1 //===- InstructionSimplify.cpp - Fold instruction operands ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements routines for folding instructions into simpler forms 11 // that do not require creating new instructions. This does constant folding 12 // ("add i32 1, 1" -> "2") but can also handle non-constant operands, either 13 // returning a constant ("and i32 %x, 0" -> "0") or an already existing value 14 // ("and i32 %x, %x" -> "%x"). All operands are assumed to have already been 15 // simplified: This is usually true and assuming it simplifies the logic (if 16 // they have not been simplified then results are correct but maybe suboptimal). 17 // 18 //===----------------------------------------------------------------------===// 19 20 #include "llvm/Analysis/InstructionSimplify.h" 21 #include "llvm/ADT/SetVector.h" 22 #include "llvm/ADT/Statistic.h" 23 #include "llvm/Analysis/AliasAnalysis.h" 24 #include "llvm/Analysis/CaptureTracking.h" 25 #include "llvm/Analysis/ConstantFolding.h" 26 #include "llvm/Analysis/MemoryBuiltins.h" 27 #include "llvm/Analysis/ValueTracking.h" 28 #include "llvm/Analysis/VectorUtils.h" 29 #include "llvm/IR/ConstantRange.h" 30 #include "llvm/IR/DataLayout.h" 31 #include "llvm/IR/Dominators.h" 32 #include "llvm/IR/GetElementPtrTypeIterator.h" 33 #include "llvm/IR/GlobalAlias.h" 34 #include "llvm/IR/Operator.h" 35 #include "llvm/IR/PatternMatch.h" 36 #include "llvm/IR/ValueHandle.h" 37 #include <algorithm> 38 using namespace llvm; 39 using namespace llvm::PatternMatch; 40 41 #define DEBUG_TYPE "instsimplify" 42 43 enum { RecursionLimit = 3 }; 44 45 STATISTIC(NumExpand, "Number of expansions"); 46 STATISTIC(NumReassoc, "Number of reassociations"); 47 48 namespace { 49 struct Query { 50 const DataLayout &DL; 51 const TargetLibraryInfo *TLI; 52 const DominatorTree *DT; 53 AssumptionCache *AC; 54 const Instruction *CxtI; 55 56 Query(const DataLayout &DL, const TargetLibraryInfo *tli, 57 const DominatorTree *dt, AssumptionCache *ac = nullptr, 58 const Instruction *cxti = nullptr) 59 : DL(DL), TLI(tli), DT(dt), AC(ac), CxtI(cxti) {} 60 }; 61 } // end anonymous namespace 62 63 static Value *SimplifyAndInst(Value *, Value *, const Query &, unsigned); 64 static Value *SimplifyBinOp(unsigned, Value *, Value *, const Query &, 65 unsigned); 66 static Value *SimplifyFPBinOp(unsigned, Value *, Value *, const FastMathFlags &, 67 const Query &, unsigned); 68 static Value *SimplifyCmpInst(unsigned, Value *, Value *, const Query &, 69 unsigned); 70 static Value *SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS, 71 const Query &Q, unsigned MaxRecurse); 72 static Value *SimplifyOrInst(Value *, Value *, const Query &, unsigned); 73 static Value *SimplifyXorInst(Value *, Value *, const Query &, unsigned); 74 static Value *SimplifyCastInst(unsigned, Value *, Type *, 75 const Query &, unsigned); 76 77 /// For a boolean type, or a vector of boolean type, return false, or 78 /// a vector with every element false, as appropriate for the type. 79 static Constant *getFalse(Type *Ty) { 80 assert(Ty->getScalarType()->isIntegerTy(1) && 81 "Expected i1 type or a vector of i1!"); 82 return Constant::getNullValue(Ty); 83 } 84 85 /// For a boolean type, or a vector of boolean type, return true, or 86 /// a vector with every element true, as appropriate for the type. 87 static Constant *getTrue(Type *Ty) { 88 assert(Ty->getScalarType()->isIntegerTy(1) && 89 "Expected i1 type or a vector of i1!"); 90 return Constant::getAllOnesValue(Ty); 91 } 92 93 /// isSameCompare - Is V equivalent to the comparison "LHS Pred RHS"? 94 static bool isSameCompare(Value *V, CmpInst::Predicate Pred, Value *LHS, 95 Value *RHS) { 96 CmpInst *Cmp = dyn_cast<CmpInst>(V); 97 if (!Cmp) 98 return false; 99 CmpInst::Predicate CPred = Cmp->getPredicate(); 100 Value *CLHS = Cmp->getOperand(0), *CRHS = Cmp->getOperand(1); 101 if (CPred == Pred && CLHS == LHS && CRHS == RHS) 102 return true; 103 return CPred == CmpInst::getSwappedPredicate(Pred) && CLHS == RHS && 104 CRHS == LHS; 105 } 106 107 /// Does the given value dominate the specified phi node? 108 static bool ValueDominatesPHI(Value *V, PHINode *P, const DominatorTree *DT) { 109 Instruction *I = dyn_cast<Instruction>(V); 110 if (!I) 111 // Arguments and constants dominate all instructions. 112 return true; 113 114 // If we are processing instructions (and/or basic blocks) that have not been 115 // fully added to a function, the parent nodes may still be null. Simply 116 // return the conservative answer in these cases. 117 if (!I->getParent() || !P->getParent() || !I->getParent()->getParent()) 118 return false; 119 120 // If we have a DominatorTree then do a precise test. 121 if (DT) { 122 if (!DT->isReachableFromEntry(P->getParent())) 123 return true; 124 if (!DT->isReachableFromEntry(I->getParent())) 125 return false; 126 return DT->dominates(I, P); 127 } 128 129 // Otherwise, if the instruction is in the entry block and is not an invoke, 130 // then it obviously dominates all phi nodes. 131 if (I->getParent() == &I->getParent()->getParent()->getEntryBlock() && 132 !isa<InvokeInst>(I)) 133 return true; 134 135 return false; 136 } 137 138 /// Simplify "A op (B op' C)" by distributing op over op', turning it into 139 /// "(A op B) op' (A op C)". Here "op" is given by Opcode and "op'" is 140 /// given by OpcodeToExpand, while "A" corresponds to LHS and "B op' C" to RHS. 141 /// Also performs the transform "(A op' B) op C" -> "(A op C) op' (B op C)". 142 /// Returns the simplified value, or null if no simplification was performed. 143 static Value *ExpandBinOp(unsigned Opcode, Value *LHS, Value *RHS, 144 unsigned OpcToExpand, const Query &Q, 145 unsigned MaxRecurse) { 146 Instruction::BinaryOps OpcodeToExpand = (Instruction::BinaryOps)OpcToExpand; 147 // Recursion is always used, so bail out at once if we already hit the limit. 148 if (!MaxRecurse--) 149 return nullptr; 150 151 // Check whether the expression has the form "(A op' B) op C". 152 if (BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS)) 153 if (Op0->getOpcode() == OpcodeToExpand) { 154 // It does! Try turning it into "(A op C) op' (B op C)". 155 Value *A = Op0->getOperand(0), *B = Op0->getOperand(1), *C = RHS; 156 // Do "A op C" and "B op C" both simplify? 157 if (Value *L = SimplifyBinOp(Opcode, A, C, Q, MaxRecurse)) 158 if (Value *R = SimplifyBinOp(Opcode, B, C, Q, MaxRecurse)) { 159 // They do! Return "L op' R" if it simplifies or is already available. 160 // If "L op' R" equals "A op' B" then "L op' R" is just the LHS. 161 if ((L == A && R == B) || (Instruction::isCommutative(OpcodeToExpand) 162 && L == B && R == A)) { 163 ++NumExpand; 164 return LHS; 165 } 166 // Otherwise return "L op' R" if it simplifies. 167 if (Value *V = SimplifyBinOp(OpcodeToExpand, L, R, Q, MaxRecurse)) { 168 ++NumExpand; 169 return V; 170 } 171 } 172 } 173 174 // Check whether the expression has the form "A op (B op' C)". 175 if (BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS)) 176 if (Op1->getOpcode() == OpcodeToExpand) { 177 // It does! Try turning it into "(A op B) op' (A op C)". 178 Value *A = LHS, *B = Op1->getOperand(0), *C = Op1->getOperand(1); 179 // Do "A op B" and "A op C" both simplify? 180 if (Value *L = SimplifyBinOp(Opcode, A, B, Q, MaxRecurse)) 181 if (Value *R = SimplifyBinOp(Opcode, A, C, Q, MaxRecurse)) { 182 // They do! Return "L op' R" if it simplifies or is already available. 183 // If "L op' R" equals "B op' C" then "L op' R" is just the RHS. 184 if ((L == B && R == C) || (Instruction::isCommutative(OpcodeToExpand) 185 && L == C && R == B)) { 186 ++NumExpand; 187 return RHS; 188 } 189 // Otherwise return "L op' R" if it simplifies. 190 if (Value *V = SimplifyBinOp(OpcodeToExpand, L, R, Q, MaxRecurse)) { 191 ++NumExpand; 192 return V; 193 } 194 } 195 } 196 197 return nullptr; 198 } 199 200 /// Generic simplifications for associative binary operations. 201 /// Returns the simpler value, or null if none was found. 202 static Value *SimplifyAssociativeBinOp(unsigned Opc, Value *LHS, Value *RHS, 203 const Query &Q, unsigned MaxRecurse) { 204 Instruction::BinaryOps Opcode = (Instruction::BinaryOps)Opc; 205 assert(Instruction::isAssociative(Opcode) && "Not an associative operation!"); 206 207 // Recursion is always used, so bail out at once if we already hit the limit. 208 if (!MaxRecurse--) 209 return nullptr; 210 211 BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS); 212 BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS); 213 214 // Transform: "(A op B) op C" ==> "A op (B op C)" if it simplifies completely. 215 if (Op0 && Op0->getOpcode() == Opcode) { 216 Value *A = Op0->getOperand(0); 217 Value *B = Op0->getOperand(1); 218 Value *C = RHS; 219 220 // Does "B op C" simplify? 221 if (Value *V = SimplifyBinOp(Opcode, B, C, Q, MaxRecurse)) { 222 // It does! Return "A op V" if it simplifies or is already available. 223 // If V equals B then "A op V" is just the LHS. 224 if (V == B) return LHS; 225 // Otherwise return "A op V" if it simplifies. 226 if (Value *W = SimplifyBinOp(Opcode, A, V, Q, MaxRecurse)) { 227 ++NumReassoc; 228 return W; 229 } 230 } 231 } 232 233 // Transform: "A op (B op C)" ==> "(A op B) op C" if it simplifies completely. 234 if (Op1 && Op1->getOpcode() == Opcode) { 235 Value *A = LHS; 236 Value *B = Op1->getOperand(0); 237 Value *C = Op1->getOperand(1); 238 239 // Does "A op B" simplify? 240 if (Value *V = SimplifyBinOp(Opcode, A, B, Q, MaxRecurse)) { 241 // It does! Return "V op C" if it simplifies or is already available. 242 // If V equals B then "V op C" is just the RHS. 243 if (V == B) return RHS; 244 // Otherwise return "V op C" if it simplifies. 245 if (Value *W = SimplifyBinOp(Opcode, V, C, Q, MaxRecurse)) { 246 ++NumReassoc; 247 return W; 248 } 249 } 250 } 251 252 // The remaining transforms require commutativity as well as associativity. 253 if (!Instruction::isCommutative(Opcode)) 254 return nullptr; 255 256 // Transform: "(A op B) op C" ==> "(C op A) op B" if it simplifies completely. 257 if (Op0 && Op0->getOpcode() == Opcode) { 258 Value *A = Op0->getOperand(0); 259 Value *B = Op0->getOperand(1); 260 Value *C = RHS; 261 262 // Does "C op A" simplify? 263 if (Value *V = SimplifyBinOp(Opcode, C, A, Q, MaxRecurse)) { 264 // It does! Return "V op B" if it simplifies or is already available. 265 // If V equals A then "V op B" is just the LHS. 266 if (V == A) return LHS; 267 // Otherwise return "V op B" if it simplifies. 268 if (Value *W = SimplifyBinOp(Opcode, V, B, Q, MaxRecurse)) { 269 ++NumReassoc; 270 return W; 271 } 272 } 273 } 274 275 // Transform: "A op (B op C)" ==> "B op (C op A)" if it simplifies completely. 276 if (Op1 && Op1->getOpcode() == Opcode) { 277 Value *A = LHS; 278 Value *B = Op1->getOperand(0); 279 Value *C = Op1->getOperand(1); 280 281 // Does "C op A" simplify? 282 if (Value *V = SimplifyBinOp(Opcode, C, A, Q, MaxRecurse)) { 283 // It does! Return "B op V" if it simplifies or is already available. 284 // If V equals C then "B op V" is just the RHS. 285 if (V == C) return RHS; 286 // Otherwise return "B op V" if it simplifies. 287 if (Value *W = SimplifyBinOp(Opcode, B, V, Q, MaxRecurse)) { 288 ++NumReassoc; 289 return W; 290 } 291 } 292 } 293 294 return nullptr; 295 } 296 297 /// In the case of a binary operation with a select instruction as an operand, 298 /// try to simplify the binop by seeing whether evaluating it on both branches 299 /// of the select results in the same value. Returns the common value if so, 300 /// otherwise returns null. 301 static Value *ThreadBinOpOverSelect(unsigned Opcode, Value *LHS, Value *RHS, 302 const Query &Q, unsigned MaxRecurse) { 303 // Recursion is always used, so bail out at once if we already hit the limit. 304 if (!MaxRecurse--) 305 return nullptr; 306 307 SelectInst *SI; 308 if (isa<SelectInst>(LHS)) { 309 SI = cast<SelectInst>(LHS); 310 } else { 311 assert(isa<SelectInst>(RHS) && "No select instruction operand!"); 312 SI = cast<SelectInst>(RHS); 313 } 314 315 // Evaluate the BinOp on the true and false branches of the select. 316 Value *TV; 317 Value *FV; 318 if (SI == LHS) { 319 TV = SimplifyBinOp(Opcode, SI->getTrueValue(), RHS, Q, MaxRecurse); 320 FV = SimplifyBinOp(Opcode, SI->getFalseValue(), RHS, Q, MaxRecurse); 321 } else { 322 TV = SimplifyBinOp(Opcode, LHS, SI->getTrueValue(), Q, MaxRecurse); 323 FV = SimplifyBinOp(Opcode, LHS, SI->getFalseValue(), Q, MaxRecurse); 324 } 325 326 // If they simplified to the same value, then return the common value. 327 // If they both failed to simplify then return null. 328 if (TV == FV) 329 return TV; 330 331 // If one branch simplified to undef, return the other one. 332 if (TV && isa<UndefValue>(TV)) 333 return FV; 334 if (FV && isa<UndefValue>(FV)) 335 return TV; 336 337 // If applying the operation did not change the true and false select values, 338 // then the result of the binop is the select itself. 339 if (TV == SI->getTrueValue() && FV == SI->getFalseValue()) 340 return SI; 341 342 // If one branch simplified and the other did not, and the simplified 343 // value is equal to the unsimplified one, return the simplified value. 344 // For example, select (cond, X, X & Z) & Z -> X & Z. 345 if ((FV && !TV) || (TV && !FV)) { 346 // Check that the simplified value has the form "X op Y" where "op" is the 347 // same as the original operation. 348 Instruction *Simplified = dyn_cast<Instruction>(FV ? FV : TV); 349 if (Simplified && Simplified->getOpcode() == Opcode) { 350 // The value that didn't simplify is "UnsimplifiedLHS op UnsimplifiedRHS". 351 // We already know that "op" is the same as for the simplified value. See 352 // if the operands match too. If so, return the simplified value. 353 Value *UnsimplifiedBranch = FV ? SI->getTrueValue() : SI->getFalseValue(); 354 Value *UnsimplifiedLHS = SI == LHS ? UnsimplifiedBranch : LHS; 355 Value *UnsimplifiedRHS = SI == LHS ? RHS : UnsimplifiedBranch; 356 if (Simplified->getOperand(0) == UnsimplifiedLHS && 357 Simplified->getOperand(1) == UnsimplifiedRHS) 358 return Simplified; 359 if (Simplified->isCommutative() && 360 Simplified->getOperand(1) == UnsimplifiedLHS && 361 Simplified->getOperand(0) == UnsimplifiedRHS) 362 return Simplified; 363 } 364 } 365 366 return nullptr; 367 } 368 369 /// In the case of a comparison with a select instruction, try to simplify the 370 /// comparison by seeing whether both branches of the select result in the same 371 /// value. Returns the common value if so, otherwise returns null. 372 static Value *ThreadCmpOverSelect(CmpInst::Predicate Pred, Value *LHS, 373 Value *RHS, const Query &Q, 374 unsigned MaxRecurse) { 375 // Recursion is always used, so bail out at once if we already hit the limit. 376 if (!MaxRecurse--) 377 return nullptr; 378 379 // Make sure the select is on the LHS. 380 if (!isa<SelectInst>(LHS)) { 381 std::swap(LHS, RHS); 382 Pred = CmpInst::getSwappedPredicate(Pred); 383 } 384 assert(isa<SelectInst>(LHS) && "Not comparing with a select instruction!"); 385 SelectInst *SI = cast<SelectInst>(LHS); 386 Value *Cond = SI->getCondition(); 387 Value *TV = SI->getTrueValue(); 388 Value *FV = SI->getFalseValue(); 389 390 // Now that we have "cmp select(Cond, TV, FV), RHS", analyse it. 391 // Does "cmp TV, RHS" simplify? 392 Value *TCmp = SimplifyCmpInst(Pred, TV, RHS, Q, MaxRecurse); 393 if (TCmp == Cond) { 394 // It not only simplified, it simplified to the select condition. Replace 395 // it with 'true'. 396 TCmp = getTrue(Cond->getType()); 397 } else if (!TCmp) { 398 // It didn't simplify. However if "cmp TV, RHS" is equal to the select 399 // condition then we can replace it with 'true'. Otherwise give up. 400 if (!isSameCompare(Cond, Pred, TV, RHS)) 401 return nullptr; 402 TCmp = getTrue(Cond->getType()); 403 } 404 405 // Does "cmp FV, RHS" simplify? 406 Value *FCmp = SimplifyCmpInst(Pred, FV, RHS, Q, MaxRecurse); 407 if (FCmp == Cond) { 408 // It not only simplified, it simplified to the select condition. Replace 409 // it with 'false'. 410 FCmp = getFalse(Cond->getType()); 411 } else if (!FCmp) { 412 // It didn't simplify. However if "cmp FV, RHS" is equal to the select 413 // condition then we can replace it with 'false'. Otherwise give up. 414 if (!isSameCompare(Cond, Pred, FV, RHS)) 415 return nullptr; 416 FCmp = getFalse(Cond->getType()); 417 } 418 419 // If both sides simplified to the same value, then use it as the result of 420 // the original comparison. 421 if (TCmp == FCmp) 422 return TCmp; 423 424 // The remaining cases only make sense if the select condition has the same 425 // type as the result of the comparison, so bail out if this is not so. 426 if (Cond->getType()->isVectorTy() != RHS->getType()->isVectorTy()) 427 return nullptr; 428 // If the false value simplified to false, then the result of the compare 429 // is equal to "Cond && TCmp". This also catches the case when the false 430 // value simplified to false and the true value to true, returning "Cond". 431 if (match(FCmp, m_Zero())) 432 if (Value *V = SimplifyAndInst(Cond, TCmp, Q, MaxRecurse)) 433 return V; 434 // If the true value simplified to true, then the result of the compare 435 // is equal to "Cond || FCmp". 436 if (match(TCmp, m_One())) 437 if (Value *V = SimplifyOrInst(Cond, FCmp, Q, MaxRecurse)) 438 return V; 439 // Finally, if the false value simplified to true and the true value to 440 // false, then the result of the compare is equal to "!Cond". 441 if (match(FCmp, m_One()) && match(TCmp, m_Zero())) 442 if (Value *V = 443 SimplifyXorInst(Cond, Constant::getAllOnesValue(Cond->getType()), 444 Q, MaxRecurse)) 445 return V; 446 447 return nullptr; 448 } 449 450 /// In the case of a binary operation with an operand that is a PHI instruction, 451 /// try to simplify the binop by seeing whether evaluating it on the incoming 452 /// phi values yields the same result for every value. If so returns the common 453 /// value, otherwise returns null. 454 static Value *ThreadBinOpOverPHI(unsigned Opcode, Value *LHS, Value *RHS, 455 const Query &Q, unsigned MaxRecurse) { 456 // Recursion is always used, so bail out at once if we already hit the limit. 457 if (!MaxRecurse--) 458 return nullptr; 459 460 PHINode *PI; 461 if (isa<PHINode>(LHS)) { 462 PI = cast<PHINode>(LHS); 463 // Bail out if RHS and the phi may be mutually interdependent due to a loop. 464 if (!ValueDominatesPHI(RHS, PI, Q.DT)) 465 return nullptr; 466 } else { 467 assert(isa<PHINode>(RHS) && "No PHI instruction operand!"); 468 PI = cast<PHINode>(RHS); 469 // Bail out if LHS and the phi may be mutually interdependent due to a loop. 470 if (!ValueDominatesPHI(LHS, PI, Q.DT)) 471 return nullptr; 472 } 473 474 // Evaluate the BinOp on the incoming phi values. 475 Value *CommonValue = nullptr; 476 for (Value *Incoming : PI->incoming_values()) { 477 // If the incoming value is the phi node itself, it can safely be skipped. 478 if (Incoming == PI) continue; 479 Value *V = PI == LHS ? 480 SimplifyBinOp(Opcode, Incoming, RHS, Q, MaxRecurse) : 481 SimplifyBinOp(Opcode, LHS, Incoming, Q, MaxRecurse); 482 // If the operation failed to simplify, or simplified to a different value 483 // to previously, then give up. 484 if (!V || (CommonValue && V != CommonValue)) 485 return nullptr; 486 CommonValue = V; 487 } 488 489 return CommonValue; 490 } 491 492 /// In the case of a comparison with a PHI instruction, try to simplify the 493 /// comparison by seeing whether comparing with all of the incoming phi values 494 /// yields the same result every time. If so returns the common result, 495 /// otherwise returns null. 496 static Value *ThreadCmpOverPHI(CmpInst::Predicate Pred, Value *LHS, Value *RHS, 497 const Query &Q, unsigned MaxRecurse) { 498 // Recursion is always used, so bail out at once if we already hit the limit. 499 if (!MaxRecurse--) 500 return nullptr; 501 502 // Make sure the phi is on the LHS. 503 if (!isa<PHINode>(LHS)) { 504 std::swap(LHS, RHS); 505 Pred = CmpInst::getSwappedPredicate(Pred); 506 } 507 assert(isa<PHINode>(LHS) && "Not comparing with a phi instruction!"); 508 PHINode *PI = cast<PHINode>(LHS); 509 510 // Bail out if RHS and the phi may be mutually interdependent due to a loop. 511 if (!ValueDominatesPHI(RHS, PI, Q.DT)) 512 return nullptr; 513 514 // Evaluate the BinOp on the incoming phi values. 515 Value *CommonValue = nullptr; 516 for (Value *Incoming : PI->incoming_values()) { 517 // If the incoming value is the phi node itself, it can safely be skipped. 518 if (Incoming == PI) continue; 519 Value *V = SimplifyCmpInst(Pred, Incoming, RHS, Q, MaxRecurse); 520 // If the operation failed to simplify, or simplified to a different value 521 // to previously, then give up. 522 if (!V || (CommonValue && V != CommonValue)) 523 return nullptr; 524 CommonValue = V; 525 } 526 527 return CommonValue; 528 } 529 530 /// Given operands for an Add, see if we can fold the result. 531 /// If not, this returns null. 532 static Value *SimplifyAddInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, 533 const Query &Q, unsigned MaxRecurse) { 534 if (Constant *CLHS = dyn_cast<Constant>(Op0)) { 535 if (Constant *CRHS = dyn_cast<Constant>(Op1)) 536 return ConstantFoldBinaryOpOperands(Instruction::Add, CLHS, CRHS, Q.DL); 537 538 // Canonicalize the constant to the RHS. 539 std::swap(Op0, Op1); 540 } 541 542 // X + undef -> undef 543 if (match(Op1, m_Undef())) 544 return Op1; 545 546 // X + 0 -> X 547 if (match(Op1, m_Zero())) 548 return Op0; 549 550 // X + (Y - X) -> Y 551 // (Y - X) + X -> Y 552 // Eg: X + -X -> 0 553 Value *Y = nullptr; 554 if (match(Op1, m_Sub(m_Value(Y), m_Specific(Op0))) || 555 match(Op0, m_Sub(m_Value(Y), m_Specific(Op1)))) 556 return Y; 557 558 // X + ~X -> -1 since ~X = -X-1 559 if (match(Op0, m_Not(m_Specific(Op1))) || 560 match(Op1, m_Not(m_Specific(Op0)))) 561 return Constant::getAllOnesValue(Op0->getType()); 562 563 /// i1 add -> xor. 564 if (MaxRecurse && Op0->getType()->isIntegerTy(1)) 565 if (Value *V = SimplifyXorInst(Op0, Op1, Q, MaxRecurse-1)) 566 return V; 567 568 // Try some generic simplifications for associative operations. 569 if (Value *V = SimplifyAssociativeBinOp(Instruction::Add, Op0, Op1, Q, 570 MaxRecurse)) 571 return V; 572 573 // Threading Add over selects and phi nodes is pointless, so don't bother. 574 // Threading over the select in "A + select(cond, B, C)" means evaluating 575 // "A+B" and "A+C" and seeing if they are equal; but they are equal if and 576 // only if B and C are equal. If B and C are equal then (since we assume 577 // that operands have already been simplified) "select(cond, B, C)" should 578 // have been simplified to the common value of B and C already. Analysing 579 // "A+B" and "A+C" thus gains nothing, but costs compile time. Similarly 580 // for threading over phi nodes. 581 582 return nullptr; 583 } 584 585 Value *llvm::SimplifyAddInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, 586 const DataLayout &DL, const TargetLibraryInfo *TLI, 587 const DominatorTree *DT, AssumptionCache *AC, 588 const Instruction *CxtI) { 589 return ::SimplifyAddInst(Op0, Op1, isNSW, isNUW, Query(DL, TLI, DT, AC, CxtI), 590 RecursionLimit); 591 } 592 593 /// \brief Compute the base pointer and cumulative constant offsets for V. 594 /// 595 /// This strips all constant offsets off of V, leaving it the base pointer, and 596 /// accumulates the total constant offset applied in the returned constant. It 597 /// returns 0 if V is not a pointer, and returns the constant '0' if there are 598 /// no constant offsets applied. 599 /// 600 /// This is very similar to GetPointerBaseWithConstantOffset except it doesn't 601 /// follow non-inbounds geps. This allows it to remain usable for icmp ult/etc. 602 /// folding. 603 static Constant *stripAndComputeConstantOffsets(const DataLayout &DL, Value *&V, 604 bool AllowNonInbounds = false) { 605 assert(V->getType()->getScalarType()->isPointerTy()); 606 607 Type *IntPtrTy = DL.getIntPtrType(V->getType())->getScalarType(); 608 APInt Offset = APInt::getNullValue(IntPtrTy->getIntegerBitWidth()); 609 610 // Even though we don't look through PHI nodes, we could be called on an 611 // instruction in an unreachable block, which may be on a cycle. 612 SmallPtrSet<Value *, 4> Visited; 613 Visited.insert(V); 614 do { 615 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 616 if ((!AllowNonInbounds && !GEP->isInBounds()) || 617 !GEP->accumulateConstantOffset(DL, Offset)) 618 break; 619 V = GEP->getPointerOperand(); 620 } else if (Operator::getOpcode(V) == Instruction::BitCast) { 621 V = cast<Operator>(V)->getOperand(0); 622 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 623 if (GA->isInterposable()) 624 break; 625 V = GA->getAliasee(); 626 } else { 627 if (auto CS = CallSite(V)) 628 if (Value *RV = CS.getReturnedArgOperand()) { 629 V = RV; 630 continue; 631 } 632 break; 633 } 634 assert(V->getType()->getScalarType()->isPointerTy() && 635 "Unexpected operand type!"); 636 } while (Visited.insert(V).second); 637 638 Constant *OffsetIntPtr = ConstantInt::get(IntPtrTy, Offset); 639 if (V->getType()->isVectorTy()) 640 return ConstantVector::getSplat(V->getType()->getVectorNumElements(), 641 OffsetIntPtr); 642 return OffsetIntPtr; 643 } 644 645 /// \brief Compute the constant difference between two pointer values. 646 /// If the difference is not a constant, returns zero. 647 static Constant *computePointerDifference(const DataLayout &DL, Value *LHS, 648 Value *RHS) { 649 Constant *LHSOffset = stripAndComputeConstantOffsets(DL, LHS); 650 Constant *RHSOffset = stripAndComputeConstantOffsets(DL, RHS); 651 652 // If LHS and RHS are not related via constant offsets to the same base 653 // value, there is nothing we can do here. 654 if (LHS != RHS) 655 return nullptr; 656 657 // Otherwise, the difference of LHS - RHS can be computed as: 658 // LHS - RHS 659 // = (LHSOffset + Base) - (RHSOffset + Base) 660 // = LHSOffset - RHSOffset 661 return ConstantExpr::getSub(LHSOffset, RHSOffset); 662 } 663 664 /// Given operands for a Sub, see if we can fold the result. 665 /// If not, this returns null. 666 static Value *SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, 667 const Query &Q, unsigned MaxRecurse) { 668 if (Constant *CLHS = dyn_cast<Constant>(Op0)) 669 if (Constant *CRHS = dyn_cast<Constant>(Op1)) 670 return ConstantFoldBinaryOpOperands(Instruction::Sub, CLHS, CRHS, Q.DL); 671 672 // X - undef -> undef 673 // undef - X -> undef 674 if (match(Op0, m_Undef()) || match(Op1, m_Undef())) 675 return UndefValue::get(Op0->getType()); 676 677 // X - 0 -> X 678 if (match(Op1, m_Zero())) 679 return Op0; 680 681 // X - X -> 0 682 if (Op0 == Op1) 683 return Constant::getNullValue(Op0->getType()); 684 685 // Is this a negation? 686 if (match(Op0, m_Zero())) { 687 // 0 - X -> 0 if the sub is NUW. 688 if (isNUW) 689 return Op0; 690 691 unsigned BitWidth = Op1->getType()->getScalarSizeInBits(); 692 APInt KnownZero(BitWidth, 0); 693 APInt KnownOne(BitWidth, 0); 694 computeKnownBits(Op1, KnownZero, KnownOne, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 695 if (KnownZero == ~APInt::getSignBit(BitWidth)) { 696 // Op1 is either 0 or the minimum signed value. If the sub is NSW, then 697 // Op1 must be 0 because negating the minimum signed value is undefined. 698 if (isNSW) 699 return Op0; 700 701 // 0 - X -> X if X is 0 or the minimum signed value. 702 return Op1; 703 } 704 } 705 706 // (X + Y) - Z -> X + (Y - Z) or Y + (X - Z) if everything simplifies. 707 // For example, (X + Y) - Y -> X; (Y + X) - Y -> X 708 Value *X = nullptr, *Y = nullptr, *Z = Op1; 709 if (MaxRecurse && match(Op0, m_Add(m_Value(X), m_Value(Y)))) { // (X + Y) - Z 710 // See if "V === Y - Z" simplifies. 711 if (Value *V = SimplifyBinOp(Instruction::Sub, Y, Z, Q, MaxRecurse-1)) 712 // It does! Now see if "X + V" simplifies. 713 if (Value *W = SimplifyBinOp(Instruction::Add, X, V, Q, MaxRecurse-1)) { 714 // It does, we successfully reassociated! 715 ++NumReassoc; 716 return W; 717 } 718 // See if "V === X - Z" simplifies. 719 if (Value *V = SimplifyBinOp(Instruction::Sub, X, Z, Q, MaxRecurse-1)) 720 // It does! Now see if "Y + V" simplifies. 721 if (Value *W = SimplifyBinOp(Instruction::Add, Y, V, Q, MaxRecurse-1)) { 722 // It does, we successfully reassociated! 723 ++NumReassoc; 724 return W; 725 } 726 } 727 728 // X - (Y + Z) -> (X - Y) - Z or (X - Z) - Y if everything simplifies. 729 // For example, X - (X + 1) -> -1 730 X = Op0; 731 if (MaxRecurse && match(Op1, m_Add(m_Value(Y), m_Value(Z)))) { // X - (Y + Z) 732 // See if "V === X - Y" simplifies. 733 if (Value *V = SimplifyBinOp(Instruction::Sub, X, Y, Q, MaxRecurse-1)) 734 // It does! Now see if "V - Z" simplifies. 735 if (Value *W = SimplifyBinOp(Instruction::Sub, V, Z, Q, MaxRecurse-1)) { 736 // It does, we successfully reassociated! 737 ++NumReassoc; 738 return W; 739 } 740 // See if "V === X - Z" simplifies. 741 if (Value *V = SimplifyBinOp(Instruction::Sub, X, Z, Q, MaxRecurse-1)) 742 // It does! Now see if "V - Y" simplifies. 743 if (Value *W = SimplifyBinOp(Instruction::Sub, V, Y, Q, MaxRecurse-1)) { 744 // It does, we successfully reassociated! 745 ++NumReassoc; 746 return W; 747 } 748 } 749 750 // Z - (X - Y) -> (Z - X) + Y if everything simplifies. 751 // For example, X - (X - Y) -> Y. 752 Z = Op0; 753 if (MaxRecurse && match(Op1, m_Sub(m_Value(X), m_Value(Y)))) // Z - (X - Y) 754 // See if "V === Z - X" simplifies. 755 if (Value *V = SimplifyBinOp(Instruction::Sub, Z, X, Q, MaxRecurse-1)) 756 // It does! Now see if "V + Y" simplifies. 757 if (Value *W = SimplifyBinOp(Instruction::Add, V, Y, Q, MaxRecurse-1)) { 758 // It does, we successfully reassociated! 759 ++NumReassoc; 760 return W; 761 } 762 763 // trunc(X) - trunc(Y) -> trunc(X - Y) if everything simplifies. 764 if (MaxRecurse && match(Op0, m_Trunc(m_Value(X))) && 765 match(Op1, m_Trunc(m_Value(Y)))) 766 if (X->getType() == Y->getType()) 767 // See if "V === X - Y" simplifies. 768 if (Value *V = SimplifyBinOp(Instruction::Sub, X, Y, Q, MaxRecurse-1)) 769 // It does! Now see if "trunc V" simplifies. 770 if (Value *W = SimplifyCastInst(Instruction::Trunc, V, Op0->getType(), 771 Q, MaxRecurse - 1)) 772 // It does, return the simplified "trunc V". 773 return W; 774 775 // Variations on GEP(base, I, ...) - GEP(base, i, ...) -> GEP(null, I-i, ...). 776 if (match(Op0, m_PtrToInt(m_Value(X))) && 777 match(Op1, m_PtrToInt(m_Value(Y)))) 778 if (Constant *Result = computePointerDifference(Q.DL, X, Y)) 779 return ConstantExpr::getIntegerCast(Result, Op0->getType(), true); 780 781 // i1 sub -> xor. 782 if (MaxRecurse && Op0->getType()->isIntegerTy(1)) 783 if (Value *V = SimplifyXorInst(Op0, Op1, Q, MaxRecurse-1)) 784 return V; 785 786 // Threading Sub over selects and phi nodes is pointless, so don't bother. 787 // Threading over the select in "A - select(cond, B, C)" means evaluating 788 // "A-B" and "A-C" and seeing if they are equal; but they are equal if and 789 // only if B and C are equal. If B and C are equal then (since we assume 790 // that operands have already been simplified) "select(cond, B, C)" should 791 // have been simplified to the common value of B and C already. Analysing 792 // "A-B" and "A-C" thus gains nothing, but costs compile time. Similarly 793 // for threading over phi nodes. 794 795 return nullptr; 796 } 797 798 Value *llvm::SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, 799 const DataLayout &DL, const TargetLibraryInfo *TLI, 800 const DominatorTree *DT, AssumptionCache *AC, 801 const Instruction *CxtI) { 802 return ::SimplifySubInst(Op0, Op1, isNSW, isNUW, Query(DL, TLI, DT, AC, CxtI), 803 RecursionLimit); 804 } 805 806 /// Given operands for an FAdd, see if we can fold the result. If not, this 807 /// returns null. 808 static Value *SimplifyFAddInst(Value *Op0, Value *Op1, FastMathFlags FMF, 809 const Query &Q, unsigned MaxRecurse) { 810 if (Constant *CLHS = dyn_cast<Constant>(Op0)) { 811 if (Constant *CRHS = dyn_cast<Constant>(Op1)) 812 return ConstantFoldBinaryOpOperands(Instruction::FAdd, CLHS, CRHS, Q.DL); 813 814 // Canonicalize the constant to the RHS. 815 std::swap(Op0, Op1); 816 } 817 818 // fadd X, -0 ==> X 819 if (match(Op1, m_NegZero())) 820 return Op0; 821 822 // fadd X, 0 ==> X, when we know X is not -0 823 if (match(Op1, m_Zero()) && 824 (FMF.noSignedZeros() || CannotBeNegativeZero(Op0, Q.TLI))) 825 return Op0; 826 827 // fadd [nnan ninf] X, (fsub [nnan ninf] 0, X) ==> 0 828 // where nnan and ninf have to occur at least once somewhere in this 829 // expression 830 Value *SubOp = nullptr; 831 if (match(Op1, m_FSub(m_AnyZero(), m_Specific(Op0)))) 832 SubOp = Op1; 833 else if (match(Op0, m_FSub(m_AnyZero(), m_Specific(Op1)))) 834 SubOp = Op0; 835 if (SubOp) { 836 Instruction *FSub = cast<Instruction>(SubOp); 837 if ((FMF.noNaNs() || FSub->hasNoNaNs()) && 838 (FMF.noInfs() || FSub->hasNoInfs())) 839 return Constant::getNullValue(Op0->getType()); 840 } 841 842 return nullptr; 843 } 844 845 /// Given operands for an FSub, see if we can fold the result. If not, this 846 /// returns null. 847 static Value *SimplifyFSubInst(Value *Op0, Value *Op1, FastMathFlags FMF, 848 const Query &Q, unsigned MaxRecurse) { 849 if (Constant *CLHS = dyn_cast<Constant>(Op0)) { 850 if (Constant *CRHS = dyn_cast<Constant>(Op1)) 851 return ConstantFoldBinaryOpOperands(Instruction::FSub, CLHS, CRHS, Q.DL); 852 } 853 854 // fsub X, 0 ==> X 855 if (match(Op1, m_Zero())) 856 return Op0; 857 858 // fsub X, -0 ==> X, when we know X is not -0 859 if (match(Op1, m_NegZero()) && 860 (FMF.noSignedZeros() || CannotBeNegativeZero(Op0, Q.TLI))) 861 return Op0; 862 863 // fsub -0.0, (fsub -0.0, X) ==> X 864 Value *X; 865 if (match(Op0, m_NegZero()) && match(Op1, m_FSub(m_NegZero(), m_Value(X)))) 866 return X; 867 868 // fsub 0.0, (fsub 0.0, X) ==> X if signed zeros are ignored. 869 if (FMF.noSignedZeros() && match(Op0, m_AnyZero()) && 870 match(Op1, m_FSub(m_AnyZero(), m_Value(X)))) 871 return X; 872 873 // fsub nnan x, x ==> 0.0 874 if (FMF.noNaNs() && Op0 == Op1) 875 return Constant::getNullValue(Op0->getType()); 876 877 return nullptr; 878 } 879 880 /// Given the operands for an FMul, see if we can fold the result 881 static Value *SimplifyFMulInst(Value *Op0, Value *Op1, 882 FastMathFlags FMF, 883 const Query &Q, 884 unsigned MaxRecurse) { 885 if (Constant *CLHS = dyn_cast<Constant>(Op0)) { 886 if (Constant *CRHS = dyn_cast<Constant>(Op1)) 887 return ConstantFoldBinaryOpOperands(Instruction::FMul, CLHS, CRHS, Q.DL); 888 889 // Canonicalize the constant to the RHS. 890 std::swap(Op0, Op1); 891 } 892 893 // fmul X, 1.0 ==> X 894 if (match(Op1, m_FPOne())) 895 return Op0; 896 897 // fmul nnan nsz X, 0 ==> 0 898 if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op1, m_AnyZero())) 899 return Op1; 900 901 return nullptr; 902 } 903 904 /// Given operands for a Mul, see if we can fold the result. 905 /// If not, this returns null. 906 static Value *SimplifyMulInst(Value *Op0, Value *Op1, const Query &Q, 907 unsigned MaxRecurse) { 908 if (Constant *CLHS = dyn_cast<Constant>(Op0)) { 909 if (Constant *CRHS = dyn_cast<Constant>(Op1)) 910 return ConstantFoldBinaryOpOperands(Instruction::Mul, CLHS, CRHS, Q.DL); 911 912 // Canonicalize the constant to the RHS. 913 std::swap(Op0, Op1); 914 } 915 916 // X * undef -> 0 917 if (match(Op1, m_Undef())) 918 return Constant::getNullValue(Op0->getType()); 919 920 // X * 0 -> 0 921 if (match(Op1, m_Zero())) 922 return Op1; 923 924 // X * 1 -> X 925 if (match(Op1, m_One())) 926 return Op0; 927 928 // (X / Y) * Y -> X if the division is exact. 929 Value *X = nullptr; 930 if (match(Op0, m_Exact(m_IDiv(m_Value(X), m_Specific(Op1)))) || // (X / Y) * Y 931 match(Op1, m_Exact(m_IDiv(m_Value(X), m_Specific(Op0))))) // Y * (X / Y) 932 return X; 933 934 // i1 mul -> and. 935 if (MaxRecurse && Op0->getType()->isIntegerTy(1)) 936 if (Value *V = SimplifyAndInst(Op0, Op1, Q, MaxRecurse-1)) 937 return V; 938 939 // Try some generic simplifications for associative operations. 940 if (Value *V = SimplifyAssociativeBinOp(Instruction::Mul, Op0, Op1, Q, 941 MaxRecurse)) 942 return V; 943 944 // Mul distributes over Add. Try some generic simplifications based on this. 945 if (Value *V = ExpandBinOp(Instruction::Mul, Op0, Op1, Instruction::Add, 946 Q, MaxRecurse)) 947 return V; 948 949 // If the operation is with the result of a select instruction, check whether 950 // operating on either branch of the select always yields the same value. 951 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 952 if (Value *V = ThreadBinOpOverSelect(Instruction::Mul, Op0, Op1, Q, 953 MaxRecurse)) 954 return V; 955 956 // If the operation is with the result of a phi instruction, check whether 957 // operating on all incoming values of the phi always yields the same value. 958 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 959 if (Value *V = ThreadBinOpOverPHI(Instruction::Mul, Op0, Op1, Q, 960 MaxRecurse)) 961 return V; 962 963 return nullptr; 964 } 965 966 Value *llvm::SimplifyFAddInst(Value *Op0, Value *Op1, FastMathFlags FMF, 967 const DataLayout &DL, 968 const TargetLibraryInfo *TLI, 969 const DominatorTree *DT, AssumptionCache *AC, 970 const Instruction *CxtI) { 971 return ::SimplifyFAddInst(Op0, Op1, FMF, Query(DL, TLI, DT, AC, CxtI), 972 RecursionLimit); 973 } 974 975 Value *llvm::SimplifyFSubInst(Value *Op0, Value *Op1, FastMathFlags FMF, 976 const DataLayout &DL, 977 const TargetLibraryInfo *TLI, 978 const DominatorTree *DT, AssumptionCache *AC, 979 const Instruction *CxtI) { 980 return ::SimplifyFSubInst(Op0, Op1, FMF, Query(DL, TLI, DT, AC, CxtI), 981 RecursionLimit); 982 } 983 984 Value *llvm::SimplifyFMulInst(Value *Op0, Value *Op1, FastMathFlags FMF, 985 const DataLayout &DL, 986 const TargetLibraryInfo *TLI, 987 const DominatorTree *DT, AssumptionCache *AC, 988 const Instruction *CxtI) { 989 return ::SimplifyFMulInst(Op0, Op1, FMF, Query(DL, TLI, DT, AC, CxtI), 990 RecursionLimit); 991 } 992 993 Value *llvm::SimplifyMulInst(Value *Op0, Value *Op1, const DataLayout &DL, 994 const TargetLibraryInfo *TLI, 995 const DominatorTree *DT, AssumptionCache *AC, 996 const Instruction *CxtI) { 997 return ::SimplifyMulInst(Op0, Op1, Query(DL, TLI, DT, AC, CxtI), 998 RecursionLimit); 999 } 1000 1001 /// Given operands for an SDiv or UDiv, see if we can fold the result. 1002 /// If not, this returns null. 1003 static Value *SimplifyDiv(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1, 1004 const Query &Q, unsigned MaxRecurse) { 1005 if (Constant *C0 = dyn_cast<Constant>(Op0)) 1006 if (Constant *C1 = dyn_cast<Constant>(Op1)) 1007 return ConstantFoldBinaryOpOperands(Opcode, C0, C1, Q.DL); 1008 1009 bool isSigned = Opcode == Instruction::SDiv; 1010 1011 // X / undef -> undef 1012 if (match(Op1, m_Undef())) 1013 return Op1; 1014 1015 // X / 0 -> undef, we don't need to preserve faults! 1016 if (match(Op1, m_Zero())) 1017 return UndefValue::get(Op1->getType()); 1018 1019 // undef / X -> 0 1020 if (match(Op0, m_Undef())) 1021 return Constant::getNullValue(Op0->getType()); 1022 1023 // 0 / X -> 0, we don't need to preserve faults! 1024 if (match(Op0, m_Zero())) 1025 return Op0; 1026 1027 // X / 1 -> X 1028 if (match(Op1, m_One())) 1029 return Op0; 1030 1031 if (Op0->getType()->isIntegerTy(1)) 1032 // It can't be division by zero, hence it must be division by one. 1033 return Op0; 1034 1035 // X / X -> 1 1036 if (Op0 == Op1) 1037 return ConstantInt::get(Op0->getType(), 1); 1038 1039 // (X * Y) / Y -> X if the multiplication does not overflow. 1040 Value *X = nullptr, *Y = nullptr; 1041 if (match(Op0, m_Mul(m_Value(X), m_Value(Y))) && (X == Op1 || Y == Op1)) { 1042 if (Y != Op1) std::swap(X, Y); // Ensure expression is (X * Y) / Y, Y = Op1 1043 OverflowingBinaryOperator *Mul = cast<OverflowingBinaryOperator>(Op0); 1044 // If the Mul knows it does not overflow, then we are good to go. 1045 if ((isSigned && Mul->hasNoSignedWrap()) || 1046 (!isSigned && Mul->hasNoUnsignedWrap())) 1047 return X; 1048 // If X has the form X = A / Y then X * Y cannot overflow. 1049 if (BinaryOperator *Div = dyn_cast<BinaryOperator>(X)) 1050 if (Div->getOpcode() == Opcode && Div->getOperand(1) == Y) 1051 return X; 1052 } 1053 1054 // (X rem Y) / Y -> 0 1055 if ((isSigned && match(Op0, m_SRem(m_Value(), m_Specific(Op1)))) || 1056 (!isSigned && match(Op0, m_URem(m_Value(), m_Specific(Op1))))) 1057 return Constant::getNullValue(Op0->getType()); 1058 1059 // (X /u C1) /u C2 -> 0 if C1 * C2 overflow 1060 ConstantInt *C1, *C2; 1061 if (!isSigned && match(Op0, m_UDiv(m_Value(X), m_ConstantInt(C1))) && 1062 match(Op1, m_ConstantInt(C2))) { 1063 bool Overflow; 1064 C1->getValue().umul_ov(C2->getValue(), Overflow); 1065 if (Overflow) 1066 return Constant::getNullValue(Op0->getType()); 1067 } 1068 1069 // If the operation is with the result of a select instruction, check whether 1070 // operating on either branch of the select always yields the same value. 1071 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 1072 if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse)) 1073 return V; 1074 1075 // If the operation is with the result of a phi instruction, check whether 1076 // operating on all incoming values of the phi always yields the same value. 1077 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 1078 if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse)) 1079 return V; 1080 1081 return nullptr; 1082 } 1083 1084 /// Given operands for an SDiv, see if we can fold the result. 1085 /// If not, this returns null. 1086 static Value *SimplifySDivInst(Value *Op0, Value *Op1, const Query &Q, 1087 unsigned MaxRecurse) { 1088 if (Value *V = SimplifyDiv(Instruction::SDiv, Op0, Op1, Q, MaxRecurse)) 1089 return V; 1090 1091 return nullptr; 1092 } 1093 1094 Value *llvm::SimplifySDivInst(Value *Op0, Value *Op1, const DataLayout &DL, 1095 const TargetLibraryInfo *TLI, 1096 const DominatorTree *DT, AssumptionCache *AC, 1097 const Instruction *CxtI) { 1098 return ::SimplifySDivInst(Op0, Op1, Query(DL, TLI, DT, AC, CxtI), 1099 RecursionLimit); 1100 } 1101 1102 /// Given operands for a UDiv, see if we can fold the result. 1103 /// If not, this returns null. 1104 static Value *SimplifyUDivInst(Value *Op0, Value *Op1, const Query &Q, 1105 unsigned MaxRecurse) { 1106 if (Value *V = SimplifyDiv(Instruction::UDiv, Op0, Op1, Q, MaxRecurse)) 1107 return V; 1108 1109 // udiv %V, C -> 0 if %V < C 1110 if (MaxRecurse) { 1111 if (Constant *C = dyn_cast_or_null<Constant>(SimplifyICmpInst( 1112 ICmpInst::ICMP_ULT, Op0, Op1, Q, MaxRecurse - 1))) { 1113 if (C->isAllOnesValue()) { 1114 return Constant::getNullValue(Op0->getType()); 1115 } 1116 } 1117 } 1118 1119 return nullptr; 1120 } 1121 1122 Value *llvm::SimplifyUDivInst(Value *Op0, Value *Op1, const DataLayout &DL, 1123 const TargetLibraryInfo *TLI, 1124 const DominatorTree *DT, AssumptionCache *AC, 1125 const Instruction *CxtI) { 1126 return ::SimplifyUDivInst(Op0, Op1, Query(DL, TLI, DT, AC, CxtI), 1127 RecursionLimit); 1128 } 1129 1130 static Value *SimplifyFDivInst(Value *Op0, Value *Op1, FastMathFlags FMF, 1131 const Query &Q, unsigned) { 1132 // undef / X -> undef (the undef could be a snan). 1133 if (match(Op0, m_Undef())) 1134 return Op0; 1135 1136 // X / undef -> undef 1137 if (match(Op1, m_Undef())) 1138 return Op1; 1139 1140 // X / 1.0 -> X 1141 if (match(Op1, m_FPOne())) 1142 return Op0; 1143 1144 // 0 / X -> 0 1145 // Requires that NaNs are off (X could be zero) and signed zeroes are 1146 // ignored (X could be positive or negative, so the output sign is unknown). 1147 if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op0, m_AnyZero())) 1148 return Op0; 1149 1150 if (FMF.noNaNs()) { 1151 // X / X -> 1.0 is legal when NaNs are ignored. 1152 if (Op0 == Op1) 1153 return ConstantFP::get(Op0->getType(), 1.0); 1154 1155 // -X / X -> -1.0 and 1156 // X / -X -> -1.0 are legal when NaNs are ignored. 1157 // We can ignore signed zeros because +-0.0/+-0.0 is NaN and ignored. 1158 if ((BinaryOperator::isFNeg(Op0, /*IgnoreZeroSign=*/true) && 1159 BinaryOperator::getFNegArgument(Op0) == Op1) || 1160 (BinaryOperator::isFNeg(Op1, /*IgnoreZeroSign=*/true) && 1161 BinaryOperator::getFNegArgument(Op1) == Op0)) 1162 return ConstantFP::get(Op0->getType(), -1.0); 1163 } 1164 1165 return nullptr; 1166 } 1167 1168 Value *llvm::SimplifyFDivInst(Value *Op0, Value *Op1, FastMathFlags FMF, 1169 const DataLayout &DL, 1170 const TargetLibraryInfo *TLI, 1171 const DominatorTree *DT, AssumptionCache *AC, 1172 const Instruction *CxtI) { 1173 return ::SimplifyFDivInst(Op0, Op1, FMF, Query(DL, TLI, DT, AC, CxtI), 1174 RecursionLimit); 1175 } 1176 1177 /// Given operands for an SRem or URem, see if we can fold the result. 1178 /// If not, this returns null. 1179 static Value *SimplifyRem(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1, 1180 const Query &Q, unsigned MaxRecurse) { 1181 if (Constant *C0 = dyn_cast<Constant>(Op0)) 1182 if (Constant *C1 = dyn_cast<Constant>(Op1)) 1183 return ConstantFoldBinaryOpOperands(Opcode, C0, C1, Q.DL); 1184 1185 // X % undef -> undef 1186 if (match(Op1, m_Undef())) 1187 return Op1; 1188 1189 // undef % X -> 0 1190 if (match(Op0, m_Undef())) 1191 return Constant::getNullValue(Op0->getType()); 1192 1193 // 0 % X -> 0, we don't need to preserve faults! 1194 if (match(Op0, m_Zero())) 1195 return Op0; 1196 1197 // X % 0 -> undef, we don't need to preserve faults! 1198 if (match(Op1, m_Zero())) 1199 return UndefValue::get(Op0->getType()); 1200 1201 // X % 1 -> 0 1202 if (match(Op1, m_One())) 1203 return Constant::getNullValue(Op0->getType()); 1204 1205 if (Op0->getType()->isIntegerTy(1)) 1206 // It can't be remainder by zero, hence it must be remainder by one. 1207 return Constant::getNullValue(Op0->getType()); 1208 1209 // X % X -> 0 1210 if (Op0 == Op1) 1211 return Constant::getNullValue(Op0->getType()); 1212 1213 // (X % Y) % Y -> X % Y 1214 if ((Opcode == Instruction::SRem && 1215 match(Op0, m_SRem(m_Value(), m_Specific(Op1)))) || 1216 (Opcode == Instruction::URem && 1217 match(Op0, m_URem(m_Value(), m_Specific(Op1))))) 1218 return Op0; 1219 1220 // If the operation is with the result of a select instruction, check whether 1221 // operating on either branch of the select always yields the same value. 1222 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 1223 if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse)) 1224 return V; 1225 1226 // If the operation is with the result of a phi instruction, check whether 1227 // operating on all incoming values of the phi always yields the same value. 1228 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 1229 if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse)) 1230 return V; 1231 1232 return nullptr; 1233 } 1234 1235 /// Given operands for an SRem, see if we can fold the result. 1236 /// If not, this returns null. 1237 static Value *SimplifySRemInst(Value *Op0, Value *Op1, const Query &Q, 1238 unsigned MaxRecurse) { 1239 if (Value *V = SimplifyRem(Instruction::SRem, Op0, Op1, Q, MaxRecurse)) 1240 return V; 1241 1242 return nullptr; 1243 } 1244 1245 Value *llvm::SimplifySRemInst(Value *Op0, Value *Op1, const DataLayout &DL, 1246 const TargetLibraryInfo *TLI, 1247 const DominatorTree *DT, AssumptionCache *AC, 1248 const Instruction *CxtI) { 1249 return ::SimplifySRemInst(Op0, Op1, Query(DL, TLI, DT, AC, CxtI), 1250 RecursionLimit); 1251 } 1252 1253 /// Given operands for a URem, see if we can fold the result. 1254 /// If not, this returns null. 1255 static Value *SimplifyURemInst(Value *Op0, Value *Op1, const Query &Q, 1256 unsigned MaxRecurse) { 1257 if (Value *V = SimplifyRem(Instruction::URem, Op0, Op1, Q, MaxRecurse)) 1258 return V; 1259 1260 // urem %V, C -> %V if %V < C 1261 if (MaxRecurse) { 1262 if (Constant *C = dyn_cast_or_null<Constant>(SimplifyICmpInst( 1263 ICmpInst::ICMP_ULT, Op0, Op1, Q, MaxRecurse - 1))) { 1264 if (C->isAllOnesValue()) { 1265 return Op0; 1266 } 1267 } 1268 } 1269 1270 return nullptr; 1271 } 1272 1273 Value *llvm::SimplifyURemInst(Value *Op0, Value *Op1, const DataLayout &DL, 1274 const TargetLibraryInfo *TLI, 1275 const DominatorTree *DT, AssumptionCache *AC, 1276 const Instruction *CxtI) { 1277 return ::SimplifyURemInst(Op0, Op1, Query(DL, TLI, DT, AC, CxtI), 1278 RecursionLimit); 1279 } 1280 1281 static Value *SimplifyFRemInst(Value *Op0, Value *Op1, FastMathFlags FMF, 1282 const Query &, unsigned) { 1283 // undef % X -> undef (the undef could be a snan). 1284 if (match(Op0, m_Undef())) 1285 return Op0; 1286 1287 // X % undef -> undef 1288 if (match(Op1, m_Undef())) 1289 return Op1; 1290 1291 // 0 % X -> 0 1292 // Requires that NaNs are off (X could be zero) and signed zeroes are 1293 // ignored (X could be positive or negative, so the output sign is unknown). 1294 if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op0, m_AnyZero())) 1295 return Op0; 1296 1297 return nullptr; 1298 } 1299 1300 Value *llvm::SimplifyFRemInst(Value *Op0, Value *Op1, FastMathFlags FMF, 1301 const DataLayout &DL, 1302 const TargetLibraryInfo *TLI, 1303 const DominatorTree *DT, AssumptionCache *AC, 1304 const Instruction *CxtI) { 1305 return ::SimplifyFRemInst(Op0, Op1, FMF, Query(DL, TLI, DT, AC, CxtI), 1306 RecursionLimit); 1307 } 1308 1309 /// Returns true if a shift by \c Amount always yields undef. 1310 static bool isUndefShift(Value *Amount) { 1311 Constant *C = dyn_cast<Constant>(Amount); 1312 if (!C) 1313 return false; 1314 1315 // X shift by undef -> undef because it may shift by the bitwidth. 1316 if (isa<UndefValue>(C)) 1317 return true; 1318 1319 // Shifting by the bitwidth or more is undefined. 1320 if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1321 if (CI->getValue().getLimitedValue() >= 1322 CI->getType()->getScalarSizeInBits()) 1323 return true; 1324 1325 // If all lanes of a vector shift are undefined the whole shift is. 1326 if (isa<ConstantVector>(C) || isa<ConstantDataVector>(C)) { 1327 for (unsigned I = 0, E = C->getType()->getVectorNumElements(); I != E; ++I) 1328 if (!isUndefShift(C->getAggregateElement(I))) 1329 return false; 1330 return true; 1331 } 1332 1333 return false; 1334 } 1335 1336 /// Given operands for an Shl, LShr or AShr, see if we can fold the result. 1337 /// If not, this returns null. 1338 static Value *SimplifyShift(unsigned Opcode, Value *Op0, Value *Op1, 1339 const Query &Q, unsigned MaxRecurse) { 1340 if (Constant *C0 = dyn_cast<Constant>(Op0)) 1341 if (Constant *C1 = dyn_cast<Constant>(Op1)) 1342 return ConstantFoldBinaryOpOperands(Opcode, C0, C1, Q.DL); 1343 1344 // 0 shift by X -> 0 1345 if (match(Op0, m_Zero())) 1346 return Op0; 1347 1348 // X shift by 0 -> X 1349 if (match(Op1, m_Zero())) 1350 return Op0; 1351 1352 // Fold undefined shifts. 1353 if (isUndefShift(Op1)) 1354 return UndefValue::get(Op0->getType()); 1355 1356 // If the operation is with the result of a select instruction, check whether 1357 // operating on either branch of the select always yields the same value. 1358 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 1359 if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse)) 1360 return V; 1361 1362 // If the operation is with the result of a phi instruction, check whether 1363 // operating on all incoming values of the phi always yields the same value. 1364 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 1365 if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse)) 1366 return V; 1367 1368 // If any bits in the shift amount make that value greater than or equal to 1369 // the number of bits in the type, the shift is undefined. 1370 unsigned BitWidth = Op1->getType()->getScalarSizeInBits(); 1371 APInt KnownZero(BitWidth, 0); 1372 APInt KnownOne(BitWidth, 0); 1373 computeKnownBits(Op1, KnownZero, KnownOne, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 1374 if (KnownOne.getLimitedValue() >= BitWidth) 1375 return UndefValue::get(Op0->getType()); 1376 1377 // If all valid bits in the shift amount are known zero, the first operand is 1378 // unchanged. 1379 unsigned NumValidShiftBits = Log2_32_Ceil(BitWidth); 1380 APInt ShiftAmountMask = APInt::getLowBitsSet(BitWidth, NumValidShiftBits); 1381 if ((KnownZero & ShiftAmountMask) == ShiftAmountMask) 1382 return Op0; 1383 1384 return nullptr; 1385 } 1386 1387 /// \brief Given operands for an Shl, LShr or AShr, see if we can 1388 /// fold the result. If not, this returns null. 1389 static Value *SimplifyRightShift(unsigned Opcode, Value *Op0, Value *Op1, 1390 bool isExact, const Query &Q, 1391 unsigned MaxRecurse) { 1392 if (Value *V = SimplifyShift(Opcode, Op0, Op1, Q, MaxRecurse)) 1393 return V; 1394 1395 // X >> X -> 0 1396 if (Op0 == Op1) 1397 return Constant::getNullValue(Op0->getType()); 1398 1399 // undef >> X -> 0 1400 // undef >> X -> undef (if it's exact) 1401 if (match(Op0, m_Undef())) 1402 return isExact ? Op0 : Constant::getNullValue(Op0->getType()); 1403 1404 // The low bit cannot be shifted out of an exact shift if it is set. 1405 if (isExact) { 1406 unsigned BitWidth = Op0->getType()->getScalarSizeInBits(); 1407 APInt Op0KnownZero(BitWidth, 0); 1408 APInt Op0KnownOne(BitWidth, 0); 1409 computeKnownBits(Op0, Op0KnownZero, Op0KnownOne, Q.DL, /*Depth=*/0, Q.AC, 1410 Q.CxtI, Q.DT); 1411 if (Op0KnownOne[0]) 1412 return Op0; 1413 } 1414 1415 return nullptr; 1416 } 1417 1418 /// Given operands for an Shl, see if we can fold the result. 1419 /// If not, this returns null. 1420 static Value *SimplifyShlInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, 1421 const Query &Q, unsigned MaxRecurse) { 1422 if (Value *V = SimplifyShift(Instruction::Shl, Op0, Op1, Q, MaxRecurse)) 1423 return V; 1424 1425 // undef << X -> 0 1426 // undef << X -> undef if (if it's NSW/NUW) 1427 if (match(Op0, m_Undef())) 1428 return isNSW || isNUW ? Op0 : Constant::getNullValue(Op0->getType()); 1429 1430 // (X >> A) << A -> X 1431 Value *X; 1432 if (match(Op0, m_Exact(m_Shr(m_Value(X), m_Specific(Op1))))) 1433 return X; 1434 return nullptr; 1435 } 1436 1437 Value *llvm::SimplifyShlInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, 1438 const DataLayout &DL, const TargetLibraryInfo *TLI, 1439 const DominatorTree *DT, AssumptionCache *AC, 1440 const Instruction *CxtI) { 1441 return ::SimplifyShlInst(Op0, Op1, isNSW, isNUW, Query(DL, TLI, DT, AC, CxtI), 1442 RecursionLimit); 1443 } 1444 1445 /// Given operands for an LShr, see if we can fold the result. 1446 /// If not, this returns null. 1447 static Value *SimplifyLShrInst(Value *Op0, Value *Op1, bool isExact, 1448 const Query &Q, unsigned MaxRecurse) { 1449 if (Value *V = SimplifyRightShift(Instruction::LShr, Op0, Op1, isExact, Q, 1450 MaxRecurse)) 1451 return V; 1452 1453 // (X << A) >> A -> X 1454 Value *X; 1455 if (match(Op0, m_NUWShl(m_Value(X), m_Specific(Op1)))) 1456 return X; 1457 1458 return nullptr; 1459 } 1460 1461 Value *llvm::SimplifyLShrInst(Value *Op0, Value *Op1, bool isExact, 1462 const DataLayout &DL, 1463 const TargetLibraryInfo *TLI, 1464 const DominatorTree *DT, AssumptionCache *AC, 1465 const Instruction *CxtI) { 1466 return ::SimplifyLShrInst(Op0, Op1, isExact, Query(DL, TLI, DT, AC, CxtI), 1467 RecursionLimit); 1468 } 1469 1470 /// Given operands for an AShr, see if we can fold the result. 1471 /// If not, this returns null. 1472 static Value *SimplifyAShrInst(Value *Op0, Value *Op1, bool isExact, 1473 const Query &Q, unsigned MaxRecurse) { 1474 if (Value *V = SimplifyRightShift(Instruction::AShr, Op0, Op1, isExact, Q, 1475 MaxRecurse)) 1476 return V; 1477 1478 // all ones >>a X -> all ones 1479 if (match(Op0, m_AllOnes())) 1480 return Op0; 1481 1482 // (X << A) >> A -> X 1483 Value *X; 1484 if (match(Op0, m_NSWShl(m_Value(X), m_Specific(Op1)))) 1485 return X; 1486 1487 // Arithmetic shifting an all-sign-bit value is a no-op. 1488 unsigned NumSignBits = ComputeNumSignBits(Op0, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 1489 if (NumSignBits == Op0->getType()->getScalarSizeInBits()) 1490 return Op0; 1491 1492 return nullptr; 1493 } 1494 1495 Value *llvm::SimplifyAShrInst(Value *Op0, Value *Op1, bool isExact, 1496 const DataLayout &DL, 1497 const TargetLibraryInfo *TLI, 1498 const DominatorTree *DT, AssumptionCache *AC, 1499 const Instruction *CxtI) { 1500 return ::SimplifyAShrInst(Op0, Op1, isExact, Query(DL, TLI, DT, AC, CxtI), 1501 RecursionLimit); 1502 } 1503 1504 static Value *simplifyUnsignedRangeCheck(ICmpInst *ZeroICmp, 1505 ICmpInst *UnsignedICmp, bool IsAnd) { 1506 Value *X, *Y; 1507 1508 ICmpInst::Predicate EqPred; 1509 if (!match(ZeroICmp, m_ICmp(EqPred, m_Value(Y), m_Zero())) || 1510 !ICmpInst::isEquality(EqPred)) 1511 return nullptr; 1512 1513 ICmpInst::Predicate UnsignedPred; 1514 if (match(UnsignedICmp, m_ICmp(UnsignedPred, m_Value(X), m_Specific(Y))) && 1515 ICmpInst::isUnsigned(UnsignedPred)) 1516 ; 1517 else if (match(UnsignedICmp, 1518 m_ICmp(UnsignedPred, m_Value(Y), m_Specific(X))) && 1519 ICmpInst::isUnsigned(UnsignedPred)) 1520 UnsignedPred = ICmpInst::getSwappedPredicate(UnsignedPred); 1521 else 1522 return nullptr; 1523 1524 // X < Y && Y != 0 --> X < Y 1525 // X < Y || Y != 0 --> Y != 0 1526 if (UnsignedPred == ICmpInst::ICMP_ULT && EqPred == ICmpInst::ICMP_NE) 1527 return IsAnd ? UnsignedICmp : ZeroICmp; 1528 1529 // X >= Y || Y != 0 --> true 1530 // X >= Y || Y == 0 --> X >= Y 1531 if (UnsignedPred == ICmpInst::ICMP_UGE && !IsAnd) { 1532 if (EqPred == ICmpInst::ICMP_NE) 1533 return getTrue(UnsignedICmp->getType()); 1534 return UnsignedICmp; 1535 } 1536 1537 // X < Y && Y == 0 --> false 1538 if (UnsignedPred == ICmpInst::ICMP_ULT && EqPred == ICmpInst::ICMP_EQ && 1539 IsAnd) 1540 return getFalse(UnsignedICmp->getType()); 1541 1542 return nullptr; 1543 } 1544 1545 /// Commuted variants are assumed to be handled by calling this function again 1546 /// with the parameters swapped. 1547 static Value *simplifyAndOfICmpsWithSameOperands(ICmpInst *Op0, ICmpInst *Op1) { 1548 ICmpInst::Predicate Pred0, Pred1; 1549 Value *A ,*B; 1550 if (!match(Op0, m_ICmp(Pred0, m_Value(A), m_Value(B))) || 1551 !match(Op1, m_ICmp(Pred1, m_Specific(A), m_Specific(B)))) 1552 return nullptr; 1553 1554 // We have (icmp Pred0, A, B) & (icmp Pred1, A, B). 1555 // If Op1 is always implied true by Op0, then Op0 is a subset of Op1, and we 1556 // can eliminate Op1 from this 'and'. 1557 if (ICmpInst::isImpliedTrueByMatchingCmp(Pred0, Pred1)) 1558 return Op0; 1559 1560 // Check for any combination of predicates that are guaranteed to be disjoint. 1561 if ((Pred0 == ICmpInst::getInversePredicate(Pred1)) || 1562 (Pred0 == ICmpInst::ICMP_EQ && ICmpInst::isFalseWhenEqual(Pred1)) || 1563 (Pred0 == ICmpInst::ICMP_SLT && Pred1 == ICmpInst::ICMP_SGT) || 1564 (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_UGT)) 1565 return getFalse(Op0->getType()); 1566 1567 return nullptr; 1568 } 1569 1570 /// Commuted variants are assumed to be handled by calling this function again 1571 /// with the parameters swapped. 1572 static Value *SimplifyAndOfICmps(ICmpInst *Op0, ICmpInst *Op1) { 1573 if (Value *X = simplifyUnsignedRangeCheck(Op0, Op1, /*IsAnd=*/true)) 1574 return X; 1575 1576 if (Value *X = simplifyAndOfICmpsWithSameOperands(Op0, Op1)) 1577 return X; 1578 1579 // Look for this pattern: (icmp V, C0) & (icmp V, C1)). 1580 Type *ITy = Op0->getType(); 1581 ICmpInst::Predicate Pred0, Pred1; 1582 const APInt *C0, *C1; 1583 Value *V; 1584 if (match(Op0, m_ICmp(Pred0, m_Value(V), m_APInt(C0))) && 1585 match(Op1, m_ICmp(Pred1, m_Specific(V), m_APInt(C1)))) { 1586 // Make a constant range that's the intersection of the two icmp ranges. 1587 // If the intersection is empty, we know that the result is false. 1588 auto Range0 = ConstantRange::makeAllowedICmpRegion(Pred0, *C0); 1589 auto Range1 = ConstantRange::makeAllowedICmpRegion(Pred1, *C1); 1590 if (Range0.intersectWith(Range1).isEmptySet()) 1591 return getFalse(ITy); 1592 } 1593 1594 // (icmp (add V, C0), C1) & (icmp V, C0) 1595 if (!match(Op0, m_ICmp(Pred0, m_Add(m_Value(V), m_APInt(C0)), m_APInt(C1)))) 1596 return nullptr; 1597 1598 if (!match(Op1, m_ICmp(Pred1, m_Specific(V), m_Value()))) 1599 return nullptr; 1600 1601 auto *AddInst = cast<BinaryOperator>(Op0->getOperand(0)); 1602 if (AddInst->getOperand(1) != Op1->getOperand(1)) 1603 return nullptr; 1604 1605 bool isNSW = AddInst->hasNoSignedWrap(); 1606 bool isNUW = AddInst->hasNoUnsignedWrap(); 1607 1608 const APInt Delta = *C1 - *C0; 1609 if (C0->isStrictlyPositive()) { 1610 if (Delta == 2) { 1611 if (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_SGT) 1612 return getFalse(ITy); 1613 if (Pred0 == ICmpInst::ICMP_SLT && Pred1 == ICmpInst::ICMP_SGT && isNSW) 1614 return getFalse(ITy); 1615 } 1616 if (Delta == 1) { 1617 if (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_SGT) 1618 return getFalse(ITy); 1619 if (Pred0 == ICmpInst::ICMP_SLE && Pred1 == ICmpInst::ICMP_SGT && isNSW) 1620 return getFalse(ITy); 1621 } 1622 } 1623 if (C0->getBoolValue() && isNUW) { 1624 if (Delta == 2) 1625 if (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_UGT) 1626 return getFalse(ITy); 1627 if (Delta == 1) 1628 if (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_UGT) 1629 return getFalse(ITy); 1630 } 1631 1632 return nullptr; 1633 } 1634 1635 /// Given operands for an And, see if we can fold the result. 1636 /// If not, this returns null. 1637 static Value *SimplifyAndInst(Value *Op0, Value *Op1, const Query &Q, 1638 unsigned MaxRecurse) { 1639 if (Constant *CLHS = dyn_cast<Constant>(Op0)) { 1640 if (Constant *CRHS = dyn_cast<Constant>(Op1)) 1641 return ConstantFoldBinaryOpOperands(Instruction::And, CLHS, CRHS, Q.DL); 1642 1643 // Canonicalize the constant to the RHS. 1644 std::swap(Op0, Op1); 1645 } 1646 1647 // X & undef -> 0 1648 if (match(Op1, m_Undef())) 1649 return Constant::getNullValue(Op0->getType()); 1650 1651 // X & X = X 1652 if (Op0 == Op1) 1653 return Op0; 1654 1655 // X & 0 = 0 1656 if (match(Op1, m_Zero())) 1657 return Op1; 1658 1659 // X & -1 = X 1660 if (match(Op1, m_AllOnes())) 1661 return Op0; 1662 1663 // A & ~A = ~A & A = 0 1664 if (match(Op0, m_Not(m_Specific(Op1))) || 1665 match(Op1, m_Not(m_Specific(Op0)))) 1666 return Constant::getNullValue(Op0->getType()); 1667 1668 // (A | ?) & A = A 1669 Value *A = nullptr, *B = nullptr; 1670 if (match(Op0, m_Or(m_Value(A), m_Value(B))) && 1671 (A == Op1 || B == Op1)) 1672 return Op1; 1673 1674 // A & (A | ?) = A 1675 if (match(Op1, m_Or(m_Value(A), m_Value(B))) && 1676 (A == Op0 || B == Op0)) 1677 return Op0; 1678 1679 // A & (-A) = A if A is a power of two or zero. 1680 if (match(Op0, m_Neg(m_Specific(Op1))) || 1681 match(Op1, m_Neg(m_Specific(Op0)))) { 1682 if (isKnownToBeAPowerOfTwo(Op0, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI, 1683 Q.DT)) 1684 return Op0; 1685 if (isKnownToBeAPowerOfTwo(Op1, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI, 1686 Q.DT)) 1687 return Op1; 1688 } 1689 1690 if (auto *ICILHS = dyn_cast<ICmpInst>(Op0)) { 1691 if (auto *ICIRHS = dyn_cast<ICmpInst>(Op1)) { 1692 if (Value *V = SimplifyAndOfICmps(ICILHS, ICIRHS)) 1693 return V; 1694 if (Value *V = SimplifyAndOfICmps(ICIRHS, ICILHS)) 1695 return V; 1696 } 1697 } 1698 1699 // The compares may be hidden behind casts. Look through those and try the 1700 // same folds as above. 1701 auto *Cast0 = dyn_cast<CastInst>(Op0); 1702 auto *Cast1 = dyn_cast<CastInst>(Op1); 1703 if (Cast0 && Cast1 && Cast0->getOpcode() == Cast1->getOpcode() && 1704 Cast0->getSrcTy() == Cast1->getSrcTy()) { 1705 auto *Cmp0 = dyn_cast<ICmpInst>(Cast0->getOperand(0)); 1706 auto *Cmp1 = dyn_cast<ICmpInst>(Cast1->getOperand(0)); 1707 if (Cmp0 && Cmp1) { 1708 Instruction::CastOps CastOpc = Cast0->getOpcode(); 1709 Type *ResultType = Cast0->getType(); 1710 if (auto *V = dyn_cast_or_null<Constant>(SimplifyAndOfICmps(Cmp0, Cmp1))) 1711 return ConstantExpr::getCast(CastOpc, V, ResultType); 1712 if (auto *V = dyn_cast_or_null<Constant>(SimplifyAndOfICmps(Cmp1, Cmp0))) 1713 return ConstantExpr::getCast(CastOpc, V, ResultType); 1714 } 1715 } 1716 1717 // Try some generic simplifications for associative operations. 1718 if (Value *V = SimplifyAssociativeBinOp(Instruction::And, Op0, Op1, Q, 1719 MaxRecurse)) 1720 return V; 1721 1722 // And distributes over Or. Try some generic simplifications based on this. 1723 if (Value *V = ExpandBinOp(Instruction::And, Op0, Op1, Instruction::Or, 1724 Q, MaxRecurse)) 1725 return V; 1726 1727 // And distributes over Xor. Try some generic simplifications based on this. 1728 if (Value *V = ExpandBinOp(Instruction::And, Op0, Op1, Instruction::Xor, 1729 Q, MaxRecurse)) 1730 return V; 1731 1732 // If the operation is with the result of a select instruction, check whether 1733 // operating on either branch of the select always yields the same value. 1734 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 1735 if (Value *V = ThreadBinOpOverSelect(Instruction::And, Op0, Op1, Q, 1736 MaxRecurse)) 1737 return V; 1738 1739 // If the operation is with the result of a phi instruction, check whether 1740 // operating on all incoming values of the phi always yields the same value. 1741 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 1742 if (Value *V = ThreadBinOpOverPHI(Instruction::And, Op0, Op1, Q, 1743 MaxRecurse)) 1744 return V; 1745 1746 return nullptr; 1747 } 1748 1749 Value *llvm::SimplifyAndInst(Value *Op0, Value *Op1, const DataLayout &DL, 1750 const TargetLibraryInfo *TLI, 1751 const DominatorTree *DT, AssumptionCache *AC, 1752 const Instruction *CxtI) { 1753 return ::SimplifyAndInst(Op0, Op1, Query(DL, TLI, DT, AC, CxtI), 1754 RecursionLimit); 1755 } 1756 1757 /// Commuted variants are assumed to be handled by calling this function again 1758 /// with the parameters swapped. 1759 static Value *simplifyOrOfICmpsWithSameOperands(ICmpInst *Op0, ICmpInst *Op1) { 1760 ICmpInst::Predicate Pred0, Pred1; 1761 Value *A ,*B; 1762 if (!match(Op0, m_ICmp(Pred0, m_Value(A), m_Value(B))) || 1763 !match(Op1, m_ICmp(Pred1, m_Specific(A), m_Specific(B)))) 1764 return nullptr; 1765 1766 // We have (icmp Pred0, A, B) | (icmp Pred1, A, B). 1767 // If Op1 is always implied true by Op0, then Op0 is a subset of Op1, and we 1768 // can eliminate Op0 from this 'or'. 1769 if (ICmpInst::isImpliedTrueByMatchingCmp(Pred0, Pred1)) 1770 return Op1; 1771 1772 // Check for any combination of predicates that cover the entire range of 1773 // possibilities. 1774 if ((Pred0 == ICmpInst::getInversePredicate(Pred1)) || 1775 (Pred0 == ICmpInst::ICMP_NE && ICmpInst::isTrueWhenEqual(Pred1)) || 1776 (Pred0 == ICmpInst::ICMP_SLE && Pred1 == ICmpInst::ICMP_SGE) || 1777 (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_UGE)) 1778 return getTrue(Op0->getType()); 1779 1780 return nullptr; 1781 } 1782 1783 /// Commuted variants are assumed to be handled by calling this function again 1784 /// with the parameters swapped. 1785 static Value *SimplifyOrOfICmps(ICmpInst *Op0, ICmpInst *Op1) { 1786 if (Value *X = simplifyUnsignedRangeCheck(Op0, Op1, /*IsAnd=*/false)) 1787 return X; 1788 1789 if (Value *X = simplifyOrOfICmpsWithSameOperands(Op0, Op1)) 1790 return X; 1791 1792 // (icmp (add V, C0), C1) | (icmp V, C0) 1793 ICmpInst::Predicate Pred0, Pred1; 1794 const APInt *C0, *C1; 1795 Value *V; 1796 if (!match(Op0, m_ICmp(Pred0, m_Add(m_Value(V), m_APInt(C0)), m_APInt(C1)))) 1797 return nullptr; 1798 1799 if (!match(Op1, m_ICmp(Pred1, m_Specific(V), m_Value()))) 1800 return nullptr; 1801 1802 auto *AddInst = cast<BinaryOperator>(Op0->getOperand(0)); 1803 if (AddInst->getOperand(1) != Op1->getOperand(1)) 1804 return nullptr; 1805 1806 Type *ITy = Op0->getType(); 1807 bool isNSW = AddInst->hasNoSignedWrap(); 1808 bool isNUW = AddInst->hasNoUnsignedWrap(); 1809 1810 const APInt Delta = *C1 - *C0; 1811 if (C0->isStrictlyPositive()) { 1812 if (Delta == 2) { 1813 if (Pred0 == ICmpInst::ICMP_UGE && Pred1 == ICmpInst::ICMP_SLE) 1814 return getTrue(ITy); 1815 if (Pred0 == ICmpInst::ICMP_SGE && Pred1 == ICmpInst::ICMP_SLE && isNSW) 1816 return getTrue(ITy); 1817 } 1818 if (Delta == 1) { 1819 if (Pred0 == ICmpInst::ICMP_UGT && Pred1 == ICmpInst::ICMP_SLE) 1820 return getTrue(ITy); 1821 if (Pred0 == ICmpInst::ICMP_SGT && Pred1 == ICmpInst::ICMP_SLE && isNSW) 1822 return getTrue(ITy); 1823 } 1824 } 1825 if (C0->getBoolValue() && isNUW) { 1826 if (Delta == 2) 1827 if (Pred0 == ICmpInst::ICMP_UGE && Pred1 == ICmpInst::ICMP_ULE) 1828 return getTrue(ITy); 1829 if (Delta == 1) 1830 if (Pred0 == ICmpInst::ICMP_UGT && Pred1 == ICmpInst::ICMP_ULE) 1831 return getTrue(ITy); 1832 } 1833 1834 return nullptr; 1835 } 1836 1837 /// Given operands for an Or, see if we can fold the result. 1838 /// If not, this returns null. 1839 static Value *SimplifyOrInst(Value *Op0, Value *Op1, const Query &Q, 1840 unsigned MaxRecurse) { 1841 if (Constant *CLHS = dyn_cast<Constant>(Op0)) { 1842 if (Constant *CRHS = dyn_cast<Constant>(Op1)) 1843 return ConstantFoldBinaryOpOperands(Instruction::Or, CLHS, CRHS, Q.DL); 1844 1845 // Canonicalize the constant to the RHS. 1846 std::swap(Op0, Op1); 1847 } 1848 1849 // X | undef -> -1 1850 if (match(Op1, m_Undef())) 1851 return Constant::getAllOnesValue(Op0->getType()); 1852 1853 // X | X = X 1854 if (Op0 == Op1) 1855 return Op0; 1856 1857 // X | 0 = X 1858 if (match(Op1, m_Zero())) 1859 return Op0; 1860 1861 // X | -1 = -1 1862 if (match(Op1, m_AllOnes())) 1863 return Op1; 1864 1865 // A | ~A = ~A | A = -1 1866 if (match(Op0, m_Not(m_Specific(Op1))) || 1867 match(Op1, m_Not(m_Specific(Op0)))) 1868 return Constant::getAllOnesValue(Op0->getType()); 1869 1870 // (A & ?) | A = A 1871 Value *A = nullptr, *B = nullptr; 1872 if (match(Op0, m_And(m_Value(A), m_Value(B))) && 1873 (A == Op1 || B == Op1)) 1874 return Op1; 1875 1876 // A | (A & ?) = A 1877 if (match(Op1, m_And(m_Value(A), m_Value(B))) && 1878 (A == Op0 || B == Op0)) 1879 return Op0; 1880 1881 // ~(A & ?) | A = -1 1882 if (match(Op0, m_Not(m_And(m_Value(A), m_Value(B)))) && 1883 (A == Op1 || B == Op1)) 1884 return Constant::getAllOnesValue(Op1->getType()); 1885 1886 // A | ~(A & ?) = -1 1887 if (match(Op1, m_Not(m_And(m_Value(A), m_Value(B)))) && 1888 (A == Op0 || B == Op0)) 1889 return Constant::getAllOnesValue(Op0->getType()); 1890 1891 if (auto *ICILHS = dyn_cast<ICmpInst>(Op0)) { 1892 if (auto *ICIRHS = dyn_cast<ICmpInst>(Op1)) { 1893 if (Value *V = SimplifyOrOfICmps(ICILHS, ICIRHS)) 1894 return V; 1895 if (Value *V = SimplifyOrOfICmps(ICIRHS, ICILHS)) 1896 return V; 1897 } 1898 } 1899 1900 // Try some generic simplifications for associative operations. 1901 if (Value *V = SimplifyAssociativeBinOp(Instruction::Or, Op0, Op1, Q, 1902 MaxRecurse)) 1903 return V; 1904 1905 // Or distributes over And. Try some generic simplifications based on this. 1906 if (Value *V = ExpandBinOp(Instruction::Or, Op0, Op1, Instruction::And, Q, 1907 MaxRecurse)) 1908 return V; 1909 1910 // If the operation is with the result of a select instruction, check whether 1911 // operating on either branch of the select always yields the same value. 1912 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 1913 if (Value *V = ThreadBinOpOverSelect(Instruction::Or, Op0, Op1, Q, 1914 MaxRecurse)) 1915 return V; 1916 1917 // (A & C)|(B & D) 1918 Value *C = nullptr, *D = nullptr; 1919 if (match(Op0, m_And(m_Value(A), m_Value(C))) && 1920 match(Op1, m_And(m_Value(B), m_Value(D)))) { 1921 ConstantInt *C1 = dyn_cast<ConstantInt>(C); 1922 ConstantInt *C2 = dyn_cast<ConstantInt>(D); 1923 if (C1 && C2 && (C1->getValue() == ~C2->getValue())) { 1924 // (A & C1)|(B & C2) 1925 // If we have: ((V + N) & C1) | (V & C2) 1926 // .. and C2 = ~C1 and C2 is 0+1+ and (N & C2) == 0 1927 // replace with V+N. 1928 Value *V1, *V2; 1929 if ((C2->getValue() & (C2->getValue() + 1)) == 0 && // C2 == 0+1+ 1930 match(A, m_Add(m_Value(V1), m_Value(V2)))) { 1931 // Add commutes, try both ways. 1932 if (V1 == B && 1933 MaskedValueIsZero(V2, C2->getValue(), Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 1934 return A; 1935 if (V2 == B && 1936 MaskedValueIsZero(V1, C2->getValue(), Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 1937 return A; 1938 } 1939 // Or commutes, try both ways. 1940 if ((C1->getValue() & (C1->getValue() + 1)) == 0 && 1941 match(B, m_Add(m_Value(V1), m_Value(V2)))) { 1942 // Add commutes, try both ways. 1943 if (V1 == A && 1944 MaskedValueIsZero(V2, C1->getValue(), Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 1945 return B; 1946 if (V2 == A && 1947 MaskedValueIsZero(V1, C1->getValue(), Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 1948 return B; 1949 } 1950 } 1951 } 1952 1953 // If the operation is with the result of a phi instruction, check whether 1954 // operating on all incoming values of the phi always yields the same value. 1955 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 1956 if (Value *V = ThreadBinOpOverPHI(Instruction::Or, Op0, Op1, Q, MaxRecurse)) 1957 return V; 1958 1959 return nullptr; 1960 } 1961 1962 Value *llvm::SimplifyOrInst(Value *Op0, Value *Op1, const DataLayout &DL, 1963 const TargetLibraryInfo *TLI, 1964 const DominatorTree *DT, AssumptionCache *AC, 1965 const Instruction *CxtI) { 1966 return ::SimplifyOrInst(Op0, Op1, Query(DL, TLI, DT, AC, CxtI), 1967 RecursionLimit); 1968 } 1969 1970 /// Given operands for a Xor, see if we can fold the result. 1971 /// If not, this returns null. 1972 static Value *SimplifyXorInst(Value *Op0, Value *Op1, const Query &Q, 1973 unsigned MaxRecurse) { 1974 if (Constant *CLHS = dyn_cast<Constant>(Op0)) { 1975 if (Constant *CRHS = dyn_cast<Constant>(Op1)) 1976 return ConstantFoldBinaryOpOperands(Instruction::Xor, CLHS, CRHS, Q.DL); 1977 1978 // Canonicalize the constant to the RHS. 1979 std::swap(Op0, Op1); 1980 } 1981 1982 // A ^ undef -> undef 1983 if (match(Op1, m_Undef())) 1984 return Op1; 1985 1986 // A ^ 0 = A 1987 if (match(Op1, m_Zero())) 1988 return Op0; 1989 1990 // A ^ A = 0 1991 if (Op0 == Op1) 1992 return Constant::getNullValue(Op0->getType()); 1993 1994 // A ^ ~A = ~A ^ A = -1 1995 if (match(Op0, m_Not(m_Specific(Op1))) || 1996 match(Op1, m_Not(m_Specific(Op0)))) 1997 return Constant::getAllOnesValue(Op0->getType()); 1998 1999 // Try some generic simplifications for associative operations. 2000 if (Value *V = SimplifyAssociativeBinOp(Instruction::Xor, Op0, Op1, Q, 2001 MaxRecurse)) 2002 return V; 2003 2004 // Threading Xor over selects and phi nodes is pointless, so don't bother. 2005 // Threading over the select in "A ^ select(cond, B, C)" means evaluating 2006 // "A^B" and "A^C" and seeing if they are equal; but they are equal if and 2007 // only if B and C are equal. If B and C are equal then (since we assume 2008 // that operands have already been simplified) "select(cond, B, C)" should 2009 // have been simplified to the common value of B and C already. Analysing 2010 // "A^B" and "A^C" thus gains nothing, but costs compile time. Similarly 2011 // for threading over phi nodes. 2012 2013 return nullptr; 2014 } 2015 2016 Value *llvm::SimplifyXorInst(Value *Op0, Value *Op1, const DataLayout &DL, 2017 const TargetLibraryInfo *TLI, 2018 const DominatorTree *DT, AssumptionCache *AC, 2019 const Instruction *CxtI) { 2020 return ::SimplifyXorInst(Op0, Op1, Query(DL, TLI, DT, AC, CxtI), 2021 RecursionLimit); 2022 } 2023 2024 static Type *GetCompareTy(Value *Op) { 2025 return CmpInst::makeCmpResultType(Op->getType()); 2026 } 2027 2028 /// Rummage around inside V looking for something equivalent to the comparison 2029 /// "LHS Pred RHS". Return such a value if found, otherwise return null. 2030 /// Helper function for analyzing max/min idioms. 2031 static Value *ExtractEquivalentCondition(Value *V, CmpInst::Predicate Pred, 2032 Value *LHS, Value *RHS) { 2033 SelectInst *SI = dyn_cast<SelectInst>(V); 2034 if (!SI) 2035 return nullptr; 2036 CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition()); 2037 if (!Cmp) 2038 return nullptr; 2039 Value *CmpLHS = Cmp->getOperand(0), *CmpRHS = Cmp->getOperand(1); 2040 if (Pred == Cmp->getPredicate() && LHS == CmpLHS && RHS == CmpRHS) 2041 return Cmp; 2042 if (Pred == CmpInst::getSwappedPredicate(Cmp->getPredicate()) && 2043 LHS == CmpRHS && RHS == CmpLHS) 2044 return Cmp; 2045 return nullptr; 2046 } 2047 2048 // A significant optimization not implemented here is assuming that alloca 2049 // addresses are not equal to incoming argument values. They don't *alias*, 2050 // as we say, but that doesn't mean they aren't equal, so we take a 2051 // conservative approach. 2052 // 2053 // This is inspired in part by C++11 5.10p1: 2054 // "Two pointers of the same type compare equal if and only if they are both 2055 // null, both point to the same function, or both represent the same 2056 // address." 2057 // 2058 // This is pretty permissive. 2059 // 2060 // It's also partly due to C11 6.5.9p6: 2061 // "Two pointers compare equal if and only if both are null pointers, both are 2062 // pointers to the same object (including a pointer to an object and a 2063 // subobject at its beginning) or function, both are pointers to one past the 2064 // last element of the same array object, or one is a pointer to one past the 2065 // end of one array object and the other is a pointer to the start of a 2066 // different array object that happens to immediately follow the first array 2067 // object in the address space.) 2068 // 2069 // C11's version is more restrictive, however there's no reason why an argument 2070 // couldn't be a one-past-the-end value for a stack object in the caller and be 2071 // equal to the beginning of a stack object in the callee. 2072 // 2073 // If the C and C++ standards are ever made sufficiently restrictive in this 2074 // area, it may be possible to update LLVM's semantics accordingly and reinstate 2075 // this optimization. 2076 static Constant * 2077 computePointerICmp(const DataLayout &DL, const TargetLibraryInfo *TLI, 2078 const DominatorTree *DT, CmpInst::Predicate Pred, 2079 const Instruction *CxtI, Value *LHS, Value *RHS) { 2080 // First, skip past any trivial no-ops. 2081 LHS = LHS->stripPointerCasts(); 2082 RHS = RHS->stripPointerCasts(); 2083 2084 // A non-null pointer is not equal to a null pointer. 2085 if (llvm::isKnownNonNull(LHS) && isa<ConstantPointerNull>(RHS) && 2086 (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE)) 2087 return ConstantInt::get(GetCompareTy(LHS), 2088 !CmpInst::isTrueWhenEqual(Pred)); 2089 2090 // We can only fold certain predicates on pointer comparisons. 2091 switch (Pred) { 2092 default: 2093 return nullptr; 2094 2095 // Equality comaprisons are easy to fold. 2096 case CmpInst::ICMP_EQ: 2097 case CmpInst::ICMP_NE: 2098 break; 2099 2100 // We can only handle unsigned relational comparisons because 'inbounds' on 2101 // a GEP only protects against unsigned wrapping. 2102 case CmpInst::ICMP_UGT: 2103 case CmpInst::ICMP_UGE: 2104 case CmpInst::ICMP_ULT: 2105 case CmpInst::ICMP_ULE: 2106 // However, we have to switch them to their signed variants to handle 2107 // negative indices from the base pointer. 2108 Pred = ICmpInst::getSignedPredicate(Pred); 2109 break; 2110 } 2111 2112 // Strip off any constant offsets so that we can reason about them. 2113 // It's tempting to use getUnderlyingObject or even just stripInBoundsOffsets 2114 // here and compare base addresses like AliasAnalysis does, however there are 2115 // numerous hazards. AliasAnalysis and its utilities rely on special rules 2116 // governing loads and stores which don't apply to icmps. Also, AliasAnalysis 2117 // doesn't need to guarantee pointer inequality when it says NoAlias. 2118 Constant *LHSOffset = stripAndComputeConstantOffsets(DL, LHS); 2119 Constant *RHSOffset = stripAndComputeConstantOffsets(DL, RHS); 2120 2121 // If LHS and RHS are related via constant offsets to the same base 2122 // value, we can replace it with an icmp which just compares the offsets. 2123 if (LHS == RHS) 2124 return ConstantExpr::getICmp(Pred, LHSOffset, RHSOffset); 2125 2126 // Various optimizations for (in)equality comparisons. 2127 if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE) { 2128 // Different non-empty allocations that exist at the same time have 2129 // different addresses (if the program can tell). Global variables always 2130 // exist, so they always exist during the lifetime of each other and all 2131 // allocas. Two different allocas usually have different addresses... 2132 // 2133 // However, if there's an @llvm.stackrestore dynamically in between two 2134 // allocas, they may have the same address. It's tempting to reduce the 2135 // scope of the problem by only looking at *static* allocas here. That would 2136 // cover the majority of allocas while significantly reducing the likelihood 2137 // of having an @llvm.stackrestore pop up in the middle. However, it's not 2138 // actually impossible for an @llvm.stackrestore to pop up in the middle of 2139 // an entry block. Also, if we have a block that's not attached to a 2140 // function, we can't tell if it's "static" under the current definition. 2141 // Theoretically, this problem could be fixed by creating a new kind of 2142 // instruction kind specifically for static allocas. Such a new instruction 2143 // could be required to be at the top of the entry block, thus preventing it 2144 // from being subject to a @llvm.stackrestore. Instcombine could even 2145 // convert regular allocas into these special allocas. It'd be nifty. 2146 // However, until then, this problem remains open. 2147 // 2148 // So, we'll assume that two non-empty allocas have different addresses 2149 // for now. 2150 // 2151 // With all that, if the offsets are within the bounds of their allocations 2152 // (and not one-past-the-end! so we can't use inbounds!), and their 2153 // allocations aren't the same, the pointers are not equal. 2154 // 2155 // Note that it's not necessary to check for LHS being a global variable 2156 // address, due to canonicalization and constant folding. 2157 if (isa<AllocaInst>(LHS) && 2158 (isa<AllocaInst>(RHS) || isa<GlobalVariable>(RHS))) { 2159 ConstantInt *LHSOffsetCI = dyn_cast<ConstantInt>(LHSOffset); 2160 ConstantInt *RHSOffsetCI = dyn_cast<ConstantInt>(RHSOffset); 2161 uint64_t LHSSize, RHSSize; 2162 if (LHSOffsetCI && RHSOffsetCI && 2163 getObjectSize(LHS, LHSSize, DL, TLI) && 2164 getObjectSize(RHS, RHSSize, DL, TLI)) { 2165 const APInt &LHSOffsetValue = LHSOffsetCI->getValue(); 2166 const APInt &RHSOffsetValue = RHSOffsetCI->getValue(); 2167 if (!LHSOffsetValue.isNegative() && 2168 !RHSOffsetValue.isNegative() && 2169 LHSOffsetValue.ult(LHSSize) && 2170 RHSOffsetValue.ult(RHSSize)) { 2171 return ConstantInt::get(GetCompareTy(LHS), 2172 !CmpInst::isTrueWhenEqual(Pred)); 2173 } 2174 } 2175 2176 // Repeat the above check but this time without depending on DataLayout 2177 // or being able to compute a precise size. 2178 if (!cast<PointerType>(LHS->getType())->isEmptyTy() && 2179 !cast<PointerType>(RHS->getType())->isEmptyTy() && 2180 LHSOffset->isNullValue() && 2181 RHSOffset->isNullValue()) 2182 return ConstantInt::get(GetCompareTy(LHS), 2183 !CmpInst::isTrueWhenEqual(Pred)); 2184 } 2185 2186 // Even if an non-inbounds GEP occurs along the path we can still optimize 2187 // equality comparisons concerning the result. We avoid walking the whole 2188 // chain again by starting where the last calls to 2189 // stripAndComputeConstantOffsets left off and accumulate the offsets. 2190 Constant *LHSNoBound = stripAndComputeConstantOffsets(DL, LHS, true); 2191 Constant *RHSNoBound = stripAndComputeConstantOffsets(DL, RHS, true); 2192 if (LHS == RHS) 2193 return ConstantExpr::getICmp(Pred, 2194 ConstantExpr::getAdd(LHSOffset, LHSNoBound), 2195 ConstantExpr::getAdd(RHSOffset, RHSNoBound)); 2196 2197 // If one side of the equality comparison must come from a noalias call 2198 // (meaning a system memory allocation function), and the other side must 2199 // come from a pointer that cannot overlap with dynamically-allocated 2200 // memory within the lifetime of the current function (allocas, byval 2201 // arguments, globals), then determine the comparison result here. 2202 SmallVector<Value *, 8> LHSUObjs, RHSUObjs; 2203 GetUnderlyingObjects(LHS, LHSUObjs, DL); 2204 GetUnderlyingObjects(RHS, RHSUObjs, DL); 2205 2206 // Is the set of underlying objects all noalias calls? 2207 auto IsNAC = [](ArrayRef<Value *> Objects) { 2208 return all_of(Objects, isNoAliasCall); 2209 }; 2210 2211 // Is the set of underlying objects all things which must be disjoint from 2212 // noalias calls. For allocas, we consider only static ones (dynamic 2213 // allocas might be transformed into calls to malloc not simultaneously 2214 // live with the compared-to allocation). For globals, we exclude symbols 2215 // that might be resolve lazily to symbols in another dynamically-loaded 2216 // library (and, thus, could be malloc'ed by the implementation). 2217 auto IsAllocDisjoint = [](ArrayRef<Value *> Objects) { 2218 return all_of(Objects, [](Value *V) { 2219 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) 2220 return AI->getParent() && AI->getFunction() && AI->isStaticAlloca(); 2221 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) 2222 return (GV->hasLocalLinkage() || GV->hasHiddenVisibility() || 2223 GV->hasProtectedVisibility() || GV->hasGlobalUnnamedAddr()) && 2224 !GV->isThreadLocal(); 2225 if (const Argument *A = dyn_cast<Argument>(V)) 2226 return A->hasByValAttr(); 2227 return false; 2228 }); 2229 }; 2230 2231 if ((IsNAC(LHSUObjs) && IsAllocDisjoint(RHSUObjs)) || 2232 (IsNAC(RHSUObjs) && IsAllocDisjoint(LHSUObjs))) 2233 return ConstantInt::get(GetCompareTy(LHS), 2234 !CmpInst::isTrueWhenEqual(Pred)); 2235 2236 // Fold comparisons for non-escaping pointer even if the allocation call 2237 // cannot be elided. We cannot fold malloc comparison to null. Also, the 2238 // dynamic allocation call could be either of the operands. 2239 Value *MI = nullptr; 2240 if (isAllocLikeFn(LHS, TLI) && llvm::isKnownNonNullAt(RHS, CxtI, DT)) 2241 MI = LHS; 2242 else if (isAllocLikeFn(RHS, TLI) && llvm::isKnownNonNullAt(LHS, CxtI, DT)) 2243 MI = RHS; 2244 // FIXME: We should also fold the compare when the pointer escapes, but the 2245 // compare dominates the pointer escape 2246 if (MI && !PointerMayBeCaptured(MI, true, true)) 2247 return ConstantInt::get(GetCompareTy(LHS), 2248 CmpInst::isFalseWhenEqual(Pred)); 2249 } 2250 2251 // Otherwise, fail. 2252 return nullptr; 2253 } 2254 2255 /// Fold an icmp when its operands have i1 scalar type. 2256 static Value *simplifyICmpOfBools(CmpInst::Predicate Pred, Value *LHS, 2257 Value *RHS, const Query &Q) { 2258 Type *ITy = GetCompareTy(LHS); // The return type. 2259 Type *OpTy = LHS->getType(); // The operand type. 2260 if (!OpTy->getScalarType()->isIntegerTy(1)) 2261 return nullptr; 2262 2263 switch (Pred) { 2264 default: 2265 break; 2266 case ICmpInst::ICMP_EQ: 2267 // X == 1 -> X 2268 if (match(RHS, m_One())) 2269 return LHS; 2270 break; 2271 case ICmpInst::ICMP_NE: 2272 // X != 0 -> X 2273 if (match(RHS, m_Zero())) 2274 return LHS; 2275 break; 2276 case ICmpInst::ICMP_UGT: 2277 // X >u 0 -> X 2278 if (match(RHS, m_Zero())) 2279 return LHS; 2280 break; 2281 case ICmpInst::ICMP_UGE: 2282 // X >=u 1 -> X 2283 if (match(RHS, m_One())) 2284 return LHS; 2285 if (isImpliedCondition(RHS, LHS, Q.DL).getValueOr(false)) 2286 return getTrue(ITy); 2287 break; 2288 case ICmpInst::ICMP_SGE: 2289 /// For signed comparison, the values for an i1 are 0 and -1 2290 /// respectively. This maps into a truth table of: 2291 /// LHS | RHS | LHS >=s RHS | LHS implies RHS 2292 /// 0 | 0 | 1 (0 >= 0) | 1 2293 /// 0 | 1 | 1 (0 >= -1) | 1 2294 /// 1 | 0 | 0 (-1 >= 0) | 0 2295 /// 1 | 1 | 1 (-1 >= -1) | 1 2296 if (isImpliedCondition(LHS, RHS, Q.DL).getValueOr(false)) 2297 return getTrue(ITy); 2298 break; 2299 case ICmpInst::ICMP_SLT: 2300 // X <s 0 -> X 2301 if (match(RHS, m_Zero())) 2302 return LHS; 2303 break; 2304 case ICmpInst::ICMP_SLE: 2305 // X <=s -1 -> X 2306 if (match(RHS, m_One())) 2307 return LHS; 2308 break; 2309 case ICmpInst::ICMP_ULE: 2310 if (isImpliedCondition(LHS, RHS, Q.DL).getValueOr(false)) 2311 return getTrue(ITy); 2312 break; 2313 } 2314 2315 return nullptr; 2316 } 2317 2318 /// Try hard to fold icmp with zero RHS because this is a common case. 2319 static Value *simplifyICmpWithZero(CmpInst::Predicate Pred, Value *LHS, 2320 Value *RHS, const Query &Q) { 2321 if (!match(RHS, m_Zero())) 2322 return nullptr; 2323 2324 Type *ITy = GetCompareTy(LHS); // The return type. 2325 bool LHSKnownNonNegative, LHSKnownNegative; 2326 switch (Pred) { 2327 default: 2328 llvm_unreachable("Unknown ICmp predicate!"); 2329 case ICmpInst::ICMP_ULT: 2330 return getFalse(ITy); 2331 case ICmpInst::ICMP_UGE: 2332 return getTrue(ITy); 2333 case ICmpInst::ICMP_EQ: 2334 case ICmpInst::ICMP_ULE: 2335 if (isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 2336 return getFalse(ITy); 2337 break; 2338 case ICmpInst::ICMP_NE: 2339 case ICmpInst::ICMP_UGT: 2340 if (isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 2341 return getTrue(ITy); 2342 break; 2343 case ICmpInst::ICMP_SLT: 2344 ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, Q.DL, 0, Q.AC, 2345 Q.CxtI, Q.DT); 2346 if (LHSKnownNegative) 2347 return getTrue(ITy); 2348 if (LHSKnownNonNegative) 2349 return getFalse(ITy); 2350 break; 2351 case ICmpInst::ICMP_SLE: 2352 ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, Q.DL, 0, Q.AC, 2353 Q.CxtI, Q.DT); 2354 if (LHSKnownNegative) 2355 return getTrue(ITy); 2356 if (LHSKnownNonNegative && isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 2357 return getFalse(ITy); 2358 break; 2359 case ICmpInst::ICMP_SGE: 2360 ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, Q.DL, 0, Q.AC, 2361 Q.CxtI, Q.DT); 2362 if (LHSKnownNegative) 2363 return getFalse(ITy); 2364 if (LHSKnownNonNegative) 2365 return getTrue(ITy); 2366 break; 2367 case ICmpInst::ICMP_SGT: 2368 ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, Q.DL, 0, Q.AC, 2369 Q.CxtI, Q.DT); 2370 if (LHSKnownNegative) 2371 return getFalse(ITy); 2372 if (LHSKnownNonNegative && isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 2373 return getTrue(ITy); 2374 break; 2375 } 2376 2377 return nullptr; 2378 } 2379 2380 /// Many binary operators with a constant operand have an easy-to-compute 2381 /// range of outputs. This can be used to fold a comparison to always true or 2382 /// always false. 2383 static void setLimitsForBinOp(BinaryOperator &BO, APInt &Lower, APInt &Upper) { 2384 unsigned Width = Lower.getBitWidth(); 2385 const APInt *C; 2386 switch (BO.getOpcode()) { 2387 case Instruction::Add: 2388 if (match(BO.getOperand(1), m_APInt(C)) && *C != 0) { 2389 // FIXME: If we have both nuw and nsw, we should reduce the range further. 2390 if (BO.hasNoUnsignedWrap()) { 2391 // 'add nuw x, C' produces [C, UINT_MAX]. 2392 Lower = *C; 2393 } else if (BO.hasNoSignedWrap()) { 2394 if (C->isNegative()) { 2395 // 'add nsw x, -C' produces [SINT_MIN, SINT_MAX - C]. 2396 Lower = APInt::getSignedMinValue(Width); 2397 Upper = APInt::getSignedMaxValue(Width) + *C + 1; 2398 } else { 2399 // 'add nsw x, +C' produces [SINT_MIN + C, SINT_MAX]. 2400 Lower = APInt::getSignedMinValue(Width) + *C; 2401 Upper = APInt::getSignedMaxValue(Width) + 1; 2402 } 2403 } 2404 } 2405 break; 2406 2407 case Instruction::And: 2408 if (match(BO.getOperand(1), m_APInt(C))) 2409 // 'and x, C' produces [0, C]. 2410 Upper = *C + 1; 2411 break; 2412 2413 case Instruction::Or: 2414 if (match(BO.getOperand(1), m_APInt(C))) 2415 // 'or x, C' produces [C, UINT_MAX]. 2416 Lower = *C; 2417 break; 2418 2419 case Instruction::AShr: 2420 if (match(BO.getOperand(1), m_APInt(C)) && C->ult(Width)) { 2421 // 'ashr x, C' produces [INT_MIN >> C, INT_MAX >> C]. 2422 Lower = APInt::getSignedMinValue(Width).ashr(*C); 2423 Upper = APInt::getSignedMaxValue(Width).ashr(*C) + 1; 2424 } else if (match(BO.getOperand(0), m_APInt(C))) { 2425 unsigned ShiftAmount = Width - 1; 2426 if (*C != 0 && BO.isExact()) 2427 ShiftAmount = C->countTrailingZeros(); 2428 if (C->isNegative()) { 2429 // 'ashr C, x' produces [C, C >> (Width-1)] 2430 Lower = *C; 2431 Upper = C->ashr(ShiftAmount) + 1; 2432 } else { 2433 // 'ashr C, x' produces [C >> (Width-1), C] 2434 Lower = C->ashr(ShiftAmount); 2435 Upper = *C + 1; 2436 } 2437 } 2438 break; 2439 2440 case Instruction::LShr: 2441 if (match(BO.getOperand(1), m_APInt(C)) && C->ult(Width)) { 2442 // 'lshr x, C' produces [0, UINT_MAX >> C]. 2443 Upper = APInt::getAllOnesValue(Width).lshr(*C) + 1; 2444 } else if (match(BO.getOperand(0), m_APInt(C))) { 2445 // 'lshr C, x' produces [C >> (Width-1), C]. 2446 unsigned ShiftAmount = Width - 1; 2447 if (*C != 0 && BO.isExact()) 2448 ShiftAmount = C->countTrailingZeros(); 2449 Lower = C->lshr(ShiftAmount); 2450 Upper = *C + 1; 2451 } 2452 break; 2453 2454 case Instruction::Shl: 2455 if (match(BO.getOperand(0), m_APInt(C))) { 2456 if (BO.hasNoUnsignedWrap()) { 2457 // 'shl nuw C, x' produces [C, C << CLZ(C)] 2458 Lower = *C; 2459 Upper = Lower.shl(Lower.countLeadingZeros()) + 1; 2460 } else if (BO.hasNoSignedWrap()) { // TODO: What if both nuw+nsw? 2461 if (C->isNegative()) { 2462 // 'shl nsw C, x' produces [C << CLO(C)-1, C] 2463 unsigned ShiftAmount = C->countLeadingOnes() - 1; 2464 Lower = C->shl(ShiftAmount); 2465 Upper = *C + 1; 2466 } else { 2467 // 'shl nsw C, x' produces [C, C << CLZ(C)-1] 2468 unsigned ShiftAmount = C->countLeadingZeros() - 1; 2469 Lower = *C; 2470 Upper = C->shl(ShiftAmount) + 1; 2471 } 2472 } 2473 } 2474 break; 2475 2476 case Instruction::SDiv: 2477 if (match(BO.getOperand(1), m_APInt(C))) { 2478 APInt IntMin = APInt::getSignedMinValue(Width); 2479 APInt IntMax = APInt::getSignedMaxValue(Width); 2480 if (C->isAllOnesValue()) { 2481 // 'sdiv x, -1' produces [INT_MIN + 1, INT_MAX] 2482 // where C != -1 and C != 0 and C != 1 2483 Lower = IntMin + 1; 2484 Upper = IntMax + 1; 2485 } else if (C->countLeadingZeros() < Width - 1) { 2486 // 'sdiv x, C' produces [INT_MIN / C, INT_MAX / C] 2487 // where C != -1 and C != 0 and C != 1 2488 Lower = IntMin.sdiv(*C); 2489 Upper = IntMax.sdiv(*C); 2490 if (Lower.sgt(Upper)) 2491 std::swap(Lower, Upper); 2492 Upper = Upper + 1; 2493 assert(Upper != Lower && "Upper part of range has wrapped!"); 2494 } 2495 } else if (match(BO.getOperand(0), m_APInt(C))) { 2496 if (C->isMinSignedValue()) { 2497 // 'sdiv INT_MIN, x' produces [INT_MIN, INT_MIN / -2]. 2498 Lower = *C; 2499 Upper = Lower.lshr(1) + 1; 2500 } else { 2501 // 'sdiv C, x' produces [-|C|, |C|]. 2502 Upper = C->abs() + 1; 2503 Lower = (-Upper) + 1; 2504 } 2505 } 2506 break; 2507 2508 case Instruction::UDiv: 2509 if (match(BO.getOperand(1), m_APInt(C)) && *C != 0) { 2510 // 'udiv x, C' produces [0, UINT_MAX / C]. 2511 Upper = APInt::getMaxValue(Width).udiv(*C) + 1; 2512 } else if (match(BO.getOperand(0), m_APInt(C))) { 2513 // 'udiv C, x' produces [0, C]. 2514 Upper = *C + 1; 2515 } 2516 break; 2517 2518 case Instruction::SRem: 2519 if (match(BO.getOperand(1), m_APInt(C))) { 2520 // 'srem x, C' produces (-|C|, |C|). 2521 Upper = C->abs(); 2522 Lower = (-Upper) + 1; 2523 } 2524 break; 2525 2526 case Instruction::URem: 2527 if (match(BO.getOperand(1), m_APInt(C))) 2528 // 'urem x, C' produces [0, C). 2529 Upper = *C; 2530 break; 2531 2532 default: 2533 break; 2534 } 2535 } 2536 2537 static Value *simplifyICmpWithConstant(CmpInst::Predicate Pred, Value *LHS, 2538 Value *RHS) { 2539 const APInt *C; 2540 if (!match(RHS, m_APInt(C))) 2541 return nullptr; 2542 2543 // Rule out tautological comparisons (eg., ult 0 or uge 0). 2544 ConstantRange RHS_CR = ConstantRange::makeExactICmpRegion(Pred, *C); 2545 if (RHS_CR.isEmptySet()) 2546 return ConstantInt::getFalse(GetCompareTy(RHS)); 2547 if (RHS_CR.isFullSet()) 2548 return ConstantInt::getTrue(GetCompareTy(RHS)); 2549 2550 // Find the range of possible values for binary operators. 2551 unsigned Width = C->getBitWidth(); 2552 APInt Lower = APInt(Width, 0); 2553 APInt Upper = APInt(Width, 0); 2554 if (auto *BO = dyn_cast<BinaryOperator>(LHS)) 2555 setLimitsForBinOp(*BO, Lower, Upper); 2556 2557 ConstantRange LHS_CR = 2558 Lower != Upper ? ConstantRange(Lower, Upper) : ConstantRange(Width, true); 2559 2560 if (auto *I = dyn_cast<Instruction>(LHS)) 2561 if (auto *Ranges = I->getMetadata(LLVMContext::MD_range)) 2562 LHS_CR = LHS_CR.intersectWith(getConstantRangeFromMetadata(*Ranges)); 2563 2564 if (!LHS_CR.isFullSet()) { 2565 if (RHS_CR.contains(LHS_CR)) 2566 return ConstantInt::getTrue(GetCompareTy(RHS)); 2567 if (RHS_CR.inverse().contains(LHS_CR)) 2568 return ConstantInt::getFalse(GetCompareTy(RHS)); 2569 } 2570 2571 return nullptr; 2572 } 2573 2574 static Value *simplifyICmpWithBinOp(CmpInst::Predicate Pred, Value *LHS, 2575 Value *RHS, const Query &Q, 2576 unsigned MaxRecurse) { 2577 Type *ITy = GetCompareTy(LHS); // The return type. 2578 2579 BinaryOperator *LBO = dyn_cast<BinaryOperator>(LHS); 2580 BinaryOperator *RBO = dyn_cast<BinaryOperator>(RHS); 2581 if (MaxRecurse && (LBO || RBO)) { 2582 // Analyze the case when either LHS or RHS is an add instruction. 2583 Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr; 2584 // LHS = A + B (or A and B are null); RHS = C + D (or C and D are null). 2585 bool NoLHSWrapProblem = false, NoRHSWrapProblem = false; 2586 if (LBO && LBO->getOpcode() == Instruction::Add) { 2587 A = LBO->getOperand(0); 2588 B = LBO->getOperand(1); 2589 NoLHSWrapProblem = 2590 ICmpInst::isEquality(Pred) || 2591 (CmpInst::isUnsigned(Pred) && LBO->hasNoUnsignedWrap()) || 2592 (CmpInst::isSigned(Pred) && LBO->hasNoSignedWrap()); 2593 } 2594 if (RBO && RBO->getOpcode() == Instruction::Add) { 2595 C = RBO->getOperand(0); 2596 D = RBO->getOperand(1); 2597 NoRHSWrapProblem = 2598 ICmpInst::isEquality(Pred) || 2599 (CmpInst::isUnsigned(Pred) && RBO->hasNoUnsignedWrap()) || 2600 (CmpInst::isSigned(Pred) && RBO->hasNoSignedWrap()); 2601 } 2602 2603 // icmp (X+Y), X -> icmp Y, 0 for equalities or if there is no overflow. 2604 if ((A == RHS || B == RHS) && NoLHSWrapProblem) 2605 if (Value *V = SimplifyICmpInst(Pred, A == RHS ? B : A, 2606 Constant::getNullValue(RHS->getType()), Q, 2607 MaxRecurse - 1)) 2608 return V; 2609 2610 // icmp X, (X+Y) -> icmp 0, Y for equalities or if there is no overflow. 2611 if ((C == LHS || D == LHS) && NoRHSWrapProblem) 2612 if (Value *V = 2613 SimplifyICmpInst(Pred, Constant::getNullValue(LHS->getType()), 2614 C == LHS ? D : C, Q, MaxRecurse - 1)) 2615 return V; 2616 2617 // icmp (X+Y), (X+Z) -> icmp Y,Z for equalities or if there is no overflow. 2618 if (A && C && (A == C || A == D || B == C || B == D) && NoLHSWrapProblem && 2619 NoRHSWrapProblem) { 2620 // Determine Y and Z in the form icmp (X+Y), (X+Z). 2621 Value *Y, *Z; 2622 if (A == C) { 2623 // C + B == C + D -> B == D 2624 Y = B; 2625 Z = D; 2626 } else if (A == D) { 2627 // D + B == C + D -> B == C 2628 Y = B; 2629 Z = C; 2630 } else if (B == C) { 2631 // A + C == C + D -> A == D 2632 Y = A; 2633 Z = D; 2634 } else { 2635 assert(B == D); 2636 // A + D == C + D -> A == C 2637 Y = A; 2638 Z = C; 2639 } 2640 if (Value *V = SimplifyICmpInst(Pred, Y, Z, Q, MaxRecurse - 1)) 2641 return V; 2642 } 2643 } 2644 2645 { 2646 Value *Y = nullptr; 2647 // icmp pred (or X, Y), X 2648 if (LBO && match(LBO, m_c_Or(m_Value(Y), m_Specific(RHS)))) { 2649 if (Pred == ICmpInst::ICMP_ULT) 2650 return getFalse(ITy); 2651 if (Pred == ICmpInst::ICMP_UGE) 2652 return getTrue(ITy); 2653 2654 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SGE) { 2655 bool RHSKnownNonNegative, RHSKnownNegative; 2656 bool YKnownNonNegative, YKnownNegative; 2657 ComputeSignBit(RHS, RHSKnownNonNegative, RHSKnownNegative, Q.DL, 0, 2658 Q.AC, Q.CxtI, Q.DT); 2659 ComputeSignBit(Y, YKnownNonNegative, YKnownNegative, Q.DL, 0, Q.AC, 2660 Q.CxtI, Q.DT); 2661 if (RHSKnownNonNegative && YKnownNegative) 2662 return Pred == ICmpInst::ICMP_SLT ? getTrue(ITy) : getFalse(ITy); 2663 if (RHSKnownNegative || YKnownNonNegative) 2664 return Pred == ICmpInst::ICMP_SLT ? getFalse(ITy) : getTrue(ITy); 2665 } 2666 } 2667 // icmp pred X, (or X, Y) 2668 if (RBO && match(RBO, m_c_Or(m_Value(Y), m_Specific(LHS)))) { 2669 if (Pred == ICmpInst::ICMP_ULE) 2670 return getTrue(ITy); 2671 if (Pred == ICmpInst::ICMP_UGT) 2672 return getFalse(ITy); 2673 2674 if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SLE) { 2675 bool LHSKnownNonNegative, LHSKnownNegative; 2676 bool YKnownNonNegative, YKnownNegative; 2677 ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, Q.DL, 0, 2678 Q.AC, Q.CxtI, Q.DT); 2679 ComputeSignBit(Y, YKnownNonNegative, YKnownNegative, Q.DL, 0, Q.AC, 2680 Q.CxtI, Q.DT); 2681 if (LHSKnownNonNegative && YKnownNegative) 2682 return Pred == ICmpInst::ICMP_SGT ? getTrue(ITy) : getFalse(ITy); 2683 if (LHSKnownNegative || YKnownNonNegative) 2684 return Pred == ICmpInst::ICMP_SGT ? getFalse(ITy) : getTrue(ITy); 2685 } 2686 } 2687 } 2688 2689 // icmp pred (and X, Y), X 2690 if (LBO && match(LBO, m_CombineOr(m_And(m_Value(), m_Specific(RHS)), 2691 m_And(m_Specific(RHS), m_Value())))) { 2692 if (Pred == ICmpInst::ICMP_UGT) 2693 return getFalse(ITy); 2694 if (Pred == ICmpInst::ICMP_ULE) 2695 return getTrue(ITy); 2696 } 2697 // icmp pred X, (and X, Y) 2698 if (RBO && match(RBO, m_CombineOr(m_And(m_Value(), m_Specific(LHS)), 2699 m_And(m_Specific(LHS), m_Value())))) { 2700 if (Pred == ICmpInst::ICMP_UGE) 2701 return getTrue(ITy); 2702 if (Pred == ICmpInst::ICMP_ULT) 2703 return getFalse(ITy); 2704 } 2705 2706 // 0 - (zext X) pred C 2707 if (!CmpInst::isUnsigned(Pred) && match(LHS, m_Neg(m_ZExt(m_Value())))) { 2708 if (ConstantInt *RHSC = dyn_cast<ConstantInt>(RHS)) { 2709 if (RHSC->getValue().isStrictlyPositive()) { 2710 if (Pred == ICmpInst::ICMP_SLT) 2711 return ConstantInt::getTrue(RHSC->getContext()); 2712 if (Pred == ICmpInst::ICMP_SGE) 2713 return ConstantInt::getFalse(RHSC->getContext()); 2714 if (Pred == ICmpInst::ICMP_EQ) 2715 return ConstantInt::getFalse(RHSC->getContext()); 2716 if (Pred == ICmpInst::ICMP_NE) 2717 return ConstantInt::getTrue(RHSC->getContext()); 2718 } 2719 if (RHSC->getValue().isNonNegative()) { 2720 if (Pred == ICmpInst::ICMP_SLE) 2721 return ConstantInt::getTrue(RHSC->getContext()); 2722 if (Pred == ICmpInst::ICMP_SGT) 2723 return ConstantInt::getFalse(RHSC->getContext()); 2724 } 2725 } 2726 } 2727 2728 // icmp pred (urem X, Y), Y 2729 if (LBO && match(LBO, m_URem(m_Value(), m_Specific(RHS)))) { 2730 bool KnownNonNegative, KnownNegative; 2731 switch (Pred) { 2732 default: 2733 break; 2734 case ICmpInst::ICMP_SGT: 2735 case ICmpInst::ICMP_SGE: 2736 ComputeSignBit(RHS, KnownNonNegative, KnownNegative, Q.DL, 0, Q.AC, 2737 Q.CxtI, Q.DT); 2738 if (!KnownNonNegative) 2739 break; 2740 LLVM_FALLTHROUGH; 2741 case ICmpInst::ICMP_EQ: 2742 case ICmpInst::ICMP_UGT: 2743 case ICmpInst::ICMP_UGE: 2744 return getFalse(ITy); 2745 case ICmpInst::ICMP_SLT: 2746 case ICmpInst::ICMP_SLE: 2747 ComputeSignBit(RHS, KnownNonNegative, KnownNegative, Q.DL, 0, Q.AC, 2748 Q.CxtI, Q.DT); 2749 if (!KnownNonNegative) 2750 break; 2751 LLVM_FALLTHROUGH; 2752 case ICmpInst::ICMP_NE: 2753 case ICmpInst::ICMP_ULT: 2754 case ICmpInst::ICMP_ULE: 2755 return getTrue(ITy); 2756 } 2757 } 2758 2759 // icmp pred X, (urem Y, X) 2760 if (RBO && match(RBO, m_URem(m_Value(), m_Specific(LHS)))) { 2761 bool KnownNonNegative, KnownNegative; 2762 switch (Pred) { 2763 default: 2764 break; 2765 case ICmpInst::ICMP_SGT: 2766 case ICmpInst::ICMP_SGE: 2767 ComputeSignBit(LHS, KnownNonNegative, KnownNegative, Q.DL, 0, Q.AC, 2768 Q.CxtI, Q.DT); 2769 if (!KnownNonNegative) 2770 break; 2771 LLVM_FALLTHROUGH; 2772 case ICmpInst::ICMP_NE: 2773 case ICmpInst::ICMP_UGT: 2774 case ICmpInst::ICMP_UGE: 2775 return getTrue(ITy); 2776 case ICmpInst::ICMP_SLT: 2777 case ICmpInst::ICMP_SLE: 2778 ComputeSignBit(LHS, KnownNonNegative, KnownNegative, Q.DL, 0, Q.AC, 2779 Q.CxtI, Q.DT); 2780 if (!KnownNonNegative) 2781 break; 2782 LLVM_FALLTHROUGH; 2783 case ICmpInst::ICMP_EQ: 2784 case ICmpInst::ICMP_ULT: 2785 case ICmpInst::ICMP_ULE: 2786 return getFalse(ITy); 2787 } 2788 } 2789 2790 // x >> y <=u x 2791 // x udiv y <=u x. 2792 if (LBO && (match(LBO, m_LShr(m_Specific(RHS), m_Value())) || 2793 match(LBO, m_UDiv(m_Specific(RHS), m_Value())))) { 2794 // icmp pred (X op Y), X 2795 if (Pred == ICmpInst::ICMP_UGT) 2796 return getFalse(ITy); 2797 if (Pred == ICmpInst::ICMP_ULE) 2798 return getTrue(ITy); 2799 } 2800 2801 // x >=u x >> y 2802 // x >=u x udiv y. 2803 if (RBO && (match(RBO, m_LShr(m_Specific(LHS), m_Value())) || 2804 match(RBO, m_UDiv(m_Specific(LHS), m_Value())))) { 2805 // icmp pred X, (X op Y) 2806 if (Pred == ICmpInst::ICMP_ULT) 2807 return getFalse(ITy); 2808 if (Pred == ICmpInst::ICMP_UGE) 2809 return getTrue(ITy); 2810 } 2811 2812 // handle: 2813 // CI2 << X == CI 2814 // CI2 << X != CI 2815 // 2816 // where CI2 is a power of 2 and CI isn't 2817 if (auto *CI = dyn_cast<ConstantInt>(RHS)) { 2818 const APInt *CI2Val, *CIVal = &CI->getValue(); 2819 if (LBO && match(LBO, m_Shl(m_APInt(CI2Val), m_Value())) && 2820 CI2Val->isPowerOf2()) { 2821 if (!CIVal->isPowerOf2()) { 2822 // CI2 << X can equal zero in some circumstances, 2823 // this simplification is unsafe if CI is zero. 2824 // 2825 // We know it is safe if: 2826 // - The shift is nsw, we can't shift out the one bit. 2827 // - The shift is nuw, we can't shift out the one bit. 2828 // - CI2 is one 2829 // - CI isn't zero 2830 if (LBO->hasNoSignedWrap() || LBO->hasNoUnsignedWrap() || 2831 *CI2Val == 1 || !CI->isZero()) { 2832 if (Pred == ICmpInst::ICMP_EQ) 2833 return ConstantInt::getFalse(RHS->getContext()); 2834 if (Pred == ICmpInst::ICMP_NE) 2835 return ConstantInt::getTrue(RHS->getContext()); 2836 } 2837 } 2838 if (CIVal->isSignBit() && *CI2Val == 1) { 2839 if (Pred == ICmpInst::ICMP_UGT) 2840 return ConstantInt::getFalse(RHS->getContext()); 2841 if (Pred == ICmpInst::ICMP_ULE) 2842 return ConstantInt::getTrue(RHS->getContext()); 2843 } 2844 } 2845 } 2846 2847 if (MaxRecurse && LBO && RBO && LBO->getOpcode() == RBO->getOpcode() && 2848 LBO->getOperand(1) == RBO->getOperand(1)) { 2849 switch (LBO->getOpcode()) { 2850 default: 2851 break; 2852 case Instruction::UDiv: 2853 case Instruction::LShr: 2854 if (ICmpInst::isSigned(Pred)) 2855 break; 2856 LLVM_FALLTHROUGH; 2857 case Instruction::SDiv: 2858 case Instruction::AShr: 2859 if (!LBO->isExact() || !RBO->isExact()) 2860 break; 2861 if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0), 2862 RBO->getOperand(0), Q, MaxRecurse - 1)) 2863 return V; 2864 break; 2865 case Instruction::Shl: { 2866 bool NUW = LBO->hasNoUnsignedWrap() && RBO->hasNoUnsignedWrap(); 2867 bool NSW = LBO->hasNoSignedWrap() && RBO->hasNoSignedWrap(); 2868 if (!NUW && !NSW) 2869 break; 2870 if (!NSW && ICmpInst::isSigned(Pred)) 2871 break; 2872 if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0), 2873 RBO->getOperand(0), Q, MaxRecurse - 1)) 2874 return V; 2875 break; 2876 } 2877 } 2878 } 2879 return nullptr; 2880 } 2881 2882 /// Simplify integer comparisons where at least one operand of the compare 2883 /// matches an integer min/max idiom. 2884 static Value *simplifyICmpWithMinMax(CmpInst::Predicate Pred, Value *LHS, 2885 Value *RHS, const Query &Q, 2886 unsigned MaxRecurse) { 2887 Type *ITy = GetCompareTy(LHS); // The return type. 2888 Value *A, *B; 2889 CmpInst::Predicate P = CmpInst::BAD_ICMP_PREDICATE; 2890 CmpInst::Predicate EqP; // Chosen so that "A == max/min(A,B)" iff "A EqP B". 2891 2892 // Signed variants on "max(a,b)>=a -> true". 2893 if (match(LHS, m_SMax(m_Value(A), m_Value(B))) && (A == RHS || B == RHS)) { 2894 if (A != RHS) 2895 std::swap(A, B); // smax(A, B) pred A. 2896 EqP = CmpInst::ICMP_SGE; // "A == smax(A, B)" iff "A sge B". 2897 // We analyze this as smax(A, B) pred A. 2898 P = Pred; 2899 } else if (match(RHS, m_SMax(m_Value(A), m_Value(B))) && 2900 (A == LHS || B == LHS)) { 2901 if (A != LHS) 2902 std::swap(A, B); // A pred smax(A, B). 2903 EqP = CmpInst::ICMP_SGE; // "A == smax(A, B)" iff "A sge B". 2904 // We analyze this as smax(A, B) swapped-pred A. 2905 P = CmpInst::getSwappedPredicate(Pred); 2906 } else if (match(LHS, m_SMin(m_Value(A), m_Value(B))) && 2907 (A == RHS || B == RHS)) { 2908 if (A != RHS) 2909 std::swap(A, B); // smin(A, B) pred A. 2910 EqP = CmpInst::ICMP_SLE; // "A == smin(A, B)" iff "A sle B". 2911 // We analyze this as smax(-A, -B) swapped-pred -A. 2912 // Note that we do not need to actually form -A or -B thanks to EqP. 2913 P = CmpInst::getSwappedPredicate(Pred); 2914 } else if (match(RHS, m_SMin(m_Value(A), m_Value(B))) && 2915 (A == LHS || B == LHS)) { 2916 if (A != LHS) 2917 std::swap(A, B); // A pred smin(A, B). 2918 EqP = CmpInst::ICMP_SLE; // "A == smin(A, B)" iff "A sle B". 2919 // We analyze this as smax(-A, -B) pred -A. 2920 // Note that we do not need to actually form -A or -B thanks to EqP. 2921 P = Pred; 2922 } 2923 if (P != CmpInst::BAD_ICMP_PREDICATE) { 2924 // Cases correspond to "max(A, B) p A". 2925 switch (P) { 2926 default: 2927 break; 2928 case CmpInst::ICMP_EQ: 2929 case CmpInst::ICMP_SLE: 2930 // Equivalent to "A EqP B". This may be the same as the condition tested 2931 // in the max/min; if so, we can just return that. 2932 if (Value *V = ExtractEquivalentCondition(LHS, EqP, A, B)) 2933 return V; 2934 if (Value *V = ExtractEquivalentCondition(RHS, EqP, A, B)) 2935 return V; 2936 // Otherwise, see if "A EqP B" simplifies. 2937 if (MaxRecurse) 2938 if (Value *V = SimplifyICmpInst(EqP, A, B, Q, MaxRecurse - 1)) 2939 return V; 2940 break; 2941 case CmpInst::ICMP_NE: 2942 case CmpInst::ICMP_SGT: { 2943 CmpInst::Predicate InvEqP = CmpInst::getInversePredicate(EqP); 2944 // Equivalent to "A InvEqP B". This may be the same as the condition 2945 // tested in the max/min; if so, we can just return that. 2946 if (Value *V = ExtractEquivalentCondition(LHS, InvEqP, A, B)) 2947 return V; 2948 if (Value *V = ExtractEquivalentCondition(RHS, InvEqP, A, B)) 2949 return V; 2950 // Otherwise, see if "A InvEqP B" simplifies. 2951 if (MaxRecurse) 2952 if (Value *V = SimplifyICmpInst(InvEqP, A, B, Q, MaxRecurse - 1)) 2953 return V; 2954 break; 2955 } 2956 case CmpInst::ICMP_SGE: 2957 // Always true. 2958 return getTrue(ITy); 2959 case CmpInst::ICMP_SLT: 2960 // Always false. 2961 return getFalse(ITy); 2962 } 2963 } 2964 2965 // Unsigned variants on "max(a,b)>=a -> true". 2966 P = CmpInst::BAD_ICMP_PREDICATE; 2967 if (match(LHS, m_UMax(m_Value(A), m_Value(B))) && (A == RHS || B == RHS)) { 2968 if (A != RHS) 2969 std::swap(A, B); // umax(A, B) pred A. 2970 EqP = CmpInst::ICMP_UGE; // "A == umax(A, B)" iff "A uge B". 2971 // We analyze this as umax(A, B) pred A. 2972 P = Pred; 2973 } else if (match(RHS, m_UMax(m_Value(A), m_Value(B))) && 2974 (A == LHS || B == LHS)) { 2975 if (A != LHS) 2976 std::swap(A, B); // A pred umax(A, B). 2977 EqP = CmpInst::ICMP_UGE; // "A == umax(A, B)" iff "A uge B". 2978 // We analyze this as umax(A, B) swapped-pred A. 2979 P = CmpInst::getSwappedPredicate(Pred); 2980 } else if (match(LHS, m_UMin(m_Value(A), m_Value(B))) && 2981 (A == RHS || B == RHS)) { 2982 if (A != RHS) 2983 std::swap(A, B); // umin(A, B) pred A. 2984 EqP = CmpInst::ICMP_ULE; // "A == umin(A, B)" iff "A ule B". 2985 // We analyze this as umax(-A, -B) swapped-pred -A. 2986 // Note that we do not need to actually form -A or -B thanks to EqP. 2987 P = CmpInst::getSwappedPredicate(Pred); 2988 } else if (match(RHS, m_UMin(m_Value(A), m_Value(B))) && 2989 (A == LHS || B == LHS)) { 2990 if (A != LHS) 2991 std::swap(A, B); // A pred umin(A, B). 2992 EqP = CmpInst::ICMP_ULE; // "A == umin(A, B)" iff "A ule B". 2993 // We analyze this as umax(-A, -B) pred -A. 2994 // Note that we do not need to actually form -A or -B thanks to EqP. 2995 P = Pred; 2996 } 2997 if (P != CmpInst::BAD_ICMP_PREDICATE) { 2998 // Cases correspond to "max(A, B) p A". 2999 switch (P) { 3000 default: 3001 break; 3002 case CmpInst::ICMP_EQ: 3003 case CmpInst::ICMP_ULE: 3004 // Equivalent to "A EqP B". This may be the same as the condition tested 3005 // in the max/min; if so, we can just return that. 3006 if (Value *V = ExtractEquivalentCondition(LHS, EqP, A, B)) 3007 return V; 3008 if (Value *V = ExtractEquivalentCondition(RHS, EqP, A, B)) 3009 return V; 3010 // Otherwise, see if "A EqP B" simplifies. 3011 if (MaxRecurse) 3012 if (Value *V = SimplifyICmpInst(EqP, A, B, Q, MaxRecurse - 1)) 3013 return V; 3014 break; 3015 case CmpInst::ICMP_NE: 3016 case CmpInst::ICMP_UGT: { 3017 CmpInst::Predicate InvEqP = CmpInst::getInversePredicate(EqP); 3018 // Equivalent to "A InvEqP B". This may be the same as the condition 3019 // tested in the max/min; if so, we can just return that. 3020 if (Value *V = ExtractEquivalentCondition(LHS, InvEqP, A, B)) 3021 return V; 3022 if (Value *V = ExtractEquivalentCondition(RHS, InvEqP, A, B)) 3023 return V; 3024 // Otherwise, see if "A InvEqP B" simplifies. 3025 if (MaxRecurse) 3026 if (Value *V = SimplifyICmpInst(InvEqP, A, B, Q, MaxRecurse - 1)) 3027 return V; 3028 break; 3029 } 3030 case CmpInst::ICMP_UGE: 3031 // Always true. 3032 return getTrue(ITy); 3033 case CmpInst::ICMP_ULT: 3034 // Always false. 3035 return getFalse(ITy); 3036 } 3037 } 3038 3039 // Variants on "max(x,y) >= min(x,z)". 3040 Value *C, *D; 3041 if (match(LHS, m_SMax(m_Value(A), m_Value(B))) && 3042 match(RHS, m_SMin(m_Value(C), m_Value(D))) && 3043 (A == C || A == D || B == C || B == D)) { 3044 // max(x, ?) pred min(x, ?). 3045 if (Pred == CmpInst::ICMP_SGE) 3046 // Always true. 3047 return getTrue(ITy); 3048 if (Pred == CmpInst::ICMP_SLT) 3049 // Always false. 3050 return getFalse(ITy); 3051 } else if (match(LHS, m_SMin(m_Value(A), m_Value(B))) && 3052 match(RHS, m_SMax(m_Value(C), m_Value(D))) && 3053 (A == C || A == D || B == C || B == D)) { 3054 // min(x, ?) pred max(x, ?). 3055 if (Pred == CmpInst::ICMP_SLE) 3056 // Always true. 3057 return getTrue(ITy); 3058 if (Pred == CmpInst::ICMP_SGT) 3059 // Always false. 3060 return getFalse(ITy); 3061 } else if (match(LHS, m_UMax(m_Value(A), m_Value(B))) && 3062 match(RHS, m_UMin(m_Value(C), m_Value(D))) && 3063 (A == C || A == D || B == C || B == D)) { 3064 // max(x, ?) pred min(x, ?). 3065 if (Pred == CmpInst::ICMP_UGE) 3066 // Always true. 3067 return getTrue(ITy); 3068 if (Pred == CmpInst::ICMP_ULT) 3069 // Always false. 3070 return getFalse(ITy); 3071 } else if (match(LHS, m_UMin(m_Value(A), m_Value(B))) && 3072 match(RHS, m_UMax(m_Value(C), m_Value(D))) && 3073 (A == C || A == D || B == C || B == D)) { 3074 // min(x, ?) pred max(x, ?). 3075 if (Pred == CmpInst::ICMP_ULE) 3076 // Always true. 3077 return getTrue(ITy); 3078 if (Pred == CmpInst::ICMP_UGT) 3079 // Always false. 3080 return getFalse(ITy); 3081 } 3082 3083 return nullptr; 3084 } 3085 3086 /// Given operands for an ICmpInst, see if we can fold the result. 3087 /// If not, this returns null. 3088 static Value *SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS, 3089 const Query &Q, unsigned MaxRecurse) { 3090 CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate; 3091 assert(CmpInst::isIntPredicate(Pred) && "Not an integer compare!"); 3092 3093 if (Constant *CLHS = dyn_cast<Constant>(LHS)) { 3094 if (Constant *CRHS = dyn_cast<Constant>(RHS)) 3095 return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, Q.DL, Q.TLI); 3096 3097 // If we have a constant, make sure it is on the RHS. 3098 std::swap(LHS, RHS); 3099 Pred = CmpInst::getSwappedPredicate(Pred); 3100 } 3101 3102 Type *ITy = GetCompareTy(LHS); // The return type. 3103 3104 // icmp X, X -> true/false 3105 // X icmp undef -> true/false. For example, icmp ugt %X, undef -> false 3106 // because X could be 0. 3107 if (LHS == RHS || isa<UndefValue>(RHS)) 3108 return ConstantInt::get(ITy, CmpInst::isTrueWhenEqual(Pred)); 3109 3110 if (Value *V = simplifyICmpOfBools(Pred, LHS, RHS, Q)) 3111 return V; 3112 3113 if (Value *V = simplifyICmpWithZero(Pred, LHS, RHS, Q)) 3114 return V; 3115 3116 if (Value *V = simplifyICmpWithConstant(Pred, LHS, RHS)) 3117 return V; 3118 3119 // If both operands have range metadata, use the metadata 3120 // to simplify the comparison. 3121 if (isa<Instruction>(RHS) && isa<Instruction>(LHS)) { 3122 auto RHS_Instr = dyn_cast<Instruction>(RHS); 3123 auto LHS_Instr = dyn_cast<Instruction>(LHS); 3124 3125 if (RHS_Instr->getMetadata(LLVMContext::MD_range) && 3126 LHS_Instr->getMetadata(LLVMContext::MD_range)) { 3127 auto RHS_CR = getConstantRangeFromMetadata( 3128 *RHS_Instr->getMetadata(LLVMContext::MD_range)); 3129 auto LHS_CR = getConstantRangeFromMetadata( 3130 *LHS_Instr->getMetadata(LLVMContext::MD_range)); 3131 3132 auto Satisfied_CR = ConstantRange::makeSatisfyingICmpRegion(Pred, RHS_CR); 3133 if (Satisfied_CR.contains(LHS_CR)) 3134 return ConstantInt::getTrue(RHS->getContext()); 3135 3136 auto InversedSatisfied_CR = ConstantRange::makeSatisfyingICmpRegion( 3137 CmpInst::getInversePredicate(Pred), RHS_CR); 3138 if (InversedSatisfied_CR.contains(LHS_CR)) 3139 return ConstantInt::getFalse(RHS->getContext()); 3140 } 3141 } 3142 3143 // Compare of cast, for example (zext X) != 0 -> X != 0 3144 if (isa<CastInst>(LHS) && (isa<Constant>(RHS) || isa<CastInst>(RHS))) { 3145 Instruction *LI = cast<CastInst>(LHS); 3146 Value *SrcOp = LI->getOperand(0); 3147 Type *SrcTy = SrcOp->getType(); 3148 Type *DstTy = LI->getType(); 3149 3150 // Turn icmp (ptrtoint x), (ptrtoint/constant) into a compare of the input 3151 // if the integer type is the same size as the pointer type. 3152 if (MaxRecurse && isa<PtrToIntInst>(LI) && 3153 Q.DL.getTypeSizeInBits(SrcTy) == DstTy->getPrimitiveSizeInBits()) { 3154 if (Constant *RHSC = dyn_cast<Constant>(RHS)) { 3155 // Transfer the cast to the constant. 3156 if (Value *V = SimplifyICmpInst(Pred, SrcOp, 3157 ConstantExpr::getIntToPtr(RHSC, SrcTy), 3158 Q, MaxRecurse-1)) 3159 return V; 3160 } else if (PtrToIntInst *RI = dyn_cast<PtrToIntInst>(RHS)) { 3161 if (RI->getOperand(0)->getType() == SrcTy) 3162 // Compare without the cast. 3163 if (Value *V = SimplifyICmpInst(Pred, SrcOp, RI->getOperand(0), 3164 Q, MaxRecurse-1)) 3165 return V; 3166 } 3167 } 3168 3169 if (isa<ZExtInst>(LHS)) { 3170 // Turn icmp (zext X), (zext Y) into a compare of X and Y if they have the 3171 // same type. 3172 if (ZExtInst *RI = dyn_cast<ZExtInst>(RHS)) { 3173 if (MaxRecurse && SrcTy == RI->getOperand(0)->getType()) 3174 // Compare X and Y. Note that signed predicates become unsigned. 3175 if (Value *V = SimplifyICmpInst(ICmpInst::getUnsignedPredicate(Pred), 3176 SrcOp, RI->getOperand(0), Q, 3177 MaxRecurse-1)) 3178 return V; 3179 } 3180 // Turn icmp (zext X), Cst into a compare of X and Cst if Cst is extended 3181 // too. If not, then try to deduce the result of the comparison. 3182 else if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) { 3183 // Compute the constant that would happen if we truncated to SrcTy then 3184 // reextended to DstTy. 3185 Constant *Trunc = ConstantExpr::getTrunc(CI, SrcTy); 3186 Constant *RExt = ConstantExpr::getCast(CastInst::ZExt, Trunc, DstTy); 3187 3188 // If the re-extended constant didn't change then this is effectively 3189 // also a case of comparing two zero-extended values. 3190 if (RExt == CI && MaxRecurse) 3191 if (Value *V = SimplifyICmpInst(ICmpInst::getUnsignedPredicate(Pred), 3192 SrcOp, Trunc, Q, MaxRecurse-1)) 3193 return V; 3194 3195 // Otherwise the upper bits of LHS are zero while RHS has a non-zero bit 3196 // there. Use this to work out the result of the comparison. 3197 if (RExt != CI) { 3198 switch (Pred) { 3199 default: llvm_unreachable("Unknown ICmp predicate!"); 3200 // LHS <u RHS. 3201 case ICmpInst::ICMP_EQ: 3202 case ICmpInst::ICMP_UGT: 3203 case ICmpInst::ICMP_UGE: 3204 return ConstantInt::getFalse(CI->getContext()); 3205 3206 case ICmpInst::ICMP_NE: 3207 case ICmpInst::ICMP_ULT: 3208 case ICmpInst::ICMP_ULE: 3209 return ConstantInt::getTrue(CI->getContext()); 3210 3211 // LHS is non-negative. If RHS is negative then LHS >s LHS. If RHS 3212 // is non-negative then LHS <s RHS. 3213 case ICmpInst::ICMP_SGT: 3214 case ICmpInst::ICMP_SGE: 3215 return CI->getValue().isNegative() ? 3216 ConstantInt::getTrue(CI->getContext()) : 3217 ConstantInt::getFalse(CI->getContext()); 3218 3219 case ICmpInst::ICMP_SLT: 3220 case ICmpInst::ICMP_SLE: 3221 return CI->getValue().isNegative() ? 3222 ConstantInt::getFalse(CI->getContext()) : 3223 ConstantInt::getTrue(CI->getContext()); 3224 } 3225 } 3226 } 3227 } 3228 3229 if (isa<SExtInst>(LHS)) { 3230 // Turn icmp (sext X), (sext Y) into a compare of X and Y if they have the 3231 // same type. 3232 if (SExtInst *RI = dyn_cast<SExtInst>(RHS)) { 3233 if (MaxRecurse && SrcTy == RI->getOperand(0)->getType()) 3234 // Compare X and Y. Note that the predicate does not change. 3235 if (Value *V = SimplifyICmpInst(Pred, SrcOp, RI->getOperand(0), 3236 Q, MaxRecurse-1)) 3237 return V; 3238 } 3239 // Turn icmp (sext X), Cst into a compare of X and Cst if Cst is extended 3240 // too. If not, then try to deduce the result of the comparison. 3241 else if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) { 3242 // Compute the constant that would happen if we truncated to SrcTy then 3243 // reextended to DstTy. 3244 Constant *Trunc = ConstantExpr::getTrunc(CI, SrcTy); 3245 Constant *RExt = ConstantExpr::getCast(CastInst::SExt, Trunc, DstTy); 3246 3247 // If the re-extended constant didn't change then this is effectively 3248 // also a case of comparing two sign-extended values. 3249 if (RExt == CI && MaxRecurse) 3250 if (Value *V = SimplifyICmpInst(Pred, SrcOp, Trunc, Q, MaxRecurse-1)) 3251 return V; 3252 3253 // Otherwise the upper bits of LHS are all equal, while RHS has varying 3254 // bits there. Use this to work out the result of the comparison. 3255 if (RExt != CI) { 3256 switch (Pred) { 3257 default: llvm_unreachable("Unknown ICmp predicate!"); 3258 case ICmpInst::ICMP_EQ: 3259 return ConstantInt::getFalse(CI->getContext()); 3260 case ICmpInst::ICMP_NE: 3261 return ConstantInt::getTrue(CI->getContext()); 3262 3263 // If RHS is non-negative then LHS <s RHS. If RHS is negative then 3264 // LHS >s RHS. 3265 case ICmpInst::ICMP_SGT: 3266 case ICmpInst::ICMP_SGE: 3267 return CI->getValue().isNegative() ? 3268 ConstantInt::getTrue(CI->getContext()) : 3269 ConstantInt::getFalse(CI->getContext()); 3270 case ICmpInst::ICMP_SLT: 3271 case ICmpInst::ICMP_SLE: 3272 return CI->getValue().isNegative() ? 3273 ConstantInt::getFalse(CI->getContext()) : 3274 ConstantInt::getTrue(CI->getContext()); 3275 3276 // If LHS is non-negative then LHS <u RHS. If LHS is negative then 3277 // LHS >u RHS. 3278 case ICmpInst::ICMP_UGT: 3279 case ICmpInst::ICMP_UGE: 3280 // Comparison is true iff the LHS <s 0. 3281 if (MaxRecurse) 3282 if (Value *V = SimplifyICmpInst(ICmpInst::ICMP_SLT, SrcOp, 3283 Constant::getNullValue(SrcTy), 3284 Q, MaxRecurse-1)) 3285 return V; 3286 break; 3287 case ICmpInst::ICMP_ULT: 3288 case ICmpInst::ICMP_ULE: 3289 // Comparison is true iff the LHS >=s 0. 3290 if (MaxRecurse) 3291 if (Value *V = SimplifyICmpInst(ICmpInst::ICMP_SGE, SrcOp, 3292 Constant::getNullValue(SrcTy), 3293 Q, MaxRecurse-1)) 3294 return V; 3295 break; 3296 } 3297 } 3298 } 3299 } 3300 } 3301 3302 // icmp eq|ne X, Y -> false|true if X != Y 3303 if ((Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_NE) && 3304 isKnownNonEqual(LHS, RHS, Q.DL, Q.AC, Q.CxtI, Q.DT)) { 3305 LLVMContext &Ctx = LHS->getType()->getContext(); 3306 return Pred == ICmpInst::ICMP_NE ? 3307 ConstantInt::getTrue(Ctx) : ConstantInt::getFalse(Ctx); 3308 } 3309 3310 if (Value *V = simplifyICmpWithBinOp(Pred, LHS, RHS, Q, MaxRecurse)) 3311 return V; 3312 3313 if (Value *V = simplifyICmpWithMinMax(Pred, LHS, RHS, Q, MaxRecurse)) 3314 return V; 3315 3316 // Simplify comparisons of related pointers using a powerful, recursive 3317 // GEP-walk when we have target data available.. 3318 if (LHS->getType()->isPointerTy()) 3319 if (auto *C = computePointerICmp(Q.DL, Q.TLI, Q.DT, Pred, Q.CxtI, LHS, RHS)) 3320 return C; 3321 if (auto *CLHS = dyn_cast<PtrToIntOperator>(LHS)) 3322 if (auto *CRHS = dyn_cast<PtrToIntOperator>(RHS)) 3323 if (Q.DL.getTypeSizeInBits(CLHS->getPointerOperandType()) == 3324 Q.DL.getTypeSizeInBits(CLHS->getType()) && 3325 Q.DL.getTypeSizeInBits(CRHS->getPointerOperandType()) == 3326 Q.DL.getTypeSizeInBits(CRHS->getType())) 3327 if (auto *C = computePointerICmp(Q.DL, Q.TLI, Q.DT, Pred, Q.CxtI, 3328 CLHS->getPointerOperand(), 3329 CRHS->getPointerOperand())) 3330 return C; 3331 3332 if (GetElementPtrInst *GLHS = dyn_cast<GetElementPtrInst>(LHS)) { 3333 if (GEPOperator *GRHS = dyn_cast<GEPOperator>(RHS)) { 3334 if (GLHS->getPointerOperand() == GRHS->getPointerOperand() && 3335 GLHS->hasAllConstantIndices() && GRHS->hasAllConstantIndices() && 3336 (ICmpInst::isEquality(Pred) || 3337 (GLHS->isInBounds() && GRHS->isInBounds() && 3338 Pred == ICmpInst::getSignedPredicate(Pred)))) { 3339 // The bases are equal and the indices are constant. Build a constant 3340 // expression GEP with the same indices and a null base pointer to see 3341 // what constant folding can make out of it. 3342 Constant *Null = Constant::getNullValue(GLHS->getPointerOperandType()); 3343 SmallVector<Value *, 4> IndicesLHS(GLHS->idx_begin(), GLHS->idx_end()); 3344 Constant *NewLHS = ConstantExpr::getGetElementPtr( 3345 GLHS->getSourceElementType(), Null, IndicesLHS); 3346 3347 SmallVector<Value *, 4> IndicesRHS(GRHS->idx_begin(), GRHS->idx_end()); 3348 Constant *NewRHS = ConstantExpr::getGetElementPtr( 3349 GLHS->getSourceElementType(), Null, IndicesRHS); 3350 return ConstantExpr::getICmp(Pred, NewLHS, NewRHS); 3351 } 3352 } 3353 } 3354 3355 // If a bit is known to be zero for A and known to be one for B, 3356 // then A and B cannot be equal. 3357 if (ICmpInst::isEquality(Pred)) { 3358 const APInt *RHSVal; 3359 if (match(RHS, m_APInt(RHSVal))) { 3360 unsigned BitWidth = RHSVal->getBitWidth(); 3361 APInt LHSKnownZero(BitWidth, 0); 3362 APInt LHSKnownOne(BitWidth, 0); 3363 computeKnownBits(LHS, LHSKnownZero, LHSKnownOne, Q.DL, /*Depth=*/0, Q.AC, 3364 Q.CxtI, Q.DT); 3365 if (((LHSKnownZero & *RHSVal) != 0) || ((LHSKnownOne & ~(*RHSVal)) != 0)) 3366 return Pred == ICmpInst::ICMP_EQ ? ConstantInt::getFalse(ITy) 3367 : ConstantInt::getTrue(ITy); 3368 } 3369 } 3370 3371 // If the comparison is with the result of a select instruction, check whether 3372 // comparing with either branch of the select always yields the same value. 3373 if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS)) 3374 if (Value *V = ThreadCmpOverSelect(Pred, LHS, RHS, Q, MaxRecurse)) 3375 return V; 3376 3377 // If the comparison is with the result of a phi instruction, check whether 3378 // doing the compare with each incoming phi value yields a common result. 3379 if (isa<PHINode>(LHS) || isa<PHINode>(RHS)) 3380 if (Value *V = ThreadCmpOverPHI(Pred, LHS, RHS, Q, MaxRecurse)) 3381 return V; 3382 3383 return nullptr; 3384 } 3385 3386 Value *llvm::SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS, 3387 const DataLayout &DL, 3388 const TargetLibraryInfo *TLI, 3389 const DominatorTree *DT, AssumptionCache *AC, 3390 const Instruction *CxtI) { 3391 return ::SimplifyICmpInst(Predicate, LHS, RHS, Query(DL, TLI, DT, AC, CxtI), 3392 RecursionLimit); 3393 } 3394 3395 /// Given operands for an FCmpInst, see if we can fold the result. 3396 /// If not, this returns null. 3397 static Value *SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS, 3398 FastMathFlags FMF, const Query &Q, 3399 unsigned MaxRecurse) { 3400 CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate; 3401 assert(CmpInst::isFPPredicate(Pred) && "Not an FP compare!"); 3402 3403 if (Constant *CLHS = dyn_cast<Constant>(LHS)) { 3404 if (Constant *CRHS = dyn_cast<Constant>(RHS)) 3405 return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, Q.DL, Q.TLI); 3406 3407 // If we have a constant, make sure it is on the RHS. 3408 std::swap(LHS, RHS); 3409 Pred = CmpInst::getSwappedPredicate(Pred); 3410 } 3411 3412 // Fold trivial predicates. 3413 Type *RetTy = GetCompareTy(LHS); 3414 if (Pred == FCmpInst::FCMP_FALSE) 3415 return getFalse(RetTy); 3416 if (Pred == FCmpInst::FCMP_TRUE) 3417 return getTrue(RetTy); 3418 3419 // UNO/ORD predicates can be trivially folded if NaNs are ignored. 3420 if (FMF.noNaNs()) { 3421 if (Pred == FCmpInst::FCMP_UNO) 3422 return getFalse(RetTy); 3423 if (Pred == FCmpInst::FCMP_ORD) 3424 return getTrue(RetTy); 3425 } 3426 3427 // fcmp pred x, undef and fcmp pred undef, x 3428 // fold to true if unordered, false if ordered 3429 if (isa<UndefValue>(LHS) || isa<UndefValue>(RHS)) { 3430 // Choosing NaN for the undef will always make unordered comparison succeed 3431 // and ordered comparison fail. 3432 return ConstantInt::get(RetTy, CmpInst::isUnordered(Pred)); 3433 } 3434 3435 // fcmp x,x -> true/false. Not all compares are foldable. 3436 if (LHS == RHS) { 3437 if (CmpInst::isTrueWhenEqual(Pred)) 3438 return getTrue(RetTy); 3439 if (CmpInst::isFalseWhenEqual(Pred)) 3440 return getFalse(RetTy); 3441 } 3442 3443 // Handle fcmp with constant RHS 3444 const ConstantFP *CFP = nullptr; 3445 if (const auto *RHSC = dyn_cast<Constant>(RHS)) { 3446 if (RHS->getType()->isVectorTy()) 3447 CFP = dyn_cast_or_null<ConstantFP>(RHSC->getSplatValue()); 3448 else 3449 CFP = dyn_cast<ConstantFP>(RHSC); 3450 } 3451 if (CFP) { 3452 // If the constant is a nan, see if we can fold the comparison based on it. 3453 if (CFP->getValueAPF().isNaN()) { 3454 if (FCmpInst::isOrdered(Pred)) // True "if ordered and foo" 3455 return getFalse(RetTy); 3456 assert(FCmpInst::isUnordered(Pred) && 3457 "Comparison must be either ordered or unordered!"); 3458 // True if unordered. 3459 return getTrue(RetTy); 3460 } 3461 // Check whether the constant is an infinity. 3462 if (CFP->getValueAPF().isInfinity()) { 3463 if (CFP->getValueAPF().isNegative()) { 3464 switch (Pred) { 3465 case FCmpInst::FCMP_OLT: 3466 // No value is ordered and less than negative infinity. 3467 return getFalse(RetTy); 3468 case FCmpInst::FCMP_UGE: 3469 // All values are unordered with or at least negative infinity. 3470 return getTrue(RetTy); 3471 default: 3472 break; 3473 } 3474 } else { 3475 switch (Pred) { 3476 case FCmpInst::FCMP_OGT: 3477 // No value is ordered and greater than infinity. 3478 return getFalse(RetTy); 3479 case FCmpInst::FCMP_ULE: 3480 // All values are unordered with and at most infinity. 3481 return getTrue(RetTy); 3482 default: 3483 break; 3484 } 3485 } 3486 } 3487 if (CFP->getValueAPF().isZero()) { 3488 switch (Pred) { 3489 case FCmpInst::FCMP_UGE: 3490 if (CannotBeOrderedLessThanZero(LHS, Q.TLI)) 3491 return getTrue(RetTy); 3492 break; 3493 case FCmpInst::FCMP_OLT: 3494 // X < 0 3495 if (CannotBeOrderedLessThanZero(LHS, Q.TLI)) 3496 return getFalse(RetTy); 3497 break; 3498 default: 3499 break; 3500 } 3501 } 3502 } 3503 3504 // If the comparison is with the result of a select instruction, check whether 3505 // comparing with either branch of the select always yields the same value. 3506 if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS)) 3507 if (Value *V = ThreadCmpOverSelect(Pred, LHS, RHS, Q, MaxRecurse)) 3508 return V; 3509 3510 // If the comparison is with the result of a phi instruction, check whether 3511 // doing the compare with each incoming phi value yields a common result. 3512 if (isa<PHINode>(LHS) || isa<PHINode>(RHS)) 3513 if (Value *V = ThreadCmpOverPHI(Pred, LHS, RHS, Q, MaxRecurse)) 3514 return V; 3515 3516 return nullptr; 3517 } 3518 3519 Value *llvm::SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS, 3520 FastMathFlags FMF, const DataLayout &DL, 3521 const TargetLibraryInfo *TLI, 3522 const DominatorTree *DT, AssumptionCache *AC, 3523 const Instruction *CxtI) { 3524 return ::SimplifyFCmpInst(Predicate, LHS, RHS, FMF, 3525 Query(DL, TLI, DT, AC, CxtI), RecursionLimit); 3526 } 3527 3528 /// See if V simplifies when its operand Op is replaced with RepOp. 3529 static const Value *SimplifyWithOpReplaced(Value *V, Value *Op, Value *RepOp, 3530 const Query &Q, 3531 unsigned MaxRecurse) { 3532 // Trivial replacement. 3533 if (V == Op) 3534 return RepOp; 3535 3536 auto *I = dyn_cast<Instruction>(V); 3537 if (!I) 3538 return nullptr; 3539 3540 // If this is a binary operator, try to simplify it with the replaced op. 3541 if (auto *B = dyn_cast<BinaryOperator>(I)) { 3542 // Consider: 3543 // %cmp = icmp eq i32 %x, 2147483647 3544 // %add = add nsw i32 %x, 1 3545 // %sel = select i1 %cmp, i32 -2147483648, i32 %add 3546 // 3547 // We can't replace %sel with %add unless we strip away the flags. 3548 if (isa<OverflowingBinaryOperator>(B)) 3549 if (B->hasNoSignedWrap() || B->hasNoUnsignedWrap()) 3550 return nullptr; 3551 if (isa<PossiblyExactOperator>(B)) 3552 if (B->isExact()) 3553 return nullptr; 3554 3555 if (MaxRecurse) { 3556 if (B->getOperand(0) == Op) 3557 return SimplifyBinOp(B->getOpcode(), RepOp, B->getOperand(1), Q, 3558 MaxRecurse - 1); 3559 if (B->getOperand(1) == Op) 3560 return SimplifyBinOp(B->getOpcode(), B->getOperand(0), RepOp, Q, 3561 MaxRecurse - 1); 3562 } 3563 } 3564 3565 // Same for CmpInsts. 3566 if (CmpInst *C = dyn_cast<CmpInst>(I)) { 3567 if (MaxRecurse) { 3568 if (C->getOperand(0) == Op) 3569 return SimplifyCmpInst(C->getPredicate(), RepOp, C->getOperand(1), Q, 3570 MaxRecurse - 1); 3571 if (C->getOperand(1) == Op) 3572 return SimplifyCmpInst(C->getPredicate(), C->getOperand(0), RepOp, Q, 3573 MaxRecurse - 1); 3574 } 3575 } 3576 3577 // TODO: We could hand off more cases to instsimplify here. 3578 3579 // If all operands are constant after substituting Op for RepOp then we can 3580 // constant fold the instruction. 3581 if (Constant *CRepOp = dyn_cast<Constant>(RepOp)) { 3582 // Build a list of all constant operands. 3583 SmallVector<Constant *, 8> ConstOps; 3584 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 3585 if (I->getOperand(i) == Op) 3586 ConstOps.push_back(CRepOp); 3587 else if (Constant *COp = dyn_cast<Constant>(I->getOperand(i))) 3588 ConstOps.push_back(COp); 3589 else 3590 break; 3591 } 3592 3593 // All operands were constants, fold it. 3594 if (ConstOps.size() == I->getNumOperands()) { 3595 if (CmpInst *C = dyn_cast<CmpInst>(I)) 3596 return ConstantFoldCompareInstOperands(C->getPredicate(), ConstOps[0], 3597 ConstOps[1], Q.DL, Q.TLI); 3598 3599 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 3600 if (!LI->isVolatile()) 3601 return ConstantFoldLoadFromConstPtr(ConstOps[0], LI->getType(), Q.DL); 3602 3603 return ConstantFoldInstOperands(I, ConstOps, Q.DL, Q.TLI); 3604 } 3605 } 3606 3607 return nullptr; 3608 } 3609 3610 /// Try to simplify a select instruction when its condition operand is an 3611 /// integer comparison where one operand of the compare is a constant. 3612 static Value *simplifySelectBitTest(Value *TrueVal, Value *FalseVal, Value *X, 3613 const APInt *Y, bool TrueWhenUnset) { 3614 const APInt *C; 3615 3616 // (X & Y) == 0 ? X & ~Y : X --> X 3617 // (X & Y) != 0 ? X & ~Y : X --> X & ~Y 3618 if (FalseVal == X && match(TrueVal, m_And(m_Specific(X), m_APInt(C))) && 3619 *Y == ~*C) 3620 return TrueWhenUnset ? FalseVal : TrueVal; 3621 3622 // (X & Y) == 0 ? X : X & ~Y --> X & ~Y 3623 // (X & Y) != 0 ? X : X & ~Y --> X 3624 if (TrueVal == X && match(FalseVal, m_And(m_Specific(X), m_APInt(C))) && 3625 *Y == ~*C) 3626 return TrueWhenUnset ? FalseVal : TrueVal; 3627 3628 if (Y->isPowerOf2()) { 3629 // (X & Y) == 0 ? X | Y : X --> X | Y 3630 // (X & Y) != 0 ? X | Y : X --> X 3631 if (FalseVal == X && match(TrueVal, m_Or(m_Specific(X), m_APInt(C))) && 3632 *Y == *C) 3633 return TrueWhenUnset ? TrueVal : FalseVal; 3634 3635 // (X & Y) == 0 ? X : X | Y --> X 3636 // (X & Y) != 0 ? X : X | Y --> X | Y 3637 if (TrueVal == X && match(FalseVal, m_Or(m_Specific(X), m_APInt(C))) && 3638 *Y == *C) 3639 return TrueWhenUnset ? TrueVal : FalseVal; 3640 } 3641 3642 return nullptr; 3643 } 3644 3645 /// An alternative way to test if a bit is set or not uses sgt/slt instead of 3646 /// eq/ne. 3647 static Value *simplifySelectWithFakeICmpEq(Value *CmpLHS, Value *TrueVal, 3648 Value *FalseVal, 3649 bool TrueWhenUnset) { 3650 unsigned BitWidth = TrueVal->getType()->getScalarSizeInBits(); 3651 if (!BitWidth) 3652 return nullptr; 3653 3654 APInt MinSignedValue; 3655 Value *X; 3656 if (match(CmpLHS, m_Trunc(m_Value(X))) && (X == TrueVal || X == FalseVal)) { 3657 // icmp slt (trunc X), 0 <--> icmp ne (and X, C), 0 3658 // icmp sgt (trunc X), -1 <--> icmp eq (and X, C), 0 3659 unsigned DestSize = CmpLHS->getType()->getScalarSizeInBits(); 3660 MinSignedValue = APInt::getSignedMinValue(DestSize).zext(BitWidth); 3661 } else { 3662 // icmp slt X, 0 <--> icmp ne (and X, C), 0 3663 // icmp sgt X, -1 <--> icmp eq (and X, C), 0 3664 X = CmpLHS; 3665 MinSignedValue = APInt::getSignedMinValue(BitWidth); 3666 } 3667 3668 if (Value *V = simplifySelectBitTest(TrueVal, FalseVal, X, &MinSignedValue, 3669 TrueWhenUnset)) 3670 return V; 3671 3672 return nullptr; 3673 } 3674 3675 /// Try to simplify a select instruction when its condition operand is an 3676 /// integer comparison. 3677 static Value *simplifySelectWithICmpCond(Value *CondVal, Value *TrueVal, 3678 Value *FalseVal, const Query &Q, 3679 unsigned MaxRecurse) { 3680 ICmpInst::Predicate Pred; 3681 Value *CmpLHS, *CmpRHS; 3682 if (!match(CondVal, m_ICmp(Pred, m_Value(CmpLHS), m_Value(CmpRHS)))) 3683 return nullptr; 3684 3685 // FIXME: This code is nearly duplicated in InstCombine. Using/refactoring 3686 // decomposeBitTestICmp() might help. 3687 if (ICmpInst::isEquality(Pred) && match(CmpRHS, m_Zero())) { 3688 Value *X; 3689 const APInt *Y; 3690 if (match(CmpLHS, m_And(m_Value(X), m_APInt(Y)))) 3691 if (Value *V = simplifySelectBitTest(TrueVal, FalseVal, X, Y, 3692 Pred == ICmpInst::ICMP_EQ)) 3693 return V; 3694 } else if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, m_Zero())) { 3695 // Comparing signed-less-than 0 checks if the sign bit is set. 3696 if (Value *V = simplifySelectWithFakeICmpEq(CmpLHS, TrueVal, FalseVal, 3697 false)) 3698 return V; 3699 } else if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, m_AllOnes())) { 3700 // Comparing signed-greater-than -1 checks if the sign bit is not set. 3701 if (Value *V = simplifySelectWithFakeICmpEq(CmpLHS, TrueVal, FalseVal, 3702 true)) 3703 return V; 3704 } 3705 3706 if (CondVal->hasOneUse()) { 3707 const APInt *C; 3708 if (match(CmpRHS, m_APInt(C))) { 3709 // X < MIN ? T : F --> F 3710 if (Pred == ICmpInst::ICMP_SLT && C->isMinSignedValue()) 3711 return FalseVal; 3712 // X < MIN ? T : F --> F 3713 if (Pred == ICmpInst::ICMP_ULT && C->isMinValue()) 3714 return FalseVal; 3715 // X > MAX ? T : F --> F 3716 if (Pred == ICmpInst::ICMP_SGT && C->isMaxSignedValue()) 3717 return FalseVal; 3718 // X > MAX ? T : F --> F 3719 if (Pred == ICmpInst::ICMP_UGT && C->isMaxValue()) 3720 return FalseVal; 3721 } 3722 } 3723 3724 // If we have an equality comparison, then we know the value in one of the 3725 // arms of the select. See if substituting this value into the arm and 3726 // simplifying the result yields the same value as the other arm. 3727 if (Pred == ICmpInst::ICMP_EQ) { 3728 if (SimplifyWithOpReplaced(FalseVal, CmpLHS, CmpRHS, Q, MaxRecurse) == 3729 TrueVal || 3730 SimplifyWithOpReplaced(FalseVal, CmpRHS, CmpLHS, Q, MaxRecurse) == 3731 TrueVal) 3732 return FalseVal; 3733 if (SimplifyWithOpReplaced(TrueVal, CmpLHS, CmpRHS, Q, MaxRecurse) == 3734 FalseVal || 3735 SimplifyWithOpReplaced(TrueVal, CmpRHS, CmpLHS, Q, MaxRecurse) == 3736 FalseVal) 3737 return FalseVal; 3738 } else if (Pred == ICmpInst::ICMP_NE) { 3739 if (SimplifyWithOpReplaced(TrueVal, CmpLHS, CmpRHS, Q, MaxRecurse) == 3740 FalseVal || 3741 SimplifyWithOpReplaced(TrueVal, CmpRHS, CmpLHS, Q, MaxRecurse) == 3742 FalseVal) 3743 return TrueVal; 3744 if (SimplifyWithOpReplaced(FalseVal, CmpLHS, CmpRHS, Q, MaxRecurse) == 3745 TrueVal || 3746 SimplifyWithOpReplaced(FalseVal, CmpRHS, CmpLHS, Q, MaxRecurse) == 3747 TrueVal) 3748 return TrueVal; 3749 } 3750 3751 return nullptr; 3752 } 3753 3754 /// Given operands for a SelectInst, see if we can fold the result. 3755 /// If not, this returns null. 3756 static Value *SimplifySelectInst(Value *CondVal, Value *TrueVal, 3757 Value *FalseVal, const Query &Q, 3758 unsigned MaxRecurse) { 3759 // select true, X, Y -> X 3760 // select false, X, Y -> Y 3761 if (Constant *CB = dyn_cast<Constant>(CondVal)) { 3762 if (CB->isAllOnesValue()) 3763 return TrueVal; 3764 if (CB->isNullValue()) 3765 return FalseVal; 3766 } 3767 3768 // select C, X, X -> X 3769 if (TrueVal == FalseVal) 3770 return TrueVal; 3771 3772 if (isa<UndefValue>(CondVal)) { // select undef, X, Y -> X or Y 3773 if (isa<Constant>(TrueVal)) 3774 return TrueVal; 3775 return FalseVal; 3776 } 3777 if (isa<UndefValue>(TrueVal)) // select C, undef, X -> X 3778 return FalseVal; 3779 if (isa<UndefValue>(FalseVal)) // select C, X, undef -> X 3780 return TrueVal; 3781 3782 if (Value *V = 3783 simplifySelectWithICmpCond(CondVal, TrueVal, FalseVal, Q, MaxRecurse)) 3784 return V; 3785 3786 return nullptr; 3787 } 3788 3789 Value *llvm::SimplifySelectInst(Value *Cond, Value *TrueVal, Value *FalseVal, 3790 const DataLayout &DL, 3791 const TargetLibraryInfo *TLI, 3792 const DominatorTree *DT, AssumptionCache *AC, 3793 const Instruction *CxtI) { 3794 return ::SimplifySelectInst(Cond, TrueVal, FalseVal, 3795 Query(DL, TLI, DT, AC, CxtI), RecursionLimit); 3796 } 3797 3798 /// Given operands for an GetElementPtrInst, see if we can fold the result. 3799 /// If not, this returns null. 3800 static Value *SimplifyGEPInst(Type *SrcTy, ArrayRef<Value *> Ops, 3801 const Query &Q, unsigned) { 3802 // The type of the GEP pointer operand. 3803 unsigned AS = 3804 cast<PointerType>(Ops[0]->getType()->getScalarType())->getAddressSpace(); 3805 3806 // getelementptr P -> P. 3807 if (Ops.size() == 1) 3808 return Ops[0]; 3809 3810 // Compute the (pointer) type returned by the GEP instruction. 3811 Type *LastType = GetElementPtrInst::getIndexedType(SrcTy, Ops.slice(1)); 3812 Type *GEPTy = PointerType::get(LastType, AS); 3813 if (VectorType *VT = dyn_cast<VectorType>(Ops[0]->getType())) 3814 GEPTy = VectorType::get(GEPTy, VT->getNumElements()); 3815 3816 if (isa<UndefValue>(Ops[0])) 3817 return UndefValue::get(GEPTy); 3818 3819 if (Ops.size() == 2) { 3820 // getelementptr P, 0 -> P. 3821 if (match(Ops[1], m_Zero())) 3822 return Ops[0]; 3823 3824 Type *Ty = SrcTy; 3825 if (Ty->isSized()) { 3826 Value *P; 3827 uint64_t C; 3828 uint64_t TyAllocSize = Q.DL.getTypeAllocSize(Ty); 3829 // getelementptr P, N -> P if P points to a type of zero size. 3830 if (TyAllocSize == 0) 3831 return Ops[0]; 3832 3833 // The following transforms are only safe if the ptrtoint cast 3834 // doesn't truncate the pointers. 3835 if (Ops[1]->getType()->getScalarSizeInBits() == 3836 Q.DL.getPointerSizeInBits(AS)) { 3837 auto PtrToIntOrZero = [GEPTy](Value *P) -> Value * { 3838 if (match(P, m_Zero())) 3839 return Constant::getNullValue(GEPTy); 3840 Value *Temp; 3841 if (match(P, m_PtrToInt(m_Value(Temp)))) 3842 if (Temp->getType() == GEPTy) 3843 return Temp; 3844 return nullptr; 3845 }; 3846 3847 // getelementptr V, (sub P, V) -> P if P points to a type of size 1. 3848 if (TyAllocSize == 1 && 3849 match(Ops[1], m_Sub(m_Value(P), m_PtrToInt(m_Specific(Ops[0]))))) 3850 if (Value *R = PtrToIntOrZero(P)) 3851 return R; 3852 3853 // getelementptr V, (ashr (sub P, V), C) -> Q 3854 // if P points to a type of size 1 << C. 3855 if (match(Ops[1], 3856 m_AShr(m_Sub(m_Value(P), m_PtrToInt(m_Specific(Ops[0]))), 3857 m_ConstantInt(C))) && 3858 TyAllocSize == 1ULL << C) 3859 if (Value *R = PtrToIntOrZero(P)) 3860 return R; 3861 3862 // getelementptr V, (sdiv (sub P, V), C) -> Q 3863 // if P points to a type of size C. 3864 if (match(Ops[1], 3865 m_SDiv(m_Sub(m_Value(P), m_PtrToInt(m_Specific(Ops[0]))), 3866 m_SpecificInt(TyAllocSize)))) 3867 if (Value *R = PtrToIntOrZero(P)) 3868 return R; 3869 } 3870 } 3871 } 3872 3873 if (Q.DL.getTypeAllocSize(LastType) == 1 && 3874 all_of(Ops.slice(1).drop_back(1), 3875 [](Value *Idx) { return match(Idx, m_Zero()); })) { 3876 unsigned PtrWidth = 3877 Q.DL.getPointerSizeInBits(Ops[0]->getType()->getPointerAddressSpace()); 3878 if (Q.DL.getTypeSizeInBits(Ops.back()->getType()) == PtrWidth) { 3879 APInt BasePtrOffset(PtrWidth, 0); 3880 Value *StrippedBasePtr = 3881 Ops[0]->stripAndAccumulateInBoundsConstantOffsets(Q.DL, 3882 BasePtrOffset); 3883 3884 // gep (gep V, C), (sub 0, V) -> C 3885 if (match(Ops.back(), 3886 m_Sub(m_Zero(), m_PtrToInt(m_Specific(StrippedBasePtr))))) { 3887 auto *CI = ConstantInt::get(GEPTy->getContext(), BasePtrOffset); 3888 return ConstantExpr::getIntToPtr(CI, GEPTy); 3889 } 3890 // gep (gep V, C), (xor V, -1) -> C-1 3891 if (match(Ops.back(), 3892 m_Xor(m_PtrToInt(m_Specific(StrippedBasePtr)), m_AllOnes()))) { 3893 auto *CI = ConstantInt::get(GEPTy->getContext(), BasePtrOffset - 1); 3894 return ConstantExpr::getIntToPtr(CI, GEPTy); 3895 } 3896 } 3897 } 3898 3899 // Check to see if this is constant foldable. 3900 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 3901 if (!isa<Constant>(Ops[i])) 3902 return nullptr; 3903 3904 return ConstantExpr::getGetElementPtr(SrcTy, cast<Constant>(Ops[0]), 3905 Ops.slice(1)); 3906 } 3907 3908 Value *llvm::SimplifyGEPInst(Type *SrcTy, ArrayRef<Value *> Ops, 3909 const DataLayout &DL, 3910 const TargetLibraryInfo *TLI, 3911 const DominatorTree *DT, AssumptionCache *AC, 3912 const Instruction *CxtI) { 3913 return ::SimplifyGEPInst(SrcTy, Ops, 3914 Query(DL, TLI, DT, AC, CxtI), RecursionLimit); 3915 } 3916 3917 /// Given operands for an InsertValueInst, see if we can fold the result. 3918 /// If not, this returns null. 3919 static Value *SimplifyInsertValueInst(Value *Agg, Value *Val, 3920 ArrayRef<unsigned> Idxs, const Query &Q, 3921 unsigned) { 3922 if (Constant *CAgg = dyn_cast<Constant>(Agg)) 3923 if (Constant *CVal = dyn_cast<Constant>(Val)) 3924 return ConstantFoldInsertValueInstruction(CAgg, CVal, Idxs); 3925 3926 // insertvalue x, undef, n -> x 3927 if (match(Val, m_Undef())) 3928 return Agg; 3929 3930 // insertvalue x, (extractvalue y, n), n 3931 if (ExtractValueInst *EV = dyn_cast<ExtractValueInst>(Val)) 3932 if (EV->getAggregateOperand()->getType() == Agg->getType() && 3933 EV->getIndices() == Idxs) { 3934 // insertvalue undef, (extractvalue y, n), n -> y 3935 if (match(Agg, m_Undef())) 3936 return EV->getAggregateOperand(); 3937 3938 // insertvalue y, (extractvalue y, n), n -> y 3939 if (Agg == EV->getAggregateOperand()) 3940 return Agg; 3941 } 3942 3943 return nullptr; 3944 } 3945 3946 Value *llvm::SimplifyInsertValueInst( 3947 Value *Agg, Value *Val, ArrayRef<unsigned> Idxs, const DataLayout &DL, 3948 const TargetLibraryInfo *TLI, const DominatorTree *DT, AssumptionCache *AC, 3949 const Instruction *CxtI) { 3950 return ::SimplifyInsertValueInst(Agg, Val, Idxs, Query(DL, TLI, DT, AC, CxtI), 3951 RecursionLimit); 3952 } 3953 3954 /// Given operands for an ExtractValueInst, see if we can fold the result. 3955 /// If not, this returns null. 3956 static Value *SimplifyExtractValueInst(Value *Agg, ArrayRef<unsigned> Idxs, 3957 const Query &, unsigned) { 3958 if (auto *CAgg = dyn_cast<Constant>(Agg)) 3959 return ConstantFoldExtractValueInstruction(CAgg, Idxs); 3960 3961 // extractvalue x, (insertvalue y, elt, n), n -> elt 3962 unsigned NumIdxs = Idxs.size(); 3963 for (auto *IVI = dyn_cast<InsertValueInst>(Agg); IVI != nullptr; 3964 IVI = dyn_cast<InsertValueInst>(IVI->getAggregateOperand())) { 3965 ArrayRef<unsigned> InsertValueIdxs = IVI->getIndices(); 3966 unsigned NumInsertValueIdxs = InsertValueIdxs.size(); 3967 unsigned NumCommonIdxs = std::min(NumInsertValueIdxs, NumIdxs); 3968 if (InsertValueIdxs.slice(0, NumCommonIdxs) == 3969 Idxs.slice(0, NumCommonIdxs)) { 3970 if (NumIdxs == NumInsertValueIdxs) 3971 return IVI->getInsertedValueOperand(); 3972 break; 3973 } 3974 } 3975 3976 return nullptr; 3977 } 3978 3979 Value *llvm::SimplifyExtractValueInst(Value *Agg, ArrayRef<unsigned> Idxs, 3980 const DataLayout &DL, 3981 const TargetLibraryInfo *TLI, 3982 const DominatorTree *DT, 3983 AssumptionCache *AC, 3984 const Instruction *CxtI) { 3985 return ::SimplifyExtractValueInst(Agg, Idxs, Query(DL, TLI, DT, AC, CxtI), 3986 RecursionLimit); 3987 } 3988 3989 /// Given operands for an ExtractElementInst, see if we can fold the result. 3990 /// If not, this returns null. 3991 static Value *SimplifyExtractElementInst(Value *Vec, Value *Idx, const Query &, 3992 unsigned) { 3993 if (auto *CVec = dyn_cast<Constant>(Vec)) { 3994 if (auto *CIdx = dyn_cast<Constant>(Idx)) 3995 return ConstantFoldExtractElementInstruction(CVec, CIdx); 3996 3997 // The index is not relevant if our vector is a splat. 3998 if (auto *Splat = CVec->getSplatValue()) 3999 return Splat; 4000 4001 if (isa<UndefValue>(Vec)) 4002 return UndefValue::get(Vec->getType()->getVectorElementType()); 4003 } 4004 4005 // If extracting a specified index from the vector, see if we can recursively 4006 // find a previously computed scalar that was inserted into the vector. 4007 if (auto *IdxC = dyn_cast<ConstantInt>(Idx)) 4008 if (Value *Elt = findScalarElement(Vec, IdxC->getZExtValue())) 4009 return Elt; 4010 4011 return nullptr; 4012 } 4013 4014 Value *llvm::SimplifyExtractElementInst( 4015 Value *Vec, Value *Idx, const DataLayout &DL, const TargetLibraryInfo *TLI, 4016 const DominatorTree *DT, AssumptionCache *AC, const Instruction *CxtI) { 4017 return ::SimplifyExtractElementInst(Vec, Idx, Query(DL, TLI, DT, AC, CxtI), 4018 RecursionLimit); 4019 } 4020 4021 /// See if we can fold the given phi. If not, returns null. 4022 static Value *SimplifyPHINode(PHINode *PN, const Query &Q) { 4023 // If all of the PHI's incoming values are the same then replace the PHI node 4024 // with the common value. 4025 Value *CommonValue = nullptr; 4026 bool HasUndefInput = false; 4027 for (Value *Incoming : PN->incoming_values()) { 4028 // If the incoming value is the phi node itself, it can safely be skipped. 4029 if (Incoming == PN) continue; 4030 if (isa<UndefValue>(Incoming)) { 4031 // Remember that we saw an undef value, but otherwise ignore them. 4032 HasUndefInput = true; 4033 continue; 4034 } 4035 if (CommonValue && Incoming != CommonValue) 4036 return nullptr; // Not the same, bail out. 4037 CommonValue = Incoming; 4038 } 4039 4040 // If CommonValue is null then all of the incoming values were either undef or 4041 // equal to the phi node itself. 4042 if (!CommonValue) 4043 return UndefValue::get(PN->getType()); 4044 4045 // If we have a PHI node like phi(X, undef, X), where X is defined by some 4046 // instruction, we cannot return X as the result of the PHI node unless it 4047 // dominates the PHI block. 4048 if (HasUndefInput) 4049 return ValueDominatesPHI(CommonValue, PN, Q.DT) ? CommonValue : nullptr; 4050 4051 return CommonValue; 4052 } 4053 4054 static Value *SimplifyCastInst(unsigned CastOpc, Value *Op, 4055 Type *Ty, const Query &Q, unsigned MaxRecurse) { 4056 if (auto *C = dyn_cast<Constant>(Op)) 4057 return ConstantFoldCastOperand(CastOpc, C, Ty, Q.DL); 4058 4059 if (auto *CI = dyn_cast<CastInst>(Op)) { 4060 auto *Src = CI->getOperand(0); 4061 Type *SrcTy = Src->getType(); 4062 Type *MidTy = CI->getType(); 4063 Type *DstTy = Ty; 4064 if (Src->getType() == Ty) { 4065 auto FirstOp = static_cast<Instruction::CastOps>(CI->getOpcode()); 4066 auto SecondOp = static_cast<Instruction::CastOps>(CastOpc); 4067 Type *SrcIntPtrTy = 4068 SrcTy->isPtrOrPtrVectorTy() ? Q.DL.getIntPtrType(SrcTy) : nullptr; 4069 Type *MidIntPtrTy = 4070 MidTy->isPtrOrPtrVectorTy() ? Q.DL.getIntPtrType(MidTy) : nullptr; 4071 Type *DstIntPtrTy = 4072 DstTy->isPtrOrPtrVectorTy() ? Q.DL.getIntPtrType(DstTy) : nullptr; 4073 if (CastInst::isEliminableCastPair(FirstOp, SecondOp, SrcTy, MidTy, DstTy, 4074 SrcIntPtrTy, MidIntPtrTy, 4075 DstIntPtrTy) == Instruction::BitCast) 4076 return Src; 4077 } 4078 } 4079 4080 // bitcast x -> x 4081 if (CastOpc == Instruction::BitCast) 4082 if (Op->getType() == Ty) 4083 return Op; 4084 4085 return nullptr; 4086 } 4087 4088 Value *llvm::SimplifyCastInst(unsigned CastOpc, Value *Op, Type *Ty, 4089 const DataLayout &DL, 4090 const TargetLibraryInfo *TLI, 4091 const DominatorTree *DT, AssumptionCache *AC, 4092 const Instruction *CxtI) { 4093 return ::SimplifyCastInst(CastOpc, Op, Ty, Query(DL, TLI, DT, AC, CxtI), 4094 RecursionLimit); 4095 } 4096 4097 //=== Helper functions for higher up the class hierarchy. 4098 4099 /// Given operands for a BinaryOperator, see if we can fold the result. 4100 /// If not, this returns null. 4101 static Value *SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS, 4102 const Query &Q, unsigned MaxRecurse) { 4103 switch (Opcode) { 4104 case Instruction::Add: 4105 return SimplifyAddInst(LHS, RHS, /*isNSW*/false, /*isNUW*/false, 4106 Q, MaxRecurse); 4107 case Instruction::FAdd: 4108 return SimplifyFAddInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse); 4109 4110 case Instruction::Sub: 4111 return SimplifySubInst(LHS, RHS, /*isNSW*/false, /*isNUW*/false, 4112 Q, MaxRecurse); 4113 case Instruction::FSub: 4114 return SimplifyFSubInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse); 4115 4116 case Instruction::Mul: return SimplifyMulInst (LHS, RHS, Q, MaxRecurse); 4117 case Instruction::FMul: 4118 return SimplifyFMulInst (LHS, RHS, FastMathFlags(), Q, MaxRecurse); 4119 case Instruction::SDiv: return SimplifySDivInst(LHS, RHS, Q, MaxRecurse); 4120 case Instruction::UDiv: return SimplifyUDivInst(LHS, RHS, Q, MaxRecurse); 4121 case Instruction::FDiv: 4122 return SimplifyFDivInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse); 4123 case Instruction::SRem: return SimplifySRemInst(LHS, RHS, Q, MaxRecurse); 4124 case Instruction::URem: return SimplifyURemInst(LHS, RHS, Q, MaxRecurse); 4125 case Instruction::FRem: 4126 return SimplifyFRemInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse); 4127 case Instruction::Shl: 4128 return SimplifyShlInst(LHS, RHS, /*isNSW*/false, /*isNUW*/false, 4129 Q, MaxRecurse); 4130 case Instruction::LShr: 4131 return SimplifyLShrInst(LHS, RHS, /*isExact*/false, Q, MaxRecurse); 4132 case Instruction::AShr: 4133 return SimplifyAShrInst(LHS, RHS, /*isExact*/false, Q, MaxRecurse); 4134 case Instruction::And: return SimplifyAndInst(LHS, RHS, Q, MaxRecurse); 4135 case Instruction::Or: return SimplifyOrInst (LHS, RHS, Q, MaxRecurse); 4136 case Instruction::Xor: return SimplifyXorInst(LHS, RHS, Q, MaxRecurse); 4137 default: 4138 if (Constant *CLHS = dyn_cast<Constant>(LHS)) 4139 if (Constant *CRHS = dyn_cast<Constant>(RHS)) 4140 return ConstantFoldBinaryOpOperands(Opcode, CLHS, CRHS, Q.DL); 4141 4142 // If the operation is associative, try some generic simplifications. 4143 if (Instruction::isAssociative(Opcode)) 4144 if (Value *V = SimplifyAssociativeBinOp(Opcode, LHS, RHS, Q, MaxRecurse)) 4145 return V; 4146 4147 // If the operation is with the result of a select instruction check whether 4148 // operating on either branch of the select always yields the same value. 4149 if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS)) 4150 if (Value *V = ThreadBinOpOverSelect(Opcode, LHS, RHS, Q, MaxRecurse)) 4151 return V; 4152 4153 // If the operation is with the result of a phi instruction, check whether 4154 // operating on all incoming values of the phi always yields the same value. 4155 if (isa<PHINode>(LHS) || isa<PHINode>(RHS)) 4156 if (Value *V = ThreadBinOpOverPHI(Opcode, LHS, RHS, Q, MaxRecurse)) 4157 return V; 4158 4159 return nullptr; 4160 } 4161 } 4162 4163 /// Given operands for a BinaryOperator, see if we can fold the result. 4164 /// If not, this returns null. 4165 /// In contrast to SimplifyBinOp, try to use FastMathFlag when folding the 4166 /// result. In case we don't need FastMathFlags, simply fall to SimplifyBinOp. 4167 static Value *SimplifyFPBinOp(unsigned Opcode, Value *LHS, Value *RHS, 4168 const FastMathFlags &FMF, const Query &Q, 4169 unsigned MaxRecurse) { 4170 switch (Opcode) { 4171 case Instruction::FAdd: 4172 return SimplifyFAddInst(LHS, RHS, FMF, Q, MaxRecurse); 4173 case Instruction::FSub: 4174 return SimplifyFSubInst(LHS, RHS, FMF, Q, MaxRecurse); 4175 case Instruction::FMul: 4176 return SimplifyFMulInst(LHS, RHS, FMF, Q, MaxRecurse); 4177 case Instruction::FDiv: 4178 return SimplifyFDivInst(LHS, RHS, FMF, Q, MaxRecurse); 4179 default: 4180 return SimplifyBinOp(Opcode, LHS, RHS, Q, MaxRecurse); 4181 } 4182 } 4183 4184 Value *llvm::SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS, 4185 const DataLayout &DL, const TargetLibraryInfo *TLI, 4186 const DominatorTree *DT, AssumptionCache *AC, 4187 const Instruction *CxtI) { 4188 return ::SimplifyBinOp(Opcode, LHS, RHS, Query(DL, TLI, DT, AC, CxtI), 4189 RecursionLimit); 4190 } 4191 4192 Value *llvm::SimplifyFPBinOp(unsigned Opcode, Value *LHS, Value *RHS, 4193 const FastMathFlags &FMF, const DataLayout &DL, 4194 const TargetLibraryInfo *TLI, 4195 const DominatorTree *DT, AssumptionCache *AC, 4196 const Instruction *CxtI) { 4197 return ::SimplifyFPBinOp(Opcode, LHS, RHS, FMF, Query(DL, TLI, DT, AC, CxtI), 4198 RecursionLimit); 4199 } 4200 4201 /// Given operands for a CmpInst, see if we can fold the result. 4202 static Value *SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS, 4203 const Query &Q, unsigned MaxRecurse) { 4204 if (CmpInst::isIntPredicate((CmpInst::Predicate)Predicate)) 4205 return SimplifyICmpInst(Predicate, LHS, RHS, Q, MaxRecurse); 4206 return SimplifyFCmpInst(Predicate, LHS, RHS, FastMathFlags(), Q, MaxRecurse); 4207 } 4208 4209 Value *llvm::SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS, 4210 const DataLayout &DL, const TargetLibraryInfo *TLI, 4211 const DominatorTree *DT, AssumptionCache *AC, 4212 const Instruction *CxtI) { 4213 return ::SimplifyCmpInst(Predicate, LHS, RHS, Query(DL, TLI, DT, AC, CxtI), 4214 RecursionLimit); 4215 } 4216 4217 static bool IsIdempotent(Intrinsic::ID ID) { 4218 switch (ID) { 4219 default: return false; 4220 4221 // Unary idempotent: f(f(x)) = f(x) 4222 case Intrinsic::fabs: 4223 case Intrinsic::floor: 4224 case Intrinsic::ceil: 4225 case Intrinsic::trunc: 4226 case Intrinsic::rint: 4227 case Intrinsic::nearbyint: 4228 case Intrinsic::round: 4229 return true; 4230 } 4231 } 4232 4233 static Value *SimplifyRelativeLoad(Constant *Ptr, Constant *Offset, 4234 const DataLayout &DL) { 4235 GlobalValue *PtrSym; 4236 APInt PtrOffset; 4237 if (!IsConstantOffsetFromGlobal(Ptr, PtrSym, PtrOffset, DL)) 4238 return nullptr; 4239 4240 Type *Int8PtrTy = Type::getInt8PtrTy(Ptr->getContext()); 4241 Type *Int32Ty = Type::getInt32Ty(Ptr->getContext()); 4242 Type *Int32PtrTy = Int32Ty->getPointerTo(); 4243 Type *Int64Ty = Type::getInt64Ty(Ptr->getContext()); 4244 4245 auto *OffsetConstInt = dyn_cast<ConstantInt>(Offset); 4246 if (!OffsetConstInt || OffsetConstInt->getType()->getBitWidth() > 64) 4247 return nullptr; 4248 4249 uint64_t OffsetInt = OffsetConstInt->getSExtValue(); 4250 if (OffsetInt % 4 != 0) 4251 return nullptr; 4252 4253 Constant *C = ConstantExpr::getGetElementPtr( 4254 Int32Ty, ConstantExpr::getBitCast(Ptr, Int32PtrTy), 4255 ConstantInt::get(Int64Ty, OffsetInt / 4)); 4256 Constant *Loaded = ConstantFoldLoadFromConstPtr(C, Int32Ty, DL); 4257 if (!Loaded) 4258 return nullptr; 4259 4260 auto *LoadedCE = dyn_cast<ConstantExpr>(Loaded); 4261 if (!LoadedCE) 4262 return nullptr; 4263 4264 if (LoadedCE->getOpcode() == Instruction::Trunc) { 4265 LoadedCE = dyn_cast<ConstantExpr>(LoadedCE->getOperand(0)); 4266 if (!LoadedCE) 4267 return nullptr; 4268 } 4269 4270 if (LoadedCE->getOpcode() != Instruction::Sub) 4271 return nullptr; 4272 4273 auto *LoadedLHS = dyn_cast<ConstantExpr>(LoadedCE->getOperand(0)); 4274 if (!LoadedLHS || LoadedLHS->getOpcode() != Instruction::PtrToInt) 4275 return nullptr; 4276 auto *LoadedLHSPtr = LoadedLHS->getOperand(0); 4277 4278 Constant *LoadedRHS = LoadedCE->getOperand(1); 4279 GlobalValue *LoadedRHSSym; 4280 APInt LoadedRHSOffset; 4281 if (!IsConstantOffsetFromGlobal(LoadedRHS, LoadedRHSSym, LoadedRHSOffset, 4282 DL) || 4283 PtrSym != LoadedRHSSym || PtrOffset != LoadedRHSOffset) 4284 return nullptr; 4285 4286 return ConstantExpr::getBitCast(LoadedLHSPtr, Int8PtrTy); 4287 } 4288 4289 static bool maskIsAllZeroOrUndef(Value *Mask) { 4290 auto *ConstMask = dyn_cast<Constant>(Mask); 4291 if (!ConstMask) 4292 return false; 4293 if (ConstMask->isNullValue() || isa<UndefValue>(ConstMask)) 4294 return true; 4295 for (unsigned I = 0, E = ConstMask->getType()->getVectorNumElements(); I != E; 4296 ++I) { 4297 if (auto *MaskElt = ConstMask->getAggregateElement(I)) 4298 if (MaskElt->isNullValue() || isa<UndefValue>(MaskElt)) 4299 continue; 4300 return false; 4301 } 4302 return true; 4303 } 4304 4305 template <typename IterTy> 4306 static Value *SimplifyIntrinsic(Function *F, IterTy ArgBegin, IterTy ArgEnd, 4307 const Query &Q, unsigned MaxRecurse) { 4308 Intrinsic::ID IID = F->getIntrinsicID(); 4309 unsigned NumOperands = std::distance(ArgBegin, ArgEnd); 4310 4311 // Unary Ops 4312 if (NumOperands == 1) { 4313 // Perform idempotent optimizations 4314 if (IsIdempotent(IID)) { 4315 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(*ArgBegin)) { 4316 if (II->getIntrinsicID() == IID) 4317 return II; 4318 } 4319 } 4320 4321 switch (IID) { 4322 case Intrinsic::fabs: { 4323 if (SignBitMustBeZero(*ArgBegin, Q.TLI)) 4324 return *ArgBegin; 4325 return nullptr; 4326 } 4327 default: 4328 return nullptr; 4329 } 4330 } 4331 4332 // Binary Ops 4333 if (NumOperands == 2) { 4334 Value *LHS = *ArgBegin; 4335 Value *RHS = *(ArgBegin + 1); 4336 Type *ReturnType = F->getReturnType(); 4337 4338 switch (IID) { 4339 case Intrinsic::usub_with_overflow: 4340 case Intrinsic::ssub_with_overflow: { 4341 // X - X -> { 0, false } 4342 if (LHS == RHS) 4343 return Constant::getNullValue(ReturnType); 4344 4345 // X - undef -> undef 4346 // undef - X -> undef 4347 if (isa<UndefValue>(LHS) || isa<UndefValue>(RHS)) 4348 return UndefValue::get(ReturnType); 4349 4350 return nullptr; 4351 } 4352 case Intrinsic::uadd_with_overflow: 4353 case Intrinsic::sadd_with_overflow: { 4354 // X + undef -> undef 4355 if (isa<UndefValue>(RHS)) 4356 return UndefValue::get(ReturnType); 4357 4358 return nullptr; 4359 } 4360 case Intrinsic::umul_with_overflow: 4361 case Intrinsic::smul_with_overflow: { 4362 // X * 0 -> { 0, false } 4363 if (match(RHS, m_Zero())) 4364 return Constant::getNullValue(ReturnType); 4365 4366 // X * undef -> { 0, false } 4367 if (match(RHS, m_Undef())) 4368 return Constant::getNullValue(ReturnType); 4369 4370 return nullptr; 4371 } 4372 case Intrinsic::load_relative: { 4373 Constant *C0 = dyn_cast<Constant>(LHS); 4374 Constant *C1 = dyn_cast<Constant>(RHS); 4375 if (C0 && C1) 4376 return SimplifyRelativeLoad(C0, C1, Q.DL); 4377 return nullptr; 4378 } 4379 default: 4380 return nullptr; 4381 } 4382 } 4383 4384 // Simplify calls to llvm.masked.load.* 4385 switch (IID) { 4386 case Intrinsic::masked_load: { 4387 Value *MaskArg = ArgBegin[2]; 4388 Value *PassthruArg = ArgBegin[3]; 4389 // If the mask is all zeros or undef, the "passthru" argument is the result. 4390 if (maskIsAllZeroOrUndef(MaskArg)) 4391 return PassthruArg; 4392 return nullptr; 4393 } 4394 default: 4395 return nullptr; 4396 } 4397 } 4398 4399 template <typename IterTy> 4400 static Value *SimplifyCall(Value *V, IterTy ArgBegin, IterTy ArgEnd, 4401 const Query &Q, unsigned MaxRecurse) { 4402 Type *Ty = V->getType(); 4403 if (PointerType *PTy = dyn_cast<PointerType>(Ty)) 4404 Ty = PTy->getElementType(); 4405 FunctionType *FTy = cast<FunctionType>(Ty); 4406 4407 // call undef -> undef 4408 // call null -> undef 4409 if (isa<UndefValue>(V) || isa<ConstantPointerNull>(V)) 4410 return UndefValue::get(FTy->getReturnType()); 4411 4412 Function *F = dyn_cast<Function>(V); 4413 if (!F) 4414 return nullptr; 4415 4416 if (F->isIntrinsic()) 4417 if (Value *Ret = SimplifyIntrinsic(F, ArgBegin, ArgEnd, Q, MaxRecurse)) 4418 return Ret; 4419 4420 if (!canConstantFoldCallTo(F)) 4421 return nullptr; 4422 4423 SmallVector<Constant *, 4> ConstantArgs; 4424 ConstantArgs.reserve(ArgEnd - ArgBegin); 4425 for (IterTy I = ArgBegin, E = ArgEnd; I != E; ++I) { 4426 Constant *C = dyn_cast<Constant>(*I); 4427 if (!C) 4428 return nullptr; 4429 ConstantArgs.push_back(C); 4430 } 4431 4432 return ConstantFoldCall(F, ConstantArgs, Q.TLI); 4433 } 4434 4435 Value *llvm::SimplifyCall(Value *V, User::op_iterator ArgBegin, 4436 User::op_iterator ArgEnd, const DataLayout &DL, 4437 const TargetLibraryInfo *TLI, const DominatorTree *DT, 4438 AssumptionCache *AC, const Instruction *CxtI) { 4439 return ::SimplifyCall(V, ArgBegin, ArgEnd, Query(DL, TLI, DT, AC, CxtI), 4440 RecursionLimit); 4441 } 4442 4443 Value *llvm::SimplifyCall(Value *V, ArrayRef<Value *> Args, 4444 const DataLayout &DL, const TargetLibraryInfo *TLI, 4445 const DominatorTree *DT, AssumptionCache *AC, 4446 const Instruction *CxtI) { 4447 return ::SimplifyCall(V, Args.begin(), Args.end(), 4448 Query(DL, TLI, DT, AC, CxtI), RecursionLimit); 4449 } 4450 4451 /// See if we can compute a simplified version of this instruction. 4452 /// If not, this returns null. 4453 Value *llvm::SimplifyInstruction(Instruction *I, const DataLayout &DL, 4454 const TargetLibraryInfo *TLI, 4455 const DominatorTree *DT, AssumptionCache *AC) { 4456 Value *Result; 4457 4458 switch (I->getOpcode()) { 4459 default: 4460 Result = ConstantFoldInstruction(I, DL, TLI); 4461 break; 4462 case Instruction::FAdd: 4463 Result = SimplifyFAddInst(I->getOperand(0), I->getOperand(1), 4464 I->getFastMathFlags(), DL, TLI, DT, AC, I); 4465 break; 4466 case Instruction::Add: 4467 Result = SimplifyAddInst(I->getOperand(0), I->getOperand(1), 4468 cast<BinaryOperator>(I)->hasNoSignedWrap(), 4469 cast<BinaryOperator>(I)->hasNoUnsignedWrap(), DL, 4470 TLI, DT, AC, I); 4471 break; 4472 case Instruction::FSub: 4473 Result = SimplifyFSubInst(I->getOperand(0), I->getOperand(1), 4474 I->getFastMathFlags(), DL, TLI, DT, AC, I); 4475 break; 4476 case Instruction::Sub: 4477 Result = SimplifySubInst(I->getOperand(0), I->getOperand(1), 4478 cast<BinaryOperator>(I)->hasNoSignedWrap(), 4479 cast<BinaryOperator>(I)->hasNoUnsignedWrap(), DL, 4480 TLI, DT, AC, I); 4481 break; 4482 case Instruction::FMul: 4483 Result = SimplifyFMulInst(I->getOperand(0), I->getOperand(1), 4484 I->getFastMathFlags(), DL, TLI, DT, AC, I); 4485 break; 4486 case Instruction::Mul: 4487 Result = 4488 SimplifyMulInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT, AC, I); 4489 break; 4490 case Instruction::SDiv: 4491 Result = SimplifySDivInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT, 4492 AC, I); 4493 break; 4494 case Instruction::UDiv: 4495 Result = SimplifyUDivInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT, 4496 AC, I); 4497 break; 4498 case Instruction::FDiv: 4499 Result = SimplifyFDivInst(I->getOperand(0), I->getOperand(1), 4500 I->getFastMathFlags(), DL, TLI, DT, AC, I); 4501 break; 4502 case Instruction::SRem: 4503 Result = SimplifySRemInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT, 4504 AC, I); 4505 break; 4506 case Instruction::URem: 4507 Result = SimplifyURemInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT, 4508 AC, I); 4509 break; 4510 case Instruction::FRem: 4511 Result = SimplifyFRemInst(I->getOperand(0), I->getOperand(1), 4512 I->getFastMathFlags(), DL, TLI, DT, AC, I); 4513 break; 4514 case Instruction::Shl: 4515 Result = SimplifyShlInst(I->getOperand(0), I->getOperand(1), 4516 cast<BinaryOperator>(I)->hasNoSignedWrap(), 4517 cast<BinaryOperator>(I)->hasNoUnsignedWrap(), DL, 4518 TLI, DT, AC, I); 4519 break; 4520 case Instruction::LShr: 4521 Result = SimplifyLShrInst(I->getOperand(0), I->getOperand(1), 4522 cast<BinaryOperator>(I)->isExact(), DL, TLI, DT, 4523 AC, I); 4524 break; 4525 case Instruction::AShr: 4526 Result = SimplifyAShrInst(I->getOperand(0), I->getOperand(1), 4527 cast<BinaryOperator>(I)->isExact(), DL, TLI, DT, 4528 AC, I); 4529 break; 4530 case Instruction::And: 4531 Result = 4532 SimplifyAndInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT, AC, I); 4533 break; 4534 case Instruction::Or: 4535 Result = 4536 SimplifyOrInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT, AC, I); 4537 break; 4538 case Instruction::Xor: 4539 Result = 4540 SimplifyXorInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT, AC, I); 4541 break; 4542 case Instruction::ICmp: 4543 Result = 4544 SimplifyICmpInst(cast<ICmpInst>(I)->getPredicate(), I->getOperand(0), 4545 I->getOperand(1), DL, TLI, DT, AC, I); 4546 break; 4547 case Instruction::FCmp: 4548 Result = SimplifyFCmpInst(cast<FCmpInst>(I)->getPredicate(), 4549 I->getOperand(0), I->getOperand(1), 4550 I->getFastMathFlags(), DL, TLI, DT, AC, I); 4551 break; 4552 case Instruction::Select: 4553 Result = SimplifySelectInst(I->getOperand(0), I->getOperand(1), 4554 I->getOperand(2), DL, TLI, DT, AC, I); 4555 break; 4556 case Instruction::GetElementPtr: { 4557 SmallVector<Value*, 8> Ops(I->op_begin(), I->op_end()); 4558 Result = SimplifyGEPInst(cast<GetElementPtrInst>(I)->getSourceElementType(), 4559 Ops, DL, TLI, DT, AC, I); 4560 break; 4561 } 4562 case Instruction::InsertValue: { 4563 InsertValueInst *IV = cast<InsertValueInst>(I); 4564 Result = SimplifyInsertValueInst(IV->getAggregateOperand(), 4565 IV->getInsertedValueOperand(), 4566 IV->getIndices(), DL, TLI, DT, AC, I); 4567 break; 4568 } 4569 case Instruction::ExtractValue: { 4570 auto *EVI = cast<ExtractValueInst>(I); 4571 Result = SimplifyExtractValueInst(EVI->getAggregateOperand(), 4572 EVI->getIndices(), DL, TLI, DT, AC, I); 4573 break; 4574 } 4575 case Instruction::ExtractElement: { 4576 auto *EEI = cast<ExtractElementInst>(I); 4577 Result = SimplifyExtractElementInst( 4578 EEI->getVectorOperand(), EEI->getIndexOperand(), DL, TLI, DT, AC, I); 4579 break; 4580 } 4581 case Instruction::PHI: 4582 Result = SimplifyPHINode(cast<PHINode>(I), Query(DL, TLI, DT, AC, I)); 4583 break; 4584 case Instruction::Call: { 4585 CallSite CS(cast<CallInst>(I)); 4586 Result = SimplifyCall(CS.getCalledValue(), CS.arg_begin(), CS.arg_end(), DL, 4587 TLI, DT, AC, I); 4588 break; 4589 } 4590 #define HANDLE_CAST_INST(num, opc, clas) case Instruction::opc: 4591 #include "llvm/IR/Instruction.def" 4592 #undef HANDLE_CAST_INST 4593 Result = SimplifyCastInst(I->getOpcode(), I->getOperand(0), I->getType(), 4594 DL, TLI, DT, AC, I); 4595 break; 4596 } 4597 4598 // In general, it is possible for computeKnownBits to determine all bits in a 4599 // value even when the operands are not all constants. 4600 if (!Result && I->getType()->isIntOrIntVectorTy()) { 4601 unsigned BitWidth = I->getType()->getScalarSizeInBits(); 4602 APInt KnownZero(BitWidth, 0); 4603 APInt KnownOne(BitWidth, 0); 4604 computeKnownBits(I, KnownZero, KnownOne, DL, /*Depth*/0, AC, I, DT); 4605 if ((KnownZero | KnownOne).isAllOnesValue()) 4606 Result = ConstantInt::get(I->getType(), KnownOne); 4607 } 4608 4609 /// If called on unreachable code, the above logic may report that the 4610 /// instruction simplified to itself. Make life easier for users by 4611 /// detecting that case here, returning a safe value instead. 4612 return Result == I ? UndefValue::get(I->getType()) : Result; 4613 } 4614 4615 /// \brief Implementation of recursive simplification through an instruction's 4616 /// uses. 4617 /// 4618 /// This is the common implementation of the recursive simplification routines. 4619 /// If we have a pre-simplified value in 'SimpleV', that is forcibly used to 4620 /// replace the instruction 'I'. Otherwise, we simply add 'I' to the list of 4621 /// instructions to process and attempt to simplify it using 4622 /// InstructionSimplify. 4623 /// 4624 /// This routine returns 'true' only when *it* simplifies something. The passed 4625 /// in simplified value does not count toward this. 4626 static bool replaceAndRecursivelySimplifyImpl(Instruction *I, Value *SimpleV, 4627 const TargetLibraryInfo *TLI, 4628 const DominatorTree *DT, 4629 AssumptionCache *AC) { 4630 bool Simplified = false; 4631 SmallSetVector<Instruction *, 8> Worklist; 4632 const DataLayout &DL = I->getModule()->getDataLayout(); 4633 4634 // If we have an explicit value to collapse to, do that round of the 4635 // simplification loop by hand initially. 4636 if (SimpleV) { 4637 for (User *U : I->users()) 4638 if (U != I) 4639 Worklist.insert(cast<Instruction>(U)); 4640 4641 // Replace the instruction with its simplified value. 4642 I->replaceAllUsesWith(SimpleV); 4643 4644 // Gracefully handle edge cases where the instruction is not wired into any 4645 // parent block. 4646 if (I->getParent() && !I->isEHPad() && !isa<TerminatorInst>(I) && 4647 !I->mayHaveSideEffects()) 4648 I->eraseFromParent(); 4649 } else { 4650 Worklist.insert(I); 4651 } 4652 4653 // Note that we must test the size on each iteration, the worklist can grow. 4654 for (unsigned Idx = 0; Idx != Worklist.size(); ++Idx) { 4655 I = Worklist[Idx]; 4656 4657 // See if this instruction simplifies. 4658 SimpleV = SimplifyInstruction(I, DL, TLI, DT, AC); 4659 if (!SimpleV) 4660 continue; 4661 4662 Simplified = true; 4663 4664 // Stash away all the uses of the old instruction so we can check them for 4665 // recursive simplifications after a RAUW. This is cheaper than checking all 4666 // uses of To on the recursive step in most cases. 4667 for (User *U : I->users()) 4668 Worklist.insert(cast<Instruction>(U)); 4669 4670 // Replace the instruction with its simplified value. 4671 I->replaceAllUsesWith(SimpleV); 4672 4673 // Gracefully handle edge cases where the instruction is not wired into any 4674 // parent block. 4675 if (I->getParent() && !I->isEHPad() && !isa<TerminatorInst>(I) && 4676 !I->mayHaveSideEffects()) 4677 I->eraseFromParent(); 4678 } 4679 return Simplified; 4680 } 4681 4682 bool llvm::recursivelySimplifyInstruction(Instruction *I, 4683 const TargetLibraryInfo *TLI, 4684 const DominatorTree *DT, 4685 AssumptionCache *AC) { 4686 return replaceAndRecursivelySimplifyImpl(I, nullptr, TLI, DT, AC); 4687 } 4688 4689 bool llvm::replaceAndRecursivelySimplify(Instruction *I, Value *SimpleV, 4690 const TargetLibraryInfo *TLI, 4691 const DominatorTree *DT, 4692 AssumptionCache *AC) { 4693 assert(I != SimpleV && "replaceAndRecursivelySimplify(X,X) is not valid!"); 4694 assert(SimpleV && "Must provide a simplified value."); 4695 return replaceAndRecursivelySimplifyImpl(I, SimpleV, TLI, DT, AC); 4696 } 4697