1 //===- InstructionSimplify.cpp - Fold instruction operands ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements routines for folding instructions into simpler forms 11 // that do not require creating new instructions. This does constant folding 12 // ("add i32 1, 1" -> "2") but can also handle non-constant operands, either 13 // returning a constant ("and i32 %x, 0" -> "0") or an already existing value 14 // ("and i32 %x, %x" -> "%x"). All operands are assumed to have already been 15 // simplified: This is usually true and assuming it simplifies the logic (if 16 // they have not been simplified then results are correct but maybe suboptimal). 17 // 18 //===----------------------------------------------------------------------===// 19 20 #include "llvm/Analysis/InstructionSimplify.h" 21 #include "llvm/ADT/SetVector.h" 22 #include "llvm/ADT/Statistic.h" 23 #include "llvm/Analysis/AliasAnalysis.h" 24 #include "llvm/Analysis/AssumptionCache.h" 25 #include "llvm/Analysis/CaptureTracking.h" 26 #include "llvm/Analysis/CmpInstAnalysis.h" 27 #include "llvm/Analysis/ConstantFolding.h" 28 #include "llvm/Analysis/LoopAnalysisManager.h" 29 #include "llvm/Analysis/MemoryBuiltins.h" 30 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 31 #include "llvm/Analysis/ValueTracking.h" 32 #include "llvm/Analysis/VectorUtils.h" 33 #include "llvm/IR/ConstantRange.h" 34 #include "llvm/IR/DataLayout.h" 35 #include "llvm/IR/Dominators.h" 36 #include "llvm/IR/GetElementPtrTypeIterator.h" 37 #include "llvm/IR/GlobalAlias.h" 38 #include "llvm/IR/Operator.h" 39 #include "llvm/IR/PatternMatch.h" 40 #include "llvm/IR/ValueHandle.h" 41 #include "llvm/Support/KnownBits.h" 42 #include <algorithm> 43 using namespace llvm; 44 using namespace llvm::PatternMatch; 45 46 #define DEBUG_TYPE "instsimplify" 47 48 enum { RecursionLimit = 3 }; 49 50 STATISTIC(NumExpand, "Number of expansions"); 51 STATISTIC(NumReassoc, "Number of reassociations"); 52 53 static Value *SimplifyAndInst(Value *, Value *, const SimplifyQuery &, unsigned); 54 static Value *SimplifyBinOp(unsigned, Value *, Value *, const SimplifyQuery &, 55 unsigned); 56 static Value *SimplifyFPBinOp(unsigned, Value *, Value *, const FastMathFlags &, 57 const SimplifyQuery &, unsigned); 58 static Value *SimplifyCmpInst(unsigned, Value *, Value *, const SimplifyQuery &, 59 unsigned); 60 static Value *SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS, 61 const SimplifyQuery &Q, unsigned MaxRecurse); 62 static Value *SimplifyOrInst(Value *, Value *, const SimplifyQuery &, unsigned); 63 static Value *SimplifyXorInst(Value *, Value *, const SimplifyQuery &, unsigned); 64 static Value *SimplifyCastInst(unsigned, Value *, Type *, 65 const SimplifyQuery &, unsigned); 66 67 /// For a boolean type or a vector of boolean type, return false or a vector 68 /// with every element false. 69 static Constant *getFalse(Type *Ty) { 70 return ConstantInt::getFalse(Ty); 71 } 72 73 /// For a boolean type or a vector of boolean type, return true or a vector 74 /// with every element true. 75 static Constant *getTrue(Type *Ty) { 76 return ConstantInt::getTrue(Ty); 77 } 78 79 /// isSameCompare - Is V equivalent to the comparison "LHS Pred RHS"? 80 static bool isSameCompare(Value *V, CmpInst::Predicate Pred, Value *LHS, 81 Value *RHS) { 82 CmpInst *Cmp = dyn_cast<CmpInst>(V); 83 if (!Cmp) 84 return false; 85 CmpInst::Predicate CPred = Cmp->getPredicate(); 86 Value *CLHS = Cmp->getOperand(0), *CRHS = Cmp->getOperand(1); 87 if (CPred == Pred && CLHS == LHS && CRHS == RHS) 88 return true; 89 return CPred == CmpInst::getSwappedPredicate(Pred) && CLHS == RHS && 90 CRHS == LHS; 91 } 92 93 /// Does the given value dominate the specified phi node? 94 static bool ValueDominatesPHI(Value *V, PHINode *P, const DominatorTree *DT) { 95 Instruction *I = dyn_cast<Instruction>(V); 96 if (!I) 97 // Arguments and constants dominate all instructions. 98 return true; 99 100 // If we are processing instructions (and/or basic blocks) that have not been 101 // fully added to a function, the parent nodes may still be null. Simply 102 // return the conservative answer in these cases. 103 if (!I->getParent() || !P->getParent() || !I->getParent()->getParent()) 104 return false; 105 106 // If we have a DominatorTree then do a precise test. 107 if (DT) 108 return DT->dominates(I, P); 109 110 // Otherwise, if the instruction is in the entry block and is not an invoke, 111 // then it obviously dominates all phi nodes. 112 if (I->getParent() == &I->getParent()->getParent()->getEntryBlock() && 113 !isa<InvokeInst>(I)) 114 return true; 115 116 return false; 117 } 118 119 /// Simplify "A op (B op' C)" by distributing op over op', turning it into 120 /// "(A op B) op' (A op C)". Here "op" is given by Opcode and "op'" is 121 /// given by OpcodeToExpand, while "A" corresponds to LHS and "B op' C" to RHS. 122 /// Also performs the transform "(A op' B) op C" -> "(A op C) op' (B op C)". 123 /// Returns the simplified value, or null if no simplification was performed. 124 static Value *ExpandBinOp(Instruction::BinaryOps Opcode, Value *LHS, Value *RHS, 125 Instruction::BinaryOps OpcodeToExpand, 126 const SimplifyQuery &Q, unsigned MaxRecurse) { 127 // Recursion is always used, so bail out at once if we already hit the limit. 128 if (!MaxRecurse--) 129 return nullptr; 130 131 // Check whether the expression has the form "(A op' B) op C". 132 if (BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS)) 133 if (Op0->getOpcode() == OpcodeToExpand) { 134 // It does! Try turning it into "(A op C) op' (B op C)". 135 Value *A = Op0->getOperand(0), *B = Op0->getOperand(1), *C = RHS; 136 // Do "A op C" and "B op C" both simplify? 137 if (Value *L = SimplifyBinOp(Opcode, A, C, Q, MaxRecurse)) 138 if (Value *R = SimplifyBinOp(Opcode, B, C, Q, MaxRecurse)) { 139 // They do! Return "L op' R" if it simplifies or is already available. 140 // If "L op' R" equals "A op' B" then "L op' R" is just the LHS. 141 if ((L == A && R == B) || (Instruction::isCommutative(OpcodeToExpand) 142 && L == B && R == A)) { 143 ++NumExpand; 144 return LHS; 145 } 146 // Otherwise return "L op' R" if it simplifies. 147 if (Value *V = SimplifyBinOp(OpcodeToExpand, L, R, Q, MaxRecurse)) { 148 ++NumExpand; 149 return V; 150 } 151 } 152 } 153 154 // Check whether the expression has the form "A op (B op' C)". 155 if (BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS)) 156 if (Op1->getOpcode() == OpcodeToExpand) { 157 // It does! Try turning it into "(A op B) op' (A op C)". 158 Value *A = LHS, *B = Op1->getOperand(0), *C = Op1->getOperand(1); 159 // Do "A op B" and "A op C" both simplify? 160 if (Value *L = SimplifyBinOp(Opcode, A, B, Q, MaxRecurse)) 161 if (Value *R = SimplifyBinOp(Opcode, A, C, Q, MaxRecurse)) { 162 // They do! Return "L op' R" if it simplifies or is already available. 163 // If "L op' R" equals "B op' C" then "L op' R" is just the RHS. 164 if ((L == B && R == C) || (Instruction::isCommutative(OpcodeToExpand) 165 && L == C && R == B)) { 166 ++NumExpand; 167 return RHS; 168 } 169 // Otherwise return "L op' R" if it simplifies. 170 if (Value *V = SimplifyBinOp(OpcodeToExpand, L, R, Q, MaxRecurse)) { 171 ++NumExpand; 172 return V; 173 } 174 } 175 } 176 177 return nullptr; 178 } 179 180 /// Generic simplifications for associative binary operations. 181 /// Returns the simpler value, or null if none was found. 182 static Value *SimplifyAssociativeBinOp(Instruction::BinaryOps Opcode, 183 Value *LHS, Value *RHS, 184 const SimplifyQuery &Q, 185 unsigned MaxRecurse) { 186 assert(Instruction::isAssociative(Opcode) && "Not an associative operation!"); 187 188 // Recursion is always used, so bail out at once if we already hit the limit. 189 if (!MaxRecurse--) 190 return nullptr; 191 192 BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS); 193 BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS); 194 195 // Transform: "(A op B) op C" ==> "A op (B op C)" if it simplifies completely. 196 if (Op0 && Op0->getOpcode() == Opcode) { 197 Value *A = Op0->getOperand(0); 198 Value *B = Op0->getOperand(1); 199 Value *C = RHS; 200 201 // Does "B op C" simplify? 202 if (Value *V = SimplifyBinOp(Opcode, B, C, Q, MaxRecurse)) { 203 // It does! Return "A op V" if it simplifies or is already available. 204 // If V equals B then "A op V" is just the LHS. 205 if (V == B) return LHS; 206 // Otherwise return "A op V" if it simplifies. 207 if (Value *W = SimplifyBinOp(Opcode, A, V, Q, MaxRecurse)) { 208 ++NumReassoc; 209 return W; 210 } 211 } 212 } 213 214 // Transform: "A op (B op C)" ==> "(A op B) op C" if it simplifies completely. 215 if (Op1 && Op1->getOpcode() == Opcode) { 216 Value *A = LHS; 217 Value *B = Op1->getOperand(0); 218 Value *C = Op1->getOperand(1); 219 220 // Does "A op B" simplify? 221 if (Value *V = SimplifyBinOp(Opcode, A, B, Q, MaxRecurse)) { 222 // It does! Return "V op C" if it simplifies or is already available. 223 // If V equals B then "V op C" is just the RHS. 224 if (V == B) return RHS; 225 // Otherwise return "V op C" if it simplifies. 226 if (Value *W = SimplifyBinOp(Opcode, V, C, Q, MaxRecurse)) { 227 ++NumReassoc; 228 return W; 229 } 230 } 231 } 232 233 // The remaining transforms require commutativity as well as associativity. 234 if (!Instruction::isCommutative(Opcode)) 235 return nullptr; 236 237 // Transform: "(A op B) op C" ==> "(C op A) op B" if it simplifies completely. 238 if (Op0 && Op0->getOpcode() == Opcode) { 239 Value *A = Op0->getOperand(0); 240 Value *B = Op0->getOperand(1); 241 Value *C = RHS; 242 243 // Does "C op A" simplify? 244 if (Value *V = SimplifyBinOp(Opcode, C, A, Q, MaxRecurse)) { 245 // It does! Return "V op B" if it simplifies or is already available. 246 // If V equals A then "V op B" is just the LHS. 247 if (V == A) return LHS; 248 // Otherwise return "V op B" if it simplifies. 249 if (Value *W = SimplifyBinOp(Opcode, V, B, Q, MaxRecurse)) { 250 ++NumReassoc; 251 return W; 252 } 253 } 254 } 255 256 // Transform: "A op (B op C)" ==> "B op (C op A)" if it simplifies completely. 257 if (Op1 && Op1->getOpcode() == Opcode) { 258 Value *A = LHS; 259 Value *B = Op1->getOperand(0); 260 Value *C = Op1->getOperand(1); 261 262 // Does "C op A" simplify? 263 if (Value *V = SimplifyBinOp(Opcode, C, A, Q, MaxRecurse)) { 264 // It does! Return "B op V" if it simplifies or is already available. 265 // If V equals C then "B op V" is just the RHS. 266 if (V == C) return RHS; 267 // Otherwise return "B op V" if it simplifies. 268 if (Value *W = SimplifyBinOp(Opcode, B, V, Q, MaxRecurse)) { 269 ++NumReassoc; 270 return W; 271 } 272 } 273 } 274 275 return nullptr; 276 } 277 278 /// In the case of a binary operation with a select instruction as an operand, 279 /// try to simplify the binop by seeing whether evaluating it on both branches 280 /// of the select results in the same value. Returns the common value if so, 281 /// otherwise returns null. 282 static Value *ThreadBinOpOverSelect(Instruction::BinaryOps Opcode, Value *LHS, 283 Value *RHS, const SimplifyQuery &Q, 284 unsigned MaxRecurse) { 285 // Recursion is always used, so bail out at once if we already hit the limit. 286 if (!MaxRecurse--) 287 return nullptr; 288 289 SelectInst *SI; 290 if (isa<SelectInst>(LHS)) { 291 SI = cast<SelectInst>(LHS); 292 } else { 293 assert(isa<SelectInst>(RHS) && "No select instruction operand!"); 294 SI = cast<SelectInst>(RHS); 295 } 296 297 // Evaluate the BinOp on the true and false branches of the select. 298 Value *TV; 299 Value *FV; 300 if (SI == LHS) { 301 TV = SimplifyBinOp(Opcode, SI->getTrueValue(), RHS, Q, MaxRecurse); 302 FV = SimplifyBinOp(Opcode, SI->getFalseValue(), RHS, Q, MaxRecurse); 303 } else { 304 TV = SimplifyBinOp(Opcode, LHS, SI->getTrueValue(), Q, MaxRecurse); 305 FV = SimplifyBinOp(Opcode, LHS, SI->getFalseValue(), Q, MaxRecurse); 306 } 307 308 // If they simplified to the same value, then return the common value. 309 // If they both failed to simplify then return null. 310 if (TV == FV) 311 return TV; 312 313 // If one branch simplified to undef, return the other one. 314 if (TV && isa<UndefValue>(TV)) 315 return FV; 316 if (FV && isa<UndefValue>(FV)) 317 return TV; 318 319 // If applying the operation did not change the true and false select values, 320 // then the result of the binop is the select itself. 321 if (TV == SI->getTrueValue() && FV == SI->getFalseValue()) 322 return SI; 323 324 // If one branch simplified and the other did not, and the simplified 325 // value is equal to the unsimplified one, return the simplified value. 326 // For example, select (cond, X, X & Z) & Z -> X & Z. 327 if ((FV && !TV) || (TV && !FV)) { 328 // Check that the simplified value has the form "X op Y" where "op" is the 329 // same as the original operation. 330 Instruction *Simplified = dyn_cast<Instruction>(FV ? FV : TV); 331 if (Simplified && Simplified->getOpcode() == Opcode) { 332 // The value that didn't simplify is "UnsimplifiedLHS op UnsimplifiedRHS". 333 // We already know that "op" is the same as for the simplified value. See 334 // if the operands match too. If so, return the simplified value. 335 Value *UnsimplifiedBranch = FV ? SI->getTrueValue() : SI->getFalseValue(); 336 Value *UnsimplifiedLHS = SI == LHS ? UnsimplifiedBranch : LHS; 337 Value *UnsimplifiedRHS = SI == LHS ? RHS : UnsimplifiedBranch; 338 if (Simplified->getOperand(0) == UnsimplifiedLHS && 339 Simplified->getOperand(1) == UnsimplifiedRHS) 340 return Simplified; 341 if (Simplified->isCommutative() && 342 Simplified->getOperand(1) == UnsimplifiedLHS && 343 Simplified->getOperand(0) == UnsimplifiedRHS) 344 return Simplified; 345 } 346 } 347 348 return nullptr; 349 } 350 351 /// In the case of a comparison with a select instruction, try to simplify the 352 /// comparison by seeing whether both branches of the select result in the same 353 /// value. Returns the common value if so, otherwise returns null. 354 static Value *ThreadCmpOverSelect(CmpInst::Predicate Pred, Value *LHS, 355 Value *RHS, const SimplifyQuery &Q, 356 unsigned MaxRecurse) { 357 // Recursion is always used, so bail out at once if we already hit the limit. 358 if (!MaxRecurse--) 359 return nullptr; 360 361 // Make sure the select is on the LHS. 362 if (!isa<SelectInst>(LHS)) { 363 std::swap(LHS, RHS); 364 Pred = CmpInst::getSwappedPredicate(Pred); 365 } 366 assert(isa<SelectInst>(LHS) && "Not comparing with a select instruction!"); 367 SelectInst *SI = cast<SelectInst>(LHS); 368 Value *Cond = SI->getCondition(); 369 Value *TV = SI->getTrueValue(); 370 Value *FV = SI->getFalseValue(); 371 372 // Now that we have "cmp select(Cond, TV, FV), RHS", analyse it. 373 // Does "cmp TV, RHS" simplify? 374 Value *TCmp = SimplifyCmpInst(Pred, TV, RHS, Q, MaxRecurse); 375 if (TCmp == Cond) { 376 // It not only simplified, it simplified to the select condition. Replace 377 // it with 'true'. 378 TCmp = getTrue(Cond->getType()); 379 } else if (!TCmp) { 380 // It didn't simplify. However if "cmp TV, RHS" is equal to the select 381 // condition then we can replace it with 'true'. Otherwise give up. 382 if (!isSameCompare(Cond, Pred, TV, RHS)) 383 return nullptr; 384 TCmp = getTrue(Cond->getType()); 385 } 386 387 // Does "cmp FV, RHS" simplify? 388 Value *FCmp = SimplifyCmpInst(Pred, FV, RHS, Q, MaxRecurse); 389 if (FCmp == Cond) { 390 // It not only simplified, it simplified to the select condition. Replace 391 // it with 'false'. 392 FCmp = getFalse(Cond->getType()); 393 } else if (!FCmp) { 394 // It didn't simplify. However if "cmp FV, RHS" is equal to the select 395 // condition then we can replace it with 'false'. Otherwise give up. 396 if (!isSameCompare(Cond, Pred, FV, RHS)) 397 return nullptr; 398 FCmp = getFalse(Cond->getType()); 399 } 400 401 // If both sides simplified to the same value, then use it as the result of 402 // the original comparison. 403 if (TCmp == FCmp) 404 return TCmp; 405 406 // The remaining cases only make sense if the select condition has the same 407 // type as the result of the comparison, so bail out if this is not so. 408 if (Cond->getType()->isVectorTy() != RHS->getType()->isVectorTy()) 409 return nullptr; 410 // If the false value simplified to false, then the result of the compare 411 // is equal to "Cond && TCmp". This also catches the case when the false 412 // value simplified to false and the true value to true, returning "Cond". 413 if (match(FCmp, m_Zero())) 414 if (Value *V = SimplifyAndInst(Cond, TCmp, Q, MaxRecurse)) 415 return V; 416 // If the true value simplified to true, then the result of the compare 417 // is equal to "Cond || FCmp". 418 if (match(TCmp, m_One())) 419 if (Value *V = SimplifyOrInst(Cond, FCmp, Q, MaxRecurse)) 420 return V; 421 // Finally, if the false value simplified to true and the true value to 422 // false, then the result of the compare is equal to "!Cond". 423 if (match(FCmp, m_One()) && match(TCmp, m_Zero())) 424 if (Value *V = 425 SimplifyXorInst(Cond, Constant::getAllOnesValue(Cond->getType()), 426 Q, MaxRecurse)) 427 return V; 428 429 return nullptr; 430 } 431 432 /// In the case of a binary operation with an operand that is a PHI instruction, 433 /// try to simplify the binop by seeing whether evaluating it on the incoming 434 /// phi values yields the same result for every value. If so returns the common 435 /// value, otherwise returns null. 436 static Value *ThreadBinOpOverPHI(Instruction::BinaryOps Opcode, Value *LHS, 437 Value *RHS, const SimplifyQuery &Q, 438 unsigned MaxRecurse) { 439 // Recursion is always used, so bail out at once if we already hit the limit. 440 if (!MaxRecurse--) 441 return nullptr; 442 443 PHINode *PI; 444 if (isa<PHINode>(LHS)) { 445 PI = cast<PHINode>(LHS); 446 // Bail out if RHS and the phi may be mutually interdependent due to a loop. 447 if (!ValueDominatesPHI(RHS, PI, Q.DT)) 448 return nullptr; 449 } else { 450 assert(isa<PHINode>(RHS) && "No PHI instruction operand!"); 451 PI = cast<PHINode>(RHS); 452 // Bail out if LHS and the phi may be mutually interdependent due to a loop. 453 if (!ValueDominatesPHI(LHS, PI, Q.DT)) 454 return nullptr; 455 } 456 457 // Evaluate the BinOp on the incoming phi values. 458 Value *CommonValue = nullptr; 459 for (Value *Incoming : PI->incoming_values()) { 460 // If the incoming value is the phi node itself, it can safely be skipped. 461 if (Incoming == PI) continue; 462 Value *V = PI == LHS ? 463 SimplifyBinOp(Opcode, Incoming, RHS, Q, MaxRecurse) : 464 SimplifyBinOp(Opcode, LHS, Incoming, Q, MaxRecurse); 465 // If the operation failed to simplify, or simplified to a different value 466 // to previously, then give up. 467 if (!V || (CommonValue && V != CommonValue)) 468 return nullptr; 469 CommonValue = V; 470 } 471 472 return CommonValue; 473 } 474 475 /// In the case of a comparison with a PHI instruction, try to simplify the 476 /// comparison by seeing whether comparing with all of the incoming phi values 477 /// yields the same result every time. If so returns the common result, 478 /// otherwise returns null. 479 static Value *ThreadCmpOverPHI(CmpInst::Predicate Pred, Value *LHS, Value *RHS, 480 const SimplifyQuery &Q, unsigned MaxRecurse) { 481 // Recursion is always used, so bail out at once if we already hit the limit. 482 if (!MaxRecurse--) 483 return nullptr; 484 485 // Make sure the phi is on the LHS. 486 if (!isa<PHINode>(LHS)) { 487 std::swap(LHS, RHS); 488 Pred = CmpInst::getSwappedPredicate(Pred); 489 } 490 assert(isa<PHINode>(LHS) && "Not comparing with a phi instruction!"); 491 PHINode *PI = cast<PHINode>(LHS); 492 493 // Bail out if RHS and the phi may be mutually interdependent due to a loop. 494 if (!ValueDominatesPHI(RHS, PI, Q.DT)) 495 return nullptr; 496 497 // Evaluate the BinOp on the incoming phi values. 498 Value *CommonValue = nullptr; 499 for (Value *Incoming : PI->incoming_values()) { 500 // If the incoming value is the phi node itself, it can safely be skipped. 501 if (Incoming == PI) continue; 502 Value *V = SimplifyCmpInst(Pred, Incoming, RHS, Q, MaxRecurse); 503 // If the operation failed to simplify, or simplified to a different value 504 // to previously, then give up. 505 if (!V || (CommonValue && V != CommonValue)) 506 return nullptr; 507 CommonValue = V; 508 } 509 510 return CommonValue; 511 } 512 513 static Constant *foldOrCommuteConstant(Instruction::BinaryOps Opcode, 514 Value *&Op0, Value *&Op1, 515 const SimplifyQuery &Q) { 516 if (auto *CLHS = dyn_cast<Constant>(Op0)) { 517 if (auto *CRHS = dyn_cast<Constant>(Op1)) 518 return ConstantFoldBinaryOpOperands(Opcode, CLHS, CRHS, Q.DL); 519 520 // Canonicalize the constant to the RHS if this is a commutative operation. 521 if (Instruction::isCommutative(Opcode)) 522 std::swap(Op0, Op1); 523 } 524 return nullptr; 525 } 526 527 /// Given operands for an Add, see if we can fold the result. 528 /// If not, this returns null. 529 static Value *SimplifyAddInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, 530 const SimplifyQuery &Q, unsigned MaxRecurse) { 531 if (Constant *C = foldOrCommuteConstant(Instruction::Add, Op0, Op1, Q)) 532 return C; 533 534 // X + undef -> undef 535 if (match(Op1, m_Undef())) 536 return Op1; 537 538 // X + 0 -> X 539 if (match(Op1, m_Zero())) 540 return Op0; 541 542 // X + (Y - X) -> Y 543 // (Y - X) + X -> Y 544 // Eg: X + -X -> 0 545 Value *Y = nullptr; 546 if (match(Op1, m_Sub(m_Value(Y), m_Specific(Op0))) || 547 match(Op0, m_Sub(m_Value(Y), m_Specific(Op1)))) 548 return Y; 549 550 // X + ~X -> -1 since ~X = -X-1 551 Type *Ty = Op0->getType(); 552 if (match(Op0, m_Not(m_Specific(Op1))) || 553 match(Op1, m_Not(m_Specific(Op0)))) 554 return Constant::getAllOnesValue(Ty); 555 556 // add nsw/nuw (xor Y, signmask), signmask --> Y 557 // The no-wrapping add guarantees that the top bit will be set by the add. 558 // Therefore, the xor must be clearing the already set sign bit of Y. 559 if ((isNSW || isNUW) && match(Op1, m_SignMask()) && 560 match(Op0, m_Xor(m_Value(Y), m_SignMask()))) 561 return Y; 562 563 /// i1 add -> xor. 564 if (MaxRecurse && Op0->getType()->isIntOrIntVectorTy(1)) 565 if (Value *V = SimplifyXorInst(Op0, Op1, Q, MaxRecurse-1)) 566 return V; 567 568 // Try some generic simplifications for associative operations. 569 if (Value *V = SimplifyAssociativeBinOp(Instruction::Add, Op0, Op1, Q, 570 MaxRecurse)) 571 return V; 572 573 // Threading Add over selects and phi nodes is pointless, so don't bother. 574 // Threading over the select in "A + select(cond, B, C)" means evaluating 575 // "A+B" and "A+C" and seeing if they are equal; but they are equal if and 576 // only if B and C are equal. If B and C are equal then (since we assume 577 // that operands have already been simplified) "select(cond, B, C)" should 578 // have been simplified to the common value of B and C already. Analysing 579 // "A+B" and "A+C" thus gains nothing, but costs compile time. Similarly 580 // for threading over phi nodes. 581 582 return nullptr; 583 } 584 585 Value *llvm::SimplifyAddInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, 586 const SimplifyQuery &Query) { 587 return ::SimplifyAddInst(Op0, Op1, isNSW, isNUW, Query, RecursionLimit); 588 } 589 590 /// \brief Compute the base pointer and cumulative constant offsets for V. 591 /// 592 /// This strips all constant offsets off of V, leaving it the base pointer, and 593 /// accumulates the total constant offset applied in the returned constant. It 594 /// returns 0 if V is not a pointer, and returns the constant '0' if there are 595 /// no constant offsets applied. 596 /// 597 /// This is very similar to GetPointerBaseWithConstantOffset except it doesn't 598 /// follow non-inbounds geps. This allows it to remain usable for icmp ult/etc. 599 /// folding. 600 static Constant *stripAndComputeConstantOffsets(const DataLayout &DL, Value *&V, 601 bool AllowNonInbounds = false) { 602 assert(V->getType()->isPtrOrPtrVectorTy()); 603 604 Type *IntPtrTy = DL.getIntPtrType(V->getType())->getScalarType(); 605 APInt Offset = APInt::getNullValue(IntPtrTy->getIntegerBitWidth()); 606 607 // Even though we don't look through PHI nodes, we could be called on an 608 // instruction in an unreachable block, which may be on a cycle. 609 SmallPtrSet<Value *, 4> Visited; 610 Visited.insert(V); 611 do { 612 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 613 if ((!AllowNonInbounds && !GEP->isInBounds()) || 614 !GEP->accumulateConstantOffset(DL, Offset)) 615 break; 616 V = GEP->getPointerOperand(); 617 } else if (Operator::getOpcode(V) == Instruction::BitCast) { 618 V = cast<Operator>(V)->getOperand(0); 619 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 620 if (GA->isInterposable()) 621 break; 622 V = GA->getAliasee(); 623 } else { 624 if (auto CS = CallSite(V)) 625 if (Value *RV = CS.getReturnedArgOperand()) { 626 V = RV; 627 continue; 628 } 629 break; 630 } 631 assert(V->getType()->isPtrOrPtrVectorTy() && "Unexpected operand type!"); 632 } while (Visited.insert(V).second); 633 634 Constant *OffsetIntPtr = ConstantInt::get(IntPtrTy, Offset); 635 if (V->getType()->isVectorTy()) 636 return ConstantVector::getSplat(V->getType()->getVectorNumElements(), 637 OffsetIntPtr); 638 return OffsetIntPtr; 639 } 640 641 /// \brief Compute the constant difference between two pointer values. 642 /// If the difference is not a constant, returns zero. 643 static Constant *computePointerDifference(const DataLayout &DL, Value *LHS, 644 Value *RHS) { 645 Constant *LHSOffset = stripAndComputeConstantOffsets(DL, LHS); 646 Constant *RHSOffset = stripAndComputeConstantOffsets(DL, RHS); 647 648 // If LHS and RHS are not related via constant offsets to the same base 649 // value, there is nothing we can do here. 650 if (LHS != RHS) 651 return nullptr; 652 653 // Otherwise, the difference of LHS - RHS can be computed as: 654 // LHS - RHS 655 // = (LHSOffset + Base) - (RHSOffset + Base) 656 // = LHSOffset - RHSOffset 657 return ConstantExpr::getSub(LHSOffset, RHSOffset); 658 } 659 660 /// Given operands for a Sub, see if we can fold the result. 661 /// If not, this returns null. 662 static Value *SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, 663 const SimplifyQuery &Q, unsigned MaxRecurse) { 664 if (Constant *C = foldOrCommuteConstant(Instruction::Sub, Op0, Op1, Q)) 665 return C; 666 667 // X - undef -> undef 668 // undef - X -> undef 669 if (match(Op0, m_Undef()) || match(Op1, m_Undef())) 670 return UndefValue::get(Op0->getType()); 671 672 // X - 0 -> X 673 if (match(Op1, m_Zero())) 674 return Op0; 675 676 // X - X -> 0 677 if (Op0 == Op1) 678 return Constant::getNullValue(Op0->getType()); 679 680 // Is this a negation? 681 if (match(Op0, m_Zero())) { 682 // 0 - X -> 0 if the sub is NUW. 683 if (isNUW) 684 return Op0; 685 686 KnownBits Known = computeKnownBits(Op1, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 687 if (Known.Zero.isMaxSignedValue()) { 688 // Op1 is either 0 or the minimum signed value. If the sub is NSW, then 689 // Op1 must be 0 because negating the minimum signed value is undefined. 690 if (isNSW) 691 return Op0; 692 693 // 0 - X -> X if X is 0 or the minimum signed value. 694 return Op1; 695 } 696 } 697 698 // (X + Y) - Z -> X + (Y - Z) or Y + (X - Z) if everything simplifies. 699 // For example, (X + Y) - Y -> X; (Y + X) - Y -> X 700 Value *X = nullptr, *Y = nullptr, *Z = Op1; 701 if (MaxRecurse && match(Op0, m_Add(m_Value(X), m_Value(Y)))) { // (X + Y) - Z 702 // See if "V === Y - Z" simplifies. 703 if (Value *V = SimplifyBinOp(Instruction::Sub, Y, Z, Q, MaxRecurse-1)) 704 // It does! Now see if "X + V" simplifies. 705 if (Value *W = SimplifyBinOp(Instruction::Add, X, V, Q, MaxRecurse-1)) { 706 // It does, we successfully reassociated! 707 ++NumReassoc; 708 return W; 709 } 710 // See if "V === X - Z" simplifies. 711 if (Value *V = SimplifyBinOp(Instruction::Sub, X, Z, Q, MaxRecurse-1)) 712 // It does! Now see if "Y + V" simplifies. 713 if (Value *W = SimplifyBinOp(Instruction::Add, Y, V, Q, MaxRecurse-1)) { 714 // It does, we successfully reassociated! 715 ++NumReassoc; 716 return W; 717 } 718 } 719 720 // X - (Y + Z) -> (X - Y) - Z or (X - Z) - Y if everything simplifies. 721 // For example, X - (X + 1) -> -1 722 X = Op0; 723 if (MaxRecurse && match(Op1, m_Add(m_Value(Y), m_Value(Z)))) { // X - (Y + Z) 724 // See if "V === X - Y" simplifies. 725 if (Value *V = SimplifyBinOp(Instruction::Sub, X, Y, Q, MaxRecurse-1)) 726 // It does! Now see if "V - Z" simplifies. 727 if (Value *W = SimplifyBinOp(Instruction::Sub, V, Z, Q, MaxRecurse-1)) { 728 // It does, we successfully reassociated! 729 ++NumReassoc; 730 return W; 731 } 732 // See if "V === X - Z" simplifies. 733 if (Value *V = SimplifyBinOp(Instruction::Sub, X, Z, Q, MaxRecurse-1)) 734 // It does! Now see if "V - Y" simplifies. 735 if (Value *W = SimplifyBinOp(Instruction::Sub, V, Y, Q, MaxRecurse-1)) { 736 // It does, we successfully reassociated! 737 ++NumReassoc; 738 return W; 739 } 740 } 741 742 // Z - (X - Y) -> (Z - X) + Y if everything simplifies. 743 // For example, X - (X - Y) -> Y. 744 Z = Op0; 745 if (MaxRecurse && match(Op1, m_Sub(m_Value(X), m_Value(Y)))) // Z - (X - Y) 746 // See if "V === Z - X" simplifies. 747 if (Value *V = SimplifyBinOp(Instruction::Sub, Z, X, Q, MaxRecurse-1)) 748 // It does! Now see if "V + Y" simplifies. 749 if (Value *W = SimplifyBinOp(Instruction::Add, V, Y, Q, MaxRecurse-1)) { 750 // It does, we successfully reassociated! 751 ++NumReassoc; 752 return W; 753 } 754 755 // trunc(X) - trunc(Y) -> trunc(X - Y) if everything simplifies. 756 if (MaxRecurse && match(Op0, m_Trunc(m_Value(X))) && 757 match(Op1, m_Trunc(m_Value(Y)))) 758 if (X->getType() == Y->getType()) 759 // See if "V === X - Y" simplifies. 760 if (Value *V = SimplifyBinOp(Instruction::Sub, X, Y, Q, MaxRecurse-1)) 761 // It does! Now see if "trunc V" simplifies. 762 if (Value *W = SimplifyCastInst(Instruction::Trunc, V, Op0->getType(), 763 Q, MaxRecurse - 1)) 764 // It does, return the simplified "trunc V". 765 return W; 766 767 // Variations on GEP(base, I, ...) - GEP(base, i, ...) -> GEP(null, I-i, ...). 768 if (match(Op0, m_PtrToInt(m_Value(X))) && 769 match(Op1, m_PtrToInt(m_Value(Y)))) 770 if (Constant *Result = computePointerDifference(Q.DL, X, Y)) 771 return ConstantExpr::getIntegerCast(Result, Op0->getType(), true); 772 773 // i1 sub -> xor. 774 if (MaxRecurse && Op0->getType()->isIntOrIntVectorTy(1)) 775 if (Value *V = SimplifyXorInst(Op0, Op1, Q, MaxRecurse-1)) 776 return V; 777 778 // Threading Sub over selects and phi nodes is pointless, so don't bother. 779 // Threading over the select in "A - select(cond, B, C)" means evaluating 780 // "A-B" and "A-C" and seeing if they are equal; but they are equal if and 781 // only if B and C are equal. If B and C are equal then (since we assume 782 // that operands have already been simplified) "select(cond, B, C)" should 783 // have been simplified to the common value of B and C already. Analysing 784 // "A-B" and "A-C" thus gains nothing, but costs compile time. Similarly 785 // for threading over phi nodes. 786 787 return nullptr; 788 } 789 790 Value *llvm::SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, 791 const SimplifyQuery &Q) { 792 return ::SimplifySubInst(Op0, Op1, isNSW, isNUW, Q, RecursionLimit); 793 } 794 795 /// Given operands for a Mul, see if we can fold the result. 796 /// If not, this returns null. 797 static Value *SimplifyMulInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 798 unsigned MaxRecurse) { 799 if (Constant *C = foldOrCommuteConstant(Instruction::Mul, Op0, Op1, Q)) 800 return C; 801 802 // X * undef -> 0 803 if (match(Op1, m_Undef())) 804 return Constant::getNullValue(Op0->getType()); 805 806 // X * 0 -> 0 807 if (match(Op1, m_Zero())) 808 return Op1; 809 810 // X * 1 -> X 811 if (match(Op1, m_One())) 812 return Op0; 813 814 // (X / Y) * Y -> X if the division is exact. 815 Value *X = nullptr; 816 if (match(Op0, m_Exact(m_IDiv(m_Value(X), m_Specific(Op1)))) || // (X / Y) * Y 817 match(Op1, m_Exact(m_IDiv(m_Value(X), m_Specific(Op0))))) // Y * (X / Y) 818 return X; 819 820 // i1 mul -> and. 821 if (MaxRecurse && Op0->getType()->isIntOrIntVectorTy(1)) 822 if (Value *V = SimplifyAndInst(Op0, Op1, Q, MaxRecurse-1)) 823 return V; 824 825 // Try some generic simplifications for associative operations. 826 if (Value *V = SimplifyAssociativeBinOp(Instruction::Mul, Op0, Op1, Q, 827 MaxRecurse)) 828 return V; 829 830 // Mul distributes over Add. Try some generic simplifications based on this. 831 if (Value *V = ExpandBinOp(Instruction::Mul, Op0, Op1, Instruction::Add, 832 Q, MaxRecurse)) 833 return V; 834 835 // If the operation is with the result of a select instruction, check whether 836 // operating on either branch of the select always yields the same value. 837 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 838 if (Value *V = ThreadBinOpOverSelect(Instruction::Mul, Op0, Op1, Q, 839 MaxRecurse)) 840 return V; 841 842 // If the operation is with the result of a phi instruction, check whether 843 // operating on all incoming values of the phi always yields the same value. 844 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 845 if (Value *V = ThreadBinOpOverPHI(Instruction::Mul, Op0, Op1, Q, 846 MaxRecurse)) 847 return V; 848 849 return nullptr; 850 } 851 852 Value *llvm::SimplifyMulInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 853 return ::SimplifyMulInst(Op0, Op1, Q, RecursionLimit); 854 } 855 856 /// Check for common or similar folds of integer division or integer remainder. 857 /// This applies to all 4 opcodes (sdiv/udiv/srem/urem). 858 static Value *simplifyDivRem(Value *Op0, Value *Op1, bool IsDiv) { 859 Type *Ty = Op0->getType(); 860 861 // X / undef -> undef 862 // X % undef -> undef 863 if (match(Op1, m_Undef())) 864 return Op1; 865 866 // X / 0 -> undef 867 // X % 0 -> undef 868 // We don't need to preserve faults! 869 if (match(Op1, m_Zero())) 870 return UndefValue::get(Ty); 871 872 // If any element of a constant divisor vector is zero, the whole op is undef. 873 auto *Op1C = dyn_cast<Constant>(Op1); 874 if (Op1C && Ty->isVectorTy()) { 875 unsigned NumElts = Ty->getVectorNumElements(); 876 for (unsigned i = 0; i != NumElts; ++i) { 877 Constant *Elt = Op1C->getAggregateElement(i); 878 if (Elt && Elt->isNullValue()) 879 return UndefValue::get(Ty); 880 } 881 } 882 883 // undef / X -> 0 884 // undef % X -> 0 885 if (match(Op0, m_Undef())) 886 return Constant::getNullValue(Ty); 887 888 // 0 / X -> 0 889 // 0 % X -> 0 890 if (match(Op0, m_Zero())) 891 return Op0; 892 893 // X / X -> 1 894 // X % X -> 0 895 if (Op0 == Op1) 896 return IsDiv ? ConstantInt::get(Ty, 1) : Constant::getNullValue(Ty); 897 898 // X / 1 -> X 899 // X % 1 -> 0 900 // If this is a boolean op (single-bit element type), we can't have 901 // division-by-zero or remainder-by-zero, so assume the divisor is 1. 902 if (match(Op1, m_One()) || Ty->isIntOrIntVectorTy(1)) 903 return IsDiv ? Op0 : Constant::getNullValue(Ty); 904 905 return nullptr; 906 } 907 908 /// Given a predicate and two operands, return true if the comparison is true. 909 /// This is a helper for div/rem simplification where we return some other value 910 /// when we can prove a relationship between the operands. 911 static bool isICmpTrue(ICmpInst::Predicate Pred, Value *LHS, Value *RHS, 912 const SimplifyQuery &Q, unsigned MaxRecurse) { 913 Value *V = SimplifyICmpInst(Pred, LHS, RHS, Q, MaxRecurse); 914 Constant *C = dyn_cast_or_null<Constant>(V); 915 return (C && C->isAllOnesValue()); 916 } 917 918 /// Return true if we can simplify X / Y to 0. Remainder can adapt that answer 919 /// to simplify X % Y to X. 920 static bool isDivZero(Value *X, Value *Y, const SimplifyQuery &Q, 921 unsigned MaxRecurse, bool IsSigned) { 922 // Recursion is always used, so bail out at once if we already hit the limit. 923 if (!MaxRecurse--) 924 return false; 925 926 if (IsSigned) { 927 // |X| / |Y| --> 0 928 // 929 // We require that 1 operand is a simple constant. That could be extended to 930 // 2 variables if we computed the sign bit for each. 931 // 932 // Make sure that a constant is not the minimum signed value because taking 933 // the abs() of that is undefined. 934 Type *Ty = X->getType(); 935 const APInt *C; 936 if (match(X, m_APInt(C)) && !C->isMinSignedValue()) { 937 // Is the variable divisor magnitude always greater than the constant 938 // dividend magnitude? 939 // |Y| > |C| --> Y < -abs(C) or Y > abs(C) 940 Constant *PosDividendC = ConstantInt::get(Ty, C->abs()); 941 Constant *NegDividendC = ConstantInt::get(Ty, -C->abs()); 942 if (isICmpTrue(CmpInst::ICMP_SLT, Y, NegDividendC, Q, MaxRecurse) || 943 isICmpTrue(CmpInst::ICMP_SGT, Y, PosDividendC, Q, MaxRecurse)) 944 return true; 945 } 946 if (match(Y, m_APInt(C))) { 947 // Special-case: we can't take the abs() of a minimum signed value. If 948 // that's the divisor, then all we have to do is prove that the dividend 949 // is also not the minimum signed value. 950 if (C->isMinSignedValue()) 951 return isICmpTrue(CmpInst::ICMP_NE, X, Y, Q, MaxRecurse); 952 953 // Is the variable dividend magnitude always less than the constant 954 // divisor magnitude? 955 // |X| < |C| --> X > -abs(C) and X < abs(C) 956 Constant *PosDivisorC = ConstantInt::get(Ty, C->abs()); 957 Constant *NegDivisorC = ConstantInt::get(Ty, -C->abs()); 958 if (isICmpTrue(CmpInst::ICMP_SGT, X, NegDivisorC, Q, MaxRecurse) && 959 isICmpTrue(CmpInst::ICMP_SLT, X, PosDivisorC, Q, MaxRecurse)) 960 return true; 961 } 962 return false; 963 } 964 965 // IsSigned == false. 966 // Is the dividend unsigned less than the divisor? 967 return isICmpTrue(ICmpInst::ICMP_ULT, X, Y, Q, MaxRecurse); 968 } 969 970 /// These are simplifications common to SDiv and UDiv. 971 static Value *simplifyDiv(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1, 972 const SimplifyQuery &Q, unsigned MaxRecurse) { 973 if (Constant *C = foldOrCommuteConstant(Opcode, Op0, Op1, Q)) 974 return C; 975 976 if (Value *V = simplifyDivRem(Op0, Op1, true)) 977 return V; 978 979 bool IsSigned = Opcode == Instruction::SDiv; 980 981 // (X * Y) / Y -> X if the multiplication does not overflow. 982 Value *X = nullptr, *Y = nullptr; 983 if (match(Op0, m_Mul(m_Value(X), m_Value(Y))) && (X == Op1 || Y == Op1)) { 984 if (Y != Op1) std::swap(X, Y); // Ensure expression is (X * Y) / Y, Y = Op1 985 OverflowingBinaryOperator *Mul = cast<OverflowingBinaryOperator>(Op0); 986 // If the Mul knows it does not overflow, then we are good to go. 987 if ((IsSigned && Mul->hasNoSignedWrap()) || 988 (!IsSigned && Mul->hasNoUnsignedWrap())) 989 return X; 990 // If X has the form X = A / Y then X * Y cannot overflow. 991 if (BinaryOperator *Div = dyn_cast<BinaryOperator>(X)) 992 if (Div->getOpcode() == Opcode && Div->getOperand(1) == Y) 993 return X; 994 } 995 996 // (X rem Y) / Y -> 0 997 if ((IsSigned && match(Op0, m_SRem(m_Value(), m_Specific(Op1)))) || 998 (!IsSigned && match(Op0, m_URem(m_Value(), m_Specific(Op1))))) 999 return Constant::getNullValue(Op0->getType()); 1000 1001 // (X /u C1) /u C2 -> 0 if C1 * C2 overflow 1002 ConstantInt *C1, *C2; 1003 if (!IsSigned && match(Op0, m_UDiv(m_Value(X), m_ConstantInt(C1))) && 1004 match(Op1, m_ConstantInt(C2))) { 1005 bool Overflow; 1006 (void)C1->getValue().umul_ov(C2->getValue(), Overflow); 1007 if (Overflow) 1008 return Constant::getNullValue(Op0->getType()); 1009 } 1010 1011 // If the operation is with the result of a select instruction, check whether 1012 // operating on either branch of the select always yields the same value. 1013 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 1014 if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse)) 1015 return V; 1016 1017 // If the operation is with the result of a phi instruction, check whether 1018 // operating on all incoming values of the phi always yields the same value. 1019 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 1020 if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse)) 1021 return V; 1022 1023 if (isDivZero(Op0, Op1, Q, MaxRecurse, IsSigned)) 1024 return Constant::getNullValue(Op0->getType()); 1025 1026 return nullptr; 1027 } 1028 1029 /// These are simplifications common to SRem and URem. 1030 static Value *simplifyRem(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1, 1031 const SimplifyQuery &Q, unsigned MaxRecurse) { 1032 if (Constant *C = foldOrCommuteConstant(Opcode, Op0, Op1, Q)) 1033 return C; 1034 1035 if (Value *V = simplifyDivRem(Op0, Op1, false)) 1036 return V; 1037 1038 // (X % Y) % Y -> X % Y 1039 if ((Opcode == Instruction::SRem && 1040 match(Op0, m_SRem(m_Value(), m_Specific(Op1)))) || 1041 (Opcode == Instruction::URem && 1042 match(Op0, m_URem(m_Value(), m_Specific(Op1))))) 1043 return Op0; 1044 1045 // If the operation is with the result of a select instruction, check whether 1046 // operating on either branch of the select always yields the same value. 1047 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 1048 if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse)) 1049 return V; 1050 1051 // If the operation is with the result of a phi instruction, check whether 1052 // operating on all incoming values of the phi always yields the same value. 1053 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 1054 if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse)) 1055 return V; 1056 1057 // If X / Y == 0, then X % Y == X. 1058 if (isDivZero(Op0, Op1, Q, MaxRecurse, Opcode == Instruction::SRem)) 1059 return Op0; 1060 1061 return nullptr; 1062 } 1063 1064 /// Given operands for an SDiv, see if we can fold the result. 1065 /// If not, this returns null. 1066 static Value *SimplifySDivInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 1067 unsigned MaxRecurse) { 1068 return simplifyDiv(Instruction::SDiv, Op0, Op1, Q, MaxRecurse); 1069 } 1070 1071 Value *llvm::SimplifySDivInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 1072 return ::SimplifySDivInst(Op0, Op1, Q, RecursionLimit); 1073 } 1074 1075 /// Given operands for a UDiv, see if we can fold the result. 1076 /// If not, this returns null. 1077 static Value *SimplifyUDivInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 1078 unsigned MaxRecurse) { 1079 return simplifyDiv(Instruction::UDiv, Op0, Op1, Q, MaxRecurse); 1080 } 1081 1082 Value *llvm::SimplifyUDivInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 1083 return ::SimplifyUDivInst(Op0, Op1, Q, RecursionLimit); 1084 } 1085 1086 /// Given operands for an SRem, see if we can fold the result. 1087 /// If not, this returns null. 1088 static Value *SimplifySRemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 1089 unsigned MaxRecurse) { 1090 return simplifyRem(Instruction::SRem, Op0, Op1, Q, MaxRecurse); 1091 } 1092 1093 Value *llvm::SimplifySRemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 1094 return ::SimplifySRemInst(Op0, Op1, Q, RecursionLimit); 1095 } 1096 1097 /// Given operands for a URem, see if we can fold the result. 1098 /// If not, this returns null. 1099 static Value *SimplifyURemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 1100 unsigned MaxRecurse) { 1101 return simplifyRem(Instruction::URem, Op0, Op1, Q, MaxRecurse); 1102 } 1103 1104 Value *llvm::SimplifyURemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 1105 return ::SimplifyURemInst(Op0, Op1, Q, RecursionLimit); 1106 } 1107 1108 /// Returns true if a shift by \c Amount always yields undef. 1109 static bool isUndefShift(Value *Amount) { 1110 Constant *C = dyn_cast<Constant>(Amount); 1111 if (!C) 1112 return false; 1113 1114 // X shift by undef -> undef because it may shift by the bitwidth. 1115 if (isa<UndefValue>(C)) 1116 return true; 1117 1118 // Shifting by the bitwidth or more is undefined. 1119 if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1120 if (CI->getValue().getLimitedValue() >= 1121 CI->getType()->getScalarSizeInBits()) 1122 return true; 1123 1124 // If all lanes of a vector shift are undefined the whole shift is. 1125 if (isa<ConstantVector>(C) || isa<ConstantDataVector>(C)) { 1126 for (unsigned I = 0, E = C->getType()->getVectorNumElements(); I != E; ++I) 1127 if (!isUndefShift(C->getAggregateElement(I))) 1128 return false; 1129 return true; 1130 } 1131 1132 return false; 1133 } 1134 1135 /// Given operands for an Shl, LShr or AShr, see if we can fold the result. 1136 /// If not, this returns null. 1137 static Value *SimplifyShift(Instruction::BinaryOps Opcode, Value *Op0, 1138 Value *Op1, const SimplifyQuery &Q, unsigned MaxRecurse) { 1139 if (Constant *C = foldOrCommuteConstant(Opcode, Op0, Op1, Q)) 1140 return C; 1141 1142 // 0 shift by X -> 0 1143 if (match(Op0, m_Zero())) 1144 return Op0; 1145 1146 // X shift by 0 -> X 1147 if (match(Op1, m_Zero())) 1148 return Op0; 1149 1150 // Fold undefined shifts. 1151 if (isUndefShift(Op1)) 1152 return UndefValue::get(Op0->getType()); 1153 1154 // If the operation is with the result of a select instruction, check whether 1155 // operating on either branch of the select always yields the same value. 1156 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 1157 if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse)) 1158 return V; 1159 1160 // If the operation is with the result of a phi instruction, check whether 1161 // operating on all incoming values of the phi always yields the same value. 1162 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 1163 if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse)) 1164 return V; 1165 1166 // If any bits in the shift amount make that value greater than or equal to 1167 // the number of bits in the type, the shift is undefined. 1168 KnownBits Known = computeKnownBits(Op1, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 1169 if (Known.One.getLimitedValue() >= Known.getBitWidth()) 1170 return UndefValue::get(Op0->getType()); 1171 1172 // If all valid bits in the shift amount are known zero, the first operand is 1173 // unchanged. 1174 unsigned NumValidShiftBits = Log2_32_Ceil(Known.getBitWidth()); 1175 if (Known.countMinTrailingZeros() >= NumValidShiftBits) 1176 return Op0; 1177 1178 return nullptr; 1179 } 1180 1181 /// \brief Given operands for an Shl, LShr or AShr, see if we can 1182 /// fold the result. If not, this returns null. 1183 static Value *SimplifyRightShift(Instruction::BinaryOps Opcode, Value *Op0, 1184 Value *Op1, bool isExact, const SimplifyQuery &Q, 1185 unsigned MaxRecurse) { 1186 if (Value *V = SimplifyShift(Opcode, Op0, Op1, Q, MaxRecurse)) 1187 return V; 1188 1189 // X >> X -> 0 1190 if (Op0 == Op1) 1191 return Constant::getNullValue(Op0->getType()); 1192 1193 // undef >> X -> 0 1194 // undef >> X -> undef (if it's exact) 1195 if (match(Op0, m_Undef())) 1196 return isExact ? Op0 : Constant::getNullValue(Op0->getType()); 1197 1198 // The low bit cannot be shifted out of an exact shift if it is set. 1199 if (isExact) { 1200 KnownBits Op0Known = computeKnownBits(Op0, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT); 1201 if (Op0Known.One[0]) 1202 return Op0; 1203 } 1204 1205 return nullptr; 1206 } 1207 1208 /// Given operands for an Shl, see if we can fold the result. 1209 /// If not, this returns null. 1210 static Value *SimplifyShlInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, 1211 const SimplifyQuery &Q, unsigned MaxRecurse) { 1212 if (Value *V = SimplifyShift(Instruction::Shl, Op0, Op1, Q, MaxRecurse)) 1213 return V; 1214 1215 // undef << X -> 0 1216 // undef << X -> undef if (if it's NSW/NUW) 1217 if (match(Op0, m_Undef())) 1218 return isNSW || isNUW ? Op0 : Constant::getNullValue(Op0->getType()); 1219 1220 // (X >> A) << A -> X 1221 Value *X; 1222 if (match(Op0, m_Exact(m_Shr(m_Value(X), m_Specific(Op1))))) 1223 return X; 1224 return nullptr; 1225 } 1226 1227 Value *llvm::SimplifyShlInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, 1228 const SimplifyQuery &Q) { 1229 return ::SimplifyShlInst(Op0, Op1, isNSW, isNUW, Q, RecursionLimit); 1230 } 1231 1232 /// Given operands for an LShr, see if we can fold the result. 1233 /// If not, this returns null. 1234 static Value *SimplifyLShrInst(Value *Op0, Value *Op1, bool isExact, 1235 const SimplifyQuery &Q, unsigned MaxRecurse) { 1236 if (Value *V = SimplifyRightShift(Instruction::LShr, Op0, Op1, isExact, Q, 1237 MaxRecurse)) 1238 return V; 1239 1240 // (X << A) >> A -> X 1241 Value *X; 1242 if (match(Op0, m_NUWShl(m_Value(X), m_Specific(Op1)))) 1243 return X; 1244 1245 return nullptr; 1246 } 1247 1248 Value *llvm::SimplifyLShrInst(Value *Op0, Value *Op1, bool isExact, 1249 const SimplifyQuery &Q) { 1250 return ::SimplifyLShrInst(Op0, Op1, isExact, Q, RecursionLimit); 1251 } 1252 1253 /// Given operands for an AShr, see if we can fold the result. 1254 /// If not, this returns null. 1255 static Value *SimplifyAShrInst(Value *Op0, Value *Op1, bool isExact, 1256 const SimplifyQuery &Q, unsigned MaxRecurse) { 1257 if (Value *V = SimplifyRightShift(Instruction::AShr, Op0, Op1, isExact, Q, 1258 MaxRecurse)) 1259 return V; 1260 1261 // all ones >>a X -> all ones 1262 if (match(Op0, m_AllOnes())) 1263 return Op0; 1264 1265 // (X << A) >> A -> X 1266 Value *X; 1267 if (match(Op0, m_NSWShl(m_Value(X), m_Specific(Op1)))) 1268 return X; 1269 1270 // Arithmetic shifting an all-sign-bit value is a no-op. 1271 unsigned NumSignBits = ComputeNumSignBits(Op0, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 1272 if (NumSignBits == Op0->getType()->getScalarSizeInBits()) 1273 return Op0; 1274 1275 return nullptr; 1276 } 1277 1278 Value *llvm::SimplifyAShrInst(Value *Op0, Value *Op1, bool isExact, 1279 const SimplifyQuery &Q) { 1280 return ::SimplifyAShrInst(Op0, Op1, isExact, Q, RecursionLimit); 1281 } 1282 1283 /// Commuted variants are assumed to be handled by calling this function again 1284 /// with the parameters swapped. 1285 static Value *simplifyUnsignedRangeCheck(ICmpInst *ZeroICmp, 1286 ICmpInst *UnsignedICmp, bool IsAnd) { 1287 Value *X, *Y; 1288 1289 ICmpInst::Predicate EqPred; 1290 if (!match(ZeroICmp, m_ICmp(EqPred, m_Value(Y), m_Zero())) || 1291 !ICmpInst::isEquality(EqPred)) 1292 return nullptr; 1293 1294 ICmpInst::Predicate UnsignedPred; 1295 if (match(UnsignedICmp, m_ICmp(UnsignedPred, m_Value(X), m_Specific(Y))) && 1296 ICmpInst::isUnsigned(UnsignedPred)) 1297 ; 1298 else if (match(UnsignedICmp, 1299 m_ICmp(UnsignedPred, m_Value(Y), m_Specific(X))) && 1300 ICmpInst::isUnsigned(UnsignedPred)) 1301 UnsignedPred = ICmpInst::getSwappedPredicate(UnsignedPred); 1302 else 1303 return nullptr; 1304 1305 // X < Y && Y != 0 --> X < Y 1306 // X < Y || Y != 0 --> Y != 0 1307 if (UnsignedPred == ICmpInst::ICMP_ULT && EqPred == ICmpInst::ICMP_NE) 1308 return IsAnd ? UnsignedICmp : ZeroICmp; 1309 1310 // X >= Y || Y != 0 --> true 1311 // X >= Y || Y == 0 --> X >= Y 1312 if (UnsignedPred == ICmpInst::ICMP_UGE && !IsAnd) { 1313 if (EqPred == ICmpInst::ICMP_NE) 1314 return getTrue(UnsignedICmp->getType()); 1315 return UnsignedICmp; 1316 } 1317 1318 // X < Y && Y == 0 --> false 1319 if (UnsignedPred == ICmpInst::ICMP_ULT && EqPred == ICmpInst::ICMP_EQ && 1320 IsAnd) 1321 return getFalse(UnsignedICmp->getType()); 1322 1323 return nullptr; 1324 } 1325 1326 /// Commuted variants are assumed to be handled by calling this function again 1327 /// with the parameters swapped. 1328 static Value *simplifyAndOfICmpsWithSameOperands(ICmpInst *Op0, ICmpInst *Op1) { 1329 ICmpInst::Predicate Pred0, Pred1; 1330 Value *A ,*B; 1331 if (!match(Op0, m_ICmp(Pred0, m_Value(A), m_Value(B))) || 1332 !match(Op1, m_ICmp(Pred1, m_Specific(A), m_Specific(B)))) 1333 return nullptr; 1334 1335 // We have (icmp Pred0, A, B) & (icmp Pred1, A, B). 1336 // If Op1 is always implied true by Op0, then Op0 is a subset of Op1, and we 1337 // can eliminate Op1 from this 'and'. 1338 if (ICmpInst::isImpliedTrueByMatchingCmp(Pred0, Pred1)) 1339 return Op0; 1340 1341 // Check for any combination of predicates that are guaranteed to be disjoint. 1342 if ((Pred0 == ICmpInst::getInversePredicate(Pred1)) || 1343 (Pred0 == ICmpInst::ICMP_EQ && ICmpInst::isFalseWhenEqual(Pred1)) || 1344 (Pred0 == ICmpInst::ICMP_SLT && Pred1 == ICmpInst::ICMP_SGT) || 1345 (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_UGT)) 1346 return getFalse(Op0->getType()); 1347 1348 return nullptr; 1349 } 1350 1351 /// Commuted variants are assumed to be handled by calling this function again 1352 /// with the parameters swapped. 1353 static Value *simplifyOrOfICmpsWithSameOperands(ICmpInst *Op0, ICmpInst *Op1) { 1354 ICmpInst::Predicate Pred0, Pred1; 1355 Value *A ,*B; 1356 if (!match(Op0, m_ICmp(Pred0, m_Value(A), m_Value(B))) || 1357 !match(Op1, m_ICmp(Pred1, m_Specific(A), m_Specific(B)))) 1358 return nullptr; 1359 1360 // We have (icmp Pred0, A, B) | (icmp Pred1, A, B). 1361 // If Op1 is always implied true by Op0, then Op0 is a subset of Op1, and we 1362 // can eliminate Op0 from this 'or'. 1363 if (ICmpInst::isImpliedTrueByMatchingCmp(Pred0, Pred1)) 1364 return Op1; 1365 1366 // Check for any combination of predicates that cover the entire range of 1367 // possibilities. 1368 if ((Pred0 == ICmpInst::getInversePredicate(Pred1)) || 1369 (Pred0 == ICmpInst::ICMP_NE && ICmpInst::isTrueWhenEqual(Pred1)) || 1370 (Pred0 == ICmpInst::ICMP_SLE && Pred1 == ICmpInst::ICMP_SGE) || 1371 (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_UGE)) 1372 return getTrue(Op0->getType()); 1373 1374 return nullptr; 1375 } 1376 1377 /// Test if a pair of compares with a shared operand and 2 constants has an 1378 /// empty set intersection, full set union, or if one compare is a superset of 1379 /// the other. 1380 static Value *simplifyAndOrOfICmpsWithConstants(ICmpInst *Cmp0, ICmpInst *Cmp1, 1381 bool IsAnd) { 1382 // Look for this pattern: {and/or} (icmp X, C0), (icmp X, C1)). 1383 if (Cmp0->getOperand(0) != Cmp1->getOperand(0)) 1384 return nullptr; 1385 1386 const APInt *C0, *C1; 1387 if (!match(Cmp0->getOperand(1), m_APInt(C0)) || 1388 !match(Cmp1->getOperand(1), m_APInt(C1))) 1389 return nullptr; 1390 1391 auto Range0 = ConstantRange::makeExactICmpRegion(Cmp0->getPredicate(), *C0); 1392 auto Range1 = ConstantRange::makeExactICmpRegion(Cmp1->getPredicate(), *C1); 1393 1394 // For and-of-compares, check if the intersection is empty: 1395 // (icmp X, C0) && (icmp X, C1) --> empty set --> false 1396 if (IsAnd && Range0.intersectWith(Range1).isEmptySet()) 1397 return getFalse(Cmp0->getType()); 1398 1399 // For or-of-compares, check if the union is full: 1400 // (icmp X, C0) || (icmp X, C1) --> full set --> true 1401 if (!IsAnd && Range0.unionWith(Range1).isFullSet()) 1402 return getTrue(Cmp0->getType()); 1403 1404 // Is one range a superset of the other? 1405 // If this is and-of-compares, take the smaller set: 1406 // (icmp sgt X, 4) && (icmp sgt X, 42) --> icmp sgt X, 42 1407 // If this is or-of-compares, take the larger set: 1408 // (icmp sgt X, 4) || (icmp sgt X, 42) --> icmp sgt X, 4 1409 if (Range0.contains(Range1)) 1410 return IsAnd ? Cmp1 : Cmp0; 1411 if (Range1.contains(Range0)) 1412 return IsAnd ? Cmp0 : Cmp1; 1413 1414 return nullptr; 1415 } 1416 1417 static Value *simplifyAndOfICmpsWithAdd(ICmpInst *Op0, ICmpInst *Op1) { 1418 // (icmp (add V, C0), C1) & (icmp V, C0) 1419 ICmpInst::Predicate Pred0, Pred1; 1420 const APInt *C0, *C1; 1421 Value *V; 1422 if (!match(Op0, m_ICmp(Pred0, m_Add(m_Value(V), m_APInt(C0)), m_APInt(C1)))) 1423 return nullptr; 1424 1425 if (!match(Op1, m_ICmp(Pred1, m_Specific(V), m_Value()))) 1426 return nullptr; 1427 1428 auto *AddInst = cast<BinaryOperator>(Op0->getOperand(0)); 1429 if (AddInst->getOperand(1) != Op1->getOperand(1)) 1430 return nullptr; 1431 1432 Type *ITy = Op0->getType(); 1433 bool isNSW = AddInst->hasNoSignedWrap(); 1434 bool isNUW = AddInst->hasNoUnsignedWrap(); 1435 1436 const APInt Delta = *C1 - *C0; 1437 if (C0->isStrictlyPositive()) { 1438 if (Delta == 2) { 1439 if (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_SGT) 1440 return getFalse(ITy); 1441 if (Pred0 == ICmpInst::ICMP_SLT && Pred1 == ICmpInst::ICMP_SGT && isNSW) 1442 return getFalse(ITy); 1443 } 1444 if (Delta == 1) { 1445 if (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_SGT) 1446 return getFalse(ITy); 1447 if (Pred0 == ICmpInst::ICMP_SLE && Pred1 == ICmpInst::ICMP_SGT && isNSW) 1448 return getFalse(ITy); 1449 } 1450 } 1451 if (C0->getBoolValue() && isNUW) { 1452 if (Delta == 2) 1453 if (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_UGT) 1454 return getFalse(ITy); 1455 if (Delta == 1) 1456 if (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_UGT) 1457 return getFalse(ITy); 1458 } 1459 1460 return nullptr; 1461 } 1462 1463 static Value *simplifyAndOfICmps(ICmpInst *Op0, ICmpInst *Op1) { 1464 if (Value *X = simplifyUnsignedRangeCheck(Op0, Op1, /*IsAnd=*/true)) 1465 return X; 1466 if (Value *X = simplifyUnsignedRangeCheck(Op1, Op0, /*IsAnd=*/true)) 1467 return X; 1468 1469 if (Value *X = simplifyAndOfICmpsWithSameOperands(Op0, Op1)) 1470 return X; 1471 if (Value *X = simplifyAndOfICmpsWithSameOperands(Op1, Op0)) 1472 return X; 1473 1474 if (Value *X = simplifyAndOrOfICmpsWithConstants(Op0, Op1, true)) 1475 return X; 1476 1477 if (Value *X = simplifyAndOfICmpsWithAdd(Op0, Op1)) 1478 return X; 1479 if (Value *X = simplifyAndOfICmpsWithAdd(Op1, Op0)) 1480 return X; 1481 1482 return nullptr; 1483 } 1484 1485 static Value *simplifyOrOfICmpsWithAdd(ICmpInst *Op0, ICmpInst *Op1) { 1486 // (icmp (add V, C0), C1) | (icmp V, C0) 1487 ICmpInst::Predicate Pred0, Pred1; 1488 const APInt *C0, *C1; 1489 Value *V; 1490 if (!match(Op0, m_ICmp(Pred0, m_Add(m_Value(V), m_APInt(C0)), m_APInt(C1)))) 1491 return nullptr; 1492 1493 if (!match(Op1, m_ICmp(Pred1, m_Specific(V), m_Value()))) 1494 return nullptr; 1495 1496 auto *AddInst = cast<BinaryOperator>(Op0->getOperand(0)); 1497 if (AddInst->getOperand(1) != Op1->getOperand(1)) 1498 return nullptr; 1499 1500 Type *ITy = Op0->getType(); 1501 bool isNSW = AddInst->hasNoSignedWrap(); 1502 bool isNUW = AddInst->hasNoUnsignedWrap(); 1503 1504 const APInt Delta = *C1 - *C0; 1505 if (C0->isStrictlyPositive()) { 1506 if (Delta == 2) { 1507 if (Pred0 == ICmpInst::ICMP_UGE && Pred1 == ICmpInst::ICMP_SLE) 1508 return getTrue(ITy); 1509 if (Pred0 == ICmpInst::ICMP_SGE && Pred1 == ICmpInst::ICMP_SLE && isNSW) 1510 return getTrue(ITy); 1511 } 1512 if (Delta == 1) { 1513 if (Pred0 == ICmpInst::ICMP_UGT && Pred1 == ICmpInst::ICMP_SLE) 1514 return getTrue(ITy); 1515 if (Pred0 == ICmpInst::ICMP_SGT && Pred1 == ICmpInst::ICMP_SLE && isNSW) 1516 return getTrue(ITy); 1517 } 1518 } 1519 if (C0->getBoolValue() && isNUW) { 1520 if (Delta == 2) 1521 if (Pred0 == ICmpInst::ICMP_UGE && Pred1 == ICmpInst::ICMP_ULE) 1522 return getTrue(ITy); 1523 if (Delta == 1) 1524 if (Pred0 == ICmpInst::ICMP_UGT && Pred1 == ICmpInst::ICMP_ULE) 1525 return getTrue(ITy); 1526 } 1527 1528 return nullptr; 1529 } 1530 1531 static Value *simplifyOrOfICmps(ICmpInst *Op0, ICmpInst *Op1) { 1532 if (Value *X = simplifyUnsignedRangeCheck(Op0, Op1, /*IsAnd=*/false)) 1533 return X; 1534 if (Value *X = simplifyUnsignedRangeCheck(Op1, Op0, /*IsAnd=*/false)) 1535 return X; 1536 1537 if (Value *X = simplifyOrOfICmpsWithSameOperands(Op0, Op1)) 1538 return X; 1539 if (Value *X = simplifyOrOfICmpsWithSameOperands(Op1, Op0)) 1540 return X; 1541 1542 if (Value *X = simplifyAndOrOfICmpsWithConstants(Op0, Op1, false)) 1543 return X; 1544 1545 if (Value *X = simplifyOrOfICmpsWithAdd(Op0, Op1)) 1546 return X; 1547 if (Value *X = simplifyOrOfICmpsWithAdd(Op1, Op0)) 1548 return X; 1549 1550 return nullptr; 1551 } 1552 1553 static Value *simplifyAndOrOfICmps(Value *Op0, Value *Op1, bool IsAnd) { 1554 // Look through casts of the 'and' operands to find compares. 1555 auto *Cast0 = dyn_cast<CastInst>(Op0); 1556 auto *Cast1 = dyn_cast<CastInst>(Op1); 1557 if (Cast0 && Cast1 && Cast0->getOpcode() == Cast1->getOpcode() && 1558 Cast0->getSrcTy() == Cast1->getSrcTy()) { 1559 Op0 = Cast0->getOperand(0); 1560 Op1 = Cast1->getOperand(0); 1561 } 1562 1563 auto *Cmp0 = dyn_cast<ICmpInst>(Op0); 1564 auto *Cmp1 = dyn_cast<ICmpInst>(Op1); 1565 if (!Cmp0 || !Cmp1) 1566 return nullptr; 1567 1568 Value *V = 1569 IsAnd ? simplifyAndOfICmps(Cmp0, Cmp1) : simplifyOrOfICmps(Cmp0, Cmp1); 1570 if (!V) 1571 return nullptr; 1572 if (!Cast0) 1573 return V; 1574 1575 // If we looked through casts, we can only handle a constant simplification 1576 // because we are not allowed to create a cast instruction here. 1577 if (auto *C = dyn_cast<Constant>(V)) 1578 return ConstantExpr::getCast(Cast0->getOpcode(), C, Cast0->getType()); 1579 1580 return nullptr; 1581 } 1582 1583 /// Given operands for an And, see if we can fold the result. 1584 /// If not, this returns null. 1585 static Value *SimplifyAndInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 1586 unsigned MaxRecurse) { 1587 if (Constant *C = foldOrCommuteConstant(Instruction::And, Op0, Op1, Q)) 1588 return C; 1589 1590 // X & undef -> 0 1591 if (match(Op1, m_Undef())) 1592 return Constant::getNullValue(Op0->getType()); 1593 1594 // X & X = X 1595 if (Op0 == Op1) 1596 return Op0; 1597 1598 // X & 0 = 0 1599 if (match(Op1, m_Zero())) 1600 return Op1; 1601 1602 // X & -1 = X 1603 if (match(Op1, m_AllOnes())) 1604 return Op0; 1605 1606 // A & ~A = ~A & A = 0 1607 if (match(Op0, m_Not(m_Specific(Op1))) || 1608 match(Op1, m_Not(m_Specific(Op0)))) 1609 return Constant::getNullValue(Op0->getType()); 1610 1611 // (A | ?) & A = A 1612 if (match(Op0, m_c_Or(m_Specific(Op1), m_Value()))) 1613 return Op1; 1614 1615 // A & (A | ?) = A 1616 if (match(Op1, m_c_Or(m_Specific(Op0), m_Value()))) 1617 return Op0; 1618 1619 // A mask that only clears known zeros of a shifted value is a no-op. 1620 Value *X; 1621 const APInt *Mask; 1622 const APInt *ShAmt; 1623 if (match(Op1, m_APInt(Mask))) { 1624 // If all bits in the inverted and shifted mask are clear: 1625 // and (shl X, ShAmt), Mask --> shl X, ShAmt 1626 if (match(Op0, m_Shl(m_Value(X), m_APInt(ShAmt))) && 1627 (~(*Mask)).lshr(*ShAmt).isNullValue()) 1628 return Op0; 1629 1630 // If all bits in the inverted and shifted mask are clear: 1631 // and (lshr X, ShAmt), Mask --> lshr X, ShAmt 1632 if (match(Op0, m_LShr(m_Value(X), m_APInt(ShAmt))) && 1633 (~(*Mask)).shl(*ShAmt).isNullValue()) 1634 return Op0; 1635 } 1636 1637 // A & (-A) = A if A is a power of two or zero. 1638 if (match(Op0, m_Neg(m_Specific(Op1))) || 1639 match(Op1, m_Neg(m_Specific(Op0)))) { 1640 if (isKnownToBeAPowerOfTwo(Op0, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI, 1641 Q.DT)) 1642 return Op0; 1643 if (isKnownToBeAPowerOfTwo(Op1, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI, 1644 Q.DT)) 1645 return Op1; 1646 } 1647 1648 if (Value *V = simplifyAndOrOfICmps(Op0, Op1, true)) 1649 return V; 1650 1651 // Try some generic simplifications for associative operations. 1652 if (Value *V = SimplifyAssociativeBinOp(Instruction::And, Op0, Op1, Q, 1653 MaxRecurse)) 1654 return V; 1655 1656 // And distributes over Or. Try some generic simplifications based on this. 1657 if (Value *V = ExpandBinOp(Instruction::And, Op0, Op1, Instruction::Or, 1658 Q, MaxRecurse)) 1659 return V; 1660 1661 // And distributes over Xor. Try some generic simplifications based on this. 1662 if (Value *V = ExpandBinOp(Instruction::And, Op0, Op1, Instruction::Xor, 1663 Q, MaxRecurse)) 1664 return V; 1665 1666 // If the operation is with the result of a select instruction, check whether 1667 // operating on either branch of the select always yields the same value. 1668 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 1669 if (Value *V = ThreadBinOpOverSelect(Instruction::And, Op0, Op1, Q, 1670 MaxRecurse)) 1671 return V; 1672 1673 // If the operation is with the result of a phi instruction, check whether 1674 // operating on all incoming values of the phi always yields the same value. 1675 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 1676 if (Value *V = ThreadBinOpOverPHI(Instruction::And, Op0, Op1, Q, 1677 MaxRecurse)) 1678 return V; 1679 1680 return nullptr; 1681 } 1682 1683 Value *llvm::SimplifyAndInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 1684 return ::SimplifyAndInst(Op0, Op1, Q, RecursionLimit); 1685 } 1686 1687 /// Given operands for an Or, see if we can fold the result. 1688 /// If not, this returns null. 1689 static Value *SimplifyOrInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 1690 unsigned MaxRecurse) { 1691 if (Constant *C = foldOrCommuteConstant(Instruction::Or, Op0, Op1, Q)) 1692 return C; 1693 1694 // X | undef -> -1 1695 if (match(Op1, m_Undef())) 1696 return Constant::getAllOnesValue(Op0->getType()); 1697 1698 // X | X = X 1699 if (Op0 == Op1) 1700 return Op0; 1701 1702 // X | 0 = X 1703 if (match(Op1, m_Zero())) 1704 return Op0; 1705 1706 // X | -1 = -1 1707 if (match(Op1, m_AllOnes())) 1708 return Op1; 1709 1710 // A | ~A = ~A | A = -1 1711 if (match(Op0, m_Not(m_Specific(Op1))) || 1712 match(Op1, m_Not(m_Specific(Op0)))) 1713 return Constant::getAllOnesValue(Op0->getType()); 1714 1715 // (A & ?) | A = A 1716 if (match(Op0, m_c_And(m_Specific(Op1), m_Value()))) 1717 return Op1; 1718 1719 // A | (A & ?) = A 1720 if (match(Op1, m_c_And(m_Specific(Op0), m_Value()))) 1721 return Op0; 1722 1723 // ~(A & ?) | A = -1 1724 if (match(Op0, m_Not(m_c_And(m_Specific(Op1), m_Value())))) 1725 return Constant::getAllOnesValue(Op1->getType()); 1726 1727 // A | ~(A & ?) = -1 1728 if (match(Op1, m_Not(m_c_And(m_Specific(Op1), m_Value())))) 1729 return Constant::getAllOnesValue(Op0->getType()); 1730 1731 Value *A, *B; 1732 // (A & ~B) | (A ^ B) -> (A ^ B) 1733 // (~B & A) | (A ^ B) -> (A ^ B) 1734 // (A & ~B) | (B ^ A) -> (B ^ A) 1735 // (~B & A) | (B ^ A) -> (B ^ A) 1736 if (match(Op1, m_Xor(m_Value(A), m_Value(B))) && 1737 (match(Op0, m_c_And(m_Specific(A), m_Not(m_Specific(B)))) || 1738 match(Op0, m_c_And(m_Not(m_Specific(A)), m_Specific(B))))) 1739 return Op1; 1740 1741 // Commute the 'or' operands. 1742 // (A ^ B) | (A & ~B) -> (A ^ B) 1743 // (A ^ B) | (~B & A) -> (A ^ B) 1744 // (B ^ A) | (A & ~B) -> (B ^ A) 1745 // (B ^ A) | (~B & A) -> (B ^ A) 1746 if (match(Op0, m_Xor(m_Value(A), m_Value(B))) && 1747 (match(Op1, m_c_And(m_Specific(A), m_Not(m_Specific(B)))) || 1748 match(Op1, m_c_And(m_Not(m_Specific(A)), m_Specific(B))))) 1749 return Op0; 1750 1751 // (A & B) | (~A ^ B) -> (~A ^ B) 1752 // (B & A) | (~A ^ B) -> (~A ^ B) 1753 // (A & B) | (B ^ ~A) -> (B ^ ~A) 1754 // (B & A) | (B ^ ~A) -> (B ^ ~A) 1755 if (match(Op0, m_And(m_Value(A), m_Value(B))) && 1756 (match(Op1, m_c_Xor(m_Specific(A), m_Not(m_Specific(B)))) || 1757 match(Op1, m_c_Xor(m_Not(m_Specific(A)), m_Specific(B))))) 1758 return Op1; 1759 1760 // (~A ^ B) | (A & B) -> (~A ^ B) 1761 // (~A ^ B) | (B & A) -> (~A ^ B) 1762 // (B ^ ~A) | (A & B) -> (B ^ ~A) 1763 // (B ^ ~A) | (B & A) -> (B ^ ~A) 1764 if (match(Op1, m_And(m_Value(A), m_Value(B))) && 1765 (match(Op0, m_c_Xor(m_Specific(A), m_Not(m_Specific(B)))) || 1766 match(Op0, m_c_Xor(m_Not(m_Specific(A)), m_Specific(B))))) 1767 return Op0; 1768 1769 if (Value *V = simplifyAndOrOfICmps(Op0, Op1, false)) 1770 return V; 1771 1772 // Try some generic simplifications for associative operations. 1773 if (Value *V = SimplifyAssociativeBinOp(Instruction::Or, Op0, Op1, Q, 1774 MaxRecurse)) 1775 return V; 1776 1777 // Or distributes over And. Try some generic simplifications based on this. 1778 if (Value *V = ExpandBinOp(Instruction::Or, Op0, Op1, Instruction::And, Q, 1779 MaxRecurse)) 1780 return V; 1781 1782 // If the operation is with the result of a select instruction, check whether 1783 // operating on either branch of the select always yields the same value. 1784 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 1785 if (Value *V = ThreadBinOpOverSelect(Instruction::Or, Op0, Op1, Q, 1786 MaxRecurse)) 1787 return V; 1788 1789 // (A & C1)|(B & C2) 1790 const APInt *C1, *C2; 1791 if (match(Op0, m_And(m_Value(A), m_APInt(C1))) && 1792 match(Op1, m_And(m_Value(B), m_APInt(C2)))) { 1793 if (*C1 == ~*C2) { 1794 // (A & C1)|(B & C2) 1795 // If we have: ((V + N) & C1) | (V & C2) 1796 // .. and C2 = ~C1 and C2 is 0+1+ and (N & C2) == 0 1797 // replace with V+N. 1798 Value *N; 1799 if (C2->isMask() && // C2 == 0+1+ 1800 match(A, m_c_Add(m_Specific(B), m_Value(N)))) { 1801 // Add commutes, try both ways. 1802 if (MaskedValueIsZero(N, *C2, Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 1803 return A; 1804 } 1805 // Or commutes, try both ways. 1806 if (C1->isMask() && 1807 match(B, m_c_Add(m_Specific(A), m_Value(N)))) { 1808 // Add commutes, try both ways. 1809 if (MaskedValueIsZero(N, *C1, Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 1810 return B; 1811 } 1812 } 1813 } 1814 1815 // If the operation is with the result of a phi instruction, check whether 1816 // operating on all incoming values of the phi always yields the same value. 1817 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 1818 if (Value *V = ThreadBinOpOverPHI(Instruction::Or, Op0, Op1, Q, MaxRecurse)) 1819 return V; 1820 1821 return nullptr; 1822 } 1823 1824 Value *llvm::SimplifyOrInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 1825 return ::SimplifyOrInst(Op0, Op1, Q, RecursionLimit); 1826 } 1827 1828 /// Given operands for a Xor, see if we can fold the result. 1829 /// If not, this returns null. 1830 static Value *SimplifyXorInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 1831 unsigned MaxRecurse) { 1832 if (Constant *C = foldOrCommuteConstant(Instruction::Xor, Op0, Op1, Q)) 1833 return C; 1834 1835 // A ^ undef -> undef 1836 if (match(Op1, m_Undef())) 1837 return Op1; 1838 1839 // A ^ 0 = A 1840 if (match(Op1, m_Zero())) 1841 return Op0; 1842 1843 // A ^ A = 0 1844 if (Op0 == Op1) 1845 return Constant::getNullValue(Op0->getType()); 1846 1847 // A ^ ~A = ~A ^ A = -1 1848 if (match(Op0, m_Not(m_Specific(Op1))) || 1849 match(Op1, m_Not(m_Specific(Op0)))) 1850 return Constant::getAllOnesValue(Op0->getType()); 1851 1852 // Try some generic simplifications for associative operations. 1853 if (Value *V = SimplifyAssociativeBinOp(Instruction::Xor, Op0, Op1, Q, 1854 MaxRecurse)) 1855 return V; 1856 1857 // Threading Xor over selects and phi nodes is pointless, so don't bother. 1858 // Threading over the select in "A ^ select(cond, B, C)" means evaluating 1859 // "A^B" and "A^C" and seeing if they are equal; but they are equal if and 1860 // only if B and C are equal. If B and C are equal then (since we assume 1861 // that operands have already been simplified) "select(cond, B, C)" should 1862 // have been simplified to the common value of B and C already. Analysing 1863 // "A^B" and "A^C" thus gains nothing, but costs compile time. Similarly 1864 // for threading over phi nodes. 1865 1866 return nullptr; 1867 } 1868 1869 Value *llvm::SimplifyXorInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 1870 return ::SimplifyXorInst(Op0, Op1, Q, RecursionLimit); 1871 } 1872 1873 1874 static Type *GetCompareTy(Value *Op) { 1875 return CmpInst::makeCmpResultType(Op->getType()); 1876 } 1877 1878 /// Rummage around inside V looking for something equivalent to the comparison 1879 /// "LHS Pred RHS". Return such a value if found, otherwise return null. 1880 /// Helper function for analyzing max/min idioms. 1881 static Value *ExtractEquivalentCondition(Value *V, CmpInst::Predicate Pred, 1882 Value *LHS, Value *RHS) { 1883 SelectInst *SI = dyn_cast<SelectInst>(V); 1884 if (!SI) 1885 return nullptr; 1886 CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition()); 1887 if (!Cmp) 1888 return nullptr; 1889 Value *CmpLHS = Cmp->getOperand(0), *CmpRHS = Cmp->getOperand(1); 1890 if (Pred == Cmp->getPredicate() && LHS == CmpLHS && RHS == CmpRHS) 1891 return Cmp; 1892 if (Pred == CmpInst::getSwappedPredicate(Cmp->getPredicate()) && 1893 LHS == CmpRHS && RHS == CmpLHS) 1894 return Cmp; 1895 return nullptr; 1896 } 1897 1898 // A significant optimization not implemented here is assuming that alloca 1899 // addresses are not equal to incoming argument values. They don't *alias*, 1900 // as we say, but that doesn't mean they aren't equal, so we take a 1901 // conservative approach. 1902 // 1903 // This is inspired in part by C++11 5.10p1: 1904 // "Two pointers of the same type compare equal if and only if they are both 1905 // null, both point to the same function, or both represent the same 1906 // address." 1907 // 1908 // This is pretty permissive. 1909 // 1910 // It's also partly due to C11 6.5.9p6: 1911 // "Two pointers compare equal if and only if both are null pointers, both are 1912 // pointers to the same object (including a pointer to an object and a 1913 // subobject at its beginning) or function, both are pointers to one past the 1914 // last element of the same array object, or one is a pointer to one past the 1915 // end of one array object and the other is a pointer to the start of a 1916 // different array object that happens to immediately follow the first array 1917 // object in the address space.) 1918 // 1919 // C11's version is more restrictive, however there's no reason why an argument 1920 // couldn't be a one-past-the-end value for a stack object in the caller and be 1921 // equal to the beginning of a stack object in the callee. 1922 // 1923 // If the C and C++ standards are ever made sufficiently restrictive in this 1924 // area, it may be possible to update LLVM's semantics accordingly and reinstate 1925 // this optimization. 1926 static Constant * 1927 computePointerICmp(const DataLayout &DL, const TargetLibraryInfo *TLI, 1928 const DominatorTree *DT, CmpInst::Predicate Pred, 1929 AssumptionCache *AC, const Instruction *CxtI, 1930 Value *LHS, Value *RHS) { 1931 // First, skip past any trivial no-ops. 1932 LHS = LHS->stripPointerCasts(); 1933 RHS = RHS->stripPointerCasts(); 1934 1935 // A non-null pointer is not equal to a null pointer. 1936 if (llvm::isKnownNonZero(LHS, DL) && isa<ConstantPointerNull>(RHS) && 1937 (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE)) 1938 return ConstantInt::get(GetCompareTy(LHS), 1939 !CmpInst::isTrueWhenEqual(Pred)); 1940 1941 // We can only fold certain predicates on pointer comparisons. 1942 switch (Pred) { 1943 default: 1944 return nullptr; 1945 1946 // Equality comaprisons are easy to fold. 1947 case CmpInst::ICMP_EQ: 1948 case CmpInst::ICMP_NE: 1949 break; 1950 1951 // We can only handle unsigned relational comparisons because 'inbounds' on 1952 // a GEP only protects against unsigned wrapping. 1953 case CmpInst::ICMP_UGT: 1954 case CmpInst::ICMP_UGE: 1955 case CmpInst::ICMP_ULT: 1956 case CmpInst::ICMP_ULE: 1957 // However, we have to switch them to their signed variants to handle 1958 // negative indices from the base pointer. 1959 Pred = ICmpInst::getSignedPredicate(Pred); 1960 break; 1961 } 1962 1963 // Strip off any constant offsets so that we can reason about them. 1964 // It's tempting to use getUnderlyingObject or even just stripInBoundsOffsets 1965 // here and compare base addresses like AliasAnalysis does, however there are 1966 // numerous hazards. AliasAnalysis and its utilities rely on special rules 1967 // governing loads and stores which don't apply to icmps. Also, AliasAnalysis 1968 // doesn't need to guarantee pointer inequality when it says NoAlias. 1969 Constant *LHSOffset = stripAndComputeConstantOffsets(DL, LHS); 1970 Constant *RHSOffset = stripAndComputeConstantOffsets(DL, RHS); 1971 1972 // If LHS and RHS are related via constant offsets to the same base 1973 // value, we can replace it with an icmp which just compares the offsets. 1974 if (LHS == RHS) 1975 return ConstantExpr::getICmp(Pred, LHSOffset, RHSOffset); 1976 1977 // Various optimizations for (in)equality comparisons. 1978 if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE) { 1979 // Different non-empty allocations that exist at the same time have 1980 // different addresses (if the program can tell). Global variables always 1981 // exist, so they always exist during the lifetime of each other and all 1982 // allocas. Two different allocas usually have different addresses... 1983 // 1984 // However, if there's an @llvm.stackrestore dynamically in between two 1985 // allocas, they may have the same address. It's tempting to reduce the 1986 // scope of the problem by only looking at *static* allocas here. That would 1987 // cover the majority of allocas while significantly reducing the likelihood 1988 // of having an @llvm.stackrestore pop up in the middle. However, it's not 1989 // actually impossible for an @llvm.stackrestore to pop up in the middle of 1990 // an entry block. Also, if we have a block that's not attached to a 1991 // function, we can't tell if it's "static" under the current definition. 1992 // Theoretically, this problem could be fixed by creating a new kind of 1993 // instruction kind specifically for static allocas. Such a new instruction 1994 // could be required to be at the top of the entry block, thus preventing it 1995 // from being subject to a @llvm.stackrestore. Instcombine could even 1996 // convert regular allocas into these special allocas. It'd be nifty. 1997 // However, until then, this problem remains open. 1998 // 1999 // So, we'll assume that two non-empty allocas have different addresses 2000 // for now. 2001 // 2002 // With all that, if the offsets are within the bounds of their allocations 2003 // (and not one-past-the-end! so we can't use inbounds!), and their 2004 // allocations aren't the same, the pointers are not equal. 2005 // 2006 // Note that it's not necessary to check for LHS being a global variable 2007 // address, due to canonicalization and constant folding. 2008 if (isa<AllocaInst>(LHS) && 2009 (isa<AllocaInst>(RHS) || isa<GlobalVariable>(RHS))) { 2010 ConstantInt *LHSOffsetCI = dyn_cast<ConstantInt>(LHSOffset); 2011 ConstantInt *RHSOffsetCI = dyn_cast<ConstantInt>(RHSOffset); 2012 uint64_t LHSSize, RHSSize; 2013 if (LHSOffsetCI && RHSOffsetCI && 2014 getObjectSize(LHS, LHSSize, DL, TLI) && 2015 getObjectSize(RHS, RHSSize, DL, TLI)) { 2016 const APInt &LHSOffsetValue = LHSOffsetCI->getValue(); 2017 const APInt &RHSOffsetValue = RHSOffsetCI->getValue(); 2018 if (!LHSOffsetValue.isNegative() && 2019 !RHSOffsetValue.isNegative() && 2020 LHSOffsetValue.ult(LHSSize) && 2021 RHSOffsetValue.ult(RHSSize)) { 2022 return ConstantInt::get(GetCompareTy(LHS), 2023 !CmpInst::isTrueWhenEqual(Pred)); 2024 } 2025 } 2026 2027 // Repeat the above check but this time without depending on DataLayout 2028 // or being able to compute a precise size. 2029 if (!cast<PointerType>(LHS->getType())->isEmptyTy() && 2030 !cast<PointerType>(RHS->getType())->isEmptyTy() && 2031 LHSOffset->isNullValue() && 2032 RHSOffset->isNullValue()) 2033 return ConstantInt::get(GetCompareTy(LHS), 2034 !CmpInst::isTrueWhenEqual(Pred)); 2035 } 2036 2037 // Even if an non-inbounds GEP occurs along the path we can still optimize 2038 // equality comparisons concerning the result. We avoid walking the whole 2039 // chain again by starting where the last calls to 2040 // stripAndComputeConstantOffsets left off and accumulate the offsets. 2041 Constant *LHSNoBound = stripAndComputeConstantOffsets(DL, LHS, true); 2042 Constant *RHSNoBound = stripAndComputeConstantOffsets(DL, RHS, true); 2043 if (LHS == RHS) 2044 return ConstantExpr::getICmp(Pred, 2045 ConstantExpr::getAdd(LHSOffset, LHSNoBound), 2046 ConstantExpr::getAdd(RHSOffset, RHSNoBound)); 2047 2048 // If one side of the equality comparison must come from a noalias call 2049 // (meaning a system memory allocation function), and the other side must 2050 // come from a pointer that cannot overlap with dynamically-allocated 2051 // memory within the lifetime of the current function (allocas, byval 2052 // arguments, globals), then determine the comparison result here. 2053 SmallVector<Value *, 8> LHSUObjs, RHSUObjs; 2054 GetUnderlyingObjects(LHS, LHSUObjs, DL); 2055 GetUnderlyingObjects(RHS, RHSUObjs, DL); 2056 2057 // Is the set of underlying objects all noalias calls? 2058 auto IsNAC = [](ArrayRef<Value *> Objects) { 2059 return all_of(Objects, isNoAliasCall); 2060 }; 2061 2062 // Is the set of underlying objects all things which must be disjoint from 2063 // noalias calls. For allocas, we consider only static ones (dynamic 2064 // allocas might be transformed into calls to malloc not simultaneously 2065 // live with the compared-to allocation). For globals, we exclude symbols 2066 // that might be resolve lazily to symbols in another dynamically-loaded 2067 // library (and, thus, could be malloc'ed by the implementation). 2068 auto IsAllocDisjoint = [](ArrayRef<Value *> Objects) { 2069 return all_of(Objects, [](Value *V) { 2070 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) 2071 return AI->getParent() && AI->getFunction() && AI->isStaticAlloca(); 2072 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) 2073 return (GV->hasLocalLinkage() || GV->hasHiddenVisibility() || 2074 GV->hasProtectedVisibility() || GV->hasGlobalUnnamedAddr()) && 2075 !GV->isThreadLocal(); 2076 if (const Argument *A = dyn_cast<Argument>(V)) 2077 return A->hasByValAttr(); 2078 return false; 2079 }); 2080 }; 2081 2082 if ((IsNAC(LHSUObjs) && IsAllocDisjoint(RHSUObjs)) || 2083 (IsNAC(RHSUObjs) && IsAllocDisjoint(LHSUObjs))) 2084 return ConstantInt::get(GetCompareTy(LHS), 2085 !CmpInst::isTrueWhenEqual(Pred)); 2086 2087 // Fold comparisons for non-escaping pointer even if the allocation call 2088 // cannot be elided. We cannot fold malloc comparison to null. Also, the 2089 // dynamic allocation call could be either of the operands. 2090 Value *MI = nullptr; 2091 if (isAllocLikeFn(LHS, TLI) && 2092 llvm::isKnownNonZero(RHS, DL, 0, nullptr, CxtI, DT)) 2093 MI = LHS; 2094 else if (isAllocLikeFn(RHS, TLI) && 2095 llvm::isKnownNonZero(LHS, DL, 0, nullptr, CxtI, DT)) 2096 MI = RHS; 2097 // FIXME: We should also fold the compare when the pointer escapes, but the 2098 // compare dominates the pointer escape 2099 if (MI && !PointerMayBeCaptured(MI, true, true)) 2100 return ConstantInt::get(GetCompareTy(LHS), 2101 CmpInst::isFalseWhenEqual(Pred)); 2102 } 2103 2104 // Otherwise, fail. 2105 return nullptr; 2106 } 2107 2108 /// Fold an icmp when its operands have i1 scalar type. 2109 static Value *simplifyICmpOfBools(CmpInst::Predicate Pred, Value *LHS, 2110 Value *RHS, const SimplifyQuery &Q) { 2111 Type *ITy = GetCompareTy(LHS); // The return type. 2112 Type *OpTy = LHS->getType(); // The operand type. 2113 if (!OpTy->isIntOrIntVectorTy(1)) 2114 return nullptr; 2115 2116 // A boolean compared to true/false can be simplified in 14 out of the 20 2117 // (10 predicates * 2 constants) possible combinations. Cases not handled here 2118 // require a 'not' of the LHS, so those must be transformed in InstCombine. 2119 if (match(RHS, m_Zero())) { 2120 switch (Pred) { 2121 case CmpInst::ICMP_NE: // X != 0 -> X 2122 case CmpInst::ICMP_UGT: // X >u 0 -> X 2123 case CmpInst::ICMP_SLT: // X <s 0 -> X 2124 return LHS; 2125 2126 case CmpInst::ICMP_ULT: // X <u 0 -> false 2127 case CmpInst::ICMP_SGT: // X >s 0 -> false 2128 return getFalse(ITy); 2129 2130 case CmpInst::ICMP_UGE: // X >=u 0 -> true 2131 case CmpInst::ICMP_SLE: // X <=s 0 -> true 2132 return getTrue(ITy); 2133 2134 default: break; 2135 } 2136 } else if (match(RHS, m_One())) { 2137 switch (Pred) { 2138 case CmpInst::ICMP_EQ: // X == 1 -> X 2139 case CmpInst::ICMP_UGE: // X >=u 1 -> X 2140 case CmpInst::ICMP_SLE: // X <=s -1 -> X 2141 return LHS; 2142 2143 case CmpInst::ICMP_UGT: // X >u 1 -> false 2144 case CmpInst::ICMP_SLT: // X <s -1 -> false 2145 return getFalse(ITy); 2146 2147 case CmpInst::ICMP_ULE: // X <=u 1 -> true 2148 case CmpInst::ICMP_SGE: // X >=s -1 -> true 2149 return getTrue(ITy); 2150 2151 default: break; 2152 } 2153 } 2154 2155 switch (Pred) { 2156 default: 2157 break; 2158 case ICmpInst::ICMP_UGE: 2159 if (isImpliedCondition(RHS, LHS, Q.DL).getValueOr(false)) 2160 return getTrue(ITy); 2161 break; 2162 case ICmpInst::ICMP_SGE: 2163 /// For signed comparison, the values for an i1 are 0 and -1 2164 /// respectively. This maps into a truth table of: 2165 /// LHS | RHS | LHS >=s RHS | LHS implies RHS 2166 /// 0 | 0 | 1 (0 >= 0) | 1 2167 /// 0 | 1 | 1 (0 >= -1) | 1 2168 /// 1 | 0 | 0 (-1 >= 0) | 0 2169 /// 1 | 1 | 1 (-1 >= -1) | 1 2170 if (isImpliedCondition(LHS, RHS, Q.DL).getValueOr(false)) 2171 return getTrue(ITy); 2172 break; 2173 case ICmpInst::ICMP_ULE: 2174 if (isImpliedCondition(LHS, RHS, Q.DL).getValueOr(false)) 2175 return getTrue(ITy); 2176 break; 2177 } 2178 2179 return nullptr; 2180 } 2181 2182 /// Try hard to fold icmp with zero RHS because this is a common case. 2183 static Value *simplifyICmpWithZero(CmpInst::Predicate Pred, Value *LHS, 2184 Value *RHS, const SimplifyQuery &Q) { 2185 if (!match(RHS, m_Zero())) 2186 return nullptr; 2187 2188 Type *ITy = GetCompareTy(LHS); // The return type. 2189 switch (Pred) { 2190 default: 2191 llvm_unreachable("Unknown ICmp predicate!"); 2192 case ICmpInst::ICMP_ULT: 2193 return getFalse(ITy); 2194 case ICmpInst::ICMP_UGE: 2195 return getTrue(ITy); 2196 case ICmpInst::ICMP_EQ: 2197 case ICmpInst::ICMP_ULE: 2198 if (isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 2199 return getFalse(ITy); 2200 break; 2201 case ICmpInst::ICMP_NE: 2202 case ICmpInst::ICMP_UGT: 2203 if (isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 2204 return getTrue(ITy); 2205 break; 2206 case ICmpInst::ICMP_SLT: { 2207 KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2208 if (LHSKnown.isNegative()) 2209 return getTrue(ITy); 2210 if (LHSKnown.isNonNegative()) 2211 return getFalse(ITy); 2212 break; 2213 } 2214 case ICmpInst::ICMP_SLE: { 2215 KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2216 if (LHSKnown.isNegative()) 2217 return getTrue(ITy); 2218 if (LHSKnown.isNonNegative() && 2219 isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 2220 return getFalse(ITy); 2221 break; 2222 } 2223 case ICmpInst::ICMP_SGE: { 2224 KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2225 if (LHSKnown.isNegative()) 2226 return getFalse(ITy); 2227 if (LHSKnown.isNonNegative()) 2228 return getTrue(ITy); 2229 break; 2230 } 2231 case ICmpInst::ICMP_SGT: { 2232 KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2233 if (LHSKnown.isNegative()) 2234 return getFalse(ITy); 2235 if (LHSKnown.isNonNegative() && 2236 isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 2237 return getTrue(ITy); 2238 break; 2239 } 2240 } 2241 2242 return nullptr; 2243 } 2244 2245 /// Many binary operators with a constant operand have an easy-to-compute 2246 /// range of outputs. This can be used to fold a comparison to always true or 2247 /// always false. 2248 static void setLimitsForBinOp(BinaryOperator &BO, APInt &Lower, APInt &Upper) { 2249 unsigned Width = Lower.getBitWidth(); 2250 const APInt *C; 2251 switch (BO.getOpcode()) { 2252 case Instruction::Add: 2253 if (match(BO.getOperand(1), m_APInt(C)) && !C->isNullValue()) { 2254 // FIXME: If we have both nuw and nsw, we should reduce the range further. 2255 if (BO.hasNoUnsignedWrap()) { 2256 // 'add nuw x, C' produces [C, UINT_MAX]. 2257 Lower = *C; 2258 } else if (BO.hasNoSignedWrap()) { 2259 if (C->isNegative()) { 2260 // 'add nsw x, -C' produces [SINT_MIN, SINT_MAX - C]. 2261 Lower = APInt::getSignedMinValue(Width); 2262 Upper = APInt::getSignedMaxValue(Width) + *C + 1; 2263 } else { 2264 // 'add nsw x, +C' produces [SINT_MIN + C, SINT_MAX]. 2265 Lower = APInt::getSignedMinValue(Width) + *C; 2266 Upper = APInt::getSignedMaxValue(Width) + 1; 2267 } 2268 } 2269 } 2270 break; 2271 2272 case Instruction::And: 2273 if (match(BO.getOperand(1), m_APInt(C))) 2274 // 'and x, C' produces [0, C]. 2275 Upper = *C + 1; 2276 break; 2277 2278 case Instruction::Or: 2279 if (match(BO.getOperand(1), m_APInt(C))) 2280 // 'or x, C' produces [C, UINT_MAX]. 2281 Lower = *C; 2282 break; 2283 2284 case Instruction::AShr: 2285 if (match(BO.getOperand(1), m_APInt(C)) && C->ult(Width)) { 2286 // 'ashr x, C' produces [INT_MIN >> C, INT_MAX >> C]. 2287 Lower = APInt::getSignedMinValue(Width).ashr(*C); 2288 Upper = APInt::getSignedMaxValue(Width).ashr(*C) + 1; 2289 } else if (match(BO.getOperand(0), m_APInt(C))) { 2290 unsigned ShiftAmount = Width - 1; 2291 if (!C->isNullValue() && BO.isExact()) 2292 ShiftAmount = C->countTrailingZeros(); 2293 if (C->isNegative()) { 2294 // 'ashr C, x' produces [C, C >> (Width-1)] 2295 Lower = *C; 2296 Upper = C->ashr(ShiftAmount) + 1; 2297 } else { 2298 // 'ashr C, x' produces [C >> (Width-1), C] 2299 Lower = C->ashr(ShiftAmount); 2300 Upper = *C + 1; 2301 } 2302 } 2303 break; 2304 2305 case Instruction::LShr: 2306 if (match(BO.getOperand(1), m_APInt(C)) && C->ult(Width)) { 2307 // 'lshr x, C' produces [0, UINT_MAX >> C]. 2308 Upper = APInt::getAllOnesValue(Width).lshr(*C) + 1; 2309 } else if (match(BO.getOperand(0), m_APInt(C))) { 2310 // 'lshr C, x' produces [C >> (Width-1), C]. 2311 unsigned ShiftAmount = Width - 1; 2312 if (!C->isNullValue() && BO.isExact()) 2313 ShiftAmount = C->countTrailingZeros(); 2314 Lower = C->lshr(ShiftAmount); 2315 Upper = *C + 1; 2316 } 2317 break; 2318 2319 case Instruction::Shl: 2320 if (match(BO.getOperand(0), m_APInt(C))) { 2321 if (BO.hasNoUnsignedWrap()) { 2322 // 'shl nuw C, x' produces [C, C << CLZ(C)] 2323 Lower = *C; 2324 Upper = Lower.shl(Lower.countLeadingZeros()) + 1; 2325 } else if (BO.hasNoSignedWrap()) { // TODO: What if both nuw+nsw? 2326 if (C->isNegative()) { 2327 // 'shl nsw C, x' produces [C << CLO(C)-1, C] 2328 unsigned ShiftAmount = C->countLeadingOnes() - 1; 2329 Lower = C->shl(ShiftAmount); 2330 Upper = *C + 1; 2331 } else { 2332 // 'shl nsw C, x' produces [C, C << CLZ(C)-1] 2333 unsigned ShiftAmount = C->countLeadingZeros() - 1; 2334 Lower = *C; 2335 Upper = C->shl(ShiftAmount) + 1; 2336 } 2337 } 2338 } 2339 break; 2340 2341 case Instruction::SDiv: 2342 if (match(BO.getOperand(1), m_APInt(C))) { 2343 APInt IntMin = APInt::getSignedMinValue(Width); 2344 APInt IntMax = APInt::getSignedMaxValue(Width); 2345 if (C->isAllOnesValue()) { 2346 // 'sdiv x, -1' produces [INT_MIN + 1, INT_MAX] 2347 // where C != -1 and C != 0 and C != 1 2348 Lower = IntMin + 1; 2349 Upper = IntMax + 1; 2350 } else if (C->countLeadingZeros() < Width - 1) { 2351 // 'sdiv x, C' produces [INT_MIN / C, INT_MAX / C] 2352 // where C != -1 and C != 0 and C != 1 2353 Lower = IntMin.sdiv(*C); 2354 Upper = IntMax.sdiv(*C); 2355 if (Lower.sgt(Upper)) 2356 std::swap(Lower, Upper); 2357 Upper = Upper + 1; 2358 assert(Upper != Lower && "Upper part of range has wrapped!"); 2359 } 2360 } else if (match(BO.getOperand(0), m_APInt(C))) { 2361 if (C->isMinSignedValue()) { 2362 // 'sdiv INT_MIN, x' produces [INT_MIN, INT_MIN / -2]. 2363 Lower = *C; 2364 Upper = Lower.lshr(1) + 1; 2365 } else { 2366 // 'sdiv C, x' produces [-|C|, |C|]. 2367 Upper = C->abs() + 1; 2368 Lower = (-Upper) + 1; 2369 } 2370 } 2371 break; 2372 2373 case Instruction::UDiv: 2374 if (match(BO.getOperand(1), m_APInt(C)) && !C->isNullValue()) { 2375 // 'udiv x, C' produces [0, UINT_MAX / C]. 2376 Upper = APInt::getMaxValue(Width).udiv(*C) + 1; 2377 } else if (match(BO.getOperand(0), m_APInt(C))) { 2378 // 'udiv C, x' produces [0, C]. 2379 Upper = *C + 1; 2380 } 2381 break; 2382 2383 case Instruction::SRem: 2384 if (match(BO.getOperand(1), m_APInt(C))) { 2385 // 'srem x, C' produces (-|C|, |C|). 2386 Upper = C->abs(); 2387 Lower = (-Upper) + 1; 2388 } 2389 break; 2390 2391 case Instruction::URem: 2392 if (match(BO.getOperand(1), m_APInt(C))) 2393 // 'urem x, C' produces [0, C). 2394 Upper = *C; 2395 break; 2396 2397 default: 2398 break; 2399 } 2400 } 2401 2402 static Value *simplifyICmpWithConstant(CmpInst::Predicate Pred, Value *LHS, 2403 Value *RHS) { 2404 const APInt *C; 2405 if (!match(RHS, m_APInt(C))) 2406 return nullptr; 2407 2408 // Rule out tautological comparisons (eg., ult 0 or uge 0). 2409 ConstantRange RHS_CR = ConstantRange::makeExactICmpRegion(Pred, *C); 2410 if (RHS_CR.isEmptySet()) 2411 return ConstantInt::getFalse(GetCompareTy(RHS)); 2412 if (RHS_CR.isFullSet()) 2413 return ConstantInt::getTrue(GetCompareTy(RHS)); 2414 2415 // Find the range of possible values for binary operators. 2416 unsigned Width = C->getBitWidth(); 2417 APInt Lower = APInt(Width, 0); 2418 APInt Upper = APInt(Width, 0); 2419 if (auto *BO = dyn_cast<BinaryOperator>(LHS)) 2420 setLimitsForBinOp(*BO, Lower, Upper); 2421 2422 ConstantRange LHS_CR = 2423 Lower != Upper ? ConstantRange(Lower, Upper) : ConstantRange(Width, true); 2424 2425 if (auto *I = dyn_cast<Instruction>(LHS)) 2426 if (auto *Ranges = I->getMetadata(LLVMContext::MD_range)) 2427 LHS_CR = LHS_CR.intersectWith(getConstantRangeFromMetadata(*Ranges)); 2428 2429 if (!LHS_CR.isFullSet()) { 2430 if (RHS_CR.contains(LHS_CR)) 2431 return ConstantInt::getTrue(GetCompareTy(RHS)); 2432 if (RHS_CR.inverse().contains(LHS_CR)) 2433 return ConstantInt::getFalse(GetCompareTy(RHS)); 2434 } 2435 2436 return nullptr; 2437 } 2438 2439 /// TODO: A large part of this logic is duplicated in InstCombine's 2440 /// foldICmpBinOp(). We should be able to share that and avoid the code 2441 /// duplication. 2442 static Value *simplifyICmpWithBinOp(CmpInst::Predicate Pred, Value *LHS, 2443 Value *RHS, const SimplifyQuery &Q, 2444 unsigned MaxRecurse) { 2445 Type *ITy = GetCompareTy(LHS); // The return type. 2446 2447 BinaryOperator *LBO = dyn_cast<BinaryOperator>(LHS); 2448 BinaryOperator *RBO = dyn_cast<BinaryOperator>(RHS); 2449 if (MaxRecurse && (LBO || RBO)) { 2450 // Analyze the case when either LHS or RHS is an add instruction. 2451 Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr; 2452 // LHS = A + B (or A and B are null); RHS = C + D (or C and D are null). 2453 bool NoLHSWrapProblem = false, NoRHSWrapProblem = false; 2454 if (LBO && LBO->getOpcode() == Instruction::Add) { 2455 A = LBO->getOperand(0); 2456 B = LBO->getOperand(1); 2457 NoLHSWrapProblem = 2458 ICmpInst::isEquality(Pred) || 2459 (CmpInst::isUnsigned(Pred) && LBO->hasNoUnsignedWrap()) || 2460 (CmpInst::isSigned(Pred) && LBO->hasNoSignedWrap()); 2461 } 2462 if (RBO && RBO->getOpcode() == Instruction::Add) { 2463 C = RBO->getOperand(0); 2464 D = RBO->getOperand(1); 2465 NoRHSWrapProblem = 2466 ICmpInst::isEquality(Pred) || 2467 (CmpInst::isUnsigned(Pred) && RBO->hasNoUnsignedWrap()) || 2468 (CmpInst::isSigned(Pred) && RBO->hasNoSignedWrap()); 2469 } 2470 2471 // icmp (X+Y), X -> icmp Y, 0 for equalities or if there is no overflow. 2472 if ((A == RHS || B == RHS) && NoLHSWrapProblem) 2473 if (Value *V = SimplifyICmpInst(Pred, A == RHS ? B : A, 2474 Constant::getNullValue(RHS->getType()), Q, 2475 MaxRecurse - 1)) 2476 return V; 2477 2478 // icmp X, (X+Y) -> icmp 0, Y for equalities or if there is no overflow. 2479 if ((C == LHS || D == LHS) && NoRHSWrapProblem) 2480 if (Value *V = 2481 SimplifyICmpInst(Pred, Constant::getNullValue(LHS->getType()), 2482 C == LHS ? D : C, Q, MaxRecurse - 1)) 2483 return V; 2484 2485 // icmp (X+Y), (X+Z) -> icmp Y,Z for equalities or if there is no overflow. 2486 if (A && C && (A == C || A == D || B == C || B == D) && NoLHSWrapProblem && 2487 NoRHSWrapProblem) { 2488 // Determine Y and Z in the form icmp (X+Y), (X+Z). 2489 Value *Y, *Z; 2490 if (A == C) { 2491 // C + B == C + D -> B == D 2492 Y = B; 2493 Z = D; 2494 } else if (A == D) { 2495 // D + B == C + D -> B == C 2496 Y = B; 2497 Z = C; 2498 } else if (B == C) { 2499 // A + C == C + D -> A == D 2500 Y = A; 2501 Z = D; 2502 } else { 2503 assert(B == D); 2504 // A + D == C + D -> A == C 2505 Y = A; 2506 Z = C; 2507 } 2508 if (Value *V = SimplifyICmpInst(Pred, Y, Z, Q, MaxRecurse - 1)) 2509 return V; 2510 } 2511 } 2512 2513 { 2514 Value *Y = nullptr; 2515 // icmp pred (or X, Y), X 2516 if (LBO && match(LBO, m_c_Or(m_Value(Y), m_Specific(RHS)))) { 2517 if (Pred == ICmpInst::ICMP_ULT) 2518 return getFalse(ITy); 2519 if (Pred == ICmpInst::ICMP_UGE) 2520 return getTrue(ITy); 2521 2522 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SGE) { 2523 KnownBits RHSKnown = computeKnownBits(RHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2524 KnownBits YKnown = computeKnownBits(Y, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2525 if (RHSKnown.isNonNegative() && YKnown.isNegative()) 2526 return Pred == ICmpInst::ICMP_SLT ? getTrue(ITy) : getFalse(ITy); 2527 if (RHSKnown.isNegative() || YKnown.isNonNegative()) 2528 return Pred == ICmpInst::ICMP_SLT ? getFalse(ITy) : getTrue(ITy); 2529 } 2530 } 2531 // icmp pred X, (or X, Y) 2532 if (RBO && match(RBO, m_c_Or(m_Value(Y), m_Specific(LHS)))) { 2533 if (Pred == ICmpInst::ICMP_ULE) 2534 return getTrue(ITy); 2535 if (Pred == ICmpInst::ICMP_UGT) 2536 return getFalse(ITy); 2537 2538 if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SLE) { 2539 KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2540 KnownBits YKnown = computeKnownBits(Y, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2541 if (LHSKnown.isNonNegative() && YKnown.isNegative()) 2542 return Pred == ICmpInst::ICMP_SGT ? getTrue(ITy) : getFalse(ITy); 2543 if (LHSKnown.isNegative() || YKnown.isNonNegative()) 2544 return Pred == ICmpInst::ICMP_SGT ? getFalse(ITy) : getTrue(ITy); 2545 } 2546 } 2547 } 2548 2549 // icmp pred (and X, Y), X 2550 if (LBO && match(LBO, m_c_And(m_Value(), m_Specific(RHS)))) { 2551 if (Pred == ICmpInst::ICMP_UGT) 2552 return getFalse(ITy); 2553 if (Pred == ICmpInst::ICMP_ULE) 2554 return getTrue(ITy); 2555 } 2556 // icmp pred X, (and X, Y) 2557 if (RBO && match(RBO, m_c_And(m_Value(), m_Specific(LHS)))) { 2558 if (Pred == ICmpInst::ICMP_UGE) 2559 return getTrue(ITy); 2560 if (Pred == ICmpInst::ICMP_ULT) 2561 return getFalse(ITy); 2562 } 2563 2564 // 0 - (zext X) pred C 2565 if (!CmpInst::isUnsigned(Pred) && match(LHS, m_Neg(m_ZExt(m_Value())))) { 2566 if (ConstantInt *RHSC = dyn_cast<ConstantInt>(RHS)) { 2567 if (RHSC->getValue().isStrictlyPositive()) { 2568 if (Pred == ICmpInst::ICMP_SLT) 2569 return ConstantInt::getTrue(RHSC->getContext()); 2570 if (Pred == ICmpInst::ICMP_SGE) 2571 return ConstantInt::getFalse(RHSC->getContext()); 2572 if (Pred == ICmpInst::ICMP_EQ) 2573 return ConstantInt::getFalse(RHSC->getContext()); 2574 if (Pred == ICmpInst::ICMP_NE) 2575 return ConstantInt::getTrue(RHSC->getContext()); 2576 } 2577 if (RHSC->getValue().isNonNegative()) { 2578 if (Pred == ICmpInst::ICMP_SLE) 2579 return ConstantInt::getTrue(RHSC->getContext()); 2580 if (Pred == ICmpInst::ICMP_SGT) 2581 return ConstantInt::getFalse(RHSC->getContext()); 2582 } 2583 } 2584 } 2585 2586 // icmp pred (urem X, Y), Y 2587 if (LBO && match(LBO, m_URem(m_Value(), m_Specific(RHS)))) { 2588 switch (Pred) { 2589 default: 2590 break; 2591 case ICmpInst::ICMP_SGT: 2592 case ICmpInst::ICMP_SGE: { 2593 KnownBits Known = computeKnownBits(RHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2594 if (!Known.isNonNegative()) 2595 break; 2596 LLVM_FALLTHROUGH; 2597 } 2598 case ICmpInst::ICMP_EQ: 2599 case ICmpInst::ICMP_UGT: 2600 case ICmpInst::ICMP_UGE: 2601 return getFalse(ITy); 2602 case ICmpInst::ICMP_SLT: 2603 case ICmpInst::ICMP_SLE: { 2604 KnownBits Known = computeKnownBits(RHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2605 if (!Known.isNonNegative()) 2606 break; 2607 LLVM_FALLTHROUGH; 2608 } 2609 case ICmpInst::ICMP_NE: 2610 case ICmpInst::ICMP_ULT: 2611 case ICmpInst::ICMP_ULE: 2612 return getTrue(ITy); 2613 } 2614 } 2615 2616 // icmp pred X, (urem Y, X) 2617 if (RBO && match(RBO, m_URem(m_Value(), m_Specific(LHS)))) { 2618 switch (Pred) { 2619 default: 2620 break; 2621 case ICmpInst::ICMP_SGT: 2622 case ICmpInst::ICMP_SGE: { 2623 KnownBits Known = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2624 if (!Known.isNonNegative()) 2625 break; 2626 LLVM_FALLTHROUGH; 2627 } 2628 case ICmpInst::ICMP_NE: 2629 case ICmpInst::ICMP_UGT: 2630 case ICmpInst::ICMP_UGE: 2631 return getTrue(ITy); 2632 case ICmpInst::ICMP_SLT: 2633 case ICmpInst::ICMP_SLE: { 2634 KnownBits Known = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2635 if (!Known.isNonNegative()) 2636 break; 2637 LLVM_FALLTHROUGH; 2638 } 2639 case ICmpInst::ICMP_EQ: 2640 case ICmpInst::ICMP_ULT: 2641 case ICmpInst::ICMP_ULE: 2642 return getFalse(ITy); 2643 } 2644 } 2645 2646 // x >> y <=u x 2647 // x udiv y <=u x. 2648 if (LBO && (match(LBO, m_LShr(m_Specific(RHS), m_Value())) || 2649 match(LBO, m_UDiv(m_Specific(RHS), m_Value())))) { 2650 // icmp pred (X op Y), X 2651 if (Pred == ICmpInst::ICMP_UGT) 2652 return getFalse(ITy); 2653 if (Pred == ICmpInst::ICMP_ULE) 2654 return getTrue(ITy); 2655 } 2656 2657 // x >=u x >> y 2658 // x >=u x udiv y. 2659 if (RBO && (match(RBO, m_LShr(m_Specific(LHS), m_Value())) || 2660 match(RBO, m_UDiv(m_Specific(LHS), m_Value())))) { 2661 // icmp pred X, (X op Y) 2662 if (Pred == ICmpInst::ICMP_ULT) 2663 return getFalse(ITy); 2664 if (Pred == ICmpInst::ICMP_UGE) 2665 return getTrue(ITy); 2666 } 2667 2668 // handle: 2669 // CI2 << X == CI 2670 // CI2 << X != CI 2671 // 2672 // where CI2 is a power of 2 and CI isn't 2673 if (auto *CI = dyn_cast<ConstantInt>(RHS)) { 2674 const APInt *CI2Val, *CIVal = &CI->getValue(); 2675 if (LBO && match(LBO, m_Shl(m_APInt(CI2Val), m_Value())) && 2676 CI2Val->isPowerOf2()) { 2677 if (!CIVal->isPowerOf2()) { 2678 // CI2 << X can equal zero in some circumstances, 2679 // this simplification is unsafe if CI is zero. 2680 // 2681 // We know it is safe if: 2682 // - The shift is nsw, we can't shift out the one bit. 2683 // - The shift is nuw, we can't shift out the one bit. 2684 // - CI2 is one 2685 // - CI isn't zero 2686 if (LBO->hasNoSignedWrap() || LBO->hasNoUnsignedWrap() || 2687 CI2Val->isOneValue() || !CI->isZero()) { 2688 if (Pred == ICmpInst::ICMP_EQ) 2689 return ConstantInt::getFalse(RHS->getContext()); 2690 if (Pred == ICmpInst::ICMP_NE) 2691 return ConstantInt::getTrue(RHS->getContext()); 2692 } 2693 } 2694 if (CIVal->isSignMask() && CI2Val->isOneValue()) { 2695 if (Pred == ICmpInst::ICMP_UGT) 2696 return ConstantInt::getFalse(RHS->getContext()); 2697 if (Pred == ICmpInst::ICMP_ULE) 2698 return ConstantInt::getTrue(RHS->getContext()); 2699 } 2700 } 2701 } 2702 2703 if (MaxRecurse && LBO && RBO && LBO->getOpcode() == RBO->getOpcode() && 2704 LBO->getOperand(1) == RBO->getOperand(1)) { 2705 switch (LBO->getOpcode()) { 2706 default: 2707 break; 2708 case Instruction::UDiv: 2709 case Instruction::LShr: 2710 if (ICmpInst::isSigned(Pred) || !LBO->isExact() || !RBO->isExact()) 2711 break; 2712 if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0), 2713 RBO->getOperand(0), Q, MaxRecurse - 1)) 2714 return V; 2715 break; 2716 case Instruction::SDiv: 2717 if (!ICmpInst::isEquality(Pred) || !LBO->isExact() || !RBO->isExact()) 2718 break; 2719 if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0), 2720 RBO->getOperand(0), Q, MaxRecurse - 1)) 2721 return V; 2722 break; 2723 case Instruction::AShr: 2724 if (!LBO->isExact() || !RBO->isExact()) 2725 break; 2726 if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0), 2727 RBO->getOperand(0), Q, MaxRecurse - 1)) 2728 return V; 2729 break; 2730 case Instruction::Shl: { 2731 bool NUW = LBO->hasNoUnsignedWrap() && RBO->hasNoUnsignedWrap(); 2732 bool NSW = LBO->hasNoSignedWrap() && RBO->hasNoSignedWrap(); 2733 if (!NUW && !NSW) 2734 break; 2735 if (!NSW && ICmpInst::isSigned(Pred)) 2736 break; 2737 if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0), 2738 RBO->getOperand(0), Q, MaxRecurse - 1)) 2739 return V; 2740 break; 2741 } 2742 } 2743 } 2744 return nullptr; 2745 } 2746 2747 /// Simplify integer comparisons where at least one operand of the compare 2748 /// matches an integer min/max idiom. 2749 static Value *simplifyICmpWithMinMax(CmpInst::Predicate Pred, Value *LHS, 2750 Value *RHS, const SimplifyQuery &Q, 2751 unsigned MaxRecurse) { 2752 Type *ITy = GetCompareTy(LHS); // The return type. 2753 Value *A, *B; 2754 CmpInst::Predicate P = CmpInst::BAD_ICMP_PREDICATE; 2755 CmpInst::Predicate EqP; // Chosen so that "A == max/min(A,B)" iff "A EqP B". 2756 2757 // Signed variants on "max(a,b)>=a -> true". 2758 if (match(LHS, m_SMax(m_Value(A), m_Value(B))) && (A == RHS || B == RHS)) { 2759 if (A != RHS) 2760 std::swap(A, B); // smax(A, B) pred A. 2761 EqP = CmpInst::ICMP_SGE; // "A == smax(A, B)" iff "A sge B". 2762 // We analyze this as smax(A, B) pred A. 2763 P = Pred; 2764 } else if (match(RHS, m_SMax(m_Value(A), m_Value(B))) && 2765 (A == LHS || B == LHS)) { 2766 if (A != LHS) 2767 std::swap(A, B); // A pred smax(A, B). 2768 EqP = CmpInst::ICMP_SGE; // "A == smax(A, B)" iff "A sge B". 2769 // We analyze this as smax(A, B) swapped-pred A. 2770 P = CmpInst::getSwappedPredicate(Pred); 2771 } else if (match(LHS, m_SMin(m_Value(A), m_Value(B))) && 2772 (A == RHS || B == RHS)) { 2773 if (A != RHS) 2774 std::swap(A, B); // smin(A, B) pred A. 2775 EqP = CmpInst::ICMP_SLE; // "A == smin(A, B)" iff "A sle B". 2776 // We analyze this as smax(-A, -B) swapped-pred -A. 2777 // Note that we do not need to actually form -A or -B thanks to EqP. 2778 P = CmpInst::getSwappedPredicate(Pred); 2779 } else if (match(RHS, m_SMin(m_Value(A), m_Value(B))) && 2780 (A == LHS || B == LHS)) { 2781 if (A != LHS) 2782 std::swap(A, B); // A pred smin(A, B). 2783 EqP = CmpInst::ICMP_SLE; // "A == smin(A, B)" iff "A sle B". 2784 // We analyze this as smax(-A, -B) pred -A. 2785 // Note that we do not need to actually form -A or -B thanks to EqP. 2786 P = Pred; 2787 } 2788 if (P != CmpInst::BAD_ICMP_PREDICATE) { 2789 // Cases correspond to "max(A, B) p A". 2790 switch (P) { 2791 default: 2792 break; 2793 case CmpInst::ICMP_EQ: 2794 case CmpInst::ICMP_SLE: 2795 // Equivalent to "A EqP B". This may be the same as the condition tested 2796 // in the max/min; if so, we can just return that. 2797 if (Value *V = ExtractEquivalentCondition(LHS, EqP, A, B)) 2798 return V; 2799 if (Value *V = ExtractEquivalentCondition(RHS, EqP, A, B)) 2800 return V; 2801 // Otherwise, see if "A EqP B" simplifies. 2802 if (MaxRecurse) 2803 if (Value *V = SimplifyICmpInst(EqP, A, B, Q, MaxRecurse - 1)) 2804 return V; 2805 break; 2806 case CmpInst::ICMP_NE: 2807 case CmpInst::ICMP_SGT: { 2808 CmpInst::Predicate InvEqP = CmpInst::getInversePredicate(EqP); 2809 // Equivalent to "A InvEqP B". This may be the same as the condition 2810 // tested in the max/min; if so, we can just return that. 2811 if (Value *V = ExtractEquivalentCondition(LHS, InvEqP, A, B)) 2812 return V; 2813 if (Value *V = ExtractEquivalentCondition(RHS, InvEqP, A, B)) 2814 return V; 2815 // Otherwise, see if "A InvEqP B" simplifies. 2816 if (MaxRecurse) 2817 if (Value *V = SimplifyICmpInst(InvEqP, A, B, Q, MaxRecurse - 1)) 2818 return V; 2819 break; 2820 } 2821 case CmpInst::ICMP_SGE: 2822 // Always true. 2823 return getTrue(ITy); 2824 case CmpInst::ICMP_SLT: 2825 // Always false. 2826 return getFalse(ITy); 2827 } 2828 } 2829 2830 // Unsigned variants on "max(a,b)>=a -> true". 2831 P = CmpInst::BAD_ICMP_PREDICATE; 2832 if (match(LHS, m_UMax(m_Value(A), m_Value(B))) && (A == RHS || B == RHS)) { 2833 if (A != RHS) 2834 std::swap(A, B); // umax(A, B) pred A. 2835 EqP = CmpInst::ICMP_UGE; // "A == umax(A, B)" iff "A uge B". 2836 // We analyze this as umax(A, B) pred A. 2837 P = Pred; 2838 } else if (match(RHS, m_UMax(m_Value(A), m_Value(B))) && 2839 (A == LHS || B == LHS)) { 2840 if (A != LHS) 2841 std::swap(A, B); // A pred umax(A, B). 2842 EqP = CmpInst::ICMP_UGE; // "A == umax(A, B)" iff "A uge B". 2843 // We analyze this as umax(A, B) swapped-pred A. 2844 P = CmpInst::getSwappedPredicate(Pred); 2845 } else if (match(LHS, m_UMin(m_Value(A), m_Value(B))) && 2846 (A == RHS || B == RHS)) { 2847 if (A != RHS) 2848 std::swap(A, B); // umin(A, B) pred A. 2849 EqP = CmpInst::ICMP_ULE; // "A == umin(A, B)" iff "A ule B". 2850 // We analyze this as umax(-A, -B) swapped-pred -A. 2851 // Note that we do not need to actually form -A or -B thanks to EqP. 2852 P = CmpInst::getSwappedPredicate(Pred); 2853 } else if (match(RHS, m_UMin(m_Value(A), m_Value(B))) && 2854 (A == LHS || B == LHS)) { 2855 if (A != LHS) 2856 std::swap(A, B); // A pred umin(A, B). 2857 EqP = CmpInst::ICMP_ULE; // "A == umin(A, B)" iff "A ule B". 2858 // We analyze this as umax(-A, -B) pred -A. 2859 // Note that we do not need to actually form -A or -B thanks to EqP. 2860 P = Pred; 2861 } 2862 if (P != CmpInst::BAD_ICMP_PREDICATE) { 2863 // Cases correspond to "max(A, B) p A". 2864 switch (P) { 2865 default: 2866 break; 2867 case CmpInst::ICMP_EQ: 2868 case CmpInst::ICMP_ULE: 2869 // Equivalent to "A EqP B". This may be the same as the condition tested 2870 // in the max/min; if so, we can just return that. 2871 if (Value *V = ExtractEquivalentCondition(LHS, EqP, A, B)) 2872 return V; 2873 if (Value *V = ExtractEquivalentCondition(RHS, EqP, A, B)) 2874 return V; 2875 // Otherwise, see if "A EqP B" simplifies. 2876 if (MaxRecurse) 2877 if (Value *V = SimplifyICmpInst(EqP, A, B, Q, MaxRecurse - 1)) 2878 return V; 2879 break; 2880 case CmpInst::ICMP_NE: 2881 case CmpInst::ICMP_UGT: { 2882 CmpInst::Predicate InvEqP = CmpInst::getInversePredicate(EqP); 2883 // Equivalent to "A InvEqP B". This may be the same as the condition 2884 // tested in the max/min; if so, we can just return that. 2885 if (Value *V = ExtractEquivalentCondition(LHS, InvEqP, A, B)) 2886 return V; 2887 if (Value *V = ExtractEquivalentCondition(RHS, InvEqP, A, B)) 2888 return V; 2889 // Otherwise, see if "A InvEqP B" simplifies. 2890 if (MaxRecurse) 2891 if (Value *V = SimplifyICmpInst(InvEqP, A, B, Q, MaxRecurse - 1)) 2892 return V; 2893 break; 2894 } 2895 case CmpInst::ICMP_UGE: 2896 // Always true. 2897 return getTrue(ITy); 2898 case CmpInst::ICMP_ULT: 2899 // Always false. 2900 return getFalse(ITy); 2901 } 2902 } 2903 2904 // Variants on "max(x,y) >= min(x,z)". 2905 Value *C, *D; 2906 if (match(LHS, m_SMax(m_Value(A), m_Value(B))) && 2907 match(RHS, m_SMin(m_Value(C), m_Value(D))) && 2908 (A == C || A == D || B == C || B == D)) { 2909 // max(x, ?) pred min(x, ?). 2910 if (Pred == CmpInst::ICMP_SGE) 2911 // Always true. 2912 return getTrue(ITy); 2913 if (Pred == CmpInst::ICMP_SLT) 2914 // Always false. 2915 return getFalse(ITy); 2916 } else if (match(LHS, m_SMin(m_Value(A), m_Value(B))) && 2917 match(RHS, m_SMax(m_Value(C), m_Value(D))) && 2918 (A == C || A == D || B == C || B == D)) { 2919 // min(x, ?) pred max(x, ?). 2920 if (Pred == CmpInst::ICMP_SLE) 2921 // Always true. 2922 return getTrue(ITy); 2923 if (Pred == CmpInst::ICMP_SGT) 2924 // Always false. 2925 return getFalse(ITy); 2926 } else if (match(LHS, m_UMax(m_Value(A), m_Value(B))) && 2927 match(RHS, m_UMin(m_Value(C), m_Value(D))) && 2928 (A == C || A == D || B == C || B == D)) { 2929 // max(x, ?) pred min(x, ?). 2930 if (Pred == CmpInst::ICMP_UGE) 2931 // Always true. 2932 return getTrue(ITy); 2933 if (Pred == CmpInst::ICMP_ULT) 2934 // Always false. 2935 return getFalse(ITy); 2936 } else if (match(LHS, m_UMin(m_Value(A), m_Value(B))) && 2937 match(RHS, m_UMax(m_Value(C), m_Value(D))) && 2938 (A == C || A == D || B == C || B == D)) { 2939 // min(x, ?) pred max(x, ?). 2940 if (Pred == CmpInst::ICMP_ULE) 2941 // Always true. 2942 return getTrue(ITy); 2943 if (Pred == CmpInst::ICMP_UGT) 2944 // Always false. 2945 return getFalse(ITy); 2946 } 2947 2948 return nullptr; 2949 } 2950 2951 /// Given operands for an ICmpInst, see if we can fold the result. 2952 /// If not, this returns null. 2953 static Value *SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS, 2954 const SimplifyQuery &Q, unsigned MaxRecurse) { 2955 CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate; 2956 assert(CmpInst::isIntPredicate(Pred) && "Not an integer compare!"); 2957 2958 if (Constant *CLHS = dyn_cast<Constant>(LHS)) { 2959 if (Constant *CRHS = dyn_cast<Constant>(RHS)) 2960 return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, Q.DL, Q.TLI); 2961 2962 // If we have a constant, make sure it is on the RHS. 2963 std::swap(LHS, RHS); 2964 Pred = CmpInst::getSwappedPredicate(Pred); 2965 } 2966 2967 Type *ITy = GetCompareTy(LHS); // The return type. 2968 2969 // icmp X, X -> true/false 2970 // X icmp undef -> true/false. For example, icmp ugt %X, undef -> false 2971 // because X could be 0. 2972 if (LHS == RHS || isa<UndefValue>(RHS)) 2973 return ConstantInt::get(ITy, CmpInst::isTrueWhenEqual(Pred)); 2974 2975 if (Value *V = simplifyICmpOfBools(Pred, LHS, RHS, Q)) 2976 return V; 2977 2978 if (Value *V = simplifyICmpWithZero(Pred, LHS, RHS, Q)) 2979 return V; 2980 2981 if (Value *V = simplifyICmpWithConstant(Pred, LHS, RHS)) 2982 return V; 2983 2984 // If both operands have range metadata, use the metadata 2985 // to simplify the comparison. 2986 if (isa<Instruction>(RHS) && isa<Instruction>(LHS)) { 2987 auto RHS_Instr = cast<Instruction>(RHS); 2988 auto LHS_Instr = cast<Instruction>(LHS); 2989 2990 if (RHS_Instr->getMetadata(LLVMContext::MD_range) && 2991 LHS_Instr->getMetadata(LLVMContext::MD_range)) { 2992 auto RHS_CR = getConstantRangeFromMetadata( 2993 *RHS_Instr->getMetadata(LLVMContext::MD_range)); 2994 auto LHS_CR = getConstantRangeFromMetadata( 2995 *LHS_Instr->getMetadata(LLVMContext::MD_range)); 2996 2997 auto Satisfied_CR = ConstantRange::makeSatisfyingICmpRegion(Pred, RHS_CR); 2998 if (Satisfied_CR.contains(LHS_CR)) 2999 return ConstantInt::getTrue(RHS->getContext()); 3000 3001 auto InversedSatisfied_CR = ConstantRange::makeSatisfyingICmpRegion( 3002 CmpInst::getInversePredicate(Pred), RHS_CR); 3003 if (InversedSatisfied_CR.contains(LHS_CR)) 3004 return ConstantInt::getFalse(RHS->getContext()); 3005 } 3006 } 3007 3008 // Compare of cast, for example (zext X) != 0 -> X != 0 3009 if (isa<CastInst>(LHS) && (isa<Constant>(RHS) || isa<CastInst>(RHS))) { 3010 Instruction *LI = cast<CastInst>(LHS); 3011 Value *SrcOp = LI->getOperand(0); 3012 Type *SrcTy = SrcOp->getType(); 3013 Type *DstTy = LI->getType(); 3014 3015 // Turn icmp (ptrtoint x), (ptrtoint/constant) into a compare of the input 3016 // if the integer type is the same size as the pointer type. 3017 if (MaxRecurse && isa<PtrToIntInst>(LI) && 3018 Q.DL.getTypeSizeInBits(SrcTy) == DstTy->getPrimitiveSizeInBits()) { 3019 if (Constant *RHSC = dyn_cast<Constant>(RHS)) { 3020 // Transfer the cast to the constant. 3021 if (Value *V = SimplifyICmpInst(Pred, SrcOp, 3022 ConstantExpr::getIntToPtr(RHSC, SrcTy), 3023 Q, MaxRecurse-1)) 3024 return V; 3025 } else if (PtrToIntInst *RI = dyn_cast<PtrToIntInst>(RHS)) { 3026 if (RI->getOperand(0)->getType() == SrcTy) 3027 // Compare without the cast. 3028 if (Value *V = SimplifyICmpInst(Pred, SrcOp, RI->getOperand(0), 3029 Q, MaxRecurse-1)) 3030 return V; 3031 } 3032 } 3033 3034 if (isa<ZExtInst>(LHS)) { 3035 // Turn icmp (zext X), (zext Y) into a compare of X and Y if they have the 3036 // same type. 3037 if (ZExtInst *RI = dyn_cast<ZExtInst>(RHS)) { 3038 if (MaxRecurse && SrcTy == RI->getOperand(0)->getType()) 3039 // Compare X and Y. Note that signed predicates become unsigned. 3040 if (Value *V = SimplifyICmpInst(ICmpInst::getUnsignedPredicate(Pred), 3041 SrcOp, RI->getOperand(0), Q, 3042 MaxRecurse-1)) 3043 return V; 3044 } 3045 // Turn icmp (zext X), Cst into a compare of X and Cst if Cst is extended 3046 // too. If not, then try to deduce the result of the comparison. 3047 else if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) { 3048 // Compute the constant that would happen if we truncated to SrcTy then 3049 // reextended to DstTy. 3050 Constant *Trunc = ConstantExpr::getTrunc(CI, SrcTy); 3051 Constant *RExt = ConstantExpr::getCast(CastInst::ZExt, Trunc, DstTy); 3052 3053 // If the re-extended constant didn't change then this is effectively 3054 // also a case of comparing two zero-extended values. 3055 if (RExt == CI && MaxRecurse) 3056 if (Value *V = SimplifyICmpInst(ICmpInst::getUnsignedPredicate(Pred), 3057 SrcOp, Trunc, Q, MaxRecurse-1)) 3058 return V; 3059 3060 // Otherwise the upper bits of LHS are zero while RHS has a non-zero bit 3061 // there. Use this to work out the result of the comparison. 3062 if (RExt != CI) { 3063 switch (Pred) { 3064 default: llvm_unreachable("Unknown ICmp predicate!"); 3065 // LHS <u RHS. 3066 case ICmpInst::ICMP_EQ: 3067 case ICmpInst::ICMP_UGT: 3068 case ICmpInst::ICMP_UGE: 3069 return ConstantInt::getFalse(CI->getContext()); 3070 3071 case ICmpInst::ICMP_NE: 3072 case ICmpInst::ICMP_ULT: 3073 case ICmpInst::ICMP_ULE: 3074 return ConstantInt::getTrue(CI->getContext()); 3075 3076 // LHS is non-negative. If RHS is negative then LHS >s LHS. If RHS 3077 // is non-negative then LHS <s RHS. 3078 case ICmpInst::ICMP_SGT: 3079 case ICmpInst::ICMP_SGE: 3080 return CI->getValue().isNegative() ? 3081 ConstantInt::getTrue(CI->getContext()) : 3082 ConstantInt::getFalse(CI->getContext()); 3083 3084 case ICmpInst::ICMP_SLT: 3085 case ICmpInst::ICMP_SLE: 3086 return CI->getValue().isNegative() ? 3087 ConstantInt::getFalse(CI->getContext()) : 3088 ConstantInt::getTrue(CI->getContext()); 3089 } 3090 } 3091 } 3092 } 3093 3094 if (isa<SExtInst>(LHS)) { 3095 // Turn icmp (sext X), (sext Y) into a compare of X and Y if they have the 3096 // same type. 3097 if (SExtInst *RI = dyn_cast<SExtInst>(RHS)) { 3098 if (MaxRecurse && SrcTy == RI->getOperand(0)->getType()) 3099 // Compare X and Y. Note that the predicate does not change. 3100 if (Value *V = SimplifyICmpInst(Pred, SrcOp, RI->getOperand(0), 3101 Q, MaxRecurse-1)) 3102 return V; 3103 } 3104 // Turn icmp (sext X), Cst into a compare of X and Cst if Cst is extended 3105 // too. If not, then try to deduce the result of the comparison. 3106 else if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) { 3107 // Compute the constant that would happen if we truncated to SrcTy then 3108 // reextended to DstTy. 3109 Constant *Trunc = ConstantExpr::getTrunc(CI, SrcTy); 3110 Constant *RExt = ConstantExpr::getCast(CastInst::SExt, Trunc, DstTy); 3111 3112 // If the re-extended constant didn't change then this is effectively 3113 // also a case of comparing two sign-extended values. 3114 if (RExt == CI && MaxRecurse) 3115 if (Value *V = SimplifyICmpInst(Pred, SrcOp, Trunc, Q, MaxRecurse-1)) 3116 return V; 3117 3118 // Otherwise the upper bits of LHS are all equal, while RHS has varying 3119 // bits there. Use this to work out the result of the comparison. 3120 if (RExt != CI) { 3121 switch (Pred) { 3122 default: llvm_unreachable("Unknown ICmp predicate!"); 3123 case ICmpInst::ICMP_EQ: 3124 return ConstantInt::getFalse(CI->getContext()); 3125 case ICmpInst::ICMP_NE: 3126 return ConstantInt::getTrue(CI->getContext()); 3127 3128 // If RHS is non-negative then LHS <s RHS. If RHS is negative then 3129 // LHS >s RHS. 3130 case ICmpInst::ICMP_SGT: 3131 case ICmpInst::ICMP_SGE: 3132 return CI->getValue().isNegative() ? 3133 ConstantInt::getTrue(CI->getContext()) : 3134 ConstantInt::getFalse(CI->getContext()); 3135 case ICmpInst::ICMP_SLT: 3136 case ICmpInst::ICMP_SLE: 3137 return CI->getValue().isNegative() ? 3138 ConstantInt::getFalse(CI->getContext()) : 3139 ConstantInt::getTrue(CI->getContext()); 3140 3141 // If LHS is non-negative then LHS <u RHS. If LHS is negative then 3142 // LHS >u RHS. 3143 case ICmpInst::ICMP_UGT: 3144 case ICmpInst::ICMP_UGE: 3145 // Comparison is true iff the LHS <s 0. 3146 if (MaxRecurse) 3147 if (Value *V = SimplifyICmpInst(ICmpInst::ICMP_SLT, SrcOp, 3148 Constant::getNullValue(SrcTy), 3149 Q, MaxRecurse-1)) 3150 return V; 3151 break; 3152 case ICmpInst::ICMP_ULT: 3153 case ICmpInst::ICMP_ULE: 3154 // Comparison is true iff the LHS >=s 0. 3155 if (MaxRecurse) 3156 if (Value *V = SimplifyICmpInst(ICmpInst::ICMP_SGE, SrcOp, 3157 Constant::getNullValue(SrcTy), 3158 Q, MaxRecurse-1)) 3159 return V; 3160 break; 3161 } 3162 } 3163 } 3164 } 3165 } 3166 3167 // icmp eq|ne X, Y -> false|true if X != Y 3168 if (ICmpInst::isEquality(Pred) && 3169 isKnownNonEqual(LHS, RHS, Q.DL, Q.AC, Q.CxtI, Q.DT)) { 3170 return Pred == ICmpInst::ICMP_NE ? getTrue(ITy) : getFalse(ITy); 3171 } 3172 3173 if (Value *V = simplifyICmpWithBinOp(Pred, LHS, RHS, Q, MaxRecurse)) 3174 return V; 3175 3176 if (Value *V = simplifyICmpWithMinMax(Pred, LHS, RHS, Q, MaxRecurse)) 3177 return V; 3178 3179 // Simplify comparisons of related pointers using a powerful, recursive 3180 // GEP-walk when we have target data available.. 3181 if (LHS->getType()->isPointerTy()) 3182 if (auto *C = computePointerICmp(Q.DL, Q.TLI, Q.DT, Pred, Q.AC, Q.CxtI, LHS, 3183 RHS)) 3184 return C; 3185 if (auto *CLHS = dyn_cast<PtrToIntOperator>(LHS)) 3186 if (auto *CRHS = dyn_cast<PtrToIntOperator>(RHS)) 3187 if (Q.DL.getTypeSizeInBits(CLHS->getPointerOperandType()) == 3188 Q.DL.getTypeSizeInBits(CLHS->getType()) && 3189 Q.DL.getTypeSizeInBits(CRHS->getPointerOperandType()) == 3190 Q.DL.getTypeSizeInBits(CRHS->getType())) 3191 if (auto *C = computePointerICmp(Q.DL, Q.TLI, Q.DT, Pred, Q.AC, Q.CxtI, 3192 CLHS->getPointerOperand(), 3193 CRHS->getPointerOperand())) 3194 return C; 3195 3196 if (GetElementPtrInst *GLHS = dyn_cast<GetElementPtrInst>(LHS)) { 3197 if (GEPOperator *GRHS = dyn_cast<GEPOperator>(RHS)) { 3198 if (GLHS->getPointerOperand() == GRHS->getPointerOperand() && 3199 GLHS->hasAllConstantIndices() && GRHS->hasAllConstantIndices() && 3200 (ICmpInst::isEquality(Pred) || 3201 (GLHS->isInBounds() && GRHS->isInBounds() && 3202 Pred == ICmpInst::getSignedPredicate(Pred)))) { 3203 // The bases are equal and the indices are constant. Build a constant 3204 // expression GEP with the same indices and a null base pointer to see 3205 // what constant folding can make out of it. 3206 Constant *Null = Constant::getNullValue(GLHS->getPointerOperandType()); 3207 SmallVector<Value *, 4> IndicesLHS(GLHS->idx_begin(), GLHS->idx_end()); 3208 Constant *NewLHS = ConstantExpr::getGetElementPtr( 3209 GLHS->getSourceElementType(), Null, IndicesLHS); 3210 3211 SmallVector<Value *, 4> IndicesRHS(GRHS->idx_begin(), GRHS->idx_end()); 3212 Constant *NewRHS = ConstantExpr::getGetElementPtr( 3213 GLHS->getSourceElementType(), Null, IndicesRHS); 3214 return ConstantExpr::getICmp(Pred, NewLHS, NewRHS); 3215 } 3216 } 3217 } 3218 3219 // If the comparison is with the result of a select instruction, check whether 3220 // comparing with either branch of the select always yields the same value. 3221 if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS)) 3222 if (Value *V = ThreadCmpOverSelect(Pred, LHS, RHS, Q, MaxRecurse)) 3223 return V; 3224 3225 // If the comparison is with the result of a phi instruction, check whether 3226 // doing the compare with each incoming phi value yields a common result. 3227 if (isa<PHINode>(LHS) || isa<PHINode>(RHS)) 3228 if (Value *V = ThreadCmpOverPHI(Pred, LHS, RHS, Q, MaxRecurse)) 3229 return V; 3230 3231 return nullptr; 3232 } 3233 3234 Value *llvm::SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS, 3235 const SimplifyQuery &Q) { 3236 return ::SimplifyICmpInst(Predicate, LHS, RHS, Q, RecursionLimit); 3237 } 3238 3239 /// Given operands for an FCmpInst, see if we can fold the result. 3240 /// If not, this returns null. 3241 static Value *SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS, 3242 FastMathFlags FMF, const SimplifyQuery &Q, 3243 unsigned MaxRecurse) { 3244 CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate; 3245 assert(CmpInst::isFPPredicate(Pred) && "Not an FP compare!"); 3246 3247 if (Constant *CLHS = dyn_cast<Constant>(LHS)) { 3248 if (Constant *CRHS = dyn_cast<Constant>(RHS)) 3249 return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, Q.DL, Q.TLI); 3250 3251 // If we have a constant, make sure it is on the RHS. 3252 std::swap(LHS, RHS); 3253 Pred = CmpInst::getSwappedPredicate(Pred); 3254 } 3255 3256 // Fold trivial predicates. 3257 Type *RetTy = GetCompareTy(LHS); 3258 if (Pred == FCmpInst::FCMP_FALSE) 3259 return getFalse(RetTy); 3260 if (Pred == FCmpInst::FCMP_TRUE) 3261 return getTrue(RetTy); 3262 3263 // UNO/ORD predicates can be trivially folded if NaNs are ignored. 3264 if (FMF.noNaNs()) { 3265 if (Pred == FCmpInst::FCMP_UNO) 3266 return getFalse(RetTy); 3267 if (Pred == FCmpInst::FCMP_ORD) 3268 return getTrue(RetTy); 3269 } 3270 3271 // fcmp pred x, undef and fcmp pred undef, x 3272 // fold to true if unordered, false if ordered 3273 if (isa<UndefValue>(LHS) || isa<UndefValue>(RHS)) { 3274 // Choosing NaN for the undef will always make unordered comparison succeed 3275 // and ordered comparison fail. 3276 return ConstantInt::get(RetTy, CmpInst::isUnordered(Pred)); 3277 } 3278 3279 // fcmp x,x -> true/false. Not all compares are foldable. 3280 if (LHS == RHS) { 3281 if (CmpInst::isTrueWhenEqual(Pred)) 3282 return getTrue(RetTy); 3283 if (CmpInst::isFalseWhenEqual(Pred)) 3284 return getFalse(RetTy); 3285 } 3286 3287 // Handle fcmp with constant RHS 3288 const ConstantFP *CFP = nullptr; 3289 if (const auto *RHSC = dyn_cast<Constant>(RHS)) { 3290 if (RHS->getType()->isVectorTy()) 3291 CFP = dyn_cast_or_null<ConstantFP>(RHSC->getSplatValue()); 3292 else 3293 CFP = dyn_cast<ConstantFP>(RHSC); 3294 } 3295 if (CFP) { 3296 // If the constant is a nan, see if we can fold the comparison based on it. 3297 if (CFP->getValueAPF().isNaN()) { 3298 if (FCmpInst::isOrdered(Pred)) // True "if ordered and foo" 3299 return getFalse(RetTy); 3300 assert(FCmpInst::isUnordered(Pred) && 3301 "Comparison must be either ordered or unordered!"); 3302 // True if unordered. 3303 return getTrue(RetTy); 3304 } 3305 // Check whether the constant is an infinity. 3306 if (CFP->getValueAPF().isInfinity()) { 3307 if (CFP->getValueAPF().isNegative()) { 3308 switch (Pred) { 3309 case FCmpInst::FCMP_OLT: 3310 // No value is ordered and less than negative infinity. 3311 return getFalse(RetTy); 3312 case FCmpInst::FCMP_UGE: 3313 // All values are unordered with or at least negative infinity. 3314 return getTrue(RetTy); 3315 default: 3316 break; 3317 } 3318 } else { 3319 switch (Pred) { 3320 case FCmpInst::FCMP_OGT: 3321 // No value is ordered and greater than infinity. 3322 return getFalse(RetTy); 3323 case FCmpInst::FCMP_ULE: 3324 // All values are unordered with and at most infinity. 3325 return getTrue(RetTy); 3326 default: 3327 break; 3328 } 3329 } 3330 } 3331 if (CFP->getValueAPF().isZero()) { 3332 switch (Pred) { 3333 case FCmpInst::FCMP_UGE: 3334 if (CannotBeOrderedLessThanZero(LHS, Q.TLI)) 3335 return getTrue(RetTy); 3336 break; 3337 case FCmpInst::FCMP_OLT: 3338 // X < 0 3339 if (CannotBeOrderedLessThanZero(LHS, Q.TLI)) 3340 return getFalse(RetTy); 3341 break; 3342 default: 3343 break; 3344 } 3345 } 3346 } 3347 3348 // If the comparison is with the result of a select instruction, check whether 3349 // comparing with either branch of the select always yields the same value. 3350 if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS)) 3351 if (Value *V = ThreadCmpOverSelect(Pred, LHS, RHS, Q, MaxRecurse)) 3352 return V; 3353 3354 // If the comparison is with the result of a phi instruction, check whether 3355 // doing the compare with each incoming phi value yields a common result. 3356 if (isa<PHINode>(LHS) || isa<PHINode>(RHS)) 3357 if (Value *V = ThreadCmpOverPHI(Pred, LHS, RHS, Q, MaxRecurse)) 3358 return V; 3359 3360 return nullptr; 3361 } 3362 3363 Value *llvm::SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS, 3364 FastMathFlags FMF, const SimplifyQuery &Q) { 3365 return ::SimplifyFCmpInst(Predicate, LHS, RHS, FMF, Q, RecursionLimit); 3366 } 3367 3368 /// See if V simplifies when its operand Op is replaced with RepOp. 3369 static const Value *SimplifyWithOpReplaced(Value *V, Value *Op, Value *RepOp, 3370 const SimplifyQuery &Q, 3371 unsigned MaxRecurse) { 3372 // Trivial replacement. 3373 if (V == Op) 3374 return RepOp; 3375 3376 // We cannot replace a constant, and shouldn't even try. 3377 if (isa<Constant>(Op)) 3378 return nullptr; 3379 3380 auto *I = dyn_cast<Instruction>(V); 3381 if (!I) 3382 return nullptr; 3383 3384 // If this is a binary operator, try to simplify it with the replaced op. 3385 if (auto *B = dyn_cast<BinaryOperator>(I)) { 3386 // Consider: 3387 // %cmp = icmp eq i32 %x, 2147483647 3388 // %add = add nsw i32 %x, 1 3389 // %sel = select i1 %cmp, i32 -2147483648, i32 %add 3390 // 3391 // We can't replace %sel with %add unless we strip away the flags. 3392 if (isa<OverflowingBinaryOperator>(B)) 3393 if (B->hasNoSignedWrap() || B->hasNoUnsignedWrap()) 3394 return nullptr; 3395 if (isa<PossiblyExactOperator>(B)) 3396 if (B->isExact()) 3397 return nullptr; 3398 3399 if (MaxRecurse) { 3400 if (B->getOperand(0) == Op) 3401 return SimplifyBinOp(B->getOpcode(), RepOp, B->getOperand(1), Q, 3402 MaxRecurse - 1); 3403 if (B->getOperand(1) == Op) 3404 return SimplifyBinOp(B->getOpcode(), B->getOperand(0), RepOp, Q, 3405 MaxRecurse - 1); 3406 } 3407 } 3408 3409 // Same for CmpInsts. 3410 if (CmpInst *C = dyn_cast<CmpInst>(I)) { 3411 if (MaxRecurse) { 3412 if (C->getOperand(0) == Op) 3413 return SimplifyCmpInst(C->getPredicate(), RepOp, C->getOperand(1), Q, 3414 MaxRecurse - 1); 3415 if (C->getOperand(1) == Op) 3416 return SimplifyCmpInst(C->getPredicate(), C->getOperand(0), RepOp, Q, 3417 MaxRecurse - 1); 3418 } 3419 } 3420 3421 // TODO: We could hand off more cases to instsimplify here. 3422 3423 // If all operands are constant after substituting Op for RepOp then we can 3424 // constant fold the instruction. 3425 if (Constant *CRepOp = dyn_cast<Constant>(RepOp)) { 3426 // Build a list of all constant operands. 3427 SmallVector<Constant *, 8> ConstOps; 3428 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 3429 if (I->getOperand(i) == Op) 3430 ConstOps.push_back(CRepOp); 3431 else if (Constant *COp = dyn_cast<Constant>(I->getOperand(i))) 3432 ConstOps.push_back(COp); 3433 else 3434 break; 3435 } 3436 3437 // All operands were constants, fold it. 3438 if (ConstOps.size() == I->getNumOperands()) { 3439 if (CmpInst *C = dyn_cast<CmpInst>(I)) 3440 return ConstantFoldCompareInstOperands(C->getPredicate(), ConstOps[0], 3441 ConstOps[1], Q.DL, Q.TLI); 3442 3443 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 3444 if (!LI->isVolatile()) 3445 return ConstantFoldLoadFromConstPtr(ConstOps[0], LI->getType(), Q.DL); 3446 3447 return ConstantFoldInstOperands(I, ConstOps, Q.DL, Q.TLI); 3448 } 3449 } 3450 3451 return nullptr; 3452 } 3453 3454 /// Try to simplify a select instruction when its condition operand is an 3455 /// integer comparison where one operand of the compare is a constant. 3456 static Value *simplifySelectBitTest(Value *TrueVal, Value *FalseVal, Value *X, 3457 const APInt *Y, bool TrueWhenUnset) { 3458 const APInt *C; 3459 3460 // (X & Y) == 0 ? X & ~Y : X --> X 3461 // (X & Y) != 0 ? X & ~Y : X --> X & ~Y 3462 if (FalseVal == X && match(TrueVal, m_And(m_Specific(X), m_APInt(C))) && 3463 *Y == ~*C) 3464 return TrueWhenUnset ? FalseVal : TrueVal; 3465 3466 // (X & Y) == 0 ? X : X & ~Y --> X & ~Y 3467 // (X & Y) != 0 ? X : X & ~Y --> X 3468 if (TrueVal == X && match(FalseVal, m_And(m_Specific(X), m_APInt(C))) && 3469 *Y == ~*C) 3470 return TrueWhenUnset ? FalseVal : TrueVal; 3471 3472 if (Y->isPowerOf2()) { 3473 // (X & Y) == 0 ? X | Y : X --> X | Y 3474 // (X & Y) != 0 ? X | Y : X --> X 3475 if (FalseVal == X && match(TrueVal, m_Or(m_Specific(X), m_APInt(C))) && 3476 *Y == *C) 3477 return TrueWhenUnset ? TrueVal : FalseVal; 3478 3479 // (X & Y) == 0 ? X : X | Y --> X 3480 // (X & Y) != 0 ? X : X | Y --> X | Y 3481 if (TrueVal == X && match(FalseVal, m_Or(m_Specific(X), m_APInt(C))) && 3482 *Y == *C) 3483 return TrueWhenUnset ? TrueVal : FalseVal; 3484 } 3485 3486 return nullptr; 3487 } 3488 3489 /// An alternative way to test if a bit is set or not uses sgt/slt instead of 3490 /// eq/ne. 3491 static Value *simplifySelectWithFakeICmpEq(Value *CmpLHS, Value *CmpRHS, 3492 ICmpInst::Predicate Pred, 3493 Value *TrueVal, Value *FalseVal) { 3494 Value *X; 3495 APInt Mask; 3496 if (!decomposeBitTestICmp(CmpLHS, CmpRHS, Pred, X, Mask)) 3497 return nullptr; 3498 3499 return simplifySelectBitTest(TrueVal, FalseVal, X, &Mask, 3500 Pred == ICmpInst::ICMP_EQ); 3501 } 3502 3503 /// Try to simplify a select instruction when its condition operand is an 3504 /// integer comparison. 3505 static Value *simplifySelectWithICmpCond(Value *CondVal, Value *TrueVal, 3506 Value *FalseVal, const SimplifyQuery &Q, 3507 unsigned MaxRecurse) { 3508 ICmpInst::Predicate Pred; 3509 Value *CmpLHS, *CmpRHS; 3510 if (!match(CondVal, m_ICmp(Pred, m_Value(CmpLHS), m_Value(CmpRHS)))) 3511 return nullptr; 3512 3513 if (ICmpInst::isEquality(Pred) && match(CmpRHS, m_Zero())) { 3514 Value *X; 3515 const APInt *Y; 3516 if (match(CmpLHS, m_And(m_Value(X), m_APInt(Y)))) 3517 if (Value *V = simplifySelectBitTest(TrueVal, FalseVal, X, Y, 3518 Pred == ICmpInst::ICMP_EQ)) 3519 return V; 3520 } 3521 3522 // Check for other compares that behave like bit test. 3523 if (Value *V = simplifySelectWithFakeICmpEq(CmpLHS, CmpRHS, Pred, 3524 TrueVal, FalseVal)) 3525 return V; 3526 3527 if (CondVal->hasOneUse()) { 3528 const APInt *C; 3529 if (match(CmpRHS, m_APInt(C))) { 3530 // X < MIN ? T : F --> F 3531 if (Pred == ICmpInst::ICMP_SLT && C->isMinSignedValue()) 3532 return FalseVal; 3533 // X < MIN ? T : F --> F 3534 if (Pred == ICmpInst::ICMP_ULT && C->isMinValue()) 3535 return FalseVal; 3536 // X > MAX ? T : F --> F 3537 if (Pred == ICmpInst::ICMP_SGT && C->isMaxSignedValue()) 3538 return FalseVal; 3539 // X > MAX ? T : F --> F 3540 if (Pred == ICmpInst::ICMP_UGT && C->isMaxValue()) 3541 return FalseVal; 3542 } 3543 } 3544 3545 // If we have an equality comparison, then we know the value in one of the 3546 // arms of the select. See if substituting this value into the arm and 3547 // simplifying the result yields the same value as the other arm. 3548 if (Pred == ICmpInst::ICMP_EQ) { 3549 if (SimplifyWithOpReplaced(FalseVal, CmpLHS, CmpRHS, Q, MaxRecurse) == 3550 TrueVal || 3551 SimplifyWithOpReplaced(FalseVal, CmpRHS, CmpLHS, Q, MaxRecurse) == 3552 TrueVal) 3553 return FalseVal; 3554 if (SimplifyWithOpReplaced(TrueVal, CmpLHS, CmpRHS, Q, MaxRecurse) == 3555 FalseVal || 3556 SimplifyWithOpReplaced(TrueVal, CmpRHS, CmpLHS, Q, MaxRecurse) == 3557 FalseVal) 3558 return FalseVal; 3559 } else if (Pred == ICmpInst::ICMP_NE) { 3560 if (SimplifyWithOpReplaced(TrueVal, CmpLHS, CmpRHS, Q, MaxRecurse) == 3561 FalseVal || 3562 SimplifyWithOpReplaced(TrueVal, CmpRHS, CmpLHS, Q, MaxRecurse) == 3563 FalseVal) 3564 return TrueVal; 3565 if (SimplifyWithOpReplaced(FalseVal, CmpLHS, CmpRHS, Q, MaxRecurse) == 3566 TrueVal || 3567 SimplifyWithOpReplaced(FalseVal, CmpRHS, CmpLHS, Q, MaxRecurse) == 3568 TrueVal) 3569 return TrueVal; 3570 } 3571 3572 return nullptr; 3573 } 3574 3575 /// Given operands for a SelectInst, see if we can fold the result. 3576 /// If not, this returns null. 3577 static Value *SimplifySelectInst(Value *CondVal, Value *TrueVal, 3578 Value *FalseVal, const SimplifyQuery &Q, 3579 unsigned MaxRecurse) { 3580 // select true, X, Y -> X 3581 // select false, X, Y -> Y 3582 if (Constant *CB = dyn_cast<Constant>(CondVal)) { 3583 if (Constant *CT = dyn_cast<Constant>(TrueVal)) 3584 if (Constant *CF = dyn_cast<Constant>(FalseVal)) 3585 return ConstantFoldSelectInstruction(CB, CT, CF); 3586 if (CB->isAllOnesValue()) 3587 return TrueVal; 3588 if (CB->isNullValue()) 3589 return FalseVal; 3590 } 3591 3592 // select C, X, X -> X 3593 if (TrueVal == FalseVal) 3594 return TrueVal; 3595 3596 if (isa<UndefValue>(CondVal)) { // select undef, X, Y -> X or Y 3597 if (isa<Constant>(FalseVal)) 3598 return FalseVal; 3599 return TrueVal; 3600 } 3601 if (isa<UndefValue>(TrueVal)) // select C, undef, X -> X 3602 return FalseVal; 3603 if (isa<UndefValue>(FalseVal)) // select C, X, undef -> X 3604 return TrueVal; 3605 3606 if (Value *V = 3607 simplifySelectWithICmpCond(CondVal, TrueVal, FalseVal, Q, MaxRecurse)) 3608 return V; 3609 3610 return nullptr; 3611 } 3612 3613 Value *llvm::SimplifySelectInst(Value *Cond, Value *TrueVal, Value *FalseVal, 3614 const SimplifyQuery &Q) { 3615 return ::SimplifySelectInst(Cond, TrueVal, FalseVal, Q, RecursionLimit); 3616 } 3617 3618 /// Given operands for an GetElementPtrInst, see if we can fold the result. 3619 /// If not, this returns null. 3620 static Value *SimplifyGEPInst(Type *SrcTy, ArrayRef<Value *> Ops, 3621 const SimplifyQuery &Q, unsigned) { 3622 // The type of the GEP pointer operand. 3623 unsigned AS = 3624 cast<PointerType>(Ops[0]->getType()->getScalarType())->getAddressSpace(); 3625 3626 // getelementptr P -> P. 3627 if (Ops.size() == 1) 3628 return Ops[0]; 3629 3630 // Compute the (pointer) type returned by the GEP instruction. 3631 Type *LastType = GetElementPtrInst::getIndexedType(SrcTy, Ops.slice(1)); 3632 Type *GEPTy = PointerType::get(LastType, AS); 3633 if (VectorType *VT = dyn_cast<VectorType>(Ops[0]->getType())) 3634 GEPTy = VectorType::get(GEPTy, VT->getNumElements()); 3635 else if (VectorType *VT = dyn_cast<VectorType>(Ops[1]->getType())) 3636 GEPTy = VectorType::get(GEPTy, VT->getNumElements()); 3637 3638 if (isa<UndefValue>(Ops[0])) 3639 return UndefValue::get(GEPTy); 3640 3641 if (Ops.size() == 2) { 3642 // getelementptr P, 0 -> P. 3643 if (match(Ops[1], m_Zero())) 3644 return Ops[0]; 3645 3646 Type *Ty = SrcTy; 3647 if (Ty->isSized()) { 3648 Value *P; 3649 uint64_t C; 3650 uint64_t TyAllocSize = Q.DL.getTypeAllocSize(Ty); 3651 // getelementptr P, N -> P if P points to a type of zero size. 3652 if (TyAllocSize == 0) 3653 return Ops[0]; 3654 3655 // The following transforms are only safe if the ptrtoint cast 3656 // doesn't truncate the pointers. 3657 if (Ops[1]->getType()->getScalarSizeInBits() == 3658 Q.DL.getPointerSizeInBits(AS)) { 3659 auto PtrToIntOrZero = [GEPTy](Value *P) -> Value * { 3660 if (match(P, m_Zero())) 3661 return Constant::getNullValue(GEPTy); 3662 Value *Temp; 3663 if (match(P, m_PtrToInt(m_Value(Temp)))) 3664 if (Temp->getType() == GEPTy) 3665 return Temp; 3666 return nullptr; 3667 }; 3668 3669 // getelementptr V, (sub P, V) -> P if P points to a type of size 1. 3670 if (TyAllocSize == 1 && 3671 match(Ops[1], m_Sub(m_Value(P), m_PtrToInt(m_Specific(Ops[0]))))) 3672 if (Value *R = PtrToIntOrZero(P)) 3673 return R; 3674 3675 // getelementptr V, (ashr (sub P, V), C) -> Q 3676 // if P points to a type of size 1 << C. 3677 if (match(Ops[1], 3678 m_AShr(m_Sub(m_Value(P), m_PtrToInt(m_Specific(Ops[0]))), 3679 m_ConstantInt(C))) && 3680 TyAllocSize == 1ULL << C) 3681 if (Value *R = PtrToIntOrZero(P)) 3682 return R; 3683 3684 // getelementptr V, (sdiv (sub P, V), C) -> Q 3685 // if P points to a type of size C. 3686 if (match(Ops[1], 3687 m_SDiv(m_Sub(m_Value(P), m_PtrToInt(m_Specific(Ops[0]))), 3688 m_SpecificInt(TyAllocSize)))) 3689 if (Value *R = PtrToIntOrZero(P)) 3690 return R; 3691 } 3692 } 3693 } 3694 3695 if (Q.DL.getTypeAllocSize(LastType) == 1 && 3696 all_of(Ops.slice(1).drop_back(1), 3697 [](Value *Idx) { return match(Idx, m_Zero()); })) { 3698 unsigned PtrWidth = 3699 Q.DL.getPointerSizeInBits(Ops[0]->getType()->getPointerAddressSpace()); 3700 if (Q.DL.getTypeSizeInBits(Ops.back()->getType()) == PtrWidth) { 3701 APInt BasePtrOffset(PtrWidth, 0); 3702 Value *StrippedBasePtr = 3703 Ops[0]->stripAndAccumulateInBoundsConstantOffsets(Q.DL, 3704 BasePtrOffset); 3705 3706 // gep (gep V, C), (sub 0, V) -> C 3707 if (match(Ops.back(), 3708 m_Sub(m_Zero(), m_PtrToInt(m_Specific(StrippedBasePtr))))) { 3709 auto *CI = ConstantInt::get(GEPTy->getContext(), BasePtrOffset); 3710 return ConstantExpr::getIntToPtr(CI, GEPTy); 3711 } 3712 // gep (gep V, C), (xor V, -1) -> C-1 3713 if (match(Ops.back(), 3714 m_Xor(m_PtrToInt(m_Specific(StrippedBasePtr)), m_AllOnes()))) { 3715 auto *CI = ConstantInt::get(GEPTy->getContext(), BasePtrOffset - 1); 3716 return ConstantExpr::getIntToPtr(CI, GEPTy); 3717 } 3718 } 3719 } 3720 3721 // Check to see if this is constant foldable. 3722 if (!all_of(Ops, [](Value *V) { return isa<Constant>(V); })) 3723 return nullptr; 3724 3725 auto *CE = ConstantExpr::getGetElementPtr(SrcTy, cast<Constant>(Ops[0]), 3726 Ops.slice(1)); 3727 if (auto *CEFolded = ConstantFoldConstant(CE, Q.DL)) 3728 return CEFolded; 3729 return CE; 3730 } 3731 3732 Value *llvm::SimplifyGEPInst(Type *SrcTy, ArrayRef<Value *> Ops, 3733 const SimplifyQuery &Q) { 3734 return ::SimplifyGEPInst(SrcTy, Ops, Q, RecursionLimit); 3735 } 3736 3737 /// Given operands for an InsertValueInst, see if we can fold the result. 3738 /// If not, this returns null. 3739 static Value *SimplifyInsertValueInst(Value *Agg, Value *Val, 3740 ArrayRef<unsigned> Idxs, const SimplifyQuery &Q, 3741 unsigned) { 3742 if (Constant *CAgg = dyn_cast<Constant>(Agg)) 3743 if (Constant *CVal = dyn_cast<Constant>(Val)) 3744 return ConstantFoldInsertValueInstruction(CAgg, CVal, Idxs); 3745 3746 // insertvalue x, undef, n -> x 3747 if (match(Val, m_Undef())) 3748 return Agg; 3749 3750 // insertvalue x, (extractvalue y, n), n 3751 if (ExtractValueInst *EV = dyn_cast<ExtractValueInst>(Val)) 3752 if (EV->getAggregateOperand()->getType() == Agg->getType() && 3753 EV->getIndices() == Idxs) { 3754 // insertvalue undef, (extractvalue y, n), n -> y 3755 if (match(Agg, m_Undef())) 3756 return EV->getAggregateOperand(); 3757 3758 // insertvalue y, (extractvalue y, n), n -> y 3759 if (Agg == EV->getAggregateOperand()) 3760 return Agg; 3761 } 3762 3763 return nullptr; 3764 } 3765 3766 Value *llvm::SimplifyInsertValueInst(Value *Agg, Value *Val, 3767 ArrayRef<unsigned> Idxs, 3768 const SimplifyQuery &Q) { 3769 return ::SimplifyInsertValueInst(Agg, Val, Idxs, Q, RecursionLimit); 3770 } 3771 3772 /// Given operands for an ExtractValueInst, see if we can fold the result. 3773 /// If not, this returns null. 3774 static Value *SimplifyExtractValueInst(Value *Agg, ArrayRef<unsigned> Idxs, 3775 const SimplifyQuery &, unsigned) { 3776 if (auto *CAgg = dyn_cast<Constant>(Agg)) 3777 return ConstantFoldExtractValueInstruction(CAgg, Idxs); 3778 3779 // extractvalue x, (insertvalue y, elt, n), n -> elt 3780 unsigned NumIdxs = Idxs.size(); 3781 for (auto *IVI = dyn_cast<InsertValueInst>(Agg); IVI != nullptr; 3782 IVI = dyn_cast<InsertValueInst>(IVI->getAggregateOperand())) { 3783 ArrayRef<unsigned> InsertValueIdxs = IVI->getIndices(); 3784 unsigned NumInsertValueIdxs = InsertValueIdxs.size(); 3785 unsigned NumCommonIdxs = std::min(NumInsertValueIdxs, NumIdxs); 3786 if (InsertValueIdxs.slice(0, NumCommonIdxs) == 3787 Idxs.slice(0, NumCommonIdxs)) { 3788 if (NumIdxs == NumInsertValueIdxs) 3789 return IVI->getInsertedValueOperand(); 3790 break; 3791 } 3792 } 3793 3794 return nullptr; 3795 } 3796 3797 Value *llvm::SimplifyExtractValueInst(Value *Agg, ArrayRef<unsigned> Idxs, 3798 const SimplifyQuery &Q) { 3799 return ::SimplifyExtractValueInst(Agg, Idxs, Q, RecursionLimit); 3800 } 3801 3802 /// Given operands for an ExtractElementInst, see if we can fold the result. 3803 /// If not, this returns null. 3804 static Value *SimplifyExtractElementInst(Value *Vec, Value *Idx, const SimplifyQuery &, 3805 unsigned) { 3806 if (auto *CVec = dyn_cast<Constant>(Vec)) { 3807 if (auto *CIdx = dyn_cast<Constant>(Idx)) 3808 return ConstantFoldExtractElementInstruction(CVec, CIdx); 3809 3810 // The index is not relevant if our vector is a splat. 3811 if (auto *Splat = CVec->getSplatValue()) 3812 return Splat; 3813 3814 if (isa<UndefValue>(Vec)) 3815 return UndefValue::get(Vec->getType()->getVectorElementType()); 3816 } 3817 3818 // If extracting a specified index from the vector, see if we can recursively 3819 // find a previously computed scalar that was inserted into the vector. 3820 if (auto *IdxC = dyn_cast<ConstantInt>(Idx)) 3821 if (Value *Elt = findScalarElement(Vec, IdxC->getZExtValue())) 3822 return Elt; 3823 3824 return nullptr; 3825 } 3826 3827 Value *llvm::SimplifyExtractElementInst(Value *Vec, Value *Idx, 3828 const SimplifyQuery &Q) { 3829 return ::SimplifyExtractElementInst(Vec, Idx, Q, RecursionLimit); 3830 } 3831 3832 /// See if we can fold the given phi. If not, returns null. 3833 static Value *SimplifyPHINode(PHINode *PN, const SimplifyQuery &Q) { 3834 // If all of the PHI's incoming values are the same then replace the PHI node 3835 // with the common value. 3836 Value *CommonValue = nullptr; 3837 bool HasUndefInput = false; 3838 for (Value *Incoming : PN->incoming_values()) { 3839 // If the incoming value is the phi node itself, it can safely be skipped. 3840 if (Incoming == PN) continue; 3841 if (isa<UndefValue>(Incoming)) { 3842 // Remember that we saw an undef value, but otherwise ignore them. 3843 HasUndefInput = true; 3844 continue; 3845 } 3846 if (CommonValue && Incoming != CommonValue) 3847 return nullptr; // Not the same, bail out. 3848 CommonValue = Incoming; 3849 } 3850 3851 // If CommonValue is null then all of the incoming values were either undef or 3852 // equal to the phi node itself. 3853 if (!CommonValue) 3854 return UndefValue::get(PN->getType()); 3855 3856 // If we have a PHI node like phi(X, undef, X), where X is defined by some 3857 // instruction, we cannot return X as the result of the PHI node unless it 3858 // dominates the PHI block. 3859 if (HasUndefInput) 3860 return ValueDominatesPHI(CommonValue, PN, Q.DT) ? CommonValue : nullptr; 3861 3862 return CommonValue; 3863 } 3864 3865 static Value *SimplifyCastInst(unsigned CastOpc, Value *Op, 3866 Type *Ty, const SimplifyQuery &Q, unsigned MaxRecurse) { 3867 if (auto *C = dyn_cast<Constant>(Op)) 3868 return ConstantFoldCastOperand(CastOpc, C, Ty, Q.DL); 3869 3870 if (auto *CI = dyn_cast<CastInst>(Op)) { 3871 auto *Src = CI->getOperand(0); 3872 Type *SrcTy = Src->getType(); 3873 Type *MidTy = CI->getType(); 3874 Type *DstTy = Ty; 3875 if (Src->getType() == Ty) { 3876 auto FirstOp = static_cast<Instruction::CastOps>(CI->getOpcode()); 3877 auto SecondOp = static_cast<Instruction::CastOps>(CastOpc); 3878 Type *SrcIntPtrTy = 3879 SrcTy->isPtrOrPtrVectorTy() ? Q.DL.getIntPtrType(SrcTy) : nullptr; 3880 Type *MidIntPtrTy = 3881 MidTy->isPtrOrPtrVectorTy() ? Q.DL.getIntPtrType(MidTy) : nullptr; 3882 Type *DstIntPtrTy = 3883 DstTy->isPtrOrPtrVectorTy() ? Q.DL.getIntPtrType(DstTy) : nullptr; 3884 if (CastInst::isEliminableCastPair(FirstOp, SecondOp, SrcTy, MidTy, DstTy, 3885 SrcIntPtrTy, MidIntPtrTy, 3886 DstIntPtrTy) == Instruction::BitCast) 3887 return Src; 3888 } 3889 } 3890 3891 // bitcast x -> x 3892 if (CastOpc == Instruction::BitCast) 3893 if (Op->getType() == Ty) 3894 return Op; 3895 3896 return nullptr; 3897 } 3898 3899 Value *llvm::SimplifyCastInst(unsigned CastOpc, Value *Op, Type *Ty, 3900 const SimplifyQuery &Q) { 3901 return ::SimplifyCastInst(CastOpc, Op, Ty, Q, RecursionLimit); 3902 } 3903 3904 /// For the given destination element of a shuffle, peek through shuffles to 3905 /// match a root vector source operand that contains that element in the same 3906 /// vector lane (ie, the same mask index), so we can eliminate the shuffle(s). 3907 static Value *foldIdentityShuffles(int DestElt, Value *Op0, Value *Op1, 3908 int MaskVal, Value *RootVec, 3909 unsigned MaxRecurse) { 3910 if (!MaxRecurse--) 3911 return nullptr; 3912 3913 // Bail out if any mask value is undefined. That kind of shuffle may be 3914 // simplified further based on demanded bits or other folds. 3915 if (MaskVal == -1) 3916 return nullptr; 3917 3918 // The mask value chooses which source operand we need to look at next. 3919 int InVecNumElts = Op0->getType()->getVectorNumElements(); 3920 int RootElt = MaskVal; 3921 Value *SourceOp = Op0; 3922 if (MaskVal >= InVecNumElts) { 3923 RootElt = MaskVal - InVecNumElts; 3924 SourceOp = Op1; 3925 } 3926 3927 // If the source operand is a shuffle itself, look through it to find the 3928 // matching root vector. 3929 if (auto *SourceShuf = dyn_cast<ShuffleVectorInst>(SourceOp)) { 3930 return foldIdentityShuffles( 3931 DestElt, SourceShuf->getOperand(0), SourceShuf->getOperand(1), 3932 SourceShuf->getMaskValue(RootElt), RootVec, MaxRecurse); 3933 } 3934 3935 // TODO: Look through bitcasts? What if the bitcast changes the vector element 3936 // size? 3937 3938 // The source operand is not a shuffle. Initialize the root vector value for 3939 // this shuffle if that has not been done yet. 3940 if (!RootVec) 3941 RootVec = SourceOp; 3942 3943 // Give up as soon as a source operand does not match the existing root value. 3944 if (RootVec != SourceOp) 3945 return nullptr; 3946 3947 // The element must be coming from the same lane in the source vector 3948 // (although it may have crossed lanes in intermediate shuffles). 3949 if (RootElt != DestElt) 3950 return nullptr; 3951 3952 return RootVec; 3953 } 3954 3955 static Value *SimplifyShuffleVectorInst(Value *Op0, Value *Op1, Constant *Mask, 3956 Type *RetTy, const SimplifyQuery &Q, 3957 unsigned MaxRecurse) { 3958 if (isa<UndefValue>(Mask)) 3959 return UndefValue::get(RetTy); 3960 3961 Type *InVecTy = Op0->getType(); 3962 unsigned MaskNumElts = Mask->getType()->getVectorNumElements(); 3963 unsigned InVecNumElts = InVecTy->getVectorNumElements(); 3964 3965 SmallVector<int, 32> Indices; 3966 ShuffleVectorInst::getShuffleMask(Mask, Indices); 3967 assert(MaskNumElts == Indices.size() && 3968 "Size of Indices not same as number of mask elements?"); 3969 3970 // Canonicalization: If mask does not select elements from an input vector, 3971 // replace that input vector with undef. 3972 bool MaskSelects0 = false, MaskSelects1 = false; 3973 for (unsigned i = 0; i != MaskNumElts; ++i) { 3974 if (Indices[i] == -1) 3975 continue; 3976 if ((unsigned)Indices[i] < InVecNumElts) 3977 MaskSelects0 = true; 3978 else 3979 MaskSelects1 = true; 3980 } 3981 if (!MaskSelects0) 3982 Op0 = UndefValue::get(InVecTy); 3983 if (!MaskSelects1) 3984 Op1 = UndefValue::get(InVecTy); 3985 3986 auto *Op0Const = dyn_cast<Constant>(Op0); 3987 auto *Op1Const = dyn_cast<Constant>(Op1); 3988 3989 // If all operands are constant, constant fold the shuffle. 3990 if (Op0Const && Op1Const) 3991 return ConstantFoldShuffleVectorInstruction(Op0Const, Op1Const, Mask); 3992 3993 // Canonicalization: if only one input vector is constant, it shall be the 3994 // second one. 3995 if (Op0Const && !Op1Const) { 3996 std::swap(Op0, Op1); 3997 ShuffleVectorInst::commuteShuffleMask(Indices, InVecNumElts); 3998 } 3999 4000 // A shuffle of a splat is always the splat itself. Legal if the shuffle's 4001 // value type is same as the input vectors' type. 4002 if (auto *OpShuf = dyn_cast<ShuffleVectorInst>(Op0)) 4003 if (isa<UndefValue>(Op1) && RetTy == InVecTy && 4004 OpShuf->getMask()->getSplatValue()) 4005 return Op0; 4006 4007 // Don't fold a shuffle with undef mask elements. This may get folded in a 4008 // better way using demanded bits or other analysis. 4009 // TODO: Should we allow this? 4010 if (find(Indices, -1) != Indices.end()) 4011 return nullptr; 4012 4013 // Check if every element of this shuffle can be mapped back to the 4014 // corresponding element of a single root vector. If so, we don't need this 4015 // shuffle. This handles simple identity shuffles as well as chains of 4016 // shuffles that may widen/narrow and/or move elements across lanes and back. 4017 Value *RootVec = nullptr; 4018 for (unsigned i = 0; i != MaskNumElts; ++i) { 4019 // Note that recursion is limited for each vector element, so if any element 4020 // exceeds the limit, this will fail to simplify. 4021 RootVec = 4022 foldIdentityShuffles(i, Op0, Op1, Indices[i], RootVec, MaxRecurse); 4023 4024 // We can't replace a widening/narrowing shuffle with one of its operands. 4025 if (!RootVec || RootVec->getType() != RetTy) 4026 return nullptr; 4027 } 4028 return RootVec; 4029 } 4030 4031 /// Given operands for a ShuffleVectorInst, fold the result or return null. 4032 Value *llvm::SimplifyShuffleVectorInst(Value *Op0, Value *Op1, Constant *Mask, 4033 Type *RetTy, const SimplifyQuery &Q) { 4034 return ::SimplifyShuffleVectorInst(Op0, Op1, Mask, RetTy, Q, RecursionLimit); 4035 } 4036 4037 /// Given operands for an FAdd, see if we can fold the result. If not, this 4038 /// returns null. 4039 static Value *SimplifyFAddInst(Value *Op0, Value *Op1, FastMathFlags FMF, 4040 const SimplifyQuery &Q, unsigned MaxRecurse) { 4041 if (Constant *C = foldOrCommuteConstant(Instruction::FAdd, Op0, Op1, Q)) 4042 return C; 4043 4044 // fadd X, -0 ==> X 4045 if (match(Op1, m_NegZero())) 4046 return Op0; 4047 4048 // fadd X, 0 ==> X, when we know X is not -0 4049 if (match(Op1, m_Zero()) && 4050 (FMF.noSignedZeros() || CannotBeNegativeZero(Op0, Q.TLI))) 4051 return Op0; 4052 4053 // fadd [nnan ninf] X, (fsub [nnan ninf] 0, X) ==> 0 4054 // where nnan and ninf have to occur at least once somewhere in this 4055 // expression 4056 Value *SubOp = nullptr; 4057 if (match(Op1, m_FSub(m_AnyZero(), m_Specific(Op0)))) 4058 SubOp = Op1; 4059 else if (match(Op0, m_FSub(m_AnyZero(), m_Specific(Op1)))) 4060 SubOp = Op0; 4061 if (SubOp) { 4062 Instruction *FSub = cast<Instruction>(SubOp); 4063 if ((FMF.noNaNs() || FSub->hasNoNaNs()) && 4064 (FMF.noInfs() || FSub->hasNoInfs())) 4065 return Constant::getNullValue(Op0->getType()); 4066 } 4067 4068 return nullptr; 4069 } 4070 4071 /// Given operands for an FSub, see if we can fold the result. If not, this 4072 /// returns null. 4073 static Value *SimplifyFSubInst(Value *Op0, Value *Op1, FastMathFlags FMF, 4074 const SimplifyQuery &Q, unsigned MaxRecurse) { 4075 if (Constant *C = foldOrCommuteConstant(Instruction::FSub, Op0, Op1, Q)) 4076 return C; 4077 4078 // fsub X, 0 ==> X 4079 if (match(Op1, m_Zero())) 4080 return Op0; 4081 4082 // fsub X, -0 ==> X, when we know X is not -0 4083 if (match(Op1, m_NegZero()) && 4084 (FMF.noSignedZeros() || CannotBeNegativeZero(Op0, Q.TLI))) 4085 return Op0; 4086 4087 // fsub -0.0, (fsub -0.0, X) ==> X 4088 Value *X; 4089 if (match(Op0, m_NegZero()) && match(Op1, m_FSub(m_NegZero(), m_Value(X)))) 4090 return X; 4091 4092 // fsub 0.0, (fsub 0.0, X) ==> X if signed zeros are ignored. 4093 if (FMF.noSignedZeros() && match(Op0, m_AnyZero()) && 4094 match(Op1, m_FSub(m_AnyZero(), m_Value(X)))) 4095 return X; 4096 4097 // fsub nnan x, x ==> 0.0 4098 if (FMF.noNaNs() && Op0 == Op1) 4099 return Constant::getNullValue(Op0->getType()); 4100 4101 return nullptr; 4102 } 4103 4104 /// Given the operands for an FMul, see if we can fold the result 4105 static Value *SimplifyFMulInst(Value *Op0, Value *Op1, FastMathFlags FMF, 4106 const SimplifyQuery &Q, unsigned MaxRecurse) { 4107 if (Constant *C = foldOrCommuteConstant(Instruction::FMul, Op0, Op1, Q)) 4108 return C; 4109 4110 // fmul X, 1.0 ==> X 4111 if (match(Op1, m_FPOne())) 4112 return Op0; 4113 4114 // fmul nnan nsz X, 0 ==> 0 4115 if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op1, m_AnyZero())) 4116 return Op1; 4117 4118 return nullptr; 4119 } 4120 4121 Value *llvm::SimplifyFAddInst(Value *Op0, Value *Op1, FastMathFlags FMF, 4122 const SimplifyQuery &Q) { 4123 return ::SimplifyFAddInst(Op0, Op1, FMF, Q, RecursionLimit); 4124 } 4125 4126 4127 Value *llvm::SimplifyFSubInst(Value *Op0, Value *Op1, FastMathFlags FMF, 4128 const SimplifyQuery &Q) { 4129 return ::SimplifyFSubInst(Op0, Op1, FMF, Q, RecursionLimit); 4130 } 4131 4132 Value *llvm::SimplifyFMulInst(Value *Op0, Value *Op1, FastMathFlags FMF, 4133 const SimplifyQuery &Q) { 4134 return ::SimplifyFMulInst(Op0, Op1, FMF, Q, RecursionLimit); 4135 } 4136 4137 static Value *SimplifyFDivInst(Value *Op0, Value *Op1, FastMathFlags FMF, 4138 const SimplifyQuery &Q, unsigned) { 4139 if (Constant *C = foldOrCommuteConstant(Instruction::FDiv, Op0, Op1, Q)) 4140 return C; 4141 4142 // undef / X -> undef (the undef could be a snan). 4143 if (match(Op0, m_Undef())) 4144 return Op0; 4145 4146 // X / undef -> undef 4147 if (match(Op1, m_Undef())) 4148 return Op1; 4149 4150 // X / 1.0 -> X 4151 if (match(Op1, m_FPOne())) 4152 return Op0; 4153 4154 // 0 / X -> 0 4155 // Requires that NaNs are off (X could be zero) and signed zeroes are 4156 // ignored (X could be positive or negative, so the output sign is unknown). 4157 if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op0, m_AnyZero())) 4158 return Op0; 4159 4160 if (FMF.noNaNs()) { 4161 // X / X -> 1.0 is legal when NaNs are ignored. 4162 if (Op0 == Op1) 4163 return ConstantFP::get(Op0->getType(), 1.0); 4164 4165 // -X / X -> -1.0 and 4166 // X / -X -> -1.0 are legal when NaNs are ignored. 4167 // We can ignore signed zeros because +-0.0/+-0.0 is NaN and ignored. 4168 if ((BinaryOperator::isFNeg(Op0, /*IgnoreZeroSign=*/true) && 4169 BinaryOperator::getFNegArgument(Op0) == Op1) || 4170 (BinaryOperator::isFNeg(Op1, /*IgnoreZeroSign=*/true) && 4171 BinaryOperator::getFNegArgument(Op1) == Op0)) 4172 return ConstantFP::get(Op0->getType(), -1.0); 4173 } 4174 4175 return nullptr; 4176 } 4177 4178 Value *llvm::SimplifyFDivInst(Value *Op0, Value *Op1, FastMathFlags FMF, 4179 const SimplifyQuery &Q) { 4180 return ::SimplifyFDivInst(Op0, Op1, FMF, Q, RecursionLimit); 4181 } 4182 4183 static Value *SimplifyFRemInst(Value *Op0, Value *Op1, FastMathFlags FMF, 4184 const SimplifyQuery &Q, unsigned) { 4185 if (Constant *C = foldOrCommuteConstant(Instruction::FRem, Op0, Op1, Q)) 4186 return C; 4187 4188 // undef % X -> undef (the undef could be a snan). 4189 if (match(Op0, m_Undef())) 4190 return Op0; 4191 4192 // X % undef -> undef 4193 if (match(Op1, m_Undef())) 4194 return Op1; 4195 4196 // 0 % X -> 0 4197 // Requires that NaNs are off (X could be zero) and signed zeroes are 4198 // ignored (X could be positive or negative, so the output sign is unknown). 4199 if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op0, m_AnyZero())) 4200 return Op0; 4201 4202 return nullptr; 4203 } 4204 4205 Value *llvm::SimplifyFRemInst(Value *Op0, Value *Op1, FastMathFlags FMF, 4206 const SimplifyQuery &Q) { 4207 return ::SimplifyFRemInst(Op0, Op1, FMF, Q, RecursionLimit); 4208 } 4209 4210 //=== Helper functions for higher up the class hierarchy. 4211 4212 /// Given operands for a BinaryOperator, see if we can fold the result. 4213 /// If not, this returns null. 4214 static Value *SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS, 4215 const SimplifyQuery &Q, unsigned MaxRecurse) { 4216 switch (Opcode) { 4217 case Instruction::Add: 4218 return SimplifyAddInst(LHS, RHS, false, false, Q, MaxRecurse); 4219 case Instruction::Sub: 4220 return SimplifySubInst(LHS, RHS, false, false, Q, MaxRecurse); 4221 case Instruction::Mul: 4222 return SimplifyMulInst(LHS, RHS, Q, MaxRecurse); 4223 case Instruction::SDiv: 4224 return SimplifySDivInst(LHS, RHS, Q, MaxRecurse); 4225 case Instruction::UDiv: 4226 return SimplifyUDivInst(LHS, RHS, Q, MaxRecurse); 4227 case Instruction::SRem: 4228 return SimplifySRemInst(LHS, RHS, Q, MaxRecurse); 4229 case Instruction::URem: 4230 return SimplifyURemInst(LHS, RHS, Q, MaxRecurse); 4231 case Instruction::Shl: 4232 return SimplifyShlInst(LHS, RHS, false, false, Q, MaxRecurse); 4233 case Instruction::LShr: 4234 return SimplifyLShrInst(LHS, RHS, false, Q, MaxRecurse); 4235 case Instruction::AShr: 4236 return SimplifyAShrInst(LHS, RHS, false, Q, MaxRecurse); 4237 case Instruction::And: 4238 return SimplifyAndInst(LHS, RHS, Q, MaxRecurse); 4239 case Instruction::Or: 4240 return SimplifyOrInst(LHS, RHS, Q, MaxRecurse); 4241 case Instruction::Xor: 4242 return SimplifyXorInst(LHS, RHS, Q, MaxRecurse); 4243 case Instruction::FAdd: 4244 return SimplifyFAddInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse); 4245 case Instruction::FSub: 4246 return SimplifyFSubInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse); 4247 case Instruction::FMul: 4248 return SimplifyFMulInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse); 4249 case Instruction::FDiv: 4250 return SimplifyFDivInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse); 4251 case Instruction::FRem: 4252 return SimplifyFRemInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse); 4253 default: 4254 llvm_unreachable("Unexpected opcode"); 4255 } 4256 } 4257 4258 /// Given operands for a BinaryOperator, see if we can fold the result. 4259 /// If not, this returns null. 4260 /// In contrast to SimplifyBinOp, try to use FastMathFlag when folding the 4261 /// result. In case we don't need FastMathFlags, simply fall to SimplifyBinOp. 4262 static Value *SimplifyFPBinOp(unsigned Opcode, Value *LHS, Value *RHS, 4263 const FastMathFlags &FMF, const SimplifyQuery &Q, 4264 unsigned MaxRecurse) { 4265 switch (Opcode) { 4266 case Instruction::FAdd: 4267 return SimplifyFAddInst(LHS, RHS, FMF, Q, MaxRecurse); 4268 case Instruction::FSub: 4269 return SimplifyFSubInst(LHS, RHS, FMF, Q, MaxRecurse); 4270 case Instruction::FMul: 4271 return SimplifyFMulInst(LHS, RHS, FMF, Q, MaxRecurse); 4272 case Instruction::FDiv: 4273 return SimplifyFDivInst(LHS, RHS, FMF, Q, MaxRecurse); 4274 default: 4275 return SimplifyBinOp(Opcode, LHS, RHS, Q, MaxRecurse); 4276 } 4277 } 4278 4279 Value *llvm::SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS, 4280 const SimplifyQuery &Q) { 4281 return ::SimplifyBinOp(Opcode, LHS, RHS, Q, RecursionLimit); 4282 } 4283 4284 Value *llvm::SimplifyFPBinOp(unsigned Opcode, Value *LHS, Value *RHS, 4285 FastMathFlags FMF, const SimplifyQuery &Q) { 4286 return ::SimplifyFPBinOp(Opcode, LHS, RHS, FMF, Q, RecursionLimit); 4287 } 4288 4289 /// Given operands for a CmpInst, see if we can fold the result. 4290 static Value *SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS, 4291 const SimplifyQuery &Q, unsigned MaxRecurse) { 4292 if (CmpInst::isIntPredicate((CmpInst::Predicate)Predicate)) 4293 return SimplifyICmpInst(Predicate, LHS, RHS, Q, MaxRecurse); 4294 return SimplifyFCmpInst(Predicate, LHS, RHS, FastMathFlags(), Q, MaxRecurse); 4295 } 4296 4297 Value *llvm::SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS, 4298 const SimplifyQuery &Q) { 4299 return ::SimplifyCmpInst(Predicate, LHS, RHS, Q, RecursionLimit); 4300 } 4301 4302 static bool IsIdempotent(Intrinsic::ID ID) { 4303 switch (ID) { 4304 default: return false; 4305 4306 // Unary idempotent: f(f(x)) = f(x) 4307 case Intrinsic::fabs: 4308 case Intrinsic::floor: 4309 case Intrinsic::ceil: 4310 case Intrinsic::trunc: 4311 case Intrinsic::rint: 4312 case Intrinsic::nearbyint: 4313 case Intrinsic::round: 4314 case Intrinsic::canonicalize: 4315 return true; 4316 } 4317 } 4318 4319 static Value *SimplifyRelativeLoad(Constant *Ptr, Constant *Offset, 4320 const DataLayout &DL) { 4321 GlobalValue *PtrSym; 4322 APInt PtrOffset; 4323 if (!IsConstantOffsetFromGlobal(Ptr, PtrSym, PtrOffset, DL)) 4324 return nullptr; 4325 4326 Type *Int8PtrTy = Type::getInt8PtrTy(Ptr->getContext()); 4327 Type *Int32Ty = Type::getInt32Ty(Ptr->getContext()); 4328 Type *Int32PtrTy = Int32Ty->getPointerTo(); 4329 Type *Int64Ty = Type::getInt64Ty(Ptr->getContext()); 4330 4331 auto *OffsetConstInt = dyn_cast<ConstantInt>(Offset); 4332 if (!OffsetConstInt || OffsetConstInt->getType()->getBitWidth() > 64) 4333 return nullptr; 4334 4335 uint64_t OffsetInt = OffsetConstInt->getSExtValue(); 4336 if (OffsetInt % 4 != 0) 4337 return nullptr; 4338 4339 Constant *C = ConstantExpr::getGetElementPtr( 4340 Int32Ty, ConstantExpr::getBitCast(Ptr, Int32PtrTy), 4341 ConstantInt::get(Int64Ty, OffsetInt / 4)); 4342 Constant *Loaded = ConstantFoldLoadFromConstPtr(C, Int32Ty, DL); 4343 if (!Loaded) 4344 return nullptr; 4345 4346 auto *LoadedCE = dyn_cast<ConstantExpr>(Loaded); 4347 if (!LoadedCE) 4348 return nullptr; 4349 4350 if (LoadedCE->getOpcode() == Instruction::Trunc) { 4351 LoadedCE = dyn_cast<ConstantExpr>(LoadedCE->getOperand(0)); 4352 if (!LoadedCE) 4353 return nullptr; 4354 } 4355 4356 if (LoadedCE->getOpcode() != Instruction::Sub) 4357 return nullptr; 4358 4359 auto *LoadedLHS = dyn_cast<ConstantExpr>(LoadedCE->getOperand(0)); 4360 if (!LoadedLHS || LoadedLHS->getOpcode() != Instruction::PtrToInt) 4361 return nullptr; 4362 auto *LoadedLHSPtr = LoadedLHS->getOperand(0); 4363 4364 Constant *LoadedRHS = LoadedCE->getOperand(1); 4365 GlobalValue *LoadedRHSSym; 4366 APInt LoadedRHSOffset; 4367 if (!IsConstantOffsetFromGlobal(LoadedRHS, LoadedRHSSym, LoadedRHSOffset, 4368 DL) || 4369 PtrSym != LoadedRHSSym || PtrOffset != LoadedRHSOffset) 4370 return nullptr; 4371 4372 return ConstantExpr::getBitCast(LoadedLHSPtr, Int8PtrTy); 4373 } 4374 4375 static bool maskIsAllZeroOrUndef(Value *Mask) { 4376 auto *ConstMask = dyn_cast<Constant>(Mask); 4377 if (!ConstMask) 4378 return false; 4379 if (ConstMask->isNullValue() || isa<UndefValue>(ConstMask)) 4380 return true; 4381 for (unsigned I = 0, E = ConstMask->getType()->getVectorNumElements(); I != E; 4382 ++I) { 4383 if (auto *MaskElt = ConstMask->getAggregateElement(I)) 4384 if (MaskElt->isNullValue() || isa<UndefValue>(MaskElt)) 4385 continue; 4386 return false; 4387 } 4388 return true; 4389 } 4390 4391 template <typename IterTy> 4392 static Value *SimplifyIntrinsic(Function *F, IterTy ArgBegin, IterTy ArgEnd, 4393 const SimplifyQuery &Q, unsigned MaxRecurse) { 4394 Intrinsic::ID IID = F->getIntrinsicID(); 4395 unsigned NumOperands = std::distance(ArgBegin, ArgEnd); 4396 4397 // Unary Ops 4398 if (NumOperands == 1) { 4399 // Perform idempotent optimizations 4400 if (IsIdempotent(IID)) { 4401 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(*ArgBegin)) { 4402 if (II->getIntrinsicID() == IID) 4403 return II; 4404 } 4405 } 4406 4407 switch (IID) { 4408 case Intrinsic::fabs: { 4409 if (SignBitMustBeZero(*ArgBegin, Q.TLI)) 4410 return *ArgBegin; 4411 return nullptr; 4412 } 4413 default: 4414 return nullptr; 4415 } 4416 } 4417 4418 // Binary Ops 4419 if (NumOperands == 2) { 4420 Value *LHS = *ArgBegin; 4421 Value *RHS = *(ArgBegin + 1); 4422 Type *ReturnType = F->getReturnType(); 4423 4424 switch (IID) { 4425 case Intrinsic::usub_with_overflow: 4426 case Intrinsic::ssub_with_overflow: { 4427 // X - X -> { 0, false } 4428 if (LHS == RHS) 4429 return Constant::getNullValue(ReturnType); 4430 4431 // X - undef -> undef 4432 // undef - X -> undef 4433 if (isa<UndefValue>(LHS) || isa<UndefValue>(RHS)) 4434 return UndefValue::get(ReturnType); 4435 4436 return nullptr; 4437 } 4438 case Intrinsic::uadd_with_overflow: 4439 case Intrinsic::sadd_with_overflow: { 4440 // X + undef -> undef 4441 if (isa<UndefValue>(LHS) || isa<UndefValue>(RHS)) 4442 return UndefValue::get(ReturnType); 4443 4444 return nullptr; 4445 } 4446 case Intrinsic::umul_with_overflow: 4447 case Intrinsic::smul_with_overflow: { 4448 // 0 * X -> { 0, false } 4449 // X * 0 -> { 0, false } 4450 if (match(LHS, m_Zero()) || match(RHS, m_Zero())) 4451 return Constant::getNullValue(ReturnType); 4452 4453 // undef * X -> { 0, false } 4454 // X * undef -> { 0, false } 4455 if (match(LHS, m_Undef()) || match(RHS, m_Undef())) 4456 return Constant::getNullValue(ReturnType); 4457 4458 return nullptr; 4459 } 4460 case Intrinsic::load_relative: { 4461 Constant *C0 = dyn_cast<Constant>(LHS); 4462 Constant *C1 = dyn_cast<Constant>(RHS); 4463 if (C0 && C1) 4464 return SimplifyRelativeLoad(C0, C1, Q.DL); 4465 return nullptr; 4466 } 4467 default: 4468 return nullptr; 4469 } 4470 } 4471 4472 // Simplify calls to llvm.masked.load.* 4473 switch (IID) { 4474 case Intrinsic::masked_load: { 4475 Value *MaskArg = ArgBegin[2]; 4476 Value *PassthruArg = ArgBegin[3]; 4477 // If the mask is all zeros or undef, the "passthru" argument is the result. 4478 if (maskIsAllZeroOrUndef(MaskArg)) 4479 return PassthruArg; 4480 return nullptr; 4481 } 4482 default: 4483 return nullptr; 4484 } 4485 } 4486 4487 template <typename IterTy> 4488 static Value *SimplifyCall(ImmutableCallSite CS, Value *V, IterTy ArgBegin, 4489 IterTy ArgEnd, const SimplifyQuery &Q, 4490 unsigned MaxRecurse) { 4491 Type *Ty = V->getType(); 4492 if (PointerType *PTy = dyn_cast<PointerType>(Ty)) 4493 Ty = PTy->getElementType(); 4494 FunctionType *FTy = cast<FunctionType>(Ty); 4495 4496 // call undef -> undef 4497 // call null -> undef 4498 if (isa<UndefValue>(V) || isa<ConstantPointerNull>(V)) 4499 return UndefValue::get(FTy->getReturnType()); 4500 4501 Function *F = dyn_cast<Function>(V); 4502 if (!F) 4503 return nullptr; 4504 4505 if (F->isIntrinsic()) 4506 if (Value *Ret = SimplifyIntrinsic(F, ArgBegin, ArgEnd, Q, MaxRecurse)) 4507 return Ret; 4508 4509 if (!canConstantFoldCallTo(CS, F)) 4510 return nullptr; 4511 4512 SmallVector<Constant *, 4> ConstantArgs; 4513 ConstantArgs.reserve(ArgEnd - ArgBegin); 4514 for (IterTy I = ArgBegin, E = ArgEnd; I != E; ++I) { 4515 Constant *C = dyn_cast<Constant>(*I); 4516 if (!C) 4517 return nullptr; 4518 ConstantArgs.push_back(C); 4519 } 4520 4521 return ConstantFoldCall(CS, F, ConstantArgs, Q.TLI); 4522 } 4523 4524 Value *llvm::SimplifyCall(ImmutableCallSite CS, Value *V, 4525 User::op_iterator ArgBegin, User::op_iterator ArgEnd, 4526 const SimplifyQuery &Q) { 4527 return ::SimplifyCall(CS, V, ArgBegin, ArgEnd, Q, RecursionLimit); 4528 } 4529 4530 Value *llvm::SimplifyCall(ImmutableCallSite CS, Value *V, 4531 ArrayRef<Value *> Args, const SimplifyQuery &Q) { 4532 return ::SimplifyCall(CS, V, Args.begin(), Args.end(), Q, RecursionLimit); 4533 } 4534 4535 /// See if we can compute a simplified version of this instruction. 4536 /// If not, this returns null. 4537 4538 Value *llvm::SimplifyInstruction(Instruction *I, const SimplifyQuery &SQ, 4539 OptimizationRemarkEmitter *ORE) { 4540 const SimplifyQuery Q = SQ.CxtI ? SQ : SQ.getWithInstruction(I); 4541 Value *Result; 4542 4543 switch (I->getOpcode()) { 4544 default: 4545 Result = ConstantFoldInstruction(I, Q.DL, Q.TLI); 4546 break; 4547 case Instruction::FAdd: 4548 Result = SimplifyFAddInst(I->getOperand(0), I->getOperand(1), 4549 I->getFastMathFlags(), Q); 4550 break; 4551 case Instruction::Add: 4552 Result = SimplifyAddInst(I->getOperand(0), I->getOperand(1), 4553 cast<BinaryOperator>(I)->hasNoSignedWrap(), 4554 cast<BinaryOperator>(I)->hasNoUnsignedWrap(), Q); 4555 break; 4556 case Instruction::FSub: 4557 Result = SimplifyFSubInst(I->getOperand(0), I->getOperand(1), 4558 I->getFastMathFlags(), Q); 4559 break; 4560 case Instruction::Sub: 4561 Result = SimplifySubInst(I->getOperand(0), I->getOperand(1), 4562 cast<BinaryOperator>(I)->hasNoSignedWrap(), 4563 cast<BinaryOperator>(I)->hasNoUnsignedWrap(), Q); 4564 break; 4565 case Instruction::FMul: 4566 Result = SimplifyFMulInst(I->getOperand(0), I->getOperand(1), 4567 I->getFastMathFlags(), Q); 4568 break; 4569 case Instruction::Mul: 4570 Result = SimplifyMulInst(I->getOperand(0), I->getOperand(1), Q); 4571 break; 4572 case Instruction::SDiv: 4573 Result = SimplifySDivInst(I->getOperand(0), I->getOperand(1), Q); 4574 break; 4575 case Instruction::UDiv: 4576 Result = SimplifyUDivInst(I->getOperand(0), I->getOperand(1), Q); 4577 break; 4578 case Instruction::FDiv: 4579 Result = SimplifyFDivInst(I->getOperand(0), I->getOperand(1), 4580 I->getFastMathFlags(), Q); 4581 break; 4582 case Instruction::SRem: 4583 Result = SimplifySRemInst(I->getOperand(0), I->getOperand(1), Q); 4584 break; 4585 case Instruction::URem: 4586 Result = SimplifyURemInst(I->getOperand(0), I->getOperand(1), Q); 4587 break; 4588 case Instruction::FRem: 4589 Result = SimplifyFRemInst(I->getOperand(0), I->getOperand(1), 4590 I->getFastMathFlags(), Q); 4591 break; 4592 case Instruction::Shl: 4593 Result = SimplifyShlInst(I->getOperand(0), I->getOperand(1), 4594 cast<BinaryOperator>(I)->hasNoSignedWrap(), 4595 cast<BinaryOperator>(I)->hasNoUnsignedWrap(), Q); 4596 break; 4597 case Instruction::LShr: 4598 Result = SimplifyLShrInst(I->getOperand(0), I->getOperand(1), 4599 cast<BinaryOperator>(I)->isExact(), Q); 4600 break; 4601 case Instruction::AShr: 4602 Result = SimplifyAShrInst(I->getOperand(0), I->getOperand(1), 4603 cast<BinaryOperator>(I)->isExact(), Q); 4604 break; 4605 case Instruction::And: 4606 Result = SimplifyAndInst(I->getOperand(0), I->getOperand(1), Q); 4607 break; 4608 case Instruction::Or: 4609 Result = SimplifyOrInst(I->getOperand(0), I->getOperand(1), Q); 4610 break; 4611 case Instruction::Xor: 4612 Result = SimplifyXorInst(I->getOperand(0), I->getOperand(1), Q); 4613 break; 4614 case Instruction::ICmp: 4615 Result = SimplifyICmpInst(cast<ICmpInst>(I)->getPredicate(), 4616 I->getOperand(0), I->getOperand(1), Q); 4617 break; 4618 case Instruction::FCmp: 4619 Result = 4620 SimplifyFCmpInst(cast<FCmpInst>(I)->getPredicate(), I->getOperand(0), 4621 I->getOperand(1), I->getFastMathFlags(), Q); 4622 break; 4623 case Instruction::Select: 4624 Result = SimplifySelectInst(I->getOperand(0), I->getOperand(1), 4625 I->getOperand(2), Q); 4626 break; 4627 case Instruction::GetElementPtr: { 4628 SmallVector<Value *, 8> Ops(I->op_begin(), I->op_end()); 4629 Result = SimplifyGEPInst(cast<GetElementPtrInst>(I)->getSourceElementType(), 4630 Ops, Q); 4631 break; 4632 } 4633 case Instruction::InsertValue: { 4634 InsertValueInst *IV = cast<InsertValueInst>(I); 4635 Result = SimplifyInsertValueInst(IV->getAggregateOperand(), 4636 IV->getInsertedValueOperand(), 4637 IV->getIndices(), Q); 4638 break; 4639 } 4640 case Instruction::ExtractValue: { 4641 auto *EVI = cast<ExtractValueInst>(I); 4642 Result = SimplifyExtractValueInst(EVI->getAggregateOperand(), 4643 EVI->getIndices(), Q); 4644 break; 4645 } 4646 case Instruction::ExtractElement: { 4647 auto *EEI = cast<ExtractElementInst>(I); 4648 Result = SimplifyExtractElementInst(EEI->getVectorOperand(), 4649 EEI->getIndexOperand(), Q); 4650 break; 4651 } 4652 case Instruction::ShuffleVector: { 4653 auto *SVI = cast<ShuffleVectorInst>(I); 4654 Result = SimplifyShuffleVectorInst(SVI->getOperand(0), SVI->getOperand(1), 4655 SVI->getMask(), SVI->getType(), Q); 4656 break; 4657 } 4658 case Instruction::PHI: 4659 Result = SimplifyPHINode(cast<PHINode>(I), Q); 4660 break; 4661 case Instruction::Call: { 4662 CallSite CS(cast<CallInst>(I)); 4663 Result = SimplifyCall(CS, CS.getCalledValue(), CS.arg_begin(), CS.arg_end(), 4664 Q); 4665 break; 4666 } 4667 #define HANDLE_CAST_INST(num, opc, clas) case Instruction::opc: 4668 #include "llvm/IR/Instruction.def" 4669 #undef HANDLE_CAST_INST 4670 Result = 4671 SimplifyCastInst(I->getOpcode(), I->getOperand(0), I->getType(), Q); 4672 break; 4673 case Instruction::Alloca: 4674 // No simplifications for Alloca and it can't be constant folded. 4675 Result = nullptr; 4676 break; 4677 } 4678 4679 // In general, it is possible for computeKnownBits to determine all bits in a 4680 // value even when the operands are not all constants. 4681 if (!Result && I->getType()->isIntOrIntVectorTy()) { 4682 KnownBits Known = computeKnownBits(I, Q.DL, /*Depth*/ 0, Q.AC, I, Q.DT, ORE); 4683 if (Known.isConstant()) 4684 Result = ConstantInt::get(I->getType(), Known.getConstant()); 4685 } 4686 4687 /// If called on unreachable code, the above logic may report that the 4688 /// instruction simplified to itself. Make life easier for users by 4689 /// detecting that case here, returning a safe value instead. 4690 return Result == I ? UndefValue::get(I->getType()) : Result; 4691 } 4692 4693 /// \brief Implementation of recursive simplification through an instruction's 4694 /// uses. 4695 /// 4696 /// This is the common implementation of the recursive simplification routines. 4697 /// If we have a pre-simplified value in 'SimpleV', that is forcibly used to 4698 /// replace the instruction 'I'. Otherwise, we simply add 'I' to the list of 4699 /// instructions to process and attempt to simplify it using 4700 /// InstructionSimplify. 4701 /// 4702 /// This routine returns 'true' only when *it* simplifies something. The passed 4703 /// in simplified value does not count toward this. 4704 static bool replaceAndRecursivelySimplifyImpl(Instruction *I, Value *SimpleV, 4705 const TargetLibraryInfo *TLI, 4706 const DominatorTree *DT, 4707 AssumptionCache *AC) { 4708 bool Simplified = false; 4709 SmallSetVector<Instruction *, 8> Worklist; 4710 const DataLayout &DL = I->getModule()->getDataLayout(); 4711 4712 // If we have an explicit value to collapse to, do that round of the 4713 // simplification loop by hand initially. 4714 if (SimpleV) { 4715 for (User *U : I->users()) 4716 if (U != I) 4717 Worklist.insert(cast<Instruction>(U)); 4718 4719 // Replace the instruction with its simplified value. 4720 I->replaceAllUsesWith(SimpleV); 4721 4722 // Gracefully handle edge cases where the instruction is not wired into any 4723 // parent block. 4724 if (I->getParent() && !I->isEHPad() && !isa<TerminatorInst>(I) && 4725 !I->mayHaveSideEffects()) 4726 I->eraseFromParent(); 4727 } else { 4728 Worklist.insert(I); 4729 } 4730 4731 // Note that we must test the size on each iteration, the worklist can grow. 4732 for (unsigned Idx = 0; Idx != Worklist.size(); ++Idx) { 4733 I = Worklist[Idx]; 4734 4735 // See if this instruction simplifies. 4736 SimpleV = SimplifyInstruction(I, {DL, TLI, DT, AC}); 4737 if (!SimpleV) 4738 continue; 4739 4740 Simplified = true; 4741 4742 // Stash away all the uses of the old instruction so we can check them for 4743 // recursive simplifications after a RAUW. This is cheaper than checking all 4744 // uses of To on the recursive step in most cases. 4745 for (User *U : I->users()) 4746 Worklist.insert(cast<Instruction>(U)); 4747 4748 // Replace the instruction with its simplified value. 4749 I->replaceAllUsesWith(SimpleV); 4750 4751 // Gracefully handle edge cases where the instruction is not wired into any 4752 // parent block. 4753 if (I->getParent() && !I->isEHPad() && !isa<TerminatorInst>(I) && 4754 !I->mayHaveSideEffects()) 4755 I->eraseFromParent(); 4756 } 4757 return Simplified; 4758 } 4759 4760 bool llvm::recursivelySimplifyInstruction(Instruction *I, 4761 const TargetLibraryInfo *TLI, 4762 const DominatorTree *DT, 4763 AssumptionCache *AC) { 4764 return replaceAndRecursivelySimplifyImpl(I, nullptr, TLI, DT, AC); 4765 } 4766 4767 bool llvm::replaceAndRecursivelySimplify(Instruction *I, Value *SimpleV, 4768 const TargetLibraryInfo *TLI, 4769 const DominatorTree *DT, 4770 AssumptionCache *AC) { 4771 assert(I != SimpleV && "replaceAndRecursivelySimplify(X,X) is not valid!"); 4772 assert(SimpleV && "Must provide a simplified value."); 4773 return replaceAndRecursivelySimplifyImpl(I, SimpleV, TLI, DT, AC); 4774 } 4775 4776 namespace llvm { 4777 const SimplifyQuery getBestSimplifyQuery(Pass &P, Function &F) { 4778 auto *DTWP = P.getAnalysisIfAvailable<DominatorTreeWrapperPass>(); 4779 auto *DT = DTWP ? &DTWP->getDomTree() : nullptr; 4780 auto *TLIWP = P.getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 4781 auto *TLI = TLIWP ? &TLIWP->getTLI() : nullptr; 4782 auto *ACWP = P.getAnalysisIfAvailable<AssumptionCacheTracker>(); 4783 auto *AC = ACWP ? &ACWP->getAssumptionCache(F) : nullptr; 4784 return {F.getParent()->getDataLayout(), TLI, DT, AC}; 4785 } 4786 4787 const SimplifyQuery getBestSimplifyQuery(LoopStandardAnalysisResults &AR, 4788 const DataLayout &DL) { 4789 return {DL, &AR.TLI, &AR.DT, &AR.AC}; 4790 } 4791 4792 template <class T, class... TArgs> 4793 const SimplifyQuery getBestSimplifyQuery(AnalysisManager<T, TArgs...> &AM, 4794 Function &F) { 4795 auto *DT = AM.template getCachedResult<DominatorTreeAnalysis>(F); 4796 auto *TLI = AM.template getCachedResult<TargetLibraryAnalysis>(F); 4797 auto *AC = AM.template getCachedResult<AssumptionAnalysis>(F); 4798 return {F.getParent()->getDataLayout(), TLI, DT, AC}; 4799 } 4800 template const SimplifyQuery getBestSimplifyQuery(AnalysisManager<Function> &, 4801 Function &); 4802 } 4803