1 //===- InstructionSimplify.cpp - Fold instruction operands ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements routines for folding instructions into simpler forms 11 // that do not require creating new instructions. This does constant folding 12 // ("add i32 1, 1" -> "2") but can also handle non-constant operands, either 13 // returning a constant ("and i32 %x, 0" -> "0") or an already existing value 14 // ("and i32 %x, %x" -> "%x"). All operands are assumed to have already been 15 // simplified: This is usually true and assuming it simplifies the logic (if 16 // they have not been simplified then results are correct but maybe suboptimal). 17 // 18 //===----------------------------------------------------------------------===// 19 20 #define DEBUG_TYPE "instsimplify" 21 #include "llvm/Analysis/InstructionSimplify.h" 22 #include "llvm/ADT/SetVector.h" 23 #include "llvm/ADT/Statistic.h" 24 #include "llvm/Analysis/ConstantFolding.h" 25 #include "llvm/Analysis/MemoryBuiltins.h" 26 #include "llvm/Analysis/ValueTracking.h" 27 #include "llvm/IR/ConstantRange.h" 28 #include "llvm/IR/DataLayout.h" 29 #include "llvm/IR/Dominators.h" 30 #include "llvm/IR/GetElementPtrTypeIterator.h" 31 #include "llvm/IR/GlobalAlias.h" 32 #include "llvm/IR/Operator.h" 33 #include "llvm/IR/PatternMatch.h" 34 #include "llvm/IR/ValueHandle.h" 35 using namespace llvm; 36 using namespace llvm::PatternMatch; 37 38 enum { RecursionLimit = 3 }; 39 40 STATISTIC(NumExpand, "Number of expansions"); 41 STATISTIC(NumFactor , "Number of factorizations"); 42 STATISTIC(NumReassoc, "Number of reassociations"); 43 44 struct Query { 45 const DataLayout *DL; 46 const TargetLibraryInfo *TLI; 47 const DominatorTree *DT; 48 49 Query(const DataLayout *DL, const TargetLibraryInfo *tli, 50 const DominatorTree *dt) : DL(DL), TLI(tli), DT(dt) {} 51 }; 52 53 static Value *SimplifyAndInst(Value *, Value *, const Query &, unsigned); 54 static Value *SimplifyBinOp(unsigned, Value *, Value *, const Query &, 55 unsigned); 56 static Value *SimplifyCmpInst(unsigned, Value *, Value *, const Query &, 57 unsigned); 58 static Value *SimplifyOrInst(Value *, Value *, const Query &, unsigned); 59 static Value *SimplifyXorInst(Value *, Value *, const Query &, unsigned); 60 static Value *SimplifyTruncInst(Value *, Type *, const Query &, unsigned); 61 62 /// getFalse - For a boolean type, or a vector of boolean type, return false, or 63 /// a vector with every element false, as appropriate for the type. 64 static Constant *getFalse(Type *Ty) { 65 assert(Ty->getScalarType()->isIntegerTy(1) && 66 "Expected i1 type or a vector of i1!"); 67 return Constant::getNullValue(Ty); 68 } 69 70 /// getTrue - For a boolean type, or a vector of boolean type, return true, or 71 /// a vector with every element true, as appropriate for the type. 72 static Constant *getTrue(Type *Ty) { 73 assert(Ty->getScalarType()->isIntegerTy(1) && 74 "Expected i1 type or a vector of i1!"); 75 return Constant::getAllOnesValue(Ty); 76 } 77 78 /// isSameCompare - Is V equivalent to the comparison "LHS Pred RHS"? 79 static bool isSameCompare(Value *V, CmpInst::Predicate Pred, Value *LHS, 80 Value *RHS) { 81 CmpInst *Cmp = dyn_cast<CmpInst>(V); 82 if (!Cmp) 83 return false; 84 CmpInst::Predicate CPred = Cmp->getPredicate(); 85 Value *CLHS = Cmp->getOperand(0), *CRHS = Cmp->getOperand(1); 86 if (CPred == Pred && CLHS == LHS && CRHS == RHS) 87 return true; 88 return CPred == CmpInst::getSwappedPredicate(Pred) && CLHS == RHS && 89 CRHS == LHS; 90 } 91 92 /// ValueDominatesPHI - Does the given value dominate the specified phi node? 93 static bool ValueDominatesPHI(Value *V, PHINode *P, const DominatorTree *DT) { 94 Instruction *I = dyn_cast<Instruction>(V); 95 if (!I) 96 // Arguments and constants dominate all instructions. 97 return true; 98 99 // If we are processing instructions (and/or basic blocks) that have not been 100 // fully added to a function, the parent nodes may still be null. Simply 101 // return the conservative answer in these cases. 102 if (!I->getParent() || !P->getParent() || !I->getParent()->getParent()) 103 return false; 104 105 // If we have a DominatorTree then do a precise test. 106 if (DT) { 107 if (!DT->isReachableFromEntry(P->getParent())) 108 return true; 109 if (!DT->isReachableFromEntry(I->getParent())) 110 return false; 111 return DT->dominates(I, P); 112 } 113 114 // Otherwise, if the instruction is in the entry block, and is not an invoke, 115 // then it obviously dominates all phi nodes. 116 if (I->getParent() == &I->getParent()->getParent()->getEntryBlock() && 117 !isa<InvokeInst>(I)) 118 return true; 119 120 return false; 121 } 122 123 /// ExpandBinOp - Simplify "A op (B op' C)" by distributing op over op', turning 124 /// it into "(A op B) op' (A op C)". Here "op" is given by Opcode and "op'" is 125 /// given by OpcodeToExpand, while "A" corresponds to LHS and "B op' C" to RHS. 126 /// Also performs the transform "(A op' B) op C" -> "(A op C) op' (B op C)". 127 /// Returns the simplified value, or null if no simplification was performed. 128 static Value *ExpandBinOp(unsigned Opcode, Value *LHS, Value *RHS, 129 unsigned OpcToExpand, const Query &Q, 130 unsigned MaxRecurse) { 131 Instruction::BinaryOps OpcodeToExpand = (Instruction::BinaryOps)OpcToExpand; 132 // Recursion is always used, so bail out at once if we already hit the limit. 133 if (!MaxRecurse--) 134 return 0; 135 136 // Check whether the expression has the form "(A op' B) op C". 137 if (BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS)) 138 if (Op0->getOpcode() == OpcodeToExpand) { 139 // It does! Try turning it into "(A op C) op' (B op C)". 140 Value *A = Op0->getOperand(0), *B = Op0->getOperand(1), *C = RHS; 141 // Do "A op C" and "B op C" both simplify? 142 if (Value *L = SimplifyBinOp(Opcode, A, C, Q, MaxRecurse)) 143 if (Value *R = SimplifyBinOp(Opcode, B, C, Q, MaxRecurse)) { 144 // They do! Return "L op' R" if it simplifies or is already available. 145 // If "L op' R" equals "A op' B" then "L op' R" is just the LHS. 146 if ((L == A && R == B) || (Instruction::isCommutative(OpcodeToExpand) 147 && L == B && R == A)) { 148 ++NumExpand; 149 return LHS; 150 } 151 // Otherwise return "L op' R" if it simplifies. 152 if (Value *V = SimplifyBinOp(OpcodeToExpand, L, R, Q, MaxRecurse)) { 153 ++NumExpand; 154 return V; 155 } 156 } 157 } 158 159 // Check whether the expression has the form "A op (B op' C)". 160 if (BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS)) 161 if (Op1->getOpcode() == OpcodeToExpand) { 162 // It does! Try turning it into "(A op B) op' (A op C)". 163 Value *A = LHS, *B = Op1->getOperand(0), *C = Op1->getOperand(1); 164 // Do "A op B" and "A op C" both simplify? 165 if (Value *L = SimplifyBinOp(Opcode, A, B, Q, MaxRecurse)) 166 if (Value *R = SimplifyBinOp(Opcode, A, C, Q, MaxRecurse)) { 167 // They do! Return "L op' R" if it simplifies or is already available. 168 // If "L op' R" equals "B op' C" then "L op' R" is just the RHS. 169 if ((L == B && R == C) || (Instruction::isCommutative(OpcodeToExpand) 170 && L == C && R == B)) { 171 ++NumExpand; 172 return RHS; 173 } 174 // Otherwise return "L op' R" if it simplifies. 175 if (Value *V = SimplifyBinOp(OpcodeToExpand, L, R, Q, MaxRecurse)) { 176 ++NumExpand; 177 return V; 178 } 179 } 180 } 181 182 return 0; 183 } 184 185 /// FactorizeBinOp - Simplify "LHS Opcode RHS" by factorizing out a common term 186 /// using the operation OpCodeToExtract. For example, when Opcode is Add and 187 /// OpCodeToExtract is Mul then this tries to turn "(A*B)+(A*C)" into "A*(B+C)". 188 /// Returns the simplified value, or null if no simplification was performed. 189 static Value *FactorizeBinOp(unsigned Opcode, Value *LHS, Value *RHS, 190 unsigned OpcToExtract, const Query &Q, 191 unsigned MaxRecurse) { 192 Instruction::BinaryOps OpcodeToExtract = (Instruction::BinaryOps)OpcToExtract; 193 // Recursion is always used, so bail out at once if we already hit the limit. 194 if (!MaxRecurse--) 195 return 0; 196 197 BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS); 198 BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS); 199 200 if (!Op0 || Op0->getOpcode() != OpcodeToExtract || 201 !Op1 || Op1->getOpcode() != OpcodeToExtract) 202 return 0; 203 204 // The expression has the form "(A op' B) op (C op' D)". 205 Value *A = Op0->getOperand(0), *B = Op0->getOperand(1); 206 Value *C = Op1->getOperand(0), *D = Op1->getOperand(1); 207 208 // Use left distributivity, i.e. "X op' (Y op Z) = (X op' Y) op (X op' Z)". 209 // Does the instruction have the form "(A op' B) op (A op' D)" or, in the 210 // commutative case, "(A op' B) op (C op' A)"? 211 if (A == C || (Instruction::isCommutative(OpcodeToExtract) && A == D)) { 212 Value *DD = A == C ? D : C; 213 // Form "A op' (B op DD)" if it simplifies completely. 214 // Does "B op DD" simplify? 215 if (Value *V = SimplifyBinOp(Opcode, B, DD, Q, MaxRecurse)) { 216 // It does! Return "A op' V" if it simplifies or is already available. 217 // If V equals B then "A op' V" is just the LHS. If V equals DD then 218 // "A op' V" is just the RHS. 219 if (V == B || V == DD) { 220 ++NumFactor; 221 return V == B ? LHS : RHS; 222 } 223 // Otherwise return "A op' V" if it simplifies. 224 if (Value *W = SimplifyBinOp(OpcodeToExtract, A, V, Q, MaxRecurse)) { 225 ++NumFactor; 226 return W; 227 } 228 } 229 } 230 231 // Use right distributivity, i.e. "(X op Y) op' Z = (X op' Z) op (Y op' Z)". 232 // Does the instruction have the form "(A op' B) op (C op' B)" or, in the 233 // commutative case, "(A op' B) op (B op' D)"? 234 if (B == D || (Instruction::isCommutative(OpcodeToExtract) && B == C)) { 235 Value *CC = B == D ? C : D; 236 // Form "(A op CC) op' B" if it simplifies completely.. 237 // Does "A op CC" simplify? 238 if (Value *V = SimplifyBinOp(Opcode, A, CC, Q, MaxRecurse)) { 239 // It does! Return "V op' B" if it simplifies or is already available. 240 // If V equals A then "V op' B" is just the LHS. If V equals CC then 241 // "V op' B" is just the RHS. 242 if (V == A || V == CC) { 243 ++NumFactor; 244 return V == A ? LHS : RHS; 245 } 246 // Otherwise return "V op' B" if it simplifies. 247 if (Value *W = SimplifyBinOp(OpcodeToExtract, V, B, Q, MaxRecurse)) { 248 ++NumFactor; 249 return W; 250 } 251 } 252 } 253 254 return 0; 255 } 256 257 /// SimplifyAssociativeBinOp - Generic simplifications for associative binary 258 /// operations. Returns the simpler value, or null if none was found. 259 static Value *SimplifyAssociativeBinOp(unsigned Opc, Value *LHS, Value *RHS, 260 const Query &Q, unsigned MaxRecurse) { 261 Instruction::BinaryOps Opcode = (Instruction::BinaryOps)Opc; 262 assert(Instruction::isAssociative(Opcode) && "Not an associative operation!"); 263 264 // Recursion is always used, so bail out at once if we already hit the limit. 265 if (!MaxRecurse--) 266 return 0; 267 268 BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS); 269 BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS); 270 271 // Transform: "(A op B) op C" ==> "A op (B op C)" if it simplifies completely. 272 if (Op0 && Op0->getOpcode() == Opcode) { 273 Value *A = Op0->getOperand(0); 274 Value *B = Op0->getOperand(1); 275 Value *C = RHS; 276 277 // Does "B op C" simplify? 278 if (Value *V = SimplifyBinOp(Opcode, B, C, Q, MaxRecurse)) { 279 // It does! Return "A op V" if it simplifies or is already available. 280 // If V equals B then "A op V" is just the LHS. 281 if (V == B) return LHS; 282 // Otherwise return "A op V" if it simplifies. 283 if (Value *W = SimplifyBinOp(Opcode, A, V, Q, MaxRecurse)) { 284 ++NumReassoc; 285 return W; 286 } 287 } 288 } 289 290 // Transform: "A op (B op C)" ==> "(A op B) op C" if it simplifies completely. 291 if (Op1 && Op1->getOpcode() == Opcode) { 292 Value *A = LHS; 293 Value *B = Op1->getOperand(0); 294 Value *C = Op1->getOperand(1); 295 296 // Does "A op B" simplify? 297 if (Value *V = SimplifyBinOp(Opcode, A, B, Q, MaxRecurse)) { 298 // It does! Return "V op C" if it simplifies or is already available. 299 // If V equals B then "V op C" is just the RHS. 300 if (V == B) return RHS; 301 // Otherwise return "V op C" if it simplifies. 302 if (Value *W = SimplifyBinOp(Opcode, V, C, Q, MaxRecurse)) { 303 ++NumReassoc; 304 return W; 305 } 306 } 307 } 308 309 // The remaining transforms require commutativity as well as associativity. 310 if (!Instruction::isCommutative(Opcode)) 311 return 0; 312 313 // Transform: "(A op B) op C" ==> "(C op A) op B" if it simplifies completely. 314 if (Op0 && Op0->getOpcode() == Opcode) { 315 Value *A = Op0->getOperand(0); 316 Value *B = Op0->getOperand(1); 317 Value *C = RHS; 318 319 // Does "C op A" simplify? 320 if (Value *V = SimplifyBinOp(Opcode, C, A, Q, MaxRecurse)) { 321 // It does! Return "V op B" if it simplifies or is already available. 322 // If V equals A then "V op B" is just the LHS. 323 if (V == A) return LHS; 324 // Otherwise return "V op B" if it simplifies. 325 if (Value *W = SimplifyBinOp(Opcode, V, B, Q, MaxRecurse)) { 326 ++NumReassoc; 327 return W; 328 } 329 } 330 } 331 332 // Transform: "A op (B op C)" ==> "B op (C op A)" if it simplifies completely. 333 if (Op1 && Op1->getOpcode() == Opcode) { 334 Value *A = LHS; 335 Value *B = Op1->getOperand(0); 336 Value *C = Op1->getOperand(1); 337 338 // Does "C op A" simplify? 339 if (Value *V = SimplifyBinOp(Opcode, C, A, Q, MaxRecurse)) { 340 // It does! Return "B op V" if it simplifies or is already available. 341 // If V equals C then "B op V" is just the RHS. 342 if (V == C) return RHS; 343 // Otherwise return "B op V" if it simplifies. 344 if (Value *W = SimplifyBinOp(Opcode, B, V, Q, MaxRecurse)) { 345 ++NumReassoc; 346 return W; 347 } 348 } 349 } 350 351 return 0; 352 } 353 354 /// ThreadBinOpOverSelect - In the case of a binary operation with a select 355 /// instruction as an operand, try to simplify the binop by seeing whether 356 /// evaluating it on both branches of the select results in the same value. 357 /// Returns the common value if so, otherwise returns null. 358 static Value *ThreadBinOpOverSelect(unsigned Opcode, Value *LHS, Value *RHS, 359 const Query &Q, unsigned MaxRecurse) { 360 // Recursion is always used, so bail out at once if we already hit the limit. 361 if (!MaxRecurse--) 362 return 0; 363 364 SelectInst *SI; 365 if (isa<SelectInst>(LHS)) { 366 SI = cast<SelectInst>(LHS); 367 } else { 368 assert(isa<SelectInst>(RHS) && "No select instruction operand!"); 369 SI = cast<SelectInst>(RHS); 370 } 371 372 // Evaluate the BinOp on the true and false branches of the select. 373 Value *TV; 374 Value *FV; 375 if (SI == LHS) { 376 TV = SimplifyBinOp(Opcode, SI->getTrueValue(), RHS, Q, MaxRecurse); 377 FV = SimplifyBinOp(Opcode, SI->getFalseValue(), RHS, Q, MaxRecurse); 378 } else { 379 TV = SimplifyBinOp(Opcode, LHS, SI->getTrueValue(), Q, MaxRecurse); 380 FV = SimplifyBinOp(Opcode, LHS, SI->getFalseValue(), Q, MaxRecurse); 381 } 382 383 // If they simplified to the same value, then return the common value. 384 // If they both failed to simplify then return null. 385 if (TV == FV) 386 return TV; 387 388 // If one branch simplified to undef, return the other one. 389 if (TV && isa<UndefValue>(TV)) 390 return FV; 391 if (FV && isa<UndefValue>(FV)) 392 return TV; 393 394 // If applying the operation did not change the true and false select values, 395 // then the result of the binop is the select itself. 396 if (TV == SI->getTrueValue() && FV == SI->getFalseValue()) 397 return SI; 398 399 // If one branch simplified and the other did not, and the simplified 400 // value is equal to the unsimplified one, return the simplified value. 401 // For example, select (cond, X, X & Z) & Z -> X & Z. 402 if ((FV && !TV) || (TV && !FV)) { 403 // Check that the simplified value has the form "X op Y" where "op" is the 404 // same as the original operation. 405 Instruction *Simplified = dyn_cast<Instruction>(FV ? FV : TV); 406 if (Simplified && Simplified->getOpcode() == Opcode) { 407 // The value that didn't simplify is "UnsimplifiedLHS op UnsimplifiedRHS". 408 // We already know that "op" is the same as for the simplified value. See 409 // if the operands match too. If so, return the simplified value. 410 Value *UnsimplifiedBranch = FV ? SI->getTrueValue() : SI->getFalseValue(); 411 Value *UnsimplifiedLHS = SI == LHS ? UnsimplifiedBranch : LHS; 412 Value *UnsimplifiedRHS = SI == LHS ? RHS : UnsimplifiedBranch; 413 if (Simplified->getOperand(0) == UnsimplifiedLHS && 414 Simplified->getOperand(1) == UnsimplifiedRHS) 415 return Simplified; 416 if (Simplified->isCommutative() && 417 Simplified->getOperand(1) == UnsimplifiedLHS && 418 Simplified->getOperand(0) == UnsimplifiedRHS) 419 return Simplified; 420 } 421 } 422 423 return 0; 424 } 425 426 /// ThreadCmpOverSelect - In the case of a comparison with a select instruction, 427 /// try to simplify the comparison by seeing whether both branches of the select 428 /// result in the same value. Returns the common value if so, otherwise returns 429 /// null. 430 static Value *ThreadCmpOverSelect(CmpInst::Predicate Pred, Value *LHS, 431 Value *RHS, const Query &Q, 432 unsigned MaxRecurse) { 433 // Recursion is always used, so bail out at once if we already hit the limit. 434 if (!MaxRecurse--) 435 return 0; 436 437 // Make sure the select is on the LHS. 438 if (!isa<SelectInst>(LHS)) { 439 std::swap(LHS, RHS); 440 Pred = CmpInst::getSwappedPredicate(Pred); 441 } 442 assert(isa<SelectInst>(LHS) && "Not comparing with a select instruction!"); 443 SelectInst *SI = cast<SelectInst>(LHS); 444 Value *Cond = SI->getCondition(); 445 Value *TV = SI->getTrueValue(); 446 Value *FV = SI->getFalseValue(); 447 448 // Now that we have "cmp select(Cond, TV, FV), RHS", analyse it. 449 // Does "cmp TV, RHS" simplify? 450 Value *TCmp = SimplifyCmpInst(Pred, TV, RHS, Q, MaxRecurse); 451 if (TCmp == Cond) { 452 // It not only simplified, it simplified to the select condition. Replace 453 // it with 'true'. 454 TCmp = getTrue(Cond->getType()); 455 } else if (!TCmp) { 456 // It didn't simplify. However if "cmp TV, RHS" is equal to the select 457 // condition then we can replace it with 'true'. Otherwise give up. 458 if (!isSameCompare(Cond, Pred, TV, RHS)) 459 return 0; 460 TCmp = getTrue(Cond->getType()); 461 } 462 463 // Does "cmp FV, RHS" simplify? 464 Value *FCmp = SimplifyCmpInst(Pred, FV, RHS, Q, MaxRecurse); 465 if (FCmp == Cond) { 466 // It not only simplified, it simplified to the select condition. Replace 467 // it with 'false'. 468 FCmp = getFalse(Cond->getType()); 469 } else if (!FCmp) { 470 // It didn't simplify. However if "cmp FV, RHS" is equal to the select 471 // condition then we can replace it with 'false'. Otherwise give up. 472 if (!isSameCompare(Cond, Pred, FV, RHS)) 473 return 0; 474 FCmp = getFalse(Cond->getType()); 475 } 476 477 // If both sides simplified to the same value, then use it as the result of 478 // the original comparison. 479 if (TCmp == FCmp) 480 return TCmp; 481 482 // The remaining cases only make sense if the select condition has the same 483 // type as the result of the comparison, so bail out if this is not so. 484 if (Cond->getType()->isVectorTy() != RHS->getType()->isVectorTy()) 485 return 0; 486 // If the false value simplified to false, then the result of the compare 487 // is equal to "Cond && TCmp". This also catches the case when the false 488 // value simplified to false and the true value to true, returning "Cond". 489 if (match(FCmp, m_Zero())) 490 if (Value *V = SimplifyAndInst(Cond, TCmp, Q, MaxRecurse)) 491 return V; 492 // If the true value simplified to true, then the result of the compare 493 // is equal to "Cond || FCmp". 494 if (match(TCmp, m_One())) 495 if (Value *V = SimplifyOrInst(Cond, FCmp, Q, MaxRecurse)) 496 return V; 497 // Finally, if the false value simplified to true and the true value to 498 // false, then the result of the compare is equal to "!Cond". 499 if (match(FCmp, m_One()) && match(TCmp, m_Zero())) 500 if (Value *V = 501 SimplifyXorInst(Cond, Constant::getAllOnesValue(Cond->getType()), 502 Q, MaxRecurse)) 503 return V; 504 505 return 0; 506 } 507 508 /// ThreadBinOpOverPHI - In the case of a binary operation with an operand that 509 /// is a PHI instruction, try to simplify the binop by seeing whether evaluating 510 /// it on the incoming phi values yields the same result for every value. If so 511 /// returns the common value, otherwise returns null. 512 static Value *ThreadBinOpOverPHI(unsigned Opcode, Value *LHS, Value *RHS, 513 const Query &Q, unsigned MaxRecurse) { 514 // Recursion is always used, so bail out at once if we already hit the limit. 515 if (!MaxRecurse--) 516 return 0; 517 518 PHINode *PI; 519 if (isa<PHINode>(LHS)) { 520 PI = cast<PHINode>(LHS); 521 // Bail out if RHS and the phi may be mutually interdependent due to a loop. 522 if (!ValueDominatesPHI(RHS, PI, Q.DT)) 523 return 0; 524 } else { 525 assert(isa<PHINode>(RHS) && "No PHI instruction operand!"); 526 PI = cast<PHINode>(RHS); 527 // Bail out if LHS and the phi may be mutually interdependent due to a loop. 528 if (!ValueDominatesPHI(LHS, PI, Q.DT)) 529 return 0; 530 } 531 532 // Evaluate the BinOp on the incoming phi values. 533 Value *CommonValue = 0; 534 for (unsigned i = 0, e = PI->getNumIncomingValues(); i != e; ++i) { 535 Value *Incoming = PI->getIncomingValue(i); 536 // If the incoming value is the phi node itself, it can safely be skipped. 537 if (Incoming == PI) continue; 538 Value *V = PI == LHS ? 539 SimplifyBinOp(Opcode, Incoming, RHS, Q, MaxRecurse) : 540 SimplifyBinOp(Opcode, LHS, Incoming, Q, MaxRecurse); 541 // If the operation failed to simplify, or simplified to a different value 542 // to previously, then give up. 543 if (!V || (CommonValue && V != CommonValue)) 544 return 0; 545 CommonValue = V; 546 } 547 548 return CommonValue; 549 } 550 551 /// ThreadCmpOverPHI - In the case of a comparison with a PHI instruction, try 552 /// try to simplify the comparison by seeing whether comparing with all of the 553 /// incoming phi values yields the same result every time. If so returns the 554 /// common result, otherwise returns null. 555 static Value *ThreadCmpOverPHI(CmpInst::Predicate Pred, Value *LHS, Value *RHS, 556 const Query &Q, unsigned MaxRecurse) { 557 // Recursion is always used, so bail out at once if we already hit the limit. 558 if (!MaxRecurse--) 559 return 0; 560 561 // Make sure the phi is on the LHS. 562 if (!isa<PHINode>(LHS)) { 563 std::swap(LHS, RHS); 564 Pred = CmpInst::getSwappedPredicate(Pred); 565 } 566 assert(isa<PHINode>(LHS) && "Not comparing with a phi instruction!"); 567 PHINode *PI = cast<PHINode>(LHS); 568 569 // Bail out if RHS and the phi may be mutually interdependent due to a loop. 570 if (!ValueDominatesPHI(RHS, PI, Q.DT)) 571 return 0; 572 573 // Evaluate the BinOp on the incoming phi values. 574 Value *CommonValue = 0; 575 for (unsigned i = 0, e = PI->getNumIncomingValues(); i != e; ++i) { 576 Value *Incoming = PI->getIncomingValue(i); 577 // If the incoming value is the phi node itself, it can safely be skipped. 578 if (Incoming == PI) continue; 579 Value *V = SimplifyCmpInst(Pred, Incoming, RHS, Q, MaxRecurse); 580 // If the operation failed to simplify, or simplified to a different value 581 // to previously, then give up. 582 if (!V || (CommonValue && V != CommonValue)) 583 return 0; 584 CommonValue = V; 585 } 586 587 return CommonValue; 588 } 589 590 /// SimplifyAddInst - Given operands for an Add, see if we can 591 /// fold the result. If not, this returns null. 592 static Value *SimplifyAddInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, 593 const Query &Q, unsigned MaxRecurse) { 594 if (Constant *CLHS = dyn_cast<Constant>(Op0)) { 595 if (Constant *CRHS = dyn_cast<Constant>(Op1)) { 596 Constant *Ops[] = { CLHS, CRHS }; 597 return ConstantFoldInstOperands(Instruction::Add, CLHS->getType(), Ops, 598 Q.DL, Q.TLI); 599 } 600 601 // Canonicalize the constant to the RHS. 602 std::swap(Op0, Op1); 603 } 604 605 // X + undef -> undef 606 if (match(Op1, m_Undef())) 607 return Op1; 608 609 // X + 0 -> X 610 if (match(Op1, m_Zero())) 611 return Op0; 612 613 // X + (Y - X) -> Y 614 // (Y - X) + X -> Y 615 // Eg: X + -X -> 0 616 Value *Y = 0; 617 if (match(Op1, m_Sub(m_Value(Y), m_Specific(Op0))) || 618 match(Op0, m_Sub(m_Value(Y), m_Specific(Op1)))) 619 return Y; 620 621 // X + ~X -> -1 since ~X = -X-1 622 if (match(Op0, m_Not(m_Specific(Op1))) || 623 match(Op1, m_Not(m_Specific(Op0)))) 624 return Constant::getAllOnesValue(Op0->getType()); 625 626 /// i1 add -> xor. 627 if (MaxRecurse && Op0->getType()->isIntegerTy(1)) 628 if (Value *V = SimplifyXorInst(Op0, Op1, Q, MaxRecurse-1)) 629 return V; 630 631 // Try some generic simplifications for associative operations. 632 if (Value *V = SimplifyAssociativeBinOp(Instruction::Add, Op0, Op1, Q, 633 MaxRecurse)) 634 return V; 635 636 // Mul distributes over Add. Try some generic simplifications based on this. 637 if (Value *V = FactorizeBinOp(Instruction::Add, Op0, Op1, Instruction::Mul, 638 Q, MaxRecurse)) 639 return V; 640 641 // Threading Add over selects and phi nodes is pointless, so don't bother. 642 // Threading over the select in "A + select(cond, B, C)" means evaluating 643 // "A+B" and "A+C" and seeing if they are equal; but they are equal if and 644 // only if B and C are equal. If B and C are equal then (since we assume 645 // that operands have already been simplified) "select(cond, B, C)" should 646 // have been simplified to the common value of B and C already. Analysing 647 // "A+B" and "A+C" thus gains nothing, but costs compile time. Similarly 648 // for threading over phi nodes. 649 650 return 0; 651 } 652 653 Value *llvm::SimplifyAddInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, 654 const DataLayout *DL, const TargetLibraryInfo *TLI, 655 const DominatorTree *DT) { 656 return ::SimplifyAddInst(Op0, Op1, isNSW, isNUW, Query (DL, TLI, DT), 657 RecursionLimit); 658 } 659 660 /// \brief Compute the base pointer and cumulative constant offsets for V. 661 /// 662 /// This strips all constant offsets off of V, leaving it the base pointer, and 663 /// accumulates the total constant offset applied in the returned constant. It 664 /// returns 0 if V is not a pointer, and returns the constant '0' if there are 665 /// no constant offsets applied. 666 /// 667 /// This is very similar to GetPointerBaseWithConstantOffset except it doesn't 668 /// follow non-inbounds geps. This allows it to remain usable for icmp ult/etc. 669 /// folding. 670 static Constant *stripAndComputeConstantOffsets(const DataLayout *DL, 671 Value *&V, 672 bool AllowNonInbounds = false) { 673 assert(V->getType()->getScalarType()->isPointerTy()); 674 675 // Without DataLayout, just be conservative for now. Theoretically, more could 676 // be done in this case. 677 if (!DL) 678 return ConstantInt::get(IntegerType::get(V->getContext(), 64), 0); 679 680 Type *IntPtrTy = DL->getIntPtrType(V->getType())->getScalarType(); 681 APInt Offset = APInt::getNullValue(IntPtrTy->getIntegerBitWidth()); 682 683 // Even though we don't look through PHI nodes, we could be called on an 684 // instruction in an unreachable block, which may be on a cycle. 685 SmallPtrSet<Value *, 4> Visited; 686 Visited.insert(V); 687 do { 688 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 689 if ((!AllowNonInbounds && !GEP->isInBounds()) || 690 !GEP->accumulateConstantOffset(*DL, Offset)) 691 break; 692 V = GEP->getPointerOperand(); 693 } else if (Operator::getOpcode(V) == Instruction::BitCast) { 694 V = cast<Operator>(V)->getOperand(0); 695 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 696 if (GA->mayBeOverridden()) 697 break; 698 V = GA->getAliasee(); 699 } else { 700 break; 701 } 702 assert(V->getType()->getScalarType()->isPointerTy() && 703 "Unexpected operand type!"); 704 } while (Visited.insert(V)); 705 706 Constant *OffsetIntPtr = ConstantInt::get(IntPtrTy, Offset); 707 if (V->getType()->isVectorTy()) 708 return ConstantVector::getSplat(V->getType()->getVectorNumElements(), 709 OffsetIntPtr); 710 return OffsetIntPtr; 711 } 712 713 /// \brief Compute the constant difference between two pointer values. 714 /// If the difference is not a constant, returns zero. 715 static Constant *computePointerDifference(const DataLayout *DL, 716 Value *LHS, Value *RHS) { 717 Constant *LHSOffset = stripAndComputeConstantOffsets(DL, LHS); 718 Constant *RHSOffset = stripAndComputeConstantOffsets(DL, RHS); 719 720 // If LHS and RHS are not related via constant offsets to the same base 721 // value, there is nothing we can do here. 722 if (LHS != RHS) 723 return 0; 724 725 // Otherwise, the difference of LHS - RHS can be computed as: 726 // LHS - RHS 727 // = (LHSOffset + Base) - (RHSOffset + Base) 728 // = LHSOffset - RHSOffset 729 return ConstantExpr::getSub(LHSOffset, RHSOffset); 730 } 731 732 /// SimplifySubInst - Given operands for a Sub, see if we can 733 /// fold the result. If not, this returns null. 734 static Value *SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, 735 const Query &Q, unsigned MaxRecurse) { 736 if (Constant *CLHS = dyn_cast<Constant>(Op0)) 737 if (Constant *CRHS = dyn_cast<Constant>(Op1)) { 738 Constant *Ops[] = { CLHS, CRHS }; 739 return ConstantFoldInstOperands(Instruction::Sub, CLHS->getType(), 740 Ops, Q.DL, Q.TLI); 741 } 742 743 // X - undef -> undef 744 // undef - X -> undef 745 if (match(Op0, m_Undef()) || match(Op1, m_Undef())) 746 return UndefValue::get(Op0->getType()); 747 748 // X - 0 -> X 749 if (match(Op1, m_Zero())) 750 return Op0; 751 752 // X - X -> 0 753 if (Op0 == Op1) 754 return Constant::getNullValue(Op0->getType()); 755 756 // (X*2) - X -> X 757 // (X<<1) - X -> X 758 Value *X = 0; 759 if (match(Op0, m_Mul(m_Specific(Op1), m_ConstantInt<2>())) || 760 match(Op0, m_Shl(m_Specific(Op1), m_One()))) 761 return Op1; 762 763 // (X + Y) - Z -> X + (Y - Z) or Y + (X - Z) if everything simplifies. 764 // For example, (X + Y) - Y -> X; (Y + X) - Y -> X 765 Value *Y = 0, *Z = Op1; 766 if (MaxRecurse && match(Op0, m_Add(m_Value(X), m_Value(Y)))) { // (X + Y) - Z 767 // See if "V === Y - Z" simplifies. 768 if (Value *V = SimplifyBinOp(Instruction::Sub, Y, Z, Q, MaxRecurse-1)) 769 // It does! Now see if "X + V" simplifies. 770 if (Value *W = SimplifyBinOp(Instruction::Add, X, V, Q, MaxRecurse-1)) { 771 // It does, we successfully reassociated! 772 ++NumReassoc; 773 return W; 774 } 775 // See if "V === X - Z" simplifies. 776 if (Value *V = SimplifyBinOp(Instruction::Sub, X, Z, Q, MaxRecurse-1)) 777 // It does! Now see if "Y + V" simplifies. 778 if (Value *W = SimplifyBinOp(Instruction::Add, Y, V, Q, MaxRecurse-1)) { 779 // It does, we successfully reassociated! 780 ++NumReassoc; 781 return W; 782 } 783 } 784 785 // X - (Y + Z) -> (X - Y) - Z or (X - Z) - Y if everything simplifies. 786 // For example, X - (X + 1) -> -1 787 X = Op0; 788 if (MaxRecurse && match(Op1, m_Add(m_Value(Y), m_Value(Z)))) { // X - (Y + Z) 789 // See if "V === X - Y" simplifies. 790 if (Value *V = SimplifyBinOp(Instruction::Sub, X, Y, Q, MaxRecurse-1)) 791 // It does! Now see if "V - Z" simplifies. 792 if (Value *W = SimplifyBinOp(Instruction::Sub, V, Z, Q, MaxRecurse-1)) { 793 // It does, we successfully reassociated! 794 ++NumReassoc; 795 return W; 796 } 797 // See if "V === X - Z" simplifies. 798 if (Value *V = SimplifyBinOp(Instruction::Sub, X, Z, Q, MaxRecurse-1)) 799 // It does! Now see if "V - Y" simplifies. 800 if (Value *W = SimplifyBinOp(Instruction::Sub, V, Y, Q, MaxRecurse-1)) { 801 // It does, we successfully reassociated! 802 ++NumReassoc; 803 return W; 804 } 805 } 806 807 // Z - (X - Y) -> (Z - X) + Y if everything simplifies. 808 // For example, X - (X - Y) -> Y. 809 Z = Op0; 810 if (MaxRecurse && match(Op1, m_Sub(m_Value(X), m_Value(Y)))) // Z - (X - Y) 811 // See if "V === Z - X" simplifies. 812 if (Value *V = SimplifyBinOp(Instruction::Sub, Z, X, Q, MaxRecurse-1)) 813 // It does! Now see if "V + Y" simplifies. 814 if (Value *W = SimplifyBinOp(Instruction::Add, V, Y, Q, MaxRecurse-1)) { 815 // It does, we successfully reassociated! 816 ++NumReassoc; 817 return W; 818 } 819 820 // trunc(X) - trunc(Y) -> trunc(X - Y) if everything simplifies. 821 if (MaxRecurse && match(Op0, m_Trunc(m_Value(X))) && 822 match(Op1, m_Trunc(m_Value(Y)))) 823 if (X->getType() == Y->getType()) 824 // See if "V === X - Y" simplifies. 825 if (Value *V = SimplifyBinOp(Instruction::Sub, X, Y, Q, MaxRecurse-1)) 826 // It does! Now see if "trunc V" simplifies. 827 if (Value *W = SimplifyTruncInst(V, Op0->getType(), Q, MaxRecurse-1)) 828 // It does, return the simplified "trunc V". 829 return W; 830 831 // Variations on GEP(base, I, ...) - GEP(base, i, ...) -> GEP(null, I-i, ...). 832 if (match(Op0, m_PtrToInt(m_Value(X))) && 833 match(Op1, m_PtrToInt(m_Value(Y)))) 834 if (Constant *Result = computePointerDifference(Q.DL, X, Y)) 835 return ConstantExpr::getIntegerCast(Result, Op0->getType(), true); 836 837 // Mul distributes over Sub. Try some generic simplifications based on this. 838 if (Value *V = FactorizeBinOp(Instruction::Sub, Op0, Op1, Instruction::Mul, 839 Q, MaxRecurse)) 840 return V; 841 842 // i1 sub -> xor. 843 if (MaxRecurse && Op0->getType()->isIntegerTy(1)) 844 if (Value *V = SimplifyXorInst(Op0, Op1, Q, MaxRecurse-1)) 845 return V; 846 847 // Threading Sub over selects and phi nodes is pointless, so don't bother. 848 // Threading over the select in "A - select(cond, B, C)" means evaluating 849 // "A-B" and "A-C" and seeing if they are equal; but they are equal if and 850 // only if B and C are equal. If B and C are equal then (since we assume 851 // that operands have already been simplified) "select(cond, B, C)" should 852 // have been simplified to the common value of B and C already. Analysing 853 // "A-B" and "A-C" thus gains nothing, but costs compile time. Similarly 854 // for threading over phi nodes. 855 856 return 0; 857 } 858 859 Value *llvm::SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, 860 const DataLayout *DL, const TargetLibraryInfo *TLI, 861 const DominatorTree *DT) { 862 return ::SimplifySubInst(Op0, Op1, isNSW, isNUW, Query (DL, TLI, DT), 863 RecursionLimit); 864 } 865 866 /// Given operands for an FAdd, see if we can fold the result. If not, this 867 /// returns null. 868 static Value *SimplifyFAddInst(Value *Op0, Value *Op1, FastMathFlags FMF, 869 const Query &Q, unsigned MaxRecurse) { 870 if (Constant *CLHS = dyn_cast<Constant>(Op0)) { 871 if (Constant *CRHS = dyn_cast<Constant>(Op1)) { 872 Constant *Ops[] = { CLHS, CRHS }; 873 return ConstantFoldInstOperands(Instruction::FAdd, CLHS->getType(), 874 Ops, Q.DL, Q.TLI); 875 } 876 877 // Canonicalize the constant to the RHS. 878 std::swap(Op0, Op1); 879 } 880 881 // fadd X, -0 ==> X 882 if (match(Op1, m_NegZero())) 883 return Op0; 884 885 // fadd X, 0 ==> X, when we know X is not -0 886 if (match(Op1, m_Zero()) && 887 (FMF.noSignedZeros() || CannotBeNegativeZero(Op0))) 888 return Op0; 889 890 // fadd [nnan ninf] X, (fsub [nnan ninf] 0, X) ==> 0 891 // where nnan and ninf have to occur at least once somewhere in this 892 // expression 893 Value *SubOp = 0; 894 if (match(Op1, m_FSub(m_AnyZero(), m_Specific(Op0)))) 895 SubOp = Op1; 896 else if (match(Op0, m_FSub(m_AnyZero(), m_Specific(Op1)))) 897 SubOp = Op0; 898 if (SubOp) { 899 Instruction *FSub = cast<Instruction>(SubOp); 900 if ((FMF.noNaNs() || FSub->hasNoNaNs()) && 901 (FMF.noInfs() || FSub->hasNoInfs())) 902 return Constant::getNullValue(Op0->getType()); 903 } 904 905 return 0; 906 } 907 908 /// Given operands for an FSub, see if we can fold the result. If not, this 909 /// returns null. 910 static Value *SimplifyFSubInst(Value *Op0, Value *Op1, FastMathFlags FMF, 911 const Query &Q, unsigned MaxRecurse) { 912 if (Constant *CLHS = dyn_cast<Constant>(Op0)) { 913 if (Constant *CRHS = dyn_cast<Constant>(Op1)) { 914 Constant *Ops[] = { CLHS, CRHS }; 915 return ConstantFoldInstOperands(Instruction::FSub, CLHS->getType(), 916 Ops, Q.DL, Q.TLI); 917 } 918 } 919 920 // fsub X, 0 ==> X 921 if (match(Op1, m_Zero())) 922 return Op0; 923 924 // fsub X, -0 ==> X, when we know X is not -0 925 if (match(Op1, m_NegZero()) && 926 (FMF.noSignedZeros() || CannotBeNegativeZero(Op0))) 927 return Op0; 928 929 // fsub 0, (fsub -0.0, X) ==> X 930 Value *X; 931 if (match(Op0, m_AnyZero())) { 932 if (match(Op1, m_FSub(m_NegZero(), m_Value(X)))) 933 return X; 934 if (FMF.noSignedZeros() && match(Op1, m_FSub(m_AnyZero(), m_Value(X)))) 935 return X; 936 } 937 938 // fsub nnan ninf x, x ==> 0.0 939 if (FMF.noNaNs() && FMF.noInfs() && Op0 == Op1) 940 return Constant::getNullValue(Op0->getType()); 941 942 return 0; 943 } 944 945 /// Given the operands for an FMul, see if we can fold the result 946 static Value *SimplifyFMulInst(Value *Op0, Value *Op1, 947 FastMathFlags FMF, 948 const Query &Q, 949 unsigned MaxRecurse) { 950 if (Constant *CLHS = dyn_cast<Constant>(Op0)) { 951 if (Constant *CRHS = dyn_cast<Constant>(Op1)) { 952 Constant *Ops[] = { CLHS, CRHS }; 953 return ConstantFoldInstOperands(Instruction::FMul, CLHS->getType(), 954 Ops, Q.DL, Q.TLI); 955 } 956 957 // Canonicalize the constant to the RHS. 958 std::swap(Op0, Op1); 959 } 960 961 // fmul X, 1.0 ==> X 962 if (match(Op1, m_FPOne())) 963 return Op0; 964 965 // fmul nnan nsz X, 0 ==> 0 966 if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op1, m_AnyZero())) 967 return Op1; 968 969 return 0; 970 } 971 972 /// SimplifyMulInst - Given operands for a Mul, see if we can 973 /// fold the result. If not, this returns null. 974 static Value *SimplifyMulInst(Value *Op0, Value *Op1, const Query &Q, 975 unsigned MaxRecurse) { 976 if (Constant *CLHS = dyn_cast<Constant>(Op0)) { 977 if (Constant *CRHS = dyn_cast<Constant>(Op1)) { 978 Constant *Ops[] = { CLHS, CRHS }; 979 return ConstantFoldInstOperands(Instruction::Mul, CLHS->getType(), 980 Ops, Q.DL, Q.TLI); 981 } 982 983 // Canonicalize the constant to the RHS. 984 std::swap(Op0, Op1); 985 } 986 987 // X * undef -> 0 988 if (match(Op1, m_Undef())) 989 return Constant::getNullValue(Op0->getType()); 990 991 // X * 0 -> 0 992 if (match(Op1, m_Zero())) 993 return Op1; 994 995 // X * 1 -> X 996 if (match(Op1, m_One())) 997 return Op0; 998 999 // (X / Y) * Y -> X if the division is exact. 1000 Value *X = 0; 1001 if (match(Op0, m_Exact(m_IDiv(m_Value(X), m_Specific(Op1)))) || // (X / Y) * Y 1002 match(Op1, m_Exact(m_IDiv(m_Value(X), m_Specific(Op0))))) // Y * (X / Y) 1003 return X; 1004 1005 // i1 mul -> and. 1006 if (MaxRecurse && Op0->getType()->isIntegerTy(1)) 1007 if (Value *V = SimplifyAndInst(Op0, Op1, Q, MaxRecurse-1)) 1008 return V; 1009 1010 // Try some generic simplifications for associative operations. 1011 if (Value *V = SimplifyAssociativeBinOp(Instruction::Mul, Op0, Op1, Q, 1012 MaxRecurse)) 1013 return V; 1014 1015 // Mul distributes over Add. Try some generic simplifications based on this. 1016 if (Value *V = ExpandBinOp(Instruction::Mul, Op0, Op1, Instruction::Add, 1017 Q, MaxRecurse)) 1018 return V; 1019 1020 // If the operation is with the result of a select instruction, check whether 1021 // operating on either branch of the select always yields the same value. 1022 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 1023 if (Value *V = ThreadBinOpOverSelect(Instruction::Mul, Op0, Op1, Q, 1024 MaxRecurse)) 1025 return V; 1026 1027 // If the operation is with the result of a phi instruction, check whether 1028 // operating on all incoming values of the phi always yields the same value. 1029 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 1030 if (Value *V = ThreadBinOpOverPHI(Instruction::Mul, Op0, Op1, Q, 1031 MaxRecurse)) 1032 return V; 1033 1034 return 0; 1035 } 1036 1037 Value *llvm::SimplifyFAddInst(Value *Op0, Value *Op1, FastMathFlags FMF, 1038 const DataLayout *DL, const TargetLibraryInfo *TLI, 1039 const DominatorTree *DT) { 1040 return ::SimplifyFAddInst(Op0, Op1, FMF, Query (DL, TLI, DT), RecursionLimit); 1041 } 1042 1043 Value *llvm::SimplifyFSubInst(Value *Op0, Value *Op1, FastMathFlags FMF, 1044 const DataLayout *DL, const TargetLibraryInfo *TLI, 1045 const DominatorTree *DT) { 1046 return ::SimplifyFSubInst(Op0, Op1, FMF, Query (DL, TLI, DT), RecursionLimit); 1047 } 1048 1049 Value *llvm::SimplifyFMulInst(Value *Op0, Value *Op1, 1050 FastMathFlags FMF, 1051 const DataLayout *DL, 1052 const TargetLibraryInfo *TLI, 1053 const DominatorTree *DT) { 1054 return ::SimplifyFMulInst(Op0, Op1, FMF, Query (DL, TLI, DT), RecursionLimit); 1055 } 1056 1057 Value *llvm::SimplifyMulInst(Value *Op0, Value *Op1, const DataLayout *DL, 1058 const TargetLibraryInfo *TLI, 1059 const DominatorTree *DT) { 1060 return ::SimplifyMulInst(Op0, Op1, Query (DL, TLI, DT), RecursionLimit); 1061 } 1062 1063 /// SimplifyDiv - Given operands for an SDiv or UDiv, see if we can 1064 /// fold the result. If not, this returns null. 1065 static Value *SimplifyDiv(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1, 1066 const Query &Q, unsigned MaxRecurse) { 1067 if (Constant *C0 = dyn_cast<Constant>(Op0)) { 1068 if (Constant *C1 = dyn_cast<Constant>(Op1)) { 1069 Constant *Ops[] = { C0, C1 }; 1070 return ConstantFoldInstOperands(Opcode, C0->getType(), Ops, Q.DL, Q.TLI); 1071 } 1072 } 1073 1074 bool isSigned = Opcode == Instruction::SDiv; 1075 1076 // X / undef -> undef 1077 if (match(Op1, m_Undef())) 1078 return Op1; 1079 1080 // undef / X -> 0 1081 if (match(Op0, m_Undef())) 1082 return Constant::getNullValue(Op0->getType()); 1083 1084 // 0 / X -> 0, we don't need to preserve faults! 1085 if (match(Op0, m_Zero())) 1086 return Op0; 1087 1088 // X / 1 -> X 1089 if (match(Op1, m_One())) 1090 return Op0; 1091 1092 if (Op0->getType()->isIntegerTy(1)) 1093 // It can't be division by zero, hence it must be division by one. 1094 return Op0; 1095 1096 // X / X -> 1 1097 if (Op0 == Op1) 1098 return ConstantInt::get(Op0->getType(), 1); 1099 1100 // (X * Y) / Y -> X if the multiplication does not overflow. 1101 Value *X = 0, *Y = 0; 1102 if (match(Op0, m_Mul(m_Value(X), m_Value(Y))) && (X == Op1 || Y == Op1)) { 1103 if (Y != Op1) std::swap(X, Y); // Ensure expression is (X * Y) / Y, Y = Op1 1104 OverflowingBinaryOperator *Mul = cast<OverflowingBinaryOperator>(Op0); 1105 // If the Mul knows it does not overflow, then we are good to go. 1106 if ((isSigned && Mul->hasNoSignedWrap()) || 1107 (!isSigned && Mul->hasNoUnsignedWrap())) 1108 return X; 1109 // If X has the form X = A / Y then X * Y cannot overflow. 1110 if (BinaryOperator *Div = dyn_cast<BinaryOperator>(X)) 1111 if (Div->getOpcode() == Opcode && Div->getOperand(1) == Y) 1112 return X; 1113 } 1114 1115 // (X rem Y) / Y -> 0 1116 if ((isSigned && match(Op0, m_SRem(m_Value(), m_Specific(Op1)))) || 1117 (!isSigned && match(Op0, m_URem(m_Value(), m_Specific(Op1))))) 1118 return Constant::getNullValue(Op0->getType()); 1119 1120 // If the operation is with the result of a select instruction, check whether 1121 // operating on either branch of the select always yields the same value. 1122 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 1123 if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse)) 1124 return V; 1125 1126 // If the operation is with the result of a phi instruction, check whether 1127 // operating on all incoming values of the phi always yields the same value. 1128 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 1129 if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse)) 1130 return V; 1131 1132 return 0; 1133 } 1134 1135 /// SimplifySDivInst - Given operands for an SDiv, see if we can 1136 /// fold the result. If not, this returns null. 1137 static Value *SimplifySDivInst(Value *Op0, Value *Op1, const Query &Q, 1138 unsigned MaxRecurse) { 1139 if (Value *V = SimplifyDiv(Instruction::SDiv, Op0, Op1, Q, MaxRecurse)) 1140 return V; 1141 1142 return 0; 1143 } 1144 1145 Value *llvm::SimplifySDivInst(Value *Op0, Value *Op1, const DataLayout *DL, 1146 const TargetLibraryInfo *TLI, 1147 const DominatorTree *DT) { 1148 return ::SimplifySDivInst(Op0, Op1, Query (DL, TLI, DT), RecursionLimit); 1149 } 1150 1151 /// SimplifyUDivInst - Given operands for a UDiv, see if we can 1152 /// fold the result. If not, this returns null. 1153 static Value *SimplifyUDivInst(Value *Op0, Value *Op1, const Query &Q, 1154 unsigned MaxRecurse) { 1155 if (Value *V = SimplifyDiv(Instruction::UDiv, Op0, Op1, Q, MaxRecurse)) 1156 return V; 1157 1158 return 0; 1159 } 1160 1161 Value *llvm::SimplifyUDivInst(Value *Op0, Value *Op1, const DataLayout *DL, 1162 const TargetLibraryInfo *TLI, 1163 const DominatorTree *DT) { 1164 return ::SimplifyUDivInst(Op0, Op1, Query (DL, TLI, DT), RecursionLimit); 1165 } 1166 1167 static Value *SimplifyFDivInst(Value *Op0, Value *Op1, const Query &Q, 1168 unsigned) { 1169 // undef / X -> undef (the undef could be a snan). 1170 if (match(Op0, m_Undef())) 1171 return Op0; 1172 1173 // X / undef -> undef 1174 if (match(Op1, m_Undef())) 1175 return Op1; 1176 1177 return 0; 1178 } 1179 1180 Value *llvm::SimplifyFDivInst(Value *Op0, Value *Op1, const DataLayout *DL, 1181 const TargetLibraryInfo *TLI, 1182 const DominatorTree *DT) { 1183 return ::SimplifyFDivInst(Op0, Op1, Query (DL, TLI, DT), RecursionLimit); 1184 } 1185 1186 /// SimplifyRem - Given operands for an SRem or URem, see if we can 1187 /// fold the result. If not, this returns null. 1188 static Value *SimplifyRem(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1, 1189 const Query &Q, unsigned MaxRecurse) { 1190 if (Constant *C0 = dyn_cast<Constant>(Op0)) { 1191 if (Constant *C1 = dyn_cast<Constant>(Op1)) { 1192 Constant *Ops[] = { C0, C1 }; 1193 return ConstantFoldInstOperands(Opcode, C0->getType(), Ops, Q.DL, Q.TLI); 1194 } 1195 } 1196 1197 // X % undef -> undef 1198 if (match(Op1, m_Undef())) 1199 return Op1; 1200 1201 // undef % X -> 0 1202 if (match(Op0, m_Undef())) 1203 return Constant::getNullValue(Op0->getType()); 1204 1205 // 0 % X -> 0, we don't need to preserve faults! 1206 if (match(Op0, m_Zero())) 1207 return Op0; 1208 1209 // X % 0 -> undef, we don't need to preserve faults! 1210 if (match(Op1, m_Zero())) 1211 return UndefValue::get(Op0->getType()); 1212 1213 // X % 1 -> 0 1214 if (match(Op1, m_One())) 1215 return Constant::getNullValue(Op0->getType()); 1216 1217 if (Op0->getType()->isIntegerTy(1)) 1218 // It can't be remainder by zero, hence it must be remainder by one. 1219 return Constant::getNullValue(Op0->getType()); 1220 1221 // X % X -> 0 1222 if (Op0 == Op1) 1223 return Constant::getNullValue(Op0->getType()); 1224 1225 // If the operation is with the result of a select instruction, check whether 1226 // operating on either branch of the select always yields the same value. 1227 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 1228 if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse)) 1229 return V; 1230 1231 // If the operation is with the result of a phi instruction, check whether 1232 // operating on all incoming values of the phi always yields the same value. 1233 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 1234 if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse)) 1235 return V; 1236 1237 return 0; 1238 } 1239 1240 /// SimplifySRemInst - Given operands for an SRem, see if we can 1241 /// fold the result. If not, this returns null. 1242 static Value *SimplifySRemInst(Value *Op0, Value *Op1, const Query &Q, 1243 unsigned MaxRecurse) { 1244 if (Value *V = SimplifyRem(Instruction::SRem, Op0, Op1, Q, MaxRecurse)) 1245 return V; 1246 1247 return 0; 1248 } 1249 1250 Value *llvm::SimplifySRemInst(Value *Op0, Value *Op1, const DataLayout *DL, 1251 const TargetLibraryInfo *TLI, 1252 const DominatorTree *DT) { 1253 return ::SimplifySRemInst(Op0, Op1, Query (DL, TLI, DT), RecursionLimit); 1254 } 1255 1256 /// SimplifyURemInst - Given operands for a URem, see if we can 1257 /// fold the result. If not, this returns null. 1258 static Value *SimplifyURemInst(Value *Op0, Value *Op1, const Query &Q, 1259 unsigned MaxRecurse) { 1260 if (Value *V = SimplifyRem(Instruction::URem, Op0, Op1, Q, MaxRecurse)) 1261 return V; 1262 1263 return 0; 1264 } 1265 1266 Value *llvm::SimplifyURemInst(Value *Op0, Value *Op1, const DataLayout *DL, 1267 const TargetLibraryInfo *TLI, 1268 const DominatorTree *DT) { 1269 return ::SimplifyURemInst(Op0, Op1, Query (DL, TLI, DT), RecursionLimit); 1270 } 1271 1272 static Value *SimplifyFRemInst(Value *Op0, Value *Op1, const Query &, 1273 unsigned) { 1274 // undef % X -> undef (the undef could be a snan). 1275 if (match(Op0, m_Undef())) 1276 return Op0; 1277 1278 // X % undef -> undef 1279 if (match(Op1, m_Undef())) 1280 return Op1; 1281 1282 return 0; 1283 } 1284 1285 Value *llvm::SimplifyFRemInst(Value *Op0, Value *Op1, const DataLayout *DL, 1286 const TargetLibraryInfo *TLI, 1287 const DominatorTree *DT) { 1288 return ::SimplifyFRemInst(Op0, Op1, Query (DL, TLI, DT), RecursionLimit); 1289 } 1290 1291 /// isUndefShift - Returns true if a shift by \c Amount always yields undef. 1292 static bool isUndefShift(Value *Amount) { 1293 Constant *C = dyn_cast<Constant>(Amount); 1294 if (!C) 1295 return false; 1296 1297 // X shift by undef -> undef because it may shift by the bitwidth. 1298 if (isa<UndefValue>(C)) 1299 return true; 1300 1301 // Shifting by the bitwidth or more is undefined. 1302 if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1303 if (CI->getValue().getLimitedValue() >= 1304 CI->getType()->getScalarSizeInBits()) 1305 return true; 1306 1307 // If all lanes of a vector shift are undefined the whole shift is. 1308 if (isa<ConstantVector>(C) || isa<ConstantDataVector>(C)) { 1309 for (unsigned I = 0, E = C->getType()->getVectorNumElements(); I != E; ++I) 1310 if (!isUndefShift(C->getAggregateElement(I))) 1311 return false; 1312 return true; 1313 } 1314 1315 return false; 1316 } 1317 1318 /// SimplifyShift - Given operands for an Shl, LShr or AShr, see if we can 1319 /// fold the result. If not, this returns null. 1320 static Value *SimplifyShift(unsigned Opcode, Value *Op0, Value *Op1, 1321 const Query &Q, unsigned MaxRecurse) { 1322 if (Constant *C0 = dyn_cast<Constant>(Op0)) { 1323 if (Constant *C1 = dyn_cast<Constant>(Op1)) { 1324 Constant *Ops[] = { C0, C1 }; 1325 return ConstantFoldInstOperands(Opcode, C0->getType(), Ops, Q.DL, Q.TLI); 1326 } 1327 } 1328 1329 // 0 shift by X -> 0 1330 if (match(Op0, m_Zero())) 1331 return Op0; 1332 1333 // X shift by 0 -> X 1334 if (match(Op1, m_Zero())) 1335 return Op0; 1336 1337 // Fold undefined shifts. 1338 if (isUndefShift(Op1)) 1339 return UndefValue::get(Op0->getType()); 1340 1341 // If the operation is with the result of a select instruction, check whether 1342 // operating on either branch of the select always yields the same value. 1343 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 1344 if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse)) 1345 return V; 1346 1347 // If the operation is with the result of a phi instruction, check whether 1348 // operating on all incoming values of the phi always yields the same value. 1349 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 1350 if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse)) 1351 return V; 1352 1353 return 0; 1354 } 1355 1356 /// SimplifyShlInst - Given operands for an Shl, see if we can 1357 /// fold the result. If not, this returns null. 1358 static Value *SimplifyShlInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, 1359 const Query &Q, unsigned MaxRecurse) { 1360 if (Value *V = SimplifyShift(Instruction::Shl, Op0, Op1, Q, MaxRecurse)) 1361 return V; 1362 1363 // undef << X -> 0 1364 if (match(Op0, m_Undef())) 1365 return Constant::getNullValue(Op0->getType()); 1366 1367 // (X >> A) << A -> X 1368 Value *X; 1369 if (match(Op0, m_Exact(m_Shr(m_Value(X), m_Specific(Op1))))) 1370 return X; 1371 return 0; 1372 } 1373 1374 Value *llvm::SimplifyShlInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, 1375 const DataLayout *DL, const TargetLibraryInfo *TLI, 1376 const DominatorTree *DT) { 1377 return ::SimplifyShlInst(Op0, Op1, isNSW, isNUW, Query (DL, TLI, DT), 1378 RecursionLimit); 1379 } 1380 1381 /// SimplifyLShrInst - Given operands for an LShr, see if we can 1382 /// fold the result. If not, this returns null. 1383 static Value *SimplifyLShrInst(Value *Op0, Value *Op1, bool isExact, 1384 const Query &Q, unsigned MaxRecurse) { 1385 if (Value *V = SimplifyShift(Instruction::LShr, Op0, Op1, Q, MaxRecurse)) 1386 return V; 1387 1388 // X >> X -> 0 1389 if (Op0 == Op1) 1390 return Constant::getNullValue(Op0->getType()); 1391 1392 // undef >>l X -> 0 1393 if (match(Op0, m_Undef())) 1394 return Constant::getNullValue(Op0->getType()); 1395 1396 // (X << A) >> A -> X 1397 Value *X; 1398 if (match(Op0, m_Shl(m_Value(X), m_Specific(Op1))) && 1399 cast<OverflowingBinaryOperator>(Op0)->hasNoUnsignedWrap()) 1400 return X; 1401 1402 return 0; 1403 } 1404 1405 Value *llvm::SimplifyLShrInst(Value *Op0, Value *Op1, bool isExact, 1406 const DataLayout *DL, 1407 const TargetLibraryInfo *TLI, 1408 const DominatorTree *DT) { 1409 return ::SimplifyLShrInst(Op0, Op1, isExact, Query (DL, TLI, DT), 1410 RecursionLimit); 1411 } 1412 1413 /// SimplifyAShrInst - Given operands for an AShr, see if we can 1414 /// fold the result. If not, this returns null. 1415 static Value *SimplifyAShrInst(Value *Op0, Value *Op1, bool isExact, 1416 const Query &Q, unsigned MaxRecurse) { 1417 if (Value *V = SimplifyShift(Instruction::AShr, Op0, Op1, Q, MaxRecurse)) 1418 return V; 1419 1420 // X >> X -> 0 1421 if (Op0 == Op1) 1422 return Constant::getNullValue(Op0->getType()); 1423 1424 // all ones >>a X -> all ones 1425 if (match(Op0, m_AllOnes())) 1426 return Op0; 1427 1428 // undef >>a X -> all ones 1429 if (match(Op0, m_Undef())) 1430 return Constant::getAllOnesValue(Op0->getType()); 1431 1432 // (X << A) >> A -> X 1433 Value *X; 1434 if (match(Op0, m_Shl(m_Value(X), m_Specific(Op1))) && 1435 cast<OverflowingBinaryOperator>(Op0)->hasNoSignedWrap()) 1436 return X; 1437 1438 return 0; 1439 } 1440 1441 Value *llvm::SimplifyAShrInst(Value *Op0, Value *Op1, bool isExact, 1442 const DataLayout *DL, 1443 const TargetLibraryInfo *TLI, 1444 const DominatorTree *DT) { 1445 return ::SimplifyAShrInst(Op0, Op1, isExact, Query (DL, TLI, DT), 1446 RecursionLimit); 1447 } 1448 1449 /// SimplifyAndInst - Given operands for an And, see if we can 1450 /// fold the result. If not, this returns null. 1451 static Value *SimplifyAndInst(Value *Op0, Value *Op1, const Query &Q, 1452 unsigned MaxRecurse) { 1453 if (Constant *CLHS = dyn_cast<Constant>(Op0)) { 1454 if (Constant *CRHS = dyn_cast<Constant>(Op1)) { 1455 Constant *Ops[] = { CLHS, CRHS }; 1456 return ConstantFoldInstOperands(Instruction::And, CLHS->getType(), 1457 Ops, Q.DL, Q.TLI); 1458 } 1459 1460 // Canonicalize the constant to the RHS. 1461 std::swap(Op0, Op1); 1462 } 1463 1464 // X & undef -> 0 1465 if (match(Op1, m_Undef())) 1466 return Constant::getNullValue(Op0->getType()); 1467 1468 // X & X = X 1469 if (Op0 == Op1) 1470 return Op0; 1471 1472 // X & 0 = 0 1473 if (match(Op1, m_Zero())) 1474 return Op1; 1475 1476 // X & -1 = X 1477 if (match(Op1, m_AllOnes())) 1478 return Op0; 1479 1480 // A & ~A = ~A & A = 0 1481 if (match(Op0, m_Not(m_Specific(Op1))) || 1482 match(Op1, m_Not(m_Specific(Op0)))) 1483 return Constant::getNullValue(Op0->getType()); 1484 1485 // (A | ?) & A = A 1486 Value *A = 0, *B = 0; 1487 if (match(Op0, m_Or(m_Value(A), m_Value(B))) && 1488 (A == Op1 || B == Op1)) 1489 return Op1; 1490 1491 // A & (A | ?) = A 1492 if (match(Op1, m_Or(m_Value(A), m_Value(B))) && 1493 (A == Op0 || B == Op0)) 1494 return Op0; 1495 1496 // A & (-A) = A if A is a power of two or zero. 1497 if (match(Op0, m_Neg(m_Specific(Op1))) || 1498 match(Op1, m_Neg(m_Specific(Op0)))) { 1499 if (isKnownToBeAPowerOfTwo(Op0, /*OrZero*/true)) 1500 return Op0; 1501 if (isKnownToBeAPowerOfTwo(Op1, /*OrZero*/true)) 1502 return Op1; 1503 } 1504 1505 // Try some generic simplifications for associative operations. 1506 if (Value *V = SimplifyAssociativeBinOp(Instruction::And, Op0, Op1, Q, 1507 MaxRecurse)) 1508 return V; 1509 1510 // And distributes over Or. Try some generic simplifications based on this. 1511 if (Value *V = ExpandBinOp(Instruction::And, Op0, Op1, Instruction::Or, 1512 Q, MaxRecurse)) 1513 return V; 1514 1515 // And distributes over Xor. Try some generic simplifications based on this. 1516 if (Value *V = ExpandBinOp(Instruction::And, Op0, Op1, Instruction::Xor, 1517 Q, MaxRecurse)) 1518 return V; 1519 1520 // Or distributes over And. Try some generic simplifications based on this. 1521 if (Value *V = FactorizeBinOp(Instruction::And, Op0, Op1, Instruction::Or, 1522 Q, MaxRecurse)) 1523 return V; 1524 1525 // If the operation is with the result of a select instruction, check whether 1526 // operating on either branch of the select always yields the same value. 1527 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 1528 if (Value *V = ThreadBinOpOverSelect(Instruction::And, Op0, Op1, Q, 1529 MaxRecurse)) 1530 return V; 1531 1532 // If the operation is with the result of a phi instruction, check whether 1533 // operating on all incoming values of the phi always yields the same value. 1534 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 1535 if (Value *V = ThreadBinOpOverPHI(Instruction::And, Op0, Op1, Q, 1536 MaxRecurse)) 1537 return V; 1538 1539 return 0; 1540 } 1541 1542 Value *llvm::SimplifyAndInst(Value *Op0, Value *Op1, const DataLayout *DL, 1543 const TargetLibraryInfo *TLI, 1544 const DominatorTree *DT) { 1545 return ::SimplifyAndInst(Op0, Op1, Query (DL, TLI, DT), RecursionLimit); 1546 } 1547 1548 /// SimplifyOrInst - Given operands for an Or, see if we can 1549 /// fold the result. If not, this returns null. 1550 static Value *SimplifyOrInst(Value *Op0, Value *Op1, const Query &Q, 1551 unsigned MaxRecurse) { 1552 if (Constant *CLHS = dyn_cast<Constant>(Op0)) { 1553 if (Constant *CRHS = dyn_cast<Constant>(Op1)) { 1554 Constant *Ops[] = { CLHS, CRHS }; 1555 return ConstantFoldInstOperands(Instruction::Or, CLHS->getType(), 1556 Ops, Q.DL, Q.TLI); 1557 } 1558 1559 // Canonicalize the constant to the RHS. 1560 std::swap(Op0, Op1); 1561 } 1562 1563 // X | undef -> -1 1564 if (match(Op1, m_Undef())) 1565 return Constant::getAllOnesValue(Op0->getType()); 1566 1567 // X | X = X 1568 if (Op0 == Op1) 1569 return Op0; 1570 1571 // X | 0 = X 1572 if (match(Op1, m_Zero())) 1573 return Op0; 1574 1575 // X | -1 = -1 1576 if (match(Op1, m_AllOnes())) 1577 return Op1; 1578 1579 // A | ~A = ~A | A = -1 1580 if (match(Op0, m_Not(m_Specific(Op1))) || 1581 match(Op1, m_Not(m_Specific(Op0)))) 1582 return Constant::getAllOnesValue(Op0->getType()); 1583 1584 // (A & ?) | A = A 1585 Value *A = 0, *B = 0; 1586 if (match(Op0, m_And(m_Value(A), m_Value(B))) && 1587 (A == Op1 || B == Op1)) 1588 return Op1; 1589 1590 // A | (A & ?) = A 1591 if (match(Op1, m_And(m_Value(A), m_Value(B))) && 1592 (A == Op0 || B == Op0)) 1593 return Op0; 1594 1595 // ~(A & ?) | A = -1 1596 if (match(Op0, m_Not(m_And(m_Value(A), m_Value(B)))) && 1597 (A == Op1 || B == Op1)) 1598 return Constant::getAllOnesValue(Op1->getType()); 1599 1600 // A | ~(A & ?) = -1 1601 if (match(Op1, m_Not(m_And(m_Value(A), m_Value(B)))) && 1602 (A == Op0 || B == Op0)) 1603 return Constant::getAllOnesValue(Op0->getType()); 1604 1605 // Try some generic simplifications for associative operations. 1606 if (Value *V = SimplifyAssociativeBinOp(Instruction::Or, Op0, Op1, Q, 1607 MaxRecurse)) 1608 return V; 1609 1610 // Or distributes over And. Try some generic simplifications based on this. 1611 if (Value *V = ExpandBinOp(Instruction::Or, Op0, Op1, Instruction::And, Q, 1612 MaxRecurse)) 1613 return V; 1614 1615 // And distributes over Or. Try some generic simplifications based on this. 1616 if (Value *V = FactorizeBinOp(Instruction::Or, Op0, Op1, Instruction::And, 1617 Q, MaxRecurse)) 1618 return V; 1619 1620 // If the operation is with the result of a select instruction, check whether 1621 // operating on either branch of the select always yields the same value. 1622 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 1623 if (Value *V = ThreadBinOpOverSelect(Instruction::Or, Op0, Op1, Q, 1624 MaxRecurse)) 1625 return V; 1626 1627 // If the operation is with the result of a phi instruction, check whether 1628 // operating on all incoming values of the phi always yields the same value. 1629 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 1630 if (Value *V = ThreadBinOpOverPHI(Instruction::Or, Op0, Op1, Q, MaxRecurse)) 1631 return V; 1632 1633 return 0; 1634 } 1635 1636 Value *llvm::SimplifyOrInst(Value *Op0, Value *Op1, const DataLayout *DL, 1637 const TargetLibraryInfo *TLI, 1638 const DominatorTree *DT) { 1639 return ::SimplifyOrInst(Op0, Op1, Query (DL, TLI, DT), RecursionLimit); 1640 } 1641 1642 /// SimplifyXorInst - Given operands for a Xor, see if we can 1643 /// fold the result. If not, this returns null. 1644 static Value *SimplifyXorInst(Value *Op0, Value *Op1, const Query &Q, 1645 unsigned MaxRecurse) { 1646 if (Constant *CLHS = dyn_cast<Constant>(Op0)) { 1647 if (Constant *CRHS = dyn_cast<Constant>(Op1)) { 1648 Constant *Ops[] = { CLHS, CRHS }; 1649 return ConstantFoldInstOperands(Instruction::Xor, CLHS->getType(), 1650 Ops, Q.DL, Q.TLI); 1651 } 1652 1653 // Canonicalize the constant to the RHS. 1654 std::swap(Op0, Op1); 1655 } 1656 1657 // A ^ undef -> undef 1658 if (match(Op1, m_Undef())) 1659 return Op1; 1660 1661 // A ^ 0 = A 1662 if (match(Op1, m_Zero())) 1663 return Op0; 1664 1665 // A ^ A = 0 1666 if (Op0 == Op1) 1667 return Constant::getNullValue(Op0->getType()); 1668 1669 // A ^ ~A = ~A ^ A = -1 1670 if (match(Op0, m_Not(m_Specific(Op1))) || 1671 match(Op1, m_Not(m_Specific(Op0)))) 1672 return Constant::getAllOnesValue(Op0->getType()); 1673 1674 // Try some generic simplifications for associative operations. 1675 if (Value *V = SimplifyAssociativeBinOp(Instruction::Xor, Op0, Op1, Q, 1676 MaxRecurse)) 1677 return V; 1678 1679 // And distributes over Xor. Try some generic simplifications based on this. 1680 if (Value *V = FactorizeBinOp(Instruction::Xor, Op0, Op1, Instruction::And, 1681 Q, MaxRecurse)) 1682 return V; 1683 1684 // Threading Xor over selects and phi nodes is pointless, so don't bother. 1685 // Threading over the select in "A ^ select(cond, B, C)" means evaluating 1686 // "A^B" and "A^C" and seeing if they are equal; but they are equal if and 1687 // only if B and C are equal. If B and C are equal then (since we assume 1688 // that operands have already been simplified) "select(cond, B, C)" should 1689 // have been simplified to the common value of B and C already. Analysing 1690 // "A^B" and "A^C" thus gains nothing, but costs compile time. Similarly 1691 // for threading over phi nodes. 1692 1693 return 0; 1694 } 1695 1696 Value *llvm::SimplifyXorInst(Value *Op0, Value *Op1, const DataLayout *DL, 1697 const TargetLibraryInfo *TLI, 1698 const DominatorTree *DT) { 1699 return ::SimplifyXorInst(Op0, Op1, Query (DL, TLI, DT), RecursionLimit); 1700 } 1701 1702 static Type *GetCompareTy(Value *Op) { 1703 return CmpInst::makeCmpResultType(Op->getType()); 1704 } 1705 1706 /// ExtractEquivalentCondition - Rummage around inside V looking for something 1707 /// equivalent to the comparison "LHS Pred RHS". Return such a value if found, 1708 /// otherwise return null. Helper function for analyzing max/min idioms. 1709 static Value *ExtractEquivalentCondition(Value *V, CmpInst::Predicate Pred, 1710 Value *LHS, Value *RHS) { 1711 SelectInst *SI = dyn_cast<SelectInst>(V); 1712 if (!SI) 1713 return 0; 1714 CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition()); 1715 if (!Cmp) 1716 return 0; 1717 Value *CmpLHS = Cmp->getOperand(0), *CmpRHS = Cmp->getOperand(1); 1718 if (Pred == Cmp->getPredicate() && LHS == CmpLHS && RHS == CmpRHS) 1719 return Cmp; 1720 if (Pred == CmpInst::getSwappedPredicate(Cmp->getPredicate()) && 1721 LHS == CmpRHS && RHS == CmpLHS) 1722 return Cmp; 1723 return 0; 1724 } 1725 1726 // A significant optimization not implemented here is assuming that alloca 1727 // addresses are not equal to incoming argument values. They don't *alias*, 1728 // as we say, but that doesn't mean they aren't equal, so we take a 1729 // conservative approach. 1730 // 1731 // This is inspired in part by C++11 5.10p1: 1732 // "Two pointers of the same type compare equal if and only if they are both 1733 // null, both point to the same function, or both represent the same 1734 // address." 1735 // 1736 // This is pretty permissive. 1737 // 1738 // It's also partly due to C11 6.5.9p6: 1739 // "Two pointers compare equal if and only if both are null pointers, both are 1740 // pointers to the same object (including a pointer to an object and a 1741 // subobject at its beginning) or function, both are pointers to one past the 1742 // last element of the same array object, or one is a pointer to one past the 1743 // end of one array object and the other is a pointer to the start of a 1744 // different array object that happens to immediately follow the first array 1745 // object in the address space.) 1746 // 1747 // C11's version is more restrictive, however there's no reason why an argument 1748 // couldn't be a one-past-the-end value for a stack object in the caller and be 1749 // equal to the beginning of a stack object in the callee. 1750 // 1751 // If the C and C++ standards are ever made sufficiently restrictive in this 1752 // area, it may be possible to update LLVM's semantics accordingly and reinstate 1753 // this optimization. 1754 static Constant *computePointerICmp(const DataLayout *DL, 1755 const TargetLibraryInfo *TLI, 1756 CmpInst::Predicate Pred, 1757 Value *LHS, Value *RHS) { 1758 // First, skip past any trivial no-ops. 1759 LHS = LHS->stripPointerCasts(); 1760 RHS = RHS->stripPointerCasts(); 1761 1762 // A non-null pointer is not equal to a null pointer. 1763 if (llvm::isKnownNonNull(LHS, TLI) && isa<ConstantPointerNull>(RHS) && 1764 (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE)) 1765 return ConstantInt::get(GetCompareTy(LHS), 1766 !CmpInst::isTrueWhenEqual(Pred)); 1767 1768 // We can only fold certain predicates on pointer comparisons. 1769 switch (Pred) { 1770 default: 1771 return 0; 1772 1773 // Equality comaprisons are easy to fold. 1774 case CmpInst::ICMP_EQ: 1775 case CmpInst::ICMP_NE: 1776 break; 1777 1778 // We can only handle unsigned relational comparisons because 'inbounds' on 1779 // a GEP only protects against unsigned wrapping. 1780 case CmpInst::ICMP_UGT: 1781 case CmpInst::ICMP_UGE: 1782 case CmpInst::ICMP_ULT: 1783 case CmpInst::ICMP_ULE: 1784 // However, we have to switch them to their signed variants to handle 1785 // negative indices from the base pointer. 1786 Pred = ICmpInst::getSignedPredicate(Pred); 1787 break; 1788 } 1789 1790 // Strip off any constant offsets so that we can reason about them. 1791 // It's tempting to use getUnderlyingObject or even just stripInBoundsOffsets 1792 // here and compare base addresses like AliasAnalysis does, however there are 1793 // numerous hazards. AliasAnalysis and its utilities rely on special rules 1794 // governing loads and stores which don't apply to icmps. Also, AliasAnalysis 1795 // doesn't need to guarantee pointer inequality when it says NoAlias. 1796 Constant *LHSOffset = stripAndComputeConstantOffsets(DL, LHS); 1797 Constant *RHSOffset = stripAndComputeConstantOffsets(DL, RHS); 1798 1799 // If LHS and RHS are related via constant offsets to the same base 1800 // value, we can replace it with an icmp which just compares the offsets. 1801 if (LHS == RHS) 1802 return ConstantExpr::getICmp(Pred, LHSOffset, RHSOffset); 1803 1804 // Various optimizations for (in)equality comparisons. 1805 if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE) { 1806 // Different non-empty allocations that exist at the same time have 1807 // different addresses (if the program can tell). Global variables always 1808 // exist, so they always exist during the lifetime of each other and all 1809 // allocas. Two different allocas usually have different addresses... 1810 // 1811 // However, if there's an @llvm.stackrestore dynamically in between two 1812 // allocas, they may have the same address. It's tempting to reduce the 1813 // scope of the problem by only looking at *static* allocas here. That would 1814 // cover the majority of allocas while significantly reducing the likelihood 1815 // of having an @llvm.stackrestore pop up in the middle. However, it's not 1816 // actually impossible for an @llvm.stackrestore to pop up in the middle of 1817 // an entry block. Also, if we have a block that's not attached to a 1818 // function, we can't tell if it's "static" under the current definition. 1819 // Theoretically, this problem could be fixed by creating a new kind of 1820 // instruction kind specifically for static allocas. Such a new instruction 1821 // could be required to be at the top of the entry block, thus preventing it 1822 // from being subject to a @llvm.stackrestore. Instcombine could even 1823 // convert regular allocas into these special allocas. It'd be nifty. 1824 // However, until then, this problem remains open. 1825 // 1826 // So, we'll assume that two non-empty allocas have different addresses 1827 // for now. 1828 // 1829 // With all that, if the offsets are within the bounds of their allocations 1830 // (and not one-past-the-end! so we can't use inbounds!), and their 1831 // allocations aren't the same, the pointers are not equal. 1832 // 1833 // Note that it's not necessary to check for LHS being a global variable 1834 // address, due to canonicalization and constant folding. 1835 if (isa<AllocaInst>(LHS) && 1836 (isa<AllocaInst>(RHS) || isa<GlobalVariable>(RHS))) { 1837 ConstantInt *LHSOffsetCI = dyn_cast<ConstantInt>(LHSOffset); 1838 ConstantInt *RHSOffsetCI = dyn_cast<ConstantInt>(RHSOffset); 1839 uint64_t LHSSize, RHSSize; 1840 if (LHSOffsetCI && RHSOffsetCI && 1841 getObjectSize(LHS, LHSSize, DL, TLI) && 1842 getObjectSize(RHS, RHSSize, DL, TLI)) { 1843 const APInt &LHSOffsetValue = LHSOffsetCI->getValue(); 1844 const APInt &RHSOffsetValue = RHSOffsetCI->getValue(); 1845 if (!LHSOffsetValue.isNegative() && 1846 !RHSOffsetValue.isNegative() && 1847 LHSOffsetValue.ult(LHSSize) && 1848 RHSOffsetValue.ult(RHSSize)) { 1849 return ConstantInt::get(GetCompareTy(LHS), 1850 !CmpInst::isTrueWhenEqual(Pred)); 1851 } 1852 } 1853 1854 // Repeat the above check but this time without depending on DataLayout 1855 // or being able to compute a precise size. 1856 if (!cast<PointerType>(LHS->getType())->isEmptyTy() && 1857 !cast<PointerType>(RHS->getType())->isEmptyTy() && 1858 LHSOffset->isNullValue() && 1859 RHSOffset->isNullValue()) 1860 return ConstantInt::get(GetCompareTy(LHS), 1861 !CmpInst::isTrueWhenEqual(Pred)); 1862 } 1863 1864 // Even if an non-inbounds GEP occurs along the path we can still optimize 1865 // equality comparisons concerning the result. We avoid walking the whole 1866 // chain again by starting where the last calls to 1867 // stripAndComputeConstantOffsets left off and accumulate the offsets. 1868 Constant *LHSNoBound = stripAndComputeConstantOffsets(DL, LHS, true); 1869 Constant *RHSNoBound = stripAndComputeConstantOffsets(DL, RHS, true); 1870 if (LHS == RHS) 1871 return ConstantExpr::getICmp(Pred, 1872 ConstantExpr::getAdd(LHSOffset, LHSNoBound), 1873 ConstantExpr::getAdd(RHSOffset, RHSNoBound)); 1874 } 1875 1876 // Otherwise, fail. 1877 return 0; 1878 } 1879 1880 /// SimplifyICmpInst - Given operands for an ICmpInst, see if we can 1881 /// fold the result. If not, this returns null. 1882 static Value *SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS, 1883 const Query &Q, unsigned MaxRecurse) { 1884 CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate; 1885 assert(CmpInst::isIntPredicate(Pred) && "Not an integer compare!"); 1886 1887 if (Constant *CLHS = dyn_cast<Constant>(LHS)) { 1888 if (Constant *CRHS = dyn_cast<Constant>(RHS)) 1889 return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, Q.DL, Q.TLI); 1890 1891 // If we have a constant, make sure it is on the RHS. 1892 std::swap(LHS, RHS); 1893 Pred = CmpInst::getSwappedPredicate(Pred); 1894 } 1895 1896 Type *ITy = GetCompareTy(LHS); // The return type. 1897 Type *OpTy = LHS->getType(); // The operand type. 1898 1899 // icmp X, X -> true/false 1900 // X icmp undef -> true/false. For example, icmp ugt %X, undef -> false 1901 // because X could be 0. 1902 if (LHS == RHS || isa<UndefValue>(RHS)) 1903 return ConstantInt::get(ITy, CmpInst::isTrueWhenEqual(Pred)); 1904 1905 // Special case logic when the operands have i1 type. 1906 if (OpTy->getScalarType()->isIntegerTy(1)) { 1907 switch (Pred) { 1908 default: break; 1909 case ICmpInst::ICMP_EQ: 1910 // X == 1 -> X 1911 if (match(RHS, m_One())) 1912 return LHS; 1913 break; 1914 case ICmpInst::ICMP_NE: 1915 // X != 0 -> X 1916 if (match(RHS, m_Zero())) 1917 return LHS; 1918 break; 1919 case ICmpInst::ICMP_UGT: 1920 // X >u 0 -> X 1921 if (match(RHS, m_Zero())) 1922 return LHS; 1923 break; 1924 case ICmpInst::ICMP_UGE: 1925 // X >=u 1 -> X 1926 if (match(RHS, m_One())) 1927 return LHS; 1928 break; 1929 case ICmpInst::ICMP_SLT: 1930 // X <s 0 -> X 1931 if (match(RHS, m_Zero())) 1932 return LHS; 1933 break; 1934 case ICmpInst::ICMP_SLE: 1935 // X <=s -1 -> X 1936 if (match(RHS, m_One())) 1937 return LHS; 1938 break; 1939 } 1940 } 1941 1942 // If we are comparing with zero then try hard since this is a common case. 1943 if (match(RHS, m_Zero())) { 1944 bool LHSKnownNonNegative, LHSKnownNegative; 1945 switch (Pred) { 1946 default: llvm_unreachable("Unknown ICmp predicate!"); 1947 case ICmpInst::ICMP_ULT: 1948 return getFalse(ITy); 1949 case ICmpInst::ICMP_UGE: 1950 return getTrue(ITy); 1951 case ICmpInst::ICMP_EQ: 1952 case ICmpInst::ICMP_ULE: 1953 if (isKnownNonZero(LHS, Q.DL)) 1954 return getFalse(ITy); 1955 break; 1956 case ICmpInst::ICMP_NE: 1957 case ICmpInst::ICMP_UGT: 1958 if (isKnownNonZero(LHS, Q.DL)) 1959 return getTrue(ITy); 1960 break; 1961 case ICmpInst::ICMP_SLT: 1962 ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, Q.DL); 1963 if (LHSKnownNegative) 1964 return getTrue(ITy); 1965 if (LHSKnownNonNegative) 1966 return getFalse(ITy); 1967 break; 1968 case ICmpInst::ICMP_SLE: 1969 ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, Q.DL); 1970 if (LHSKnownNegative) 1971 return getTrue(ITy); 1972 if (LHSKnownNonNegative && isKnownNonZero(LHS, Q.DL)) 1973 return getFalse(ITy); 1974 break; 1975 case ICmpInst::ICMP_SGE: 1976 ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, Q.DL); 1977 if (LHSKnownNegative) 1978 return getFalse(ITy); 1979 if (LHSKnownNonNegative) 1980 return getTrue(ITy); 1981 break; 1982 case ICmpInst::ICMP_SGT: 1983 ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, Q.DL); 1984 if (LHSKnownNegative) 1985 return getFalse(ITy); 1986 if (LHSKnownNonNegative && isKnownNonZero(LHS, Q.DL)) 1987 return getTrue(ITy); 1988 break; 1989 } 1990 } 1991 1992 // See if we are doing a comparison with a constant integer. 1993 if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) { 1994 // Rule out tautological comparisons (eg., ult 0 or uge 0). 1995 ConstantRange RHS_CR = ICmpInst::makeConstantRange(Pred, CI->getValue()); 1996 if (RHS_CR.isEmptySet()) 1997 return ConstantInt::getFalse(CI->getContext()); 1998 if (RHS_CR.isFullSet()) 1999 return ConstantInt::getTrue(CI->getContext()); 2000 2001 // Many binary operators with constant RHS have easy to compute constant 2002 // range. Use them to check whether the comparison is a tautology. 2003 uint32_t Width = CI->getBitWidth(); 2004 APInt Lower = APInt(Width, 0); 2005 APInt Upper = APInt(Width, 0); 2006 ConstantInt *CI2; 2007 if (match(LHS, m_URem(m_Value(), m_ConstantInt(CI2)))) { 2008 // 'urem x, CI2' produces [0, CI2). 2009 Upper = CI2->getValue(); 2010 } else if (match(LHS, m_SRem(m_Value(), m_ConstantInt(CI2)))) { 2011 // 'srem x, CI2' produces (-|CI2|, |CI2|). 2012 Upper = CI2->getValue().abs(); 2013 Lower = (-Upper) + 1; 2014 } else if (match(LHS, m_UDiv(m_ConstantInt(CI2), m_Value()))) { 2015 // 'udiv CI2, x' produces [0, CI2]. 2016 Upper = CI2->getValue() + 1; 2017 } else if (match(LHS, m_UDiv(m_Value(), m_ConstantInt(CI2)))) { 2018 // 'udiv x, CI2' produces [0, UINT_MAX / CI2]. 2019 APInt NegOne = APInt::getAllOnesValue(Width); 2020 if (!CI2->isZero()) 2021 Upper = NegOne.udiv(CI2->getValue()) + 1; 2022 } else if (match(LHS, m_SDiv(m_Value(), m_ConstantInt(CI2)))) { 2023 // 'sdiv x, CI2' produces [INT_MIN / CI2, INT_MAX / CI2]. 2024 APInt IntMin = APInt::getSignedMinValue(Width); 2025 APInt IntMax = APInt::getSignedMaxValue(Width); 2026 APInt Val = CI2->getValue().abs(); 2027 if (!Val.isMinValue()) { 2028 Lower = IntMin.sdiv(Val); 2029 Upper = IntMax.sdiv(Val) + 1; 2030 } 2031 } else if (match(LHS, m_LShr(m_Value(), m_ConstantInt(CI2)))) { 2032 // 'lshr x, CI2' produces [0, UINT_MAX >> CI2]. 2033 APInt NegOne = APInt::getAllOnesValue(Width); 2034 if (CI2->getValue().ult(Width)) 2035 Upper = NegOne.lshr(CI2->getValue()) + 1; 2036 } else if (match(LHS, m_AShr(m_Value(), m_ConstantInt(CI2)))) { 2037 // 'ashr x, CI2' produces [INT_MIN >> CI2, INT_MAX >> CI2]. 2038 APInt IntMin = APInt::getSignedMinValue(Width); 2039 APInt IntMax = APInt::getSignedMaxValue(Width); 2040 if (CI2->getValue().ult(Width)) { 2041 Lower = IntMin.ashr(CI2->getValue()); 2042 Upper = IntMax.ashr(CI2->getValue()) + 1; 2043 } 2044 } else if (match(LHS, m_Or(m_Value(), m_ConstantInt(CI2)))) { 2045 // 'or x, CI2' produces [CI2, UINT_MAX]. 2046 Lower = CI2->getValue(); 2047 } else if (match(LHS, m_And(m_Value(), m_ConstantInt(CI2)))) { 2048 // 'and x, CI2' produces [0, CI2]. 2049 Upper = CI2->getValue() + 1; 2050 } 2051 if (Lower != Upper) { 2052 ConstantRange LHS_CR = ConstantRange(Lower, Upper); 2053 if (RHS_CR.contains(LHS_CR)) 2054 return ConstantInt::getTrue(RHS->getContext()); 2055 if (RHS_CR.inverse().contains(LHS_CR)) 2056 return ConstantInt::getFalse(RHS->getContext()); 2057 } 2058 } 2059 2060 // Compare of cast, for example (zext X) != 0 -> X != 0 2061 if (isa<CastInst>(LHS) && (isa<Constant>(RHS) || isa<CastInst>(RHS))) { 2062 Instruction *LI = cast<CastInst>(LHS); 2063 Value *SrcOp = LI->getOperand(0); 2064 Type *SrcTy = SrcOp->getType(); 2065 Type *DstTy = LI->getType(); 2066 2067 // Turn icmp (ptrtoint x), (ptrtoint/constant) into a compare of the input 2068 // if the integer type is the same size as the pointer type. 2069 if (MaxRecurse && Q.DL && isa<PtrToIntInst>(LI) && 2070 Q.DL->getTypeSizeInBits(SrcTy) == DstTy->getPrimitiveSizeInBits()) { 2071 if (Constant *RHSC = dyn_cast<Constant>(RHS)) { 2072 // Transfer the cast to the constant. 2073 if (Value *V = SimplifyICmpInst(Pred, SrcOp, 2074 ConstantExpr::getIntToPtr(RHSC, SrcTy), 2075 Q, MaxRecurse-1)) 2076 return V; 2077 } else if (PtrToIntInst *RI = dyn_cast<PtrToIntInst>(RHS)) { 2078 if (RI->getOperand(0)->getType() == SrcTy) 2079 // Compare without the cast. 2080 if (Value *V = SimplifyICmpInst(Pred, SrcOp, RI->getOperand(0), 2081 Q, MaxRecurse-1)) 2082 return V; 2083 } 2084 } 2085 2086 if (isa<ZExtInst>(LHS)) { 2087 // Turn icmp (zext X), (zext Y) into a compare of X and Y if they have the 2088 // same type. 2089 if (ZExtInst *RI = dyn_cast<ZExtInst>(RHS)) { 2090 if (MaxRecurse && SrcTy == RI->getOperand(0)->getType()) 2091 // Compare X and Y. Note that signed predicates become unsigned. 2092 if (Value *V = SimplifyICmpInst(ICmpInst::getUnsignedPredicate(Pred), 2093 SrcOp, RI->getOperand(0), Q, 2094 MaxRecurse-1)) 2095 return V; 2096 } 2097 // Turn icmp (zext X), Cst into a compare of X and Cst if Cst is extended 2098 // too. If not, then try to deduce the result of the comparison. 2099 else if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) { 2100 // Compute the constant that would happen if we truncated to SrcTy then 2101 // reextended to DstTy. 2102 Constant *Trunc = ConstantExpr::getTrunc(CI, SrcTy); 2103 Constant *RExt = ConstantExpr::getCast(CastInst::ZExt, Trunc, DstTy); 2104 2105 // If the re-extended constant didn't change then this is effectively 2106 // also a case of comparing two zero-extended values. 2107 if (RExt == CI && MaxRecurse) 2108 if (Value *V = SimplifyICmpInst(ICmpInst::getUnsignedPredicate(Pred), 2109 SrcOp, Trunc, Q, MaxRecurse-1)) 2110 return V; 2111 2112 // Otherwise the upper bits of LHS are zero while RHS has a non-zero bit 2113 // there. Use this to work out the result of the comparison. 2114 if (RExt != CI) { 2115 switch (Pred) { 2116 default: llvm_unreachable("Unknown ICmp predicate!"); 2117 // LHS <u RHS. 2118 case ICmpInst::ICMP_EQ: 2119 case ICmpInst::ICMP_UGT: 2120 case ICmpInst::ICMP_UGE: 2121 return ConstantInt::getFalse(CI->getContext()); 2122 2123 case ICmpInst::ICMP_NE: 2124 case ICmpInst::ICMP_ULT: 2125 case ICmpInst::ICMP_ULE: 2126 return ConstantInt::getTrue(CI->getContext()); 2127 2128 // LHS is non-negative. If RHS is negative then LHS >s LHS. If RHS 2129 // is non-negative then LHS <s RHS. 2130 case ICmpInst::ICMP_SGT: 2131 case ICmpInst::ICMP_SGE: 2132 return CI->getValue().isNegative() ? 2133 ConstantInt::getTrue(CI->getContext()) : 2134 ConstantInt::getFalse(CI->getContext()); 2135 2136 case ICmpInst::ICMP_SLT: 2137 case ICmpInst::ICMP_SLE: 2138 return CI->getValue().isNegative() ? 2139 ConstantInt::getFalse(CI->getContext()) : 2140 ConstantInt::getTrue(CI->getContext()); 2141 } 2142 } 2143 } 2144 } 2145 2146 if (isa<SExtInst>(LHS)) { 2147 // Turn icmp (sext X), (sext Y) into a compare of X and Y if they have the 2148 // same type. 2149 if (SExtInst *RI = dyn_cast<SExtInst>(RHS)) { 2150 if (MaxRecurse && SrcTy == RI->getOperand(0)->getType()) 2151 // Compare X and Y. Note that the predicate does not change. 2152 if (Value *V = SimplifyICmpInst(Pred, SrcOp, RI->getOperand(0), 2153 Q, MaxRecurse-1)) 2154 return V; 2155 } 2156 // Turn icmp (sext X), Cst into a compare of X and Cst if Cst is extended 2157 // too. If not, then try to deduce the result of the comparison. 2158 else if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) { 2159 // Compute the constant that would happen if we truncated to SrcTy then 2160 // reextended to DstTy. 2161 Constant *Trunc = ConstantExpr::getTrunc(CI, SrcTy); 2162 Constant *RExt = ConstantExpr::getCast(CastInst::SExt, Trunc, DstTy); 2163 2164 // If the re-extended constant didn't change then this is effectively 2165 // also a case of comparing two sign-extended values. 2166 if (RExt == CI && MaxRecurse) 2167 if (Value *V = SimplifyICmpInst(Pred, SrcOp, Trunc, Q, MaxRecurse-1)) 2168 return V; 2169 2170 // Otherwise the upper bits of LHS are all equal, while RHS has varying 2171 // bits there. Use this to work out the result of the comparison. 2172 if (RExt != CI) { 2173 switch (Pred) { 2174 default: llvm_unreachable("Unknown ICmp predicate!"); 2175 case ICmpInst::ICMP_EQ: 2176 return ConstantInt::getFalse(CI->getContext()); 2177 case ICmpInst::ICMP_NE: 2178 return ConstantInt::getTrue(CI->getContext()); 2179 2180 // If RHS is non-negative then LHS <s RHS. If RHS is negative then 2181 // LHS >s RHS. 2182 case ICmpInst::ICMP_SGT: 2183 case ICmpInst::ICMP_SGE: 2184 return CI->getValue().isNegative() ? 2185 ConstantInt::getTrue(CI->getContext()) : 2186 ConstantInt::getFalse(CI->getContext()); 2187 case ICmpInst::ICMP_SLT: 2188 case ICmpInst::ICMP_SLE: 2189 return CI->getValue().isNegative() ? 2190 ConstantInt::getFalse(CI->getContext()) : 2191 ConstantInt::getTrue(CI->getContext()); 2192 2193 // If LHS is non-negative then LHS <u RHS. If LHS is negative then 2194 // LHS >u RHS. 2195 case ICmpInst::ICMP_UGT: 2196 case ICmpInst::ICMP_UGE: 2197 // Comparison is true iff the LHS <s 0. 2198 if (MaxRecurse) 2199 if (Value *V = SimplifyICmpInst(ICmpInst::ICMP_SLT, SrcOp, 2200 Constant::getNullValue(SrcTy), 2201 Q, MaxRecurse-1)) 2202 return V; 2203 break; 2204 case ICmpInst::ICMP_ULT: 2205 case ICmpInst::ICMP_ULE: 2206 // Comparison is true iff the LHS >=s 0. 2207 if (MaxRecurse) 2208 if (Value *V = SimplifyICmpInst(ICmpInst::ICMP_SGE, SrcOp, 2209 Constant::getNullValue(SrcTy), 2210 Q, MaxRecurse-1)) 2211 return V; 2212 break; 2213 } 2214 } 2215 } 2216 } 2217 } 2218 2219 // Special logic for binary operators. 2220 BinaryOperator *LBO = dyn_cast<BinaryOperator>(LHS); 2221 BinaryOperator *RBO = dyn_cast<BinaryOperator>(RHS); 2222 if (MaxRecurse && (LBO || RBO)) { 2223 // Analyze the case when either LHS or RHS is an add instruction. 2224 Value *A = 0, *B = 0, *C = 0, *D = 0; 2225 // LHS = A + B (or A and B are null); RHS = C + D (or C and D are null). 2226 bool NoLHSWrapProblem = false, NoRHSWrapProblem = false; 2227 if (LBO && LBO->getOpcode() == Instruction::Add) { 2228 A = LBO->getOperand(0); B = LBO->getOperand(1); 2229 NoLHSWrapProblem = ICmpInst::isEquality(Pred) || 2230 (CmpInst::isUnsigned(Pred) && LBO->hasNoUnsignedWrap()) || 2231 (CmpInst::isSigned(Pred) && LBO->hasNoSignedWrap()); 2232 } 2233 if (RBO && RBO->getOpcode() == Instruction::Add) { 2234 C = RBO->getOperand(0); D = RBO->getOperand(1); 2235 NoRHSWrapProblem = ICmpInst::isEquality(Pred) || 2236 (CmpInst::isUnsigned(Pred) && RBO->hasNoUnsignedWrap()) || 2237 (CmpInst::isSigned(Pred) && RBO->hasNoSignedWrap()); 2238 } 2239 2240 // icmp (X+Y), X -> icmp Y, 0 for equalities or if there is no overflow. 2241 if ((A == RHS || B == RHS) && NoLHSWrapProblem) 2242 if (Value *V = SimplifyICmpInst(Pred, A == RHS ? B : A, 2243 Constant::getNullValue(RHS->getType()), 2244 Q, MaxRecurse-1)) 2245 return V; 2246 2247 // icmp X, (X+Y) -> icmp 0, Y for equalities or if there is no overflow. 2248 if ((C == LHS || D == LHS) && NoRHSWrapProblem) 2249 if (Value *V = SimplifyICmpInst(Pred, 2250 Constant::getNullValue(LHS->getType()), 2251 C == LHS ? D : C, Q, MaxRecurse-1)) 2252 return V; 2253 2254 // icmp (X+Y), (X+Z) -> icmp Y,Z for equalities or if there is no overflow. 2255 if (A && C && (A == C || A == D || B == C || B == D) && 2256 NoLHSWrapProblem && NoRHSWrapProblem) { 2257 // Determine Y and Z in the form icmp (X+Y), (X+Z). 2258 Value *Y, *Z; 2259 if (A == C) { 2260 // C + B == C + D -> B == D 2261 Y = B; 2262 Z = D; 2263 } else if (A == D) { 2264 // D + B == C + D -> B == C 2265 Y = B; 2266 Z = C; 2267 } else if (B == C) { 2268 // A + C == C + D -> A == D 2269 Y = A; 2270 Z = D; 2271 } else { 2272 assert(B == D); 2273 // A + D == C + D -> A == C 2274 Y = A; 2275 Z = C; 2276 } 2277 if (Value *V = SimplifyICmpInst(Pred, Y, Z, Q, MaxRecurse-1)) 2278 return V; 2279 } 2280 } 2281 2282 // icmp pred (urem X, Y), Y 2283 if (LBO && match(LBO, m_URem(m_Value(), m_Specific(RHS)))) { 2284 bool KnownNonNegative, KnownNegative; 2285 switch (Pred) { 2286 default: 2287 break; 2288 case ICmpInst::ICMP_SGT: 2289 case ICmpInst::ICMP_SGE: 2290 ComputeSignBit(RHS, KnownNonNegative, KnownNegative, Q.DL); 2291 if (!KnownNonNegative) 2292 break; 2293 // fall-through 2294 case ICmpInst::ICMP_EQ: 2295 case ICmpInst::ICMP_UGT: 2296 case ICmpInst::ICMP_UGE: 2297 return getFalse(ITy); 2298 case ICmpInst::ICMP_SLT: 2299 case ICmpInst::ICMP_SLE: 2300 ComputeSignBit(RHS, KnownNonNegative, KnownNegative, Q.DL); 2301 if (!KnownNonNegative) 2302 break; 2303 // fall-through 2304 case ICmpInst::ICMP_NE: 2305 case ICmpInst::ICMP_ULT: 2306 case ICmpInst::ICMP_ULE: 2307 return getTrue(ITy); 2308 } 2309 } 2310 2311 // icmp pred X, (urem Y, X) 2312 if (RBO && match(RBO, m_URem(m_Value(), m_Specific(LHS)))) { 2313 bool KnownNonNegative, KnownNegative; 2314 switch (Pred) { 2315 default: 2316 break; 2317 case ICmpInst::ICMP_SGT: 2318 case ICmpInst::ICMP_SGE: 2319 ComputeSignBit(LHS, KnownNonNegative, KnownNegative, Q.DL); 2320 if (!KnownNonNegative) 2321 break; 2322 // fall-through 2323 case ICmpInst::ICMP_NE: 2324 case ICmpInst::ICMP_UGT: 2325 case ICmpInst::ICMP_UGE: 2326 return getTrue(ITy); 2327 case ICmpInst::ICMP_SLT: 2328 case ICmpInst::ICMP_SLE: 2329 ComputeSignBit(LHS, KnownNonNegative, KnownNegative, Q.DL); 2330 if (!KnownNonNegative) 2331 break; 2332 // fall-through 2333 case ICmpInst::ICMP_EQ: 2334 case ICmpInst::ICMP_ULT: 2335 case ICmpInst::ICMP_ULE: 2336 return getFalse(ITy); 2337 } 2338 } 2339 2340 // x udiv y <=u x. 2341 if (LBO && match(LBO, m_UDiv(m_Specific(RHS), m_Value()))) { 2342 // icmp pred (X /u Y), X 2343 if (Pred == ICmpInst::ICMP_UGT) 2344 return getFalse(ITy); 2345 if (Pred == ICmpInst::ICMP_ULE) 2346 return getTrue(ITy); 2347 } 2348 2349 if (MaxRecurse && LBO && RBO && LBO->getOpcode() == RBO->getOpcode() && 2350 LBO->getOperand(1) == RBO->getOperand(1)) { 2351 switch (LBO->getOpcode()) { 2352 default: break; 2353 case Instruction::UDiv: 2354 case Instruction::LShr: 2355 if (ICmpInst::isSigned(Pred)) 2356 break; 2357 // fall-through 2358 case Instruction::SDiv: 2359 case Instruction::AShr: 2360 if (!LBO->isExact() || !RBO->isExact()) 2361 break; 2362 if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0), 2363 RBO->getOperand(0), Q, MaxRecurse-1)) 2364 return V; 2365 break; 2366 case Instruction::Shl: { 2367 bool NUW = LBO->hasNoUnsignedWrap() && RBO->hasNoUnsignedWrap(); 2368 bool NSW = LBO->hasNoSignedWrap() && RBO->hasNoSignedWrap(); 2369 if (!NUW && !NSW) 2370 break; 2371 if (!NSW && ICmpInst::isSigned(Pred)) 2372 break; 2373 if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0), 2374 RBO->getOperand(0), Q, MaxRecurse-1)) 2375 return V; 2376 break; 2377 } 2378 } 2379 } 2380 2381 // Simplify comparisons involving max/min. 2382 Value *A, *B; 2383 CmpInst::Predicate P = CmpInst::BAD_ICMP_PREDICATE; 2384 CmpInst::Predicate EqP; // Chosen so that "A == max/min(A,B)" iff "A EqP B". 2385 2386 // Signed variants on "max(a,b)>=a -> true". 2387 if (match(LHS, m_SMax(m_Value(A), m_Value(B))) && (A == RHS || B == RHS)) { 2388 if (A != RHS) std::swap(A, B); // smax(A, B) pred A. 2389 EqP = CmpInst::ICMP_SGE; // "A == smax(A, B)" iff "A sge B". 2390 // We analyze this as smax(A, B) pred A. 2391 P = Pred; 2392 } else if (match(RHS, m_SMax(m_Value(A), m_Value(B))) && 2393 (A == LHS || B == LHS)) { 2394 if (A != LHS) std::swap(A, B); // A pred smax(A, B). 2395 EqP = CmpInst::ICMP_SGE; // "A == smax(A, B)" iff "A sge B". 2396 // We analyze this as smax(A, B) swapped-pred A. 2397 P = CmpInst::getSwappedPredicate(Pred); 2398 } else if (match(LHS, m_SMin(m_Value(A), m_Value(B))) && 2399 (A == RHS || B == RHS)) { 2400 if (A != RHS) std::swap(A, B); // smin(A, B) pred A. 2401 EqP = CmpInst::ICMP_SLE; // "A == smin(A, B)" iff "A sle B". 2402 // We analyze this as smax(-A, -B) swapped-pred -A. 2403 // Note that we do not need to actually form -A or -B thanks to EqP. 2404 P = CmpInst::getSwappedPredicate(Pred); 2405 } else if (match(RHS, m_SMin(m_Value(A), m_Value(B))) && 2406 (A == LHS || B == LHS)) { 2407 if (A != LHS) std::swap(A, B); // A pred smin(A, B). 2408 EqP = CmpInst::ICMP_SLE; // "A == smin(A, B)" iff "A sle B". 2409 // We analyze this as smax(-A, -B) pred -A. 2410 // Note that we do not need to actually form -A or -B thanks to EqP. 2411 P = Pred; 2412 } 2413 if (P != CmpInst::BAD_ICMP_PREDICATE) { 2414 // Cases correspond to "max(A, B) p A". 2415 switch (P) { 2416 default: 2417 break; 2418 case CmpInst::ICMP_EQ: 2419 case CmpInst::ICMP_SLE: 2420 // Equivalent to "A EqP B". This may be the same as the condition tested 2421 // in the max/min; if so, we can just return that. 2422 if (Value *V = ExtractEquivalentCondition(LHS, EqP, A, B)) 2423 return V; 2424 if (Value *V = ExtractEquivalentCondition(RHS, EqP, A, B)) 2425 return V; 2426 // Otherwise, see if "A EqP B" simplifies. 2427 if (MaxRecurse) 2428 if (Value *V = SimplifyICmpInst(EqP, A, B, Q, MaxRecurse-1)) 2429 return V; 2430 break; 2431 case CmpInst::ICMP_NE: 2432 case CmpInst::ICMP_SGT: { 2433 CmpInst::Predicate InvEqP = CmpInst::getInversePredicate(EqP); 2434 // Equivalent to "A InvEqP B". This may be the same as the condition 2435 // tested in the max/min; if so, we can just return that. 2436 if (Value *V = ExtractEquivalentCondition(LHS, InvEqP, A, B)) 2437 return V; 2438 if (Value *V = ExtractEquivalentCondition(RHS, InvEqP, A, B)) 2439 return V; 2440 // Otherwise, see if "A InvEqP B" simplifies. 2441 if (MaxRecurse) 2442 if (Value *V = SimplifyICmpInst(InvEqP, A, B, Q, MaxRecurse-1)) 2443 return V; 2444 break; 2445 } 2446 case CmpInst::ICMP_SGE: 2447 // Always true. 2448 return getTrue(ITy); 2449 case CmpInst::ICMP_SLT: 2450 // Always false. 2451 return getFalse(ITy); 2452 } 2453 } 2454 2455 // Unsigned variants on "max(a,b)>=a -> true". 2456 P = CmpInst::BAD_ICMP_PREDICATE; 2457 if (match(LHS, m_UMax(m_Value(A), m_Value(B))) && (A == RHS || B == RHS)) { 2458 if (A != RHS) std::swap(A, B); // umax(A, B) pred A. 2459 EqP = CmpInst::ICMP_UGE; // "A == umax(A, B)" iff "A uge B". 2460 // We analyze this as umax(A, B) pred A. 2461 P = Pred; 2462 } else if (match(RHS, m_UMax(m_Value(A), m_Value(B))) && 2463 (A == LHS || B == LHS)) { 2464 if (A != LHS) std::swap(A, B); // A pred umax(A, B). 2465 EqP = CmpInst::ICMP_UGE; // "A == umax(A, B)" iff "A uge B". 2466 // We analyze this as umax(A, B) swapped-pred A. 2467 P = CmpInst::getSwappedPredicate(Pred); 2468 } else if (match(LHS, m_UMin(m_Value(A), m_Value(B))) && 2469 (A == RHS || B == RHS)) { 2470 if (A != RHS) std::swap(A, B); // umin(A, B) pred A. 2471 EqP = CmpInst::ICMP_ULE; // "A == umin(A, B)" iff "A ule B". 2472 // We analyze this as umax(-A, -B) swapped-pred -A. 2473 // Note that we do not need to actually form -A or -B thanks to EqP. 2474 P = CmpInst::getSwappedPredicate(Pred); 2475 } else if (match(RHS, m_UMin(m_Value(A), m_Value(B))) && 2476 (A == LHS || B == LHS)) { 2477 if (A != LHS) std::swap(A, B); // A pred umin(A, B). 2478 EqP = CmpInst::ICMP_ULE; // "A == umin(A, B)" iff "A ule B". 2479 // We analyze this as umax(-A, -B) pred -A. 2480 // Note that we do not need to actually form -A or -B thanks to EqP. 2481 P = Pred; 2482 } 2483 if (P != CmpInst::BAD_ICMP_PREDICATE) { 2484 // Cases correspond to "max(A, B) p A". 2485 switch (P) { 2486 default: 2487 break; 2488 case CmpInst::ICMP_EQ: 2489 case CmpInst::ICMP_ULE: 2490 // Equivalent to "A EqP B". This may be the same as the condition tested 2491 // in the max/min; if so, we can just return that. 2492 if (Value *V = ExtractEquivalentCondition(LHS, EqP, A, B)) 2493 return V; 2494 if (Value *V = ExtractEquivalentCondition(RHS, EqP, A, B)) 2495 return V; 2496 // Otherwise, see if "A EqP B" simplifies. 2497 if (MaxRecurse) 2498 if (Value *V = SimplifyICmpInst(EqP, A, B, Q, MaxRecurse-1)) 2499 return V; 2500 break; 2501 case CmpInst::ICMP_NE: 2502 case CmpInst::ICMP_UGT: { 2503 CmpInst::Predicate InvEqP = CmpInst::getInversePredicate(EqP); 2504 // Equivalent to "A InvEqP B". This may be the same as the condition 2505 // tested in the max/min; if so, we can just return that. 2506 if (Value *V = ExtractEquivalentCondition(LHS, InvEqP, A, B)) 2507 return V; 2508 if (Value *V = ExtractEquivalentCondition(RHS, InvEqP, A, B)) 2509 return V; 2510 // Otherwise, see if "A InvEqP B" simplifies. 2511 if (MaxRecurse) 2512 if (Value *V = SimplifyICmpInst(InvEqP, A, B, Q, MaxRecurse-1)) 2513 return V; 2514 break; 2515 } 2516 case CmpInst::ICMP_UGE: 2517 // Always true. 2518 return getTrue(ITy); 2519 case CmpInst::ICMP_ULT: 2520 // Always false. 2521 return getFalse(ITy); 2522 } 2523 } 2524 2525 // Variants on "max(x,y) >= min(x,z)". 2526 Value *C, *D; 2527 if (match(LHS, m_SMax(m_Value(A), m_Value(B))) && 2528 match(RHS, m_SMin(m_Value(C), m_Value(D))) && 2529 (A == C || A == D || B == C || B == D)) { 2530 // max(x, ?) pred min(x, ?). 2531 if (Pred == CmpInst::ICMP_SGE) 2532 // Always true. 2533 return getTrue(ITy); 2534 if (Pred == CmpInst::ICMP_SLT) 2535 // Always false. 2536 return getFalse(ITy); 2537 } else if (match(LHS, m_SMin(m_Value(A), m_Value(B))) && 2538 match(RHS, m_SMax(m_Value(C), m_Value(D))) && 2539 (A == C || A == D || B == C || B == D)) { 2540 // min(x, ?) pred max(x, ?). 2541 if (Pred == CmpInst::ICMP_SLE) 2542 // Always true. 2543 return getTrue(ITy); 2544 if (Pred == CmpInst::ICMP_SGT) 2545 // Always false. 2546 return getFalse(ITy); 2547 } else if (match(LHS, m_UMax(m_Value(A), m_Value(B))) && 2548 match(RHS, m_UMin(m_Value(C), m_Value(D))) && 2549 (A == C || A == D || B == C || B == D)) { 2550 // max(x, ?) pred min(x, ?). 2551 if (Pred == CmpInst::ICMP_UGE) 2552 // Always true. 2553 return getTrue(ITy); 2554 if (Pred == CmpInst::ICMP_ULT) 2555 // Always false. 2556 return getFalse(ITy); 2557 } else if (match(LHS, m_UMin(m_Value(A), m_Value(B))) && 2558 match(RHS, m_UMax(m_Value(C), m_Value(D))) && 2559 (A == C || A == D || B == C || B == D)) { 2560 // min(x, ?) pred max(x, ?). 2561 if (Pred == CmpInst::ICMP_ULE) 2562 // Always true. 2563 return getTrue(ITy); 2564 if (Pred == CmpInst::ICMP_UGT) 2565 // Always false. 2566 return getFalse(ITy); 2567 } 2568 2569 // Simplify comparisons of related pointers using a powerful, recursive 2570 // GEP-walk when we have target data available.. 2571 if (LHS->getType()->isPointerTy()) 2572 if (Constant *C = computePointerICmp(Q.DL, Q.TLI, Pred, LHS, RHS)) 2573 return C; 2574 2575 if (GetElementPtrInst *GLHS = dyn_cast<GetElementPtrInst>(LHS)) { 2576 if (GEPOperator *GRHS = dyn_cast<GEPOperator>(RHS)) { 2577 if (GLHS->getPointerOperand() == GRHS->getPointerOperand() && 2578 GLHS->hasAllConstantIndices() && GRHS->hasAllConstantIndices() && 2579 (ICmpInst::isEquality(Pred) || 2580 (GLHS->isInBounds() && GRHS->isInBounds() && 2581 Pred == ICmpInst::getSignedPredicate(Pred)))) { 2582 // The bases are equal and the indices are constant. Build a constant 2583 // expression GEP with the same indices and a null base pointer to see 2584 // what constant folding can make out of it. 2585 Constant *Null = Constant::getNullValue(GLHS->getPointerOperandType()); 2586 SmallVector<Value *, 4> IndicesLHS(GLHS->idx_begin(), GLHS->idx_end()); 2587 Constant *NewLHS = ConstantExpr::getGetElementPtr(Null, IndicesLHS); 2588 2589 SmallVector<Value *, 4> IndicesRHS(GRHS->idx_begin(), GRHS->idx_end()); 2590 Constant *NewRHS = ConstantExpr::getGetElementPtr(Null, IndicesRHS); 2591 return ConstantExpr::getICmp(Pred, NewLHS, NewRHS); 2592 } 2593 } 2594 } 2595 2596 // If the comparison is with the result of a select instruction, check whether 2597 // comparing with either branch of the select always yields the same value. 2598 if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS)) 2599 if (Value *V = ThreadCmpOverSelect(Pred, LHS, RHS, Q, MaxRecurse)) 2600 return V; 2601 2602 // If the comparison is with the result of a phi instruction, check whether 2603 // doing the compare with each incoming phi value yields a common result. 2604 if (isa<PHINode>(LHS) || isa<PHINode>(RHS)) 2605 if (Value *V = ThreadCmpOverPHI(Pred, LHS, RHS, Q, MaxRecurse)) 2606 return V; 2607 2608 return 0; 2609 } 2610 2611 Value *llvm::SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS, 2612 const DataLayout *DL, 2613 const TargetLibraryInfo *TLI, 2614 const DominatorTree *DT) { 2615 return ::SimplifyICmpInst(Predicate, LHS, RHS, Query (DL, TLI, DT), 2616 RecursionLimit); 2617 } 2618 2619 /// SimplifyFCmpInst - Given operands for an FCmpInst, see if we can 2620 /// fold the result. If not, this returns null. 2621 static Value *SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS, 2622 const Query &Q, unsigned MaxRecurse) { 2623 CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate; 2624 assert(CmpInst::isFPPredicate(Pred) && "Not an FP compare!"); 2625 2626 if (Constant *CLHS = dyn_cast<Constant>(LHS)) { 2627 if (Constant *CRHS = dyn_cast<Constant>(RHS)) 2628 return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, Q.DL, Q.TLI); 2629 2630 // If we have a constant, make sure it is on the RHS. 2631 std::swap(LHS, RHS); 2632 Pred = CmpInst::getSwappedPredicate(Pred); 2633 } 2634 2635 // Fold trivial predicates. 2636 if (Pred == FCmpInst::FCMP_FALSE) 2637 return ConstantInt::get(GetCompareTy(LHS), 0); 2638 if (Pred == FCmpInst::FCMP_TRUE) 2639 return ConstantInt::get(GetCompareTy(LHS), 1); 2640 2641 if (isa<UndefValue>(RHS)) // fcmp pred X, undef -> undef 2642 return UndefValue::get(GetCompareTy(LHS)); 2643 2644 // fcmp x,x -> true/false. Not all compares are foldable. 2645 if (LHS == RHS) { 2646 if (CmpInst::isTrueWhenEqual(Pred)) 2647 return ConstantInt::get(GetCompareTy(LHS), 1); 2648 if (CmpInst::isFalseWhenEqual(Pred)) 2649 return ConstantInt::get(GetCompareTy(LHS), 0); 2650 } 2651 2652 // Handle fcmp with constant RHS 2653 if (Constant *RHSC = dyn_cast<Constant>(RHS)) { 2654 // If the constant is a nan, see if we can fold the comparison based on it. 2655 if (ConstantFP *CFP = dyn_cast<ConstantFP>(RHSC)) { 2656 if (CFP->getValueAPF().isNaN()) { 2657 if (FCmpInst::isOrdered(Pred)) // True "if ordered and foo" 2658 return ConstantInt::getFalse(CFP->getContext()); 2659 assert(FCmpInst::isUnordered(Pred) && 2660 "Comparison must be either ordered or unordered!"); 2661 // True if unordered. 2662 return ConstantInt::getTrue(CFP->getContext()); 2663 } 2664 // Check whether the constant is an infinity. 2665 if (CFP->getValueAPF().isInfinity()) { 2666 if (CFP->getValueAPF().isNegative()) { 2667 switch (Pred) { 2668 case FCmpInst::FCMP_OLT: 2669 // No value is ordered and less than negative infinity. 2670 return ConstantInt::getFalse(CFP->getContext()); 2671 case FCmpInst::FCMP_UGE: 2672 // All values are unordered with or at least negative infinity. 2673 return ConstantInt::getTrue(CFP->getContext()); 2674 default: 2675 break; 2676 } 2677 } else { 2678 switch (Pred) { 2679 case FCmpInst::FCMP_OGT: 2680 // No value is ordered and greater than infinity. 2681 return ConstantInt::getFalse(CFP->getContext()); 2682 case FCmpInst::FCMP_ULE: 2683 // All values are unordered with and at most infinity. 2684 return ConstantInt::getTrue(CFP->getContext()); 2685 default: 2686 break; 2687 } 2688 } 2689 } 2690 } 2691 } 2692 2693 // If the comparison is with the result of a select instruction, check whether 2694 // comparing with either branch of the select always yields the same value. 2695 if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS)) 2696 if (Value *V = ThreadCmpOverSelect(Pred, LHS, RHS, Q, MaxRecurse)) 2697 return V; 2698 2699 // If the comparison is with the result of a phi instruction, check whether 2700 // doing the compare with each incoming phi value yields a common result. 2701 if (isa<PHINode>(LHS) || isa<PHINode>(RHS)) 2702 if (Value *V = ThreadCmpOverPHI(Pred, LHS, RHS, Q, MaxRecurse)) 2703 return V; 2704 2705 return 0; 2706 } 2707 2708 Value *llvm::SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS, 2709 const DataLayout *DL, 2710 const TargetLibraryInfo *TLI, 2711 const DominatorTree *DT) { 2712 return ::SimplifyFCmpInst(Predicate, LHS, RHS, Query (DL, TLI, DT), 2713 RecursionLimit); 2714 } 2715 2716 /// SimplifySelectInst - Given operands for a SelectInst, see if we can fold 2717 /// the result. If not, this returns null. 2718 static Value *SimplifySelectInst(Value *CondVal, Value *TrueVal, 2719 Value *FalseVal, const Query &Q, 2720 unsigned MaxRecurse) { 2721 // select true, X, Y -> X 2722 // select false, X, Y -> Y 2723 if (Constant *CB = dyn_cast<Constant>(CondVal)) { 2724 if (CB->isAllOnesValue()) 2725 return TrueVal; 2726 if (CB->isNullValue()) 2727 return FalseVal; 2728 } 2729 2730 // select C, X, X -> X 2731 if (TrueVal == FalseVal) 2732 return TrueVal; 2733 2734 if (isa<UndefValue>(CondVal)) { // select undef, X, Y -> X or Y 2735 if (isa<Constant>(TrueVal)) 2736 return TrueVal; 2737 return FalseVal; 2738 } 2739 if (isa<UndefValue>(TrueVal)) // select C, undef, X -> X 2740 return FalseVal; 2741 if (isa<UndefValue>(FalseVal)) // select C, X, undef -> X 2742 return TrueVal; 2743 2744 return 0; 2745 } 2746 2747 Value *llvm::SimplifySelectInst(Value *Cond, Value *TrueVal, Value *FalseVal, 2748 const DataLayout *DL, 2749 const TargetLibraryInfo *TLI, 2750 const DominatorTree *DT) { 2751 return ::SimplifySelectInst(Cond, TrueVal, FalseVal, Query (DL, TLI, DT), 2752 RecursionLimit); 2753 } 2754 2755 /// SimplifyGEPInst - Given operands for an GetElementPtrInst, see if we can 2756 /// fold the result. If not, this returns null. 2757 static Value *SimplifyGEPInst(ArrayRef<Value *> Ops, const Query &Q, unsigned) { 2758 // The type of the GEP pointer operand. 2759 PointerType *PtrTy = cast<PointerType>(Ops[0]->getType()->getScalarType()); 2760 2761 // getelementptr P -> P. 2762 if (Ops.size() == 1) 2763 return Ops[0]; 2764 2765 if (isa<UndefValue>(Ops[0])) { 2766 // Compute the (pointer) type returned by the GEP instruction. 2767 Type *LastType = GetElementPtrInst::getIndexedType(PtrTy, Ops.slice(1)); 2768 Type *GEPTy = PointerType::get(LastType, PtrTy->getAddressSpace()); 2769 if (VectorType *VT = dyn_cast<VectorType>(Ops[0]->getType())) 2770 GEPTy = VectorType::get(GEPTy, VT->getNumElements()); 2771 return UndefValue::get(GEPTy); 2772 } 2773 2774 if (Ops.size() == 2) { 2775 // getelementptr P, 0 -> P. 2776 if (match(Ops[1], m_Zero())) 2777 return Ops[0]; 2778 // getelementptr P, N -> P if P points to a type of zero size. 2779 if (Q.DL) { 2780 Type *Ty = PtrTy->getElementType(); 2781 if (Ty->isSized() && Q.DL->getTypeAllocSize(Ty) == 0) 2782 return Ops[0]; 2783 } 2784 } 2785 2786 // Check to see if this is constant foldable. 2787 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2788 if (!isa<Constant>(Ops[i])) 2789 return 0; 2790 2791 return ConstantExpr::getGetElementPtr(cast<Constant>(Ops[0]), Ops.slice(1)); 2792 } 2793 2794 Value *llvm::SimplifyGEPInst(ArrayRef<Value *> Ops, const DataLayout *DL, 2795 const TargetLibraryInfo *TLI, 2796 const DominatorTree *DT) { 2797 return ::SimplifyGEPInst(Ops, Query (DL, TLI, DT), RecursionLimit); 2798 } 2799 2800 /// SimplifyInsertValueInst - Given operands for an InsertValueInst, see if we 2801 /// can fold the result. If not, this returns null. 2802 static Value *SimplifyInsertValueInst(Value *Agg, Value *Val, 2803 ArrayRef<unsigned> Idxs, const Query &Q, 2804 unsigned) { 2805 if (Constant *CAgg = dyn_cast<Constant>(Agg)) 2806 if (Constant *CVal = dyn_cast<Constant>(Val)) 2807 return ConstantFoldInsertValueInstruction(CAgg, CVal, Idxs); 2808 2809 // insertvalue x, undef, n -> x 2810 if (match(Val, m_Undef())) 2811 return Agg; 2812 2813 // insertvalue x, (extractvalue y, n), n 2814 if (ExtractValueInst *EV = dyn_cast<ExtractValueInst>(Val)) 2815 if (EV->getAggregateOperand()->getType() == Agg->getType() && 2816 EV->getIndices() == Idxs) { 2817 // insertvalue undef, (extractvalue y, n), n -> y 2818 if (match(Agg, m_Undef())) 2819 return EV->getAggregateOperand(); 2820 2821 // insertvalue y, (extractvalue y, n), n -> y 2822 if (Agg == EV->getAggregateOperand()) 2823 return Agg; 2824 } 2825 2826 return 0; 2827 } 2828 2829 Value *llvm::SimplifyInsertValueInst(Value *Agg, Value *Val, 2830 ArrayRef<unsigned> Idxs, 2831 const DataLayout *DL, 2832 const TargetLibraryInfo *TLI, 2833 const DominatorTree *DT) { 2834 return ::SimplifyInsertValueInst(Agg, Val, Idxs, Query (DL, TLI, DT), 2835 RecursionLimit); 2836 } 2837 2838 /// SimplifyPHINode - See if we can fold the given phi. If not, returns null. 2839 static Value *SimplifyPHINode(PHINode *PN, const Query &Q) { 2840 // If all of the PHI's incoming values are the same then replace the PHI node 2841 // with the common value. 2842 Value *CommonValue = 0; 2843 bool HasUndefInput = false; 2844 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 2845 Value *Incoming = PN->getIncomingValue(i); 2846 // If the incoming value is the phi node itself, it can safely be skipped. 2847 if (Incoming == PN) continue; 2848 if (isa<UndefValue>(Incoming)) { 2849 // Remember that we saw an undef value, but otherwise ignore them. 2850 HasUndefInput = true; 2851 continue; 2852 } 2853 if (CommonValue && Incoming != CommonValue) 2854 return 0; // Not the same, bail out. 2855 CommonValue = Incoming; 2856 } 2857 2858 // If CommonValue is null then all of the incoming values were either undef or 2859 // equal to the phi node itself. 2860 if (!CommonValue) 2861 return UndefValue::get(PN->getType()); 2862 2863 // If we have a PHI node like phi(X, undef, X), where X is defined by some 2864 // instruction, we cannot return X as the result of the PHI node unless it 2865 // dominates the PHI block. 2866 if (HasUndefInput) 2867 return ValueDominatesPHI(CommonValue, PN, Q.DT) ? CommonValue : 0; 2868 2869 return CommonValue; 2870 } 2871 2872 static Value *SimplifyTruncInst(Value *Op, Type *Ty, const Query &Q, unsigned) { 2873 if (Constant *C = dyn_cast<Constant>(Op)) 2874 return ConstantFoldInstOperands(Instruction::Trunc, Ty, C, Q.DL, Q.TLI); 2875 2876 return 0; 2877 } 2878 2879 Value *llvm::SimplifyTruncInst(Value *Op, Type *Ty, const DataLayout *DL, 2880 const TargetLibraryInfo *TLI, 2881 const DominatorTree *DT) { 2882 return ::SimplifyTruncInst(Op, Ty, Query (DL, TLI, DT), RecursionLimit); 2883 } 2884 2885 //=== Helper functions for higher up the class hierarchy. 2886 2887 /// SimplifyBinOp - Given operands for a BinaryOperator, see if we can 2888 /// fold the result. If not, this returns null. 2889 static Value *SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS, 2890 const Query &Q, unsigned MaxRecurse) { 2891 switch (Opcode) { 2892 case Instruction::Add: 2893 return SimplifyAddInst(LHS, RHS, /*isNSW*/false, /*isNUW*/false, 2894 Q, MaxRecurse); 2895 case Instruction::FAdd: 2896 return SimplifyFAddInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse); 2897 2898 case Instruction::Sub: 2899 return SimplifySubInst(LHS, RHS, /*isNSW*/false, /*isNUW*/false, 2900 Q, MaxRecurse); 2901 case Instruction::FSub: 2902 return SimplifyFSubInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse); 2903 2904 case Instruction::Mul: return SimplifyMulInst (LHS, RHS, Q, MaxRecurse); 2905 case Instruction::FMul: 2906 return SimplifyFMulInst (LHS, RHS, FastMathFlags(), Q, MaxRecurse); 2907 case Instruction::SDiv: return SimplifySDivInst(LHS, RHS, Q, MaxRecurse); 2908 case Instruction::UDiv: return SimplifyUDivInst(LHS, RHS, Q, MaxRecurse); 2909 case Instruction::FDiv: return SimplifyFDivInst(LHS, RHS, Q, MaxRecurse); 2910 case Instruction::SRem: return SimplifySRemInst(LHS, RHS, Q, MaxRecurse); 2911 case Instruction::URem: return SimplifyURemInst(LHS, RHS, Q, MaxRecurse); 2912 case Instruction::FRem: return SimplifyFRemInst(LHS, RHS, Q, MaxRecurse); 2913 case Instruction::Shl: 2914 return SimplifyShlInst(LHS, RHS, /*isNSW*/false, /*isNUW*/false, 2915 Q, MaxRecurse); 2916 case Instruction::LShr: 2917 return SimplifyLShrInst(LHS, RHS, /*isExact*/false, Q, MaxRecurse); 2918 case Instruction::AShr: 2919 return SimplifyAShrInst(LHS, RHS, /*isExact*/false, Q, MaxRecurse); 2920 case Instruction::And: return SimplifyAndInst(LHS, RHS, Q, MaxRecurse); 2921 case Instruction::Or: return SimplifyOrInst (LHS, RHS, Q, MaxRecurse); 2922 case Instruction::Xor: return SimplifyXorInst(LHS, RHS, Q, MaxRecurse); 2923 default: 2924 if (Constant *CLHS = dyn_cast<Constant>(LHS)) 2925 if (Constant *CRHS = dyn_cast<Constant>(RHS)) { 2926 Constant *COps[] = {CLHS, CRHS}; 2927 return ConstantFoldInstOperands(Opcode, LHS->getType(), COps, Q.DL, 2928 Q.TLI); 2929 } 2930 2931 // If the operation is associative, try some generic simplifications. 2932 if (Instruction::isAssociative(Opcode)) 2933 if (Value *V = SimplifyAssociativeBinOp(Opcode, LHS, RHS, Q, MaxRecurse)) 2934 return V; 2935 2936 // If the operation is with the result of a select instruction check whether 2937 // operating on either branch of the select always yields the same value. 2938 if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS)) 2939 if (Value *V = ThreadBinOpOverSelect(Opcode, LHS, RHS, Q, MaxRecurse)) 2940 return V; 2941 2942 // If the operation is with the result of a phi instruction, check whether 2943 // operating on all incoming values of the phi always yields the same value. 2944 if (isa<PHINode>(LHS) || isa<PHINode>(RHS)) 2945 if (Value *V = ThreadBinOpOverPHI(Opcode, LHS, RHS, Q, MaxRecurse)) 2946 return V; 2947 2948 return 0; 2949 } 2950 } 2951 2952 Value *llvm::SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS, 2953 const DataLayout *DL, const TargetLibraryInfo *TLI, 2954 const DominatorTree *DT) { 2955 return ::SimplifyBinOp(Opcode, LHS, RHS, Query (DL, TLI, DT), RecursionLimit); 2956 } 2957 2958 /// SimplifyCmpInst - Given operands for a CmpInst, see if we can 2959 /// fold the result. 2960 static Value *SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS, 2961 const Query &Q, unsigned MaxRecurse) { 2962 if (CmpInst::isIntPredicate((CmpInst::Predicate)Predicate)) 2963 return SimplifyICmpInst(Predicate, LHS, RHS, Q, MaxRecurse); 2964 return SimplifyFCmpInst(Predicate, LHS, RHS, Q, MaxRecurse); 2965 } 2966 2967 Value *llvm::SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS, 2968 const DataLayout *DL, const TargetLibraryInfo *TLI, 2969 const DominatorTree *DT) { 2970 return ::SimplifyCmpInst(Predicate, LHS, RHS, Query (DL, TLI, DT), 2971 RecursionLimit); 2972 } 2973 2974 static bool IsIdempotent(Intrinsic::ID ID) { 2975 switch (ID) { 2976 default: return false; 2977 2978 // Unary idempotent: f(f(x)) = f(x) 2979 case Intrinsic::fabs: 2980 case Intrinsic::floor: 2981 case Intrinsic::ceil: 2982 case Intrinsic::trunc: 2983 case Intrinsic::rint: 2984 case Intrinsic::nearbyint: 2985 case Intrinsic::round: 2986 return true; 2987 } 2988 } 2989 2990 template <typename IterTy> 2991 static Value *SimplifyIntrinsic(Intrinsic::ID IID, IterTy ArgBegin, IterTy ArgEnd, 2992 const Query &Q, unsigned MaxRecurse) { 2993 // Perform idempotent optimizations 2994 if (!IsIdempotent(IID)) 2995 return 0; 2996 2997 // Unary Ops 2998 if (std::distance(ArgBegin, ArgEnd) == 1) 2999 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(*ArgBegin)) 3000 if (II->getIntrinsicID() == IID) 3001 return II; 3002 3003 return 0; 3004 } 3005 3006 template <typename IterTy> 3007 static Value *SimplifyCall(Value *V, IterTy ArgBegin, IterTy ArgEnd, 3008 const Query &Q, unsigned MaxRecurse) { 3009 Type *Ty = V->getType(); 3010 if (PointerType *PTy = dyn_cast<PointerType>(Ty)) 3011 Ty = PTy->getElementType(); 3012 FunctionType *FTy = cast<FunctionType>(Ty); 3013 3014 // call undef -> undef 3015 if (isa<UndefValue>(V)) 3016 return UndefValue::get(FTy->getReturnType()); 3017 3018 Function *F = dyn_cast<Function>(V); 3019 if (!F) 3020 return 0; 3021 3022 if (unsigned IID = F->getIntrinsicID()) 3023 if (Value *Ret = 3024 SimplifyIntrinsic((Intrinsic::ID) IID, ArgBegin, ArgEnd, Q, MaxRecurse)) 3025 return Ret; 3026 3027 if (!canConstantFoldCallTo(F)) 3028 return 0; 3029 3030 SmallVector<Constant *, 4> ConstantArgs; 3031 ConstantArgs.reserve(ArgEnd - ArgBegin); 3032 for (IterTy I = ArgBegin, E = ArgEnd; I != E; ++I) { 3033 Constant *C = dyn_cast<Constant>(*I); 3034 if (!C) 3035 return 0; 3036 ConstantArgs.push_back(C); 3037 } 3038 3039 return ConstantFoldCall(F, ConstantArgs, Q.TLI); 3040 } 3041 3042 Value *llvm::SimplifyCall(Value *V, User::op_iterator ArgBegin, 3043 User::op_iterator ArgEnd, const DataLayout *DL, 3044 const TargetLibraryInfo *TLI, 3045 const DominatorTree *DT) { 3046 return ::SimplifyCall(V, ArgBegin, ArgEnd, Query(DL, TLI, DT), 3047 RecursionLimit); 3048 } 3049 3050 Value *llvm::SimplifyCall(Value *V, ArrayRef<Value *> Args, 3051 const DataLayout *DL, const TargetLibraryInfo *TLI, 3052 const DominatorTree *DT) { 3053 return ::SimplifyCall(V, Args.begin(), Args.end(), Query(DL, TLI, DT), 3054 RecursionLimit); 3055 } 3056 3057 /// SimplifyInstruction - See if we can compute a simplified version of this 3058 /// instruction. If not, this returns null. 3059 Value *llvm::SimplifyInstruction(Instruction *I, const DataLayout *DL, 3060 const TargetLibraryInfo *TLI, 3061 const DominatorTree *DT) { 3062 Value *Result; 3063 3064 switch (I->getOpcode()) { 3065 default: 3066 Result = ConstantFoldInstruction(I, DL, TLI); 3067 break; 3068 case Instruction::FAdd: 3069 Result = SimplifyFAddInst(I->getOperand(0), I->getOperand(1), 3070 I->getFastMathFlags(), DL, TLI, DT); 3071 break; 3072 case Instruction::Add: 3073 Result = SimplifyAddInst(I->getOperand(0), I->getOperand(1), 3074 cast<BinaryOperator>(I)->hasNoSignedWrap(), 3075 cast<BinaryOperator>(I)->hasNoUnsignedWrap(), 3076 DL, TLI, DT); 3077 break; 3078 case Instruction::FSub: 3079 Result = SimplifyFSubInst(I->getOperand(0), I->getOperand(1), 3080 I->getFastMathFlags(), DL, TLI, DT); 3081 break; 3082 case Instruction::Sub: 3083 Result = SimplifySubInst(I->getOperand(0), I->getOperand(1), 3084 cast<BinaryOperator>(I)->hasNoSignedWrap(), 3085 cast<BinaryOperator>(I)->hasNoUnsignedWrap(), 3086 DL, TLI, DT); 3087 break; 3088 case Instruction::FMul: 3089 Result = SimplifyFMulInst(I->getOperand(0), I->getOperand(1), 3090 I->getFastMathFlags(), DL, TLI, DT); 3091 break; 3092 case Instruction::Mul: 3093 Result = SimplifyMulInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT); 3094 break; 3095 case Instruction::SDiv: 3096 Result = SimplifySDivInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT); 3097 break; 3098 case Instruction::UDiv: 3099 Result = SimplifyUDivInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT); 3100 break; 3101 case Instruction::FDiv: 3102 Result = SimplifyFDivInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT); 3103 break; 3104 case Instruction::SRem: 3105 Result = SimplifySRemInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT); 3106 break; 3107 case Instruction::URem: 3108 Result = SimplifyURemInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT); 3109 break; 3110 case Instruction::FRem: 3111 Result = SimplifyFRemInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT); 3112 break; 3113 case Instruction::Shl: 3114 Result = SimplifyShlInst(I->getOperand(0), I->getOperand(1), 3115 cast<BinaryOperator>(I)->hasNoSignedWrap(), 3116 cast<BinaryOperator>(I)->hasNoUnsignedWrap(), 3117 DL, TLI, DT); 3118 break; 3119 case Instruction::LShr: 3120 Result = SimplifyLShrInst(I->getOperand(0), I->getOperand(1), 3121 cast<BinaryOperator>(I)->isExact(), 3122 DL, TLI, DT); 3123 break; 3124 case Instruction::AShr: 3125 Result = SimplifyAShrInst(I->getOperand(0), I->getOperand(1), 3126 cast<BinaryOperator>(I)->isExact(), 3127 DL, TLI, DT); 3128 break; 3129 case Instruction::And: 3130 Result = SimplifyAndInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT); 3131 break; 3132 case Instruction::Or: 3133 Result = SimplifyOrInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT); 3134 break; 3135 case Instruction::Xor: 3136 Result = SimplifyXorInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT); 3137 break; 3138 case Instruction::ICmp: 3139 Result = SimplifyICmpInst(cast<ICmpInst>(I)->getPredicate(), 3140 I->getOperand(0), I->getOperand(1), DL, TLI, DT); 3141 break; 3142 case Instruction::FCmp: 3143 Result = SimplifyFCmpInst(cast<FCmpInst>(I)->getPredicate(), 3144 I->getOperand(0), I->getOperand(1), DL, TLI, DT); 3145 break; 3146 case Instruction::Select: 3147 Result = SimplifySelectInst(I->getOperand(0), I->getOperand(1), 3148 I->getOperand(2), DL, TLI, DT); 3149 break; 3150 case Instruction::GetElementPtr: { 3151 SmallVector<Value*, 8> Ops(I->op_begin(), I->op_end()); 3152 Result = SimplifyGEPInst(Ops, DL, TLI, DT); 3153 break; 3154 } 3155 case Instruction::InsertValue: { 3156 InsertValueInst *IV = cast<InsertValueInst>(I); 3157 Result = SimplifyInsertValueInst(IV->getAggregateOperand(), 3158 IV->getInsertedValueOperand(), 3159 IV->getIndices(), DL, TLI, DT); 3160 break; 3161 } 3162 case Instruction::PHI: 3163 Result = SimplifyPHINode(cast<PHINode>(I), Query (DL, TLI, DT)); 3164 break; 3165 case Instruction::Call: { 3166 CallSite CS(cast<CallInst>(I)); 3167 Result = SimplifyCall(CS.getCalledValue(), CS.arg_begin(), CS.arg_end(), 3168 DL, TLI, DT); 3169 break; 3170 } 3171 case Instruction::Trunc: 3172 Result = SimplifyTruncInst(I->getOperand(0), I->getType(), DL, TLI, DT); 3173 break; 3174 } 3175 3176 /// If called on unreachable code, the above logic may report that the 3177 /// instruction simplified to itself. Make life easier for users by 3178 /// detecting that case here, returning a safe value instead. 3179 return Result == I ? UndefValue::get(I->getType()) : Result; 3180 } 3181 3182 /// \brief Implementation of recursive simplification through an instructions 3183 /// uses. 3184 /// 3185 /// This is the common implementation of the recursive simplification routines. 3186 /// If we have a pre-simplified value in 'SimpleV', that is forcibly used to 3187 /// replace the instruction 'I'. Otherwise, we simply add 'I' to the list of 3188 /// instructions to process and attempt to simplify it using 3189 /// InstructionSimplify. 3190 /// 3191 /// This routine returns 'true' only when *it* simplifies something. The passed 3192 /// in simplified value does not count toward this. 3193 static bool replaceAndRecursivelySimplifyImpl(Instruction *I, Value *SimpleV, 3194 const DataLayout *DL, 3195 const TargetLibraryInfo *TLI, 3196 const DominatorTree *DT) { 3197 bool Simplified = false; 3198 SmallSetVector<Instruction *, 8> Worklist; 3199 3200 // If we have an explicit value to collapse to, do that round of the 3201 // simplification loop by hand initially. 3202 if (SimpleV) { 3203 for (User *U : I->users()) 3204 if (U != I) 3205 Worklist.insert(cast<Instruction>(U)); 3206 3207 // Replace the instruction with its simplified value. 3208 I->replaceAllUsesWith(SimpleV); 3209 3210 // Gracefully handle edge cases where the instruction is not wired into any 3211 // parent block. 3212 if (I->getParent()) 3213 I->eraseFromParent(); 3214 } else { 3215 Worklist.insert(I); 3216 } 3217 3218 // Note that we must test the size on each iteration, the worklist can grow. 3219 for (unsigned Idx = 0; Idx != Worklist.size(); ++Idx) { 3220 I = Worklist[Idx]; 3221 3222 // See if this instruction simplifies. 3223 SimpleV = SimplifyInstruction(I, DL, TLI, DT); 3224 if (!SimpleV) 3225 continue; 3226 3227 Simplified = true; 3228 3229 // Stash away all the uses of the old instruction so we can check them for 3230 // recursive simplifications after a RAUW. This is cheaper than checking all 3231 // uses of To on the recursive step in most cases. 3232 for (User *U : I->users()) 3233 Worklist.insert(cast<Instruction>(U)); 3234 3235 // Replace the instruction with its simplified value. 3236 I->replaceAllUsesWith(SimpleV); 3237 3238 // Gracefully handle edge cases where the instruction is not wired into any 3239 // parent block. 3240 if (I->getParent()) 3241 I->eraseFromParent(); 3242 } 3243 return Simplified; 3244 } 3245 3246 bool llvm::recursivelySimplifyInstruction(Instruction *I, 3247 const DataLayout *DL, 3248 const TargetLibraryInfo *TLI, 3249 const DominatorTree *DT) { 3250 return replaceAndRecursivelySimplifyImpl(I, 0, DL, TLI, DT); 3251 } 3252 3253 bool llvm::replaceAndRecursivelySimplify(Instruction *I, Value *SimpleV, 3254 const DataLayout *DL, 3255 const TargetLibraryInfo *TLI, 3256 const DominatorTree *DT) { 3257 assert(I != SimpleV && "replaceAndRecursivelySimplify(X,X) is not valid!"); 3258 assert(SimpleV && "Must provide a simplified value."); 3259 return replaceAndRecursivelySimplifyImpl(I, SimpleV, DL, TLI, DT); 3260 } 3261