1 //===- InstructionSimplify.cpp - Fold instruction operands ----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements routines for folding instructions into simpler forms 10 // that do not require creating new instructions. This does constant folding 11 // ("add i32 1, 1" -> "2") but can also handle non-constant operands, either 12 // returning a constant ("and i32 %x, 0" -> "0") or an already existing value 13 // ("and i32 %x, %x" -> "%x"). All operands are assumed to have already been 14 // simplified: This is usually true and assuming it simplifies the logic (if 15 // they have not been simplified then results are correct but maybe suboptimal). 16 // 17 //===----------------------------------------------------------------------===// 18 19 #include "llvm/Analysis/InstructionSimplify.h" 20 21 #include "llvm/ADT/STLExtras.h" 22 #include "llvm/ADT/SetVector.h" 23 #include "llvm/ADT/Statistic.h" 24 #include "llvm/Analysis/AliasAnalysis.h" 25 #include "llvm/Analysis/AssumptionCache.h" 26 #include "llvm/Analysis/CaptureTracking.h" 27 #include "llvm/Analysis/CmpInstAnalysis.h" 28 #include "llvm/Analysis/ConstantFolding.h" 29 #include "llvm/Analysis/InstSimplifyFolder.h" 30 #include "llvm/Analysis/LoopAnalysisManager.h" 31 #include "llvm/Analysis/MemoryBuiltins.h" 32 #include "llvm/Analysis/OverflowInstAnalysis.h" 33 #include "llvm/Analysis/ValueTracking.h" 34 #include "llvm/Analysis/VectorUtils.h" 35 #include "llvm/IR/ConstantRange.h" 36 #include "llvm/IR/DataLayout.h" 37 #include "llvm/IR/Dominators.h" 38 #include "llvm/IR/InstrTypes.h" 39 #include "llvm/IR/Instructions.h" 40 #include "llvm/IR/Operator.h" 41 #include "llvm/IR/PatternMatch.h" 42 #include "llvm/Support/KnownBits.h" 43 #include <algorithm> 44 using namespace llvm; 45 using namespace llvm::PatternMatch; 46 47 #define DEBUG_TYPE "instsimplify" 48 49 enum { RecursionLimit = 3 }; 50 51 STATISTIC(NumExpand, "Number of expansions"); 52 STATISTIC(NumReassoc, "Number of reassociations"); 53 54 static Value *SimplifyAndInst(Value *, Value *, const SimplifyQuery &, unsigned); 55 static Value *simplifyUnOp(unsigned, Value *, const SimplifyQuery &, unsigned); 56 static Value *simplifyFPUnOp(unsigned, Value *, const FastMathFlags &, 57 const SimplifyQuery &, unsigned); 58 static Value *SimplifyBinOp(unsigned, Value *, Value *, const SimplifyQuery &, 59 unsigned); 60 static Value *SimplifyBinOp(unsigned, Value *, Value *, const FastMathFlags &, 61 const SimplifyQuery &, unsigned); 62 static Value *SimplifyCmpInst(unsigned, Value *, Value *, const SimplifyQuery &, 63 unsigned); 64 static Value *SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS, 65 const SimplifyQuery &Q, unsigned MaxRecurse); 66 static Value *SimplifyOrInst(Value *, Value *, const SimplifyQuery &, unsigned); 67 static Value *SimplifyXorInst(Value *, Value *, const SimplifyQuery &, unsigned); 68 static Value *SimplifyCastInst(unsigned, Value *, Type *, 69 const SimplifyQuery &, unsigned); 70 static Value *SimplifyGEPInst(Type *, Value *, ArrayRef<Value *>, bool, 71 const SimplifyQuery &, unsigned); 72 static Value *SimplifySelectInst(Value *, Value *, Value *, 73 const SimplifyQuery &, unsigned); 74 75 static Value *foldSelectWithBinaryOp(Value *Cond, Value *TrueVal, 76 Value *FalseVal) { 77 BinaryOperator::BinaryOps BinOpCode; 78 if (auto *BO = dyn_cast<BinaryOperator>(Cond)) 79 BinOpCode = BO->getOpcode(); 80 else 81 return nullptr; 82 83 CmpInst::Predicate ExpectedPred, Pred1, Pred2; 84 if (BinOpCode == BinaryOperator::Or) { 85 ExpectedPred = ICmpInst::ICMP_NE; 86 } else if (BinOpCode == BinaryOperator::And) { 87 ExpectedPred = ICmpInst::ICMP_EQ; 88 } else 89 return nullptr; 90 91 // %A = icmp eq %TV, %FV 92 // %B = icmp eq %X, %Y (and one of these is a select operand) 93 // %C = and %A, %B 94 // %D = select %C, %TV, %FV 95 // --> 96 // %FV 97 98 // %A = icmp ne %TV, %FV 99 // %B = icmp ne %X, %Y (and one of these is a select operand) 100 // %C = or %A, %B 101 // %D = select %C, %TV, %FV 102 // --> 103 // %TV 104 Value *X, *Y; 105 if (!match(Cond, m_c_BinOp(m_c_ICmp(Pred1, m_Specific(TrueVal), 106 m_Specific(FalseVal)), 107 m_ICmp(Pred2, m_Value(X), m_Value(Y)))) || 108 Pred1 != Pred2 || Pred1 != ExpectedPred) 109 return nullptr; 110 111 if (X == TrueVal || X == FalseVal || Y == TrueVal || Y == FalseVal) 112 return BinOpCode == BinaryOperator::Or ? TrueVal : FalseVal; 113 114 return nullptr; 115 } 116 117 /// For a boolean type or a vector of boolean type, return false or a vector 118 /// with every element false. 119 static Constant *getFalse(Type *Ty) { 120 return ConstantInt::getFalse(Ty); 121 } 122 123 /// For a boolean type or a vector of boolean type, return true or a vector 124 /// with every element true. 125 static Constant *getTrue(Type *Ty) { 126 return ConstantInt::getTrue(Ty); 127 } 128 129 /// isSameCompare - Is V equivalent to the comparison "LHS Pred RHS"? 130 static bool isSameCompare(Value *V, CmpInst::Predicate Pred, Value *LHS, 131 Value *RHS) { 132 CmpInst *Cmp = dyn_cast<CmpInst>(V); 133 if (!Cmp) 134 return false; 135 CmpInst::Predicate CPred = Cmp->getPredicate(); 136 Value *CLHS = Cmp->getOperand(0), *CRHS = Cmp->getOperand(1); 137 if (CPred == Pred && CLHS == LHS && CRHS == RHS) 138 return true; 139 return CPred == CmpInst::getSwappedPredicate(Pred) && CLHS == RHS && 140 CRHS == LHS; 141 } 142 143 /// Simplify comparison with true or false branch of select: 144 /// %sel = select i1 %cond, i32 %tv, i32 %fv 145 /// %cmp = icmp sle i32 %sel, %rhs 146 /// Compose new comparison by substituting %sel with either %tv or %fv 147 /// and see if it simplifies. 148 static Value *simplifyCmpSelCase(CmpInst::Predicate Pred, Value *LHS, 149 Value *RHS, Value *Cond, 150 const SimplifyQuery &Q, unsigned MaxRecurse, 151 Constant *TrueOrFalse) { 152 Value *SimplifiedCmp = SimplifyCmpInst(Pred, LHS, RHS, Q, MaxRecurse); 153 if (SimplifiedCmp == Cond) { 154 // %cmp simplified to the select condition (%cond). 155 return TrueOrFalse; 156 } else if (!SimplifiedCmp && isSameCompare(Cond, Pred, LHS, RHS)) { 157 // It didn't simplify. However, if composed comparison is equivalent 158 // to the select condition (%cond) then we can replace it. 159 return TrueOrFalse; 160 } 161 return SimplifiedCmp; 162 } 163 164 /// Simplify comparison with true branch of select 165 static Value *simplifyCmpSelTrueCase(CmpInst::Predicate Pred, Value *LHS, 166 Value *RHS, Value *Cond, 167 const SimplifyQuery &Q, 168 unsigned MaxRecurse) { 169 return simplifyCmpSelCase(Pred, LHS, RHS, Cond, Q, MaxRecurse, 170 getTrue(Cond->getType())); 171 } 172 173 /// Simplify comparison with false branch of select 174 static Value *simplifyCmpSelFalseCase(CmpInst::Predicate Pred, Value *LHS, 175 Value *RHS, Value *Cond, 176 const SimplifyQuery &Q, 177 unsigned MaxRecurse) { 178 return simplifyCmpSelCase(Pred, LHS, RHS, Cond, Q, MaxRecurse, 179 getFalse(Cond->getType())); 180 } 181 182 /// We know comparison with both branches of select can be simplified, but they 183 /// are not equal. This routine handles some logical simplifications. 184 static Value *handleOtherCmpSelSimplifications(Value *TCmp, Value *FCmp, 185 Value *Cond, 186 const SimplifyQuery &Q, 187 unsigned MaxRecurse) { 188 // If the false value simplified to false, then the result of the compare 189 // is equal to "Cond && TCmp". This also catches the case when the false 190 // value simplified to false and the true value to true, returning "Cond". 191 // Folding select to and/or isn't poison-safe in general; impliesPoison 192 // checks whether folding it does not convert a well-defined value into 193 // poison. 194 if (match(FCmp, m_Zero()) && impliesPoison(TCmp, Cond)) 195 if (Value *V = SimplifyAndInst(Cond, TCmp, Q, MaxRecurse)) 196 return V; 197 // If the true value simplified to true, then the result of the compare 198 // is equal to "Cond || FCmp". 199 if (match(TCmp, m_One()) && impliesPoison(FCmp, Cond)) 200 if (Value *V = SimplifyOrInst(Cond, FCmp, Q, MaxRecurse)) 201 return V; 202 // Finally, if the false value simplified to true and the true value to 203 // false, then the result of the compare is equal to "!Cond". 204 if (match(FCmp, m_One()) && match(TCmp, m_Zero())) 205 if (Value *V = SimplifyXorInst( 206 Cond, Constant::getAllOnesValue(Cond->getType()), Q, MaxRecurse)) 207 return V; 208 return nullptr; 209 } 210 211 /// Does the given value dominate the specified phi node? 212 static bool valueDominatesPHI(Value *V, PHINode *P, const DominatorTree *DT) { 213 Instruction *I = dyn_cast<Instruction>(V); 214 if (!I) 215 // Arguments and constants dominate all instructions. 216 return true; 217 218 // If we are processing instructions (and/or basic blocks) that have not been 219 // fully added to a function, the parent nodes may still be null. Simply 220 // return the conservative answer in these cases. 221 if (!I->getParent() || !P->getParent() || !I->getFunction()) 222 return false; 223 224 // If we have a DominatorTree then do a precise test. 225 if (DT) 226 return DT->dominates(I, P); 227 228 // Otherwise, if the instruction is in the entry block and is not an invoke, 229 // then it obviously dominates all phi nodes. 230 if (I->getParent()->isEntryBlock() && !isa<InvokeInst>(I) && 231 !isa<CallBrInst>(I)) 232 return true; 233 234 return false; 235 } 236 237 /// Try to simplify a binary operator of form "V op OtherOp" where V is 238 /// "(B0 opex B1)" by distributing 'op' across 'opex' as 239 /// "(B0 op OtherOp) opex (B1 op OtherOp)". 240 static Value *expandBinOp(Instruction::BinaryOps Opcode, Value *V, 241 Value *OtherOp, Instruction::BinaryOps OpcodeToExpand, 242 const SimplifyQuery &Q, unsigned MaxRecurse) { 243 auto *B = dyn_cast<BinaryOperator>(V); 244 if (!B || B->getOpcode() != OpcodeToExpand) 245 return nullptr; 246 Value *B0 = B->getOperand(0), *B1 = B->getOperand(1); 247 Value *L = SimplifyBinOp(Opcode, B0, OtherOp, Q.getWithoutUndef(), 248 MaxRecurse); 249 if (!L) 250 return nullptr; 251 Value *R = SimplifyBinOp(Opcode, B1, OtherOp, Q.getWithoutUndef(), 252 MaxRecurse); 253 if (!R) 254 return nullptr; 255 256 // Does the expanded pair of binops simplify to the existing binop? 257 if ((L == B0 && R == B1) || 258 (Instruction::isCommutative(OpcodeToExpand) && L == B1 && R == B0)) { 259 ++NumExpand; 260 return B; 261 } 262 263 // Otherwise, return "L op' R" if it simplifies. 264 Value *S = SimplifyBinOp(OpcodeToExpand, L, R, Q, MaxRecurse); 265 if (!S) 266 return nullptr; 267 268 ++NumExpand; 269 return S; 270 } 271 272 /// Try to simplify binops of form "A op (B op' C)" or the commuted variant by 273 /// distributing op over op'. 274 static Value *expandCommutativeBinOp(Instruction::BinaryOps Opcode, 275 Value *L, Value *R, 276 Instruction::BinaryOps OpcodeToExpand, 277 const SimplifyQuery &Q, 278 unsigned MaxRecurse) { 279 // Recursion is always used, so bail out at once if we already hit the limit. 280 if (!MaxRecurse--) 281 return nullptr; 282 283 if (Value *V = expandBinOp(Opcode, L, R, OpcodeToExpand, Q, MaxRecurse)) 284 return V; 285 if (Value *V = expandBinOp(Opcode, R, L, OpcodeToExpand, Q, MaxRecurse)) 286 return V; 287 return nullptr; 288 } 289 290 /// Generic simplifications for associative binary operations. 291 /// Returns the simpler value, or null if none was found. 292 static Value *SimplifyAssociativeBinOp(Instruction::BinaryOps Opcode, 293 Value *LHS, Value *RHS, 294 const SimplifyQuery &Q, 295 unsigned MaxRecurse) { 296 assert(Instruction::isAssociative(Opcode) && "Not an associative operation!"); 297 298 // Recursion is always used, so bail out at once if we already hit the limit. 299 if (!MaxRecurse--) 300 return nullptr; 301 302 BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS); 303 BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS); 304 305 // Transform: "(A op B) op C" ==> "A op (B op C)" if it simplifies completely. 306 if (Op0 && Op0->getOpcode() == Opcode) { 307 Value *A = Op0->getOperand(0); 308 Value *B = Op0->getOperand(1); 309 Value *C = RHS; 310 311 // Does "B op C" simplify? 312 if (Value *V = SimplifyBinOp(Opcode, B, C, Q, MaxRecurse)) { 313 // It does! Return "A op V" if it simplifies or is already available. 314 // If V equals B then "A op V" is just the LHS. 315 if (V == B) return LHS; 316 // Otherwise return "A op V" if it simplifies. 317 if (Value *W = SimplifyBinOp(Opcode, A, V, Q, MaxRecurse)) { 318 ++NumReassoc; 319 return W; 320 } 321 } 322 } 323 324 // Transform: "A op (B op C)" ==> "(A op B) op C" if it simplifies completely. 325 if (Op1 && Op1->getOpcode() == Opcode) { 326 Value *A = LHS; 327 Value *B = Op1->getOperand(0); 328 Value *C = Op1->getOperand(1); 329 330 // Does "A op B" simplify? 331 if (Value *V = SimplifyBinOp(Opcode, A, B, Q, MaxRecurse)) { 332 // It does! Return "V op C" if it simplifies or is already available. 333 // If V equals B then "V op C" is just the RHS. 334 if (V == B) return RHS; 335 // Otherwise return "V op C" if it simplifies. 336 if (Value *W = SimplifyBinOp(Opcode, V, C, Q, MaxRecurse)) { 337 ++NumReassoc; 338 return W; 339 } 340 } 341 } 342 343 // The remaining transforms require commutativity as well as associativity. 344 if (!Instruction::isCommutative(Opcode)) 345 return nullptr; 346 347 // Transform: "(A op B) op C" ==> "(C op A) op B" if it simplifies completely. 348 if (Op0 && Op0->getOpcode() == Opcode) { 349 Value *A = Op0->getOperand(0); 350 Value *B = Op0->getOperand(1); 351 Value *C = RHS; 352 353 // Does "C op A" simplify? 354 if (Value *V = SimplifyBinOp(Opcode, C, A, Q, MaxRecurse)) { 355 // It does! Return "V op B" if it simplifies or is already available. 356 // If V equals A then "V op B" is just the LHS. 357 if (V == A) return LHS; 358 // Otherwise return "V op B" if it simplifies. 359 if (Value *W = SimplifyBinOp(Opcode, V, B, Q, MaxRecurse)) { 360 ++NumReassoc; 361 return W; 362 } 363 } 364 } 365 366 // Transform: "A op (B op C)" ==> "B op (C op A)" if it simplifies completely. 367 if (Op1 && Op1->getOpcode() == Opcode) { 368 Value *A = LHS; 369 Value *B = Op1->getOperand(0); 370 Value *C = Op1->getOperand(1); 371 372 // Does "C op A" simplify? 373 if (Value *V = SimplifyBinOp(Opcode, C, A, Q, MaxRecurse)) { 374 // It does! Return "B op V" if it simplifies or is already available. 375 // If V equals C then "B op V" is just the RHS. 376 if (V == C) return RHS; 377 // Otherwise return "B op V" if it simplifies. 378 if (Value *W = SimplifyBinOp(Opcode, B, V, Q, MaxRecurse)) { 379 ++NumReassoc; 380 return W; 381 } 382 } 383 } 384 385 return nullptr; 386 } 387 388 /// In the case of a binary operation with a select instruction as an operand, 389 /// try to simplify the binop by seeing whether evaluating it on both branches 390 /// of the select results in the same value. Returns the common value if so, 391 /// otherwise returns null. 392 static Value *ThreadBinOpOverSelect(Instruction::BinaryOps Opcode, Value *LHS, 393 Value *RHS, const SimplifyQuery &Q, 394 unsigned MaxRecurse) { 395 // Recursion is always used, so bail out at once if we already hit the limit. 396 if (!MaxRecurse--) 397 return nullptr; 398 399 SelectInst *SI; 400 if (isa<SelectInst>(LHS)) { 401 SI = cast<SelectInst>(LHS); 402 } else { 403 assert(isa<SelectInst>(RHS) && "No select instruction operand!"); 404 SI = cast<SelectInst>(RHS); 405 } 406 407 // Evaluate the BinOp on the true and false branches of the select. 408 Value *TV; 409 Value *FV; 410 if (SI == LHS) { 411 TV = SimplifyBinOp(Opcode, SI->getTrueValue(), RHS, Q, MaxRecurse); 412 FV = SimplifyBinOp(Opcode, SI->getFalseValue(), RHS, Q, MaxRecurse); 413 } else { 414 TV = SimplifyBinOp(Opcode, LHS, SI->getTrueValue(), Q, MaxRecurse); 415 FV = SimplifyBinOp(Opcode, LHS, SI->getFalseValue(), Q, MaxRecurse); 416 } 417 418 // If they simplified to the same value, then return the common value. 419 // If they both failed to simplify then return null. 420 if (TV == FV) 421 return TV; 422 423 // If one branch simplified to undef, return the other one. 424 if (TV && Q.isUndefValue(TV)) 425 return FV; 426 if (FV && Q.isUndefValue(FV)) 427 return TV; 428 429 // If applying the operation did not change the true and false select values, 430 // then the result of the binop is the select itself. 431 if (TV == SI->getTrueValue() && FV == SI->getFalseValue()) 432 return SI; 433 434 // If one branch simplified and the other did not, and the simplified 435 // value is equal to the unsimplified one, return the simplified value. 436 // For example, select (cond, X, X & Z) & Z -> X & Z. 437 if ((FV && !TV) || (TV && !FV)) { 438 // Check that the simplified value has the form "X op Y" where "op" is the 439 // same as the original operation. 440 Instruction *Simplified = dyn_cast<Instruction>(FV ? FV : TV); 441 if (Simplified && Simplified->getOpcode() == unsigned(Opcode)) { 442 // The value that didn't simplify is "UnsimplifiedLHS op UnsimplifiedRHS". 443 // We already know that "op" is the same as for the simplified value. See 444 // if the operands match too. If so, return the simplified value. 445 Value *UnsimplifiedBranch = FV ? SI->getTrueValue() : SI->getFalseValue(); 446 Value *UnsimplifiedLHS = SI == LHS ? UnsimplifiedBranch : LHS; 447 Value *UnsimplifiedRHS = SI == LHS ? RHS : UnsimplifiedBranch; 448 if (Simplified->getOperand(0) == UnsimplifiedLHS && 449 Simplified->getOperand(1) == UnsimplifiedRHS) 450 return Simplified; 451 if (Simplified->isCommutative() && 452 Simplified->getOperand(1) == UnsimplifiedLHS && 453 Simplified->getOperand(0) == UnsimplifiedRHS) 454 return Simplified; 455 } 456 } 457 458 return nullptr; 459 } 460 461 /// In the case of a comparison with a select instruction, try to simplify the 462 /// comparison by seeing whether both branches of the select result in the same 463 /// value. Returns the common value if so, otherwise returns null. 464 /// For example, if we have: 465 /// %tmp = select i1 %cmp, i32 1, i32 2 466 /// %cmp1 = icmp sle i32 %tmp, 3 467 /// We can simplify %cmp1 to true, because both branches of select are 468 /// less than 3. We compose new comparison by substituting %tmp with both 469 /// branches of select and see if it can be simplified. 470 static Value *ThreadCmpOverSelect(CmpInst::Predicate Pred, Value *LHS, 471 Value *RHS, const SimplifyQuery &Q, 472 unsigned MaxRecurse) { 473 // Recursion is always used, so bail out at once if we already hit the limit. 474 if (!MaxRecurse--) 475 return nullptr; 476 477 // Make sure the select is on the LHS. 478 if (!isa<SelectInst>(LHS)) { 479 std::swap(LHS, RHS); 480 Pred = CmpInst::getSwappedPredicate(Pred); 481 } 482 assert(isa<SelectInst>(LHS) && "Not comparing with a select instruction!"); 483 SelectInst *SI = cast<SelectInst>(LHS); 484 Value *Cond = SI->getCondition(); 485 Value *TV = SI->getTrueValue(); 486 Value *FV = SI->getFalseValue(); 487 488 // Now that we have "cmp select(Cond, TV, FV), RHS", analyse it. 489 // Does "cmp TV, RHS" simplify? 490 Value *TCmp = simplifyCmpSelTrueCase(Pred, TV, RHS, Cond, Q, MaxRecurse); 491 if (!TCmp) 492 return nullptr; 493 494 // Does "cmp FV, RHS" simplify? 495 Value *FCmp = simplifyCmpSelFalseCase(Pred, FV, RHS, Cond, Q, MaxRecurse); 496 if (!FCmp) 497 return nullptr; 498 499 // If both sides simplified to the same value, then use it as the result of 500 // the original comparison. 501 if (TCmp == FCmp) 502 return TCmp; 503 504 // The remaining cases only make sense if the select condition has the same 505 // type as the result of the comparison, so bail out if this is not so. 506 if (Cond->getType()->isVectorTy() == RHS->getType()->isVectorTy()) 507 return handleOtherCmpSelSimplifications(TCmp, FCmp, Cond, Q, MaxRecurse); 508 509 return nullptr; 510 } 511 512 /// In the case of a binary operation with an operand that is a PHI instruction, 513 /// try to simplify the binop by seeing whether evaluating it on the incoming 514 /// phi values yields the same result for every value. If so returns the common 515 /// value, otherwise returns null. 516 static Value *ThreadBinOpOverPHI(Instruction::BinaryOps Opcode, Value *LHS, 517 Value *RHS, const SimplifyQuery &Q, 518 unsigned MaxRecurse) { 519 // Recursion is always used, so bail out at once if we already hit the limit. 520 if (!MaxRecurse--) 521 return nullptr; 522 523 PHINode *PI; 524 if (isa<PHINode>(LHS)) { 525 PI = cast<PHINode>(LHS); 526 // Bail out if RHS and the phi may be mutually interdependent due to a loop. 527 if (!valueDominatesPHI(RHS, PI, Q.DT)) 528 return nullptr; 529 } else { 530 assert(isa<PHINode>(RHS) && "No PHI instruction operand!"); 531 PI = cast<PHINode>(RHS); 532 // Bail out if LHS and the phi may be mutually interdependent due to a loop. 533 if (!valueDominatesPHI(LHS, PI, Q.DT)) 534 return nullptr; 535 } 536 537 // Evaluate the BinOp on the incoming phi values. 538 Value *CommonValue = nullptr; 539 for (Value *Incoming : PI->incoming_values()) { 540 // If the incoming value is the phi node itself, it can safely be skipped. 541 if (Incoming == PI) continue; 542 Value *V = PI == LHS ? 543 SimplifyBinOp(Opcode, Incoming, RHS, Q, MaxRecurse) : 544 SimplifyBinOp(Opcode, LHS, Incoming, Q, MaxRecurse); 545 // If the operation failed to simplify, or simplified to a different value 546 // to previously, then give up. 547 if (!V || (CommonValue && V != CommonValue)) 548 return nullptr; 549 CommonValue = V; 550 } 551 552 return CommonValue; 553 } 554 555 /// In the case of a comparison with a PHI instruction, try to simplify the 556 /// comparison by seeing whether comparing with all of the incoming phi values 557 /// yields the same result every time. If so returns the common result, 558 /// otherwise returns null. 559 static Value *ThreadCmpOverPHI(CmpInst::Predicate Pred, Value *LHS, Value *RHS, 560 const SimplifyQuery &Q, unsigned MaxRecurse) { 561 // Recursion is always used, so bail out at once if we already hit the limit. 562 if (!MaxRecurse--) 563 return nullptr; 564 565 // Make sure the phi is on the LHS. 566 if (!isa<PHINode>(LHS)) { 567 std::swap(LHS, RHS); 568 Pred = CmpInst::getSwappedPredicate(Pred); 569 } 570 assert(isa<PHINode>(LHS) && "Not comparing with a phi instruction!"); 571 PHINode *PI = cast<PHINode>(LHS); 572 573 // Bail out if RHS and the phi may be mutually interdependent due to a loop. 574 if (!valueDominatesPHI(RHS, PI, Q.DT)) 575 return nullptr; 576 577 // Evaluate the BinOp on the incoming phi values. 578 Value *CommonValue = nullptr; 579 for (unsigned u = 0, e = PI->getNumIncomingValues(); u < e; ++u) { 580 Value *Incoming = PI->getIncomingValue(u); 581 Instruction *InTI = PI->getIncomingBlock(u)->getTerminator(); 582 // If the incoming value is the phi node itself, it can safely be skipped. 583 if (Incoming == PI) continue; 584 // Change the context instruction to the "edge" that flows into the phi. 585 // This is important because that is where incoming is actually "evaluated" 586 // even though it is used later somewhere else. 587 Value *V = SimplifyCmpInst(Pred, Incoming, RHS, Q.getWithInstruction(InTI), 588 MaxRecurse); 589 // If the operation failed to simplify, or simplified to a different value 590 // to previously, then give up. 591 if (!V || (CommonValue && V != CommonValue)) 592 return nullptr; 593 CommonValue = V; 594 } 595 596 return CommonValue; 597 } 598 599 static Constant *foldOrCommuteConstant(Instruction::BinaryOps Opcode, 600 Value *&Op0, Value *&Op1, 601 const SimplifyQuery &Q) { 602 if (auto *CLHS = dyn_cast<Constant>(Op0)) { 603 if (auto *CRHS = dyn_cast<Constant>(Op1)) 604 return ConstantFoldBinaryOpOperands(Opcode, CLHS, CRHS, Q.DL); 605 606 // Canonicalize the constant to the RHS if this is a commutative operation. 607 if (Instruction::isCommutative(Opcode)) 608 std::swap(Op0, Op1); 609 } 610 return nullptr; 611 } 612 613 /// Given operands for an Add, see if we can fold the result. 614 /// If not, this returns null. 615 static Value *SimplifyAddInst(Value *Op0, Value *Op1, bool IsNSW, bool IsNUW, 616 const SimplifyQuery &Q, unsigned MaxRecurse) { 617 if (Constant *C = foldOrCommuteConstant(Instruction::Add, Op0, Op1, Q)) 618 return C; 619 620 // X + poison -> poison 621 if (isa<PoisonValue>(Op1)) 622 return Op1; 623 624 // X + undef -> undef 625 if (Q.isUndefValue(Op1)) 626 return Op1; 627 628 // X + 0 -> X 629 if (match(Op1, m_Zero())) 630 return Op0; 631 632 // If two operands are negative, return 0. 633 if (isKnownNegation(Op0, Op1)) 634 return Constant::getNullValue(Op0->getType()); 635 636 // X + (Y - X) -> Y 637 // (Y - X) + X -> Y 638 // Eg: X + -X -> 0 639 Value *Y = nullptr; 640 if (match(Op1, m_Sub(m_Value(Y), m_Specific(Op0))) || 641 match(Op0, m_Sub(m_Value(Y), m_Specific(Op1)))) 642 return Y; 643 644 // X + ~X -> -1 since ~X = -X-1 645 Type *Ty = Op0->getType(); 646 if (match(Op0, m_Not(m_Specific(Op1))) || 647 match(Op1, m_Not(m_Specific(Op0)))) 648 return Constant::getAllOnesValue(Ty); 649 650 // add nsw/nuw (xor Y, signmask), signmask --> Y 651 // The no-wrapping add guarantees that the top bit will be set by the add. 652 // Therefore, the xor must be clearing the already set sign bit of Y. 653 if ((IsNSW || IsNUW) && match(Op1, m_SignMask()) && 654 match(Op0, m_Xor(m_Value(Y), m_SignMask()))) 655 return Y; 656 657 // add nuw %x, -1 -> -1, because %x can only be 0. 658 if (IsNUW && match(Op1, m_AllOnes())) 659 return Op1; // Which is -1. 660 661 /// i1 add -> xor. 662 if (MaxRecurse && Op0->getType()->isIntOrIntVectorTy(1)) 663 if (Value *V = SimplifyXorInst(Op0, Op1, Q, MaxRecurse-1)) 664 return V; 665 666 // Try some generic simplifications for associative operations. 667 if (Value *V = SimplifyAssociativeBinOp(Instruction::Add, Op0, Op1, Q, 668 MaxRecurse)) 669 return V; 670 671 // Threading Add over selects and phi nodes is pointless, so don't bother. 672 // Threading over the select in "A + select(cond, B, C)" means evaluating 673 // "A+B" and "A+C" and seeing if they are equal; but they are equal if and 674 // only if B and C are equal. If B and C are equal then (since we assume 675 // that operands have already been simplified) "select(cond, B, C)" should 676 // have been simplified to the common value of B and C already. Analysing 677 // "A+B" and "A+C" thus gains nothing, but costs compile time. Similarly 678 // for threading over phi nodes. 679 680 return nullptr; 681 } 682 683 Value *llvm::SimplifyAddInst(Value *Op0, Value *Op1, bool IsNSW, bool IsNUW, 684 const SimplifyQuery &Query) { 685 return ::SimplifyAddInst(Op0, Op1, IsNSW, IsNUW, Query, RecursionLimit); 686 } 687 688 /// Compute the base pointer and cumulative constant offsets for V. 689 /// 690 /// This strips all constant offsets off of V, leaving it the base pointer, and 691 /// accumulates the total constant offset applied in the returned constant. 692 /// It returns zero if there are no constant offsets applied. 693 /// 694 /// This is very similar to stripAndAccumulateConstantOffsets(), except it 695 /// normalizes the offset bitwidth to the stripped pointer type, not the 696 /// original pointer type. 697 static APInt stripAndComputeConstantOffsets(const DataLayout &DL, Value *&V, 698 bool AllowNonInbounds = false) { 699 assert(V->getType()->isPtrOrPtrVectorTy()); 700 701 APInt Offset = APInt::getZero(DL.getIndexTypeSizeInBits(V->getType())); 702 V = V->stripAndAccumulateConstantOffsets(DL, Offset, AllowNonInbounds); 703 // As that strip may trace through `addrspacecast`, need to sext or trunc 704 // the offset calculated. 705 return Offset.sextOrTrunc(DL.getIndexTypeSizeInBits(V->getType())); 706 } 707 708 /// Compute the constant difference between two pointer values. 709 /// If the difference is not a constant, returns zero. 710 static Constant *computePointerDifference(const DataLayout &DL, Value *LHS, 711 Value *RHS) { 712 APInt LHSOffset = stripAndComputeConstantOffsets(DL, LHS); 713 APInt RHSOffset = stripAndComputeConstantOffsets(DL, RHS); 714 715 // If LHS and RHS are not related via constant offsets to the same base 716 // value, there is nothing we can do here. 717 if (LHS != RHS) 718 return nullptr; 719 720 // Otherwise, the difference of LHS - RHS can be computed as: 721 // LHS - RHS 722 // = (LHSOffset + Base) - (RHSOffset + Base) 723 // = LHSOffset - RHSOffset 724 Constant *Res = ConstantInt::get(LHS->getContext(), LHSOffset - RHSOffset); 725 if (auto *VecTy = dyn_cast<VectorType>(LHS->getType())) 726 Res = ConstantVector::getSplat(VecTy->getElementCount(), Res); 727 return Res; 728 } 729 730 /// Given operands for a Sub, see if we can fold the result. 731 /// If not, this returns null. 732 static Value *SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, 733 const SimplifyQuery &Q, unsigned MaxRecurse) { 734 if (Constant *C = foldOrCommuteConstant(Instruction::Sub, Op0, Op1, Q)) 735 return C; 736 737 // X - poison -> poison 738 // poison - X -> poison 739 if (isa<PoisonValue>(Op0) || isa<PoisonValue>(Op1)) 740 return PoisonValue::get(Op0->getType()); 741 742 // X - undef -> undef 743 // undef - X -> undef 744 if (Q.isUndefValue(Op0) || Q.isUndefValue(Op1)) 745 return UndefValue::get(Op0->getType()); 746 747 // X - 0 -> X 748 if (match(Op1, m_Zero())) 749 return Op0; 750 751 // X - X -> 0 752 if (Op0 == Op1) 753 return Constant::getNullValue(Op0->getType()); 754 755 // Is this a negation? 756 if (match(Op0, m_Zero())) { 757 // 0 - X -> 0 if the sub is NUW. 758 if (isNUW) 759 return Constant::getNullValue(Op0->getType()); 760 761 KnownBits Known = computeKnownBits(Op1, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 762 if (Known.Zero.isMaxSignedValue()) { 763 // Op1 is either 0 or the minimum signed value. If the sub is NSW, then 764 // Op1 must be 0 because negating the minimum signed value is undefined. 765 if (isNSW) 766 return Constant::getNullValue(Op0->getType()); 767 768 // 0 - X -> X if X is 0 or the minimum signed value. 769 return Op1; 770 } 771 } 772 773 // (X + Y) - Z -> X + (Y - Z) or Y + (X - Z) if everything simplifies. 774 // For example, (X + Y) - Y -> X; (Y + X) - Y -> X 775 Value *X = nullptr, *Y = nullptr, *Z = Op1; 776 if (MaxRecurse && match(Op0, m_Add(m_Value(X), m_Value(Y)))) { // (X + Y) - Z 777 // See if "V === Y - Z" simplifies. 778 if (Value *V = SimplifyBinOp(Instruction::Sub, Y, Z, Q, MaxRecurse-1)) 779 // It does! Now see if "X + V" simplifies. 780 if (Value *W = SimplifyBinOp(Instruction::Add, X, V, Q, MaxRecurse-1)) { 781 // It does, we successfully reassociated! 782 ++NumReassoc; 783 return W; 784 } 785 // See if "V === X - Z" simplifies. 786 if (Value *V = SimplifyBinOp(Instruction::Sub, X, Z, Q, MaxRecurse-1)) 787 // It does! Now see if "Y + V" simplifies. 788 if (Value *W = SimplifyBinOp(Instruction::Add, Y, V, Q, MaxRecurse-1)) { 789 // It does, we successfully reassociated! 790 ++NumReassoc; 791 return W; 792 } 793 } 794 795 // X - (Y + Z) -> (X - Y) - Z or (X - Z) - Y if everything simplifies. 796 // For example, X - (X + 1) -> -1 797 X = Op0; 798 if (MaxRecurse && match(Op1, m_Add(m_Value(Y), m_Value(Z)))) { // X - (Y + Z) 799 // See if "V === X - Y" simplifies. 800 if (Value *V = SimplifyBinOp(Instruction::Sub, X, Y, Q, MaxRecurse-1)) 801 // It does! Now see if "V - Z" simplifies. 802 if (Value *W = SimplifyBinOp(Instruction::Sub, V, Z, Q, MaxRecurse-1)) { 803 // It does, we successfully reassociated! 804 ++NumReassoc; 805 return W; 806 } 807 // See if "V === X - Z" simplifies. 808 if (Value *V = SimplifyBinOp(Instruction::Sub, X, Z, Q, MaxRecurse-1)) 809 // It does! Now see if "V - Y" simplifies. 810 if (Value *W = SimplifyBinOp(Instruction::Sub, V, Y, Q, MaxRecurse-1)) { 811 // It does, we successfully reassociated! 812 ++NumReassoc; 813 return W; 814 } 815 } 816 817 // Z - (X - Y) -> (Z - X) + Y if everything simplifies. 818 // For example, X - (X - Y) -> Y. 819 Z = Op0; 820 if (MaxRecurse && match(Op1, m_Sub(m_Value(X), m_Value(Y)))) // Z - (X - Y) 821 // See if "V === Z - X" simplifies. 822 if (Value *V = SimplifyBinOp(Instruction::Sub, Z, X, Q, MaxRecurse-1)) 823 // It does! Now see if "V + Y" simplifies. 824 if (Value *W = SimplifyBinOp(Instruction::Add, V, Y, Q, MaxRecurse-1)) { 825 // It does, we successfully reassociated! 826 ++NumReassoc; 827 return W; 828 } 829 830 // trunc(X) - trunc(Y) -> trunc(X - Y) if everything simplifies. 831 if (MaxRecurse && match(Op0, m_Trunc(m_Value(X))) && 832 match(Op1, m_Trunc(m_Value(Y)))) 833 if (X->getType() == Y->getType()) 834 // See if "V === X - Y" simplifies. 835 if (Value *V = SimplifyBinOp(Instruction::Sub, X, Y, Q, MaxRecurse-1)) 836 // It does! Now see if "trunc V" simplifies. 837 if (Value *W = SimplifyCastInst(Instruction::Trunc, V, Op0->getType(), 838 Q, MaxRecurse - 1)) 839 // It does, return the simplified "trunc V". 840 return W; 841 842 // Variations on GEP(base, I, ...) - GEP(base, i, ...) -> GEP(null, I-i, ...). 843 if (match(Op0, m_PtrToInt(m_Value(X))) && 844 match(Op1, m_PtrToInt(m_Value(Y)))) 845 if (Constant *Result = computePointerDifference(Q.DL, X, Y)) 846 return ConstantExpr::getIntegerCast(Result, Op0->getType(), true); 847 848 // i1 sub -> xor. 849 if (MaxRecurse && Op0->getType()->isIntOrIntVectorTy(1)) 850 if (Value *V = SimplifyXorInst(Op0, Op1, Q, MaxRecurse-1)) 851 return V; 852 853 // Threading Sub over selects and phi nodes is pointless, so don't bother. 854 // Threading over the select in "A - select(cond, B, C)" means evaluating 855 // "A-B" and "A-C" and seeing if they are equal; but they are equal if and 856 // only if B and C are equal. If B and C are equal then (since we assume 857 // that operands have already been simplified) "select(cond, B, C)" should 858 // have been simplified to the common value of B and C already. Analysing 859 // "A-B" and "A-C" thus gains nothing, but costs compile time. Similarly 860 // for threading over phi nodes. 861 862 return nullptr; 863 } 864 865 Value *llvm::SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, 866 const SimplifyQuery &Q) { 867 return ::SimplifySubInst(Op0, Op1, isNSW, isNUW, Q, RecursionLimit); 868 } 869 870 /// Given operands for a Mul, see if we can fold the result. 871 /// If not, this returns null. 872 static Value *SimplifyMulInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 873 unsigned MaxRecurse) { 874 if (Constant *C = foldOrCommuteConstant(Instruction::Mul, Op0, Op1, Q)) 875 return C; 876 877 // X * poison -> poison 878 if (isa<PoisonValue>(Op1)) 879 return Op1; 880 881 // X * undef -> 0 882 // X * 0 -> 0 883 if (Q.isUndefValue(Op1) || match(Op1, m_Zero())) 884 return Constant::getNullValue(Op0->getType()); 885 886 // X * 1 -> X 887 if (match(Op1, m_One())) 888 return Op0; 889 890 // (X / Y) * Y -> X if the division is exact. 891 Value *X = nullptr; 892 if (Q.IIQ.UseInstrInfo && 893 (match(Op0, 894 m_Exact(m_IDiv(m_Value(X), m_Specific(Op1)))) || // (X / Y) * Y 895 match(Op1, m_Exact(m_IDiv(m_Value(X), m_Specific(Op0)))))) // Y * (X / Y) 896 return X; 897 898 // i1 mul -> and. 899 if (MaxRecurse && Op0->getType()->isIntOrIntVectorTy(1)) 900 if (Value *V = SimplifyAndInst(Op0, Op1, Q, MaxRecurse-1)) 901 return V; 902 903 // Try some generic simplifications for associative operations. 904 if (Value *V = SimplifyAssociativeBinOp(Instruction::Mul, Op0, Op1, Q, 905 MaxRecurse)) 906 return V; 907 908 // Mul distributes over Add. Try some generic simplifications based on this. 909 if (Value *V = expandCommutativeBinOp(Instruction::Mul, Op0, Op1, 910 Instruction::Add, Q, MaxRecurse)) 911 return V; 912 913 // If the operation is with the result of a select instruction, check whether 914 // operating on either branch of the select always yields the same value. 915 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 916 if (Value *V = ThreadBinOpOverSelect(Instruction::Mul, Op0, Op1, Q, 917 MaxRecurse)) 918 return V; 919 920 // If the operation is with the result of a phi instruction, check whether 921 // operating on all incoming values of the phi always yields the same value. 922 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 923 if (Value *V = ThreadBinOpOverPHI(Instruction::Mul, Op0, Op1, Q, 924 MaxRecurse)) 925 return V; 926 927 return nullptr; 928 } 929 930 Value *llvm::SimplifyMulInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 931 return ::SimplifyMulInst(Op0, Op1, Q, RecursionLimit); 932 } 933 934 /// Check for common or similar folds of integer division or integer remainder. 935 /// This applies to all 4 opcodes (sdiv/udiv/srem/urem). 936 static Value *simplifyDivRem(Instruction::BinaryOps Opcode, Value *Op0, 937 Value *Op1, const SimplifyQuery &Q) { 938 bool IsDiv = (Opcode == Instruction::SDiv || Opcode == Instruction::UDiv); 939 bool IsSigned = (Opcode == Instruction::SDiv || Opcode == Instruction::SRem); 940 941 Type *Ty = Op0->getType(); 942 943 // X / undef -> poison 944 // X % undef -> poison 945 if (Q.isUndefValue(Op1) || isa<PoisonValue>(Op1)) 946 return PoisonValue::get(Ty); 947 948 // X / 0 -> poison 949 // X % 0 -> poison 950 // We don't need to preserve faults! 951 if (match(Op1, m_Zero())) 952 return PoisonValue::get(Ty); 953 954 // If any element of a constant divisor fixed width vector is zero or undef 955 // the behavior is undefined and we can fold the whole op to poison. 956 auto *Op1C = dyn_cast<Constant>(Op1); 957 auto *VTy = dyn_cast<FixedVectorType>(Ty); 958 if (Op1C && VTy) { 959 unsigned NumElts = VTy->getNumElements(); 960 for (unsigned i = 0; i != NumElts; ++i) { 961 Constant *Elt = Op1C->getAggregateElement(i); 962 if (Elt && (Elt->isNullValue() || Q.isUndefValue(Elt))) 963 return PoisonValue::get(Ty); 964 } 965 } 966 967 // poison / X -> poison 968 // poison % X -> poison 969 if (isa<PoisonValue>(Op0)) 970 return Op0; 971 972 // undef / X -> 0 973 // undef % X -> 0 974 if (Q.isUndefValue(Op0)) 975 return Constant::getNullValue(Ty); 976 977 // 0 / X -> 0 978 // 0 % X -> 0 979 if (match(Op0, m_Zero())) 980 return Constant::getNullValue(Op0->getType()); 981 982 // X / X -> 1 983 // X % X -> 0 984 if (Op0 == Op1) 985 return IsDiv ? ConstantInt::get(Ty, 1) : Constant::getNullValue(Ty); 986 987 // X / 1 -> X 988 // X % 1 -> 0 989 // If this is a boolean op (single-bit element type), we can't have 990 // division-by-zero or remainder-by-zero, so assume the divisor is 1. 991 // Similarly, if we're zero-extending a boolean divisor, then assume it's a 1. 992 Value *X; 993 if (match(Op1, m_One()) || Ty->isIntOrIntVectorTy(1) || 994 (match(Op1, m_ZExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1))) 995 return IsDiv ? Op0 : Constant::getNullValue(Ty); 996 997 // If X * Y does not overflow, then: 998 // X * Y / Y -> X 999 // X * Y % Y -> 0 1000 if (match(Op0, m_c_Mul(m_Value(X), m_Specific(Op1)))) { 1001 auto *Mul = cast<OverflowingBinaryOperator>(Op0); 1002 // The multiplication can't overflow if it is defined not to, or if 1003 // X == A / Y for some A. 1004 if ((IsSigned && Q.IIQ.hasNoSignedWrap(Mul)) || 1005 (!IsSigned && Q.IIQ.hasNoUnsignedWrap(Mul)) || 1006 (IsSigned && match(X, m_SDiv(m_Value(), m_Specific(Op1)))) || 1007 (!IsSigned && match(X, m_UDiv(m_Value(), m_Specific(Op1))))) { 1008 return IsDiv ? X : Constant::getNullValue(Op0->getType()); 1009 } 1010 } 1011 1012 return nullptr; 1013 } 1014 1015 /// Given a predicate and two operands, return true if the comparison is true. 1016 /// This is a helper for div/rem simplification where we return some other value 1017 /// when we can prove a relationship between the operands. 1018 static bool isICmpTrue(ICmpInst::Predicate Pred, Value *LHS, Value *RHS, 1019 const SimplifyQuery &Q, unsigned MaxRecurse) { 1020 Value *V = SimplifyICmpInst(Pred, LHS, RHS, Q, MaxRecurse); 1021 Constant *C = dyn_cast_or_null<Constant>(V); 1022 return (C && C->isAllOnesValue()); 1023 } 1024 1025 /// Return true if we can simplify X / Y to 0. Remainder can adapt that answer 1026 /// to simplify X % Y to X. 1027 static bool isDivZero(Value *X, Value *Y, const SimplifyQuery &Q, 1028 unsigned MaxRecurse, bool IsSigned) { 1029 // Recursion is always used, so bail out at once if we already hit the limit. 1030 if (!MaxRecurse--) 1031 return false; 1032 1033 if (IsSigned) { 1034 // |X| / |Y| --> 0 1035 // 1036 // We require that 1 operand is a simple constant. That could be extended to 1037 // 2 variables if we computed the sign bit for each. 1038 // 1039 // Make sure that a constant is not the minimum signed value because taking 1040 // the abs() of that is undefined. 1041 Type *Ty = X->getType(); 1042 const APInt *C; 1043 if (match(X, m_APInt(C)) && !C->isMinSignedValue()) { 1044 // Is the variable divisor magnitude always greater than the constant 1045 // dividend magnitude? 1046 // |Y| > |C| --> Y < -abs(C) or Y > abs(C) 1047 Constant *PosDividendC = ConstantInt::get(Ty, C->abs()); 1048 Constant *NegDividendC = ConstantInt::get(Ty, -C->abs()); 1049 if (isICmpTrue(CmpInst::ICMP_SLT, Y, NegDividendC, Q, MaxRecurse) || 1050 isICmpTrue(CmpInst::ICMP_SGT, Y, PosDividendC, Q, MaxRecurse)) 1051 return true; 1052 } 1053 if (match(Y, m_APInt(C))) { 1054 // Special-case: we can't take the abs() of a minimum signed value. If 1055 // that's the divisor, then all we have to do is prove that the dividend 1056 // is also not the minimum signed value. 1057 if (C->isMinSignedValue()) 1058 return isICmpTrue(CmpInst::ICMP_NE, X, Y, Q, MaxRecurse); 1059 1060 // Is the variable dividend magnitude always less than the constant 1061 // divisor magnitude? 1062 // |X| < |C| --> X > -abs(C) and X < abs(C) 1063 Constant *PosDivisorC = ConstantInt::get(Ty, C->abs()); 1064 Constant *NegDivisorC = ConstantInt::get(Ty, -C->abs()); 1065 if (isICmpTrue(CmpInst::ICMP_SGT, X, NegDivisorC, Q, MaxRecurse) && 1066 isICmpTrue(CmpInst::ICMP_SLT, X, PosDivisorC, Q, MaxRecurse)) 1067 return true; 1068 } 1069 return false; 1070 } 1071 1072 // IsSigned == false. 1073 1074 // Is the unsigned dividend known to be less than a constant divisor? 1075 // TODO: Convert this (and above) to range analysis 1076 // ("computeConstantRangeIncludingKnownBits")? 1077 const APInt *C; 1078 if (match(Y, m_APInt(C)) && 1079 computeKnownBits(X, Q.DL, 0, Q.AC, Q.CxtI, Q.DT).getMaxValue().ult(*C)) 1080 return true; 1081 1082 // Try again for any divisor: 1083 // Is the dividend unsigned less than the divisor? 1084 return isICmpTrue(ICmpInst::ICMP_ULT, X, Y, Q, MaxRecurse); 1085 } 1086 1087 /// These are simplifications common to SDiv and UDiv. 1088 static Value *simplifyDiv(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1, 1089 const SimplifyQuery &Q, unsigned MaxRecurse) { 1090 if (Constant *C = foldOrCommuteConstant(Opcode, Op0, Op1, Q)) 1091 return C; 1092 1093 if (Value *V = simplifyDivRem(Opcode, Op0, Op1, Q)) 1094 return V; 1095 1096 bool IsSigned = Opcode == Instruction::SDiv; 1097 1098 // (X rem Y) / Y -> 0 1099 if ((IsSigned && match(Op0, m_SRem(m_Value(), m_Specific(Op1)))) || 1100 (!IsSigned && match(Op0, m_URem(m_Value(), m_Specific(Op1))))) 1101 return Constant::getNullValue(Op0->getType()); 1102 1103 // (X /u C1) /u C2 -> 0 if C1 * C2 overflow 1104 ConstantInt *C1, *C2; 1105 if (!IsSigned && match(Op0, m_UDiv(m_Value(), m_ConstantInt(C1))) && 1106 match(Op1, m_ConstantInt(C2))) { 1107 bool Overflow; 1108 (void)C1->getValue().umul_ov(C2->getValue(), Overflow); 1109 if (Overflow) 1110 return Constant::getNullValue(Op0->getType()); 1111 } 1112 1113 // If the operation is with the result of a select instruction, check whether 1114 // operating on either branch of the select always yields the same value. 1115 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 1116 if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse)) 1117 return V; 1118 1119 // If the operation is with the result of a phi instruction, check whether 1120 // operating on all incoming values of the phi always yields the same value. 1121 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 1122 if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse)) 1123 return V; 1124 1125 if (isDivZero(Op0, Op1, Q, MaxRecurse, IsSigned)) 1126 return Constant::getNullValue(Op0->getType()); 1127 1128 return nullptr; 1129 } 1130 1131 /// These are simplifications common to SRem and URem. 1132 static Value *simplifyRem(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1, 1133 const SimplifyQuery &Q, unsigned MaxRecurse) { 1134 if (Constant *C = foldOrCommuteConstant(Opcode, Op0, Op1, Q)) 1135 return C; 1136 1137 if (Value *V = simplifyDivRem(Opcode, Op0, Op1, Q)) 1138 return V; 1139 1140 // (X % Y) % Y -> X % Y 1141 if ((Opcode == Instruction::SRem && 1142 match(Op0, m_SRem(m_Value(), m_Specific(Op1)))) || 1143 (Opcode == Instruction::URem && 1144 match(Op0, m_URem(m_Value(), m_Specific(Op1))))) 1145 return Op0; 1146 1147 // (X << Y) % X -> 0 1148 if (Q.IIQ.UseInstrInfo && 1149 ((Opcode == Instruction::SRem && 1150 match(Op0, m_NSWShl(m_Specific(Op1), m_Value()))) || 1151 (Opcode == Instruction::URem && 1152 match(Op0, m_NUWShl(m_Specific(Op1), m_Value()))))) 1153 return Constant::getNullValue(Op0->getType()); 1154 1155 // If the operation is with the result of a select instruction, check whether 1156 // operating on either branch of the select always yields the same value. 1157 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 1158 if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse)) 1159 return V; 1160 1161 // If the operation is with the result of a phi instruction, check whether 1162 // operating on all incoming values of the phi always yields the same value. 1163 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 1164 if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse)) 1165 return V; 1166 1167 // If X / Y == 0, then X % Y == X. 1168 if (isDivZero(Op0, Op1, Q, MaxRecurse, Opcode == Instruction::SRem)) 1169 return Op0; 1170 1171 return nullptr; 1172 } 1173 1174 /// Given operands for an SDiv, see if we can fold the result. 1175 /// If not, this returns null. 1176 static Value *SimplifySDivInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 1177 unsigned MaxRecurse) { 1178 // If two operands are negated and no signed overflow, return -1. 1179 if (isKnownNegation(Op0, Op1, /*NeedNSW=*/true)) 1180 return Constant::getAllOnesValue(Op0->getType()); 1181 1182 return simplifyDiv(Instruction::SDiv, Op0, Op1, Q, MaxRecurse); 1183 } 1184 1185 Value *llvm::SimplifySDivInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 1186 return ::SimplifySDivInst(Op0, Op1, Q, RecursionLimit); 1187 } 1188 1189 /// Given operands for a UDiv, see if we can fold the result. 1190 /// If not, this returns null. 1191 static Value *SimplifyUDivInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 1192 unsigned MaxRecurse) { 1193 return simplifyDiv(Instruction::UDiv, Op0, Op1, Q, MaxRecurse); 1194 } 1195 1196 Value *llvm::SimplifyUDivInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 1197 return ::SimplifyUDivInst(Op0, Op1, Q, RecursionLimit); 1198 } 1199 1200 /// Given operands for an SRem, see if we can fold the result. 1201 /// If not, this returns null. 1202 static Value *SimplifySRemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 1203 unsigned MaxRecurse) { 1204 // If the divisor is 0, the result is undefined, so assume the divisor is -1. 1205 // srem Op0, (sext i1 X) --> srem Op0, -1 --> 0 1206 Value *X; 1207 if (match(Op1, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)) 1208 return ConstantInt::getNullValue(Op0->getType()); 1209 1210 // If the two operands are negated, return 0. 1211 if (isKnownNegation(Op0, Op1)) 1212 return ConstantInt::getNullValue(Op0->getType()); 1213 1214 return simplifyRem(Instruction::SRem, Op0, Op1, Q, MaxRecurse); 1215 } 1216 1217 Value *llvm::SimplifySRemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 1218 return ::SimplifySRemInst(Op0, Op1, Q, RecursionLimit); 1219 } 1220 1221 /// Given operands for a URem, see if we can fold the result. 1222 /// If not, this returns null. 1223 static Value *SimplifyURemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 1224 unsigned MaxRecurse) { 1225 return simplifyRem(Instruction::URem, Op0, Op1, Q, MaxRecurse); 1226 } 1227 1228 Value *llvm::SimplifyURemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 1229 return ::SimplifyURemInst(Op0, Op1, Q, RecursionLimit); 1230 } 1231 1232 /// Returns true if a shift by \c Amount always yields poison. 1233 static bool isPoisonShift(Value *Amount, const SimplifyQuery &Q) { 1234 Constant *C = dyn_cast<Constant>(Amount); 1235 if (!C) 1236 return false; 1237 1238 // X shift by undef -> poison because it may shift by the bitwidth. 1239 if (Q.isUndefValue(C)) 1240 return true; 1241 1242 // Shifting by the bitwidth or more is undefined. 1243 if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1244 if (CI->getValue().uge(CI->getType()->getScalarSizeInBits())) 1245 return true; 1246 1247 // If all lanes of a vector shift are undefined the whole shift is. 1248 if (isa<ConstantVector>(C) || isa<ConstantDataVector>(C)) { 1249 for (unsigned I = 0, 1250 E = cast<FixedVectorType>(C->getType())->getNumElements(); 1251 I != E; ++I) 1252 if (!isPoisonShift(C->getAggregateElement(I), Q)) 1253 return false; 1254 return true; 1255 } 1256 1257 return false; 1258 } 1259 1260 /// Given operands for an Shl, LShr or AShr, see if we can fold the result. 1261 /// If not, this returns null. 1262 static Value *SimplifyShift(Instruction::BinaryOps Opcode, Value *Op0, 1263 Value *Op1, bool IsNSW, const SimplifyQuery &Q, 1264 unsigned MaxRecurse) { 1265 if (Constant *C = foldOrCommuteConstant(Opcode, Op0, Op1, Q)) 1266 return C; 1267 1268 // poison shift by X -> poison 1269 if (isa<PoisonValue>(Op0)) 1270 return Op0; 1271 1272 // 0 shift by X -> 0 1273 if (match(Op0, m_Zero())) 1274 return Constant::getNullValue(Op0->getType()); 1275 1276 // X shift by 0 -> X 1277 // Shift-by-sign-extended bool must be shift-by-0 because shift-by-all-ones 1278 // would be poison. 1279 Value *X; 1280 if (match(Op1, m_Zero()) || 1281 (match(Op1, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1))) 1282 return Op0; 1283 1284 // Fold undefined shifts. 1285 if (isPoisonShift(Op1, Q)) 1286 return PoisonValue::get(Op0->getType()); 1287 1288 // If the operation is with the result of a select instruction, check whether 1289 // operating on either branch of the select always yields the same value. 1290 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 1291 if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse)) 1292 return V; 1293 1294 // If the operation is with the result of a phi instruction, check whether 1295 // operating on all incoming values of the phi always yields the same value. 1296 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 1297 if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse)) 1298 return V; 1299 1300 // If any bits in the shift amount make that value greater than or equal to 1301 // the number of bits in the type, the shift is undefined. 1302 KnownBits KnownAmt = computeKnownBits(Op1, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 1303 if (KnownAmt.getMinValue().uge(KnownAmt.getBitWidth())) 1304 return PoisonValue::get(Op0->getType()); 1305 1306 // If all valid bits in the shift amount are known zero, the first operand is 1307 // unchanged. 1308 unsigned NumValidShiftBits = Log2_32_Ceil(KnownAmt.getBitWidth()); 1309 if (KnownAmt.countMinTrailingZeros() >= NumValidShiftBits) 1310 return Op0; 1311 1312 // Check for nsw shl leading to a poison value. 1313 if (IsNSW) { 1314 assert(Opcode == Instruction::Shl && "Expected shl for nsw instruction"); 1315 KnownBits KnownVal = computeKnownBits(Op0, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 1316 KnownBits KnownShl = KnownBits::shl(KnownVal, KnownAmt); 1317 1318 if (KnownVal.Zero.isSignBitSet()) 1319 KnownShl.Zero.setSignBit(); 1320 if (KnownVal.One.isSignBitSet()) 1321 KnownShl.One.setSignBit(); 1322 1323 if (KnownShl.hasConflict()) 1324 return PoisonValue::get(Op0->getType()); 1325 } 1326 1327 return nullptr; 1328 } 1329 1330 /// Given operands for an Shl, LShr or AShr, see if we can 1331 /// fold the result. If not, this returns null. 1332 static Value *SimplifyRightShift(Instruction::BinaryOps Opcode, Value *Op0, 1333 Value *Op1, bool isExact, const SimplifyQuery &Q, 1334 unsigned MaxRecurse) { 1335 if (Value *V = 1336 SimplifyShift(Opcode, Op0, Op1, /*IsNSW*/ false, Q, MaxRecurse)) 1337 return V; 1338 1339 // X >> X -> 0 1340 if (Op0 == Op1) 1341 return Constant::getNullValue(Op0->getType()); 1342 1343 // undef >> X -> 0 1344 // undef >> X -> undef (if it's exact) 1345 if (Q.isUndefValue(Op0)) 1346 return isExact ? Op0 : Constant::getNullValue(Op0->getType()); 1347 1348 // The low bit cannot be shifted out of an exact shift if it is set. 1349 if (isExact) { 1350 KnownBits Op0Known = computeKnownBits(Op0, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT); 1351 if (Op0Known.One[0]) 1352 return Op0; 1353 } 1354 1355 return nullptr; 1356 } 1357 1358 /// Given operands for an Shl, see if we can fold the result. 1359 /// If not, this returns null. 1360 static Value *SimplifyShlInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, 1361 const SimplifyQuery &Q, unsigned MaxRecurse) { 1362 if (Value *V = 1363 SimplifyShift(Instruction::Shl, Op0, Op1, isNSW, Q, MaxRecurse)) 1364 return V; 1365 1366 // undef << X -> 0 1367 // undef << X -> undef if (if it's NSW/NUW) 1368 if (Q.isUndefValue(Op0)) 1369 return isNSW || isNUW ? Op0 : Constant::getNullValue(Op0->getType()); 1370 1371 // (X >> A) << A -> X 1372 Value *X; 1373 if (Q.IIQ.UseInstrInfo && 1374 match(Op0, m_Exact(m_Shr(m_Value(X), m_Specific(Op1))))) 1375 return X; 1376 1377 // shl nuw i8 C, %x -> C iff C has sign bit set. 1378 if (isNUW && match(Op0, m_Negative())) 1379 return Op0; 1380 // NOTE: could use computeKnownBits() / LazyValueInfo, 1381 // but the cost-benefit analysis suggests it isn't worth it. 1382 1383 return nullptr; 1384 } 1385 1386 Value *llvm::SimplifyShlInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, 1387 const SimplifyQuery &Q) { 1388 return ::SimplifyShlInst(Op0, Op1, isNSW, isNUW, Q, RecursionLimit); 1389 } 1390 1391 /// Given operands for an LShr, see if we can fold the result. 1392 /// If not, this returns null. 1393 static Value *SimplifyLShrInst(Value *Op0, Value *Op1, bool isExact, 1394 const SimplifyQuery &Q, unsigned MaxRecurse) { 1395 if (Value *V = SimplifyRightShift(Instruction::LShr, Op0, Op1, isExact, Q, 1396 MaxRecurse)) 1397 return V; 1398 1399 // (X << A) >> A -> X 1400 Value *X; 1401 if (match(Op0, m_NUWShl(m_Value(X), m_Specific(Op1)))) 1402 return X; 1403 1404 // ((X << A) | Y) >> A -> X if effective width of Y is not larger than A. 1405 // We can return X as we do in the above case since OR alters no bits in X. 1406 // SimplifyDemandedBits in InstCombine can do more general optimization for 1407 // bit manipulation. This pattern aims to provide opportunities for other 1408 // optimizers by supporting a simple but common case in InstSimplify. 1409 Value *Y; 1410 const APInt *ShRAmt, *ShLAmt; 1411 if (match(Op1, m_APInt(ShRAmt)) && 1412 match(Op0, m_c_Or(m_NUWShl(m_Value(X), m_APInt(ShLAmt)), m_Value(Y))) && 1413 *ShRAmt == *ShLAmt) { 1414 const KnownBits YKnown = computeKnownBits(Y, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 1415 const unsigned EffWidthY = YKnown.countMaxActiveBits(); 1416 if (ShRAmt->uge(EffWidthY)) 1417 return X; 1418 } 1419 1420 return nullptr; 1421 } 1422 1423 Value *llvm::SimplifyLShrInst(Value *Op0, Value *Op1, bool isExact, 1424 const SimplifyQuery &Q) { 1425 return ::SimplifyLShrInst(Op0, Op1, isExact, Q, RecursionLimit); 1426 } 1427 1428 /// Given operands for an AShr, see if we can fold the result. 1429 /// If not, this returns null. 1430 static Value *SimplifyAShrInst(Value *Op0, Value *Op1, bool isExact, 1431 const SimplifyQuery &Q, unsigned MaxRecurse) { 1432 if (Value *V = SimplifyRightShift(Instruction::AShr, Op0, Op1, isExact, Q, 1433 MaxRecurse)) 1434 return V; 1435 1436 // -1 >>a X --> -1 1437 // (-1 << X) a>> X --> -1 1438 // Do not return Op0 because it may contain undef elements if it's a vector. 1439 if (match(Op0, m_AllOnes()) || 1440 match(Op0, m_Shl(m_AllOnes(), m_Specific(Op1)))) 1441 return Constant::getAllOnesValue(Op0->getType()); 1442 1443 // (X << A) >> A -> X 1444 Value *X; 1445 if (Q.IIQ.UseInstrInfo && match(Op0, m_NSWShl(m_Value(X), m_Specific(Op1)))) 1446 return X; 1447 1448 // Arithmetic shifting an all-sign-bit value is a no-op. 1449 unsigned NumSignBits = ComputeNumSignBits(Op0, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 1450 if (NumSignBits == Op0->getType()->getScalarSizeInBits()) 1451 return Op0; 1452 1453 return nullptr; 1454 } 1455 1456 Value *llvm::SimplifyAShrInst(Value *Op0, Value *Op1, bool isExact, 1457 const SimplifyQuery &Q) { 1458 return ::SimplifyAShrInst(Op0, Op1, isExact, Q, RecursionLimit); 1459 } 1460 1461 /// Commuted variants are assumed to be handled by calling this function again 1462 /// with the parameters swapped. 1463 static Value *simplifyUnsignedRangeCheck(ICmpInst *ZeroICmp, 1464 ICmpInst *UnsignedICmp, bool IsAnd, 1465 const SimplifyQuery &Q) { 1466 Value *X, *Y; 1467 1468 ICmpInst::Predicate EqPred; 1469 if (!match(ZeroICmp, m_ICmp(EqPred, m_Value(Y), m_Zero())) || 1470 !ICmpInst::isEquality(EqPred)) 1471 return nullptr; 1472 1473 ICmpInst::Predicate UnsignedPred; 1474 1475 Value *A, *B; 1476 // Y = (A - B); 1477 if (match(Y, m_Sub(m_Value(A), m_Value(B)))) { 1478 if (match(UnsignedICmp, 1479 m_c_ICmp(UnsignedPred, m_Specific(A), m_Specific(B))) && 1480 ICmpInst::isUnsigned(UnsignedPred)) { 1481 // A >=/<= B || (A - B) != 0 <--> true 1482 if ((UnsignedPred == ICmpInst::ICMP_UGE || 1483 UnsignedPred == ICmpInst::ICMP_ULE) && 1484 EqPred == ICmpInst::ICMP_NE && !IsAnd) 1485 return ConstantInt::getTrue(UnsignedICmp->getType()); 1486 // A </> B && (A - B) == 0 <--> false 1487 if ((UnsignedPred == ICmpInst::ICMP_ULT || 1488 UnsignedPred == ICmpInst::ICMP_UGT) && 1489 EqPred == ICmpInst::ICMP_EQ && IsAnd) 1490 return ConstantInt::getFalse(UnsignedICmp->getType()); 1491 1492 // A </> B && (A - B) != 0 <--> A </> B 1493 // A </> B || (A - B) != 0 <--> (A - B) != 0 1494 if (EqPred == ICmpInst::ICMP_NE && (UnsignedPred == ICmpInst::ICMP_ULT || 1495 UnsignedPred == ICmpInst::ICMP_UGT)) 1496 return IsAnd ? UnsignedICmp : ZeroICmp; 1497 1498 // A <=/>= B && (A - B) == 0 <--> (A - B) == 0 1499 // A <=/>= B || (A - B) == 0 <--> A <=/>= B 1500 if (EqPred == ICmpInst::ICMP_EQ && (UnsignedPred == ICmpInst::ICMP_ULE || 1501 UnsignedPred == ICmpInst::ICMP_UGE)) 1502 return IsAnd ? ZeroICmp : UnsignedICmp; 1503 } 1504 1505 // Given Y = (A - B) 1506 // Y >= A && Y != 0 --> Y >= A iff B != 0 1507 // Y < A || Y == 0 --> Y < A iff B != 0 1508 if (match(UnsignedICmp, 1509 m_c_ICmp(UnsignedPred, m_Specific(Y), m_Specific(A)))) { 1510 if (UnsignedPred == ICmpInst::ICMP_UGE && IsAnd && 1511 EqPred == ICmpInst::ICMP_NE && 1512 isKnownNonZero(B, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT)) 1513 return UnsignedICmp; 1514 if (UnsignedPred == ICmpInst::ICMP_ULT && !IsAnd && 1515 EqPred == ICmpInst::ICMP_EQ && 1516 isKnownNonZero(B, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT)) 1517 return UnsignedICmp; 1518 } 1519 } 1520 1521 if (match(UnsignedICmp, m_ICmp(UnsignedPred, m_Value(X), m_Specific(Y))) && 1522 ICmpInst::isUnsigned(UnsignedPred)) 1523 ; 1524 else if (match(UnsignedICmp, 1525 m_ICmp(UnsignedPred, m_Specific(Y), m_Value(X))) && 1526 ICmpInst::isUnsigned(UnsignedPred)) 1527 UnsignedPred = ICmpInst::getSwappedPredicate(UnsignedPred); 1528 else 1529 return nullptr; 1530 1531 // X > Y && Y == 0 --> Y == 0 iff X != 0 1532 // X > Y || Y == 0 --> X > Y iff X != 0 1533 if (UnsignedPred == ICmpInst::ICMP_UGT && EqPred == ICmpInst::ICMP_EQ && 1534 isKnownNonZero(X, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT)) 1535 return IsAnd ? ZeroICmp : UnsignedICmp; 1536 1537 // X <= Y && Y != 0 --> X <= Y iff X != 0 1538 // X <= Y || Y != 0 --> Y != 0 iff X != 0 1539 if (UnsignedPred == ICmpInst::ICMP_ULE && EqPred == ICmpInst::ICMP_NE && 1540 isKnownNonZero(X, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT)) 1541 return IsAnd ? UnsignedICmp : ZeroICmp; 1542 1543 // The transforms below here are expected to be handled more generally with 1544 // simplifyAndOrOfICmpsWithLimitConst() or in InstCombine's 1545 // foldAndOrOfICmpsWithConstEq(). If we are looking to trim optimizer overlap, 1546 // these are candidates for removal. 1547 1548 // X < Y && Y != 0 --> X < Y 1549 // X < Y || Y != 0 --> Y != 0 1550 if (UnsignedPred == ICmpInst::ICMP_ULT && EqPred == ICmpInst::ICMP_NE) 1551 return IsAnd ? UnsignedICmp : ZeroICmp; 1552 1553 // X >= Y && Y == 0 --> Y == 0 1554 // X >= Y || Y == 0 --> X >= Y 1555 if (UnsignedPred == ICmpInst::ICMP_UGE && EqPred == ICmpInst::ICMP_EQ) 1556 return IsAnd ? ZeroICmp : UnsignedICmp; 1557 1558 // X < Y && Y == 0 --> false 1559 if (UnsignedPred == ICmpInst::ICMP_ULT && EqPred == ICmpInst::ICMP_EQ && 1560 IsAnd) 1561 return getFalse(UnsignedICmp->getType()); 1562 1563 // X >= Y || Y != 0 --> true 1564 if (UnsignedPred == ICmpInst::ICMP_UGE && EqPred == ICmpInst::ICMP_NE && 1565 !IsAnd) 1566 return getTrue(UnsignedICmp->getType()); 1567 1568 return nullptr; 1569 } 1570 1571 /// Commuted variants are assumed to be handled by calling this function again 1572 /// with the parameters swapped. 1573 static Value *simplifyAndOfICmpsWithSameOperands(ICmpInst *Op0, ICmpInst *Op1) { 1574 ICmpInst::Predicate Pred0, Pred1; 1575 Value *A ,*B; 1576 if (!match(Op0, m_ICmp(Pred0, m_Value(A), m_Value(B))) || 1577 !match(Op1, m_ICmp(Pred1, m_Specific(A), m_Specific(B)))) 1578 return nullptr; 1579 1580 // We have (icmp Pred0, A, B) & (icmp Pred1, A, B). 1581 // If Op1 is always implied true by Op0, then Op0 is a subset of Op1, and we 1582 // can eliminate Op1 from this 'and'. 1583 if (ICmpInst::isImpliedTrueByMatchingCmp(Pred0, Pred1)) 1584 return Op0; 1585 1586 // Check for any combination of predicates that are guaranteed to be disjoint. 1587 if ((Pred0 == ICmpInst::getInversePredicate(Pred1)) || 1588 (Pred0 == ICmpInst::ICMP_EQ && ICmpInst::isFalseWhenEqual(Pred1)) || 1589 (Pred0 == ICmpInst::ICMP_SLT && Pred1 == ICmpInst::ICMP_SGT) || 1590 (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_UGT)) 1591 return getFalse(Op0->getType()); 1592 1593 return nullptr; 1594 } 1595 1596 /// Commuted variants are assumed to be handled by calling this function again 1597 /// with the parameters swapped. 1598 static Value *simplifyOrOfICmpsWithSameOperands(ICmpInst *Op0, ICmpInst *Op1) { 1599 ICmpInst::Predicate Pred0, Pred1; 1600 Value *A ,*B; 1601 if (!match(Op0, m_ICmp(Pred0, m_Value(A), m_Value(B))) || 1602 !match(Op1, m_ICmp(Pred1, m_Specific(A), m_Specific(B)))) 1603 return nullptr; 1604 1605 // We have (icmp Pred0, A, B) | (icmp Pred1, A, B). 1606 // If Op1 is always implied true by Op0, then Op0 is a subset of Op1, and we 1607 // can eliminate Op0 from this 'or'. 1608 if (ICmpInst::isImpliedTrueByMatchingCmp(Pred0, Pred1)) 1609 return Op1; 1610 1611 // Check for any combination of predicates that cover the entire range of 1612 // possibilities. 1613 if ((Pred0 == ICmpInst::getInversePredicate(Pred1)) || 1614 (Pred0 == ICmpInst::ICMP_NE && ICmpInst::isTrueWhenEqual(Pred1)) || 1615 (Pred0 == ICmpInst::ICMP_SLE && Pred1 == ICmpInst::ICMP_SGE) || 1616 (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_UGE)) 1617 return getTrue(Op0->getType()); 1618 1619 return nullptr; 1620 } 1621 1622 /// Test if a pair of compares with a shared operand and 2 constants has an 1623 /// empty set intersection, full set union, or if one compare is a superset of 1624 /// the other. 1625 static Value *simplifyAndOrOfICmpsWithConstants(ICmpInst *Cmp0, ICmpInst *Cmp1, 1626 bool IsAnd) { 1627 // Look for this pattern: {and/or} (icmp X, C0), (icmp X, C1)). 1628 if (Cmp0->getOperand(0) != Cmp1->getOperand(0)) 1629 return nullptr; 1630 1631 const APInt *C0, *C1; 1632 if (!match(Cmp0->getOperand(1), m_APInt(C0)) || 1633 !match(Cmp1->getOperand(1), m_APInt(C1))) 1634 return nullptr; 1635 1636 auto Range0 = ConstantRange::makeExactICmpRegion(Cmp0->getPredicate(), *C0); 1637 auto Range1 = ConstantRange::makeExactICmpRegion(Cmp1->getPredicate(), *C1); 1638 1639 // For and-of-compares, check if the intersection is empty: 1640 // (icmp X, C0) && (icmp X, C1) --> empty set --> false 1641 if (IsAnd && Range0.intersectWith(Range1).isEmptySet()) 1642 return getFalse(Cmp0->getType()); 1643 1644 // For or-of-compares, check if the union is full: 1645 // (icmp X, C0) || (icmp X, C1) --> full set --> true 1646 if (!IsAnd && Range0.unionWith(Range1).isFullSet()) 1647 return getTrue(Cmp0->getType()); 1648 1649 // Is one range a superset of the other? 1650 // If this is and-of-compares, take the smaller set: 1651 // (icmp sgt X, 4) && (icmp sgt X, 42) --> icmp sgt X, 42 1652 // If this is or-of-compares, take the larger set: 1653 // (icmp sgt X, 4) || (icmp sgt X, 42) --> icmp sgt X, 4 1654 if (Range0.contains(Range1)) 1655 return IsAnd ? Cmp1 : Cmp0; 1656 if (Range1.contains(Range0)) 1657 return IsAnd ? Cmp0 : Cmp1; 1658 1659 return nullptr; 1660 } 1661 1662 static Value *simplifyAndOrOfICmpsWithZero(ICmpInst *Cmp0, ICmpInst *Cmp1, 1663 bool IsAnd) { 1664 ICmpInst::Predicate P0 = Cmp0->getPredicate(), P1 = Cmp1->getPredicate(); 1665 if (!match(Cmp0->getOperand(1), m_Zero()) || 1666 !match(Cmp1->getOperand(1), m_Zero()) || P0 != P1) 1667 return nullptr; 1668 1669 if ((IsAnd && P0 != ICmpInst::ICMP_NE) || (!IsAnd && P1 != ICmpInst::ICMP_EQ)) 1670 return nullptr; 1671 1672 // We have either "(X == 0 || Y == 0)" or "(X != 0 && Y != 0)". 1673 Value *X = Cmp0->getOperand(0); 1674 Value *Y = Cmp1->getOperand(0); 1675 1676 // If one of the compares is a masked version of a (not) null check, then 1677 // that compare implies the other, so we eliminate the other. Optionally, look 1678 // through a pointer-to-int cast to match a null check of a pointer type. 1679 1680 // (X == 0) || (([ptrtoint] X & ?) == 0) --> ([ptrtoint] X & ?) == 0 1681 // (X == 0) || ((? & [ptrtoint] X) == 0) --> (? & [ptrtoint] X) == 0 1682 // (X != 0) && (([ptrtoint] X & ?) != 0) --> ([ptrtoint] X & ?) != 0 1683 // (X != 0) && ((? & [ptrtoint] X) != 0) --> (? & [ptrtoint] X) != 0 1684 if (match(Y, m_c_And(m_Specific(X), m_Value())) || 1685 match(Y, m_c_And(m_PtrToInt(m_Specific(X)), m_Value()))) 1686 return Cmp1; 1687 1688 // (([ptrtoint] Y & ?) == 0) || (Y == 0) --> ([ptrtoint] Y & ?) == 0 1689 // ((? & [ptrtoint] Y) == 0) || (Y == 0) --> (? & [ptrtoint] Y) == 0 1690 // (([ptrtoint] Y & ?) != 0) && (Y != 0) --> ([ptrtoint] Y & ?) != 0 1691 // ((? & [ptrtoint] Y) != 0) && (Y != 0) --> (? & [ptrtoint] Y) != 0 1692 if (match(X, m_c_And(m_Specific(Y), m_Value())) || 1693 match(X, m_c_And(m_PtrToInt(m_Specific(Y)), m_Value()))) 1694 return Cmp0; 1695 1696 return nullptr; 1697 } 1698 1699 static Value *simplifyAndOfICmpsWithAdd(ICmpInst *Op0, ICmpInst *Op1, 1700 const InstrInfoQuery &IIQ) { 1701 // (icmp (add V, C0), C1) & (icmp V, C0) 1702 ICmpInst::Predicate Pred0, Pred1; 1703 const APInt *C0, *C1; 1704 Value *V; 1705 if (!match(Op0, m_ICmp(Pred0, m_Add(m_Value(V), m_APInt(C0)), m_APInt(C1)))) 1706 return nullptr; 1707 1708 if (!match(Op1, m_ICmp(Pred1, m_Specific(V), m_Value()))) 1709 return nullptr; 1710 1711 auto *AddInst = cast<OverflowingBinaryOperator>(Op0->getOperand(0)); 1712 if (AddInst->getOperand(1) != Op1->getOperand(1)) 1713 return nullptr; 1714 1715 Type *ITy = Op0->getType(); 1716 bool isNSW = IIQ.hasNoSignedWrap(AddInst); 1717 bool isNUW = IIQ.hasNoUnsignedWrap(AddInst); 1718 1719 const APInt Delta = *C1 - *C0; 1720 if (C0->isStrictlyPositive()) { 1721 if (Delta == 2) { 1722 if (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_SGT) 1723 return getFalse(ITy); 1724 if (Pred0 == ICmpInst::ICMP_SLT && Pred1 == ICmpInst::ICMP_SGT && isNSW) 1725 return getFalse(ITy); 1726 } 1727 if (Delta == 1) { 1728 if (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_SGT) 1729 return getFalse(ITy); 1730 if (Pred0 == ICmpInst::ICMP_SLE && Pred1 == ICmpInst::ICMP_SGT && isNSW) 1731 return getFalse(ITy); 1732 } 1733 } 1734 if (C0->getBoolValue() && isNUW) { 1735 if (Delta == 2) 1736 if (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_UGT) 1737 return getFalse(ITy); 1738 if (Delta == 1) 1739 if (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_UGT) 1740 return getFalse(ITy); 1741 } 1742 1743 return nullptr; 1744 } 1745 1746 /// Try to eliminate compares with signed or unsigned min/max constants. 1747 static Value *simplifyAndOrOfICmpsWithLimitConst(ICmpInst *Cmp0, ICmpInst *Cmp1, 1748 bool IsAnd) { 1749 // Canonicalize an equality compare as Cmp0. 1750 if (Cmp1->isEquality()) 1751 std::swap(Cmp0, Cmp1); 1752 if (!Cmp0->isEquality()) 1753 return nullptr; 1754 1755 // The non-equality compare must include a common operand (X). Canonicalize 1756 // the common operand as operand 0 (the predicate is swapped if the common 1757 // operand was operand 1). 1758 ICmpInst::Predicate Pred0 = Cmp0->getPredicate(); 1759 Value *X = Cmp0->getOperand(0); 1760 ICmpInst::Predicate Pred1; 1761 bool HasNotOp = match(Cmp1, m_c_ICmp(Pred1, m_Not(m_Specific(X)), m_Value())); 1762 if (!HasNotOp && !match(Cmp1, m_c_ICmp(Pred1, m_Specific(X), m_Value()))) 1763 return nullptr; 1764 if (ICmpInst::isEquality(Pred1)) 1765 return nullptr; 1766 1767 // The equality compare must be against a constant. Flip bits if we matched 1768 // a bitwise not. Convert a null pointer constant to an integer zero value. 1769 APInt MinMaxC; 1770 const APInt *C; 1771 if (match(Cmp0->getOperand(1), m_APInt(C))) 1772 MinMaxC = HasNotOp ? ~*C : *C; 1773 else if (isa<ConstantPointerNull>(Cmp0->getOperand(1))) 1774 MinMaxC = APInt::getZero(8); 1775 else 1776 return nullptr; 1777 1778 // DeMorganize if this is 'or': P0 || P1 --> !P0 && !P1. 1779 if (!IsAnd) { 1780 Pred0 = ICmpInst::getInversePredicate(Pred0); 1781 Pred1 = ICmpInst::getInversePredicate(Pred1); 1782 } 1783 1784 // Normalize to unsigned compare and unsigned min/max value. 1785 // Example for 8-bit: -128 + 128 -> 0; 127 + 128 -> 255 1786 if (ICmpInst::isSigned(Pred1)) { 1787 Pred1 = ICmpInst::getUnsignedPredicate(Pred1); 1788 MinMaxC += APInt::getSignedMinValue(MinMaxC.getBitWidth()); 1789 } 1790 1791 // (X != MAX) && (X < Y) --> X < Y 1792 // (X == MAX) || (X >= Y) --> X >= Y 1793 if (MinMaxC.isMaxValue()) 1794 if (Pred0 == ICmpInst::ICMP_NE && Pred1 == ICmpInst::ICMP_ULT) 1795 return Cmp1; 1796 1797 // (X != MIN) && (X > Y) --> X > Y 1798 // (X == MIN) || (X <= Y) --> X <= Y 1799 if (MinMaxC.isMinValue()) 1800 if (Pred0 == ICmpInst::ICMP_NE && Pred1 == ICmpInst::ICMP_UGT) 1801 return Cmp1; 1802 1803 return nullptr; 1804 } 1805 1806 /// Try to simplify and/or of icmp with ctpop intrinsic. 1807 static Value *simplifyAndOrOfICmpsWithCtpop(ICmpInst *Cmp0, ICmpInst *Cmp1, 1808 bool IsAnd) { 1809 ICmpInst::Predicate Pred0, Pred1; 1810 Value *X; 1811 const APInt *C; 1812 if (!match(Cmp0, m_ICmp(Pred0, m_Intrinsic<Intrinsic::ctpop>(m_Value(X)), 1813 m_APInt(C))) || 1814 !match(Cmp1, m_ICmp(Pred1, m_Specific(X), m_ZeroInt())) || C->isZero()) 1815 return nullptr; 1816 1817 // (ctpop(X) == C) || (X != 0) --> X != 0 where C > 0 1818 if (!IsAnd && Pred0 == ICmpInst::ICMP_EQ && Pred1 == ICmpInst::ICMP_NE) 1819 return Cmp1; 1820 // (ctpop(X) != C) && (X == 0) --> X == 0 where C > 0 1821 if (IsAnd && Pred0 == ICmpInst::ICMP_NE && Pred1 == ICmpInst::ICMP_EQ) 1822 return Cmp1; 1823 1824 return nullptr; 1825 } 1826 1827 static Value *simplifyAndOfICmps(ICmpInst *Op0, ICmpInst *Op1, 1828 const SimplifyQuery &Q) { 1829 if (Value *X = simplifyUnsignedRangeCheck(Op0, Op1, /*IsAnd=*/true, Q)) 1830 return X; 1831 if (Value *X = simplifyUnsignedRangeCheck(Op1, Op0, /*IsAnd=*/true, Q)) 1832 return X; 1833 1834 if (Value *X = simplifyAndOfICmpsWithSameOperands(Op0, Op1)) 1835 return X; 1836 if (Value *X = simplifyAndOfICmpsWithSameOperands(Op1, Op0)) 1837 return X; 1838 1839 if (Value *X = simplifyAndOrOfICmpsWithConstants(Op0, Op1, true)) 1840 return X; 1841 1842 if (Value *X = simplifyAndOrOfICmpsWithLimitConst(Op0, Op1, true)) 1843 return X; 1844 1845 if (Value *X = simplifyAndOrOfICmpsWithZero(Op0, Op1, true)) 1846 return X; 1847 1848 if (Value *X = simplifyAndOrOfICmpsWithCtpop(Op0, Op1, true)) 1849 return X; 1850 if (Value *X = simplifyAndOrOfICmpsWithCtpop(Op1, Op0, true)) 1851 return X; 1852 1853 if (Value *X = simplifyAndOfICmpsWithAdd(Op0, Op1, Q.IIQ)) 1854 return X; 1855 if (Value *X = simplifyAndOfICmpsWithAdd(Op1, Op0, Q.IIQ)) 1856 return X; 1857 1858 return nullptr; 1859 } 1860 1861 static Value *simplifyOrOfICmpsWithAdd(ICmpInst *Op0, ICmpInst *Op1, 1862 const InstrInfoQuery &IIQ) { 1863 // (icmp (add V, C0), C1) | (icmp V, C0) 1864 ICmpInst::Predicate Pred0, Pred1; 1865 const APInt *C0, *C1; 1866 Value *V; 1867 if (!match(Op0, m_ICmp(Pred0, m_Add(m_Value(V), m_APInt(C0)), m_APInt(C1)))) 1868 return nullptr; 1869 1870 if (!match(Op1, m_ICmp(Pred1, m_Specific(V), m_Value()))) 1871 return nullptr; 1872 1873 auto *AddInst = cast<BinaryOperator>(Op0->getOperand(0)); 1874 if (AddInst->getOperand(1) != Op1->getOperand(1)) 1875 return nullptr; 1876 1877 Type *ITy = Op0->getType(); 1878 bool isNSW = IIQ.hasNoSignedWrap(AddInst); 1879 bool isNUW = IIQ.hasNoUnsignedWrap(AddInst); 1880 1881 const APInt Delta = *C1 - *C0; 1882 if (C0->isStrictlyPositive()) { 1883 if (Delta == 2) { 1884 if (Pred0 == ICmpInst::ICMP_UGE && Pred1 == ICmpInst::ICMP_SLE) 1885 return getTrue(ITy); 1886 if (Pred0 == ICmpInst::ICMP_SGE && Pred1 == ICmpInst::ICMP_SLE && isNSW) 1887 return getTrue(ITy); 1888 } 1889 if (Delta == 1) { 1890 if (Pred0 == ICmpInst::ICMP_UGT && Pred1 == ICmpInst::ICMP_SLE) 1891 return getTrue(ITy); 1892 if (Pred0 == ICmpInst::ICMP_SGT && Pred1 == ICmpInst::ICMP_SLE && isNSW) 1893 return getTrue(ITy); 1894 } 1895 } 1896 if (C0->getBoolValue() && isNUW) { 1897 if (Delta == 2) 1898 if (Pred0 == ICmpInst::ICMP_UGE && Pred1 == ICmpInst::ICMP_ULE) 1899 return getTrue(ITy); 1900 if (Delta == 1) 1901 if (Pred0 == ICmpInst::ICMP_UGT && Pred1 == ICmpInst::ICMP_ULE) 1902 return getTrue(ITy); 1903 } 1904 1905 return nullptr; 1906 } 1907 1908 static Value *simplifyOrOfICmps(ICmpInst *Op0, ICmpInst *Op1, 1909 const SimplifyQuery &Q) { 1910 if (Value *X = simplifyUnsignedRangeCheck(Op0, Op1, /*IsAnd=*/false, Q)) 1911 return X; 1912 if (Value *X = simplifyUnsignedRangeCheck(Op1, Op0, /*IsAnd=*/false, Q)) 1913 return X; 1914 1915 if (Value *X = simplifyOrOfICmpsWithSameOperands(Op0, Op1)) 1916 return X; 1917 if (Value *X = simplifyOrOfICmpsWithSameOperands(Op1, Op0)) 1918 return X; 1919 1920 if (Value *X = simplifyAndOrOfICmpsWithConstants(Op0, Op1, false)) 1921 return X; 1922 1923 if (Value *X = simplifyAndOrOfICmpsWithLimitConst(Op0, Op1, false)) 1924 return X; 1925 1926 if (Value *X = simplifyAndOrOfICmpsWithZero(Op0, Op1, false)) 1927 return X; 1928 1929 if (Value *X = simplifyAndOrOfICmpsWithCtpop(Op0, Op1, false)) 1930 return X; 1931 if (Value *X = simplifyAndOrOfICmpsWithCtpop(Op1, Op0, false)) 1932 return X; 1933 1934 if (Value *X = simplifyOrOfICmpsWithAdd(Op0, Op1, Q.IIQ)) 1935 return X; 1936 if (Value *X = simplifyOrOfICmpsWithAdd(Op1, Op0, Q.IIQ)) 1937 return X; 1938 1939 return nullptr; 1940 } 1941 1942 static Value *simplifyAndOrOfFCmps(const TargetLibraryInfo *TLI, 1943 FCmpInst *LHS, FCmpInst *RHS, bool IsAnd) { 1944 Value *LHS0 = LHS->getOperand(0), *LHS1 = LHS->getOperand(1); 1945 Value *RHS0 = RHS->getOperand(0), *RHS1 = RHS->getOperand(1); 1946 if (LHS0->getType() != RHS0->getType()) 1947 return nullptr; 1948 1949 FCmpInst::Predicate PredL = LHS->getPredicate(), PredR = RHS->getPredicate(); 1950 if ((PredL == FCmpInst::FCMP_ORD && PredR == FCmpInst::FCMP_ORD && IsAnd) || 1951 (PredL == FCmpInst::FCMP_UNO && PredR == FCmpInst::FCMP_UNO && !IsAnd)) { 1952 // (fcmp ord NNAN, X) & (fcmp ord X, Y) --> fcmp ord X, Y 1953 // (fcmp ord NNAN, X) & (fcmp ord Y, X) --> fcmp ord Y, X 1954 // (fcmp ord X, NNAN) & (fcmp ord X, Y) --> fcmp ord X, Y 1955 // (fcmp ord X, NNAN) & (fcmp ord Y, X) --> fcmp ord Y, X 1956 // (fcmp uno NNAN, X) | (fcmp uno X, Y) --> fcmp uno X, Y 1957 // (fcmp uno NNAN, X) | (fcmp uno Y, X) --> fcmp uno Y, X 1958 // (fcmp uno X, NNAN) | (fcmp uno X, Y) --> fcmp uno X, Y 1959 // (fcmp uno X, NNAN) | (fcmp uno Y, X) --> fcmp uno Y, X 1960 if ((isKnownNeverNaN(LHS0, TLI) && (LHS1 == RHS0 || LHS1 == RHS1)) || 1961 (isKnownNeverNaN(LHS1, TLI) && (LHS0 == RHS0 || LHS0 == RHS1))) 1962 return RHS; 1963 1964 // (fcmp ord X, Y) & (fcmp ord NNAN, X) --> fcmp ord X, Y 1965 // (fcmp ord Y, X) & (fcmp ord NNAN, X) --> fcmp ord Y, X 1966 // (fcmp ord X, Y) & (fcmp ord X, NNAN) --> fcmp ord X, Y 1967 // (fcmp ord Y, X) & (fcmp ord X, NNAN) --> fcmp ord Y, X 1968 // (fcmp uno X, Y) | (fcmp uno NNAN, X) --> fcmp uno X, Y 1969 // (fcmp uno Y, X) | (fcmp uno NNAN, X) --> fcmp uno Y, X 1970 // (fcmp uno X, Y) | (fcmp uno X, NNAN) --> fcmp uno X, Y 1971 // (fcmp uno Y, X) | (fcmp uno X, NNAN) --> fcmp uno Y, X 1972 if ((isKnownNeverNaN(RHS0, TLI) && (RHS1 == LHS0 || RHS1 == LHS1)) || 1973 (isKnownNeverNaN(RHS1, TLI) && (RHS0 == LHS0 || RHS0 == LHS1))) 1974 return LHS; 1975 } 1976 1977 return nullptr; 1978 } 1979 1980 static Value *simplifyAndOrOfCmps(const SimplifyQuery &Q, 1981 Value *Op0, Value *Op1, bool IsAnd) { 1982 // Look through casts of the 'and' operands to find compares. 1983 auto *Cast0 = dyn_cast<CastInst>(Op0); 1984 auto *Cast1 = dyn_cast<CastInst>(Op1); 1985 if (Cast0 && Cast1 && Cast0->getOpcode() == Cast1->getOpcode() && 1986 Cast0->getSrcTy() == Cast1->getSrcTy()) { 1987 Op0 = Cast0->getOperand(0); 1988 Op1 = Cast1->getOperand(0); 1989 } 1990 1991 Value *V = nullptr; 1992 auto *ICmp0 = dyn_cast<ICmpInst>(Op0); 1993 auto *ICmp1 = dyn_cast<ICmpInst>(Op1); 1994 if (ICmp0 && ICmp1) 1995 V = IsAnd ? simplifyAndOfICmps(ICmp0, ICmp1, Q) 1996 : simplifyOrOfICmps(ICmp0, ICmp1, Q); 1997 1998 auto *FCmp0 = dyn_cast<FCmpInst>(Op0); 1999 auto *FCmp1 = dyn_cast<FCmpInst>(Op1); 2000 if (FCmp0 && FCmp1) 2001 V = simplifyAndOrOfFCmps(Q.TLI, FCmp0, FCmp1, IsAnd); 2002 2003 if (!V) 2004 return nullptr; 2005 if (!Cast0) 2006 return V; 2007 2008 // If we looked through casts, we can only handle a constant simplification 2009 // because we are not allowed to create a cast instruction here. 2010 if (auto *C = dyn_cast<Constant>(V)) 2011 return ConstantExpr::getCast(Cast0->getOpcode(), C, Cast0->getType()); 2012 2013 return nullptr; 2014 } 2015 2016 /// Given a bitwise logic op, check if the operands are add/sub with a common 2017 /// source value and inverted constant (identity: C - X -> ~(X + ~C)). 2018 static Value *simplifyLogicOfAddSub(Value *Op0, Value *Op1, 2019 Instruction::BinaryOps Opcode) { 2020 assert(Op0->getType() == Op1->getType() && "Mismatched binop types"); 2021 assert(BinaryOperator::isBitwiseLogicOp(Opcode) && "Expected logic op"); 2022 Value *X; 2023 Constant *C1, *C2; 2024 if ((match(Op0, m_Add(m_Value(X), m_Constant(C1))) && 2025 match(Op1, m_Sub(m_Constant(C2), m_Specific(X)))) || 2026 (match(Op1, m_Add(m_Value(X), m_Constant(C1))) && 2027 match(Op0, m_Sub(m_Constant(C2), m_Specific(X))))) { 2028 if (ConstantExpr::getNot(C1) == C2) { 2029 // (X + C) & (~C - X) --> (X + C) & ~(X + C) --> 0 2030 // (X + C) | (~C - X) --> (X + C) | ~(X + C) --> -1 2031 // (X + C) ^ (~C - X) --> (X + C) ^ ~(X + C) --> -1 2032 Type *Ty = Op0->getType(); 2033 return Opcode == Instruction::And ? ConstantInt::getNullValue(Ty) 2034 : ConstantInt::getAllOnesValue(Ty); 2035 } 2036 } 2037 return nullptr; 2038 } 2039 2040 /// Given operands for an And, see if we can fold the result. 2041 /// If not, this returns null. 2042 static Value *SimplifyAndInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 2043 unsigned MaxRecurse) { 2044 if (Constant *C = foldOrCommuteConstant(Instruction::And, Op0, Op1, Q)) 2045 return C; 2046 2047 // X & poison -> poison 2048 if (isa<PoisonValue>(Op1)) 2049 return Op1; 2050 2051 // X & undef -> 0 2052 if (Q.isUndefValue(Op1)) 2053 return Constant::getNullValue(Op0->getType()); 2054 2055 // X & X = X 2056 if (Op0 == Op1) 2057 return Op0; 2058 2059 // X & 0 = 0 2060 if (match(Op1, m_Zero())) 2061 return Constant::getNullValue(Op0->getType()); 2062 2063 // X & -1 = X 2064 if (match(Op1, m_AllOnes())) 2065 return Op0; 2066 2067 // A & ~A = ~A & A = 0 2068 if (match(Op0, m_Not(m_Specific(Op1))) || 2069 match(Op1, m_Not(m_Specific(Op0)))) 2070 return Constant::getNullValue(Op0->getType()); 2071 2072 // (A | ?) & A = A 2073 if (match(Op0, m_c_Or(m_Specific(Op1), m_Value()))) 2074 return Op1; 2075 2076 // A & (A | ?) = A 2077 if (match(Op1, m_c_Or(m_Specific(Op0), m_Value()))) 2078 return Op0; 2079 2080 // (X | Y) & (X | ~Y) --> X (commuted 8 ways) 2081 Value *X, *Y; 2082 if (match(Op0, m_c_Or(m_Value(X), m_Not(m_Value(Y)))) && 2083 match(Op1, m_c_Or(m_Deferred(X), m_Deferred(Y)))) 2084 return X; 2085 if (match(Op1, m_c_Or(m_Value(X), m_Not(m_Value(Y)))) && 2086 match(Op0, m_c_Or(m_Deferred(X), m_Deferred(Y)))) 2087 return X; 2088 2089 if (Value *V = simplifyLogicOfAddSub(Op0, Op1, Instruction::And)) 2090 return V; 2091 2092 // A mask that only clears known zeros of a shifted value is a no-op. 2093 const APInt *Mask; 2094 const APInt *ShAmt; 2095 if (match(Op1, m_APInt(Mask))) { 2096 // If all bits in the inverted and shifted mask are clear: 2097 // and (shl X, ShAmt), Mask --> shl X, ShAmt 2098 if (match(Op0, m_Shl(m_Value(X), m_APInt(ShAmt))) && 2099 (~(*Mask)).lshr(*ShAmt).isZero()) 2100 return Op0; 2101 2102 // If all bits in the inverted and shifted mask are clear: 2103 // and (lshr X, ShAmt), Mask --> lshr X, ShAmt 2104 if (match(Op0, m_LShr(m_Value(X), m_APInt(ShAmt))) && 2105 (~(*Mask)).shl(*ShAmt).isZero()) 2106 return Op0; 2107 } 2108 2109 // If we have a multiplication overflow check that is being 'and'ed with a 2110 // check that one of the multipliers is not zero, we can omit the 'and', and 2111 // only keep the overflow check. 2112 if (isCheckForZeroAndMulWithOverflow(Op0, Op1, true)) 2113 return Op1; 2114 if (isCheckForZeroAndMulWithOverflow(Op1, Op0, true)) 2115 return Op0; 2116 2117 // A & (-A) = A if A is a power of two or zero. 2118 if (match(Op0, m_Neg(m_Specific(Op1))) || 2119 match(Op1, m_Neg(m_Specific(Op0)))) { 2120 if (isKnownToBeAPowerOfTwo(Op0, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI, 2121 Q.DT)) 2122 return Op0; 2123 if (isKnownToBeAPowerOfTwo(Op1, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI, 2124 Q.DT)) 2125 return Op1; 2126 } 2127 2128 // This is a similar pattern used for checking if a value is a power-of-2: 2129 // (A - 1) & A --> 0 (if A is a power-of-2 or 0) 2130 // A & (A - 1) --> 0 (if A is a power-of-2 or 0) 2131 if (match(Op0, m_Add(m_Specific(Op1), m_AllOnes())) && 2132 isKnownToBeAPowerOfTwo(Op1, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI, Q.DT)) 2133 return Constant::getNullValue(Op1->getType()); 2134 if (match(Op1, m_Add(m_Specific(Op0), m_AllOnes())) && 2135 isKnownToBeAPowerOfTwo(Op0, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI, Q.DT)) 2136 return Constant::getNullValue(Op0->getType()); 2137 2138 if (Value *V = simplifyAndOrOfCmps(Q, Op0, Op1, true)) 2139 return V; 2140 2141 // Try some generic simplifications for associative operations. 2142 if (Value *V = SimplifyAssociativeBinOp(Instruction::And, Op0, Op1, Q, 2143 MaxRecurse)) 2144 return V; 2145 2146 // And distributes over Or. Try some generic simplifications based on this. 2147 if (Value *V = expandCommutativeBinOp(Instruction::And, Op0, Op1, 2148 Instruction::Or, Q, MaxRecurse)) 2149 return V; 2150 2151 // And distributes over Xor. Try some generic simplifications based on this. 2152 if (Value *V = expandCommutativeBinOp(Instruction::And, Op0, Op1, 2153 Instruction::Xor, Q, MaxRecurse)) 2154 return V; 2155 2156 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) { 2157 if (Op0->getType()->isIntOrIntVectorTy(1)) { 2158 // A & (A && B) -> A && B 2159 if (match(Op1, m_Select(m_Specific(Op0), m_Value(), m_Zero()))) 2160 return Op1; 2161 else if (match(Op0, m_Select(m_Specific(Op1), m_Value(), m_Zero()))) 2162 return Op0; 2163 } 2164 // If the operation is with the result of a select instruction, check 2165 // whether operating on either branch of the select always yields the same 2166 // value. 2167 if (Value *V = ThreadBinOpOverSelect(Instruction::And, Op0, Op1, Q, 2168 MaxRecurse)) 2169 return V; 2170 } 2171 2172 // If the operation is with the result of a phi instruction, check whether 2173 // operating on all incoming values of the phi always yields the same value. 2174 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 2175 if (Value *V = ThreadBinOpOverPHI(Instruction::And, Op0, Op1, Q, 2176 MaxRecurse)) 2177 return V; 2178 2179 // Assuming the effective width of Y is not larger than A, i.e. all bits 2180 // from X and Y are disjoint in (X << A) | Y, 2181 // if the mask of this AND op covers all bits of X or Y, while it covers 2182 // no bits from the other, we can bypass this AND op. E.g., 2183 // ((X << A) | Y) & Mask -> Y, 2184 // if Mask = ((1 << effective_width_of(Y)) - 1) 2185 // ((X << A) | Y) & Mask -> X << A, 2186 // if Mask = ((1 << effective_width_of(X)) - 1) << A 2187 // SimplifyDemandedBits in InstCombine can optimize the general case. 2188 // This pattern aims to help other passes for a common case. 2189 Value *XShifted; 2190 if (match(Op1, m_APInt(Mask)) && 2191 match(Op0, m_c_Or(m_CombineAnd(m_NUWShl(m_Value(X), m_APInt(ShAmt)), 2192 m_Value(XShifted)), 2193 m_Value(Y)))) { 2194 const unsigned Width = Op0->getType()->getScalarSizeInBits(); 2195 const unsigned ShftCnt = ShAmt->getLimitedValue(Width); 2196 const KnownBits YKnown = computeKnownBits(Y, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2197 const unsigned EffWidthY = YKnown.countMaxActiveBits(); 2198 if (EffWidthY <= ShftCnt) { 2199 const KnownBits XKnown = computeKnownBits(X, Q.DL, 0, Q.AC, Q.CxtI, 2200 Q.DT); 2201 const unsigned EffWidthX = XKnown.countMaxActiveBits(); 2202 const APInt EffBitsY = APInt::getLowBitsSet(Width, EffWidthY); 2203 const APInt EffBitsX = APInt::getLowBitsSet(Width, EffWidthX) << ShftCnt; 2204 // If the mask is extracting all bits from X or Y as is, we can skip 2205 // this AND op. 2206 if (EffBitsY.isSubsetOf(*Mask) && !EffBitsX.intersects(*Mask)) 2207 return Y; 2208 if (EffBitsX.isSubsetOf(*Mask) && !EffBitsY.intersects(*Mask)) 2209 return XShifted; 2210 } 2211 } 2212 2213 // ((X | Y) ^ X ) & ((X | Y) ^ Y) --> 0 2214 // ((X | Y) ^ Y ) & ((X | Y) ^ X) --> 0 2215 BinaryOperator *Or; 2216 if (match(Op0, m_c_Xor(m_Value(X), 2217 m_CombineAnd(m_BinOp(Or), 2218 m_c_Or(m_Deferred(X), m_Value(Y))))) && 2219 match(Op1, m_c_Xor(m_Specific(Or), m_Specific(Y)))) 2220 return Constant::getNullValue(Op0->getType()); 2221 2222 if (Op0->getType()->isIntOrIntVectorTy(1)) { 2223 // Op0&Op1 -> Op0 where Op0 implies Op1 2224 if (isImpliedCondition(Op0, Op1, Q.DL).getValueOr(false)) 2225 return Op0; 2226 // Op0&Op1 -> Op1 where Op1 implies Op0 2227 if (isImpliedCondition(Op1, Op0, Q.DL).getValueOr(false)) 2228 return Op1; 2229 } 2230 2231 return nullptr; 2232 } 2233 2234 Value *llvm::SimplifyAndInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 2235 return ::SimplifyAndInst(Op0, Op1, Q, RecursionLimit); 2236 } 2237 2238 static Value *simplifyOrLogic(Value *X, Value *Y) { 2239 assert(X->getType() == Y->getType() && "Expected same type for 'or' ops"); 2240 Type *Ty = X->getType(); 2241 2242 // X | ~X --> -1 2243 if (match(Y, m_Not(m_Specific(X)))) 2244 return ConstantInt::getAllOnesValue(Ty); 2245 2246 // X | ~(X & ?) = -1 2247 if (match(Y, m_Not(m_c_And(m_Specific(X), m_Value())))) 2248 return ConstantInt::getAllOnesValue(Ty); 2249 2250 // X | (X & ?) --> X 2251 if (match(Y, m_c_And(m_Specific(X), m_Value()))) 2252 return X; 2253 2254 Value *A, *B; 2255 2256 // (A ^ B) | (A | B) --> A | B 2257 // (A ^ B) | (B | A) --> B | A 2258 if (match(X, m_Xor(m_Value(A), m_Value(B))) && 2259 match(Y, m_c_Or(m_Specific(A), m_Specific(B)))) 2260 return Y; 2261 2262 // ~(A ^ B) | (A | B) --> -1 2263 // ~(A ^ B) | (B | A) --> -1 2264 if (match(X, m_Not(m_Xor(m_Value(A), m_Value(B)))) && 2265 match(Y, m_c_Or(m_Specific(A), m_Specific(B)))) 2266 return ConstantInt::getAllOnesValue(Ty); 2267 2268 // (A & ~B) | (A ^ B) --> A ^ B 2269 // (~B & A) | (A ^ B) --> A ^ B 2270 // (A & ~B) | (B ^ A) --> B ^ A 2271 // (~B & A) | (B ^ A) --> B ^ A 2272 if (match(X, m_c_And(m_Value(A), m_Not(m_Value(B)))) && 2273 match(Y, m_c_Xor(m_Specific(A), m_Specific(B)))) 2274 return Y; 2275 2276 // (~A ^ B) | (A & B) --> ~A ^ B 2277 // (B ^ ~A) | (A & B) --> B ^ ~A 2278 // (~A ^ B) | (B & A) --> ~A ^ B 2279 // (B ^ ~A) | (B & A) --> B ^ ~A 2280 if (match(X, m_c_Xor(m_Not(m_Value(A)), m_Value(B))) && 2281 match(Y, m_c_And(m_Specific(A), m_Specific(B)))) 2282 return X; 2283 2284 // (~A | B) | (A ^ B) --> -1 2285 // (~A | B) | (B ^ A) --> -1 2286 // (B | ~A) | (A ^ B) --> -1 2287 // (B | ~A) | (B ^ A) --> -1 2288 if (match(X, m_c_Or(m_Not(m_Value(A)), m_Value(B))) && 2289 match(Y, m_c_Xor(m_Specific(A), m_Specific(B)))) 2290 return ConstantInt::getAllOnesValue(Ty); 2291 2292 // (~A & B) | ~(A | B) --> ~A 2293 // (~A & B) | ~(B | A) --> ~A 2294 // (B & ~A) | ~(A | B) --> ~A 2295 // (B & ~A) | ~(B | A) --> ~A 2296 Value *NotA; 2297 if (match(X, 2298 m_c_And(m_CombineAnd(m_Value(NotA), m_NotForbidUndef(m_Value(A))), 2299 m_Value(B))) && 2300 match(Y, m_Not(m_c_Or(m_Specific(A), m_Specific(B))))) 2301 return NotA; 2302 2303 // ~(A ^ B) | (A & B) --> ~(A ^ B) 2304 // ~(A ^ B) | (B & A) --> ~(A ^ B) 2305 Value *NotAB; 2306 if (match(X, m_CombineAnd(m_NotForbidUndef(m_Xor(m_Value(A), m_Value(B))), 2307 m_Value(NotAB))) && 2308 match(Y, m_c_And(m_Specific(A), m_Specific(B)))) 2309 return NotAB; 2310 2311 // ~(A & B) | (A ^ B) --> ~(A & B) 2312 // ~(A & B) | (B ^ A) --> ~(A & B) 2313 if (match(X, m_CombineAnd(m_NotForbidUndef(m_And(m_Value(A), m_Value(B))), 2314 m_Value(NotAB))) && 2315 match(Y, m_c_Xor(m_Specific(A), m_Specific(B)))) 2316 return NotAB; 2317 2318 return nullptr; 2319 } 2320 2321 /// Given operands for an Or, see if we can fold the result. 2322 /// If not, this returns null. 2323 static Value *SimplifyOrInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 2324 unsigned MaxRecurse) { 2325 if (Constant *C = foldOrCommuteConstant(Instruction::Or, Op0, Op1, Q)) 2326 return C; 2327 2328 // X | poison -> poison 2329 if (isa<PoisonValue>(Op1)) 2330 return Op1; 2331 2332 // X | undef -> -1 2333 // X | -1 = -1 2334 // Do not return Op1 because it may contain undef elements if it's a vector. 2335 if (Q.isUndefValue(Op1) || match(Op1, m_AllOnes())) 2336 return Constant::getAllOnesValue(Op0->getType()); 2337 2338 // X | X = X 2339 // X | 0 = X 2340 if (Op0 == Op1 || match(Op1, m_Zero())) 2341 return Op0; 2342 2343 if (Value *R = simplifyOrLogic(Op0, Op1)) 2344 return R; 2345 if (Value *R = simplifyOrLogic(Op1, Op0)) 2346 return R; 2347 2348 if (Value *V = simplifyLogicOfAddSub(Op0, Op1, Instruction::Or)) 2349 return V; 2350 2351 // Rotated -1 is still -1: 2352 // (-1 << X) | (-1 >> (C - X)) --> -1 2353 // (-1 >> X) | (-1 << (C - X)) --> -1 2354 // ...with C <= bitwidth (and commuted variants). 2355 Value *X, *Y; 2356 if ((match(Op0, m_Shl(m_AllOnes(), m_Value(X))) && 2357 match(Op1, m_LShr(m_AllOnes(), m_Value(Y)))) || 2358 (match(Op1, m_Shl(m_AllOnes(), m_Value(X))) && 2359 match(Op0, m_LShr(m_AllOnes(), m_Value(Y))))) { 2360 const APInt *C; 2361 if ((match(X, m_Sub(m_APInt(C), m_Specific(Y))) || 2362 match(Y, m_Sub(m_APInt(C), m_Specific(X)))) && 2363 C->ule(X->getType()->getScalarSizeInBits())) { 2364 return ConstantInt::getAllOnesValue(X->getType()); 2365 } 2366 } 2367 2368 // A funnel shift (rotate) can be decomposed into simpler shifts. See if we 2369 // are mixing in another shift that is redundant with the funnel shift. 2370 2371 // (fshl X, ?, Y) | (shl X, Y) --> fshl X, ?, Y 2372 // (shl X, Y) | (fshl X, ?, Y) --> fshl X, ?, Y 2373 if (match(Op0, 2374 m_Intrinsic<Intrinsic::fshl>(m_Value(X), m_Value(), m_Value(Y))) && 2375 match(Op1, m_Shl(m_Specific(X), m_Specific(Y)))) 2376 return Op0; 2377 if (match(Op1, 2378 m_Intrinsic<Intrinsic::fshl>(m_Value(X), m_Value(), m_Value(Y))) && 2379 match(Op0, m_Shl(m_Specific(X), m_Specific(Y)))) 2380 return Op1; 2381 2382 // (fshr ?, X, Y) | (lshr X, Y) --> fshr ?, X, Y 2383 // (lshr X, Y) | (fshr ?, X, Y) --> fshr ?, X, Y 2384 if (match(Op0, 2385 m_Intrinsic<Intrinsic::fshr>(m_Value(), m_Value(X), m_Value(Y))) && 2386 match(Op1, m_LShr(m_Specific(X), m_Specific(Y)))) 2387 return Op0; 2388 if (match(Op1, 2389 m_Intrinsic<Intrinsic::fshr>(m_Value(), m_Value(X), m_Value(Y))) && 2390 match(Op0, m_LShr(m_Specific(X), m_Specific(Y)))) 2391 return Op1; 2392 2393 if (Value *V = simplifyAndOrOfCmps(Q, Op0, Op1, false)) 2394 return V; 2395 2396 // If we have a multiplication overflow check that is being 'and'ed with a 2397 // check that one of the multipliers is not zero, we can omit the 'and', and 2398 // only keep the overflow check. 2399 if (isCheckForZeroAndMulWithOverflow(Op0, Op1, false)) 2400 return Op1; 2401 if (isCheckForZeroAndMulWithOverflow(Op1, Op0, false)) 2402 return Op0; 2403 2404 // Try some generic simplifications for associative operations. 2405 if (Value *V = SimplifyAssociativeBinOp(Instruction::Or, Op0, Op1, Q, 2406 MaxRecurse)) 2407 return V; 2408 2409 // Or distributes over And. Try some generic simplifications based on this. 2410 if (Value *V = expandCommutativeBinOp(Instruction::Or, Op0, Op1, 2411 Instruction::And, Q, MaxRecurse)) 2412 return V; 2413 2414 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) { 2415 if (Op0->getType()->isIntOrIntVectorTy(1)) { 2416 // A | (A || B) -> A || B 2417 if (match(Op1, m_Select(m_Specific(Op0), m_One(), m_Value()))) 2418 return Op1; 2419 else if (match(Op0, m_Select(m_Specific(Op1), m_One(), m_Value()))) 2420 return Op0; 2421 } 2422 // If the operation is with the result of a select instruction, check 2423 // whether operating on either branch of the select always yields the same 2424 // value. 2425 if (Value *V = ThreadBinOpOverSelect(Instruction::Or, Op0, Op1, Q, 2426 MaxRecurse)) 2427 return V; 2428 } 2429 2430 // (A & C1)|(B & C2) 2431 Value *A, *B; 2432 const APInt *C1, *C2; 2433 if (match(Op0, m_And(m_Value(A), m_APInt(C1))) && 2434 match(Op1, m_And(m_Value(B), m_APInt(C2)))) { 2435 if (*C1 == ~*C2) { 2436 // (A & C1)|(B & C2) 2437 // If we have: ((V + N) & C1) | (V & C2) 2438 // .. and C2 = ~C1 and C2 is 0+1+ and (N & C2) == 0 2439 // replace with V+N. 2440 Value *N; 2441 if (C2->isMask() && // C2 == 0+1+ 2442 match(A, m_c_Add(m_Specific(B), m_Value(N)))) { 2443 // Add commutes, try both ways. 2444 if (MaskedValueIsZero(N, *C2, Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 2445 return A; 2446 } 2447 // Or commutes, try both ways. 2448 if (C1->isMask() && 2449 match(B, m_c_Add(m_Specific(A), m_Value(N)))) { 2450 // Add commutes, try both ways. 2451 if (MaskedValueIsZero(N, *C1, Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 2452 return B; 2453 } 2454 } 2455 } 2456 2457 // If the operation is with the result of a phi instruction, check whether 2458 // operating on all incoming values of the phi always yields the same value. 2459 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 2460 if (Value *V = ThreadBinOpOverPHI(Instruction::Or, Op0, Op1, Q, MaxRecurse)) 2461 return V; 2462 2463 if (Op0->getType()->isIntOrIntVectorTy(1)) { 2464 // Op0|Op1 -> Op1 where Op0 implies Op1 2465 if (isImpliedCondition(Op0, Op1, Q.DL).getValueOr(false)) 2466 return Op1; 2467 // Op0|Op1 -> Op0 where Op1 implies Op0 2468 if (isImpliedCondition(Op1, Op0, Q.DL).getValueOr(false)) 2469 return Op0; 2470 } 2471 2472 return nullptr; 2473 } 2474 2475 Value *llvm::SimplifyOrInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 2476 return ::SimplifyOrInst(Op0, Op1, Q, RecursionLimit); 2477 } 2478 2479 /// Given operands for a Xor, see if we can fold the result. 2480 /// If not, this returns null. 2481 static Value *SimplifyXorInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 2482 unsigned MaxRecurse) { 2483 if (Constant *C = foldOrCommuteConstant(Instruction::Xor, Op0, Op1, Q)) 2484 return C; 2485 2486 // X ^ poison -> poison 2487 if (isa<PoisonValue>(Op1)) 2488 return Op1; 2489 2490 // A ^ undef -> undef 2491 if (Q.isUndefValue(Op1)) 2492 return Op1; 2493 2494 // A ^ 0 = A 2495 if (match(Op1, m_Zero())) 2496 return Op0; 2497 2498 // A ^ A = 0 2499 if (Op0 == Op1) 2500 return Constant::getNullValue(Op0->getType()); 2501 2502 // A ^ ~A = ~A ^ A = -1 2503 if (match(Op0, m_Not(m_Specific(Op1))) || 2504 match(Op1, m_Not(m_Specific(Op0)))) 2505 return Constant::getAllOnesValue(Op0->getType()); 2506 2507 auto foldAndOrNot = [](Value *X, Value *Y) -> Value * { 2508 Value *A, *B; 2509 // (~A & B) ^ (A | B) --> A -- There are 8 commuted variants. 2510 if (match(X, m_c_And(m_Not(m_Value(A)), m_Value(B))) && 2511 match(Y, m_c_Or(m_Specific(A), m_Specific(B)))) 2512 return A; 2513 2514 // (~A | B) ^ (A & B) --> ~A -- There are 8 commuted variants. 2515 // The 'not' op must contain a complete -1 operand (no undef elements for 2516 // vector) for the transform to be safe. 2517 Value *NotA; 2518 if (match(X, 2519 m_c_Or(m_CombineAnd(m_NotForbidUndef(m_Value(A)), m_Value(NotA)), 2520 m_Value(B))) && 2521 match(Y, m_c_And(m_Specific(A), m_Specific(B)))) 2522 return NotA; 2523 2524 return nullptr; 2525 }; 2526 if (Value *R = foldAndOrNot(Op0, Op1)) 2527 return R; 2528 if (Value *R = foldAndOrNot(Op1, Op0)) 2529 return R; 2530 2531 if (Value *V = simplifyLogicOfAddSub(Op0, Op1, Instruction::Xor)) 2532 return V; 2533 2534 // Try some generic simplifications for associative operations. 2535 if (Value *V = SimplifyAssociativeBinOp(Instruction::Xor, Op0, Op1, Q, 2536 MaxRecurse)) 2537 return V; 2538 2539 // Threading Xor over selects and phi nodes is pointless, so don't bother. 2540 // Threading over the select in "A ^ select(cond, B, C)" means evaluating 2541 // "A^B" and "A^C" and seeing if they are equal; but they are equal if and 2542 // only if B and C are equal. If B and C are equal then (since we assume 2543 // that operands have already been simplified) "select(cond, B, C)" should 2544 // have been simplified to the common value of B and C already. Analysing 2545 // "A^B" and "A^C" thus gains nothing, but costs compile time. Similarly 2546 // for threading over phi nodes. 2547 2548 return nullptr; 2549 } 2550 2551 Value *llvm::SimplifyXorInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 2552 return ::SimplifyXorInst(Op0, Op1, Q, RecursionLimit); 2553 } 2554 2555 2556 static Type *GetCompareTy(Value *Op) { 2557 return CmpInst::makeCmpResultType(Op->getType()); 2558 } 2559 2560 /// Rummage around inside V looking for something equivalent to the comparison 2561 /// "LHS Pred RHS". Return such a value if found, otherwise return null. 2562 /// Helper function for analyzing max/min idioms. 2563 static Value *ExtractEquivalentCondition(Value *V, CmpInst::Predicate Pred, 2564 Value *LHS, Value *RHS) { 2565 SelectInst *SI = dyn_cast<SelectInst>(V); 2566 if (!SI) 2567 return nullptr; 2568 CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition()); 2569 if (!Cmp) 2570 return nullptr; 2571 Value *CmpLHS = Cmp->getOperand(0), *CmpRHS = Cmp->getOperand(1); 2572 if (Pred == Cmp->getPredicate() && LHS == CmpLHS && RHS == CmpRHS) 2573 return Cmp; 2574 if (Pred == CmpInst::getSwappedPredicate(Cmp->getPredicate()) && 2575 LHS == CmpRHS && RHS == CmpLHS) 2576 return Cmp; 2577 return nullptr; 2578 } 2579 2580 /// Return true if the underlying object (storage) must be disjoint from 2581 /// storage returned by any noalias return call. 2582 static bool IsAllocDisjoint(const Value *V) { 2583 // For allocas, we consider only static ones (dynamic 2584 // allocas might be transformed into calls to malloc not simultaneously 2585 // live with the compared-to allocation). For globals, we exclude symbols 2586 // that might be resolve lazily to symbols in another dynamically-loaded 2587 // library (and, thus, could be malloc'ed by the implementation). 2588 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) 2589 return AI->getParent() && AI->getFunction() && AI->isStaticAlloca(); 2590 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) 2591 return (GV->hasLocalLinkage() || GV->hasHiddenVisibility() || 2592 GV->hasProtectedVisibility() || GV->hasGlobalUnnamedAddr()) && 2593 !GV->isThreadLocal(); 2594 if (const Argument *A = dyn_cast<Argument>(V)) 2595 return A->hasByValAttr(); 2596 return false; 2597 } 2598 2599 /// Return true if V1 and V2 are each the base of some distict storage region 2600 /// [V, object_size(V)] which do not overlap. Note that zero sized regions 2601 /// *are* possible, and that zero sized regions do not overlap with any other. 2602 static bool HaveNonOverlappingStorage(const Value *V1, const Value *V2) { 2603 // Global variables always exist, so they always exist during the lifetime 2604 // of each other and all allocas. Global variables themselves usually have 2605 // non-overlapping storage, but since their addresses are constants, the 2606 // case involving two globals does not reach here and is instead handled in 2607 // constant folding. 2608 // 2609 // Two different allocas usually have different addresses... 2610 // 2611 // However, if there's an @llvm.stackrestore dynamically in between two 2612 // allocas, they may have the same address. It's tempting to reduce the 2613 // scope of the problem by only looking at *static* allocas here. That would 2614 // cover the majority of allocas while significantly reducing the likelihood 2615 // of having an @llvm.stackrestore pop up in the middle. However, it's not 2616 // actually impossible for an @llvm.stackrestore to pop up in the middle of 2617 // an entry block. Also, if we have a block that's not attached to a 2618 // function, we can't tell if it's "static" under the current definition. 2619 // Theoretically, this problem could be fixed by creating a new kind of 2620 // instruction kind specifically for static allocas. Such a new instruction 2621 // could be required to be at the top of the entry block, thus preventing it 2622 // from being subject to a @llvm.stackrestore. Instcombine could even 2623 // convert regular allocas into these special allocas. It'd be nifty. 2624 // However, until then, this problem remains open. 2625 // 2626 // So, we'll assume that two non-empty allocas have different addresses 2627 // for now. 2628 auto isByValArg = [](const Value *V) { 2629 const Argument *A = dyn_cast<Argument>(V); 2630 return A && A->hasByValAttr(); 2631 }; 2632 2633 // Byval args are backed by store which does not overlap with each other, 2634 // allocas, or globals. 2635 if (isByValArg(V1)) 2636 return isa<AllocaInst>(V2) || isa<GlobalVariable>(V2) || isByValArg(V2); 2637 if (isByValArg(V2)) 2638 return isa<AllocaInst>(V1) || isa<GlobalVariable>(V1) || isByValArg(V1); 2639 2640 return isa<AllocaInst>(V1) && 2641 (isa<AllocaInst>(V2) || isa<GlobalVariable>(V2)); 2642 } 2643 2644 // A significant optimization not implemented here is assuming that alloca 2645 // addresses are not equal to incoming argument values. They don't *alias*, 2646 // as we say, but that doesn't mean they aren't equal, so we take a 2647 // conservative approach. 2648 // 2649 // This is inspired in part by C++11 5.10p1: 2650 // "Two pointers of the same type compare equal if and only if they are both 2651 // null, both point to the same function, or both represent the same 2652 // address." 2653 // 2654 // This is pretty permissive. 2655 // 2656 // It's also partly due to C11 6.5.9p6: 2657 // "Two pointers compare equal if and only if both are null pointers, both are 2658 // pointers to the same object (including a pointer to an object and a 2659 // subobject at its beginning) or function, both are pointers to one past the 2660 // last element of the same array object, or one is a pointer to one past the 2661 // end of one array object and the other is a pointer to the start of a 2662 // different array object that happens to immediately follow the first array 2663 // object in the address space.) 2664 // 2665 // C11's version is more restrictive, however there's no reason why an argument 2666 // couldn't be a one-past-the-end value for a stack object in the caller and be 2667 // equal to the beginning of a stack object in the callee. 2668 // 2669 // If the C and C++ standards are ever made sufficiently restrictive in this 2670 // area, it may be possible to update LLVM's semantics accordingly and reinstate 2671 // this optimization. 2672 static Constant * 2673 computePointerICmp(CmpInst::Predicate Pred, Value *LHS, Value *RHS, 2674 const SimplifyQuery &Q) { 2675 const DataLayout &DL = Q.DL; 2676 const TargetLibraryInfo *TLI = Q.TLI; 2677 const DominatorTree *DT = Q.DT; 2678 const Instruction *CxtI = Q.CxtI; 2679 const InstrInfoQuery &IIQ = Q.IIQ; 2680 2681 // First, skip past any trivial no-ops. 2682 LHS = LHS->stripPointerCasts(); 2683 RHS = RHS->stripPointerCasts(); 2684 2685 // A non-null pointer is not equal to a null pointer. 2686 if (isa<ConstantPointerNull>(RHS) && ICmpInst::isEquality(Pred) && 2687 llvm::isKnownNonZero(LHS, DL, 0, nullptr, nullptr, nullptr, 2688 IIQ.UseInstrInfo)) 2689 return ConstantInt::get(GetCompareTy(LHS), 2690 !CmpInst::isTrueWhenEqual(Pred)); 2691 2692 // We can only fold certain predicates on pointer comparisons. 2693 switch (Pred) { 2694 default: 2695 return nullptr; 2696 2697 // Equality comaprisons are easy to fold. 2698 case CmpInst::ICMP_EQ: 2699 case CmpInst::ICMP_NE: 2700 break; 2701 2702 // We can only handle unsigned relational comparisons because 'inbounds' on 2703 // a GEP only protects against unsigned wrapping. 2704 case CmpInst::ICMP_UGT: 2705 case CmpInst::ICMP_UGE: 2706 case CmpInst::ICMP_ULT: 2707 case CmpInst::ICMP_ULE: 2708 // However, we have to switch them to their signed variants to handle 2709 // negative indices from the base pointer. 2710 Pred = ICmpInst::getSignedPredicate(Pred); 2711 break; 2712 } 2713 2714 // Strip off any constant offsets so that we can reason about them. 2715 // It's tempting to use getUnderlyingObject or even just stripInBoundsOffsets 2716 // here and compare base addresses like AliasAnalysis does, however there are 2717 // numerous hazards. AliasAnalysis and its utilities rely on special rules 2718 // governing loads and stores which don't apply to icmps. Also, AliasAnalysis 2719 // doesn't need to guarantee pointer inequality when it says NoAlias. 2720 2721 // Even if an non-inbounds GEP occurs along the path we can still optimize 2722 // equality comparisons concerning the result. 2723 bool AllowNonInbounds = ICmpInst::isEquality(Pred); 2724 APInt LHSOffset = stripAndComputeConstantOffsets(DL, LHS, AllowNonInbounds); 2725 APInt RHSOffset = stripAndComputeConstantOffsets(DL, RHS, AllowNonInbounds); 2726 2727 // If LHS and RHS are related via constant offsets to the same base 2728 // value, we can replace it with an icmp which just compares the offsets. 2729 if (LHS == RHS) 2730 return ConstantInt::get( 2731 GetCompareTy(LHS), ICmpInst::compare(LHSOffset, RHSOffset, Pred)); 2732 2733 // Various optimizations for (in)equality comparisons. 2734 if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE) { 2735 // Different non-empty allocations that exist at the same time have 2736 // different addresses (if the program can tell). If the offsets are 2737 // within the bounds of their allocations (and not one-past-the-end! 2738 // so we can't use inbounds!), and their allocations aren't the same, 2739 // the pointers are not equal. 2740 if (HaveNonOverlappingStorage(LHS, RHS)) { 2741 uint64_t LHSSize, RHSSize; 2742 ObjectSizeOpts Opts; 2743 Opts.EvalMode = ObjectSizeOpts::Mode::Min; 2744 auto *F = [](Value *V) -> Function * { 2745 if (auto *I = dyn_cast<Instruction>(V)) 2746 return I->getFunction(); 2747 if (auto *A = dyn_cast<Argument>(V)) 2748 return A->getParent(); 2749 return nullptr; 2750 }(LHS); 2751 Opts.NullIsUnknownSize = F ? NullPointerIsDefined(F) : true; 2752 if (getObjectSize(LHS, LHSSize, DL, TLI, Opts) && 2753 getObjectSize(RHS, RHSSize, DL, TLI, Opts) && 2754 !LHSOffset.isNegative() && !RHSOffset.isNegative() && 2755 LHSOffset.ult(LHSSize) && RHSOffset.ult(RHSSize)) { 2756 return ConstantInt::get(GetCompareTy(LHS), 2757 !CmpInst::isTrueWhenEqual(Pred)); 2758 } 2759 } 2760 2761 // If one side of the equality comparison must come from a noalias call 2762 // (meaning a system memory allocation function), and the other side must 2763 // come from a pointer that cannot overlap with dynamically-allocated 2764 // memory within the lifetime of the current function (allocas, byval 2765 // arguments, globals), then determine the comparison result here. 2766 SmallVector<const Value *, 8> LHSUObjs, RHSUObjs; 2767 getUnderlyingObjects(LHS, LHSUObjs); 2768 getUnderlyingObjects(RHS, RHSUObjs); 2769 2770 // Is the set of underlying objects all noalias calls? 2771 auto IsNAC = [](ArrayRef<const Value *> Objects) { 2772 return all_of(Objects, isNoAliasCall); 2773 }; 2774 2775 // Is the set of underlying objects all things which must be disjoint from 2776 // noalias calls. We assume that indexing from such disjoint storage 2777 // into the heap is undefined, and thus offsets can be safely ignored. 2778 auto IsAllocDisjoint = [](ArrayRef<const Value *> Objects) { 2779 return all_of(Objects, ::IsAllocDisjoint); 2780 }; 2781 2782 if ((IsNAC(LHSUObjs) && IsAllocDisjoint(RHSUObjs)) || 2783 (IsNAC(RHSUObjs) && IsAllocDisjoint(LHSUObjs))) 2784 return ConstantInt::get(GetCompareTy(LHS), 2785 !CmpInst::isTrueWhenEqual(Pred)); 2786 2787 // Fold comparisons for non-escaping pointer even if the allocation call 2788 // cannot be elided. We cannot fold malloc comparison to null. Also, the 2789 // dynamic allocation call could be either of the operands. Note that 2790 // the other operand can not be based on the alloc - if it were, then 2791 // the cmp itself would be a capture. 2792 Value *MI = nullptr; 2793 if (isAllocLikeFn(LHS, TLI) && 2794 llvm::isKnownNonZero(RHS, DL, 0, nullptr, CxtI, DT)) 2795 MI = LHS; 2796 else if (isAllocLikeFn(RHS, TLI) && 2797 llvm::isKnownNonZero(LHS, DL, 0, nullptr, CxtI, DT)) 2798 MI = RHS; 2799 // FIXME: We should also fold the compare when the pointer escapes, but the 2800 // compare dominates the pointer escape 2801 if (MI && !PointerMayBeCaptured(MI, true, true)) 2802 return ConstantInt::get(GetCompareTy(LHS), 2803 CmpInst::isFalseWhenEqual(Pred)); 2804 } 2805 2806 // Otherwise, fail. 2807 return nullptr; 2808 } 2809 2810 /// Fold an icmp when its operands have i1 scalar type. 2811 static Value *simplifyICmpOfBools(CmpInst::Predicate Pred, Value *LHS, 2812 Value *RHS, const SimplifyQuery &Q) { 2813 Type *ITy = GetCompareTy(LHS); // The return type. 2814 Type *OpTy = LHS->getType(); // The operand type. 2815 if (!OpTy->isIntOrIntVectorTy(1)) 2816 return nullptr; 2817 2818 // A boolean compared to true/false can be reduced in 14 out of the 20 2819 // (10 predicates * 2 constants) possible combinations. The other 2820 // 6 cases require a 'not' of the LHS. 2821 2822 auto ExtractNotLHS = [](Value *V) -> Value * { 2823 Value *X; 2824 if (match(V, m_Not(m_Value(X)))) 2825 return X; 2826 return nullptr; 2827 }; 2828 2829 if (match(RHS, m_Zero())) { 2830 switch (Pred) { 2831 case CmpInst::ICMP_NE: // X != 0 -> X 2832 case CmpInst::ICMP_UGT: // X >u 0 -> X 2833 case CmpInst::ICMP_SLT: // X <s 0 -> X 2834 return LHS; 2835 2836 case CmpInst::ICMP_EQ: // not(X) == 0 -> X != 0 -> X 2837 case CmpInst::ICMP_ULE: // not(X) <=u 0 -> X >u 0 -> X 2838 case CmpInst::ICMP_SGE: // not(X) >=s 0 -> X <s 0 -> X 2839 if (Value *X = ExtractNotLHS(LHS)) 2840 return X; 2841 break; 2842 2843 case CmpInst::ICMP_ULT: // X <u 0 -> false 2844 case CmpInst::ICMP_SGT: // X >s 0 -> false 2845 return getFalse(ITy); 2846 2847 case CmpInst::ICMP_UGE: // X >=u 0 -> true 2848 case CmpInst::ICMP_SLE: // X <=s 0 -> true 2849 return getTrue(ITy); 2850 2851 default: break; 2852 } 2853 } else if (match(RHS, m_One())) { 2854 switch (Pred) { 2855 case CmpInst::ICMP_EQ: // X == 1 -> X 2856 case CmpInst::ICMP_UGE: // X >=u 1 -> X 2857 case CmpInst::ICMP_SLE: // X <=s -1 -> X 2858 return LHS; 2859 2860 case CmpInst::ICMP_NE: // not(X) != 1 -> X == 1 -> X 2861 case CmpInst::ICMP_ULT: // not(X) <=u 1 -> X >=u 1 -> X 2862 case CmpInst::ICMP_SGT: // not(X) >s 1 -> X <=s -1 -> X 2863 if (Value *X = ExtractNotLHS(LHS)) 2864 return X; 2865 break; 2866 2867 case CmpInst::ICMP_UGT: // X >u 1 -> false 2868 case CmpInst::ICMP_SLT: // X <s -1 -> false 2869 return getFalse(ITy); 2870 2871 case CmpInst::ICMP_ULE: // X <=u 1 -> true 2872 case CmpInst::ICMP_SGE: // X >=s -1 -> true 2873 return getTrue(ITy); 2874 2875 default: break; 2876 } 2877 } 2878 2879 switch (Pred) { 2880 default: 2881 break; 2882 case ICmpInst::ICMP_UGE: 2883 if (isImpliedCondition(RHS, LHS, Q.DL).getValueOr(false)) 2884 return getTrue(ITy); 2885 break; 2886 case ICmpInst::ICMP_SGE: 2887 /// For signed comparison, the values for an i1 are 0 and -1 2888 /// respectively. This maps into a truth table of: 2889 /// LHS | RHS | LHS >=s RHS | LHS implies RHS 2890 /// 0 | 0 | 1 (0 >= 0) | 1 2891 /// 0 | 1 | 1 (0 >= -1) | 1 2892 /// 1 | 0 | 0 (-1 >= 0) | 0 2893 /// 1 | 1 | 1 (-1 >= -1) | 1 2894 if (isImpliedCondition(LHS, RHS, Q.DL).getValueOr(false)) 2895 return getTrue(ITy); 2896 break; 2897 case ICmpInst::ICMP_ULE: 2898 if (isImpliedCondition(LHS, RHS, Q.DL).getValueOr(false)) 2899 return getTrue(ITy); 2900 break; 2901 } 2902 2903 return nullptr; 2904 } 2905 2906 /// Try hard to fold icmp with zero RHS because this is a common case. 2907 static Value *simplifyICmpWithZero(CmpInst::Predicate Pred, Value *LHS, 2908 Value *RHS, const SimplifyQuery &Q) { 2909 if (!match(RHS, m_Zero())) 2910 return nullptr; 2911 2912 Type *ITy = GetCompareTy(LHS); // The return type. 2913 switch (Pred) { 2914 default: 2915 llvm_unreachable("Unknown ICmp predicate!"); 2916 case ICmpInst::ICMP_ULT: 2917 return getFalse(ITy); 2918 case ICmpInst::ICMP_UGE: 2919 return getTrue(ITy); 2920 case ICmpInst::ICMP_EQ: 2921 case ICmpInst::ICMP_ULE: 2922 if (isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT, Q.IIQ.UseInstrInfo)) 2923 return getFalse(ITy); 2924 break; 2925 case ICmpInst::ICMP_NE: 2926 case ICmpInst::ICMP_UGT: 2927 if (isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT, Q.IIQ.UseInstrInfo)) 2928 return getTrue(ITy); 2929 break; 2930 case ICmpInst::ICMP_SLT: { 2931 KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2932 if (LHSKnown.isNegative()) 2933 return getTrue(ITy); 2934 if (LHSKnown.isNonNegative()) 2935 return getFalse(ITy); 2936 break; 2937 } 2938 case ICmpInst::ICMP_SLE: { 2939 KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2940 if (LHSKnown.isNegative()) 2941 return getTrue(ITy); 2942 if (LHSKnown.isNonNegative() && 2943 isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 2944 return getFalse(ITy); 2945 break; 2946 } 2947 case ICmpInst::ICMP_SGE: { 2948 KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2949 if (LHSKnown.isNegative()) 2950 return getFalse(ITy); 2951 if (LHSKnown.isNonNegative()) 2952 return getTrue(ITy); 2953 break; 2954 } 2955 case ICmpInst::ICMP_SGT: { 2956 KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2957 if (LHSKnown.isNegative()) 2958 return getFalse(ITy); 2959 if (LHSKnown.isNonNegative() && 2960 isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 2961 return getTrue(ITy); 2962 break; 2963 } 2964 } 2965 2966 return nullptr; 2967 } 2968 2969 static Value *simplifyICmpWithConstant(CmpInst::Predicate Pred, Value *LHS, 2970 Value *RHS, const InstrInfoQuery &IIQ) { 2971 Type *ITy = GetCompareTy(RHS); // The return type. 2972 2973 Value *X; 2974 // Sign-bit checks can be optimized to true/false after unsigned 2975 // floating-point casts: 2976 // icmp slt (bitcast (uitofp X)), 0 --> false 2977 // icmp sgt (bitcast (uitofp X)), -1 --> true 2978 if (match(LHS, m_BitCast(m_UIToFP(m_Value(X))))) { 2979 if (Pred == ICmpInst::ICMP_SLT && match(RHS, m_Zero())) 2980 return ConstantInt::getFalse(ITy); 2981 if (Pred == ICmpInst::ICMP_SGT && match(RHS, m_AllOnes())) 2982 return ConstantInt::getTrue(ITy); 2983 } 2984 2985 const APInt *C; 2986 if (!match(RHS, m_APIntAllowUndef(C))) 2987 return nullptr; 2988 2989 // Rule out tautological comparisons (eg., ult 0 or uge 0). 2990 ConstantRange RHS_CR = ConstantRange::makeExactICmpRegion(Pred, *C); 2991 if (RHS_CR.isEmptySet()) 2992 return ConstantInt::getFalse(ITy); 2993 if (RHS_CR.isFullSet()) 2994 return ConstantInt::getTrue(ITy); 2995 2996 ConstantRange LHS_CR = 2997 computeConstantRange(LHS, CmpInst::isSigned(Pred), IIQ.UseInstrInfo); 2998 if (!LHS_CR.isFullSet()) { 2999 if (RHS_CR.contains(LHS_CR)) 3000 return ConstantInt::getTrue(ITy); 3001 if (RHS_CR.inverse().contains(LHS_CR)) 3002 return ConstantInt::getFalse(ITy); 3003 } 3004 3005 // (mul nuw/nsw X, MulC) != C --> true (if C is not a multiple of MulC) 3006 // (mul nuw/nsw X, MulC) == C --> false (if C is not a multiple of MulC) 3007 const APInt *MulC; 3008 if (ICmpInst::isEquality(Pred) && 3009 ((match(LHS, m_NUWMul(m_Value(), m_APIntAllowUndef(MulC))) && 3010 *MulC != 0 && C->urem(*MulC) != 0) || 3011 (match(LHS, m_NSWMul(m_Value(), m_APIntAllowUndef(MulC))) && 3012 *MulC != 0 && C->srem(*MulC) != 0))) 3013 return ConstantInt::get(ITy, Pred == ICmpInst::ICMP_NE); 3014 3015 return nullptr; 3016 } 3017 3018 static Value *simplifyICmpWithBinOpOnLHS( 3019 CmpInst::Predicate Pred, BinaryOperator *LBO, Value *RHS, 3020 const SimplifyQuery &Q, unsigned MaxRecurse) { 3021 Type *ITy = GetCompareTy(RHS); // The return type. 3022 3023 Value *Y = nullptr; 3024 // icmp pred (or X, Y), X 3025 if (match(LBO, m_c_Or(m_Value(Y), m_Specific(RHS)))) { 3026 if (Pred == ICmpInst::ICMP_ULT) 3027 return getFalse(ITy); 3028 if (Pred == ICmpInst::ICMP_UGE) 3029 return getTrue(ITy); 3030 3031 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SGE) { 3032 KnownBits RHSKnown = computeKnownBits(RHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 3033 KnownBits YKnown = computeKnownBits(Y, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 3034 if (RHSKnown.isNonNegative() && YKnown.isNegative()) 3035 return Pred == ICmpInst::ICMP_SLT ? getTrue(ITy) : getFalse(ITy); 3036 if (RHSKnown.isNegative() || YKnown.isNonNegative()) 3037 return Pred == ICmpInst::ICMP_SLT ? getFalse(ITy) : getTrue(ITy); 3038 } 3039 } 3040 3041 // icmp pred (and X, Y), X 3042 if (match(LBO, m_c_And(m_Value(), m_Specific(RHS)))) { 3043 if (Pred == ICmpInst::ICMP_UGT) 3044 return getFalse(ITy); 3045 if (Pred == ICmpInst::ICMP_ULE) 3046 return getTrue(ITy); 3047 } 3048 3049 // icmp pred (urem X, Y), Y 3050 if (match(LBO, m_URem(m_Value(), m_Specific(RHS)))) { 3051 switch (Pred) { 3052 default: 3053 break; 3054 case ICmpInst::ICMP_SGT: 3055 case ICmpInst::ICMP_SGE: { 3056 KnownBits Known = computeKnownBits(RHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 3057 if (!Known.isNonNegative()) 3058 break; 3059 LLVM_FALLTHROUGH; 3060 } 3061 case ICmpInst::ICMP_EQ: 3062 case ICmpInst::ICMP_UGT: 3063 case ICmpInst::ICMP_UGE: 3064 return getFalse(ITy); 3065 case ICmpInst::ICMP_SLT: 3066 case ICmpInst::ICMP_SLE: { 3067 KnownBits Known = computeKnownBits(RHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 3068 if (!Known.isNonNegative()) 3069 break; 3070 LLVM_FALLTHROUGH; 3071 } 3072 case ICmpInst::ICMP_NE: 3073 case ICmpInst::ICMP_ULT: 3074 case ICmpInst::ICMP_ULE: 3075 return getTrue(ITy); 3076 } 3077 } 3078 3079 // icmp pred (urem X, Y), X 3080 if (match(LBO, m_URem(m_Specific(RHS), m_Value()))) { 3081 if (Pred == ICmpInst::ICMP_ULE) 3082 return getTrue(ITy); 3083 if (Pred == ICmpInst::ICMP_UGT) 3084 return getFalse(ITy); 3085 } 3086 3087 // x >>u y <=u x --> true. 3088 // x >>u y >u x --> false. 3089 // x udiv y <=u x --> true. 3090 // x udiv y >u x --> false. 3091 if (match(LBO, m_LShr(m_Specific(RHS), m_Value())) || 3092 match(LBO, m_UDiv(m_Specific(RHS), m_Value()))) { 3093 // icmp pred (X op Y), X 3094 if (Pred == ICmpInst::ICMP_UGT) 3095 return getFalse(ITy); 3096 if (Pred == ICmpInst::ICMP_ULE) 3097 return getTrue(ITy); 3098 } 3099 3100 // If x is nonzero: 3101 // x >>u C <u x --> true for C != 0. 3102 // x >>u C != x --> true for C != 0. 3103 // x >>u C >=u x --> false for C != 0. 3104 // x >>u C == x --> false for C != 0. 3105 // x udiv C <u x --> true for C != 1. 3106 // x udiv C != x --> true for C != 1. 3107 // x udiv C >=u x --> false for C != 1. 3108 // x udiv C == x --> false for C != 1. 3109 // TODO: allow non-constant shift amount/divisor 3110 const APInt *C; 3111 if ((match(LBO, m_LShr(m_Specific(RHS), m_APInt(C))) && *C != 0) || 3112 (match(LBO, m_UDiv(m_Specific(RHS), m_APInt(C))) && *C != 1)) { 3113 if (isKnownNonZero(RHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) { 3114 switch (Pred) { 3115 default: 3116 break; 3117 case ICmpInst::ICMP_EQ: 3118 case ICmpInst::ICMP_UGE: 3119 return getFalse(ITy); 3120 case ICmpInst::ICMP_NE: 3121 case ICmpInst::ICMP_ULT: 3122 return getTrue(ITy); 3123 case ICmpInst::ICMP_UGT: 3124 case ICmpInst::ICMP_ULE: 3125 // UGT/ULE are handled by the more general case just above 3126 llvm_unreachable("Unexpected UGT/ULE, should have been handled"); 3127 } 3128 } 3129 } 3130 3131 // (x*C1)/C2 <= x for C1 <= C2. 3132 // This holds even if the multiplication overflows: Assume that x != 0 and 3133 // arithmetic is modulo M. For overflow to occur we must have C1 >= M/x and 3134 // thus C2 >= M/x. It follows that (x*C1)/C2 <= (M-1)/C2 <= ((M-1)*x)/M < x. 3135 // 3136 // Additionally, either the multiplication and division might be represented 3137 // as shifts: 3138 // (x*C1)>>C2 <= x for C1 < 2**C2. 3139 // (x<<C1)/C2 <= x for 2**C1 < C2. 3140 const APInt *C1, *C2; 3141 if ((match(LBO, m_UDiv(m_Mul(m_Specific(RHS), m_APInt(C1)), m_APInt(C2))) && 3142 C1->ule(*C2)) || 3143 (match(LBO, m_LShr(m_Mul(m_Specific(RHS), m_APInt(C1)), m_APInt(C2))) && 3144 C1->ule(APInt(C2->getBitWidth(), 1) << *C2)) || 3145 (match(LBO, m_UDiv(m_Shl(m_Specific(RHS), m_APInt(C1)), m_APInt(C2))) && 3146 (APInt(C1->getBitWidth(), 1) << *C1).ule(*C2))) { 3147 if (Pred == ICmpInst::ICMP_UGT) 3148 return getFalse(ITy); 3149 if (Pred == ICmpInst::ICMP_ULE) 3150 return getTrue(ITy); 3151 } 3152 3153 return nullptr; 3154 } 3155 3156 3157 // If only one of the icmp's operands has NSW flags, try to prove that: 3158 // 3159 // icmp slt (x + C1), (x +nsw C2) 3160 // 3161 // is equivalent to: 3162 // 3163 // icmp slt C1, C2 3164 // 3165 // which is true if x + C2 has the NSW flags set and: 3166 // *) C1 < C2 && C1 >= 0, or 3167 // *) C2 < C1 && C1 <= 0. 3168 // 3169 static bool trySimplifyICmpWithAdds(CmpInst::Predicate Pred, Value *LHS, 3170 Value *RHS) { 3171 // TODO: only support icmp slt for now. 3172 if (Pred != CmpInst::ICMP_SLT) 3173 return false; 3174 3175 // Canonicalize nsw add as RHS. 3176 if (!match(RHS, m_NSWAdd(m_Value(), m_Value()))) 3177 std::swap(LHS, RHS); 3178 if (!match(RHS, m_NSWAdd(m_Value(), m_Value()))) 3179 return false; 3180 3181 Value *X; 3182 const APInt *C1, *C2; 3183 if (!match(LHS, m_c_Add(m_Value(X), m_APInt(C1))) || 3184 !match(RHS, m_c_Add(m_Specific(X), m_APInt(C2)))) 3185 return false; 3186 3187 return (C1->slt(*C2) && C1->isNonNegative()) || 3188 (C2->slt(*C1) && C1->isNonPositive()); 3189 } 3190 3191 3192 /// TODO: A large part of this logic is duplicated in InstCombine's 3193 /// foldICmpBinOp(). We should be able to share that and avoid the code 3194 /// duplication. 3195 static Value *simplifyICmpWithBinOp(CmpInst::Predicate Pred, Value *LHS, 3196 Value *RHS, const SimplifyQuery &Q, 3197 unsigned MaxRecurse) { 3198 BinaryOperator *LBO = dyn_cast<BinaryOperator>(LHS); 3199 BinaryOperator *RBO = dyn_cast<BinaryOperator>(RHS); 3200 if (MaxRecurse && (LBO || RBO)) { 3201 // Analyze the case when either LHS or RHS is an add instruction. 3202 Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr; 3203 // LHS = A + B (or A and B are null); RHS = C + D (or C and D are null). 3204 bool NoLHSWrapProblem = false, NoRHSWrapProblem = false; 3205 if (LBO && LBO->getOpcode() == Instruction::Add) { 3206 A = LBO->getOperand(0); 3207 B = LBO->getOperand(1); 3208 NoLHSWrapProblem = 3209 ICmpInst::isEquality(Pred) || 3210 (CmpInst::isUnsigned(Pred) && 3211 Q.IIQ.hasNoUnsignedWrap(cast<OverflowingBinaryOperator>(LBO))) || 3212 (CmpInst::isSigned(Pred) && 3213 Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(LBO))); 3214 } 3215 if (RBO && RBO->getOpcode() == Instruction::Add) { 3216 C = RBO->getOperand(0); 3217 D = RBO->getOperand(1); 3218 NoRHSWrapProblem = 3219 ICmpInst::isEquality(Pred) || 3220 (CmpInst::isUnsigned(Pred) && 3221 Q.IIQ.hasNoUnsignedWrap(cast<OverflowingBinaryOperator>(RBO))) || 3222 (CmpInst::isSigned(Pred) && 3223 Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(RBO))); 3224 } 3225 3226 // icmp (X+Y), X -> icmp Y, 0 for equalities or if there is no overflow. 3227 if ((A == RHS || B == RHS) && NoLHSWrapProblem) 3228 if (Value *V = SimplifyICmpInst(Pred, A == RHS ? B : A, 3229 Constant::getNullValue(RHS->getType()), Q, 3230 MaxRecurse - 1)) 3231 return V; 3232 3233 // icmp X, (X+Y) -> icmp 0, Y for equalities or if there is no overflow. 3234 if ((C == LHS || D == LHS) && NoRHSWrapProblem) 3235 if (Value *V = 3236 SimplifyICmpInst(Pred, Constant::getNullValue(LHS->getType()), 3237 C == LHS ? D : C, Q, MaxRecurse - 1)) 3238 return V; 3239 3240 // icmp (X+Y), (X+Z) -> icmp Y,Z for equalities or if there is no overflow. 3241 bool CanSimplify = (NoLHSWrapProblem && NoRHSWrapProblem) || 3242 trySimplifyICmpWithAdds(Pred, LHS, RHS); 3243 if (A && C && (A == C || A == D || B == C || B == D) && CanSimplify) { 3244 // Determine Y and Z in the form icmp (X+Y), (X+Z). 3245 Value *Y, *Z; 3246 if (A == C) { 3247 // C + B == C + D -> B == D 3248 Y = B; 3249 Z = D; 3250 } else if (A == D) { 3251 // D + B == C + D -> B == C 3252 Y = B; 3253 Z = C; 3254 } else if (B == C) { 3255 // A + C == C + D -> A == D 3256 Y = A; 3257 Z = D; 3258 } else { 3259 assert(B == D); 3260 // A + D == C + D -> A == C 3261 Y = A; 3262 Z = C; 3263 } 3264 if (Value *V = SimplifyICmpInst(Pred, Y, Z, Q, MaxRecurse - 1)) 3265 return V; 3266 } 3267 } 3268 3269 if (LBO) 3270 if (Value *V = simplifyICmpWithBinOpOnLHS(Pred, LBO, RHS, Q, MaxRecurse)) 3271 return V; 3272 3273 if (RBO) 3274 if (Value *V = simplifyICmpWithBinOpOnLHS( 3275 ICmpInst::getSwappedPredicate(Pred), RBO, LHS, Q, MaxRecurse)) 3276 return V; 3277 3278 // 0 - (zext X) pred C 3279 if (!CmpInst::isUnsigned(Pred) && match(LHS, m_Neg(m_ZExt(m_Value())))) { 3280 const APInt *C; 3281 if (match(RHS, m_APInt(C))) { 3282 if (C->isStrictlyPositive()) { 3283 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_NE) 3284 return ConstantInt::getTrue(GetCompareTy(RHS)); 3285 if (Pred == ICmpInst::ICMP_SGE || Pred == ICmpInst::ICMP_EQ) 3286 return ConstantInt::getFalse(GetCompareTy(RHS)); 3287 } 3288 if (C->isNonNegative()) { 3289 if (Pred == ICmpInst::ICMP_SLE) 3290 return ConstantInt::getTrue(GetCompareTy(RHS)); 3291 if (Pred == ICmpInst::ICMP_SGT) 3292 return ConstantInt::getFalse(GetCompareTy(RHS)); 3293 } 3294 } 3295 } 3296 3297 // If C2 is a power-of-2 and C is not: 3298 // (C2 << X) == C --> false 3299 // (C2 << X) != C --> true 3300 const APInt *C; 3301 if (match(LHS, m_Shl(m_Power2(), m_Value())) && 3302 match(RHS, m_APIntAllowUndef(C)) && !C->isPowerOf2()) { 3303 // C2 << X can equal zero in some circumstances. 3304 // This simplification might be unsafe if C is zero. 3305 // 3306 // We know it is safe if: 3307 // - The shift is nsw. We can't shift out the one bit. 3308 // - The shift is nuw. We can't shift out the one bit. 3309 // - C2 is one. 3310 // - C isn't zero. 3311 if (Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(LBO)) || 3312 Q.IIQ.hasNoUnsignedWrap(cast<OverflowingBinaryOperator>(LBO)) || 3313 match(LHS, m_Shl(m_One(), m_Value())) || !C->isZero()) { 3314 if (Pred == ICmpInst::ICMP_EQ) 3315 return ConstantInt::getFalse(GetCompareTy(RHS)); 3316 if (Pred == ICmpInst::ICMP_NE) 3317 return ConstantInt::getTrue(GetCompareTy(RHS)); 3318 } 3319 } 3320 3321 // TODO: This is overly constrained. LHS can be any power-of-2. 3322 // (1 << X) >u 0x8000 --> false 3323 // (1 << X) <=u 0x8000 --> true 3324 if (match(LHS, m_Shl(m_One(), m_Value())) && match(RHS, m_SignMask())) { 3325 if (Pred == ICmpInst::ICMP_UGT) 3326 return ConstantInt::getFalse(GetCompareTy(RHS)); 3327 if (Pred == ICmpInst::ICMP_ULE) 3328 return ConstantInt::getTrue(GetCompareTy(RHS)); 3329 } 3330 3331 if (MaxRecurse && LBO && RBO && LBO->getOpcode() == RBO->getOpcode() && 3332 LBO->getOperand(1) == RBO->getOperand(1)) { 3333 switch (LBO->getOpcode()) { 3334 default: 3335 break; 3336 case Instruction::UDiv: 3337 case Instruction::LShr: 3338 if (ICmpInst::isSigned(Pred) || !Q.IIQ.isExact(LBO) || 3339 !Q.IIQ.isExact(RBO)) 3340 break; 3341 if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0), 3342 RBO->getOperand(0), Q, MaxRecurse - 1)) 3343 return V; 3344 break; 3345 case Instruction::SDiv: 3346 if (!ICmpInst::isEquality(Pred) || !Q.IIQ.isExact(LBO) || 3347 !Q.IIQ.isExact(RBO)) 3348 break; 3349 if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0), 3350 RBO->getOperand(0), Q, MaxRecurse - 1)) 3351 return V; 3352 break; 3353 case Instruction::AShr: 3354 if (!Q.IIQ.isExact(LBO) || !Q.IIQ.isExact(RBO)) 3355 break; 3356 if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0), 3357 RBO->getOperand(0), Q, MaxRecurse - 1)) 3358 return V; 3359 break; 3360 case Instruction::Shl: { 3361 bool NUW = Q.IIQ.hasNoUnsignedWrap(LBO) && Q.IIQ.hasNoUnsignedWrap(RBO); 3362 bool NSW = Q.IIQ.hasNoSignedWrap(LBO) && Q.IIQ.hasNoSignedWrap(RBO); 3363 if (!NUW && !NSW) 3364 break; 3365 if (!NSW && ICmpInst::isSigned(Pred)) 3366 break; 3367 if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0), 3368 RBO->getOperand(0), Q, MaxRecurse - 1)) 3369 return V; 3370 break; 3371 } 3372 } 3373 } 3374 return nullptr; 3375 } 3376 3377 /// Simplify integer comparisons where at least one operand of the compare 3378 /// matches an integer min/max idiom. 3379 static Value *simplifyICmpWithMinMax(CmpInst::Predicate Pred, Value *LHS, 3380 Value *RHS, const SimplifyQuery &Q, 3381 unsigned MaxRecurse) { 3382 Type *ITy = GetCompareTy(LHS); // The return type. 3383 Value *A, *B; 3384 CmpInst::Predicate P = CmpInst::BAD_ICMP_PREDICATE; 3385 CmpInst::Predicate EqP; // Chosen so that "A == max/min(A,B)" iff "A EqP B". 3386 3387 // Signed variants on "max(a,b)>=a -> true". 3388 if (match(LHS, m_SMax(m_Value(A), m_Value(B))) && (A == RHS || B == RHS)) { 3389 if (A != RHS) 3390 std::swap(A, B); // smax(A, B) pred A. 3391 EqP = CmpInst::ICMP_SGE; // "A == smax(A, B)" iff "A sge B". 3392 // We analyze this as smax(A, B) pred A. 3393 P = Pred; 3394 } else if (match(RHS, m_SMax(m_Value(A), m_Value(B))) && 3395 (A == LHS || B == LHS)) { 3396 if (A != LHS) 3397 std::swap(A, B); // A pred smax(A, B). 3398 EqP = CmpInst::ICMP_SGE; // "A == smax(A, B)" iff "A sge B". 3399 // We analyze this as smax(A, B) swapped-pred A. 3400 P = CmpInst::getSwappedPredicate(Pred); 3401 } else if (match(LHS, m_SMin(m_Value(A), m_Value(B))) && 3402 (A == RHS || B == RHS)) { 3403 if (A != RHS) 3404 std::swap(A, B); // smin(A, B) pred A. 3405 EqP = CmpInst::ICMP_SLE; // "A == smin(A, B)" iff "A sle B". 3406 // We analyze this as smax(-A, -B) swapped-pred -A. 3407 // Note that we do not need to actually form -A or -B thanks to EqP. 3408 P = CmpInst::getSwappedPredicate(Pred); 3409 } else if (match(RHS, m_SMin(m_Value(A), m_Value(B))) && 3410 (A == LHS || B == LHS)) { 3411 if (A != LHS) 3412 std::swap(A, B); // A pred smin(A, B). 3413 EqP = CmpInst::ICMP_SLE; // "A == smin(A, B)" iff "A sle B". 3414 // We analyze this as smax(-A, -B) pred -A. 3415 // Note that we do not need to actually form -A or -B thanks to EqP. 3416 P = Pred; 3417 } 3418 if (P != CmpInst::BAD_ICMP_PREDICATE) { 3419 // Cases correspond to "max(A, B) p A". 3420 switch (P) { 3421 default: 3422 break; 3423 case CmpInst::ICMP_EQ: 3424 case CmpInst::ICMP_SLE: 3425 // Equivalent to "A EqP B". This may be the same as the condition tested 3426 // in the max/min; if so, we can just return that. 3427 if (Value *V = ExtractEquivalentCondition(LHS, EqP, A, B)) 3428 return V; 3429 if (Value *V = ExtractEquivalentCondition(RHS, EqP, A, B)) 3430 return V; 3431 // Otherwise, see if "A EqP B" simplifies. 3432 if (MaxRecurse) 3433 if (Value *V = SimplifyICmpInst(EqP, A, B, Q, MaxRecurse - 1)) 3434 return V; 3435 break; 3436 case CmpInst::ICMP_NE: 3437 case CmpInst::ICMP_SGT: { 3438 CmpInst::Predicate InvEqP = CmpInst::getInversePredicate(EqP); 3439 // Equivalent to "A InvEqP B". This may be the same as the condition 3440 // tested in the max/min; if so, we can just return that. 3441 if (Value *V = ExtractEquivalentCondition(LHS, InvEqP, A, B)) 3442 return V; 3443 if (Value *V = ExtractEquivalentCondition(RHS, InvEqP, A, B)) 3444 return V; 3445 // Otherwise, see if "A InvEqP B" simplifies. 3446 if (MaxRecurse) 3447 if (Value *V = SimplifyICmpInst(InvEqP, A, B, Q, MaxRecurse - 1)) 3448 return V; 3449 break; 3450 } 3451 case CmpInst::ICMP_SGE: 3452 // Always true. 3453 return getTrue(ITy); 3454 case CmpInst::ICMP_SLT: 3455 // Always false. 3456 return getFalse(ITy); 3457 } 3458 } 3459 3460 // Unsigned variants on "max(a,b)>=a -> true". 3461 P = CmpInst::BAD_ICMP_PREDICATE; 3462 if (match(LHS, m_UMax(m_Value(A), m_Value(B))) && (A == RHS || B == RHS)) { 3463 if (A != RHS) 3464 std::swap(A, B); // umax(A, B) pred A. 3465 EqP = CmpInst::ICMP_UGE; // "A == umax(A, B)" iff "A uge B". 3466 // We analyze this as umax(A, B) pred A. 3467 P = Pred; 3468 } else if (match(RHS, m_UMax(m_Value(A), m_Value(B))) && 3469 (A == LHS || B == LHS)) { 3470 if (A != LHS) 3471 std::swap(A, B); // A pred umax(A, B). 3472 EqP = CmpInst::ICMP_UGE; // "A == umax(A, B)" iff "A uge B". 3473 // We analyze this as umax(A, B) swapped-pred A. 3474 P = CmpInst::getSwappedPredicate(Pred); 3475 } else if (match(LHS, m_UMin(m_Value(A), m_Value(B))) && 3476 (A == RHS || B == RHS)) { 3477 if (A != RHS) 3478 std::swap(A, B); // umin(A, B) pred A. 3479 EqP = CmpInst::ICMP_ULE; // "A == umin(A, B)" iff "A ule B". 3480 // We analyze this as umax(-A, -B) swapped-pred -A. 3481 // Note that we do not need to actually form -A or -B thanks to EqP. 3482 P = CmpInst::getSwappedPredicate(Pred); 3483 } else if (match(RHS, m_UMin(m_Value(A), m_Value(B))) && 3484 (A == LHS || B == LHS)) { 3485 if (A != LHS) 3486 std::swap(A, B); // A pred umin(A, B). 3487 EqP = CmpInst::ICMP_ULE; // "A == umin(A, B)" iff "A ule B". 3488 // We analyze this as umax(-A, -B) pred -A. 3489 // Note that we do not need to actually form -A or -B thanks to EqP. 3490 P = Pred; 3491 } 3492 if (P != CmpInst::BAD_ICMP_PREDICATE) { 3493 // Cases correspond to "max(A, B) p A". 3494 switch (P) { 3495 default: 3496 break; 3497 case CmpInst::ICMP_EQ: 3498 case CmpInst::ICMP_ULE: 3499 // Equivalent to "A EqP B". This may be the same as the condition tested 3500 // in the max/min; if so, we can just return that. 3501 if (Value *V = ExtractEquivalentCondition(LHS, EqP, A, B)) 3502 return V; 3503 if (Value *V = ExtractEquivalentCondition(RHS, EqP, A, B)) 3504 return V; 3505 // Otherwise, see if "A EqP B" simplifies. 3506 if (MaxRecurse) 3507 if (Value *V = SimplifyICmpInst(EqP, A, B, Q, MaxRecurse - 1)) 3508 return V; 3509 break; 3510 case CmpInst::ICMP_NE: 3511 case CmpInst::ICMP_UGT: { 3512 CmpInst::Predicate InvEqP = CmpInst::getInversePredicate(EqP); 3513 // Equivalent to "A InvEqP B". This may be the same as the condition 3514 // tested in the max/min; if so, we can just return that. 3515 if (Value *V = ExtractEquivalentCondition(LHS, InvEqP, A, B)) 3516 return V; 3517 if (Value *V = ExtractEquivalentCondition(RHS, InvEqP, A, B)) 3518 return V; 3519 // Otherwise, see if "A InvEqP B" simplifies. 3520 if (MaxRecurse) 3521 if (Value *V = SimplifyICmpInst(InvEqP, A, B, Q, MaxRecurse - 1)) 3522 return V; 3523 break; 3524 } 3525 case CmpInst::ICMP_UGE: 3526 return getTrue(ITy); 3527 case CmpInst::ICMP_ULT: 3528 return getFalse(ITy); 3529 } 3530 } 3531 3532 // Comparing 1 each of min/max with a common operand? 3533 // Canonicalize min operand to RHS. 3534 if (match(LHS, m_UMin(m_Value(), m_Value())) || 3535 match(LHS, m_SMin(m_Value(), m_Value()))) { 3536 std::swap(LHS, RHS); 3537 Pred = ICmpInst::getSwappedPredicate(Pred); 3538 } 3539 3540 Value *C, *D; 3541 if (match(LHS, m_SMax(m_Value(A), m_Value(B))) && 3542 match(RHS, m_SMin(m_Value(C), m_Value(D))) && 3543 (A == C || A == D || B == C || B == D)) { 3544 // smax(A, B) >=s smin(A, D) --> true 3545 if (Pred == CmpInst::ICMP_SGE) 3546 return getTrue(ITy); 3547 // smax(A, B) <s smin(A, D) --> false 3548 if (Pred == CmpInst::ICMP_SLT) 3549 return getFalse(ITy); 3550 } else if (match(LHS, m_UMax(m_Value(A), m_Value(B))) && 3551 match(RHS, m_UMin(m_Value(C), m_Value(D))) && 3552 (A == C || A == D || B == C || B == D)) { 3553 // umax(A, B) >=u umin(A, D) --> true 3554 if (Pred == CmpInst::ICMP_UGE) 3555 return getTrue(ITy); 3556 // umax(A, B) <u umin(A, D) --> false 3557 if (Pred == CmpInst::ICMP_ULT) 3558 return getFalse(ITy); 3559 } 3560 3561 return nullptr; 3562 } 3563 3564 static Value *simplifyICmpWithDominatingAssume(CmpInst::Predicate Predicate, 3565 Value *LHS, Value *RHS, 3566 const SimplifyQuery &Q) { 3567 // Gracefully handle instructions that have not been inserted yet. 3568 if (!Q.AC || !Q.CxtI || !Q.CxtI->getParent()) 3569 return nullptr; 3570 3571 for (Value *AssumeBaseOp : {LHS, RHS}) { 3572 for (auto &AssumeVH : Q.AC->assumptionsFor(AssumeBaseOp)) { 3573 if (!AssumeVH) 3574 continue; 3575 3576 CallInst *Assume = cast<CallInst>(AssumeVH); 3577 if (Optional<bool> Imp = 3578 isImpliedCondition(Assume->getArgOperand(0), Predicate, LHS, RHS, 3579 Q.DL)) 3580 if (isValidAssumeForContext(Assume, Q.CxtI, Q.DT)) 3581 return ConstantInt::get(GetCompareTy(LHS), *Imp); 3582 } 3583 } 3584 3585 return nullptr; 3586 } 3587 3588 /// Given operands for an ICmpInst, see if we can fold the result. 3589 /// If not, this returns null. 3590 static Value *SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS, 3591 const SimplifyQuery &Q, unsigned MaxRecurse) { 3592 CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate; 3593 assert(CmpInst::isIntPredicate(Pred) && "Not an integer compare!"); 3594 3595 if (Constant *CLHS = dyn_cast<Constant>(LHS)) { 3596 if (Constant *CRHS = dyn_cast<Constant>(RHS)) 3597 return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, Q.DL, Q.TLI); 3598 3599 // If we have a constant, make sure it is on the RHS. 3600 std::swap(LHS, RHS); 3601 Pred = CmpInst::getSwappedPredicate(Pred); 3602 } 3603 assert(!isa<UndefValue>(LHS) && "Unexpected icmp undef,%X"); 3604 3605 Type *ITy = GetCompareTy(LHS); // The return type. 3606 3607 // icmp poison, X -> poison 3608 if (isa<PoisonValue>(RHS)) 3609 return PoisonValue::get(ITy); 3610 3611 // For EQ and NE, we can always pick a value for the undef to make the 3612 // predicate pass or fail, so we can return undef. 3613 // Matches behavior in llvm::ConstantFoldCompareInstruction. 3614 if (Q.isUndefValue(RHS) && ICmpInst::isEquality(Pred)) 3615 return UndefValue::get(ITy); 3616 3617 // icmp X, X -> true/false 3618 // icmp X, undef -> true/false because undef could be X. 3619 if (LHS == RHS || Q.isUndefValue(RHS)) 3620 return ConstantInt::get(ITy, CmpInst::isTrueWhenEqual(Pred)); 3621 3622 if (Value *V = simplifyICmpOfBools(Pred, LHS, RHS, Q)) 3623 return V; 3624 3625 // TODO: Sink/common this with other potentially expensive calls that use 3626 // ValueTracking? See comment below for isKnownNonEqual(). 3627 if (Value *V = simplifyICmpWithZero(Pred, LHS, RHS, Q)) 3628 return V; 3629 3630 if (Value *V = simplifyICmpWithConstant(Pred, LHS, RHS, Q.IIQ)) 3631 return V; 3632 3633 // If both operands have range metadata, use the metadata 3634 // to simplify the comparison. 3635 if (isa<Instruction>(RHS) && isa<Instruction>(LHS)) { 3636 auto RHS_Instr = cast<Instruction>(RHS); 3637 auto LHS_Instr = cast<Instruction>(LHS); 3638 3639 if (Q.IIQ.getMetadata(RHS_Instr, LLVMContext::MD_range) && 3640 Q.IIQ.getMetadata(LHS_Instr, LLVMContext::MD_range)) { 3641 auto RHS_CR = getConstantRangeFromMetadata( 3642 *RHS_Instr->getMetadata(LLVMContext::MD_range)); 3643 auto LHS_CR = getConstantRangeFromMetadata( 3644 *LHS_Instr->getMetadata(LLVMContext::MD_range)); 3645 3646 if (LHS_CR.icmp(Pred, RHS_CR)) 3647 return ConstantInt::getTrue(RHS->getContext()); 3648 3649 if (LHS_CR.icmp(CmpInst::getInversePredicate(Pred), RHS_CR)) 3650 return ConstantInt::getFalse(RHS->getContext()); 3651 } 3652 } 3653 3654 // Compare of cast, for example (zext X) != 0 -> X != 0 3655 if (isa<CastInst>(LHS) && (isa<Constant>(RHS) || isa<CastInst>(RHS))) { 3656 Instruction *LI = cast<CastInst>(LHS); 3657 Value *SrcOp = LI->getOperand(0); 3658 Type *SrcTy = SrcOp->getType(); 3659 Type *DstTy = LI->getType(); 3660 3661 // Turn icmp (ptrtoint x), (ptrtoint/constant) into a compare of the input 3662 // if the integer type is the same size as the pointer type. 3663 if (MaxRecurse && isa<PtrToIntInst>(LI) && 3664 Q.DL.getTypeSizeInBits(SrcTy) == DstTy->getPrimitiveSizeInBits()) { 3665 if (Constant *RHSC = dyn_cast<Constant>(RHS)) { 3666 // Transfer the cast to the constant. 3667 if (Value *V = SimplifyICmpInst(Pred, SrcOp, 3668 ConstantExpr::getIntToPtr(RHSC, SrcTy), 3669 Q, MaxRecurse-1)) 3670 return V; 3671 } else if (PtrToIntInst *RI = dyn_cast<PtrToIntInst>(RHS)) { 3672 if (RI->getOperand(0)->getType() == SrcTy) 3673 // Compare without the cast. 3674 if (Value *V = SimplifyICmpInst(Pred, SrcOp, RI->getOperand(0), 3675 Q, MaxRecurse-1)) 3676 return V; 3677 } 3678 } 3679 3680 if (isa<ZExtInst>(LHS)) { 3681 // Turn icmp (zext X), (zext Y) into a compare of X and Y if they have the 3682 // same type. 3683 if (ZExtInst *RI = dyn_cast<ZExtInst>(RHS)) { 3684 if (MaxRecurse && SrcTy == RI->getOperand(0)->getType()) 3685 // Compare X and Y. Note that signed predicates become unsigned. 3686 if (Value *V = SimplifyICmpInst(ICmpInst::getUnsignedPredicate(Pred), 3687 SrcOp, RI->getOperand(0), Q, 3688 MaxRecurse-1)) 3689 return V; 3690 } 3691 // Fold (zext X) ule (sext X), (zext X) sge (sext X) to true. 3692 else if (SExtInst *RI = dyn_cast<SExtInst>(RHS)) { 3693 if (SrcOp == RI->getOperand(0)) { 3694 if (Pred == ICmpInst::ICMP_ULE || Pred == ICmpInst::ICMP_SGE) 3695 return ConstantInt::getTrue(ITy); 3696 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_SLT) 3697 return ConstantInt::getFalse(ITy); 3698 } 3699 } 3700 // Turn icmp (zext X), Cst into a compare of X and Cst if Cst is extended 3701 // too. If not, then try to deduce the result of the comparison. 3702 else if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) { 3703 // Compute the constant that would happen if we truncated to SrcTy then 3704 // reextended to DstTy. 3705 Constant *Trunc = ConstantExpr::getTrunc(CI, SrcTy); 3706 Constant *RExt = ConstantExpr::getCast(CastInst::ZExt, Trunc, DstTy); 3707 3708 // If the re-extended constant didn't change then this is effectively 3709 // also a case of comparing two zero-extended values. 3710 if (RExt == CI && MaxRecurse) 3711 if (Value *V = SimplifyICmpInst(ICmpInst::getUnsignedPredicate(Pred), 3712 SrcOp, Trunc, Q, MaxRecurse-1)) 3713 return V; 3714 3715 // Otherwise the upper bits of LHS are zero while RHS has a non-zero bit 3716 // there. Use this to work out the result of the comparison. 3717 if (RExt != CI) { 3718 switch (Pred) { 3719 default: llvm_unreachable("Unknown ICmp predicate!"); 3720 // LHS <u RHS. 3721 case ICmpInst::ICMP_EQ: 3722 case ICmpInst::ICMP_UGT: 3723 case ICmpInst::ICMP_UGE: 3724 return ConstantInt::getFalse(CI->getContext()); 3725 3726 case ICmpInst::ICMP_NE: 3727 case ICmpInst::ICMP_ULT: 3728 case ICmpInst::ICMP_ULE: 3729 return ConstantInt::getTrue(CI->getContext()); 3730 3731 // LHS is non-negative. If RHS is negative then LHS >s LHS. If RHS 3732 // is non-negative then LHS <s RHS. 3733 case ICmpInst::ICMP_SGT: 3734 case ICmpInst::ICMP_SGE: 3735 return CI->getValue().isNegative() ? 3736 ConstantInt::getTrue(CI->getContext()) : 3737 ConstantInt::getFalse(CI->getContext()); 3738 3739 case ICmpInst::ICMP_SLT: 3740 case ICmpInst::ICMP_SLE: 3741 return CI->getValue().isNegative() ? 3742 ConstantInt::getFalse(CI->getContext()) : 3743 ConstantInt::getTrue(CI->getContext()); 3744 } 3745 } 3746 } 3747 } 3748 3749 if (isa<SExtInst>(LHS)) { 3750 // Turn icmp (sext X), (sext Y) into a compare of X and Y if they have the 3751 // same type. 3752 if (SExtInst *RI = dyn_cast<SExtInst>(RHS)) { 3753 if (MaxRecurse && SrcTy == RI->getOperand(0)->getType()) 3754 // Compare X and Y. Note that the predicate does not change. 3755 if (Value *V = SimplifyICmpInst(Pred, SrcOp, RI->getOperand(0), 3756 Q, MaxRecurse-1)) 3757 return V; 3758 } 3759 // Fold (sext X) uge (zext X), (sext X) sle (zext X) to true. 3760 else if (ZExtInst *RI = dyn_cast<ZExtInst>(RHS)) { 3761 if (SrcOp == RI->getOperand(0)) { 3762 if (Pred == ICmpInst::ICMP_UGE || Pred == ICmpInst::ICMP_SLE) 3763 return ConstantInt::getTrue(ITy); 3764 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_SGT) 3765 return ConstantInt::getFalse(ITy); 3766 } 3767 } 3768 // Turn icmp (sext X), Cst into a compare of X and Cst if Cst is extended 3769 // too. If not, then try to deduce the result of the comparison. 3770 else if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) { 3771 // Compute the constant that would happen if we truncated to SrcTy then 3772 // reextended to DstTy. 3773 Constant *Trunc = ConstantExpr::getTrunc(CI, SrcTy); 3774 Constant *RExt = ConstantExpr::getCast(CastInst::SExt, Trunc, DstTy); 3775 3776 // If the re-extended constant didn't change then this is effectively 3777 // also a case of comparing two sign-extended values. 3778 if (RExt == CI && MaxRecurse) 3779 if (Value *V = SimplifyICmpInst(Pred, SrcOp, Trunc, Q, MaxRecurse-1)) 3780 return V; 3781 3782 // Otherwise the upper bits of LHS are all equal, while RHS has varying 3783 // bits there. Use this to work out the result of the comparison. 3784 if (RExt != CI) { 3785 switch (Pred) { 3786 default: llvm_unreachable("Unknown ICmp predicate!"); 3787 case ICmpInst::ICMP_EQ: 3788 return ConstantInt::getFalse(CI->getContext()); 3789 case ICmpInst::ICMP_NE: 3790 return ConstantInt::getTrue(CI->getContext()); 3791 3792 // If RHS is non-negative then LHS <s RHS. If RHS is negative then 3793 // LHS >s RHS. 3794 case ICmpInst::ICMP_SGT: 3795 case ICmpInst::ICMP_SGE: 3796 return CI->getValue().isNegative() ? 3797 ConstantInt::getTrue(CI->getContext()) : 3798 ConstantInt::getFalse(CI->getContext()); 3799 case ICmpInst::ICMP_SLT: 3800 case ICmpInst::ICMP_SLE: 3801 return CI->getValue().isNegative() ? 3802 ConstantInt::getFalse(CI->getContext()) : 3803 ConstantInt::getTrue(CI->getContext()); 3804 3805 // If LHS is non-negative then LHS <u RHS. If LHS is negative then 3806 // LHS >u RHS. 3807 case ICmpInst::ICMP_UGT: 3808 case ICmpInst::ICMP_UGE: 3809 // Comparison is true iff the LHS <s 0. 3810 if (MaxRecurse) 3811 if (Value *V = SimplifyICmpInst(ICmpInst::ICMP_SLT, SrcOp, 3812 Constant::getNullValue(SrcTy), 3813 Q, MaxRecurse-1)) 3814 return V; 3815 break; 3816 case ICmpInst::ICMP_ULT: 3817 case ICmpInst::ICMP_ULE: 3818 // Comparison is true iff the LHS >=s 0. 3819 if (MaxRecurse) 3820 if (Value *V = SimplifyICmpInst(ICmpInst::ICMP_SGE, SrcOp, 3821 Constant::getNullValue(SrcTy), 3822 Q, MaxRecurse-1)) 3823 return V; 3824 break; 3825 } 3826 } 3827 } 3828 } 3829 } 3830 3831 // icmp eq|ne X, Y -> false|true if X != Y 3832 // This is potentially expensive, and we have already computedKnownBits for 3833 // compares with 0 above here, so only try this for a non-zero compare. 3834 if (ICmpInst::isEquality(Pred) && !match(RHS, m_Zero()) && 3835 isKnownNonEqual(LHS, RHS, Q.DL, Q.AC, Q.CxtI, Q.DT, Q.IIQ.UseInstrInfo)) { 3836 return Pred == ICmpInst::ICMP_NE ? getTrue(ITy) : getFalse(ITy); 3837 } 3838 3839 if (Value *V = simplifyICmpWithBinOp(Pred, LHS, RHS, Q, MaxRecurse)) 3840 return V; 3841 3842 if (Value *V = simplifyICmpWithMinMax(Pred, LHS, RHS, Q, MaxRecurse)) 3843 return V; 3844 3845 if (Value *V = simplifyICmpWithDominatingAssume(Pred, LHS, RHS, Q)) 3846 return V; 3847 3848 // Simplify comparisons of related pointers using a powerful, recursive 3849 // GEP-walk when we have target data available.. 3850 if (LHS->getType()->isPointerTy()) 3851 if (auto *C = computePointerICmp(Pred, LHS, RHS, Q)) 3852 return C; 3853 if (auto *CLHS = dyn_cast<PtrToIntOperator>(LHS)) 3854 if (auto *CRHS = dyn_cast<PtrToIntOperator>(RHS)) 3855 if (Q.DL.getTypeSizeInBits(CLHS->getPointerOperandType()) == 3856 Q.DL.getTypeSizeInBits(CLHS->getType()) && 3857 Q.DL.getTypeSizeInBits(CRHS->getPointerOperandType()) == 3858 Q.DL.getTypeSizeInBits(CRHS->getType())) 3859 if (auto *C = computePointerICmp(Pred, CLHS->getPointerOperand(), 3860 CRHS->getPointerOperand(), Q)) 3861 return C; 3862 3863 // If the comparison is with the result of a select instruction, check whether 3864 // comparing with either branch of the select always yields the same value. 3865 if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS)) 3866 if (Value *V = ThreadCmpOverSelect(Pred, LHS, RHS, Q, MaxRecurse)) 3867 return V; 3868 3869 // If the comparison is with the result of a phi instruction, check whether 3870 // doing the compare with each incoming phi value yields a common result. 3871 if (isa<PHINode>(LHS) || isa<PHINode>(RHS)) 3872 if (Value *V = ThreadCmpOverPHI(Pred, LHS, RHS, Q, MaxRecurse)) 3873 return V; 3874 3875 return nullptr; 3876 } 3877 3878 Value *llvm::SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS, 3879 const SimplifyQuery &Q) { 3880 return ::SimplifyICmpInst(Predicate, LHS, RHS, Q, RecursionLimit); 3881 } 3882 3883 /// Given operands for an FCmpInst, see if we can fold the result. 3884 /// If not, this returns null. 3885 static Value *SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS, 3886 FastMathFlags FMF, const SimplifyQuery &Q, 3887 unsigned MaxRecurse) { 3888 CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate; 3889 assert(CmpInst::isFPPredicate(Pred) && "Not an FP compare!"); 3890 3891 if (Constant *CLHS = dyn_cast<Constant>(LHS)) { 3892 if (Constant *CRHS = dyn_cast<Constant>(RHS)) 3893 return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, Q.DL, Q.TLI); 3894 3895 // If we have a constant, make sure it is on the RHS. 3896 std::swap(LHS, RHS); 3897 Pred = CmpInst::getSwappedPredicate(Pred); 3898 } 3899 3900 // Fold trivial predicates. 3901 Type *RetTy = GetCompareTy(LHS); 3902 if (Pred == FCmpInst::FCMP_FALSE) 3903 return getFalse(RetTy); 3904 if (Pred == FCmpInst::FCMP_TRUE) 3905 return getTrue(RetTy); 3906 3907 // Fold (un)ordered comparison if we can determine there are no NaNs. 3908 if (Pred == FCmpInst::FCMP_UNO || Pred == FCmpInst::FCMP_ORD) 3909 if (FMF.noNaNs() || 3910 (isKnownNeverNaN(LHS, Q.TLI) && isKnownNeverNaN(RHS, Q.TLI))) 3911 return ConstantInt::get(RetTy, Pred == FCmpInst::FCMP_ORD); 3912 3913 // NaN is unordered; NaN is not ordered. 3914 assert((FCmpInst::isOrdered(Pred) || FCmpInst::isUnordered(Pred)) && 3915 "Comparison must be either ordered or unordered"); 3916 if (match(RHS, m_NaN())) 3917 return ConstantInt::get(RetTy, CmpInst::isUnordered(Pred)); 3918 3919 // fcmp pred x, poison and fcmp pred poison, x 3920 // fold to poison 3921 if (isa<PoisonValue>(LHS) || isa<PoisonValue>(RHS)) 3922 return PoisonValue::get(RetTy); 3923 3924 // fcmp pred x, undef and fcmp pred undef, x 3925 // fold to true if unordered, false if ordered 3926 if (Q.isUndefValue(LHS) || Q.isUndefValue(RHS)) { 3927 // Choosing NaN for the undef will always make unordered comparison succeed 3928 // and ordered comparison fail. 3929 return ConstantInt::get(RetTy, CmpInst::isUnordered(Pred)); 3930 } 3931 3932 // fcmp x,x -> true/false. Not all compares are foldable. 3933 if (LHS == RHS) { 3934 if (CmpInst::isTrueWhenEqual(Pred)) 3935 return getTrue(RetTy); 3936 if (CmpInst::isFalseWhenEqual(Pred)) 3937 return getFalse(RetTy); 3938 } 3939 3940 // Handle fcmp with constant RHS. 3941 // TODO: Use match with a specific FP value, so these work with vectors with 3942 // undef lanes. 3943 const APFloat *C; 3944 if (match(RHS, m_APFloat(C))) { 3945 // Check whether the constant is an infinity. 3946 if (C->isInfinity()) { 3947 if (C->isNegative()) { 3948 switch (Pred) { 3949 case FCmpInst::FCMP_OLT: 3950 // No value is ordered and less than negative infinity. 3951 return getFalse(RetTy); 3952 case FCmpInst::FCMP_UGE: 3953 // All values are unordered with or at least negative infinity. 3954 return getTrue(RetTy); 3955 default: 3956 break; 3957 } 3958 } else { 3959 switch (Pred) { 3960 case FCmpInst::FCMP_OGT: 3961 // No value is ordered and greater than infinity. 3962 return getFalse(RetTy); 3963 case FCmpInst::FCMP_ULE: 3964 // All values are unordered with and at most infinity. 3965 return getTrue(RetTy); 3966 default: 3967 break; 3968 } 3969 } 3970 3971 // LHS == Inf 3972 if (Pred == FCmpInst::FCMP_OEQ && isKnownNeverInfinity(LHS, Q.TLI)) 3973 return getFalse(RetTy); 3974 // LHS != Inf 3975 if (Pred == FCmpInst::FCMP_UNE && isKnownNeverInfinity(LHS, Q.TLI)) 3976 return getTrue(RetTy); 3977 // LHS == Inf || LHS == NaN 3978 if (Pred == FCmpInst::FCMP_UEQ && isKnownNeverInfinity(LHS, Q.TLI) && 3979 isKnownNeverNaN(LHS, Q.TLI)) 3980 return getFalse(RetTy); 3981 // LHS != Inf && LHS != NaN 3982 if (Pred == FCmpInst::FCMP_ONE && isKnownNeverInfinity(LHS, Q.TLI) && 3983 isKnownNeverNaN(LHS, Q.TLI)) 3984 return getTrue(RetTy); 3985 } 3986 if (C->isNegative() && !C->isNegZero()) { 3987 assert(!C->isNaN() && "Unexpected NaN constant!"); 3988 // TODO: We can catch more cases by using a range check rather than 3989 // relying on CannotBeOrderedLessThanZero. 3990 switch (Pred) { 3991 case FCmpInst::FCMP_UGE: 3992 case FCmpInst::FCMP_UGT: 3993 case FCmpInst::FCMP_UNE: 3994 // (X >= 0) implies (X > C) when (C < 0) 3995 if (CannotBeOrderedLessThanZero(LHS, Q.TLI)) 3996 return getTrue(RetTy); 3997 break; 3998 case FCmpInst::FCMP_OEQ: 3999 case FCmpInst::FCMP_OLE: 4000 case FCmpInst::FCMP_OLT: 4001 // (X >= 0) implies !(X < C) when (C < 0) 4002 if (CannotBeOrderedLessThanZero(LHS, Q.TLI)) 4003 return getFalse(RetTy); 4004 break; 4005 default: 4006 break; 4007 } 4008 } 4009 4010 // Check comparison of [minnum/maxnum with constant] with other constant. 4011 const APFloat *C2; 4012 if ((match(LHS, m_Intrinsic<Intrinsic::minnum>(m_Value(), m_APFloat(C2))) && 4013 *C2 < *C) || 4014 (match(LHS, m_Intrinsic<Intrinsic::maxnum>(m_Value(), m_APFloat(C2))) && 4015 *C2 > *C)) { 4016 bool IsMaxNum = 4017 cast<IntrinsicInst>(LHS)->getIntrinsicID() == Intrinsic::maxnum; 4018 // The ordered relationship and minnum/maxnum guarantee that we do not 4019 // have NaN constants, so ordered/unordered preds are handled the same. 4020 switch (Pred) { 4021 case FCmpInst::FCMP_OEQ: case FCmpInst::FCMP_UEQ: 4022 // minnum(X, LesserC) == C --> false 4023 // maxnum(X, GreaterC) == C --> false 4024 return getFalse(RetTy); 4025 case FCmpInst::FCMP_ONE: case FCmpInst::FCMP_UNE: 4026 // minnum(X, LesserC) != C --> true 4027 // maxnum(X, GreaterC) != C --> true 4028 return getTrue(RetTy); 4029 case FCmpInst::FCMP_OGE: case FCmpInst::FCMP_UGE: 4030 case FCmpInst::FCMP_OGT: case FCmpInst::FCMP_UGT: 4031 // minnum(X, LesserC) >= C --> false 4032 // minnum(X, LesserC) > C --> false 4033 // maxnum(X, GreaterC) >= C --> true 4034 // maxnum(X, GreaterC) > C --> true 4035 return ConstantInt::get(RetTy, IsMaxNum); 4036 case FCmpInst::FCMP_OLE: case FCmpInst::FCMP_ULE: 4037 case FCmpInst::FCMP_OLT: case FCmpInst::FCMP_ULT: 4038 // minnum(X, LesserC) <= C --> true 4039 // minnum(X, LesserC) < C --> true 4040 // maxnum(X, GreaterC) <= C --> false 4041 // maxnum(X, GreaterC) < C --> false 4042 return ConstantInt::get(RetTy, !IsMaxNum); 4043 default: 4044 // TRUE/FALSE/ORD/UNO should be handled before this. 4045 llvm_unreachable("Unexpected fcmp predicate"); 4046 } 4047 } 4048 } 4049 4050 if (match(RHS, m_AnyZeroFP())) { 4051 switch (Pred) { 4052 case FCmpInst::FCMP_OGE: 4053 case FCmpInst::FCMP_ULT: 4054 // Positive or zero X >= 0.0 --> true 4055 // Positive or zero X < 0.0 --> false 4056 if ((FMF.noNaNs() || isKnownNeverNaN(LHS, Q.TLI)) && 4057 CannotBeOrderedLessThanZero(LHS, Q.TLI)) 4058 return Pred == FCmpInst::FCMP_OGE ? getTrue(RetTy) : getFalse(RetTy); 4059 break; 4060 case FCmpInst::FCMP_UGE: 4061 case FCmpInst::FCMP_OLT: 4062 // Positive or zero or nan X >= 0.0 --> true 4063 // Positive or zero or nan X < 0.0 --> false 4064 if (CannotBeOrderedLessThanZero(LHS, Q.TLI)) 4065 return Pred == FCmpInst::FCMP_UGE ? getTrue(RetTy) : getFalse(RetTy); 4066 break; 4067 default: 4068 break; 4069 } 4070 } 4071 4072 // If the comparison is with the result of a select instruction, check whether 4073 // comparing with either branch of the select always yields the same value. 4074 if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS)) 4075 if (Value *V = ThreadCmpOverSelect(Pred, LHS, RHS, Q, MaxRecurse)) 4076 return V; 4077 4078 // If the comparison is with the result of a phi instruction, check whether 4079 // doing the compare with each incoming phi value yields a common result. 4080 if (isa<PHINode>(LHS) || isa<PHINode>(RHS)) 4081 if (Value *V = ThreadCmpOverPHI(Pred, LHS, RHS, Q, MaxRecurse)) 4082 return V; 4083 4084 return nullptr; 4085 } 4086 4087 Value *llvm::SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS, 4088 FastMathFlags FMF, const SimplifyQuery &Q) { 4089 return ::SimplifyFCmpInst(Predicate, LHS, RHS, FMF, Q, RecursionLimit); 4090 } 4091 4092 static Value *simplifyWithOpReplaced(Value *V, Value *Op, Value *RepOp, 4093 const SimplifyQuery &Q, 4094 bool AllowRefinement, 4095 unsigned MaxRecurse) { 4096 assert(!Op->getType()->isVectorTy() && "This is not safe for vectors"); 4097 4098 // Trivial replacement. 4099 if (V == Op) 4100 return RepOp; 4101 4102 // We cannot replace a constant, and shouldn't even try. 4103 if (isa<Constant>(Op)) 4104 return nullptr; 4105 4106 auto *I = dyn_cast<Instruction>(V); 4107 if (!I || !is_contained(I->operands(), Op)) 4108 return nullptr; 4109 4110 // Replace Op with RepOp in instruction operands. 4111 SmallVector<Value *, 8> NewOps(I->getNumOperands()); 4112 transform(I->operands(), NewOps.begin(), 4113 [&](Value *V) { return V == Op ? RepOp : V; }); 4114 4115 if (!AllowRefinement) { 4116 // General InstSimplify functions may refine the result, e.g. by returning 4117 // a constant for a potentially poison value. To avoid this, implement only 4118 // a few non-refining but profitable transforms here. 4119 4120 if (auto *BO = dyn_cast<BinaryOperator>(I)) { 4121 unsigned Opcode = BO->getOpcode(); 4122 // id op x -> x, x op id -> x 4123 if (NewOps[0] == ConstantExpr::getBinOpIdentity(Opcode, I->getType())) 4124 return NewOps[1]; 4125 if (NewOps[1] == ConstantExpr::getBinOpIdentity(Opcode, I->getType(), 4126 /* RHS */ true)) 4127 return NewOps[0]; 4128 4129 // x & x -> x, x | x -> x 4130 if ((Opcode == Instruction::And || Opcode == Instruction::Or) && 4131 NewOps[0] == NewOps[1]) 4132 return NewOps[0]; 4133 } 4134 4135 if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) { 4136 // getelementptr x, 0 -> x 4137 if (NewOps.size() == 2 && match(NewOps[1], m_Zero()) && 4138 !GEP->isInBounds()) 4139 return NewOps[0]; 4140 } 4141 } else if (MaxRecurse) { 4142 // The simplification queries below may return the original value. Consider: 4143 // %div = udiv i32 %arg, %arg2 4144 // %mul = mul nsw i32 %div, %arg2 4145 // %cmp = icmp eq i32 %mul, %arg 4146 // %sel = select i1 %cmp, i32 %div, i32 undef 4147 // Replacing %arg by %mul, %div becomes "udiv i32 %mul, %arg2", which 4148 // simplifies back to %arg. This can only happen because %mul does not 4149 // dominate %div. To ensure a consistent return value contract, we make sure 4150 // that this case returns nullptr as well. 4151 auto PreventSelfSimplify = [V](Value *Simplified) { 4152 return Simplified != V ? Simplified : nullptr; 4153 }; 4154 4155 if (auto *B = dyn_cast<BinaryOperator>(I)) 4156 return PreventSelfSimplify(SimplifyBinOp(B->getOpcode(), NewOps[0], 4157 NewOps[1], Q, MaxRecurse - 1)); 4158 4159 if (CmpInst *C = dyn_cast<CmpInst>(I)) 4160 return PreventSelfSimplify(SimplifyCmpInst(C->getPredicate(), NewOps[0], 4161 NewOps[1], Q, MaxRecurse - 1)); 4162 4163 if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) 4164 return PreventSelfSimplify(SimplifyGEPInst( 4165 GEP->getSourceElementType(), NewOps[0], makeArrayRef(NewOps).slice(1), 4166 GEP->isInBounds(), Q, MaxRecurse - 1)); 4167 4168 if (isa<SelectInst>(I)) 4169 return PreventSelfSimplify( 4170 SimplifySelectInst(NewOps[0], NewOps[1], NewOps[2], Q, 4171 MaxRecurse - 1)); 4172 // TODO: We could hand off more cases to instsimplify here. 4173 } 4174 4175 // If all operands are constant after substituting Op for RepOp then we can 4176 // constant fold the instruction. 4177 SmallVector<Constant *, 8> ConstOps; 4178 for (Value *NewOp : NewOps) { 4179 if (Constant *ConstOp = dyn_cast<Constant>(NewOp)) 4180 ConstOps.push_back(ConstOp); 4181 else 4182 return nullptr; 4183 } 4184 4185 // Consider: 4186 // %cmp = icmp eq i32 %x, 2147483647 4187 // %add = add nsw i32 %x, 1 4188 // %sel = select i1 %cmp, i32 -2147483648, i32 %add 4189 // 4190 // We can't replace %sel with %add unless we strip away the flags (which 4191 // will be done in InstCombine). 4192 // TODO: This may be unsound, because it only catches some forms of 4193 // refinement. 4194 if (!AllowRefinement && canCreatePoison(cast<Operator>(I))) 4195 return nullptr; 4196 4197 if (CmpInst *C = dyn_cast<CmpInst>(I)) 4198 return ConstantFoldCompareInstOperands(C->getPredicate(), ConstOps[0], 4199 ConstOps[1], Q.DL, Q.TLI); 4200 4201 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 4202 if (!LI->isVolatile()) 4203 return ConstantFoldLoadFromConstPtr(ConstOps[0], LI->getType(), Q.DL); 4204 4205 return ConstantFoldInstOperands(I, ConstOps, Q.DL, Q.TLI); 4206 } 4207 4208 Value *llvm::simplifyWithOpReplaced(Value *V, Value *Op, Value *RepOp, 4209 const SimplifyQuery &Q, 4210 bool AllowRefinement) { 4211 return ::simplifyWithOpReplaced(V, Op, RepOp, Q, AllowRefinement, 4212 RecursionLimit); 4213 } 4214 4215 /// Try to simplify a select instruction when its condition operand is an 4216 /// integer comparison where one operand of the compare is a constant. 4217 static Value *simplifySelectBitTest(Value *TrueVal, Value *FalseVal, Value *X, 4218 const APInt *Y, bool TrueWhenUnset) { 4219 const APInt *C; 4220 4221 // (X & Y) == 0 ? X & ~Y : X --> X 4222 // (X & Y) != 0 ? X & ~Y : X --> X & ~Y 4223 if (FalseVal == X && match(TrueVal, m_And(m_Specific(X), m_APInt(C))) && 4224 *Y == ~*C) 4225 return TrueWhenUnset ? FalseVal : TrueVal; 4226 4227 // (X & Y) == 0 ? X : X & ~Y --> X & ~Y 4228 // (X & Y) != 0 ? X : X & ~Y --> X 4229 if (TrueVal == X && match(FalseVal, m_And(m_Specific(X), m_APInt(C))) && 4230 *Y == ~*C) 4231 return TrueWhenUnset ? FalseVal : TrueVal; 4232 4233 if (Y->isPowerOf2()) { 4234 // (X & Y) == 0 ? X | Y : X --> X | Y 4235 // (X & Y) != 0 ? X | Y : X --> X 4236 if (FalseVal == X && match(TrueVal, m_Or(m_Specific(X), m_APInt(C))) && 4237 *Y == *C) 4238 return TrueWhenUnset ? TrueVal : FalseVal; 4239 4240 // (X & Y) == 0 ? X : X | Y --> X 4241 // (X & Y) != 0 ? X : X | Y --> X | Y 4242 if (TrueVal == X && match(FalseVal, m_Or(m_Specific(X), m_APInt(C))) && 4243 *Y == *C) 4244 return TrueWhenUnset ? TrueVal : FalseVal; 4245 } 4246 4247 return nullptr; 4248 } 4249 4250 /// An alternative way to test if a bit is set or not uses sgt/slt instead of 4251 /// eq/ne. 4252 static Value *simplifySelectWithFakeICmpEq(Value *CmpLHS, Value *CmpRHS, 4253 ICmpInst::Predicate Pred, 4254 Value *TrueVal, Value *FalseVal) { 4255 Value *X; 4256 APInt Mask; 4257 if (!decomposeBitTestICmp(CmpLHS, CmpRHS, Pred, X, Mask)) 4258 return nullptr; 4259 4260 return simplifySelectBitTest(TrueVal, FalseVal, X, &Mask, 4261 Pred == ICmpInst::ICMP_EQ); 4262 } 4263 4264 /// Try to simplify a select instruction when its condition operand is an 4265 /// integer comparison. 4266 static Value *simplifySelectWithICmpCond(Value *CondVal, Value *TrueVal, 4267 Value *FalseVal, const SimplifyQuery &Q, 4268 unsigned MaxRecurse) { 4269 ICmpInst::Predicate Pred; 4270 Value *CmpLHS, *CmpRHS; 4271 if (!match(CondVal, m_ICmp(Pred, m_Value(CmpLHS), m_Value(CmpRHS)))) 4272 return nullptr; 4273 4274 // Canonicalize ne to eq predicate. 4275 if (Pred == ICmpInst::ICMP_NE) { 4276 Pred = ICmpInst::ICMP_EQ; 4277 std::swap(TrueVal, FalseVal); 4278 } 4279 4280 // Check for integer min/max with a limit constant: 4281 // X > MIN_INT ? X : MIN_INT --> X 4282 // X < MAX_INT ? X : MAX_INT --> X 4283 if (TrueVal->getType()->isIntOrIntVectorTy()) { 4284 Value *X, *Y; 4285 SelectPatternFlavor SPF = 4286 matchDecomposedSelectPattern(cast<ICmpInst>(CondVal), TrueVal, FalseVal, 4287 X, Y).Flavor; 4288 if (SelectPatternResult::isMinOrMax(SPF) && Pred == getMinMaxPred(SPF)) { 4289 APInt LimitC = getMinMaxLimit(getInverseMinMaxFlavor(SPF), 4290 X->getType()->getScalarSizeInBits()); 4291 if (match(Y, m_SpecificInt(LimitC))) 4292 return X; 4293 } 4294 } 4295 4296 if (Pred == ICmpInst::ICMP_EQ && match(CmpRHS, m_Zero())) { 4297 Value *X; 4298 const APInt *Y; 4299 if (match(CmpLHS, m_And(m_Value(X), m_APInt(Y)))) 4300 if (Value *V = simplifySelectBitTest(TrueVal, FalseVal, X, Y, 4301 /*TrueWhenUnset=*/true)) 4302 return V; 4303 4304 // Test for a bogus zero-shift-guard-op around funnel-shift or rotate. 4305 Value *ShAmt; 4306 auto isFsh = m_CombineOr(m_FShl(m_Value(X), m_Value(), m_Value(ShAmt)), 4307 m_FShr(m_Value(), m_Value(X), m_Value(ShAmt))); 4308 // (ShAmt == 0) ? fshl(X, *, ShAmt) : X --> X 4309 // (ShAmt == 0) ? fshr(*, X, ShAmt) : X --> X 4310 if (match(TrueVal, isFsh) && FalseVal == X && CmpLHS == ShAmt) 4311 return X; 4312 4313 // Test for a zero-shift-guard-op around rotates. These are used to 4314 // avoid UB from oversized shifts in raw IR rotate patterns, but the 4315 // intrinsics do not have that problem. 4316 // We do not allow this transform for the general funnel shift case because 4317 // that would not preserve the poison safety of the original code. 4318 auto isRotate = 4319 m_CombineOr(m_FShl(m_Value(X), m_Deferred(X), m_Value(ShAmt)), 4320 m_FShr(m_Value(X), m_Deferred(X), m_Value(ShAmt))); 4321 // (ShAmt == 0) ? X : fshl(X, X, ShAmt) --> fshl(X, X, ShAmt) 4322 // (ShAmt == 0) ? X : fshr(X, X, ShAmt) --> fshr(X, X, ShAmt) 4323 if (match(FalseVal, isRotate) && TrueVal == X && CmpLHS == ShAmt && 4324 Pred == ICmpInst::ICMP_EQ) 4325 return FalseVal; 4326 4327 // X == 0 ? abs(X) : -abs(X) --> -abs(X) 4328 // X == 0 ? -abs(X) : abs(X) --> abs(X) 4329 if (match(TrueVal, m_Intrinsic<Intrinsic::abs>(m_Specific(CmpLHS))) && 4330 match(FalseVal, m_Neg(m_Intrinsic<Intrinsic::abs>(m_Specific(CmpLHS))))) 4331 return FalseVal; 4332 if (match(TrueVal, 4333 m_Neg(m_Intrinsic<Intrinsic::abs>(m_Specific(CmpLHS)))) && 4334 match(FalseVal, m_Intrinsic<Intrinsic::abs>(m_Specific(CmpLHS)))) 4335 return FalseVal; 4336 } 4337 4338 // Check for other compares that behave like bit test. 4339 if (Value *V = simplifySelectWithFakeICmpEq(CmpLHS, CmpRHS, Pred, 4340 TrueVal, FalseVal)) 4341 return V; 4342 4343 // If we have a scalar equality comparison, then we know the value in one of 4344 // the arms of the select. See if substituting this value into the arm and 4345 // simplifying the result yields the same value as the other arm. 4346 // Note that the equivalence/replacement opportunity does not hold for vectors 4347 // because each element of a vector select is chosen independently. 4348 if (Pred == ICmpInst::ICMP_EQ && !CondVal->getType()->isVectorTy()) { 4349 if (simplifyWithOpReplaced(FalseVal, CmpLHS, CmpRHS, Q, 4350 /* AllowRefinement */ false, MaxRecurse) == 4351 TrueVal || 4352 simplifyWithOpReplaced(FalseVal, CmpRHS, CmpLHS, Q, 4353 /* AllowRefinement */ false, MaxRecurse) == 4354 TrueVal) 4355 return FalseVal; 4356 if (simplifyWithOpReplaced(TrueVal, CmpLHS, CmpRHS, Q, 4357 /* AllowRefinement */ true, MaxRecurse) == 4358 FalseVal || 4359 simplifyWithOpReplaced(TrueVal, CmpRHS, CmpLHS, Q, 4360 /* AllowRefinement */ true, MaxRecurse) == 4361 FalseVal) 4362 return FalseVal; 4363 } 4364 4365 return nullptr; 4366 } 4367 4368 /// Try to simplify a select instruction when its condition operand is a 4369 /// floating-point comparison. 4370 static Value *simplifySelectWithFCmp(Value *Cond, Value *T, Value *F, 4371 const SimplifyQuery &Q) { 4372 FCmpInst::Predicate Pred; 4373 if (!match(Cond, m_FCmp(Pred, m_Specific(T), m_Specific(F))) && 4374 !match(Cond, m_FCmp(Pred, m_Specific(F), m_Specific(T)))) 4375 return nullptr; 4376 4377 // This transform is safe if we do not have (do not care about) -0.0 or if 4378 // at least one operand is known to not be -0.0. Otherwise, the select can 4379 // change the sign of a zero operand. 4380 bool HasNoSignedZeros = Q.CxtI && isa<FPMathOperator>(Q.CxtI) && 4381 Q.CxtI->hasNoSignedZeros(); 4382 const APFloat *C; 4383 if (HasNoSignedZeros || (match(T, m_APFloat(C)) && C->isNonZero()) || 4384 (match(F, m_APFloat(C)) && C->isNonZero())) { 4385 // (T == F) ? T : F --> F 4386 // (F == T) ? T : F --> F 4387 if (Pred == FCmpInst::FCMP_OEQ) 4388 return F; 4389 4390 // (T != F) ? T : F --> T 4391 // (F != T) ? T : F --> T 4392 if (Pred == FCmpInst::FCMP_UNE) 4393 return T; 4394 } 4395 4396 return nullptr; 4397 } 4398 4399 /// Given operands for a SelectInst, see if we can fold the result. 4400 /// If not, this returns null. 4401 static Value *SimplifySelectInst(Value *Cond, Value *TrueVal, Value *FalseVal, 4402 const SimplifyQuery &Q, unsigned MaxRecurse) { 4403 if (auto *CondC = dyn_cast<Constant>(Cond)) { 4404 if (auto *TrueC = dyn_cast<Constant>(TrueVal)) 4405 if (auto *FalseC = dyn_cast<Constant>(FalseVal)) 4406 return ConstantFoldSelectInstruction(CondC, TrueC, FalseC); 4407 4408 // select poison, X, Y -> poison 4409 if (isa<PoisonValue>(CondC)) 4410 return PoisonValue::get(TrueVal->getType()); 4411 4412 // select undef, X, Y -> X or Y 4413 if (Q.isUndefValue(CondC)) 4414 return isa<Constant>(FalseVal) ? FalseVal : TrueVal; 4415 4416 // select true, X, Y --> X 4417 // select false, X, Y --> Y 4418 // For vectors, allow undef/poison elements in the condition to match the 4419 // defined elements, so we can eliminate the select. 4420 if (match(CondC, m_One())) 4421 return TrueVal; 4422 if (match(CondC, m_Zero())) 4423 return FalseVal; 4424 } 4425 4426 assert(Cond->getType()->isIntOrIntVectorTy(1) && 4427 "Select must have bool or bool vector condition"); 4428 assert(TrueVal->getType() == FalseVal->getType() && 4429 "Select must have same types for true/false ops"); 4430 4431 if (Cond->getType() == TrueVal->getType()) { 4432 // select i1 Cond, i1 true, i1 false --> i1 Cond 4433 if (match(TrueVal, m_One()) && match(FalseVal, m_ZeroInt())) 4434 return Cond; 4435 4436 // (X || Y) && (X || !Y) --> X (commuted 8 ways) 4437 Value *X, *Y; 4438 if (match(FalseVal, m_ZeroInt())) { 4439 if (match(Cond, m_c_LogicalOr(m_Value(X), m_Not(m_Value(Y)))) && 4440 match(TrueVal, m_c_LogicalOr(m_Specific(X), m_Specific(Y)))) 4441 return X; 4442 if (match(TrueVal, m_c_LogicalOr(m_Value(X), m_Not(m_Value(Y)))) && 4443 match(Cond, m_c_LogicalOr(m_Specific(X), m_Specific(Y)))) 4444 return X; 4445 } 4446 } 4447 4448 // select ?, X, X -> X 4449 if (TrueVal == FalseVal) 4450 return TrueVal; 4451 4452 // If the true or false value is poison, we can fold to the other value. 4453 // If the true or false value is undef, we can fold to the other value as 4454 // long as the other value isn't poison. 4455 // select ?, poison, X -> X 4456 // select ?, undef, X -> X 4457 if (isa<PoisonValue>(TrueVal) || 4458 (Q.isUndefValue(TrueVal) && 4459 isGuaranteedNotToBePoison(FalseVal, Q.AC, Q.CxtI, Q.DT))) 4460 return FalseVal; 4461 // select ?, X, poison -> X 4462 // select ?, X, undef -> X 4463 if (isa<PoisonValue>(FalseVal) || 4464 (Q.isUndefValue(FalseVal) && 4465 isGuaranteedNotToBePoison(TrueVal, Q.AC, Q.CxtI, Q.DT))) 4466 return TrueVal; 4467 4468 // Deal with partial undef vector constants: select ?, VecC, VecC' --> VecC'' 4469 Constant *TrueC, *FalseC; 4470 if (isa<FixedVectorType>(TrueVal->getType()) && 4471 match(TrueVal, m_Constant(TrueC)) && 4472 match(FalseVal, m_Constant(FalseC))) { 4473 unsigned NumElts = 4474 cast<FixedVectorType>(TrueC->getType())->getNumElements(); 4475 SmallVector<Constant *, 16> NewC; 4476 for (unsigned i = 0; i != NumElts; ++i) { 4477 // Bail out on incomplete vector constants. 4478 Constant *TEltC = TrueC->getAggregateElement(i); 4479 Constant *FEltC = FalseC->getAggregateElement(i); 4480 if (!TEltC || !FEltC) 4481 break; 4482 4483 // If the elements match (undef or not), that value is the result. If only 4484 // one element is undef, choose the defined element as the safe result. 4485 if (TEltC == FEltC) 4486 NewC.push_back(TEltC); 4487 else if (isa<PoisonValue>(TEltC) || 4488 (Q.isUndefValue(TEltC) && isGuaranteedNotToBePoison(FEltC))) 4489 NewC.push_back(FEltC); 4490 else if (isa<PoisonValue>(FEltC) || 4491 (Q.isUndefValue(FEltC) && isGuaranteedNotToBePoison(TEltC))) 4492 NewC.push_back(TEltC); 4493 else 4494 break; 4495 } 4496 if (NewC.size() == NumElts) 4497 return ConstantVector::get(NewC); 4498 } 4499 4500 if (Value *V = 4501 simplifySelectWithICmpCond(Cond, TrueVal, FalseVal, Q, MaxRecurse)) 4502 return V; 4503 4504 if (Value *V = simplifySelectWithFCmp(Cond, TrueVal, FalseVal, Q)) 4505 return V; 4506 4507 if (Value *V = foldSelectWithBinaryOp(Cond, TrueVal, FalseVal)) 4508 return V; 4509 4510 Optional<bool> Imp = isImpliedByDomCondition(Cond, Q.CxtI, Q.DL); 4511 if (Imp) 4512 return *Imp ? TrueVal : FalseVal; 4513 4514 return nullptr; 4515 } 4516 4517 Value *llvm::SimplifySelectInst(Value *Cond, Value *TrueVal, Value *FalseVal, 4518 const SimplifyQuery &Q) { 4519 return ::SimplifySelectInst(Cond, TrueVal, FalseVal, Q, RecursionLimit); 4520 } 4521 4522 /// Given operands for an GetElementPtrInst, see if we can fold the result. 4523 /// If not, this returns null. 4524 static Value *SimplifyGEPInst(Type *SrcTy, Value *Ptr, 4525 ArrayRef<Value *> Indices, bool InBounds, 4526 const SimplifyQuery &Q, unsigned) { 4527 // The type of the GEP pointer operand. 4528 unsigned AS = 4529 cast<PointerType>(Ptr->getType()->getScalarType())->getAddressSpace(); 4530 4531 // getelementptr P -> P. 4532 if (Indices.empty()) 4533 return Ptr; 4534 4535 // Compute the (pointer) type returned by the GEP instruction. 4536 Type *LastType = GetElementPtrInst::getIndexedType(SrcTy, Indices); 4537 Type *GEPTy = PointerType::get(LastType, AS); 4538 if (VectorType *VT = dyn_cast<VectorType>(Ptr->getType())) 4539 GEPTy = VectorType::get(GEPTy, VT->getElementCount()); 4540 else { 4541 for (Value *Op : Indices) { 4542 // If one of the operands is a vector, the result type is a vector of 4543 // pointers. All vector operands must have the same number of elements. 4544 if (VectorType *VT = dyn_cast<VectorType>(Op->getType())) { 4545 GEPTy = VectorType::get(GEPTy, VT->getElementCount()); 4546 break; 4547 } 4548 } 4549 } 4550 4551 // For opaque pointers an all-zero GEP is a no-op. For typed pointers, 4552 // it may be equivalent to a bitcast. 4553 if (Ptr->getType()->getScalarType()->isOpaquePointerTy() && 4554 Ptr->getType() == GEPTy && 4555 all_of(Indices, [](const auto *V) { return match(V, m_Zero()); })) 4556 return Ptr; 4557 4558 // getelementptr poison, idx -> poison 4559 // getelementptr baseptr, poison -> poison 4560 if (isa<PoisonValue>(Ptr) || 4561 any_of(Indices, [](const auto *V) { return isa<PoisonValue>(V); })) 4562 return PoisonValue::get(GEPTy); 4563 4564 if (Q.isUndefValue(Ptr)) 4565 // If inbounds, we can choose an out-of-bounds pointer as a base pointer. 4566 return InBounds ? PoisonValue::get(GEPTy) : UndefValue::get(GEPTy); 4567 4568 bool IsScalableVec = 4569 isa<ScalableVectorType>(SrcTy) || any_of(Indices, [](const Value *V) { 4570 return isa<ScalableVectorType>(V->getType()); 4571 }); 4572 4573 if (Indices.size() == 1) { 4574 // getelementptr P, 0 -> P. 4575 if (match(Indices[0], m_Zero()) && Ptr->getType() == GEPTy) 4576 return Ptr; 4577 4578 Type *Ty = SrcTy; 4579 if (!IsScalableVec && Ty->isSized()) { 4580 Value *P; 4581 uint64_t C; 4582 uint64_t TyAllocSize = Q.DL.getTypeAllocSize(Ty); 4583 // getelementptr P, N -> P if P points to a type of zero size. 4584 if (TyAllocSize == 0 && Ptr->getType() == GEPTy) 4585 return Ptr; 4586 4587 // The following transforms are only safe if the ptrtoint cast 4588 // doesn't truncate the pointers. 4589 if (Indices[0]->getType()->getScalarSizeInBits() == 4590 Q.DL.getPointerSizeInBits(AS)) { 4591 auto CanSimplify = [GEPTy, &P, Ptr]() -> bool { 4592 return P->getType() == GEPTy && 4593 getUnderlyingObject(P) == getUnderlyingObject(Ptr); 4594 }; 4595 // getelementptr V, (sub P, V) -> P if P points to a type of size 1. 4596 if (TyAllocSize == 1 && 4597 match(Indices[0], 4598 m_Sub(m_PtrToInt(m_Value(P)), m_PtrToInt(m_Specific(Ptr)))) && 4599 CanSimplify()) 4600 return P; 4601 4602 // getelementptr V, (ashr (sub P, V), C) -> P if P points to a type of 4603 // size 1 << C. 4604 if (match(Indices[0], m_AShr(m_Sub(m_PtrToInt(m_Value(P)), 4605 m_PtrToInt(m_Specific(Ptr))), 4606 m_ConstantInt(C))) && 4607 TyAllocSize == 1ULL << C && CanSimplify()) 4608 return P; 4609 4610 // getelementptr V, (sdiv (sub P, V), C) -> P if P points to a type of 4611 // size C. 4612 if (match(Indices[0], m_SDiv(m_Sub(m_PtrToInt(m_Value(P)), 4613 m_PtrToInt(m_Specific(Ptr))), 4614 m_SpecificInt(TyAllocSize))) && 4615 CanSimplify()) 4616 return P; 4617 } 4618 } 4619 } 4620 4621 if (!IsScalableVec && Q.DL.getTypeAllocSize(LastType) == 1 && 4622 all_of(Indices.drop_back(1), 4623 [](Value *Idx) { return match(Idx, m_Zero()); })) { 4624 unsigned IdxWidth = 4625 Q.DL.getIndexSizeInBits(Ptr->getType()->getPointerAddressSpace()); 4626 if (Q.DL.getTypeSizeInBits(Indices.back()->getType()) == IdxWidth) { 4627 APInt BasePtrOffset(IdxWidth, 0); 4628 Value *StrippedBasePtr = 4629 Ptr->stripAndAccumulateInBoundsConstantOffsets(Q.DL, BasePtrOffset); 4630 4631 // Avoid creating inttoptr of zero here: While LLVMs treatment of 4632 // inttoptr is generally conservative, this particular case is folded to 4633 // a null pointer, which will have incorrect provenance. 4634 4635 // gep (gep V, C), (sub 0, V) -> C 4636 if (match(Indices.back(), 4637 m_Sub(m_Zero(), m_PtrToInt(m_Specific(StrippedBasePtr)))) && 4638 !BasePtrOffset.isZero()) { 4639 auto *CI = ConstantInt::get(GEPTy->getContext(), BasePtrOffset); 4640 return ConstantExpr::getIntToPtr(CI, GEPTy); 4641 } 4642 // gep (gep V, C), (xor V, -1) -> C-1 4643 if (match(Indices.back(), 4644 m_Xor(m_PtrToInt(m_Specific(StrippedBasePtr)), m_AllOnes())) && 4645 !BasePtrOffset.isOne()) { 4646 auto *CI = ConstantInt::get(GEPTy->getContext(), BasePtrOffset - 1); 4647 return ConstantExpr::getIntToPtr(CI, GEPTy); 4648 } 4649 } 4650 } 4651 4652 // Check to see if this is constant foldable. 4653 if (!isa<Constant>(Ptr) || 4654 !all_of(Indices, [](Value *V) { return isa<Constant>(V); })) 4655 return nullptr; 4656 4657 auto *CE = ConstantExpr::getGetElementPtr(SrcTy, cast<Constant>(Ptr), Indices, 4658 InBounds); 4659 return ConstantFoldConstant(CE, Q.DL); 4660 } 4661 4662 Value *llvm::SimplifyGEPInst(Type *SrcTy, Value *Ptr, ArrayRef<Value *> Indices, 4663 bool InBounds, const SimplifyQuery &Q) { 4664 return ::SimplifyGEPInst(SrcTy, Ptr, Indices, InBounds, Q, RecursionLimit); 4665 } 4666 4667 /// Given operands for an InsertValueInst, see if we can fold the result. 4668 /// If not, this returns null. 4669 static Value *SimplifyInsertValueInst(Value *Agg, Value *Val, 4670 ArrayRef<unsigned> Idxs, const SimplifyQuery &Q, 4671 unsigned) { 4672 if (Constant *CAgg = dyn_cast<Constant>(Agg)) 4673 if (Constant *CVal = dyn_cast<Constant>(Val)) 4674 return ConstantFoldInsertValueInstruction(CAgg, CVal, Idxs); 4675 4676 // insertvalue x, undef, n -> x 4677 if (Q.isUndefValue(Val)) 4678 return Agg; 4679 4680 // insertvalue x, (extractvalue y, n), n 4681 if (ExtractValueInst *EV = dyn_cast<ExtractValueInst>(Val)) 4682 if (EV->getAggregateOperand()->getType() == Agg->getType() && 4683 EV->getIndices() == Idxs) { 4684 // insertvalue undef, (extractvalue y, n), n -> y 4685 if (Q.isUndefValue(Agg)) 4686 return EV->getAggregateOperand(); 4687 4688 // insertvalue y, (extractvalue y, n), n -> y 4689 if (Agg == EV->getAggregateOperand()) 4690 return Agg; 4691 } 4692 4693 return nullptr; 4694 } 4695 4696 Value *llvm::SimplifyInsertValueInst(Value *Agg, Value *Val, 4697 ArrayRef<unsigned> Idxs, 4698 const SimplifyQuery &Q) { 4699 return ::SimplifyInsertValueInst(Agg, Val, Idxs, Q, RecursionLimit); 4700 } 4701 4702 Value *llvm::SimplifyInsertElementInst(Value *Vec, Value *Val, Value *Idx, 4703 const SimplifyQuery &Q) { 4704 // Try to constant fold. 4705 auto *VecC = dyn_cast<Constant>(Vec); 4706 auto *ValC = dyn_cast<Constant>(Val); 4707 auto *IdxC = dyn_cast<Constant>(Idx); 4708 if (VecC && ValC && IdxC) 4709 return ConstantExpr::getInsertElement(VecC, ValC, IdxC); 4710 4711 // For fixed-length vector, fold into poison if index is out of bounds. 4712 if (auto *CI = dyn_cast<ConstantInt>(Idx)) { 4713 if (isa<FixedVectorType>(Vec->getType()) && 4714 CI->uge(cast<FixedVectorType>(Vec->getType())->getNumElements())) 4715 return PoisonValue::get(Vec->getType()); 4716 } 4717 4718 // If index is undef, it might be out of bounds (see above case) 4719 if (Q.isUndefValue(Idx)) 4720 return PoisonValue::get(Vec->getType()); 4721 4722 // If the scalar is poison, or it is undef and there is no risk of 4723 // propagating poison from the vector value, simplify to the vector value. 4724 if (isa<PoisonValue>(Val) || 4725 (Q.isUndefValue(Val) && isGuaranteedNotToBePoison(Vec))) 4726 return Vec; 4727 4728 // If we are extracting a value from a vector, then inserting it into the same 4729 // place, that's the input vector: 4730 // insertelt Vec, (extractelt Vec, Idx), Idx --> Vec 4731 if (match(Val, m_ExtractElt(m_Specific(Vec), m_Specific(Idx)))) 4732 return Vec; 4733 4734 return nullptr; 4735 } 4736 4737 /// Given operands for an ExtractValueInst, see if we can fold the result. 4738 /// If not, this returns null. 4739 static Value *SimplifyExtractValueInst(Value *Agg, ArrayRef<unsigned> Idxs, 4740 const SimplifyQuery &, unsigned) { 4741 if (auto *CAgg = dyn_cast<Constant>(Agg)) 4742 return ConstantFoldExtractValueInstruction(CAgg, Idxs); 4743 4744 // extractvalue x, (insertvalue y, elt, n), n -> elt 4745 unsigned NumIdxs = Idxs.size(); 4746 for (auto *IVI = dyn_cast<InsertValueInst>(Agg); IVI != nullptr; 4747 IVI = dyn_cast<InsertValueInst>(IVI->getAggregateOperand())) { 4748 ArrayRef<unsigned> InsertValueIdxs = IVI->getIndices(); 4749 unsigned NumInsertValueIdxs = InsertValueIdxs.size(); 4750 unsigned NumCommonIdxs = std::min(NumInsertValueIdxs, NumIdxs); 4751 if (InsertValueIdxs.slice(0, NumCommonIdxs) == 4752 Idxs.slice(0, NumCommonIdxs)) { 4753 if (NumIdxs == NumInsertValueIdxs) 4754 return IVI->getInsertedValueOperand(); 4755 break; 4756 } 4757 } 4758 4759 return nullptr; 4760 } 4761 4762 Value *llvm::SimplifyExtractValueInst(Value *Agg, ArrayRef<unsigned> Idxs, 4763 const SimplifyQuery &Q) { 4764 return ::SimplifyExtractValueInst(Agg, Idxs, Q, RecursionLimit); 4765 } 4766 4767 /// Given operands for an ExtractElementInst, see if we can fold the result. 4768 /// If not, this returns null. 4769 static Value *SimplifyExtractElementInst(Value *Vec, Value *Idx, 4770 const SimplifyQuery &Q, unsigned) { 4771 auto *VecVTy = cast<VectorType>(Vec->getType()); 4772 if (auto *CVec = dyn_cast<Constant>(Vec)) { 4773 if (auto *CIdx = dyn_cast<Constant>(Idx)) 4774 return ConstantExpr::getExtractElement(CVec, CIdx); 4775 4776 if (Q.isUndefValue(Vec)) 4777 return UndefValue::get(VecVTy->getElementType()); 4778 } 4779 4780 // An undef extract index can be arbitrarily chosen to be an out-of-range 4781 // index value, which would result in the instruction being poison. 4782 if (Q.isUndefValue(Idx)) 4783 return PoisonValue::get(VecVTy->getElementType()); 4784 4785 // If extracting a specified index from the vector, see if we can recursively 4786 // find a previously computed scalar that was inserted into the vector. 4787 if (auto *IdxC = dyn_cast<ConstantInt>(Idx)) { 4788 // For fixed-length vector, fold into undef if index is out of bounds. 4789 unsigned MinNumElts = VecVTy->getElementCount().getKnownMinValue(); 4790 if (isa<FixedVectorType>(VecVTy) && IdxC->getValue().uge(MinNumElts)) 4791 return PoisonValue::get(VecVTy->getElementType()); 4792 // Handle case where an element is extracted from a splat. 4793 if (IdxC->getValue().ult(MinNumElts)) 4794 if (auto *Splat = getSplatValue(Vec)) 4795 return Splat; 4796 if (Value *Elt = findScalarElement(Vec, IdxC->getZExtValue())) 4797 return Elt; 4798 } else { 4799 // The index is not relevant if our vector is a splat. 4800 if (Value *Splat = getSplatValue(Vec)) 4801 return Splat; 4802 } 4803 return nullptr; 4804 } 4805 4806 Value *llvm::SimplifyExtractElementInst(Value *Vec, Value *Idx, 4807 const SimplifyQuery &Q) { 4808 return ::SimplifyExtractElementInst(Vec, Idx, Q, RecursionLimit); 4809 } 4810 4811 /// See if we can fold the given phi. If not, returns null. 4812 static Value *SimplifyPHINode(PHINode *PN, ArrayRef<Value *> IncomingValues, 4813 const SimplifyQuery &Q) { 4814 // WARNING: no matter how worthwhile it may seem, we can not perform PHI CSE 4815 // here, because the PHI we may succeed simplifying to was not 4816 // def-reachable from the original PHI! 4817 4818 // If all of the PHI's incoming values are the same then replace the PHI node 4819 // with the common value. 4820 Value *CommonValue = nullptr; 4821 bool HasUndefInput = false; 4822 for (Value *Incoming : IncomingValues) { 4823 // If the incoming value is the phi node itself, it can safely be skipped. 4824 if (Incoming == PN) continue; 4825 if (Q.isUndefValue(Incoming)) { 4826 // Remember that we saw an undef value, but otherwise ignore them. 4827 HasUndefInput = true; 4828 continue; 4829 } 4830 if (CommonValue && Incoming != CommonValue) 4831 return nullptr; // Not the same, bail out. 4832 CommonValue = Incoming; 4833 } 4834 4835 // If CommonValue is null then all of the incoming values were either undef or 4836 // equal to the phi node itself. 4837 if (!CommonValue) 4838 return UndefValue::get(PN->getType()); 4839 4840 if (HasUndefInput) { 4841 // We cannot start executing a trapping constant expression on more control 4842 // flow paths. 4843 auto *CE = dyn_cast<ConstantExpr>(CommonValue); 4844 if (CE && CE->canTrap()) 4845 return nullptr; 4846 4847 // If we have a PHI node like phi(X, undef, X), where X is defined by some 4848 // instruction, we cannot return X as the result of the PHI node unless it 4849 // dominates the PHI block. 4850 return valueDominatesPHI(CommonValue, PN, Q.DT) ? CommonValue : nullptr; 4851 } 4852 4853 return CommonValue; 4854 } 4855 4856 static Value *SimplifyCastInst(unsigned CastOpc, Value *Op, 4857 Type *Ty, const SimplifyQuery &Q, unsigned MaxRecurse) { 4858 if (auto *C = dyn_cast<Constant>(Op)) 4859 return ConstantFoldCastOperand(CastOpc, C, Ty, Q.DL); 4860 4861 if (auto *CI = dyn_cast<CastInst>(Op)) { 4862 auto *Src = CI->getOperand(0); 4863 Type *SrcTy = Src->getType(); 4864 Type *MidTy = CI->getType(); 4865 Type *DstTy = Ty; 4866 if (Src->getType() == Ty) { 4867 auto FirstOp = static_cast<Instruction::CastOps>(CI->getOpcode()); 4868 auto SecondOp = static_cast<Instruction::CastOps>(CastOpc); 4869 Type *SrcIntPtrTy = 4870 SrcTy->isPtrOrPtrVectorTy() ? Q.DL.getIntPtrType(SrcTy) : nullptr; 4871 Type *MidIntPtrTy = 4872 MidTy->isPtrOrPtrVectorTy() ? Q.DL.getIntPtrType(MidTy) : nullptr; 4873 Type *DstIntPtrTy = 4874 DstTy->isPtrOrPtrVectorTy() ? Q.DL.getIntPtrType(DstTy) : nullptr; 4875 if (CastInst::isEliminableCastPair(FirstOp, SecondOp, SrcTy, MidTy, DstTy, 4876 SrcIntPtrTy, MidIntPtrTy, 4877 DstIntPtrTy) == Instruction::BitCast) 4878 return Src; 4879 } 4880 } 4881 4882 // bitcast x -> x 4883 if (CastOpc == Instruction::BitCast) 4884 if (Op->getType() == Ty) 4885 return Op; 4886 4887 return nullptr; 4888 } 4889 4890 Value *llvm::SimplifyCastInst(unsigned CastOpc, Value *Op, Type *Ty, 4891 const SimplifyQuery &Q) { 4892 return ::SimplifyCastInst(CastOpc, Op, Ty, Q, RecursionLimit); 4893 } 4894 4895 /// For the given destination element of a shuffle, peek through shuffles to 4896 /// match a root vector source operand that contains that element in the same 4897 /// vector lane (ie, the same mask index), so we can eliminate the shuffle(s). 4898 static Value *foldIdentityShuffles(int DestElt, Value *Op0, Value *Op1, 4899 int MaskVal, Value *RootVec, 4900 unsigned MaxRecurse) { 4901 if (!MaxRecurse--) 4902 return nullptr; 4903 4904 // Bail out if any mask value is undefined. That kind of shuffle may be 4905 // simplified further based on demanded bits or other folds. 4906 if (MaskVal == -1) 4907 return nullptr; 4908 4909 // The mask value chooses which source operand we need to look at next. 4910 int InVecNumElts = cast<FixedVectorType>(Op0->getType())->getNumElements(); 4911 int RootElt = MaskVal; 4912 Value *SourceOp = Op0; 4913 if (MaskVal >= InVecNumElts) { 4914 RootElt = MaskVal - InVecNumElts; 4915 SourceOp = Op1; 4916 } 4917 4918 // If the source operand is a shuffle itself, look through it to find the 4919 // matching root vector. 4920 if (auto *SourceShuf = dyn_cast<ShuffleVectorInst>(SourceOp)) { 4921 return foldIdentityShuffles( 4922 DestElt, SourceShuf->getOperand(0), SourceShuf->getOperand(1), 4923 SourceShuf->getMaskValue(RootElt), RootVec, MaxRecurse); 4924 } 4925 4926 // TODO: Look through bitcasts? What if the bitcast changes the vector element 4927 // size? 4928 4929 // The source operand is not a shuffle. Initialize the root vector value for 4930 // this shuffle if that has not been done yet. 4931 if (!RootVec) 4932 RootVec = SourceOp; 4933 4934 // Give up as soon as a source operand does not match the existing root value. 4935 if (RootVec != SourceOp) 4936 return nullptr; 4937 4938 // The element must be coming from the same lane in the source vector 4939 // (although it may have crossed lanes in intermediate shuffles). 4940 if (RootElt != DestElt) 4941 return nullptr; 4942 4943 return RootVec; 4944 } 4945 4946 static Value *SimplifyShuffleVectorInst(Value *Op0, Value *Op1, 4947 ArrayRef<int> Mask, Type *RetTy, 4948 const SimplifyQuery &Q, 4949 unsigned MaxRecurse) { 4950 if (all_of(Mask, [](int Elem) { return Elem == UndefMaskElem; })) 4951 return UndefValue::get(RetTy); 4952 4953 auto *InVecTy = cast<VectorType>(Op0->getType()); 4954 unsigned MaskNumElts = Mask.size(); 4955 ElementCount InVecEltCount = InVecTy->getElementCount(); 4956 4957 bool Scalable = InVecEltCount.isScalable(); 4958 4959 SmallVector<int, 32> Indices; 4960 Indices.assign(Mask.begin(), Mask.end()); 4961 4962 // Canonicalization: If mask does not select elements from an input vector, 4963 // replace that input vector with poison. 4964 if (!Scalable) { 4965 bool MaskSelects0 = false, MaskSelects1 = false; 4966 unsigned InVecNumElts = InVecEltCount.getKnownMinValue(); 4967 for (unsigned i = 0; i != MaskNumElts; ++i) { 4968 if (Indices[i] == -1) 4969 continue; 4970 if ((unsigned)Indices[i] < InVecNumElts) 4971 MaskSelects0 = true; 4972 else 4973 MaskSelects1 = true; 4974 } 4975 if (!MaskSelects0) 4976 Op0 = PoisonValue::get(InVecTy); 4977 if (!MaskSelects1) 4978 Op1 = PoisonValue::get(InVecTy); 4979 } 4980 4981 auto *Op0Const = dyn_cast<Constant>(Op0); 4982 auto *Op1Const = dyn_cast<Constant>(Op1); 4983 4984 // If all operands are constant, constant fold the shuffle. This 4985 // transformation depends on the value of the mask which is not known at 4986 // compile time for scalable vectors 4987 if (Op0Const && Op1Const) 4988 return ConstantExpr::getShuffleVector(Op0Const, Op1Const, Mask); 4989 4990 // Canonicalization: if only one input vector is constant, it shall be the 4991 // second one. This transformation depends on the value of the mask which 4992 // is not known at compile time for scalable vectors 4993 if (!Scalable && Op0Const && !Op1Const) { 4994 std::swap(Op0, Op1); 4995 ShuffleVectorInst::commuteShuffleMask(Indices, 4996 InVecEltCount.getKnownMinValue()); 4997 } 4998 4999 // A splat of an inserted scalar constant becomes a vector constant: 5000 // shuf (inselt ?, C, IndexC), undef, <IndexC, IndexC...> --> <C, C...> 5001 // NOTE: We may have commuted above, so analyze the updated Indices, not the 5002 // original mask constant. 5003 // NOTE: This transformation depends on the value of the mask which is not 5004 // known at compile time for scalable vectors 5005 Constant *C; 5006 ConstantInt *IndexC; 5007 if (!Scalable && match(Op0, m_InsertElt(m_Value(), m_Constant(C), 5008 m_ConstantInt(IndexC)))) { 5009 // Match a splat shuffle mask of the insert index allowing undef elements. 5010 int InsertIndex = IndexC->getZExtValue(); 5011 if (all_of(Indices, [InsertIndex](int MaskElt) { 5012 return MaskElt == InsertIndex || MaskElt == -1; 5013 })) { 5014 assert(isa<UndefValue>(Op1) && "Expected undef operand 1 for splat"); 5015 5016 // Shuffle mask undefs become undefined constant result elements. 5017 SmallVector<Constant *, 16> VecC(MaskNumElts, C); 5018 for (unsigned i = 0; i != MaskNumElts; ++i) 5019 if (Indices[i] == -1) 5020 VecC[i] = UndefValue::get(C->getType()); 5021 return ConstantVector::get(VecC); 5022 } 5023 } 5024 5025 // A shuffle of a splat is always the splat itself. Legal if the shuffle's 5026 // value type is same as the input vectors' type. 5027 if (auto *OpShuf = dyn_cast<ShuffleVectorInst>(Op0)) 5028 if (Q.isUndefValue(Op1) && RetTy == InVecTy && 5029 is_splat(OpShuf->getShuffleMask())) 5030 return Op0; 5031 5032 // All remaining transformation depend on the value of the mask, which is 5033 // not known at compile time for scalable vectors. 5034 if (Scalable) 5035 return nullptr; 5036 5037 // Don't fold a shuffle with undef mask elements. This may get folded in a 5038 // better way using demanded bits or other analysis. 5039 // TODO: Should we allow this? 5040 if (is_contained(Indices, -1)) 5041 return nullptr; 5042 5043 // Check if every element of this shuffle can be mapped back to the 5044 // corresponding element of a single root vector. If so, we don't need this 5045 // shuffle. This handles simple identity shuffles as well as chains of 5046 // shuffles that may widen/narrow and/or move elements across lanes and back. 5047 Value *RootVec = nullptr; 5048 for (unsigned i = 0; i != MaskNumElts; ++i) { 5049 // Note that recursion is limited for each vector element, so if any element 5050 // exceeds the limit, this will fail to simplify. 5051 RootVec = 5052 foldIdentityShuffles(i, Op0, Op1, Indices[i], RootVec, MaxRecurse); 5053 5054 // We can't replace a widening/narrowing shuffle with one of its operands. 5055 if (!RootVec || RootVec->getType() != RetTy) 5056 return nullptr; 5057 } 5058 return RootVec; 5059 } 5060 5061 /// Given operands for a ShuffleVectorInst, fold the result or return null. 5062 Value *llvm::SimplifyShuffleVectorInst(Value *Op0, Value *Op1, 5063 ArrayRef<int> Mask, Type *RetTy, 5064 const SimplifyQuery &Q) { 5065 return ::SimplifyShuffleVectorInst(Op0, Op1, Mask, RetTy, Q, RecursionLimit); 5066 } 5067 5068 static Constant *foldConstant(Instruction::UnaryOps Opcode, 5069 Value *&Op, const SimplifyQuery &Q) { 5070 if (auto *C = dyn_cast<Constant>(Op)) 5071 return ConstantFoldUnaryOpOperand(Opcode, C, Q.DL); 5072 return nullptr; 5073 } 5074 5075 /// Given the operand for an FNeg, see if we can fold the result. If not, this 5076 /// returns null. 5077 static Value *simplifyFNegInst(Value *Op, FastMathFlags FMF, 5078 const SimplifyQuery &Q, unsigned MaxRecurse) { 5079 if (Constant *C = foldConstant(Instruction::FNeg, Op, Q)) 5080 return C; 5081 5082 Value *X; 5083 // fneg (fneg X) ==> X 5084 if (match(Op, m_FNeg(m_Value(X)))) 5085 return X; 5086 5087 return nullptr; 5088 } 5089 5090 Value *llvm::SimplifyFNegInst(Value *Op, FastMathFlags FMF, 5091 const SimplifyQuery &Q) { 5092 return ::simplifyFNegInst(Op, FMF, Q, RecursionLimit); 5093 } 5094 5095 static Constant *propagateNaN(Constant *In) { 5096 // If the input is a vector with undef elements, just return a default NaN. 5097 if (!In->isNaN()) 5098 return ConstantFP::getNaN(In->getType()); 5099 5100 // Propagate the existing NaN constant when possible. 5101 // TODO: Should we quiet a signaling NaN? 5102 return In; 5103 } 5104 5105 /// Perform folds that are common to any floating-point operation. This implies 5106 /// transforms based on poison/undef/NaN because the operation itself makes no 5107 /// difference to the result. 5108 static Constant *simplifyFPOp(ArrayRef<Value *> Ops, FastMathFlags FMF, 5109 const SimplifyQuery &Q, 5110 fp::ExceptionBehavior ExBehavior, 5111 RoundingMode Rounding) { 5112 // Poison is independent of anything else. It always propagates from an 5113 // operand to a math result. 5114 if (any_of(Ops, [](Value *V) { return match(V, m_Poison()); })) 5115 return PoisonValue::get(Ops[0]->getType()); 5116 5117 for (Value *V : Ops) { 5118 bool IsNan = match(V, m_NaN()); 5119 bool IsInf = match(V, m_Inf()); 5120 bool IsUndef = Q.isUndefValue(V); 5121 5122 // If this operation has 'nnan' or 'ninf' and at least 1 disallowed operand 5123 // (an undef operand can be chosen to be Nan/Inf), then the result of 5124 // this operation is poison. 5125 if (FMF.noNaNs() && (IsNan || IsUndef)) 5126 return PoisonValue::get(V->getType()); 5127 if (FMF.noInfs() && (IsInf || IsUndef)) 5128 return PoisonValue::get(V->getType()); 5129 5130 if (isDefaultFPEnvironment(ExBehavior, Rounding)) { 5131 if (IsUndef || IsNan) 5132 return propagateNaN(cast<Constant>(V)); 5133 } else if (ExBehavior != fp::ebStrict) { 5134 if (IsNan) 5135 return propagateNaN(cast<Constant>(V)); 5136 } 5137 } 5138 return nullptr; 5139 } 5140 5141 /// Given operands for an FAdd, see if we can fold the result. If not, this 5142 /// returns null. 5143 static Value * 5144 SimplifyFAddInst(Value *Op0, Value *Op1, FastMathFlags FMF, 5145 const SimplifyQuery &Q, unsigned MaxRecurse, 5146 fp::ExceptionBehavior ExBehavior = fp::ebIgnore, 5147 RoundingMode Rounding = RoundingMode::NearestTiesToEven) { 5148 if (isDefaultFPEnvironment(ExBehavior, Rounding)) 5149 if (Constant *C = foldOrCommuteConstant(Instruction::FAdd, Op0, Op1, Q)) 5150 return C; 5151 5152 if (Constant *C = simplifyFPOp({Op0, Op1}, FMF, Q, ExBehavior, Rounding)) 5153 return C; 5154 5155 // fadd X, -0 ==> X 5156 // With strict/constrained FP, we have these possible edge cases that do 5157 // not simplify to Op0: 5158 // fadd SNaN, -0.0 --> QNaN 5159 // fadd +0.0, -0.0 --> -0.0 (but only with round toward negative) 5160 if (canIgnoreSNaN(ExBehavior, FMF) && 5161 (!canRoundingModeBe(Rounding, RoundingMode::TowardNegative) || 5162 FMF.noSignedZeros())) 5163 if (match(Op1, m_NegZeroFP())) 5164 return Op0; 5165 5166 // fadd X, 0 ==> X, when we know X is not -0 5167 if (canIgnoreSNaN(ExBehavior, FMF)) 5168 if (match(Op1, m_PosZeroFP()) && 5169 (FMF.noSignedZeros() || CannotBeNegativeZero(Op0, Q.TLI))) 5170 return Op0; 5171 5172 if (!isDefaultFPEnvironment(ExBehavior, Rounding)) 5173 return nullptr; 5174 5175 // With nnan: -X + X --> 0.0 (and commuted variant) 5176 // We don't have to explicitly exclude infinities (ninf): INF + -INF == NaN. 5177 // Negative zeros are allowed because we always end up with positive zero: 5178 // X = -0.0: (-0.0 - (-0.0)) + (-0.0) == ( 0.0) + (-0.0) == 0.0 5179 // X = -0.0: ( 0.0 - (-0.0)) + (-0.0) == ( 0.0) + (-0.0) == 0.0 5180 // X = 0.0: (-0.0 - ( 0.0)) + ( 0.0) == (-0.0) + ( 0.0) == 0.0 5181 // X = 0.0: ( 0.0 - ( 0.0)) + ( 0.0) == ( 0.0) + ( 0.0) == 0.0 5182 if (FMF.noNaNs()) { 5183 if (match(Op0, m_FSub(m_AnyZeroFP(), m_Specific(Op1))) || 5184 match(Op1, m_FSub(m_AnyZeroFP(), m_Specific(Op0)))) 5185 return ConstantFP::getNullValue(Op0->getType()); 5186 5187 if (match(Op0, m_FNeg(m_Specific(Op1))) || 5188 match(Op1, m_FNeg(m_Specific(Op0)))) 5189 return ConstantFP::getNullValue(Op0->getType()); 5190 } 5191 5192 // (X - Y) + Y --> X 5193 // Y + (X - Y) --> X 5194 Value *X; 5195 if (FMF.noSignedZeros() && FMF.allowReassoc() && 5196 (match(Op0, m_FSub(m_Value(X), m_Specific(Op1))) || 5197 match(Op1, m_FSub(m_Value(X), m_Specific(Op0))))) 5198 return X; 5199 5200 return nullptr; 5201 } 5202 5203 /// Given operands for an FSub, see if we can fold the result. If not, this 5204 /// returns null. 5205 static Value * 5206 SimplifyFSubInst(Value *Op0, Value *Op1, FastMathFlags FMF, 5207 const SimplifyQuery &Q, unsigned MaxRecurse, 5208 fp::ExceptionBehavior ExBehavior = fp::ebIgnore, 5209 RoundingMode Rounding = RoundingMode::NearestTiesToEven) { 5210 if (isDefaultFPEnvironment(ExBehavior, Rounding)) 5211 if (Constant *C = foldOrCommuteConstant(Instruction::FSub, Op0, Op1, Q)) 5212 return C; 5213 5214 if (Constant *C = simplifyFPOp({Op0, Op1}, FMF, Q, ExBehavior, Rounding)) 5215 return C; 5216 5217 // fsub X, +0 ==> X 5218 if (canIgnoreSNaN(ExBehavior, FMF) && 5219 (!canRoundingModeBe(Rounding, RoundingMode::TowardNegative) || 5220 FMF.noSignedZeros())) 5221 if (match(Op1, m_PosZeroFP())) 5222 return Op0; 5223 5224 // fsub X, -0 ==> X, when we know X is not -0 5225 if (canIgnoreSNaN(ExBehavior, FMF)) 5226 if (match(Op1, m_NegZeroFP()) && 5227 (FMF.noSignedZeros() || CannotBeNegativeZero(Op0, Q.TLI))) 5228 return Op0; 5229 5230 // fsub -0.0, (fsub -0.0, X) ==> X 5231 // fsub -0.0, (fneg X) ==> X 5232 Value *X; 5233 if (canIgnoreSNaN(ExBehavior, FMF)) 5234 if (match(Op0, m_NegZeroFP()) && 5235 match(Op1, m_FNeg(m_Value(X)))) 5236 return X; 5237 5238 if (!isDefaultFPEnvironment(ExBehavior, Rounding)) 5239 return nullptr; 5240 5241 // fsub 0.0, (fsub 0.0, X) ==> X if signed zeros are ignored. 5242 // fsub 0.0, (fneg X) ==> X if signed zeros are ignored. 5243 if (FMF.noSignedZeros() && match(Op0, m_AnyZeroFP()) && 5244 (match(Op1, m_FSub(m_AnyZeroFP(), m_Value(X))) || 5245 match(Op1, m_FNeg(m_Value(X))))) 5246 return X; 5247 5248 // fsub nnan x, x ==> 0.0 5249 if (FMF.noNaNs() && Op0 == Op1) 5250 return Constant::getNullValue(Op0->getType()); 5251 5252 // Y - (Y - X) --> X 5253 // (X + Y) - Y --> X 5254 if (FMF.noSignedZeros() && FMF.allowReassoc() && 5255 (match(Op1, m_FSub(m_Specific(Op0), m_Value(X))) || 5256 match(Op0, m_c_FAdd(m_Specific(Op1), m_Value(X))))) 5257 return X; 5258 5259 return nullptr; 5260 } 5261 5262 static Value *SimplifyFMAFMul(Value *Op0, Value *Op1, FastMathFlags FMF, 5263 const SimplifyQuery &Q, unsigned MaxRecurse, 5264 fp::ExceptionBehavior ExBehavior, 5265 RoundingMode Rounding) { 5266 if (Constant *C = simplifyFPOp({Op0, Op1}, FMF, Q, ExBehavior, Rounding)) 5267 return C; 5268 5269 if (!isDefaultFPEnvironment(ExBehavior, Rounding)) 5270 return nullptr; 5271 5272 // fmul X, 1.0 ==> X 5273 if (match(Op1, m_FPOne())) 5274 return Op0; 5275 5276 // fmul 1.0, X ==> X 5277 if (match(Op0, m_FPOne())) 5278 return Op1; 5279 5280 // fmul nnan nsz X, 0 ==> 0 5281 if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op1, m_AnyZeroFP())) 5282 return ConstantFP::getNullValue(Op0->getType()); 5283 5284 // fmul nnan nsz 0, X ==> 0 5285 if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op0, m_AnyZeroFP())) 5286 return ConstantFP::getNullValue(Op1->getType()); 5287 5288 // sqrt(X) * sqrt(X) --> X, if we can: 5289 // 1. Remove the intermediate rounding (reassociate). 5290 // 2. Ignore non-zero negative numbers because sqrt would produce NAN. 5291 // 3. Ignore -0.0 because sqrt(-0.0) == -0.0, but -0.0 * -0.0 == 0.0. 5292 Value *X; 5293 if (Op0 == Op1 && match(Op0, m_Sqrt(m_Value(X))) && FMF.allowReassoc() && 5294 FMF.noNaNs() && FMF.noSignedZeros()) 5295 return X; 5296 5297 return nullptr; 5298 } 5299 5300 /// Given the operands for an FMul, see if we can fold the result 5301 static Value * 5302 SimplifyFMulInst(Value *Op0, Value *Op1, FastMathFlags FMF, 5303 const SimplifyQuery &Q, unsigned MaxRecurse, 5304 fp::ExceptionBehavior ExBehavior = fp::ebIgnore, 5305 RoundingMode Rounding = RoundingMode::NearestTiesToEven) { 5306 if (isDefaultFPEnvironment(ExBehavior, Rounding)) 5307 if (Constant *C = foldOrCommuteConstant(Instruction::FMul, Op0, Op1, Q)) 5308 return C; 5309 5310 // Now apply simplifications that do not require rounding. 5311 return SimplifyFMAFMul(Op0, Op1, FMF, Q, MaxRecurse, ExBehavior, Rounding); 5312 } 5313 5314 Value *llvm::SimplifyFAddInst(Value *Op0, Value *Op1, FastMathFlags FMF, 5315 const SimplifyQuery &Q, 5316 fp::ExceptionBehavior ExBehavior, 5317 RoundingMode Rounding) { 5318 return ::SimplifyFAddInst(Op0, Op1, FMF, Q, RecursionLimit, ExBehavior, 5319 Rounding); 5320 } 5321 5322 Value *llvm::SimplifyFSubInst(Value *Op0, Value *Op1, FastMathFlags FMF, 5323 const SimplifyQuery &Q, 5324 fp::ExceptionBehavior ExBehavior, 5325 RoundingMode Rounding) { 5326 return ::SimplifyFSubInst(Op0, Op1, FMF, Q, RecursionLimit, ExBehavior, 5327 Rounding); 5328 } 5329 5330 Value *llvm::SimplifyFMulInst(Value *Op0, Value *Op1, FastMathFlags FMF, 5331 const SimplifyQuery &Q, 5332 fp::ExceptionBehavior ExBehavior, 5333 RoundingMode Rounding) { 5334 return ::SimplifyFMulInst(Op0, Op1, FMF, Q, RecursionLimit, ExBehavior, 5335 Rounding); 5336 } 5337 5338 Value *llvm::SimplifyFMAFMul(Value *Op0, Value *Op1, FastMathFlags FMF, 5339 const SimplifyQuery &Q, 5340 fp::ExceptionBehavior ExBehavior, 5341 RoundingMode Rounding) { 5342 return ::SimplifyFMAFMul(Op0, Op1, FMF, Q, RecursionLimit, ExBehavior, 5343 Rounding); 5344 } 5345 5346 static Value * 5347 SimplifyFDivInst(Value *Op0, Value *Op1, FastMathFlags FMF, 5348 const SimplifyQuery &Q, unsigned, 5349 fp::ExceptionBehavior ExBehavior = fp::ebIgnore, 5350 RoundingMode Rounding = RoundingMode::NearestTiesToEven) { 5351 if (isDefaultFPEnvironment(ExBehavior, Rounding)) 5352 if (Constant *C = foldOrCommuteConstant(Instruction::FDiv, Op0, Op1, Q)) 5353 return C; 5354 5355 if (Constant *C = simplifyFPOp({Op0, Op1}, FMF, Q, ExBehavior, Rounding)) 5356 return C; 5357 5358 if (!isDefaultFPEnvironment(ExBehavior, Rounding)) 5359 return nullptr; 5360 5361 // X / 1.0 -> X 5362 if (match(Op1, m_FPOne())) 5363 return Op0; 5364 5365 // 0 / X -> 0 5366 // Requires that NaNs are off (X could be zero) and signed zeroes are 5367 // ignored (X could be positive or negative, so the output sign is unknown). 5368 if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op0, m_AnyZeroFP())) 5369 return ConstantFP::getNullValue(Op0->getType()); 5370 5371 if (FMF.noNaNs()) { 5372 // X / X -> 1.0 is legal when NaNs are ignored. 5373 // We can ignore infinities because INF/INF is NaN. 5374 if (Op0 == Op1) 5375 return ConstantFP::get(Op0->getType(), 1.0); 5376 5377 // (X * Y) / Y --> X if we can reassociate to the above form. 5378 Value *X; 5379 if (FMF.allowReassoc() && match(Op0, m_c_FMul(m_Value(X), m_Specific(Op1)))) 5380 return X; 5381 5382 // -X / X -> -1.0 and 5383 // X / -X -> -1.0 are legal when NaNs are ignored. 5384 // We can ignore signed zeros because +-0.0/+-0.0 is NaN and ignored. 5385 if (match(Op0, m_FNegNSZ(m_Specific(Op1))) || 5386 match(Op1, m_FNegNSZ(m_Specific(Op0)))) 5387 return ConstantFP::get(Op0->getType(), -1.0); 5388 } 5389 5390 return nullptr; 5391 } 5392 5393 Value *llvm::SimplifyFDivInst(Value *Op0, Value *Op1, FastMathFlags FMF, 5394 const SimplifyQuery &Q, 5395 fp::ExceptionBehavior ExBehavior, 5396 RoundingMode Rounding) { 5397 return ::SimplifyFDivInst(Op0, Op1, FMF, Q, RecursionLimit, ExBehavior, 5398 Rounding); 5399 } 5400 5401 static Value * 5402 SimplifyFRemInst(Value *Op0, Value *Op1, FastMathFlags FMF, 5403 const SimplifyQuery &Q, unsigned, 5404 fp::ExceptionBehavior ExBehavior = fp::ebIgnore, 5405 RoundingMode Rounding = RoundingMode::NearestTiesToEven) { 5406 if (isDefaultFPEnvironment(ExBehavior, Rounding)) 5407 if (Constant *C = foldOrCommuteConstant(Instruction::FRem, Op0, Op1, Q)) 5408 return C; 5409 5410 if (Constant *C = simplifyFPOp({Op0, Op1}, FMF, Q, ExBehavior, Rounding)) 5411 return C; 5412 5413 if (!isDefaultFPEnvironment(ExBehavior, Rounding)) 5414 return nullptr; 5415 5416 // Unlike fdiv, the result of frem always matches the sign of the dividend. 5417 // The constant match may include undef elements in a vector, so return a full 5418 // zero constant as the result. 5419 if (FMF.noNaNs()) { 5420 // +0 % X -> 0 5421 if (match(Op0, m_PosZeroFP())) 5422 return ConstantFP::getNullValue(Op0->getType()); 5423 // -0 % X -> -0 5424 if (match(Op0, m_NegZeroFP())) 5425 return ConstantFP::getNegativeZero(Op0->getType()); 5426 } 5427 5428 return nullptr; 5429 } 5430 5431 Value *llvm::SimplifyFRemInst(Value *Op0, Value *Op1, FastMathFlags FMF, 5432 const SimplifyQuery &Q, 5433 fp::ExceptionBehavior ExBehavior, 5434 RoundingMode Rounding) { 5435 return ::SimplifyFRemInst(Op0, Op1, FMF, Q, RecursionLimit, ExBehavior, 5436 Rounding); 5437 } 5438 5439 //=== Helper functions for higher up the class hierarchy. 5440 5441 /// Given the operand for a UnaryOperator, see if we can fold the result. 5442 /// If not, this returns null. 5443 static Value *simplifyUnOp(unsigned Opcode, Value *Op, const SimplifyQuery &Q, 5444 unsigned MaxRecurse) { 5445 switch (Opcode) { 5446 case Instruction::FNeg: 5447 return simplifyFNegInst(Op, FastMathFlags(), Q, MaxRecurse); 5448 default: 5449 llvm_unreachable("Unexpected opcode"); 5450 } 5451 } 5452 5453 /// Given the operand for a UnaryOperator, see if we can fold the result. 5454 /// If not, this returns null. 5455 /// Try to use FastMathFlags when folding the result. 5456 static Value *simplifyFPUnOp(unsigned Opcode, Value *Op, 5457 const FastMathFlags &FMF, 5458 const SimplifyQuery &Q, unsigned MaxRecurse) { 5459 switch (Opcode) { 5460 case Instruction::FNeg: 5461 return simplifyFNegInst(Op, FMF, Q, MaxRecurse); 5462 default: 5463 return simplifyUnOp(Opcode, Op, Q, MaxRecurse); 5464 } 5465 } 5466 5467 Value *llvm::SimplifyUnOp(unsigned Opcode, Value *Op, const SimplifyQuery &Q) { 5468 return ::simplifyUnOp(Opcode, Op, Q, RecursionLimit); 5469 } 5470 5471 Value *llvm::SimplifyUnOp(unsigned Opcode, Value *Op, FastMathFlags FMF, 5472 const SimplifyQuery &Q) { 5473 return ::simplifyFPUnOp(Opcode, Op, FMF, Q, RecursionLimit); 5474 } 5475 5476 /// Given operands for a BinaryOperator, see if we can fold the result. 5477 /// If not, this returns null. 5478 static Value *SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS, 5479 const SimplifyQuery &Q, unsigned MaxRecurse) { 5480 switch (Opcode) { 5481 case Instruction::Add: 5482 return SimplifyAddInst(LHS, RHS, false, false, Q, MaxRecurse); 5483 case Instruction::Sub: 5484 return SimplifySubInst(LHS, RHS, false, false, Q, MaxRecurse); 5485 case Instruction::Mul: 5486 return SimplifyMulInst(LHS, RHS, Q, MaxRecurse); 5487 case Instruction::SDiv: 5488 return SimplifySDivInst(LHS, RHS, Q, MaxRecurse); 5489 case Instruction::UDiv: 5490 return SimplifyUDivInst(LHS, RHS, Q, MaxRecurse); 5491 case Instruction::SRem: 5492 return SimplifySRemInst(LHS, RHS, Q, MaxRecurse); 5493 case Instruction::URem: 5494 return SimplifyURemInst(LHS, RHS, Q, MaxRecurse); 5495 case Instruction::Shl: 5496 return SimplifyShlInst(LHS, RHS, false, false, Q, MaxRecurse); 5497 case Instruction::LShr: 5498 return SimplifyLShrInst(LHS, RHS, false, Q, MaxRecurse); 5499 case Instruction::AShr: 5500 return SimplifyAShrInst(LHS, RHS, false, Q, MaxRecurse); 5501 case Instruction::And: 5502 return SimplifyAndInst(LHS, RHS, Q, MaxRecurse); 5503 case Instruction::Or: 5504 return SimplifyOrInst(LHS, RHS, Q, MaxRecurse); 5505 case Instruction::Xor: 5506 return SimplifyXorInst(LHS, RHS, Q, MaxRecurse); 5507 case Instruction::FAdd: 5508 return SimplifyFAddInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse); 5509 case Instruction::FSub: 5510 return SimplifyFSubInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse); 5511 case Instruction::FMul: 5512 return SimplifyFMulInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse); 5513 case Instruction::FDiv: 5514 return SimplifyFDivInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse); 5515 case Instruction::FRem: 5516 return SimplifyFRemInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse); 5517 default: 5518 llvm_unreachable("Unexpected opcode"); 5519 } 5520 } 5521 5522 /// Given operands for a BinaryOperator, see if we can fold the result. 5523 /// If not, this returns null. 5524 /// Try to use FastMathFlags when folding the result. 5525 static Value *SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS, 5526 const FastMathFlags &FMF, const SimplifyQuery &Q, 5527 unsigned MaxRecurse) { 5528 switch (Opcode) { 5529 case Instruction::FAdd: 5530 return SimplifyFAddInst(LHS, RHS, FMF, Q, MaxRecurse); 5531 case Instruction::FSub: 5532 return SimplifyFSubInst(LHS, RHS, FMF, Q, MaxRecurse); 5533 case Instruction::FMul: 5534 return SimplifyFMulInst(LHS, RHS, FMF, Q, MaxRecurse); 5535 case Instruction::FDiv: 5536 return SimplifyFDivInst(LHS, RHS, FMF, Q, MaxRecurse); 5537 default: 5538 return SimplifyBinOp(Opcode, LHS, RHS, Q, MaxRecurse); 5539 } 5540 } 5541 5542 Value *llvm::SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS, 5543 const SimplifyQuery &Q) { 5544 return ::SimplifyBinOp(Opcode, LHS, RHS, Q, RecursionLimit); 5545 } 5546 5547 Value *llvm::SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS, 5548 FastMathFlags FMF, const SimplifyQuery &Q) { 5549 return ::SimplifyBinOp(Opcode, LHS, RHS, FMF, Q, RecursionLimit); 5550 } 5551 5552 /// Given operands for a CmpInst, see if we can fold the result. 5553 static Value *SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS, 5554 const SimplifyQuery &Q, unsigned MaxRecurse) { 5555 if (CmpInst::isIntPredicate((CmpInst::Predicate)Predicate)) 5556 return SimplifyICmpInst(Predicate, LHS, RHS, Q, MaxRecurse); 5557 return SimplifyFCmpInst(Predicate, LHS, RHS, FastMathFlags(), Q, MaxRecurse); 5558 } 5559 5560 Value *llvm::SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS, 5561 const SimplifyQuery &Q) { 5562 return ::SimplifyCmpInst(Predicate, LHS, RHS, Q, RecursionLimit); 5563 } 5564 5565 static bool IsIdempotent(Intrinsic::ID ID) { 5566 switch (ID) { 5567 default: return false; 5568 5569 // Unary idempotent: f(f(x)) = f(x) 5570 case Intrinsic::fabs: 5571 case Intrinsic::floor: 5572 case Intrinsic::ceil: 5573 case Intrinsic::trunc: 5574 case Intrinsic::rint: 5575 case Intrinsic::nearbyint: 5576 case Intrinsic::round: 5577 case Intrinsic::roundeven: 5578 case Intrinsic::canonicalize: 5579 return true; 5580 } 5581 } 5582 5583 static Value *SimplifyRelativeLoad(Constant *Ptr, Constant *Offset, 5584 const DataLayout &DL) { 5585 GlobalValue *PtrSym; 5586 APInt PtrOffset; 5587 if (!IsConstantOffsetFromGlobal(Ptr, PtrSym, PtrOffset, DL)) 5588 return nullptr; 5589 5590 Type *Int8PtrTy = Type::getInt8PtrTy(Ptr->getContext()); 5591 Type *Int32Ty = Type::getInt32Ty(Ptr->getContext()); 5592 Type *Int32PtrTy = Int32Ty->getPointerTo(); 5593 Type *Int64Ty = Type::getInt64Ty(Ptr->getContext()); 5594 5595 auto *OffsetConstInt = dyn_cast<ConstantInt>(Offset); 5596 if (!OffsetConstInt || OffsetConstInt->getType()->getBitWidth() > 64) 5597 return nullptr; 5598 5599 uint64_t OffsetInt = OffsetConstInt->getSExtValue(); 5600 if (OffsetInt % 4 != 0) 5601 return nullptr; 5602 5603 Constant *C = ConstantExpr::getGetElementPtr( 5604 Int32Ty, ConstantExpr::getBitCast(Ptr, Int32PtrTy), 5605 ConstantInt::get(Int64Ty, OffsetInt / 4)); 5606 Constant *Loaded = ConstantFoldLoadFromConstPtr(C, Int32Ty, DL); 5607 if (!Loaded) 5608 return nullptr; 5609 5610 auto *LoadedCE = dyn_cast<ConstantExpr>(Loaded); 5611 if (!LoadedCE) 5612 return nullptr; 5613 5614 if (LoadedCE->getOpcode() == Instruction::Trunc) { 5615 LoadedCE = dyn_cast<ConstantExpr>(LoadedCE->getOperand(0)); 5616 if (!LoadedCE) 5617 return nullptr; 5618 } 5619 5620 if (LoadedCE->getOpcode() != Instruction::Sub) 5621 return nullptr; 5622 5623 auto *LoadedLHS = dyn_cast<ConstantExpr>(LoadedCE->getOperand(0)); 5624 if (!LoadedLHS || LoadedLHS->getOpcode() != Instruction::PtrToInt) 5625 return nullptr; 5626 auto *LoadedLHSPtr = LoadedLHS->getOperand(0); 5627 5628 Constant *LoadedRHS = LoadedCE->getOperand(1); 5629 GlobalValue *LoadedRHSSym; 5630 APInt LoadedRHSOffset; 5631 if (!IsConstantOffsetFromGlobal(LoadedRHS, LoadedRHSSym, LoadedRHSOffset, 5632 DL) || 5633 PtrSym != LoadedRHSSym || PtrOffset != LoadedRHSOffset) 5634 return nullptr; 5635 5636 return ConstantExpr::getBitCast(LoadedLHSPtr, Int8PtrTy); 5637 } 5638 5639 static Value *simplifyUnaryIntrinsic(Function *F, Value *Op0, 5640 const SimplifyQuery &Q) { 5641 // Idempotent functions return the same result when called repeatedly. 5642 Intrinsic::ID IID = F->getIntrinsicID(); 5643 if (IsIdempotent(IID)) 5644 if (auto *II = dyn_cast<IntrinsicInst>(Op0)) 5645 if (II->getIntrinsicID() == IID) 5646 return II; 5647 5648 Value *X; 5649 switch (IID) { 5650 case Intrinsic::fabs: 5651 if (SignBitMustBeZero(Op0, Q.TLI)) return Op0; 5652 break; 5653 case Intrinsic::bswap: 5654 // bswap(bswap(x)) -> x 5655 if (match(Op0, m_BSwap(m_Value(X)))) return X; 5656 break; 5657 case Intrinsic::bitreverse: 5658 // bitreverse(bitreverse(x)) -> x 5659 if (match(Op0, m_BitReverse(m_Value(X)))) return X; 5660 break; 5661 case Intrinsic::ctpop: { 5662 // If everything but the lowest bit is zero, that bit is the pop-count. Ex: 5663 // ctpop(and X, 1) --> and X, 1 5664 unsigned BitWidth = Op0->getType()->getScalarSizeInBits(); 5665 if (MaskedValueIsZero(Op0, APInt::getHighBitsSet(BitWidth, BitWidth - 1), 5666 Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 5667 return Op0; 5668 break; 5669 } 5670 case Intrinsic::exp: 5671 // exp(log(x)) -> x 5672 if (Q.CxtI->hasAllowReassoc() && 5673 match(Op0, m_Intrinsic<Intrinsic::log>(m_Value(X)))) return X; 5674 break; 5675 case Intrinsic::exp2: 5676 // exp2(log2(x)) -> x 5677 if (Q.CxtI->hasAllowReassoc() && 5678 match(Op0, m_Intrinsic<Intrinsic::log2>(m_Value(X)))) return X; 5679 break; 5680 case Intrinsic::log: 5681 // log(exp(x)) -> x 5682 if (Q.CxtI->hasAllowReassoc() && 5683 match(Op0, m_Intrinsic<Intrinsic::exp>(m_Value(X)))) return X; 5684 break; 5685 case Intrinsic::log2: 5686 // log2(exp2(x)) -> x 5687 if (Q.CxtI->hasAllowReassoc() && 5688 (match(Op0, m_Intrinsic<Intrinsic::exp2>(m_Value(X))) || 5689 match(Op0, m_Intrinsic<Intrinsic::pow>(m_SpecificFP(2.0), 5690 m_Value(X))))) return X; 5691 break; 5692 case Intrinsic::log10: 5693 // log10(pow(10.0, x)) -> x 5694 if (Q.CxtI->hasAllowReassoc() && 5695 match(Op0, m_Intrinsic<Intrinsic::pow>(m_SpecificFP(10.0), 5696 m_Value(X)))) return X; 5697 break; 5698 case Intrinsic::floor: 5699 case Intrinsic::trunc: 5700 case Intrinsic::ceil: 5701 case Intrinsic::round: 5702 case Intrinsic::roundeven: 5703 case Intrinsic::nearbyint: 5704 case Intrinsic::rint: { 5705 // floor (sitofp x) -> sitofp x 5706 // floor (uitofp x) -> uitofp x 5707 // 5708 // Converting from int always results in a finite integral number or 5709 // infinity. For either of those inputs, these rounding functions always 5710 // return the same value, so the rounding can be eliminated. 5711 if (match(Op0, m_SIToFP(m_Value())) || match(Op0, m_UIToFP(m_Value()))) 5712 return Op0; 5713 break; 5714 } 5715 case Intrinsic::experimental_vector_reverse: 5716 // experimental.vector.reverse(experimental.vector.reverse(x)) -> x 5717 if (match(Op0, 5718 m_Intrinsic<Intrinsic::experimental_vector_reverse>(m_Value(X)))) 5719 return X; 5720 // experimental.vector.reverse(splat(X)) -> splat(X) 5721 if (isSplatValue(Op0)) 5722 return Op0; 5723 break; 5724 default: 5725 break; 5726 } 5727 5728 return nullptr; 5729 } 5730 5731 /// Given a min/max intrinsic, see if it can be removed based on having an 5732 /// operand that is another min/max intrinsic with shared operand(s). The caller 5733 /// is expected to swap the operand arguments to handle commutation. 5734 static Value *foldMinMaxSharedOp(Intrinsic::ID IID, Value *Op0, Value *Op1) { 5735 Value *X, *Y; 5736 if (!match(Op0, m_MaxOrMin(m_Value(X), m_Value(Y)))) 5737 return nullptr; 5738 5739 auto *MM0 = dyn_cast<IntrinsicInst>(Op0); 5740 if (!MM0) 5741 return nullptr; 5742 Intrinsic::ID IID0 = MM0->getIntrinsicID(); 5743 5744 if (Op1 == X || Op1 == Y || 5745 match(Op1, m_c_MaxOrMin(m_Specific(X), m_Specific(Y)))) { 5746 // max (max X, Y), X --> max X, Y 5747 if (IID0 == IID) 5748 return MM0; 5749 // max (min X, Y), X --> X 5750 if (IID0 == getInverseMinMaxIntrinsic(IID)) 5751 return Op1; 5752 } 5753 return nullptr; 5754 } 5755 5756 static Value *simplifyBinaryIntrinsic(Function *F, Value *Op0, Value *Op1, 5757 const SimplifyQuery &Q) { 5758 Intrinsic::ID IID = F->getIntrinsicID(); 5759 Type *ReturnType = F->getReturnType(); 5760 unsigned BitWidth = ReturnType->getScalarSizeInBits(); 5761 switch (IID) { 5762 case Intrinsic::abs: 5763 // abs(abs(x)) -> abs(x). We don't need to worry about the nsw arg here. 5764 // It is always ok to pick the earlier abs. We'll just lose nsw if its only 5765 // on the outer abs. 5766 if (match(Op0, m_Intrinsic<Intrinsic::abs>(m_Value(), m_Value()))) 5767 return Op0; 5768 break; 5769 5770 case Intrinsic::cttz: { 5771 Value *X; 5772 if (match(Op0, m_Shl(m_One(), m_Value(X)))) 5773 return X; 5774 break; 5775 } 5776 case Intrinsic::ctlz: { 5777 Value *X; 5778 if (match(Op0, m_LShr(m_Negative(), m_Value(X)))) 5779 return X; 5780 if (match(Op0, m_AShr(m_Negative(), m_Value()))) 5781 return Constant::getNullValue(ReturnType); 5782 break; 5783 } 5784 case Intrinsic::smax: 5785 case Intrinsic::smin: 5786 case Intrinsic::umax: 5787 case Intrinsic::umin: { 5788 // If the arguments are the same, this is a no-op. 5789 if (Op0 == Op1) 5790 return Op0; 5791 5792 // Canonicalize constant operand as Op1. 5793 if (isa<Constant>(Op0)) 5794 std::swap(Op0, Op1); 5795 5796 // Assume undef is the limit value. 5797 if (Q.isUndefValue(Op1)) 5798 return ConstantInt::get( 5799 ReturnType, MinMaxIntrinsic::getSaturationPoint(IID, BitWidth)); 5800 5801 const APInt *C; 5802 if (match(Op1, m_APIntAllowUndef(C))) { 5803 // Clamp to limit value. For example: 5804 // umax(i8 %x, i8 255) --> 255 5805 if (*C == MinMaxIntrinsic::getSaturationPoint(IID, BitWidth)) 5806 return ConstantInt::get(ReturnType, *C); 5807 5808 // If the constant op is the opposite of the limit value, the other must 5809 // be larger/smaller or equal. For example: 5810 // umin(i8 %x, i8 255) --> %x 5811 if (*C == MinMaxIntrinsic::getSaturationPoint( 5812 getInverseMinMaxIntrinsic(IID), BitWidth)) 5813 return Op0; 5814 5815 // Remove nested call if constant operands allow it. Example: 5816 // max (max X, 7), 5 -> max X, 7 5817 auto *MinMax0 = dyn_cast<IntrinsicInst>(Op0); 5818 if (MinMax0 && MinMax0->getIntrinsicID() == IID) { 5819 // TODO: loosen undef/splat restrictions for vector constants. 5820 Value *M00 = MinMax0->getOperand(0), *M01 = MinMax0->getOperand(1); 5821 const APInt *InnerC; 5822 if ((match(M00, m_APInt(InnerC)) || match(M01, m_APInt(InnerC))) && 5823 ICmpInst::compare(*InnerC, *C, 5824 ICmpInst::getNonStrictPredicate( 5825 MinMaxIntrinsic::getPredicate(IID)))) 5826 return Op0; 5827 } 5828 } 5829 5830 if (Value *V = foldMinMaxSharedOp(IID, Op0, Op1)) 5831 return V; 5832 if (Value *V = foldMinMaxSharedOp(IID, Op1, Op0)) 5833 return V; 5834 5835 ICmpInst::Predicate Pred = 5836 ICmpInst::getNonStrictPredicate(MinMaxIntrinsic::getPredicate(IID)); 5837 if (isICmpTrue(Pred, Op0, Op1, Q.getWithoutUndef(), RecursionLimit)) 5838 return Op0; 5839 if (isICmpTrue(Pred, Op1, Op0, Q.getWithoutUndef(), RecursionLimit)) 5840 return Op1; 5841 5842 if (Optional<bool> Imp = 5843 isImpliedByDomCondition(Pred, Op0, Op1, Q.CxtI, Q.DL)) 5844 return *Imp ? Op0 : Op1; 5845 if (Optional<bool> Imp = 5846 isImpliedByDomCondition(Pred, Op1, Op0, Q.CxtI, Q.DL)) 5847 return *Imp ? Op1 : Op0; 5848 5849 break; 5850 } 5851 case Intrinsic::usub_with_overflow: 5852 case Intrinsic::ssub_with_overflow: 5853 // X - X -> { 0, false } 5854 // X - undef -> { 0, false } 5855 // undef - X -> { 0, false } 5856 if (Op0 == Op1 || Q.isUndefValue(Op0) || Q.isUndefValue(Op1)) 5857 return Constant::getNullValue(ReturnType); 5858 break; 5859 case Intrinsic::uadd_with_overflow: 5860 case Intrinsic::sadd_with_overflow: 5861 // X + undef -> { -1, false } 5862 // undef + x -> { -1, false } 5863 if (Q.isUndefValue(Op0) || Q.isUndefValue(Op1)) { 5864 return ConstantStruct::get( 5865 cast<StructType>(ReturnType), 5866 {Constant::getAllOnesValue(ReturnType->getStructElementType(0)), 5867 Constant::getNullValue(ReturnType->getStructElementType(1))}); 5868 } 5869 break; 5870 case Intrinsic::umul_with_overflow: 5871 case Intrinsic::smul_with_overflow: 5872 // 0 * X -> { 0, false } 5873 // X * 0 -> { 0, false } 5874 if (match(Op0, m_Zero()) || match(Op1, m_Zero())) 5875 return Constant::getNullValue(ReturnType); 5876 // undef * X -> { 0, false } 5877 // X * undef -> { 0, false } 5878 if (Q.isUndefValue(Op0) || Q.isUndefValue(Op1)) 5879 return Constant::getNullValue(ReturnType); 5880 break; 5881 case Intrinsic::uadd_sat: 5882 // sat(MAX + X) -> MAX 5883 // sat(X + MAX) -> MAX 5884 if (match(Op0, m_AllOnes()) || match(Op1, m_AllOnes())) 5885 return Constant::getAllOnesValue(ReturnType); 5886 LLVM_FALLTHROUGH; 5887 case Intrinsic::sadd_sat: 5888 // sat(X + undef) -> -1 5889 // sat(undef + X) -> -1 5890 // For unsigned: Assume undef is MAX, thus we saturate to MAX (-1). 5891 // For signed: Assume undef is ~X, in which case X + ~X = -1. 5892 if (Q.isUndefValue(Op0) || Q.isUndefValue(Op1)) 5893 return Constant::getAllOnesValue(ReturnType); 5894 5895 // X + 0 -> X 5896 if (match(Op1, m_Zero())) 5897 return Op0; 5898 // 0 + X -> X 5899 if (match(Op0, m_Zero())) 5900 return Op1; 5901 break; 5902 case Intrinsic::usub_sat: 5903 // sat(0 - X) -> 0, sat(X - MAX) -> 0 5904 if (match(Op0, m_Zero()) || match(Op1, m_AllOnes())) 5905 return Constant::getNullValue(ReturnType); 5906 LLVM_FALLTHROUGH; 5907 case Intrinsic::ssub_sat: 5908 // X - X -> 0, X - undef -> 0, undef - X -> 0 5909 if (Op0 == Op1 || Q.isUndefValue(Op0) || Q.isUndefValue(Op1)) 5910 return Constant::getNullValue(ReturnType); 5911 // X - 0 -> X 5912 if (match(Op1, m_Zero())) 5913 return Op0; 5914 break; 5915 case Intrinsic::load_relative: 5916 if (auto *C0 = dyn_cast<Constant>(Op0)) 5917 if (auto *C1 = dyn_cast<Constant>(Op1)) 5918 return SimplifyRelativeLoad(C0, C1, Q.DL); 5919 break; 5920 case Intrinsic::powi: 5921 if (auto *Power = dyn_cast<ConstantInt>(Op1)) { 5922 // powi(x, 0) -> 1.0 5923 if (Power->isZero()) 5924 return ConstantFP::get(Op0->getType(), 1.0); 5925 // powi(x, 1) -> x 5926 if (Power->isOne()) 5927 return Op0; 5928 } 5929 break; 5930 case Intrinsic::copysign: 5931 // copysign X, X --> X 5932 if (Op0 == Op1) 5933 return Op0; 5934 // copysign -X, X --> X 5935 // copysign X, -X --> -X 5936 if (match(Op0, m_FNeg(m_Specific(Op1))) || 5937 match(Op1, m_FNeg(m_Specific(Op0)))) 5938 return Op1; 5939 break; 5940 case Intrinsic::maxnum: 5941 case Intrinsic::minnum: 5942 case Intrinsic::maximum: 5943 case Intrinsic::minimum: { 5944 // If the arguments are the same, this is a no-op. 5945 if (Op0 == Op1) return Op0; 5946 5947 // Canonicalize constant operand as Op1. 5948 if (isa<Constant>(Op0)) 5949 std::swap(Op0, Op1); 5950 5951 // If an argument is undef, return the other argument. 5952 if (Q.isUndefValue(Op1)) 5953 return Op0; 5954 5955 bool PropagateNaN = IID == Intrinsic::minimum || IID == Intrinsic::maximum; 5956 bool IsMin = IID == Intrinsic::minimum || IID == Intrinsic::minnum; 5957 5958 // minnum(X, nan) -> X 5959 // maxnum(X, nan) -> X 5960 // minimum(X, nan) -> nan 5961 // maximum(X, nan) -> nan 5962 if (match(Op1, m_NaN())) 5963 return PropagateNaN ? propagateNaN(cast<Constant>(Op1)) : Op0; 5964 5965 // In the following folds, inf can be replaced with the largest finite 5966 // float, if the ninf flag is set. 5967 const APFloat *C; 5968 if (match(Op1, m_APFloat(C)) && 5969 (C->isInfinity() || (Q.CxtI->hasNoInfs() && C->isLargest()))) { 5970 // minnum(X, -inf) -> -inf 5971 // maxnum(X, +inf) -> +inf 5972 // minimum(X, -inf) -> -inf if nnan 5973 // maximum(X, +inf) -> +inf if nnan 5974 if (C->isNegative() == IsMin && (!PropagateNaN || Q.CxtI->hasNoNaNs())) 5975 return ConstantFP::get(ReturnType, *C); 5976 5977 // minnum(X, +inf) -> X if nnan 5978 // maxnum(X, -inf) -> X if nnan 5979 // minimum(X, +inf) -> X 5980 // maximum(X, -inf) -> X 5981 if (C->isNegative() != IsMin && (PropagateNaN || Q.CxtI->hasNoNaNs())) 5982 return Op0; 5983 } 5984 5985 // Min/max of the same operation with common operand: 5986 // m(m(X, Y)), X --> m(X, Y) (4 commuted variants) 5987 if (auto *M0 = dyn_cast<IntrinsicInst>(Op0)) 5988 if (M0->getIntrinsicID() == IID && 5989 (M0->getOperand(0) == Op1 || M0->getOperand(1) == Op1)) 5990 return Op0; 5991 if (auto *M1 = dyn_cast<IntrinsicInst>(Op1)) 5992 if (M1->getIntrinsicID() == IID && 5993 (M1->getOperand(0) == Op0 || M1->getOperand(1) == Op0)) 5994 return Op1; 5995 5996 break; 5997 } 5998 case Intrinsic::experimental_vector_extract: { 5999 Type *ReturnType = F->getReturnType(); 6000 6001 // (extract_vector (insert_vector _, X, 0), 0) -> X 6002 unsigned IdxN = cast<ConstantInt>(Op1)->getZExtValue(); 6003 Value *X = nullptr; 6004 if (match(Op0, m_Intrinsic<Intrinsic::experimental_vector_insert>( 6005 m_Value(), m_Value(X), m_Zero())) && 6006 IdxN == 0 && X->getType() == ReturnType) 6007 return X; 6008 6009 break; 6010 } 6011 default: 6012 break; 6013 } 6014 6015 return nullptr; 6016 } 6017 6018 static Value *simplifyIntrinsic(CallBase *Call, const SimplifyQuery &Q) { 6019 6020 unsigned NumOperands = Call->arg_size(); 6021 Function *F = cast<Function>(Call->getCalledFunction()); 6022 Intrinsic::ID IID = F->getIntrinsicID(); 6023 6024 // Most of the intrinsics with no operands have some kind of side effect. 6025 // Don't simplify. 6026 if (!NumOperands) { 6027 switch (IID) { 6028 case Intrinsic::vscale: { 6029 // Call may not be inserted into the IR yet at point of calling simplify. 6030 if (!Call->getParent() || !Call->getParent()->getParent()) 6031 return nullptr; 6032 auto Attr = Call->getFunction()->getFnAttribute(Attribute::VScaleRange); 6033 if (!Attr.isValid()) 6034 return nullptr; 6035 unsigned VScaleMin = Attr.getVScaleRangeMin(); 6036 Optional<unsigned> VScaleMax = Attr.getVScaleRangeMax(); 6037 if (VScaleMax && VScaleMin == VScaleMax) 6038 return ConstantInt::get(F->getReturnType(), VScaleMin); 6039 return nullptr; 6040 } 6041 default: 6042 return nullptr; 6043 } 6044 } 6045 6046 if (NumOperands == 1) 6047 return simplifyUnaryIntrinsic(F, Call->getArgOperand(0), Q); 6048 6049 if (NumOperands == 2) 6050 return simplifyBinaryIntrinsic(F, Call->getArgOperand(0), 6051 Call->getArgOperand(1), Q); 6052 6053 // Handle intrinsics with 3 or more arguments. 6054 switch (IID) { 6055 case Intrinsic::masked_load: 6056 case Intrinsic::masked_gather: { 6057 Value *MaskArg = Call->getArgOperand(2); 6058 Value *PassthruArg = Call->getArgOperand(3); 6059 // If the mask is all zeros or undef, the "passthru" argument is the result. 6060 if (maskIsAllZeroOrUndef(MaskArg)) 6061 return PassthruArg; 6062 return nullptr; 6063 } 6064 case Intrinsic::fshl: 6065 case Intrinsic::fshr: { 6066 Value *Op0 = Call->getArgOperand(0), *Op1 = Call->getArgOperand(1), 6067 *ShAmtArg = Call->getArgOperand(2); 6068 6069 // If both operands are undef, the result is undef. 6070 if (Q.isUndefValue(Op0) && Q.isUndefValue(Op1)) 6071 return UndefValue::get(F->getReturnType()); 6072 6073 // If shift amount is undef, assume it is zero. 6074 if (Q.isUndefValue(ShAmtArg)) 6075 return Call->getArgOperand(IID == Intrinsic::fshl ? 0 : 1); 6076 6077 const APInt *ShAmtC; 6078 if (match(ShAmtArg, m_APInt(ShAmtC))) { 6079 // If there's effectively no shift, return the 1st arg or 2nd arg. 6080 APInt BitWidth = APInt(ShAmtC->getBitWidth(), ShAmtC->getBitWidth()); 6081 if (ShAmtC->urem(BitWidth).isZero()) 6082 return Call->getArgOperand(IID == Intrinsic::fshl ? 0 : 1); 6083 } 6084 6085 // Rotating zero by anything is zero. 6086 if (match(Op0, m_Zero()) && match(Op1, m_Zero())) 6087 return ConstantInt::getNullValue(F->getReturnType()); 6088 6089 // Rotating -1 by anything is -1. 6090 if (match(Op0, m_AllOnes()) && match(Op1, m_AllOnes())) 6091 return ConstantInt::getAllOnesValue(F->getReturnType()); 6092 6093 return nullptr; 6094 } 6095 case Intrinsic::experimental_constrained_fma: { 6096 Value *Op0 = Call->getArgOperand(0); 6097 Value *Op1 = Call->getArgOperand(1); 6098 Value *Op2 = Call->getArgOperand(2); 6099 auto *FPI = cast<ConstrainedFPIntrinsic>(Call); 6100 if (Value *V = simplifyFPOp({Op0, Op1, Op2}, {}, Q, 6101 FPI->getExceptionBehavior().getValue(), 6102 FPI->getRoundingMode().getValue())) 6103 return V; 6104 return nullptr; 6105 } 6106 case Intrinsic::fma: 6107 case Intrinsic::fmuladd: { 6108 Value *Op0 = Call->getArgOperand(0); 6109 Value *Op1 = Call->getArgOperand(1); 6110 Value *Op2 = Call->getArgOperand(2); 6111 if (Value *V = simplifyFPOp({Op0, Op1, Op2}, {}, Q, fp::ebIgnore, 6112 RoundingMode::NearestTiesToEven)) 6113 return V; 6114 return nullptr; 6115 } 6116 case Intrinsic::smul_fix: 6117 case Intrinsic::smul_fix_sat: { 6118 Value *Op0 = Call->getArgOperand(0); 6119 Value *Op1 = Call->getArgOperand(1); 6120 Value *Op2 = Call->getArgOperand(2); 6121 Type *ReturnType = F->getReturnType(); 6122 6123 // Canonicalize constant operand as Op1 (ConstantFolding handles the case 6124 // when both Op0 and Op1 are constant so we do not care about that special 6125 // case here). 6126 if (isa<Constant>(Op0)) 6127 std::swap(Op0, Op1); 6128 6129 // X * 0 -> 0 6130 if (match(Op1, m_Zero())) 6131 return Constant::getNullValue(ReturnType); 6132 6133 // X * undef -> 0 6134 if (Q.isUndefValue(Op1)) 6135 return Constant::getNullValue(ReturnType); 6136 6137 // X * (1 << Scale) -> X 6138 APInt ScaledOne = 6139 APInt::getOneBitSet(ReturnType->getScalarSizeInBits(), 6140 cast<ConstantInt>(Op2)->getZExtValue()); 6141 if (ScaledOne.isNonNegative() && match(Op1, m_SpecificInt(ScaledOne))) 6142 return Op0; 6143 6144 return nullptr; 6145 } 6146 case Intrinsic::experimental_vector_insert: { 6147 Value *Vec = Call->getArgOperand(0); 6148 Value *SubVec = Call->getArgOperand(1); 6149 Value *Idx = Call->getArgOperand(2); 6150 Type *ReturnType = F->getReturnType(); 6151 6152 // (insert_vector Y, (extract_vector X, 0), 0) -> X 6153 // where: Y is X, or Y is undef 6154 unsigned IdxN = cast<ConstantInt>(Idx)->getZExtValue(); 6155 Value *X = nullptr; 6156 if (match(SubVec, m_Intrinsic<Intrinsic::experimental_vector_extract>( 6157 m_Value(X), m_Zero())) && 6158 (Q.isUndefValue(Vec) || Vec == X) && IdxN == 0 && 6159 X->getType() == ReturnType) 6160 return X; 6161 6162 return nullptr; 6163 } 6164 case Intrinsic::experimental_constrained_fadd: { 6165 auto *FPI = cast<ConstrainedFPIntrinsic>(Call); 6166 return SimplifyFAddInst(FPI->getArgOperand(0), FPI->getArgOperand(1), 6167 FPI->getFastMathFlags(), Q, 6168 FPI->getExceptionBehavior().getValue(), 6169 FPI->getRoundingMode().getValue()); 6170 } 6171 case Intrinsic::experimental_constrained_fsub: { 6172 auto *FPI = cast<ConstrainedFPIntrinsic>(Call); 6173 return SimplifyFSubInst(FPI->getArgOperand(0), FPI->getArgOperand(1), 6174 FPI->getFastMathFlags(), Q, 6175 FPI->getExceptionBehavior().getValue(), 6176 FPI->getRoundingMode().getValue()); 6177 } 6178 case Intrinsic::experimental_constrained_fmul: { 6179 auto *FPI = cast<ConstrainedFPIntrinsic>(Call); 6180 return SimplifyFMulInst(FPI->getArgOperand(0), FPI->getArgOperand(1), 6181 FPI->getFastMathFlags(), Q, 6182 FPI->getExceptionBehavior().getValue(), 6183 FPI->getRoundingMode().getValue()); 6184 } 6185 case Intrinsic::experimental_constrained_fdiv: { 6186 auto *FPI = cast<ConstrainedFPIntrinsic>(Call); 6187 return SimplifyFDivInst(FPI->getArgOperand(0), FPI->getArgOperand(1), 6188 FPI->getFastMathFlags(), Q, 6189 FPI->getExceptionBehavior().getValue(), 6190 FPI->getRoundingMode().getValue()); 6191 } 6192 case Intrinsic::experimental_constrained_frem: { 6193 auto *FPI = cast<ConstrainedFPIntrinsic>(Call); 6194 return SimplifyFRemInst(FPI->getArgOperand(0), FPI->getArgOperand(1), 6195 FPI->getFastMathFlags(), Q, 6196 FPI->getExceptionBehavior().getValue(), 6197 FPI->getRoundingMode().getValue()); 6198 } 6199 default: 6200 return nullptr; 6201 } 6202 } 6203 6204 static Value *tryConstantFoldCall(CallBase *Call, const SimplifyQuery &Q) { 6205 auto *F = dyn_cast<Function>(Call->getCalledOperand()); 6206 if (!F || !canConstantFoldCallTo(Call, F)) 6207 return nullptr; 6208 6209 SmallVector<Constant *, 4> ConstantArgs; 6210 unsigned NumArgs = Call->arg_size(); 6211 ConstantArgs.reserve(NumArgs); 6212 for (auto &Arg : Call->args()) { 6213 Constant *C = dyn_cast<Constant>(&Arg); 6214 if (!C) { 6215 if (isa<MetadataAsValue>(Arg.get())) 6216 continue; 6217 return nullptr; 6218 } 6219 ConstantArgs.push_back(C); 6220 } 6221 6222 return ConstantFoldCall(Call, F, ConstantArgs, Q.TLI); 6223 } 6224 6225 Value *llvm::SimplifyCall(CallBase *Call, const SimplifyQuery &Q) { 6226 // musttail calls can only be simplified if they are also DCEd. 6227 // As we can't guarantee this here, don't simplify them. 6228 if (Call->isMustTailCall()) 6229 return nullptr; 6230 6231 // call undef -> poison 6232 // call null -> poison 6233 Value *Callee = Call->getCalledOperand(); 6234 if (isa<UndefValue>(Callee) || isa<ConstantPointerNull>(Callee)) 6235 return PoisonValue::get(Call->getType()); 6236 6237 if (Value *V = tryConstantFoldCall(Call, Q)) 6238 return V; 6239 6240 auto *F = dyn_cast<Function>(Callee); 6241 if (F && F->isIntrinsic()) 6242 if (Value *Ret = simplifyIntrinsic(Call, Q)) 6243 return Ret; 6244 6245 return nullptr; 6246 } 6247 6248 Value *llvm::SimplifyConstrainedFPCall(CallBase *Call, const SimplifyQuery &Q) { 6249 assert(isa<ConstrainedFPIntrinsic>(Call)); 6250 if (Value *V = tryConstantFoldCall(Call, Q)) 6251 return V; 6252 if (Value *Ret = simplifyIntrinsic(Call, Q)) 6253 return Ret; 6254 return nullptr; 6255 } 6256 6257 /// Given operands for a Freeze, see if we can fold the result. 6258 static Value *SimplifyFreezeInst(Value *Op0, const SimplifyQuery &Q) { 6259 // Use a utility function defined in ValueTracking. 6260 if (llvm::isGuaranteedNotToBeUndefOrPoison(Op0, Q.AC, Q.CxtI, Q.DT)) 6261 return Op0; 6262 // We have room for improvement. 6263 return nullptr; 6264 } 6265 6266 Value *llvm::SimplifyFreezeInst(Value *Op0, const SimplifyQuery &Q) { 6267 return ::SimplifyFreezeInst(Op0, Q); 6268 } 6269 6270 static Value *SimplifyLoadInst(LoadInst *LI, Value *PtrOp, 6271 const SimplifyQuery &Q) { 6272 if (LI->isVolatile()) 6273 return nullptr; 6274 6275 APInt Offset(Q.DL.getIndexTypeSizeInBits(PtrOp->getType()), 0); 6276 auto *PtrOpC = dyn_cast<Constant>(PtrOp); 6277 // Try to convert operand into a constant by stripping offsets while looking 6278 // through invariant.group intrinsics. Don't bother if the underlying object 6279 // is not constant, as calculating GEP offsets is expensive. 6280 if (!PtrOpC && isa<Constant>(getUnderlyingObject(PtrOp))) { 6281 PtrOp = PtrOp->stripAndAccumulateConstantOffsets( 6282 Q.DL, Offset, /* AllowNonInbounts */ true, 6283 /* AllowInvariantGroup */ true); 6284 // Index size may have changed due to address space casts. 6285 Offset = Offset.sextOrTrunc(Q.DL.getIndexTypeSizeInBits(PtrOp->getType())); 6286 PtrOpC = dyn_cast<Constant>(PtrOp); 6287 } 6288 6289 if (PtrOpC) 6290 return ConstantFoldLoadFromConstPtr(PtrOpC, LI->getType(), Offset, Q.DL); 6291 return nullptr; 6292 } 6293 6294 /// See if we can compute a simplified version of this instruction. 6295 /// If not, this returns null. 6296 6297 static Value *simplifyInstructionWithOperands(Instruction *I, 6298 ArrayRef<Value *> NewOps, 6299 const SimplifyQuery &SQ, 6300 OptimizationRemarkEmitter *ORE) { 6301 const SimplifyQuery Q = SQ.CxtI ? SQ : SQ.getWithInstruction(I); 6302 Value *Result = nullptr; 6303 6304 switch (I->getOpcode()) { 6305 default: 6306 if (llvm::all_of(NewOps, [](Value *V) { return isa<Constant>(V); })) { 6307 SmallVector<Constant *, 8> NewConstOps(NewOps.size()); 6308 transform(NewOps, NewConstOps.begin(), 6309 [](Value *V) { return cast<Constant>(V); }); 6310 Result = ConstantFoldInstOperands(I, NewConstOps, Q.DL, Q.TLI); 6311 } 6312 break; 6313 case Instruction::FNeg: 6314 Result = SimplifyFNegInst(NewOps[0], I->getFastMathFlags(), Q); 6315 break; 6316 case Instruction::FAdd: 6317 Result = SimplifyFAddInst(NewOps[0], NewOps[1], I->getFastMathFlags(), Q); 6318 break; 6319 case Instruction::Add: 6320 Result = SimplifyAddInst( 6321 NewOps[0], NewOps[1], Q.IIQ.hasNoSignedWrap(cast<BinaryOperator>(I)), 6322 Q.IIQ.hasNoUnsignedWrap(cast<BinaryOperator>(I)), Q); 6323 break; 6324 case Instruction::FSub: 6325 Result = SimplifyFSubInst(NewOps[0], NewOps[1], I->getFastMathFlags(), Q); 6326 break; 6327 case Instruction::Sub: 6328 Result = SimplifySubInst( 6329 NewOps[0], NewOps[1], Q.IIQ.hasNoSignedWrap(cast<BinaryOperator>(I)), 6330 Q.IIQ.hasNoUnsignedWrap(cast<BinaryOperator>(I)), Q); 6331 break; 6332 case Instruction::FMul: 6333 Result = SimplifyFMulInst(NewOps[0], NewOps[1], I->getFastMathFlags(), Q); 6334 break; 6335 case Instruction::Mul: 6336 Result = SimplifyMulInst(NewOps[0], NewOps[1], Q); 6337 break; 6338 case Instruction::SDiv: 6339 Result = SimplifySDivInst(NewOps[0], NewOps[1], Q); 6340 break; 6341 case Instruction::UDiv: 6342 Result = SimplifyUDivInst(NewOps[0], NewOps[1], Q); 6343 break; 6344 case Instruction::FDiv: 6345 Result = SimplifyFDivInst(NewOps[0], NewOps[1], I->getFastMathFlags(), Q); 6346 break; 6347 case Instruction::SRem: 6348 Result = SimplifySRemInst(NewOps[0], NewOps[1], Q); 6349 break; 6350 case Instruction::URem: 6351 Result = SimplifyURemInst(NewOps[0], NewOps[1], Q); 6352 break; 6353 case Instruction::FRem: 6354 Result = SimplifyFRemInst(NewOps[0], NewOps[1], I->getFastMathFlags(), Q); 6355 break; 6356 case Instruction::Shl: 6357 Result = SimplifyShlInst( 6358 NewOps[0], NewOps[1], Q.IIQ.hasNoSignedWrap(cast<BinaryOperator>(I)), 6359 Q.IIQ.hasNoUnsignedWrap(cast<BinaryOperator>(I)), Q); 6360 break; 6361 case Instruction::LShr: 6362 Result = SimplifyLShrInst(NewOps[0], NewOps[1], 6363 Q.IIQ.isExact(cast<BinaryOperator>(I)), Q); 6364 break; 6365 case Instruction::AShr: 6366 Result = SimplifyAShrInst(NewOps[0], NewOps[1], 6367 Q.IIQ.isExact(cast<BinaryOperator>(I)), Q); 6368 break; 6369 case Instruction::And: 6370 Result = SimplifyAndInst(NewOps[0], NewOps[1], Q); 6371 break; 6372 case Instruction::Or: 6373 Result = SimplifyOrInst(NewOps[0], NewOps[1], Q); 6374 break; 6375 case Instruction::Xor: 6376 Result = SimplifyXorInst(NewOps[0], NewOps[1], Q); 6377 break; 6378 case Instruction::ICmp: 6379 Result = SimplifyICmpInst(cast<ICmpInst>(I)->getPredicate(), NewOps[0], 6380 NewOps[1], Q); 6381 break; 6382 case Instruction::FCmp: 6383 Result = SimplifyFCmpInst(cast<FCmpInst>(I)->getPredicate(), NewOps[0], 6384 NewOps[1], I->getFastMathFlags(), Q); 6385 break; 6386 case Instruction::Select: 6387 Result = SimplifySelectInst(NewOps[0], NewOps[1], NewOps[2], Q); 6388 break; 6389 case Instruction::GetElementPtr: { 6390 auto *GEPI = cast<GetElementPtrInst>(I); 6391 Result = 6392 SimplifyGEPInst(GEPI->getSourceElementType(), NewOps[0], 6393 makeArrayRef(NewOps).slice(1), GEPI->isInBounds(), Q); 6394 break; 6395 } 6396 case Instruction::InsertValue: { 6397 InsertValueInst *IV = cast<InsertValueInst>(I); 6398 Result = SimplifyInsertValueInst(NewOps[0], NewOps[1], IV->getIndices(), Q); 6399 break; 6400 } 6401 case Instruction::InsertElement: { 6402 Result = SimplifyInsertElementInst(NewOps[0], NewOps[1], NewOps[2], Q); 6403 break; 6404 } 6405 case Instruction::ExtractValue: { 6406 auto *EVI = cast<ExtractValueInst>(I); 6407 Result = SimplifyExtractValueInst(NewOps[0], EVI->getIndices(), Q); 6408 break; 6409 } 6410 case Instruction::ExtractElement: { 6411 Result = SimplifyExtractElementInst(NewOps[0], NewOps[1], Q); 6412 break; 6413 } 6414 case Instruction::ShuffleVector: { 6415 auto *SVI = cast<ShuffleVectorInst>(I); 6416 Result = SimplifyShuffleVectorInst( 6417 NewOps[0], NewOps[1], SVI->getShuffleMask(), SVI->getType(), Q); 6418 break; 6419 } 6420 case Instruction::PHI: 6421 Result = SimplifyPHINode(cast<PHINode>(I), NewOps, Q); 6422 break; 6423 case Instruction::Call: { 6424 // TODO: Use NewOps 6425 Result = SimplifyCall(cast<CallInst>(I), Q); 6426 break; 6427 } 6428 case Instruction::Freeze: 6429 Result = llvm::SimplifyFreezeInst(NewOps[0], Q); 6430 break; 6431 #define HANDLE_CAST_INST(num, opc, clas) case Instruction::opc: 6432 #include "llvm/IR/Instruction.def" 6433 #undef HANDLE_CAST_INST 6434 Result = SimplifyCastInst(I->getOpcode(), NewOps[0], I->getType(), Q); 6435 break; 6436 case Instruction::Alloca: 6437 // No simplifications for Alloca and it can't be constant folded. 6438 Result = nullptr; 6439 break; 6440 case Instruction::Load: 6441 Result = SimplifyLoadInst(cast<LoadInst>(I), NewOps[0], Q); 6442 break; 6443 } 6444 6445 /// If called on unreachable code, the above logic may report that the 6446 /// instruction simplified to itself. Make life easier for users by 6447 /// detecting that case here, returning a safe value instead. 6448 return Result == I ? UndefValue::get(I->getType()) : Result; 6449 } 6450 6451 Value *llvm::SimplifyInstructionWithOperands(Instruction *I, 6452 ArrayRef<Value *> NewOps, 6453 const SimplifyQuery &SQ, 6454 OptimizationRemarkEmitter *ORE) { 6455 assert(NewOps.size() == I->getNumOperands() && 6456 "Number of operands should match the instruction!"); 6457 return ::simplifyInstructionWithOperands(I, NewOps, SQ, ORE); 6458 } 6459 6460 Value *llvm::SimplifyInstruction(Instruction *I, const SimplifyQuery &SQ, 6461 OptimizationRemarkEmitter *ORE) { 6462 SmallVector<Value *, 8> Ops(I->operands()); 6463 return ::simplifyInstructionWithOperands(I, Ops, SQ, ORE); 6464 } 6465 6466 /// Implementation of recursive simplification through an instruction's 6467 /// uses. 6468 /// 6469 /// This is the common implementation of the recursive simplification routines. 6470 /// If we have a pre-simplified value in 'SimpleV', that is forcibly used to 6471 /// replace the instruction 'I'. Otherwise, we simply add 'I' to the list of 6472 /// instructions to process and attempt to simplify it using 6473 /// InstructionSimplify. Recursively visited users which could not be 6474 /// simplified themselves are to the optional UnsimplifiedUsers set for 6475 /// further processing by the caller. 6476 /// 6477 /// This routine returns 'true' only when *it* simplifies something. The passed 6478 /// in simplified value does not count toward this. 6479 static bool replaceAndRecursivelySimplifyImpl( 6480 Instruction *I, Value *SimpleV, const TargetLibraryInfo *TLI, 6481 const DominatorTree *DT, AssumptionCache *AC, 6482 SmallSetVector<Instruction *, 8> *UnsimplifiedUsers = nullptr) { 6483 bool Simplified = false; 6484 SmallSetVector<Instruction *, 8> Worklist; 6485 const DataLayout &DL = I->getModule()->getDataLayout(); 6486 6487 // If we have an explicit value to collapse to, do that round of the 6488 // simplification loop by hand initially. 6489 if (SimpleV) { 6490 for (User *U : I->users()) 6491 if (U != I) 6492 Worklist.insert(cast<Instruction>(U)); 6493 6494 // Replace the instruction with its simplified value. 6495 I->replaceAllUsesWith(SimpleV); 6496 6497 // Gracefully handle edge cases where the instruction is not wired into any 6498 // parent block. 6499 if (I->getParent() && !I->isEHPad() && !I->isTerminator() && 6500 !I->mayHaveSideEffects()) 6501 I->eraseFromParent(); 6502 } else { 6503 Worklist.insert(I); 6504 } 6505 6506 // Note that we must test the size on each iteration, the worklist can grow. 6507 for (unsigned Idx = 0; Idx != Worklist.size(); ++Idx) { 6508 I = Worklist[Idx]; 6509 6510 // See if this instruction simplifies. 6511 SimpleV = SimplifyInstruction(I, {DL, TLI, DT, AC}); 6512 if (!SimpleV) { 6513 if (UnsimplifiedUsers) 6514 UnsimplifiedUsers->insert(I); 6515 continue; 6516 } 6517 6518 Simplified = true; 6519 6520 // Stash away all the uses of the old instruction so we can check them for 6521 // recursive simplifications after a RAUW. This is cheaper than checking all 6522 // uses of To on the recursive step in most cases. 6523 for (User *U : I->users()) 6524 Worklist.insert(cast<Instruction>(U)); 6525 6526 // Replace the instruction with its simplified value. 6527 I->replaceAllUsesWith(SimpleV); 6528 6529 // Gracefully handle edge cases where the instruction is not wired into any 6530 // parent block. 6531 if (I->getParent() && !I->isEHPad() && !I->isTerminator() && 6532 !I->mayHaveSideEffects()) 6533 I->eraseFromParent(); 6534 } 6535 return Simplified; 6536 } 6537 6538 bool llvm::replaceAndRecursivelySimplify( 6539 Instruction *I, Value *SimpleV, const TargetLibraryInfo *TLI, 6540 const DominatorTree *DT, AssumptionCache *AC, 6541 SmallSetVector<Instruction *, 8> *UnsimplifiedUsers) { 6542 assert(I != SimpleV && "replaceAndRecursivelySimplify(X,X) is not valid!"); 6543 assert(SimpleV && "Must provide a simplified value."); 6544 return replaceAndRecursivelySimplifyImpl(I, SimpleV, TLI, DT, AC, 6545 UnsimplifiedUsers); 6546 } 6547 6548 namespace llvm { 6549 const SimplifyQuery getBestSimplifyQuery(Pass &P, Function &F) { 6550 auto *DTWP = P.getAnalysisIfAvailable<DominatorTreeWrapperPass>(); 6551 auto *DT = DTWP ? &DTWP->getDomTree() : nullptr; 6552 auto *TLIWP = P.getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 6553 auto *TLI = TLIWP ? &TLIWP->getTLI(F) : nullptr; 6554 auto *ACWP = P.getAnalysisIfAvailable<AssumptionCacheTracker>(); 6555 auto *AC = ACWP ? &ACWP->getAssumptionCache(F) : nullptr; 6556 return {F.getParent()->getDataLayout(), TLI, DT, AC}; 6557 } 6558 6559 const SimplifyQuery getBestSimplifyQuery(LoopStandardAnalysisResults &AR, 6560 const DataLayout &DL) { 6561 return {DL, &AR.TLI, &AR.DT, &AR.AC}; 6562 } 6563 6564 template <class T, class... TArgs> 6565 const SimplifyQuery getBestSimplifyQuery(AnalysisManager<T, TArgs...> &AM, 6566 Function &F) { 6567 auto *DT = AM.template getCachedResult<DominatorTreeAnalysis>(F); 6568 auto *TLI = AM.template getCachedResult<TargetLibraryAnalysis>(F); 6569 auto *AC = AM.template getCachedResult<AssumptionAnalysis>(F); 6570 return {F.getParent()->getDataLayout(), TLI, DT, AC}; 6571 } 6572 template const SimplifyQuery getBestSimplifyQuery(AnalysisManager<Function> &, 6573 Function &); 6574 } 6575 6576 void InstSimplifyFolder::anchor() {} 6577