1 //===- InstructionSimplify.cpp - Fold instruction operands ----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements routines for folding instructions into simpler forms
10 // that do not require creating new instructions.  This does constant folding
11 // ("add i32 1, 1" -> "2") but can also handle non-constant operands, either
12 // returning a constant ("and i32 %x, 0" -> "0") or an already existing value
13 // ("and i32 %x, %x" -> "%x").  All operands are assumed to have already been
14 // simplified: This is usually true and assuming it simplifies the logic (if
15 // they have not been simplified then results are correct but maybe suboptimal).
16 //
17 //===----------------------------------------------------------------------===//
18 
19 #include "llvm/Analysis/InstructionSimplify.h"
20 
21 #include "llvm/ADT/STLExtras.h"
22 #include "llvm/ADT/SetVector.h"
23 #include "llvm/ADT/SmallPtrSet.h"
24 #include "llvm/ADT/Statistic.h"
25 #include "llvm/Analysis/AliasAnalysis.h"
26 #include "llvm/Analysis/AssumptionCache.h"
27 #include "llvm/Analysis/CaptureTracking.h"
28 #include "llvm/Analysis/CmpInstAnalysis.h"
29 #include "llvm/Analysis/ConstantFolding.h"
30 #include "llvm/Analysis/InstSimplifyFolder.h"
31 #include "llvm/Analysis/LoopAnalysisManager.h"
32 #include "llvm/Analysis/MemoryBuiltins.h"
33 #include "llvm/Analysis/OverflowInstAnalysis.h"
34 #include "llvm/Analysis/ValueTracking.h"
35 #include "llvm/Analysis/VectorUtils.h"
36 #include "llvm/IR/ConstantRange.h"
37 #include "llvm/IR/DataLayout.h"
38 #include "llvm/IR/Dominators.h"
39 #include "llvm/IR/GetElementPtrTypeIterator.h"
40 #include "llvm/IR/GlobalAlias.h"
41 #include "llvm/IR/InstrTypes.h"
42 #include "llvm/IR/Instructions.h"
43 #include "llvm/IR/Operator.h"
44 #include "llvm/IR/PatternMatch.h"
45 #include "llvm/IR/ValueHandle.h"
46 #include "llvm/Support/KnownBits.h"
47 #include <algorithm>
48 using namespace llvm;
49 using namespace llvm::PatternMatch;
50 
51 #define DEBUG_TYPE "instsimplify"
52 
53 enum { RecursionLimit = 3 };
54 
55 STATISTIC(NumExpand,  "Number of expansions");
56 STATISTIC(NumReassoc, "Number of reassociations");
57 
58 static Value *SimplifyAndInst(Value *, Value *, const SimplifyQuery &, unsigned);
59 static Value *simplifyUnOp(unsigned, Value *, const SimplifyQuery &, unsigned);
60 static Value *simplifyFPUnOp(unsigned, Value *, const FastMathFlags &,
61                              const SimplifyQuery &, unsigned);
62 static Value *SimplifyBinOp(unsigned, Value *, Value *, const SimplifyQuery &,
63                             unsigned);
64 static Value *SimplifyBinOp(unsigned, Value *, Value *, const FastMathFlags &,
65                             const SimplifyQuery &, unsigned);
66 static Value *SimplifyCmpInst(unsigned, Value *, Value *, const SimplifyQuery &,
67                               unsigned);
68 static Value *SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS,
69                                const SimplifyQuery &Q, unsigned MaxRecurse);
70 static Value *SimplifyOrInst(Value *, Value *, const SimplifyQuery &, unsigned);
71 static Value *SimplifyXorInst(Value *, Value *, const SimplifyQuery &, unsigned);
72 static Value *SimplifyCastInst(unsigned, Value *, Type *,
73                                const SimplifyQuery &, unsigned);
74 static Value *SimplifyGEPInst(Type *, Value *, ArrayRef<Value *>, bool,
75                               const SimplifyQuery &, unsigned);
76 static Value *SimplifySelectInst(Value *, Value *, Value *,
77                                  const SimplifyQuery &, unsigned);
78 
79 static Value *foldSelectWithBinaryOp(Value *Cond, Value *TrueVal,
80                                      Value *FalseVal) {
81   BinaryOperator::BinaryOps BinOpCode;
82   if (auto *BO = dyn_cast<BinaryOperator>(Cond))
83     BinOpCode = BO->getOpcode();
84   else
85     return nullptr;
86 
87   CmpInst::Predicate ExpectedPred, Pred1, Pred2;
88   if (BinOpCode == BinaryOperator::Or) {
89     ExpectedPred = ICmpInst::ICMP_NE;
90   } else if (BinOpCode == BinaryOperator::And) {
91     ExpectedPred = ICmpInst::ICMP_EQ;
92   } else
93     return nullptr;
94 
95   // %A = icmp eq %TV, %FV
96   // %B = icmp eq %X, %Y (and one of these is a select operand)
97   // %C = and %A, %B
98   // %D = select %C, %TV, %FV
99   // -->
100   // %FV
101 
102   // %A = icmp ne %TV, %FV
103   // %B = icmp ne %X, %Y (and one of these is a select operand)
104   // %C = or %A, %B
105   // %D = select %C, %TV, %FV
106   // -->
107   // %TV
108   Value *X, *Y;
109   if (!match(Cond, m_c_BinOp(m_c_ICmp(Pred1, m_Specific(TrueVal),
110                                       m_Specific(FalseVal)),
111                              m_ICmp(Pred2, m_Value(X), m_Value(Y)))) ||
112       Pred1 != Pred2 || Pred1 != ExpectedPred)
113     return nullptr;
114 
115   if (X == TrueVal || X == FalseVal || Y == TrueVal || Y == FalseVal)
116     return BinOpCode == BinaryOperator::Or ? TrueVal : FalseVal;
117 
118   return nullptr;
119 }
120 
121 /// For a boolean type or a vector of boolean type, return false or a vector
122 /// with every element false.
123 static Constant *getFalse(Type *Ty) {
124   return ConstantInt::getFalse(Ty);
125 }
126 
127 /// For a boolean type or a vector of boolean type, return true or a vector
128 /// with every element true.
129 static Constant *getTrue(Type *Ty) {
130   return ConstantInt::getTrue(Ty);
131 }
132 
133 /// isSameCompare - Is V equivalent to the comparison "LHS Pred RHS"?
134 static bool isSameCompare(Value *V, CmpInst::Predicate Pred, Value *LHS,
135                           Value *RHS) {
136   CmpInst *Cmp = dyn_cast<CmpInst>(V);
137   if (!Cmp)
138     return false;
139   CmpInst::Predicate CPred = Cmp->getPredicate();
140   Value *CLHS = Cmp->getOperand(0), *CRHS = Cmp->getOperand(1);
141   if (CPred == Pred && CLHS == LHS && CRHS == RHS)
142     return true;
143   return CPred == CmpInst::getSwappedPredicate(Pred) && CLHS == RHS &&
144     CRHS == LHS;
145 }
146 
147 /// Simplify comparison with true or false branch of select:
148 ///  %sel = select i1 %cond, i32 %tv, i32 %fv
149 ///  %cmp = icmp sle i32 %sel, %rhs
150 /// Compose new comparison by substituting %sel with either %tv or %fv
151 /// and see if it simplifies.
152 static Value *simplifyCmpSelCase(CmpInst::Predicate Pred, Value *LHS,
153                                  Value *RHS, Value *Cond,
154                                  const SimplifyQuery &Q, unsigned MaxRecurse,
155                                  Constant *TrueOrFalse) {
156   Value *SimplifiedCmp = SimplifyCmpInst(Pred, LHS, RHS, Q, MaxRecurse);
157   if (SimplifiedCmp == Cond) {
158     // %cmp simplified to the select condition (%cond).
159     return TrueOrFalse;
160   } else if (!SimplifiedCmp && isSameCompare(Cond, Pred, LHS, RHS)) {
161     // It didn't simplify. However, if composed comparison is equivalent
162     // to the select condition (%cond) then we can replace it.
163     return TrueOrFalse;
164   }
165   return SimplifiedCmp;
166 }
167 
168 /// Simplify comparison with true branch of select
169 static Value *simplifyCmpSelTrueCase(CmpInst::Predicate Pred, Value *LHS,
170                                      Value *RHS, Value *Cond,
171                                      const SimplifyQuery &Q,
172                                      unsigned MaxRecurse) {
173   return simplifyCmpSelCase(Pred, LHS, RHS, Cond, Q, MaxRecurse,
174                             getTrue(Cond->getType()));
175 }
176 
177 /// Simplify comparison with false branch of select
178 static Value *simplifyCmpSelFalseCase(CmpInst::Predicate Pred, Value *LHS,
179                                       Value *RHS, Value *Cond,
180                                       const SimplifyQuery &Q,
181                                       unsigned MaxRecurse) {
182   return simplifyCmpSelCase(Pred, LHS, RHS, Cond, Q, MaxRecurse,
183                             getFalse(Cond->getType()));
184 }
185 
186 /// We know comparison with both branches of select can be simplified, but they
187 /// are not equal. This routine handles some logical simplifications.
188 static Value *handleOtherCmpSelSimplifications(Value *TCmp, Value *FCmp,
189                                                Value *Cond,
190                                                const SimplifyQuery &Q,
191                                                unsigned MaxRecurse) {
192   // If the false value simplified to false, then the result of the compare
193   // is equal to "Cond && TCmp".  This also catches the case when the false
194   // value simplified to false and the true value to true, returning "Cond".
195   // Folding select to and/or isn't poison-safe in general; impliesPoison
196   // checks whether folding it does not convert a well-defined value into
197   // poison.
198   if (match(FCmp, m_Zero()) && impliesPoison(TCmp, Cond))
199     if (Value *V = SimplifyAndInst(Cond, TCmp, Q, MaxRecurse))
200       return V;
201   // If the true value simplified to true, then the result of the compare
202   // is equal to "Cond || FCmp".
203   if (match(TCmp, m_One()) && impliesPoison(FCmp, Cond))
204     if (Value *V = SimplifyOrInst(Cond, FCmp, Q, MaxRecurse))
205       return V;
206   // Finally, if the false value simplified to true and the true value to
207   // false, then the result of the compare is equal to "!Cond".
208   if (match(FCmp, m_One()) && match(TCmp, m_Zero()))
209     if (Value *V = SimplifyXorInst(
210             Cond, Constant::getAllOnesValue(Cond->getType()), Q, MaxRecurse))
211       return V;
212   return nullptr;
213 }
214 
215 /// Does the given value dominate the specified phi node?
216 static bool valueDominatesPHI(Value *V, PHINode *P, const DominatorTree *DT) {
217   Instruction *I = dyn_cast<Instruction>(V);
218   if (!I)
219     // Arguments and constants dominate all instructions.
220     return true;
221 
222   // If we are processing instructions (and/or basic blocks) that have not been
223   // fully added to a function, the parent nodes may still be null. Simply
224   // return the conservative answer in these cases.
225   if (!I->getParent() || !P->getParent() || !I->getFunction())
226     return false;
227 
228   // If we have a DominatorTree then do a precise test.
229   if (DT)
230     return DT->dominates(I, P);
231 
232   // Otherwise, if the instruction is in the entry block and is not an invoke,
233   // then it obviously dominates all phi nodes.
234   if (I->getParent()->isEntryBlock() && !isa<InvokeInst>(I) &&
235       !isa<CallBrInst>(I))
236     return true;
237 
238   return false;
239 }
240 
241 /// Try to simplify a binary operator of form "V op OtherOp" where V is
242 /// "(B0 opex B1)" by distributing 'op' across 'opex' as
243 /// "(B0 op OtherOp) opex (B1 op OtherOp)".
244 static Value *expandBinOp(Instruction::BinaryOps Opcode, Value *V,
245                           Value *OtherOp, Instruction::BinaryOps OpcodeToExpand,
246                           const SimplifyQuery &Q, unsigned MaxRecurse) {
247   auto *B = dyn_cast<BinaryOperator>(V);
248   if (!B || B->getOpcode() != OpcodeToExpand)
249     return nullptr;
250   Value *B0 = B->getOperand(0), *B1 = B->getOperand(1);
251   Value *L = SimplifyBinOp(Opcode, B0, OtherOp, Q.getWithoutUndef(),
252                            MaxRecurse);
253   if (!L)
254     return nullptr;
255   Value *R = SimplifyBinOp(Opcode, B1, OtherOp, Q.getWithoutUndef(),
256                            MaxRecurse);
257   if (!R)
258     return nullptr;
259 
260   // Does the expanded pair of binops simplify to the existing binop?
261   if ((L == B0 && R == B1) ||
262       (Instruction::isCommutative(OpcodeToExpand) && L == B1 && R == B0)) {
263     ++NumExpand;
264     return B;
265   }
266 
267   // Otherwise, return "L op' R" if it simplifies.
268   Value *S = SimplifyBinOp(OpcodeToExpand, L, R, Q, MaxRecurse);
269   if (!S)
270     return nullptr;
271 
272   ++NumExpand;
273   return S;
274 }
275 
276 /// Try to simplify binops of form "A op (B op' C)" or the commuted variant by
277 /// distributing op over op'.
278 static Value *expandCommutativeBinOp(Instruction::BinaryOps Opcode,
279                                      Value *L, Value *R,
280                                      Instruction::BinaryOps OpcodeToExpand,
281                                      const SimplifyQuery &Q,
282                                      unsigned MaxRecurse) {
283   // Recursion is always used, so bail out at once if we already hit the limit.
284   if (!MaxRecurse--)
285     return nullptr;
286 
287   if (Value *V = expandBinOp(Opcode, L, R, OpcodeToExpand, Q, MaxRecurse))
288     return V;
289   if (Value *V = expandBinOp(Opcode, R, L, OpcodeToExpand, Q, MaxRecurse))
290     return V;
291   return nullptr;
292 }
293 
294 /// Generic simplifications for associative binary operations.
295 /// Returns the simpler value, or null if none was found.
296 static Value *SimplifyAssociativeBinOp(Instruction::BinaryOps Opcode,
297                                        Value *LHS, Value *RHS,
298                                        const SimplifyQuery &Q,
299                                        unsigned MaxRecurse) {
300   assert(Instruction::isAssociative(Opcode) && "Not an associative operation!");
301 
302   // Recursion is always used, so bail out at once if we already hit the limit.
303   if (!MaxRecurse--)
304     return nullptr;
305 
306   BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS);
307   BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS);
308 
309   // Transform: "(A op B) op C" ==> "A op (B op C)" if it simplifies completely.
310   if (Op0 && Op0->getOpcode() == Opcode) {
311     Value *A = Op0->getOperand(0);
312     Value *B = Op0->getOperand(1);
313     Value *C = RHS;
314 
315     // Does "B op C" simplify?
316     if (Value *V = SimplifyBinOp(Opcode, B, C, Q, MaxRecurse)) {
317       // It does!  Return "A op V" if it simplifies or is already available.
318       // If V equals B then "A op V" is just the LHS.
319       if (V == B) return LHS;
320       // Otherwise return "A op V" if it simplifies.
321       if (Value *W = SimplifyBinOp(Opcode, A, V, Q, MaxRecurse)) {
322         ++NumReassoc;
323         return W;
324       }
325     }
326   }
327 
328   // Transform: "A op (B op C)" ==> "(A op B) op C" if it simplifies completely.
329   if (Op1 && Op1->getOpcode() == Opcode) {
330     Value *A = LHS;
331     Value *B = Op1->getOperand(0);
332     Value *C = Op1->getOperand(1);
333 
334     // Does "A op B" simplify?
335     if (Value *V = SimplifyBinOp(Opcode, A, B, Q, MaxRecurse)) {
336       // It does!  Return "V op C" if it simplifies or is already available.
337       // If V equals B then "V op C" is just the RHS.
338       if (V == B) return RHS;
339       // Otherwise return "V op C" if it simplifies.
340       if (Value *W = SimplifyBinOp(Opcode, V, C, Q, MaxRecurse)) {
341         ++NumReassoc;
342         return W;
343       }
344     }
345   }
346 
347   // The remaining transforms require commutativity as well as associativity.
348   if (!Instruction::isCommutative(Opcode))
349     return nullptr;
350 
351   // Transform: "(A op B) op C" ==> "(C op A) op B" if it simplifies completely.
352   if (Op0 && Op0->getOpcode() == Opcode) {
353     Value *A = Op0->getOperand(0);
354     Value *B = Op0->getOperand(1);
355     Value *C = RHS;
356 
357     // Does "C op A" simplify?
358     if (Value *V = SimplifyBinOp(Opcode, C, A, Q, MaxRecurse)) {
359       // It does!  Return "V op B" if it simplifies or is already available.
360       // If V equals A then "V op B" is just the LHS.
361       if (V == A) return LHS;
362       // Otherwise return "V op B" if it simplifies.
363       if (Value *W = SimplifyBinOp(Opcode, V, B, Q, MaxRecurse)) {
364         ++NumReassoc;
365         return W;
366       }
367     }
368   }
369 
370   // Transform: "A op (B op C)" ==> "B op (C op A)" if it simplifies completely.
371   if (Op1 && Op1->getOpcode() == Opcode) {
372     Value *A = LHS;
373     Value *B = Op1->getOperand(0);
374     Value *C = Op1->getOperand(1);
375 
376     // Does "C op A" simplify?
377     if (Value *V = SimplifyBinOp(Opcode, C, A, Q, MaxRecurse)) {
378       // It does!  Return "B op V" if it simplifies or is already available.
379       // If V equals C then "B op V" is just the RHS.
380       if (V == C) return RHS;
381       // Otherwise return "B op V" if it simplifies.
382       if (Value *W = SimplifyBinOp(Opcode, B, V, Q, MaxRecurse)) {
383         ++NumReassoc;
384         return W;
385       }
386     }
387   }
388 
389   return nullptr;
390 }
391 
392 /// In the case of a binary operation with a select instruction as an operand,
393 /// try to simplify the binop by seeing whether evaluating it on both branches
394 /// of the select results in the same value. Returns the common value if so,
395 /// otherwise returns null.
396 static Value *ThreadBinOpOverSelect(Instruction::BinaryOps Opcode, Value *LHS,
397                                     Value *RHS, const SimplifyQuery &Q,
398                                     unsigned MaxRecurse) {
399   // Recursion is always used, so bail out at once if we already hit the limit.
400   if (!MaxRecurse--)
401     return nullptr;
402 
403   SelectInst *SI;
404   if (isa<SelectInst>(LHS)) {
405     SI = cast<SelectInst>(LHS);
406   } else {
407     assert(isa<SelectInst>(RHS) && "No select instruction operand!");
408     SI = cast<SelectInst>(RHS);
409   }
410 
411   // Evaluate the BinOp on the true and false branches of the select.
412   Value *TV;
413   Value *FV;
414   if (SI == LHS) {
415     TV = SimplifyBinOp(Opcode, SI->getTrueValue(), RHS, Q, MaxRecurse);
416     FV = SimplifyBinOp(Opcode, SI->getFalseValue(), RHS, Q, MaxRecurse);
417   } else {
418     TV = SimplifyBinOp(Opcode, LHS, SI->getTrueValue(), Q, MaxRecurse);
419     FV = SimplifyBinOp(Opcode, LHS, SI->getFalseValue(), Q, MaxRecurse);
420   }
421 
422   // If they simplified to the same value, then return the common value.
423   // If they both failed to simplify then return null.
424   if (TV == FV)
425     return TV;
426 
427   // If one branch simplified to undef, return the other one.
428   if (TV && Q.isUndefValue(TV))
429     return FV;
430   if (FV && Q.isUndefValue(FV))
431     return TV;
432 
433   // If applying the operation did not change the true and false select values,
434   // then the result of the binop is the select itself.
435   if (TV == SI->getTrueValue() && FV == SI->getFalseValue())
436     return SI;
437 
438   // If one branch simplified and the other did not, and the simplified
439   // value is equal to the unsimplified one, return the simplified value.
440   // For example, select (cond, X, X & Z) & Z -> X & Z.
441   if ((FV && !TV) || (TV && !FV)) {
442     // Check that the simplified value has the form "X op Y" where "op" is the
443     // same as the original operation.
444     Instruction *Simplified = dyn_cast<Instruction>(FV ? FV : TV);
445     if (Simplified && Simplified->getOpcode() == unsigned(Opcode)) {
446       // The value that didn't simplify is "UnsimplifiedLHS op UnsimplifiedRHS".
447       // We already know that "op" is the same as for the simplified value.  See
448       // if the operands match too.  If so, return the simplified value.
449       Value *UnsimplifiedBranch = FV ? SI->getTrueValue() : SI->getFalseValue();
450       Value *UnsimplifiedLHS = SI == LHS ? UnsimplifiedBranch : LHS;
451       Value *UnsimplifiedRHS = SI == LHS ? RHS : UnsimplifiedBranch;
452       if (Simplified->getOperand(0) == UnsimplifiedLHS &&
453           Simplified->getOperand(1) == UnsimplifiedRHS)
454         return Simplified;
455       if (Simplified->isCommutative() &&
456           Simplified->getOperand(1) == UnsimplifiedLHS &&
457           Simplified->getOperand(0) == UnsimplifiedRHS)
458         return Simplified;
459     }
460   }
461 
462   return nullptr;
463 }
464 
465 /// In the case of a comparison with a select instruction, try to simplify the
466 /// comparison by seeing whether both branches of the select result in the same
467 /// value. Returns the common value if so, otherwise returns null.
468 /// For example, if we have:
469 ///  %tmp = select i1 %cmp, i32 1, i32 2
470 ///  %cmp1 = icmp sle i32 %tmp, 3
471 /// We can simplify %cmp1 to true, because both branches of select are
472 /// less than 3. We compose new comparison by substituting %tmp with both
473 /// branches of select and see if it can be simplified.
474 static Value *ThreadCmpOverSelect(CmpInst::Predicate Pred, Value *LHS,
475                                   Value *RHS, const SimplifyQuery &Q,
476                                   unsigned MaxRecurse) {
477   // Recursion is always used, so bail out at once if we already hit the limit.
478   if (!MaxRecurse--)
479     return nullptr;
480 
481   // Make sure the select is on the LHS.
482   if (!isa<SelectInst>(LHS)) {
483     std::swap(LHS, RHS);
484     Pred = CmpInst::getSwappedPredicate(Pred);
485   }
486   assert(isa<SelectInst>(LHS) && "Not comparing with a select instruction!");
487   SelectInst *SI = cast<SelectInst>(LHS);
488   Value *Cond = SI->getCondition();
489   Value *TV = SI->getTrueValue();
490   Value *FV = SI->getFalseValue();
491 
492   // Now that we have "cmp select(Cond, TV, FV), RHS", analyse it.
493   // Does "cmp TV, RHS" simplify?
494   Value *TCmp = simplifyCmpSelTrueCase(Pred, TV, RHS, Cond, Q, MaxRecurse);
495   if (!TCmp)
496     return nullptr;
497 
498   // Does "cmp FV, RHS" simplify?
499   Value *FCmp = simplifyCmpSelFalseCase(Pred, FV, RHS, Cond, Q, MaxRecurse);
500   if (!FCmp)
501     return nullptr;
502 
503   // If both sides simplified to the same value, then use it as the result of
504   // the original comparison.
505   if (TCmp == FCmp)
506     return TCmp;
507 
508   // The remaining cases only make sense if the select condition has the same
509   // type as the result of the comparison, so bail out if this is not so.
510   if (Cond->getType()->isVectorTy() == RHS->getType()->isVectorTy())
511     return handleOtherCmpSelSimplifications(TCmp, FCmp, Cond, Q, MaxRecurse);
512 
513   return nullptr;
514 }
515 
516 /// In the case of a binary operation with an operand that is a PHI instruction,
517 /// try to simplify the binop by seeing whether evaluating it on the incoming
518 /// phi values yields the same result for every value. If so returns the common
519 /// value, otherwise returns null.
520 static Value *ThreadBinOpOverPHI(Instruction::BinaryOps Opcode, Value *LHS,
521                                  Value *RHS, const SimplifyQuery &Q,
522                                  unsigned MaxRecurse) {
523   // Recursion is always used, so bail out at once if we already hit the limit.
524   if (!MaxRecurse--)
525     return nullptr;
526 
527   PHINode *PI;
528   if (isa<PHINode>(LHS)) {
529     PI = cast<PHINode>(LHS);
530     // Bail out if RHS and the phi may be mutually interdependent due to a loop.
531     if (!valueDominatesPHI(RHS, PI, Q.DT))
532       return nullptr;
533   } else {
534     assert(isa<PHINode>(RHS) && "No PHI instruction operand!");
535     PI = cast<PHINode>(RHS);
536     // Bail out if LHS and the phi may be mutually interdependent due to a loop.
537     if (!valueDominatesPHI(LHS, PI, Q.DT))
538       return nullptr;
539   }
540 
541   // Evaluate the BinOp on the incoming phi values.
542   Value *CommonValue = nullptr;
543   for (Value *Incoming : PI->incoming_values()) {
544     // If the incoming value is the phi node itself, it can safely be skipped.
545     if (Incoming == PI) continue;
546     Value *V = PI == LHS ?
547       SimplifyBinOp(Opcode, Incoming, RHS, Q, MaxRecurse) :
548       SimplifyBinOp(Opcode, LHS, Incoming, Q, MaxRecurse);
549     // If the operation failed to simplify, or simplified to a different value
550     // to previously, then give up.
551     if (!V || (CommonValue && V != CommonValue))
552       return nullptr;
553     CommonValue = V;
554   }
555 
556   return CommonValue;
557 }
558 
559 /// In the case of a comparison with a PHI instruction, try to simplify the
560 /// comparison by seeing whether comparing with all of the incoming phi values
561 /// yields the same result every time. If so returns the common result,
562 /// otherwise returns null.
563 static Value *ThreadCmpOverPHI(CmpInst::Predicate Pred, Value *LHS, Value *RHS,
564                                const SimplifyQuery &Q, unsigned MaxRecurse) {
565   // Recursion is always used, so bail out at once if we already hit the limit.
566   if (!MaxRecurse--)
567     return nullptr;
568 
569   // Make sure the phi is on the LHS.
570   if (!isa<PHINode>(LHS)) {
571     std::swap(LHS, RHS);
572     Pred = CmpInst::getSwappedPredicate(Pred);
573   }
574   assert(isa<PHINode>(LHS) && "Not comparing with a phi instruction!");
575   PHINode *PI = cast<PHINode>(LHS);
576 
577   // Bail out if RHS and the phi may be mutually interdependent due to a loop.
578   if (!valueDominatesPHI(RHS, PI, Q.DT))
579     return nullptr;
580 
581   // Evaluate the BinOp on the incoming phi values.
582   Value *CommonValue = nullptr;
583   for (unsigned u = 0, e = PI->getNumIncomingValues(); u < e; ++u) {
584     Value *Incoming = PI->getIncomingValue(u);
585     Instruction *InTI = PI->getIncomingBlock(u)->getTerminator();
586     // If the incoming value is the phi node itself, it can safely be skipped.
587     if (Incoming == PI) continue;
588     // Change the context instruction to the "edge" that flows into the phi.
589     // This is important because that is where incoming is actually "evaluated"
590     // even though it is used later somewhere else.
591     Value *V = SimplifyCmpInst(Pred, Incoming, RHS, Q.getWithInstruction(InTI),
592                                MaxRecurse);
593     // If the operation failed to simplify, or simplified to a different value
594     // to previously, then give up.
595     if (!V || (CommonValue && V != CommonValue))
596       return nullptr;
597     CommonValue = V;
598   }
599 
600   return CommonValue;
601 }
602 
603 static Constant *foldOrCommuteConstant(Instruction::BinaryOps Opcode,
604                                        Value *&Op0, Value *&Op1,
605                                        const SimplifyQuery &Q) {
606   if (auto *CLHS = dyn_cast<Constant>(Op0)) {
607     if (auto *CRHS = dyn_cast<Constant>(Op1))
608       return ConstantFoldBinaryOpOperands(Opcode, CLHS, CRHS, Q.DL);
609 
610     // Canonicalize the constant to the RHS if this is a commutative operation.
611     if (Instruction::isCommutative(Opcode))
612       std::swap(Op0, Op1);
613   }
614   return nullptr;
615 }
616 
617 /// Given operands for an Add, see if we can fold the result.
618 /// If not, this returns null.
619 static Value *SimplifyAddInst(Value *Op0, Value *Op1, bool IsNSW, bool IsNUW,
620                               const SimplifyQuery &Q, unsigned MaxRecurse) {
621   if (Constant *C = foldOrCommuteConstant(Instruction::Add, Op0, Op1, Q))
622     return C;
623 
624   // X + poison -> poison
625   if (isa<PoisonValue>(Op1))
626     return Op1;
627 
628   // X + undef -> undef
629   if (Q.isUndefValue(Op1))
630     return Op1;
631 
632   // X + 0 -> X
633   if (match(Op1, m_Zero()))
634     return Op0;
635 
636   // If two operands are negative, return 0.
637   if (isKnownNegation(Op0, Op1))
638     return Constant::getNullValue(Op0->getType());
639 
640   // X + (Y - X) -> Y
641   // (Y - X) + X -> Y
642   // Eg: X + -X -> 0
643   Value *Y = nullptr;
644   if (match(Op1, m_Sub(m_Value(Y), m_Specific(Op0))) ||
645       match(Op0, m_Sub(m_Value(Y), m_Specific(Op1))))
646     return Y;
647 
648   // X + ~X -> -1   since   ~X = -X-1
649   Type *Ty = Op0->getType();
650   if (match(Op0, m_Not(m_Specific(Op1))) ||
651       match(Op1, m_Not(m_Specific(Op0))))
652     return Constant::getAllOnesValue(Ty);
653 
654   // add nsw/nuw (xor Y, signmask), signmask --> Y
655   // The no-wrapping add guarantees that the top bit will be set by the add.
656   // Therefore, the xor must be clearing the already set sign bit of Y.
657   if ((IsNSW || IsNUW) && match(Op1, m_SignMask()) &&
658       match(Op0, m_Xor(m_Value(Y), m_SignMask())))
659     return Y;
660 
661   // add nuw %x, -1  ->  -1, because %x can only be 0.
662   if (IsNUW && match(Op1, m_AllOnes()))
663     return Op1; // Which is -1.
664 
665   /// i1 add -> xor.
666   if (MaxRecurse && Op0->getType()->isIntOrIntVectorTy(1))
667     if (Value *V = SimplifyXorInst(Op0, Op1, Q, MaxRecurse-1))
668       return V;
669 
670   // Try some generic simplifications for associative operations.
671   if (Value *V = SimplifyAssociativeBinOp(Instruction::Add, Op0, Op1, Q,
672                                           MaxRecurse))
673     return V;
674 
675   // Threading Add over selects and phi nodes is pointless, so don't bother.
676   // Threading over the select in "A + select(cond, B, C)" means evaluating
677   // "A+B" and "A+C" and seeing if they are equal; but they are equal if and
678   // only if B and C are equal.  If B and C are equal then (since we assume
679   // that operands have already been simplified) "select(cond, B, C)" should
680   // have been simplified to the common value of B and C already.  Analysing
681   // "A+B" and "A+C" thus gains nothing, but costs compile time.  Similarly
682   // for threading over phi nodes.
683 
684   return nullptr;
685 }
686 
687 Value *llvm::SimplifyAddInst(Value *Op0, Value *Op1, bool IsNSW, bool IsNUW,
688                              const SimplifyQuery &Query) {
689   return ::SimplifyAddInst(Op0, Op1, IsNSW, IsNUW, Query, RecursionLimit);
690 }
691 
692 /// Compute the base pointer and cumulative constant offsets for V.
693 ///
694 /// This strips all constant offsets off of V, leaving it the base pointer, and
695 /// accumulates the total constant offset applied in the returned constant.
696 /// It returns zero if there are no constant offsets applied.
697 ///
698 /// This is very similar to stripAndAccumulateConstantOffsets(), except it
699 /// normalizes the offset bitwidth to the stripped pointer type, not the
700 /// original pointer type.
701 static APInt stripAndComputeConstantOffsets(const DataLayout &DL, Value *&V,
702                                             bool AllowNonInbounds = false) {
703   assert(V->getType()->isPtrOrPtrVectorTy());
704 
705   APInt Offset = APInt::getZero(DL.getIndexTypeSizeInBits(V->getType()));
706   V = V->stripAndAccumulateConstantOffsets(DL, Offset, AllowNonInbounds);
707   // As that strip may trace through `addrspacecast`, need to sext or trunc
708   // the offset calculated.
709   return Offset.sextOrTrunc(DL.getIndexTypeSizeInBits(V->getType()));
710 }
711 
712 /// Compute the constant difference between two pointer values.
713 /// If the difference is not a constant, returns zero.
714 static Constant *computePointerDifference(const DataLayout &DL, Value *LHS,
715                                           Value *RHS) {
716   APInt LHSOffset = stripAndComputeConstantOffsets(DL, LHS);
717   APInt RHSOffset = stripAndComputeConstantOffsets(DL, RHS);
718 
719   // If LHS and RHS are not related via constant offsets to the same base
720   // value, there is nothing we can do here.
721   if (LHS != RHS)
722     return nullptr;
723 
724   // Otherwise, the difference of LHS - RHS can be computed as:
725   //    LHS - RHS
726   //  = (LHSOffset + Base) - (RHSOffset + Base)
727   //  = LHSOffset - RHSOffset
728   Constant *Res = ConstantInt::get(LHS->getContext(), LHSOffset - RHSOffset);
729   if (auto *VecTy = dyn_cast<VectorType>(LHS->getType()))
730     Res = ConstantVector::getSplat(VecTy->getElementCount(), Res);
731   return Res;
732 }
733 
734 /// Given operands for a Sub, see if we can fold the result.
735 /// If not, this returns null.
736 static Value *SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
737                               const SimplifyQuery &Q, unsigned MaxRecurse) {
738   if (Constant *C = foldOrCommuteConstant(Instruction::Sub, Op0, Op1, Q))
739     return C;
740 
741   // X - poison -> poison
742   // poison - X -> poison
743   if (isa<PoisonValue>(Op0) || isa<PoisonValue>(Op1))
744     return PoisonValue::get(Op0->getType());
745 
746   // X - undef -> undef
747   // undef - X -> undef
748   if (Q.isUndefValue(Op0) || Q.isUndefValue(Op1))
749     return UndefValue::get(Op0->getType());
750 
751   // X - 0 -> X
752   if (match(Op1, m_Zero()))
753     return Op0;
754 
755   // X - X -> 0
756   if (Op0 == Op1)
757     return Constant::getNullValue(Op0->getType());
758 
759   // Is this a negation?
760   if (match(Op0, m_Zero())) {
761     // 0 - X -> 0 if the sub is NUW.
762     if (isNUW)
763       return Constant::getNullValue(Op0->getType());
764 
765     KnownBits Known = computeKnownBits(Op1, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
766     if (Known.Zero.isMaxSignedValue()) {
767       // Op1 is either 0 or the minimum signed value. If the sub is NSW, then
768       // Op1 must be 0 because negating the minimum signed value is undefined.
769       if (isNSW)
770         return Constant::getNullValue(Op0->getType());
771 
772       // 0 - X -> X if X is 0 or the minimum signed value.
773       return Op1;
774     }
775   }
776 
777   // (X + Y) - Z -> X + (Y - Z) or Y + (X - Z) if everything simplifies.
778   // For example, (X + Y) - Y -> X; (Y + X) - Y -> X
779   Value *X = nullptr, *Y = nullptr, *Z = Op1;
780   if (MaxRecurse && match(Op0, m_Add(m_Value(X), m_Value(Y)))) { // (X + Y) - Z
781     // See if "V === Y - Z" simplifies.
782     if (Value *V = SimplifyBinOp(Instruction::Sub, Y, Z, Q, MaxRecurse-1))
783       // It does!  Now see if "X + V" simplifies.
784       if (Value *W = SimplifyBinOp(Instruction::Add, X, V, Q, MaxRecurse-1)) {
785         // It does, we successfully reassociated!
786         ++NumReassoc;
787         return W;
788       }
789     // See if "V === X - Z" simplifies.
790     if (Value *V = SimplifyBinOp(Instruction::Sub, X, Z, Q, MaxRecurse-1))
791       // It does!  Now see if "Y + V" simplifies.
792       if (Value *W = SimplifyBinOp(Instruction::Add, Y, V, Q, MaxRecurse-1)) {
793         // It does, we successfully reassociated!
794         ++NumReassoc;
795         return W;
796       }
797   }
798 
799   // X - (Y + Z) -> (X - Y) - Z or (X - Z) - Y if everything simplifies.
800   // For example, X - (X + 1) -> -1
801   X = Op0;
802   if (MaxRecurse && match(Op1, m_Add(m_Value(Y), m_Value(Z)))) { // X - (Y + Z)
803     // See if "V === X - Y" simplifies.
804     if (Value *V = SimplifyBinOp(Instruction::Sub, X, Y, Q, MaxRecurse-1))
805       // It does!  Now see if "V - Z" simplifies.
806       if (Value *W = SimplifyBinOp(Instruction::Sub, V, Z, Q, MaxRecurse-1)) {
807         // It does, we successfully reassociated!
808         ++NumReassoc;
809         return W;
810       }
811     // See if "V === X - Z" simplifies.
812     if (Value *V = SimplifyBinOp(Instruction::Sub, X, Z, Q, MaxRecurse-1))
813       // It does!  Now see if "V - Y" simplifies.
814       if (Value *W = SimplifyBinOp(Instruction::Sub, V, Y, Q, MaxRecurse-1)) {
815         // It does, we successfully reassociated!
816         ++NumReassoc;
817         return W;
818       }
819   }
820 
821   // Z - (X - Y) -> (Z - X) + Y if everything simplifies.
822   // For example, X - (X - Y) -> Y.
823   Z = Op0;
824   if (MaxRecurse && match(Op1, m_Sub(m_Value(X), m_Value(Y)))) // Z - (X - Y)
825     // See if "V === Z - X" simplifies.
826     if (Value *V = SimplifyBinOp(Instruction::Sub, Z, X, Q, MaxRecurse-1))
827       // It does!  Now see if "V + Y" simplifies.
828       if (Value *W = SimplifyBinOp(Instruction::Add, V, Y, Q, MaxRecurse-1)) {
829         // It does, we successfully reassociated!
830         ++NumReassoc;
831         return W;
832       }
833 
834   // trunc(X) - trunc(Y) -> trunc(X - Y) if everything simplifies.
835   if (MaxRecurse && match(Op0, m_Trunc(m_Value(X))) &&
836       match(Op1, m_Trunc(m_Value(Y))))
837     if (X->getType() == Y->getType())
838       // See if "V === X - Y" simplifies.
839       if (Value *V = SimplifyBinOp(Instruction::Sub, X, Y, Q, MaxRecurse-1))
840         // It does!  Now see if "trunc V" simplifies.
841         if (Value *W = SimplifyCastInst(Instruction::Trunc, V, Op0->getType(),
842                                         Q, MaxRecurse - 1))
843           // It does, return the simplified "trunc V".
844           return W;
845 
846   // Variations on GEP(base, I, ...) - GEP(base, i, ...) -> GEP(null, I-i, ...).
847   if (match(Op0, m_PtrToInt(m_Value(X))) &&
848       match(Op1, m_PtrToInt(m_Value(Y))))
849     if (Constant *Result = computePointerDifference(Q.DL, X, Y))
850       return ConstantExpr::getIntegerCast(Result, Op0->getType(), true);
851 
852   // i1 sub -> xor.
853   if (MaxRecurse && Op0->getType()->isIntOrIntVectorTy(1))
854     if (Value *V = SimplifyXorInst(Op0, Op1, Q, MaxRecurse-1))
855       return V;
856 
857   // Threading Sub over selects and phi nodes is pointless, so don't bother.
858   // Threading over the select in "A - select(cond, B, C)" means evaluating
859   // "A-B" and "A-C" and seeing if they are equal; but they are equal if and
860   // only if B and C are equal.  If B and C are equal then (since we assume
861   // that operands have already been simplified) "select(cond, B, C)" should
862   // have been simplified to the common value of B and C already.  Analysing
863   // "A-B" and "A-C" thus gains nothing, but costs compile time.  Similarly
864   // for threading over phi nodes.
865 
866   return nullptr;
867 }
868 
869 Value *llvm::SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
870                              const SimplifyQuery &Q) {
871   return ::SimplifySubInst(Op0, Op1, isNSW, isNUW, Q, RecursionLimit);
872 }
873 
874 /// Given operands for a Mul, see if we can fold the result.
875 /// If not, this returns null.
876 static Value *SimplifyMulInst(Value *Op0, Value *Op1, const SimplifyQuery &Q,
877                               unsigned MaxRecurse) {
878   if (Constant *C = foldOrCommuteConstant(Instruction::Mul, Op0, Op1, Q))
879     return C;
880 
881   // X * poison -> poison
882   if (isa<PoisonValue>(Op1))
883     return Op1;
884 
885   // X * undef -> 0
886   // X * 0 -> 0
887   if (Q.isUndefValue(Op1) || match(Op1, m_Zero()))
888     return Constant::getNullValue(Op0->getType());
889 
890   // X * 1 -> X
891   if (match(Op1, m_One()))
892     return Op0;
893 
894   // (X / Y) * Y -> X if the division is exact.
895   Value *X = nullptr;
896   if (Q.IIQ.UseInstrInfo &&
897       (match(Op0,
898              m_Exact(m_IDiv(m_Value(X), m_Specific(Op1)))) ||     // (X / Y) * Y
899        match(Op1, m_Exact(m_IDiv(m_Value(X), m_Specific(Op0)))))) // Y * (X / Y)
900     return X;
901 
902   // i1 mul -> and.
903   if (MaxRecurse && Op0->getType()->isIntOrIntVectorTy(1))
904     if (Value *V = SimplifyAndInst(Op0, Op1, Q, MaxRecurse-1))
905       return V;
906 
907   // Try some generic simplifications for associative operations.
908   if (Value *V = SimplifyAssociativeBinOp(Instruction::Mul, Op0, Op1, Q,
909                                           MaxRecurse))
910     return V;
911 
912   // Mul distributes over Add. Try some generic simplifications based on this.
913   if (Value *V = expandCommutativeBinOp(Instruction::Mul, Op0, Op1,
914                                         Instruction::Add, Q, MaxRecurse))
915     return V;
916 
917   // If the operation is with the result of a select instruction, check whether
918   // operating on either branch of the select always yields the same value.
919   if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
920     if (Value *V = ThreadBinOpOverSelect(Instruction::Mul, Op0, Op1, Q,
921                                          MaxRecurse))
922       return V;
923 
924   // If the operation is with the result of a phi instruction, check whether
925   // operating on all incoming values of the phi always yields the same value.
926   if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
927     if (Value *V = ThreadBinOpOverPHI(Instruction::Mul, Op0, Op1, Q,
928                                       MaxRecurse))
929       return V;
930 
931   return nullptr;
932 }
933 
934 Value *llvm::SimplifyMulInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) {
935   return ::SimplifyMulInst(Op0, Op1, Q, RecursionLimit);
936 }
937 
938 /// Check for common or similar folds of integer division or integer remainder.
939 /// This applies to all 4 opcodes (sdiv/udiv/srem/urem).
940 static Value *simplifyDivRem(Instruction::BinaryOps Opcode, Value *Op0,
941                              Value *Op1, const SimplifyQuery &Q) {
942   bool IsDiv = (Opcode == Instruction::SDiv || Opcode == Instruction::UDiv);
943   bool IsSigned = (Opcode == Instruction::SDiv || Opcode == Instruction::SRem);
944 
945   Type *Ty = Op0->getType();
946 
947   // X / undef -> poison
948   // X % undef -> poison
949   if (Q.isUndefValue(Op1) || isa<PoisonValue>(Op1))
950     return PoisonValue::get(Ty);
951 
952   // X / 0 -> poison
953   // X % 0 -> poison
954   // We don't need to preserve faults!
955   if (match(Op1, m_Zero()))
956     return PoisonValue::get(Ty);
957 
958   // If any element of a constant divisor fixed width vector is zero or undef
959   // the behavior is undefined and we can fold the whole op to poison.
960   auto *Op1C = dyn_cast<Constant>(Op1);
961   auto *VTy = dyn_cast<FixedVectorType>(Ty);
962   if (Op1C && VTy) {
963     unsigned NumElts = VTy->getNumElements();
964     for (unsigned i = 0; i != NumElts; ++i) {
965       Constant *Elt = Op1C->getAggregateElement(i);
966       if (Elt && (Elt->isNullValue() || Q.isUndefValue(Elt)))
967         return PoisonValue::get(Ty);
968     }
969   }
970 
971   // poison / X -> poison
972   // poison % X -> poison
973   if (isa<PoisonValue>(Op0))
974     return Op0;
975 
976   // undef / X -> 0
977   // undef % X -> 0
978   if (Q.isUndefValue(Op0))
979     return Constant::getNullValue(Ty);
980 
981   // 0 / X -> 0
982   // 0 % X -> 0
983   if (match(Op0, m_Zero()))
984     return Constant::getNullValue(Op0->getType());
985 
986   // X / X -> 1
987   // X % X -> 0
988   if (Op0 == Op1)
989     return IsDiv ? ConstantInt::get(Ty, 1) : Constant::getNullValue(Ty);
990 
991   // X / 1 -> X
992   // X % 1 -> 0
993   // If this is a boolean op (single-bit element type), we can't have
994   // division-by-zero or remainder-by-zero, so assume the divisor is 1.
995   // Similarly, if we're zero-extending a boolean divisor, then assume it's a 1.
996   Value *X;
997   if (match(Op1, m_One()) || Ty->isIntOrIntVectorTy(1) ||
998       (match(Op1, m_ZExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)))
999     return IsDiv ? Op0 : Constant::getNullValue(Ty);
1000 
1001   // If X * Y does not overflow, then:
1002   //   X * Y / Y -> X
1003   //   X * Y % Y -> 0
1004   if (match(Op0, m_c_Mul(m_Value(X), m_Specific(Op1)))) {
1005     auto *Mul = cast<OverflowingBinaryOperator>(Op0);
1006     // The multiplication can't overflow if it is defined not to, or if
1007     // X == A / Y for some A.
1008     if ((IsSigned && Q.IIQ.hasNoSignedWrap(Mul)) ||
1009         (!IsSigned && Q.IIQ.hasNoUnsignedWrap(Mul)) ||
1010         (IsSigned && match(X, m_SDiv(m_Value(), m_Specific(Op1)))) ||
1011         (!IsSigned && match(X, m_UDiv(m_Value(), m_Specific(Op1))))) {
1012       return IsDiv ? X : Constant::getNullValue(Op0->getType());
1013     }
1014   }
1015 
1016   return nullptr;
1017 }
1018 
1019 /// Given a predicate and two operands, return true if the comparison is true.
1020 /// This is a helper for div/rem simplification where we return some other value
1021 /// when we can prove a relationship between the operands.
1022 static bool isICmpTrue(ICmpInst::Predicate Pred, Value *LHS, Value *RHS,
1023                        const SimplifyQuery &Q, unsigned MaxRecurse) {
1024   Value *V = SimplifyICmpInst(Pred, LHS, RHS, Q, MaxRecurse);
1025   Constant *C = dyn_cast_or_null<Constant>(V);
1026   return (C && C->isAllOnesValue());
1027 }
1028 
1029 /// Return true if we can simplify X / Y to 0. Remainder can adapt that answer
1030 /// to simplify X % Y to X.
1031 static bool isDivZero(Value *X, Value *Y, const SimplifyQuery &Q,
1032                       unsigned MaxRecurse, bool IsSigned) {
1033   // Recursion is always used, so bail out at once if we already hit the limit.
1034   if (!MaxRecurse--)
1035     return false;
1036 
1037   if (IsSigned) {
1038     // |X| / |Y| --> 0
1039     //
1040     // We require that 1 operand is a simple constant. That could be extended to
1041     // 2 variables if we computed the sign bit for each.
1042     //
1043     // Make sure that a constant is not the minimum signed value because taking
1044     // the abs() of that is undefined.
1045     Type *Ty = X->getType();
1046     const APInt *C;
1047     if (match(X, m_APInt(C)) && !C->isMinSignedValue()) {
1048       // Is the variable divisor magnitude always greater than the constant
1049       // dividend magnitude?
1050       // |Y| > |C| --> Y < -abs(C) or Y > abs(C)
1051       Constant *PosDividendC = ConstantInt::get(Ty, C->abs());
1052       Constant *NegDividendC = ConstantInt::get(Ty, -C->abs());
1053       if (isICmpTrue(CmpInst::ICMP_SLT, Y, NegDividendC, Q, MaxRecurse) ||
1054           isICmpTrue(CmpInst::ICMP_SGT, Y, PosDividendC, Q, MaxRecurse))
1055         return true;
1056     }
1057     if (match(Y, m_APInt(C))) {
1058       // Special-case: we can't take the abs() of a minimum signed value. If
1059       // that's the divisor, then all we have to do is prove that the dividend
1060       // is also not the minimum signed value.
1061       if (C->isMinSignedValue())
1062         return isICmpTrue(CmpInst::ICMP_NE, X, Y, Q, MaxRecurse);
1063 
1064       // Is the variable dividend magnitude always less than the constant
1065       // divisor magnitude?
1066       // |X| < |C| --> X > -abs(C) and X < abs(C)
1067       Constant *PosDivisorC = ConstantInt::get(Ty, C->abs());
1068       Constant *NegDivisorC = ConstantInt::get(Ty, -C->abs());
1069       if (isICmpTrue(CmpInst::ICMP_SGT, X, NegDivisorC, Q, MaxRecurse) &&
1070           isICmpTrue(CmpInst::ICMP_SLT, X, PosDivisorC, Q, MaxRecurse))
1071         return true;
1072     }
1073     return false;
1074   }
1075 
1076   // IsSigned == false.
1077 
1078   // Is the unsigned dividend known to be less than a constant divisor?
1079   // TODO: Convert this (and above) to range analysis
1080   //      ("computeConstantRangeIncludingKnownBits")?
1081   const APInt *C;
1082   if (match(Y, m_APInt(C)) &&
1083       computeKnownBits(X, Q.DL, 0, Q.AC, Q.CxtI, Q.DT).getMaxValue().ult(*C))
1084     return true;
1085 
1086   // Try again for any divisor:
1087   // Is the dividend unsigned less than the divisor?
1088   return isICmpTrue(ICmpInst::ICMP_ULT, X, Y, Q, MaxRecurse);
1089 }
1090 
1091 /// These are simplifications common to SDiv and UDiv.
1092 static Value *simplifyDiv(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1,
1093                           const SimplifyQuery &Q, unsigned MaxRecurse) {
1094   if (Constant *C = foldOrCommuteConstant(Opcode, Op0, Op1, Q))
1095     return C;
1096 
1097   if (Value *V = simplifyDivRem(Opcode, Op0, Op1, Q))
1098     return V;
1099 
1100   bool IsSigned = Opcode == Instruction::SDiv;
1101 
1102   // (X rem Y) / Y -> 0
1103   if ((IsSigned && match(Op0, m_SRem(m_Value(), m_Specific(Op1)))) ||
1104       (!IsSigned && match(Op0, m_URem(m_Value(), m_Specific(Op1)))))
1105     return Constant::getNullValue(Op0->getType());
1106 
1107   // (X /u C1) /u C2 -> 0 if C1 * C2 overflow
1108   ConstantInt *C1, *C2;
1109   if (!IsSigned && match(Op0, m_UDiv(m_Value(), m_ConstantInt(C1))) &&
1110       match(Op1, m_ConstantInt(C2))) {
1111     bool Overflow;
1112     (void)C1->getValue().umul_ov(C2->getValue(), Overflow);
1113     if (Overflow)
1114       return Constant::getNullValue(Op0->getType());
1115   }
1116 
1117   // If the operation is with the result of a select instruction, check whether
1118   // operating on either branch of the select always yields the same value.
1119   if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
1120     if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse))
1121       return V;
1122 
1123   // If the operation is with the result of a phi instruction, check whether
1124   // operating on all incoming values of the phi always yields the same value.
1125   if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
1126     if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse))
1127       return V;
1128 
1129   if (isDivZero(Op0, Op1, Q, MaxRecurse, IsSigned))
1130     return Constant::getNullValue(Op0->getType());
1131 
1132   return nullptr;
1133 }
1134 
1135 /// These are simplifications common to SRem and URem.
1136 static Value *simplifyRem(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1,
1137                           const SimplifyQuery &Q, unsigned MaxRecurse) {
1138   if (Constant *C = foldOrCommuteConstant(Opcode, Op0, Op1, Q))
1139     return C;
1140 
1141   if (Value *V = simplifyDivRem(Opcode, Op0, Op1, Q))
1142     return V;
1143 
1144   // (X % Y) % Y -> X % Y
1145   if ((Opcode == Instruction::SRem &&
1146        match(Op0, m_SRem(m_Value(), m_Specific(Op1)))) ||
1147       (Opcode == Instruction::URem &&
1148        match(Op0, m_URem(m_Value(), m_Specific(Op1)))))
1149     return Op0;
1150 
1151   // (X << Y) % X -> 0
1152   if (Q.IIQ.UseInstrInfo &&
1153       ((Opcode == Instruction::SRem &&
1154         match(Op0, m_NSWShl(m_Specific(Op1), m_Value()))) ||
1155        (Opcode == Instruction::URem &&
1156         match(Op0, m_NUWShl(m_Specific(Op1), m_Value())))))
1157     return Constant::getNullValue(Op0->getType());
1158 
1159   // If the operation is with the result of a select instruction, check whether
1160   // operating on either branch of the select always yields the same value.
1161   if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
1162     if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse))
1163       return V;
1164 
1165   // If the operation is with the result of a phi instruction, check whether
1166   // operating on all incoming values of the phi always yields the same value.
1167   if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
1168     if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse))
1169       return V;
1170 
1171   // If X / Y == 0, then X % Y == X.
1172   if (isDivZero(Op0, Op1, Q, MaxRecurse, Opcode == Instruction::SRem))
1173     return Op0;
1174 
1175   return nullptr;
1176 }
1177 
1178 /// Given operands for an SDiv, see if we can fold the result.
1179 /// If not, this returns null.
1180 static Value *SimplifySDivInst(Value *Op0, Value *Op1, const SimplifyQuery &Q,
1181                                unsigned MaxRecurse) {
1182   // If two operands are negated and no signed overflow, return -1.
1183   if (isKnownNegation(Op0, Op1, /*NeedNSW=*/true))
1184     return Constant::getAllOnesValue(Op0->getType());
1185 
1186   return simplifyDiv(Instruction::SDiv, Op0, Op1, Q, MaxRecurse);
1187 }
1188 
1189 Value *llvm::SimplifySDivInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) {
1190   return ::SimplifySDivInst(Op0, Op1, Q, RecursionLimit);
1191 }
1192 
1193 /// Given operands for a UDiv, see if we can fold the result.
1194 /// If not, this returns null.
1195 static Value *SimplifyUDivInst(Value *Op0, Value *Op1, const SimplifyQuery &Q,
1196                                unsigned MaxRecurse) {
1197   return simplifyDiv(Instruction::UDiv, Op0, Op1, Q, MaxRecurse);
1198 }
1199 
1200 Value *llvm::SimplifyUDivInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) {
1201   return ::SimplifyUDivInst(Op0, Op1, Q, RecursionLimit);
1202 }
1203 
1204 /// Given operands for an SRem, see if we can fold the result.
1205 /// If not, this returns null.
1206 static Value *SimplifySRemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q,
1207                                unsigned MaxRecurse) {
1208   // If the divisor is 0, the result is undefined, so assume the divisor is -1.
1209   // srem Op0, (sext i1 X) --> srem Op0, -1 --> 0
1210   Value *X;
1211   if (match(Op1, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1))
1212     return ConstantInt::getNullValue(Op0->getType());
1213 
1214   // If the two operands are negated, return 0.
1215   if (isKnownNegation(Op0, Op1))
1216     return ConstantInt::getNullValue(Op0->getType());
1217 
1218   return simplifyRem(Instruction::SRem, Op0, Op1, Q, MaxRecurse);
1219 }
1220 
1221 Value *llvm::SimplifySRemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) {
1222   return ::SimplifySRemInst(Op0, Op1, Q, RecursionLimit);
1223 }
1224 
1225 /// Given operands for a URem, see if we can fold the result.
1226 /// If not, this returns null.
1227 static Value *SimplifyURemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q,
1228                                unsigned MaxRecurse) {
1229   return simplifyRem(Instruction::URem, Op0, Op1, Q, MaxRecurse);
1230 }
1231 
1232 Value *llvm::SimplifyURemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) {
1233   return ::SimplifyURemInst(Op0, Op1, Q, RecursionLimit);
1234 }
1235 
1236 /// Returns true if a shift by \c Amount always yields poison.
1237 static bool isPoisonShift(Value *Amount, const SimplifyQuery &Q) {
1238   Constant *C = dyn_cast<Constant>(Amount);
1239   if (!C)
1240     return false;
1241 
1242   // X shift by undef -> poison because it may shift by the bitwidth.
1243   if (Q.isUndefValue(C))
1244     return true;
1245 
1246   // Shifting by the bitwidth or more is undefined.
1247   if (ConstantInt *CI = dyn_cast<ConstantInt>(C))
1248     if (CI->getValue().uge(CI->getType()->getScalarSizeInBits()))
1249       return true;
1250 
1251   // If all lanes of a vector shift are undefined the whole shift is.
1252   if (isa<ConstantVector>(C) || isa<ConstantDataVector>(C)) {
1253     for (unsigned I = 0,
1254                   E = cast<FixedVectorType>(C->getType())->getNumElements();
1255          I != E; ++I)
1256       if (!isPoisonShift(C->getAggregateElement(I), Q))
1257         return false;
1258     return true;
1259   }
1260 
1261   return false;
1262 }
1263 
1264 /// Given operands for an Shl, LShr or AShr, see if we can fold the result.
1265 /// If not, this returns null.
1266 static Value *SimplifyShift(Instruction::BinaryOps Opcode, Value *Op0,
1267                             Value *Op1, bool IsNSW, const SimplifyQuery &Q,
1268                             unsigned MaxRecurse) {
1269   if (Constant *C = foldOrCommuteConstant(Opcode, Op0, Op1, Q))
1270     return C;
1271 
1272   // poison shift by X -> poison
1273   if (isa<PoisonValue>(Op0))
1274     return Op0;
1275 
1276   // 0 shift by X -> 0
1277   if (match(Op0, m_Zero()))
1278     return Constant::getNullValue(Op0->getType());
1279 
1280   // X shift by 0 -> X
1281   // Shift-by-sign-extended bool must be shift-by-0 because shift-by-all-ones
1282   // would be poison.
1283   Value *X;
1284   if (match(Op1, m_Zero()) ||
1285       (match(Op1, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)))
1286     return Op0;
1287 
1288   // Fold undefined shifts.
1289   if (isPoisonShift(Op1, Q))
1290     return PoisonValue::get(Op0->getType());
1291 
1292   // If the operation is with the result of a select instruction, check whether
1293   // operating on either branch of the select always yields the same value.
1294   if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
1295     if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse))
1296       return V;
1297 
1298   // If the operation is with the result of a phi instruction, check whether
1299   // operating on all incoming values of the phi always yields the same value.
1300   if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
1301     if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse))
1302       return V;
1303 
1304   // If any bits in the shift amount make that value greater than or equal to
1305   // the number of bits in the type, the shift is undefined.
1306   KnownBits KnownAmt = computeKnownBits(Op1, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
1307   if (KnownAmt.getMinValue().uge(KnownAmt.getBitWidth()))
1308     return PoisonValue::get(Op0->getType());
1309 
1310   // If all valid bits in the shift amount are known zero, the first operand is
1311   // unchanged.
1312   unsigned NumValidShiftBits = Log2_32_Ceil(KnownAmt.getBitWidth());
1313   if (KnownAmt.countMinTrailingZeros() >= NumValidShiftBits)
1314     return Op0;
1315 
1316   // Check for nsw shl leading to a poison value.
1317   if (IsNSW) {
1318     assert(Opcode == Instruction::Shl && "Expected shl for nsw instruction");
1319     KnownBits KnownVal = computeKnownBits(Op0, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
1320     KnownBits KnownShl = KnownBits::shl(KnownVal, KnownAmt);
1321 
1322     if (KnownVal.Zero.isSignBitSet())
1323       KnownShl.Zero.setSignBit();
1324     if (KnownVal.One.isSignBitSet())
1325       KnownShl.One.setSignBit();
1326 
1327     if (KnownShl.hasConflict())
1328       return PoisonValue::get(Op0->getType());
1329   }
1330 
1331   return nullptr;
1332 }
1333 
1334 /// Given operands for an Shl, LShr or AShr, see if we can
1335 /// fold the result.  If not, this returns null.
1336 static Value *SimplifyRightShift(Instruction::BinaryOps Opcode, Value *Op0,
1337                                  Value *Op1, bool isExact, const SimplifyQuery &Q,
1338                                  unsigned MaxRecurse) {
1339   if (Value *V =
1340           SimplifyShift(Opcode, Op0, Op1, /*IsNSW*/ false, Q, MaxRecurse))
1341     return V;
1342 
1343   // X >> X -> 0
1344   if (Op0 == Op1)
1345     return Constant::getNullValue(Op0->getType());
1346 
1347   // undef >> X -> 0
1348   // undef >> X -> undef (if it's exact)
1349   if (Q.isUndefValue(Op0))
1350     return isExact ? Op0 : Constant::getNullValue(Op0->getType());
1351 
1352   // The low bit cannot be shifted out of an exact shift if it is set.
1353   if (isExact) {
1354     KnownBits Op0Known = computeKnownBits(Op0, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT);
1355     if (Op0Known.One[0])
1356       return Op0;
1357   }
1358 
1359   return nullptr;
1360 }
1361 
1362 /// Given operands for an Shl, see if we can fold the result.
1363 /// If not, this returns null.
1364 static Value *SimplifyShlInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
1365                               const SimplifyQuery &Q, unsigned MaxRecurse) {
1366   if (Value *V =
1367           SimplifyShift(Instruction::Shl, Op0, Op1, isNSW, Q, MaxRecurse))
1368     return V;
1369 
1370   // undef << X -> 0
1371   // undef << X -> undef if (if it's NSW/NUW)
1372   if (Q.isUndefValue(Op0))
1373     return isNSW || isNUW ? Op0 : Constant::getNullValue(Op0->getType());
1374 
1375   // (X >> A) << A -> X
1376   Value *X;
1377   if (Q.IIQ.UseInstrInfo &&
1378       match(Op0, m_Exact(m_Shr(m_Value(X), m_Specific(Op1)))))
1379     return X;
1380 
1381   // shl nuw i8 C, %x  ->  C  iff C has sign bit set.
1382   if (isNUW && match(Op0, m_Negative()))
1383     return Op0;
1384   // NOTE: could use computeKnownBits() / LazyValueInfo,
1385   // but the cost-benefit analysis suggests it isn't worth it.
1386 
1387   return nullptr;
1388 }
1389 
1390 Value *llvm::SimplifyShlInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
1391                              const SimplifyQuery &Q) {
1392   return ::SimplifyShlInst(Op0, Op1, isNSW, isNUW, Q, RecursionLimit);
1393 }
1394 
1395 /// Given operands for an LShr, see if we can fold the result.
1396 /// If not, this returns null.
1397 static Value *SimplifyLShrInst(Value *Op0, Value *Op1, bool isExact,
1398                                const SimplifyQuery &Q, unsigned MaxRecurse) {
1399   if (Value *V = SimplifyRightShift(Instruction::LShr, Op0, Op1, isExact, Q,
1400                                     MaxRecurse))
1401       return V;
1402 
1403   // (X << A) >> A -> X
1404   Value *X;
1405   if (match(Op0, m_NUWShl(m_Value(X), m_Specific(Op1))))
1406     return X;
1407 
1408   // ((X << A) | Y) >> A -> X  if effective width of Y is not larger than A.
1409   // We can return X as we do in the above case since OR alters no bits in X.
1410   // SimplifyDemandedBits in InstCombine can do more general optimization for
1411   // bit manipulation. This pattern aims to provide opportunities for other
1412   // optimizers by supporting a simple but common case in InstSimplify.
1413   Value *Y;
1414   const APInt *ShRAmt, *ShLAmt;
1415   if (match(Op1, m_APInt(ShRAmt)) &&
1416       match(Op0, m_c_Or(m_NUWShl(m_Value(X), m_APInt(ShLAmt)), m_Value(Y))) &&
1417       *ShRAmt == *ShLAmt) {
1418     const KnownBits YKnown = computeKnownBits(Y, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
1419     const unsigned EffWidthY = YKnown.countMaxActiveBits();
1420     if (ShRAmt->uge(EffWidthY))
1421       return X;
1422   }
1423 
1424   return nullptr;
1425 }
1426 
1427 Value *llvm::SimplifyLShrInst(Value *Op0, Value *Op1, bool isExact,
1428                               const SimplifyQuery &Q) {
1429   return ::SimplifyLShrInst(Op0, Op1, isExact, Q, RecursionLimit);
1430 }
1431 
1432 /// Given operands for an AShr, see if we can fold the result.
1433 /// If not, this returns null.
1434 static Value *SimplifyAShrInst(Value *Op0, Value *Op1, bool isExact,
1435                                const SimplifyQuery &Q, unsigned MaxRecurse) {
1436   if (Value *V = SimplifyRightShift(Instruction::AShr, Op0, Op1, isExact, Q,
1437                                     MaxRecurse))
1438     return V;
1439 
1440   // -1 >>a X --> -1
1441   // (-1 << X) a>> X --> -1
1442   // Do not return Op0 because it may contain undef elements if it's a vector.
1443   if (match(Op0, m_AllOnes()) ||
1444       match(Op0, m_Shl(m_AllOnes(), m_Specific(Op1))))
1445     return Constant::getAllOnesValue(Op0->getType());
1446 
1447   // (X << A) >> A -> X
1448   Value *X;
1449   if (Q.IIQ.UseInstrInfo && match(Op0, m_NSWShl(m_Value(X), m_Specific(Op1))))
1450     return X;
1451 
1452   // Arithmetic shifting an all-sign-bit value is a no-op.
1453   unsigned NumSignBits = ComputeNumSignBits(Op0, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
1454   if (NumSignBits == Op0->getType()->getScalarSizeInBits())
1455     return Op0;
1456 
1457   return nullptr;
1458 }
1459 
1460 Value *llvm::SimplifyAShrInst(Value *Op0, Value *Op1, bool isExact,
1461                               const SimplifyQuery &Q) {
1462   return ::SimplifyAShrInst(Op0, Op1, isExact, Q, RecursionLimit);
1463 }
1464 
1465 /// Commuted variants are assumed to be handled by calling this function again
1466 /// with the parameters swapped.
1467 static Value *simplifyUnsignedRangeCheck(ICmpInst *ZeroICmp,
1468                                          ICmpInst *UnsignedICmp, bool IsAnd,
1469                                          const SimplifyQuery &Q) {
1470   Value *X, *Y;
1471 
1472   ICmpInst::Predicate EqPred;
1473   if (!match(ZeroICmp, m_ICmp(EqPred, m_Value(Y), m_Zero())) ||
1474       !ICmpInst::isEquality(EqPred))
1475     return nullptr;
1476 
1477   ICmpInst::Predicate UnsignedPred;
1478 
1479   Value *A, *B;
1480   // Y = (A - B);
1481   if (match(Y, m_Sub(m_Value(A), m_Value(B)))) {
1482     if (match(UnsignedICmp,
1483               m_c_ICmp(UnsignedPred, m_Specific(A), m_Specific(B))) &&
1484         ICmpInst::isUnsigned(UnsignedPred)) {
1485       // A >=/<= B || (A - B) != 0  <-->  true
1486       if ((UnsignedPred == ICmpInst::ICMP_UGE ||
1487            UnsignedPred == ICmpInst::ICMP_ULE) &&
1488           EqPred == ICmpInst::ICMP_NE && !IsAnd)
1489         return ConstantInt::getTrue(UnsignedICmp->getType());
1490       // A </> B && (A - B) == 0  <-->  false
1491       if ((UnsignedPred == ICmpInst::ICMP_ULT ||
1492            UnsignedPred == ICmpInst::ICMP_UGT) &&
1493           EqPred == ICmpInst::ICMP_EQ && IsAnd)
1494         return ConstantInt::getFalse(UnsignedICmp->getType());
1495 
1496       // A </> B && (A - B) != 0  <-->  A </> B
1497       // A </> B || (A - B) != 0  <-->  (A - B) != 0
1498       if (EqPred == ICmpInst::ICMP_NE && (UnsignedPred == ICmpInst::ICMP_ULT ||
1499                                           UnsignedPred == ICmpInst::ICMP_UGT))
1500         return IsAnd ? UnsignedICmp : ZeroICmp;
1501 
1502       // A <=/>= B && (A - B) == 0  <-->  (A - B) == 0
1503       // A <=/>= B || (A - B) == 0  <-->  A <=/>= B
1504       if (EqPred == ICmpInst::ICMP_EQ && (UnsignedPred == ICmpInst::ICMP_ULE ||
1505                                           UnsignedPred == ICmpInst::ICMP_UGE))
1506         return IsAnd ? ZeroICmp : UnsignedICmp;
1507     }
1508 
1509     // Given  Y = (A - B)
1510     //   Y >= A && Y != 0  --> Y >= A  iff B != 0
1511     //   Y <  A || Y == 0  --> Y <  A  iff B != 0
1512     if (match(UnsignedICmp,
1513               m_c_ICmp(UnsignedPred, m_Specific(Y), m_Specific(A)))) {
1514       if (UnsignedPred == ICmpInst::ICMP_UGE && IsAnd &&
1515           EqPred == ICmpInst::ICMP_NE &&
1516           isKnownNonZero(B, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT))
1517         return UnsignedICmp;
1518       if (UnsignedPred == ICmpInst::ICMP_ULT && !IsAnd &&
1519           EqPred == ICmpInst::ICMP_EQ &&
1520           isKnownNonZero(B, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT))
1521         return UnsignedICmp;
1522     }
1523   }
1524 
1525   if (match(UnsignedICmp, m_ICmp(UnsignedPred, m_Value(X), m_Specific(Y))) &&
1526       ICmpInst::isUnsigned(UnsignedPred))
1527     ;
1528   else if (match(UnsignedICmp,
1529                  m_ICmp(UnsignedPred, m_Specific(Y), m_Value(X))) &&
1530            ICmpInst::isUnsigned(UnsignedPred))
1531     UnsignedPred = ICmpInst::getSwappedPredicate(UnsignedPred);
1532   else
1533     return nullptr;
1534 
1535   // X > Y && Y == 0  -->  Y == 0  iff X != 0
1536   // X > Y || Y == 0  -->  X > Y   iff X != 0
1537   if (UnsignedPred == ICmpInst::ICMP_UGT && EqPred == ICmpInst::ICMP_EQ &&
1538       isKnownNonZero(X, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT))
1539     return IsAnd ? ZeroICmp : UnsignedICmp;
1540 
1541   // X <= Y && Y != 0  -->  X <= Y  iff X != 0
1542   // X <= Y || Y != 0  -->  Y != 0  iff X != 0
1543   if (UnsignedPred == ICmpInst::ICMP_ULE && EqPred == ICmpInst::ICMP_NE &&
1544       isKnownNonZero(X, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT))
1545     return IsAnd ? UnsignedICmp : ZeroICmp;
1546 
1547   // The transforms below here are expected to be handled more generally with
1548   // simplifyAndOrOfICmpsWithLimitConst() or in InstCombine's
1549   // foldAndOrOfICmpsWithConstEq(). If we are looking to trim optimizer overlap,
1550   // these are candidates for removal.
1551 
1552   // X < Y && Y != 0  -->  X < Y
1553   // X < Y || Y != 0  -->  Y != 0
1554   if (UnsignedPred == ICmpInst::ICMP_ULT && EqPred == ICmpInst::ICMP_NE)
1555     return IsAnd ? UnsignedICmp : ZeroICmp;
1556 
1557   // X >= Y && Y == 0  -->  Y == 0
1558   // X >= Y || Y == 0  -->  X >= Y
1559   if (UnsignedPred == ICmpInst::ICMP_UGE && EqPred == ICmpInst::ICMP_EQ)
1560     return IsAnd ? ZeroICmp : UnsignedICmp;
1561 
1562   // X < Y && Y == 0  -->  false
1563   if (UnsignedPred == ICmpInst::ICMP_ULT && EqPred == ICmpInst::ICMP_EQ &&
1564       IsAnd)
1565     return getFalse(UnsignedICmp->getType());
1566 
1567   // X >= Y || Y != 0  -->  true
1568   if (UnsignedPred == ICmpInst::ICMP_UGE && EqPred == ICmpInst::ICMP_NE &&
1569       !IsAnd)
1570     return getTrue(UnsignedICmp->getType());
1571 
1572   return nullptr;
1573 }
1574 
1575 /// Commuted variants are assumed to be handled by calling this function again
1576 /// with the parameters swapped.
1577 static Value *simplifyAndOfICmpsWithSameOperands(ICmpInst *Op0, ICmpInst *Op1) {
1578   ICmpInst::Predicate Pred0, Pred1;
1579   Value *A ,*B;
1580   if (!match(Op0, m_ICmp(Pred0, m_Value(A), m_Value(B))) ||
1581       !match(Op1, m_ICmp(Pred1, m_Specific(A), m_Specific(B))))
1582     return nullptr;
1583 
1584   // We have (icmp Pred0, A, B) & (icmp Pred1, A, B).
1585   // If Op1 is always implied true by Op0, then Op0 is a subset of Op1, and we
1586   // can eliminate Op1 from this 'and'.
1587   if (ICmpInst::isImpliedTrueByMatchingCmp(Pred0, Pred1))
1588     return Op0;
1589 
1590   // Check for any combination of predicates that are guaranteed to be disjoint.
1591   if ((Pred0 == ICmpInst::getInversePredicate(Pred1)) ||
1592       (Pred0 == ICmpInst::ICMP_EQ && ICmpInst::isFalseWhenEqual(Pred1)) ||
1593       (Pred0 == ICmpInst::ICMP_SLT && Pred1 == ICmpInst::ICMP_SGT) ||
1594       (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_UGT))
1595     return getFalse(Op0->getType());
1596 
1597   return nullptr;
1598 }
1599 
1600 /// Commuted variants are assumed to be handled by calling this function again
1601 /// with the parameters swapped.
1602 static Value *simplifyOrOfICmpsWithSameOperands(ICmpInst *Op0, ICmpInst *Op1) {
1603   ICmpInst::Predicate Pred0, Pred1;
1604   Value *A ,*B;
1605   if (!match(Op0, m_ICmp(Pred0, m_Value(A), m_Value(B))) ||
1606       !match(Op1, m_ICmp(Pred1, m_Specific(A), m_Specific(B))))
1607     return nullptr;
1608 
1609   // We have (icmp Pred0, A, B) | (icmp Pred1, A, B).
1610   // If Op1 is always implied true by Op0, then Op0 is a subset of Op1, and we
1611   // can eliminate Op0 from this 'or'.
1612   if (ICmpInst::isImpliedTrueByMatchingCmp(Pred0, Pred1))
1613     return Op1;
1614 
1615   // Check for any combination of predicates that cover the entire range of
1616   // possibilities.
1617   if ((Pred0 == ICmpInst::getInversePredicate(Pred1)) ||
1618       (Pred0 == ICmpInst::ICMP_NE && ICmpInst::isTrueWhenEqual(Pred1)) ||
1619       (Pred0 == ICmpInst::ICMP_SLE && Pred1 == ICmpInst::ICMP_SGE) ||
1620       (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_UGE))
1621     return getTrue(Op0->getType());
1622 
1623   return nullptr;
1624 }
1625 
1626 /// Test if a pair of compares with a shared operand and 2 constants has an
1627 /// empty set intersection, full set union, or if one compare is a superset of
1628 /// the other.
1629 static Value *simplifyAndOrOfICmpsWithConstants(ICmpInst *Cmp0, ICmpInst *Cmp1,
1630                                                 bool IsAnd) {
1631   // Look for this pattern: {and/or} (icmp X, C0), (icmp X, C1)).
1632   if (Cmp0->getOperand(0) != Cmp1->getOperand(0))
1633     return nullptr;
1634 
1635   const APInt *C0, *C1;
1636   if (!match(Cmp0->getOperand(1), m_APInt(C0)) ||
1637       !match(Cmp1->getOperand(1), m_APInt(C1)))
1638     return nullptr;
1639 
1640   auto Range0 = ConstantRange::makeExactICmpRegion(Cmp0->getPredicate(), *C0);
1641   auto Range1 = ConstantRange::makeExactICmpRegion(Cmp1->getPredicate(), *C1);
1642 
1643   // For and-of-compares, check if the intersection is empty:
1644   // (icmp X, C0) && (icmp X, C1) --> empty set --> false
1645   if (IsAnd && Range0.intersectWith(Range1).isEmptySet())
1646     return getFalse(Cmp0->getType());
1647 
1648   // For or-of-compares, check if the union is full:
1649   // (icmp X, C0) || (icmp X, C1) --> full set --> true
1650   if (!IsAnd && Range0.unionWith(Range1).isFullSet())
1651     return getTrue(Cmp0->getType());
1652 
1653   // Is one range a superset of the other?
1654   // If this is and-of-compares, take the smaller set:
1655   // (icmp sgt X, 4) && (icmp sgt X, 42) --> icmp sgt X, 42
1656   // If this is or-of-compares, take the larger set:
1657   // (icmp sgt X, 4) || (icmp sgt X, 42) --> icmp sgt X, 4
1658   if (Range0.contains(Range1))
1659     return IsAnd ? Cmp1 : Cmp0;
1660   if (Range1.contains(Range0))
1661     return IsAnd ? Cmp0 : Cmp1;
1662 
1663   return nullptr;
1664 }
1665 
1666 static Value *simplifyAndOrOfICmpsWithZero(ICmpInst *Cmp0, ICmpInst *Cmp1,
1667                                            bool IsAnd) {
1668   ICmpInst::Predicate P0 = Cmp0->getPredicate(), P1 = Cmp1->getPredicate();
1669   if (!match(Cmp0->getOperand(1), m_Zero()) ||
1670       !match(Cmp1->getOperand(1), m_Zero()) || P0 != P1)
1671     return nullptr;
1672 
1673   if ((IsAnd && P0 != ICmpInst::ICMP_NE) || (!IsAnd && P1 != ICmpInst::ICMP_EQ))
1674     return nullptr;
1675 
1676   // We have either "(X == 0 || Y == 0)" or "(X != 0 && Y != 0)".
1677   Value *X = Cmp0->getOperand(0);
1678   Value *Y = Cmp1->getOperand(0);
1679 
1680   // If one of the compares is a masked version of a (not) null check, then
1681   // that compare implies the other, so we eliminate the other. Optionally, look
1682   // through a pointer-to-int cast to match a null check of a pointer type.
1683 
1684   // (X == 0) || (([ptrtoint] X & ?) == 0) --> ([ptrtoint] X & ?) == 0
1685   // (X == 0) || ((? & [ptrtoint] X) == 0) --> (? & [ptrtoint] X) == 0
1686   // (X != 0) && (([ptrtoint] X & ?) != 0) --> ([ptrtoint] X & ?) != 0
1687   // (X != 0) && ((? & [ptrtoint] X) != 0) --> (? & [ptrtoint] X) != 0
1688   if (match(Y, m_c_And(m_Specific(X), m_Value())) ||
1689       match(Y, m_c_And(m_PtrToInt(m_Specific(X)), m_Value())))
1690     return Cmp1;
1691 
1692   // (([ptrtoint] Y & ?) == 0) || (Y == 0) --> ([ptrtoint] Y & ?) == 0
1693   // ((? & [ptrtoint] Y) == 0) || (Y == 0) --> (? & [ptrtoint] Y) == 0
1694   // (([ptrtoint] Y & ?) != 0) && (Y != 0) --> ([ptrtoint] Y & ?) != 0
1695   // ((? & [ptrtoint] Y) != 0) && (Y != 0) --> (? & [ptrtoint] Y) != 0
1696   if (match(X, m_c_And(m_Specific(Y), m_Value())) ||
1697       match(X, m_c_And(m_PtrToInt(m_Specific(Y)), m_Value())))
1698     return Cmp0;
1699 
1700   return nullptr;
1701 }
1702 
1703 static Value *simplifyAndOfICmpsWithAdd(ICmpInst *Op0, ICmpInst *Op1,
1704                                         const InstrInfoQuery &IIQ) {
1705   // (icmp (add V, C0), C1) & (icmp V, C0)
1706   ICmpInst::Predicate Pred0, Pred1;
1707   const APInt *C0, *C1;
1708   Value *V;
1709   if (!match(Op0, m_ICmp(Pred0, m_Add(m_Value(V), m_APInt(C0)), m_APInt(C1))))
1710     return nullptr;
1711 
1712   if (!match(Op1, m_ICmp(Pred1, m_Specific(V), m_Value())))
1713     return nullptr;
1714 
1715   auto *AddInst = cast<OverflowingBinaryOperator>(Op0->getOperand(0));
1716   if (AddInst->getOperand(1) != Op1->getOperand(1))
1717     return nullptr;
1718 
1719   Type *ITy = Op0->getType();
1720   bool isNSW = IIQ.hasNoSignedWrap(AddInst);
1721   bool isNUW = IIQ.hasNoUnsignedWrap(AddInst);
1722 
1723   const APInt Delta = *C1 - *C0;
1724   if (C0->isStrictlyPositive()) {
1725     if (Delta == 2) {
1726       if (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_SGT)
1727         return getFalse(ITy);
1728       if (Pred0 == ICmpInst::ICMP_SLT && Pred1 == ICmpInst::ICMP_SGT && isNSW)
1729         return getFalse(ITy);
1730     }
1731     if (Delta == 1) {
1732       if (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_SGT)
1733         return getFalse(ITy);
1734       if (Pred0 == ICmpInst::ICMP_SLE && Pred1 == ICmpInst::ICMP_SGT && isNSW)
1735         return getFalse(ITy);
1736     }
1737   }
1738   if (C0->getBoolValue() && isNUW) {
1739     if (Delta == 2)
1740       if (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_UGT)
1741         return getFalse(ITy);
1742     if (Delta == 1)
1743       if (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_UGT)
1744         return getFalse(ITy);
1745   }
1746 
1747   return nullptr;
1748 }
1749 
1750 /// Try to eliminate compares with signed or unsigned min/max constants.
1751 static Value *simplifyAndOrOfICmpsWithLimitConst(ICmpInst *Cmp0, ICmpInst *Cmp1,
1752                                                  bool IsAnd) {
1753   // Canonicalize an equality compare as Cmp0.
1754   if (Cmp1->isEquality())
1755     std::swap(Cmp0, Cmp1);
1756   if (!Cmp0->isEquality())
1757     return nullptr;
1758 
1759   // The non-equality compare must include a common operand (X). Canonicalize
1760   // the common operand as operand 0 (the predicate is swapped if the common
1761   // operand was operand 1).
1762   ICmpInst::Predicate Pred0 = Cmp0->getPredicate();
1763   Value *X = Cmp0->getOperand(0);
1764   ICmpInst::Predicate Pred1;
1765   bool HasNotOp = match(Cmp1, m_c_ICmp(Pred1, m_Not(m_Specific(X)), m_Value()));
1766   if (!HasNotOp && !match(Cmp1, m_c_ICmp(Pred1, m_Specific(X), m_Value())))
1767     return nullptr;
1768   if (ICmpInst::isEquality(Pred1))
1769     return nullptr;
1770 
1771   // The equality compare must be against a constant. Flip bits if we matched
1772   // a bitwise not. Convert a null pointer constant to an integer zero value.
1773   APInt MinMaxC;
1774   const APInt *C;
1775   if (match(Cmp0->getOperand(1), m_APInt(C)))
1776     MinMaxC = HasNotOp ? ~*C : *C;
1777   else if (isa<ConstantPointerNull>(Cmp0->getOperand(1)))
1778     MinMaxC = APInt::getZero(8);
1779   else
1780     return nullptr;
1781 
1782   // DeMorganize if this is 'or': P0 || P1 --> !P0 && !P1.
1783   if (!IsAnd) {
1784     Pred0 = ICmpInst::getInversePredicate(Pred0);
1785     Pred1 = ICmpInst::getInversePredicate(Pred1);
1786   }
1787 
1788   // Normalize to unsigned compare and unsigned min/max value.
1789   // Example for 8-bit: -128 + 128 -> 0; 127 + 128 -> 255
1790   if (ICmpInst::isSigned(Pred1)) {
1791     Pred1 = ICmpInst::getUnsignedPredicate(Pred1);
1792     MinMaxC += APInt::getSignedMinValue(MinMaxC.getBitWidth());
1793   }
1794 
1795   // (X != MAX) && (X < Y) --> X < Y
1796   // (X == MAX) || (X >= Y) --> X >= Y
1797   if (MinMaxC.isMaxValue())
1798     if (Pred0 == ICmpInst::ICMP_NE && Pred1 == ICmpInst::ICMP_ULT)
1799       return Cmp1;
1800 
1801   // (X != MIN) && (X > Y) -->  X > Y
1802   // (X == MIN) || (X <= Y) --> X <= Y
1803   if (MinMaxC.isMinValue())
1804     if (Pred0 == ICmpInst::ICMP_NE && Pred1 == ICmpInst::ICMP_UGT)
1805       return Cmp1;
1806 
1807   return nullptr;
1808 }
1809 
1810 static Value *simplifyAndOfICmps(ICmpInst *Op0, ICmpInst *Op1,
1811                                  const SimplifyQuery &Q) {
1812   if (Value *X = simplifyUnsignedRangeCheck(Op0, Op1, /*IsAnd=*/true, Q))
1813     return X;
1814   if (Value *X = simplifyUnsignedRangeCheck(Op1, Op0, /*IsAnd=*/true, Q))
1815     return X;
1816 
1817   if (Value *X = simplifyAndOfICmpsWithSameOperands(Op0, Op1))
1818     return X;
1819   if (Value *X = simplifyAndOfICmpsWithSameOperands(Op1, Op0))
1820     return X;
1821 
1822   if (Value *X = simplifyAndOrOfICmpsWithConstants(Op0, Op1, true))
1823     return X;
1824 
1825   if (Value *X = simplifyAndOrOfICmpsWithLimitConst(Op0, Op1, true))
1826     return X;
1827 
1828   if (Value *X = simplifyAndOrOfICmpsWithZero(Op0, Op1, true))
1829     return X;
1830 
1831   if (Value *X = simplifyAndOfICmpsWithAdd(Op0, Op1, Q.IIQ))
1832     return X;
1833   if (Value *X = simplifyAndOfICmpsWithAdd(Op1, Op0, Q.IIQ))
1834     return X;
1835 
1836   return nullptr;
1837 }
1838 
1839 static Value *simplifyOrOfICmpsWithAdd(ICmpInst *Op0, ICmpInst *Op1,
1840                                        const InstrInfoQuery &IIQ) {
1841   // (icmp (add V, C0), C1) | (icmp V, C0)
1842   ICmpInst::Predicate Pred0, Pred1;
1843   const APInt *C0, *C1;
1844   Value *V;
1845   if (!match(Op0, m_ICmp(Pred0, m_Add(m_Value(V), m_APInt(C0)), m_APInt(C1))))
1846     return nullptr;
1847 
1848   if (!match(Op1, m_ICmp(Pred1, m_Specific(V), m_Value())))
1849     return nullptr;
1850 
1851   auto *AddInst = cast<BinaryOperator>(Op0->getOperand(0));
1852   if (AddInst->getOperand(1) != Op1->getOperand(1))
1853     return nullptr;
1854 
1855   Type *ITy = Op0->getType();
1856   bool isNSW = IIQ.hasNoSignedWrap(AddInst);
1857   bool isNUW = IIQ.hasNoUnsignedWrap(AddInst);
1858 
1859   const APInt Delta = *C1 - *C0;
1860   if (C0->isStrictlyPositive()) {
1861     if (Delta == 2) {
1862       if (Pred0 == ICmpInst::ICMP_UGE && Pred1 == ICmpInst::ICMP_SLE)
1863         return getTrue(ITy);
1864       if (Pred0 == ICmpInst::ICMP_SGE && Pred1 == ICmpInst::ICMP_SLE && isNSW)
1865         return getTrue(ITy);
1866     }
1867     if (Delta == 1) {
1868       if (Pred0 == ICmpInst::ICMP_UGT && Pred1 == ICmpInst::ICMP_SLE)
1869         return getTrue(ITy);
1870       if (Pred0 == ICmpInst::ICMP_SGT && Pred1 == ICmpInst::ICMP_SLE && isNSW)
1871         return getTrue(ITy);
1872     }
1873   }
1874   if (C0->getBoolValue() && isNUW) {
1875     if (Delta == 2)
1876       if (Pred0 == ICmpInst::ICMP_UGE && Pred1 == ICmpInst::ICMP_ULE)
1877         return getTrue(ITy);
1878     if (Delta == 1)
1879       if (Pred0 == ICmpInst::ICMP_UGT && Pred1 == ICmpInst::ICMP_ULE)
1880         return getTrue(ITy);
1881   }
1882 
1883   return nullptr;
1884 }
1885 
1886 static Value *simplifyOrOfICmps(ICmpInst *Op0, ICmpInst *Op1,
1887                                 const SimplifyQuery &Q) {
1888   if (Value *X = simplifyUnsignedRangeCheck(Op0, Op1, /*IsAnd=*/false, Q))
1889     return X;
1890   if (Value *X = simplifyUnsignedRangeCheck(Op1, Op0, /*IsAnd=*/false, Q))
1891     return X;
1892 
1893   if (Value *X = simplifyOrOfICmpsWithSameOperands(Op0, Op1))
1894     return X;
1895   if (Value *X = simplifyOrOfICmpsWithSameOperands(Op1, Op0))
1896     return X;
1897 
1898   if (Value *X = simplifyAndOrOfICmpsWithConstants(Op0, Op1, false))
1899     return X;
1900 
1901   if (Value *X = simplifyAndOrOfICmpsWithLimitConst(Op0, Op1, false))
1902     return X;
1903 
1904   if (Value *X = simplifyAndOrOfICmpsWithZero(Op0, Op1, false))
1905     return X;
1906 
1907   if (Value *X = simplifyOrOfICmpsWithAdd(Op0, Op1, Q.IIQ))
1908     return X;
1909   if (Value *X = simplifyOrOfICmpsWithAdd(Op1, Op0, Q.IIQ))
1910     return X;
1911 
1912   return nullptr;
1913 }
1914 
1915 static Value *simplifyAndOrOfFCmps(const TargetLibraryInfo *TLI,
1916                                    FCmpInst *LHS, FCmpInst *RHS, bool IsAnd) {
1917   Value *LHS0 = LHS->getOperand(0), *LHS1 = LHS->getOperand(1);
1918   Value *RHS0 = RHS->getOperand(0), *RHS1 = RHS->getOperand(1);
1919   if (LHS0->getType() != RHS0->getType())
1920     return nullptr;
1921 
1922   FCmpInst::Predicate PredL = LHS->getPredicate(), PredR = RHS->getPredicate();
1923   if ((PredL == FCmpInst::FCMP_ORD && PredR == FCmpInst::FCMP_ORD && IsAnd) ||
1924       (PredL == FCmpInst::FCMP_UNO && PredR == FCmpInst::FCMP_UNO && !IsAnd)) {
1925     // (fcmp ord NNAN, X) & (fcmp ord X, Y) --> fcmp ord X, Y
1926     // (fcmp ord NNAN, X) & (fcmp ord Y, X) --> fcmp ord Y, X
1927     // (fcmp ord X, NNAN) & (fcmp ord X, Y) --> fcmp ord X, Y
1928     // (fcmp ord X, NNAN) & (fcmp ord Y, X) --> fcmp ord Y, X
1929     // (fcmp uno NNAN, X) | (fcmp uno X, Y) --> fcmp uno X, Y
1930     // (fcmp uno NNAN, X) | (fcmp uno Y, X) --> fcmp uno Y, X
1931     // (fcmp uno X, NNAN) | (fcmp uno X, Y) --> fcmp uno X, Y
1932     // (fcmp uno X, NNAN) | (fcmp uno Y, X) --> fcmp uno Y, X
1933     if ((isKnownNeverNaN(LHS0, TLI) && (LHS1 == RHS0 || LHS1 == RHS1)) ||
1934         (isKnownNeverNaN(LHS1, TLI) && (LHS0 == RHS0 || LHS0 == RHS1)))
1935       return RHS;
1936 
1937     // (fcmp ord X, Y) & (fcmp ord NNAN, X) --> fcmp ord X, Y
1938     // (fcmp ord Y, X) & (fcmp ord NNAN, X) --> fcmp ord Y, X
1939     // (fcmp ord X, Y) & (fcmp ord X, NNAN) --> fcmp ord X, Y
1940     // (fcmp ord Y, X) & (fcmp ord X, NNAN) --> fcmp ord Y, X
1941     // (fcmp uno X, Y) | (fcmp uno NNAN, X) --> fcmp uno X, Y
1942     // (fcmp uno Y, X) | (fcmp uno NNAN, X) --> fcmp uno Y, X
1943     // (fcmp uno X, Y) | (fcmp uno X, NNAN) --> fcmp uno X, Y
1944     // (fcmp uno Y, X) | (fcmp uno X, NNAN) --> fcmp uno Y, X
1945     if ((isKnownNeverNaN(RHS0, TLI) && (RHS1 == LHS0 || RHS1 == LHS1)) ||
1946         (isKnownNeverNaN(RHS1, TLI) && (RHS0 == LHS0 || RHS0 == LHS1)))
1947       return LHS;
1948   }
1949 
1950   return nullptr;
1951 }
1952 
1953 static Value *simplifyAndOrOfCmps(const SimplifyQuery &Q,
1954                                   Value *Op0, Value *Op1, bool IsAnd) {
1955   // Look through casts of the 'and' operands to find compares.
1956   auto *Cast0 = dyn_cast<CastInst>(Op0);
1957   auto *Cast1 = dyn_cast<CastInst>(Op1);
1958   if (Cast0 && Cast1 && Cast0->getOpcode() == Cast1->getOpcode() &&
1959       Cast0->getSrcTy() == Cast1->getSrcTy()) {
1960     Op0 = Cast0->getOperand(0);
1961     Op1 = Cast1->getOperand(0);
1962   }
1963 
1964   Value *V = nullptr;
1965   auto *ICmp0 = dyn_cast<ICmpInst>(Op0);
1966   auto *ICmp1 = dyn_cast<ICmpInst>(Op1);
1967   if (ICmp0 && ICmp1)
1968     V = IsAnd ? simplifyAndOfICmps(ICmp0, ICmp1, Q)
1969               : simplifyOrOfICmps(ICmp0, ICmp1, Q);
1970 
1971   auto *FCmp0 = dyn_cast<FCmpInst>(Op0);
1972   auto *FCmp1 = dyn_cast<FCmpInst>(Op1);
1973   if (FCmp0 && FCmp1)
1974     V = simplifyAndOrOfFCmps(Q.TLI, FCmp0, FCmp1, IsAnd);
1975 
1976   if (!V)
1977     return nullptr;
1978   if (!Cast0)
1979     return V;
1980 
1981   // If we looked through casts, we can only handle a constant simplification
1982   // because we are not allowed to create a cast instruction here.
1983   if (auto *C = dyn_cast<Constant>(V))
1984     return ConstantExpr::getCast(Cast0->getOpcode(), C, Cast0->getType());
1985 
1986   return nullptr;
1987 }
1988 
1989 /// Given a bitwise logic op, check if the operands are add/sub with a common
1990 /// source value and inverted constant (identity: C - X -> ~(X + ~C)).
1991 static Value *simplifyLogicOfAddSub(Value *Op0, Value *Op1,
1992                                     Instruction::BinaryOps Opcode) {
1993   assert(Op0->getType() == Op1->getType() && "Mismatched binop types");
1994   assert(BinaryOperator::isBitwiseLogicOp(Opcode) && "Expected logic op");
1995   Value *X;
1996   Constant *C1, *C2;
1997   if ((match(Op0, m_Add(m_Value(X), m_Constant(C1))) &&
1998        match(Op1, m_Sub(m_Constant(C2), m_Specific(X)))) ||
1999       (match(Op1, m_Add(m_Value(X), m_Constant(C1))) &&
2000        match(Op0, m_Sub(m_Constant(C2), m_Specific(X))))) {
2001     if (ConstantExpr::getNot(C1) == C2) {
2002       // (X + C) & (~C - X) --> (X + C) & ~(X + C) --> 0
2003       // (X + C) | (~C - X) --> (X + C) | ~(X + C) --> -1
2004       // (X + C) ^ (~C - X) --> (X + C) ^ ~(X + C) --> -1
2005       Type *Ty = Op0->getType();
2006       return Opcode == Instruction::And ? ConstantInt::getNullValue(Ty)
2007                                         : ConstantInt::getAllOnesValue(Ty);
2008     }
2009   }
2010   return nullptr;
2011 }
2012 
2013 /// Given operands for an And, see if we can fold the result.
2014 /// If not, this returns null.
2015 static Value *SimplifyAndInst(Value *Op0, Value *Op1, const SimplifyQuery &Q,
2016                               unsigned MaxRecurse) {
2017   if (Constant *C = foldOrCommuteConstant(Instruction::And, Op0, Op1, Q))
2018     return C;
2019 
2020   // X & poison -> poison
2021   if (isa<PoisonValue>(Op1))
2022     return Op1;
2023 
2024   // X & undef -> 0
2025   if (Q.isUndefValue(Op1))
2026     return Constant::getNullValue(Op0->getType());
2027 
2028   // X & X = X
2029   if (Op0 == Op1)
2030     return Op0;
2031 
2032   // X & 0 = 0
2033   if (match(Op1, m_Zero()))
2034     return Constant::getNullValue(Op0->getType());
2035 
2036   // X & -1 = X
2037   if (match(Op1, m_AllOnes()))
2038     return Op0;
2039 
2040   // A & ~A  =  ~A & A  =  0
2041   if (match(Op0, m_Not(m_Specific(Op1))) ||
2042       match(Op1, m_Not(m_Specific(Op0))))
2043     return Constant::getNullValue(Op0->getType());
2044 
2045   // (A | ?) & A = A
2046   if (match(Op0, m_c_Or(m_Specific(Op1), m_Value())))
2047     return Op1;
2048 
2049   // A & (A | ?) = A
2050   if (match(Op1, m_c_Or(m_Specific(Op0), m_Value())))
2051     return Op0;
2052 
2053   // (X | Y) & (X | ~Y) --> X (commuted 8 ways)
2054   Value *X, *Y;
2055   if (match(Op0, m_c_Or(m_Value(X), m_Not(m_Value(Y)))) &&
2056       match(Op1, m_c_Or(m_Deferred(X), m_Deferred(Y))))
2057     return X;
2058   if (match(Op1, m_c_Or(m_Value(X), m_Not(m_Value(Y)))) &&
2059       match(Op0, m_c_Or(m_Deferred(X), m_Deferred(Y))))
2060     return X;
2061 
2062   if (Value *V = simplifyLogicOfAddSub(Op0, Op1, Instruction::And))
2063     return V;
2064 
2065   // A mask that only clears known zeros of a shifted value is a no-op.
2066   const APInt *Mask;
2067   const APInt *ShAmt;
2068   if (match(Op1, m_APInt(Mask))) {
2069     // If all bits in the inverted and shifted mask are clear:
2070     // and (shl X, ShAmt), Mask --> shl X, ShAmt
2071     if (match(Op0, m_Shl(m_Value(X), m_APInt(ShAmt))) &&
2072         (~(*Mask)).lshr(*ShAmt).isZero())
2073       return Op0;
2074 
2075     // If all bits in the inverted and shifted mask are clear:
2076     // and (lshr X, ShAmt), Mask --> lshr X, ShAmt
2077     if (match(Op0, m_LShr(m_Value(X), m_APInt(ShAmt))) &&
2078         (~(*Mask)).shl(*ShAmt).isZero())
2079       return Op0;
2080   }
2081 
2082   // If we have a multiplication overflow check that is being 'and'ed with a
2083   // check that one of the multipliers is not zero, we can omit the 'and', and
2084   // only keep the overflow check.
2085   if (isCheckForZeroAndMulWithOverflow(Op0, Op1, true))
2086     return Op1;
2087   if (isCheckForZeroAndMulWithOverflow(Op1, Op0, true))
2088     return Op0;
2089 
2090   // A & (-A) = A if A is a power of two or zero.
2091   if (match(Op0, m_Neg(m_Specific(Op1))) ||
2092       match(Op1, m_Neg(m_Specific(Op0)))) {
2093     if (isKnownToBeAPowerOfTwo(Op0, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI,
2094                                Q.DT))
2095       return Op0;
2096     if (isKnownToBeAPowerOfTwo(Op1, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI,
2097                                Q.DT))
2098       return Op1;
2099   }
2100 
2101   // This is a similar pattern used for checking if a value is a power-of-2:
2102   // (A - 1) & A --> 0 (if A is a power-of-2 or 0)
2103   // A & (A - 1) --> 0 (if A is a power-of-2 or 0)
2104   if (match(Op0, m_Add(m_Specific(Op1), m_AllOnes())) &&
2105       isKnownToBeAPowerOfTwo(Op1, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI, Q.DT))
2106     return Constant::getNullValue(Op1->getType());
2107   if (match(Op1, m_Add(m_Specific(Op0), m_AllOnes())) &&
2108       isKnownToBeAPowerOfTwo(Op0, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI, Q.DT))
2109     return Constant::getNullValue(Op0->getType());
2110 
2111   if (Value *V = simplifyAndOrOfCmps(Q, Op0, Op1, true))
2112     return V;
2113 
2114   // Try some generic simplifications for associative operations.
2115   if (Value *V = SimplifyAssociativeBinOp(Instruction::And, Op0, Op1, Q,
2116                                           MaxRecurse))
2117     return V;
2118 
2119   // And distributes over Or.  Try some generic simplifications based on this.
2120   if (Value *V = expandCommutativeBinOp(Instruction::And, Op0, Op1,
2121                                         Instruction::Or, Q, MaxRecurse))
2122     return V;
2123 
2124   // And distributes over Xor.  Try some generic simplifications based on this.
2125   if (Value *V = expandCommutativeBinOp(Instruction::And, Op0, Op1,
2126                                         Instruction::Xor, Q, MaxRecurse))
2127     return V;
2128 
2129   if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) {
2130     if (Op0->getType()->isIntOrIntVectorTy(1)) {
2131       // A & (A && B) -> A && B
2132       if (match(Op1, m_Select(m_Specific(Op0), m_Value(), m_Zero())))
2133         return Op1;
2134       else if (match(Op0, m_Select(m_Specific(Op1), m_Value(), m_Zero())))
2135         return Op0;
2136     }
2137     // If the operation is with the result of a select instruction, check
2138     // whether operating on either branch of the select always yields the same
2139     // value.
2140     if (Value *V = ThreadBinOpOverSelect(Instruction::And, Op0, Op1, Q,
2141                                          MaxRecurse))
2142       return V;
2143   }
2144 
2145   // If the operation is with the result of a phi instruction, check whether
2146   // operating on all incoming values of the phi always yields the same value.
2147   if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
2148     if (Value *V = ThreadBinOpOverPHI(Instruction::And, Op0, Op1, Q,
2149                                       MaxRecurse))
2150       return V;
2151 
2152   // Assuming the effective width of Y is not larger than A, i.e. all bits
2153   // from X and Y are disjoint in (X << A) | Y,
2154   // if the mask of this AND op covers all bits of X or Y, while it covers
2155   // no bits from the other, we can bypass this AND op. E.g.,
2156   // ((X << A) | Y) & Mask -> Y,
2157   //     if Mask = ((1 << effective_width_of(Y)) - 1)
2158   // ((X << A) | Y) & Mask -> X << A,
2159   //     if Mask = ((1 << effective_width_of(X)) - 1) << A
2160   // SimplifyDemandedBits in InstCombine can optimize the general case.
2161   // This pattern aims to help other passes for a common case.
2162   Value *XShifted;
2163   if (match(Op1, m_APInt(Mask)) &&
2164       match(Op0, m_c_Or(m_CombineAnd(m_NUWShl(m_Value(X), m_APInt(ShAmt)),
2165                                      m_Value(XShifted)),
2166                         m_Value(Y)))) {
2167     const unsigned Width = Op0->getType()->getScalarSizeInBits();
2168     const unsigned ShftCnt = ShAmt->getLimitedValue(Width);
2169     const KnownBits YKnown = computeKnownBits(Y, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
2170     const unsigned EffWidthY = YKnown.countMaxActiveBits();
2171     if (EffWidthY <= ShftCnt) {
2172       const KnownBits XKnown = computeKnownBits(X, Q.DL, 0, Q.AC, Q.CxtI,
2173                                                 Q.DT);
2174       const unsigned EffWidthX = XKnown.countMaxActiveBits();
2175       const APInt EffBitsY = APInt::getLowBitsSet(Width, EffWidthY);
2176       const APInt EffBitsX = APInt::getLowBitsSet(Width, EffWidthX) << ShftCnt;
2177       // If the mask is extracting all bits from X or Y as is, we can skip
2178       // this AND op.
2179       if (EffBitsY.isSubsetOf(*Mask) && !EffBitsX.intersects(*Mask))
2180         return Y;
2181       if (EffBitsX.isSubsetOf(*Mask) && !EffBitsY.intersects(*Mask))
2182         return XShifted;
2183     }
2184   }
2185 
2186   // ((X | Y) ^ X ) & ((X | Y) ^ Y) --> 0
2187   // ((X | Y) ^ Y ) & ((X | Y) ^ X) --> 0
2188   BinaryOperator *Or;
2189   if (match(Op0, m_c_Xor(m_Value(X),
2190                          m_CombineAnd(m_BinOp(Or),
2191                                       m_c_Or(m_Deferred(X), m_Value(Y))))) &&
2192       match(Op1, m_c_Xor(m_Specific(Or), m_Specific(Y))))
2193     return Constant::getNullValue(Op0->getType());
2194 
2195   return nullptr;
2196 }
2197 
2198 Value *llvm::SimplifyAndInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) {
2199   return ::SimplifyAndInst(Op0, Op1, Q, RecursionLimit);
2200 }
2201 
2202 static Value *simplifyOrLogic(Value *X, Value *Y) {
2203   assert(X->getType() == Y->getType() && "Expected same type for 'or' ops");
2204   Type *Ty = X->getType();
2205 
2206   // X | ~X --> -1
2207   if (match(Y, m_Not(m_Specific(X))))
2208     return ConstantInt::getAllOnesValue(Ty);
2209 
2210   // X | ~(X & ?) = -1
2211   if (match(Y, m_Not(m_c_And(m_Specific(X), m_Value()))))
2212     return ConstantInt::getAllOnesValue(Ty);
2213 
2214   // X | (X & ?) --> X
2215   if (match(Y, m_c_And(m_Specific(X), m_Value())))
2216     return X;
2217 
2218   Value *A, *B;
2219 
2220   // (A ^ B) | (A | B) --> A | B
2221   // (A ^ B) | (B | A) --> B | A
2222   if (match(X, m_Xor(m_Value(A), m_Value(B))) &&
2223       match(Y, m_c_Or(m_Specific(A), m_Specific(B))))
2224     return Y;
2225 
2226   // ~(A ^ B) | (A | B) --> -1
2227   // ~(A ^ B) | (B | A) --> -1
2228   if (match(X, m_Not(m_Xor(m_Value(A), m_Value(B)))) &&
2229       match(Y, m_c_Or(m_Specific(A), m_Specific(B))))
2230     return ConstantInt::getAllOnesValue(Ty);
2231 
2232   // (A & ~B) | (A ^ B) --> A ^ B
2233   // (~B & A) | (A ^ B) --> A ^ B
2234   // (A & ~B) | (B ^ A) --> B ^ A
2235   // (~B & A) | (B ^ A) --> B ^ A
2236   if (match(X, m_c_And(m_Value(A), m_Not(m_Value(B)))) &&
2237       match(Y, m_c_Xor(m_Specific(A), m_Specific(B))))
2238     return Y;
2239 
2240   // (~A ^ B) | (A & B) --> ~A ^ B
2241   // (B ^ ~A) | (A & B) --> B ^ ~A
2242   // (~A ^ B) | (B & A) --> ~A ^ B
2243   // (B ^ ~A) | (B & A) --> B ^ ~A
2244   if (match(X, m_c_Xor(m_Not(m_Value(A)), m_Value(B))) &&
2245       match(Y, m_c_And(m_Specific(A), m_Specific(B))))
2246     return X;
2247 
2248   // (~A | B) | (A ^ B) --> -1
2249   // (~A | B) | (B ^ A) --> -1
2250   // (B | ~A) | (A ^ B) --> -1
2251   // (B | ~A) | (B ^ A) --> -1
2252   if (match(X, m_c_Or(m_Not(m_Value(A)), m_Value(B))) &&
2253       match(Y, m_c_Xor(m_Specific(A), m_Specific(B))))
2254     return ConstantInt::getAllOnesValue(Ty);
2255 
2256   // (~A & B) | ~(A | B) --> ~A
2257   // (~A & B) | ~(B | A) --> ~A
2258   // (B & ~A) | ~(A | B) --> ~A
2259   // (B & ~A) | ~(B | A) --> ~A
2260   Value *NotA;
2261   if (match(X,
2262             m_c_And(m_CombineAnd(m_Value(NotA), m_NotForbidUndef(m_Value(A))),
2263                     m_Value(B))) &&
2264       match(Y, m_Not(m_c_Or(m_Specific(A), m_Specific(B)))))
2265     return NotA;
2266 
2267   // ~(A ^ B) | (A & B) --> ~(A ^ B)
2268   // ~(A ^ B) | (B & A) --> ~(A ^ B)
2269   Value *NotAB;
2270   if (match(X, m_CombineAnd(m_NotForbidUndef(m_Xor(m_Value(A), m_Value(B))),
2271                             m_Value(NotAB))) &&
2272       match(Y, m_c_And(m_Specific(A), m_Specific(B))))
2273     return NotAB;
2274 
2275   // ~(A & B) | (A ^ B) --> ~(A & B)
2276   // ~(A & B) | (B ^ A) --> ~(A & B)
2277   if (match(X, m_CombineAnd(m_NotForbidUndef(m_And(m_Value(A), m_Value(B))),
2278                             m_Value(NotAB))) &&
2279       match(Y, m_c_Xor(m_Specific(A), m_Specific(B))))
2280     return NotAB;
2281 
2282   return nullptr;
2283 }
2284 
2285 /// Given operands for an Or, see if we can fold the result.
2286 /// If not, this returns null.
2287 static Value *SimplifyOrInst(Value *Op0, Value *Op1, const SimplifyQuery &Q,
2288                              unsigned MaxRecurse) {
2289   if (Constant *C = foldOrCommuteConstant(Instruction::Or, Op0, Op1, Q))
2290     return C;
2291 
2292   // X | poison -> poison
2293   if (isa<PoisonValue>(Op1))
2294     return Op1;
2295 
2296   // X | undef -> -1
2297   // X | -1 = -1
2298   // Do not return Op1 because it may contain undef elements if it's a vector.
2299   if (Q.isUndefValue(Op1) || match(Op1, m_AllOnes()))
2300     return Constant::getAllOnesValue(Op0->getType());
2301 
2302   // X | X = X
2303   // X | 0 = X
2304   if (Op0 == Op1 || match(Op1, m_Zero()))
2305     return Op0;
2306 
2307   if (Value *R = simplifyOrLogic(Op0, Op1))
2308     return R;
2309   if (Value *R = simplifyOrLogic(Op1, Op0))
2310     return R;
2311 
2312   if (Value *V = simplifyLogicOfAddSub(Op0, Op1, Instruction::Or))
2313     return V;
2314 
2315   // Rotated -1 is still -1:
2316   // (-1 << X) | (-1 >> (C - X)) --> -1
2317   // (-1 >> X) | (-1 << (C - X)) --> -1
2318   // ...with C <= bitwidth (and commuted variants).
2319   Value *X, *Y;
2320   if ((match(Op0, m_Shl(m_AllOnes(), m_Value(X))) &&
2321        match(Op1, m_LShr(m_AllOnes(), m_Value(Y)))) ||
2322       (match(Op1, m_Shl(m_AllOnes(), m_Value(X))) &&
2323        match(Op0, m_LShr(m_AllOnes(), m_Value(Y))))) {
2324     const APInt *C;
2325     if ((match(X, m_Sub(m_APInt(C), m_Specific(Y))) ||
2326          match(Y, m_Sub(m_APInt(C), m_Specific(X)))) &&
2327         C->ule(X->getType()->getScalarSizeInBits())) {
2328       return ConstantInt::getAllOnesValue(X->getType());
2329     }
2330   }
2331 
2332   if (Value *V = simplifyAndOrOfCmps(Q, Op0, Op1, false))
2333     return V;
2334 
2335   // If we have a multiplication overflow check that is being 'and'ed with a
2336   // check that one of the multipliers is not zero, we can omit the 'and', and
2337   // only keep the overflow check.
2338   if (isCheckForZeroAndMulWithOverflow(Op0, Op1, false))
2339     return Op1;
2340   if (isCheckForZeroAndMulWithOverflow(Op1, Op0, false))
2341     return Op0;
2342 
2343   // Try some generic simplifications for associative operations.
2344   if (Value *V = SimplifyAssociativeBinOp(Instruction::Or, Op0, Op1, Q,
2345                                           MaxRecurse))
2346     return V;
2347 
2348   // Or distributes over And.  Try some generic simplifications based on this.
2349   if (Value *V = expandCommutativeBinOp(Instruction::Or, Op0, Op1,
2350                                         Instruction::And, Q, MaxRecurse))
2351     return V;
2352 
2353   if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) {
2354     if (Op0->getType()->isIntOrIntVectorTy(1)) {
2355       // A | (A || B) -> A || B
2356       if (match(Op1, m_Select(m_Specific(Op0), m_One(), m_Value())))
2357         return Op1;
2358       else if (match(Op0, m_Select(m_Specific(Op1), m_One(), m_Value())))
2359         return Op0;
2360     }
2361     // If the operation is with the result of a select instruction, check
2362     // whether operating on either branch of the select always yields the same
2363     // value.
2364     if (Value *V = ThreadBinOpOverSelect(Instruction::Or, Op0, Op1, Q,
2365                                          MaxRecurse))
2366       return V;
2367   }
2368 
2369   // (A & C1)|(B & C2)
2370   Value *A, *B;
2371   const APInt *C1, *C2;
2372   if (match(Op0, m_And(m_Value(A), m_APInt(C1))) &&
2373       match(Op1, m_And(m_Value(B), m_APInt(C2)))) {
2374     if (*C1 == ~*C2) {
2375       // (A & C1)|(B & C2)
2376       // If we have: ((V + N) & C1) | (V & C2)
2377       // .. and C2 = ~C1 and C2 is 0+1+ and (N & C2) == 0
2378       // replace with V+N.
2379       Value *N;
2380       if (C2->isMask() && // C2 == 0+1+
2381           match(A, m_c_Add(m_Specific(B), m_Value(N)))) {
2382         // Add commutes, try both ways.
2383         if (MaskedValueIsZero(N, *C2, Q.DL, 0, Q.AC, Q.CxtI, Q.DT))
2384           return A;
2385       }
2386       // Or commutes, try both ways.
2387       if (C1->isMask() &&
2388           match(B, m_c_Add(m_Specific(A), m_Value(N)))) {
2389         // Add commutes, try both ways.
2390         if (MaskedValueIsZero(N, *C1, Q.DL, 0, Q.AC, Q.CxtI, Q.DT))
2391           return B;
2392       }
2393     }
2394   }
2395 
2396   // If the operation is with the result of a phi instruction, check whether
2397   // operating on all incoming values of the phi always yields the same value.
2398   if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
2399     if (Value *V = ThreadBinOpOverPHI(Instruction::Or, Op0, Op1, Q, MaxRecurse))
2400       return V;
2401 
2402   return nullptr;
2403 }
2404 
2405 Value *llvm::SimplifyOrInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) {
2406   return ::SimplifyOrInst(Op0, Op1, Q, RecursionLimit);
2407 }
2408 
2409 /// Given operands for a Xor, see if we can fold the result.
2410 /// If not, this returns null.
2411 static Value *SimplifyXorInst(Value *Op0, Value *Op1, const SimplifyQuery &Q,
2412                               unsigned MaxRecurse) {
2413   if (Constant *C = foldOrCommuteConstant(Instruction::Xor, Op0, Op1, Q))
2414     return C;
2415 
2416   // X ^ poison -> poison
2417   if (isa<PoisonValue>(Op1))
2418     return Op1;
2419 
2420   // A ^ undef -> undef
2421   if (Q.isUndefValue(Op1))
2422     return Op1;
2423 
2424   // A ^ 0 = A
2425   if (match(Op1, m_Zero()))
2426     return Op0;
2427 
2428   // A ^ A = 0
2429   if (Op0 == Op1)
2430     return Constant::getNullValue(Op0->getType());
2431 
2432   // A ^ ~A  =  ~A ^ A  =  -1
2433   if (match(Op0, m_Not(m_Specific(Op1))) ||
2434       match(Op1, m_Not(m_Specific(Op0))))
2435     return Constant::getAllOnesValue(Op0->getType());
2436 
2437   auto foldAndOrNot = [](Value *X, Value *Y) -> Value * {
2438     Value *A, *B;
2439     // (~A & B) ^ (A | B) --> A -- There are 8 commuted variants.
2440     if (match(X, m_c_And(m_Not(m_Value(A)), m_Value(B))) &&
2441         match(Y, m_c_Or(m_Specific(A), m_Specific(B))))
2442       return A;
2443 
2444     // (~A | B) ^ (A & B) --> ~A -- There are 8 commuted variants.
2445     // The 'not' op must contain a complete -1 operand (no undef elements for
2446     // vector) for the transform to be safe.
2447     Value *NotA;
2448     if (match(X,
2449               m_c_Or(m_CombineAnd(m_NotForbidUndef(m_Value(A)), m_Value(NotA)),
2450                      m_Value(B))) &&
2451         match(Y, m_c_And(m_Specific(A), m_Specific(B))))
2452       return NotA;
2453 
2454     return nullptr;
2455   };
2456   if (Value *R = foldAndOrNot(Op0, Op1))
2457     return R;
2458   if (Value *R = foldAndOrNot(Op1, Op0))
2459     return R;
2460 
2461   if (Value *V = simplifyLogicOfAddSub(Op0, Op1, Instruction::Xor))
2462     return V;
2463 
2464   // Try some generic simplifications for associative operations.
2465   if (Value *V = SimplifyAssociativeBinOp(Instruction::Xor, Op0, Op1, Q,
2466                                           MaxRecurse))
2467     return V;
2468 
2469   // Threading Xor over selects and phi nodes is pointless, so don't bother.
2470   // Threading over the select in "A ^ select(cond, B, C)" means evaluating
2471   // "A^B" and "A^C" and seeing if they are equal; but they are equal if and
2472   // only if B and C are equal.  If B and C are equal then (since we assume
2473   // that operands have already been simplified) "select(cond, B, C)" should
2474   // have been simplified to the common value of B and C already.  Analysing
2475   // "A^B" and "A^C" thus gains nothing, but costs compile time.  Similarly
2476   // for threading over phi nodes.
2477 
2478   return nullptr;
2479 }
2480 
2481 Value *llvm::SimplifyXorInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) {
2482   return ::SimplifyXorInst(Op0, Op1, Q, RecursionLimit);
2483 }
2484 
2485 
2486 static Type *GetCompareTy(Value *Op) {
2487   return CmpInst::makeCmpResultType(Op->getType());
2488 }
2489 
2490 /// Rummage around inside V looking for something equivalent to the comparison
2491 /// "LHS Pred RHS". Return such a value if found, otherwise return null.
2492 /// Helper function for analyzing max/min idioms.
2493 static Value *ExtractEquivalentCondition(Value *V, CmpInst::Predicate Pred,
2494                                          Value *LHS, Value *RHS) {
2495   SelectInst *SI = dyn_cast<SelectInst>(V);
2496   if (!SI)
2497     return nullptr;
2498   CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition());
2499   if (!Cmp)
2500     return nullptr;
2501   Value *CmpLHS = Cmp->getOperand(0), *CmpRHS = Cmp->getOperand(1);
2502   if (Pred == Cmp->getPredicate() && LHS == CmpLHS && RHS == CmpRHS)
2503     return Cmp;
2504   if (Pred == CmpInst::getSwappedPredicate(Cmp->getPredicate()) &&
2505       LHS == CmpRHS && RHS == CmpLHS)
2506     return Cmp;
2507   return nullptr;
2508 }
2509 
2510 // A significant optimization not implemented here is assuming that alloca
2511 // addresses are not equal to incoming argument values. They don't *alias*,
2512 // as we say, but that doesn't mean they aren't equal, so we take a
2513 // conservative approach.
2514 //
2515 // This is inspired in part by C++11 5.10p1:
2516 //   "Two pointers of the same type compare equal if and only if they are both
2517 //    null, both point to the same function, or both represent the same
2518 //    address."
2519 //
2520 // This is pretty permissive.
2521 //
2522 // It's also partly due to C11 6.5.9p6:
2523 //   "Two pointers compare equal if and only if both are null pointers, both are
2524 //    pointers to the same object (including a pointer to an object and a
2525 //    subobject at its beginning) or function, both are pointers to one past the
2526 //    last element of the same array object, or one is a pointer to one past the
2527 //    end of one array object and the other is a pointer to the start of a
2528 //    different array object that happens to immediately follow the first array
2529 //    object in the address space.)
2530 //
2531 // C11's version is more restrictive, however there's no reason why an argument
2532 // couldn't be a one-past-the-end value for a stack object in the caller and be
2533 // equal to the beginning of a stack object in the callee.
2534 //
2535 // If the C and C++ standards are ever made sufficiently restrictive in this
2536 // area, it may be possible to update LLVM's semantics accordingly and reinstate
2537 // this optimization.
2538 static Constant *
2539 computePointerICmp(CmpInst::Predicate Pred, Value *LHS, Value *RHS,
2540                    const SimplifyQuery &Q) {
2541   const DataLayout &DL = Q.DL;
2542   const TargetLibraryInfo *TLI = Q.TLI;
2543   const DominatorTree *DT = Q.DT;
2544   const Instruction *CxtI = Q.CxtI;
2545   const InstrInfoQuery &IIQ = Q.IIQ;
2546 
2547   // First, skip past any trivial no-ops.
2548   LHS = LHS->stripPointerCasts();
2549   RHS = RHS->stripPointerCasts();
2550 
2551   // A non-null pointer is not equal to a null pointer.
2552   if (isa<ConstantPointerNull>(RHS) && ICmpInst::isEquality(Pred) &&
2553       llvm::isKnownNonZero(LHS, DL, 0, nullptr, nullptr, nullptr,
2554                            IIQ.UseInstrInfo))
2555     return ConstantInt::get(GetCompareTy(LHS),
2556                             !CmpInst::isTrueWhenEqual(Pred));
2557 
2558   // We can only fold certain predicates on pointer comparisons.
2559   switch (Pred) {
2560   default:
2561     return nullptr;
2562 
2563     // Equality comaprisons are easy to fold.
2564   case CmpInst::ICMP_EQ:
2565   case CmpInst::ICMP_NE:
2566     break;
2567 
2568     // We can only handle unsigned relational comparisons because 'inbounds' on
2569     // a GEP only protects against unsigned wrapping.
2570   case CmpInst::ICMP_UGT:
2571   case CmpInst::ICMP_UGE:
2572   case CmpInst::ICMP_ULT:
2573   case CmpInst::ICMP_ULE:
2574     // However, we have to switch them to their signed variants to handle
2575     // negative indices from the base pointer.
2576     Pred = ICmpInst::getSignedPredicate(Pred);
2577     break;
2578   }
2579 
2580   // Strip off any constant offsets so that we can reason about them.
2581   // It's tempting to use getUnderlyingObject or even just stripInBoundsOffsets
2582   // here and compare base addresses like AliasAnalysis does, however there are
2583   // numerous hazards. AliasAnalysis and its utilities rely on special rules
2584   // governing loads and stores which don't apply to icmps. Also, AliasAnalysis
2585   // doesn't need to guarantee pointer inequality when it says NoAlias.
2586 
2587   // Even if an non-inbounds GEP occurs along the path we can still optimize
2588   // equality comparisons concerning the result.
2589   bool AllowNonInbounds = ICmpInst::isEquality(Pred);
2590   APInt LHSOffset = stripAndComputeConstantOffsets(DL, LHS, AllowNonInbounds);
2591   APInt RHSOffset = stripAndComputeConstantOffsets(DL, RHS, AllowNonInbounds);
2592 
2593   // If LHS and RHS are related via constant offsets to the same base
2594   // value, we can replace it with an icmp which just compares the offsets.
2595   if (LHS == RHS)
2596     return ConstantInt::get(
2597         GetCompareTy(LHS), ICmpInst::compare(LHSOffset, RHSOffset, Pred));
2598 
2599   // Various optimizations for (in)equality comparisons.
2600   if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE) {
2601     // Different non-empty allocations that exist at the same time have
2602     // different addresses (if the program can tell). Global variables always
2603     // exist, so they always exist during the lifetime of each other and all
2604     // allocas. Two different allocas usually have different addresses...
2605     //
2606     // However, if there's an @llvm.stackrestore dynamically in between two
2607     // allocas, they may have the same address. It's tempting to reduce the
2608     // scope of the problem by only looking at *static* allocas here. That would
2609     // cover the majority of allocas while significantly reducing the likelihood
2610     // of having an @llvm.stackrestore pop up in the middle. However, it's not
2611     // actually impossible for an @llvm.stackrestore to pop up in the middle of
2612     // an entry block. Also, if we have a block that's not attached to a
2613     // function, we can't tell if it's "static" under the current definition.
2614     // Theoretically, this problem could be fixed by creating a new kind of
2615     // instruction kind specifically for static allocas. Such a new instruction
2616     // could be required to be at the top of the entry block, thus preventing it
2617     // from being subject to a @llvm.stackrestore. Instcombine could even
2618     // convert regular allocas into these special allocas. It'd be nifty.
2619     // However, until then, this problem remains open.
2620     //
2621     // So, we'll assume that two non-empty allocas have different addresses
2622     // for now.
2623     //
2624     // With all that, if the offsets are within the bounds of their allocations
2625     // (and not one-past-the-end! so we can't use inbounds!), and their
2626     // allocations aren't the same, the pointers are not equal.
2627     //
2628     // Note that it's not necessary to check for LHS being a global variable
2629     // address, due to canonicalization and constant folding.
2630     if (isa<AllocaInst>(LHS) &&
2631         (isa<AllocaInst>(RHS) || isa<GlobalVariable>(RHS))) {
2632       uint64_t LHSSize, RHSSize;
2633       ObjectSizeOpts Opts;
2634       Opts.NullIsUnknownSize =
2635           NullPointerIsDefined(cast<AllocaInst>(LHS)->getFunction());
2636       if (getObjectSize(LHS, LHSSize, DL, TLI, Opts) &&
2637           getObjectSize(RHS, RHSSize, DL, TLI, Opts) &&
2638           !LHSOffset.isNegative() && !RHSOffset.isNegative() &&
2639           LHSOffset.ult(LHSSize) && RHSOffset.ult(RHSSize)) {
2640         return ConstantInt::get(GetCompareTy(LHS),
2641                                 !CmpInst::isTrueWhenEqual(Pred));
2642       }
2643     }
2644 
2645     // If one side of the equality comparison must come from a noalias call
2646     // (meaning a system memory allocation function), and the other side must
2647     // come from a pointer that cannot overlap with dynamically-allocated
2648     // memory within the lifetime of the current function (allocas, byval
2649     // arguments, globals), then determine the comparison result here.
2650     SmallVector<const Value *, 8> LHSUObjs, RHSUObjs;
2651     getUnderlyingObjects(LHS, LHSUObjs);
2652     getUnderlyingObjects(RHS, RHSUObjs);
2653 
2654     // Is the set of underlying objects all noalias calls?
2655     auto IsNAC = [](ArrayRef<const Value *> Objects) {
2656       return all_of(Objects, isNoAliasCall);
2657     };
2658 
2659     // Is the set of underlying objects all things which must be disjoint from
2660     // noalias calls. For allocas, we consider only static ones (dynamic
2661     // allocas might be transformed into calls to malloc not simultaneously
2662     // live with the compared-to allocation). For globals, we exclude symbols
2663     // that might be resolve lazily to symbols in another dynamically-loaded
2664     // library (and, thus, could be malloc'ed by the implementation).
2665     auto IsAllocDisjoint = [](ArrayRef<const Value *> Objects) {
2666       return all_of(Objects, [](const Value *V) {
2667         if (const AllocaInst *AI = dyn_cast<AllocaInst>(V))
2668           return AI->getParent() && AI->getFunction() && AI->isStaticAlloca();
2669         if (const GlobalValue *GV = dyn_cast<GlobalValue>(V))
2670           return (GV->hasLocalLinkage() || GV->hasHiddenVisibility() ||
2671                   GV->hasProtectedVisibility() || GV->hasGlobalUnnamedAddr()) &&
2672                  !GV->isThreadLocal();
2673         if (const Argument *A = dyn_cast<Argument>(V))
2674           return A->hasByValAttr();
2675         return false;
2676       });
2677     };
2678 
2679     if ((IsNAC(LHSUObjs) && IsAllocDisjoint(RHSUObjs)) ||
2680         (IsNAC(RHSUObjs) && IsAllocDisjoint(LHSUObjs)))
2681         return ConstantInt::get(GetCompareTy(LHS),
2682                                 !CmpInst::isTrueWhenEqual(Pred));
2683 
2684     // Fold comparisons for non-escaping pointer even if the allocation call
2685     // cannot be elided. We cannot fold malloc comparison to null. Also, the
2686     // dynamic allocation call could be either of the operands.  Note that
2687     // the other operand can not be based on the alloc - if it were, then
2688     // the cmp itself would be a capture.
2689     Value *MI = nullptr;
2690     if (isAllocLikeFn(LHS, TLI) &&
2691         llvm::isKnownNonZero(RHS, DL, 0, nullptr, CxtI, DT))
2692       MI = LHS;
2693     else if (isAllocLikeFn(RHS, TLI) &&
2694              llvm::isKnownNonZero(LHS, DL, 0, nullptr, CxtI, DT))
2695       MI = RHS;
2696     // FIXME: We should also fold the compare when the pointer escapes, but the
2697     // compare dominates the pointer escape
2698     if (MI && !PointerMayBeCaptured(MI, true, true))
2699       return ConstantInt::get(GetCompareTy(LHS),
2700                               CmpInst::isFalseWhenEqual(Pred));
2701   }
2702 
2703   // Otherwise, fail.
2704   return nullptr;
2705 }
2706 
2707 /// Fold an icmp when its operands have i1 scalar type.
2708 static Value *simplifyICmpOfBools(CmpInst::Predicate Pred, Value *LHS,
2709                                   Value *RHS, const SimplifyQuery &Q) {
2710   Type *ITy = GetCompareTy(LHS); // The return type.
2711   Type *OpTy = LHS->getType();   // The operand type.
2712   if (!OpTy->isIntOrIntVectorTy(1))
2713     return nullptr;
2714 
2715   // A boolean compared to true/false can be reduced in 14 out of the 20
2716   // (10 predicates * 2 constants) possible combinations. The other
2717   // 6 cases require a 'not' of the LHS.
2718 
2719   auto ExtractNotLHS = [](Value *V) -> Value * {
2720     Value *X;
2721     if (match(V, m_Not(m_Value(X))))
2722       return X;
2723     return nullptr;
2724   };
2725 
2726   if (match(RHS, m_Zero())) {
2727     switch (Pred) {
2728     case CmpInst::ICMP_NE:  // X !=  0 -> X
2729     case CmpInst::ICMP_UGT: // X >u  0 -> X
2730     case CmpInst::ICMP_SLT: // X <s  0 -> X
2731       return LHS;
2732 
2733     case CmpInst::ICMP_EQ:  // not(X) ==  0 -> X != 0 -> X
2734     case CmpInst::ICMP_ULE: // not(X) <=u 0 -> X >u 0 -> X
2735     case CmpInst::ICMP_SGE: // not(X) >=s 0 -> X <s 0 -> X
2736       if (Value *X = ExtractNotLHS(LHS))
2737         return X;
2738       break;
2739 
2740     case CmpInst::ICMP_ULT: // X <u  0 -> false
2741     case CmpInst::ICMP_SGT: // X >s  0 -> false
2742       return getFalse(ITy);
2743 
2744     case CmpInst::ICMP_UGE: // X >=u 0 -> true
2745     case CmpInst::ICMP_SLE: // X <=s 0 -> true
2746       return getTrue(ITy);
2747 
2748     default: break;
2749     }
2750   } else if (match(RHS, m_One())) {
2751     switch (Pred) {
2752     case CmpInst::ICMP_EQ:  // X ==   1 -> X
2753     case CmpInst::ICMP_UGE: // X >=u  1 -> X
2754     case CmpInst::ICMP_SLE: // X <=s -1 -> X
2755       return LHS;
2756 
2757     case CmpInst::ICMP_NE:  // not(X) !=  1 -> X ==   1 -> X
2758     case CmpInst::ICMP_ULT: // not(X) <=u 1 -> X >=u  1 -> X
2759     case CmpInst::ICMP_SGT: // not(X) >s  1 -> X <=s -1 -> X
2760       if (Value *X = ExtractNotLHS(LHS))
2761         return X;
2762       break;
2763 
2764     case CmpInst::ICMP_UGT: // X >u   1 -> false
2765     case CmpInst::ICMP_SLT: // X <s  -1 -> false
2766       return getFalse(ITy);
2767 
2768     case CmpInst::ICMP_ULE: // X <=u  1 -> true
2769     case CmpInst::ICMP_SGE: // X >=s -1 -> true
2770       return getTrue(ITy);
2771 
2772     default: break;
2773     }
2774   }
2775 
2776   switch (Pred) {
2777   default:
2778     break;
2779   case ICmpInst::ICMP_UGE:
2780     if (isImpliedCondition(RHS, LHS, Q.DL).getValueOr(false))
2781       return getTrue(ITy);
2782     break;
2783   case ICmpInst::ICMP_SGE:
2784     /// For signed comparison, the values for an i1 are 0 and -1
2785     /// respectively. This maps into a truth table of:
2786     /// LHS | RHS | LHS >=s RHS   | LHS implies RHS
2787     ///  0  |  0  |  1 (0 >= 0)   |  1
2788     ///  0  |  1  |  1 (0 >= -1)  |  1
2789     ///  1  |  0  |  0 (-1 >= 0)  |  0
2790     ///  1  |  1  |  1 (-1 >= -1) |  1
2791     if (isImpliedCondition(LHS, RHS, Q.DL).getValueOr(false))
2792       return getTrue(ITy);
2793     break;
2794   case ICmpInst::ICMP_ULE:
2795     if (isImpliedCondition(LHS, RHS, Q.DL).getValueOr(false))
2796       return getTrue(ITy);
2797     break;
2798   }
2799 
2800   return nullptr;
2801 }
2802 
2803 /// Try hard to fold icmp with zero RHS because this is a common case.
2804 static Value *simplifyICmpWithZero(CmpInst::Predicate Pred, Value *LHS,
2805                                    Value *RHS, const SimplifyQuery &Q) {
2806   if (!match(RHS, m_Zero()))
2807     return nullptr;
2808 
2809   Type *ITy = GetCompareTy(LHS); // The return type.
2810   switch (Pred) {
2811   default:
2812     llvm_unreachable("Unknown ICmp predicate!");
2813   case ICmpInst::ICMP_ULT:
2814     return getFalse(ITy);
2815   case ICmpInst::ICMP_UGE:
2816     return getTrue(ITy);
2817   case ICmpInst::ICMP_EQ:
2818   case ICmpInst::ICMP_ULE:
2819     if (isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT, Q.IIQ.UseInstrInfo))
2820       return getFalse(ITy);
2821     break;
2822   case ICmpInst::ICMP_NE:
2823   case ICmpInst::ICMP_UGT:
2824     if (isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT, Q.IIQ.UseInstrInfo))
2825       return getTrue(ITy);
2826     break;
2827   case ICmpInst::ICMP_SLT: {
2828     KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
2829     if (LHSKnown.isNegative())
2830       return getTrue(ITy);
2831     if (LHSKnown.isNonNegative())
2832       return getFalse(ITy);
2833     break;
2834   }
2835   case ICmpInst::ICMP_SLE: {
2836     KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
2837     if (LHSKnown.isNegative())
2838       return getTrue(ITy);
2839     if (LHSKnown.isNonNegative() &&
2840         isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT))
2841       return getFalse(ITy);
2842     break;
2843   }
2844   case ICmpInst::ICMP_SGE: {
2845     KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
2846     if (LHSKnown.isNegative())
2847       return getFalse(ITy);
2848     if (LHSKnown.isNonNegative())
2849       return getTrue(ITy);
2850     break;
2851   }
2852   case ICmpInst::ICMP_SGT: {
2853     KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
2854     if (LHSKnown.isNegative())
2855       return getFalse(ITy);
2856     if (LHSKnown.isNonNegative() &&
2857         isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT))
2858       return getTrue(ITy);
2859     break;
2860   }
2861   }
2862 
2863   return nullptr;
2864 }
2865 
2866 static Value *simplifyICmpWithConstant(CmpInst::Predicate Pred, Value *LHS,
2867                                        Value *RHS, const InstrInfoQuery &IIQ) {
2868   Type *ITy = GetCompareTy(RHS); // The return type.
2869 
2870   Value *X;
2871   // Sign-bit checks can be optimized to true/false after unsigned
2872   // floating-point casts:
2873   // icmp slt (bitcast (uitofp X)),  0 --> false
2874   // icmp sgt (bitcast (uitofp X)), -1 --> true
2875   if (match(LHS, m_BitCast(m_UIToFP(m_Value(X))))) {
2876     if (Pred == ICmpInst::ICMP_SLT && match(RHS, m_Zero()))
2877       return ConstantInt::getFalse(ITy);
2878     if (Pred == ICmpInst::ICMP_SGT && match(RHS, m_AllOnes()))
2879       return ConstantInt::getTrue(ITy);
2880   }
2881 
2882   const APInt *C;
2883   if (!match(RHS, m_APIntAllowUndef(C)))
2884     return nullptr;
2885 
2886   // Rule out tautological comparisons (eg., ult 0 or uge 0).
2887   ConstantRange RHS_CR = ConstantRange::makeExactICmpRegion(Pred, *C);
2888   if (RHS_CR.isEmptySet())
2889     return ConstantInt::getFalse(ITy);
2890   if (RHS_CR.isFullSet())
2891     return ConstantInt::getTrue(ITy);
2892 
2893   ConstantRange LHS_CR =
2894       computeConstantRange(LHS, CmpInst::isSigned(Pred), IIQ.UseInstrInfo);
2895   if (!LHS_CR.isFullSet()) {
2896     if (RHS_CR.contains(LHS_CR))
2897       return ConstantInt::getTrue(ITy);
2898     if (RHS_CR.inverse().contains(LHS_CR))
2899       return ConstantInt::getFalse(ITy);
2900   }
2901 
2902   // (mul nuw/nsw X, MulC) != C --> true  (if C is not a multiple of MulC)
2903   // (mul nuw/nsw X, MulC) == C --> false (if C is not a multiple of MulC)
2904   const APInt *MulC;
2905   if (ICmpInst::isEquality(Pred) &&
2906       ((match(LHS, m_NUWMul(m_Value(), m_APIntAllowUndef(MulC))) &&
2907         *MulC != 0 && C->urem(*MulC) != 0) ||
2908        (match(LHS, m_NSWMul(m_Value(), m_APIntAllowUndef(MulC))) &&
2909         *MulC != 0 && C->srem(*MulC) != 0)))
2910     return ConstantInt::get(ITy, Pred == ICmpInst::ICMP_NE);
2911 
2912   return nullptr;
2913 }
2914 
2915 static Value *simplifyICmpWithBinOpOnLHS(
2916     CmpInst::Predicate Pred, BinaryOperator *LBO, Value *RHS,
2917     const SimplifyQuery &Q, unsigned MaxRecurse) {
2918   Type *ITy = GetCompareTy(RHS); // The return type.
2919 
2920   Value *Y = nullptr;
2921   // icmp pred (or X, Y), X
2922   if (match(LBO, m_c_Or(m_Value(Y), m_Specific(RHS)))) {
2923     if (Pred == ICmpInst::ICMP_ULT)
2924       return getFalse(ITy);
2925     if (Pred == ICmpInst::ICMP_UGE)
2926       return getTrue(ITy);
2927 
2928     if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SGE) {
2929       KnownBits RHSKnown = computeKnownBits(RHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
2930       KnownBits YKnown = computeKnownBits(Y, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
2931       if (RHSKnown.isNonNegative() && YKnown.isNegative())
2932         return Pred == ICmpInst::ICMP_SLT ? getTrue(ITy) : getFalse(ITy);
2933       if (RHSKnown.isNegative() || YKnown.isNonNegative())
2934         return Pred == ICmpInst::ICMP_SLT ? getFalse(ITy) : getTrue(ITy);
2935     }
2936   }
2937 
2938   // icmp pred (and X, Y), X
2939   if (match(LBO, m_c_And(m_Value(), m_Specific(RHS)))) {
2940     if (Pred == ICmpInst::ICMP_UGT)
2941       return getFalse(ITy);
2942     if (Pred == ICmpInst::ICMP_ULE)
2943       return getTrue(ITy);
2944   }
2945 
2946   // icmp pred (urem X, Y), Y
2947   if (match(LBO, m_URem(m_Value(), m_Specific(RHS)))) {
2948     switch (Pred) {
2949     default:
2950       break;
2951     case ICmpInst::ICMP_SGT:
2952     case ICmpInst::ICMP_SGE: {
2953       KnownBits Known = computeKnownBits(RHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
2954       if (!Known.isNonNegative())
2955         break;
2956       LLVM_FALLTHROUGH;
2957     }
2958     case ICmpInst::ICMP_EQ:
2959     case ICmpInst::ICMP_UGT:
2960     case ICmpInst::ICMP_UGE:
2961       return getFalse(ITy);
2962     case ICmpInst::ICMP_SLT:
2963     case ICmpInst::ICMP_SLE: {
2964       KnownBits Known = computeKnownBits(RHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
2965       if (!Known.isNonNegative())
2966         break;
2967       LLVM_FALLTHROUGH;
2968     }
2969     case ICmpInst::ICMP_NE:
2970     case ICmpInst::ICMP_ULT:
2971     case ICmpInst::ICMP_ULE:
2972       return getTrue(ITy);
2973     }
2974   }
2975 
2976   // icmp pred (urem X, Y), X
2977   if (match(LBO, m_URem(m_Specific(RHS), m_Value()))) {
2978     if (Pred == ICmpInst::ICMP_ULE)
2979       return getTrue(ITy);
2980     if (Pred == ICmpInst::ICMP_UGT)
2981       return getFalse(ITy);
2982   }
2983 
2984   // x >>u y <=u x --> true.
2985   // x >>u y >u  x --> false.
2986   // x udiv y <=u x --> true.
2987   // x udiv y >u  x --> false.
2988   if (match(LBO, m_LShr(m_Specific(RHS), m_Value())) ||
2989       match(LBO, m_UDiv(m_Specific(RHS), m_Value()))) {
2990     // icmp pred (X op Y), X
2991     if (Pred == ICmpInst::ICMP_UGT)
2992       return getFalse(ITy);
2993     if (Pred == ICmpInst::ICMP_ULE)
2994       return getTrue(ITy);
2995   }
2996 
2997   // If x is nonzero:
2998   // x >>u C <u  x --> true  for C != 0.
2999   // x >>u C !=  x --> true  for C != 0.
3000   // x >>u C >=u x --> false for C != 0.
3001   // x >>u C ==  x --> false for C != 0.
3002   // x udiv C <u  x --> true  for C != 1.
3003   // x udiv C !=  x --> true  for C != 1.
3004   // x udiv C >=u x --> false for C != 1.
3005   // x udiv C ==  x --> false for C != 1.
3006   // TODO: allow non-constant shift amount/divisor
3007   const APInt *C;
3008   if ((match(LBO, m_LShr(m_Specific(RHS), m_APInt(C))) && *C != 0) ||
3009       (match(LBO, m_UDiv(m_Specific(RHS), m_APInt(C))) && *C != 1)) {
3010     if (isKnownNonZero(RHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) {
3011       switch (Pred) {
3012       default:
3013         break;
3014       case ICmpInst::ICMP_EQ:
3015       case ICmpInst::ICMP_UGE:
3016         return getFalse(ITy);
3017       case ICmpInst::ICMP_NE:
3018       case ICmpInst::ICMP_ULT:
3019         return getTrue(ITy);
3020       case ICmpInst::ICMP_UGT:
3021       case ICmpInst::ICMP_ULE:
3022         // UGT/ULE are handled by the more general case just above
3023         llvm_unreachable("Unexpected UGT/ULE, should have been handled");
3024       }
3025     }
3026   }
3027 
3028   // (x*C1)/C2 <= x for C1 <= C2.
3029   // This holds even if the multiplication overflows: Assume that x != 0 and
3030   // arithmetic is modulo M. For overflow to occur we must have C1 >= M/x and
3031   // thus C2 >= M/x. It follows that (x*C1)/C2 <= (M-1)/C2 <= ((M-1)*x)/M < x.
3032   //
3033   // Additionally, either the multiplication and division might be represented
3034   // as shifts:
3035   // (x*C1)>>C2 <= x for C1 < 2**C2.
3036   // (x<<C1)/C2 <= x for 2**C1 < C2.
3037   const APInt *C1, *C2;
3038   if ((match(LBO, m_UDiv(m_Mul(m_Specific(RHS), m_APInt(C1)), m_APInt(C2))) &&
3039        C1->ule(*C2)) ||
3040       (match(LBO, m_LShr(m_Mul(m_Specific(RHS), m_APInt(C1)), m_APInt(C2))) &&
3041        C1->ule(APInt(C2->getBitWidth(), 1) << *C2)) ||
3042       (match(LBO, m_UDiv(m_Shl(m_Specific(RHS), m_APInt(C1)), m_APInt(C2))) &&
3043        (APInt(C1->getBitWidth(), 1) << *C1).ule(*C2))) {
3044     if (Pred == ICmpInst::ICMP_UGT)
3045       return getFalse(ITy);
3046     if (Pred == ICmpInst::ICMP_ULE)
3047       return getTrue(ITy);
3048   }
3049 
3050   return nullptr;
3051 }
3052 
3053 
3054 // If only one of the icmp's operands has NSW flags, try to prove that:
3055 //
3056 //   icmp slt (x + C1), (x +nsw C2)
3057 //
3058 // is equivalent to:
3059 //
3060 //   icmp slt C1, C2
3061 //
3062 // which is true if x + C2 has the NSW flags set and:
3063 // *) C1 < C2 && C1 >= 0, or
3064 // *) C2 < C1 && C1 <= 0.
3065 //
3066 static bool trySimplifyICmpWithAdds(CmpInst::Predicate Pred, Value *LHS,
3067                                     Value *RHS) {
3068   // TODO: only support icmp slt for now.
3069   if (Pred != CmpInst::ICMP_SLT)
3070     return false;
3071 
3072   // Canonicalize nsw add as RHS.
3073   if (!match(RHS, m_NSWAdd(m_Value(), m_Value())))
3074     std::swap(LHS, RHS);
3075   if (!match(RHS, m_NSWAdd(m_Value(), m_Value())))
3076     return false;
3077 
3078   Value *X;
3079   const APInt *C1, *C2;
3080   if (!match(LHS, m_c_Add(m_Value(X), m_APInt(C1))) ||
3081       !match(RHS, m_c_Add(m_Specific(X), m_APInt(C2))))
3082     return false;
3083 
3084   return (C1->slt(*C2) && C1->isNonNegative()) ||
3085          (C2->slt(*C1) && C1->isNonPositive());
3086 }
3087 
3088 
3089 /// TODO: A large part of this logic is duplicated in InstCombine's
3090 /// foldICmpBinOp(). We should be able to share that and avoid the code
3091 /// duplication.
3092 static Value *simplifyICmpWithBinOp(CmpInst::Predicate Pred, Value *LHS,
3093                                     Value *RHS, const SimplifyQuery &Q,
3094                                     unsigned MaxRecurse) {
3095   BinaryOperator *LBO = dyn_cast<BinaryOperator>(LHS);
3096   BinaryOperator *RBO = dyn_cast<BinaryOperator>(RHS);
3097   if (MaxRecurse && (LBO || RBO)) {
3098     // Analyze the case when either LHS or RHS is an add instruction.
3099     Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr;
3100     // LHS = A + B (or A and B are null); RHS = C + D (or C and D are null).
3101     bool NoLHSWrapProblem = false, NoRHSWrapProblem = false;
3102     if (LBO && LBO->getOpcode() == Instruction::Add) {
3103       A = LBO->getOperand(0);
3104       B = LBO->getOperand(1);
3105       NoLHSWrapProblem =
3106           ICmpInst::isEquality(Pred) ||
3107           (CmpInst::isUnsigned(Pred) &&
3108            Q.IIQ.hasNoUnsignedWrap(cast<OverflowingBinaryOperator>(LBO))) ||
3109           (CmpInst::isSigned(Pred) &&
3110            Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(LBO)));
3111     }
3112     if (RBO && RBO->getOpcode() == Instruction::Add) {
3113       C = RBO->getOperand(0);
3114       D = RBO->getOperand(1);
3115       NoRHSWrapProblem =
3116           ICmpInst::isEquality(Pred) ||
3117           (CmpInst::isUnsigned(Pred) &&
3118            Q.IIQ.hasNoUnsignedWrap(cast<OverflowingBinaryOperator>(RBO))) ||
3119           (CmpInst::isSigned(Pred) &&
3120            Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(RBO)));
3121     }
3122 
3123     // icmp (X+Y), X -> icmp Y, 0 for equalities or if there is no overflow.
3124     if ((A == RHS || B == RHS) && NoLHSWrapProblem)
3125       if (Value *V = SimplifyICmpInst(Pred, A == RHS ? B : A,
3126                                       Constant::getNullValue(RHS->getType()), Q,
3127                                       MaxRecurse - 1))
3128         return V;
3129 
3130     // icmp X, (X+Y) -> icmp 0, Y for equalities or if there is no overflow.
3131     if ((C == LHS || D == LHS) && NoRHSWrapProblem)
3132       if (Value *V =
3133               SimplifyICmpInst(Pred, Constant::getNullValue(LHS->getType()),
3134                                C == LHS ? D : C, Q, MaxRecurse - 1))
3135         return V;
3136 
3137     // icmp (X+Y), (X+Z) -> icmp Y,Z for equalities or if there is no overflow.
3138     bool CanSimplify = (NoLHSWrapProblem && NoRHSWrapProblem) ||
3139                        trySimplifyICmpWithAdds(Pred, LHS, RHS);
3140     if (A && C && (A == C || A == D || B == C || B == D) && CanSimplify) {
3141       // Determine Y and Z in the form icmp (X+Y), (X+Z).
3142       Value *Y, *Z;
3143       if (A == C) {
3144         // C + B == C + D  ->  B == D
3145         Y = B;
3146         Z = D;
3147       } else if (A == D) {
3148         // D + B == C + D  ->  B == C
3149         Y = B;
3150         Z = C;
3151       } else if (B == C) {
3152         // A + C == C + D  ->  A == D
3153         Y = A;
3154         Z = D;
3155       } else {
3156         assert(B == D);
3157         // A + D == C + D  ->  A == C
3158         Y = A;
3159         Z = C;
3160       }
3161       if (Value *V = SimplifyICmpInst(Pred, Y, Z, Q, MaxRecurse - 1))
3162         return V;
3163     }
3164   }
3165 
3166   if (LBO)
3167     if (Value *V = simplifyICmpWithBinOpOnLHS(Pred, LBO, RHS, Q, MaxRecurse))
3168       return V;
3169 
3170   if (RBO)
3171     if (Value *V = simplifyICmpWithBinOpOnLHS(
3172             ICmpInst::getSwappedPredicate(Pred), RBO, LHS, Q, MaxRecurse))
3173       return V;
3174 
3175   // 0 - (zext X) pred C
3176   if (!CmpInst::isUnsigned(Pred) && match(LHS, m_Neg(m_ZExt(m_Value())))) {
3177     const APInt *C;
3178     if (match(RHS, m_APInt(C))) {
3179       if (C->isStrictlyPositive()) {
3180         if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_NE)
3181           return ConstantInt::getTrue(GetCompareTy(RHS));
3182         if (Pred == ICmpInst::ICMP_SGE || Pred == ICmpInst::ICMP_EQ)
3183           return ConstantInt::getFalse(GetCompareTy(RHS));
3184       }
3185       if (C->isNonNegative()) {
3186         if (Pred == ICmpInst::ICMP_SLE)
3187           return ConstantInt::getTrue(GetCompareTy(RHS));
3188         if (Pred == ICmpInst::ICMP_SGT)
3189           return ConstantInt::getFalse(GetCompareTy(RHS));
3190       }
3191     }
3192   }
3193 
3194   //   If C2 is a power-of-2 and C is not:
3195   //   (C2 << X) == C --> false
3196   //   (C2 << X) != C --> true
3197   const APInt *C;
3198   if (match(LHS, m_Shl(m_Power2(), m_Value())) &&
3199       match(RHS, m_APIntAllowUndef(C)) && !C->isPowerOf2()) {
3200     // C2 << X can equal zero in some circumstances.
3201     // This simplification might be unsafe if C is zero.
3202     //
3203     // We know it is safe if:
3204     // - The shift is nsw. We can't shift out the one bit.
3205     // - The shift is nuw. We can't shift out the one bit.
3206     // - C2 is one.
3207     // - C isn't zero.
3208     if (Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(LBO)) ||
3209         Q.IIQ.hasNoUnsignedWrap(cast<OverflowingBinaryOperator>(LBO)) ||
3210         match(LHS, m_Shl(m_One(), m_Value())) || !C->isZero()) {
3211       if (Pred == ICmpInst::ICMP_EQ)
3212         return ConstantInt::getFalse(GetCompareTy(RHS));
3213       if (Pred == ICmpInst::ICMP_NE)
3214         return ConstantInt::getTrue(GetCompareTy(RHS));
3215     }
3216   }
3217 
3218   // TODO: This is overly constrained. LHS can be any power-of-2.
3219   // (1 << X)  >u 0x8000 --> false
3220   // (1 << X) <=u 0x8000 --> true
3221   if (match(LHS, m_Shl(m_One(), m_Value())) && match(RHS, m_SignMask())) {
3222     if (Pred == ICmpInst::ICMP_UGT)
3223       return ConstantInt::getFalse(GetCompareTy(RHS));
3224     if (Pred == ICmpInst::ICMP_ULE)
3225       return ConstantInt::getTrue(GetCompareTy(RHS));
3226   }
3227 
3228   if (MaxRecurse && LBO && RBO && LBO->getOpcode() == RBO->getOpcode() &&
3229       LBO->getOperand(1) == RBO->getOperand(1)) {
3230     switch (LBO->getOpcode()) {
3231     default:
3232       break;
3233     case Instruction::UDiv:
3234     case Instruction::LShr:
3235       if (ICmpInst::isSigned(Pred) || !Q.IIQ.isExact(LBO) ||
3236           !Q.IIQ.isExact(RBO))
3237         break;
3238       if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0),
3239                                       RBO->getOperand(0), Q, MaxRecurse - 1))
3240           return V;
3241       break;
3242     case Instruction::SDiv:
3243       if (!ICmpInst::isEquality(Pred) || !Q.IIQ.isExact(LBO) ||
3244           !Q.IIQ.isExact(RBO))
3245         break;
3246       if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0),
3247                                       RBO->getOperand(0), Q, MaxRecurse - 1))
3248         return V;
3249       break;
3250     case Instruction::AShr:
3251       if (!Q.IIQ.isExact(LBO) || !Q.IIQ.isExact(RBO))
3252         break;
3253       if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0),
3254                                       RBO->getOperand(0), Q, MaxRecurse - 1))
3255         return V;
3256       break;
3257     case Instruction::Shl: {
3258       bool NUW = Q.IIQ.hasNoUnsignedWrap(LBO) && Q.IIQ.hasNoUnsignedWrap(RBO);
3259       bool NSW = Q.IIQ.hasNoSignedWrap(LBO) && Q.IIQ.hasNoSignedWrap(RBO);
3260       if (!NUW && !NSW)
3261         break;
3262       if (!NSW && ICmpInst::isSigned(Pred))
3263         break;
3264       if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0),
3265                                       RBO->getOperand(0), Q, MaxRecurse - 1))
3266         return V;
3267       break;
3268     }
3269     }
3270   }
3271   return nullptr;
3272 }
3273 
3274 /// Simplify integer comparisons where at least one operand of the compare
3275 /// matches an integer min/max idiom.
3276 static Value *simplifyICmpWithMinMax(CmpInst::Predicate Pred, Value *LHS,
3277                                      Value *RHS, const SimplifyQuery &Q,
3278                                      unsigned MaxRecurse) {
3279   Type *ITy = GetCompareTy(LHS); // The return type.
3280   Value *A, *B;
3281   CmpInst::Predicate P = CmpInst::BAD_ICMP_PREDICATE;
3282   CmpInst::Predicate EqP; // Chosen so that "A == max/min(A,B)" iff "A EqP B".
3283 
3284   // Signed variants on "max(a,b)>=a -> true".
3285   if (match(LHS, m_SMax(m_Value(A), m_Value(B))) && (A == RHS || B == RHS)) {
3286     if (A != RHS)
3287       std::swap(A, B);       // smax(A, B) pred A.
3288     EqP = CmpInst::ICMP_SGE; // "A == smax(A, B)" iff "A sge B".
3289     // We analyze this as smax(A, B) pred A.
3290     P = Pred;
3291   } else if (match(RHS, m_SMax(m_Value(A), m_Value(B))) &&
3292              (A == LHS || B == LHS)) {
3293     if (A != LHS)
3294       std::swap(A, B);       // A pred smax(A, B).
3295     EqP = CmpInst::ICMP_SGE; // "A == smax(A, B)" iff "A sge B".
3296     // We analyze this as smax(A, B) swapped-pred A.
3297     P = CmpInst::getSwappedPredicate(Pred);
3298   } else if (match(LHS, m_SMin(m_Value(A), m_Value(B))) &&
3299              (A == RHS || B == RHS)) {
3300     if (A != RHS)
3301       std::swap(A, B);       // smin(A, B) pred A.
3302     EqP = CmpInst::ICMP_SLE; // "A == smin(A, B)" iff "A sle B".
3303     // We analyze this as smax(-A, -B) swapped-pred -A.
3304     // Note that we do not need to actually form -A or -B thanks to EqP.
3305     P = CmpInst::getSwappedPredicate(Pred);
3306   } else if (match(RHS, m_SMin(m_Value(A), m_Value(B))) &&
3307              (A == LHS || B == LHS)) {
3308     if (A != LHS)
3309       std::swap(A, B);       // A pred smin(A, B).
3310     EqP = CmpInst::ICMP_SLE; // "A == smin(A, B)" iff "A sle B".
3311     // We analyze this as smax(-A, -B) pred -A.
3312     // Note that we do not need to actually form -A or -B thanks to EqP.
3313     P = Pred;
3314   }
3315   if (P != CmpInst::BAD_ICMP_PREDICATE) {
3316     // Cases correspond to "max(A, B) p A".
3317     switch (P) {
3318     default:
3319       break;
3320     case CmpInst::ICMP_EQ:
3321     case CmpInst::ICMP_SLE:
3322       // Equivalent to "A EqP B".  This may be the same as the condition tested
3323       // in the max/min; if so, we can just return that.
3324       if (Value *V = ExtractEquivalentCondition(LHS, EqP, A, B))
3325         return V;
3326       if (Value *V = ExtractEquivalentCondition(RHS, EqP, A, B))
3327         return V;
3328       // Otherwise, see if "A EqP B" simplifies.
3329       if (MaxRecurse)
3330         if (Value *V = SimplifyICmpInst(EqP, A, B, Q, MaxRecurse - 1))
3331           return V;
3332       break;
3333     case CmpInst::ICMP_NE:
3334     case CmpInst::ICMP_SGT: {
3335       CmpInst::Predicate InvEqP = CmpInst::getInversePredicate(EqP);
3336       // Equivalent to "A InvEqP B".  This may be the same as the condition
3337       // tested in the max/min; if so, we can just return that.
3338       if (Value *V = ExtractEquivalentCondition(LHS, InvEqP, A, B))
3339         return V;
3340       if (Value *V = ExtractEquivalentCondition(RHS, InvEqP, A, B))
3341         return V;
3342       // Otherwise, see if "A InvEqP B" simplifies.
3343       if (MaxRecurse)
3344         if (Value *V = SimplifyICmpInst(InvEqP, A, B, Q, MaxRecurse - 1))
3345           return V;
3346       break;
3347     }
3348     case CmpInst::ICMP_SGE:
3349       // Always true.
3350       return getTrue(ITy);
3351     case CmpInst::ICMP_SLT:
3352       // Always false.
3353       return getFalse(ITy);
3354     }
3355   }
3356 
3357   // Unsigned variants on "max(a,b)>=a -> true".
3358   P = CmpInst::BAD_ICMP_PREDICATE;
3359   if (match(LHS, m_UMax(m_Value(A), m_Value(B))) && (A == RHS || B == RHS)) {
3360     if (A != RHS)
3361       std::swap(A, B);       // umax(A, B) pred A.
3362     EqP = CmpInst::ICMP_UGE; // "A == umax(A, B)" iff "A uge B".
3363     // We analyze this as umax(A, B) pred A.
3364     P = Pred;
3365   } else if (match(RHS, m_UMax(m_Value(A), m_Value(B))) &&
3366              (A == LHS || B == LHS)) {
3367     if (A != LHS)
3368       std::swap(A, B);       // A pred umax(A, B).
3369     EqP = CmpInst::ICMP_UGE; // "A == umax(A, B)" iff "A uge B".
3370     // We analyze this as umax(A, B) swapped-pred A.
3371     P = CmpInst::getSwappedPredicate(Pred);
3372   } else if (match(LHS, m_UMin(m_Value(A), m_Value(B))) &&
3373              (A == RHS || B == RHS)) {
3374     if (A != RHS)
3375       std::swap(A, B);       // umin(A, B) pred A.
3376     EqP = CmpInst::ICMP_ULE; // "A == umin(A, B)" iff "A ule B".
3377     // We analyze this as umax(-A, -B) swapped-pred -A.
3378     // Note that we do not need to actually form -A or -B thanks to EqP.
3379     P = CmpInst::getSwappedPredicate(Pred);
3380   } else if (match(RHS, m_UMin(m_Value(A), m_Value(B))) &&
3381              (A == LHS || B == LHS)) {
3382     if (A != LHS)
3383       std::swap(A, B);       // A pred umin(A, B).
3384     EqP = CmpInst::ICMP_ULE; // "A == umin(A, B)" iff "A ule B".
3385     // We analyze this as umax(-A, -B) pred -A.
3386     // Note that we do not need to actually form -A or -B thanks to EqP.
3387     P = Pred;
3388   }
3389   if (P != CmpInst::BAD_ICMP_PREDICATE) {
3390     // Cases correspond to "max(A, B) p A".
3391     switch (P) {
3392     default:
3393       break;
3394     case CmpInst::ICMP_EQ:
3395     case CmpInst::ICMP_ULE:
3396       // Equivalent to "A EqP B".  This may be the same as the condition tested
3397       // in the max/min; if so, we can just return that.
3398       if (Value *V = ExtractEquivalentCondition(LHS, EqP, A, B))
3399         return V;
3400       if (Value *V = ExtractEquivalentCondition(RHS, EqP, A, B))
3401         return V;
3402       // Otherwise, see if "A EqP B" simplifies.
3403       if (MaxRecurse)
3404         if (Value *V = SimplifyICmpInst(EqP, A, B, Q, MaxRecurse - 1))
3405           return V;
3406       break;
3407     case CmpInst::ICMP_NE:
3408     case CmpInst::ICMP_UGT: {
3409       CmpInst::Predicate InvEqP = CmpInst::getInversePredicate(EqP);
3410       // Equivalent to "A InvEqP B".  This may be the same as the condition
3411       // tested in the max/min; if so, we can just return that.
3412       if (Value *V = ExtractEquivalentCondition(LHS, InvEqP, A, B))
3413         return V;
3414       if (Value *V = ExtractEquivalentCondition(RHS, InvEqP, A, B))
3415         return V;
3416       // Otherwise, see if "A InvEqP B" simplifies.
3417       if (MaxRecurse)
3418         if (Value *V = SimplifyICmpInst(InvEqP, A, B, Q, MaxRecurse - 1))
3419           return V;
3420       break;
3421     }
3422     case CmpInst::ICMP_UGE:
3423       return getTrue(ITy);
3424     case CmpInst::ICMP_ULT:
3425       return getFalse(ITy);
3426     }
3427   }
3428 
3429   // Comparing 1 each of min/max with a common operand?
3430   // Canonicalize min operand to RHS.
3431   if (match(LHS, m_UMin(m_Value(), m_Value())) ||
3432       match(LHS, m_SMin(m_Value(), m_Value()))) {
3433     std::swap(LHS, RHS);
3434     Pred = ICmpInst::getSwappedPredicate(Pred);
3435   }
3436 
3437   Value *C, *D;
3438   if (match(LHS, m_SMax(m_Value(A), m_Value(B))) &&
3439       match(RHS, m_SMin(m_Value(C), m_Value(D))) &&
3440       (A == C || A == D || B == C || B == D)) {
3441     // smax(A, B) >=s smin(A, D) --> true
3442     if (Pred == CmpInst::ICMP_SGE)
3443       return getTrue(ITy);
3444     // smax(A, B) <s smin(A, D) --> false
3445     if (Pred == CmpInst::ICMP_SLT)
3446       return getFalse(ITy);
3447   } else if (match(LHS, m_UMax(m_Value(A), m_Value(B))) &&
3448              match(RHS, m_UMin(m_Value(C), m_Value(D))) &&
3449              (A == C || A == D || B == C || B == D)) {
3450     // umax(A, B) >=u umin(A, D) --> true
3451     if (Pred == CmpInst::ICMP_UGE)
3452       return getTrue(ITy);
3453     // umax(A, B) <u umin(A, D) --> false
3454     if (Pred == CmpInst::ICMP_ULT)
3455       return getFalse(ITy);
3456   }
3457 
3458   return nullptr;
3459 }
3460 
3461 static Value *simplifyICmpWithDominatingAssume(CmpInst::Predicate Predicate,
3462                                                Value *LHS, Value *RHS,
3463                                                const SimplifyQuery &Q) {
3464   // Gracefully handle instructions that have not been inserted yet.
3465   if (!Q.AC || !Q.CxtI || !Q.CxtI->getParent())
3466     return nullptr;
3467 
3468   for (Value *AssumeBaseOp : {LHS, RHS}) {
3469     for (auto &AssumeVH : Q.AC->assumptionsFor(AssumeBaseOp)) {
3470       if (!AssumeVH)
3471         continue;
3472 
3473       CallInst *Assume = cast<CallInst>(AssumeVH);
3474       if (Optional<bool> Imp =
3475               isImpliedCondition(Assume->getArgOperand(0), Predicate, LHS, RHS,
3476                                  Q.DL))
3477         if (isValidAssumeForContext(Assume, Q.CxtI, Q.DT))
3478           return ConstantInt::get(GetCompareTy(LHS), *Imp);
3479     }
3480   }
3481 
3482   return nullptr;
3483 }
3484 
3485 /// Given operands for an ICmpInst, see if we can fold the result.
3486 /// If not, this returns null.
3487 static Value *SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS,
3488                                const SimplifyQuery &Q, unsigned MaxRecurse) {
3489   CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate;
3490   assert(CmpInst::isIntPredicate(Pred) && "Not an integer compare!");
3491 
3492   if (Constant *CLHS = dyn_cast<Constant>(LHS)) {
3493     if (Constant *CRHS = dyn_cast<Constant>(RHS))
3494       return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, Q.DL, Q.TLI);
3495 
3496     // If we have a constant, make sure it is on the RHS.
3497     std::swap(LHS, RHS);
3498     Pred = CmpInst::getSwappedPredicate(Pred);
3499   }
3500   assert(!isa<UndefValue>(LHS) && "Unexpected icmp undef,%X");
3501 
3502   Type *ITy = GetCompareTy(LHS); // The return type.
3503 
3504   // icmp poison, X -> poison
3505   if (isa<PoisonValue>(RHS))
3506     return PoisonValue::get(ITy);
3507 
3508   // For EQ and NE, we can always pick a value for the undef to make the
3509   // predicate pass or fail, so we can return undef.
3510   // Matches behavior in llvm::ConstantFoldCompareInstruction.
3511   if (Q.isUndefValue(RHS) && ICmpInst::isEquality(Pred))
3512     return UndefValue::get(ITy);
3513 
3514   // icmp X, X -> true/false
3515   // icmp X, undef -> true/false because undef could be X.
3516   if (LHS == RHS || Q.isUndefValue(RHS))
3517     return ConstantInt::get(ITy, CmpInst::isTrueWhenEqual(Pred));
3518 
3519   if (Value *V = simplifyICmpOfBools(Pred, LHS, RHS, Q))
3520     return V;
3521 
3522   // TODO: Sink/common this with other potentially expensive calls that use
3523   //       ValueTracking? See comment below for isKnownNonEqual().
3524   if (Value *V = simplifyICmpWithZero(Pred, LHS, RHS, Q))
3525     return V;
3526 
3527   if (Value *V = simplifyICmpWithConstant(Pred, LHS, RHS, Q.IIQ))
3528     return V;
3529 
3530   // If both operands have range metadata, use the metadata
3531   // to simplify the comparison.
3532   if (isa<Instruction>(RHS) && isa<Instruction>(LHS)) {
3533     auto RHS_Instr = cast<Instruction>(RHS);
3534     auto LHS_Instr = cast<Instruction>(LHS);
3535 
3536     if (Q.IIQ.getMetadata(RHS_Instr, LLVMContext::MD_range) &&
3537         Q.IIQ.getMetadata(LHS_Instr, LLVMContext::MD_range)) {
3538       auto RHS_CR = getConstantRangeFromMetadata(
3539           *RHS_Instr->getMetadata(LLVMContext::MD_range));
3540       auto LHS_CR = getConstantRangeFromMetadata(
3541           *LHS_Instr->getMetadata(LLVMContext::MD_range));
3542 
3543       if (LHS_CR.icmp(Pred, RHS_CR))
3544         return ConstantInt::getTrue(RHS->getContext());
3545 
3546       if (LHS_CR.icmp(CmpInst::getInversePredicate(Pred), RHS_CR))
3547         return ConstantInt::getFalse(RHS->getContext());
3548     }
3549   }
3550 
3551   // Compare of cast, for example (zext X) != 0 -> X != 0
3552   if (isa<CastInst>(LHS) && (isa<Constant>(RHS) || isa<CastInst>(RHS))) {
3553     Instruction *LI = cast<CastInst>(LHS);
3554     Value *SrcOp = LI->getOperand(0);
3555     Type *SrcTy = SrcOp->getType();
3556     Type *DstTy = LI->getType();
3557 
3558     // Turn icmp (ptrtoint x), (ptrtoint/constant) into a compare of the input
3559     // if the integer type is the same size as the pointer type.
3560     if (MaxRecurse && isa<PtrToIntInst>(LI) &&
3561         Q.DL.getTypeSizeInBits(SrcTy) == DstTy->getPrimitiveSizeInBits()) {
3562       if (Constant *RHSC = dyn_cast<Constant>(RHS)) {
3563         // Transfer the cast to the constant.
3564         if (Value *V = SimplifyICmpInst(Pred, SrcOp,
3565                                         ConstantExpr::getIntToPtr(RHSC, SrcTy),
3566                                         Q, MaxRecurse-1))
3567           return V;
3568       } else if (PtrToIntInst *RI = dyn_cast<PtrToIntInst>(RHS)) {
3569         if (RI->getOperand(0)->getType() == SrcTy)
3570           // Compare without the cast.
3571           if (Value *V = SimplifyICmpInst(Pred, SrcOp, RI->getOperand(0),
3572                                           Q, MaxRecurse-1))
3573             return V;
3574       }
3575     }
3576 
3577     if (isa<ZExtInst>(LHS)) {
3578       // Turn icmp (zext X), (zext Y) into a compare of X and Y if they have the
3579       // same type.
3580       if (ZExtInst *RI = dyn_cast<ZExtInst>(RHS)) {
3581         if (MaxRecurse && SrcTy == RI->getOperand(0)->getType())
3582           // Compare X and Y.  Note that signed predicates become unsigned.
3583           if (Value *V = SimplifyICmpInst(ICmpInst::getUnsignedPredicate(Pred),
3584                                           SrcOp, RI->getOperand(0), Q,
3585                                           MaxRecurse-1))
3586             return V;
3587       }
3588       // Fold (zext X) ule (sext X), (zext X) sge (sext X) to true.
3589       else if (SExtInst *RI = dyn_cast<SExtInst>(RHS)) {
3590         if (SrcOp == RI->getOperand(0)) {
3591           if (Pred == ICmpInst::ICMP_ULE || Pred == ICmpInst::ICMP_SGE)
3592             return ConstantInt::getTrue(ITy);
3593           if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_SLT)
3594             return ConstantInt::getFalse(ITy);
3595         }
3596       }
3597       // Turn icmp (zext X), Cst into a compare of X and Cst if Cst is extended
3598       // too.  If not, then try to deduce the result of the comparison.
3599       else if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
3600         // Compute the constant that would happen if we truncated to SrcTy then
3601         // reextended to DstTy.
3602         Constant *Trunc = ConstantExpr::getTrunc(CI, SrcTy);
3603         Constant *RExt = ConstantExpr::getCast(CastInst::ZExt, Trunc, DstTy);
3604 
3605         // If the re-extended constant didn't change then this is effectively
3606         // also a case of comparing two zero-extended values.
3607         if (RExt == CI && MaxRecurse)
3608           if (Value *V = SimplifyICmpInst(ICmpInst::getUnsignedPredicate(Pred),
3609                                         SrcOp, Trunc, Q, MaxRecurse-1))
3610             return V;
3611 
3612         // Otherwise the upper bits of LHS are zero while RHS has a non-zero bit
3613         // there.  Use this to work out the result of the comparison.
3614         if (RExt != CI) {
3615           switch (Pred) {
3616           default: llvm_unreachable("Unknown ICmp predicate!");
3617           // LHS <u RHS.
3618           case ICmpInst::ICMP_EQ:
3619           case ICmpInst::ICMP_UGT:
3620           case ICmpInst::ICMP_UGE:
3621             return ConstantInt::getFalse(CI->getContext());
3622 
3623           case ICmpInst::ICMP_NE:
3624           case ICmpInst::ICMP_ULT:
3625           case ICmpInst::ICMP_ULE:
3626             return ConstantInt::getTrue(CI->getContext());
3627 
3628           // LHS is non-negative.  If RHS is negative then LHS >s LHS.  If RHS
3629           // is non-negative then LHS <s RHS.
3630           case ICmpInst::ICMP_SGT:
3631           case ICmpInst::ICMP_SGE:
3632             return CI->getValue().isNegative() ?
3633               ConstantInt::getTrue(CI->getContext()) :
3634               ConstantInt::getFalse(CI->getContext());
3635 
3636           case ICmpInst::ICMP_SLT:
3637           case ICmpInst::ICMP_SLE:
3638             return CI->getValue().isNegative() ?
3639               ConstantInt::getFalse(CI->getContext()) :
3640               ConstantInt::getTrue(CI->getContext());
3641           }
3642         }
3643       }
3644     }
3645 
3646     if (isa<SExtInst>(LHS)) {
3647       // Turn icmp (sext X), (sext Y) into a compare of X and Y if they have the
3648       // same type.
3649       if (SExtInst *RI = dyn_cast<SExtInst>(RHS)) {
3650         if (MaxRecurse && SrcTy == RI->getOperand(0)->getType())
3651           // Compare X and Y.  Note that the predicate does not change.
3652           if (Value *V = SimplifyICmpInst(Pred, SrcOp, RI->getOperand(0),
3653                                           Q, MaxRecurse-1))
3654             return V;
3655       }
3656       // Fold (sext X) uge (zext X), (sext X) sle (zext X) to true.
3657       else if (ZExtInst *RI = dyn_cast<ZExtInst>(RHS)) {
3658         if (SrcOp == RI->getOperand(0)) {
3659           if (Pred == ICmpInst::ICMP_UGE || Pred == ICmpInst::ICMP_SLE)
3660             return ConstantInt::getTrue(ITy);
3661           if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_SGT)
3662             return ConstantInt::getFalse(ITy);
3663         }
3664       }
3665       // Turn icmp (sext X), Cst into a compare of X and Cst if Cst is extended
3666       // too.  If not, then try to deduce the result of the comparison.
3667       else if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
3668         // Compute the constant that would happen if we truncated to SrcTy then
3669         // reextended to DstTy.
3670         Constant *Trunc = ConstantExpr::getTrunc(CI, SrcTy);
3671         Constant *RExt = ConstantExpr::getCast(CastInst::SExt, Trunc, DstTy);
3672 
3673         // If the re-extended constant didn't change then this is effectively
3674         // also a case of comparing two sign-extended values.
3675         if (RExt == CI && MaxRecurse)
3676           if (Value *V = SimplifyICmpInst(Pred, SrcOp, Trunc, Q, MaxRecurse-1))
3677             return V;
3678 
3679         // Otherwise the upper bits of LHS are all equal, while RHS has varying
3680         // bits there.  Use this to work out the result of the comparison.
3681         if (RExt != CI) {
3682           switch (Pred) {
3683           default: llvm_unreachable("Unknown ICmp predicate!");
3684           case ICmpInst::ICMP_EQ:
3685             return ConstantInt::getFalse(CI->getContext());
3686           case ICmpInst::ICMP_NE:
3687             return ConstantInt::getTrue(CI->getContext());
3688 
3689           // If RHS is non-negative then LHS <s RHS.  If RHS is negative then
3690           // LHS >s RHS.
3691           case ICmpInst::ICMP_SGT:
3692           case ICmpInst::ICMP_SGE:
3693             return CI->getValue().isNegative() ?
3694               ConstantInt::getTrue(CI->getContext()) :
3695               ConstantInt::getFalse(CI->getContext());
3696           case ICmpInst::ICMP_SLT:
3697           case ICmpInst::ICMP_SLE:
3698             return CI->getValue().isNegative() ?
3699               ConstantInt::getFalse(CI->getContext()) :
3700               ConstantInt::getTrue(CI->getContext());
3701 
3702           // If LHS is non-negative then LHS <u RHS.  If LHS is negative then
3703           // LHS >u RHS.
3704           case ICmpInst::ICMP_UGT:
3705           case ICmpInst::ICMP_UGE:
3706             // Comparison is true iff the LHS <s 0.
3707             if (MaxRecurse)
3708               if (Value *V = SimplifyICmpInst(ICmpInst::ICMP_SLT, SrcOp,
3709                                               Constant::getNullValue(SrcTy),
3710                                               Q, MaxRecurse-1))
3711                 return V;
3712             break;
3713           case ICmpInst::ICMP_ULT:
3714           case ICmpInst::ICMP_ULE:
3715             // Comparison is true iff the LHS >=s 0.
3716             if (MaxRecurse)
3717               if (Value *V = SimplifyICmpInst(ICmpInst::ICMP_SGE, SrcOp,
3718                                               Constant::getNullValue(SrcTy),
3719                                               Q, MaxRecurse-1))
3720                 return V;
3721             break;
3722           }
3723         }
3724       }
3725     }
3726   }
3727 
3728   // icmp eq|ne X, Y -> false|true if X != Y
3729   // This is potentially expensive, and we have already computedKnownBits for
3730   // compares with 0 above here, so only try this for a non-zero compare.
3731   if (ICmpInst::isEquality(Pred) && !match(RHS, m_Zero()) &&
3732       isKnownNonEqual(LHS, RHS, Q.DL, Q.AC, Q.CxtI, Q.DT, Q.IIQ.UseInstrInfo)) {
3733     return Pred == ICmpInst::ICMP_NE ? getTrue(ITy) : getFalse(ITy);
3734   }
3735 
3736   if (Value *V = simplifyICmpWithBinOp(Pred, LHS, RHS, Q, MaxRecurse))
3737     return V;
3738 
3739   if (Value *V = simplifyICmpWithMinMax(Pred, LHS, RHS, Q, MaxRecurse))
3740     return V;
3741 
3742   if (Value *V = simplifyICmpWithDominatingAssume(Pred, LHS, RHS, Q))
3743     return V;
3744 
3745   // Simplify comparisons of related pointers using a powerful, recursive
3746   // GEP-walk when we have target data available..
3747   if (LHS->getType()->isPointerTy())
3748     if (auto *C = computePointerICmp(Pred, LHS, RHS, Q))
3749       return C;
3750   if (auto *CLHS = dyn_cast<PtrToIntOperator>(LHS))
3751     if (auto *CRHS = dyn_cast<PtrToIntOperator>(RHS))
3752       if (Q.DL.getTypeSizeInBits(CLHS->getPointerOperandType()) ==
3753               Q.DL.getTypeSizeInBits(CLHS->getType()) &&
3754           Q.DL.getTypeSizeInBits(CRHS->getPointerOperandType()) ==
3755               Q.DL.getTypeSizeInBits(CRHS->getType()))
3756         if (auto *C = computePointerICmp(Pred, CLHS->getPointerOperand(),
3757                                          CRHS->getPointerOperand(), Q))
3758           return C;
3759 
3760   // If the comparison is with the result of a select instruction, check whether
3761   // comparing with either branch of the select always yields the same value.
3762   if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS))
3763     if (Value *V = ThreadCmpOverSelect(Pred, LHS, RHS, Q, MaxRecurse))
3764       return V;
3765 
3766   // If the comparison is with the result of a phi instruction, check whether
3767   // doing the compare with each incoming phi value yields a common result.
3768   if (isa<PHINode>(LHS) || isa<PHINode>(RHS))
3769     if (Value *V = ThreadCmpOverPHI(Pred, LHS, RHS, Q, MaxRecurse))
3770       return V;
3771 
3772   return nullptr;
3773 }
3774 
3775 Value *llvm::SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS,
3776                               const SimplifyQuery &Q) {
3777   return ::SimplifyICmpInst(Predicate, LHS, RHS, Q, RecursionLimit);
3778 }
3779 
3780 /// Given operands for an FCmpInst, see if we can fold the result.
3781 /// If not, this returns null.
3782 static Value *SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
3783                                FastMathFlags FMF, const SimplifyQuery &Q,
3784                                unsigned MaxRecurse) {
3785   CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate;
3786   assert(CmpInst::isFPPredicate(Pred) && "Not an FP compare!");
3787 
3788   if (Constant *CLHS = dyn_cast<Constant>(LHS)) {
3789     if (Constant *CRHS = dyn_cast<Constant>(RHS))
3790       return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, Q.DL, Q.TLI);
3791 
3792     // If we have a constant, make sure it is on the RHS.
3793     std::swap(LHS, RHS);
3794     Pred = CmpInst::getSwappedPredicate(Pred);
3795   }
3796 
3797   // Fold trivial predicates.
3798   Type *RetTy = GetCompareTy(LHS);
3799   if (Pred == FCmpInst::FCMP_FALSE)
3800     return getFalse(RetTy);
3801   if (Pred == FCmpInst::FCMP_TRUE)
3802     return getTrue(RetTy);
3803 
3804   // Fold (un)ordered comparison if we can determine there are no NaNs.
3805   if (Pred == FCmpInst::FCMP_UNO || Pred == FCmpInst::FCMP_ORD)
3806     if (FMF.noNaNs() ||
3807         (isKnownNeverNaN(LHS, Q.TLI) && isKnownNeverNaN(RHS, Q.TLI)))
3808       return ConstantInt::get(RetTy, Pred == FCmpInst::FCMP_ORD);
3809 
3810   // NaN is unordered; NaN is not ordered.
3811   assert((FCmpInst::isOrdered(Pred) || FCmpInst::isUnordered(Pred)) &&
3812          "Comparison must be either ordered or unordered");
3813   if (match(RHS, m_NaN()))
3814     return ConstantInt::get(RetTy, CmpInst::isUnordered(Pred));
3815 
3816   // fcmp pred x, poison and  fcmp pred poison, x
3817   // fold to poison
3818   if (isa<PoisonValue>(LHS) || isa<PoisonValue>(RHS))
3819     return PoisonValue::get(RetTy);
3820 
3821   // fcmp pred x, undef  and  fcmp pred undef, x
3822   // fold to true if unordered, false if ordered
3823   if (Q.isUndefValue(LHS) || Q.isUndefValue(RHS)) {
3824     // Choosing NaN for the undef will always make unordered comparison succeed
3825     // and ordered comparison fail.
3826     return ConstantInt::get(RetTy, CmpInst::isUnordered(Pred));
3827   }
3828 
3829   // fcmp x,x -> true/false.  Not all compares are foldable.
3830   if (LHS == RHS) {
3831     if (CmpInst::isTrueWhenEqual(Pred))
3832       return getTrue(RetTy);
3833     if (CmpInst::isFalseWhenEqual(Pred))
3834       return getFalse(RetTy);
3835   }
3836 
3837   // Handle fcmp with constant RHS.
3838   // TODO: Use match with a specific FP value, so these work with vectors with
3839   // undef lanes.
3840   const APFloat *C;
3841   if (match(RHS, m_APFloat(C))) {
3842     // Check whether the constant is an infinity.
3843     if (C->isInfinity()) {
3844       if (C->isNegative()) {
3845         switch (Pred) {
3846         case FCmpInst::FCMP_OLT:
3847           // No value is ordered and less than negative infinity.
3848           return getFalse(RetTy);
3849         case FCmpInst::FCMP_UGE:
3850           // All values are unordered with or at least negative infinity.
3851           return getTrue(RetTy);
3852         default:
3853           break;
3854         }
3855       } else {
3856         switch (Pred) {
3857         case FCmpInst::FCMP_OGT:
3858           // No value is ordered and greater than infinity.
3859           return getFalse(RetTy);
3860         case FCmpInst::FCMP_ULE:
3861           // All values are unordered with and at most infinity.
3862           return getTrue(RetTy);
3863         default:
3864           break;
3865         }
3866       }
3867 
3868       // LHS == Inf
3869       if (Pred == FCmpInst::FCMP_OEQ && isKnownNeverInfinity(LHS, Q.TLI))
3870         return getFalse(RetTy);
3871       // LHS != Inf
3872       if (Pred == FCmpInst::FCMP_UNE && isKnownNeverInfinity(LHS, Q.TLI))
3873         return getTrue(RetTy);
3874       // LHS == Inf || LHS == NaN
3875       if (Pred == FCmpInst::FCMP_UEQ && isKnownNeverInfinity(LHS, Q.TLI) &&
3876           isKnownNeverNaN(LHS, Q.TLI))
3877         return getFalse(RetTy);
3878       // LHS != Inf && LHS != NaN
3879       if (Pred == FCmpInst::FCMP_ONE && isKnownNeverInfinity(LHS, Q.TLI) &&
3880           isKnownNeverNaN(LHS, Q.TLI))
3881         return getTrue(RetTy);
3882     }
3883     if (C->isNegative() && !C->isNegZero()) {
3884       assert(!C->isNaN() && "Unexpected NaN constant!");
3885       // TODO: We can catch more cases by using a range check rather than
3886       //       relying on CannotBeOrderedLessThanZero.
3887       switch (Pred) {
3888       case FCmpInst::FCMP_UGE:
3889       case FCmpInst::FCMP_UGT:
3890       case FCmpInst::FCMP_UNE:
3891         // (X >= 0) implies (X > C) when (C < 0)
3892         if (CannotBeOrderedLessThanZero(LHS, Q.TLI))
3893           return getTrue(RetTy);
3894         break;
3895       case FCmpInst::FCMP_OEQ:
3896       case FCmpInst::FCMP_OLE:
3897       case FCmpInst::FCMP_OLT:
3898         // (X >= 0) implies !(X < C) when (C < 0)
3899         if (CannotBeOrderedLessThanZero(LHS, Q.TLI))
3900           return getFalse(RetTy);
3901         break;
3902       default:
3903         break;
3904       }
3905     }
3906 
3907     // Check comparison of [minnum/maxnum with constant] with other constant.
3908     const APFloat *C2;
3909     if ((match(LHS, m_Intrinsic<Intrinsic::minnum>(m_Value(), m_APFloat(C2))) &&
3910          *C2 < *C) ||
3911         (match(LHS, m_Intrinsic<Intrinsic::maxnum>(m_Value(), m_APFloat(C2))) &&
3912          *C2 > *C)) {
3913       bool IsMaxNum =
3914           cast<IntrinsicInst>(LHS)->getIntrinsicID() == Intrinsic::maxnum;
3915       // The ordered relationship and minnum/maxnum guarantee that we do not
3916       // have NaN constants, so ordered/unordered preds are handled the same.
3917       switch (Pred) {
3918       case FCmpInst::FCMP_OEQ: case FCmpInst::FCMP_UEQ:
3919         // minnum(X, LesserC)  == C --> false
3920         // maxnum(X, GreaterC) == C --> false
3921         return getFalse(RetTy);
3922       case FCmpInst::FCMP_ONE: case FCmpInst::FCMP_UNE:
3923         // minnum(X, LesserC)  != C --> true
3924         // maxnum(X, GreaterC) != C --> true
3925         return getTrue(RetTy);
3926       case FCmpInst::FCMP_OGE: case FCmpInst::FCMP_UGE:
3927       case FCmpInst::FCMP_OGT: case FCmpInst::FCMP_UGT:
3928         // minnum(X, LesserC)  >= C --> false
3929         // minnum(X, LesserC)  >  C --> false
3930         // maxnum(X, GreaterC) >= C --> true
3931         // maxnum(X, GreaterC) >  C --> true
3932         return ConstantInt::get(RetTy, IsMaxNum);
3933       case FCmpInst::FCMP_OLE: case FCmpInst::FCMP_ULE:
3934       case FCmpInst::FCMP_OLT: case FCmpInst::FCMP_ULT:
3935         // minnum(X, LesserC)  <= C --> true
3936         // minnum(X, LesserC)  <  C --> true
3937         // maxnum(X, GreaterC) <= C --> false
3938         // maxnum(X, GreaterC) <  C --> false
3939         return ConstantInt::get(RetTy, !IsMaxNum);
3940       default:
3941         // TRUE/FALSE/ORD/UNO should be handled before this.
3942         llvm_unreachable("Unexpected fcmp predicate");
3943       }
3944     }
3945   }
3946 
3947   if (match(RHS, m_AnyZeroFP())) {
3948     switch (Pred) {
3949     case FCmpInst::FCMP_OGE:
3950     case FCmpInst::FCMP_ULT:
3951       // Positive or zero X >= 0.0 --> true
3952       // Positive or zero X <  0.0 --> false
3953       if ((FMF.noNaNs() || isKnownNeverNaN(LHS, Q.TLI)) &&
3954           CannotBeOrderedLessThanZero(LHS, Q.TLI))
3955         return Pred == FCmpInst::FCMP_OGE ? getTrue(RetTy) : getFalse(RetTy);
3956       break;
3957     case FCmpInst::FCMP_UGE:
3958     case FCmpInst::FCMP_OLT:
3959       // Positive or zero or nan X >= 0.0 --> true
3960       // Positive or zero or nan X <  0.0 --> false
3961       if (CannotBeOrderedLessThanZero(LHS, Q.TLI))
3962         return Pred == FCmpInst::FCMP_UGE ? getTrue(RetTy) : getFalse(RetTy);
3963       break;
3964     default:
3965       break;
3966     }
3967   }
3968 
3969   // If the comparison is with the result of a select instruction, check whether
3970   // comparing with either branch of the select always yields the same value.
3971   if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS))
3972     if (Value *V = ThreadCmpOverSelect(Pred, LHS, RHS, Q, MaxRecurse))
3973       return V;
3974 
3975   // If the comparison is with the result of a phi instruction, check whether
3976   // doing the compare with each incoming phi value yields a common result.
3977   if (isa<PHINode>(LHS) || isa<PHINode>(RHS))
3978     if (Value *V = ThreadCmpOverPHI(Pred, LHS, RHS, Q, MaxRecurse))
3979       return V;
3980 
3981   return nullptr;
3982 }
3983 
3984 Value *llvm::SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
3985                               FastMathFlags FMF, const SimplifyQuery &Q) {
3986   return ::SimplifyFCmpInst(Predicate, LHS, RHS, FMF, Q, RecursionLimit);
3987 }
3988 
3989 static Value *simplifyWithOpReplaced(Value *V, Value *Op, Value *RepOp,
3990                                      const SimplifyQuery &Q,
3991                                      bool AllowRefinement,
3992                                      unsigned MaxRecurse) {
3993   assert(!Op->getType()->isVectorTy() && "This is not safe for vectors");
3994 
3995   // Trivial replacement.
3996   if (V == Op)
3997     return RepOp;
3998 
3999   // We cannot replace a constant, and shouldn't even try.
4000   if (isa<Constant>(Op))
4001     return nullptr;
4002 
4003   auto *I = dyn_cast<Instruction>(V);
4004   if (!I || !is_contained(I->operands(), Op))
4005     return nullptr;
4006 
4007   // Replace Op with RepOp in instruction operands.
4008   SmallVector<Value *, 8> NewOps(I->getNumOperands());
4009   transform(I->operands(), NewOps.begin(),
4010             [&](Value *V) { return V == Op ? RepOp : V; });
4011 
4012   if (!AllowRefinement) {
4013     // General InstSimplify functions may refine the result, e.g. by returning
4014     // a constant for a potentially poison value. To avoid this, implement only
4015     // a few non-refining but profitable transforms here.
4016 
4017     if (auto *BO = dyn_cast<BinaryOperator>(I)) {
4018       unsigned Opcode = BO->getOpcode();
4019       // id op x -> x, x op id -> x
4020       if (NewOps[0] == ConstantExpr::getBinOpIdentity(Opcode, I->getType()))
4021         return NewOps[1];
4022       if (NewOps[1] == ConstantExpr::getBinOpIdentity(Opcode, I->getType(),
4023                                                       /* RHS */ true))
4024         return NewOps[0];
4025 
4026       // x & x -> x, x | x -> x
4027       if ((Opcode == Instruction::And || Opcode == Instruction::Or) &&
4028           NewOps[0] == NewOps[1])
4029         return NewOps[0];
4030     }
4031 
4032     if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) {
4033       // getelementptr x, 0 -> x
4034       if (NewOps.size() == 2 && match(NewOps[1], m_Zero()) &&
4035           !GEP->isInBounds())
4036         return NewOps[0];
4037     }
4038   } else if (MaxRecurse) {
4039     // The simplification queries below may return the original value. Consider:
4040     //   %div = udiv i32 %arg, %arg2
4041     //   %mul = mul nsw i32 %div, %arg2
4042     //   %cmp = icmp eq i32 %mul, %arg
4043     //   %sel = select i1 %cmp, i32 %div, i32 undef
4044     // Replacing %arg by %mul, %div becomes "udiv i32 %mul, %arg2", which
4045     // simplifies back to %arg. This can only happen because %mul does not
4046     // dominate %div. To ensure a consistent return value contract, we make sure
4047     // that this case returns nullptr as well.
4048     auto PreventSelfSimplify = [V](Value *Simplified) {
4049       return Simplified != V ? Simplified : nullptr;
4050     };
4051 
4052     if (auto *B = dyn_cast<BinaryOperator>(I))
4053       return PreventSelfSimplify(SimplifyBinOp(B->getOpcode(), NewOps[0],
4054                                                NewOps[1], Q, MaxRecurse - 1));
4055 
4056     if (CmpInst *C = dyn_cast<CmpInst>(I))
4057       return PreventSelfSimplify(SimplifyCmpInst(C->getPredicate(), NewOps[0],
4058                                                  NewOps[1], Q, MaxRecurse - 1));
4059 
4060     if (auto *GEP = dyn_cast<GetElementPtrInst>(I))
4061       return PreventSelfSimplify(SimplifyGEPInst(
4062           GEP->getSourceElementType(), NewOps[0], makeArrayRef(NewOps).slice(1),
4063           GEP->isInBounds(), Q, MaxRecurse - 1));
4064 
4065     if (isa<SelectInst>(I))
4066       return PreventSelfSimplify(
4067           SimplifySelectInst(NewOps[0], NewOps[1], NewOps[2], Q,
4068                              MaxRecurse - 1));
4069     // TODO: We could hand off more cases to instsimplify here.
4070   }
4071 
4072   // If all operands are constant after substituting Op for RepOp then we can
4073   // constant fold the instruction.
4074   SmallVector<Constant *, 8> ConstOps;
4075   for (Value *NewOp : NewOps) {
4076     if (Constant *ConstOp = dyn_cast<Constant>(NewOp))
4077       ConstOps.push_back(ConstOp);
4078     else
4079       return nullptr;
4080   }
4081 
4082   // Consider:
4083   //   %cmp = icmp eq i32 %x, 2147483647
4084   //   %add = add nsw i32 %x, 1
4085   //   %sel = select i1 %cmp, i32 -2147483648, i32 %add
4086   //
4087   // We can't replace %sel with %add unless we strip away the flags (which
4088   // will be done in InstCombine).
4089   // TODO: This may be unsound, because it only catches some forms of
4090   // refinement.
4091   if (!AllowRefinement && canCreatePoison(cast<Operator>(I)))
4092     return nullptr;
4093 
4094   if (CmpInst *C = dyn_cast<CmpInst>(I))
4095     return ConstantFoldCompareInstOperands(C->getPredicate(), ConstOps[0],
4096                                            ConstOps[1], Q.DL, Q.TLI);
4097 
4098   if (LoadInst *LI = dyn_cast<LoadInst>(I))
4099     if (!LI->isVolatile())
4100       return ConstantFoldLoadFromConstPtr(ConstOps[0], LI->getType(), Q.DL);
4101 
4102   return ConstantFoldInstOperands(I, ConstOps, Q.DL, Q.TLI);
4103 }
4104 
4105 Value *llvm::simplifyWithOpReplaced(Value *V, Value *Op, Value *RepOp,
4106                                     const SimplifyQuery &Q,
4107                                     bool AllowRefinement) {
4108   return ::simplifyWithOpReplaced(V, Op, RepOp, Q, AllowRefinement,
4109                                   RecursionLimit);
4110 }
4111 
4112 /// Try to simplify a select instruction when its condition operand is an
4113 /// integer comparison where one operand of the compare is a constant.
4114 static Value *simplifySelectBitTest(Value *TrueVal, Value *FalseVal, Value *X,
4115                                     const APInt *Y, bool TrueWhenUnset) {
4116   const APInt *C;
4117 
4118   // (X & Y) == 0 ? X & ~Y : X  --> X
4119   // (X & Y) != 0 ? X & ~Y : X  --> X & ~Y
4120   if (FalseVal == X && match(TrueVal, m_And(m_Specific(X), m_APInt(C))) &&
4121       *Y == ~*C)
4122     return TrueWhenUnset ? FalseVal : TrueVal;
4123 
4124   // (X & Y) == 0 ? X : X & ~Y  --> X & ~Y
4125   // (X & Y) != 0 ? X : X & ~Y  --> X
4126   if (TrueVal == X && match(FalseVal, m_And(m_Specific(X), m_APInt(C))) &&
4127       *Y == ~*C)
4128     return TrueWhenUnset ? FalseVal : TrueVal;
4129 
4130   if (Y->isPowerOf2()) {
4131     // (X & Y) == 0 ? X | Y : X  --> X | Y
4132     // (X & Y) != 0 ? X | Y : X  --> X
4133     if (FalseVal == X && match(TrueVal, m_Or(m_Specific(X), m_APInt(C))) &&
4134         *Y == *C)
4135       return TrueWhenUnset ? TrueVal : FalseVal;
4136 
4137     // (X & Y) == 0 ? X : X | Y  --> X
4138     // (X & Y) != 0 ? X : X | Y  --> X | Y
4139     if (TrueVal == X && match(FalseVal, m_Or(m_Specific(X), m_APInt(C))) &&
4140         *Y == *C)
4141       return TrueWhenUnset ? TrueVal : FalseVal;
4142   }
4143 
4144   return nullptr;
4145 }
4146 
4147 /// An alternative way to test if a bit is set or not uses sgt/slt instead of
4148 /// eq/ne.
4149 static Value *simplifySelectWithFakeICmpEq(Value *CmpLHS, Value *CmpRHS,
4150                                            ICmpInst::Predicate Pred,
4151                                            Value *TrueVal, Value *FalseVal) {
4152   Value *X;
4153   APInt Mask;
4154   if (!decomposeBitTestICmp(CmpLHS, CmpRHS, Pred, X, Mask))
4155     return nullptr;
4156 
4157   return simplifySelectBitTest(TrueVal, FalseVal, X, &Mask,
4158                                Pred == ICmpInst::ICMP_EQ);
4159 }
4160 
4161 /// Try to simplify a select instruction when its condition operand is an
4162 /// integer comparison.
4163 static Value *simplifySelectWithICmpCond(Value *CondVal, Value *TrueVal,
4164                                          Value *FalseVal, const SimplifyQuery &Q,
4165                                          unsigned MaxRecurse) {
4166   ICmpInst::Predicate Pred;
4167   Value *CmpLHS, *CmpRHS;
4168   if (!match(CondVal, m_ICmp(Pred, m_Value(CmpLHS), m_Value(CmpRHS))))
4169     return nullptr;
4170 
4171   // Canonicalize ne to eq predicate.
4172   if (Pred == ICmpInst::ICMP_NE) {
4173     Pred = ICmpInst::ICMP_EQ;
4174     std::swap(TrueVal, FalseVal);
4175   }
4176 
4177   // Check for integer min/max with a limit constant:
4178   // X > MIN_INT ? X : MIN_INT --> X
4179   // X < MAX_INT ? X : MAX_INT --> X
4180   if (TrueVal->getType()->isIntOrIntVectorTy()) {
4181     Value *X, *Y;
4182     SelectPatternFlavor SPF =
4183         matchDecomposedSelectPattern(cast<ICmpInst>(CondVal), TrueVal, FalseVal,
4184                                      X, Y).Flavor;
4185     if (SelectPatternResult::isMinOrMax(SPF) && Pred == getMinMaxPred(SPF)) {
4186       APInt LimitC = getMinMaxLimit(getInverseMinMaxFlavor(SPF),
4187                                     X->getType()->getScalarSizeInBits());
4188       if (match(Y, m_SpecificInt(LimitC)))
4189         return X;
4190     }
4191   }
4192 
4193   if (Pred == ICmpInst::ICMP_EQ && match(CmpRHS, m_Zero())) {
4194     Value *X;
4195     const APInt *Y;
4196     if (match(CmpLHS, m_And(m_Value(X), m_APInt(Y))))
4197       if (Value *V = simplifySelectBitTest(TrueVal, FalseVal, X, Y,
4198                                            /*TrueWhenUnset=*/true))
4199         return V;
4200 
4201     // Test for a bogus zero-shift-guard-op around funnel-shift or rotate.
4202     Value *ShAmt;
4203     auto isFsh = m_CombineOr(m_FShl(m_Value(X), m_Value(), m_Value(ShAmt)),
4204                              m_FShr(m_Value(), m_Value(X), m_Value(ShAmt)));
4205     // (ShAmt == 0) ? fshl(X, *, ShAmt) : X --> X
4206     // (ShAmt == 0) ? fshr(*, X, ShAmt) : X --> X
4207     if (match(TrueVal, isFsh) && FalseVal == X && CmpLHS == ShAmt)
4208       return X;
4209 
4210     // Test for a zero-shift-guard-op around rotates. These are used to
4211     // avoid UB from oversized shifts in raw IR rotate patterns, but the
4212     // intrinsics do not have that problem.
4213     // We do not allow this transform for the general funnel shift case because
4214     // that would not preserve the poison safety of the original code.
4215     auto isRotate =
4216         m_CombineOr(m_FShl(m_Value(X), m_Deferred(X), m_Value(ShAmt)),
4217                     m_FShr(m_Value(X), m_Deferred(X), m_Value(ShAmt)));
4218     // (ShAmt == 0) ? X : fshl(X, X, ShAmt) --> fshl(X, X, ShAmt)
4219     // (ShAmt == 0) ? X : fshr(X, X, ShAmt) --> fshr(X, X, ShAmt)
4220     if (match(FalseVal, isRotate) && TrueVal == X && CmpLHS == ShAmt &&
4221         Pred == ICmpInst::ICMP_EQ)
4222       return FalseVal;
4223 
4224     // X == 0 ? abs(X) : -abs(X) --> -abs(X)
4225     // X == 0 ? -abs(X) : abs(X) --> abs(X)
4226     if (match(TrueVal, m_Intrinsic<Intrinsic::abs>(m_Specific(CmpLHS))) &&
4227         match(FalseVal, m_Neg(m_Intrinsic<Intrinsic::abs>(m_Specific(CmpLHS)))))
4228       return FalseVal;
4229     if (match(TrueVal,
4230               m_Neg(m_Intrinsic<Intrinsic::abs>(m_Specific(CmpLHS)))) &&
4231         match(FalseVal, m_Intrinsic<Intrinsic::abs>(m_Specific(CmpLHS))))
4232       return FalseVal;
4233   }
4234 
4235   // Check for other compares that behave like bit test.
4236   if (Value *V = simplifySelectWithFakeICmpEq(CmpLHS, CmpRHS, Pred,
4237                                               TrueVal, FalseVal))
4238     return V;
4239 
4240   // If we have a scalar equality comparison, then we know the value in one of
4241   // the arms of the select. See if substituting this value into the arm and
4242   // simplifying the result yields the same value as the other arm.
4243   // Note that the equivalence/replacement opportunity does not hold for vectors
4244   // because each element of a vector select is chosen independently.
4245   if (Pred == ICmpInst::ICMP_EQ && !CondVal->getType()->isVectorTy()) {
4246     if (simplifyWithOpReplaced(FalseVal, CmpLHS, CmpRHS, Q,
4247                                /* AllowRefinement */ false, MaxRecurse) ==
4248             TrueVal ||
4249         simplifyWithOpReplaced(FalseVal, CmpRHS, CmpLHS, Q,
4250                                /* AllowRefinement */ false, MaxRecurse) ==
4251             TrueVal)
4252       return FalseVal;
4253     if (simplifyWithOpReplaced(TrueVal, CmpLHS, CmpRHS, Q,
4254                                /* AllowRefinement */ true, MaxRecurse) ==
4255             FalseVal ||
4256         simplifyWithOpReplaced(TrueVal, CmpRHS, CmpLHS, Q,
4257                                /* AllowRefinement */ true, MaxRecurse) ==
4258             FalseVal)
4259       return FalseVal;
4260   }
4261 
4262   return nullptr;
4263 }
4264 
4265 /// Try to simplify a select instruction when its condition operand is a
4266 /// floating-point comparison.
4267 static Value *simplifySelectWithFCmp(Value *Cond, Value *T, Value *F,
4268                                      const SimplifyQuery &Q) {
4269   FCmpInst::Predicate Pred;
4270   if (!match(Cond, m_FCmp(Pred, m_Specific(T), m_Specific(F))) &&
4271       !match(Cond, m_FCmp(Pred, m_Specific(F), m_Specific(T))))
4272     return nullptr;
4273 
4274   // This transform is safe if we do not have (do not care about) -0.0 or if
4275   // at least one operand is known to not be -0.0. Otherwise, the select can
4276   // change the sign of a zero operand.
4277   bool HasNoSignedZeros = Q.CxtI && isa<FPMathOperator>(Q.CxtI) &&
4278                           Q.CxtI->hasNoSignedZeros();
4279   const APFloat *C;
4280   if (HasNoSignedZeros || (match(T, m_APFloat(C)) && C->isNonZero()) ||
4281                           (match(F, m_APFloat(C)) && C->isNonZero())) {
4282     // (T == F) ? T : F --> F
4283     // (F == T) ? T : F --> F
4284     if (Pred == FCmpInst::FCMP_OEQ)
4285       return F;
4286 
4287     // (T != F) ? T : F --> T
4288     // (F != T) ? T : F --> T
4289     if (Pred == FCmpInst::FCMP_UNE)
4290       return T;
4291   }
4292 
4293   return nullptr;
4294 }
4295 
4296 /// Given operands for a SelectInst, see if we can fold the result.
4297 /// If not, this returns null.
4298 static Value *SimplifySelectInst(Value *Cond, Value *TrueVal, Value *FalseVal,
4299                                  const SimplifyQuery &Q, unsigned MaxRecurse) {
4300   if (auto *CondC = dyn_cast<Constant>(Cond)) {
4301     if (auto *TrueC = dyn_cast<Constant>(TrueVal))
4302       if (auto *FalseC = dyn_cast<Constant>(FalseVal))
4303         return ConstantFoldSelectInstruction(CondC, TrueC, FalseC);
4304 
4305     // select poison, X, Y -> poison
4306     if (isa<PoisonValue>(CondC))
4307       return PoisonValue::get(TrueVal->getType());
4308 
4309     // select undef, X, Y -> X or Y
4310     if (Q.isUndefValue(CondC))
4311       return isa<Constant>(FalseVal) ? FalseVal : TrueVal;
4312 
4313     // select true,  X, Y --> X
4314     // select false, X, Y --> Y
4315     // For vectors, allow undef/poison elements in the condition to match the
4316     // defined elements, so we can eliminate the select.
4317     if (match(CondC, m_One()))
4318       return TrueVal;
4319     if (match(CondC, m_Zero()))
4320       return FalseVal;
4321   }
4322 
4323   assert(Cond->getType()->isIntOrIntVectorTy(1) &&
4324          "Select must have bool or bool vector condition");
4325   assert(TrueVal->getType() == FalseVal->getType() &&
4326          "Select must have same types for true/false ops");
4327 
4328   if (Cond->getType() == TrueVal->getType()) {
4329     // select i1 Cond, i1 true, i1 false --> i1 Cond
4330     if (match(TrueVal, m_One()) && match(FalseVal, m_ZeroInt()))
4331       return Cond;
4332 
4333     // (X || Y) && (X || !Y) --> X (commuted 8 ways)
4334     Value *X, *Y;
4335     if (match(FalseVal, m_ZeroInt())) {
4336       if (match(Cond, m_c_LogicalOr(m_Value(X), m_Not(m_Value(Y)))) &&
4337           match(TrueVal, m_c_LogicalOr(m_Specific(X), m_Specific(Y))))
4338         return X;
4339       if (match(TrueVal, m_c_LogicalOr(m_Value(X), m_Not(m_Value(Y)))) &&
4340           match(Cond, m_c_LogicalOr(m_Specific(X), m_Specific(Y))))
4341         return X;
4342     }
4343   }
4344 
4345   // select ?, X, X -> X
4346   if (TrueVal == FalseVal)
4347     return TrueVal;
4348 
4349   // If the true or false value is poison, we can fold to the other value.
4350   // If the true or false value is undef, we can fold to the other value as
4351   // long as the other value isn't poison.
4352   // select ?, poison, X -> X
4353   // select ?, undef,  X -> X
4354   if (isa<PoisonValue>(TrueVal) ||
4355       (Q.isUndefValue(TrueVal) &&
4356        isGuaranteedNotToBePoison(FalseVal, Q.AC, Q.CxtI, Q.DT)))
4357     return FalseVal;
4358   // select ?, X, poison -> X
4359   // select ?, X, undef  -> X
4360   if (isa<PoisonValue>(FalseVal) ||
4361       (Q.isUndefValue(FalseVal) &&
4362        isGuaranteedNotToBePoison(TrueVal, Q.AC, Q.CxtI, Q.DT)))
4363     return TrueVal;
4364 
4365   // Deal with partial undef vector constants: select ?, VecC, VecC' --> VecC''
4366   Constant *TrueC, *FalseC;
4367   if (isa<FixedVectorType>(TrueVal->getType()) &&
4368       match(TrueVal, m_Constant(TrueC)) &&
4369       match(FalseVal, m_Constant(FalseC))) {
4370     unsigned NumElts =
4371         cast<FixedVectorType>(TrueC->getType())->getNumElements();
4372     SmallVector<Constant *, 16> NewC;
4373     for (unsigned i = 0; i != NumElts; ++i) {
4374       // Bail out on incomplete vector constants.
4375       Constant *TEltC = TrueC->getAggregateElement(i);
4376       Constant *FEltC = FalseC->getAggregateElement(i);
4377       if (!TEltC || !FEltC)
4378         break;
4379 
4380       // If the elements match (undef or not), that value is the result. If only
4381       // one element is undef, choose the defined element as the safe result.
4382       if (TEltC == FEltC)
4383         NewC.push_back(TEltC);
4384       else if (isa<PoisonValue>(TEltC) ||
4385                (Q.isUndefValue(TEltC) && isGuaranteedNotToBePoison(FEltC)))
4386         NewC.push_back(FEltC);
4387       else if (isa<PoisonValue>(FEltC) ||
4388                (Q.isUndefValue(FEltC) && isGuaranteedNotToBePoison(TEltC)))
4389         NewC.push_back(TEltC);
4390       else
4391         break;
4392     }
4393     if (NewC.size() == NumElts)
4394       return ConstantVector::get(NewC);
4395   }
4396 
4397   if (Value *V =
4398           simplifySelectWithICmpCond(Cond, TrueVal, FalseVal, Q, MaxRecurse))
4399     return V;
4400 
4401   if (Value *V = simplifySelectWithFCmp(Cond, TrueVal, FalseVal, Q))
4402     return V;
4403 
4404   if (Value *V = foldSelectWithBinaryOp(Cond, TrueVal, FalseVal))
4405     return V;
4406 
4407   Optional<bool> Imp = isImpliedByDomCondition(Cond, Q.CxtI, Q.DL);
4408   if (Imp)
4409     return *Imp ? TrueVal : FalseVal;
4410 
4411   return nullptr;
4412 }
4413 
4414 Value *llvm::SimplifySelectInst(Value *Cond, Value *TrueVal, Value *FalseVal,
4415                                 const SimplifyQuery &Q) {
4416   return ::SimplifySelectInst(Cond, TrueVal, FalseVal, Q, RecursionLimit);
4417 }
4418 
4419 /// Given operands for an GetElementPtrInst, see if we can fold the result.
4420 /// If not, this returns null.
4421 static Value *SimplifyGEPInst(Type *SrcTy, Value *Ptr,
4422                               ArrayRef<Value *> Indices, bool InBounds,
4423                               const SimplifyQuery &Q, unsigned) {
4424   // The type of the GEP pointer operand.
4425   unsigned AS =
4426       cast<PointerType>(Ptr->getType()->getScalarType())->getAddressSpace();
4427 
4428   // getelementptr P -> P.
4429   if (Indices.empty())
4430     return Ptr;
4431 
4432   // Compute the (pointer) type returned by the GEP instruction.
4433   Type *LastType = GetElementPtrInst::getIndexedType(SrcTy, Indices);
4434   Type *GEPTy = PointerType::get(LastType, AS);
4435   if (VectorType *VT = dyn_cast<VectorType>(Ptr->getType()))
4436     GEPTy = VectorType::get(GEPTy, VT->getElementCount());
4437   else {
4438     for (Value *Op : Indices) {
4439       // If one of the operands is a vector, the result type is a vector of
4440       // pointers. All vector operands must have the same number of elements.
4441       if (VectorType *VT = dyn_cast<VectorType>(Op->getType())) {
4442         GEPTy = VectorType::get(GEPTy, VT->getElementCount());
4443         break;
4444       }
4445     }
4446   }
4447 
4448   // For opaque pointers an all-zero GEP is a no-op. For typed pointers,
4449   // it may be equivalent to a bitcast.
4450   if (Ptr->getType()->isOpaquePointerTy() &&
4451       all_of(Indices, [](const auto *V) { return match(V, m_Zero()); }))
4452     return Ptr;
4453 
4454   // getelementptr poison, idx -> poison
4455   // getelementptr baseptr, poison -> poison
4456   if (isa<PoisonValue>(Ptr) ||
4457       any_of(Indices, [](const auto *V) { return isa<PoisonValue>(V); }))
4458     return PoisonValue::get(GEPTy);
4459 
4460   if (Q.isUndefValue(Ptr))
4461     // If inbounds, we can choose an out-of-bounds pointer as a base pointer.
4462     return InBounds ? PoisonValue::get(GEPTy) : UndefValue::get(GEPTy);
4463 
4464   bool IsScalableVec =
4465       isa<ScalableVectorType>(SrcTy) || any_of(Indices, [](const Value *V) {
4466         return isa<ScalableVectorType>(V->getType());
4467       });
4468 
4469   if (Indices.size() == 1) {
4470     // getelementptr P, 0 -> P.
4471     if (match(Indices[0], m_Zero()) && Ptr->getType() == GEPTy)
4472       return Ptr;
4473 
4474     Type *Ty = SrcTy;
4475     if (!IsScalableVec && Ty->isSized()) {
4476       Value *P;
4477       uint64_t C;
4478       uint64_t TyAllocSize = Q.DL.getTypeAllocSize(Ty);
4479       // getelementptr P, N -> P if P points to a type of zero size.
4480       if (TyAllocSize == 0 && Ptr->getType() == GEPTy)
4481         return Ptr;
4482 
4483       // The following transforms are only safe if the ptrtoint cast
4484       // doesn't truncate the pointers.
4485       if (Indices[0]->getType()->getScalarSizeInBits() ==
4486           Q.DL.getPointerSizeInBits(AS)) {
4487         auto CanSimplify = [GEPTy, &P, Ptr]() -> bool {
4488           return P->getType() == GEPTy &&
4489                  getUnderlyingObject(P) == getUnderlyingObject(Ptr);
4490         };
4491         // getelementptr V, (sub P, V) -> P if P points to a type of size 1.
4492         if (TyAllocSize == 1 &&
4493             match(Indices[0],
4494                   m_Sub(m_PtrToInt(m_Value(P)), m_PtrToInt(m_Specific(Ptr)))) &&
4495             CanSimplify())
4496           return P;
4497 
4498         // getelementptr V, (ashr (sub P, V), C) -> P if P points to a type of
4499         // size 1 << C.
4500         if (match(Indices[0], m_AShr(m_Sub(m_PtrToInt(m_Value(P)),
4501                                            m_PtrToInt(m_Specific(Ptr))),
4502                                      m_ConstantInt(C))) &&
4503             TyAllocSize == 1ULL << C && CanSimplify())
4504           return P;
4505 
4506         // getelementptr V, (sdiv (sub P, V), C) -> P if P points to a type of
4507         // size C.
4508         if (match(Indices[0], m_SDiv(m_Sub(m_PtrToInt(m_Value(P)),
4509                                            m_PtrToInt(m_Specific(Ptr))),
4510                                      m_SpecificInt(TyAllocSize))) &&
4511             CanSimplify())
4512           return P;
4513       }
4514     }
4515   }
4516 
4517   if (!IsScalableVec && Q.DL.getTypeAllocSize(LastType) == 1 &&
4518       all_of(Indices.drop_back(1),
4519              [](Value *Idx) { return match(Idx, m_Zero()); })) {
4520     unsigned IdxWidth =
4521         Q.DL.getIndexSizeInBits(Ptr->getType()->getPointerAddressSpace());
4522     if (Q.DL.getTypeSizeInBits(Indices.back()->getType()) == IdxWidth) {
4523       APInt BasePtrOffset(IdxWidth, 0);
4524       Value *StrippedBasePtr =
4525           Ptr->stripAndAccumulateInBoundsConstantOffsets(Q.DL, BasePtrOffset);
4526 
4527       // Avoid creating inttoptr of zero here: While LLVMs treatment of
4528       // inttoptr is generally conservative, this particular case is folded to
4529       // a null pointer, which will have incorrect provenance.
4530 
4531       // gep (gep V, C), (sub 0, V) -> C
4532       if (match(Indices.back(),
4533                 m_Sub(m_Zero(), m_PtrToInt(m_Specific(StrippedBasePtr)))) &&
4534           !BasePtrOffset.isZero()) {
4535         auto *CI = ConstantInt::get(GEPTy->getContext(), BasePtrOffset);
4536         return ConstantExpr::getIntToPtr(CI, GEPTy);
4537       }
4538       // gep (gep V, C), (xor V, -1) -> C-1
4539       if (match(Indices.back(),
4540                 m_Xor(m_PtrToInt(m_Specific(StrippedBasePtr)), m_AllOnes())) &&
4541           !BasePtrOffset.isOne()) {
4542         auto *CI = ConstantInt::get(GEPTy->getContext(), BasePtrOffset - 1);
4543         return ConstantExpr::getIntToPtr(CI, GEPTy);
4544       }
4545     }
4546   }
4547 
4548   // Check to see if this is constant foldable.
4549   if (!isa<Constant>(Ptr) ||
4550       !all_of(Indices, [](Value *V) { return isa<Constant>(V); }))
4551     return nullptr;
4552 
4553   auto *CE = ConstantExpr::getGetElementPtr(SrcTy, cast<Constant>(Ptr), Indices,
4554                                             InBounds);
4555   return ConstantFoldConstant(CE, Q.DL);
4556 }
4557 
4558 Value *llvm::SimplifyGEPInst(Type *SrcTy, Value *Ptr, ArrayRef<Value *> Indices,
4559                              bool InBounds, const SimplifyQuery &Q) {
4560   return ::SimplifyGEPInst(SrcTy, Ptr, Indices, InBounds, Q, RecursionLimit);
4561 }
4562 
4563 /// Given operands for an InsertValueInst, see if we can fold the result.
4564 /// If not, this returns null.
4565 static Value *SimplifyInsertValueInst(Value *Agg, Value *Val,
4566                                       ArrayRef<unsigned> Idxs, const SimplifyQuery &Q,
4567                                       unsigned) {
4568   if (Constant *CAgg = dyn_cast<Constant>(Agg))
4569     if (Constant *CVal = dyn_cast<Constant>(Val))
4570       return ConstantFoldInsertValueInstruction(CAgg, CVal, Idxs);
4571 
4572   // insertvalue x, undef, n -> x
4573   if (Q.isUndefValue(Val))
4574     return Agg;
4575 
4576   // insertvalue x, (extractvalue y, n), n
4577   if (ExtractValueInst *EV = dyn_cast<ExtractValueInst>(Val))
4578     if (EV->getAggregateOperand()->getType() == Agg->getType() &&
4579         EV->getIndices() == Idxs) {
4580       // insertvalue undef, (extractvalue y, n), n -> y
4581       if (Q.isUndefValue(Agg))
4582         return EV->getAggregateOperand();
4583 
4584       // insertvalue y, (extractvalue y, n), n -> y
4585       if (Agg == EV->getAggregateOperand())
4586         return Agg;
4587     }
4588 
4589   return nullptr;
4590 }
4591 
4592 Value *llvm::SimplifyInsertValueInst(Value *Agg, Value *Val,
4593                                      ArrayRef<unsigned> Idxs,
4594                                      const SimplifyQuery &Q) {
4595   return ::SimplifyInsertValueInst(Agg, Val, Idxs, Q, RecursionLimit);
4596 }
4597 
4598 Value *llvm::SimplifyInsertElementInst(Value *Vec, Value *Val, Value *Idx,
4599                                        const SimplifyQuery &Q) {
4600   // Try to constant fold.
4601   auto *VecC = dyn_cast<Constant>(Vec);
4602   auto *ValC = dyn_cast<Constant>(Val);
4603   auto *IdxC = dyn_cast<Constant>(Idx);
4604   if (VecC && ValC && IdxC)
4605     return ConstantExpr::getInsertElement(VecC, ValC, IdxC);
4606 
4607   // For fixed-length vector, fold into poison if index is out of bounds.
4608   if (auto *CI = dyn_cast<ConstantInt>(Idx)) {
4609     if (isa<FixedVectorType>(Vec->getType()) &&
4610         CI->uge(cast<FixedVectorType>(Vec->getType())->getNumElements()))
4611       return PoisonValue::get(Vec->getType());
4612   }
4613 
4614   // If index is undef, it might be out of bounds (see above case)
4615   if (Q.isUndefValue(Idx))
4616     return PoisonValue::get(Vec->getType());
4617 
4618   // If the scalar is poison, or it is undef and there is no risk of
4619   // propagating poison from the vector value, simplify to the vector value.
4620   if (isa<PoisonValue>(Val) ||
4621       (Q.isUndefValue(Val) && isGuaranteedNotToBePoison(Vec)))
4622     return Vec;
4623 
4624   // If we are extracting a value from a vector, then inserting it into the same
4625   // place, that's the input vector:
4626   // insertelt Vec, (extractelt Vec, Idx), Idx --> Vec
4627   if (match(Val, m_ExtractElt(m_Specific(Vec), m_Specific(Idx))))
4628     return Vec;
4629 
4630   return nullptr;
4631 }
4632 
4633 /// Given operands for an ExtractValueInst, see if we can fold the result.
4634 /// If not, this returns null.
4635 static Value *SimplifyExtractValueInst(Value *Agg, ArrayRef<unsigned> Idxs,
4636                                        const SimplifyQuery &, unsigned) {
4637   if (auto *CAgg = dyn_cast<Constant>(Agg))
4638     return ConstantFoldExtractValueInstruction(CAgg, Idxs);
4639 
4640   // extractvalue x, (insertvalue y, elt, n), n -> elt
4641   unsigned NumIdxs = Idxs.size();
4642   for (auto *IVI = dyn_cast<InsertValueInst>(Agg); IVI != nullptr;
4643        IVI = dyn_cast<InsertValueInst>(IVI->getAggregateOperand())) {
4644     ArrayRef<unsigned> InsertValueIdxs = IVI->getIndices();
4645     unsigned NumInsertValueIdxs = InsertValueIdxs.size();
4646     unsigned NumCommonIdxs = std::min(NumInsertValueIdxs, NumIdxs);
4647     if (InsertValueIdxs.slice(0, NumCommonIdxs) ==
4648         Idxs.slice(0, NumCommonIdxs)) {
4649       if (NumIdxs == NumInsertValueIdxs)
4650         return IVI->getInsertedValueOperand();
4651       break;
4652     }
4653   }
4654 
4655   return nullptr;
4656 }
4657 
4658 Value *llvm::SimplifyExtractValueInst(Value *Agg, ArrayRef<unsigned> Idxs,
4659                                       const SimplifyQuery &Q) {
4660   return ::SimplifyExtractValueInst(Agg, Idxs, Q, RecursionLimit);
4661 }
4662 
4663 /// Given operands for an ExtractElementInst, see if we can fold the result.
4664 /// If not, this returns null.
4665 static Value *SimplifyExtractElementInst(Value *Vec, Value *Idx,
4666                                          const SimplifyQuery &Q, unsigned) {
4667   auto *VecVTy = cast<VectorType>(Vec->getType());
4668   if (auto *CVec = dyn_cast<Constant>(Vec)) {
4669     if (auto *CIdx = dyn_cast<Constant>(Idx))
4670       return ConstantExpr::getExtractElement(CVec, CIdx);
4671 
4672     if (Q.isUndefValue(Vec))
4673       return UndefValue::get(VecVTy->getElementType());
4674   }
4675 
4676   // An undef extract index can be arbitrarily chosen to be an out-of-range
4677   // index value, which would result in the instruction being poison.
4678   if (Q.isUndefValue(Idx))
4679     return PoisonValue::get(VecVTy->getElementType());
4680 
4681   // If extracting a specified index from the vector, see if we can recursively
4682   // find a previously computed scalar that was inserted into the vector.
4683   if (auto *IdxC = dyn_cast<ConstantInt>(Idx)) {
4684     // For fixed-length vector, fold into undef if index is out of bounds.
4685     unsigned MinNumElts = VecVTy->getElementCount().getKnownMinValue();
4686     if (isa<FixedVectorType>(VecVTy) && IdxC->getValue().uge(MinNumElts))
4687       return PoisonValue::get(VecVTy->getElementType());
4688     // Handle case where an element is extracted from a splat.
4689     if (IdxC->getValue().ult(MinNumElts))
4690       if (auto *Splat = getSplatValue(Vec))
4691         return Splat;
4692     if (Value *Elt = findScalarElement(Vec, IdxC->getZExtValue()))
4693       return Elt;
4694   } else {
4695     // The index is not relevant if our vector is a splat.
4696     if (Value *Splat = getSplatValue(Vec))
4697       return Splat;
4698   }
4699   return nullptr;
4700 }
4701 
4702 Value *llvm::SimplifyExtractElementInst(Value *Vec, Value *Idx,
4703                                         const SimplifyQuery &Q) {
4704   return ::SimplifyExtractElementInst(Vec, Idx, Q, RecursionLimit);
4705 }
4706 
4707 /// See if we can fold the given phi. If not, returns null.
4708 static Value *SimplifyPHINode(PHINode *PN, ArrayRef<Value *> IncomingValues,
4709                               const SimplifyQuery &Q) {
4710   // WARNING: no matter how worthwhile it may seem, we can not perform PHI CSE
4711   //          here, because the PHI we may succeed simplifying to was not
4712   //          def-reachable from the original PHI!
4713 
4714   // If all of the PHI's incoming values are the same then replace the PHI node
4715   // with the common value.
4716   Value *CommonValue = nullptr;
4717   bool HasUndefInput = false;
4718   for (Value *Incoming : IncomingValues) {
4719     // If the incoming value is the phi node itself, it can safely be skipped.
4720     if (Incoming == PN) continue;
4721     if (Q.isUndefValue(Incoming)) {
4722       // Remember that we saw an undef value, but otherwise ignore them.
4723       HasUndefInput = true;
4724       continue;
4725     }
4726     if (CommonValue && Incoming != CommonValue)
4727       return nullptr;  // Not the same, bail out.
4728     CommonValue = Incoming;
4729   }
4730 
4731   // If CommonValue is null then all of the incoming values were either undef or
4732   // equal to the phi node itself.
4733   if (!CommonValue)
4734     return UndefValue::get(PN->getType());
4735 
4736   // If we have a PHI node like phi(X, undef, X), where X is defined by some
4737   // instruction, we cannot return X as the result of the PHI node unless it
4738   // dominates the PHI block.
4739   if (HasUndefInput)
4740     return valueDominatesPHI(CommonValue, PN, Q.DT) ? CommonValue : nullptr;
4741 
4742   return CommonValue;
4743 }
4744 
4745 static Value *SimplifyCastInst(unsigned CastOpc, Value *Op,
4746                                Type *Ty, const SimplifyQuery &Q, unsigned MaxRecurse) {
4747   if (auto *C = dyn_cast<Constant>(Op))
4748     return ConstantFoldCastOperand(CastOpc, C, Ty, Q.DL);
4749 
4750   if (auto *CI = dyn_cast<CastInst>(Op)) {
4751     auto *Src = CI->getOperand(0);
4752     Type *SrcTy = Src->getType();
4753     Type *MidTy = CI->getType();
4754     Type *DstTy = Ty;
4755     if (Src->getType() == Ty) {
4756       auto FirstOp = static_cast<Instruction::CastOps>(CI->getOpcode());
4757       auto SecondOp = static_cast<Instruction::CastOps>(CastOpc);
4758       Type *SrcIntPtrTy =
4759           SrcTy->isPtrOrPtrVectorTy() ? Q.DL.getIntPtrType(SrcTy) : nullptr;
4760       Type *MidIntPtrTy =
4761           MidTy->isPtrOrPtrVectorTy() ? Q.DL.getIntPtrType(MidTy) : nullptr;
4762       Type *DstIntPtrTy =
4763           DstTy->isPtrOrPtrVectorTy() ? Q.DL.getIntPtrType(DstTy) : nullptr;
4764       if (CastInst::isEliminableCastPair(FirstOp, SecondOp, SrcTy, MidTy, DstTy,
4765                                          SrcIntPtrTy, MidIntPtrTy,
4766                                          DstIntPtrTy) == Instruction::BitCast)
4767         return Src;
4768     }
4769   }
4770 
4771   // bitcast x -> x
4772   if (CastOpc == Instruction::BitCast)
4773     if (Op->getType() == Ty)
4774       return Op;
4775 
4776   return nullptr;
4777 }
4778 
4779 Value *llvm::SimplifyCastInst(unsigned CastOpc, Value *Op, Type *Ty,
4780                               const SimplifyQuery &Q) {
4781   return ::SimplifyCastInst(CastOpc, Op, Ty, Q, RecursionLimit);
4782 }
4783 
4784 /// For the given destination element of a shuffle, peek through shuffles to
4785 /// match a root vector source operand that contains that element in the same
4786 /// vector lane (ie, the same mask index), so we can eliminate the shuffle(s).
4787 static Value *foldIdentityShuffles(int DestElt, Value *Op0, Value *Op1,
4788                                    int MaskVal, Value *RootVec,
4789                                    unsigned MaxRecurse) {
4790   if (!MaxRecurse--)
4791     return nullptr;
4792 
4793   // Bail out if any mask value is undefined. That kind of shuffle may be
4794   // simplified further based on demanded bits or other folds.
4795   if (MaskVal == -1)
4796     return nullptr;
4797 
4798   // The mask value chooses which source operand we need to look at next.
4799   int InVecNumElts = cast<FixedVectorType>(Op0->getType())->getNumElements();
4800   int RootElt = MaskVal;
4801   Value *SourceOp = Op0;
4802   if (MaskVal >= InVecNumElts) {
4803     RootElt = MaskVal - InVecNumElts;
4804     SourceOp = Op1;
4805   }
4806 
4807   // If the source operand is a shuffle itself, look through it to find the
4808   // matching root vector.
4809   if (auto *SourceShuf = dyn_cast<ShuffleVectorInst>(SourceOp)) {
4810     return foldIdentityShuffles(
4811         DestElt, SourceShuf->getOperand(0), SourceShuf->getOperand(1),
4812         SourceShuf->getMaskValue(RootElt), RootVec, MaxRecurse);
4813   }
4814 
4815   // TODO: Look through bitcasts? What if the bitcast changes the vector element
4816   // size?
4817 
4818   // The source operand is not a shuffle. Initialize the root vector value for
4819   // this shuffle if that has not been done yet.
4820   if (!RootVec)
4821     RootVec = SourceOp;
4822 
4823   // Give up as soon as a source operand does not match the existing root value.
4824   if (RootVec != SourceOp)
4825     return nullptr;
4826 
4827   // The element must be coming from the same lane in the source vector
4828   // (although it may have crossed lanes in intermediate shuffles).
4829   if (RootElt != DestElt)
4830     return nullptr;
4831 
4832   return RootVec;
4833 }
4834 
4835 static Value *SimplifyShuffleVectorInst(Value *Op0, Value *Op1,
4836                                         ArrayRef<int> Mask, Type *RetTy,
4837                                         const SimplifyQuery &Q,
4838                                         unsigned MaxRecurse) {
4839   if (all_of(Mask, [](int Elem) { return Elem == UndefMaskElem; }))
4840     return UndefValue::get(RetTy);
4841 
4842   auto *InVecTy = cast<VectorType>(Op0->getType());
4843   unsigned MaskNumElts = Mask.size();
4844   ElementCount InVecEltCount = InVecTy->getElementCount();
4845 
4846   bool Scalable = InVecEltCount.isScalable();
4847 
4848   SmallVector<int, 32> Indices;
4849   Indices.assign(Mask.begin(), Mask.end());
4850 
4851   // Canonicalization: If mask does not select elements from an input vector,
4852   // replace that input vector with poison.
4853   if (!Scalable) {
4854     bool MaskSelects0 = false, MaskSelects1 = false;
4855     unsigned InVecNumElts = InVecEltCount.getKnownMinValue();
4856     for (unsigned i = 0; i != MaskNumElts; ++i) {
4857       if (Indices[i] == -1)
4858         continue;
4859       if ((unsigned)Indices[i] < InVecNumElts)
4860         MaskSelects0 = true;
4861       else
4862         MaskSelects1 = true;
4863     }
4864     if (!MaskSelects0)
4865       Op0 = PoisonValue::get(InVecTy);
4866     if (!MaskSelects1)
4867       Op1 = PoisonValue::get(InVecTy);
4868   }
4869 
4870   auto *Op0Const = dyn_cast<Constant>(Op0);
4871   auto *Op1Const = dyn_cast<Constant>(Op1);
4872 
4873   // If all operands are constant, constant fold the shuffle. This
4874   // transformation depends on the value of the mask which is not known at
4875   // compile time for scalable vectors
4876   if (Op0Const && Op1Const)
4877     return ConstantExpr::getShuffleVector(Op0Const, Op1Const, Mask);
4878 
4879   // Canonicalization: if only one input vector is constant, it shall be the
4880   // second one. This transformation depends on the value of the mask which
4881   // is not known at compile time for scalable vectors
4882   if (!Scalable && Op0Const && !Op1Const) {
4883     std::swap(Op0, Op1);
4884     ShuffleVectorInst::commuteShuffleMask(Indices,
4885                                           InVecEltCount.getKnownMinValue());
4886   }
4887 
4888   // A splat of an inserted scalar constant becomes a vector constant:
4889   // shuf (inselt ?, C, IndexC), undef, <IndexC, IndexC...> --> <C, C...>
4890   // NOTE: We may have commuted above, so analyze the updated Indices, not the
4891   //       original mask constant.
4892   // NOTE: This transformation depends on the value of the mask which is not
4893   // known at compile time for scalable vectors
4894   Constant *C;
4895   ConstantInt *IndexC;
4896   if (!Scalable && match(Op0, m_InsertElt(m_Value(), m_Constant(C),
4897                                           m_ConstantInt(IndexC)))) {
4898     // Match a splat shuffle mask of the insert index allowing undef elements.
4899     int InsertIndex = IndexC->getZExtValue();
4900     if (all_of(Indices, [InsertIndex](int MaskElt) {
4901           return MaskElt == InsertIndex || MaskElt == -1;
4902         })) {
4903       assert(isa<UndefValue>(Op1) && "Expected undef operand 1 for splat");
4904 
4905       // Shuffle mask undefs become undefined constant result elements.
4906       SmallVector<Constant *, 16> VecC(MaskNumElts, C);
4907       for (unsigned i = 0; i != MaskNumElts; ++i)
4908         if (Indices[i] == -1)
4909           VecC[i] = UndefValue::get(C->getType());
4910       return ConstantVector::get(VecC);
4911     }
4912   }
4913 
4914   // A shuffle of a splat is always the splat itself. Legal if the shuffle's
4915   // value type is same as the input vectors' type.
4916   if (auto *OpShuf = dyn_cast<ShuffleVectorInst>(Op0))
4917     if (Q.isUndefValue(Op1) && RetTy == InVecTy &&
4918         is_splat(OpShuf->getShuffleMask()))
4919       return Op0;
4920 
4921   // All remaining transformation depend on the value of the mask, which is
4922   // not known at compile time for scalable vectors.
4923   if (Scalable)
4924     return nullptr;
4925 
4926   // Don't fold a shuffle with undef mask elements. This may get folded in a
4927   // better way using demanded bits or other analysis.
4928   // TODO: Should we allow this?
4929   if (is_contained(Indices, -1))
4930     return nullptr;
4931 
4932   // Check if every element of this shuffle can be mapped back to the
4933   // corresponding element of a single root vector. If so, we don't need this
4934   // shuffle. This handles simple identity shuffles as well as chains of
4935   // shuffles that may widen/narrow and/or move elements across lanes and back.
4936   Value *RootVec = nullptr;
4937   for (unsigned i = 0; i != MaskNumElts; ++i) {
4938     // Note that recursion is limited for each vector element, so if any element
4939     // exceeds the limit, this will fail to simplify.
4940     RootVec =
4941         foldIdentityShuffles(i, Op0, Op1, Indices[i], RootVec, MaxRecurse);
4942 
4943     // We can't replace a widening/narrowing shuffle with one of its operands.
4944     if (!RootVec || RootVec->getType() != RetTy)
4945       return nullptr;
4946   }
4947   return RootVec;
4948 }
4949 
4950 /// Given operands for a ShuffleVectorInst, fold the result or return null.
4951 Value *llvm::SimplifyShuffleVectorInst(Value *Op0, Value *Op1,
4952                                        ArrayRef<int> Mask, Type *RetTy,
4953                                        const SimplifyQuery &Q) {
4954   return ::SimplifyShuffleVectorInst(Op0, Op1, Mask, RetTy, Q, RecursionLimit);
4955 }
4956 
4957 static Constant *foldConstant(Instruction::UnaryOps Opcode,
4958                               Value *&Op, const SimplifyQuery &Q) {
4959   if (auto *C = dyn_cast<Constant>(Op))
4960     return ConstantFoldUnaryOpOperand(Opcode, C, Q.DL);
4961   return nullptr;
4962 }
4963 
4964 /// Given the operand for an FNeg, see if we can fold the result.  If not, this
4965 /// returns null.
4966 static Value *simplifyFNegInst(Value *Op, FastMathFlags FMF,
4967                                const SimplifyQuery &Q, unsigned MaxRecurse) {
4968   if (Constant *C = foldConstant(Instruction::FNeg, Op, Q))
4969     return C;
4970 
4971   Value *X;
4972   // fneg (fneg X) ==> X
4973   if (match(Op, m_FNeg(m_Value(X))))
4974     return X;
4975 
4976   return nullptr;
4977 }
4978 
4979 Value *llvm::SimplifyFNegInst(Value *Op, FastMathFlags FMF,
4980                               const SimplifyQuery &Q) {
4981   return ::simplifyFNegInst(Op, FMF, Q, RecursionLimit);
4982 }
4983 
4984 static Constant *propagateNaN(Constant *In) {
4985   // If the input is a vector with undef elements, just return a default NaN.
4986   if (!In->isNaN())
4987     return ConstantFP::getNaN(In->getType());
4988 
4989   // Propagate the existing NaN constant when possible.
4990   // TODO: Should we quiet a signaling NaN?
4991   return In;
4992 }
4993 
4994 /// Perform folds that are common to any floating-point operation. This implies
4995 /// transforms based on poison/undef/NaN because the operation itself makes no
4996 /// difference to the result.
4997 static Constant *simplifyFPOp(ArrayRef<Value *> Ops, FastMathFlags FMF,
4998                               const SimplifyQuery &Q,
4999                               fp::ExceptionBehavior ExBehavior,
5000                               RoundingMode Rounding) {
5001   // Poison is independent of anything else. It always propagates from an
5002   // operand to a math result.
5003   if (any_of(Ops, [](Value *V) { return match(V, m_Poison()); }))
5004     return PoisonValue::get(Ops[0]->getType());
5005 
5006   for (Value *V : Ops) {
5007     bool IsNan = match(V, m_NaN());
5008     bool IsInf = match(V, m_Inf());
5009     bool IsUndef = Q.isUndefValue(V);
5010 
5011     // If this operation has 'nnan' or 'ninf' and at least 1 disallowed operand
5012     // (an undef operand can be chosen to be Nan/Inf), then the result of
5013     // this operation is poison.
5014     if (FMF.noNaNs() && (IsNan || IsUndef))
5015       return PoisonValue::get(V->getType());
5016     if (FMF.noInfs() && (IsInf || IsUndef))
5017       return PoisonValue::get(V->getType());
5018 
5019     if (isDefaultFPEnvironment(ExBehavior, Rounding)) {
5020       if (IsUndef || IsNan)
5021         return propagateNaN(cast<Constant>(V));
5022     } else if (ExBehavior != fp::ebStrict) {
5023       if (IsNan)
5024         return propagateNaN(cast<Constant>(V));
5025     }
5026   }
5027   return nullptr;
5028 }
5029 
5030 /// Given operands for an FAdd, see if we can fold the result.  If not, this
5031 /// returns null.
5032 static Value *
5033 SimplifyFAddInst(Value *Op0, Value *Op1, FastMathFlags FMF,
5034                  const SimplifyQuery &Q, unsigned MaxRecurse,
5035                  fp::ExceptionBehavior ExBehavior = fp::ebIgnore,
5036                  RoundingMode Rounding = RoundingMode::NearestTiesToEven) {
5037   if (isDefaultFPEnvironment(ExBehavior, Rounding))
5038     if (Constant *C = foldOrCommuteConstant(Instruction::FAdd, Op0, Op1, Q))
5039       return C;
5040 
5041   if (Constant *C = simplifyFPOp({Op0, Op1}, FMF, Q, ExBehavior, Rounding))
5042     return C;
5043 
5044   // fadd X, -0 ==> X
5045   // With strict/constrained FP, we have these possible edge cases that do
5046   // not simplify to Op0:
5047   // fadd SNaN, -0.0 --> QNaN
5048   // fadd +0.0, -0.0 --> -0.0 (but only with round toward negative)
5049   if (canIgnoreSNaN(ExBehavior, FMF) &&
5050       (!canRoundingModeBe(Rounding, RoundingMode::TowardNegative) ||
5051        FMF.noSignedZeros()))
5052     if (match(Op1, m_NegZeroFP()))
5053       return Op0;
5054 
5055   // fadd X, 0 ==> X, when we know X is not -0
5056   if (canIgnoreSNaN(ExBehavior, FMF))
5057     if (match(Op1, m_PosZeroFP()) &&
5058         (FMF.noSignedZeros() || CannotBeNegativeZero(Op0, Q.TLI)))
5059       return Op0;
5060 
5061   if (!isDefaultFPEnvironment(ExBehavior, Rounding))
5062     return nullptr;
5063 
5064   // With nnan: -X + X --> 0.0 (and commuted variant)
5065   // We don't have to explicitly exclude infinities (ninf): INF + -INF == NaN.
5066   // Negative zeros are allowed because we always end up with positive zero:
5067   // X = -0.0: (-0.0 - (-0.0)) + (-0.0) == ( 0.0) + (-0.0) == 0.0
5068   // X = -0.0: ( 0.0 - (-0.0)) + (-0.0) == ( 0.0) + (-0.0) == 0.0
5069   // X =  0.0: (-0.0 - ( 0.0)) + ( 0.0) == (-0.0) + ( 0.0) == 0.0
5070   // X =  0.0: ( 0.0 - ( 0.0)) + ( 0.0) == ( 0.0) + ( 0.0) == 0.0
5071   if (FMF.noNaNs()) {
5072     if (match(Op0, m_FSub(m_AnyZeroFP(), m_Specific(Op1))) ||
5073         match(Op1, m_FSub(m_AnyZeroFP(), m_Specific(Op0))))
5074       return ConstantFP::getNullValue(Op0->getType());
5075 
5076     if (match(Op0, m_FNeg(m_Specific(Op1))) ||
5077         match(Op1, m_FNeg(m_Specific(Op0))))
5078       return ConstantFP::getNullValue(Op0->getType());
5079   }
5080 
5081   // (X - Y) + Y --> X
5082   // Y + (X - Y) --> X
5083   Value *X;
5084   if (FMF.noSignedZeros() && FMF.allowReassoc() &&
5085       (match(Op0, m_FSub(m_Value(X), m_Specific(Op1))) ||
5086        match(Op1, m_FSub(m_Value(X), m_Specific(Op0)))))
5087     return X;
5088 
5089   return nullptr;
5090 }
5091 
5092 /// Given operands for an FSub, see if we can fold the result.  If not, this
5093 /// returns null.
5094 static Value *
5095 SimplifyFSubInst(Value *Op0, Value *Op1, FastMathFlags FMF,
5096                  const SimplifyQuery &Q, unsigned MaxRecurse,
5097                  fp::ExceptionBehavior ExBehavior = fp::ebIgnore,
5098                  RoundingMode Rounding = RoundingMode::NearestTiesToEven) {
5099   if (isDefaultFPEnvironment(ExBehavior, Rounding))
5100     if (Constant *C = foldOrCommuteConstant(Instruction::FSub, Op0, Op1, Q))
5101       return C;
5102 
5103   if (Constant *C = simplifyFPOp({Op0, Op1}, FMF, Q, ExBehavior, Rounding))
5104     return C;
5105 
5106   // fsub X, +0 ==> X
5107   if (canIgnoreSNaN(ExBehavior, FMF) &&
5108       (!canRoundingModeBe(Rounding, RoundingMode::TowardNegative) ||
5109        FMF.noSignedZeros()))
5110     if (match(Op1, m_PosZeroFP()))
5111       return Op0;
5112 
5113   // fsub X, -0 ==> X, when we know X is not -0
5114   if (canIgnoreSNaN(ExBehavior, FMF))
5115     if (match(Op1, m_NegZeroFP()) &&
5116         (FMF.noSignedZeros() || CannotBeNegativeZero(Op0, Q.TLI)))
5117       return Op0;
5118 
5119   if (!isDefaultFPEnvironment(ExBehavior, Rounding))
5120     return nullptr;
5121 
5122   // fsub -0.0, (fsub -0.0, X) ==> X
5123   // fsub -0.0, (fneg X) ==> X
5124   Value *X;
5125   if (match(Op0, m_NegZeroFP()) &&
5126       match(Op1, m_FNeg(m_Value(X))))
5127     return X;
5128 
5129   // fsub 0.0, (fsub 0.0, X) ==> X if signed zeros are ignored.
5130   // fsub 0.0, (fneg X) ==> X if signed zeros are ignored.
5131   if (FMF.noSignedZeros() && match(Op0, m_AnyZeroFP()) &&
5132       (match(Op1, m_FSub(m_AnyZeroFP(), m_Value(X))) ||
5133        match(Op1, m_FNeg(m_Value(X)))))
5134     return X;
5135 
5136   // fsub nnan x, x ==> 0.0
5137   if (FMF.noNaNs() && Op0 == Op1)
5138     return Constant::getNullValue(Op0->getType());
5139 
5140   // Y - (Y - X) --> X
5141   // (X + Y) - Y --> X
5142   if (FMF.noSignedZeros() && FMF.allowReassoc() &&
5143       (match(Op1, m_FSub(m_Specific(Op0), m_Value(X))) ||
5144        match(Op0, m_c_FAdd(m_Specific(Op1), m_Value(X)))))
5145     return X;
5146 
5147   return nullptr;
5148 }
5149 
5150 static Value *SimplifyFMAFMul(Value *Op0, Value *Op1, FastMathFlags FMF,
5151                               const SimplifyQuery &Q, unsigned MaxRecurse,
5152                               fp::ExceptionBehavior ExBehavior,
5153                               RoundingMode Rounding) {
5154   if (Constant *C = simplifyFPOp({Op0, Op1}, FMF, Q, ExBehavior, Rounding))
5155     return C;
5156 
5157   if (!isDefaultFPEnvironment(ExBehavior, Rounding))
5158     return nullptr;
5159 
5160   // fmul X, 1.0 ==> X
5161   if (match(Op1, m_FPOne()))
5162     return Op0;
5163 
5164   // fmul 1.0, X ==> X
5165   if (match(Op0, m_FPOne()))
5166     return Op1;
5167 
5168   // fmul nnan nsz X, 0 ==> 0
5169   if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op1, m_AnyZeroFP()))
5170     return ConstantFP::getNullValue(Op0->getType());
5171 
5172   // fmul nnan nsz 0, X ==> 0
5173   if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op0, m_AnyZeroFP()))
5174     return ConstantFP::getNullValue(Op1->getType());
5175 
5176   // sqrt(X) * sqrt(X) --> X, if we can:
5177   // 1. Remove the intermediate rounding (reassociate).
5178   // 2. Ignore non-zero negative numbers because sqrt would produce NAN.
5179   // 3. Ignore -0.0 because sqrt(-0.0) == -0.0, but -0.0 * -0.0 == 0.0.
5180   Value *X;
5181   if (Op0 == Op1 && match(Op0, m_Intrinsic<Intrinsic::sqrt>(m_Value(X))) &&
5182       FMF.allowReassoc() && FMF.noNaNs() && FMF.noSignedZeros())
5183     return X;
5184 
5185   return nullptr;
5186 }
5187 
5188 /// Given the operands for an FMul, see if we can fold the result
5189 static Value *
5190 SimplifyFMulInst(Value *Op0, Value *Op1, FastMathFlags FMF,
5191                  const SimplifyQuery &Q, unsigned MaxRecurse,
5192                  fp::ExceptionBehavior ExBehavior = fp::ebIgnore,
5193                  RoundingMode Rounding = RoundingMode::NearestTiesToEven) {
5194   if (isDefaultFPEnvironment(ExBehavior, Rounding))
5195     if (Constant *C = foldOrCommuteConstant(Instruction::FMul, Op0, Op1, Q))
5196       return C;
5197 
5198   // Now apply simplifications that do not require rounding.
5199   return SimplifyFMAFMul(Op0, Op1, FMF, Q, MaxRecurse, ExBehavior, Rounding);
5200 }
5201 
5202 Value *llvm::SimplifyFAddInst(Value *Op0, Value *Op1, FastMathFlags FMF,
5203                               const SimplifyQuery &Q,
5204                               fp::ExceptionBehavior ExBehavior,
5205                               RoundingMode Rounding) {
5206   return ::SimplifyFAddInst(Op0, Op1, FMF, Q, RecursionLimit, ExBehavior,
5207                             Rounding);
5208 }
5209 
5210 Value *llvm::SimplifyFSubInst(Value *Op0, Value *Op1, FastMathFlags FMF,
5211                               const SimplifyQuery &Q,
5212                               fp::ExceptionBehavior ExBehavior,
5213                               RoundingMode Rounding) {
5214   return ::SimplifyFSubInst(Op0, Op1, FMF, Q, RecursionLimit, ExBehavior,
5215                             Rounding);
5216 }
5217 
5218 Value *llvm::SimplifyFMulInst(Value *Op0, Value *Op1, FastMathFlags FMF,
5219                               const SimplifyQuery &Q,
5220                               fp::ExceptionBehavior ExBehavior,
5221                               RoundingMode Rounding) {
5222   return ::SimplifyFMulInst(Op0, Op1, FMF, Q, RecursionLimit, ExBehavior,
5223                             Rounding);
5224 }
5225 
5226 Value *llvm::SimplifyFMAFMul(Value *Op0, Value *Op1, FastMathFlags FMF,
5227                              const SimplifyQuery &Q,
5228                              fp::ExceptionBehavior ExBehavior,
5229                              RoundingMode Rounding) {
5230   return ::SimplifyFMAFMul(Op0, Op1, FMF, Q, RecursionLimit, ExBehavior,
5231                            Rounding);
5232 }
5233 
5234 static Value *
5235 SimplifyFDivInst(Value *Op0, Value *Op1, FastMathFlags FMF,
5236                  const SimplifyQuery &Q, unsigned,
5237                  fp::ExceptionBehavior ExBehavior = fp::ebIgnore,
5238                  RoundingMode Rounding = RoundingMode::NearestTiesToEven) {
5239   if (isDefaultFPEnvironment(ExBehavior, Rounding))
5240     if (Constant *C = foldOrCommuteConstant(Instruction::FDiv, Op0, Op1, Q))
5241       return C;
5242 
5243   if (Constant *C = simplifyFPOp({Op0, Op1}, FMF, Q, ExBehavior, Rounding))
5244     return C;
5245 
5246   if (!isDefaultFPEnvironment(ExBehavior, Rounding))
5247     return nullptr;
5248 
5249   // X / 1.0 -> X
5250   if (match(Op1, m_FPOne()))
5251     return Op0;
5252 
5253   // 0 / X -> 0
5254   // Requires that NaNs are off (X could be zero) and signed zeroes are
5255   // ignored (X could be positive or negative, so the output sign is unknown).
5256   if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op0, m_AnyZeroFP()))
5257     return ConstantFP::getNullValue(Op0->getType());
5258 
5259   if (FMF.noNaNs()) {
5260     // X / X -> 1.0 is legal when NaNs are ignored.
5261     // We can ignore infinities because INF/INF is NaN.
5262     if (Op0 == Op1)
5263       return ConstantFP::get(Op0->getType(), 1.0);
5264 
5265     // (X * Y) / Y --> X if we can reassociate to the above form.
5266     Value *X;
5267     if (FMF.allowReassoc() && match(Op0, m_c_FMul(m_Value(X), m_Specific(Op1))))
5268       return X;
5269 
5270     // -X /  X -> -1.0 and
5271     //  X / -X -> -1.0 are legal when NaNs are ignored.
5272     // We can ignore signed zeros because +-0.0/+-0.0 is NaN and ignored.
5273     if (match(Op0, m_FNegNSZ(m_Specific(Op1))) ||
5274         match(Op1, m_FNegNSZ(m_Specific(Op0))))
5275       return ConstantFP::get(Op0->getType(), -1.0);
5276   }
5277 
5278   return nullptr;
5279 }
5280 
5281 Value *llvm::SimplifyFDivInst(Value *Op0, Value *Op1, FastMathFlags FMF,
5282                               const SimplifyQuery &Q,
5283                               fp::ExceptionBehavior ExBehavior,
5284                               RoundingMode Rounding) {
5285   return ::SimplifyFDivInst(Op0, Op1, FMF, Q, RecursionLimit, ExBehavior,
5286                             Rounding);
5287 }
5288 
5289 static Value *
5290 SimplifyFRemInst(Value *Op0, Value *Op1, FastMathFlags FMF,
5291                  const SimplifyQuery &Q, unsigned,
5292                  fp::ExceptionBehavior ExBehavior = fp::ebIgnore,
5293                  RoundingMode Rounding = RoundingMode::NearestTiesToEven) {
5294   if (isDefaultFPEnvironment(ExBehavior, Rounding))
5295     if (Constant *C = foldOrCommuteConstant(Instruction::FRem, Op0, Op1, Q))
5296       return C;
5297 
5298   if (Constant *C = simplifyFPOp({Op0, Op1}, FMF, Q, ExBehavior, Rounding))
5299     return C;
5300 
5301   if (!isDefaultFPEnvironment(ExBehavior, Rounding))
5302     return nullptr;
5303 
5304   // Unlike fdiv, the result of frem always matches the sign of the dividend.
5305   // The constant match may include undef elements in a vector, so return a full
5306   // zero constant as the result.
5307   if (FMF.noNaNs()) {
5308     // +0 % X -> 0
5309     if (match(Op0, m_PosZeroFP()))
5310       return ConstantFP::getNullValue(Op0->getType());
5311     // -0 % X -> -0
5312     if (match(Op0, m_NegZeroFP()))
5313       return ConstantFP::getNegativeZero(Op0->getType());
5314   }
5315 
5316   return nullptr;
5317 }
5318 
5319 Value *llvm::SimplifyFRemInst(Value *Op0, Value *Op1, FastMathFlags FMF,
5320                               const SimplifyQuery &Q,
5321                               fp::ExceptionBehavior ExBehavior,
5322                               RoundingMode Rounding) {
5323   return ::SimplifyFRemInst(Op0, Op1, FMF, Q, RecursionLimit, ExBehavior,
5324                             Rounding);
5325 }
5326 
5327 //=== Helper functions for higher up the class hierarchy.
5328 
5329 /// Given the operand for a UnaryOperator, see if we can fold the result.
5330 /// If not, this returns null.
5331 static Value *simplifyUnOp(unsigned Opcode, Value *Op, const SimplifyQuery &Q,
5332                            unsigned MaxRecurse) {
5333   switch (Opcode) {
5334   case Instruction::FNeg:
5335     return simplifyFNegInst(Op, FastMathFlags(), Q, MaxRecurse);
5336   default:
5337     llvm_unreachable("Unexpected opcode");
5338   }
5339 }
5340 
5341 /// Given the operand for a UnaryOperator, see if we can fold the result.
5342 /// If not, this returns null.
5343 /// Try to use FastMathFlags when folding the result.
5344 static Value *simplifyFPUnOp(unsigned Opcode, Value *Op,
5345                              const FastMathFlags &FMF,
5346                              const SimplifyQuery &Q, unsigned MaxRecurse) {
5347   switch (Opcode) {
5348   case Instruction::FNeg:
5349     return simplifyFNegInst(Op, FMF, Q, MaxRecurse);
5350   default:
5351     return simplifyUnOp(Opcode, Op, Q, MaxRecurse);
5352   }
5353 }
5354 
5355 Value *llvm::SimplifyUnOp(unsigned Opcode, Value *Op, const SimplifyQuery &Q) {
5356   return ::simplifyUnOp(Opcode, Op, Q, RecursionLimit);
5357 }
5358 
5359 Value *llvm::SimplifyUnOp(unsigned Opcode, Value *Op, FastMathFlags FMF,
5360                           const SimplifyQuery &Q) {
5361   return ::simplifyFPUnOp(Opcode, Op, FMF, Q, RecursionLimit);
5362 }
5363 
5364 /// Given operands for a BinaryOperator, see if we can fold the result.
5365 /// If not, this returns null.
5366 static Value *SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS,
5367                             const SimplifyQuery &Q, unsigned MaxRecurse) {
5368   switch (Opcode) {
5369   case Instruction::Add:
5370     return SimplifyAddInst(LHS, RHS, false, false, Q, MaxRecurse);
5371   case Instruction::Sub:
5372     return SimplifySubInst(LHS, RHS, false, false, Q, MaxRecurse);
5373   case Instruction::Mul:
5374     return SimplifyMulInst(LHS, RHS, Q, MaxRecurse);
5375   case Instruction::SDiv:
5376     return SimplifySDivInst(LHS, RHS, Q, MaxRecurse);
5377   case Instruction::UDiv:
5378     return SimplifyUDivInst(LHS, RHS, Q, MaxRecurse);
5379   case Instruction::SRem:
5380     return SimplifySRemInst(LHS, RHS, Q, MaxRecurse);
5381   case Instruction::URem:
5382     return SimplifyURemInst(LHS, RHS, Q, MaxRecurse);
5383   case Instruction::Shl:
5384     return SimplifyShlInst(LHS, RHS, false, false, Q, MaxRecurse);
5385   case Instruction::LShr:
5386     return SimplifyLShrInst(LHS, RHS, false, Q, MaxRecurse);
5387   case Instruction::AShr:
5388     return SimplifyAShrInst(LHS, RHS, false, Q, MaxRecurse);
5389   case Instruction::And:
5390     return SimplifyAndInst(LHS, RHS, Q, MaxRecurse);
5391   case Instruction::Or:
5392     return SimplifyOrInst(LHS, RHS, Q, MaxRecurse);
5393   case Instruction::Xor:
5394     return SimplifyXorInst(LHS, RHS, Q, MaxRecurse);
5395   case Instruction::FAdd:
5396     return SimplifyFAddInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse);
5397   case Instruction::FSub:
5398     return SimplifyFSubInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse);
5399   case Instruction::FMul:
5400     return SimplifyFMulInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse);
5401   case Instruction::FDiv:
5402     return SimplifyFDivInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse);
5403   case Instruction::FRem:
5404     return SimplifyFRemInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse);
5405   default:
5406     llvm_unreachable("Unexpected opcode");
5407   }
5408 }
5409 
5410 /// Given operands for a BinaryOperator, see if we can fold the result.
5411 /// If not, this returns null.
5412 /// Try to use FastMathFlags when folding the result.
5413 static Value *SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS,
5414                             const FastMathFlags &FMF, const SimplifyQuery &Q,
5415                             unsigned MaxRecurse) {
5416   switch (Opcode) {
5417   case Instruction::FAdd:
5418     return SimplifyFAddInst(LHS, RHS, FMF, Q, MaxRecurse);
5419   case Instruction::FSub:
5420     return SimplifyFSubInst(LHS, RHS, FMF, Q, MaxRecurse);
5421   case Instruction::FMul:
5422     return SimplifyFMulInst(LHS, RHS, FMF, Q, MaxRecurse);
5423   case Instruction::FDiv:
5424     return SimplifyFDivInst(LHS, RHS, FMF, Q, MaxRecurse);
5425   default:
5426     return SimplifyBinOp(Opcode, LHS, RHS, Q, MaxRecurse);
5427   }
5428 }
5429 
5430 Value *llvm::SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS,
5431                            const SimplifyQuery &Q) {
5432   return ::SimplifyBinOp(Opcode, LHS, RHS, Q, RecursionLimit);
5433 }
5434 
5435 Value *llvm::SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS,
5436                            FastMathFlags FMF, const SimplifyQuery &Q) {
5437   return ::SimplifyBinOp(Opcode, LHS, RHS, FMF, Q, RecursionLimit);
5438 }
5439 
5440 /// Given operands for a CmpInst, see if we can fold the result.
5441 static Value *SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
5442                               const SimplifyQuery &Q, unsigned MaxRecurse) {
5443   if (CmpInst::isIntPredicate((CmpInst::Predicate)Predicate))
5444     return SimplifyICmpInst(Predicate, LHS, RHS, Q, MaxRecurse);
5445   return SimplifyFCmpInst(Predicate, LHS, RHS, FastMathFlags(), Q, MaxRecurse);
5446 }
5447 
5448 Value *llvm::SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
5449                              const SimplifyQuery &Q) {
5450   return ::SimplifyCmpInst(Predicate, LHS, RHS, Q, RecursionLimit);
5451 }
5452 
5453 static bool IsIdempotent(Intrinsic::ID ID) {
5454   switch (ID) {
5455   default: return false;
5456 
5457   // Unary idempotent: f(f(x)) = f(x)
5458   case Intrinsic::fabs:
5459   case Intrinsic::floor:
5460   case Intrinsic::ceil:
5461   case Intrinsic::trunc:
5462   case Intrinsic::rint:
5463   case Intrinsic::nearbyint:
5464   case Intrinsic::round:
5465   case Intrinsic::roundeven:
5466   case Intrinsic::canonicalize:
5467     return true;
5468   }
5469 }
5470 
5471 static Value *SimplifyRelativeLoad(Constant *Ptr, Constant *Offset,
5472                                    const DataLayout &DL) {
5473   GlobalValue *PtrSym;
5474   APInt PtrOffset;
5475   if (!IsConstantOffsetFromGlobal(Ptr, PtrSym, PtrOffset, DL))
5476     return nullptr;
5477 
5478   Type *Int8PtrTy = Type::getInt8PtrTy(Ptr->getContext());
5479   Type *Int32Ty = Type::getInt32Ty(Ptr->getContext());
5480   Type *Int32PtrTy = Int32Ty->getPointerTo();
5481   Type *Int64Ty = Type::getInt64Ty(Ptr->getContext());
5482 
5483   auto *OffsetConstInt = dyn_cast<ConstantInt>(Offset);
5484   if (!OffsetConstInt || OffsetConstInt->getType()->getBitWidth() > 64)
5485     return nullptr;
5486 
5487   uint64_t OffsetInt = OffsetConstInt->getSExtValue();
5488   if (OffsetInt % 4 != 0)
5489     return nullptr;
5490 
5491   Constant *C = ConstantExpr::getGetElementPtr(
5492       Int32Ty, ConstantExpr::getBitCast(Ptr, Int32PtrTy),
5493       ConstantInt::get(Int64Ty, OffsetInt / 4));
5494   Constant *Loaded = ConstantFoldLoadFromConstPtr(C, Int32Ty, DL);
5495   if (!Loaded)
5496     return nullptr;
5497 
5498   auto *LoadedCE = dyn_cast<ConstantExpr>(Loaded);
5499   if (!LoadedCE)
5500     return nullptr;
5501 
5502   if (LoadedCE->getOpcode() == Instruction::Trunc) {
5503     LoadedCE = dyn_cast<ConstantExpr>(LoadedCE->getOperand(0));
5504     if (!LoadedCE)
5505       return nullptr;
5506   }
5507 
5508   if (LoadedCE->getOpcode() != Instruction::Sub)
5509     return nullptr;
5510 
5511   auto *LoadedLHS = dyn_cast<ConstantExpr>(LoadedCE->getOperand(0));
5512   if (!LoadedLHS || LoadedLHS->getOpcode() != Instruction::PtrToInt)
5513     return nullptr;
5514   auto *LoadedLHSPtr = LoadedLHS->getOperand(0);
5515 
5516   Constant *LoadedRHS = LoadedCE->getOperand(1);
5517   GlobalValue *LoadedRHSSym;
5518   APInt LoadedRHSOffset;
5519   if (!IsConstantOffsetFromGlobal(LoadedRHS, LoadedRHSSym, LoadedRHSOffset,
5520                                   DL) ||
5521       PtrSym != LoadedRHSSym || PtrOffset != LoadedRHSOffset)
5522     return nullptr;
5523 
5524   return ConstantExpr::getBitCast(LoadedLHSPtr, Int8PtrTy);
5525 }
5526 
5527 static Value *simplifyUnaryIntrinsic(Function *F, Value *Op0,
5528                                      const SimplifyQuery &Q) {
5529   // Idempotent functions return the same result when called repeatedly.
5530   Intrinsic::ID IID = F->getIntrinsicID();
5531   if (IsIdempotent(IID))
5532     if (auto *II = dyn_cast<IntrinsicInst>(Op0))
5533       if (II->getIntrinsicID() == IID)
5534         return II;
5535 
5536   Value *X;
5537   switch (IID) {
5538   case Intrinsic::fabs:
5539     if (SignBitMustBeZero(Op0, Q.TLI)) return Op0;
5540     break;
5541   case Intrinsic::bswap:
5542     // bswap(bswap(x)) -> x
5543     if (match(Op0, m_BSwap(m_Value(X)))) return X;
5544     break;
5545   case Intrinsic::bitreverse:
5546     // bitreverse(bitreverse(x)) -> x
5547     if (match(Op0, m_BitReverse(m_Value(X)))) return X;
5548     break;
5549   case Intrinsic::ctpop: {
5550     // If everything but the lowest bit is zero, that bit is the pop-count. Ex:
5551     // ctpop(and X, 1) --> and X, 1
5552     unsigned BitWidth = Op0->getType()->getScalarSizeInBits();
5553     if (MaskedValueIsZero(Op0, APInt::getHighBitsSet(BitWidth, BitWidth - 1),
5554                           Q.DL, 0, Q.AC, Q.CxtI, Q.DT))
5555       return Op0;
5556     break;
5557   }
5558   case Intrinsic::exp:
5559     // exp(log(x)) -> x
5560     if (Q.CxtI->hasAllowReassoc() &&
5561         match(Op0, m_Intrinsic<Intrinsic::log>(m_Value(X)))) return X;
5562     break;
5563   case Intrinsic::exp2:
5564     // exp2(log2(x)) -> x
5565     if (Q.CxtI->hasAllowReassoc() &&
5566         match(Op0, m_Intrinsic<Intrinsic::log2>(m_Value(X)))) return X;
5567     break;
5568   case Intrinsic::log:
5569     // log(exp(x)) -> x
5570     if (Q.CxtI->hasAllowReassoc() &&
5571         match(Op0, m_Intrinsic<Intrinsic::exp>(m_Value(X)))) return X;
5572     break;
5573   case Intrinsic::log2:
5574     // log2(exp2(x)) -> x
5575     if (Q.CxtI->hasAllowReassoc() &&
5576         (match(Op0, m_Intrinsic<Intrinsic::exp2>(m_Value(X))) ||
5577          match(Op0, m_Intrinsic<Intrinsic::pow>(m_SpecificFP(2.0),
5578                                                 m_Value(X))))) return X;
5579     break;
5580   case Intrinsic::log10:
5581     // log10(pow(10.0, x)) -> x
5582     if (Q.CxtI->hasAllowReassoc() &&
5583         match(Op0, m_Intrinsic<Intrinsic::pow>(m_SpecificFP(10.0),
5584                                                m_Value(X)))) return X;
5585     break;
5586   case Intrinsic::floor:
5587   case Intrinsic::trunc:
5588   case Intrinsic::ceil:
5589   case Intrinsic::round:
5590   case Intrinsic::roundeven:
5591   case Intrinsic::nearbyint:
5592   case Intrinsic::rint: {
5593     // floor (sitofp x) -> sitofp x
5594     // floor (uitofp x) -> uitofp x
5595     //
5596     // Converting from int always results in a finite integral number or
5597     // infinity. For either of those inputs, these rounding functions always
5598     // return the same value, so the rounding can be eliminated.
5599     if (match(Op0, m_SIToFP(m_Value())) || match(Op0, m_UIToFP(m_Value())))
5600       return Op0;
5601     break;
5602   }
5603   case Intrinsic::experimental_vector_reverse:
5604     // experimental.vector.reverse(experimental.vector.reverse(x)) -> x
5605     if (match(Op0,
5606               m_Intrinsic<Intrinsic::experimental_vector_reverse>(m_Value(X))))
5607       return X;
5608     // experimental.vector.reverse(splat(X)) -> splat(X)
5609     if (isSplatValue(Op0))
5610       return Op0;
5611     break;
5612   default:
5613     break;
5614   }
5615 
5616   return nullptr;
5617 }
5618 
5619 /// Given a min/max intrinsic, see if it can be removed based on having an
5620 /// operand that is another min/max intrinsic with shared operand(s). The caller
5621 /// is expected to swap the operand arguments to handle commutation.
5622 static Value *foldMinMaxSharedOp(Intrinsic::ID IID, Value *Op0, Value *Op1) {
5623   Value *X, *Y;
5624   if (!match(Op0, m_MaxOrMin(m_Value(X), m_Value(Y))))
5625     return nullptr;
5626 
5627   auto *MM0 = dyn_cast<IntrinsicInst>(Op0);
5628   if (!MM0)
5629     return nullptr;
5630   Intrinsic::ID IID0 = MM0->getIntrinsicID();
5631 
5632   if (Op1 == X || Op1 == Y ||
5633       match(Op1, m_c_MaxOrMin(m_Specific(X), m_Specific(Y)))) {
5634     // max (max X, Y), X --> max X, Y
5635     if (IID0 == IID)
5636       return MM0;
5637     // max (min X, Y), X --> X
5638     if (IID0 == getInverseMinMaxIntrinsic(IID))
5639       return Op1;
5640   }
5641   return nullptr;
5642 }
5643 
5644 static Value *simplifyBinaryIntrinsic(Function *F, Value *Op0, Value *Op1,
5645                                       const SimplifyQuery &Q) {
5646   Intrinsic::ID IID = F->getIntrinsicID();
5647   Type *ReturnType = F->getReturnType();
5648   unsigned BitWidth = ReturnType->getScalarSizeInBits();
5649   switch (IID) {
5650   case Intrinsic::abs:
5651     // abs(abs(x)) -> abs(x). We don't need to worry about the nsw arg here.
5652     // It is always ok to pick the earlier abs. We'll just lose nsw if its only
5653     // on the outer abs.
5654     if (match(Op0, m_Intrinsic<Intrinsic::abs>(m_Value(), m_Value())))
5655       return Op0;
5656     break;
5657 
5658   case Intrinsic::cttz: {
5659     Value *X;
5660     if (match(Op0, m_Shl(m_One(), m_Value(X))))
5661       return X;
5662     break;
5663   }
5664   case Intrinsic::ctlz: {
5665     Value *X;
5666     if (match(Op0, m_LShr(m_Negative(), m_Value(X))))
5667       return X;
5668     if (match(Op0, m_AShr(m_Negative(), m_Value())))
5669       return Constant::getNullValue(ReturnType);
5670     break;
5671   }
5672   case Intrinsic::smax:
5673   case Intrinsic::smin:
5674   case Intrinsic::umax:
5675   case Intrinsic::umin: {
5676     // If the arguments are the same, this is a no-op.
5677     if (Op0 == Op1)
5678       return Op0;
5679 
5680     // Canonicalize constant operand as Op1.
5681     if (isa<Constant>(Op0))
5682       std::swap(Op0, Op1);
5683 
5684     // Assume undef is the limit value.
5685     if (Q.isUndefValue(Op1))
5686       return ConstantInt::get(
5687           ReturnType, MinMaxIntrinsic::getSaturationPoint(IID, BitWidth));
5688 
5689     const APInt *C;
5690     if (match(Op1, m_APIntAllowUndef(C))) {
5691       // Clamp to limit value. For example:
5692       // umax(i8 %x, i8 255) --> 255
5693       if (*C == MinMaxIntrinsic::getSaturationPoint(IID, BitWidth))
5694         return ConstantInt::get(ReturnType, *C);
5695 
5696       // If the constant op is the opposite of the limit value, the other must
5697       // be larger/smaller or equal. For example:
5698       // umin(i8 %x, i8 255) --> %x
5699       if (*C == MinMaxIntrinsic::getSaturationPoint(
5700                     getInverseMinMaxIntrinsic(IID), BitWidth))
5701         return Op0;
5702 
5703       // Remove nested call if constant operands allow it. Example:
5704       // max (max X, 7), 5 -> max X, 7
5705       auto *MinMax0 = dyn_cast<IntrinsicInst>(Op0);
5706       if (MinMax0 && MinMax0->getIntrinsicID() == IID) {
5707         // TODO: loosen undef/splat restrictions for vector constants.
5708         Value *M00 = MinMax0->getOperand(0), *M01 = MinMax0->getOperand(1);
5709         const APInt *InnerC;
5710         if ((match(M00, m_APInt(InnerC)) || match(M01, m_APInt(InnerC))) &&
5711             ICmpInst::compare(*InnerC, *C,
5712                               ICmpInst::getNonStrictPredicate(
5713                                   MinMaxIntrinsic::getPredicate(IID))))
5714           return Op0;
5715       }
5716     }
5717 
5718     if (Value *V = foldMinMaxSharedOp(IID, Op0, Op1))
5719       return V;
5720     if (Value *V = foldMinMaxSharedOp(IID, Op1, Op0))
5721       return V;
5722 
5723     ICmpInst::Predicate Pred =
5724         ICmpInst::getNonStrictPredicate(MinMaxIntrinsic::getPredicate(IID));
5725     if (isICmpTrue(Pred, Op0, Op1, Q.getWithoutUndef(), RecursionLimit))
5726       return Op0;
5727     if (isICmpTrue(Pred, Op1, Op0, Q.getWithoutUndef(), RecursionLimit))
5728       return Op1;
5729 
5730     if (Optional<bool> Imp =
5731             isImpliedByDomCondition(Pred, Op0, Op1, Q.CxtI, Q.DL))
5732       return *Imp ? Op0 : Op1;
5733     if (Optional<bool> Imp =
5734             isImpliedByDomCondition(Pred, Op1, Op0, Q.CxtI, Q.DL))
5735       return *Imp ? Op1 : Op0;
5736 
5737     break;
5738   }
5739   case Intrinsic::usub_with_overflow:
5740   case Intrinsic::ssub_with_overflow:
5741     // X - X -> { 0, false }
5742     // X - undef -> { 0, false }
5743     // undef - X -> { 0, false }
5744     if (Op0 == Op1 || Q.isUndefValue(Op0) || Q.isUndefValue(Op1))
5745       return Constant::getNullValue(ReturnType);
5746     break;
5747   case Intrinsic::uadd_with_overflow:
5748   case Intrinsic::sadd_with_overflow:
5749     // X + undef -> { -1, false }
5750     // undef + x -> { -1, false }
5751     if (Q.isUndefValue(Op0) || Q.isUndefValue(Op1)) {
5752       return ConstantStruct::get(
5753           cast<StructType>(ReturnType),
5754           {Constant::getAllOnesValue(ReturnType->getStructElementType(0)),
5755            Constant::getNullValue(ReturnType->getStructElementType(1))});
5756     }
5757     break;
5758   case Intrinsic::umul_with_overflow:
5759   case Intrinsic::smul_with_overflow:
5760     // 0 * X -> { 0, false }
5761     // X * 0 -> { 0, false }
5762     if (match(Op0, m_Zero()) || match(Op1, m_Zero()))
5763       return Constant::getNullValue(ReturnType);
5764     // undef * X -> { 0, false }
5765     // X * undef -> { 0, false }
5766     if (Q.isUndefValue(Op0) || Q.isUndefValue(Op1))
5767       return Constant::getNullValue(ReturnType);
5768     break;
5769   case Intrinsic::uadd_sat:
5770     // sat(MAX + X) -> MAX
5771     // sat(X + MAX) -> MAX
5772     if (match(Op0, m_AllOnes()) || match(Op1, m_AllOnes()))
5773       return Constant::getAllOnesValue(ReturnType);
5774     LLVM_FALLTHROUGH;
5775   case Intrinsic::sadd_sat:
5776     // sat(X + undef) -> -1
5777     // sat(undef + X) -> -1
5778     // For unsigned: Assume undef is MAX, thus we saturate to MAX (-1).
5779     // For signed: Assume undef is ~X, in which case X + ~X = -1.
5780     if (Q.isUndefValue(Op0) || Q.isUndefValue(Op1))
5781       return Constant::getAllOnesValue(ReturnType);
5782 
5783     // X + 0 -> X
5784     if (match(Op1, m_Zero()))
5785       return Op0;
5786     // 0 + X -> X
5787     if (match(Op0, m_Zero()))
5788       return Op1;
5789     break;
5790   case Intrinsic::usub_sat:
5791     // sat(0 - X) -> 0, sat(X - MAX) -> 0
5792     if (match(Op0, m_Zero()) || match(Op1, m_AllOnes()))
5793       return Constant::getNullValue(ReturnType);
5794     LLVM_FALLTHROUGH;
5795   case Intrinsic::ssub_sat:
5796     // X - X -> 0, X - undef -> 0, undef - X -> 0
5797     if (Op0 == Op1 || Q.isUndefValue(Op0) || Q.isUndefValue(Op1))
5798       return Constant::getNullValue(ReturnType);
5799     // X - 0 -> X
5800     if (match(Op1, m_Zero()))
5801       return Op0;
5802     break;
5803   case Intrinsic::load_relative:
5804     if (auto *C0 = dyn_cast<Constant>(Op0))
5805       if (auto *C1 = dyn_cast<Constant>(Op1))
5806         return SimplifyRelativeLoad(C0, C1, Q.DL);
5807     break;
5808   case Intrinsic::powi:
5809     if (auto *Power = dyn_cast<ConstantInt>(Op1)) {
5810       // powi(x, 0) -> 1.0
5811       if (Power->isZero())
5812         return ConstantFP::get(Op0->getType(), 1.0);
5813       // powi(x, 1) -> x
5814       if (Power->isOne())
5815         return Op0;
5816     }
5817     break;
5818   case Intrinsic::copysign:
5819     // copysign X, X --> X
5820     if (Op0 == Op1)
5821       return Op0;
5822     // copysign -X, X --> X
5823     // copysign X, -X --> -X
5824     if (match(Op0, m_FNeg(m_Specific(Op1))) ||
5825         match(Op1, m_FNeg(m_Specific(Op0))))
5826       return Op1;
5827     break;
5828   case Intrinsic::maxnum:
5829   case Intrinsic::minnum:
5830   case Intrinsic::maximum:
5831   case Intrinsic::minimum: {
5832     // If the arguments are the same, this is a no-op.
5833     if (Op0 == Op1) return Op0;
5834 
5835     // Canonicalize constant operand as Op1.
5836     if (isa<Constant>(Op0))
5837       std::swap(Op0, Op1);
5838 
5839     // If an argument is undef, return the other argument.
5840     if (Q.isUndefValue(Op1))
5841       return Op0;
5842 
5843     bool PropagateNaN = IID == Intrinsic::minimum || IID == Intrinsic::maximum;
5844     bool IsMin = IID == Intrinsic::minimum || IID == Intrinsic::minnum;
5845 
5846     // minnum(X, nan) -> X
5847     // maxnum(X, nan) -> X
5848     // minimum(X, nan) -> nan
5849     // maximum(X, nan) -> nan
5850     if (match(Op1, m_NaN()))
5851       return PropagateNaN ? propagateNaN(cast<Constant>(Op1)) : Op0;
5852 
5853     // In the following folds, inf can be replaced with the largest finite
5854     // float, if the ninf flag is set.
5855     const APFloat *C;
5856     if (match(Op1, m_APFloat(C)) &&
5857         (C->isInfinity() || (Q.CxtI->hasNoInfs() && C->isLargest()))) {
5858       // minnum(X, -inf) -> -inf
5859       // maxnum(X, +inf) -> +inf
5860       // minimum(X, -inf) -> -inf if nnan
5861       // maximum(X, +inf) -> +inf if nnan
5862       if (C->isNegative() == IsMin && (!PropagateNaN || Q.CxtI->hasNoNaNs()))
5863         return ConstantFP::get(ReturnType, *C);
5864 
5865       // minnum(X, +inf) -> X if nnan
5866       // maxnum(X, -inf) -> X if nnan
5867       // minimum(X, +inf) -> X
5868       // maximum(X, -inf) -> X
5869       if (C->isNegative() != IsMin && (PropagateNaN || Q.CxtI->hasNoNaNs()))
5870         return Op0;
5871     }
5872 
5873     // Min/max of the same operation with common operand:
5874     // m(m(X, Y)), X --> m(X, Y) (4 commuted variants)
5875     if (auto *M0 = dyn_cast<IntrinsicInst>(Op0))
5876       if (M0->getIntrinsicID() == IID &&
5877           (M0->getOperand(0) == Op1 || M0->getOperand(1) == Op1))
5878         return Op0;
5879     if (auto *M1 = dyn_cast<IntrinsicInst>(Op1))
5880       if (M1->getIntrinsicID() == IID &&
5881           (M1->getOperand(0) == Op0 || M1->getOperand(1) == Op0))
5882         return Op1;
5883 
5884     break;
5885   }
5886   case Intrinsic::experimental_vector_extract: {
5887     Type *ReturnType = F->getReturnType();
5888 
5889     // (extract_vector (insert_vector _, X, 0), 0) -> X
5890     unsigned IdxN = cast<ConstantInt>(Op1)->getZExtValue();
5891     Value *X = nullptr;
5892     if (match(Op0, m_Intrinsic<Intrinsic::experimental_vector_insert>(
5893                        m_Value(), m_Value(X), m_Zero())) &&
5894         IdxN == 0 && X->getType() == ReturnType)
5895       return X;
5896 
5897     break;
5898   }
5899   default:
5900     break;
5901   }
5902 
5903   return nullptr;
5904 }
5905 
5906 static Value *simplifyIntrinsic(CallBase *Call, const SimplifyQuery &Q) {
5907 
5908   unsigned NumOperands = Call->arg_size();
5909   Function *F = cast<Function>(Call->getCalledFunction());
5910   Intrinsic::ID IID = F->getIntrinsicID();
5911 
5912   // Most of the intrinsics with no operands have some kind of side effect.
5913   // Don't simplify.
5914   if (!NumOperands) {
5915     switch (IID) {
5916     case Intrinsic::vscale: {
5917       // Call may not be inserted into the IR yet at point of calling simplify.
5918       if (!Call->getParent() || !Call->getParent()->getParent())
5919         return nullptr;
5920       auto Attr = Call->getFunction()->getFnAttribute(Attribute::VScaleRange);
5921       if (!Attr.isValid())
5922         return nullptr;
5923       unsigned VScaleMin = Attr.getVScaleRangeMin();
5924       Optional<unsigned> VScaleMax = Attr.getVScaleRangeMax();
5925       if (VScaleMax && VScaleMin == VScaleMax)
5926         return ConstantInt::get(F->getReturnType(), VScaleMin);
5927       return nullptr;
5928     }
5929     default:
5930       return nullptr;
5931     }
5932   }
5933 
5934   if (NumOperands == 1)
5935     return simplifyUnaryIntrinsic(F, Call->getArgOperand(0), Q);
5936 
5937   if (NumOperands == 2)
5938     return simplifyBinaryIntrinsic(F, Call->getArgOperand(0),
5939                                    Call->getArgOperand(1), Q);
5940 
5941   // Handle intrinsics with 3 or more arguments.
5942   switch (IID) {
5943   case Intrinsic::masked_load:
5944   case Intrinsic::masked_gather: {
5945     Value *MaskArg = Call->getArgOperand(2);
5946     Value *PassthruArg = Call->getArgOperand(3);
5947     // If the mask is all zeros or undef, the "passthru" argument is the result.
5948     if (maskIsAllZeroOrUndef(MaskArg))
5949       return PassthruArg;
5950     return nullptr;
5951   }
5952   case Intrinsic::fshl:
5953   case Intrinsic::fshr: {
5954     Value *Op0 = Call->getArgOperand(0), *Op1 = Call->getArgOperand(1),
5955           *ShAmtArg = Call->getArgOperand(2);
5956 
5957     // If both operands are undef, the result is undef.
5958     if (Q.isUndefValue(Op0) && Q.isUndefValue(Op1))
5959       return UndefValue::get(F->getReturnType());
5960 
5961     // If shift amount is undef, assume it is zero.
5962     if (Q.isUndefValue(ShAmtArg))
5963       return Call->getArgOperand(IID == Intrinsic::fshl ? 0 : 1);
5964 
5965     const APInt *ShAmtC;
5966     if (match(ShAmtArg, m_APInt(ShAmtC))) {
5967       // If there's effectively no shift, return the 1st arg or 2nd arg.
5968       APInt BitWidth = APInt(ShAmtC->getBitWidth(), ShAmtC->getBitWidth());
5969       if (ShAmtC->urem(BitWidth).isZero())
5970         return Call->getArgOperand(IID == Intrinsic::fshl ? 0 : 1);
5971     }
5972 
5973     // Rotating zero by anything is zero.
5974     if (match(Op0, m_Zero()) && match(Op1, m_Zero()))
5975       return ConstantInt::getNullValue(F->getReturnType());
5976 
5977     // Rotating -1 by anything is -1.
5978     if (match(Op0, m_AllOnes()) && match(Op1, m_AllOnes()))
5979       return ConstantInt::getAllOnesValue(F->getReturnType());
5980 
5981     return nullptr;
5982   }
5983   case Intrinsic::experimental_constrained_fma: {
5984     Value *Op0 = Call->getArgOperand(0);
5985     Value *Op1 = Call->getArgOperand(1);
5986     Value *Op2 = Call->getArgOperand(2);
5987     auto *FPI = cast<ConstrainedFPIntrinsic>(Call);
5988     if (Value *V = simplifyFPOp({Op0, Op1, Op2}, {}, Q,
5989                                 FPI->getExceptionBehavior().getValue(),
5990                                 FPI->getRoundingMode().getValue()))
5991       return V;
5992     return nullptr;
5993   }
5994   case Intrinsic::fma:
5995   case Intrinsic::fmuladd: {
5996     Value *Op0 = Call->getArgOperand(0);
5997     Value *Op1 = Call->getArgOperand(1);
5998     Value *Op2 = Call->getArgOperand(2);
5999     if (Value *V = simplifyFPOp({Op0, Op1, Op2}, {}, Q, fp::ebIgnore,
6000                                 RoundingMode::NearestTiesToEven))
6001       return V;
6002     return nullptr;
6003   }
6004   case Intrinsic::smul_fix:
6005   case Intrinsic::smul_fix_sat: {
6006     Value *Op0 = Call->getArgOperand(0);
6007     Value *Op1 = Call->getArgOperand(1);
6008     Value *Op2 = Call->getArgOperand(2);
6009     Type *ReturnType = F->getReturnType();
6010 
6011     // Canonicalize constant operand as Op1 (ConstantFolding handles the case
6012     // when both Op0 and Op1 are constant so we do not care about that special
6013     // case here).
6014     if (isa<Constant>(Op0))
6015       std::swap(Op0, Op1);
6016 
6017     // X * 0 -> 0
6018     if (match(Op1, m_Zero()))
6019       return Constant::getNullValue(ReturnType);
6020 
6021     // X * undef -> 0
6022     if (Q.isUndefValue(Op1))
6023       return Constant::getNullValue(ReturnType);
6024 
6025     // X * (1 << Scale) -> X
6026     APInt ScaledOne =
6027         APInt::getOneBitSet(ReturnType->getScalarSizeInBits(),
6028                             cast<ConstantInt>(Op2)->getZExtValue());
6029     if (ScaledOne.isNonNegative() && match(Op1, m_SpecificInt(ScaledOne)))
6030       return Op0;
6031 
6032     return nullptr;
6033   }
6034   case Intrinsic::experimental_vector_insert: {
6035     Value *Vec = Call->getArgOperand(0);
6036     Value *SubVec = Call->getArgOperand(1);
6037     Value *Idx = Call->getArgOperand(2);
6038     Type *ReturnType = F->getReturnType();
6039 
6040     // (insert_vector Y, (extract_vector X, 0), 0) -> X
6041     // where: Y is X, or Y is undef
6042     unsigned IdxN = cast<ConstantInt>(Idx)->getZExtValue();
6043     Value *X = nullptr;
6044     if (match(SubVec, m_Intrinsic<Intrinsic::experimental_vector_extract>(
6045                           m_Value(X), m_Zero())) &&
6046         (Q.isUndefValue(Vec) || Vec == X) && IdxN == 0 &&
6047         X->getType() == ReturnType)
6048       return X;
6049 
6050     return nullptr;
6051   }
6052   case Intrinsic::experimental_constrained_fadd: {
6053     auto *FPI = cast<ConstrainedFPIntrinsic>(Call);
6054     return SimplifyFAddInst(FPI->getArgOperand(0), FPI->getArgOperand(1),
6055                             FPI->getFastMathFlags(), Q,
6056                             FPI->getExceptionBehavior().getValue(),
6057                             FPI->getRoundingMode().getValue());
6058     break;
6059   }
6060   case Intrinsic::experimental_constrained_fsub: {
6061     auto *FPI = cast<ConstrainedFPIntrinsic>(Call);
6062     return SimplifyFSubInst(FPI->getArgOperand(0), FPI->getArgOperand(1),
6063                             FPI->getFastMathFlags(), Q,
6064                             FPI->getExceptionBehavior().getValue(),
6065                             FPI->getRoundingMode().getValue());
6066     break;
6067   }
6068   case Intrinsic::experimental_constrained_fmul: {
6069     auto *FPI = cast<ConstrainedFPIntrinsic>(Call);
6070     return SimplifyFMulInst(FPI->getArgOperand(0), FPI->getArgOperand(1),
6071                             FPI->getFastMathFlags(), Q,
6072                             FPI->getExceptionBehavior().getValue(),
6073                             FPI->getRoundingMode().getValue());
6074     break;
6075   }
6076   case Intrinsic::experimental_constrained_fdiv: {
6077     auto *FPI = cast<ConstrainedFPIntrinsic>(Call);
6078     return SimplifyFDivInst(FPI->getArgOperand(0), FPI->getArgOperand(1),
6079                             FPI->getFastMathFlags(), Q,
6080                             FPI->getExceptionBehavior().getValue(),
6081                             FPI->getRoundingMode().getValue());
6082     break;
6083   }
6084   case Intrinsic::experimental_constrained_frem: {
6085     auto *FPI = cast<ConstrainedFPIntrinsic>(Call);
6086     return SimplifyFRemInst(FPI->getArgOperand(0), FPI->getArgOperand(1),
6087                             FPI->getFastMathFlags(), Q,
6088                             FPI->getExceptionBehavior().getValue(),
6089                             FPI->getRoundingMode().getValue());
6090     break;
6091   }
6092   default:
6093     return nullptr;
6094   }
6095 }
6096 
6097 static Value *tryConstantFoldCall(CallBase *Call, const SimplifyQuery &Q) {
6098   auto *F = dyn_cast<Function>(Call->getCalledOperand());
6099   if (!F || !canConstantFoldCallTo(Call, F))
6100     return nullptr;
6101 
6102   SmallVector<Constant *, 4> ConstantArgs;
6103   unsigned NumArgs = Call->arg_size();
6104   ConstantArgs.reserve(NumArgs);
6105   for (auto &Arg : Call->args()) {
6106     Constant *C = dyn_cast<Constant>(&Arg);
6107     if (!C) {
6108       if (isa<MetadataAsValue>(Arg.get()))
6109         continue;
6110       return nullptr;
6111     }
6112     ConstantArgs.push_back(C);
6113   }
6114 
6115   return ConstantFoldCall(Call, F, ConstantArgs, Q.TLI);
6116 }
6117 
6118 Value *llvm::SimplifyCall(CallBase *Call, const SimplifyQuery &Q) {
6119   // musttail calls can only be simplified if they are also DCEd.
6120   // As we can't guarantee this here, don't simplify them.
6121   if (Call->isMustTailCall())
6122     return nullptr;
6123 
6124   // call undef -> poison
6125   // call null -> poison
6126   Value *Callee = Call->getCalledOperand();
6127   if (isa<UndefValue>(Callee) || isa<ConstantPointerNull>(Callee))
6128     return PoisonValue::get(Call->getType());
6129 
6130   if (Value *V = tryConstantFoldCall(Call, Q))
6131     return V;
6132 
6133   auto *F = dyn_cast<Function>(Callee);
6134   if (F && F->isIntrinsic())
6135     if (Value *Ret = simplifyIntrinsic(Call, Q))
6136       return Ret;
6137 
6138   return nullptr;
6139 }
6140 
6141 /// Given operands for a Freeze, see if we can fold the result.
6142 static Value *SimplifyFreezeInst(Value *Op0, const SimplifyQuery &Q) {
6143   // Use a utility function defined in ValueTracking.
6144   if (llvm::isGuaranteedNotToBeUndefOrPoison(Op0, Q.AC, Q.CxtI, Q.DT))
6145     return Op0;
6146   // We have room for improvement.
6147   return nullptr;
6148 }
6149 
6150 Value *llvm::SimplifyFreezeInst(Value *Op0, const SimplifyQuery &Q) {
6151   return ::SimplifyFreezeInst(Op0, Q);
6152 }
6153 
6154 static Value *SimplifyLoadInst(LoadInst *LI, Value *PtrOp,
6155                                const SimplifyQuery &Q) {
6156   if (LI->isVolatile())
6157     return nullptr;
6158 
6159   APInt Offset(Q.DL.getIndexTypeSizeInBits(PtrOp->getType()), 0);
6160   auto *PtrOpC = dyn_cast<Constant>(PtrOp);
6161   // Try to convert operand into a constant by stripping offsets while looking
6162   // through invariant.group intrinsics. Don't bother if the underlying object
6163   // is not constant, as calculating GEP offsets is expensive.
6164   if (!PtrOpC && isa<Constant>(getUnderlyingObject(PtrOp))) {
6165     PtrOp = PtrOp->stripAndAccumulateConstantOffsets(
6166         Q.DL, Offset, /* AllowNonInbounts */ true,
6167         /* AllowInvariantGroup */ true);
6168     // Index size may have changed due to address space casts.
6169     Offset = Offset.sextOrTrunc(Q.DL.getIndexTypeSizeInBits(PtrOp->getType()));
6170     PtrOpC = dyn_cast<Constant>(PtrOp);
6171   }
6172 
6173   if (PtrOpC)
6174     return ConstantFoldLoadFromConstPtr(PtrOpC, LI->getType(), Offset, Q.DL);
6175   return nullptr;
6176 }
6177 
6178 /// See if we can compute a simplified version of this instruction.
6179 /// If not, this returns null.
6180 
6181 static Value *simplifyInstructionWithOperands(Instruction *I,
6182                                               ArrayRef<Value *> NewOps,
6183                                               const SimplifyQuery &SQ,
6184                                               OptimizationRemarkEmitter *ORE) {
6185   const SimplifyQuery Q = SQ.CxtI ? SQ : SQ.getWithInstruction(I);
6186   Value *Result = nullptr;
6187 
6188   switch (I->getOpcode()) {
6189   default:
6190     if (llvm::all_of(NewOps, [](Value *V) { return isa<Constant>(V); })) {
6191       SmallVector<Constant *, 8> NewConstOps(NewOps.size());
6192       transform(NewOps, NewConstOps.begin(),
6193                 [](Value *V) { return cast<Constant>(V); });
6194       Result = ConstantFoldInstOperands(I, NewConstOps, Q.DL, Q.TLI);
6195     }
6196     break;
6197   case Instruction::FNeg:
6198     Result = SimplifyFNegInst(NewOps[0], I->getFastMathFlags(), Q);
6199     break;
6200   case Instruction::FAdd:
6201     Result = SimplifyFAddInst(NewOps[0], NewOps[1], I->getFastMathFlags(), Q);
6202     break;
6203   case Instruction::Add:
6204     Result = SimplifyAddInst(
6205         NewOps[0], NewOps[1], Q.IIQ.hasNoSignedWrap(cast<BinaryOperator>(I)),
6206         Q.IIQ.hasNoUnsignedWrap(cast<BinaryOperator>(I)), Q);
6207     break;
6208   case Instruction::FSub:
6209     Result = SimplifyFSubInst(NewOps[0], NewOps[1], I->getFastMathFlags(), Q);
6210     break;
6211   case Instruction::Sub:
6212     Result = SimplifySubInst(
6213         NewOps[0], NewOps[1], Q.IIQ.hasNoSignedWrap(cast<BinaryOperator>(I)),
6214         Q.IIQ.hasNoUnsignedWrap(cast<BinaryOperator>(I)), Q);
6215     break;
6216   case Instruction::FMul:
6217     Result = SimplifyFMulInst(NewOps[0], NewOps[1], I->getFastMathFlags(), Q);
6218     break;
6219   case Instruction::Mul:
6220     Result = SimplifyMulInst(NewOps[0], NewOps[1], Q);
6221     break;
6222   case Instruction::SDiv:
6223     Result = SimplifySDivInst(NewOps[0], NewOps[1], Q);
6224     break;
6225   case Instruction::UDiv:
6226     Result = SimplifyUDivInst(NewOps[0], NewOps[1], Q);
6227     break;
6228   case Instruction::FDiv:
6229     Result = SimplifyFDivInst(NewOps[0], NewOps[1], I->getFastMathFlags(), Q);
6230     break;
6231   case Instruction::SRem:
6232     Result = SimplifySRemInst(NewOps[0], NewOps[1], Q);
6233     break;
6234   case Instruction::URem:
6235     Result = SimplifyURemInst(NewOps[0], NewOps[1], Q);
6236     break;
6237   case Instruction::FRem:
6238     Result = SimplifyFRemInst(NewOps[0], NewOps[1], I->getFastMathFlags(), Q);
6239     break;
6240   case Instruction::Shl:
6241     Result = SimplifyShlInst(
6242         NewOps[0], NewOps[1], Q.IIQ.hasNoSignedWrap(cast<BinaryOperator>(I)),
6243         Q.IIQ.hasNoUnsignedWrap(cast<BinaryOperator>(I)), Q);
6244     break;
6245   case Instruction::LShr:
6246     Result = SimplifyLShrInst(NewOps[0], NewOps[1],
6247                               Q.IIQ.isExact(cast<BinaryOperator>(I)), Q);
6248     break;
6249   case Instruction::AShr:
6250     Result = SimplifyAShrInst(NewOps[0], NewOps[1],
6251                               Q.IIQ.isExact(cast<BinaryOperator>(I)), Q);
6252     break;
6253   case Instruction::And:
6254     Result = SimplifyAndInst(NewOps[0], NewOps[1], Q);
6255     break;
6256   case Instruction::Or:
6257     Result = SimplifyOrInst(NewOps[0], NewOps[1], Q);
6258     break;
6259   case Instruction::Xor:
6260     Result = SimplifyXorInst(NewOps[0], NewOps[1], Q);
6261     break;
6262   case Instruction::ICmp:
6263     Result = SimplifyICmpInst(cast<ICmpInst>(I)->getPredicate(), NewOps[0],
6264                               NewOps[1], Q);
6265     break;
6266   case Instruction::FCmp:
6267     Result = SimplifyFCmpInst(cast<FCmpInst>(I)->getPredicate(), NewOps[0],
6268                               NewOps[1], I->getFastMathFlags(), Q);
6269     break;
6270   case Instruction::Select:
6271     Result = SimplifySelectInst(NewOps[0], NewOps[1], NewOps[2], Q);
6272     break;
6273   case Instruction::GetElementPtr: {
6274     auto *GEPI = cast<GetElementPtrInst>(I);
6275     Result =
6276         SimplifyGEPInst(GEPI->getSourceElementType(), NewOps[0],
6277                         makeArrayRef(NewOps).slice(1), GEPI->isInBounds(), Q);
6278     break;
6279   }
6280   case Instruction::InsertValue: {
6281     InsertValueInst *IV = cast<InsertValueInst>(I);
6282     Result = SimplifyInsertValueInst(NewOps[0], NewOps[1], IV->getIndices(), Q);
6283     break;
6284   }
6285   case Instruction::InsertElement: {
6286     Result = SimplifyInsertElementInst(NewOps[0], NewOps[1], NewOps[2], Q);
6287     break;
6288   }
6289   case Instruction::ExtractValue: {
6290     auto *EVI = cast<ExtractValueInst>(I);
6291     Result = SimplifyExtractValueInst(NewOps[0], EVI->getIndices(), Q);
6292     break;
6293   }
6294   case Instruction::ExtractElement: {
6295     Result = SimplifyExtractElementInst(NewOps[0], NewOps[1], Q);
6296     break;
6297   }
6298   case Instruction::ShuffleVector: {
6299     auto *SVI = cast<ShuffleVectorInst>(I);
6300     Result = SimplifyShuffleVectorInst(
6301         NewOps[0], NewOps[1], SVI->getShuffleMask(), SVI->getType(), Q);
6302     break;
6303   }
6304   case Instruction::PHI:
6305     Result = SimplifyPHINode(cast<PHINode>(I), NewOps, Q);
6306     break;
6307   case Instruction::Call: {
6308     // TODO: Use NewOps
6309     Result = SimplifyCall(cast<CallInst>(I), Q);
6310     break;
6311   }
6312   case Instruction::Freeze:
6313     Result = llvm::SimplifyFreezeInst(NewOps[0], Q);
6314     break;
6315 #define HANDLE_CAST_INST(num, opc, clas) case Instruction::opc:
6316 #include "llvm/IR/Instruction.def"
6317 #undef HANDLE_CAST_INST
6318     Result = SimplifyCastInst(I->getOpcode(), NewOps[0], I->getType(), Q);
6319     break;
6320   case Instruction::Alloca:
6321     // No simplifications for Alloca and it can't be constant folded.
6322     Result = nullptr;
6323     break;
6324   case Instruction::Load:
6325     Result = SimplifyLoadInst(cast<LoadInst>(I), NewOps[0], Q);
6326     break;
6327   }
6328 
6329   /// If called on unreachable code, the above logic may report that the
6330   /// instruction simplified to itself.  Make life easier for users by
6331   /// detecting that case here, returning a safe value instead.
6332   return Result == I ? UndefValue::get(I->getType()) : Result;
6333 }
6334 
6335 Value *llvm::SimplifyInstructionWithOperands(Instruction *I,
6336                                              ArrayRef<Value *> NewOps,
6337                                              const SimplifyQuery &SQ,
6338                                              OptimizationRemarkEmitter *ORE) {
6339   assert(NewOps.size() == I->getNumOperands() &&
6340          "Number of operands should match the instruction!");
6341   return ::simplifyInstructionWithOperands(I, NewOps, SQ, ORE);
6342 }
6343 
6344 Value *llvm::SimplifyInstruction(Instruction *I, const SimplifyQuery &SQ,
6345                                  OptimizationRemarkEmitter *ORE) {
6346   SmallVector<Value *, 8> Ops(I->operands());
6347   return ::simplifyInstructionWithOperands(I, Ops, SQ, ORE);
6348 }
6349 
6350 /// Implementation of recursive simplification through an instruction's
6351 /// uses.
6352 ///
6353 /// This is the common implementation of the recursive simplification routines.
6354 /// If we have a pre-simplified value in 'SimpleV', that is forcibly used to
6355 /// replace the instruction 'I'. Otherwise, we simply add 'I' to the list of
6356 /// instructions to process and attempt to simplify it using
6357 /// InstructionSimplify. Recursively visited users which could not be
6358 /// simplified themselves are to the optional UnsimplifiedUsers set for
6359 /// further processing by the caller.
6360 ///
6361 /// This routine returns 'true' only when *it* simplifies something. The passed
6362 /// in simplified value does not count toward this.
6363 static bool replaceAndRecursivelySimplifyImpl(
6364     Instruction *I, Value *SimpleV, const TargetLibraryInfo *TLI,
6365     const DominatorTree *DT, AssumptionCache *AC,
6366     SmallSetVector<Instruction *, 8> *UnsimplifiedUsers = nullptr) {
6367   bool Simplified = false;
6368   SmallSetVector<Instruction *, 8> Worklist;
6369   const DataLayout &DL = I->getModule()->getDataLayout();
6370 
6371   // If we have an explicit value to collapse to, do that round of the
6372   // simplification loop by hand initially.
6373   if (SimpleV) {
6374     for (User *U : I->users())
6375       if (U != I)
6376         Worklist.insert(cast<Instruction>(U));
6377 
6378     // Replace the instruction with its simplified value.
6379     I->replaceAllUsesWith(SimpleV);
6380 
6381     // Gracefully handle edge cases where the instruction is not wired into any
6382     // parent block.
6383     if (I->getParent() && !I->isEHPad() && !I->isTerminator() &&
6384         !I->mayHaveSideEffects())
6385       I->eraseFromParent();
6386   } else {
6387     Worklist.insert(I);
6388   }
6389 
6390   // Note that we must test the size on each iteration, the worklist can grow.
6391   for (unsigned Idx = 0; Idx != Worklist.size(); ++Idx) {
6392     I = Worklist[Idx];
6393 
6394     // See if this instruction simplifies.
6395     SimpleV = SimplifyInstruction(I, {DL, TLI, DT, AC});
6396     if (!SimpleV) {
6397       if (UnsimplifiedUsers)
6398         UnsimplifiedUsers->insert(I);
6399       continue;
6400     }
6401 
6402     Simplified = true;
6403 
6404     // Stash away all the uses of the old instruction so we can check them for
6405     // recursive simplifications after a RAUW. This is cheaper than checking all
6406     // uses of To on the recursive step in most cases.
6407     for (User *U : I->users())
6408       Worklist.insert(cast<Instruction>(U));
6409 
6410     // Replace the instruction with its simplified value.
6411     I->replaceAllUsesWith(SimpleV);
6412 
6413     // Gracefully handle edge cases where the instruction is not wired into any
6414     // parent block.
6415     if (I->getParent() && !I->isEHPad() && !I->isTerminator() &&
6416         !I->mayHaveSideEffects())
6417       I->eraseFromParent();
6418   }
6419   return Simplified;
6420 }
6421 
6422 bool llvm::replaceAndRecursivelySimplify(
6423     Instruction *I, Value *SimpleV, const TargetLibraryInfo *TLI,
6424     const DominatorTree *DT, AssumptionCache *AC,
6425     SmallSetVector<Instruction *, 8> *UnsimplifiedUsers) {
6426   assert(I != SimpleV && "replaceAndRecursivelySimplify(X,X) is not valid!");
6427   assert(SimpleV && "Must provide a simplified value.");
6428   return replaceAndRecursivelySimplifyImpl(I, SimpleV, TLI, DT, AC,
6429                                            UnsimplifiedUsers);
6430 }
6431 
6432 namespace llvm {
6433 const SimplifyQuery getBestSimplifyQuery(Pass &P, Function &F) {
6434   auto *DTWP = P.getAnalysisIfAvailable<DominatorTreeWrapperPass>();
6435   auto *DT = DTWP ? &DTWP->getDomTree() : nullptr;
6436   auto *TLIWP = P.getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>();
6437   auto *TLI = TLIWP ? &TLIWP->getTLI(F) : nullptr;
6438   auto *ACWP = P.getAnalysisIfAvailable<AssumptionCacheTracker>();
6439   auto *AC = ACWP ? &ACWP->getAssumptionCache(F) : nullptr;
6440   return {F.getParent()->getDataLayout(), TLI, DT, AC};
6441 }
6442 
6443 const SimplifyQuery getBestSimplifyQuery(LoopStandardAnalysisResults &AR,
6444                                          const DataLayout &DL) {
6445   return {DL, &AR.TLI, &AR.DT, &AR.AC};
6446 }
6447 
6448 template <class T, class... TArgs>
6449 const SimplifyQuery getBestSimplifyQuery(AnalysisManager<T, TArgs...> &AM,
6450                                          Function &F) {
6451   auto *DT = AM.template getCachedResult<DominatorTreeAnalysis>(F);
6452   auto *TLI = AM.template getCachedResult<TargetLibraryAnalysis>(F);
6453   auto *AC = AM.template getCachedResult<AssumptionAnalysis>(F);
6454   return {F.getParent()->getDataLayout(), TLI, DT, AC};
6455 }
6456 template const SimplifyQuery getBestSimplifyQuery(AnalysisManager<Function> &,
6457                                                   Function &);
6458 }
6459 
6460 void InstSimplifyFolder::anchor() {}
6461