1 //===- InstructionSimplify.cpp - Fold instruction operands ----------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements routines for folding instructions into simpler forms
11 // that do not require creating new instructions.  This does constant folding
12 // ("add i32 1, 1" -> "2") but can also handle non-constant operands, either
13 // returning a constant ("and i32 %x, 0" -> "0") or an already existing value
14 // ("and i32 %x, %x" -> "%x").  All operands are assumed to have already been
15 // simplified: This is usually true and assuming it simplifies the logic (if
16 // they have not been simplified then results are correct but maybe suboptimal).
17 //
18 //===----------------------------------------------------------------------===//
19 
20 #include "llvm/Analysis/InstructionSimplify.h"
21 #include "llvm/ADT/SetVector.h"
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/Analysis/AliasAnalysis.h"
24 #include "llvm/Analysis/AssumptionCache.h"
25 #include "llvm/Analysis/CaptureTracking.h"
26 #include "llvm/Analysis/CmpInstAnalysis.h"
27 #include "llvm/Analysis/ConstantFolding.h"
28 #include "llvm/Analysis/LoopAnalysisManager.h"
29 #include "llvm/Analysis/MemoryBuiltins.h"
30 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
31 #include "llvm/Analysis/ValueTracking.h"
32 #include "llvm/Analysis/VectorUtils.h"
33 #include "llvm/IR/ConstantRange.h"
34 #include "llvm/IR/DataLayout.h"
35 #include "llvm/IR/Dominators.h"
36 #include "llvm/IR/GetElementPtrTypeIterator.h"
37 #include "llvm/IR/GlobalAlias.h"
38 #include "llvm/IR/Operator.h"
39 #include "llvm/IR/PatternMatch.h"
40 #include "llvm/IR/ValueHandle.h"
41 #include "llvm/Support/KnownBits.h"
42 #include <algorithm>
43 using namespace llvm;
44 using namespace llvm::PatternMatch;
45 
46 #define DEBUG_TYPE "instsimplify"
47 
48 enum { RecursionLimit = 3 };
49 
50 STATISTIC(NumExpand,  "Number of expansions");
51 STATISTIC(NumReassoc, "Number of reassociations");
52 
53 static Value *SimplifyAndInst(Value *, Value *, const SimplifyQuery &, unsigned);
54 static Value *SimplifyBinOp(unsigned, Value *, Value *, const SimplifyQuery &,
55                             unsigned);
56 static Value *SimplifyFPBinOp(unsigned, Value *, Value *, const FastMathFlags &,
57                               const SimplifyQuery &, unsigned);
58 static Value *SimplifyCmpInst(unsigned, Value *, Value *, const SimplifyQuery &,
59                               unsigned);
60 static Value *SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS,
61                                const SimplifyQuery &Q, unsigned MaxRecurse);
62 static Value *SimplifyOrInst(Value *, Value *, const SimplifyQuery &, unsigned);
63 static Value *SimplifyXorInst(Value *, Value *, const SimplifyQuery &, unsigned);
64 static Value *SimplifyCastInst(unsigned, Value *, Type *,
65                                const SimplifyQuery &, unsigned);
66 
67 /// For a boolean type or a vector of boolean type, return false or a vector
68 /// with every element false.
69 static Constant *getFalse(Type *Ty) {
70   return ConstantInt::getFalse(Ty);
71 }
72 
73 /// For a boolean type or a vector of boolean type, return true or a vector
74 /// with every element true.
75 static Constant *getTrue(Type *Ty) {
76   return ConstantInt::getTrue(Ty);
77 }
78 
79 /// isSameCompare - Is V equivalent to the comparison "LHS Pred RHS"?
80 static bool isSameCompare(Value *V, CmpInst::Predicate Pred, Value *LHS,
81                           Value *RHS) {
82   CmpInst *Cmp = dyn_cast<CmpInst>(V);
83   if (!Cmp)
84     return false;
85   CmpInst::Predicate CPred = Cmp->getPredicate();
86   Value *CLHS = Cmp->getOperand(0), *CRHS = Cmp->getOperand(1);
87   if (CPred == Pred && CLHS == LHS && CRHS == RHS)
88     return true;
89   return CPred == CmpInst::getSwappedPredicate(Pred) && CLHS == RHS &&
90     CRHS == LHS;
91 }
92 
93 /// Does the given value dominate the specified phi node?
94 static bool ValueDominatesPHI(Value *V, PHINode *P, const DominatorTree *DT) {
95   Instruction *I = dyn_cast<Instruction>(V);
96   if (!I)
97     // Arguments and constants dominate all instructions.
98     return true;
99 
100   // If we are processing instructions (and/or basic blocks) that have not been
101   // fully added to a function, the parent nodes may still be null. Simply
102   // return the conservative answer in these cases.
103   if (!I->getParent() || !P->getParent() || !I->getParent()->getParent())
104     return false;
105 
106   // If we have a DominatorTree then do a precise test.
107   if (DT)
108     return DT->dominates(I, P);
109 
110   // Otherwise, if the instruction is in the entry block and is not an invoke,
111   // then it obviously dominates all phi nodes.
112   if (I->getParent() == &I->getParent()->getParent()->getEntryBlock() &&
113       !isa<InvokeInst>(I))
114     return true;
115 
116   return false;
117 }
118 
119 /// Simplify "A op (B op' C)" by distributing op over op', turning it into
120 /// "(A op B) op' (A op C)".  Here "op" is given by Opcode and "op'" is
121 /// given by OpcodeToExpand, while "A" corresponds to LHS and "B op' C" to RHS.
122 /// Also performs the transform "(A op' B) op C" -> "(A op C) op' (B op C)".
123 /// Returns the simplified value, or null if no simplification was performed.
124 static Value *ExpandBinOp(Instruction::BinaryOps Opcode, Value *LHS, Value *RHS,
125                           Instruction::BinaryOps OpcodeToExpand,
126                           const SimplifyQuery &Q, unsigned MaxRecurse) {
127   // Recursion is always used, so bail out at once if we already hit the limit.
128   if (!MaxRecurse--)
129     return nullptr;
130 
131   // Check whether the expression has the form "(A op' B) op C".
132   if (BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS))
133     if (Op0->getOpcode() == OpcodeToExpand) {
134       // It does!  Try turning it into "(A op C) op' (B op C)".
135       Value *A = Op0->getOperand(0), *B = Op0->getOperand(1), *C = RHS;
136       // Do "A op C" and "B op C" both simplify?
137       if (Value *L = SimplifyBinOp(Opcode, A, C, Q, MaxRecurse))
138         if (Value *R = SimplifyBinOp(Opcode, B, C, Q, MaxRecurse)) {
139           // They do! Return "L op' R" if it simplifies or is already available.
140           // If "L op' R" equals "A op' B" then "L op' R" is just the LHS.
141           if ((L == A && R == B) || (Instruction::isCommutative(OpcodeToExpand)
142                                      && L == B && R == A)) {
143             ++NumExpand;
144             return LHS;
145           }
146           // Otherwise return "L op' R" if it simplifies.
147           if (Value *V = SimplifyBinOp(OpcodeToExpand, L, R, Q, MaxRecurse)) {
148             ++NumExpand;
149             return V;
150           }
151         }
152     }
153 
154   // Check whether the expression has the form "A op (B op' C)".
155   if (BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS))
156     if (Op1->getOpcode() == OpcodeToExpand) {
157       // It does!  Try turning it into "(A op B) op' (A op C)".
158       Value *A = LHS, *B = Op1->getOperand(0), *C = Op1->getOperand(1);
159       // Do "A op B" and "A op C" both simplify?
160       if (Value *L = SimplifyBinOp(Opcode, A, B, Q, MaxRecurse))
161         if (Value *R = SimplifyBinOp(Opcode, A, C, Q, MaxRecurse)) {
162           // They do! Return "L op' R" if it simplifies or is already available.
163           // If "L op' R" equals "B op' C" then "L op' R" is just the RHS.
164           if ((L == B && R == C) || (Instruction::isCommutative(OpcodeToExpand)
165                                      && L == C && R == B)) {
166             ++NumExpand;
167             return RHS;
168           }
169           // Otherwise return "L op' R" if it simplifies.
170           if (Value *V = SimplifyBinOp(OpcodeToExpand, L, R, Q, MaxRecurse)) {
171             ++NumExpand;
172             return V;
173           }
174         }
175     }
176 
177   return nullptr;
178 }
179 
180 /// Generic simplifications for associative binary operations.
181 /// Returns the simpler value, or null if none was found.
182 static Value *SimplifyAssociativeBinOp(Instruction::BinaryOps Opcode,
183                                        Value *LHS, Value *RHS,
184                                        const SimplifyQuery &Q,
185                                        unsigned MaxRecurse) {
186   assert(Instruction::isAssociative(Opcode) && "Not an associative operation!");
187 
188   // Recursion is always used, so bail out at once if we already hit the limit.
189   if (!MaxRecurse--)
190     return nullptr;
191 
192   BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS);
193   BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS);
194 
195   // Transform: "(A op B) op C" ==> "A op (B op C)" if it simplifies completely.
196   if (Op0 && Op0->getOpcode() == Opcode) {
197     Value *A = Op0->getOperand(0);
198     Value *B = Op0->getOperand(1);
199     Value *C = RHS;
200 
201     // Does "B op C" simplify?
202     if (Value *V = SimplifyBinOp(Opcode, B, C, Q, MaxRecurse)) {
203       // It does!  Return "A op V" if it simplifies or is already available.
204       // If V equals B then "A op V" is just the LHS.
205       if (V == B) return LHS;
206       // Otherwise return "A op V" if it simplifies.
207       if (Value *W = SimplifyBinOp(Opcode, A, V, Q, MaxRecurse)) {
208         ++NumReassoc;
209         return W;
210       }
211     }
212   }
213 
214   // Transform: "A op (B op C)" ==> "(A op B) op C" if it simplifies completely.
215   if (Op1 && Op1->getOpcode() == Opcode) {
216     Value *A = LHS;
217     Value *B = Op1->getOperand(0);
218     Value *C = Op1->getOperand(1);
219 
220     // Does "A op B" simplify?
221     if (Value *V = SimplifyBinOp(Opcode, A, B, Q, MaxRecurse)) {
222       // It does!  Return "V op C" if it simplifies or is already available.
223       // If V equals B then "V op C" is just the RHS.
224       if (V == B) return RHS;
225       // Otherwise return "V op C" if it simplifies.
226       if (Value *W = SimplifyBinOp(Opcode, V, C, Q, MaxRecurse)) {
227         ++NumReassoc;
228         return W;
229       }
230     }
231   }
232 
233   // The remaining transforms require commutativity as well as associativity.
234   if (!Instruction::isCommutative(Opcode))
235     return nullptr;
236 
237   // Transform: "(A op B) op C" ==> "(C op A) op B" if it simplifies completely.
238   if (Op0 && Op0->getOpcode() == Opcode) {
239     Value *A = Op0->getOperand(0);
240     Value *B = Op0->getOperand(1);
241     Value *C = RHS;
242 
243     // Does "C op A" simplify?
244     if (Value *V = SimplifyBinOp(Opcode, C, A, Q, MaxRecurse)) {
245       // It does!  Return "V op B" if it simplifies or is already available.
246       // If V equals A then "V op B" is just the LHS.
247       if (V == A) return LHS;
248       // Otherwise return "V op B" if it simplifies.
249       if (Value *W = SimplifyBinOp(Opcode, V, B, Q, MaxRecurse)) {
250         ++NumReassoc;
251         return W;
252       }
253     }
254   }
255 
256   // Transform: "A op (B op C)" ==> "B op (C op A)" if it simplifies completely.
257   if (Op1 && Op1->getOpcode() == Opcode) {
258     Value *A = LHS;
259     Value *B = Op1->getOperand(0);
260     Value *C = Op1->getOperand(1);
261 
262     // Does "C op A" simplify?
263     if (Value *V = SimplifyBinOp(Opcode, C, A, Q, MaxRecurse)) {
264       // It does!  Return "B op V" if it simplifies or is already available.
265       // If V equals C then "B op V" is just the RHS.
266       if (V == C) return RHS;
267       // Otherwise return "B op V" if it simplifies.
268       if (Value *W = SimplifyBinOp(Opcode, B, V, Q, MaxRecurse)) {
269         ++NumReassoc;
270         return W;
271       }
272     }
273   }
274 
275   return nullptr;
276 }
277 
278 /// In the case of a binary operation with a select instruction as an operand,
279 /// try to simplify the binop by seeing whether evaluating it on both branches
280 /// of the select results in the same value. Returns the common value if so,
281 /// otherwise returns null.
282 static Value *ThreadBinOpOverSelect(Instruction::BinaryOps Opcode, Value *LHS,
283                                     Value *RHS, const SimplifyQuery &Q,
284                                     unsigned MaxRecurse) {
285   // Recursion is always used, so bail out at once if we already hit the limit.
286   if (!MaxRecurse--)
287     return nullptr;
288 
289   SelectInst *SI;
290   if (isa<SelectInst>(LHS)) {
291     SI = cast<SelectInst>(LHS);
292   } else {
293     assert(isa<SelectInst>(RHS) && "No select instruction operand!");
294     SI = cast<SelectInst>(RHS);
295   }
296 
297   // Evaluate the BinOp on the true and false branches of the select.
298   Value *TV;
299   Value *FV;
300   if (SI == LHS) {
301     TV = SimplifyBinOp(Opcode, SI->getTrueValue(), RHS, Q, MaxRecurse);
302     FV = SimplifyBinOp(Opcode, SI->getFalseValue(), RHS, Q, MaxRecurse);
303   } else {
304     TV = SimplifyBinOp(Opcode, LHS, SI->getTrueValue(), Q, MaxRecurse);
305     FV = SimplifyBinOp(Opcode, LHS, SI->getFalseValue(), Q, MaxRecurse);
306   }
307 
308   // If they simplified to the same value, then return the common value.
309   // If they both failed to simplify then return null.
310   if (TV == FV)
311     return TV;
312 
313   // If one branch simplified to undef, return the other one.
314   if (TV && isa<UndefValue>(TV))
315     return FV;
316   if (FV && isa<UndefValue>(FV))
317     return TV;
318 
319   // If applying the operation did not change the true and false select values,
320   // then the result of the binop is the select itself.
321   if (TV == SI->getTrueValue() && FV == SI->getFalseValue())
322     return SI;
323 
324   // If one branch simplified and the other did not, and the simplified
325   // value is equal to the unsimplified one, return the simplified value.
326   // For example, select (cond, X, X & Z) & Z -> X & Z.
327   if ((FV && !TV) || (TV && !FV)) {
328     // Check that the simplified value has the form "X op Y" where "op" is the
329     // same as the original operation.
330     Instruction *Simplified = dyn_cast<Instruction>(FV ? FV : TV);
331     if (Simplified && Simplified->getOpcode() == Opcode) {
332       // The value that didn't simplify is "UnsimplifiedLHS op UnsimplifiedRHS".
333       // We already know that "op" is the same as for the simplified value.  See
334       // if the operands match too.  If so, return the simplified value.
335       Value *UnsimplifiedBranch = FV ? SI->getTrueValue() : SI->getFalseValue();
336       Value *UnsimplifiedLHS = SI == LHS ? UnsimplifiedBranch : LHS;
337       Value *UnsimplifiedRHS = SI == LHS ? RHS : UnsimplifiedBranch;
338       if (Simplified->getOperand(0) == UnsimplifiedLHS &&
339           Simplified->getOperand(1) == UnsimplifiedRHS)
340         return Simplified;
341       if (Simplified->isCommutative() &&
342           Simplified->getOperand(1) == UnsimplifiedLHS &&
343           Simplified->getOperand(0) == UnsimplifiedRHS)
344         return Simplified;
345     }
346   }
347 
348   return nullptr;
349 }
350 
351 /// In the case of a comparison with a select instruction, try to simplify the
352 /// comparison by seeing whether both branches of the select result in the same
353 /// value. Returns the common value if so, otherwise returns null.
354 static Value *ThreadCmpOverSelect(CmpInst::Predicate Pred, Value *LHS,
355                                   Value *RHS, const SimplifyQuery &Q,
356                                   unsigned MaxRecurse) {
357   // Recursion is always used, so bail out at once if we already hit the limit.
358   if (!MaxRecurse--)
359     return nullptr;
360 
361   // Make sure the select is on the LHS.
362   if (!isa<SelectInst>(LHS)) {
363     std::swap(LHS, RHS);
364     Pred = CmpInst::getSwappedPredicate(Pred);
365   }
366   assert(isa<SelectInst>(LHS) && "Not comparing with a select instruction!");
367   SelectInst *SI = cast<SelectInst>(LHS);
368   Value *Cond = SI->getCondition();
369   Value *TV = SI->getTrueValue();
370   Value *FV = SI->getFalseValue();
371 
372   // Now that we have "cmp select(Cond, TV, FV), RHS", analyse it.
373   // Does "cmp TV, RHS" simplify?
374   Value *TCmp = SimplifyCmpInst(Pred, TV, RHS, Q, MaxRecurse);
375   if (TCmp == Cond) {
376     // It not only simplified, it simplified to the select condition.  Replace
377     // it with 'true'.
378     TCmp = getTrue(Cond->getType());
379   } else if (!TCmp) {
380     // It didn't simplify.  However if "cmp TV, RHS" is equal to the select
381     // condition then we can replace it with 'true'.  Otherwise give up.
382     if (!isSameCompare(Cond, Pred, TV, RHS))
383       return nullptr;
384     TCmp = getTrue(Cond->getType());
385   }
386 
387   // Does "cmp FV, RHS" simplify?
388   Value *FCmp = SimplifyCmpInst(Pred, FV, RHS, Q, MaxRecurse);
389   if (FCmp == Cond) {
390     // It not only simplified, it simplified to the select condition.  Replace
391     // it with 'false'.
392     FCmp = getFalse(Cond->getType());
393   } else if (!FCmp) {
394     // It didn't simplify.  However if "cmp FV, RHS" is equal to the select
395     // condition then we can replace it with 'false'.  Otherwise give up.
396     if (!isSameCompare(Cond, Pred, FV, RHS))
397       return nullptr;
398     FCmp = getFalse(Cond->getType());
399   }
400 
401   // If both sides simplified to the same value, then use it as the result of
402   // the original comparison.
403   if (TCmp == FCmp)
404     return TCmp;
405 
406   // The remaining cases only make sense if the select condition has the same
407   // type as the result of the comparison, so bail out if this is not so.
408   if (Cond->getType()->isVectorTy() != RHS->getType()->isVectorTy())
409     return nullptr;
410   // If the false value simplified to false, then the result of the compare
411   // is equal to "Cond && TCmp".  This also catches the case when the false
412   // value simplified to false and the true value to true, returning "Cond".
413   if (match(FCmp, m_Zero()))
414     if (Value *V = SimplifyAndInst(Cond, TCmp, Q, MaxRecurse))
415       return V;
416   // If the true value simplified to true, then the result of the compare
417   // is equal to "Cond || FCmp".
418   if (match(TCmp, m_One()))
419     if (Value *V = SimplifyOrInst(Cond, FCmp, Q, MaxRecurse))
420       return V;
421   // Finally, if the false value simplified to true and the true value to
422   // false, then the result of the compare is equal to "!Cond".
423   if (match(FCmp, m_One()) && match(TCmp, m_Zero()))
424     if (Value *V =
425         SimplifyXorInst(Cond, Constant::getAllOnesValue(Cond->getType()),
426                         Q, MaxRecurse))
427       return V;
428 
429   return nullptr;
430 }
431 
432 /// In the case of a binary operation with an operand that is a PHI instruction,
433 /// try to simplify the binop by seeing whether evaluating it on the incoming
434 /// phi values yields the same result for every value. If so returns the common
435 /// value, otherwise returns null.
436 static Value *ThreadBinOpOverPHI(Instruction::BinaryOps Opcode, Value *LHS,
437                                  Value *RHS, const SimplifyQuery &Q,
438                                  unsigned MaxRecurse) {
439   // Recursion is always used, so bail out at once if we already hit the limit.
440   if (!MaxRecurse--)
441     return nullptr;
442 
443   PHINode *PI;
444   if (isa<PHINode>(LHS)) {
445     PI = cast<PHINode>(LHS);
446     // Bail out if RHS and the phi may be mutually interdependent due to a loop.
447     if (!ValueDominatesPHI(RHS, PI, Q.DT))
448       return nullptr;
449   } else {
450     assert(isa<PHINode>(RHS) && "No PHI instruction operand!");
451     PI = cast<PHINode>(RHS);
452     // Bail out if LHS and the phi may be mutually interdependent due to a loop.
453     if (!ValueDominatesPHI(LHS, PI, Q.DT))
454       return nullptr;
455   }
456 
457   // Evaluate the BinOp on the incoming phi values.
458   Value *CommonValue = nullptr;
459   for (Value *Incoming : PI->incoming_values()) {
460     // If the incoming value is the phi node itself, it can safely be skipped.
461     if (Incoming == PI) continue;
462     Value *V = PI == LHS ?
463       SimplifyBinOp(Opcode, Incoming, RHS, Q, MaxRecurse) :
464       SimplifyBinOp(Opcode, LHS, Incoming, Q, MaxRecurse);
465     // If the operation failed to simplify, or simplified to a different value
466     // to previously, then give up.
467     if (!V || (CommonValue && V != CommonValue))
468       return nullptr;
469     CommonValue = V;
470   }
471 
472   return CommonValue;
473 }
474 
475 /// In the case of a comparison with a PHI instruction, try to simplify the
476 /// comparison by seeing whether comparing with all of the incoming phi values
477 /// yields the same result every time. If so returns the common result,
478 /// otherwise returns null.
479 static Value *ThreadCmpOverPHI(CmpInst::Predicate Pred, Value *LHS, Value *RHS,
480                                const SimplifyQuery &Q, unsigned MaxRecurse) {
481   // Recursion is always used, so bail out at once if we already hit the limit.
482   if (!MaxRecurse--)
483     return nullptr;
484 
485   // Make sure the phi is on the LHS.
486   if (!isa<PHINode>(LHS)) {
487     std::swap(LHS, RHS);
488     Pred = CmpInst::getSwappedPredicate(Pred);
489   }
490   assert(isa<PHINode>(LHS) && "Not comparing with a phi instruction!");
491   PHINode *PI = cast<PHINode>(LHS);
492 
493   // Bail out if RHS and the phi may be mutually interdependent due to a loop.
494   if (!ValueDominatesPHI(RHS, PI, Q.DT))
495     return nullptr;
496 
497   // Evaluate the BinOp on the incoming phi values.
498   Value *CommonValue = nullptr;
499   for (Value *Incoming : PI->incoming_values()) {
500     // If the incoming value is the phi node itself, it can safely be skipped.
501     if (Incoming == PI) continue;
502     Value *V = SimplifyCmpInst(Pred, Incoming, RHS, Q, MaxRecurse);
503     // If the operation failed to simplify, or simplified to a different value
504     // to previously, then give up.
505     if (!V || (CommonValue && V != CommonValue))
506       return nullptr;
507     CommonValue = V;
508   }
509 
510   return CommonValue;
511 }
512 
513 static Constant *foldOrCommuteConstant(Instruction::BinaryOps Opcode,
514                                        Value *&Op0, Value *&Op1,
515                                        const SimplifyQuery &Q) {
516   if (auto *CLHS = dyn_cast<Constant>(Op0)) {
517     if (auto *CRHS = dyn_cast<Constant>(Op1))
518       return ConstantFoldBinaryOpOperands(Opcode, CLHS, CRHS, Q.DL);
519 
520     // Canonicalize the constant to the RHS if this is a commutative operation.
521     if (Instruction::isCommutative(Opcode))
522       std::swap(Op0, Op1);
523   }
524   return nullptr;
525 }
526 
527 /// Given operands for an Add, see if we can fold the result.
528 /// If not, this returns null.
529 static Value *SimplifyAddInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
530                               const SimplifyQuery &Q, unsigned MaxRecurse) {
531   if (Constant *C = foldOrCommuteConstant(Instruction::Add, Op0, Op1, Q))
532     return C;
533 
534   // X + undef -> undef
535   if (match(Op1, m_Undef()))
536     return Op1;
537 
538   // X + 0 -> X
539   if (match(Op1, m_Zero()))
540     return Op0;
541 
542   // X + (Y - X) -> Y
543   // (Y - X) + X -> Y
544   // Eg: X + -X -> 0
545   Value *Y = nullptr;
546   if (match(Op1, m_Sub(m_Value(Y), m_Specific(Op0))) ||
547       match(Op0, m_Sub(m_Value(Y), m_Specific(Op1))))
548     return Y;
549 
550   // X + ~X -> -1   since   ~X = -X-1
551   Type *Ty = Op0->getType();
552   if (match(Op0, m_Not(m_Specific(Op1))) ||
553       match(Op1, m_Not(m_Specific(Op0))))
554     return Constant::getAllOnesValue(Ty);
555 
556   // add nsw/nuw (xor Y, signmask), signmask --> Y
557   // The no-wrapping add guarantees that the top bit will be set by the add.
558   // Therefore, the xor must be clearing the already set sign bit of Y.
559   if ((isNSW || isNUW) && match(Op1, m_SignMask()) &&
560       match(Op0, m_Xor(m_Value(Y), m_SignMask())))
561     return Y;
562 
563   /// i1 add -> xor.
564   if (MaxRecurse && Op0->getType()->isIntOrIntVectorTy(1))
565     if (Value *V = SimplifyXorInst(Op0, Op1, Q, MaxRecurse-1))
566       return V;
567 
568   // Try some generic simplifications for associative operations.
569   if (Value *V = SimplifyAssociativeBinOp(Instruction::Add, Op0, Op1, Q,
570                                           MaxRecurse))
571     return V;
572 
573   // Threading Add over selects and phi nodes is pointless, so don't bother.
574   // Threading over the select in "A + select(cond, B, C)" means evaluating
575   // "A+B" and "A+C" and seeing if they are equal; but they are equal if and
576   // only if B and C are equal.  If B and C are equal then (since we assume
577   // that operands have already been simplified) "select(cond, B, C)" should
578   // have been simplified to the common value of B and C already.  Analysing
579   // "A+B" and "A+C" thus gains nothing, but costs compile time.  Similarly
580   // for threading over phi nodes.
581 
582   return nullptr;
583 }
584 
585 Value *llvm::SimplifyAddInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
586                              const SimplifyQuery &Query) {
587   return ::SimplifyAddInst(Op0, Op1, isNSW, isNUW, Query, RecursionLimit);
588 }
589 
590 /// \brief Compute the base pointer and cumulative constant offsets for V.
591 ///
592 /// This strips all constant offsets off of V, leaving it the base pointer, and
593 /// accumulates the total constant offset applied in the returned constant. It
594 /// returns 0 if V is not a pointer, and returns the constant '0' if there are
595 /// no constant offsets applied.
596 ///
597 /// This is very similar to GetPointerBaseWithConstantOffset except it doesn't
598 /// follow non-inbounds geps. This allows it to remain usable for icmp ult/etc.
599 /// folding.
600 static Constant *stripAndComputeConstantOffsets(const DataLayout &DL, Value *&V,
601                                                 bool AllowNonInbounds = false) {
602   assert(V->getType()->isPtrOrPtrVectorTy());
603 
604   Type *IntPtrTy = DL.getIntPtrType(V->getType())->getScalarType();
605   APInt Offset = APInt::getNullValue(IntPtrTy->getIntegerBitWidth());
606 
607   // Even though we don't look through PHI nodes, we could be called on an
608   // instruction in an unreachable block, which may be on a cycle.
609   SmallPtrSet<Value *, 4> Visited;
610   Visited.insert(V);
611   do {
612     if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
613       if ((!AllowNonInbounds && !GEP->isInBounds()) ||
614           !GEP->accumulateConstantOffset(DL, Offset))
615         break;
616       V = GEP->getPointerOperand();
617     } else if (Operator::getOpcode(V) == Instruction::BitCast) {
618       V = cast<Operator>(V)->getOperand(0);
619     } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
620       if (GA->isInterposable())
621         break;
622       V = GA->getAliasee();
623     } else {
624       if (auto CS = CallSite(V))
625         if (Value *RV = CS.getReturnedArgOperand()) {
626           V = RV;
627           continue;
628         }
629       break;
630     }
631     assert(V->getType()->isPtrOrPtrVectorTy() && "Unexpected operand type!");
632   } while (Visited.insert(V).second);
633 
634   Constant *OffsetIntPtr = ConstantInt::get(IntPtrTy, Offset);
635   if (V->getType()->isVectorTy())
636     return ConstantVector::getSplat(V->getType()->getVectorNumElements(),
637                                     OffsetIntPtr);
638   return OffsetIntPtr;
639 }
640 
641 /// \brief Compute the constant difference between two pointer values.
642 /// If the difference is not a constant, returns zero.
643 static Constant *computePointerDifference(const DataLayout &DL, Value *LHS,
644                                           Value *RHS) {
645   Constant *LHSOffset = stripAndComputeConstantOffsets(DL, LHS);
646   Constant *RHSOffset = stripAndComputeConstantOffsets(DL, RHS);
647 
648   // If LHS and RHS are not related via constant offsets to the same base
649   // value, there is nothing we can do here.
650   if (LHS != RHS)
651     return nullptr;
652 
653   // Otherwise, the difference of LHS - RHS can be computed as:
654   //    LHS - RHS
655   //  = (LHSOffset + Base) - (RHSOffset + Base)
656   //  = LHSOffset - RHSOffset
657   return ConstantExpr::getSub(LHSOffset, RHSOffset);
658 }
659 
660 /// Given operands for a Sub, see if we can fold the result.
661 /// If not, this returns null.
662 static Value *SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
663                               const SimplifyQuery &Q, unsigned MaxRecurse) {
664   if (Constant *C = foldOrCommuteConstant(Instruction::Sub, Op0, Op1, Q))
665     return C;
666 
667   // X - undef -> undef
668   // undef - X -> undef
669   if (match(Op0, m_Undef()) || match(Op1, m_Undef()))
670     return UndefValue::get(Op0->getType());
671 
672   // X - 0 -> X
673   if (match(Op1, m_Zero()))
674     return Op0;
675 
676   // X - X -> 0
677   if (Op0 == Op1)
678     return Constant::getNullValue(Op0->getType());
679 
680   // Is this a negation?
681   if (match(Op0, m_Zero())) {
682     // 0 - X -> 0 if the sub is NUW.
683     if (isNUW)
684       return Op0;
685 
686     KnownBits Known = computeKnownBits(Op1, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
687     if (Known.Zero.isMaxSignedValue()) {
688       // Op1 is either 0 or the minimum signed value. If the sub is NSW, then
689       // Op1 must be 0 because negating the minimum signed value is undefined.
690       if (isNSW)
691         return Op0;
692 
693       // 0 - X -> X if X is 0 or the minimum signed value.
694       return Op1;
695     }
696   }
697 
698   // (X + Y) - Z -> X + (Y - Z) or Y + (X - Z) if everything simplifies.
699   // For example, (X + Y) - Y -> X; (Y + X) - Y -> X
700   Value *X = nullptr, *Y = nullptr, *Z = Op1;
701   if (MaxRecurse && match(Op0, m_Add(m_Value(X), m_Value(Y)))) { // (X + Y) - Z
702     // See if "V === Y - Z" simplifies.
703     if (Value *V = SimplifyBinOp(Instruction::Sub, Y, Z, Q, MaxRecurse-1))
704       // It does!  Now see if "X + V" simplifies.
705       if (Value *W = SimplifyBinOp(Instruction::Add, X, V, Q, MaxRecurse-1)) {
706         // It does, we successfully reassociated!
707         ++NumReassoc;
708         return W;
709       }
710     // See if "V === X - Z" simplifies.
711     if (Value *V = SimplifyBinOp(Instruction::Sub, X, Z, Q, MaxRecurse-1))
712       // It does!  Now see if "Y + V" simplifies.
713       if (Value *W = SimplifyBinOp(Instruction::Add, Y, V, Q, MaxRecurse-1)) {
714         // It does, we successfully reassociated!
715         ++NumReassoc;
716         return W;
717       }
718   }
719 
720   // X - (Y + Z) -> (X - Y) - Z or (X - Z) - Y if everything simplifies.
721   // For example, X - (X + 1) -> -1
722   X = Op0;
723   if (MaxRecurse && match(Op1, m_Add(m_Value(Y), m_Value(Z)))) { // X - (Y + Z)
724     // See if "V === X - Y" simplifies.
725     if (Value *V = SimplifyBinOp(Instruction::Sub, X, Y, Q, MaxRecurse-1))
726       // It does!  Now see if "V - Z" simplifies.
727       if (Value *W = SimplifyBinOp(Instruction::Sub, V, Z, Q, MaxRecurse-1)) {
728         // It does, we successfully reassociated!
729         ++NumReassoc;
730         return W;
731       }
732     // See if "V === X - Z" simplifies.
733     if (Value *V = SimplifyBinOp(Instruction::Sub, X, Z, Q, MaxRecurse-1))
734       // It does!  Now see if "V - Y" simplifies.
735       if (Value *W = SimplifyBinOp(Instruction::Sub, V, Y, Q, MaxRecurse-1)) {
736         // It does, we successfully reassociated!
737         ++NumReassoc;
738         return W;
739       }
740   }
741 
742   // Z - (X - Y) -> (Z - X) + Y if everything simplifies.
743   // For example, X - (X - Y) -> Y.
744   Z = Op0;
745   if (MaxRecurse && match(Op1, m_Sub(m_Value(X), m_Value(Y)))) // Z - (X - Y)
746     // See if "V === Z - X" simplifies.
747     if (Value *V = SimplifyBinOp(Instruction::Sub, Z, X, Q, MaxRecurse-1))
748       // It does!  Now see if "V + Y" simplifies.
749       if (Value *W = SimplifyBinOp(Instruction::Add, V, Y, Q, MaxRecurse-1)) {
750         // It does, we successfully reassociated!
751         ++NumReassoc;
752         return W;
753       }
754 
755   // trunc(X) - trunc(Y) -> trunc(X - Y) if everything simplifies.
756   if (MaxRecurse && match(Op0, m_Trunc(m_Value(X))) &&
757       match(Op1, m_Trunc(m_Value(Y))))
758     if (X->getType() == Y->getType())
759       // See if "V === X - Y" simplifies.
760       if (Value *V = SimplifyBinOp(Instruction::Sub, X, Y, Q, MaxRecurse-1))
761         // It does!  Now see if "trunc V" simplifies.
762         if (Value *W = SimplifyCastInst(Instruction::Trunc, V, Op0->getType(),
763                                         Q, MaxRecurse - 1))
764           // It does, return the simplified "trunc V".
765           return W;
766 
767   // Variations on GEP(base, I, ...) - GEP(base, i, ...) -> GEP(null, I-i, ...).
768   if (match(Op0, m_PtrToInt(m_Value(X))) &&
769       match(Op1, m_PtrToInt(m_Value(Y))))
770     if (Constant *Result = computePointerDifference(Q.DL, X, Y))
771       return ConstantExpr::getIntegerCast(Result, Op0->getType(), true);
772 
773   // i1 sub -> xor.
774   if (MaxRecurse && Op0->getType()->isIntOrIntVectorTy(1))
775     if (Value *V = SimplifyXorInst(Op0, Op1, Q, MaxRecurse-1))
776       return V;
777 
778   // Threading Sub over selects and phi nodes is pointless, so don't bother.
779   // Threading over the select in "A - select(cond, B, C)" means evaluating
780   // "A-B" and "A-C" and seeing if they are equal; but they are equal if and
781   // only if B and C are equal.  If B and C are equal then (since we assume
782   // that operands have already been simplified) "select(cond, B, C)" should
783   // have been simplified to the common value of B and C already.  Analysing
784   // "A-B" and "A-C" thus gains nothing, but costs compile time.  Similarly
785   // for threading over phi nodes.
786 
787   return nullptr;
788 }
789 
790 Value *llvm::SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
791                              const SimplifyQuery &Q) {
792   return ::SimplifySubInst(Op0, Op1, isNSW, isNUW, Q, RecursionLimit);
793 }
794 
795 /// Given operands for a Mul, see if we can fold the result.
796 /// If not, this returns null.
797 static Value *SimplifyMulInst(Value *Op0, Value *Op1, const SimplifyQuery &Q,
798                               unsigned MaxRecurse) {
799   if (Constant *C = foldOrCommuteConstant(Instruction::Mul, Op0, Op1, Q))
800     return C;
801 
802   // X * undef -> 0
803   if (match(Op1, m_Undef()))
804     return Constant::getNullValue(Op0->getType());
805 
806   // X * 0 -> 0
807   if (match(Op1, m_Zero()))
808     return Op1;
809 
810   // X * 1 -> X
811   if (match(Op1, m_One()))
812     return Op0;
813 
814   // (X / Y) * Y -> X if the division is exact.
815   Value *X = nullptr;
816   if (match(Op0, m_Exact(m_IDiv(m_Value(X), m_Specific(Op1)))) || // (X / Y) * Y
817       match(Op1, m_Exact(m_IDiv(m_Value(X), m_Specific(Op0)))))   // Y * (X / Y)
818     return X;
819 
820   // i1 mul -> and.
821   if (MaxRecurse && Op0->getType()->isIntOrIntVectorTy(1))
822     if (Value *V = SimplifyAndInst(Op0, Op1, Q, MaxRecurse-1))
823       return V;
824 
825   // Try some generic simplifications for associative operations.
826   if (Value *V = SimplifyAssociativeBinOp(Instruction::Mul, Op0, Op1, Q,
827                                           MaxRecurse))
828     return V;
829 
830   // Mul distributes over Add.  Try some generic simplifications based on this.
831   if (Value *V = ExpandBinOp(Instruction::Mul, Op0, Op1, Instruction::Add,
832                              Q, MaxRecurse))
833     return V;
834 
835   // If the operation is with the result of a select instruction, check whether
836   // operating on either branch of the select always yields the same value.
837   if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
838     if (Value *V = ThreadBinOpOverSelect(Instruction::Mul, Op0, Op1, Q,
839                                          MaxRecurse))
840       return V;
841 
842   // If the operation is with the result of a phi instruction, check whether
843   // operating on all incoming values of the phi always yields the same value.
844   if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
845     if (Value *V = ThreadBinOpOverPHI(Instruction::Mul, Op0, Op1, Q,
846                                       MaxRecurse))
847       return V;
848 
849   return nullptr;
850 }
851 
852 Value *llvm::SimplifyMulInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) {
853   return ::SimplifyMulInst(Op0, Op1, Q, RecursionLimit);
854 }
855 
856 /// Check for common or similar folds of integer division or integer remainder.
857 /// This applies to all 4 opcodes (sdiv/udiv/srem/urem).
858 static Value *simplifyDivRem(Value *Op0, Value *Op1, bool IsDiv) {
859   Type *Ty = Op0->getType();
860 
861   // X / undef -> undef
862   // X % undef -> undef
863   if (match(Op1, m_Undef()))
864     return Op1;
865 
866   // X / 0 -> undef
867   // X % 0 -> undef
868   // We don't need to preserve faults!
869   if (match(Op1, m_Zero()))
870     return UndefValue::get(Ty);
871 
872   // If any element of a constant divisor vector is zero, the whole op is undef.
873   auto *Op1C = dyn_cast<Constant>(Op1);
874   if (Op1C && Ty->isVectorTy()) {
875     unsigned NumElts = Ty->getVectorNumElements();
876     for (unsigned i = 0; i != NumElts; ++i) {
877       Constant *Elt = Op1C->getAggregateElement(i);
878       if (Elt && Elt->isNullValue())
879         return UndefValue::get(Ty);
880     }
881   }
882 
883   // undef / X -> 0
884   // undef % X -> 0
885   if (match(Op0, m_Undef()))
886     return Constant::getNullValue(Ty);
887 
888   // 0 / X -> 0
889   // 0 % X -> 0
890   if (match(Op0, m_Zero()))
891     return Op0;
892 
893   // X / X -> 1
894   // X % X -> 0
895   if (Op0 == Op1)
896     return IsDiv ? ConstantInt::get(Ty, 1) : Constant::getNullValue(Ty);
897 
898   // X / 1 -> X
899   // X % 1 -> 0
900   // If this is a boolean op (single-bit element type), we can't have
901   // division-by-zero or remainder-by-zero, so assume the divisor is 1.
902   if (match(Op1, m_One()) || Ty->isIntOrIntVectorTy(1))
903     return IsDiv ? Op0 : Constant::getNullValue(Ty);
904 
905   return nullptr;
906 }
907 
908 /// Given a predicate and two operands, return true if the comparison is true.
909 /// This is a helper for div/rem simplification where we return some other value
910 /// when we can prove a relationship between the operands.
911 static bool isICmpTrue(ICmpInst::Predicate Pred, Value *LHS, Value *RHS,
912                        const SimplifyQuery &Q, unsigned MaxRecurse) {
913   Value *V = SimplifyICmpInst(Pred, LHS, RHS, Q, MaxRecurse);
914   Constant *C = dyn_cast_or_null<Constant>(V);
915   return (C && C->isAllOnesValue());
916 }
917 
918 /// Return true if we can simplify X / Y to 0. Remainder can adapt that answer
919 /// to simplify X % Y to X.
920 static bool isDivZero(Value *X, Value *Y, const SimplifyQuery &Q,
921                       unsigned MaxRecurse, bool IsSigned) {
922   // Recursion is always used, so bail out at once if we already hit the limit.
923   if (!MaxRecurse--)
924     return false;
925 
926   if (IsSigned) {
927     // |X| / |Y| --> 0
928     //
929     // We require that 1 operand is a simple constant. That could be extended to
930     // 2 variables if we computed the sign bit for each.
931     //
932     // Make sure that a constant is not the minimum signed value because taking
933     // the abs() of that is undefined.
934     Type *Ty = X->getType();
935     const APInt *C;
936     if (match(X, m_APInt(C)) && !C->isMinSignedValue()) {
937       // Is the variable divisor magnitude always greater than the constant
938       // dividend magnitude?
939       // |Y| > |C| --> Y < -abs(C) or Y > abs(C)
940       Constant *PosDividendC = ConstantInt::get(Ty, C->abs());
941       Constant *NegDividendC = ConstantInt::get(Ty, -C->abs());
942       if (isICmpTrue(CmpInst::ICMP_SLT, Y, NegDividendC, Q, MaxRecurse) ||
943           isICmpTrue(CmpInst::ICMP_SGT, Y, PosDividendC, Q, MaxRecurse))
944         return true;
945     }
946     if (match(Y, m_APInt(C))) {
947       // Special-case: we can't take the abs() of a minimum signed value. If
948       // that's the divisor, then all we have to do is prove that the dividend
949       // is also not the minimum signed value.
950       if (C->isMinSignedValue())
951         return isICmpTrue(CmpInst::ICMP_NE, X, Y, Q, MaxRecurse);
952 
953       // Is the variable dividend magnitude always less than the constant
954       // divisor magnitude?
955       // |X| < |C| --> X > -abs(C) and X < abs(C)
956       Constant *PosDivisorC = ConstantInt::get(Ty, C->abs());
957       Constant *NegDivisorC = ConstantInt::get(Ty, -C->abs());
958       if (isICmpTrue(CmpInst::ICMP_SGT, X, NegDivisorC, Q, MaxRecurse) &&
959           isICmpTrue(CmpInst::ICMP_SLT, X, PosDivisorC, Q, MaxRecurse))
960         return true;
961     }
962     return false;
963   }
964 
965   // IsSigned == false.
966   // Is the dividend unsigned less than the divisor?
967   return isICmpTrue(ICmpInst::ICMP_ULT, X, Y, Q, MaxRecurse);
968 }
969 
970 /// These are simplifications common to SDiv and UDiv.
971 static Value *simplifyDiv(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1,
972                           const SimplifyQuery &Q, unsigned MaxRecurse) {
973   if (Constant *C = foldOrCommuteConstant(Opcode, Op0, Op1, Q))
974     return C;
975 
976   if (Value *V = simplifyDivRem(Op0, Op1, true))
977     return V;
978 
979   bool IsSigned = Opcode == Instruction::SDiv;
980 
981   // (X * Y) / Y -> X if the multiplication does not overflow.
982   Value *X = nullptr, *Y = nullptr;
983   if (match(Op0, m_Mul(m_Value(X), m_Value(Y))) && (X == Op1 || Y == Op1)) {
984     if (Y != Op1) std::swap(X, Y); // Ensure expression is (X * Y) / Y, Y = Op1
985     OverflowingBinaryOperator *Mul = cast<OverflowingBinaryOperator>(Op0);
986     // If the Mul knows it does not overflow, then we are good to go.
987     if ((IsSigned && Mul->hasNoSignedWrap()) ||
988         (!IsSigned && Mul->hasNoUnsignedWrap()))
989       return X;
990     // If X has the form X = A / Y then X * Y cannot overflow.
991     if (BinaryOperator *Div = dyn_cast<BinaryOperator>(X))
992       if (Div->getOpcode() == Opcode && Div->getOperand(1) == Y)
993         return X;
994   }
995 
996   // (X rem Y) / Y -> 0
997   if ((IsSigned && match(Op0, m_SRem(m_Value(), m_Specific(Op1)))) ||
998       (!IsSigned && match(Op0, m_URem(m_Value(), m_Specific(Op1)))))
999     return Constant::getNullValue(Op0->getType());
1000 
1001   // (X /u C1) /u C2 -> 0 if C1 * C2 overflow
1002   ConstantInt *C1, *C2;
1003   if (!IsSigned && match(Op0, m_UDiv(m_Value(X), m_ConstantInt(C1))) &&
1004       match(Op1, m_ConstantInt(C2))) {
1005     bool Overflow;
1006     (void)C1->getValue().umul_ov(C2->getValue(), Overflow);
1007     if (Overflow)
1008       return Constant::getNullValue(Op0->getType());
1009   }
1010 
1011   // If the operation is with the result of a select instruction, check whether
1012   // operating on either branch of the select always yields the same value.
1013   if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
1014     if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse))
1015       return V;
1016 
1017   // If the operation is with the result of a phi instruction, check whether
1018   // operating on all incoming values of the phi always yields the same value.
1019   if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
1020     if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse))
1021       return V;
1022 
1023   if (isDivZero(Op0, Op1, Q, MaxRecurse, IsSigned))
1024     return Constant::getNullValue(Op0->getType());
1025 
1026   return nullptr;
1027 }
1028 
1029 /// These are simplifications common to SRem and URem.
1030 static Value *simplifyRem(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1,
1031                           const SimplifyQuery &Q, unsigned MaxRecurse) {
1032   if (Constant *C = foldOrCommuteConstant(Opcode, Op0, Op1, Q))
1033     return C;
1034 
1035   if (Value *V = simplifyDivRem(Op0, Op1, false))
1036     return V;
1037 
1038   // (X % Y) % Y -> X % Y
1039   if ((Opcode == Instruction::SRem &&
1040        match(Op0, m_SRem(m_Value(), m_Specific(Op1)))) ||
1041       (Opcode == Instruction::URem &&
1042        match(Op0, m_URem(m_Value(), m_Specific(Op1)))))
1043     return Op0;
1044 
1045   // If the operation is with the result of a select instruction, check whether
1046   // operating on either branch of the select always yields the same value.
1047   if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
1048     if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse))
1049       return V;
1050 
1051   // If the operation is with the result of a phi instruction, check whether
1052   // operating on all incoming values of the phi always yields the same value.
1053   if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
1054     if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse))
1055       return V;
1056 
1057   // If X / Y == 0, then X % Y == X.
1058   if (isDivZero(Op0, Op1, Q, MaxRecurse, Opcode == Instruction::SRem))
1059     return Op0;
1060 
1061   return nullptr;
1062 }
1063 
1064 /// Given operands for an SDiv, see if we can fold the result.
1065 /// If not, this returns null.
1066 static Value *SimplifySDivInst(Value *Op0, Value *Op1, const SimplifyQuery &Q,
1067                                unsigned MaxRecurse) {
1068   return simplifyDiv(Instruction::SDiv, Op0, Op1, Q, MaxRecurse);
1069 }
1070 
1071 Value *llvm::SimplifySDivInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) {
1072   return ::SimplifySDivInst(Op0, Op1, Q, RecursionLimit);
1073 }
1074 
1075 /// Given operands for a UDiv, see if we can fold the result.
1076 /// If not, this returns null.
1077 static Value *SimplifyUDivInst(Value *Op0, Value *Op1, const SimplifyQuery &Q,
1078                                unsigned MaxRecurse) {
1079   return simplifyDiv(Instruction::UDiv, Op0, Op1, Q, MaxRecurse);
1080 }
1081 
1082 Value *llvm::SimplifyUDivInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) {
1083   return ::SimplifyUDivInst(Op0, Op1, Q, RecursionLimit);
1084 }
1085 
1086 /// Given operands for an SRem, see if we can fold the result.
1087 /// If not, this returns null.
1088 static Value *SimplifySRemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q,
1089                                unsigned MaxRecurse) {
1090   return simplifyRem(Instruction::SRem, Op0, Op1, Q, MaxRecurse);
1091 }
1092 
1093 Value *llvm::SimplifySRemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) {
1094   return ::SimplifySRemInst(Op0, Op1, Q, RecursionLimit);
1095 }
1096 
1097 /// Given operands for a URem, see if we can fold the result.
1098 /// If not, this returns null.
1099 static Value *SimplifyURemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q,
1100                                unsigned MaxRecurse) {
1101   return simplifyRem(Instruction::URem, Op0, Op1, Q, MaxRecurse);
1102 }
1103 
1104 Value *llvm::SimplifyURemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) {
1105   return ::SimplifyURemInst(Op0, Op1, Q, RecursionLimit);
1106 }
1107 
1108 /// Returns true if a shift by \c Amount always yields undef.
1109 static bool isUndefShift(Value *Amount) {
1110   Constant *C = dyn_cast<Constant>(Amount);
1111   if (!C)
1112     return false;
1113 
1114   // X shift by undef -> undef because it may shift by the bitwidth.
1115   if (isa<UndefValue>(C))
1116     return true;
1117 
1118   // Shifting by the bitwidth or more is undefined.
1119   if (ConstantInt *CI = dyn_cast<ConstantInt>(C))
1120     if (CI->getValue().getLimitedValue() >=
1121         CI->getType()->getScalarSizeInBits())
1122       return true;
1123 
1124   // If all lanes of a vector shift are undefined the whole shift is.
1125   if (isa<ConstantVector>(C) || isa<ConstantDataVector>(C)) {
1126     for (unsigned I = 0, E = C->getType()->getVectorNumElements(); I != E; ++I)
1127       if (!isUndefShift(C->getAggregateElement(I)))
1128         return false;
1129     return true;
1130   }
1131 
1132   return false;
1133 }
1134 
1135 /// Given operands for an Shl, LShr or AShr, see if we can fold the result.
1136 /// If not, this returns null.
1137 static Value *SimplifyShift(Instruction::BinaryOps Opcode, Value *Op0,
1138                             Value *Op1, const SimplifyQuery &Q, unsigned MaxRecurse) {
1139   if (Constant *C = foldOrCommuteConstant(Opcode, Op0, Op1, Q))
1140     return C;
1141 
1142   // 0 shift by X -> 0
1143   if (match(Op0, m_Zero()))
1144     return Op0;
1145 
1146   // X shift by 0 -> X
1147   if (match(Op1, m_Zero()))
1148     return Op0;
1149 
1150   // Fold undefined shifts.
1151   if (isUndefShift(Op1))
1152     return UndefValue::get(Op0->getType());
1153 
1154   // If the operation is with the result of a select instruction, check whether
1155   // operating on either branch of the select always yields the same value.
1156   if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
1157     if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse))
1158       return V;
1159 
1160   // If the operation is with the result of a phi instruction, check whether
1161   // operating on all incoming values of the phi always yields the same value.
1162   if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
1163     if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse))
1164       return V;
1165 
1166   // If any bits in the shift amount make that value greater than or equal to
1167   // the number of bits in the type, the shift is undefined.
1168   KnownBits Known = computeKnownBits(Op1, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
1169   if (Known.One.getLimitedValue() >= Known.getBitWidth())
1170     return UndefValue::get(Op0->getType());
1171 
1172   // If all valid bits in the shift amount are known zero, the first operand is
1173   // unchanged.
1174   unsigned NumValidShiftBits = Log2_32_Ceil(Known.getBitWidth());
1175   if (Known.countMinTrailingZeros() >= NumValidShiftBits)
1176     return Op0;
1177 
1178   return nullptr;
1179 }
1180 
1181 /// \brief Given operands for an Shl, LShr or AShr, see if we can
1182 /// fold the result.  If not, this returns null.
1183 static Value *SimplifyRightShift(Instruction::BinaryOps Opcode, Value *Op0,
1184                                  Value *Op1, bool isExact, const SimplifyQuery &Q,
1185                                  unsigned MaxRecurse) {
1186   if (Value *V = SimplifyShift(Opcode, Op0, Op1, Q, MaxRecurse))
1187     return V;
1188 
1189   // X >> X -> 0
1190   if (Op0 == Op1)
1191     return Constant::getNullValue(Op0->getType());
1192 
1193   // undef >> X -> 0
1194   // undef >> X -> undef (if it's exact)
1195   if (match(Op0, m_Undef()))
1196     return isExact ? Op0 : Constant::getNullValue(Op0->getType());
1197 
1198   // The low bit cannot be shifted out of an exact shift if it is set.
1199   if (isExact) {
1200     KnownBits Op0Known = computeKnownBits(Op0, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT);
1201     if (Op0Known.One[0])
1202       return Op0;
1203   }
1204 
1205   return nullptr;
1206 }
1207 
1208 /// Given operands for an Shl, see if we can fold the result.
1209 /// If not, this returns null.
1210 static Value *SimplifyShlInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
1211                               const SimplifyQuery &Q, unsigned MaxRecurse) {
1212   if (Value *V = SimplifyShift(Instruction::Shl, Op0, Op1, Q, MaxRecurse))
1213     return V;
1214 
1215   // undef << X -> 0
1216   // undef << X -> undef if (if it's NSW/NUW)
1217   if (match(Op0, m_Undef()))
1218     return isNSW || isNUW ? Op0 : Constant::getNullValue(Op0->getType());
1219 
1220   // (X >> A) << A -> X
1221   Value *X;
1222   if (match(Op0, m_Exact(m_Shr(m_Value(X), m_Specific(Op1)))))
1223     return X;
1224   return nullptr;
1225 }
1226 
1227 Value *llvm::SimplifyShlInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
1228                              const SimplifyQuery &Q) {
1229   return ::SimplifyShlInst(Op0, Op1, isNSW, isNUW, Q, RecursionLimit);
1230 }
1231 
1232 /// Given operands for an LShr, see if we can fold the result.
1233 /// If not, this returns null.
1234 static Value *SimplifyLShrInst(Value *Op0, Value *Op1, bool isExact,
1235                                const SimplifyQuery &Q, unsigned MaxRecurse) {
1236   if (Value *V = SimplifyRightShift(Instruction::LShr, Op0, Op1, isExact, Q,
1237                                     MaxRecurse))
1238       return V;
1239 
1240   // (X << A) >> A -> X
1241   Value *X;
1242   if (match(Op0, m_NUWShl(m_Value(X), m_Specific(Op1))))
1243     return X;
1244 
1245   return nullptr;
1246 }
1247 
1248 Value *llvm::SimplifyLShrInst(Value *Op0, Value *Op1, bool isExact,
1249                               const SimplifyQuery &Q) {
1250   return ::SimplifyLShrInst(Op0, Op1, isExact, Q, RecursionLimit);
1251 }
1252 
1253 /// Given operands for an AShr, see if we can fold the result.
1254 /// If not, this returns null.
1255 static Value *SimplifyAShrInst(Value *Op0, Value *Op1, bool isExact,
1256                                const SimplifyQuery &Q, unsigned MaxRecurse) {
1257   if (Value *V = SimplifyRightShift(Instruction::AShr, Op0, Op1, isExact, Q,
1258                                     MaxRecurse))
1259     return V;
1260 
1261   // all ones >>a X -> all ones
1262   if (match(Op0, m_AllOnes()))
1263     return Op0;
1264 
1265   // (X << A) >> A -> X
1266   Value *X;
1267   if (match(Op0, m_NSWShl(m_Value(X), m_Specific(Op1))))
1268     return X;
1269 
1270   // Arithmetic shifting an all-sign-bit value is a no-op.
1271   unsigned NumSignBits = ComputeNumSignBits(Op0, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
1272   if (NumSignBits == Op0->getType()->getScalarSizeInBits())
1273     return Op0;
1274 
1275   return nullptr;
1276 }
1277 
1278 Value *llvm::SimplifyAShrInst(Value *Op0, Value *Op1, bool isExact,
1279                               const SimplifyQuery &Q) {
1280   return ::SimplifyAShrInst(Op0, Op1, isExact, Q, RecursionLimit);
1281 }
1282 
1283 /// Commuted variants are assumed to be handled by calling this function again
1284 /// with the parameters swapped.
1285 static Value *simplifyUnsignedRangeCheck(ICmpInst *ZeroICmp,
1286                                          ICmpInst *UnsignedICmp, bool IsAnd) {
1287   Value *X, *Y;
1288 
1289   ICmpInst::Predicate EqPred;
1290   if (!match(ZeroICmp, m_ICmp(EqPred, m_Value(Y), m_Zero())) ||
1291       !ICmpInst::isEquality(EqPred))
1292     return nullptr;
1293 
1294   ICmpInst::Predicate UnsignedPred;
1295   if (match(UnsignedICmp, m_ICmp(UnsignedPred, m_Value(X), m_Specific(Y))) &&
1296       ICmpInst::isUnsigned(UnsignedPred))
1297     ;
1298   else if (match(UnsignedICmp,
1299                  m_ICmp(UnsignedPred, m_Value(Y), m_Specific(X))) &&
1300            ICmpInst::isUnsigned(UnsignedPred))
1301     UnsignedPred = ICmpInst::getSwappedPredicate(UnsignedPred);
1302   else
1303     return nullptr;
1304 
1305   // X < Y && Y != 0  -->  X < Y
1306   // X < Y || Y != 0  -->  Y != 0
1307   if (UnsignedPred == ICmpInst::ICMP_ULT && EqPred == ICmpInst::ICMP_NE)
1308     return IsAnd ? UnsignedICmp : ZeroICmp;
1309 
1310   // X >= Y || Y != 0  -->  true
1311   // X >= Y || Y == 0  -->  X >= Y
1312   if (UnsignedPred == ICmpInst::ICMP_UGE && !IsAnd) {
1313     if (EqPred == ICmpInst::ICMP_NE)
1314       return getTrue(UnsignedICmp->getType());
1315     return UnsignedICmp;
1316   }
1317 
1318   // X < Y && Y == 0  -->  false
1319   if (UnsignedPred == ICmpInst::ICMP_ULT && EqPred == ICmpInst::ICMP_EQ &&
1320       IsAnd)
1321     return getFalse(UnsignedICmp->getType());
1322 
1323   return nullptr;
1324 }
1325 
1326 /// Commuted variants are assumed to be handled by calling this function again
1327 /// with the parameters swapped.
1328 static Value *simplifyAndOfICmpsWithSameOperands(ICmpInst *Op0, ICmpInst *Op1) {
1329   ICmpInst::Predicate Pred0, Pred1;
1330   Value *A ,*B;
1331   if (!match(Op0, m_ICmp(Pred0, m_Value(A), m_Value(B))) ||
1332       !match(Op1, m_ICmp(Pred1, m_Specific(A), m_Specific(B))))
1333     return nullptr;
1334 
1335   // We have (icmp Pred0, A, B) & (icmp Pred1, A, B).
1336   // If Op1 is always implied true by Op0, then Op0 is a subset of Op1, and we
1337   // can eliminate Op1 from this 'and'.
1338   if (ICmpInst::isImpliedTrueByMatchingCmp(Pred0, Pred1))
1339     return Op0;
1340 
1341   // Check for any combination of predicates that are guaranteed to be disjoint.
1342   if ((Pred0 == ICmpInst::getInversePredicate(Pred1)) ||
1343       (Pred0 == ICmpInst::ICMP_EQ && ICmpInst::isFalseWhenEqual(Pred1)) ||
1344       (Pred0 == ICmpInst::ICMP_SLT && Pred1 == ICmpInst::ICMP_SGT) ||
1345       (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_UGT))
1346     return getFalse(Op0->getType());
1347 
1348   return nullptr;
1349 }
1350 
1351 /// Commuted variants are assumed to be handled by calling this function again
1352 /// with the parameters swapped.
1353 static Value *simplifyOrOfICmpsWithSameOperands(ICmpInst *Op0, ICmpInst *Op1) {
1354   ICmpInst::Predicate Pred0, Pred1;
1355   Value *A ,*B;
1356   if (!match(Op0, m_ICmp(Pred0, m_Value(A), m_Value(B))) ||
1357       !match(Op1, m_ICmp(Pred1, m_Specific(A), m_Specific(B))))
1358     return nullptr;
1359 
1360   // We have (icmp Pred0, A, B) | (icmp Pred1, A, B).
1361   // If Op1 is always implied true by Op0, then Op0 is a subset of Op1, and we
1362   // can eliminate Op0 from this 'or'.
1363   if (ICmpInst::isImpliedTrueByMatchingCmp(Pred0, Pred1))
1364     return Op1;
1365 
1366   // Check for any combination of predicates that cover the entire range of
1367   // possibilities.
1368   if ((Pred0 == ICmpInst::getInversePredicate(Pred1)) ||
1369       (Pred0 == ICmpInst::ICMP_NE && ICmpInst::isTrueWhenEqual(Pred1)) ||
1370       (Pred0 == ICmpInst::ICMP_SLE && Pred1 == ICmpInst::ICMP_SGE) ||
1371       (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_UGE))
1372     return getTrue(Op0->getType());
1373 
1374   return nullptr;
1375 }
1376 
1377 /// Test if a pair of compares with a shared operand and 2 constants has an
1378 /// empty set intersection, full set union, or if one compare is a superset of
1379 /// the other.
1380 static Value *simplifyAndOrOfICmpsWithConstants(ICmpInst *Cmp0, ICmpInst *Cmp1,
1381                                                 bool IsAnd) {
1382   // Look for this pattern: {and/or} (icmp X, C0), (icmp X, C1)).
1383   if (Cmp0->getOperand(0) != Cmp1->getOperand(0))
1384     return nullptr;
1385 
1386   const APInt *C0, *C1;
1387   if (!match(Cmp0->getOperand(1), m_APInt(C0)) ||
1388       !match(Cmp1->getOperand(1), m_APInt(C1)))
1389     return nullptr;
1390 
1391   auto Range0 = ConstantRange::makeExactICmpRegion(Cmp0->getPredicate(), *C0);
1392   auto Range1 = ConstantRange::makeExactICmpRegion(Cmp1->getPredicate(), *C1);
1393 
1394   // For and-of-compares, check if the intersection is empty:
1395   // (icmp X, C0) && (icmp X, C1) --> empty set --> false
1396   if (IsAnd && Range0.intersectWith(Range1).isEmptySet())
1397     return getFalse(Cmp0->getType());
1398 
1399   // For or-of-compares, check if the union is full:
1400   // (icmp X, C0) || (icmp X, C1) --> full set --> true
1401   if (!IsAnd && Range0.unionWith(Range1).isFullSet())
1402     return getTrue(Cmp0->getType());
1403 
1404   // Is one range a superset of the other?
1405   // If this is and-of-compares, take the smaller set:
1406   // (icmp sgt X, 4) && (icmp sgt X, 42) --> icmp sgt X, 42
1407   // If this is or-of-compares, take the larger set:
1408   // (icmp sgt X, 4) || (icmp sgt X, 42) --> icmp sgt X, 4
1409   if (Range0.contains(Range1))
1410     return IsAnd ? Cmp1 : Cmp0;
1411   if (Range1.contains(Range0))
1412     return IsAnd ? Cmp0 : Cmp1;
1413 
1414   return nullptr;
1415 }
1416 
1417 static Value *simplifyAndOfICmpsWithAdd(ICmpInst *Op0, ICmpInst *Op1) {
1418   // (icmp (add V, C0), C1) & (icmp V, C0)
1419   ICmpInst::Predicate Pred0, Pred1;
1420   const APInt *C0, *C1;
1421   Value *V;
1422   if (!match(Op0, m_ICmp(Pred0, m_Add(m_Value(V), m_APInt(C0)), m_APInt(C1))))
1423     return nullptr;
1424 
1425   if (!match(Op1, m_ICmp(Pred1, m_Specific(V), m_Value())))
1426     return nullptr;
1427 
1428   auto *AddInst = cast<BinaryOperator>(Op0->getOperand(0));
1429   if (AddInst->getOperand(1) != Op1->getOperand(1))
1430     return nullptr;
1431 
1432   Type *ITy = Op0->getType();
1433   bool isNSW = AddInst->hasNoSignedWrap();
1434   bool isNUW = AddInst->hasNoUnsignedWrap();
1435 
1436   const APInt Delta = *C1 - *C0;
1437   if (C0->isStrictlyPositive()) {
1438     if (Delta == 2) {
1439       if (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_SGT)
1440         return getFalse(ITy);
1441       if (Pred0 == ICmpInst::ICMP_SLT && Pred1 == ICmpInst::ICMP_SGT && isNSW)
1442         return getFalse(ITy);
1443     }
1444     if (Delta == 1) {
1445       if (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_SGT)
1446         return getFalse(ITy);
1447       if (Pred0 == ICmpInst::ICMP_SLE && Pred1 == ICmpInst::ICMP_SGT && isNSW)
1448         return getFalse(ITy);
1449     }
1450   }
1451   if (C0->getBoolValue() && isNUW) {
1452     if (Delta == 2)
1453       if (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_UGT)
1454         return getFalse(ITy);
1455     if (Delta == 1)
1456       if (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_UGT)
1457         return getFalse(ITy);
1458   }
1459 
1460   return nullptr;
1461 }
1462 
1463 static Value *simplifyAndOfICmps(ICmpInst *Op0, ICmpInst *Op1) {
1464   if (Value *X = simplifyUnsignedRangeCheck(Op0, Op1, /*IsAnd=*/true))
1465     return X;
1466   if (Value *X = simplifyUnsignedRangeCheck(Op1, Op0, /*IsAnd=*/true))
1467     return X;
1468 
1469   if (Value *X = simplifyAndOfICmpsWithSameOperands(Op0, Op1))
1470     return X;
1471   if (Value *X = simplifyAndOfICmpsWithSameOperands(Op1, Op0))
1472     return X;
1473 
1474   if (Value *X = simplifyAndOrOfICmpsWithConstants(Op0, Op1, true))
1475     return X;
1476 
1477   if (Value *X = simplifyAndOfICmpsWithAdd(Op0, Op1))
1478     return X;
1479   if (Value *X = simplifyAndOfICmpsWithAdd(Op1, Op0))
1480     return X;
1481 
1482   return nullptr;
1483 }
1484 
1485 static Value *simplifyOrOfICmpsWithAdd(ICmpInst *Op0, ICmpInst *Op1) {
1486   // (icmp (add V, C0), C1) | (icmp V, C0)
1487   ICmpInst::Predicate Pred0, Pred1;
1488   const APInt *C0, *C1;
1489   Value *V;
1490   if (!match(Op0, m_ICmp(Pred0, m_Add(m_Value(V), m_APInt(C0)), m_APInt(C1))))
1491     return nullptr;
1492 
1493   if (!match(Op1, m_ICmp(Pred1, m_Specific(V), m_Value())))
1494     return nullptr;
1495 
1496   auto *AddInst = cast<BinaryOperator>(Op0->getOperand(0));
1497   if (AddInst->getOperand(1) != Op1->getOperand(1))
1498     return nullptr;
1499 
1500   Type *ITy = Op0->getType();
1501   bool isNSW = AddInst->hasNoSignedWrap();
1502   bool isNUW = AddInst->hasNoUnsignedWrap();
1503 
1504   const APInt Delta = *C1 - *C0;
1505   if (C0->isStrictlyPositive()) {
1506     if (Delta == 2) {
1507       if (Pred0 == ICmpInst::ICMP_UGE && Pred1 == ICmpInst::ICMP_SLE)
1508         return getTrue(ITy);
1509       if (Pred0 == ICmpInst::ICMP_SGE && Pred1 == ICmpInst::ICMP_SLE && isNSW)
1510         return getTrue(ITy);
1511     }
1512     if (Delta == 1) {
1513       if (Pred0 == ICmpInst::ICMP_UGT && Pred1 == ICmpInst::ICMP_SLE)
1514         return getTrue(ITy);
1515       if (Pred0 == ICmpInst::ICMP_SGT && Pred1 == ICmpInst::ICMP_SLE && isNSW)
1516         return getTrue(ITy);
1517     }
1518   }
1519   if (C0->getBoolValue() && isNUW) {
1520     if (Delta == 2)
1521       if (Pred0 == ICmpInst::ICMP_UGE && Pred1 == ICmpInst::ICMP_ULE)
1522         return getTrue(ITy);
1523     if (Delta == 1)
1524       if (Pred0 == ICmpInst::ICMP_UGT && Pred1 == ICmpInst::ICMP_ULE)
1525         return getTrue(ITy);
1526   }
1527 
1528   return nullptr;
1529 }
1530 
1531 static Value *simplifyOrOfICmps(ICmpInst *Op0, ICmpInst *Op1) {
1532   if (Value *X = simplifyUnsignedRangeCheck(Op0, Op1, /*IsAnd=*/false))
1533     return X;
1534   if (Value *X = simplifyUnsignedRangeCheck(Op1, Op0, /*IsAnd=*/false))
1535     return X;
1536 
1537   if (Value *X = simplifyOrOfICmpsWithSameOperands(Op0, Op1))
1538     return X;
1539   if (Value *X = simplifyOrOfICmpsWithSameOperands(Op1, Op0))
1540     return X;
1541 
1542   if (Value *X = simplifyAndOrOfICmpsWithConstants(Op0, Op1, false))
1543     return X;
1544 
1545   if (Value *X = simplifyOrOfICmpsWithAdd(Op0, Op1))
1546     return X;
1547   if (Value *X = simplifyOrOfICmpsWithAdd(Op1, Op0))
1548     return X;
1549 
1550   return nullptr;
1551 }
1552 
1553 static Value *simplifyAndOrOfICmps(Value *Op0, Value *Op1, bool IsAnd) {
1554   // Look through casts of the 'and' operands to find compares.
1555   auto *Cast0 = dyn_cast<CastInst>(Op0);
1556   auto *Cast1 = dyn_cast<CastInst>(Op1);
1557   if (Cast0 && Cast1 && Cast0->getOpcode() == Cast1->getOpcode() &&
1558       Cast0->getSrcTy() == Cast1->getSrcTy()) {
1559     Op0 = Cast0->getOperand(0);
1560     Op1 = Cast1->getOperand(0);
1561   }
1562 
1563   auto *Cmp0 = dyn_cast<ICmpInst>(Op0);
1564   auto *Cmp1 = dyn_cast<ICmpInst>(Op1);
1565   if (!Cmp0 || !Cmp1)
1566     return nullptr;
1567 
1568   Value *V =
1569       IsAnd ? simplifyAndOfICmps(Cmp0, Cmp1) : simplifyOrOfICmps(Cmp0, Cmp1);
1570   if (!V)
1571     return nullptr;
1572   if (!Cast0)
1573     return V;
1574 
1575   // If we looked through casts, we can only handle a constant simplification
1576   // because we are not allowed to create a cast instruction here.
1577   if (auto *C = dyn_cast<Constant>(V))
1578     return ConstantExpr::getCast(Cast0->getOpcode(), C, Cast0->getType());
1579 
1580   return nullptr;
1581 }
1582 
1583 /// Given operands for an And, see if we can fold the result.
1584 /// If not, this returns null.
1585 static Value *SimplifyAndInst(Value *Op0, Value *Op1, const SimplifyQuery &Q,
1586                               unsigned MaxRecurse) {
1587   if (Constant *C = foldOrCommuteConstant(Instruction::And, Op0, Op1, Q))
1588     return C;
1589 
1590   // X & undef -> 0
1591   if (match(Op1, m_Undef()))
1592     return Constant::getNullValue(Op0->getType());
1593 
1594   // X & X = X
1595   if (Op0 == Op1)
1596     return Op0;
1597 
1598   // X & 0 = 0
1599   if (match(Op1, m_Zero()))
1600     return Op1;
1601 
1602   // X & -1 = X
1603   if (match(Op1, m_AllOnes()))
1604     return Op0;
1605 
1606   // A & ~A  =  ~A & A  =  0
1607   if (match(Op0, m_Not(m_Specific(Op1))) ||
1608       match(Op1, m_Not(m_Specific(Op0))))
1609     return Constant::getNullValue(Op0->getType());
1610 
1611   // (A | ?) & A = A
1612   if (match(Op0, m_c_Or(m_Specific(Op1), m_Value())))
1613     return Op1;
1614 
1615   // A & (A | ?) = A
1616   if (match(Op1, m_c_Or(m_Specific(Op0), m_Value())))
1617     return Op0;
1618 
1619   // A mask that only clears known zeros of a shifted value is a no-op.
1620   Value *X;
1621   const APInt *Mask;
1622   const APInt *ShAmt;
1623   if (match(Op1, m_APInt(Mask))) {
1624     // If all bits in the inverted and shifted mask are clear:
1625     // and (shl X, ShAmt), Mask --> shl X, ShAmt
1626     if (match(Op0, m_Shl(m_Value(X), m_APInt(ShAmt))) &&
1627         (~(*Mask)).lshr(*ShAmt).isNullValue())
1628       return Op0;
1629 
1630     // If all bits in the inverted and shifted mask are clear:
1631     // and (lshr X, ShAmt), Mask --> lshr X, ShAmt
1632     if (match(Op0, m_LShr(m_Value(X), m_APInt(ShAmt))) &&
1633         (~(*Mask)).shl(*ShAmt).isNullValue())
1634       return Op0;
1635   }
1636 
1637   // A & (-A) = A if A is a power of two or zero.
1638   if (match(Op0, m_Neg(m_Specific(Op1))) ||
1639       match(Op1, m_Neg(m_Specific(Op0)))) {
1640     if (isKnownToBeAPowerOfTwo(Op0, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI,
1641                                Q.DT))
1642       return Op0;
1643     if (isKnownToBeAPowerOfTwo(Op1, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI,
1644                                Q.DT))
1645       return Op1;
1646   }
1647 
1648   if (Value *V = simplifyAndOrOfICmps(Op0, Op1, true))
1649     return V;
1650 
1651   // Try some generic simplifications for associative operations.
1652   if (Value *V = SimplifyAssociativeBinOp(Instruction::And, Op0, Op1, Q,
1653                                           MaxRecurse))
1654     return V;
1655 
1656   // And distributes over Or.  Try some generic simplifications based on this.
1657   if (Value *V = ExpandBinOp(Instruction::And, Op0, Op1, Instruction::Or,
1658                              Q, MaxRecurse))
1659     return V;
1660 
1661   // And distributes over Xor.  Try some generic simplifications based on this.
1662   if (Value *V = ExpandBinOp(Instruction::And, Op0, Op1, Instruction::Xor,
1663                              Q, MaxRecurse))
1664     return V;
1665 
1666   // If the operation is with the result of a select instruction, check whether
1667   // operating on either branch of the select always yields the same value.
1668   if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
1669     if (Value *V = ThreadBinOpOverSelect(Instruction::And, Op0, Op1, Q,
1670                                          MaxRecurse))
1671       return V;
1672 
1673   // If the operation is with the result of a phi instruction, check whether
1674   // operating on all incoming values of the phi always yields the same value.
1675   if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
1676     if (Value *V = ThreadBinOpOverPHI(Instruction::And, Op0, Op1, Q,
1677                                       MaxRecurse))
1678       return V;
1679 
1680   return nullptr;
1681 }
1682 
1683 Value *llvm::SimplifyAndInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) {
1684   return ::SimplifyAndInst(Op0, Op1, Q, RecursionLimit);
1685 }
1686 
1687 /// Given operands for an Or, see if we can fold the result.
1688 /// If not, this returns null.
1689 static Value *SimplifyOrInst(Value *Op0, Value *Op1, const SimplifyQuery &Q,
1690                              unsigned MaxRecurse) {
1691   if (Constant *C = foldOrCommuteConstant(Instruction::Or, Op0, Op1, Q))
1692     return C;
1693 
1694   // X | undef -> -1
1695   if (match(Op1, m_Undef()))
1696     return Constant::getAllOnesValue(Op0->getType());
1697 
1698   // X | X = X
1699   if (Op0 == Op1)
1700     return Op0;
1701 
1702   // X | 0 = X
1703   if (match(Op1, m_Zero()))
1704     return Op0;
1705 
1706   // X | -1 = -1
1707   if (match(Op1, m_AllOnes()))
1708     return Op1;
1709 
1710   // A | ~A  =  ~A | A  =  -1
1711   if (match(Op0, m_Not(m_Specific(Op1))) ||
1712       match(Op1, m_Not(m_Specific(Op0))))
1713     return Constant::getAllOnesValue(Op0->getType());
1714 
1715   // (A & ?) | A = A
1716   if (match(Op0, m_c_And(m_Specific(Op1), m_Value())))
1717     return Op1;
1718 
1719   // A | (A & ?) = A
1720   if (match(Op1, m_c_And(m_Specific(Op0), m_Value())))
1721     return Op0;
1722 
1723   // ~(A & ?) | A = -1
1724   if (match(Op0, m_Not(m_c_And(m_Specific(Op1), m_Value()))))
1725     return Constant::getAllOnesValue(Op1->getType());
1726 
1727   // A | ~(A & ?) = -1
1728   if (match(Op1, m_Not(m_c_And(m_Specific(Op1), m_Value()))))
1729     return Constant::getAllOnesValue(Op0->getType());
1730 
1731   Value *A, *B;
1732   // (A & ~B) | (A ^ B) -> (A ^ B)
1733   // (~B & A) | (A ^ B) -> (A ^ B)
1734   // (A & ~B) | (B ^ A) -> (B ^ A)
1735   // (~B & A) | (B ^ A) -> (B ^ A)
1736   if (match(Op1, m_Xor(m_Value(A), m_Value(B))) &&
1737       (match(Op0, m_c_And(m_Specific(A), m_Not(m_Specific(B)))) ||
1738        match(Op0, m_c_And(m_Not(m_Specific(A)), m_Specific(B)))))
1739     return Op1;
1740 
1741   // Commute the 'or' operands.
1742   // (A ^ B) | (A & ~B) -> (A ^ B)
1743   // (A ^ B) | (~B & A) -> (A ^ B)
1744   // (B ^ A) | (A & ~B) -> (B ^ A)
1745   // (B ^ A) | (~B & A) -> (B ^ A)
1746   if (match(Op0, m_Xor(m_Value(A), m_Value(B))) &&
1747       (match(Op1, m_c_And(m_Specific(A), m_Not(m_Specific(B)))) ||
1748        match(Op1, m_c_And(m_Not(m_Specific(A)), m_Specific(B)))))
1749     return Op0;
1750 
1751   // (A & B) | (~A ^ B) -> (~A ^ B)
1752   // (B & A) | (~A ^ B) -> (~A ^ B)
1753   // (A & B) | (B ^ ~A) -> (B ^ ~A)
1754   // (B & A) | (B ^ ~A) -> (B ^ ~A)
1755   if (match(Op0, m_And(m_Value(A), m_Value(B))) &&
1756       (match(Op1, m_c_Xor(m_Specific(A), m_Not(m_Specific(B)))) ||
1757        match(Op1, m_c_Xor(m_Not(m_Specific(A)), m_Specific(B)))))
1758     return Op1;
1759 
1760   // (~A ^ B) | (A & B) -> (~A ^ B)
1761   // (~A ^ B) | (B & A) -> (~A ^ B)
1762   // (B ^ ~A) | (A & B) -> (B ^ ~A)
1763   // (B ^ ~A) | (B & A) -> (B ^ ~A)
1764   if (match(Op1, m_And(m_Value(A), m_Value(B))) &&
1765       (match(Op0, m_c_Xor(m_Specific(A), m_Not(m_Specific(B)))) ||
1766        match(Op0, m_c_Xor(m_Not(m_Specific(A)), m_Specific(B)))))
1767     return Op0;
1768 
1769   if (Value *V = simplifyAndOrOfICmps(Op0, Op1, false))
1770     return V;
1771 
1772   // Try some generic simplifications for associative operations.
1773   if (Value *V = SimplifyAssociativeBinOp(Instruction::Or, Op0, Op1, Q,
1774                                           MaxRecurse))
1775     return V;
1776 
1777   // Or distributes over And.  Try some generic simplifications based on this.
1778   if (Value *V = ExpandBinOp(Instruction::Or, Op0, Op1, Instruction::And, Q,
1779                              MaxRecurse))
1780     return V;
1781 
1782   // If the operation is with the result of a select instruction, check whether
1783   // operating on either branch of the select always yields the same value.
1784   if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
1785     if (Value *V = ThreadBinOpOverSelect(Instruction::Or, Op0, Op1, Q,
1786                                          MaxRecurse))
1787       return V;
1788 
1789   // (A & C1)|(B & C2)
1790   const APInt *C1, *C2;
1791   if (match(Op0, m_And(m_Value(A), m_APInt(C1))) &&
1792       match(Op1, m_And(m_Value(B), m_APInt(C2)))) {
1793     if (*C1 == ~*C2) {
1794       // (A & C1)|(B & C2)
1795       // If we have: ((V + N) & C1) | (V & C2)
1796       // .. and C2 = ~C1 and C2 is 0+1+ and (N & C2) == 0
1797       // replace with V+N.
1798       Value *N;
1799       if (C2->isMask() && // C2 == 0+1+
1800           match(A, m_c_Add(m_Specific(B), m_Value(N)))) {
1801         // Add commutes, try both ways.
1802         if (MaskedValueIsZero(N, *C2, Q.DL, 0, Q.AC, Q.CxtI, Q.DT))
1803           return A;
1804       }
1805       // Or commutes, try both ways.
1806       if (C1->isMask() &&
1807           match(B, m_c_Add(m_Specific(A), m_Value(N)))) {
1808         // Add commutes, try both ways.
1809         if (MaskedValueIsZero(N, *C1, Q.DL, 0, Q.AC, Q.CxtI, Q.DT))
1810           return B;
1811       }
1812     }
1813   }
1814 
1815   // If the operation is with the result of a phi instruction, check whether
1816   // operating on all incoming values of the phi always yields the same value.
1817   if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
1818     if (Value *V = ThreadBinOpOverPHI(Instruction::Or, Op0, Op1, Q, MaxRecurse))
1819       return V;
1820 
1821   return nullptr;
1822 }
1823 
1824 Value *llvm::SimplifyOrInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) {
1825   return ::SimplifyOrInst(Op0, Op1, Q, RecursionLimit);
1826 }
1827 
1828 /// Given operands for a Xor, see if we can fold the result.
1829 /// If not, this returns null.
1830 static Value *SimplifyXorInst(Value *Op0, Value *Op1, const SimplifyQuery &Q,
1831                               unsigned MaxRecurse) {
1832   if (Constant *C = foldOrCommuteConstant(Instruction::Xor, Op0, Op1, Q))
1833     return C;
1834 
1835   // A ^ undef -> undef
1836   if (match(Op1, m_Undef()))
1837     return Op1;
1838 
1839   // A ^ 0 = A
1840   if (match(Op1, m_Zero()))
1841     return Op0;
1842 
1843   // A ^ A = 0
1844   if (Op0 == Op1)
1845     return Constant::getNullValue(Op0->getType());
1846 
1847   // A ^ ~A  =  ~A ^ A  =  -1
1848   if (match(Op0, m_Not(m_Specific(Op1))) ||
1849       match(Op1, m_Not(m_Specific(Op0))))
1850     return Constant::getAllOnesValue(Op0->getType());
1851 
1852   // Try some generic simplifications for associative operations.
1853   if (Value *V = SimplifyAssociativeBinOp(Instruction::Xor, Op0, Op1, Q,
1854                                           MaxRecurse))
1855     return V;
1856 
1857   // Threading Xor over selects and phi nodes is pointless, so don't bother.
1858   // Threading over the select in "A ^ select(cond, B, C)" means evaluating
1859   // "A^B" and "A^C" and seeing if they are equal; but they are equal if and
1860   // only if B and C are equal.  If B and C are equal then (since we assume
1861   // that operands have already been simplified) "select(cond, B, C)" should
1862   // have been simplified to the common value of B and C already.  Analysing
1863   // "A^B" and "A^C" thus gains nothing, but costs compile time.  Similarly
1864   // for threading over phi nodes.
1865 
1866   return nullptr;
1867 }
1868 
1869 Value *llvm::SimplifyXorInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) {
1870   return ::SimplifyXorInst(Op0, Op1, Q, RecursionLimit);
1871 }
1872 
1873 
1874 static Type *GetCompareTy(Value *Op) {
1875   return CmpInst::makeCmpResultType(Op->getType());
1876 }
1877 
1878 /// Rummage around inside V looking for something equivalent to the comparison
1879 /// "LHS Pred RHS". Return such a value if found, otherwise return null.
1880 /// Helper function for analyzing max/min idioms.
1881 static Value *ExtractEquivalentCondition(Value *V, CmpInst::Predicate Pred,
1882                                          Value *LHS, Value *RHS) {
1883   SelectInst *SI = dyn_cast<SelectInst>(V);
1884   if (!SI)
1885     return nullptr;
1886   CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition());
1887   if (!Cmp)
1888     return nullptr;
1889   Value *CmpLHS = Cmp->getOperand(0), *CmpRHS = Cmp->getOperand(1);
1890   if (Pred == Cmp->getPredicate() && LHS == CmpLHS && RHS == CmpRHS)
1891     return Cmp;
1892   if (Pred == CmpInst::getSwappedPredicate(Cmp->getPredicate()) &&
1893       LHS == CmpRHS && RHS == CmpLHS)
1894     return Cmp;
1895   return nullptr;
1896 }
1897 
1898 // A significant optimization not implemented here is assuming that alloca
1899 // addresses are not equal to incoming argument values. They don't *alias*,
1900 // as we say, but that doesn't mean they aren't equal, so we take a
1901 // conservative approach.
1902 //
1903 // This is inspired in part by C++11 5.10p1:
1904 //   "Two pointers of the same type compare equal if and only if they are both
1905 //    null, both point to the same function, or both represent the same
1906 //    address."
1907 //
1908 // This is pretty permissive.
1909 //
1910 // It's also partly due to C11 6.5.9p6:
1911 //   "Two pointers compare equal if and only if both are null pointers, both are
1912 //    pointers to the same object (including a pointer to an object and a
1913 //    subobject at its beginning) or function, both are pointers to one past the
1914 //    last element of the same array object, or one is a pointer to one past the
1915 //    end of one array object and the other is a pointer to the start of a
1916 //    different array object that happens to immediately follow the first array
1917 //    object in the address space.)
1918 //
1919 // C11's version is more restrictive, however there's no reason why an argument
1920 // couldn't be a one-past-the-end value for a stack object in the caller and be
1921 // equal to the beginning of a stack object in the callee.
1922 //
1923 // If the C and C++ standards are ever made sufficiently restrictive in this
1924 // area, it may be possible to update LLVM's semantics accordingly and reinstate
1925 // this optimization.
1926 static Constant *
1927 computePointerICmp(const DataLayout &DL, const TargetLibraryInfo *TLI,
1928                    const DominatorTree *DT, CmpInst::Predicate Pred,
1929                    AssumptionCache *AC, const Instruction *CxtI,
1930                    Value *LHS, Value *RHS) {
1931   // First, skip past any trivial no-ops.
1932   LHS = LHS->stripPointerCasts();
1933   RHS = RHS->stripPointerCasts();
1934 
1935   // A non-null pointer is not equal to a null pointer.
1936   if (llvm::isKnownNonZero(LHS, DL) && isa<ConstantPointerNull>(RHS) &&
1937       (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE))
1938     return ConstantInt::get(GetCompareTy(LHS),
1939                             !CmpInst::isTrueWhenEqual(Pred));
1940 
1941   // We can only fold certain predicates on pointer comparisons.
1942   switch (Pred) {
1943   default:
1944     return nullptr;
1945 
1946     // Equality comaprisons are easy to fold.
1947   case CmpInst::ICMP_EQ:
1948   case CmpInst::ICMP_NE:
1949     break;
1950 
1951     // We can only handle unsigned relational comparisons because 'inbounds' on
1952     // a GEP only protects against unsigned wrapping.
1953   case CmpInst::ICMP_UGT:
1954   case CmpInst::ICMP_UGE:
1955   case CmpInst::ICMP_ULT:
1956   case CmpInst::ICMP_ULE:
1957     // However, we have to switch them to their signed variants to handle
1958     // negative indices from the base pointer.
1959     Pred = ICmpInst::getSignedPredicate(Pred);
1960     break;
1961   }
1962 
1963   // Strip off any constant offsets so that we can reason about them.
1964   // It's tempting to use getUnderlyingObject or even just stripInBoundsOffsets
1965   // here and compare base addresses like AliasAnalysis does, however there are
1966   // numerous hazards. AliasAnalysis and its utilities rely on special rules
1967   // governing loads and stores which don't apply to icmps. Also, AliasAnalysis
1968   // doesn't need to guarantee pointer inequality when it says NoAlias.
1969   Constant *LHSOffset = stripAndComputeConstantOffsets(DL, LHS);
1970   Constant *RHSOffset = stripAndComputeConstantOffsets(DL, RHS);
1971 
1972   // If LHS and RHS are related via constant offsets to the same base
1973   // value, we can replace it with an icmp which just compares the offsets.
1974   if (LHS == RHS)
1975     return ConstantExpr::getICmp(Pred, LHSOffset, RHSOffset);
1976 
1977   // Various optimizations for (in)equality comparisons.
1978   if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE) {
1979     // Different non-empty allocations that exist at the same time have
1980     // different addresses (if the program can tell). Global variables always
1981     // exist, so they always exist during the lifetime of each other and all
1982     // allocas. Two different allocas usually have different addresses...
1983     //
1984     // However, if there's an @llvm.stackrestore dynamically in between two
1985     // allocas, they may have the same address. It's tempting to reduce the
1986     // scope of the problem by only looking at *static* allocas here. That would
1987     // cover the majority of allocas while significantly reducing the likelihood
1988     // of having an @llvm.stackrestore pop up in the middle. However, it's not
1989     // actually impossible for an @llvm.stackrestore to pop up in the middle of
1990     // an entry block. Also, if we have a block that's not attached to a
1991     // function, we can't tell if it's "static" under the current definition.
1992     // Theoretically, this problem could be fixed by creating a new kind of
1993     // instruction kind specifically for static allocas. Such a new instruction
1994     // could be required to be at the top of the entry block, thus preventing it
1995     // from being subject to a @llvm.stackrestore. Instcombine could even
1996     // convert regular allocas into these special allocas. It'd be nifty.
1997     // However, until then, this problem remains open.
1998     //
1999     // So, we'll assume that two non-empty allocas have different addresses
2000     // for now.
2001     //
2002     // With all that, if the offsets are within the bounds of their allocations
2003     // (and not one-past-the-end! so we can't use inbounds!), and their
2004     // allocations aren't the same, the pointers are not equal.
2005     //
2006     // Note that it's not necessary to check for LHS being a global variable
2007     // address, due to canonicalization and constant folding.
2008     if (isa<AllocaInst>(LHS) &&
2009         (isa<AllocaInst>(RHS) || isa<GlobalVariable>(RHS))) {
2010       ConstantInt *LHSOffsetCI = dyn_cast<ConstantInt>(LHSOffset);
2011       ConstantInt *RHSOffsetCI = dyn_cast<ConstantInt>(RHSOffset);
2012       uint64_t LHSSize, RHSSize;
2013       if (LHSOffsetCI && RHSOffsetCI &&
2014           getObjectSize(LHS, LHSSize, DL, TLI) &&
2015           getObjectSize(RHS, RHSSize, DL, TLI)) {
2016         const APInt &LHSOffsetValue = LHSOffsetCI->getValue();
2017         const APInt &RHSOffsetValue = RHSOffsetCI->getValue();
2018         if (!LHSOffsetValue.isNegative() &&
2019             !RHSOffsetValue.isNegative() &&
2020             LHSOffsetValue.ult(LHSSize) &&
2021             RHSOffsetValue.ult(RHSSize)) {
2022           return ConstantInt::get(GetCompareTy(LHS),
2023                                   !CmpInst::isTrueWhenEqual(Pred));
2024         }
2025       }
2026 
2027       // Repeat the above check but this time without depending on DataLayout
2028       // or being able to compute a precise size.
2029       if (!cast<PointerType>(LHS->getType())->isEmptyTy() &&
2030           !cast<PointerType>(RHS->getType())->isEmptyTy() &&
2031           LHSOffset->isNullValue() &&
2032           RHSOffset->isNullValue())
2033         return ConstantInt::get(GetCompareTy(LHS),
2034                                 !CmpInst::isTrueWhenEqual(Pred));
2035     }
2036 
2037     // Even if an non-inbounds GEP occurs along the path we can still optimize
2038     // equality comparisons concerning the result. We avoid walking the whole
2039     // chain again by starting where the last calls to
2040     // stripAndComputeConstantOffsets left off and accumulate the offsets.
2041     Constant *LHSNoBound = stripAndComputeConstantOffsets(DL, LHS, true);
2042     Constant *RHSNoBound = stripAndComputeConstantOffsets(DL, RHS, true);
2043     if (LHS == RHS)
2044       return ConstantExpr::getICmp(Pred,
2045                                    ConstantExpr::getAdd(LHSOffset, LHSNoBound),
2046                                    ConstantExpr::getAdd(RHSOffset, RHSNoBound));
2047 
2048     // If one side of the equality comparison must come from a noalias call
2049     // (meaning a system memory allocation function), and the other side must
2050     // come from a pointer that cannot overlap with dynamically-allocated
2051     // memory within the lifetime of the current function (allocas, byval
2052     // arguments, globals), then determine the comparison result here.
2053     SmallVector<Value *, 8> LHSUObjs, RHSUObjs;
2054     GetUnderlyingObjects(LHS, LHSUObjs, DL);
2055     GetUnderlyingObjects(RHS, RHSUObjs, DL);
2056 
2057     // Is the set of underlying objects all noalias calls?
2058     auto IsNAC = [](ArrayRef<Value *> Objects) {
2059       return all_of(Objects, isNoAliasCall);
2060     };
2061 
2062     // Is the set of underlying objects all things which must be disjoint from
2063     // noalias calls. For allocas, we consider only static ones (dynamic
2064     // allocas might be transformed into calls to malloc not simultaneously
2065     // live with the compared-to allocation). For globals, we exclude symbols
2066     // that might be resolve lazily to symbols in another dynamically-loaded
2067     // library (and, thus, could be malloc'ed by the implementation).
2068     auto IsAllocDisjoint = [](ArrayRef<Value *> Objects) {
2069       return all_of(Objects, [](Value *V) {
2070         if (const AllocaInst *AI = dyn_cast<AllocaInst>(V))
2071           return AI->getParent() && AI->getFunction() && AI->isStaticAlloca();
2072         if (const GlobalValue *GV = dyn_cast<GlobalValue>(V))
2073           return (GV->hasLocalLinkage() || GV->hasHiddenVisibility() ||
2074                   GV->hasProtectedVisibility() || GV->hasGlobalUnnamedAddr()) &&
2075                  !GV->isThreadLocal();
2076         if (const Argument *A = dyn_cast<Argument>(V))
2077           return A->hasByValAttr();
2078         return false;
2079       });
2080     };
2081 
2082     if ((IsNAC(LHSUObjs) && IsAllocDisjoint(RHSUObjs)) ||
2083         (IsNAC(RHSUObjs) && IsAllocDisjoint(LHSUObjs)))
2084         return ConstantInt::get(GetCompareTy(LHS),
2085                                 !CmpInst::isTrueWhenEqual(Pred));
2086 
2087     // Fold comparisons for non-escaping pointer even if the allocation call
2088     // cannot be elided. We cannot fold malloc comparison to null. Also, the
2089     // dynamic allocation call could be either of the operands.
2090     Value *MI = nullptr;
2091     if (isAllocLikeFn(LHS, TLI) &&
2092         llvm::isKnownNonZero(RHS, DL, 0, nullptr, CxtI, DT))
2093       MI = LHS;
2094     else if (isAllocLikeFn(RHS, TLI) &&
2095              llvm::isKnownNonZero(LHS, DL, 0, nullptr, CxtI, DT))
2096       MI = RHS;
2097     // FIXME: We should also fold the compare when the pointer escapes, but the
2098     // compare dominates the pointer escape
2099     if (MI && !PointerMayBeCaptured(MI, true, true))
2100       return ConstantInt::get(GetCompareTy(LHS),
2101                               CmpInst::isFalseWhenEqual(Pred));
2102   }
2103 
2104   // Otherwise, fail.
2105   return nullptr;
2106 }
2107 
2108 /// Fold an icmp when its operands have i1 scalar type.
2109 static Value *simplifyICmpOfBools(CmpInst::Predicate Pred, Value *LHS,
2110                                   Value *RHS, const SimplifyQuery &Q) {
2111   Type *ITy = GetCompareTy(LHS); // The return type.
2112   Type *OpTy = LHS->getType();   // The operand type.
2113   if (!OpTy->isIntOrIntVectorTy(1))
2114     return nullptr;
2115 
2116   // A boolean compared to true/false can be simplified in 14 out of the 20
2117   // (10 predicates * 2 constants) possible combinations. Cases not handled here
2118   // require a 'not' of the LHS, so those must be transformed in InstCombine.
2119   if (match(RHS, m_Zero())) {
2120     switch (Pred) {
2121     case CmpInst::ICMP_NE:  // X !=  0 -> X
2122     case CmpInst::ICMP_UGT: // X >u  0 -> X
2123     case CmpInst::ICMP_SLT: // X <s  0 -> X
2124       return LHS;
2125 
2126     case CmpInst::ICMP_ULT: // X <u  0 -> false
2127     case CmpInst::ICMP_SGT: // X >s  0 -> false
2128       return getFalse(ITy);
2129 
2130     case CmpInst::ICMP_UGE: // X >=u 0 -> true
2131     case CmpInst::ICMP_SLE: // X <=s 0 -> true
2132       return getTrue(ITy);
2133 
2134     default: break;
2135     }
2136   } else if (match(RHS, m_One())) {
2137     switch (Pred) {
2138     case CmpInst::ICMP_EQ:  // X ==   1 -> X
2139     case CmpInst::ICMP_UGE: // X >=u  1 -> X
2140     case CmpInst::ICMP_SLE: // X <=s -1 -> X
2141       return LHS;
2142 
2143     case CmpInst::ICMP_UGT: // X >u   1 -> false
2144     case CmpInst::ICMP_SLT: // X <s  -1 -> false
2145       return getFalse(ITy);
2146 
2147     case CmpInst::ICMP_ULE: // X <=u  1 -> true
2148     case CmpInst::ICMP_SGE: // X >=s -1 -> true
2149       return getTrue(ITy);
2150 
2151     default: break;
2152     }
2153   }
2154 
2155   switch (Pred) {
2156   default:
2157     break;
2158   case ICmpInst::ICMP_UGE:
2159     if (isImpliedCondition(RHS, LHS, Q.DL).getValueOr(false))
2160       return getTrue(ITy);
2161     break;
2162   case ICmpInst::ICMP_SGE:
2163     /// For signed comparison, the values for an i1 are 0 and -1
2164     /// respectively. This maps into a truth table of:
2165     /// LHS | RHS | LHS >=s RHS   | LHS implies RHS
2166     ///  0  |  0  |  1 (0 >= 0)   |  1
2167     ///  0  |  1  |  1 (0 >= -1)  |  1
2168     ///  1  |  0  |  0 (-1 >= 0)  |  0
2169     ///  1  |  1  |  1 (-1 >= -1) |  1
2170     if (isImpliedCondition(LHS, RHS, Q.DL).getValueOr(false))
2171       return getTrue(ITy);
2172     break;
2173   case ICmpInst::ICMP_ULE:
2174     if (isImpliedCondition(LHS, RHS, Q.DL).getValueOr(false))
2175       return getTrue(ITy);
2176     break;
2177   }
2178 
2179   return nullptr;
2180 }
2181 
2182 /// Try hard to fold icmp with zero RHS because this is a common case.
2183 static Value *simplifyICmpWithZero(CmpInst::Predicate Pred, Value *LHS,
2184                                    Value *RHS, const SimplifyQuery &Q) {
2185   if (!match(RHS, m_Zero()))
2186     return nullptr;
2187 
2188   Type *ITy = GetCompareTy(LHS); // The return type.
2189   switch (Pred) {
2190   default:
2191     llvm_unreachable("Unknown ICmp predicate!");
2192   case ICmpInst::ICMP_ULT:
2193     return getFalse(ITy);
2194   case ICmpInst::ICMP_UGE:
2195     return getTrue(ITy);
2196   case ICmpInst::ICMP_EQ:
2197   case ICmpInst::ICMP_ULE:
2198     if (isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT))
2199       return getFalse(ITy);
2200     break;
2201   case ICmpInst::ICMP_NE:
2202   case ICmpInst::ICMP_UGT:
2203     if (isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT))
2204       return getTrue(ITy);
2205     break;
2206   case ICmpInst::ICMP_SLT: {
2207     KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
2208     if (LHSKnown.isNegative())
2209       return getTrue(ITy);
2210     if (LHSKnown.isNonNegative())
2211       return getFalse(ITy);
2212     break;
2213   }
2214   case ICmpInst::ICMP_SLE: {
2215     KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
2216     if (LHSKnown.isNegative())
2217       return getTrue(ITy);
2218     if (LHSKnown.isNonNegative() &&
2219         isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT))
2220       return getFalse(ITy);
2221     break;
2222   }
2223   case ICmpInst::ICMP_SGE: {
2224     KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
2225     if (LHSKnown.isNegative())
2226       return getFalse(ITy);
2227     if (LHSKnown.isNonNegative())
2228       return getTrue(ITy);
2229     break;
2230   }
2231   case ICmpInst::ICMP_SGT: {
2232     KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
2233     if (LHSKnown.isNegative())
2234       return getFalse(ITy);
2235     if (LHSKnown.isNonNegative() &&
2236         isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT))
2237       return getTrue(ITy);
2238     break;
2239   }
2240   }
2241 
2242   return nullptr;
2243 }
2244 
2245 /// Many binary operators with a constant operand have an easy-to-compute
2246 /// range of outputs. This can be used to fold a comparison to always true or
2247 /// always false.
2248 static void setLimitsForBinOp(BinaryOperator &BO, APInt &Lower, APInt &Upper) {
2249   unsigned Width = Lower.getBitWidth();
2250   const APInt *C;
2251   switch (BO.getOpcode()) {
2252   case Instruction::Add:
2253     if (match(BO.getOperand(1), m_APInt(C)) && !C->isNullValue()) {
2254       // FIXME: If we have both nuw and nsw, we should reduce the range further.
2255       if (BO.hasNoUnsignedWrap()) {
2256         // 'add nuw x, C' produces [C, UINT_MAX].
2257         Lower = *C;
2258       } else if (BO.hasNoSignedWrap()) {
2259         if (C->isNegative()) {
2260           // 'add nsw x, -C' produces [SINT_MIN, SINT_MAX - C].
2261           Lower = APInt::getSignedMinValue(Width);
2262           Upper = APInt::getSignedMaxValue(Width) + *C + 1;
2263         } else {
2264           // 'add nsw x, +C' produces [SINT_MIN + C, SINT_MAX].
2265           Lower = APInt::getSignedMinValue(Width) + *C;
2266           Upper = APInt::getSignedMaxValue(Width) + 1;
2267         }
2268       }
2269     }
2270     break;
2271 
2272   case Instruction::And:
2273     if (match(BO.getOperand(1), m_APInt(C)))
2274       // 'and x, C' produces [0, C].
2275       Upper = *C + 1;
2276     break;
2277 
2278   case Instruction::Or:
2279     if (match(BO.getOperand(1), m_APInt(C)))
2280       // 'or x, C' produces [C, UINT_MAX].
2281       Lower = *C;
2282     break;
2283 
2284   case Instruction::AShr:
2285     if (match(BO.getOperand(1), m_APInt(C)) && C->ult(Width)) {
2286       // 'ashr x, C' produces [INT_MIN >> C, INT_MAX >> C].
2287       Lower = APInt::getSignedMinValue(Width).ashr(*C);
2288       Upper = APInt::getSignedMaxValue(Width).ashr(*C) + 1;
2289     } else if (match(BO.getOperand(0), m_APInt(C))) {
2290       unsigned ShiftAmount = Width - 1;
2291       if (!C->isNullValue() && BO.isExact())
2292         ShiftAmount = C->countTrailingZeros();
2293       if (C->isNegative()) {
2294         // 'ashr C, x' produces [C, C >> (Width-1)]
2295         Lower = *C;
2296         Upper = C->ashr(ShiftAmount) + 1;
2297       } else {
2298         // 'ashr C, x' produces [C >> (Width-1), C]
2299         Lower = C->ashr(ShiftAmount);
2300         Upper = *C + 1;
2301       }
2302     }
2303     break;
2304 
2305   case Instruction::LShr:
2306     if (match(BO.getOperand(1), m_APInt(C)) && C->ult(Width)) {
2307       // 'lshr x, C' produces [0, UINT_MAX >> C].
2308       Upper = APInt::getAllOnesValue(Width).lshr(*C) + 1;
2309     } else if (match(BO.getOperand(0), m_APInt(C))) {
2310       // 'lshr C, x' produces [C >> (Width-1), C].
2311       unsigned ShiftAmount = Width - 1;
2312       if (!C->isNullValue() && BO.isExact())
2313         ShiftAmount = C->countTrailingZeros();
2314       Lower = C->lshr(ShiftAmount);
2315       Upper = *C + 1;
2316     }
2317     break;
2318 
2319   case Instruction::Shl:
2320     if (match(BO.getOperand(0), m_APInt(C))) {
2321       if (BO.hasNoUnsignedWrap()) {
2322         // 'shl nuw C, x' produces [C, C << CLZ(C)]
2323         Lower = *C;
2324         Upper = Lower.shl(Lower.countLeadingZeros()) + 1;
2325       } else if (BO.hasNoSignedWrap()) { // TODO: What if both nuw+nsw?
2326         if (C->isNegative()) {
2327           // 'shl nsw C, x' produces [C << CLO(C)-1, C]
2328           unsigned ShiftAmount = C->countLeadingOnes() - 1;
2329           Lower = C->shl(ShiftAmount);
2330           Upper = *C + 1;
2331         } else {
2332           // 'shl nsw C, x' produces [C, C << CLZ(C)-1]
2333           unsigned ShiftAmount = C->countLeadingZeros() - 1;
2334           Lower = *C;
2335           Upper = C->shl(ShiftAmount) + 1;
2336         }
2337       }
2338     }
2339     break;
2340 
2341   case Instruction::SDiv:
2342     if (match(BO.getOperand(1), m_APInt(C))) {
2343       APInt IntMin = APInt::getSignedMinValue(Width);
2344       APInt IntMax = APInt::getSignedMaxValue(Width);
2345       if (C->isAllOnesValue()) {
2346         // 'sdiv x, -1' produces [INT_MIN + 1, INT_MAX]
2347         //    where C != -1 and C != 0 and C != 1
2348         Lower = IntMin + 1;
2349         Upper = IntMax + 1;
2350       } else if (C->countLeadingZeros() < Width - 1) {
2351         // 'sdiv x, C' produces [INT_MIN / C, INT_MAX / C]
2352         //    where C != -1 and C != 0 and C != 1
2353         Lower = IntMin.sdiv(*C);
2354         Upper = IntMax.sdiv(*C);
2355         if (Lower.sgt(Upper))
2356           std::swap(Lower, Upper);
2357         Upper = Upper + 1;
2358         assert(Upper != Lower && "Upper part of range has wrapped!");
2359       }
2360     } else if (match(BO.getOperand(0), m_APInt(C))) {
2361       if (C->isMinSignedValue()) {
2362         // 'sdiv INT_MIN, x' produces [INT_MIN, INT_MIN / -2].
2363         Lower = *C;
2364         Upper = Lower.lshr(1) + 1;
2365       } else {
2366         // 'sdiv C, x' produces [-|C|, |C|].
2367         Upper = C->abs() + 1;
2368         Lower = (-Upper) + 1;
2369       }
2370     }
2371     break;
2372 
2373   case Instruction::UDiv:
2374     if (match(BO.getOperand(1), m_APInt(C)) && !C->isNullValue()) {
2375       // 'udiv x, C' produces [0, UINT_MAX / C].
2376       Upper = APInt::getMaxValue(Width).udiv(*C) + 1;
2377     } else if (match(BO.getOperand(0), m_APInt(C))) {
2378       // 'udiv C, x' produces [0, C].
2379       Upper = *C + 1;
2380     }
2381     break;
2382 
2383   case Instruction::SRem:
2384     if (match(BO.getOperand(1), m_APInt(C))) {
2385       // 'srem x, C' produces (-|C|, |C|).
2386       Upper = C->abs();
2387       Lower = (-Upper) + 1;
2388     }
2389     break;
2390 
2391   case Instruction::URem:
2392     if (match(BO.getOperand(1), m_APInt(C)))
2393       // 'urem x, C' produces [0, C).
2394       Upper = *C;
2395     break;
2396 
2397   default:
2398     break;
2399   }
2400 }
2401 
2402 static Value *simplifyICmpWithConstant(CmpInst::Predicate Pred, Value *LHS,
2403                                        Value *RHS) {
2404   const APInt *C;
2405   if (!match(RHS, m_APInt(C)))
2406     return nullptr;
2407 
2408   // Rule out tautological comparisons (eg., ult 0 or uge 0).
2409   ConstantRange RHS_CR = ConstantRange::makeExactICmpRegion(Pred, *C);
2410   if (RHS_CR.isEmptySet())
2411     return ConstantInt::getFalse(GetCompareTy(RHS));
2412   if (RHS_CR.isFullSet())
2413     return ConstantInt::getTrue(GetCompareTy(RHS));
2414 
2415   // Find the range of possible values for binary operators.
2416   unsigned Width = C->getBitWidth();
2417   APInt Lower = APInt(Width, 0);
2418   APInt Upper = APInt(Width, 0);
2419   if (auto *BO = dyn_cast<BinaryOperator>(LHS))
2420     setLimitsForBinOp(*BO, Lower, Upper);
2421 
2422   ConstantRange LHS_CR =
2423       Lower != Upper ? ConstantRange(Lower, Upper) : ConstantRange(Width, true);
2424 
2425   if (auto *I = dyn_cast<Instruction>(LHS))
2426     if (auto *Ranges = I->getMetadata(LLVMContext::MD_range))
2427       LHS_CR = LHS_CR.intersectWith(getConstantRangeFromMetadata(*Ranges));
2428 
2429   if (!LHS_CR.isFullSet()) {
2430     if (RHS_CR.contains(LHS_CR))
2431       return ConstantInt::getTrue(GetCompareTy(RHS));
2432     if (RHS_CR.inverse().contains(LHS_CR))
2433       return ConstantInt::getFalse(GetCompareTy(RHS));
2434   }
2435 
2436   return nullptr;
2437 }
2438 
2439 /// TODO: A large part of this logic is duplicated in InstCombine's
2440 /// foldICmpBinOp(). We should be able to share that and avoid the code
2441 /// duplication.
2442 static Value *simplifyICmpWithBinOp(CmpInst::Predicate Pred, Value *LHS,
2443                                     Value *RHS, const SimplifyQuery &Q,
2444                                     unsigned MaxRecurse) {
2445   Type *ITy = GetCompareTy(LHS); // The return type.
2446 
2447   BinaryOperator *LBO = dyn_cast<BinaryOperator>(LHS);
2448   BinaryOperator *RBO = dyn_cast<BinaryOperator>(RHS);
2449   if (MaxRecurse && (LBO || RBO)) {
2450     // Analyze the case when either LHS or RHS is an add instruction.
2451     Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr;
2452     // LHS = A + B (or A and B are null); RHS = C + D (or C and D are null).
2453     bool NoLHSWrapProblem = false, NoRHSWrapProblem = false;
2454     if (LBO && LBO->getOpcode() == Instruction::Add) {
2455       A = LBO->getOperand(0);
2456       B = LBO->getOperand(1);
2457       NoLHSWrapProblem =
2458           ICmpInst::isEquality(Pred) ||
2459           (CmpInst::isUnsigned(Pred) && LBO->hasNoUnsignedWrap()) ||
2460           (CmpInst::isSigned(Pred) && LBO->hasNoSignedWrap());
2461     }
2462     if (RBO && RBO->getOpcode() == Instruction::Add) {
2463       C = RBO->getOperand(0);
2464       D = RBO->getOperand(1);
2465       NoRHSWrapProblem =
2466           ICmpInst::isEquality(Pred) ||
2467           (CmpInst::isUnsigned(Pred) && RBO->hasNoUnsignedWrap()) ||
2468           (CmpInst::isSigned(Pred) && RBO->hasNoSignedWrap());
2469     }
2470 
2471     // icmp (X+Y), X -> icmp Y, 0 for equalities or if there is no overflow.
2472     if ((A == RHS || B == RHS) && NoLHSWrapProblem)
2473       if (Value *V = SimplifyICmpInst(Pred, A == RHS ? B : A,
2474                                       Constant::getNullValue(RHS->getType()), Q,
2475                                       MaxRecurse - 1))
2476         return V;
2477 
2478     // icmp X, (X+Y) -> icmp 0, Y for equalities or if there is no overflow.
2479     if ((C == LHS || D == LHS) && NoRHSWrapProblem)
2480       if (Value *V =
2481               SimplifyICmpInst(Pred, Constant::getNullValue(LHS->getType()),
2482                                C == LHS ? D : C, Q, MaxRecurse - 1))
2483         return V;
2484 
2485     // icmp (X+Y), (X+Z) -> icmp Y,Z for equalities or if there is no overflow.
2486     if (A && C && (A == C || A == D || B == C || B == D) && NoLHSWrapProblem &&
2487         NoRHSWrapProblem) {
2488       // Determine Y and Z in the form icmp (X+Y), (X+Z).
2489       Value *Y, *Z;
2490       if (A == C) {
2491         // C + B == C + D  ->  B == D
2492         Y = B;
2493         Z = D;
2494       } else if (A == D) {
2495         // D + B == C + D  ->  B == C
2496         Y = B;
2497         Z = C;
2498       } else if (B == C) {
2499         // A + C == C + D  ->  A == D
2500         Y = A;
2501         Z = D;
2502       } else {
2503         assert(B == D);
2504         // A + D == C + D  ->  A == C
2505         Y = A;
2506         Z = C;
2507       }
2508       if (Value *V = SimplifyICmpInst(Pred, Y, Z, Q, MaxRecurse - 1))
2509         return V;
2510     }
2511   }
2512 
2513   {
2514     Value *Y = nullptr;
2515     // icmp pred (or X, Y), X
2516     if (LBO && match(LBO, m_c_Or(m_Value(Y), m_Specific(RHS)))) {
2517       if (Pred == ICmpInst::ICMP_ULT)
2518         return getFalse(ITy);
2519       if (Pred == ICmpInst::ICMP_UGE)
2520         return getTrue(ITy);
2521 
2522       if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SGE) {
2523         KnownBits RHSKnown = computeKnownBits(RHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
2524         KnownBits YKnown = computeKnownBits(Y, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
2525         if (RHSKnown.isNonNegative() && YKnown.isNegative())
2526           return Pred == ICmpInst::ICMP_SLT ? getTrue(ITy) : getFalse(ITy);
2527         if (RHSKnown.isNegative() || YKnown.isNonNegative())
2528           return Pred == ICmpInst::ICMP_SLT ? getFalse(ITy) : getTrue(ITy);
2529       }
2530     }
2531     // icmp pred X, (or X, Y)
2532     if (RBO && match(RBO, m_c_Or(m_Value(Y), m_Specific(LHS)))) {
2533       if (Pred == ICmpInst::ICMP_ULE)
2534         return getTrue(ITy);
2535       if (Pred == ICmpInst::ICMP_UGT)
2536         return getFalse(ITy);
2537 
2538       if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SLE) {
2539         KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
2540         KnownBits YKnown = computeKnownBits(Y, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
2541         if (LHSKnown.isNonNegative() && YKnown.isNegative())
2542           return Pred == ICmpInst::ICMP_SGT ? getTrue(ITy) : getFalse(ITy);
2543         if (LHSKnown.isNegative() || YKnown.isNonNegative())
2544           return Pred == ICmpInst::ICMP_SGT ? getFalse(ITy) : getTrue(ITy);
2545       }
2546     }
2547   }
2548 
2549   // icmp pred (and X, Y), X
2550   if (LBO && match(LBO, m_c_And(m_Value(), m_Specific(RHS)))) {
2551     if (Pred == ICmpInst::ICMP_UGT)
2552       return getFalse(ITy);
2553     if (Pred == ICmpInst::ICMP_ULE)
2554       return getTrue(ITy);
2555   }
2556   // icmp pred X, (and X, Y)
2557   if (RBO && match(RBO, m_c_And(m_Value(), m_Specific(LHS)))) {
2558     if (Pred == ICmpInst::ICMP_UGE)
2559       return getTrue(ITy);
2560     if (Pred == ICmpInst::ICMP_ULT)
2561       return getFalse(ITy);
2562   }
2563 
2564   // 0 - (zext X) pred C
2565   if (!CmpInst::isUnsigned(Pred) && match(LHS, m_Neg(m_ZExt(m_Value())))) {
2566     if (ConstantInt *RHSC = dyn_cast<ConstantInt>(RHS)) {
2567       if (RHSC->getValue().isStrictlyPositive()) {
2568         if (Pred == ICmpInst::ICMP_SLT)
2569           return ConstantInt::getTrue(RHSC->getContext());
2570         if (Pred == ICmpInst::ICMP_SGE)
2571           return ConstantInt::getFalse(RHSC->getContext());
2572         if (Pred == ICmpInst::ICMP_EQ)
2573           return ConstantInt::getFalse(RHSC->getContext());
2574         if (Pred == ICmpInst::ICMP_NE)
2575           return ConstantInt::getTrue(RHSC->getContext());
2576       }
2577       if (RHSC->getValue().isNonNegative()) {
2578         if (Pred == ICmpInst::ICMP_SLE)
2579           return ConstantInt::getTrue(RHSC->getContext());
2580         if (Pred == ICmpInst::ICMP_SGT)
2581           return ConstantInt::getFalse(RHSC->getContext());
2582       }
2583     }
2584   }
2585 
2586   // icmp pred (urem X, Y), Y
2587   if (LBO && match(LBO, m_URem(m_Value(), m_Specific(RHS)))) {
2588     switch (Pred) {
2589     default:
2590       break;
2591     case ICmpInst::ICMP_SGT:
2592     case ICmpInst::ICMP_SGE: {
2593       KnownBits Known = computeKnownBits(RHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
2594       if (!Known.isNonNegative())
2595         break;
2596       LLVM_FALLTHROUGH;
2597     }
2598     case ICmpInst::ICMP_EQ:
2599     case ICmpInst::ICMP_UGT:
2600     case ICmpInst::ICMP_UGE:
2601       return getFalse(ITy);
2602     case ICmpInst::ICMP_SLT:
2603     case ICmpInst::ICMP_SLE: {
2604       KnownBits Known = computeKnownBits(RHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
2605       if (!Known.isNonNegative())
2606         break;
2607       LLVM_FALLTHROUGH;
2608     }
2609     case ICmpInst::ICMP_NE:
2610     case ICmpInst::ICMP_ULT:
2611     case ICmpInst::ICMP_ULE:
2612       return getTrue(ITy);
2613     }
2614   }
2615 
2616   // icmp pred X, (urem Y, X)
2617   if (RBO && match(RBO, m_URem(m_Value(), m_Specific(LHS)))) {
2618     switch (Pred) {
2619     default:
2620       break;
2621     case ICmpInst::ICMP_SGT:
2622     case ICmpInst::ICMP_SGE: {
2623       KnownBits Known = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
2624       if (!Known.isNonNegative())
2625         break;
2626       LLVM_FALLTHROUGH;
2627     }
2628     case ICmpInst::ICMP_NE:
2629     case ICmpInst::ICMP_UGT:
2630     case ICmpInst::ICMP_UGE:
2631       return getTrue(ITy);
2632     case ICmpInst::ICMP_SLT:
2633     case ICmpInst::ICMP_SLE: {
2634       KnownBits Known = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
2635       if (!Known.isNonNegative())
2636         break;
2637       LLVM_FALLTHROUGH;
2638     }
2639     case ICmpInst::ICMP_EQ:
2640     case ICmpInst::ICMP_ULT:
2641     case ICmpInst::ICMP_ULE:
2642       return getFalse(ITy);
2643     }
2644   }
2645 
2646   // x >> y <=u x
2647   // x udiv y <=u x.
2648   if (LBO && (match(LBO, m_LShr(m_Specific(RHS), m_Value())) ||
2649               match(LBO, m_UDiv(m_Specific(RHS), m_Value())))) {
2650     // icmp pred (X op Y), X
2651     if (Pred == ICmpInst::ICMP_UGT)
2652       return getFalse(ITy);
2653     if (Pred == ICmpInst::ICMP_ULE)
2654       return getTrue(ITy);
2655   }
2656 
2657   // x >=u x >> y
2658   // x >=u x udiv y.
2659   if (RBO && (match(RBO, m_LShr(m_Specific(LHS), m_Value())) ||
2660               match(RBO, m_UDiv(m_Specific(LHS), m_Value())))) {
2661     // icmp pred X, (X op Y)
2662     if (Pred == ICmpInst::ICMP_ULT)
2663       return getFalse(ITy);
2664     if (Pred == ICmpInst::ICMP_UGE)
2665       return getTrue(ITy);
2666   }
2667 
2668   // handle:
2669   //   CI2 << X == CI
2670   //   CI2 << X != CI
2671   //
2672   //   where CI2 is a power of 2 and CI isn't
2673   if (auto *CI = dyn_cast<ConstantInt>(RHS)) {
2674     const APInt *CI2Val, *CIVal = &CI->getValue();
2675     if (LBO && match(LBO, m_Shl(m_APInt(CI2Val), m_Value())) &&
2676         CI2Val->isPowerOf2()) {
2677       if (!CIVal->isPowerOf2()) {
2678         // CI2 << X can equal zero in some circumstances,
2679         // this simplification is unsafe if CI is zero.
2680         //
2681         // We know it is safe if:
2682         // - The shift is nsw, we can't shift out the one bit.
2683         // - The shift is nuw, we can't shift out the one bit.
2684         // - CI2 is one
2685         // - CI isn't zero
2686         if (LBO->hasNoSignedWrap() || LBO->hasNoUnsignedWrap() ||
2687             CI2Val->isOneValue() || !CI->isZero()) {
2688           if (Pred == ICmpInst::ICMP_EQ)
2689             return ConstantInt::getFalse(RHS->getContext());
2690           if (Pred == ICmpInst::ICMP_NE)
2691             return ConstantInt::getTrue(RHS->getContext());
2692         }
2693       }
2694       if (CIVal->isSignMask() && CI2Val->isOneValue()) {
2695         if (Pred == ICmpInst::ICMP_UGT)
2696           return ConstantInt::getFalse(RHS->getContext());
2697         if (Pred == ICmpInst::ICMP_ULE)
2698           return ConstantInt::getTrue(RHS->getContext());
2699       }
2700     }
2701   }
2702 
2703   if (MaxRecurse && LBO && RBO && LBO->getOpcode() == RBO->getOpcode() &&
2704       LBO->getOperand(1) == RBO->getOperand(1)) {
2705     switch (LBO->getOpcode()) {
2706     default:
2707       break;
2708     case Instruction::UDiv:
2709     case Instruction::LShr:
2710       if (ICmpInst::isSigned(Pred) || !LBO->isExact() || !RBO->isExact())
2711         break;
2712       if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0),
2713                                       RBO->getOperand(0), Q, MaxRecurse - 1))
2714           return V;
2715       break;
2716     case Instruction::SDiv:
2717       if (!ICmpInst::isEquality(Pred) || !LBO->isExact() || !RBO->isExact())
2718         break;
2719       if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0),
2720                                       RBO->getOperand(0), Q, MaxRecurse - 1))
2721         return V;
2722       break;
2723     case Instruction::AShr:
2724       if (!LBO->isExact() || !RBO->isExact())
2725         break;
2726       if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0),
2727                                       RBO->getOperand(0), Q, MaxRecurse - 1))
2728         return V;
2729       break;
2730     case Instruction::Shl: {
2731       bool NUW = LBO->hasNoUnsignedWrap() && RBO->hasNoUnsignedWrap();
2732       bool NSW = LBO->hasNoSignedWrap() && RBO->hasNoSignedWrap();
2733       if (!NUW && !NSW)
2734         break;
2735       if (!NSW && ICmpInst::isSigned(Pred))
2736         break;
2737       if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0),
2738                                       RBO->getOperand(0), Q, MaxRecurse - 1))
2739         return V;
2740       break;
2741     }
2742     }
2743   }
2744   return nullptr;
2745 }
2746 
2747 /// Simplify integer comparisons where at least one operand of the compare
2748 /// matches an integer min/max idiom.
2749 static Value *simplifyICmpWithMinMax(CmpInst::Predicate Pred, Value *LHS,
2750                                      Value *RHS, const SimplifyQuery &Q,
2751                                      unsigned MaxRecurse) {
2752   Type *ITy = GetCompareTy(LHS); // The return type.
2753   Value *A, *B;
2754   CmpInst::Predicate P = CmpInst::BAD_ICMP_PREDICATE;
2755   CmpInst::Predicate EqP; // Chosen so that "A == max/min(A,B)" iff "A EqP B".
2756 
2757   // Signed variants on "max(a,b)>=a -> true".
2758   if (match(LHS, m_SMax(m_Value(A), m_Value(B))) && (A == RHS || B == RHS)) {
2759     if (A != RHS)
2760       std::swap(A, B);       // smax(A, B) pred A.
2761     EqP = CmpInst::ICMP_SGE; // "A == smax(A, B)" iff "A sge B".
2762     // We analyze this as smax(A, B) pred A.
2763     P = Pred;
2764   } else if (match(RHS, m_SMax(m_Value(A), m_Value(B))) &&
2765              (A == LHS || B == LHS)) {
2766     if (A != LHS)
2767       std::swap(A, B);       // A pred smax(A, B).
2768     EqP = CmpInst::ICMP_SGE; // "A == smax(A, B)" iff "A sge B".
2769     // We analyze this as smax(A, B) swapped-pred A.
2770     P = CmpInst::getSwappedPredicate(Pred);
2771   } else if (match(LHS, m_SMin(m_Value(A), m_Value(B))) &&
2772              (A == RHS || B == RHS)) {
2773     if (A != RHS)
2774       std::swap(A, B);       // smin(A, B) pred A.
2775     EqP = CmpInst::ICMP_SLE; // "A == smin(A, B)" iff "A sle B".
2776     // We analyze this as smax(-A, -B) swapped-pred -A.
2777     // Note that we do not need to actually form -A or -B thanks to EqP.
2778     P = CmpInst::getSwappedPredicate(Pred);
2779   } else if (match(RHS, m_SMin(m_Value(A), m_Value(B))) &&
2780              (A == LHS || B == LHS)) {
2781     if (A != LHS)
2782       std::swap(A, B);       // A pred smin(A, B).
2783     EqP = CmpInst::ICMP_SLE; // "A == smin(A, B)" iff "A sle B".
2784     // We analyze this as smax(-A, -B) pred -A.
2785     // Note that we do not need to actually form -A or -B thanks to EqP.
2786     P = Pred;
2787   }
2788   if (P != CmpInst::BAD_ICMP_PREDICATE) {
2789     // Cases correspond to "max(A, B) p A".
2790     switch (P) {
2791     default:
2792       break;
2793     case CmpInst::ICMP_EQ:
2794     case CmpInst::ICMP_SLE:
2795       // Equivalent to "A EqP B".  This may be the same as the condition tested
2796       // in the max/min; if so, we can just return that.
2797       if (Value *V = ExtractEquivalentCondition(LHS, EqP, A, B))
2798         return V;
2799       if (Value *V = ExtractEquivalentCondition(RHS, EqP, A, B))
2800         return V;
2801       // Otherwise, see if "A EqP B" simplifies.
2802       if (MaxRecurse)
2803         if (Value *V = SimplifyICmpInst(EqP, A, B, Q, MaxRecurse - 1))
2804           return V;
2805       break;
2806     case CmpInst::ICMP_NE:
2807     case CmpInst::ICMP_SGT: {
2808       CmpInst::Predicate InvEqP = CmpInst::getInversePredicate(EqP);
2809       // Equivalent to "A InvEqP B".  This may be the same as the condition
2810       // tested in the max/min; if so, we can just return that.
2811       if (Value *V = ExtractEquivalentCondition(LHS, InvEqP, A, B))
2812         return V;
2813       if (Value *V = ExtractEquivalentCondition(RHS, InvEqP, A, B))
2814         return V;
2815       // Otherwise, see if "A InvEqP B" simplifies.
2816       if (MaxRecurse)
2817         if (Value *V = SimplifyICmpInst(InvEqP, A, B, Q, MaxRecurse - 1))
2818           return V;
2819       break;
2820     }
2821     case CmpInst::ICMP_SGE:
2822       // Always true.
2823       return getTrue(ITy);
2824     case CmpInst::ICMP_SLT:
2825       // Always false.
2826       return getFalse(ITy);
2827     }
2828   }
2829 
2830   // Unsigned variants on "max(a,b)>=a -> true".
2831   P = CmpInst::BAD_ICMP_PREDICATE;
2832   if (match(LHS, m_UMax(m_Value(A), m_Value(B))) && (A == RHS || B == RHS)) {
2833     if (A != RHS)
2834       std::swap(A, B);       // umax(A, B) pred A.
2835     EqP = CmpInst::ICMP_UGE; // "A == umax(A, B)" iff "A uge B".
2836     // We analyze this as umax(A, B) pred A.
2837     P = Pred;
2838   } else if (match(RHS, m_UMax(m_Value(A), m_Value(B))) &&
2839              (A == LHS || B == LHS)) {
2840     if (A != LHS)
2841       std::swap(A, B);       // A pred umax(A, B).
2842     EqP = CmpInst::ICMP_UGE; // "A == umax(A, B)" iff "A uge B".
2843     // We analyze this as umax(A, B) swapped-pred A.
2844     P = CmpInst::getSwappedPredicate(Pred);
2845   } else if (match(LHS, m_UMin(m_Value(A), m_Value(B))) &&
2846              (A == RHS || B == RHS)) {
2847     if (A != RHS)
2848       std::swap(A, B);       // umin(A, B) pred A.
2849     EqP = CmpInst::ICMP_ULE; // "A == umin(A, B)" iff "A ule B".
2850     // We analyze this as umax(-A, -B) swapped-pred -A.
2851     // Note that we do not need to actually form -A or -B thanks to EqP.
2852     P = CmpInst::getSwappedPredicate(Pred);
2853   } else if (match(RHS, m_UMin(m_Value(A), m_Value(B))) &&
2854              (A == LHS || B == LHS)) {
2855     if (A != LHS)
2856       std::swap(A, B);       // A pred umin(A, B).
2857     EqP = CmpInst::ICMP_ULE; // "A == umin(A, B)" iff "A ule B".
2858     // We analyze this as umax(-A, -B) pred -A.
2859     // Note that we do not need to actually form -A or -B thanks to EqP.
2860     P = Pred;
2861   }
2862   if (P != CmpInst::BAD_ICMP_PREDICATE) {
2863     // Cases correspond to "max(A, B) p A".
2864     switch (P) {
2865     default:
2866       break;
2867     case CmpInst::ICMP_EQ:
2868     case CmpInst::ICMP_ULE:
2869       // Equivalent to "A EqP B".  This may be the same as the condition tested
2870       // in the max/min; if so, we can just return that.
2871       if (Value *V = ExtractEquivalentCondition(LHS, EqP, A, B))
2872         return V;
2873       if (Value *V = ExtractEquivalentCondition(RHS, EqP, A, B))
2874         return V;
2875       // Otherwise, see if "A EqP B" simplifies.
2876       if (MaxRecurse)
2877         if (Value *V = SimplifyICmpInst(EqP, A, B, Q, MaxRecurse - 1))
2878           return V;
2879       break;
2880     case CmpInst::ICMP_NE:
2881     case CmpInst::ICMP_UGT: {
2882       CmpInst::Predicate InvEqP = CmpInst::getInversePredicate(EqP);
2883       // Equivalent to "A InvEqP B".  This may be the same as the condition
2884       // tested in the max/min; if so, we can just return that.
2885       if (Value *V = ExtractEquivalentCondition(LHS, InvEqP, A, B))
2886         return V;
2887       if (Value *V = ExtractEquivalentCondition(RHS, InvEqP, A, B))
2888         return V;
2889       // Otherwise, see if "A InvEqP B" simplifies.
2890       if (MaxRecurse)
2891         if (Value *V = SimplifyICmpInst(InvEqP, A, B, Q, MaxRecurse - 1))
2892           return V;
2893       break;
2894     }
2895     case CmpInst::ICMP_UGE:
2896       // Always true.
2897       return getTrue(ITy);
2898     case CmpInst::ICMP_ULT:
2899       // Always false.
2900       return getFalse(ITy);
2901     }
2902   }
2903 
2904   // Variants on "max(x,y) >= min(x,z)".
2905   Value *C, *D;
2906   if (match(LHS, m_SMax(m_Value(A), m_Value(B))) &&
2907       match(RHS, m_SMin(m_Value(C), m_Value(D))) &&
2908       (A == C || A == D || B == C || B == D)) {
2909     // max(x, ?) pred min(x, ?).
2910     if (Pred == CmpInst::ICMP_SGE)
2911       // Always true.
2912       return getTrue(ITy);
2913     if (Pred == CmpInst::ICMP_SLT)
2914       // Always false.
2915       return getFalse(ITy);
2916   } else if (match(LHS, m_SMin(m_Value(A), m_Value(B))) &&
2917              match(RHS, m_SMax(m_Value(C), m_Value(D))) &&
2918              (A == C || A == D || B == C || B == D)) {
2919     // min(x, ?) pred max(x, ?).
2920     if (Pred == CmpInst::ICMP_SLE)
2921       // Always true.
2922       return getTrue(ITy);
2923     if (Pred == CmpInst::ICMP_SGT)
2924       // Always false.
2925       return getFalse(ITy);
2926   } else if (match(LHS, m_UMax(m_Value(A), m_Value(B))) &&
2927              match(RHS, m_UMin(m_Value(C), m_Value(D))) &&
2928              (A == C || A == D || B == C || B == D)) {
2929     // max(x, ?) pred min(x, ?).
2930     if (Pred == CmpInst::ICMP_UGE)
2931       // Always true.
2932       return getTrue(ITy);
2933     if (Pred == CmpInst::ICMP_ULT)
2934       // Always false.
2935       return getFalse(ITy);
2936   } else if (match(LHS, m_UMin(m_Value(A), m_Value(B))) &&
2937              match(RHS, m_UMax(m_Value(C), m_Value(D))) &&
2938              (A == C || A == D || B == C || B == D)) {
2939     // min(x, ?) pred max(x, ?).
2940     if (Pred == CmpInst::ICMP_ULE)
2941       // Always true.
2942       return getTrue(ITy);
2943     if (Pred == CmpInst::ICMP_UGT)
2944       // Always false.
2945       return getFalse(ITy);
2946   }
2947 
2948   return nullptr;
2949 }
2950 
2951 /// Given operands for an ICmpInst, see if we can fold the result.
2952 /// If not, this returns null.
2953 static Value *SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS,
2954                                const SimplifyQuery &Q, unsigned MaxRecurse) {
2955   CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate;
2956   assert(CmpInst::isIntPredicate(Pred) && "Not an integer compare!");
2957 
2958   if (Constant *CLHS = dyn_cast<Constant>(LHS)) {
2959     if (Constant *CRHS = dyn_cast<Constant>(RHS))
2960       return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, Q.DL, Q.TLI);
2961 
2962     // If we have a constant, make sure it is on the RHS.
2963     std::swap(LHS, RHS);
2964     Pred = CmpInst::getSwappedPredicate(Pred);
2965   }
2966 
2967   Type *ITy = GetCompareTy(LHS); // The return type.
2968 
2969   // icmp X, X -> true/false
2970   // X icmp undef -> true/false.  For example, icmp ugt %X, undef -> false
2971   // because X could be 0.
2972   if (LHS == RHS || isa<UndefValue>(RHS))
2973     return ConstantInt::get(ITy, CmpInst::isTrueWhenEqual(Pred));
2974 
2975   if (Value *V = simplifyICmpOfBools(Pred, LHS, RHS, Q))
2976     return V;
2977 
2978   if (Value *V = simplifyICmpWithZero(Pred, LHS, RHS, Q))
2979     return V;
2980 
2981   if (Value *V = simplifyICmpWithConstant(Pred, LHS, RHS))
2982     return V;
2983 
2984   // If both operands have range metadata, use the metadata
2985   // to simplify the comparison.
2986   if (isa<Instruction>(RHS) && isa<Instruction>(LHS)) {
2987     auto RHS_Instr = cast<Instruction>(RHS);
2988     auto LHS_Instr = cast<Instruction>(LHS);
2989 
2990     if (RHS_Instr->getMetadata(LLVMContext::MD_range) &&
2991         LHS_Instr->getMetadata(LLVMContext::MD_range)) {
2992       auto RHS_CR = getConstantRangeFromMetadata(
2993           *RHS_Instr->getMetadata(LLVMContext::MD_range));
2994       auto LHS_CR = getConstantRangeFromMetadata(
2995           *LHS_Instr->getMetadata(LLVMContext::MD_range));
2996 
2997       auto Satisfied_CR = ConstantRange::makeSatisfyingICmpRegion(Pred, RHS_CR);
2998       if (Satisfied_CR.contains(LHS_CR))
2999         return ConstantInt::getTrue(RHS->getContext());
3000 
3001       auto InversedSatisfied_CR = ConstantRange::makeSatisfyingICmpRegion(
3002                 CmpInst::getInversePredicate(Pred), RHS_CR);
3003       if (InversedSatisfied_CR.contains(LHS_CR))
3004         return ConstantInt::getFalse(RHS->getContext());
3005     }
3006   }
3007 
3008   // Compare of cast, for example (zext X) != 0 -> X != 0
3009   if (isa<CastInst>(LHS) && (isa<Constant>(RHS) || isa<CastInst>(RHS))) {
3010     Instruction *LI = cast<CastInst>(LHS);
3011     Value *SrcOp = LI->getOperand(0);
3012     Type *SrcTy = SrcOp->getType();
3013     Type *DstTy = LI->getType();
3014 
3015     // Turn icmp (ptrtoint x), (ptrtoint/constant) into a compare of the input
3016     // if the integer type is the same size as the pointer type.
3017     if (MaxRecurse && isa<PtrToIntInst>(LI) &&
3018         Q.DL.getTypeSizeInBits(SrcTy) == DstTy->getPrimitiveSizeInBits()) {
3019       if (Constant *RHSC = dyn_cast<Constant>(RHS)) {
3020         // Transfer the cast to the constant.
3021         if (Value *V = SimplifyICmpInst(Pred, SrcOp,
3022                                         ConstantExpr::getIntToPtr(RHSC, SrcTy),
3023                                         Q, MaxRecurse-1))
3024           return V;
3025       } else if (PtrToIntInst *RI = dyn_cast<PtrToIntInst>(RHS)) {
3026         if (RI->getOperand(0)->getType() == SrcTy)
3027           // Compare without the cast.
3028           if (Value *V = SimplifyICmpInst(Pred, SrcOp, RI->getOperand(0),
3029                                           Q, MaxRecurse-1))
3030             return V;
3031       }
3032     }
3033 
3034     if (isa<ZExtInst>(LHS)) {
3035       // Turn icmp (zext X), (zext Y) into a compare of X and Y if they have the
3036       // same type.
3037       if (ZExtInst *RI = dyn_cast<ZExtInst>(RHS)) {
3038         if (MaxRecurse && SrcTy == RI->getOperand(0)->getType())
3039           // Compare X and Y.  Note that signed predicates become unsigned.
3040           if (Value *V = SimplifyICmpInst(ICmpInst::getUnsignedPredicate(Pred),
3041                                           SrcOp, RI->getOperand(0), Q,
3042                                           MaxRecurse-1))
3043             return V;
3044       }
3045       // Turn icmp (zext X), Cst into a compare of X and Cst if Cst is extended
3046       // too.  If not, then try to deduce the result of the comparison.
3047       else if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
3048         // Compute the constant that would happen if we truncated to SrcTy then
3049         // reextended to DstTy.
3050         Constant *Trunc = ConstantExpr::getTrunc(CI, SrcTy);
3051         Constant *RExt = ConstantExpr::getCast(CastInst::ZExt, Trunc, DstTy);
3052 
3053         // If the re-extended constant didn't change then this is effectively
3054         // also a case of comparing two zero-extended values.
3055         if (RExt == CI && MaxRecurse)
3056           if (Value *V = SimplifyICmpInst(ICmpInst::getUnsignedPredicate(Pred),
3057                                         SrcOp, Trunc, Q, MaxRecurse-1))
3058             return V;
3059 
3060         // Otherwise the upper bits of LHS are zero while RHS has a non-zero bit
3061         // there.  Use this to work out the result of the comparison.
3062         if (RExt != CI) {
3063           switch (Pred) {
3064           default: llvm_unreachable("Unknown ICmp predicate!");
3065           // LHS <u RHS.
3066           case ICmpInst::ICMP_EQ:
3067           case ICmpInst::ICMP_UGT:
3068           case ICmpInst::ICMP_UGE:
3069             return ConstantInt::getFalse(CI->getContext());
3070 
3071           case ICmpInst::ICMP_NE:
3072           case ICmpInst::ICMP_ULT:
3073           case ICmpInst::ICMP_ULE:
3074             return ConstantInt::getTrue(CI->getContext());
3075 
3076           // LHS is non-negative.  If RHS is negative then LHS >s LHS.  If RHS
3077           // is non-negative then LHS <s RHS.
3078           case ICmpInst::ICMP_SGT:
3079           case ICmpInst::ICMP_SGE:
3080             return CI->getValue().isNegative() ?
3081               ConstantInt::getTrue(CI->getContext()) :
3082               ConstantInt::getFalse(CI->getContext());
3083 
3084           case ICmpInst::ICMP_SLT:
3085           case ICmpInst::ICMP_SLE:
3086             return CI->getValue().isNegative() ?
3087               ConstantInt::getFalse(CI->getContext()) :
3088               ConstantInt::getTrue(CI->getContext());
3089           }
3090         }
3091       }
3092     }
3093 
3094     if (isa<SExtInst>(LHS)) {
3095       // Turn icmp (sext X), (sext Y) into a compare of X and Y if they have the
3096       // same type.
3097       if (SExtInst *RI = dyn_cast<SExtInst>(RHS)) {
3098         if (MaxRecurse && SrcTy == RI->getOperand(0)->getType())
3099           // Compare X and Y.  Note that the predicate does not change.
3100           if (Value *V = SimplifyICmpInst(Pred, SrcOp, RI->getOperand(0),
3101                                           Q, MaxRecurse-1))
3102             return V;
3103       }
3104       // Turn icmp (sext X), Cst into a compare of X and Cst if Cst is extended
3105       // too.  If not, then try to deduce the result of the comparison.
3106       else if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
3107         // Compute the constant that would happen if we truncated to SrcTy then
3108         // reextended to DstTy.
3109         Constant *Trunc = ConstantExpr::getTrunc(CI, SrcTy);
3110         Constant *RExt = ConstantExpr::getCast(CastInst::SExt, Trunc, DstTy);
3111 
3112         // If the re-extended constant didn't change then this is effectively
3113         // also a case of comparing two sign-extended values.
3114         if (RExt == CI && MaxRecurse)
3115           if (Value *V = SimplifyICmpInst(Pred, SrcOp, Trunc, Q, MaxRecurse-1))
3116             return V;
3117 
3118         // Otherwise the upper bits of LHS are all equal, while RHS has varying
3119         // bits there.  Use this to work out the result of the comparison.
3120         if (RExt != CI) {
3121           switch (Pred) {
3122           default: llvm_unreachable("Unknown ICmp predicate!");
3123           case ICmpInst::ICMP_EQ:
3124             return ConstantInt::getFalse(CI->getContext());
3125           case ICmpInst::ICMP_NE:
3126             return ConstantInt::getTrue(CI->getContext());
3127 
3128           // If RHS is non-negative then LHS <s RHS.  If RHS is negative then
3129           // LHS >s RHS.
3130           case ICmpInst::ICMP_SGT:
3131           case ICmpInst::ICMP_SGE:
3132             return CI->getValue().isNegative() ?
3133               ConstantInt::getTrue(CI->getContext()) :
3134               ConstantInt::getFalse(CI->getContext());
3135           case ICmpInst::ICMP_SLT:
3136           case ICmpInst::ICMP_SLE:
3137             return CI->getValue().isNegative() ?
3138               ConstantInt::getFalse(CI->getContext()) :
3139               ConstantInt::getTrue(CI->getContext());
3140 
3141           // If LHS is non-negative then LHS <u RHS.  If LHS is negative then
3142           // LHS >u RHS.
3143           case ICmpInst::ICMP_UGT:
3144           case ICmpInst::ICMP_UGE:
3145             // Comparison is true iff the LHS <s 0.
3146             if (MaxRecurse)
3147               if (Value *V = SimplifyICmpInst(ICmpInst::ICMP_SLT, SrcOp,
3148                                               Constant::getNullValue(SrcTy),
3149                                               Q, MaxRecurse-1))
3150                 return V;
3151             break;
3152           case ICmpInst::ICMP_ULT:
3153           case ICmpInst::ICMP_ULE:
3154             // Comparison is true iff the LHS >=s 0.
3155             if (MaxRecurse)
3156               if (Value *V = SimplifyICmpInst(ICmpInst::ICMP_SGE, SrcOp,
3157                                               Constant::getNullValue(SrcTy),
3158                                               Q, MaxRecurse-1))
3159                 return V;
3160             break;
3161           }
3162         }
3163       }
3164     }
3165   }
3166 
3167   // icmp eq|ne X, Y -> false|true if X != Y
3168   if (ICmpInst::isEquality(Pred) &&
3169       isKnownNonEqual(LHS, RHS, Q.DL, Q.AC, Q.CxtI, Q.DT)) {
3170     return Pred == ICmpInst::ICMP_NE ? getTrue(ITy) : getFalse(ITy);
3171   }
3172 
3173   if (Value *V = simplifyICmpWithBinOp(Pred, LHS, RHS, Q, MaxRecurse))
3174     return V;
3175 
3176   if (Value *V = simplifyICmpWithMinMax(Pred, LHS, RHS, Q, MaxRecurse))
3177     return V;
3178 
3179   // Simplify comparisons of related pointers using a powerful, recursive
3180   // GEP-walk when we have target data available..
3181   if (LHS->getType()->isPointerTy())
3182     if (auto *C = computePointerICmp(Q.DL, Q.TLI, Q.DT, Pred, Q.AC, Q.CxtI, LHS,
3183                                      RHS))
3184       return C;
3185   if (auto *CLHS = dyn_cast<PtrToIntOperator>(LHS))
3186     if (auto *CRHS = dyn_cast<PtrToIntOperator>(RHS))
3187       if (Q.DL.getTypeSizeInBits(CLHS->getPointerOperandType()) ==
3188               Q.DL.getTypeSizeInBits(CLHS->getType()) &&
3189           Q.DL.getTypeSizeInBits(CRHS->getPointerOperandType()) ==
3190               Q.DL.getTypeSizeInBits(CRHS->getType()))
3191         if (auto *C = computePointerICmp(Q.DL, Q.TLI, Q.DT, Pred, Q.AC, Q.CxtI,
3192                                          CLHS->getPointerOperand(),
3193                                          CRHS->getPointerOperand()))
3194           return C;
3195 
3196   if (GetElementPtrInst *GLHS = dyn_cast<GetElementPtrInst>(LHS)) {
3197     if (GEPOperator *GRHS = dyn_cast<GEPOperator>(RHS)) {
3198       if (GLHS->getPointerOperand() == GRHS->getPointerOperand() &&
3199           GLHS->hasAllConstantIndices() && GRHS->hasAllConstantIndices() &&
3200           (ICmpInst::isEquality(Pred) ||
3201            (GLHS->isInBounds() && GRHS->isInBounds() &&
3202             Pred == ICmpInst::getSignedPredicate(Pred)))) {
3203         // The bases are equal and the indices are constant.  Build a constant
3204         // expression GEP with the same indices and a null base pointer to see
3205         // what constant folding can make out of it.
3206         Constant *Null = Constant::getNullValue(GLHS->getPointerOperandType());
3207         SmallVector<Value *, 4> IndicesLHS(GLHS->idx_begin(), GLHS->idx_end());
3208         Constant *NewLHS = ConstantExpr::getGetElementPtr(
3209             GLHS->getSourceElementType(), Null, IndicesLHS);
3210 
3211         SmallVector<Value *, 4> IndicesRHS(GRHS->idx_begin(), GRHS->idx_end());
3212         Constant *NewRHS = ConstantExpr::getGetElementPtr(
3213             GLHS->getSourceElementType(), Null, IndicesRHS);
3214         return ConstantExpr::getICmp(Pred, NewLHS, NewRHS);
3215       }
3216     }
3217   }
3218 
3219   // If the comparison is with the result of a select instruction, check whether
3220   // comparing with either branch of the select always yields the same value.
3221   if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS))
3222     if (Value *V = ThreadCmpOverSelect(Pred, LHS, RHS, Q, MaxRecurse))
3223       return V;
3224 
3225   // If the comparison is with the result of a phi instruction, check whether
3226   // doing the compare with each incoming phi value yields a common result.
3227   if (isa<PHINode>(LHS) || isa<PHINode>(RHS))
3228     if (Value *V = ThreadCmpOverPHI(Pred, LHS, RHS, Q, MaxRecurse))
3229       return V;
3230 
3231   return nullptr;
3232 }
3233 
3234 Value *llvm::SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS,
3235                               const SimplifyQuery &Q) {
3236   return ::SimplifyICmpInst(Predicate, LHS, RHS, Q, RecursionLimit);
3237 }
3238 
3239 /// Given operands for an FCmpInst, see if we can fold the result.
3240 /// If not, this returns null.
3241 static Value *SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
3242                                FastMathFlags FMF, const SimplifyQuery &Q,
3243                                unsigned MaxRecurse) {
3244   CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate;
3245   assert(CmpInst::isFPPredicate(Pred) && "Not an FP compare!");
3246 
3247   if (Constant *CLHS = dyn_cast<Constant>(LHS)) {
3248     if (Constant *CRHS = dyn_cast<Constant>(RHS))
3249       return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, Q.DL, Q.TLI);
3250 
3251     // If we have a constant, make sure it is on the RHS.
3252     std::swap(LHS, RHS);
3253     Pred = CmpInst::getSwappedPredicate(Pred);
3254   }
3255 
3256   // Fold trivial predicates.
3257   Type *RetTy = GetCompareTy(LHS);
3258   if (Pred == FCmpInst::FCMP_FALSE)
3259     return getFalse(RetTy);
3260   if (Pred == FCmpInst::FCMP_TRUE)
3261     return getTrue(RetTy);
3262 
3263   // UNO/ORD predicates can be trivially folded if NaNs are ignored.
3264   if (FMF.noNaNs()) {
3265     if (Pred == FCmpInst::FCMP_UNO)
3266       return getFalse(RetTy);
3267     if (Pred == FCmpInst::FCMP_ORD)
3268       return getTrue(RetTy);
3269   }
3270 
3271   // fcmp pred x, undef  and  fcmp pred undef, x
3272   // fold to true if unordered, false if ordered
3273   if (isa<UndefValue>(LHS) || isa<UndefValue>(RHS)) {
3274     // Choosing NaN for the undef will always make unordered comparison succeed
3275     // and ordered comparison fail.
3276     return ConstantInt::get(RetTy, CmpInst::isUnordered(Pred));
3277   }
3278 
3279   // fcmp x,x -> true/false.  Not all compares are foldable.
3280   if (LHS == RHS) {
3281     if (CmpInst::isTrueWhenEqual(Pred))
3282       return getTrue(RetTy);
3283     if (CmpInst::isFalseWhenEqual(Pred))
3284       return getFalse(RetTy);
3285   }
3286 
3287   // Handle fcmp with constant RHS
3288   const ConstantFP *CFP = nullptr;
3289   if (const auto *RHSC = dyn_cast<Constant>(RHS)) {
3290     if (RHS->getType()->isVectorTy())
3291       CFP = dyn_cast_or_null<ConstantFP>(RHSC->getSplatValue());
3292     else
3293       CFP = dyn_cast<ConstantFP>(RHSC);
3294   }
3295   if (CFP) {
3296     // If the constant is a nan, see if we can fold the comparison based on it.
3297     if (CFP->getValueAPF().isNaN()) {
3298       if (FCmpInst::isOrdered(Pred)) // True "if ordered and foo"
3299         return getFalse(RetTy);
3300       assert(FCmpInst::isUnordered(Pred) &&
3301              "Comparison must be either ordered or unordered!");
3302       // True if unordered.
3303       return getTrue(RetTy);
3304     }
3305     // Check whether the constant is an infinity.
3306     if (CFP->getValueAPF().isInfinity()) {
3307       if (CFP->getValueAPF().isNegative()) {
3308         switch (Pred) {
3309         case FCmpInst::FCMP_OLT:
3310           // No value is ordered and less than negative infinity.
3311           return getFalse(RetTy);
3312         case FCmpInst::FCMP_UGE:
3313           // All values are unordered with or at least negative infinity.
3314           return getTrue(RetTy);
3315         default:
3316           break;
3317         }
3318       } else {
3319         switch (Pred) {
3320         case FCmpInst::FCMP_OGT:
3321           // No value is ordered and greater than infinity.
3322           return getFalse(RetTy);
3323         case FCmpInst::FCMP_ULE:
3324           // All values are unordered with and at most infinity.
3325           return getTrue(RetTy);
3326         default:
3327           break;
3328         }
3329       }
3330     }
3331     if (CFP->getValueAPF().isZero()) {
3332       switch (Pred) {
3333       case FCmpInst::FCMP_UGE:
3334         if (CannotBeOrderedLessThanZero(LHS, Q.TLI))
3335           return getTrue(RetTy);
3336         break;
3337       case FCmpInst::FCMP_OLT:
3338         // X < 0
3339         if (CannotBeOrderedLessThanZero(LHS, Q.TLI))
3340           return getFalse(RetTy);
3341         break;
3342       default:
3343         break;
3344       }
3345     }
3346   }
3347 
3348   // If the comparison is with the result of a select instruction, check whether
3349   // comparing with either branch of the select always yields the same value.
3350   if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS))
3351     if (Value *V = ThreadCmpOverSelect(Pred, LHS, RHS, Q, MaxRecurse))
3352       return V;
3353 
3354   // If the comparison is with the result of a phi instruction, check whether
3355   // doing the compare with each incoming phi value yields a common result.
3356   if (isa<PHINode>(LHS) || isa<PHINode>(RHS))
3357     if (Value *V = ThreadCmpOverPHI(Pred, LHS, RHS, Q, MaxRecurse))
3358       return V;
3359 
3360   return nullptr;
3361 }
3362 
3363 Value *llvm::SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
3364                               FastMathFlags FMF, const SimplifyQuery &Q) {
3365   return ::SimplifyFCmpInst(Predicate, LHS, RHS, FMF, Q, RecursionLimit);
3366 }
3367 
3368 /// See if V simplifies when its operand Op is replaced with RepOp.
3369 static const Value *SimplifyWithOpReplaced(Value *V, Value *Op, Value *RepOp,
3370                                            const SimplifyQuery &Q,
3371                                            unsigned MaxRecurse) {
3372   // Trivial replacement.
3373   if (V == Op)
3374     return RepOp;
3375 
3376   // We cannot replace a constant, and shouldn't even try.
3377   if (isa<Constant>(Op))
3378     return nullptr;
3379 
3380   auto *I = dyn_cast<Instruction>(V);
3381   if (!I)
3382     return nullptr;
3383 
3384   // If this is a binary operator, try to simplify it with the replaced op.
3385   if (auto *B = dyn_cast<BinaryOperator>(I)) {
3386     // Consider:
3387     //   %cmp = icmp eq i32 %x, 2147483647
3388     //   %add = add nsw i32 %x, 1
3389     //   %sel = select i1 %cmp, i32 -2147483648, i32 %add
3390     //
3391     // We can't replace %sel with %add unless we strip away the flags.
3392     if (isa<OverflowingBinaryOperator>(B))
3393       if (B->hasNoSignedWrap() || B->hasNoUnsignedWrap())
3394         return nullptr;
3395     if (isa<PossiblyExactOperator>(B))
3396       if (B->isExact())
3397         return nullptr;
3398 
3399     if (MaxRecurse) {
3400       if (B->getOperand(0) == Op)
3401         return SimplifyBinOp(B->getOpcode(), RepOp, B->getOperand(1), Q,
3402                              MaxRecurse - 1);
3403       if (B->getOperand(1) == Op)
3404         return SimplifyBinOp(B->getOpcode(), B->getOperand(0), RepOp, Q,
3405                              MaxRecurse - 1);
3406     }
3407   }
3408 
3409   // Same for CmpInsts.
3410   if (CmpInst *C = dyn_cast<CmpInst>(I)) {
3411     if (MaxRecurse) {
3412       if (C->getOperand(0) == Op)
3413         return SimplifyCmpInst(C->getPredicate(), RepOp, C->getOperand(1), Q,
3414                                MaxRecurse - 1);
3415       if (C->getOperand(1) == Op)
3416         return SimplifyCmpInst(C->getPredicate(), C->getOperand(0), RepOp, Q,
3417                                MaxRecurse - 1);
3418     }
3419   }
3420 
3421   // TODO: We could hand off more cases to instsimplify here.
3422 
3423   // If all operands are constant after substituting Op for RepOp then we can
3424   // constant fold the instruction.
3425   if (Constant *CRepOp = dyn_cast<Constant>(RepOp)) {
3426     // Build a list of all constant operands.
3427     SmallVector<Constant *, 8> ConstOps;
3428     for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
3429       if (I->getOperand(i) == Op)
3430         ConstOps.push_back(CRepOp);
3431       else if (Constant *COp = dyn_cast<Constant>(I->getOperand(i)))
3432         ConstOps.push_back(COp);
3433       else
3434         break;
3435     }
3436 
3437     // All operands were constants, fold it.
3438     if (ConstOps.size() == I->getNumOperands()) {
3439       if (CmpInst *C = dyn_cast<CmpInst>(I))
3440         return ConstantFoldCompareInstOperands(C->getPredicate(), ConstOps[0],
3441                                                ConstOps[1], Q.DL, Q.TLI);
3442 
3443       if (LoadInst *LI = dyn_cast<LoadInst>(I))
3444         if (!LI->isVolatile())
3445           return ConstantFoldLoadFromConstPtr(ConstOps[0], LI->getType(), Q.DL);
3446 
3447       return ConstantFoldInstOperands(I, ConstOps, Q.DL, Q.TLI);
3448     }
3449   }
3450 
3451   return nullptr;
3452 }
3453 
3454 /// Try to simplify a select instruction when its condition operand is an
3455 /// integer comparison where one operand of the compare is a constant.
3456 static Value *simplifySelectBitTest(Value *TrueVal, Value *FalseVal, Value *X,
3457                                     const APInt *Y, bool TrueWhenUnset) {
3458   const APInt *C;
3459 
3460   // (X & Y) == 0 ? X & ~Y : X  --> X
3461   // (X & Y) != 0 ? X & ~Y : X  --> X & ~Y
3462   if (FalseVal == X && match(TrueVal, m_And(m_Specific(X), m_APInt(C))) &&
3463       *Y == ~*C)
3464     return TrueWhenUnset ? FalseVal : TrueVal;
3465 
3466   // (X & Y) == 0 ? X : X & ~Y  --> X & ~Y
3467   // (X & Y) != 0 ? X : X & ~Y  --> X
3468   if (TrueVal == X && match(FalseVal, m_And(m_Specific(X), m_APInt(C))) &&
3469       *Y == ~*C)
3470     return TrueWhenUnset ? FalseVal : TrueVal;
3471 
3472   if (Y->isPowerOf2()) {
3473     // (X & Y) == 0 ? X | Y : X  --> X | Y
3474     // (X & Y) != 0 ? X | Y : X  --> X
3475     if (FalseVal == X && match(TrueVal, m_Or(m_Specific(X), m_APInt(C))) &&
3476         *Y == *C)
3477       return TrueWhenUnset ? TrueVal : FalseVal;
3478 
3479     // (X & Y) == 0 ? X : X | Y  --> X
3480     // (X & Y) != 0 ? X : X | Y  --> X | Y
3481     if (TrueVal == X && match(FalseVal, m_Or(m_Specific(X), m_APInt(C))) &&
3482         *Y == *C)
3483       return TrueWhenUnset ? TrueVal : FalseVal;
3484   }
3485 
3486   return nullptr;
3487 }
3488 
3489 /// An alternative way to test if a bit is set or not uses sgt/slt instead of
3490 /// eq/ne.
3491 static Value *simplifySelectWithFakeICmpEq(Value *CmpLHS, Value *CmpRHS,
3492                                            ICmpInst::Predicate Pred,
3493                                            Value *TrueVal, Value *FalseVal) {
3494   Value *X;
3495   APInt Mask;
3496   if (!decomposeBitTestICmp(CmpLHS, CmpRHS, Pred, X, Mask))
3497     return nullptr;
3498 
3499   return simplifySelectBitTest(TrueVal, FalseVal, X, &Mask,
3500                                Pred == ICmpInst::ICMP_EQ);
3501 }
3502 
3503 /// Try to simplify a select instruction when its condition operand is an
3504 /// integer comparison.
3505 static Value *simplifySelectWithICmpCond(Value *CondVal, Value *TrueVal,
3506                                          Value *FalseVal, const SimplifyQuery &Q,
3507                                          unsigned MaxRecurse) {
3508   ICmpInst::Predicate Pred;
3509   Value *CmpLHS, *CmpRHS;
3510   if (!match(CondVal, m_ICmp(Pred, m_Value(CmpLHS), m_Value(CmpRHS))))
3511     return nullptr;
3512 
3513   if (ICmpInst::isEquality(Pred) && match(CmpRHS, m_Zero())) {
3514     Value *X;
3515     const APInt *Y;
3516     if (match(CmpLHS, m_And(m_Value(X), m_APInt(Y))))
3517       if (Value *V = simplifySelectBitTest(TrueVal, FalseVal, X, Y,
3518                                            Pred == ICmpInst::ICMP_EQ))
3519         return V;
3520   }
3521 
3522   // Check for other compares that behave like bit test.
3523   if (Value *V = simplifySelectWithFakeICmpEq(CmpLHS, CmpRHS, Pred,
3524                                               TrueVal, FalseVal))
3525     return V;
3526 
3527   if (CondVal->hasOneUse()) {
3528     const APInt *C;
3529     if (match(CmpRHS, m_APInt(C))) {
3530       // X < MIN ? T : F  -->  F
3531       if (Pred == ICmpInst::ICMP_SLT && C->isMinSignedValue())
3532         return FalseVal;
3533       // X < MIN ? T : F  -->  F
3534       if (Pred == ICmpInst::ICMP_ULT && C->isMinValue())
3535         return FalseVal;
3536       // X > MAX ? T : F  -->  F
3537       if (Pred == ICmpInst::ICMP_SGT && C->isMaxSignedValue())
3538         return FalseVal;
3539       // X > MAX ? T : F  -->  F
3540       if (Pred == ICmpInst::ICMP_UGT && C->isMaxValue())
3541         return FalseVal;
3542     }
3543   }
3544 
3545   // If we have an equality comparison, then we know the value in one of the
3546   // arms of the select. See if substituting this value into the arm and
3547   // simplifying the result yields the same value as the other arm.
3548   if (Pred == ICmpInst::ICMP_EQ) {
3549     if (SimplifyWithOpReplaced(FalseVal, CmpLHS, CmpRHS, Q, MaxRecurse) ==
3550             TrueVal ||
3551         SimplifyWithOpReplaced(FalseVal, CmpRHS, CmpLHS, Q, MaxRecurse) ==
3552             TrueVal)
3553       return FalseVal;
3554     if (SimplifyWithOpReplaced(TrueVal, CmpLHS, CmpRHS, Q, MaxRecurse) ==
3555             FalseVal ||
3556         SimplifyWithOpReplaced(TrueVal, CmpRHS, CmpLHS, Q, MaxRecurse) ==
3557             FalseVal)
3558       return FalseVal;
3559   } else if (Pred == ICmpInst::ICMP_NE) {
3560     if (SimplifyWithOpReplaced(TrueVal, CmpLHS, CmpRHS, Q, MaxRecurse) ==
3561             FalseVal ||
3562         SimplifyWithOpReplaced(TrueVal, CmpRHS, CmpLHS, Q, MaxRecurse) ==
3563             FalseVal)
3564       return TrueVal;
3565     if (SimplifyWithOpReplaced(FalseVal, CmpLHS, CmpRHS, Q, MaxRecurse) ==
3566             TrueVal ||
3567         SimplifyWithOpReplaced(FalseVal, CmpRHS, CmpLHS, Q, MaxRecurse) ==
3568             TrueVal)
3569       return TrueVal;
3570   }
3571 
3572   return nullptr;
3573 }
3574 
3575 /// Given operands for a SelectInst, see if we can fold the result.
3576 /// If not, this returns null.
3577 static Value *SimplifySelectInst(Value *CondVal, Value *TrueVal,
3578                                  Value *FalseVal, const SimplifyQuery &Q,
3579                                  unsigned MaxRecurse) {
3580   // select true, X, Y  -> X
3581   // select false, X, Y -> Y
3582   if (Constant *CB = dyn_cast<Constant>(CondVal)) {
3583     if (Constant *CT = dyn_cast<Constant>(TrueVal))
3584       if (Constant *CF = dyn_cast<Constant>(FalseVal))
3585         return ConstantFoldSelectInstruction(CB, CT, CF);
3586     if (CB->isAllOnesValue())
3587       return TrueVal;
3588     if (CB->isNullValue())
3589       return FalseVal;
3590   }
3591 
3592   // select C, X, X -> X
3593   if (TrueVal == FalseVal)
3594     return TrueVal;
3595 
3596   if (isa<UndefValue>(CondVal)) {  // select undef, X, Y -> X or Y
3597     if (isa<Constant>(FalseVal))
3598       return FalseVal;
3599     return TrueVal;
3600   }
3601   if (isa<UndefValue>(TrueVal))   // select C, undef, X -> X
3602     return FalseVal;
3603   if (isa<UndefValue>(FalseVal))   // select C, X, undef -> X
3604     return TrueVal;
3605 
3606   if (Value *V =
3607           simplifySelectWithICmpCond(CondVal, TrueVal, FalseVal, Q, MaxRecurse))
3608     return V;
3609 
3610   return nullptr;
3611 }
3612 
3613 Value *llvm::SimplifySelectInst(Value *Cond, Value *TrueVal, Value *FalseVal,
3614                                 const SimplifyQuery &Q) {
3615   return ::SimplifySelectInst(Cond, TrueVal, FalseVal, Q, RecursionLimit);
3616 }
3617 
3618 /// Given operands for an GetElementPtrInst, see if we can fold the result.
3619 /// If not, this returns null.
3620 static Value *SimplifyGEPInst(Type *SrcTy, ArrayRef<Value *> Ops,
3621                               const SimplifyQuery &Q, unsigned) {
3622   // The type of the GEP pointer operand.
3623   unsigned AS =
3624       cast<PointerType>(Ops[0]->getType()->getScalarType())->getAddressSpace();
3625 
3626   // getelementptr P -> P.
3627   if (Ops.size() == 1)
3628     return Ops[0];
3629 
3630   // Compute the (pointer) type returned by the GEP instruction.
3631   Type *LastType = GetElementPtrInst::getIndexedType(SrcTy, Ops.slice(1));
3632   Type *GEPTy = PointerType::get(LastType, AS);
3633   if (VectorType *VT = dyn_cast<VectorType>(Ops[0]->getType()))
3634     GEPTy = VectorType::get(GEPTy, VT->getNumElements());
3635   else if (VectorType *VT = dyn_cast<VectorType>(Ops[1]->getType()))
3636     GEPTy = VectorType::get(GEPTy, VT->getNumElements());
3637 
3638   if (isa<UndefValue>(Ops[0]))
3639     return UndefValue::get(GEPTy);
3640 
3641   if (Ops.size() == 2) {
3642     // getelementptr P, 0 -> P.
3643     if (match(Ops[1], m_Zero()))
3644       return Ops[0];
3645 
3646     Type *Ty = SrcTy;
3647     if (Ty->isSized()) {
3648       Value *P;
3649       uint64_t C;
3650       uint64_t TyAllocSize = Q.DL.getTypeAllocSize(Ty);
3651       // getelementptr P, N -> P if P points to a type of zero size.
3652       if (TyAllocSize == 0)
3653         return Ops[0];
3654 
3655       // The following transforms are only safe if the ptrtoint cast
3656       // doesn't truncate the pointers.
3657       if (Ops[1]->getType()->getScalarSizeInBits() ==
3658           Q.DL.getPointerSizeInBits(AS)) {
3659         auto PtrToIntOrZero = [GEPTy](Value *P) -> Value * {
3660           if (match(P, m_Zero()))
3661             return Constant::getNullValue(GEPTy);
3662           Value *Temp;
3663           if (match(P, m_PtrToInt(m_Value(Temp))))
3664             if (Temp->getType() == GEPTy)
3665               return Temp;
3666           return nullptr;
3667         };
3668 
3669         // getelementptr V, (sub P, V) -> P if P points to a type of size 1.
3670         if (TyAllocSize == 1 &&
3671             match(Ops[1], m_Sub(m_Value(P), m_PtrToInt(m_Specific(Ops[0])))))
3672           if (Value *R = PtrToIntOrZero(P))
3673             return R;
3674 
3675         // getelementptr V, (ashr (sub P, V), C) -> Q
3676         // if P points to a type of size 1 << C.
3677         if (match(Ops[1],
3678                   m_AShr(m_Sub(m_Value(P), m_PtrToInt(m_Specific(Ops[0]))),
3679                          m_ConstantInt(C))) &&
3680             TyAllocSize == 1ULL << C)
3681           if (Value *R = PtrToIntOrZero(P))
3682             return R;
3683 
3684         // getelementptr V, (sdiv (sub P, V), C) -> Q
3685         // if P points to a type of size C.
3686         if (match(Ops[1],
3687                   m_SDiv(m_Sub(m_Value(P), m_PtrToInt(m_Specific(Ops[0]))),
3688                          m_SpecificInt(TyAllocSize))))
3689           if (Value *R = PtrToIntOrZero(P))
3690             return R;
3691       }
3692     }
3693   }
3694 
3695   if (Q.DL.getTypeAllocSize(LastType) == 1 &&
3696       all_of(Ops.slice(1).drop_back(1),
3697              [](Value *Idx) { return match(Idx, m_Zero()); })) {
3698     unsigned PtrWidth =
3699         Q.DL.getPointerSizeInBits(Ops[0]->getType()->getPointerAddressSpace());
3700     if (Q.DL.getTypeSizeInBits(Ops.back()->getType()) == PtrWidth) {
3701       APInt BasePtrOffset(PtrWidth, 0);
3702       Value *StrippedBasePtr =
3703           Ops[0]->stripAndAccumulateInBoundsConstantOffsets(Q.DL,
3704                                                             BasePtrOffset);
3705 
3706       // gep (gep V, C), (sub 0, V) -> C
3707       if (match(Ops.back(),
3708                 m_Sub(m_Zero(), m_PtrToInt(m_Specific(StrippedBasePtr))))) {
3709         auto *CI = ConstantInt::get(GEPTy->getContext(), BasePtrOffset);
3710         return ConstantExpr::getIntToPtr(CI, GEPTy);
3711       }
3712       // gep (gep V, C), (xor V, -1) -> C-1
3713       if (match(Ops.back(),
3714                 m_Xor(m_PtrToInt(m_Specific(StrippedBasePtr)), m_AllOnes()))) {
3715         auto *CI = ConstantInt::get(GEPTy->getContext(), BasePtrOffset - 1);
3716         return ConstantExpr::getIntToPtr(CI, GEPTy);
3717       }
3718     }
3719   }
3720 
3721   // Check to see if this is constant foldable.
3722   if (!all_of(Ops, [](Value *V) { return isa<Constant>(V); }))
3723     return nullptr;
3724 
3725   auto *CE = ConstantExpr::getGetElementPtr(SrcTy, cast<Constant>(Ops[0]),
3726                                             Ops.slice(1));
3727   if (auto *CEFolded = ConstantFoldConstant(CE, Q.DL))
3728     return CEFolded;
3729   return CE;
3730 }
3731 
3732 Value *llvm::SimplifyGEPInst(Type *SrcTy, ArrayRef<Value *> Ops,
3733                              const SimplifyQuery &Q) {
3734   return ::SimplifyGEPInst(SrcTy, Ops, Q, RecursionLimit);
3735 }
3736 
3737 /// Given operands for an InsertValueInst, see if we can fold the result.
3738 /// If not, this returns null.
3739 static Value *SimplifyInsertValueInst(Value *Agg, Value *Val,
3740                                       ArrayRef<unsigned> Idxs, const SimplifyQuery &Q,
3741                                       unsigned) {
3742   if (Constant *CAgg = dyn_cast<Constant>(Agg))
3743     if (Constant *CVal = dyn_cast<Constant>(Val))
3744       return ConstantFoldInsertValueInstruction(CAgg, CVal, Idxs);
3745 
3746   // insertvalue x, undef, n -> x
3747   if (match(Val, m_Undef()))
3748     return Agg;
3749 
3750   // insertvalue x, (extractvalue y, n), n
3751   if (ExtractValueInst *EV = dyn_cast<ExtractValueInst>(Val))
3752     if (EV->getAggregateOperand()->getType() == Agg->getType() &&
3753         EV->getIndices() == Idxs) {
3754       // insertvalue undef, (extractvalue y, n), n -> y
3755       if (match(Agg, m_Undef()))
3756         return EV->getAggregateOperand();
3757 
3758       // insertvalue y, (extractvalue y, n), n -> y
3759       if (Agg == EV->getAggregateOperand())
3760         return Agg;
3761     }
3762 
3763   return nullptr;
3764 }
3765 
3766 Value *llvm::SimplifyInsertValueInst(Value *Agg, Value *Val,
3767                                      ArrayRef<unsigned> Idxs,
3768                                      const SimplifyQuery &Q) {
3769   return ::SimplifyInsertValueInst(Agg, Val, Idxs, Q, RecursionLimit);
3770 }
3771 
3772 /// Given operands for an ExtractValueInst, see if we can fold the result.
3773 /// If not, this returns null.
3774 static Value *SimplifyExtractValueInst(Value *Agg, ArrayRef<unsigned> Idxs,
3775                                        const SimplifyQuery &, unsigned) {
3776   if (auto *CAgg = dyn_cast<Constant>(Agg))
3777     return ConstantFoldExtractValueInstruction(CAgg, Idxs);
3778 
3779   // extractvalue x, (insertvalue y, elt, n), n -> elt
3780   unsigned NumIdxs = Idxs.size();
3781   for (auto *IVI = dyn_cast<InsertValueInst>(Agg); IVI != nullptr;
3782        IVI = dyn_cast<InsertValueInst>(IVI->getAggregateOperand())) {
3783     ArrayRef<unsigned> InsertValueIdxs = IVI->getIndices();
3784     unsigned NumInsertValueIdxs = InsertValueIdxs.size();
3785     unsigned NumCommonIdxs = std::min(NumInsertValueIdxs, NumIdxs);
3786     if (InsertValueIdxs.slice(0, NumCommonIdxs) ==
3787         Idxs.slice(0, NumCommonIdxs)) {
3788       if (NumIdxs == NumInsertValueIdxs)
3789         return IVI->getInsertedValueOperand();
3790       break;
3791     }
3792   }
3793 
3794   return nullptr;
3795 }
3796 
3797 Value *llvm::SimplifyExtractValueInst(Value *Agg, ArrayRef<unsigned> Idxs,
3798                                       const SimplifyQuery &Q) {
3799   return ::SimplifyExtractValueInst(Agg, Idxs, Q, RecursionLimit);
3800 }
3801 
3802 /// Given operands for an ExtractElementInst, see if we can fold the result.
3803 /// If not, this returns null.
3804 static Value *SimplifyExtractElementInst(Value *Vec, Value *Idx, const SimplifyQuery &,
3805                                          unsigned) {
3806   if (auto *CVec = dyn_cast<Constant>(Vec)) {
3807     if (auto *CIdx = dyn_cast<Constant>(Idx))
3808       return ConstantFoldExtractElementInstruction(CVec, CIdx);
3809 
3810     // The index is not relevant if our vector is a splat.
3811     if (auto *Splat = CVec->getSplatValue())
3812       return Splat;
3813 
3814     if (isa<UndefValue>(Vec))
3815       return UndefValue::get(Vec->getType()->getVectorElementType());
3816   }
3817 
3818   // If extracting a specified index from the vector, see if we can recursively
3819   // find a previously computed scalar that was inserted into the vector.
3820   if (auto *IdxC = dyn_cast<ConstantInt>(Idx))
3821     if (Value *Elt = findScalarElement(Vec, IdxC->getZExtValue()))
3822       return Elt;
3823 
3824   return nullptr;
3825 }
3826 
3827 Value *llvm::SimplifyExtractElementInst(Value *Vec, Value *Idx,
3828                                         const SimplifyQuery &Q) {
3829   return ::SimplifyExtractElementInst(Vec, Idx, Q, RecursionLimit);
3830 }
3831 
3832 /// See if we can fold the given phi. If not, returns null.
3833 static Value *SimplifyPHINode(PHINode *PN, const SimplifyQuery &Q) {
3834   // If all of the PHI's incoming values are the same then replace the PHI node
3835   // with the common value.
3836   Value *CommonValue = nullptr;
3837   bool HasUndefInput = false;
3838   for (Value *Incoming : PN->incoming_values()) {
3839     // If the incoming value is the phi node itself, it can safely be skipped.
3840     if (Incoming == PN) continue;
3841     if (isa<UndefValue>(Incoming)) {
3842       // Remember that we saw an undef value, but otherwise ignore them.
3843       HasUndefInput = true;
3844       continue;
3845     }
3846     if (CommonValue && Incoming != CommonValue)
3847       return nullptr;  // Not the same, bail out.
3848     CommonValue = Incoming;
3849   }
3850 
3851   // If CommonValue is null then all of the incoming values were either undef or
3852   // equal to the phi node itself.
3853   if (!CommonValue)
3854     return UndefValue::get(PN->getType());
3855 
3856   // If we have a PHI node like phi(X, undef, X), where X is defined by some
3857   // instruction, we cannot return X as the result of the PHI node unless it
3858   // dominates the PHI block.
3859   if (HasUndefInput)
3860     return ValueDominatesPHI(CommonValue, PN, Q.DT) ? CommonValue : nullptr;
3861 
3862   return CommonValue;
3863 }
3864 
3865 static Value *SimplifyCastInst(unsigned CastOpc, Value *Op,
3866                                Type *Ty, const SimplifyQuery &Q, unsigned MaxRecurse) {
3867   if (auto *C = dyn_cast<Constant>(Op))
3868     return ConstantFoldCastOperand(CastOpc, C, Ty, Q.DL);
3869 
3870   if (auto *CI = dyn_cast<CastInst>(Op)) {
3871     auto *Src = CI->getOperand(0);
3872     Type *SrcTy = Src->getType();
3873     Type *MidTy = CI->getType();
3874     Type *DstTy = Ty;
3875     if (Src->getType() == Ty) {
3876       auto FirstOp = static_cast<Instruction::CastOps>(CI->getOpcode());
3877       auto SecondOp = static_cast<Instruction::CastOps>(CastOpc);
3878       Type *SrcIntPtrTy =
3879           SrcTy->isPtrOrPtrVectorTy() ? Q.DL.getIntPtrType(SrcTy) : nullptr;
3880       Type *MidIntPtrTy =
3881           MidTy->isPtrOrPtrVectorTy() ? Q.DL.getIntPtrType(MidTy) : nullptr;
3882       Type *DstIntPtrTy =
3883           DstTy->isPtrOrPtrVectorTy() ? Q.DL.getIntPtrType(DstTy) : nullptr;
3884       if (CastInst::isEliminableCastPair(FirstOp, SecondOp, SrcTy, MidTy, DstTy,
3885                                          SrcIntPtrTy, MidIntPtrTy,
3886                                          DstIntPtrTy) == Instruction::BitCast)
3887         return Src;
3888     }
3889   }
3890 
3891   // bitcast x -> x
3892   if (CastOpc == Instruction::BitCast)
3893     if (Op->getType() == Ty)
3894       return Op;
3895 
3896   return nullptr;
3897 }
3898 
3899 Value *llvm::SimplifyCastInst(unsigned CastOpc, Value *Op, Type *Ty,
3900                               const SimplifyQuery &Q) {
3901   return ::SimplifyCastInst(CastOpc, Op, Ty, Q, RecursionLimit);
3902 }
3903 
3904 /// For the given destination element of a shuffle, peek through shuffles to
3905 /// match a root vector source operand that contains that element in the same
3906 /// vector lane (ie, the same mask index), so we can eliminate the shuffle(s).
3907 static Value *foldIdentityShuffles(int DestElt, Value *Op0, Value *Op1,
3908                                    int MaskVal, Value *RootVec,
3909                                    unsigned MaxRecurse) {
3910   if (!MaxRecurse--)
3911     return nullptr;
3912 
3913   // Bail out if any mask value is undefined. That kind of shuffle may be
3914   // simplified further based on demanded bits or other folds.
3915   if (MaskVal == -1)
3916     return nullptr;
3917 
3918   // The mask value chooses which source operand we need to look at next.
3919   int InVecNumElts = Op0->getType()->getVectorNumElements();
3920   int RootElt = MaskVal;
3921   Value *SourceOp = Op0;
3922   if (MaskVal >= InVecNumElts) {
3923     RootElt = MaskVal - InVecNumElts;
3924     SourceOp = Op1;
3925   }
3926 
3927   // If the source operand is a shuffle itself, look through it to find the
3928   // matching root vector.
3929   if (auto *SourceShuf = dyn_cast<ShuffleVectorInst>(SourceOp)) {
3930     return foldIdentityShuffles(
3931         DestElt, SourceShuf->getOperand(0), SourceShuf->getOperand(1),
3932         SourceShuf->getMaskValue(RootElt), RootVec, MaxRecurse);
3933   }
3934 
3935   // TODO: Look through bitcasts? What if the bitcast changes the vector element
3936   // size?
3937 
3938   // The source operand is not a shuffle. Initialize the root vector value for
3939   // this shuffle if that has not been done yet.
3940   if (!RootVec)
3941     RootVec = SourceOp;
3942 
3943   // Give up as soon as a source operand does not match the existing root value.
3944   if (RootVec != SourceOp)
3945     return nullptr;
3946 
3947   // The element must be coming from the same lane in the source vector
3948   // (although it may have crossed lanes in intermediate shuffles).
3949   if (RootElt != DestElt)
3950     return nullptr;
3951 
3952   return RootVec;
3953 }
3954 
3955 static Value *SimplifyShuffleVectorInst(Value *Op0, Value *Op1, Constant *Mask,
3956                                         Type *RetTy, const SimplifyQuery &Q,
3957                                         unsigned MaxRecurse) {
3958   if (isa<UndefValue>(Mask))
3959     return UndefValue::get(RetTy);
3960 
3961   Type *InVecTy = Op0->getType();
3962   unsigned MaskNumElts = Mask->getType()->getVectorNumElements();
3963   unsigned InVecNumElts = InVecTy->getVectorNumElements();
3964 
3965   SmallVector<int, 32> Indices;
3966   ShuffleVectorInst::getShuffleMask(Mask, Indices);
3967   assert(MaskNumElts == Indices.size() &&
3968          "Size of Indices not same as number of mask elements?");
3969 
3970   // Canonicalization: If mask does not select elements from an input vector,
3971   // replace that input vector with undef.
3972   bool MaskSelects0 = false, MaskSelects1 = false;
3973   for (unsigned i = 0; i != MaskNumElts; ++i) {
3974     if (Indices[i] == -1)
3975       continue;
3976     if ((unsigned)Indices[i] < InVecNumElts)
3977       MaskSelects0 = true;
3978     else
3979       MaskSelects1 = true;
3980   }
3981   if (!MaskSelects0)
3982     Op0 = UndefValue::get(InVecTy);
3983   if (!MaskSelects1)
3984     Op1 = UndefValue::get(InVecTy);
3985 
3986   auto *Op0Const = dyn_cast<Constant>(Op0);
3987   auto *Op1Const = dyn_cast<Constant>(Op1);
3988 
3989   // If all operands are constant, constant fold the shuffle.
3990   if (Op0Const && Op1Const)
3991     return ConstantFoldShuffleVectorInstruction(Op0Const, Op1Const, Mask);
3992 
3993   // Canonicalization: if only one input vector is constant, it shall be the
3994   // second one.
3995   if (Op0Const && !Op1Const) {
3996     std::swap(Op0, Op1);
3997     ShuffleVectorInst::commuteShuffleMask(Indices, InVecNumElts);
3998   }
3999 
4000   // A shuffle of a splat is always the splat itself. Legal if the shuffle's
4001   // value type is same as the input vectors' type.
4002   if (auto *OpShuf = dyn_cast<ShuffleVectorInst>(Op0))
4003     if (isa<UndefValue>(Op1) && RetTy == InVecTy &&
4004         OpShuf->getMask()->getSplatValue())
4005       return Op0;
4006 
4007   // Don't fold a shuffle with undef mask elements. This may get folded in a
4008   // better way using demanded bits or other analysis.
4009   // TODO: Should we allow this?
4010   if (find(Indices, -1) != Indices.end())
4011     return nullptr;
4012 
4013   // Check if every element of this shuffle can be mapped back to the
4014   // corresponding element of a single root vector. If so, we don't need this
4015   // shuffle. This handles simple identity shuffles as well as chains of
4016   // shuffles that may widen/narrow and/or move elements across lanes and back.
4017   Value *RootVec = nullptr;
4018   for (unsigned i = 0; i != MaskNumElts; ++i) {
4019     // Note that recursion is limited for each vector element, so if any element
4020     // exceeds the limit, this will fail to simplify.
4021     RootVec =
4022         foldIdentityShuffles(i, Op0, Op1, Indices[i], RootVec, MaxRecurse);
4023 
4024     // We can't replace a widening/narrowing shuffle with one of its operands.
4025     if (!RootVec || RootVec->getType() != RetTy)
4026       return nullptr;
4027   }
4028   return RootVec;
4029 }
4030 
4031 /// Given operands for a ShuffleVectorInst, fold the result or return null.
4032 Value *llvm::SimplifyShuffleVectorInst(Value *Op0, Value *Op1, Constant *Mask,
4033                                        Type *RetTy, const SimplifyQuery &Q) {
4034   return ::SimplifyShuffleVectorInst(Op0, Op1, Mask, RetTy, Q, RecursionLimit);
4035 }
4036 
4037 /// Given operands for an FAdd, see if we can fold the result.  If not, this
4038 /// returns null.
4039 static Value *SimplifyFAddInst(Value *Op0, Value *Op1, FastMathFlags FMF,
4040                                const SimplifyQuery &Q, unsigned MaxRecurse) {
4041   if (Constant *C = foldOrCommuteConstant(Instruction::FAdd, Op0, Op1, Q))
4042     return C;
4043 
4044   // fadd X, -0 ==> X
4045   if (match(Op1, m_NegZero()))
4046     return Op0;
4047 
4048   // fadd X, 0 ==> X, when we know X is not -0
4049   if (match(Op1, m_Zero()) &&
4050       (FMF.noSignedZeros() || CannotBeNegativeZero(Op0, Q.TLI)))
4051     return Op0;
4052 
4053   // fadd [nnan ninf] X, (fsub [nnan ninf] 0, X) ==> 0
4054   //   where nnan and ninf have to occur at least once somewhere in this
4055   //   expression
4056   Value *SubOp = nullptr;
4057   if (match(Op1, m_FSub(m_AnyZero(), m_Specific(Op0))))
4058     SubOp = Op1;
4059   else if (match(Op0, m_FSub(m_AnyZero(), m_Specific(Op1))))
4060     SubOp = Op0;
4061   if (SubOp) {
4062     Instruction *FSub = cast<Instruction>(SubOp);
4063     if ((FMF.noNaNs() || FSub->hasNoNaNs()) &&
4064         (FMF.noInfs() || FSub->hasNoInfs()))
4065       return Constant::getNullValue(Op0->getType());
4066   }
4067 
4068   return nullptr;
4069 }
4070 
4071 /// Given operands for an FSub, see if we can fold the result.  If not, this
4072 /// returns null.
4073 static Value *SimplifyFSubInst(Value *Op0, Value *Op1, FastMathFlags FMF,
4074                                const SimplifyQuery &Q, unsigned MaxRecurse) {
4075   if (Constant *C = foldOrCommuteConstant(Instruction::FSub, Op0, Op1, Q))
4076     return C;
4077 
4078   // fsub X, 0 ==> X
4079   if (match(Op1, m_Zero()))
4080     return Op0;
4081 
4082   // fsub X, -0 ==> X, when we know X is not -0
4083   if (match(Op1, m_NegZero()) &&
4084       (FMF.noSignedZeros() || CannotBeNegativeZero(Op0, Q.TLI)))
4085     return Op0;
4086 
4087   // fsub -0.0, (fsub -0.0, X) ==> X
4088   Value *X;
4089   if (match(Op0, m_NegZero()) && match(Op1, m_FSub(m_NegZero(), m_Value(X))))
4090     return X;
4091 
4092   // fsub 0.0, (fsub 0.0, X) ==> X if signed zeros are ignored.
4093   if (FMF.noSignedZeros() && match(Op0, m_AnyZero()) &&
4094       match(Op1, m_FSub(m_AnyZero(), m_Value(X))))
4095     return X;
4096 
4097   // fsub nnan x, x ==> 0.0
4098   if (FMF.noNaNs() && Op0 == Op1)
4099     return Constant::getNullValue(Op0->getType());
4100 
4101   return nullptr;
4102 }
4103 
4104 /// Given the operands for an FMul, see if we can fold the result
4105 static Value *SimplifyFMulInst(Value *Op0, Value *Op1, FastMathFlags FMF,
4106                                const SimplifyQuery &Q, unsigned MaxRecurse) {
4107   if (Constant *C = foldOrCommuteConstant(Instruction::FMul, Op0, Op1, Q))
4108     return C;
4109 
4110   // fmul X, 1.0 ==> X
4111   if (match(Op1, m_FPOne()))
4112     return Op0;
4113 
4114   // fmul nnan nsz X, 0 ==> 0
4115   if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op1, m_AnyZero()))
4116     return Op1;
4117 
4118   return nullptr;
4119 }
4120 
4121 Value *llvm::SimplifyFAddInst(Value *Op0, Value *Op1, FastMathFlags FMF,
4122                               const SimplifyQuery &Q) {
4123   return ::SimplifyFAddInst(Op0, Op1, FMF, Q, RecursionLimit);
4124 }
4125 
4126 
4127 Value *llvm::SimplifyFSubInst(Value *Op0, Value *Op1, FastMathFlags FMF,
4128                               const SimplifyQuery &Q) {
4129   return ::SimplifyFSubInst(Op0, Op1, FMF, Q, RecursionLimit);
4130 }
4131 
4132 Value *llvm::SimplifyFMulInst(Value *Op0, Value *Op1, FastMathFlags FMF,
4133                               const SimplifyQuery &Q) {
4134   return ::SimplifyFMulInst(Op0, Op1, FMF, Q, RecursionLimit);
4135 }
4136 
4137 static Value *SimplifyFDivInst(Value *Op0, Value *Op1, FastMathFlags FMF,
4138                                const SimplifyQuery &Q, unsigned) {
4139   if (Constant *C = foldOrCommuteConstant(Instruction::FDiv, Op0, Op1, Q))
4140     return C;
4141 
4142   // undef / X -> undef    (the undef could be a snan).
4143   if (match(Op0, m_Undef()))
4144     return Op0;
4145 
4146   // X / undef -> undef
4147   if (match(Op1, m_Undef()))
4148     return Op1;
4149 
4150   // X / 1.0 -> X
4151   if (match(Op1, m_FPOne()))
4152     return Op0;
4153 
4154   // 0 / X -> 0
4155   // Requires that NaNs are off (X could be zero) and signed zeroes are
4156   // ignored (X could be positive or negative, so the output sign is unknown).
4157   if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op0, m_AnyZero()))
4158     return Op0;
4159 
4160   if (FMF.noNaNs()) {
4161     // X / X -> 1.0 is legal when NaNs are ignored.
4162     if (Op0 == Op1)
4163       return ConstantFP::get(Op0->getType(), 1.0);
4164 
4165     // -X /  X -> -1.0 and
4166     //  X / -X -> -1.0 are legal when NaNs are ignored.
4167     // We can ignore signed zeros because +-0.0/+-0.0 is NaN and ignored.
4168     if ((BinaryOperator::isFNeg(Op0, /*IgnoreZeroSign=*/true) &&
4169          BinaryOperator::getFNegArgument(Op0) == Op1) ||
4170         (BinaryOperator::isFNeg(Op1, /*IgnoreZeroSign=*/true) &&
4171          BinaryOperator::getFNegArgument(Op1) == Op0))
4172       return ConstantFP::get(Op0->getType(), -1.0);
4173   }
4174 
4175   return nullptr;
4176 }
4177 
4178 Value *llvm::SimplifyFDivInst(Value *Op0, Value *Op1, FastMathFlags FMF,
4179                               const SimplifyQuery &Q) {
4180   return ::SimplifyFDivInst(Op0, Op1, FMF, Q, RecursionLimit);
4181 }
4182 
4183 static Value *SimplifyFRemInst(Value *Op0, Value *Op1, FastMathFlags FMF,
4184                                const SimplifyQuery &Q, unsigned) {
4185   if (Constant *C = foldOrCommuteConstant(Instruction::FRem, Op0, Op1, Q))
4186     return C;
4187 
4188   // undef % X -> undef    (the undef could be a snan).
4189   if (match(Op0, m_Undef()))
4190     return Op0;
4191 
4192   // X % undef -> undef
4193   if (match(Op1, m_Undef()))
4194     return Op1;
4195 
4196   // 0 % X -> 0
4197   // Requires that NaNs are off (X could be zero) and signed zeroes are
4198   // ignored (X could be positive or negative, so the output sign is unknown).
4199   if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op0, m_AnyZero()))
4200     return Op0;
4201 
4202   return nullptr;
4203 }
4204 
4205 Value *llvm::SimplifyFRemInst(Value *Op0, Value *Op1, FastMathFlags FMF,
4206                               const SimplifyQuery &Q) {
4207   return ::SimplifyFRemInst(Op0, Op1, FMF, Q, RecursionLimit);
4208 }
4209 
4210 //=== Helper functions for higher up the class hierarchy.
4211 
4212 /// Given operands for a BinaryOperator, see if we can fold the result.
4213 /// If not, this returns null.
4214 static Value *SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS,
4215                             const SimplifyQuery &Q, unsigned MaxRecurse) {
4216   switch (Opcode) {
4217   case Instruction::Add:
4218     return SimplifyAddInst(LHS, RHS, false, false, Q, MaxRecurse);
4219   case Instruction::Sub:
4220     return SimplifySubInst(LHS, RHS, false, false, Q, MaxRecurse);
4221   case Instruction::Mul:
4222     return SimplifyMulInst(LHS, RHS, Q, MaxRecurse);
4223   case Instruction::SDiv:
4224     return SimplifySDivInst(LHS, RHS, Q, MaxRecurse);
4225   case Instruction::UDiv:
4226     return SimplifyUDivInst(LHS, RHS, Q, MaxRecurse);
4227   case Instruction::SRem:
4228     return SimplifySRemInst(LHS, RHS, Q, MaxRecurse);
4229   case Instruction::URem:
4230     return SimplifyURemInst(LHS, RHS, Q, MaxRecurse);
4231   case Instruction::Shl:
4232     return SimplifyShlInst(LHS, RHS, false, false, Q, MaxRecurse);
4233   case Instruction::LShr:
4234     return SimplifyLShrInst(LHS, RHS, false, Q, MaxRecurse);
4235   case Instruction::AShr:
4236     return SimplifyAShrInst(LHS, RHS, false, Q, MaxRecurse);
4237   case Instruction::And:
4238     return SimplifyAndInst(LHS, RHS, Q, MaxRecurse);
4239   case Instruction::Or:
4240     return SimplifyOrInst(LHS, RHS, Q, MaxRecurse);
4241   case Instruction::Xor:
4242     return SimplifyXorInst(LHS, RHS, Q, MaxRecurse);
4243   case Instruction::FAdd:
4244     return SimplifyFAddInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse);
4245   case Instruction::FSub:
4246     return SimplifyFSubInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse);
4247   case Instruction::FMul:
4248     return SimplifyFMulInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse);
4249   case Instruction::FDiv:
4250     return SimplifyFDivInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse);
4251   case Instruction::FRem:
4252     return SimplifyFRemInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse);
4253   default:
4254     llvm_unreachable("Unexpected opcode");
4255   }
4256 }
4257 
4258 /// Given operands for a BinaryOperator, see if we can fold the result.
4259 /// If not, this returns null.
4260 /// In contrast to SimplifyBinOp, try to use FastMathFlag when folding the
4261 /// result. In case we don't need FastMathFlags, simply fall to SimplifyBinOp.
4262 static Value *SimplifyFPBinOp(unsigned Opcode, Value *LHS, Value *RHS,
4263                               const FastMathFlags &FMF, const SimplifyQuery &Q,
4264                               unsigned MaxRecurse) {
4265   switch (Opcode) {
4266   case Instruction::FAdd:
4267     return SimplifyFAddInst(LHS, RHS, FMF, Q, MaxRecurse);
4268   case Instruction::FSub:
4269     return SimplifyFSubInst(LHS, RHS, FMF, Q, MaxRecurse);
4270   case Instruction::FMul:
4271     return SimplifyFMulInst(LHS, RHS, FMF, Q, MaxRecurse);
4272   case Instruction::FDiv:
4273     return SimplifyFDivInst(LHS, RHS, FMF, Q, MaxRecurse);
4274   default:
4275     return SimplifyBinOp(Opcode, LHS, RHS, Q, MaxRecurse);
4276   }
4277 }
4278 
4279 Value *llvm::SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS,
4280                            const SimplifyQuery &Q) {
4281   return ::SimplifyBinOp(Opcode, LHS, RHS, Q, RecursionLimit);
4282 }
4283 
4284 Value *llvm::SimplifyFPBinOp(unsigned Opcode, Value *LHS, Value *RHS,
4285                              FastMathFlags FMF, const SimplifyQuery &Q) {
4286   return ::SimplifyFPBinOp(Opcode, LHS, RHS, FMF, Q, RecursionLimit);
4287 }
4288 
4289 /// Given operands for a CmpInst, see if we can fold the result.
4290 static Value *SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
4291                               const SimplifyQuery &Q, unsigned MaxRecurse) {
4292   if (CmpInst::isIntPredicate((CmpInst::Predicate)Predicate))
4293     return SimplifyICmpInst(Predicate, LHS, RHS, Q, MaxRecurse);
4294   return SimplifyFCmpInst(Predicate, LHS, RHS, FastMathFlags(), Q, MaxRecurse);
4295 }
4296 
4297 Value *llvm::SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
4298                              const SimplifyQuery &Q) {
4299   return ::SimplifyCmpInst(Predicate, LHS, RHS, Q, RecursionLimit);
4300 }
4301 
4302 static bool IsIdempotent(Intrinsic::ID ID) {
4303   switch (ID) {
4304   default: return false;
4305 
4306   // Unary idempotent: f(f(x)) = f(x)
4307   case Intrinsic::fabs:
4308   case Intrinsic::floor:
4309   case Intrinsic::ceil:
4310   case Intrinsic::trunc:
4311   case Intrinsic::rint:
4312   case Intrinsic::nearbyint:
4313   case Intrinsic::round:
4314   case Intrinsic::canonicalize:
4315     return true;
4316   }
4317 }
4318 
4319 static Value *SimplifyRelativeLoad(Constant *Ptr, Constant *Offset,
4320                                    const DataLayout &DL) {
4321   GlobalValue *PtrSym;
4322   APInt PtrOffset;
4323   if (!IsConstantOffsetFromGlobal(Ptr, PtrSym, PtrOffset, DL))
4324     return nullptr;
4325 
4326   Type *Int8PtrTy = Type::getInt8PtrTy(Ptr->getContext());
4327   Type *Int32Ty = Type::getInt32Ty(Ptr->getContext());
4328   Type *Int32PtrTy = Int32Ty->getPointerTo();
4329   Type *Int64Ty = Type::getInt64Ty(Ptr->getContext());
4330 
4331   auto *OffsetConstInt = dyn_cast<ConstantInt>(Offset);
4332   if (!OffsetConstInt || OffsetConstInt->getType()->getBitWidth() > 64)
4333     return nullptr;
4334 
4335   uint64_t OffsetInt = OffsetConstInt->getSExtValue();
4336   if (OffsetInt % 4 != 0)
4337     return nullptr;
4338 
4339   Constant *C = ConstantExpr::getGetElementPtr(
4340       Int32Ty, ConstantExpr::getBitCast(Ptr, Int32PtrTy),
4341       ConstantInt::get(Int64Ty, OffsetInt / 4));
4342   Constant *Loaded = ConstantFoldLoadFromConstPtr(C, Int32Ty, DL);
4343   if (!Loaded)
4344     return nullptr;
4345 
4346   auto *LoadedCE = dyn_cast<ConstantExpr>(Loaded);
4347   if (!LoadedCE)
4348     return nullptr;
4349 
4350   if (LoadedCE->getOpcode() == Instruction::Trunc) {
4351     LoadedCE = dyn_cast<ConstantExpr>(LoadedCE->getOperand(0));
4352     if (!LoadedCE)
4353       return nullptr;
4354   }
4355 
4356   if (LoadedCE->getOpcode() != Instruction::Sub)
4357     return nullptr;
4358 
4359   auto *LoadedLHS = dyn_cast<ConstantExpr>(LoadedCE->getOperand(0));
4360   if (!LoadedLHS || LoadedLHS->getOpcode() != Instruction::PtrToInt)
4361     return nullptr;
4362   auto *LoadedLHSPtr = LoadedLHS->getOperand(0);
4363 
4364   Constant *LoadedRHS = LoadedCE->getOperand(1);
4365   GlobalValue *LoadedRHSSym;
4366   APInt LoadedRHSOffset;
4367   if (!IsConstantOffsetFromGlobal(LoadedRHS, LoadedRHSSym, LoadedRHSOffset,
4368                                   DL) ||
4369       PtrSym != LoadedRHSSym || PtrOffset != LoadedRHSOffset)
4370     return nullptr;
4371 
4372   return ConstantExpr::getBitCast(LoadedLHSPtr, Int8PtrTy);
4373 }
4374 
4375 static bool maskIsAllZeroOrUndef(Value *Mask) {
4376   auto *ConstMask = dyn_cast<Constant>(Mask);
4377   if (!ConstMask)
4378     return false;
4379   if (ConstMask->isNullValue() || isa<UndefValue>(ConstMask))
4380     return true;
4381   for (unsigned I = 0, E = ConstMask->getType()->getVectorNumElements(); I != E;
4382        ++I) {
4383     if (auto *MaskElt = ConstMask->getAggregateElement(I))
4384       if (MaskElt->isNullValue() || isa<UndefValue>(MaskElt))
4385         continue;
4386     return false;
4387   }
4388   return true;
4389 }
4390 
4391 template <typename IterTy>
4392 static Value *SimplifyIntrinsic(Function *F, IterTy ArgBegin, IterTy ArgEnd,
4393                                 const SimplifyQuery &Q, unsigned MaxRecurse) {
4394   Intrinsic::ID IID = F->getIntrinsicID();
4395   unsigned NumOperands = std::distance(ArgBegin, ArgEnd);
4396 
4397   // Unary Ops
4398   if (NumOperands == 1) {
4399     // Perform idempotent optimizations
4400     if (IsIdempotent(IID)) {
4401       if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(*ArgBegin)) {
4402         if (II->getIntrinsicID() == IID)
4403           return II;
4404       }
4405     }
4406 
4407     switch (IID) {
4408     case Intrinsic::fabs: {
4409       if (SignBitMustBeZero(*ArgBegin, Q.TLI))
4410         return *ArgBegin;
4411       return nullptr;
4412     }
4413     default:
4414       return nullptr;
4415     }
4416   }
4417 
4418   // Binary Ops
4419   if (NumOperands == 2) {
4420     Value *LHS = *ArgBegin;
4421     Value *RHS = *(ArgBegin + 1);
4422     Type *ReturnType = F->getReturnType();
4423 
4424     switch (IID) {
4425     case Intrinsic::usub_with_overflow:
4426     case Intrinsic::ssub_with_overflow: {
4427       // X - X -> { 0, false }
4428       if (LHS == RHS)
4429         return Constant::getNullValue(ReturnType);
4430 
4431       // X - undef -> undef
4432       // undef - X -> undef
4433       if (isa<UndefValue>(LHS) || isa<UndefValue>(RHS))
4434         return UndefValue::get(ReturnType);
4435 
4436       return nullptr;
4437     }
4438     case Intrinsic::uadd_with_overflow:
4439     case Intrinsic::sadd_with_overflow: {
4440       // X + undef -> undef
4441       if (isa<UndefValue>(LHS) || isa<UndefValue>(RHS))
4442         return UndefValue::get(ReturnType);
4443 
4444       return nullptr;
4445     }
4446     case Intrinsic::umul_with_overflow:
4447     case Intrinsic::smul_with_overflow: {
4448       // 0 * X -> { 0, false }
4449       // X * 0 -> { 0, false }
4450       if (match(LHS, m_Zero()) || match(RHS, m_Zero()))
4451         return Constant::getNullValue(ReturnType);
4452 
4453       // undef * X -> { 0, false }
4454       // X * undef -> { 0, false }
4455       if (match(LHS, m_Undef()) || match(RHS, m_Undef()))
4456         return Constant::getNullValue(ReturnType);
4457 
4458       return nullptr;
4459     }
4460     case Intrinsic::load_relative: {
4461       Constant *C0 = dyn_cast<Constant>(LHS);
4462       Constant *C1 = dyn_cast<Constant>(RHS);
4463       if (C0 && C1)
4464         return SimplifyRelativeLoad(C0, C1, Q.DL);
4465       return nullptr;
4466     }
4467     default:
4468       return nullptr;
4469     }
4470   }
4471 
4472   // Simplify calls to llvm.masked.load.*
4473   switch (IID) {
4474   case Intrinsic::masked_load: {
4475     Value *MaskArg = ArgBegin[2];
4476     Value *PassthruArg = ArgBegin[3];
4477     // If the mask is all zeros or undef, the "passthru" argument is the result.
4478     if (maskIsAllZeroOrUndef(MaskArg))
4479       return PassthruArg;
4480     return nullptr;
4481   }
4482   default:
4483     return nullptr;
4484   }
4485 }
4486 
4487 template <typename IterTy>
4488 static Value *SimplifyCall(ImmutableCallSite CS, Value *V, IterTy ArgBegin,
4489                            IterTy ArgEnd, const SimplifyQuery &Q,
4490                            unsigned MaxRecurse) {
4491   Type *Ty = V->getType();
4492   if (PointerType *PTy = dyn_cast<PointerType>(Ty))
4493     Ty = PTy->getElementType();
4494   FunctionType *FTy = cast<FunctionType>(Ty);
4495 
4496   // call undef -> undef
4497   // call null -> undef
4498   if (isa<UndefValue>(V) || isa<ConstantPointerNull>(V))
4499     return UndefValue::get(FTy->getReturnType());
4500 
4501   Function *F = dyn_cast<Function>(V);
4502   if (!F)
4503     return nullptr;
4504 
4505   if (F->isIntrinsic())
4506     if (Value *Ret = SimplifyIntrinsic(F, ArgBegin, ArgEnd, Q, MaxRecurse))
4507       return Ret;
4508 
4509   if (!canConstantFoldCallTo(CS, F))
4510     return nullptr;
4511 
4512   SmallVector<Constant *, 4> ConstantArgs;
4513   ConstantArgs.reserve(ArgEnd - ArgBegin);
4514   for (IterTy I = ArgBegin, E = ArgEnd; I != E; ++I) {
4515     Constant *C = dyn_cast<Constant>(*I);
4516     if (!C)
4517       return nullptr;
4518     ConstantArgs.push_back(C);
4519   }
4520 
4521   return ConstantFoldCall(CS, F, ConstantArgs, Q.TLI);
4522 }
4523 
4524 Value *llvm::SimplifyCall(ImmutableCallSite CS, Value *V,
4525                           User::op_iterator ArgBegin, User::op_iterator ArgEnd,
4526                           const SimplifyQuery &Q) {
4527   return ::SimplifyCall(CS, V, ArgBegin, ArgEnd, Q, RecursionLimit);
4528 }
4529 
4530 Value *llvm::SimplifyCall(ImmutableCallSite CS, Value *V,
4531                           ArrayRef<Value *> Args, const SimplifyQuery &Q) {
4532   return ::SimplifyCall(CS, V, Args.begin(), Args.end(), Q, RecursionLimit);
4533 }
4534 
4535 /// See if we can compute a simplified version of this instruction.
4536 /// If not, this returns null.
4537 
4538 Value *llvm::SimplifyInstruction(Instruction *I, const SimplifyQuery &SQ,
4539                                  OptimizationRemarkEmitter *ORE) {
4540   const SimplifyQuery Q = SQ.CxtI ? SQ : SQ.getWithInstruction(I);
4541   Value *Result;
4542 
4543   switch (I->getOpcode()) {
4544   default:
4545     Result = ConstantFoldInstruction(I, Q.DL, Q.TLI);
4546     break;
4547   case Instruction::FAdd:
4548     Result = SimplifyFAddInst(I->getOperand(0), I->getOperand(1),
4549                               I->getFastMathFlags(), Q);
4550     break;
4551   case Instruction::Add:
4552     Result = SimplifyAddInst(I->getOperand(0), I->getOperand(1),
4553                              cast<BinaryOperator>(I)->hasNoSignedWrap(),
4554                              cast<BinaryOperator>(I)->hasNoUnsignedWrap(), Q);
4555     break;
4556   case Instruction::FSub:
4557     Result = SimplifyFSubInst(I->getOperand(0), I->getOperand(1),
4558                               I->getFastMathFlags(), Q);
4559     break;
4560   case Instruction::Sub:
4561     Result = SimplifySubInst(I->getOperand(0), I->getOperand(1),
4562                              cast<BinaryOperator>(I)->hasNoSignedWrap(),
4563                              cast<BinaryOperator>(I)->hasNoUnsignedWrap(), Q);
4564     break;
4565   case Instruction::FMul:
4566     Result = SimplifyFMulInst(I->getOperand(0), I->getOperand(1),
4567                               I->getFastMathFlags(), Q);
4568     break;
4569   case Instruction::Mul:
4570     Result = SimplifyMulInst(I->getOperand(0), I->getOperand(1), Q);
4571     break;
4572   case Instruction::SDiv:
4573     Result = SimplifySDivInst(I->getOperand(0), I->getOperand(1), Q);
4574     break;
4575   case Instruction::UDiv:
4576     Result = SimplifyUDivInst(I->getOperand(0), I->getOperand(1), Q);
4577     break;
4578   case Instruction::FDiv:
4579     Result = SimplifyFDivInst(I->getOperand(0), I->getOperand(1),
4580                               I->getFastMathFlags(), Q);
4581     break;
4582   case Instruction::SRem:
4583     Result = SimplifySRemInst(I->getOperand(0), I->getOperand(1), Q);
4584     break;
4585   case Instruction::URem:
4586     Result = SimplifyURemInst(I->getOperand(0), I->getOperand(1), Q);
4587     break;
4588   case Instruction::FRem:
4589     Result = SimplifyFRemInst(I->getOperand(0), I->getOperand(1),
4590                               I->getFastMathFlags(), Q);
4591     break;
4592   case Instruction::Shl:
4593     Result = SimplifyShlInst(I->getOperand(0), I->getOperand(1),
4594                              cast<BinaryOperator>(I)->hasNoSignedWrap(),
4595                              cast<BinaryOperator>(I)->hasNoUnsignedWrap(), Q);
4596     break;
4597   case Instruction::LShr:
4598     Result = SimplifyLShrInst(I->getOperand(0), I->getOperand(1),
4599                               cast<BinaryOperator>(I)->isExact(), Q);
4600     break;
4601   case Instruction::AShr:
4602     Result = SimplifyAShrInst(I->getOperand(0), I->getOperand(1),
4603                               cast<BinaryOperator>(I)->isExact(), Q);
4604     break;
4605   case Instruction::And:
4606     Result = SimplifyAndInst(I->getOperand(0), I->getOperand(1), Q);
4607     break;
4608   case Instruction::Or:
4609     Result = SimplifyOrInst(I->getOperand(0), I->getOperand(1), Q);
4610     break;
4611   case Instruction::Xor:
4612     Result = SimplifyXorInst(I->getOperand(0), I->getOperand(1), Q);
4613     break;
4614   case Instruction::ICmp:
4615     Result = SimplifyICmpInst(cast<ICmpInst>(I)->getPredicate(),
4616                               I->getOperand(0), I->getOperand(1), Q);
4617     break;
4618   case Instruction::FCmp:
4619     Result =
4620         SimplifyFCmpInst(cast<FCmpInst>(I)->getPredicate(), I->getOperand(0),
4621                          I->getOperand(1), I->getFastMathFlags(), Q);
4622     break;
4623   case Instruction::Select:
4624     Result = SimplifySelectInst(I->getOperand(0), I->getOperand(1),
4625                                 I->getOperand(2), Q);
4626     break;
4627   case Instruction::GetElementPtr: {
4628     SmallVector<Value *, 8> Ops(I->op_begin(), I->op_end());
4629     Result = SimplifyGEPInst(cast<GetElementPtrInst>(I)->getSourceElementType(),
4630                              Ops, Q);
4631     break;
4632   }
4633   case Instruction::InsertValue: {
4634     InsertValueInst *IV = cast<InsertValueInst>(I);
4635     Result = SimplifyInsertValueInst(IV->getAggregateOperand(),
4636                                      IV->getInsertedValueOperand(),
4637                                      IV->getIndices(), Q);
4638     break;
4639   }
4640   case Instruction::ExtractValue: {
4641     auto *EVI = cast<ExtractValueInst>(I);
4642     Result = SimplifyExtractValueInst(EVI->getAggregateOperand(),
4643                                       EVI->getIndices(), Q);
4644     break;
4645   }
4646   case Instruction::ExtractElement: {
4647     auto *EEI = cast<ExtractElementInst>(I);
4648     Result = SimplifyExtractElementInst(EEI->getVectorOperand(),
4649                                         EEI->getIndexOperand(), Q);
4650     break;
4651   }
4652   case Instruction::ShuffleVector: {
4653     auto *SVI = cast<ShuffleVectorInst>(I);
4654     Result = SimplifyShuffleVectorInst(SVI->getOperand(0), SVI->getOperand(1),
4655                                        SVI->getMask(), SVI->getType(), Q);
4656     break;
4657   }
4658   case Instruction::PHI:
4659     Result = SimplifyPHINode(cast<PHINode>(I), Q);
4660     break;
4661   case Instruction::Call: {
4662     CallSite CS(cast<CallInst>(I));
4663     Result = SimplifyCall(CS, CS.getCalledValue(), CS.arg_begin(), CS.arg_end(),
4664                           Q);
4665     break;
4666   }
4667 #define HANDLE_CAST_INST(num, opc, clas) case Instruction::opc:
4668 #include "llvm/IR/Instruction.def"
4669 #undef HANDLE_CAST_INST
4670     Result =
4671         SimplifyCastInst(I->getOpcode(), I->getOperand(0), I->getType(), Q);
4672     break;
4673   case Instruction::Alloca:
4674     // No simplifications for Alloca and it can't be constant folded.
4675     Result = nullptr;
4676     break;
4677   }
4678 
4679   // In general, it is possible for computeKnownBits to determine all bits in a
4680   // value even when the operands are not all constants.
4681   if (!Result && I->getType()->isIntOrIntVectorTy()) {
4682     KnownBits Known = computeKnownBits(I, Q.DL, /*Depth*/ 0, Q.AC, I, Q.DT, ORE);
4683     if (Known.isConstant())
4684       Result = ConstantInt::get(I->getType(), Known.getConstant());
4685   }
4686 
4687   /// If called on unreachable code, the above logic may report that the
4688   /// instruction simplified to itself.  Make life easier for users by
4689   /// detecting that case here, returning a safe value instead.
4690   return Result == I ? UndefValue::get(I->getType()) : Result;
4691 }
4692 
4693 /// \brief Implementation of recursive simplification through an instruction's
4694 /// uses.
4695 ///
4696 /// This is the common implementation of the recursive simplification routines.
4697 /// If we have a pre-simplified value in 'SimpleV', that is forcibly used to
4698 /// replace the instruction 'I'. Otherwise, we simply add 'I' to the list of
4699 /// instructions to process and attempt to simplify it using
4700 /// InstructionSimplify.
4701 ///
4702 /// This routine returns 'true' only when *it* simplifies something. The passed
4703 /// in simplified value does not count toward this.
4704 static bool replaceAndRecursivelySimplifyImpl(Instruction *I, Value *SimpleV,
4705                                               const TargetLibraryInfo *TLI,
4706                                               const DominatorTree *DT,
4707                                               AssumptionCache *AC) {
4708   bool Simplified = false;
4709   SmallSetVector<Instruction *, 8> Worklist;
4710   const DataLayout &DL = I->getModule()->getDataLayout();
4711 
4712   // If we have an explicit value to collapse to, do that round of the
4713   // simplification loop by hand initially.
4714   if (SimpleV) {
4715     for (User *U : I->users())
4716       if (U != I)
4717         Worklist.insert(cast<Instruction>(U));
4718 
4719     // Replace the instruction with its simplified value.
4720     I->replaceAllUsesWith(SimpleV);
4721 
4722     // Gracefully handle edge cases where the instruction is not wired into any
4723     // parent block.
4724     if (I->getParent() && !I->isEHPad() && !isa<TerminatorInst>(I) &&
4725         !I->mayHaveSideEffects())
4726       I->eraseFromParent();
4727   } else {
4728     Worklist.insert(I);
4729   }
4730 
4731   // Note that we must test the size on each iteration, the worklist can grow.
4732   for (unsigned Idx = 0; Idx != Worklist.size(); ++Idx) {
4733     I = Worklist[Idx];
4734 
4735     // See if this instruction simplifies.
4736     SimpleV = SimplifyInstruction(I, {DL, TLI, DT, AC});
4737     if (!SimpleV)
4738       continue;
4739 
4740     Simplified = true;
4741 
4742     // Stash away all the uses of the old instruction so we can check them for
4743     // recursive simplifications after a RAUW. This is cheaper than checking all
4744     // uses of To on the recursive step in most cases.
4745     for (User *U : I->users())
4746       Worklist.insert(cast<Instruction>(U));
4747 
4748     // Replace the instruction with its simplified value.
4749     I->replaceAllUsesWith(SimpleV);
4750 
4751     // Gracefully handle edge cases where the instruction is not wired into any
4752     // parent block.
4753     if (I->getParent() && !I->isEHPad() && !isa<TerminatorInst>(I) &&
4754         !I->mayHaveSideEffects())
4755       I->eraseFromParent();
4756   }
4757   return Simplified;
4758 }
4759 
4760 bool llvm::recursivelySimplifyInstruction(Instruction *I,
4761                                           const TargetLibraryInfo *TLI,
4762                                           const DominatorTree *DT,
4763                                           AssumptionCache *AC) {
4764   return replaceAndRecursivelySimplifyImpl(I, nullptr, TLI, DT, AC);
4765 }
4766 
4767 bool llvm::replaceAndRecursivelySimplify(Instruction *I, Value *SimpleV,
4768                                          const TargetLibraryInfo *TLI,
4769                                          const DominatorTree *DT,
4770                                          AssumptionCache *AC) {
4771   assert(I != SimpleV && "replaceAndRecursivelySimplify(X,X) is not valid!");
4772   assert(SimpleV && "Must provide a simplified value.");
4773   return replaceAndRecursivelySimplifyImpl(I, SimpleV, TLI, DT, AC);
4774 }
4775 
4776 namespace llvm {
4777 const SimplifyQuery getBestSimplifyQuery(Pass &P, Function &F) {
4778   auto *DTWP = P.getAnalysisIfAvailable<DominatorTreeWrapperPass>();
4779   auto *DT = DTWP ? &DTWP->getDomTree() : nullptr;
4780   auto *TLIWP = P.getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>();
4781   auto *TLI = TLIWP ? &TLIWP->getTLI() : nullptr;
4782   auto *ACWP = P.getAnalysisIfAvailable<AssumptionCacheTracker>();
4783   auto *AC = ACWP ? &ACWP->getAssumptionCache(F) : nullptr;
4784   return {F.getParent()->getDataLayout(), TLI, DT, AC};
4785 }
4786 
4787 const SimplifyQuery getBestSimplifyQuery(LoopStandardAnalysisResults &AR,
4788                                          const DataLayout &DL) {
4789   return {DL, &AR.TLI, &AR.DT, &AR.AC};
4790 }
4791 
4792 template <class T, class... TArgs>
4793 const SimplifyQuery getBestSimplifyQuery(AnalysisManager<T, TArgs...> &AM,
4794                                          Function &F) {
4795   auto *DT = AM.template getCachedResult<DominatorTreeAnalysis>(F);
4796   auto *TLI = AM.template getCachedResult<TargetLibraryAnalysis>(F);
4797   auto *AC = AM.template getCachedResult<AssumptionAnalysis>(F);
4798   return {F.getParent()->getDataLayout(), TLI, DT, AC};
4799 }
4800 template const SimplifyQuery getBestSimplifyQuery(AnalysisManager<Function> &,
4801                                                   Function &);
4802 }
4803