1 //===- InstructionSimplify.cpp - Fold instruction operands ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements routines for folding instructions into simpler forms 11 // that do not require creating new instructions. This does constant folding 12 // ("add i32 1, 1" -> "2") but can also handle non-constant operands, either 13 // returning a constant ("and i32 %x, 0" -> "0") or an already existing value 14 // ("and i32 %x, %x" -> "%x"). All operands are assumed to have already been 15 // simplified: This is usually true and assuming it simplifies the logic (if 16 // they have not been simplified then results are correct but maybe suboptimal). 17 // 18 //===----------------------------------------------------------------------===// 19 20 #include "llvm/Analysis/InstructionSimplify.h" 21 #include "llvm/ADT/SetVector.h" 22 #include "llvm/ADT/Statistic.h" 23 #include "llvm/Analysis/AliasAnalysis.h" 24 #include "llvm/Analysis/CaptureTracking.h" 25 #include "llvm/Analysis/ConstantFolding.h" 26 #include "llvm/Analysis/MemoryBuiltins.h" 27 #include "llvm/Analysis/ValueTracking.h" 28 #include "llvm/Analysis/VectorUtils.h" 29 #include "llvm/IR/ConstantRange.h" 30 #include "llvm/IR/DataLayout.h" 31 #include "llvm/IR/Dominators.h" 32 #include "llvm/IR/GetElementPtrTypeIterator.h" 33 #include "llvm/IR/GlobalAlias.h" 34 #include "llvm/IR/Operator.h" 35 #include "llvm/IR/PatternMatch.h" 36 #include "llvm/IR/ValueHandle.h" 37 #include <algorithm> 38 using namespace llvm; 39 using namespace llvm::PatternMatch; 40 41 #define DEBUG_TYPE "instsimplify" 42 43 enum { RecursionLimit = 3 }; 44 45 STATISTIC(NumExpand, "Number of expansions"); 46 STATISTIC(NumReassoc, "Number of reassociations"); 47 48 namespace { 49 struct Query { 50 const DataLayout &DL; 51 const TargetLibraryInfo *TLI; 52 const DominatorTree *DT; 53 AssumptionCache *AC; 54 const Instruction *CxtI; 55 56 Query(const DataLayout &DL, const TargetLibraryInfo *tli, 57 const DominatorTree *dt, AssumptionCache *ac = nullptr, 58 const Instruction *cxti = nullptr) 59 : DL(DL), TLI(tli), DT(dt), AC(ac), CxtI(cxti) {} 60 }; 61 } // end anonymous namespace 62 63 static Value *SimplifyAndInst(Value *, Value *, const Query &, unsigned); 64 static Value *SimplifyBinOp(unsigned, Value *, Value *, const Query &, 65 unsigned); 66 static Value *SimplifyFPBinOp(unsigned, Value *, Value *, const FastMathFlags &, 67 const Query &, unsigned); 68 static Value *SimplifyCmpInst(unsigned, Value *, Value *, const Query &, 69 unsigned); 70 static Value *SimplifyOrInst(Value *, Value *, const Query &, unsigned); 71 static Value *SimplifyXorInst(Value *, Value *, const Query &, unsigned); 72 static Value *SimplifyCastInst(unsigned, Value *, Type *, 73 const Query &, unsigned); 74 75 /// For a boolean type, or a vector of boolean type, return false, or 76 /// a vector with every element false, as appropriate for the type. 77 static Constant *getFalse(Type *Ty) { 78 assert(Ty->getScalarType()->isIntegerTy(1) && 79 "Expected i1 type or a vector of i1!"); 80 return Constant::getNullValue(Ty); 81 } 82 83 /// For a boolean type, or a vector of boolean type, return true, or 84 /// a vector with every element true, as appropriate for the type. 85 static Constant *getTrue(Type *Ty) { 86 assert(Ty->getScalarType()->isIntegerTy(1) && 87 "Expected i1 type or a vector of i1!"); 88 return Constant::getAllOnesValue(Ty); 89 } 90 91 /// isSameCompare - Is V equivalent to the comparison "LHS Pred RHS"? 92 static bool isSameCompare(Value *V, CmpInst::Predicate Pred, Value *LHS, 93 Value *RHS) { 94 CmpInst *Cmp = dyn_cast<CmpInst>(V); 95 if (!Cmp) 96 return false; 97 CmpInst::Predicate CPred = Cmp->getPredicate(); 98 Value *CLHS = Cmp->getOperand(0), *CRHS = Cmp->getOperand(1); 99 if (CPred == Pred && CLHS == LHS && CRHS == RHS) 100 return true; 101 return CPred == CmpInst::getSwappedPredicate(Pred) && CLHS == RHS && 102 CRHS == LHS; 103 } 104 105 /// Does the given value dominate the specified phi node? 106 static bool ValueDominatesPHI(Value *V, PHINode *P, const DominatorTree *DT) { 107 Instruction *I = dyn_cast<Instruction>(V); 108 if (!I) 109 // Arguments and constants dominate all instructions. 110 return true; 111 112 // If we are processing instructions (and/or basic blocks) that have not been 113 // fully added to a function, the parent nodes may still be null. Simply 114 // return the conservative answer in these cases. 115 if (!I->getParent() || !P->getParent() || !I->getParent()->getParent()) 116 return false; 117 118 // If we have a DominatorTree then do a precise test. 119 if (DT) { 120 if (!DT->isReachableFromEntry(P->getParent())) 121 return true; 122 if (!DT->isReachableFromEntry(I->getParent())) 123 return false; 124 return DT->dominates(I, P); 125 } 126 127 // Otherwise, if the instruction is in the entry block and is not an invoke, 128 // then it obviously dominates all phi nodes. 129 if (I->getParent() == &I->getParent()->getParent()->getEntryBlock() && 130 !isa<InvokeInst>(I)) 131 return true; 132 133 return false; 134 } 135 136 /// Simplify "A op (B op' C)" by distributing op over op', turning it into 137 /// "(A op B) op' (A op C)". Here "op" is given by Opcode and "op'" is 138 /// given by OpcodeToExpand, while "A" corresponds to LHS and "B op' C" to RHS. 139 /// Also performs the transform "(A op' B) op C" -> "(A op C) op' (B op C)". 140 /// Returns the simplified value, or null if no simplification was performed. 141 static Value *ExpandBinOp(unsigned Opcode, Value *LHS, Value *RHS, 142 unsigned OpcToExpand, const Query &Q, 143 unsigned MaxRecurse) { 144 Instruction::BinaryOps OpcodeToExpand = (Instruction::BinaryOps)OpcToExpand; 145 // Recursion is always used, so bail out at once if we already hit the limit. 146 if (!MaxRecurse--) 147 return nullptr; 148 149 // Check whether the expression has the form "(A op' B) op C". 150 if (BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS)) 151 if (Op0->getOpcode() == OpcodeToExpand) { 152 // It does! Try turning it into "(A op C) op' (B op C)". 153 Value *A = Op0->getOperand(0), *B = Op0->getOperand(1), *C = RHS; 154 // Do "A op C" and "B op C" both simplify? 155 if (Value *L = SimplifyBinOp(Opcode, A, C, Q, MaxRecurse)) 156 if (Value *R = SimplifyBinOp(Opcode, B, C, Q, MaxRecurse)) { 157 // They do! Return "L op' R" if it simplifies or is already available. 158 // If "L op' R" equals "A op' B" then "L op' R" is just the LHS. 159 if ((L == A && R == B) || (Instruction::isCommutative(OpcodeToExpand) 160 && L == B && R == A)) { 161 ++NumExpand; 162 return LHS; 163 } 164 // Otherwise return "L op' R" if it simplifies. 165 if (Value *V = SimplifyBinOp(OpcodeToExpand, L, R, Q, MaxRecurse)) { 166 ++NumExpand; 167 return V; 168 } 169 } 170 } 171 172 // Check whether the expression has the form "A op (B op' C)". 173 if (BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS)) 174 if (Op1->getOpcode() == OpcodeToExpand) { 175 // It does! Try turning it into "(A op B) op' (A op C)". 176 Value *A = LHS, *B = Op1->getOperand(0), *C = Op1->getOperand(1); 177 // Do "A op B" and "A op C" both simplify? 178 if (Value *L = SimplifyBinOp(Opcode, A, B, Q, MaxRecurse)) 179 if (Value *R = SimplifyBinOp(Opcode, A, C, Q, MaxRecurse)) { 180 // They do! Return "L op' R" if it simplifies or is already available. 181 // If "L op' R" equals "B op' C" then "L op' R" is just the RHS. 182 if ((L == B && R == C) || (Instruction::isCommutative(OpcodeToExpand) 183 && L == C && R == B)) { 184 ++NumExpand; 185 return RHS; 186 } 187 // Otherwise return "L op' R" if it simplifies. 188 if (Value *V = SimplifyBinOp(OpcodeToExpand, L, R, Q, MaxRecurse)) { 189 ++NumExpand; 190 return V; 191 } 192 } 193 } 194 195 return nullptr; 196 } 197 198 /// Generic simplifications for associative binary operations. 199 /// Returns the simpler value, or null if none was found. 200 static Value *SimplifyAssociativeBinOp(unsigned Opc, Value *LHS, Value *RHS, 201 const Query &Q, unsigned MaxRecurse) { 202 Instruction::BinaryOps Opcode = (Instruction::BinaryOps)Opc; 203 assert(Instruction::isAssociative(Opcode) && "Not an associative operation!"); 204 205 // Recursion is always used, so bail out at once if we already hit the limit. 206 if (!MaxRecurse--) 207 return nullptr; 208 209 BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS); 210 BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS); 211 212 // Transform: "(A op B) op C" ==> "A op (B op C)" if it simplifies completely. 213 if (Op0 && Op0->getOpcode() == Opcode) { 214 Value *A = Op0->getOperand(0); 215 Value *B = Op0->getOperand(1); 216 Value *C = RHS; 217 218 // Does "B op C" simplify? 219 if (Value *V = SimplifyBinOp(Opcode, B, C, Q, MaxRecurse)) { 220 // It does! Return "A op V" if it simplifies or is already available. 221 // If V equals B then "A op V" is just the LHS. 222 if (V == B) return LHS; 223 // Otherwise return "A op V" if it simplifies. 224 if (Value *W = SimplifyBinOp(Opcode, A, V, Q, MaxRecurse)) { 225 ++NumReassoc; 226 return W; 227 } 228 } 229 } 230 231 // Transform: "A op (B op C)" ==> "(A op B) op C" if it simplifies completely. 232 if (Op1 && Op1->getOpcode() == Opcode) { 233 Value *A = LHS; 234 Value *B = Op1->getOperand(0); 235 Value *C = Op1->getOperand(1); 236 237 // Does "A op B" simplify? 238 if (Value *V = SimplifyBinOp(Opcode, A, B, Q, MaxRecurse)) { 239 // It does! Return "V op C" if it simplifies or is already available. 240 // If V equals B then "V op C" is just the RHS. 241 if (V == B) return RHS; 242 // Otherwise return "V op C" if it simplifies. 243 if (Value *W = SimplifyBinOp(Opcode, V, C, Q, MaxRecurse)) { 244 ++NumReassoc; 245 return W; 246 } 247 } 248 } 249 250 // The remaining transforms require commutativity as well as associativity. 251 if (!Instruction::isCommutative(Opcode)) 252 return nullptr; 253 254 // Transform: "(A op B) op C" ==> "(C op A) op B" if it simplifies completely. 255 if (Op0 && Op0->getOpcode() == Opcode) { 256 Value *A = Op0->getOperand(0); 257 Value *B = Op0->getOperand(1); 258 Value *C = RHS; 259 260 // Does "C op A" simplify? 261 if (Value *V = SimplifyBinOp(Opcode, C, A, Q, MaxRecurse)) { 262 // It does! Return "V op B" if it simplifies or is already available. 263 // If V equals A then "V op B" is just the LHS. 264 if (V == A) return LHS; 265 // Otherwise return "V op B" if it simplifies. 266 if (Value *W = SimplifyBinOp(Opcode, V, B, Q, MaxRecurse)) { 267 ++NumReassoc; 268 return W; 269 } 270 } 271 } 272 273 // Transform: "A op (B op C)" ==> "B op (C op A)" if it simplifies completely. 274 if (Op1 && Op1->getOpcode() == Opcode) { 275 Value *A = LHS; 276 Value *B = Op1->getOperand(0); 277 Value *C = Op1->getOperand(1); 278 279 // Does "C op A" simplify? 280 if (Value *V = SimplifyBinOp(Opcode, C, A, Q, MaxRecurse)) { 281 // It does! Return "B op V" if it simplifies or is already available. 282 // If V equals C then "B op V" is just the RHS. 283 if (V == C) return RHS; 284 // Otherwise return "B op V" if it simplifies. 285 if (Value *W = SimplifyBinOp(Opcode, B, V, Q, MaxRecurse)) { 286 ++NumReassoc; 287 return W; 288 } 289 } 290 } 291 292 return nullptr; 293 } 294 295 /// In the case of a binary operation with a select instruction as an operand, 296 /// try to simplify the binop by seeing whether evaluating it on both branches 297 /// of the select results in the same value. Returns the common value if so, 298 /// otherwise returns null. 299 static Value *ThreadBinOpOverSelect(unsigned Opcode, Value *LHS, Value *RHS, 300 const Query &Q, unsigned MaxRecurse) { 301 // Recursion is always used, so bail out at once if we already hit the limit. 302 if (!MaxRecurse--) 303 return nullptr; 304 305 SelectInst *SI; 306 if (isa<SelectInst>(LHS)) { 307 SI = cast<SelectInst>(LHS); 308 } else { 309 assert(isa<SelectInst>(RHS) && "No select instruction operand!"); 310 SI = cast<SelectInst>(RHS); 311 } 312 313 // Evaluate the BinOp on the true and false branches of the select. 314 Value *TV; 315 Value *FV; 316 if (SI == LHS) { 317 TV = SimplifyBinOp(Opcode, SI->getTrueValue(), RHS, Q, MaxRecurse); 318 FV = SimplifyBinOp(Opcode, SI->getFalseValue(), RHS, Q, MaxRecurse); 319 } else { 320 TV = SimplifyBinOp(Opcode, LHS, SI->getTrueValue(), Q, MaxRecurse); 321 FV = SimplifyBinOp(Opcode, LHS, SI->getFalseValue(), Q, MaxRecurse); 322 } 323 324 // If they simplified to the same value, then return the common value. 325 // If they both failed to simplify then return null. 326 if (TV == FV) 327 return TV; 328 329 // If one branch simplified to undef, return the other one. 330 if (TV && isa<UndefValue>(TV)) 331 return FV; 332 if (FV && isa<UndefValue>(FV)) 333 return TV; 334 335 // If applying the operation did not change the true and false select values, 336 // then the result of the binop is the select itself. 337 if (TV == SI->getTrueValue() && FV == SI->getFalseValue()) 338 return SI; 339 340 // If one branch simplified and the other did not, and the simplified 341 // value is equal to the unsimplified one, return the simplified value. 342 // For example, select (cond, X, X & Z) & Z -> X & Z. 343 if ((FV && !TV) || (TV && !FV)) { 344 // Check that the simplified value has the form "X op Y" where "op" is the 345 // same as the original operation. 346 Instruction *Simplified = dyn_cast<Instruction>(FV ? FV : TV); 347 if (Simplified && Simplified->getOpcode() == Opcode) { 348 // The value that didn't simplify is "UnsimplifiedLHS op UnsimplifiedRHS". 349 // We already know that "op" is the same as for the simplified value. See 350 // if the operands match too. If so, return the simplified value. 351 Value *UnsimplifiedBranch = FV ? SI->getTrueValue() : SI->getFalseValue(); 352 Value *UnsimplifiedLHS = SI == LHS ? UnsimplifiedBranch : LHS; 353 Value *UnsimplifiedRHS = SI == LHS ? RHS : UnsimplifiedBranch; 354 if (Simplified->getOperand(0) == UnsimplifiedLHS && 355 Simplified->getOperand(1) == UnsimplifiedRHS) 356 return Simplified; 357 if (Simplified->isCommutative() && 358 Simplified->getOperand(1) == UnsimplifiedLHS && 359 Simplified->getOperand(0) == UnsimplifiedRHS) 360 return Simplified; 361 } 362 } 363 364 return nullptr; 365 } 366 367 /// In the case of a comparison with a select instruction, try to simplify the 368 /// comparison by seeing whether both branches of the select result in the same 369 /// value. Returns the common value if so, otherwise returns null. 370 static Value *ThreadCmpOverSelect(CmpInst::Predicate Pred, Value *LHS, 371 Value *RHS, const Query &Q, 372 unsigned MaxRecurse) { 373 // Recursion is always used, so bail out at once if we already hit the limit. 374 if (!MaxRecurse--) 375 return nullptr; 376 377 // Make sure the select is on the LHS. 378 if (!isa<SelectInst>(LHS)) { 379 std::swap(LHS, RHS); 380 Pred = CmpInst::getSwappedPredicate(Pred); 381 } 382 assert(isa<SelectInst>(LHS) && "Not comparing with a select instruction!"); 383 SelectInst *SI = cast<SelectInst>(LHS); 384 Value *Cond = SI->getCondition(); 385 Value *TV = SI->getTrueValue(); 386 Value *FV = SI->getFalseValue(); 387 388 // Now that we have "cmp select(Cond, TV, FV), RHS", analyse it. 389 // Does "cmp TV, RHS" simplify? 390 Value *TCmp = SimplifyCmpInst(Pred, TV, RHS, Q, MaxRecurse); 391 if (TCmp == Cond) { 392 // It not only simplified, it simplified to the select condition. Replace 393 // it with 'true'. 394 TCmp = getTrue(Cond->getType()); 395 } else if (!TCmp) { 396 // It didn't simplify. However if "cmp TV, RHS" is equal to the select 397 // condition then we can replace it with 'true'. Otherwise give up. 398 if (!isSameCompare(Cond, Pred, TV, RHS)) 399 return nullptr; 400 TCmp = getTrue(Cond->getType()); 401 } 402 403 // Does "cmp FV, RHS" simplify? 404 Value *FCmp = SimplifyCmpInst(Pred, FV, RHS, Q, MaxRecurse); 405 if (FCmp == Cond) { 406 // It not only simplified, it simplified to the select condition. Replace 407 // it with 'false'. 408 FCmp = getFalse(Cond->getType()); 409 } else if (!FCmp) { 410 // It didn't simplify. However if "cmp FV, RHS" is equal to the select 411 // condition then we can replace it with 'false'. Otherwise give up. 412 if (!isSameCompare(Cond, Pred, FV, RHS)) 413 return nullptr; 414 FCmp = getFalse(Cond->getType()); 415 } 416 417 // If both sides simplified to the same value, then use it as the result of 418 // the original comparison. 419 if (TCmp == FCmp) 420 return TCmp; 421 422 // The remaining cases only make sense if the select condition has the same 423 // type as the result of the comparison, so bail out if this is not so. 424 if (Cond->getType()->isVectorTy() != RHS->getType()->isVectorTy()) 425 return nullptr; 426 // If the false value simplified to false, then the result of the compare 427 // is equal to "Cond && TCmp". This also catches the case when the false 428 // value simplified to false and the true value to true, returning "Cond". 429 if (match(FCmp, m_Zero())) 430 if (Value *V = SimplifyAndInst(Cond, TCmp, Q, MaxRecurse)) 431 return V; 432 // If the true value simplified to true, then the result of the compare 433 // is equal to "Cond || FCmp". 434 if (match(TCmp, m_One())) 435 if (Value *V = SimplifyOrInst(Cond, FCmp, Q, MaxRecurse)) 436 return V; 437 // Finally, if the false value simplified to true and the true value to 438 // false, then the result of the compare is equal to "!Cond". 439 if (match(FCmp, m_One()) && match(TCmp, m_Zero())) 440 if (Value *V = 441 SimplifyXorInst(Cond, Constant::getAllOnesValue(Cond->getType()), 442 Q, MaxRecurse)) 443 return V; 444 445 return nullptr; 446 } 447 448 /// In the case of a binary operation with an operand that is a PHI instruction, 449 /// try to simplify the binop by seeing whether evaluating it on the incoming 450 /// phi values yields the same result for every value. If so returns the common 451 /// value, otherwise returns null. 452 static Value *ThreadBinOpOverPHI(unsigned Opcode, Value *LHS, Value *RHS, 453 const Query &Q, unsigned MaxRecurse) { 454 // Recursion is always used, so bail out at once if we already hit the limit. 455 if (!MaxRecurse--) 456 return nullptr; 457 458 PHINode *PI; 459 if (isa<PHINode>(LHS)) { 460 PI = cast<PHINode>(LHS); 461 // Bail out if RHS and the phi may be mutually interdependent due to a loop. 462 if (!ValueDominatesPHI(RHS, PI, Q.DT)) 463 return nullptr; 464 } else { 465 assert(isa<PHINode>(RHS) && "No PHI instruction operand!"); 466 PI = cast<PHINode>(RHS); 467 // Bail out if LHS and the phi may be mutually interdependent due to a loop. 468 if (!ValueDominatesPHI(LHS, PI, Q.DT)) 469 return nullptr; 470 } 471 472 // Evaluate the BinOp on the incoming phi values. 473 Value *CommonValue = nullptr; 474 for (Value *Incoming : PI->incoming_values()) { 475 // If the incoming value is the phi node itself, it can safely be skipped. 476 if (Incoming == PI) continue; 477 Value *V = PI == LHS ? 478 SimplifyBinOp(Opcode, Incoming, RHS, Q, MaxRecurse) : 479 SimplifyBinOp(Opcode, LHS, Incoming, Q, MaxRecurse); 480 // If the operation failed to simplify, or simplified to a different value 481 // to previously, then give up. 482 if (!V || (CommonValue && V != CommonValue)) 483 return nullptr; 484 CommonValue = V; 485 } 486 487 return CommonValue; 488 } 489 490 /// In the case of a comparison with a PHI instruction, try to simplify the 491 /// comparison by seeing whether comparing with all of the incoming phi values 492 /// yields the same result every time. If so returns the common result, 493 /// otherwise returns null. 494 static Value *ThreadCmpOverPHI(CmpInst::Predicate Pred, Value *LHS, Value *RHS, 495 const Query &Q, unsigned MaxRecurse) { 496 // Recursion is always used, so bail out at once if we already hit the limit. 497 if (!MaxRecurse--) 498 return nullptr; 499 500 // Make sure the phi is on the LHS. 501 if (!isa<PHINode>(LHS)) { 502 std::swap(LHS, RHS); 503 Pred = CmpInst::getSwappedPredicate(Pred); 504 } 505 assert(isa<PHINode>(LHS) && "Not comparing with a phi instruction!"); 506 PHINode *PI = cast<PHINode>(LHS); 507 508 // Bail out if RHS and the phi may be mutually interdependent due to a loop. 509 if (!ValueDominatesPHI(RHS, PI, Q.DT)) 510 return nullptr; 511 512 // Evaluate the BinOp on the incoming phi values. 513 Value *CommonValue = nullptr; 514 for (Value *Incoming : PI->incoming_values()) { 515 // If the incoming value is the phi node itself, it can safely be skipped. 516 if (Incoming == PI) continue; 517 Value *V = SimplifyCmpInst(Pred, Incoming, RHS, Q, MaxRecurse); 518 // If the operation failed to simplify, or simplified to a different value 519 // to previously, then give up. 520 if (!V || (CommonValue && V != CommonValue)) 521 return nullptr; 522 CommonValue = V; 523 } 524 525 return CommonValue; 526 } 527 528 /// Given operands for an Add, see if we can fold the result. 529 /// If not, this returns null. 530 static Value *SimplifyAddInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, 531 const Query &Q, unsigned MaxRecurse) { 532 if (Constant *CLHS = dyn_cast<Constant>(Op0)) { 533 if (Constant *CRHS = dyn_cast<Constant>(Op1)) 534 return ConstantFoldBinaryOpOperands(Instruction::Add, CLHS, CRHS, Q.DL); 535 536 // Canonicalize the constant to the RHS. 537 std::swap(Op0, Op1); 538 } 539 540 // X + undef -> undef 541 if (match(Op1, m_Undef())) 542 return Op1; 543 544 // X + 0 -> X 545 if (match(Op1, m_Zero())) 546 return Op0; 547 548 // X + (Y - X) -> Y 549 // (Y - X) + X -> Y 550 // Eg: X + -X -> 0 551 Value *Y = nullptr; 552 if (match(Op1, m_Sub(m_Value(Y), m_Specific(Op0))) || 553 match(Op0, m_Sub(m_Value(Y), m_Specific(Op1)))) 554 return Y; 555 556 // X + ~X -> -1 since ~X = -X-1 557 if (match(Op0, m_Not(m_Specific(Op1))) || 558 match(Op1, m_Not(m_Specific(Op0)))) 559 return Constant::getAllOnesValue(Op0->getType()); 560 561 /// i1 add -> xor. 562 if (MaxRecurse && Op0->getType()->isIntegerTy(1)) 563 if (Value *V = SimplifyXorInst(Op0, Op1, Q, MaxRecurse-1)) 564 return V; 565 566 // Try some generic simplifications for associative operations. 567 if (Value *V = SimplifyAssociativeBinOp(Instruction::Add, Op0, Op1, Q, 568 MaxRecurse)) 569 return V; 570 571 // Threading Add over selects and phi nodes is pointless, so don't bother. 572 // Threading over the select in "A + select(cond, B, C)" means evaluating 573 // "A+B" and "A+C" and seeing if they are equal; but they are equal if and 574 // only if B and C are equal. If B and C are equal then (since we assume 575 // that operands have already been simplified) "select(cond, B, C)" should 576 // have been simplified to the common value of B and C already. Analysing 577 // "A+B" and "A+C" thus gains nothing, but costs compile time. Similarly 578 // for threading over phi nodes. 579 580 return nullptr; 581 } 582 583 Value *llvm::SimplifyAddInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, 584 const DataLayout &DL, const TargetLibraryInfo *TLI, 585 const DominatorTree *DT, AssumptionCache *AC, 586 const Instruction *CxtI) { 587 return ::SimplifyAddInst(Op0, Op1, isNSW, isNUW, Query(DL, TLI, DT, AC, CxtI), 588 RecursionLimit); 589 } 590 591 /// \brief Compute the base pointer and cumulative constant offsets for V. 592 /// 593 /// This strips all constant offsets off of V, leaving it the base pointer, and 594 /// accumulates the total constant offset applied in the returned constant. It 595 /// returns 0 if V is not a pointer, and returns the constant '0' if there are 596 /// no constant offsets applied. 597 /// 598 /// This is very similar to GetPointerBaseWithConstantOffset except it doesn't 599 /// follow non-inbounds geps. This allows it to remain usable for icmp ult/etc. 600 /// folding. 601 static Constant *stripAndComputeConstantOffsets(const DataLayout &DL, Value *&V, 602 bool AllowNonInbounds = false) { 603 assert(V->getType()->getScalarType()->isPointerTy()); 604 605 Type *IntPtrTy = DL.getIntPtrType(V->getType())->getScalarType(); 606 APInt Offset = APInt::getNullValue(IntPtrTy->getIntegerBitWidth()); 607 608 // Even though we don't look through PHI nodes, we could be called on an 609 // instruction in an unreachable block, which may be on a cycle. 610 SmallPtrSet<Value *, 4> Visited; 611 Visited.insert(V); 612 do { 613 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 614 if ((!AllowNonInbounds && !GEP->isInBounds()) || 615 !GEP->accumulateConstantOffset(DL, Offset)) 616 break; 617 V = GEP->getPointerOperand(); 618 } else if (Operator::getOpcode(V) == Instruction::BitCast) { 619 V = cast<Operator>(V)->getOperand(0); 620 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 621 if (GA->isInterposable()) 622 break; 623 V = GA->getAliasee(); 624 } else { 625 if (auto CS = CallSite(V)) 626 if (Value *RV = CS.getReturnedArgOperand()) { 627 V = RV; 628 continue; 629 } 630 break; 631 } 632 assert(V->getType()->getScalarType()->isPointerTy() && 633 "Unexpected operand type!"); 634 } while (Visited.insert(V).second); 635 636 Constant *OffsetIntPtr = ConstantInt::get(IntPtrTy, Offset); 637 if (V->getType()->isVectorTy()) 638 return ConstantVector::getSplat(V->getType()->getVectorNumElements(), 639 OffsetIntPtr); 640 return OffsetIntPtr; 641 } 642 643 /// \brief Compute the constant difference between two pointer values. 644 /// If the difference is not a constant, returns zero. 645 static Constant *computePointerDifference(const DataLayout &DL, Value *LHS, 646 Value *RHS) { 647 Constant *LHSOffset = stripAndComputeConstantOffsets(DL, LHS); 648 Constant *RHSOffset = stripAndComputeConstantOffsets(DL, RHS); 649 650 // If LHS and RHS are not related via constant offsets to the same base 651 // value, there is nothing we can do here. 652 if (LHS != RHS) 653 return nullptr; 654 655 // Otherwise, the difference of LHS - RHS can be computed as: 656 // LHS - RHS 657 // = (LHSOffset + Base) - (RHSOffset + Base) 658 // = LHSOffset - RHSOffset 659 return ConstantExpr::getSub(LHSOffset, RHSOffset); 660 } 661 662 /// Given operands for a Sub, see if we can fold the result. 663 /// If not, this returns null. 664 static Value *SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, 665 const Query &Q, unsigned MaxRecurse) { 666 if (Constant *CLHS = dyn_cast<Constant>(Op0)) 667 if (Constant *CRHS = dyn_cast<Constant>(Op1)) 668 return ConstantFoldBinaryOpOperands(Instruction::Sub, CLHS, CRHS, Q.DL); 669 670 // X - undef -> undef 671 // undef - X -> undef 672 if (match(Op0, m_Undef()) || match(Op1, m_Undef())) 673 return UndefValue::get(Op0->getType()); 674 675 // X - 0 -> X 676 if (match(Op1, m_Zero())) 677 return Op0; 678 679 // X - X -> 0 680 if (Op0 == Op1) 681 return Constant::getNullValue(Op0->getType()); 682 683 // 0 - X -> 0 if the sub is NUW. 684 if (isNUW && match(Op0, m_Zero())) 685 return Op0; 686 687 // (X + Y) - Z -> X + (Y - Z) or Y + (X - Z) if everything simplifies. 688 // For example, (X + Y) - Y -> X; (Y + X) - Y -> X 689 Value *X = nullptr, *Y = nullptr, *Z = Op1; 690 if (MaxRecurse && match(Op0, m_Add(m_Value(X), m_Value(Y)))) { // (X + Y) - Z 691 // See if "V === Y - Z" simplifies. 692 if (Value *V = SimplifyBinOp(Instruction::Sub, Y, Z, Q, MaxRecurse-1)) 693 // It does! Now see if "X + V" simplifies. 694 if (Value *W = SimplifyBinOp(Instruction::Add, X, V, Q, MaxRecurse-1)) { 695 // It does, we successfully reassociated! 696 ++NumReassoc; 697 return W; 698 } 699 // See if "V === X - Z" simplifies. 700 if (Value *V = SimplifyBinOp(Instruction::Sub, X, Z, Q, MaxRecurse-1)) 701 // It does! Now see if "Y + V" simplifies. 702 if (Value *W = SimplifyBinOp(Instruction::Add, Y, V, Q, MaxRecurse-1)) { 703 // It does, we successfully reassociated! 704 ++NumReassoc; 705 return W; 706 } 707 } 708 709 // X - (Y + Z) -> (X - Y) - Z or (X - Z) - Y if everything simplifies. 710 // For example, X - (X + 1) -> -1 711 X = Op0; 712 if (MaxRecurse && match(Op1, m_Add(m_Value(Y), m_Value(Z)))) { // X - (Y + Z) 713 // See if "V === X - Y" simplifies. 714 if (Value *V = SimplifyBinOp(Instruction::Sub, X, Y, Q, MaxRecurse-1)) 715 // It does! Now see if "V - Z" simplifies. 716 if (Value *W = SimplifyBinOp(Instruction::Sub, V, Z, Q, MaxRecurse-1)) { 717 // It does, we successfully reassociated! 718 ++NumReassoc; 719 return W; 720 } 721 // See if "V === X - Z" simplifies. 722 if (Value *V = SimplifyBinOp(Instruction::Sub, X, Z, Q, MaxRecurse-1)) 723 // It does! Now see if "V - Y" simplifies. 724 if (Value *W = SimplifyBinOp(Instruction::Sub, V, Y, Q, MaxRecurse-1)) { 725 // It does, we successfully reassociated! 726 ++NumReassoc; 727 return W; 728 } 729 } 730 731 // Z - (X - Y) -> (Z - X) + Y if everything simplifies. 732 // For example, X - (X - Y) -> Y. 733 Z = Op0; 734 if (MaxRecurse && match(Op1, m_Sub(m_Value(X), m_Value(Y)))) // Z - (X - Y) 735 // See if "V === Z - X" simplifies. 736 if (Value *V = SimplifyBinOp(Instruction::Sub, Z, X, Q, MaxRecurse-1)) 737 // It does! Now see if "V + Y" simplifies. 738 if (Value *W = SimplifyBinOp(Instruction::Add, V, Y, Q, MaxRecurse-1)) { 739 // It does, we successfully reassociated! 740 ++NumReassoc; 741 return W; 742 } 743 744 // trunc(X) - trunc(Y) -> trunc(X - Y) if everything simplifies. 745 if (MaxRecurse && match(Op0, m_Trunc(m_Value(X))) && 746 match(Op1, m_Trunc(m_Value(Y)))) 747 if (X->getType() == Y->getType()) 748 // See if "V === X - Y" simplifies. 749 if (Value *V = SimplifyBinOp(Instruction::Sub, X, Y, Q, MaxRecurse-1)) 750 // It does! Now see if "trunc V" simplifies. 751 if (Value *W = SimplifyCastInst(Instruction::Trunc, V, Op0->getType(), 752 Q, MaxRecurse - 1)) 753 // It does, return the simplified "trunc V". 754 return W; 755 756 // Variations on GEP(base, I, ...) - GEP(base, i, ...) -> GEP(null, I-i, ...). 757 if (match(Op0, m_PtrToInt(m_Value(X))) && 758 match(Op1, m_PtrToInt(m_Value(Y)))) 759 if (Constant *Result = computePointerDifference(Q.DL, X, Y)) 760 return ConstantExpr::getIntegerCast(Result, Op0->getType(), true); 761 762 // i1 sub -> xor. 763 if (MaxRecurse && Op0->getType()->isIntegerTy(1)) 764 if (Value *V = SimplifyXorInst(Op0, Op1, Q, MaxRecurse-1)) 765 return V; 766 767 // Threading Sub over selects and phi nodes is pointless, so don't bother. 768 // Threading over the select in "A - select(cond, B, C)" means evaluating 769 // "A-B" and "A-C" and seeing if they are equal; but they are equal if and 770 // only if B and C are equal. If B and C are equal then (since we assume 771 // that operands have already been simplified) "select(cond, B, C)" should 772 // have been simplified to the common value of B and C already. Analysing 773 // "A-B" and "A-C" thus gains nothing, but costs compile time. Similarly 774 // for threading over phi nodes. 775 776 return nullptr; 777 } 778 779 Value *llvm::SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, 780 const DataLayout &DL, const TargetLibraryInfo *TLI, 781 const DominatorTree *DT, AssumptionCache *AC, 782 const Instruction *CxtI) { 783 return ::SimplifySubInst(Op0, Op1, isNSW, isNUW, Query(DL, TLI, DT, AC, CxtI), 784 RecursionLimit); 785 } 786 787 /// Given operands for an FAdd, see if we can fold the result. If not, this 788 /// returns null. 789 static Value *SimplifyFAddInst(Value *Op0, Value *Op1, FastMathFlags FMF, 790 const Query &Q, unsigned MaxRecurse) { 791 if (Constant *CLHS = dyn_cast<Constant>(Op0)) { 792 if (Constant *CRHS = dyn_cast<Constant>(Op1)) 793 return ConstantFoldBinaryOpOperands(Instruction::FAdd, CLHS, CRHS, Q.DL); 794 795 // Canonicalize the constant to the RHS. 796 std::swap(Op0, Op1); 797 } 798 799 // fadd X, -0 ==> X 800 if (match(Op1, m_NegZero())) 801 return Op0; 802 803 // fadd X, 0 ==> X, when we know X is not -0 804 if (match(Op1, m_Zero()) && 805 (FMF.noSignedZeros() || CannotBeNegativeZero(Op0, Q.TLI))) 806 return Op0; 807 808 // fadd [nnan ninf] X, (fsub [nnan ninf] 0, X) ==> 0 809 // where nnan and ninf have to occur at least once somewhere in this 810 // expression 811 Value *SubOp = nullptr; 812 if (match(Op1, m_FSub(m_AnyZero(), m_Specific(Op0)))) 813 SubOp = Op1; 814 else if (match(Op0, m_FSub(m_AnyZero(), m_Specific(Op1)))) 815 SubOp = Op0; 816 if (SubOp) { 817 Instruction *FSub = cast<Instruction>(SubOp); 818 if ((FMF.noNaNs() || FSub->hasNoNaNs()) && 819 (FMF.noInfs() || FSub->hasNoInfs())) 820 return Constant::getNullValue(Op0->getType()); 821 } 822 823 return nullptr; 824 } 825 826 /// Given operands for an FSub, see if we can fold the result. If not, this 827 /// returns null. 828 static Value *SimplifyFSubInst(Value *Op0, Value *Op1, FastMathFlags FMF, 829 const Query &Q, unsigned MaxRecurse) { 830 if (Constant *CLHS = dyn_cast<Constant>(Op0)) { 831 if (Constant *CRHS = dyn_cast<Constant>(Op1)) 832 return ConstantFoldBinaryOpOperands(Instruction::FSub, CLHS, CRHS, Q.DL); 833 } 834 835 // fsub X, 0 ==> X 836 if (match(Op1, m_Zero())) 837 return Op0; 838 839 // fsub X, -0 ==> X, when we know X is not -0 840 if (match(Op1, m_NegZero()) && 841 (FMF.noSignedZeros() || CannotBeNegativeZero(Op0, Q.TLI))) 842 return Op0; 843 844 // fsub -0.0, (fsub -0.0, X) ==> X 845 Value *X; 846 if (match(Op0, m_NegZero()) && match(Op1, m_FSub(m_NegZero(), m_Value(X)))) 847 return X; 848 849 // fsub 0.0, (fsub 0.0, X) ==> X if signed zeros are ignored. 850 if (FMF.noSignedZeros() && match(Op0, m_AnyZero()) && 851 match(Op1, m_FSub(m_AnyZero(), m_Value(X)))) 852 return X; 853 854 // fsub nnan x, x ==> 0.0 855 if (FMF.noNaNs() && Op0 == Op1) 856 return Constant::getNullValue(Op0->getType()); 857 858 return nullptr; 859 } 860 861 /// Given the operands for an FMul, see if we can fold the result 862 static Value *SimplifyFMulInst(Value *Op0, Value *Op1, 863 FastMathFlags FMF, 864 const Query &Q, 865 unsigned MaxRecurse) { 866 if (Constant *CLHS = dyn_cast<Constant>(Op0)) { 867 if (Constant *CRHS = dyn_cast<Constant>(Op1)) 868 return ConstantFoldBinaryOpOperands(Instruction::FMul, CLHS, CRHS, Q.DL); 869 870 // Canonicalize the constant to the RHS. 871 std::swap(Op0, Op1); 872 } 873 874 // fmul X, 1.0 ==> X 875 if (match(Op1, m_FPOne())) 876 return Op0; 877 878 // fmul nnan nsz X, 0 ==> 0 879 if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op1, m_AnyZero())) 880 return Op1; 881 882 return nullptr; 883 } 884 885 /// Given operands for a Mul, see if we can fold the result. 886 /// If not, this returns null. 887 static Value *SimplifyMulInst(Value *Op0, Value *Op1, const Query &Q, 888 unsigned MaxRecurse) { 889 if (Constant *CLHS = dyn_cast<Constant>(Op0)) { 890 if (Constant *CRHS = dyn_cast<Constant>(Op1)) 891 return ConstantFoldBinaryOpOperands(Instruction::Mul, CLHS, CRHS, Q.DL); 892 893 // Canonicalize the constant to the RHS. 894 std::swap(Op0, Op1); 895 } 896 897 // X * undef -> 0 898 if (match(Op1, m_Undef())) 899 return Constant::getNullValue(Op0->getType()); 900 901 // X * 0 -> 0 902 if (match(Op1, m_Zero())) 903 return Op1; 904 905 // X * 1 -> X 906 if (match(Op1, m_One())) 907 return Op0; 908 909 // (X / Y) * Y -> X if the division is exact. 910 Value *X = nullptr; 911 if (match(Op0, m_Exact(m_IDiv(m_Value(X), m_Specific(Op1)))) || // (X / Y) * Y 912 match(Op1, m_Exact(m_IDiv(m_Value(X), m_Specific(Op0))))) // Y * (X / Y) 913 return X; 914 915 // i1 mul -> and. 916 if (MaxRecurse && Op0->getType()->isIntegerTy(1)) 917 if (Value *V = SimplifyAndInst(Op0, Op1, Q, MaxRecurse-1)) 918 return V; 919 920 // Try some generic simplifications for associative operations. 921 if (Value *V = SimplifyAssociativeBinOp(Instruction::Mul, Op0, Op1, Q, 922 MaxRecurse)) 923 return V; 924 925 // Mul distributes over Add. Try some generic simplifications based on this. 926 if (Value *V = ExpandBinOp(Instruction::Mul, Op0, Op1, Instruction::Add, 927 Q, MaxRecurse)) 928 return V; 929 930 // If the operation is with the result of a select instruction, check whether 931 // operating on either branch of the select always yields the same value. 932 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 933 if (Value *V = ThreadBinOpOverSelect(Instruction::Mul, Op0, Op1, Q, 934 MaxRecurse)) 935 return V; 936 937 // If the operation is with the result of a phi instruction, check whether 938 // operating on all incoming values of the phi always yields the same value. 939 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 940 if (Value *V = ThreadBinOpOverPHI(Instruction::Mul, Op0, Op1, Q, 941 MaxRecurse)) 942 return V; 943 944 return nullptr; 945 } 946 947 Value *llvm::SimplifyFAddInst(Value *Op0, Value *Op1, FastMathFlags FMF, 948 const DataLayout &DL, 949 const TargetLibraryInfo *TLI, 950 const DominatorTree *DT, AssumptionCache *AC, 951 const Instruction *CxtI) { 952 return ::SimplifyFAddInst(Op0, Op1, FMF, Query(DL, TLI, DT, AC, CxtI), 953 RecursionLimit); 954 } 955 956 Value *llvm::SimplifyFSubInst(Value *Op0, Value *Op1, FastMathFlags FMF, 957 const DataLayout &DL, 958 const TargetLibraryInfo *TLI, 959 const DominatorTree *DT, AssumptionCache *AC, 960 const Instruction *CxtI) { 961 return ::SimplifyFSubInst(Op0, Op1, FMF, Query(DL, TLI, DT, AC, CxtI), 962 RecursionLimit); 963 } 964 965 Value *llvm::SimplifyFMulInst(Value *Op0, Value *Op1, FastMathFlags FMF, 966 const DataLayout &DL, 967 const TargetLibraryInfo *TLI, 968 const DominatorTree *DT, AssumptionCache *AC, 969 const Instruction *CxtI) { 970 return ::SimplifyFMulInst(Op0, Op1, FMF, Query(DL, TLI, DT, AC, CxtI), 971 RecursionLimit); 972 } 973 974 Value *llvm::SimplifyMulInst(Value *Op0, Value *Op1, const DataLayout &DL, 975 const TargetLibraryInfo *TLI, 976 const DominatorTree *DT, AssumptionCache *AC, 977 const Instruction *CxtI) { 978 return ::SimplifyMulInst(Op0, Op1, Query(DL, TLI, DT, AC, CxtI), 979 RecursionLimit); 980 } 981 982 /// Given operands for an SDiv or UDiv, see if we can fold the result. 983 /// If not, this returns null. 984 static Value *SimplifyDiv(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1, 985 const Query &Q, unsigned MaxRecurse) { 986 if (Constant *C0 = dyn_cast<Constant>(Op0)) 987 if (Constant *C1 = dyn_cast<Constant>(Op1)) 988 return ConstantFoldBinaryOpOperands(Opcode, C0, C1, Q.DL); 989 990 bool isSigned = Opcode == Instruction::SDiv; 991 992 // X / undef -> undef 993 if (match(Op1, m_Undef())) 994 return Op1; 995 996 // X / 0 -> undef, we don't need to preserve faults! 997 if (match(Op1, m_Zero())) 998 return UndefValue::get(Op1->getType()); 999 1000 // undef / X -> 0 1001 if (match(Op0, m_Undef())) 1002 return Constant::getNullValue(Op0->getType()); 1003 1004 // 0 / X -> 0, we don't need to preserve faults! 1005 if (match(Op0, m_Zero())) 1006 return Op0; 1007 1008 // X / 1 -> X 1009 if (match(Op1, m_One())) 1010 return Op0; 1011 1012 if (Op0->getType()->isIntegerTy(1)) 1013 // It can't be division by zero, hence it must be division by one. 1014 return Op0; 1015 1016 // X / X -> 1 1017 if (Op0 == Op1) 1018 return ConstantInt::get(Op0->getType(), 1); 1019 1020 // (X * Y) / Y -> X if the multiplication does not overflow. 1021 Value *X = nullptr, *Y = nullptr; 1022 if (match(Op0, m_Mul(m_Value(X), m_Value(Y))) && (X == Op1 || Y == Op1)) { 1023 if (Y != Op1) std::swap(X, Y); // Ensure expression is (X * Y) / Y, Y = Op1 1024 OverflowingBinaryOperator *Mul = cast<OverflowingBinaryOperator>(Op0); 1025 // If the Mul knows it does not overflow, then we are good to go. 1026 if ((isSigned && Mul->hasNoSignedWrap()) || 1027 (!isSigned && Mul->hasNoUnsignedWrap())) 1028 return X; 1029 // If X has the form X = A / Y then X * Y cannot overflow. 1030 if (BinaryOperator *Div = dyn_cast<BinaryOperator>(X)) 1031 if (Div->getOpcode() == Opcode && Div->getOperand(1) == Y) 1032 return X; 1033 } 1034 1035 // (X rem Y) / Y -> 0 1036 if ((isSigned && match(Op0, m_SRem(m_Value(), m_Specific(Op1)))) || 1037 (!isSigned && match(Op0, m_URem(m_Value(), m_Specific(Op1))))) 1038 return Constant::getNullValue(Op0->getType()); 1039 1040 // (X /u C1) /u C2 -> 0 if C1 * C2 overflow 1041 ConstantInt *C1, *C2; 1042 if (!isSigned && match(Op0, m_UDiv(m_Value(X), m_ConstantInt(C1))) && 1043 match(Op1, m_ConstantInt(C2))) { 1044 bool Overflow; 1045 C1->getValue().umul_ov(C2->getValue(), Overflow); 1046 if (Overflow) 1047 return Constant::getNullValue(Op0->getType()); 1048 } 1049 1050 // If the operation is with the result of a select instruction, check whether 1051 // operating on either branch of the select always yields the same value. 1052 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 1053 if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse)) 1054 return V; 1055 1056 // If the operation is with the result of a phi instruction, check whether 1057 // operating on all incoming values of the phi always yields the same value. 1058 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 1059 if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse)) 1060 return V; 1061 1062 return nullptr; 1063 } 1064 1065 /// Given operands for an SDiv, see if we can fold the result. 1066 /// If not, this returns null. 1067 static Value *SimplifySDivInst(Value *Op0, Value *Op1, const Query &Q, 1068 unsigned MaxRecurse) { 1069 if (Value *V = SimplifyDiv(Instruction::SDiv, Op0, Op1, Q, MaxRecurse)) 1070 return V; 1071 1072 return nullptr; 1073 } 1074 1075 Value *llvm::SimplifySDivInst(Value *Op0, Value *Op1, const DataLayout &DL, 1076 const TargetLibraryInfo *TLI, 1077 const DominatorTree *DT, AssumptionCache *AC, 1078 const Instruction *CxtI) { 1079 return ::SimplifySDivInst(Op0, Op1, Query(DL, TLI, DT, AC, CxtI), 1080 RecursionLimit); 1081 } 1082 1083 /// Given operands for a UDiv, see if we can fold the result. 1084 /// If not, this returns null. 1085 static Value *SimplifyUDivInst(Value *Op0, Value *Op1, const Query &Q, 1086 unsigned MaxRecurse) { 1087 if (Value *V = SimplifyDiv(Instruction::UDiv, Op0, Op1, Q, MaxRecurse)) 1088 return V; 1089 1090 return nullptr; 1091 } 1092 1093 Value *llvm::SimplifyUDivInst(Value *Op0, Value *Op1, const DataLayout &DL, 1094 const TargetLibraryInfo *TLI, 1095 const DominatorTree *DT, AssumptionCache *AC, 1096 const Instruction *CxtI) { 1097 return ::SimplifyUDivInst(Op0, Op1, Query(DL, TLI, DT, AC, CxtI), 1098 RecursionLimit); 1099 } 1100 1101 static Value *SimplifyFDivInst(Value *Op0, Value *Op1, FastMathFlags FMF, 1102 const Query &Q, unsigned) { 1103 // undef / X -> undef (the undef could be a snan). 1104 if (match(Op0, m_Undef())) 1105 return Op0; 1106 1107 // X / undef -> undef 1108 if (match(Op1, m_Undef())) 1109 return Op1; 1110 1111 // 0 / X -> 0 1112 // Requires that NaNs are off (X could be zero) and signed zeroes are 1113 // ignored (X could be positive or negative, so the output sign is unknown). 1114 if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op0, m_AnyZero())) 1115 return Op0; 1116 1117 if (FMF.noNaNs()) { 1118 // X / X -> 1.0 is legal when NaNs are ignored. 1119 if (Op0 == Op1) 1120 return ConstantFP::get(Op0->getType(), 1.0); 1121 1122 // -X / X -> -1.0 and 1123 // X / -X -> -1.0 are legal when NaNs are ignored. 1124 // We can ignore signed zeros because +-0.0/+-0.0 is NaN and ignored. 1125 if ((BinaryOperator::isFNeg(Op0, /*IgnoreZeroSign=*/true) && 1126 BinaryOperator::getFNegArgument(Op0) == Op1) || 1127 (BinaryOperator::isFNeg(Op1, /*IgnoreZeroSign=*/true) && 1128 BinaryOperator::getFNegArgument(Op1) == Op0)) 1129 return ConstantFP::get(Op0->getType(), -1.0); 1130 } 1131 1132 return nullptr; 1133 } 1134 1135 Value *llvm::SimplifyFDivInst(Value *Op0, Value *Op1, FastMathFlags FMF, 1136 const DataLayout &DL, 1137 const TargetLibraryInfo *TLI, 1138 const DominatorTree *DT, AssumptionCache *AC, 1139 const Instruction *CxtI) { 1140 return ::SimplifyFDivInst(Op0, Op1, FMF, Query(DL, TLI, DT, AC, CxtI), 1141 RecursionLimit); 1142 } 1143 1144 /// Given operands for an SRem or URem, see if we can fold the result. 1145 /// If not, this returns null. 1146 static Value *SimplifyRem(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1, 1147 const Query &Q, unsigned MaxRecurse) { 1148 if (Constant *C0 = dyn_cast<Constant>(Op0)) 1149 if (Constant *C1 = dyn_cast<Constant>(Op1)) 1150 return ConstantFoldBinaryOpOperands(Opcode, C0, C1, Q.DL); 1151 1152 // X % undef -> undef 1153 if (match(Op1, m_Undef())) 1154 return Op1; 1155 1156 // undef % X -> 0 1157 if (match(Op0, m_Undef())) 1158 return Constant::getNullValue(Op0->getType()); 1159 1160 // 0 % X -> 0, we don't need to preserve faults! 1161 if (match(Op0, m_Zero())) 1162 return Op0; 1163 1164 // X % 0 -> undef, we don't need to preserve faults! 1165 if (match(Op1, m_Zero())) 1166 return UndefValue::get(Op0->getType()); 1167 1168 // X % 1 -> 0 1169 if (match(Op1, m_One())) 1170 return Constant::getNullValue(Op0->getType()); 1171 1172 if (Op0->getType()->isIntegerTy(1)) 1173 // It can't be remainder by zero, hence it must be remainder by one. 1174 return Constant::getNullValue(Op0->getType()); 1175 1176 // X % X -> 0 1177 if (Op0 == Op1) 1178 return Constant::getNullValue(Op0->getType()); 1179 1180 // (X % Y) % Y -> X % Y 1181 if ((Opcode == Instruction::SRem && 1182 match(Op0, m_SRem(m_Value(), m_Specific(Op1)))) || 1183 (Opcode == Instruction::URem && 1184 match(Op0, m_URem(m_Value(), m_Specific(Op1))))) 1185 return Op0; 1186 1187 // If the operation is with the result of a select instruction, check whether 1188 // operating on either branch of the select always yields the same value. 1189 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 1190 if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse)) 1191 return V; 1192 1193 // If the operation is with the result of a phi instruction, check whether 1194 // operating on all incoming values of the phi always yields the same value. 1195 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 1196 if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse)) 1197 return V; 1198 1199 return nullptr; 1200 } 1201 1202 /// Given operands for an SRem, see if we can fold the result. 1203 /// If not, this returns null. 1204 static Value *SimplifySRemInst(Value *Op0, Value *Op1, const Query &Q, 1205 unsigned MaxRecurse) { 1206 if (Value *V = SimplifyRem(Instruction::SRem, Op0, Op1, Q, MaxRecurse)) 1207 return V; 1208 1209 return nullptr; 1210 } 1211 1212 Value *llvm::SimplifySRemInst(Value *Op0, Value *Op1, const DataLayout &DL, 1213 const TargetLibraryInfo *TLI, 1214 const DominatorTree *DT, AssumptionCache *AC, 1215 const Instruction *CxtI) { 1216 return ::SimplifySRemInst(Op0, Op1, Query(DL, TLI, DT, AC, CxtI), 1217 RecursionLimit); 1218 } 1219 1220 /// Given operands for a URem, see if we can fold the result. 1221 /// If not, this returns null. 1222 static Value *SimplifyURemInst(Value *Op0, Value *Op1, const Query &Q, 1223 unsigned MaxRecurse) { 1224 if (Value *V = SimplifyRem(Instruction::URem, Op0, Op1, Q, MaxRecurse)) 1225 return V; 1226 1227 return nullptr; 1228 } 1229 1230 Value *llvm::SimplifyURemInst(Value *Op0, Value *Op1, const DataLayout &DL, 1231 const TargetLibraryInfo *TLI, 1232 const DominatorTree *DT, AssumptionCache *AC, 1233 const Instruction *CxtI) { 1234 return ::SimplifyURemInst(Op0, Op1, Query(DL, TLI, DT, AC, CxtI), 1235 RecursionLimit); 1236 } 1237 1238 static Value *SimplifyFRemInst(Value *Op0, Value *Op1, FastMathFlags FMF, 1239 const Query &, unsigned) { 1240 // undef % X -> undef (the undef could be a snan). 1241 if (match(Op0, m_Undef())) 1242 return Op0; 1243 1244 // X % undef -> undef 1245 if (match(Op1, m_Undef())) 1246 return Op1; 1247 1248 // 0 % X -> 0 1249 // Requires that NaNs are off (X could be zero) and signed zeroes are 1250 // ignored (X could be positive or negative, so the output sign is unknown). 1251 if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op0, m_AnyZero())) 1252 return Op0; 1253 1254 return nullptr; 1255 } 1256 1257 Value *llvm::SimplifyFRemInst(Value *Op0, Value *Op1, FastMathFlags FMF, 1258 const DataLayout &DL, 1259 const TargetLibraryInfo *TLI, 1260 const DominatorTree *DT, AssumptionCache *AC, 1261 const Instruction *CxtI) { 1262 return ::SimplifyFRemInst(Op0, Op1, FMF, Query(DL, TLI, DT, AC, CxtI), 1263 RecursionLimit); 1264 } 1265 1266 /// Returns true if a shift by \c Amount always yields undef. 1267 static bool isUndefShift(Value *Amount) { 1268 Constant *C = dyn_cast<Constant>(Amount); 1269 if (!C) 1270 return false; 1271 1272 // X shift by undef -> undef because it may shift by the bitwidth. 1273 if (isa<UndefValue>(C)) 1274 return true; 1275 1276 // Shifting by the bitwidth or more is undefined. 1277 if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1278 if (CI->getValue().getLimitedValue() >= 1279 CI->getType()->getScalarSizeInBits()) 1280 return true; 1281 1282 // If all lanes of a vector shift are undefined the whole shift is. 1283 if (isa<ConstantVector>(C) || isa<ConstantDataVector>(C)) { 1284 for (unsigned I = 0, E = C->getType()->getVectorNumElements(); I != E; ++I) 1285 if (!isUndefShift(C->getAggregateElement(I))) 1286 return false; 1287 return true; 1288 } 1289 1290 return false; 1291 } 1292 1293 /// Given operands for an Shl, LShr or AShr, see if we can fold the result. 1294 /// If not, this returns null. 1295 static Value *SimplifyShift(unsigned Opcode, Value *Op0, Value *Op1, 1296 const Query &Q, unsigned MaxRecurse) { 1297 if (Constant *C0 = dyn_cast<Constant>(Op0)) 1298 if (Constant *C1 = dyn_cast<Constant>(Op1)) 1299 return ConstantFoldBinaryOpOperands(Opcode, C0, C1, Q.DL); 1300 1301 // 0 shift by X -> 0 1302 if (match(Op0, m_Zero())) 1303 return Op0; 1304 1305 // X shift by 0 -> X 1306 if (match(Op1, m_Zero())) 1307 return Op0; 1308 1309 // Fold undefined shifts. 1310 if (isUndefShift(Op1)) 1311 return UndefValue::get(Op0->getType()); 1312 1313 // If the operation is with the result of a select instruction, check whether 1314 // operating on either branch of the select always yields the same value. 1315 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 1316 if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse)) 1317 return V; 1318 1319 // If the operation is with the result of a phi instruction, check whether 1320 // operating on all incoming values of the phi always yields the same value. 1321 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 1322 if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse)) 1323 return V; 1324 1325 // If any bits in the shift amount make that value greater than or equal to 1326 // the number of bits in the type, the shift is undefined. 1327 unsigned BitWidth = Op1->getType()->getScalarSizeInBits(); 1328 APInt KnownZero(BitWidth, 0); 1329 APInt KnownOne(BitWidth, 0); 1330 computeKnownBits(Op1, KnownZero, KnownOne, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 1331 if (KnownOne.getLimitedValue() >= BitWidth) 1332 return UndefValue::get(Op0->getType()); 1333 1334 // If all valid bits in the shift amount are known zero, the first operand is 1335 // unchanged. 1336 unsigned NumValidShiftBits = Log2_32_Ceil(BitWidth); 1337 APInt ShiftAmountMask = APInt::getLowBitsSet(BitWidth, NumValidShiftBits); 1338 if ((KnownZero & ShiftAmountMask) == ShiftAmountMask) 1339 return Op0; 1340 1341 return nullptr; 1342 } 1343 1344 /// \brief Given operands for an Shl, LShr or AShr, see if we can 1345 /// fold the result. If not, this returns null. 1346 static Value *SimplifyRightShift(unsigned Opcode, Value *Op0, Value *Op1, 1347 bool isExact, const Query &Q, 1348 unsigned MaxRecurse) { 1349 if (Value *V = SimplifyShift(Opcode, Op0, Op1, Q, MaxRecurse)) 1350 return V; 1351 1352 // X >> X -> 0 1353 if (Op0 == Op1) 1354 return Constant::getNullValue(Op0->getType()); 1355 1356 // undef >> X -> 0 1357 // undef >> X -> undef (if it's exact) 1358 if (match(Op0, m_Undef())) 1359 return isExact ? Op0 : Constant::getNullValue(Op0->getType()); 1360 1361 // The low bit cannot be shifted out of an exact shift if it is set. 1362 if (isExact) { 1363 unsigned BitWidth = Op0->getType()->getScalarSizeInBits(); 1364 APInt Op0KnownZero(BitWidth, 0); 1365 APInt Op0KnownOne(BitWidth, 0); 1366 computeKnownBits(Op0, Op0KnownZero, Op0KnownOne, Q.DL, /*Depth=*/0, Q.AC, 1367 Q.CxtI, Q.DT); 1368 if (Op0KnownOne[0]) 1369 return Op0; 1370 } 1371 1372 return nullptr; 1373 } 1374 1375 /// Given operands for an Shl, see if we can fold the result. 1376 /// If not, this returns null. 1377 static Value *SimplifyShlInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, 1378 const Query &Q, unsigned MaxRecurse) { 1379 if (Value *V = SimplifyShift(Instruction::Shl, Op0, Op1, Q, MaxRecurse)) 1380 return V; 1381 1382 // undef << X -> 0 1383 // undef << X -> undef if (if it's NSW/NUW) 1384 if (match(Op0, m_Undef())) 1385 return isNSW || isNUW ? Op0 : Constant::getNullValue(Op0->getType()); 1386 1387 // (X >> A) << A -> X 1388 Value *X; 1389 if (match(Op0, m_Exact(m_Shr(m_Value(X), m_Specific(Op1))))) 1390 return X; 1391 return nullptr; 1392 } 1393 1394 Value *llvm::SimplifyShlInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, 1395 const DataLayout &DL, const TargetLibraryInfo *TLI, 1396 const DominatorTree *DT, AssumptionCache *AC, 1397 const Instruction *CxtI) { 1398 return ::SimplifyShlInst(Op0, Op1, isNSW, isNUW, Query(DL, TLI, DT, AC, CxtI), 1399 RecursionLimit); 1400 } 1401 1402 /// Given operands for an LShr, see if we can fold the result. 1403 /// If not, this returns null. 1404 static Value *SimplifyLShrInst(Value *Op0, Value *Op1, bool isExact, 1405 const Query &Q, unsigned MaxRecurse) { 1406 if (Value *V = SimplifyRightShift(Instruction::LShr, Op0, Op1, isExact, Q, 1407 MaxRecurse)) 1408 return V; 1409 1410 // (X << A) >> A -> X 1411 Value *X; 1412 if (match(Op0, m_NUWShl(m_Value(X), m_Specific(Op1)))) 1413 return X; 1414 1415 return nullptr; 1416 } 1417 1418 Value *llvm::SimplifyLShrInst(Value *Op0, Value *Op1, bool isExact, 1419 const DataLayout &DL, 1420 const TargetLibraryInfo *TLI, 1421 const DominatorTree *DT, AssumptionCache *AC, 1422 const Instruction *CxtI) { 1423 return ::SimplifyLShrInst(Op0, Op1, isExact, Query(DL, TLI, DT, AC, CxtI), 1424 RecursionLimit); 1425 } 1426 1427 /// Given operands for an AShr, see if we can fold the result. 1428 /// If not, this returns null. 1429 static Value *SimplifyAShrInst(Value *Op0, Value *Op1, bool isExact, 1430 const Query &Q, unsigned MaxRecurse) { 1431 if (Value *V = SimplifyRightShift(Instruction::AShr, Op0, Op1, isExact, Q, 1432 MaxRecurse)) 1433 return V; 1434 1435 // all ones >>a X -> all ones 1436 if (match(Op0, m_AllOnes())) 1437 return Op0; 1438 1439 // (X << A) >> A -> X 1440 Value *X; 1441 if (match(Op0, m_NSWShl(m_Value(X), m_Specific(Op1)))) 1442 return X; 1443 1444 // Arithmetic shifting an all-sign-bit value is a no-op. 1445 unsigned NumSignBits = ComputeNumSignBits(Op0, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 1446 if (NumSignBits == Op0->getType()->getScalarSizeInBits()) 1447 return Op0; 1448 1449 return nullptr; 1450 } 1451 1452 Value *llvm::SimplifyAShrInst(Value *Op0, Value *Op1, bool isExact, 1453 const DataLayout &DL, 1454 const TargetLibraryInfo *TLI, 1455 const DominatorTree *DT, AssumptionCache *AC, 1456 const Instruction *CxtI) { 1457 return ::SimplifyAShrInst(Op0, Op1, isExact, Query(DL, TLI, DT, AC, CxtI), 1458 RecursionLimit); 1459 } 1460 1461 static Value *simplifyUnsignedRangeCheck(ICmpInst *ZeroICmp, 1462 ICmpInst *UnsignedICmp, bool IsAnd) { 1463 Value *X, *Y; 1464 1465 ICmpInst::Predicate EqPred; 1466 if (!match(ZeroICmp, m_ICmp(EqPred, m_Value(Y), m_Zero())) || 1467 !ICmpInst::isEquality(EqPred)) 1468 return nullptr; 1469 1470 ICmpInst::Predicate UnsignedPred; 1471 if (match(UnsignedICmp, m_ICmp(UnsignedPred, m_Value(X), m_Specific(Y))) && 1472 ICmpInst::isUnsigned(UnsignedPred)) 1473 ; 1474 else if (match(UnsignedICmp, 1475 m_ICmp(UnsignedPred, m_Value(Y), m_Specific(X))) && 1476 ICmpInst::isUnsigned(UnsignedPred)) 1477 UnsignedPred = ICmpInst::getSwappedPredicate(UnsignedPred); 1478 else 1479 return nullptr; 1480 1481 // X < Y && Y != 0 --> X < Y 1482 // X < Y || Y != 0 --> Y != 0 1483 if (UnsignedPred == ICmpInst::ICMP_ULT && EqPred == ICmpInst::ICMP_NE) 1484 return IsAnd ? UnsignedICmp : ZeroICmp; 1485 1486 // X >= Y || Y != 0 --> true 1487 // X >= Y || Y == 0 --> X >= Y 1488 if (UnsignedPred == ICmpInst::ICMP_UGE && !IsAnd) { 1489 if (EqPred == ICmpInst::ICMP_NE) 1490 return getTrue(UnsignedICmp->getType()); 1491 return UnsignedICmp; 1492 } 1493 1494 // X < Y && Y == 0 --> false 1495 if (UnsignedPred == ICmpInst::ICMP_ULT && EqPred == ICmpInst::ICMP_EQ && 1496 IsAnd) 1497 return getFalse(UnsignedICmp->getType()); 1498 1499 return nullptr; 1500 } 1501 1502 static Value *SimplifyAndOfICmps(ICmpInst *Op0, ICmpInst *Op1) { 1503 Type *ITy = Op0->getType(); 1504 ICmpInst::Predicate Pred0, Pred1; 1505 ConstantInt *CI1, *CI2; 1506 Value *V; 1507 1508 if (Value *X = simplifyUnsignedRangeCheck(Op0, Op1, /*IsAnd=*/true)) 1509 return X; 1510 1511 // Look for this pattern: (icmp V, C0) & (icmp V, C1)). 1512 const APInt *C0, *C1; 1513 if (match(Op0, m_ICmp(Pred0, m_Value(V), m_APInt(C0))) && 1514 match(Op1, m_ICmp(Pred1, m_Specific(V), m_APInt(C1)))) { 1515 // Make a constant range that's the intersection of the two icmp ranges. 1516 // If the intersection is empty, we know that the result is false. 1517 auto Range0 = ConstantRange::makeAllowedICmpRegion(Pred0, *C0); 1518 auto Range1 = ConstantRange::makeAllowedICmpRegion(Pred1, *C1); 1519 if (Range0.intersectWith(Range1).isEmptySet()) 1520 return getFalse(ITy); 1521 } 1522 1523 if (!match(Op0, m_ICmp(Pred0, m_Add(m_Value(V), m_ConstantInt(CI1)), 1524 m_ConstantInt(CI2)))) 1525 return nullptr; 1526 1527 if (!match(Op1, m_ICmp(Pred1, m_Specific(V), m_Specific(CI1)))) 1528 return nullptr; 1529 1530 auto *AddInst = cast<BinaryOperator>(Op0->getOperand(0)); 1531 bool isNSW = AddInst->hasNoSignedWrap(); 1532 bool isNUW = AddInst->hasNoUnsignedWrap(); 1533 1534 const APInt &CI1V = CI1->getValue(); 1535 const APInt &CI2V = CI2->getValue(); 1536 const APInt Delta = CI2V - CI1V; 1537 if (CI1V.isStrictlyPositive()) { 1538 if (Delta == 2) { 1539 if (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_SGT) 1540 return getFalse(ITy); 1541 if (Pred0 == ICmpInst::ICMP_SLT && Pred1 == ICmpInst::ICMP_SGT && isNSW) 1542 return getFalse(ITy); 1543 } 1544 if (Delta == 1) { 1545 if (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_SGT) 1546 return getFalse(ITy); 1547 if (Pred0 == ICmpInst::ICMP_SLE && Pred1 == ICmpInst::ICMP_SGT && isNSW) 1548 return getFalse(ITy); 1549 } 1550 } 1551 if (CI1V.getBoolValue() && isNUW) { 1552 if (Delta == 2) 1553 if (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_UGT) 1554 return getFalse(ITy); 1555 if (Delta == 1) 1556 if (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_UGT) 1557 return getFalse(ITy); 1558 } 1559 1560 return nullptr; 1561 } 1562 1563 /// Given operands for an And, see if we can fold the result. 1564 /// If not, this returns null. 1565 static Value *SimplifyAndInst(Value *Op0, Value *Op1, const Query &Q, 1566 unsigned MaxRecurse) { 1567 if (Constant *CLHS = dyn_cast<Constant>(Op0)) { 1568 if (Constant *CRHS = dyn_cast<Constant>(Op1)) 1569 return ConstantFoldBinaryOpOperands(Instruction::And, CLHS, CRHS, Q.DL); 1570 1571 // Canonicalize the constant to the RHS. 1572 std::swap(Op0, Op1); 1573 } 1574 1575 // X & undef -> 0 1576 if (match(Op1, m_Undef())) 1577 return Constant::getNullValue(Op0->getType()); 1578 1579 // X & X = X 1580 if (Op0 == Op1) 1581 return Op0; 1582 1583 // X & 0 = 0 1584 if (match(Op1, m_Zero())) 1585 return Op1; 1586 1587 // X & -1 = X 1588 if (match(Op1, m_AllOnes())) 1589 return Op0; 1590 1591 // A & ~A = ~A & A = 0 1592 if (match(Op0, m_Not(m_Specific(Op1))) || 1593 match(Op1, m_Not(m_Specific(Op0)))) 1594 return Constant::getNullValue(Op0->getType()); 1595 1596 // (A | ?) & A = A 1597 Value *A = nullptr, *B = nullptr; 1598 if (match(Op0, m_Or(m_Value(A), m_Value(B))) && 1599 (A == Op1 || B == Op1)) 1600 return Op1; 1601 1602 // A & (A | ?) = A 1603 if (match(Op1, m_Or(m_Value(A), m_Value(B))) && 1604 (A == Op0 || B == Op0)) 1605 return Op0; 1606 1607 // A & (-A) = A if A is a power of two or zero. 1608 if (match(Op0, m_Neg(m_Specific(Op1))) || 1609 match(Op1, m_Neg(m_Specific(Op0)))) { 1610 if (isKnownToBeAPowerOfTwo(Op0, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI, 1611 Q.DT)) 1612 return Op0; 1613 if (isKnownToBeAPowerOfTwo(Op1, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI, 1614 Q.DT)) 1615 return Op1; 1616 } 1617 1618 if (auto *ICILHS = dyn_cast<ICmpInst>(Op0)) { 1619 if (auto *ICIRHS = dyn_cast<ICmpInst>(Op1)) { 1620 if (Value *V = SimplifyAndOfICmps(ICILHS, ICIRHS)) 1621 return V; 1622 if (Value *V = SimplifyAndOfICmps(ICIRHS, ICILHS)) 1623 return V; 1624 } 1625 } 1626 1627 // The compares may be hidden behind casts. Look through those and try the 1628 // same folds as above. 1629 auto *Cast0 = dyn_cast<CastInst>(Op0); 1630 auto *Cast1 = dyn_cast<CastInst>(Op1); 1631 if (Cast0 && Cast1 && Cast0->getOpcode() == Cast1->getOpcode() && 1632 Cast0->getSrcTy() == Cast1->getSrcTy()) { 1633 auto *Cmp0 = dyn_cast<ICmpInst>(Cast0->getOperand(0)); 1634 auto *Cmp1 = dyn_cast<ICmpInst>(Cast1->getOperand(0)); 1635 if (Cmp0 && Cmp1) { 1636 Instruction::CastOps CastOpc = Cast0->getOpcode(); 1637 Type *ResultType = Cast0->getType(); 1638 if (auto *V = dyn_cast_or_null<Constant>(SimplifyAndOfICmps(Cmp0, Cmp1))) 1639 return ConstantExpr::getCast(CastOpc, V, ResultType); 1640 if (auto *V = dyn_cast_or_null<Constant>(SimplifyAndOfICmps(Cmp1, Cmp0))) 1641 return ConstantExpr::getCast(CastOpc, V, ResultType); 1642 } 1643 } 1644 1645 // Try some generic simplifications for associative operations. 1646 if (Value *V = SimplifyAssociativeBinOp(Instruction::And, Op0, Op1, Q, 1647 MaxRecurse)) 1648 return V; 1649 1650 // And distributes over Or. Try some generic simplifications based on this. 1651 if (Value *V = ExpandBinOp(Instruction::And, Op0, Op1, Instruction::Or, 1652 Q, MaxRecurse)) 1653 return V; 1654 1655 // And distributes over Xor. Try some generic simplifications based on this. 1656 if (Value *V = ExpandBinOp(Instruction::And, Op0, Op1, Instruction::Xor, 1657 Q, MaxRecurse)) 1658 return V; 1659 1660 // If the operation is with the result of a select instruction, check whether 1661 // operating on either branch of the select always yields the same value. 1662 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 1663 if (Value *V = ThreadBinOpOverSelect(Instruction::And, Op0, Op1, Q, 1664 MaxRecurse)) 1665 return V; 1666 1667 // If the operation is with the result of a phi instruction, check whether 1668 // operating on all incoming values of the phi always yields the same value. 1669 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 1670 if (Value *V = ThreadBinOpOverPHI(Instruction::And, Op0, Op1, Q, 1671 MaxRecurse)) 1672 return V; 1673 1674 return nullptr; 1675 } 1676 1677 Value *llvm::SimplifyAndInst(Value *Op0, Value *Op1, const DataLayout &DL, 1678 const TargetLibraryInfo *TLI, 1679 const DominatorTree *DT, AssumptionCache *AC, 1680 const Instruction *CxtI) { 1681 return ::SimplifyAndInst(Op0, Op1, Query(DL, TLI, DT, AC, CxtI), 1682 RecursionLimit); 1683 } 1684 1685 /// Simplify (or (icmp ...) (icmp ...)) to true when we can tell that the union 1686 /// contains all possible values. 1687 static Value *SimplifyOrOfICmps(ICmpInst *Op0, ICmpInst *Op1) { 1688 ICmpInst::Predicate Pred0, Pred1; 1689 ConstantInt *CI1, *CI2; 1690 Value *V; 1691 1692 if (Value *X = simplifyUnsignedRangeCheck(Op0, Op1, /*IsAnd=*/false)) 1693 return X; 1694 1695 if (!match(Op0, m_ICmp(Pred0, m_Add(m_Value(V), m_ConstantInt(CI1)), 1696 m_ConstantInt(CI2)))) 1697 return nullptr; 1698 1699 if (!match(Op1, m_ICmp(Pred1, m_Specific(V), m_Specific(CI1)))) 1700 return nullptr; 1701 1702 Type *ITy = Op0->getType(); 1703 1704 auto *AddInst = cast<BinaryOperator>(Op0->getOperand(0)); 1705 bool isNSW = AddInst->hasNoSignedWrap(); 1706 bool isNUW = AddInst->hasNoUnsignedWrap(); 1707 1708 const APInt &CI1V = CI1->getValue(); 1709 const APInt &CI2V = CI2->getValue(); 1710 const APInt Delta = CI2V - CI1V; 1711 if (CI1V.isStrictlyPositive()) { 1712 if (Delta == 2) { 1713 if (Pred0 == ICmpInst::ICMP_UGE && Pred1 == ICmpInst::ICMP_SLE) 1714 return getTrue(ITy); 1715 if (Pred0 == ICmpInst::ICMP_SGE && Pred1 == ICmpInst::ICMP_SLE && isNSW) 1716 return getTrue(ITy); 1717 } 1718 if (Delta == 1) { 1719 if (Pred0 == ICmpInst::ICMP_UGT && Pred1 == ICmpInst::ICMP_SLE) 1720 return getTrue(ITy); 1721 if (Pred0 == ICmpInst::ICMP_SGT && Pred1 == ICmpInst::ICMP_SLE && isNSW) 1722 return getTrue(ITy); 1723 } 1724 } 1725 if (CI1V.getBoolValue() && isNUW) { 1726 if (Delta == 2) 1727 if (Pred0 == ICmpInst::ICMP_UGE && Pred1 == ICmpInst::ICMP_ULE) 1728 return getTrue(ITy); 1729 if (Delta == 1) 1730 if (Pred0 == ICmpInst::ICMP_UGT && Pred1 == ICmpInst::ICMP_ULE) 1731 return getTrue(ITy); 1732 } 1733 1734 return nullptr; 1735 } 1736 1737 /// Given operands for an Or, see if we can fold the result. 1738 /// If not, this returns null. 1739 static Value *SimplifyOrInst(Value *Op0, Value *Op1, const Query &Q, 1740 unsigned MaxRecurse) { 1741 if (Constant *CLHS = dyn_cast<Constant>(Op0)) { 1742 if (Constant *CRHS = dyn_cast<Constant>(Op1)) 1743 return ConstantFoldBinaryOpOperands(Instruction::Or, CLHS, CRHS, Q.DL); 1744 1745 // Canonicalize the constant to the RHS. 1746 std::swap(Op0, Op1); 1747 } 1748 1749 // X | undef -> -1 1750 if (match(Op1, m_Undef())) 1751 return Constant::getAllOnesValue(Op0->getType()); 1752 1753 // X | X = X 1754 if (Op0 == Op1) 1755 return Op0; 1756 1757 // X | 0 = X 1758 if (match(Op1, m_Zero())) 1759 return Op0; 1760 1761 // X | -1 = -1 1762 if (match(Op1, m_AllOnes())) 1763 return Op1; 1764 1765 // A | ~A = ~A | A = -1 1766 if (match(Op0, m_Not(m_Specific(Op1))) || 1767 match(Op1, m_Not(m_Specific(Op0)))) 1768 return Constant::getAllOnesValue(Op0->getType()); 1769 1770 // (A & ?) | A = A 1771 Value *A = nullptr, *B = nullptr; 1772 if (match(Op0, m_And(m_Value(A), m_Value(B))) && 1773 (A == Op1 || B == Op1)) 1774 return Op1; 1775 1776 // A | (A & ?) = A 1777 if (match(Op1, m_And(m_Value(A), m_Value(B))) && 1778 (A == Op0 || B == Op0)) 1779 return Op0; 1780 1781 // ~(A & ?) | A = -1 1782 if (match(Op0, m_Not(m_And(m_Value(A), m_Value(B)))) && 1783 (A == Op1 || B == Op1)) 1784 return Constant::getAllOnesValue(Op1->getType()); 1785 1786 // A | ~(A & ?) = -1 1787 if (match(Op1, m_Not(m_And(m_Value(A), m_Value(B)))) && 1788 (A == Op0 || B == Op0)) 1789 return Constant::getAllOnesValue(Op0->getType()); 1790 1791 if (auto *ICILHS = dyn_cast<ICmpInst>(Op0)) { 1792 if (auto *ICIRHS = dyn_cast<ICmpInst>(Op1)) { 1793 if (Value *V = SimplifyOrOfICmps(ICILHS, ICIRHS)) 1794 return V; 1795 if (Value *V = SimplifyOrOfICmps(ICIRHS, ICILHS)) 1796 return V; 1797 } 1798 } 1799 1800 // Try some generic simplifications for associative operations. 1801 if (Value *V = SimplifyAssociativeBinOp(Instruction::Or, Op0, Op1, Q, 1802 MaxRecurse)) 1803 return V; 1804 1805 // Or distributes over And. Try some generic simplifications based on this. 1806 if (Value *V = ExpandBinOp(Instruction::Or, Op0, Op1, Instruction::And, Q, 1807 MaxRecurse)) 1808 return V; 1809 1810 // If the operation is with the result of a select instruction, check whether 1811 // operating on either branch of the select always yields the same value. 1812 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 1813 if (Value *V = ThreadBinOpOverSelect(Instruction::Or, Op0, Op1, Q, 1814 MaxRecurse)) 1815 return V; 1816 1817 // (A & C)|(B & D) 1818 Value *C = nullptr, *D = nullptr; 1819 if (match(Op0, m_And(m_Value(A), m_Value(C))) && 1820 match(Op1, m_And(m_Value(B), m_Value(D)))) { 1821 ConstantInt *C1 = dyn_cast<ConstantInt>(C); 1822 ConstantInt *C2 = dyn_cast<ConstantInt>(D); 1823 if (C1 && C2 && (C1->getValue() == ~C2->getValue())) { 1824 // (A & C1)|(B & C2) 1825 // If we have: ((V + N) & C1) | (V & C2) 1826 // .. and C2 = ~C1 and C2 is 0+1+ and (N & C2) == 0 1827 // replace with V+N. 1828 Value *V1, *V2; 1829 if ((C2->getValue() & (C2->getValue() + 1)) == 0 && // C2 == 0+1+ 1830 match(A, m_Add(m_Value(V1), m_Value(V2)))) { 1831 // Add commutes, try both ways. 1832 if (V1 == B && 1833 MaskedValueIsZero(V2, C2->getValue(), Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 1834 return A; 1835 if (V2 == B && 1836 MaskedValueIsZero(V1, C2->getValue(), Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 1837 return A; 1838 } 1839 // Or commutes, try both ways. 1840 if ((C1->getValue() & (C1->getValue() + 1)) == 0 && 1841 match(B, m_Add(m_Value(V1), m_Value(V2)))) { 1842 // Add commutes, try both ways. 1843 if (V1 == A && 1844 MaskedValueIsZero(V2, C1->getValue(), Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 1845 return B; 1846 if (V2 == A && 1847 MaskedValueIsZero(V1, C1->getValue(), Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 1848 return B; 1849 } 1850 } 1851 } 1852 1853 // If the operation is with the result of a phi instruction, check whether 1854 // operating on all incoming values of the phi always yields the same value. 1855 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 1856 if (Value *V = ThreadBinOpOverPHI(Instruction::Or, Op0, Op1, Q, MaxRecurse)) 1857 return V; 1858 1859 return nullptr; 1860 } 1861 1862 Value *llvm::SimplifyOrInst(Value *Op0, Value *Op1, const DataLayout &DL, 1863 const TargetLibraryInfo *TLI, 1864 const DominatorTree *DT, AssumptionCache *AC, 1865 const Instruction *CxtI) { 1866 return ::SimplifyOrInst(Op0, Op1, Query(DL, TLI, DT, AC, CxtI), 1867 RecursionLimit); 1868 } 1869 1870 /// Given operands for a Xor, see if we can fold the result. 1871 /// If not, this returns null. 1872 static Value *SimplifyXorInst(Value *Op0, Value *Op1, const Query &Q, 1873 unsigned MaxRecurse) { 1874 if (Constant *CLHS = dyn_cast<Constant>(Op0)) { 1875 if (Constant *CRHS = dyn_cast<Constant>(Op1)) 1876 return ConstantFoldBinaryOpOperands(Instruction::Xor, CLHS, CRHS, Q.DL); 1877 1878 // Canonicalize the constant to the RHS. 1879 std::swap(Op0, Op1); 1880 } 1881 1882 // A ^ undef -> undef 1883 if (match(Op1, m_Undef())) 1884 return Op1; 1885 1886 // A ^ 0 = A 1887 if (match(Op1, m_Zero())) 1888 return Op0; 1889 1890 // A ^ A = 0 1891 if (Op0 == Op1) 1892 return Constant::getNullValue(Op0->getType()); 1893 1894 // A ^ ~A = ~A ^ A = -1 1895 if (match(Op0, m_Not(m_Specific(Op1))) || 1896 match(Op1, m_Not(m_Specific(Op0)))) 1897 return Constant::getAllOnesValue(Op0->getType()); 1898 1899 // Try some generic simplifications for associative operations. 1900 if (Value *V = SimplifyAssociativeBinOp(Instruction::Xor, Op0, Op1, Q, 1901 MaxRecurse)) 1902 return V; 1903 1904 // Threading Xor over selects and phi nodes is pointless, so don't bother. 1905 // Threading over the select in "A ^ select(cond, B, C)" means evaluating 1906 // "A^B" and "A^C" and seeing if they are equal; but they are equal if and 1907 // only if B and C are equal. If B and C are equal then (since we assume 1908 // that operands have already been simplified) "select(cond, B, C)" should 1909 // have been simplified to the common value of B and C already. Analysing 1910 // "A^B" and "A^C" thus gains nothing, but costs compile time. Similarly 1911 // for threading over phi nodes. 1912 1913 return nullptr; 1914 } 1915 1916 Value *llvm::SimplifyXorInst(Value *Op0, Value *Op1, const DataLayout &DL, 1917 const TargetLibraryInfo *TLI, 1918 const DominatorTree *DT, AssumptionCache *AC, 1919 const Instruction *CxtI) { 1920 return ::SimplifyXorInst(Op0, Op1, Query(DL, TLI, DT, AC, CxtI), 1921 RecursionLimit); 1922 } 1923 1924 static Type *GetCompareTy(Value *Op) { 1925 return CmpInst::makeCmpResultType(Op->getType()); 1926 } 1927 1928 /// Rummage around inside V looking for something equivalent to the comparison 1929 /// "LHS Pred RHS". Return such a value if found, otherwise return null. 1930 /// Helper function for analyzing max/min idioms. 1931 static Value *ExtractEquivalentCondition(Value *V, CmpInst::Predicate Pred, 1932 Value *LHS, Value *RHS) { 1933 SelectInst *SI = dyn_cast<SelectInst>(V); 1934 if (!SI) 1935 return nullptr; 1936 CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition()); 1937 if (!Cmp) 1938 return nullptr; 1939 Value *CmpLHS = Cmp->getOperand(0), *CmpRHS = Cmp->getOperand(1); 1940 if (Pred == Cmp->getPredicate() && LHS == CmpLHS && RHS == CmpRHS) 1941 return Cmp; 1942 if (Pred == CmpInst::getSwappedPredicate(Cmp->getPredicate()) && 1943 LHS == CmpRHS && RHS == CmpLHS) 1944 return Cmp; 1945 return nullptr; 1946 } 1947 1948 // A significant optimization not implemented here is assuming that alloca 1949 // addresses are not equal to incoming argument values. They don't *alias*, 1950 // as we say, but that doesn't mean they aren't equal, so we take a 1951 // conservative approach. 1952 // 1953 // This is inspired in part by C++11 5.10p1: 1954 // "Two pointers of the same type compare equal if and only if they are both 1955 // null, both point to the same function, or both represent the same 1956 // address." 1957 // 1958 // This is pretty permissive. 1959 // 1960 // It's also partly due to C11 6.5.9p6: 1961 // "Two pointers compare equal if and only if both are null pointers, both are 1962 // pointers to the same object (including a pointer to an object and a 1963 // subobject at its beginning) or function, both are pointers to one past the 1964 // last element of the same array object, or one is a pointer to one past the 1965 // end of one array object and the other is a pointer to the start of a 1966 // different array object that happens to immediately follow the first array 1967 // object in the address space.) 1968 // 1969 // C11's version is more restrictive, however there's no reason why an argument 1970 // couldn't be a one-past-the-end value for a stack object in the caller and be 1971 // equal to the beginning of a stack object in the callee. 1972 // 1973 // If the C and C++ standards are ever made sufficiently restrictive in this 1974 // area, it may be possible to update LLVM's semantics accordingly and reinstate 1975 // this optimization. 1976 static Constant * 1977 computePointerICmp(const DataLayout &DL, const TargetLibraryInfo *TLI, 1978 const DominatorTree *DT, CmpInst::Predicate Pred, 1979 const Instruction *CxtI, Value *LHS, Value *RHS) { 1980 // First, skip past any trivial no-ops. 1981 LHS = LHS->stripPointerCasts(); 1982 RHS = RHS->stripPointerCasts(); 1983 1984 // A non-null pointer is not equal to a null pointer. 1985 if (llvm::isKnownNonNull(LHS) && isa<ConstantPointerNull>(RHS) && 1986 (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE)) 1987 return ConstantInt::get(GetCompareTy(LHS), 1988 !CmpInst::isTrueWhenEqual(Pred)); 1989 1990 // We can only fold certain predicates on pointer comparisons. 1991 switch (Pred) { 1992 default: 1993 return nullptr; 1994 1995 // Equality comaprisons are easy to fold. 1996 case CmpInst::ICMP_EQ: 1997 case CmpInst::ICMP_NE: 1998 break; 1999 2000 // We can only handle unsigned relational comparisons because 'inbounds' on 2001 // a GEP only protects against unsigned wrapping. 2002 case CmpInst::ICMP_UGT: 2003 case CmpInst::ICMP_UGE: 2004 case CmpInst::ICMP_ULT: 2005 case CmpInst::ICMP_ULE: 2006 // However, we have to switch them to their signed variants to handle 2007 // negative indices from the base pointer. 2008 Pred = ICmpInst::getSignedPredicate(Pred); 2009 break; 2010 } 2011 2012 // Strip off any constant offsets so that we can reason about them. 2013 // It's tempting to use getUnderlyingObject or even just stripInBoundsOffsets 2014 // here and compare base addresses like AliasAnalysis does, however there are 2015 // numerous hazards. AliasAnalysis and its utilities rely on special rules 2016 // governing loads and stores which don't apply to icmps. Also, AliasAnalysis 2017 // doesn't need to guarantee pointer inequality when it says NoAlias. 2018 Constant *LHSOffset = stripAndComputeConstantOffsets(DL, LHS); 2019 Constant *RHSOffset = stripAndComputeConstantOffsets(DL, RHS); 2020 2021 // If LHS and RHS are related via constant offsets to the same base 2022 // value, we can replace it with an icmp which just compares the offsets. 2023 if (LHS == RHS) 2024 return ConstantExpr::getICmp(Pred, LHSOffset, RHSOffset); 2025 2026 // Various optimizations for (in)equality comparisons. 2027 if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE) { 2028 // Different non-empty allocations that exist at the same time have 2029 // different addresses (if the program can tell). Global variables always 2030 // exist, so they always exist during the lifetime of each other and all 2031 // allocas. Two different allocas usually have different addresses... 2032 // 2033 // However, if there's an @llvm.stackrestore dynamically in between two 2034 // allocas, they may have the same address. It's tempting to reduce the 2035 // scope of the problem by only looking at *static* allocas here. That would 2036 // cover the majority of allocas while significantly reducing the likelihood 2037 // of having an @llvm.stackrestore pop up in the middle. However, it's not 2038 // actually impossible for an @llvm.stackrestore to pop up in the middle of 2039 // an entry block. Also, if we have a block that's not attached to a 2040 // function, we can't tell if it's "static" under the current definition. 2041 // Theoretically, this problem could be fixed by creating a new kind of 2042 // instruction kind specifically for static allocas. Such a new instruction 2043 // could be required to be at the top of the entry block, thus preventing it 2044 // from being subject to a @llvm.stackrestore. Instcombine could even 2045 // convert regular allocas into these special allocas. It'd be nifty. 2046 // However, until then, this problem remains open. 2047 // 2048 // So, we'll assume that two non-empty allocas have different addresses 2049 // for now. 2050 // 2051 // With all that, if the offsets are within the bounds of their allocations 2052 // (and not one-past-the-end! so we can't use inbounds!), and their 2053 // allocations aren't the same, the pointers are not equal. 2054 // 2055 // Note that it's not necessary to check for LHS being a global variable 2056 // address, due to canonicalization and constant folding. 2057 if (isa<AllocaInst>(LHS) && 2058 (isa<AllocaInst>(RHS) || isa<GlobalVariable>(RHS))) { 2059 ConstantInt *LHSOffsetCI = dyn_cast<ConstantInt>(LHSOffset); 2060 ConstantInt *RHSOffsetCI = dyn_cast<ConstantInt>(RHSOffset); 2061 uint64_t LHSSize, RHSSize; 2062 if (LHSOffsetCI && RHSOffsetCI && 2063 getObjectSize(LHS, LHSSize, DL, TLI) && 2064 getObjectSize(RHS, RHSSize, DL, TLI)) { 2065 const APInt &LHSOffsetValue = LHSOffsetCI->getValue(); 2066 const APInt &RHSOffsetValue = RHSOffsetCI->getValue(); 2067 if (!LHSOffsetValue.isNegative() && 2068 !RHSOffsetValue.isNegative() && 2069 LHSOffsetValue.ult(LHSSize) && 2070 RHSOffsetValue.ult(RHSSize)) { 2071 return ConstantInt::get(GetCompareTy(LHS), 2072 !CmpInst::isTrueWhenEqual(Pred)); 2073 } 2074 } 2075 2076 // Repeat the above check but this time without depending on DataLayout 2077 // or being able to compute a precise size. 2078 if (!cast<PointerType>(LHS->getType())->isEmptyTy() && 2079 !cast<PointerType>(RHS->getType())->isEmptyTy() && 2080 LHSOffset->isNullValue() && 2081 RHSOffset->isNullValue()) 2082 return ConstantInt::get(GetCompareTy(LHS), 2083 !CmpInst::isTrueWhenEqual(Pred)); 2084 } 2085 2086 // Even if an non-inbounds GEP occurs along the path we can still optimize 2087 // equality comparisons concerning the result. We avoid walking the whole 2088 // chain again by starting where the last calls to 2089 // stripAndComputeConstantOffsets left off and accumulate the offsets. 2090 Constant *LHSNoBound = stripAndComputeConstantOffsets(DL, LHS, true); 2091 Constant *RHSNoBound = stripAndComputeConstantOffsets(DL, RHS, true); 2092 if (LHS == RHS) 2093 return ConstantExpr::getICmp(Pred, 2094 ConstantExpr::getAdd(LHSOffset, LHSNoBound), 2095 ConstantExpr::getAdd(RHSOffset, RHSNoBound)); 2096 2097 // If one side of the equality comparison must come from a noalias call 2098 // (meaning a system memory allocation function), and the other side must 2099 // come from a pointer that cannot overlap with dynamically-allocated 2100 // memory within the lifetime of the current function (allocas, byval 2101 // arguments, globals), then determine the comparison result here. 2102 SmallVector<Value *, 8> LHSUObjs, RHSUObjs; 2103 GetUnderlyingObjects(LHS, LHSUObjs, DL); 2104 GetUnderlyingObjects(RHS, RHSUObjs, DL); 2105 2106 // Is the set of underlying objects all noalias calls? 2107 auto IsNAC = [](SmallVectorImpl<Value *> &Objects) { 2108 return std::all_of(Objects.begin(), Objects.end(), isNoAliasCall); 2109 }; 2110 2111 // Is the set of underlying objects all things which must be disjoint from 2112 // noalias calls. For allocas, we consider only static ones (dynamic 2113 // allocas might be transformed into calls to malloc not simultaneously 2114 // live with the compared-to allocation). For globals, we exclude symbols 2115 // that might be resolve lazily to symbols in another dynamically-loaded 2116 // library (and, thus, could be malloc'ed by the implementation). 2117 auto IsAllocDisjoint = [](SmallVectorImpl<Value *> &Objects) { 2118 return std::all_of(Objects.begin(), Objects.end(), [](Value *V) { 2119 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) 2120 return AI->getParent() && AI->getFunction() && AI->isStaticAlloca(); 2121 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) 2122 return (GV->hasLocalLinkage() || GV->hasHiddenVisibility() || 2123 GV->hasProtectedVisibility() || GV->hasGlobalUnnamedAddr()) && 2124 !GV->isThreadLocal(); 2125 if (const Argument *A = dyn_cast<Argument>(V)) 2126 return A->hasByValAttr(); 2127 return false; 2128 }); 2129 }; 2130 2131 if ((IsNAC(LHSUObjs) && IsAllocDisjoint(RHSUObjs)) || 2132 (IsNAC(RHSUObjs) && IsAllocDisjoint(LHSUObjs))) 2133 return ConstantInt::get(GetCompareTy(LHS), 2134 !CmpInst::isTrueWhenEqual(Pred)); 2135 2136 // Fold comparisons for non-escaping pointer even if the allocation call 2137 // cannot be elided. We cannot fold malloc comparison to null. Also, the 2138 // dynamic allocation call could be either of the operands. 2139 Value *MI = nullptr; 2140 if (isAllocLikeFn(LHS, TLI) && llvm::isKnownNonNullAt(RHS, CxtI, DT)) 2141 MI = LHS; 2142 else if (isAllocLikeFn(RHS, TLI) && llvm::isKnownNonNullAt(LHS, CxtI, DT)) 2143 MI = RHS; 2144 // FIXME: We should also fold the compare when the pointer escapes, but the 2145 // compare dominates the pointer escape 2146 if (MI && !PointerMayBeCaptured(MI, true, true)) 2147 return ConstantInt::get(GetCompareTy(LHS), 2148 CmpInst::isFalseWhenEqual(Pred)); 2149 } 2150 2151 // Otherwise, fail. 2152 return nullptr; 2153 } 2154 2155 /// Given operands for an ICmpInst, see if we can fold the result. 2156 /// If not, this returns null. 2157 static Value *SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS, 2158 const Query &Q, unsigned MaxRecurse) { 2159 CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate; 2160 assert(CmpInst::isIntPredicate(Pred) && "Not an integer compare!"); 2161 2162 if (Constant *CLHS = dyn_cast<Constant>(LHS)) { 2163 if (Constant *CRHS = dyn_cast<Constant>(RHS)) 2164 return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, Q.DL, Q.TLI); 2165 2166 // If we have a constant, make sure it is on the RHS. 2167 std::swap(LHS, RHS); 2168 Pred = CmpInst::getSwappedPredicate(Pred); 2169 } 2170 2171 Type *ITy = GetCompareTy(LHS); // The return type. 2172 Type *OpTy = LHS->getType(); // The operand type. 2173 2174 // icmp X, X -> true/false 2175 // X icmp undef -> true/false. For example, icmp ugt %X, undef -> false 2176 // because X could be 0. 2177 if (LHS == RHS || isa<UndefValue>(RHS)) 2178 return ConstantInt::get(ITy, CmpInst::isTrueWhenEqual(Pred)); 2179 2180 // Special case logic when the operands have i1 type. 2181 if (OpTy->getScalarType()->isIntegerTy(1)) { 2182 switch (Pred) { 2183 default: break; 2184 case ICmpInst::ICMP_EQ: 2185 // X == 1 -> X 2186 if (match(RHS, m_One())) 2187 return LHS; 2188 break; 2189 case ICmpInst::ICMP_NE: 2190 // X != 0 -> X 2191 if (match(RHS, m_Zero())) 2192 return LHS; 2193 break; 2194 case ICmpInst::ICMP_UGT: 2195 // X >u 0 -> X 2196 if (match(RHS, m_Zero())) 2197 return LHS; 2198 break; 2199 case ICmpInst::ICMP_UGE: { 2200 // X >=u 1 -> X 2201 if (match(RHS, m_One())) 2202 return LHS; 2203 if (isImpliedCondition(RHS, LHS, Q.DL).getValueOr(false)) 2204 return getTrue(ITy); 2205 break; 2206 } 2207 case ICmpInst::ICMP_SGE: { 2208 /// For signed comparison, the values for an i1 are 0 and -1 2209 /// respectively. This maps into a truth table of: 2210 /// LHS | RHS | LHS >=s RHS | LHS implies RHS 2211 /// 0 | 0 | 1 (0 >= 0) | 1 2212 /// 0 | 1 | 1 (0 >= -1) | 1 2213 /// 1 | 0 | 0 (-1 >= 0) | 0 2214 /// 1 | 1 | 1 (-1 >= -1) | 1 2215 if (isImpliedCondition(LHS, RHS, Q.DL).getValueOr(false)) 2216 return getTrue(ITy); 2217 break; 2218 } 2219 case ICmpInst::ICMP_SLT: 2220 // X <s 0 -> X 2221 if (match(RHS, m_Zero())) 2222 return LHS; 2223 break; 2224 case ICmpInst::ICMP_SLE: 2225 // X <=s -1 -> X 2226 if (match(RHS, m_One())) 2227 return LHS; 2228 break; 2229 case ICmpInst::ICMP_ULE: { 2230 if (isImpliedCondition(LHS, RHS, Q.DL).getValueOr(false)) 2231 return getTrue(ITy); 2232 break; 2233 } 2234 } 2235 } 2236 2237 // If we are comparing with zero then try hard since this is a common case. 2238 if (match(RHS, m_Zero())) { 2239 bool LHSKnownNonNegative, LHSKnownNegative; 2240 switch (Pred) { 2241 default: llvm_unreachable("Unknown ICmp predicate!"); 2242 case ICmpInst::ICMP_ULT: 2243 return getFalse(ITy); 2244 case ICmpInst::ICMP_UGE: 2245 return getTrue(ITy); 2246 case ICmpInst::ICMP_EQ: 2247 case ICmpInst::ICMP_ULE: 2248 if (isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 2249 return getFalse(ITy); 2250 break; 2251 case ICmpInst::ICMP_NE: 2252 case ICmpInst::ICMP_UGT: 2253 if (isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 2254 return getTrue(ITy); 2255 break; 2256 case ICmpInst::ICMP_SLT: 2257 ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, Q.DL, 0, Q.AC, 2258 Q.CxtI, Q.DT); 2259 if (LHSKnownNegative) 2260 return getTrue(ITy); 2261 if (LHSKnownNonNegative) 2262 return getFalse(ITy); 2263 break; 2264 case ICmpInst::ICMP_SLE: 2265 ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, Q.DL, 0, Q.AC, 2266 Q.CxtI, Q.DT); 2267 if (LHSKnownNegative) 2268 return getTrue(ITy); 2269 if (LHSKnownNonNegative && 2270 isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 2271 return getFalse(ITy); 2272 break; 2273 case ICmpInst::ICMP_SGE: 2274 ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, Q.DL, 0, Q.AC, 2275 Q.CxtI, Q.DT); 2276 if (LHSKnownNegative) 2277 return getFalse(ITy); 2278 if (LHSKnownNonNegative) 2279 return getTrue(ITy); 2280 break; 2281 case ICmpInst::ICMP_SGT: 2282 ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, Q.DL, 0, Q.AC, 2283 Q.CxtI, Q.DT); 2284 if (LHSKnownNegative) 2285 return getFalse(ITy); 2286 if (LHSKnownNonNegative && 2287 isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 2288 return getTrue(ITy); 2289 break; 2290 } 2291 } 2292 2293 // See if we are doing a comparison with a constant integer. 2294 if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) { 2295 // Rule out tautological comparisons (eg., ult 0 or uge 0). 2296 ConstantRange RHS_CR = ICmpInst::makeConstantRange(Pred, CI->getValue()); 2297 if (RHS_CR.isEmptySet()) 2298 return ConstantInt::getFalse(CI->getContext()); 2299 if (RHS_CR.isFullSet()) 2300 return ConstantInt::getTrue(CI->getContext()); 2301 2302 // Many binary operators with constant RHS have easy to compute constant 2303 // range. Use them to check whether the comparison is a tautology. 2304 unsigned Width = CI->getBitWidth(); 2305 APInt Lower = APInt(Width, 0); 2306 APInt Upper = APInt(Width, 0); 2307 ConstantInt *CI2; 2308 if (match(LHS, m_URem(m_Value(), m_ConstantInt(CI2)))) { 2309 // 'urem x, CI2' produces [0, CI2). 2310 Upper = CI2->getValue(); 2311 } else if (match(LHS, m_SRem(m_Value(), m_ConstantInt(CI2)))) { 2312 // 'srem x, CI2' produces (-|CI2|, |CI2|). 2313 Upper = CI2->getValue().abs(); 2314 Lower = (-Upper) + 1; 2315 } else if (match(LHS, m_UDiv(m_ConstantInt(CI2), m_Value()))) { 2316 // 'udiv CI2, x' produces [0, CI2]. 2317 Upper = CI2->getValue() + 1; 2318 } else if (match(LHS, m_UDiv(m_Value(), m_ConstantInt(CI2)))) { 2319 // 'udiv x, CI2' produces [0, UINT_MAX / CI2]. 2320 APInt NegOne = APInt::getAllOnesValue(Width); 2321 if (!CI2->isZero()) 2322 Upper = NegOne.udiv(CI2->getValue()) + 1; 2323 } else if (match(LHS, m_SDiv(m_ConstantInt(CI2), m_Value()))) { 2324 if (CI2->isMinSignedValue()) { 2325 // 'sdiv INT_MIN, x' produces [INT_MIN, INT_MIN / -2]. 2326 Lower = CI2->getValue(); 2327 Upper = Lower.lshr(1) + 1; 2328 } else { 2329 // 'sdiv CI2, x' produces [-|CI2|, |CI2|]. 2330 Upper = CI2->getValue().abs() + 1; 2331 Lower = (-Upper) + 1; 2332 } 2333 } else if (match(LHS, m_SDiv(m_Value(), m_ConstantInt(CI2)))) { 2334 APInt IntMin = APInt::getSignedMinValue(Width); 2335 APInt IntMax = APInt::getSignedMaxValue(Width); 2336 const APInt &Val = CI2->getValue(); 2337 if (Val.isAllOnesValue()) { 2338 // 'sdiv x, -1' produces [INT_MIN + 1, INT_MAX] 2339 // where CI2 != -1 and CI2 != 0 and CI2 != 1 2340 Lower = IntMin + 1; 2341 Upper = IntMax + 1; 2342 } else if (Val.countLeadingZeros() < Width - 1) { 2343 // 'sdiv x, CI2' produces [INT_MIN / CI2, INT_MAX / CI2] 2344 // where CI2 != -1 and CI2 != 0 and CI2 != 1 2345 Lower = IntMin.sdiv(Val); 2346 Upper = IntMax.sdiv(Val); 2347 if (Lower.sgt(Upper)) 2348 std::swap(Lower, Upper); 2349 Upper = Upper + 1; 2350 assert(Upper != Lower && "Upper part of range has wrapped!"); 2351 } 2352 } else if (match(LHS, m_NUWShl(m_ConstantInt(CI2), m_Value()))) { 2353 // 'shl nuw CI2, x' produces [CI2, CI2 << CLZ(CI2)] 2354 Lower = CI2->getValue(); 2355 Upper = Lower.shl(Lower.countLeadingZeros()) + 1; 2356 } else if (match(LHS, m_NSWShl(m_ConstantInt(CI2), m_Value()))) { 2357 if (CI2->isNegative()) { 2358 // 'shl nsw CI2, x' produces [CI2 << CLO(CI2)-1, CI2] 2359 unsigned ShiftAmount = CI2->getValue().countLeadingOnes() - 1; 2360 Lower = CI2->getValue().shl(ShiftAmount); 2361 Upper = CI2->getValue() + 1; 2362 } else { 2363 // 'shl nsw CI2, x' produces [CI2, CI2 << CLZ(CI2)-1] 2364 unsigned ShiftAmount = CI2->getValue().countLeadingZeros() - 1; 2365 Lower = CI2->getValue(); 2366 Upper = CI2->getValue().shl(ShiftAmount) + 1; 2367 } 2368 } else if (match(LHS, m_LShr(m_Value(), m_ConstantInt(CI2)))) { 2369 // 'lshr x, CI2' produces [0, UINT_MAX >> CI2]. 2370 APInt NegOne = APInt::getAllOnesValue(Width); 2371 if (CI2->getValue().ult(Width)) 2372 Upper = NegOne.lshr(CI2->getValue()) + 1; 2373 } else if (match(LHS, m_LShr(m_ConstantInt(CI2), m_Value()))) { 2374 // 'lshr CI2, x' produces [CI2 >> (Width-1), CI2]. 2375 unsigned ShiftAmount = Width - 1; 2376 if (!CI2->isZero() && cast<BinaryOperator>(LHS)->isExact()) 2377 ShiftAmount = CI2->getValue().countTrailingZeros(); 2378 Lower = CI2->getValue().lshr(ShiftAmount); 2379 Upper = CI2->getValue() + 1; 2380 } else if (match(LHS, m_AShr(m_Value(), m_ConstantInt(CI2)))) { 2381 // 'ashr x, CI2' produces [INT_MIN >> CI2, INT_MAX >> CI2]. 2382 APInt IntMin = APInt::getSignedMinValue(Width); 2383 APInt IntMax = APInt::getSignedMaxValue(Width); 2384 if (CI2->getValue().ult(Width)) { 2385 Lower = IntMin.ashr(CI2->getValue()); 2386 Upper = IntMax.ashr(CI2->getValue()) + 1; 2387 } 2388 } else if (match(LHS, m_AShr(m_ConstantInt(CI2), m_Value()))) { 2389 unsigned ShiftAmount = Width - 1; 2390 if (!CI2->isZero() && cast<BinaryOperator>(LHS)->isExact()) 2391 ShiftAmount = CI2->getValue().countTrailingZeros(); 2392 if (CI2->isNegative()) { 2393 // 'ashr CI2, x' produces [CI2, CI2 >> (Width-1)] 2394 Lower = CI2->getValue(); 2395 Upper = CI2->getValue().ashr(ShiftAmount) + 1; 2396 } else { 2397 // 'ashr CI2, x' produces [CI2 >> (Width-1), CI2] 2398 Lower = CI2->getValue().ashr(ShiftAmount); 2399 Upper = CI2->getValue() + 1; 2400 } 2401 } else if (match(LHS, m_Or(m_Value(), m_ConstantInt(CI2)))) { 2402 // 'or x, CI2' produces [CI2, UINT_MAX]. 2403 Lower = CI2->getValue(); 2404 } else if (match(LHS, m_And(m_Value(), m_ConstantInt(CI2)))) { 2405 // 'and x, CI2' produces [0, CI2]. 2406 Upper = CI2->getValue() + 1; 2407 } else if (match(LHS, m_NUWAdd(m_Value(), m_ConstantInt(CI2)))) { 2408 // 'add nuw x, CI2' produces [CI2, UINT_MAX]. 2409 Lower = CI2->getValue(); 2410 } 2411 2412 ConstantRange LHS_CR = Lower != Upper ? ConstantRange(Lower, Upper) 2413 : ConstantRange(Width, true); 2414 2415 if (auto *I = dyn_cast<Instruction>(LHS)) 2416 if (auto *Ranges = I->getMetadata(LLVMContext::MD_range)) 2417 LHS_CR = LHS_CR.intersectWith(getConstantRangeFromMetadata(*Ranges)); 2418 2419 if (!LHS_CR.isFullSet()) { 2420 if (RHS_CR.contains(LHS_CR)) 2421 return ConstantInt::getTrue(RHS->getContext()); 2422 if (RHS_CR.inverse().contains(LHS_CR)) 2423 return ConstantInt::getFalse(RHS->getContext()); 2424 } 2425 } 2426 2427 // If both operands have range metadata, use the metadata 2428 // to simplify the comparison. 2429 if (isa<Instruction>(RHS) && isa<Instruction>(LHS)) { 2430 auto RHS_Instr = dyn_cast<Instruction>(RHS); 2431 auto LHS_Instr = dyn_cast<Instruction>(LHS); 2432 2433 if (RHS_Instr->getMetadata(LLVMContext::MD_range) && 2434 LHS_Instr->getMetadata(LLVMContext::MD_range)) { 2435 auto RHS_CR = getConstantRangeFromMetadata( 2436 *RHS_Instr->getMetadata(LLVMContext::MD_range)); 2437 auto LHS_CR = getConstantRangeFromMetadata( 2438 *LHS_Instr->getMetadata(LLVMContext::MD_range)); 2439 2440 auto Satisfied_CR = ConstantRange::makeSatisfyingICmpRegion(Pred, RHS_CR); 2441 if (Satisfied_CR.contains(LHS_CR)) 2442 return ConstantInt::getTrue(RHS->getContext()); 2443 2444 auto InversedSatisfied_CR = ConstantRange::makeSatisfyingICmpRegion( 2445 CmpInst::getInversePredicate(Pred), RHS_CR); 2446 if (InversedSatisfied_CR.contains(LHS_CR)) 2447 return ConstantInt::getFalse(RHS->getContext()); 2448 } 2449 } 2450 2451 // Compare of cast, for example (zext X) != 0 -> X != 0 2452 if (isa<CastInst>(LHS) && (isa<Constant>(RHS) || isa<CastInst>(RHS))) { 2453 Instruction *LI = cast<CastInst>(LHS); 2454 Value *SrcOp = LI->getOperand(0); 2455 Type *SrcTy = SrcOp->getType(); 2456 Type *DstTy = LI->getType(); 2457 2458 // Turn icmp (ptrtoint x), (ptrtoint/constant) into a compare of the input 2459 // if the integer type is the same size as the pointer type. 2460 if (MaxRecurse && isa<PtrToIntInst>(LI) && 2461 Q.DL.getTypeSizeInBits(SrcTy) == DstTy->getPrimitiveSizeInBits()) { 2462 if (Constant *RHSC = dyn_cast<Constant>(RHS)) { 2463 // Transfer the cast to the constant. 2464 if (Value *V = SimplifyICmpInst(Pred, SrcOp, 2465 ConstantExpr::getIntToPtr(RHSC, SrcTy), 2466 Q, MaxRecurse-1)) 2467 return V; 2468 } else if (PtrToIntInst *RI = dyn_cast<PtrToIntInst>(RHS)) { 2469 if (RI->getOperand(0)->getType() == SrcTy) 2470 // Compare without the cast. 2471 if (Value *V = SimplifyICmpInst(Pred, SrcOp, RI->getOperand(0), 2472 Q, MaxRecurse-1)) 2473 return V; 2474 } 2475 } 2476 2477 if (isa<ZExtInst>(LHS)) { 2478 // Turn icmp (zext X), (zext Y) into a compare of X and Y if they have the 2479 // same type. 2480 if (ZExtInst *RI = dyn_cast<ZExtInst>(RHS)) { 2481 if (MaxRecurse && SrcTy == RI->getOperand(0)->getType()) 2482 // Compare X and Y. Note that signed predicates become unsigned. 2483 if (Value *V = SimplifyICmpInst(ICmpInst::getUnsignedPredicate(Pred), 2484 SrcOp, RI->getOperand(0), Q, 2485 MaxRecurse-1)) 2486 return V; 2487 } 2488 // Turn icmp (zext X), Cst into a compare of X and Cst if Cst is extended 2489 // too. If not, then try to deduce the result of the comparison. 2490 else if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) { 2491 // Compute the constant that would happen if we truncated to SrcTy then 2492 // reextended to DstTy. 2493 Constant *Trunc = ConstantExpr::getTrunc(CI, SrcTy); 2494 Constant *RExt = ConstantExpr::getCast(CastInst::ZExt, Trunc, DstTy); 2495 2496 // If the re-extended constant didn't change then this is effectively 2497 // also a case of comparing two zero-extended values. 2498 if (RExt == CI && MaxRecurse) 2499 if (Value *V = SimplifyICmpInst(ICmpInst::getUnsignedPredicate(Pred), 2500 SrcOp, Trunc, Q, MaxRecurse-1)) 2501 return V; 2502 2503 // Otherwise the upper bits of LHS are zero while RHS has a non-zero bit 2504 // there. Use this to work out the result of the comparison. 2505 if (RExt != CI) { 2506 switch (Pred) { 2507 default: llvm_unreachable("Unknown ICmp predicate!"); 2508 // LHS <u RHS. 2509 case ICmpInst::ICMP_EQ: 2510 case ICmpInst::ICMP_UGT: 2511 case ICmpInst::ICMP_UGE: 2512 return ConstantInt::getFalse(CI->getContext()); 2513 2514 case ICmpInst::ICMP_NE: 2515 case ICmpInst::ICMP_ULT: 2516 case ICmpInst::ICMP_ULE: 2517 return ConstantInt::getTrue(CI->getContext()); 2518 2519 // LHS is non-negative. If RHS is negative then LHS >s LHS. If RHS 2520 // is non-negative then LHS <s RHS. 2521 case ICmpInst::ICMP_SGT: 2522 case ICmpInst::ICMP_SGE: 2523 return CI->getValue().isNegative() ? 2524 ConstantInt::getTrue(CI->getContext()) : 2525 ConstantInt::getFalse(CI->getContext()); 2526 2527 case ICmpInst::ICMP_SLT: 2528 case ICmpInst::ICMP_SLE: 2529 return CI->getValue().isNegative() ? 2530 ConstantInt::getFalse(CI->getContext()) : 2531 ConstantInt::getTrue(CI->getContext()); 2532 } 2533 } 2534 } 2535 } 2536 2537 if (isa<SExtInst>(LHS)) { 2538 // Turn icmp (sext X), (sext Y) into a compare of X and Y if they have the 2539 // same type. 2540 if (SExtInst *RI = dyn_cast<SExtInst>(RHS)) { 2541 if (MaxRecurse && SrcTy == RI->getOperand(0)->getType()) 2542 // Compare X and Y. Note that the predicate does not change. 2543 if (Value *V = SimplifyICmpInst(Pred, SrcOp, RI->getOperand(0), 2544 Q, MaxRecurse-1)) 2545 return V; 2546 } 2547 // Turn icmp (sext X), Cst into a compare of X and Cst if Cst is extended 2548 // too. If not, then try to deduce the result of the comparison. 2549 else if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) { 2550 // Compute the constant that would happen if we truncated to SrcTy then 2551 // reextended to DstTy. 2552 Constant *Trunc = ConstantExpr::getTrunc(CI, SrcTy); 2553 Constant *RExt = ConstantExpr::getCast(CastInst::SExt, Trunc, DstTy); 2554 2555 // If the re-extended constant didn't change then this is effectively 2556 // also a case of comparing two sign-extended values. 2557 if (RExt == CI && MaxRecurse) 2558 if (Value *V = SimplifyICmpInst(Pred, SrcOp, Trunc, Q, MaxRecurse-1)) 2559 return V; 2560 2561 // Otherwise the upper bits of LHS are all equal, while RHS has varying 2562 // bits there. Use this to work out the result of the comparison. 2563 if (RExt != CI) { 2564 switch (Pred) { 2565 default: llvm_unreachable("Unknown ICmp predicate!"); 2566 case ICmpInst::ICMP_EQ: 2567 return ConstantInt::getFalse(CI->getContext()); 2568 case ICmpInst::ICMP_NE: 2569 return ConstantInt::getTrue(CI->getContext()); 2570 2571 // If RHS is non-negative then LHS <s RHS. If RHS is negative then 2572 // LHS >s RHS. 2573 case ICmpInst::ICMP_SGT: 2574 case ICmpInst::ICMP_SGE: 2575 return CI->getValue().isNegative() ? 2576 ConstantInt::getTrue(CI->getContext()) : 2577 ConstantInt::getFalse(CI->getContext()); 2578 case ICmpInst::ICMP_SLT: 2579 case ICmpInst::ICMP_SLE: 2580 return CI->getValue().isNegative() ? 2581 ConstantInt::getFalse(CI->getContext()) : 2582 ConstantInt::getTrue(CI->getContext()); 2583 2584 // If LHS is non-negative then LHS <u RHS. If LHS is negative then 2585 // LHS >u RHS. 2586 case ICmpInst::ICMP_UGT: 2587 case ICmpInst::ICMP_UGE: 2588 // Comparison is true iff the LHS <s 0. 2589 if (MaxRecurse) 2590 if (Value *V = SimplifyICmpInst(ICmpInst::ICMP_SLT, SrcOp, 2591 Constant::getNullValue(SrcTy), 2592 Q, MaxRecurse-1)) 2593 return V; 2594 break; 2595 case ICmpInst::ICMP_ULT: 2596 case ICmpInst::ICMP_ULE: 2597 // Comparison is true iff the LHS >=s 0. 2598 if (MaxRecurse) 2599 if (Value *V = SimplifyICmpInst(ICmpInst::ICMP_SGE, SrcOp, 2600 Constant::getNullValue(SrcTy), 2601 Q, MaxRecurse-1)) 2602 return V; 2603 break; 2604 } 2605 } 2606 } 2607 } 2608 } 2609 2610 // icmp eq|ne X, Y -> false|true if X != Y 2611 if ((Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_NE) && 2612 isKnownNonEqual(LHS, RHS, Q.DL, Q.AC, Q.CxtI, Q.DT)) { 2613 LLVMContext &Ctx = LHS->getType()->getContext(); 2614 return Pred == ICmpInst::ICMP_NE ? 2615 ConstantInt::getTrue(Ctx) : ConstantInt::getFalse(Ctx); 2616 } 2617 2618 // Special logic for binary operators. 2619 BinaryOperator *LBO = dyn_cast<BinaryOperator>(LHS); 2620 BinaryOperator *RBO = dyn_cast<BinaryOperator>(RHS); 2621 if (MaxRecurse && (LBO || RBO)) { 2622 // Analyze the case when either LHS or RHS is an add instruction. 2623 Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr; 2624 // LHS = A + B (or A and B are null); RHS = C + D (or C and D are null). 2625 bool NoLHSWrapProblem = false, NoRHSWrapProblem = false; 2626 if (LBO && LBO->getOpcode() == Instruction::Add) { 2627 A = LBO->getOperand(0); B = LBO->getOperand(1); 2628 NoLHSWrapProblem = ICmpInst::isEquality(Pred) || 2629 (CmpInst::isUnsigned(Pred) && LBO->hasNoUnsignedWrap()) || 2630 (CmpInst::isSigned(Pred) && LBO->hasNoSignedWrap()); 2631 } 2632 if (RBO && RBO->getOpcode() == Instruction::Add) { 2633 C = RBO->getOperand(0); D = RBO->getOperand(1); 2634 NoRHSWrapProblem = ICmpInst::isEquality(Pred) || 2635 (CmpInst::isUnsigned(Pred) && RBO->hasNoUnsignedWrap()) || 2636 (CmpInst::isSigned(Pred) && RBO->hasNoSignedWrap()); 2637 } 2638 2639 // icmp (X+Y), X -> icmp Y, 0 for equalities or if there is no overflow. 2640 if ((A == RHS || B == RHS) && NoLHSWrapProblem) 2641 if (Value *V = SimplifyICmpInst(Pred, A == RHS ? B : A, 2642 Constant::getNullValue(RHS->getType()), 2643 Q, MaxRecurse-1)) 2644 return V; 2645 2646 // icmp X, (X+Y) -> icmp 0, Y for equalities or if there is no overflow. 2647 if ((C == LHS || D == LHS) && NoRHSWrapProblem) 2648 if (Value *V = SimplifyICmpInst(Pred, 2649 Constant::getNullValue(LHS->getType()), 2650 C == LHS ? D : C, Q, MaxRecurse-1)) 2651 return V; 2652 2653 // icmp (X+Y), (X+Z) -> icmp Y,Z for equalities or if there is no overflow. 2654 if (A && C && (A == C || A == D || B == C || B == D) && 2655 NoLHSWrapProblem && NoRHSWrapProblem) { 2656 // Determine Y and Z in the form icmp (X+Y), (X+Z). 2657 Value *Y, *Z; 2658 if (A == C) { 2659 // C + B == C + D -> B == D 2660 Y = B; 2661 Z = D; 2662 } else if (A == D) { 2663 // D + B == C + D -> B == C 2664 Y = B; 2665 Z = C; 2666 } else if (B == C) { 2667 // A + C == C + D -> A == D 2668 Y = A; 2669 Z = D; 2670 } else { 2671 assert(B == D); 2672 // A + D == C + D -> A == C 2673 Y = A; 2674 Z = C; 2675 } 2676 if (Value *V = SimplifyICmpInst(Pred, Y, Z, Q, MaxRecurse-1)) 2677 return V; 2678 } 2679 } 2680 2681 { 2682 Value *Y = nullptr; 2683 // icmp pred (or X, Y), X 2684 if (LBO && match(LBO, m_c_Or(m_Value(Y), m_Specific(RHS)))) { 2685 if (Pred == ICmpInst::ICMP_ULT) 2686 return getFalse(ITy); 2687 if (Pred == ICmpInst::ICMP_UGE) 2688 return getTrue(ITy); 2689 2690 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SGE) { 2691 bool RHSKnownNonNegative, RHSKnownNegative; 2692 bool YKnownNonNegative, YKnownNegative; 2693 ComputeSignBit(RHS, RHSKnownNonNegative, RHSKnownNegative, Q.DL, 0, 2694 Q.AC, Q.CxtI, Q.DT); 2695 ComputeSignBit(Y, YKnownNonNegative, YKnownNegative, Q.DL, 0, Q.AC, 2696 Q.CxtI, Q.DT); 2697 if (RHSKnownNonNegative && YKnownNegative) 2698 return Pred == ICmpInst::ICMP_SLT ? getTrue(ITy) : getFalse(ITy); 2699 if (RHSKnownNegative || YKnownNonNegative) 2700 return Pred == ICmpInst::ICMP_SLT ? getFalse(ITy) : getTrue(ITy); 2701 } 2702 } 2703 // icmp pred X, (or X, Y) 2704 if (RBO && match(RBO, m_c_Or(m_Value(Y), m_Specific(LHS)))) { 2705 if (Pred == ICmpInst::ICMP_ULE) 2706 return getTrue(ITy); 2707 if (Pred == ICmpInst::ICMP_UGT) 2708 return getFalse(ITy); 2709 2710 if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SLE) { 2711 bool LHSKnownNonNegative, LHSKnownNegative; 2712 bool YKnownNonNegative, YKnownNegative; 2713 ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, Q.DL, 0, 2714 Q.AC, Q.CxtI, Q.DT); 2715 ComputeSignBit(Y, YKnownNonNegative, YKnownNegative, Q.DL, 0, Q.AC, 2716 Q.CxtI, Q.DT); 2717 if (LHSKnownNonNegative && YKnownNegative) 2718 return Pred == ICmpInst::ICMP_SGT ? getTrue(ITy) : getFalse(ITy); 2719 if (LHSKnownNegative || YKnownNonNegative) 2720 return Pred == ICmpInst::ICMP_SGT ? getFalse(ITy) : getTrue(ITy); 2721 } 2722 } 2723 } 2724 2725 // icmp pred (and X, Y), X 2726 if (LBO && match(LBO, m_CombineOr(m_And(m_Value(), m_Specific(RHS)), 2727 m_And(m_Specific(RHS), m_Value())))) { 2728 if (Pred == ICmpInst::ICMP_UGT) 2729 return getFalse(ITy); 2730 if (Pred == ICmpInst::ICMP_ULE) 2731 return getTrue(ITy); 2732 } 2733 // icmp pred X, (and X, Y) 2734 if (RBO && match(RBO, m_CombineOr(m_And(m_Value(), m_Specific(LHS)), 2735 m_And(m_Specific(LHS), m_Value())))) { 2736 if (Pred == ICmpInst::ICMP_UGE) 2737 return getTrue(ITy); 2738 if (Pred == ICmpInst::ICMP_ULT) 2739 return getFalse(ITy); 2740 } 2741 2742 // 0 - (zext X) pred C 2743 if (!CmpInst::isUnsigned(Pred) && match(LHS, m_Neg(m_ZExt(m_Value())))) { 2744 if (ConstantInt *RHSC = dyn_cast<ConstantInt>(RHS)) { 2745 if (RHSC->getValue().isStrictlyPositive()) { 2746 if (Pred == ICmpInst::ICMP_SLT) 2747 return ConstantInt::getTrue(RHSC->getContext()); 2748 if (Pred == ICmpInst::ICMP_SGE) 2749 return ConstantInt::getFalse(RHSC->getContext()); 2750 if (Pred == ICmpInst::ICMP_EQ) 2751 return ConstantInt::getFalse(RHSC->getContext()); 2752 if (Pred == ICmpInst::ICMP_NE) 2753 return ConstantInt::getTrue(RHSC->getContext()); 2754 } 2755 if (RHSC->getValue().isNonNegative()) { 2756 if (Pred == ICmpInst::ICMP_SLE) 2757 return ConstantInt::getTrue(RHSC->getContext()); 2758 if (Pred == ICmpInst::ICMP_SGT) 2759 return ConstantInt::getFalse(RHSC->getContext()); 2760 } 2761 } 2762 } 2763 2764 // icmp pred (urem X, Y), Y 2765 if (LBO && match(LBO, m_URem(m_Value(), m_Specific(RHS)))) { 2766 bool KnownNonNegative, KnownNegative; 2767 switch (Pred) { 2768 default: 2769 break; 2770 case ICmpInst::ICMP_SGT: 2771 case ICmpInst::ICMP_SGE: 2772 ComputeSignBit(RHS, KnownNonNegative, KnownNegative, Q.DL, 0, Q.AC, 2773 Q.CxtI, Q.DT); 2774 if (!KnownNonNegative) 2775 break; 2776 // fall-through 2777 case ICmpInst::ICMP_EQ: 2778 case ICmpInst::ICMP_UGT: 2779 case ICmpInst::ICMP_UGE: 2780 return getFalse(ITy); 2781 case ICmpInst::ICMP_SLT: 2782 case ICmpInst::ICMP_SLE: 2783 ComputeSignBit(RHS, KnownNonNegative, KnownNegative, Q.DL, 0, Q.AC, 2784 Q.CxtI, Q.DT); 2785 if (!KnownNonNegative) 2786 break; 2787 // fall-through 2788 case ICmpInst::ICMP_NE: 2789 case ICmpInst::ICMP_ULT: 2790 case ICmpInst::ICMP_ULE: 2791 return getTrue(ITy); 2792 } 2793 } 2794 2795 // icmp pred X, (urem Y, X) 2796 if (RBO && match(RBO, m_URem(m_Value(), m_Specific(LHS)))) { 2797 bool KnownNonNegative, KnownNegative; 2798 switch (Pred) { 2799 default: 2800 break; 2801 case ICmpInst::ICMP_SGT: 2802 case ICmpInst::ICMP_SGE: 2803 ComputeSignBit(LHS, KnownNonNegative, KnownNegative, Q.DL, 0, Q.AC, 2804 Q.CxtI, Q.DT); 2805 if (!KnownNonNegative) 2806 break; 2807 // fall-through 2808 case ICmpInst::ICMP_NE: 2809 case ICmpInst::ICMP_UGT: 2810 case ICmpInst::ICMP_UGE: 2811 return getTrue(ITy); 2812 case ICmpInst::ICMP_SLT: 2813 case ICmpInst::ICMP_SLE: 2814 ComputeSignBit(LHS, KnownNonNegative, KnownNegative, Q.DL, 0, Q.AC, 2815 Q.CxtI, Q.DT); 2816 if (!KnownNonNegative) 2817 break; 2818 // fall-through 2819 case ICmpInst::ICMP_EQ: 2820 case ICmpInst::ICMP_ULT: 2821 case ICmpInst::ICMP_ULE: 2822 return getFalse(ITy); 2823 } 2824 } 2825 2826 // x >> y <=u x 2827 // x udiv y <=u x. 2828 if (LBO && (match(LBO, m_LShr(m_Specific(RHS), m_Value())) || 2829 match(LBO, m_UDiv(m_Specific(RHS), m_Value())))) { 2830 // icmp pred (X op Y), X 2831 if (Pred == ICmpInst::ICMP_UGT) 2832 return getFalse(ITy); 2833 if (Pred == ICmpInst::ICMP_ULE) 2834 return getTrue(ITy); 2835 } 2836 2837 // handle: 2838 // CI2 << X == CI 2839 // CI2 << X != CI 2840 // 2841 // where CI2 is a power of 2 and CI isn't 2842 if (auto *CI = dyn_cast<ConstantInt>(RHS)) { 2843 const APInt *CI2Val, *CIVal = &CI->getValue(); 2844 if (LBO && match(LBO, m_Shl(m_APInt(CI2Val), m_Value())) && 2845 CI2Val->isPowerOf2()) { 2846 if (!CIVal->isPowerOf2()) { 2847 // CI2 << X can equal zero in some circumstances, 2848 // this simplification is unsafe if CI is zero. 2849 // 2850 // We know it is safe if: 2851 // - The shift is nsw, we can't shift out the one bit. 2852 // - The shift is nuw, we can't shift out the one bit. 2853 // - CI2 is one 2854 // - CI isn't zero 2855 if (LBO->hasNoSignedWrap() || LBO->hasNoUnsignedWrap() || 2856 *CI2Val == 1 || !CI->isZero()) { 2857 if (Pred == ICmpInst::ICMP_EQ) 2858 return ConstantInt::getFalse(RHS->getContext()); 2859 if (Pred == ICmpInst::ICMP_NE) 2860 return ConstantInt::getTrue(RHS->getContext()); 2861 } 2862 } 2863 if (CIVal->isSignBit() && *CI2Val == 1) { 2864 if (Pred == ICmpInst::ICMP_UGT) 2865 return ConstantInt::getFalse(RHS->getContext()); 2866 if (Pred == ICmpInst::ICMP_ULE) 2867 return ConstantInt::getTrue(RHS->getContext()); 2868 } 2869 } 2870 } 2871 2872 if (MaxRecurse && LBO && RBO && LBO->getOpcode() == RBO->getOpcode() && 2873 LBO->getOperand(1) == RBO->getOperand(1)) { 2874 switch (LBO->getOpcode()) { 2875 default: break; 2876 case Instruction::UDiv: 2877 case Instruction::LShr: 2878 if (ICmpInst::isSigned(Pred)) 2879 break; 2880 // fall-through 2881 case Instruction::SDiv: 2882 case Instruction::AShr: 2883 if (!LBO->isExact() || !RBO->isExact()) 2884 break; 2885 if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0), 2886 RBO->getOperand(0), Q, MaxRecurse-1)) 2887 return V; 2888 break; 2889 case Instruction::Shl: { 2890 bool NUW = LBO->hasNoUnsignedWrap() && RBO->hasNoUnsignedWrap(); 2891 bool NSW = LBO->hasNoSignedWrap() && RBO->hasNoSignedWrap(); 2892 if (!NUW && !NSW) 2893 break; 2894 if (!NSW && ICmpInst::isSigned(Pred)) 2895 break; 2896 if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0), 2897 RBO->getOperand(0), Q, MaxRecurse-1)) 2898 return V; 2899 break; 2900 } 2901 } 2902 } 2903 2904 // Simplify comparisons involving max/min. 2905 Value *A, *B; 2906 CmpInst::Predicate P = CmpInst::BAD_ICMP_PREDICATE; 2907 CmpInst::Predicate EqP; // Chosen so that "A == max/min(A,B)" iff "A EqP B". 2908 2909 // Signed variants on "max(a,b)>=a -> true". 2910 if (match(LHS, m_SMax(m_Value(A), m_Value(B))) && (A == RHS || B == RHS)) { 2911 if (A != RHS) std::swap(A, B); // smax(A, B) pred A. 2912 EqP = CmpInst::ICMP_SGE; // "A == smax(A, B)" iff "A sge B". 2913 // We analyze this as smax(A, B) pred A. 2914 P = Pred; 2915 } else if (match(RHS, m_SMax(m_Value(A), m_Value(B))) && 2916 (A == LHS || B == LHS)) { 2917 if (A != LHS) std::swap(A, B); // A pred smax(A, B). 2918 EqP = CmpInst::ICMP_SGE; // "A == smax(A, B)" iff "A sge B". 2919 // We analyze this as smax(A, B) swapped-pred A. 2920 P = CmpInst::getSwappedPredicate(Pred); 2921 } else if (match(LHS, m_SMin(m_Value(A), m_Value(B))) && 2922 (A == RHS || B == RHS)) { 2923 if (A != RHS) std::swap(A, B); // smin(A, B) pred A. 2924 EqP = CmpInst::ICMP_SLE; // "A == smin(A, B)" iff "A sle B". 2925 // We analyze this as smax(-A, -B) swapped-pred -A. 2926 // Note that we do not need to actually form -A or -B thanks to EqP. 2927 P = CmpInst::getSwappedPredicate(Pred); 2928 } else if (match(RHS, m_SMin(m_Value(A), m_Value(B))) && 2929 (A == LHS || B == LHS)) { 2930 if (A != LHS) std::swap(A, B); // A pred smin(A, B). 2931 EqP = CmpInst::ICMP_SLE; // "A == smin(A, B)" iff "A sle B". 2932 // We analyze this as smax(-A, -B) pred -A. 2933 // Note that we do not need to actually form -A or -B thanks to EqP. 2934 P = Pred; 2935 } 2936 if (P != CmpInst::BAD_ICMP_PREDICATE) { 2937 // Cases correspond to "max(A, B) p A". 2938 switch (P) { 2939 default: 2940 break; 2941 case CmpInst::ICMP_EQ: 2942 case CmpInst::ICMP_SLE: 2943 // Equivalent to "A EqP B". This may be the same as the condition tested 2944 // in the max/min; if so, we can just return that. 2945 if (Value *V = ExtractEquivalentCondition(LHS, EqP, A, B)) 2946 return V; 2947 if (Value *V = ExtractEquivalentCondition(RHS, EqP, A, B)) 2948 return V; 2949 // Otherwise, see if "A EqP B" simplifies. 2950 if (MaxRecurse) 2951 if (Value *V = SimplifyICmpInst(EqP, A, B, Q, MaxRecurse-1)) 2952 return V; 2953 break; 2954 case CmpInst::ICMP_NE: 2955 case CmpInst::ICMP_SGT: { 2956 CmpInst::Predicate InvEqP = CmpInst::getInversePredicate(EqP); 2957 // Equivalent to "A InvEqP B". This may be the same as the condition 2958 // tested in the max/min; if so, we can just return that. 2959 if (Value *V = ExtractEquivalentCondition(LHS, InvEqP, A, B)) 2960 return V; 2961 if (Value *V = ExtractEquivalentCondition(RHS, InvEqP, A, B)) 2962 return V; 2963 // Otherwise, see if "A InvEqP B" simplifies. 2964 if (MaxRecurse) 2965 if (Value *V = SimplifyICmpInst(InvEqP, A, B, Q, MaxRecurse-1)) 2966 return V; 2967 break; 2968 } 2969 case CmpInst::ICMP_SGE: 2970 // Always true. 2971 return getTrue(ITy); 2972 case CmpInst::ICMP_SLT: 2973 // Always false. 2974 return getFalse(ITy); 2975 } 2976 } 2977 2978 // Unsigned variants on "max(a,b)>=a -> true". 2979 P = CmpInst::BAD_ICMP_PREDICATE; 2980 if (match(LHS, m_UMax(m_Value(A), m_Value(B))) && (A == RHS || B == RHS)) { 2981 if (A != RHS) std::swap(A, B); // umax(A, B) pred A. 2982 EqP = CmpInst::ICMP_UGE; // "A == umax(A, B)" iff "A uge B". 2983 // We analyze this as umax(A, B) pred A. 2984 P = Pred; 2985 } else if (match(RHS, m_UMax(m_Value(A), m_Value(B))) && 2986 (A == LHS || B == LHS)) { 2987 if (A != LHS) std::swap(A, B); // A pred umax(A, B). 2988 EqP = CmpInst::ICMP_UGE; // "A == umax(A, B)" iff "A uge B". 2989 // We analyze this as umax(A, B) swapped-pred A. 2990 P = CmpInst::getSwappedPredicate(Pred); 2991 } else if (match(LHS, m_UMin(m_Value(A), m_Value(B))) && 2992 (A == RHS || B == RHS)) { 2993 if (A != RHS) std::swap(A, B); // umin(A, B) pred A. 2994 EqP = CmpInst::ICMP_ULE; // "A == umin(A, B)" iff "A ule B". 2995 // We analyze this as umax(-A, -B) swapped-pred -A. 2996 // Note that we do not need to actually form -A or -B thanks to EqP. 2997 P = CmpInst::getSwappedPredicate(Pred); 2998 } else if (match(RHS, m_UMin(m_Value(A), m_Value(B))) && 2999 (A == LHS || B == LHS)) { 3000 if (A != LHS) std::swap(A, B); // A pred umin(A, B). 3001 EqP = CmpInst::ICMP_ULE; // "A == umin(A, B)" iff "A ule B". 3002 // We analyze this as umax(-A, -B) pred -A. 3003 // Note that we do not need to actually form -A or -B thanks to EqP. 3004 P = Pred; 3005 } 3006 if (P != CmpInst::BAD_ICMP_PREDICATE) { 3007 // Cases correspond to "max(A, B) p A". 3008 switch (P) { 3009 default: 3010 break; 3011 case CmpInst::ICMP_EQ: 3012 case CmpInst::ICMP_ULE: 3013 // Equivalent to "A EqP B". This may be the same as the condition tested 3014 // in the max/min; if so, we can just return that. 3015 if (Value *V = ExtractEquivalentCondition(LHS, EqP, A, B)) 3016 return V; 3017 if (Value *V = ExtractEquivalentCondition(RHS, EqP, A, B)) 3018 return V; 3019 // Otherwise, see if "A EqP B" simplifies. 3020 if (MaxRecurse) 3021 if (Value *V = SimplifyICmpInst(EqP, A, B, Q, MaxRecurse-1)) 3022 return V; 3023 break; 3024 case CmpInst::ICMP_NE: 3025 case CmpInst::ICMP_UGT: { 3026 CmpInst::Predicate InvEqP = CmpInst::getInversePredicate(EqP); 3027 // Equivalent to "A InvEqP B". This may be the same as the condition 3028 // tested in the max/min; if so, we can just return that. 3029 if (Value *V = ExtractEquivalentCondition(LHS, InvEqP, A, B)) 3030 return V; 3031 if (Value *V = ExtractEquivalentCondition(RHS, InvEqP, A, B)) 3032 return V; 3033 // Otherwise, see if "A InvEqP B" simplifies. 3034 if (MaxRecurse) 3035 if (Value *V = SimplifyICmpInst(InvEqP, A, B, Q, MaxRecurse-1)) 3036 return V; 3037 break; 3038 } 3039 case CmpInst::ICMP_UGE: 3040 // Always true. 3041 return getTrue(ITy); 3042 case CmpInst::ICMP_ULT: 3043 // Always false. 3044 return getFalse(ITy); 3045 } 3046 } 3047 3048 // Variants on "max(x,y) >= min(x,z)". 3049 Value *C, *D; 3050 if (match(LHS, m_SMax(m_Value(A), m_Value(B))) && 3051 match(RHS, m_SMin(m_Value(C), m_Value(D))) && 3052 (A == C || A == D || B == C || B == D)) { 3053 // max(x, ?) pred min(x, ?). 3054 if (Pred == CmpInst::ICMP_SGE) 3055 // Always true. 3056 return getTrue(ITy); 3057 if (Pred == CmpInst::ICMP_SLT) 3058 // Always false. 3059 return getFalse(ITy); 3060 } else if (match(LHS, m_SMin(m_Value(A), m_Value(B))) && 3061 match(RHS, m_SMax(m_Value(C), m_Value(D))) && 3062 (A == C || A == D || B == C || B == D)) { 3063 // min(x, ?) pred max(x, ?). 3064 if (Pred == CmpInst::ICMP_SLE) 3065 // Always true. 3066 return getTrue(ITy); 3067 if (Pred == CmpInst::ICMP_SGT) 3068 // Always false. 3069 return getFalse(ITy); 3070 } else if (match(LHS, m_UMax(m_Value(A), m_Value(B))) && 3071 match(RHS, m_UMin(m_Value(C), m_Value(D))) && 3072 (A == C || A == D || B == C || B == D)) { 3073 // max(x, ?) pred min(x, ?). 3074 if (Pred == CmpInst::ICMP_UGE) 3075 // Always true. 3076 return getTrue(ITy); 3077 if (Pred == CmpInst::ICMP_ULT) 3078 // Always false. 3079 return getFalse(ITy); 3080 } else if (match(LHS, m_UMin(m_Value(A), m_Value(B))) && 3081 match(RHS, m_UMax(m_Value(C), m_Value(D))) && 3082 (A == C || A == D || B == C || B == D)) { 3083 // min(x, ?) pred max(x, ?). 3084 if (Pred == CmpInst::ICMP_ULE) 3085 // Always true. 3086 return getTrue(ITy); 3087 if (Pred == CmpInst::ICMP_UGT) 3088 // Always false. 3089 return getFalse(ITy); 3090 } 3091 3092 // Simplify comparisons of related pointers using a powerful, recursive 3093 // GEP-walk when we have target data available.. 3094 if (LHS->getType()->isPointerTy()) 3095 if (auto *C = computePointerICmp(Q.DL, Q.TLI, Q.DT, Pred, Q.CxtI, LHS, RHS)) 3096 return C; 3097 3098 if (GetElementPtrInst *GLHS = dyn_cast<GetElementPtrInst>(LHS)) { 3099 if (GEPOperator *GRHS = dyn_cast<GEPOperator>(RHS)) { 3100 if (GLHS->getPointerOperand() == GRHS->getPointerOperand() && 3101 GLHS->hasAllConstantIndices() && GRHS->hasAllConstantIndices() && 3102 (ICmpInst::isEquality(Pred) || 3103 (GLHS->isInBounds() && GRHS->isInBounds() && 3104 Pred == ICmpInst::getSignedPredicate(Pred)))) { 3105 // The bases are equal and the indices are constant. Build a constant 3106 // expression GEP with the same indices and a null base pointer to see 3107 // what constant folding can make out of it. 3108 Constant *Null = Constant::getNullValue(GLHS->getPointerOperandType()); 3109 SmallVector<Value *, 4> IndicesLHS(GLHS->idx_begin(), GLHS->idx_end()); 3110 Constant *NewLHS = ConstantExpr::getGetElementPtr( 3111 GLHS->getSourceElementType(), Null, IndicesLHS); 3112 3113 SmallVector<Value *, 4> IndicesRHS(GRHS->idx_begin(), GRHS->idx_end()); 3114 Constant *NewRHS = ConstantExpr::getGetElementPtr( 3115 GLHS->getSourceElementType(), Null, IndicesRHS); 3116 return ConstantExpr::getICmp(Pred, NewLHS, NewRHS); 3117 } 3118 } 3119 } 3120 3121 // If a bit is known to be zero for A and known to be one for B, 3122 // then A and B cannot be equal. 3123 if (ICmpInst::isEquality(Pred)) { 3124 if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) { 3125 uint32_t BitWidth = CI->getBitWidth(); 3126 APInt LHSKnownZero(BitWidth, 0); 3127 APInt LHSKnownOne(BitWidth, 0); 3128 computeKnownBits(LHS, LHSKnownZero, LHSKnownOne, Q.DL, /*Depth=*/0, Q.AC, 3129 Q.CxtI, Q.DT); 3130 const APInt &RHSVal = CI->getValue(); 3131 if (((LHSKnownZero & RHSVal) != 0) || ((LHSKnownOne & ~RHSVal) != 0)) 3132 return Pred == ICmpInst::ICMP_EQ 3133 ? ConstantInt::getFalse(CI->getContext()) 3134 : ConstantInt::getTrue(CI->getContext()); 3135 } 3136 } 3137 3138 // If the comparison is with the result of a select instruction, check whether 3139 // comparing with either branch of the select always yields the same value. 3140 if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS)) 3141 if (Value *V = ThreadCmpOverSelect(Pred, LHS, RHS, Q, MaxRecurse)) 3142 return V; 3143 3144 // If the comparison is with the result of a phi instruction, check whether 3145 // doing the compare with each incoming phi value yields a common result. 3146 if (isa<PHINode>(LHS) || isa<PHINode>(RHS)) 3147 if (Value *V = ThreadCmpOverPHI(Pred, LHS, RHS, Q, MaxRecurse)) 3148 return V; 3149 3150 return nullptr; 3151 } 3152 3153 Value *llvm::SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS, 3154 const DataLayout &DL, 3155 const TargetLibraryInfo *TLI, 3156 const DominatorTree *DT, AssumptionCache *AC, 3157 const Instruction *CxtI) { 3158 return ::SimplifyICmpInst(Predicate, LHS, RHS, Query(DL, TLI, DT, AC, CxtI), 3159 RecursionLimit); 3160 } 3161 3162 /// Given operands for an FCmpInst, see if we can fold the result. 3163 /// If not, this returns null. 3164 static Value *SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS, 3165 FastMathFlags FMF, const Query &Q, 3166 unsigned MaxRecurse) { 3167 CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate; 3168 assert(CmpInst::isFPPredicate(Pred) && "Not an FP compare!"); 3169 3170 if (Constant *CLHS = dyn_cast<Constant>(LHS)) { 3171 if (Constant *CRHS = dyn_cast<Constant>(RHS)) 3172 return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, Q.DL, Q.TLI); 3173 3174 // If we have a constant, make sure it is on the RHS. 3175 std::swap(LHS, RHS); 3176 Pred = CmpInst::getSwappedPredicate(Pred); 3177 } 3178 3179 // Fold trivial predicates. 3180 if (Pred == FCmpInst::FCMP_FALSE) 3181 return ConstantInt::get(GetCompareTy(LHS), 0); 3182 if (Pred == FCmpInst::FCMP_TRUE) 3183 return ConstantInt::get(GetCompareTy(LHS), 1); 3184 3185 // UNO/ORD predicates can be trivially folded if NaNs are ignored. 3186 if (FMF.noNaNs()) { 3187 if (Pred == FCmpInst::FCMP_UNO) 3188 return ConstantInt::get(GetCompareTy(LHS), 0); 3189 if (Pred == FCmpInst::FCMP_ORD) 3190 return ConstantInt::get(GetCompareTy(LHS), 1); 3191 } 3192 3193 // fcmp pred x, undef and fcmp pred undef, x 3194 // fold to true if unordered, false if ordered 3195 if (isa<UndefValue>(LHS) || isa<UndefValue>(RHS)) { 3196 // Choosing NaN for the undef will always make unordered comparison succeed 3197 // and ordered comparison fail. 3198 return ConstantInt::get(GetCompareTy(LHS), CmpInst::isUnordered(Pred)); 3199 } 3200 3201 // fcmp x,x -> true/false. Not all compares are foldable. 3202 if (LHS == RHS) { 3203 if (CmpInst::isTrueWhenEqual(Pred)) 3204 return ConstantInt::get(GetCompareTy(LHS), 1); 3205 if (CmpInst::isFalseWhenEqual(Pred)) 3206 return ConstantInt::get(GetCompareTy(LHS), 0); 3207 } 3208 3209 // Handle fcmp with constant RHS 3210 const ConstantFP *CFP = nullptr; 3211 if (const auto *RHSC = dyn_cast<Constant>(RHS)) { 3212 if (RHS->getType()->isVectorTy()) 3213 CFP = dyn_cast_or_null<ConstantFP>(RHSC->getSplatValue()); 3214 else 3215 CFP = dyn_cast<ConstantFP>(RHSC); 3216 } 3217 if (CFP) { 3218 // If the constant is a nan, see if we can fold the comparison based on it. 3219 if (CFP->getValueAPF().isNaN()) { 3220 if (FCmpInst::isOrdered(Pred)) // True "if ordered and foo" 3221 return ConstantInt::getFalse(CFP->getContext()); 3222 assert(FCmpInst::isUnordered(Pred) && 3223 "Comparison must be either ordered or unordered!"); 3224 // True if unordered. 3225 return ConstantInt::get(GetCompareTy(LHS), 1); 3226 } 3227 // Check whether the constant is an infinity. 3228 if (CFP->getValueAPF().isInfinity()) { 3229 if (CFP->getValueAPF().isNegative()) { 3230 switch (Pred) { 3231 case FCmpInst::FCMP_OLT: 3232 // No value is ordered and less than negative infinity. 3233 return ConstantInt::get(GetCompareTy(LHS), 0); 3234 case FCmpInst::FCMP_UGE: 3235 // All values are unordered with or at least negative infinity. 3236 return ConstantInt::get(GetCompareTy(LHS), 1); 3237 default: 3238 break; 3239 } 3240 } else { 3241 switch (Pred) { 3242 case FCmpInst::FCMP_OGT: 3243 // No value is ordered and greater than infinity. 3244 return ConstantInt::get(GetCompareTy(LHS), 0); 3245 case FCmpInst::FCMP_ULE: 3246 // All values are unordered with and at most infinity. 3247 return ConstantInt::get(GetCompareTy(LHS), 1); 3248 default: 3249 break; 3250 } 3251 } 3252 } 3253 if (CFP->getValueAPF().isZero()) { 3254 switch (Pred) { 3255 case FCmpInst::FCMP_UGE: 3256 if (CannotBeOrderedLessThanZero(LHS, Q.TLI)) 3257 return ConstantInt::get(GetCompareTy(LHS), 1); 3258 break; 3259 case FCmpInst::FCMP_OLT: 3260 // X < 0 3261 if (CannotBeOrderedLessThanZero(LHS, Q.TLI)) 3262 return ConstantInt::get(GetCompareTy(LHS), 0); 3263 break; 3264 default: 3265 break; 3266 } 3267 } 3268 } 3269 3270 // If the comparison is with the result of a select instruction, check whether 3271 // comparing with either branch of the select always yields the same value. 3272 if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS)) 3273 if (Value *V = ThreadCmpOverSelect(Pred, LHS, RHS, Q, MaxRecurse)) 3274 return V; 3275 3276 // If the comparison is with the result of a phi instruction, check whether 3277 // doing the compare with each incoming phi value yields a common result. 3278 if (isa<PHINode>(LHS) || isa<PHINode>(RHS)) 3279 if (Value *V = ThreadCmpOverPHI(Pred, LHS, RHS, Q, MaxRecurse)) 3280 return V; 3281 3282 return nullptr; 3283 } 3284 3285 Value *llvm::SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS, 3286 FastMathFlags FMF, const DataLayout &DL, 3287 const TargetLibraryInfo *TLI, 3288 const DominatorTree *DT, AssumptionCache *AC, 3289 const Instruction *CxtI) { 3290 return ::SimplifyFCmpInst(Predicate, LHS, RHS, FMF, 3291 Query(DL, TLI, DT, AC, CxtI), RecursionLimit); 3292 } 3293 3294 /// See if V simplifies when its operand Op is replaced with RepOp. 3295 static const Value *SimplifyWithOpReplaced(Value *V, Value *Op, Value *RepOp, 3296 const Query &Q, 3297 unsigned MaxRecurse) { 3298 // Trivial replacement. 3299 if (V == Op) 3300 return RepOp; 3301 3302 auto *I = dyn_cast<Instruction>(V); 3303 if (!I) 3304 return nullptr; 3305 3306 // If this is a binary operator, try to simplify it with the replaced op. 3307 if (auto *B = dyn_cast<BinaryOperator>(I)) { 3308 // Consider: 3309 // %cmp = icmp eq i32 %x, 2147483647 3310 // %add = add nsw i32 %x, 1 3311 // %sel = select i1 %cmp, i32 -2147483648, i32 %add 3312 // 3313 // We can't replace %sel with %add unless we strip away the flags. 3314 if (isa<OverflowingBinaryOperator>(B)) 3315 if (B->hasNoSignedWrap() || B->hasNoUnsignedWrap()) 3316 return nullptr; 3317 if (isa<PossiblyExactOperator>(B)) 3318 if (B->isExact()) 3319 return nullptr; 3320 3321 if (MaxRecurse) { 3322 if (B->getOperand(0) == Op) 3323 return SimplifyBinOp(B->getOpcode(), RepOp, B->getOperand(1), Q, 3324 MaxRecurse - 1); 3325 if (B->getOperand(1) == Op) 3326 return SimplifyBinOp(B->getOpcode(), B->getOperand(0), RepOp, Q, 3327 MaxRecurse - 1); 3328 } 3329 } 3330 3331 // Same for CmpInsts. 3332 if (CmpInst *C = dyn_cast<CmpInst>(I)) { 3333 if (MaxRecurse) { 3334 if (C->getOperand(0) == Op) 3335 return SimplifyCmpInst(C->getPredicate(), RepOp, C->getOperand(1), Q, 3336 MaxRecurse - 1); 3337 if (C->getOperand(1) == Op) 3338 return SimplifyCmpInst(C->getPredicate(), C->getOperand(0), RepOp, Q, 3339 MaxRecurse - 1); 3340 } 3341 } 3342 3343 // TODO: We could hand off more cases to instsimplify here. 3344 3345 // If all operands are constant after substituting Op for RepOp then we can 3346 // constant fold the instruction. 3347 if (Constant *CRepOp = dyn_cast<Constant>(RepOp)) { 3348 // Build a list of all constant operands. 3349 SmallVector<Constant *, 8> ConstOps; 3350 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 3351 if (I->getOperand(i) == Op) 3352 ConstOps.push_back(CRepOp); 3353 else if (Constant *COp = dyn_cast<Constant>(I->getOperand(i))) 3354 ConstOps.push_back(COp); 3355 else 3356 break; 3357 } 3358 3359 // All operands were constants, fold it. 3360 if (ConstOps.size() == I->getNumOperands()) { 3361 if (CmpInst *C = dyn_cast<CmpInst>(I)) 3362 return ConstantFoldCompareInstOperands(C->getPredicate(), ConstOps[0], 3363 ConstOps[1], Q.DL, Q.TLI); 3364 3365 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 3366 if (!LI->isVolatile()) 3367 return ConstantFoldLoadFromConstPtr(ConstOps[0], LI->getType(), Q.DL); 3368 3369 return ConstantFoldInstOperands(I, ConstOps, Q.DL, Q.TLI); 3370 } 3371 } 3372 3373 return nullptr; 3374 } 3375 3376 /// Try to simplify a select instruction when its condition operand is an 3377 /// integer comparison where one operand of the compare is a constant. 3378 static Value *simplifySelectBitTest(Value *TrueVal, Value *FalseVal, Value *X, 3379 const APInt *Y, bool TrueWhenUnset) { 3380 const APInt *C; 3381 3382 // (X & Y) == 0 ? X & ~Y : X --> X 3383 // (X & Y) != 0 ? X & ~Y : X --> X & ~Y 3384 if (FalseVal == X && match(TrueVal, m_And(m_Specific(X), m_APInt(C))) && 3385 *Y == ~*C) 3386 return TrueWhenUnset ? FalseVal : TrueVal; 3387 3388 // (X & Y) == 0 ? X : X & ~Y --> X & ~Y 3389 // (X & Y) != 0 ? X : X & ~Y --> X 3390 if (TrueVal == X && match(FalseVal, m_And(m_Specific(X), m_APInt(C))) && 3391 *Y == ~*C) 3392 return TrueWhenUnset ? FalseVal : TrueVal; 3393 3394 if (Y->isPowerOf2()) { 3395 // (X & Y) == 0 ? X | Y : X --> X | Y 3396 // (X & Y) != 0 ? X | Y : X --> X 3397 if (FalseVal == X && match(TrueVal, m_Or(m_Specific(X), m_APInt(C))) && 3398 *Y == *C) 3399 return TrueWhenUnset ? TrueVal : FalseVal; 3400 3401 // (X & Y) == 0 ? X : X | Y --> X 3402 // (X & Y) != 0 ? X : X | Y --> X | Y 3403 if (TrueVal == X && match(FalseVal, m_Or(m_Specific(X), m_APInt(C))) && 3404 *Y == *C) 3405 return TrueWhenUnset ? TrueVal : FalseVal; 3406 } 3407 3408 return nullptr; 3409 } 3410 3411 /// An alternative way to test if a bit is set or not uses sgt/slt instead of 3412 /// eq/ne. 3413 static Value *simplifySelectWithFakeICmpEq(Value *CmpLHS, Value *TrueVal, 3414 Value *FalseVal, 3415 bool TrueWhenUnset) { 3416 unsigned BitWidth = TrueVal->getType()->getScalarSizeInBits(); 3417 if (!BitWidth) 3418 return nullptr; 3419 3420 APInt MinSignedValue; 3421 Value *X; 3422 if (match(CmpLHS, m_Trunc(m_Value(X))) && (X == TrueVal || X == FalseVal)) { 3423 // icmp slt (trunc X), 0 <--> icmp ne (and X, C), 0 3424 // icmp sgt (trunc X), -1 <--> icmp eq (and X, C), 0 3425 unsigned DestSize = CmpLHS->getType()->getScalarSizeInBits(); 3426 MinSignedValue = APInt::getSignedMinValue(DestSize).zext(BitWidth); 3427 } else { 3428 // icmp slt X, 0 <--> icmp ne (and X, C), 0 3429 // icmp sgt X, -1 <--> icmp eq (and X, C), 0 3430 X = CmpLHS; 3431 MinSignedValue = APInt::getSignedMinValue(BitWidth); 3432 } 3433 3434 if (Value *V = simplifySelectBitTest(TrueVal, FalseVal, X, &MinSignedValue, 3435 TrueWhenUnset)) 3436 return V; 3437 3438 return nullptr; 3439 } 3440 3441 /// Try to simplify a select instruction when its condition operand is an 3442 /// integer comparison. 3443 static Value *simplifySelectWithICmpCond(Value *CondVal, Value *TrueVal, 3444 Value *FalseVal, const Query &Q, 3445 unsigned MaxRecurse) { 3446 ICmpInst::Predicate Pred; 3447 Value *CmpLHS, *CmpRHS; 3448 if (!match(CondVal, m_ICmp(Pred, m_Value(CmpLHS), m_Value(CmpRHS)))) 3449 return nullptr; 3450 3451 // FIXME: This code is nearly duplicated in InstCombine. Using/refactoring 3452 // decomposeBitTestICmp() might help. 3453 if (ICmpInst::isEquality(Pred) && match(CmpRHS, m_Zero())) { 3454 Value *X; 3455 const APInt *Y; 3456 if (match(CmpLHS, m_And(m_Value(X), m_APInt(Y)))) 3457 if (Value *V = simplifySelectBitTest(TrueVal, FalseVal, X, Y, 3458 Pred == ICmpInst::ICMP_EQ)) 3459 return V; 3460 } else if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, m_Zero())) { 3461 // Comparing signed-less-than 0 checks if the sign bit is set. 3462 if (Value *V = simplifySelectWithFakeICmpEq(CmpLHS, TrueVal, FalseVal, 3463 false)) 3464 return V; 3465 } else if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, m_AllOnes())) { 3466 // Comparing signed-greater-than -1 checks if the sign bit is not set. 3467 if (Value *V = simplifySelectWithFakeICmpEq(CmpLHS, TrueVal, FalseVal, 3468 true)) 3469 return V; 3470 } 3471 3472 if (CondVal->hasOneUse()) { 3473 const APInt *C; 3474 if (match(CmpRHS, m_APInt(C))) { 3475 // X < MIN ? T : F --> F 3476 if (Pred == ICmpInst::ICMP_SLT && C->isMinSignedValue()) 3477 return FalseVal; 3478 // X < MIN ? T : F --> F 3479 if (Pred == ICmpInst::ICMP_ULT && C->isMinValue()) 3480 return FalseVal; 3481 // X > MAX ? T : F --> F 3482 if (Pred == ICmpInst::ICMP_SGT && C->isMaxSignedValue()) 3483 return FalseVal; 3484 // X > MAX ? T : F --> F 3485 if (Pred == ICmpInst::ICMP_UGT && C->isMaxValue()) 3486 return FalseVal; 3487 } 3488 } 3489 3490 // If we have an equality comparison, then we know the value in one of the 3491 // arms of the select. See if substituting this value into the arm and 3492 // simplifying the result yields the same value as the other arm. 3493 if (Pred == ICmpInst::ICMP_EQ) { 3494 if (SimplifyWithOpReplaced(FalseVal, CmpLHS, CmpRHS, Q, MaxRecurse) == 3495 TrueVal || 3496 SimplifyWithOpReplaced(FalseVal, CmpRHS, CmpLHS, Q, MaxRecurse) == 3497 TrueVal) 3498 return FalseVal; 3499 if (SimplifyWithOpReplaced(TrueVal, CmpLHS, CmpRHS, Q, MaxRecurse) == 3500 FalseVal || 3501 SimplifyWithOpReplaced(TrueVal, CmpRHS, CmpLHS, Q, MaxRecurse) == 3502 FalseVal) 3503 return FalseVal; 3504 } else if (Pred == ICmpInst::ICMP_NE) { 3505 if (SimplifyWithOpReplaced(TrueVal, CmpLHS, CmpRHS, Q, MaxRecurse) == 3506 FalseVal || 3507 SimplifyWithOpReplaced(TrueVal, CmpRHS, CmpLHS, Q, MaxRecurse) == 3508 FalseVal) 3509 return TrueVal; 3510 if (SimplifyWithOpReplaced(FalseVal, CmpLHS, CmpRHS, Q, MaxRecurse) == 3511 TrueVal || 3512 SimplifyWithOpReplaced(FalseVal, CmpRHS, CmpLHS, Q, MaxRecurse) == 3513 TrueVal) 3514 return TrueVal; 3515 } 3516 3517 return nullptr; 3518 } 3519 3520 /// Given operands for a SelectInst, see if we can fold the result. 3521 /// If not, this returns null. 3522 static Value *SimplifySelectInst(Value *CondVal, Value *TrueVal, 3523 Value *FalseVal, const Query &Q, 3524 unsigned MaxRecurse) { 3525 // select true, X, Y -> X 3526 // select false, X, Y -> Y 3527 if (Constant *CB = dyn_cast<Constant>(CondVal)) { 3528 if (CB->isAllOnesValue()) 3529 return TrueVal; 3530 if (CB->isNullValue()) 3531 return FalseVal; 3532 } 3533 3534 // select C, X, X -> X 3535 if (TrueVal == FalseVal) 3536 return TrueVal; 3537 3538 if (isa<UndefValue>(CondVal)) { // select undef, X, Y -> X or Y 3539 if (isa<Constant>(TrueVal)) 3540 return TrueVal; 3541 return FalseVal; 3542 } 3543 if (isa<UndefValue>(TrueVal)) // select C, undef, X -> X 3544 return FalseVal; 3545 if (isa<UndefValue>(FalseVal)) // select C, X, undef -> X 3546 return TrueVal; 3547 3548 if (Value *V = 3549 simplifySelectWithICmpCond(CondVal, TrueVal, FalseVal, Q, MaxRecurse)) 3550 return V; 3551 3552 return nullptr; 3553 } 3554 3555 Value *llvm::SimplifySelectInst(Value *Cond, Value *TrueVal, Value *FalseVal, 3556 const DataLayout &DL, 3557 const TargetLibraryInfo *TLI, 3558 const DominatorTree *DT, AssumptionCache *AC, 3559 const Instruction *CxtI) { 3560 return ::SimplifySelectInst(Cond, TrueVal, FalseVal, 3561 Query(DL, TLI, DT, AC, CxtI), RecursionLimit); 3562 } 3563 3564 /// Given operands for an GetElementPtrInst, see if we can fold the result. 3565 /// If not, this returns null. 3566 static Value *SimplifyGEPInst(Type *SrcTy, ArrayRef<Value *> Ops, 3567 const Query &Q, unsigned) { 3568 // The type of the GEP pointer operand. 3569 unsigned AS = 3570 cast<PointerType>(Ops[0]->getType()->getScalarType())->getAddressSpace(); 3571 3572 // getelementptr P -> P. 3573 if (Ops.size() == 1) 3574 return Ops[0]; 3575 3576 // Compute the (pointer) type returned by the GEP instruction. 3577 Type *LastType = GetElementPtrInst::getIndexedType(SrcTy, Ops.slice(1)); 3578 Type *GEPTy = PointerType::get(LastType, AS); 3579 if (VectorType *VT = dyn_cast<VectorType>(Ops[0]->getType())) 3580 GEPTy = VectorType::get(GEPTy, VT->getNumElements()); 3581 3582 if (isa<UndefValue>(Ops[0])) 3583 return UndefValue::get(GEPTy); 3584 3585 if (Ops.size() == 2) { 3586 // getelementptr P, 0 -> P. 3587 if (match(Ops[1], m_Zero())) 3588 return Ops[0]; 3589 3590 Type *Ty = SrcTy; 3591 if (Ty->isSized()) { 3592 Value *P; 3593 uint64_t C; 3594 uint64_t TyAllocSize = Q.DL.getTypeAllocSize(Ty); 3595 // getelementptr P, N -> P if P points to a type of zero size. 3596 if (TyAllocSize == 0) 3597 return Ops[0]; 3598 3599 // The following transforms are only safe if the ptrtoint cast 3600 // doesn't truncate the pointers. 3601 if (Ops[1]->getType()->getScalarSizeInBits() == 3602 Q.DL.getPointerSizeInBits(AS)) { 3603 auto PtrToIntOrZero = [GEPTy](Value *P) -> Value * { 3604 if (match(P, m_Zero())) 3605 return Constant::getNullValue(GEPTy); 3606 Value *Temp; 3607 if (match(P, m_PtrToInt(m_Value(Temp)))) 3608 if (Temp->getType() == GEPTy) 3609 return Temp; 3610 return nullptr; 3611 }; 3612 3613 // getelementptr V, (sub P, V) -> P if P points to a type of size 1. 3614 if (TyAllocSize == 1 && 3615 match(Ops[1], m_Sub(m_Value(P), m_PtrToInt(m_Specific(Ops[0]))))) 3616 if (Value *R = PtrToIntOrZero(P)) 3617 return R; 3618 3619 // getelementptr V, (ashr (sub P, V), C) -> Q 3620 // if P points to a type of size 1 << C. 3621 if (match(Ops[1], 3622 m_AShr(m_Sub(m_Value(P), m_PtrToInt(m_Specific(Ops[0]))), 3623 m_ConstantInt(C))) && 3624 TyAllocSize == 1ULL << C) 3625 if (Value *R = PtrToIntOrZero(P)) 3626 return R; 3627 3628 // getelementptr V, (sdiv (sub P, V), C) -> Q 3629 // if P points to a type of size C. 3630 if (match(Ops[1], 3631 m_SDiv(m_Sub(m_Value(P), m_PtrToInt(m_Specific(Ops[0]))), 3632 m_SpecificInt(TyAllocSize)))) 3633 if (Value *R = PtrToIntOrZero(P)) 3634 return R; 3635 } 3636 } 3637 } 3638 3639 // Check to see if this is constant foldable. 3640 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 3641 if (!isa<Constant>(Ops[i])) 3642 return nullptr; 3643 3644 return ConstantExpr::getGetElementPtr(SrcTy, cast<Constant>(Ops[0]), 3645 Ops.slice(1)); 3646 } 3647 3648 Value *llvm::SimplifyGEPInst(Type *SrcTy, ArrayRef<Value *> Ops, 3649 const DataLayout &DL, 3650 const TargetLibraryInfo *TLI, 3651 const DominatorTree *DT, AssumptionCache *AC, 3652 const Instruction *CxtI) { 3653 return ::SimplifyGEPInst(SrcTy, Ops, 3654 Query(DL, TLI, DT, AC, CxtI), RecursionLimit); 3655 } 3656 3657 /// Given operands for an InsertValueInst, see if we can fold the result. 3658 /// If not, this returns null. 3659 static Value *SimplifyInsertValueInst(Value *Agg, Value *Val, 3660 ArrayRef<unsigned> Idxs, const Query &Q, 3661 unsigned) { 3662 if (Constant *CAgg = dyn_cast<Constant>(Agg)) 3663 if (Constant *CVal = dyn_cast<Constant>(Val)) 3664 return ConstantFoldInsertValueInstruction(CAgg, CVal, Idxs); 3665 3666 // insertvalue x, undef, n -> x 3667 if (match(Val, m_Undef())) 3668 return Agg; 3669 3670 // insertvalue x, (extractvalue y, n), n 3671 if (ExtractValueInst *EV = dyn_cast<ExtractValueInst>(Val)) 3672 if (EV->getAggregateOperand()->getType() == Agg->getType() && 3673 EV->getIndices() == Idxs) { 3674 // insertvalue undef, (extractvalue y, n), n -> y 3675 if (match(Agg, m_Undef())) 3676 return EV->getAggregateOperand(); 3677 3678 // insertvalue y, (extractvalue y, n), n -> y 3679 if (Agg == EV->getAggregateOperand()) 3680 return Agg; 3681 } 3682 3683 return nullptr; 3684 } 3685 3686 Value *llvm::SimplifyInsertValueInst( 3687 Value *Agg, Value *Val, ArrayRef<unsigned> Idxs, const DataLayout &DL, 3688 const TargetLibraryInfo *TLI, const DominatorTree *DT, AssumptionCache *AC, 3689 const Instruction *CxtI) { 3690 return ::SimplifyInsertValueInst(Agg, Val, Idxs, Query(DL, TLI, DT, AC, CxtI), 3691 RecursionLimit); 3692 } 3693 3694 /// Given operands for an ExtractValueInst, see if we can fold the result. 3695 /// If not, this returns null. 3696 static Value *SimplifyExtractValueInst(Value *Agg, ArrayRef<unsigned> Idxs, 3697 const Query &, unsigned) { 3698 if (auto *CAgg = dyn_cast<Constant>(Agg)) 3699 return ConstantFoldExtractValueInstruction(CAgg, Idxs); 3700 3701 // extractvalue x, (insertvalue y, elt, n), n -> elt 3702 unsigned NumIdxs = Idxs.size(); 3703 for (auto *IVI = dyn_cast<InsertValueInst>(Agg); IVI != nullptr; 3704 IVI = dyn_cast<InsertValueInst>(IVI->getAggregateOperand())) { 3705 ArrayRef<unsigned> InsertValueIdxs = IVI->getIndices(); 3706 unsigned NumInsertValueIdxs = InsertValueIdxs.size(); 3707 unsigned NumCommonIdxs = std::min(NumInsertValueIdxs, NumIdxs); 3708 if (InsertValueIdxs.slice(0, NumCommonIdxs) == 3709 Idxs.slice(0, NumCommonIdxs)) { 3710 if (NumIdxs == NumInsertValueIdxs) 3711 return IVI->getInsertedValueOperand(); 3712 break; 3713 } 3714 } 3715 3716 return nullptr; 3717 } 3718 3719 Value *llvm::SimplifyExtractValueInst(Value *Agg, ArrayRef<unsigned> Idxs, 3720 const DataLayout &DL, 3721 const TargetLibraryInfo *TLI, 3722 const DominatorTree *DT, 3723 AssumptionCache *AC, 3724 const Instruction *CxtI) { 3725 return ::SimplifyExtractValueInst(Agg, Idxs, Query(DL, TLI, DT, AC, CxtI), 3726 RecursionLimit); 3727 } 3728 3729 /// Given operands for an ExtractElementInst, see if we can fold the result. 3730 /// If not, this returns null. 3731 static Value *SimplifyExtractElementInst(Value *Vec, Value *Idx, const Query &, 3732 unsigned) { 3733 if (auto *CVec = dyn_cast<Constant>(Vec)) { 3734 if (auto *CIdx = dyn_cast<Constant>(Idx)) 3735 return ConstantFoldExtractElementInstruction(CVec, CIdx); 3736 3737 // The index is not relevant if our vector is a splat. 3738 if (auto *Splat = CVec->getSplatValue()) 3739 return Splat; 3740 3741 if (isa<UndefValue>(Vec)) 3742 return UndefValue::get(Vec->getType()->getVectorElementType()); 3743 } 3744 3745 // If extracting a specified index from the vector, see if we can recursively 3746 // find a previously computed scalar that was inserted into the vector. 3747 if (auto *IdxC = dyn_cast<ConstantInt>(Idx)) 3748 if (Value *Elt = findScalarElement(Vec, IdxC->getZExtValue())) 3749 return Elt; 3750 3751 return nullptr; 3752 } 3753 3754 Value *llvm::SimplifyExtractElementInst( 3755 Value *Vec, Value *Idx, const DataLayout &DL, const TargetLibraryInfo *TLI, 3756 const DominatorTree *DT, AssumptionCache *AC, const Instruction *CxtI) { 3757 return ::SimplifyExtractElementInst(Vec, Idx, Query(DL, TLI, DT, AC, CxtI), 3758 RecursionLimit); 3759 } 3760 3761 /// See if we can fold the given phi. If not, returns null. 3762 static Value *SimplifyPHINode(PHINode *PN, const Query &Q) { 3763 // If all of the PHI's incoming values are the same then replace the PHI node 3764 // with the common value. 3765 Value *CommonValue = nullptr; 3766 bool HasUndefInput = false; 3767 for (Value *Incoming : PN->incoming_values()) { 3768 // If the incoming value is the phi node itself, it can safely be skipped. 3769 if (Incoming == PN) continue; 3770 if (isa<UndefValue>(Incoming)) { 3771 // Remember that we saw an undef value, but otherwise ignore them. 3772 HasUndefInput = true; 3773 continue; 3774 } 3775 if (CommonValue && Incoming != CommonValue) 3776 return nullptr; // Not the same, bail out. 3777 CommonValue = Incoming; 3778 } 3779 3780 // If CommonValue is null then all of the incoming values were either undef or 3781 // equal to the phi node itself. 3782 if (!CommonValue) 3783 return UndefValue::get(PN->getType()); 3784 3785 // If we have a PHI node like phi(X, undef, X), where X is defined by some 3786 // instruction, we cannot return X as the result of the PHI node unless it 3787 // dominates the PHI block. 3788 if (HasUndefInput) 3789 return ValueDominatesPHI(CommonValue, PN, Q.DT) ? CommonValue : nullptr; 3790 3791 return CommonValue; 3792 } 3793 3794 static Value *SimplifyCastInst(unsigned CastOpc, Value *Op, 3795 Type *Ty, const Query &Q, unsigned MaxRecurse) { 3796 if (auto *C = dyn_cast<Constant>(Op)) 3797 return ConstantFoldCastOperand(CastOpc, C, Ty, Q.DL); 3798 3799 if (auto *CI = dyn_cast<CastInst>(Op)) { 3800 auto *Src = CI->getOperand(0); 3801 Type *SrcTy = Src->getType(); 3802 Type *MidTy = CI->getType(); 3803 Type *DstTy = Ty; 3804 if (Src->getType() == Ty) { 3805 auto FirstOp = static_cast<Instruction::CastOps>(CI->getOpcode()); 3806 auto SecondOp = static_cast<Instruction::CastOps>(CastOpc); 3807 Type *SrcIntPtrTy = 3808 SrcTy->isPtrOrPtrVectorTy() ? Q.DL.getIntPtrType(SrcTy) : nullptr; 3809 Type *MidIntPtrTy = 3810 MidTy->isPtrOrPtrVectorTy() ? Q.DL.getIntPtrType(MidTy) : nullptr; 3811 Type *DstIntPtrTy = 3812 DstTy->isPtrOrPtrVectorTy() ? Q.DL.getIntPtrType(DstTy) : nullptr; 3813 if (CastInst::isEliminableCastPair(FirstOp, SecondOp, SrcTy, MidTy, DstTy, 3814 SrcIntPtrTy, MidIntPtrTy, 3815 DstIntPtrTy) == Instruction::BitCast) 3816 return Src; 3817 } 3818 } 3819 3820 // bitcast x -> x 3821 if (CastOpc == Instruction::BitCast) 3822 if (Op->getType() == Ty) 3823 return Op; 3824 3825 return nullptr; 3826 } 3827 3828 Value *llvm::SimplifyCastInst(unsigned CastOpc, Value *Op, Type *Ty, 3829 const DataLayout &DL, 3830 const TargetLibraryInfo *TLI, 3831 const DominatorTree *DT, AssumptionCache *AC, 3832 const Instruction *CxtI) { 3833 return ::SimplifyCastInst(CastOpc, Op, Ty, Query(DL, TLI, DT, AC, CxtI), 3834 RecursionLimit); 3835 } 3836 3837 //=== Helper functions for higher up the class hierarchy. 3838 3839 /// Given operands for a BinaryOperator, see if we can fold the result. 3840 /// If not, this returns null. 3841 static Value *SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS, 3842 const Query &Q, unsigned MaxRecurse) { 3843 switch (Opcode) { 3844 case Instruction::Add: 3845 return SimplifyAddInst(LHS, RHS, /*isNSW*/false, /*isNUW*/false, 3846 Q, MaxRecurse); 3847 case Instruction::FAdd: 3848 return SimplifyFAddInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse); 3849 3850 case Instruction::Sub: 3851 return SimplifySubInst(LHS, RHS, /*isNSW*/false, /*isNUW*/false, 3852 Q, MaxRecurse); 3853 case Instruction::FSub: 3854 return SimplifyFSubInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse); 3855 3856 case Instruction::Mul: return SimplifyMulInst (LHS, RHS, Q, MaxRecurse); 3857 case Instruction::FMul: 3858 return SimplifyFMulInst (LHS, RHS, FastMathFlags(), Q, MaxRecurse); 3859 case Instruction::SDiv: return SimplifySDivInst(LHS, RHS, Q, MaxRecurse); 3860 case Instruction::UDiv: return SimplifyUDivInst(LHS, RHS, Q, MaxRecurse); 3861 case Instruction::FDiv: 3862 return SimplifyFDivInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse); 3863 case Instruction::SRem: return SimplifySRemInst(LHS, RHS, Q, MaxRecurse); 3864 case Instruction::URem: return SimplifyURemInst(LHS, RHS, Q, MaxRecurse); 3865 case Instruction::FRem: 3866 return SimplifyFRemInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse); 3867 case Instruction::Shl: 3868 return SimplifyShlInst(LHS, RHS, /*isNSW*/false, /*isNUW*/false, 3869 Q, MaxRecurse); 3870 case Instruction::LShr: 3871 return SimplifyLShrInst(LHS, RHS, /*isExact*/false, Q, MaxRecurse); 3872 case Instruction::AShr: 3873 return SimplifyAShrInst(LHS, RHS, /*isExact*/false, Q, MaxRecurse); 3874 case Instruction::And: return SimplifyAndInst(LHS, RHS, Q, MaxRecurse); 3875 case Instruction::Or: return SimplifyOrInst (LHS, RHS, Q, MaxRecurse); 3876 case Instruction::Xor: return SimplifyXorInst(LHS, RHS, Q, MaxRecurse); 3877 default: 3878 if (Constant *CLHS = dyn_cast<Constant>(LHS)) 3879 if (Constant *CRHS = dyn_cast<Constant>(RHS)) 3880 return ConstantFoldBinaryOpOperands(Opcode, CLHS, CRHS, Q.DL); 3881 3882 // If the operation is associative, try some generic simplifications. 3883 if (Instruction::isAssociative(Opcode)) 3884 if (Value *V = SimplifyAssociativeBinOp(Opcode, LHS, RHS, Q, MaxRecurse)) 3885 return V; 3886 3887 // If the operation is with the result of a select instruction check whether 3888 // operating on either branch of the select always yields the same value. 3889 if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS)) 3890 if (Value *V = ThreadBinOpOverSelect(Opcode, LHS, RHS, Q, MaxRecurse)) 3891 return V; 3892 3893 // If the operation is with the result of a phi instruction, check whether 3894 // operating on all incoming values of the phi always yields the same value. 3895 if (isa<PHINode>(LHS) || isa<PHINode>(RHS)) 3896 if (Value *V = ThreadBinOpOverPHI(Opcode, LHS, RHS, Q, MaxRecurse)) 3897 return V; 3898 3899 return nullptr; 3900 } 3901 } 3902 3903 /// Given operands for a BinaryOperator, see if we can fold the result. 3904 /// If not, this returns null. 3905 /// In contrast to SimplifyBinOp, try to use FastMathFlag when folding the 3906 /// result. In case we don't need FastMathFlags, simply fall to SimplifyBinOp. 3907 static Value *SimplifyFPBinOp(unsigned Opcode, Value *LHS, Value *RHS, 3908 const FastMathFlags &FMF, const Query &Q, 3909 unsigned MaxRecurse) { 3910 switch (Opcode) { 3911 case Instruction::FAdd: 3912 return SimplifyFAddInst(LHS, RHS, FMF, Q, MaxRecurse); 3913 case Instruction::FSub: 3914 return SimplifyFSubInst(LHS, RHS, FMF, Q, MaxRecurse); 3915 case Instruction::FMul: 3916 return SimplifyFMulInst(LHS, RHS, FMF, Q, MaxRecurse); 3917 default: 3918 return SimplifyBinOp(Opcode, LHS, RHS, Q, MaxRecurse); 3919 } 3920 } 3921 3922 Value *llvm::SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS, 3923 const DataLayout &DL, const TargetLibraryInfo *TLI, 3924 const DominatorTree *DT, AssumptionCache *AC, 3925 const Instruction *CxtI) { 3926 return ::SimplifyBinOp(Opcode, LHS, RHS, Query(DL, TLI, DT, AC, CxtI), 3927 RecursionLimit); 3928 } 3929 3930 Value *llvm::SimplifyFPBinOp(unsigned Opcode, Value *LHS, Value *RHS, 3931 const FastMathFlags &FMF, const DataLayout &DL, 3932 const TargetLibraryInfo *TLI, 3933 const DominatorTree *DT, AssumptionCache *AC, 3934 const Instruction *CxtI) { 3935 return ::SimplifyFPBinOp(Opcode, LHS, RHS, FMF, Query(DL, TLI, DT, AC, CxtI), 3936 RecursionLimit); 3937 } 3938 3939 /// Given operands for a CmpInst, see if we can fold the result. 3940 static Value *SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS, 3941 const Query &Q, unsigned MaxRecurse) { 3942 if (CmpInst::isIntPredicate((CmpInst::Predicate)Predicate)) 3943 return SimplifyICmpInst(Predicate, LHS, RHS, Q, MaxRecurse); 3944 return SimplifyFCmpInst(Predicate, LHS, RHS, FastMathFlags(), Q, MaxRecurse); 3945 } 3946 3947 Value *llvm::SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS, 3948 const DataLayout &DL, const TargetLibraryInfo *TLI, 3949 const DominatorTree *DT, AssumptionCache *AC, 3950 const Instruction *CxtI) { 3951 return ::SimplifyCmpInst(Predicate, LHS, RHS, Query(DL, TLI, DT, AC, CxtI), 3952 RecursionLimit); 3953 } 3954 3955 static bool IsIdempotent(Intrinsic::ID ID) { 3956 switch (ID) { 3957 default: return false; 3958 3959 // Unary idempotent: f(f(x)) = f(x) 3960 case Intrinsic::fabs: 3961 case Intrinsic::floor: 3962 case Intrinsic::ceil: 3963 case Intrinsic::trunc: 3964 case Intrinsic::rint: 3965 case Intrinsic::nearbyint: 3966 case Intrinsic::round: 3967 return true; 3968 } 3969 } 3970 3971 static Value *SimplifyRelativeLoad(Constant *Ptr, Constant *Offset, 3972 const DataLayout &DL) { 3973 GlobalValue *PtrSym; 3974 APInt PtrOffset; 3975 if (!IsConstantOffsetFromGlobal(Ptr, PtrSym, PtrOffset, DL)) 3976 return nullptr; 3977 3978 Type *Int8PtrTy = Type::getInt8PtrTy(Ptr->getContext()); 3979 Type *Int32Ty = Type::getInt32Ty(Ptr->getContext()); 3980 Type *Int32PtrTy = Int32Ty->getPointerTo(); 3981 Type *Int64Ty = Type::getInt64Ty(Ptr->getContext()); 3982 3983 auto *OffsetConstInt = dyn_cast<ConstantInt>(Offset); 3984 if (!OffsetConstInt || OffsetConstInt->getType()->getBitWidth() > 64) 3985 return nullptr; 3986 3987 uint64_t OffsetInt = OffsetConstInt->getSExtValue(); 3988 if (OffsetInt % 4 != 0) 3989 return nullptr; 3990 3991 Constant *C = ConstantExpr::getGetElementPtr( 3992 Int32Ty, ConstantExpr::getBitCast(Ptr, Int32PtrTy), 3993 ConstantInt::get(Int64Ty, OffsetInt / 4)); 3994 Constant *Loaded = ConstantFoldLoadFromConstPtr(C, Int32Ty, DL); 3995 if (!Loaded) 3996 return nullptr; 3997 3998 auto *LoadedCE = dyn_cast<ConstantExpr>(Loaded); 3999 if (!LoadedCE) 4000 return nullptr; 4001 4002 if (LoadedCE->getOpcode() == Instruction::Trunc) { 4003 LoadedCE = dyn_cast<ConstantExpr>(LoadedCE->getOperand(0)); 4004 if (!LoadedCE) 4005 return nullptr; 4006 } 4007 4008 if (LoadedCE->getOpcode() != Instruction::Sub) 4009 return nullptr; 4010 4011 auto *LoadedLHS = dyn_cast<ConstantExpr>(LoadedCE->getOperand(0)); 4012 if (!LoadedLHS || LoadedLHS->getOpcode() != Instruction::PtrToInt) 4013 return nullptr; 4014 auto *LoadedLHSPtr = LoadedLHS->getOperand(0); 4015 4016 Constant *LoadedRHS = LoadedCE->getOperand(1); 4017 GlobalValue *LoadedRHSSym; 4018 APInt LoadedRHSOffset; 4019 if (!IsConstantOffsetFromGlobal(LoadedRHS, LoadedRHSSym, LoadedRHSOffset, 4020 DL) || 4021 PtrSym != LoadedRHSSym || PtrOffset != LoadedRHSOffset) 4022 return nullptr; 4023 4024 return ConstantExpr::getBitCast(LoadedLHSPtr, Int8PtrTy); 4025 } 4026 4027 static bool maskIsAllZeroOrUndef(Value *Mask) { 4028 auto *ConstMask = dyn_cast<Constant>(Mask); 4029 if (!ConstMask) 4030 return false; 4031 if (ConstMask->isNullValue() || isa<UndefValue>(ConstMask)) 4032 return true; 4033 for (unsigned I = 0, E = ConstMask->getType()->getVectorNumElements(); I != E; 4034 ++I) { 4035 if (auto *MaskElt = ConstMask->getAggregateElement(I)) 4036 if (MaskElt->isNullValue() || isa<UndefValue>(MaskElt)) 4037 continue; 4038 return false; 4039 } 4040 return true; 4041 } 4042 4043 template <typename IterTy> 4044 static Value *SimplifyIntrinsic(Function *F, IterTy ArgBegin, IterTy ArgEnd, 4045 const Query &Q, unsigned MaxRecurse) { 4046 Intrinsic::ID IID = F->getIntrinsicID(); 4047 unsigned NumOperands = std::distance(ArgBegin, ArgEnd); 4048 Type *ReturnType = F->getReturnType(); 4049 4050 // Binary Ops 4051 if (NumOperands == 2) { 4052 Value *LHS = *ArgBegin; 4053 Value *RHS = *(ArgBegin + 1); 4054 if (IID == Intrinsic::usub_with_overflow || 4055 IID == Intrinsic::ssub_with_overflow) { 4056 // X - X -> { 0, false } 4057 if (LHS == RHS) 4058 return Constant::getNullValue(ReturnType); 4059 4060 // X - undef -> undef 4061 // undef - X -> undef 4062 if (isa<UndefValue>(LHS) || isa<UndefValue>(RHS)) 4063 return UndefValue::get(ReturnType); 4064 } 4065 4066 if (IID == Intrinsic::uadd_with_overflow || 4067 IID == Intrinsic::sadd_with_overflow) { 4068 // X + undef -> undef 4069 if (isa<UndefValue>(RHS)) 4070 return UndefValue::get(ReturnType); 4071 } 4072 4073 if (IID == Intrinsic::umul_with_overflow || 4074 IID == Intrinsic::smul_with_overflow) { 4075 // X * 0 -> { 0, false } 4076 if (match(RHS, m_Zero())) 4077 return Constant::getNullValue(ReturnType); 4078 4079 // X * undef -> { 0, false } 4080 if (match(RHS, m_Undef())) 4081 return Constant::getNullValue(ReturnType); 4082 } 4083 4084 if (IID == Intrinsic::load_relative && isa<Constant>(LHS) && 4085 isa<Constant>(RHS)) 4086 return SimplifyRelativeLoad(cast<Constant>(LHS), cast<Constant>(RHS), 4087 Q.DL); 4088 } 4089 4090 // Simplify calls to llvm.masked.load.* 4091 if (IID == Intrinsic::masked_load) { 4092 Value *MaskArg = ArgBegin[2]; 4093 Value *PassthruArg = ArgBegin[3]; 4094 // If the mask is all zeros or undef, the "passthru" argument is the result. 4095 if (maskIsAllZeroOrUndef(MaskArg)) 4096 return PassthruArg; 4097 } 4098 4099 // Perform idempotent optimizations 4100 if (!IsIdempotent(IID)) 4101 return nullptr; 4102 4103 // Unary Ops 4104 if (NumOperands == 1) 4105 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(*ArgBegin)) 4106 if (II->getIntrinsicID() == IID) 4107 return II; 4108 4109 return nullptr; 4110 } 4111 4112 template <typename IterTy> 4113 static Value *SimplifyCall(Value *V, IterTy ArgBegin, IterTy ArgEnd, 4114 const Query &Q, unsigned MaxRecurse) { 4115 Type *Ty = V->getType(); 4116 if (PointerType *PTy = dyn_cast<PointerType>(Ty)) 4117 Ty = PTy->getElementType(); 4118 FunctionType *FTy = cast<FunctionType>(Ty); 4119 4120 // call undef -> undef 4121 // call null -> undef 4122 if (isa<UndefValue>(V) || isa<ConstantPointerNull>(V)) 4123 return UndefValue::get(FTy->getReturnType()); 4124 4125 Function *F = dyn_cast<Function>(V); 4126 if (!F) 4127 return nullptr; 4128 4129 if (F->isIntrinsic()) 4130 if (Value *Ret = SimplifyIntrinsic(F, ArgBegin, ArgEnd, Q, MaxRecurse)) 4131 return Ret; 4132 4133 if (!canConstantFoldCallTo(F)) 4134 return nullptr; 4135 4136 SmallVector<Constant *, 4> ConstantArgs; 4137 ConstantArgs.reserve(ArgEnd - ArgBegin); 4138 for (IterTy I = ArgBegin, E = ArgEnd; I != E; ++I) { 4139 Constant *C = dyn_cast<Constant>(*I); 4140 if (!C) 4141 return nullptr; 4142 ConstantArgs.push_back(C); 4143 } 4144 4145 return ConstantFoldCall(F, ConstantArgs, Q.TLI); 4146 } 4147 4148 Value *llvm::SimplifyCall(Value *V, User::op_iterator ArgBegin, 4149 User::op_iterator ArgEnd, const DataLayout &DL, 4150 const TargetLibraryInfo *TLI, const DominatorTree *DT, 4151 AssumptionCache *AC, const Instruction *CxtI) { 4152 return ::SimplifyCall(V, ArgBegin, ArgEnd, Query(DL, TLI, DT, AC, CxtI), 4153 RecursionLimit); 4154 } 4155 4156 Value *llvm::SimplifyCall(Value *V, ArrayRef<Value *> Args, 4157 const DataLayout &DL, const TargetLibraryInfo *TLI, 4158 const DominatorTree *DT, AssumptionCache *AC, 4159 const Instruction *CxtI) { 4160 return ::SimplifyCall(V, Args.begin(), Args.end(), 4161 Query(DL, TLI, DT, AC, CxtI), RecursionLimit); 4162 } 4163 4164 /// See if we can compute a simplified version of this instruction. 4165 /// If not, this returns null. 4166 Value *llvm::SimplifyInstruction(Instruction *I, const DataLayout &DL, 4167 const TargetLibraryInfo *TLI, 4168 const DominatorTree *DT, AssumptionCache *AC) { 4169 Value *Result; 4170 4171 switch (I->getOpcode()) { 4172 default: 4173 Result = ConstantFoldInstruction(I, DL, TLI); 4174 break; 4175 case Instruction::FAdd: 4176 Result = SimplifyFAddInst(I->getOperand(0), I->getOperand(1), 4177 I->getFastMathFlags(), DL, TLI, DT, AC, I); 4178 break; 4179 case Instruction::Add: 4180 Result = SimplifyAddInst(I->getOperand(0), I->getOperand(1), 4181 cast<BinaryOperator>(I)->hasNoSignedWrap(), 4182 cast<BinaryOperator>(I)->hasNoUnsignedWrap(), DL, 4183 TLI, DT, AC, I); 4184 break; 4185 case Instruction::FSub: 4186 Result = SimplifyFSubInst(I->getOperand(0), I->getOperand(1), 4187 I->getFastMathFlags(), DL, TLI, DT, AC, I); 4188 break; 4189 case Instruction::Sub: 4190 Result = SimplifySubInst(I->getOperand(0), I->getOperand(1), 4191 cast<BinaryOperator>(I)->hasNoSignedWrap(), 4192 cast<BinaryOperator>(I)->hasNoUnsignedWrap(), DL, 4193 TLI, DT, AC, I); 4194 break; 4195 case Instruction::FMul: 4196 Result = SimplifyFMulInst(I->getOperand(0), I->getOperand(1), 4197 I->getFastMathFlags(), DL, TLI, DT, AC, I); 4198 break; 4199 case Instruction::Mul: 4200 Result = 4201 SimplifyMulInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT, AC, I); 4202 break; 4203 case Instruction::SDiv: 4204 Result = SimplifySDivInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT, 4205 AC, I); 4206 break; 4207 case Instruction::UDiv: 4208 Result = SimplifyUDivInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT, 4209 AC, I); 4210 break; 4211 case Instruction::FDiv: 4212 Result = SimplifyFDivInst(I->getOperand(0), I->getOperand(1), 4213 I->getFastMathFlags(), DL, TLI, DT, AC, I); 4214 break; 4215 case Instruction::SRem: 4216 Result = SimplifySRemInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT, 4217 AC, I); 4218 break; 4219 case Instruction::URem: 4220 Result = SimplifyURemInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT, 4221 AC, I); 4222 break; 4223 case Instruction::FRem: 4224 Result = SimplifyFRemInst(I->getOperand(0), I->getOperand(1), 4225 I->getFastMathFlags(), DL, TLI, DT, AC, I); 4226 break; 4227 case Instruction::Shl: 4228 Result = SimplifyShlInst(I->getOperand(0), I->getOperand(1), 4229 cast<BinaryOperator>(I)->hasNoSignedWrap(), 4230 cast<BinaryOperator>(I)->hasNoUnsignedWrap(), DL, 4231 TLI, DT, AC, I); 4232 break; 4233 case Instruction::LShr: 4234 Result = SimplifyLShrInst(I->getOperand(0), I->getOperand(1), 4235 cast<BinaryOperator>(I)->isExact(), DL, TLI, DT, 4236 AC, I); 4237 break; 4238 case Instruction::AShr: 4239 Result = SimplifyAShrInst(I->getOperand(0), I->getOperand(1), 4240 cast<BinaryOperator>(I)->isExact(), DL, TLI, DT, 4241 AC, I); 4242 break; 4243 case Instruction::And: 4244 Result = 4245 SimplifyAndInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT, AC, I); 4246 break; 4247 case Instruction::Or: 4248 Result = 4249 SimplifyOrInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT, AC, I); 4250 break; 4251 case Instruction::Xor: 4252 Result = 4253 SimplifyXorInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT, AC, I); 4254 break; 4255 case Instruction::ICmp: 4256 Result = 4257 SimplifyICmpInst(cast<ICmpInst>(I)->getPredicate(), I->getOperand(0), 4258 I->getOperand(1), DL, TLI, DT, AC, I); 4259 break; 4260 case Instruction::FCmp: 4261 Result = SimplifyFCmpInst(cast<FCmpInst>(I)->getPredicate(), 4262 I->getOperand(0), I->getOperand(1), 4263 I->getFastMathFlags(), DL, TLI, DT, AC, I); 4264 break; 4265 case Instruction::Select: 4266 Result = SimplifySelectInst(I->getOperand(0), I->getOperand(1), 4267 I->getOperand(2), DL, TLI, DT, AC, I); 4268 break; 4269 case Instruction::GetElementPtr: { 4270 SmallVector<Value*, 8> Ops(I->op_begin(), I->op_end()); 4271 Result = SimplifyGEPInst(cast<GetElementPtrInst>(I)->getSourceElementType(), 4272 Ops, DL, TLI, DT, AC, I); 4273 break; 4274 } 4275 case Instruction::InsertValue: { 4276 InsertValueInst *IV = cast<InsertValueInst>(I); 4277 Result = SimplifyInsertValueInst(IV->getAggregateOperand(), 4278 IV->getInsertedValueOperand(), 4279 IV->getIndices(), DL, TLI, DT, AC, I); 4280 break; 4281 } 4282 case Instruction::ExtractValue: { 4283 auto *EVI = cast<ExtractValueInst>(I); 4284 Result = SimplifyExtractValueInst(EVI->getAggregateOperand(), 4285 EVI->getIndices(), DL, TLI, DT, AC, I); 4286 break; 4287 } 4288 case Instruction::ExtractElement: { 4289 auto *EEI = cast<ExtractElementInst>(I); 4290 Result = SimplifyExtractElementInst( 4291 EEI->getVectorOperand(), EEI->getIndexOperand(), DL, TLI, DT, AC, I); 4292 break; 4293 } 4294 case Instruction::PHI: 4295 Result = SimplifyPHINode(cast<PHINode>(I), Query(DL, TLI, DT, AC, I)); 4296 break; 4297 case Instruction::Call: { 4298 CallSite CS(cast<CallInst>(I)); 4299 Result = SimplifyCall(CS.getCalledValue(), CS.arg_begin(), CS.arg_end(), DL, 4300 TLI, DT, AC, I); 4301 break; 4302 } 4303 #define HANDLE_CAST_INST(num, opc, clas) case Instruction::opc: 4304 #include "llvm/IR/Instruction.def" 4305 #undef HANDLE_CAST_INST 4306 Result = SimplifyCastInst(I->getOpcode(), I->getOperand(0), I->getType(), 4307 DL, TLI, DT, AC, I); 4308 break; 4309 } 4310 4311 // In general, it is possible for computeKnownBits to determine all bits in a 4312 // value even when the operands are not all constants. 4313 if (!Result && I->getType()->isIntegerTy()) { 4314 unsigned BitWidth = I->getType()->getScalarSizeInBits(); 4315 APInt KnownZero(BitWidth, 0); 4316 APInt KnownOne(BitWidth, 0); 4317 computeKnownBits(I, KnownZero, KnownOne, DL, /*Depth*/0, AC, I, DT); 4318 if ((KnownZero | KnownOne).isAllOnesValue()) 4319 Result = ConstantInt::get(I->getContext(), KnownOne); 4320 } 4321 4322 /// If called on unreachable code, the above logic may report that the 4323 /// instruction simplified to itself. Make life easier for users by 4324 /// detecting that case here, returning a safe value instead. 4325 return Result == I ? UndefValue::get(I->getType()) : Result; 4326 } 4327 4328 /// \brief Implementation of recursive simplification through an instruction's 4329 /// uses. 4330 /// 4331 /// This is the common implementation of the recursive simplification routines. 4332 /// If we have a pre-simplified value in 'SimpleV', that is forcibly used to 4333 /// replace the instruction 'I'. Otherwise, we simply add 'I' to the list of 4334 /// instructions to process and attempt to simplify it using 4335 /// InstructionSimplify. 4336 /// 4337 /// This routine returns 'true' only when *it* simplifies something. The passed 4338 /// in simplified value does not count toward this. 4339 static bool replaceAndRecursivelySimplifyImpl(Instruction *I, Value *SimpleV, 4340 const TargetLibraryInfo *TLI, 4341 const DominatorTree *DT, 4342 AssumptionCache *AC) { 4343 bool Simplified = false; 4344 SmallSetVector<Instruction *, 8> Worklist; 4345 const DataLayout &DL = I->getModule()->getDataLayout(); 4346 4347 // If we have an explicit value to collapse to, do that round of the 4348 // simplification loop by hand initially. 4349 if (SimpleV) { 4350 for (User *U : I->users()) 4351 if (U != I) 4352 Worklist.insert(cast<Instruction>(U)); 4353 4354 // Replace the instruction with its simplified value. 4355 I->replaceAllUsesWith(SimpleV); 4356 4357 // Gracefully handle edge cases where the instruction is not wired into any 4358 // parent block. 4359 if (I->getParent()) 4360 I->eraseFromParent(); 4361 } else { 4362 Worklist.insert(I); 4363 } 4364 4365 // Note that we must test the size on each iteration, the worklist can grow. 4366 for (unsigned Idx = 0; Idx != Worklist.size(); ++Idx) { 4367 I = Worklist[Idx]; 4368 4369 // See if this instruction simplifies. 4370 SimpleV = SimplifyInstruction(I, DL, TLI, DT, AC); 4371 if (!SimpleV) 4372 continue; 4373 4374 Simplified = true; 4375 4376 // Stash away all the uses of the old instruction so we can check them for 4377 // recursive simplifications after a RAUW. This is cheaper than checking all 4378 // uses of To on the recursive step in most cases. 4379 for (User *U : I->users()) 4380 Worklist.insert(cast<Instruction>(U)); 4381 4382 // Replace the instruction with its simplified value. 4383 I->replaceAllUsesWith(SimpleV); 4384 4385 // Gracefully handle edge cases where the instruction is not wired into any 4386 // parent block. 4387 if (I->getParent()) 4388 I->eraseFromParent(); 4389 } 4390 return Simplified; 4391 } 4392 4393 bool llvm::recursivelySimplifyInstruction(Instruction *I, 4394 const TargetLibraryInfo *TLI, 4395 const DominatorTree *DT, 4396 AssumptionCache *AC) { 4397 return replaceAndRecursivelySimplifyImpl(I, nullptr, TLI, DT, AC); 4398 } 4399 4400 bool llvm::replaceAndRecursivelySimplify(Instruction *I, Value *SimpleV, 4401 const TargetLibraryInfo *TLI, 4402 const DominatorTree *DT, 4403 AssumptionCache *AC) { 4404 assert(I != SimpleV && "replaceAndRecursivelySimplify(X,X) is not valid!"); 4405 assert(SimpleV && "Must provide a simplified value."); 4406 return replaceAndRecursivelySimplifyImpl(I, SimpleV, TLI, DT, AC); 4407 } 4408