1 //===- InstructionSimplify.cpp - Fold instruction operands ----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements routines for folding instructions into simpler forms
10 // that do not require creating new instructions.  This does constant folding
11 // ("add i32 1, 1" -> "2") but can also handle non-constant operands, either
12 // returning a constant ("and i32 %x, 0" -> "0") or an already existing value
13 // ("and i32 %x, %x" -> "%x").  All operands are assumed to have already been
14 // simplified: This is usually true and assuming it simplifies the logic (if
15 // they have not been simplified then results are correct but maybe suboptimal).
16 //
17 //===----------------------------------------------------------------------===//
18 
19 #include "llvm/Analysis/InstructionSimplify.h"
20 
21 #include "llvm/ADT/STLExtras.h"
22 #include "llvm/ADT/SetVector.h"
23 #include "llvm/ADT/SmallPtrSet.h"
24 #include "llvm/ADT/Statistic.h"
25 #include "llvm/Analysis/AliasAnalysis.h"
26 #include "llvm/Analysis/AssumptionCache.h"
27 #include "llvm/Analysis/CaptureTracking.h"
28 #include "llvm/Analysis/CmpInstAnalysis.h"
29 #include "llvm/Analysis/ConstantFolding.h"
30 #include "llvm/Analysis/LoopAnalysisManager.h"
31 #include "llvm/Analysis/MemoryBuiltins.h"
32 #include "llvm/Analysis/OverflowInstAnalysis.h"
33 #include "llvm/Analysis/ValueTracking.h"
34 #include "llvm/Analysis/VectorUtils.h"
35 #include "llvm/IR/ConstantRange.h"
36 #include "llvm/IR/DataLayout.h"
37 #include "llvm/IR/Dominators.h"
38 #include "llvm/IR/GetElementPtrTypeIterator.h"
39 #include "llvm/IR/GlobalAlias.h"
40 #include "llvm/IR/InstrTypes.h"
41 #include "llvm/IR/Instructions.h"
42 #include "llvm/IR/Operator.h"
43 #include "llvm/IR/PatternMatch.h"
44 #include "llvm/IR/ValueHandle.h"
45 #include "llvm/Support/KnownBits.h"
46 #include <algorithm>
47 using namespace llvm;
48 using namespace llvm::PatternMatch;
49 
50 #define DEBUG_TYPE "instsimplify"
51 
52 enum { RecursionLimit = 3 };
53 
54 STATISTIC(NumExpand,  "Number of expansions");
55 STATISTIC(NumReassoc, "Number of reassociations");
56 
57 static Value *SimplifyAndInst(Value *, Value *, const SimplifyQuery &, unsigned);
58 static Value *simplifyUnOp(unsigned, Value *, const SimplifyQuery &, unsigned);
59 static Value *simplifyFPUnOp(unsigned, Value *, const FastMathFlags &,
60                              const SimplifyQuery &, unsigned);
61 static Value *SimplifyBinOp(unsigned, Value *, Value *, const SimplifyQuery &,
62                             unsigned);
63 static Value *SimplifyBinOp(unsigned, Value *, Value *, const FastMathFlags &,
64                             const SimplifyQuery &, unsigned);
65 static Value *SimplifyCmpInst(unsigned, Value *, Value *, const SimplifyQuery &,
66                               unsigned);
67 static Value *SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS,
68                                const SimplifyQuery &Q, unsigned MaxRecurse);
69 static Value *SimplifyOrInst(Value *, Value *, const SimplifyQuery &, unsigned);
70 static Value *SimplifyXorInst(Value *, Value *, const SimplifyQuery &, unsigned);
71 static Value *SimplifyCastInst(unsigned, Value *, Type *,
72                                const SimplifyQuery &, unsigned);
73 static Value *SimplifyGEPInst(Type *, ArrayRef<Value *>, bool,
74                               const SimplifyQuery &, unsigned);
75 static Value *SimplifySelectInst(Value *, Value *, Value *,
76                                  const SimplifyQuery &, unsigned);
77 
78 static Value *foldSelectWithBinaryOp(Value *Cond, Value *TrueVal,
79                                      Value *FalseVal) {
80   BinaryOperator::BinaryOps BinOpCode;
81   if (auto *BO = dyn_cast<BinaryOperator>(Cond))
82     BinOpCode = BO->getOpcode();
83   else
84     return nullptr;
85 
86   CmpInst::Predicate ExpectedPred, Pred1, Pred2;
87   if (BinOpCode == BinaryOperator::Or) {
88     ExpectedPred = ICmpInst::ICMP_NE;
89   } else if (BinOpCode == BinaryOperator::And) {
90     ExpectedPred = ICmpInst::ICMP_EQ;
91   } else
92     return nullptr;
93 
94   // %A = icmp eq %TV, %FV
95   // %B = icmp eq %X, %Y (and one of these is a select operand)
96   // %C = and %A, %B
97   // %D = select %C, %TV, %FV
98   // -->
99   // %FV
100 
101   // %A = icmp ne %TV, %FV
102   // %B = icmp ne %X, %Y (and one of these is a select operand)
103   // %C = or %A, %B
104   // %D = select %C, %TV, %FV
105   // -->
106   // %TV
107   Value *X, *Y;
108   if (!match(Cond, m_c_BinOp(m_c_ICmp(Pred1, m_Specific(TrueVal),
109                                       m_Specific(FalseVal)),
110                              m_ICmp(Pred2, m_Value(X), m_Value(Y)))) ||
111       Pred1 != Pred2 || Pred1 != ExpectedPred)
112     return nullptr;
113 
114   if (X == TrueVal || X == FalseVal || Y == TrueVal || Y == FalseVal)
115     return BinOpCode == BinaryOperator::Or ? TrueVal : FalseVal;
116 
117   return nullptr;
118 }
119 
120 /// For a boolean type or a vector of boolean type, return false or a vector
121 /// with every element false.
122 static Constant *getFalse(Type *Ty) {
123   return ConstantInt::getFalse(Ty);
124 }
125 
126 /// For a boolean type or a vector of boolean type, return true or a vector
127 /// with every element true.
128 static Constant *getTrue(Type *Ty) {
129   return ConstantInt::getTrue(Ty);
130 }
131 
132 /// isSameCompare - Is V equivalent to the comparison "LHS Pred RHS"?
133 static bool isSameCompare(Value *V, CmpInst::Predicate Pred, Value *LHS,
134                           Value *RHS) {
135   CmpInst *Cmp = dyn_cast<CmpInst>(V);
136   if (!Cmp)
137     return false;
138   CmpInst::Predicate CPred = Cmp->getPredicate();
139   Value *CLHS = Cmp->getOperand(0), *CRHS = Cmp->getOperand(1);
140   if (CPred == Pred && CLHS == LHS && CRHS == RHS)
141     return true;
142   return CPred == CmpInst::getSwappedPredicate(Pred) && CLHS == RHS &&
143     CRHS == LHS;
144 }
145 
146 /// Simplify comparison with true or false branch of select:
147 ///  %sel = select i1 %cond, i32 %tv, i32 %fv
148 ///  %cmp = icmp sle i32 %sel, %rhs
149 /// Compose new comparison by substituting %sel with either %tv or %fv
150 /// and see if it simplifies.
151 static Value *simplifyCmpSelCase(CmpInst::Predicate Pred, Value *LHS,
152                                  Value *RHS, Value *Cond,
153                                  const SimplifyQuery &Q, unsigned MaxRecurse,
154                                  Constant *TrueOrFalse) {
155   Value *SimplifiedCmp = SimplifyCmpInst(Pred, LHS, RHS, Q, MaxRecurse);
156   if (SimplifiedCmp == Cond) {
157     // %cmp simplified to the select condition (%cond).
158     return TrueOrFalse;
159   } else if (!SimplifiedCmp && isSameCompare(Cond, Pred, LHS, RHS)) {
160     // It didn't simplify. However, if composed comparison is equivalent
161     // to the select condition (%cond) then we can replace it.
162     return TrueOrFalse;
163   }
164   return SimplifiedCmp;
165 }
166 
167 /// Simplify comparison with true branch of select
168 static Value *simplifyCmpSelTrueCase(CmpInst::Predicate Pred, Value *LHS,
169                                      Value *RHS, Value *Cond,
170                                      const SimplifyQuery &Q,
171                                      unsigned MaxRecurse) {
172   return simplifyCmpSelCase(Pred, LHS, RHS, Cond, Q, MaxRecurse,
173                             getTrue(Cond->getType()));
174 }
175 
176 /// Simplify comparison with false branch of select
177 static Value *simplifyCmpSelFalseCase(CmpInst::Predicate Pred, Value *LHS,
178                                       Value *RHS, Value *Cond,
179                                       const SimplifyQuery &Q,
180                                       unsigned MaxRecurse) {
181   return simplifyCmpSelCase(Pred, LHS, RHS, Cond, Q, MaxRecurse,
182                             getFalse(Cond->getType()));
183 }
184 
185 /// We know comparison with both branches of select can be simplified, but they
186 /// are not equal. This routine handles some logical simplifications.
187 static Value *handleOtherCmpSelSimplifications(Value *TCmp, Value *FCmp,
188                                                Value *Cond,
189                                                const SimplifyQuery &Q,
190                                                unsigned MaxRecurse) {
191   // If the false value simplified to false, then the result of the compare
192   // is equal to "Cond && TCmp".  This also catches the case when the false
193   // value simplified to false and the true value to true, returning "Cond".
194   // Folding select to and/or isn't poison-safe in general; impliesPoison
195   // checks whether folding it does not convert a well-defined value into
196   // poison.
197   if (match(FCmp, m_Zero()) && impliesPoison(TCmp, Cond))
198     if (Value *V = SimplifyAndInst(Cond, TCmp, Q, MaxRecurse))
199       return V;
200   // If the true value simplified to true, then the result of the compare
201   // is equal to "Cond || FCmp".
202   if (match(TCmp, m_One()) && impliesPoison(FCmp, Cond))
203     if (Value *V = SimplifyOrInst(Cond, FCmp, Q, MaxRecurse))
204       return V;
205   // Finally, if the false value simplified to true and the true value to
206   // false, then the result of the compare is equal to "!Cond".
207   if (match(FCmp, m_One()) && match(TCmp, m_Zero()))
208     if (Value *V = SimplifyXorInst(
209             Cond, Constant::getAllOnesValue(Cond->getType()), Q, MaxRecurse))
210       return V;
211   return nullptr;
212 }
213 
214 /// Does the given value dominate the specified phi node?
215 static bool valueDominatesPHI(Value *V, PHINode *P, const DominatorTree *DT) {
216   Instruction *I = dyn_cast<Instruction>(V);
217   if (!I)
218     // Arguments and constants dominate all instructions.
219     return true;
220 
221   // If we are processing instructions (and/or basic blocks) that have not been
222   // fully added to a function, the parent nodes may still be null. Simply
223   // return the conservative answer in these cases.
224   if (!I->getParent() || !P->getParent() || !I->getFunction())
225     return false;
226 
227   // If we have a DominatorTree then do a precise test.
228   if (DT)
229     return DT->dominates(I, P);
230 
231   // Otherwise, if the instruction is in the entry block and is not an invoke,
232   // then it obviously dominates all phi nodes.
233   if (I->getParent()->isEntryBlock() && !isa<InvokeInst>(I) &&
234       !isa<CallBrInst>(I))
235     return true;
236 
237   return false;
238 }
239 
240 /// Try to simplify a binary operator of form "V op OtherOp" where V is
241 /// "(B0 opex B1)" by distributing 'op' across 'opex' as
242 /// "(B0 op OtherOp) opex (B1 op OtherOp)".
243 static Value *expandBinOp(Instruction::BinaryOps Opcode, Value *V,
244                           Value *OtherOp, Instruction::BinaryOps OpcodeToExpand,
245                           const SimplifyQuery &Q, unsigned MaxRecurse) {
246   auto *B = dyn_cast<BinaryOperator>(V);
247   if (!B || B->getOpcode() != OpcodeToExpand)
248     return nullptr;
249   Value *B0 = B->getOperand(0), *B1 = B->getOperand(1);
250   Value *L = SimplifyBinOp(Opcode, B0, OtherOp, Q.getWithoutUndef(),
251                            MaxRecurse);
252   if (!L)
253     return nullptr;
254   Value *R = SimplifyBinOp(Opcode, B1, OtherOp, Q.getWithoutUndef(),
255                            MaxRecurse);
256   if (!R)
257     return nullptr;
258 
259   // Does the expanded pair of binops simplify to the existing binop?
260   if ((L == B0 && R == B1) ||
261       (Instruction::isCommutative(OpcodeToExpand) && L == B1 && R == B0)) {
262     ++NumExpand;
263     return B;
264   }
265 
266   // Otherwise, return "L op' R" if it simplifies.
267   Value *S = SimplifyBinOp(OpcodeToExpand, L, R, Q, MaxRecurse);
268   if (!S)
269     return nullptr;
270 
271   ++NumExpand;
272   return S;
273 }
274 
275 /// Try to simplify binops of form "A op (B op' C)" or the commuted variant by
276 /// distributing op over op'.
277 static Value *expandCommutativeBinOp(Instruction::BinaryOps Opcode,
278                                      Value *L, Value *R,
279                                      Instruction::BinaryOps OpcodeToExpand,
280                                      const SimplifyQuery &Q,
281                                      unsigned MaxRecurse) {
282   // Recursion is always used, so bail out at once if we already hit the limit.
283   if (!MaxRecurse--)
284     return nullptr;
285 
286   if (Value *V = expandBinOp(Opcode, L, R, OpcodeToExpand, Q, MaxRecurse))
287     return V;
288   if (Value *V = expandBinOp(Opcode, R, L, OpcodeToExpand, Q, MaxRecurse))
289     return V;
290   return nullptr;
291 }
292 
293 /// Generic simplifications for associative binary operations.
294 /// Returns the simpler value, or null if none was found.
295 static Value *SimplifyAssociativeBinOp(Instruction::BinaryOps Opcode,
296                                        Value *LHS, Value *RHS,
297                                        const SimplifyQuery &Q,
298                                        unsigned MaxRecurse) {
299   assert(Instruction::isAssociative(Opcode) && "Not an associative operation!");
300 
301   // Recursion is always used, so bail out at once if we already hit the limit.
302   if (!MaxRecurse--)
303     return nullptr;
304 
305   BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS);
306   BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS);
307 
308   // Transform: "(A op B) op C" ==> "A op (B op C)" if it simplifies completely.
309   if (Op0 && Op0->getOpcode() == Opcode) {
310     Value *A = Op0->getOperand(0);
311     Value *B = Op0->getOperand(1);
312     Value *C = RHS;
313 
314     // Does "B op C" simplify?
315     if (Value *V = SimplifyBinOp(Opcode, B, C, Q, MaxRecurse)) {
316       // It does!  Return "A op V" if it simplifies or is already available.
317       // If V equals B then "A op V" is just the LHS.
318       if (V == B) return LHS;
319       // Otherwise return "A op V" if it simplifies.
320       if (Value *W = SimplifyBinOp(Opcode, A, V, Q, MaxRecurse)) {
321         ++NumReassoc;
322         return W;
323       }
324     }
325   }
326 
327   // Transform: "A op (B op C)" ==> "(A op B) op C" if it simplifies completely.
328   if (Op1 && Op1->getOpcode() == Opcode) {
329     Value *A = LHS;
330     Value *B = Op1->getOperand(0);
331     Value *C = Op1->getOperand(1);
332 
333     // Does "A op B" simplify?
334     if (Value *V = SimplifyBinOp(Opcode, A, B, Q, MaxRecurse)) {
335       // It does!  Return "V op C" if it simplifies or is already available.
336       // If V equals B then "V op C" is just the RHS.
337       if (V == B) return RHS;
338       // Otherwise return "V op C" if it simplifies.
339       if (Value *W = SimplifyBinOp(Opcode, V, C, Q, MaxRecurse)) {
340         ++NumReassoc;
341         return W;
342       }
343     }
344   }
345 
346   // The remaining transforms require commutativity as well as associativity.
347   if (!Instruction::isCommutative(Opcode))
348     return nullptr;
349 
350   // Transform: "(A op B) op C" ==> "(C op A) op B" if it simplifies completely.
351   if (Op0 && Op0->getOpcode() == Opcode) {
352     Value *A = Op0->getOperand(0);
353     Value *B = Op0->getOperand(1);
354     Value *C = RHS;
355 
356     // Does "C op A" simplify?
357     if (Value *V = SimplifyBinOp(Opcode, C, A, Q, MaxRecurse)) {
358       // It does!  Return "V op B" if it simplifies or is already available.
359       // If V equals A then "V op B" is just the LHS.
360       if (V == A) return LHS;
361       // Otherwise return "V op B" if it simplifies.
362       if (Value *W = SimplifyBinOp(Opcode, V, B, Q, MaxRecurse)) {
363         ++NumReassoc;
364         return W;
365       }
366     }
367   }
368 
369   // Transform: "A op (B op C)" ==> "B op (C op A)" if it simplifies completely.
370   if (Op1 && Op1->getOpcode() == Opcode) {
371     Value *A = LHS;
372     Value *B = Op1->getOperand(0);
373     Value *C = Op1->getOperand(1);
374 
375     // Does "C op A" simplify?
376     if (Value *V = SimplifyBinOp(Opcode, C, A, Q, MaxRecurse)) {
377       // It does!  Return "B op V" if it simplifies or is already available.
378       // If V equals C then "B op V" is just the RHS.
379       if (V == C) return RHS;
380       // Otherwise return "B op V" if it simplifies.
381       if (Value *W = SimplifyBinOp(Opcode, B, V, Q, MaxRecurse)) {
382         ++NumReassoc;
383         return W;
384       }
385     }
386   }
387 
388   return nullptr;
389 }
390 
391 /// In the case of a binary operation with a select instruction as an operand,
392 /// try to simplify the binop by seeing whether evaluating it on both branches
393 /// of the select results in the same value. Returns the common value if so,
394 /// otherwise returns null.
395 static Value *ThreadBinOpOverSelect(Instruction::BinaryOps Opcode, Value *LHS,
396                                     Value *RHS, const SimplifyQuery &Q,
397                                     unsigned MaxRecurse) {
398   // Recursion is always used, so bail out at once if we already hit the limit.
399   if (!MaxRecurse--)
400     return nullptr;
401 
402   SelectInst *SI;
403   if (isa<SelectInst>(LHS)) {
404     SI = cast<SelectInst>(LHS);
405   } else {
406     assert(isa<SelectInst>(RHS) && "No select instruction operand!");
407     SI = cast<SelectInst>(RHS);
408   }
409 
410   // Evaluate the BinOp on the true and false branches of the select.
411   Value *TV;
412   Value *FV;
413   if (SI == LHS) {
414     TV = SimplifyBinOp(Opcode, SI->getTrueValue(), RHS, Q, MaxRecurse);
415     FV = SimplifyBinOp(Opcode, SI->getFalseValue(), RHS, Q, MaxRecurse);
416   } else {
417     TV = SimplifyBinOp(Opcode, LHS, SI->getTrueValue(), Q, MaxRecurse);
418     FV = SimplifyBinOp(Opcode, LHS, SI->getFalseValue(), Q, MaxRecurse);
419   }
420 
421   // If they simplified to the same value, then return the common value.
422   // If they both failed to simplify then return null.
423   if (TV == FV)
424     return TV;
425 
426   // If one branch simplified to undef, return the other one.
427   if (TV && Q.isUndefValue(TV))
428     return FV;
429   if (FV && Q.isUndefValue(FV))
430     return TV;
431 
432   // If applying the operation did not change the true and false select values,
433   // then the result of the binop is the select itself.
434   if (TV == SI->getTrueValue() && FV == SI->getFalseValue())
435     return SI;
436 
437   // If one branch simplified and the other did not, and the simplified
438   // value is equal to the unsimplified one, return the simplified value.
439   // For example, select (cond, X, X & Z) & Z -> X & Z.
440   if ((FV && !TV) || (TV && !FV)) {
441     // Check that the simplified value has the form "X op Y" where "op" is the
442     // same as the original operation.
443     Instruction *Simplified = dyn_cast<Instruction>(FV ? FV : TV);
444     if (Simplified && Simplified->getOpcode() == unsigned(Opcode)) {
445       // The value that didn't simplify is "UnsimplifiedLHS op UnsimplifiedRHS".
446       // We already know that "op" is the same as for the simplified value.  See
447       // if the operands match too.  If so, return the simplified value.
448       Value *UnsimplifiedBranch = FV ? SI->getTrueValue() : SI->getFalseValue();
449       Value *UnsimplifiedLHS = SI == LHS ? UnsimplifiedBranch : LHS;
450       Value *UnsimplifiedRHS = SI == LHS ? RHS : UnsimplifiedBranch;
451       if (Simplified->getOperand(0) == UnsimplifiedLHS &&
452           Simplified->getOperand(1) == UnsimplifiedRHS)
453         return Simplified;
454       if (Simplified->isCommutative() &&
455           Simplified->getOperand(1) == UnsimplifiedLHS &&
456           Simplified->getOperand(0) == UnsimplifiedRHS)
457         return Simplified;
458     }
459   }
460 
461   return nullptr;
462 }
463 
464 /// In the case of a comparison with a select instruction, try to simplify the
465 /// comparison by seeing whether both branches of the select result in the same
466 /// value. Returns the common value if so, otherwise returns null.
467 /// For example, if we have:
468 ///  %tmp = select i1 %cmp, i32 1, i32 2
469 ///  %cmp1 = icmp sle i32 %tmp, 3
470 /// We can simplify %cmp1 to true, because both branches of select are
471 /// less than 3. We compose new comparison by substituting %tmp with both
472 /// branches of select and see if it can be simplified.
473 static Value *ThreadCmpOverSelect(CmpInst::Predicate Pred, Value *LHS,
474                                   Value *RHS, const SimplifyQuery &Q,
475                                   unsigned MaxRecurse) {
476   // Recursion is always used, so bail out at once if we already hit the limit.
477   if (!MaxRecurse--)
478     return nullptr;
479 
480   // Make sure the select is on the LHS.
481   if (!isa<SelectInst>(LHS)) {
482     std::swap(LHS, RHS);
483     Pred = CmpInst::getSwappedPredicate(Pred);
484   }
485   assert(isa<SelectInst>(LHS) && "Not comparing with a select instruction!");
486   SelectInst *SI = cast<SelectInst>(LHS);
487   Value *Cond = SI->getCondition();
488   Value *TV = SI->getTrueValue();
489   Value *FV = SI->getFalseValue();
490 
491   // Now that we have "cmp select(Cond, TV, FV), RHS", analyse it.
492   // Does "cmp TV, RHS" simplify?
493   Value *TCmp = simplifyCmpSelTrueCase(Pred, TV, RHS, Cond, Q, MaxRecurse);
494   if (!TCmp)
495     return nullptr;
496 
497   // Does "cmp FV, RHS" simplify?
498   Value *FCmp = simplifyCmpSelFalseCase(Pred, FV, RHS, Cond, Q, MaxRecurse);
499   if (!FCmp)
500     return nullptr;
501 
502   // If both sides simplified to the same value, then use it as the result of
503   // the original comparison.
504   if (TCmp == FCmp)
505     return TCmp;
506 
507   // The remaining cases only make sense if the select condition has the same
508   // type as the result of the comparison, so bail out if this is not so.
509   if (Cond->getType()->isVectorTy() == RHS->getType()->isVectorTy())
510     return handleOtherCmpSelSimplifications(TCmp, FCmp, Cond, Q, MaxRecurse);
511 
512   return nullptr;
513 }
514 
515 /// In the case of a binary operation with an operand that is a PHI instruction,
516 /// try to simplify the binop by seeing whether evaluating it on the incoming
517 /// phi values yields the same result for every value. If so returns the common
518 /// value, otherwise returns null.
519 static Value *ThreadBinOpOverPHI(Instruction::BinaryOps Opcode, Value *LHS,
520                                  Value *RHS, const SimplifyQuery &Q,
521                                  unsigned MaxRecurse) {
522   // Recursion is always used, so bail out at once if we already hit the limit.
523   if (!MaxRecurse--)
524     return nullptr;
525 
526   PHINode *PI;
527   if (isa<PHINode>(LHS)) {
528     PI = cast<PHINode>(LHS);
529     // Bail out if RHS and the phi may be mutually interdependent due to a loop.
530     if (!valueDominatesPHI(RHS, PI, Q.DT))
531       return nullptr;
532   } else {
533     assert(isa<PHINode>(RHS) && "No PHI instruction operand!");
534     PI = cast<PHINode>(RHS);
535     // Bail out if LHS and the phi may be mutually interdependent due to a loop.
536     if (!valueDominatesPHI(LHS, PI, Q.DT))
537       return nullptr;
538   }
539 
540   // Evaluate the BinOp on the incoming phi values.
541   Value *CommonValue = nullptr;
542   for (Value *Incoming : PI->incoming_values()) {
543     // If the incoming value is the phi node itself, it can safely be skipped.
544     if (Incoming == PI) continue;
545     Value *V = PI == LHS ?
546       SimplifyBinOp(Opcode, Incoming, RHS, Q, MaxRecurse) :
547       SimplifyBinOp(Opcode, LHS, Incoming, Q, MaxRecurse);
548     // If the operation failed to simplify, or simplified to a different value
549     // to previously, then give up.
550     if (!V || (CommonValue && V != CommonValue))
551       return nullptr;
552     CommonValue = V;
553   }
554 
555   return CommonValue;
556 }
557 
558 /// In the case of a comparison with a PHI instruction, try to simplify the
559 /// comparison by seeing whether comparing with all of the incoming phi values
560 /// yields the same result every time. If so returns the common result,
561 /// otherwise returns null.
562 static Value *ThreadCmpOverPHI(CmpInst::Predicate Pred, Value *LHS, Value *RHS,
563                                const SimplifyQuery &Q, unsigned MaxRecurse) {
564   // Recursion is always used, so bail out at once if we already hit the limit.
565   if (!MaxRecurse--)
566     return nullptr;
567 
568   // Make sure the phi is on the LHS.
569   if (!isa<PHINode>(LHS)) {
570     std::swap(LHS, RHS);
571     Pred = CmpInst::getSwappedPredicate(Pred);
572   }
573   assert(isa<PHINode>(LHS) && "Not comparing with a phi instruction!");
574   PHINode *PI = cast<PHINode>(LHS);
575 
576   // Bail out if RHS and the phi may be mutually interdependent due to a loop.
577   if (!valueDominatesPHI(RHS, PI, Q.DT))
578     return nullptr;
579 
580   // Evaluate the BinOp on the incoming phi values.
581   Value *CommonValue = nullptr;
582   for (unsigned u = 0, e = PI->getNumIncomingValues(); u < e; ++u) {
583     Value *Incoming = PI->getIncomingValue(u);
584     Instruction *InTI = PI->getIncomingBlock(u)->getTerminator();
585     // If the incoming value is the phi node itself, it can safely be skipped.
586     if (Incoming == PI) continue;
587     // Change the context instruction to the "edge" that flows into the phi.
588     // This is important because that is where incoming is actually "evaluated"
589     // even though it is used later somewhere else.
590     Value *V = SimplifyCmpInst(Pred, Incoming, RHS, Q.getWithInstruction(InTI),
591                                MaxRecurse);
592     // If the operation failed to simplify, or simplified to a different value
593     // to previously, then give up.
594     if (!V || (CommonValue && V != CommonValue))
595       return nullptr;
596     CommonValue = V;
597   }
598 
599   return CommonValue;
600 }
601 
602 static Constant *foldOrCommuteConstant(Instruction::BinaryOps Opcode,
603                                        Value *&Op0, Value *&Op1,
604                                        const SimplifyQuery &Q) {
605   if (auto *CLHS = dyn_cast<Constant>(Op0)) {
606     if (auto *CRHS = dyn_cast<Constant>(Op1))
607       return ConstantFoldBinaryOpOperands(Opcode, CLHS, CRHS, Q.DL);
608 
609     // Canonicalize the constant to the RHS if this is a commutative operation.
610     if (Instruction::isCommutative(Opcode))
611       std::swap(Op0, Op1);
612   }
613   return nullptr;
614 }
615 
616 /// Given operands for an Add, see if we can fold the result.
617 /// If not, this returns null.
618 static Value *SimplifyAddInst(Value *Op0, Value *Op1, bool IsNSW, bool IsNUW,
619                               const SimplifyQuery &Q, unsigned MaxRecurse) {
620   if (Constant *C = foldOrCommuteConstant(Instruction::Add, Op0, Op1, Q))
621     return C;
622 
623   // X + undef -> undef
624   if (Q.isUndefValue(Op1))
625     return Op1;
626 
627   // X + 0 -> X
628   if (match(Op1, m_Zero()))
629     return Op0;
630 
631   // If two operands are negative, return 0.
632   if (isKnownNegation(Op0, Op1))
633     return Constant::getNullValue(Op0->getType());
634 
635   // X + (Y - X) -> Y
636   // (Y - X) + X -> Y
637   // Eg: X + -X -> 0
638   Value *Y = nullptr;
639   if (match(Op1, m_Sub(m_Value(Y), m_Specific(Op0))) ||
640       match(Op0, m_Sub(m_Value(Y), m_Specific(Op1))))
641     return Y;
642 
643   // X + ~X -> -1   since   ~X = -X-1
644   Type *Ty = Op0->getType();
645   if (match(Op0, m_Not(m_Specific(Op1))) ||
646       match(Op1, m_Not(m_Specific(Op0))))
647     return Constant::getAllOnesValue(Ty);
648 
649   // add nsw/nuw (xor Y, signmask), signmask --> Y
650   // The no-wrapping add guarantees that the top bit will be set by the add.
651   // Therefore, the xor must be clearing the already set sign bit of Y.
652   if ((IsNSW || IsNUW) && match(Op1, m_SignMask()) &&
653       match(Op0, m_Xor(m_Value(Y), m_SignMask())))
654     return Y;
655 
656   // add nuw %x, -1  ->  -1, because %x can only be 0.
657   if (IsNUW && match(Op1, m_AllOnes()))
658     return Op1; // Which is -1.
659 
660   /// i1 add -> xor.
661   if (MaxRecurse && Op0->getType()->isIntOrIntVectorTy(1))
662     if (Value *V = SimplifyXorInst(Op0, Op1, Q, MaxRecurse-1))
663       return V;
664 
665   // Try some generic simplifications for associative operations.
666   if (Value *V = SimplifyAssociativeBinOp(Instruction::Add, Op0, Op1, Q,
667                                           MaxRecurse))
668     return V;
669 
670   // Threading Add over selects and phi nodes is pointless, so don't bother.
671   // Threading over the select in "A + select(cond, B, C)" means evaluating
672   // "A+B" and "A+C" and seeing if they are equal; but they are equal if and
673   // only if B and C are equal.  If B and C are equal then (since we assume
674   // that operands have already been simplified) "select(cond, B, C)" should
675   // have been simplified to the common value of B and C already.  Analysing
676   // "A+B" and "A+C" thus gains nothing, but costs compile time.  Similarly
677   // for threading over phi nodes.
678 
679   return nullptr;
680 }
681 
682 Value *llvm::SimplifyAddInst(Value *Op0, Value *Op1, bool IsNSW, bool IsNUW,
683                              const SimplifyQuery &Query) {
684   return ::SimplifyAddInst(Op0, Op1, IsNSW, IsNUW, Query, RecursionLimit);
685 }
686 
687 /// Compute the base pointer and cumulative constant offsets for V.
688 ///
689 /// This strips all constant offsets off of V, leaving it the base pointer, and
690 /// accumulates the total constant offset applied in the returned constant. It
691 /// returns 0 if V is not a pointer, and returns the constant '0' if there are
692 /// no constant offsets applied.
693 ///
694 /// This is very similar to GetPointerBaseWithConstantOffset except it doesn't
695 /// follow non-inbounds geps. This allows it to remain usable for icmp ult/etc.
696 /// folding.
697 static Constant *stripAndComputeConstantOffsets(const DataLayout &DL, Value *&V,
698                                                 bool AllowNonInbounds = false) {
699   assert(V->getType()->isPtrOrPtrVectorTy());
700 
701   APInt Offset = APInt::getZero(DL.getIndexTypeSizeInBits(V->getType()));
702 
703   V = V->stripAndAccumulateConstantOffsets(DL, Offset, AllowNonInbounds);
704   // As that strip may trace through `addrspacecast`, need to sext or trunc
705   // the offset calculated.
706   Type *IntIdxTy = DL.getIndexType(V->getType())->getScalarType();
707   Offset = Offset.sextOrTrunc(IntIdxTy->getIntegerBitWidth());
708 
709   Constant *OffsetIntPtr = ConstantInt::get(IntIdxTy, Offset);
710   if (VectorType *VecTy = dyn_cast<VectorType>(V->getType()))
711     return ConstantVector::getSplat(VecTy->getElementCount(), OffsetIntPtr);
712   return OffsetIntPtr;
713 }
714 
715 /// Compute the constant difference between two pointer values.
716 /// If the difference is not a constant, returns zero.
717 static Constant *computePointerDifference(const DataLayout &DL, Value *LHS,
718                                           Value *RHS) {
719   Constant *LHSOffset = stripAndComputeConstantOffsets(DL, LHS);
720   Constant *RHSOffset = stripAndComputeConstantOffsets(DL, RHS);
721 
722   // If LHS and RHS are not related via constant offsets to the same base
723   // value, there is nothing we can do here.
724   if (LHS != RHS)
725     return nullptr;
726 
727   // Otherwise, the difference of LHS - RHS can be computed as:
728   //    LHS - RHS
729   //  = (LHSOffset + Base) - (RHSOffset + Base)
730   //  = LHSOffset - RHSOffset
731   return ConstantExpr::getSub(LHSOffset, RHSOffset);
732 }
733 
734 /// Given operands for a Sub, see if we can fold the result.
735 /// If not, this returns null.
736 static Value *SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
737                               const SimplifyQuery &Q, unsigned MaxRecurse) {
738   if (Constant *C = foldOrCommuteConstant(Instruction::Sub, Op0, Op1, Q))
739     return C;
740 
741   // X - poison -> poison
742   // poison - X -> poison
743   if (isa<PoisonValue>(Op0) || isa<PoisonValue>(Op1))
744     return PoisonValue::get(Op0->getType());
745 
746   // X - undef -> undef
747   // undef - X -> undef
748   if (Q.isUndefValue(Op0) || Q.isUndefValue(Op1))
749     return UndefValue::get(Op0->getType());
750 
751   // X - 0 -> X
752   if (match(Op1, m_Zero()))
753     return Op0;
754 
755   // X - X -> 0
756   if (Op0 == Op1)
757     return Constant::getNullValue(Op0->getType());
758 
759   // Is this a negation?
760   if (match(Op0, m_Zero())) {
761     // 0 - X -> 0 if the sub is NUW.
762     if (isNUW)
763       return Constant::getNullValue(Op0->getType());
764 
765     KnownBits Known = computeKnownBits(Op1, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
766     if (Known.Zero.isMaxSignedValue()) {
767       // Op1 is either 0 or the minimum signed value. If the sub is NSW, then
768       // Op1 must be 0 because negating the minimum signed value is undefined.
769       if (isNSW)
770         return Constant::getNullValue(Op0->getType());
771 
772       // 0 - X -> X if X is 0 or the minimum signed value.
773       return Op1;
774     }
775   }
776 
777   // (X + Y) - Z -> X + (Y - Z) or Y + (X - Z) if everything simplifies.
778   // For example, (X + Y) - Y -> X; (Y + X) - Y -> X
779   Value *X = nullptr, *Y = nullptr, *Z = Op1;
780   if (MaxRecurse && match(Op0, m_Add(m_Value(X), m_Value(Y)))) { // (X + Y) - Z
781     // See if "V === Y - Z" simplifies.
782     if (Value *V = SimplifyBinOp(Instruction::Sub, Y, Z, Q, MaxRecurse-1))
783       // It does!  Now see if "X + V" simplifies.
784       if (Value *W = SimplifyBinOp(Instruction::Add, X, V, Q, MaxRecurse-1)) {
785         // It does, we successfully reassociated!
786         ++NumReassoc;
787         return W;
788       }
789     // See if "V === X - Z" simplifies.
790     if (Value *V = SimplifyBinOp(Instruction::Sub, X, Z, Q, MaxRecurse-1))
791       // It does!  Now see if "Y + V" simplifies.
792       if (Value *W = SimplifyBinOp(Instruction::Add, Y, V, Q, MaxRecurse-1)) {
793         // It does, we successfully reassociated!
794         ++NumReassoc;
795         return W;
796       }
797   }
798 
799   // X - (Y + Z) -> (X - Y) - Z or (X - Z) - Y if everything simplifies.
800   // For example, X - (X + 1) -> -1
801   X = Op0;
802   if (MaxRecurse && match(Op1, m_Add(m_Value(Y), m_Value(Z)))) { // X - (Y + Z)
803     // See if "V === X - Y" simplifies.
804     if (Value *V = SimplifyBinOp(Instruction::Sub, X, Y, Q, MaxRecurse-1))
805       // It does!  Now see if "V - Z" simplifies.
806       if (Value *W = SimplifyBinOp(Instruction::Sub, V, Z, Q, MaxRecurse-1)) {
807         // It does, we successfully reassociated!
808         ++NumReassoc;
809         return W;
810       }
811     // See if "V === X - Z" simplifies.
812     if (Value *V = SimplifyBinOp(Instruction::Sub, X, Z, Q, MaxRecurse-1))
813       // It does!  Now see if "V - Y" simplifies.
814       if (Value *W = SimplifyBinOp(Instruction::Sub, V, Y, Q, MaxRecurse-1)) {
815         // It does, we successfully reassociated!
816         ++NumReassoc;
817         return W;
818       }
819   }
820 
821   // Z - (X - Y) -> (Z - X) + Y if everything simplifies.
822   // For example, X - (X - Y) -> Y.
823   Z = Op0;
824   if (MaxRecurse && match(Op1, m_Sub(m_Value(X), m_Value(Y)))) // Z - (X - Y)
825     // See if "V === Z - X" simplifies.
826     if (Value *V = SimplifyBinOp(Instruction::Sub, Z, X, Q, MaxRecurse-1))
827       // It does!  Now see if "V + Y" simplifies.
828       if (Value *W = SimplifyBinOp(Instruction::Add, V, Y, Q, MaxRecurse-1)) {
829         // It does, we successfully reassociated!
830         ++NumReassoc;
831         return W;
832       }
833 
834   // trunc(X) - trunc(Y) -> trunc(X - Y) if everything simplifies.
835   if (MaxRecurse && match(Op0, m_Trunc(m_Value(X))) &&
836       match(Op1, m_Trunc(m_Value(Y))))
837     if (X->getType() == Y->getType())
838       // See if "V === X - Y" simplifies.
839       if (Value *V = SimplifyBinOp(Instruction::Sub, X, Y, Q, MaxRecurse-1))
840         // It does!  Now see if "trunc V" simplifies.
841         if (Value *W = SimplifyCastInst(Instruction::Trunc, V, Op0->getType(),
842                                         Q, MaxRecurse - 1))
843           // It does, return the simplified "trunc V".
844           return W;
845 
846   // Variations on GEP(base, I, ...) - GEP(base, i, ...) -> GEP(null, I-i, ...).
847   if (match(Op0, m_PtrToInt(m_Value(X))) &&
848       match(Op1, m_PtrToInt(m_Value(Y))))
849     if (Constant *Result = computePointerDifference(Q.DL, X, Y))
850       return ConstantExpr::getIntegerCast(Result, Op0->getType(), true);
851 
852   // i1 sub -> xor.
853   if (MaxRecurse && Op0->getType()->isIntOrIntVectorTy(1))
854     if (Value *V = SimplifyXorInst(Op0, Op1, Q, MaxRecurse-1))
855       return V;
856 
857   // Threading Sub over selects and phi nodes is pointless, so don't bother.
858   // Threading over the select in "A - select(cond, B, C)" means evaluating
859   // "A-B" and "A-C" and seeing if they are equal; but they are equal if and
860   // only if B and C are equal.  If B and C are equal then (since we assume
861   // that operands have already been simplified) "select(cond, B, C)" should
862   // have been simplified to the common value of B and C already.  Analysing
863   // "A-B" and "A-C" thus gains nothing, but costs compile time.  Similarly
864   // for threading over phi nodes.
865 
866   return nullptr;
867 }
868 
869 Value *llvm::SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
870                              const SimplifyQuery &Q) {
871   return ::SimplifySubInst(Op0, Op1, isNSW, isNUW, Q, RecursionLimit);
872 }
873 
874 /// Given operands for a Mul, see if we can fold the result.
875 /// If not, this returns null.
876 static Value *SimplifyMulInst(Value *Op0, Value *Op1, const SimplifyQuery &Q,
877                               unsigned MaxRecurse) {
878   if (Constant *C = foldOrCommuteConstant(Instruction::Mul, Op0, Op1, Q))
879     return C;
880 
881   // X * poison -> poison
882   if (isa<PoisonValue>(Op1))
883     return Op1;
884 
885   // X * undef -> 0
886   // X * 0 -> 0
887   if (Q.isUndefValue(Op1) || match(Op1, m_Zero()))
888     return Constant::getNullValue(Op0->getType());
889 
890   // X * 1 -> X
891   if (match(Op1, m_One()))
892     return Op0;
893 
894   // (X / Y) * Y -> X if the division is exact.
895   Value *X = nullptr;
896   if (Q.IIQ.UseInstrInfo &&
897       (match(Op0,
898              m_Exact(m_IDiv(m_Value(X), m_Specific(Op1)))) ||     // (X / Y) * Y
899        match(Op1, m_Exact(m_IDiv(m_Value(X), m_Specific(Op0)))))) // Y * (X / Y)
900     return X;
901 
902   // i1 mul -> and.
903   if (MaxRecurse && Op0->getType()->isIntOrIntVectorTy(1))
904     if (Value *V = SimplifyAndInst(Op0, Op1, Q, MaxRecurse-1))
905       return V;
906 
907   // Try some generic simplifications for associative operations.
908   if (Value *V = SimplifyAssociativeBinOp(Instruction::Mul, Op0, Op1, Q,
909                                           MaxRecurse))
910     return V;
911 
912   // Mul distributes over Add. Try some generic simplifications based on this.
913   if (Value *V = expandCommutativeBinOp(Instruction::Mul, Op0, Op1,
914                                         Instruction::Add, Q, MaxRecurse))
915     return V;
916 
917   // If the operation is with the result of a select instruction, check whether
918   // operating on either branch of the select always yields the same value.
919   if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
920     if (Value *V = ThreadBinOpOverSelect(Instruction::Mul, Op0, Op1, Q,
921                                          MaxRecurse))
922       return V;
923 
924   // If the operation is with the result of a phi instruction, check whether
925   // operating on all incoming values of the phi always yields the same value.
926   if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
927     if (Value *V = ThreadBinOpOverPHI(Instruction::Mul, Op0, Op1, Q,
928                                       MaxRecurse))
929       return V;
930 
931   return nullptr;
932 }
933 
934 Value *llvm::SimplifyMulInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) {
935   return ::SimplifyMulInst(Op0, Op1, Q, RecursionLimit);
936 }
937 
938 /// Check for common or similar folds of integer division or integer remainder.
939 /// This applies to all 4 opcodes (sdiv/udiv/srem/urem).
940 static Value *simplifyDivRem(Instruction::BinaryOps Opcode, Value *Op0,
941                              Value *Op1, const SimplifyQuery &Q) {
942   bool IsDiv = (Opcode == Instruction::SDiv || Opcode == Instruction::UDiv);
943   bool IsSigned = (Opcode == Instruction::SDiv || Opcode == Instruction::SRem);
944 
945   Type *Ty = Op0->getType();
946 
947   // X / undef -> poison
948   // X % undef -> poison
949   if (Q.isUndefValue(Op1))
950     return PoisonValue::get(Ty);
951 
952   // X / 0 -> poison
953   // X % 0 -> poison
954   // We don't need to preserve faults!
955   if (match(Op1, m_Zero()))
956     return PoisonValue::get(Ty);
957 
958   // If any element of a constant divisor fixed width vector is zero or undef
959   // the behavior is undefined and we can fold the whole op to poison.
960   auto *Op1C = dyn_cast<Constant>(Op1);
961   auto *VTy = dyn_cast<FixedVectorType>(Ty);
962   if (Op1C && VTy) {
963     unsigned NumElts = VTy->getNumElements();
964     for (unsigned i = 0; i != NumElts; ++i) {
965       Constant *Elt = Op1C->getAggregateElement(i);
966       if (Elt && (Elt->isNullValue() || Q.isUndefValue(Elt)))
967         return PoisonValue::get(Ty);
968     }
969   }
970 
971   // poison / X -> poison
972   // poison % X -> poison
973   if (isa<PoisonValue>(Op0))
974     return Op0;
975 
976   // undef / X -> 0
977   // undef % X -> 0
978   if (Q.isUndefValue(Op0))
979     return Constant::getNullValue(Ty);
980 
981   // 0 / X -> 0
982   // 0 % X -> 0
983   if (match(Op0, m_Zero()))
984     return Constant::getNullValue(Op0->getType());
985 
986   // X / X -> 1
987   // X % X -> 0
988   if (Op0 == Op1)
989     return IsDiv ? ConstantInt::get(Ty, 1) : Constant::getNullValue(Ty);
990 
991   // X / 1 -> X
992   // X % 1 -> 0
993   // If this is a boolean op (single-bit element type), we can't have
994   // division-by-zero or remainder-by-zero, so assume the divisor is 1.
995   // Similarly, if we're zero-extending a boolean divisor, then assume it's a 1.
996   Value *X;
997   if (match(Op1, m_One()) || Ty->isIntOrIntVectorTy(1) ||
998       (match(Op1, m_ZExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)))
999     return IsDiv ? Op0 : Constant::getNullValue(Ty);
1000 
1001   // If X * Y does not overflow, then:
1002   //   X * Y / Y -> X
1003   //   X * Y % Y -> 0
1004   if (match(Op0, m_c_Mul(m_Value(X), m_Specific(Op1)))) {
1005     auto *Mul = cast<OverflowingBinaryOperator>(Op0);
1006     // The multiplication can't overflow if it is defined not to, or if
1007     // X == A / Y for some A.
1008     if ((IsSigned && Q.IIQ.hasNoSignedWrap(Mul)) ||
1009         (!IsSigned && Q.IIQ.hasNoUnsignedWrap(Mul)) ||
1010         (IsSigned && match(X, m_SDiv(m_Value(), m_Specific(Op1)))) ||
1011         (!IsSigned && match(X, m_UDiv(m_Value(), m_Specific(Op1))))) {
1012       return IsDiv ? X : Constant::getNullValue(Op0->getType());
1013     }
1014   }
1015 
1016   return nullptr;
1017 }
1018 
1019 /// Given a predicate and two operands, return true if the comparison is true.
1020 /// This is a helper for div/rem simplification where we return some other value
1021 /// when we can prove a relationship between the operands.
1022 static bool isICmpTrue(ICmpInst::Predicate Pred, Value *LHS, Value *RHS,
1023                        const SimplifyQuery &Q, unsigned MaxRecurse) {
1024   Value *V = SimplifyICmpInst(Pred, LHS, RHS, Q, MaxRecurse);
1025   Constant *C = dyn_cast_or_null<Constant>(V);
1026   return (C && C->isAllOnesValue());
1027 }
1028 
1029 /// Return true if we can simplify X / Y to 0. Remainder can adapt that answer
1030 /// to simplify X % Y to X.
1031 static bool isDivZero(Value *X, Value *Y, const SimplifyQuery &Q,
1032                       unsigned MaxRecurse, bool IsSigned) {
1033   // Recursion is always used, so bail out at once if we already hit the limit.
1034   if (!MaxRecurse--)
1035     return false;
1036 
1037   if (IsSigned) {
1038     // |X| / |Y| --> 0
1039     //
1040     // We require that 1 operand is a simple constant. That could be extended to
1041     // 2 variables if we computed the sign bit for each.
1042     //
1043     // Make sure that a constant is not the minimum signed value because taking
1044     // the abs() of that is undefined.
1045     Type *Ty = X->getType();
1046     const APInt *C;
1047     if (match(X, m_APInt(C)) && !C->isMinSignedValue()) {
1048       // Is the variable divisor magnitude always greater than the constant
1049       // dividend magnitude?
1050       // |Y| > |C| --> Y < -abs(C) or Y > abs(C)
1051       Constant *PosDividendC = ConstantInt::get(Ty, C->abs());
1052       Constant *NegDividendC = ConstantInt::get(Ty, -C->abs());
1053       if (isICmpTrue(CmpInst::ICMP_SLT, Y, NegDividendC, Q, MaxRecurse) ||
1054           isICmpTrue(CmpInst::ICMP_SGT, Y, PosDividendC, Q, MaxRecurse))
1055         return true;
1056     }
1057     if (match(Y, m_APInt(C))) {
1058       // Special-case: we can't take the abs() of a minimum signed value. If
1059       // that's the divisor, then all we have to do is prove that the dividend
1060       // is also not the minimum signed value.
1061       if (C->isMinSignedValue())
1062         return isICmpTrue(CmpInst::ICMP_NE, X, Y, Q, MaxRecurse);
1063 
1064       // Is the variable dividend magnitude always less than the constant
1065       // divisor magnitude?
1066       // |X| < |C| --> X > -abs(C) and X < abs(C)
1067       Constant *PosDivisorC = ConstantInt::get(Ty, C->abs());
1068       Constant *NegDivisorC = ConstantInt::get(Ty, -C->abs());
1069       if (isICmpTrue(CmpInst::ICMP_SGT, X, NegDivisorC, Q, MaxRecurse) &&
1070           isICmpTrue(CmpInst::ICMP_SLT, X, PosDivisorC, Q, MaxRecurse))
1071         return true;
1072     }
1073     return false;
1074   }
1075 
1076   // IsSigned == false.
1077   // Is the dividend unsigned less than the divisor?
1078   return isICmpTrue(ICmpInst::ICMP_ULT, X, Y, Q, MaxRecurse);
1079 }
1080 
1081 /// These are simplifications common to SDiv and UDiv.
1082 static Value *simplifyDiv(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1,
1083                           const SimplifyQuery &Q, unsigned MaxRecurse) {
1084   if (Constant *C = foldOrCommuteConstant(Opcode, Op0, Op1, Q))
1085     return C;
1086 
1087   if (Value *V = simplifyDivRem(Opcode, Op0, Op1, Q))
1088     return V;
1089 
1090   bool IsSigned = Opcode == Instruction::SDiv;
1091 
1092   // (X rem Y) / Y -> 0
1093   if ((IsSigned && match(Op0, m_SRem(m_Value(), m_Specific(Op1)))) ||
1094       (!IsSigned && match(Op0, m_URem(m_Value(), m_Specific(Op1)))))
1095     return Constant::getNullValue(Op0->getType());
1096 
1097   // (X /u C1) /u C2 -> 0 if C1 * C2 overflow
1098   ConstantInt *C1, *C2;
1099   if (!IsSigned && match(Op0, m_UDiv(m_Value(), m_ConstantInt(C1))) &&
1100       match(Op1, m_ConstantInt(C2))) {
1101     bool Overflow;
1102     (void)C1->getValue().umul_ov(C2->getValue(), Overflow);
1103     if (Overflow)
1104       return Constant::getNullValue(Op0->getType());
1105   }
1106 
1107   // If the operation is with the result of a select instruction, check whether
1108   // operating on either branch of the select always yields the same value.
1109   if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
1110     if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse))
1111       return V;
1112 
1113   // If the operation is with the result of a phi instruction, check whether
1114   // operating on all incoming values of the phi always yields the same value.
1115   if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
1116     if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse))
1117       return V;
1118 
1119   if (isDivZero(Op0, Op1, Q, MaxRecurse, IsSigned))
1120     return Constant::getNullValue(Op0->getType());
1121 
1122   return nullptr;
1123 }
1124 
1125 /// These are simplifications common to SRem and URem.
1126 static Value *simplifyRem(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1,
1127                           const SimplifyQuery &Q, unsigned MaxRecurse) {
1128   if (Constant *C = foldOrCommuteConstant(Opcode, Op0, Op1, Q))
1129     return C;
1130 
1131   if (Value *V = simplifyDivRem(Opcode, Op0, Op1, Q))
1132     return V;
1133 
1134   // (X % Y) % Y -> X % Y
1135   if ((Opcode == Instruction::SRem &&
1136        match(Op0, m_SRem(m_Value(), m_Specific(Op1)))) ||
1137       (Opcode == Instruction::URem &&
1138        match(Op0, m_URem(m_Value(), m_Specific(Op1)))))
1139     return Op0;
1140 
1141   // (X << Y) % X -> 0
1142   if (Q.IIQ.UseInstrInfo &&
1143       ((Opcode == Instruction::SRem &&
1144         match(Op0, m_NSWShl(m_Specific(Op1), m_Value()))) ||
1145        (Opcode == Instruction::URem &&
1146         match(Op0, m_NUWShl(m_Specific(Op1), m_Value())))))
1147     return Constant::getNullValue(Op0->getType());
1148 
1149   // If the operation is with the result of a select instruction, check whether
1150   // operating on either branch of the select always yields the same value.
1151   if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
1152     if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse))
1153       return V;
1154 
1155   // If the operation is with the result of a phi instruction, check whether
1156   // operating on all incoming values of the phi always yields the same value.
1157   if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
1158     if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse))
1159       return V;
1160 
1161   // If X / Y == 0, then X % Y == X.
1162   if (isDivZero(Op0, Op1, Q, MaxRecurse, Opcode == Instruction::SRem))
1163     return Op0;
1164 
1165   return nullptr;
1166 }
1167 
1168 /// Given operands for an SDiv, see if we can fold the result.
1169 /// If not, this returns null.
1170 static Value *SimplifySDivInst(Value *Op0, Value *Op1, const SimplifyQuery &Q,
1171                                unsigned MaxRecurse) {
1172   // If two operands are negated and no signed overflow, return -1.
1173   if (isKnownNegation(Op0, Op1, /*NeedNSW=*/true))
1174     return Constant::getAllOnesValue(Op0->getType());
1175 
1176   return simplifyDiv(Instruction::SDiv, Op0, Op1, Q, MaxRecurse);
1177 }
1178 
1179 Value *llvm::SimplifySDivInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) {
1180   return ::SimplifySDivInst(Op0, Op1, Q, RecursionLimit);
1181 }
1182 
1183 /// Given operands for a UDiv, see if we can fold the result.
1184 /// If not, this returns null.
1185 static Value *SimplifyUDivInst(Value *Op0, Value *Op1, const SimplifyQuery &Q,
1186                                unsigned MaxRecurse) {
1187   return simplifyDiv(Instruction::UDiv, Op0, Op1, Q, MaxRecurse);
1188 }
1189 
1190 Value *llvm::SimplifyUDivInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) {
1191   return ::SimplifyUDivInst(Op0, Op1, Q, RecursionLimit);
1192 }
1193 
1194 /// Given operands for an SRem, see if we can fold the result.
1195 /// If not, this returns null.
1196 static Value *SimplifySRemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q,
1197                                unsigned MaxRecurse) {
1198   // If the divisor is 0, the result is undefined, so assume the divisor is -1.
1199   // srem Op0, (sext i1 X) --> srem Op0, -1 --> 0
1200   Value *X;
1201   if (match(Op1, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1))
1202     return ConstantInt::getNullValue(Op0->getType());
1203 
1204   // If the two operands are negated, return 0.
1205   if (isKnownNegation(Op0, Op1))
1206     return ConstantInt::getNullValue(Op0->getType());
1207 
1208   return simplifyRem(Instruction::SRem, Op0, Op1, Q, MaxRecurse);
1209 }
1210 
1211 Value *llvm::SimplifySRemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) {
1212   return ::SimplifySRemInst(Op0, Op1, Q, RecursionLimit);
1213 }
1214 
1215 /// Given operands for a URem, see if we can fold the result.
1216 /// If not, this returns null.
1217 static Value *SimplifyURemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q,
1218                                unsigned MaxRecurse) {
1219   return simplifyRem(Instruction::URem, Op0, Op1, Q, MaxRecurse);
1220 }
1221 
1222 Value *llvm::SimplifyURemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) {
1223   return ::SimplifyURemInst(Op0, Op1, Q, RecursionLimit);
1224 }
1225 
1226 /// Returns true if a shift by \c Amount always yields poison.
1227 static bool isPoisonShift(Value *Amount, const SimplifyQuery &Q) {
1228   Constant *C = dyn_cast<Constant>(Amount);
1229   if (!C)
1230     return false;
1231 
1232   // X shift by undef -> poison because it may shift by the bitwidth.
1233   if (Q.isUndefValue(C))
1234     return true;
1235 
1236   // Shifting by the bitwidth or more is undefined.
1237   if (ConstantInt *CI = dyn_cast<ConstantInt>(C))
1238     if (CI->getValue().uge(CI->getType()->getScalarSizeInBits()))
1239       return true;
1240 
1241   // If all lanes of a vector shift are undefined the whole shift is.
1242   if (isa<ConstantVector>(C) || isa<ConstantDataVector>(C)) {
1243     for (unsigned I = 0,
1244                   E = cast<FixedVectorType>(C->getType())->getNumElements();
1245          I != E; ++I)
1246       if (!isPoisonShift(C->getAggregateElement(I), Q))
1247         return false;
1248     return true;
1249   }
1250 
1251   return false;
1252 }
1253 
1254 /// Given operands for an Shl, LShr or AShr, see if we can fold the result.
1255 /// If not, this returns null.
1256 static Value *SimplifyShift(Instruction::BinaryOps Opcode, Value *Op0,
1257                             Value *Op1, bool IsNSW, const SimplifyQuery &Q,
1258                             unsigned MaxRecurse) {
1259   if (Constant *C = foldOrCommuteConstant(Opcode, Op0, Op1, Q))
1260     return C;
1261 
1262   // poison shift by X -> poison
1263   if (isa<PoisonValue>(Op0))
1264     return Op0;
1265 
1266   // 0 shift by X -> 0
1267   if (match(Op0, m_Zero()))
1268     return Constant::getNullValue(Op0->getType());
1269 
1270   // X shift by 0 -> X
1271   // Shift-by-sign-extended bool must be shift-by-0 because shift-by-all-ones
1272   // would be poison.
1273   Value *X;
1274   if (match(Op1, m_Zero()) ||
1275       (match(Op1, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)))
1276     return Op0;
1277 
1278   // Fold undefined shifts.
1279   if (isPoisonShift(Op1, Q))
1280     return PoisonValue::get(Op0->getType());
1281 
1282   // If the operation is with the result of a select instruction, check whether
1283   // operating on either branch of the select always yields the same value.
1284   if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
1285     if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse))
1286       return V;
1287 
1288   // If the operation is with the result of a phi instruction, check whether
1289   // operating on all incoming values of the phi always yields the same value.
1290   if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
1291     if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse))
1292       return V;
1293 
1294   // If any bits in the shift amount make that value greater than or equal to
1295   // the number of bits in the type, the shift is undefined.
1296   KnownBits KnownAmt = computeKnownBits(Op1, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
1297   if (KnownAmt.getMinValue().uge(KnownAmt.getBitWidth()))
1298     return PoisonValue::get(Op0->getType());
1299 
1300   // If all valid bits in the shift amount are known zero, the first operand is
1301   // unchanged.
1302   unsigned NumValidShiftBits = Log2_32_Ceil(KnownAmt.getBitWidth());
1303   if (KnownAmt.countMinTrailingZeros() >= NumValidShiftBits)
1304     return Op0;
1305 
1306   // Check for nsw shl leading to a poison value.
1307   if (IsNSW) {
1308     assert(Opcode == Instruction::Shl && "Expected shl for nsw instruction");
1309     KnownBits KnownVal = computeKnownBits(Op0, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
1310     KnownBits KnownShl = KnownBits::shl(KnownVal, KnownAmt);
1311 
1312     if (KnownVal.Zero.isSignBitSet())
1313       KnownShl.Zero.setSignBit();
1314     if (KnownVal.One.isSignBitSet())
1315       KnownShl.One.setSignBit();
1316 
1317     if (KnownShl.hasConflict())
1318       return PoisonValue::get(Op0->getType());
1319   }
1320 
1321   return nullptr;
1322 }
1323 
1324 /// Given operands for an Shl, LShr or AShr, see if we can
1325 /// fold the result.  If not, this returns null.
1326 static Value *SimplifyRightShift(Instruction::BinaryOps Opcode, Value *Op0,
1327                                  Value *Op1, bool isExact, const SimplifyQuery &Q,
1328                                  unsigned MaxRecurse) {
1329   if (Value *V =
1330           SimplifyShift(Opcode, Op0, Op1, /*IsNSW*/ false, Q, MaxRecurse))
1331     return V;
1332 
1333   // X >> X -> 0
1334   if (Op0 == Op1)
1335     return Constant::getNullValue(Op0->getType());
1336 
1337   // undef >> X -> 0
1338   // undef >> X -> undef (if it's exact)
1339   if (Q.isUndefValue(Op0))
1340     return isExact ? Op0 : Constant::getNullValue(Op0->getType());
1341 
1342   // The low bit cannot be shifted out of an exact shift if it is set.
1343   if (isExact) {
1344     KnownBits Op0Known = computeKnownBits(Op0, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT);
1345     if (Op0Known.One[0])
1346       return Op0;
1347   }
1348 
1349   return nullptr;
1350 }
1351 
1352 /// Given operands for an Shl, see if we can fold the result.
1353 /// If not, this returns null.
1354 static Value *SimplifyShlInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
1355                               const SimplifyQuery &Q, unsigned MaxRecurse) {
1356   if (Value *V =
1357           SimplifyShift(Instruction::Shl, Op0, Op1, isNSW, Q, MaxRecurse))
1358     return V;
1359 
1360   // undef << X -> 0
1361   // undef << X -> undef if (if it's NSW/NUW)
1362   if (Q.isUndefValue(Op0))
1363     return isNSW || isNUW ? Op0 : Constant::getNullValue(Op0->getType());
1364 
1365   // (X >> A) << A -> X
1366   Value *X;
1367   if (Q.IIQ.UseInstrInfo &&
1368       match(Op0, m_Exact(m_Shr(m_Value(X), m_Specific(Op1)))))
1369     return X;
1370 
1371   // shl nuw i8 C, %x  ->  C  iff C has sign bit set.
1372   if (isNUW && match(Op0, m_Negative()))
1373     return Op0;
1374   // NOTE: could use computeKnownBits() / LazyValueInfo,
1375   // but the cost-benefit analysis suggests it isn't worth it.
1376 
1377   return nullptr;
1378 }
1379 
1380 Value *llvm::SimplifyShlInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
1381                              const SimplifyQuery &Q) {
1382   return ::SimplifyShlInst(Op0, Op1, isNSW, isNUW, Q, RecursionLimit);
1383 }
1384 
1385 /// Given operands for an LShr, see if we can fold the result.
1386 /// If not, this returns null.
1387 static Value *SimplifyLShrInst(Value *Op0, Value *Op1, bool isExact,
1388                                const SimplifyQuery &Q, unsigned MaxRecurse) {
1389   if (Value *V = SimplifyRightShift(Instruction::LShr, Op0, Op1, isExact, Q,
1390                                     MaxRecurse))
1391       return V;
1392 
1393   // (X << A) >> A -> X
1394   Value *X;
1395   if (match(Op0, m_NUWShl(m_Value(X), m_Specific(Op1))))
1396     return X;
1397 
1398   // ((X << A) | Y) >> A -> X  if effective width of Y is not larger than A.
1399   // We can return X as we do in the above case since OR alters no bits in X.
1400   // SimplifyDemandedBits in InstCombine can do more general optimization for
1401   // bit manipulation. This pattern aims to provide opportunities for other
1402   // optimizers by supporting a simple but common case in InstSimplify.
1403   Value *Y;
1404   const APInt *ShRAmt, *ShLAmt;
1405   if (match(Op1, m_APInt(ShRAmt)) &&
1406       match(Op0, m_c_Or(m_NUWShl(m_Value(X), m_APInt(ShLAmt)), m_Value(Y))) &&
1407       *ShRAmt == *ShLAmt) {
1408     const KnownBits YKnown = computeKnownBits(Y, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
1409     const unsigned EffWidthY = YKnown.countMaxActiveBits();
1410     if (ShRAmt->uge(EffWidthY))
1411       return X;
1412   }
1413 
1414   return nullptr;
1415 }
1416 
1417 Value *llvm::SimplifyLShrInst(Value *Op0, Value *Op1, bool isExact,
1418                               const SimplifyQuery &Q) {
1419   return ::SimplifyLShrInst(Op0, Op1, isExact, Q, RecursionLimit);
1420 }
1421 
1422 /// Given operands for an AShr, see if we can fold the result.
1423 /// If not, this returns null.
1424 static Value *SimplifyAShrInst(Value *Op0, Value *Op1, bool isExact,
1425                                const SimplifyQuery &Q, unsigned MaxRecurse) {
1426   if (Value *V = SimplifyRightShift(Instruction::AShr, Op0, Op1, isExact, Q,
1427                                     MaxRecurse))
1428     return V;
1429 
1430   // -1 >>a X --> -1
1431   // (-1 << X) a>> X --> -1
1432   // Do not return Op0 because it may contain undef elements if it's a vector.
1433   if (match(Op0, m_AllOnes()) ||
1434       match(Op0, m_Shl(m_AllOnes(), m_Specific(Op1))))
1435     return Constant::getAllOnesValue(Op0->getType());
1436 
1437   // (X << A) >> A -> X
1438   Value *X;
1439   if (Q.IIQ.UseInstrInfo && match(Op0, m_NSWShl(m_Value(X), m_Specific(Op1))))
1440     return X;
1441 
1442   // Arithmetic shifting an all-sign-bit value is a no-op.
1443   unsigned NumSignBits = ComputeNumSignBits(Op0, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
1444   if (NumSignBits == Op0->getType()->getScalarSizeInBits())
1445     return Op0;
1446 
1447   return nullptr;
1448 }
1449 
1450 Value *llvm::SimplifyAShrInst(Value *Op0, Value *Op1, bool isExact,
1451                               const SimplifyQuery &Q) {
1452   return ::SimplifyAShrInst(Op0, Op1, isExact, Q, RecursionLimit);
1453 }
1454 
1455 /// Commuted variants are assumed to be handled by calling this function again
1456 /// with the parameters swapped.
1457 static Value *simplifyUnsignedRangeCheck(ICmpInst *ZeroICmp,
1458                                          ICmpInst *UnsignedICmp, bool IsAnd,
1459                                          const SimplifyQuery &Q) {
1460   Value *X, *Y;
1461 
1462   ICmpInst::Predicate EqPred;
1463   if (!match(ZeroICmp, m_ICmp(EqPred, m_Value(Y), m_Zero())) ||
1464       !ICmpInst::isEquality(EqPred))
1465     return nullptr;
1466 
1467   ICmpInst::Predicate UnsignedPred;
1468 
1469   Value *A, *B;
1470   // Y = (A - B);
1471   if (match(Y, m_Sub(m_Value(A), m_Value(B)))) {
1472     if (match(UnsignedICmp,
1473               m_c_ICmp(UnsignedPred, m_Specific(A), m_Specific(B))) &&
1474         ICmpInst::isUnsigned(UnsignedPred)) {
1475       // A >=/<= B || (A - B) != 0  <-->  true
1476       if ((UnsignedPred == ICmpInst::ICMP_UGE ||
1477            UnsignedPred == ICmpInst::ICMP_ULE) &&
1478           EqPred == ICmpInst::ICMP_NE && !IsAnd)
1479         return ConstantInt::getTrue(UnsignedICmp->getType());
1480       // A </> B && (A - B) == 0  <-->  false
1481       if ((UnsignedPred == ICmpInst::ICMP_ULT ||
1482            UnsignedPred == ICmpInst::ICMP_UGT) &&
1483           EqPred == ICmpInst::ICMP_EQ && IsAnd)
1484         return ConstantInt::getFalse(UnsignedICmp->getType());
1485 
1486       // A </> B && (A - B) != 0  <-->  A </> B
1487       // A </> B || (A - B) != 0  <-->  (A - B) != 0
1488       if (EqPred == ICmpInst::ICMP_NE && (UnsignedPred == ICmpInst::ICMP_ULT ||
1489                                           UnsignedPred == ICmpInst::ICMP_UGT))
1490         return IsAnd ? UnsignedICmp : ZeroICmp;
1491 
1492       // A <=/>= B && (A - B) == 0  <-->  (A - B) == 0
1493       // A <=/>= B || (A - B) == 0  <-->  A <=/>= B
1494       if (EqPred == ICmpInst::ICMP_EQ && (UnsignedPred == ICmpInst::ICMP_ULE ||
1495                                           UnsignedPred == ICmpInst::ICMP_UGE))
1496         return IsAnd ? ZeroICmp : UnsignedICmp;
1497     }
1498 
1499     // Given  Y = (A - B)
1500     //   Y >= A && Y != 0  --> Y >= A  iff B != 0
1501     //   Y <  A || Y == 0  --> Y <  A  iff B != 0
1502     if (match(UnsignedICmp,
1503               m_c_ICmp(UnsignedPred, m_Specific(Y), m_Specific(A)))) {
1504       if (UnsignedPred == ICmpInst::ICMP_UGE && IsAnd &&
1505           EqPred == ICmpInst::ICMP_NE &&
1506           isKnownNonZero(B, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT))
1507         return UnsignedICmp;
1508       if (UnsignedPred == ICmpInst::ICMP_ULT && !IsAnd &&
1509           EqPred == ICmpInst::ICMP_EQ &&
1510           isKnownNonZero(B, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT))
1511         return UnsignedICmp;
1512     }
1513   }
1514 
1515   if (match(UnsignedICmp, m_ICmp(UnsignedPred, m_Value(X), m_Specific(Y))) &&
1516       ICmpInst::isUnsigned(UnsignedPred))
1517     ;
1518   else if (match(UnsignedICmp,
1519                  m_ICmp(UnsignedPred, m_Specific(Y), m_Value(X))) &&
1520            ICmpInst::isUnsigned(UnsignedPred))
1521     UnsignedPred = ICmpInst::getSwappedPredicate(UnsignedPred);
1522   else
1523     return nullptr;
1524 
1525   // X > Y && Y == 0  -->  Y == 0  iff X != 0
1526   // X > Y || Y == 0  -->  X > Y   iff X != 0
1527   if (UnsignedPred == ICmpInst::ICMP_UGT && EqPred == ICmpInst::ICMP_EQ &&
1528       isKnownNonZero(X, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT))
1529     return IsAnd ? ZeroICmp : UnsignedICmp;
1530 
1531   // X <= Y && Y != 0  -->  X <= Y  iff X != 0
1532   // X <= Y || Y != 0  -->  Y != 0  iff X != 0
1533   if (UnsignedPred == ICmpInst::ICMP_ULE && EqPred == ICmpInst::ICMP_NE &&
1534       isKnownNonZero(X, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT))
1535     return IsAnd ? UnsignedICmp : ZeroICmp;
1536 
1537   // The transforms below here are expected to be handled more generally with
1538   // simplifyAndOrOfICmpsWithLimitConst() or in InstCombine's
1539   // foldAndOrOfICmpsWithConstEq(). If we are looking to trim optimizer overlap,
1540   // these are candidates for removal.
1541 
1542   // X < Y && Y != 0  -->  X < Y
1543   // X < Y || Y != 0  -->  Y != 0
1544   if (UnsignedPred == ICmpInst::ICMP_ULT && EqPred == ICmpInst::ICMP_NE)
1545     return IsAnd ? UnsignedICmp : ZeroICmp;
1546 
1547   // X >= Y && Y == 0  -->  Y == 0
1548   // X >= Y || Y == 0  -->  X >= Y
1549   if (UnsignedPred == ICmpInst::ICMP_UGE && EqPred == ICmpInst::ICMP_EQ)
1550     return IsAnd ? ZeroICmp : UnsignedICmp;
1551 
1552   // X < Y && Y == 0  -->  false
1553   if (UnsignedPred == ICmpInst::ICMP_ULT && EqPred == ICmpInst::ICMP_EQ &&
1554       IsAnd)
1555     return getFalse(UnsignedICmp->getType());
1556 
1557   // X >= Y || Y != 0  -->  true
1558   if (UnsignedPred == ICmpInst::ICMP_UGE && EqPred == ICmpInst::ICMP_NE &&
1559       !IsAnd)
1560     return getTrue(UnsignedICmp->getType());
1561 
1562   return nullptr;
1563 }
1564 
1565 /// Commuted variants are assumed to be handled by calling this function again
1566 /// with the parameters swapped.
1567 static Value *simplifyAndOfICmpsWithSameOperands(ICmpInst *Op0, ICmpInst *Op1) {
1568   ICmpInst::Predicate Pred0, Pred1;
1569   Value *A ,*B;
1570   if (!match(Op0, m_ICmp(Pred0, m_Value(A), m_Value(B))) ||
1571       !match(Op1, m_ICmp(Pred1, m_Specific(A), m_Specific(B))))
1572     return nullptr;
1573 
1574   // We have (icmp Pred0, A, B) & (icmp Pred1, A, B).
1575   // If Op1 is always implied true by Op0, then Op0 is a subset of Op1, and we
1576   // can eliminate Op1 from this 'and'.
1577   if (ICmpInst::isImpliedTrueByMatchingCmp(Pred0, Pred1))
1578     return Op0;
1579 
1580   // Check for any combination of predicates that are guaranteed to be disjoint.
1581   if ((Pred0 == ICmpInst::getInversePredicate(Pred1)) ||
1582       (Pred0 == ICmpInst::ICMP_EQ && ICmpInst::isFalseWhenEqual(Pred1)) ||
1583       (Pred0 == ICmpInst::ICMP_SLT && Pred1 == ICmpInst::ICMP_SGT) ||
1584       (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_UGT))
1585     return getFalse(Op0->getType());
1586 
1587   return nullptr;
1588 }
1589 
1590 /// Commuted variants are assumed to be handled by calling this function again
1591 /// with the parameters swapped.
1592 static Value *simplifyOrOfICmpsWithSameOperands(ICmpInst *Op0, ICmpInst *Op1) {
1593   ICmpInst::Predicate Pred0, Pred1;
1594   Value *A ,*B;
1595   if (!match(Op0, m_ICmp(Pred0, m_Value(A), m_Value(B))) ||
1596       !match(Op1, m_ICmp(Pred1, m_Specific(A), m_Specific(B))))
1597     return nullptr;
1598 
1599   // We have (icmp Pred0, A, B) | (icmp Pred1, A, B).
1600   // If Op1 is always implied true by Op0, then Op0 is a subset of Op1, and we
1601   // can eliminate Op0 from this 'or'.
1602   if (ICmpInst::isImpliedTrueByMatchingCmp(Pred0, Pred1))
1603     return Op1;
1604 
1605   // Check for any combination of predicates that cover the entire range of
1606   // possibilities.
1607   if ((Pred0 == ICmpInst::getInversePredicate(Pred1)) ||
1608       (Pred0 == ICmpInst::ICMP_NE && ICmpInst::isTrueWhenEqual(Pred1)) ||
1609       (Pred0 == ICmpInst::ICMP_SLE && Pred1 == ICmpInst::ICMP_SGE) ||
1610       (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_UGE))
1611     return getTrue(Op0->getType());
1612 
1613   return nullptr;
1614 }
1615 
1616 /// Test if a pair of compares with a shared operand and 2 constants has an
1617 /// empty set intersection, full set union, or if one compare is a superset of
1618 /// the other.
1619 static Value *simplifyAndOrOfICmpsWithConstants(ICmpInst *Cmp0, ICmpInst *Cmp1,
1620                                                 bool IsAnd) {
1621   // Look for this pattern: {and/or} (icmp X, C0), (icmp X, C1)).
1622   if (Cmp0->getOperand(0) != Cmp1->getOperand(0))
1623     return nullptr;
1624 
1625   const APInt *C0, *C1;
1626   if (!match(Cmp0->getOperand(1), m_APInt(C0)) ||
1627       !match(Cmp1->getOperand(1), m_APInt(C1)))
1628     return nullptr;
1629 
1630   auto Range0 = ConstantRange::makeExactICmpRegion(Cmp0->getPredicate(), *C0);
1631   auto Range1 = ConstantRange::makeExactICmpRegion(Cmp1->getPredicate(), *C1);
1632 
1633   // For and-of-compares, check if the intersection is empty:
1634   // (icmp X, C0) && (icmp X, C1) --> empty set --> false
1635   if (IsAnd && Range0.intersectWith(Range1).isEmptySet())
1636     return getFalse(Cmp0->getType());
1637 
1638   // For or-of-compares, check if the union is full:
1639   // (icmp X, C0) || (icmp X, C1) --> full set --> true
1640   if (!IsAnd && Range0.unionWith(Range1).isFullSet())
1641     return getTrue(Cmp0->getType());
1642 
1643   // Is one range a superset of the other?
1644   // If this is and-of-compares, take the smaller set:
1645   // (icmp sgt X, 4) && (icmp sgt X, 42) --> icmp sgt X, 42
1646   // If this is or-of-compares, take the larger set:
1647   // (icmp sgt X, 4) || (icmp sgt X, 42) --> icmp sgt X, 4
1648   if (Range0.contains(Range1))
1649     return IsAnd ? Cmp1 : Cmp0;
1650   if (Range1.contains(Range0))
1651     return IsAnd ? Cmp0 : Cmp1;
1652 
1653   return nullptr;
1654 }
1655 
1656 static Value *simplifyAndOrOfICmpsWithZero(ICmpInst *Cmp0, ICmpInst *Cmp1,
1657                                            bool IsAnd) {
1658   ICmpInst::Predicate P0 = Cmp0->getPredicate(), P1 = Cmp1->getPredicate();
1659   if (!match(Cmp0->getOperand(1), m_Zero()) ||
1660       !match(Cmp1->getOperand(1), m_Zero()) || P0 != P1)
1661     return nullptr;
1662 
1663   if ((IsAnd && P0 != ICmpInst::ICMP_NE) || (!IsAnd && P1 != ICmpInst::ICMP_EQ))
1664     return nullptr;
1665 
1666   // We have either "(X == 0 || Y == 0)" or "(X != 0 && Y != 0)".
1667   Value *X = Cmp0->getOperand(0);
1668   Value *Y = Cmp1->getOperand(0);
1669 
1670   // If one of the compares is a masked version of a (not) null check, then
1671   // that compare implies the other, so we eliminate the other. Optionally, look
1672   // through a pointer-to-int cast to match a null check of a pointer type.
1673 
1674   // (X == 0) || (([ptrtoint] X & ?) == 0) --> ([ptrtoint] X & ?) == 0
1675   // (X == 0) || ((? & [ptrtoint] X) == 0) --> (? & [ptrtoint] X) == 0
1676   // (X != 0) && (([ptrtoint] X & ?) != 0) --> ([ptrtoint] X & ?) != 0
1677   // (X != 0) && ((? & [ptrtoint] X) != 0) --> (? & [ptrtoint] X) != 0
1678   if (match(Y, m_c_And(m_Specific(X), m_Value())) ||
1679       match(Y, m_c_And(m_PtrToInt(m_Specific(X)), m_Value())))
1680     return Cmp1;
1681 
1682   // (([ptrtoint] Y & ?) == 0) || (Y == 0) --> ([ptrtoint] Y & ?) == 0
1683   // ((? & [ptrtoint] Y) == 0) || (Y == 0) --> (? & [ptrtoint] Y) == 0
1684   // (([ptrtoint] Y & ?) != 0) && (Y != 0) --> ([ptrtoint] Y & ?) != 0
1685   // ((? & [ptrtoint] Y) != 0) && (Y != 0) --> (? & [ptrtoint] Y) != 0
1686   if (match(X, m_c_And(m_Specific(Y), m_Value())) ||
1687       match(X, m_c_And(m_PtrToInt(m_Specific(Y)), m_Value())))
1688     return Cmp0;
1689 
1690   return nullptr;
1691 }
1692 
1693 static Value *simplifyAndOfICmpsWithAdd(ICmpInst *Op0, ICmpInst *Op1,
1694                                         const InstrInfoQuery &IIQ) {
1695   // (icmp (add V, C0), C1) & (icmp V, C0)
1696   ICmpInst::Predicate Pred0, Pred1;
1697   const APInt *C0, *C1;
1698   Value *V;
1699   if (!match(Op0, m_ICmp(Pred0, m_Add(m_Value(V), m_APInt(C0)), m_APInt(C1))))
1700     return nullptr;
1701 
1702   if (!match(Op1, m_ICmp(Pred1, m_Specific(V), m_Value())))
1703     return nullptr;
1704 
1705   auto *AddInst = cast<OverflowingBinaryOperator>(Op0->getOperand(0));
1706   if (AddInst->getOperand(1) != Op1->getOperand(1))
1707     return nullptr;
1708 
1709   Type *ITy = Op0->getType();
1710   bool isNSW = IIQ.hasNoSignedWrap(AddInst);
1711   bool isNUW = IIQ.hasNoUnsignedWrap(AddInst);
1712 
1713   const APInt Delta = *C1 - *C0;
1714   if (C0->isStrictlyPositive()) {
1715     if (Delta == 2) {
1716       if (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_SGT)
1717         return getFalse(ITy);
1718       if (Pred0 == ICmpInst::ICMP_SLT && Pred1 == ICmpInst::ICMP_SGT && isNSW)
1719         return getFalse(ITy);
1720     }
1721     if (Delta == 1) {
1722       if (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_SGT)
1723         return getFalse(ITy);
1724       if (Pred0 == ICmpInst::ICMP_SLE && Pred1 == ICmpInst::ICMP_SGT && isNSW)
1725         return getFalse(ITy);
1726     }
1727   }
1728   if (C0->getBoolValue() && isNUW) {
1729     if (Delta == 2)
1730       if (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_UGT)
1731         return getFalse(ITy);
1732     if (Delta == 1)
1733       if (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_UGT)
1734         return getFalse(ITy);
1735   }
1736 
1737   return nullptr;
1738 }
1739 
1740 /// Try to eliminate compares with signed or unsigned min/max constants.
1741 static Value *simplifyAndOrOfICmpsWithLimitConst(ICmpInst *Cmp0, ICmpInst *Cmp1,
1742                                                  bool IsAnd) {
1743   // Canonicalize an equality compare as Cmp0.
1744   if (Cmp1->isEquality())
1745     std::swap(Cmp0, Cmp1);
1746   if (!Cmp0->isEquality())
1747     return nullptr;
1748 
1749   // The non-equality compare must include a common operand (X). Canonicalize
1750   // the common operand as operand 0 (the predicate is swapped if the common
1751   // operand was operand 1).
1752   ICmpInst::Predicate Pred0 = Cmp0->getPredicate();
1753   Value *X = Cmp0->getOperand(0);
1754   ICmpInst::Predicate Pred1;
1755   bool HasNotOp = match(Cmp1, m_c_ICmp(Pred1, m_Not(m_Specific(X)), m_Value()));
1756   if (!HasNotOp && !match(Cmp1, m_c_ICmp(Pred1, m_Specific(X), m_Value())))
1757     return nullptr;
1758   if (ICmpInst::isEquality(Pred1))
1759     return nullptr;
1760 
1761   // The equality compare must be against a constant. Flip bits if we matched
1762   // a bitwise not. Convert a null pointer constant to an integer zero value.
1763   APInt MinMaxC;
1764   const APInt *C;
1765   if (match(Cmp0->getOperand(1), m_APInt(C)))
1766     MinMaxC = HasNotOp ? ~*C : *C;
1767   else if (isa<ConstantPointerNull>(Cmp0->getOperand(1)))
1768     MinMaxC = APInt::getZero(8);
1769   else
1770     return nullptr;
1771 
1772   // DeMorganize if this is 'or': P0 || P1 --> !P0 && !P1.
1773   if (!IsAnd) {
1774     Pred0 = ICmpInst::getInversePredicate(Pred0);
1775     Pred1 = ICmpInst::getInversePredicate(Pred1);
1776   }
1777 
1778   // Normalize to unsigned compare and unsigned min/max value.
1779   // Example for 8-bit: -128 + 128 -> 0; 127 + 128 -> 255
1780   if (ICmpInst::isSigned(Pred1)) {
1781     Pred1 = ICmpInst::getUnsignedPredicate(Pred1);
1782     MinMaxC += APInt::getSignedMinValue(MinMaxC.getBitWidth());
1783   }
1784 
1785   // (X != MAX) && (X < Y) --> X < Y
1786   // (X == MAX) || (X >= Y) --> X >= Y
1787   if (MinMaxC.isMaxValue())
1788     if (Pred0 == ICmpInst::ICMP_NE && Pred1 == ICmpInst::ICMP_ULT)
1789       return Cmp1;
1790 
1791   // (X != MIN) && (X > Y) -->  X > Y
1792   // (X == MIN) || (X <= Y) --> X <= Y
1793   if (MinMaxC.isMinValue())
1794     if (Pred0 == ICmpInst::ICMP_NE && Pred1 == ICmpInst::ICMP_UGT)
1795       return Cmp1;
1796 
1797   return nullptr;
1798 }
1799 
1800 static Value *simplifyAndOfICmps(ICmpInst *Op0, ICmpInst *Op1,
1801                                  const SimplifyQuery &Q) {
1802   if (Value *X = simplifyUnsignedRangeCheck(Op0, Op1, /*IsAnd=*/true, Q))
1803     return X;
1804   if (Value *X = simplifyUnsignedRangeCheck(Op1, Op0, /*IsAnd=*/true, Q))
1805     return X;
1806 
1807   if (Value *X = simplifyAndOfICmpsWithSameOperands(Op0, Op1))
1808     return X;
1809   if (Value *X = simplifyAndOfICmpsWithSameOperands(Op1, Op0))
1810     return X;
1811 
1812   if (Value *X = simplifyAndOrOfICmpsWithConstants(Op0, Op1, true))
1813     return X;
1814 
1815   if (Value *X = simplifyAndOrOfICmpsWithLimitConst(Op0, Op1, true))
1816     return X;
1817 
1818   if (Value *X = simplifyAndOrOfICmpsWithZero(Op0, Op1, true))
1819     return X;
1820 
1821   if (Value *X = simplifyAndOfICmpsWithAdd(Op0, Op1, Q.IIQ))
1822     return X;
1823   if (Value *X = simplifyAndOfICmpsWithAdd(Op1, Op0, Q.IIQ))
1824     return X;
1825 
1826   return nullptr;
1827 }
1828 
1829 static Value *simplifyOrOfICmpsWithAdd(ICmpInst *Op0, ICmpInst *Op1,
1830                                        const InstrInfoQuery &IIQ) {
1831   // (icmp (add V, C0), C1) | (icmp V, C0)
1832   ICmpInst::Predicate Pred0, Pred1;
1833   const APInt *C0, *C1;
1834   Value *V;
1835   if (!match(Op0, m_ICmp(Pred0, m_Add(m_Value(V), m_APInt(C0)), m_APInt(C1))))
1836     return nullptr;
1837 
1838   if (!match(Op1, m_ICmp(Pred1, m_Specific(V), m_Value())))
1839     return nullptr;
1840 
1841   auto *AddInst = cast<BinaryOperator>(Op0->getOperand(0));
1842   if (AddInst->getOperand(1) != Op1->getOperand(1))
1843     return nullptr;
1844 
1845   Type *ITy = Op0->getType();
1846   bool isNSW = IIQ.hasNoSignedWrap(AddInst);
1847   bool isNUW = IIQ.hasNoUnsignedWrap(AddInst);
1848 
1849   const APInt Delta = *C1 - *C0;
1850   if (C0->isStrictlyPositive()) {
1851     if (Delta == 2) {
1852       if (Pred0 == ICmpInst::ICMP_UGE && Pred1 == ICmpInst::ICMP_SLE)
1853         return getTrue(ITy);
1854       if (Pred0 == ICmpInst::ICMP_SGE && Pred1 == ICmpInst::ICMP_SLE && isNSW)
1855         return getTrue(ITy);
1856     }
1857     if (Delta == 1) {
1858       if (Pred0 == ICmpInst::ICMP_UGT && Pred1 == ICmpInst::ICMP_SLE)
1859         return getTrue(ITy);
1860       if (Pred0 == ICmpInst::ICMP_SGT && Pred1 == ICmpInst::ICMP_SLE && isNSW)
1861         return getTrue(ITy);
1862     }
1863   }
1864   if (C0->getBoolValue() && isNUW) {
1865     if (Delta == 2)
1866       if (Pred0 == ICmpInst::ICMP_UGE && Pred1 == ICmpInst::ICMP_ULE)
1867         return getTrue(ITy);
1868     if (Delta == 1)
1869       if (Pred0 == ICmpInst::ICMP_UGT && Pred1 == ICmpInst::ICMP_ULE)
1870         return getTrue(ITy);
1871   }
1872 
1873   return nullptr;
1874 }
1875 
1876 static Value *simplifyOrOfICmps(ICmpInst *Op0, ICmpInst *Op1,
1877                                 const SimplifyQuery &Q) {
1878   if (Value *X = simplifyUnsignedRangeCheck(Op0, Op1, /*IsAnd=*/false, Q))
1879     return X;
1880   if (Value *X = simplifyUnsignedRangeCheck(Op1, Op0, /*IsAnd=*/false, Q))
1881     return X;
1882 
1883   if (Value *X = simplifyOrOfICmpsWithSameOperands(Op0, Op1))
1884     return X;
1885   if (Value *X = simplifyOrOfICmpsWithSameOperands(Op1, Op0))
1886     return X;
1887 
1888   if (Value *X = simplifyAndOrOfICmpsWithConstants(Op0, Op1, false))
1889     return X;
1890 
1891   if (Value *X = simplifyAndOrOfICmpsWithLimitConst(Op0, Op1, false))
1892     return X;
1893 
1894   if (Value *X = simplifyAndOrOfICmpsWithZero(Op0, Op1, false))
1895     return X;
1896 
1897   if (Value *X = simplifyOrOfICmpsWithAdd(Op0, Op1, Q.IIQ))
1898     return X;
1899   if (Value *X = simplifyOrOfICmpsWithAdd(Op1, Op0, Q.IIQ))
1900     return X;
1901 
1902   return nullptr;
1903 }
1904 
1905 static Value *simplifyAndOrOfFCmps(const TargetLibraryInfo *TLI,
1906                                    FCmpInst *LHS, FCmpInst *RHS, bool IsAnd) {
1907   Value *LHS0 = LHS->getOperand(0), *LHS1 = LHS->getOperand(1);
1908   Value *RHS0 = RHS->getOperand(0), *RHS1 = RHS->getOperand(1);
1909   if (LHS0->getType() != RHS0->getType())
1910     return nullptr;
1911 
1912   FCmpInst::Predicate PredL = LHS->getPredicate(), PredR = RHS->getPredicate();
1913   if ((PredL == FCmpInst::FCMP_ORD && PredR == FCmpInst::FCMP_ORD && IsAnd) ||
1914       (PredL == FCmpInst::FCMP_UNO && PredR == FCmpInst::FCMP_UNO && !IsAnd)) {
1915     // (fcmp ord NNAN, X) & (fcmp ord X, Y) --> fcmp ord X, Y
1916     // (fcmp ord NNAN, X) & (fcmp ord Y, X) --> fcmp ord Y, X
1917     // (fcmp ord X, NNAN) & (fcmp ord X, Y) --> fcmp ord X, Y
1918     // (fcmp ord X, NNAN) & (fcmp ord Y, X) --> fcmp ord Y, X
1919     // (fcmp uno NNAN, X) | (fcmp uno X, Y) --> fcmp uno X, Y
1920     // (fcmp uno NNAN, X) | (fcmp uno Y, X) --> fcmp uno Y, X
1921     // (fcmp uno X, NNAN) | (fcmp uno X, Y) --> fcmp uno X, Y
1922     // (fcmp uno X, NNAN) | (fcmp uno Y, X) --> fcmp uno Y, X
1923     if ((isKnownNeverNaN(LHS0, TLI) && (LHS1 == RHS0 || LHS1 == RHS1)) ||
1924         (isKnownNeverNaN(LHS1, TLI) && (LHS0 == RHS0 || LHS0 == RHS1)))
1925       return RHS;
1926 
1927     // (fcmp ord X, Y) & (fcmp ord NNAN, X) --> fcmp ord X, Y
1928     // (fcmp ord Y, X) & (fcmp ord NNAN, X) --> fcmp ord Y, X
1929     // (fcmp ord X, Y) & (fcmp ord X, NNAN) --> fcmp ord X, Y
1930     // (fcmp ord Y, X) & (fcmp ord X, NNAN) --> fcmp ord Y, X
1931     // (fcmp uno X, Y) | (fcmp uno NNAN, X) --> fcmp uno X, Y
1932     // (fcmp uno Y, X) | (fcmp uno NNAN, X) --> fcmp uno Y, X
1933     // (fcmp uno X, Y) | (fcmp uno X, NNAN) --> fcmp uno X, Y
1934     // (fcmp uno Y, X) | (fcmp uno X, NNAN) --> fcmp uno Y, X
1935     if ((isKnownNeverNaN(RHS0, TLI) && (RHS1 == LHS0 || RHS1 == LHS1)) ||
1936         (isKnownNeverNaN(RHS1, TLI) && (RHS0 == LHS0 || RHS0 == LHS1)))
1937       return LHS;
1938   }
1939 
1940   return nullptr;
1941 }
1942 
1943 static Value *simplifyAndOrOfCmps(const SimplifyQuery &Q,
1944                                   Value *Op0, Value *Op1, bool IsAnd) {
1945   // Look through casts of the 'and' operands to find compares.
1946   auto *Cast0 = dyn_cast<CastInst>(Op0);
1947   auto *Cast1 = dyn_cast<CastInst>(Op1);
1948   if (Cast0 && Cast1 && Cast0->getOpcode() == Cast1->getOpcode() &&
1949       Cast0->getSrcTy() == Cast1->getSrcTy()) {
1950     Op0 = Cast0->getOperand(0);
1951     Op1 = Cast1->getOperand(0);
1952   }
1953 
1954   Value *V = nullptr;
1955   auto *ICmp0 = dyn_cast<ICmpInst>(Op0);
1956   auto *ICmp1 = dyn_cast<ICmpInst>(Op1);
1957   if (ICmp0 && ICmp1)
1958     V = IsAnd ? simplifyAndOfICmps(ICmp0, ICmp1, Q)
1959               : simplifyOrOfICmps(ICmp0, ICmp1, Q);
1960 
1961   auto *FCmp0 = dyn_cast<FCmpInst>(Op0);
1962   auto *FCmp1 = dyn_cast<FCmpInst>(Op1);
1963   if (FCmp0 && FCmp1)
1964     V = simplifyAndOrOfFCmps(Q.TLI, FCmp0, FCmp1, IsAnd);
1965 
1966   if (!V)
1967     return nullptr;
1968   if (!Cast0)
1969     return V;
1970 
1971   // If we looked through casts, we can only handle a constant simplification
1972   // because we are not allowed to create a cast instruction here.
1973   if (auto *C = dyn_cast<Constant>(V))
1974     return ConstantExpr::getCast(Cast0->getOpcode(), C, Cast0->getType());
1975 
1976   return nullptr;
1977 }
1978 
1979 /// Given a bitwise logic op, check if the operands are add/sub with a common
1980 /// source value and inverted constant (identity: C - X -> ~(X + ~C)).
1981 static Value *simplifyLogicOfAddSub(Value *Op0, Value *Op1,
1982                                     Instruction::BinaryOps Opcode) {
1983   assert(Op0->getType() == Op1->getType() && "Mismatched binop types");
1984   assert(BinaryOperator::isBitwiseLogicOp(Opcode) && "Expected logic op");
1985   Value *X;
1986   Constant *C1, *C2;
1987   if ((match(Op0, m_Add(m_Value(X), m_Constant(C1))) &&
1988        match(Op1, m_Sub(m_Constant(C2), m_Specific(X)))) ||
1989       (match(Op1, m_Add(m_Value(X), m_Constant(C1))) &&
1990        match(Op0, m_Sub(m_Constant(C2), m_Specific(X))))) {
1991     if (ConstantExpr::getNot(C1) == C2) {
1992       // (X + C) & (~C - X) --> (X + C) & ~(X + C) --> 0
1993       // (X + C) | (~C - X) --> (X + C) | ~(X + C) --> -1
1994       // (X + C) ^ (~C - X) --> (X + C) ^ ~(X + C) --> -1
1995       Type *Ty = Op0->getType();
1996       return Opcode == Instruction::And ? ConstantInt::getNullValue(Ty)
1997                                         : ConstantInt::getAllOnesValue(Ty);
1998     }
1999   }
2000   return nullptr;
2001 }
2002 
2003 /// Given operands for an And, see if we can fold the result.
2004 /// If not, this returns null.
2005 static Value *SimplifyAndInst(Value *Op0, Value *Op1, const SimplifyQuery &Q,
2006                               unsigned MaxRecurse) {
2007   if (Constant *C = foldOrCommuteConstant(Instruction::And, Op0, Op1, Q))
2008     return C;
2009 
2010   // X & poison -> poison
2011   if (isa<PoisonValue>(Op1))
2012     return Op1;
2013 
2014   // X & undef -> 0
2015   if (Q.isUndefValue(Op1))
2016     return Constant::getNullValue(Op0->getType());
2017 
2018   // X & X = X
2019   if (Op0 == Op1)
2020     return Op0;
2021 
2022   // X & 0 = 0
2023   if (match(Op1, m_Zero()))
2024     return Constant::getNullValue(Op0->getType());
2025 
2026   // X & -1 = X
2027   if (match(Op1, m_AllOnes()))
2028     return Op0;
2029 
2030   // A & ~A  =  ~A & A  =  0
2031   if (match(Op0, m_Not(m_Specific(Op1))) ||
2032       match(Op1, m_Not(m_Specific(Op0))))
2033     return Constant::getNullValue(Op0->getType());
2034 
2035   // (A | ?) & A = A
2036   if (match(Op0, m_c_Or(m_Specific(Op1), m_Value())))
2037     return Op1;
2038 
2039   // A & (A | ?) = A
2040   if (match(Op1, m_c_Or(m_Specific(Op0), m_Value())))
2041     return Op0;
2042 
2043   // (X | Y) & (X | ~Y) --> X (commuted 8 ways)
2044   Value *X, *Y;
2045   if (match(Op0, m_c_Or(m_Value(X), m_Not(m_Value(Y)))) &&
2046       match(Op1, m_c_Or(m_Deferred(X), m_Deferred(Y))))
2047     return X;
2048   if (match(Op1, m_c_Or(m_Value(X), m_Not(m_Value(Y)))) &&
2049       match(Op0, m_c_Or(m_Deferred(X), m_Deferred(Y))))
2050     return X;
2051 
2052   if (Value *V = simplifyLogicOfAddSub(Op0, Op1, Instruction::And))
2053     return V;
2054 
2055   // A mask that only clears known zeros of a shifted value is a no-op.
2056   const APInt *Mask;
2057   const APInt *ShAmt;
2058   if (match(Op1, m_APInt(Mask))) {
2059     // If all bits in the inverted and shifted mask are clear:
2060     // and (shl X, ShAmt), Mask --> shl X, ShAmt
2061     if (match(Op0, m_Shl(m_Value(X), m_APInt(ShAmt))) &&
2062         (~(*Mask)).lshr(*ShAmt).isZero())
2063       return Op0;
2064 
2065     // If all bits in the inverted and shifted mask are clear:
2066     // and (lshr X, ShAmt), Mask --> lshr X, ShAmt
2067     if (match(Op0, m_LShr(m_Value(X), m_APInt(ShAmt))) &&
2068         (~(*Mask)).shl(*ShAmt).isZero())
2069       return Op0;
2070   }
2071 
2072   // If we have a multiplication overflow check that is being 'and'ed with a
2073   // check that one of the multipliers is not zero, we can omit the 'and', and
2074   // only keep the overflow check.
2075   if (isCheckForZeroAndMulWithOverflow(Op0, Op1, true))
2076     return Op1;
2077   if (isCheckForZeroAndMulWithOverflow(Op1, Op0, true))
2078     return Op0;
2079 
2080   // A & (-A) = A if A is a power of two or zero.
2081   if (match(Op0, m_Neg(m_Specific(Op1))) ||
2082       match(Op1, m_Neg(m_Specific(Op0)))) {
2083     if (isKnownToBeAPowerOfTwo(Op0, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI,
2084                                Q.DT))
2085       return Op0;
2086     if (isKnownToBeAPowerOfTwo(Op1, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI,
2087                                Q.DT))
2088       return Op1;
2089   }
2090 
2091   // This is a similar pattern used for checking if a value is a power-of-2:
2092   // (A - 1) & A --> 0 (if A is a power-of-2 or 0)
2093   // A & (A - 1) --> 0 (if A is a power-of-2 or 0)
2094   if (match(Op0, m_Add(m_Specific(Op1), m_AllOnes())) &&
2095       isKnownToBeAPowerOfTwo(Op1, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI, Q.DT))
2096     return Constant::getNullValue(Op1->getType());
2097   if (match(Op1, m_Add(m_Specific(Op0), m_AllOnes())) &&
2098       isKnownToBeAPowerOfTwo(Op0, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI, Q.DT))
2099     return Constant::getNullValue(Op0->getType());
2100 
2101   if (Value *V = simplifyAndOrOfCmps(Q, Op0, Op1, true))
2102     return V;
2103 
2104   // Try some generic simplifications for associative operations.
2105   if (Value *V = SimplifyAssociativeBinOp(Instruction::And, Op0, Op1, Q,
2106                                           MaxRecurse))
2107     return V;
2108 
2109   // And distributes over Or.  Try some generic simplifications based on this.
2110   if (Value *V = expandCommutativeBinOp(Instruction::And, Op0, Op1,
2111                                         Instruction::Or, Q, MaxRecurse))
2112     return V;
2113 
2114   // And distributes over Xor.  Try some generic simplifications based on this.
2115   if (Value *V = expandCommutativeBinOp(Instruction::And, Op0, Op1,
2116                                         Instruction::Xor, Q, MaxRecurse))
2117     return V;
2118 
2119   if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) {
2120     if (Op0->getType()->isIntOrIntVectorTy(1)) {
2121       // A & (A && B) -> A && B
2122       if (match(Op1, m_Select(m_Specific(Op0), m_Value(), m_Zero())))
2123         return Op1;
2124       else if (match(Op0, m_Select(m_Specific(Op1), m_Value(), m_Zero())))
2125         return Op0;
2126     }
2127     // If the operation is with the result of a select instruction, check
2128     // whether operating on either branch of the select always yields the same
2129     // value.
2130     if (Value *V = ThreadBinOpOverSelect(Instruction::And, Op0, Op1, Q,
2131                                          MaxRecurse))
2132       return V;
2133   }
2134 
2135   // If the operation is with the result of a phi instruction, check whether
2136   // operating on all incoming values of the phi always yields the same value.
2137   if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
2138     if (Value *V = ThreadBinOpOverPHI(Instruction::And, Op0, Op1, Q,
2139                                       MaxRecurse))
2140       return V;
2141 
2142   // Assuming the effective width of Y is not larger than A, i.e. all bits
2143   // from X and Y are disjoint in (X << A) | Y,
2144   // if the mask of this AND op covers all bits of X or Y, while it covers
2145   // no bits from the other, we can bypass this AND op. E.g.,
2146   // ((X << A) | Y) & Mask -> Y,
2147   //     if Mask = ((1 << effective_width_of(Y)) - 1)
2148   // ((X << A) | Y) & Mask -> X << A,
2149   //     if Mask = ((1 << effective_width_of(X)) - 1) << A
2150   // SimplifyDemandedBits in InstCombine can optimize the general case.
2151   // This pattern aims to help other passes for a common case.
2152   Value *XShifted;
2153   if (match(Op1, m_APInt(Mask)) &&
2154       match(Op0, m_c_Or(m_CombineAnd(m_NUWShl(m_Value(X), m_APInt(ShAmt)),
2155                                      m_Value(XShifted)),
2156                         m_Value(Y)))) {
2157     const unsigned Width = Op0->getType()->getScalarSizeInBits();
2158     const unsigned ShftCnt = ShAmt->getLimitedValue(Width);
2159     const KnownBits YKnown = computeKnownBits(Y, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
2160     const unsigned EffWidthY = YKnown.countMaxActiveBits();
2161     if (EffWidthY <= ShftCnt) {
2162       const KnownBits XKnown = computeKnownBits(X, Q.DL, 0, Q.AC, Q.CxtI,
2163                                                 Q.DT);
2164       const unsigned EffWidthX = XKnown.countMaxActiveBits();
2165       const APInt EffBitsY = APInt::getLowBitsSet(Width, EffWidthY);
2166       const APInt EffBitsX = APInt::getLowBitsSet(Width, EffWidthX) << ShftCnt;
2167       // If the mask is extracting all bits from X or Y as is, we can skip
2168       // this AND op.
2169       if (EffBitsY.isSubsetOf(*Mask) && !EffBitsX.intersects(*Mask))
2170         return Y;
2171       if (EffBitsX.isSubsetOf(*Mask) && !EffBitsY.intersects(*Mask))
2172         return XShifted;
2173     }
2174   }
2175 
2176   return nullptr;
2177 }
2178 
2179 Value *llvm::SimplifyAndInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) {
2180   return ::SimplifyAndInst(Op0, Op1, Q, RecursionLimit);
2181 }
2182 
2183 static Value *simplifyOrLogic(Value *X, Value *Y) {
2184   assert(X->getType() == Y->getType() && "Expected same type for 'or' ops");
2185   Type *Ty = X->getType();
2186 
2187   // X | ~X --> -1
2188   if (match(Y, m_Not(m_Specific(X))))
2189     return ConstantInt::getAllOnesValue(Ty);
2190 
2191   // X | ~(X & ?) = -1
2192   if (match(Y, m_Not(m_c_And(m_Specific(X), m_Value()))))
2193     return ConstantInt::getAllOnesValue(Ty);
2194 
2195   // X | (X & ?) --> X
2196   if (match(Y, m_c_And(m_Specific(X), m_Value())))
2197     return X;
2198 
2199   Value *A, *B;
2200 
2201   // (A & ~B) | (A ^ B) --> A ^ B
2202   // (~B & A) | (A ^ B) --> A ^ B
2203   // (A & ~B) | (B ^ A) --> B ^ A
2204   // (~B & A) | (B ^ A) --> B ^ A
2205   if (match(X, m_c_And(m_Value(A), m_Not(m_Value(B)))) &&
2206       match(Y, m_c_Xor(m_Specific(A), m_Specific(B))))
2207     return Y;
2208 
2209   // (~A ^ B) | (A & B) --> ~A ^ B
2210   // (B ^ ~A) | (A & B) --> B ^ ~A
2211   // (~A ^ B) | (B & A) --> ~A ^ B
2212   // (B ^ ~A) | (B & A) --> B ^ ~A
2213   if (match(X, m_c_Xor(m_Not(m_Value(A)), m_Value(B))) &&
2214       match(Y, m_c_And(m_Specific(A), m_Specific(B))))
2215     return X;
2216 
2217   // (A ^ B) | (A | B) --> A | B
2218   // (A ^ B) | (B | A) --> B | A
2219   if (match(X, m_Xor(m_Value(A), m_Value(B))) &&
2220       match(Y, m_c_Or(m_Specific(A), m_Specific(B))))
2221     return Y;
2222 
2223   // ~(A ^ B) | (A | B) --> -1
2224   // ~(A ^ B) | (B | A) --> -1
2225   if (match(X, m_Not(m_Xor(m_Value(A), m_Value(B)))) &&
2226       match(Y, m_c_Or(m_Specific(A), m_Specific(B))))
2227     return ConstantInt::getAllOnesValue(Ty);
2228 
2229   // (~A | B) | (A ^ B) --> -1
2230   // (~A | B) | (B ^ A) --> -1
2231   // (B | ~A) | (A ^ B) --> -1
2232   // (B | ~A) | (B ^ A) --> -1
2233   if (match(X, m_c_Or(m_Not(m_Value(A)), m_Value(B))) &&
2234       match(Y, m_c_Xor(m_Specific(A), m_Specific(B))))
2235     return ConstantInt::getAllOnesValue(Ty);
2236 
2237   return nullptr;
2238 }
2239 
2240 /// Given operands for an Or, see if we can fold the result.
2241 /// If not, this returns null.
2242 static Value *SimplifyOrInst(Value *Op0, Value *Op1, const SimplifyQuery &Q,
2243                              unsigned MaxRecurse) {
2244   if (Constant *C = foldOrCommuteConstant(Instruction::Or, Op0, Op1, Q))
2245     return C;
2246 
2247   // X | poison -> poison
2248   if (isa<PoisonValue>(Op1))
2249     return Op1;
2250 
2251   // X | undef -> -1
2252   // X | -1 = -1
2253   // Do not return Op1 because it may contain undef elements if it's a vector.
2254   if (Q.isUndefValue(Op1) || match(Op1, m_AllOnes()))
2255     return Constant::getAllOnesValue(Op0->getType());
2256 
2257   // X | X = X
2258   // X | 0 = X
2259   if (Op0 == Op1 || match(Op1, m_Zero()))
2260     return Op0;
2261 
2262   if (Value *R = simplifyOrLogic(Op0, Op1))
2263     return R;
2264   if (Value *R = simplifyOrLogic(Op1, Op0))
2265     return R;
2266 
2267   if (Value *V = simplifyLogicOfAddSub(Op0, Op1, Instruction::Or))
2268     return V;
2269 
2270   Value *A, *B, *NotA;
2271 
2272   // (~A & B) | ~(A | B) --> ~A
2273   // (~A & B) | ~(B | A) --> ~A
2274   // (B & ~A) | ~(A | B) --> ~A
2275   // (B & ~A) | ~(B | A) --> ~A
2276   if (match(Op0, m_c_And(m_CombineAnd(m_Value(NotA), m_Not(m_Value(A))),
2277                          m_Value(B))) &&
2278       match(Op1, m_Not(m_c_Or(m_Specific(A), m_Specific(B)))))
2279     return NotA;
2280 
2281   // Commute the 'or' operands.
2282   // ~(A | B) | (~A & B) --> ~A
2283   // ~(B | A) | (~A & B) --> ~A
2284   // ~(A | B) | (B & ~A) --> ~A
2285   // ~(B | A) | (B & ~A) --> ~A
2286   if (match(Op1, m_c_And(m_CombineAnd(m_Value(NotA), m_Not(m_Value(A))),
2287                          m_Value(B))) &&
2288       match(Op0, m_Not(m_c_Or(m_Specific(A), m_Specific(B)))))
2289     return NotA;
2290 
2291   // Rotated -1 is still -1:
2292   // (-1 << X) | (-1 >> (C - X)) --> -1
2293   // (-1 >> X) | (-1 << (C - X)) --> -1
2294   // ...with C <= bitwidth (and commuted variants).
2295   Value *X, *Y;
2296   if ((match(Op0, m_Shl(m_AllOnes(), m_Value(X))) &&
2297        match(Op1, m_LShr(m_AllOnes(), m_Value(Y)))) ||
2298       (match(Op1, m_Shl(m_AllOnes(), m_Value(X))) &&
2299        match(Op0, m_LShr(m_AllOnes(), m_Value(Y))))) {
2300     const APInt *C;
2301     if ((match(X, m_Sub(m_APInt(C), m_Specific(Y))) ||
2302          match(Y, m_Sub(m_APInt(C), m_Specific(X)))) &&
2303         C->ule(X->getType()->getScalarSizeInBits())) {
2304       return ConstantInt::getAllOnesValue(X->getType());
2305     }
2306   }
2307 
2308   if (Value *V = simplifyAndOrOfCmps(Q, Op0, Op1, false))
2309     return V;
2310 
2311   // If we have a multiplication overflow check that is being 'and'ed with a
2312   // check that one of the multipliers is not zero, we can omit the 'and', and
2313   // only keep the overflow check.
2314   if (isCheckForZeroAndMulWithOverflow(Op0, Op1, false))
2315     return Op1;
2316   if (isCheckForZeroAndMulWithOverflow(Op1, Op0, false))
2317     return Op0;
2318 
2319   // Try some generic simplifications for associative operations.
2320   if (Value *V = SimplifyAssociativeBinOp(Instruction::Or, Op0, Op1, Q,
2321                                           MaxRecurse))
2322     return V;
2323 
2324   // Or distributes over And.  Try some generic simplifications based on this.
2325   if (Value *V = expandCommutativeBinOp(Instruction::Or, Op0, Op1,
2326                                         Instruction::And, Q, MaxRecurse))
2327     return V;
2328 
2329   if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) {
2330     if (Op0->getType()->isIntOrIntVectorTy(1)) {
2331       // A | (A || B) -> A || B
2332       if (match(Op1, m_Select(m_Specific(Op0), m_One(), m_Value())))
2333         return Op1;
2334       else if (match(Op0, m_Select(m_Specific(Op1), m_One(), m_Value())))
2335         return Op0;
2336     }
2337     // If the operation is with the result of a select instruction, check
2338     // whether operating on either branch of the select always yields the same
2339     // value.
2340     if (Value *V = ThreadBinOpOverSelect(Instruction::Or, Op0, Op1, Q,
2341                                          MaxRecurse))
2342       return V;
2343   }
2344 
2345   // (A & C1)|(B & C2)
2346   const APInt *C1, *C2;
2347   if (match(Op0, m_And(m_Value(A), m_APInt(C1))) &&
2348       match(Op1, m_And(m_Value(B), m_APInt(C2)))) {
2349     if (*C1 == ~*C2) {
2350       // (A & C1)|(B & C2)
2351       // If we have: ((V + N) & C1) | (V & C2)
2352       // .. and C2 = ~C1 and C2 is 0+1+ and (N & C2) == 0
2353       // replace with V+N.
2354       Value *N;
2355       if (C2->isMask() && // C2 == 0+1+
2356           match(A, m_c_Add(m_Specific(B), m_Value(N)))) {
2357         // Add commutes, try both ways.
2358         if (MaskedValueIsZero(N, *C2, Q.DL, 0, Q.AC, Q.CxtI, Q.DT))
2359           return A;
2360       }
2361       // Or commutes, try both ways.
2362       if (C1->isMask() &&
2363           match(B, m_c_Add(m_Specific(A), m_Value(N)))) {
2364         // Add commutes, try both ways.
2365         if (MaskedValueIsZero(N, *C1, Q.DL, 0, Q.AC, Q.CxtI, Q.DT))
2366           return B;
2367       }
2368     }
2369   }
2370 
2371   // If the operation is with the result of a phi instruction, check whether
2372   // operating on all incoming values of the phi always yields the same value.
2373   if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
2374     if (Value *V = ThreadBinOpOverPHI(Instruction::Or, Op0, Op1, Q, MaxRecurse))
2375       return V;
2376 
2377   return nullptr;
2378 }
2379 
2380 Value *llvm::SimplifyOrInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) {
2381   return ::SimplifyOrInst(Op0, Op1, Q, RecursionLimit);
2382 }
2383 
2384 /// Given operands for a Xor, see if we can fold the result.
2385 /// If not, this returns null.
2386 static Value *SimplifyXorInst(Value *Op0, Value *Op1, const SimplifyQuery &Q,
2387                               unsigned MaxRecurse) {
2388   if (Constant *C = foldOrCommuteConstant(Instruction::Xor, Op0, Op1, Q))
2389     return C;
2390 
2391   // A ^ undef -> undef
2392   if (Q.isUndefValue(Op1))
2393     return Op1;
2394 
2395   // A ^ 0 = A
2396   if (match(Op1, m_Zero()))
2397     return Op0;
2398 
2399   // A ^ A = 0
2400   if (Op0 == Op1)
2401     return Constant::getNullValue(Op0->getType());
2402 
2403   // A ^ ~A  =  ~A ^ A  =  -1
2404   if (match(Op0, m_Not(m_Specific(Op1))) ||
2405       match(Op1, m_Not(m_Specific(Op0))))
2406     return Constant::getAllOnesValue(Op0->getType());
2407 
2408   auto foldAndOrNot = [](Value *X, Value *Y) -> Value * {
2409     Value *A, *B;
2410     // (~A & B) ^ (A | B) --> A -- There are 8 commuted variants.
2411     if (match(X, m_c_And(m_Not(m_Value(A)), m_Value(B))) &&
2412         match(Y, m_c_Or(m_Specific(A), m_Specific(B))))
2413       return A;
2414 
2415     // (~A | B) ^ (A & B) --> ~A -- There are 8 commuted variants.
2416     // The 'not' op must contain a complete -1 operand (no undef elements for
2417     // vector) for the transform to be safe.
2418     Value *NotA;
2419     if (match(X,
2420               m_c_Or(m_CombineAnd(m_NotForbidUndef(m_Value(A)), m_Value(NotA)),
2421                      m_Value(B))) &&
2422         match(Y, m_c_And(m_Specific(A), m_Specific(B))))
2423       return NotA;
2424 
2425     return nullptr;
2426   };
2427   if (Value *R = foldAndOrNot(Op0, Op1))
2428     return R;
2429   if (Value *R = foldAndOrNot(Op1, Op0))
2430     return R;
2431 
2432   if (Value *V = simplifyLogicOfAddSub(Op0, Op1, Instruction::Xor))
2433     return V;
2434 
2435   // Try some generic simplifications for associative operations.
2436   if (Value *V = SimplifyAssociativeBinOp(Instruction::Xor, Op0, Op1, Q,
2437                                           MaxRecurse))
2438     return V;
2439 
2440   // Threading Xor over selects and phi nodes is pointless, so don't bother.
2441   // Threading over the select in "A ^ select(cond, B, C)" means evaluating
2442   // "A^B" and "A^C" and seeing if they are equal; but they are equal if and
2443   // only if B and C are equal.  If B and C are equal then (since we assume
2444   // that operands have already been simplified) "select(cond, B, C)" should
2445   // have been simplified to the common value of B and C already.  Analysing
2446   // "A^B" and "A^C" thus gains nothing, but costs compile time.  Similarly
2447   // for threading over phi nodes.
2448 
2449   return nullptr;
2450 }
2451 
2452 Value *llvm::SimplifyXorInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) {
2453   return ::SimplifyXorInst(Op0, Op1, Q, RecursionLimit);
2454 }
2455 
2456 
2457 static Type *GetCompareTy(Value *Op) {
2458   return CmpInst::makeCmpResultType(Op->getType());
2459 }
2460 
2461 /// Rummage around inside V looking for something equivalent to the comparison
2462 /// "LHS Pred RHS". Return such a value if found, otherwise return null.
2463 /// Helper function for analyzing max/min idioms.
2464 static Value *ExtractEquivalentCondition(Value *V, CmpInst::Predicate Pred,
2465                                          Value *LHS, Value *RHS) {
2466   SelectInst *SI = dyn_cast<SelectInst>(V);
2467   if (!SI)
2468     return nullptr;
2469   CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition());
2470   if (!Cmp)
2471     return nullptr;
2472   Value *CmpLHS = Cmp->getOperand(0), *CmpRHS = Cmp->getOperand(1);
2473   if (Pred == Cmp->getPredicate() && LHS == CmpLHS && RHS == CmpRHS)
2474     return Cmp;
2475   if (Pred == CmpInst::getSwappedPredicate(Cmp->getPredicate()) &&
2476       LHS == CmpRHS && RHS == CmpLHS)
2477     return Cmp;
2478   return nullptr;
2479 }
2480 
2481 // A significant optimization not implemented here is assuming that alloca
2482 // addresses are not equal to incoming argument values. They don't *alias*,
2483 // as we say, but that doesn't mean they aren't equal, so we take a
2484 // conservative approach.
2485 //
2486 // This is inspired in part by C++11 5.10p1:
2487 //   "Two pointers of the same type compare equal if and only if they are both
2488 //    null, both point to the same function, or both represent the same
2489 //    address."
2490 //
2491 // This is pretty permissive.
2492 //
2493 // It's also partly due to C11 6.5.9p6:
2494 //   "Two pointers compare equal if and only if both are null pointers, both are
2495 //    pointers to the same object (including a pointer to an object and a
2496 //    subobject at its beginning) or function, both are pointers to one past the
2497 //    last element of the same array object, or one is a pointer to one past the
2498 //    end of one array object and the other is a pointer to the start of a
2499 //    different array object that happens to immediately follow the first array
2500 //    object in the address space.)
2501 //
2502 // C11's version is more restrictive, however there's no reason why an argument
2503 // couldn't be a one-past-the-end value for a stack object in the caller and be
2504 // equal to the beginning of a stack object in the callee.
2505 //
2506 // If the C and C++ standards are ever made sufficiently restrictive in this
2507 // area, it may be possible to update LLVM's semantics accordingly and reinstate
2508 // this optimization.
2509 static Constant *
2510 computePointerICmp(CmpInst::Predicate Pred, Value *LHS, Value *RHS,
2511                    const SimplifyQuery &Q) {
2512   const DataLayout &DL = Q.DL;
2513   const TargetLibraryInfo *TLI = Q.TLI;
2514   const DominatorTree *DT = Q.DT;
2515   const Instruction *CxtI = Q.CxtI;
2516   const InstrInfoQuery &IIQ = Q.IIQ;
2517 
2518   // First, skip past any trivial no-ops.
2519   LHS = LHS->stripPointerCasts();
2520   RHS = RHS->stripPointerCasts();
2521 
2522   // A non-null pointer is not equal to a null pointer.
2523   if (isa<ConstantPointerNull>(RHS) && ICmpInst::isEquality(Pred) &&
2524       llvm::isKnownNonZero(LHS, DL, 0, nullptr, nullptr, nullptr,
2525                            IIQ.UseInstrInfo))
2526     return ConstantInt::get(GetCompareTy(LHS),
2527                             !CmpInst::isTrueWhenEqual(Pred));
2528 
2529   // We can only fold certain predicates on pointer comparisons.
2530   switch (Pred) {
2531   default:
2532     return nullptr;
2533 
2534     // Equality comaprisons are easy to fold.
2535   case CmpInst::ICMP_EQ:
2536   case CmpInst::ICMP_NE:
2537     break;
2538 
2539     // We can only handle unsigned relational comparisons because 'inbounds' on
2540     // a GEP only protects against unsigned wrapping.
2541   case CmpInst::ICMP_UGT:
2542   case CmpInst::ICMP_UGE:
2543   case CmpInst::ICMP_ULT:
2544   case CmpInst::ICMP_ULE:
2545     // However, we have to switch them to their signed variants to handle
2546     // negative indices from the base pointer.
2547     Pred = ICmpInst::getSignedPredicate(Pred);
2548     break;
2549   }
2550 
2551   // Strip off any constant offsets so that we can reason about them.
2552   // It's tempting to use getUnderlyingObject or even just stripInBoundsOffsets
2553   // here and compare base addresses like AliasAnalysis does, however there are
2554   // numerous hazards. AliasAnalysis and its utilities rely on special rules
2555   // governing loads and stores which don't apply to icmps. Also, AliasAnalysis
2556   // doesn't need to guarantee pointer inequality when it says NoAlias.
2557   Constant *LHSOffset = stripAndComputeConstantOffsets(DL, LHS);
2558   Constant *RHSOffset = stripAndComputeConstantOffsets(DL, RHS);
2559 
2560   // If LHS and RHS are related via constant offsets to the same base
2561   // value, we can replace it with an icmp which just compares the offsets.
2562   if (LHS == RHS)
2563     return ConstantExpr::getICmp(Pred, LHSOffset, RHSOffset);
2564 
2565   // Various optimizations for (in)equality comparisons.
2566   if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE) {
2567     // Different non-empty allocations that exist at the same time have
2568     // different addresses (if the program can tell). Global variables always
2569     // exist, so they always exist during the lifetime of each other and all
2570     // allocas. Two different allocas usually have different addresses...
2571     //
2572     // However, if there's an @llvm.stackrestore dynamically in between two
2573     // allocas, they may have the same address. It's tempting to reduce the
2574     // scope of the problem by only looking at *static* allocas here. That would
2575     // cover the majority of allocas while significantly reducing the likelihood
2576     // of having an @llvm.stackrestore pop up in the middle. However, it's not
2577     // actually impossible for an @llvm.stackrestore to pop up in the middle of
2578     // an entry block. Also, if we have a block that's not attached to a
2579     // function, we can't tell if it's "static" under the current definition.
2580     // Theoretically, this problem could be fixed by creating a new kind of
2581     // instruction kind specifically for static allocas. Such a new instruction
2582     // could be required to be at the top of the entry block, thus preventing it
2583     // from being subject to a @llvm.stackrestore. Instcombine could even
2584     // convert regular allocas into these special allocas. It'd be nifty.
2585     // However, until then, this problem remains open.
2586     //
2587     // So, we'll assume that two non-empty allocas have different addresses
2588     // for now.
2589     //
2590     // With all that, if the offsets are within the bounds of their allocations
2591     // (and not one-past-the-end! so we can't use inbounds!), and their
2592     // allocations aren't the same, the pointers are not equal.
2593     //
2594     // Note that it's not necessary to check for LHS being a global variable
2595     // address, due to canonicalization and constant folding.
2596     if (isa<AllocaInst>(LHS) &&
2597         (isa<AllocaInst>(RHS) || isa<GlobalVariable>(RHS))) {
2598       ConstantInt *LHSOffsetCI = dyn_cast<ConstantInt>(LHSOffset);
2599       ConstantInt *RHSOffsetCI = dyn_cast<ConstantInt>(RHSOffset);
2600       uint64_t LHSSize, RHSSize;
2601       ObjectSizeOpts Opts;
2602       Opts.NullIsUnknownSize =
2603           NullPointerIsDefined(cast<AllocaInst>(LHS)->getFunction());
2604       if (LHSOffsetCI && RHSOffsetCI &&
2605           getObjectSize(LHS, LHSSize, DL, TLI, Opts) &&
2606           getObjectSize(RHS, RHSSize, DL, TLI, Opts)) {
2607         const APInt &LHSOffsetValue = LHSOffsetCI->getValue();
2608         const APInt &RHSOffsetValue = RHSOffsetCI->getValue();
2609         if (!LHSOffsetValue.isNegative() &&
2610             !RHSOffsetValue.isNegative() &&
2611             LHSOffsetValue.ult(LHSSize) &&
2612             RHSOffsetValue.ult(RHSSize)) {
2613           return ConstantInt::get(GetCompareTy(LHS),
2614                                   !CmpInst::isTrueWhenEqual(Pred));
2615         }
2616       }
2617 
2618       // Repeat the above check but this time without depending on DataLayout
2619       // or being able to compute a precise size.
2620       if (!cast<PointerType>(LHS->getType())->isEmptyTy() &&
2621           !cast<PointerType>(RHS->getType())->isEmptyTy() &&
2622           LHSOffset->isNullValue() &&
2623           RHSOffset->isNullValue())
2624         return ConstantInt::get(GetCompareTy(LHS),
2625                                 !CmpInst::isTrueWhenEqual(Pred));
2626     }
2627 
2628     // Even if an non-inbounds GEP occurs along the path we can still optimize
2629     // equality comparisons concerning the result. We avoid walking the whole
2630     // chain again by starting where the last calls to
2631     // stripAndComputeConstantOffsets left off and accumulate the offsets.
2632     Constant *LHSNoBound = stripAndComputeConstantOffsets(DL, LHS, true);
2633     Constant *RHSNoBound = stripAndComputeConstantOffsets(DL, RHS, true);
2634     if (LHS == RHS)
2635       return ConstantExpr::getICmp(Pred,
2636                                    ConstantExpr::getAdd(LHSOffset, LHSNoBound),
2637                                    ConstantExpr::getAdd(RHSOffset, RHSNoBound));
2638 
2639     // If one side of the equality comparison must come from a noalias call
2640     // (meaning a system memory allocation function), and the other side must
2641     // come from a pointer that cannot overlap with dynamically-allocated
2642     // memory within the lifetime of the current function (allocas, byval
2643     // arguments, globals), then determine the comparison result here.
2644     SmallVector<const Value *, 8> LHSUObjs, RHSUObjs;
2645     getUnderlyingObjects(LHS, LHSUObjs);
2646     getUnderlyingObjects(RHS, RHSUObjs);
2647 
2648     // Is the set of underlying objects all noalias calls?
2649     auto IsNAC = [](ArrayRef<const Value *> Objects) {
2650       return all_of(Objects, isNoAliasCall);
2651     };
2652 
2653     // Is the set of underlying objects all things which must be disjoint from
2654     // noalias calls. For allocas, we consider only static ones (dynamic
2655     // allocas might be transformed into calls to malloc not simultaneously
2656     // live with the compared-to allocation). For globals, we exclude symbols
2657     // that might be resolve lazily to symbols in another dynamically-loaded
2658     // library (and, thus, could be malloc'ed by the implementation).
2659     auto IsAllocDisjoint = [](ArrayRef<const Value *> Objects) {
2660       return all_of(Objects, [](const Value *V) {
2661         if (const AllocaInst *AI = dyn_cast<AllocaInst>(V))
2662           return AI->getParent() && AI->getFunction() && AI->isStaticAlloca();
2663         if (const GlobalValue *GV = dyn_cast<GlobalValue>(V))
2664           return (GV->hasLocalLinkage() || GV->hasHiddenVisibility() ||
2665                   GV->hasProtectedVisibility() || GV->hasGlobalUnnamedAddr()) &&
2666                  !GV->isThreadLocal();
2667         if (const Argument *A = dyn_cast<Argument>(V))
2668           return A->hasByValAttr();
2669         return false;
2670       });
2671     };
2672 
2673     if ((IsNAC(LHSUObjs) && IsAllocDisjoint(RHSUObjs)) ||
2674         (IsNAC(RHSUObjs) && IsAllocDisjoint(LHSUObjs)))
2675         return ConstantInt::get(GetCompareTy(LHS),
2676                                 !CmpInst::isTrueWhenEqual(Pred));
2677 
2678     // Fold comparisons for non-escaping pointer even if the allocation call
2679     // cannot be elided. We cannot fold malloc comparison to null. Also, the
2680     // dynamic allocation call could be either of the operands.
2681     Value *MI = nullptr;
2682     if (isAllocLikeFn(LHS, TLI) &&
2683         llvm::isKnownNonZero(RHS, DL, 0, nullptr, CxtI, DT))
2684       MI = LHS;
2685     else if (isAllocLikeFn(RHS, TLI) &&
2686              llvm::isKnownNonZero(LHS, DL, 0, nullptr, CxtI, DT))
2687       MI = RHS;
2688     // FIXME: We should also fold the compare when the pointer escapes, but the
2689     // compare dominates the pointer escape
2690     if (MI && !PointerMayBeCaptured(MI, true, true))
2691       return ConstantInt::get(GetCompareTy(LHS),
2692                               CmpInst::isFalseWhenEqual(Pred));
2693   }
2694 
2695   // Otherwise, fail.
2696   return nullptr;
2697 }
2698 
2699 /// Fold an icmp when its operands have i1 scalar type.
2700 static Value *simplifyICmpOfBools(CmpInst::Predicate Pred, Value *LHS,
2701                                   Value *RHS, const SimplifyQuery &Q) {
2702   Type *ITy = GetCompareTy(LHS); // The return type.
2703   Type *OpTy = LHS->getType();   // The operand type.
2704   if (!OpTy->isIntOrIntVectorTy(1))
2705     return nullptr;
2706 
2707   // A boolean compared to true/false can be simplified in 14 out of the 20
2708   // (10 predicates * 2 constants) possible combinations. Cases not handled here
2709   // require a 'not' of the LHS, so those must be transformed in InstCombine.
2710   if (match(RHS, m_Zero())) {
2711     switch (Pred) {
2712     case CmpInst::ICMP_NE:  // X !=  0 -> X
2713     case CmpInst::ICMP_UGT: // X >u  0 -> X
2714     case CmpInst::ICMP_SLT: // X <s  0 -> X
2715       return LHS;
2716 
2717     case CmpInst::ICMP_ULT: // X <u  0 -> false
2718     case CmpInst::ICMP_SGT: // X >s  0 -> false
2719       return getFalse(ITy);
2720 
2721     case CmpInst::ICMP_UGE: // X >=u 0 -> true
2722     case CmpInst::ICMP_SLE: // X <=s 0 -> true
2723       return getTrue(ITy);
2724 
2725     default: break;
2726     }
2727   } else if (match(RHS, m_One())) {
2728     switch (Pred) {
2729     case CmpInst::ICMP_EQ:  // X ==   1 -> X
2730     case CmpInst::ICMP_UGE: // X >=u  1 -> X
2731     case CmpInst::ICMP_SLE: // X <=s -1 -> X
2732       return LHS;
2733 
2734     case CmpInst::ICMP_UGT: // X >u   1 -> false
2735     case CmpInst::ICMP_SLT: // X <s  -1 -> false
2736       return getFalse(ITy);
2737 
2738     case CmpInst::ICMP_ULE: // X <=u  1 -> true
2739     case CmpInst::ICMP_SGE: // X >=s -1 -> true
2740       return getTrue(ITy);
2741 
2742     default: break;
2743     }
2744   }
2745 
2746   switch (Pred) {
2747   default:
2748     break;
2749   case ICmpInst::ICMP_UGE:
2750     if (isImpliedCondition(RHS, LHS, Q.DL).getValueOr(false))
2751       return getTrue(ITy);
2752     break;
2753   case ICmpInst::ICMP_SGE:
2754     /// For signed comparison, the values for an i1 are 0 and -1
2755     /// respectively. This maps into a truth table of:
2756     /// LHS | RHS | LHS >=s RHS   | LHS implies RHS
2757     ///  0  |  0  |  1 (0 >= 0)   |  1
2758     ///  0  |  1  |  1 (0 >= -1)  |  1
2759     ///  1  |  0  |  0 (-1 >= 0)  |  0
2760     ///  1  |  1  |  1 (-1 >= -1) |  1
2761     if (isImpliedCondition(LHS, RHS, Q.DL).getValueOr(false))
2762       return getTrue(ITy);
2763     break;
2764   case ICmpInst::ICMP_ULE:
2765     if (isImpliedCondition(LHS, RHS, Q.DL).getValueOr(false))
2766       return getTrue(ITy);
2767     break;
2768   }
2769 
2770   return nullptr;
2771 }
2772 
2773 /// Try hard to fold icmp with zero RHS because this is a common case.
2774 static Value *simplifyICmpWithZero(CmpInst::Predicate Pred, Value *LHS,
2775                                    Value *RHS, const SimplifyQuery &Q) {
2776   if (!match(RHS, m_Zero()))
2777     return nullptr;
2778 
2779   Type *ITy = GetCompareTy(LHS); // The return type.
2780   switch (Pred) {
2781   default:
2782     llvm_unreachable("Unknown ICmp predicate!");
2783   case ICmpInst::ICMP_ULT:
2784     return getFalse(ITy);
2785   case ICmpInst::ICMP_UGE:
2786     return getTrue(ITy);
2787   case ICmpInst::ICMP_EQ:
2788   case ICmpInst::ICMP_ULE:
2789     if (isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT, Q.IIQ.UseInstrInfo))
2790       return getFalse(ITy);
2791     break;
2792   case ICmpInst::ICMP_NE:
2793   case ICmpInst::ICMP_UGT:
2794     if (isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT, Q.IIQ.UseInstrInfo))
2795       return getTrue(ITy);
2796     break;
2797   case ICmpInst::ICMP_SLT: {
2798     KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
2799     if (LHSKnown.isNegative())
2800       return getTrue(ITy);
2801     if (LHSKnown.isNonNegative())
2802       return getFalse(ITy);
2803     break;
2804   }
2805   case ICmpInst::ICMP_SLE: {
2806     KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
2807     if (LHSKnown.isNegative())
2808       return getTrue(ITy);
2809     if (LHSKnown.isNonNegative() &&
2810         isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT))
2811       return getFalse(ITy);
2812     break;
2813   }
2814   case ICmpInst::ICMP_SGE: {
2815     KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
2816     if (LHSKnown.isNegative())
2817       return getFalse(ITy);
2818     if (LHSKnown.isNonNegative())
2819       return getTrue(ITy);
2820     break;
2821   }
2822   case ICmpInst::ICMP_SGT: {
2823     KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
2824     if (LHSKnown.isNegative())
2825       return getFalse(ITy);
2826     if (LHSKnown.isNonNegative() &&
2827         isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT))
2828       return getTrue(ITy);
2829     break;
2830   }
2831   }
2832 
2833   return nullptr;
2834 }
2835 
2836 static Value *simplifyICmpWithConstant(CmpInst::Predicate Pred, Value *LHS,
2837                                        Value *RHS, const InstrInfoQuery &IIQ) {
2838   Type *ITy = GetCompareTy(RHS); // The return type.
2839 
2840   Value *X;
2841   // Sign-bit checks can be optimized to true/false after unsigned
2842   // floating-point casts:
2843   // icmp slt (bitcast (uitofp X)),  0 --> false
2844   // icmp sgt (bitcast (uitofp X)), -1 --> true
2845   if (match(LHS, m_BitCast(m_UIToFP(m_Value(X))))) {
2846     if (Pred == ICmpInst::ICMP_SLT && match(RHS, m_Zero()))
2847       return ConstantInt::getFalse(ITy);
2848     if (Pred == ICmpInst::ICMP_SGT && match(RHS, m_AllOnes()))
2849       return ConstantInt::getTrue(ITy);
2850   }
2851 
2852   const APInt *C;
2853   if (!match(RHS, m_APIntAllowUndef(C)))
2854     return nullptr;
2855 
2856   // Rule out tautological comparisons (eg., ult 0 or uge 0).
2857   ConstantRange RHS_CR = ConstantRange::makeExactICmpRegion(Pred, *C);
2858   if (RHS_CR.isEmptySet())
2859     return ConstantInt::getFalse(ITy);
2860   if (RHS_CR.isFullSet())
2861     return ConstantInt::getTrue(ITy);
2862 
2863   ConstantRange LHS_CR = computeConstantRange(LHS, IIQ.UseInstrInfo);
2864   if (!LHS_CR.isFullSet()) {
2865     if (RHS_CR.contains(LHS_CR))
2866       return ConstantInt::getTrue(ITy);
2867     if (RHS_CR.inverse().contains(LHS_CR))
2868       return ConstantInt::getFalse(ITy);
2869   }
2870 
2871   // (mul nuw/nsw X, MulC) != C --> true  (if C is not a multiple of MulC)
2872   // (mul nuw/nsw X, MulC) == C --> false (if C is not a multiple of MulC)
2873   const APInt *MulC;
2874   if (ICmpInst::isEquality(Pred) &&
2875       ((match(LHS, m_NUWMul(m_Value(), m_APIntAllowUndef(MulC))) &&
2876         *MulC != 0 && C->urem(*MulC) != 0) ||
2877        (match(LHS, m_NSWMul(m_Value(), m_APIntAllowUndef(MulC))) &&
2878         *MulC != 0 && C->srem(*MulC) != 0)))
2879     return ConstantInt::get(ITy, Pred == ICmpInst::ICMP_NE);
2880 
2881   return nullptr;
2882 }
2883 
2884 static Value *simplifyICmpWithBinOpOnLHS(
2885     CmpInst::Predicate Pred, BinaryOperator *LBO, Value *RHS,
2886     const SimplifyQuery &Q, unsigned MaxRecurse) {
2887   Type *ITy = GetCompareTy(RHS); // The return type.
2888 
2889   Value *Y = nullptr;
2890   // icmp pred (or X, Y), X
2891   if (match(LBO, m_c_Or(m_Value(Y), m_Specific(RHS)))) {
2892     if (Pred == ICmpInst::ICMP_ULT)
2893       return getFalse(ITy);
2894     if (Pred == ICmpInst::ICMP_UGE)
2895       return getTrue(ITy);
2896 
2897     if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SGE) {
2898       KnownBits RHSKnown = computeKnownBits(RHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
2899       KnownBits YKnown = computeKnownBits(Y, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
2900       if (RHSKnown.isNonNegative() && YKnown.isNegative())
2901         return Pred == ICmpInst::ICMP_SLT ? getTrue(ITy) : getFalse(ITy);
2902       if (RHSKnown.isNegative() || YKnown.isNonNegative())
2903         return Pred == ICmpInst::ICMP_SLT ? getFalse(ITy) : getTrue(ITy);
2904     }
2905   }
2906 
2907   // icmp pred (and X, Y), X
2908   if (match(LBO, m_c_And(m_Value(), m_Specific(RHS)))) {
2909     if (Pred == ICmpInst::ICMP_UGT)
2910       return getFalse(ITy);
2911     if (Pred == ICmpInst::ICMP_ULE)
2912       return getTrue(ITy);
2913   }
2914 
2915   // icmp pred (urem X, Y), Y
2916   if (match(LBO, m_URem(m_Value(), m_Specific(RHS)))) {
2917     switch (Pred) {
2918     default:
2919       break;
2920     case ICmpInst::ICMP_SGT:
2921     case ICmpInst::ICMP_SGE: {
2922       KnownBits Known = computeKnownBits(RHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
2923       if (!Known.isNonNegative())
2924         break;
2925       LLVM_FALLTHROUGH;
2926     }
2927     case ICmpInst::ICMP_EQ:
2928     case ICmpInst::ICMP_UGT:
2929     case ICmpInst::ICMP_UGE:
2930       return getFalse(ITy);
2931     case ICmpInst::ICMP_SLT:
2932     case ICmpInst::ICMP_SLE: {
2933       KnownBits Known = computeKnownBits(RHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
2934       if (!Known.isNonNegative())
2935         break;
2936       LLVM_FALLTHROUGH;
2937     }
2938     case ICmpInst::ICMP_NE:
2939     case ICmpInst::ICMP_ULT:
2940     case ICmpInst::ICMP_ULE:
2941       return getTrue(ITy);
2942     }
2943   }
2944 
2945   // icmp pred (urem X, Y), X
2946   if (match(LBO, m_URem(m_Specific(RHS), m_Value()))) {
2947     if (Pred == ICmpInst::ICMP_ULE)
2948       return getTrue(ITy);
2949     if (Pred == ICmpInst::ICMP_UGT)
2950       return getFalse(ITy);
2951   }
2952 
2953   // x >>u y <=u x --> true.
2954   // x >>u y >u  x --> false.
2955   // x udiv y <=u x --> true.
2956   // x udiv y >u  x --> false.
2957   if (match(LBO, m_LShr(m_Specific(RHS), m_Value())) ||
2958       match(LBO, m_UDiv(m_Specific(RHS), m_Value()))) {
2959     // icmp pred (X op Y), X
2960     if (Pred == ICmpInst::ICMP_UGT)
2961       return getFalse(ITy);
2962     if (Pred == ICmpInst::ICMP_ULE)
2963       return getTrue(ITy);
2964   }
2965 
2966   // If x is nonzero:
2967   // x >>u C <u  x --> true  for C != 0.
2968   // x >>u C !=  x --> true  for C != 0.
2969   // x >>u C >=u x --> false for C != 0.
2970   // x >>u C ==  x --> false for C != 0.
2971   // x udiv C <u  x --> true  for C != 1.
2972   // x udiv C !=  x --> true  for C != 1.
2973   // x udiv C >=u x --> false for C != 1.
2974   // x udiv C ==  x --> false for C != 1.
2975   // TODO: allow non-constant shift amount/divisor
2976   const APInt *C;
2977   if ((match(LBO, m_LShr(m_Specific(RHS), m_APInt(C))) && *C != 0) ||
2978       (match(LBO, m_UDiv(m_Specific(RHS), m_APInt(C))) && *C != 1)) {
2979     if (isKnownNonZero(RHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) {
2980       switch (Pred) {
2981       default:
2982         break;
2983       case ICmpInst::ICMP_EQ:
2984       case ICmpInst::ICMP_UGE:
2985         return getFalse(ITy);
2986       case ICmpInst::ICMP_NE:
2987       case ICmpInst::ICMP_ULT:
2988         return getTrue(ITy);
2989       case ICmpInst::ICMP_UGT:
2990       case ICmpInst::ICMP_ULE:
2991         // UGT/ULE are handled by the more general case just above
2992         llvm_unreachable("Unexpected UGT/ULE, should have been handled");
2993       }
2994     }
2995   }
2996 
2997   // (x*C1)/C2 <= x for C1 <= C2.
2998   // This holds even if the multiplication overflows: Assume that x != 0 and
2999   // arithmetic is modulo M. For overflow to occur we must have C1 >= M/x and
3000   // thus C2 >= M/x. It follows that (x*C1)/C2 <= (M-1)/C2 <= ((M-1)*x)/M < x.
3001   //
3002   // Additionally, either the multiplication and division might be represented
3003   // as shifts:
3004   // (x*C1)>>C2 <= x for C1 < 2**C2.
3005   // (x<<C1)/C2 <= x for 2**C1 < C2.
3006   const APInt *C1, *C2;
3007   if ((match(LBO, m_UDiv(m_Mul(m_Specific(RHS), m_APInt(C1)), m_APInt(C2))) &&
3008        C1->ule(*C2)) ||
3009       (match(LBO, m_LShr(m_Mul(m_Specific(RHS), m_APInt(C1)), m_APInt(C2))) &&
3010        C1->ule(APInt(C2->getBitWidth(), 1) << *C2)) ||
3011       (match(LBO, m_UDiv(m_Shl(m_Specific(RHS), m_APInt(C1)), m_APInt(C2))) &&
3012        (APInt(C1->getBitWidth(), 1) << *C1).ule(*C2))) {
3013     if (Pred == ICmpInst::ICMP_UGT)
3014       return getFalse(ITy);
3015     if (Pred == ICmpInst::ICMP_ULE)
3016       return getTrue(ITy);
3017   }
3018 
3019   return nullptr;
3020 }
3021 
3022 
3023 // If only one of the icmp's operands has NSW flags, try to prove that:
3024 //
3025 //   icmp slt (x + C1), (x +nsw C2)
3026 //
3027 // is equivalent to:
3028 //
3029 //   icmp slt C1, C2
3030 //
3031 // which is true if x + C2 has the NSW flags set and:
3032 // *) C1 < C2 && C1 >= 0, or
3033 // *) C2 < C1 && C1 <= 0.
3034 //
3035 static bool trySimplifyICmpWithAdds(CmpInst::Predicate Pred, Value *LHS,
3036                                     Value *RHS) {
3037   // TODO: only support icmp slt for now.
3038   if (Pred != CmpInst::ICMP_SLT)
3039     return false;
3040 
3041   // Canonicalize nsw add as RHS.
3042   if (!match(RHS, m_NSWAdd(m_Value(), m_Value())))
3043     std::swap(LHS, RHS);
3044   if (!match(RHS, m_NSWAdd(m_Value(), m_Value())))
3045     return false;
3046 
3047   Value *X;
3048   const APInt *C1, *C2;
3049   if (!match(LHS, m_c_Add(m_Value(X), m_APInt(C1))) ||
3050       !match(RHS, m_c_Add(m_Specific(X), m_APInt(C2))))
3051     return false;
3052 
3053   return (C1->slt(*C2) && C1->isNonNegative()) ||
3054          (C2->slt(*C1) && C1->isNonPositive());
3055 }
3056 
3057 
3058 /// TODO: A large part of this logic is duplicated in InstCombine's
3059 /// foldICmpBinOp(). We should be able to share that and avoid the code
3060 /// duplication.
3061 static Value *simplifyICmpWithBinOp(CmpInst::Predicate Pred, Value *LHS,
3062                                     Value *RHS, const SimplifyQuery &Q,
3063                                     unsigned MaxRecurse) {
3064   BinaryOperator *LBO = dyn_cast<BinaryOperator>(LHS);
3065   BinaryOperator *RBO = dyn_cast<BinaryOperator>(RHS);
3066   if (MaxRecurse && (LBO || RBO)) {
3067     // Analyze the case when either LHS or RHS is an add instruction.
3068     Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr;
3069     // LHS = A + B (or A and B are null); RHS = C + D (or C and D are null).
3070     bool NoLHSWrapProblem = false, NoRHSWrapProblem = false;
3071     if (LBO && LBO->getOpcode() == Instruction::Add) {
3072       A = LBO->getOperand(0);
3073       B = LBO->getOperand(1);
3074       NoLHSWrapProblem =
3075           ICmpInst::isEquality(Pred) ||
3076           (CmpInst::isUnsigned(Pred) &&
3077            Q.IIQ.hasNoUnsignedWrap(cast<OverflowingBinaryOperator>(LBO))) ||
3078           (CmpInst::isSigned(Pred) &&
3079            Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(LBO)));
3080     }
3081     if (RBO && RBO->getOpcode() == Instruction::Add) {
3082       C = RBO->getOperand(0);
3083       D = RBO->getOperand(1);
3084       NoRHSWrapProblem =
3085           ICmpInst::isEquality(Pred) ||
3086           (CmpInst::isUnsigned(Pred) &&
3087            Q.IIQ.hasNoUnsignedWrap(cast<OverflowingBinaryOperator>(RBO))) ||
3088           (CmpInst::isSigned(Pred) &&
3089            Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(RBO)));
3090     }
3091 
3092     // icmp (X+Y), X -> icmp Y, 0 for equalities or if there is no overflow.
3093     if ((A == RHS || B == RHS) && NoLHSWrapProblem)
3094       if (Value *V = SimplifyICmpInst(Pred, A == RHS ? B : A,
3095                                       Constant::getNullValue(RHS->getType()), Q,
3096                                       MaxRecurse - 1))
3097         return V;
3098 
3099     // icmp X, (X+Y) -> icmp 0, Y for equalities or if there is no overflow.
3100     if ((C == LHS || D == LHS) && NoRHSWrapProblem)
3101       if (Value *V =
3102               SimplifyICmpInst(Pred, Constant::getNullValue(LHS->getType()),
3103                                C == LHS ? D : C, Q, MaxRecurse - 1))
3104         return V;
3105 
3106     // icmp (X+Y), (X+Z) -> icmp Y,Z for equalities or if there is no overflow.
3107     bool CanSimplify = (NoLHSWrapProblem && NoRHSWrapProblem) ||
3108                        trySimplifyICmpWithAdds(Pred, LHS, RHS);
3109     if (A && C && (A == C || A == D || B == C || B == D) && CanSimplify) {
3110       // Determine Y and Z in the form icmp (X+Y), (X+Z).
3111       Value *Y, *Z;
3112       if (A == C) {
3113         // C + B == C + D  ->  B == D
3114         Y = B;
3115         Z = D;
3116       } else if (A == D) {
3117         // D + B == C + D  ->  B == C
3118         Y = B;
3119         Z = C;
3120       } else if (B == C) {
3121         // A + C == C + D  ->  A == D
3122         Y = A;
3123         Z = D;
3124       } else {
3125         assert(B == D);
3126         // A + D == C + D  ->  A == C
3127         Y = A;
3128         Z = C;
3129       }
3130       if (Value *V = SimplifyICmpInst(Pred, Y, Z, Q, MaxRecurse - 1))
3131         return V;
3132     }
3133   }
3134 
3135   if (LBO)
3136     if (Value *V = simplifyICmpWithBinOpOnLHS(Pred, LBO, RHS, Q, MaxRecurse))
3137       return V;
3138 
3139   if (RBO)
3140     if (Value *V = simplifyICmpWithBinOpOnLHS(
3141             ICmpInst::getSwappedPredicate(Pred), RBO, LHS, Q, MaxRecurse))
3142       return V;
3143 
3144   // 0 - (zext X) pred C
3145   if (!CmpInst::isUnsigned(Pred) && match(LHS, m_Neg(m_ZExt(m_Value())))) {
3146     const APInt *C;
3147     if (match(RHS, m_APInt(C))) {
3148       if (C->isStrictlyPositive()) {
3149         if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_NE)
3150           return ConstantInt::getTrue(GetCompareTy(RHS));
3151         if (Pred == ICmpInst::ICMP_SGE || Pred == ICmpInst::ICMP_EQ)
3152           return ConstantInt::getFalse(GetCompareTy(RHS));
3153       }
3154       if (C->isNonNegative()) {
3155         if (Pred == ICmpInst::ICMP_SLE)
3156           return ConstantInt::getTrue(GetCompareTy(RHS));
3157         if (Pred == ICmpInst::ICMP_SGT)
3158           return ConstantInt::getFalse(GetCompareTy(RHS));
3159       }
3160     }
3161   }
3162 
3163   //   If C2 is a power-of-2 and C is not:
3164   //   (C2 << X) == C --> false
3165   //   (C2 << X) != C --> true
3166   const APInt *C;
3167   if (match(LHS, m_Shl(m_Power2(), m_Value())) &&
3168       match(RHS, m_APIntAllowUndef(C)) && !C->isPowerOf2()) {
3169     // C2 << X can equal zero in some circumstances.
3170     // This simplification might be unsafe if C is zero.
3171     //
3172     // We know it is safe if:
3173     // - The shift is nsw. We can't shift out the one bit.
3174     // - The shift is nuw. We can't shift out the one bit.
3175     // - C2 is one.
3176     // - C isn't zero.
3177     if (Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(LBO)) ||
3178         Q.IIQ.hasNoUnsignedWrap(cast<OverflowingBinaryOperator>(LBO)) ||
3179         match(LHS, m_Shl(m_One(), m_Value())) || !C->isZero()) {
3180       if (Pred == ICmpInst::ICMP_EQ)
3181         return ConstantInt::getFalse(GetCompareTy(RHS));
3182       if (Pred == ICmpInst::ICMP_NE)
3183         return ConstantInt::getTrue(GetCompareTy(RHS));
3184     }
3185   }
3186 
3187   // TODO: This is overly constrained. LHS can be any power-of-2.
3188   // (1 << X)  >u 0x8000 --> false
3189   // (1 << X) <=u 0x8000 --> true
3190   if (match(LHS, m_Shl(m_One(), m_Value())) && match(RHS, m_SignMask())) {
3191     if (Pred == ICmpInst::ICMP_UGT)
3192       return ConstantInt::getFalse(GetCompareTy(RHS));
3193     if (Pred == ICmpInst::ICMP_ULE)
3194       return ConstantInt::getTrue(GetCompareTy(RHS));
3195   }
3196 
3197   if (MaxRecurse && LBO && RBO && LBO->getOpcode() == RBO->getOpcode() &&
3198       LBO->getOperand(1) == RBO->getOperand(1)) {
3199     switch (LBO->getOpcode()) {
3200     default:
3201       break;
3202     case Instruction::UDiv:
3203     case Instruction::LShr:
3204       if (ICmpInst::isSigned(Pred) || !Q.IIQ.isExact(LBO) ||
3205           !Q.IIQ.isExact(RBO))
3206         break;
3207       if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0),
3208                                       RBO->getOperand(0), Q, MaxRecurse - 1))
3209           return V;
3210       break;
3211     case Instruction::SDiv:
3212       if (!ICmpInst::isEquality(Pred) || !Q.IIQ.isExact(LBO) ||
3213           !Q.IIQ.isExact(RBO))
3214         break;
3215       if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0),
3216                                       RBO->getOperand(0), Q, MaxRecurse - 1))
3217         return V;
3218       break;
3219     case Instruction::AShr:
3220       if (!Q.IIQ.isExact(LBO) || !Q.IIQ.isExact(RBO))
3221         break;
3222       if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0),
3223                                       RBO->getOperand(0), Q, MaxRecurse - 1))
3224         return V;
3225       break;
3226     case Instruction::Shl: {
3227       bool NUW = Q.IIQ.hasNoUnsignedWrap(LBO) && Q.IIQ.hasNoUnsignedWrap(RBO);
3228       bool NSW = Q.IIQ.hasNoSignedWrap(LBO) && Q.IIQ.hasNoSignedWrap(RBO);
3229       if (!NUW && !NSW)
3230         break;
3231       if (!NSW && ICmpInst::isSigned(Pred))
3232         break;
3233       if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0),
3234                                       RBO->getOperand(0), Q, MaxRecurse - 1))
3235         return V;
3236       break;
3237     }
3238     }
3239   }
3240   return nullptr;
3241 }
3242 
3243 /// Simplify integer comparisons where at least one operand of the compare
3244 /// matches an integer min/max idiom.
3245 static Value *simplifyICmpWithMinMax(CmpInst::Predicate Pred, Value *LHS,
3246                                      Value *RHS, const SimplifyQuery &Q,
3247                                      unsigned MaxRecurse) {
3248   Type *ITy = GetCompareTy(LHS); // The return type.
3249   Value *A, *B;
3250   CmpInst::Predicate P = CmpInst::BAD_ICMP_PREDICATE;
3251   CmpInst::Predicate EqP; // Chosen so that "A == max/min(A,B)" iff "A EqP B".
3252 
3253   // Signed variants on "max(a,b)>=a -> true".
3254   if (match(LHS, m_SMax(m_Value(A), m_Value(B))) && (A == RHS || B == RHS)) {
3255     if (A != RHS)
3256       std::swap(A, B);       // smax(A, B) pred A.
3257     EqP = CmpInst::ICMP_SGE; // "A == smax(A, B)" iff "A sge B".
3258     // We analyze this as smax(A, B) pred A.
3259     P = Pred;
3260   } else if (match(RHS, m_SMax(m_Value(A), m_Value(B))) &&
3261              (A == LHS || B == LHS)) {
3262     if (A != LHS)
3263       std::swap(A, B);       // A pred smax(A, B).
3264     EqP = CmpInst::ICMP_SGE; // "A == smax(A, B)" iff "A sge B".
3265     // We analyze this as smax(A, B) swapped-pred A.
3266     P = CmpInst::getSwappedPredicate(Pred);
3267   } else if (match(LHS, m_SMin(m_Value(A), m_Value(B))) &&
3268              (A == RHS || B == RHS)) {
3269     if (A != RHS)
3270       std::swap(A, B);       // smin(A, B) pred A.
3271     EqP = CmpInst::ICMP_SLE; // "A == smin(A, B)" iff "A sle B".
3272     // We analyze this as smax(-A, -B) swapped-pred -A.
3273     // Note that we do not need to actually form -A or -B thanks to EqP.
3274     P = CmpInst::getSwappedPredicate(Pred);
3275   } else if (match(RHS, m_SMin(m_Value(A), m_Value(B))) &&
3276              (A == LHS || B == LHS)) {
3277     if (A != LHS)
3278       std::swap(A, B);       // A pred smin(A, B).
3279     EqP = CmpInst::ICMP_SLE; // "A == smin(A, B)" iff "A sle B".
3280     // We analyze this as smax(-A, -B) pred -A.
3281     // Note that we do not need to actually form -A or -B thanks to EqP.
3282     P = Pred;
3283   }
3284   if (P != CmpInst::BAD_ICMP_PREDICATE) {
3285     // Cases correspond to "max(A, B) p A".
3286     switch (P) {
3287     default:
3288       break;
3289     case CmpInst::ICMP_EQ:
3290     case CmpInst::ICMP_SLE:
3291       // Equivalent to "A EqP B".  This may be the same as the condition tested
3292       // in the max/min; if so, we can just return that.
3293       if (Value *V = ExtractEquivalentCondition(LHS, EqP, A, B))
3294         return V;
3295       if (Value *V = ExtractEquivalentCondition(RHS, EqP, A, B))
3296         return V;
3297       // Otherwise, see if "A EqP B" simplifies.
3298       if (MaxRecurse)
3299         if (Value *V = SimplifyICmpInst(EqP, A, B, Q, MaxRecurse - 1))
3300           return V;
3301       break;
3302     case CmpInst::ICMP_NE:
3303     case CmpInst::ICMP_SGT: {
3304       CmpInst::Predicate InvEqP = CmpInst::getInversePredicate(EqP);
3305       // Equivalent to "A InvEqP B".  This may be the same as the condition
3306       // tested in the max/min; if so, we can just return that.
3307       if (Value *V = ExtractEquivalentCondition(LHS, InvEqP, A, B))
3308         return V;
3309       if (Value *V = ExtractEquivalentCondition(RHS, InvEqP, A, B))
3310         return V;
3311       // Otherwise, see if "A InvEqP B" simplifies.
3312       if (MaxRecurse)
3313         if (Value *V = SimplifyICmpInst(InvEqP, A, B, Q, MaxRecurse - 1))
3314           return V;
3315       break;
3316     }
3317     case CmpInst::ICMP_SGE:
3318       // Always true.
3319       return getTrue(ITy);
3320     case CmpInst::ICMP_SLT:
3321       // Always false.
3322       return getFalse(ITy);
3323     }
3324   }
3325 
3326   // Unsigned variants on "max(a,b)>=a -> true".
3327   P = CmpInst::BAD_ICMP_PREDICATE;
3328   if (match(LHS, m_UMax(m_Value(A), m_Value(B))) && (A == RHS || B == RHS)) {
3329     if (A != RHS)
3330       std::swap(A, B);       // umax(A, B) pred A.
3331     EqP = CmpInst::ICMP_UGE; // "A == umax(A, B)" iff "A uge B".
3332     // We analyze this as umax(A, B) pred A.
3333     P = Pred;
3334   } else if (match(RHS, m_UMax(m_Value(A), m_Value(B))) &&
3335              (A == LHS || B == LHS)) {
3336     if (A != LHS)
3337       std::swap(A, B);       // A pred umax(A, B).
3338     EqP = CmpInst::ICMP_UGE; // "A == umax(A, B)" iff "A uge B".
3339     // We analyze this as umax(A, B) swapped-pred A.
3340     P = CmpInst::getSwappedPredicate(Pred);
3341   } else if (match(LHS, m_UMin(m_Value(A), m_Value(B))) &&
3342              (A == RHS || B == RHS)) {
3343     if (A != RHS)
3344       std::swap(A, B);       // umin(A, B) pred A.
3345     EqP = CmpInst::ICMP_ULE; // "A == umin(A, B)" iff "A ule B".
3346     // We analyze this as umax(-A, -B) swapped-pred -A.
3347     // Note that we do not need to actually form -A or -B thanks to EqP.
3348     P = CmpInst::getSwappedPredicate(Pred);
3349   } else if (match(RHS, m_UMin(m_Value(A), m_Value(B))) &&
3350              (A == LHS || B == LHS)) {
3351     if (A != LHS)
3352       std::swap(A, B);       // A pred umin(A, B).
3353     EqP = CmpInst::ICMP_ULE; // "A == umin(A, B)" iff "A ule B".
3354     // We analyze this as umax(-A, -B) pred -A.
3355     // Note that we do not need to actually form -A or -B thanks to EqP.
3356     P = Pred;
3357   }
3358   if (P != CmpInst::BAD_ICMP_PREDICATE) {
3359     // Cases correspond to "max(A, B) p A".
3360     switch (P) {
3361     default:
3362       break;
3363     case CmpInst::ICMP_EQ:
3364     case CmpInst::ICMP_ULE:
3365       // Equivalent to "A EqP B".  This may be the same as the condition tested
3366       // in the max/min; if so, we can just return that.
3367       if (Value *V = ExtractEquivalentCondition(LHS, EqP, A, B))
3368         return V;
3369       if (Value *V = ExtractEquivalentCondition(RHS, EqP, A, B))
3370         return V;
3371       // Otherwise, see if "A EqP B" simplifies.
3372       if (MaxRecurse)
3373         if (Value *V = SimplifyICmpInst(EqP, A, B, Q, MaxRecurse - 1))
3374           return V;
3375       break;
3376     case CmpInst::ICMP_NE:
3377     case CmpInst::ICMP_UGT: {
3378       CmpInst::Predicate InvEqP = CmpInst::getInversePredicate(EqP);
3379       // Equivalent to "A InvEqP B".  This may be the same as the condition
3380       // tested in the max/min; if so, we can just return that.
3381       if (Value *V = ExtractEquivalentCondition(LHS, InvEqP, A, B))
3382         return V;
3383       if (Value *V = ExtractEquivalentCondition(RHS, InvEqP, A, B))
3384         return V;
3385       // Otherwise, see if "A InvEqP B" simplifies.
3386       if (MaxRecurse)
3387         if (Value *V = SimplifyICmpInst(InvEqP, A, B, Q, MaxRecurse - 1))
3388           return V;
3389       break;
3390     }
3391     case CmpInst::ICMP_UGE:
3392       return getTrue(ITy);
3393     case CmpInst::ICMP_ULT:
3394       return getFalse(ITy);
3395     }
3396   }
3397 
3398   // Comparing 1 each of min/max with a common operand?
3399   // Canonicalize min operand to RHS.
3400   if (match(LHS, m_UMin(m_Value(), m_Value())) ||
3401       match(LHS, m_SMin(m_Value(), m_Value()))) {
3402     std::swap(LHS, RHS);
3403     Pred = ICmpInst::getSwappedPredicate(Pred);
3404   }
3405 
3406   Value *C, *D;
3407   if (match(LHS, m_SMax(m_Value(A), m_Value(B))) &&
3408       match(RHS, m_SMin(m_Value(C), m_Value(D))) &&
3409       (A == C || A == D || B == C || B == D)) {
3410     // smax(A, B) >=s smin(A, D) --> true
3411     if (Pred == CmpInst::ICMP_SGE)
3412       return getTrue(ITy);
3413     // smax(A, B) <s smin(A, D) --> false
3414     if (Pred == CmpInst::ICMP_SLT)
3415       return getFalse(ITy);
3416   } else if (match(LHS, m_UMax(m_Value(A), m_Value(B))) &&
3417              match(RHS, m_UMin(m_Value(C), m_Value(D))) &&
3418              (A == C || A == D || B == C || B == D)) {
3419     // umax(A, B) >=u umin(A, D) --> true
3420     if (Pred == CmpInst::ICMP_UGE)
3421       return getTrue(ITy);
3422     // umax(A, B) <u umin(A, D) --> false
3423     if (Pred == CmpInst::ICMP_ULT)
3424       return getFalse(ITy);
3425   }
3426 
3427   return nullptr;
3428 }
3429 
3430 static Value *simplifyICmpWithDominatingAssume(CmpInst::Predicate Predicate,
3431                                                Value *LHS, Value *RHS,
3432                                                const SimplifyQuery &Q) {
3433   // Gracefully handle instructions that have not been inserted yet.
3434   if (!Q.AC || !Q.CxtI || !Q.CxtI->getParent())
3435     return nullptr;
3436 
3437   for (Value *AssumeBaseOp : {LHS, RHS}) {
3438     for (auto &AssumeVH : Q.AC->assumptionsFor(AssumeBaseOp)) {
3439       if (!AssumeVH)
3440         continue;
3441 
3442       CallInst *Assume = cast<CallInst>(AssumeVH);
3443       if (Optional<bool> Imp =
3444               isImpliedCondition(Assume->getArgOperand(0), Predicate, LHS, RHS,
3445                                  Q.DL))
3446         if (isValidAssumeForContext(Assume, Q.CxtI, Q.DT))
3447           return ConstantInt::get(GetCompareTy(LHS), *Imp);
3448     }
3449   }
3450 
3451   return nullptr;
3452 }
3453 
3454 /// Given operands for an ICmpInst, see if we can fold the result.
3455 /// If not, this returns null.
3456 static Value *SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS,
3457                                const SimplifyQuery &Q, unsigned MaxRecurse) {
3458   CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate;
3459   assert(CmpInst::isIntPredicate(Pred) && "Not an integer compare!");
3460 
3461   if (Constant *CLHS = dyn_cast<Constant>(LHS)) {
3462     if (Constant *CRHS = dyn_cast<Constant>(RHS))
3463       return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, Q.DL, Q.TLI);
3464 
3465     // If we have a constant, make sure it is on the RHS.
3466     std::swap(LHS, RHS);
3467     Pred = CmpInst::getSwappedPredicate(Pred);
3468   }
3469   assert(!isa<UndefValue>(LHS) && "Unexpected icmp undef,%X");
3470 
3471   Type *ITy = GetCompareTy(LHS); // The return type.
3472 
3473   // icmp poison, X -> poison
3474   if (isa<PoisonValue>(RHS))
3475     return PoisonValue::get(ITy);
3476 
3477   // For EQ and NE, we can always pick a value for the undef to make the
3478   // predicate pass or fail, so we can return undef.
3479   // Matches behavior in llvm::ConstantFoldCompareInstruction.
3480   if (Q.isUndefValue(RHS) && ICmpInst::isEquality(Pred))
3481     return UndefValue::get(ITy);
3482 
3483   // icmp X, X -> true/false
3484   // icmp X, undef -> true/false because undef could be X.
3485   if (LHS == RHS || Q.isUndefValue(RHS))
3486     return ConstantInt::get(ITy, CmpInst::isTrueWhenEqual(Pred));
3487 
3488   if (Value *V = simplifyICmpOfBools(Pred, LHS, RHS, Q))
3489     return V;
3490 
3491   // TODO: Sink/common this with other potentially expensive calls that use
3492   //       ValueTracking? See comment below for isKnownNonEqual().
3493   if (Value *V = simplifyICmpWithZero(Pred, LHS, RHS, Q))
3494     return V;
3495 
3496   if (Value *V = simplifyICmpWithConstant(Pred, LHS, RHS, Q.IIQ))
3497     return V;
3498 
3499   // If both operands have range metadata, use the metadata
3500   // to simplify the comparison.
3501   if (isa<Instruction>(RHS) && isa<Instruction>(LHS)) {
3502     auto RHS_Instr = cast<Instruction>(RHS);
3503     auto LHS_Instr = cast<Instruction>(LHS);
3504 
3505     if (Q.IIQ.getMetadata(RHS_Instr, LLVMContext::MD_range) &&
3506         Q.IIQ.getMetadata(LHS_Instr, LLVMContext::MD_range)) {
3507       auto RHS_CR = getConstantRangeFromMetadata(
3508           *RHS_Instr->getMetadata(LLVMContext::MD_range));
3509       auto LHS_CR = getConstantRangeFromMetadata(
3510           *LHS_Instr->getMetadata(LLVMContext::MD_range));
3511 
3512       if (LHS_CR.icmp(Pred, RHS_CR))
3513         return ConstantInt::getTrue(RHS->getContext());
3514 
3515       if (LHS_CR.icmp(CmpInst::getInversePredicate(Pred), RHS_CR))
3516         return ConstantInt::getFalse(RHS->getContext());
3517     }
3518   }
3519 
3520   // Compare of cast, for example (zext X) != 0 -> X != 0
3521   if (isa<CastInst>(LHS) && (isa<Constant>(RHS) || isa<CastInst>(RHS))) {
3522     Instruction *LI = cast<CastInst>(LHS);
3523     Value *SrcOp = LI->getOperand(0);
3524     Type *SrcTy = SrcOp->getType();
3525     Type *DstTy = LI->getType();
3526 
3527     // Turn icmp (ptrtoint x), (ptrtoint/constant) into a compare of the input
3528     // if the integer type is the same size as the pointer type.
3529     if (MaxRecurse && isa<PtrToIntInst>(LI) &&
3530         Q.DL.getTypeSizeInBits(SrcTy) == DstTy->getPrimitiveSizeInBits()) {
3531       if (Constant *RHSC = dyn_cast<Constant>(RHS)) {
3532         // Transfer the cast to the constant.
3533         if (Value *V = SimplifyICmpInst(Pred, SrcOp,
3534                                         ConstantExpr::getIntToPtr(RHSC, SrcTy),
3535                                         Q, MaxRecurse-1))
3536           return V;
3537       } else if (PtrToIntInst *RI = dyn_cast<PtrToIntInst>(RHS)) {
3538         if (RI->getOperand(0)->getType() == SrcTy)
3539           // Compare without the cast.
3540           if (Value *V = SimplifyICmpInst(Pred, SrcOp, RI->getOperand(0),
3541                                           Q, MaxRecurse-1))
3542             return V;
3543       }
3544     }
3545 
3546     if (isa<ZExtInst>(LHS)) {
3547       // Turn icmp (zext X), (zext Y) into a compare of X and Y if they have the
3548       // same type.
3549       if (ZExtInst *RI = dyn_cast<ZExtInst>(RHS)) {
3550         if (MaxRecurse && SrcTy == RI->getOperand(0)->getType())
3551           // Compare X and Y.  Note that signed predicates become unsigned.
3552           if (Value *V = SimplifyICmpInst(ICmpInst::getUnsignedPredicate(Pred),
3553                                           SrcOp, RI->getOperand(0), Q,
3554                                           MaxRecurse-1))
3555             return V;
3556       }
3557       // Fold (zext X) ule (sext X), (zext X) sge (sext X) to true.
3558       else if (SExtInst *RI = dyn_cast<SExtInst>(RHS)) {
3559         if (SrcOp == RI->getOperand(0)) {
3560           if (Pred == ICmpInst::ICMP_ULE || Pred == ICmpInst::ICMP_SGE)
3561             return ConstantInt::getTrue(ITy);
3562           if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_SLT)
3563             return ConstantInt::getFalse(ITy);
3564         }
3565       }
3566       // Turn icmp (zext X), Cst into a compare of X and Cst if Cst is extended
3567       // too.  If not, then try to deduce the result of the comparison.
3568       else if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
3569         // Compute the constant that would happen if we truncated to SrcTy then
3570         // reextended to DstTy.
3571         Constant *Trunc = ConstantExpr::getTrunc(CI, SrcTy);
3572         Constant *RExt = ConstantExpr::getCast(CastInst::ZExt, Trunc, DstTy);
3573 
3574         // If the re-extended constant didn't change then this is effectively
3575         // also a case of comparing two zero-extended values.
3576         if (RExt == CI && MaxRecurse)
3577           if (Value *V = SimplifyICmpInst(ICmpInst::getUnsignedPredicate(Pred),
3578                                         SrcOp, Trunc, Q, MaxRecurse-1))
3579             return V;
3580 
3581         // Otherwise the upper bits of LHS are zero while RHS has a non-zero bit
3582         // there.  Use this to work out the result of the comparison.
3583         if (RExt != CI) {
3584           switch (Pred) {
3585           default: llvm_unreachable("Unknown ICmp predicate!");
3586           // LHS <u RHS.
3587           case ICmpInst::ICMP_EQ:
3588           case ICmpInst::ICMP_UGT:
3589           case ICmpInst::ICMP_UGE:
3590             return ConstantInt::getFalse(CI->getContext());
3591 
3592           case ICmpInst::ICMP_NE:
3593           case ICmpInst::ICMP_ULT:
3594           case ICmpInst::ICMP_ULE:
3595             return ConstantInt::getTrue(CI->getContext());
3596 
3597           // LHS is non-negative.  If RHS is negative then LHS >s LHS.  If RHS
3598           // is non-negative then LHS <s RHS.
3599           case ICmpInst::ICMP_SGT:
3600           case ICmpInst::ICMP_SGE:
3601             return CI->getValue().isNegative() ?
3602               ConstantInt::getTrue(CI->getContext()) :
3603               ConstantInt::getFalse(CI->getContext());
3604 
3605           case ICmpInst::ICMP_SLT:
3606           case ICmpInst::ICMP_SLE:
3607             return CI->getValue().isNegative() ?
3608               ConstantInt::getFalse(CI->getContext()) :
3609               ConstantInt::getTrue(CI->getContext());
3610           }
3611         }
3612       }
3613     }
3614 
3615     if (isa<SExtInst>(LHS)) {
3616       // Turn icmp (sext X), (sext Y) into a compare of X and Y if they have the
3617       // same type.
3618       if (SExtInst *RI = dyn_cast<SExtInst>(RHS)) {
3619         if (MaxRecurse && SrcTy == RI->getOperand(0)->getType())
3620           // Compare X and Y.  Note that the predicate does not change.
3621           if (Value *V = SimplifyICmpInst(Pred, SrcOp, RI->getOperand(0),
3622                                           Q, MaxRecurse-1))
3623             return V;
3624       }
3625       // Fold (sext X) uge (zext X), (sext X) sle (zext X) to true.
3626       else if (ZExtInst *RI = dyn_cast<ZExtInst>(RHS)) {
3627         if (SrcOp == RI->getOperand(0)) {
3628           if (Pred == ICmpInst::ICMP_UGE || Pred == ICmpInst::ICMP_SLE)
3629             return ConstantInt::getTrue(ITy);
3630           if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_SGT)
3631             return ConstantInt::getFalse(ITy);
3632         }
3633       }
3634       // Turn icmp (sext X), Cst into a compare of X and Cst if Cst is extended
3635       // too.  If not, then try to deduce the result of the comparison.
3636       else if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
3637         // Compute the constant that would happen if we truncated to SrcTy then
3638         // reextended to DstTy.
3639         Constant *Trunc = ConstantExpr::getTrunc(CI, SrcTy);
3640         Constant *RExt = ConstantExpr::getCast(CastInst::SExt, Trunc, DstTy);
3641 
3642         // If the re-extended constant didn't change then this is effectively
3643         // also a case of comparing two sign-extended values.
3644         if (RExt == CI && MaxRecurse)
3645           if (Value *V = SimplifyICmpInst(Pred, SrcOp, Trunc, Q, MaxRecurse-1))
3646             return V;
3647 
3648         // Otherwise the upper bits of LHS are all equal, while RHS has varying
3649         // bits there.  Use this to work out the result of the comparison.
3650         if (RExt != CI) {
3651           switch (Pred) {
3652           default: llvm_unreachable("Unknown ICmp predicate!");
3653           case ICmpInst::ICMP_EQ:
3654             return ConstantInt::getFalse(CI->getContext());
3655           case ICmpInst::ICMP_NE:
3656             return ConstantInt::getTrue(CI->getContext());
3657 
3658           // If RHS is non-negative then LHS <s RHS.  If RHS is negative then
3659           // LHS >s RHS.
3660           case ICmpInst::ICMP_SGT:
3661           case ICmpInst::ICMP_SGE:
3662             return CI->getValue().isNegative() ?
3663               ConstantInt::getTrue(CI->getContext()) :
3664               ConstantInt::getFalse(CI->getContext());
3665           case ICmpInst::ICMP_SLT:
3666           case ICmpInst::ICMP_SLE:
3667             return CI->getValue().isNegative() ?
3668               ConstantInt::getFalse(CI->getContext()) :
3669               ConstantInt::getTrue(CI->getContext());
3670 
3671           // If LHS is non-negative then LHS <u RHS.  If LHS is negative then
3672           // LHS >u RHS.
3673           case ICmpInst::ICMP_UGT:
3674           case ICmpInst::ICMP_UGE:
3675             // Comparison is true iff the LHS <s 0.
3676             if (MaxRecurse)
3677               if (Value *V = SimplifyICmpInst(ICmpInst::ICMP_SLT, SrcOp,
3678                                               Constant::getNullValue(SrcTy),
3679                                               Q, MaxRecurse-1))
3680                 return V;
3681             break;
3682           case ICmpInst::ICMP_ULT:
3683           case ICmpInst::ICMP_ULE:
3684             // Comparison is true iff the LHS >=s 0.
3685             if (MaxRecurse)
3686               if (Value *V = SimplifyICmpInst(ICmpInst::ICMP_SGE, SrcOp,
3687                                               Constant::getNullValue(SrcTy),
3688                                               Q, MaxRecurse-1))
3689                 return V;
3690             break;
3691           }
3692         }
3693       }
3694     }
3695   }
3696 
3697   // icmp eq|ne X, Y -> false|true if X != Y
3698   // This is potentially expensive, and we have already computedKnownBits for
3699   // compares with 0 above here, so only try this for a non-zero compare.
3700   if (ICmpInst::isEquality(Pred) && !match(RHS, m_Zero()) &&
3701       isKnownNonEqual(LHS, RHS, Q.DL, Q.AC, Q.CxtI, Q.DT, Q.IIQ.UseInstrInfo)) {
3702     return Pred == ICmpInst::ICMP_NE ? getTrue(ITy) : getFalse(ITy);
3703   }
3704 
3705   if (Value *V = simplifyICmpWithBinOp(Pred, LHS, RHS, Q, MaxRecurse))
3706     return V;
3707 
3708   if (Value *V = simplifyICmpWithMinMax(Pred, LHS, RHS, Q, MaxRecurse))
3709     return V;
3710 
3711   if (Value *V = simplifyICmpWithDominatingAssume(Pred, LHS, RHS, Q))
3712     return V;
3713 
3714   // Simplify comparisons of related pointers using a powerful, recursive
3715   // GEP-walk when we have target data available..
3716   if (LHS->getType()->isPointerTy())
3717     if (auto *C = computePointerICmp(Pred, LHS, RHS, Q))
3718       return C;
3719   if (auto *CLHS = dyn_cast<PtrToIntOperator>(LHS))
3720     if (auto *CRHS = dyn_cast<PtrToIntOperator>(RHS))
3721       if (Q.DL.getTypeSizeInBits(CLHS->getPointerOperandType()) ==
3722               Q.DL.getTypeSizeInBits(CLHS->getType()) &&
3723           Q.DL.getTypeSizeInBits(CRHS->getPointerOperandType()) ==
3724               Q.DL.getTypeSizeInBits(CRHS->getType()))
3725         if (auto *C = computePointerICmp(Pred, CLHS->getPointerOperand(),
3726                                          CRHS->getPointerOperand(), Q))
3727           return C;
3728 
3729   // If the comparison is with the result of a select instruction, check whether
3730   // comparing with either branch of the select always yields the same value.
3731   if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS))
3732     if (Value *V = ThreadCmpOverSelect(Pred, LHS, RHS, Q, MaxRecurse))
3733       return V;
3734 
3735   // If the comparison is with the result of a phi instruction, check whether
3736   // doing the compare with each incoming phi value yields a common result.
3737   if (isa<PHINode>(LHS) || isa<PHINode>(RHS))
3738     if (Value *V = ThreadCmpOverPHI(Pred, LHS, RHS, Q, MaxRecurse))
3739       return V;
3740 
3741   return nullptr;
3742 }
3743 
3744 Value *llvm::SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS,
3745                               const SimplifyQuery &Q) {
3746   return ::SimplifyICmpInst(Predicate, LHS, RHS, Q, RecursionLimit);
3747 }
3748 
3749 /// Given operands for an FCmpInst, see if we can fold the result.
3750 /// If not, this returns null.
3751 static Value *SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
3752                                FastMathFlags FMF, const SimplifyQuery &Q,
3753                                unsigned MaxRecurse) {
3754   CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate;
3755   assert(CmpInst::isFPPredicate(Pred) && "Not an FP compare!");
3756 
3757   if (Constant *CLHS = dyn_cast<Constant>(LHS)) {
3758     if (Constant *CRHS = dyn_cast<Constant>(RHS))
3759       return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, Q.DL, Q.TLI);
3760 
3761     // If we have a constant, make sure it is on the RHS.
3762     std::swap(LHS, RHS);
3763     Pred = CmpInst::getSwappedPredicate(Pred);
3764   }
3765 
3766   // Fold trivial predicates.
3767   Type *RetTy = GetCompareTy(LHS);
3768   if (Pred == FCmpInst::FCMP_FALSE)
3769     return getFalse(RetTy);
3770   if (Pred == FCmpInst::FCMP_TRUE)
3771     return getTrue(RetTy);
3772 
3773   // Fold (un)ordered comparison if we can determine there are no NaNs.
3774   if (Pred == FCmpInst::FCMP_UNO || Pred == FCmpInst::FCMP_ORD)
3775     if (FMF.noNaNs() ||
3776         (isKnownNeverNaN(LHS, Q.TLI) && isKnownNeverNaN(RHS, Q.TLI)))
3777       return ConstantInt::get(RetTy, Pred == FCmpInst::FCMP_ORD);
3778 
3779   // NaN is unordered; NaN is not ordered.
3780   assert((FCmpInst::isOrdered(Pred) || FCmpInst::isUnordered(Pred)) &&
3781          "Comparison must be either ordered or unordered");
3782   if (match(RHS, m_NaN()))
3783     return ConstantInt::get(RetTy, CmpInst::isUnordered(Pred));
3784 
3785   // fcmp pred x, poison and  fcmp pred poison, x
3786   // fold to poison
3787   if (isa<PoisonValue>(LHS) || isa<PoisonValue>(RHS))
3788     return PoisonValue::get(RetTy);
3789 
3790   // fcmp pred x, undef  and  fcmp pred undef, x
3791   // fold to true if unordered, false if ordered
3792   if (Q.isUndefValue(LHS) || Q.isUndefValue(RHS)) {
3793     // Choosing NaN for the undef will always make unordered comparison succeed
3794     // and ordered comparison fail.
3795     return ConstantInt::get(RetTy, CmpInst::isUnordered(Pred));
3796   }
3797 
3798   // fcmp x,x -> true/false.  Not all compares are foldable.
3799   if (LHS == RHS) {
3800     if (CmpInst::isTrueWhenEqual(Pred))
3801       return getTrue(RetTy);
3802     if (CmpInst::isFalseWhenEqual(Pred))
3803       return getFalse(RetTy);
3804   }
3805 
3806   // Handle fcmp with constant RHS.
3807   // TODO: Use match with a specific FP value, so these work with vectors with
3808   // undef lanes.
3809   const APFloat *C;
3810   if (match(RHS, m_APFloat(C))) {
3811     // Check whether the constant is an infinity.
3812     if (C->isInfinity()) {
3813       if (C->isNegative()) {
3814         switch (Pred) {
3815         case FCmpInst::FCMP_OLT:
3816           // No value is ordered and less than negative infinity.
3817           return getFalse(RetTy);
3818         case FCmpInst::FCMP_UGE:
3819           // All values are unordered with or at least negative infinity.
3820           return getTrue(RetTy);
3821         default:
3822           break;
3823         }
3824       } else {
3825         switch (Pred) {
3826         case FCmpInst::FCMP_OGT:
3827           // No value is ordered and greater than infinity.
3828           return getFalse(RetTy);
3829         case FCmpInst::FCMP_ULE:
3830           // All values are unordered with and at most infinity.
3831           return getTrue(RetTy);
3832         default:
3833           break;
3834         }
3835       }
3836 
3837       // LHS == Inf
3838       if (Pred == FCmpInst::FCMP_OEQ && isKnownNeverInfinity(LHS, Q.TLI))
3839         return getFalse(RetTy);
3840       // LHS != Inf
3841       if (Pred == FCmpInst::FCMP_UNE && isKnownNeverInfinity(LHS, Q.TLI))
3842         return getTrue(RetTy);
3843       // LHS == Inf || LHS == NaN
3844       if (Pred == FCmpInst::FCMP_UEQ && isKnownNeverInfinity(LHS, Q.TLI) &&
3845           isKnownNeverNaN(LHS, Q.TLI))
3846         return getFalse(RetTy);
3847       // LHS != Inf && LHS != NaN
3848       if (Pred == FCmpInst::FCMP_ONE && isKnownNeverInfinity(LHS, Q.TLI) &&
3849           isKnownNeverNaN(LHS, Q.TLI))
3850         return getTrue(RetTy);
3851     }
3852     if (C->isNegative() && !C->isNegZero()) {
3853       assert(!C->isNaN() && "Unexpected NaN constant!");
3854       // TODO: We can catch more cases by using a range check rather than
3855       //       relying on CannotBeOrderedLessThanZero.
3856       switch (Pred) {
3857       case FCmpInst::FCMP_UGE:
3858       case FCmpInst::FCMP_UGT:
3859       case FCmpInst::FCMP_UNE:
3860         // (X >= 0) implies (X > C) when (C < 0)
3861         if (CannotBeOrderedLessThanZero(LHS, Q.TLI))
3862           return getTrue(RetTy);
3863         break;
3864       case FCmpInst::FCMP_OEQ:
3865       case FCmpInst::FCMP_OLE:
3866       case FCmpInst::FCMP_OLT:
3867         // (X >= 0) implies !(X < C) when (C < 0)
3868         if (CannotBeOrderedLessThanZero(LHS, Q.TLI))
3869           return getFalse(RetTy);
3870         break;
3871       default:
3872         break;
3873       }
3874     }
3875 
3876     // Check comparison of [minnum/maxnum with constant] with other constant.
3877     const APFloat *C2;
3878     if ((match(LHS, m_Intrinsic<Intrinsic::minnum>(m_Value(), m_APFloat(C2))) &&
3879          *C2 < *C) ||
3880         (match(LHS, m_Intrinsic<Intrinsic::maxnum>(m_Value(), m_APFloat(C2))) &&
3881          *C2 > *C)) {
3882       bool IsMaxNum =
3883           cast<IntrinsicInst>(LHS)->getIntrinsicID() == Intrinsic::maxnum;
3884       // The ordered relationship and minnum/maxnum guarantee that we do not
3885       // have NaN constants, so ordered/unordered preds are handled the same.
3886       switch (Pred) {
3887       case FCmpInst::FCMP_OEQ: case FCmpInst::FCMP_UEQ:
3888         // minnum(X, LesserC)  == C --> false
3889         // maxnum(X, GreaterC) == C --> false
3890         return getFalse(RetTy);
3891       case FCmpInst::FCMP_ONE: case FCmpInst::FCMP_UNE:
3892         // minnum(X, LesserC)  != C --> true
3893         // maxnum(X, GreaterC) != C --> true
3894         return getTrue(RetTy);
3895       case FCmpInst::FCMP_OGE: case FCmpInst::FCMP_UGE:
3896       case FCmpInst::FCMP_OGT: case FCmpInst::FCMP_UGT:
3897         // minnum(X, LesserC)  >= C --> false
3898         // minnum(X, LesserC)  >  C --> false
3899         // maxnum(X, GreaterC) >= C --> true
3900         // maxnum(X, GreaterC) >  C --> true
3901         return ConstantInt::get(RetTy, IsMaxNum);
3902       case FCmpInst::FCMP_OLE: case FCmpInst::FCMP_ULE:
3903       case FCmpInst::FCMP_OLT: case FCmpInst::FCMP_ULT:
3904         // minnum(X, LesserC)  <= C --> true
3905         // minnum(X, LesserC)  <  C --> true
3906         // maxnum(X, GreaterC) <= C --> false
3907         // maxnum(X, GreaterC) <  C --> false
3908         return ConstantInt::get(RetTy, !IsMaxNum);
3909       default:
3910         // TRUE/FALSE/ORD/UNO should be handled before this.
3911         llvm_unreachable("Unexpected fcmp predicate");
3912       }
3913     }
3914   }
3915 
3916   if (match(RHS, m_AnyZeroFP())) {
3917     switch (Pred) {
3918     case FCmpInst::FCMP_OGE:
3919     case FCmpInst::FCMP_ULT:
3920       // Positive or zero X >= 0.0 --> true
3921       // Positive or zero X <  0.0 --> false
3922       if ((FMF.noNaNs() || isKnownNeverNaN(LHS, Q.TLI)) &&
3923           CannotBeOrderedLessThanZero(LHS, Q.TLI))
3924         return Pred == FCmpInst::FCMP_OGE ? getTrue(RetTy) : getFalse(RetTy);
3925       break;
3926     case FCmpInst::FCMP_UGE:
3927     case FCmpInst::FCMP_OLT:
3928       // Positive or zero or nan X >= 0.0 --> true
3929       // Positive or zero or nan X <  0.0 --> false
3930       if (CannotBeOrderedLessThanZero(LHS, Q.TLI))
3931         return Pred == FCmpInst::FCMP_UGE ? getTrue(RetTy) : getFalse(RetTy);
3932       break;
3933     default:
3934       break;
3935     }
3936   }
3937 
3938   // If the comparison is with the result of a select instruction, check whether
3939   // comparing with either branch of the select always yields the same value.
3940   if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS))
3941     if (Value *V = ThreadCmpOverSelect(Pred, LHS, RHS, Q, MaxRecurse))
3942       return V;
3943 
3944   // If the comparison is with the result of a phi instruction, check whether
3945   // doing the compare with each incoming phi value yields a common result.
3946   if (isa<PHINode>(LHS) || isa<PHINode>(RHS))
3947     if (Value *V = ThreadCmpOverPHI(Pred, LHS, RHS, Q, MaxRecurse))
3948       return V;
3949 
3950   return nullptr;
3951 }
3952 
3953 Value *llvm::SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
3954                               FastMathFlags FMF, const SimplifyQuery &Q) {
3955   return ::SimplifyFCmpInst(Predicate, LHS, RHS, FMF, Q, RecursionLimit);
3956 }
3957 
3958 static Value *simplifyWithOpReplaced(Value *V, Value *Op, Value *RepOp,
3959                                      const SimplifyQuery &Q,
3960                                      bool AllowRefinement,
3961                                      unsigned MaxRecurse) {
3962   assert(!Op->getType()->isVectorTy() && "This is not safe for vectors");
3963 
3964   // Trivial replacement.
3965   if (V == Op)
3966     return RepOp;
3967 
3968   // We cannot replace a constant, and shouldn't even try.
3969   if (isa<Constant>(Op))
3970     return nullptr;
3971 
3972   auto *I = dyn_cast<Instruction>(V);
3973   if (!I || !is_contained(I->operands(), Op))
3974     return nullptr;
3975 
3976   // Replace Op with RepOp in instruction operands.
3977   SmallVector<Value *, 8> NewOps(I->getNumOperands());
3978   transform(I->operands(), NewOps.begin(),
3979             [&](Value *V) { return V == Op ? RepOp : V; });
3980 
3981   if (!AllowRefinement) {
3982     // General InstSimplify functions may refine the result, e.g. by returning
3983     // a constant for a potentially poison value. To avoid this, implement only
3984     // a few non-refining but profitable transforms here.
3985 
3986     if (auto *BO = dyn_cast<BinaryOperator>(I)) {
3987       unsigned Opcode = BO->getOpcode();
3988       // id op x -> x, x op id -> x
3989       if (NewOps[0] == ConstantExpr::getBinOpIdentity(Opcode, I->getType()))
3990         return NewOps[1];
3991       if (NewOps[1] == ConstantExpr::getBinOpIdentity(Opcode, I->getType(),
3992                                                       /* RHS */ true))
3993         return NewOps[0];
3994 
3995       // x & x -> x, x | x -> x
3996       if ((Opcode == Instruction::And || Opcode == Instruction::Or) &&
3997           NewOps[0] == NewOps[1])
3998         return NewOps[0];
3999     }
4000 
4001     if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) {
4002       // getelementptr x, 0 -> x
4003       if (NewOps.size() == 2 && match(NewOps[1], m_Zero()) &&
4004           !GEP->isInBounds())
4005         return NewOps[0];
4006     }
4007   } else if (MaxRecurse) {
4008     // The simplification queries below may return the original value. Consider:
4009     //   %div = udiv i32 %arg, %arg2
4010     //   %mul = mul nsw i32 %div, %arg2
4011     //   %cmp = icmp eq i32 %mul, %arg
4012     //   %sel = select i1 %cmp, i32 %div, i32 undef
4013     // Replacing %arg by %mul, %div becomes "udiv i32 %mul, %arg2", which
4014     // simplifies back to %arg. This can only happen because %mul does not
4015     // dominate %div. To ensure a consistent return value contract, we make sure
4016     // that this case returns nullptr as well.
4017     auto PreventSelfSimplify = [V](Value *Simplified) {
4018       return Simplified != V ? Simplified : nullptr;
4019     };
4020 
4021     if (auto *B = dyn_cast<BinaryOperator>(I))
4022       return PreventSelfSimplify(SimplifyBinOp(B->getOpcode(), NewOps[0],
4023                                                NewOps[1], Q, MaxRecurse - 1));
4024 
4025     if (CmpInst *C = dyn_cast<CmpInst>(I))
4026       return PreventSelfSimplify(SimplifyCmpInst(C->getPredicate(), NewOps[0],
4027                                                  NewOps[1], Q, MaxRecurse - 1));
4028 
4029     if (auto *GEP = dyn_cast<GetElementPtrInst>(I))
4030       return PreventSelfSimplify(SimplifyGEPInst(GEP->getSourceElementType(),
4031                                                  NewOps, GEP->isInBounds(), Q,
4032                                                  MaxRecurse - 1));
4033 
4034     if (isa<SelectInst>(I))
4035       return PreventSelfSimplify(
4036           SimplifySelectInst(NewOps[0], NewOps[1], NewOps[2], Q,
4037                              MaxRecurse - 1));
4038     // TODO: We could hand off more cases to instsimplify here.
4039   }
4040 
4041   // If all operands are constant after substituting Op for RepOp then we can
4042   // constant fold the instruction.
4043   SmallVector<Constant *, 8> ConstOps;
4044   for (Value *NewOp : NewOps) {
4045     if (Constant *ConstOp = dyn_cast<Constant>(NewOp))
4046       ConstOps.push_back(ConstOp);
4047     else
4048       return nullptr;
4049   }
4050 
4051   // Consider:
4052   //   %cmp = icmp eq i32 %x, 2147483647
4053   //   %add = add nsw i32 %x, 1
4054   //   %sel = select i1 %cmp, i32 -2147483648, i32 %add
4055   //
4056   // We can't replace %sel with %add unless we strip away the flags (which
4057   // will be done in InstCombine).
4058   // TODO: This may be unsound, because it only catches some forms of
4059   // refinement.
4060   if (!AllowRefinement && canCreatePoison(cast<Operator>(I)))
4061     return nullptr;
4062 
4063   if (CmpInst *C = dyn_cast<CmpInst>(I))
4064     return ConstantFoldCompareInstOperands(C->getPredicate(), ConstOps[0],
4065                                            ConstOps[1], Q.DL, Q.TLI);
4066 
4067   if (LoadInst *LI = dyn_cast<LoadInst>(I))
4068     if (!LI->isVolatile())
4069       return ConstantFoldLoadFromConstPtr(ConstOps[0], LI->getType(), Q.DL);
4070 
4071   return ConstantFoldInstOperands(I, ConstOps, Q.DL, Q.TLI);
4072 }
4073 
4074 Value *llvm::simplifyWithOpReplaced(Value *V, Value *Op, Value *RepOp,
4075                                     const SimplifyQuery &Q,
4076                                     bool AllowRefinement) {
4077   return ::simplifyWithOpReplaced(V, Op, RepOp, Q, AllowRefinement,
4078                                   RecursionLimit);
4079 }
4080 
4081 /// Try to simplify a select instruction when its condition operand is an
4082 /// integer comparison where one operand of the compare is a constant.
4083 static Value *simplifySelectBitTest(Value *TrueVal, Value *FalseVal, Value *X,
4084                                     const APInt *Y, bool TrueWhenUnset) {
4085   const APInt *C;
4086 
4087   // (X & Y) == 0 ? X & ~Y : X  --> X
4088   // (X & Y) != 0 ? X & ~Y : X  --> X & ~Y
4089   if (FalseVal == X && match(TrueVal, m_And(m_Specific(X), m_APInt(C))) &&
4090       *Y == ~*C)
4091     return TrueWhenUnset ? FalseVal : TrueVal;
4092 
4093   // (X & Y) == 0 ? X : X & ~Y  --> X & ~Y
4094   // (X & Y) != 0 ? X : X & ~Y  --> X
4095   if (TrueVal == X && match(FalseVal, m_And(m_Specific(X), m_APInt(C))) &&
4096       *Y == ~*C)
4097     return TrueWhenUnset ? FalseVal : TrueVal;
4098 
4099   if (Y->isPowerOf2()) {
4100     // (X & Y) == 0 ? X | Y : X  --> X | Y
4101     // (X & Y) != 0 ? X | Y : X  --> X
4102     if (FalseVal == X && match(TrueVal, m_Or(m_Specific(X), m_APInt(C))) &&
4103         *Y == *C)
4104       return TrueWhenUnset ? TrueVal : FalseVal;
4105 
4106     // (X & Y) == 0 ? X : X | Y  --> X
4107     // (X & Y) != 0 ? X : X | Y  --> X | Y
4108     if (TrueVal == X && match(FalseVal, m_Or(m_Specific(X), m_APInt(C))) &&
4109         *Y == *C)
4110       return TrueWhenUnset ? TrueVal : FalseVal;
4111   }
4112 
4113   return nullptr;
4114 }
4115 
4116 /// An alternative way to test if a bit is set or not uses sgt/slt instead of
4117 /// eq/ne.
4118 static Value *simplifySelectWithFakeICmpEq(Value *CmpLHS, Value *CmpRHS,
4119                                            ICmpInst::Predicate Pred,
4120                                            Value *TrueVal, Value *FalseVal) {
4121   Value *X;
4122   APInt Mask;
4123   if (!decomposeBitTestICmp(CmpLHS, CmpRHS, Pred, X, Mask))
4124     return nullptr;
4125 
4126   return simplifySelectBitTest(TrueVal, FalseVal, X, &Mask,
4127                                Pred == ICmpInst::ICMP_EQ);
4128 }
4129 
4130 /// Try to simplify a select instruction when its condition operand is an
4131 /// integer comparison.
4132 static Value *simplifySelectWithICmpCond(Value *CondVal, Value *TrueVal,
4133                                          Value *FalseVal, const SimplifyQuery &Q,
4134                                          unsigned MaxRecurse) {
4135   ICmpInst::Predicate Pred;
4136   Value *CmpLHS, *CmpRHS;
4137   if (!match(CondVal, m_ICmp(Pred, m_Value(CmpLHS), m_Value(CmpRHS))))
4138     return nullptr;
4139 
4140   // Canonicalize ne to eq predicate.
4141   if (Pred == ICmpInst::ICMP_NE) {
4142     Pred = ICmpInst::ICMP_EQ;
4143     std::swap(TrueVal, FalseVal);
4144   }
4145 
4146   // Check for integer min/max with a limit constant:
4147   // X > MIN_INT ? X : MIN_INT --> X
4148   // X < MAX_INT ? X : MAX_INT --> X
4149   if (TrueVal->getType()->isIntOrIntVectorTy()) {
4150     Value *X, *Y;
4151     SelectPatternFlavor SPF =
4152         matchDecomposedSelectPattern(cast<ICmpInst>(CondVal), TrueVal, FalseVal,
4153                                      X, Y).Flavor;
4154     if (SelectPatternResult::isMinOrMax(SPF) && Pred == getMinMaxPred(SPF)) {
4155       APInt LimitC = getMinMaxLimit(getInverseMinMaxFlavor(SPF),
4156                                     X->getType()->getScalarSizeInBits());
4157       if (match(Y, m_SpecificInt(LimitC)))
4158         return X;
4159     }
4160   }
4161 
4162   if (Pred == ICmpInst::ICMP_EQ && match(CmpRHS, m_Zero())) {
4163     Value *X;
4164     const APInt *Y;
4165     if (match(CmpLHS, m_And(m_Value(X), m_APInt(Y))))
4166       if (Value *V = simplifySelectBitTest(TrueVal, FalseVal, X, Y,
4167                                            /*TrueWhenUnset=*/true))
4168         return V;
4169 
4170     // Test for a bogus zero-shift-guard-op around funnel-shift or rotate.
4171     Value *ShAmt;
4172     auto isFsh = m_CombineOr(m_FShl(m_Value(X), m_Value(), m_Value(ShAmt)),
4173                              m_FShr(m_Value(), m_Value(X), m_Value(ShAmt)));
4174     // (ShAmt == 0) ? fshl(X, *, ShAmt) : X --> X
4175     // (ShAmt == 0) ? fshr(*, X, ShAmt) : X --> X
4176     if (match(TrueVal, isFsh) && FalseVal == X && CmpLHS == ShAmt)
4177       return X;
4178 
4179     // Test for a zero-shift-guard-op around rotates. These are used to
4180     // avoid UB from oversized shifts in raw IR rotate patterns, but the
4181     // intrinsics do not have that problem.
4182     // We do not allow this transform for the general funnel shift case because
4183     // that would not preserve the poison safety of the original code.
4184     auto isRotate =
4185         m_CombineOr(m_FShl(m_Value(X), m_Deferred(X), m_Value(ShAmt)),
4186                     m_FShr(m_Value(X), m_Deferred(X), m_Value(ShAmt)));
4187     // (ShAmt == 0) ? X : fshl(X, X, ShAmt) --> fshl(X, X, ShAmt)
4188     // (ShAmt == 0) ? X : fshr(X, X, ShAmt) --> fshr(X, X, ShAmt)
4189     if (match(FalseVal, isRotate) && TrueVal == X && CmpLHS == ShAmt &&
4190         Pred == ICmpInst::ICMP_EQ)
4191       return FalseVal;
4192 
4193     // X == 0 ? abs(X) : -abs(X) --> -abs(X)
4194     // X == 0 ? -abs(X) : abs(X) --> abs(X)
4195     if (match(TrueVal, m_Intrinsic<Intrinsic::abs>(m_Specific(CmpLHS))) &&
4196         match(FalseVal, m_Neg(m_Intrinsic<Intrinsic::abs>(m_Specific(CmpLHS)))))
4197       return FalseVal;
4198     if (match(TrueVal,
4199               m_Neg(m_Intrinsic<Intrinsic::abs>(m_Specific(CmpLHS)))) &&
4200         match(FalseVal, m_Intrinsic<Intrinsic::abs>(m_Specific(CmpLHS))))
4201       return FalseVal;
4202   }
4203 
4204   // Check for other compares that behave like bit test.
4205   if (Value *V = simplifySelectWithFakeICmpEq(CmpLHS, CmpRHS, Pred,
4206                                               TrueVal, FalseVal))
4207     return V;
4208 
4209   // If we have a scalar equality comparison, then we know the value in one of
4210   // the arms of the select. See if substituting this value into the arm and
4211   // simplifying the result yields the same value as the other arm.
4212   // Note that the equivalence/replacement opportunity does not hold for vectors
4213   // because each element of a vector select is chosen independently.
4214   if (Pred == ICmpInst::ICMP_EQ && !CondVal->getType()->isVectorTy()) {
4215     if (simplifyWithOpReplaced(FalseVal, CmpLHS, CmpRHS, Q,
4216                                /* AllowRefinement */ false, MaxRecurse) ==
4217             TrueVal ||
4218         simplifyWithOpReplaced(FalseVal, CmpRHS, CmpLHS, Q,
4219                                /* AllowRefinement */ false, MaxRecurse) ==
4220             TrueVal)
4221       return FalseVal;
4222     if (simplifyWithOpReplaced(TrueVal, CmpLHS, CmpRHS, Q,
4223                                /* AllowRefinement */ true, MaxRecurse) ==
4224             FalseVal ||
4225         simplifyWithOpReplaced(TrueVal, CmpRHS, CmpLHS, Q,
4226                                /* AllowRefinement */ true, MaxRecurse) ==
4227             FalseVal)
4228       return FalseVal;
4229   }
4230 
4231   return nullptr;
4232 }
4233 
4234 /// Try to simplify a select instruction when its condition operand is a
4235 /// floating-point comparison.
4236 static Value *simplifySelectWithFCmp(Value *Cond, Value *T, Value *F,
4237                                      const SimplifyQuery &Q) {
4238   FCmpInst::Predicate Pred;
4239   if (!match(Cond, m_FCmp(Pred, m_Specific(T), m_Specific(F))) &&
4240       !match(Cond, m_FCmp(Pred, m_Specific(F), m_Specific(T))))
4241     return nullptr;
4242 
4243   // This transform is safe if we do not have (do not care about) -0.0 or if
4244   // at least one operand is known to not be -0.0. Otherwise, the select can
4245   // change the sign of a zero operand.
4246   bool HasNoSignedZeros = Q.CxtI && isa<FPMathOperator>(Q.CxtI) &&
4247                           Q.CxtI->hasNoSignedZeros();
4248   const APFloat *C;
4249   if (HasNoSignedZeros || (match(T, m_APFloat(C)) && C->isNonZero()) ||
4250                           (match(F, m_APFloat(C)) && C->isNonZero())) {
4251     // (T == F) ? T : F --> F
4252     // (F == T) ? T : F --> F
4253     if (Pred == FCmpInst::FCMP_OEQ)
4254       return F;
4255 
4256     // (T != F) ? T : F --> T
4257     // (F != T) ? T : F --> T
4258     if (Pred == FCmpInst::FCMP_UNE)
4259       return T;
4260   }
4261 
4262   return nullptr;
4263 }
4264 
4265 /// Given operands for a SelectInst, see if we can fold the result.
4266 /// If not, this returns null.
4267 static Value *SimplifySelectInst(Value *Cond, Value *TrueVal, Value *FalseVal,
4268                                  const SimplifyQuery &Q, unsigned MaxRecurse) {
4269   if (auto *CondC = dyn_cast<Constant>(Cond)) {
4270     if (auto *TrueC = dyn_cast<Constant>(TrueVal))
4271       if (auto *FalseC = dyn_cast<Constant>(FalseVal))
4272         return ConstantFoldSelectInstruction(CondC, TrueC, FalseC);
4273 
4274     // select poison, X, Y -> poison
4275     if (isa<PoisonValue>(CondC))
4276       return PoisonValue::get(TrueVal->getType());
4277 
4278     // select undef, X, Y -> X or Y
4279     if (Q.isUndefValue(CondC))
4280       return isa<Constant>(FalseVal) ? FalseVal : TrueVal;
4281 
4282     // select true,  X, Y --> X
4283     // select false, X, Y --> Y
4284     // For vectors, allow undef/poison elements in the condition to match the
4285     // defined elements, so we can eliminate the select.
4286     if (match(CondC, m_One()))
4287       return TrueVal;
4288     if (match(CondC, m_Zero()))
4289       return FalseVal;
4290   }
4291 
4292   assert(Cond->getType()->isIntOrIntVectorTy(1) &&
4293          "Select must have bool or bool vector condition");
4294   assert(TrueVal->getType() == FalseVal->getType() &&
4295          "Select must have same types for true/false ops");
4296 
4297   if (Cond->getType() == TrueVal->getType()) {
4298     // select i1 Cond, i1 true, i1 false --> i1 Cond
4299     if (match(TrueVal, m_One()) && match(FalseVal, m_ZeroInt()))
4300       return Cond;
4301 
4302     // (X || Y) && (X || !Y) --> X (commuted 8 ways)
4303     Value *X, *Y;
4304     if (match(FalseVal, m_ZeroInt())) {
4305       if (match(Cond, m_c_LogicalOr(m_Value(X), m_Not(m_Value(Y)))) &&
4306           match(TrueVal, m_c_LogicalOr(m_Specific(X), m_Specific(Y))))
4307         return X;
4308       if (match(TrueVal, m_c_LogicalOr(m_Value(X), m_Not(m_Value(Y)))) &&
4309           match(Cond, m_c_LogicalOr(m_Specific(X), m_Specific(Y))))
4310         return X;
4311     }
4312   }
4313 
4314   // select ?, X, X -> X
4315   if (TrueVal == FalseVal)
4316     return TrueVal;
4317 
4318   // If the true or false value is poison, we can fold to the other value.
4319   // If the true or false value is undef, we can fold to the other value as
4320   // long as the other value isn't poison.
4321   // select ?, poison, X -> X
4322   // select ?, undef,  X -> X
4323   if (isa<PoisonValue>(TrueVal) ||
4324       (Q.isUndefValue(TrueVal) &&
4325        isGuaranteedNotToBePoison(FalseVal, Q.AC, Q.CxtI, Q.DT)))
4326     return FalseVal;
4327   // select ?, X, poison -> X
4328   // select ?, X, undef  -> X
4329   if (isa<PoisonValue>(FalseVal) ||
4330       (Q.isUndefValue(FalseVal) &&
4331        isGuaranteedNotToBePoison(TrueVal, Q.AC, Q.CxtI, Q.DT)))
4332     return TrueVal;
4333 
4334   // Deal with partial undef vector constants: select ?, VecC, VecC' --> VecC''
4335   Constant *TrueC, *FalseC;
4336   if (isa<FixedVectorType>(TrueVal->getType()) &&
4337       match(TrueVal, m_Constant(TrueC)) &&
4338       match(FalseVal, m_Constant(FalseC))) {
4339     unsigned NumElts =
4340         cast<FixedVectorType>(TrueC->getType())->getNumElements();
4341     SmallVector<Constant *, 16> NewC;
4342     for (unsigned i = 0; i != NumElts; ++i) {
4343       // Bail out on incomplete vector constants.
4344       Constant *TEltC = TrueC->getAggregateElement(i);
4345       Constant *FEltC = FalseC->getAggregateElement(i);
4346       if (!TEltC || !FEltC)
4347         break;
4348 
4349       // If the elements match (undef or not), that value is the result. If only
4350       // one element is undef, choose the defined element as the safe result.
4351       if (TEltC == FEltC)
4352         NewC.push_back(TEltC);
4353       else if (isa<PoisonValue>(TEltC) ||
4354                (Q.isUndefValue(TEltC) && isGuaranteedNotToBePoison(FEltC)))
4355         NewC.push_back(FEltC);
4356       else if (isa<PoisonValue>(FEltC) ||
4357                (Q.isUndefValue(FEltC) && isGuaranteedNotToBePoison(TEltC)))
4358         NewC.push_back(TEltC);
4359       else
4360         break;
4361     }
4362     if (NewC.size() == NumElts)
4363       return ConstantVector::get(NewC);
4364   }
4365 
4366   if (Value *V =
4367           simplifySelectWithICmpCond(Cond, TrueVal, FalseVal, Q, MaxRecurse))
4368     return V;
4369 
4370   if (Value *V = simplifySelectWithFCmp(Cond, TrueVal, FalseVal, Q))
4371     return V;
4372 
4373   if (Value *V = foldSelectWithBinaryOp(Cond, TrueVal, FalseVal))
4374     return V;
4375 
4376   Optional<bool> Imp = isImpliedByDomCondition(Cond, Q.CxtI, Q.DL);
4377   if (Imp)
4378     return *Imp ? TrueVal : FalseVal;
4379 
4380   return nullptr;
4381 }
4382 
4383 Value *llvm::SimplifySelectInst(Value *Cond, Value *TrueVal, Value *FalseVal,
4384                                 const SimplifyQuery &Q) {
4385   return ::SimplifySelectInst(Cond, TrueVal, FalseVal, Q, RecursionLimit);
4386 }
4387 
4388 /// Given operands for an GetElementPtrInst, see if we can fold the result.
4389 /// If not, this returns null.
4390 static Value *SimplifyGEPInst(Type *SrcTy, ArrayRef<Value *> Ops, bool InBounds,
4391                               const SimplifyQuery &Q, unsigned) {
4392   // The type of the GEP pointer operand.
4393   unsigned AS =
4394       cast<PointerType>(Ops[0]->getType()->getScalarType())->getAddressSpace();
4395 
4396   // getelementptr P -> P.
4397   if (Ops.size() == 1)
4398     return Ops[0];
4399 
4400   // Compute the (pointer) type returned by the GEP instruction.
4401   Type *LastType = GetElementPtrInst::getIndexedType(SrcTy, Ops.slice(1));
4402   Type *GEPTy = PointerType::get(LastType, AS);
4403   for (Value *Op : Ops) {
4404     // If one of the operands is a vector, the result type is a vector of
4405     // pointers. All vector operands must have the same number of elements.
4406     if (VectorType *VT = dyn_cast<VectorType>(Op->getType())) {
4407       GEPTy = VectorType::get(GEPTy, VT->getElementCount());
4408       break;
4409     }
4410   }
4411 
4412   // getelementptr poison, idx -> poison
4413   // getelementptr baseptr, poison -> poison
4414   if (any_of(Ops, [](const auto *V) { return isa<PoisonValue>(V); }))
4415     return PoisonValue::get(GEPTy);
4416 
4417   if (Q.isUndefValue(Ops[0]))
4418     return UndefValue::get(GEPTy);
4419 
4420   bool IsScalableVec =
4421       isa<ScalableVectorType>(SrcTy) || any_of(Ops, [](const Value *V) {
4422         return isa<ScalableVectorType>(V->getType());
4423       });
4424 
4425   if (Ops.size() == 2) {
4426     // getelementptr P, 0 -> P.
4427     if (match(Ops[1], m_Zero()) && Ops[0]->getType() == GEPTy)
4428       return Ops[0];
4429 
4430     Type *Ty = SrcTy;
4431     if (!IsScalableVec && Ty->isSized()) {
4432       Value *P;
4433       uint64_t C;
4434       uint64_t TyAllocSize = Q.DL.getTypeAllocSize(Ty);
4435       // getelementptr P, N -> P if P points to a type of zero size.
4436       if (TyAllocSize == 0 && Ops[0]->getType() == GEPTy)
4437         return Ops[0];
4438 
4439       // The following transforms are only safe if the ptrtoint cast
4440       // doesn't truncate the pointers.
4441       if (Ops[1]->getType()->getScalarSizeInBits() ==
4442           Q.DL.getPointerSizeInBits(AS)) {
4443         auto CanSimplify = [GEPTy, &P, V = Ops[0]]() -> bool {
4444           return P->getType() == GEPTy &&
4445                  getUnderlyingObject(P) == getUnderlyingObject(V);
4446         };
4447         // getelementptr V, (sub P, V) -> P if P points to a type of size 1.
4448         if (TyAllocSize == 1 &&
4449             match(Ops[1], m_Sub(m_PtrToInt(m_Value(P)),
4450                                 m_PtrToInt(m_Specific(Ops[0])))) &&
4451             CanSimplify())
4452           return P;
4453 
4454         // getelementptr V, (ashr (sub P, V), C) -> P if P points to a type of
4455         // size 1 << C.
4456         if (match(Ops[1], m_AShr(m_Sub(m_PtrToInt(m_Value(P)),
4457                                        m_PtrToInt(m_Specific(Ops[0]))),
4458                                  m_ConstantInt(C))) &&
4459             TyAllocSize == 1ULL << C && CanSimplify())
4460           return P;
4461 
4462         // getelementptr V, (sdiv (sub P, V), C) -> P if P points to a type of
4463         // size C.
4464         if (match(Ops[1], m_SDiv(m_Sub(m_PtrToInt(m_Value(P)),
4465                                        m_PtrToInt(m_Specific(Ops[0]))),
4466                                  m_SpecificInt(TyAllocSize))) &&
4467             CanSimplify())
4468           return P;
4469       }
4470     }
4471   }
4472 
4473   if (!IsScalableVec && Q.DL.getTypeAllocSize(LastType) == 1 &&
4474       all_of(Ops.slice(1).drop_back(1),
4475              [](Value *Idx) { return match(Idx, m_Zero()); })) {
4476     unsigned IdxWidth =
4477         Q.DL.getIndexSizeInBits(Ops[0]->getType()->getPointerAddressSpace());
4478     if (Q.DL.getTypeSizeInBits(Ops.back()->getType()) == IdxWidth) {
4479       APInt BasePtrOffset(IdxWidth, 0);
4480       Value *StrippedBasePtr =
4481           Ops[0]->stripAndAccumulateInBoundsConstantOffsets(Q.DL,
4482                                                             BasePtrOffset);
4483 
4484       // Avoid creating inttoptr of zero here: While LLVMs treatment of
4485       // inttoptr is generally conservative, this particular case is folded to
4486       // a null pointer, which will have incorrect provenance.
4487 
4488       // gep (gep V, C), (sub 0, V) -> C
4489       if (match(Ops.back(),
4490                 m_Sub(m_Zero(), m_PtrToInt(m_Specific(StrippedBasePtr)))) &&
4491           !BasePtrOffset.isZero()) {
4492         auto *CI = ConstantInt::get(GEPTy->getContext(), BasePtrOffset);
4493         return ConstantExpr::getIntToPtr(CI, GEPTy);
4494       }
4495       // gep (gep V, C), (xor V, -1) -> C-1
4496       if (match(Ops.back(),
4497                 m_Xor(m_PtrToInt(m_Specific(StrippedBasePtr)), m_AllOnes())) &&
4498           !BasePtrOffset.isOne()) {
4499         auto *CI = ConstantInt::get(GEPTy->getContext(), BasePtrOffset - 1);
4500         return ConstantExpr::getIntToPtr(CI, GEPTy);
4501       }
4502     }
4503   }
4504 
4505   // Check to see if this is constant foldable.
4506   if (!all_of(Ops, [](Value *V) { return isa<Constant>(V); }))
4507     return nullptr;
4508 
4509   auto *CE = ConstantExpr::getGetElementPtr(SrcTy, cast<Constant>(Ops[0]),
4510                                             Ops.slice(1), InBounds);
4511   return ConstantFoldConstant(CE, Q.DL);
4512 }
4513 
4514 Value *llvm::SimplifyGEPInst(Type *SrcTy, ArrayRef<Value *> Ops, bool InBounds,
4515                              const SimplifyQuery &Q) {
4516   return ::SimplifyGEPInst(SrcTy, Ops, InBounds, Q, RecursionLimit);
4517 }
4518 
4519 /// Given operands for an InsertValueInst, see if we can fold the result.
4520 /// If not, this returns null.
4521 static Value *SimplifyInsertValueInst(Value *Agg, Value *Val,
4522                                       ArrayRef<unsigned> Idxs, const SimplifyQuery &Q,
4523                                       unsigned) {
4524   if (Constant *CAgg = dyn_cast<Constant>(Agg))
4525     if (Constant *CVal = dyn_cast<Constant>(Val))
4526       return ConstantFoldInsertValueInstruction(CAgg, CVal, Idxs);
4527 
4528   // insertvalue x, undef, n -> x
4529   if (Q.isUndefValue(Val))
4530     return Agg;
4531 
4532   // insertvalue x, (extractvalue y, n), n
4533   if (ExtractValueInst *EV = dyn_cast<ExtractValueInst>(Val))
4534     if (EV->getAggregateOperand()->getType() == Agg->getType() &&
4535         EV->getIndices() == Idxs) {
4536       // insertvalue undef, (extractvalue y, n), n -> y
4537       if (Q.isUndefValue(Agg))
4538         return EV->getAggregateOperand();
4539 
4540       // insertvalue y, (extractvalue y, n), n -> y
4541       if (Agg == EV->getAggregateOperand())
4542         return Agg;
4543     }
4544 
4545   return nullptr;
4546 }
4547 
4548 Value *llvm::SimplifyInsertValueInst(Value *Agg, Value *Val,
4549                                      ArrayRef<unsigned> Idxs,
4550                                      const SimplifyQuery &Q) {
4551   return ::SimplifyInsertValueInst(Agg, Val, Idxs, Q, RecursionLimit);
4552 }
4553 
4554 Value *llvm::SimplifyInsertElementInst(Value *Vec, Value *Val, Value *Idx,
4555                                        const SimplifyQuery &Q) {
4556   // Try to constant fold.
4557   auto *VecC = dyn_cast<Constant>(Vec);
4558   auto *ValC = dyn_cast<Constant>(Val);
4559   auto *IdxC = dyn_cast<Constant>(Idx);
4560   if (VecC && ValC && IdxC)
4561     return ConstantExpr::getInsertElement(VecC, ValC, IdxC);
4562 
4563   // For fixed-length vector, fold into poison if index is out of bounds.
4564   if (auto *CI = dyn_cast<ConstantInt>(Idx)) {
4565     if (isa<FixedVectorType>(Vec->getType()) &&
4566         CI->uge(cast<FixedVectorType>(Vec->getType())->getNumElements()))
4567       return PoisonValue::get(Vec->getType());
4568   }
4569 
4570   // If index is undef, it might be out of bounds (see above case)
4571   if (Q.isUndefValue(Idx))
4572     return PoisonValue::get(Vec->getType());
4573 
4574   // If the scalar is poison, or it is undef and there is no risk of
4575   // propagating poison from the vector value, simplify to the vector value.
4576   if (isa<PoisonValue>(Val) ||
4577       (Q.isUndefValue(Val) && isGuaranteedNotToBePoison(Vec)))
4578     return Vec;
4579 
4580   // If we are extracting a value from a vector, then inserting it into the same
4581   // place, that's the input vector:
4582   // insertelt Vec, (extractelt Vec, Idx), Idx --> Vec
4583   if (match(Val, m_ExtractElt(m_Specific(Vec), m_Specific(Idx))))
4584     return Vec;
4585 
4586   return nullptr;
4587 }
4588 
4589 /// Given operands for an ExtractValueInst, see if we can fold the result.
4590 /// If not, this returns null.
4591 static Value *SimplifyExtractValueInst(Value *Agg, ArrayRef<unsigned> Idxs,
4592                                        const SimplifyQuery &, unsigned) {
4593   if (auto *CAgg = dyn_cast<Constant>(Agg))
4594     return ConstantFoldExtractValueInstruction(CAgg, Idxs);
4595 
4596   // extractvalue x, (insertvalue y, elt, n), n -> elt
4597   unsigned NumIdxs = Idxs.size();
4598   for (auto *IVI = dyn_cast<InsertValueInst>(Agg); IVI != nullptr;
4599        IVI = dyn_cast<InsertValueInst>(IVI->getAggregateOperand())) {
4600     ArrayRef<unsigned> InsertValueIdxs = IVI->getIndices();
4601     unsigned NumInsertValueIdxs = InsertValueIdxs.size();
4602     unsigned NumCommonIdxs = std::min(NumInsertValueIdxs, NumIdxs);
4603     if (InsertValueIdxs.slice(0, NumCommonIdxs) ==
4604         Idxs.slice(0, NumCommonIdxs)) {
4605       if (NumIdxs == NumInsertValueIdxs)
4606         return IVI->getInsertedValueOperand();
4607       break;
4608     }
4609   }
4610 
4611   return nullptr;
4612 }
4613 
4614 Value *llvm::SimplifyExtractValueInst(Value *Agg, ArrayRef<unsigned> Idxs,
4615                                       const SimplifyQuery &Q) {
4616   return ::SimplifyExtractValueInst(Agg, Idxs, Q, RecursionLimit);
4617 }
4618 
4619 /// Given operands for an ExtractElementInst, see if we can fold the result.
4620 /// If not, this returns null.
4621 static Value *SimplifyExtractElementInst(Value *Vec, Value *Idx,
4622                                          const SimplifyQuery &Q, unsigned) {
4623   auto *VecVTy = cast<VectorType>(Vec->getType());
4624   if (auto *CVec = dyn_cast<Constant>(Vec)) {
4625     if (auto *CIdx = dyn_cast<Constant>(Idx))
4626       return ConstantExpr::getExtractElement(CVec, CIdx);
4627 
4628     if (Q.isUndefValue(Vec))
4629       return UndefValue::get(VecVTy->getElementType());
4630   }
4631 
4632   // An undef extract index can be arbitrarily chosen to be an out-of-range
4633   // index value, which would result in the instruction being poison.
4634   if (Q.isUndefValue(Idx))
4635     return PoisonValue::get(VecVTy->getElementType());
4636 
4637   // If extracting a specified index from the vector, see if we can recursively
4638   // find a previously computed scalar that was inserted into the vector.
4639   if (auto *IdxC = dyn_cast<ConstantInt>(Idx)) {
4640     // For fixed-length vector, fold into undef if index is out of bounds.
4641     unsigned MinNumElts = VecVTy->getElementCount().getKnownMinValue();
4642     if (isa<FixedVectorType>(VecVTy) && IdxC->getValue().uge(MinNumElts))
4643       return PoisonValue::get(VecVTy->getElementType());
4644     // Handle case where an element is extracted from a splat.
4645     if (IdxC->getValue().ult(MinNumElts))
4646       if (auto *Splat = getSplatValue(Vec))
4647         return Splat;
4648     if (Value *Elt = findScalarElement(Vec, IdxC->getZExtValue()))
4649       return Elt;
4650   } else {
4651     // The index is not relevant if our vector is a splat.
4652     if (Value *Splat = getSplatValue(Vec))
4653       return Splat;
4654   }
4655   return nullptr;
4656 }
4657 
4658 Value *llvm::SimplifyExtractElementInst(Value *Vec, Value *Idx,
4659                                         const SimplifyQuery &Q) {
4660   return ::SimplifyExtractElementInst(Vec, Idx, Q, RecursionLimit);
4661 }
4662 
4663 /// See if we can fold the given phi. If not, returns null.
4664 static Value *SimplifyPHINode(PHINode *PN, ArrayRef<Value *> IncomingValues,
4665                               const SimplifyQuery &Q) {
4666   // WARNING: no matter how worthwhile it may seem, we can not perform PHI CSE
4667   //          here, because the PHI we may succeed simplifying to was not
4668   //          def-reachable from the original PHI!
4669 
4670   // If all of the PHI's incoming values are the same then replace the PHI node
4671   // with the common value.
4672   Value *CommonValue = nullptr;
4673   bool HasUndefInput = false;
4674   for (Value *Incoming : IncomingValues) {
4675     // If the incoming value is the phi node itself, it can safely be skipped.
4676     if (Incoming == PN) continue;
4677     if (Q.isUndefValue(Incoming)) {
4678       // Remember that we saw an undef value, but otherwise ignore them.
4679       HasUndefInput = true;
4680       continue;
4681     }
4682     if (CommonValue && Incoming != CommonValue)
4683       return nullptr;  // Not the same, bail out.
4684     CommonValue = Incoming;
4685   }
4686 
4687   // If CommonValue is null then all of the incoming values were either undef or
4688   // equal to the phi node itself.
4689   if (!CommonValue)
4690     return UndefValue::get(PN->getType());
4691 
4692   // If we have a PHI node like phi(X, undef, X), where X is defined by some
4693   // instruction, we cannot return X as the result of the PHI node unless it
4694   // dominates the PHI block.
4695   if (HasUndefInput)
4696     return valueDominatesPHI(CommonValue, PN, Q.DT) ? CommonValue : nullptr;
4697 
4698   return CommonValue;
4699 }
4700 
4701 static Value *SimplifyCastInst(unsigned CastOpc, Value *Op,
4702                                Type *Ty, const SimplifyQuery &Q, unsigned MaxRecurse) {
4703   if (auto *C = dyn_cast<Constant>(Op))
4704     return ConstantFoldCastOperand(CastOpc, C, Ty, Q.DL);
4705 
4706   if (auto *CI = dyn_cast<CastInst>(Op)) {
4707     auto *Src = CI->getOperand(0);
4708     Type *SrcTy = Src->getType();
4709     Type *MidTy = CI->getType();
4710     Type *DstTy = Ty;
4711     if (Src->getType() == Ty) {
4712       auto FirstOp = static_cast<Instruction::CastOps>(CI->getOpcode());
4713       auto SecondOp = static_cast<Instruction::CastOps>(CastOpc);
4714       Type *SrcIntPtrTy =
4715           SrcTy->isPtrOrPtrVectorTy() ? Q.DL.getIntPtrType(SrcTy) : nullptr;
4716       Type *MidIntPtrTy =
4717           MidTy->isPtrOrPtrVectorTy() ? Q.DL.getIntPtrType(MidTy) : nullptr;
4718       Type *DstIntPtrTy =
4719           DstTy->isPtrOrPtrVectorTy() ? Q.DL.getIntPtrType(DstTy) : nullptr;
4720       if (CastInst::isEliminableCastPair(FirstOp, SecondOp, SrcTy, MidTy, DstTy,
4721                                          SrcIntPtrTy, MidIntPtrTy,
4722                                          DstIntPtrTy) == Instruction::BitCast)
4723         return Src;
4724     }
4725   }
4726 
4727   // bitcast x -> x
4728   if (CastOpc == Instruction::BitCast)
4729     if (Op->getType() == Ty)
4730       return Op;
4731 
4732   return nullptr;
4733 }
4734 
4735 Value *llvm::SimplifyCastInst(unsigned CastOpc, Value *Op, Type *Ty,
4736                               const SimplifyQuery &Q) {
4737   return ::SimplifyCastInst(CastOpc, Op, Ty, Q, RecursionLimit);
4738 }
4739 
4740 /// For the given destination element of a shuffle, peek through shuffles to
4741 /// match a root vector source operand that contains that element in the same
4742 /// vector lane (ie, the same mask index), so we can eliminate the shuffle(s).
4743 static Value *foldIdentityShuffles(int DestElt, Value *Op0, Value *Op1,
4744                                    int MaskVal, Value *RootVec,
4745                                    unsigned MaxRecurse) {
4746   if (!MaxRecurse--)
4747     return nullptr;
4748 
4749   // Bail out if any mask value is undefined. That kind of shuffle may be
4750   // simplified further based on demanded bits or other folds.
4751   if (MaskVal == -1)
4752     return nullptr;
4753 
4754   // The mask value chooses which source operand we need to look at next.
4755   int InVecNumElts = cast<FixedVectorType>(Op0->getType())->getNumElements();
4756   int RootElt = MaskVal;
4757   Value *SourceOp = Op0;
4758   if (MaskVal >= InVecNumElts) {
4759     RootElt = MaskVal - InVecNumElts;
4760     SourceOp = Op1;
4761   }
4762 
4763   // If the source operand is a shuffle itself, look through it to find the
4764   // matching root vector.
4765   if (auto *SourceShuf = dyn_cast<ShuffleVectorInst>(SourceOp)) {
4766     return foldIdentityShuffles(
4767         DestElt, SourceShuf->getOperand(0), SourceShuf->getOperand(1),
4768         SourceShuf->getMaskValue(RootElt), RootVec, MaxRecurse);
4769   }
4770 
4771   // TODO: Look through bitcasts? What if the bitcast changes the vector element
4772   // size?
4773 
4774   // The source operand is not a shuffle. Initialize the root vector value for
4775   // this shuffle if that has not been done yet.
4776   if (!RootVec)
4777     RootVec = SourceOp;
4778 
4779   // Give up as soon as a source operand does not match the existing root value.
4780   if (RootVec != SourceOp)
4781     return nullptr;
4782 
4783   // The element must be coming from the same lane in the source vector
4784   // (although it may have crossed lanes in intermediate shuffles).
4785   if (RootElt != DestElt)
4786     return nullptr;
4787 
4788   return RootVec;
4789 }
4790 
4791 static Value *SimplifyShuffleVectorInst(Value *Op0, Value *Op1,
4792                                         ArrayRef<int> Mask, Type *RetTy,
4793                                         const SimplifyQuery &Q,
4794                                         unsigned MaxRecurse) {
4795   if (all_of(Mask, [](int Elem) { return Elem == UndefMaskElem; }))
4796     return UndefValue::get(RetTy);
4797 
4798   auto *InVecTy = cast<VectorType>(Op0->getType());
4799   unsigned MaskNumElts = Mask.size();
4800   ElementCount InVecEltCount = InVecTy->getElementCount();
4801 
4802   bool Scalable = InVecEltCount.isScalable();
4803 
4804   SmallVector<int, 32> Indices;
4805   Indices.assign(Mask.begin(), Mask.end());
4806 
4807   // Canonicalization: If mask does not select elements from an input vector,
4808   // replace that input vector with poison.
4809   if (!Scalable) {
4810     bool MaskSelects0 = false, MaskSelects1 = false;
4811     unsigned InVecNumElts = InVecEltCount.getKnownMinValue();
4812     for (unsigned i = 0; i != MaskNumElts; ++i) {
4813       if (Indices[i] == -1)
4814         continue;
4815       if ((unsigned)Indices[i] < InVecNumElts)
4816         MaskSelects0 = true;
4817       else
4818         MaskSelects1 = true;
4819     }
4820     if (!MaskSelects0)
4821       Op0 = PoisonValue::get(InVecTy);
4822     if (!MaskSelects1)
4823       Op1 = PoisonValue::get(InVecTy);
4824   }
4825 
4826   auto *Op0Const = dyn_cast<Constant>(Op0);
4827   auto *Op1Const = dyn_cast<Constant>(Op1);
4828 
4829   // If all operands are constant, constant fold the shuffle. This
4830   // transformation depends on the value of the mask which is not known at
4831   // compile time for scalable vectors
4832   if (Op0Const && Op1Const)
4833     return ConstantExpr::getShuffleVector(Op0Const, Op1Const, Mask);
4834 
4835   // Canonicalization: if only one input vector is constant, it shall be the
4836   // second one. This transformation depends on the value of the mask which
4837   // is not known at compile time for scalable vectors
4838   if (!Scalable && Op0Const && !Op1Const) {
4839     std::swap(Op0, Op1);
4840     ShuffleVectorInst::commuteShuffleMask(Indices,
4841                                           InVecEltCount.getKnownMinValue());
4842   }
4843 
4844   // A splat of an inserted scalar constant becomes a vector constant:
4845   // shuf (inselt ?, C, IndexC), undef, <IndexC, IndexC...> --> <C, C...>
4846   // NOTE: We may have commuted above, so analyze the updated Indices, not the
4847   //       original mask constant.
4848   // NOTE: This transformation depends on the value of the mask which is not
4849   // known at compile time for scalable vectors
4850   Constant *C;
4851   ConstantInt *IndexC;
4852   if (!Scalable && match(Op0, m_InsertElt(m_Value(), m_Constant(C),
4853                                           m_ConstantInt(IndexC)))) {
4854     // Match a splat shuffle mask of the insert index allowing undef elements.
4855     int InsertIndex = IndexC->getZExtValue();
4856     if (all_of(Indices, [InsertIndex](int MaskElt) {
4857           return MaskElt == InsertIndex || MaskElt == -1;
4858         })) {
4859       assert(isa<UndefValue>(Op1) && "Expected undef operand 1 for splat");
4860 
4861       // Shuffle mask undefs become undefined constant result elements.
4862       SmallVector<Constant *, 16> VecC(MaskNumElts, C);
4863       for (unsigned i = 0; i != MaskNumElts; ++i)
4864         if (Indices[i] == -1)
4865           VecC[i] = UndefValue::get(C->getType());
4866       return ConstantVector::get(VecC);
4867     }
4868   }
4869 
4870   // A shuffle of a splat is always the splat itself. Legal if the shuffle's
4871   // value type is same as the input vectors' type.
4872   if (auto *OpShuf = dyn_cast<ShuffleVectorInst>(Op0))
4873     if (Q.isUndefValue(Op1) && RetTy == InVecTy &&
4874         is_splat(OpShuf->getShuffleMask()))
4875       return Op0;
4876 
4877   // All remaining transformation depend on the value of the mask, which is
4878   // not known at compile time for scalable vectors.
4879   if (Scalable)
4880     return nullptr;
4881 
4882   // Don't fold a shuffle with undef mask elements. This may get folded in a
4883   // better way using demanded bits or other analysis.
4884   // TODO: Should we allow this?
4885   if (is_contained(Indices, -1))
4886     return nullptr;
4887 
4888   // Check if every element of this shuffle can be mapped back to the
4889   // corresponding element of a single root vector. If so, we don't need this
4890   // shuffle. This handles simple identity shuffles as well as chains of
4891   // shuffles that may widen/narrow and/or move elements across lanes and back.
4892   Value *RootVec = nullptr;
4893   for (unsigned i = 0; i != MaskNumElts; ++i) {
4894     // Note that recursion is limited for each vector element, so if any element
4895     // exceeds the limit, this will fail to simplify.
4896     RootVec =
4897         foldIdentityShuffles(i, Op0, Op1, Indices[i], RootVec, MaxRecurse);
4898 
4899     // We can't replace a widening/narrowing shuffle with one of its operands.
4900     if (!RootVec || RootVec->getType() != RetTy)
4901       return nullptr;
4902   }
4903   return RootVec;
4904 }
4905 
4906 /// Given operands for a ShuffleVectorInst, fold the result or return null.
4907 Value *llvm::SimplifyShuffleVectorInst(Value *Op0, Value *Op1,
4908                                        ArrayRef<int> Mask, Type *RetTy,
4909                                        const SimplifyQuery &Q) {
4910   return ::SimplifyShuffleVectorInst(Op0, Op1, Mask, RetTy, Q, RecursionLimit);
4911 }
4912 
4913 static Constant *foldConstant(Instruction::UnaryOps Opcode,
4914                               Value *&Op, const SimplifyQuery &Q) {
4915   if (auto *C = dyn_cast<Constant>(Op))
4916     return ConstantFoldUnaryOpOperand(Opcode, C, Q.DL);
4917   return nullptr;
4918 }
4919 
4920 /// Given the operand for an FNeg, see if we can fold the result.  If not, this
4921 /// returns null.
4922 static Value *simplifyFNegInst(Value *Op, FastMathFlags FMF,
4923                                const SimplifyQuery &Q, unsigned MaxRecurse) {
4924   if (Constant *C = foldConstant(Instruction::FNeg, Op, Q))
4925     return C;
4926 
4927   Value *X;
4928   // fneg (fneg X) ==> X
4929   if (match(Op, m_FNeg(m_Value(X))))
4930     return X;
4931 
4932   return nullptr;
4933 }
4934 
4935 Value *llvm::SimplifyFNegInst(Value *Op, FastMathFlags FMF,
4936                               const SimplifyQuery &Q) {
4937   return ::simplifyFNegInst(Op, FMF, Q, RecursionLimit);
4938 }
4939 
4940 static Constant *propagateNaN(Constant *In) {
4941   // If the input is a vector with undef elements, just return a default NaN.
4942   if (!In->isNaN())
4943     return ConstantFP::getNaN(In->getType());
4944 
4945   // Propagate the existing NaN constant when possible.
4946   // TODO: Should we quiet a signaling NaN?
4947   return In;
4948 }
4949 
4950 /// Perform folds that are common to any floating-point operation. This implies
4951 /// transforms based on poison/undef/NaN because the operation itself makes no
4952 /// difference to the result.
4953 static Constant *simplifyFPOp(ArrayRef<Value *> Ops, FastMathFlags FMF,
4954                               const SimplifyQuery &Q,
4955                               fp::ExceptionBehavior ExBehavior,
4956                               RoundingMode Rounding) {
4957   // Poison is independent of anything else. It always propagates from an
4958   // operand to a math result.
4959   if (any_of(Ops, [](Value *V) { return match(V, m_Poison()); }))
4960     return PoisonValue::get(Ops[0]->getType());
4961 
4962   for (Value *V : Ops) {
4963     bool IsNan = match(V, m_NaN());
4964     bool IsInf = match(V, m_Inf());
4965     bool IsUndef = Q.isUndefValue(V);
4966 
4967     // If this operation has 'nnan' or 'ninf' and at least 1 disallowed operand
4968     // (an undef operand can be chosen to be Nan/Inf), then the result of
4969     // this operation is poison.
4970     if (FMF.noNaNs() && (IsNan || IsUndef))
4971       return PoisonValue::get(V->getType());
4972     if (FMF.noInfs() && (IsInf || IsUndef))
4973       return PoisonValue::get(V->getType());
4974 
4975     if (isDefaultFPEnvironment(ExBehavior, Rounding)) {
4976       if (IsUndef || IsNan)
4977         return propagateNaN(cast<Constant>(V));
4978     } else if (ExBehavior != fp::ebStrict) {
4979       if (IsNan)
4980         return propagateNaN(cast<Constant>(V));
4981     }
4982   }
4983   return nullptr;
4984 }
4985 
4986 // TODO: Move this out to a header file:
4987 static inline bool canIgnoreSNaN(fp::ExceptionBehavior EB, FastMathFlags FMF) {
4988   return (EB == fp::ebIgnore || FMF.noNaNs());
4989 }
4990 
4991 /// Given operands for an FAdd, see if we can fold the result.  If not, this
4992 /// returns null.
4993 static Value *
4994 SimplifyFAddInst(Value *Op0, Value *Op1, FastMathFlags FMF,
4995                  const SimplifyQuery &Q, unsigned MaxRecurse,
4996                  fp::ExceptionBehavior ExBehavior = fp::ebIgnore,
4997                  RoundingMode Rounding = RoundingMode::NearestTiesToEven) {
4998   if (isDefaultFPEnvironment(ExBehavior, Rounding))
4999     if (Constant *C = foldOrCommuteConstant(Instruction::FAdd, Op0, Op1, Q))
5000       return C;
5001 
5002   if (Constant *C = simplifyFPOp({Op0, Op1}, FMF, Q, ExBehavior, Rounding))
5003     return C;
5004 
5005   // fadd X, -0 ==> X
5006   // With strict/constrained FP, we have these possible edge cases that do
5007   // not simplify to Op0:
5008   // fadd SNaN, -0.0 --> QNaN
5009   // fadd +0.0, -0.0 --> -0.0 (but only with round toward negative)
5010   if (canIgnoreSNaN(ExBehavior, FMF) &&
5011       (!canRoundingModeBe(Rounding, RoundingMode::TowardNegative) ||
5012        FMF.noSignedZeros()))
5013     if (match(Op1, m_NegZeroFP()))
5014       return Op0;
5015 
5016   // fadd X, 0 ==> X, when we know X is not -0
5017   if (canIgnoreSNaN(ExBehavior, FMF))
5018     if (match(Op1, m_PosZeroFP()) &&
5019         (FMF.noSignedZeros() || CannotBeNegativeZero(Op0, Q.TLI)))
5020       return Op0;
5021 
5022   if (!isDefaultFPEnvironment(ExBehavior, Rounding))
5023     return nullptr;
5024 
5025   // With nnan: -X + X --> 0.0 (and commuted variant)
5026   // We don't have to explicitly exclude infinities (ninf): INF + -INF == NaN.
5027   // Negative zeros are allowed because we always end up with positive zero:
5028   // X = -0.0: (-0.0 - (-0.0)) + (-0.0) == ( 0.0) + (-0.0) == 0.0
5029   // X = -0.0: ( 0.0 - (-0.0)) + (-0.0) == ( 0.0) + (-0.0) == 0.0
5030   // X =  0.0: (-0.0 - ( 0.0)) + ( 0.0) == (-0.0) + ( 0.0) == 0.0
5031   // X =  0.0: ( 0.0 - ( 0.0)) + ( 0.0) == ( 0.0) + ( 0.0) == 0.0
5032   if (FMF.noNaNs()) {
5033     if (match(Op0, m_FSub(m_AnyZeroFP(), m_Specific(Op1))) ||
5034         match(Op1, m_FSub(m_AnyZeroFP(), m_Specific(Op0))))
5035       return ConstantFP::getNullValue(Op0->getType());
5036 
5037     if (match(Op0, m_FNeg(m_Specific(Op1))) ||
5038         match(Op1, m_FNeg(m_Specific(Op0))))
5039       return ConstantFP::getNullValue(Op0->getType());
5040   }
5041 
5042   // (X - Y) + Y --> X
5043   // Y + (X - Y) --> X
5044   Value *X;
5045   if (FMF.noSignedZeros() && FMF.allowReassoc() &&
5046       (match(Op0, m_FSub(m_Value(X), m_Specific(Op1))) ||
5047        match(Op1, m_FSub(m_Value(X), m_Specific(Op0)))))
5048     return X;
5049 
5050   return nullptr;
5051 }
5052 
5053 /// Given operands for an FSub, see if we can fold the result.  If not, this
5054 /// returns null.
5055 static Value *
5056 SimplifyFSubInst(Value *Op0, Value *Op1, FastMathFlags FMF,
5057                  const SimplifyQuery &Q, unsigned MaxRecurse,
5058                  fp::ExceptionBehavior ExBehavior = fp::ebIgnore,
5059                  RoundingMode Rounding = RoundingMode::NearestTiesToEven) {
5060   if (isDefaultFPEnvironment(ExBehavior, Rounding))
5061     if (Constant *C = foldOrCommuteConstant(Instruction::FSub, Op0, Op1, Q))
5062       return C;
5063 
5064   if (Constant *C = simplifyFPOp({Op0, Op1}, FMF, Q, ExBehavior, Rounding))
5065     return C;
5066 
5067   if (!isDefaultFPEnvironment(ExBehavior, Rounding))
5068     return nullptr;
5069 
5070   // fsub X, +0 ==> X
5071   if (match(Op1, m_PosZeroFP()))
5072     return Op0;
5073 
5074   // fsub X, -0 ==> X, when we know X is not -0
5075   if (match(Op1, m_NegZeroFP()) &&
5076       (FMF.noSignedZeros() || CannotBeNegativeZero(Op0, Q.TLI)))
5077     return Op0;
5078 
5079   // fsub -0.0, (fsub -0.0, X) ==> X
5080   // fsub -0.0, (fneg X) ==> X
5081   Value *X;
5082   if (match(Op0, m_NegZeroFP()) &&
5083       match(Op1, m_FNeg(m_Value(X))))
5084     return X;
5085 
5086   // fsub 0.0, (fsub 0.0, X) ==> X if signed zeros are ignored.
5087   // fsub 0.0, (fneg X) ==> X if signed zeros are ignored.
5088   if (FMF.noSignedZeros() && match(Op0, m_AnyZeroFP()) &&
5089       (match(Op1, m_FSub(m_AnyZeroFP(), m_Value(X))) ||
5090        match(Op1, m_FNeg(m_Value(X)))))
5091     return X;
5092 
5093   // fsub nnan x, x ==> 0.0
5094   if (FMF.noNaNs() && Op0 == Op1)
5095     return Constant::getNullValue(Op0->getType());
5096 
5097   // Y - (Y - X) --> X
5098   // (X + Y) - Y --> X
5099   if (FMF.noSignedZeros() && FMF.allowReassoc() &&
5100       (match(Op1, m_FSub(m_Specific(Op0), m_Value(X))) ||
5101        match(Op0, m_c_FAdd(m_Specific(Op1), m_Value(X)))))
5102     return X;
5103 
5104   return nullptr;
5105 }
5106 
5107 static Value *SimplifyFMAFMul(Value *Op0, Value *Op1, FastMathFlags FMF,
5108                               const SimplifyQuery &Q, unsigned MaxRecurse,
5109                               fp::ExceptionBehavior ExBehavior,
5110                               RoundingMode Rounding) {
5111   if (Constant *C = simplifyFPOp({Op0, Op1}, FMF, Q, ExBehavior, Rounding))
5112     return C;
5113 
5114   if (!isDefaultFPEnvironment(ExBehavior, Rounding))
5115     return nullptr;
5116 
5117   // fmul X, 1.0 ==> X
5118   if (match(Op1, m_FPOne()))
5119     return Op0;
5120 
5121   // fmul 1.0, X ==> X
5122   if (match(Op0, m_FPOne()))
5123     return Op1;
5124 
5125   // fmul nnan nsz X, 0 ==> 0
5126   if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op1, m_AnyZeroFP()))
5127     return ConstantFP::getNullValue(Op0->getType());
5128 
5129   // fmul nnan nsz 0, X ==> 0
5130   if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op0, m_AnyZeroFP()))
5131     return ConstantFP::getNullValue(Op1->getType());
5132 
5133   // sqrt(X) * sqrt(X) --> X, if we can:
5134   // 1. Remove the intermediate rounding (reassociate).
5135   // 2. Ignore non-zero negative numbers because sqrt would produce NAN.
5136   // 3. Ignore -0.0 because sqrt(-0.0) == -0.0, but -0.0 * -0.0 == 0.0.
5137   Value *X;
5138   if (Op0 == Op1 && match(Op0, m_Intrinsic<Intrinsic::sqrt>(m_Value(X))) &&
5139       FMF.allowReassoc() && FMF.noNaNs() && FMF.noSignedZeros())
5140     return X;
5141 
5142   return nullptr;
5143 }
5144 
5145 /// Given the operands for an FMul, see if we can fold the result
5146 static Value *
5147 SimplifyFMulInst(Value *Op0, Value *Op1, FastMathFlags FMF,
5148                  const SimplifyQuery &Q, unsigned MaxRecurse,
5149                  fp::ExceptionBehavior ExBehavior = fp::ebIgnore,
5150                  RoundingMode Rounding = RoundingMode::NearestTiesToEven) {
5151   if (isDefaultFPEnvironment(ExBehavior, Rounding))
5152     if (Constant *C = foldOrCommuteConstant(Instruction::FMul, Op0, Op1, Q))
5153       return C;
5154 
5155   // Now apply simplifications that do not require rounding.
5156   return SimplifyFMAFMul(Op0, Op1, FMF, Q, MaxRecurse, ExBehavior, Rounding);
5157 }
5158 
5159 Value *llvm::SimplifyFAddInst(Value *Op0, Value *Op1, FastMathFlags FMF,
5160                               const SimplifyQuery &Q,
5161                               fp::ExceptionBehavior ExBehavior,
5162                               RoundingMode Rounding) {
5163   return ::SimplifyFAddInst(Op0, Op1, FMF, Q, RecursionLimit, ExBehavior,
5164                             Rounding);
5165 }
5166 
5167 Value *llvm::SimplifyFSubInst(Value *Op0, Value *Op1, FastMathFlags FMF,
5168                               const SimplifyQuery &Q,
5169                               fp::ExceptionBehavior ExBehavior,
5170                               RoundingMode Rounding) {
5171   return ::SimplifyFSubInst(Op0, Op1, FMF, Q, RecursionLimit, ExBehavior,
5172                             Rounding);
5173 }
5174 
5175 Value *llvm::SimplifyFMulInst(Value *Op0, Value *Op1, FastMathFlags FMF,
5176                               const SimplifyQuery &Q,
5177                               fp::ExceptionBehavior ExBehavior,
5178                               RoundingMode Rounding) {
5179   return ::SimplifyFMulInst(Op0, Op1, FMF, Q, RecursionLimit, ExBehavior,
5180                             Rounding);
5181 }
5182 
5183 Value *llvm::SimplifyFMAFMul(Value *Op0, Value *Op1, FastMathFlags FMF,
5184                              const SimplifyQuery &Q,
5185                              fp::ExceptionBehavior ExBehavior,
5186                              RoundingMode Rounding) {
5187   return ::SimplifyFMAFMul(Op0, Op1, FMF, Q, RecursionLimit, ExBehavior,
5188                            Rounding);
5189 }
5190 
5191 static Value *
5192 SimplifyFDivInst(Value *Op0, Value *Op1, FastMathFlags FMF,
5193                  const SimplifyQuery &Q, unsigned,
5194                  fp::ExceptionBehavior ExBehavior = fp::ebIgnore,
5195                  RoundingMode Rounding = RoundingMode::NearestTiesToEven) {
5196   if (isDefaultFPEnvironment(ExBehavior, Rounding))
5197     if (Constant *C = foldOrCommuteConstant(Instruction::FDiv, Op0, Op1, Q))
5198       return C;
5199 
5200   if (Constant *C = simplifyFPOp({Op0, Op1}, FMF, Q, ExBehavior, Rounding))
5201     return C;
5202 
5203   if (!isDefaultFPEnvironment(ExBehavior, Rounding))
5204     return nullptr;
5205 
5206   // X / 1.0 -> X
5207   if (match(Op1, m_FPOne()))
5208     return Op0;
5209 
5210   // 0 / X -> 0
5211   // Requires that NaNs are off (X could be zero) and signed zeroes are
5212   // ignored (X could be positive or negative, so the output sign is unknown).
5213   if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op0, m_AnyZeroFP()))
5214     return ConstantFP::getNullValue(Op0->getType());
5215 
5216   if (FMF.noNaNs()) {
5217     // X / X -> 1.0 is legal when NaNs are ignored.
5218     // We can ignore infinities because INF/INF is NaN.
5219     if (Op0 == Op1)
5220       return ConstantFP::get(Op0->getType(), 1.0);
5221 
5222     // (X * Y) / Y --> X if we can reassociate to the above form.
5223     Value *X;
5224     if (FMF.allowReassoc() && match(Op0, m_c_FMul(m_Value(X), m_Specific(Op1))))
5225       return X;
5226 
5227     // -X /  X -> -1.0 and
5228     //  X / -X -> -1.0 are legal when NaNs are ignored.
5229     // We can ignore signed zeros because +-0.0/+-0.0 is NaN and ignored.
5230     if (match(Op0, m_FNegNSZ(m_Specific(Op1))) ||
5231         match(Op1, m_FNegNSZ(m_Specific(Op0))))
5232       return ConstantFP::get(Op0->getType(), -1.0);
5233   }
5234 
5235   return nullptr;
5236 }
5237 
5238 Value *llvm::SimplifyFDivInst(Value *Op0, Value *Op1, FastMathFlags FMF,
5239                               const SimplifyQuery &Q,
5240                               fp::ExceptionBehavior ExBehavior,
5241                               RoundingMode Rounding) {
5242   return ::SimplifyFDivInst(Op0, Op1, FMF, Q, RecursionLimit, ExBehavior,
5243                             Rounding);
5244 }
5245 
5246 static Value *
5247 SimplifyFRemInst(Value *Op0, Value *Op1, FastMathFlags FMF,
5248                  const SimplifyQuery &Q, unsigned,
5249                  fp::ExceptionBehavior ExBehavior = fp::ebIgnore,
5250                  RoundingMode Rounding = RoundingMode::NearestTiesToEven) {
5251   if (isDefaultFPEnvironment(ExBehavior, Rounding))
5252     if (Constant *C = foldOrCommuteConstant(Instruction::FRem, Op0, Op1, Q))
5253       return C;
5254 
5255   if (Constant *C = simplifyFPOp({Op0, Op1}, FMF, Q, ExBehavior, Rounding))
5256     return C;
5257 
5258   if (!isDefaultFPEnvironment(ExBehavior, Rounding))
5259     return nullptr;
5260 
5261   // Unlike fdiv, the result of frem always matches the sign of the dividend.
5262   // The constant match may include undef elements in a vector, so return a full
5263   // zero constant as the result.
5264   if (FMF.noNaNs()) {
5265     // +0 % X -> 0
5266     if (match(Op0, m_PosZeroFP()))
5267       return ConstantFP::getNullValue(Op0->getType());
5268     // -0 % X -> -0
5269     if (match(Op0, m_NegZeroFP()))
5270       return ConstantFP::getNegativeZero(Op0->getType());
5271   }
5272 
5273   return nullptr;
5274 }
5275 
5276 Value *llvm::SimplifyFRemInst(Value *Op0, Value *Op1, FastMathFlags FMF,
5277                               const SimplifyQuery &Q,
5278                               fp::ExceptionBehavior ExBehavior,
5279                               RoundingMode Rounding) {
5280   return ::SimplifyFRemInst(Op0, Op1, FMF, Q, RecursionLimit, ExBehavior,
5281                             Rounding);
5282 }
5283 
5284 //=== Helper functions for higher up the class hierarchy.
5285 
5286 /// Given the operand for a UnaryOperator, see if we can fold the result.
5287 /// If not, this returns null.
5288 static Value *simplifyUnOp(unsigned Opcode, Value *Op, const SimplifyQuery &Q,
5289                            unsigned MaxRecurse) {
5290   switch (Opcode) {
5291   case Instruction::FNeg:
5292     return simplifyFNegInst(Op, FastMathFlags(), Q, MaxRecurse);
5293   default:
5294     llvm_unreachable("Unexpected opcode");
5295   }
5296 }
5297 
5298 /// Given the operand for a UnaryOperator, see if we can fold the result.
5299 /// If not, this returns null.
5300 /// Try to use FastMathFlags when folding the result.
5301 static Value *simplifyFPUnOp(unsigned Opcode, Value *Op,
5302                              const FastMathFlags &FMF,
5303                              const SimplifyQuery &Q, unsigned MaxRecurse) {
5304   switch (Opcode) {
5305   case Instruction::FNeg:
5306     return simplifyFNegInst(Op, FMF, Q, MaxRecurse);
5307   default:
5308     return simplifyUnOp(Opcode, Op, Q, MaxRecurse);
5309   }
5310 }
5311 
5312 Value *llvm::SimplifyUnOp(unsigned Opcode, Value *Op, const SimplifyQuery &Q) {
5313   return ::simplifyUnOp(Opcode, Op, Q, RecursionLimit);
5314 }
5315 
5316 Value *llvm::SimplifyUnOp(unsigned Opcode, Value *Op, FastMathFlags FMF,
5317                           const SimplifyQuery &Q) {
5318   return ::simplifyFPUnOp(Opcode, Op, FMF, Q, RecursionLimit);
5319 }
5320 
5321 /// Given operands for a BinaryOperator, see if we can fold the result.
5322 /// If not, this returns null.
5323 static Value *SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS,
5324                             const SimplifyQuery &Q, unsigned MaxRecurse) {
5325   switch (Opcode) {
5326   case Instruction::Add:
5327     return SimplifyAddInst(LHS, RHS, false, false, Q, MaxRecurse);
5328   case Instruction::Sub:
5329     return SimplifySubInst(LHS, RHS, false, false, Q, MaxRecurse);
5330   case Instruction::Mul:
5331     return SimplifyMulInst(LHS, RHS, Q, MaxRecurse);
5332   case Instruction::SDiv:
5333     return SimplifySDivInst(LHS, RHS, Q, MaxRecurse);
5334   case Instruction::UDiv:
5335     return SimplifyUDivInst(LHS, RHS, Q, MaxRecurse);
5336   case Instruction::SRem:
5337     return SimplifySRemInst(LHS, RHS, Q, MaxRecurse);
5338   case Instruction::URem:
5339     return SimplifyURemInst(LHS, RHS, Q, MaxRecurse);
5340   case Instruction::Shl:
5341     return SimplifyShlInst(LHS, RHS, false, false, Q, MaxRecurse);
5342   case Instruction::LShr:
5343     return SimplifyLShrInst(LHS, RHS, false, Q, MaxRecurse);
5344   case Instruction::AShr:
5345     return SimplifyAShrInst(LHS, RHS, false, Q, MaxRecurse);
5346   case Instruction::And:
5347     return SimplifyAndInst(LHS, RHS, Q, MaxRecurse);
5348   case Instruction::Or:
5349     return SimplifyOrInst(LHS, RHS, Q, MaxRecurse);
5350   case Instruction::Xor:
5351     return SimplifyXorInst(LHS, RHS, Q, MaxRecurse);
5352   case Instruction::FAdd:
5353     return SimplifyFAddInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse);
5354   case Instruction::FSub:
5355     return SimplifyFSubInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse);
5356   case Instruction::FMul:
5357     return SimplifyFMulInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse);
5358   case Instruction::FDiv:
5359     return SimplifyFDivInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse);
5360   case Instruction::FRem:
5361     return SimplifyFRemInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse);
5362   default:
5363     llvm_unreachable("Unexpected opcode");
5364   }
5365 }
5366 
5367 /// Given operands for a BinaryOperator, see if we can fold the result.
5368 /// If not, this returns null.
5369 /// Try to use FastMathFlags when folding the result.
5370 static Value *SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS,
5371                             const FastMathFlags &FMF, const SimplifyQuery &Q,
5372                             unsigned MaxRecurse) {
5373   switch (Opcode) {
5374   case Instruction::FAdd:
5375     return SimplifyFAddInst(LHS, RHS, FMF, Q, MaxRecurse);
5376   case Instruction::FSub:
5377     return SimplifyFSubInst(LHS, RHS, FMF, Q, MaxRecurse);
5378   case Instruction::FMul:
5379     return SimplifyFMulInst(LHS, RHS, FMF, Q, MaxRecurse);
5380   case Instruction::FDiv:
5381     return SimplifyFDivInst(LHS, RHS, FMF, Q, MaxRecurse);
5382   default:
5383     return SimplifyBinOp(Opcode, LHS, RHS, Q, MaxRecurse);
5384   }
5385 }
5386 
5387 Value *llvm::SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS,
5388                            const SimplifyQuery &Q) {
5389   return ::SimplifyBinOp(Opcode, LHS, RHS, Q, RecursionLimit);
5390 }
5391 
5392 Value *llvm::SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS,
5393                            FastMathFlags FMF, const SimplifyQuery &Q) {
5394   return ::SimplifyBinOp(Opcode, LHS, RHS, FMF, Q, RecursionLimit);
5395 }
5396 
5397 /// Given operands for a CmpInst, see if we can fold the result.
5398 static Value *SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
5399                               const SimplifyQuery &Q, unsigned MaxRecurse) {
5400   if (CmpInst::isIntPredicate((CmpInst::Predicate)Predicate))
5401     return SimplifyICmpInst(Predicate, LHS, RHS, Q, MaxRecurse);
5402   return SimplifyFCmpInst(Predicate, LHS, RHS, FastMathFlags(), Q, MaxRecurse);
5403 }
5404 
5405 Value *llvm::SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
5406                              const SimplifyQuery &Q) {
5407   return ::SimplifyCmpInst(Predicate, LHS, RHS, Q, RecursionLimit);
5408 }
5409 
5410 static bool IsIdempotent(Intrinsic::ID ID) {
5411   switch (ID) {
5412   default: return false;
5413 
5414   // Unary idempotent: f(f(x)) = f(x)
5415   case Intrinsic::fabs:
5416   case Intrinsic::floor:
5417   case Intrinsic::ceil:
5418   case Intrinsic::trunc:
5419   case Intrinsic::rint:
5420   case Intrinsic::nearbyint:
5421   case Intrinsic::round:
5422   case Intrinsic::roundeven:
5423   case Intrinsic::canonicalize:
5424     return true;
5425   }
5426 }
5427 
5428 static Value *SimplifyRelativeLoad(Constant *Ptr, Constant *Offset,
5429                                    const DataLayout &DL) {
5430   GlobalValue *PtrSym;
5431   APInt PtrOffset;
5432   if (!IsConstantOffsetFromGlobal(Ptr, PtrSym, PtrOffset, DL))
5433     return nullptr;
5434 
5435   Type *Int8PtrTy = Type::getInt8PtrTy(Ptr->getContext());
5436   Type *Int32Ty = Type::getInt32Ty(Ptr->getContext());
5437   Type *Int32PtrTy = Int32Ty->getPointerTo();
5438   Type *Int64Ty = Type::getInt64Ty(Ptr->getContext());
5439 
5440   auto *OffsetConstInt = dyn_cast<ConstantInt>(Offset);
5441   if (!OffsetConstInt || OffsetConstInt->getType()->getBitWidth() > 64)
5442     return nullptr;
5443 
5444   uint64_t OffsetInt = OffsetConstInt->getSExtValue();
5445   if (OffsetInt % 4 != 0)
5446     return nullptr;
5447 
5448   Constant *C = ConstantExpr::getGetElementPtr(
5449       Int32Ty, ConstantExpr::getBitCast(Ptr, Int32PtrTy),
5450       ConstantInt::get(Int64Ty, OffsetInt / 4));
5451   Constant *Loaded = ConstantFoldLoadFromConstPtr(C, Int32Ty, DL);
5452   if (!Loaded)
5453     return nullptr;
5454 
5455   auto *LoadedCE = dyn_cast<ConstantExpr>(Loaded);
5456   if (!LoadedCE)
5457     return nullptr;
5458 
5459   if (LoadedCE->getOpcode() == Instruction::Trunc) {
5460     LoadedCE = dyn_cast<ConstantExpr>(LoadedCE->getOperand(0));
5461     if (!LoadedCE)
5462       return nullptr;
5463   }
5464 
5465   if (LoadedCE->getOpcode() != Instruction::Sub)
5466     return nullptr;
5467 
5468   auto *LoadedLHS = dyn_cast<ConstantExpr>(LoadedCE->getOperand(0));
5469   if (!LoadedLHS || LoadedLHS->getOpcode() != Instruction::PtrToInt)
5470     return nullptr;
5471   auto *LoadedLHSPtr = LoadedLHS->getOperand(0);
5472 
5473   Constant *LoadedRHS = LoadedCE->getOperand(1);
5474   GlobalValue *LoadedRHSSym;
5475   APInt LoadedRHSOffset;
5476   if (!IsConstantOffsetFromGlobal(LoadedRHS, LoadedRHSSym, LoadedRHSOffset,
5477                                   DL) ||
5478       PtrSym != LoadedRHSSym || PtrOffset != LoadedRHSOffset)
5479     return nullptr;
5480 
5481   return ConstantExpr::getBitCast(LoadedLHSPtr, Int8PtrTy);
5482 }
5483 
5484 static Value *simplifyUnaryIntrinsic(Function *F, Value *Op0,
5485                                      const SimplifyQuery &Q) {
5486   // Idempotent functions return the same result when called repeatedly.
5487   Intrinsic::ID IID = F->getIntrinsicID();
5488   if (IsIdempotent(IID))
5489     if (auto *II = dyn_cast<IntrinsicInst>(Op0))
5490       if (II->getIntrinsicID() == IID)
5491         return II;
5492 
5493   Value *X;
5494   switch (IID) {
5495   case Intrinsic::fabs:
5496     if (SignBitMustBeZero(Op0, Q.TLI)) return Op0;
5497     break;
5498   case Intrinsic::bswap:
5499     // bswap(bswap(x)) -> x
5500     if (match(Op0, m_BSwap(m_Value(X)))) return X;
5501     break;
5502   case Intrinsic::bitreverse:
5503     // bitreverse(bitreverse(x)) -> x
5504     if (match(Op0, m_BitReverse(m_Value(X)))) return X;
5505     break;
5506   case Intrinsic::ctpop: {
5507     // If everything but the lowest bit is zero, that bit is the pop-count. Ex:
5508     // ctpop(and X, 1) --> and X, 1
5509     unsigned BitWidth = Op0->getType()->getScalarSizeInBits();
5510     if (MaskedValueIsZero(Op0, APInt::getHighBitsSet(BitWidth, BitWidth - 1),
5511                           Q.DL, 0, Q.AC, Q.CxtI, Q.DT))
5512       return Op0;
5513     break;
5514   }
5515   case Intrinsic::exp:
5516     // exp(log(x)) -> x
5517     if (Q.CxtI->hasAllowReassoc() &&
5518         match(Op0, m_Intrinsic<Intrinsic::log>(m_Value(X)))) return X;
5519     break;
5520   case Intrinsic::exp2:
5521     // exp2(log2(x)) -> x
5522     if (Q.CxtI->hasAllowReassoc() &&
5523         match(Op0, m_Intrinsic<Intrinsic::log2>(m_Value(X)))) return X;
5524     break;
5525   case Intrinsic::log:
5526     // log(exp(x)) -> x
5527     if (Q.CxtI->hasAllowReassoc() &&
5528         match(Op0, m_Intrinsic<Intrinsic::exp>(m_Value(X)))) return X;
5529     break;
5530   case Intrinsic::log2:
5531     // log2(exp2(x)) -> x
5532     if (Q.CxtI->hasAllowReassoc() &&
5533         (match(Op0, m_Intrinsic<Intrinsic::exp2>(m_Value(X))) ||
5534          match(Op0, m_Intrinsic<Intrinsic::pow>(m_SpecificFP(2.0),
5535                                                 m_Value(X))))) return X;
5536     break;
5537   case Intrinsic::log10:
5538     // log10(pow(10.0, x)) -> x
5539     if (Q.CxtI->hasAllowReassoc() &&
5540         match(Op0, m_Intrinsic<Intrinsic::pow>(m_SpecificFP(10.0),
5541                                                m_Value(X)))) return X;
5542     break;
5543   case Intrinsic::floor:
5544   case Intrinsic::trunc:
5545   case Intrinsic::ceil:
5546   case Intrinsic::round:
5547   case Intrinsic::roundeven:
5548   case Intrinsic::nearbyint:
5549   case Intrinsic::rint: {
5550     // floor (sitofp x) -> sitofp x
5551     // floor (uitofp x) -> uitofp x
5552     //
5553     // Converting from int always results in a finite integral number or
5554     // infinity. For either of those inputs, these rounding functions always
5555     // return the same value, so the rounding can be eliminated.
5556     if (match(Op0, m_SIToFP(m_Value())) || match(Op0, m_UIToFP(m_Value())))
5557       return Op0;
5558     break;
5559   }
5560   case Intrinsic::experimental_vector_reverse:
5561     // experimental.vector.reverse(experimental.vector.reverse(x)) -> x
5562     if (match(Op0,
5563               m_Intrinsic<Intrinsic::experimental_vector_reverse>(m_Value(X))))
5564       return X;
5565     // experimental.vector.reverse(splat(X)) -> splat(X)
5566     if (isSplatValue(Op0))
5567       return Op0;
5568     break;
5569   default:
5570     break;
5571   }
5572 
5573   return nullptr;
5574 }
5575 
5576 static APInt getMaxMinLimit(Intrinsic::ID IID, unsigned BitWidth) {
5577   switch (IID) {
5578   case Intrinsic::smax: return APInt::getSignedMaxValue(BitWidth);
5579   case Intrinsic::smin: return APInt::getSignedMinValue(BitWidth);
5580   case Intrinsic::umax: return APInt::getMaxValue(BitWidth);
5581   case Intrinsic::umin: return APInt::getMinValue(BitWidth);
5582   default: llvm_unreachable("Unexpected intrinsic");
5583   }
5584 }
5585 
5586 static ICmpInst::Predicate getMaxMinPredicate(Intrinsic::ID IID) {
5587   switch (IID) {
5588   case Intrinsic::smax: return ICmpInst::ICMP_SGE;
5589   case Intrinsic::smin: return ICmpInst::ICMP_SLE;
5590   case Intrinsic::umax: return ICmpInst::ICMP_UGE;
5591   case Intrinsic::umin: return ICmpInst::ICMP_ULE;
5592   default: llvm_unreachable("Unexpected intrinsic");
5593   }
5594 }
5595 
5596 /// Given a min/max intrinsic, see if it can be removed based on having an
5597 /// operand that is another min/max intrinsic with shared operand(s). The caller
5598 /// is expected to swap the operand arguments to handle commutation.
5599 static Value *foldMinMaxSharedOp(Intrinsic::ID IID, Value *Op0, Value *Op1) {
5600   Value *X, *Y;
5601   if (!match(Op0, m_MaxOrMin(m_Value(X), m_Value(Y))))
5602     return nullptr;
5603 
5604   auto *MM0 = dyn_cast<IntrinsicInst>(Op0);
5605   if (!MM0)
5606     return nullptr;
5607   Intrinsic::ID IID0 = MM0->getIntrinsicID();
5608 
5609   if (Op1 == X || Op1 == Y ||
5610       match(Op1, m_c_MaxOrMin(m_Specific(X), m_Specific(Y)))) {
5611     // max (max X, Y), X --> max X, Y
5612     if (IID0 == IID)
5613       return MM0;
5614     // max (min X, Y), X --> X
5615     if (IID0 == getInverseMinMaxIntrinsic(IID))
5616       return Op1;
5617   }
5618   return nullptr;
5619 }
5620 
5621 static Value *simplifyBinaryIntrinsic(Function *F, Value *Op0, Value *Op1,
5622                                       const SimplifyQuery &Q) {
5623   Intrinsic::ID IID = F->getIntrinsicID();
5624   Type *ReturnType = F->getReturnType();
5625   unsigned BitWidth = ReturnType->getScalarSizeInBits();
5626   switch (IID) {
5627   case Intrinsic::abs:
5628     // abs(abs(x)) -> abs(x). We don't need to worry about the nsw arg here.
5629     // It is always ok to pick the earlier abs. We'll just lose nsw if its only
5630     // on the outer abs.
5631     if (match(Op0, m_Intrinsic<Intrinsic::abs>(m_Value(), m_Value())))
5632       return Op0;
5633     break;
5634 
5635   case Intrinsic::cttz: {
5636     Value *X;
5637     if (match(Op0, m_Shl(m_One(), m_Value(X))))
5638       return X;
5639     break;
5640   }
5641   case Intrinsic::ctlz: {
5642     Value *X;
5643     if (match(Op0, m_LShr(m_Negative(), m_Value(X))))
5644       return X;
5645     if (match(Op0, m_AShr(m_Negative(), m_Value())))
5646       return Constant::getNullValue(ReturnType);
5647     break;
5648   }
5649   case Intrinsic::smax:
5650   case Intrinsic::smin:
5651   case Intrinsic::umax:
5652   case Intrinsic::umin: {
5653     // If the arguments are the same, this is a no-op.
5654     if (Op0 == Op1)
5655       return Op0;
5656 
5657     // Canonicalize constant operand as Op1.
5658     if (isa<Constant>(Op0))
5659       std::swap(Op0, Op1);
5660 
5661     // Assume undef is the limit value.
5662     if (Q.isUndefValue(Op1))
5663       return ConstantInt::get(ReturnType, getMaxMinLimit(IID, BitWidth));
5664 
5665     const APInt *C;
5666     if (match(Op1, m_APIntAllowUndef(C))) {
5667       // Clamp to limit value. For example:
5668       // umax(i8 %x, i8 255) --> 255
5669       if (*C == getMaxMinLimit(IID, BitWidth))
5670         return ConstantInt::get(ReturnType, *C);
5671 
5672       // If the constant op is the opposite of the limit value, the other must
5673       // be larger/smaller or equal. For example:
5674       // umin(i8 %x, i8 255) --> %x
5675       if (*C == getMaxMinLimit(getInverseMinMaxIntrinsic(IID), BitWidth))
5676         return Op0;
5677 
5678       // Remove nested call if constant operands allow it. Example:
5679       // max (max X, 7), 5 -> max X, 7
5680       auto *MinMax0 = dyn_cast<IntrinsicInst>(Op0);
5681       if (MinMax0 && MinMax0->getIntrinsicID() == IID) {
5682         // TODO: loosen undef/splat restrictions for vector constants.
5683         Value *M00 = MinMax0->getOperand(0), *M01 = MinMax0->getOperand(1);
5684         const APInt *InnerC;
5685         if ((match(M00, m_APInt(InnerC)) || match(M01, m_APInt(InnerC))) &&
5686             ((IID == Intrinsic::smax && InnerC->sge(*C)) ||
5687              (IID == Intrinsic::smin && InnerC->sle(*C)) ||
5688              (IID == Intrinsic::umax && InnerC->uge(*C)) ||
5689              (IID == Intrinsic::umin && InnerC->ule(*C))))
5690           return Op0;
5691       }
5692     }
5693 
5694     if (Value *V = foldMinMaxSharedOp(IID, Op0, Op1))
5695       return V;
5696     if (Value *V = foldMinMaxSharedOp(IID, Op1, Op0))
5697       return V;
5698 
5699     ICmpInst::Predicate Pred = getMaxMinPredicate(IID);
5700     if (isICmpTrue(Pred, Op0, Op1, Q.getWithoutUndef(), RecursionLimit))
5701       return Op0;
5702     if (isICmpTrue(Pred, Op1, Op0, Q.getWithoutUndef(), RecursionLimit))
5703       return Op1;
5704 
5705     if (Optional<bool> Imp =
5706             isImpliedByDomCondition(Pred, Op0, Op1, Q.CxtI, Q.DL))
5707       return *Imp ? Op0 : Op1;
5708     if (Optional<bool> Imp =
5709             isImpliedByDomCondition(Pred, Op1, Op0, Q.CxtI, Q.DL))
5710       return *Imp ? Op1 : Op0;
5711 
5712     break;
5713   }
5714   case Intrinsic::usub_with_overflow:
5715   case Intrinsic::ssub_with_overflow:
5716     // X - X -> { 0, false }
5717     // X - undef -> { 0, false }
5718     // undef - X -> { 0, false }
5719     if (Op0 == Op1 || Q.isUndefValue(Op0) || Q.isUndefValue(Op1))
5720       return Constant::getNullValue(ReturnType);
5721     break;
5722   case Intrinsic::uadd_with_overflow:
5723   case Intrinsic::sadd_with_overflow:
5724     // X + undef -> { -1, false }
5725     // undef + x -> { -1, false }
5726     if (Q.isUndefValue(Op0) || Q.isUndefValue(Op1)) {
5727       return ConstantStruct::get(
5728           cast<StructType>(ReturnType),
5729           {Constant::getAllOnesValue(ReturnType->getStructElementType(0)),
5730            Constant::getNullValue(ReturnType->getStructElementType(1))});
5731     }
5732     break;
5733   case Intrinsic::umul_with_overflow:
5734   case Intrinsic::smul_with_overflow:
5735     // 0 * X -> { 0, false }
5736     // X * 0 -> { 0, false }
5737     if (match(Op0, m_Zero()) || match(Op1, m_Zero()))
5738       return Constant::getNullValue(ReturnType);
5739     // undef * X -> { 0, false }
5740     // X * undef -> { 0, false }
5741     if (Q.isUndefValue(Op0) || Q.isUndefValue(Op1))
5742       return Constant::getNullValue(ReturnType);
5743     break;
5744   case Intrinsic::uadd_sat:
5745     // sat(MAX + X) -> MAX
5746     // sat(X + MAX) -> MAX
5747     if (match(Op0, m_AllOnes()) || match(Op1, m_AllOnes()))
5748       return Constant::getAllOnesValue(ReturnType);
5749     LLVM_FALLTHROUGH;
5750   case Intrinsic::sadd_sat:
5751     // sat(X + undef) -> -1
5752     // sat(undef + X) -> -1
5753     // For unsigned: Assume undef is MAX, thus we saturate to MAX (-1).
5754     // For signed: Assume undef is ~X, in which case X + ~X = -1.
5755     if (Q.isUndefValue(Op0) || Q.isUndefValue(Op1))
5756       return Constant::getAllOnesValue(ReturnType);
5757 
5758     // X + 0 -> X
5759     if (match(Op1, m_Zero()))
5760       return Op0;
5761     // 0 + X -> X
5762     if (match(Op0, m_Zero()))
5763       return Op1;
5764     break;
5765   case Intrinsic::usub_sat:
5766     // sat(0 - X) -> 0, sat(X - MAX) -> 0
5767     if (match(Op0, m_Zero()) || match(Op1, m_AllOnes()))
5768       return Constant::getNullValue(ReturnType);
5769     LLVM_FALLTHROUGH;
5770   case Intrinsic::ssub_sat:
5771     // X - X -> 0, X - undef -> 0, undef - X -> 0
5772     if (Op0 == Op1 || Q.isUndefValue(Op0) || Q.isUndefValue(Op1))
5773       return Constant::getNullValue(ReturnType);
5774     // X - 0 -> X
5775     if (match(Op1, m_Zero()))
5776       return Op0;
5777     break;
5778   case Intrinsic::load_relative:
5779     if (auto *C0 = dyn_cast<Constant>(Op0))
5780       if (auto *C1 = dyn_cast<Constant>(Op1))
5781         return SimplifyRelativeLoad(C0, C1, Q.DL);
5782     break;
5783   case Intrinsic::powi:
5784     if (auto *Power = dyn_cast<ConstantInt>(Op1)) {
5785       // powi(x, 0) -> 1.0
5786       if (Power->isZero())
5787         return ConstantFP::get(Op0->getType(), 1.0);
5788       // powi(x, 1) -> x
5789       if (Power->isOne())
5790         return Op0;
5791     }
5792     break;
5793   case Intrinsic::copysign:
5794     // copysign X, X --> X
5795     if (Op0 == Op1)
5796       return Op0;
5797     // copysign -X, X --> X
5798     // copysign X, -X --> -X
5799     if (match(Op0, m_FNeg(m_Specific(Op1))) ||
5800         match(Op1, m_FNeg(m_Specific(Op0))))
5801       return Op1;
5802     break;
5803   case Intrinsic::maxnum:
5804   case Intrinsic::minnum:
5805   case Intrinsic::maximum:
5806   case Intrinsic::minimum: {
5807     // If the arguments are the same, this is a no-op.
5808     if (Op0 == Op1) return Op0;
5809 
5810     // Canonicalize constant operand as Op1.
5811     if (isa<Constant>(Op0))
5812       std::swap(Op0, Op1);
5813 
5814     // If an argument is undef, return the other argument.
5815     if (Q.isUndefValue(Op1))
5816       return Op0;
5817 
5818     bool PropagateNaN = IID == Intrinsic::minimum || IID == Intrinsic::maximum;
5819     bool IsMin = IID == Intrinsic::minimum || IID == Intrinsic::minnum;
5820 
5821     // minnum(X, nan) -> X
5822     // maxnum(X, nan) -> X
5823     // minimum(X, nan) -> nan
5824     // maximum(X, nan) -> nan
5825     if (match(Op1, m_NaN()))
5826       return PropagateNaN ? propagateNaN(cast<Constant>(Op1)) : Op0;
5827 
5828     // In the following folds, inf can be replaced with the largest finite
5829     // float, if the ninf flag is set.
5830     const APFloat *C;
5831     if (match(Op1, m_APFloat(C)) &&
5832         (C->isInfinity() || (Q.CxtI->hasNoInfs() && C->isLargest()))) {
5833       // minnum(X, -inf) -> -inf
5834       // maxnum(X, +inf) -> +inf
5835       // minimum(X, -inf) -> -inf if nnan
5836       // maximum(X, +inf) -> +inf if nnan
5837       if (C->isNegative() == IsMin && (!PropagateNaN || Q.CxtI->hasNoNaNs()))
5838         return ConstantFP::get(ReturnType, *C);
5839 
5840       // minnum(X, +inf) -> X if nnan
5841       // maxnum(X, -inf) -> X if nnan
5842       // minimum(X, +inf) -> X
5843       // maximum(X, -inf) -> X
5844       if (C->isNegative() != IsMin && (PropagateNaN || Q.CxtI->hasNoNaNs()))
5845         return Op0;
5846     }
5847 
5848     // Min/max of the same operation with common operand:
5849     // m(m(X, Y)), X --> m(X, Y) (4 commuted variants)
5850     if (auto *M0 = dyn_cast<IntrinsicInst>(Op0))
5851       if (M0->getIntrinsicID() == IID &&
5852           (M0->getOperand(0) == Op1 || M0->getOperand(1) == Op1))
5853         return Op0;
5854     if (auto *M1 = dyn_cast<IntrinsicInst>(Op1))
5855       if (M1->getIntrinsicID() == IID &&
5856           (M1->getOperand(0) == Op0 || M1->getOperand(1) == Op0))
5857         return Op1;
5858 
5859     break;
5860   }
5861   case Intrinsic::experimental_vector_extract: {
5862     Type *ReturnType = F->getReturnType();
5863 
5864     // (extract_vector (insert_vector _, X, 0), 0) -> X
5865     unsigned IdxN = cast<ConstantInt>(Op1)->getZExtValue();
5866     Value *X = nullptr;
5867     if (match(Op0, m_Intrinsic<Intrinsic::experimental_vector_insert>(
5868                        m_Value(), m_Value(X), m_Zero())) &&
5869         IdxN == 0 && X->getType() == ReturnType)
5870       return X;
5871 
5872     break;
5873   }
5874   default:
5875     break;
5876   }
5877 
5878   return nullptr;
5879 }
5880 
5881 static Value *simplifyIntrinsic(CallBase *Call, const SimplifyQuery &Q) {
5882 
5883   unsigned NumOperands = Call->arg_size();
5884   Function *F = cast<Function>(Call->getCalledFunction());
5885   Intrinsic::ID IID = F->getIntrinsicID();
5886 
5887   // Most of the intrinsics with no operands have some kind of side effect.
5888   // Don't simplify.
5889   if (!NumOperands) {
5890     switch (IID) {
5891     case Intrinsic::vscale: {
5892       // Call may not be inserted into the IR yet at point of calling simplify.
5893       if (!Call->getParent() || !Call->getParent()->getParent())
5894         return nullptr;
5895       auto Attr = Call->getFunction()->getFnAttribute(Attribute::VScaleRange);
5896       if (!Attr.isValid())
5897         return nullptr;
5898       unsigned VScaleMin, VScaleMax;
5899       std::tie(VScaleMin, VScaleMax) = Attr.getVScaleRangeArgs();
5900       if (VScaleMin == VScaleMax && VScaleMax != 0)
5901         return ConstantInt::get(F->getReturnType(), VScaleMin);
5902       return nullptr;
5903     }
5904     default:
5905       return nullptr;
5906     }
5907   }
5908 
5909   if (NumOperands == 1)
5910     return simplifyUnaryIntrinsic(F, Call->getArgOperand(0), Q);
5911 
5912   if (NumOperands == 2)
5913     return simplifyBinaryIntrinsic(F, Call->getArgOperand(0),
5914                                    Call->getArgOperand(1), Q);
5915 
5916   // Handle intrinsics with 3 or more arguments.
5917   switch (IID) {
5918   case Intrinsic::masked_load:
5919   case Intrinsic::masked_gather: {
5920     Value *MaskArg = Call->getArgOperand(2);
5921     Value *PassthruArg = Call->getArgOperand(3);
5922     // If the mask is all zeros or undef, the "passthru" argument is the result.
5923     if (maskIsAllZeroOrUndef(MaskArg))
5924       return PassthruArg;
5925     return nullptr;
5926   }
5927   case Intrinsic::fshl:
5928   case Intrinsic::fshr: {
5929     Value *Op0 = Call->getArgOperand(0), *Op1 = Call->getArgOperand(1),
5930           *ShAmtArg = Call->getArgOperand(2);
5931 
5932     // If both operands are undef, the result is undef.
5933     if (Q.isUndefValue(Op0) && Q.isUndefValue(Op1))
5934       return UndefValue::get(F->getReturnType());
5935 
5936     // If shift amount is undef, assume it is zero.
5937     if (Q.isUndefValue(ShAmtArg))
5938       return Call->getArgOperand(IID == Intrinsic::fshl ? 0 : 1);
5939 
5940     const APInt *ShAmtC;
5941     if (match(ShAmtArg, m_APInt(ShAmtC))) {
5942       // If there's effectively no shift, return the 1st arg or 2nd arg.
5943       APInt BitWidth = APInt(ShAmtC->getBitWidth(), ShAmtC->getBitWidth());
5944       if (ShAmtC->urem(BitWidth).isZero())
5945         return Call->getArgOperand(IID == Intrinsic::fshl ? 0 : 1);
5946     }
5947 
5948     // Rotating zero by anything is zero.
5949     if (match(Op0, m_Zero()) && match(Op1, m_Zero()))
5950       return ConstantInt::getNullValue(F->getReturnType());
5951 
5952     // Rotating -1 by anything is -1.
5953     if (match(Op0, m_AllOnes()) && match(Op1, m_AllOnes()))
5954       return ConstantInt::getAllOnesValue(F->getReturnType());
5955 
5956     return nullptr;
5957   }
5958   case Intrinsic::experimental_constrained_fma: {
5959     Value *Op0 = Call->getArgOperand(0);
5960     Value *Op1 = Call->getArgOperand(1);
5961     Value *Op2 = Call->getArgOperand(2);
5962     auto *FPI = cast<ConstrainedFPIntrinsic>(Call);
5963     if (Value *V = simplifyFPOp({Op0, Op1, Op2}, {}, Q,
5964                                 FPI->getExceptionBehavior().getValue(),
5965                                 FPI->getRoundingMode().getValue()))
5966       return V;
5967     return nullptr;
5968   }
5969   case Intrinsic::fma:
5970   case Intrinsic::fmuladd: {
5971     Value *Op0 = Call->getArgOperand(0);
5972     Value *Op1 = Call->getArgOperand(1);
5973     Value *Op2 = Call->getArgOperand(2);
5974     if (Value *V = simplifyFPOp({Op0, Op1, Op2}, {}, Q, fp::ebIgnore,
5975                                 RoundingMode::NearestTiesToEven))
5976       return V;
5977     return nullptr;
5978   }
5979   case Intrinsic::smul_fix:
5980   case Intrinsic::smul_fix_sat: {
5981     Value *Op0 = Call->getArgOperand(0);
5982     Value *Op1 = Call->getArgOperand(1);
5983     Value *Op2 = Call->getArgOperand(2);
5984     Type *ReturnType = F->getReturnType();
5985 
5986     // Canonicalize constant operand as Op1 (ConstantFolding handles the case
5987     // when both Op0 and Op1 are constant so we do not care about that special
5988     // case here).
5989     if (isa<Constant>(Op0))
5990       std::swap(Op0, Op1);
5991 
5992     // X * 0 -> 0
5993     if (match(Op1, m_Zero()))
5994       return Constant::getNullValue(ReturnType);
5995 
5996     // X * undef -> 0
5997     if (Q.isUndefValue(Op1))
5998       return Constant::getNullValue(ReturnType);
5999 
6000     // X * (1 << Scale) -> X
6001     APInt ScaledOne =
6002         APInt::getOneBitSet(ReturnType->getScalarSizeInBits(),
6003                             cast<ConstantInt>(Op2)->getZExtValue());
6004     if (ScaledOne.isNonNegative() && match(Op1, m_SpecificInt(ScaledOne)))
6005       return Op0;
6006 
6007     return nullptr;
6008   }
6009   case Intrinsic::experimental_vector_insert: {
6010     Value *Vec = Call->getArgOperand(0);
6011     Value *SubVec = Call->getArgOperand(1);
6012     Value *Idx = Call->getArgOperand(2);
6013     Type *ReturnType = F->getReturnType();
6014 
6015     // (insert_vector Y, (extract_vector X, 0), 0) -> X
6016     // where: Y is X, or Y is undef
6017     unsigned IdxN = cast<ConstantInt>(Idx)->getZExtValue();
6018     Value *X = nullptr;
6019     if (match(SubVec, m_Intrinsic<Intrinsic::experimental_vector_extract>(
6020                           m_Value(X), m_Zero())) &&
6021         (Q.isUndefValue(Vec) || Vec == X) && IdxN == 0 &&
6022         X->getType() == ReturnType)
6023       return X;
6024 
6025     return nullptr;
6026   }
6027   case Intrinsic::experimental_constrained_fadd: {
6028     auto *FPI = cast<ConstrainedFPIntrinsic>(Call);
6029     return SimplifyFAddInst(FPI->getArgOperand(0), FPI->getArgOperand(1),
6030                             FPI->getFastMathFlags(), Q,
6031                             FPI->getExceptionBehavior().getValue(),
6032                             FPI->getRoundingMode().getValue());
6033     break;
6034   }
6035   case Intrinsic::experimental_constrained_fsub: {
6036     auto *FPI = cast<ConstrainedFPIntrinsic>(Call);
6037     return SimplifyFSubInst(FPI->getArgOperand(0), FPI->getArgOperand(1),
6038                             FPI->getFastMathFlags(), Q,
6039                             FPI->getExceptionBehavior().getValue(),
6040                             FPI->getRoundingMode().getValue());
6041     break;
6042   }
6043   case Intrinsic::experimental_constrained_fmul: {
6044     auto *FPI = cast<ConstrainedFPIntrinsic>(Call);
6045     return SimplifyFMulInst(FPI->getArgOperand(0), FPI->getArgOperand(1),
6046                             FPI->getFastMathFlags(), Q,
6047                             FPI->getExceptionBehavior().getValue(),
6048                             FPI->getRoundingMode().getValue());
6049     break;
6050   }
6051   case Intrinsic::experimental_constrained_fdiv: {
6052     auto *FPI = cast<ConstrainedFPIntrinsic>(Call);
6053     return SimplifyFDivInst(FPI->getArgOperand(0), FPI->getArgOperand(1),
6054                             FPI->getFastMathFlags(), Q,
6055                             FPI->getExceptionBehavior().getValue(),
6056                             FPI->getRoundingMode().getValue());
6057     break;
6058   }
6059   case Intrinsic::experimental_constrained_frem: {
6060     auto *FPI = cast<ConstrainedFPIntrinsic>(Call);
6061     return SimplifyFRemInst(FPI->getArgOperand(0), FPI->getArgOperand(1),
6062                             FPI->getFastMathFlags(), Q,
6063                             FPI->getExceptionBehavior().getValue(),
6064                             FPI->getRoundingMode().getValue());
6065     break;
6066   }
6067   default:
6068     return nullptr;
6069   }
6070 }
6071 
6072 static Value *tryConstantFoldCall(CallBase *Call, const SimplifyQuery &Q) {
6073   auto *F = dyn_cast<Function>(Call->getCalledOperand());
6074   if (!F || !canConstantFoldCallTo(Call, F))
6075     return nullptr;
6076 
6077   SmallVector<Constant *, 4> ConstantArgs;
6078   unsigned NumArgs = Call->arg_size();
6079   ConstantArgs.reserve(NumArgs);
6080   for (auto &Arg : Call->args()) {
6081     Constant *C = dyn_cast<Constant>(&Arg);
6082     if (!C) {
6083       if (isa<MetadataAsValue>(Arg.get()))
6084         continue;
6085       return nullptr;
6086     }
6087     ConstantArgs.push_back(C);
6088   }
6089 
6090   return ConstantFoldCall(Call, F, ConstantArgs, Q.TLI);
6091 }
6092 
6093 Value *llvm::SimplifyCall(CallBase *Call, const SimplifyQuery &Q) {
6094   // musttail calls can only be simplified if they are also DCEd.
6095   // As we can't guarantee this here, don't simplify them.
6096   if (Call->isMustTailCall())
6097     return nullptr;
6098 
6099   // call undef -> poison
6100   // call null -> poison
6101   Value *Callee = Call->getCalledOperand();
6102   if (isa<UndefValue>(Callee) || isa<ConstantPointerNull>(Callee))
6103     return PoisonValue::get(Call->getType());
6104 
6105   if (Value *V = tryConstantFoldCall(Call, Q))
6106     return V;
6107 
6108   auto *F = dyn_cast<Function>(Callee);
6109   if (F && F->isIntrinsic())
6110     if (Value *Ret = simplifyIntrinsic(Call, Q))
6111       return Ret;
6112 
6113   return nullptr;
6114 }
6115 
6116 /// Given operands for a Freeze, see if we can fold the result.
6117 static Value *SimplifyFreezeInst(Value *Op0, const SimplifyQuery &Q) {
6118   // Use a utility function defined in ValueTracking.
6119   if (llvm::isGuaranteedNotToBeUndefOrPoison(Op0, Q.AC, Q.CxtI, Q.DT))
6120     return Op0;
6121   // We have room for improvement.
6122   return nullptr;
6123 }
6124 
6125 Value *llvm::SimplifyFreezeInst(Value *Op0, const SimplifyQuery &Q) {
6126   return ::SimplifyFreezeInst(Op0, Q);
6127 }
6128 
6129 static Value *SimplifyLoadInst(LoadInst *LI, Value *PtrOp,
6130                                const SimplifyQuery &Q) {
6131   if (LI->isVolatile())
6132     return nullptr;
6133 
6134   APInt Offset(Q.DL.getIndexTypeSizeInBits(PtrOp->getType()), 0);
6135   auto *PtrOpC = dyn_cast<Constant>(PtrOp);
6136   // Try to convert operand into a constant by stripping offsets while looking
6137   // through invariant.group intrinsics. Don't bother if the underlying object
6138   // is not constant, as calculating GEP offsets is expensive.
6139   if (!PtrOpC && isa<Constant>(getUnderlyingObject(PtrOp))) {
6140     PtrOp = PtrOp->stripAndAccumulateConstantOffsets(
6141         Q.DL, Offset, /* AllowNonInbounts */ true,
6142         /* AllowInvariantGroup */ true);
6143     // Index size may have changed due to address space casts.
6144     Offset = Offset.sextOrTrunc(Q.DL.getIndexTypeSizeInBits(PtrOp->getType()));
6145     PtrOpC = dyn_cast<Constant>(PtrOp);
6146   }
6147 
6148   if (PtrOpC)
6149     return ConstantFoldLoadFromConstPtr(PtrOpC, LI->getType(), Offset, Q.DL);
6150   return nullptr;
6151 }
6152 
6153 /// See if we can compute a simplified version of this instruction.
6154 /// If not, this returns null.
6155 
6156 static Value *simplifyInstructionWithOperands(Instruction *I,
6157                                               ArrayRef<Value *> NewOps,
6158                                               const SimplifyQuery &SQ,
6159                                               OptimizationRemarkEmitter *ORE) {
6160   const SimplifyQuery Q = SQ.CxtI ? SQ : SQ.getWithInstruction(I);
6161   Value *Result = nullptr;
6162 
6163   switch (I->getOpcode()) {
6164   default:
6165     if (llvm::all_of(NewOps, [](Value *V) { return isa<Constant>(V); })) {
6166       SmallVector<Constant *, 8> NewConstOps(NewOps.size());
6167       transform(NewOps, NewConstOps.begin(),
6168                 [](Value *V) { return cast<Constant>(V); });
6169       Result = ConstantFoldInstOperands(I, NewConstOps, Q.DL, Q.TLI);
6170     }
6171     break;
6172   case Instruction::FNeg:
6173     Result = SimplifyFNegInst(NewOps[0], I->getFastMathFlags(), Q);
6174     break;
6175   case Instruction::FAdd:
6176     Result = SimplifyFAddInst(NewOps[0], NewOps[1], I->getFastMathFlags(), Q);
6177     break;
6178   case Instruction::Add:
6179     Result = SimplifyAddInst(
6180         NewOps[0], NewOps[1], Q.IIQ.hasNoSignedWrap(cast<BinaryOperator>(I)),
6181         Q.IIQ.hasNoUnsignedWrap(cast<BinaryOperator>(I)), Q);
6182     break;
6183   case Instruction::FSub:
6184     Result = SimplifyFSubInst(NewOps[0], NewOps[1], I->getFastMathFlags(), Q);
6185     break;
6186   case Instruction::Sub:
6187     Result = SimplifySubInst(
6188         NewOps[0], NewOps[1], Q.IIQ.hasNoSignedWrap(cast<BinaryOperator>(I)),
6189         Q.IIQ.hasNoUnsignedWrap(cast<BinaryOperator>(I)), Q);
6190     break;
6191   case Instruction::FMul:
6192     Result = SimplifyFMulInst(NewOps[0], NewOps[1], I->getFastMathFlags(), Q);
6193     break;
6194   case Instruction::Mul:
6195     Result = SimplifyMulInst(NewOps[0], NewOps[1], Q);
6196     break;
6197   case Instruction::SDiv:
6198     Result = SimplifySDivInst(NewOps[0], NewOps[1], Q);
6199     break;
6200   case Instruction::UDiv:
6201     Result = SimplifyUDivInst(NewOps[0], NewOps[1], Q);
6202     break;
6203   case Instruction::FDiv:
6204     Result = SimplifyFDivInst(NewOps[0], NewOps[1], I->getFastMathFlags(), Q);
6205     break;
6206   case Instruction::SRem:
6207     Result = SimplifySRemInst(NewOps[0], NewOps[1], Q);
6208     break;
6209   case Instruction::URem:
6210     Result = SimplifyURemInst(NewOps[0], NewOps[1], Q);
6211     break;
6212   case Instruction::FRem:
6213     Result = SimplifyFRemInst(NewOps[0], NewOps[1], I->getFastMathFlags(), Q);
6214     break;
6215   case Instruction::Shl:
6216     Result = SimplifyShlInst(
6217         NewOps[0], NewOps[1], Q.IIQ.hasNoSignedWrap(cast<BinaryOperator>(I)),
6218         Q.IIQ.hasNoUnsignedWrap(cast<BinaryOperator>(I)), Q);
6219     break;
6220   case Instruction::LShr:
6221     Result = SimplifyLShrInst(NewOps[0], NewOps[1],
6222                               Q.IIQ.isExact(cast<BinaryOperator>(I)), Q);
6223     break;
6224   case Instruction::AShr:
6225     Result = SimplifyAShrInst(NewOps[0], NewOps[1],
6226                               Q.IIQ.isExact(cast<BinaryOperator>(I)), Q);
6227     break;
6228   case Instruction::And:
6229     Result = SimplifyAndInst(NewOps[0], NewOps[1], Q);
6230     break;
6231   case Instruction::Or:
6232     Result = SimplifyOrInst(NewOps[0], NewOps[1], Q);
6233     break;
6234   case Instruction::Xor:
6235     Result = SimplifyXorInst(NewOps[0], NewOps[1], Q);
6236     break;
6237   case Instruction::ICmp:
6238     Result = SimplifyICmpInst(cast<ICmpInst>(I)->getPredicate(), NewOps[0],
6239                               NewOps[1], Q);
6240     break;
6241   case Instruction::FCmp:
6242     Result = SimplifyFCmpInst(cast<FCmpInst>(I)->getPredicate(), NewOps[0],
6243                               NewOps[1], I->getFastMathFlags(), Q);
6244     break;
6245   case Instruction::Select:
6246     Result = SimplifySelectInst(NewOps[0], NewOps[1], NewOps[2], Q);
6247     break;
6248   case Instruction::GetElementPtr: {
6249     auto *GEPI = cast<GetElementPtrInst>(I);
6250     Result = SimplifyGEPInst(GEPI->getSourceElementType(), NewOps,
6251                              GEPI->isInBounds(), Q);
6252     break;
6253   }
6254   case Instruction::InsertValue: {
6255     InsertValueInst *IV = cast<InsertValueInst>(I);
6256     Result = SimplifyInsertValueInst(NewOps[0], NewOps[1], IV->getIndices(), Q);
6257     break;
6258   }
6259   case Instruction::InsertElement: {
6260     Result = SimplifyInsertElementInst(NewOps[0], NewOps[1], NewOps[2], Q);
6261     break;
6262   }
6263   case Instruction::ExtractValue: {
6264     auto *EVI = cast<ExtractValueInst>(I);
6265     Result = SimplifyExtractValueInst(NewOps[0], EVI->getIndices(), Q);
6266     break;
6267   }
6268   case Instruction::ExtractElement: {
6269     Result = SimplifyExtractElementInst(NewOps[0], NewOps[1], Q);
6270     break;
6271   }
6272   case Instruction::ShuffleVector: {
6273     auto *SVI = cast<ShuffleVectorInst>(I);
6274     Result = SimplifyShuffleVectorInst(
6275         NewOps[0], NewOps[1], SVI->getShuffleMask(), SVI->getType(), Q);
6276     break;
6277   }
6278   case Instruction::PHI:
6279     Result = SimplifyPHINode(cast<PHINode>(I), NewOps, Q);
6280     break;
6281   case Instruction::Call: {
6282     // TODO: Use NewOps
6283     Result = SimplifyCall(cast<CallInst>(I), Q);
6284     break;
6285   }
6286   case Instruction::Freeze:
6287     Result = llvm::SimplifyFreezeInst(NewOps[0], Q);
6288     break;
6289 #define HANDLE_CAST_INST(num, opc, clas) case Instruction::opc:
6290 #include "llvm/IR/Instruction.def"
6291 #undef HANDLE_CAST_INST
6292     Result = SimplifyCastInst(I->getOpcode(), NewOps[0], I->getType(), Q);
6293     break;
6294   case Instruction::Alloca:
6295     // No simplifications for Alloca and it can't be constant folded.
6296     Result = nullptr;
6297     break;
6298   case Instruction::Load:
6299     Result = SimplifyLoadInst(cast<LoadInst>(I), NewOps[0], Q);
6300     break;
6301   }
6302 
6303   /// If called on unreachable code, the above logic may report that the
6304   /// instruction simplified to itself.  Make life easier for users by
6305   /// detecting that case here, returning a safe value instead.
6306   return Result == I ? UndefValue::get(I->getType()) : Result;
6307 }
6308 
6309 Value *llvm::SimplifyInstructionWithOperands(Instruction *I,
6310                                              ArrayRef<Value *> NewOps,
6311                                              const SimplifyQuery &SQ,
6312                                              OptimizationRemarkEmitter *ORE) {
6313   assert(NewOps.size() == I->getNumOperands() &&
6314          "Number of operands should match the instruction!");
6315   return ::simplifyInstructionWithOperands(I, NewOps, SQ, ORE);
6316 }
6317 
6318 Value *llvm::SimplifyInstruction(Instruction *I, const SimplifyQuery &SQ,
6319                                  OptimizationRemarkEmitter *ORE) {
6320   SmallVector<Value *, 8> Ops(I->operands());
6321   return ::simplifyInstructionWithOperands(I, Ops, SQ, ORE);
6322 }
6323 
6324 /// Implementation of recursive simplification through an instruction's
6325 /// uses.
6326 ///
6327 /// This is the common implementation of the recursive simplification routines.
6328 /// If we have a pre-simplified value in 'SimpleV', that is forcibly used to
6329 /// replace the instruction 'I'. Otherwise, we simply add 'I' to the list of
6330 /// instructions to process and attempt to simplify it using
6331 /// InstructionSimplify. Recursively visited users which could not be
6332 /// simplified themselves are to the optional UnsimplifiedUsers set for
6333 /// further processing by the caller.
6334 ///
6335 /// This routine returns 'true' only when *it* simplifies something. The passed
6336 /// in simplified value does not count toward this.
6337 static bool replaceAndRecursivelySimplifyImpl(
6338     Instruction *I, Value *SimpleV, const TargetLibraryInfo *TLI,
6339     const DominatorTree *DT, AssumptionCache *AC,
6340     SmallSetVector<Instruction *, 8> *UnsimplifiedUsers = nullptr) {
6341   bool Simplified = false;
6342   SmallSetVector<Instruction *, 8> Worklist;
6343   const DataLayout &DL = I->getModule()->getDataLayout();
6344 
6345   // If we have an explicit value to collapse to, do that round of the
6346   // simplification loop by hand initially.
6347   if (SimpleV) {
6348     for (User *U : I->users())
6349       if (U != I)
6350         Worklist.insert(cast<Instruction>(U));
6351 
6352     // Replace the instruction with its simplified value.
6353     I->replaceAllUsesWith(SimpleV);
6354 
6355     // Gracefully handle edge cases where the instruction is not wired into any
6356     // parent block.
6357     if (I->getParent() && !I->isEHPad() && !I->isTerminator() &&
6358         !I->mayHaveSideEffects())
6359       I->eraseFromParent();
6360   } else {
6361     Worklist.insert(I);
6362   }
6363 
6364   // Note that we must test the size on each iteration, the worklist can grow.
6365   for (unsigned Idx = 0; Idx != Worklist.size(); ++Idx) {
6366     I = Worklist[Idx];
6367 
6368     // See if this instruction simplifies.
6369     SimpleV = SimplifyInstruction(I, {DL, TLI, DT, AC});
6370     if (!SimpleV) {
6371       if (UnsimplifiedUsers)
6372         UnsimplifiedUsers->insert(I);
6373       continue;
6374     }
6375 
6376     Simplified = true;
6377 
6378     // Stash away all the uses of the old instruction so we can check them for
6379     // recursive simplifications after a RAUW. This is cheaper than checking all
6380     // uses of To on the recursive step in most cases.
6381     for (User *U : I->users())
6382       Worklist.insert(cast<Instruction>(U));
6383 
6384     // Replace the instruction with its simplified value.
6385     I->replaceAllUsesWith(SimpleV);
6386 
6387     // Gracefully handle edge cases where the instruction is not wired into any
6388     // parent block.
6389     if (I->getParent() && !I->isEHPad() && !I->isTerminator() &&
6390         !I->mayHaveSideEffects())
6391       I->eraseFromParent();
6392   }
6393   return Simplified;
6394 }
6395 
6396 bool llvm::replaceAndRecursivelySimplify(
6397     Instruction *I, Value *SimpleV, const TargetLibraryInfo *TLI,
6398     const DominatorTree *DT, AssumptionCache *AC,
6399     SmallSetVector<Instruction *, 8> *UnsimplifiedUsers) {
6400   assert(I != SimpleV && "replaceAndRecursivelySimplify(X,X) is not valid!");
6401   assert(SimpleV && "Must provide a simplified value.");
6402   return replaceAndRecursivelySimplifyImpl(I, SimpleV, TLI, DT, AC,
6403                                            UnsimplifiedUsers);
6404 }
6405 
6406 namespace llvm {
6407 const SimplifyQuery getBestSimplifyQuery(Pass &P, Function &F) {
6408   auto *DTWP = P.getAnalysisIfAvailable<DominatorTreeWrapperPass>();
6409   auto *DT = DTWP ? &DTWP->getDomTree() : nullptr;
6410   auto *TLIWP = P.getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>();
6411   auto *TLI = TLIWP ? &TLIWP->getTLI(F) : nullptr;
6412   auto *ACWP = P.getAnalysisIfAvailable<AssumptionCacheTracker>();
6413   auto *AC = ACWP ? &ACWP->getAssumptionCache(F) : nullptr;
6414   return {F.getParent()->getDataLayout(), TLI, DT, AC};
6415 }
6416 
6417 const SimplifyQuery getBestSimplifyQuery(LoopStandardAnalysisResults &AR,
6418                                          const DataLayout &DL) {
6419   return {DL, &AR.TLI, &AR.DT, &AR.AC};
6420 }
6421 
6422 template <class T, class... TArgs>
6423 const SimplifyQuery getBestSimplifyQuery(AnalysisManager<T, TArgs...> &AM,
6424                                          Function &F) {
6425   auto *DT = AM.template getCachedResult<DominatorTreeAnalysis>(F);
6426   auto *TLI = AM.template getCachedResult<TargetLibraryAnalysis>(F);
6427   auto *AC = AM.template getCachedResult<AssumptionAnalysis>(F);
6428   return {F.getParent()->getDataLayout(), TLI, DT, AC};
6429 }
6430 template const SimplifyQuery getBestSimplifyQuery(AnalysisManager<Function> &,
6431                                                   Function &);
6432 }
6433