *llvm::SimplifyFSubInst(Value *Op0, Value *Op1, FastMathFlags FMF,
949                               const DataLayout &DL,
950                               const TargetLibraryInfo *TLI,
951                               const DominatorTree *DT, AssumptionCache *AC,
952                               const Instruction *CxtI) {
953   return ::SimplifyFSubInst(Op0, Op1, FMF, Query(DL, TLI, DT, AC, CxtI),
954                             RecursionLimit);
955 }
956 
957 Value *llvm::SimplifyFMulInst(Value *Op0, Value *Op1, FastMathFlags FMF,
958                               const DataLayout &DL,
959                               const TargetLibraryInfo *TLI,
960                               const DominatorTree *DT, AssumptionCache *AC,
961                               const Instruction *CxtI) {
962   return ::SimplifyFMulInst(Op0, Op1, FMF, Query(DL, TLI, DT, AC, CxtI),
963                             RecursionLimit);
964 }
965 
966 Value *llvm::SimplifyMulInst(Value *Op0, Value *Op1, const DataLayout &DL,
967                              const TargetLibraryInfo *TLI,
968                              const DominatorTree *DT, AssumptionCache *AC,
969                              const Instruction *CxtI) {
970   return ::SimplifyMulInst(Op0, Op1, Query(DL, TLI, DT, AC, CxtI),
971                            RecursionLimit);
972 }
973 
974 /// Given operands for an SDiv or UDiv, see if we can fold the result.
975 /// If not, this returns null.
976 static Value *SimplifyDiv(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1,
977                           const Query &Q, unsigned MaxRecurse) {
978   if (Constant *C0 = dyn_cast<Constant>(Op0))
979     if (Constant *C1 = dyn_cast<Constant>(Op1))
980       return ConstantFoldBinaryOpOperands(Opcode, C0, C1, Q.DL);
981 
982   bool isSigned = Opcode == Instruction::SDiv;
983 
984   // X / undef -> undef
985   if (match(Op1, m_Undef()))
986     return Op1;
987 
988   // X / 0 -> undef, we don't need to preserve faults!
989   if (match(Op1, m_Zero()))
990     return UndefValue::get(Op1->getType());
991 
992   // undef / X -> 0
993   if (match(Op0, m_Undef()))
994     return Constant::getNullValue(Op0->getType());
995 
996   // 0 / X -> 0, we don't need to preserve faults!
997   if (match(Op0, m_Zero()))
998     return Op0;
999 
1000   // X / 1 -> X
1001   if (match(Op1, m_One()))
1002     return Op0;
1003 
1004   if (Op0->getType()->isIntegerTy(1))
1005     // It can't be division by zero, hence it must be division by one.
1006     return Op0;
1007 
1008   // X / X -> 1
1009   if (Op0 == Op1)
1010     return ConstantInt::get(Op0->getType(), 1);
1011 
1012   // (X * Y) / Y -> X if the multiplication does not overflow.
1013   Value *X = nullptr, *Y = nullptr;
1014   if (match(Op0, m_Mul(m_Value(X), m_Value(Y))) && (X == Op1 || Y == Op1)) {
1015     if (Y != Op1) std::swap(X, Y); // Ensure expression is (X * Y) / Y, Y = Op1
1016     OverflowingBinaryOperator *Mul = cast<OverflowingBinaryOperator>(Op0);
1017     // If the Mul knows it does not overflow, then we are good to go.
1018     if ((isSigned && Mul->hasNoSignedWrap()) ||
1019         (!isSigned && Mul->hasNoUnsignedWrap()))
1020       return X;
1021     // If X has the form X = A / Y then X * Y cannot overflow.
1022     if (BinaryOperator *Div = dyn_cast<BinaryOperator>(X))
1023       if (Div->getOpcode() == Opcode && Div->getOperand(1) == Y)
1024         return X;
1025   }
1026 
1027   // (X rem Y) / Y -> 0
1028   if ((isSigned && match(Op0, m_SRem(m_Value(), m_Specific(Op1)))) ||
1029       (!isSigned && match(Op0, m_URem(m_Value(), m_Specific(Op1)))))
1030     return Constant::getNullValue(Op0->getType());
1031 
1032   // (X /u C1) /u C2 -> 0 if C1 * C2 overflow
1033   ConstantInt *C1, *C2;
1034   if (!isSigned && match(Op0, m_UDiv(m_Value(X), m_ConstantInt(C1))) &&
1035       match(Op1, m_ConstantInt(C2))) {
1036     bool Overflow;
1037     C1->getValue().umul_ov(C2->getValue(), Overflow);
1038     if (Overflow)
1039       return Constant::getNullValue(Op0->getType());
1040   }
1041 
1042   // If the operation is with the result of a select instruction, check whether
1043   // operating on either branch of the select always yields the same value.
1044   if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
1045     if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse))
1046       return V;
1047 
1048   // If the operation is with the result of a phi instruction, check whether
1049   // operating on all incoming values of the phi always yields the same value.
1050   if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
1051     if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse))
1052       return V;
1053 
1054   return nullptr;
1055 }
1056 
1057 /// Given operands for an SDiv, see if we can fold the result.
1058 /// If not, this returns null.
1059 static Value *SimplifySDivInst(Value *Op0, Value *Op1, const Query &Q,
1060                                unsigned MaxRecurse) {
1061   if (Value *V = SimplifyDiv(Instruction::SDiv, Op0, Op1, Q, MaxRecurse))
1062     return V;
1063 
1064   return nullptr;
1065 }
1066 
1067 Value *llvm::SimplifySDivInst(Value *Op0, Value *Op1, const DataLayout &DL,
1068                               const TargetLibraryInfo *TLI,
1069                               const DominatorTree *DT, AssumptionCache *AC,
1070                               const Instruction *CxtI) {
1071   return ::SimplifySDivInst(Op0, Op1, Query(DL, TLI, DT, AC, CxtI),
1072                             RecursionLimit);
1073 }
1074 
1075 /// Given operands for a UDiv, see if we can fold the result.
1076 /// If not, this returns null.
1077 static Value *SimplifyUDivInst(Value *Op0, Value *Op1, const Query &Q,
1078                                unsigned MaxRecurse) {
1079   if (Value *V = SimplifyDiv(Instruction::UDiv, Op0, Op1, Q, MaxRecurse))
1080     return V;
1081 
1082   return nullptr;
1083 }
1084 
1085 Value *llvm::SimplifyUDivInst(Value *Op0, Value *Op1, const DataLayout &DL,
1086                               const TargetLibraryInfo *TLI,
1087                               const DominatorTree *DT, AssumptionCache *AC,
1088                               const Instruction *CxtI) {
1089   return ::SimplifyUDivInst(Op0, Op1, Query(DL, TLI, DT, AC, CxtI),
1090                             RecursionLimit);
1091 }
1092 
1093 static Value *SimplifyFDivInst(Value *Op0, Value *Op1, FastMathFlags FMF,
1094                                const Query &Q, unsigned) {
1095   // undef / X -> undef    (the undef could be a snan).
1096   if (match(Op0, m_Undef()))
1097     return Op0;
1098 
1099   // X / undef -> undef
1100   if (match(Op1, m_Undef()))
1101     return Op1;
1102 
1103   // 0 / X -> 0
1104   // Requires that NaNs are off (X could be zero) and signed zeroes are
1105   // ignored (X could be positive or negative, so the output sign is unknown).
1106   if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op0, m_AnyZero()))
1107     return Op0;
1108 
1109   if (FMF.noNaNs()) {
1110     // X / X -> 1.0 is legal when NaNs are ignored.
1111     if (Op0 == Op1)
1112       return ConstantFP::get(Op0->getType(), 1.0);
1113 
1114     // -X /  X -> -1.0 and
1115     //  X / -X -> -1.0 are legal when NaNs are ignored.
1116     // We can ignore signed zeros because +-0.0/+-0.0 is NaN and ignored.
1117     if ((BinaryOperator::isFNeg(Op0, /*IgnoreZeroSign=*/true) &&
1118          BinaryOperator::getFNegArgument(Op0) == Op1) ||
1119         (BinaryOperator::isFNeg(Op1, /*IgnoreZeroSign=*/true) &&
1120          BinaryOperator::getFNegArgument(Op1) == Op0))
1121       return ConstantFP::get(Op0->getType(), -1.0);
1122   }
1123 
1124   return nullptr;
1125 }
1126 
1127 Value *llvm::SimplifyFDivInst(Value *Op0, Value *Op1, FastMathFlags FMF,
1128                               const DataLayout &DL,
1129                               const TargetLibraryInfo *TLI,
1130                               const DominatorTree *DT, AssumptionCache *AC,
1131                               const Instruction *CxtI) {
1132   return ::SimplifyFDivInst(Op0, Op1, FMF, Query(DL, TLI, DT, AC, CxtI),
1133                             RecursionLimit);
1134 }
1135 
1136 /// Given operands for an SRem or URem, see if we can fold the result.
1137 /// If not, this returns null.
1138 static Value *SimplifyRem(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1,
1139                           const Query &Q, unsigned MaxRecurse) {
1140   if (Constant *C0 = dyn_cast<Constant>(Op0))
1141     if (Constant *C1 = dyn_cast<Constant>(Op1))
1142       return ConstantFoldBinaryOpOperands(Opcode, C0, C1, Q.DL);
1143 
1144   // X % undef -> undef
1145   if (match(Op1, m_Undef()))
1146     return Op1;
1147 
1148   // undef % X -> 0
1149   if (match(Op0, m_Undef()))
1150     return Constant::getNullValue(Op0->getType());
1151 
1152   // 0 % X -> 0, we don't need to preserve faults!
1153   if (match(Op0, m_Zero()))
1154     return Op0;
1155 
1156   // X % 0 -> undef, we don't need to preserve faults!
1157   if (match(Op1, m_Zero()))
1158     return UndefValue::get(Op0->getType());
1159 
1160   // X % 1 -> 0
1161   if (match(Op1, m_One()))
1162     return Constant::getNullValue(Op0->getType());
1163 
1164   if (Op0->getType()->isIntegerTy(1))
1165     // It can't be remainder by zero, hence it must be remainder by one.
1166     return Constant::getNullValue(Op0->getType());
1167 
1168   // X % X -> 0
1169   if (Op0 == Op1)
1170     return Constant::getNullValue(Op0->getType());
1171 
1172   // (X % Y) % Y -> X % Y
1173   if ((Opcode == Instruction::SRem &&
1174        match(Op0, m_SRem(m_Value(), m_Specific(Op1)))) ||
1175       (Opcode == Instruction::URem &&
1176        match(Op0, m_URem(m_Value(), m_Specific(Op1)))))
1177     return Op0;
1178 
1179   // If the operation is with the result of a select instruction, check whether
1180   // operating on either branch of the select always yields the same value.
1181   if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
1182     if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse))
1183       return V;
1184 
1185   // If the operation is with the result of a phi instruction, check whether
1186   // operating on all incoming values of the phi always yields the same value.
1187   if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
1188     if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse))
1189       return V;
1190 
1191   return nullptr;
1192 }
1193 
1194 /// Given operands for an SRem, see if we can fold the result.
1195 /// If not, this returns null.
1196 static Value *SimplifySRemInst(Value *Op0, Value *Op1, const Query &Q,
1197                                unsigned MaxRecurse) {
1198   if (Value *V = SimplifyRem(Instruction::SRem, Op0, Op1, Q, MaxRecurse))
1199     return V;
1200 
1201   return nullptr;
1202 }
1203 
1204 Value *llvm::SimplifySRemInst(Value *Op0, Value *Op1, const DataLayout &DL,
1205                               const TargetLibraryInfo *TLI,
1206                               const DominatorTree *DT, AssumptionCache *AC,
1207                               const Instruction *CxtI) {
1208   return ::SimplifySRemInst(Op0, Op1, Query(DL, TLI, DT, AC, CxtI),
1209                             RecursionLimit);
1210 }
1211 
1212 /// Given operands for a URem, see if we can fold the result.
1213 /// If not, this returns null.
1214 static Value *SimplifyURemInst(Value *Op0, Value *Op1, const Query &Q,
1215                                unsigned MaxRecurse) {
1216   if (Value *V = SimplifyRem(Instruction::URem, Op0, Op1, Q, MaxRecurse))
1217     return V;
1218 
1219   return nullptr;
1220 }
1221 
1222 Value *llvm::SimplifyURemInst(Value *Op0, Value *Op1, const DataLayout &DL,
1223                               const TargetLibraryInfo *TLI,
1224                               const DominatorTree *DT, AssumptionCache *AC,
1225                               const Instruction *CxtI) {
1226   return ::SimplifyURemInst(Op0, Op1, Query(DL, TLI, DT, AC, CxtI),
1227                             RecursionLimit);
1228 }
1229 
1230 static Value *SimplifyFRemInst(Value *Op0, Value *Op1, FastMathFlags FMF,
1231                                const Query &, unsigned) {
1232   // undef % X -> undef    (the undef could be a snan).
1233   if (match(Op0, m_Undef()))
1234     return Op0;
1235 
1236   // X % undef -> undef
1237   if (match(Op1, m_Undef()))
1238     return Op1;
1239 
1240   // 0 % X -> 0
1241   // Requires that NaNs are off (X could be zero) and signed zeroes are
1242   // ignored (X could be positive or negative, so the output sign is unknown).
1243   if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op0, m_AnyZero()))
1244     return Op0;
1245 
1246   return nullptr;
1247 }
1248 
1249 Value *llvm::SimplifyFRemInst(Value *Op0, Value *Op1, FastMathFlags FMF,
1250                               const DataLayout &DL,
1251                               const TargetLibraryInfo *TLI,
1252                               const DominatorTree *DT, AssumptionCache *AC,
1253                               const Instruction *CxtI) {
1254   return ::SimplifyFRemInst(Op0, Op1, FMF, Query(DL, TLI, DT, AC, CxtI),
1255                             RecursionLimit);
1256 }
1257 
1258 /// Returns true if a shift by \c Amount always yields undef.
1259 static bool isUndefShift(Value *Amount) {
1260   Constant *C = dyn_cast<Constant>(Amount);
1261   if (!C)
1262     return false;
1263 
1264   // X shift by undef -> undef because it may shift by the bitwidth.
1265   if (isa<UndefValue>(C))
1266     return true;
1267 
1268   // Shifting by the bitwidth or more is undefined.
1269   if (ConstantInt *CI = dyn_cast<ConstantInt>(C))
1270     if (CI->getValue().getLimitedValue() >=
1271         CI->getType()->getScalarSizeInBits())
1272       return true;
1273 
1274   // If all lanes of a vector shift are undefined the whole shift is.
1275   if (isa<ConstantVector>(C) || isa<ConstantDataVector>(C)) {
1276     for (unsigned I = 0, E = C->getType()->getVectorNumElements(); I != E; ++I)
1277       if (!isUndefShift(C->getAggregateElement(I)))
1278         return false;
1279     return true;
1280   }
1281 
1282   return false;
1283 }
1284 
1285 /// Given operands for an Shl, LShr or AShr, see if we can fold the result.
1286 /// If not, this returns null.
1287 static Value *SimplifyShift(unsigned Opcode, Value *Op0, Value *Op1,
1288                             const Query &Q, unsigned MaxRecurse) {
1289   if (Constant *C0 = dyn_cast<Constant>(Op0))
1290     if (Constant *C1 = dyn_cast<Constant>(Op1))
1291       return ConstantFoldBinaryOpOperands(Opcode, C0, C1, Q.DL);
1292 
1293   // 0 shift by X -> 0
1294   if (match(Op0, m_Zero()))
1295     return Op0;
1296 
1297   // X shift by 0 -> X
1298   if (match(Op1, m_Zero()))
1299     return Op0;
1300 
1301   // Fold undefined shifts.
1302   if (isUndefShift(Op1))
1303     return UndefValue::get(Op0->getType());
1304 
1305   // If the operation is with the result of a select instruction, check whether
1306   // operating on either branch of the select always yields the same value.
1307   if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
1308     if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse))
1309       return V;
1310 
1311   // If the operation is with the result of a phi instruction, check whether
1312   // operating on all incoming values of the phi always yields the same value.
1313   if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
1314     if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse))
1315       return V;
1316 
1317   return nullptr;
1318 }
1319 
1320 /// \brief Given operands for an Shl, LShr or AShr, see if we can
1321 /// fold the result.  If not, this returns null.
1322 static Value *SimplifyRightShift(unsigned Opcode, Value *Op0, Value *Op1,
1323                                  bool isExact, const Query &Q,
1324                                  unsigned MaxRecurse) {
1325   if (Value *V = SimplifyShift(Opcode, Op0, Op1, Q, MaxRecurse))
1326     return V;
1327 
1328   // X >> X -> 0
1329   if (Op0 == Op1)
1330     return Constant::getNullValue(Op0->getType());
1331 
1332   // undef >> X -> 0
1333   // undef >> X -> undef (if it's exact)
1334   if (match(Op0, m_Undef()))
1335     return isExact ? Op0 : Constant::getNullValue(Op0->getType());
1336 
1337   // The low bit cannot be shifted out of an exact shift if it is set.
1338   if (isExact) {
1339     unsigned BitWidth = Op0->getType()->getScalarSizeInBits();
1340     APInt Op0KnownZero(BitWidth, 0);
1341     APInt Op0KnownOne(BitWidth, 0);
1342     computeKnownBits(Op0, Op0KnownZero, Op0KnownOne, Q.DL, /*Depth=*/0, Q.AC,
1343                      Q.CxtI, Q.DT);
1344     if (Op0KnownOne[0])
1345       return Op0;
1346   }
1347 
1348   return nullptr;
1349 }
1350 
1351 /// Given operands for an Shl, see if we can fold the result.
1352 /// If not, this returns null.
1353 static Value *SimplifyShlInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
1354                               const Query &Q, unsigned MaxRecurse) {
1355   if (Value *V = SimplifyShift(Instruction::Shl, Op0, Op1, Q, MaxRecurse))
1356     return V;
1357 
1358   // undef << X -> 0
1359   // undef << X -> undef if (if it's NSW/NUW)
1360   if (match(Op0, m_Undef()))
1361     return isNSW || isNUW ? Op0 : Constant::getNullValue(Op0->getType());
1362 
1363   // (X >> A) << A -> X
1364   Value *X;
1365   if (match(Op0, m_Exact(m_Shr(m_Value(X), m_Specific(Op1)))))
1366     return X;
1367   return nullptr;
1368 }
1369 
1370 Value *llvm::SimplifyShlInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
1371                              const DataLayout &DL, const TargetLibraryInfo *TLI,
1372                              const DominatorTree *DT, AssumptionCache *AC,
1373                              const Instruction *CxtI) {
1374   return ::SimplifyShlInst(Op0, Op1, isNSW, isNUW, Query(DL, TLI, DT, AC, CxtI),
1375                            RecursionLimit);
1376 }
1377 
1378 /// Given operands for an LShr, see if we can fold the result.
1379 /// If not, this returns null.
1380 static Value *SimplifyLShrInst(Value *Op0, Value *Op1, bool isExact,
1381                                const Query &Q, unsigned MaxRecurse) {
1382   if (Value *V = SimplifyRightShift(Instruction::LShr, Op0, Op1, isExact, Q,
1383                                     MaxRecurse))
1384       return V;
1385 
1386   // (X << A) >> A -> X
1387   Value *X;
1388   if (match(Op0, m_NUWShl(m_Value(X), m_Specific(Op1))))
1389     return X;
1390 
1391   return nullptr;
1392 }
1393 
1394 Value *llvm::SimplifyLShrInst(Value *Op0, Value *Op1, bool isExact,
1395                               const DataLayout &DL,
1396                               const TargetLibraryInfo *TLI,
1397                               const DominatorTree *DT, AssumptionCache *AC,
1398                               const Instruction *CxtI) {
1399   return ::SimplifyLShrInst(Op0, Op1, isExact, Query(DL, TLI, DT, AC, CxtI),
1400                             RecursionLimit);
1401 }
1402 
1403 /// Given operands for an AShr, see if we can fold the result.
1404 /// If not, this returns null.
1405 static Value *SimplifyAShrInst(Value *Op0, Value *Op1, bool isExact,
1406                                const Query &Q, unsigned MaxRecurse) {
1407   if (Value *V = SimplifyRightShift(Instruction::AShr, Op0, Op1, isExact, Q,
1408                                     MaxRecurse))
1409     return V;
1410 
1411   // all ones >>a X -> all ones
1412   if (match(Op0, m_AllOnes()))
1413     return Op0;
1414 
1415   // (X << A) >> A -> X
1416   Value *X;
1417   if (match(Op0, m_NSWShl(m_Value(X), m_Specific(Op1))))
1418     return X;
1419 
1420   // Arithmetic shifting an all-sign-bit value is a no-op.
1421   unsigned NumSignBits = ComputeNumSignBits(Op0, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
1422   if (NumSignBits == Op0->getType()->getScalarSizeInBits())
1423     return Op0;
1424 
1425   return nullptr;
1426 }
1427 
1428 Value *llvm::SimplifyAShrInst(Value *Op0, Value *Op1, bool isExact,
1429                               const DataLayout &DL,
1430                               const TargetLibraryInfo *TLI,
1431                               const DominatorTree *DT, AssumptionCache *AC,
1432                               const Instruction *CxtI) {
1433   return ::SimplifyAShrInst(Op0, Op1, isExact, Query(DL, TLI, DT, AC, CxtI),
1434                             RecursionLimit);
1435 }
1436 
1437 static Value *simplifyUnsignedRangeCheck(ICmpInst *ZeroICmp,
1438                                          ICmpInst *UnsignedICmp, bool IsAnd) {
1439   Value *X, *Y;
1440 
1441   ICmpInst::Predicate EqPred;
1442   if (!match(ZeroICmp, m_ICmp(EqPred, m_Value(Y), m_Zero())) ||
1443       !ICmpInst::isEquality(EqPred))
1444     return nullptr;
1445 
1446   ICmpInst::Predicate UnsignedPred;
1447   if (match(UnsignedICmp, m_ICmp(UnsignedPred, m_Value(X), m_Specific(Y))) &&
1448       ICmpInst::isUnsigned(UnsignedPred))
1449     ;
1450   else if (match(UnsignedICmp,
1451                  m_ICmp(UnsignedPred, m_Value(Y), m_Specific(X))) &&
1452            ICmpInst::isUnsigned(UnsignedPred))
1453     UnsignedPred = ICmpInst::getSwappedPredicate(UnsignedPred);
1454   else
1455     return nullptr;
1456 
1457   // X < Y && Y != 0  -->  X < Y
1458   // X < Y || Y != 0  -->  Y != 0
1459   if (UnsignedPred == ICmpInst::ICMP_ULT && EqPred == ICmpInst::ICMP_NE)
1460     return IsAnd ? UnsignedICmp : ZeroICmp;
1461 
1462   // X >= Y || Y != 0  -->  true
1463   // X >= Y || Y == 0  -->  X >= Y
1464   if (UnsignedPred == ICmpInst::ICMP_UGE && !IsAnd) {
1465     if (EqPred == ICmpInst::ICMP_NE)
1466       return getTrue(UnsignedICmp->getType());
1467     return UnsignedICmp;
1468   }
1469 
1470   // X < Y && Y == 0  -->  false
1471   if (UnsignedPred == ICmpInst::ICMP_ULT && EqPred == ICmpInst::ICMP_EQ &&
1472       IsAnd)
1473     return getFalse(UnsignedICmp->getType());
1474 
1475   return nullptr;
1476 }
1477 
1478 /// Simplify (and (icmp ...) (icmp ...)) to true when we can tell that the range
1479 /// of possible values cannot be satisfied.
1480 static Value *SimplifyAndOfICmps(ICmpInst *Op0, ICmpInst *Op1) {
1481   ICmpInst::Predicate Pred0, Pred1;
1482   ConstantInt *CI1, *CI2;
1483   Value *V;
1484 
1485   if (Value *X = simplifyUnsignedRangeCheck(Op0, Op1, /*IsAnd=*/true))
1486     return X;
1487 
1488   if (!match(Op0, m_ICmp(Pred0, m_Add(m_Value(V), m_ConstantInt(CI1)),
1489                          m_ConstantInt(CI2))))
1490    return nullptr;
1491 
1492   if (!match(Op1, m_ICmp(Pred1, m_Specific(V), m_Specific(CI1))))
1493     return nullptr;
1494 
1495   Type *ITy = Op0->getType();
1496 
1497   auto *AddInst = cast<BinaryOperator>(Op0->getOperand(0));
1498   bool isNSW = AddInst->hasNoSignedWrap();
1499   bool isNUW = AddInst->hasNoUnsignedWrap();
1500 
1501   const APInt &CI1V = CI1->getValue();
1502   const APInt &CI2V = CI2->getValue();
1503   const APInt Delta = CI2V - CI1V;
1504   if (CI1V.isStrictlyPositive()) {
1505     if (Delta == 2) {
1506       if (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_SGT)
1507         return getFalse(ITy);
1508       if (Pred0 == ICmpInst::ICMP_SLT && Pred1 == ICmpInst::ICMP_SGT && isNSW)
1509         return getFalse(ITy);
1510     }
1511     if (Delta == 1) {
1512       if (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_SGT)
1513         return getFalse(ITy);
1514       if (Pred0 == ICmpInst::ICMP_SLE && Pred1 == ICmpInst::ICMP_SGT && isNSW)
1515         return getFalse(ITy);
1516     }
1517   }
1518   if (CI1V.getBoolValue() && isNUW) {
1519     if (Delta == 2)
1520       if (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_UGT)
1521         return getFalse(ITy);
1522     if (Delta == 1)
1523       if (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_UGT)
1524         return getFalse(ITy);
1525   }
1526 
1527   return nullptr;
1528 }
1529 
1530 /// Given operands for an And, see if we can fold the result.
1531 /// If not, this returns null.
1532 static Value *SimplifyAndInst(Value *Op0, Value *Op1, const Query &Q,
1533                               unsigned MaxRecurse) {
1534   if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
1535     if (Constant *CRHS = dyn_cast<Constant>(Op1))
1536       return ConstantFoldBinaryOpOperands(Instruction::And, CLHS, CRHS, Q.DL);
1537 
1538     // Canonicalize the constant to the RHS.
1539     std::swap(Op0, Op1);
1540   }
1541 
1542   // X & undef -> 0
1543   if (match(Op1, m_Undef()))
1544     return Constant::getNullValue(Op0->getType());
1545 
1546   // X & X = X
1547   if (Op0 == Op1)
1548     return Op0;
1549 
1550   // X & 0 = 0
1551   if (match(Op1, m_Zero()))
1552     return Op1;
1553 
1554   // X & -1 = X
1555   if (match(Op1, m_AllOnes()))
1556     return Op0;
1557 
1558   // A & ~A  =  ~A & A  =  0
1559   if (match(Op0, m_Not(m_Specific(Op1))) ||
1560       match(Op1, m_Not(m_Specific(Op0))))
1561     return Constant::getNullValue(Op0->getType());
1562 
1563   // (A | ?) & A = A
1564   Value *A = nullptr, *B = nullptr;
1565   if (match(Op0, m_Or(m_Value(A), m_Value(B))) &&
1566       (A == Op1 || B == Op1))
1567     return Op1;
1568 
1569   // A & (A | ?) = A
1570   if (match(Op1, m_Or(m_Value(A), m_Value(B))) &&
1571       (A == Op0 || B == Op0))
1572     return Op0;
1573 
1574   // A & (-A) = A if A is a power of two or zero.
1575   if (match(Op0, m_Neg(m_Specific(Op1))) ||
1576       match(Op1, m_Neg(m_Specific(Op0)))) {
1577     if (isKnownToBeAPowerOfTwo(Op0, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI,
1578                                Q.DT))
1579       return Op0;
1580     if (isKnownToBeAPowerOfTwo(Op1, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI,
1581                                Q.DT))
1582       return Op1;
1583   }
1584 
1585   if (auto *ICILHS = dyn_cast<ICmpInst>(Op0)) {
1586     if (auto *ICIRHS = dyn_cast<ICmpInst>(Op1)) {
1587       if (Value *V = SimplifyAndOfICmps(ICILHS, ICIRHS))
1588         return V;
1589       if (Value *V = SimplifyAndOfICmps(ICIRHS, ICILHS))
1590         return V;
1591     }
1592   }
1593 
1594   // Try some generic simplifications for associative operations.
1595   if (Value *V = SimplifyAssociativeBinOp(Instruction::And, Op0, Op1, Q,
1596                                           MaxRecurse))
1597     return V;
1598 
1599   // And distributes over Or.  Try some generic simplifications based on this.
1600   if (Value *V = ExpandBinOp(Instruction::And, Op0, Op1, Instruction::Or,
1601                              Q, MaxRecurse))
1602     return V;
1603 
1604   // And distributes over Xor.  Try some generic simplifications based on this.
1605   if (Value *V = ExpandBinOp(Instruction::And, Op0, Op1, Instruction::Xor,
1606                              Q, MaxRecurse))
1607     return V;
1608 
1609   // If the operation is with the result of a select instruction, check whether
1610   // operating on either branch of the select always yields the same value.
1611   if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
1612     if (Value *V = ThreadBinOpOverSelect(Instruction::And, Op0, Op1, Q,
1613                                          MaxRecurse))
1614       return V;
1615 
1616   // If the operation is with the result of a phi instruction, check whether
1617   // operating on all incoming values of the phi always yields the same value.
1618   if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
1619     if (Value *V = ThreadBinOpOverPHI(Instruction::And, Op0, Op1, Q,
1620                                       MaxRecurse))
1621       return V;
1622 
1623   return nullptr;
1624 }
1625 
1626 Value *llvm::SimplifyAndInst(Value *Op0, Value *Op1, const DataLayout &DL,
1627                              const TargetLibraryInfo *TLI,
1628                              const DominatorTree *DT, AssumptionCache *AC,
1629                              const Instruction *CxtI) {
1630   return ::SimplifyAndInst(Op0, Op1, Query(DL, TLI, DT, AC, CxtI),
1631                            RecursionLimit);
1632 }
1633 
1634 /// Simplify (or (icmp ...) (icmp ...)) to true when we can tell that the union
1635 /// contains all possible values.
1636 static Value *SimplifyOrOfICmps(ICmpInst *Op0, ICmpInst *Op1) {
1637   ICmpInst::Predicate Pred0, Pred1;
1638   ConstantInt *CI1, *CI2;
1639   Value *V;
1640 
1641   if (Value *X = simplifyUnsignedRangeCheck(Op0, Op1, /*IsAnd=*/false))
1642     return X;
1643 
1644   if (!match(Op0, m_ICmp(Pred0, m_Add(m_Value(V), m_ConstantInt(CI1)),
1645                          m_ConstantInt(CI2))))
1646    return nullptr;
1647 
1648   if (!match(Op1, m_ICmp(Pred1, m_Specific(V), m_Specific(CI1))))
1649     return nullptr;
1650 
1651   Type *ITy = Op0->getType();
1652 
1653   auto *AddInst = cast<BinaryOperator>(Op0->getOperand(0));
1654   bool isNSW = AddInst->hasNoSignedWrap();
1655   bool isNUW = AddInst->hasNoUnsignedWrap();
1656 
1657   const APInt &CI1V = CI1->getValue();
1658   const APInt &CI2V = CI2->getValue();
1659   const APInt Delta = CI2V - CI1V;
1660   if (CI1V.isStrictlyPositive()) {
1661     if (Delta == 2) {
1662       if (Pred0 == ICmpInst::ICMP_UGE && Pred1 == ICmpInst::ICMP_SLE)
1663         return getTrue(ITy);
1664       if (Pred0 == ICmpInst::ICMP_SGE && Pred1 == ICmpInst::ICMP_SLE && isNSW)
1665         return getTrue(ITy);
1666     }
1667     if (Delta == 1) {
1668       if (Pred0 == ICmpInst::ICMP_UGT && Pred1 == ICmpInst::ICMP_SLE)
1669         return getTrue(ITy);
1670       if (Pred0 == ICmpInst::ICMP_SGT && Pred1 == ICmpInst::ICMP_SLE && isNSW)
1671         return getTrue(ITy);
1672     }
1673   }
1674   if (CI1V.getBoolValue() && isNUW) {
1675     if (Delta == 2)
1676       if (Pred0 == ICmpInst::ICMP_UGE && Pred1 == ICmpInst::ICMP_ULE)
1677         return getTrue(ITy);
1678     if (Delta == 1)
1679       if (Pred0 == ICmpInst::ICMP_UGT && Pred1 == ICmpInst::ICMP_ULE)
1680         return getTrue(ITy);
1681   }
1682 
1683   return nullptr;
1684 }
1685 
1686 /// Given operands for an Or, see if we can fold the result.
1687 /// If not, this returns null.
1688 static Value *SimplifyOrInst(Value *Op0, Value *Op1, const Query &Q,
1689                              unsigned MaxRecurse) {
1690   if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
1691     if (Constant *CRHS = dyn_cast<Constant>(Op1))
1692       return ConstantFoldBinaryOpOperands(Instruction::Or, CLHS, CRHS, Q.DL);
1693 
1694     // Canonicalize the constant to the RHS.
1695     std::swap(Op0, Op1);
1696   }
1697 
1698   // X | undef -> -1
1699   if (match(Op1, m_Undef()))
1700     return Constant::getAllOnesValue(Op0->getType());
1701 
1702   // X | X = X
1703   if (Op0 == Op1)
1704     return Op0;
1705 
1706   // X | 0 = X
1707   if (match(Op1, m_Zero()))
1708     return Op0;
1709 
1710   // X | -1 = -1
1711   if (match(Op1, m_AllOnes()))
1712     return Op1;
1713 
1714   // A | ~A  =  ~A | A  =  -1
1715   if (match(Op0, m_Not(m_Specific(Op1))) ||
1716       match(Op1, m_Not(m_Specific(Op0))))
1717     return Constant::getAllOnesValue(Op0->getType());
1718 
1719   // (A & ?) | A = A
1720   Value *A = nullptr, *B = nullptr;
1721   if (match(Op0, m_And(m_Value(A), m_Value(B))) &&
1722       (A == Op1 || B == Op1))
1723     return Op1;
1724 
1725   // A | (A & ?) = A
1726   if (match(Op1, m_And(m_Value(A), m_Value(B))) &&
1727       (A == Op0 || B == Op0))
1728     return Op0;
1729 
1730   // ~(A & ?) | A = -1
1731   if (match(Op0, m_Not(m_And(m_Value(A), m_Value(B)))) &&
1732       (A == Op1 || B == Op1))
1733     return Constant::getAllOnesValue(Op1->getType());
1734 
1735   // A | ~(A & ?) = -1
1736   if (match(Op1, m_Not(m_And(m_Value(A), m_Value(B)))) &&
1737       (A == Op0 || B == Op0))
1738     return Constant::getAllOnesValue(Op0->getType());
1739 
1740   if (auto *ICILHS = dyn_cast<ICmpInst>(Op0)) {
1741     if (auto *ICIRHS = dyn_cast<ICmpInst>(Op1)) {
1742       if (Value *V = SimplifyOrOfICmps(ICILHS, ICIRHS))
1743         return V;
1744       if (Value *V = SimplifyOrOfICmps(ICIRHS, ICILHS))
1745         return V;
1746     }
1747   }
1748 
1749   // Try some generic simplifications for associative operations.
1750   if (Value *V = SimplifyAssociativeBinOp(Instruction::Or, Op0, Op1, Q,
1751                                           MaxRecurse))
1752     return V;
1753 
1754   // Or distributes over And.  Try some generic simplifications based on this.
1755   if (Value *V = ExpandBinOp(Instruction::Or, Op0, Op1, Instruction::And, Q,
1756                              MaxRecurse))
1757     return V;
1758 
1759   // If the operation is with the result of a select instruction, check whether
1760   // operating on either branch of the select always yields the same value.
1761   if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
1762     if (Value *V = ThreadBinOpOverSelect(Instruction::Or, Op0, Op1, Q,
1763                                          MaxRecurse))
1764       return V;
1765 
1766   // (A & C)|(B & D)
1767   Value *C = nullptr, *D = nullptr;
1768   if (match(Op0, m_And(m_Value(A), m_Value(C))) &&
1769       match(Op1, m_And(m_Value(B), m_Value(D)))) {
1770     ConstantInt *C1 = dyn_cast<ConstantInt>(C);
1771     ConstantInt *C2 = dyn_cast<ConstantInt>(D);
1772     if (C1 && C2 && (C1->getValue() == ~C2->getValue())) {
1773       // (A & C1)|(B & C2)
1774       // If we have: ((V + N) & C1) | (V & C2)
1775       // .. and C2 = ~C1 and C2 is 0+1+ and (N & C2) == 0
1776       // replace with V+N.
1777       Value *V1, *V2;
1778       if ((C2->getValue() & (C2->getValue() + 1)) == 0 && // C2 == 0+1+
1779           match(A, m_Add(m_Value(V1), m_Value(V2)))) {
1780         // Add commutes, try both ways.
1781         if (V1 == B &&
1782             MaskedValueIsZero(V2, C2->getValue(), Q.DL, 0, Q.AC, Q.CxtI, Q.DT))
1783           return A;
1784         if (V2 == B &&
1785             MaskedValueIsZero(V1, C2->getValue(), Q.DL, 0, Q.AC, Q.CxtI, Q.DT))
1786           return A;
1787       }
1788       // Or commutes, try both ways.
1789       if ((C1->getValue() & (C1->getValue() + 1)) == 0 &&
1790           match(B, m_Add(m_Value(V1), m_Value(V2)))) {
1791         // Add commutes, try both ways.
1792         if (V1 == A &&
1793             MaskedValueIsZero(V2, C1->getValue(), Q.DL, 0, Q.AC, Q.CxtI, Q.DT))
1794           return B;
1795         if (V2 == A &&
1796             MaskedValueIsZero(V1, C1->getValue(), Q.DL, 0, Q.AC, Q.CxtI, Q.DT))
1797           return B;
1798       }
1799     }
1800   }
1801 
1802   // If the operation is with the result of a phi instruction, check whether
1803   // operating on all incoming values of the phi always yields the same value.
1804   if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
1805     if (Value *V = ThreadBinOpOverPHI(Instruction::Or, Op0, Op1, Q, MaxRecurse))
1806       return V;
1807 
1808   return nullptr;
1809 }
1810 
1811 Value *llvm::SimplifyOrInst(Value *Op0, Value *Op1, const DataLayout &DL,
1812                             const TargetLibraryInfo *TLI,
1813                             const DominatorTree *DT, AssumptionCache *AC,
1814                             const Instruction *CxtI) {
1815   return ::SimplifyOrInst(Op0, Op1, Query(DL, TLI, DT, AC, CxtI),
1816                           RecursionLimit);
1817 }
1818 
1819 /// Given operands for a Xor, see if we can fold the result.
1820 /// If not, this returns null.
1821 static Value *SimplifyXorInst(Value *Op0, Value *Op1, const Query &Q,
1822                               unsigned MaxRecurse) {
1823   if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
1824     if (Constant *CRHS = dyn_cast<Constant>(Op1))
1825       return ConstantFoldBinaryOpOperands(Instruction::Xor, CLHS, CRHS, Q.DL);
1826 
1827     // Canonicalize the constant to the RHS.
1828     std::swap(Op0, Op1);
1829   }
1830 
1831   // A ^ undef -> undef
1832   if (match(Op1, m_Undef()))
1833     return Op1;
1834 
1835   // A ^ 0 = A
1836   if (match(Op1, m_Zero()))
1837     return Op0;
1838 
1839   // A ^ A = 0
1840   if (Op0 == Op1)
1841     return Constant::getNullValue(Op0->getType());
1842 
1843   // A ^ ~A  =  ~A ^ A  =  -1
1844   if (match(Op0, m_Not(m_Specific(Op1))) ||
1845       match(Op1, m_Not(m_Specific(Op0))))
1846     return Constant::getAllOnesValue(Op0->getType());
1847 
1848   // Try some generic simplifications for associative operations.
1849   if (Value *V = SimplifyAssociativeBinOp(Instruction::Xor, Op0, Op1, Q,
1850                                           MaxRecurse))
1851     return V;
1852 
1853   // Threading Xor over selects and phi nodes is pointless, so don't bother.
1854   // Threading over the select in "A ^ select(cond, B, C)" means evaluating
1855   // "A^B" and "A^C" and seeing if they are equal; but they are equal if and
1856   // only if B and C are equal.  If B and C are equal then (since we assume
1857   // that operands have already been simplified) "select(cond, B, C)" should
1858   // have been simplified to the common value of B and C already.  Analysing
1859   // "A^B" and "A^C" thus gains nothing, but costs compile time.  Similarly
1860   // for threading over phi nodes.
1861 
1862   return nullptr;
1863 }
1864 
1865 Value *llvm::SimplifyXorInst(Value *Op0, Value *Op1, const DataLayout &DL,
1866                              const TargetLibraryInfo *TLI,
1867                              const DominatorTree *DT, AssumptionCache *AC,
1868                              const Instruction *CxtI) {
1869   return ::SimplifyXorInst(Op0, Op1, Query(DL, TLI, DT, AC, CxtI),
1870                            RecursionLimit);
1871 }
1872 
1873 static Type *GetCompareTy(Value *Op) {
1874   return CmpInst::makeCmpResultType(Op->getType());
1875 }
1876 
1877 /// Rummage around inside V looking for something equivalent to the comparison
1878 /// "LHS Pred RHS". Return such a value if found, otherwise return null.
1879 /// Helper function for analyzing max/min idioms.
1880 static Value *ExtractEquivalentCondition(Value *V, CmpInst::Predicate Pred,
1881                                          Value *LHS, Value *RHS) {
1882   SelectInst *SI = dyn_cast<SelectInst>(V);
1883   if (!SI)
1884     return nullptr;
1885   CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition());
1886   if (!Cmp)
1887     return nullptr;
1888   Value *CmpLHS = Cmp->getOperand(0), *CmpRHS = Cmp->getOperand(1);
1889   if (Pred == Cmp->getPredicate() && LHS == CmpLHS && RHS == CmpRHS)
1890     return Cmp;
1891   if (Pred == CmpInst::getSwappedPredicate(Cmp->getPredicate()) &&
1892       LHS == CmpRHS && RHS == CmpLHS)
1893     return Cmp;
1894   return nullptr;
1895 }
1896 
1897 // A significant optimization not implemented here is assuming that alloca
1898 // addresses are not equal to incoming argument values. They don't *alias*,
1899 // as we say, but that doesn't mean they aren't equal, so we take a
1900 // conservative approach.
1901 //
1902 // This is inspired in part by C++11 5.10p1:
1903 //   "Two pointers of the same type compare equal if and only if they are both
1904 //    null, both point to the same function, or both represent the same
1905 //    address."
1906 //
1907 // This is pretty permissive.
1908 //
1909 // It's also partly due to C11 6.5.9p6:
1910 //   "Two pointers compare equal if and only if both are null pointers, both are
1911 //    pointers to the same object (including a pointer to an object and a
1912 //    subobject at its beginning) or function, both are pointers to one past the
1913 //    last element of the same array object, or one is a pointer to one past the
1914 //    end of one array object and the other is a pointer to the start of a
1915 //    different array object that happens to immediately follow the first array
1916 //    object in the address space.)
1917 //
1918 // C11's version is more restrictive, however there's no reason why an argument
1919 // couldn't be a one-past-the-end value for a stack object in the caller and be
1920 // equal to the beginning of a stack object in the callee.
1921 //
1922 // If the C and C++ standards are ever made sufficiently restrictive in this
1923 // area, it may be possible to update LLVM's semantics accordingly and reinstate
1924 // this optimization.
1925 static Constant *computePointerICmp(const DataLayout &DL,
1926                                     const TargetLibraryInfo *TLI,
1927                                     CmpInst::Predicate Pred, Value *LHS,
1928                                     Value *RHS) {
1929   // First, skip past any trivial no-ops.
1930   LHS = LHS->stripPointerCasts();
1931   RHS = RHS->stripPointerCasts();
1932 
1933   // A non-null pointer is not equal to a null pointer.
1934   if (llvm::isKnownNonNull(LHS, TLI) && isa<ConstantPointerNull>(RHS) &&
1935       (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE))
1936     return ConstantInt::get(GetCompareTy(LHS),
1937                             !CmpInst::isTrueWhenEqual(Pred));
1938 
1939   // We can only fold certain predicates on pointer comparisons.
1940   switch (Pred) {
1941   default:
1942     return nullptr;
1943 
1944     // Equality comaprisons are easy to fold.
1945   case CmpInst::ICMP_EQ:
1946   case CmpInst::ICMP_NE:
1947     break;
1948 
1949     // We can only handle unsigned relational comparisons because 'inbounds' on
1950     // a GEP only protects against unsigned wrapping.
1951   case CmpInst::ICMP_UGT:
1952   case CmpInst::ICMP_UGE:
1953   case CmpInst::ICMP_ULT:
1954   case CmpInst::ICMP_ULE:
1955     // However, we have to switch them to their signed variants to handle
1956     // negative indices from the base pointer.
1957     Pred = ICmpInst::getSignedPredicate(Pred);
1958     break;
1959   }
1960 
1961   // Strip off any constant offsets so that we can reason about them.
1962   // It's tempting to use getUnderlyingObject or even just stripInBoundsOffsets
1963   // here and compare base addresses like AliasAnalysis does, however there are
1964   // numerous hazards. AliasAnalysis and its utilities rely on special rules
1965   // governing loads and stores which don't apply to icmps. Also, AliasAnalysis
1966   // doesn't need to guarantee pointer inequality when it says NoAlias.
1967   Constant *LHSOffset = stripAndComputeConstantOffsets(DL, LHS);
1968   Constant *RHSOffset = stripAndComputeConstantOffsets(DL, RHS);
1969 
1970   // If LHS and RHS are related via constant offsets to the same base
1971   // value, we can replace it with an icmp which just compares the offsets.
1972   if (LHS == RHS)
1973     return ConstantExpr::getICmp(Pred, LHSOffset, RHSOffset);
1974 
1975   // Various optimizations for (in)equality comparisons.
1976   if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE) {
1977     // Different non-empty allocations that exist at the same time have
1978     // different addresses (if the program can tell). Global variables always
1979     // exist, so they always exist during the lifetime of each other and all
1980     // allocas. Two different allocas usually have different addresses...
1981     //
1982     // However, if there's an @llvm.stackrestore dynamically in between two
1983     // allocas, they may have the same address. It's tempting to reduce the
1984     // scope of the problem by only looking at *static* allocas here. That would
1985     // cover the majority of allocas while significantly reducing the likelihood
1986     // of having an @llvm.stackrestore pop up in the middle. However, it's not
1987     // actually impossible for an @llvm.stackrestore to pop up in the middle of
1988     // an entry block. Also, if we have a block that's not attached to a
1989     // function, we can't tell if it's "static" under the current definition.
1990     // Theoretically, this problem could be fixed by creating a new kind of
1991     // instruction kind specifically for static allocas. Such a new instruction
1992     // could be required to be at the top of the entry block, thus preventing it
1993     // from being subject to a @llvm.stackrestore. Instcombine could even
1994     // convert regular allocas into these special allocas. It'd be nifty.
1995     // However, until then, this problem remains open.
1996     //
1997     // So, we'll assume that two non-empty allocas have different addresses
1998     // for now.
1999     //
2000     // With all that, if the offsets are within the bounds of their allocations
2001     // (and not one-past-the-end! so we can't use inbounds!), and their
2002     // allocations aren't the same, the pointers are not equal.
2003     //
2004     // Note that it's not necessary to check for LHS being a global variable
2005     // address, due to canonicalization and constant folding.
2006     if (isa<AllocaInst>(LHS) &&
2007         (isa<AllocaInst>(RHS) || isa<GlobalVariable>(RHS))) {
2008       ConstantInt *LHSOffsetCI = dyn_cast<ConstantInt>(LHSOffset);
2009       ConstantInt *RHSOffsetCI = dyn_cast<ConstantInt>(RHSOffset);
2010       uint64_t LHSSize, RHSSize;
2011       if (LHSOffsetCI && RHSOffsetCI &&
2012           getObjectSize(LHS, LHSSize, DL, TLI) &&
2013           getObjectSize(RHS, RHSSize, DL, TLI)) {
2014         const APInt &LHSOffsetValue = LHSOffsetCI->getValue();
2015         const APInt &RHSOffsetValue = RHSOffsetCI->getValue();
2016         if (!LHSOffsetValue.isNegative() &&
2017             !RHSOffsetValue.isNegative() &&
2018             LHSOffsetValue.ult(LHSSize) &&
2019             RHSOffsetValue.ult(RHSSize)) {
2020           return ConstantInt::get(GetCompareTy(LHS),
2021                                   !CmpInst::isTrueWhenEqual(Pred));
2022         }
2023       }
2024 
2025       // Repeat the above check but this time without depending on DataLayout
2026       // or being able to compute a precise size.
2027       if (!cast<PointerType>(LHS->getType())->isEmptyTy() &&
2028           !cast<PointerType>(RHS->getType())->isEmptyTy() &&
2029           LHSOffset->isNullValue() &&
2030           RHSOffset->isNullValue())
2031         return ConstantInt::get(GetCompareTy(LHS),
2032                                 !CmpInst::isTrueWhenEqual(Pred));
2033     }
2034 
2035     // Even if an non-inbounds GEP occurs along the path we can still optimize
2036     // equality comparisons concerning the result. We avoid walking the whole
2037     // chain again by starting where the last calls to
2038     // stripAndComputeConstantOffsets left off and accumulate the offsets.
2039     Constant *LHSNoBound = stripAndComputeConstantOffsets(DL, LHS, true);
2040     Constant *RHSNoBound = stripAndComputeConstantOffsets(DL, RHS, true);
2041     if (LHS == RHS)
2042       return ConstantExpr::getICmp(Pred,
2043                                    ConstantExpr::getAdd(LHSOffset, LHSNoBound),
2044                                    ConstantExpr::getAdd(RHSOffset, RHSNoBound));
2045 
2046     // If one side of the equality comparison must come from a noalias call
2047     // (meaning a system memory allocation function), and the other side must
2048     // come from a pointer that cannot overlap with dynamically-allocated
2049     // memory within the lifetime of the current function (allocas, byval
2050     // arguments, globals), then determine the comparison result here.
2051     SmallVector<Value *, 8> LHSUObjs, RHSUObjs;
2052     GetUnderlyingObjects(LHS, LHSUObjs, DL);
2053     GetUnderlyingObjects(RHS, RHSUObjs, DL);
2054 
2055     // Is the set of underlying objects all noalias calls?
2056     auto IsNAC = [](SmallVectorImpl<Value *> &Objects) {
2057       return std::all_of(Objects.begin(), Objects.end(), isNoAliasCall);
2058     };
2059 
2060     // Is the set of underlying objects all things which must be disjoint from
2061     // noalias calls. For allocas, we consider only static ones (dynamic
2062     // allocas might be transformed into calls to malloc not simultaneously
2063     // live with the compared-to allocation). For globals, we exclude symbols
2064     // that might be resolve lazily to symbols in another dynamically-loaded
2065     // library (and, thus, could be malloc'ed by the implementation).
2066     auto IsAllocDisjoint = [](SmallVectorImpl<Value *> &Objects) {
2067       return std::all_of(Objects.begin(), Objects.end(), [](Value *V) {
2068         if (const AllocaInst *AI = dyn_cast<AllocaInst>(V))
2069           return AI->getParent() && AI->getFunction() && AI->isStaticAlloca();
2070         if (const GlobalValue *GV = dyn_cast<GlobalValue>(V))
2071           return (GV->hasLocalLinkage() || GV->hasHiddenVisibility() ||
2072                   GV->hasProtectedVisibility() || GV->hasUnnamedAddr()) &&
2073                  !GV->isThreadLocal();
2074         if (const Argument *A = dyn_cast<Argument>(V))
2075           return A->hasByValAttr();
2076         return false;
2077       });
2078     };
2079 
2080     if ((IsNAC(LHSUObjs) && IsAllocDisjoint(RHSUObjs)) ||
2081         (IsNAC(RHSUObjs) && IsAllocDisjoint(LHSUObjs)))
2082         return ConstantInt::get(GetCompareTy(LHS),
2083                                 !CmpInst::isTrueWhenEqual(Pred));
2084   }
2085 
2086   // Otherwise, fail.
2087   return nullptr;
2088 }
2089 
2090 /// Given operands for an ICmpInst, see if we can fold the result.
2091 /// If not, this returns null.
2092 static Value *SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS,
2093                                const Query &Q, unsigned MaxRecurse) {
2094   CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate;
2095   assert(CmpInst::isIntPredicate(Pred) && "Not an integer compare!");
2096 
2097   if (Constant *CLHS = dyn_cast<Constant>(LHS)) {
2098     if (Constant *CRHS = dyn_cast<Constant>(RHS))
2099       return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, Q.DL, Q.TLI);
2100 
2101     // If we have a constant, make sure it is on the RHS.
2102     std::swap(LHS, RHS);
2103     Pred = CmpInst::getSwappedPredicate(Pred);
2104   }
2105 
2106   Type *ITy = GetCompareTy(LHS); // The return type.
2107   Type *OpTy = LHS->getType();   // The operand type.
2108 
2109   // icmp X, X -> true/false
2110   // X icmp undef -> true/false.  For example, icmp ugt %X, undef -> false
2111   // because X could be 0.
2112   if (LHS == RHS || isa<UndefValue>(RHS))
2113     return ConstantInt::get(ITy, CmpInst::isTrueWhenEqual(Pred));
2114 
2115   // Special case logic when the operands have i1 type.
2116   if (OpTy->getScalarType()->isIntegerTy(1)) {
2117     switch (Pred) {
2118     default: break;
2119     case ICmpInst::ICMP_EQ:
2120       // X == 1 -> X
2121       if (match(RHS, m_One()))
2122         return LHS;
2123       break;
2124     case ICmpInst::ICMP_NE:
2125       // X != 0 -> X
2126       if (match(RHS, m_Zero()))
2127         return LHS;
2128       break;
2129     case ICmpInst::ICMP_UGT:
2130       // X >u 0 -> X
2131       if (match(RHS, m_Zero()))
2132         return LHS;
2133       break;
2134     case ICmpInst::ICMP_UGE:
2135       // X >=u 1 -> X
2136       if (match(RHS, m_One()))
2137         return LHS;
2138       if (isImpliedCondition(RHS, LHS, Q.DL))
2139         return getTrue(ITy);
2140       break;
2141     case ICmpInst::ICMP_SGE:
2142       /// For signed comparison, the values for an i1 are 0 and -1
2143       /// respectively. This maps into a truth table of:
2144       /// LHS | RHS | LHS >=s RHS   | LHS implies RHS
2145       ///  0  |  0  |  1 (0 >= 0)   |  1
2146       ///  0  |  1  |  1 (0 >= -1)  |  1
2147       ///  1  |  0  |  0 (-1 >= 0)  |  0
2148       ///  1  |  1  |  1 (-1 >= -1) |  1
2149       if (isImpliedCondition(LHS, RHS, Q.DL))
2150         return getTrue(ITy);
2151       break;
2152     case ICmpInst::ICMP_SLT:
2153       // X <s 0 -> X
2154       if (match(RHS, m_Zero()))
2155         return LHS;
2156       break;
2157     case ICmpInst::ICMP_SLE:
2158       // X <=s -1 -> X
2159       if (match(RHS, m_One()))
2160         return LHS;
2161       break;
2162     case ICmpInst::ICMP_ULE:
2163       if (isImpliedCondition(LHS, RHS, Q.DL))
2164         return getTrue(ITy);
2165       break;
2166     }
2167   }
2168 
2169   // If we are comparing with zero then try hard since this is a common case.
2170   if (match(RHS, m_Zero())) {
2171     bool LHSKnownNonNegative, LHSKnownNegative;
2172     switch (Pred) {
2173     default: llvm_unreachable("Unknown ICmp predicate!");
2174     case ICmpInst::ICMP_ULT:
2175       return getFalse(ITy);
2176     case ICmpInst::ICMP_UGE:
2177       return getTrue(ITy);
2178     case ICmpInst::ICMP_EQ:
2179     case ICmpInst::ICMP_ULE:
2180       if (isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT))
2181         return getFalse(ITy);
2182       break;
2183     case ICmpInst::ICMP_NE:
2184     case ICmpInst::ICMP_UGT:
2185       if (isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT))
2186         return getTrue(ITy);
2187       break;
2188     case ICmpInst::ICMP_SLT:
2189       ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, Q.DL, 0, Q.AC,
2190                      Q.CxtI, Q.DT);
2191       if (LHSKnownNegative)
2192         return getTrue(ITy);
2193       if (LHSKnownNonNegative)
2194         return getFalse(ITy);
2195       break;
2196     case ICmpInst::ICMP_SLE:
2197       ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, Q.DL, 0, Q.AC,
2198                      Q.CxtI, Q.DT);
2199       if (LHSKnownNegative)
2200         return getTrue(ITy);
2201       if (LHSKnownNonNegative &&
2202           isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT))
2203         return getFalse(ITy);
2204       break;
2205     case ICmpInst::ICMP_SGE:
2206       ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, Q.DL, 0, Q.AC,
2207                      Q.CxtI, Q.DT);
2208       if (LHSKnownNegative)
2209         return getFalse(ITy);
2210       if (LHSKnownNonNegative)
2211         return getTrue(ITy);
2212       break;
2213     case ICmpInst::ICMP_SGT:
2214       ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, Q.DL, 0, Q.AC,
2215                      Q.CxtI, Q.DT);
2216       if (LHSKnownNegative)
2217         return getFalse(ITy);
2218       if (LHSKnownNonNegative &&
2219           isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT))
2220         return getTrue(ITy);
2221       break;
2222     }
2223   }
2224 
2225   // See if we are doing a comparison with a constant integer.
2226   if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
2227     // Rule out tautological comparisons (eg., ult 0 or uge 0).
2228     ConstantRange RHS_CR = ICmpInst::makeConstantRange(Pred, CI->getValue());
2229     if (RHS_CR.isEmptySet())
2230       return ConstantInt::getFalse(CI->getContext());
2231     if (RHS_CR.isFullSet())
2232       return ConstantInt::getTrue(CI->getContext());
2233 
2234     // Many binary operators with constant RHS have easy to compute constant
2235     // range.  Use them to check whether the comparison is a tautology.
2236     unsigned Width = CI->getBitWidth();
2237     APInt Lower = APInt(Width, 0);
2238     APInt Upper = APInt(Width, 0);
2239     ConstantInt *CI2;
2240     if (match(LHS, m_URem(m_Value(), m_ConstantInt(CI2)))) {
2241       // 'urem x, CI2' produces [0, CI2).
2242       Upper = CI2->getValue();
2243     } else if (match(LHS, m_SRem(m_Value(), m_ConstantInt(CI2)))) {
2244       // 'srem x, CI2' produces (-|CI2|, |CI2|).
2245       Upper = CI2->getValue().abs();
2246       Lower = (-Upper) + 1;
2247     } else if (match(LHS, m_UDiv(m_ConstantInt(CI2), m_Value()))) {
2248       // 'udiv CI2, x' produces [0, CI2].
2249       Upper = CI2->getValue() + 1;
2250     } else if (match(LHS, m_UDiv(m_Value(), m_ConstantInt(CI2)))) {
2251       // 'udiv x, CI2' produces [0, UINT_MAX / CI2].
2252       APInt NegOne = APInt::getAllOnesValue(Width);
2253       if (!CI2->isZero())
2254         Upper = NegOne.udiv(CI2->getValue()) + 1;
2255     } else if (match(LHS, m_SDiv(m_ConstantInt(CI2), m_Value()))) {
2256       if (CI2->isMinSignedValue()) {
2257         // 'sdiv INT_MIN, x' produces [INT_MIN, INT_MIN / -2].
2258         Lower = CI2->getValue();
2259         Upper = Lower.lshr(1) + 1;
2260       } else {
2261         // 'sdiv CI2, x' produces [-|CI2|, |CI2|].
2262         Upper = CI2->getValue().abs() + 1;
2263         Lower = (-Upper) + 1;
2264       }
2265     } else if (match(LHS, m_SDiv(m_Value(), m_ConstantInt(CI2)))) {
2266       APInt IntMin = APInt::getSignedMinValue(Width);
2267       APInt IntMax = APInt::getSignedMaxValue(Width);
2268       APInt Val = CI2->getValue();
2269       if (Val.isAllOnesValue()) {
2270         // 'sdiv x, -1' produces [INT_MIN + 1, INT_MAX]
2271         //    where CI2 != -1 and CI2 != 0 and CI2 != 1
2272         Lower = IntMin + 1;
2273         Upper = IntMax + 1;
2274       } else if (Val.countLeadingZeros() < Width - 1) {
2275         // 'sdiv x, CI2' produces [INT_MIN / CI2, INT_MAX / CI2]
2276         //    where CI2 != -1 and CI2 != 0 and CI2 != 1
2277         Lower = IntMin.sdiv(Val);
2278         Upper = IntMax.sdiv(Val);
2279         if (Lower.sgt(Upper))
2280           std::swap(Lower, Upper);
2281         Upper = Upper + 1;
2282         assert(Upper != Lower && "Upper part of range has wrapped!");
2283       }
2284     } else if (match(LHS, m_NUWShl(m_ConstantInt(CI2), m_Value()))) {
2285       // 'shl nuw CI2, x' produces [CI2, CI2 << CLZ(CI2)]
2286       Lower = CI2->getValue();
2287       Upper = Lower.shl(Lower.countLeadingZeros()) + 1;
2288     } else if (match(LHS, m_NSWShl(m_ConstantInt(CI2), m_Value()))) {
2289       if (CI2->isNegative()) {
2290         // 'shl nsw CI2, x' produces [CI2 << CLO(CI2)-1, CI2]
2291         unsigned ShiftAmount = CI2->getValue().countLeadingOnes() - 1;
2292         Lower = CI2->getValue().shl(ShiftAmount);
2293         Upper = CI2->getValue() + 1;
2294       } else {
2295         // 'shl nsw CI2, x' produces [CI2, CI2 << CLZ(CI2)-1]
2296         unsigned ShiftAmount = CI2->getValue().countLeadingZeros() - 1;
2297         Lower = CI2->getValue();
2298         Upper = CI2->getValue().shl(ShiftAmount) + 1;
2299       }
2300     } else if (match(LHS, m_LShr(m_Value(), m_ConstantInt(CI2)))) {
2301       // 'lshr x, CI2' produces [0, UINT_MAX >> CI2].
2302       APInt NegOne = APInt::getAllOnesValue(Width);
2303       if (CI2->getValue().ult(Width))
2304         Upper = NegOne.lshr(CI2->getValue()) + 1;
2305     } else if (match(LHS, m_LShr(m_ConstantInt(CI2), m_Value()))) {
2306       // 'lshr CI2, x' produces [CI2 >> (Width-1), CI2].
2307       unsigned ShiftAmount = Width - 1;
2308       if (!CI2->isZero() && cast<BinaryOperator>(LHS)->isExact())
2309         ShiftAmount = CI2->getValue().countTrailingZeros();
2310       Lower = CI2->getValue().lshr(ShiftAmount);
2311       Upper = CI2->getValue() + 1;
2312     } else if (match(LHS, m_AShr(m_Value(), m_ConstantInt(CI2)))) {
2313       // 'ashr x, CI2' produces [INT_MIN >> CI2, INT_MAX >> CI2].
2314       APInt IntMin = APInt::getSignedMinValue(Width);
2315       APInt IntMax = APInt::getSignedMaxValue(Width);
2316       if (CI2->getValue().ult(Width)) {
2317         Lower = IntMin.ashr(CI2->getValue());
2318         Upper = IntMax.ashr(CI2->getValue()) + 1;
2319       }
2320     } else if (match(LHS, m_AShr(m_ConstantInt(CI2), m_Value()))) {
2321       unsigned ShiftAmount = Width - 1;
2322       if (!CI2->isZero() && cast<BinaryOperator>(LHS)->isExact())
2323         ShiftAmount = CI2->getValue().countTrailingZeros();
2324       if (CI2->isNegative()) {
2325         // 'ashr CI2, x' produces [CI2, CI2 >> (Width-1)]
2326         Lower = CI2->getValue();
2327         Upper = CI2->getValue().ashr(ShiftAmount) + 1;
2328       } else {
2329         // 'ashr CI2, x' produces [CI2 >> (Width-1), CI2]
2330         Lower = CI2->getValue().ashr(ShiftAmount);
2331         Upper = CI2->getValue() + 1;
2332       }
2333     } else if (match(LHS, m_Or(m_Value(), m_ConstantInt(CI2)))) {
2334       // 'or x, CI2' produces [CI2, UINT_MAX].
2335       Lower = CI2->getValue();
2336     } else if (match(LHS, m_And(m_Value(), m_ConstantInt(CI2)))) {
2337       // 'and x, CI2' produces [0, CI2].
2338       Upper = CI2->getValue() + 1;
2339     } else if (match(LHS, m_NUWAdd(m_Value(), m_ConstantInt(CI2)))) {
2340       // 'add nuw x, CI2' produces [CI2, UINT_MAX].
2341       Lower = CI2->getValue();
2342     }
2343 
2344     ConstantRange LHS_CR = Lower != Upper ? ConstantRange(Lower, Upper)
2345                                           : ConstantRange(Width, true);
2346 
2347     if (auto *I = dyn_cast<Instruction>(LHS))
2348       if (auto *Ranges = I->getMetadata(LLVMContext::MD_range))
2349         LHS_CR = LHS_CR.intersectWith(getConstantRangeFromMetadata(*Ranges));
2350 
2351     if (!LHS_CR.isFullSet()) {
2352       if (RHS_CR.contains(LHS_CR))
2353         return ConstantInt::getTrue(RHS->getContext());
2354       if (RHS_CR.inverse().contains(LHS_CR))
2355         return ConstantInt::getFalse(RHS->getContext());
2356     }
2357   }
2358 
2359   // If both operands have range metadata, use the metadata
2360   // to simplify the comparison.
2361   if (isa<Instruction>(RHS) && isa<Instruction>(LHS)) {
2362     auto RHS_Instr = dyn_cast<Instruction>(RHS);
2363     auto LHS_Instr = dyn_cast<Instruction>(LHS);
2364 
2365     if (RHS_Instr->getMetadata(LLVMContext::MD_range) &&
2366         LHS_Instr->getMetadata(LLVMContext::MD_range)) {
2367       auto RHS_CR = getConstantRangeFromMetadata(
2368           *RHS_Instr->getMetadata(LLVMContext::MD_range));
2369       auto LHS_CR = getConstantRangeFromMetadata(
2370           *LHS_Instr->getMetadata(LLVMContext::MD_range));
2371 
2372       auto Satisfied_CR = ConstantRange::makeSatisfyingICmpRegion(Pred, RHS_CR);
2373       if (Satisfied_CR.contains(LHS_CR))
2374         return ConstantInt::getTrue(RHS->getContext());
2375 
2376       auto InversedSatisfied_CR = ConstantRange::makeSatisfyingICmpRegion(
2377                 CmpInst::getInversePredicate(Pred), RHS_CR);
2378       if (InversedSatisfied_CR.contains(LHS_CR))
2379         return ConstantInt::getFalse(RHS->getContext());
2380     }
2381   }
2382 
2383   // Compare of cast, for example (zext X) != 0 -> X != 0
2384   if (isa<CastInst>(LHS) && (isa<Constant>(RHS) || isa<CastInst>(RHS))) {
2385     Instruction *LI = cast<CastInst>(LHS);
2386     Value *SrcOp = LI->getOperand(0);
2387     Type *SrcTy = SrcOp->getType();
2388     Type *DstTy = LI->getType();
2389 
2390     // Turn icmp (ptrtoint x), (ptrtoint/constant) into a compare of the input
2391     // if the integer type is the same size as the pointer type.
2392     if (MaxRecurse && isa<PtrToIntInst>(LI) &&
2393         Q.DL.getTypeSizeInBits(SrcTy) == DstTy->getPrimitiveSizeInBits()) {
2394       if (Constant *RHSC = dyn_cast<Constant>(RHS)) {
2395         // Transfer the cast to the constant.
2396         if (Value *V = SimplifyICmpInst(Pred, SrcOp,
2397                                         ConstantExpr::getIntToPtr(RHSC, SrcTy),
2398                                         Q, MaxRecurse-1))
2399           return V;
2400       } else if (PtrToIntInst *RI = dyn_cast<PtrToIntInst>(RHS)) {
2401         if (RI->getOperand(0)->getType() == SrcTy)
2402           // Compare without the cast.
2403           if (Value *V = SimplifyICmpInst(Pred, SrcOp, RI->getOperand(0),
2404                                           Q, MaxRecurse-1))
2405             return V;
2406       }
2407     }
2408 
2409     if (isa<ZExtInst>(LHS)) {
2410       // Turn icmp (zext X), (zext Y) into a compare of X and Y if they have the
2411       // same type.
2412       if (ZExtInst *RI = dyn_cast<ZExtInst>(RHS)) {
2413         if (MaxRecurse && SrcTy == RI->getOperand(0)->getType())
2414           // Compare X and Y.  Note that signed predicates become unsigned.
2415           if (Value *V = SimplifyICmpInst(ICmpInst::getUnsignedPredicate(Pred),
2416                                           SrcOp, RI->getOperand(0), Q,
2417                                           MaxRecurse-1))
2418             return V;
2419       }
2420       // Turn icmp (zext X), Cst into a compare of X and Cst if Cst is extended
2421       // too.  If not, then try to deduce the result of the comparison.
2422       else if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
2423         // Compute the constant that would happen if we truncated to SrcTy then
2424         // reextended to DstTy.
2425         Constant *Trunc = ConstantExpr::getTrunc(CI, SrcTy);
2426         Constant *RExt = ConstantExpr::getCast(CastInst::ZExt, Trunc, DstTy);
2427 
2428         // If the re-extended constant didn't change then this is effectively
2429         // also a case of comparing two zero-extended values.
2430         if (RExt == CI && MaxRecurse)
2431           if (Value *V = SimplifyICmpInst(ICmpInst::getUnsignedPredicate(Pred),
2432                                         SrcOp, Trunc, Q, MaxRecurse-1))
2433             return V;
2434 
2435         // Otherwise the upper bits of LHS are zero while RHS has a non-zero bit
2436         // there.  Use this to work out the result of the comparison.
2437         if (RExt != CI) {
2438           switch (Pred) {
2439           default: llvm_unreachable("Unknown ICmp predicate!");
2440           // LHS <u RHS.
2441           case ICmpInst::ICMP_EQ:
2442           case ICmpInst::ICMP_UGT:
2443           case ICmpInst::ICMP_UGE:
2444             return ConstantInt::getFalse(CI->getContext());
2445 
2446           case ICmpInst::ICMP_NE:
2447           case ICmpInst::ICMP_ULT:
2448           case ICmpInst::ICMP_ULE:
2449             return ConstantInt::getTrue(CI->getContext());
2450 
2451           // LHS is non-negative.  If RHS is negative then LHS >s LHS.  If RHS
2452           // is non-negative then LHS <s RHS.
2453           case ICmpInst::ICMP_SGT:
2454           case ICmpInst::ICMP_SGE:
2455             return CI->getValue().isNegative() ?
2456               ConstantInt::getTrue(CI->getContext()) :
2457               ConstantInt::getFalse(CI->getContext());
2458 
2459           case ICmpInst::ICMP_SLT:
2460           case ICmpInst::ICMP_SLE:
2461             return CI->getValue().isNegative() ?
2462               ConstantInt::getFalse(CI->getContext()) :
2463               ConstantInt::getTrue(CI->getContext());
2464           }
2465         }
2466       }
2467     }
2468 
2469     if (isa<SExtInst>(LHS)) {
2470       // Turn icmp (sext X), (sext Y) into a compare of X and Y if they have the
2471       // same type.
2472       if (SExtInst *RI = dyn_cast<SExtInst>(RHS)) {
2473         if (MaxRecurse && SrcTy == RI->getOperand(0)->getType())
2474           // Compare X and Y.  Note that the predicate does not change.
2475           if (Value *V = SimplifyICmpInst(Pred, SrcOp, RI->getOperand(0),
2476                                           Q, MaxRecurse-1))
2477             return V;
2478       }
2479       // Turn icmp (sext X), Cst into a compare of X and Cst if Cst is extended
2480       // too.  If not, then try to deduce the result of the comparison.
2481       else if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
2482         // Compute the constant that would happen if we truncated to SrcTy then
2483         // reextended to DstTy.
2484         Constant *Trunc = ConstantExpr::getTrunc(CI, SrcTy);
2485         Constant *RExt = ConstantExpr::getCast(CastInst::SExt, Trunc, DstTy);
2486 
2487         // If the re-extended constant didn't change then this is effectively
2488         // also a case of comparing two sign-extended values.
2489         if (RExt == CI && MaxRecurse)
2490           if (Value *V = SimplifyICmpInst(Pred, SrcOp, Trunc, Q, MaxRecurse-1))
2491             return V;
2492 
2493         // Otherwise the upper bits of LHS are all equal, while RHS has varying
2494         // bits there.  Use this to work out the result of the comparison.
2495         if (RExt != CI) {
2496           switch (Pred) {
2497           default: llvm_unreachable("Unknown ICmp predicate!");
2498           case ICmpInst::ICMP_EQ:
2499             return ConstantInt::getFalse(CI->getContext());
2500           case ICmpInst::ICMP_NE:
2501             return ConstantInt::getTrue(CI->getContext());
2502 
2503           // If RHS is non-negative then LHS <s RHS.  If RHS is negative then
2504           // LHS >s RHS.
2505           case ICmpInst::ICMP_SGT:
2506           case ICmpInst::ICMP_SGE:
2507             return CI->getValue().isNegative() ?
2508               ConstantInt::getTrue(CI->getContext()) :
2509               ConstantInt::getFalse(CI->getContext());
2510           case ICmpInst::ICMP_SLT:
2511           case ICmpInst::ICMP_SLE:
2512             return CI->getValue().isNegative() ?
2513               ConstantInt::getFalse(CI->getContext()) :
2514               ConstantInt::getTrue(CI->getContext());
2515 
2516           // If LHS is non-negative then LHS <u RHS.  If LHS is negative then
2517           // LHS >u RHS.
2518           case ICmpInst::ICMP_UGT:
2519           case ICmpInst::ICMP_UGE:
2520             // Comparison is true iff the LHS <s 0.
2521             if (MaxRecurse)
2522               if (Value *V = SimplifyICmpInst(ICmpInst::ICMP_SLT, SrcOp,
2523                                               Constant::getNullValue(SrcTy),
2524                                               Q, MaxRecurse-1))
2525                 return V;
2526             break;
2527           case ICmpInst::ICMP_ULT:
2528           case ICmpInst::ICMP_ULE:
2529             // Comparison is true iff the LHS >=s 0.
2530             if (MaxRecurse)
2531               if (Value *V = SimplifyICmpInst(ICmpInst::ICMP_SGE, SrcOp,
2532                                               Constant::getNullValue(SrcTy),
2533                                               Q, MaxRecurse-1))
2534                 return V;
2535             break;
2536           }
2537         }
2538       }
2539     }
2540   }
2541 
2542   // icmp eq|ne X, Y -> false|true if X != Y
2543   if ((Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_NE) &&
2544       isKnownNonEqual(LHS, RHS, Q.DL, Q.AC, Q.CxtI, Q.DT)) {
2545     LLVMContext &Ctx = LHS->getType()->getContext();
2546     return Pred == ICmpInst::ICMP_NE ?
2547       ConstantInt::getTrue(Ctx) : ConstantInt::getFalse(Ctx);
2548   }
2549 
2550   // Special logic for binary operators.
2551   BinaryOperator *LBO = dyn_cast<BinaryOperator>(LHS);
2552   BinaryOperator *RBO = dyn_cast<BinaryOperator>(RHS);
2553   if (MaxRecurse && (LBO || RBO)) {
2554     // Analyze the case when either LHS or RHS is an add instruction.
2555     Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr;
2556     // LHS = A + B (or A and B are null); RHS = C + D (or C and D are null).
2557     bool NoLHSWrapProblem = false, NoRHSWrapProblem = false;
2558     if (LBO && LBO->getOpcode() == Instruction::Add) {
2559       A = LBO->getOperand(0); B = LBO->getOperand(1);
2560       NoLHSWrapProblem = ICmpInst::isEquality(Pred) ||
2561         (CmpInst::isUnsigned(Pred) && LBO->hasNoUnsignedWrap()) ||
2562         (CmpInst::isSigned(Pred) && LBO->hasNoSignedWrap());
2563     }
2564     if (RBO && RBO->getOpcode() == Instruction::Add) {
2565       C = RBO->getOperand(0); D = RBO->getOperand(1);
2566       NoRHSWrapProblem = ICmpInst::isEquality(Pred) ||
2567         (CmpInst::isUnsigned(Pred) && RBO->hasNoUnsignedWrap()) ||
2568         (CmpInst::isSigned(Pred) && RBO->hasNoSignedWrap());
2569     }
2570 
2571     // icmp (X+Y), X -> icmp Y, 0 for equalities or if there is no overflow.
2572     if ((A == RHS || B == RHS) && NoLHSWrapProblem)
2573       if (Value *V = SimplifyICmpInst(Pred, A == RHS ? B : A,
2574                                       Constant::getNullValue(RHS->getType()),
2575                                       Q, MaxRecurse-1))
2576         return V;
2577 
2578     // icmp X, (X+Y) -> icmp 0, Y for equalities or if there is no overflow.
2579     if ((C == LHS || D == LHS) && NoRHSWrapProblem)
2580       if (Value *V = SimplifyICmpInst(Pred,
2581                                       Constant::getNullValue(LHS->getType()),
2582                                       C == LHS ? D : C, Q, MaxRecurse-1))
2583         return V;
2584 
2585     // icmp (X+Y), (X+Z) -> icmp Y,Z for equalities or if there is no overflow.
2586     if (A && C && (A == C || A == D || B == C || B == D) &&
2587         NoLHSWrapProblem && NoRHSWrapProblem) {
2588       // Determine Y and Z in the form icmp (X+Y), (X+Z).
2589       Value *Y, *Z;
2590       if (A == C) {
2591         // C + B == C + D  ->  B == D
2592         Y = B;
2593         Z = D;
2594       } else if (A == D) {
2595         // D + B == C + D  ->  B == C
2596         Y = B;
2597         Z = C;
2598       } else if (B == C) {
2599         // A + C == C + D  ->  A == D
2600         Y = A;
2601         Z = D;
2602       } else {
2603         assert(B == D);
2604         // A + D == C + D  ->  A == C
2605         Y = A;
2606         Z = C;
2607       }
2608       if (Value *V = SimplifyICmpInst(Pred, Y, Z, Q, MaxRecurse-1))
2609         return V;
2610     }
2611   }
2612 
2613   // icmp pred (or X, Y), X
2614   if (LBO && match(LBO, m_CombineOr(m_Or(m_Value(), m_Specific(RHS)),
2615                                     m_Or(m_Specific(RHS), m_Value())))) {
2616     if (Pred == ICmpInst::ICMP_ULT)
2617       return getFalse(ITy);
2618     if (Pred == ICmpInst::ICMP_UGE)
2619       return getTrue(ITy);
2620   }
2621   // icmp pred X, (or X, Y)
2622   if (RBO && match(RBO, m_CombineOr(m_Or(m_Value(), m_Specific(LHS)),
2623                                     m_Or(m_Specific(LHS), m_Value())))) {
2624     if (Pred == ICmpInst::ICMP_ULE)
2625       return getTrue(ITy);
2626     if (Pred == ICmpInst::ICMP_UGT)
2627       return getFalse(ITy);
2628   }
2629 
2630   // icmp pred (and X, Y), X
2631   if (LBO && match(LBO, m_CombineOr(m_And(m_Value(), m_Specific(RHS)),
2632                                     m_And(m_Specific(RHS), m_Value())))) {
2633     if (Pred == ICmpInst::ICMP_UGT)
2634       return getFalse(ITy);
2635     if (Pred == ICmpInst::ICMP_ULE)
2636       return getTrue(ITy);
2637   }
2638   // icmp pred X, (and X, Y)
2639   if (RBO && match(RBO, m_CombineOr(m_And(m_Value(), m_Specific(LHS)),
2640                                     m_And(m_Specific(LHS), m_Value())))) {
2641     if (Pred == ICmpInst::ICMP_UGE)
2642       return getTrue(ITy);
2643     if (Pred == ICmpInst::ICMP_ULT)
2644       return getFalse(ITy);
2645   }
2646 
2647   // 0 - (zext X) pred C
2648   if (!CmpInst::isUnsigned(Pred) && match(LHS, m_Neg(m_ZExt(m_Value())))) {
2649     if (ConstantInt *RHSC = dyn_cast<ConstantInt>(RHS)) {
2650       if (RHSC->getValue().isStrictlyPositive()) {
2651         if (Pred == ICmpInst::ICMP_SLT)
2652           return ConstantInt::getTrue(RHSC->getContext());
2653         if (Pred == ICmpInst::ICMP_SGE)
2654           return ConstantInt::getFalse(RHSC->getContext());
2655         if (Pred == ICmpInst::ICMP_EQ)
2656           return ConstantInt::getFalse(RHSC->getContext());
2657         if (Pred == ICmpInst::ICMP_NE)
2658           return ConstantInt::getTrue(RHSC->getContext());
2659       }
2660       if (RHSC->getValue().isNonNegative()) {
2661         if (Pred == ICmpInst::ICMP_SLE)
2662           return ConstantInt::getTrue(RHSC->getContext());
2663         if (Pred == ICmpInst::ICMP_SGT)
2664           return ConstantInt::getFalse(RHSC->getContext());
2665       }
2666     }
2667   }
2668 
2669   // icmp pred (urem X, Y), Y
2670   if (LBO && match(LBO, m_URem(m_Value(), m_Specific(RHS)))) {
2671     bool KnownNonNegative, KnownNegative;
2672     switch (Pred) {
2673     default:
2674       break;
2675     case ICmpInst::ICMP_SGT:
2676     case ICmpInst::ICMP_SGE:
2677       ComputeSignBit(RHS, KnownNonNegative, KnownNegative, Q.DL, 0, Q.AC,
2678                      Q.CxtI, Q.DT);
2679       if (!KnownNonNegative)
2680         break;
2681       // fall-through
2682     case ICmpInst::ICMP_EQ:
2683     case ICmpInst::ICMP_UGT:
2684     case ICmpInst::ICMP_UGE:
2685       return getFalse(ITy);
2686     case ICmpInst::ICMP_SLT:
2687     case ICmpInst::ICMP_SLE:
2688       ComputeSignBit(RHS, KnownNonNegative, KnownNegative, Q.DL, 0, Q.AC,
2689                      Q.CxtI, Q.DT);
2690       if (!KnownNonNegative)
2691         break;
2692       // fall-through
2693     case ICmpInst::ICMP_NE:
2694     case ICmpInst::ICMP_ULT:
2695     case ICmpInst::ICMP_ULE:
2696       return getTrue(ITy);
2697     }
2698   }
2699 
2700   // icmp pred X, (urem Y, X)
2701   if (RBO && match(RBO, m_URem(m_Value(), m_Specific(LHS)))) {
2702     bool KnownNonNegative, KnownNegative;
2703     switch (Pred) {
2704     default:
2705       break;
2706     case ICmpInst::ICMP_SGT:
2707     case ICmpInst::ICMP_SGE:
2708       ComputeSignBit(LHS, KnownNonNegative, KnownNegative, Q.DL, 0, Q.AC,
2709                      Q.CxtI, Q.DT);
2710       if (!KnownNonNegative)
2711         break;
2712       // fall-through
2713     case ICmpInst::ICMP_NE:
2714     case ICmpInst::ICMP_UGT:
2715     case ICmpInst::ICMP_UGE:
2716       return getTrue(ITy);
2717     case ICmpInst::ICMP_SLT:
2718     case ICmpInst::ICMP_SLE:
2719       ComputeSignBit(LHS, KnownNonNegative, KnownNegative, Q.DL, 0, Q.AC,
2720                      Q.CxtI, Q.DT);
2721       if (!KnownNonNegative)
2722         break;
2723       // fall-through
2724     case ICmpInst::ICMP_EQ:
2725     case ICmpInst::ICMP_ULT:
2726     case ICmpInst::ICMP_ULE:
2727       return getFalse(ITy);
2728     }
2729   }
2730 
2731   // x >> y <=u x
2732   // x udiv y <=u x.
2733   if (LBO && (match(LBO, m_LShr(m_Specific(RHS), m_Value())) ||
2734               match(LBO, m_UDiv(m_Specific(RHS), m_Value())))) {
2735     // icmp pred (X op Y), X
2736     if (Pred == ICmpInst::ICMP_UGT)
2737       return getFalse(ITy);
2738     if (Pred == ICmpInst::ICMP_ULE)
2739       return getTrue(ITy);
2740   }
2741 
2742   // handle:
2743   //   CI2 << X == CI
2744   //   CI2 << X != CI
2745   //
2746   //   where CI2 is a power of 2 and CI isn't
2747   if (auto *CI = dyn_cast<ConstantInt>(RHS)) {
2748     const APInt *CI2Val, *CIVal = &CI->getValue();
2749     if (LBO && match(LBO, m_Shl(m_APInt(CI2Val), m_Value())) &&
2750         CI2Val->isPowerOf2()) {
2751       if (!CIVal->isPowerOf2()) {
2752         // CI2 << X can equal zero in some circumstances,
2753         // this simplification is unsafe if CI is zero.
2754         //
2755         // We know it is safe if:
2756         // - The shift is nsw, we can't shift out the one bit.
2757         // - The shift is nuw, we can't shift out the one bit.
2758         // - CI2 is one
2759         // - CI isn't zero
2760         if (LBO->hasNoSignedWrap() || LBO->hasNoUnsignedWrap() ||
2761             *CI2Val == 1 || !CI->isZero()) {
2762           if (Pred == ICmpInst::ICMP_EQ)
2763             return ConstantInt::getFalse(RHS->getContext());
2764           if (Pred == ICmpInst::ICMP_NE)
2765             return ConstantInt::getTrue(RHS->getContext());
2766         }
2767       }
2768       if (CIVal->isSignBit() && *CI2Val == 1) {
2769         if (Pred == ICmpInst::ICMP_UGT)
2770           return ConstantInt::getFalse(RHS->getContext());
2771         if (Pred == ICmpInst::ICMP_ULE)
2772           return ConstantInt::getTrue(RHS->getContext());
2773       }
2774     }
2775   }
2776 
2777   if (MaxRecurse && LBO && RBO && LBO->getOpcode() == RBO->getOpcode() &&
2778       LBO->getOperand(1) == RBO->getOperand(1)) {
2779     switch (LBO->getOpcode()) {
2780     default: break;
2781     case Instruction::UDiv:
2782     case Instruction::LShr:
2783       if (ICmpInst::isSigned(Pred))
2784         break;
2785       // fall-through
2786     case Instruction::SDiv:
2787     case Instruction::AShr:
2788       if (!LBO->isExact() || !RBO->isExact())
2789         break;
2790       if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0),
2791                                       RBO->getOperand(0), Q, MaxRecurse-1))
2792         return V;
2793       break;
2794     case Instruction::Shl: {
2795       bool NUW = LBO->hasNoUnsignedWrap() && RBO->hasNoUnsignedWrap();
2796       bool NSW = LBO->hasNoSignedWrap() && RBO->hasNoSignedWrap();
2797       if (!NUW && !NSW)
2798         break;
2799       if (!NSW && ICmpInst::isSigned(Pred))
2800         break;
2801       if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0),
2802                                       RBO->getOperand(0), Q, MaxRecurse-1))
2803         return V;
2804       break;
2805     }
2806     }
2807   }
2808 
2809   // Simplify comparisons involving max/min.
2810   Value *A, *B;
2811   CmpInst::Predicate P = CmpInst::BAD_ICMP_PREDICATE;
2812   CmpInst::Predicate EqP; // Chosen so that "A == max/min(A,B)" iff "A EqP B".
2813 
2814   // Signed variants on "max(a,b)>=a -> true".
2815   if (match(LHS, m_SMax(m_Value(A), m_Value(B))) && (A == RHS || B == RHS)) {
2816     if (A != RHS) std::swap(A, B); // smax(A, B) pred A.
2817     EqP = CmpInst::ICMP_SGE; // "A == smax(A, B)" iff "A sge B".
2818     // We analyze this as smax(A, B) pred A.
2819     P = Pred;
2820   } else if (match(RHS, m_SMax(m_Value(A), m_Value(B))) &&
2821              (A == LHS || B == LHS)) {
2822     if (A != LHS) std::swap(A, B); // A pred smax(A, B).
2823     EqP = CmpInst::ICMP_SGE; // "A == smax(A, B)" iff "A sge B".
2824     // We analyze this as smax(A, B) swapped-pred A.
2825     P = CmpInst::getSwappedPredicate(Pred);
2826   } else if (match(LHS, m_SMin(m_Value(A), m_Value(B))) &&
2827              (A == RHS || B == RHS)) {
2828     if (A != RHS) std::swap(A, B); // smin(A, B) pred A.
2829     EqP = CmpInst::ICMP_SLE; // "A == smin(A, B)" iff "A sle B".
2830     // We analyze this as smax(-A, -B) swapped-pred -A.
2831     // Note that we do not need to actually form -A or -B thanks to EqP.
2832     P = CmpInst::getSwappedPredicate(Pred);
2833   } else if (match(RHS, m_SMin(m_Value(A), m_Value(B))) &&
2834              (A == LHS || B == LHS)) {
2835     if (A != LHS) std::swap(A, B); // A pred smin(A, B).
2836     EqP = CmpInst::ICMP_SLE; // "A == smin(A, B)" iff "A sle B".
2837     // We analyze this as smax(-A, -B) pred -A.
2838     // Note that we do not need to actually form -A or -B thanks to EqP.
2839     P = Pred;
2840   }
2841   if (P != CmpInst::BAD_ICMP_PREDICATE) {
2842     // Cases correspond to "max(A, B) p A".
2843     switch (P) {
2844     default:
2845       break;
2846     case CmpInst::ICMP_EQ:
2847     case CmpInst::ICMP_SLE:
2848       // Equivalent to "A EqP B".  This may be the same as the condition tested
2849       // in the max/min; if so, we can just return that.
2850       if (Value *V = ExtractEquivalentCondition(LHS, EqP, A, B))
2851         return V;
2852       if (Value *V = ExtractEquivalentCondition(RHS, EqP, A, B))
2853         return V;
2854       // Otherwise, see if "A EqP B" simplifies.
2855       if (MaxRecurse)
2856         if (Value *V = SimplifyICmpInst(EqP, A, B, Q, MaxRecurse-1))
2857           return V;
2858       break;
2859     case CmpInst::ICMP_NE:
2860     case CmpInst::ICMP_SGT: {
2861       CmpInst::Predicate InvEqP = CmpInst::getInversePredicate(EqP);
2862       // Equivalent to "A InvEqP B".  This may be the same as the condition
2863       // tested in the max/min; if so, we can just return that.
2864       if (Value *V = ExtractEquivalentCondition(LHS, InvEqP, A, B))
2865         return V;
2866       if (Value *V = ExtractEquivalentCondition(RHS, InvEqP, A, B))
2867         return V;
2868       // Otherwise, see if "A InvEqP B" simplifies.
2869       if (MaxRecurse)
2870         if (Value *V = SimplifyICmpInst(InvEqP, A, B, Q, MaxRecurse-1))
2871           return V;
2872       break;
2873     }
2874     case CmpInst::ICMP_SGE:
2875       // Always true.
2876       return getTrue(ITy);
2877     case CmpInst::ICMP_SLT:
2878       // Always false.
2879       return getFalse(ITy);
2880     }
2881   }
2882 
2883   // Unsigned variants on "max(a,b)>=a -> true".
2884   P = CmpInst::BAD_ICMP_PREDICATE;
2885   if (match(LHS, m_UMax(m_Value(A), m_Value(B))) && (A == RHS || B == RHS)) {
2886     if (A != RHS) std::swap(A, B); // umax(A, B) pred A.
2887     EqP = CmpInst::ICMP_UGE; // "A == umax(A, B)" iff "A uge B".
2888     // We analyze this as umax(A, B) pred A.
2889     P = Pred;
2890   } else if (match(RHS, m_UMax(m_Value(A), m_Value(B))) &&
2891              (A == LHS || B == LHS)) {
2892     if (A != LHS) std::swap(A, B); // A pred umax(A, B).
2893     EqP = CmpInst::ICMP_UGE; // "A == umax(A, B)" iff "A uge B".
2894     // We analyze this as umax(A, B) swapped-pred A.
2895     P = CmpInst::getSwappedPredicate(Pred);
2896   } else if (match(LHS, m_UMin(m_Value(A), m_Value(B))) &&
2897              (A == RHS || B == RHS)) {
2898     if (A != RHS) std::swap(A, B); // umin(A, B) pred A.
2899     EqP = CmpInst::ICMP_ULE; // "A == umin(A, B)" iff "A ule B".
2900     // We analyze this as umax(-A, -B) swapped-pred -A.
2901     // Note that we do not need to actually form -A or -B thanks to EqP.
2902     P = CmpInst::getSwappedPredicate(Pred);
2903   } else if (match(RHS, m_UMin(m_Value(A), m_Value(B))) &&
2904              (A == LHS || B == LHS)) {
2905     if (A != LHS) std::swap(A, B); // A pred umin(A, B).
2906     EqP = CmpInst::ICMP_ULE; // "A == umin(A, B)" iff "A ule B".
2907     // We analyze this as umax(-A, -B) pred -A.
2908     // Note that we do not need to actually form -A or -B thanks to EqP.
2909     P = Pred;
2910   }
2911   if (P != CmpInst::BAD_ICMP_PREDICATE) {
2912     // Cases correspond to "max(A, B) p A".
2913     switch (P) {
2914     default:
2915       break;
2916     case CmpInst::ICMP_EQ:
2917     case CmpInst::ICMP_ULE:
2918       // Equivalent to "A EqP B".  This may be the same as the condition tested
2919       // in the max/min; if so, we can just return that.
2920       if (Value *V = ExtractEquivalentCondition(LHS, EqP, A, B))
2921         return V;
2922       if (Value *V = ExtractEquivalentCondition(RHS, EqP, A, B))
2923         return V;
2924       // Otherwise, see if "A EqP B" simplifies.
2925       if (MaxRecurse)
2926         if (Value *V = SimplifyICmpInst(EqP, A, B, Q, MaxRecurse-1))
2927           return V;
2928       break;
2929     case CmpInst::ICMP_NE:
2930     case CmpInst::ICMP_UGT: {
2931       CmpInst::Predicate InvEqP = CmpInst::getInversePredicate(EqP);
2932       // Equivalent to "A InvEqP B".  This may be the same as the condition
2933       // tested in the max/min; if so, we can just return that.
2934       if (Value *V = ExtractEquivalentCondition(LHS, InvEqP, A, B))
2935         return V;
2936       if (Value *V = ExtractEquivalentCondition(RHS, InvEqP, A, B))
2937         return V;
2938       // Otherwise, see if "A InvEqP B" simplifies.
2939       if (MaxRecurse)
2940         if (Value *V = SimplifyICmpInst(InvEqP, A, B, Q, MaxRecurse-1))
2941           return V;
2942       break;
2943     }
2944     case CmpInst::ICMP_UGE:
2945       // Always true.
2946       return getTrue(ITy);
2947     case CmpInst::ICMP_ULT:
2948       // Always false.
2949       return getFalse(ITy);
2950     }
2951   }
2952 
2953   // Variants on "max(x,y) >= min(x,z)".
2954   Value *C, *D;
2955   if (match(LHS, m_SMax(m_Value(A), m_Value(B))) &&
2956       match(RHS, m_SMin(m_Value(C), m_Value(D))) &&
2957       (A == C || A == D || B == C || B == D)) {
2958     // max(x, ?) pred min(x, ?).
2959     if (Pred == CmpInst::ICMP_SGE)
2960       // Always true.
2961       return getTrue(ITy);
2962     if (Pred == CmpInst::ICMP_SLT)
2963       // Always false.
2964       return getFalse(ITy);
2965   } else if (match(LHS, m_SMin(m_Value(A), m_Value(B))) &&
2966              match(RHS, m_SMax(m_Value(C), m_Value(D))) &&
2967              (A == C || A == D || B == C || B == D)) {
2968     // min(x, ?) pred max(x, ?).
2969     if (Pred == CmpInst::ICMP_SLE)
2970       // Always true.
2971       return getTrue(ITy);
2972     if (Pred == CmpInst::ICMP_SGT)
2973       // Always false.
2974       return getFalse(ITy);
2975   } else if (match(LHS, m_UMax(m_Value(A), m_Value(B))) &&
2976              match(RHS, m_UMin(m_Value(C), m_Value(D))) &&
2977              (A == C || A == D || B == C || B == D)) {
2978     // max(x, ?) pred min(x, ?).
2979     if (Pred == CmpInst::ICMP_UGE)
2980       // Always true.
2981       return getTrue(ITy);
2982     if (Pred == CmpInst::ICMP_ULT)
2983       // Always false.
2984       return getFalse(ITy);
2985   } else if (match(LHS, m_UMin(m_Value(A), m_Value(B))) &&
2986              match(RHS, m_UMax(m_Value(C), m_Value(D))) &&
2987              (A == C || A == D || B == C || B == D)) {
2988     // min(x, ?) pred max(x, ?).
2989     if (Pred == CmpInst::ICMP_ULE)
2990       // Always true.
2991       return getTrue(ITy);
2992     if (Pred == CmpInst::ICMP_UGT)
2993       // Always false.
2994       return getFalse(ITy);
2995   }
2996 
2997   // Simplify comparisons of related pointers using a powerful, recursive
2998   // GEP-walk when we have target data available..
2999   if (LHS->getType()->isPointerTy())
3000     if (Constant *C = computePointerICmp(Q.DL, Q.TLI, Pred, LHS, RHS))
3001       return C;
3002 
3003   if (GetElementPtrInst *GLHS = dyn_cast<GetElementPtrInst>(LHS)) {
3004     if (GEPOperator *GRHS = dyn_cast<GEPOperator>(RHS)) {
3005       if (GLHS->getPointerOperand() == GRHS->getPointerOperand() &&
3006           GLHS->hasAllConstantIndices() && GRHS->hasAllConstantIndices() &&
3007           (ICmpInst::isEquality(Pred) ||
3008            (GLHS->isInBounds() && GRHS->isInBounds() &&
3009             Pred == ICmpInst::getSignedPredicate(Pred)))) {
3010         // The bases are equal and the indices are constant.  Build a constant
3011         // expression GEP with the same indices and a null base pointer to see
3012         // what constant folding can make out of it.
3013         Constant *Null = Constant::getNullValue(GLHS->getPointerOperandType());
3014         SmallVector<Value *, 4> IndicesLHS(GLHS->idx_begin(), GLHS->idx_end());
3015         Constant *NewLHS = ConstantExpr::getGetElementPtr(
3016             GLHS->getSourceElementType(), Null, IndicesLHS);
3017 
3018         SmallVector<Value *, 4> IndicesRHS(GRHS->idx_begin(), GRHS->idx_end());
3019         Constant *NewRHS = ConstantExpr::getGetElementPtr(
3020             GLHS->getSourceElementType(), Null, IndicesRHS);
3021         return ConstantExpr::getICmp(Pred, NewLHS, NewRHS);
3022       }
3023     }
3024   }
3025 
3026   // If a bit is known to be zero for A and known to be one for B,
3027   // then A and B cannot be equal.
3028   if (ICmpInst::isEquality(Pred)) {
3029     if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
3030       uint32_t BitWidth = CI->getBitWidth();
3031       APInt LHSKnownZero(BitWidth, 0);
3032       APInt LHSKnownOne(BitWidth, 0);
3033       computeKnownBits(LHS, LHSKnownZero, LHSKnownOne, Q.DL, /*Depth=*/0, Q.AC,
3034                        Q.CxtI, Q.DT);
3035       const APInt &RHSVal = CI->getValue();
3036       if (((LHSKnownZero & RHSVal) != 0) || ((LHSKnownOne & ~RHSVal) != 0))
3037         return Pred == ICmpInst::ICMP_EQ
3038                    ? ConstantInt::getFalse(CI->getContext())
3039                    : ConstantInt::getTrue(CI->getContext());
3040     }
3041   }
3042 
3043   // If the comparison is with the result of a select instruction, check whether
3044   // comparing with either branch of the select always yields the same value.
3045   if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS))
3046     if (Value *V = ThreadCmpOverSelect(Pred, LHS, RHS, Q, MaxRecurse))
3047       return V;
3048 
3049   // If the comparison is with the result of a phi instruction, check whether
3050   // doing the compare with each incoming phi value yields a common result.
3051   if (isa<PHINode>(LHS) || isa<PHINode>(RHS))
3052     if (Value *V = ThreadCmpOverPHI(Pred, LHS, RHS, Q, MaxRecurse))
3053       return V;
3054 
3055   return nullptr;
3056 }
3057 
3058 Value *llvm::SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS,
3059                               const DataLayout &DL,
3060                               const TargetLibraryInfo *TLI,
3061                               const DominatorTree *DT, AssumptionCache *AC,
3062                               const Instruction *CxtI) {
3063   return ::SimplifyICmpInst(Predicate, LHS, RHS, Query(DL, TLI, DT, AC, CxtI),
3064                             RecursionLimit);
3065 }
3066 
3067 /// Given operands for an FCmpInst, see if we can fold the result.
3068 /// If not, this returns null.
3069 static Value *SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
3070                                FastMathFlags FMF, const Query &Q,
3071                                unsigned MaxRecurse) {
3072   CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate;
3073   assert(CmpInst::isFPPredicate(Pred) && "Not an FP compare!");
3074 
3075   if (Constant *CLHS = dyn_cast<Constant>(LHS)) {
3076     if (Constant *CRHS = dyn_cast<Constant>(RHS))
3077       return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, Q.DL, Q.TLI);
3078 
3079     // If we have a constant, make sure it is on the RHS.
3080     std::swap(LHS, RHS);
3081     Pred = CmpInst::getSwappedPredicate(Pred);
3082   }
3083 
3084   // Fold trivial predicates.
3085   if (Pred == FCmpInst::FCMP_FALSE)
3086     return ConstantInt::get(GetCompareTy(LHS), 0);
3087   if (Pred == FCmpInst::FCMP_TRUE)
3088     return ConstantInt::get(GetCompareTy(LHS), 1);
3089 
3090   // UNO/ORD predicates can be trivially folded if NaNs are ignored.
3091   if (FMF.noNaNs()) {
3092     if (Pred == FCmpInst::FCMP_UNO)
3093       return ConstantInt::get(GetCompareTy(LHS), 0);
3094     if (Pred == FCmpInst::FCMP_ORD)
3095       return ConstantInt::get(GetCompareTy(LHS), 1);
3096   }
3097 
3098   // fcmp pred x, undef  and  fcmp pred undef, x
3099   // fold to true if unordered, false if ordered
3100   if (isa<UndefValue>(LHS) || isa<UndefValue>(RHS)) {
3101     // Choosing NaN for the undef will always make unordered comparison succeed
3102     // and ordered comparison fail.
3103     return ConstantInt::get(GetCompareTy(LHS), CmpInst::isUnordered(Pred));
3104   }
3105 
3106   // fcmp x,x -> true/false.  Not all compares are foldable.
3107   if (LHS == RHS) {
3108     if (CmpInst::isTrueWhenEqual(Pred))
3109       return ConstantInt::get(GetCompareTy(LHS), 1);
3110     if (CmpInst::isFalseWhenEqual(Pred))
3111       return ConstantInt::get(GetCompareTy(LHS), 0);
3112   }
3113 
3114   // Handle fcmp with constant RHS
3115   if (ConstantFP *CFP = dyn_cast<ConstantFP>(RHS)) {
3116     // If the constant is a nan, see if we can fold the comparison based on it.
3117     if (CFP->getValueAPF().isNaN()) {
3118       if (FCmpInst::isOrdered(Pred)) // True "if ordered and foo"
3119         return ConstantInt::getFalse(CFP->getContext());
3120       assert(FCmpInst::isUnordered(Pred) &&
3121              "Comparison must be either ordered or unordered!");
3122       // True if unordered.
3123       return ConstantInt::getTrue(CFP->getContext());
3124     }
3125     // Check whether the constant is an infinity.
3126     if (CFP->getValueAPF().isInfinity()) {
3127       if (CFP->getValueAPF().isNegative()) {
3128         switch (Pred) {
3129         case FCmpInst::FCMP_OLT:
3130           // No value is ordered and less than negative infinity.
3131           return ConstantInt::getFalse(CFP->getContext());
3132         case FCmpInst::FCMP_UGE:
3133           // All values are unordered with or at least negative infinity.
3134           return ConstantInt::getTrue(CFP->getContext());
3135         default:
3136           break;
3137         }
3138       } else {
3139         switch (Pred) {
3140         case FCmpInst::FCMP_OGT:
3141           // No value is ordered and greater than infinity.
3142           return ConstantInt::getFalse(CFP->getContext());
3143         case FCmpInst::FCMP_ULE:
3144           // All values are unordered with and at most infinity.
3145           return ConstantInt::getTrue(CFP->getContext());
3146         default:
3147           break;
3148         }
3149       }
3150     }
3151     if (CFP->getValueAPF().isZero()) {
3152       switch (Pred) {
3153       case FCmpInst::FCMP_UGE:
3154         if (CannotBeOrderedLessThanZero(LHS))
3155           return ConstantInt::getTrue(CFP->getContext());
3156         break;
3157       case FCmpInst::FCMP_OLT:
3158         // X < 0
3159         if (CannotBeOrderedLessThanZero(LHS))
3160           return ConstantInt::getFalse(CFP->getContext());
3161         break;
3162       default:
3163         break;
3164       }
3165     }
3166   }
3167 
3168   // If the comparison is with the result of a select instruction, check whether
3169   // comparing with either branch of the select always yields the same value.
3170   if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS))
3171     if (Value *V = ThreadCmpOverSelect(Pred, LHS, RHS, Q, MaxRecurse))
3172       return V;
3173 
3174   // If the comparison is with the result of a phi instruction, check whether
3175   // doing the compare with each incoming phi value yields a common result.
3176   if (isa<PHINode>(LHS) || isa<PHINode>(RHS))
3177     if (Value *V = ThreadCmpOverPHI(Pred, LHS, RHS, Q, MaxRecurse))
3178       return V;
3179 
3180   return nullptr;
3181 }
3182 
3183 Value *llvm::SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
3184                               FastMathFlags FMF, const DataLayout &DL,
3185                               const TargetLibraryInfo *TLI,
3186                               const DominatorTree *DT, AssumptionCache *AC,
3187                               const Instruction *CxtI) {
3188   return ::SimplifyFCmpInst(Predicate, LHS, RHS, FMF,
3189                             Query(DL, TLI, DT, AC, CxtI), RecursionLimit);
3190 }
3191 
3192 /// See if V simplifies when its operand Op is replaced with RepOp.
3193 static const Value *SimplifyWithOpReplaced(Value *V, Value *Op, Value *RepOp,
3194                                            const Query &Q,
3195                                            unsigned MaxRecurse) {
3196   // Trivial replacement.
3197   if (V == Op)
3198     return RepOp;
3199 
3200   auto *I = dyn_cast<Instruction>(V);
3201   if (!I)
3202     return nullptr;
3203 
3204   // If this is a binary operator, try to simplify it with the replaced op.
3205   if (auto *B = dyn_cast<BinaryOperator>(I)) {
3206     // Consider:
3207     //   %cmp = icmp eq i32 %x, 2147483647
3208     //   %add = add nsw i32 %x, 1
3209     //   %sel = select i1 %cmp, i32 -2147483648, i32 %add
3210     //
3211     // We can't replace %sel with %add unless we strip away the flags.
3212     if (isa<OverflowingBinaryOperator>(B))
3213       if (B->hasNoSignedWrap() || B->hasNoUnsignedWrap())
3214         return nullptr;
3215     if (isa<PossiblyExactOperator>(B))
3216       if (B->isExact())
3217         return nullptr;
3218 
3219     if (MaxRecurse) {
3220       if (B->getOperand(0) == Op)
3221         return SimplifyBinOp(B->getOpcode(), RepOp, B->getOperand(1), Q,
3222                              MaxRecurse - 1);
3223       if (B->getOperand(1) == Op)
3224         return SimplifyBinOp(B->getOpcode(), B->getOperand(0), RepOp, Q,
3225                              MaxRecurse - 1);
3226     }
3227   }
3228 
3229   // Same for CmpInsts.
3230   if (CmpInst *C = dyn_cast<CmpInst>(I)) {
3231     if (MaxRecurse) {
3232       if (C->getOperand(0) == Op)
3233         return SimplifyCmpInst(C->getPredicate(), RepOp, C->getOperand(1), Q,
3234                                MaxRecurse - 1);
3235       if (C->getOperand(1) == Op)
3236         return SimplifyCmpInst(C->getPredicate(), C->getOperand(0), RepOp, Q,
3237                                MaxRecurse - 1);
3238     }
3239   }
3240 
3241   // TODO: We could hand off more cases to instsimplify here.
3242 
3243   // If all operands are constant after substituting Op for RepOp then we can
3244   // constant fold the instruction.
3245   if (Constant *CRepOp = dyn_cast<Constant>(RepOp)) {
3246     // Build a list of all constant operands.
3247     SmallVector<Constant *, 8> ConstOps;
3248     for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
3249       if (I->getOperand(i) == Op)
3250         ConstOps.push_back(CRepOp);
3251       else if (Constant *COp = dyn_cast<Constant>(I->getOperand(i)))
3252         ConstOps.push_back(COp);
3253       else
3254         break;
3255     }
3256 
3257     // All operands were constants, fold it.
3258     if (ConstOps.size() == I->getNumOperands()) {
3259       if (CmpInst *C = dyn_cast<CmpInst>(I))
3260         return ConstantFoldCompareInstOperands(C->getPredicate(), ConstOps[0],
3261                                                ConstOps[1], Q.DL, Q.TLI);
3262 
3263       if (LoadInst *LI = dyn_cast<LoadInst>(I))
3264         if (!LI->isVolatile())
3265           return ConstantFoldLoadFromConstPtr(ConstOps[0], LI->getType(), Q.DL);
3266 
3267       return ConstantFoldInstOperands(I, ConstOps, Q.DL, Q.TLI);
3268     }
3269   }
3270 
3271   return nullptr;
3272 }
3273 
3274 /// Given operands for a SelectInst, see if we can fold the result.
3275 /// If not, this returns null.
3276 static Value *SimplifySelectInst(Value *CondVal, Value *TrueVal,
3277                                  Value *FalseVal, const Query &Q,
3278                                  unsigned MaxRecurse) {
3279   // select true, X, Y  -> X
3280   // select false, X, Y -> Y
3281   if (Constant *CB = dyn_cast<Constant>(CondVal)) {
3282     if (CB->isAllOnesValue())
3283       return TrueVal;
3284     if (CB->isNullValue())
3285       return FalseVal;
3286   }
3287 
3288   // select C, X, X -> X
3289   if (TrueVal == FalseVal)
3290     return TrueVal;
3291 
3292   if (isa<UndefValue>(CondVal)) {  // select undef, X, Y -> X or Y
3293     if (isa<Constant>(TrueVal))
3294       return TrueVal;
3295     return FalseVal;
3296   }
3297   if (isa<UndefValue>(TrueVal))   // select C, undef, X -> X
3298     return FalseVal;
3299   if (isa<UndefValue>(FalseVal))   // select C, X, undef -> X
3300     return TrueVal;
3301 
3302   if (const auto *ICI = dyn_cast<ICmpInst>(CondVal)) {
3303     unsigned BitWidth = Q.DL.getTypeSizeInBits(TrueVal->getType());
3304     ICmpInst::Predicate Pred = ICI->getPredicate();
3305     Value *CmpLHS = ICI->getOperand(0);
3306     Value *CmpRHS = ICI->getOperand(1);
3307     APInt MinSignedValue = APInt::getSignBit(BitWidth);
3308     Value *X;
3309     const APInt *Y;
3310     bool TrueWhenUnset;
3311     bool IsBitTest = false;
3312     if (ICmpInst::isEquality(Pred) &&
3313         match(CmpLHS, m_And(m_Value(X), m_APInt(Y))) &&
3314         match(CmpRHS, m_Zero())) {
3315       IsBitTest = true;
3316       TrueWhenUnset = Pred == ICmpInst::ICMP_EQ;
3317     } else if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, m_Zero())) {
3318       X = CmpLHS;
3319       Y = &MinSignedValue;
3320       IsBitTest = true;
3321       TrueWhenUnset = false;
3322     } else if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, m_AllOnes())) {
3323       X = CmpLHS;
3324       Y = &MinSignedValue;
3325       IsBitTest = true;
3326       TrueWhenUnset = true;
3327     }
3328     if (IsBitTest) {
3329       const APInt *C;
3330       // (X & Y) == 0 ? X & ~Y : X  --> X
3331       // (X & Y) != 0 ? X & ~Y : X  --> X & ~Y
3332       if (FalseVal == X && match(TrueVal, m_And(m_Specific(X), m_APInt(C))) &&
3333           *Y == ~*C)
3334         return TrueWhenUnset ? FalseVal : TrueVal;
3335       // (X & Y) == 0 ? X : X & ~Y  --> X & ~Y
3336       // (X & Y) != 0 ? X : X & ~Y  --> X
3337       if (TrueVal == X && match(FalseVal, m_And(m_Specific(X), m_APInt(C))) &&
3338           *Y == ~*C)
3339         return TrueWhenUnset ? FalseVal : TrueVal;
3340 
3341       if (Y->isPowerOf2()) {
3342         // (X & Y) == 0 ? X | Y : X  --> X | Y
3343         // (X & Y) != 0 ? X | Y : X  --> X
3344         if (FalseVal == X && match(TrueVal, m_Or(m_Specific(X), m_APInt(C))) &&
3345             *Y == *C)
3346           return TrueWhenUnset ? TrueVal : FalseVal;
3347         // (X & Y) == 0 ? X : X | Y  --> X
3348         // (X & Y) != 0 ? X : X | Y  --> X | Y
3349         if (TrueVal == X && match(FalseVal, m_Or(m_Specific(X), m_APInt(C))) &&
3350             *Y == *C)
3351           return TrueWhenUnset ? TrueVal : FalseVal;
3352       }
3353     }
3354     if (ICI->hasOneUse()) {
3355       const APInt *C;
3356       if (match(CmpRHS, m_APInt(C))) {
3357         // X < MIN ? T : F  -->  F
3358         if (Pred == ICmpInst::ICMP_SLT && C->isMinSignedValue())
3359           return FalseVal;
3360         // X < MIN ? T : F  -->  F
3361         if (Pred == ICmpInst::ICMP_ULT && C->isMinValue())
3362           return FalseVal;
3363         // X > MAX ? T : F  -->  F
3364         if (Pred == ICmpInst::ICMP_SGT && C->isMaxSignedValue())
3365           return FalseVal;
3366         // X > MAX ? T : F  -->  F
3367         if (Pred == ICmpInst::ICMP_UGT && C->isMaxValue())
3368           return FalseVal;
3369       }
3370     }
3371 
3372     // If we have an equality comparison then we know the value in one of the
3373     // arms of the select. See if substituting this value into the arm and
3374     // simplifying the result yields the same value as the other arm.
3375     if (Pred == ICmpInst::ICMP_EQ) {
3376       if (SimplifyWithOpReplaced(FalseVal, CmpLHS, CmpRHS, Q, MaxRecurse) ==
3377               TrueVal ||
3378           SimplifyWithOpReplaced(FalseVal, CmpRHS, CmpLHS, Q, MaxRecurse) ==
3379               TrueVal)
3380         return FalseVal;
3381       if (SimplifyWithOpReplaced(TrueVal, CmpLHS, CmpRHS, Q, MaxRecurse) ==
3382               FalseVal ||
3383           SimplifyWithOpReplaced(TrueVal, CmpRHS, CmpLHS, Q, MaxRecurse) ==
3384               FalseVal)
3385         return FalseVal;
3386     } else if (Pred == ICmpInst::ICMP_NE) {
3387       if (SimplifyWithOpReplaced(TrueVal, CmpLHS, CmpRHS, Q, MaxRecurse) ==
3388               FalseVal ||
3389           SimplifyWithOpReplaced(TrueVal, CmpRHS, CmpLHS, Q, MaxRecurse) ==
3390               FalseVal)
3391         return TrueVal;
3392       if (SimplifyWithOpReplaced(FalseVal, CmpLHS, CmpRHS, Q, MaxRecurse) ==
3393               TrueVal ||
3394           SimplifyWithOpReplaced(FalseVal, CmpRHS, CmpLHS, Q, MaxRecurse) ==
3395               TrueVal)
3396         return TrueVal;
3397     }
3398   }
3399 
3400   return nullptr;
3401 }
3402 
3403 Value *llvm::SimplifySelectInst(Value *Cond, Value *TrueVal, Value *FalseVal,
3404                                 const DataLayout &DL,
3405                                 const TargetLibraryInfo *TLI,
3406                                 const DominatorTree *DT, AssumptionCache *AC,
3407                                 const Instruction *CxtI) {
3408   return ::SimplifySelectInst(Cond, TrueVal, FalseVal,
3409                               Query(DL, TLI, DT, AC, CxtI), RecursionLimit);
3410 }
3411 
3412 /// Given operands for an GetElementPtrInst, see if we can fold the result.
3413 /// If not, this returns null.
3414 static Value *SimplifyGEPInst(Type *SrcTy, ArrayRef<Value *> Ops,
3415                               const Query &Q, unsigned) {
3416   // The type of the GEP pointer operand.
3417   unsigned AS =
3418       cast<PointerType>(Ops[0]->getType()->getScalarType())->getAddressSpace();
3419 
3420   // getelementptr P -> P.
3421   if (Ops.size() == 1)
3422     return Ops[0];
3423 
3424   // Compute the (pointer) type returned by the GEP instruction.
3425   Type *LastType = GetElementPtrInst::getIndexedType(SrcTy, Ops.slice(1));
3426   Type *GEPTy = PointerType::get(LastType, AS);
3427   if (VectorType *VT = dyn_cast<VectorType>(Ops[0]->getType()))
3428     GEPTy = VectorType::get(GEPTy, VT->getNumElements());
3429 
3430   if (isa<UndefValue>(Ops[0]))
3431     return UndefValue::get(GEPTy);
3432 
3433   if (Ops.size() == 2) {
3434     // getelementptr P, 0 -> P.
3435     if (match(Ops[1], m_Zero()))
3436       return Ops[0];
3437 
3438     Type *Ty = SrcTy;
3439     if (Ty->isSized()) {
3440       Value *P;
3441       uint64_t C;
3442       uint64_t TyAllocSize = Q.DL.getTypeAllocSize(Ty);
3443       // getelementptr P, N -> P if P points to a type of zero size.
3444       if (TyAllocSize == 0)
3445         return Ops[0];
3446 
3447       // The following transforms are only safe if the ptrtoint cast
3448       // doesn't truncate the pointers.
3449       if (Ops[1]->getType()->getScalarSizeInBits() ==
3450           Q.DL.getPointerSizeInBits(AS)) {
3451         auto PtrToIntOrZero = [GEPTy](Value *P) -> Value * {
3452           if (match(P, m_Zero()))
3453             return Constant::getNullValue(GEPTy);
3454           Value *Temp;
3455           if (match(P, m_PtrToInt(m_Value(Temp))))
3456             if (Temp->getType() == GEPTy)
3457               return Temp;
3458           return nullptr;
3459         };
3460 
3461         // getelementptr V, (sub P, V) -> P if P points to a type of size 1.
3462         if (TyAllocSize == 1 &&
3463             match(Ops[1], m_Sub(m_Value(P), m_PtrToInt(m_Specific(Ops[0])))))
3464           if (Value *R = PtrToIntOrZero(P))
3465             return R;
3466 
3467         // getelementptr V, (ashr (sub P, V), C) -> Q
3468         // if P points to a type of size 1 << C.
3469         if (match(Ops[1],
3470                   m_AShr(m_Sub(m_Value(P), m_PtrToInt(m_Specific(Ops[0]))),
3471                          m_ConstantInt(C))) &&
3472             TyAllocSize == 1ULL << C)
3473           if (Value *R = PtrToIntOrZero(P))
3474             return R;
3475 
3476         // getelementptr V, (sdiv (sub P, V), C) -> Q
3477         // if P points to a type of size C.
3478         if (match(Ops[1],
3479                   m_SDiv(m_Sub(m_Value(P), m_PtrToInt(m_Specific(Ops[0]))),
3480                          m_SpecificInt(TyAllocSize))))
3481           if (Value *R = PtrToIntOrZero(P))
3482             return R;
3483       }
3484     }
3485   }
3486 
3487   // Check to see if this is constant foldable.
3488   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
3489     if (!isa<Constant>(Ops[i]))
3490       return nullptr;
3491 
3492   return ConstantExpr::getGetElementPtr(SrcTy, cast<Constant>(Ops[0]),
3493                                         Ops.slice(1));
3494 }
3495 
3496 Value *llvm::SimplifyGEPInst(Type *SrcTy, ArrayRef<Value *> Ops,
3497                              const DataLayout &DL,
3498                              const TargetLibraryInfo *TLI,
3499                              const DominatorTree *DT, AssumptionCache *AC,
3500                              const Instruction *CxtI) {
3501   return ::SimplifyGEPInst(SrcTy, Ops,
3502                            Query(DL, TLI, DT, AC, CxtI), RecursionLimit);
3503 }
3504 
3505 /// Given operands for an InsertValueInst, see if we can fold the result.
3506 /// If not, this returns null.
3507 static Value *SimplifyInsertValueInst(Value *Agg, Value *Val,
3508                                       ArrayRef<unsigned> Idxs, const Query &Q,
3509                                       unsigned) {
3510   if (Constant *CAgg = dyn_cast<Constant>(Agg))
3511     if (Constant *CVal = dyn_cast<Constant>(Val))
3512       return ConstantFoldInsertValueInstruction(CAgg, CVal, Idxs);
3513 
3514   // insertvalue x, undef, n -> x
3515   if (match(Val, m_Undef()))
3516     return Agg;
3517 
3518   // insertvalue x, (extractvalue y, n), n
3519   if (ExtractValueInst *EV = dyn_cast<ExtractValueInst>(Val))
3520     if (EV->getAggregateOperand()->getType() == Agg->getType() &&
3521         EV->getIndices() == Idxs) {
3522       // insertvalue undef, (extractvalue y, n), n -> y
3523       if (match(Agg, m_Undef()))
3524         return EV->getAggregateOperand();
3525 
3526       // insertvalue y, (extractvalue y, n), n -> y
3527       if (Agg == EV->getAggregateOperand())
3528         return Agg;
3529     }
3530 
3531   return nullptr;
3532 }
3533 
3534 Value *llvm::SimplifyInsertValueInst(
3535     Value *Agg, Value *Val, ArrayRef<unsigned> Idxs, const DataLayout &DL,
3536     const TargetLibraryInfo *TLI, const DominatorTree *DT, AssumptionCache *AC,
3537     const Instruction *CxtI) {
3538   return ::SimplifyInsertValueInst(Agg, Val, Idxs, Query(DL, TLI, DT, AC, CxtI),
3539                                    RecursionLimit);
3540 }
3541 
3542 /// Given operands for an ExtractValueInst, see if we can fold the result.
3543 /// If not, this returns null.
3544 static Value *SimplifyExtractValueInst(Value *Agg, ArrayRef<unsigned> Idxs,
3545                                        const Query &, unsigned) {
3546   if (auto *CAgg = dyn_cast<Constant>(Agg))
3547     return ConstantFoldExtractValueInstruction(CAgg, Idxs);
3548 
3549   // extractvalue x, (insertvalue y, elt, n), n -> elt
3550   unsigned NumIdxs = Idxs.size();
3551   for (auto *IVI = dyn_cast<InsertValueInst>(Agg); IVI != nullptr;
3552        IVI = dyn_cast<InsertValueInst>(IVI->getAggregateOperand())) {
3553     ArrayRef<unsigned> InsertValueIdxs = IVI->getIndices();
3554     unsigned NumInsertValueIdxs = InsertValueIdxs.size();
3555     unsigned NumCommonIdxs = std::min(NumInsertValueIdxs, NumIdxs);
3556     if (InsertValueIdxs.slice(0, NumCommonIdxs) ==
3557         Idxs.slice(0, NumCommonIdxs)) {
3558       if (NumIdxs == NumInsertValueIdxs)
3559         return IVI->getInsertedValueOperand();
3560       break;
3561     }
3562   }
3563 
3564   return nullptr;
3565 }
3566 
3567 Value *llvm::SimplifyExtractValueInst(Value *Agg, ArrayRef<unsigned> Idxs,
3568                                       const DataLayout &DL,
3569                                       const TargetLibraryInfo *TLI,
3570                                       const DominatorTree *DT,
3571                                       AssumptionCache *AC,
3572                                       const Instruction *CxtI) {
3573   return ::SimplifyExtractValueInst(Agg, Idxs, Query(DL, TLI, DT, AC, CxtI),
3574                                     RecursionLimit);
3575 }
3576 
3577 /// Given operands for an ExtractElementInst, see if we can fold the result.
3578 /// If not, this returns null.
3579 static Value *SimplifyExtractElementInst(Value *Vec, Value *Idx, const Query &,
3580                                          unsigned) {
3581   if (auto *CVec = dyn_cast<Constant>(Vec)) {
3582     if (auto *CIdx = dyn_cast<Constant>(Idx))
3583       return ConstantFoldExtractElementInstruction(CVec, CIdx);
3584 
3585     // The index is not relevant if our vector is a splat.
3586     if (auto *Splat = CVec->getSplatValue())
3587       return Splat;
3588 
3589     if (isa<UndefValue>(Vec))
3590       return UndefValue::get(Vec->getType()->getVectorElementType());
3591   }
3592 
3593   // If extracting a specified index from the vector, see if we can recursively
3594   // find a previously computed scalar that was inserted into the vector.
3595   if (auto *IdxC = dyn_cast<ConstantInt>(Idx))
3596     if (Value *Elt = findScalarElement(Vec, IdxC->getZExtValue()))
3597       return Elt;
3598 
3599   return nullptr;
3600 }
3601 
3602 Value *llvm::SimplifyExtractElementInst(
3603     Value *Vec, Value *Idx, const DataLayout &DL, const TargetLibraryInfo *TLI,
3604     const DominatorTree *DT, AssumptionCache *AC, const Instruction *CxtI) {
3605   return ::SimplifyExtractElementInst(Vec, Idx, Query(DL, TLI, DT, AC, CxtI),
3606                                       RecursionLimit);
3607 }
3608 
3609 /// See if we can fold the given phi. If not, returns null.
3610 static Value *SimplifyPHINode(PHINode *PN, const Query &Q) {
3611   // If all of the PHI's incoming values are the same then replace the PHI node
3612   // with the common value.
3613   Value *CommonValue = nullptr;
3614   bool HasUndefInput = false;
3615   for (Value *Incoming : PN->incoming_values()) {
3616     // If the incoming value is the phi node itself, it can safely be skipped.
3617     if (Incoming == PN) continue;
3618     if (isa<UndefValue>(Incoming)) {
3619       // Remember that we saw an undef value, but otherwise ignore them.
3620       HasUndefInput = true;
3621       continue;
3622     }
3623     if (CommonValue && Incoming != CommonValue)
3624       return nullptr;  // Not the same, bail out.
3625     CommonValue = Incoming;
3626   }
3627 
3628   // If CommonValue is null then all of the incoming values were either undef or
3629   // equal to the phi node itself.
3630   if (!CommonValue)
3631     return UndefValue::get(PN->getType());
3632 
3633   // If we have a PHI node like phi(X, undef, X), where X is defined by some
3634   // instruction, we cannot return X as the result of the PHI node unless it
3635   // dominates the PHI block.
3636   if (HasUndefInput)
3637     return ValueDominatesPHI(CommonValue, PN, Q.DT) ? CommonValue : nullptr;
3638 
3639   return CommonValue;
3640 }
3641 
3642 static Value *SimplifyTruncInst(Value *Op, Type *Ty, const Query &Q, unsigned) {
3643   if (Constant *C = dyn_cast<Constant>(Op))
3644     return ConstantFoldCastOperand(Instruction::Trunc, C, Ty, Q.DL);
3645 
3646   return nullptr;
3647 }
3648 
3649 Value *llvm::SimplifyTruncInst(Value *Op, Type *Ty, const DataLayout &DL,
3650                                const TargetLibraryInfo *TLI,
3651                                const DominatorTree *DT, AssumptionCache *AC,
3652                                const Instruction *CxtI) {
3653   return ::SimplifyTruncInst(Op, Ty, Query(DL, TLI, DT, AC, CxtI),
3654                              RecursionLimit);
3655 }
3656 
3657 //=== Helper functions for higher up the class hierarchy.
3658 
3659 /// Given operands for a BinaryOperator, see if we can fold the result.
3660 /// If not, this returns null.
3661 static Value *SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS,
3662                             const Query &Q, unsigned MaxRecurse) {
3663   switch (Opcode) {
3664   case Instruction::Add:
3665     return SimplifyAddInst(LHS, RHS, /*isNSW*/false, /*isNUW*/false,
3666                            Q, MaxRecurse);
3667   case Instruction::FAdd:
3668     return SimplifyFAddInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse);
3669 
3670   case Instruction::Sub:
3671     return SimplifySubInst(LHS, RHS, /*isNSW*/false, /*isNUW*/false,
3672                            Q, MaxRecurse);
3673   case Instruction::FSub:
3674     return SimplifyFSubInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse);
3675 
3676   case Instruction::Mul:  return SimplifyMulInst (LHS, RHS, Q, MaxRecurse);
3677   case Instruction::FMul:
3678     return SimplifyFMulInst (LHS, RHS, FastMathFlags(), Q, MaxRecurse);
3679   case Instruction::SDiv: return SimplifySDivInst(LHS, RHS, Q, MaxRecurse);
3680   case Instruction::UDiv: return SimplifyUDivInst(LHS, RHS, Q, MaxRecurse);
3681   case Instruction::FDiv:
3682       return SimplifyFDivInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse);
3683   case Instruction::SRem: return SimplifySRemInst(LHS, RHS, Q, MaxRecurse);
3684   case Instruction::URem: return SimplifyURemInst(LHS, RHS, Q, MaxRecurse);
3685   case Instruction::FRem:
3686       return SimplifyFRemInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse);
3687   case Instruction::Shl:
3688     return SimplifyShlInst(LHS, RHS, /*isNSW*/false, /*isNUW*/false,
3689                            Q, MaxRecurse);
3690   case Instruction::LShr:
3691     return SimplifyLShrInst(LHS, RHS, /*isExact*/false, Q, MaxRecurse);
3692   case Instruction::AShr:
3693     return SimplifyAShrInst(LHS, RHS, /*isExact*/false, Q, MaxRecurse);
3694   case Instruction::And: return SimplifyAndInst(LHS, RHS, Q, MaxRecurse);
3695   case Instruction::Or:  return SimplifyOrInst (LHS, RHS, Q, MaxRecurse);
3696   case Instruction::Xor: return SimplifyXorInst(LHS, RHS, Q, MaxRecurse);
3697   default:
3698     if (Constant *CLHS = dyn_cast<Constant>(LHS))
3699       if (Constant *CRHS = dyn_cast<Constant>(RHS))
3700         return ConstantFoldBinaryOpOperands(Opcode, CLHS, CRHS, Q.DL);
3701 
3702     // If the operation is associative, try some generic simplifications.
3703     if (Instruction::isAssociative(Opcode))
3704       if (Value *V = SimplifyAssociativeBinOp(Opcode, LHS, RHS, Q, MaxRecurse))
3705         return V;
3706 
3707     // If the operation is with the result of a select instruction check whether
3708     // operating on either branch of the select always yields the same value.
3709     if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS))
3710       if (Value *V = ThreadBinOpOverSelect(Opcode, LHS, RHS, Q, MaxRecurse))
3711         return V;
3712 
3713     // If the operation is with the result of a phi instruction, check whether
3714     // operating on all incoming values of the phi always yields the same value.
3715     if (isa<PHINode>(LHS) || isa<PHINode>(RHS))
3716       if (Value *V = ThreadBinOpOverPHI(Opcode, LHS, RHS, Q, MaxRecurse))
3717         return V;
3718 
3719     return nullptr;
3720   }
3721 }
3722 
3723 /// Given operands for a BinaryOperator, see if we can fold the result.
3724 /// If not, this returns null.
3725 /// In contrast to SimplifyBinOp, try to use FastMathFlag when folding the
3726 /// result. In case we don't need FastMathFlags, simply fall to SimplifyBinOp.
3727 static Value *SimplifyFPBinOp(unsigned Opcode, Value *LHS, Value *RHS,
3728                               const FastMathFlags &FMF, const Query &Q,
3729                               unsigned MaxRecurse) {
3730   switch (Opcode) {
3731   case Instruction::FAdd:
3732     return SimplifyFAddInst(LHS, RHS, FMF, Q, MaxRecurse);
3733   case Instruction::FSub:
3734     return SimplifyFSubInst(LHS, RHS, FMF, Q, MaxRecurse);
3735   case Instruction::FMul:
3736     return SimplifyFMulInst(LHS, RHS, FMF, Q, MaxRecurse);
3737   default:
3738     return SimplifyBinOp(Opcode, LHS, RHS, Q, MaxRecurse);
3739   }
3740 }
3741 
3742 Value *llvm::SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS,
3743                            const DataLayout &DL, const TargetLibraryInfo *TLI,
3744                            const DominatorTree *DT, AssumptionCache *AC,
3745                            const Instruction *CxtI) {
3746   return ::SimplifyBinOp(Opcode, LHS, RHS, Query(DL, TLI, DT, AC, CxtI),
3747                          RecursionLimit);
3748 }
3749 
3750 Value *llvm::SimplifyFPBinOp(unsigned Opcode, Value *LHS, Value *RHS,
3751                              const FastMathFlags &FMF, const DataLayout &DL,
3752                              const TargetLibraryInfo *TLI,
3753                              const DominatorTree *DT, AssumptionCache *AC,
3754                              const Instruction *CxtI) {
3755   return ::SimplifyFPBinOp(Opcode, LHS, RHS, FMF, Query(DL, TLI, DT, AC, CxtI),
3756                            RecursionLimit);
3757 }
3758 
3759 /// Given operands for a CmpInst, see if we can fold the result.
3760 static Value *SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
3761                               const Query &Q, unsigned MaxRecurse) {
3762   if (CmpInst::isIntPredicate((CmpInst::Predicate)Predicate))
3763     return SimplifyICmpInst(Predicate, LHS, RHS, Q, MaxRecurse);
3764   return SimplifyFCmpInst(Predicate, LHS, RHS, FastMathFlags(), Q, MaxRecurse);
3765 }
3766 
3767 Value *llvm::SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
3768                              const DataLayout &DL, const TargetLibraryInfo *TLI,
3769                              const DominatorTree *DT, AssumptionCache *AC,
3770                              const Instruction *CxtI) {
3771   return ::SimplifyCmpInst(Predicate, LHS, RHS, Query(DL, TLI, DT, AC, CxtI),
3772                            RecursionLimit);
3773 }
3774 
3775 static bool IsIdempotent(Intrinsic::ID ID) {
3776   switch (ID) {
3777   default: return false;
3778 
3779   // Unary idempotent: f(f(x)) = f(x)
3780   case Intrinsic::fabs:
3781   case Intrinsic::floor:
3782   case Intrinsic::ceil:
3783   case Intrinsic::trunc:
3784   case Intrinsic::rint:
3785   case Intrinsic::nearbyint:
3786   case Intrinsic::round:
3787     return true;
3788   }
3789 }
3790 
3791 template <typename IterTy>
3792 static Value *SimplifyIntrinsic(Function *F, IterTy ArgBegin, IterTy ArgEnd,
3793                                 const Query &Q, unsigned MaxRecurse) {
3794   Intrinsic::ID IID = F->getIntrinsicID();
3795   unsigned NumOperands = std::distance(ArgBegin, ArgEnd);
3796   Type *ReturnType = F->getReturnType();
3797 
3798   // Binary Ops
3799   if (NumOperands == 2) {
3800     Value *LHS = *ArgBegin;
3801     Value *RHS = *(ArgBegin + 1);
3802     if (IID == Intrinsic::usub_with_overflow ||
3803         IID == Intrinsic::ssub_with_overflow) {
3804       // X - X -> { 0, false }
3805       if (LHS == RHS)
3806         return Constant::getNullValue(ReturnType);
3807 
3808       // X - undef -> undef
3809       // undef - X -> undef
3810       if (isa<UndefValue>(LHS) || isa<UndefValue>(RHS))
3811         return UndefValue::get(ReturnType);
3812     }
3813 
3814     if (IID == Intrinsic::uadd_with_overflow ||
3815         IID == Intrinsic::sadd_with_overflow) {
3816       // X + undef -> undef
3817       if (isa<UndefValue>(RHS))
3818         return UndefValue::get(ReturnType);
3819     }
3820 
3821     if (IID == Intrinsic::umul_with_overflow ||
3822         IID == Intrinsic::smul_with_overflow) {
3823       // X * 0 -> { 0, false }
3824       if (match(RHS, m_Zero()))
3825         return Constant::getNullValue(ReturnType);
3826 
3827       // X * undef -> { 0, false }
3828       if (match(RHS, m_Undef()))
3829         return Constant::getNullValue(ReturnType);
3830     }
3831   }
3832 
3833   // Perform idempotent optimizations
3834   if (!IsIdempotent(IID))
3835     return nullptr;
3836 
3837   // Unary Ops
3838   if (NumOperands == 1)
3839     if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(*ArgBegin))
3840       if (II->getIntrinsicID() == IID)
3841         return II;
3842 
3843   return nullptr;
3844 }
3845 
3846 template <typename IterTy>
3847 static Value *SimplifyCall(Value *V, IterTy ArgBegin, IterTy ArgEnd,
3848                            const Query &Q, unsigned MaxRecurse) {
3849   Type *Ty = V->getType();
3850   if (PointerType *PTy = dyn_cast<PointerType>(Ty))
3851     Ty = PTy->getElementType();
3852   FunctionType *FTy = cast<FunctionType>(Ty);
3853 
3854   // call undef -> undef
3855   if (isa<UndefValue>(V))
3856     return UndefValue::get(FTy->getReturnType());
3857 
3858   Function *F = dyn_cast<Function>(V);
3859   if (!F)
3860     return nullptr;
3861 
3862   if (F->isIntrinsic())
3863     if (Value *Ret = SimplifyIntrinsic(F, ArgBegin, ArgEnd, Q, MaxRecurse))
3864       return Ret;
3865 
3866   if (!canConstantFoldCallTo(F))
3867     return nullptr;
3868 
3869   SmallVector<Constant *, 4> ConstantArgs;
3870   ConstantArgs.reserve(ArgEnd - ArgBegin);
3871   for (IterTy I = ArgBegin, E = ArgEnd; I != E; ++I) {
3872     Constant *C = dyn_cast<Constant>(*I);
3873     if (!C)
3874       return nullptr;
3875     ConstantArgs.push_back(C);
3876   }
3877 
3878   return ConstantFoldCall(F, ConstantArgs, Q.TLI);
3879 }
3880 
3881 Value *llvm::SimplifyCall(Value *V, User::op_iterator ArgBegin,
3882                           User::op_iterator ArgEnd, const DataLayout &DL,
3883                           const TargetLibraryInfo *TLI, const DominatorTree *DT,
3884                           AssumptionCache *AC, const Instruction *CxtI) {
3885   return ::SimplifyCall(V, ArgBegin, ArgEnd, Query(DL, TLI, DT, AC, CxtI),
3886                         RecursionLimit);
3887 }
3888 
3889 Value *llvm::SimplifyCall(Value *V, ArrayRef<Value *> Args,
3890                           const DataLayout &DL, const TargetLibraryInfo *TLI,
3891                           const DominatorTree *DT, AssumptionCache *AC,
3892                           const Instruction *CxtI) {
3893   return ::SimplifyCall(V, Args.begin(), Args.end(),
3894                         Query(DL, TLI, DT, AC, CxtI), RecursionLimit);
3895 }
3896 
3897 /// See if we can compute a simplified version of this instruction.
3898 /// If not, this returns null.
3899 Value *llvm::SimplifyInstruction(Instruction *I, const DataLayout &DL,
3900                                  const TargetLibraryInfo *TLI,
3901                                  const DominatorTree *DT, AssumptionCache *AC) {
3902   Value *Result;
3903 
3904   switch (I->getOpcode()) {
3905   default:
3906     Result = ConstantFoldInstruction(I, DL, TLI);
3907     break;
3908   case Instruction::FAdd:
3909     Result = SimplifyFAddInst(I->getOperand(0), I->getOperand(1),
3910                               I->getFastMathFlags(), DL, TLI, DT, AC, I);
3911     break;
3912   case Instruction::Add:
3913     Result = SimplifyAddInst(I->getOperand(0), I->getOperand(1),
3914                              cast<BinaryOperator>(I)->hasNoSignedWrap(),
3915                              cast<BinaryOperator>(I)->hasNoUnsignedWrap(), DL,
3916                              TLI, DT, AC, I);
3917     break;
3918   case Instruction::FSub:
3919     Result = SimplifyFSubInst(I->getOperand(0), I->getOperand(1),
3920                               I->getFastMathFlags(), DL, TLI, DT, AC, I);
3921     break;
3922   case Instruction::Sub:
3923     Result = SimplifySubInst(I->getOperand(0), I->getOperand(1),
3924                              cast<BinaryOperator>(I)->hasNoSignedWrap(),
3925                              cast<BinaryOperator>(I)->hasNoUnsignedWrap(), DL,
3926                              TLI, DT, AC, I);
3927     break;
3928   case Instruction::FMul:
3929     Result = SimplifyFMulInst(I->getOperand(0), I->getOperand(1),
3930                               I->getFastMathFlags(), DL, TLI, DT, AC, I);
3931     break;
3932   case Instruction::Mul:
3933     Result =
3934         SimplifyMulInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT, AC, I);
3935     break;
3936   case Instruction::SDiv:
3937     Result = SimplifySDivInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT,
3938                               AC, I);
3939     break;
3940   case Instruction::UDiv:
3941     Result = SimplifyUDivInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT,
3942                               AC, I);
3943     break;
3944   case Instruction::FDiv:
3945     Result = SimplifyFDivInst(I->getOperand(0), I->getOperand(1),
3946                               I->getFastMathFlags(), DL, TLI, DT, AC, I);
3947     break;
3948   case Instruction::SRem:
3949     Result = SimplifySRemInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT,
3950                               AC, I);
3951     break;
3952   case Instruction::URem:
3953     Result = SimplifyURemInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT,
3954                               AC, I);
3955     break;
3956   case Instruction::FRem:
3957     Result = SimplifyFRemInst(I->getOperand(0), I->getOperand(1),
3958                               I->getFastMathFlags(), DL, TLI, DT, AC, I);
3959     break;
3960   case Instruction::Shl:
3961     Result = SimplifyShlInst(I->getOperand(0), I->getOperand(1),
3962                              cast<BinaryOperator>(I)->hasNoSignedWrap(),
3963                              cast<BinaryOperator>(I)->hasNoUnsignedWrap(), DL,
3964                              TLI, DT, AC, I);
3965     break;
3966   case Instruction::LShr:
3967     Result = SimplifyLShrInst(I->getOperand(0), I->getOperand(1),
3968                               cast<BinaryOperator>(I)->isExact(), DL, TLI, DT,
3969                               AC, I);
3970     break;
3971   case Instruction::AShr:
3972     Result = SimplifyAShrInst(I->getOperand(0), I->getOperand(1),
3973                               cast<BinaryOperator>(I)->isExact(), DL, TLI, DT,
3974                               AC, I);
3975     break;
3976   case Instruction::And:
3977     Result =
3978         SimplifyAndInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT, AC, I);
3979     break;
3980   case Instruction::Or:
3981     Result =
3982         SimplifyOrInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT, AC, I);
3983     break;
3984   case Instruction::Xor:
3985     Result =
3986         SimplifyXorInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT, AC, I);
3987     break;
3988   case Instruction::ICmp:
3989     Result =
3990         SimplifyICmpInst(cast<ICmpInst>(I)->getPredicate(), I->getOperand(0),
3991                          I->getOperand(1), DL, TLI, DT, AC, I);
3992     break;
3993   case Instruction::FCmp:
3994     Result = SimplifyFCmpInst(cast<FCmpInst>(I)->getPredicate(),
3995                               I->getOperand(0), I->getOperand(1),
3996                               I->getFastMathFlags(), DL, TLI, DT, AC, I);
3997     break;
3998   case Instruction::Select:
3999     Result = SimplifySelectInst(I->getOperand(0), I->getOperand(1),
4000                                 I->getOperand(2), DL, TLI, DT, AC, I);
4001     break;
4002   case Instruction::GetElementPtr: {
4003     SmallVector<Value*, 8> Ops(I->op_begin(), I->op_end());
4004     Result = SimplifyGEPInst(cast<GetElementPtrInst>(I)->getSourceElementType(),
4005                              Ops, DL, TLI, DT, AC, I);
4006     break;
4007   }
4008   case Instruction::InsertValue: {
4009     InsertValueInst *IV = cast<InsertValueInst>(I);
4010     Result = SimplifyInsertValueInst(IV->getAggregateOperand(),
4011                                      IV->getInsertedValueOperand(),
4012                                      IV->getIndices(), DL, TLI, DT, AC, I);
4013     break;
4014   }
4015   case Instruction::ExtractValue: {
4016     auto *EVI = cast<ExtractValueInst>(I);
4017     Result = SimplifyExtractValueInst(EVI->getAggregateOperand(),
4018                                       EVI->getIndices(), DL, TLI, DT, AC, I);
4019     break;
4020   }
4021   case Instruction::ExtractElement: {
4022     auto *EEI = cast<ExtractElementInst>(I);
4023     Result = SimplifyExtractElementInst(
4024         EEI->getVectorOperand(), EEI->getIndexOperand(), DL, TLI, DT, AC, I);
4025     break;
4026   }
4027   case Instruction::PHI:
4028     Result = SimplifyPHINode(cast<PHINode>(I), Query(DL, TLI, DT, AC, I));
4029     break;
4030   case Instruction::Call: {
4031     CallSite CS(cast<CallInst>(I));
4032     Result = SimplifyCall(CS.getCalledValue(), CS.arg_begin(), CS.arg_end(), DL,
4033                           TLI, DT, AC, I);
4034     break;
4035   }
4036   case Instruction::Trunc:
4037     Result =
4038         SimplifyTruncInst(I->getOperand(0), I->getType(), DL, TLI, DT, AC, I);
4039     break;
4040   }
4041 
4042   // In general, it is possible for computeKnownBits to determine all bits in a
4043   // value even when the operands are not all constants.
4044   if (!Result && I->getType()->isIntegerTy()) {
4045     unsigned BitWidth = I->getType()->getScalarSizeInBits();
4046     APInt KnownZero(BitWidth, 0);
4047     APInt KnownOne(BitWidth, 0);
4048     computeKnownBits(I, KnownZero, KnownOne, DL, /*Depth*/0, AC, I, DT);
4049     if ((KnownZero | KnownOne).isAllOnesValue())
4050       Result = ConstantInt::get(I->getContext(), KnownOne);
4051   }
4052 
4053   /// If called on unreachable code, the above logic may report that the
4054   /// instruction simplified to itself.  Make life easier for users by
4055   /// detecting that case here, returning a safe value instead.
4056   return Result == I ? UndefValue::get(I->getType()) : Result;
4057 }
4058 
4059 /// \brief Implementation of recursive simplification through an instruction's
4060 /// uses.
4061 ///
4062 /// This is the common implementation of the recursive simplification routines.
4063 /// If we have a pre-simplified value in 'SimpleV', that is forcibly used to
4064 /// replace the instruction 'I'. Otherwise, we simply add 'I' to the list of
4065 /// instructions to process and attempt to simplify it using
4066 /// InstructionSimplify.
4067 ///
4068 /// This routine returns 'true' only when *it* simplifies something. The passed
4069 /// in simplified value does not count toward this.
4070 static bool replaceAndRecursivelySimplifyImpl(Instruction *I, Value *SimpleV,
4071                                               const TargetLibraryInfo *TLI,
4072                                               const DominatorTree *DT,
4073                                               AssumptionCache *AC) {
4074   bool Simplified = false;
4075   SmallSetVector<Instruction *, 8> Worklist;
4076   const DataLayout &DL = I->getModule()->getDataLayout();
4077 
4078   // If we have an explicit value to collapse to, do that round of the
4079   // simplification loop by hand initially.
4080   if (SimpleV) {
4081     for (User *U : I->users())
4082       if (U != I)
4083         Worklist.insert(cast<Instruction>(U));
4084 
4085     // Replace the instruction with its simplified value.
4086     I->replaceAllUsesWith(SimpleV);
4087 
4088     // Gracefully handle edge cases where the instruction is not wired into any
4089     // parent block.
4090     if (I->getParent())
4091       I->eraseFromParent();
4092   } else {
4093     Worklist.insert(I);
4094   }
4095 
4096   // Note that we must test the size on each iteration, the worklist can grow.
4097   for (unsigned Idx = 0; Idx != Worklist.size(); ++Idx) {
4098     I = Worklist[Idx];
4099 
4100     // See if this instruction simplifies.
4101     SimpleV = SimplifyInstruction(I, DL, TLI, DT, AC);
4102     if (!SimpleV)
4103       continue;
4104 
4105     Simplified = true;
4106 
4107     // Stash away all the uses of the old instruction so we can check them for
4108     // recursive simplifications after a RAUW. This is cheaper than checking all
4109     // uses of To on the recursive step in most cases.
4110     for (User *U : I->users())
4111       Worklist.insert(cast<Instruction>(U));
4112 
4113     // Replace the instruction with its simplified value.
4114     I->replaceAllUsesWith(SimpleV);
4115 
4116     // Gracefully handle edge cases where the instruction is not wired into any
4117     // parent block.
4118     if (I->getParent())
4119       I->eraseFromParent();
4120   }
4121   return Simplified;
4122 }
4123 
4124 bool llvm::recursivelySimplifyInstruction(Instruction *I,
4125                                           const TargetLibraryInfo *TLI,
4126                                           const DominatorTree *DT,
4127                                           AssumptionCache *AC) {
4128   return replaceAndRecursivelySimplifyImpl(I, nullptr, TLI, DT, AC);
4129 }
4130 
4131 bool llvm::replaceAndRecursivelySimplify(Instruction *I, Value *SimpleV,
4132                                          const TargetLibraryInfo *TLI,
4133                                          const DominatorTree *DT,
4134                                          AssumptionCache *AC) {
4135   assert(I != SimpleV && "replaceAndRecursivelySimplify(X,X) is not valid!");
4136   assert(SimpleV && "Must provide a simplified value.");
4137   return replaceAndRecursivelySimplifyImpl(I, SimpleV, TLI, DT, AC);
4138 }
4139