1 //===- InstructionSimplify.cpp - Fold instruction operands ----------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements routines for folding instructions into simpler forms
11 // that do not require creating new instructions.  This does constant folding
12 // ("add i32 1, 1" -> "2") but can also handle non-constant operands, either
13 // returning a constant ("and i32 %x, 0" -> "0") or an already existing value
14 // ("and i32 %x, %x" -> "%x").  All operands are assumed to have already been
15 // simplified: This is usually true and assuming it simplifies the logic (if
16 // they have not been simplified then results are correct but maybe suboptimal).
17 //
18 //===----------------------------------------------------------------------===//
19 
20 #include "llvm/Analysis/InstructionSimplify.h"
21 #include "llvm/ADT/SetVector.h"
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/Analysis/AliasAnalysis.h"
24 #include "llvm/Analysis/CaptureTracking.h"
25 #include "llvm/Analysis/ConstantFolding.h"
26 #include "llvm/Analysis/MemoryBuiltins.h"
27 #include "llvm/Analysis/ValueTracking.h"
28 #include "llvm/Analysis/VectorUtils.h"
29 #include "llvm/IR/ConstantRange.h"
30 #include "llvm/IR/DataLayout.h"
31 #include "llvm/IR/Dominators.h"
32 #include "llvm/IR/GetElementPtrTypeIterator.h"
33 #include "llvm/IR/GlobalAlias.h"
34 #include "llvm/IR/Operator.h"
35 #include "llvm/IR/PatternMatch.h"
36 #include "llvm/IR/ValueHandle.h"
37 #include <algorithm>
38 using namespace llvm;
39 using namespace llvm::PatternMatch;
40 
41 #define DEBUG_TYPE "instsimplify"
42 
43 enum { RecursionLimit = 3 };
44 
45 STATISTIC(NumExpand,  "Number of expansions");
46 STATISTIC(NumReassoc, "Number of reassociations");
47 
48 namespace {
49 struct Query {
50   const DataLayout &DL;
51   const TargetLibraryInfo *TLI;
52   const DominatorTree *DT;
53   AssumptionCache *AC;
54   const Instruction *CxtI;
55 
56   Query(const DataLayout &DL, const TargetLibraryInfo *tli,
57         const DominatorTree *dt, AssumptionCache *ac = nullptr,
58         const Instruction *cxti = nullptr)
59       : DL(DL), TLI(tli), DT(dt), AC(ac), CxtI(cxti) {}
60 };
61 } // end anonymous namespace
62 
63 static Value *SimplifyAndInst(Value *, Value *, const Query &, unsigned);
64 static Value *SimplifyBinOp(unsigned, Value *, Value *, const Query &,
65                             unsigned);
66 static Value *SimplifyFPBinOp(unsigned, Value *, Value *, const FastMathFlags &,
67                               const Query &, unsigned);
68 static Value *SimplifyCmpInst(unsigned, Value *, Value *, const Query &,
69                               unsigned);
70 static Value *SimplifyOrInst(Value *, Value *, const Query &, unsigned);
71 static Value *SimplifyXorInst(Value *, Value *, const Query &, unsigned);
72 static Value *SimplifyCastInst(unsigned, Value *, Type *,
73                                const Query &, unsigned);
74 
75 /// For a boolean type, or a vector of boolean type, return false, or
76 /// a vector with every element false, as appropriate for the type.
77 static Constant *getFalse(Type *Ty) {
78   assert(Ty->getScalarType()->isIntegerTy(1) &&
79          "Expected i1 type or a vector of i1!");
80   return Constant::getNullValue(Ty);
81 }
82 
83 /// For a boolean type, or a vector of boolean type, return true, or
84 /// a vector with every element true, as appropriate for the type.
85 static Constant *getTrue(Type *Ty) {
86   assert(Ty->getScalarType()->isIntegerTy(1) &&
87          "Expected i1 type or a vector of i1!");
88   return Constant::getAllOnesValue(Ty);
89 }
90 
91 /// isSameCompare - Is V equivalent to the comparison "LHS Pred RHS"?
92 static bool isSameCompare(Value *V, CmpInst::Predicate Pred, Value *LHS,
93                           Value *RHS) {
94   CmpInst *Cmp = dyn_cast<CmpInst>(V);
95   if (!Cmp)
96     return false;
97   CmpInst::Predicate CPred = Cmp->getPredicate();
98   Value *CLHS = Cmp->getOperand(0), *CRHS = Cmp->getOperand(1);
99   if (CPred == Pred && CLHS == LHS && CRHS == RHS)
100     return true;
101   return CPred == CmpInst::getSwappedPredicate(Pred) && CLHS == RHS &&
102     CRHS == LHS;
103 }
104 
105 /// Does the given value dominate the specified phi node?
106 static bool ValueDominatesPHI(Value *V, PHINode *P, const DominatorTree *DT) {
107   Instruction *I = dyn_cast<Instruction>(V);
108   if (!I)
109     // Arguments and constants dominate all instructions.
110     return true;
111 
112   // If we are processing instructions (and/or basic blocks) that have not been
113   // fully added to a function, the parent nodes may still be null. Simply
114   // return the conservative answer in these cases.
115   if (!I->getParent() || !P->getParent() || !I->getParent()->getParent())
116     return false;
117 
118   // If we have a DominatorTree then do a precise test.
119   if (DT) {
120     if (!DT->isReachableFromEntry(P->getParent()))
121       return true;
122     if (!DT->isReachableFromEntry(I->getParent()))
123       return false;
124     return DT->dominates(I, P);
125   }
126 
127   // Otherwise, if the instruction is in the entry block and is not an invoke,
128   // then it obviously dominates all phi nodes.
129   if (I->getParent() == &I->getParent()->getParent()->getEntryBlock() &&
130       !isa<InvokeInst>(I))
131     return true;
132 
133   return false;
134 }
135 
136 /// Simplify "A op (B op' C)" by distributing op over op', turning it into
137 /// "(A op B) op' (A op C)".  Here "op" is given by Opcode and "op'" is
138 /// given by OpcodeToExpand, while "A" corresponds to LHS and "B op' C" to RHS.
139 /// Also performs the transform "(A op' B) op C" -> "(A op C) op' (B op C)".
140 /// Returns the simplified value, or null if no simplification was performed.
141 static Value *ExpandBinOp(unsigned Opcode, Value *LHS, Value *RHS,
142                           unsigned OpcToExpand, const Query &Q,
143                           unsigned MaxRecurse) {
144   Instruction::BinaryOps OpcodeToExpand = (Instruction::BinaryOps)OpcToExpand;
145   // Recursion is always used, so bail out at once if we already hit the limit.
146   if (!MaxRecurse--)
147     return nullptr;
148 
149   // Check whether the expression has the form "(A op' B) op C".
150   if (BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS))
151     if (Op0->getOpcode() == OpcodeToExpand) {
152       // It does!  Try turning it into "(A op C) op' (B op C)".
153       Value *A = Op0->getOperand(0), *B = Op0->getOperand(1), *C = RHS;
154       // Do "A op C" and "B op C" both simplify?
155       if (Value *L = SimplifyBinOp(Opcode, A, C, Q, MaxRecurse))
156         if (Value *R = SimplifyBinOp(Opcode, B, C, Q, MaxRecurse)) {
157           // They do! Return "L op' R" if it simplifies or is already available.
158           // If "L op' R" equals "A op' B" then "L op' R" is just the LHS.
159           if ((L == A && R == B) || (Instruction::isCommutative(OpcodeToExpand)
160                                      && L == B && R == A)) {
161             ++NumExpand;
162             return LHS;
163           }
164           // Otherwise return "L op' R" if it simplifies.
165           if (Value *V = SimplifyBinOp(OpcodeToExpand, L, R, Q, MaxRecurse)) {
166             ++NumExpand;
167             return V;
168           }
169         }
170     }
171 
172   // Check whether the expression has the form "A op (B op' C)".
173   if (BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS))
174     if (Op1->getOpcode() == OpcodeToExpand) {
175       // It does!  Try turning it into "(A op B) op' (A op C)".
176       Value *A = LHS, *B = Op1->getOperand(0), *C = Op1->getOperand(1);
177       // Do "A op B" and "A op C" both simplify?
178       if (Value *L = SimplifyBinOp(Opcode, A, B, Q, MaxRecurse))
179         if (Value *R = SimplifyBinOp(Opcode, A, C, Q, MaxRecurse)) {
180           // They do! Return "L op' R" if it simplifies or is already available.
181           // If "L op' R" equals "B op' C" then "L op' R" is just the RHS.
182           if ((L == B && R == C) || (Instruction::isCommutative(OpcodeToExpand)
183                                      && L == C && R == B)) {
184             ++NumExpand;
185             return RHS;
186           }
187           // Otherwise return "L op' R" if it simplifies.
188           if (Value *V = SimplifyBinOp(OpcodeToExpand, L, R, Q, MaxRecurse)) {
189             ++NumExpand;
190             return V;
191           }
192         }
193     }
194 
195   return nullptr;
196 }
197 
198 /// Generic simplifications for associative binary operations.
199 /// Returns the simpler value, or null if none was found.
200 static Value *SimplifyAssociativeBinOp(unsigned Opc, Value *LHS, Value *RHS,
201                                        const Query &Q, unsigned MaxRecurse) {
202   Instruction::BinaryOps Opcode = (Instruction::BinaryOps)Opc;
203   assert(Instruction::isAssociative(Opcode) && "Not an associative operation!");
204 
205   // Recursion is always used, so bail out at once if we already hit the limit.
206   if (!MaxRecurse--)
207     return nullptr;
208 
209   BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS);
210   BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS);
211 
212   // Transform: "(A op B) op C" ==> "A op (B op C)" if it simplifies completely.
213   if (Op0 && Op0->getOpcode() == Opcode) {
214     Value *A = Op0->getOperand(0);
215     Value *B = Op0->getOperand(1);
216     Value *C = RHS;
217 
218     // Does "B op C" simplify?
219     if (Value *V = SimplifyBinOp(Opcode, B, C, Q, MaxRecurse)) {
220       // It does!  Return "A op V" if it simplifies or is already available.
221       // If V equals B then "A op V" is just the LHS.
222       if (V == B) return LHS;
223       // Otherwise return "A op V" if it simplifies.
224       if (Value *W = SimplifyBinOp(Opcode, A, V, Q, MaxRecurse)) {
225         ++NumReassoc;
226         return W;
227       }
228     }
229   }
230 
231   // Transform: "A op (B op C)" ==> "(A op B) op C" if it simplifies completely.
232   if (Op1 && Op1->getOpcode() == Opcode) {
233     Value *A = LHS;
234     Value *B = Op1->getOperand(0);
235     Value *C = Op1->getOperand(1);
236 
237     // Does "A op B" simplify?
238     if (Value *V = SimplifyBinOp(Opcode, A, B, Q, MaxRecurse)) {
239       // It does!  Return "V op C" if it simplifies or is already available.
240       // If V equals B then "V op C" is just the RHS.
241       if (V == B) return RHS;
242       // Otherwise return "V op C" if it simplifies.
243       if (Value *W = SimplifyBinOp(Opcode, V, C, Q, MaxRecurse)) {
244         ++NumReassoc;
245         return W;
246       }
247     }
248   }
249 
250   // The remaining transforms require commutativity as well as associativity.
251   if (!Instruction::isCommutative(Opcode))
252     return nullptr;
253 
254   // Transform: "(A op B) op C" ==> "(C op A) op B" if it simplifies completely.
255   if (Op0 && Op0->getOpcode() == Opcode) {
256     Value *A = Op0->getOperand(0);
257     Value *B = Op0->getOperand(1);
258     Value *C = RHS;
259 
260     // Does "C op A" simplify?
261     if (Value *V = SimplifyBinOp(Opcode, C, A, Q, MaxRecurse)) {
262       // It does!  Return "V op B" if it simplifies or is already available.
263       // If V equals A then "V op B" is just the LHS.
264       if (V == A) return LHS;
265       // Otherwise return "V op B" if it simplifies.
266       if (Value *W = SimplifyBinOp(Opcode, V, B, Q, MaxRecurse)) {
267         ++NumReassoc;
268         return W;
269       }
270     }
271   }
272 
273   // Transform: "A op (B op C)" ==> "B op (C op A)" if it simplifies completely.
274   if (Op1 && Op1->getOpcode() == Opcode) {
275     Value *A = LHS;
276     Value *B = Op1->getOperand(0);
277     Value *C = Op1->getOperand(1);
278 
279     // Does "C op A" simplify?
280     if (Value *V = SimplifyBinOp(Opcode, C, A, Q, MaxRecurse)) {
281       // It does!  Return "B op V" if it simplifies or is already available.
282       // If V equals C then "B op V" is just the RHS.
283       if (V == C) return RHS;
284       // Otherwise return "B op V" if it simplifies.
285       if (Value *W = SimplifyBinOp(Opcode, B, V, Q, MaxRecurse)) {
286         ++NumReassoc;
287         return W;
288       }
289     }
290   }
291 
292   return nullptr;
293 }
294 
295 /// In the case of a binary operation with a select instruction as an operand,
296 /// try to simplify the binop by seeing whether evaluating it on both branches
297 /// of the select results in the same value. Returns the common value if so,
298 /// otherwise returns null.
299 static Value *ThreadBinOpOverSelect(unsigned Opcode, Value *LHS, Value *RHS,
300                                     const Query &Q, unsigned MaxRecurse) {
301   // Recursion is always used, so bail out at once if we already hit the limit.
302   if (!MaxRecurse--)
303     return nullptr;
304 
305   SelectInst *SI;
306   if (isa<SelectInst>(LHS)) {
307     SI = cast<SelectInst>(LHS);
308   } else {
309     assert(isa<SelectInst>(RHS) && "No select instruction operand!");
310     SI = cast<SelectInst>(RHS);
311   }
312 
313   // Evaluate the BinOp on the true and false branches of the select.
314   Value *TV;
315   Value *FV;
316   if (SI == LHS) {
317     TV = SimplifyBinOp(Opcode, SI->getTrueValue(), RHS, Q, MaxRecurse);
318     FV = SimplifyBinOp(Opcode, SI->getFalseValue(), RHS, Q, MaxRecurse);
319   } else {
320     TV = SimplifyBinOp(Opcode, LHS, SI->getTrueValue(), Q, MaxRecurse);
321     FV = SimplifyBinOp(Opcode, LHS, SI->getFalseValue(), Q, MaxRecurse);
322   }
323 
324   // If they simplified to the same value, then return the common value.
325   // If they both failed to simplify then return null.
326   if (TV == FV)
327     return TV;
328 
329   // If one branch simplified to undef, return the other one.
330   if (TV && isa<UndefValue>(TV))
331     return FV;
332   if (FV && isa<UndefValue>(FV))
333     return TV;
334 
335   // If applying the operation did not change the true and false select values,
336   // then the result of the binop is the select itself.
337   if (TV == SI->getTrueValue() && FV == SI->getFalseValue())
338     return SI;
339 
340   // If one branch simplified and the other did not, and the simplified
341   // value is equal to the unsimplified one, return the simplified value.
342   // For example, select (cond, X, X & Z) & Z -> X & Z.
343   if ((FV && !TV) || (TV && !FV)) {
344     // Check that the simplified value has the form "X op Y" where "op" is the
345     // same as the original operation.
346     Instruction *Simplified = dyn_cast<Instruction>(FV ? FV : TV);
347     if (Simplified && Simplified->getOpcode() == Opcode) {
348       // The value that didn't simplify is "UnsimplifiedLHS op UnsimplifiedRHS".
349       // We already know that "op" is the same as for the simplified value.  See
350       // if the operands match too.  If so, return the simplified value.
351       Value *UnsimplifiedBranch = FV ? SI->getTrueValue() : SI->getFalseValue();
352       Value *UnsimplifiedLHS = SI == LHS ? UnsimplifiedBranch : LHS;
353       Value *UnsimplifiedRHS = SI == LHS ? RHS : UnsimplifiedBranch;
354       if (Simplified->getOperand(0) == UnsimplifiedLHS &&
355           Simplified->getOperand(1) == UnsimplifiedRHS)
356         return Simplified;
357       if (Simplified->isCommutative() &&
358           Simplified->getOperand(1) == UnsimplifiedLHS &&
359           Simplified->getOperand(0) == UnsimplifiedRHS)
360         return Simplified;
361     }
362   }
363 
364   return nullptr;
365 }
366 
367 /// In the case of a comparison with a select instruction, try to simplify the
368 /// comparison by seeing whether both branches of the select result in the same
369 /// value. Returns the common value if so, otherwise returns null.
370 static Value *ThreadCmpOverSelect(CmpInst::Predicate Pred, Value *LHS,
371                                   Value *RHS, const Query &Q,
372                                   unsigned MaxRecurse) {
373   // Recursion is always used, so bail out at once if we already hit the limit.
374   if (!MaxRecurse--)
375     return nullptr;
376 
377   // Make sure the select is on the LHS.
378   if (!isa<SelectInst>(LHS)) {
379     std::swap(LHS, RHS);
380     Pred = CmpInst::getSwappedPredicate(Pred);
381   }
382   assert(isa<SelectInst>(LHS) && "Not comparing with a select instruction!");
383   SelectInst *SI = cast<SelectInst>(LHS);
384   Value *Cond = SI->getCondition();
385   Value *TV = SI->getTrueValue();
386   Value *FV = SI->getFalseValue();
387 
388   // Now that we have "cmp select(Cond, TV, FV), RHS", analyse it.
389   // Does "cmp TV, RHS" simplify?
390   Value *TCmp = SimplifyCmpInst(Pred, TV, RHS, Q, MaxRecurse);
391   if (TCmp == Cond) {
392     // It not only simplified, it simplified to the select condition.  Replace
393     // it with 'true'.
394     TCmp = getTrue(Cond->getType());
395   } else if (!TCmp) {
396     // It didn't simplify.  However if "cmp TV, RHS" is equal to the select
397     // condition then we can replace it with 'true'.  Otherwise give up.
398     if (!isSameCompare(Cond, Pred, TV, RHS))
399       return nullptr;
400     TCmp = getTrue(Cond->getType());
401   }
402 
403   // Does "cmp FV, RHS" simplify?
404   Value *FCmp = SimplifyCmpInst(Pred, FV, RHS, Q, MaxRecurse);
405   if (FCmp == Cond) {
406     // It not only simplified, it simplified to the select condition.  Replace
407     // it with 'false'.
408     FCmp = getFalse(Cond->getType());
409   } else if (!FCmp) {
410     // It didn't simplify.  However if "cmp FV, RHS" is equal to the select
411     // condition then we can replace it with 'false'.  Otherwise give up.
412     if (!isSameCompare(Cond, Pred, FV, RHS))
413       return nullptr;
414     FCmp = getFalse(Cond->getType());
415   }
416 
417   // If both sides simplified to the same value, then use it as the result of
418   // the original comparison.
419   if (TCmp == FCmp)
420     return TCmp;
421 
422   // The remaining cases only make sense if the select condition has the same
423   // type as the result of the comparison, so bail out if this is not so.
424   if (Cond->getType()->isVectorTy() != RHS->getType()->isVectorTy())
425     return nullptr;
426   // If the false value simplified to false, then the result of the compare
427   // is equal to "Cond && TCmp".  This also catches the case when the false
428   // value simplified to false and the true value to true, returning "Cond".
429   if (match(FCmp, m_Zero()))
430     if (Value *V = SimplifyAndInst(Cond, TCmp, Q, MaxRecurse))
431       return V;
432   // If the true value simplified to true, then the result of the compare
433   // is equal to "Cond || FCmp".
434   if (match(TCmp, m_One()))
435     if (Value *V = SimplifyOrInst(Cond, FCmp, Q, MaxRecurse))
436       return V;
437   // Finally, if the false value simplified to true and the true value to
438   // false, then the result of the compare is equal to "!Cond".
439   if (match(FCmp, m_One()) && match(TCmp, m_Zero()))
440     if (Value *V =
441         SimplifyXorInst(Cond, Constant::getAllOnesValue(Cond->getType()),
442                         Q, MaxRecurse))
443       return V;
444 
445   return nullptr;
446 }
447 
448 /// In the case of a binary operation with an operand that is a PHI instruction,
449 /// try to simplify the binop by seeing whether evaluating it on the incoming
450 /// phi values yields the same result for every value. If so returns the common
451 /// value, otherwise returns null.
452 static Value *ThreadBinOpOverPHI(unsigned Opcode, Value *LHS, Value *RHS,
453                                  const Query &Q, unsigned MaxRecurse) {
454   // Recursion is always used, so bail out at once if we already hit the limit.
455   if (!MaxRecurse--)
456     return nullptr;
457 
458   PHINode *PI;
459   if (isa<PHINode>(LHS)) {
460     PI = cast<PHINode>(LHS);
461     // Bail out if RHS and the phi may be mutually interdependent due to a loop.
462     if (!ValueDominatesPHI(RHS, PI, Q.DT))
463       return nullptr;
464   } else {
465     assert(isa<PHINode>(RHS) && "No PHI instruction operand!");
466     PI = cast<PHINode>(RHS);
467     // Bail out if LHS and the phi may be mutually interdependent due to a loop.
468     if (!ValueDominatesPHI(LHS, PI, Q.DT))
469       return nullptr;
470   }
471 
472   // Evaluate the BinOp on the incoming phi values.
473   Value *CommonValue = nullptr;
474   for (Value *Incoming : PI->incoming_values()) {
475     // If the incoming value is the phi node itself, it can safely be skipped.
476     if (Incoming == PI) continue;
477     Value *V = PI == LHS ?
478       SimplifyBinOp(Opcode, Incoming, RHS, Q, MaxRecurse) :
479       SimplifyBinOp(Opcode, LHS, Incoming, Q, MaxRecurse);
480     // If the operation failed to simplify, or simplified to a different value
481     // to previously, then give up.
482     if (!V || (CommonValue && V != CommonValue))
483       return nullptr;
484     CommonValue = V;
485   }
486 
487   return CommonValue;
488 }
489 
490 /// In the case of a comparison with a PHI instruction, try to simplify the
491 /// comparison by seeing whether comparing with all of the incoming phi values
492 /// yields the same result every time. If so returns the common result,
493 /// otherwise returns null.
494 static Value *ThreadCmpOverPHI(CmpInst::Predicate Pred, Value *LHS, Value *RHS,
495                                const Query &Q, unsigned MaxRecurse) {
496   // Recursion is always used, so bail out at once if we already hit the limit.
497   if (!MaxRecurse--)
498     return nullptr;
499 
500   // Make sure the phi is on the LHS.
501   if (!isa<PHINode>(LHS)) {
502     std::swap(LHS, RHS);
503     Pred = CmpInst::getSwappedPredicate(Pred);
504   }
505   assert(isa<PHINode>(LHS) && "Not comparing with a phi instruction!");
506   PHINode *PI = cast<PHINode>(LHS);
507 
508   // Bail out if RHS and the phi may be mutually interdependent due to a loop.
509   if (!ValueDominatesPHI(RHS, PI, Q.DT))
510     return nullptr;
511 
512   // Evaluate the BinOp on the incoming phi values.
513   Value *CommonValue = nullptr;
514   for (Value *Incoming : PI->incoming_values()) {
515     // If the incoming value is the phi node itself, it can safely be skipped.
516     if (Incoming == PI) continue;
517     Value *V = SimplifyCmpInst(Pred, Incoming, RHS, Q, MaxRecurse);
518     // If the operation failed to simplify, or simplified to a different value
519     // to previously, then give up.
520     if (!V || (CommonValue && V != CommonValue))
521       return nullptr;
522     CommonValue = V;
523   }
524 
525   return CommonValue;
526 }
527 
528 /// Given operands for an Add, see if we can fold the result.
529 /// If not, this returns null.
530 static Value *SimplifyAddInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
531                               const Query &Q, unsigned MaxRecurse) {
532   if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
533     if (Constant *CRHS = dyn_cast<Constant>(Op1))
534       return ConstantFoldBinaryOpOperands(Instruction::Add, CLHS, CRHS, Q.DL);
535 
536     // Canonicalize the constant to the RHS.
537     std::swap(Op0, Op1);
538   }
539 
540   // X + undef -> undef
541   if (match(Op1, m_Undef()))
542     return Op1;
543 
544   // X + 0 -> X
545   if (match(Op1, m_Zero()))
546     return Op0;
547 
548   // X + (Y - X) -> Y
549   // (Y - X) + X -> Y
550   // Eg: X + -X -> 0
551   Value *Y = nullptr;
552   if (match(Op1, m_Sub(m_Value(Y), m_Specific(Op0))) ||
553       match(Op0, m_Sub(m_Value(Y), m_Specific(Op1))))
554     return Y;
555 
556   // X + ~X -> -1   since   ~X = -X-1
557   if (match(Op0, m_Not(m_Specific(Op1))) ||
558       match(Op1, m_Not(m_Specific(Op0))))
559     return Constant::getAllOnesValue(Op0->getType());
560 
561   /// i1 add -> xor.
562   if (MaxRecurse && Op0->getType()->isIntegerTy(1))
563     if (Value *V = SimplifyXorInst(Op0, Op1, Q, MaxRecurse-1))
564       return V;
565 
566   // Try some generic simplifications for associative operations.
567   if (Value *V = SimplifyAssociativeBinOp(Instruction::Add, Op0, Op1, Q,
568                                           MaxRecurse))
569     return V;
570 
571   // Threading Add over selects and phi nodes is pointless, so don't bother.
572   // Threading over the select in "A + select(cond, B, C)" means evaluating
573   // "A+B" and "A+C" and seeing if they are equal; but they are equal if and
574   // only if B and C are equal.  If B and C are equal then (since we assume
575   // that operands have already been simplified) "select(cond, B, C)" should
576   // have been simplified to the common value of B and C already.  Analysing
577   // "A+B" and "A+C" thus gains nothing, but costs compile time.  Similarly
578   // for threading over phi nodes.
579 
580   return nullptr;
581 }
582 
583 Value *llvm::SimplifyAddInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
584                              const DataLayout &DL, const TargetLibraryInfo *TLI,
585                              const DominatorTree *DT, AssumptionCache *AC,
586                              const Instruction *CxtI) {
587   return ::SimplifyAddInst(Op0, Op1, isNSW, isNUW, Query(DL, TLI, DT, AC, CxtI),
588                            RecursionLimit);
589 }
590 
591 /// \brief Compute the base pointer and cumulative constant offsets for V.
592 ///
593 /// This strips all constant offsets off of V, leaving it the base pointer, and
594 /// accumulates the total constant offset applied in the returned constant. It
595 /// returns 0 if V is not a pointer, and returns the constant '0' if there are
596 /// no constant offsets applied.
597 ///
598 /// This is very similar to GetPointerBaseWithConstantOffset except it doesn't
599 /// follow non-inbounds geps. This allows it to remain usable for icmp ult/etc.
600 /// folding.
601 static Constant *stripAndComputeConstantOffsets(const DataLayout &DL, Value *&V,
602                                                 bool AllowNonInbounds = false) {
603   assert(V->getType()->getScalarType()->isPointerTy());
604 
605   Type *IntPtrTy = DL.getIntPtrType(V->getType())->getScalarType();
606   APInt Offset = APInt::getNullValue(IntPtrTy->getIntegerBitWidth());
607 
608   // Even though we don't look through PHI nodes, we could be called on an
609   // instruction in an unreachable block, which may be on a cycle.
610   SmallPtrSet<Value *, 4> Visited;
611   Visited.insert(V);
612   do {
613     if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
614       if ((!AllowNonInbounds && !GEP->isInBounds()) ||
615           !GEP->accumulateConstantOffset(DL, Offset))
616         break;
617       V = GEP->getPointerOperand();
618     } else if (Operator::getOpcode(V) == Instruction::BitCast) {
619       V = cast<Operator>(V)->getOperand(0);
620     } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
621       if (GA->isInterposable())
622         break;
623       V = GA->getAliasee();
624     } else {
625       if (auto CS = CallSite(V))
626         if (Value *RV = CS.getReturnedArgOperand()) {
627           V = RV;
628           continue;
629         }
630       break;
631     }
632     assert(V->getType()->getScalarType()->isPointerTy() &&
633            "Unexpected operand type!");
634   } while (Visited.insert(V).second);
635 
636   Constant *OffsetIntPtr = ConstantInt::get(IntPtrTy, Offset);
637   if (V->getType()->isVectorTy())
638     return ConstantVector::getSplat(V->getType()->getVectorNumElements(),
639                                     OffsetIntPtr);
640   return OffsetIntPtr;
641 }
642 
643 /// \brief Compute the constant difference between two pointer values.
644 /// If the difference is not a constant, returns zero.
645 static Constant *computePointerDifference(const DataLayout &DL, Value *LHS,
646                                           Value *RHS) {
647   Constant *LHSOffset = stripAndComputeConstantOffsets(DL, LHS);
648   Constant *RHSOffset = stripAndComputeConstantOffsets(DL, RHS);
649 
650   // If LHS and RHS are not related via constant offsets to the same base
651   // value, there is nothing we can do here.
652   if (LHS != RHS)
653     return nullptr;
654 
655   // Otherwise, the difference of LHS - RHS can be computed as:
656   //    LHS - RHS
657   //  = (LHSOffset + Base) - (RHSOffset + Base)
658   //  = LHSOffset - RHSOffset
659   return ConstantExpr::getSub(LHSOffset, RHSOffset);
660 }
661 
662 /// Given operands for a Sub, see if we can fold the result.
663 /// If not, this returns null.
664 static Value *SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
665                               const Query &Q, unsigned MaxRecurse) {
666   if (Constant *CLHS = dyn_cast<Constant>(Op0))
667     if (Constant *CRHS = dyn_cast<Constant>(Op1))
668       return ConstantFoldBinaryOpOperands(Instruction::Sub, CLHS, CRHS, Q.DL);
669 
670   // X - undef -> undef
671   // undef - X -> undef
672   if (match(Op0, m_Undef()) || match(Op1, m_Undef()))
673     return UndefValue::get(Op0->getType());
674 
675   // X - 0 -> X
676   if (match(Op1, m_Zero()))
677     return Op0;
678 
679   // X - X -> 0
680   if (Op0 == Op1)
681     return Constant::getNullValue(Op0->getType());
682 
683   // 0 - X -> 0 if the sub is NUW.
684   if (isNUW && match(Op0, m_Zero()))
685     return Op0;
686 
687   // (X + Y) - Z -> X + (Y - Z) or Y + (X - Z) if everything simplifies.
688   // For example, (X + Y) - Y -> X; (Y + X) - Y -> X
689   Value *X = nullptr, *Y = nullptr, *Z = Op1;
690   if (MaxRecurse && match(Op0, m_Add(m_Value(X), m_Value(Y)))) { // (X + Y) - Z
691     // See if "V === Y - Z" simplifies.
692     if (Value *V = SimplifyBinOp(Instruction::Sub, Y, Z, Q, MaxRecurse-1))
693       // It does!  Now see if "X + V" simplifies.
694       if (Value *W = SimplifyBinOp(Instruction::Add, X, V, Q, MaxRecurse-1)) {
695         // It does, we successfully reassociated!
696         ++NumReassoc;
697         return W;
698       }
699     // See if "V === X - Z" simplifies.
700     if (Value *V = SimplifyBinOp(Instruction::Sub, X, Z, Q, MaxRecurse-1))
701       // It does!  Now see if "Y + V" simplifies.
702       if (Value *W = SimplifyBinOp(Instruction::Add, Y, V, Q, MaxRecurse-1)) {
703         // It does, we successfully reassociated!
704         ++NumReassoc;
705         return W;
706       }
707   }
708 
709   // X - (Y + Z) -> (X - Y) - Z or (X - Z) - Y if everything simplifies.
710   // For example, X - (X + 1) -> -1
711   X = Op0;
712   if (MaxRecurse && match(Op1, m_Add(m_Value(Y), m_Value(Z)))) { // X - (Y + Z)
713     // See if "V === X - Y" simplifies.
714     if (Value *V = SimplifyBinOp(Instruction::Sub, X, Y, Q, MaxRecurse-1))
715       // It does!  Now see if "V - Z" simplifies.
716       if (Value *W = SimplifyBinOp(Instruction::Sub, V, Z, Q, MaxRecurse-1)) {
717         // It does, we successfully reassociated!
718         ++NumReassoc;
719         return W;
720       }
721     // See if "V === X - Z" simplifies.
722     if (Value *V = SimplifyBinOp(Instruction::Sub, X, Z, Q, MaxRecurse-1))
723       // It does!  Now see if "V - Y" simplifies.
724       if (Value *W = SimplifyBinOp(Instruction::Sub, V, Y, Q, MaxRecurse-1)) {
725         // It does, we successfully reassociated!
726         ++NumReassoc;
727         return W;
728       }
729   }
730 
731   // Z - (X - Y) -> (Z - X) + Y if everything simplifies.
732   // For example, X - (X - Y) -> Y.
733   Z = Op0;
734   if (MaxRecurse && match(Op1, m_Sub(m_Value(X), m_Value(Y)))) // Z - (X - Y)
735     // See if "V === Z - X" simplifies.
736     if (Value *V = SimplifyBinOp(Instruction::Sub, Z, X, Q, MaxRecurse-1))
737       // It does!  Now see if "V + Y" simplifies.
738       if (Value *W = SimplifyBinOp(Instruction::Add, V, Y, Q, MaxRecurse-1)) {
739         // It does, we successfully reassociated!
740         ++NumReassoc;
741         return W;
742       }
743 
744   // trunc(X) - trunc(Y) -> trunc(X - Y) if everything simplifies.
745   if (MaxRecurse && match(Op0, m_Trunc(m_Value(X))) &&
746       match(Op1, m_Trunc(m_Value(Y))))
747     if (X->getType() == Y->getType())
748       // See if "V === X - Y" simplifies.
749       if (Value *V = SimplifyBinOp(Instruction::Sub, X, Y, Q, MaxRecurse-1))
750         // It does!  Now see if "trunc V" simplifies.
751         if (Value *W = SimplifyCastInst(Instruction::Trunc, V, Op0->getType(),
752                                         Q, MaxRecurse - 1))
753           // It does, return the simplified "trunc V".
754           return W;
755 
756   // Variations on GEP(base, I, ...) - GEP(base, i, ...) -> GEP(null, I-i, ...).
757   if (match(Op0, m_PtrToInt(m_Value(X))) &&
758       match(Op1, m_PtrToInt(m_Value(Y))))
759     if (Constant *Result = computePointerDifference(Q.DL, X, Y))
760       return ConstantExpr::getIntegerCast(Result, Op0->getType(), true);
761 
762   // i1 sub -> xor.
763   if (MaxRecurse && Op0->getType()->isIntegerTy(1))
764     if (Value *V = SimplifyXorInst(Op0, Op1, Q, MaxRecurse-1))
765       return V;
766 
767   // Threading Sub over selects and phi nodes is pointless, so don't bother.
768   // Threading over the select in "A - select(cond, B, C)" means evaluating
769   // "A-B" and "A-C" and seeing if they are equal; but they are equal if and
770   // only if B and C are equal.  If B and C are equal then (since we assume
771   // that operands have already been simplified) "select(cond, B, C)" should
772   // have been simplified to the common value of B and C already.  Analysing
773   // "A-B" and "A-C" thus gains nothing, but costs compile time.  Similarly
774   // for threading over phi nodes.
775 
776   return nullptr;
777 }
778 
779 Value *llvm::SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
780                              const DataLayout &DL, const TargetLibraryInfo *TLI,
781                              const DominatorTree *DT, AssumptionCache *AC,
782                              const Instruction *CxtI) {
783   return ::SimplifySubInst(Op0, Op1, isNSW, isNUW, Query(DL, TLI, DT, AC, CxtI),
784                            RecursionLimit);
785 }
786 
787 /// Given operands for an FAdd, see if we can fold the result.  If not, this
788 /// returns null.
789 static Value *SimplifyFAddInst(Value *Op0, Value *Op1, FastMathFlags FMF,
790                               const Query &Q, unsigned MaxRecurse) {
791   if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
792     if (Constant *CRHS = dyn_cast<Constant>(Op1))
793       return ConstantFoldBinaryOpOperands(Instruction::FAdd, CLHS, CRHS, Q.DL);
794 
795     // Canonicalize the constant to the RHS.
796     std::swap(Op0, Op1);
797   }
798 
799   // fadd X, -0 ==> X
800   if (match(Op1, m_NegZero()))
801     return Op0;
802 
803   // fadd X, 0 ==> X, when we know X is not -0
804   if (match(Op1, m_Zero()) &&
805       (FMF.noSignedZeros() || CannotBeNegativeZero(Op0, Q.TLI)))
806     return Op0;
807 
808   // fadd [nnan ninf] X, (fsub [nnan ninf] 0, X) ==> 0
809   //   where nnan and ninf have to occur at least once somewhere in this
810   //   expression
811   Value *SubOp = nullptr;
812   if (match(Op1, m_FSub(m_AnyZero(), m_Specific(Op0))))
813     SubOp = Op1;
814   else if (match(Op0, m_FSub(m_AnyZero(), m_Specific(Op1))))
815     SubOp = Op0;
816   if (SubOp) {
817     Instruction *FSub = cast<Instruction>(SubOp);
818     if ((FMF.noNaNs() || FSub->hasNoNaNs()) &&
819         (FMF.noInfs() || FSub->hasNoInfs()))
820       return Constant::getNullValue(Op0->getType());
821   }
822 
823   return nullptr;
824 }
825 
826 /// Given operands for an FSub, see if we can fold the result.  If not, this
827 /// returns null.
828 static Value *SimplifyFSubInst(Value *Op0, Value *Op1, FastMathFlags FMF,
829                               const Query &Q, unsigned MaxRecurse) {
830   if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
831     if (Constant *CRHS = dyn_cast<Constant>(Op1))
832       return ConstantFoldBinaryOpOperands(Instruction::FSub, CLHS, CRHS, Q.DL);
833   }
834 
835   // fsub X, 0 ==> X
836   if (match(Op1, m_Zero()))
837     return Op0;
838 
839   // fsub X, -0 ==> X, when we know X is not -0
840   if (match(Op1, m_NegZero()) &&
841       (FMF.noSignedZeros() || CannotBeNegativeZero(Op0, Q.TLI)))
842     return Op0;
843 
844   // fsub -0.0, (fsub -0.0, X) ==> X
845   Value *X;
846   if (match(Op0, m_NegZero()) && match(Op1, m_FSub(m_NegZero(), m_Value(X))))
847     return X;
848 
849   // fsub 0.0, (fsub 0.0, X) ==> X if signed zeros are ignored.
850   if (FMF.noSignedZeros() && match(Op0, m_AnyZero()) &&
851       match(Op1, m_FSub(m_AnyZero(), m_Value(X))))
852     return X;
853 
854   // fsub nnan x, x ==> 0.0
855   if (FMF.noNaNs() && Op0 == Op1)
856     return Constant::getNullValue(Op0->getType());
857 
858   return nullptr;
859 }
860 
861 /// Given the operands for an FMul, see if we can fold the result
862 static Value *SimplifyFMulInst(Value *Op0, Value *Op1,
863                                FastMathFlags FMF,
864                                const Query &Q,
865                                unsigned MaxRecurse) {
866  if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
867     if (Constant *CRHS = dyn_cast<Constant>(Op1))
868       return ConstantFoldBinaryOpOperands(Instruction::FMul, CLHS, CRHS, Q.DL);
869 
870     // Canonicalize the constant to the RHS.
871     std::swap(Op0, Op1);
872  }
873 
874  // fmul X, 1.0 ==> X
875  if (match(Op1, m_FPOne()))
876    return Op0;
877 
878  // fmul nnan nsz X, 0 ==> 0
879  if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op1, m_AnyZero()))
880    return Op1;
881 
882  return nullptr;
883 }
884 
885 /// Given operands for a Mul, see if we can fold the result.
886 /// If not, this returns null.
887 static Value *SimplifyMulInst(Value *Op0, Value *Op1, const Query &Q,
888                               unsigned MaxRecurse) {
889   if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
890     if (Constant *CRHS = dyn_cast<Constant>(Op1))
891       return ConstantFoldBinaryOpOperands(Instruction::Mul, CLHS, CRHS, Q.DL);
892 
893     // Canonicalize the constant to the RHS.
894     std::swap(Op0, Op1);
895   }
896 
897   // X * undef -> 0
898   if (match(Op1, m_Undef()))
899     return Constant::getNullValue(Op0->getType());
900 
901   // X * 0 -> 0
902   if (match(Op1, m_Zero()))
903     return Op1;
904 
905   // X * 1 -> X
906   if (match(Op1, m_One()))
907     return Op0;
908 
909   // (X / Y) * Y -> X if the division is exact.
910   Value *X = nullptr;
911   if (match(Op0, m_Exact(m_IDiv(m_Value(X), m_Specific(Op1)))) || // (X / Y) * Y
912       match(Op1, m_Exact(m_IDiv(m_Value(X), m_Specific(Op0)))))   // Y * (X / Y)
913     return X;
914 
915   // i1 mul -> and.
916   if (MaxRecurse && Op0->getType()->isIntegerTy(1))
917     if (Value *V = SimplifyAndInst(Op0, Op1, Q, MaxRecurse-1))
918       return V;
919 
920   // Try some generic simplifications for associative operations.
921   if (Value *V = SimplifyAssociativeBinOp(Instruction::Mul, Op0, Op1, Q,
922                                           MaxRecurse))
923     return V;
924 
925   // Mul distributes over Add.  Try some generic simplifications based on this.
926   if (Value *V = ExpandBinOp(Instruction::Mul, Op0, Op1, Instruction::Add,
927                              Q, MaxRecurse))
928     return V;
929 
930   // If the operation is with the result of a select instruction, check whether
931   // operating on either branch of the select always yields the same value.
932   if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
933     if (Value *V = ThreadBinOpOverSelect(Instruction::Mul, Op0, Op1, Q,
934                                          MaxRecurse))
935       return V;
936 
937   // If the operation is with the result of a phi instruction, check whether
938   // operating on all incoming values of the phi always yields the same value.
939   if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
940     if (Value *V = ThreadBinOpOverPHI(Instruction::Mul, Op0, Op1, Q,
941                                       MaxRecurse))
942       return V;
943 
944   return nullptr;
945 }
946 
947 Value *llvm::SimplifyFAddInst(Value *Op0, Value *Op1, FastMathFlags FMF,
948                               const DataLayout &DL,
949                               const TargetLibraryInfo *TLI,
950                               const DominatorTree *DT, AssumptionCache *AC,
951                               const Instruction *CxtI) {
952   return ::SimplifyFAddInst(Op0, Op1, FMF, Query(DL, TLI, DT, AC, CxtI),
953                             RecursionLimit);
954 }
955 
956 Value *llvm::SimplifyFSubInst(Value *Op0, Value *Op1, FastMathFlags FMF,
957                               const DataLayout &DL,
958                               const TargetLibraryInfo *TLI,
959                               const DominatorTree *DT, AssumptionCache *AC,
960                               const Instruction *CxtI) {
961   return ::SimplifyFSubInst(Op0, Op1, FMF, Query(DL, TLI, DT, AC, CxtI),
962                             RecursionLimit);
963 }
964 
965 Value *llvm::SimplifyFMulInst(Value *Op0, Value *Op1, FastMathFlags FMF,
966                               const DataLayout &DL,
967                               const TargetLibraryInfo *TLI,
968                               const DominatorTree *DT, AssumptionCache *AC,
969                               const Instruction *CxtI) {
970   return ::SimplifyFMulInst(Op0, Op1, FMF, Query(DL, TLI, DT, AC, CxtI),
971                             RecursionLimit);
972 }
973 
974 Value *llvm::SimplifyMulInst(Value *Op0, Value *Op1, const DataLayout &DL,
975                              const TargetLibraryInfo *TLI,
976                              const DominatorTree *DT, AssumptionCache *AC,
977                              const Instruction *CxtI) {
978   return ::SimplifyMulInst(Op0, Op1, Query(DL, TLI, DT, AC, CxtI),
979                            RecursionLimit);
980 }
981 
982 /// Given operands for an SDiv or UDiv, see if we can fold the result.
983 /// If not, this returns null.
984 static Value *SimplifyDiv(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1,
985                           const Query &Q, unsigned MaxRecurse) {
986   if (Constant *C0 = dyn_cast<Constant>(Op0))
987     if (Constant *C1 = dyn_cast<Constant>(Op1))
988       return ConstantFoldBinaryOpOperands(Opcode, C0, C1, Q.DL);
989 
990   bool isSigned = Opcode == Instruction::SDiv;
991 
992   // X / undef -> undef
993   if (match(Op1, m_Undef()))
994     return Op1;
995 
996   // X / 0 -> undef, we don't need to preserve faults!
997   if (match(Op1, m_Zero()))
998     return UndefValue::get(Op1->getType());
999 
1000   // undef / X -> 0
1001   if (match(Op0, m_Undef()))
1002     return Constant::getNullValue(Op0->getType());
1003 
1004   // 0 / X -> 0, we don't need to preserve faults!
1005   if (match(Op0, m_Zero()))
1006     return Op0;
1007 
1008   // X / 1 -> X
1009   if (match(Op1, m_One()))
1010     return Op0;
1011 
1012   if (Op0->getType()->isIntegerTy(1))
1013     // It can't be division by zero, hence it must be division by one.
1014     return Op0;
1015 
1016   // X / X -> 1
1017   if (Op0 == Op1)
1018     return ConstantInt::get(Op0->getType(), 1);
1019 
1020   // (X * Y) / Y -> X if the multiplication does not overflow.
1021   Value *X = nullptr, *Y = nullptr;
1022   if (match(Op0, m_Mul(m_Value(X), m_Value(Y))) && (X == Op1 || Y == Op1)) {
1023     if (Y != Op1) std::swap(X, Y); // Ensure expression is (X * Y) / Y, Y = Op1
1024     OverflowingBinaryOperator *Mul = cast<OverflowingBinaryOperator>(Op0);
1025     // If the Mul knows it does not overflow, then we are good to go.
1026     if ((isSigned && Mul->hasNoSignedWrap()) ||
1027         (!isSigned && Mul->hasNoUnsignedWrap()))
1028       return X;
1029     // If X has the form X = A / Y then X * Y cannot overflow.
1030     if (BinaryOperator *Div = dyn_cast<BinaryOperator>(X))
1031       if (Div->getOpcode() == Opcode && Div->getOperand(1) == Y)
1032         return X;
1033   }
1034 
1035   // (X rem Y) / Y -> 0
1036   if ((isSigned && match(Op0, m_SRem(m_Value(), m_Specific(Op1)))) ||
1037       (!isSigned && match(Op0, m_URem(m_Value(), m_Specific(Op1)))))
1038     return Constant::getNullValue(Op0->getType());
1039 
1040   // (X /u C1) /u C2 -> 0 if C1 * C2 overflow
1041   ConstantInt *C1, *C2;
1042   if (!isSigned && match(Op0, m_UDiv(m_Value(X), m_ConstantInt(C1))) &&
1043       match(Op1, m_ConstantInt(C2))) {
1044     bool Overflow;
1045     C1->getValue().umul_ov(C2->getValue(), Overflow);
1046     if (Overflow)
1047       return Constant::getNullValue(Op0->getType());
1048   }
1049 
1050   // If the operation is with the result of a select instruction, check whether
1051   // operating on either branch of the select always yields the same value.
1052   if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
1053     if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse))
1054       return V;
1055 
1056   // If the operation is with the result of a phi instruction, check whether
1057   // operating on all incoming values of the phi always yields the same value.
1058   if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
1059     if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse))
1060       return V;
1061 
1062   return nullptr;
1063 }
1064 
1065 /// Given operands for an SDiv, see if we can fold the result.
1066 /// If not, this returns null.
1067 static Value *SimplifySDivInst(Value *Op0, Value *Op1, const Query &Q,
1068                                unsigned MaxRecurse) {
1069   if (Value *V = SimplifyDiv(Instruction::SDiv, Op0, Op1, Q, MaxRecurse))
1070     return V;
1071 
1072   return nullptr;
1073 }
1074 
1075 Value *llvm::SimplifySDivInst(Value *Op0, Value *Op1, const DataLayout &DL,
1076                               const TargetLibraryInfo *TLI,
1077                               const DominatorTree *DT, AssumptionCache *AC,
1078                               const Instruction *CxtI) {
1079   return ::SimplifySDivInst(Op0, Op1, Query(DL, TLI, DT, AC, CxtI),
1080                             RecursionLimit);
1081 }
1082 
1083 /// Given operands for a UDiv, see if we can fold the result.
1084 /// If not, this returns null.
1085 static Value *SimplifyUDivInst(Value *Op0, Value *Op1, const Query &Q,
1086                                unsigned MaxRecurse) {
1087   if (Value *V = SimplifyDiv(Instruction::UDiv, Op0, Op1, Q, MaxRecurse))
1088     return V;
1089 
1090   return nullptr;
1091 }
1092 
1093 Value *llvm::SimplifyUDivInst(Value *Op0, Value *Op1, const DataLayout &DL,
1094                               const TargetLibraryInfo *TLI,
1095                               const DominatorTree *DT, AssumptionCache *AC,
1096                               const Instruction *CxtI) {
1097   return ::SimplifyUDivInst(Op0, Op1, Query(DL, TLI, DT, AC, CxtI),
1098                             RecursionLimit);
1099 }
1100 
1101 static Value *SimplifyFDivInst(Value *Op0, Value *Op1, FastMathFlags FMF,
1102                                const Query &Q, unsigned) {
1103   // undef / X -> undef    (the undef could be a snan).
1104   if (match(Op0, m_Undef()))
1105     return Op0;
1106 
1107   // X / undef -> undef
1108   if (match(Op1, m_Undef()))
1109     return Op1;
1110 
1111   // 0 / X -> 0
1112   // Requires that NaNs are off (X could be zero) and signed zeroes are
1113   // ignored (X could be positive or negative, so the output sign is unknown).
1114   if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op0, m_AnyZero()))
1115     return Op0;
1116 
1117   if (FMF.noNaNs()) {
1118     // X / X -> 1.0 is legal when NaNs are ignored.
1119     if (Op0 == Op1)
1120       return ConstantFP::get(Op0->getType(), 1.0);
1121 
1122     // -X /  X -> -1.0 and
1123     //  X / -X -> -1.0 are legal when NaNs are ignored.
1124     // We can ignore signed zeros because +-0.0/+-0.0 is NaN and ignored.
1125     if ((BinaryOperator::isFNeg(Op0, /*IgnoreZeroSign=*/true) &&
1126          BinaryOperator::getFNegArgument(Op0) == Op1) ||
1127         (BinaryOperator::isFNeg(Op1, /*IgnoreZeroSign=*/true) &&
1128          BinaryOperator::getFNegArgument(Op1) == Op0))
1129       return ConstantFP::get(Op0->getType(), -1.0);
1130   }
1131 
1132   return nullptr;
1133 }
1134 
1135 Value *llvm::SimplifyFDivInst(Value *Op0, Value *Op1, FastMathFlags FMF,
1136                               const DataLayout &DL,
1137                               const TargetLibraryInfo *TLI,
1138                               const DominatorTree *DT, AssumptionCache *AC,
1139                               const Instruction *CxtI) {
1140   return ::SimplifyFDivInst(Op0, Op1, FMF, Query(DL, TLI, DT, AC, CxtI),
1141                             RecursionLimit);
1142 }
1143 
1144 /// Given operands for an SRem or URem, see if we can fold the result.
1145 /// If not, this returns null.
1146 static Value *SimplifyRem(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1,
1147                           const Query &Q, unsigned MaxRecurse) {
1148   if (Constant *C0 = dyn_cast<Constant>(Op0))
1149     if (Constant *C1 = dyn_cast<Constant>(Op1))
1150       return ConstantFoldBinaryOpOperands(Opcode, C0, C1, Q.DL);
1151 
1152   // X % undef -> undef
1153   if (match(Op1, m_Undef()))
1154     return Op1;
1155 
1156   // undef % X -> 0
1157   if (match(Op0, m_Undef()))
1158     return Constant::getNullValue(Op0->getType());
1159 
1160   // 0 % X -> 0, we don't need to preserve faults!
1161   if (match(Op0, m_Zero()))
1162     return Op0;
1163 
1164   // X % 0 -> undef, we don't need to preserve faults!
1165   if (match(Op1, m_Zero()))
1166     return UndefValue::get(Op0->getType());
1167 
1168   // X % 1 -> 0
1169   if (match(Op1, m_One()))
1170     return Constant::getNullValue(Op0->getType());
1171 
1172   if (Op0->getType()->isIntegerTy(1))
1173     // It can't be remainder by zero, hence it must be remainder by one.
1174     return Constant::getNullValue(Op0->getType());
1175 
1176   // X % X -> 0
1177   if (Op0 == Op1)
1178     return Constant::getNullValue(Op0->getType());
1179 
1180   // (X % Y) % Y -> X % Y
1181   if ((Opcode == Instruction::SRem &&
1182        match(Op0, m_SRem(m_Value(), m_Specific(Op1)))) ||
1183       (Opcode == Instruction::URem &&
1184        match(Op0, m_URem(m_Value(), m_Specific(Op1)))))
1185     return Op0;
1186 
1187   // If the operation is with the result of a select instruction, check whether
1188   // operating on either branch of the select always yields the same value.
1189   if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
1190     if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse))
1191       return V;
1192 
1193   // If the operation is with the result of a phi instruction, check whether
1194   // operating on all incoming values of the phi always yields the same value.
1195   if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
1196     if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse))
1197       return V;
1198 
1199   return nullptr;
1200 }
1201 
1202 /// Given operands for an SRem, see if we can fold the result.
1203 /// If not, this returns null.
1204 static Value *SimplifySRemInst(Value *Op0, Value *Op1, const Query &Q,
1205                                unsigned MaxRecurse) {
1206   if (Value *V = SimplifyRem(Instruction::SRem, Op0, Op1, Q, MaxRecurse))
1207     return V;
1208 
1209   return nullptr;
1210 }
1211 
1212 Value *llvm::SimplifySRemInst(Value *Op0, Value *Op1, const DataLayout &DL,
1213                               const TargetLibraryInfo *TLI,
1214                               const DominatorTree *DT, AssumptionCache *AC,
1215                               const Instruction *CxtI) {
1216   return ::SimplifySRemInst(Op0, Op1, Query(DL, TLI, DT, AC, CxtI),
1217                             RecursionLimit);
1218 }
1219 
1220 /// Given operands for a URem, see if we can fold the result.
1221 /// If not, this returns null.
1222 static Value *SimplifyURemInst(Value *Op0, Value *Op1, const Query &Q,
1223                                unsigned MaxRecurse) {
1224   if (Value *V = SimplifyRem(Instruction::URem, Op0, Op1, Q, MaxRecurse))
1225     return V;
1226 
1227   return nullptr;
1228 }
1229 
1230 Value *llvm::SimplifyURemInst(Value *Op0, Value *Op1, const DataLayout &DL,
1231                               const TargetLibraryInfo *TLI,
1232                               const DominatorTree *DT, AssumptionCache *AC,
1233                               const Instruction *CxtI) {
1234   return ::SimplifyURemInst(Op0, Op1, Query(DL, TLI, DT, AC, CxtI),
1235                             RecursionLimit);
1236 }
1237 
1238 static Value *SimplifyFRemInst(Value *Op0, Value *Op1, FastMathFlags FMF,
1239                                const Query &, unsigned) {
1240   // undef % X -> undef    (the undef could be a snan).
1241   if (match(Op0, m_Undef()))
1242     return Op0;
1243 
1244   // X % undef -> undef
1245   if (match(Op1, m_Undef()))
1246     return Op1;
1247 
1248   // 0 % X -> 0
1249   // Requires that NaNs are off (X could be zero) and signed zeroes are
1250   // ignored (X could be positive or negative, so the output sign is unknown).
1251   if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op0, m_AnyZero()))
1252     return Op0;
1253 
1254   return nullptr;
1255 }
1256 
1257 Value *llvm::SimplifyFRemInst(Value *Op0, Value *Op1, FastMathFlags FMF,
1258                               const DataLayout &DL,
1259                               const TargetLibraryInfo *TLI,
1260                               const DominatorTree *DT, AssumptionCache *AC,
1261                               const Instruction *CxtI) {
1262   return ::SimplifyFRemInst(Op0, Op1, FMF, Query(DL, TLI, DT, AC, CxtI),
1263                             RecursionLimit);
1264 }
1265 
1266 /// Returns true if a shift by \c Amount always yields undef.
1267 static bool isUndefShift(Value *Amount) {
1268   Constant *C = dyn_cast<Constant>(Amount);
1269   if (!C)
1270     return false;
1271 
1272   // X shift by undef -> undef because it may shift by the bitwidth.
1273   if (isa<UndefValue>(C))
1274     return true;
1275 
1276   // Shifting by the bitwidth or more is undefined.
1277   if (ConstantInt *CI = dyn_cast<ConstantInt>(C))
1278     if (CI->getValue().getLimitedValue() >=
1279         CI->getType()->getScalarSizeInBits())
1280       return true;
1281 
1282   // If all lanes of a vector shift are undefined the whole shift is.
1283   if (isa<ConstantVector>(C) || isa<ConstantDataVector>(C)) {
1284     for (unsigned I = 0, E = C->getType()->getVectorNumElements(); I != E; ++I)
1285       if (!isUndefShift(C->getAggregateElement(I)))
1286         return false;
1287     return true;
1288   }
1289 
1290   return false;
1291 }
1292 
1293 /// Given operands for an Shl, LShr or AShr, see if we can fold the result.
1294 /// If not, this returns null.
1295 static Value *SimplifyShift(unsigned Opcode, Value *Op0, Value *Op1,
1296                             const Query &Q, unsigned MaxRecurse) {
1297   if (Constant *C0 = dyn_cast<Constant>(Op0))
1298     if (Constant *C1 = dyn_cast<Constant>(Op1))
1299       return ConstantFoldBinaryOpOperands(Opcode, C0, C1, Q.DL);
1300 
1301   // 0 shift by X -> 0
1302   if (match(Op0, m_Zero()))
1303     return Op0;
1304 
1305   // X shift by 0 -> X
1306   if (match(Op1, m_Zero()))
1307     return Op0;
1308 
1309   // Fold undefined shifts.
1310   if (isUndefShift(Op1))
1311     return UndefValue::get(Op0->getType());
1312 
1313   // If the operation is with the result of a select instruction, check whether
1314   // operating on either branch of the select always yields the same value.
1315   if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
1316     if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse))
1317       return V;
1318 
1319   // If the operation is with the result of a phi instruction, check whether
1320   // operating on all incoming values of the phi always yields the same value.
1321   if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
1322     if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse))
1323       return V;
1324 
1325   // If any bits in the shift amount make that value greater than or equal to
1326   // the number of bits in the type, the shift is undefined.
1327   unsigned BitWidth = Op1->getType()->getScalarSizeInBits();
1328   APInt KnownZero(BitWidth, 0);
1329   APInt KnownOne(BitWidth, 0);
1330   computeKnownBits(Op1, KnownZero, KnownOne, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
1331   if (KnownOne.getLimitedValue() >= BitWidth)
1332     return UndefValue::get(Op0->getType());
1333 
1334   // If all valid bits in the shift amount are known zero, the first operand is
1335   // unchanged.
1336   unsigned NumValidShiftBits = Log2_32_Ceil(BitWidth);
1337   APInt ShiftAmountMask = APInt::getLowBitsSet(BitWidth, NumValidShiftBits);
1338   if ((KnownZero & ShiftAmountMask) == ShiftAmountMask)
1339     return Op0;
1340 
1341   return nullptr;
1342 }
1343 
1344 /// \brief Given operands for an Shl, LShr or AShr, see if we can
1345 /// fold the result.  If not, this returns null.
1346 static Value *SimplifyRightShift(unsigned Opcode, Value *Op0, Value *Op1,
1347                                  bool isExact, const Query &Q,
1348                                  unsigned MaxRecurse) {
1349   if (Value *V = SimplifyShift(Opcode, Op0, Op1, Q, MaxRecurse))
1350     return V;
1351 
1352   // X >> X -> 0
1353   if (Op0 == Op1)
1354     return Constant::getNullValue(Op0->getType());
1355 
1356   // undef >> X -> 0
1357   // undef >> X -> undef (if it's exact)
1358   if (match(Op0, m_Undef()))
1359     return isExact ? Op0 : Constant::getNullValue(Op0->getType());
1360 
1361   // The low bit cannot be shifted out of an exact shift if it is set.
1362   if (isExact) {
1363     unsigned BitWidth = Op0->getType()->getScalarSizeInBits();
1364     APInt Op0KnownZero(BitWidth, 0);
1365     APInt Op0KnownOne(BitWidth, 0);
1366     computeKnownBits(Op0, Op0KnownZero, Op0KnownOne, Q.DL, /*Depth=*/0, Q.AC,
1367                      Q.CxtI, Q.DT);
1368     if (Op0KnownOne[0])
1369       return Op0;
1370   }
1371 
1372   return nullptr;
1373 }
1374 
1375 /// Given operands for an Shl, see if we can fold the result.
1376 /// If not, this returns null.
1377 static Value *SimplifyShlInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
1378                               const Query &Q, unsigned MaxRecurse) {
1379   if (Value *V = SimplifyShift(Instruction::Shl, Op0, Op1, Q, MaxRecurse))
1380     return V;
1381 
1382   // undef << X -> 0
1383   // undef << X -> undef if (if it's NSW/NUW)
1384   if (match(Op0, m_Undef()))
1385     return isNSW || isNUW ? Op0 : Constant::getNullValue(Op0->getType());
1386 
1387   // (X >> A) << A -> X
1388   Value *X;
1389   if (match(Op0, m_Exact(m_Shr(m_Value(X), m_Specific(Op1)))))
1390     return X;
1391   return nullptr;
1392 }
1393 
1394 Value *llvm::SimplifyShlInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
1395                              const DataLayout &DL, const TargetLibraryInfo *TLI,
1396                              const DominatorTree *DT, AssumptionCache *AC,
1397                              const Instruction *CxtI) {
1398   return ::SimplifyShlInst(Op0, Op1, isNSW, isNUW, Query(DL, TLI, DT, AC, CxtI),
1399                            RecursionLimit);
1400 }
1401 
1402 /// Given operands for an LShr, see if we can fold the result.
1403 /// If not, this returns null.
1404 static Value *SimplifyLShrInst(Value *Op0, Value *Op1, bool isExact,
1405                                const Query &Q, unsigned MaxRecurse) {
1406   if (Value *V = SimplifyRightShift(Instruction::LShr, Op0, Op1, isExact, Q,
1407                                     MaxRecurse))
1408       return V;
1409 
1410   // (X << A) >> A -> X
1411   Value *X;
1412   if (match(Op0, m_NUWShl(m_Value(X), m_Specific(Op1))))
1413     return X;
1414 
1415   return nullptr;
1416 }
1417 
1418 Value *llvm::SimplifyLShrInst(Value *Op0, Value *Op1, bool isExact,
1419                               const DataLayout &DL,
1420                               const TargetLibraryInfo *TLI,
1421                               const DominatorTree *DT, AssumptionCache *AC,
1422                               const Instruction *CxtI) {
1423   return ::SimplifyLShrInst(Op0, Op1, isExact, Query(DL, TLI, DT, AC, CxtI),
1424                             RecursionLimit);
1425 }
1426 
1427 /// Given operands for an AShr, see if we can fold the result.
1428 /// If not, this returns null.
1429 static Value *SimplifyAShrInst(Value *Op0, Value *Op1, bool isExact,
1430                                const Query &Q, unsigned MaxRecurse) {
1431   if (Value *V = SimplifyRightShift(Instruction::AShr, Op0, Op1, isExact, Q,
1432                                     MaxRecurse))
1433     return V;
1434 
1435   // all ones >>a X -> all ones
1436   if (match(Op0, m_AllOnes()))
1437     return Op0;
1438 
1439   // (X << A) >> A -> X
1440   Value *X;
1441   if (match(Op0, m_NSWShl(m_Value(X), m_Specific(Op1))))
1442     return X;
1443 
1444   // Arithmetic shifting an all-sign-bit value is a no-op.
1445   unsigned NumSignBits = ComputeNumSignBits(Op0, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
1446   if (NumSignBits == Op0->getType()->getScalarSizeInBits())
1447     return Op0;
1448 
1449   return nullptr;
1450 }
1451 
1452 Value *llvm::SimplifyAShrInst(Value *Op0, Value *Op1, bool isExact,
1453                               const DataLayout &DL,
1454                               const TargetLibraryInfo *TLI,
1455                               const DominatorTree *DT, AssumptionCache *AC,
1456                               const Instruction *CxtI) {
1457   return ::SimplifyAShrInst(Op0, Op1, isExact, Query(DL, TLI, DT, AC, CxtI),
1458                             RecursionLimit);
1459 }
1460 
1461 static Value *simplifyUnsignedRangeCheck(ICmpInst *ZeroICmp,
1462                                          ICmpInst *UnsignedICmp, bool IsAnd) {
1463   Value *X, *Y;
1464 
1465   ICmpInst::Predicate EqPred;
1466   if (!match(ZeroICmp, m_ICmp(EqPred, m_Value(Y), m_Zero())) ||
1467       !ICmpInst::isEquality(EqPred))
1468     return nullptr;
1469 
1470   ICmpInst::Predicate UnsignedPred;
1471   if (match(UnsignedICmp, m_ICmp(UnsignedPred, m_Value(X), m_Specific(Y))) &&
1472       ICmpInst::isUnsigned(UnsignedPred))
1473     ;
1474   else if (match(UnsignedICmp,
1475                  m_ICmp(UnsignedPred, m_Value(Y), m_Specific(X))) &&
1476            ICmpInst::isUnsigned(UnsignedPred))
1477     UnsignedPred = ICmpInst::getSwappedPredicate(UnsignedPred);
1478   else
1479     return nullptr;
1480 
1481   // X < Y && Y != 0  -->  X < Y
1482   // X < Y || Y != 0  -->  Y != 0
1483   if (UnsignedPred == ICmpInst::ICMP_ULT && EqPred == ICmpInst::ICMP_NE)
1484     return IsAnd ? UnsignedICmp : ZeroICmp;
1485 
1486   // X >= Y || Y != 0  -->  true
1487   // X >= Y || Y == 0  -->  X >= Y
1488   if (UnsignedPred == ICmpInst::ICMP_UGE && !IsAnd) {
1489     if (EqPred == ICmpInst::ICMP_NE)
1490       return getTrue(UnsignedICmp->getType());
1491     return UnsignedICmp;
1492   }
1493 
1494   // X < Y && Y == 0  -->  false
1495   if (UnsignedPred == ICmpInst::ICMP_ULT && EqPred == ICmpInst::ICMP_EQ &&
1496       IsAnd)
1497     return getFalse(UnsignedICmp->getType());
1498 
1499   return nullptr;
1500 }
1501 
1502 static Value *SimplifyAndOfICmps(ICmpInst *Op0, ICmpInst *Op1) {
1503   Type *ITy = Op0->getType();
1504   ICmpInst::Predicate Pred0, Pred1;
1505   ConstantInt *CI1, *CI2;
1506   Value *V;
1507 
1508   if (Value *X = simplifyUnsignedRangeCheck(Op0, Op1, /*IsAnd=*/true))
1509     return X;
1510 
1511   // Look for this pattern: (icmp V, C0) & (icmp V, C1)).
1512   const APInt *C0, *C1;
1513   if (match(Op0, m_ICmp(Pred0, m_Value(V), m_APInt(C0))) &&
1514       match(Op1, m_ICmp(Pred1, m_Specific(V), m_APInt(C1)))) {
1515     // Make a constant range that's the intersection of the two icmp ranges.
1516     // If the intersection is empty, we know that the result is false.
1517     auto Range0 = ConstantRange::makeAllowedICmpRegion(Pred0, *C0);
1518     auto Range1 = ConstantRange::makeAllowedICmpRegion(Pred1, *C1);
1519     if (Range0.intersectWith(Range1).isEmptySet())
1520       return getFalse(ITy);
1521   }
1522 
1523   if (!match(Op0, m_ICmp(Pred0, m_Add(m_Value(V), m_ConstantInt(CI1)),
1524                          m_ConstantInt(CI2))))
1525     return nullptr;
1526 
1527   if (!match(Op1, m_ICmp(Pred1, m_Specific(V), m_Specific(CI1))))
1528     return nullptr;
1529 
1530   auto *AddInst = cast<BinaryOperator>(Op0->getOperand(0));
1531   bool isNSW = AddInst->hasNoSignedWrap();
1532   bool isNUW = AddInst->hasNoUnsignedWrap();
1533 
1534   const APInt &CI1V = CI1->getValue();
1535   const APInt &CI2V = CI2->getValue();
1536   const APInt Delta = CI2V - CI1V;
1537   if (CI1V.isStrictlyPositive()) {
1538     if (Delta == 2) {
1539       if (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_SGT)
1540         return getFalse(ITy);
1541       if (Pred0 == ICmpInst::ICMP_SLT && Pred1 == ICmpInst::ICMP_SGT && isNSW)
1542         return getFalse(ITy);
1543     }
1544     if (Delta == 1) {
1545       if (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_SGT)
1546         return getFalse(ITy);
1547       if (Pred0 == ICmpInst::ICMP_SLE && Pred1 == ICmpInst::ICMP_SGT && isNSW)
1548         return getFalse(ITy);
1549     }
1550   }
1551   if (CI1V.getBoolValue() && isNUW) {
1552     if (Delta == 2)
1553       if (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_UGT)
1554         return getFalse(ITy);
1555     if (Delta == 1)
1556       if (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_UGT)
1557         return getFalse(ITy);
1558   }
1559 
1560   return nullptr;
1561 }
1562 
1563 /// Given operands for an And, see if we can fold the result.
1564 /// If not, this returns null.
1565 static Value *SimplifyAndInst(Value *Op0, Value *Op1, const Query &Q,
1566                               unsigned MaxRecurse) {
1567   if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
1568     if (Constant *CRHS = dyn_cast<Constant>(Op1))
1569       return ConstantFoldBinaryOpOperands(Instruction::And, CLHS, CRHS, Q.DL);
1570 
1571     // Canonicalize the constant to the RHS.
1572     std::swap(Op0, Op1);
1573   }
1574 
1575   // X & undef -> 0
1576   if (match(Op1, m_Undef()))
1577     return Constant::getNullValue(Op0->getType());
1578 
1579   // X & X = X
1580   if (Op0 == Op1)
1581     return Op0;
1582 
1583   // X & 0 = 0
1584   if (match(Op1, m_Zero()))
1585     return Op1;
1586 
1587   // X & -1 = X
1588   if (match(Op1, m_AllOnes()))
1589     return Op0;
1590 
1591   // A & ~A  =  ~A & A  =  0
1592   if (match(Op0, m_Not(m_Specific(Op1))) ||
1593       match(Op1, m_Not(m_Specific(Op0))))
1594     return Constant::getNullValue(Op0->getType());
1595 
1596   // (A | ?) & A = A
1597   Value *A = nullptr, *B = nullptr;
1598   if (match(Op0, m_Or(m_Value(A), m_Value(B))) &&
1599       (A == Op1 || B == Op1))
1600     return Op1;
1601 
1602   // A & (A | ?) = A
1603   if (match(Op1, m_Or(m_Value(A), m_Value(B))) &&
1604       (A == Op0 || B == Op0))
1605     return Op0;
1606 
1607   // A & (-A) = A if A is a power of two or zero.
1608   if (match(Op0, m_Neg(m_Specific(Op1))) ||
1609       match(Op1, m_Neg(m_Specific(Op0)))) {
1610     if (isKnownToBeAPowerOfTwo(Op0, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI,
1611                                Q.DT))
1612       return Op0;
1613     if (isKnownToBeAPowerOfTwo(Op1, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI,
1614                                Q.DT))
1615       return Op1;
1616   }
1617 
1618   if (auto *ICILHS = dyn_cast<ICmpInst>(Op0)) {
1619     if (auto *ICIRHS = dyn_cast<ICmpInst>(Op1)) {
1620       if (Value *V = SimplifyAndOfICmps(ICILHS, ICIRHS))
1621         return V;
1622       if (Value *V = SimplifyAndOfICmps(ICIRHS, ICILHS))
1623         return V;
1624     }
1625   }
1626 
1627   // The compares may be hidden behind casts. Look through those and try the
1628   // same folds as above.
1629   auto *Cast0 = dyn_cast<CastInst>(Op0);
1630   auto *Cast1 = dyn_cast<CastInst>(Op1);
1631   if (Cast0 && Cast1 && Cast0->getOpcode() == Cast1->getOpcode() &&
1632       Cast0->getSrcTy() == Cast1->getSrcTy()) {
1633     auto *Cmp0 = dyn_cast<ICmpInst>(Cast0->getOperand(0));
1634     auto *Cmp1 = dyn_cast<ICmpInst>(Cast1->getOperand(0));
1635     if (Cmp0 && Cmp1) {
1636       Instruction::CastOps CastOpc = Cast0->getOpcode();
1637       Type *ResultType = Cast0->getType();
1638       if (auto *V = dyn_cast_or_null<Constant>(SimplifyAndOfICmps(Cmp0, Cmp1)))
1639         return ConstantExpr::getCast(CastOpc, V, ResultType);
1640       if (auto *V = dyn_cast_or_null<Constant>(SimplifyAndOfICmps(Cmp1, Cmp0)))
1641         return ConstantExpr::getCast(CastOpc, V, ResultType);
1642     }
1643   }
1644 
1645   // Try some generic simplifications for associative operations.
1646   if (Value *V = SimplifyAssociativeBinOp(Instruction::And, Op0, Op1, Q,
1647                                           MaxRecurse))
1648     return V;
1649 
1650   // And distributes over Or.  Try some generic simplifications based on this.
1651   if (Value *V = ExpandBinOp(Instruction::And, Op0, Op1, Instruction::Or,
1652                              Q, MaxRecurse))
1653     return V;
1654 
1655   // And distributes over Xor.  Try some generic simplifications based on this.
1656   if (Value *V = ExpandBinOp(Instruction::And, Op0, Op1, Instruction::Xor,
1657                              Q, MaxRecurse))
1658     return V;
1659 
1660   // If the operation is with the result of a select instruction, check whether
1661   // operating on either branch of the select always yields the same value.
1662   if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
1663     if (Value *V = ThreadBinOpOverSelect(Instruction::And, Op0, Op1, Q,
1664                                          MaxRecurse))
1665       return V;
1666 
1667   // If the operation is with the result of a phi instruction, check whether
1668   // operating on all incoming values of the phi always yields the same value.
1669   if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
1670     if (Value *V = ThreadBinOpOverPHI(Instruction::And, Op0, Op1, Q,
1671                                       MaxRecurse))
1672       return V;
1673 
1674   return nullptr;
1675 }
1676 
1677 Value *llvm::SimplifyAndInst(Value *Op0, Value *Op1, const DataLayout &DL,
1678                              const TargetLibraryInfo *TLI,
1679                              const DominatorTree *DT, AssumptionCache *AC,
1680                              const Instruction *CxtI) {
1681   return ::SimplifyAndInst(Op0, Op1, Query(DL, TLI, DT, AC, CxtI),
1682                            RecursionLimit);
1683 }
1684 
1685 /// Simplify (or (icmp ...) (icmp ...)) to true when we can tell that the union
1686 /// contains all possible values.
1687 static Value *SimplifyOrOfICmps(ICmpInst *Op0, ICmpInst *Op1) {
1688   ICmpInst::Predicate Pred0, Pred1;
1689   ConstantInt *CI1, *CI2;
1690   Value *V;
1691 
1692   if (Value *X = simplifyUnsignedRangeCheck(Op0, Op1, /*IsAnd=*/false))
1693     return X;
1694 
1695   if (!match(Op0, m_ICmp(Pred0, m_Add(m_Value(V), m_ConstantInt(CI1)),
1696                          m_ConstantInt(CI2))))
1697    return nullptr;
1698 
1699   if (!match(Op1, m_ICmp(Pred1, m_Specific(V), m_Specific(CI1))))
1700     return nullptr;
1701 
1702   Type *ITy = Op0->getType();
1703 
1704   auto *AddInst = cast<BinaryOperator>(Op0->getOperand(0));
1705   bool isNSW = AddInst->hasNoSignedWrap();
1706   bool isNUW = AddInst->hasNoUnsignedWrap();
1707 
1708   const APInt &CI1V = CI1->getValue();
1709   const APInt &CI2V = CI2->getValue();
1710   const APInt Delta = CI2V - CI1V;
1711   if (CI1V.isStrictlyPositive()) {
1712     if (Delta == 2) {
1713       if (Pred0 == ICmpInst::ICMP_UGE && Pred1 == ICmpInst::ICMP_SLE)
1714         return getTrue(ITy);
1715       if (Pred0 == ICmpInst::ICMP_SGE && Pred1 == ICmpInst::ICMP_SLE && isNSW)
1716         return getTrue(ITy);
1717     }
1718     if (Delta == 1) {
1719       if (Pred0 == ICmpInst::ICMP_UGT && Pred1 == ICmpInst::ICMP_SLE)
1720         return getTrue(ITy);
1721       if (Pred0 == ICmpInst::ICMP_SGT && Pred1 == ICmpInst::ICMP_SLE && isNSW)
1722         return getTrue(ITy);
1723     }
1724   }
1725   if (CI1V.getBoolValue() && isNUW) {
1726     if (Delta == 2)
1727       if (Pred0 == ICmpInst::ICMP_UGE && Pred1 == ICmpInst::ICMP_ULE)
1728         return getTrue(ITy);
1729     if (Delta == 1)
1730       if (Pred0 == ICmpInst::ICMP_UGT && Pred1 == ICmpInst::ICMP_ULE)
1731         return getTrue(ITy);
1732   }
1733 
1734   return nullptr;
1735 }
1736 
1737 /// Given operands for an Or, see if we can fold the result.
1738 /// If not, this returns null.
1739 static Value *SimplifyOrInst(Value *Op0, Value *Op1, const Query &Q,
1740                              unsigned MaxRecurse) {
1741   if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
1742     if (Constant *CRHS = dyn_cast<Constant>(Op1))
1743       return ConstantFoldBinaryOpOperands(Instruction::Or, CLHS, CRHS, Q.DL);
1744 
1745     // Canonicalize the constant to the RHS.
1746     std::swap(Op0, Op1);
1747   }
1748 
1749   // X | undef -> -1
1750   if (match(Op1, m_Undef()))
1751     return Constant::getAllOnesValue(Op0->getType());
1752 
1753   // X | X = X
1754   if (Op0 == Op1)
1755     return Op0;
1756 
1757   // X | 0 = X
1758   if (match(Op1, m_Zero()))
1759     return Op0;
1760 
1761   // X | -1 = -1
1762   if (match(Op1, m_AllOnes()))
1763     return Op1;
1764 
1765   // A | ~A  =  ~A | A  =  -1
1766   if (match(Op0, m_Not(m_Specific(Op1))) ||
1767       match(Op1, m_Not(m_Specific(Op0))))
1768     return Constant::getAllOnesValue(Op0->getType());
1769 
1770   // (A & ?) | A = A
1771   Value *A = nullptr, *B = nullptr;
1772   if (match(Op0, m_And(m_Value(A), m_Value(B))) &&
1773       (A == Op1 || B == Op1))
1774     return Op1;
1775 
1776   // A | (A & ?) = A
1777   if (match(Op1, m_And(m_Value(A), m_Value(B))) &&
1778       (A == Op0 || B == Op0))
1779     return Op0;
1780 
1781   // ~(A & ?) | A = -1
1782   if (match(Op0, m_Not(m_And(m_Value(A), m_Value(B)))) &&
1783       (A == Op1 || B == Op1))
1784     return Constant::getAllOnesValue(Op1->getType());
1785 
1786   // A | ~(A & ?) = -1
1787   if (match(Op1, m_Not(m_And(m_Value(A), m_Value(B)))) &&
1788       (A == Op0 || B == Op0))
1789     return Constant::getAllOnesValue(Op0->getType());
1790 
1791   if (auto *ICILHS = dyn_cast<ICmpInst>(Op0)) {
1792     if (auto *ICIRHS = dyn_cast<ICmpInst>(Op1)) {
1793       if (Value *V = SimplifyOrOfICmps(ICILHS, ICIRHS))
1794         return V;
1795       if (Value *V = SimplifyOrOfICmps(ICIRHS, ICILHS))
1796         return V;
1797     }
1798   }
1799 
1800   // Try some generic simplifications for associative operations.
1801   if (Value *V = SimplifyAssociativeBinOp(Instruction::Or, Op0, Op1, Q,
1802                                           MaxRecurse))
1803     return V;
1804 
1805   // Or distributes over And.  Try some generic simplifications based on this.
1806   if (Value *V = ExpandBinOp(Instruction::Or, Op0, Op1, Instruction::And, Q,
1807                              MaxRecurse))
1808     return V;
1809 
1810   // If the operation is with the result of a select instruction, check whether
1811   // operating on either branch of the select always yields the same value.
1812   if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
1813     if (Value *V = ThreadBinOpOverSelect(Instruction::Or, Op0, Op1, Q,
1814                                          MaxRecurse))
1815       return V;
1816 
1817   // (A & C)|(B & D)
1818   Value *C = nullptr, *D = nullptr;
1819   if (match(Op0, m_And(m_Value(A), m_Value(C))) &&
1820       match(Op1, m_And(m_Value(B), m_Value(D)))) {
1821     ConstantInt *C1 = dyn_cast<ConstantInt>(C);
1822     ConstantInt *C2 = dyn_cast<ConstantInt>(D);
1823     if (C1 && C2 && (C1->getValue() == ~C2->getValue())) {
1824       // (A & C1)|(B & C2)
1825       // If we have: ((V + N) & C1) | (V & C2)
1826       // .. and C2 = ~C1 and C2 is 0+1+ and (N & C2) == 0
1827       // replace with V+N.
1828       Value *V1, *V2;
1829       if ((C2->getValue() & (C2->getValue() + 1)) == 0 && // C2 == 0+1+
1830           match(A, m_Add(m_Value(V1), m_Value(V2)))) {
1831         // Add commutes, try both ways.
1832         if (V1 == B &&
1833             MaskedValueIsZero(V2, C2->getValue(), Q.DL, 0, Q.AC, Q.CxtI, Q.DT))
1834           return A;
1835         if (V2 == B &&
1836             MaskedValueIsZero(V1, C2->getValue(), Q.DL, 0, Q.AC, Q.CxtI, Q.DT))
1837           return A;
1838       }
1839       // Or commutes, try both ways.
1840       if ((C1->getValue() & (C1->getValue() + 1)) == 0 &&
1841           match(B, m_Add(m_Value(V1), m_Value(V2)))) {
1842         // Add commutes, try both ways.
1843         if (V1 == A &&
1844             MaskedValueIsZero(V2, C1->getValue(), Q.DL, 0, Q.AC, Q.CxtI, Q.DT))
1845           return B;
1846         if (V2 == A &&
1847             MaskedValueIsZero(V1, C1->getValue(), Q.DL, 0, Q.AC, Q.CxtI, Q.DT))
1848           return B;
1849       }
1850     }
1851   }
1852 
1853   // If the operation is with the result of a phi instruction, check whether
1854   // operating on all incoming values of the phi always yields the same value.
1855   if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
1856     if (Value *V = ThreadBinOpOverPHI(Instruction::Or, Op0, Op1, Q, MaxRecurse))
1857       return V;
1858 
1859   return nullptr;
1860 }
1861 
1862 Value *llvm::SimplifyOrInst(Value *Op0, Value *Op1, const DataLayout &DL,
1863                             const TargetLibraryInfo *TLI,
1864                             const DominatorTree *DT, AssumptionCache *AC,
1865                             const Instruction *CxtI) {
1866   return ::SimplifyOrInst(Op0, Op1, Query(DL, TLI, DT, AC, CxtI),
1867                           RecursionLimit);
1868 }
1869 
1870 /// Given operands for a Xor, see if we can fold the result.
1871 /// If not, this returns null.
1872 static Value *SimplifyXorInst(Value *Op0, Value *Op1, const Query &Q,
1873                               unsigned MaxRecurse) {
1874   if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
1875     if (Constant *CRHS = dyn_cast<Constant>(Op1))
1876       return ConstantFoldBinaryOpOperands(Instruction::Xor, CLHS, CRHS, Q.DL);
1877 
1878     // Canonicalize the constant to the RHS.
1879     std::swap(Op0, Op1);
1880   }
1881 
1882   // A ^ undef -> undef
1883   if (match(Op1, m_Undef()))
1884     return Op1;
1885 
1886   // A ^ 0 = A
1887   if (match(Op1, m_Zero()))
1888     return Op0;
1889 
1890   // A ^ A = 0
1891   if (Op0 == Op1)
1892     return Constant::getNullValue(Op0->getType());
1893 
1894   // A ^ ~A  =  ~A ^ A  =  -1
1895   if (match(Op0, m_Not(m_Specific(Op1))) ||
1896       match(Op1, m_Not(m_Specific(Op0))))
1897     return Constant::getAllOnesValue(Op0->getType());
1898 
1899   // Try some generic simplifications for associative operations.
1900   if (Value *V = SimplifyAssociativeBinOp(Instruction::Xor, Op0, Op1, Q,
1901                                           MaxRecurse))
1902     return V;
1903 
1904   // Threading Xor over selects and phi nodes is pointless, so don't bother.
1905   // Threading over the select in "A ^ select(cond, B, C)" means evaluating
1906   // "A^B" and "A^C" and seeing if they are equal; but they are equal if and
1907   // only if B and C are equal.  If B and C are equal then (since we assume
1908   // that operands have already been simplified) "select(cond, B, C)" should
1909   // have been simplified to the common value of B and C already.  Analysing
1910   // "A^B" and "A^C" thus gains nothing, but costs compile time.  Similarly
1911   // for threading over phi nodes.
1912 
1913   return nullptr;
1914 }
1915 
1916 Value *llvm::SimplifyXorInst(Value *Op0, Value *Op1, const DataLayout &DL,
1917                              const TargetLibraryInfo *TLI,
1918                              const DominatorTree *DT, AssumptionCache *AC,
1919                              const Instruction *CxtI) {
1920   return ::SimplifyXorInst(Op0, Op1, Query(DL, TLI, DT, AC, CxtI),
1921                            RecursionLimit);
1922 }
1923 
1924 static Type *GetCompareTy(Value *Op) {
1925   return CmpInst::makeCmpResultType(Op->getType());
1926 }
1927 
1928 /// Rummage around inside V looking for something equivalent to the comparison
1929 /// "LHS Pred RHS". Return such a value if found, otherwise return null.
1930 /// Helper function for analyzing max/min idioms.
1931 static Value *ExtractEquivalentCondition(Value *V, CmpInst::Predicate Pred,
1932                                          Value *LHS, Value *RHS) {
1933   SelectInst *SI = dyn_cast<SelectInst>(V);
1934   if (!SI)
1935     return nullptr;
1936   CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition());
1937   if (!Cmp)
1938     return nullptr;
1939   Value *CmpLHS = Cmp->getOperand(0), *CmpRHS = Cmp->getOperand(1);
1940   if (Pred == Cmp->getPredicate() && LHS == CmpLHS && RHS == CmpRHS)
1941     return Cmp;
1942   if (Pred == CmpInst::getSwappedPredicate(Cmp->getPredicate()) &&
1943       LHS == CmpRHS && RHS == CmpLHS)
1944     return Cmp;
1945   return nullptr;
1946 }
1947 
1948 // A significant optimization not implemented here is assuming that alloca
1949 // addresses are not equal to incoming argument values. They don't *alias*,
1950 // as we say, but that doesn't mean they aren't equal, so we take a
1951 // conservative approach.
1952 //
1953 // This is inspired in part by C++11 5.10p1:
1954 //   "Two pointers of the same type compare equal if and only if they are both
1955 //    null, both point to the same function, or both represent the same
1956 //    address."
1957 //
1958 // This is pretty permissive.
1959 //
1960 // It's also partly due to C11 6.5.9p6:
1961 //   "Two pointers compare equal if and only if both are null pointers, both are
1962 //    pointers to the same object (including a pointer to an object and a
1963 //    subobject at its beginning) or function, both are pointers to one past the
1964 //    last element of the same array object, or one is a pointer to one past the
1965 //    end of one array object and the other is a pointer to the start of a
1966 //    different array object that happens to immediately follow the first array
1967 //    object in the address space.)
1968 //
1969 // C11's version is more restrictive, however there's no reason why an argument
1970 // couldn't be a one-past-the-end value for a stack object in the caller and be
1971 // equal to the beginning of a stack object in the callee.
1972 //
1973 // If the C and C++ standards are ever made sufficiently restrictive in this
1974 // area, it may be possible to update LLVM's semantics accordingly and reinstate
1975 // this optimization.
1976 static Constant *
1977 computePointerICmp(const DataLayout &DL, const TargetLibraryInfo *TLI,
1978                    const DominatorTree *DT, CmpInst::Predicate Pred,
1979                    const Instruction *CxtI, Value *LHS, Value *RHS) {
1980   // First, skip past any trivial no-ops.
1981   LHS = LHS->stripPointerCasts();
1982   RHS = RHS->stripPointerCasts();
1983 
1984   // A non-null pointer is not equal to a null pointer.
1985   if (llvm::isKnownNonNull(LHS) && isa<ConstantPointerNull>(RHS) &&
1986       (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE))
1987     return ConstantInt::get(GetCompareTy(LHS),
1988                             !CmpInst::isTrueWhenEqual(Pred));
1989 
1990   // We can only fold certain predicates on pointer comparisons.
1991   switch (Pred) {
1992   default:
1993     return nullptr;
1994 
1995     // Equality comaprisons are easy to fold.
1996   case CmpInst::ICMP_EQ:
1997   case CmpInst::ICMP_NE:
1998     break;
1999 
2000     // We can only handle unsigned relational comparisons because 'inbounds' on
2001     // a GEP only protects against unsigned wrapping.
2002   case CmpInst::ICMP_UGT:
2003   case CmpInst::ICMP_UGE:
2004   case CmpInst::ICMP_ULT:
2005   case CmpInst::ICMP_ULE:
2006     // However, we have to switch them to their signed variants to handle
2007     // negative indices from the base pointer.
2008     Pred = ICmpInst::getSignedPredicate(Pred);
2009     break;
2010   }
2011 
2012   // Strip off any constant offsets so that we can reason about them.
2013   // It's tempting to use getUnderlyingObject or even just stripInBoundsOffsets
2014   // here and compare base addresses like AliasAnalysis does, however there are
2015   // numerous hazards. AliasAnalysis and its utilities rely on special rules
2016   // governing loads and stores which don't apply to icmps. Also, AliasAnalysis
2017   // doesn't need to guarantee pointer inequality when it says NoAlias.
2018   Constant *LHSOffset = stripAndComputeConstantOffsets(DL, LHS);
2019   Constant *RHSOffset = stripAndComputeConstantOffsets(DL, RHS);
2020 
2021   // If LHS and RHS are related via constant offsets to the same base
2022   // value, we can replace it with an icmp which just compares the offsets.
2023   if (LHS == RHS)
2024     return ConstantExpr::getICmp(Pred, LHSOffset, RHSOffset);
2025 
2026   // Various optimizations for (in)equality comparisons.
2027   if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE) {
2028     // Different non-empty allocations that exist at the same time have
2029     // different addresses (if the program can tell). Global variables always
2030     // exist, so they always exist during the lifetime of each other and all
2031     // allocas. Two different allocas usually have different addresses...
2032     //
2033     // However, if there's an @llvm.stackrestore dynamically in between two
2034     // allocas, they may have the same address. It's tempting to reduce the
2035     // scope of the problem by only looking at *static* allocas here. That would
2036     // cover the majority of allocas while significantly reducing the likelihood
2037     // of having an @llvm.stackrestore pop up in the middle. However, it's not
2038     // actually impossible for an @llvm.stackrestore to pop up in the middle of
2039     // an entry block. Also, if we have a block that's not attached to a
2040     // function, we can't tell if it's "static" under the current definition.
2041     // Theoretically, this problem could be fixed by creating a new kind of
2042     // instruction kind specifically for static allocas. Such a new instruction
2043     // could be required to be at the top of the entry block, thus preventing it
2044     // from being subject to a @llvm.stackrestore. Instcombine could even
2045     // convert regular allocas into these special allocas. It'd be nifty.
2046     // However, until then, this problem remains open.
2047     //
2048     // So, we'll assume that two non-empty allocas have different addresses
2049     // for now.
2050     //
2051     // With all that, if the offsets are within the bounds of their allocations
2052     // (and not one-past-the-end! so we can't use inbounds!), and their
2053     // allocations aren't the same, the pointers are not equal.
2054     //
2055     // Note that it's not necessary to check for LHS being a global variable
2056     // address, due to canonicalization and constant folding.
2057     if (isa<AllocaInst>(LHS) &&
2058         (isa<AllocaInst>(RHS) || isa<GlobalVariable>(RHS))) {
2059       ConstantInt *LHSOffsetCI = dyn_cast<ConstantInt>(LHSOffset);
2060       ConstantInt *RHSOffsetCI = dyn_cast<ConstantInt>(RHSOffset);
2061       uint64_t LHSSize, RHSSize;
2062       if (LHSOffsetCI && RHSOffsetCI &&
2063           getObjectSize(LHS, LHSSize, DL, TLI) &&
2064           getObjectSize(RHS, RHSSize, DL, TLI)) {
2065         const APInt &LHSOffsetValue = LHSOffsetCI->getValue();
2066         const APInt &RHSOffsetValue = RHSOffsetCI->getValue();
2067         if (!LHSOffsetValue.isNegative() &&
2068             !RHSOffsetValue.isNegative() &&
2069             LHSOffsetValue.ult(LHSSize) &&
2070             RHSOffsetValue.ult(RHSSize)) {
2071           return ConstantInt::get(GetCompareTy(LHS),
2072                                   !CmpInst::isTrueWhenEqual(Pred));
2073         }
2074       }
2075 
2076       // Repeat the above check but this time without depending on DataLayout
2077       // or being able to compute a precise size.
2078       if (!cast<PointerType>(LHS->getType())->isEmptyTy() &&
2079           !cast<PointerType>(RHS->getType())->isEmptyTy() &&
2080           LHSOffset->isNullValue() &&
2081           RHSOffset->isNullValue())
2082         return ConstantInt::get(GetCompareTy(LHS),
2083                                 !CmpInst::isTrueWhenEqual(Pred));
2084     }
2085 
2086     // Even if an non-inbounds GEP occurs along the path we can still optimize
2087     // equality comparisons concerning the result. We avoid walking the whole
2088     // chain again by starting where the last calls to
2089     // stripAndComputeConstantOffsets left off and accumulate the offsets.
2090     Constant *LHSNoBound = stripAndComputeConstantOffsets(DL, LHS, true);
2091     Constant *RHSNoBound = stripAndComputeConstantOffsets(DL, RHS, true);
2092     if (LHS == RHS)
2093       return ConstantExpr::getICmp(Pred,
2094                                    ConstantExpr::getAdd(LHSOffset, LHSNoBound),
2095                                    ConstantExpr::getAdd(RHSOffset, RHSNoBound));
2096 
2097     // If one side of the equality comparison must come from a noalias call
2098     // (meaning a system memory allocation function), and the other side must
2099     // come from a pointer that cannot overlap with dynamically-allocated
2100     // memory within the lifetime of the current function (allocas, byval
2101     // arguments, globals), then determine the comparison result here.
2102     SmallVector<Value *, 8> LHSUObjs, RHSUObjs;
2103     GetUnderlyingObjects(LHS, LHSUObjs, DL);
2104     GetUnderlyingObjects(RHS, RHSUObjs, DL);
2105 
2106     // Is the set of underlying objects all noalias calls?
2107     auto IsNAC = [](SmallVectorImpl<Value *> &Objects) {
2108       return std::all_of(Objects.begin(), Objects.end(), isNoAliasCall);
2109     };
2110 
2111     // Is the set of underlying objects all things which must be disjoint from
2112     // noalias calls. For allocas, we consider only static ones (dynamic
2113     // allocas might be transformed into calls to malloc not simultaneously
2114     // live with the compared-to allocation). For globals, we exclude symbols
2115     // that might be resolve lazily to symbols in another dynamically-loaded
2116     // library (and, thus, could be malloc'ed by the implementation).
2117     auto IsAllocDisjoint = [](SmallVectorImpl<Value *> &Objects) {
2118       return std::all_of(Objects.begin(), Objects.end(), [](Value *V) {
2119         if (const AllocaInst *AI = dyn_cast<AllocaInst>(V))
2120           return AI->getParent() && AI->getFunction() && AI->isStaticAlloca();
2121         if (const GlobalValue *GV = dyn_cast<GlobalValue>(V))
2122           return (GV->hasLocalLinkage() || GV->hasHiddenVisibility() ||
2123                   GV->hasProtectedVisibility() || GV->hasGlobalUnnamedAddr()) &&
2124                  !GV->isThreadLocal();
2125         if (const Argument *A = dyn_cast<Argument>(V))
2126           return A->hasByValAttr();
2127         return false;
2128       });
2129     };
2130 
2131     if ((IsNAC(LHSUObjs) && IsAllocDisjoint(RHSUObjs)) ||
2132         (IsNAC(RHSUObjs) && IsAllocDisjoint(LHSUObjs)))
2133         return ConstantInt::get(GetCompareTy(LHS),
2134                                 !CmpInst::isTrueWhenEqual(Pred));
2135 
2136     // Fold comparisons for non-escaping pointer even if the allocation call
2137     // cannot be elided. We cannot fold malloc comparison to null. Also, the
2138     // dynamic allocation call could be either of the operands.
2139     Value *MI = nullptr;
2140     if (isAllocLikeFn(LHS, TLI) && llvm::isKnownNonNullAt(RHS, CxtI, DT))
2141       MI = LHS;
2142     else if (isAllocLikeFn(RHS, TLI) && llvm::isKnownNonNullAt(LHS, CxtI, DT))
2143       MI = RHS;
2144     // FIXME: We should also fold the compare when the pointer escapes, but the
2145     // compare dominates the pointer escape
2146     if (MI && !PointerMayBeCaptured(MI, true, true))
2147       return ConstantInt::get(GetCompareTy(LHS),
2148                               CmpInst::isFalseWhenEqual(Pred));
2149   }
2150 
2151   // Otherwise, fail.
2152   return nullptr;
2153 }
2154 
2155 /// Given operands for an ICmpInst, see if we can fold the result.
2156 /// If not, this returns null.
2157 static Value *SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS,
2158                                const Query &Q, unsigned MaxRecurse) {
2159   CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate;
2160   assert(CmpInst::isIntPredicate(Pred) && "Not an integer compare!");
2161 
2162   if (Constant *CLHS = dyn_cast<Constant>(LHS)) {
2163     if (Constant *CRHS = dyn_cast<Constant>(RHS))
2164       return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, Q.DL, Q.TLI);
2165 
2166     // If we have a constant, make sure it is on the RHS.
2167     std::swap(LHS, RHS);
2168     Pred = CmpInst::getSwappedPredicate(Pred);
2169   }
2170 
2171   Type *ITy = GetCompareTy(LHS); // The return type.
2172   Type *OpTy = LHS->getType();   // The operand type.
2173 
2174   // icmp X, X -> true/false
2175   // X icmp undef -> true/false.  For example, icmp ugt %X, undef -> false
2176   // because X could be 0.
2177   if (LHS == RHS || isa<UndefValue>(RHS))
2178     return ConstantInt::get(ITy, CmpInst::isTrueWhenEqual(Pred));
2179 
2180   // Special case logic when the operands have i1 type.
2181   if (OpTy->getScalarType()->isIntegerTy(1)) {
2182     switch (Pred) {
2183     default: break;
2184     case ICmpInst::ICMP_EQ:
2185       // X == 1 -> X
2186       if (match(RHS, m_One()))
2187         return LHS;
2188       break;
2189     case ICmpInst::ICMP_NE:
2190       // X != 0 -> X
2191       if (match(RHS, m_Zero()))
2192         return LHS;
2193       break;
2194     case ICmpInst::ICMP_UGT:
2195       // X >u 0 -> X
2196       if (match(RHS, m_Zero()))
2197         return LHS;
2198       break;
2199     case ICmpInst::ICMP_UGE: {
2200       // X >=u 1 -> X
2201       if (match(RHS, m_One()))
2202         return LHS;
2203       if (isImpliedCondition(RHS, LHS, Q.DL).getValueOr(false))
2204         return getTrue(ITy);
2205       break;
2206     }
2207     case ICmpInst::ICMP_SGE: {
2208       /// For signed comparison, the values for an i1 are 0 and -1
2209       /// respectively. This maps into a truth table of:
2210       /// LHS | RHS | LHS >=s RHS   | LHS implies RHS
2211       ///  0  |  0  |  1 (0 >= 0)   |  1
2212       ///  0  |  1  |  1 (0 >= -1)  |  1
2213       ///  1  |  0  |  0 (-1 >= 0)  |  0
2214       ///  1  |  1  |  1 (-1 >= -1) |  1
2215       if (isImpliedCondition(LHS, RHS, Q.DL).getValueOr(false))
2216         return getTrue(ITy);
2217       break;
2218     }
2219     case ICmpInst::ICMP_SLT:
2220       // X <s 0 -> X
2221       if (match(RHS, m_Zero()))
2222         return LHS;
2223       break;
2224     case ICmpInst::ICMP_SLE:
2225       // X <=s -1 -> X
2226       if (match(RHS, m_One()))
2227         return LHS;
2228       break;
2229     case ICmpInst::ICMP_ULE: {
2230       if (isImpliedCondition(LHS, RHS, Q.DL).getValueOr(false))
2231         return getTrue(ITy);
2232       break;
2233     }
2234     }
2235   }
2236 
2237   // If we are comparing with zero then try hard since this is a common case.
2238   if (match(RHS, m_Zero())) {
2239     bool LHSKnownNonNegative, LHSKnownNegative;
2240     switch (Pred) {
2241     default: llvm_unreachable("Unknown ICmp predicate!");
2242     case ICmpInst::ICMP_ULT:
2243       return getFalse(ITy);
2244     case ICmpInst::ICMP_UGE:
2245       return getTrue(ITy);
2246     case ICmpInst::ICMP_EQ:
2247     case ICmpInst::ICMP_ULE:
2248       if (isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT))
2249         return getFalse(ITy);
2250       break;
2251     case ICmpInst::ICMP_NE:
2252     case ICmpInst::ICMP_UGT:
2253       if (isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT))
2254         return getTrue(ITy);
2255       break;
2256     case ICmpInst::ICMP_SLT:
2257       ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, Q.DL, 0, Q.AC,
2258                      Q.CxtI, Q.DT);
2259       if (LHSKnownNegative)
2260         return getTrue(ITy);
2261       if (LHSKnownNonNegative)
2262         return getFalse(ITy);
2263       break;
2264     case ICmpInst::ICMP_SLE:
2265       ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, Q.DL, 0, Q.AC,
2266                      Q.CxtI, Q.DT);
2267       if (LHSKnownNegative)
2268         return getTrue(ITy);
2269       if (LHSKnownNonNegative &&
2270           isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT))
2271         return getFalse(ITy);
2272       break;
2273     case ICmpInst::ICMP_SGE:
2274       ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, Q.DL, 0, Q.AC,
2275                      Q.CxtI, Q.DT);
2276       if (LHSKnownNegative)
2277         return getFalse(ITy);
2278       if (LHSKnownNonNegative)
2279         return getTrue(ITy);
2280       break;
2281     case ICmpInst::ICMP_SGT:
2282       ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, Q.DL, 0, Q.AC,
2283                      Q.CxtI, Q.DT);
2284       if (LHSKnownNegative)
2285         return getFalse(ITy);
2286       if (LHSKnownNonNegative &&
2287           isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT))
2288         return getTrue(ITy);
2289       break;
2290     }
2291   }
2292 
2293   // See if we are doing a comparison with a constant integer.
2294   if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
2295     // Rule out tautological comparisons (eg., ult 0 or uge 0).
2296     ConstantRange RHS_CR = ICmpInst::makeConstantRange(Pred, CI->getValue());
2297     if (RHS_CR.isEmptySet())
2298       return ConstantInt::getFalse(CI->getContext());
2299     if (RHS_CR.isFullSet())
2300       return ConstantInt::getTrue(CI->getContext());
2301 
2302     // Many binary operators with constant RHS have easy to compute constant
2303     // range.  Use them to check whether the comparison is a tautology.
2304     unsigned Width = CI->getBitWidth();
2305     APInt Lower = APInt(Width, 0);
2306     APInt Upper = APInt(Width, 0);
2307     ConstantInt *CI2;
2308     if (match(LHS, m_URem(m_Value(), m_ConstantInt(CI2)))) {
2309       // 'urem x, CI2' produces [0, CI2).
2310       Upper = CI2->getValue();
2311     } else if (match(LHS, m_SRem(m_Value(), m_ConstantInt(CI2)))) {
2312       // 'srem x, CI2' produces (-|CI2|, |CI2|).
2313       Upper = CI2->getValue().abs();
2314       Lower = (-Upper) + 1;
2315     } else if (match(LHS, m_UDiv(m_ConstantInt(CI2), m_Value()))) {
2316       // 'udiv CI2, x' produces [0, CI2].
2317       Upper = CI2->getValue() + 1;
2318     } else if (match(LHS, m_UDiv(m_Value(), m_ConstantInt(CI2)))) {
2319       // 'udiv x, CI2' produces [0, UINT_MAX / CI2].
2320       APInt NegOne = APInt::getAllOnesValue(Width);
2321       if (!CI2->isZero())
2322         Upper = NegOne.udiv(CI2->getValue()) + 1;
2323     } else if (match(LHS, m_SDiv(m_ConstantInt(CI2), m_Value()))) {
2324       if (CI2->isMinSignedValue()) {
2325         // 'sdiv INT_MIN, x' produces [INT_MIN, INT_MIN / -2].
2326         Lower = CI2->getValue();
2327         Upper = Lower.lshr(1) + 1;
2328       } else {
2329         // 'sdiv CI2, x' produces [-|CI2|, |CI2|].
2330         Upper = CI2->getValue().abs() + 1;
2331         Lower = (-Upper) + 1;
2332       }
2333     } else if (match(LHS, m_SDiv(m_Value(), m_ConstantInt(CI2)))) {
2334       APInt IntMin = APInt::getSignedMinValue(Width);
2335       APInt IntMax = APInt::getSignedMaxValue(Width);
2336       const APInt &Val = CI2->getValue();
2337       if (Val.isAllOnesValue()) {
2338         // 'sdiv x, -1' produces [INT_MIN + 1, INT_MAX]
2339         //    where CI2 != -1 and CI2 != 0 and CI2 != 1
2340         Lower = IntMin + 1;
2341         Upper = IntMax + 1;
2342       } else if (Val.countLeadingZeros() < Width - 1) {
2343         // 'sdiv x, CI2' produces [INT_MIN / CI2, INT_MAX / CI2]
2344         //    where CI2 != -1 and CI2 != 0 and CI2 != 1
2345         Lower = IntMin.sdiv(Val);
2346         Upper = IntMax.sdiv(Val);
2347         if (Lower.sgt(Upper))
2348           std::swap(Lower, Upper);
2349         Upper = Upper + 1;
2350         assert(Upper != Lower && "Upper part of range has wrapped!");
2351       }
2352     } else if (match(LHS, m_NUWShl(m_ConstantInt(CI2), m_Value()))) {
2353       // 'shl nuw CI2, x' produces [CI2, CI2 << CLZ(CI2)]
2354       Lower = CI2->getValue();
2355       Upper = Lower.shl(Lower.countLeadingZeros()) + 1;
2356     } else if (match(LHS, m_NSWShl(m_ConstantInt(CI2), m_Value()))) {
2357       if (CI2->isNegative()) {
2358         // 'shl nsw CI2, x' produces [CI2 << CLO(CI2)-1, CI2]
2359         unsigned ShiftAmount = CI2->getValue().countLeadingOnes() - 1;
2360         Lower = CI2->getValue().shl(ShiftAmount);
2361         Upper = CI2->getValue() + 1;
2362       } else {
2363         // 'shl nsw CI2, x' produces [CI2, CI2 << CLZ(CI2)-1]
2364         unsigned ShiftAmount = CI2->getValue().countLeadingZeros() - 1;
2365         Lower = CI2->getValue();
2366         Upper = CI2->getValue().shl(ShiftAmount) + 1;
2367       }
2368     } else if (match(LHS, m_LShr(m_Value(), m_ConstantInt(CI2)))) {
2369       // 'lshr x, CI2' produces [0, UINT_MAX >> CI2].
2370       APInt NegOne = APInt::getAllOnesValue(Width);
2371       if (CI2->getValue().ult(Width))
2372         Upper = NegOne.lshr(CI2->getValue()) + 1;
2373     } else if (match(LHS, m_LShr(m_ConstantInt(CI2), m_Value()))) {
2374       // 'lshr CI2, x' produces [CI2 >> (Width-1), CI2].
2375       unsigned ShiftAmount = Width - 1;
2376       if (!CI2->isZero() && cast<BinaryOperator>(LHS)->isExact())
2377         ShiftAmount = CI2->getValue().countTrailingZeros();
2378       Lower = CI2->getValue().lshr(ShiftAmount);
2379       Upper = CI2->getValue() + 1;
2380     } else if (match(LHS, m_AShr(m_Value(), m_ConstantInt(CI2)))) {
2381       // 'ashr x, CI2' produces [INT_MIN >> CI2, INT_MAX >> CI2].
2382       APInt IntMin = APInt::getSignedMinValue(Width);
2383       APInt IntMax = APInt::getSignedMaxValue(Width);
2384       if (CI2->getValue().ult(Width)) {
2385         Lower = IntMin.ashr(CI2->getValue());
2386         Upper = IntMax.ashr(CI2->getValue()) + 1;
2387       }
2388     } else if (match(LHS, m_AShr(m_ConstantInt(CI2), m_Value()))) {
2389       unsigned ShiftAmount = Width - 1;
2390       if (!CI2->isZero() && cast<BinaryOperator>(LHS)->isExact())
2391         ShiftAmount = CI2->getValue().countTrailingZeros();
2392       if (CI2->isNegative()) {
2393         // 'ashr CI2, x' produces [CI2, CI2 >> (Width-1)]
2394         Lower = CI2->getValue();
2395         Upper = CI2->getValue().ashr(ShiftAmount) + 1;
2396       } else {
2397         // 'ashr CI2, x' produces [CI2 >> (Width-1), CI2]
2398         Lower = CI2->getValue().ashr(ShiftAmount);
2399         Upper = CI2->getValue() + 1;
2400       }
2401     } else if (match(LHS, m_Or(m_Value(), m_ConstantInt(CI2)))) {
2402       // 'or x, CI2' produces [CI2, UINT_MAX].
2403       Lower = CI2->getValue();
2404     } else if (match(LHS, m_And(m_Value(), m_ConstantInt(CI2)))) {
2405       // 'and x, CI2' produces [0, CI2].
2406       Upper = CI2->getValue() + 1;
2407     } else if (match(LHS, m_NUWAdd(m_Value(), m_ConstantInt(CI2)))) {
2408       // 'add nuw x, CI2' produces [CI2, UINT_MAX].
2409       Lower = CI2->getValue();
2410     }
2411 
2412     ConstantRange LHS_CR = Lower != Upper ? ConstantRange(Lower, Upper)
2413                                           : ConstantRange(Width, true);
2414 
2415     if (auto *I = dyn_cast<Instruction>(LHS))
2416       if (auto *Ranges = I->getMetadata(LLVMContext::MD_range))
2417         LHS_CR = LHS_CR.intersectWith(getConstantRangeFromMetadata(*Ranges));
2418 
2419     if (!LHS_CR.isFullSet()) {
2420       if (RHS_CR.contains(LHS_CR))
2421         return ConstantInt::getTrue(RHS->getContext());
2422       if (RHS_CR.inverse().contains(LHS_CR))
2423         return ConstantInt::getFalse(RHS->getContext());
2424     }
2425   }
2426 
2427   // If both operands have range metadata, use the metadata
2428   // to simplify the comparison.
2429   if (isa<Instruction>(RHS) && isa<Instruction>(LHS)) {
2430     auto RHS_Instr = dyn_cast<Instruction>(RHS);
2431     auto LHS_Instr = dyn_cast<Instruction>(LHS);
2432 
2433     if (RHS_Instr->getMetadata(LLVMContext::MD_range) &&
2434         LHS_Instr->getMetadata(LLVMContext::MD_range)) {
2435       auto RHS_CR = getConstantRangeFromMetadata(
2436           *RHS_Instr->getMetadata(LLVMContext::MD_range));
2437       auto LHS_CR = getConstantRangeFromMetadata(
2438           *LHS_Instr->getMetadata(LLVMContext::MD_range));
2439 
2440       auto Satisfied_CR = ConstantRange::makeSatisfyingICmpRegion(Pred, RHS_CR);
2441       if (Satisfied_CR.contains(LHS_CR))
2442         return ConstantInt::getTrue(RHS->getContext());
2443 
2444       auto InversedSatisfied_CR = ConstantRange::makeSatisfyingICmpRegion(
2445                 CmpInst::getInversePredicate(Pred), RHS_CR);
2446       if (InversedSatisfied_CR.contains(LHS_CR))
2447         return ConstantInt::getFalse(RHS->getContext());
2448     }
2449   }
2450 
2451   // Compare of cast, for example (zext X) != 0 -> X != 0
2452   if (isa<CastInst>(LHS) && (isa<Constant>(RHS) || isa<CastInst>(RHS))) {
2453     Instruction *LI = cast<CastInst>(LHS);
2454     Value *SrcOp = LI->getOperand(0);
2455     Type *SrcTy = SrcOp->getType();
2456     Type *DstTy = LI->getType();
2457 
2458     // Turn icmp (ptrtoint x), (ptrtoint/constant) into a compare of the input
2459     // if the integer type is the same size as the pointer type.
2460     if (MaxRecurse && isa<PtrToIntInst>(LI) &&
2461         Q.DL.getTypeSizeInBits(SrcTy) == DstTy->getPrimitiveSizeInBits()) {
2462       if (Constant *RHSC = dyn_cast<Constant>(RHS)) {
2463         // Transfer the cast to the constant.
2464         if (Value *V = SimplifyICmpInst(Pred, SrcOp,
2465                                         ConstantExpr::getIntToPtr(RHSC, SrcTy),
2466                                         Q, MaxRecurse-1))
2467           return V;
2468       } else if (PtrToIntInst *RI = dyn_cast<PtrToIntInst>(RHS)) {
2469         if (RI->getOperand(0)->getType() == SrcTy)
2470           // Compare without the cast.
2471           if (Value *V = SimplifyICmpInst(Pred, SrcOp, RI->getOperand(0),
2472                                           Q, MaxRecurse-1))
2473             return V;
2474       }
2475     }
2476 
2477     if (isa<ZExtInst>(LHS)) {
2478       // Turn icmp (zext X), (zext Y) into a compare of X and Y if they have the
2479       // same type.
2480       if (ZExtInst *RI = dyn_cast<ZExtInst>(RHS)) {
2481         if (MaxRecurse && SrcTy == RI->getOperand(0)->getType())
2482           // Compare X and Y.  Note that signed predicates become unsigned.
2483           if (Value *V = SimplifyICmpInst(ICmpInst::getUnsignedPredicate(Pred),
2484                                           SrcOp, RI->getOperand(0), Q,
2485                                           MaxRecurse-1))
2486             return V;
2487       }
2488       // Turn icmp (zext X), Cst into a compare of X and Cst if Cst is extended
2489       // too.  If not, then try to deduce the result of the comparison.
2490       else if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
2491         // Compute the constant that would happen if we truncated to SrcTy then
2492         // reextended to DstTy.
2493         Constant *Trunc = ConstantExpr::getTrunc(CI, SrcTy);
2494         Constant *RExt = ConstantExpr::getCast(CastInst::ZExt, Trunc, DstTy);
2495 
2496         // If the re-extended constant didn't change then this is effectively
2497         // also a case of comparing two zero-extended values.
2498         if (RExt == CI && MaxRecurse)
2499           if (Value *V = SimplifyICmpInst(ICmpInst::getUnsignedPredicate(Pred),
2500                                         SrcOp, Trunc, Q, MaxRecurse-1))
2501             return V;
2502 
2503         // Otherwise the upper bits of LHS are zero while RHS has a non-zero bit
2504         // there.  Use this to work out the result of the comparison.
2505         if (RExt != CI) {
2506           switch (Pred) {
2507           default: llvm_unreachable("Unknown ICmp predicate!");
2508           // LHS <u RHS.
2509           case ICmpInst::ICMP_EQ:
2510           case ICmpInst::ICMP_UGT:
2511           case ICmpInst::ICMP_UGE:
2512             return ConstantInt::getFalse(CI->getContext());
2513 
2514           case ICmpInst::ICMP_NE:
2515           case ICmpInst::ICMP_ULT:
2516           case ICmpInst::ICMP_ULE:
2517             return ConstantInt::getTrue(CI->getContext());
2518 
2519           // LHS is non-negative.  If RHS is negative then LHS >s LHS.  If RHS
2520           // is non-negative then LHS <s RHS.
2521           case ICmpInst::ICMP_SGT:
2522           case ICmpInst::ICMP_SGE:
2523             return CI->getValue().isNegative() ?
2524               ConstantInt::getTrue(CI->getContext()) :
2525               ConstantInt::getFalse(CI->getContext());
2526 
2527           case ICmpInst::ICMP_SLT:
2528           case ICmpInst::ICMP_SLE:
2529             return CI->getValue().isNegative() ?
2530               ConstantInt::getFalse(CI->getContext()) :
2531               ConstantInt::getTrue(CI->getContext());
2532           }
2533         }
2534       }
2535     }
2536 
2537     if (isa<SExtInst>(LHS)) {
2538       // Turn icmp (sext X), (sext Y) into a compare of X and Y if they have the
2539       // same type.
2540       if (SExtInst *RI = dyn_cast<SExtInst>(RHS)) {
2541         if (MaxRecurse && SrcTy == RI->getOperand(0)->getType())
2542           // Compare X and Y.  Note that the predicate does not change.
2543           if (Value *V = SimplifyICmpInst(Pred, SrcOp, RI->getOperand(0),
2544                                           Q, MaxRecurse-1))
2545             return V;
2546       }
2547       // Turn icmp (sext X), Cst into a compare of X and Cst if Cst is extended
2548       // too.  If not, then try to deduce the result of the comparison.
2549       else if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
2550         // Compute the constant that would happen if we truncated to SrcTy then
2551         // reextended to DstTy.
2552         Constant *Trunc = ConstantExpr::getTrunc(CI, SrcTy);
2553         Constant *RExt = ConstantExpr::getCast(CastInst::SExt, Trunc, DstTy);
2554 
2555         // If the re-extended constant didn't change then this is effectively
2556         // also a case of comparing two sign-extended values.
2557         if (RExt == CI && MaxRecurse)
2558           if (Value *V = SimplifyICmpInst(Pred, SrcOp, Trunc, Q, MaxRecurse-1))
2559             return V;
2560 
2561         // Otherwise the upper bits of LHS are all equal, while RHS has varying
2562         // bits there.  Use this to work out the result of the comparison.
2563         if (RExt != CI) {
2564           switch (Pred) {
2565           default: llvm_unreachable("Unknown ICmp predicate!");
2566           case ICmpInst::ICMP_EQ:
2567             return ConstantInt::getFalse(CI->getContext());
2568           case ICmpInst::ICMP_NE:
2569             return ConstantInt::getTrue(CI->getContext());
2570 
2571           // If RHS is non-negative then LHS <s RHS.  If RHS is negative then
2572           // LHS >s RHS.
2573           case ICmpInst::ICMP_SGT:
2574           case ICmpInst::ICMP_SGE:
2575             return CI->getValue().isNegative() ?
2576               ConstantInt::getTrue(CI->getContext()) :
2577               ConstantInt::getFalse(CI->getContext());
2578           case ICmpInst::ICMP_SLT:
2579           case ICmpInst::ICMP_SLE:
2580             return CI->getValue().isNegative() ?
2581               ConstantInt::getFalse(CI->getContext()) :
2582               ConstantInt::getTrue(CI->getContext());
2583 
2584           // If LHS is non-negative then LHS <u RHS.  If LHS is negative then
2585           // LHS >u RHS.
2586           case ICmpInst::ICMP_UGT:
2587           case ICmpInst::ICMP_UGE:
2588             // Comparison is true iff the LHS <s 0.
2589             if (MaxRecurse)
2590               if (Value *V = SimplifyICmpInst(ICmpInst::ICMP_SLT, SrcOp,
2591                                               Constant::getNullValue(SrcTy),
2592                                               Q, MaxRecurse-1))
2593                 return V;
2594             break;
2595           case ICmpInst::ICMP_ULT:
2596           case ICmpInst::ICMP_ULE:
2597             // Comparison is true iff the LHS >=s 0.
2598             if (MaxRecurse)
2599               if (Value *V = SimplifyICmpInst(ICmpInst::ICMP_SGE, SrcOp,
2600                                               Constant::getNullValue(SrcTy),
2601                                               Q, MaxRecurse-1))
2602                 return V;
2603             break;
2604           }
2605         }
2606       }
2607     }
2608   }
2609 
2610   // icmp eq|ne X, Y -> false|true if X != Y
2611   if ((Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_NE) &&
2612       isKnownNonEqual(LHS, RHS, Q.DL, Q.AC, Q.CxtI, Q.DT)) {
2613     LLVMContext &Ctx = LHS->getType()->getContext();
2614     return Pred == ICmpInst::ICMP_NE ?
2615       ConstantInt::getTrue(Ctx) : ConstantInt::getFalse(Ctx);
2616   }
2617 
2618   // Special logic for binary operators.
2619   BinaryOperator *LBO = dyn_cast<BinaryOperator>(LHS);
2620   BinaryOperator *RBO = dyn_cast<BinaryOperator>(RHS);
2621   if (MaxRecurse && (LBO || RBO)) {
2622     // Analyze the case when either LHS or RHS is an add instruction.
2623     Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr;
2624     // LHS = A + B (or A and B are null); RHS = C + D (or C and D are null).
2625     bool NoLHSWrapProblem = false, NoRHSWrapProblem = false;
2626     if (LBO && LBO->getOpcode() == Instruction::Add) {
2627       A = LBO->getOperand(0); B = LBO->getOperand(1);
2628       NoLHSWrapProblem = ICmpInst::isEquality(Pred) ||
2629         (CmpInst::isUnsigned(Pred) && LBO->hasNoUnsignedWrap()) ||
2630         (CmpInst::isSigned(Pred) && LBO->hasNoSignedWrap());
2631     }
2632     if (RBO && RBO->getOpcode() == Instruction::Add) {
2633       C = RBO->getOperand(0); D = RBO->getOperand(1);
2634       NoRHSWrapProblem = ICmpInst::isEquality(Pred) ||
2635         (CmpInst::isUnsigned(Pred) && RBO->hasNoUnsignedWrap()) ||
2636         (CmpInst::isSigned(Pred) && RBO->hasNoSignedWrap());
2637     }
2638 
2639     // icmp (X+Y), X -> icmp Y, 0 for equalities or if there is no overflow.
2640     if ((A == RHS || B == RHS) && NoLHSWrapProblem)
2641       if (Value *V = SimplifyICmpInst(Pred, A == RHS ? B : A,
2642                                       Constant::getNullValue(RHS->getType()),
2643                                       Q, MaxRecurse-1))
2644         return V;
2645 
2646     // icmp X, (X+Y) -> icmp 0, Y for equalities or if there is no overflow.
2647     if ((C == LHS || D == LHS) && NoRHSWrapProblem)
2648       if (Value *V = SimplifyICmpInst(Pred,
2649                                       Constant::getNullValue(LHS->getType()),
2650                                       C == LHS ? D : C, Q, MaxRecurse-1))
2651         return V;
2652 
2653     // icmp (X+Y), (X+Z) -> icmp Y,Z for equalities or if there is no overflow.
2654     if (A && C && (A == C || A == D || B == C || B == D) &&
2655         NoLHSWrapProblem && NoRHSWrapProblem) {
2656       // Determine Y and Z in the form icmp (X+Y), (X+Z).
2657       Value *Y, *Z;
2658       if (A == C) {
2659         // C + B == C + D  ->  B == D
2660         Y = B;
2661         Z = D;
2662       } else if (A == D) {
2663         // D + B == C + D  ->  B == C
2664         Y = B;
2665         Z = C;
2666       } else if (B == C) {
2667         // A + C == C + D  ->  A == D
2668         Y = A;
2669         Z = D;
2670       } else {
2671         assert(B == D);
2672         // A + D == C + D  ->  A == C
2673         Y = A;
2674         Z = C;
2675       }
2676       if (Value *V = SimplifyICmpInst(Pred, Y, Z, Q, MaxRecurse-1))
2677         return V;
2678     }
2679   }
2680 
2681   {
2682     Value *Y = nullptr;
2683     // icmp pred (or X, Y), X
2684     if (LBO && match(LBO, m_c_Or(m_Value(Y), m_Specific(RHS)))) {
2685       if (Pred == ICmpInst::ICMP_ULT)
2686         return getFalse(ITy);
2687       if (Pred == ICmpInst::ICMP_UGE)
2688         return getTrue(ITy);
2689 
2690       if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SGE) {
2691         bool RHSKnownNonNegative, RHSKnownNegative;
2692         bool YKnownNonNegative, YKnownNegative;
2693         ComputeSignBit(RHS, RHSKnownNonNegative, RHSKnownNegative, Q.DL, 0,
2694                        Q.AC, Q.CxtI, Q.DT);
2695         ComputeSignBit(Y, YKnownNonNegative, YKnownNegative, Q.DL, 0, Q.AC,
2696                        Q.CxtI, Q.DT);
2697         if (RHSKnownNonNegative && YKnownNegative)
2698           return Pred == ICmpInst::ICMP_SLT ? getTrue(ITy) : getFalse(ITy);
2699         if (RHSKnownNegative || YKnownNonNegative)
2700           return Pred == ICmpInst::ICMP_SLT ? getFalse(ITy) : getTrue(ITy);
2701       }
2702     }
2703     // icmp pred X, (or X, Y)
2704     if (RBO && match(RBO, m_c_Or(m_Value(Y), m_Specific(LHS)))) {
2705       if (Pred == ICmpInst::ICMP_ULE)
2706         return getTrue(ITy);
2707       if (Pred == ICmpInst::ICMP_UGT)
2708         return getFalse(ITy);
2709 
2710       if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SLE) {
2711         bool LHSKnownNonNegative, LHSKnownNegative;
2712         bool YKnownNonNegative, YKnownNegative;
2713         ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, Q.DL, 0,
2714                        Q.AC, Q.CxtI, Q.DT);
2715         ComputeSignBit(Y, YKnownNonNegative, YKnownNegative, Q.DL, 0, Q.AC,
2716                        Q.CxtI, Q.DT);
2717         if (LHSKnownNonNegative && YKnownNegative)
2718           return Pred == ICmpInst::ICMP_SGT ? getTrue(ITy) : getFalse(ITy);
2719         if (LHSKnownNegative || YKnownNonNegative)
2720           return Pred == ICmpInst::ICMP_SGT ? getFalse(ITy) : getTrue(ITy);
2721       }
2722     }
2723   }
2724 
2725   // icmp pred (and X, Y), X
2726   if (LBO && match(LBO, m_CombineOr(m_And(m_Value(), m_Specific(RHS)),
2727                                     m_And(m_Specific(RHS), m_Value())))) {
2728     if (Pred == ICmpInst::ICMP_UGT)
2729       return getFalse(ITy);
2730     if (Pred == ICmpInst::ICMP_ULE)
2731       return getTrue(ITy);
2732   }
2733   // icmp pred X, (and X, Y)
2734   if (RBO && match(RBO, m_CombineOr(m_And(m_Value(), m_Specific(LHS)),
2735                                     m_And(m_Specific(LHS), m_Value())))) {
2736     if (Pred == ICmpInst::ICMP_UGE)
2737       return getTrue(ITy);
2738     if (Pred == ICmpInst::ICMP_ULT)
2739       return getFalse(ITy);
2740   }
2741 
2742   // 0 - (zext X) pred C
2743   if (!CmpInst::isUnsigned(Pred) && match(LHS, m_Neg(m_ZExt(m_Value())))) {
2744     if (ConstantInt *RHSC = dyn_cast<ConstantInt>(RHS)) {
2745       if (RHSC->getValue().isStrictlyPositive()) {
2746         if (Pred == ICmpInst::ICMP_SLT)
2747           return ConstantInt::getTrue(RHSC->getContext());
2748         if (Pred == ICmpInst::ICMP_SGE)
2749           return ConstantInt::getFalse(RHSC->getContext());
2750         if (Pred == ICmpInst::ICMP_EQ)
2751           return ConstantInt::getFalse(RHSC->getContext());
2752         if (Pred == ICmpInst::ICMP_NE)
2753           return ConstantInt::getTrue(RHSC->getContext());
2754       }
2755       if (RHSC->getValue().isNonNegative()) {
2756         if (Pred == ICmpInst::ICMP_SLE)
2757           return ConstantInt::getTrue(RHSC->getContext());
2758         if (Pred == ICmpInst::ICMP_SGT)
2759           return ConstantInt::getFalse(RHSC->getContext());
2760       }
2761     }
2762   }
2763 
2764   // icmp pred (urem X, Y), Y
2765   if (LBO && match(LBO, m_URem(m_Value(), m_Specific(RHS)))) {
2766     bool KnownNonNegative, KnownNegative;
2767     switch (Pred) {
2768     default:
2769       break;
2770     case ICmpInst::ICMP_SGT:
2771     case ICmpInst::ICMP_SGE:
2772       ComputeSignBit(RHS, KnownNonNegative, KnownNegative, Q.DL, 0, Q.AC,
2773                      Q.CxtI, Q.DT);
2774       if (!KnownNonNegative)
2775         break;
2776       // fall-through
2777     case ICmpInst::ICMP_EQ:
2778     case ICmpInst::ICMP_UGT:
2779     case ICmpInst::ICMP_UGE:
2780       return getFalse(ITy);
2781     case ICmpInst::ICMP_SLT:
2782     case ICmpInst::ICMP_SLE:
2783       ComputeSignBit(RHS, KnownNonNegative, KnownNegative, Q.DL, 0, Q.AC,
2784                      Q.CxtI, Q.DT);
2785       if (!KnownNonNegative)
2786         break;
2787       // fall-through
2788     case ICmpInst::ICMP_NE:
2789     case ICmpInst::ICMP_ULT:
2790     case ICmpInst::ICMP_ULE:
2791       return getTrue(ITy);
2792     }
2793   }
2794 
2795   // icmp pred X, (urem Y, X)
2796   if (RBO && match(RBO, m_URem(m_Value(), m_Specific(LHS)))) {
2797     bool KnownNonNegative, KnownNegative;
2798     switch (Pred) {
2799     default:
2800       break;
2801     case ICmpInst::ICMP_SGT:
2802     case ICmpInst::ICMP_SGE:
2803       ComputeSignBit(LHS, KnownNonNegative, KnownNegative, Q.DL, 0, Q.AC,
2804                      Q.CxtI, Q.DT);
2805       if (!KnownNonNegative)
2806         break;
2807       // fall-through
2808     case ICmpInst::ICMP_NE:
2809     case ICmpInst::ICMP_UGT:
2810     case ICmpInst::ICMP_UGE:
2811       return getTrue(ITy);
2812     case ICmpInst::ICMP_SLT:
2813     case ICmpInst::ICMP_SLE:
2814       ComputeSignBit(LHS, KnownNonNegative, KnownNegative, Q.DL, 0, Q.AC,
2815                      Q.CxtI, Q.DT);
2816       if (!KnownNonNegative)
2817         break;
2818       // fall-through
2819     case ICmpInst::ICMP_EQ:
2820     case ICmpInst::ICMP_ULT:
2821     case ICmpInst::ICMP_ULE:
2822       return getFalse(ITy);
2823     }
2824   }
2825 
2826   // x >> y <=u x
2827   // x udiv y <=u x.
2828   if (LBO && (match(LBO, m_LShr(m_Specific(RHS), m_Value())) ||
2829               match(LBO, m_UDiv(m_Specific(RHS), m_Value())))) {
2830     // icmp pred (X op Y), X
2831     if (Pred == ICmpInst::ICMP_UGT)
2832       return getFalse(ITy);
2833     if (Pred == ICmpInst::ICMP_ULE)
2834       return getTrue(ITy);
2835   }
2836 
2837   // handle:
2838   //   CI2 << X == CI
2839   //   CI2 << X != CI
2840   //
2841   //   where CI2 is a power of 2 and CI isn't
2842   if (auto *CI = dyn_cast<ConstantInt>(RHS)) {
2843     const APInt *CI2Val, *CIVal = &CI->getValue();
2844     if (LBO && match(LBO, m_Shl(m_APInt(CI2Val), m_Value())) &&
2845         CI2Val->isPowerOf2()) {
2846       if (!CIVal->isPowerOf2()) {
2847         // CI2 << X can equal zero in some circumstances,
2848         // this simplification is unsafe if CI is zero.
2849         //
2850         // We know it is safe if:
2851         // - The shift is nsw, we can't shift out the one bit.
2852         // - The shift is nuw, we can't shift out the one bit.
2853         // - CI2 is one
2854         // - CI isn't zero
2855         if (LBO->hasNoSignedWrap() || LBO->hasNoUnsignedWrap() ||
2856             *CI2Val == 1 || !CI->isZero()) {
2857           if (Pred == ICmpInst::ICMP_EQ)
2858             return ConstantInt::getFalse(RHS->getContext());
2859           if (Pred == ICmpInst::ICMP_NE)
2860             return ConstantInt::getTrue(RHS->getContext());
2861         }
2862       }
2863       if (CIVal->isSignBit() && *CI2Val == 1) {
2864         if (Pred == ICmpInst::ICMP_UGT)
2865           return ConstantInt::getFalse(RHS->getContext());
2866         if (Pred == ICmpInst::ICMP_ULE)
2867           return ConstantInt::getTrue(RHS->getContext());
2868       }
2869     }
2870   }
2871 
2872   if (MaxRecurse && LBO && RBO && LBO->getOpcode() == RBO->getOpcode() &&
2873       LBO->getOperand(1) == RBO->getOperand(1)) {
2874     switch (LBO->getOpcode()) {
2875     default: break;
2876     case Instruction::UDiv:
2877     case Instruction::LShr:
2878       if (ICmpInst::isSigned(Pred))
2879         break;
2880       // fall-through
2881     case Instruction::SDiv:
2882     case Instruction::AShr:
2883       if (!LBO->isExact() || !RBO->isExact())
2884         break;
2885       if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0),
2886                                       RBO->getOperand(0), Q, MaxRecurse-1))
2887         return V;
2888       break;
2889     case Instruction::Shl: {
2890       bool NUW = LBO->hasNoUnsignedWrap() && RBO->hasNoUnsignedWrap();
2891       bool NSW = LBO->hasNoSignedWrap() && RBO->hasNoSignedWrap();
2892       if (!NUW && !NSW)
2893         break;
2894       if (!NSW && ICmpInst::isSigned(Pred))
2895         break;
2896       if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0),
2897                                       RBO->getOperand(0), Q, MaxRecurse-1))
2898         return V;
2899       break;
2900     }
2901     }
2902   }
2903 
2904   // Simplify comparisons involving max/min.
2905   Value *A, *B;
2906   CmpInst::Predicate P = CmpInst::BAD_ICMP_PREDICATE;
2907   CmpInst::Predicate EqP; // Chosen so that "A == max/min(A,B)" iff "A EqP B".
2908 
2909   // Signed variants on "max(a,b)>=a -> true".
2910   if (match(LHS, m_SMax(m_Value(A), m_Value(B))) && (A == RHS || B == RHS)) {
2911     if (A != RHS) std::swap(A, B); // smax(A, B) pred A.
2912     EqP = CmpInst::ICMP_SGE; // "A == smax(A, B)" iff "A sge B".
2913     // We analyze this as smax(A, B) pred A.
2914     P = Pred;
2915   } else if (match(RHS, m_SMax(m_Value(A), m_Value(B))) &&
2916              (A == LHS || B == LHS)) {
2917     if (A != LHS) std::swap(A, B); // A pred smax(A, B).
2918     EqP = CmpInst::ICMP_SGE; // "A == smax(A, B)" iff "A sge B".
2919     // We analyze this as smax(A, B) swapped-pred A.
2920     P = CmpInst::getSwappedPredicate(Pred);
2921   } else if (match(LHS, m_SMin(m_Value(A), m_Value(B))) &&
2922              (A == RHS || B == RHS)) {
2923     if (A != RHS) std::swap(A, B); // smin(A, B) pred A.
2924     EqP = CmpInst::ICMP_SLE; // "A == smin(A, B)" iff "A sle B".
2925     // We analyze this as smax(-A, -B) swapped-pred -A.
2926     // Note that we do not need to actually form -A or -B thanks to EqP.
2927     P = CmpInst::getSwappedPredicate(Pred);
2928   } else if (match(RHS, m_SMin(m_Value(A), m_Value(B))) &&
2929              (A == LHS || B == LHS)) {
2930     if (A != LHS) std::swap(A, B); // A pred smin(A, B).
2931     EqP = CmpInst::ICMP_SLE; // "A == smin(A, B)" iff "A sle B".
2932     // We analyze this as smax(-A, -B) pred -A.
2933     // Note that we do not need to actually form -A or -B thanks to EqP.
2934     P = Pred;
2935   }
2936   if (P != CmpInst::BAD_ICMP_PREDICATE) {
2937     // Cases correspond to "max(A, B) p A".
2938     switch (P) {
2939     default:
2940       break;
2941     case CmpInst::ICMP_EQ:
2942     case CmpInst::ICMP_SLE:
2943       // Equivalent to "A EqP B".  This may be the same as the condition tested
2944       // in the max/min; if so, we can just return that.
2945       if (Value *V = ExtractEquivalentCondition(LHS, EqP, A, B))
2946         return V;
2947       if (Value *V = ExtractEquivalentCondition(RHS, EqP, A, B))
2948         return V;
2949       // Otherwise, see if "A EqP B" simplifies.
2950       if (MaxRecurse)
2951         if (Value *V = SimplifyICmpInst(EqP, A, B, Q, MaxRecurse-1))
2952           return V;
2953       break;
2954     case CmpInst::ICMP_NE:
2955     case CmpInst::ICMP_SGT: {
2956       CmpInst::Predicate InvEqP = CmpInst::getInversePredicate(EqP);
2957       // Equivalent to "A InvEqP B".  This may be the same as the condition
2958       // tested in the max/min; if so, we can just return that.
2959       if (Value *V = ExtractEquivalentCondition(LHS, InvEqP, A, B))
2960         return V;
2961       if (Value *V = ExtractEquivalentCondition(RHS, InvEqP, A, B))
2962         return V;
2963       // Otherwise, see if "A InvEqP B" simplifies.
2964       if (MaxRecurse)
2965         if (Value *V = SimplifyICmpInst(InvEqP, A, B, Q, MaxRecurse-1))
2966           return V;
2967       break;
2968     }
2969     case CmpInst::ICMP_SGE:
2970       // Always true.
2971       return getTrue(ITy);
2972     case CmpInst::ICMP_SLT:
2973       // Always false.
2974       return getFalse(ITy);
2975     }
2976   }
2977 
2978   // Unsigned variants on "max(a,b)>=a -> true".
2979   P = CmpInst::BAD_ICMP_PREDICATE;
2980   if (match(LHS, m_UMax(m_Value(A), m_Value(B))) && (A == RHS || B == RHS)) {
2981     if (A != RHS) std::swap(A, B); // umax(A, B) pred A.
2982     EqP = CmpInst::ICMP_UGE; // "A == umax(A, B)" iff "A uge B".
2983     // We analyze this as umax(A, B) pred A.
2984     P = Pred;
2985   } else if (match(RHS, m_UMax(m_Value(A), m_Value(B))) &&
2986              (A == LHS || B == LHS)) {
2987     if (A != LHS) std::swap(A, B); // A pred umax(A, B).
2988     EqP = CmpInst::ICMP_UGE; // "A == umax(A, B)" iff "A uge B".
2989     // We analyze this as umax(A, B) swapped-pred A.
2990     P = CmpInst::getSwappedPredicate(Pred);
2991   } else if (match(LHS, m_UMin(m_Value(A), m_Value(B))) &&
2992              (A == RHS || B == RHS)) {
2993     if (A != RHS) std::swap(A, B); // umin(A, B) pred A.
2994     EqP = CmpInst::ICMP_ULE; // "A == umin(A, B)" iff "A ule B".
2995     // We analyze this as umax(-A, -B) swapped-pred -A.
2996     // Note that we do not need to actually form -A or -B thanks to EqP.
2997     P = CmpInst::getSwappedPredicate(Pred);
2998   } else if (match(RHS, m_UMin(m_Value(A), m_Value(B))) &&
2999              (A == LHS || B == LHS)) {
3000     if (A != LHS) std::swap(A, B); // A pred umin(A, B).
3001     EqP = CmpInst::ICMP_ULE; // "A == umin(A, B)" iff "A ule B".
3002     // We analyze this as umax(-A, -B) pred -A.
3003     // Note that we do not need to actually form -A or -B thanks to EqP.
3004     P = Pred;
3005   }
3006   if (P != CmpInst::BAD_ICMP_PREDICATE) {
3007     // Cases correspond to "max(A, B) p A".
3008     switch (P) {
3009     default:
3010       break;
3011     case CmpInst::ICMP_EQ:
3012     case CmpInst::ICMP_ULE:
3013       // Equivalent to "A EqP B".  This may be the same as the condition tested
3014       // in the max/min; if so, we can just return that.
3015       if (Value *V = ExtractEquivalentCondition(LHS, EqP, A, B))
3016         return V;
3017       if (Value *V = ExtractEquivalentCondition(RHS, EqP, A, B))
3018         return V;
3019       // Otherwise, see if "A EqP B" simplifies.
3020       if (MaxRecurse)
3021         if (Value *V = SimplifyICmpInst(EqP, A, B, Q, MaxRecurse-1))
3022           return V;
3023       break;
3024     case CmpInst::ICMP_NE:
3025     case CmpInst::ICMP_UGT: {
3026       CmpInst::Predicate InvEqP = CmpInst::getInversePredicate(EqP);
3027       // Equivalent to "A InvEqP B".  This may be the same as the condition
3028       // tested in the max/min; if so, we can just return that.
3029       if (Value *V = ExtractEquivalentCondition(LHS, InvEqP, A, B))
3030         return V;
3031       if (Value *V = ExtractEquivalentCondition(RHS, InvEqP, A, B))
3032         return V;
3033       // Otherwise, see if "A InvEqP B" simplifies.
3034       if (MaxRecurse)
3035         if (Value *V = SimplifyICmpInst(InvEqP, A, B, Q, MaxRecurse-1))
3036           return V;
3037       break;
3038     }
3039     case CmpInst::ICMP_UGE:
3040       // Always true.
3041       return getTrue(ITy);
3042     case CmpInst::ICMP_ULT:
3043       // Always false.
3044       return getFalse(ITy);
3045     }
3046   }
3047 
3048   // Variants on "max(x,y) >= min(x,z)".
3049   Value *C, *D;
3050   if (match(LHS, m_SMax(m_Value(A), m_Value(B))) &&
3051       match(RHS, m_SMin(m_Value(C), m_Value(D))) &&
3052       (A == C || A == D || B == C || B == D)) {
3053     // max(x, ?) pred min(x, ?).
3054     if (Pred == CmpInst::ICMP_SGE)
3055       // Always true.
3056       return getTrue(ITy);
3057     if (Pred == CmpInst::ICMP_SLT)
3058       // Always false.
3059       return getFalse(ITy);
3060   } else if (match(LHS, m_SMin(m_Value(A), m_Value(B))) &&
3061              match(RHS, m_SMax(m_Value(C), m_Value(D))) &&
3062              (A == C || A == D || B == C || B == D)) {
3063     // min(x, ?) pred max(x, ?).
3064     if (Pred == CmpInst::ICMP_SLE)
3065       // Always true.
3066       return getTrue(ITy);
3067     if (Pred == CmpInst::ICMP_SGT)
3068       // Always false.
3069       return getFalse(ITy);
3070   } else if (match(LHS, m_UMax(m_Value(A), m_Value(B))) &&
3071              match(RHS, m_UMin(m_Value(C), m_Value(D))) &&
3072              (A == C || A == D || B == C || B == D)) {
3073     // max(x, ?) pred min(x, ?).
3074     if (Pred == CmpInst::ICMP_UGE)
3075       // Always true.
3076       return getTrue(ITy);
3077     if (Pred == CmpInst::ICMP_ULT)
3078       // Always false.
3079       return getFalse(ITy);
3080   } else if (match(LHS, m_UMin(m_Value(A), m_Value(B))) &&
3081              match(RHS, m_UMax(m_Value(C), m_Value(D))) &&
3082              (A == C || A == D || B == C || B == D)) {
3083     // min(x, ?) pred max(x, ?).
3084     if (Pred == CmpInst::ICMP_ULE)
3085       // Always true.
3086       return getTrue(ITy);
3087     if (Pred == CmpInst::ICMP_UGT)
3088       // Always false.
3089       return getFalse(ITy);
3090   }
3091 
3092   // Simplify comparisons of related pointers using a powerful, recursive
3093   // GEP-walk when we have target data available..
3094   if (LHS->getType()->isPointerTy())
3095     if (auto *C = computePointerICmp(Q.DL, Q.TLI, Q.DT, Pred, Q.CxtI, LHS, RHS))
3096       return C;
3097 
3098   if (GetElementPtrInst *GLHS = dyn_cast<GetElementPtrInst>(LHS)) {
3099     if (GEPOperator *GRHS = dyn_cast<GEPOperator>(RHS)) {
3100       if (GLHS->getPointerOperand() == GRHS->getPointerOperand() &&
3101           GLHS->hasAllConstantIndices() && GRHS->hasAllConstantIndices() &&
3102           (ICmpInst::isEquality(Pred) ||
3103            (GLHS->isInBounds() && GRHS->isInBounds() &&
3104             Pred == ICmpInst::getSignedPredicate(Pred)))) {
3105         // The bases are equal and the indices are constant.  Build a constant
3106         // expression GEP with the same indices and a null base pointer to see
3107         // what constant folding can make out of it.
3108         Constant *Null = Constant::getNullValue(GLHS->getPointerOperandType());
3109         SmallVector<Value *, 4> IndicesLHS(GLHS->idx_begin(), GLHS->idx_end());
3110         Constant *NewLHS = ConstantExpr::getGetElementPtr(
3111             GLHS->getSourceElementType(), Null, IndicesLHS);
3112 
3113         SmallVector<Value *, 4> IndicesRHS(GRHS->idx_begin(), GRHS->idx_end());
3114         Constant *NewRHS = ConstantExpr::getGetElementPtr(
3115             GLHS->getSourceElementType(), Null, IndicesRHS);
3116         return ConstantExpr::getICmp(Pred, NewLHS, NewRHS);
3117       }
3118     }
3119   }
3120 
3121   // If a bit is known to be zero for A and known to be one for B,
3122   // then A and B cannot be equal.
3123   if (ICmpInst::isEquality(Pred)) {
3124     if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
3125       uint32_t BitWidth = CI->getBitWidth();
3126       APInt LHSKnownZero(BitWidth, 0);
3127       APInt LHSKnownOne(BitWidth, 0);
3128       computeKnownBits(LHS, LHSKnownZero, LHSKnownOne, Q.DL, /*Depth=*/0, Q.AC,
3129                        Q.CxtI, Q.DT);
3130       const APInt &RHSVal = CI->getValue();
3131       if (((LHSKnownZero & RHSVal) != 0) || ((LHSKnownOne & ~RHSVal) != 0))
3132         return Pred == ICmpInst::ICMP_EQ
3133                    ? ConstantInt::getFalse(CI->getContext())
3134                    : ConstantInt::getTrue(CI->getContext());
3135     }
3136   }
3137 
3138   // If the comparison is with the result of a select instruction, check whether
3139   // comparing with either branch of the select always yields the same value.
3140   if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS))
3141     if (Value *V = ThreadCmpOverSelect(Pred, LHS, RHS, Q, MaxRecurse))
3142       return V;
3143 
3144   // If the comparison is with the result of a phi instruction, check whether
3145   // doing the compare with each incoming phi value yields a common result.
3146   if (isa<PHINode>(LHS) || isa<PHINode>(RHS))
3147     if (Value *V = ThreadCmpOverPHI(Pred, LHS, RHS, Q, MaxRecurse))
3148       return V;
3149 
3150   return nullptr;
3151 }
3152 
3153 Value *llvm::SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS,
3154                               const DataLayout &DL,
3155                               const TargetLibraryInfo *TLI,
3156                               const DominatorTree *DT, AssumptionCache *AC,
3157                               const Instruction *CxtI) {
3158   return ::SimplifyICmpInst(Predicate, LHS, RHS, Query(DL, TLI, DT, AC, CxtI),
3159                             RecursionLimit);
3160 }
3161 
3162 /// Given operands for an FCmpInst, see if we can fold the result.
3163 /// If not, this returns null.
3164 static Value *SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
3165                                FastMathFlags FMF, const Query &Q,
3166                                unsigned MaxRecurse) {
3167   CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate;
3168   assert(CmpInst::isFPPredicate(Pred) && "Not an FP compare!");
3169 
3170   if (Constant *CLHS = dyn_cast<Constant>(LHS)) {
3171     if (Constant *CRHS = dyn_cast<Constant>(RHS))
3172       return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, Q.DL, Q.TLI);
3173 
3174     // If we have a constant, make sure it is on the RHS.
3175     std::swap(LHS, RHS);
3176     Pred = CmpInst::getSwappedPredicate(Pred);
3177   }
3178 
3179   // Fold trivial predicates.
3180   if (Pred == FCmpInst::FCMP_FALSE)
3181     return ConstantInt::get(GetCompareTy(LHS), 0);
3182   if (Pred == FCmpInst::FCMP_TRUE)
3183     return ConstantInt::get(GetCompareTy(LHS), 1);
3184 
3185   // UNO/ORD predicates can be trivially folded if NaNs are ignored.
3186   if (FMF.noNaNs()) {
3187     if (Pred == FCmpInst::FCMP_UNO)
3188       return ConstantInt::get(GetCompareTy(LHS), 0);
3189     if (Pred == FCmpInst::FCMP_ORD)
3190       return ConstantInt::get(GetCompareTy(LHS), 1);
3191   }
3192 
3193   // fcmp pred x, undef  and  fcmp pred undef, x
3194   // fold to true if unordered, false if ordered
3195   if (isa<UndefValue>(LHS) || isa<UndefValue>(RHS)) {
3196     // Choosing NaN for the undef will always make unordered comparison succeed
3197     // and ordered comparison fail.
3198     return ConstantInt::get(GetCompareTy(LHS), CmpInst::isUnordered(Pred));
3199   }
3200 
3201   // fcmp x,x -> true/false.  Not all compares are foldable.
3202   if (LHS == RHS) {
3203     if (CmpInst::isTrueWhenEqual(Pred))
3204       return ConstantInt::get(GetCompareTy(LHS), 1);
3205     if (CmpInst::isFalseWhenEqual(Pred))
3206       return ConstantInt::get(GetCompareTy(LHS), 0);
3207   }
3208 
3209   // Handle fcmp with constant RHS
3210   const ConstantFP *CFP = nullptr;
3211   if (const auto *RHSC = dyn_cast<Constant>(RHS)) {
3212     if (RHS->getType()->isVectorTy())
3213       CFP = dyn_cast_or_null<ConstantFP>(RHSC->getSplatValue());
3214     else
3215       CFP = dyn_cast<ConstantFP>(RHSC);
3216   }
3217   if (CFP) {
3218     // If the constant is a nan, see if we can fold the comparison based on it.
3219     if (CFP->getValueAPF().isNaN()) {
3220       if (FCmpInst::isOrdered(Pred)) // True "if ordered and foo"
3221         return ConstantInt::getFalse(CFP->getContext());
3222       assert(FCmpInst::isUnordered(Pred) &&
3223              "Comparison must be either ordered or unordered!");
3224       // True if unordered.
3225       return ConstantInt::get(GetCompareTy(LHS), 1);
3226     }
3227     // Check whether the constant is an infinity.
3228     if (CFP->getValueAPF().isInfinity()) {
3229       if (CFP->getValueAPF().isNegative()) {
3230         switch (Pred) {
3231         case FCmpInst::FCMP_OLT:
3232           // No value is ordered and less than negative infinity.
3233           return ConstantInt::get(GetCompareTy(LHS), 0);
3234         case FCmpInst::FCMP_UGE:
3235           // All values are unordered with or at least negative infinity.
3236           return ConstantInt::get(GetCompareTy(LHS), 1);
3237         default:
3238           break;
3239         }
3240       } else {
3241         switch (Pred) {
3242         case FCmpInst::FCMP_OGT:
3243           // No value is ordered and greater than infinity.
3244           return ConstantInt::get(GetCompareTy(LHS), 0);
3245         case FCmpInst::FCMP_ULE:
3246           // All values are unordered with and at most infinity.
3247           return ConstantInt::get(GetCompareTy(LHS), 1);
3248         default:
3249           break;
3250         }
3251       }
3252     }
3253     if (CFP->getValueAPF().isZero()) {
3254       switch (Pred) {
3255       case FCmpInst::FCMP_UGE:
3256         if (CannotBeOrderedLessThanZero(LHS, Q.TLI))
3257           return ConstantInt::get(GetCompareTy(LHS), 1);
3258         break;
3259       case FCmpInst::FCMP_OLT:
3260         // X < 0
3261         if (CannotBeOrderedLessThanZero(LHS, Q.TLI))
3262           return ConstantInt::get(GetCompareTy(LHS), 0);
3263         break;
3264       default:
3265         break;
3266       }
3267     }
3268   }
3269 
3270   // If the comparison is with the result of a select instruction, check whether
3271   // comparing with either branch of the select always yields the same value.
3272   if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS))
3273     if (Value *V = ThreadCmpOverSelect(Pred, LHS, RHS, Q, MaxRecurse))
3274       return V;
3275 
3276   // If the comparison is with the result of a phi instruction, check whether
3277   // doing the compare with each incoming phi value yields a common result.
3278   if (isa<PHINode>(LHS) || isa<PHINode>(RHS))
3279     if (Value *V = ThreadCmpOverPHI(Pred, LHS, RHS, Q, MaxRecurse))
3280       return V;
3281 
3282   return nullptr;
3283 }
3284 
3285 Value *llvm::SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
3286                               FastMathFlags FMF, const DataLayout &DL,
3287                               const TargetLibraryInfo *TLI,
3288                               const DominatorTree *DT, AssumptionCache *AC,
3289                               const Instruction *CxtI) {
3290   return ::SimplifyFCmpInst(Predicate, LHS, RHS, FMF,
3291                             Query(DL, TLI, DT, AC, CxtI), RecursionLimit);
3292 }
3293 
3294 /// See if V simplifies when its operand Op is replaced with RepOp.
3295 static const Value *SimplifyWithOpReplaced(Value *V, Value *Op, Value *RepOp,
3296                                            const Query &Q,
3297                                            unsigned MaxRecurse) {
3298   // Trivial replacement.
3299   if (V == Op)
3300     return RepOp;
3301 
3302   auto *I = dyn_cast<Instruction>(V);
3303   if (!I)
3304     return nullptr;
3305 
3306   // If this is a binary operator, try to simplify it with the replaced op.
3307   if (auto *B = dyn_cast<BinaryOperator>(I)) {
3308     // Consider:
3309     //   %cmp = icmp eq i32 %x, 2147483647
3310     //   %add = add nsw i32 %x, 1
3311     //   %sel = select i1 %cmp, i32 -2147483648, i32 %add
3312     //
3313     // We can't replace %sel with %add unless we strip away the flags.
3314     if (isa<OverflowingBinaryOperator>(B))
3315       if (B->hasNoSignedWrap() || B->hasNoUnsignedWrap())
3316         return nullptr;
3317     if (isa<PossiblyExactOperator>(B))
3318       if (B->isExact())
3319         return nullptr;
3320 
3321     if (MaxRecurse) {
3322       if (B->getOperand(0) == Op)
3323         return SimplifyBinOp(B->getOpcode(), RepOp, B->getOperand(1), Q,
3324                              MaxRecurse - 1);
3325       if (B->getOperand(1) == Op)
3326         return SimplifyBinOp(B->getOpcode(), B->getOperand(0), RepOp, Q,
3327                              MaxRecurse - 1);
3328     }
3329   }
3330 
3331   // Same for CmpInsts.
3332   if (CmpInst *C = dyn_cast<CmpInst>(I)) {
3333     if (MaxRecurse) {
3334       if (C->getOperand(0) == Op)
3335         return SimplifyCmpInst(C->getPredicate(), RepOp, C->getOperand(1), Q,
3336                                MaxRecurse - 1);
3337       if (C->getOperand(1) == Op)
3338         return SimplifyCmpInst(C->getPredicate(), C->getOperand(0), RepOp, Q,
3339                                MaxRecurse - 1);
3340     }
3341   }
3342 
3343   // TODO: We could hand off more cases to instsimplify here.
3344 
3345   // If all operands are constant after substituting Op for RepOp then we can
3346   // constant fold the instruction.
3347   if (Constant *CRepOp = dyn_cast<Constant>(RepOp)) {
3348     // Build a list of all constant operands.
3349     SmallVector<Constant *, 8> ConstOps;
3350     for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
3351       if (I->getOperand(i) == Op)
3352         ConstOps.push_back(CRepOp);
3353       else if (Constant *COp = dyn_cast<Constant>(I->getOperand(i)))
3354         ConstOps.push_back(COp);
3355       else
3356         break;
3357     }
3358 
3359     // All operands were constants, fold it.
3360     if (ConstOps.size() == I->getNumOperands()) {
3361       if (CmpInst *C = dyn_cast<CmpInst>(I))
3362         return ConstantFoldCompareInstOperands(C->getPredicate(), ConstOps[0],
3363                                                ConstOps[1], Q.DL, Q.TLI);
3364 
3365       if (LoadInst *LI = dyn_cast<LoadInst>(I))
3366         if (!LI->isVolatile())
3367           return ConstantFoldLoadFromConstPtr(ConstOps[0], LI->getType(), Q.DL);
3368 
3369       return ConstantFoldInstOperands(I, ConstOps, Q.DL, Q.TLI);
3370     }
3371   }
3372 
3373   return nullptr;
3374 }
3375 
3376 /// Try to simplify a select instruction when its condition operand is an
3377 /// integer comparison where one operand of the compare is a constant.
3378 static Value *simplifySelectBitTest(Value *TrueVal, Value *FalseVal, Value *X,
3379                                     const APInt *Y, bool TrueWhenUnset) {
3380   const APInt *C;
3381 
3382   // (X & Y) == 0 ? X & ~Y : X  --> X
3383   // (X & Y) != 0 ? X & ~Y : X  --> X & ~Y
3384   if (FalseVal == X && match(TrueVal, m_And(m_Specific(X), m_APInt(C))) &&
3385       *Y == ~*C)
3386     return TrueWhenUnset ? FalseVal : TrueVal;
3387 
3388   // (X & Y) == 0 ? X : X & ~Y  --> X & ~Y
3389   // (X & Y) != 0 ? X : X & ~Y  --> X
3390   if (TrueVal == X && match(FalseVal, m_And(m_Specific(X), m_APInt(C))) &&
3391       *Y == ~*C)
3392     return TrueWhenUnset ? FalseVal : TrueVal;
3393 
3394   if (Y->isPowerOf2()) {
3395     // (X & Y) == 0 ? X | Y : X  --> X | Y
3396     // (X & Y) != 0 ? X | Y : X  --> X
3397     if (FalseVal == X && match(TrueVal, m_Or(m_Specific(X), m_APInt(C))) &&
3398         *Y == *C)
3399       return TrueWhenUnset ? TrueVal : FalseVal;
3400 
3401     // (X & Y) == 0 ? X : X | Y  --> X
3402     // (X & Y) != 0 ? X : X | Y  --> X | Y
3403     if (TrueVal == X && match(FalseVal, m_Or(m_Specific(X), m_APInt(C))) &&
3404         *Y == *C)
3405       return TrueWhenUnset ? TrueVal : FalseVal;
3406   }
3407 
3408   return nullptr;
3409 }
3410 
3411 /// An alternative way to test if a bit is set or not uses sgt/slt instead of
3412 /// eq/ne.
3413 static Value *simplifySelectWithFakeICmpEq(Value *CmpLHS, Value *TrueVal,
3414                                            Value *FalseVal,
3415                                            bool TrueWhenUnset) {
3416   unsigned BitWidth = TrueVal->getType()->getScalarSizeInBits();
3417   if (!BitWidth)
3418     return nullptr;
3419 
3420   APInt MinSignedValue;
3421   Value *X;
3422   if (match(CmpLHS, m_Trunc(m_Value(X))) && (X == TrueVal || X == FalseVal)) {
3423     // icmp slt (trunc X), 0  <--> icmp ne (and X, C), 0
3424     // icmp sgt (trunc X), -1 <--> icmp eq (and X, C), 0
3425     unsigned DestSize = CmpLHS->getType()->getScalarSizeInBits();
3426     MinSignedValue = APInt::getSignedMinValue(DestSize).zext(BitWidth);
3427   } else {
3428     // icmp slt X, 0  <--> icmp ne (and X, C), 0
3429     // icmp sgt X, -1 <--> icmp eq (and X, C), 0
3430     X = CmpLHS;
3431     MinSignedValue = APInt::getSignedMinValue(BitWidth);
3432   }
3433 
3434   if (Value *V = simplifySelectBitTest(TrueVal, FalseVal, X, &MinSignedValue,
3435                                        TrueWhenUnset))
3436     return V;
3437 
3438   return nullptr;
3439 }
3440 
3441 /// Try to simplify a select instruction when its condition operand is an
3442 /// integer comparison.
3443 static Value *simplifySelectWithICmpCond(Value *CondVal, Value *TrueVal,
3444                                          Value *FalseVal, const Query &Q,
3445                                          unsigned MaxRecurse) {
3446   ICmpInst::Predicate Pred;
3447   Value *CmpLHS, *CmpRHS;
3448   if (!match(CondVal, m_ICmp(Pred, m_Value(CmpLHS), m_Value(CmpRHS))))
3449     return nullptr;
3450 
3451   // FIXME: This code is nearly duplicated in InstCombine. Using/refactoring
3452   // decomposeBitTestICmp() might help.
3453   if (ICmpInst::isEquality(Pred) && match(CmpRHS, m_Zero())) {
3454     Value *X;
3455     const APInt *Y;
3456     if (match(CmpLHS, m_And(m_Value(X), m_APInt(Y))))
3457       if (Value *V = simplifySelectBitTest(TrueVal, FalseVal, X, Y,
3458                                            Pred == ICmpInst::ICMP_EQ))
3459         return V;
3460   } else if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, m_Zero())) {
3461     // Comparing signed-less-than 0 checks if the sign bit is set.
3462     if (Value *V = simplifySelectWithFakeICmpEq(CmpLHS, TrueVal, FalseVal,
3463                                                 false))
3464       return V;
3465   } else if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, m_AllOnes())) {
3466     // Comparing signed-greater-than -1 checks if the sign bit is not set.
3467     if (Value *V = simplifySelectWithFakeICmpEq(CmpLHS, TrueVal, FalseVal,
3468                                                 true))
3469       return V;
3470   }
3471 
3472   if (CondVal->hasOneUse()) {
3473     const APInt *C;
3474     if (match(CmpRHS, m_APInt(C))) {
3475       // X < MIN ? T : F  -->  F
3476       if (Pred == ICmpInst::ICMP_SLT && C->isMinSignedValue())
3477         return FalseVal;
3478       // X < MIN ? T : F  -->  F
3479       if (Pred == ICmpInst::ICMP_ULT && C->isMinValue())
3480         return FalseVal;
3481       // X > MAX ? T : F  -->  F
3482       if (Pred == ICmpInst::ICMP_SGT && C->isMaxSignedValue())
3483         return FalseVal;
3484       // X > MAX ? T : F  -->  F
3485       if (Pred == ICmpInst::ICMP_UGT && C->isMaxValue())
3486         return FalseVal;
3487     }
3488   }
3489 
3490   // If we have an equality comparison, then we know the value in one of the
3491   // arms of the select. See if substituting this value into the arm and
3492   // simplifying the result yields the same value as the other arm.
3493   if (Pred == ICmpInst::ICMP_EQ) {
3494     if (SimplifyWithOpReplaced(FalseVal, CmpLHS, CmpRHS, Q, MaxRecurse) ==
3495             TrueVal ||
3496         SimplifyWithOpReplaced(FalseVal, CmpRHS, CmpLHS, Q, MaxRecurse) ==
3497             TrueVal)
3498       return FalseVal;
3499     if (SimplifyWithOpReplaced(TrueVal, CmpLHS, CmpRHS, Q, MaxRecurse) ==
3500             FalseVal ||
3501         SimplifyWithOpReplaced(TrueVal, CmpRHS, CmpLHS, Q, MaxRecurse) ==
3502             FalseVal)
3503       return FalseVal;
3504   } else if (Pred == ICmpInst::ICMP_NE) {
3505     if (SimplifyWithOpReplaced(TrueVal, CmpLHS, CmpRHS, Q, MaxRecurse) ==
3506             FalseVal ||
3507         SimplifyWithOpReplaced(TrueVal, CmpRHS, CmpLHS, Q, MaxRecurse) ==
3508             FalseVal)
3509       return TrueVal;
3510     if (SimplifyWithOpReplaced(FalseVal, CmpLHS, CmpRHS, Q, MaxRecurse) ==
3511             TrueVal ||
3512         SimplifyWithOpReplaced(FalseVal, CmpRHS, CmpLHS, Q, MaxRecurse) ==
3513             TrueVal)
3514       return TrueVal;
3515   }
3516 
3517   return nullptr;
3518 }
3519 
3520 /// Given operands for a SelectInst, see if we can fold the result.
3521 /// If not, this returns null.
3522 static Value *SimplifySelectInst(Value *CondVal, Value *TrueVal,
3523                                  Value *FalseVal, const Query &Q,
3524                                  unsigned MaxRecurse) {
3525   // select true, X, Y  -> X
3526   // select false, X, Y -> Y
3527   if (Constant *CB = dyn_cast<Constant>(CondVal)) {
3528     if (CB->isAllOnesValue())
3529       return TrueVal;
3530     if (CB->isNullValue())
3531       return FalseVal;
3532   }
3533 
3534   // select C, X, X -> X
3535   if (TrueVal == FalseVal)
3536     return TrueVal;
3537 
3538   if (isa<UndefValue>(CondVal)) {  // select undef, X, Y -> X or Y
3539     if (isa<Constant>(TrueVal))
3540       return TrueVal;
3541     return FalseVal;
3542   }
3543   if (isa<UndefValue>(TrueVal))   // select C, undef, X -> X
3544     return FalseVal;
3545   if (isa<UndefValue>(FalseVal))   // select C, X, undef -> X
3546     return TrueVal;
3547 
3548   if (Value *V =
3549           simplifySelectWithICmpCond(CondVal, TrueVal, FalseVal, Q, MaxRecurse))
3550     return V;
3551 
3552   return nullptr;
3553 }
3554 
3555 Value *llvm::SimplifySelectInst(Value *Cond, Value *TrueVal, Value *FalseVal,
3556                                 const DataLayout &DL,
3557                                 const TargetLibraryInfo *TLI,
3558                                 const DominatorTree *DT, AssumptionCache *AC,
3559                                 const Instruction *CxtI) {
3560   return ::SimplifySelectInst(Cond, TrueVal, FalseVal,
3561                               Query(DL, TLI, DT, AC, CxtI), RecursionLimit);
3562 }
3563 
3564 /// Given operands for an GetElementPtrInst, see if we can fold the result.
3565 /// If not, this returns null.
3566 static Value *SimplifyGEPInst(Type *SrcTy, ArrayRef<Value *> Ops,
3567                               const Query &Q, unsigned) {
3568   // The type of the GEP pointer operand.
3569   unsigned AS =
3570       cast<PointerType>(Ops[0]->getType()->getScalarType())->getAddressSpace();
3571 
3572   // getelementptr P -> P.
3573   if (Ops.size() == 1)
3574     return Ops[0];
3575 
3576   // Compute the (pointer) type returned by the GEP instruction.
3577   Type *LastType = GetElementPtrInst::getIndexedType(SrcTy, Ops.slice(1));
3578   Type *GEPTy = PointerType::get(LastType, AS);
3579   if (VectorType *VT = dyn_cast<VectorType>(Ops[0]->getType()))
3580     GEPTy = VectorType::get(GEPTy, VT->getNumElements());
3581 
3582   if (isa<UndefValue>(Ops[0]))
3583     return UndefValue::get(GEPTy);
3584 
3585   if (Ops.size() == 2) {
3586     // getelementptr P, 0 -> P.
3587     if (match(Ops[1], m_Zero()))
3588       return Ops[0];
3589 
3590     Type *Ty = SrcTy;
3591     if (Ty->isSized()) {
3592       Value *P;
3593       uint64_t C;
3594       uint64_t TyAllocSize = Q.DL.getTypeAllocSize(Ty);
3595       // getelementptr P, N -> P if P points to a type of zero size.
3596       if (TyAllocSize == 0)
3597         return Ops[0];
3598 
3599       // The following transforms are only safe if the ptrtoint cast
3600       // doesn't truncate the pointers.
3601       if (Ops[1]->getType()->getScalarSizeInBits() ==
3602           Q.DL.getPointerSizeInBits(AS)) {
3603         auto PtrToIntOrZero = [GEPTy](Value *P) -> Value * {
3604           if (match(P, m_Zero()))
3605             return Constant::getNullValue(GEPTy);
3606           Value *Temp;
3607           if (match(P, m_PtrToInt(m_Value(Temp))))
3608             if (Temp->getType() == GEPTy)
3609               return Temp;
3610           return nullptr;
3611         };
3612 
3613         // getelementptr V, (sub P, V) -> P if P points to a type of size 1.
3614         if (TyAllocSize == 1 &&
3615             match(Ops[1], m_Sub(m_Value(P), m_PtrToInt(m_Specific(Ops[0])))))
3616           if (Value *R = PtrToIntOrZero(P))
3617             return R;
3618 
3619         // getelementptr V, (ashr (sub P, V), C) -> Q
3620         // if P points to a type of size 1 << C.
3621         if (match(Ops[1],
3622                   m_AShr(m_Sub(m_Value(P), m_PtrToInt(m_Specific(Ops[0]))),
3623                          m_ConstantInt(C))) &&
3624             TyAllocSize == 1ULL << C)
3625           if (Value *R = PtrToIntOrZero(P))
3626             return R;
3627 
3628         // getelementptr V, (sdiv (sub P, V), C) -> Q
3629         // if P points to a type of size C.
3630         if (match(Ops[1],
3631                   m_SDiv(m_Sub(m_Value(P), m_PtrToInt(m_Specific(Ops[0]))),
3632                          m_SpecificInt(TyAllocSize))))
3633           if (Value *R = PtrToIntOrZero(P))
3634             return R;
3635       }
3636     }
3637   }
3638 
3639   // Check to see if this is constant foldable.
3640   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
3641     if (!isa<Constant>(Ops[i]))
3642       return nullptr;
3643 
3644   return ConstantExpr::getGetElementPtr(SrcTy, cast<Constant>(Ops[0]),
3645                                         Ops.slice(1));
3646 }
3647 
3648 Value *llvm::SimplifyGEPInst(Type *SrcTy, ArrayRef<Value *> Ops,
3649                              const DataLayout &DL,
3650                              const TargetLibraryInfo *TLI,
3651                              const DominatorTree *DT, AssumptionCache *AC,
3652                              const Instruction *CxtI) {
3653   return ::SimplifyGEPInst(SrcTy, Ops,
3654                            Query(DL, TLI, DT, AC, CxtI), RecursionLimit);
3655 }
3656 
3657 /// Given operands for an InsertValueInst, see if we can fold the result.
3658 /// If not, this returns null.
3659 static Value *SimplifyInsertValueInst(Value *Agg, Value *Val,
3660                                       ArrayRef<unsigned> Idxs, const Query &Q,
3661                                       unsigned) {
3662   if (Constant *CAgg = dyn_cast<Constant>(Agg))
3663     if (Constant *CVal = dyn_cast<Constant>(Val))
3664       return ConstantFoldInsertValueInstruction(CAgg, CVal, Idxs);
3665 
3666   // insertvalue x, undef, n -> x
3667   if (match(Val, m_Undef()))
3668     return Agg;
3669 
3670   // insertvalue x, (extractvalue y, n), n
3671   if (ExtractValueInst *EV = dyn_cast<ExtractValueInst>(Val))
3672     if (EV->getAggregateOperand()->getType() == Agg->getType() &&
3673         EV->getIndices() == Idxs) {
3674       // insertvalue undef, (extractvalue y, n), n -> y
3675       if (match(Agg, m_Undef()))
3676         return EV->getAggregateOperand();
3677 
3678       // insertvalue y, (extractvalue y, n), n -> y
3679       if (Agg == EV->getAggregateOperand())
3680         return Agg;
3681     }
3682 
3683   return nullptr;
3684 }
3685 
3686 Value *llvm::SimplifyInsertValueInst(
3687     Value *Agg, Value *Val, ArrayRef<unsigned> Idxs, const DataLayout &DL,
3688     const TargetLibraryInfo *TLI, const DominatorTree *DT, AssumptionCache *AC,
3689     const Instruction *CxtI) {
3690   return ::SimplifyInsertValueInst(Agg, Val, Idxs, Query(DL, TLI, DT, AC, CxtI),
3691                                    RecursionLimit);
3692 }
3693 
3694 /// Given operands for an ExtractValueInst, see if we can fold the result.
3695 /// If not, this returns null.
3696 static Value *SimplifyExtractValueInst(Value *Agg, ArrayRef<unsigned> Idxs,
3697                                        const Query &, unsigned) {
3698   if (auto *CAgg = dyn_cast<Constant>(Agg))
3699     return ConstantFoldExtractValueInstruction(CAgg, Idxs);
3700 
3701   // extractvalue x, (insertvalue y, elt, n), n -> elt
3702   unsigned NumIdxs = Idxs.size();
3703   for (auto *IVI = dyn_cast<InsertValueInst>(Agg); IVI != nullptr;
3704        IVI = dyn_cast<InsertValueInst>(IVI->getAggregateOperand())) {
3705     ArrayRef<unsigned> InsertValueIdxs = IVI->getIndices();
3706     unsigned NumInsertValueIdxs = InsertValueIdxs.size();
3707     unsigned NumCommonIdxs = std::min(NumInsertValueIdxs, NumIdxs);
3708     if (InsertValueIdxs.slice(0, NumCommonIdxs) ==
3709         Idxs.slice(0, NumCommonIdxs)) {
3710       if (NumIdxs == NumInsertValueIdxs)
3711         return IVI->getInsertedValueOperand();
3712       break;
3713     }
3714   }
3715 
3716   return nullptr;
3717 }
3718 
3719 Value *llvm::SimplifyExtractValueInst(Value *Agg, ArrayRef<unsigned> Idxs,
3720                                       const DataLayout &DL,
3721                                       const TargetLibraryInfo *TLI,
3722                                       const DominatorTree *DT,
3723                                       AssumptionCache *AC,
3724                                       const Instruction *CxtI) {
3725   return ::SimplifyExtractValueInst(Agg, Idxs, Query(DL, TLI, DT, AC, CxtI),
3726                                     RecursionLimit);
3727 }
3728 
3729 /// Given operands for an ExtractElementInst, see if we can fold the result.
3730 /// If not, this returns null.
3731 static Value *SimplifyExtractElementInst(Value *Vec, Value *Idx, const Query &,
3732                                          unsigned) {
3733   if (auto *CVec = dyn_cast<Constant>(Vec)) {
3734     if (auto *CIdx = dyn_cast<Constant>(Idx))
3735       return ConstantFoldExtractElementInstruction(CVec, CIdx);
3736 
3737     // The index is not relevant if our vector is a splat.
3738     if (auto *Splat = CVec->getSplatValue())
3739       return Splat;
3740 
3741     if (isa<UndefValue>(Vec))
3742       return UndefValue::get(Vec->getType()->getVectorElementType());
3743   }
3744 
3745   // If extracting a specified index from the vector, see if we can recursively
3746   // find a previously computed scalar that was inserted into the vector.
3747   if (auto *IdxC = dyn_cast<ConstantInt>(Idx))
3748     if (Value *Elt = findScalarElement(Vec, IdxC->getZExtValue()))
3749       return Elt;
3750 
3751   return nullptr;
3752 }
3753 
3754 Value *llvm::SimplifyExtractElementInst(
3755     Value *Vec, Value *Idx, const DataLayout &DL, const TargetLibraryInfo *TLI,
3756     const DominatorTree *DT, AssumptionCache *AC, const Instruction *CxtI) {
3757   return ::SimplifyExtractElementInst(Vec, Idx, Query(DL, TLI, DT, AC, CxtI),
3758                                       RecursionLimit);
3759 }
3760 
3761 /// See if we can fold the given phi. If not, returns null.
3762 static Value *SimplifyPHINode(PHINode *PN, const Query &Q) {
3763   // If all of the PHI's incoming values are the same then replace the PHI node
3764   // with the common value.
3765   Value *CommonValue = nullptr;
3766   bool HasUndefInput = false;
3767   for (Value *Incoming : PN->incoming_values()) {
3768     // If the incoming value is the phi node itself, it can safely be skipped.
3769     if (Incoming == PN) continue;
3770     if (isa<UndefValue>(Incoming)) {
3771       // Remember that we saw an undef value, but otherwise ignore them.
3772       HasUndefInput = true;
3773       continue;
3774     }
3775     if (CommonValue && Incoming != CommonValue)
3776       return nullptr;  // Not the same, bail out.
3777     CommonValue = Incoming;
3778   }
3779 
3780   // If CommonValue is null then all of the incoming values were either undef or
3781   // equal to the phi node itself.
3782   if (!CommonValue)
3783     return UndefValue::get(PN->getType());
3784 
3785   // If we have a PHI node like phi(X, undef, X), where X is defined by some
3786   // instruction, we cannot return X as the result of the PHI node unless it
3787   // dominates the PHI block.
3788   if (HasUndefInput)
3789     return ValueDominatesPHI(CommonValue, PN, Q.DT) ? CommonValue : nullptr;
3790 
3791   return CommonValue;
3792 }
3793 
3794 static Value *SimplifyCastInst(unsigned CastOpc, Value *Op,
3795                                Type *Ty, const Query &Q, unsigned MaxRecurse) {
3796   if (auto *C = dyn_cast<Constant>(Op))
3797     return ConstantFoldCastOperand(CastOpc, C, Ty, Q.DL);
3798 
3799   if (auto *CI = dyn_cast<CastInst>(Op)) {
3800     auto *Src = CI->getOperand(0);
3801     Type *SrcTy = Src->getType();
3802     Type *MidTy = CI->getType();
3803     Type *DstTy = Ty;
3804     if (Src->getType() == Ty) {
3805       auto FirstOp = static_cast<Instruction::CastOps>(CI->getOpcode());
3806       auto SecondOp = static_cast<Instruction::CastOps>(CastOpc);
3807       Type *SrcIntPtrTy =
3808           SrcTy->isPtrOrPtrVectorTy() ? Q.DL.getIntPtrType(SrcTy) : nullptr;
3809       Type *MidIntPtrTy =
3810           MidTy->isPtrOrPtrVectorTy() ? Q.DL.getIntPtrType(MidTy) : nullptr;
3811       Type *DstIntPtrTy =
3812           DstTy->isPtrOrPtrVectorTy() ? Q.DL.getIntPtrType(DstTy) : nullptr;
3813       if (CastInst::isEliminableCastPair(FirstOp, SecondOp, SrcTy, MidTy, DstTy,
3814                                          SrcIntPtrTy, MidIntPtrTy,
3815                                          DstIntPtrTy) == Instruction::BitCast)
3816         return Src;
3817     }
3818   }
3819 
3820   // bitcast x -> x
3821   if (CastOpc == Instruction::BitCast)
3822     if (Op->getType() == Ty)
3823       return Op;
3824 
3825   return nullptr;
3826 }
3827 
3828 Value *llvm::SimplifyCastInst(unsigned CastOpc, Value *Op, Type *Ty,
3829                               const DataLayout &DL,
3830                               const TargetLibraryInfo *TLI,
3831                               const DominatorTree *DT, AssumptionCache *AC,
3832                               const Instruction *CxtI) {
3833   return ::SimplifyCastInst(CastOpc, Op, Ty, Query(DL, TLI, DT, AC, CxtI),
3834                             RecursionLimit);
3835 }
3836 
3837 //=== Helper functions for higher up the class hierarchy.
3838 
3839 /// Given operands for a BinaryOperator, see if we can fold the result.
3840 /// If not, this returns null.
3841 static Value *SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS,
3842                             const Query &Q, unsigned MaxRecurse) {
3843   switch (Opcode) {
3844   case Instruction::Add:
3845     return SimplifyAddInst(LHS, RHS, /*isNSW*/false, /*isNUW*/false,
3846                            Q, MaxRecurse);
3847   case Instruction::FAdd:
3848     return SimplifyFAddInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse);
3849 
3850   case Instruction::Sub:
3851     return SimplifySubInst(LHS, RHS, /*isNSW*/false, /*isNUW*/false,
3852                            Q, MaxRecurse);
3853   case Instruction::FSub:
3854     return SimplifyFSubInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse);
3855 
3856   case Instruction::Mul:  return SimplifyMulInst (LHS, RHS, Q, MaxRecurse);
3857   case Instruction::FMul:
3858     return SimplifyFMulInst (LHS, RHS, FastMathFlags(), Q, MaxRecurse);
3859   case Instruction::SDiv: return SimplifySDivInst(LHS, RHS, Q, MaxRecurse);
3860   case Instruction::UDiv: return SimplifyUDivInst(LHS, RHS, Q, MaxRecurse);
3861   case Instruction::FDiv:
3862       return SimplifyFDivInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse);
3863   case Instruction::SRem: return SimplifySRemInst(LHS, RHS, Q, MaxRecurse);
3864   case Instruction::URem: return SimplifyURemInst(LHS, RHS, Q, MaxRecurse);
3865   case Instruction::FRem:
3866       return SimplifyFRemInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse);
3867   case Instruction::Shl:
3868     return SimplifyShlInst(LHS, RHS, /*isNSW*/false, /*isNUW*/false,
3869                            Q, MaxRecurse);
3870   case Instruction::LShr:
3871     return SimplifyLShrInst(LHS, RHS, /*isExact*/false, Q, MaxRecurse);
3872   case Instruction::AShr:
3873     return SimplifyAShrInst(LHS, RHS, /*isExact*/false, Q, MaxRecurse);
3874   case Instruction::And: return SimplifyAndInst(LHS, RHS, Q, MaxRecurse);
3875   case Instruction::Or:  return SimplifyOrInst (LHS, RHS, Q, MaxRecurse);
3876   case Instruction::Xor: return SimplifyXorInst(LHS, RHS, Q, MaxRecurse);
3877   default:
3878     if (Constant *CLHS = dyn_cast<Constant>(LHS))
3879       if (Constant *CRHS = dyn_cast<Constant>(RHS))
3880         return ConstantFoldBinaryOpOperands(Opcode, CLHS, CRHS, Q.DL);
3881 
3882     // If the operation is associative, try some generic simplifications.
3883     if (Instruction::isAssociative(Opcode))
3884       if (Value *V = SimplifyAssociativeBinOp(Opcode, LHS, RHS, Q, MaxRecurse))
3885         return V;
3886 
3887     // If the operation is with the result of a select instruction check whether
3888     // operating on either branch of the select always yields the same value.
3889     if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS))
3890       if (Value *V = ThreadBinOpOverSelect(Opcode, LHS, RHS, Q, MaxRecurse))
3891         return V;
3892 
3893     // If the operation is with the result of a phi instruction, check whether
3894     // operating on all incoming values of the phi always yields the same value.
3895     if (isa<PHINode>(LHS) || isa<PHINode>(RHS))
3896       if (Value *V = ThreadBinOpOverPHI(Opcode, LHS, RHS, Q, MaxRecurse))
3897         return V;
3898 
3899     return nullptr;
3900   }
3901 }
3902 
3903 /// Given operands for a BinaryOperator, see if we can fold the result.
3904 /// If not, this returns null.
3905 /// In contrast to SimplifyBinOp, try to use FastMathFlag when folding the
3906 /// result. In case we don't need FastMathFlags, simply fall to SimplifyBinOp.
3907 static Value *SimplifyFPBinOp(unsigned Opcode, Value *LHS, Value *RHS,
3908                               const FastMathFlags &FMF, const Query &Q,
3909                               unsigned MaxRecurse) {
3910   switch (Opcode) {
3911   case Instruction::FAdd:
3912     return SimplifyFAddInst(LHS, RHS, FMF, Q, MaxRecurse);
3913   case Instruction::FSub:
3914     return SimplifyFSubInst(LHS, RHS, FMF, Q, MaxRecurse);
3915   case Instruction::FMul:
3916     return SimplifyFMulInst(LHS, RHS, FMF, Q, MaxRecurse);
3917   default:
3918     return SimplifyBinOp(Opcode, LHS, RHS, Q, MaxRecurse);
3919   }
3920 }
3921 
3922 Value *llvm::SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS,
3923                            const DataLayout &DL, const TargetLibraryInfo *TLI,
3924                            const DominatorTree *DT, AssumptionCache *AC,
3925                            const Instruction *CxtI) {
3926   return ::SimplifyBinOp(Opcode, LHS, RHS, Query(DL, TLI, DT, AC, CxtI),
3927                          RecursionLimit);
3928 }
3929 
3930 Value *llvm::SimplifyFPBinOp(unsigned Opcode, Value *LHS, Value *RHS,
3931                              const FastMathFlags &FMF, const DataLayout &DL,
3932                              const TargetLibraryInfo *TLI,
3933                              const DominatorTree *DT, AssumptionCache *AC,
3934                              const Instruction *CxtI) {
3935   return ::SimplifyFPBinOp(Opcode, LHS, RHS, FMF, Query(DL, TLI, DT, AC, CxtI),
3936                            RecursionLimit);
3937 }
3938 
3939 /// Given operands for a CmpInst, see if we can fold the result.
3940 static Value *SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
3941                               const Query &Q, unsigned MaxRecurse) {
3942   if (CmpInst::isIntPredicate((CmpInst::Predicate)Predicate))
3943     return SimplifyICmpInst(Predicate, LHS, RHS, Q, MaxRecurse);
3944   return SimplifyFCmpInst(Predicate, LHS, RHS, FastMathFlags(), Q, MaxRecurse);
3945 }
3946 
3947 Value *llvm::SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
3948                              const DataLayout &DL, const TargetLibraryInfo *TLI,
3949                              const DominatorTree *DT, AssumptionCache *AC,
3950                              const Instruction *CxtI) {
3951   return ::SimplifyCmpInst(Predicate, LHS, RHS, Query(DL, TLI, DT, AC, CxtI),
3952                            RecursionLimit);
3953 }
3954 
3955 static bool IsIdempotent(Intrinsic::ID ID) {
3956   switch (ID) {
3957   default: return false;
3958 
3959   // Unary idempotent: f(f(x)) = f(x)
3960   case Intrinsic::fabs:
3961   case Intrinsic::floor:
3962   case Intrinsic::ceil:
3963   case Intrinsic::trunc:
3964   case Intrinsic::rint:
3965   case Intrinsic::nearbyint:
3966   case Intrinsic::round:
3967     return true;
3968   }
3969 }
3970 
3971 static Value *SimplifyRelativeLoad(Constant *Ptr, Constant *Offset,
3972                                    const DataLayout &DL) {
3973   GlobalValue *PtrSym;
3974   APInt PtrOffset;
3975   if (!IsConstantOffsetFromGlobal(Ptr, PtrSym, PtrOffset, DL))
3976     return nullptr;
3977 
3978   Type *Int8PtrTy = Type::getInt8PtrTy(Ptr->getContext());
3979   Type *Int32Ty = Type::getInt32Ty(Ptr->getContext());
3980   Type *Int32PtrTy = Int32Ty->getPointerTo();
3981   Type *Int64Ty = Type::getInt64Ty(Ptr->getContext());
3982 
3983   auto *OffsetConstInt = dyn_cast<ConstantInt>(Offset);
3984   if (!OffsetConstInt || OffsetConstInt->getType()->getBitWidth() > 64)
3985     return nullptr;
3986 
3987   uint64_t OffsetInt = OffsetConstInt->getSExtValue();
3988   if (OffsetInt % 4 != 0)
3989     return nullptr;
3990 
3991   Constant *C = ConstantExpr::getGetElementPtr(
3992       Int32Ty, ConstantExpr::getBitCast(Ptr, Int32PtrTy),
3993       ConstantInt::get(Int64Ty, OffsetInt / 4));
3994   Constant *Loaded = ConstantFoldLoadFromConstPtr(C, Int32Ty, DL);
3995   if (!Loaded)
3996     return nullptr;
3997 
3998   auto *LoadedCE = dyn_cast<ConstantExpr>(Loaded);
3999   if (!LoadedCE)
4000     return nullptr;
4001 
4002   if (LoadedCE->getOpcode() == Instruction::Trunc) {
4003     LoadedCE = dyn_cast<ConstantExpr>(LoadedCE->getOperand(0));
4004     if (!LoadedCE)
4005       return nullptr;
4006   }
4007 
4008   if (LoadedCE->getOpcode() != Instruction::Sub)
4009     return nullptr;
4010 
4011   auto *LoadedLHS = dyn_cast<ConstantExpr>(LoadedCE->getOperand(0));
4012   if (!LoadedLHS || LoadedLHS->getOpcode() != Instruction::PtrToInt)
4013     return nullptr;
4014   auto *LoadedLHSPtr = LoadedLHS->getOperand(0);
4015 
4016   Constant *LoadedRHS = LoadedCE->getOperand(1);
4017   GlobalValue *LoadedRHSSym;
4018   APInt LoadedRHSOffset;
4019   if (!IsConstantOffsetFromGlobal(LoadedRHS, LoadedRHSSym, LoadedRHSOffset,
4020                                   DL) ||
4021       PtrSym != LoadedRHSSym || PtrOffset != LoadedRHSOffset)
4022     return nullptr;
4023 
4024   return ConstantExpr::getBitCast(LoadedLHSPtr, Int8PtrTy);
4025 }
4026 
4027 static bool maskIsAllZeroOrUndef(Value *Mask) {
4028   auto *ConstMask = dyn_cast<Constant>(Mask);
4029   if (!ConstMask)
4030     return false;
4031   if (ConstMask->isNullValue() || isa<UndefValue>(ConstMask))
4032     return true;
4033   for (unsigned I = 0, E = ConstMask->getType()->getVectorNumElements(); I != E;
4034        ++I) {
4035     if (auto *MaskElt = ConstMask->getAggregateElement(I))
4036       if (MaskElt->isNullValue() || isa<UndefValue>(MaskElt))
4037         continue;
4038     return false;
4039   }
4040   return true;
4041 }
4042 
4043 template <typename IterTy>
4044 static Value *SimplifyIntrinsic(Function *F, IterTy ArgBegin, IterTy ArgEnd,
4045                                 const Query &Q, unsigned MaxRecurse) {
4046   Intrinsic::ID IID = F->getIntrinsicID();
4047   unsigned NumOperands = std::distance(ArgBegin, ArgEnd);
4048   Type *ReturnType = F->getReturnType();
4049 
4050   // Binary Ops
4051   if (NumOperands == 2) {
4052     Value *LHS = *ArgBegin;
4053     Value *RHS = *(ArgBegin + 1);
4054     if (IID == Intrinsic::usub_with_overflow ||
4055         IID == Intrinsic::ssub_with_overflow) {
4056       // X - X -> { 0, false }
4057       if (LHS == RHS)
4058         return Constant::getNullValue(ReturnType);
4059 
4060       // X - undef -> undef
4061       // undef - X -> undef
4062       if (isa<UndefValue>(LHS) || isa<UndefValue>(RHS))
4063         return UndefValue::get(ReturnType);
4064     }
4065 
4066     if (IID == Intrinsic::uadd_with_overflow ||
4067         IID == Intrinsic::sadd_with_overflow) {
4068       // X + undef -> undef
4069       if (isa<UndefValue>(RHS))
4070         return UndefValue::get(ReturnType);
4071     }
4072 
4073     if (IID == Intrinsic::umul_with_overflow ||
4074         IID == Intrinsic::smul_with_overflow) {
4075       // X * 0 -> { 0, false }
4076       if (match(RHS, m_Zero()))
4077         return Constant::getNullValue(ReturnType);
4078 
4079       // X * undef -> { 0, false }
4080       if (match(RHS, m_Undef()))
4081         return Constant::getNullValue(ReturnType);
4082     }
4083 
4084     if (IID == Intrinsic::load_relative && isa<Constant>(LHS) &&
4085         isa<Constant>(RHS))
4086       return SimplifyRelativeLoad(cast<Constant>(LHS), cast<Constant>(RHS),
4087                                   Q.DL);
4088   }
4089 
4090   // Simplify calls to llvm.masked.load.*
4091   if (IID == Intrinsic::masked_load) {
4092     Value *MaskArg = ArgBegin[2];
4093     Value *PassthruArg = ArgBegin[3];
4094     // If the mask is all zeros or undef, the "passthru" argument is the result.
4095     if (maskIsAllZeroOrUndef(MaskArg))
4096       return PassthruArg;
4097   }
4098 
4099   // Perform idempotent optimizations
4100   if (!IsIdempotent(IID))
4101     return nullptr;
4102 
4103   // Unary Ops
4104   if (NumOperands == 1)
4105     if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(*ArgBegin))
4106       if (II->getIntrinsicID() == IID)
4107         return II;
4108 
4109   return nullptr;
4110 }
4111 
4112 template <typename IterTy>
4113 static Value *SimplifyCall(Value *V, IterTy ArgBegin, IterTy ArgEnd,
4114                            const Query &Q, unsigned MaxRecurse) {
4115   Type *Ty = V->getType();
4116   if (PointerType *PTy = dyn_cast<PointerType>(Ty))
4117     Ty = PTy->getElementType();
4118   FunctionType *FTy = cast<FunctionType>(Ty);
4119 
4120   // call undef -> undef
4121   // call null -> undef
4122   if (isa<UndefValue>(V) || isa<ConstantPointerNull>(V))
4123     return UndefValue::get(FTy->getReturnType());
4124 
4125   Function *F = dyn_cast<Function>(V);
4126   if (!F)
4127     return nullptr;
4128 
4129   if (F->isIntrinsic())
4130     if (Value *Ret = SimplifyIntrinsic(F, ArgBegin, ArgEnd, Q, MaxRecurse))
4131       return Ret;
4132 
4133   if (!canConstantFoldCallTo(F))
4134     return nullptr;
4135 
4136   SmallVector<Constant *, 4> ConstantArgs;
4137   ConstantArgs.reserve(ArgEnd - ArgBegin);
4138   for (IterTy I = ArgBegin, E = ArgEnd; I != E; ++I) {
4139     Constant *C = dyn_cast<Constant>(*I);
4140     if (!C)
4141       return nullptr;
4142     ConstantArgs.push_back(C);
4143   }
4144 
4145   return ConstantFoldCall(F, ConstantArgs, Q.TLI);
4146 }
4147 
4148 Value *llvm::SimplifyCall(Value *V, User::op_iterator ArgBegin,
4149                           User::op_iterator ArgEnd, const DataLayout &DL,
4150                           const TargetLibraryInfo *TLI, const DominatorTree *DT,
4151                           AssumptionCache *AC, const Instruction *CxtI) {
4152   return ::SimplifyCall(V, ArgBegin, ArgEnd, Query(DL, TLI, DT, AC, CxtI),
4153                         RecursionLimit);
4154 }
4155 
4156 Value *llvm::SimplifyCall(Value *V, ArrayRef<Value *> Args,
4157                           const DataLayout &DL, const TargetLibraryInfo *TLI,
4158                           const DominatorTree *DT, AssumptionCache *AC,
4159                           const Instruction *CxtI) {
4160   return ::SimplifyCall(V, Args.begin(), Args.end(),
4161                         Query(DL, TLI, DT, AC, CxtI), RecursionLimit);
4162 }
4163 
4164 /// See if we can compute a simplified version of this instruction.
4165 /// If not, this returns null.
4166 Value *llvm::SimplifyInstruction(Instruction *I, const DataLayout &DL,
4167                                  const TargetLibraryInfo *TLI,
4168                                  const DominatorTree *DT, AssumptionCache *AC) {
4169   Value *Result;
4170 
4171   switch (I->getOpcode()) {
4172   default:
4173     Result = ConstantFoldInstruction(I, DL, TLI);
4174     break;
4175   case Instruction::FAdd:
4176     Result = SimplifyFAddInst(I->getOperand(0), I->getOperand(1),
4177                               I->getFastMathFlags(), DL, TLI, DT, AC, I);
4178     break;
4179   case Instruction::Add:
4180     Result = SimplifyAddInst(I->getOperand(0), I->getOperand(1),
4181                              cast<BinaryOperator>(I)->hasNoSignedWrap(),
4182                              cast<BinaryOperator>(I)->hasNoUnsignedWrap(), DL,
4183                              TLI, DT, AC, I);
4184     break;
4185   case Instruction::FSub:
4186     Result = SimplifyFSubInst(I->getOperand(0), I->getOperand(1),
4187                               I->getFastMathFlags(), DL, TLI, DT, AC, I);
4188     break;
4189   case Instruction::Sub:
4190     Result = SimplifySubInst(I->getOperand(0), I->getOperand(1),
4191                              cast<BinaryOperator>(I)->hasNoSignedWrap(),
4192                              cast<BinaryOperator>(I)->hasNoUnsignedWrap(), DL,
4193                              TLI, DT, AC, I);
4194     break;
4195   case Instruction::FMul:
4196     Result = SimplifyFMulInst(I->getOperand(0), I->getOperand(1),
4197                               I->getFastMathFlags(), DL, TLI, DT, AC, I);
4198     break;
4199   case Instruction::Mul:
4200     Result =
4201         SimplifyMulInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT, AC, I);
4202     break;
4203   case Instruction::SDiv:
4204     Result = SimplifySDivInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT,
4205                               AC, I);
4206     break;
4207   case Instruction::UDiv:
4208     Result = SimplifyUDivInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT,
4209                               AC, I);
4210     break;
4211   case Instruction::FDiv:
4212     Result = SimplifyFDivInst(I->getOperand(0), I->getOperand(1),
4213                               I->getFastMathFlags(), DL, TLI, DT, AC, I);
4214     break;
4215   case Instruction::SRem:
4216     Result = SimplifySRemInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT,
4217                               AC, I);
4218     break;
4219   case Instruction::URem:
4220     Result = SimplifyURemInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT,
4221                               AC, I);
4222     break;
4223   case Instruction::FRem:
4224     Result = SimplifyFRemInst(I->getOperand(0), I->getOperand(1),
4225                               I->getFastMathFlags(), DL, TLI, DT, AC, I);
4226     break;
4227   case Instruction::Shl:
4228     Result = SimplifyShlInst(I->getOperand(0), I->getOperand(1),
4229                              cast<BinaryOperator>(I)->hasNoSignedWrap(),
4230                              cast<BinaryOperator>(I)->hasNoUnsignedWrap(), DL,
4231                              TLI, DT, AC, I);
4232     break;
4233   case Instruction::LShr:
4234     Result = SimplifyLShrInst(I->getOperand(0), I->getOperand(1),
4235                               cast<BinaryOperator>(I)->isExact(), DL, TLI, DT,
4236                               AC, I);
4237     break;
4238   case Instruction::AShr:
4239     Result = SimplifyAShrInst(I->getOperand(0), I->getOperand(1),
4240                               cast<BinaryOperator>(I)->isExact(), DL, TLI, DT,
4241                               AC, I);
4242     break;
4243   case Instruction::And:
4244     Result =
4245         SimplifyAndInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT, AC, I);
4246     break;
4247   case Instruction::Or:
4248     Result =
4249         SimplifyOrInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT, AC, I);
4250     break;
4251   case Instruction::Xor:
4252     Result =
4253         SimplifyXorInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT, AC, I);
4254     break;
4255   case Instruction::ICmp:
4256     Result =
4257         SimplifyICmpInst(cast<ICmpInst>(I)->getPredicate(), I->getOperand(0),
4258                          I->getOperand(1), DL, TLI, DT, AC, I);
4259     break;
4260   case Instruction::FCmp:
4261     Result = SimplifyFCmpInst(cast<FCmpInst>(I)->getPredicate(),
4262                               I->getOperand(0), I->getOperand(1),
4263                               I->getFastMathFlags(), DL, TLI, DT, AC, I);
4264     break;
4265   case Instruction::Select:
4266     Result = SimplifySelectInst(I->getOperand(0), I->getOperand(1),
4267                                 I->getOperand(2), DL, TLI, DT, AC, I);
4268     break;
4269   case Instruction::GetElementPtr: {
4270     SmallVector<Value*, 8> Ops(I->op_begin(), I->op_end());
4271     Result = SimplifyGEPInst(cast<GetElementPtrInst>(I)->getSourceElementType(),
4272                              Ops, DL, TLI, DT, AC, I);
4273     break;
4274   }
4275   case Instruction::InsertValue: {
4276     InsertValueInst *IV = cast<InsertValueInst>(I);
4277     Result = SimplifyInsertValueInst(IV->getAggregateOperand(),
4278                                      IV->getInsertedValueOperand(),
4279                                      IV->getIndices(), DL, TLI, DT, AC, I);
4280     break;
4281   }
4282   case Instruction::ExtractValue: {
4283     auto *EVI = cast<ExtractValueInst>(I);
4284     Result = SimplifyExtractValueInst(EVI->getAggregateOperand(),
4285                                       EVI->getIndices(), DL, TLI, DT, AC, I);
4286     break;
4287   }
4288   case Instruction::ExtractElement: {
4289     auto *EEI = cast<ExtractElementInst>(I);
4290     Result = SimplifyExtractElementInst(
4291         EEI->getVectorOperand(), EEI->getIndexOperand(), DL, TLI, DT, AC, I);
4292     break;
4293   }
4294   case Instruction::PHI:
4295     Result = SimplifyPHINode(cast<PHINode>(I), Query(DL, TLI, DT, AC, I));
4296     break;
4297   case Instruction::Call: {
4298     CallSite CS(cast<CallInst>(I));
4299     Result = SimplifyCall(CS.getCalledValue(), CS.arg_begin(), CS.arg_end(), DL,
4300                           TLI, DT, AC, I);
4301     break;
4302   }
4303 #define HANDLE_CAST_INST(num, opc, clas) case Instruction::opc:
4304 #include "llvm/IR/Instruction.def"
4305 #undef HANDLE_CAST_INST
4306     Result = SimplifyCastInst(I->getOpcode(), I->getOperand(0), I->getType(),
4307                               DL, TLI, DT, AC, I);
4308     break;
4309   }
4310 
4311   // In general, it is possible for computeKnownBits to determine all bits in a
4312   // value even when the operands are not all constants.
4313   if (!Result && I->getType()->isIntegerTy()) {
4314     unsigned BitWidth = I->getType()->getScalarSizeInBits();
4315     APInt KnownZero(BitWidth, 0);
4316     APInt KnownOne(BitWidth, 0);
4317     computeKnownBits(I, KnownZero, KnownOne, DL, /*Depth*/0, AC, I, DT);
4318     if ((KnownZero | KnownOne).isAllOnesValue())
4319       Result = ConstantInt::get(I->getContext(), KnownOne);
4320   }
4321 
4322   /// If called on unreachable code, the above logic may report that the
4323   /// instruction simplified to itself.  Make life easier for users by
4324   /// detecting that case here, returning a safe value instead.
4325   return Result == I ? UndefValue::get(I->getType()) : Result;
4326 }
4327 
4328 /// \brief Implementation of recursive simplification through an instruction's
4329 /// uses.
4330 ///
4331 /// This is the common implementation of the recursive simplification routines.
4332 /// If we have a pre-simplified value in 'SimpleV', that is forcibly used to
4333 /// replace the instruction 'I'. Otherwise, we simply add 'I' to the list of
4334 /// instructions to process and attempt to simplify it using
4335 /// InstructionSimplify.
4336 ///
4337 /// This routine returns 'true' only when *it* simplifies something. The passed
4338 /// in simplified value does not count toward this.
4339 static bool replaceAndRecursivelySimplifyImpl(Instruction *I, Value *SimpleV,
4340                                               const TargetLibraryInfo *TLI,
4341                                               const DominatorTree *DT,
4342                                               AssumptionCache *AC) {
4343   bool Simplified = false;
4344   SmallSetVector<Instruction *, 8> Worklist;
4345   const DataLayout &DL = I->getModule()->getDataLayout();
4346 
4347   // If we have an explicit value to collapse to, do that round of the
4348   // simplification loop by hand initially.
4349   if (SimpleV) {
4350     for (User *U : I->users())
4351       if (U != I)
4352         Worklist.insert(cast<Instruction>(U));
4353 
4354     // Replace the instruction with its simplified value.
4355     I->replaceAllUsesWith(SimpleV);
4356 
4357     // Gracefully handle edge cases where the instruction is not wired into any
4358     // parent block.
4359     if (I->getParent())
4360       I->eraseFromParent();
4361   } else {
4362     Worklist.insert(I);
4363   }
4364 
4365   // Note that we must test the size on each iteration, the worklist can grow.
4366   for (unsigned Idx = 0; Idx != Worklist.size(); ++Idx) {
4367     I = Worklist[Idx];
4368 
4369     // See if this instruction simplifies.
4370     SimpleV = SimplifyInstruction(I, DL, TLI, DT, AC);
4371     if (!SimpleV)
4372       continue;
4373 
4374     Simplified = true;
4375 
4376     // Stash away all the uses of the old instruction so we can check them for
4377     // recursive simplifications after a RAUW. This is cheaper than checking all
4378     // uses of To on the recursive step in most cases.
4379     for (User *U : I->users())
4380       Worklist.insert(cast<Instruction>(U));
4381 
4382     // Replace the instruction with its simplified value.
4383     I->replaceAllUsesWith(SimpleV);
4384 
4385     // Gracefully handle edge cases where the instruction is not wired into any
4386     // parent block.
4387     if (I->getParent())
4388       I->eraseFromParent();
4389   }
4390   return Simplified;
4391 }
4392 
4393 bool llvm::recursivelySimplifyInstruction(Instruction *I,
4394                                           const TargetLibraryInfo *TLI,
4395                                           const DominatorTree *DT,
4396                                           AssumptionCache *AC) {
4397   return replaceAndRecursivelySimplifyImpl(I, nullptr, TLI, DT, AC);
4398 }
4399 
4400 bool llvm::replaceAndRecursivelySimplify(Instruction *I, Value *SimpleV,
4401                                          const TargetLibraryInfo *TLI,
4402                                          const DominatorTree *DT,
4403                                          AssumptionCache *AC) {
4404   assert(I != SimpleV && "replaceAndRecursivelySimplify(X,X) is not valid!");
4405   assert(SimpleV && "Must provide a simplified value.");
4406   return replaceAndRecursivelySimplifyImpl(I, SimpleV, TLI, DT, AC);
4407 }
4408