1 //===- InstructionSimplify.cpp - Fold instruction operands ----------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements routines for folding instructions into simpler forms
11 // that do not require creating new instructions.  This does constant folding
12 // ("add i32 1, 1" -> "2") but can also handle non-constant operands, either
13 // returning a constant ("and i32 %x, 0" -> "0") or an already existing value
14 // ("and i32 %x, %x" -> "%x").  All operands are assumed to have already been
15 // simplified: This is usually true and assuming it simplifies the logic (if
16 // they have not been simplified then results are correct but maybe suboptimal).
17 //
18 //===----------------------------------------------------------------------===//
19 
20 #include "llvm/Analysis/InstructionSimplify.h"
21 #include "llvm/ADT/SetVector.h"
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/Analysis/AliasAnalysis.h"
24 #include "llvm/Analysis/CaptureTracking.h"
25 #include "llvm/Analysis/ConstantFolding.h"
26 #include "llvm/Analysis/MemoryBuiltins.h"
27 #include "llvm/Analysis/ValueTracking.h"
28 #include "llvm/Analysis/VectorUtils.h"
29 #include "llvm/IR/ConstantRange.h"
30 #include "llvm/IR/DataLayout.h"
31 #include "llvm/IR/Dominators.h"
32 #include "llvm/IR/GetElementPtrTypeIterator.h"
33 #include "llvm/IR/GlobalAlias.h"
34 #include "llvm/IR/Operator.h"
35 #include "llvm/IR/PatternMatch.h"
36 #include "llvm/IR/ValueHandle.h"
37 #include <algorithm>
38 using namespace llvm;
39 using namespace llvm::PatternMatch;
40 
41 #define DEBUG_TYPE "instsimplify"
42 
43 enum { RecursionLimit = 3 };
44 
45 STATISTIC(NumExpand,  "Number of expansions");
46 STATISTIC(NumReassoc, "Number of reassociations");
47 
48 namespace {
49 struct Query {
50   const DataLayout &DL;
51   const TargetLibraryInfo *TLI;
52   const DominatorTree *DT;
53   AssumptionCache *AC;
54   const Instruction *CxtI;
55 
56   Query(const DataLayout &DL, const TargetLibraryInfo *tli,
57         const DominatorTree *dt, AssumptionCache *ac = nullptr,
58         const Instruction *cxti = nullptr)
59       : DL(DL), TLI(tli), DT(dt), AC(ac), CxtI(cxti) {}
60 };
61 } // end anonymous namespace
62 
63 static Value *SimplifyAndInst(Value *, Value *, const Query &, unsigned);
64 static Value *SimplifyBinOp(unsigned, Value *, Value *, const Query &,
65                             unsigned);
66 static Value *SimplifyFPBinOp(unsigned, Value *, Value *, const FastMathFlags &,
67                               const Query &, unsigned);
68 static Value *SimplifyCmpInst(unsigned, Value *, Value *, const Query &,
69                               unsigned);
70 static Value *SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS,
71                                const Query &Q, unsigned MaxRecurse);
72 static Value *SimplifyOrInst(Value *, Value *, const Query &, unsigned);
73 static Value *SimplifyXorInst(Value *, Value *, const Query &, unsigned);
74 static Value *SimplifyCastInst(unsigned, Value *, Type *,
75                                const Query &, unsigned);
76 
77 /// For a boolean type, or a vector of boolean type, return false, or
78 /// a vector with every element false, as appropriate for the type.
79 static Constant *getFalse(Type *Ty) {
80   assert(Ty->getScalarType()->isIntegerTy(1) &&
81          "Expected i1 type or a vector of i1!");
82   return Constant::getNullValue(Ty);
83 }
84 
85 /// For a boolean type, or a vector of boolean type, return true, or
86 /// a vector with every element true, as appropriate for the type.
87 static Constant *getTrue(Type *Ty) {
88   assert(Ty->getScalarType()->isIntegerTy(1) &&
89          "Expected i1 type or a vector of i1!");
90   return Constant::getAllOnesValue(Ty);
91 }
92 
93 /// isSameCompare - Is V equivalent to the comparison "LHS Pred RHS"?
94 static bool isSameCompare(Value *V, CmpInst::Predicate Pred, Value *LHS,
95                           Value *RHS) {
96   CmpInst *Cmp = dyn_cast<CmpInst>(V);
97   if (!Cmp)
98     return false;
99   CmpInst::Predicate CPred = Cmp->getPredicate();
100   Value *CLHS = Cmp->getOperand(0), *CRHS = Cmp->getOperand(1);
101   if (CPred == Pred && CLHS == LHS && CRHS == RHS)
102     return true;
103   return CPred == CmpInst::getSwappedPredicate(Pred) && CLHS == RHS &&
104     CRHS == LHS;
105 }
106 
107 /// Does the given value dominate the specified phi node?
108 static bool ValueDominatesPHI(Value *V, PHINode *P, const DominatorTree *DT) {
109   Instruction *I = dyn_cast<Instruction>(V);
110   if (!I)
111     // Arguments and constants dominate all instructions.
112     return true;
113 
114   // If we are processing instructions (and/or basic blocks) that have not been
115   // fully added to a function, the parent nodes may still be null. Simply
116   // return the conservative answer in these cases.
117   if (!I->getParent() || !P->getParent() || !I->getParent()->getParent())
118     return false;
119 
120   // If we have a DominatorTree then do a precise test.
121   if (DT) {
122     if (!DT->isReachableFromEntry(P->getParent()))
123       return true;
124     if (!DT->isReachableFromEntry(I->getParent()))
125       return false;
126     return DT->dominates(I, P);
127   }
128 
129   // Otherwise, if the instruction is in the entry block and is not an invoke,
130   // then it obviously dominates all phi nodes.
131   if (I->getParent() == &I->getParent()->getParent()->getEntryBlock() &&
132       !isa<InvokeInst>(I))
133     return true;
134 
135   return false;
136 }
137 
138 /// Simplify "A op (B op' C)" by distributing op over op', turning it into
139 /// "(A op B) op' (A op C)".  Here "op" is given by Opcode and "op'" is
140 /// given by OpcodeToExpand, while "A" corresponds to LHS and "B op' C" to RHS.
141 /// Also performs the transform "(A op' B) op C" -> "(A op C) op' (B op C)".
142 /// Returns the simplified value, or null if no simplification was performed.
143 static Value *ExpandBinOp(unsigned Opcode, Value *LHS, Value *RHS,
144                           unsigned OpcToExpand, const Query &Q,
145                           unsigned MaxRecurse) {
146   Instruction::BinaryOps OpcodeToExpand = (Instruction::BinaryOps)OpcToExpand;
147   // Recursion is always used, so bail out at once if we already hit the limit.
148   if (!MaxRecurse--)
149     return nullptr;
150 
151   // Check whether the expression has the form "(A op' B) op C".
152   if (BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS))
153     if (Op0->getOpcode() == OpcodeToExpand) {
154       // It does!  Try turning it into "(A op C) op' (B op C)".
155       Value *A = Op0->getOperand(0), *B = Op0->getOperand(1), *C = RHS;
156       // Do "A op C" and "B op C" both simplify?
157       if (Value *L = SimplifyBinOp(Opcode, A, C, Q, MaxRecurse))
158         if (Value *R = SimplifyBinOp(Opcode, B, C, Q, MaxRecurse)) {
159           // They do! Return "L op' R" if it simplifies or is already available.
160           // If "L op' R" equals "A op' B" then "L op' R" is just the LHS.
161           if ((L == A && R == B) || (Instruction::isCommutative(OpcodeToExpand)
162                                      && L == B && R == A)) {
163             ++NumExpand;
164             return LHS;
165           }
166           // Otherwise return "L op' R" if it simplifies.
167           if (Value *V = SimplifyBinOp(OpcodeToExpand, L, R, Q, MaxRecurse)) {
168             ++NumExpand;
169             return V;
170           }
171         }
172     }
173 
174   // Check whether the expression has the form "A op (B op' C)".
175   if (BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS))
176     if (Op1->getOpcode() == OpcodeToExpand) {
177       // It does!  Try turning it into "(A op B) op' (A op C)".
178       Value *A = LHS, *B = Op1->getOperand(0), *C = Op1->getOperand(1);
179       // Do "A op B" and "A op C" both simplify?
180       if (Value *L = SimplifyBinOp(Opcode, A, B, Q, MaxRecurse))
181         if (Value *R = SimplifyBinOp(Opcode, A, C, Q, MaxRecurse)) {
182           // They do! Return "L op' R" if it simplifies or is already available.
183           // If "L op' R" equals "B op' C" then "L op' R" is just the RHS.
184           if ((L == B && R == C) || (Instruction::isCommutative(OpcodeToExpand)
185                                      && L == C && R == B)) {
186             ++NumExpand;
187             return RHS;
188           }
189           // Otherwise return "L op' R" if it simplifies.
190           if (Value *V = SimplifyBinOp(OpcodeToExpand, L, R, Q, MaxRecurse)) {
191             ++NumExpand;
192             return V;
193           }
194         }
195     }
196 
197   return nullptr;
198 }
199 
200 /// Generic simplifications for associative binary operations.
201 /// Returns the simpler value, or null if none was found.
202 static Value *SimplifyAssociativeBinOp(unsigned Opc, Value *LHS, Value *RHS,
203                                        const Query &Q, unsigned MaxRecurse) {
204   Instruction::BinaryOps Opcode = (Instruction::BinaryOps)Opc;
205   assert(Instruction::isAssociative(Opcode) && "Not an associative operation!");
206 
207   // Recursion is always used, so bail out at once if we already hit the limit.
208   if (!MaxRecurse--)
209     return nullptr;
210 
211   BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS);
212   BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS);
213 
214   // Transform: "(A op B) op C" ==> "A op (B op C)" if it simplifies completely.
215   if (Op0 && Op0->getOpcode() == Opcode) {
216     Value *A = Op0->getOperand(0);
217     Value *B = Op0->getOperand(1);
218     Value *C = RHS;
219 
220     // Does "B op C" simplify?
221     if (Value *V = SimplifyBinOp(Opcode, B, C, Q, MaxRecurse)) {
222       // It does!  Return "A op V" if it simplifies or is already available.
223       // If V equals B then "A op V" is just the LHS.
224       if (V == B) return LHS;
225       // Otherwise return "A op V" if it simplifies.
226       if (Value *W = SimplifyBinOp(Opcode, A, V, Q, MaxRecurse)) {
227         ++NumReassoc;
228         return W;
229       }
230     }
231   }
232 
233   // Transform: "A op (B op C)" ==> "(A op B) op C" if it simplifies completely.
234   if (Op1 && Op1->getOpcode() == Opcode) {
235     Value *A = LHS;
236     Value *B = Op1->getOperand(0);
237     Value *C = Op1->getOperand(1);
238 
239     // Does "A op B" simplify?
240     if (Value *V = SimplifyBinOp(Opcode, A, B, Q, MaxRecurse)) {
241       // It does!  Return "V op C" if it simplifies or is already available.
242       // If V equals B then "V op C" is just the RHS.
243       if (V == B) return RHS;
244       // Otherwise return "V op C" if it simplifies.
245       if (Value *W = SimplifyBinOp(Opcode, V, C, Q, MaxRecurse)) {
246         ++NumReassoc;
247         return W;
248       }
249     }
250   }
251 
252   // The remaining transforms require commutativity as well as associativity.
253   if (!Instruction::isCommutative(Opcode))
254     return nullptr;
255 
256   // Transform: "(A op B) op C" ==> "(C op A) op B" if it simplifies completely.
257   if (Op0 && Op0->getOpcode() == Opcode) {
258     Value *A = Op0->getOperand(0);
259     Value *B = Op0->getOperand(1);
260     Value *C = RHS;
261 
262     // Does "C op A" simplify?
263     if (Value *V = SimplifyBinOp(Opcode, C, A, Q, MaxRecurse)) {
264       // It does!  Return "V op B" if it simplifies or is already available.
265       // If V equals A then "V op B" is just the LHS.
266       if (V == A) return LHS;
267       // Otherwise return "V op B" if it simplifies.
268       if (Value *W = SimplifyBinOp(Opcode, V, B, Q, MaxRecurse)) {
269         ++NumReassoc;
270         return W;
271       }
272     }
273   }
274 
275   // Transform: "A op (B op C)" ==> "B op (C op A)" if it simplifies completely.
276   if (Op1 && Op1->getOpcode() == Opcode) {
277     Value *A = LHS;
278     Value *B = Op1->getOperand(0);
279     Value *C = Op1->getOperand(1);
280 
281     // Does "C op A" simplify?
282     if (Value *V = SimplifyBinOp(Opcode, C, A, Q, MaxRecurse)) {
283       // It does!  Return "B op V" if it simplifies or is already available.
284       // If V equals C then "B op V" is just the RHS.
285       if (V == C) return RHS;
286       // Otherwise return "B op V" if it simplifies.
287       if (Value *W = SimplifyBinOp(Opcode, B, V, Q, MaxRecurse)) {
288         ++NumReassoc;
289         return W;
290       }
291     }
292   }
293 
294   return nullptr;
295 }
296 
297 /// In the case of a binary operation with a select instruction as an operand,
298 /// try to simplify the binop by seeing whether evaluating it on both branches
299 /// of the select results in the same value. Returns the common value if so,
300 /// otherwise returns null.
301 static Value *ThreadBinOpOverSelect(unsigned Opcode, Value *LHS, Value *RHS,
302                                     const Query &Q, unsigned MaxRecurse) {
303   // Recursion is always used, so bail out at once if we already hit the limit.
304   if (!MaxRecurse--)
305     return nullptr;
306 
307   SelectInst *SI;
308   if (isa<SelectInst>(LHS)) {
309     SI = cast<SelectInst>(LHS);
310   } else {
311     assert(isa<SelectInst>(RHS) && "No select instruction operand!");
312     SI = cast<SelectInst>(RHS);
313   }
314 
315   // Evaluate the BinOp on the true and false branches of the select.
316   Value *TV;
317   Value *FV;
318   if (SI == LHS) {
319     TV = SimplifyBinOp(Opcode, SI->getTrueValue(), RHS, Q, MaxRecurse);
320     FV = SimplifyBinOp(Opcode, SI->getFalseValue(), RHS, Q, MaxRecurse);
321   } else {
322     TV = SimplifyBinOp(Opcode, LHS, SI->getTrueValue(), Q, MaxRecurse);
323     FV = SimplifyBinOp(Opcode, LHS, SI->getFalseValue(), Q, MaxRecurse);
324   }
325 
326   // If they simplified to the same value, then return the common value.
327   // If they both failed to simplify then return null.
328   if (TV == FV)
329     return TV;
330 
331   // If one branch simplified to undef, return the other one.
332   if (TV && isa<UndefValue>(TV))
333     return FV;
334   if (FV && isa<UndefValue>(FV))
335     return TV;
336 
337   // If applying the operation did not change the true and false select values,
338   // then the result of the binop is the select itself.
339   if (TV == SI->getTrueValue() && FV == SI->getFalseValue())
340     return SI;
341 
342   // If one branch simplified and the other did not, and the simplified
343   // value is equal to the unsimplified one, return the simplified value.
344   // For example, select (cond, X, X & Z) & Z -> X & Z.
345   if ((FV && !TV) || (TV && !FV)) {
346     // Check that the simplified value has the form "X op Y" where "op" is the
347     // same as the original operation.
348     Instruction *Simplified = dyn_cast<Instruction>(FV ? FV : TV);
349     if (Simplified && Simplified->getOpcode() == Opcode) {
350       // The value that didn't simplify is "UnsimplifiedLHS op UnsimplifiedRHS".
351       // We already know that "op" is the same as for the simplified value.  See
352       // if the operands match too.  If so, return the simplified value.
353       Value *UnsimplifiedBranch = FV ? SI->getTrueValue() : SI->getFalseValue();
354       Value *UnsimplifiedLHS = SI == LHS ? UnsimplifiedBranch : LHS;
355       Value *UnsimplifiedRHS = SI == LHS ? RHS : UnsimplifiedBranch;
356       if (Simplified->getOperand(0) == UnsimplifiedLHS &&
357           Simplified->getOperand(1) == UnsimplifiedRHS)
358         return Simplified;
359       if (Simplified->isCommutative() &&
360           Simplified->getOperand(1) == UnsimplifiedLHS &&
361           Simplified->getOperand(0) == UnsimplifiedRHS)
362         return Simplified;
363     }
364   }
365 
366   return nullptr;
367 }
368 
369 /// In the case of a comparison with a select instruction, try to simplify the
370 /// comparison by seeing whether both branches of the select result in the same
371 /// value. Returns the common value if so, otherwise returns null.
372 static Value *ThreadCmpOverSelect(CmpInst::Predicate Pred, Value *LHS,
373                                   Value *RHS, const Query &Q,
374                                   unsigned MaxRecurse) {
375   // Recursion is always used, so bail out at once if we already hit the limit.
376   if (!MaxRecurse--)
377     return nullptr;
378 
379   // Make sure the select is on the LHS.
380   if (!isa<SelectInst>(LHS)) {
381     std::swap(LHS, RHS);
382     Pred = CmpInst::getSwappedPredicate(Pred);
383   }
384   assert(isa<SelectInst>(LHS) && "Not comparing with a select instruction!");
385   SelectInst *SI = cast<SelectInst>(LHS);
386   Value *Cond = SI->getCondition();
387   Value *TV = SI->getTrueValue();
388   Value *FV = SI->getFalseValue();
389 
390   // Now that we have "cmp select(Cond, TV, FV), RHS", analyse it.
391   // Does "cmp TV, RHS" simplify?
392   Value *TCmp = SimplifyCmpInst(Pred, TV, RHS, Q, MaxRecurse);
393   if (TCmp == Cond) {
394     // It not only simplified, it simplified to the select condition.  Replace
395     // it with 'true'.
396     TCmp = getTrue(Cond->getType());
397   } else if (!TCmp) {
398     // It didn't simplify.  However if "cmp TV, RHS" is equal to the select
399     // condition then we can replace it with 'true'.  Otherwise give up.
400     if (!isSameCompare(Cond, Pred, TV, RHS))
401       return nullptr;
402     TCmp = getTrue(Cond->getType());
403   }
404 
405   // Does "cmp FV, RHS" simplify?
406   Value *FCmp = SimplifyCmpInst(Pred, FV, RHS, Q, MaxRecurse);
407   if (FCmp == Cond) {
408     // It not only simplified, it simplified to the select condition.  Replace
409     // it with 'false'.
410     FCmp = getFalse(Cond->getType());
411   } else if (!FCmp) {
412     // It didn't simplify.  However if "cmp FV, RHS" is equal to the select
413     // condition then we can replace it with 'false'.  Otherwise give up.
414     if (!isSameCompare(Cond, Pred, FV, RHS))
415       return nullptr;
416     FCmp = getFalse(Cond->getType());
417   }
418 
419   // If both sides simplified to the same value, then use it as the result of
420   // the original comparison.
421   if (TCmp == FCmp)
422     return TCmp;
423 
424   // The remaining cases only make sense if the select condition has the same
425   // type as the result of the comparison, so bail out if this is not so.
426   if (Cond->getType()->isVectorTy() != RHS->getType()->isVectorTy())
427     return nullptr;
428   // If the false value simplified to false, then the result of the compare
429   // is equal to "Cond && TCmp".  This also catches the case when the false
430   // value simplified to false and the true value to true, returning "Cond".
431   if (match(FCmp, m_Zero()))
432     if (Value *V = SimplifyAndInst(Cond, TCmp, Q, MaxRecurse))
433       return V;
434   // If the true value simplified to true, then the result of the compare
435   // is equal to "Cond || FCmp".
436   if (match(TCmp, m_One()))
437     if (Value *V = SimplifyOrInst(Cond, FCmp, Q, MaxRecurse))
438       return V;
439   // Finally, if the false value simplified to true and the true value to
440   // false, then the result of the compare is equal to "!Cond".
441   if (match(FCmp, m_One()) && match(TCmp, m_Zero()))
442     if (Value *V =
443         SimplifyXorInst(Cond, Constant::getAllOnesValue(Cond->getType()),
444                         Q, MaxRecurse))
445       return V;
446 
447   return nullptr;
448 }
449 
450 /// In the case of a binary operation with an operand that is a PHI instruction,
451 /// try to simplify the binop by seeing whether evaluating it on the incoming
452 /// phi values yields the same result for every value. If so returns the common
453 /// value, otherwise returns null.
454 static Value *ThreadBinOpOverPHI(unsigned Opcode, Value *LHS, Value *RHS,
455                                  const Query &Q, unsigned MaxRecurse) {
456   // Recursion is always used, so bail out at once if we already hit the limit.
457   if (!MaxRecurse--)
458     return nullptr;
459 
460   PHINode *PI;
461   if (isa<PHINode>(LHS)) {
462     PI = cast<PHINode>(LHS);
463     // Bail out if RHS and the phi may be mutually interdependent due to a loop.
464     if (!ValueDominatesPHI(RHS, PI, Q.DT))
465       return nullptr;
466   } else {
467     assert(isa<PHINode>(RHS) && "No PHI instruction operand!");
468     PI = cast<PHINode>(RHS);
469     // Bail out if LHS and the phi may be mutually interdependent due to a loop.
470     if (!ValueDominatesPHI(LHS, PI, Q.DT))
471       return nullptr;
472   }
473 
474   // Evaluate the BinOp on the incoming phi values.
475   Value *CommonValue = nullptr;
476   for (Value *Incoming : PI->incoming_values()) {
477     // If the incoming value is the phi node itself, it can safely be skipped.
478     if (Incoming == PI) continue;
479     Value *V = PI == LHS ?
480       SimplifyBinOp(Opcode, Incoming, RHS, Q, MaxRecurse) :
481       SimplifyBinOp(Opcode, LHS, Incoming, Q, MaxRecurse);
482     // If the operation failed to simplify, or simplified to a different value
483     // to previously, then give up.
484     if (!V || (CommonValue && V != CommonValue))
485       return nullptr;
486     CommonValue = V;
487   }
488 
489   return CommonValue;
490 }
491 
492 /// In the case of a comparison with a PHI instruction, try to simplify the
493 /// comparison by seeing whether comparing with all of the incoming phi values
494 /// yields the same result every time. If so returns the common result,
495 /// otherwise returns null.
496 static Value *ThreadCmpOverPHI(CmpInst::Predicate Pred, Value *LHS, Value *RHS,
497                                const Query &Q, unsigned MaxRecurse) {
498   // Recursion is always used, so bail out at once if we already hit the limit.
499   if (!MaxRecurse--)
500     return nullptr;
501 
502   // Make sure the phi is on the LHS.
503   if (!isa<PHINode>(LHS)) {
504     std::swap(LHS, RHS);
505     Pred = CmpInst::getSwappedPredicate(Pred);
506   }
507   assert(isa<PHINode>(LHS) && "Not comparing with a phi instruction!");
508   PHINode *PI = cast<PHINode>(LHS);
509 
510   // Bail out if RHS and the phi may be mutually interdependent due to a loop.
511   if (!ValueDominatesPHI(RHS, PI, Q.DT))
512     return nullptr;
513 
514   // Evaluate the BinOp on the incoming phi values.
515   Value *CommonValue = nullptr;
516   for (Value *Incoming : PI->incoming_values()) {
517     // If the incoming value is the phi node itself, it can safely be skipped.
518     if (Incoming == PI) continue;
519     Value *V = SimplifyCmpInst(Pred, Incoming, RHS, Q, MaxRecurse);
520     // If the operation failed to simplify, or simplified to a different value
521     // to previously, then give up.
522     if (!V || (CommonValue && V != CommonValue))
523       return nullptr;
524     CommonValue = V;
525   }
526 
527   return CommonValue;
528 }
529 
530 /// Given operands for an Add, see if we can fold the result.
531 /// If not, this returns null.
532 static Value *SimplifyAddInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
533                               const Query &Q, unsigned MaxRecurse) {
534   if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
535     if (Constant *CRHS = dyn_cast<Constant>(Op1))
536       return ConstantFoldBinaryOpOperands(Instruction::Add, CLHS, CRHS, Q.DL);
537 
538     // Canonicalize the constant to the RHS.
539     std::swap(Op0, Op1);
540   }
541 
542   // X + undef -> undef
543   if (match(Op1, m_Undef()))
544     return Op1;
545 
546   // X + 0 -> X
547   if (match(Op1, m_Zero()))
548     return Op0;
549 
550   // X + (Y - X) -> Y
551   // (Y - X) + X -> Y
552   // Eg: X + -X -> 0
553   Value *Y = nullptr;
554   if (match(Op1, m_Sub(m_Value(Y), m_Specific(Op0))) ||
555       match(Op0, m_Sub(m_Value(Y), m_Specific(Op1))))
556     return Y;
557 
558   // X + ~X -> -1   since   ~X = -X-1
559   if (match(Op0, m_Not(m_Specific(Op1))) ||
560       match(Op1, m_Not(m_Specific(Op0))))
561     return Constant::getAllOnesValue(Op0->getType());
562 
563   /// i1 add -> xor.
564   if (MaxRecurse && Op0->getType()->isIntegerTy(1))
565     if (Value *V = SimplifyXorInst(Op0, Op1, Q, MaxRecurse-1))
566       return V;
567 
568   // Try some generic simplifications for associative operations.
569   if (Value *V = SimplifyAssociativeBinOp(Instruction::Add, Op0, Op1, Q,
570                                           MaxRecurse))
571     return V;
572 
573   // Threading Add over selects and phi nodes is pointless, so don't bother.
574   // Threading over the select in "A + select(cond, B, C)" means evaluating
575   // "A+B" and "A+C" and seeing if they are equal; but they are equal if and
576   // only if B and C are equal.  If B and C are equal then (since we assume
577   // that operands have already been simplified) "select(cond, B, C)" should
578   // have been simplified to the common value of B and C already.  Analysing
579   // "A+B" and "A+C" thus gains nothing, but costs compile time.  Similarly
580   // for threading over phi nodes.
581 
582   return nullptr;
583 }
584 
585 Value *llvm::SimplifyAddInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
586                              const DataLayout &DL, const TargetLibraryInfo *TLI,
587                              const DominatorTree *DT, AssumptionCache *AC,
588                              const Instruction *CxtI) {
589   return ::SimplifyAddInst(Op0, Op1, isNSW, isNUW, Query(DL, TLI, DT, AC, CxtI),
590                            RecursionLimit);
591 }
592 
593 /// \brief Compute the base pointer and cumulative constant offsets for V.
594 ///
595 /// This strips all constant offsets off of V, leaving it the base pointer, and
596 /// accumulates the total constant offset applied in the returned constant. It
597 /// returns 0 if V is not a pointer, and returns the constant '0' if there are
598 /// no constant offsets applied.
599 ///
600 /// This is very similar to GetPointerBaseWithConstantOffset except it doesn't
601 /// follow non-inbounds geps. This allows it to remain usable for icmp ult/etc.
602 /// folding.
603 static Constant *stripAndComputeConstantOffsets(const DataLayout &DL, Value *&V,
604                                                 bool AllowNonInbounds = false) {
605   assert(V->getType()->getScalarType()->isPointerTy());
606 
607   Type *IntPtrTy = DL.getIntPtrType(V->getType())->getScalarType();
608   APInt Offset = APInt::getNullValue(IntPtrTy->getIntegerBitWidth());
609 
610   // Even though we don't look through PHI nodes, we could be called on an
611   // instruction in an unreachable block, which may be on a cycle.
612   SmallPtrSet<Value *, 4> Visited;
613   Visited.insert(V);
614   do {
615     if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
616       if ((!AllowNonInbounds && !GEP->isInBounds()) ||
617           !GEP->accumulateConstantOffset(DL, Offset))
618         break;
619       V = GEP->getPointerOperand();
620     } else if (Operator::getOpcode(V) == Instruction::BitCast) {
621       V = cast<Operator>(V)->getOperand(0);
622     } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
623       if (GA->isInterposable())
624         break;
625       V = GA->getAliasee();
626     } else {
627       if (auto CS = CallSite(V))
628         if (Value *RV = CS.getReturnedArgOperand()) {
629           V = RV;
630           continue;
631         }
632       break;
633     }
634     assert(V->getType()->getScalarType()->isPointerTy() &&
635            "Unexpected operand type!");
636   } while (Visited.insert(V).second);
637 
638   Constant *OffsetIntPtr = ConstantInt::get(IntPtrTy, Offset);
639   if (V->getType()->isVectorTy())
640     return ConstantVector::getSplat(V->getType()->getVectorNumElements(),
641                                     OffsetIntPtr);
642   return OffsetIntPtr;
643 }
644 
645 /// \brief Compute the constant difference between two pointer values.
646 /// If the difference is not a constant, returns zero.
647 static Constant *computePointerDifference(const DataLayout &DL, Value *LHS,
648                                           Value *RHS) {
649   Constant *LHSOffset = stripAndComputeConstantOffsets(DL, LHS);
650   Constant *RHSOffset = stripAndComputeConstantOffsets(DL, RHS);
651 
652   // If LHS and RHS are not related via constant offsets to the same base
653   // value, there is nothing we can do here.
654   if (LHS != RHS)
655     return nullptr;
656 
657   // Otherwise, the difference of LHS - RHS can be computed as:
658   //    LHS - RHS
659   //  = (LHSOffset + Base) - (RHSOffset + Base)
660   //  = LHSOffset - RHSOffset
661   return ConstantExpr::getSub(LHSOffset, RHSOffset);
662 }
663 
664 /// Given operands for a Sub, see if we can fold the result.
665 /// If not, this returns null.
666 static Value *SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
667                               const Query &Q, unsigned MaxRecurse) {
668   if (Constant *CLHS = dyn_cast<Constant>(Op0))
669     if (Constant *CRHS = dyn_cast<Constant>(Op1))
670       return ConstantFoldBinaryOpOperands(Instruction::Sub, CLHS, CRHS, Q.DL);
671 
672   // X - undef -> undef
673   // undef - X -> undef
674   if (match(Op0, m_Undef()) || match(Op1, m_Undef()))
675     return UndefValue::get(Op0->getType());
676 
677   // X - 0 -> X
678   if (match(Op1, m_Zero()))
679     return Op0;
680 
681   // X - X -> 0
682   if (Op0 == Op1)
683     return Constant::getNullValue(Op0->getType());
684 
685   // Is this a negation?
686   if (match(Op0, m_Zero())) {
687     // 0 - X -> 0 if the sub is NUW.
688     if (isNUW)
689       return Op0;
690 
691     unsigned BitWidth = Op1->getType()->getScalarSizeInBits();
692     APInt KnownZero(BitWidth, 0);
693     APInt KnownOne(BitWidth, 0);
694     computeKnownBits(Op1, KnownZero, KnownOne, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
695     if (KnownZero == ~APInt::getSignBit(BitWidth)) {
696       // Op1 is either 0 or the minimum signed value. If the sub is NSW, then
697       // Op1 must be 0 because negating the minimum signed value is undefined.
698       if (isNSW)
699         return Op0;
700 
701       // 0 - X -> X if X is 0 or the minimum signed value.
702       return Op1;
703     }
704   }
705 
706   // (X + Y) - Z -> X + (Y - Z) or Y + (X - Z) if everything simplifies.
707   // For example, (X + Y) - Y -> X; (Y + X) - Y -> X
708   Value *X = nullptr, *Y = nullptr, *Z = Op1;
709   if (MaxRecurse && match(Op0, m_Add(m_Value(X), m_Value(Y)))) { // (X + Y) - Z
710     // See if "V === Y - Z" simplifies.
711     if (Value *V = SimplifyBinOp(Instruction::Sub, Y, Z, Q, MaxRecurse-1))
712       // It does!  Now see if "X + V" simplifies.
713       if (Value *W = SimplifyBinOp(Instruction::Add, X, V, Q, MaxRecurse-1)) {
714         // It does, we successfully reassociated!
715         ++NumReassoc;
716         return W;
717       }
718     // See if "V === X - Z" simplifies.
719     if (Value *V = SimplifyBinOp(Instruction::Sub, X, Z, Q, MaxRecurse-1))
720       // It does!  Now see if "Y + V" simplifies.
721       if (Value *W = SimplifyBinOp(Instruction::Add, Y, V, Q, MaxRecurse-1)) {
722         // It does, we successfully reassociated!
723         ++NumReassoc;
724         return W;
725       }
726   }
727 
728   // X - (Y + Z) -> (X - Y) - Z or (X - Z) - Y if everything simplifies.
729   // For example, X - (X + 1) -> -1
730   X = Op0;
731   if (MaxRecurse && match(Op1, m_Add(m_Value(Y), m_Value(Z)))) { // X - (Y + Z)
732     // See if "V === X - Y" simplifies.
733     if (Value *V = SimplifyBinOp(Instruction::Sub, X, Y, Q, MaxRecurse-1))
734       // It does!  Now see if "V - Z" simplifies.
735       if (Value *W = SimplifyBinOp(Instruction::Sub, V, Z, Q, MaxRecurse-1)) {
736         // It does, we successfully reassociated!
737         ++NumReassoc;
738         return W;
739       }
740     // See if "V === X - Z" simplifies.
741     if (Value *V = SimplifyBinOp(Instruction::Sub, X, Z, Q, MaxRecurse-1))
742       // It does!  Now see if "V - Y" simplifies.
743       if (Value *W = SimplifyBinOp(Instruction::Sub, V, Y, Q, MaxRecurse-1)) {
744         // It does, we successfully reassociated!
745         ++NumReassoc;
746         return W;
747       }
748   }
749 
750   // Z - (X - Y) -> (Z - X) + Y if everything simplifies.
751   // For example, X - (X - Y) -> Y.
752   Z = Op0;
753   if (MaxRecurse && match(Op1, m_Sub(m_Value(X), m_Value(Y)))) // Z - (X - Y)
754     // See if "V === Z - X" simplifies.
755     if (Value *V = SimplifyBinOp(Instruction::Sub, Z, X, Q, MaxRecurse-1))
756       // It does!  Now see if "V + Y" simplifies.
757       if (Value *W = SimplifyBinOp(Instruction::Add, V, Y, Q, MaxRecurse-1)) {
758         // It does, we successfully reassociated!
759         ++NumReassoc;
760         return W;
761       }
762 
763   // trunc(X) - trunc(Y) -> trunc(X - Y) if everything simplifies.
764   if (MaxRecurse && match(Op0, m_Trunc(m_Value(X))) &&
765       match(Op1, m_Trunc(m_Value(Y))))
766     if (X->getType() == Y->getType())
767       // See if "V === X - Y" simplifies.
768       if (Value *V = SimplifyBinOp(Instruction::Sub, X, Y, Q, MaxRecurse-1))
769         // It does!  Now see if "trunc V" simplifies.
770         if (Value *W = SimplifyCastInst(Instruction::Trunc, V, Op0->getType(),
771                                         Q, MaxRecurse - 1))
772           // It does, return the simplified "trunc V".
773           return W;
774 
775   // Variations on GEP(base, I, ...) - GEP(base, i, ...) -> GEP(null, I-i, ...).
776   if (match(Op0, m_PtrToInt(m_Value(X))) &&
777       match(Op1, m_PtrToInt(m_Value(Y))))
778     if (Constant *Result = computePointerDifference(Q.DL, X, Y))
779       return ConstantExpr::getIntegerCast(Result, Op0->getType(), true);
780 
781   // i1 sub -> xor.
782   if (MaxRecurse && Op0->getType()->isIntegerTy(1))
783     if (Value *V = SimplifyXorInst(Op0, Op1, Q, MaxRecurse-1))
784       return V;
785 
786   // Threading Sub over selects and phi nodes is pointless, so don't bother.
787   // Threading over the select in "A - select(cond, B, C)" means evaluating
788   // "A-B" and "A-C" and seeing if they are equal; but they are equal if and
789   // only if B and C are equal.  If B and C are equal then (since we assume
790   // that operands have already been simplified) "select(cond, B, C)" should
791   // have been simplified to the common value of B and C already.  Analysing
792   // "A-B" and "A-C" thus gains nothing, but costs compile time.  Similarly
793   // for threading over phi nodes.
794 
795   return nullptr;
796 }
797 
798 Value *llvm::SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
799                              const DataLayout &DL, const TargetLibraryInfo *TLI,
800                              const DominatorTree *DT, AssumptionCache *AC,
801                              const Instruction *CxtI) {
802   return ::SimplifySubInst(Op0, Op1, isNSW, isNUW, Query(DL, TLI, DT, AC, CxtI),
803                            RecursionLimit);
804 }
805 
806 /// Given operands for an FAdd, see if we can fold the result.  If not, this
807 /// returns null.
808 static Value *SimplifyFAddInst(Value *Op0, Value *Op1, FastMathFlags FMF,
809                               const Query &Q, unsigned MaxRecurse) {
810   if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
811     if (Constant *CRHS = dyn_cast<Constant>(Op1))
812       return ConstantFoldBinaryOpOperands(Instruction::FAdd, CLHS, CRHS, Q.DL);
813 
814     // Canonicalize the constant to the RHS.
815     std::swap(Op0, Op1);
816   }
817 
818   // fadd X, -0 ==> X
819   if (match(Op1, m_NegZero()))
820     return Op0;
821 
822   // fadd X, 0 ==> X, when we know X is not -0
823   if (match(Op1, m_Zero()) &&
824       (FMF.noSignedZeros() || CannotBeNegativeZero(Op0, Q.TLI)))
825     return Op0;
826 
827   // fadd [nnan ninf] X, (fsub [nnan ninf] 0, X) ==> 0
828   //   where nnan and ninf have to occur at least once somewhere in this
829   //   expression
830   Value *SubOp = nullptr;
831   if (match(Op1, m_FSub(m_AnyZero(), m_Specific(Op0))))
832     SubOp = Op1;
833   else if (match(Op0, m_FSub(m_AnyZero(), m_Specific(Op1))))
834     SubOp = Op0;
835   if (SubOp) {
836     Instruction *FSub = cast<Instruction>(SubOp);
837     if ((FMF.noNaNs() || FSub->hasNoNaNs()) &&
838         (FMF.noInfs() || FSub->hasNoInfs()))
839       return Constant::getNullValue(Op0->getType());
840   }
841 
842   return nullptr;
843 }
844 
845 /// Given operands for an FSub, see if we can fold the result.  If not, this
846 /// returns null.
847 static Value *SimplifyFSubInst(Value *Op0, Value *Op1, FastMathFlags FMF,
848                               const Query &Q, unsigned MaxRecurse) {
849   if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
850     if (Constant *CRHS = dyn_cast<Constant>(Op1))
851       return ConstantFoldBinaryOpOperands(Instruction::FSub, CLHS, CRHS, Q.DL);
852   }
853 
854   // fsub X, 0 ==> X
855   if (match(Op1, m_Zero()))
856     return Op0;
857 
858   // fsub X, -0 ==> X, when we know X is not -0
859   if (match(Op1, m_NegZero()) &&
860       (FMF.noSignedZeros() || CannotBeNegativeZero(Op0, Q.TLI)))
861     return Op0;
862 
863   // fsub -0.0, (fsub -0.0, X) ==> X
864   Value *X;
865   if (match(Op0, m_NegZero()) && match(Op1, m_FSub(m_NegZero(), m_Value(X))))
866     return X;
867 
868   // fsub 0.0, (fsub 0.0, X) ==> X if signed zeros are ignored.
869   if (FMF.noSignedZeros() && match(Op0, m_AnyZero()) &&
870       match(Op1, m_FSub(m_AnyZero(), m_Value(X))))
871     return X;
872 
873   // fsub nnan x, x ==> 0.0
874   if (FMF.noNaNs() && Op0 == Op1)
875     return Constant::getNullValue(Op0->getType());
876 
877   return nullptr;
878 }
879 
880 /// Given the operands for an FMul, see if we can fold the result
881 static Value *SimplifyFMulInst(Value *Op0, Value *Op1,
882                                FastMathFlags FMF,
883                                const Query &Q,
884                                unsigned MaxRecurse) {
885  if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
886     if (Constant *CRHS = dyn_cast<Constant>(Op1))
887       return ConstantFoldBinaryOpOperands(Instruction::FMul, CLHS, CRHS, Q.DL);
888 
889     // Canonicalize the constant to the RHS.
890     std::swap(Op0, Op1);
891  }
892 
893  // fmul X, 1.0 ==> X
894  if (match(Op1, m_FPOne()))
895    return Op0;
896 
897  // fmul nnan nsz X, 0 ==> 0
898  if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op1, m_AnyZero()))
899    return Op1;
900 
901  return nullptr;
902 }
903 
904 /// Given operands for a Mul, see if we can fold the result.
905 /// If not, this returns null.
906 static Value *SimplifyMulInst(Value *Op0, Value *Op1, const Query &Q,
907                               unsigned MaxRecurse) {
908   if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
909     if (Constant *CRHS = dyn_cast<Constant>(Op1))
910       return ConstantFoldBinaryOpOperands(Instruction::Mul, CLHS, CRHS, Q.DL);
911 
912     // Canonicalize the constant to the RHS.
913     std::swap(Op0, Op1);
914   }
915 
916   // X * undef -> 0
917   if (match(Op1, m_Undef()))
918     return Constant::getNullValue(Op0->getType());
919 
920   // X * 0 -> 0
921   if (match(Op1, m_Zero()))
922     return Op1;
923 
924   // X * 1 -> X
925   if (match(Op1, m_One()))
926     return Op0;
927 
928   // (X / Y) * Y -> X if the division is exact.
929   Value *X = nullptr;
930   if (match(Op0, m_Exact(m_IDiv(m_Value(X), m_Specific(Op1)))) || // (X / Y) * Y
931       match(Op1, m_Exact(m_IDiv(m_Value(X), m_Specific(Op0)))))   // Y * (X / Y)
932     return X;
933 
934   // i1 mul -> and.
935   if (MaxRecurse && Op0->getType()->isIntegerTy(1))
936     if (Value *V = SimplifyAndInst(Op0, Op1, Q, MaxRecurse-1))
937       return V;
938 
939   // Try some generic simplifications for associative operations.
940   if (Value *V = SimplifyAssociativeBinOp(Instruction::Mul, Op0, Op1, Q,
941                                           MaxRecurse))
942     return V;
943 
944   // Mul distributes over Add.  Try some generic simplifications based on this.
945   if (Value *V = ExpandBinOp(Instruction::Mul, Op0, Op1, Instruction::Add,
946                              Q, MaxRecurse))
947     return V;
948 
949   // If the operation is with the result of a select instruction, check whether
950   // operating on either branch of the select always yields the same value.
951   if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
952     if (Value *V = ThreadBinOpOverSelect(Instruction::Mul, Op0, Op1, Q,
953                                          MaxRecurse))
954       return V;
955 
956   // If the operation is with the result of a phi instruction, check whether
957   // operating on all incoming values of the phi always yields the same value.
958   if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
959     if (Value *V = ThreadBinOpOverPHI(Instruction::Mul, Op0, Op1, Q,
960                                       MaxRecurse))
961       return V;
962 
963   return nullptr;
964 }
965 
966 Value *llvm::SimplifyFAddInst(Value *Op0, Value *Op1, FastMathFlags FMF,
967                               const DataLayout &DL,
968                               const TargetLibraryInfo *TLI,
969                               const DominatorTree *DT, AssumptionCache *AC,
970                               const Instruction *CxtI) {
971   return ::SimplifyFAddInst(Op0, Op1, FMF, Query(DL, TLI, DT, AC, CxtI),
972                             RecursionLimit);
973 }
974 
975 Value *llvm::SimplifyFSubInst(Value *Op0, Value *Op1, FastMathFlags FMF,
976                               const DataLayout &DL,
977                               const TargetLibraryInfo *TLI,
978                               const DominatorTree *DT, AssumptionCache *AC,
979                               const Instruction *CxtI) {
980   return ::SimplifyFSubInst(Op0, Op1, FMF, Query(DL, TLI, DT, AC, CxtI),
981                             RecursionLimit);
982 }
983 
984 Value *llvm::SimplifyFMulInst(Value *Op0, Value *Op1, FastMathFlags FMF,
985                               const DataLayout &DL,
986                               const TargetLibraryInfo *TLI,
987                               const DominatorTree *DT, AssumptionCache *AC,
988                               const Instruction *CxtI) {
989   return ::SimplifyFMulInst(Op0, Op1, FMF, Query(DL, TLI, DT, AC, CxtI),
990                             RecursionLimit);
991 }
992 
993 Value *llvm::SimplifyMulInst(Value *Op0, Value *Op1, const DataLayout &DL,
994                              const TargetLibraryInfo *TLI,
995                              const DominatorTree *DT, AssumptionCache *AC,
996                              const Instruction *CxtI) {
997   return ::SimplifyMulInst(Op0, Op1, Query(DL, TLI, DT, AC, CxtI),
998                            RecursionLimit);
999 }
1000 
1001 /// Given operands for an SDiv or UDiv, see if we can fold the result.
1002 /// If not, this returns null.
1003 static Value *SimplifyDiv(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1,
1004                           const Query &Q, unsigned MaxRecurse) {
1005   if (Constant *C0 = dyn_cast<Constant>(Op0))
1006     if (Constant *C1 = dyn_cast<Constant>(Op1))
1007       return ConstantFoldBinaryOpOperands(Opcode, C0, C1, Q.DL);
1008 
1009   bool isSigned = Opcode == Instruction::SDiv;
1010 
1011   // X / undef -> undef
1012   if (match(Op1, m_Undef()))
1013     return Op1;
1014 
1015   // X / 0 -> undef, we don't need to preserve faults!
1016   if (match(Op1, m_Zero()))
1017     return UndefValue::get(Op1->getType());
1018 
1019   // undef / X -> 0
1020   if (match(Op0, m_Undef()))
1021     return Constant::getNullValue(Op0->getType());
1022 
1023   // 0 / X -> 0, we don't need to preserve faults!
1024   if (match(Op0, m_Zero()))
1025     return Op0;
1026 
1027   // X / 1 -> X
1028   if (match(Op1, m_One()))
1029     return Op0;
1030 
1031   if (Op0->getType()->isIntegerTy(1))
1032     // It can't be division by zero, hence it must be division by one.
1033     return Op0;
1034 
1035   // X / X -> 1
1036   if (Op0 == Op1)
1037     return ConstantInt::get(Op0->getType(), 1);
1038 
1039   // (X * Y) / Y -> X if the multiplication does not overflow.
1040   Value *X = nullptr, *Y = nullptr;
1041   if (match(Op0, m_Mul(m_Value(X), m_Value(Y))) && (X == Op1 || Y == Op1)) {
1042     if (Y != Op1) std::swap(X, Y); // Ensure expression is (X * Y) / Y, Y = Op1
1043     OverflowingBinaryOperator *Mul = cast<OverflowingBinaryOperator>(Op0);
1044     // If the Mul knows it does not overflow, then we are good to go.
1045     if ((isSigned && Mul->hasNoSignedWrap()) ||
1046         (!isSigned && Mul->hasNoUnsignedWrap()))
1047       return X;
1048     // If X has the form X = A / Y then X * Y cannot overflow.
1049     if (BinaryOperator *Div = dyn_cast<BinaryOperator>(X))
1050       if (Div->getOpcode() == Opcode && Div->getOperand(1) == Y)
1051         return X;
1052   }
1053 
1054   // (X rem Y) / Y -> 0
1055   if ((isSigned && match(Op0, m_SRem(m_Value(), m_Specific(Op1)))) ||
1056       (!isSigned && match(Op0, m_URem(m_Value(), m_Specific(Op1)))))
1057     return Constant::getNullValue(Op0->getType());
1058 
1059   // (X /u C1) /u C2 -> 0 if C1 * C2 overflow
1060   ConstantInt *C1, *C2;
1061   if (!isSigned && match(Op0, m_UDiv(m_Value(X), m_ConstantInt(C1))) &&
1062       match(Op1, m_ConstantInt(C2))) {
1063     bool Overflow;
1064     C1->getValue().umul_ov(C2->getValue(), Overflow);
1065     if (Overflow)
1066       return Constant::getNullValue(Op0->getType());
1067   }
1068 
1069   // If the operation is with the result of a select instruction, check whether
1070   // operating on either branch of the select always yields the same value.
1071   if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
1072     if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse))
1073       return V;
1074 
1075   // If the operation is with the result of a phi instruction, check whether
1076   // operating on all incoming values of the phi always yields the same value.
1077   if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
1078     if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse))
1079       return V;
1080 
1081   return nullptr;
1082 }
1083 
1084 /// Given operands for an SDiv, see if we can fold the result.
1085 /// If not, this returns null.
1086 static Value *SimplifySDivInst(Value *Op0, Value *Op1, const Query &Q,
1087                                unsigned MaxRecurse) {
1088   if (Value *V = SimplifyDiv(Instruction::SDiv, Op0, Op1, Q, MaxRecurse))
1089     return V;
1090 
1091   return nullptr;
1092 }
1093 
1094 Value *llvm::SimplifySDivInst(Value *Op0, Value *Op1, const DataLayout &DL,
1095                               const TargetLibraryInfo *TLI,
1096                               const DominatorTree *DT, AssumptionCache *AC,
1097                               const Instruction *CxtI) {
1098   return ::SimplifySDivInst(Op0, Op1, Query(DL, TLI, DT, AC, CxtI),
1099                             RecursionLimit);
1100 }
1101 
1102 /// Given operands for a UDiv, see if we can fold the result.
1103 /// If not, this returns null.
1104 static Value *SimplifyUDivInst(Value *Op0, Value *Op1, const Query &Q,
1105                                unsigned MaxRecurse) {
1106   if (Value *V = SimplifyDiv(Instruction::UDiv, Op0, Op1, Q, MaxRecurse))
1107     return V;
1108 
1109   // udiv %V, C -> 0 if %V < C
1110   if (MaxRecurse) {
1111     if (Constant *C = dyn_cast_or_null<Constant>(SimplifyICmpInst(
1112             ICmpInst::ICMP_ULT, Op0, Op1, Q, MaxRecurse - 1))) {
1113       if (C->isAllOnesValue()) {
1114         return Constant::getNullValue(Op0->getType());
1115       }
1116     }
1117   }
1118 
1119   return nullptr;
1120 }
1121 
1122 Value *llvm::SimplifyUDivInst(Value *Op0, Value *Op1, const DataLayout &DL,
1123                               const TargetLibraryInfo *TLI,
1124                               const DominatorTree *DT, AssumptionCache *AC,
1125                               const Instruction *CxtI) {
1126   return ::SimplifyUDivInst(Op0, Op1, Query(DL, TLI, DT, AC, CxtI),
1127                             RecursionLimit);
1128 }
1129 
1130 static Value *SimplifyFDivInst(Value *Op0, Value *Op1, FastMathFlags FMF,
1131                                const Query &Q, unsigned) {
1132   // undef / X -> undef    (the undef could be a snan).
1133   if (match(Op0, m_Undef()))
1134     return Op0;
1135 
1136   // X / undef -> undef
1137   if (match(Op1, m_Undef()))
1138     return Op1;
1139 
1140   // X / 1.0 -> X
1141   if (match(Op1, m_FPOne()))
1142     return Op0;
1143 
1144   // 0 / X -> 0
1145   // Requires that NaNs are off (X could be zero) and signed zeroes are
1146   // ignored (X could be positive or negative, so the output sign is unknown).
1147   if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op0, m_AnyZero()))
1148     return Op0;
1149 
1150   if (FMF.noNaNs()) {
1151     // X / X -> 1.0 is legal when NaNs are ignored.
1152     if (Op0 == Op1)
1153       return ConstantFP::get(Op0->getType(), 1.0);
1154 
1155     // -X /  X -> -1.0 and
1156     //  X / -X -> -1.0 are legal when NaNs are ignored.
1157     // We can ignore signed zeros because +-0.0/+-0.0 is NaN and ignored.
1158     if ((BinaryOperator::isFNeg(Op0, /*IgnoreZeroSign=*/true) &&
1159          BinaryOperator::getFNegArgument(Op0) == Op1) ||
1160         (BinaryOperator::isFNeg(Op1, /*IgnoreZeroSign=*/true) &&
1161          BinaryOperator::getFNegArgument(Op1) == Op0))
1162       return ConstantFP::get(Op0->getType(), -1.0);
1163   }
1164 
1165   return nullptr;
1166 }
1167 
1168 Value *llvm::SimplifyFDivInst(Value *Op0, Value *Op1, FastMathFlags FMF,
1169                               const DataLayout &DL,
1170                               const TargetLibraryInfo *TLI,
1171                               const DominatorTree *DT, AssumptionCache *AC,
1172                               const Instruction *CxtI) {
1173   return ::SimplifyFDivInst(Op0, Op1, FMF, Query(DL, TLI, DT, AC, CxtI),
1174                             RecursionLimit);
1175 }
1176 
1177 /// Given operands for an SRem or URem, see if we can fold the result.
1178 /// If not, this returns null.
1179 static Value *SimplifyRem(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1,
1180                           const Query &Q, unsigned MaxRecurse) {
1181   if (Constant *C0 = dyn_cast<Constant>(Op0))
1182     if (Constant *C1 = dyn_cast<Constant>(Op1))
1183       return ConstantFoldBinaryOpOperands(Opcode, C0, C1, Q.DL);
1184 
1185   // X % undef -> undef
1186   if (match(Op1, m_Undef()))
1187     return Op1;
1188 
1189   // undef % X -> 0
1190   if (match(Op0, m_Undef()))
1191     return Constant::getNullValue(Op0->getType());
1192 
1193   // 0 % X -> 0, we don't need to preserve faults!
1194   if (match(Op0, m_Zero()))
1195     return Op0;
1196 
1197   // X % 0 -> undef, we don't need to preserve faults!
1198   if (match(Op1, m_Zero()))
1199     return UndefValue::get(Op0->getType());
1200 
1201   // X % 1 -> 0
1202   if (match(Op1, m_One()))
1203     return Constant::getNullValue(Op0->getType());
1204 
1205   if (Op0->getType()->isIntegerTy(1))
1206     // It can't be remainder by zero, hence it must be remainder by one.
1207     return Constant::getNullValue(Op0->getType());
1208 
1209   // X % X -> 0
1210   if (Op0 == Op1)
1211     return Constant::getNullValue(Op0->getType());
1212 
1213   // (X % Y) % Y -> X % Y
1214   if ((Opcode == Instruction::SRem &&
1215        match(Op0, m_SRem(m_Value(), m_Specific(Op1)))) ||
1216       (Opcode == Instruction::URem &&
1217        match(Op0, m_URem(m_Value(), m_Specific(Op1)))))
1218     return Op0;
1219 
1220   // If the operation is with the result of a select instruction, check whether
1221   // operating on either branch of the select always yields the same value.
1222   if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
1223     if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse))
1224       return V;
1225 
1226   // If the operation is with the result of a phi instruction, check whether
1227   // operating on all incoming values of the phi always yields the same value.
1228   if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
1229     if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse))
1230       return V;
1231 
1232   return nullptr;
1233 }
1234 
1235 /// Given operands for an SRem, see if we can fold the result.
1236 /// If not, this returns null.
1237 static Value *SimplifySRemInst(Value *Op0, Value *Op1, const Query &Q,
1238                                unsigned MaxRecurse) {
1239   if (Value *V = SimplifyRem(Instruction::SRem, Op0, Op1, Q, MaxRecurse))
1240     return V;
1241 
1242   return nullptr;
1243 }
1244 
1245 Value *llvm::SimplifySRemInst(Value *Op0, Value *Op1, const DataLayout &DL,
1246                               const TargetLibraryInfo *TLI,
1247                               const DominatorTree *DT, AssumptionCache *AC,
1248                               const Instruction *CxtI) {
1249   return ::SimplifySRemInst(Op0, Op1, Query(DL, TLI, DT, AC, CxtI),
1250                             RecursionLimit);
1251 }
1252 
1253 /// Given operands for a URem, see if we can fold the result.
1254 /// If not, this returns null.
1255 static Value *SimplifyURemInst(Value *Op0, Value *Op1, const Query &Q,
1256                                unsigned MaxRecurse) {
1257   if (Value *V = SimplifyRem(Instruction::URem, Op0, Op1, Q, MaxRecurse))
1258     return V;
1259 
1260   // urem %V, C -> %V if %V < C
1261   if (MaxRecurse) {
1262     if (Constant *C = dyn_cast_or_null<Constant>(SimplifyICmpInst(
1263             ICmpInst::ICMP_ULT, Op0, Op1, Q, MaxRecurse - 1))) {
1264       if (C->isAllOnesValue()) {
1265         return Op0;
1266       }
1267     }
1268   }
1269 
1270   return nullptr;
1271 }
1272 
1273 Value *llvm::SimplifyURemInst(Value *Op0, Value *Op1, const DataLayout &DL,
1274                               const TargetLibraryInfo *TLI,
1275                               const DominatorTree *DT, AssumptionCache *AC,
1276                               const Instruction *CxtI) {
1277   return ::SimplifyURemInst(Op0, Op1, Query(DL, TLI, DT, AC, CxtI),
1278                             RecursionLimit);
1279 }
1280 
1281 static Value *SimplifyFRemInst(Value *Op0, Value *Op1, FastMathFlags FMF,
1282                                const Query &, unsigned) {
1283   // undef % X -> undef    (the undef could be a snan).
1284   if (match(Op0, m_Undef()))
1285     return Op0;
1286 
1287   // X % undef -> undef
1288   if (match(Op1, m_Undef()))
1289     return Op1;
1290 
1291   // 0 % X -> 0
1292   // Requires that NaNs are off (X could be zero) and signed zeroes are
1293   // ignored (X could be positive or negative, so the output sign is unknown).
1294   if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op0, m_AnyZero()))
1295     return Op0;
1296 
1297   return nullptr;
1298 }
1299 
1300 Value *llvm::SimplifyFRemInst(Value *Op0, Value *Op1, FastMathFlags FMF,
1301                               const DataLayout &DL,
1302                               const TargetLibraryInfo *TLI,
1303                               const DominatorTree *DT, AssumptionCache *AC,
1304                               const Instruction *CxtI) {
1305   return ::SimplifyFRemInst(Op0, Op1, FMF, Query(DL, TLI, DT, AC, CxtI),
1306                             RecursionLimit);
1307 }
1308 
1309 /// Returns true if a shift by \c Amount always yields undef.
1310 static bool isUndefShift(Value *Amount) {
1311   Constant *C = dyn_cast<Constant>(Amount);
1312   if (!C)
1313     return false;
1314 
1315   // X shift by undef -> undef because it may shift by the bitwidth.
1316   if (isa<UndefValue>(C))
1317     return true;
1318 
1319   // Shifting by the bitwidth or more is undefined.
1320   if (ConstantInt *CI = dyn_cast<ConstantInt>(C))
1321     if (CI->getValue().getLimitedValue() >=
1322         CI->getType()->getScalarSizeInBits())
1323       return true;
1324 
1325   // If all lanes of a vector shift are undefined the whole shift is.
1326   if (isa<ConstantVector>(C) || isa<ConstantDataVector>(C)) {
1327     for (unsigned I = 0, E = C->getType()->getVectorNumElements(); I != E; ++I)
1328       if (!isUndefShift(C->getAggregateElement(I)))
1329         return false;
1330     return true;
1331   }
1332 
1333   return false;
1334 }
1335 
1336 /// Given operands for an Shl, LShr or AShr, see if we can fold the result.
1337 /// If not, this returns null.
1338 static Value *SimplifyShift(unsigned Opcode, Value *Op0, Value *Op1,
1339                             const Query &Q, unsigned MaxRecurse) {
1340   if (Constant *C0 = dyn_cast<Constant>(Op0))
1341     if (Constant *C1 = dyn_cast<Constant>(Op1))
1342       return ConstantFoldBinaryOpOperands(Opcode, C0, C1, Q.DL);
1343 
1344   // 0 shift by X -> 0
1345   if (match(Op0, m_Zero()))
1346     return Op0;
1347 
1348   // X shift by 0 -> X
1349   if (match(Op1, m_Zero()))
1350     return Op0;
1351 
1352   // Fold undefined shifts.
1353   if (isUndefShift(Op1))
1354     return UndefValue::get(Op0->getType());
1355 
1356   // If the operation is with the result of a select instruction, check whether
1357   // operating on either branch of the select always yields the same value.
1358   if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
1359     if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse))
1360       return V;
1361 
1362   // If the operation is with the result of a phi instruction, check whether
1363   // operating on all incoming values of the phi always yields the same value.
1364   if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
1365     if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse))
1366       return V;
1367 
1368   // If any bits in the shift amount make that value greater than or equal to
1369   // the number of bits in the type, the shift is undefined.
1370   unsigned BitWidth = Op1->getType()->getScalarSizeInBits();
1371   APInt KnownZero(BitWidth, 0);
1372   APInt KnownOne(BitWidth, 0);
1373   computeKnownBits(Op1, KnownZero, KnownOne, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
1374   if (KnownOne.getLimitedValue() >= BitWidth)
1375     return UndefValue::get(Op0->getType());
1376 
1377   // If all valid bits in the shift amount are known zero, the first operand is
1378   // unchanged.
1379   unsigned NumValidShiftBits = Log2_32_Ceil(BitWidth);
1380   APInt ShiftAmountMask = APInt::getLowBitsSet(BitWidth, NumValidShiftBits);
1381   if ((KnownZero & ShiftAmountMask) == ShiftAmountMask)
1382     return Op0;
1383 
1384   return nullptr;
1385 }
1386 
1387 /// \brief Given operands for an Shl, LShr or AShr, see if we can
1388 /// fold the result.  If not, this returns null.
1389 static Value *SimplifyRightShift(unsigned Opcode, Value *Op0, Value *Op1,
1390                                  bool isExact, const Query &Q,
1391                                  unsigned MaxRecurse) {
1392   if (Value *V = SimplifyShift(Opcode, Op0, Op1, Q, MaxRecurse))
1393     return V;
1394 
1395   // X >> X -> 0
1396   if (Op0 == Op1)
1397     return Constant::getNullValue(Op0->getType());
1398 
1399   // undef >> X -> 0
1400   // undef >> X -> undef (if it's exact)
1401   if (match(Op0, m_Undef()))
1402     return isExact ? Op0 : Constant::getNullValue(Op0->getType());
1403 
1404   // The low bit cannot be shifted out of an exact shift if it is set.
1405   if (isExact) {
1406     unsigned BitWidth = Op0->getType()->getScalarSizeInBits();
1407     APInt Op0KnownZero(BitWidth, 0);
1408     APInt Op0KnownOne(BitWidth, 0);
1409     computeKnownBits(Op0, Op0KnownZero, Op0KnownOne, Q.DL, /*Depth=*/0, Q.AC,
1410                      Q.CxtI, Q.DT);
1411     if (Op0KnownOne[0])
1412       return Op0;
1413   }
1414 
1415   return nullptr;
1416 }
1417 
1418 /// Given operands for an Shl, see if we can fold the result.
1419 /// If not, this returns null.
1420 static Value *SimplifyShlInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
1421                               const Query &Q, unsigned MaxRecurse) {
1422   if (Value *V = SimplifyShift(Instruction::Shl, Op0, Op1, Q, MaxRecurse))
1423     return V;
1424 
1425   // undef << X -> 0
1426   // undef << X -> undef if (if it's NSW/NUW)
1427   if (match(Op0, m_Undef()))
1428     return isNSW || isNUW ? Op0 : Constant::getNullValue(Op0->getType());
1429 
1430   // (X >> A) << A -> X
1431   Value *X;
1432   if (match(Op0, m_Exact(m_Shr(m_Value(X), m_Specific(Op1)))))
1433     return X;
1434   return nullptr;
1435 }
1436 
1437 Value *llvm::SimplifyShlInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
1438                              const DataLayout &DL, const TargetLibraryInfo *TLI,
1439                              const DominatorTree *DT, AssumptionCache *AC,
1440                              const Instruction *CxtI) {
1441   return ::SimplifyShlInst(Op0, Op1, isNSW, isNUW, Query(DL, TLI, DT, AC, CxtI),
1442                            RecursionLimit);
1443 }
1444 
1445 /// Given operands for an LShr, see if we can fold the result.
1446 /// If not, this returns null.
1447 static Value *SimplifyLShrInst(Value *Op0, Value *Op1, bool isExact,
1448                                const Query &Q, unsigned MaxRecurse) {
1449   if (Value *V = SimplifyRightShift(Instruction::LShr, Op0, Op1, isExact, Q,
1450                                     MaxRecurse))
1451       return V;
1452 
1453   // (X << A) >> A -> X
1454   Value *X;
1455   if (match(Op0, m_NUWShl(m_Value(X), m_Specific(Op1))))
1456     return X;
1457 
1458   return nullptr;
1459 }
1460 
1461 Value *llvm::SimplifyLShrInst(Value *Op0, Value *Op1, bool isExact,
1462                               const DataLayout &DL,
1463                               const TargetLibraryInfo *TLI,
1464                               const DominatorTree *DT, AssumptionCache *AC,
1465                               const Instruction *CxtI) {
1466   return ::SimplifyLShrInst(Op0, Op1, isExact, Query(DL, TLI, DT, AC, CxtI),
1467                             RecursionLimit);
1468 }
1469 
1470 /// Given operands for an AShr, see if we can fold the result.
1471 /// If not, this returns null.
1472 static Value *SimplifyAShrInst(Value *Op0, Value *Op1, bool isExact,
1473                                const Query &Q, unsigned MaxRecurse) {
1474   if (Value *V = SimplifyRightShift(Instruction::AShr, Op0, Op1, isExact, Q,
1475                                     MaxRecurse))
1476     return V;
1477 
1478   // all ones >>a X -> all ones
1479   if (match(Op0, m_AllOnes()))
1480     return Op0;
1481 
1482   // (X << A) >> A -> X
1483   Value *X;
1484   if (match(Op0, m_NSWShl(m_Value(X), m_Specific(Op1))))
1485     return X;
1486 
1487   // Arithmetic shifting an all-sign-bit value is a no-op.
1488   unsigned NumSignBits = ComputeNumSignBits(Op0, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
1489   if (NumSignBits == Op0->getType()->getScalarSizeInBits())
1490     return Op0;
1491 
1492   return nullptr;
1493 }
1494 
1495 Value *llvm::SimplifyAShrInst(Value *Op0, Value *Op1, bool isExact,
1496                               const DataLayout &DL,
1497                               const TargetLibraryInfo *TLI,
1498                               const DominatorTree *DT, AssumptionCache *AC,
1499                               const Instruction *CxtI) {
1500   return ::SimplifyAShrInst(Op0, Op1, isExact, Query(DL, TLI, DT, AC, CxtI),
1501                             RecursionLimit);
1502 }
1503 
1504 static Value *simplifyUnsignedRangeCheck(ICmpInst *ZeroICmp,
1505                                          ICmpInst *UnsignedICmp, bool IsAnd) {
1506   Value *X, *Y;
1507 
1508   ICmpInst::Predicate EqPred;
1509   if (!match(ZeroICmp, m_ICmp(EqPred, m_Value(Y), m_Zero())) ||
1510       !ICmpInst::isEquality(EqPred))
1511     return nullptr;
1512 
1513   ICmpInst::Predicate UnsignedPred;
1514   if (match(UnsignedICmp, m_ICmp(UnsignedPred, m_Value(X), m_Specific(Y))) &&
1515       ICmpInst::isUnsigned(UnsignedPred))
1516     ;
1517   else if (match(UnsignedICmp,
1518                  m_ICmp(UnsignedPred, m_Value(Y), m_Specific(X))) &&
1519            ICmpInst::isUnsigned(UnsignedPred))
1520     UnsignedPred = ICmpInst::getSwappedPredicate(UnsignedPred);
1521   else
1522     return nullptr;
1523 
1524   // X < Y && Y != 0  -->  X < Y
1525   // X < Y || Y != 0  -->  Y != 0
1526   if (UnsignedPred == ICmpInst::ICMP_ULT && EqPred == ICmpInst::ICMP_NE)
1527     return IsAnd ? UnsignedICmp : ZeroICmp;
1528 
1529   // X >= Y || Y != 0  -->  true
1530   // X >= Y || Y == 0  -->  X >= Y
1531   if (UnsignedPred == ICmpInst::ICMP_UGE && !IsAnd) {
1532     if (EqPred == ICmpInst::ICMP_NE)
1533       return getTrue(UnsignedICmp->getType());
1534     return UnsignedICmp;
1535   }
1536 
1537   // X < Y && Y == 0  -->  false
1538   if (UnsignedPred == ICmpInst::ICMP_ULT && EqPred == ICmpInst::ICMP_EQ &&
1539       IsAnd)
1540     return getFalse(UnsignedICmp->getType());
1541 
1542   return nullptr;
1543 }
1544 
1545 /// Commuted variants are assumed to be handled by calling this function again
1546 /// with the parameters swapped.
1547 static Value *simplifyAndOfICmpsWithSameOperands(ICmpInst *Op0, ICmpInst *Op1) {
1548   ICmpInst::Predicate Pred0, Pred1;
1549   Value *A ,*B;
1550   if (!match(Op0, m_ICmp(Pred0, m_Value(A), m_Value(B))) ||
1551       !match(Op1, m_ICmp(Pred1, m_Specific(A), m_Specific(B))))
1552     return nullptr;
1553 
1554   // We have (icmp Pred0, A, B) & (icmp Pred1, A, B).
1555   // If Op1 is always implied true by Op0, then Op0 is a subset of Op1, and we
1556   // can eliminate Op1 from this 'and'.
1557   if (ICmpInst::isImpliedTrueByMatchingCmp(Pred0, Pred1))
1558     return Op0;
1559 
1560   // Check for any combination of predicates that are guaranteed to be disjoint.
1561   if ((Pred0 == ICmpInst::getInversePredicate(Pred1)) ||
1562       (Pred0 == ICmpInst::ICMP_EQ && ICmpInst::isFalseWhenEqual(Pred1)) ||
1563       (Pred0 == ICmpInst::ICMP_SLT && Pred1 == ICmpInst::ICMP_SGT) ||
1564       (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_UGT))
1565     return getFalse(Op0->getType());
1566 
1567   return nullptr;
1568 }
1569 
1570 /// Commuted variants are assumed to be handled by calling this function again
1571 /// with the parameters swapped.
1572 static Value *SimplifyAndOfICmps(ICmpInst *Op0, ICmpInst *Op1) {
1573   if (Value *X = simplifyUnsignedRangeCheck(Op0, Op1, /*IsAnd=*/true))
1574     return X;
1575 
1576   if (Value *X = simplifyAndOfICmpsWithSameOperands(Op0, Op1))
1577     return X;
1578 
1579   // Look for this pattern: (icmp V, C0) & (icmp V, C1)).
1580   Type *ITy = Op0->getType();
1581   ICmpInst::Predicate Pred0, Pred1;
1582   const APInt *C0, *C1;
1583   Value *V;
1584   if (match(Op0, m_ICmp(Pred0, m_Value(V), m_APInt(C0))) &&
1585       match(Op1, m_ICmp(Pred1, m_Specific(V), m_APInt(C1)))) {
1586     // Make a constant range that's the intersection of the two icmp ranges.
1587     // If the intersection is empty, we know that the result is false.
1588     auto Range0 = ConstantRange::makeAllowedICmpRegion(Pred0, *C0);
1589     auto Range1 = ConstantRange::makeAllowedICmpRegion(Pred1, *C1);
1590     if (Range0.intersectWith(Range1).isEmptySet())
1591       return getFalse(ITy);
1592   }
1593 
1594   // (icmp (add V, C0), C1) & (icmp V, C0)
1595   if (!match(Op0, m_ICmp(Pred0, m_Add(m_Value(V), m_APInt(C0)), m_APInt(C1))))
1596     return nullptr;
1597 
1598   if (!match(Op1, m_ICmp(Pred1, m_Specific(V), m_Value())))
1599     return nullptr;
1600 
1601   auto *AddInst = cast<BinaryOperator>(Op0->getOperand(0));
1602   if (AddInst->getOperand(1) != Op1->getOperand(1))
1603     return nullptr;
1604 
1605   bool isNSW = AddInst->hasNoSignedWrap();
1606   bool isNUW = AddInst->hasNoUnsignedWrap();
1607 
1608   const APInt Delta = *C1 - *C0;
1609   if (C0->isStrictlyPositive()) {
1610     if (Delta == 2) {
1611       if (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_SGT)
1612         return getFalse(ITy);
1613       if (Pred0 == ICmpInst::ICMP_SLT && Pred1 == ICmpInst::ICMP_SGT && isNSW)
1614         return getFalse(ITy);
1615     }
1616     if (Delta == 1) {
1617       if (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_SGT)
1618         return getFalse(ITy);
1619       if (Pred0 == ICmpInst::ICMP_SLE && Pred1 == ICmpInst::ICMP_SGT && isNSW)
1620         return getFalse(ITy);
1621     }
1622   }
1623   if (C0->getBoolValue() && isNUW) {
1624     if (Delta == 2)
1625       if (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_UGT)
1626         return getFalse(ITy);
1627     if (Delta == 1)
1628       if (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_UGT)
1629         return getFalse(ITy);
1630   }
1631 
1632   return nullptr;
1633 }
1634 
1635 /// Given operands for an And, see if we can fold the result.
1636 /// If not, this returns null.
1637 static Value *SimplifyAndInst(Value *Op0, Value *Op1, const Query &Q,
1638                               unsigned MaxRecurse) {
1639   if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
1640     if (Constant *CRHS = dyn_cast<Constant>(Op1))
1641       return ConstantFoldBinaryOpOperands(Instruction::And, CLHS, CRHS, Q.DL);
1642 
1643     // Canonicalize the constant to the RHS.
1644     std::swap(Op0, Op1);
1645   }
1646 
1647   // X & undef -> 0
1648   if (match(Op1, m_Undef()))
1649     return Constant::getNullValue(Op0->getType());
1650 
1651   // X & X = X
1652   if (Op0 == Op1)
1653     return Op0;
1654 
1655   // X & 0 = 0
1656   if (match(Op1, m_Zero()))
1657     return Op1;
1658 
1659   // X & -1 = X
1660   if (match(Op1, m_AllOnes()))
1661     return Op0;
1662 
1663   // A & ~A  =  ~A & A  =  0
1664   if (match(Op0, m_Not(m_Specific(Op1))) ||
1665       match(Op1, m_Not(m_Specific(Op0))))
1666     return Constant::getNullValue(Op0->getType());
1667 
1668   // (A | ?) & A = A
1669   Value *A = nullptr, *B = nullptr;
1670   if (match(Op0, m_Or(m_Value(A), m_Value(B))) &&
1671       (A == Op1 || B == Op1))
1672     return Op1;
1673 
1674   // A & (A | ?) = A
1675   if (match(Op1, m_Or(m_Value(A), m_Value(B))) &&
1676       (A == Op0 || B == Op0))
1677     return Op0;
1678 
1679   // A & (-A) = A if A is a power of two or zero.
1680   if (match(Op0, m_Neg(m_Specific(Op1))) ||
1681       match(Op1, m_Neg(m_Specific(Op0)))) {
1682     if (isKnownToBeAPowerOfTwo(Op0, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI,
1683                                Q.DT))
1684       return Op0;
1685     if (isKnownToBeAPowerOfTwo(Op1, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI,
1686                                Q.DT))
1687       return Op1;
1688   }
1689 
1690   if (auto *ICILHS = dyn_cast<ICmpInst>(Op0)) {
1691     if (auto *ICIRHS = dyn_cast<ICmpInst>(Op1)) {
1692       if (Value *V = SimplifyAndOfICmps(ICILHS, ICIRHS))
1693         return V;
1694       if (Value *V = SimplifyAndOfICmps(ICIRHS, ICILHS))
1695         return V;
1696     }
1697   }
1698 
1699   // The compares may be hidden behind casts. Look through those and try the
1700   // same folds as above.
1701   auto *Cast0 = dyn_cast<CastInst>(Op0);
1702   auto *Cast1 = dyn_cast<CastInst>(Op1);
1703   if (Cast0 && Cast1 && Cast0->getOpcode() == Cast1->getOpcode() &&
1704       Cast0->getSrcTy() == Cast1->getSrcTy()) {
1705     auto *Cmp0 = dyn_cast<ICmpInst>(Cast0->getOperand(0));
1706     auto *Cmp1 = dyn_cast<ICmpInst>(Cast1->getOperand(0));
1707     if (Cmp0 && Cmp1) {
1708       Instruction::CastOps CastOpc = Cast0->getOpcode();
1709       Type *ResultType = Cast0->getType();
1710       if (auto *V = dyn_cast_or_null<Constant>(SimplifyAndOfICmps(Cmp0, Cmp1)))
1711         return ConstantExpr::getCast(CastOpc, V, ResultType);
1712       if (auto *V = dyn_cast_or_null<Constant>(SimplifyAndOfICmps(Cmp1, Cmp0)))
1713         return ConstantExpr::getCast(CastOpc, V, ResultType);
1714     }
1715   }
1716 
1717   // Try some generic simplifications for associative operations.
1718   if (Value *V = SimplifyAssociativeBinOp(Instruction::And, Op0, Op1, Q,
1719                                           MaxRecurse))
1720     return V;
1721 
1722   // And distributes over Or.  Try some generic simplifications based on this.
1723   if (Value *V = ExpandBinOp(Instruction::And, Op0, Op1, Instruction::Or,
1724                              Q, MaxRecurse))
1725     return V;
1726 
1727   // And distributes over Xor.  Try some generic simplifications based on this.
1728   if (Value *V = ExpandBinOp(Instruction::And, Op0, Op1, Instruction::Xor,
1729                              Q, MaxRecurse))
1730     return V;
1731 
1732   // If the operation is with the result of a select instruction, check whether
1733   // operating on either branch of the select always yields the same value.
1734   if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
1735     if (Value *V = ThreadBinOpOverSelect(Instruction::And, Op0, Op1, Q,
1736                                          MaxRecurse))
1737       return V;
1738 
1739   // If the operation is with the result of a phi instruction, check whether
1740   // operating on all incoming values of the phi always yields the same value.
1741   if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
1742     if (Value *V = ThreadBinOpOverPHI(Instruction::And, Op0, Op1, Q,
1743                                       MaxRecurse))
1744       return V;
1745 
1746   return nullptr;
1747 }
1748 
1749 Value *llvm::SimplifyAndInst(Value *Op0, Value *Op1, const DataLayout &DL,
1750                              const TargetLibraryInfo *TLI,
1751                              const DominatorTree *DT, AssumptionCache *AC,
1752                              const Instruction *CxtI) {
1753   return ::SimplifyAndInst(Op0, Op1, Query(DL, TLI, DT, AC, CxtI),
1754                            RecursionLimit);
1755 }
1756 
1757 /// Commuted variants are assumed to be handled by calling this function again
1758 /// with the parameters swapped.
1759 static Value *simplifyOrOfICmpsWithSameOperands(ICmpInst *Op0, ICmpInst *Op1) {
1760   ICmpInst::Predicate Pred0, Pred1;
1761   Value *A ,*B;
1762   if (!match(Op0, m_ICmp(Pred0, m_Value(A), m_Value(B))) ||
1763       !match(Op1, m_ICmp(Pred1, m_Specific(A), m_Specific(B))))
1764     return nullptr;
1765 
1766   // We have (icmp Pred0, A, B) | (icmp Pred1, A, B).
1767   // If Op1 is always implied true by Op0, then Op0 is a subset of Op1, and we
1768   // can eliminate Op0 from this 'or'.
1769   if (ICmpInst::isImpliedTrueByMatchingCmp(Pred0, Pred1))
1770     return Op1;
1771 
1772   // Check for any combination of predicates that cover the entire range of
1773   // possibilities.
1774   if ((Pred0 == ICmpInst::getInversePredicate(Pred1)) ||
1775       (Pred0 == ICmpInst::ICMP_NE && ICmpInst::isTrueWhenEqual(Pred1)) ||
1776       (Pred0 == ICmpInst::ICMP_SLE && Pred1 == ICmpInst::ICMP_SGE) ||
1777       (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_UGE))
1778     return getTrue(Op0->getType());
1779 
1780   return nullptr;
1781 }
1782 
1783 /// Commuted variants are assumed to be handled by calling this function again
1784 /// with the parameters swapped.
1785 static Value *SimplifyOrOfICmps(ICmpInst *Op0, ICmpInst *Op1) {
1786   if (Value *X = simplifyUnsignedRangeCheck(Op0, Op1, /*IsAnd=*/false))
1787     return X;
1788 
1789   if (Value *X = simplifyOrOfICmpsWithSameOperands(Op0, Op1))
1790     return X;
1791 
1792   // (icmp (add V, C0), C1) | (icmp V, C0)
1793   ICmpInst::Predicate Pred0, Pred1;
1794   const APInt *C0, *C1;
1795   Value *V;
1796   if (!match(Op0, m_ICmp(Pred0, m_Add(m_Value(V), m_APInt(C0)), m_APInt(C1))))
1797     return nullptr;
1798 
1799   if (!match(Op1, m_ICmp(Pred1, m_Specific(V), m_Value())))
1800     return nullptr;
1801 
1802   auto *AddInst = cast<BinaryOperator>(Op0->getOperand(0));
1803   if (AddInst->getOperand(1) != Op1->getOperand(1))
1804     return nullptr;
1805 
1806   Type *ITy = Op0->getType();
1807   bool isNSW = AddInst->hasNoSignedWrap();
1808   bool isNUW = AddInst->hasNoUnsignedWrap();
1809 
1810   const APInt Delta = *C1 - *C0;
1811   if (C0->isStrictlyPositive()) {
1812     if (Delta == 2) {
1813       if (Pred0 == ICmpInst::ICMP_UGE && Pred1 == ICmpInst::ICMP_SLE)
1814         return getTrue(ITy);
1815       if (Pred0 == ICmpInst::ICMP_SGE && Pred1 == ICmpInst::ICMP_SLE && isNSW)
1816         return getTrue(ITy);
1817     }
1818     if (Delta == 1) {
1819       if (Pred0 == ICmpInst::ICMP_UGT && Pred1 == ICmpInst::ICMP_SLE)
1820         return getTrue(ITy);
1821       if (Pred0 == ICmpInst::ICMP_SGT && Pred1 == ICmpInst::ICMP_SLE && isNSW)
1822         return getTrue(ITy);
1823     }
1824   }
1825   if (C0->getBoolValue() && isNUW) {
1826     if (Delta == 2)
1827       if (Pred0 == ICmpInst::ICMP_UGE && Pred1 == ICmpInst::ICMP_ULE)
1828         return getTrue(ITy);
1829     if (Delta == 1)
1830       if (Pred0 == ICmpInst::ICMP_UGT && Pred1 == ICmpInst::ICMP_ULE)
1831         return getTrue(ITy);
1832   }
1833 
1834   return nullptr;
1835 }
1836 
1837 /// Given operands for an Or, see if we can fold the result.
1838 /// If not, this returns null.
1839 static Value *SimplifyOrInst(Value *Op0, Value *Op1, const Query &Q,
1840                              unsigned MaxRecurse) {
1841   if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
1842     if (Constant *CRHS = dyn_cast<Constant>(Op1))
1843       return ConstantFoldBinaryOpOperands(Instruction::Or, CLHS, CRHS, Q.DL);
1844 
1845     // Canonicalize the constant to the RHS.
1846     std::swap(Op0, Op1);
1847   }
1848 
1849   // X | undef -> -1
1850   if (match(Op1, m_Undef()))
1851     return Constant::getAllOnesValue(Op0->getType());
1852 
1853   // X | X = X
1854   if (Op0 == Op1)
1855     return Op0;
1856 
1857   // X | 0 = X
1858   if (match(Op1, m_Zero()))
1859     return Op0;
1860 
1861   // X | -1 = -1
1862   if (match(Op1, m_AllOnes()))
1863     return Op1;
1864 
1865   // A | ~A  =  ~A | A  =  -1
1866   if (match(Op0, m_Not(m_Specific(Op1))) ||
1867       match(Op1, m_Not(m_Specific(Op0))))
1868     return Constant::getAllOnesValue(Op0->getType());
1869 
1870   // (A & ?) | A = A
1871   Value *A = nullptr, *B = nullptr;
1872   if (match(Op0, m_And(m_Value(A), m_Value(B))) &&
1873       (A == Op1 || B == Op1))
1874     return Op1;
1875 
1876   // A | (A & ?) = A
1877   if (match(Op1, m_And(m_Value(A), m_Value(B))) &&
1878       (A == Op0 || B == Op0))
1879     return Op0;
1880 
1881   // ~(A & ?) | A = -1
1882   if (match(Op0, m_Not(m_And(m_Value(A), m_Value(B)))) &&
1883       (A == Op1 || B == Op1))
1884     return Constant::getAllOnesValue(Op1->getType());
1885 
1886   // A | ~(A & ?) = -1
1887   if (match(Op1, m_Not(m_And(m_Value(A), m_Value(B)))) &&
1888       (A == Op0 || B == Op0))
1889     return Constant::getAllOnesValue(Op0->getType());
1890 
1891   if (auto *ICILHS = dyn_cast<ICmpInst>(Op0)) {
1892     if (auto *ICIRHS = dyn_cast<ICmpInst>(Op1)) {
1893       if (Value *V = SimplifyOrOfICmps(ICILHS, ICIRHS))
1894         return V;
1895       if (Value *V = SimplifyOrOfICmps(ICIRHS, ICILHS))
1896         return V;
1897     }
1898   }
1899 
1900   // Try some generic simplifications for associative operations.
1901   if (Value *V = SimplifyAssociativeBinOp(Instruction::Or, Op0, Op1, Q,
1902                                           MaxRecurse))
1903     return V;
1904 
1905   // Or distributes over And.  Try some generic simplifications based on this.
1906   if (Value *V = ExpandBinOp(Instruction::Or, Op0, Op1, Instruction::And, Q,
1907                              MaxRecurse))
1908     return V;
1909 
1910   // If the operation is with the result of a select instruction, check whether
1911   // operating on either branch of the select always yields the same value.
1912   if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
1913     if (Value *V = ThreadBinOpOverSelect(Instruction::Or, Op0, Op1, Q,
1914                                          MaxRecurse))
1915       return V;
1916 
1917   // (A & C)|(B & D)
1918   Value *C = nullptr, *D = nullptr;
1919   if (match(Op0, m_And(m_Value(A), m_Value(C))) &&
1920       match(Op1, m_And(m_Value(B), m_Value(D)))) {
1921     ConstantInt *C1 = dyn_cast<ConstantInt>(C);
1922     ConstantInt *C2 = dyn_cast<ConstantInt>(D);
1923     if (C1 && C2 && (C1->getValue() == ~C2->getValue())) {
1924       // (A & C1)|(B & C2)
1925       // If we have: ((V + N) & C1) | (V & C2)
1926       // .. and C2 = ~C1 and C2 is 0+1+ and (N & C2) == 0
1927       // replace with V+N.
1928       Value *V1, *V2;
1929       if ((C2->getValue() & (C2->getValue() + 1)) == 0 && // C2 == 0+1+
1930           match(A, m_Add(m_Value(V1), m_Value(V2)))) {
1931         // Add commutes, try both ways.
1932         if (V1 == B &&
1933             MaskedValueIsZero(V2, C2->getValue(), Q.DL, 0, Q.AC, Q.CxtI, Q.DT))
1934           return A;
1935         if (V2 == B &&
1936             MaskedValueIsZero(V1, C2->getValue(), Q.DL, 0, Q.AC, Q.CxtI, Q.DT))
1937           return A;
1938       }
1939       // Or commutes, try both ways.
1940       if ((C1->getValue() & (C1->getValue() + 1)) == 0 &&
1941           match(B, m_Add(m_Value(V1), m_Value(V2)))) {
1942         // Add commutes, try both ways.
1943         if (V1 == A &&
1944             MaskedValueIsZero(V2, C1->getValue(), Q.DL, 0, Q.AC, Q.CxtI, Q.DT))
1945           return B;
1946         if (V2 == A &&
1947             MaskedValueIsZero(V1, C1->getValue(), Q.DL, 0, Q.AC, Q.CxtI, Q.DT))
1948           return B;
1949       }
1950     }
1951   }
1952 
1953   // If the operation is with the result of a phi instruction, check whether
1954   // operating on all incoming values of the phi always yields the same value.
1955   if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
1956     if (Value *V = ThreadBinOpOverPHI(Instruction::Or, Op0, Op1, Q, MaxRecurse))
1957       return V;
1958 
1959   return nullptr;
1960 }
1961 
1962 Value *llvm::SimplifyOrInst(Value *Op0, Value *Op1, const DataLayout &DL,
1963                             const TargetLibraryInfo *TLI,
1964                             const DominatorTree *DT, AssumptionCache *AC,
1965                             const Instruction *CxtI) {
1966   return ::SimplifyOrInst(Op0, Op1, Query(DL, TLI, DT, AC, CxtI),
1967                           RecursionLimit);
1968 }
1969 
1970 /// Given operands for a Xor, see if we can fold the result.
1971 /// If not, this returns null.
1972 static Value *SimplifyXorInst(Value *Op0, Value *Op1, const Query &Q,
1973                               unsigned MaxRecurse) {
1974   if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
1975     if (Constant *CRHS = dyn_cast<Constant>(Op1))
1976       return ConstantFoldBinaryOpOperands(Instruction::Xor, CLHS, CRHS, Q.DL);
1977 
1978     // Canonicalize the constant to the RHS.
1979     std::swap(Op0, Op1);
1980   }
1981 
1982   // A ^ undef -> undef
1983   if (match(Op1, m_Undef()))
1984     return Op1;
1985 
1986   // A ^ 0 = A
1987   if (match(Op1, m_Zero()))
1988     return Op0;
1989 
1990   // A ^ A = 0
1991   if (Op0 == Op1)
1992     return Constant::getNullValue(Op0->getType());
1993 
1994   // A ^ ~A  =  ~A ^ A  =  -1
1995   if (match(Op0, m_Not(m_Specific(Op1))) ||
1996       match(Op1, m_Not(m_Specific(Op0))))
1997     return Constant::getAllOnesValue(Op0->getType());
1998 
1999   // Try some generic simplifications for associative operations.
2000   if (Value *V = SimplifyAssociativeBinOp(Instruction::Xor, Op0, Op1, Q,
2001                                           MaxRecurse))
2002     return V;
2003 
2004   // Threading Xor over selects and phi nodes is pointless, so don't bother.
2005   // Threading over the select in "A ^ select(cond, B, C)" means evaluating
2006   // "A^B" and "A^C" and seeing if they are equal; but they are equal if and
2007   // only if B and C are equal.  If B and C are equal then (since we assume
2008   // that operands have already been simplified) "select(cond, B, C)" should
2009   // have been simplified to the common value of B and C already.  Analysing
2010   // "A^B" and "A^C" thus gains nothing, but costs compile time.  Similarly
2011   // for threading over phi nodes.
2012 
2013   return nullptr;
2014 }
2015 
2016 Value *llvm::SimplifyXorInst(Value *Op0, Value *Op1, const DataLayout &DL,
2017                              const TargetLibraryInfo *TLI,
2018                              const DominatorTree *DT, AssumptionCache *AC,
2019                              const Instruction *CxtI) {
2020   return ::SimplifyXorInst(Op0, Op1, Query(DL, TLI, DT, AC, CxtI),
2021                            RecursionLimit);
2022 }
2023 
2024 static Type *GetCompareTy(Value *Op) {
2025   return CmpInst::makeCmpResultType(Op->getType());
2026 }
2027 
2028 /// Rummage around inside V looking for something equivalent to the comparison
2029 /// "LHS Pred RHS". Return such a value if found, otherwise return null.
2030 /// Helper function for analyzing max/min idioms.
2031 static Value *ExtractEquivalentCondition(Value *V, CmpInst::Predicate Pred,
2032                                          Value *LHS, Value *RHS) {
2033   SelectInst *SI = dyn_cast<SelectInst>(V);
2034   if (!SI)
2035     return nullptr;
2036   CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition());
2037   if (!Cmp)
2038     return nullptr;
2039   Value *CmpLHS = Cmp->getOperand(0), *CmpRHS = Cmp->getOperand(1);
2040   if (Pred == Cmp->getPredicate() && LHS == CmpLHS && RHS == CmpRHS)
2041     return Cmp;
2042   if (Pred == CmpInst::getSwappedPredicate(Cmp->getPredicate()) &&
2043       LHS == CmpRHS && RHS == CmpLHS)
2044     return Cmp;
2045   return nullptr;
2046 }
2047 
2048 // A significant optimization not implemented here is assuming that alloca
2049 // addresses are not equal to incoming argument values. They don't *alias*,
2050 // as we say, but that doesn't mean they aren't equal, so we take a
2051 // conservative approach.
2052 //
2053 // This is inspired in part by C++11 5.10p1:
2054 //   "Two pointers of the same type compare equal if and only if they are both
2055 //    null, both point to the same function, or both represent the same
2056 //    address."
2057 //
2058 // This is pretty permissive.
2059 //
2060 // It's also partly due to C11 6.5.9p6:
2061 //   "Two pointers compare equal if and only if both are null pointers, both are
2062 //    pointers to the same object (including a pointer to an object and a
2063 //    subobject at its beginning) or function, both are pointers to one past the
2064 //    last element of the same array object, or one is a pointer to one past the
2065 //    end of one array object and the other is a pointer to the start of a
2066 //    different array object that happens to immediately follow the first array
2067 //    object in the address space.)
2068 //
2069 // C11's version is more restrictive, however there's no reason why an argument
2070 // couldn't be a one-past-the-end value for a stack object in the caller and be
2071 // equal to the beginning of a stack object in the callee.
2072 //
2073 // If the C and C++ standards are ever made sufficiently restrictive in this
2074 // area, it may be possible to update LLVM's semantics accordingly and reinstate
2075 // this optimization.
2076 static Constant *
2077 computePointerICmp(const DataLayout &DL, const TargetLibraryInfo *TLI,
2078                    const DominatorTree *DT, CmpInst::Predicate Pred,
2079                    const Instruction *CxtI, Value *LHS, Value *RHS) {
2080   // First, skip past any trivial no-ops.
2081   LHS = LHS->stripPointerCasts();
2082   RHS = RHS->stripPointerCasts();
2083 
2084   // A non-null pointer is not equal to a null pointer.
2085   if (llvm::isKnownNonNull(LHS) && isa<ConstantPointerNull>(RHS) &&
2086       (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE))
2087     return ConstantInt::get(GetCompareTy(LHS),
2088                             !CmpInst::isTrueWhenEqual(Pred));
2089 
2090   // We can only fold certain predicates on pointer comparisons.
2091   switch (Pred) {
2092   default:
2093     return nullptr;
2094 
2095     // Equality comaprisons are easy to fold.
2096   case CmpInst::ICMP_EQ:
2097   case CmpInst::ICMP_NE:
2098     break;
2099 
2100     // We can only handle unsigned relational comparisons because 'inbounds' on
2101     // a GEP only protects against unsigned wrapping.
2102   case CmpInst::ICMP_UGT:
2103   case CmpInst::ICMP_UGE:
2104   case CmpInst::ICMP_ULT:
2105   case CmpInst::ICMP_ULE:
2106     // However, we have to switch them to their signed variants to handle
2107     // negative indices from the base pointer.
2108     Pred = ICmpInst::getSignedPredicate(Pred);
2109     break;
2110   }
2111 
2112   // Strip off any constant offsets so that we can reason about them.
2113   // It's tempting to use getUnderlyingObject or even just stripInBoundsOffsets
2114   // here and compare base addresses like AliasAnalysis does, however there are
2115   // numerous hazards. AliasAnalysis and its utilities rely on special rules
2116   // governing loads and stores which don't apply to icmps. Also, AliasAnalysis
2117   // doesn't need to guarantee pointer inequality when it says NoAlias.
2118   Constant *LHSOffset = stripAndComputeConstantOffsets(DL, LHS);
2119   Constant *RHSOffset = stripAndComputeConstantOffsets(DL, RHS);
2120 
2121   // If LHS and RHS are related via constant offsets to the same base
2122   // value, we can replace it with an icmp which just compares the offsets.
2123   if (LHS == RHS)
2124     return ConstantExpr::getICmp(Pred, LHSOffset, RHSOffset);
2125 
2126   // Various optimizations for (in)equality comparisons.
2127   if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE) {
2128     // Different non-empty allocations that exist at the same time have
2129     // different addresses (if the program can tell). Global variables always
2130     // exist, so they always exist during the lifetime of each other and all
2131     // allocas. Two different allocas usually have different addresses...
2132     //
2133     // However, if there's an @llvm.stackrestore dynamically in between two
2134     // allocas, they may have the same address. It's tempting to reduce the
2135     // scope of the problem by only looking at *static* allocas here. That would
2136     // cover the majority of allocas while significantly reducing the likelihood
2137     // of having an @llvm.stackrestore pop up in the middle. However, it's not
2138     // actually impossible for an @llvm.stackrestore to pop up in the middle of
2139     // an entry block. Also, if we have a block that's not attached to a
2140     // function, we can't tell if it's "static" under the current definition.
2141     // Theoretically, this problem could be fixed by creating a new kind of
2142     // instruction kind specifically for static allocas. Such a new instruction
2143     // could be required to be at the top of the entry block, thus preventing it
2144     // from being subject to a @llvm.stackrestore. Instcombine could even
2145     // convert regular allocas into these special allocas. It'd be nifty.
2146     // However, until then, this problem remains open.
2147     //
2148     // So, we'll assume that two non-empty allocas have different addresses
2149     // for now.
2150     //
2151     // With all that, if the offsets are within the bounds of their allocations
2152     // (and not one-past-the-end! so we can't use inbounds!), and their
2153     // allocations aren't the same, the pointers are not equal.
2154     //
2155     // Note that it's not necessary to check for LHS being a global variable
2156     // address, due to canonicalization and constant folding.
2157     if (isa<AllocaInst>(LHS) &&
2158         (isa<AllocaInst>(RHS) || isa<GlobalVariable>(RHS))) {
2159       ConstantInt *LHSOffsetCI = dyn_cast<ConstantInt>(LHSOffset);
2160       ConstantInt *RHSOffsetCI = dyn_cast<ConstantInt>(RHSOffset);
2161       uint64_t LHSSize, RHSSize;
2162       if (LHSOffsetCI && RHSOffsetCI &&
2163           getObjectSize(LHS, LHSSize, DL, TLI) &&
2164           getObjectSize(RHS, RHSSize, DL, TLI)) {
2165         const APInt &LHSOffsetValue = LHSOffsetCI->getValue();
2166         const APInt &RHSOffsetValue = RHSOffsetCI->getValue();
2167         if (!LHSOffsetValue.isNegative() &&
2168             !RHSOffsetValue.isNegative() &&
2169             LHSOffsetValue.ult(LHSSize) &&
2170             RHSOffsetValue.ult(RHSSize)) {
2171           return ConstantInt::get(GetCompareTy(LHS),
2172                                   !CmpInst::isTrueWhenEqual(Pred));
2173         }
2174       }
2175 
2176       // Repeat the above check but this time without depending on DataLayout
2177       // or being able to compute a precise size.
2178       if (!cast<PointerType>(LHS->getType())->isEmptyTy() &&
2179           !cast<PointerType>(RHS->getType())->isEmptyTy() &&
2180           LHSOffset->isNullValue() &&
2181           RHSOffset->isNullValue())
2182         return ConstantInt::get(GetCompareTy(LHS),
2183                                 !CmpInst::isTrueWhenEqual(Pred));
2184     }
2185 
2186     // Even if an non-inbounds GEP occurs along the path we can still optimize
2187     // equality comparisons concerning the result. We avoid walking the whole
2188     // chain again by starting where the last calls to
2189     // stripAndComputeConstantOffsets left off and accumulate the offsets.
2190     Constant *LHSNoBound = stripAndComputeConstantOffsets(DL, LHS, true);
2191     Constant *RHSNoBound = stripAndComputeConstantOffsets(DL, RHS, true);
2192     if (LHS == RHS)
2193       return ConstantExpr::getICmp(Pred,
2194                                    ConstantExpr::getAdd(LHSOffset, LHSNoBound),
2195                                    ConstantExpr::getAdd(RHSOffset, RHSNoBound));
2196 
2197     // If one side of the equality comparison must come from a noalias call
2198     // (meaning a system memory allocation function), and the other side must
2199     // come from a pointer that cannot overlap with dynamically-allocated
2200     // memory within the lifetime of the current function (allocas, byval
2201     // arguments, globals), then determine the comparison result here.
2202     SmallVector<Value *, 8> LHSUObjs, RHSUObjs;
2203     GetUnderlyingObjects(LHS, LHSUObjs, DL);
2204     GetUnderlyingObjects(RHS, RHSUObjs, DL);
2205 
2206     // Is the set of underlying objects all noalias calls?
2207     auto IsNAC = [](ArrayRef<Value *> Objects) {
2208       return all_of(Objects, isNoAliasCall);
2209     };
2210 
2211     // Is the set of underlying objects all things which must be disjoint from
2212     // noalias calls. For allocas, we consider only static ones (dynamic
2213     // allocas might be transformed into calls to malloc not simultaneously
2214     // live with the compared-to allocation). For globals, we exclude symbols
2215     // that might be resolve lazily to symbols in another dynamically-loaded
2216     // library (and, thus, could be malloc'ed by the implementation).
2217     auto IsAllocDisjoint = [](ArrayRef<Value *> Objects) {
2218       return all_of(Objects, [](Value *V) {
2219         if (const AllocaInst *AI = dyn_cast<AllocaInst>(V))
2220           return AI->getParent() && AI->getFunction() && AI->isStaticAlloca();
2221         if (const GlobalValue *GV = dyn_cast<GlobalValue>(V))
2222           return (GV->hasLocalLinkage() || GV->hasHiddenVisibility() ||
2223                   GV->hasProtectedVisibility() || GV->hasGlobalUnnamedAddr()) &&
2224                  !GV->isThreadLocal();
2225         if (const Argument *A = dyn_cast<Argument>(V))
2226           return A->hasByValAttr();
2227         return false;
2228       });
2229     };
2230 
2231     if ((IsNAC(LHSUObjs) && IsAllocDisjoint(RHSUObjs)) ||
2232         (IsNAC(RHSUObjs) && IsAllocDisjoint(LHSUObjs)))
2233         return ConstantInt::get(GetCompareTy(LHS),
2234                                 !CmpInst::isTrueWhenEqual(Pred));
2235 
2236     // Fold comparisons for non-escaping pointer even if the allocation call
2237     // cannot be elided. We cannot fold malloc comparison to null. Also, the
2238     // dynamic allocation call could be either of the operands.
2239     Value *MI = nullptr;
2240     if (isAllocLikeFn(LHS, TLI) && llvm::isKnownNonNullAt(RHS, CxtI, DT))
2241       MI = LHS;
2242     else if (isAllocLikeFn(RHS, TLI) && llvm::isKnownNonNullAt(LHS, CxtI, DT))
2243       MI = RHS;
2244     // FIXME: We should also fold the compare when the pointer escapes, but the
2245     // compare dominates the pointer escape
2246     if (MI && !PointerMayBeCaptured(MI, true, true))
2247       return ConstantInt::get(GetCompareTy(LHS),
2248                               CmpInst::isFalseWhenEqual(Pred));
2249   }
2250 
2251   // Otherwise, fail.
2252   return nullptr;
2253 }
2254 
2255 /// Fold an icmp when its operands have i1 scalar type.
2256 static Value *simplifyICmpOfBools(CmpInst::Predicate Pred, Value *LHS,
2257                                   Value *RHS, const Query &Q) {
2258   Type *ITy = GetCompareTy(LHS); // The return type.
2259   Type *OpTy = LHS->getType();   // The operand type.
2260   if (!OpTy->getScalarType()->isIntegerTy(1))
2261     return nullptr;
2262 
2263   switch (Pred) {
2264   default:
2265     break;
2266   case ICmpInst::ICMP_EQ:
2267     // X == 1 -> X
2268     if (match(RHS, m_One()))
2269       return LHS;
2270     break;
2271   case ICmpInst::ICMP_NE:
2272     // X != 0 -> X
2273     if (match(RHS, m_Zero()))
2274       return LHS;
2275     break;
2276   case ICmpInst::ICMP_UGT:
2277     // X >u 0 -> X
2278     if (match(RHS, m_Zero()))
2279       return LHS;
2280     break;
2281   case ICmpInst::ICMP_UGE:
2282     // X >=u 1 -> X
2283     if (match(RHS, m_One()))
2284       return LHS;
2285     if (isImpliedCondition(RHS, LHS, Q.DL).getValueOr(false))
2286       return getTrue(ITy);
2287     break;
2288   case ICmpInst::ICMP_SGE:
2289     /// For signed comparison, the values for an i1 are 0 and -1
2290     /// respectively. This maps into a truth table of:
2291     /// LHS | RHS | LHS >=s RHS   | LHS implies RHS
2292     ///  0  |  0  |  1 (0 >= 0)   |  1
2293     ///  0  |  1  |  1 (0 >= -1)  |  1
2294     ///  1  |  0  |  0 (-1 >= 0)  |  0
2295     ///  1  |  1  |  1 (-1 >= -1) |  1
2296     if (isImpliedCondition(LHS, RHS, Q.DL).getValueOr(false))
2297       return getTrue(ITy);
2298     break;
2299   case ICmpInst::ICMP_SLT:
2300     // X <s 0 -> X
2301     if (match(RHS, m_Zero()))
2302       return LHS;
2303     break;
2304   case ICmpInst::ICMP_SLE:
2305     // X <=s -1 -> X
2306     if (match(RHS, m_One()))
2307       return LHS;
2308     break;
2309   case ICmpInst::ICMP_ULE:
2310     if (isImpliedCondition(LHS, RHS, Q.DL).getValueOr(false))
2311       return getTrue(ITy);
2312     break;
2313   }
2314 
2315   return nullptr;
2316 }
2317 
2318 /// Try hard to fold icmp with zero RHS because this is a common case.
2319 static Value *simplifyICmpWithZero(CmpInst::Predicate Pred, Value *LHS,
2320                                    Value *RHS, const Query &Q) {
2321   if (!match(RHS, m_Zero()))
2322     return nullptr;
2323 
2324   Type *ITy = GetCompareTy(LHS); // The return type.
2325   bool LHSKnownNonNegative, LHSKnownNegative;
2326   switch (Pred) {
2327   default:
2328     llvm_unreachable("Unknown ICmp predicate!");
2329   case ICmpInst::ICMP_ULT:
2330     return getFalse(ITy);
2331   case ICmpInst::ICMP_UGE:
2332     return getTrue(ITy);
2333   case ICmpInst::ICMP_EQ:
2334   case ICmpInst::ICMP_ULE:
2335     if (isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT))
2336       return getFalse(ITy);
2337     break;
2338   case ICmpInst::ICMP_NE:
2339   case ICmpInst::ICMP_UGT:
2340     if (isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT))
2341       return getTrue(ITy);
2342     break;
2343   case ICmpInst::ICMP_SLT:
2344     ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, Q.DL, 0, Q.AC,
2345                    Q.CxtI, Q.DT);
2346     if (LHSKnownNegative)
2347       return getTrue(ITy);
2348     if (LHSKnownNonNegative)
2349       return getFalse(ITy);
2350     break;
2351   case ICmpInst::ICMP_SLE:
2352     ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, Q.DL, 0, Q.AC,
2353                    Q.CxtI, Q.DT);
2354     if (LHSKnownNegative)
2355       return getTrue(ITy);
2356     if (LHSKnownNonNegative && isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT))
2357       return getFalse(ITy);
2358     break;
2359   case ICmpInst::ICMP_SGE:
2360     ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, Q.DL, 0, Q.AC,
2361                    Q.CxtI, Q.DT);
2362     if (LHSKnownNegative)
2363       return getFalse(ITy);
2364     if (LHSKnownNonNegative)
2365       return getTrue(ITy);
2366     break;
2367   case ICmpInst::ICMP_SGT:
2368     ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, Q.DL, 0, Q.AC,
2369                    Q.CxtI, Q.DT);
2370     if (LHSKnownNegative)
2371       return getFalse(ITy);
2372     if (LHSKnownNonNegative && isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT))
2373       return getTrue(ITy);
2374     break;
2375   }
2376 
2377   return nullptr;
2378 }
2379 
2380 /// Many binary operators with a constant operand have an easy-to-compute
2381 /// range of outputs. This can be used to fold a comparison to always true or
2382 /// always false.
2383 static void setLimitsForBinOp(BinaryOperator &BO, APInt &Lower, APInt &Upper) {
2384   unsigned Width = Lower.getBitWidth();
2385   const APInt *C;
2386   switch (BO.getOpcode()) {
2387   case Instruction::Add:
2388     if (match(BO.getOperand(1), m_APInt(C)) && *C != 0) {
2389       // FIXME: If we have both nuw and nsw, we should reduce the range further.
2390       if (BO.hasNoUnsignedWrap()) {
2391         // 'add nuw x, C' produces [C, UINT_MAX].
2392         Lower = *C;
2393       } else if (BO.hasNoSignedWrap()) {
2394         if (C->isNegative()) {
2395           // 'add nsw x, -C' produces [SINT_MIN, SINT_MAX - C].
2396           Lower = APInt::getSignedMinValue(Width);
2397           Upper = APInt::getSignedMaxValue(Width) + *C + 1;
2398         } else {
2399           // 'add nsw x, +C' produces [SINT_MIN + C, SINT_MAX].
2400           Lower = APInt::getSignedMinValue(Width) + *C;
2401           Upper = APInt::getSignedMaxValue(Width) + 1;
2402         }
2403       }
2404     }
2405     break;
2406 
2407   case Instruction::And:
2408     if (match(BO.getOperand(1), m_APInt(C)))
2409       // 'and x, C' produces [0, C].
2410       Upper = *C + 1;
2411     break;
2412 
2413   case Instruction::Or:
2414     if (match(BO.getOperand(1), m_APInt(C)))
2415       // 'or x, C' produces [C, UINT_MAX].
2416       Lower = *C;
2417     break;
2418 
2419   case Instruction::AShr:
2420     if (match(BO.getOperand(1), m_APInt(C)) && C->ult(Width)) {
2421       // 'ashr x, C' produces [INT_MIN >> C, INT_MAX >> C].
2422       Lower = APInt::getSignedMinValue(Width).ashr(*C);
2423       Upper = APInt::getSignedMaxValue(Width).ashr(*C) + 1;
2424     } else if (match(BO.getOperand(0), m_APInt(C))) {
2425       unsigned ShiftAmount = Width - 1;
2426       if (*C != 0 && BO.isExact())
2427         ShiftAmount = C->countTrailingZeros();
2428       if (C->isNegative()) {
2429         // 'ashr C, x' produces [C, C >> (Width-1)]
2430         Lower = *C;
2431         Upper = C->ashr(ShiftAmount) + 1;
2432       } else {
2433         // 'ashr C, x' produces [C >> (Width-1), C]
2434         Lower = C->ashr(ShiftAmount);
2435         Upper = *C + 1;
2436       }
2437     }
2438     break;
2439 
2440   case Instruction::LShr:
2441     if (match(BO.getOperand(1), m_APInt(C)) && C->ult(Width)) {
2442       // 'lshr x, C' produces [0, UINT_MAX >> C].
2443       Upper = APInt::getAllOnesValue(Width).lshr(*C) + 1;
2444     } else if (match(BO.getOperand(0), m_APInt(C))) {
2445       // 'lshr C, x' produces [C >> (Width-1), C].
2446       unsigned ShiftAmount = Width - 1;
2447       if (*C != 0 && BO.isExact())
2448         ShiftAmount = C->countTrailingZeros();
2449       Lower = C->lshr(ShiftAmount);
2450       Upper = *C + 1;
2451     }
2452     break;
2453 
2454   case Instruction::Shl:
2455     if (match(BO.getOperand(0), m_APInt(C))) {
2456       if (BO.hasNoUnsignedWrap()) {
2457         // 'shl nuw C, x' produces [C, C << CLZ(C)]
2458         Lower = *C;
2459         Upper = Lower.shl(Lower.countLeadingZeros()) + 1;
2460       } else if (BO.hasNoSignedWrap()) { // TODO: What if both nuw+nsw?
2461         if (C->isNegative()) {
2462           // 'shl nsw C, x' produces [C << CLO(C)-1, C]
2463           unsigned ShiftAmount = C->countLeadingOnes() - 1;
2464           Lower = C->shl(ShiftAmount);
2465           Upper = *C + 1;
2466         } else {
2467           // 'shl nsw C, x' produces [C, C << CLZ(C)-1]
2468           unsigned ShiftAmount = C->countLeadingZeros() - 1;
2469           Lower = *C;
2470           Upper = C->shl(ShiftAmount) + 1;
2471         }
2472       }
2473     }
2474     break;
2475 
2476   case Instruction::SDiv:
2477     if (match(BO.getOperand(1), m_APInt(C))) {
2478       APInt IntMin = APInt::getSignedMinValue(Width);
2479       APInt IntMax = APInt::getSignedMaxValue(Width);
2480       if (C->isAllOnesValue()) {
2481         // 'sdiv x, -1' produces [INT_MIN + 1, INT_MAX]
2482         //    where C != -1 and C != 0 and C != 1
2483         Lower = IntMin + 1;
2484         Upper = IntMax + 1;
2485       } else if (C->countLeadingZeros() < Width - 1) {
2486         // 'sdiv x, C' produces [INT_MIN / C, INT_MAX / C]
2487         //    where C != -1 and C != 0 and C != 1
2488         Lower = IntMin.sdiv(*C);
2489         Upper = IntMax.sdiv(*C);
2490         if (Lower.sgt(Upper))
2491           std::swap(Lower, Upper);
2492         Upper = Upper + 1;
2493         assert(Upper != Lower && "Upper part of range has wrapped!");
2494       }
2495     } else if (match(BO.getOperand(0), m_APInt(C))) {
2496       if (C->isMinSignedValue()) {
2497         // 'sdiv INT_MIN, x' produces [INT_MIN, INT_MIN / -2].
2498         Lower = *C;
2499         Upper = Lower.lshr(1) + 1;
2500       } else {
2501         // 'sdiv C, x' produces [-|C|, |C|].
2502         Upper = C->abs() + 1;
2503         Lower = (-Upper) + 1;
2504       }
2505     }
2506     break;
2507 
2508   case Instruction::UDiv:
2509     if (match(BO.getOperand(1), m_APInt(C)) && *C != 0) {
2510       // 'udiv x, C' produces [0, UINT_MAX / C].
2511       Upper = APInt::getMaxValue(Width).udiv(*C) + 1;
2512     } else if (match(BO.getOperand(0), m_APInt(C))) {
2513       // 'udiv C, x' produces [0, C].
2514       Upper = *C + 1;
2515     }
2516     break;
2517 
2518   case Instruction::SRem:
2519     if (match(BO.getOperand(1), m_APInt(C))) {
2520       // 'srem x, C' produces (-|C|, |C|).
2521       Upper = C->abs();
2522       Lower = (-Upper) + 1;
2523     }
2524     break;
2525 
2526   case Instruction::URem:
2527     if (match(BO.getOperand(1), m_APInt(C)))
2528       // 'urem x, C' produces [0, C).
2529       Upper = *C;
2530     break;
2531 
2532   default:
2533     break;
2534   }
2535 }
2536 
2537 static Value *simplifyICmpWithConstant(CmpInst::Predicate Pred, Value *LHS,
2538                                        Value *RHS) {
2539   const APInt *C;
2540   if (!match(RHS, m_APInt(C)))
2541     return nullptr;
2542 
2543   // Rule out tautological comparisons (eg., ult 0 or uge 0).
2544   ConstantRange RHS_CR = ConstantRange::makeExactICmpRegion(Pred, *C);
2545   if (RHS_CR.isEmptySet())
2546     return ConstantInt::getFalse(GetCompareTy(RHS));
2547   if (RHS_CR.isFullSet())
2548     return ConstantInt::getTrue(GetCompareTy(RHS));
2549 
2550   // Find the range of possible values for binary operators.
2551   unsigned Width = C->getBitWidth();
2552   APInt Lower = APInt(Width, 0);
2553   APInt Upper = APInt(Width, 0);
2554   if (auto *BO = dyn_cast<BinaryOperator>(LHS))
2555     setLimitsForBinOp(*BO, Lower, Upper);
2556 
2557   ConstantRange LHS_CR =
2558       Lower != Upper ? ConstantRange(Lower, Upper) : ConstantRange(Width, true);
2559 
2560   if (auto *I = dyn_cast<Instruction>(LHS))
2561     if (auto *Ranges = I->getMetadata(LLVMContext::MD_range))
2562       LHS_CR = LHS_CR.intersectWith(getConstantRangeFromMetadata(*Ranges));
2563 
2564   if (!LHS_CR.isFullSet()) {
2565     if (RHS_CR.contains(LHS_CR))
2566       return ConstantInt::getTrue(GetCompareTy(RHS));
2567     if (RHS_CR.inverse().contains(LHS_CR))
2568       return ConstantInt::getFalse(GetCompareTy(RHS));
2569   }
2570 
2571   return nullptr;
2572 }
2573 
2574 static Value *simplifyICmpWithBinOp(CmpInst::Predicate Pred, Value *LHS,
2575                                     Value *RHS, const Query &Q,
2576                                     unsigned MaxRecurse) {
2577   Type *ITy = GetCompareTy(LHS); // The return type.
2578 
2579   BinaryOperator *LBO = dyn_cast<BinaryOperator>(LHS);
2580   BinaryOperator *RBO = dyn_cast<BinaryOperator>(RHS);
2581   if (MaxRecurse && (LBO || RBO)) {
2582     // Analyze the case when either LHS or RHS is an add instruction.
2583     Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr;
2584     // LHS = A + B (or A and B are null); RHS = C + D (or C and D are null).
2585     bool NoLHSWrapProblem = false, NoRHSWrapProblem = false;
2586     if (LBO && LBO->getOpcode() == Instruction::Add) {
2587       A = LBO->getOperand(0);
2588       B = LBO->getOperand(1);
2589       NoLHSWrapProblem =
2590           ICmpInst::isEquality(Pred) ||
2591           (CmpInst::isUnsigned(Pred) && LBO->hasNoUnsignedWrap()) ||
2592           (CmpInst::isSigned(Pred) && LBO->hasNoSignedWrap());
2593     }
2594     if (RBO && RBO->getOpcode() == Instruction::Add) {
2595       C = RBO->getOperand(0);
2596       D = RBO->getOperand(1);
2597       NoRHSWrapProblem =
2598           ICmpInst::isEquality(Pred) ||
2599           (CmpInst::isUnsigned(Pred) && RBO->hasNoUnsignedWrap()) ||
2600           (CmpInst::isSigned(Pred) && RBO->hasNoSignedWrap());
2601     }
2602 
2603     // icmp (X+Y), X -> icmp Y, 0 for equalities or if there is no overflow.
2604     if ((A == RHS || B == RHS) && NoLHSWrapProblem)
2605       if (Value *V = SimplifyICmpInst(Pred, A == RHS ? B : A,
2606                                       Constant::getNullValue(RHS->getType()), Q,
2607                                       MaxRecurse - 1))
2608         return V;
2609 
2610     // icmp X, (X+Y) -> icmp 0, Y for equalities or if there is no overflow.
2611     if ((C == LHS || D == LHS) && NoRHSWrapProblem)
2612       if (Value *V =
2613               SimplifyICmpInst(Pred, Constant::getNullValue(LHS->getType()),
2614                                C == LHS ? D : C, Q, MaxRecurse - 1))
2615         return V;
2616 
2617     // icmp (X+Y), (X+Z) -> icmp Y,Z for equalities or if there is no overflow.
2618     if (A && C && (A == C || A == D || B == C || B == D) && NoLHSWrapProblem &&
2619         NoRHSWrapProblem) {
2620       // Determine Y and Z in the form icmp (X+Y), (X+Z).
2621       Value *Y, *Z;
2622       if (A == C) {
2623         // C + B == C + D  ->  B == D
2624         Y = B;
2625         Z = D;
2626       } else if (A == D) {
2627         // D + B == C + D  ->  B == C
2628         Y = B;
2629         Z = C;
2630       } else if (B == C) {
2631         // A + C == C + D  ->  A == D
2632         Y = A;
2633         Z = D;
2634       } else {
2635         assert(B == D);
2636         // A + D == C + D  ->  A == C
2637         Y = A;
2638         Z = C;
2639       }
2640       if (Value *V = SimplifyICmpInst(Pred, Y, Z, Q, MaxRecurse - 1))
2641         return V;
2642     }
2643   }
2644 
2645   {
2646     Value *Y = nullptr;
2647     // icmp pred (or X, Y), X
2648     if (LBO && match(LBO, m_c_Or(m_Value(Y), m_Specific(RHS)))) {
2649       if (Pred == ICmpInst::ICMP_ULT)
2650         return getFalse(ITy);
2651       if (Pred == ICmpInst::ICMP_UGE)
2652         return getTrue(ITy);
2653 
2654       if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SGE) {
2655         bool RHSKnownNonNegative, RHSKnownNegative;
2656         bool YKnownNonNegative, YKnownNegative;
2657         ComputeSignBit(RHS, RHSKnownNonNegative, RHSKnownNegative, Q.DL, 0,
2658                        Q.AC, Q.CxtI, Q.DT);
2659         ComputeSignBit(Y, YKnownNonNegative, YKnownNegative, Q.DL, 0, Q.AC,
2660                        Q.CxtI, Q.DT);
2661         if (RHSKnownNonNegative && YKnownNegative)
2662           return Pred == ICmpInst::ICMP_SLT ? getTrue(ITy) : getFalse(ITy);
2663         if (RHSKnownNegative || YKnownNonNegative)
2664           return Pred == ICmpInst::ICMP_SLT ? getFalse(ITy) : getTrue(ITy);
2665       }
2666     }
2667     // icmp pred X, (or X, Y)
2668     if (RBO && match(RBO, m_c_Or(m_Value(Y), m_Specific(LHS)))) {
2669       if (Pred == ICmpInst::ICMP_ULE)
2670         return getTrue(ITy);
2671       if (Pred == ICmpInst::ICMP_UGT)
2672         return getFalse(ITy);
2673 
2674       if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SLE) {
2675         bool LHSKnownNonNegative, LHSKnownNegative;
2676         bool YKnownNonNegative, YKnownNegative;
2677         ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, Q.DL, 0,
2678                        Q.AC, Q.CxtI, Q.DT);
2679         ComputeSignBit(Y, YKnownNonNegative, YKnownNegative, Q.DL, 0, Q.AC,
2680                        Q.CxtI, Q.DT);
2681         if (LHSKnownNonNegative && YKnownNegative)
2682           return Pred == ICmpInst::ICMP_SGT ? getTrue(ITy) : getFalse(ITy);
2683         if (LHSKnownNegative || YKnownNonNegative)
2684           return Pred == ICmpInst::ICMP_SGT ? getFalse(ITy) : getTrue(ITy);
2685       }
2686     }
2687   }
2688 
2689   // icmp pred (and X, Y), X
2690   if (LBO && match(LBO, m_CombineOr(m_And(m_Value(), m_Specific(RHS)),
2691                                     m_And(m_Specific(RHS), m_Value())))) {
2692     if (Pred == ICmpInst::ICMP_UGT)
2693       return getFalse(ITy);
2694     if (Pred == ICmpInst::ICMP_ULE)
2695       return getTrue(ITy);
2696   }
2697   // icmp pred X, (and X, Y)
2698   if (RBO && match(RBO, m_CombineOr(m_And(m_Value(), m_Specific(LHS)),
2699                                     m_And(m_Specific(LHS), m_Value())))) {
2700     if (Pred == ICmpInst::ICMP_UGE)
2701       return getTrue(ITy);
2702     if (Pred == ICmpInst::ICMP_ULT)
2703       return getFalse(ITy);
2704   }
2705 
2706   // 0 - (zext X) pred C
2707   if (!CmpInst::isUnsigned(Pred) && match(LHS, m_Neg(m_ZExt(m_Value())))) {
2708     if (ConstantInt *RHSC = dyn_cast<ConstantInt>(RHS)) {
2709       if (RHSC->getValue().isStrictlyPositive()) {
2710         if (Pred == ICmpInst::ICMP_SLT)
2711           return ConstantInt::getTrue(RHSC->getContext());
2712         if (Pred == ICmpInst::ICMP_SGE)
2713           return ConstantInt::getFalse(RHSC->getContext());
2714         if (Pred == ICmpInst::ICMP_EQ)
2715           return ConstantInt::getFalse(RHSC->getContext());
2716         if (Pred == ICmpInst::ICMP_NE)
2717           return ConstantInt::getTrue(RHSC->getContext());
2718       }
2719       if (RHSC->getValue().isNonNegative()) {
2720         if (Pred == ICmpInst::ICMP_SLE)
2721           return ConstantInt::getTrue(RHSC->getContext());
2722         if (Pred == ICmpInst::ICMP_SGT)
2723           return ConstantInt::getFalse(RHSC->getContext());
2724       }
2725     }
2726   }
2727 
2728   // icmp pred (urem X, Y), Y
2729   if (LBO && match(LBO, m_URem(m_Value(), m_Specific(RHS)))) {
2730     bool KnownNonNegative, KnownNegative;
2731     switch (Pred) {
2732     default:
2733       break;
2734     case ICmpInst::ICMP_SGT:
2735     case ICmpInst::ICMP_SGE:
2736       ComputeSignBit(RHS, KnownNonNegative, KnownNegative, Q.DL, 0, Q.AC,
2737                      Q.CxtI, Q.DT);
2738       if (!KnownNonNegative)
2739         break;
2740       LLVM_FALLTHROUGH;
2741     case ICmpInst::ICMP_EQ:
2742     case ICmpInst::ICMP_UGT:
2743     case ICmpInst::ICMP_UGE:
2744       return getFalse(ITy);
2745     case ICmpInst::ICMP_SLT:
2746     case ICmpInst::ICMP_SLE:
2747       ComputeSignBit(RHS, KnownNonNegative, KnownNegative, Q.DL, 0, Q.AC,
2748                      Q.CxtI, Q.DT);
2749       if (!KnownNonNegative)
2750         break;
2751       LLVM_FALLTHROUGH;
2752     case ICmpInst::ICMP_NE:
2753     case ICmpInst::ICMP_ULT:
2754     case ICmpInst::ICMP_ULE:
2755       return getTrue(ITy);
2756     }
2757   }
2758 
2759   // icmp pred X, (urem Y, X)
2760   if (RBO && match(RBO, m_URem(m_Value(), m_Specific(LHS)))) {
2761     bool KnownNonNegative, KnownNegative;
2762     switch (Pred) {
2763     default:
2764       break;
2765     case ICmpInst::ICMP_SGT:
2766     case ICmpInst::ICMP_SGE:
2767       ComputeSignBit(LHS, KnownNonNegative, KnownNegative, Q.DL, 0, Q.AC,
2768                      Q.CxtI, Q.DT);
2769       if (!KnownNonNegative)
2770         break;
2771       LLVM_FALLTHROUGH;
2772     case ICmpInst::ICMP_NE:
2773     case ICmpInst::ICMP_UGT:
2774     case ICmpInst::ICMP_UGE:
2775       return getTrue(ITy);
2776     case ICmpInst::ICMP_SLT:
2777     case ICmpInst::ICMP_SLE:
2778       ComputeSignBit(LHS, KnownNonNegative, KnownNegative, Q.DL, 0, Q.AC,
2779                      Q.CxtI, Q.DT);
2780       if (!KnownNonNegative)
2781         break;
2782       LLVM_FALLTHROUGH;
2783     case ICmpInst::ICMP_EQ:
2784     case ICmpInst::ICMP_ULT:
2785     case ICmpInst::ICMP_ULE:
2786       return getFalse(ITy);
2787     }
2788   }
2789 
2790   // x >> y <=u x
2791   // x udiv y <=u x.
2792   if (LBO && (match(LBO, m_LShr(m_Specific(RHS), m_Value())) ||
2793               match(LBO, m_UDiv(m_Specific(RHS), m_Value())))) {
2794     // icmp pred (X op Y), X
2795     if (Pred == ICmpInst::ICMP_UGT)
2796       return getFalse(ITy);
2797     if (Pred == ICmpInst::ICMP_ULE)
2798       return getTrue(ITy);
2799   }
2800 
2801   // x >=u x >> y
2802   // x >=u x udiv y.
2803   if (RBO && (match(RBO, m_LShr(m_Specific(LHS), m_Value())) ||
2804               match(RBO, m_UDiv(m_Specific(LHS), m_Value())))) {
2805     // icmp pred X, (X op Y)
2806     if (Pred == ICmpInst::ICMP_ULT)
2807       return getFalse(ITy);
2808     if (Pred == ICmpInst::ICMP_UGE)
2809       return getTrue(ITy);
2810   }
2811 
2812   // handle:
2813   //   CI2 << X == CI
2814   //   CI2 << X != CI
2815   //
2816   //   where CI2 is a power of 2 and CI isn't
2817   if (auto *CI = dyn_cast<ConstantInt>(RHS)) {
2818     const APInt *CI2Val, *CIVal = &CI->getValue();
2819     if (LBO && match(LBO, m_Shl(m_APInt(CI2Val), m_Value())) &&
2820         CI2Val->isPowerOf2()) {
2821       if (!CIVal->isPowerOf2()) {
2822         // CI2 << X can equal zero in some circumstances,
2823         // this simplification is unsafe if CI is zero.
2824         //
2825         // We know it is safe if:
2826         // - The shift is nsw, we can't shift out the one bit.
2827         // - The shift is nuw, we can't shift out the one bit.
2828         // - CI2 is one
2829         // - CI isn't zero
2830         if (LBO->hasNoSignedWrap() || LBO->hasNoUnsignedWrap() ||
2831             *CI2Val == 1 || !CI->isZero()) {
2832           if (Pred == ICmpInst::ICMP_EQ)
2833             return ConstantInt::getFalse(RHS->getContext());
2834           if (Pred == ICmpInst::ICMP_NE)
2835             return ConstantInt::getTrue(RHS->getContext());
2836         }
2837       }
2838       if (CIVal->isSignBit() && *CI2Val == 1) {
2839         if (Pred == ICmpInst::ICMP_UGT)
2840           return ConstantInt::getFalse(RHS->getContext());
2841         if (Pred == ICmpInst::ICMP_ULE)
2842           return ConstantInt::getTrue(RHS->getContext());
2843       }
2844     }
2845   }
2846 
2847   if (MaxRecurse && LBO && RBO && LBO->getOpcode() == RBO->getOpcode() &&
2848       LBO->getOperand(1) == RBO->getOperand(1)) {
2849     switch (LBO->getOpcode()) {
2850     default:
2851       break;
2852     case Instruction::UDiv:
2853     case Instruction::LShr:
2854       if (ICmpInst::isSigned(Pred))
2855         break;
2856       LLVM_FALLTHROUGH;
2857     case Instruction::SDiv:
2858     case Instruction::AShr:
2859       if (!LBO->isExact() || !RBO->isExact())
2860         break;
2861       if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0),
2862                                       RBO->getOperand(0), Q, MaxRecurse - 1))
2863         return V;
2864       break;
2865     case Instruction::Shl: {
2866       bool NUW = LBO->hasNoUnsignedWrap() && RBO->hasNoUnsignedWrap();
2867       bool NSW = LBO->hasNoSignedWrap() && RBO->hasNoSignedWrap();
2868       if (!NUW && !NSW)
2869         break;
2870       if (!NSW && ICmpInst::isSigned(Pred))
2871         break;
2872       if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0),
2873                                       RBO->getOperand(0), Q, MaxRecurse - 1))
2874         return V;
2875       break;
2876     }
2877     }
2878   }
2879   return nullptr;
2880 }
2881 
2882 /// Simplify integer comparisons where at least one operand of the compare
2883 /// matches an integer min/max idiom.
2884 static Value *simplifyICmpWithMinMax(CmpInst::Predicate Pred, Value *LHS,
2885                                      Value *RHS, const Query &Q,
2886                                      unsigned MaxRecurse) {
2887   Type *ITy = GetCompareTy(LHS); // The return type.
2888   Value *A, *B;
2889   CmpInst::Predicate P = CmpInst::BAD_ICMP_PREDICATE;
2890   CmpInst::Predicate EqP; // Chosen so that "A == max/min(A,B)" iff "A EqP B".
2891 
2892   // Signed variants on "max(a,b)>=a -> true".
2893   if (match(LHS, m_SMax(m_Value(A), m_Value(B))) && (A == RHS || B == RHS)) {
2894     if (A != RHS)
2895       std::swap(A, B);       // smax(A, B) pred A.
2896     EqP = CmpInst::ICMP_SGE; // "A == smax(A, B)" iff "A sge B".
2897     // We analyze this as smax(A, B) pred A.
2898     P = Pred;
2899   } else if (match(RHS, m_SMax(m_Value(A), m_Value(B))) &&
2900              (A == LHS || B == LHS)) {
2901     if (A != LHS)
2902       std::swap(A, B);       // A pred smax(A, B).
2903     EqP = CmpInst::ICMP_SGE; // "A == smax(A, B)" iff "A sge B".
2904     // We analyze this as smax(A, B) swapped-pred A.
2905     P = CmpInst::getSwappedPredicate(Pred);
2906   } else if (match(LHS, m_SMin(m_Value(A), m_Value(B))) &&
2907              (A == RHS || B == RHS)) {
2908     if (A != RHS)
2909       std::swap(A, B);       // smin(A, B) pred A.
2910     EqP = CmpInst::ICMP_SLE; // "A == smin(A, B)" iff "A sle B".
2911     // We analyze this as smax(-A, -B) swapped-pred -A.
2912     // Note that we do not need to actually form -A or -B thanks to EqP.
2913     P = CmpInst::getSwappedPredicate(Pred);
2914   } else if (match(RHS, m_SMin(m_Value(A), m_Value(B))) &&
2915              (A == LHS || B == LHS)) {
2916     if (A != LHS)
2917       std::swap(A, B);       // A pred smin(A, B).
2918     EqP = CmpInst::ICMP_SLE; // "A == smin(A, B)" iff "A sle B".
2919     // We analyze this as smax(-A, -B) pred -A.
2920     // Note that we do not need to actually form -A or -B thanks to EqP.
2921     P = Pred;
2922   }
2923   if (P != CmpInst::BAD_ICMP_PREDICATE) {
2924     // Cases correspond to "max(A, B) p A".
2925     switch (P) {
2926     default:
2927       break;
2928     case CmpInst::ICMP_EQ:
2929     case CmpInst::ICMP_SLE:
2930       // Equivalent to "A EqP B".  This may be the same as the condition tested
2931       // in the max/min; if so, we can just return that.
2932       if (Value *V = ExtractEquivalentCondition(LHS, EqP, A, B))
2933         return V;
2934       if (Value *V = ExtractEquivalentCondition(RHS, EqP, A, B))
2935         return V;
2936       // Otherwise, see if "A EqP B" simplifies.
2937       if (MaxRecurse)
2938         if (Value *V = SimplifyICmpInst(EqP, A, B, Q, MaxRecurse - 1))
2939           return V;
2940       break;
2941     case CmpInst::ICMP_NE:
2942     case CmpInst::ICMP_SGT: {
2943       CmpInst::Predicate InvEqP = CmpInst::getInversePredicate(EqP);
2944       // Equivalent to "A InvEqP B".  This may be the same as the condition
2945       // tested in the max/min; if so, we can just return that.
2946       if (Value *V = ExtractEquivalentCondition(LHS, InvEqP, A, B))
2947         return V;
2948       if (Value *V = ExtractEquivalentCondition(RHS, InvEqP, A, B))
2949         return V;
2950       // Otherwise, see if "A InvEqP B" simplifies.
2951       if (MaxRecurse)
2952         if (Value *V = SimplifyICmpInst(InvEqP, A, B, Q, MaxRecurse - 1))
2953           return V;
2954       break;
2955     }
2956     case CmpInst::ICMP_SGE:
2957       // Always true.
2958       return getTrue(ITy);
2959     case CmpInst::ICMP_SLT:
2960       // Always false.
2961       return getFalse(ITy);
2962     }
2963   }
2964 
2965   // Unsigned variants on "max(a,b)>=a -> true".
2966   P = CmpInst::BAD_ICMP_PREDICATE;
2967   if (match(LHS, m_UMax(m_Value(A), m_Value(B))) && (A == RHS || B == RHS)) {
2968     if (A != RHS)
2969       std::swap(A, B);       // umax(A, B) pred A.
2970     EqP = CmpInst::ICMP_UGE; // "A == umax(A, B)" iff "A uge B".
2971     // We analyze this as umax(A, B) pred A.
2972     P = Pred;
2973   } else if (match(RHS, m_UMax(m_Value(A), m_Value(B))) &&
2974              (A == LHS || B == LHS)) {
2975     if (A != LHS)
2976       std::swap(A, B);       // A pred umax(A, B).
2977     EqP = CmpInst::ICMP_UGE; // "A == umax(A, B)" iff "A uge B".
2978     // We analyze this as umax(A, B) swapped-pred A.
2979     P = CmpInst::getSwappedPredicate(Pred);
2980   } else if (match(LHS, m_UMin(m_Value(A), m_Value(B))) &&
2981              (A == RHS || B == RHS)) {
2982     if (A != RHS)
2983       std::swap(A, B);       // umin(A, B) pred A.
2984     EqP = CmpInst::ICMP_ULE; // "A == umin(A, B)" iff "A ule B".
2985     // We analyze this as umax(-A, -B) swapped-pred -A.
2986     // Note that we do not need to actually form -A or -B thanks to EqP.
2987     P = CmpInst::getSwappedPredicate(Pred);
2988   } else if (match(RHS, m_UMin(m_Value(A), m_Value(B))) &&
2989              (A == LHS || B == LHS)) {
2990     if (A != LHS)
2991       std::swap(A, B);       // A pred umin(A, B).
2992     EqP = CmpInst::ICMP_ULE; // "A == umin(A, B)" iff "A ule B".
2993     // We analyze this as umax(-A, -B) pred -A.
2994     // Note that we do not need to actually form -A or -B thanks to EqP.
2995     P = Pred;
2996   }
2997   if (P != CmpInst::BAD_ICMP_PREDICATE) {
2998     // Cases correspond to "max(A, B) p A".
2999     switch (P) {
3000     default:
3001       break;
3002     case CmpInst::ICMP_EQ:
3003     case CmpInst::ICMP_ULE:
3004       // Equivalent to "A EqP B".  This may be the same as the condition tested
3005       // in the max/min; if so, we can just return that.
3006       if (Value *V = ExtractEquivalentCondition(LHS, EqP, A, B))
3007         return V;
3008       if (Value *V = ExtractEquivalentCondition(RHS, EqP, A, B))
3009         return V;
3010       // Otherwise, see if "A EqP B" simplifies.
3011       if (MaxRecurse)
3012         if (Value *V = SimplifyICmpInst(EqP, A, B, Q, MaxRecurse - 1))
3013           return V;
3014       break;
3015     case CmpInst::ICMP_NE:
3016     case CmpInst::ICMP_UGT: {
3017       CmpInst::Predicate InvEqP = CmpInst::getInversePredicate(EqP);
3018       // Equivalent to "A InvEqP B".  This may be the same as the condition
3019       // tested in the max/min; if so, we can just return that.
3020       if (Value *V = ExtractEquivalentCondition(LHS, InvEqP, A, B))
3021         return V;
3022       if (Value *V = ExtractEquivalentCondition(RHS, InvEqP, A, B))
3023         return V;
3024       // Otherwise, see if "A InvEqP B" simplifies.
3025       if (MaxRecurse)
3026         if (Value *V = SimplifyICmpInst(InvEqP, A, B, Q, MaxRecurse - 1))
3027           return V;
3028       break;
3029     }
3030     case CmpInst::ICMP_UGE:
3031       // Always true.
3032       return getTrue(ITy);
3033     case CmpInst::ICMP_ULT:
3034       // Always false.
3035       return getFalse(ITy);
3036     }
3037   }
3038 
3039   // Variants on "max(x,y) >= min(x,z)".
3040   Value *C, *D;
3041   if (match(LHS, m_SMax(m_Value(A), m_Value(B))) &&
3042       match(RHS, m_SMin(m_Value(C), m_Value(D))) &&
3043       (A == C || A == D || B == C || B == D)) {
3044     // max(x, ?) pred min(x, ?).
3045     if (Pred == CmpInst::ICMP_SGE)
3046       // Always true.
3047       return getTrue(ITy);
3048     if (Pred == CmpInst::ICMP_SLT)
3049       // Always false.
3050       return getFalse(ITy);
3051   } else if (match(LHS, m_SMin(m_Value(A), m_Value(B))) &&
3052              match(RHS, m_SMax(m_Value(C), m_Value(D))) &&
3053              (A == C || A == D || B == C || B == D)) {
3054     // min(x, ?) pred max(x, ?).
3055     if (Pred == CmpInst::ICMP_SLE)
3056       // Always true.
3057       return getTrue(ITy);
3058     if (Pred == CmpInst::ICMP_SGT)
3059       // Always false.
3060       return getFalse(ITy);
3061   } else if (match(LHS, m_UMax(m_Value(A), m_Value(B))) &&
3062              match(RHS, m_UMin(m_Value(C), m_Value(D))) &&
3063              (A == C || A == D || B == C || B == D)) {
3064     // max(x, ?) pred min(x, ?).
3065     if (Pred == CmpInst::ICMP_UGE)
3066       // Always true.
3067       return getTrue(ITy);
3068     if (Pred == CmpInst::ICMP_ULT)
3069       // Always false.
3070       return getFalse(ITy);
3071   } else if (match(LHS, m_UMin(m_Value(A), m_Value(B))) &&
3072              match(RHS, m_UMax(m_Value(C), m_Value(D))) &&
3073              (A == C || A == D || B == C || B == D)) {
3074     // min(x, ?) pred max(x, ?).
3075     if (Pred == CmpInst::ICMP_ULE)
3076       // Always true.
3077       return getTrue(ITy);
3078     if (Pred == CmpInst::ICMP_UGT)
3079       // Always false.
3080       return getFalse(ITy);
3081   }
3082 
3083   return nullptr;
3084 }
3085 
3086 /// Given operands for an ICmpInst, see if we can fold the result.
3087 /// If not, this returns null.
3088 static Value *SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS,
3089                                const Query &Q, unsigned MaxRecurse) {
3090   CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate;
3091   assert(CmpInst::isIntPredicate(Pred) && "Not an integer compare!");
3092 
3093   if (Constant *CLHS = dyn_cast<Constant>(LHS)) {
3094     if (Constant *CRHS = dyn_cast<Constant>(RHS))
3095       return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, Q.DL, Q.TLI);
3096 
3097     // If we have a constant, make sure it is on the RHS.
3098     std::swap(LHS, RHS);
3099     Pred = CmpInst::getSwappedPredicate(Pred);
3100   }
3101 
3102   Type *ITy = GetCompareTy(LHS); // The return type.
3103 
3104   // icmp X, X -> true/false
3105   // X icmp undef -> true/false.  For example, icmp ugt %X, undef -> false
3106   // because X could be 0.
3107   if (LHS == RHS || isa<UndefValue>(RHS))
3108     return ConstantInt::get(ITy, CmpInst::isTrueWhenEqual(Pred));
3109 
3110   if (Value *V = simplifyICmpOfBools(Pred, LHS, RHS, Q))
3111     return V;
3112 
3113   if (Value *V = simplifyICmpWithZero(Pred, LHS, RHS, Q))
3114     return V;
3115 
3116   if (Value *V = simplifyICmpWithConstant(Pred, LHS, RHS))
3117     return V;
3118 
3119   // If both operands have range metadata, use the metadata
3120   // to simplify the comparison.
3121   if (isa<Instruction>(RHS) && isa<Instruction>(LHS)) {
3122     auto RHS_Instr = dyn_cast<Instruction>(RHS);
3123     auto LHS_Instr = dyn_cast<Instruction>(LHS);
3124 
3125     if (RHS_Instr->getMetadata(LLVMContext::MD_range) &&
3126         LHS_Instr->getMetadata(LLVMContext::MD_range)) {
3127       auto RHS_CR = getConstantRangeFromMetadata(
3128           *RHS_Instr->getMetadata(LLVMContext::MD_range));
3129       auto LHS_CR = getConstantRangeFromMetadata(
3130           *LHS_Instr->getMetadata(LLVMContext::MD_range));
3131 
3132       auto Satisfied_CR = ConstantRange::makeSatisfyingICmpRegion(Pred, RHS_CR);
3133       if (Satisfied_CR.contains(LHS_CR))
3134         return ConstantInt::getTrue(RHS->getContext());
3135 
3136       auto InversedSatisfied_CR = ConstantRange::makeSatisfyingICmpRegion(
3137                 CmpInst::getInversePredicate(Pred), RHS_CR);
3138       if (InversedSatisfied_CR.contains(LHS_CR))
3139         return ConstantInt::getFalse(RHS->getContext());
3140     }
3141   }
3142 
3143   // Compare of cast, for example (zext X) != 0 -> X != 0
3144   if (isa<CastInst>(LHS) && (isa<Constant>(RHS) || isa<CastInst>(RHS))) {
3145     Instruction *LI = cast<CastInst>(LHS);
3146     Value *SrcOp = LI->getOperand(0);
3147     Type *SrcTy = SrcOp->getType();
3148     Type *DstTy = LI->getType();
3149 
3150     // Turn icmp (ptrtoint x), (ptrtoint/constant) into a compare of the input
3151     // if the integer type is the same size as the pointer type.
3152     if (MaxRecurse && isa<PtrToIntInst>(LI) &&
3153         Q.DL.getTypeSizeInBits(SrcTy) == DstTy->getPrimitiveSizeInBits()) {
3154       if (Constant *RHSC = dyn_cast<Constant>(RHS)) {
3155         // Transfer the cast to the constant.
3156         if (Value *V = SimplifyICmpInst(Pred, SrcOp,
3157                                         ConstantExpr::getIntToPtr(RHSC, SrcTy),
3158                                         Q, MaxRecurse-1))
3159           return V;
3160       } else if (PtrToIntInst *RI = dyn_cast<PtrToIntInst>(RHS)) {
3161         if (RI->getOperand(0)->getType() == SrcTy)
3162           // Compare without the cast.
3163           if (Value *V = SimplifyICmpInst(Pred, SrcOp, RI->getOperand(0),
3164                                           Q, MaxRecurse-1))
3165             return V;
3166       }
3167     }
3168 
3169     if (isa<ZExtInst>(LHS)) {
3170       // Turn icmp (zext X), (zext Y) into a compare of X and Y if they have the
3171       // same type.
3172       if (ZExtInst *RI = dyn_cast<ZExtInst>(RHS)) {
3173         if (MaxRecurse && SrcTy == RI->getOperand(0)->getType())
3174           // Compare X and Y.  Note that signed predicates become unsigned.
3175           if (Value *V = SimplifyICmpInst(ICmpInst::getUnsignedPredicate(Pred),
3176                                           SrcOp, RI->getOperand(0), Q,
3177                                           MaxRecurse-1))
3178             return V;
3179       }
3180       // Turn icmp (zext X), Cst into a compare of X and Cst if Cst is extended
3181       // too.  If not, then try to deduce the result of the comparison.
3182       else if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
3183         // Compute the constant that would happen if we truncated to SrcTy then
3184         // reextended to DstTy.
3185         Constant *Trunc = ConstantExpr::getTrunc(CI, SrcTy);
3186         Constant *RExt = ConstantExpr::getCast(CastInst::ZExt, Trunc, DstTy);
3187 
3188         // If the re-extended constant didn't change then this is effectively
3189         // also a case of comparing two zero-extended values.
3190         if (RExt == CI && MaxRecurse)
3191           if (Value *V = SimplifyICmpInst(ICmpInst::getUnsignedPredicate(Pred),
3192                                         SrcOp, Trunc, Q, MaxRecurse-1))
3193             return V;
3194 
3195         // Otherwise the upper bits of LHS are zero while RHS has a non-zero bit
3196         // there.  Use this to work out the result of the comparison.
3197         if (RExt != CI) {
3198           switch (Pred) {
3199           default: llvm_unreachable("Unknown ICmp predicate!");
3200           // LHS <u RHS.
3201           case ICmpInst::ICMP_EQ:
3202           case ICmpInst::ICMP_UGT:
3203           case ICmpInst::ICMP_UGE:
3204             return ConstantInt::getFalse(CI->getContext());
3205 
3206           case ICmpInst::ICMP_NE:
3207           case ICmpInst::ICMP_ULT:
3208           case ICmpInst::ICMP_ULE:
3209             return ConstantInt::getTrue(CI->getContext());
3210 
3211           // LHS is non-negative.  If RHS is negative then LHS >s LHS.  If RHS
3212           // is non-negative then LHS <s RHS.
3213           case ICmpInst::ICMP_SGT:
3214           case ICmpInst::ICMP_SGE:
3215             return CI->getValue().isNegative() ?
3216               ConstantInt::getTrue(CI->getContext()) :
3217               ConstantInt::getFalse(CI->getContext());
3218 
3219           case ICmpInst::ICMP_SLT:
3220           case ICmpInst::ICMP_SLE:
3221             return CI->getValue().isNegative() ?
3222               ConstantInt::getFalse(CI->getContext()) :
3223               ConstantInt::getTrue(CI->getContext());
3224           }
3225         }
3226       }
3227     }
3228 
3229     if (isa<SExtInst>(LHS)) {
3230       // Turn icmp (sext X), (sext Y) into a compare of X and Y if they have the
3231       // same type.
3232       if (SExtInst *RI = dyn_cast<SExtInst>(RHS)) {
3233         if (MaxRecurse && SrcTy == RI->getOperand(0)->getType())
3234           // Compare X and Y.  Note that the predicate does not change.
3235           if (Value *V = SimplifyICmpInst(Pred, SrcOp, RI->getOperand(0),
3236                                           Q, MaxRecurse-1))
3237             return V;
3238       }
3239       // Turn icmp (sext X), Cst into a compare of X and Cst if Cst is extended
3240       // too.  If not, then try to deduce the result of the comparison.
3241       else if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
3242         // Compute the constant that would happen if we truncated to SrcTy then
3243         // reextended to DstTy.
3244         Constant *Trunc = ConstantExpr::getTrunc(CI, SrcTy);
3245         Constant *RExt = ConstantExpr::getCast(CastInst::SExt, Trunc, DstTy);
3246 
3247         // If the re-extended constant didn't change then this is effectively
3248         // also a case of comparing two sign-extended values.
3249         if (RExt == CI && MaxRecurse)
3250           if (Value *V = SimplifyICmpInst(Pred, SrcOp, Trunc, Q, MaxRecurse-1))
3251             return V;
3252 
3253         // Otherwise the upper bits of LHS are all equal, while RHS has varying
3254         // bits there.  Use this to work out the result of the comparison.
3255         if (RExt != CI) {
3256           switch (Pred) {
3257           default: llvm_unreachable("Unknown ICmp predicate!");
3258           case ICmpInst::ICMP_EQ:
3259             return ConstantInt::getFalse(CI->getContext());
3260           case ICmpInst::ICMP_NE:
3261             return ConstantInt::getTrue(CI->getContext());
3262 
3263           // If RHS is non-negative then LHS <s RHS.  If RHS is negative then
3264           // LHS >s RHS.
3265           case ICmpInst::ICMP_SGT:
3266           case ICmpInst::ICMP_SGE:
3267             return CI->getValue().isNegative() ?
3268               ConstantInt::getTrue(CI->getContext()) :
3269               ConstantInt::getFalse(CI->getContext());
3270           case ICmpInst::ICMP_SLT:
3271           case ICmpInst::ICMP_SLE:
3272             return CI->getValue().isNegative() ?
3273               ConstantInt::getFalse(CI->getContext()) :
3274               ConstantInt::getTrue(CI->getContext());
3275 
3276           // If LHS is non-negative then LHS <u RHS.  If LHS is negative then
3277           // LHS >u RHS.
3278           case ICmpInst::ICMP_UGT:
3279           case ICmpInst::ICMP_UGE:
3280             // Comparison is true iff the LHS <s 0.
3281             if (MaxRecurse)
3282               if (Value *V = SimplifyICmpInst(ICmpInst::ICMP_SLT, SrcOp,
3283                                               Constant::getNullValue(SrcTy),
3284                                               Q, MaxRecurse-1))
3285                 return V;
3286             break;
3287           case ICmpInst::ICMP_ULT:
3288           case ICmpInst::ICMP_ULE:
3289             // Comparison is true iff the LHS >=s 0.
3290             if (MaxRecurse)
3291               if (Value *V = SimplifyICmpInst(ICmpInst::ICMP_SGE, SrcOp,
3292                                               Constant::getNullValue(SrcTy),
3293                                               Q, MaxRecurse-1))
3294                 return V;
3295             break;
3296           }
3297         }
3298       }
3299     }
3300   }
3301 
3302   // icmp eq|ne X, Y -> false|true if X != Y
3303   if ((Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_NE) &&
3304       isKnownNonEqual(LHS, RHS, Q.DL, Q.AC, Q.CxtI, Q.DT)) {
3305     LLVMContext &Ctx = LHS->getType()->getContext();
3306     return Pred == ICmpInst::ICMP_NE ?
3307       ConstantInt::getTrue(Ctx) : ConstantInt::getFalse(Ctx);
3308   }
3309 
3310   if (Value *V = simplifyICmpWithBinOp(Pred, LHS, RHS, Q, MaxRecurse))
3311     return V;
3312 
3313   if (Value *V = simplifyICmpWithMinMax(Pred, LHS, RHS, Q, MaxRecurse))
3314     return V;
3315 
3316   // Simplify comparisons of related pointers using a powerful, recursive
3317   // GEP-walk when we have target data available..
3318   if (LHS->getType()->isPointerTy())
3319     if (auto *C = computePointerICmp(Q.DL, Q.TLI, Q.DT, Pred, Q.CxtI, LHS, RHS))
3320       return C;
3321   if (auto *CLHS = dyn_cast<PtrToIntOperator>(LHS))
3322     if (auto *CRHS = dyn_cast<PtrToIntOperator>(RHS))
3323       if (Q.DL.getTypeSizeInBits(CLHS->getPointerOperandType()) ==
3324               Q.DL.getTypeSizeInBits(CLHS->getType()) &&
3325           Q.DL.getTypeSizeInBits(CRHS->getPointerOperandType()) ==
3326               Q.DL.getTypeSizeInBits(CRHS->getType()))
3327         if (auto *C = computePointerICmp(Q.DL, Q.TLI, Q.DT, Pred, Q.CxtI,
3328                                          CLHS->getPointerOperand(),
3329                                          CRHS->getPointerOperand()))
3330           return C;
3331 
3332   if (GetElementPtrInst *GLHS = dyn_cast<GetElementPtrInst>(LHS)) {
3333     if (GEPOperator *GRHS = dyn_cast<GEPOperator>(RHS)) {
3334       if (GLHS->getPointerOperand() == GRHS->getPointerOperand() &&
3335           GLHS->hasAllConstantIndices() && GRHS->hasAllConstantIndices() &&
3336           (ICmpInst::isEquality(Pred) ||
3337            (GLHS->isInBounds() && GRHS->isInBounds() &&
3338             Pred == ICmpInst::getSignedPredicate(Pred)))) {
3339         // The bases are equal and the indices are constant.  Build a constant
3340         // expression GEP with the same indices and a null base pointer to see
3341         // what constant folding can make out of it.
3342         Constant *Null = Constant::getNullValue(GLHS->getPointerOperandType());
3343         SmallVector<Value *, 4> IndicesLHS(GLHS->idx_begin(), GLHS->idx_end());
3344         Constant *NewLHS = ConstantExpr::getGetElementPtr(
3345             GLHS->getSourceElementType(), Null, IndicesLHS);
3346 
3347         SmallVector<Value *, 4> IndicesRHS(GRHS->idx_begin(), GRHS->idx_end());
3348         Constant *NewRHS = ConstantExpr::getGetElementPtr(
3349             GLHS->getSourceElementType(), Null, IndicesRHS);
3350         return ConstantExpr::getICmp(Pred, NewLHS, NewRHS);
3351       }
3352     }
3353   }
3354 
3355   // If a bit is known to be zero for A and known to be one for B,
3356   // then A and B cannot be equal.
3357   if (ICmpInst::isEquality(Pred)) {
3358     const APInt *RHSVal;
3359     if (match(RHS, m_APInt(RHSVal))) {
3360       unsigned BitWidth = RHSVal->getBitWidth();
3361       APInt LHSKnownZero(BitWidth, 0);
3362       APInt LHSKnownOne(BitWidth, 0);
3363       computeKnownBits(LHS, LHSKnownZero, LHSKnownOne, Q.DL, /*Depth=*/0, Q.AC,
3364                        Q.CxtI, Q.DT);
3365       if (((LHSKnownZero & *RHSVal) != 0) || ((LHSKnownOne & ~(*RHSVal)) != 0))
3366         return Pred == ICmpInst::ICMP_EQ ? ConstantInt::getFalse(ITy)
3367                                          : ConstantInt::getTrue(ITy);
3368     }
3369   }
3370 
3371   // If the comparison is with the result of a select instruction, check whether
3372   // comparing with either branch of the select always yields the same value.
3373   if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS))
3374     if (Value *V = ThreadCmpOverSelect(Pred, LHS, RHS, Q, MaxRecurse))
3375       return V;
3376 
3377   // If the comparison is with the result of a phi instruction, check whether
3378   // doing the compare with each incoming phi value yields a common result.
3379   if (isa<PHINode>(LHS) || isa<PHINode>(RHS))
3380     if (Value *V = ThreadCmpOverPHI(Pred, LHS, RHS, Q, MaxRecurse))
3381       return V;
3382 
3383   return nullptr;
3384 }
3385 
3386 Value *llvm::SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS,
3387                               const DataLayout &DL,
3388                               const TargetLibraryInfo *TLI,
3389                               const DominatorTree *DT, AssumptionCache *AC,
3390                               const Instruction *CxtI) {
3391   return ::SimplifyICmpInst(Predicate, LHS, RHS, Query(DL, TLI, DT, AC, CxtI),
3392                             RecursionLimit);
3393 }
3394 
3395 /// Given operands for an FCmpInst, see if we can fold the result.
3396 /// If not, this returns null.
3397 static Value *SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
3398                                FastMathFlags FMF, const Query &Q,
3399                                unsigned MaxRecurse) {
3400   CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate;
3401   assert(CmpInst::isFPPredicate(Pred) && "Not an FP compare!");
3402 
3403   if (Constant *CLHS = dyn_cast<Constant>(LHS)) {
3404     if (Constant *CRHS = dyn_cast<Constant>(RHS))
3405       return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, Q.DL, Q.TLI);
3406 
3407     // If we have a constant, make sure it is on the RHS.
3408     std::swap(LHS, RHS);
3409     Pred = CmpInst::getSwappedPredicate(Pred);
3410   }
3411 
3412   // Fold trivial predicates.
3413   Type *RetTy = GetCompareTy(LHS);
3414   if (Pred == FCmpInst::FCMP_FALSE)
3415     return getFalse(RetTy);
3416   if (Pred == FCmpInst::FCMP_TRUE)
3417     return getTrue(RetTy);
3418 
3419   // UNO/ORD predicates can be trivially folded if NaNs are ignored.
3420   if (FMF.noNaNs()) {
3421     if (Pred == FCmpInst::FCMP_UNO)
3422       return getFalse(RetTy);
3423     if (Pred == FCmpInst::FCMP_ORD)
3424       return getTrue(RetTy);
3425   }
3426 
3427   // fcmp pred x, undef  and  fcmp pred undef, x
3428   // fold to true if unordered, false if ordered
3429   if (isa<UndefValue>(LHS) || isa<UndefValue>(RHS)) {
3430     // Choosing NaN for the undef will always make unordered comparison succeed
3431     // and ordered comparison fail.
3432     return ConstantInt::get(RetTy, CmpInst::isUnordered(Pred));
3433   }
3434 
3435   // fcmp x,x -> true/false.  Not all compares are foldable.
3436   if (LHS == RHS) {
3437     if (CmpInst::isTrueWhenEqual(Pred))
3438       return getTrue(RetTy);
3439     if (CmpInst::isFalseWhenEqual(Pred))
3440       return getFalse(RetTy);
3441   }
3442 
3443   // Handle fcmp with constant RHS
3444   const ConstantFP *CFP = nullptr;
3445   if (const auto *RHSC = dyn_cast<Constant>(RHS)) {
3446     if (RHS->getType()->isVectorTy())
3447       CFP = dyn_cast_or_null<ConstantFP>(RHSC->getSplatValue());
3448     else
3449       CFP = dyn_cast<ConstantFP>(RHSC);
3450   }
3451   if (CFP) {
3452     // If the constant is a nan, see if we can fold the comparison based on it.
3453     if (CFP->getValueAPF().isNaN()) {
3454       if (FCmpInst::isOrdered(Pred)) // True "if ordered and foo"
3455         return getFalse(RetTy);
3456       assert(FCmpInst::isUnordered(Pred) &&
3457              "Comparison must be either ordered or unordered!");
3458       // True if unordered.
3459       return getTrue(RetTy);
3460     }
3461     // Check whether the constant is an infinity.
3462     if (CFP->getValueAPF().isInfinity()) {
3463       if (CFP->getValueAPF().isNegative()) {
3464         switch (Pred) {
3465         case FCmpInst::FCMP_OLT:
3466           // No value is ordered and less than negative infinity.
3467           return getFalse(RetTy);
3468         case FCmpInst::FCMP_UGE:
3469           // All values are unordered with or at least negative infinity.
3470           return getTrue(RetTy);
3471         default:
3472           break;
3473         }
3474       } else {
3475         switch (Pred) {
3476         case FCmpInst::FCMP_OGT:
3477           // No value is ordered and greater than infinity.
3478           return getFalse(RetTy);
3479         case FCmpInst::FCMP_ULE:
3480           // All values are unordered with and at most infinity.
3481           return getTrue(RetTy);
3482         default:
3483           break;
3484         }
3485       }
3486     }
3487     if (CFP->getValueAPF().isZero()) {
3488       switch (Pred) {
3489       case FCmpInst::FCMP_UGE:
3490         if (CannotBeOrderedLessThanZero(LHS, Q.TLI))
3491           return getTrue(RetTy);
3492         break;
3493       case FCmpInst::FCMP_OLT:
3494         // X < 0
3495         if (CannotBeOrderedLessThanZero(LHS, Q.TLI))
3496           return getFalse(RetTy);
3497         break;
3498       default:
3499         break;
3500       }
3501     }
3502   }
3503 
3504   // If the comparison is with the result of a select instruction, check whether
3505   // comparing with either branch of the select always yields the same value.
3506   if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS))
3507     if (Value *V = ThreadCmpOverSelect(Pred, LHS, RHS, Q, MaxRecurse))
3508       return V;
3509 
3510   // If the comparison is with the result of a phi instruction, check whether
3511   // doing the compare with each incoming phi value yields a common result.
3512   if (isa<PHINode>(LHS) || isa<PHINode>(RHS))
3513     if (Value *V = ThreadCmpOverPHI(Pred, LHS, RHS, Q, MaxRecurse))
3514       return V;
3515 
3516   return nullptr;
3517 }
3518 
3519 Value *llvm::SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
3520                               FastMathFlags FMF, const DataLayout &DL,
3521                               const TargetLibraryInfo *TLI,
3522                               const DominatorTree *DT, AssumptionCache *AC,
3523                               const Instruction *CxtI) {
3524   return ::SimplifyFCmpInst(Predicate, LHS, RHS, FMF,
3525                             Query(DL, TLI, DT, AC, CxtI), RecursionLimit);
3526 }
3527 
3528 /// See if V simplifies when its operand Op is replaced with RepOp.
3529 static const Value *SimplifyWithOpReplaced(Value *V, Value *Op, Value *RepOp,
3530                                            const Query &Q,
3531                                            unsigned MaxRecurse) {
3532   // Trivial replacement.
3533   if (V == Op)
3534     return RepOp;
3535 
3536   auto *I = dyn_cast<Instruction>(V);
3537   if (!I)
3538     return nullptr;
3539 
3540   // If this is a binary operator, try to simplify it with the replaced op.
3541   if (auto *B = dyn_cast<BinaryOperator>(I)) {
3542     // Consider:
3543     //   %cmp = icmp eq i32 %x, 2147483647
3544     //   %add = add nsw i32 %x, 1
3545     //   %sel = select i1 %cmp, i32 -2147483648, i32 %add
3546     //
3547     // We can't replace %sel with %add unless we strip away the flags.
3548     if (isa<OverflowingBinaryOperator>(B))
3549       if (B->hasNoSignedWrap() || B->hasNoUnsignedWrap())
3550         return nullptr;
3551     if (isa<PossiblyExactOperator>(B))
3552       if (B->isExact())
3553         return nullptr;
3554 
3555     if (MaxRecurse) {
3556       if (B->getOperand(0) == Op)
3557         return SimplifyBinOp(B->getOpcode(), RepOp, B->getOperand(1), Q,
3558                              MaxRecurse - 1);
3559       if (B->getOperand(1) == Op)
3560         return SimplifyBinOp(B->getOpcode(), B->getOperand(0), RepOp, Q,
3561                              MaxRecurse - 1);
3562     }
3563   }
3564 
3565   // Same for CmpInsts.
3566   if (CmpInst *C = dyn_cast<CmpInst>(I)) {
3567     if (MaxRecurse) {
3568       if (C->getOperand(0) == Op)
3569         return SimplifyCmpInst(C->getPredicate(), RepOp, C->getOperand(1), Q,
3570                                MaxRecurse - 1);
3571       if (C->getOperand(1) == Op)
3572         return SimplifyCmpInst(C->getPredicate(), C->getOperand(0), RepOp, Q,
3573                                MaxRecurse - 1);
3574     }
3575   }
3576 
3577   // TODO: We could hand off more cases to instsimplify here.
3578 
3579   // If all operands are constant after substituting Op for RepOp then we can
3580   // constant fold the instruction.
3581   if (Constant *CRepOp = dyn_cast<Constant>(RepOp)) {
3582     // Build a list of all constant operands.
3583     SmallVector<Constant *, 8> ConstOps;
3584     for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
3585       if (I->getOperand(i) == Op)
3586         ConstOps.push_back(CRepOp);
3587       else if (Constant *COp = dyn_cast<Constant>(I->getOperand(i)))
3588         ConstOps.push_back(COp);
3589       else
3590         break;
3591     }
3592 
3593     // All operands were constants, fold it.
3594     if (ConstOps.size() == I->getNumOperands()) {
3595       if (CmpInst *C = dyn_cast<CmpInst>(I))
3596         return ConstantFoldCompareInstOperands(C->getPredicate(), ConstOps[0],
3597                                                ConstOps[1], Q.DL, Q.TLI);
3598 
3599       if (LoadInst *LI = dyn_cast<LoadInst>(I))
3600         if (!LI->isVolatile())
3601           return ConstantFoldLoadFromConstPtr(ConstOps[0], LI->getType(), Q.DL);
3602 
3603       return ConstantFoldInstOperands(I, ConstOps, Q.DL, Q.TLI);
3604     }
3605   }
3606 
3607   return nullptr;
3608 }
3609 
3610 /// Try to simplify a select instruction when its condition operand is an
3611 /// integer comparison where one operand of the compare is a constant.
3612 static Value *simplifySelectBitTest(Value *TrueVal, Value *FalseVal, Value *X,
3613                                     const APInt *Y, bool TrueWhenUnset) {
3614   const APInt *C;
3615 
3616   // (X & Y) == 0 ? X & ~Y : X  --> X
3617   // (X & Y) != 0 ? X & ~Y : X  --> X & ~Y
3618   if (FalseVal == X && match(TrueVal, m_And(m_Specific(X), m_APInt(C))) &&
3619       *Y == ~*C)
3620     return TrueWhenUnset ? FalseVal : TrueVal;
3621 
3622   // (X & Y) == 0 ? X : X & ~Y  --> X & ~Y
3623   // (X & Y) != 0 ? X : X & ~Y  --> X
3624   if (TrueVal == X && match(FalseVal, m_And(m_Specific(X), m_APInt(C))) &&
3625       *Y == ~*C)
3626     return TrueWhenUnset ? FalseVal : TrueVal;
3627 
3628   if (Y->isPowerOf2()) {
3629     // (X & Y) == 0 ? X | Y : X  --> X | Y
3630     // (X & Y) != 0 ? X | Y : X  --> X
3631     if (FalseVal == X && match(TrueVal, m_Or(m_Specific(X), m_APInt(C))) &&
3632         *Y == *C)
3633       return TrueWhenUnset ? TrueVal : FalseVal;
3634 
3635     // (X & Y) == 0 ? X : X | Y  --> X
3636     // (X & Y) != 0 ? X : X | Y  --> X | Y
3637     if (TrueVal == X && match(FalseVal, m_Or(m_Specific(X), m_APInt(C))) &&
3638         *Y == *C)
3639       return TrueWhenUnset ? TrueVal : FalseVal;
3640   }
3641 
3642   return nullptr;
3643 }
3644 
3645 /// An alternative way to test if a bit is set or not uses sgt/slt instead of
3646 /// eq/ne.
3647 static Value *simplifySelectWithFakeICmpEq(Value *CmpLHS, Value *TrueVal,
3648                                            Value *FalseVal,
3649                                            bool TrueWhenUnset) {
3650   unsigned BitWidth = TrueVal->getType()->getScalarSizeInBits();
3651   if (!BitWidth)
3652     return nullptr;
3653 
3654   APInt MinSignedValue;
3655   Value *X;
3656   if (match(CmpLHS, m_Trunc(m_Value(X))) && (X == TrueVal || X == FalseVal)) {
3657     // icmp slt (trunc X), 0  <--> icmp ne (and X, C), 0
3658     // icmp sgt (trunc X), -1 <--> icmp eq (and X, C), 0
3659     unsigned DestSize = CmpLHS->getType()->getScalarSizeInBits();
3660     MinSignedValue = APInt::getSignedMinValue(DestSize).zext(BitWidth);
3661   } else {
3662     // icmp slt X, 0  <--> icmp ne (and X, C), 0
3663     // icmp sgt X, -1 <--> icmp eq (and X, C), 0
3664     X = CmpLHS;
3665     MinSignedValue = APInt::getSignedMinValue(BitWidth);
3666   }
3667 
3668   if (Value *V = simplifySelectBitTest(TrueVal, FalseVal, X, &MinSignedValue,
3669                                        TrueWhenUnset))
3670     return V;
3671 
3672   return nullptr;
3673 }
3674 
3675 /// Try to simplify a select instruction when its condition operand is an
3676 /// integer comparison.
3677 static Value *simplifySelectWithICmpCond(Value *CondVal, Value *TrueVal,
3678                                          Value *FalseVal, const Query &Q,
3679                                          unsigned MaxRecurse) {
3680   ICmpInst::Predicate Pred;
3681   Value *CmpLHS, *CmpRHS;
3682   if (!match(CondVal, m_ICmp(Pred, m_Value(CmpLHS), m_Value(CmpRHS))))
3683     return nullptr;
3684 
3685   // FIXME: This code is nearly duplicated in InstCombine. Using/refactoring
3686   // decomposeBitTestICmp() might help.
3687   if (ICmpInst::isEquality(Pred) && match(CmpRHS, m_Zero())) {
3688     Value *X;
3689     const APInt *Y;
3690     if (match(CmpLHS, m_And(m_Value(X), m_APInt(Y))))
3691       if (Value *V = simplifySelectBitTest(TrueVal, FalseVal, X, Y,
3692                                            Pred == ICmpInst::ICMP_EQ))
3693         return V;
3694   } else if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, m_Zero())) {
3695     // Comparing signed-less-than 0 checks if the sign bit is set.
3696     if (Value *V = simplifySelectWithFakeICmpEq(CmpLHS, TrueVal, FalseVal,
3697                                                 false))
3698       return V;
3699   } else if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, m_AllOnes())) {
3700     // Comparing signed-greater-than -1 checks if the sign bit is not set.
3701     if (Value *V = simplifySelectWithFakeICmpEq(CmpLHS, TrueVal, FalseVal,
3702                                                 true))
3703       return V;
3704   }
3705 
3706   if (CondVal->hasOneUse()) {
3707     const APInt *C;
3708     if (match(CmpRHS, m_APInt(C))) {
3709       // X < MIN ? T : F  -->  F
3710       if (Pred == ICmpInst::ICMP_SLT && C->isMinSignedValue())
3711         return FalseVal;
3712       // X < MIN ? T : F  -->  F
3713       if (Pred == ICmpInst::ICMP_ULT && C->isMinValue())
3714         return FalseVal;
3715       // X > MAX ? T : F  -->  F
3716       if (Pred == ICmpInst::ICMP_SGT && C->isMaxSignedValue())
3717         return FalseVal;
3718       // X > MAX ? T : F  -->  F
3719       if (Pred == ICmpInst::ICMP_UGT && C->isMaxValue())
3720         return FalseVal;
3721     }
3722   }
3723 
3724   // If we have an equality comparison, then we know the value in one of the
3725   // arms of the select. See if substituting this value into the arm and
3726   // simplifying the result yields the same value as the other arm.
3727   if (Pred == ICmpInst::ICMP_EQ) {
3728     if (SimplifyWithOpReplaced(FalseVal, CmpLHS, CmpRHS, Q, MaxRecurse) ==
3729             TrueVal ||
3730         SimplifyWithOpReplaced(FalseVal, CmpRHS, CmpLHS, Q, MaxRecurse) ==
3731             TrueVal)
3732       return FalseVal;
3733     if (SimplifyWithOpReplaced(TrueVal, CmpLHS, CmpRHS, Q, MaxRecurse) ==
3734             FalseVal ||
3735         SimplifyWithOpReplaced(TrueVal, CmpRHS, CmpLHS, Q, MaxRecurse) ==
3736             FalseVal)
3737       return FalseVal;
3738   } else if (Pred == ICmpInst::ICMP_NE) {
3739     if (SimplifyWithOpReplaced(TrueVal, CmpLHS, CmpRHS, Q, MaxRecurse) ==
3740             FalseVal ||
3741         SimplifyWithOpReplaced(TrueVal, CmpRHS, CmpLHS, Q, MaxRecurse) ==
3742             FalseVal)
3743       return TrueVal;
3744     if (SimplifyWithOpReplaced(FalseVal, CmpLHS, CmpRHS, Q, MaxRecurse) ==
3745             TrueVal ||
3746         SimplifyWithOpReplaced(FalseVal, CmpRHS, CmpLHS, Q, MaxRecurse) ==
3747             TrueVal)
3748       return TrueVal;
3749   }
3750 
3751   return nullptr;
3752 }
3753 
3754 /// Given operands for a SelectInst, see if we can fold the result.
3755 /// If not, this returns null.
3756 static Value *SimplifySelectInst(Value *CondVal, Value *TrueVal,
3757                                  Value *FalseVal, const Query &Q,
3758                                  unsigned MaxRecurse) {
3759   // select true, X, Y  -> X
3760   // select false, X, Y -> Y
3761   if (Constant *CB = dyn_cast<Constant>(CondVal)) {
3762     if (CB->isAllOnesValue())
3763       return TrueVal;
3764     if (CB->isNullValue())
3765       return FalseVal;
3766   }
3767 
3768   // select C, X, X -> X
3769   if (TrueVal == FalseVal)
3770     return TrueVal;
3771 
3772   if (isa<UndefValue>(CondVal)) {  // select undef, X, Y -> X or Y
3773     if (isa<Constant>(TrueVal))
3774       return TrueVal;
3775     return FalseVal;
3776   }
3777   if (isa<UndefValue>(TrueVal))   // select C, undef, X -> X
3778     return FalseVal;
3779   if (isa<UndefValue>(FalseVal))   // select C, X, undef -> X
3780     return TrueVal;
3781 
3782   if (Value *V =
3783           simplifySelectWithICmpCond(CondVal, TrueVal, FalseVal, Q, MaxRecurse))
3784     return V;
3785 
3786   return nullptr;
3787 }
3788 
3789 Value *llvm::SimplifySelectInst(Value *Cond, Value *TrueVal, Value *FalseVal,
3790                                 const DataLayout &DL,
3791                                 const TargetLibraryInfo *TLI,
3792                                 const DominatorTree *DT, AssumptionCache *AC,
3793                                 const Instruction *CxtI) {
3794   return ::SimplifySelectInst(Cond, TrueVal, FalseVal,
3795                               Query(DL, TLI, DT, AC, CxtI), RecursionLimit);
3796 }
3797 
3798 /// Given operands for an GetElementPtrInst, see if we can fold the result.
3799 /// If not, this returns null.
3800 static Value *SimplifyGEPInst(Type *SrcTy, ArrayRef<Value *> Ops,
3801                               const Query &Q, unsigned) {
3802   // The type of the GEP pointer operand.
3803   unsigned AS =
3804       cast<PointerType>(Ops[0]->getType()->getScalarType())->getAddressSpace();
3805 
3806   // getelementptr P -> P.
3807   if (Ops.size() == 1)
3808     return Ops[0];
3809 
3810   // Compute the (pointer) type returned by the GEP instruction.
3811   Type *LastType = GetElementPtrInst::getIndexedType(SrcTy, Ops.slice(1));
3812   Type *GEPTy = PointerType::get(LastType, AS);
3813   if (VectorType *VT = dyn_cast<VectorType>(Ops[0]->getType()))
3814     GEPTy = VectorType::get(GEPTy, VT->getNumElements());
3815 
3816   if (isa<UndefValue>(Ops[0]))
3817     return UndefValue::get(GEPTy);
3818 
3819   if (Ops.size() == 2) {
3820     // getelementptr P, 0 -> P.
3821     if (match(Ops[1], m_Zero()))
3822       return Ops[0];
3823 
3824     Type *Ty = SrcTy;
3825     if (Ty->isSized()) {
3826       Value *P;
3827       uint64_t C;
3828       uint64_t TyAllocSize = Q.DL.getTypeAllocSize(Ty);
3829       // getelementptr P, N -> P if P points to a type of zero size.
3830       if (TyAllocSize == 0)
3831         return Ops[0];
3832 
3833       // The following transforms are only safe if the ptrtoint cast
3834       // doesn't truncate the pointers.
3835       if (Ops[1]->getType()->getScalarSizeInBits() ==
3836           Q.DL.getPointerSizeInBits(AS)) {
3837         auto PtrToIntOrZero = [GEPTy](Value *P) -> Value * {
3838           if (match(P, m_Zero()))
3839             return Constant::getNullValue(GEPTy);
3840           Value *Temp;
3841           if (match(P, m_PtrToInt(m_Value(Temp))))
3842             if (Temp->getType() == GEPTy)
3843               return Temp;
3844           return nullptr;
3845         };
3846 
3847         // getelementptr V, (sub P, V) -> P if P points to a type of size 1.
3848         if (TyAllocSize == 1 &&
3849             match(Ops[1], m_Sub(m_Value(P), m_PtrToInt(m_Specific(Ops[0])))))
3850           if (Value *R = PtrToIntOrZero(P))
3851             return R;
3852 
3853         // getelementptr V, (ashr (sub P, V), C) -> Q
3854         // if P points to a type of size 1 << C.
3855         if (match(Ops[1],
3856                   m_AShr(m_Sub(m_Value(P), m_PtrToInt(m_Specific(Ops[0]))),
3857                          m_ConstantInt(C))) &&
3858             TyAllocSize == 1ULL << C)
3859           if (Value *R = PtrToIntOrZero(P))
3860             return R;
3861 
3862         // getelementptr V, (sdiv (sub P, V), C) -> Q
3863         // if P points to a type of size C.
3864         if (match(Ops[1],
3865                   m_SDiv(m_Sub(m_Value(P), m_PtrToInt(m_Specific(Ops[0]))),
3866                          m_SpecificInt(TyAllocSize))))
3867           if (Value *R = PtrToIntOrZero(P))
3868             return R;
3869       }
3870     }
3871   }
3872 
3873   if (Q.DL.getTypeAllocSize(LastType) == 1 &&
3874       all_of(Ops.slice(1).drop_back(1),
3875              [](Value *Idx) { return match(Idx, m_Zero()); })) {
3876     unsigned PtrWidth =
3877         Q.DL.getPointerSizeInBits(Ops[0]->getType()->getPointerAddressSpace());
3878     if (Q.DL.getTypeSizeInBits(Ops.back()->getType()) == PtrWidth) {
3879       APInt BasePtrOffset(PtrWidth, 0);
3880       Value *StrippedBasePtr =
3881           Ops[0]->stripAndAccumulateInBoundsConstantOffsets(Q.DL,
3882                                                             BasePtrOffset);
3883 
3884       // gep (gep V, C), (sub 0, V) -> C
3885       if (match(Ops.back(),
3886                 m_Sub(m_Zero(), m_PtrToInt(m_Specific(StrippedBasePtr))))) {
3887         auto *CI = ConstantInt::get(GEPTy->getContext(), BasePtrOffset);
3888         return ConstantExpr::getIntToPtr(CI, GEPTy);
3889       }
3890       // gep (gep V, C), (xor V, -1) -> C-1
3891       if (match(Ops.back(),
3892                 m_Xor(m_PtrToInt(m_Specific(StrippedBasePtr)), m_AllOnes()))) {
3893         auto *CI = ConstantInt::get(GEPTy->getContext(), BasePtrOffset - 1);
3894         return ConstantExpr::getIntToPtr(CI, GEPTy);
3895       }
3896     }
3897   }
3898 
3899   // Check to see if this is constant foldable.
3900   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
3901     if (!isa<Constant>(Ops[i]))
3902       return nullptr;
3903 
3904   return ConstantExpr::getGetElementPtr(SrcTy, cast<Constant>(Ops[0]),
3905                                         Ops.slice(1));
3906 }
3907 
3908 Value *llvm::SimplifyGEPInst(Type *SrcTy, ArrayRef<Value *> Ops,
3909                              const DataLayout &DL,
3910                              const TargetLibraryInfo *TLI,
3911                              const DominatorTree *DT, AssumptionCache *AC,
3912                              const Instruction *CxtI) {
3913   return ::SimplifyGEPInst(SrcTy, Ops,
3914                            Query(DL, TLI, DT, AC, CxtI), RecursionLimit);
3915 }
3916 
3917 /// Given operands for an InsertValueInst, see if we can fold the result.
3918 /// If not, this returns null.
3919 static Value *SimplifyInsertValueInst(Value *Agg, Value *Val,
3920                                       ArrayRef<unsigned> Idxs, const Query &Q,
3921                                       unsigned) {
3922   if (Constant *CAgg = dyn_cast<Constant>(Agg))
3923     if (Constant *CVal = dyn_cast<Constant>(Val))
3924       return ConstantFoldInsertValueInstruction(CAgg, CVal, Idxs);
3925 
3926   // insertvalue x, undef, n -> x
3927   if (match(Val, m_Undef()))
3928     return Agg;
3929 
3930   // insertvalue x, (extractvalue y, n), n
3931   if (ExtractValueInst *EV = dyn_cast<ExtractValueInst>(Val))
3932     if (EV->getAggregateOperand()->getType() == Agg->getType() &&
3933         EV->getIndices() == Idxs) {
3934       // insertvalue undef, (extractvalue y, n), n -> y
3935       if (match(Agg, m_Undef()))
3936         return EV->getAggregateOperand();
3937 
3938       // insertvalue y, (extractvalue y, n), n -> y
3939       if (Agg == EV->getAggregateOperand())
3940         return Agg;
3941     }
3942 
3943   return nullptr;
3944 }
3945 
3946 Value *llvm::SimplifyInsertValueInst(
3947     Value *Agg, Value *Val, ArrayRef<unsigned> Idxs, const DataLayout &DL,
3948     const TargetLibraryInfo *TLI, const DominatorTree *DT, AssumptionCache *AC,
3949     const Instruction *CxtI) {
3950   return ::SimplifyInsertValueInst(Agg, Val, Idxs, Query(DL, TLI, DT, AC, CxtI),
3951                                    RecursionLimit);
3952 }
3953 
3954 /// Given operands for an ExtractValueInst, see if we can fold the result.
3955 /// If not, this returns null.
3956 static Value *SimplifyExtractValueInst(Value *Agg, ArrayRef<unsigned> Idxs,
3957                                        const Query &, unsigned) {
3958   if (auto *CAgg = dyn_cast<Constant>(Agg))
3959     return ConstantFoldExtractValueInstruction(CAgg, Idxs);
3960 
3961   // extractvalue x, (insertvalue y, elt, n), n -> elt
3962   unsigned NumIdxs = Idxs.size();
3963   for (auto *IVI = dyn_cast<InsertValueInst>(Agg); IVI != nullptr;
3964        IVI = dyn_cast<InsertValueInst>(IVI->getAggregateOperand())) {
3965     ArrayRef<unsigned> InsertValueIdxs = IVI->getIndices();
3966     unsigned NumInsertValueIdxs = InsertValueIdxs.size();
3967     unsigned NumCommonIdxs = std::min(NumInsertValueIdxs, NumIdxs);
3968     if (InsertValueIdxs.slice(0, NumCommonIdxs) ==
3969         Idxs.slice(0, NumCommonIdxs)) {
3970       if (NumIdxs == NumInsertValueIdxs)
3971         return IVI->getInsertedValueOperand();
3972       break;
3973     }
3974   }
3975 
3976   return nullptr;
3977 }
3978 
3979 Value *llvm::SimplifyExtractValueInst(Value *Agg, ArrayRef<unsigned> Idxs,
3980                                       const DataLayout &DL,
3981                                       const TargetLibraryInfo *TLI,
3982                                       const DominatorTree *DT,
3983                                       AssumptionCache *AC,
3984                                       const Instruction *CxtI) {
3985   return ::SimplifyExtractValueInst(Agg, Idxs, Query(DL, TLI, DT, AC, CxtI),
3986                                     RecursionLimit);
3987 }
3988 
3989 /// Given operands for an ExtractElementInst, see if we can fold the result.
3990 /// If not, this returns null.
3991 static Value *SimplifyExtractElementInst(Value *Vec, Value *Idx, const Query &,
3992                                          unsigned) {
3993   if (auto *CVec = dyn_cast<Constant>(Vec)) {
3994     if (auto *CIdx = dyn_cast<Constant>(Idx))
3995       return ConstantFoldExtractElementInstruction(CVec, CIdx);
3996 
3997     // The index is not relevant if our vector is a splat.
3998     if (auto *Splat = CVec->getSplatValue())
3999       return Splat;
4000 
4001     if (isa<UndefValue>(Vec))
4002       return UndefValue::get(Vec->getType()->getVectorElementType());
4003   }
4004 
4005   // If extracting a specified index from the vector, see if we can recursively
4006   // find a previously computed scalar that was inserted into the vector.
4007   if (auto *IdxC = dyn_cast<ConstantInt>(Idx))
4008     if (Value *Elt = findScalarElement(Vec, IdxC->getZExtValue()))
4009       return Elt;
4010 
4011   return nullptr;
4012 }
4013 
4014 Value *llvm::SimplifyExtractElementInst(
4015     Value *Vec, Value *Idx, const DataLayout &DL, const TargetLibraryInfo *TLI,
4016     const DominatorTree *DT, AssumptionCache *AC, const Instruction *CxtI) {
4017   return ::SimplifyExtractElementInst(Vec, Idx, Query(DL, TLI, DT, AC, CxtI),
4018                                       RecursionLimit);
4019 }
4020 
4021 /// See if we can fold the given phi. If not, returns null.
4022 static Value *SimplifyPHINode(PHINode *PN, const Query &Q) {
4023   // If all of the PHI's incoming values are the same then replace the PHI node
4024   // with the common value.
4025   Value *CommonValue = nullptr;
4026   bool HasUndefInput = false;
4027   for (Value *Incoming : PN->incoming_values()) {
4028     // If the incoming value is the phi node itself, it can safely be skipped.
4029     if (Incoming == PN) continue;
4030     if (isa<UndefValue>(Incoming)) {
4031       // Remember that we saw an undef value, but otherwise ignore them.
4032       HasUndefInput = true;
4033       continue;
4034     }
4035     if (CommonValue && Incoming != CommonValue)
4036       return nullptr;  // Not the same, bail out.
4037     CommonValue = Incoming;
4038   }
4039 
4040   // If CommonValue is null then all of the incoming values were either undef or
4041   // equal to the phi node itself.
4042   if (!CommonValue)
4043     return UndefValue::get(PN->getType());
4044 
4045   // If we have a PHI node like phi(X, undef, X), where X is defined by some
4046   // instruction, we cannot return X as the result of the PHI node unless it
4047   // dominates the PHI block.
4048   if (HasUndefInput)
4049     return ValueDominatesPHI(CommonValue, PN, Q.DT) ? CommonValue : nullptr;
4050 
4051   return CommonValue;
4052 }
4053 
4054 static Value *SimplifyCastInst(unsigned CastOpc, Value *Op,
4055                                Type *Ty, const Query &Q, unsigned MaxRecurse) {
4056   if (auto *C = dyn_cast<Constant>(Op))
4057     return ConstantFoldCastOperand(CastOpc, C, Ty, Q.DL);
4058 
4059   if (auto *CI = dyn_cast<CastInst>(Op)) {
4060     auto *Src = CI->getOperand(0);
4061     Type *SrcTy = Src->getType();
4062     Type *MidTy = CI->getType();
4063     Type *DstTy = Ty;
4064     if (Src->getType() == Ty) {
4065       auto FirstOp = static_cast<Instruction::CastOps>(CI->getOpcode());
4066       auto SecondOp = static_cast<Instruction::CastOps>(CastOpc);
4067       Type *SrcIntPtrTy =
4068           SrcTy->isPtrOrPtrVectorTy() ? Q.DL.getIntPtrType(SrcTy) : nullptr;
4069       Type *MidIntPtrTy =
4070           MidTy->isPtrOrPtrVectorTy() ? Q.DL.getIntPtrType(MidTy) : nullptr;
4071       Type *DstIntPtrTy =
4072           DstTy->isPtrOrPtrVectorTy() ? Q.DL.getIntPtrType(DstTy) : nullptr;
4073       if (CastInst::isEliminableCastPair(FirstOp, SecondOp, SrcTy, MidTy, DstTy,
4074                                          SrcIntPtrTy, MidIntPtrTy,
4075                                          DstIntPtrTy) == Instruction::BitCast)
4076         return Src;
4077     }
4078   }
4079 
4080   // bitcast x -> x
4081   if (CastOpc == Instruction::BitCast)
4082     if (Op->getType() == Ty)
4083       return Op;
4084 
4085   return nullptr;
4086 }
4087 
4088 Value *llvm::SimplifyCastInst(unsigned CastOpc, Value *Op, Type *Ty,
4089                               const DataLayout &DL,
4090                               const TargetLibraryInfo *TLI,
4091                               const DominatorTree *DT, AssumptionCache *AC,
4092                               const Instruction *CxtI) {
4093   return ::SimplifyCastInst(CastOpc, Op, Ty, Query(DL, TLI, DT, AC, CxtI),
4094                             RecursionLimit);
4095 }
4096 
4097 //=== Helper functions for higher up the class hierarchy.
4098 
4099 /// Given operands for a BinaryOperator, see if we can fold the result.
4100 /// If not, this returns null.
4101 static Value *SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS,
4102                             const Query &Q, unsigned MaxRecurse) {
4103   switch (Opcode) {
4104   case Instruction::Add:
4105     return SimplifyAddInst(LHS, RHS, /*isNSW*/false, /*isNUW*/false,
4106                            Q, MaxRecurse);
4107   case Instruction::FAdd:
4108     return SimplifyFAddInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse);
4109 
4110   case Instruction::Sub:
4111     return SimplifySubInst(LHS, RHS, /*isNSW*/false, /*isNUW*/false,
4112                            Q, MaxRecurse);
4113   case Instruction::FSub:
4114     return SimplifyFSubInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse);
4115 
4116   case Instruction::Mul:  return SimplifyMulInst (LHS, RHS, Q, MaxRecurse);
4117   case Instruction::FMul:
4118     return SimplifyFMulInst (LHS, RHS, FastMathFlags(), Q, MaxRecurse);
4119   case Instruction::SDiv: return SimplifySDivInst(LHS, RHS, Q, MaxRecurse);
4120   case Instruction::UDiv: return SimplifyUDivInst(LHS, RHS, Q, MaxRecurse);
4121   case Instruction::FDiv:
4122       return SimplifyFDivInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse);
4123   case Instruction::SRem: return SimplifySRemInst(LHS, RHS, Q, MaxRecurse);
4124   case Instruction::URem: return SimplifyURemInst(LHS, RHS, Q, MaxRecurse);
4125   case Instruction::FRem:
4126       return SimplifyFRemInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse);
4127   case Instruction::Shl:
4128     return SimplifyShlInst(LHS, RHS, /*isNSW*/false, /*isNUW*/false,
4129                            Q, MaxRecurse);
4130   case Instruction::LShr:
4131     return SimplifyLShrInst(LHS, RHS, /*isExact*/false, Q, MaxRecurse);
4132   case Instruction::AShr:
4133     return SimplifyAShrInst(LHS, RHS, /*isExact*/false, Q, MaxRecurse);
4134   case Instruction::And: return SimplifyAndInst(LHS, RHS, Q, MaxRecurse);
4135   case Instruction::Or:  return SimplifyOrInst (LHS, RHS, Q, MaxRecurse);
4136   case Instruction::Xor: return SimplifyXorInst(LHS, RHS, Q, MaxRecurse);
4137   default:
4138     if (Constant *CLHS = dyn_cast<Constant>(LHS))
4139       if (Constant *CRHS = dyn_cast<Constant>(RHS))
4140         return ConstantFoldBinaryOpOperands(Opcode, CLHS, CRHS, Q.DL);
4141 
4142     // If the operation is associative, try some generic simplifications.
4143     if (Instruction::isAssociative(Opcode))
4144       if (Value *V = SimplifyAssociativeBinOp(Opcode, LHS, RHS, Q, MaxRecurse))
4145         return V;
4146 
4147     // If the operation is with the result of a select instruction check whether
4148     // operating on either branch of the select always yields the same value.
4149     if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS))
4150       if (Value *V = ThreadBinOpOverSelect(Opcode, LHS, RHS, Q, MaxRecurse))
4151         return V;
4152 
4153     // If the operation is with the result of a phi instruction, check whether
4154     // operating on all incoming values of the phi always yields the same value.
4155     if (isa<PHINode>(LHS) || isa<PHINode>(RHS))
4156       if (Value *V = ThreadBinOpOverPHI(Opcode, LHS, RHS, Q, MaxRecurse))
4157         return V;
4158 
4159     return nullptr;
4160   }
4161 }
4162 
4163 /// Given operands for a BinaryOperator, see if we can fold the result.
4164 /// If not, this returns null.
4165 /// In contrast to SimplifyBinOp, try to use FastMathFlag when folding the
4166 /// result. In case we don't need FastMathFlags, simply fall to SimplifyBinOp.
4167 static Value *SimplifyFPBinOp(unsigned Opcode, Value *LHS, Value *RHS,
4168                               const FastMathFlags &FMF, const Query &Q,
4169                               unsigned MaxRecurse) {
4170   switch (Opcode) {
4171   case Instruction::FAdd:
4172     return SimplifyFAddInst(LHS, RHS, FMF, Q, MaxRecurse);
4173   case Instruction::FSub:
4174     return SimplifyFSubInst(LHS, RHS, FMF, Q, MaxRecurse);
4175   case Instruction::FMul:
4176     return SimplifyFMulInst(LHS, RHS, FMF, Q, MaxRecurse);
4177   case Instruction::FDiv:
4178     return SimplifyFDivInst(LHS, RHS, FMF, Q, MaxRecurse);
4179   default:
4180     return SimplifyBinOp(Opcode, LHS, RHS, Q, MaxRecurse);
4181   }
4182 }
4183 
4184 Value *llvm::SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS,
4185                            const DataLayout &DL, const TargetLibraryInfo *TLI,
4186                            const DominatorTree *DT, AssumptionCache *AC,
4187                            const Instruction *CxtI) {
4188   return ::SimplifyBinOp(Opcode, LHS, RHS, Query(DL, TLI, DT, AC, CxtI),
4189                          RecursionLimit);
4190 }
4191 
4192 Value *llvm::SimplifyFPBinOp(unsigned Opcode, Value *LHS, Value *RHS,
4193                              const FastMathFlags &FMF, const DataLayout &DL,
4194                              const TargetLibraryInfo *TLI,
4195                              const DominatorTree *DT, AssumptionCache *AC,
4196                              const Instruction *CxtI) {
4197   return ::SimplifyFPBinOp(Opcode, LHS, RHS, FMF, Query(DL, TLI, DT, AC, CxtI),
4198                            RecursionLimit);
4199 }
4200 
4201 /// Given operands for a CmpInst, see if we can fold the result.
4202 static Value *SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
4203                               const Query &Q, unsigned MaxRecurse) {
4204   if (CmpInst::isIntPredicate((CmpInst::Predicate)Predicate))
4205     return SimplifyICmpInst(Predicate, LHS, RHS, Q, MaxRecurse);
4206   return SimplifyFCmpInst(Predicate, LHS, RHS, FastMathFlags(), Q, MaxRecurse);
4207 }
4208 
4209 Value *llvm::SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
4210                              const DataLayout &DL, const TargetLibraryInfo *TLI,
4211                              const DominatorTree *DT, AssumptionCache *AC,
4212                              const Instruction *CxtI) {
4213   return ::SimplifyCmpInst(Predicate, LHS, RHS, Query(DL, TLI, DT, AC, CxtI),
4214                            RecursionLimit);
4215 }
4216 
4217 static bool IsIdempotent(Intrinsic::ID ID) {
4218   switch (ID) {
4219   default: return false;
4220 
4221   // Unary idempotent: f(f(x)) = f(x)
4222   case Intrinsic::fabs:
4223   case Intrinsic::floor:
4224   case Intrinsic::ceil:
4225   case Intrinsic::trunc:
4226   case Intrinsic::rint:
4227   case Intrinsic::nearbyint:
4228   case Intrinsic::round:
4229     return true;
4230   }
4231 }
4232 
4233 static Value *SimplifyRelativeLoad(Constant *Ptr, Constant *Offset,
4234                                    const DataLayout &DL) {
4235   GlobalValue *PtrSym;
4236   APInt PtrOffset;
4237   if (!IsConstantOffsetFromGlobal(Ptr, PtrSym, PtrOffset, DL))
4238     return nullptr;
4239 
4240   Type *Int8PtrTy = Type::getInt8PtrTy(Ptr->getContext());
4241   Type *Int32Ty = Type::getInt32Ty(Ptr->getContext());
4242   Type *Int32PtrTy = Int32Ty->getPointerTo();
4243   Type *Int64Ty = Type::getInt64Ty(Ptr->getContext());
4244 
4245   auto *OffsetConstInt = dyn_cast<ConstantInt>(Offset);
4246   if (!OffsetConstInt || OffsetConstInt->getType()->getBitWidth() > 64)
4247     return nullptr;
4248 
4249   uint64_t OffsetInt = OffsetConstInt->getSExtValue();
4250   if (OffsetInt % 4 != 0)
4251     return nullptr;
4252 
4253   Constant *C = ConstantExpr::getGetElementPtr(
4254       Int32Ty, ConstantExpr::getBitCast(Ptr, Int32PtrTy),
4255       ConstantInt::get(Int64Ty, OffsetInt / 4));
4256   Constant *Loaded = ConstantFoldLoadFromConstPtr(C, Int32Ty, DL);
4257   if (!Loaded)
4258     return nullptr;
4259 
4260   auto *LoadedCE = dyn_cast<ConstantExpr>(Loaded);
4261   if (!LoadedCE)
4262     return nullptr;
4263 
4264   if (LoadedCE->getOpcode() == Instruction::Trunc) {
4265     LoadedCE = dyn_cast<ConstantExpr>(LoadedCE->getOperand(0));
4266     if (!LoadedCE)
4267       return nullptr;
4268   }
4269 
4270   if (LoadedCE->getOpcode() != Instruction::Sub)
4271     return nullptr;
4272 
4273   auto *LoadedLHS = dyn_cast<ConstantExpr>(LoadedCE->getOperand(0));
4274   if (!LoadedLHS || LoadedLHS->getOpcode() != Instruction::PtrToInt)
4275     return nullptr;
4276   auto *LoadedLHSPtr = LoadedLHS->getOperand(0);
4277 
4278   Constant *LoadedRHS = LoadedCE->getOperand(1);
4279   GlobalValue *LoadedRHSSym;
4280   APInt LoadedRHSOffset;
4281   if (!IsConstantOffsetFromGlobal(LoadedRHS, LoadedRHSSym, LoadedRHSOffset,
4282                                   DL) ||
4283       PtrSym != LoadedRHSSym || PtrOffset != LoadedRHSOffset)
4284     return nullptr;
4285 
4286   return ConstantExpr::getBitCast(LoadedLHSPtr, Int8PtrTy);
4287 }
4288 
4289 static bool maskIsAllZeroOrUndef(Value *Mask) {
4290   auto *ConstMask = dyn_cast<Constant>(Mask);
4291   if (!ConstMask)
4292     return false;
4293   if (ConstMask->isNullValue() || isa<UndefValue>(ConstMask))
4294     return true;
4295   for (unsigned I = 0, E = ConstMask->getType()->getVectorNumElements(); I != E;
4296        ++I) {
4297     if (auto *MaskElt = ConstMask->getAggregateElement(I))
4298       if (MaskElt->isNullValue() || isa<UndefValue>(MaskElt))
4299         continue;
4300     return false;
4301   }
4302   return true;
4303 }
4304 
4305 template <typename IterTy>
4306 static Value *SimplifyIntrinsic(Function *F, IterTy ArgBegin, IterTy ArgEnd,
4307                                 const Query &Q, unsigned MaxRecurse) {
4308   Intrinsic::ID IID = F->getIntrinsicID();
4309   unsigned NumOperands = std::distance(ArgBegin, ArgEnd);
4310 
4311   // Unary Ops
4312   if (NumOperands == 1) {
4313     // Perform idempotent optimizations
4314     if (IsIdempotent(IID)) {
4315       if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(*ArgBegin)) {
4316         if (II->getIntrinsicID() == IID)
4317           return II;
4318       }
4319     }
4320 
4321     switch (IID) {
4322     case Intrinsic::fabs: {
4323       if (SignBitMustBeZero(*ArgBegin, Q.TLI))
4324         return *ArgBegin;
4325       return nullptr;
4326     }
4327     default:
4328       return nullptr;
4329     }
4330   }
4331 
4332   // Binary Ops
4333   if (NumOperands == 2) {
4334     Value *LHS = *ArgBegin;
4335     Value *RHS = *(ArgBegin + 1);
4336     Type *ReturnType = F->getReturnType();
4337 
4338     switch (IID) {
4339     case Intrinsic::usub_with_overflow:
4340     case Intrinsic::ssub_with_overflow: {
4341       // X - X -> { 0, false }
4342       if (LHS == RHS)
4343         return Constant::getNullValue(ReturnType);
4344 
4345       // X - undef -> undef
4346       // undef - X -> undef
4347       if (isa<UndefValue>(LHS) || isa<UndefValue>(RHS))
4348         return UndefValue::get(ReturnType);
4349 
4350       return nullptr;
4351     }
4352     case Intrinsic::uadd_with_overflow:
4353     case Intrinsic::sadd_with_overflow: {
4354       // X + undef -> undef
4355       if (isa<UndefValue>(RHS))
4356         return UndefValue::get(ReturnType);
4357 
4358       return nullptr;
4359     }
4360     case Intrinsic::umul_with_overflow:
4361     case Intrinsic::smul_with_overflow: {
4362       // X * 0 -> { 0, false }
4363       if (match(RHS, m_Zero()))
4364         return Constant::getNullValue(ReturnType);
4365 
4366       // X * undef -> { 0, false }
4367       if (match(RHS, m_Undef()))
4368         return Constant::getNullValue(ReturnType);
4369 
4370       return nullptr;
4371     }
4372     case Intrinsic::load_relative: {
4373       Constant *C0 = dyn_cast<Constant>(LHS);
4374       Constant *C1 = dyn_cast<Constant>(RHS);
4375       if (C0 && C1)
4376         return SimplifyRelativeLoad(C0, C1, Q.DL);
4377       return nullptr;
4378     }
4379     default:
4380       return nullptr;
4381     }
4382   }
4383 
4384   // Simplify calls to llvm.masked.load.*
4385   switch (IID) {
4386   case Intrinsic::masked_load: {
4387     Value *MaskArg = ArgBegin[2];
4388     Value *PassthruArg = ArgBegin[3];
4389     // If the mask is all zeros or undef, the "passthru" argument is the result.
4390     if (maskIsAllZeroOrUndef(MaskArg))
4391       return PassthruArg;
4392     return nullptr;
4393   }
4394   default:
4395     return nullptr;
4396   }
4397 }
4398 
4399 template <typename IterTy>
4400 static Value *SimplifyCall(Value *V, IterTy ArgBegin, IterTy ArgEnd,
4401                            const Query &Q, unsigned MaxRecurse) {
4402   Type *Ty = V->getType();
4403   if (PointerType *PTy = dyn_cast<PointerType>(Ty))
4404     Ty = PTy->getElementType();
4405   FunctionType *FTy = cast<FunctionType>(Ty);
4406 
4407   // call undef -> undef
4408   // call null -> undef
4409   if (isa<UndefValue>(V) || isa<ConstantPointerNull>(V))
4410     return UndefValue::get(FTy->getReturnType());
4411 
4412   Function *F = dyn_cast<Function>(V);
4413   if (!F)
4414     return nullptr;
4415 
4416   if (F->isIntrinsic())
4417     if (Value *Ret = SimplifyIntrinsic(F, ArgBegin, ArgEnd, Q, MaxRecurse))
4418       return Ret;
4419 
4420   if (!canConstantFoldCallTo(F))
4421     return nullptr;
4422 
4423   SmallVector<Constant *, 4> ConstantArgs;
4424   ConstantArgs.reserve(ArgEnd - ArgBegin);
4425   for (IterTy I = ArgBegin, E = ArgEnd; I != E; ++I) {
4426     Constant *C = dyn_cast<Constant>(*I);
4427     if (!C)
4428       return nullptr;
4429     ConstantArgs.push_back(C);
4430   }
4431 
4432   return ConstantFoldCall(F, ConstantArgs, Q.TLI);
4433 }
4434 
4435 Value *llvm::SimplifyCall(Value *V, User::op_iterator ArgBegin,
4436                           User::op_iterator ArgEnd, const DataLayout &DL,
4437                           const TargetLibraryInfo *TLI, const DominatorTree *DT,
4438                           AssumptionCache *AC, const Instruction *CxtI) {
4439   return ::SimplifyCall(V, ArgBegin, ArgEnd, Query(DL, TLI, DT, AC, CxtI),
4440                         RecursionLimit);
4441 }
4442 
4443 Value *llvm::SimplifyCall(Value *V, ArrayRef<Value *> Args,
4444                           const DataLayout &DL, const TargetLibraryInfo *TLI,
4445                           const DominatorTree *DT, AssumptionCache *AC,
4446                           const Instruction *CxtI) {
4447   return ::SimplifyCall(V, Args.begin(), Args.end(),
4448                         Query(DL, TLI, DT, AC, CxtI), RecursionLimit);
4449 }
4450 
4451 /// See if we can compute a simplified version of this instruction.
4452 /// If not, this returns null.
4453 Value *llvm::SimplifyInstruction(Instruction *I, const DataLayout &DL,
4454                                  const TargetLibraryInfo *TLI,
4455                                  const DominatorTree *DT, AssumptionCache *AC) {
4456   Value *Result;
4457 
4458   switch (I->getOpcode()) {
4459   default:
4460     Result = ConstantFoldInstruction(I, DL, TLI);
4461     break;
4462   case Instruction::FAdd:
4463     Result = SimplifyFAddInst(I->getOperand(0), I->getOperand(1),
4464                               I->getFastMathFlags(), DL, TLI, DT, AC, I);
4465     break;
4466   case Instruction::Add:
4467     Result = SimplifyAddInst(I->getOperand(0), I->getOperand(1),
4468                              cast<BinaryOperator>(I)->hasNoSignedWrap(),
4469                              cast<BinaryOperator>(I)->hasNoUnsignedWrap(), DL,
4470                              TLI, DT, AC, I);
4471     break;
4472   case Instruction::FSub:
4473     Result = SimplifyFSubInst(I->getOperand(0), I->getOperand(1),
4474                               I->getFastMathFlags(), DL, TLI, DT, AC, I);
4475     break;
4476   case Instruction::Sub:
4477     Result = SimplifySubInst(I->getOperand(0), I->getOperand(1),
4478                              cast<BinaryOperator>(I)->hasNoSignedWrap(),
4479                              cast<BinaryOperator>(I)->hasNoUnsignedWrap(), DL,
4480                              TLI, DT, AC, I);
4481     break;
4482   case Instruction::FMul:
4483     Result = SimplifyFMulInst(I->getOperand(0), I->getOperand(1),
4484                               I->getFastMathFlags(), DL, TLI, DT, AC, I);
4485     break;
4486   case Instruction::Mul:
4487     Result =
4488         SimplifyMulInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT, AC, I);
4489     break;
4490   case Instruction::SDiv:
4491     Result = SimplifySDivInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT,
4492                               AC, I);
4493     break;
4494   case Instruction::UDiv:
4495     Result = SimplifyUDivInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT,
4496                               AC, I);
4497     break;
4498   case Instruction::FDiv:
4499     Result = SimplifyFDivInst(I->getOperand(0), I->getOperand(1),
4500                               I->getFastMathFlags(), DL, TLI, DT, AC, I);
4501     break;
4502   case Instruction::SRem:
4503     Result = SimplifySRemInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT,
4504                               AC, I);
4505     break;
4506   case Instruction::URem:
4507     Result = SimplifyURemInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT,
4508                               AC, I);
4509     break;
4510   case Instruction::FRem:
4511     Result = SimplifyFRemInst(I->getOperand(0), I->getOperand(1),
4512                               I->getFastMathFlags(), DL, TLI, DT, AC, I);
4513     break;
4514   case Instruction::Shl:
4515     Result = SimplifyShlInst(I->getOperand(0), I->getOperand(1),
4516                              cast<BinaryOperator>(I)->hasNoSignedWrap(),
4517                              cast<BinaryOperator>(I)->hasNoUnsignedWrap(), DL,
4518                              TLI, DT, AC, I);
4519     break;
4520   case Instruction::LShr:
4521     Result = SimplifyLShrInst(I->getOperand(0), I->getOperand(1),
4522                               cast<BinaryOperator>(I)->isExact(), DL, TLI, DT,
4523                               AC, I);
4524     break;
4525   case Instruction::AShr:
4526     Result = SimplifyAShrInst(I->getOperand(0), I->getOperand(1),
4527                               cast<BinaryOperator>(I)->isExact(), DL, TLI, DT,
4528                               AC, I);
4529     break;
4530   case Instruction::And:
4531     Result =
4532         SimplifyAndInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT, AC, I);
4533     break;
4534   case Instruction::Or:
4535     Result =
4536         SimplifyOrInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT, AC, I);
4537     break;
4538   case Instruction::Xor:
4539     Result =
4540         SimplifyXorInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT, AC, I);
4541     break;
4542   case Instruction::ICmp:
4543     Result =
4544         SimplifyICmpInst(cast<ICmpInst>(I)->getPredicate(), I->getOperand(0),
4545                          I->getOperand(1), DL, TLI, DT, AC, I);
4546     break;
4547   case Instruction::FCmp:
4548     Result = SimplifyFCmpInst(cast<FCmpInst>(I)->getPredicate(),
4549                               I->getOperand(0), I->getOperand(1),
4550                               I->getFastMathFlags(), DL, TLI, DT, AC, I);
4551     break;
4552   case Instruction::Select:
4553     Result = SimplifySelectInst(I->getOperand(0), I->getOperand(1),
4554                                 I->getOperand(2), DL, TLI, DT, AC, I);
4555     break;
4556   case Instruction::GetElementPtr: {
4557     SmallVector<Value*, 8> Ops(I->op_begin(), I->op_end());
4558     Result = SimplifyGEPInst(cast<GetElementPtrInst>(I)->getSourceElementType(),
4559                              Ops, DL, TLI, DT, AC, I);
4560     break;
4561   }
4562   case Instruction::InsertValue: {
4563     InsertValueInst *IV = cast<InsertValueInst>(I);
4564     Result = SimplifyInsertValueInst(IV->getAggregateOperand(),
4565                                      IV->getInsertedValueOperand(),
4566                                      IV->getIndices(), DL, TLI, DT, AC, I);
4567     break;
4568   }
4569   case Instruction::ExtractValue: {
4570     auto *EVI = cast<ExtractValueInst>(I);
4571     Result = SimplifyExtractValueInst(EVI->getAggregateOperand(),
4572                                       EVI->getIndices(), DL, TLI, DT, AC, I);
4573     break;
4574   }
4575   case Instruction::ExtractElement: {
4576     auto *EEI = cast<ExtractElementInst>(I);
4577     Result = SimplifyExtractElementInst(
4578         EEI->getVectorOperand(), EEI->getIndexOperand(), DL, TLI, DT, AC, I);
4579     break;
4580   }
4581   case Instruction::PHI:
4582     Result = SimplifyPHINode(cast<PHINode>(I), Query(DL, TLI, DT, AC, I));
4583     break;
4584   case Instruction::Call: {
4585     CallSite CS(cast<CallInst>(I));
4586     Result = SimplifyCall(CS.getCalledValue(), CS.arg_begin(), CS.arg_end(), DL,
4587                           TLI, DT, AC, I);
4588     break;
4589   }
4590 #define HANDLE_CAST_INST(num, opc, clas) case Instruction::opc:
4591 #include "llvm/IR/Instruction.def"
4592 #undef HANDLE_CAST_INST
4593     Result = SimplifyCastInst(I->getOpcode(), I->getOperand(0), I->getType(),
4594                               DL, TLI, DT, AC, I);
4595     break;
4596   }
4597 
4598   // In general, it is possible for computeKnownBits to determine all bits in a
4599   // value even when the operands are not all constants.
4600   if (!Result && I->getType()->isIntOrIntVectorTy()) {
4601     unsigned BitWidth = I->getType()->getScalarSizeInBits();
4602     APInt KnownZero(BitWidth, 0);
4603     APInt KnownOne(BitWidth, 0);
4604     computeKnownBits(I, KnownZero, KnownOne, DL, /*Depth*/0, AC, I, DT);
4605     if ((KnownZero | KnownOne).isAllOnesValue())
4606       Result = ConstantInt::get(I->getType(), KnownOne);
4607   }
4608 
4609   /// If called on unreachable code, the above logic may report that the
4610   /// instruction simplified to itself.  Make life easier for users by
4611   /// detecting that case here, returning a safe value instead.
4612   return Result == I ? UndefValue::get(I->getType()) : Result;
4613 }
4614 
4615 /// \brief Implementation of recursive simplification through an instruction's
4616 /// uses.
4617 ///
4618 /// This is the common implementation of the recursive simplification routines.
4619 /// If we have a pre-simplified value in 'SimpleV', that is forcibly used to
4620 /// replace the instruction 'I'. Otherwise, we simply add 'I' to the list of
4621 /// instructions to process and attempt to simplify it using
4622 /// InstructionSimplify.
4623 ///
4624 /// This routine returns 'true' only when *it* simplifies something. The passed
4625 /// in simplified value does not count toward this.
4626 static bool replaceAndRecursivelySimplifyImpl(Instruction *I, Value *SimpleV,
4627                                               const TargetLibraryInfo *TLI,
4628                                               const DominatorTree *DT,
4629                                               AssumptionCache *AC) {
4630   bool Simplified = false;
4631   SmallSetVector<Instruction *, 8> Worklist;
4632   const DataLayout &DL = I->getModule()->getDataLayout();
4633 
4634   // If we have an explicit value to collapse to, do that round of the
4635   // simplification loop by hand initially.
4636   if (SimpleV) {
4637     for (User *U : I->users())
4638       if (U != I)
4639         Worklist.insert(cast<Instruction>(U));
4640 
4641     // Replace the instruction with its simplified value.
4642     I->replaceAllUsesWith(SimpleV);
4643 
4644     // Gracefully handle edge cases where the instruction is not wired into any
4645     // parent block.
4646     if (I->getParent() && !I->isEHPad() && !isa<TerminatorInst>(I) &&
4647         !I->mayHaveSideEffects())
4648       I->eraseFromParent();
4649   } else {
4650     Worklist.insert(I);
4651   }
4652 
4653   // Note that we must test the size on each iteration, the worklist can grow.
4654   for (unsigned Idx = 0; Idx != Worklist.size(); ++Idx) {
4655     I = Worklist[Idx];
4656 
4657     // See if this instruction simplifies.
4658     SimpleV = SimplifyInstruction(I, DL, TLI, DT, AC);
4659     if (!SimpleV)
4660       continue;
4661 
4662     Simplified = true;
4663 
4664     // Stash away all the uses of the old instruction so we can check them for
4665     // recursive simplifications after a RAUW. This is cheaper than checking all
4666     // uses of To on the recursive step in most cases.
4667     for (User *U : I->users())
4668       Worklist.insert(cast<Instruction>(U));
4669 
4670     // Replace the instruction with its simplified value.
4671     I->replaceAllUsesWith(SimpleV);
4672 
4673     // Gracefully handle edge cases where the instruction is not wired into any
4674     // parent block.
4675     if (I->getParent() && !I->isEHPad() && !isa<TerminatorInst>(I) &&
4676         !I->mayHaveSideEffects())
4677       I->eraseFromParent();
4678   }
4679   return Simplified;
4680 }
4681 
4682 bool llvm::recursivelySimplifyInstruction(Instruction *I,
4683                                           const TargetLibraryInfo *TLI,
4684                                           const DominatorTree *DT,
4685                                           AssumptionCache *AC) {
4686   return replaceAndRecursivelySimplifyImpl(I, nullptr, TLI, DT, AC);
4687 }
4688 
4689 bool llvm::replaceAndRecursivelySimplify(Instruction *I, Value *SimpleV,
4690                                          const TargetLibraryInfo *TLI,
4691                                          const DominatorTree *DT,
4692                                          AssumptionCache *AC) {
4693   assert(I != SimpleV && "replaceAndRecursivelySimplify(X,X) is not valid!");
4694   assert(SimpleV && "Must provide a simplified value.");
4695   return replaceAndRecursivelySimplifyImpl(I, SimpleV, TLI, DT, AC);
4696 }
4697