1 //===- InstructionSimplify.cpp - Fold instruction operands ----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements routines for folding instructions into simpler forms 10 // that do not require creating new instructions. This does constant folding 11 // ("add i32 1, 1" -> "2") but can also handle non-constant operands, either 12 // returning a constant ("and i32 %x, 0" -> "0") or an already existing value 13 // ("and i32 %x, %x" -> "%x"). All operands are assumed to have already been 14 // simplified: This is usually true and assuming it simplifies the logic (if 15 // they have not been simplified then results are correct but maybe suboptimal). 16 // 17 //===----------------------------------------------------------------------===// 18 19 #include "llvm/Analysis/InstructionSimplify.h" 20 21 #include "llvm/ADT/STLExtras.h" 22 #include "llvm/ADT/SetVector.h" 23 #include "llvm/ADT/SmallPtrSet.h" 24 #include "llvm/ADT/Statistic.h" 25 #include "llvm/Analysis/AliasAnalysis.h" 26 #include "llvm/Analysis/AssumptionCache.h" 27 #include "llvm/Analysis/CaptureTracking.h" 28 #include "llvm/Analysis/CmpInstAnalysis.h" 29 #include "llvm/Analysis/ConstantFolding.h" 30 #include "llvm/Analysis/InstSimplifyFolder.h" 31 #include "llvm/Analysis/LoopAnalysisManager.h" 32 #include "llvm/Analysis/MemoryBuiltins.h" 33 #include "llvm/Analysis/OverflowInstAnalysis.h" 34 #include "llvm/Analysis/ValueTracking.h" 35 #include "llvm/Analysis/VectorUtils.h" 36 #include "llvm/IR/ConstantRange.h" 37 #include "llvm/IR/DataLayout.h" 38 #include "llvm/IR/Dominators.h" 39 #include "llvm/IR/GetElementPtrTypeIterator.h" 40 #include "llvm/IR/GlobalAlias.h" 41 #include "llvm/IR/InstrTypes.h" 42 #include "llvm/IR/Instructions.h" 43 #include "llvm/IR/Operator.h" 44 #include "llvm/IR/PatternMatch.h" 45 #include "llvm/IR/ValueHandle.h" 46 #include "llvm/Support/KnownBits.h" 47 #include <algorithm> 48 using namespace llvm; 49 using namespace llvm::PatternMatch; 50 51 #define DEBUG_TYPE "instsimplify" 52 53 enum { RecursionLimit = 3 }; 54 55 STATISTIC(NumExpand, "Number of expansions"); 56 STATISTIC(NumReassoc, "Number of reassociations"); 57 58 static Value *SimplifyAndInst(Value *, Value *, const SimplifyQuery &, unsigned); 59 static Value *simplifyUnOp(unsigned, Value *, const SimplifyQuery &, unsigned); 60 static Value *simplifyFPUnOp(unsigned, Value *, const FastMathFlags &, 61 const SimplifyQuery &, unsigned); 62 static Value *SimplifyBinOp(unsigned, Value *, Value *, const SimplifyQuery &, 63 unsigned); 64 static Value *SimplifyBinOp(unsigned, Value *, Value *, const FastMathFlags &, 65 const SimplifyQuery &, unsigned); 66 static Value *SimplifyCmpInst(unsigned, Value *, Value *, const SimplifyQuery &, 67 unsigned); 68 static Value *SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS, 69 const SimplifyQuery &Q, unsigned MaxRecurse); 70 static Value *SimplifyOrInst(Value *, Value *, const SimplifyQuery &, unsigned); 71 static Value *SimplifyXorInst(Value *, Value *, const SimplifyQuery &, unsigned); 72 static Value *SimplifyCastInst(unsigned, Value *, Type *, 73 const SimplifyQuery &, unsigned); 74 static Value *SimplifyGEPInst(Type *, ArrayRef<Value *>, bool, 75 const SimplifyQuery &, unsigned); 76 static Value *SimplifySelectInst(Value *, Value *, Value *, 77 const SimplifyQuery &, unsigned); 78 79 static Value *foldSelectWithBinaryOp(Value *Cond, Value *TrueVal, 80 Value *FalseVal) { 81 BinaryOperator::BinaryOps BinOpCode; 82 if (auto *BO = dyn_cast<BinaryOperator>(Cond)) 83 BinOpCode = BO->getOpcode(); 84 else 85 return nullptr; 86 87 CmpInst::Predicate ExpectedPred, Pred1, Pred2; 88 if (BinOpCode == BinaryOperator::Or) { 89 ExpectedPred = ICmpInst::ICMP_NE; 90 } else if (BinOpCode == BinaryOperator::And) { 91 ExpectedPred = ICmpInst::ICMP_EQ; 92 } else 93 return nullptr; 94 95 // %A = icmp eq %TV, %FV 96 // %B = icmp eq %X, %Y (and one of these is a select operand) 97 // %C = and %A, %B 98 // %D = select %C, %TV, %FV 99 // --> 100 // %FV 101 102 // %A = icmp ne %TV, %FV 103 // %B = icmp ne %X, %Y (and one of these is a select operand) 104 // %C = or %A, %B 105 // %D = select %C, %TV, %FV 106 // --> 107 // %TV 108 Value *X, *Y; 109 if (!match(Cond, m_c_BinOp(m_c_ICmp(Pred1, m_Specific(TrueVal), 110 m_Specific(FalseVal)), 111 m_ICmp(Pred2, m_Value(X), m_Value(Y)))) || 112 Pred1 != Pred2 || Pred1 != ExpectedPred) 113 return nullptr; 114 115 if (X == TrueVal || X == FalseVal || Y == TrueVal || Y == FalseVal) 116 return BinOpCode == BinaryOperator::Or ? TrueVal : FalseVal; 117 118 return nullptr; 119 } 120 121 /// For a boolean type or a vector of boolean type, return false or a vector 122 /// with every element false. 123 static Constant *getFalse(Type *Ty) { 124 return ConstantInt::getFalse(Ty); 125 } 126 127 /// For a boolean type or a vector of boolean type, return true or a vector 128 /// with every element true. 129 static Constant *getTrue(Type *Ty) { 130 return ConstantInt::getTrue(Ty); 131 } 132 133 /// isSameCompare - Is V equivalent to the comparison "LHS Pred RHS"? 134 static bool isSameCompare(Value *V, CmpInst::Predicate Pred, Value *LHS, 135 Value *RHS) { 136 CmpInst *Cmp = dyn_cast<CmpInst>(V); 137 if (!Cmp) 138 return false; 139 CmpInst::Predicate CPred = Cmp->getPredicate(); 140 Value *CLHS = Cmp->getOperand(0), *CRHS = Cmp->getOperand(1); 141 if (CPred == Pred && CLHS == LHS && CRHS == RHS) 142 return true; 143 return CPred == CmpInst::getSwappedPredicate(Pred) && CLHS == RHS && 144 CRHS == LHS; 145 } 146 147 /// Simplify comparison with true or false branch of select: 148 /// %sel = select i1 %cond, i32 %tv, i32 %fv 149 /// %cmp = icmp sle i32 %sel, %rhs 150 /// Compose new comparison by substituting %sel with either %tv or %fv 151 /// and see if it simplifies. 152 static Value *simplifyCmpSelCase(CmpInst::Predicate Pred, Value *LHS, 153 Value *RHS, Value *Cond, 154 const SimplifyQuery &Q, unsigned MaxRecurse, 155 Constant *TrueOrFalse) { 156 Value *SimplifiedCmp = SimplifyCmpInst(Pred, LHS, RHS, Q, MaxRecurse); 157 if (SimplifiedCmp == Cond) { 158 // %cmp simplified to the select condition (%cond). 159 return TrueOrFalse; 160 } else if (!SimplifiedCmp && isSameCompare(Cond, Pred, LHS, RHS)) { 161 // It didn't simplify. However, if composed comparison is equivalent 162 // to the select condition (%cond) then we can replace it. 163 return TrueOrFalse; 164 } 165 return SimplifiedCmp; 166 } 167 168 /// Simplify comparison with true branch of select 169 static Value *simplifyCmpSelTrueCase(CmpInst::Predicate Pred, Value *LHS, 170 Value *RHS, Value *Cond, 171 const SimplifyQuery &Q, 172 unsigned MaxRecurse) { 173 return simplifyCmpSelCase(Pred, LHS, RHS, Cond, Q, MaxRecurse, 174 getTrue(Cond->getType())); 175 } 176 177 /// Simplify comparison with false branch of select 178 static Value *simplifyCmpSelFalseCase(CmpInst::Predicate Pred, Value *LHS, 179 Value *RHS, Value *Cond, 180 const SimplifyQuery &Q, 181 unsigned MaxRecurse) { 182 return simplifyCmpSelCase(Pred, LHS, RHS, Cond, Q, MaxRecurse, 183 getFalse(Cond->getType())); 184 } 185 186 /// We know comparison with both branches of select can be simplified, but they 187 /// are not equal. This routine handles some logical simplifications. 188 static Value *handleOtherCmpSelSimplifications(Value *TCmp, Value *FCmp, 189 Value *Cond, 190 const SimplifyQuery &Q, 191 unsigned MaxRecurse) { 192 // If the false value simplified to false, then the result of the compare 193 // is equal to "Cond && TCmp". This also catches the case when the false 194 // value simplified to false and the true value to true, returning "Cond". 195 // Folding select to and/or isn't poison-safe in general; impliesPoison 196 // checks whether folding it does not convert a well-defined value into 197 // poison. 198 if (match(FCmp, m_Zero()) && impliesPoison(TCmp, Cond)) 199 if (Value *V = SimplifyAndInst(Cond, TCmp, Q, MaxRecurse)) 200 return V; 201 // If the true value simplified to true, then the result of the compare 202 // is equal to "Cond || FCmp". 203 if (match(TCmp, m_One()) && impliesPoison(FCmp, Cond)) 204 if (Value *V = SimplifyOrInst(Cond, FCmp, Q, MaxRecurse)) 205 return V; 206 // Finally, if the false value simplified to true and the true value to 207 // false, then the result of the compare is equal to "!Cond". 208 if (match(FCmp, m_One()) && match(TCmp, m_Zero())) 209 if (Value *V = SimplifyXorInst( 210 Cond, Constant::getAllOnesValue(Cond->getType()), Q, MaxRecurse)) 211 return V; 212 return nullptr; 213 } 214 215 /// Does the given value dominate the specified phi node? 216 static bool valueDominatesPHI(Value *V, PHINode *P, const DominatorTree *DT) { 217 Instruction *I = dyn_cast<Instruction>(V); 218 if (!I) 219 // Arguments and constants dominate all instructions. 220 return true; 221 222 // If we are processing instructions (and/or basic blocks) that have not been 223 // fully added to a function, the parent nodes may still be null. Simply 224 // return the conservative answer in these cases. 225 if (!I->getParent() || !P->getParent() || !I->getFunction()) 226 return false; 227 228 // If we have a DominatorTree then do a precise test. 229 if (DT) 230 return DT->dominates(I, P); 231 232 // Otherwise, if the instruction is in the entry block and is not an invoke, 233 // then it obviously dominates all phi nodes. 234 if (I->getParent()->isEntryBlock() && !isa<InvokeInst>(I) && 235 !isa<CallBrInst>(I)) 236 return true; 237 238 return false; 239 } 240 241 /// Try to simplify a binary operator of form "V op OtherOp" where V is 242 /// "(B0 opex B1)" by distributing 'op' across 'opex' as 243 /// "(B0 op OtherOp) opex (B1 op OtherOp)". 244 static Value *expandBinOp(Instruction::BinaryOps Opcode, Value *V, 245 Value *OtherOp, Instruction::BinaryOps OpcodeToExpand, 246 const SimplifyQuery &Q, unsigned MaxRecurse) { 247 auto *B = dyn_cast<BinaryOperator>(V); 248 if (!B || B->getOpcode() != OpcodeToExpand) 249 return nullptr; 250 Value *B0 = B->getOperand(0), *B1 = B->getOperand(1); 251 Value *L = SimplifyBinOp(Opcode, B0, OtherOp, Q.getWithoutUndef(), 252 MaxRecurse); 253 if (!L) 254 return nullptr; 255 Value *R = SimplifyBinOp(Opcode, B1, OtherOp, Q.getWithoutUndef(), 256 MaxRecurse); 257 if (!R) 258 return nullptr; 259 260 // Does the expanded pair of binops simplify to the existing binop? 261 if ((L == B0 && R == B1) || 262 (Instruction::isCommutative(OpcodeToExpand) && L == B1 && R == B0)) { 263 ++NumExpand; 264 return B; 265 } 266 267 // Otherwise, return "L op' R" if it simplifies. 268 Value *S = SimplifyBinOp(OpcodeToExpand, L, R, Q, MaxRecurse); 269 if (!S) 270 return nullptr; 271 272 ++NumExpand; 273 return S; 274 } 275 276 /// Try to simplify binops of form "A op (B op' C)" or the commuted variant by 277 /// distributing op over op'. 278 static Value *expandCommutativeBinOp(Instruction::BinaryOps Opcode, 279 Value *L, Value *R, 280 Instruction::BinaryOps OpcodeToExpand, 281 const SimplifyQuery &Q, 282 unsigned MaxRecurse) { 283 // Recursion is always used, so bail out at once if we already hit the limit. 284 if (!MaxRecurse--) 285 return nullptr; 286 287 if (Value *V = expandBinOp(Opcode, L, R, OpcodeToExpand, Q, MaxRecurse)) 288 return V; 289 if (Value *V = expandBinOp(Opcode, R, L, OpcodeToExpand, Q, MaxRecurse)) 290 return V; 291 return nullptr; 292 } 293 294 /// Generic simplifications for associative binary operations. 295 /// Returns the simpler value, or null if none was found. 296 static Value *SimplifyAssociativeBinOp(Instruction::BinaryOps Opcode, 297 Value *LHS, Value *RHS, 298 const SimplifyQuery &Q, 299 unsigned MaxRecurse) { 300 assert(Instruction::isAssociative(Opcode) && "Not an associative operation!"); 301 302 // Recursion is always used, so bail out at once if we already hit the limit. 303 if (!MaxRecurse--) 304 return nullptr; 305 306 BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS); 307 BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS); 308 309 // Transform: "(A op B) op C" ==> "A op (B op C)" if it simplifies completely. 310 if (Op0 && Op0->getOpcode() == Opcode) { 311 Value *A = Op0->getOperand(0); 312 Value *B = Op0->getOperand(1); 313 Value *C = RHS; 314 315 // Does "B op C" simplify? 316 if (Value *V = SimplifyBinOp(Opcode, B, C, Q, MaxRecurse)) { 317 // It does! Return "A op V" if it simplifies or is already available. 318 // If V equals B then "A op V" is just the LHS. 319 if (V == B) return LHS; 320 // Otherwise return "A op V" if it simplifies. 321 if (Value *W = SimplifyBinOp(Opcode, A, V, Q, MaxRecurse)) { 322 ++NumReassoc; 323 return W; 324 } 325 } 326 } 327 328 // Transform: "A op (B op C)" ==> "(A op B) op C" if it simplifies completely. 329 if (Op1 && Op1->getOpcode() == Opcode) { 330 Value *A = LHS; 331 Value *B = Op1->getOperand(0); 332 Value *C = Op1->getOperand(1); 333 334 // Does "A op B" simplify? 335 if (Value *V = SimplifyBinOp(Opcode, A, B, Q, MaxRecurse)) { 336 // It does! Return "V op C" if it simplifies or is already available. 337 // If V equals B then "V op C" is just the RHS. 338 if (V == B) return RHS; 339 // Otherwise return "V op C" if it simplifies. 340 if (Value *W = SimplifyBinOp(Opcode, V, C, Q, MaxRecurse)) { 341 ++NumReassoc; 342 return W; 343 } 344 } 345 } 346 347 // The remaining transforms require commutativity as well as associativity. 348 if (!Instruction::isCommutative(Opcode)) 349 return nullptr; 350 351 // Transform: "(A op B) op C" ==> "(C op A) op B" if it simplifies completely. 352 if (Op0 && Op0->getOpcode() == Opcode) { 353 Value *A = Op0->getOperand(0); 354 Value *B = Op0->getOperand(1); 355 Value *C = RHS; 356 357 // Does "C op A" simplify? 358 if (Value *V = SimplifyBinOp(Opcode, C, A, Q, MaxRecurse)) { 359 // It does! Return "V op B" if it simplifies or is already available. 360 // If V equals A then "V op B" is just the LHS. 361 if (V == A) return LHS; 362 // Otherwise return "V op B" if it simplifies. 363 if (Value *W = SimplifyBinOp(Opcode, V, B, Q, MaxRecurse)) { 364 ++NumReassoc; 365 return W; 366 } 367 } 368 } 369 370 // Transform: "A op (B op C)" ==> "B op (C op A)" if it simplifies completely. 371 if (Op1 && Op1->getOpcode() == Opcode) { 372 Value *A = LHS; 373 Value *B = Op1->getOperand(0); 374 Value *C = Op1->getOperand(1); 375 376 // Does "C op A" simplify? 377 if (Value *V = SimplifyBinOp(Opcode, C, A, Q, MaxRecurse)) { 378 // It does! Return "B op V" if it simplifies or is already available. 379 // If V equals C then "B op V" is just the RHS. 380 if (V == C) return RHS; 381 // Otherwise return "B op V" if it simplifies. 382 if (Value *W = SimplifyBinOp(Opcode, B, V, Q, MaxRecurse)) { 383 ++NumReassoc; 384 return W; 385 } 386 } 387 } 388 389 return nullptr; 390 } 391 392 /// In the case of a binary operation with a select instruction as an operand, 393 /// try to simplify the binop by seeing whether evaluating it on both branches 394 /// of the select results in the same value. Returns the common value if so, 395 /// otherwise returns null. 396 static Value *ThreadBinOpOverSelect(Instruction::BinaryOps Opcode, Value *LHS, 397 Value *RHS, const SimplifyQuery &Q, 398 unsigned MaxRecurse) { 399 // Recursion is always used, so bail out at once if we already hit the limit. 400 if (!MaxRecurse--) 401 return nullptr; 402 403 SelectInst *SI; 404 if (isa<SelectInst>(LHS)) { 405 SI = cast<SelectInst>(LHS); 406 } else { 407 assert(isa<SelectInst>(RHS) && "No select instruction operand!"); 408 SI = cast<SelectInst>(RHS); 409 } 410 411 // Evaluate the BinOp on the true and false branches of the select. 412 Value *TV; 413 Value *FV; 414 if (SI == LHS) { 415 TV = SimplifyBinOp(Opcode, SI->getTrueValue(), RHS, Q, MaxRecurse); 416 FV = SimplifyBinOp(Opcode, SI->getFalseValue(), RHS, Q, MaxRecurse); 417 } else { 418 TV = SimplifyBinOp(Opcode, LHS, SI->getTrueValue(), Q, MaxRecurse); 419 FV = SimplifyBinOp(Opcode, LHS, SI->getFalseValue(), Q, MaxRecurse); 420 } 421 422 // If they simplified to the same value, then return the common value. 423 // If they both failed to simplify then return null. 424 if (TV == FV) 425 return TV; 426 427 // If one branch simplified to undef, return the other one. 428 if (TV && Q.isUndefValue(TV)) 429 return FV; 430 if (FV && Q.isUndefValue(FV)) 431 return TV; 432 433 // If applying the operation did not change the true and false select values, 434 // then the result of the binop is the select itself. 435 if (TV == SI->getTrueValue() && FV == SI->getFalseValue()) 436 return SI; 437 438 // If one branch simplified and the other did not, and the simplified 439 // value is equal to the unsimplified one, return the simplified value. 440 // For example, select (cond, X, X & Z) & Z -> X & Z. 441 if ((FV && !TV) || (TV && !FV)) { 442 // Check that the simplified value has the form "X op Y" where "op" is the 443 // same as the original operation. 444 Instruction *Simplified = dyn_cast<Instruction>(FV ? FV : TV); 445 if (Simplified && Simplified->getOpcode() == unsigned(Opcode)) { 446 // The value that didn't simplify is "UnsimplifiedLHS op UnsimplifiedRHS". 447 // We already know that "op" is the same as for the simplified value. See 448 // if the operands match too. If so, return the simplified value. 449 Value *UnsimplifiedBranch = FV ? SI->getTrueValue() : SI->getFalseValue(); 450 Value *UnsimplifiedLHS = SI == LHS ? UnsimplifiedBranch : LHS; 451 Value *UnsimplifiedRHS = SI == LHS ? RHS : UnsimplifiedBranch; 452 if (Simplified->getOperand(0) == UnsimplifiedLHS && 453 Simplified->getOperand(1) == UnsimplifiedRHS) 454 return Simplified; 455 if (Simplified->isCommutative() && 456 Simplified->getOperand(1) == UnsimplifiedLHS && 457 Simplified->getOperand(0) == UnsimplifiedRHS) 458 return Simplified; 459 } 460 } 461 462 return nullptr; 463 } 464 465 /// In the case of a comparison with a select instruction, try to simplify the 466 /// comparison by seeing whether both branches of the select result in the same 467 /// value. Returns the common value if so, otherwise returns null. 468 /// For example, if we have: 469 /// %tmp = select i1 %cmp, i32 1, i32 2 470 /// %cmp1 = icmp sle i32 %tmp, 3 471 /// We can simplify %cmp1 to true, because both branches of select are 472 /// less than 3. We compose new comparison by substituting %tmp with both 473 /// branches of select and see if it can be simplified. 474 static Value *ThreadCmpOverSelect(CmpInst::Predicate Pred, Value *LHS, 475 Value *RHS, const SimplifyQuery &Q, 476 unsigned MaxRecurse) { 477 // Recursion is always used, so bail out at once if we already hit the limit. 478 if (!MaxRecurse--) 479 return nullptr; 480 481 // Make sure the select is on the LHS. 482 if (!isa<SelectInst>(LHS)) { 483 std::swap(LHS, RHS); 484 Pred = CmpInst::getSwappedPredicate(Pred); 485 } 486 assert(isa<SelectInst>(LHS) && "Not comparing with a select instruction!"); 487 SelectInst *SI = cast<SelectInst>(LHS); 488 Value *Cond = SI->getCondition(); 489 Value *TV = SI->getTrueValue(); 490 Value *FV = SI->getFalseValue(); 491 492 // Now that we have "cmp select(Cond, TV, FV), RHS", analyse it. 493 // Does "cmp TV, RHS" simplify? 494 Value *TCmp = simplifyCmpSelTrueCase(Pred, TV, RHS, Cond, Q, MaxRecurse); 495 if (!TCmp) 496 return nullptr; 497 498 // Does "cmp FV, RHS" simplify? 499 Value *FCmp = simplifyCmpSelFalseCase(Pred, FV, RHS, Cond, Q, MaxRecurse); 500 if (!FCmp) 501 return nullptr; 502 503 // If both sides simplified to the same value, then use it as the result of 504 // the original comparison. 505 if (TCmp == FCmp) 506 return TCmp; 507 508 // The remaining cases only make sense if the select condition has the same 509 // type as the result of the comparison, so bail out if this is not so. 510 if (Cond->getType()->isVectorTy() == RHS->getType()->isVectorTy()) 511 return handleOtherCmpSelSimplifications(TCmp, FCmp, Cond, Q, MaxRecurse); 512 513 return nullptr; 514 } 515 516 /// In the case of a binary operation with an operand that is a PHI instruction, 517 /// try to simplify the binop by seeing whether evaluating it on the incoming 518 /// phi values yields the same result for every value. If so returns the common 519 /// value, otherwise returns null. 520 static Value *ThreadBinOpOverPHI(Instruction::BinaryOps Opcode, Value *LHS, 521 Value *RHS, const SimplifyQuery &Q, 522 unsigned MaxRecurse) { 523 // Recursion is always used, so bail out at once if we already hit the limit. 524 if (!MaxRecurse--) 525 return nullptr; 526 527 PHINode *PI; 528 if (isa<PHINode>(LHS)) { 529 PI = cast<PHINode>(LHS); 530 // Bail out if RHS and the phi may be mutually interdependent due to a loop. 531 if (!valueDominatesPHI(RHS, PI, Q.DT)) 532 return nullptr; 533 } else { 534 assert(isa<PHINode>(RHS) && "No PHI instruction operand!"); 535 PI = cast<PHINode>(RHS); 536 // Bail out if LHS and the phi may be mutually interdependent due to a loop. 537 if (!valueDominatesPHI(LHS, PI, Q.DT)) 538 return nullptr; 539 } 540 541 // Evaluate the BinOp on the incoming phi values. 542 Value *CommonValue = nullptr; 543 for (Value *Incoming : PI->incoming_values()) { 544 // If the incoming value is the phi node itself, it can safely be skipped. 545 if (Incoming == PI) continue; 546 Value *V = PI == LHS ? 547 SimplifyBinOp(Opcode, Incoming, RHS, Q, MaxRecurse) : 548 SimplifyBinOp(Opcode, LHS, Incoming, Q, MaxRecurse); 549 // If the operation failed to simplify, or simplified to a different value 550 // to previously, then give up. 551 if (!V || (CommonValue && V != CommonValue)) 552 return nullptr; 553 CommonValue = V; 554 } 555 556 return CommonValue; 557 } 558 559 /// In the case of a comparison with a PHI instruction, try to simplify the 560 /// comparison by seeing whether comparing with all of the incoming phi values 561 /// yields the same result every time. If so returns the common result, 562 /// otherwise returns null. 563 static Value *ThreadCmpOverPHI(CmpInst::Predicate Pred, Value *LHS, Value *RHS, 564 const SimplifyQuery &Q, unsigned MaxRecurse) { 565 // Recursion is always used, so bail out at once if we already hit the limit. 566 if (!MaxRecurse--) 567 return nullptr; 568 569 // Make sure the phi is on the LHS. 570 if (!isa<PHINode>(LHS)) { 571 std::swap(LHS, RHS); 572 Pred = CmpInst::getSwappedPredicate(Pred); 573 } 574 assert(isa<PHINode>(LHS) && "Not comparing with a phi instruction!"); 575 PHINode *PI = cast<PHINode>(LHS); 576 577 // Bail out if RHS and the phi may be mutually interdependent due to a loop. 578 if (!valueDominatesPHI(RHS, PI, Q.DT)) 579 return nullptr; 580 581 // Evaluate the BinOp on the incoming phi values. 582 Value *CommonValue = nullptr; 583 for (unsigned u = 0, e = PI->getNumIncomingValues(); u < e; ++u) { 584 Value *Incoming = PI->getIncomingValue(u); 585 Instruction *InTI = PI->getIncomingBlock(u)->getTerminator(); 586 // If the incoming value is the phi node itself, it can safely be skipped. 587 if (Incoming == PI) continue; 588 // Change the context instruction to the "edge" that flows into the phi. 589 // This is important because that is where incoming is actually "evaluated" 590 // even though it is used later somewhere else. 591 Value *V = SimplifyCmpInst(Pred, Incoming, RHS, Q.getWithInstruction(InTI), 592 MaxRecurse); 593 // If the operation failed to simplify, or simplified to a different value 594 // to previously, then give up. 595 if (!V || (CommonValue && V != CommonValue)) 596 return nullptr; 597 CommonValue = V; 598 } 599 600 return CommonValue; 601 } 602 603 static Constant *foldOrCommuteConstant(Instruction::BinaryOps Opcode, 604 Value *&Op0, Value *&Op1, 605 const SimplifyQuery &Q) { 606 if (auto *CLHS = dyn_cast<Constant>(Op0)) { 607 if (auto *CRHS = dyn_cast<Constant>(Op1)) 608 return ConstantFoldBinaryOpOperands(Opcode, CLHS, CRHS, Q.DL); 609 610 // Canonicalize the constant to the RHS if this is a commutative operation. 611 if (Instruction::isCommutative(Opcode)) 612 std::swap(Op0, Op1); 613 } 614 return nullptr; 615 } 616 617 /// Given operands for an Add, see if we can fold the result. 618 /// If not, this returns null. 619 static Value *SimplifyAddInst(Value *Op0, Value *Op1, bool IsNSW, bool IsNUW, 620 const SimplifyQuery &Q, unsigned MaxRecurse) { 621 if (Constant *C = foldOrCommuteConstant(Instruction::Add, Op0, Op1, Q)) 622 return C; 623 624 // X + poison -> poison 625 if (isa<PoisonValue>(Op1)) 626 return Op1; 627 628 // X + undef -> undef 629 if (Q.isUndefValue(Op1)) 630 return Op1; 631 632 // X + 0 -> X 633 if (match(Op1, m_Zero())) 634 return Op0; 635 636 // If two operands are negative, return 0. 637 if (isKnownNegation(Op0, Op1)) 638 return Constant::getNullValue(Op0->getType()); 639 640 // X + (Y - X) -> Y 641 // (Y - X) + X -> Y 642 // Eg: X + -X -> 0 643 Value *Y = nullptr; 644 if (match(Op1, m_Sub(m_Value(Y), m_Specific(Op0))) || 645 match(Op0, m_Sub(m_Value(Y), m_Specific(Op1)))) 646 return Y; 647 648 // X + ~X -> -1 since ~X = -X-1 649 Type *Ty = Op0->getType(); 650 if (match(Op0, m_Not(m_Specific(Op1))) || 651 match(Op1, m_Not(m_Specific(Op0)))) 652 return Constant::getAllOnesValue(Ty); 653 654 // add nsw/nuw (xor Y, signmask), signmask --> Y 655 // The no-wrapping add guarantees that the top bit will be set by the add. 656 // Therefore, the xor must be clearing the already set sign bit of Y. 657 if ((IsNSW || IsNUW) && match(Op1, m_SignMask()) && 658 match(Op0, m_Xor(m_Value(Y), m_SignMask()))) 659 return Y; 660 661 // add nuw %x, -1 -> -1, because %x can only be 0. 662 if (IsNUW && match(Op1, m_AllOnes())) 663 return Op1; // Which is -1. 664 665 /// i1 add -> xor. 666 if (MaxRecurse && Op0->getType()->isIntOrIntVectorTy(1)) 667 if (Value *V = SimplifyXorInst(Op0, Op1, Q, MaxRecurse-1)) 668 return V; 669 670 // Try some generic simplifications for associative operations. 671 if (Value *V = SimplifyAssociativeBinOp(Instruction::Add, Op0, Op1, Q, 672 MaxRecurse)) 673 return V; 674 675 // Threading Add over selects and phi nodes is pointless, so don't bother. 676 // Threading over the select in "A + select(cond, B, C)" means evaluating 677 // "A+B" and "A+C" and seeing if they are equal; but they are equal if and 678 // only if B and C are equal. If B and C are equal then (since we assume 679 // that operands have already been simplified) "select(cond, B, C)" should 680 // have been simplified to the common value of B and C already. Analysing 681 // "A+B" and "A+C" thus gains nothing, but costs compile time. Similarly 682 // for threading over phi nodes. 683 684 return nullptr; 685 } 686 687 Value *llvm::SimplifyAddInst(Value *Op0, Value *Op1, bool IsNSW, bool IsNUW, 688 const SimplifyQuery &Query) { 689 return ::SimplifyAddInst(Op0, Op1, IsNSW, IsNUW, Query, RecursionLimit); 690 } 691 692 /// Compute the base pointer and cumulative constant offsets for V. 693 /// 694 /// This strips all constant offsets off of V, leaving it the base pointer, and 695 /// accumulates the total constant offset applied in the returned constant. It 696 /// returns 0 if V is not a pointer, and returns the constant '0' if there are 697 /// no constant offsets applied. 698 /// 699 /// This is very similar to GetPointerBaseWithConstantOffset except it doesn't 700 /// follow non-inbounds geps. This allows it to remain usable for icmp ult/etc. 701 /// folding. 702 static Constant *stripAndComputeConstantOffsets(const DataLayout &DL, Value *&V, 703 bool AllowNonInbounds = false) { 704 assert(V->getType()->isPtrOrPtrVectorTy()); 705 706 APInt Offset = APInt::getZero(DL.getIndexTypeSizeInBits(V->getType())); 707 708 V = V->stripAndAccumulateConstantOffsets(DL, Offset, AllowNonInbounds); 709 // As that strip may trace through `addrspacecast`, need to sext or trunc 710 // the offset calculated. 711 Type *IntIdxTy = DL.getIndexType(V->getType())->getScalarType(); 712 Offset = Offset.sextOrTrunc(IntIdxTy->getIntegerBitWidth()); 713 714 Constant *OffsetIntPtr = ConstantInt::get(IntIdxTy, Offset); 715 if (VectorType *VecTy = dyn_cast<VectorType>(V->getType())) 716 return ConstantVector::getSplat(VecTy->getElementCount(), OffsetIntPtr); 717 return OffsetIntPtr; 718 } 719 720 /// Compute the constant difference between two pointer values. 721 /// If the difference is not a constant, returns zero. 722 static Constant *computePointerDifference(const DataLayout &DL, Value *LHS, 723 Value *RHS) { 724 Constant *LHSOffset = stripAndComputeConstantOffsets(DL, LHS); 725 Constant *RHSOffset = stripAndComputeConstantOffsets(DL, RHS); 726 727 // If LHS and RHS are not related via constant offsets to the same base 728 // value, there is nothing we can do here. 729 if (LHS != RHS) 730 return nullptr; 731 732 // Otherwise, the difference of LHS - RHS can be computed as: 733 // LHS - RHS 734 // = (LHSOffset + Base) - (RHSOffset + Base) 735 // = LHSOffset - RHSOffset 736 return ConstantExpr::getSub(LHSOffset, RHSOffset); 737 } 738 739 /// Given operands for a Sub, see if we can fold the result. 740 /// If not, this returns null. 741 static Value *SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, 742 const SimplifyQuery &Q, unsigned MaxRecurse) { 743 if (Constant *C = foldOrCommuteConstant(Instruction::Sub, Op0, Op1, Q)) 744 return C; 745 746 // X - poison -> poison 747 // poison - X -> poison 748 if (isa<PoisonValue>(Op0) || isa<PoisonValue>(Op1)) 749 return PoisonValue::get(Op0->getType()); 750 751 // X - undef -> undef 752 // undef - X -> undef 753 if (Q.isUndefValue(Op0) || Q.isUndefValue(Op1)) 754 return UndefValue::get(Op0->getType()); 755 756 // X - 0 -> X 757 if (match(Op1, m_Zero())) 758 return Op0; 759 760 // X - X -> 0 761 if (Op0 == Op1) 762 return Constant::getNullValue(Op0->getType()); 763 764 // Is this a negation? 765 if (match(Op0, m_Zero())) { 766 // 0 - X -> 0 if the sub is NUW. 767 if (isNUW) 768 return Constant::getNullValue(Op0->getType()); 769 770 KnownBits Known = computeKnownBits(Op1, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 771 if (Known.Zero.isMaxSignedValue()) { 772 // Op1 is either 0 or the minimum signed value. If the sub is NSW, then 773 // Op1 must be 0 because negating the minimum signed value is undefined. 774 if (isNSW) 775 return Constant::getNullValue(Op0->getType()); 776 777 // 0 - X -> X if X is 0 or the minimum signed value. 778 return Op1; 779 } 780 } 781 782 // (X + Y) - Z -> X + (Y - Z) or Y + (X - Z) if everything simplifies. 783 // For example, (X + Y) - Y -> X; (Y + X) - Y -> X 784 Value *X = nullptr, *Y = nullptr, *Z = Op1; 785 if (MaxRecurse && match(Op0, m_Add(m_Value(X), m_Value(Y)))) { // (X + Y) - Z 786 // See if "V === Y - Z" simplifies. 787 if (Value *V = SimplifyBinOp(Instruction::Sub, Y, Z, Q, MaxRecurse-1)) 788 // It does! Now see if "X + V" simplifies. 789 if (Value *W = SimplifyBinOp(Instruction::Add, X, V, Q, MaxRecurse-1)) { 790 // It does, we successfully reassociated! 791 ++NumReassoc; 792 return W; 793 } 794 // See if "V === X - Z" simplifies. 795 if (Value *V = SimplifyBinOp(Instruction::Sub, X, Z, Q, MaxRecurse-1)) 796 // It does! Now see if "Y + V" simplifies. 797 if (Value *W = SimplifyBinOp(Instruction::Add, Y, V, Q, MaxRecurse-1)) { 798 // It does, we successfully reassociated! 799 ++NumReassoc; 800 return W; 801 } 802 } 803 804 // X - (Y + Z) -> (X - Y) - Z or (X - Z) - Y if everything simplifies. 805 // For example, X - (X + 1) -> -1 806 X = Op0; 807 if (MaxRecurse && match(Op1, m_Add(m_Value(Y), m_Value(Z)))) { // X - (Y + Z) 808 // See if "V === X - Y" simplifies. 809 if (Value *V = SimplifyBinOp(Instruction::Sub, X, Y, Q, MaxRecurse-1)) 810 // It does! Now see if "V - Z" simplifies. 811 if (Value *W = SimplifyBinOp(Instruction::Sub, V, Z, Q, MaxRecurse-1)) { 812 // It does, we successfully reassociated! 813 ++NumReassoc; 814 return W; 815 } 816 // See if "V === X - Z" simplifies. 817 if (Value *V = SimplifyBinOp(Instruction::Sub, X, Z, Q, MaxRecurse-1)) 818 // It does! Now see if "V - Y" simplifies. 819 if (Value *W = SimplifyBinOp(Instruction::Sub, V, Y, Q, MaxRecurse-1)) { 820 // It does, we successfully reassociated! 821 ++NumReassoc; 822 return W; 823 } 824 } 825 826 // Z - (X - Y) -> (Z - X) + Y if everything simplifies. 827 // For example, X - (X - Y) -> Y. 828 Z = Op0; 829 if (MaxRecurse && match(Op1, m_Sub(m_Value(X), m_Value(Y)))) // Z - (X - Y) 830 // See if "V === Z - X" simplifies. 831 if (Value *V = SimplifyBinOp(Instruction::Sub, Z, X, Q, MaxRecurse-1)) 832 // It does! Now see if "V + Y" simplifies. 833 if (Value *W = SimplifyBinOp(Instruction::Add, V, Y, Q, MaxRecurse-1)) { 834 // It does, we successfully reassociated! 835 ++NumReassoc; 836 return W; 837 } 838 839 // trunc(X) - trunc(Y) -> trunc(X - Y) if everything simplifies. 840 if (MaxRecurse && match(Op0, m_Trunc(m_Value(X))) && 841 match(Op1, m_Trunc(m_Value(Y)))) 842 if (X->getType() == Y->getType()) 843 // See if "V === X - Y" simplifies. 844 if (Value *V = SimplifyBinOp(Instruction::Sub, X, Y, Q, MaxRecurse-1)) 845 // It does! Now see if "trunc V" simplifies. 846 if (Value *W = SimplifyCastInst(Instruction::Trunc, V, Op0->getType(), 847 Q, MaxRecurse - 1)) 848 // It does, return the simplified "trunc V". 849 return W; 850 851 // Variations on GEP(base, I, ...) - GEP(base, i, ...) -> GEP(null, I-i, ...). 852 if (match(Op0, m_PtrToInt(m_Value(X))) && 853 match(Op1, m_PtrToInt(m_Value(Y)))) 854 if (Constant *Result = computePointerDifference(Q.DL, X, Y)) 855 return ConstantExpr::getIntegerCast(Result, Op0->getType(), true); 856 857 // i1 sub -> xor. 858 if (MaxRecurse && Op0->getType()->isIntOrIntVectorTy(1)) 859 if (Value *V = SimplifyXorInst(Op0, Op1, Q, MaxRecurse-1)) 860 return V; 861 862 // Threading Sub over selects and phi nodes is pointless, so don't bother. 863 // Threading over the select in "A - select(cond, B, C)" means evaluating 864 // "A-B" and "A-C" and seeing if they are equal; but they are equal if and 865 // only if B and C are equal. If B and C are equal then (since we assume 866 // that operands have already been simplified) "select(cond, B, C)" should 867 // have been simplified to the common value of B and C already. Analysing 868 // "A-B" and "A-C" thus gains nothing, but costs compile time. Similarly 869 // for threading over phi nodes. 870 871 return nullptr; 872 } 873 874 Value *llvm::SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, 875 const SimplifyQuery &Q) { 876 return ::SimplifySubInst(Op0, Op1, isNSW, isNUW, Q, RecursionLimit); 877 } 878 879 /// Given operands for a Mul, see if we can fold the result. 880 /// If not, this returns null. 881 static Value *SimplifyMulInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 882 unsigned MaxRecurse) { 883 if (Constant *C = foldOrCommuteConstant(Instruction::Mul, Op0, Op1, Q)) 884 return C; 885 886 // X * poison -> poison 887 if (isa<PoisonValue>(Op1)) 888 return Op1; 889 890 // X * undef -> 0 891 // X * 0 -> 0 892 if (Q.isUndefValue(Op1) || match(Op1, m_Zero())) 893 return Constant::getNullValue(Op0->getType()); 894 895 // X * 1 -> X 896 if (match(Op1, m_One())) 897 return Op0; 898 899 // (X / Y) * Y -> X if the division is exact. 900 Value *X = nullptr; 901 if (Q.IIQ.UseInstrInfo && 902 (match(Op0, 903 m_Exact(m_IDiv(m_Value(X), m_Specific(Op1)))) || // (X / Y) * Y 904 match(Op1, m_Exact(m_IDiv(m_Value(X), m_Specific(Op0)))))) // Y * (X / Y) 905 return X; 906 907 // i1 mul -> and. 908 if (MaxRecurse && Op0->getType()->isIntOrIntVectorTy(1)) 909 if (Value *V = SimplifyAndInst(Op0, Op1, Q, MaxRecurse-1)) 910 return V; 911 912 // Try some generic simplifications for associative operations. 913 if (Value *V = SimplifyAssociativeBinOp(Instruction::Mul, Op0, Op1, Q, 914 MaxRecurse)) 915 return V; 916 917 // Mul distributes over Add. Try some generic simplifications based on this. 918 if (Value *V = expandCommutativeBinOp(Instruction::Mul, Op0, Op1, 919 Instruction::Add, Q, MaxRecurse)) 920 return V; 921 922 // If the operation is with the result of a select instruction, check whether 923 // operating on either branch of the select always yields the same value. 924 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 925 if (Value *V = ThreadBinOpOverSelect(Instruction::Mul, Op0, Op1, Q, 926 MaxRecurse)) 927 return V; 928 929 // If the operation is with the result of a phi instruction, check whether 930 // operating on all incoming values of the phi always yields the same value. 931 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 932 if (Value *V = ThreadBinOpOverPHI(Instruction::Mul, Op0, Op1, Q, 933 MaxRecurse)) 934 return V; 935 936 return nullptr; 937 } 938 939 Value *llvm::SimplifyMulInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 940 return ::SimplifyMulInst(Op0, Op1, Q, RecursionLimit); 941 } 942 943 /// Check for common or similar folds of integer division or integer remainder. 944 /// This applies to all 4 opcodes (sdiv/udiv/srem/urem). 945 static Value *simplifyDivRem(Instruction::BinaryOps Opcode, Value *Op0, 946 Value *Op1, const SimplifyQuery &Q) { 947 bool IsDiv = (Opcode == Instruction::SDiv || Opcode == Instruction::UDiv); 948 bool IsSigned = (Opcode == Instruction::SDiv || Opcode == Instruction::SRem); 949 950 Type *Ty = Op0->getType(); 951 952 // X / undef -> poison 953 // X % undef -> poison 954 if (Q.isUndefValue(Op1)) 955 return PoisonValue::get(Ty); 956 957 // X / 0 -> poison 958 // X % 0 -> poison 959 // We don't need to preserve faults! 960 if (match(Op1, m_Zero())) 961 return PoisonValue::get(Ty); 962 963 // If any element of a constant divisor fixed width vector is zero or undef 964 // the behavior is undefined and we can fold the whole op to poison. 965 auto *Op1C = dyn_cast<Constant>(Op1); 966 auto *VTy = dyn_cast<FixedVectorType>(Ty); 967 if (Op1C && VTy) { 968 unsigned NumElts = VTy->getNumElements(); 969 for (unsigned i = 0; i != NumElts; ++i) { 970 Constant *Elt = Op1C->getAggregateElement(i); 971 if (Elt && (Elt->isNullValue() || Q.isUndefValue(Elt))) 972 return PoisonValue::get(Ty); 973 } 974 } 975 976 // poison / X -> poison 977 // poison % X -> poison 978 if (isa<PoisonValue>(Op0)) 979 return Op0; 980 981 // undef / X -> 0 982 // undef % X -> 0 983 if (Q.isUndefValue(Op0)) 984 return Constant::getNullValue(Ty); 985 986 // 0 / X -> 0 987 // 0 % X -> 0 988 if (match(Op0, m_Zero())) 989 return Constant::getNullValue(Op0->getType()); 990 991 // X / X -> 1 992 // X % X -> 0 993 if (Op0 == Op1) 994 return IsDiv ? ConstantInt::get(Ty, 1) : Constant::getNullValue(Ty); 995 996 // X / 1 -> X 997 // X % 1 -> 0 998 // If this is a boolean op (single-bit element type), we can't have 999 // division-by-zero or remainder-by-zero, so assume the divisor is 1. 1000 // Similarly, if we're zero-extending a boolean divisor, then assume it's a 1. 1001 Value *X; 1002 if (match(Op1, m_One()) || Ty->isIntOrIntVectorTy(1) || 1003 (match(Op1, m_ZExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1))) 1004 return IsDiv ? Op0 : Constant::getNullValue(Ty); 1005 1006 // If X * Y does not overflow, then: 1007 // X * Y / Y -> X 1008 // X * Y % Y -> 0 1009 if (match(Op0, m_c_Mul(m_Value(X), m_Specific(Op1)))) { 1010 auto *Mul = cast<OverflowingBinaryOperator>(Op0); 1011 // The multiplication can't overflow if it is defined not to, or if 1012 // X == A / Y for some A. 1013 if ((IsSigned && Q.IIQ.hasNoSignedWrap(Mul)) || 1014 (!IsSigned && Q.IIQ.hasNoUnsignedWrap(Mul)) || 1015 (IsSigned && match(X, m_SDiv(m_Value(), m_Specific(Op1)))) || 1016 (!IsSigned && match(X, m_UDiv(m_Value(), m_Specific(Op1))))) { 1017 return IsDiv ? X : Constant::getNullValue(Op0->getType()); 1018 } 1019 } 1020 1021 return nullptr; 1022 } 1023 1024 /// Given a predicate and two operands, return true if the comparison is true. 1025 /// This is a helper for div/rem simplification where we return some other value 1026 /// when we can prove a relationship between the operands. 1027 static bool isICmpTrue(ICmpInst::Predicate Pred, Value *LHS, Value *RHS, 1028 const SimplifyQuery &Q, unsigned MaxRecurse) { 1029 Value *V = SimplifyICmpInst(Pred, LHS, RHS, Q, MaxRecurse); 1030 Constant *C = dyn_cast_or_null<Constant>(V); 1031 return (C && C->isAllOnesValue()); 1032 } 1033 1034 /// Return true if we can simplify X / Y to 0. Remainder can adapt that answer 1035 /// to simplify X % Y to X. 1036 static bool isDivZero(Value *X, Value *Y, const SimplifyQuery &Q, 1037 unsigned MaxRecurse, bool IsSigned) { 1038 // Recursion is always used, so bail out at once if we already hit the limit. 1039 if (!MaxRecurse--) 1040 return false; 1041 1042 if (IsSigned) { 1043 // |X| / |Y| --> 0 1044 // 1045 // We require that 1 operand is a simple constant. That could be extended to 1046 // 2 variables if we computed the sign bit for each. 1047 // 1048 // Make sure that a constant is not the minimum signed value because taking 1049 // the abs() of that is undefined. 1050 Type *Ty = X->getType(); 1051 const APInt *C; 1052 if (match(X, m_APInt(C)) && !C->isMinSignedValue()) { 1053 // Is the variable divisor magnitude always greater than the constant 1054 // dividend magnitude? 1055 // |Y| > |C| --> Y < -abs(C) or Y > abs(C) 1056 Constant *PosDividendC = ConstantInt::get(Ty, C->abs()); 1057 Constant *NegDividendC = ConstantInt::get(Ty, -C->abs()); 1058 if (isICmpTrue(CmpInst::ICMP_SLT, Y, NegDividendC, Q, MaxRecurse) || 1059 isICmpTrue(CmpInst::ICMP_SGT, Y, PosDividendC, Q, MaxRecurse)) 1060 return true; 1061 } 1062 if (match(Y, m_APInt(C))) { 1063 // Special-case: we can't take the abs() of a minimum signed value. If 1064 // that's the divisor, then all we have to do is prove that the dividend 1065 // is also not the minimum signed value. 1066 if (C->isMinSignedValue()) 1067 return isICmpTrue(CmpInst::ICMP_NE, X, Y, Q, MaxRecurse); 1068 1069 // Is the variable dividend magnitude always less than the constant 1070 // divisor magnitude? 1071 // |X| < |C| --> X > -abs(C) and X < abs(C) 1072 Constant *PosDivisorC = ConstantInt::get(Ty, C->abs()); 1073 Constant *NegDivisorC = ConstantInt::get(Ty, -C->abs()); 1074 if (isICmpTrue(CmpInst::ICMP_SGT, X, NegDivisorC, Q, MaxRecurse) && 1075 isICmpTrue(CmpInst::ICMP_SLT, X, PosDivisorC, Q, MaxRecurse)) 1076 return true; 1077 } 1078 return false; 1079 } 1080 1081 // IsSigned == false. 1082 // Is the dividend unsigned less than the divisor? 1083 return isICmpTrue(ICmpInst::ICMP_ULT, X, Y, Q, MaxRecurse); 1084 } 1085 1086 /// These are simplifications common to SDiv and UDiv. 1087 static Value *simplifyDiv(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1, 1088 const SimplifyQuery &Q, unsigned MaxRecurse) { 1089 if (Constant *C = foldOrCommuteConstant(Opcode, Op0, Op1, Q)) 1090 return C; 1091 1092 if (Value *V = simplifyDivRem(Opcode, Op0, Op1, Q)) 1093 return V; 1094 1095 bool IsSigned = Opcode == Instruction::SDiv; 1096 1097 // (X rem Y) / Y -> 0 1098 if ((IsSigned && match(Op0, m_SRem(m_Value(), m_Specific(Op1)))) || 1099 (!IsSigned && match(Op0, m_URem(m_Value(), m_Specific(Op1))))) 1100 return Constant::getNullValue(Op0->getType()); 1101 1102 // (X /u C1) /u C2 -> 0 if C1 * C2 overflow 1103 ConstantInt *C1, *C2; 1104 if (!IsSigned && match(Op0, m_UDiv(m_Value(), m_ConstantInt(C1))) && 1105 match(Op1, m_ConstantInt(C2))) { 1106 bool Overflow; 1107 (void)C1->getValue().umul_ov(C2->getValue(), Overflow); 1108 if (Overflow) 1109 return Constant::getNullValue(Op0->getType()); 1110 } 1111 1112 // If the operation is with the result of a select instruction, check whether 1113 // operating on either branch of the select always yields the same value. 1114 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 1115 if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse)) 1116 return V; 1117 1118 // If the operation is with the result of a phi instruction, check whether 1119 // operating on all incoming values of the phi always yields the same value. 1120 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 1121 if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse)) 1122 return V; 1123 1124 if (isDivZero(Op0, Op1, Q, MaxRecurse, IsSigned)) 1125 return Constant::getNullValue(Op0->getType()); 1126 1127 return nullptr; 1128 } 1129 1130 /// These are simplifications common to SRem and URem. 1131 static Value *simplifyRem(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1, 1132 const SimplifyQuery &Q, unsigned MaxRecurse) { 1133 if (Constant *C = foldOrCommuteConstant(Opcode, Op0, Op1, Q)) 1134 return C; 1135 1136 if (Value *V = simplifyDivRem(Opcode, Op0, Op1, Q)) 1137 return V; 1138 1139 // (X % Y) % Y -> X % Y 1140 if ((Opcode == Instruction::SRem && 1141 match(Op0, m_SRem(m_Value(), m_Specific(Op1)))) || 1142 (Opcode == Instruction::URem && 1143 match(Op0, m_URem(m_Value(), m_Specific(Op1))))) 1144 return Op0; 1145 1146 // (X << Y) % X -> 0 1147 if (Q.IIQ.UseInstrInfo && 1148 ((Opcode == Instruction::SRem && 1149 match(Op0, m_NSWShl(m_Specific(Op1), m_Value()))) || 1150 (Opcode == Instruction::URem && 1151 match(Op0, m_NUWShl(m_Specific(Op1), m_Value()))))) 1152 return Constant::getNullValue(Op0->getType()); 1153 1154 // If the operation is with the result of a select instruction, check whether 1155 // operating on either branch of the select always yields the same value. 1156 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 1157 if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse)) 1158 return V; 1159 1160 // If the operation is with the result of a phi instruction, check whether 1161 // operating on all incoming values of the phi always yields the same value. 1162 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 1163 if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse)) 1164 return V; 1165 1166 // If X / Y == 0, then X % Y == X. 1167 if (isDivZero(Op0, Op1, Q, MaxRecurse, Opcode == Instruction::SRem)) 1168 return Op0; 1169 1170 return nullptr; 1171 } 1172 1173 /// Given operands for an SDiv, see if we can fold the result. 1174 /// If not, this returns null. 1175 static Value *SimplifySDivInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 1176 unsigned MaxRecurse) { 1177 // If two operands are negated and no signed overflow, return -1. 1178 if (isKnownNegation(Op0, Op1, /*NeedNSW=*/true)) 1179 return Constant::getAllOnesValue(Op0->getType()); 1180 1181 return simplifyDiv(Instruction::SDiv, Op0, Op1, Q, MaxRecurse); 1182 } 1183 1184 Value *llvm::SimplifySDivInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 1185 return ::SimplifySDivInst(Op0, Op1, Q, RecursionLimit); 1186 } 1187 1188 /// Given operands for a UDiv, see if we can fold the result. 1189 /// If not, this returns null. 1190 static Value *SimplifyUDivInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 1191 unsigned MaxRecurse) { 1192 return simplifyDiv(Instruction::UDiv, Op0, Op1, Q, MaxRecurse); 1193 } 1194 1195 Value *llvm::SimplifyUDivInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 1196 return ::SimplifyUDivInst(Op0, Op1, Q, RecursionLimit); 1197 } 1198 1199 /// Given operands for an SRem, see if we can fold the result. 1200 /// If not, this returns null. 1201 static Value *SimplifySRemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 1202 unsigned MaxRecurse) { 1203 // If the divisor is 0, the result is undefined, so assume the divisor is -1. 1204 // srem Op0, (sext i1 X) --> srem Op0, -1 --> 0 1205 Value *X; 1206 if (match(Op1, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)) 1207 return ConstantInt::getNullValue(Op0->getType()); 1208 1209 // If the two operands are negated, return 0. 1210 if (isKnownNegation(Op0, Op1)) 1211 return ConstantInt::getNullValue(Op0->getType()); 1212 1213 return simplifyRem(Instruction::SRem, Op0, Op1, Q, MaxRecurse); 1214 } 1215 1216 Value *llvm::SimplifySRemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 1217 return ::SimplifySRemInst(Op0, Op1, Q, RecursionLimit); 1218 } 1219 1220 /// Given operands for a URem, see if we can fold the result. 1221 /// If not, this returns null. 1222 static Value *SimplifyURemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 1223 unsigned MaxRecurse) { 1224 return simplifyRem(Instruction::URem, Op0, Op1, Q, MaxRecurse); 1225 } 1226 1227 Value *llvm::SimplifyURemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 1228 return ::SimplifyURemInst(Op0, Op1, Q, RecursionLimit); 1229 } 1230 1231 /// Returns true if a shift by \c Amount always yields poison. 1232 static bool isPoisonShift(Value *Amount, const SimplifyQuery &Q) { 1233 Constant *C = dyn_cast<Constant>(Amount); 1234 if (!C) 1235 return false; 1236 1237 // X shift by undef -> poison because it may shift by the bitwidth. 1238 if (Q.isUndefValue(C)) 1239 return true; 1240 1241 // Shifting by the bitwidth or more is undefined. 1242 if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1243 if (CI->getValue().uge(CI->getType()->getScalarSizeInBits())) 1244 return true; 1245 1246 // If all lanes of a vector shift are undefined the whole shift is. 1247 if (isa<ConstantVector>(C) || isa<ConstantDataVector>(C)) { 1248 for (unsigned I = 0, 1249 E = cast<FixedVectorType>(C->getType())->getNumElements(); 1250 I != E; ++I) 1251 if (!isPoisonShift(C->getAggregateElement(I), Q)) 1252 return false; 1253 return true; 1254 } 1255 1256 return false; 1257 } 1258 1259 /// Given operands for an Shl, LShr or AShr, see if we can fold the result. 1260 /// If not, this returns null. 1261 static Value *SimplifyShift(Instruction::BinaryOps Opcode, Value *Op0, 1262 Value *Op1, bool IsNSW, const SimplifyQuery &Q, 1263 unsigned MaxRecurse) { 1264 if (Constant *C = foldOrCommuteConstant(Opcode, Op0, Op1, Q)) 1265 return C; 1266 1267 // poison shift by X -> poison 1268 if (isa<PoisonValue>(Op0)) 1269 return Op0; 1270 1271 // 0 shift by X -> 0 1272 if (match(Op0, m_Zero())) 1273 return Constant::getNullValue(Op0->getType()); 1274 1275 // X shift by 0 -> X 1276 // Shift-by-sign-extended bool must be shift-by-0 because shift-by-all-ones 1277 // would be poison. 1278 Value *X; 1279 if (match(Op1, m_Zero()) || 1280 (match(Op1, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1))) 1281 return Op0; 1282 1283 // Fold undefined shifts. 1284 if (isPoisonShift(Op1, Q)) 1285 return PoisonValue::get(Op0->getType()); 1286 1287 // If the operation is with the result of a select instruction, check whether 1288 // operating on either branch of the select always yields the same value. 1289 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 1290 if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse)) 1291 return V; 1292 1293 // If the operation is with the result of a phi instruction, check whether 1294 // operating on all incoming values of the phi always yields the same value. 1295 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 1296 if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse)) 1297 return V; 1298 1299 // If any bits in the shift amount make that value greater than or equal to 1300 // the number of bits in the type, the shift is undefined. 1301 KnownBits KnownAmt = computeKnownBits(Op1, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 1302 if (KnownAmt.getMinValue().uge(KnownAmt.getBitWidth())) 1303 return PoisonValue::get(Op0->getType()); 1304 1305 // If all valid bits in the shift amount are known zero, the first operand is 1306 // unchanged. 1307 unsigned NumValidShiftBits = Log2_32_Ceil(KnownAmt.getBitWidth()); 1308 if (KnownAmt.countMinTrailingZeros() >= NumValidShiftBits) 1309 return Op0; 1310 1311 // Check for nsw shl leading to a poison value. 1312 if (IsNSW) { 1313 assert(Opcode == Instruction::Shl && "Expected shl for nsw instruction"); 1314 KnownBits KnownVal = computeKnownBits(Op0, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 1315 KnownBits KnownShl = KnownBits::shl(KnownVal, KnownAmt); 1316 1317 if (KnownVal.Zero.isSignBitSet()) 1318 KnownShl.Zero.setSignBit(); 1319 if (KnownVal.One.isSignBitSet()) 1320 KnownShl.One.setSignBit(); 1321 1322 if (KnownShl.hasConflict()) 1323 return PoisonValue::get(Op0->getType()); 1324 } 1325 1326 return nullptr; 1327 } 1328 1329 /// Given operands for an Shl, LShr or AShr, see if we can 1330 /// fold the result. If not, this returns null. 1331 static Value *SimplifyRightShift(Instruction::BinaryOps Opcode, Value *Op0, 1332 Value *Op1, bool isExact, const SimplifyQuery &Q, 1333 unsigned MaxRecurse) { 1334 if (Value *V = 1335 SimplifyShift(Opcode, Op0, Op1, /*IsNSW*/ false, Q, MaxRecurse)) 1336 return V; 1337 1338 // X >> X -> 0 1339 if (Op0 == Op1) 1340 return Constant::getNullValue(Op0->getType()); 1341 1342 // undef >> X -> 0 1343 // undef >> X -> undef (if it's exact) 1344 if (Q.isUndefValue(Op0)) 1345 return isExact ? Op0 : Constant::getNullValue(Op0->getType()); 1346 1347 // The low bit cannot be shifted out of an exact shift if it is set. 1348 if (isExact) { 1349 KnownBits Op0Known = computeKnownBits(Op0, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT); 1350 if (Op0Known.One[0]) 1351 return Op0; 1352 } 1353 1354 return nullptr; 1355 } 1356 1357 /// Given operands for an Shl, see if we can fold the result. 1358 /// If not, this returns null. 1359 static Value *SimplifyShlInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, 1360 const SimplifyQuery &Q, unsigned MaxRecurse) { 1361 if (Value *V = 1362 SimplifyShift(Instruction::Shl, Op0, Op1, isNSW, Q, MaxRecurse)) 1363 return V; 1364 1365 // undef << X -> 0 1366 // undef << X -> undef if (if it's NSW/NUW) 1367 if (Q.isUndefValue(Op0)) 1368 return isNSW || isNUW ? Op0 : Constant::getNullValue(Op0->getType()); 1369 1370 // (X >> A) << A -> X 1371 Value *X; 1372 if (Q.IIQ.UseInstrInfo && 1373 match(Op0, m_Exact(m_Shr(m_Value(X), m_Specific(Op1))))) 1374 return X; 1375 1376 // shl nuw i8 C, %x -> C iff C has sign bit set. 1377 if (isNUW && match(Op0, m_Negative())) 1378 return Op0; 1379 // NOTE: could use computeKnownBits() / LazyValueInfo, 1380 // but the cost-benefit analysis suggests it isn't worth it. 1381 1382 return nullptr; 1383 } 1384 1385 Value *llvm::SimplifyShlInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, 1386 const SimplifyQuery &Q) { 1387 return ::SimplifyShlInst(Op0, Op1, isNSW, isNUW, Q, RecursionLimit); 1388 } 1389 1390 /// Given operands for an LShr, see if we can fold the result. 1391 /// If not, this returns null. 1392 static Value *SimplifyLShrInst(Value *Op0, Value *Op1, bool isExact, 1393 const SimplifyQuery &Q, unsigned MaxRecurse) { 1394 if (Value *V = SimplifyRightShift(Instruction::LShr, Op0, Op1, isExact, Q, 1395 MaxRecurse)) 1396 return V; 1397 1398 // (X << A) >> A -> X 1399 Value *X; 1400 if (match(Op0, m_NUWShl(m_Value(X), m_Specific(Op1)))) 1401 return X; 1402 1403 // ((X << A) | Y) >> A -> X if effective width of Y is not larger than A. 1404 // We can return X as we do in the above case since OR alters no bits in X. 1405 // SimplifyDemandedBits in InstCombine can do more general optimization for 1406 // bit manipulation. This pattern aims to provide opportunities for other 1407 // optimizers by supporting a simple but common case in InstSimplify. 1408 Value *Y; 1409 const APInt *ShRAmt, *ShLAmt; 1410 if (match(Op1, m_APInt(ShRAmt)) && 1411 match(Op0, m_c_Or(m_NUWShl(m_Value(X), m_APInt(ShLAmt)), m_Value(Y))) && 1412 *ShRAmt == *ShLAmt) { 1413 const KnownBits YKnown = computeKnownBits(Y, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 1414 const unsigned EffWidthY = YKnown.countMaxActiveBits(); 1415 if (ShRAmt->uge(EffWidthY)) 1416 return X; 1417 } 1418 1419 return nullptr; 1420 } 1421 1422 Value *llvm::SimplifyLShrInst(Value *Op0, Value *Op1, bool isExact, 1423 const SimplifyQuery &Q) { 1424 return ::SimplifyLShrInst(Op0, Op1, isExact, Q, RecursionLimit); 1425 } 1426 1427 /// Given operands for an AShr, see if we can fold the result. 1428 /// If not, this returns null. 1429 static Value *SimplifyAShrInst(Value *Op0, Value *Op1, bool isExact, 1430 const SimplifyQuery &Q, unsigned MaxRecurse) { 1431 if (Value *V = SimplifyRightShift(Instruction::AShr, Op0, Op1, isExact, Q, 1432 MaxRecurse)) 1433 return V; 1434 1435 // -1 >>a X --> -1 1436 // (-1 << X) a>> X --> -1 1437 // Do not return Op0 because it may contain undef elements if it's a vector. 1438 if (match(Op0, m_AllOnes()) || 1439 match(Op0, m_Shl(m_AllOnes(), m_Specific(Op1)))) 1440 return Constant::getAllOnesValue(Op0->getType()); 1441 1442 // (X << A) >> A -> X 1443 Value *X; 1444 if (Q.IIQ.UseInstrInfo && match(Op0, m_NSWShl(m_Value(X), m_Specific(Op1)))) 1445 return X; 1446 1447 // Arithmetic shifting an all-sign-bit value is a no-op. 1448 unsigned NumSignBits = ComputeNumSignBits(Op0, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 1449 if (NumSignBits == Op0->getType()->getScalarSizeInBits()) 1450 return Op0; 1451 1452 return nullptr; 1453 } 1454 1455 Value *llvm::SimplifyAShrInst(Value *Op0, Value *Op1, bool isExact, 1456 const SimplifyQuery &Q) { 1457 return ::SimplifyAShrInst(Op0, Op1, isExact, Q, RecursionLimit); 1458 } 1459 1460 /// Commuted variants are assumed to be handled by calling this function again 1461 /// with the parameters swapped. 1462 static Value *simplifyUnsignedRangeCheck(ICmpInst *ZeroICmp, 1463 ICmpInst *UnsignedICmp, bool IsAnd, 1464 const SimplifyQuery &Q) { 1465 Value *X, *Y; 1466 1467 ICmpInst::Predicate EqPred; 1468 if (!match(ZeroICmp, m_ICmp(EqPred, m_Value(Y), m_Zero())) || 1469 !ICmpInst::isEquality(EqPred)) 1470 return nullptr; 1471 1472 ICmpInst::Predicate UnsignedPred; 1473 1474 Value *A, *B; 1475 // Y = (A - B); 1476 if (match(Y, m_Sub(m_Value(A), m_Value(B)))) { 1477 if (match(UnsignedICmp, 1478 m_c_ICmp(UnsignedPred, m_Specific(A), m_Specific(B))) && 1479 ICmpInst::isUnsigned(UnsignedPred)) { 1480 // A >=/<= B || (A - B) != 0 <--> true 1481 if ((UnsignedPred == ICmpInst::ICMP_UGE || 1482 UnsignedPred == ICmpInst::ICMP_ULE) && 1483 EqPred == ICmpInst::ICMP_NE && !IsAnd) 1484 return ConstantInt::getTrue(UnsignedICmp->getType()); 1485 // A </> B && (A - B) == 0 <--> false 1486 if ((UnsignedPred == ICmpInst::ICMP_ULT || 1487 UnsignedPred == ICmpInst::ICMP_UGT) && 1488 EqPred == ICmpInst::ICMP_EQ && IsAnd) 1489 return ConstantInt::getFalse(UnsignedICmp->getType()); 1490 1491 // A </> B && (A - B) != 0 <--> A </> B 1492 // A </> B || (A - B) != 0 <--> (A - B) != 0 1493 if (EqPred == ICmpInst::ICMP_NE && (UnsignedPred == ICmpInst::ICMP_ULT || 1494 UnsignedPred == ICmpInst::ICMP_UGT)) 1495 return IsAnd ? UnsignedICmp : ZeroICmp; 1496 1497 // A <=/>= B && (A - B) == 0 <--> (A - B) == 0 1498 // A <=/>= B || (A - B) == 0 <--> A <=/>= B 1499 if (EqPred == ICmpInst::ICMP_EQ && (UnsignedPred == ICmpInst::ICMP_ULE || 1500 UnsignedPred == ICmpInst::ICMP_UGE)) 1501 return IsAnd ? ZeroICmp : UnsignedICmp; 1502 } 1503 1504 // Given Y = (A - B) 1505 // Y >= A && Y != 0 --> Y >= A iff B != 0 1506 // Y < A || Y == 0 --> Y < A iff B != 0 1507 if (match(UnsignedICmp, 1508 m_c_ICmp(UnsignedPred, m_Specific(Y), m_Specific(A)))) { 1509 if (UnsignedPred == ICmpInst::ICMP_UGE && IsAnd && 1510 EqPred == ICmpInst::ICMP_NE && 1511 isKnownNonZero(B, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT)) 1512 return UnsignedICmp; 1513 if (UnsignedPred == ICmpInst::ICMP_ULT && !IsAnd && 1514 EqPred == ICmpInst::ICMP_EQ && 1515 isKnownNonZero(B, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT)) 1516 return UnsignedICmp; 1517 } 1518 } 1519 1520 if (match(UnsignedICmp, m_ICmp(UnsignedPred, m_Value(X), m_Specific(Y))) && 1521 ICmpInst::isUnsigned(UnsignedPred)) 1522 ; 1523 else if (match(UnsignedICmp, 1524 m_ICmp(UnsignedPred, m_Specific(Y), m_Value(X))) && 1525 ICmpInst::isUnsigned(UnsignedPred)) 1526 UnsignedPred = ICmpInst::getSwappedPredicate(UnsignedPred); 1527 else 1528 return nullptr; 1529 1530 // X > Y && Y == 0 --> Y == 0 iff X != 0 1531 // X > Y || Y == 0 --> X > Y iff X != 0 1532 if (UnsignedPred == ICmpInst::ICMP_UGT && EqPred == ICmpInst::ICMP_EQ && 1533 isKnownNonZero(X, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT)) 1534 return IsAnd ? ZeroICmp : UnsignedICmp; 1535 1536 // X <= Y && Y != 0 --> X <= Y iff X != 0 1537 // X <= Y || Y != 0 --> Y != 0 iff X != 0 1538 if (UnsignedPred == ICmpInst::ICMP_ULE && EqPred == ICmpInst::ICMP_NE && 1539 isKnownNonZero(X, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT)) 1540 return IsAnd ? UnsignedICmp : ZeroICmp; 1541 1542 // The transforms below here are expected to be handled more generally with 1543 // simplifyAndOrOfICmpsWithLimitConst() or in InstCombine's 1544 // foldAndOrOfICmpsWithConstEq(). If we are looking to trim optimizer overlap, 1545 // these are candidates for removal. 1546 1547 // X < Y && Y != 0 --> X < Y 1548 // X < Y || Y != 0 --> Y != 0 1549 if (UnsignedPred == ICmpInst::ICMP_ULT && EqPred == ICmpInst::ICMP_NE) 1550 return IsAnd ? UnsignedICmp : ZeroICmp; 1551 1552 // X >= Y && Y == 0 --> Y == 0 1553 // X >= Y || Y == 0 --> X >= Y 1554 if (UnsignedPred == ICmpInst::ICMP_UGE && EqPred == ICmpInst::ICMP_EQ) 1555 return IsAnd ? ZeroICmp : UnsignedICmp; 1556 1557 // X < Y && Y == 0 --> false 1558 if (UnsignedPred == ICmpInst::ICMP_ULT && EqPred == ICmpInst::ICMP_EQ && 1559 IsAnd) 1560 return getFalse(UnsignedICmp->getType()); 1561 1562 // X >= Y || Y != 0 --> true 1563 if (UnsignedPred == ICmpInst::ICMP_UGE && EqPred == ICmpInst::ICMP_NE && 1564 !IsAnd) 1565 return getTrue(UnsignedICmp->getType()); 1566 1567 return nullptr; 1568 } 1569 1570 /// Commuted variants are assumed to be handled by calling this function again 1571 /// with the parameters swapped. 1572 static Value *simplifyAndOfICmpsWithSameOperands(ICmpInst *Op0, ICmpInst *Op1) { 1573 ICmpInst::Predicate Pred0, Pred1; 1574 Value *A ,*B; 1575 if (!match(Op0, m_ICmp(Pred0, m_Value(A), m_Value(B))) || 1576 !match(Op1, m_ICmp(Pred1, m_Specific(A), m_Specific(B)))) 1577 return nullptr; 1578 1579 // We have (icmp Pred0, A, B) & (icmp Pred1, A, B). 1580 // If Op1 is always implied true by Op0, then Op0 is a subset of Op1, and we 1581 // can eliminate Op1 from this 'and'. 1582 if (ICmpInst::isImpliedTrueByMatchingCmp(Pred0, Pred1)) 1583 return Op0; 1584 1585 // Check for any combination of predicates that are guaranteed to be disjoint. 1586 if ((Pred0 == ICmpInst::getInversePredicate(Pred1)) || 1587 (Pred0 == ICmpInst::ICMP_EQ && ICmpInst::isFalseWhenEqual(Pred1)) || 1588 (Pred0 == ICmpInst::ICMP_SLT && Pred1 == ICmpInst::ICMP_SGT) || 1589 (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_UGT)) 1590 return getFalse(Op0->getType()); 1591 1592 return nullptr; 1593 } 1594 1595 /// Commuted variants are assumed to be handled by calling this function again 1596 /// with the parameters swapped. 1597 static Value *simplifyOrOfICmpsWithSameOperands(ICmpInst *Op0, ICmpInst *Op1) { 1598 ICmpInst::Predicate Pred0, Pred1; 1599 Value *A ,*B; 1600 if (!match(Op0, m_ICmp(Pred0, m_Value(A), m_Value(B))) || 1601 !match(Op1, m_ICmp(Pred1, m_Specific(A), m_Specific(B)))) 1602 return nullptr; 1603 1604 // We have (icmp Pred0, A, B) | (icmp Pred1, A, B). 1605 // If Op1 is always implied true by Op0, then Op0 is a subset of Op1, and we 1606 // can eliminate Op0 from this 'or'. 1607 if (ICmpInst::isImpliedTrueByMatchingCmp(Pred0, Pred1)) 1608 return Op1; 1609 1610 // Check for any combination of predicates that cover the entire range of 1611 // possibilities. 1612 if ((Pred0 == ICmpInst::getInversePredicate(Pred1)) || 1613 (Pred0 == ICmpInst::ICMP_NE && ICmpInst::isTrueWhenEqual(Pred1)) || 1614 (Pred0 == ICmpInst::ICMP_SLE && Pred1 == ICmpInst::ICMP_SGE) || 1615 (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_UGE)) 1616 return getTrue(Op0->getType()); 1617 1618 return nullptr; 1619 } 1620 1621 /// Test if a pair of compares with a shared operand and 2 constants has an 1622 /// empty set intersection, full set union, or if one compare is a superset of 1623 /// the other. 1624 static Value *simplifyAndOrOfICmpsWithConstants(ICmpInst *Cmp0, ICmpInst *Cmp1, 1625 bool IsAnd) { 1626 // Look for this pattern: {and/or} (icmp X, C0), (icmp X, C1)). 1627 if (Cmp0->getOperand(0) != Cmp1->getOperand(0)) 1628 return nullptr; 1629 1630 const APInt *C0, *C1; 1631 if (!match(Cmp0->getOperand(1), m_APInt(C0)) || 1632 !match(Cmp1->getOperand(1), m_APInt(C1))) 1633 return nullptr; 1634 1635 auto Range0 = ConstantRange::makeExactICmpRegion(Cmp0->getPredicate(), *C0); 1636 auto Range1 = ConstantRange::makeExactICmpRegion(Cmp1->getPredicate(), *C1); 1637 1638 // For and-of-compares, check if the intersection is empty: 1639 // (icmp X, C0) && (icmp X, C1) --> empty set --> false 1640 if (IsAnd && Range0.intersectWith(Range1).isEmptySet()) 1641 return getFalse(Cmp0->getType()); 1642 1643 // For or-of-compares, check if the union is full: 1644 // (icmp X, C0) || (icmp X, C1) --> full set --> true 1645 if (!IsAnd && Range0.unionWith(Range1).isFullSet()) 1646 return getTrue(Cmp0->getType()); 1647 1648 // Is one range a superset of the other? 1649 // If this is and-of-compares, take the smaller set: 1650 // (icmp sgt X, 4) && (icmp sgt X, 42) --> icmp sgt X, 42 1651 // If this is or-of-compares, take the larger set: 1652 // (icmp sgt X, 4) || (icmp sgt X, 42) --> icmp sgt X, 4 1653 if (Range0.contains(Range1)) 1654 return IsAnd ? Cmp1 : Cmp0; 1655 if (Range1.contains(Range0)) 1656 return IsAnd ? Cmp0 : Cmp1; 1657 1658 return nullptr; 1659 } 1660 1661 static Value *simplifyAndOrOfICmpsWithZero(ICmpInst *Cmp0, ICmpInst *Cmp1, 1662 bool IsAnd) { 1663 ICmpInst::Predicate P0 = Cmp0->getPredicate(), P1 = Cmp1->getPredicate(); 1664 if (!match(Cmp0->getOperand(1), m_Zero()) || 1665 !match(Cmp1->getOperand(1), m_Zero()) || P0 != P1) 1666 return nullptr; 1667 1668 if ((IsAnd && P0 != ICmpInst::ICMP_NE) || (!IsAnd && P1 != ICmpInst::ICMP_EQ)) 1669 return nullptr; 1670 1671 // We have either "(X == 0 || Y == 0)" or "(X != 0 && Y != 0)". 1672 Value *X = Cmp0->getOperand(0); 1673 Value *Y = Cmp1->getOperand(0); 1674 1675 // If one of the compares is a masked version of a (not) null check, then 1676 // that compare implies the other, so we eliminate the other. Optionally, look 1677 // through a pointer-to-int cast to match a null check of a pointer type. 1678 1679 // (X == 0) || (([ptrtoint] X & ?) == 0) --> ([ptrtoint] X & ?) == 0 1680 // (X == 0) || ((? & [ptrtoint] X) == 0) --> (? & [ptrtoint] X) == 0 1681 // (X != 0) && (([ptrtoint] X & ?) != 0) --> ([ptrtoint] X & ?) != 0 1682 // (X != 0) && ((? & [ptrtoint] X) != 0) --> (? & [ptrtoint] X) != 0 1683 if (match(Y, m_c_And(m_Specific(X), m_Value())) || 1684 match(Y, m_c_And(m_PtrToInt(m_Specific(X)), m_Value()))) 1685 return Cmp1; 1686 1687 // (([ptrtoint] Y & ?) == 0) || (Y == 0) --> ([ptrtoint] Y & ?) == 0 1688 // ((? & [ptrtoint] Y) == 0) || (Y == 0) --> (? & [ptrtoint] Y) == 0 1689 // (([ptrtoint] Y & ?) != 0) && (Y != 0) --> ([ptrtoint] Y & ?) != 0 1690 // ((? & [ptrtoint] Y) != 0) && (Y != 0) --> (? & [ptrtoint] Y) != 0 1691 if (match(X, m_c_And(m_Specific(Y), m_Value())) || 1692 match(X, m_c_And(m_PtrToInt(m_Specific(Y)), m_Value()))) 1693 return Cmp0; 1694 1695 return nullptr; 1696 } 1697 1698 static Value *simplifyAndOfICmpsWithAdd(ICmpInst *Op0, ICmpInst *Op1, 1699 const InstrInfoQuery &IIQ) { 1700 // (icmp (add V, C0), C1) & (icmp V, C0) 1701 ICmpInst::Predicate Pred0, Pred1; 1702 const APInt *C0, *C1; 1703 Value *V; 1704 if (!match(Op0, m_ICmp(Pred0, m_Add(m_Value(V), m_APInt(C0)), m_APInt(C1)))) 1705 return nullptr; 1706 1707 if (!match(Op1, m_ICmp(Pred1, m_Specific(V), m_Value()))) 1708 return nullptr; 1709 1710 auto *AddInst = cast<OverflowingBinaryOperator>(Op0->getOperand(0)); 1711 if (AddInst->getOperand(1) != Op1->getOperand(1)) 1712 return nullptr; 1713 1714 Type *ITy = Op0->getType(); 1715 bool isNSW = IIQ.hasNoSignedWrap(AddInst); 1716 bool isNUW = IIQ.hasNoUnsignedWrap(AddInst); 1717 1718 const APInt Delta = *C1 - *C0; 1719 if (C0->isStrictlyPositive()) { 1720 if (Delta == 2) { 1721 if (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_SGT) 1722 return getFalse(ITy); 1723 if (Pred0 == ICmpInst::ICMP_SLT && Pred1 == ICmpInst::ICMP_SGT && isNSW) 1724 return getFalse(ITy); 1725 } 1726 if (Delta == 1) { 1727 if (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_SGT) 1728 return getFalse(ITy); 1729 if (Pred0 == ICmpInst::ICMP_SLE && Pred1 == ICmpInst::ICMP_SGT && isNSW) 1730 return getFalse(ITy); 1731 } 1732 } 1733 if (C0->getBoolValue() && isNUW) { 1734 if (Delta == 2) 1735 if (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_UGT) 1736 return getFalse(ITy); 1737 if (Delta == 1) 1738 if (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_UGT) 1739 return getFalse(ITy); 1740 } 1741 1742 return nullptr; 1743 } 1744 1745 /// Try to eliminate compares with signed or unsigned min/max constants. 1746 static Value *simplifyAndOrOfICmpsWithLimitConst(ICmpInst *Cmp0, ICmpInst *Cmp1, 1747 bool IsAnd) { 1748 // Canonicalize an equality compare as Cmp0. 1749 if (Cmp1->isEquality()) 1750 std::swap(Cmp0, Cmp1); 1751 if (!Cmp0->isEquality()) 1752 return nullptr; 1753 1754 // The non-equality compare must include a common operand (X). Canonicalize 1755 // the common operand as operand 0 (the predicate is swapped if the common 1756 // operand was operand 1). 1757 ICmpInst::Predicate Pred0 = Cmp0->getPredicate(); 1758 Value *X = Cmp0->getOperand(0); 1759 ICmpInst::Predicate Pred1; 1760 bool HasNotOp = match(Cmp1, m_c_ICmp(Pred1, m_Not(m_Specific(X)), m_Value())); 1761 if (!HasNotOp && !match(Cmp1, m_c_ICmp(Pred1, m_Specific(X), m_Value()))) 1762 return nullptr; 1763 if (ICmpInst::isEquality(Pred1)) 1764 return nullptr; 1765 1766 // The equality compare must be against a constant. Flip bits if we matched 1767 // a bitwise not. Convert a null pointer constant to an integer zero value. 1768 APInt MinMaxC; 1769 const APInt *C; 1770 if (match(Cmp0->getOperand(1), m_APInt(C))) 1771 MinMaxC = HasNotOp ? ~*C : *C; 1772 else if (isa<ConstantPointerNull>(Cmp0->getOperand(1))) 1773 MinMaxC = APInt::getZero(8); 1774 else 1775 return nullptr; 1776 1777 // DeMorganize if this is 'or': P0 || P1 --> !P0 && !P1. 1778 if (!IsAnd) { 1779 Pred0 = ICmpInst::getInversePredicate(Pred0); 1780 Pred1 = ICmpInst::getInversePredicate(Pred1); 1781 } 1782 1783 // Normalize to unsigned compare and unsigned min/max value. 1784 // Example for 8-bit: -128 + 128 -> 0; 127 + 128 -> 255 1785 if (ICmpInst::isSigned(Pred1)) { 1786 Pred1 = ICmpInst::getUnsignedPredicate(Pred1); 1787 MinMaxC += APInt::getSignedMinValue(MinMaxC.getBitWidth()); 1788 } 1789 1790 // (X != MAX) && (X < Y) --> X < Y 1791 // (X == MAX) || (X >= Y) --> X >= Y 1792 if (MinMaxC.isMaxValue()) 1793 if (Pred0 == ICmpInst::ICMP_NE && Pred1 == ICmpInst::ICMP_ULT) 1794 return Cmp1; 1795 1796 // (X != MIN) && (X > Y) --> X > Y 1797 // (X == MIN) || (X <= Y) --> X <= Y 1798 if (MinMaxC.isMinValue()) 1799 if (Pred0 == ICmpInst::ICMP_NE && Pred1 == ICmpInst::ICMP_UGT) 1800 return Cmp1; 1801 1802 return nullptr; 1803 } 1804 1805 static Value *simplifyAndOfICmps(ICmpInst *Op0, ICmpInst *Op1, 1806 const SimplifyQuery &Q) { 1807 if (Value *X = simplifyUnsignedRangeCheck(Op0, Op1, /*IsAnd=*/true, Q)) 1808 return X; 1809 if (Value *X = simplifyUnsignedRangeCheck(Op1, Op0, /*IsAnd=*/true, Q)) 1810 return X; 1811 1812 if (Value *X = simplifyAndOfICmpsWithSameOperands(Op0, Op1)) 1813 return X; 1814 if (Value *X = simplifyAndOfICmpsWithSameOperands(Op1, Op0)) 1815 return X; 1816 1817 if (Value *X = simplifyAndOrOfICmpsWithConstants(Op0, Op1, true)) 1818 return X; 1819 1820 if (Value *X = simplifyAndOrOfICmpsWithLimitConst(Op0, Op1, true)) 1821 return X; 1822 1823 if (Value *X = simplifyAndOrOfICmpsWithZero(Op0, Op1, true)) 1824 return X; 1825 1826 if (Value *X = simplifyAndOfICmpsWithAdd(Op0, Op1, Q.IIQ)) 1827 return X; 1828 if (Value *X = simplifyAndOfICmpsWithAdd(Op1, Op0, Q.IIQ)) 1829 return X; 1830 1831 return nullptr; 1832 } 1833 1834 static Value *simplifyOrOfICmpsWithAdd(ICmpInst *Op0, ICmpInst *Op1, 1835 const InstrInfoQuery &IIQ) { 1836 // (icmp (add V, C0), C1) | (icmp V, C0) 1837 ICmpInst::Predicate Pred0, Pred1; 1838 const APInt *C0, *C1; 1839 Value *V; 1840 if (!match(Op0, m_ICmp(Pred0, m_Add(m_Value(V), m_APInt(C0)), m_APInt(C1)))) 1841 return nullptr; 1842 1843 if (!match(Op1, m_ICmp(Pred1, m_Specific(V), m_Value()))) 1844 return nullptr; 1845 1846 auto *AddInst = cast<BinaryOperator>(Op0->getOperand(0)); 1847 if (AddInst->getOperand(1) != Op1->getOperand(1)) 1848 return nullptr; 1849 1850 Type *ITy = Op0->getType(); 1851 bool isNSW = IIQ.hasNoSignedWrap(AddInst); 1852 bool isNUW = IIQ.hasNoUnsignedWrap(AddInst); 1853 1854 const APInt Delta = *C1 - *C0; 1855 if (C0->isStrictlyPositive()) { 1856 if (Delta == 2) { 1857 if (Pred0 == ICmpInst::ICMP_UGE && Pred1 == ICmpInst::ICMP_SLE) 1858 return getTrue(ITy); 1859 if (Pred0 == ICmpInst::ICMP_SGE && Pred1 == ICmpInst::ICMP_SLE && isNSW) 1860 return getTrue(ITy); 1861 } 1862 if (Delta == 1) { 1863 if (Pred0 == ICmpInst::ICMP_UGT && Pred1 == ICmpInst::ICMP_SLE) 1864 return getTrue(ITy); 1865 if (Pred0 == ICmpInst::ICMP_SGT && Pred1 == ICmpInst::ICMP_SLE && isNSW) 1866 return getTrue(ITy); 1867 } 1868 } 1869 if (C0->getBoolValue() && isNUW) { 1870 if (Delta == 2) 1871 if (Pred0 == ICmpInst::ICMP_UGE && Pred1 == ICmpInst::ICMP_ULE) 1872 return getTrue(ITy); 1873 if (Delta == 1) 1874 if (Pred0 == ICmpInst::ICMP_UGT && Pred1 == ICmpInst::ICMP_ULE) 1875 return getTrue(ITy); 1876 } 1877 1878 return nullptr; 1879 } 1880 1881 static Value *simplifyOrOfICmps(ICmpInst *Op0, ICmpInst *Op1, 1882 const SimplifyQuery &Q) { 1883 if (Value *X = simplifyUnsignedRangeCheck(Op0, Op1, /*IsAnd=*/false, Q)) 1884 return X; 1885 if (Value *X = simplifyUnsignedRangeCheck(Op1, Op0, /*IsAnd=*/false, Q)) 1886 return X; 1887 1888 if (Value *X = simplifyOrOfICmpsWithSameOperands(Op0, Op1)) 1889 return X; 1890 if (Value *X = simplifyOrOfICmpsWithSameOperands(Op1, Op0)) 1891 return X; 1892 1893 if (Value *X = simplifyAndOrOfICmpsWithConstants(Op0, Op1, false)) 1894 return X; 1895 1896 if (Value *X = simplifyAndOrOfICmpsWithLimitConst(Op0, Op1, false)) 1897 return X; 1898 1899 if (Value *X = simplifyAndOrOfICmpsWithZero(Op0, Op1, false)) 1900 return X; 1901 1902 if (Value *X = simplifyOrOfICmpsWithAdd(Op0, Op1, Q.IIQ)) 1903 return X; 1904 if (Value *X = simplifyOrOfICmpsWithAdd(Op1, Op0, Q.IIQ)) 1905 return X; 1906 1907 return nullptr; 1908 } 1909 1910 static Value *simplifyAndOrOfFCmps(const TargetLibraryInfo *TLI, 1911 FCmpInst *LHS, FCmpInst *RHS, bool IsAnd) { 1912 Value *LHS0 = LHS->getOperand(0), *LHS1 = LHS->getOperand(1); 1913 Value *RHS0 = RHS->getOperand(0), *RHS1 = RHS->getOperand(1); 1914 if (LHS0->getType() != RHS0->getType()) 1915 return nullptr; 1916 1917 FCmpInst::Predicate PredL = LHS->getPredicate(), PredR = RHS->getPredicate(); 1918 if ((PredL == FCmpInst::FCMP_ORD && PredR == FCmpInst::FCMP_ORD && IsAnd) || 1919 (PredL == FCmpInst::FCMP_UNO && PredR == FCmpInst::FCMP_UNO && !IsAnd)) { 1920 // (fcmp ord NNAN, X) & (fcmp ord X, Y) --> fcmp ord X, Y 1921 // (fcmp ord NNAN, X) & (fcmp ord Y, X) --> fcmp ord Y, X 1922 // (fcmp ord X, NNAN) & (fcmp ord X, Y) --> fcmp ord X, Y 1923 // (fcmp ord X, NNAN) & (fcmp ord Y, X) --> fcmp ord Y, X 1924 // (fcmp uno NNAN, X) | (fcmp uno X, Y) --> fcmp uno X, Y 1925 // (fcmp uno NNAN, X) | (fcmp uno Y, X) --> fcmp uno Y, X 1926 // (fcmp uno X, NNAN) | (fcmp uno X, Y) --> fcmp uno X, Y 1927 // (fcmp uno X, NNAN) | (fcmp uno Y, X) --> fcmp uno Y, X 1928 if ((isKnownNeverNaN(LHS0, TLI) && (LHS1 == RHS0 || LHS1 == RHS1)) || 1929 (isKnownNeverNaN(LHS1, TLI) && (LHS0 == RHS0 || LHS0 == RHS1))) 1930 return RHS; 1931 1932 // (fcmp ord X, Y) & (fcmp ord NNAN, X) --> fcmp ord X, Y 1933 // (fcmp ord Y, X) & (fcmp ord NNAN, X) --> fcmp ord Y, X 1934 // (fcmp ord X, Y) & (fcmp ord X, NNAN) --> fcmp ord X, Y 1935 // (fcmp ord Y, X) & (fcmp ord X, NNAN) --> fcmp ord Y, X 1936 // (fcmp uno X, Y) | (fcmp uno NNAN, X) --> fcmp uno X, Y 1937 // (fcmp uno Y, X) | (fcmp uno NNAN, X) --> fcmp uno Y, X 1938 // (fcmp uno X, Y) | (fcmp uno X, NNAN) --> fcmp uno X, Y 1939 // (fcmp uno Y, X) | (fcmp uno X, NNAN) --> fcmp uno Y, X 1940 if ((isKnownNeverNaN(RHS0, TLI) && (RHS1 == LHS0 || RHS1 == LHS1)) || 1941 (isKnownNeverNaN(RHS1, TLI) && (RHS0 == LHS0 || RHS0 == LHS1))) 1942 return LHS; 1943 } 1944 1945 return nullptr; 1946 } 1947 1948 static Value *simplifyAndOrOfCmps(const SimplifyQuery &Q, 1949 Value *Op0, Value *Op1, bool IsAnd) { 1950 // Look through casts of the 'and' operands to find compares. 1951 auto *Cast0 = dyn_cast<CastInst>(Op0); 1952 auto *Cast1 = dyn_cast<CastInst>(Op1); 1953 if (Cast0 && Cast1 && Cast0->getOpcode() == Cast1->getOpcode() && 1954 Cast0->getSrcTy() == Cast1->getSrcTy()) { 1955 Op0 = Cast0->getOperand(0); 1956 Op1 = Cast1->getOperand(0); 1957 } 1958 1959 Value *V = nullptr; 1960 auto *ICmp0 = dyn_cast<ICmpInst>(Op0); 1961 auto *ICmp1 = dyn_cast<ICmpInst>(Op1); 1962 if (ICmp0 && ICmp1) 1963 V = IsAnd ? simplifyAndOfICmps(ICmp0, ICmp1, Q) 1964 : simplifyOrOfICmps(ICmp0, ICmp1, Q); 1965 1966 auto *FCmp0 = dyn_cast<FCmpInst>(Op0); 1967 auto *FCmp1 = dyn_cast<FCmpInst>(Op1); 1968 if (FCmp0 && FCmp1) 1969 V = simplifyAndOrOfFCmps(Q.TLI, FCmp0, FCmp1, IsAnd); 1970 1971 if (!V) 1972 return nullptr; 1973 if (!Cast0) 1974 return V; 1975 1976 // If we looked through casts, we can only handle a constant simplification 1977 // because we are not allowed to create a cast instruction here. 1978 if (auto *C = dyn_cast<Constant>(V)) 1979 return ConstantExpr::getCast(Cast0->getOpcode(), C, Cast0->getType()); 1980 1981 return nullptr; 1982 } 1983 1984 /// Given a bitwise logic op, check if the operands are add/sub with a common 1985 /// source value and inverted constant (identity: C - X -> ~(X + ~C)). 1986 static Value *simplifyLogicOfAddSub(Value *Op0, Value *Op1, 1987 Instruction::BinaryOps Opcode) { 1988 assert(Op0->getType() == Op1->getType() && "Mismatched binop types"); 1989 assert(BinaryOperator::isBitwiseLogicOp(Opcode) && "Expected logic op"); 1990 Value *X; 1991 Constant *C1, *C2; 1992 if ((match(Op0, m_Add(m_Value(X), m_Constant(C1))) && 1993 match(Op1, m_Sub(m_Constant(C2), m_Specific(X)))) || 1994 (match(Op1, m_Add(m_Value(X), m_Constant(C1))) && 1995 match(Op0, m_Sub(m_Constant(C2), m_Specific(X))))) { 1996 if (ConstantExpr::getNot(C1) == C2) { 1997 // (X + C) & (~C - X) --> (X + C) & ~(X + C) --> 0 1998 // (X + C) | (~C - X) --> (X + C) | ~(X + C) --> -1 1999 // (X + C) ^ (~C - X) --> (X + C) ^ ~(X + C) --> -1 2000 Type *Ty = Op0->getType(); 2001 return Opcode == Instruction::And ? ConstantInt::getNullValue(Ty) 2002 : ConstantInt::getAllOnesValue(Ty); 2003 } 2004 } 2005 return nullptr; 2006 } 2007 2008 /// Given operands for an And, see if we can fold the result. 2009 /// If not, this returns null. 2010 static Value *SimplifyAndInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 2011 unsigned MaxRecurse) { 2012 if (Constant *C = foldOrCommuteConstant(Instruction::And, Op0, Op1, Q)) 2013 return C; 2014 2015 // X & poison -> poison 2016 if (isa<PoisonValue>(Op1)) 2017 return Op1; 2018 2019 // X & undef -> 0 2020 if (Q.isUndefValue(Op1)) 2021 return Constant::getNullValue(Op0->getType()); 2022 2023 // X & X = X 2024 if (Op0 == Op1) 2025 return Op0; 2026 2027 // X & 0 = 0 2028 if (match(Op1, m_Zero())) 2029 return Constant::getNullValue(Op0->getType()); 2030 2031 // X & -1 = X 2032 if (match(Op1, m_AllOnes())) 2033 return Op0; 2034 2035 // A & ~A = ~A & A = 0 2036 if (match(Op0, m_Not(m_Specific(Op1))) || 2037 match(Op1, m_Not(m_Specific(Op0)))) 2038 return Constant::getNullValue(Op0->getType()); 2039 2040 // (A | ?) & A = A 2041 if (match(Op0, m_c_Or(m_Specific(Op1), m_Value()))) 2042 return Op1; 2043 2044 // A & (A | ?) = A 2045 if (match(Op1, m_c_Or(m_Specific(Op0), m_Value()))) 2046 return Op0; 2047 2048 // (X | Y) & (X | ~Y) --> X (commuted 8 ways) 2049 Value *X, *Y; 2050 if (match(Op0, m_c_Or(m_Value(X), m_Not(m_Value(Y)))) && 2051 match(Op1, m_c_Or(m_Deferred(X), m_Deferred(Y)))) 2052 return X; 2053 if (match(Op1, m_c_Or(m_Value(X), m_Not(m_Value(Y)))) && 2054 match(Op0, m_c_Or(m_Deferred(X), m_Deferred(Y)))) 2055 return X; 2056 2057 if (Value *V = simplifyLogicOfAddSub(Op0, Op1, Instruction::And)) 2058 return V; 2059 2060 // A mask that only clears known zeros of a shifted value is a no-op. 2061 const APInt *Mask; 2062 const APInt *ShAmt; 2063 if (match(Op1, m_APInt(Mask))) { 2064 // If all bits in the inverted and shifted mask are clear: 2065 // and (shl X, ShAmt), Mask --> shl X, ShAmt 2066 if (match(Op0, m_Shl(m_Value(X), m_APInt(ShAmt))) && 2067 (~(*Mask)).lshr(*ShAmt).isZero()) 2068 return Op0; 2069 2070 // If all bits in the inverted and shifted mask are clear: 2071 // and (lshr X, ShAmt), Mask --> lshr X, ShAmt 2072 if (match(Op0, m_LShr(m_Value(X), m_APInt(ShAmt))) && 2073 (~(*Mask)).shl(*ShAmt).isZero()) 2074 return Op0; 2075 } 2076 2077 // If we have a multiplication overflow check that is being 'and'ed with a 2078 // check that one of the multipliers is not zero, we can omit the 'and', and 2079 // only keep the overflow check. 2080 if (isCheckForZeroAndMulWithOverflow(Op0, Op1, true)) 2081 return Op1; 2082 if (isCheckForZeroAndMulWithOverflow(Op1, Op0, true)) 2083 return Op0; 2084 2085 // A & (-A) = A if A is a power of two or zero. 2086 if (match(Op0, m_Neg(m_Specific(Op1))) || 2087 match(Op1, m_Neg(m_Specific(Op0)))) { 2088 if (isKnownToBeAPowerOfTwo(Op0, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI, 2089 Q.DT)) 2090 return Op0; 2091 if (isKnownToBeAPowerOfTwo(Op1, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI, 2092 Q.DT)) 2093 return Op1; 2094 } 2095 2096 // This is a similar pattern used for checking if a value is a power-of-2: 2097 // (A - 1) & A --> 0 (if A is a power-of-2 or 0) 2098 // A & (A - 1) --> 0 (if A is a power-of-2 or 0) 2099 if (match(Op0, m_Add(m_Specific(Op1), m_AllOnes())) && 2100 isKnownToBeAPowerOfTwo(Op1, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI, Q.DT)) 2101 return Constant::getNullValue(Op1->getType()); 2102 if (match(Op1, m_Add(m_Specific(Op0), m_AllOnes())) && 2103 isKnownToBeAPowerOfTwo(Op0, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI, Q.DT)) 2104 return Constant::getNullValue(Op0->getType()); 2105 2106 if (Value *V = simplifyAndOrOfCmps(Q, Op0, Op1, true)) 2107 return V; 2108 2109 // Try some generic simplifications for associative operations. 2110 if (Value *V = SimplifyAssociativeBinOp(Instruction::And, Op0, Op1, Q, 2111 MaxRecurse)) 2112 return V; 2113 2114 // And distributes over Or. Try some generic simplifications based on this. 2115 if (Value *V = expandCommutativeBinOp(Instruction::And, Op0, Op1, 2116 Instruction::Or, Q, MaxRecurse)) 2117 return V; 2118 2119 // And distributes over Xor. Try some generic simplifications based on this. 2120 if (Value *V = expandCommutativeBinOp(Instruction::And, Op0, Op1, 2121 Instruction::Xor, Q, MaxRecurse)) 2122 return V; 2123 2124 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) { 2125 if (Op0->getType()->isIntOrIntVectorTy(1)) { 2126 // A & (A && B) -> A && B 2127 if (match(Op1, m_Select(m_Specific(Op0), m_Value(), m_Zero()))) 2128 return Op1; 2129 else if (match(Op0, m_Select(m_Specific(Op1), m_Value(), m_Zero()))) 2130 return Op0; 2131 } 2132 // If the operation is with the result of a select instruction, check 2133 // whether operating on either branch of the select always yields the same 2134 // value. 2135 if (Value *V = ThreadBinOpOverSelect(Instruction::And, Op0, Op1, Q, 2136 MaxRecurse)) 2137 return V; 2138 } 2139 2140 // If the operation is with the result of a phi instruction, check whether 2141 // operating on all incoming values of the phi always yields the same value. 2142 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 2143 if (Value *V = ThreadBinOpOverPHI(Instruction::And, Op0, Op1, Q, 2144 MaxRecurse)) 2145 return V; 2146 2147 // Assuming the effective width of Y is not larger than A, i.e. all bits 2148 // from X and Y are disjoint in (X << A) | Y, 2149 // if the mask of this AND op covers all bits of X or Y, while it covers 2150 // no bits from the other, we can bypass this AND op. E.g., 2151 // ((X << A) | Y) & Mask -> Y, 2152 // if Mask = ((1 << effective_width_of(Y)) - 1) 2153 // ((X << A) | Y) & Mask -> X << A, 2154 // if Mask = ((1 << effective_width_of(X)) - 1) << A 2155 // SimplifyDemandedBits in InstCombine can optimize the general case. 2156 // This pattern aims to help other passes for a common case. 2157 Value *XShifted; 2158 if (match(Op1, m_APInt(Mask)) && 2159 match(Op0, m_c_Or(m_CombineAnd(m_NUWShl(m_Value(X), m_APInt(ShAmt)), 2160 m_Value(XShifted)), 2161 m_Value(Y)))) { 2162 const unsigned Width = Op0->getType()->getScalarSizeInBits(); 2163 const unsigned ShftCnt = ShAmt->getLimitedValue(Width); 2164 const KnownBits YKnown = computeKnownBits(Y, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2165 const unsigned EffWidthY = YKnown.countMaxActiveBits(); 2166 if (EffWidthY <= ShftCnt) { 2167 const KnownBits XKnown = computeKnownBits(X, Q.DL, 0, Q.AC, Q.CxtI, 2168 Q.DT); 2169 const unsigned EffWidthX = XKnown.countMaxActiveBits(); 2170 const APInt EffBitsY = APInt::getLowBitsSet(Width, EffWidthY); 2171 const APInt EffBitsX = APInt::getLowBitsSet(Width, EffWidthX) << ShftCnt; 2172 // If the mask is extracting all bits from X or Y as is, we can skip 2173 // this AND op. 2174 if (EffBitsY.isSubsetOf(*Mask) && !EffBitsX.intersects(*Mask)) 2175 return Y; 2176 if (EffBitsX.isSubsetOf(*Mask) && !EffBitsY.intersects(*Mask)) 2177 return XShifted; 2178 } 2179 } 2180 2181 // ((X | Y) ^ X ) & ((X | Y) ^ Y) --> 0 2182 // ((X | Y) ^ Y ) & ((X | Y) ^ X) --> 0 2183 BinaryOperator *Or; 2184 if (match(Op0, m_c_Xor(m_Value(X), 2185 m_CombineAnd(m_BinOp(Or), 2186 m_c_Or(m_Deferred(X), m_Value(Y))))) && 2187 match(Op1, m_c_Xor(m_Specific(Or), m_Specific(Y)))) 2188 return Constant::getNullValue(Op0->getType()); 2189 2190 return nullptr; 2191 } 2192 2193 Value *llvm::SimplifyAndInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 2194 return ::SimplifyAndInst(Op0, Op1, Q, RecursionLimit); 2195 } 2196 2197 static Value *simplifyOrLogic(Value *X, Value *Y) { 2198 assert(X->getType() == Y->getType() && "Expected same type for 'or' ops"); 2199 Type *Ty = X->getType(); 2200 2201 // X | ~X --> -1 2202 if (match(Y, m_Not(m_Specific(X)))) 2203 return ConstantInt::getAllOnesValue(Ty); 2204 2205 // X | ~(X & ?) = -1 2206 if (match(Y, m_Not(m_c_And(m_Specific(X), m_Value())))) 2207 return ConstantInt::getAllOnesValue(Ty); 2208 2209 // X | (X & ?) --> X 2210 if (match(Y, m_c_And(m_Specific(X), m_Value()))) 2211 return X; 2212 2213 Value *A, *B; 2214 2215 // (A ^ B) | (A | B) --> A | B 2216 // (A ^ B) | (B | A) --> B | A 2217 if (match(X, m_Xor(m_Value(A), m_Value(B))) && 2218 match(Y, m_c_Or(m_Specific(A), m_Specific(B)))) 2219 return Y; 2220 2221 // ~(A ^ B) | (A | B) --> -1 2222 // ~(A ^ B) | (B | A) --> -1 2223 if (match(X, m_Not(m_Xor(m_Value(A), m_Value(B)))) && 2224 match(Y, m_c_Or(m_Specific(A), m_Specific(B)))) 2225 return ConstantInt::getAllOnesValue(Ty); 2226 2227 // (A & ~B) | (A ^ B) --> A ^ B 2228 // (~B & A) | (A ^ B) --> A ^ B 2229 // (A & ~B) | (B ^ A) --> B ^ A 2230 // (~B & A) | (B ^ A) --> B ^ A 2231 if (match(X, m_c_And(m_Value(A), m_Not(m_Value(B)))) && 2232 match(Y, m_c_Xor(m_Specific(A), m_Specific(B)))) 2233 return Y; 2234 2235 // (~A ^ B) | (A & B) --> ~A ^ B 2236 // (B ^ ~A) | (A & B) --> B ^ ~A 2237 // (~A ^ B) | (B & A) --> ~A ^ B 2238 // (B ^ ~A) | (B & A) --> B ^ ~A 2239 if (match(X, m_c_Xor(m_Not(m_Value(A)), m_Value(B))) && 2240 match(Y, m_c_And(m_Specific(A), m_Specific(B)))) 2241 return X; 2242 2243 // (~A | B) | (A ^ B) --> -1 2244 // (~A | B) | (B ^ A) --> -1 2245 // (B | ~A) | (A ^ B) --> -1 2246 // (B | ~A) | (B ^ A) --> -1 2247 if (match(X, m_c_Or(m_Not(m_Value(A)), m_Value(B))) && 2248 match(Y, m_c_Xor(m_Specific(A), m_Specific(B)))) 2249 return ConstantInt::getAllOnesValue(Ty); 2250 2251 // (~A & B) | ~(A | B) --> ~A 2252 // (~A & B) | ~(B | A) --> ~A 2253 // (B & ~A) | ~(A | B) --> ~A 2254 // (B & ~A) | ~(B | A) --> ~A 2255 Value *NotA; 2256 if (match(X, 2257 m_c_And(m_CombineAnd(m_Value(NotA), m_NotForbidUndef(m_Value(A))), 2258 m_Value(B))) && 2259 match(Y, m_Not(m_c_Or(m_Specific(A), m_Specific(B))))) 2260 return NotA; 2261 2262 // ~(A ^ B) | (A & B) --> ~(A ^ B) 2263 // ~(A ^ B) | (B & A) --> ~(A ^ B) 2264 Value *NotAB; 2265 if (match(X, m_CombineAnd(m_NotForbidUndef(m_Xor(m_Value(A), m_Value(B))), 2266 m_Value(NotAB))) && 2267 match(Y, m_c_And(m_Specific(A), m_Specific(B)))) 2268 return NotAB; 2269 2270 // ~(A & B) | (A ^ B) --> ~(A & B) 2271 // ~(A & B) | (B ^ A) --> ~(A & B) 2272 if (match(X, m_CombineAnd(m_NotForbidUndef(m_And(m_Value(A), m_Value(B))), 2273 m_Value(NotAB))) && 2274 match(Y, m_c_Xor(m_Specific(A), m_Specific(B)))) 2275 return NotAB; 2276 2277 return nullptr; 2278 } 2279 2280 /// Given operands for an Or, see if we can fold the result. 2281 /// If not, this returns null. 2282 static Value *SimplifyOrInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 2283 unsigned MaxRecurse) { 2284 if (Constant *C = foldOrCommuteConstant(Instruction::Or, Op0, Op1, Q)) 2285 return C; 2286 2287 // X | poison -> poison 2288 if (isa<PoisonValue>(Op1)) 2289 return Op1; 2290 2291 // X | undef -> -1 2292 // X | -1 = -1 2293 // Do not return Op1 because it may contain undef elements if it's a vector. 2294 if (Q.isUndefValue(Op1) || match(Op1, m_AllOnes())) 2295 return Constant::getAllOnesValue(Op0->getType()); 2296 2297 // X | X = X 2298 // X | 0 = X 2299 if (Op0 == Op1 || match(Op1, m_Zero())) 2300 return Op0; 2301 2302 if (Value *R = simplifyOrLogic(Op0, Op1)) 2303 return R; 2304 if (Value *R = simplifyOrLogic(Op1, Op0)) 2305 return R; 2306 2307 if (Value *V = simplifyLogicOfAddSub(Op0, Op1, Instruction::Or)) 2308 return V; 2309 2310 // Rotated -1 is still -1: 2311 // (-1 << X) | (-1 >> (C - X)) --> -1 2312 // (-1 >> X) | (-1 << (C - X)) --> -1 2313 // ...with C <= bitwidth (and commuted variants). 2314 Value *X, *Y; 2315 if ((match(Op0, m_Shl(m_AllOnes(), m_Value(X))) && 2316 match(Op1, m_LShr(m_AllOnes(), m_Value(Y)))) || 2317 (match(Op1, m_Shl(m_AllOnes(), m_Value(X))) && 2318 match(Op0, m_LShr(m_AllOnes(), m_Value(Y))))) { 2319 const APInt *C; 2320 if ((match(X, m_Sub(m_APInt(C), m_Specific(Y))) || 2321 match(Y, m_Sub(m_APInt(C), m_Specific(X)))) && 2322 C->ule(X->getType()->getScalarSizeInBits())) { 2323 return ConstantInt::getAllOnesValue(X->getType()); 2324 } 2325 } 2326 2327 if (Value *V = simplifyAndOrOfCmps(Q, Op0, Op1, false)) 2328 return V; 2329 2330 // If we have a multiplication overflow check that is being 'and'ed with a 2331 // check that one of the multipliers is not zero, we can omit the 'and', and 2332 // only keep the overflow check. 2333 if (isCheckForZeroAndMulWithOverflow(Op0, Op1, false)) 2334 return Op1; 2335 if (isCheckForZeroAndMulWithOverflow(Op1, Op0, false)) 2336 return Op0; 2337 2338 // Try some generic simplifications for associative operations. 2339 if (Value *V = SimplifyAssociativeBinOp(Instruction::Or, Op0, Op1, Q, 2340 MaxRecurse)) 2341 return V; 2342 2343 // Or distributes over And. Try some generic simplifications based on this. 2344 if (Value *V = expandCommutativeBinOp(Instruction::Or, Op0, Op1, 2345 Instruction::And, Q, MaxRecurse)) 2346 return V; 2347 2348 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) { 2349 if (Op0->getType()->isIntOrIntVectorTy(1)) { 2350 // A | (A || B) -> A || B 2351 if (match(Op1, m_Select(m_Specific(Op0), m_One(), m_Value()))) 2352 return Op1; 2353 else if (match(Op0, m_Select(m_Specific(Op1), m_One(), m_Value()))) 2354 return Op0; 2355 } 2356 // If the operation is with the result of a select instruction, check 2357 // whether operating on either branch of the select always yields the same 2358 // value. 2359 if (Value *V = ThreadBinOpOverSelect(Instruction::Or, Op0, Op1, Q, 2360 MaxRecurse)) 2361 return V; 2362 } 2363 2364 // (A & C1)|(B & C2) 2365 Value *A, *B; 2366 const APInt *C1, *C2; 2367 if (match(Op0, m_And(m_Value(A), m_APInt(C1))) && 2368 match(Op1, m_And(m_Value(B), m_APInt(C2)))) { 2369 if (*C1 == ~*C2) { 2370 // (A & C1)|(B & C2) 2371 // If we have: ((V + N) & C1) | (V & C2) 2372 // .. and C2 = ~C1 and C2 is 0+1+ and (N & C2) == 0 2373 // replace with V+N. 2374 Value *N; 2375 if (C2->isMask() && // C2 == 0+1+ 2376 match(A, m_c_Add(m_Specific(B), m_Value(N)))) { 2377 // Add commutes, try both ways. 2378 if (MaskedValueIsZero(N, *C2, Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 2379 return A; 2380 } 2381 // Or commutes, try both ways. 2382 if (C1->isMask() && 2383 match(B, m_c_Add(m_Specific(A), m_Value(N)))) { 2384 // Add commutes, try both ways. 2385 if (MaskedValueIsZero(N, *C1, Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 2386 return B; 2387 } 2388 } 2389 } 2390 2391 // If the operation is with the result of a phi instruction, check whether 2392 // operating on all incoming values of the phi always yields the same value. 2393 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 2394 if (Value *V = ThreadBinOpOverPHI(Instruction::Or, Op0, Op1, Q, MaxRecurse)) 2395 return V; 2396 2397 return nullptr; 2398 } 2399 2400 Value *llvm::SimplifyOrInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 2401 return ::SimplifyOrInst(Op0, Op1, Q, RecursionLimit); 2402 } 2403 2404 /// Given operands for a Xor, see if we can fold the result. 2405 /// If not, this returns null. 2406 static Value *SimplifyXorInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 2407 unsigned MaxRecurse) { 2408 if (Constant *C = foldOrCommuteConstant(Instruction::Xor, Op0, Op1, Q)) 2409 return C; 2410 2411 // A ^ undef -> undef 2412 if (Q.isUndefValue(Op1)) 2413 return Op1; 2414 2415 // A ^ 0 = A 2416 if (match(Op1, m_Zero())) 2417 return Op0; 2418 2419 // A ^ A = 0 2420 if (Op0 == Op1) 2421 return Constant::getNullValue(Op0->getType()); 2422 2423 // A ^ ~A = ~A ^ A = -1 2424 if (match(Op0, m_Not(m_Specific(Op1))) || 2425 match(Op1, m_Not(m_Specific(Op0)))) 2426 return Constant::getAllOnesValue(Op0->getType()); 2427 2428 auto foldAndOrNot = [](Value *X, Value *Y) -> Value * { 2429 Value *A, *B; 2430 // (~A & B) ^ (A | B) --> A -- There are 8 commuted variants. 2431 if (match(X, m_c_And(m_Not(m_Value(A)), m_Value(B))) && 2432 match(Y, m_c_Or(m_Specific(A), m_Specific(B)))) 2433 return A; 2434 2435 // (~A | B) ^ (A & B) --> ~A -- There are 8 commuted variants. 2436 // The 'not' op must contain a complete -1 operand (no undef elements for 2437 // vector) for the transform to be safe. 2438 Value *NotA; 2439 if (match(X, 2440 m_c_Or(m_CombineAnd(m_NotForbidUndef(m_Value(A)), m_Value(NotA)), 2441 m_Value(B))) && 2442 match(Y, m_c_And(m_Specific(A), m_Specific(B)))) 2443 return NotA; 2444 2445 return nullptr; 2446 }; 2447 if (Value *R = foldAndOrNot(Op0, Op1)) 2448 return R; 2449 if (Value *R = foldAndOrNot(Op1, Op0)) 2450 return R; 2451 2452 if (Value *V = simplifyLogicOfAddSub(Op0, Op1, Instruction::Xor)) 2453 return V; 2454 2455 // Try some generic simplifications for associative operations. 2456 if (Value *V = SimplifyAssociativeBinOp(Instruction::Xor, Op0, Op1, Q, 2457 MaxRecurse)) 2458 return V; 2459 2460 // Threading Xor over selects and phi nodes is pointless, so don't bother. 2461 // Threading over the select in "A ^ select(cond, B, C)" means evaluating 2462 // "A^B" and "A^C" and seeing if they are equal; but they are equal if and 2463 // only if B and C are equal. If B and C are equal then (since we assume 2464 // that operands have already been simplified) "select(cond, B, C)" should 2465 // have been simplified to the common value of B and C already. Analysing 2466 // "A^B" and "A^C" thus gains nothing, but costs compile time. Similarly 2467 // for threading over phi nodes. 2468 2469 return nullptr; 2470 } 2471 2472 Value *llvm::SimplifyXorInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 2473 return ::SimplifyXorInst(Op0, Op1, Q, RecursionLimit); 2474 } 2475 2476 2477 static Type *GetCompareTy(Value *Op) { 2478 return CmpInst::makeCmpResultType(Op->getType()); 2479 } 2480 2481 /// Rummage around inside V looking for something equivalent to the comparison 2482 /// "LHS Pred RHS". Return such a value if found, otherwise return null. 2483 /// Helper function for analyzing max/min idioms. 2484 static Value *ExtractEquivalentCondition(Value *V, CmpInst::Predicate Pred, 2485 Value *LHS, Value *RHS) { 2486 SelectInst *SI = dyn_cast<SelectInst>(V); 2487 if (!SI) 2488 return nullptr; 2489 CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition()); 2490 if (!Cmp) 2491 return nullptr; 2492 Value *CmpLHS = Cmp->getOperand(0), *CmpRHS = Cmp->getOperand(1); 2493 if (Pred == Cmp->getPredicate() && LHS == CmpLHS && RHS == CmpRHS) 2494 return Cmp; 2495 if (Pred == CmpInst::getSwappedPredicate(Cmp->getPredicate()) && 2496 LHS == CmpRHS && RHS == CmpLHS) 2497 return Cmp; 2498 return nullptr; 2499 } 2500 2501 // A significant optimization not implemented here is assuming that alloca 2502 // addresses are not equal to incoming argument values. They don't *alias*, 2503 // as we say, but that doesn't mean they aren't equal, so we take a 2504 // conservative approach. 2505 // 2506 // This is inspired in part by C++11 5.10p1: 2507 // "Two pointers of the same type compare equal if and only if they are both 2508 // null, both point to the same function, or both represent the same 2509 // address." 2510 // 2511 // This is pretty permissive. 2512 // 2513 // It's also partly due to C11 6.5.9p6: 2514 // "Two pointers compare equal if and only if both are null pointers, both are 2515 // pointers to the same object (including a pointer to an object and a 2516 // subobject at its beginning) or function, both are pointers to one past the 2517 // last element of the same array object, or one is a pointer to one past the 2518 // end of one array object and the other is a pointer to the start of a 2519 // different array object that happens to immediately follow the first array 2520 // object in the address space.) 2521 // 2522 // C11's version is more restrictive, however there's no reason why an argument 2523 // couldn't be a one-past-the-end value for a stack object in the caller and be 2524 // equal to the beginning of a stack object in the callee. 2525 // 2526 // If the C and C++ standards are ever made sufficiently restrictive in this 2527 // area, it may be possible to update LLVM's semantics accordingly and reinstate 2528 // this optimization. 2529 static Constant * 2530 computePointerICmp(CmpInst::Predicate Pred, Value *LHS, Value *RHS, 2531 const SimplifyQuery &Q) { 2532 const DataLayout &DL = Q.DL; 2533 const TargetLibraryInfo *TLI = Q.TLI; 2534 const DominatorTree *DT = Q.DT; 2535 const Instruction *CxtI = Q.CxtI; 2536 const InstrInfoQuery &IIQ = Q.IIQ; 2537 2538 // First, skip past any trivial no-ops. 2539 LHS = LHS->stripPointerCasts(); 2540 RHS = RHS->stripPointerCasts(); 2541 2542 // A non-null pointer is not equal to a null pointer. 2543 if (isa<ConstantPointerNull>(RHS) && ICmpInst::isEquality(Pred) && 2544 llvm::isKnownNonZero(LHS, DL, 0, nullptr, nullptr, nullptr, 2545 IIQ.UseInstrInfo)) 2546 return ConstantInt::get(GetCompareTy(LHS), 2547 !CmpInst::isTrueWhenEqual(Pred)); 2548 2549 // We can only fold certain predicates on pointer comparisons. 2550 switch (Pred) { 2551 default: 2552 return nullptr; 2553 2554 // Equality comaprisons are easy to fold. 2555 case CmpInst::ICMP_EQ: 2556 case CmpInst::ICMP_NE: 2557 break; 2558 2559 // We can only handle unsigned relational comparisons because 'inbounds' on 2560 // a GEP only protects against unsigned wrapping. 2561 case CmpInst::ICMP_UGT: 2562 case CmpInst::ICMP_UGE: 2563 case CmpInst::ICMP_ULT: 2564 case CmpInst::ICMP_ULE: 2565 // However, we have to switch them to their signed variants to handle 2566 // negative indices from the base pointer. 2567 Pred = ICmpInst::getSignedPredicate(Pred); 2568 break; 2569 } 2570 2571 // Strip off any constant offsets so that we can reason about them. 2572 // It's tempting to use getUnderlyingObject or even just stripInBoundsOffsets 2573 // here and compare base addresses like AliasAnalysis does, however there are 2574 // numerous hazards. AliasAnalysis and its utilities rely on special rules 2575 // governing loads and stores which don't apply to icmps. Also, AliasAnalysis 2576 // doesn't need to guarantee pointer inequality when it says NoAlias. 2577 Constant *LHSOffset = stripAndComputeConstantOffsets(DL, LHS); 2578 Constant *RHSOffset = stripAndComputeConstantOffsets(DL, RHS); 2579 2580 // If LHS and RHS are related via constant offsets to the same base 2581 // value, we can replace it with an icmp which just compares the offsets. 2582 if (LHS == RHS) 2583 return ConstantExpr::getICmp(Pred, LHSOffset, RHSOffset); 2584 2585 // Various optimizations for (in)equality comparisons. 2586 if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE) { 2587 // Different non-empty allocations that exist at the same time have 2588 // different addresses (if the program can tell). Global variables always 2589 // exist, so they always exist during the lifetime of each other and all 2590 // allocas. Two different allocas usually have different addresses... 2591 // 2592 // However, if there's an @llvm.stackrestore dynamically in between two 2593 // allocas, they may have the same address. It's tempting to reduce the 2594 // scope of the problem by only looking at *static* allocas here. That would 2595 // cover the majority of allocas while significantly reducing the likelihood 2596 // of having an @llvm.stackrestore pop up in the middle. However, it's not 2597 // actually impossible for an @llvm.stackrestore to pop up in the middle of 2598 // an entry block. Also, if we have a block that's not attached to a 2599 // function, we can't tell if it's "static" under the current definition. 2600 // Theoretically, this problem could be fixed by creating a new kind of 2601 // instruction kind specifically for static allocas. Such a new instruction 2602 // could be required to be at the top of the entry block, thus preventing it 2603 // from being subject to a @llvm.stackrestore. Instcombine could even 2604 // convert regular allocas into these special allocas. It'd be nifty. 2605 // However, until then, this problem remains open. 2606 // 2607 // So, we'll assume that two non-empty allocas have different addresses 2608 // for now. 2609 // 2610 // With all that, if the offsets are within the bounds of their allocations 2611 // (and not one-past-the-end! so we can't use inbounds!), and their 2612 // allocations aren't the same, the pointers are not equal. 2613 // 2614 // Note that it's not necessary to check for LHS being a global variable 2615 // address, due to canonicalization and constant folding. 2616 if (isa<AllocaInst>(LHS) && 2617 (isa<AllocaInst>(RHS) || isa<GlobalVariable>(RHS))) { 2618 ConstantInt *LHSOffsetCI = dyn_cast<ConstantInt>(LHSOffset); 2619 ConstantInt *RHSOffsetCI = dyn_cast<ConstantInt>(RHSOffset); 2620 uint64_t LHSSize, RHSSize; 2621 ObjectSizeOpts Opts; 2622 Opts.NullIsUnknownSize = 2623 NullPointerIsDefined(cast<AllocaInst>(LHS)->getFunction()); 2624 if (LHSOffsetCI && RHSOffsetCI && 2625 getObjectSize(LHS, LHSSize, DL, TLI, Opts) && 2626 getObjectSize(RHS, RHSSize, DL, TLI, Opts)) { 2627 const APInt &LHSOffsetValue = LHSOffsetCI->getValue(); 2628 const APInt &RHSOffsetValue = RHSOffsetCI->getValue(); 2629 if (!LHSOffsetValue.isNegative() && 2630 !RHSOffsetValue.isNegative() && 2631 LHSOffsetValue.ult(LHSSize) && 2632 RHSOffsetValue.ult(RHSSize)) { 2633 return ConstantInt::get(GetCompareTy(LHS), 2634 !CmpInst::isTrueWhenEqual(Pred)); 2635 } 2636 } 2637 2638 // Repeat the above check but this time without depending on DataLayout 2639 // or being able to compute a precise size. 2640 if (!cast<PointerType>(LHS->getType())->isEmptyTy() && 2641 !cast<PointerType>(RHS->getType())->isEmptyTy() && 2642 LHSOffset->isNullValue() && 2643 RHSOffset->isNullValue()) 2644 return ConstantInt::get(GetCompareTy(LHS), 2645 !CmpInst::isTrueWhenEqual(Pred)); 2646 } 2647 2648 // Even if an non-inbounds GEP occurs along the path we can still optimize 2649 // equality comparisons concerning the result. We avoid walking the whole 2650 // chain again by starting where the last calls to 2651 // stripAndComputeConstantOffsets left off and accumulate the offsets. 2652 Constant *LHSNoBound = stripAndComputeConstantOffsets(DL, LHS, true); 2653 Constant *RHSNoBound = stripAndComputeConstantOffsets(DL, RHS, true); 2654 if (LHS == RHS) 2655 return ConstantExpr::getICmp(Pred, 2656 ConstantExpr::getAdd(LHSOffset, LHSNoBound), 2657 ConstantExpr::getAdd(RHSOffset, RHSNoBound)); 2658 2659 // If one side of the equality comparison must come from a noalias call 2660 // (meaning a system memory allocation function), and the other side must 2661 // come from a pointer that cannot overlap with dynamically-allocated 2662 // memory within the lifetime of the current function (allocas, byval 2663 // arguments, globals), then determine the comparison result here. 2664 SmallVector<const Value *, 8> LHSUObjs, RHSUObjs; 2665 getUnderlyingObjects(LHS, LHSUObjs); 2666 getUnderlyingObjects(RHS, RHSUObjs); 2667 2668 // Is the set of underlying objects all noalias calls? 2669 auto IsNAC = [](ArrayRef<const Value *> Objects) { 2670 return all_of(Objects, isNoAliasCall); 2671 }; 2672 2673 // Is the set of underlying objects all things which must be disjoint from 2674 // noalias calls. For allocas, we consider only static ones (dynamic 2675 // allocas might be transformed into calls to malloc not simultaneously 2676 // live with the compared-to allocation). For globals, we exclude symbols 2677 // that might be resolve lazily to symbols in another dynamically-loaded 2678 // library (and, thus, could be malloc'ed by the implementation). 2679 auto IsAllocDisjoint = [](ArrayRef<const Value *> Objects) { 2680 return all_of(Objects, [](const Value *V) { 2681 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) 2682 return AI->getParent() && AI->getFunction() && AI->isStaticAlloca(); 2683 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) 2684 return (GV->hasLocalLinkage() || GV->hasHiddenVisibility() || 2685 GV->hasProtectedVisibility() || GV->hasGlobalUnnamedAddr()) && 2686 !GV->isThreadLocal(); 2687 if (const Argument *A = dyn_cast<Argument>(V)) 2688 return A->hasByValAttr(); 2689 return false; 2690 }); 2691 }; 2692 2693 if ((IsNAC(LHSUObjs) && IsAllocDisjoint(RHSUObjs)) || 2694 (IsNAC(RHSUObjs) && IsAllocDisjoint(LHSUObjs))) 2695 return ConstantInt::get(GetCompareTy(LHS), 2696 !CmpInst::isTrueWhenEqual(Pred)); 2697 2698 // Fold comparisons for non-escaping pointer even if the allocation call 2699 // cannot be elided. We cannot fold malloc comparison to null. Also, the 2700 // dynamic allocation call could be either of the operands. Note that 2701 // the other operand can not be based on the alloc - if it were, then 2702 // the cmp itself would be a capture. 2703 Value *MI = nullptr; 2704 if (isAllocLikeFn(LHS, TLI) && 2705 llvm::isKnownNonZero(RHS, DL, 0, nullptr, CxtI, DT)) 2706 MI = LHS; 2707 else if (isAllocLikeFn(RHS, TLI) && 2708 llvm::isKnownNonZero(LHS, DL, 0, nullptr, CxtI, DT)) 2709 MI = RHS; 2710 // FIXME: We should also fold the compare when the pointer escapes, but the 2711 // compare dominates the pointer escape 2712 if (MI && !PointerMayBeCaptured(MI, true, true)) 2713 return ConstantInt::get(GetCompareTy(LHS), 2714 CmpInst::isFalseWhenEqual(Pred)); 2715 } 2716 2717 // Otherwise, fail. 2718 return nullptr; 2719 } 2720 2721 /// Fold an icmp when its operands have i1 scalar type. 2722 static Value *simplifyICmpOfBools(CmpInst::Predicate Pred, Value *LHS, 2723 Value *RHS, const SimplifyQuery &Q) { 2724 Type *ITy = GetCompareTy(LHS); // The return type. 2725 Type *OpTy = LHS->getType(); // The operand type. 2726 if (!OpTy->isIntOrIntVectorTy(1)) 2727 return nullptr; 2728 2729 // A boolean compared to true/false can be reduced in 14 out of the 20 2730 // (10 predicates * 2 constants) possible combinations. The other 2731 // 6 cases require a 'not' of the LHS. 2732 2733 auto ExtractNotLHS = [](Value *V) -> Value * { 2734 Value *X; 2735 if (match(V, m_Not(m_Value(X)))) 2736 return X; 2737 return nullptr; 2738 }; 2739 2740 if (match(RHS, m_Zero())) { 2741 switch (Pred) { 2742 case CmpInst::ICMP_NE: // X != 0 -> X 2743 case CmpInst::ICMP_UGT: // X >u 0 -> X 2744 case CmpInst::ICMP_SLT: // X <s 0 -> X 2745 return LHS; 2746 2747 case CmpInst::ICMP_EQ: // not(X) == 0 -> X != 0 -> X 2748 case CmpInst::ICMP_ULE: // not(X) <=u 0 -> X >u 0 -> X 2749 case CmpInst::ICMP_SGE: // not(X) >=s 0 -> X <s 0 -> X 2750 if (Value *X = ExtractNotLHS(LHS)) 2751 return X; 2752 break; 2753 2754 case CmpInst::ICMP_ULT: // X <u 0 -> false 2755 case CmpInst::ICMP_SGT: // X >s 0 -> false 2756 return getFalse(ITy); 2757 2758 case CmpInst::ICMP_UGE: // X >=u 0 -> true 2759 case CmpInst::ICMP_SLE: // X <=s 0 -> true 2760 return getTrue(ITy); 2761 2762 default: break; 2763 } 2764 } else if (match(RHS, m_One())) { 2765 switch (Pred) { 2766 case CmpInst::ICMP_EQ: // X == 1 -> X 2767 case CmpInst::ICMP_UGE: // X >=u 1 -> X 2768 case CmpInst::ICMP_SLE: // X <=s -1 -> X 2769 return LHS; 2770 2771 case CmpInst::ICMP_NE: // not(X) != 1 -> X == 1 -> X 2772 case CmpInst::ICMP_ULT: // not(X) <=u 1 -> X >=u 1 -> X 2773 case CmpInst::ICMP_SGT: // not(X) >s 1 -> X <=s -1 -> X 2774 if (Value *X = ExtractNotLHS(LHS)) 2775 return X; 2776 break; 2777 2778 case CmpInst::ICMP_UGT: // X >u 1 -> false 2779 case CmpInst::ICMP_SLT: // X <s -1 -> false 2780 return getFalse(ITy); 2781 2782 case CmpInst::ICMP_ULE: // X <=u 1 -> true 2783 case CmpInst::ICMP_SGE: // X >=s -1 -> true 2784 return getTrue(ITy); 2785 2786 default: break; 2787 } 2788 } 2789 2790 switch (Pred) { 2791 default: 2792 break; 2793 case ICmpInst::ICMP_UGE: 2794 if (isImpliedCondition(RHS, LHS, Q.DL).getValueOr(false)) 2795 return getTrue(ITy); 2796 break; 2797 case ICmpInst::ICMP_SGE: 2798 /// For signed comparison, the values for an i1 are 0 and -1 2799 /// respectively. This maps into a truth table of: 2800 /// LHS | RHS | LHS >=s RHS | LHS implies RHS 2801 /// 0 | 0 | 1 (0 >= 0) | 1 2802 /// 0 | 1 | 1 (0 >= -1) | 1 2803 /// 1 | 0 | 0 (-1 >= 0) | 0 2804 /// 1 | 1 | 1 (-1 >= -1) | 1 2805 if (isImpliedCondition(LHS, RHS, Q.DL).getValueOr(false)) 2806 return getTrue(ITy); 2807 break; 2808 case ICmpInst::ICMP_ULE: 2809 if (isImpliedCondition(LHS, RHS, Q.DL).getValueOr(false)) 2810 return getTrue(ITy); 2811 break; 2812 } 2813 2814 return nullptr; 2815 } 2816 2817 /// Try hard to fold icmp with zero RHS because this is a common case. 2818 static Value *simplifyICmpWithZero(CmpInst::Predicate Pred, Value *LHS, 2819 Value *RHS, const SimplifyQuery &Q) { 2820 if (!match(RHS, m_Zero())) 2821 return nullptr; 2822 2823 Type *ITy = GetCompareTy(LHS); // The return type. 2824 switch (Pred) { 2825 default: 2826 llvm_unreachable("Unknown ICmp predicate!"); 2827 case ICmpInst::ICMP_ULT: 2828 return getFalse(ITy); 2829 case ICmpInst::ICMP_UGE: 2830 return getTrue(ITy); 2831 case ICmpInst::ICMP_EQ: 2832 case ICmpInst::ICMP_ULE: 2833 if (isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT, Q.IIQ.UseInstrInfo)) 2834 return getFalse(ITy); 2835 break; 2836 case ICmpInst::ICMP_NE: 2837 case ICmpInst::ICMP_UGT: 2838 if (isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT, Q.IIQ.UseInstrInfo)) 2839 return getTrue(ITy); 2840 break; 2841 case ICmpInst::ICMP_SLT: { 2842 KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2843 if (LHSKnown.isNegative()) 2844 return getTrue(ITy); 2845 if (LHSKnown.isNonNegative()) 2846 return getFalse(ITy); 2847 break; 2848 } 2849 case ICmpInst::ICMP_SLE: { 2850 KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2851 if (LHSKnown.isNegative()) 2852 return getTrue(ITy); 2853 if (LHSKnown.isNonNegative() && 2854 isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 2855 return getFalse(ITy); 2856 break; 2857 } 2858 case ICmpInst::ICMP_SGE: { 2859 KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2860 if (LHSKnown.isNegative()) 2861 return getFalse(ITy); 2862 if (LHSKnown.isNonNegative()) 2863 return getTrue(ITy); 2864 break; 2865 } 2866 case ICmpInst::ICMP_SGT: { 2867 KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2868 if (LHSKnown.isNegative()) 2869 return getFalse(ITy); 2870 if (LHSKnown.isNonNegative() && 2871 isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 2872 return getTrue(ITy); 2873 break; 2874 } 2875 } 2876 2877 return nullptr; 2878 } 2879 2880 static Value *simplifyICmpWithConstant(CmpInst::Predicate Pred, Value *LHS, 2881 Value *RHS, const InstrInfoQuery &IIQ) { 2882 Type *ITy = GetCompareTy(RHS); // The return type. 2883 2884 Value *X; 2885 // Sign-bit checks can be optimized to true/false after unsigned 2886 // floating-point casts: 2887 // icmp slt (bitcast (uitofp X)), 0 --> false 2888 // icmp sgt (bitcast (uitofp X)), -1 --> true 2889 if (match(LHS, m_BitCast(m_UIToFP(m_Value(X))))) { 2890 if (Pred == ICmpInst::ICMP_SLT && match(RHS, m_Zero())) 2891 return ConstantInt::getFalse(ITy); 2892 if (Pred == ICmpInst::ICMP_SGT && match(RHS, m_AllOnes())) 2893 return ConstantInt::getTrue(ITy); 2894 } 2895 2896 const APInt *C; 2897 if (!match(RHS, m_APIntAllowUndef(C))) 2898 return nullptr; 2899 2900 // Rule out tautological comparisons (eg., ult 0 or uge 0). 2901 ConstantRange RHS_CR = ConstantRange::makeExactICmpRegion(Pred, *C); 2902 if (RHS_CR.isEmptySet()) 2903 return ConstantInt::getFalse(ITy); 2904 if (RHS_CR.isFullSet()) 2905 return ConstantInt::getTrue(ITy); 2906 2907 ConstantRange LHS_CR = 2908 computeConstantRange(LHS, CmpInst::isSigned(Pred), IIQ.UseInstrInfo); 2909 if (!LHS_CR.isFullSet()) { 2910 if (RHS_CR.contains(LHS_CR)) 2911 return ConstantInt::getTrue(ITy); 2912 if (RHS_CR.inverse().contains(LHS_CR)) 2913 return ConstantInt::getFalse(ITy); 2914 } 2915 2916 // (mul nuw/nsw X, MulC) != C --> true (if C is not a multiple of MulC) 2917 // (mul nuw/nsw X, MulC) == C --> false (if C is not a multiple of MulC) 2918 const APInt *MulC; 2919 if (ICmpInst::isEquality(Pred) && 2920 ((match(LHS, m_NUWMul(m_Value(), m_APIntAllowUndef(MulC))) && 2921 *MulC != 0 && C->urem(*MulC) != 0) || 2922 (match(LHS, m_NSWMul(m_Value(), m_APIntAllowUndef(MulC))) && 2923 *MulC != 0 && C->srem(*MulC) != 0))) 2924 return ConstantInt::get(ITy, Pred == ICmpInst::ICMP_NE); 2925 2926 return nullptr; 2927 } 2928 2929 static Value *simplifyICmpWithBinOpOnLHS( 2930 CmpInst::Predicate Pred, BinaryOperator *LBO, Value *RHS, 2931 const SimplifyQuery &Q, unsigned MaxRecurse) { 2932 Type *ITy = GetCompareTy(RHS); // The return type. 2933 2934 Value *Y = nullptr; 2935 // icmp pred (or X, Y), X 2936 if (match(LBO, m_c_Or(m_Value(Y), m_Specific(RHS)))) { 2937 if (Pred == ICmpInst::ICMP_ULT) 2938 return getFalse(ITy); 2939 if (Pred == ICmpInst::ICMP_UGE) 2940 return getTrue(ITy); 2941 2942 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SGE) { 2943 KnownBits RHSKnown = computeKnownBits(RHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2944 KnownBits YKnown = computeKnownBits(Y, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2945 if (RHSKnown.isNonNegative() && YKnown.isNegative()) 2946 return Pred == ICmpInst::ICMP_SLT ? getTrue(ITy) : getFalse(ITy); 2947 if (RHSKnown.isNegative() || YKnown.isNonNegative()) 2948 return Pred == ICmpInst::ICMP_SLT ? getFalse(ITy) : getTrue(ITy); 2949 } 2950 } 2951 2952 // icmp pred (and X, Y), X 2953 if (match(LBO, m_c_And(m_Value(), m_Specific(RHS)))) { 2954 if (Pred == ICmpInst::ICMP_UGT) 2955 return getFalse(ITy); 2956 if (Pred == ICmpInst::ICMP_ULE) 2957 return getTrue(ITy); 2958 } 2959 2960 // icmp pred (urem X, Y), Y 2961 if (match(LBO, m_URem(m_Value(), m_Specific(RHS)))) { 2962 switch (Pred) { 2963 default: 2964 break; 2965 case ICmpInst::ICMP_SGT: 2966 case ICmpInst::ICMP_SGE: { 2967 KnownBits Known = computeKnownBits(RHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2968 if (!Known.isNonNegative()) 2969 break; 2970 LLVM_FALLTHROUGH; 2971 } 2972 case ICmpInst::ICMP_EQ: 2973 case ICmpInst::ICMP_UGT: 2974 case ICmpInst::ICMP_UGE: 2975 return getFalse(ITy); 2976 case ICmpInst::ICMP_SLT: 2977 case ICmpInst::ICMP_SLE: { 2978 KnownBits Known = computeKnownBits(RHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2979 if (!Known.isNonNegative()) 2980 break; 2981 LLVM_FALLTHROUGH; 2982 } 2983 case ICmpInst::ICMP_NE: 2984 case ICmpInst::ICMP_ULT: 2985 case ICmpInst::ICMP_ULE: 2986 return getTrue(ITy); 2987 } 2988 } 2989 2990 // icmp pred (urem X, Y), X 2991 if (match(LBO, m_URem(m_Specific(RHS), m_Value()))) { 2992 if (Pred == ICmpInst::ICMP_ULE) 2993 return getTrue(ITy); 2994 if (Pred == ICmpInst::ICMP_UGT) 2995 return getFalse(ITy); 2996 } 2997 2998 // x >>u y <=u x --> true. 2999 // x >>u y >u x --> false. 3000 // x udiv y <=u x --> true. 3001 // x udiv y >u x --> false. 3002 if (match(LBO, m_LShr(m_Specific(RHS), m_Value())) || 3003 match(LBO, m_UDiv(m_Specific(RHS), m_Value()))) { 3004 // icmp pred (X op Y), X 3005 if (Pred == ICmpInst::ICMP_UGT) 3006 return getFalse(ITy); 3007 if (Pred == ICmpInst::ICMP_ULE) 3008 return getTrue(ITy); 3009 } 3010 3011 // If x is nonzero: 3012 // x >>u C <u x --> true for C != 0. 3013 // x >>u C != x --> true for C != 0. 3014 // x >>u C >=u x --> false for C != 0. 3015 // x >>u C == x --> false for C != 0. 3016 // x udiv C <u x --> true for C != 1. 3017 // x udiv C != x --> true for C != 1. 3018 // x udiv C >=u x --> false for C != 1. 3019 // x udiv C == x --> false for C != 1. 3020 // TODO: allow non-constant shift amount/divisor 3021 const APInt *C; 3022 if ((match(LBO, m_LShr(m_Specific(RHS), m_APInt(C))) && *C != 0) || 3023 (match(LBO, m_UDiv(m_Specific(RHS), m_APInt(C))) && *C != 1)) { 3024 if (isKnownNonZero(RHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) { 3025 switch (Pred) { 3026 default: 3027 break; 3028 case ICmpInst::ICMP_EQ: 3029 case ICmpInst::ICMP_UGE: 3030 return getFalse(ITy); 3031 case ICmpInst::ICMP_NE: 3032 case ICmpInst::ICMP_ULT: 3033 return getTrue(ITy); 3034 case ICmpInst::ICMP_UGT: 3035 case ICmpInst::ICMP_ULE: 3036 // UGT/ULE are handled by the more general case just above 3037 llvm_unreachable("Unexpected UGT/ULE, should have been handled"); 3038 } 3039 } 3040 } 3041 3042 // (x*C1)/C2 <= x for C1 <= C2. 3043 // This holds even if the multiplication overflows: Assume that x != 0 and 3044 // arithmetic is modulo M. For overflow to occur we must have C1 >= M/x and 3045 // thus C2 >= M/x. It follows that (x*C1)/C2 <= (M-1)/C2 <= ((M-1)*x)/M < x. 3046 // 3047 // Additionally, either the multiplication and division might be represented 3048 // as shifts: 3049 // (x*C1)>>C2 <= x for C1 < 2**C2. 3050 // (x<<C1)/C2 <= x for 2**C1 < C2. 3051 const APInt *C1, *C2; 3052 if ((match(LBO, m_UDiv(m_Mul(m_Specific(RHS), m_APInt(C1)), m_APInt(C2))) && 3053 C1->ule(*C2)) || 3054 (match(LBO, m_LShr(m_Mul(m_Specific(RHS), m_APInt(C1)), m_APInt(C2))) && 3055 C1->ule(APInt(C2->getBitWidth(), 1) << *C2)) || 3056 (match(LBO, m_UDiv(m_Shl(m_Specific(RHS), m_APInt(C1)), m_APInt(C2))) && 3057 (APInt(C1->getBitWidth(), 1) << *C1).ule(*C2))) { 3058 if (Pred == ICmpInst::ICMP_UGT) 3059 return getFalse(ITy); 3060 if (Pred == ICmpInst::ICMP_ULE) 3061 return getTrue(ITy); 3062 } 3063 3064 return nullptr; 3065 } 3066 3067 3068 // If only one of the icmp's operands has NSW flags, try to prove that: 3069 // 3070 // icmp slt (x + C1), (x +nsw C2) 3071 // 3072 // is equivalent to: 3073 // 3074 // icmp slt C1, C2 3075 // 3076 // which is true if x + C2 has the NSW flags set and: 3077 // *) C1 < C2 && C1 >= 0, or 3078 // *) C2 < C1 && C1 <= 0. 3079 // 3080 static bool trySimplifyICmpWithAdds(CmpInst::Predicate Pred, Value *LHS, 3081 Value *RHS) { 3082 // TODO: only support icmp slt for now. 3083 if (Pred != CmpInst::ICMP_SLT) 3084 return false; 3085 3086 // Canonicalize nsw add as RHS. 3087 if (!match(RHS, m_NSWAdd(m_Value(), m_Value()))) 3088 std::swap(LHS, RHS); 3089 if (!match(RHS, m_NSWAdd(m_Value(), m_Value()))) 3090 return false; 3091 3092 Value *X; 3093 const APInt *C1, *C2; 3094 if (!match(LHS, m_c_Add(m_Value(X), m_APInt(C1))) || 3095 !match(RHS, m_c_Add(m_Specific(X), m_APInt(C2)))) 3096 return false; 3097 3098 return (C1->slt(*C2) && C1->isNonNegative()) || 3099 (C2->slt(*C1) && C1->isNonPositive()); 3100 } 3101 3102 3103 /// TODO: A large part of this logic is duplicated in InstCombine's 3104 /// foldICmpBinOp(). We should be able to share that and avoid the code 3105 /// duplication. 3106 static Value *simplifyICmpWithBinOp(CmpInst::Predicate Pred, Value *LHS, 3107 Value *RHS, const SimplifyQuery &Q, 3108 unsigned MaxRecurse) { 3109 BinaryOperator *LBO = dyn_cast<BinaryOperator>(LHS); 3110 BinaryOperator *RBO = dyn_cast<BinaryOperator>(RHS); 3111 if (MaxRecurse && (LBO || RBO)) { 3112 // Analyze the case when either LHS or RHS is an add instruction. 3113 Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr; 3114 // LHS = A + B (or A and B are null); RHS = C + D (or C and D are null). 3115 bool NoLHSWrapProblem = false, NoRHSWrapProblem = false; 3116 if (LBO && LBO->getOpcode() == Instruction::Add) { 3117 A = LBO->getOperand(0); 3118 B = LBO->getOperand(1); 3119 NoLHSWrapProblem = 3120 ICmpInst::isEquality(Pred) || 3121 (CmpInst::isUnsigned(Pred) && 3122 Q.IIQ.hasNoUnsignedWrap(cast<OverflowingBinaryOperator>(LBO))) || 3123 (CmpInst::isSigned(Pred) && 3124 Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(LBO))); 3125 } 3126 if (RBO && RBO->getOpcode() == Instruction::Add) { 3127 C = RBO->getOperand(0); 3128 D = RBO->getOperand(1); 3129 NoRHSWrapProblem = 3130 ICmpInst::isEquality(Pred) || 3131 (CmpInst::isUnsigned(Pred) && 3132 Q.IIQ.hasNoUnsignedWrap(cast<OverflowingBinaryOperator>(RBO))) || 3133 (CmpInst::isSigned(Pred) && 3134 Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(RBO))); 3135 } 3136 3137 // icmp (X+Y), X -> icmp Y, 0 for equalities or if there is no overflow. 3138 if ((A == RHS || B == RHS) && NoLHSWrapProblem) 3139 if (Value *V = SimplifyICmpInst(Pred, A == RHS ? B : A, 3140 Constant::getNullValue(RHS->getType()), Q, 3141 MaxRecurse - 1)) 3142 return V; 3143 3144 // icmp X, (X+Y) -> icmp 0, Y for equalities or if there is no overflow. 3145 if ((C == LHS || D == LHS) && NoRHSWrapProblem) 3146 if (Value *V = 3147 SimplifyICmpInst(Pred, Constant::getNullValue(LHS->getType()), 3148 C == LHS ? D : C, Q, MaxRecurse - 1)) 3149 return V; 3150 3151 // icmp (X+Y), (X+Z) -> icmp Y,Z for equalities or if there is no overflow. 3152 bool CanSimplify = (NoLHSWrapProblem && NoRHSWrapProblem) || 3153 trySimplifyICmpWithAdds(Pred, LHS, RHS); 3154 if (A && C && (A == C || A == D || B == C || B == D) && CanSimplify) { 3155 // Determine Y and Z in the form icmp (X+Y), (X+Z). 3156 Value *Y, *Z; 3157 if (A == C) { 3158 // C + B == C + D -> B == D 3159 Y = B; 3160 Z = D; 3161 } else if (A == D) { 3162 // D + B == C + D -> B == C 3163 Y = B; 3164 Z = C; 3165 } else if (B == C) { 3166 // A + C == C + D -> A == D 3167 Y = A; 3168 Z = D; 3169 } else { 3170 assert(B == D); 3171 // A + D == C + D -> A == C 3172 Y = A; 3173 Z = C; 3174 } 3175 if (Value *V = SimplifyICmpInst(Pred, Y, Z, Q, MaxRecurse - 1)) 3176 return V; 3177 } 3178 } 3179 3180 if (LBO) 3181 if (Value *V = simplifyICmpWithBinOpOnLHS(Pred, LBO, RHS, Q, MaxRecurse)) 3182 return V; 3183 3184 if (RBO) 3185 if (Value *V = simplifyICmpWithBinOpOnLHS( 3186 ICmpInst::getSwappedPredicate(Pred), RBO, LHS, Q, MaxRecurse)) 3187 return V; 3188 3189 // 0 - (zext X) pred C 3190 if (!CmpInst::isUnsigned(Pred) && match(LHS, m_Neg(m_ZExt(m_Value())))) { 3191 const APInt *C; 3192 if (match(RHS, m_APInt(C))) { 3193 if (C->isStrictlyPositive()) { 3194 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_NE) 3195 return ConstantInt::getTrue(GetCompareTy(RHS)); 3196 if (Pred == ICmpInst::ICMP_SGE || Pred == ICmpInst::ICMP_EQ) 3197 return ConstantInt::getFalse(GetCompareTy(RHS)); 3198 } 3199 if (C->isNonNegative()) { 3200 if (Pred == ICmpInst::ICMP_SLE) 3201 return ConstantInt::getTrue(GetCompareTy(RHS)); 3202 if (Pred == ICmpInst::ICMP_SGT) 3203 return ConstantInt::getFalse(GetCompareTy(RHS)); 3204 } 3205 } 3206 } 3207 3208 // If C2 is a power-of-2 and C is not: 3209 // (C2 << X) == C --> false 3210 // (C2 << X) != C --> true 3211 const APInt *C; 3212 if (match(LHS, m_Shl(m_Power2(), m_Value())) && 3213 match(RHS, m_APIntAllowUndef(C)) && !C->isPowerOf2()) { 3214 // C2 << X can equal zero in some circumstances. 3215 // This simplification might be unsafe if C is zero. 3216 // 3217 // We know it is safe if: 3218 // - The shift is nsw. We can't shift out the one bit. 3219 // - The shift is nuw. We can't shift out the one bit. 3220 // - C2 is one. 3221 // - C isn't zero. 3222 if (Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(LBO)) || 3223 Q.IIQ.hasNoUnsignedWrap(cast<OverflowingBinaryOperator>(LBO)) || 3224 match(LHS, m_Shl(m_One(), m_Value())) || !C->isZero()) { 3225 if (Pred == ICmpInst::ICMP_EQ) 3226 return ConstantInt::getFalse(GetCompareTy(RHS)); 3227 if (Pred == ICmpInst::ICMP_NE) 3228 return ConstantInt::getTrue(GetCompareTy(RHS)); 3229 } 3230 } 3231 3232 // TODO: This is overly constrained. LHS can be any power-of-2. 3233 // (1 << X) >u 0x8000 --> false 3234 // (1 << X) <=u 0x8000 --> true 3235 if (match(LHS, m_Shl(m_One(), m_Value())) && match(RHS, m_SignMask())) { 3236 if (Pred == ICmpInst::ICMP_UGT) 3237 return ConstantInt::getFalse(GetCompareTy(RHS)); 3238 if (Pred == ICmpInst::ICMP_ULE) 3239 return ConstantInt::getTrue(GetCompareTy(RHS)); 3240 } 3241 3242 if (MaxRecurse && LBO && RBO && LBO->getOpcode() == RBO->getOpcode() && 3243 LBO->getOperand(1) == RBO->getOperand(1)) { 3244 switch (LBO->getOpcode()) { 3245 default: 3246 break; 3247 case Instruction::UDiv: 3248 case Instruction::LShr: 3249 if (ICmpInst::isSigned(Pred) || !Q.IIQ.isExact(LBO) || 3250 !Q.IIQ.isExact(RBO)) 3251 break; 3252 if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0), 3253 RBO->getOperand(0), Q, MaxRecurse - 1)) 3254 return V; 3255 break; 3256 case Instruction::SDiv: 3257 if (!ICmpInst::isEquality(Pred) || !Q.IIQ.isExact(LBO) || 3258 !Q.IIQ.isExact(RBO)) 3259 break; 3260 if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0), 3261 RBO->getOperand(0), Q, MaxRecurse - 1)) 3262 return V; 3263 break; 3264 case Instruction::AShr: 3265 if (!Q.IIQ.isExact(LBO) || !Q.IIQ.isExact(RBO)) 3266 break; 3267 if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0), 3268 RBO->getOperand(0), Q, MaxRecurse - 1)) 3269 return V; 3270 break; 3271 case Instruction::Shl: { 3272 bool NUW = Q.IIQ.hasNoUnsignedWrap(LBO) && Q.IIQ.hasNoUnsignedWrap(RBO); 3273 bool NSW = Q.IIQ.hasNoSignedWrap(LBO) && Q.IIQ.hasNoSignedWrap(RBO); 3274 if (!NUW && !NSW) 3275 break; 3276 if (!NSW && ICmpInst::isSigned(Pred)) 3277 break; 3278 if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0), 3279 RBO->getOperand(0), Q, MaxRecurse - 1)) 3280 return V; 3281 break; 3282 } 3283 } 3284 } 3285 return nullptr; 3286 } 3287 3288 /// Simplify integer comparisons where at least one operand of the compare 3289 /// matches an integer min/max idiom. 3290 static Value *simplifyICmpWithMinMax(CmpInst::Predicate Pred, Value *LHS, 3291 Value *RHS, const SimplifyQuery &Q, 3292 unsigned MaxRecurse) { 3293 Type *ITy = GetCompareTy(LHS); // The return type. 3294 Value *A, *B; 3295 CmpInst::Predicate P = CmpInst::BAD_ICMP_PREDICATE; 3296 CmpInst::Predicate EqP; // Chosen so that "A == max/min(A,B)" iff "A EqP B". 3297 3298 // Signed variants on "max(a,b)>=a -> true". 3299 if (match(LHS, m_SMax(m_Value(A), m_Value(B))) && (A == RHS || B == RHS)) { 3300 if (A != RHS) 3301 std::swap(A, B); // smax(A, B) pred A. 3302 EqP = CmpInst::ICMP_SGE; // "A == smax(A, B)" iff "A sge B". 3303 // We analyze this as smax(A, B) pred A. 3304 P = Pred; 3305 } else if (match(RHS, m_SMax(m_Value(A), m_Value(B))) && 3306 (A == LHS || B == LHS)) { 3307 if (A != LHS) 3308 std::swap(A, B); // A pred smax(A, B). 3309 EqP = CmpInst::ICMP_SGE; // "A == smax(A, B)" iff "A sge B". 3310 // We analyze this as smax(A, B) swapped-pred A. 3311 P = CmpInst::getSwappedPredicate(Pred); 3312 } else if (match(LHS, m_SMin(m_Value(A), m_Value(B))) && 3313 (A == RHS || B == RHS)) { 3314 if (A != RHS) 3315 std::swap(A, B); // smin(A, B) pred A. 3316 EqP = CmpInst::ICMP_SLE; // "A == smin(A, B)" iff "A sle B". 3317 // We analyze this as smax(-A, -B) swapped-pred -A. 3318 // Note that we do not need to actually form -A or -B thanks to EqP. 3319 P = CmpInst::getSwappedPredicate(Pred); 3320 } else if (match(RHS, m_SMin(m_Value(A), m_Value(B))) && 3321 (A == LHS || B == LHS)) { 3322 if (A != LHS) 3323 std::swap(A, B); // A pred smin(A, B). 3324 EqP = CmpInst::ICMP_SLE; // "A == smin(A, B)" iff "A sle B". 3325 // We analyze this as smax(-A, -B) pred -A. 3326 // Note that we do not need to actually form -A or -B thanks to EqP. 3327 P = Pred; 3328 } 3329 if (P != CmpInst::BAD_ICMP_PREDICATE) { 3330 // Cases correspond to "max(A, B) p A". 3331 switch (P) { 3332 default: 3333 break; 3334 case CmpInst::ICMP_EQ: 3335 case CmpInst::ICMP_SLE: 3336 // Equivalent to "A EqP B". This may be the same as the condition tested 3337 // in the max/min; if so, we can just return that. 3338 if (Value *V = ExtractEquivalentCondition(LHS, EqP, A, B)) 3339 return V; 3340 if (Value *V = ExtractEquivalentCondition(RHS, EqP, A, B)) 3341 return V; 3342 // Otherwise, see if "A EqP B" simplifies. 3343 if (MaxRecurse) 3344 if (Value *V = SimplifyICmpInst(EqP, A, B, Q, MaxRecurse - 1)) 3345 return V; 3346 break; 3347 case CmpInst::ICMP_NE: 3348 case CmpInst::ICMP_SGT: { 3349 CmpInst::Predicate InvEqP = CmpInst::getInversePredicate(EqP); 3350 // Equivalent to "A InvEqP B". This may be the same as the condition 3351 // tested in the max/min; if so, we can just return that. 3352 if (Value *V = ExtractEquivalentCondition(LHS, InvEqP, A, B)) 3353 return V; 3354 if (Value *V = ExtractEquivalentCondition(RHS, InvEqP, A, B)) 3355 return V; 3356 // Otherwise, see if "A InvEqP B" simplifies. 3357 if (MaxRecurse) 3358 if (Value *V = SimplifyICmpInst(InvEqP, A, B, Q, MaxRecurse - 1)) 3359 return V; 3360 break; 3361 } 3362 case CmpInst::ICMP_SGE: 3363 // Always true. 3364 return getTrue(ITy); 3365 case CmpInst::ICMP_SLT: 3366 // Always false. 3367 return getFalse(ITy); 3368 } 3369 } 3370 3371 // Unsigned variants on "max(a,b)>=a -> true". 3372 P = CmpInst::BAD_ICMP_PREDICATE; 3373 if (match(LHS, m_UMax(m_Value(A), m_Value(B))) && (A == RHS || B == RHS)) { 3374 if (A != RHS) 3375 std::swap(A, B); // umax(A, B) pred A. 3376 EqP = CmpInst::ICMP_UGE; // "A == umax(A, B)" iff "A uge B". 3377 // We analyze this as umax(A, B) pred A. 3378 P = Pred; 3379 } else if (match(RHS, m_UMax(m_Value(A), m_Value(B))) && 3380 (A == LHS || B == LHS)) { 3381 if (A != LHS) 3382 std::swap(A, B); // A pred umax(A, B). 3383 EqP = CmpInst::ICMP_UGE; // "A == umax(A, B)" iff "A uge B". 3384 // We analyze this as umax(A, B) swapped-pred A. 3385 P = CmpInst::getSwappedPredicate(Pred); 3386 } else if (match(LHS, m_UMin(m_Value(A), m_Value(B))) && 3387 (A == RHS || B == RHS)) { 3388 if (A != RHS) 3389 std::swap(A, B); // umin(A, B) pred A. 3390 EqP = CmpInst::ICMP_ULE; // "A == umin(A, B)" iff "A ule B". 3391 // We analyze this as umax(-A, -B) swapped-pred -A. 3392 // Note that we do not need to actually form -A or -B thanks to EqP. 3393 P = CmpInst::getSwappedPredicate(Pred); 3394 } else if (match(RHS, m_UMin(m_Value(A), m_Value(B))) && 3395 (A == LHS || B == LHS)) { 3396 if (A != LHS) 3397 std::swap(A, B); // A pred umin(A, B). 3398 EqP = CmpInst::ICMP_ULE; // "A == umin(A, B)" iff "A ule B". 3399 // We analyze this as umax(-A, -B) pred -A. 3400 // Note that we do not need to actually form -A or -B thanks to EqP. 3401 P = Pred; 3402 } 3403 if (P != CmpInst::BAD_ICMP_PREDICATE) { 3404 // Cases correspond to "max(A, B) p A". 3405 switch (P) { 3406 default: 3407 break; 3408 case CmpInst::ICMP_EQ: 3409 case CmpInst::ICMP_ULE: 3410 // Equivalent to "A EqP B". This may be the same as the condition tested 3411 // in the max/min; if so, we can just return that. 3412 if (Value *V = ExtractEquivalentCondition(LHS, EqP, A, B)) 3413 return V; 3414 if (Value *V = ExtractEquivalentCondition(RHS, EqP, A, B)) 3415 return V; 3416 // Otherwise, see if "A EqP B" simplifies. 3417 if (MaxRecurse) 3418 if (Value *V = SimplifyICmpInst(EqP, A, B, Q, MaxRecurse - 1)) 3419 return V; 3420 break; 3421 case CmpInst::ICMP_NE: 3422 case CmpInst::ICMP_UGT: { 3423 CmpInst::Predicate InvEqP = CmpInst::getInversePredicate(EqP); 3424 // Equivalent to "A InvEqP B". This may be the same as the condition 3425 // tested in the max/min; if so, we can just return that. 3426 if (Value *V = ExtractEquivalentCondition(LHS, InvEqP, A, B)) 3427 return V; 3428 if (Value *V = ExtractEquivalentCondition(RHS, InvEqP, A, B)) 3429 return V; 3430 // Otherwise, see if "A InvEqP B" simplifies. 3431 if (MaxRecurse) 3432 if (Value *V = SimplifyICmpInst(InvEqP, A, B, Q, MaxRecurse - 1)) 3433 return V; 3434 break; 3435 } 3436 case CmpInst::ICMP_UGE: 3437 return getTrue(ITy); 3438 case CmpInst::ICMP_ULT: 3439 return getFalse(ITy); 3440 } 3441 } 3442 3443 // Comparing 1 each of min/max with a common operand? 3444 // Canonicalize min operand to RHS. 3445 if (match(LHS, m_UMin(m_Value(), m_Value())) || 3446 match(LHS, m_SMin(m_Value(), m_Value()))) { 3447 std::swap(LHS, RHS); 3448 Pred = ICmpInst::getSwappedPredicate(Pred); 3449 } 3450 3451 Value *C, *D; 3452 if (match(LHS, m_SMax(m_Value(A), m_Value(B))) && 3453 match(RHS, m_SMin(m_Value(C), m_Value(D))) && 3454 (A == C || A == D || B == C || B == D)) { 3455 // smax(A, B) >=s smin(A, D) --> true 3456 if (Pred == CmpInst::ICMP_SGE) 3457 return getTrue(ITy); 3458 // smax(A, B) <s smin(A, D) --> false 3459 if (Pred == CmpInst::ICMP_SLT) 3460 return getFalse(ITy); 3461 } else if (match(LHS, m_UMax(m_Value(A), m_Value(B))) && 3462 match(RHS, m_UMin(m_Value(C), m_Value(D))) && 3463 (A == C || A == D || B == C || B == D)) { 3464 // umax(A, B) >=u umin(A, D) --> true 3465 if (Pred == CmpInst::ICMP_UGE) 3466 return getTrue(ITy); 3467 // umax(A, B) <u umin(A, D) --> false 3468 if (Pred == CmpInst::ICMP_ULT) 3469 return getFalse(ITy); 3470 } 3471 3472 return nullptr; 3473 } 3474 3475 static Value *simplifyICmpWithDominatingAssume(CmpInst::Predicate Predicate, 3476 Value *LHS, Value *RHS, 3477 const SimplifyQuery &Q) { 3478 // Gracefully handle instructions that have not been inserted yet. 3479 if (!Q.AC || !Q.CxtI || !Q.CxtI->getParent()) 3480 return nullptr; 3481 3482 for (Value *AssumeBaseOp : {LHS, RHS}) { 3483 for (auto &AssumeVH : Q.AC->assumptionsFor(AssumeBaseOp)) { 3484 if (!AssumeVH) 3485 continue; 3486 3487 CallInst *Assume = cast<CallInst>(AssumeVH); 3488 if (Optional<bool> Imp = 3489 isImpliedCondition(Assume->getArgOperand(0), Predicate, LHS, RHS, 3490 Q.DL)) 3491 if (isValidAssumeForContext(Assume, Q.CxtI, Q.DT)) 3492 return ConstantInt::get(GetCompareTy(LHS), *Imp); 3493 } 3494 } 3495 3496 return nullptr; 3497 } 3498 3499 /// Given operands for an ICmpInst, see if we can fold the result. 3500 /// If not, this returns null. 3501 static Value *SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS, 3502 const SimplifyQuery &Q, unsigned MaxRecurse) { 3503 CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate; 3504 assert(CmpInst::isIntPredicate(Pred) && "Not an integer compare!"); 3505 3506 if (Constant *CLHS = dyn_cast<Constant>(LHS)) { 3507 if (Constant *CRHS = dyn_cast<Constant>(RHS)) 3508 return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, Q.DL, Q.TLI); 3509 3510 // If we have a constant, make sure it is on the RHS. 3511 std::swap(LHS, RHS); 3512 Pred = CmpInst::getSwappedPredicate(Pred); 3513 } 3514 assert(!isa<UndefValue>(LHS) && "Unexpected icmp undef,%X"); 3515 3516 Type *ITy = GetCompareTy(LHS); // The return type. 3517 3518 // icmp poison, X -> poison 3519 if (isa<PoisonValue>(RHS)) 3520 return PoisonValue::get(ITy); 3521 3522 // For EQ and NE, we can always pick a value for the undef to make the 3523 // predicate pass or fail, so we can return undef. 3524 // Matches behavior in llvm::ConstantFoldCompareInstruction. 3525 if (Q.isUndefValue(RHS) && ICmpInst::isEquality(Pred)) 3526 return UndefValue::get(ITy); 3527 3528 // icmp X, X -> true/false 3529 // icmp X, undef -> true/false because undef could be X. 3530 if (LHS == RHS || Q.isUndefValue(RHS)) 3531 return ConstantInt::get(ITy, CmpInst::isTrueWhenEqual(Pred)); 3532 3533 if (Value *V = simplifyICmpOfBools(Pred, LHS, RHS, Q)) 3534 return V; 3535 3536 // TODO: Sink/common this with other potentially expensive calls that use 3537 // ValueTracking? See comment below for isKnownNonEqual(). 3538 if (Value *V = simplifyICmpWithZero(Pred, LHS, RHS, Q)) 3539 return V; 3540 3541 if (Value *V = simplifyICmpWithConstant(Pred, LHS, RHS, Q.IIQ)) 3542 return V; 3543 3544 // If both operands have range metadata, use the metadata 3545 // to simplify the comparison. 3546 if (isa<Instruction>(RHS) && isa<Instruction>(LHS)) { 3547 auto RHS_Instr = cast<Instruction>(RHS); 3548 auto LHS_Instr = cast<Instruction>(LHS); 3549 3550 if (Q.IIQ.getMetadata(RHS_Instr, LLVMContext::MD_range) && 3551 Q.IIQ.getMetadata(LHS_Instr, LLVMContext::MD_range)) { 3552 auto RHS_CR = getConstantRangeFromMetadata( 3553 *RHS_Instr->getMetadata(LLVMContext::MD_range)); 3554 auto LHS_CR = getConstantRangeFromMetadata( 3555 *LHS_Instr->getMetadata(LLVMContext::MD_range)); 3556 3557 if (LHS_CR.icmp(Pred, RHS_CR)) 3558 return ConstantInt::getTrue(RHS->getContext()); 3559 3560 if (LHS_CR.icmp(CmpInst::getInversePredicate(Pred), RHS_CR)) 3561 return ConstantInt::getFalse(RHS->getContext()); 3562 } 3563 } 3564 3565 // Compare of cast, for example (zext X) != 0 -> X != 0 3566 if (isa<CastInst>(LHS) && (isa<Constant>(RHS) || isa<CastInst>(RHS))) { 3567 Instruction *LI = cast<CastInst>(LHS); 3568 Value *SrcOp = LI->getOperand(0); 3569 Type *SrcTy = SrcOp->getType(); 3570 Type *DstTy = LI->getType(); 3571 3572 // Turn icmp (ptrtoint x), (ptrtoint/constant) into a compare of the input 3573 // if the integer type is the same size as the pointer type. 3574 if (MaxRecurse && isa<PtrToIntInst>(LI) && 3575 Q.DL.getTypeSizeInBits(SrcTy) == DstTy->getPrimitiveSizeInBits()) { 3576 if (Constant *RHSC = dyn_cast<Constant>(RHS)) { 3577 // Transfer the cast to the constant. 3578 if (Value *V = SimplifyICmpInst(Pred, SrcOp, 3579 ConstantExpr::getIntToPtr(RHSC, SrcTy), 3580 Q, MaxRecurse-1)) 3581 return V; 3582 } else if (PtrToIntInst *RI = dyn_cast<PtrToIntInst>(RHS)) { 3583 if (RI->getOperand(0)->getType() == SrcTy) 3584 // Compare without the cast. 3585 if (Value *V = SimplifyICmpInst(Pred, SrcOp, RI->getOperand(0), 3586 Q, MaxRecurse-1)) 3587 return V; 3588 } 3589 } 3590 3591 if (isa<ZExtInst>(LHS)) { 3592 // Turn icmp (zext X), (zext Y) into a compare of X and Y if they have the 3593 // same type. 3594 if (ZExtInst *RI = dyn_cast<ZExtInst>(RHS)) { 3595 if (MaxRecurse && SrcTy == RI->getOperand(0)->getType()) 3596 // Compare X and Y. Note that signed predicates become unsigned. 3597 if (Value *V = SimplifyICmpInst(ICmpInst::getUnsignedPredicate(Pred), 3598 SrcOp, RI->getOperand(0), Q, 3599 MaxRecurse-1)) 3600 return V; 3601 } 3602 // Fold (zext X) ule (sext X), (zext X) sge (sext X) to true. 3603 else if (SExtInst *RI = dyn_cast<SExtInst>(RHS)) { 3604 if (SrcOp == RI->getOperand(0)) { 3605 if (Pred == ICmpInst::ICMP_ULE || Pred == ICmpInst::ICMP_SGE) 3606 return ConstantInt::getTrue(ITy); 3607 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_SLT) 3608 return ConstantInt::getFalse(ITy); 3609 } 3610 } 3611 // Turn icmp (zext X), Cst into a compare of X and Cst if Cst is extended 3612 // too. If not, then try to deduce the result of the comparison. 3613 else if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) { 3614 // Compute the constant that would happen if we truncated to SrcTy then 3615 // reextended to DstTy. 3616 Constant *Trunc = ConstantExpr::getTrunc(CI, SrcTy); 3617 Constant *RExt = ConstantExpr::getCast(CastInst::ZExt, Trunc, DstTy); 3618 3619 // If the re-extended constant didn't change then this is effectively 3620 // also a case of comparing two zero-extended values. 3621 if (RExt == CI && MaxRecurse) 3622 if (Value *V = SimplifyICmpInst(ICmpInst::getUnsignedPredicate(Pred), 3623 SrcOp, Trunc, Q, MaxRecurse-1)) 3624 return V; 3625 3626 // Otherwise the upper bits of LHS are zero while RHS has a non-zero bit 3627 // there. Use this to work out the result of the comparison. 3628 if (RExt != CI) { 3629 switch (Pred) { 3630 default: llvm_unreachable("Unknown ICmp predicate!"); 3631 // LHS <u RHS. 3632 case ICmpInst::ICMP_EQ: 3633 case ICmpInst::ICMP_UGT: 3634 case ICmpInst::ICMP_UGE: 3635 return ConstantInt::getFalse(CI->getContext()); 3636 3637 case ICmpInst::ICMP_NE: 3638 case ICmpInst::ICMP_ULT: 3639 case ICmpInst::ICMP_ULE: 3640 return ConstantInt::getTrue(CI->getContext()); 3641 3642 // LHS is non-negative. If RHS is negative then LHS >s LHS. If RHS 3643 // is non-negative then LHS <s RHS. 3644 case ICmpInst::ICMP_SGT: 3645 case ICmpInst::ICMP_SGE: 3646 return CI->getValue().isNegative() ? 3647 ConstantInt::getTrue(CI->getContext()) : 3648 ConstantInt::getFalse(CI->getContext()); 3649 3650 case ICmpInst::ICMP_SLT: 3651 case ICmpInst::ICMP_SLE: 3652 return CI->getValue().isNegative() ? 3653 ConstantInt::getFalse(CI->getContext()) : 3654 ConstantInt::getTrue(CI->getContext()); 3655 } 3656 } 3657 } 3658 } 3659 3660 if (isa<SExtInst>(LHS)) { 3661 // Turn icmp (sext X), (sext Y) into a compare of X and Y if they have the 3662 // same type. 3663 if (SExtInst *RI = dyn_cast<SExtInst>(RHS)) { 3664 if (MaxRecurse && SrcTy == RI->getOperand(0)->getType()) 3665 // Compare X and Y. Note that the predicate does not change. 3666 if (Value *V = SimplifyICmpInst(Pred, SrcOp, RI->getOperand(0), 3667 Q, MaxRecurse-1)) 3668 return V; 3669 } 3670 // Fold (sext X) uge (zext X), (sext X) sle (zext X) to true. 3671 else if (ZExtInst *RI = dyn_cast<ZExtInst>(RHS)) { 3672 if (SrcOp == RI->getOperand(0)) { 3673 if (Pred == ICmpInst::ICMP_UGE || Pred == ICmpInst::ICMP_SLE) 3674 return ConstantInt::getTrue(ITy); 3675 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_SGT) 3676 return ConstantInt::getFalse(ITy); 3677 } 3678 } 3679 // Turn icmp (sext X), Cst into a compare of X and Cst if Cst is extended 3680 // too. If not, then try to deduce the result of the comparison. 3681 else if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) { 3682 // Compute the constant that would happen if we truncated to SrcTy then 3683 // reextended to DstTy. 3684 Constant *Trunc = ConstantExpr::getTrunc(CI, SrcTy); 3685 Constant *RExt = ConstantExpr::getCast(CastInst::SExt, Trunc, DstTy); 3686 3687 // If the re-extended constant didn't change then this is effectively 3688 // also a case of comparing two sign-extended values. 3689 if (RExt == CI && MaxRecurse) 3690 if (Value *V = SimplifyICmpInst(Pred, SrcOp, Trunc, Q, MaxRecurse-1)) 3691 return V; 3692 3693 // Otherwise the upper bits of LHS are all equal, while RHS has varying 3694 // bits there. Use this to work out the result of the comparison. 3695 if (RExt != CI) { 3696 switch (Pred) { 3697 default: llvm_unreachable("Unknown ICmp predicate!"); 3698 case ICmpInst::ICMP_EQ: 3699 return ConstantInt::getFalse(CI->getContext()); 3700 case ICmpInst::ICMP_NE: 3701 return ConstantInt::getTrue(CI->getContext()); 3702 3703 // If RHS is non-negative then LHS <s RHS. If RHS is negative then 3704 // LHS >s RHS. 3705 case ICmpInst::ICMP_SGT: 3706 case ICmpInst::ICMP_SGE: 3707 return CI->getValue().isNegative() ? 3708 ConstantInt::getTrue(CI->getContext()) : 3709 ConstantInt::getFalse(CI->getContext()); 3710 case ICmpInst::ICMP_SLT: 3711 case ICmpInst::ICMP_SLE: 3712 return CI->getValue().isNegative() ? 3713 ConstantInt::getFalse(CI->getContext()) : 3714 ConstantInt::getTrue(CI->getContext()); 3715 3716 // If LHS is non-negative then LHS <u RHS. If LHS is negative then 3717 // LHS >u RHS. 3718 case ICmpInst::ICMP_UGT: 3719 case ICmpInst::ICMP_UGE: 3720 // Comparison is true iff the LHS <s 0. 3721 if (MaxRecurse) 3722 if (Value *V = SimplifyICmpInst(ICmpInst::ICMP_SLT, SrcOp, 3723 Constant::getNullValue(SrcTy), 3724 Q, MaxRecurse-1)) 3725 return V; 3726 break; 3727 case ICmpInst::ICMP_ULT: 3728 case ICmpInst::ICMP_ULE: 3729 // Comparison is true iff the LHS >=s 0. 3730 if (MaxRecurse) 3731 if (Value *V = SimplifyICmpInst(ICmpInst::ICMP_SGE, SrcOp, 3732 Constant::getNullValue(SrcTy), 3733 Q, MaxRecurse-1)) 3734 return V; 3735 break; 3736 } 3737 } 3738 } 3739 } 3740 } 3741 3742 // icmp eq|ne X, Y -> false|true if X != Y 3743 // This is potentially expensive, and we have already computedKnownBits for 3744 // compares with 0 above here, so only try this for a non-zero compare. 3745 if (ICmpInst::isEquality(Pred) && !match(RHS, m_Zero()) && 3746 isKnownNonEqual(LHS, RHS, Q.DL, Q.AC, Q.CxtI, Q.DT, Q.IIQ.UseInstrInfo)) { 3747 return Pred == ICmpInst::ICMP_NE ? getTrue(ITy) : getFalse(ITy); 3748 } 3749 3750 if (Value *V = simplifyICmpWithBinOp(Pred, LHS, RHS, Q, MaxRecurse)) 3751 return V; 3752 3753 if (Value *V = simplifyICmpWithMinMax(Pred, LHS, RHS, Q, MaxRecurse)) 3754 return V; 3755 3756 if (Value *V = simplifyICmpWithDominatingAssume(Pred, LHS, RHS, Q)) 3757 return V; 3758 3759 // Simplify comparisons of related pointers using a powerful, recursive 3760 // GEP-walk when we have target data available.. 3761 if (LHS->getType()->isPointerTy()) 3762 if (auto *C = computePointerICmp(Pred, LHS, RHS, Q)) 3763 return C; 3764 if (auto *CLHS = dyn_cast<PtrToIntOperator>(LHS)) 3765 if (auto *CRHS = dyn_cast<PtrToIntOperator>(RHS)) 3766 if (Q.DL.getTypeSizeInBits(CLHS->getPointerOperandType()) == 3767 Q.DL.getTypeSizeInBits(CLHS->getType()) && 3768 Q.DL.getTypeSizeInBits(CRHS->getPointerOperandType()) == 3769 Q.DL.getTypeSizeInBits(CRHS->getType())) 3770 if (auto *C = computePointerICmp(Pred, CLHS->getPointerOperand(), 3771 CRHS->getPointerOperand(), Q)) 3772 return C; 3773 3774 // If the comparison is with the result of a select instruction, check whether 3775 // comparing with either branch of the select always yields the same value. 3776 if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS)) 3777 if (Value *V = ThreadCmpOverSelect(Pred, LHS, RHS, Q, MaxRecurse)) 3778 return V; 3779 3780 // If the comparison is with the result of a phi instruction, check whether 3781 // doing the compare with each incoming phi value yields a common result. 3782 if (isa<PHINode>(LHS) || isa<PHINode>(RHS)) 3783 if (Value *V = ThreadCmpOverPHI(Pred, LHS, RHS, Q, MaxRecurse)) 3784 return V; 3785 3786 return nullptr; 3787 } 3788 3789 Value *llvm::SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS, 3790 const SimplifyQuery &Q) { 3791 return ::SimplifyICmpInst(Predicate, LHS, RHS, Q, RecursionLimit); 3792 } 3793 3794 /// Given operands for an FCmpInst, see if we can fold the result. 3795 /// If not, this returns null. 3796 static Value *SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS, 3797 FastMathFlags FMF, const SimplifyQuery &Q, 3798 unsigned MaxRecurse) { 3799 CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate; 3800 assert(CmpInst::isFPPredicate(Pred) && "Not an FP compare!"); 3801 3802 if (Constant *CLHS = dyn_cast<Constant>(LHS)) { 3803 if (Constant *CRHS = dyn_cast<Constant>(RHS)) 3804 return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, Q.DL, Q.TLI); 3805 3806 // If we have a constant, make sure it is on the RHS. 3807 std::swap(LHS, RHS); 3808 Pred = CmpInst::getSwappedPredicate(Pred); 3809 } 3810 3811 // Fold trivial predicates. 3812 Type *RetTy = GetCompareTy(LHS); 3813 if (Pred == FCmpInst::FCMP_FALSE) 3814 return getFalse(RetTy); 3815 if (Pred == FCmpInst::FCMP_TRUE) 3816 return getTrue(RetTy); 3817 3818 // Fold (un)ordered comparison if we can determine there are no NaNs. 3819 if (Pred == FCmpInst::FCMP_UNO || Pred == FCmpInst::FCMP_ORD) 3820 if (FMF.noNaNs() || 3821 (isKnownNeverNaN(LHS, Q.TLI) && isKnownNeverNaN(RHS, Q.TLI))) 3822 return ConstantInt::get(RetTy, Pred == FCmpInst::FCMP_ORD); 3823 3824 // NaN is unordered; NaN is not ordered. 3825 assert((FCmpInst::isOrdered(Pred) || FCmpInst::isUnordered(Pred)) && 3826 "Comparison must be either ordered or unordered"); 3827 if (match(RHS, m_NaN())) 3828 return ConstantInt::get(RetTy, CmpInst::isUnordered(Pred)); 3829 3830 // fcmp pred x, poison and fcmp pred poison, x 3831 // fold to poison 3832 if (isa<PoisonValue>(LHS) || isa<PoisonValue>(RHS)) 3833 return PoisonValue::get(RetTy); 3834 3835 // fcmp pred x, undef and fcmp pred undef, x 3836 // fold to true if unordered, false if ordered 3837 if (Q.isUndefValue(LHS) || Q.isUndefValue(RHS)) { 3838 // Choosing NaN for the undef will always make unordered comparison succeed 3839 // and ordered comparison fail. 3840 return ConstantInt::get(RetTy, CmpInst::isUnordered(Pred)); 3841 } 3842 3843 // fcmp x,x -> true/false. Not all compares are foldable. 3844 if (LHS == RHS) { 3845 if (CmpInst::isTrueWhenEqual(Pred)) 3846 return getTrue(RetTy); 3847 if (CmpInst::isFalseWhenEqual(Pred)) 3848 return getFalse(RetTy); 3849 } 3850 3851 // Handle fcmp with constant RHS. 3852 // TODO: Use match with a specific FP value, so these work with vectors with 3853 // undef lanes. 3854 const APFloat *C; 3855 if (match(RHS, m_APFloat(C))) { 3856 // Check whether the constant is an infinity. 3857 if (C->isInfinity()) { 3858 if (C->isNegative()) { 3859 switch (Pred) { 3860 case FCmpInst::FCMP_OLT: 3861 // No value is ordered and less than negative infinity. 3862 return getFalse(RetTy); 3863 case FCmpInst::FCMP_UGE: 3864 // All values are unordered with or at least negative infinity. 3865 return getTrue(RetTy); 3866 default: 3867 break; 3868 } 3869 } else { 3870 switch (Pred) { 3871 case FCmpInst::FCMP_OGT: 3872 // No value is ordered and greater than infinity. 3873 return getFalse(RetTy); 3874 case FCmpInst::FCMP_ULE: 3875 // All values are unordered with and at most infinity. 3876 return getTrue(RetTy); 3877 default: 3878 break; 3879 } 3880 } 3881 3882 // LHS == Inf 3883 if (Pred == FCmpInst::FCMP_OEQ && isKnownNeverInfinity(LHS, Q.TLI)) 3884 return getFalse(RetTy); 3885 // LHS != Inf 3886 if (Pred == FCmpInst::FCMP_UNE && isKnownNeverInfinity(LHS, Q.TLI)) 3887 return getTrue(RetTy); 3888 // LHS == Inf || LHS == NaN 3889 if (Pred == FCmpInst::FCMP_UEQ && isKnownNeverInfinity(LHS, Q.TLI) && 3890 isKnownNeverNaN(LHS, Q.TLI)) 3891 return getFalse(RetTy); 3892 // LHS != Inf && LHS != NaN 3893 if (Pred == FCmpInst::FCMP_ONE && isKnownNeverInfinity(LHS, Q.TLI) && 3894 isKnownNeverNaN(LHS, Q.TLI)) 3895 return getTrue(RetTy); 3896 } 3897 if (C->isNegative() && !C->isNegZero()) { 3898 assert(!C->isNaN() && "Unexpected NaN constant!"); 3899 // TODO: We can catch more cases by using a range check rather than 3900 // relying on CannotBeOrderedLessThanZero. 3901 switch (Pred) { 3902 case FCmpInst::FCMP_UGE: 3903 case FCmpInst::FCMP_UGT: 3904 case FCmpInst::FCMP_UNE: 3905 // (X >= 0) implies (X > C) when (C < 0) 3906 if (CannotBeOrderedLessThanZero(LHS, Q.TLI)) 3907 return getTrue(RetTy); 3908 break; 3909 case FCmpInst::FCMP_OEQ: 3910 case FCmpInst::FCMP_OLE: 3911 case FCmpInst::FCMP_OLT: 3912 // (X >= 0) implies !(X < C) when (C < 0) 3913 if (CannotBeOrderedLessThanZero(LHS, Q.TLI)) 3914 return getFalse(RetTy); 3915 break; 3916 default: 3917 break; 3918 } 3919 } 3920 3921 // Check comparison of [minnum/maxnum with constant] with other constant. 3922 const APFloat *C2; 3923 if ((match(LHS, m_Intrinsic<Intrinsic::minnum>(m_Value(), m_APFloat(C2))) && 3924 *C2 < *C) || 3925 (match(LHS, m_Intrinsic<Intrinsic::maxnum>(m_Value(), m_APFloat(C2))) && 3926 *C2 > *C)) { 3927 bool IsMaxNum = 3928 cast<IntrinsicInst>(LHS)->getIntrinsicID() == Intrinsic::maxnum; 3929 // The ordered relationship and minnum/maxnum guarantee that we do not 3930 // have NaN constants, so ordered/unordered preds are handled the same. 3931 switch (Pred) { 3932 case FCmpInst::FCMP_OEQ: case FCmpInst::FCMP_UEQ: 3933 // minnum(X, LesserC) == C --> false 3934 // maxnum(X, GreaterC) == C --> false 3935 return getFalse(RetTy); 3936 case FCmpInst::FCMP_ONE: case FCmpInst::FCMP_UNE: 3937 // minnum(X, LesserC) != C --> true 3938 // maxnum(X, GreaterC) != C --> true 3939 return getTrue(RetTy); 3940 case FCmpInst::FCMP_OGE: case FCmpInst::FCMP_UGE: 3941 case FCmpInst::FCMP_OGT: case FCmpInst::FCMP_UGT: 3942 // minnum(X, LesserC) >= C --> false 3943 // minnum(X, LesserC) > C --> false 3944 // maxnum(X, GreaterC) >= C --> true 3945 // maxnum(X, GreaterC) > C --> true 3946 return ConstantInt::get(RetTy, IsMaxNum); 3947 case FCmpInst::FCMP_OLE: case FCmpInst::FCMP_ULE: 3948 case FCmpInst::FCMP_OLT: case FCmpInst::FCMP_ULT: 3949 // minnum(X, LesserC) <= C --> true 3950 // minnum(X, LesserC) < C --> true 3951 // maxnum(X, GreaterC) <= C --> false 3952 // maxnum(X, GreaterC) < C --> false 3953 return ConstantInt::get(RetTy, !IsMaxNum); 3954 default: 3955 // TRUE/FALSE/ORD/UNO should be handled before this. 3956 llvm_unreachable("Unexpected fcmp predicate"); 3957 } 3958 } 3959 } 3960 3961 if (match(RHS, m_AnyZeroFP())) { 3962 switch (Pred) { 3963 case FCmpInst::FCMP_OGE: 3964 case FCmpInst::FCMP_ULT: 3965 // Positive or zero X >= 0.0 --> true 3966 // Positive or zero X < 0.0 --> false 3967 if ((FMF.noNaNs() || isKnownNeverNaN(LHS, Q.TLI)) && 3968 CannotBeOrderedLessThanZero(LHS, Q.TLI)) 3969 return Pred == FCmpInst::FCMP_OGE ? getTrue(RetTy) : getFalse(RetTy); 3970 break; 3971 case FCmpInst::FCMP_UGE: 3972 case FCmpInst::FCMP_OLT: 3973 // Positive or zero or nan X >= 0.0 --> true 3974 // Positive or zero or nan X < 0.0 --> false 3975 if (CannotBeOrderedLessThanZero(LHS, Q.TLI)) 3976 return Pred == FCmpInst::FCMP_UGE ? getTrue(RetTy) : getFalse(RetTy); 3977 break; 3978 default: 3979 break; 3980 } 3981 } 3982 3983 // If the comparison is with the result of a select instruction, check whether 3984 // comparing with either branch of the select always yields the same value. 3985 if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS)) 3986 if (Value *V = ThreadCmpOverSelect(Pred, LHS, RHS, Q, MaxRecurse)) 3987 return V; 3988 3989 // If the comparison is with the result of a phi instruction, check whether 3990 // doing the compare with each incoming phi value yields a common result. 3991 if (isa<PHINode>(LHS) || isa<PHINode>(RHS)) 3992 if (Value *V = ThreadCmpOverPHI(Pred, LHS, RHS, Q, MaxRecurse)) 3993 return V; 3994 3995 return nullptr; 3996 } 3997 3998 Value *llvm::SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS, 3999 FastMathFlags FMF, const SimplifyQuery &Q) { 4000 return ::SimplifyFCmpInst(Predicate, LHS, RHS, FMF, Q, RecursionLimit); 4001 } 4002 4003 static Value *simplifyWithOpReplaced(Value *V, Value *Op, Value *RepOp, 4004 const SimplifyQuery &Q, 4005 bool AllowRefinement, 4006 unsigned MaxRecurse) { 4007 assert(!Op->getType()->isVectorTy() && "This is not safe for vectors"); 4008 4009 // Trivial replacement. 4010 if (V == Op) 4011 return RepOp; 4012 4013 // We cannot replace a constant, and shouldn't even try. 4014 if (isa<Constant>(Op)) 4015 return nullptr; 4016 4017 auto *I = dyn_cast<Instruction>(V); 4018 if (!I || !is_contained(I->operands(), Op)) 4019 return nullptr; 4020 4021 // Replace Op with RepOp in instruction operands. 4022 SmallVector<Value *, 8> NewOps(I->getNumOperands()); 4023 transform(I->operands(), NewOps.begin(), 4024 [&](Value *V) { return V == Op ? RepOp : V; }); 4025 4026 if (!AllowRefinement) { 4027 // General InstSimplify functions may refine the result, e.g. by returning 4028 // a constant for a potentially poison value. To avoid this, implement only 4029 // a few non-refining but profitable transforms here. 4030 4031 if (auto *BO = dyn_cast<BinaryOperator>(I)) { 4032 unsigned Opcode = BO->getOpcode(); 4033 // id op x -> x, x op id -> x 4034 if (NewOps[0] == ConstantExpr::getBinOpIdentity(Opcode, I->getType())) 4035 return NewOps[1]; 4036 if (NewOps[1] == ConstantExpr::getBinOpIdentity(Opcode, I->getType(), 4037 /* RHS */ true)) 4038 return NewOps[0]; 4039 4040 // x & x -> x, x | x -> x 4041 if ((Opcode == Instruction::And || Opcode == Instruction::Or) && 4042 NewOps[0] == NewOps[1]) 4043 return NewOps[0]; 4044 } 4045 4046 if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) { 4047 // getelementptr x, 0 -> x 4048 if (NewOps.size() == 2 && match(NewOps[1], m_Zero()) && 4049 !GEP->isInBounds()) 4050 return NewOps[0]; 4051 } 4052 } else if (MaxRecurse) { 4053 // The simplification queries below may return the original value. Consider: 4054 // %div = udiv i32 %arg, %arg2 4055 // %mul = mul nsw i32 %div, %arg2 4056 // %cmp = icmp eq i32 %mul, %arg 4057 // %sel = select i1 %cmp, i32 %div, i32 undef 4058 // Replacing %arg by %mul, %div becomes "udiv i32 %mul, %arg2", which 4059 // simplifies back to %arg. This can only happen because %mul does not 4060 // dominate %div. To ensure a consistent return value contract, we make sure 4061 // that this case returns nullptr as well. 4062 auto PreventSelfSimplify = [V](Value *Simplified) { 4063 return Simplified != V ? Simplified : nullptr; 4064 }; 4065 4066 if (auto *B = dyn_cast<BinaryOperator>(I)) 4067 return PreventSelfSimplify(SimplifyBinOp(B->getOpcode(), NewOps[0], 4068 NewOps[1], Q, MaxRecurse - 1)); 4069 4070 if (CmpInst *C = dyn_cast<CmpInst>(I)) 4071 return PreventSelfSimplify(SimplifyCmpInst(C->getPredicate(), NewOps[0], 4072 NewOps[1], Q, MaxRecurse - 1)); 4073 4074 if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) 4075 return PreventSelfSimplify(SimplifyGEPInst(GEP->getSourceElementType(), 4076 NewOps, GEP->isInBounds(), Q, 4077 MaxRecurse - 1)); 4078 4079 if (isa<SelectInst>(I)) 4080 return PreventSelfSimplify( 4081 SimplifySelectInst(NewOps[0], NewOps[1], NewOps[2], Q, 4082 MaxRecurse - 1)); 4083 // TODO: We could hand off more cases to instsimplify here. 4084 } 4085 4086 // If all operands are constant after substituting Op for RepOp then we can 4087 // constant fold the instruction. 4088 SmallVector<Constant *, 8> ConstOps; 4089 for (Value *NewOp : NewOps) { 4090 if (Constant *ConstOp = dyn_cast<Constant>(NewOp)) 4091 ConstOps.push_back(ConstOp); 4092 else 4093 return nullptr; 4094 } 4095 4096 // Consider: 4097 // %cmp = icmp eq i32 %x, 2147483647 4098 // %add = add nsw i32 %x, 1 4099 // %sel = select i1 %cmp, i32 -2147483648, i32 %add 4100 // 4101 // We can't replace %sel with %add unless we strip away the flags (which 4102 // will be done in InstCombine). 4103 // TODO: This may be unsound, because it only catches some forms of 4104 // refinement. 4105 if (!AllowRefinement && canCreatePoison(cast<Operator>(I))) 4106 return nullptr; 4107 4108 if (CmpInst *C = dyn_cast<CmpInst>(I)) 4109 return ConstantFoldCompareInstOperands(C->getPredicate(), ConstOps[0], 4110 ConstOps[1], Q.DL, Q.TLI); 4111 4112 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 4113 if (!LI->isVolatile()) 4114 return ConstantFoldLoadFromConstPtr(ConstOps[0], LI->getType(), Q.DL); 4115 4116 return ConstantFoldInstOperands(I, ConstOps, Q.DL, Q.TLI); 4117 } 4118 4119 Value *llvm::simplifyWithOpReplaced(Value *V, Value *Op, Value *RepOp, 4120 const SimplifyQuery &Q, 4121 bool AllowRefinement) { 4122 return ::simplifyWithOpReplaced(V, Op, RepOp, Q, AllowRefinement, 4123 RecursionLimit); 4124 } 4125 4126 /// Try to simplify a select instruction when its condition operand is an 4127 /// integer comparison where one operand of the compare is a constant. 4128 static Value *simplifySelectBitTest(Value *TrueVal, Value *FalseVal, Value *X, 4129 const APInt *Y, bool TrueWhenUnset) { 4130 const APInt *C; 4131 4132 // (X & Y) == 0 ? X & ~Y : X --> X 4133 // (X & Y) != 0 ? X & ~Y : X --> X & ~Y 4134 if (FalseVal == X && match(TrueVal, m_And(m_Specific(X), m_APInt(C))) && 4135 *Y == ~*C) 4136 return TrueWhenUnset ? FalseVal : TrueVal; 4137 4138 // (X & Y) == 0 ? X : X & ~Y --> X & ~Y 4139 // (X & Y) != 0 ? X : X & ~Y --> X 4140 if (TrueVal == X && match(FalseVal, m_And(m_Specific(X), m_APInt(C))) && 4141 *Y == ~*C) 4142 return TrueWhenUnset ? FalseVal : TrueVal; 4143 4144 if (Y->isPowerOf2()) { 4145 // (X & Y) == 0 ? X | Y : X --> X | Y 4146 // (X & Y) != 0 ? X | Y : X --> X 4147 if (FalseVal == X && match(TrueVal, m_Or(m_Specific(X), m_APInt(C))) && 4148 *Y == *C) 4149 return TrueWhenUnset ? TrueVal : FalseVal; 4150 4151 // (X & Y) == 0 ? X : X | Y --> X 4152 // (X & Y) != 0 ? X : X | Y --> X | Y 4153 if (TrueVal == X && match(FalseVal, m_Or(m_Specific(X), m_APInt(C))) && 4154 *Y == *C) 4155 return TrueWhenUnset ? TrueVal : FalseVal; 4156 } 4157 4158 return nullptr; 4159 } 4160 4161 /// An alternative way to test if a bit is set or not uses sgt/slt instead of 4162 /// eq/ne. 4163 static Value *simplifySelectWithFakeICmpEq(Value *CmpLHS, Value *CmpRHS, 4164 ICmpInst::Predicate Pred, 4165 Value *TrueVal, Value *FalseVal) { 4166 Value *X; 4167 APInt Mask; 4168 if (!decomposeBitTestICmp(CmpLHS, CmpRHS, Pred, X, Mask)) 4169 return nullptr; 4170 4171 return simplifySelectBitTest(TrueVal, FalseVal, X, &Mask, 4172 Pred == ICmpInst::ICMP_EQ); 4173 } 4174 4175 /// Try to simplify a select instruction when its condition operand is an 4176 /// integer comparison. 4177 static Value *simplifySelectWithICmpCond(Value *CondVal, Value *TrueVal, 4178 Value *FalseVal, const SimplifyQuery &Q, 4179 unsigned MaxRecurse) { 4180 ICmpInst::Predicate Pred; 4181 Value *CmpLHS, *CmpRHS; 4182 if (!match(CondVal, m_ICmp(Pred, m_Value(CmpLHS), m_Value(CmpRHS)))) 4183 return nullptr; 4184 4185 // Canonicalize ne to eq predicate. 4186 if (Pred == ICmpInst::ICMP_NE) { 4187 Pred = ICmpInst::ICMP_EQ; 4188 std::swap(TrueVal, FalseVal); 4189 } 4190 4191 // Check for integer min/max with a limit constant: 4192 // X > MIN_INT ? X : MIN_INT --> X 4193 // X < MAX_INT ? X : MAX_INT --> X 4194 if (TrueVal->getType()->isIntOrIntVectorTy()) { 4195 Value *X, *Y; 4196 SelectPatternFlavor SPF = 4197 matchDecomposedSelectPattern(cast<ICmpInst>(CondVal), TrueVal, FalseVal, 4198 X, Y).Flavor; 4199 if (SelectPatternResult::isMinOrMax(SPF) && Pred == getMinMaxPred(SPF)) { 4200 APInt LimitC = getMinMaxLimit(getInverseMinMaxFlavor(SPF), 4201 X->getType()->getScalarSizeInBits()); 4202 if (match(Y, m_SpecificInt(LimitC))) 4203 return X; 4204 } 4205 } 4206 4207 if (Pred == ICmpInst::ICMP_EQ && match(CmpRHS, m_Zero())) { 4208 Value *X; 4209 const APInt *Y; 4210 if (match(CmpLHS, m_And(m_Value(X), m_APInt(Y)))) 4211 if (Value *V = simplifySelectBitTest(TrueVal, FalseVal, X, Y, 4212 /*TrueWhenUnset=*/true)) 4213 return V; 4214 4215 // Test for a bogus zero-shift-guard-op around funnel-shift or rotate. 4216 Value *ShAmt; 4217 auto isFsh = m_CombineOr(m_FShl(m_Value(X), m_Value(), m_Value(ShAmt)), 4218 m_FShr(m_Value(), m_Value(X), m_Value(ShAmt))); 4219 // (ShAmt == 0) ? fshl(X, *, ShAmt) : X --> X 4220 // (ShAmt == 0) ? fshr(*, X, ShAmt) : X --> X 4221 if (match(TrueVal, isFsh) && FalseVal == X && CmpLHS == ShAmt) 4222 return X; 4223 4224 // Test for a zero-shift-guard-op around rotates. These are used to 4225 // avoid UB from oversized shifts in raw IR rotate patterns, but the 4226 // intrinsics do not have that problem. 4227 // We do not allow this transform for the general funnel shift case because 4228 // that would not preserve the poison safety of the original code. 4229 auto isRotate = 4230 m_CombineOr(m_FShl(m_Value(X), m_Deferred(X), m_Value(ShAmt)), 4231 m_FShr(m_Value(X), m_Deferred(X), m_Value(ShAmt))); 4232 // (ShAmt == 0) ? X : fshl(X, X, ShAmt) --> fshl(X, X, ShAmt) 4233 // (ShAmt == 0) ? X : fshr(X, X, ShAmt) --> fshr(X, X, ShAmt) 4234 if (match(FalseVal, isRotate) && TrueVal == X && CmpLHS == ShAmt && 4235 Pred == ICmpInst::ICMP_EQ) 4236 return FalseVal; 4237 4238 // X == 0 ? abs(X) : -abs(X) --> -abs(X) 4239 // X == 0 ? -abs(X) : abs(X) --> abs(X) 4240 if (match(TrueVal, m_Intrinsic<Intrinsic::abs>(m_Specific(CmpLHS))) && 4241 match(FalseVal, m_Neg(m_Intrinsic<Intrinsic::abs>(m_Specific(CmpLHS))))) 4242 return FalseVal; 4243 if (match(TrueVal, 4244 m_Neg(m_Intrinsic<Intrinsic::abs>(m_Specific(CmpLHS)))) && 4245 match(FalseVal, m_Intrinsic<Intrinsic::abs>(m_Specific(CmpLHS)))) 4246 return FalseVal; 4247 } 4248 4249 // Check for other compares that behave like bit test. 4250 if (Value *V = simplifySelectWithFakeICmpEq(CmpLHS, CmpRHS, Pred, 4251 TrueVal, FalseVal)) 4252 return V; 4253 4254 // If we have a scalar equality comparison, then we know the value in one of 4255 // the arms of the select. See if substituting this value into the arm and 4256 // simplifying the result yields the same value as the other arm. 4257 // Note that the equivalence/replacement opportunity does not hold for vectors 4258 // because each element of a vector select is chosen independently. 4259 if (Pred == ICmpInst::ICMP_EQ && !CondVal->getType()->isVectorTy()) { 4260 if (simplifyWithOpReplaced(FalseVal, CmpLHS, CmpRHS, Q, 4261 /* AllowRefinement */ false, MaxRecurse) == 4262 TrueVal || 4263 simplifyWithOpReplaced(FalseVal, CmpRHS, CmpLHS, Q, 4264 /* AllowRefinement */ false, MaxRecurse) == 4265 TrueVal) 4266 return FalseVal; 4267 if (simplifyWithOpReplaced(TrueVal, CmpLHS, CmpRHS, Q, 4268 /* AllowRefinement */ true, MaxRecurse) == 4269 FalseVal || 4270 simplifyWithOpReplaced(TrueVal, CmpRHS, CmpLHS, Q, 4271 /* AllowRefinement */ true, MaxRecurse) == 4272 FalseVal) 4273 return FalseVal; 4274 } 4275 4276 return nullptr; 4277 } 4278 4279 /// Try to simplify a select instruction when its condition operand is a 4280 /// floating-point comparison. 4281 static Value *simplifySelectWithFCmp(Value *Cond, Value *T, Value *F, 4282 const SimplifyQuery &Q) { 4283 FCmpInst::Predicate Pred; 4284 if (!match(Cond, m_FCmp(Pred, m_Specific(T), m_Specific(F))) && 4285 !match(Cond, m_FCmp(Pred, m_Specific(F), m_Specific(T)))) 4286 return nullptr; 4287 4288 // This transform is safe if we do not have (do not care about) -0.0 or if 4289 // at least one operand is known to not be -0.0. Otherwise, the select can 4290 // change the sign of a zero operand. 4291 bool HasNoSignedZeros = Q.CxtI && isa<FPMathOperator>(Q.CxtI) && 4292 Q.CxtI->hasNoSignedZeros(); 4293 const APFloat *C; 4294 if (HasNoSignedZeros || (match(T, m_APFloat(C)) && C->isNonZero()) || 4295 (match(F, m_APFloat(C)) && C->isNonZero())) { 4296 // (T == F) ? T : F --> F 4297 // (F == T) ? T : F --> F 4298 if (Pred == FCmpInst::FCMP_OEQ) 4299 return F; 4300 4301 // (T != F) ? T : F --> T 4302 // (F != T) ? T : F --> T 4303 if (Pred == FCmpInst::FCMP_UNE) 4304 return T; 4305 } 4306 4307 return nullptr; 4308 } 4309 4310 /// Given operands for a SelectInst, see if we can fold the result. 4311 /// If not, this returns null. 4312 static Value *SimplifySelectInst(Value *Cond, Value *TrueVal, Value *FalseVal, 4313 const SimplifyQuery &Q, unsigned MaxRecurse) { 4314 if (auto *CondC = dyn_cast<Constant>(Cond)) { 4315 if (auto *TrueC = dyn_cast<Constant>(TrueVal)) 4316 if (auto *FalseC = dyn_cast<Constant>(FalseVal)) 4317 return ConstantFoldSelectInstruction(CondC, TrueC, FalseC); 4318 4319 // select poison, X, Y -> poison 4320 if (isa<PoisonValue>(CondC)) 4321 return PoisonValue::get(TrueVal->getType()); 4322 4323 // select undef, X, Y -> X or Y 4324 if (Q.isUndefValue(CondC)) 4325 return isa<Constant>(FalseVal) ? FalseVal : TrueVal; 4326 4327 // select true, X, Y --> X 4328 // select false, X, Y --> Y 4329 // For vectors, allow undef/poison elements in the condition to match the 4330 // defined elements, so we can eliminate the select. 4331 if (match(CondC, m_One())) 4332 return TrueVal; 4333 if (match(CondC, m_Zero())) 4334 return FalseVal; 4335 } 4336 4337 assert(Cond->getType()->isIntOrIntVectorTy(1) && 4338 "Select must have bool or bool vector condition"); 4339 assert(TrueVal->getType() == FalseVal->getType() && 4340 "Select must have same types for true/false ops"); 4341 4342 if (Cond->getType() == TrueVal->getType()) { 4343 // select i1 Cond, i1 true, i1 false --> i1 Cond 4344 if (match(TrueVal, m_One()) && match(FalseVal, m_ZeroInt())) 4345 return Cond; 4346 4347 // (X || Y) && (X || !Y) --> X (commuted 8 ways) 4348 Value *X, *Y; 4349 if (match(FalseVal, m_ZeroInt())) { 4350 if (match(Cond, m_c_LogicalOr(m_Value(X), m_Not(m_Value(Y)))) && 4351 match(TrueVal, m_c_LogicalOr(m_Specific(X), m_Specific(Y)))) 4352 return X; 4353 if (match(TrueVal, m_c_LogicalOr(m_Value(X), m_Not(m_Value(Y)))) && 4354 match(Cond, m_c_LogicalOr(m_Specific(X), m_Specific(Y)))) 4355 return X; 4356 } 4357 } 4358 4359 // select ?, X, X -> X 4360 if (TrueVal == FalseVal) 4361 return TrueVal; 4362 4363 // If the true or false value is poison, we can fold to the other value. 4364 // If the true or false value is undef, we can fold to the other value as 4365 // long as the other value isn't poison. 4366 // select ?, poison, X -> X 4367 // select ?, undef, X -> X 4368 if (isa<PoisonValue>(TrueVal) || 4369 (Q.isUndefValue(TrueVal) && 4370 isGuaranteedNotToBePoison(FalseVal, Q.AC, Q.CxtI, Q.DT))) 4371 return FalseVal; 4372 // select ?, X, poison -> X 4373 // select ?, X, undef -> X 4374 if (isa<PoisonValue>(FalseVal) || 4375 (Q.isUndefValue(FalseVal) && 4376 isGuaranteedNotToBePoison(TrueVal, Q.AC, Q.CxtI, Q.DT))) 4377 return TrueVal; 4378 4379 // Deal with partial undef vector constants: select ?, VecC, VecC' --> VecC'' 4380 Constant *TrueC, *FalseC; 4381 if (isa<FixedVectorType>(TrueVal->getType()) && 4382 match(TrueVal, m_Constant(TrueC)) && 4383 match(FalseVal, m_Constant(FalseC))) { 4384 unsigned NumElts = 4385 cast<FixedVectorType>(TrueC->getType())->getNumElements(); 4386 SmallVector<Constant *, 16> NewC; 4387 for (unsigned i = 0; i != NumElts; ++i) { 4388 // Bail out on incomplete vector constants. 4389 Constant *TEltC = TrueC->getAggregateElement(i); 4390 Constant *FEltC = FalseC->getAggregateElement(i); 4391 if (!TEltC || !FEltC) 4392 break; 4393 4394 // If the elements match (undef or not), that value is the result. If only 4395 // one element is undef, choose the defined element as the safe result. 4396 if (TEltC == FEltC) 4397 NewC.push_back(TEltC); 4398 else if (isa<PoisonValue>(TEltC) || 4399 (Q.isUndefValue(TEltC) && isGuaranteedNotToBePoison(FEltC))) 4400 NewC.push_back(FEltC); 4401 else if (isa<PoisonValue>(FEltC) || 4402 (Q.isUndefValue(FEltC) && isGuaranteedNotToBePoison(TEltC))) 4403 NewC.push_back(TEltC); 4404 else 4405 break; 4406 } 4407 if (NewC.size() == NumElts) 4408 return ConstantVector::get(NewC); 4409 } 4410 4411 if (Value *V = 4412 simplifySelectWithICmpCond(Cond, TrueVal, FalseVal, Q, MaxRecurse)) 4413 return V; 4414 4415 if (Value *V = simplifySelectWithFCmp(Cond, TrueVal, FalseVal, Q)) 4416 return V; 4417 4418 if (Value *V = foldSelectWithBinaryOp(Cond, TrueVal, FalseVal)) 4419 return V; 4420 4421 Optional<bool> Imp = isImpliedByDomCondition(Cond, Q.CxtI, Q.DL); 4422 if (Imp) 4423 return *Imp ? TrueVal : FalseVal; 4424 4425 return nullptr; 4426 } 4427 4428 Value *llvm::SimplifySelectInst(Value *Cond, Value *TrueVal, Value *FalseVal, 4429 const SimplifyQuery &Q) { 4430 return ::SimplifySelectInst(Cond, TrueVal, FalseVal, Q, RecursionLimit); 4431 } 4432 4433 /// Given operands for an GetElementPtrInst, see if we can fold the result. 4434 /// If not, this returns null. 4435 static Value *SimplifyGEPInst(Type *SrcTy, ArrayRef<Value *> Ops, bool InBounds, 4436 const SimplifyQuery &Q, unsigned) { 4437 // The type of the GEP pointer operand. 4438 unsigned AS = 4439 cast<PointerType>(Ops[0]->getType()->getScalarType())->getAddressSpace(); 4440 4441 // getelementptr P -> P. 4442 if (Ops.size() == 1) 4443 return Ops[0]; 4444 4445 // Compute the (pointer) type returned by the GEP instruction. 4446 Type *LastType = GetElementPtrInst::getIndexedType(SrcTy, Ops.slice(1)); 4447 Type *GEPTy = PointerType::get(LastType, AS); 4448 for (Value *Op : Ops) { 4449 // If one of the operands is a vector, the result type is a vector of 4450 // pointers. All vector operands must have the same number of elements. 4451 if (VectorType *VT = dyn_cast<VectorType>(Op->getType())) { 4452 GEPTy = VectorType::get(GEPTy, VT->getElementCount()); 4453 break; 4454 } 4455 } 4456 4457 // getelementptr poison, idx -> poison 4458 // getelementptr baseptr, poison -> poison 4459 if (any_of(Ops, [](const auto *V) { return isa<PoisonValue>(V); })) 4460 return PoisonValue::get(GEPTy); 4461 4462 if (Q.isUndefValue(Ops[0])) 4463 // If inbounds, we can choose an out-of-bounds pointer as a base pointer. 4464 return InBounds ? PoisonValue::get(GEPTy) : UndefValue::get(GEPTy); 4465 4466 bool IsScalableVec = 4467 isa<ScalableVectorType>(SrcTy) || any_of(Ops, [](const Value *V) { 4468 return isa<ScalableVectorType>(V->getType()); 4469 }); 4470 4471 if (Ops.size() == 2) { 4472 // getelementptr P, 0 -> P. 4473 if (match(Ops[1], m_Zero()) && Ops[0]->getType() == GEPTy) 4474 return Ops[0]; 4475 4476 Type *Ty = SrcTy; 4477 if (!IsScalableVec && Ty->isSized()) { 4478 Value *P; 4479 uint64_t C; 4480 uint64_t TyAllocSize = Q.DL.getTypeAllocSize(Ty); 4481 // getelementptr P, N -> P if P points to a type of zero size. 4482 if (TyAllocSize == 0 && Ops[0]->getType() == GEPTy) 4483 return Ops[0]; 4484 4485 // The following transforms are only safe if the ptrtoint cast 4486 // doesn't truncate the pointers. 4487 if (Ops[1]->getType()->getScalarSizeInBits() == 4488 Q.DL.getPointerSizeInBits(AS)) { 4489 auto CanSimplify = [GEPTy, &P, V = Ops[0]]() -> bool { 4490 return P->getType() == GEPTy && 4491 getUnderlyingObject(P) == getUnderlyingObject(V); 4492 }; 4493 // getelementptr V, (sub P, V) -> P if P points to a type of size 1. 4494 if (TyAllocSize == 1 && 4495 match(Ops[1], m_Sub(m_PtrToInt(m_Value(P)), 4496 m_PtrToInt(m_Specific(Ops[0])))) && 4497 CanSimplify()) 4498 return P; 4499 4500 // getelementptr V, (ashr (sub P, V), C) -> P if P points to a type of 4501 // size 1 << C. 4502 if (match(Ops[1], m_AShr(m_Sub(m_PtrToInt(m_Value(P)), 4503 m_PtrToInt(m_Specific(Ops[0]))), 4504 m_ConstantInt(C))) && 4505 TyAllocSize == 1ULL << C && CanSimplify()) 4506 return P; 4507 4508 // getelementptr V, (sdiv (sub P, V), C) -> P if P points to a type of 4509 // size C. 4510 if (match(Ops[1], m_SDiv(m_Sub(m_PtrToInt(m_Value(P)), 4511 m_PtrToInt(m_Specific(Ops[0]))), 4512 m_SpecificInt(TyAllocSize))) && 4513 CanSimplify()) 4514 return P; 4515 } 4516 } 4517 } 4518 4519 if (!IsScalableVec && Q.DL.getTypeAllocSize(LastType) == 1 && 4520 all_of(Ops.slice(1).drop_back(1), 4521 [](Value *Idx) { return match(Idx, m_Zero()); })) { 4522 unsigned IdxWidth = 4523 Q.DL.getIndexSizeInBits(Ops[0]->getType()->getPointerAddressSpace()); 4524 if (Q.DL.getTypeSizeInBits(Ops.back()->getType()) == IdxWidth) { 4525 APInt BasePtrOffset(IdxWidth, 0); 4526 Value *StrippedBasePtr = 4527 Ops[0]->stripAndAccumulateInBoundsConstantOffsets(Q.DL, 4528 BasePtrOffset); 4529 4530 // Avoid creating inttoptr of zero here: While LLVMs treatment of 4531 // inttoptr is generally conservative, this particular case is folded to 4532 // a null pointer, which will have incorrect provenance. 4533 4534 // gep (gep V, C), (sub 0, V) -> C 4535 if (match(Ops.back(), 4536 m_Sub(m_Zero(), m_PtrToInt(m_Specific(StrippedBasePtr)))) && 4537 !BasePtrOffset.isZero()) { 4538 auto *CI = ConstantInt::get(GEPTy->getContext(), BasePtrOffset); 4539 return ConstantExpr::getIntToPtr(CI, GEPTy); 4540 } 4541 // gep (gep V, C), (xor V, -1) -> C-1 4542 if (match(Ops.back(), 4543 m_Xor(m_PtrToInt(m_Specific(StrippedBasePtr)), m_AllOnes())) && 4544 !BasePtrOffset.isOne()) { 4545 auto *CI = ConstantInt::get(GEPTy->getContext(), BasePtrOffset - 1); 4546 return ConstantExpr::getIntToPtr(CI, GEPTy); 4547 } 4548 } 4549 } 4550 4551 // Check to see if this is constant foldable. 4552 if (!all_of(Ops, [](Value *V) { return isa<Constant>(V); })) 4553 return nullptr; 4554 4555 auto *CE = ConstantExpr::getGetElementPtr(SrcTy, cast<Constant>(Ops[0]), 4556 Ops.slice(1), InBounds); 4557 return ConstantFoldConstant(CE, Q.DL); 4558 } 4559 4560 Value *llvm::SimplifyGEPInst(Type *SrcTy, ArrayRef<Value *> Ops, bool InBounds, 4561 const SimplifyQuery &Q) { 4562 return ::SimplifyGEPInst(SrcTy, Ops, InBounds, Q, RecursionLimit); 4563 } 4564 4565 /// Given operands for an InsertValueInst, see if we can fold the result. 4566 /// If not, this returns null. 4567 static Value *SimplifyInsertValueInst(Value *Agg, Value *Val, 4568 ArrayRef<unsigned> Idxs, const SimplifyQuery &Q, 4569 unsigned) { 4570 if (Constant *CAgg = dyn_cast<Constant>(Agg)) 4571 if (Constant *CVal = dyn_cast<Constant>(Val)) 4572 return ConstantFoldInsertValueInstruction(CAgg, CVal, Idxs); 4573 4574 // insertvalue x, undef, n -> x 4575 if (Q.isUndefValue(Val)) 4576 return Agg; 4577 4578 // insertvalue x, (extractvalue y, n), n 4579 if (ExtractValueInst *EV = dyn_cast<ExtractValueInst>(Val)) 4580 if (EV->getAggregateOperand()->getType() == Agg->getType() && 4581 EV->getIndices() == Idxs) { 4582 // insertvalue undef, (extractvalue y, n), n -> y 4583 if (Q.isUndefValue(Agg)) 4584 return EV->getAggregateOperand(); 4585 4586 // insertvalue y, (extractvalue y, n), n -> y 4587 if (Agg == EV->getAggregateOperand()) 4588 return Agg; 4589 } 4590 4591 return nullptr; 4592 } 4593 4594 Value *llvm::SimplifyInsertValueInst(Value *Agg, Value *Val, 4595 ArrayRef<unsigned> Idxs, 4596 const SimplifyQuery &Q) { 4597 return ::SimplifyInsertValueInst(Agg, Val, Idxs, Q, RecursionLimit); 4598 } 4599 4600 Value *llvm::SimplifyInsertElementInst(Value *Vec, Value *Val, Value *Idx, 4601 const SimplifyQuery &Q) { 4602 // Try to constant fold. 4603 auto *VecC = dyn_cast<Constant>(Vec); 4604 auto *ValC = dyn_cast<Constant>(Val); 4605 auto *IdxC = dyn_cast<Constant>(Idx); 4606 if (VecC && ValC && IdxC) 4607 return ConstantExpr::getInsertElement(VecC, ValC, IdxC); 4608 4609 // For fixed-length vector, fold into poison if index is out of bounds. 4610 if (auto *CI = dyn_cast<ConstantInt>(Idx)) { 4611 if (isa<FixedVectorType>(Vec->getType()) && 4612 CI->uge(cast<FixedVectorType>(Vec->getType())->getNumElements())) 4613 return PoisonValue::get(Vec->getType()); 4614 } 4615 4616 // If index is undef, it might be out of bounds (see above case) 4617 if (Q.isUndefValue(Idx)) 4618 return PoisonValue::get(Vec->getType()); 4619 4620 // If the scalar is poison, or it is undef and there is no risk of 4621 // propagating poison from the vector value, simplify to the vector value. 4622 if (isa<PoisonValue>(Val) || 4623 (Q.isUndefValue(Val) && isGuaranteedNotToBePoison(Vec))) 4624 return Vec; 4625 4626 // If we are extracting a value from a vector, then inserting it into the same 4627 // place, that's the input vector: 4628 // insertelt Vec, (extractelt Vec, Idx), Idx --> Vec 4629 if (match(Val, m_ExtractElt(m_Specific(Vec), m_Specific(Idx)))) 4630 return Vec; 4631 4632 return nullptr; 4633 } 4634 4635 /// Given operands for an ExtractValueInst, see if we can fold the result. 4636 /// If not, this returns null. 4637 static Value *SimplifyExtractValueInst(Value *Agg, ArrayRef<unsigned> Idxs, 4638 const SimplifyQuery &, unsigned) { 4639 if (auto *CAgg = dyn_cast<Constant>(Agg)) 4640 return ConstantFoldExtractValueInstruction(CAgg, Idxs); 4641 4642 // extractvalue x, (insertvalue y, elt, n), n -> elt 4643 unsigned NumIdxs = Idxs.size(); 4644 for (auto *IVI = dyn_cast<InsertValueInst>(Agg); IVI != nullptr; 4645 IVI = dyn_cast<InsertValueInst>(IVI->getAggregateOperand())) { 4646 ArrayRef<unsigned> InsertValueIdxs = IVI->getIndices(); 4647 unsigned NumInsertValueIdxs = InsertValueIdxs.size(); 4648 unsigned NumCommonIdxs = std::min(NumInsertValueIdxs, NumIdxs); 4649 if (InsertValueIdxs.slice(0, NumCommonIdxs) == 4650 Idxs.slice(0, NumCommonIdxs)) { 4651 if (NumIdxs == NumInsertValueIdxs) 4652 return IVI->getInsertedValueOperand(); 4653 break; 4654 } 4655 } 4656 4657 return nullptr; 4658 } 4659 4660 Value *llvm::SimplifyExtractValueInst(Value *Agg, ArrayRef<unsigned> Idxs, 4661 const SimplifyQuery &Q) { 4662 return ::SimplifyExtractValueInst(Agg, Idxs, Q, RecursionLimit); 4663 } 4664 4665 /// Given operands for an ExtractElementInst, see if we can fold the result. 4666 /// If not, this returns null. 4667 static Value *SimplifyExtractElementInst(Value *Vec, Value *Idx, 4668 const SimplifyQuery &Q, unsigned) { 4669 auto *VecVTy = cast<VectorType>(Vec->getType()); 4670 if (auto *CVec = dyn_cast<Constant>(Vec)) { 4671 if (auto *CIdx = dyn_cast<Constant>(Idx)) 4672 return ConstantExpr::getExtractElement(CVec, CIdx); 4673 4674 if (Q.isUndefValue(Vec)) 4675 return UndefValue::get(VecVTy->getElementType()); 4676 } 4677 4678 // An undef extract index can be arbitrarily chosen to be an out-of-range 4679 // index value, which would result in the instruction being poison. 4680 if (Q.isUndefValue(Idx)) 4681 return PoisonValue::get(VecVTy->getElementType()); 4682 4683 // If extracting a specified index from the vector, see if we can recursively 4684 // find a previously computed scalar that was inserted into the vector. 4685 if (auto *IdxC = dyn_cast<ConstantInt>(Idx)) { 4686 // For fixed-length vector, fold into undef if index is out of bounds. 4687 unsigned MinNumElts = VecVTy->getElementCount().getKnownMinValue(); 4688 if (isa<FixedVectorType>(VecVTy) && IdxC->getValue().uge(MinNumElts)) 4689 return PoisonValue::get(VecVTy->getElementType()); 4690 // Handle case where an element is extracted from a splat. 4691 if (IdxC->getValue().ult(MinNumElts)) 4692 if (auto *Splat = getSplatValue(Vec)) 4693 return Splat; 4694 if (Value *Elt = findScalarElement(Vec, IdxC->getZExtValue())) 4695 return Elt; 4696 } else { 4697 // The index is not relevant if our vector is a splat. 4698 if (Value *Splat = getSplatValue(Vec)) 4699 return Splat; 4700 } 4701 return nullptr; 4702 } 4703 4704 Value *llvm::SimplifyExtractElementInst(Value *Vec, Value *Idx, 4705 const SimplifyQuery &Q) { 4706 return ::SimplifyExtractElementInst(Vec, Idx, Q, RecursionLimit); 4707 } 4708 4709 /// See if we can fold the given phi. If not, returns null. 4710 static Value *SimplifyPHINode(PHINode *PN, ArrayRef<Value *> IncomingValues, 4711 const SimplifyQuery &Q) { 4712 // WARNING: no matter how worthwhile it may seem, we can not perform PHI CSE 4713 // here, because the PHI we may succeed simplifying to was not 4714 // def-reachable from the original PHI! 4715 4716 // If all of the PHI's incoming values are the same then replace the PHI node 4717 // with the common value. 4718 Value *CommonValue = nullptr; 4719 bool HasUndefInput = false; 4720 for (Value *Incoming : IncomingValues) { 4721 // If the incoming value is the phi node itself, it can safely be skipped. 4722 if (Incoming == PN) continue; 4723 if (Q.isUndefValue(Incoming)) { 4724 // Remember that we saw an undef value, but otherwise ignore them. 4725 HasUndefInput = true; 4726 continue; 4727 } 4728 if (CommonValue && Incoming != CommonValue) 4729 return nullptr; // Not the same, bail out. 4730 CommonValue = Incoming; 4731 } 4732 4733 // If CommonValue is null then all of the incoming values were either undef or 4734 // equal to the phi node itself. 4735 if (!CommonValue) 4736 return UndefValue::get(PN->getType()); 4737 4738 // If we have a PHI node like phi(X, undef, X), where X is defined by some 4739 // instruction, we cannot return X as the result of the PHI node unless it 4740 // dominates the PHI block. 4741 if (HasUndefInput) 4742 return valueDominatesPHI(CommonValue, PN, Q.DT) ? CommonValue : nullptr; 4743 4744 return CommonValue; 4745 } 4746 4747 static Value *SimplifyCastInst(unsigned CastOpc, Value *Op, 4748 Type *Ty, const SimplifyQuery &Q, unsigned MaxRecurse) { 4749 if (auto *C = dyn_cast<Constant>(Op)) 4750 return ConstantFoldCastOperand(CastOpc, C, Ty, Q.DL); 4751 4752 if (auto *CI = dyn_cast<CastInst>(Op)) { 4753 auto *Src = CI->getOperand(0); 4754 Type *SrcTy = Src->getType(); 4755 Type *MidTy = CI->getType(); 4756 Type *DstTy = Ty; 4757 if (Src->getType() == Ty) { 4758 auto FirstOp = static_cast<Instruction::CastOps>(CI->getOpcode()); 4759 auto SecondOp = static_cast<Instruction::CastOps>(CastOpc); 4760 Type *SrcIntPtrTy = 4761 SrcTy->isPtrOrPtrVectorTy() ? Q.DL.getIntPtrType(SrcTy) : nullptr; 4762 Type *MidIntPtrTy = 4763 MidTy->isPtrOrPtrVectorTy() ? Q.DL.getIntPtrType(MidTy) : nullptr; 4764 Type *DstIntPtrTy = 4765 DstTy->isPtrOrPtrVectorTy() ? Q.DL.getIntPtrType(DstTy) : nullptr; 4766 if (CastInst::isEliminableCastPair(FirstOp, SecondOp, SrcTy, MidTy, DstTy, 4767 SrcIntPtrTy, MidIntPtrTy, 4768 DstIntPtrTy) == Instruction::BitCast) 4769 return Src; 4770 } 4771 } 4772 4773 // bitcast x -> x 4774 if (CastOpc == Instruction::BitCast) 4775 if (Op->getType() == Ty) 4776 return Op; 4777 4778 return nullptr; 4779 } 4780 4781 Value *llvm::SimplifyCastInst(unsigned CastOpc, Value *Op, Type *Ty, 4782 const SimplifyQuery &Q) { 4783 return ::SimplifyCastInst(CastOpc, Op, Ty, Q, RecursionLimit); 4784 } 4785 4786 /// For the given destination element of a shuffle, peek through shuffles to 4787 /// match a root vector source operand that contains that element in the same 4788 /// vector lane (ie, the same mask index), so we can eliminate the shuffle(s). 4789 static Value *foldIdentityShuffles(int DestElt, Value *Op0, Value *Op1, 4790 int MaskVal, Value *RootVec, 4791 unsigned MaxRecurse) { 4792 if (!MaxRecurse--) 4793 return nullptr; 4794 4795 // Bail out if any mask value is undefined. That kind of shuffle may be 4796 // simplified further based on demanded bits or other folds. 4797 if (MaskVal == -1) 4798 return nullptr; 4799 4800 // The mask value chooses which source operand we need to look at next. 4801 int InVecNumElts = cast<FixedVectorType>(Op0->getType())->getNumElements(); 4802 int RootElt = MaskVal; 4803 Value *SourceOp = Op0; 4804 if (MaskVal >= InVecNumElts) { 4805 RootElt = MaskVal - InVecNumElts; 4806 SourceOp = Op1; 4807 } 4808 4809 // If the source operand is a shuffle itself, look through it to find the 4810 // matching root vector. 4811 if (auto *SourceShuf = dyn_cast<ShuffleVectorInst>(SourceOp)) { 4812 return foldIdentityShuffles( 4813 DestElt, SourceShuf->getOperand(0), SourceShuf->getOperand(1), 4814 SourceShuf->getMaskValue(RootElt), RootVec, MaxRecurse); 4815 } 4816 4817 // TODO: Look through bitcasts? What if the bitcast changes the vector element 4818 // size? 4819 4820 // The source operand is not a shuffle. Initialize the root vector value for 4821 // this shuffle if that has not been done yet. 4822 if (!RootVec) 4823 RootVec = SourceOp; 4824 4825 // Give up as soon as a source operand does not match the existing root value. 4826 if (RootVec != SourceOp) 4827 return nullptr; 4828 4829 // The element must be coming from the same lane in the source vector 4830 // (although it may have crossed lanes in intermediate shuffles). 4831 if (RootElt != DestElt) 4832 return nullptr; 4833 4834 return RootVec; 4835 } 4836 4837 static Value *SimplifyShuffleVectorInst(Value *Op0, Value *Op1, 4838 ArrayRef<int> Mask, Type *RetTy, 4839 const SimplifyQuery &Q, 4840 unsigned MaxRecurse) { 4841 if (all_of(Mask, [](int Elem) { return Elem == UndefMaskElem; })) 4842 return UndefValue::get(RetTy); 4843 4844 auto *InVecTy = cast<VectorType>(Op0->getType()); 4845 unsigned MaskNumElts = Mask.size(); 4846 ElementCount InVecEltCount = InVecTy->getElementCount(); 4847 4848 bool Scalable = InVecEltCount.isScalable(); 4849 4850 SmallVector<int, 32> Indices; 4851 Indices.assign(Mask.begin(), Mask.end()); 4852 4853 // Canonicalization: If mask does not select elements from an input vector, 4854 // replace that input vector with poison. 4855 if (!Scalable) { 4856 bool MaskSelects0 = false, MaskSelects1 = false; 4857 unsigned InVecNumElts = InVecEltCount.getKnownMinValue(); 4858 for (unsigned i = 0; i != MaskNumElts; ++i) { 4859 if (Indices[i] == -1) 4860 continue; 4861 if ((unsigned)Indices[i] < InVecNumElts) 4862 MaskSelects0 = true; 4863 else 4864 MaskSelects1 = true; 4865 } 4866 if (!MaskSelects0) 4867 Op0 = PoisonValue::get(InVecTy); 4868 if (!MaskSelects1) 4869 Op1 = PoisonValue::get(InVecTy); 4870 } 4871 4872 auto *Op0Const = dyn_cast<Constant>(Op0); 4873 auto *Op1Const = dyn_cast<Constant>(Op1); 4874 4875 // If all operands are constant, constant fold the shuffle. This 4876 // transformation depends on the value of the mask which is not known at 4877 // compile time for scalable vectors 4878 if (Op0Const && Op1Const) 4879 return ConstantExpr::getShuffleVector(Op0Const, Op1Const, Mask); 4880 4881 // Canonicalization: if only one input vector is constant, it shall be the 4882 // second one. This transformation depends on the value of the mask which 4883 // is not known at compile time for scalable vectors 4884 if (!Scalable && Op0Const && !Op1Const) { 4885 std::swap(Op0, Op1); 4886 ShuffleVectorInst::commuteShuffleMask(Indices, 4887 InVecEltCount.getKnownMinValue()); 4888 } 4889 4890 // A splat of an inserted scalar constant becomes a vector constant: 4891 // shuf (inselt ?, C, IndexC), undef, <IndexC, IndexC...> --> <C, C...> 4892 // NOTE: We may have commuted above, so analyze the updated Indices, not the 4893 // original mask constant. 4894 // NOTE: This transformation depends on the value of the mask which is not 4895 // known at compile time for scalable vectors 4896 Constant *C; 4897 ConstantInt *IndexC; 4898 if (!Scalable && match(Op0, m_InsertElt(m_Value(), m_Constant(C), 4899 m_ConstantInt(IndexC)))) { 4900 // Match a splat shuffle mask of the insert index allowing undef elements. 4901 int InsertIndex = IndexC->getZExtValue(); 4902 if (all_of(Indices, [InsertIndex](int MaskElt) { 4903 return MaskElt == InsertIndex || MaskElt == -1; 4904 })) { 4905 assert(isa<UndefValue>(Op1) && "Expected undef operand 1 for splat"); 4906 4907 // Shuffle mask undefs become undefined constant result elements. 4908 SmallVector<Constant *, 16> VecC(MaskNumElts, C); 4909 for (unsigned i = 0; i != MaskNumElts; ++i) 4910 if (Indices[i] == -1) 4911 VecC[i] = UndefValue::get(C->getType()); 4912 return ConstantVector::get(VecC); 4913 } 4914 } 4915 4916 // A shuffle of a splat is always the splat itself. Legal if the shuffle's 4917 // value type is same as the input vectors' type. 4918 if (auto *OpShuf = dyn_cast<ShuffleVectorInst>(Op0)) 4919 if (Q.isUndefValue(Op1) && RetTy == InVecTy && 4920 is_splat(OpShuf->getShuffleMask())) 4921 return Op0; 4922 4923 // All remaining transformation depend on the value of the mask, which is 4924 // not known at compile time for scalable vectors. 4925 if (Scalable) 4926 return nullptr; 4927 4928 // Don't fold a shuffle with undef mask elements. This may get folded in a 4929 // better way using demanded bits or other analysis. 4930 // TODO: Should we allow this? 4931 if (is_contained(Indices, -1)) 4932 return nullptr; 4933 4934 // Check if every element of this shuffle can be mapped back to the 4935 // corresponding element of a single root vector. If so, we don't need this 4936 // shuffle. This handles simple identity shuffles as well as chains of 4937 // shuffles that may widen/narrow and/or move elements across lanes and back. 4938 Value *RootVec = nullptr; 4939 for (unsigned i = 0; i != MaskNumElts; ++i) { 4940 // Note that recursion is limited for each vector element, so if any element 4941 // exceeds the limit, this will fail to simplify. 4942 RootVec = 4943 foldIdentityShuffles(i, Op0, Op1, Indices[i], RootVec, MaxRecurse); 4944 4945 // We can't replace a widening/narrowing shuffle with one of its operands. 4946 if (!RootVec || RootVec->getType() != RetTy) 4947 return nullptr; 4948 } 4949 return RootVec; 4950 } 4951 4952 /// Given operands for a ShuffleVectorInst, fold the result or return null. 4953 Value *llvm::SimplifyShuffleVectorInst(Value *Op0, Value *Op1, 4954 ArrayRef<int> Mask, Type *RetTy, 4955 const SimplifyQuery &Q) { 4956 return ::SimplifyShuffleVectorInst(Op0, Op1, Mask, RetTy, Q, RecursionLimit); 4957 } 4958 4959 static Constant *foldConstant(Instruction::UnaryOps Opcode, 4960 Value *&Op, const SimplifyQuery &Q) { 4961 if (auto *C = dyn_cast<Constant>(Op)) 4962 return ConstantFoldUnaryOpOperand(Opcode, C, Q.DL); 4963 return nullptr; 4964 } 4965 4966 /// Given the operand for an FNeg, see if we can fold the result. If not, this 4967 /// returns null. 4968 static Value *simplifyFNegInst(Value *Op, FastMathFlags FMF, 4969 const SimplifyQuery &Q, unsigned MaxRecurse) { 4970 if (Constant *C = foldConstant(Instruction::FNeg, Op, Q)) 4971 return C; 4972 4973 Value *X; 4974 // fneg (fneg X) ==> X 4975 if (match(Op, m_FNeg(m_Value(X)))) 4976 return X; 4977 4978 return nullptr; 4979 } 4980 4981 Value *llvm::SimplifyFNegInst(Value *Op, FastMathFlags FMF, 4982 const SimplifyQuery &Q) { 4983 return ::simplifyFNegInst(Op, FMF, Q, RecursionLimit); 4984 } 4985 4986 static Constant *propagateNaN(Constant *In) { 4987 // If the input is a vector with undef elements, just return a default NaN. 4988 if (!In->isNaN()) 4989 return ConstantFP::getNaN(In->getType()); 4990 4991 // Propagate the existing NaN constant when possible. 4992 // TODO: Should we quiet a signaling NaN? 4993 return In; 4994 } 4995 4996 /// Perform folds that are common to any floating-point operation. This implies 4997 /// transforms based on poison/undef/NaN because the operation itself makes no 4998 /// difference to the result. 4999 static Constant *simplifyFPOp(ArrayRef<Value *> Ops, FastMathFlags FMF, 5000 const SimplifyQuery &Q, 5001 fp::ExceptionBehavior ExBehavior, 5002 RoundingMode Rounding) { 5003 // Poison is independent of anything else. It always propagates from an 5004 // operand to a math result. 5005 if (any_of(Ops, [](Value *V) { return match(V, m_Poison()); })) 5006 return PoisonValue::get(Ops[0]->getType()); 5007 5008 for (Value *V : Ops) { 5009 bool IsNan = match(V, m_NaN()); 5010 bool IsInf = match(V, m_Inf()); 5011 bool IsUndef = Q.isUndefValue(V); 5012 5013 // If this operation has 'nnan' or 'ninf' and at least 1 disallowed operand 5014 // (an undef operand can be chosen to be Nan/Inf), then the result of 5015 // this operation is poison. 5016 if (FMF.noNaNs() && (IsNan || IsUndef)) 5017 return PoisonValue::get(V->getType()); 5018 if (FMF.noInfs() && (IsInf || IsUndef)) 5019 return PoisonValue::get(V->getType()); 5020 5021 if (isDefaultFPEnvironment(ExBehavior, Rounding)) { 5022 if (IsUndef || IsNan) 5023 return propagateNaN(cast<Constant>(V)); 5024 } else if (ExBehavior != fp::ebStrict) { 5025 if (IsNan) 5026 return propagateNaN(cast<Constant>(V)); 5027 } 5028 } 5029 return nullptr; 5030 } 5031 5032 // TODO: Move this out to a header file: 5033 static inline bool canIgnoreSNaN(fp::ExceptionBehavior EB, FastMathFlags FMF) { 5034 return (EB == fp::ebIgnore || FMF.noNaNs()); 5035 } 5036 5037 /// Given operands for an FAdd, see if we can fold the result. If not, this 5038 /// returns null. 5039 static Value * 5040 SimplifyFAddInst(Value *Op0, Value *Op1, FastMathFlags FMF, 5041 const SimplifyQuery &Q, unsigned MaxRecurse, 5042 fp::ExceptionBehavior ExBehavior = fp::ebIgnore, 5043 RoundingMode Rounding = RoundingMode::NearestTiesToEven) { 5044 if (isDefaultFPEnvironment(ExBehavior, Rounding)) 5045 if (Constant *C = foldOrCommuteConstant(Instruction::FAdd, Op0, Op1, Q)) 5046 return C; 5047 5048 if (Constant *C = simplifyFPOp({Op0, Op1}, FMF, Q, ExBehavior, Rounding)) 5049 return C; 5050 5051 // fadd X, -0 ==> X 5052 // With strict/constrained FP, we have these possible edge cases that do 5053 // not simplify to Op0: 5054 // fadd SNaN, -0.0 --> QNaN 5055 // fadd +0.0, -0.0 --> -0.0 (but only with round toward negative) 5056 if (canIgnoreSNaN(ExBehavior, FMF) && 5057 (!canRoundingModeBe(Rounding, RoundingMode::TowardNegative) || 5058 FMF.noSignedZeros())) 5059 if (match(Op1, m_NegZeroFP())) 5060 return Op0; 5061 5062 // fadd X, 0 ==> X, when we know X is not -0 5063 if (canIgnoreSNaN(ExBehavior, FMF)) 5064 if (match(Op1, m_PosZeroFP()) && 5065 (FMF.noSignedZeros() || CannotBeNegativeZero(Op0, Q.TLI))) 5066 return Op0; 5067 5068 if (!isDefaultFPEnvironment(ExBehavior, Rounding)) 5069 return nullptr; 5070 5071 // With nnan: -X + X --> 0.0 (and commuted variant) 5072 // We don't have to explicitly exclude infinities (ninf): INF + -INF == NaN. 5073 // Negative zeros are allowed because we always end up with positive zero: 5074 // X = -0.0: (-0.0 - (-0.0)) + (-0.0) == ( 0.0) + (-0.0) == 0.0 5075 // X = -0.0: ( 0.0 - (-0.0)) + (-0.0) == ( 0.0) + (-0.0) == 0.0 5076 // X = 0.0: (-0.0 - ( 0.0)) + ( 0.0) == (-0.0) + ( 0.0) == 0.0 5077 // X = 0.0: ( 0.0 - ( 0.0)) + ( 0.0) == ( 0.0) + ( 0.0) == 0.0 5078 if (FMF.noNaNs()) { 5079 if (match(Op0, m_FSub(m_AnyZeroFP(), m_Specific(Op1))) || 5080 match(Op1, m_FSub(m_AnyZeroFP(), m_Specific(Op0)))) 5081 return ConstantFP::getNullValue(Op0->getType()); 5082 5083 if (match(Op0, m_FNeg(m_Specific(Op1))) || 5084 match(Op1, m_FNeg(m_Specific(Op0)))) 5085 return ConstantFP::getNullValue(Op0->getType()); 5086 } 5087 5088 // (X - Y) + Y --> X 5089 // Y + (X - Y) --> X 5090 Value *X; 5091 if (FMF.noSignedZeros() && FMF.allowReassoc() && 5092 (match(Op0, m_FSub(m_Value(X), m_Specific(Op1))) || 5093 match(Op1, m_FSub(m_Value(X), m_Specific(Op0))))) 5094 return X; 5095 5096 return nullptr; 5097 } 5098 5099 /// Given operands for an FSub, see if we can fold the result. If not, this 5100 /// returns null. 5101 static Value * 5102 SimplifyFSubInst(Value *Op0, Value *Op1, FastMathFlags FMF, 5103 const SimplifyQuery &Q, unsigned MaxRecurse, 5104 fp::ExceptionBehavior ExBehavior = fp::ebIgnore, 5105 RoundingMode Rounding = RoundingMode::NearestTiesToEven) { 5106 if (isDefaultFPEnvironment(ExBehavior, Rounding)) 5107 if (Constant *C = foldOrCommuteConstant(Instruction::FSub, Op0, Op1, Q)) 5108 return C; 5109 5110 if (Constant *C = simplifyFPOp({Op0, Op1}, FMF, Q, ExBehavior, Rounding)) 5111 return C; 5112 5113 if (!isDefaultFPEnvironment(ExBehavior, Rounding)) 5114 return nullptr; 5115 5116 // fsub X, +0 ==> X 5117 if (match(Op1, m_PosZeroFP())) 5118 return Op0; 5119 5120 // fsub X, -0 ==> X, when we know X is not -0 5121 if (match(Op1, m_NegZeroFP()) && 5122 (FMF.noSignedZeros() || CannotBeNegativeZero(Op0, Q.TLI))) 5123 return Op0; 5124 5125 // fsub -0.0, (fsub -0.0, X) ==> X 5126 // fsub -0.0, (fneg X) ==> X 5127 Value *X; 5128 if (match(Op0, m_NegZeroFP()) && 5129 match(Op1, m_FNeg(m_Value(X)))) 5130 return X; 5131 5132 // fsub 0.0, (fsub 0.0, X) ==> X if signed zeros are ignored. 5133 // fsub 0.0, (fneg X) ==> X if signed zeros are ignored. 5134 if (FMF.noSignedZeros() && match(Op0, m_AnyZeroFP()) && 5135 (match(Op1, m_FSub(m_AnyZeroFP(), m_Value(X))) || 5136 match(Op1, m_FNeg(m_Value(X))))) 5137 return X; 5138 5139 // fsub nnan x, x ==> 0.0 5140 if (FMF.noNaNs() && Op0 == Op1) 5141 return Constant::getNullValue(Op0->getType()); 5142 5143 // Y - (Y - X) --> X 5144 // (X + Y) - Y --> X 5145 if (FMF.noSignedZeros() && FMF.allowReassoc() && 5146 (match(Op1, m_FSub(m_Specific(Op0), m_Value(X))) || 5147 match(Op0, m_c_FAdd(m_Specific(Op1), m_Value(X))))) 5148 return X; 5149 5150 return nullptr; 5151 } 5152 5153 static Value *SimplifyFMAFMul(Value *Op0, Value *Op1, FastMathFlags FMF, 5154 const SimplifyQuery &Q, unsigned MaxRecurse, 5155 fp::ExceptionBehavior ExBehavior, 5156 RoundingMode Rounding) { 5157 if (Constant *C = simplifyFPOp({Op0, Op1}, FMF, Q, ExBehavior, Rounding)) 5158 return C; 5159 5160 if (!isDefaultFPEnvironment(ExBehavior, Rounding)) 5161 return nullptr; 5162 5163 // fmul X, 1.0 ==> X 5164 if (match(Op1, m_FPOne())) 5165 return Op0; 5166 5167 // fmul 1.0, X ==> X 5168 if (match(Op0, m_FPOne())) 5169 return Op1; 5170 5171 // fmul nnan nsz X, 0 ==> 0 5172 if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op1, m_AnyZeroFP())) 5173 return ConstantFP::getNullValue(Op0->getType()); 5174 5175 // fmul nnan nsz 0, X ==> 0 5176 if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op0, m_AnyZeroFP())) 5177 return ConstantFP::getNullValue(Op1->getType()); 5178 5179 // sqrt(X) * sqrt(X) --> X, if we can: 5180 // 1. Remove the intermediate rounding (reassociate). 5181 // 2. Ignore non-zero negative numbers because sqrt would produce NAN. 5182 // 3. Ignore -0.0 because sqrt(-0.0) == -0.0, but -0.0 * -0.0 == 0.0. 5183 Value *X; 5184 if (Op0 == Op1 && match(Op0, m_Intrinsic<Intrinsic::sqrt>(m_Value(X))) && 5185 FMF.allowReassoc() && FMF.noNaNs() && FMF.noSignedZeros()) 5186 return X; 5187 5188 return nullptr; 5189 } 5190 5191 /// Given the operands for an FMul, see if we can fold the result 5192 static Value * 5193 SimplifyFMulInst(Value *Op0, Value *Op1, FastMathFlags FMF, 5194 const SimplifyQuery &Q, unsigned MaxRecurse, 5195 fp::ExceptionBehavior ExBehavior = fp::ebIgnore, 5196 RoundingMode Rounding = RoundingMode::NearestTiesToEven) { 5197 if (isDefaultFPEnvironment(ExBehavior, Rounding)) 5198 if (Constant *C = foldOrCommuteConstant(Instruction::FMul, Op0, Op1, Q)) 5199 return C; 5200 5201 // Now apply simplifications that do not require rounding. 5202 return SimplifyFMAFMul(Op0, Op1, FMF, Q, MaxRecurse, ExBehavior, Rounding); 5203 } 5204 5205 Value *llvm::SimplifyFAddInst(Value *Op0, Value *Op1, FastMathFlags FMF, 5206 const SimplifyQuery &Q, 5207 fp::ExceptionBehavior ExBehavior, 5208 RoundingMode Rounding) { 5209 return ::SimplifyFAddInst(Op0, Op1, FMF, Q, RecursionLimit, ExBehavior, 5210 Rounding); 5211 } 5212 5213 Value *llvm::SimplifyFSubInst(Value *Op0, Value *Op1, FastMathFlags FMF, 5214 const SimplifyQuery &Q, 5215 fp::ExceptionBehavior ExBehavior, 5216 RoundingMode Rounding) { 5217 return ::SimplifyFSubInst(Op0, Op1, FMF, Q, RecursionLimit, ExBehavior, 5218 Rounding); 5219 } 5220 5221 Value *llvm::SimplifyFMulInst(Value *Op0, Value *Op1, FastMathFlags FMF, 5222 const SimplifyQuery &Q, 5223 fp::ExceptionBehavior ExBehavior, 5224 RoundingMode Rounding) { 5225 return ::SimplifyFMulInst(Op0, Op1, FMF, Q, RecursionLimit, ExBehavior, 5226 Rounding); 5227 } 5228 5229 Value *llvm::SimplifyFMAFMul(Value *Op0, Value *Op1, FastMathFlags FMF, 5230 const SimplifyQuery &Q, 5231 fp::ExceptionBehavior ExBehavior, 5232 RoundingMode Rounding) { 5233 return ::SimplifyFMAFMul(Op0, Op1, FMF, Q, RecursionLimit, ExBehavior, 5234 Rounding); 5235 } 5236 5237 static Value * 5238 SimplifyFDivInst(Value *Op0, Value *Op1, FastMathFlags FMF, 5239 const SimplifyQuery &Q, unsigned, 5240 fp::ExceptionBehavior ExBehavior = fp::ebIgnore, 5241 RoundingMode Rounding = RoundingMode::NearestTiesToEven) { 5242 if (isDefaultFPEnvironment(ExBehavior, Rounding)) 5243 if (Constant *C = foldOrCommuteConstant(Instruction::FDiv, Op0, Op1, Q)) 5244 return C; 5245 5246 if (Constant *C = simplifyFPOp({Op0, Op1}, FMF, Q, ExBehavior, Rounding)) 5247 return C; 5248 5249 if (!isDefaultFPEnvironment(ExBehavior, Rounding)) 5250 return nullptr; 5251 5252 // X / 1.0 -> X 5253 if (match(Op1, m_FPOne())) 5254 return Op0; 5255 5256 // 0 / X -> 0 5257 // Requires that NaNs are off (X could be zero) and signed zeroes are 5258 // ignored (X could be positive or negative, so the output sign is unknown). 5259 if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op0, m_AnyZeroFP())) 5260 return ConstantFP::getNullValue(Op0->getType()); 5261 5262 if (FMF.noNaNs()) { 5263 // X / X -> 1.0 is legal when NaNs are ignored. 5264 // We can ignore infinities because INF/INF is NaN. 5265 if (Op0 == Op1) 5266 return ConstantFP::get(Op0->getType(), 1.0); 5267 5268 // (X * Y) / Y --> X if we can reassociate to the above form. 5269 Value *X; 5270 if (FMF.allowReassoc() && match(Op0, m_c_FMul(m_Value(X), m_Specific(Op1)))) 5271 return X; 5272 5273 // -X / X -> -1.0 and 5274 // X / -X -> -1.0 are legal when NaNs are ignored. 5275 // We can ignore signed zeros because +-0.0/+-0.0 is NaN and ignored. 5276 if (match(Op0, m_FNegNSZ(m_Specific(Op1))) || 5277 match(Op1, m_FNegNSZ(m_Specific(Op0)))) 5278 return ConstantFP::get(Op0->getType(), -1.0); 5279 } 5280 5281 return nullptr; 5282 } 5283 5284 Value *llvm::SimplifyFDivInst(Value *Op0, Value *Op1, FastMathFlags FMF, 5285 const SimplifyQuery &Q, 5286 fp::ExceptionBehavior ExBehavior, 5287 RoundingMode Rounding) { 5288 return ::SimplifyFDivInst(Op0, Op1, FMF, Q, RecursionLimit, ExBehavior, 5289 Rounding); 5290 } 5291 5292 static Value * 5293 SimplifyFRemInst(Value *Op0, Value *Op1, FastMathFlags FMF, 5294 const SimplifyQuery &Q, unsigned, 5295 fp::ExceptionBehavior ExBehavior = fp::ebIgnore, 5296 RoundingMode Rounding = RoundingMode::NearestTiesToEven) { 5297 if (isDefaultFPEnvironment(ExBehavior, Rounding)) 5298 if (Constant *C = foldOrCommuteConstant(Instruction::FRem, Op0, Op1, Q)) 5299 return C; 5300 5301 if (Constant *C = simplifyFPOp({Op0, Op1}, FMF, Q, ExBehavior, Rounding)) 5302 return C; 5303 5304 if (!isDefaultFPEnvironment(ExBehavior, Rounding)) 5305 return nullptr; 5306 5307 // Unlike fdiv, the result of frem always matches the sign of the dividend. 5308 // The constant match may include undef elements in a vector, so return a full 5309 // zero constant as the result. 5310 if (FMF.noNaNs()) { 5311 // +0 % X -> 0 5312 if (match(Op0, m_PosZeroFP())) 5313 return ConstantFP::getNullValue(Op0->getType()); 5314 // -0 % X -> -0 5315 if (match(Op0, m_NegZeroFP())) 5316 return ConstantFP::getNegativeZero(Op0->getType()); 5317 } 5318 5319 return nullptr; 5320 } 5321 5322 Value *llvm::SimplifyFRemInst(Value *Op0, Value *Op1, FastMathFlags FMF, 5323 const SimplifyQuery &Q, 5324 fp::ExceptionBehavior ExBehavior, 5325 RoundingMode Rounding) { 5326 return ::SimplifyFRemInst(Op0, Op1, FMF, Q, RecursionLimit, ExBehavior, 5327 Rounding); 5328 } 5329 5330 //=== Helper functions for higher up the class hierarchy. 5331 5332 /// Given the operand for a UnaryOperator, see if we can fold the result. 5333 /// If not, this returns null. 5334 static Value *simplifyUnOp(unsigned Opcode, Value *Op, const SimplifyQuery &Q, 5335 unsigned MaxRecurse) { 5336 switch (Opcode) { 5337 case Instruction::FNeg: 5338 return simplifyFNegInst(Op, FastMathFlags(), Q, MaxRecurse); 5339 default: 5340 llvm_unreachable("Unexpected opcode"); 5341 } 5342 } 5343 5344 /// Given the operand for a UnaryOperator, see if we can fold the result. 5345 /// If not, this returns null. 5346 /// Try to use FastMathFlags when folding the result. 5347 static Value *simplifyFPUnOp(unsigned Opcode, Value *Op, 5348 const FastMathFlags &FMF, 5349 const SimplifyQuery &Q, unsigned MaxRecurse) { 5350 switch (Opcode) { 5351 case Instruction::FNeg: 5352 return simplifyFNegInst(Op, FMF, Q, MaxRecurse); 5353 default: 5354 return simplifyUnOp(Opcode, Op, Q, MaxRecurse); 5355 } 5356 } 5357 5358 Value *llvm::SimplifyUnOp(unsigned Opcode, Value *Op, const SimplifyQuery &Q) { 5359 return ::simplifyUnOp(Opcode, Op, Q, RecursionLimit); 5360 } 5361 5362 Value *llvm::SimplifyUnOp(unsigned Opcode, Value *Op, FastMathFlags FMF, 5363 const SimplifyQuery &Q) { 5364 return ::simplifyFPUnOp(Opcode, Op, FMF, Q, RecursionLimit); 5365 } 5366 5367 /// Given operands for a BinaryOperator, see if we can fold the result. 5368 /// If not, this returns null. 5369 static Value *SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS, 5370 const SimplifyQuery &Q, unsigned MaxRecurse) { 5371 switch (Opcode) { 5372 case Instruction::Add: 5373 return SimplifyAddInst(LHS, RHS, false, false, Q, MaxRecurse); 5374 case Instruction::Sub: 5375 return SimplifySubInst(LHS, RHS, false, false, Q, MaxRecurse); 5376 case Instruction::Mul: 5377 return SimplifyMulInst(LHS, RHS, Q, MaxRecurse); 5378 case Instruction::SDiv: 5379 return SimplifySDivInst(LHS, RHS, Q, MaxRecurse); 5380 case Instruction::UDiv: 5381 return SimplifyUDivInst(LHS, RHS, Q, MaxRecurse); 5382 case Instruction::SRem: 5383 return SimplifySRemInst(LHS, RHS, Q, MaxRecurse); 5384 case Instruction::URem: 5385 return SimplifyURemInst(LHS, RHS, Q, MaxRecurse); 5386 case Instruction::Shl: 5387 return SimplifyShlInst(LHS, RHS, false, false, Q, MaxRecurse); 5388 case Instruction::LShr: 5389 return SimplifyLShrInst(LHS, RHS, false, Q, MaxRecurse); 5390 case Instruction::AShr: 5391 return SimplifyAShrInst(LHS, RHS, false, Q, MaxRecurse); 5392 case Instruction::And: 5393 return SimplifyAndInst(LHS, RHS, Q, MaxRecurse); 5394 case Instruction::Or: 5395 return SimplifyOrInst(LHS, RHS, Q, MaxRecurse); 5396 case Instruction::Xor: 5397 return SimplifyXorInst(LHS, RHS, Q, MaxRecurse); 5398 case Instruction::FAdd: 5399 return SimplifyFAddInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse); 5400 case Instruction::FSub: 5401 return SimplifyFSubInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse); 5402 case Instruction::FMul: 5403 return SimplifyFMulInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse); 5404 case Instruction::FDiv: 5405 return SimplifyFDivInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse); 5406 case Instruction::FRem: 5407 return SimplifyFRemInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse); 5408 default: 5409 llvm_unreachable("Unexpected opcode"); 5410 } 5411 } 5412 5413 /// Given operands for a BinaryOperator, see if we can fold the result. 5414 /// If not, this returns null. 5415 /// Try to use FastMathFlags when folding the result. 5416 static Value *SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS, 5417 const FastMathFlags &FMF, const SimplifyQuery &Q, 5418 unsigned MaxRecurse) { 5419 switch (Opcode) { 5420 case Instruction::FAdd: 5421 return SimplifyFAddInst(LHS, RHS, FMF, Q, MaxRecurse); 5422 case Instruction::FSub: 5423 return SimplifyFSubInst(LHS, RHS, FMF, Q, MaxRecurse); 5424 case Instruction::FMul: 5425 return SimplifyFMulInst(LHS, RHS, FMF, Q, MaxRecurse); 5426 case Instruction::FDiv: 5427 return SimplifyFDivInst(LHS, RHS, FMF, Q, MaxRecurse); 5428 default: 5429 return SimplifyBinOp(Opcode, LHS, RHS, Q, MaxRecurse); 5430 } 5431 } 5432 5433 Value *llvm::SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS, 5434 const SimplifyQuery &Q) { 5435 return ::SimplifyBinOp(Opcode, LHS, RHS, Q, RecursionLimit); 5436 } 5437 5438 Value *llvm::SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS, 5439 FastMathFlags FMF, const SimplifyQuery &Q) { 5440 return ::SimplifyBinOp(Opcode, LHS, RHS, FMF, Q, RecursionLimit); 5441 } 5442 5443 /// Given operands for a CmpInst, see if we can fold the result. 5444 static Value *SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS, 5445 const SimplifyQuery &Q, unsigned MaxRecurse) { 5446 if (CmpInst::isIntPredicate((CmpInst::Predicate)Predicate)) 5447 return SimplifyICmpInst(Predicate, LHS, RHS, Q, MaxRecurse); 5448 return SimplifyFCmpInst(Predicate, LHS, RHS, FastMathFlags(), Q, MaxRecurse); 5449 } 5450 5451 Value *llvm::SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS, 5452 const SimplifyQuery &Q) { 5453 return ::SimplifyCmpInst(Predicate, LHS, RHS, Q, RecursionLimit); 5454 } 5455 5456 static bool IsIdempotent(Intrinsic::ID ID) { 5457 switch (ID) { 5458 default: return false; 5459 5460 // Unary idempotent: f(f(x)) = f(x) 5461 case Intrinsic::fabs: 5462 case Intrinsic::floor: 5463 case Intrinsic::ceil: 5464 case Intrinsic::trunc: 5465 case Intrinsic::rint: 5466 case Intrinsic::nearbyint: 5467 case Intrinsic::round: 5468 case Intrinsic::roundeven: 5469 case Intrinsic::canonicalize: 5470 return true; 5471 } 5472 } 5473 5474 static Value *SimplifyRelativeLoad(Constant *Ptr, Constant *Offset, 5475 const DataLayout &DL) { 5476 GlobalValue *PtrSym; 5477 APInt PtrOffset; 5478 if (!IsConstantOffsetFromGlobal(Ptr, PtrSym, PtrOffset, DL)) 5479 return nullptr; 5480 5481 Type *Int8PtrTy = Type::getInt8PtrTy(Ptr->getContext()); 5482 Type *Int32Ty = Type::getInt32Ty(Ptr->getContext()); 5483 Type *Int32PtrTy = Int32Ty->getPointerTo(); 5484 Type *Int64Ty = Type::getInt64Ty(Ptr->getContext()); 5485 5486 auto *OffsetConstInt = dyn_cast<ConstantInt>(Offset); 5487 if (!OffsetConstInt || OffsetConstInt->getType()->getBitWidth() > 64) 5488 return nullptr; 5489 5490 uint64_t OffsetInt = OffsetConstInt->getSExtValue(); 5491 if (OffsetInt % 4 != 0) 5492 return nullptr; 5493 5494 Constant *C = ConstantExpr::getGetElementPtr( 5495 Int32Ty, ConstantExpr::getBitCast(Ptr, Int32PtrTy), 5496 ConstantInt::get(Int64Ty, OffsetInt / 4)); 5497 Constant *Loaded = ConstantFoldLoadFromConstPtr(C, Int32Ty, DL); 5498 if (!Loaded) 5499 return nullptr; 5500 5501 auto *LoadedCE = dyn_cast<ConstantExpr>(Loaded); 5502 if (!LoadedCE) 5503 return nullptr; 5504 5505 if (LoadedCE->getOpcode() == Instruction::Trunc) { 5506 LoadedCE = dyn_cast<ConstantExpr>(LoadedCE->getOperand(0)); 5507 if (!LoadedCE) 5508 return nullptr; 5509 } 5510 5511 if (LoadedCE->getOpcode() != Instruction::Sub) 5512 return nullptr; 5513 5514 auto *LoadedLHS = dyn_cast<ConstantExpr>(LoadedCE->getOperand(0)); 5515 if (!LoadedLHS || LoadedLHS->getOpcode() != Instruction::PtrToInt) 5516 return nullptr; 5517 auto *LoadedLHSPtr = LoadedLHS->getOperand(0); 5518 5519 Constant *LoadedRHS = LoadedCE->getOperand(1); 5520 GlobalValue *LoadedRHSSym; 5521 APInt LoadedRHSOffset; 5522 if (!IsConstantOffsetFromGlobal(LoadedRHS, LoadedRHSSym, LoadedRHSOffset, 5523 DL) || 5524 PtrSym != LoadedRHSSym || PtrOffset != LoadedRHSOffset) 5525 return nullptr; 5526 5527 return ConstantExpr::getBitCast(LoadedLHSPtr, Int8PtrTy); 5528 } 5529 5530 static Value *simplifyUnaryIntrinsic(Function *F, Value *Op0, 5531 const SimplifyQuery &Q) { 5532 // Idempotent functions return the same result when called repeatedly. 5533 Intrinsic::ID IID = F->getIntrinsicID(); 5534 if (IsIdempotent(IID)) 5535 if (auto *II = dyn_cast<IntrinsicInst>(Op0)) 5536 if (II->getIntrinsicID() == IID) 5537 return II; 5538 5539 Value *X; 5540 switch (IID) { 5541 case Intrinsic::fabs: 5542 if (SignBitMustBeZero(Op0, Q.TLI)) return Op0; 5543 break; 5544 case Intrinsic::bswap: 5545 // bswap(bswap(x)) -> x 5546 if (match(Op0, m_BSwap(m_Value(X)))) return X; 5547 break; 5548 case Intrinsic::bitreverse: 5549 // bitreverse(bitreverse(x)) -> x 5550 if (match(Op0, m_BitReverse(m_Value(X)))) return X; 5551 break; 5552 case Intrinsic::ctpop: { 5553 // If everything but the lowest bit is zero, that bit is the pop-count. Ex: 5554 // ctpop(and X, 1) --> and X, 1 5555 unsigned BitWidth = Op0->getType()->getScalarSizeInBits(); 5556 if (MaskedValueIsZero(Op0, APInt::getHighBitsSet(BitWidth, BitWidth - 1), 5557 Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 5558 return Op0; 5559 break; 5560 } 5561 case Intrinsic::exp: 5562 // exp(log(x)) -> x 5563 if (Q.CxtI->hasAllowReassoc() && 5564 match(Op0, m_Intrinsic<Intrinsic::log>(m_Value(X)))) return X; 5565 break; 5566 case Intrinsic::exp2: 5567 // exp2(log2(x)) -> x 5568 if (Q.CxtI->hasAllowReassoc() && 5569 match(Op0, m_Intrinsic<Intrinsic::log2>(m_Value(X)))) return X; 5570 break; 5571 case Intrinsic::log: 5572 // log(exp(x)) -> x 5573 if (Q.CxtI->hasAllowReassoc() && 5574 match(Op0, m_Intrinsic<Intrinsic::exp>(m_Value(X)))) return X; 5575 break; 5576 case Intrinsic::log2: 5577 // log2(exp2(x)) -> x 5578 if (Q.CxtI->hasAllowReassoc() && 5579 (match(Op0, m_Intrinsic<Intrinsic::exp2>(m_Value(X))) || 5580 match(Op0, m_Intrinsic<Intrinsic::pow>(m_SpecificFP(2.0), 5581 m_Value(X))))) return X; 5582 break; 5583 case Intrinsic::log10: 5584 // log10(pow(10.0, x)) -> x 5585 if (Q.CxtI->hasAllowReassoc() && 5586 match(Op0, m_Intrinsic<Intrinsic::pow>(m_SpecificFP(10.0), 5587 m_Value(X)))) return X; 5588 break; 5589 case Intrinsic::floor: 5590 case Intrinsic::trunc: 5591 case Intrinsic::ceil: 5592 case Intrinsic::round: 5593 case Intrinsic::roundeven: 5594 case Intrinsic::nearbyint: 5595 case Intrinsic::rint: { 5596 // floor (sitofp x) -> sitofp x 5597 // floor (uitofp x) -> uitofp x 5598 // 5599 // Converting from int always results in a finite integral number or 5600 // infinity. For either of those inputs, these rounding functions always 5601 // return the same value, so the rounding can be eliminated. 5602 if (match(Op0, m_SIToFP(m_Value())) || match(Op0, m_UIToFP(m_Value()))) 5603 return Op0; 5604 break; 5605 } 5606 case Intrinsic::experimental_vector_reverse: 5607 // experimental.vector.reverse(experimental.vector.reverse(x)) -> x 5608 if (match(Op0, 5609 m_Intrinsic<Intrinsic::experimental_vector_reverse>(m_Value(X)))) 5610 return X; 5611 // experimental.vector.reverse(splat(X)) -> splat(X) 5612 if (isSplatValue(Op0)) 5613 return Op0; 5614 break; 5615 default: 5616 break; 5617 } 5618 5619 return nullptr; 5620 } 5621 5622 /// Given a min/max intrinsic, see if it can be removed based on having an 5623 /// operand that is another min/max intrinsic with shared operand(s). The caller 5624 /// is expected to swap the operand arguments to handle commutation. 5625 static Value *foldMinMaxSharedOp(Intrinsic::ID IID, Value *Op0, Value *Op1) { 5626 Value *X, *Y; 5627 if (!match(Op0, m_MaxOrMin(m_Value(X), m_Value(Y)))) 5628 return nullptr; 5629 5630 auto *MM0 = dyn_cast<IntrinsicInst>(Op0); 5631 if (!MM0) 5632 return nullptr; 5633 Intrinsic::ID IID0 = MM0->getIntrinsicID(); 5634 5635 if (Op1 == X || Op1 == Y || 5636 match(Op1, m_c_MaxOrMin(m_Specific(X), m_Specific(Y)))) { 5637 // max (max X, Y), X --> max X, Y 5638 if (IID0 == IID) 5639 return MM0; 5640 // max (min X, Y), X --> X 5641 if (IID0 == getInverseMinMaxIntrinsic(IID)) 5642 return Op1; 5643 } 5644 return nullptr; 5645 } 5646 5647 static Value *simplifyBinaryIntrinsic(Function *F, Value *Op0, Value *Op1, 5648 const SimplifyQuery &Q) { 5649 Intrinsic::ID IID = F->getIntrinsicID(); 5650 Type *ReturnType = F->getReturnType(); 5651 unsigned BitWidth = ReturnType->getScalarSizeInBits(); 5652 switch (IID) { 5653 case Intrinsic::abs: 5654 // abs(abs(x)) -> abs(x). We don't need to worry about the nsw arg here. 5655 // It is always ok to pick the earlier abs. We'll just lose nsw if its only 5656 // on the outer abs. 5657 if (match(Op0, m_Intrinsic<Intrinsic::abs>(m_Value(), m_Value()))) 5658 return Op0; 5659 break; 5660 5661 case Intrinsic::cttz: { 5662 Value *X; 5663 if (match(Op0, m_Shl(m_One(), m_Value(X)))) 5664 return X; 5665 break; 5666 } 5667 case Intrinsic::ctlz: { 5668 Value *X; 5669 if (match(Op0, m_LShr(m_Negative(), m_Value(X)))) 5670 return X; 5671 if (match(Op0, m_AShr(m_Negative(), m_Value()))) 5672 return Constant::getNullValue(ReturnType); 5673 break; 5674 } 5675 case Intrinsic::smax: 5676 case Intrinsic::smin: 5677 case Intrinsic::umax: 5678 case Intrinsic::umin: { 5679 // If the arguments are the same, this is a no-op. 5680 if (Op0 == Op1) 5681 return Op0; 5682 5683 // Canonicalize constant operand as Op1. 5684 if (isa<Constant>(Op0)) 5685 std::swap(Op0, Op1); 5686 5687 // Assume undef is the limit value. 5688 if (Q.isUndefValue(Op1)) 5689 return ConstantInt::get( 5690 ReturnType, MinMaxIntrinsic::getSaturationPoint(IID, BitWidth)); 5691 5692 const APInt *C; 5693 if (match(Op1, m_APIntAllowUndef(C))) { 5694 // Clamp to limit value. For example: 5695 // umax(i8 %x, i8 255) --> 255 5696 if (*C == MinMaxIntrinsic::getSaturationPoint(IID, BitWidth)) 5697 return ConstantInt::get(ReturnType, *C); 5698 5699 // If the constant op is the opposite of the limit value, the other must 5700 // be larger/smaller or equal. For example: 5701 // umin(i8 %x, i8 255) --> %x 5702 if (*C == MinMaxIntrinsic::getSaturationPoint( 5703 getInverseMinMaxIntrinsic(IID), BitWidth)) 5704 return Op0; 5705 5706 // Remove nested call if constant operands allow it. Example: 5707 // max (max X, 7), 5 -> max X, 7 5708 auto *MinMax0 = dyn_cast<IntrinsicInst>(Op0); 5709 if (MinMax0 && MinMax0->getIntrinsicID() == IID) { 5710 // TODO: loosen undef/splat restrictions for vector constants. 5711 Value *M00 = MinMax0->getOperand(0), *M01 = MinMax0->getOperand(1); 5712 const APInt *InnerC; 5713 if ((match(M00, m_APInt(InnerC)) || match(M01, m_APInt(InnerC))) && 5714 ICmpInst::compare(*InnerC, *C, 5715 ICmpInst::getNonStrictPredicate( 5716 MinMaxIntrinsic::getPredicate(IID)))) 5717 return Op0; 5718 } 5719 } 5720 5721 if (Value *V = foldMinMaxSharedOp(IID, Op0, Op1)) 5722 return V; 5723 if (Value *V = foldMinMaxSharedOp(IID, Op1, Op0)) 5724 return V; 5725 5726 ICmpInst::Predicate Pred = 5727 ICmpInst::getNonStrictPredicate(MinMaxIntrinsic::getPredicate(IID)); 5728 if (isICmpTrue(Pred, Op0, Op1, Q.getWithoutUndef(), RecursionLimit)) 5729 return Op0; 5730 if (isICmpTrue(Pred, Op1, Op0, Q.getWithoutUndef(), RecursionLimit)) 5731 return Op1; 5732 5733 if (Optional<bool> Imp = 5734 isImpliedByDomCondition(Pred, Op0, Op1, Q.CxtI, Q.DL)) 5735 return *Imp ? Op0 : Op1; 5736 if (Optional<bool> Imp = 5737 isImpliedByDomCondition(Pred, Op1, Op0, Q.CxtI, Q.DL)) 5738 return *Imp ? Op1 : Op0; 5739 5740 break; 5741 } 5742 case Intrinsic::usub_with_overflow: 5743 case Intrinsic::ssub_with_overflow: 5744 // X - X -> { 0, false } 5745 // X - undef -> { 0, false } 5746 // undef - X -> { 0, false } 5747 if (Op0 == Op1 || Q.isUndefValue(Op0) || Q.isUndefValue(Op1)) 5748 return Constant::getNullValue(ReturnType); 5749 break; 5750 case Intrinsic::uadd_with_overflow: 5751 case Intrinsic::sadd_with_overflow: 5752 // X + undef -> { -1, false } 5753 // undef + x -> { -1, false } 5754 if (Q.isUndefValue(Op0) || Q.isUndefValue(Op1)) { 5755 return ConstantStruct::get( 5756 cast<StructType>(ReturnType), 5757 {Constant::getAllOnesValue(ReturnType->getStructElementType(0)), 5758 Constant::getNullValue(ReturnType->getStructElementType(1))}); 5759 } 5760 break; 5761 case Intrinsic::umul_with_overflow: 5762 case Intrinsic::smul_with_overflow: 5763 // 0 * X -> { 0, false } 5764 // X * 0 -> { 0, false } 5765 if (match(Op0, m_Zero()) || match(Op1, m_Zero())) 5766 return Constant::getNullValue(ReturnType); 5767 // undef * X -> { 0, false } 5768 // X * undef -> { 0, false } 5769 if (Q.isUndefValue(Op0) || Q.isUndefValue(Op1)) 5770 return Constant::getNullValue(ReturnType); 5771 break; 5772 case Intrinsic::uadd_sat: 5773 // sat(MAX + X) -> MAX 5774 // sat(X + MAX) -> MAX 5775 if (match(Op0, m_AllOnes()) || match(Op1, m_AllOnes())) 5776 return Constant::getAllOnesValue(ReturnType); 5777 LLVM_FALLTHROUGH; 5778 case Intrinsic::sadd_sat: 5779 // sat(X + undef) -> -1 5780 // sat(undef + X) -> -1 5781 // For unsigned: Assume undef is MAX, thus we saturate to MAX (-1). 5782 // For signed: Assume undef is ~X, in which case X + ~X = -1. 5783 if (Q.isUndefValue(Op0) || Q.isUndefValue(Op1)) 5784 return Constant::getAllOnesValue(ReturnType); 5785 5786 // X + 0 -> X 5787 if (match(Op1, m_Zero())) 5788 return Op0; 5789 // 0 + X -> X 5790 if (match(Op0, m_Zero())) 5791 return Op1; 5792 break; 5793 case Intrinsic::usub_sat: 5794 // sat(0 - X) -> 0, sat(X - MAX) -> 0 5795 if (match(Op0, m_Zero()) || match(Op1, m_AllOnes())) 5796 return Constant::getNullValue(ReturnType); 5797 LLVM_FALLTHROUGH; 5798 case Intrinsic::ssub_sat: 5799 // X - X -> 0, X - undef -> 0, undef - X -> 0 5800 if (Op0 == Op1 || Q.isUndefValue(Op0) || Q.isUndefValue(Op1)) 5801 return Constant::getNullValue(ReturnType); 5802 // X - 0 -> X 5803 if (match(Op1, m_Zero())) 5804 return Op0; 5805 break; 5806 case Intrinsic::load_relative: 5807 if (auto *C0 = dyn_cast<Constant>(Op0)) 5808 if (auto *C1 = dyn_cast<Constant>(Op1)) 5809 return SimplifyRelativeLoad(C0, C1, Q.DL); 5810 break; 5811 case Intrinsic::powi: 5812 if (auto *Power = dyn_cast<ConstantInt>(Op1)) { 5813 // powi(x, 0) -> 1.0 5814 if (Power->isZero()) 5815 return ConstantFP::get(Op0->getType(), 1.0); 5816 // powi(x, 1) -> x 5817 if (Power->isOne()) 5818 return Op0; 5819 } 5820 break; 5821 case Intrinsic::copysign: 5822 // copysign X, X --> X 5823 if (Op0 == Op1) 5824 return Op0; 5825 // copysign -X, X --> X 5826 // copysign X, -X --> -X 5827 if (match(Op0, m_FNeg(m_Specific(Op1))) || 5828 match(Op1, m_FNeg(m_Specific(Op0)))) 5829 return Op1; 5830 break; 5831 case Intrinsic::maxnum: 5832 case Intrinsic::minnum: 5833 case Intrinsic::maximum: 5834 case Intrinsic::minimum: { 5835 // If the arguments are the same, this is a no-op. 5836 if (Op0 == Op1) return Op0; 5837 5838 // Canonicalize constant operand as Op1. 5839 if (isa<Constant>(Op0)) 5840 std::swap(Op0, Op1); 5841 5842 // If an argument is undef, return the other argument. 5843 if (Q.isUndefValue(Op1)) 5844 return Op0; 5845 5846 bool PropagateNaN = IID == Intrinsic::minimum || IID == Intrinsic::maximum; 5847 bool IsMin = IID == Intrinsic::minimum || IID == Intrinsic::minnum; 5848 5849 // minnum(X, nan) -> X 5850 // maxnum(X, nan) -> X 5851 // minimum(X, nan) -> nan 5852 // maximum(X, nan) -> nan 5853 if (match(Op1, m_NaN())) 5854 return PropagateNaN ? propagateNaN(cast<Constant>(Op1)) : Op0; 5855 5856 // In the following folds, inf can be replaced with the largest finite 5857 // float, if the ninf flag is set. 5858 const APFloat *C; 5859 if (match(Op1, m_APFloat(C)) && 5860 (C->isInfinity() || (Q.CxtI->hasNoInfs() && C->isLargest()))) { 5861 // minnum(X, -inf) -> -inf 5862 // maxnum(X, +inf) -> +inf 5863 // minimum(X, -inf) -> -inf if nnan 5864 // maximum(X, +inf) -> +inf if nnan 5865 if (C->isNegative() == IsMin && (!PropagateNaN || Q.CxtI->hasNoNaNs())) 5866 return ConstantFP::get(ReturnType, *C); 5867 5868 // minnum(X, +inf) -> X if nnan 5869 // maxnum(X, -inf) -> X if nnan 5870 // minimum(X, +inf) -> X 5871 // maximum(X, -inf) -> X 5872 if (C->isNegative() != IsMin && (PropagateNaN || Q.CxtI->hasNoNaNs())) 5873 return Op0; 5874 } 5875 5876 // Min/max of the same operation with common operand: 5877 // m(m(X, Y)), X --> m(X, Y) (4 commuted variants) 5878 if (auto *M0 = dyn_cast<IntrinsicInst>(Op0)) 5879 if (M0->getIntrinsicID() == IID && 5880 (M0->getOperand(0) == Op1 || M0->getOperand(1) == Op1)) 5881 return Op0; 5882 if (auto *M1 = dyn_cast<IntrinsicInst>(Op1)) 5883 if (M1->getIntrinsicID() == IID && 5884 (M1->getOperand(0) == Op0 || M1->getOperand(1) == Op0)) 5885 return Op1; 5886 5887 break; 5888 } 5889 case Intrinsic::experimental_vector_extract: { 5890 Type *ReturnType = F->getReturnType(); 5891 5892 // (extract_vector (insert_vector _, X, 0), 0) -> X 5893 unsigned IdxN = cast<ConstantInt>(Op1)->getZExtValue(); 5894 Value *X = nullptr; 5895 if (match(Op0, m_Intrinsic<Intrinsic::experimental_vector_insert>( 5896 m_Value(), m_Value(X), m_Zero())) && 5897 IdxN == 0 && X->getType() == ReturnType) 5898 return X; 5899 5900 break; 5901 } 5902 default: 5903 break; 5904 } 5905 5906 return nullptr; 5907 } 5908 5909 static Value *simplifyIntrinsic(CallBase *Call, const SimplifyQuery &Q) { 5910 5911 unsigned NumOperands = Call->arg_size(); 5912 Function *F = cast<Function>(Call->getCalledFunction()); 5913 Intrinsic::ID IID = F->getIntrinsicID(); 5914 5915 // Most of the intrinsics with no operands have some kind of side effect. 5916 // Don't simplify. 5917 if (!NumOperands) { 5918 switch (IID) { 5919 case Intrinsic::vscale: { 5920 // Call may not be inserted into the IR yet at point of calling simplify. 5921 if (!Call->getParent() || !Call->getParent()->getParent()) 5922 return nullptr; 5923 auto Attr = Call->getFunction()->getFnAttribute(Attribute::VScaleRange); 5924 if (!Attr.isValid()) 5925 return nullptr; 5926 unsigned VScaleMin = Attr.getVScaleRangeMin(); 5927 Optional<unsigned> VScaleMax = Attr.getVScaleRangeMax(); 5928 if (VScaleMax && VScaleMin == VScaleMax) 5929 return ConstantInt::get(F->getReturnType(), VScaleMin); 5930 return nullptr; 5931 } 5932 default: 5933 return nullptr; 5934 } 5935 } 5936 5937 if (NumOperands == 1) 5938 return simplifyUnaryIntrinsic(F, Call->getArgOperand(0), Q); 5939 5940 if (NumOperands == 2) 5941 return simplifyBinaryIntrinsic(F, Call->getArgOperand(0), 5942 Call->getArgOperand(1), Q); 5943 5944 // Handle intrinsics with 3 or more arguments. 5945 switch (IID) { 5946 case Intrinsic::masked_load: 5947 case Intrinsic::masked_gather: { 5948 Value *MaskArg = Call->getArgOperand(2); 5949 Value *PassthruArg = Call->getArgOperand(3); 5950 // If the mask is all zeros or undef, the "passthru" argument is the result. 5951 if (maskIsAllZeroOrUndef(MaskArg)) 5952 return PassthruArg; 5953 return nullptr; 5954 } 5955 case Intrinsic::fshl: 5956 case Intrinsic::fshr: { 5957 Value *Op0 = Call->getArgOperand(0), *Op1 = Call->getArgOperand(1), 5958 *ShAmtArg = Call->getArgOperand(2); 5959 5960 // If both operands are undef, the result is undef. 5961 if (Q.isUndefValue(Op0) && Q.isUndefValue(Op1)) 5962 return UndefValue::get(F->getReturnType()); 5963 5964 // If shift amount is undef, assume it is zero. 5965 if (Q.isUndefValue(ShAmtArg)) 5966 return Call->getArgOperand(IID == Intrinsic::fshl ? 0 : 1); 5967 5968 const APInt *ShAmtC; 5969 if (match(ShAmtArg, m_APInt(ShAmtC))) { 5970 // If there's effectively no shift, return the 1st arg or 2nd arg. 5971 APInt BitWidth = APInt(ShAmtC->getBitWidth(), ShAmtC->getBitWidth()); 5972 if (ShAmtC->urem(BitWidth).isZero()) 5973 return Call->getArgOperand(IID == Intrinsic::fshl ? 0 : 1); 5974 } 5975 5976 // Rotating zero by anything is zero. 5977 if (match(Op0, m_Zero()) && match(Op1, m_Zero())) 5978 return ConstantInt::getNullValue(F->getReturnType()); 5979 5980 // Rotating -1 by anything is -1. 5981 if (match(Op0, m_AllOnes()) && match(Op1, m_AllOnes())) 5982 return ConstantInt::getAllOnesValue(F->getReturnType()); 5983 5984 return nullptr; 5985 } 5986 case Intrinsic::experimental_constrained_fma: { 5987 Value *Op0 = Call->getArgOperand(0); 5988 Value *Op1 = Call->getArgOperand(1); 5989 Value *Op2 = Call->getArgOperand(2); 5990 auto *FPI = cast<ConstrainedFPIntrinsic>(Call); 5991 if (Value *V = simplifyFPOp({Op0, Op1, Op2}, {}, Q, 5992 FPI->getExceptionBehavior().getValue(), 5993 FPI->getRoundingMode().getValue())) 5994 return V; 5995 return nullptr; 5996 } 5997 case Intrinsic::fma: 5998 case Intrinsic::fmuladd: { 5999 Value *Op0 = Call->getArgOperand(0); 6000 Value *Op1 = Call->getArgOperand(1); 6001 Value *Op2 = Call->getArgOperand(2); 6002 if (Value *V = simplifyFPOp({Op0, Op1, Op2}, {}, Q, fp::ebIgnore, 6003 RoundingMode::NearestTiesToEven)) 6004 return V; 6005 return nullptr; 6006 } 6007 case Intrinsic::smul_fix: 6008 case Intrinsic::smul_fix_sat: { 6009 Value *Op0 = Call->getArgOperand(0); 6010 Value *Op1 = Call->getArgOperand(1); 6011 Value *Op2 = Call->getArgOperand(2); 6012 Type *ReturnType = F->getReturnType(); 6013 6014 // Canonicalize constant operand as Op1 (ConstantFolding handles the case 6015 // when both Op0 and Op1 are constant so we do not care about that special 6016 // case here). 6017 if (isa<Constant>(Op0)) 6018 std::swap(Op0, Op1); 6019 6020 // X * 0 -> 0 6021 if (match(Op1, m_Zero())) 6022 return Constant::getNullValue(ReturnType); 6023 6024 // X * undef -> 0 6025 if (Q.isUndefValue(Op1)) 6026 return Constant::getNullValue(ReturnType); 6027 6028 // X * (1 << Scale) -> X 6029 APInt ScaledOne = 6030 APInt::getOneBitSet(ReturnType->getScalarSizeInBits(), 6031 cast<ConstantInt>(Op2)->getZExtValue()); 6032 if (ScaledOne.isNonNegative() && match(Op1, m_SpecificInt(ScaledOne))) 6033 return Op0; 6034 6035 return nullptr; 6036 } 6037 case Intrinsic::experimental_vector_insert: { 6038 Value *Vec = Call->getArgOperand(0); 6039 Value *SubVec = Call->getArgOperand(1); 6040 Value *Idx = Call->getArgOperand(2); 6041 Type *ReturnType = F->getReturnType(); 6042 6043 // (insert_vector Y, (extract_vector X, 0), 0) -> X 6044 // where: Y is X, or Y is undef 6045 unsigned IdxN = cast<ConstantInt>(Idx)->getZExtValue(); 6046 Value *X = nullptr; 6047 if (match(SubVec, m_Intrinsic<Intrinsic::experimental_vector_extract>( 6048 m_Value(X), m_Zero())) && 6049 (Q.isUndefValue(Vec) || Vec == X) && IdxN == 0 && 6050 X->getType() == ReturnType) 6051 return X; 6052 6053 return nullptr; 6054 } 6055 case Intrinsic::experimental_constrained_fadd: { 6056 auto *FPI = cast<ConstrainedFPIntrinsic>(Call); 6057 return SimplifyFAddInst(FPI->getArgOperand(0), FPI->getArgOperand(1), 6058 FPI->getFastMathFlags(), Q, 6059 FPI->getExceptionBehavior().getValue(), 6060 FPI->getRoundingMode().getValue()); 6061 break; 6062 } 6063 case Intrinsic::experimental_constrained_fsub: { 6064 auto *FPI = cast<ConstrainedFPIntrinsic>(Call); 6065 return SimplifyFSubInst(FPI->getArgOperand(0), FPI->getArgOperand(1), 6066 FPI->getFastMathFlags(), Q, 6067 FPI->getExceptionBehavior().getValue(), 6068 FPI->getRoundingMode().getValue()); 6069 break; 6070 } 6071 case Intrinsic::experimental_constrained_fmul: { 6072 auto *FPI = cast<ConstrainedFPIntrinsic>(Call); 6073 return SimplifyFMulInst(FPI->getArgOperand(0), FPI->getArgOperand(1), 6074 FPI->getFastMathFlags(), Q, 6075 FPI->getExceptionBehavior().getValue(), 6076 FPI->getRoundingMode().getValue()); 6077 break; 6078 } 6079 case Intrinsic::experimental_constrained_fdiv: { 6080 auto *FPI = cast<ConstrainedFPIntrinsic>(Call); 6081 return SimplifyFDivInst(FPI->getArgOperand(0), FPI->getArgOperand(1), 6082 FPI->getFastMathFlags(), Q, 6083 FPI->getExceptionBehavior().getValue(), 6084 FPI->getRoundingMode().getValue()); 6085 break; 6086 } 6087 case Intrinsic::experimental_constrained_frem: { 6088 auto *FPI = cast<ConstrainedFPIntrinsic>(Call); 6089 return SimplifyFRemInst(FPI->getArgOperand(0), FPI->getArgOperand(1), 6090 FPI->getFastMathFlags(), Q, 6091 FPI->getExceptionBehavior().getValue(), 6092 FPI->getRoundingMode().getValue()); 6093 break; 6094 } 6095 default: 6096 return nullptr; 6097 } 6098 } 6099 6100 static Value *tryConstantFoldCall(CallBase *Call, const SimplifyQuery &Q) { 6101 auto *F = dyn_cast<Function>(Call->getCalledOperand()); 6102 if (!F || !canConstantFoldCallTo(Call, F)) 6103 return nullptr; 6104 6105 SmallVector<Constant *, 4> ConstantArgs; 6106 unsigned NumArgs = Call->arg_size(); 6107 ConstantArgs.reserve(NumArgs); 6108 for (auto &Arg : Call->args()) { 6109 Constant *C = dyn_cast<Constant>(&Arg); 6110 if (!C) { 6111 if (isa<MetadataAsValue>(Arg.get())) 6112 continue; 6113 return nullptr; 6114 } 6115 ConstantArgs.push_back(C); 6116 } 6117 6118 return ConstantFoldCall(Call, F, ConstantArgs, Q.TLI); 6119 } 6120 6121 Value *llvm::SimplifyCall(CallBase *Call, const SimplifyQuery &Q) { 6122 // musttail calls can only be simplified if they are also DCEd. 6123 // As we can't guarantee this here, don't simplify them. 6124 if (Call->isMustTailCall()) 6125 return nullptr; 6126 6127 // call undef -> poison 6128 // call null -> poison 6129 Value *Callee = Call->getCalledOperand(); 6130 if (isa<UndefValue>(Callee) || isa<ConstantPointerNull>(Callee)) 6131 return PoisonValue::get(Call->getType()); 6132 6133 if (Value *V = tryConstantFoldCall(Call, Q)) 6134 return V; 6135 6136 auto *F = dyn_cast<Function>(Callee); 6137 if (F && F->isIntrinsic()) 6138 if (Value *Ret = simplifyIntrinsic(Call, Q)) 6139 return Ret; 6140 6141 return nullptr; 6142 } 6143 6144 /// Given operands for a Freeze, see if we can fold the result. 6145 static Value *SimplifyFreezeInst(Value *Op0, const SimplifyQuery &Q) { 6146 // Use a utility function defined in ValueTracking. 6147 if (llvm::isGuaranteedNotToBeUndefOrPoison(Op0, Q.AC, Q.CxtI, Q.DT)) 6148 return Op0; 6149 // We have room for improvement. 6150 return nullptr; 6151 } 6152 6153 Value *llvm::SimplifyFreezeInst(Value *Op0, const SimplifyQuery &Q) { 6154 return ::SimplifyFreezeInst(Op0, Q); 6155 } 6156 6157 static Value *SimplifyLoadInst(LoadInst *LI, Value *PtrOp, 6158 const SimplifyQuery &Q) { 6159 if (LI->isVolatile()) 6160 return nullptr; 6161 6162 APInt Offset(Q.DL.getIndexTypeSizeInBits(PtrOp->getType()), 0); 6163 auto *PtrOpC = dyn_cast<Constant>(PtrOp); 6164 // Try to convert operand into a constant by stripping offsets while looking 6165 // through invariant.group intrinsics. Don't bother if the underlying object 6166 // is not constant, as calculating GEP offsets is expensive. 6167 if (!PtrOpC && isa<Constant>(getUnderlyingObject(PtrOp))) { 6168 PtrOp = PtrOp->stripAndAccumulateConstantOffsets( 6169 Q.DL, Offset, /* AllowNonInbounts */ true, 6170 /* AllowInvariantGroup */ true); 6171 // Index size may have changed due to address space casts. 6172 Offset = Offset.sextOrTrunc(Q.DL.getIndexTypeSizeInBits(PtrOp->getType())); 6173 PtrOpC = dyn_cast<Constant>(PtrOp); 6174 } 6175 6176 if (PtrOpC) 6177 return ConstantFoldLoadFromConstPtr(PtrOpC, LI->getType(), Offset, Q.DL); 6178 return nullptr; 6179 } 6180 6181 /// See if we can compute a simplified version of this instruction. 6182 /// If not, this returns null. 6183 6184 static Value *simplifyInstructionWithOperands(Instruction *I, 6185 ArrayRef<Value *> NewOps, 6186 const SimplifyQuery &SQ, 6187 OptimizationRemarkEmitter *ORE) { 6188 const SimplifyQuery Q = SQ.CxtI ? SQ : SQ.getWithInstruction(I); 6189 Value *Result = nullptr; 6190 6191 switch (I->getOpcode()) { 6192 default: 6193 if (llvm::all_of(NewOps, [](Value *V) { return isa<Constant>(V); })) { 6194 SmallVector<Constant *, 8> NewConstOps(NewOps.size()); 6195 transform(NewOps, NewConstOps.begin(), 6196 [](Value *V) { return cast<Constant>(V); }); 6197 Result = ConstantFoldInstOperands(I, NewConstOps, Q.DL, Q.TLI); 6198 } 6199 break; 6200 case Instruction::FNeg: 6201 Result = SimplifyFNegInst(NewOps[0], I->getFastMathFlags(), Q); 6202 break; 6203 case Instruction::FAdd: 6204 Result = SimplifyFAddInst(NewOps[0], NewOps[1], I->getFastMathFlags(), Q); 6205 break; 6206 case Instruction::Add: 6207 Result = SimplifyAddInst( 6208 NewOps[0], NewOps[1], Q.IIQ.hasNoSignedWrap(cast<BinaryOperator>(I)), 6209 Q.IIQ.hasNoUnsignedWrap(cast<BinaryOperator>(I)), Q); 6210 break; 6211 case Instruction::FSub: 6212 Result = SimplifyFSubInst(NewOps[0], NewOps[1], I->getFastMathFlags(), Q); 6213 break; 6214 case Instruction::Sub: 6215 Result = SimplifySubInst( 6216 NewOps[0], NewOps[1], Q.IIQ.hasNoSignedWrap(cast<BinaryOperator>(I)), 6217 Q.IIQ.hasNoUnsignedWrap(cast<BinaryOperator>(I)), Q); 6218 break; 6219 case Instruction::FMul: 6220 Result = SimplifyFMulInst(NewOps[0], NewOps[1], I->getFastMathFlags(), Q); 6221 break; 6222 case Instruction::Mul: 6223 Result = SimplifyMulInst(NewOps[0], NewOps[1], Q); 6224 break; 6225 case Instruction::SDiv: 6226 Result = SimplifySDivInst(NewOps[0], NewOps[1], Q); 6227 break; 6228 case Instruction::UDiv: 6229 Result = SimplifyUDivInst(NewOps[0], NewOps[1], Q); 6230 break; 6231 case Instruction::FDiv: 6232 Result = SimplifyFDivInst(NewOps[0], NewOps[1], I->getFastMathFlags(), Q); 6233 break; 6234 case Instruction::SRem: 6235 Result = SimplifySRemInst(NewOps[0], NewOps[1], Q); 6236 break; 6237 case Instruction::URem: 6238 Result = SimplifyURemInst(NewOps[0], NewOps[1], Q); 6239 break; 6240 case Instruction::FRem: 6241 Result = SimplifyFRemInst(NewOps[0], NewOps[1], I->getFastMathFlags(), Q); 6242 break; 6243 case Instruction::Shl: 6244 Result = SimplifyShlInst( 6245 NewOps[0], NewOps[1], Q.IIQ.hasNoSignedWrap(cast<BinaryOperator>(I)), 6246 Q.IIQ.hasNoUnsignedWrap(cast<BinaryOperator>(I)), Q); 6247 break; 6248 case Instruction::LShr: 6249 Result = SimplifyLShrInst(NewOps[0], NewOps[1], 6250 Q.IIQ.isExact(cast<BinaryOperator>(I)), Q); 6251 break; 6252 case Instruction::AShr: 6253 Result = SimplifyAShrInst(NewOps[0], NewOps[1], 6254 Q.IIQ.isExact(cast<BinaryOperator>(I)), Q); 6255 break; 6256 case Instruction::And: 6257 Result = SimplifyAndInst(NewOps[0], NewOps[1], Q); 6258 break; 6259 case Instruction::Or: 6260 Result = SimplifyOrInst(NewOps[0], NewOps[1], Q); 6261 break; 6262 case Instruction::Xor: 6263 Result = SimplifyXorInst(NewOps[0], NewOps[1], Q); 6264 break; 6265 case Instruction::ICmp: 6266 Result = SimplifyICmpInst(cast<ICmpInst>(I)->getPredicate(), NewOps[0], 6267 NewOps[1], Q); 6268 break; 6269 case Instruction::FCmp: 6270 Result = SimplifyFCmpInst(cast<FCmpInst>(I)->getPredicate(), NewOps[0], 6271 NewOps[1], I->getFastMathFlags(), Q); 6272 break; 6273 case Instruction::Select: 6274 Result = SimplifySelectInst(NewOps[0], NewOps[1], NewOps[2], Q); 6275 break; 6276 case Instruction::GetElementPtr: { 6277 auto *GEPI = cast<GetElementPtrInst>(I); 6278 Result = SimplifyGEPInst(GEPI->getSourceElementType(), NewOps, 6279 GEPI->isInBounds(), Q); 6280 break; 6281 } 6282 case Instruction::InsertValue: { 6283 InsertValueInst *IV = cast<InsertValueInst>(I); 6284 Result = SimplifyInsertValueInst(NewOps[0], NewOps[1], IV->getIndices(), Q); 6285 break; 6286 } 6287 case Instruction::InsertElement: { 6288 Result = SimplifyInsertElementInst(NewOps[0], NewOps[1], NewOps[2], Q); 6289 break; 6290 } 6291 case Instruction::ExtractValue: { 6292 auto *EVI = cast<ExtractValueInst>(I); 6293 Result = SimplifyExtractValueInst(NewOps[0], EVI->getIndices(), Q); 6294 break; 6295 } 6296 case Instruction::ExtractElement: { 6297 Result = SimplifyExtractElementInst(NewOps[0], NewOps[1], Q); 6298 break; 6299 } 6300 case Instruction::ShuffleVector: { 6301 auto *SVI = cast<ShuffleVectorInst>(I); 6302 Result = SimplifyShuffleVectorInst( 6303 NewOps[0], NewOps[1], SVI->getShuffleMask(), SVI->getType(), Q); 6304 break; 6305 } 6306 case Instruction::PHI: 6307 Result = SimplifyPHINode(cast<PHINode>(I), NewOps, Q); 6308 break; 6309 case Instruction::Call: { 6310 // TODO: Use NewOps 6311 Result = SimplifyCall(cast<CallInst>(I), Q); 6312 break; 6313 } 6314 case Instruction::Freeze: 6315 Result = llvm::SimplifyFreezeInst(NewOps[0], Q); 6316 break; 6317 #define HANDLE_CAST_INST(num, opc, clas) case Instruction::opc: 6318 #include "llvm/IR/Instruction.def" 6319 #undef HANDLE_CAST_INST 6320 Result = SimplifyCastInst(I->getOpcode(), NewOps[0], I->getType(), Q); 6321 break; 6322 case Instruction::Alloca: 6323 // No simplifications for Alloca and it can't be constant folded. 6324 Result = nullptr; 6325 break; 6326 case Instruction::Load: 6327 Result = SimplifyLoadInst(cast<LoadInst>(I), NewOps[0], Q); 6328 break; 6329 } 6330 6331 /// If called on unreachable code, the above logic may report that the 6332 /// instruction simplified to itself. Make life easier for users by 6333 /// detecting that case here, returning a safe value instead. 6334 return Result == I ? UndefValue::get(I->getType()) : Result; 6335 } 6336 6337 Value *llvm::SimplifyInstructionWithOperands(Instruction *I, 6338 ArrayRef<Value *> NewOps, 6339 const SimplifyQuery &SQ, 6340 OptimizationRemarkEmitter *ORE) { 6341 assert(NewOps.size() == I->getNumOperands() && 6342 "Number of operands should match the instruction!"); 6343 return ::simplifyInstructionWithOperands(I, NewOps, SQ, ORE); 6344 } 6345 6346 Value *llvm::SimplifyInstruction(Instruction *I, const SimplifyQuery &SQ, 6347 OptimizationRemarkEmitter *ORE) { 6348 SmallVector<Value *, 8> Ops(I->operands()); 6349 return ::simplifyInstructionWithOperands(I, Ops, SQ, ORE); 6350 } 6351 6352 /// Implementation of recursive simplification through an instruction's 6353 /// uses. 6354 /// 6355 /// This is the common implementation of the recursive simplification routines. 6356 /// If we have a pre-simplified value in 'SimpleV', that is forcibly used to 6357 /// replace the instruction 'I'. Otherwise, we simply add 'I' to the list of 6358 /// instructions to process and attempt to simplify it using 6359 /// InstructionSimplify. Recursively visited users which could not be 6360 /// simplified themselves are to the optional UnsimplifiedUsers set for 6361 /// further processing by the caller. 6362 /// 6363 /// This routine returns 'true' only when *it* simplifies something. The passed 6364 /// in simplified value does not count toward this. 6365 static bool replaceAndRecursivelySimplifyImpl( 6366 Instruction *I, Value *SimpleV, const TargetLibraryInfo *TLI, 6367 const DominatorTree *DT, AssumptionCache *AC, 6368 SmallSetVector<Instruction *, 8> *UnsimplifiedUsers = nullptr) { 6369 bool Simplified = false; 6370 SmallSetVector<Instruction *, 8> Worklist; 6371 const DataLayout &DL = I->getModule()->getDataLayout(); 6372 6373 // If we have an explicit value to collapse to, do that round of the 6374 // simplification loop by hand initially. 6375 if (SimpleV) { 6376 for (User *U : I->users()) 6377 if (U != I) 6378 Worklist.insert(cast<Instruction>(U)); 6379 6380 // Replace the instruction with its simplified value. 6381 I->replaceAllUsesWith(SimpleV); 6382 6383 // Gracefully handle edge cases where the instruction is not wired into any 6384 // parent block. 6385 if (I->getParent() && !I->isEHPad() && !I->isTerminator() && 6386 !I->mayHaveSideEffects()) 6387 I->eraseFromParent(); 6388 } else { 6389 Worklist.insert(I); 6390 } 6391 6392 // Note that we must test the size on each iteration, the worklist can grow. 6393 for (unsigned Idx = 0; Idx != Worklist.size(); ++Idx) { 6394 I = Worklist[Idx]; 6395 6396 // See if this instruction simplifies. 6397 SimpleV = SimplifyInstruction(I, {DL, TLI, DT, AC}); 6398 if (!SimpleV) { 6399 if (UnsimplifiedUsers) 6400 UnsimplifiedUsers->insert(I); 6401 continue; 6402 } 6403 6404 Simplified = true; 6405 6406 // Stash away all the uses of the old instruction so we can check them for 6407 // recursive simplifications after a RAUW. This is cheaper than checking all 6408 // uses of To on the recursive step in most cases. 6409 for (User *U : I->users()) 6410 Worklist.insert(cast<Instruction>(U)); 6411 6412 // Replace the instruction with its simplified value. 6413 I->replaceAllUsesWith(SimpleV); 6414 6415 // Gracefully handle edge cases where the instruction is not wired into any 6416 // parent block. 6417 if (I->getParent() && !I->isEHPad() && !I->isTerminator() && 6418 !I->mayHaveSideEffects()) 6419 I->eraseFromParent(); 6420 } 6421 return Simplified; 6422 } 6423 6424 bool llvm::replaceAndRecursivelySimplify( 6425 Instruction *I, Value *SimpleV, const TargetLibraryInfo *TLI, 6426 const DominatorTree *DT, AssumptionCache *AC, 6427 SmallSetVector<Instruction *, 8> *UnsimplifiedUsers) { 6428 assert(I != SimpleV && "replaceAndRecursivelySimplify(X,X) is not valid!"); 6429 assert(SimpleV && "Must provide a simplified value."); 6430 return replaceAndRecursivelySimplifyImpl(I, SimpleV, TLI, DT, AC, 6431 UnsimplifiedUsers); 6432 } 6433 6434 namespace llvm { 6435 const SimplifyQuery getBestSimplifyQuery(Pass &P, Function &F) { 6436 auto *DTWP = P.getAnalysisIfAvailable<DominatorTreeWrapperPass>(); 6437 auto *DT = DTWP ? &DTWP->getDomTree() : nullptr; 6438 auto *TLIWP = P.getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 6439 auto *TLI = TLIWP ? &TLIWP->getTLI(F) : nullptr; 6440 auto *ACWP = P.getAnalysisIfAvailable<AssumptionCacheTracker>(); 6441 auto *AC = ACWP ? &ACWP->getAssumptionCache(F) : nullptr; 6442 return {F.getParent()->getDataLayout(), TLI, DT, AC}; 6443 } 6444 6445 const SimplifyQuery getBestSimplifyQuery(LoopStandardAnalysisResults &AR, 6446 const DataLayout &DL) { 6447 return {DL, &AR.TLI, &AR.DT, &AR.AC}; 6448 } 6449 6450 template <class T, class... TArgs> 6451 const SimplifyQuery getBestSimplifyQuery(AnalysisManager<T, TArgs...> &AM, 6452 Function &F) { 6453 auto *DT = AM.template getCachedResult<DominatorTreeAnalysis>(F); 6454 auto *TLI = AM.template getCachedResult<TargetLibraryAnalysis>(F); 6455 auto *AC = AM.template getCachedResult<AssumptionAnalysis>(F); 6456 return {F.getParent()->getDataLayout(), TLI, DT, AC}; 6457 } 6458 template const SimplifyQuery getBestSimplifyQuery(AnalysisManager<Function> &, 6459 Function &); 6460 } 6461 6462 void InstSimplifyFolder::anchor() {} 6463