1 //===- InstructionSimplify.cpp - Fold instruction operands ----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements routines for folding instructions into simpler forms
10 // that do not require creating new instructions.  This does constant folding
11 // ("add i32 1, 1" -> "2") but can also handle non-constant operands, either
12 // returning a constant ("and i32 %x, 0" -> "0") or an already existing value
13 // ("and i32 %x, %x" -> "%x").  All operands are assumed to have already been
14 // simplified: This is usually true and assuming it simplifies the logic (if
15 // they have not been simplified then results are correct but maybe suboptimal).
16 //
17 //===----------------------------------------------------------------------===//
18 
19 #include "llvm/Analysis/InstructionSimplify.h"
20 
21 #include "llvm/ADT/STLExtras.h"
22 #include "llvm/ADT/SetVector.h"
23 #include "llvm/ADT/SmallPtrSet.h"
24 #include "llvm/ADT/Statistic.h"
25 #include "llvm/Analysis/AliasAnalysis.h"
26 #include "llvm/Analysis/AssumptionCache.h"
27 #include "llvm/Analysis/CaptureTracking.h"
28 #include "llvm/Analysis/CmpInstAnalysis.h"
29 #include "llvm/Analysis/ConstantFolding.h"
30 #include "llvm/Analysis/LoopAnalysisManager.h"
31 #include "llvm/Analysis/MemoryBuiltins.h"
32 #include "llvm/Analysis/OverflowInstAnalysis.h"
33 #include "llvm/Analysis/ValueTracking.h"
34 #include "llvm/Analysis/VectorUtils.h"
35 #include "llvm/IR/ConstantRange.h"
36 #include "llvm/IR/DataLayout.h"
37 #include "llvm/IR/Dominators.h"
38 #include "llvm/IR/GetElementPtrTypeIterator.h"
39 #include "llvm/IR/GlobalAlias.h"
40 #include "llvm/IR/InstrTypes.h"
41 #include "llvm/IR/Instructions.h"
42 #include "llvm/IR/Operator.h"
43 #include "llvm/IR/PatternMatch.h"
44 #include "llvm/IR/ValueHandle.h"
45 #include "llvm/Support/KnownBits.h"
46 #include <algorithm>
47 using namespace llvm;
48 using namespace llvm::PatternMatch;
49 
50 #define DEBUG_TYPE "instsimplify"
51 
52 enum { RecursionLimit = 3 };
53 
54 STATISTIC(NumExpand,  "Number of expansions");
55 STATISTIC(NumReassoc, "Number of reassociations");
56 
57 static Value *SimplifyAndInst(Value *, Value *, const SimplifyQuery &, unsigned);
58 static Value *simplifyUnOp(unsigned, Value *, const SimplifyQuery &, unsigned);
59 static Value *simplifyFPUnOp(unsigned, Value *, const FastMathFlags &,
60                              const SimplifyQuery &, unsigned);
61 static Value *SimplifyBinOp(unsigned, Value *, Value *, const SimplifyQuery &,
62                             unsigned);
63 static Value *SimplifyBinOp(unsigned, Value *, Value *, const FastMathFlags &,
64                             const SimplifyQuery &, unsigned);
65 static Value *SimplifyCmpInst(unsigned, Value *, Value *, const SimplifyQuery &,
66                               unsigned);
67 static Value *SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS,
68                                const SimplifyQuery &Q, unsigned MaxRecurse);
69 static Value *SimplifyOrInst(Value *, Value *, const SimplifyQuery &, unsigned);
70 static Value *SimplifyXorInst(Value *, Value *, const SimplifyQuery &, unsigned);
71 static Value *SimplifyCastInst(unsigned, Value *, Type *,
72                                const SimplifyQuery &, unsigned);
73 static Value *SimplifyGEPInst(Type *, ArrayRef<Value *>, bool,
74                               const SimplifyQuery &, unsigned);
75 static Value *SimplifySelectInst(Value *, Value *, Value *,
76                                  const SimplifyQuery &, unsigned);
77 
78 static Value *foldSelectWithBinaryOp(Value *Cond, Value *TrueVal,
79                                      Value *FalseVal) {
80   BinaryOperator::BinaryOps BinOpCode;
81   if (auto *BO = dyn_cast<BinaryOperator>(Cond))
82     BinOpCode = BO->getOpcode();
83   else
84     return nullptr;
85 
86   CmpInst::Predicate ExpectedPred, Pred1, Pred2;
87   if (BinOpCode == BinaryOperator::Or) {
88     ExpectedPred = ICmpInst::ICMP_NE;
89   } else if (BinOpCode == BinaryOperator::And) {
90     ExpectedPred = ICmpInst::ICMP_EQ;
91   } else
92     return nullptr;
93 
94   // %A = icmp eq %TV, %FV
95   // %B = icmp eq %X, %Y (and one of these is a select operand)
96   // %C = and %A, %B
97   // %D = select %C, %TV, %FV
98   // -->
99   // %FV
100 
101   // %A = icmp ne %TV, %FV
102   // %B = icmp ne %X, %Y (and one of these is a select operand)
103   // %C = or %A, %B
104   // %D = select %C, %TV, %FV
105   // -->
106   // %TV
107   Value *X, *Y;
108   if (!match(Cond, m_c_BinOp(m_c_ICmp(Pred1, m_Specific(TrueVal),
109                                       m_Specific(FalseVal)),
110                              m_ICmp(Pred2, m_Value(X), m_Value(Y)))) ||
111       Pred1 != Pred2 || Pred1 != ExpectedPred)
112     return nullptr;
113 
114   if (X == TrueVal || X == FalseVal || Y == TrueVal || Y == FalseVal)
115     return BinOpCode == BinaryOperator::Or ? TrueVal : FalseVal;
116 
117   return nullptr;
118 }
119 
120 /// For a boolean type or a vector of boolean type, return false or a vector
121 /// with every element false.
122 static Constant *getFalse(Type *Ty) {
123   return ConstantInt::getFalse(Ty);
124 }
125 
126 /// For a boolean type or a vector of boolean type, return true or a vector
127 /// with every element true.
128 static Constant *getTrue(Type *Ty) {
129   return ConstantInt::getTrue(Ty);
130 }
131 
132 /// isSameCompare - Is V equivalent to the comparison "LHS Pred RHS"?
133 static bool isSameCompare(Value *V, CmpInst::Predicate Pred, Value *LHS,
134                           Value *RHS) {
135   CmpInst *Cmp = dyn_cast<CmpInst>(V);
136   if (!Cmp)
137     return false;
138   CmpInst::Predicate CPred = Cmp->getPredicate();
139   Value *CLHS = Cmp->getOperand(0), *CRHS = Cmp->getOperand(1);
140   if (CPred == Pred && CLHS == LHS && CRHS == RHS)
141     return true;
142   return CPred == CmpInst::getSwappedPredicate(Pred) && CLHS == RHS &&
143     CRHS == LHS;
144 }
145 
146 /// Simplify comparison with true or false branch of select:
147 ///  %sel = select i1 %cond, i32 %tv, i32 %fv
148 ///  %cmp = icmp sle i32 %sel, %rhs
149 /// Compose new comparison by substituting %sel with either %tv or %fv
150 /// and see if it simplifies.
151 static Value *simplifyCmpSelCase(CmpInst::Predicate Pred, Value *LHS,
152                                  Value *RHS, Value *Cond,
153                                  const SimplifyQuery &Q, unsigned MaxRecurse,
154                                  Constant *TrueOrFalse) {
155   Value *SimplifiedCmp = SimplifyCmpInst(Pred, LHS, RHS, Q, MaxRecurse);
156   if (SimplifiedCmp == Cond) {
157     // %cmp simplified to the select condition (%cond).
158     return TrueOrFalse;
159   } else if (!SimplifiedCmp && isSameCompare(Cond, Pred, LHS, RHS)) {
160     // It didn't simplify. However, if composed comparison is equivalent
161     // to the select condition (%cond) then we can replace it.
162     return TrueOrFalse;
163   }
164   return SimplifiedCmp;
165 }
166 
167 /// Simplify comparison with true branch of select
168 static Value *simplifyCmpSelTrueCase(CmpInst::Predicate Pred, Value *LHS,
169                                      Value *RHS, Value *Cond,
170                                      const SimplifyQuery &Q,
171                                      unsigned MaxRecurse) {
172   return simplifyCmpSelCase(Pred, LHS, RHS, Cond, Q, MaxRecurse,
173                             getTrue(Cond->getType()));
174 }
175 
176 /// Simplify comparison with false branch of select
177 static Value *simplifyCmpSelFalseCase(CmpInst::Predicate Pred, Value *LHS,
178                                       Value *RHS, Value *Cond,
179                                       const SimplifyQuery &Q,
180                                       unsigned MaxRecurse) {
181   return simplifyCmpSelCase(Pred, LHS, RHS, Cond, Q, MaxRecurse,
182                             getFalse(Cond->getType()));
183 }
184 
185 /// We know comparison with both branches of select can be simplified, but they
186 /// are not equal. This routine handles some logical simplifications.
187 static Value *handleOtherCmpSelSimplifications(Value *TCmp, Value *FCmp,
188                                                Value *Cond,
189                                                const SimplifyQuery &Q,
190                                                unsigned MaxRecurse) {
191   // If the false value simplified to false, then the result of the compare
192   // is equal to "Cond && TCmp".  This also catches the case when the false
193   // value simplified to false and the true value to true, returning "Cond".
194   // Folding select to and/or isn't poison-safe in general; impliesPoison
195   // checks whether folding it does not convert a well-defined value into
196   // poison.
197   if (match(FCmp, m_Zero()) && impliesPoison(TCmp, Cond))
198     if (Value *V = SimplifyAndInst(Cond, TCmp, Q, MaxRecurse))
199       return V;
200   // If the true value simplified to true, then the result of the compare
201   // is equal to "Cond || FCmp".
202   if (match(TCmp, m_One()) && impliesPoison(FCmp, Cond))
203     if (Value *V = SimplifyOrInst(Cond, FCmp, Q, MaxRecurse))
204       return V;
205   // Finally, if the false value simplified to true and the true value to
206   // false, then the result of the compare is equal to "!Cond".
207   if (match(FCmp, m_One()) && match(TCmp, m_Zero()))
208     if (Value *V = SimplifyXorInst(
209             Cond, Constant::getAllOnesValue(Cond->getType()), Q, MaxRecurse))
210       return V;
211   return nullptr;
212 }
213 
214 /// Does the given value dominate the specified phi node?
215 static bool valueDominatesPHI(Value *V, PHINode *P, const DominatorTree *DT) {
216   Instruction *I = dyn_cast<Instruction>(V);
217   if (!I)
218     // Arguments and constants dominate all instructions.
219     return true;
220 
221   // If we are processing instructions (and/or basic blocks) that have not been
222   // fully added to a function, the parent nodes may still be null. Simply
223   // return the conservative answer in these cases.
224   if (!I->getParent() || !P->getParent() || !I->getFunction())
225     return false;
226 
227   // If we have a DominatorTree then do a precise test.
228   if (DT)
229     return DT->dominates(I, P);
230 
231   // Otherwise, if the instruction is in the entry block and is not an invoke,
232   // then it obviously dominates all phi nodes.
233   if (I->getParent()->isEntryBlock() && !isa<InvokeInst>(I) &&
234       !isa<CallBrInst>(I))
235     return true;
236 
237   return false;
238 }
239 
240 /// Try to simplify a binary operator of form "V op OtherOp" where V is
241 /// "(B0 opex B1)" by distributing 'op' across 'opex' as
242 /// "(B0 op OtherOp) opex (B1 op OtherOp)".
243 static Value *expandBinOp(Instruction::BinaryOps Opcode, Value *V,
244                           Value *OtherOp, Instruction::BinaryOps OpcodeToExpand,
245                           const SimplifyQuery &Q, unsigned MaxRecurse) {
246   auto *B = dyn_cast<BinaryOperator>(V);
247   if (!B || B->getOpcode() != OpcodeToExpand)
248     return nullptr;
249   Value *B0 = B->getOperand(0), *B1 = B->getOperand(1);
250   Value *L = SimplifyBinOp(Opcode, B0, OtherOp, Q.getWithoutUndef(),
251                            MaxRecurse);
252   if (!L)
253     return nullptr;
254   Value *R = SimplifyBinOp(Opcode, B1, OtherOp, Q.getWithoutUndef(),
255                            MaxRecurse);
256   if (!R)
257     return nullptr;
258 
259   // Does the expanded pair of binops simplify to the existing binop?
260   if ((L == B0 && R == B1) ||
261       (Instruction::isCommutative(OpcodeToExpand) && L == B1 && R == B0)) {
262     ++NumExpand;
263     return B;
264   }
265 
266   // Otherwise, return "L op' R" if it simplifies.
267   Value *S = SimplifyBinOp(OpcodeToExpand, L, R, Q, MaxRecurse);
268   if (!S)
269     return nullptr;
270 
271   ++NumExpand;
272   return S;
273 }
274 
275 /// Try to simplify binops of form "A op (B op' C)" or the commuted variant by
276 /// distributing op over op'.
277 static Value *expandCommutativeBinOp(Instruction::BinaryOps Opcode,
278                                      Value *L, Value *R,
279                                      Instruction::BinaryOps OpcodeToExpand,
280                                      const SimplifyQuery &Q,
281                                      unsigned MaxRecurse) {
282   // Recursion is always used, so bail out at once if we already hit the limit.
283   if (!MaxRecurse--)
284     return nullptr;
285 
286   if (Value *V = expandBinOp(Opcode, L, R, OpcodeToExpand, Q, MaxRecurse))
287     return V;
288   if (Value *V = expandBinOp(Opcode, R, L, OpcodeToExpand, Q, MaxRecurse))
289     return V;
290   return nullptr;
291 }
292 
293 /// Generic simplifications for associative binary operations.
294 /// Returns the simpler value, or null if none was found.
295 static Value *SimplifyAssociativeBinOp(Instruction::BinaryOps Opcode,
296                                        Value *LHS, Value *RHS,
297                                        const SimplifyQuery &Q,
298                                        unsigned MaxRecurse) {
299   assert(Instruction::isAssociative(Opcode) && "Not an associative operation!");
300 
301   // Recursion is always used, so bail out at once if we already hit the limit.
302   if (!MaxRecurse--)
303     return nullptr;
304 
305   BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS);
306   BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS);
307 
308   // Transform: "(A op B) op C" ==> "A op (B op C)" if it simplifies completely.
309   if (Op0 && Op0->getOpcode() == Opcode) {
310     Value *A = Op0->getOperand(0);
311     Value *B = Op0->getOperand(1);
312     Value *C = RHS;
313 
314     // Does "B op C" simplify?
315     if (Value *V = SimplifyBinOp(Opcode, B, C, Q, MaxRecurse)) {
316       // It does!  Return "A op V" if it simplifies or is already available.
317       // If V equals B then "A op V" is just the LHS.
318       if (V == B) return LHS;
319       // Otherwise return "A op V" if it simplifies.
320       if (Value *W = SimplifyBinOp(Opcode, A, V, Q, MaxRecurse)) {
321         ++NumReassoc;
322         return W;
323       }
324     }
325   }
326 
327   // Transform: "A op (B op C)" ==> "(A op B) op C" if it simplifies completely.
328   if (Op1 && Op1->getOpcode() == Opcode) {
329     Value *A = LHS;
330     Value *B = Op1->getOperand(0);
331     Value *C = Op1->getOperand(1);
332 
333     // Does "A op B" simplify?
334     if (Value *V = SimplifyBinOp(Opcode, A, B, Q, MaxRecurse)) {
335       // It does!  Return "V op C" if it simplifies or is already available.
336       // If V equals B then "V op C" is just the RHS.
337       if (V == B) return RHS;
338       // Otherwise return "V op C" if it simplifies.
339       if (Value *W = SimplifyBinOp(Opcode, V, C, Q, MaxRecurse)) {
340         ++NumReassoc;
341         return W;
342       }
343     }
344   }
345 
346   // The remaining transforms require commutativity as well as associativity.
347   if (!Instruction::isCommutative(Opcode))
348     return nullptr;
349 
350   // Transform: "(A op B) op C" ==> "(C op A) op B" if it simplifies completely.
351   if (Op0 && Op0->getOpcode() == Opcode) {
352     Value *A = Op0->getOperand(0);
353     Value *B = Op0->getOperand(1);
354     Value *C = RHS;
355 
356     // Does "C op A" simplify?
357     if (Value *V = SimplifyBinOp(Opcode, C, A, Q, MaxRecurse)) {
358       // It does!  Return "V op B" if it simplifies or is already available.
359       // If V equals A then "V op B" is just the LHS.
360       if (V == A) return LHS;
361       // Otherwise return "V op B" if it simplifies.
362       if (Value *W = SimplifyBinOp(Opcode, V, B, Q, MaxRecurse)) {
363         ++NumReassoc;
364         return W;
365       }
366     }
367   }
368 
369   // Transform: "A op (B op C)" ==> "B op (C op A)" if it simplifies completely.
370   if (Op1 && Op1->getOpcode() == Opcode) {
371     Value *A = LHS;
372     Value *B = Op1->getOperand(0);
373     Value *C = Op1->getOperand(1);
374 
375     // Does "C op A" simplify?
376     if (Value *V = SimplifyBinOp(Opcode, C, A, Q, MaxRecurse)) {
377       // It does!  Return "B op V" if it simplifies or is already available.
378       // If V equals C then "B op V" is just the RHS.
379       if (V == C) return RHS;
380       // Otherwise return "B op V" if it simplifies.
381       if (Value *W = SimplifyBinOp(Opcode, B, V, Q, MaxRecurse)) {
382         ++NumReassoc;
383         return W;
384       }
385     }
386   }
387 
388   return nullptr;
389 }
390 
391 /// In the case of a binary operation with a select instruction as an operand,
392 /// try to simplify the binop by seeing whether evaluating it on both branches
393 /// of the select results in the same value. Returns the common value if so,
394 /// otherwise returns null.
395 static Value *ThreadBinOpOverSelect(Instruction::BinaryOps Opcode, Value *LHS,
396                                     Value *RHS, const SimplifyQuery &Q,
397                                     unsigned MaxRecurse) {
398   // Recursion is always used, so bail out at once if we already hit the limit.
399   if (!MaxRecurse--)
400     return nullptr;
401 
402   SelectInst *SI;
403   if (isa<SelectInst>(LHS)) {
404     SI = cast<SelectInst>(LHS);
405   } else {
406     assert(isa<SelectInst>(RHS) && "No select instruction operand!");
407     SI = cast<SelectInst>(RHS);
408   }
409 
410   // Evaluate the BinOp on the true and false branches of the select.
411   Value *TV;
412   Value *FV;
413   if (SI == LHS) {
414     TV = SimplifyBinOp(Opcode, SI->getTrueValue(), RHS, Q, MaxRecurse);
415     FV = SimplifyBinOp(Opcode, SI->getFalseValue(), RHS, Q, MaxRecurse);
416   } else {
417     TV = SimplifyBinOp(Opcode, LHS, SI->getTrueValue(), Q, MaxRecurse);
418     FV = SimplifyBinOp(Opcode, LHS, SI->getFalseValue(), Q, MaxRecurse);
419   }
420 
421   // If they simplified to the same value, then return the common value.
422   // If they both failed to simplify then return null.
423   if (TV == FV)
424     return TV;
425 
426   // If one branch simplified to undef, return the other one.
427   if (TV && Q.isUndefValue(TV))
428     return FV;
429   if (FV && Q.isUndefValue(FV))
430     return TV;
431 
432   // If applying the operation did not change the true and false select values,
433   // then the result of the binop is the select itself.
434   if (TV == SI->getTrueValue() && FV == SI->getFalseValue())
435     return SI;
436 
437   // If one branch simplified and the other did not, and the simplified
438   // value is equal to the unsimplified one, return the simplified value.
439   // For example, select (cond, X, X & Z) & Z -> X & Z.
440   if ((FV && !TV) || (TV && !FV)) {
441     // Check that the simplified value has the form "X op Y" where "op" is the
442     // same as the original operation.
443     Instruction *Simplified = dyn_cast<Instruction>(FV ? FV : TV);
444     if (Simplified && Simplified->getOpcode() == unsigned(Opcode)) {
445       // The value that didn't simplify is "UnsimplifiedLHS op UnsimplifiedRHS".
446       // We already know that "op" is the same as for the simplified value.  See
447       // if the operands match too.  If so, return the simplified value.
448       Value *UnsimplifiedBranch = FV ? SI->getTrueValue() : SI->getFalseValue();
449       Value *UnsimplifiedLHS = SI == LHS ? UnsimplifiedBranch : LHS;
450       Value *UnsimplifiedRHS = SI == LHS ? RHS : UnsimplifiedBranch;
451       if (Simplified->getOperand(0) == UnsimplifiedLHS &&
452           Simplified->getOperand(1) == UnsimplifiedRHS)
453         return Simplified;
454       if (Simplified->isCommutative() &&
455           Simplified->getOperand(1) == UnsimplifiedLHS &&
456           Simplified->getOperand(0) == UnsimplifiedRHS)
457         return Simplified;
458     }
459   }
460 
461   return nullptr;
462 }
463 
464 /// In the case of a comparison with a select instruction, try to simplify the
465 /// comparison by seeing whether both branches of the select result in the same
466 /// value. Returns the common value if so, otherwise returns null.
467 /// For example, if we have:
468 ///  %tmp = select i1 %cmp, i32 1, i32 2
469 ///  %cmp1 = icmp sle i32 %tmp, 3
470 /// We can simplify %cmp1 to true, because both branches of select are
471 /// less than 3. We compose new comparison by substituting %tmp with both
472 /// branches of select and see if it can be simplified.
473 static Value *ThreadCmpOverSelect(CmpInst::Predicate Pred, Value *LHS,
474                                   Value *RHS, const SimplifyQuery &Q,
475                                   unsigned MaxRecurse) {
476   // Recursion is always used, so bail out at once if we already hit the limit.
477   if (!MaxRecurse--)
478     return nullptr;
479 
480   // Make sure the select is on the LHS.
481   if (!isa<SelectInst>(LHS)) {
482     std::swap(LHS, RHS);
483     Pred = CmpInst::getSwappedPredicate(Pred);
484   }
485   assert(isa<SelectInst>(LHS) && "Not comparing with a select instruction!");
486   SelectInst *SI = cast<SelectInst>(LHS);
487   Value *Cond = SI->getCondition();
488   Value *TV = SI->getTrueValue();
489   Value *FV = SI->getFalseValue();
490 
491   // Now that we have "cmp select(Cond, TV, FV), RHS", analyse it.
492   // Does "cmp TV, RHS" simplify?
493   Value *TCmp = simplifyCmpSelTrueCase(Pred, TV, RHS, Cond, Q, MaxRecurse);
494   if (!TCmp)
495     return nullptr;
496 
497   // Does "cmp FV, RHS" simplify?
498   Value *FCmp = simplifyCmpSelFalseCase(Pred, FV, RHS, Cond, Q, MaxRecurse);
499   if (!FCmp)
500     return nullptr;
501 
502   // If both sides simplified to the same value, then use it as the result of
503   // the original comparison.
504   if (TCmp == FCmp)
505     return TCmp;
506 
507   // The remaining cases only make sense if the select condition has the same
508   // type as the result of the comparison, so bail out if this is not so.
509   if (Cond->getType()->isVectorTy() == RHS->getType()->isVectorTy())
510     return handleOtherCmpSelSimplifications(TCmp, FCmp, Cond, Q, MaxRecurse);
511 
512   return nullptr;
513 }
514 
515 /// In the case of a binary operation with an operand that is a PHI instruction,
516 /// try to simplify the binop by seeing whether evaluating it on the incoming
517 /// phi values yields the same result for every value. If so returns the common
518 /// value, otherwise returns null.
519 static Value *ThreadBinOpOverPHI(Instruction::BinaryOps Opcode, Value *LHS,
520                                  Value *RHS, const SimplifyQuery &Q,
521                                  unsigned MaxRecurse) {
522   // Recursion is always used, so bail out at once if we already hit the limit.
523   if (!MaxRecurse--)
524     return nullptr;
525 
526   PHINode *PI;
527   if (isa<PHINode>(LHS)) {
528     PI = cast<PHINode>(LHS);
529     // Bail out if RHS and the phi may be mutually interdependent due to a loop.
530     if (!valueDominatesPHI(RHS, PI, Q.DT))
531       return nullptr;
532   } else {
533     assert(isa<PHINode>(RHS) && "No PHI instruction operand!");
534     PI = cast<PHINode>(RHS);
535     // Bail out if LHS and the phi may be mutually interdependent due to a loop.
536     if (!valueDominatesPHI(LHS, PI, Q.DT))
537       return nullptr;
538   }
539 
540   // Evaluate the BinOp on the incoming phi values.
541   Value *CommonValue = nullptr;
542   for (Value *Incoming : PI->incoming_values()) {
543     // If the incoming value is the phi node itself, it can safely be skipped.
544     if (Incoming == PI) continue;
545     Value *V = PI == LHS ?
546       SimplifyBinOp(Opcode, Incoming, RHS, Q, MaxRecurse) :
547       SimplifyBinOp(Opcode, LHS, Incoming, Q, MaxRecurse);
548     // If the operation failed to simplify, or simplified to a different value
549     // to previously, then give up.
550     if (!V || (CommonValue && V != CommonValue))
551       return nullptr;
552     CommonValue = V;
553   }
554 
555   return CommonValue;
556 }
557 
558 /// In the case of a comparison with a PHI instruction, try to simplify the
559 /// comparison by seeing whether comparing with all of the incoming phi values
560 /// yields the same result every time. If so returns the common result,
561 /// otherwise returns null.
562 static Value *ThreadCmpOverPHI(CmpInst::Predicate Pred, Value *LHS, Value *RHS,
563                                const SimplifyQuery &Q, unsigned MaxRecurse) {
564   // Recursion is always used, so bail out at once if we already hit the limit.
565   if (!MaxRecurse--)
566     return nullptr;
567 
568   // Make sure the phi is on the LHS.
569   if (!isa<PHINode>(LHS)) {
570     std::swap(LHS, RHS);
571     Pred = CmpInst::getSwappedPredicate(Pred);
572   }
573   assert(isa<PHINode>(LHS) && "Not comparing with a phi instruction!");
574   PHINode *PI = cast<PHINode>(LHS);
575 
576   // Bail out if RHS and the phi may be mutually interdependent due to a loop.
577   if (!valueDominatesPHI(RHS, PI, Q.DT))
578     return nullptr;
579 
580   // Evaluate the BinOp on the incoming phi values.
581   Value *CommonValue = nullptr;
582   for (unsigned u = 0, e = PI->getNumIncomingValues(); u < e; ++u) {
583     Value *Incoming = PI->getIncomingValue(u);
584     Instruction *InTI = PI->getIncomingBlock(u)->getTerminator();
585     // If the incoming value is the phi node itself, it can safely be skipped.
586     if (Incoming == PI) continue;
587     // Change the context instruction to the "edge" that flows into the phi.
588     // This is important because that is where incoming is actually "evaluated"
589     // even though it is used later somewhere else.
590     Value *V = SimplifyCmpInst(Pred, Incoming, RHS, Q.getWithInstruction(InTI),
591                                MaxRecurse);
592     // If the operation failed to simplify, or simplified to a different value
593     // to previously, then give up.
594     if (!V || (CommonValue && V != CommonValue))
595       return nullptr;
596     CommonValue = V;
597   }
598 
599   return CommonValue;
600 }
601 
602 static Constant *foldOrCommuteConstant(Instruction::BinaryOps Opcode,
603                                        Value *&Op0, Value *&Op1,
604                                        const SimplifyQuery &Q) {
605   if (auto *CLHS = dyn_cast<Constant>(Op0)) {
606     if (auto *CRHS = dyn_cast<Constant>(Op1))
607       return ConstantFoldBinaryOpOperands(Opcode, CLHS, CRHS, Q.DL);
608 
609     // Canonicalize the constant to the RHS if this is a commutative operation.
610     if (Instruction::isCommutative(Opcode))
611       std::swap(Op0, Op1);
612   }
613   return nullptr;
614 }
615 
616 /// Given operands for an Add, see if we can fold the result.
617 /// If not, this returns null.
618 static Value *SimplifyAddInst(Value *Op0, Value *Op1, bool IsNSW, bool IsNUW,
619                               const SimplifyQuery &Q, unsigned MaxRecurse) {
620   if (Constant *C = foldOrCommuteConstant(Instruction::Add, Op0, Op1, Q))
621     return C;
622 
623   // X + undef -> undef
624   if (Q.isUndefValue(Op1))
625     return Op1;
626 
627   // X + 0 -> X
628   if (match(Op1, m_Zero()))
629     return Op0;
630 
631   // If two operands are negative, return 0.
632   if (isKnownNegation(Op0, Op1))
633     return Constant::getNullValue(Op0->getType());
634 
635   // X + (Y - X) -> Y
636   // (Y - X) + X -> Y
637   // Eg: X + -X -> 0
638   Value *Y = nullptr;
639   if (match(Op1, m_Sub(m_Value(Y), m_Specific(Op0))) ||
640       match(Op0, m_Sub(m_Value(Y), m_Specific(Op1))))
641     return Y;
642 
643   // X + ~X -> -1   since   ~X = -X-1
644   Type *Ty = Op0->getType();
645   if (match(Op0, m_Not(m_Specific(Op1))) ||
646       match(Op1, m_Not(m_Specific(Op0))))
647     return Constant::getAllOnesValue(Ty);
648 
649   // add nsw/nuw (xor Y, signmask), signmask --> Y
650   // The no-wrapping add guarantees that the top bit will be set by the add.
651   // Therefore, the xor must be clearing the already set sign bit of Y.
652   if ((IsNSW || IsNUW) && match(Op1, m_SignMask()) &&
653       match(Op0, m_Xor(m_Value(Y), m_SignMask())))
654     return Y;
655 
656   // add nuw %x, -1  ->  -1, because %x can only be 0.
657   if (IsNUW && match(Op1, m_AllOnes()))
658     return Op1; // Which is -1.
659 
660   /// i1 add -> xor.
661   if (MaxRecurse && Op0->getType()->isIntOrIntVectorTy(1))
662     if (Value *V = SimplifyXorInst(Op0, Op1, Q, MaxRecurse-1))
663       return V;
664 
665   // Try some generic simplifications for associative operations.
666   if (Value *V = SimplifyAssociativeBinOp(Instruction::Add, Op0, Op1, Q,
667                                           MaxRecurse))
668     return V;
669 
670   // Threading Add over selects and phi nodes is pointless, so don't bother.
671   // Threading over the select in "A + select(cond, B, C)" means evaluating
672   // "A+B" and "A+C" and seeing if they are equal; but they are equal if and
673   // only if B and C are equal.  If B and C are equal then (since we assume
674   // that operands have already been simplified) "select(cond, B, C)" should
675   // have been simplified to the common value of B and C already.  Analysing
676   // "A+B" and "A+C" thus gains nothing, but costs compile time.  Similarly
677   // for threading over phi nodes.
678 
679   return nullptr;
680 }
681 
682 Value *llvm::SimplifyAddInst(Value *Op0, Value *Op1, bool IsNSW, bool IsNUW,
683                              const SimplifyQuery &Query) {
684   return ::SimplifyAddInst(Op0, Op1, IsNSW, IsNUW, Query, RecursionLimit);
685 }
686 
687 /// Compute the base pointer and cumulative constant offsets for V.
688 ///
689 /// This strips all constant offsets off of V, leaving it the base pointer, and
690 /// accumulates the total constant offset applied in the returned constant. It
691 /// returns 0 if V is not a pointer, and returns the constant '0' if there are
692 /// no constant offsets applied.
693 ///
694 /// This is very similar to GetPointerBaseWithConstantOffset except it doesn't
695 /// follow non-inbounds geps. This allows it to remain usable for icmp ult/etc.
696 /// folding.
697 static Constant *stripAndComputeConstantOffsets(const DataLayout &DL, Value *&V,
698                                                 bool AllowNonInbounds = false) {
699   assert(V->getType()->isPtrOrPtrVectorTy());
700 
701   APInt Offset = APInt::getZero(DL.getIndexTypeSizeInBits(V->getType()));
702 
703   V = V->stripAndAccumulateConstantOffsets(DL, Offset, AllowNonInbounds);
704   // As that strip may trace through `addrspacecast`, need to sext or trunc
705   // the offset calculated.
706   Type *IntIdxTy = DL.getIndexType(V->getType())->getScalarType();
707   Offset = Offset.sextOrTrunc(IntIdxTy->getIntegerBitWidth());
708 
709   Constant *OffsetIntPtr = ConstantInt::get(IntIdxTy, Offset);
710   if (VectorType *VecTy = dyn_cast<VectorType>(V->getType()))
711     return ConstantVector::getSplat(VecTy->getElementCount(), OffsetIntPtr);
712   return OffsetIntPtr;
713 }
714 
715 /// Compute the constant difference between two pointer values.
716 /// If the difference is not a constant, returns zero.
717 static Constant *computePointerDifference(const DataLayout &DL, Value *LHS,
718                                           Value *RHS) {
719   Constant *LHSOffset = stripAndComputeConstantOffsets(DL, LHS);
720   Constant *RHSOffset = stripAndComputeConstantOffsets(DL, RHS);
721 
722   // If LHS and RHS are not related via constant offsets to the same base
723   // value, there is nothing we can do here.
724   if (LHS != RHS)
725     return nullptr;
726 
727   // Otherwise, the difference of LHS - RHS can be computed as:
728   //    LHS - RHS
729   //  = (LHSOffset + Base) - (RHSOffset + Base)
730   //  = LHSOffset - RHSOffset
731   return ConstantExpr::getSub(LHSOffset, RHSOffset);
732 }
733 
734 /// Given operands for a Sub, see if we can fold the result.
735 /// If not, this returns null.
736 static Value *SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
737                               const SimplifyQuery &Q, unsigned MaxRecurse) {
738   if (Constant *C = foldOrCommuteConstant(Instruction::Sub, Op0, Op1, Q))
739     return C;
740 
741   // X - poison -> poison
742   // poison - X -> poison
743   if (isa<PoisonValue>(Op0) || isa<PoisonValue>(Op1))
744     return PoisonValue::get(Op0->getType());
745 
746   // X - undef -> undef
747   // undef - X -> undef
748   if (Q.isUndefValue(Op0) || Q.isUndefValue(Op1))
749     return UndefValue::get(Op0->getType());
750 
751   // X - 0 -> X
752   if (match(Op1, m_Zero()))
753     return Op0;
754 
755   // X - X -> 0
756   if (Op0 == Op1)
757     return Constant::getNullValue(Op0->getType());
758 
759   // Is this a negation?
760   if (match(Op0, m_Zero())) {
761     // 0 - X -> 0 if the sub is NUW.
762     if (isNUW)
763       return Constant::getNullValue(Op0->getType());
764 
765     KnownBits Known = computeKnownBits(Op1, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
766     if (Known.Zero.isMaxSignedValue()) {
767       // Op1 is either 0 or the minimum signed value. If the sub is NSW, then
768       // Op1 must be 0 because negating the minimum signed value is undefined.
769       if (isNSW)
770         return Constant::getNullValue(Op0->getType());
771 
772       // 0 - X -> X if X is 0 or the minimum signed value.
773       return Op1;
774     }
775   }
776 
777   // (X + Y) - Z -> X + (Y - Z) or Y + (X - Z) if everything simplifies.
778   // For example, (X + Y) - Y -> X; (Y + X) - Y -> X
779   Value *X = nullptr, *Y = nullptr, *Z = Op1;
780   if (MaxRecurse && match(Op0, m_Add(m_Value(X), m_Value(Y)))) { // (X + Y) - Z
781     // See if "V === Y - Z" simplifies.
782     if (Value *V = SimplifyBinOp(Instruction::Sub, Y, Z, Q, MaxRecurse-1))
783       // It does!  Now see if "X + V" simplifies.
784       if (Value *W = SimplifyBinOp(Instruction::Add, X, V, Q, MaxRecurse-1)) {
785         // It does, we successfully reassociated!
786         ++NumReassoc;
787         return W;
788       }
789     // See if "V === X - Z" simplifies.
790     if (Value *V = SimplifyBinOp(Instruction::Sub, X, Z, Q, MaxRecurse-1))
791       // It does!  Now see if "Y + V" simplifies.
792       if (Value *W = SimplifyBinOp(Instruction::Add, Y, V, Q, MaxRecurse-1)) {
793         // It does, we successfully reassociated!
794         ++NumReassoc;
795         return W;
796       }
797   }
798 
799   // X - (Y + Z) -> (X - Y) - Z or (X - Z) - Y if everything simplifies.
800   // For example, X - (X + 1) -> -1
801   X = Op0;
802   if (MaxRecurse && match(Op1, m_Add(m_Value(Y), m_Value(Z)))) { // X - (Y + Z)
803     // See if "V === X - Y" simplifies.
804     if (Value *V = SimplifyBinOp(Instruction::Sub, X, Y, Q, MaxRecurse-1))
805       // It does!  Now see if "V - Z" simplifies.
806       if (Value *W = SimplifyBinOp(Instruction::Sub, V, Z, Q, MaxRecurse-1)) {
807         // It does, we successfully reassociated!
808         ++NumReassoc;
809         return W;
810       }
811     // See if "V === X - Z" simplifies.
812     if (Value *V = SimplifyBinOp(Instruction::Sub, X, Z, Q, MaxRecurse-1))
813       // It does!  Now see if "V - Y" simplifies.
814       if (Value *W = SimplifyBinOp(Instruction::Sub, V, Y, Q, MaxRecurse-1)) {
815         // It does, we successfully reassociated!
816         ++NumReassoc;
817         return W;
818       }
819   }
820 
821   // Z - (X - Y) -> (Z - X) + Y if everything simplifies.
822   // For example, X - (X - Y) -> Y.
823   Z = Op0;
824   if (MaxRecurse && match(Op1, m_Sub(m_Value(X), m_Value(Y)))) // Z - (X - Y)
825     // See if "V === Z - X" simplifies.
826     if (Value *V = SimplifyBinOp(Instruction::Sub, Z, X, Q, MaxRecurse-1))
827       // It does!  Now see if "V + Y" simplifies.
828       if (Value *W = SimplifyBinOp(Instruction::Add, V, Y, Q, MaxRecurse-1)) {
829         // It does, we successfully reassociated!
830         ++NumReassoc;
831         return W;
832       }
833 
834   // trunc(X) - trunc(Y) -> trunc(X - Y) if everything simplifies.
835   if (MaxRecurse && match(Op0, m_Trunc(m_Value(X))) &&
836       match(Op1, m_Trunc(m_Value(Y))))
837     if (X->getType() == Y->getType())
838       // See if "V === X - Y" simplifies.
839       if (Value *V = SimplifyBinOp(Instruction::Sub, X, Y, Q, MaxRecurse-1))
840         // It does!  Now see if "trunc V" simplifies.
841         if (Value *W = SimplifyCastInst(Instruction::Trunc, V, Op0->getType(),
842                                         Q, MaxRecurse - 1))
843           // It does, return the simplified "trunc V".
844           return W;
845 
846   // Variations on GEP(base, I, ...) - GEP(base, i, ...) -> GEP(null, I-i, ...).
847   if (match(Op0, m_PtrToInt(m_Value(X))) &&
848       match(Op1, m_PtrToInt(m_Value(Y))))
849     if (Constant *Result = computePointerDifference(Q.DL, X, Y))
850       return ConstantExpr::getIntegerCast(Result, Op0->getType(), true);
851 
852   // i1 sub -> xor.
853   if (MaxRecurse && Op0->getType()->isIntOrIntVectorTy(1))
854     if (Value *V = SimplifyXorInst(Op0, Op1, Q, MaxRecurse-1))
855       return V;
856 
857   // Threading Sub over selects and phi nodes is pointless, so don't bother.
858   // Threading over the select in "A - select(cond, B, C)" means evaluating
859   // "A-B" and "A-C" and seeing if they are equal; but they are equal if and
860   // only if B and C are equal.  If B and C are equal then (since we assume
861   // that operands have already been simplified) "select(cond, B, C)" should
862   // have been simplified to the common value of B and C already.  Analysing
863   // "A-B" and "A-C" thus gains nothing, but costs compile time.  Similarly
864   // for threading over phi nodes.
865 
866   return nullptr;
867 }
868 
869 Value *llvm::SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
870                              const SimplifyQuery &Q) {
871   return ::SimplifySubInst(Op0, Op1, isNSW, isNUW, Q, RecursionLimit);
872 }
873 
874 /// Given operands for a Mul, see if we can fold the result.
875 /// If not, this returns null.
876 static Value *SimplifyMulInst(Value *Op0, Value *Op1, const SimplifyQuery &Q,
877                               unsigned MaxRecurse) {
878   if (Constant *C = foldOrCommuteConstant(Instruction::Mul, Op0, Op1, Q))
879     return C;
880 
881   // X * poison -> poison
882   if (isa<PoisonValue>(Op1))
883     return Op1;
884 
885   // X * undef -> 0
886   // X * 0 -> 0
887   if (Q.isUndefValue(Op1) || match(Op1, m_Zero()))
888     return Constant::getNullValue(Op0->getType());
889 
890   // X * 1 -> X
891   if (match(Op1, m_One()))
892     return Op0;
893 
894   // (X / Y) * Y -> X if the division is exact.
895   Value *X = nullptr;
896   if (Q.IIQ.UseInstrInfo &&
897       (match(Op0,
898              m_Exact(m_IDiv(m_Value(X), m_Specific(Op1)))) ||     // (X / Y) * Y
899        match(Op1, m_Exact(m_IDiv(m_Value(X), m_Specific(Op0)))))) // Y * (X / Y)
900     return X;
901 
902   // i1 mul -> and.
903   if (MaxRecurse && Op0->getType()->isIntOrIntVectorTy(1))
904     if (Value *V = SimplifyAndInst(Op0, Op1, Q, MaxRecurse-1))
905       return V;
906 
907   // Try some generic simplifications for associative operations.
908   if (Value *V = SimplifyAssociativeBinOp(Instruction::Mul, Op0, Op1, Q,
909                                           MaxRecurse))
910     return V;
911 
912   // Mul distributes over Add. Try some generic simplifications based on this.
913   if (Value *V = expandCommutativeBinOp(Instruction::Mul, Op0, Op1,
914                                         Instruction::Add, Q, MaxRecurse))
915     return V;
916 
917   // If the operation is with the result of a select instruction, check whether
918   // operating on either branch of the select always yields the same value.
919   if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
920     if (Value *V = ThreadBinOpOverSelect(Instruction::Mul, Op0, Op1, Q,
921                                          MaxRecurse))
922       return V;
923 
924   // If the operation is with the result of a phi instruction, check whether
925   // operating on all incoming values of the phi always yields the same value.
926   if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
927     if (Value *V = ThreadBinOpOverPHI(Instruction::Mul, Op0, Op1, Q,
928                                       MaxRecurse))
929       return V;
930 
931   return nullptr;
932 }
933 
934 Value *llvm::SimplifyMulInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) {
935   return ::SimplifyMulInst(Op0, Op1, Q, RecursionLimit);
936 }
937 
938 /// Check for common or similar folds of integer division or integer remainder.
939 /// This applies to all 4 opcodes (sdiv/udiv/srem/urem).
940 static Value *simplifyDivRem(Instruction::BinaryOps Opcode, Value *Op0,
941                              Value *Op1, const SimplifyQuery &Q) {
942   bool IsDiv = (Opcode == Instruction::SDiv || Opcode == Instruction::UDiv);
943   bool IsSigned = (Opcode == Instruction::SDiv || Opcode == Instruction::SRem);
944 
945   Type *Ty = Op0->getType();
946 
947   // X / undef -> poison
948   // X % undef -> poison
949   if (Q.isUndefValue(Op1))
950     return PoisonValue::get(Ty);
951 
952   // X / 0 -> poison
953   // X % 0 -> poison
954   // We don't need to preserve faults!
955   if (match(Op1, m_Zero()))
956     return PoisonValue::get(Ty);
957 
958   // If any element of a constant divisor fixed width vector is zero or undef
959   // the behavior is undefined and we can fold the whole op to poison.
960   auto *Op1C = dyn_cast<Constant>(Op1);
961   auto *VTy = dyn_cast<FixedVectorType>(Ty);
962   if (Op1C && VTy) {
963     unsigned NumElts = VTy->getNumElements();
964     for (unsigned i = 0; i != NumElts; ++i) {
965       Constant *Elt = Op1C->getAggregateElement(i);
966       if (Elt && (Elt->isNullValue() || Q.isUndefValue(Elt)))
967         return PoisonValue::get(Ty);
968     }
969   }
970 
971   // poison / X -> poison
972   // poison % X -> poison
973   if (isa<PoisonValue>(Op0))
974     return Op0;
975 
976   // undef / X -> 0
977   // undef % X -> 0
978   if (Q.isUndefValue(Op0))
979     return Constant::getNullValue(Ty);
980 
981   // 0 / X -> 0
982   // 0 % X -> 0
983   if (match(Op0, m_Zero()))
984     return Constant::getNullValue(Op0->getType());
985 
986   // X / X -> 1
987   // X % X -> 0
988   if (Op0 == Op1)
989     return IsDiv ? ConstantInt::get(Ty, 1) : Constant::getNullValue(Ty);
990 
991   // X / 1 -> X
992   // X % 1 -> 0
993   // If this is a boolean op (single-bit element type), we can't have
994   // division-by-zero or remainder-by-zero, so assume the divisor is 1.
995   // Similarly, if we're zero-extending a boolean divisor, then assume it's a 1.
996   Value *X;
997   if (match(Op1, m_One()) || Ty->isIntOrIntVectorTy(1) ||
998       (match(Op1, m_ZExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)))
999     return IsDiv ? Op0 : Constant::getNullValue(Ty);
1000 
1001   // If X * Y does not overflow, then:
1002   //   X * Y / Y -> X
1003   //   X * Y % Y -> 0
1004   if (match(Op0, m_c_Mul(m_Value(X), m_Specific(Op1)))) {
1005     auto *Mul = cast<OverflowingBinaryOperator>(Op0);
1006     // The multiplication can't overflow if it is defined not to, or if
1007     // X == A / Y for some A.
1008     if ((IsSigned && Q.IIQ.hasNoSignedWrap(Mul)) ||
1009         (!IsSigned && Q.IIQ.hasNoUnsignedWrap(Mul)) ||
1010         (IsSigned && match(X, m_SDiv(m_Value(), m_Specific(Op1)))) ||
1011         (!IsSigned && match(X, m_UDiv(m_Value(), m_Specific(Op1))))) {
1012       return IsDiv ? X : Constant::getNullValue(Op0->getType());
1013     }
1014   }
1015 
1016   return nullptr;
1017 }
1018 
1019 /// Given a predicate and two operands, return true if the comparison is true.
1020 /// This is a helper for div/rem simplification where we return some other value
1021 /// when we can prove a relationship between the operands.
1022 static bool isICmpTrue(ICmpInst::Predicate Pred, Value *LHS, Value *RHS,
1023                        const SimplifyQuery &Q, unsigned MaxRecurse) {
1024   Value *V = SimplifyICmpInst(Pred, LHS, RHS, Q, MaxRecurse);
1025   Constant *C = dyn_cast_or_null<Constant>(V);
1026   return (C && C->isAllOnesValue());
1027 }
1028 
1029 /// Return true if we can simplify X / Y to 0. Remainder can adapt that answer
1030 /// to simplify X % Y to X.
1031 static bool isDivZero(Value *X, Value *Y, const SimplifyQuery &Q,
1032                       unsigned MaxRecurse, bool IsSigned) {
1033   // Recursion is always used, so bail out at once if we already hit the limit.
1034   if (!MaxRecurse--)
1035     return false;
1036 
1037   if (IsSigned) {
1038     // |X| / |Y| --> 0
1039     //
1040     // We require that 1 operand is a simple constant. That could be extended to
1041     // 2 variables if we computed the sign bit for each.
1042     //
1043     // Make sure that a constant is not the minimum signed value because taking
1044     // the abs() of that is undefined.
1045     Type *Ty = X->getType();
1046     const APInt *C;
1047     if (match(X, m_APInt(C)) && !C->isMinSignedValue()) {
1048       // Is the variable divisor magnitude always greater than the constant
1049       // dividend magnitude?
1050       // |Y| > |C| --> Y < -abs(C) or Y > abs(C)
1051       Constant *PosDividendC = ConstantInt::get(Ty, C->abs());
1052       Constant *NegDividendC = ConstantInt::get(Ty, -C->abs());
1053       if (isICmpTrue(CmpInst::ICMP_SLT, Y, NegDividendC, Q, MaxRecurse) ||
1054           isICmpTrue(CmpInst::ICMP_SGT, Y, PosDividendC, Q, MaxRecurse))
1055         return true;
1056     }
1057     if (match(Y, m_APInt(C))) {
1058       // Special-case: we can't take the abs() of a minimum signed value. If
1059       // that's the divisor, then all we have to do is prove that the dividend
1060       // is also not the minimum signed value.
1061       if (C->isMinSignedValue())
1062         return isICmpTrue(CmpInst::ICMP_NE, X, Y, Q, MaxRecurse);
1063 
1064       // Is the variable dividend magnitude always less than the constant
1065       // divisor magnitude?
1066       // |X| < |C| --> X > -abs(C) and X < abs(C)
1067       Constant *PosDivisorC = ConstantInt::get(Ty, C->abs());
1068       Constant *NegDivisorC = ConstantInt::get(Ty, -C->abs());
1069       if (isICmpTrue(CmpInst::ICMP_SGT, X, NegDivisorC, Q, MaxRecurse) &&
1070           isICmpTrue(CmpInst::ICMP_SLT, X, PosDivisorC, Q, MaxRecurse))
1071         return true;
1072     }
1073     return false;
1074   }
1075 
1076   // IsSigned == false.
1077   // Is the dividend unsigned less than the divisor?
1078   return isICmpTrue(ICmpInst::ICMP_ULT, X, Y, Q, MaxRecurse);
1079 }
1080 
1081 /// These are simplifications common to SDiv and UDiv.
1082 static Value *simplifyDiv(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1,
1083                           const SimplifyQuery &Q, unsigned MaxRecurse) {
1084   if (Constant *C = foldOrCommuteConstant(Opcode, Op0, Op1, Q))
1085     return C;
1086 
1087   if (Value *V = simplifyDivRem(Opcode, Op0, Op1, Q))
1088     return V;
1089 
1090   bool IsSigned = Opcode == Instruction::SDiv;
1091 
1092   // (X rem Y) / Y -> 0
1093   if ((IsSigned && match(Op0, m_SRem(m_Value(), m_Specific(Op1)))) ||
1094       (!IsSigned && match(Op0, m_URem(m_Value(), m_Specific(Op1)))))
1095     return Constant::getNullValue(Op0->getType());
1096 
1097   // (X /u C1) /u C2 -> 0 if C1 * C2 overflow
1098   ConstantInt *C1, *C2;
1099   if (!IsSigned && match(Op0, m_UDiv(m_Value(), m_ConstantInt(C1))) &&
1100       match(Op1, m_ConstantInt(C2))) {
1101     bool Overflow;
1102     (void)C1->getValue().umul_ov(C2->getValue(), Overflow);
1103     if (Overflow)
1104       return Constant::getNullValue(Op0->getType());
1105   }
1106 
1107   // If the operation is with the result of a select instruction, check whether
1108   // operating on either branch of the select always yields the same value.
1109   if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
1110     if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse))
1111       return V;
1112 
1113   // If the operation is with the result of a phi instruction, check whether
1114   // operating on all incoming values of the phi always yields the same value.
1115   if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
1116     if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse))
1117       return V;
1118 
1119   if (isDivZero(Op0, Op1, Q, MaxRecurse, IsSigned))
1120     return Constant::getNullValue(Op0->getType());
1121 
1122   return nullptr;
1123 }
1124 
1125 /// These are simplifications common to SRem and URem.
1126 static Value *simplifyRem(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1,
1127                           const SimplifyQuery &Q, unsigned MaxRecurse) {
1128   if (Constant *C = foldOrCommuteConstant(Opcode, Op0, Op1, Q))
1129     return C;
1130 
1131   if (Value *V = simplifyDivRem(Opcode, Op0, Op1, Q))
1132     return V;
1133 
1134   // (X % Y) % Y -> X % Y
1135   if ((Opcode == Instruction::SRem &&
1136        match(Op0, m_SRem(m_Value(), m_Specific(Op1)))) ||
1137       (Opcode == Instruction::URem &&
1138        match(Op0, m_URem(m_Value(), m_Specific(Op1)))))
1139     return Op0;
1140 
1141   // (X << Y) % X -> 0
1142   if (Q.IIQ.UseInstrInfo &&
1143       ((Opcode == Instruction::SRem &&
1144         match(Op0, m_NSWShl(m_Specific(Op1), m_Value()))) ||
1145        (Opcode == Instruction::URem &&
1146         match(Op0, m_NUWShl(m_Specific(Op1), m_Value())))))
1147     return Constant::getNullValue(Op0->getType());
1148 
1149   // If the operation is with the result of a select instruction, check whether
1150   // operating on either branch of the select always yields the same value.
1151   if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
1152     if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse))
1153       return V;
1154 
1155   // If the operation is with the result of a phi instruction, check whether
1156   // operating on all incoming values of the phi always yields the same value.
1157   if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
1158     if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse))
1159       return V;
1160 
1161   // If X / Y == 0, then X % Y == X.
1162   if (isDivZero(Op0, Op1, Q, MaxRecurse, Opcode == Instruction::SRem))
1163     return Op0;
1164 
1165   return nullptr;
1166 }
1167 
1168 /// Given operands for an SDiv, see if we can fold the result.
1169 /// If not, this returns null.
1170 static Value *SimplifySDivInst(Value *Op0, Value *Op1, const SimplifyQuery &Q,
1171                                unsigned MaxRecurse) {
1172   // If two operands are negated and no signed overflow, return -1.
1173   if (isKnownNegation(Op0, Op1, /*NeedNSW=*/true))
1174     return Constant::getAllOnesValue(Op0->getType());
1175 
1176   return simplifyDiv(Instruction::SDiv, Op0, Op1, Q, MaxRecurse);
1177 }
1178 
1179 Value *llvm::SimplifySDivInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) {
1180   return ::SimplifySDivInst(Op0, Op1, Q, RecursionLimit);
1181 }
1182 
1183 /// Given operands for a UDiv, see if we can fold the result.
1184 /// If not, this returns null.
1185 static Value *SimplifyUDivInst(Value *Op0, Value *Op1, const SimplifyQuery &Q,
1186                                unsigned MaxRecurse) {
1187   return simplifyDiv(Instruction::UDiv, Op0, Op1, Q, MaxRecurse);
1188 }
1189 
1190 Value *llvm::SimplifyUDivInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) {
1191   return ::SimplifyUDivInst(Op0, Op1, Q, RecursionLimit);
1192 }
1193 
1194 /// Given operands for an SRem, see if we can fold the result.
1195 /// If not, this returns null.
1196 static Value *SimplifySRemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q,
1197                                unsigned MaxRecurse) {
1198   // If the divisor is 0, the result is undefined, so assume the divisor is -1.
1199   // srem Op0, (sext i1 X) --> srem Op0, -1 --> 0
1200   Value *X;
1201   if (match(Op1, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1))
1202     return ConstantInt::getNullValue(Op0->getType());
1203 
1204   // If the two operands are negated, return 0.
1205   if (isKnownNegation(Op0, Op1))
1206     return ConstantInt::getNullValue(Op0->getType());
1207 
1208   return simplifyRem(Instruction::SRem, Op0, Op1, Q, MaxRecurse);
1209 }
1210 
1211 Value *llvm::SimplifySRemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) {
1212   return ::SimplifySRemInst(Op0, Op1, Q, RecursionLimit);
1213 }
1214 
1215 /// Given operands for a URem, see if we can fold the result.
1216 /// If not, this returns null.
1217 static Value *SimplifyURemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q,
1218                                unsigned MaxRecurse) {
1219   return simplifyRem(Instruction::URem, Op0, Op1, Q, MaxRecurse);
1220 }
1221 
1222 Value *llvm::SimplifyURemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) {
1223   return ::SimplifyURemInst(Op0, Op1, Q, RecursionLimit);
1224 }
1225 
1226 /// Returns true if a shift by \c Amount always yields poison.
1227 static bool isPoisonShift(Value *Amount, const SimplifyQuery &Q) {
1228   Constant *C = dyn_cast<Constant>(Amount);
1229   if (!C)
1230     return false;
1231 
1232   // X shift by undef -> poison because it may shift by the bitwidth.
1233   if (Q.isUndefValue(C))
1234     return true;
1235 
1236   // Shifting by the bitwidth or more is undefined.
1237   if (ConstantInt *CI = dyn_cast<ConstantInt>(C))
1238     if (CI->getValue().uge(CI->getType()->getScalarSizeInBits()))
1239       return true;
1240 
1241   // If all lanes of a vector shift are undefined the whole shift is.
1242   if (isa<ConstantVector>(C) || isa<ConstantDataVector>(C)) {
1243     for (unsigned I = 0,
1244                   E = cast<FixedVectorType>(C->getType())->getNumElements();
1245          I != E; ++I)
1246       if (!isPoisonShift(C->getAggregateElement(I), Q))
1247         return false;
1248     return true;
1249   }
1250 
1251   return false;
1252 }
1253 
1254 /// Given operands for an Shl, LShr or AShr, see if we can fold the result.
1255 /// If not, this returns null.
1256 static Value *SimplifyShift(Instruction::BinaryOps Opcode, Value *Op0,
1257                             Value *Op1, bool IsNSW, const SimplifyQuery &Q,
1258                             unsigned MaxRecurse) {
1259   if (Constant *C = foldOrCommuteConstant(Opcode, Op0, Op1, Q))
1260     return C;
1261 
1262   // poison shift by X -> poison
1263   if (isa<PoisonValue>(Op0))
1264     return Op0;
1265 
1266   // 0 shift by X -> 0
1267   if (match(Op0, m_Zero()))
1268     return Constant::getNullValue(Op0->getType());
1269 
1270   // X shift by 0 -> X
1271   // Shift-by-sign-extended bool must be shift-by-0 because shift-by-all-ones
1272   // would be poison.
1273   Value *X;
1274   if (match(Op1, m_Zero()) ||
1275       (match(Op1, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)))
1276     return Op0;
1277 
1278   // Fold undefined shifts.
1279   if (isPoisonShift(Op1, Q))
1280     return PoisonValue::get(Op0->getType());
1281 
1282   // If the operation is with the result of a select instruction, check whether
1283   // operating on either branch of the select always yields the same value.
1284   if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
1285     if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse))
1286       return V;
1287 
1288   // If the operation is with the result of a phi instruction, check whether
1289   // operating on all incoming values of the phi always yields the same value.
1290   if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
1291     if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse))
1292       return V;
1293 
1294   // If any bits in the shift amount make that value greater than or equal to
1295   // the number of bits in the type, the shift is undefined.
1296   KnownBits KnownAmt = computeKnownBits(Op1, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
1297   if (KnownAmt.getMinValue().uge(KnownAmt.getBitWidth()))
1298     return PoisonValue::get(Op0->getType());
1299 
1300   // If all valid bits in the shift amount are known zero, the first operand is
1301   // unchanged.
1302   unsigned NumValidShiftBits = Log2_32_Ceil(KnownAmt.getBitWidth());
1303   if (KnownAmt.countMinTrailingZeros() >= NumValidShiftBits)
1304     return Op0;
1305 
1306   // Check for nsw shl leading to a poison value.
1307   if (IsNSW) {
1308     assert(Opcode == Instruction::Shl && "Expected shl for nsw instruction");
1309     KnownBits KnownVal = computeKnownBits(Op0, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
1310     KnownBits KnownShl = KnownBits::shl(KnownVal, KnownAmt);
1311 
1312     if (KnownVal.Zero.isSignBitSet())
1313       KnownShl.Zero.setSignBit();
1314     if (KnownVal.One.isSignBitSet())
1315       KnownShl.One.setSignBit();
1316 
1317     if (KnownShl.hasConflict())
1318       return PoisonValue::get(Op0->getType());
1319   }
1320 
1321   return nullptr;
1322 }
1323 
1324 /// Given operands for an Shl, LShr or AShr, see if we can
1325 /// fold the result.  If not, this returns null.
1326 static Value *SimplifyRightShift(Instruction::BinaryOps Opcode, Value *Op0,
1327                                  Value *Op1, bool isExact, const SimplifyQuery &Q,
1328                                  unsigned MaxRecurse) {
1329   if (Value *V =
1330           SimplifyShift(Opcode, Op0, Op1, /*IsNSW*/ false, Q, MaxRecurse))
1331     return V;
1332 
1333   // X >> X -> 0
1334   if (Op0 == Op1)
1335     return Constant::getNullValue(Op0->getType());
1336 
1337   // undef >> X -> 0
1338   // undef >> X -> undef (if it's exact)
1339   if (Q.isUndefValue(Op0))
1340     return isExact ? Op0 : Constant::getNullValue(Op0->getType());
1341 
1342   // The low bit cannot be shifted out of an exact shift if it is set.
1343   if (isExact) {
1344     KnownBits Op0Known = computeKnownBits(Op0, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT);
1345     if (Op0Known.One[0])
1346       return Op0;
1347   }
1348 
1349   return nullptr;
1350 }
1351 
1352 /// Given operands for an Shl, see if we can fold the result.
1353 /// If not, this returns null.
1354 static Value *SimplifyShlInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
1355                               const SimplifyQuery &Q, unsigned MaxRecurse) {
1356   if (Value *V =
1357           SimplifyShift(Instruction::Shl, Op0, Op1, isNSW, Q, MaxRecurse))
1358     return V;
1359 
1360   // undef << X -> 0
1361   // undef << X -> undef if (if it's NSW/NUW)
1362   if (Q.isUndefValue(Op0))
1363     return isNSW || isNUW ? Op0 : Constant::getNullValue(Op0->getType());
1364 
1365   // (X >> A) << A -> X
1366   Value *X;
1367   if (Q.IIQ.UseInstrInfo &&
1368       match(Op0, m_Exact(m_Shr(m_Value(X), m_Specific(Op1)))))
1369     return X;
1370 
1371   // shl nuw i8 C, %x  ->  C  iff C has sign bit set.
1372   if (isNUW && match(Op0, m_Negative()))
1373     return Op0;
1374   // NOTE: could use computeKnownBits() / LazyValueInfo,
1375   // but the cost-benefit analysis suggests it isn't worth it.
1376 
1377   return nullptr;
1378 }
1379 
1380 Value *llvm::SimplifyShlInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
1381                              const SimplifyQuery &Q) {
1382   return ::SimplifyShlInst(Op0, Op1, isNSW, isNUW, Q, RecursionLimit);
1383 }
1384 
1385 /// Given operands for an LShr, see if we can fold the result.
1386 /// If not, this returns null.
1387 static Value *SimplifyLShrInst(Value *Op0, Value *Op1, bool isExact,
1388                                const SimplifyQuery &Q, unsigned MaxRecurse) {
1389   if (Value *V = SimplifyRightShift(Instruction::LShr, Op0, Op1, isExact, Q,
1390                                     MaxRecurse))
1391       return V;
1392 
1393   // (X << A) >> A -> X
1394   Value *X;
1395   if (match(Op0, m_NUWShl(m_Value(X), m_Specific(Op1))))
1396     return X;
1397 
1398   // ((X << A) | Y) >> A -> X  if effective width of Y is not larger than A.
1399   // We can return X as we do in the above case since OR alters no bits in X.
1400   // SimplifyDemandedBits in InstCombine can do more general optimization for
1401   // bit manipulation. This pattern aims to provide opportunities for other
1402   // optimizers by supporting a simple but common case in InstSimplify.
1403   Value *Y;
1404   const APInt *ShRAmt, *ShLAmt;
1405   if (match(Op1, m_APInt(ShRAmt)) &&
1406       match(Op0, m_c_Or(m_NUWShl(m_Value(X), m_APInt(ShLAmt)), m_Value(Y))) &&
1407       *ShRAmt == *ShLAmt) {
1408     const KnownBits YKnown = computeKnownBits(Y, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
1409     const unsigned EffWidthY = YKnown.countMaxActiveBits();
1410     if (ShRAmt->uge(EffWidthY))
1411       return X;
1412   }
1413 
1414   return nullptr;
1415 }
1416 
1417 Value *llvm::SimplifyLShrInst(Value *Op0, Value *Op1, bool isExact,
1418                               const SimplifyQuery &Q) {
1419   return ::SimplifyLShrInst(Op0, Op1, isExact, Q, RecursionLimit);
1420 }
1421 
1422 /// Given operands for an AShr, see if we can fold the result.
1423 /// If not, this returns null.
1424 static Value *SimplifyAShrInst(Value *Op0, Value *Op1, bool isExact,
1425                                const SimplifyQuery &Q, unsigned MaxRecurse) {
1426   if (Value *V = SimplifyRightShift(Instruction::AShr, Op0, Op1, isExact, Q,
1427                                     MaxRecurse))
1428     return V;
1429 
1430   // -1 >>a X --> -1
1431   // (-1 << X) a>> X --> -1
1432   // Do not return Op0 because it may contain undef elements if it's a vector.
1433   if (match(Op0, m_AllOnes()) ||
1434       match(Op0, m_Shl(m_AllOnes(), m_Specific(Op1))))
1435     return Constant::getAllOnesValue(Op0->getType());
1436 
1437   // (X << A) >> A -> X
1438   Value *X;
1439   if (Q.IIQ.UseInstrInfo && match(Op0, m_NSWShl(m_Value(X), m_Specific(Op1))))
1440     return X;
1441 
1442   // Arithmetic shifting an all-sign-bit value is a no-op.
1443   unsigned NumSignBits = ComputeNumSignBits(Op0, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
1444   if (NumSignBits == Op0->getType()->getScalarSizeInBits())
1445     return Op0;
1446 
1447   return nullptr;
1448 }
1449 
1450 Value *llvm::SimplifyAShrInst(Value *Op0, Value *Op1, bool isExact,
1451                               const SimplifyQuery &Q) {
1452   return ::SimplifyAShrInst(Op0, Op1, isExact, Q, RecursionLimit);
1453 }
1454 
1455 /// Commuted variants are assumed to be handled by calling this function again
1456 /// with the parameters swapped.
1457 static Value *simplifyUnsignedRangeCheck(ICmpInst *ZeroICmp,
1458                                          ICmpInst *UnsignedICmp, bool IsAnd,
1459                                          const SimplifyQuery &Q) {
1460   Value *X, *Y;
1461 
1462   ICmpInst::Predicate EqPred;
1463   if (!match(ZeroICmp, m_ICmp(EqPred, m_Value(Y), m_Zero())) ||
1464       !ICmpInst::isEquality(EqPred))
1465     return nullptr;
1466 
1467   ICmpInst::Predicate UnsignedPred;
1468 
1469   Value *A, *B;
1470   // Y = (A - B);
1471   if (match(Y, m_Sub(m_Value(A), m_Value(B)))) {
1472     if (match(UnsignedICmp,
1473               m_c_ICmp(UnsignedPred, m_Specific(A), m_Specific(B))) &&
1474         ICmpInst::isUnsigned(UnsignedPred)) {
1475       // A >=/<= B || (A - B) != 0  <-->  true
1476       if ((UnsignedPred == ICmpInst::ICMP_UGE ||
1477            UnsignedPred == ICmpInst::ICMP_ULE) &&
1478           EqPred == ICmpInst::ICMP_NE && !IsAnd)
1479         return ConstantInt::getTrue(UnsignedICmp->getType());
1480       // A </> B && (A - B) == 0  <-->  false
1481       if ((UnsignedPred == ICmpInst::ICMP_ULT ||
1482            UnsignedPred == ICmpInst::ICMP_UGT) &&
1483           EqPred == ICmpInst::ICMP_EQ && IsAnd)
1484         return ConstantInt::getFalse(UnsignedICmp->getType());
1485 
1486       // A </> B && (A - B) != 0  <-->  A </> B
1487       // A </> B || (A - B) != 0  <-->  (A - B) != 0
1488       if (EqPred == ICmpInst::ICMP_NE && (UnsignedPred == ICmpInst::ICMP_ULT ||
1489                                           UnsignedPred == ICmpInst::ICMP_UGT))
1490         return IsAnd ? UnsignedICmp : ZeroICmp;
1491 
1492       // A <=/>= B && (A - B) == 0  <-->  (A - B) == 0
1493       // A <=/>= B || (A - B) == 0  <-->  A <=/>= B
1494       if (EqPred == ICmpInst::ICMP_EQ && (UnsignedPred == ICmpInst::ICMP_ULE ||
1495                                           UnsignedPred == ICmpInst::ICMP_UGE))
1496         return IsAnd ? ZeroICmp : UnsignedICmp;
1497     }
1498 
1499     // Given  Y = (A - B)
1500     //   Y >= A && Y != 0  --> Y >= A  iff B != 0
1501     //   Y <  A || Y == 0  --> Y <  A  iff B != 0
1502     if (match(UnsignedICmp,
1503               m_c_ICmp(UnsignedPred, m_Specific(Y), m_Specific(A)))) {
1504       if (UnsignedPred == ICmpInst::ICMP_UGE && IsAnd &&
1505           EqPred == ICmpInst::ICMP_NE &&
1506           isKnownNonZero(B, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT))
1507         return UnsignedICmp;
1508       if (UnsignedPred == ICmpInst::ICMP_ULT && !IsAnd &&
1509           EqPred == ICmpInst::ICMP_EQ &&
1510           isKnownNonZero(B, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT))
1511         return UnsignedICmp;
1512     }
1513   }
1514 
1515   if (match(UnsignedICmp, m_ICmp(UnsignedPred, m_Value(X), m_Specific(Y))) &&
1516       ICmpInst::isUnsigned(UnsignedPred))
1517     ;
1518   else if (match(UnsignedICmp,
1519                  m_ICmp(UnsignedPred, m_Specific(Y), m_Value(X))) &&
1520            ICmpInst::isUnsigned(UnsignedPred))
1521     UnsignedPred = ICmpInst::getSwappedPredicate(UnsignedPred);
1522   else
1523     return nullptr;
1524 
1525   // X > Y && Y == 0  -->  Y == 0  iff X != 0
1526   // X > Y || Y == 0  -->  X > Y   iff X != 0
1527   if (UnsignedPred == ICmpInst::ICMP_UGT && EqPred == ICmpInst::ICMP_EQ &&
1528       isKnownNonZero(X, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT))
1529     return IsAnd ? ZeroICmp : UnsignedICmp;
1530 
1531   // X <= Y && Y != 0  -->  X <= Y  iff X != 0
1532   // X <= Y || Y != 0  -->  Y != 0  iff X != 0
1533   if (UnsignedPred == ICmpInst::ICMP_ULE && EqPred == ICmpInst::ICMP_NE &&
1534       isKnownNonZero(X, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT))
1535     return IsAnd ? UnsignedICmp : ZeroICmp;
1536 
1537   // The transforms below here are expected to be handled more generally with
1538   // simplifyAndOrOfICmpsWithLimitConst() or in InstCombine's
1539   // foldAndOrOfICmpsWithConstEq(). If we are looking to trim optimizer overlap,
1540   // these are candidates for removal.
1541 
1542   // X < Y && Y != 0  -->  X < Y
1543   // X < Y || Y != 0  -->  Y != 0
1544   if (UnsignedPred == ICmpInst::ICMP_ULT && EqPred == ICmpInst::ICMP_NE)
1545     return IsAnd ? UnsignedICmp : ZeroICmp;
1546 
1547   // X >= Y && Y == 0  -->  Y == 0
1548   // X >= Y || Y == 0  -->  X >= Y
1549   if (UnsignedPred == ICmpInst::ICMP_UGE && EqPred == ICmpInst::ICMP_EQ)
1550     return IsAnd ? ZeroICmp : UnsignedICmp;
1551 
1552   // X < Y && Y == 0  -->  false
1553   if (UnsignedPred == ICmpInst::ICMP_ULT && EqPred == ICmpInst::ICMP_EQ &&
1554       IsAnd)
1555     return getFalse(UnsignedICmp->getType());
1556 
1557   // X >= Y || Y != 0  -->  true
1558   if (UnsignedPred == ICmpInst::ICMP_UGE && EqPred == ICmpInst::ICMP_NE &&
1559       !IsAnd)
1560     return getTrue(UnsignedICmp->getType());
1561 
1562   return nullptr;
1563 }
1564 
1565 /// Commuted variants are assumed to be handled by calling this function again
1566 /// with the parameters swapped.
1567 static Value *simplifyAndOfICmpsWithSameOperands(ICmpInst *Op0, ICmpInst *Op1) {
1568   ICmpInst::Predicate Pred0, Pred1;
1569   Value *A ,*B;
1570   if (!match(Op0, m_ICmp(Pred0, m_Value(A), m_Value(B))) ||
1571       !match(Op1, m_ICmp(Pred1, m_Specific(A), m_Specific(B))))
1572     return nullptr;
1573 
1574   // We have (icmp Pred0, A, B) & (icmp Pred1, A, B).
1575   // If Op1 is always implied true by Op0, then Op0 is a subset of Op1, and we
1576   // can eliminate Op1 from this 'and'.
1577   if (ICmpInst::isImpliedTrueByMatchingCmp(Pred0, Pred1))
1578     return Op0;
1579 
1580   // Check for any combination of predicates that are guaranteed to be disjoint.
1581   if ((Pred0 == ICmpInst::getInversePredicate(Pred1)) ||
1582       (Pred0 == ICmpInst::ICMP_EQ && ICmpInst::isFalseWhenEqual(Pred1)) ||
1583       (Pred0 == ICmpInst::ICMP_SLT && Pred1 == ICmpInst::ICMP_SGT) ||
1584       (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_UGT))
1585     return getFalse(Op0->getType());
1586 
1587   return nullptr;
1588 }
1589 
1590 /// Commuted variants are assumed to be handled by calling this function again
1591 /// with the parameters swapped.
1592 static Value *simplifyOrOfICmpsWithSameOperands(ICmpInst *Op0, ICmpInst *Op1) {
1593   ICmpInst::Predicate Pred0, Pred1;
1594   Value *A ,*B;
1595   if (!match(Op0, m_ICmp(Pred0, m_Value(A), m_Value(B))) ||
1596       !match(Op1, m_ICmp(Pred1, m_Specific(A), m_Specific(B))))
1597     return nullptr;
1598 
1599   // We have (icmp Pred0, A, B) | (icmp Pred1, A, B).
1600   // If Op1 is always implied true by Op0, then Op0 is a subset of Op1, and we
1601   // can eliminate Op0 from this 'or'.
1602   if (ICmpInst::isImpliedTrueByMatchingCmp(Pred0, Pred1))
1603     return Op1;
1604 
1605   // Check for any combination of predicates that cover the entire range of
1606   // possibilities.
1607   if ((Pred0 == ICmpInst::getInversePredicate(Pred1)) ||
1608       (Pred0 == ICmpInst::ICMP_NE && ICmpInst::isTrueWhenEqual(Pred1)) ||
1609       (Pred0 == ICmpInst::ICMP_SLE && Pred1 == ICmpInst::ICMP_SGE) ||
1610       (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_UGE))
1611     return getTrue(Op0->getType());
1612 
1613   return nullptr;
1614 }
1615 
1616 /// Test if a pair of compares with a shared operand and 2 constants has an
1617 /// empty set intersection, full set union, or if one compare is a superset of
1618 /// the other.
1619 static Value *simplifyAndOrOfICmpsWithConstants(ICmpInst *Cmp0, ICmpInst *Cmp1,
1620                                                 bool IsAnd) {
1621   // Look for this pattern: {and/or} (icmp X, C0), (icmp X, C1)).
1622   if (Cmp0->getOperand(0) != Cmp1->getOperand(0))
1623     return nullptr;
1624 
1625   const APInt *C0, *C1;
1626   if (!match(Cmp0->getOperand(1), m_APInt(C0)) ||
1627       !match(Cmp1->getOperand(1), m_APInt(C1)))
1628     return nullptr;
1629 
1630   auto Range0 = ConstantRange::makeExactICmpRegion(Cmp0->getPredicate(), *C0);
1631   auto Range1 = ConstantRange::makeExactICmpRegion(Cmp1->getPredicate(), *C1);
1632 
1633   // For and-of-compares, check if the intersection is empty:
1634   // (icmp X, C0) && (icmp X, C1) --> empty set --> false
1635   if (IsAnd && Range0.intersectWith(Range1).isEmptySet())
1636     return getFalse(Cmp0->getType());
1637 
1638   // For or-of-compares, check if the union is full:
1639   // (icmp X, C0) || (icmp X, C1) --> full set --> true
1640   if (!IsAnd && Range0.unionWith(Range1).isFullSet())
1641     return getTrue(Cmp0->getType());
1642 
1643   // Is one range a superset of the other?
1644   // If this is and-of-compares, take the smaller set:
1645   // (icmp sgt X, 4) && (icmp sgt X, 42) --> icmp sgt X, 42
1646   // If this is or-of-compares, take the larger set:
1647   // (icmp sgt X, 4) || (icmp sgt X, 42) --> icmp sgt X, 4
1648   if (Range0.contains(Range1))
1649     return IsAnd ? Cmp1 : Cmp0;
1650   if (Range1.contains(Range0))
1651     return IsAnd ? Cmp0 : Cmp1;
1652 
1653   return nullptr;
1654 }
1655 
1656 static Value *simplifyAndOrOfICmpsWithZero(ICmpInst *Cmp0, ICmpInst *Cmp1,
1657                                            bool IsAnd) {
1658   ICmpInst::Predicate P0 = Cmp0->getPredicate(), P1 = Cmp1->getPredicate();
1659   if (!match(Cmp0->getOperand(1), m_Zero()) ||
1660       !match(Cmp1->getOperand(1), m_Zero()) || P0 != P1)
1661     return nullptr;
1662 
1663   if ((IsAnd && P0 != ICmpInst::ICMP_NE) || (!IsAnd && P1 != ICmpInst::ICMP_EQ))
1664     return nullptr;
1665 
1666   // We have either "(X == 0 || Y == 0)" or "(X != 0 && Y != 0)".
1667   Value *X = Cmp0->getOperand(0);
1668   Value *Y = Cmp1->getOperand(0);
1669 
1670   // If one of the compares is a masked version of a (not) null check, then
1671   // that compare implies the other, so we eliminate the other. Optionally, look
1672   // through a pointer-to-int cast to match a null check of a pointer type.
1673 
1674   // (X == 0) || (([ptrtoint] X & ?) == 0) --> ([ptrtoint] X & ?) == 0
1675   // (X == 0) || ((? & [ptrtoint] X) == 0) --> (? & [ptrtoint] X) == 0
1676   // (X != 0) && (([ptrtoint] X & ?) != 0) --> ([ptrtoint] X & ?) != 0
1677   // (X != 0) && ((? & [ptrtoint] X) != 0) --> (? & [ptrtoint] X) != 0
1678   if (match(Y, m_c_And(m_Specific(X), m_Value())) ||
1679       match(Y, m_c_And(m_PtrToInt(m_Specific(X)), m_Value())))
1680     return Cmp1;
1681 
1682   // (([ptrtoint] Y & ?) == 0) || (Y == 0) --> ([ptrtoint] Y & ?) == 0
1683   // ((? & [ptrtoint] Y) == 0) || (Y == 0) --> (? & [ptrtoint] Y) == 0
1684   // (([ptrtoint] Y & ?) != 0) && (Y != 0) --> ([ptrtoint] Y & ?) != 0
1685   // ((? & [ptrtoint] Y) != 0) && (Y != 0) --> (? & [ptrtoint] Y) != 0
1686   if (match(X, m_c_And(m_Specific(Y), m_Value())) ||
1687       match(X, m_c_And(m_PtrToInt(m_Specific(Y)), m_Value())))
1688     return Cmp0;
1689 
1690   return nullptr;
1691 }
1692 
1693 static Value *simplifyAndOfICmpsWithAdd(ICmpInst *Op0, ICmpInst *Op1,
1694                                         const InstrInfoQuery &IIQ) {
1695   // (icmp (add V, C0), C1) & (icmp V, C0)
1696   ICmpInst::Predicate Pred0, Pred1;
1697   const APInt *C0, *C1;
1698   Value *V;
1699   if (!match(Op0, m_ICmp(Pred0, m_Add(m_Value(V), m_APInt(C0)), m_APInt(C1))))
1700     return nullptr;
1701 
1702   if (!match(Op1, m_ICmp(Pred1, m_Specific(V), m_Value())))
1703     return nullptr;
1704 
1705   auto *AddInst = cast<OverflowingBinaryOperator>(Op0->getOperand(0));
1706   if (AddInst->getOperand(1) != Op1->getOperand(1))
1707     return nullptr;
1708 
1709   Type *ITy = Op0->getType();
1710   bool isNSW = IIQ.hasNoSignedWrap(AddInst);
1711   bool isNUW = IIQ.hasNoUnsignedWrap(AddInst);
1712 
1713   const APInt Delta = *C1 - *C0;
1714   if (C0->isStrictlyPositive()) {
1715     if (Delta == 2) {
1716       if (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_SGT)
1717         return getFalse(ITy);
1718       if (Pred0 == ICmpInst::ICMP_SLT && Pred1 == ICmpInst::ICMP_SGT && isNSW)
1719         return getFalse(ITy);
1720     }
1721     if (Delta == 1) {
1722       if (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_SGT)
1723         return getFalse(ITy);
1724       if (Pred0 == ICmpInst::ICMP_SLE && Pred1 == ICmpInst::ICMP_SGT && isNSW)
1725         return getFalse(ITy);
1726     }
1727   }
1728   if (C0->getBoolValue() && isNUW) {
1729     if (Delta == 2)
1730       if (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_UGT)
1731         return getFalse(ITy);
1732     if (Delta == 1)
1733       if (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_UGT)
1734         return getFalse(ITy);
1735   }
1736 
1737   return nullptr;
1738 }
1739 
1740 /// Try to eliminate compares with signed or unsigned min/max constants.
1741 static Value *simplifyAndOrOfICmpsWithLimitConst(ICmpInst *Cmp0, ICmpInst *Cmp1,
1742                                                  bool IsAnd) {
1743   // Canonicalize an equality compare as Cmp0.
1744   if (Cmp1->isEquality())
1745     std::swap(Cmp0, Cmp1);
1746   if (!Cmp0->isEquality())
1747     return nullptr;
1748 
1749   // The non-equality compare must include a common operand (X). Canonicalize
1750   // the common operand as operand 0 (the predicate is swapped if the common
1751   // operand was operand 1).
1752   ICmpInst::Predicate Pred0 = Cmp0->getPredicate();
1753   Value *X = Cmp0->getOperand(0);
1754   ICmpInst::Predicate Pred1;
1755   bool HasNotOp = match(Cmp1, m_c_ICmp(Pred1, m_Not(m_Specific(X)), m_Value()));
1756   if (!HasNotOp && !match(Cmp1, m_c_ICmp(Pred1, m_Specific(X), m_Value())))
1757     return nullptr;
1758   if (ICmpInst::isEquality(Pred1))
1759     return nullptr;
1760 
1761   // The equality compare must be against a constant. Flip bits if we matched
1762   // a bitwise not. Convert a null pointer constant to an integer zero value.
1763   APInt MinMaxC;
1764   const APInt *C;
1765   if (match(Cmp0->getOperand(1), m_APInt(C)))
1766     MinMaxC = HasNotOp ? ~*C : *C;
1767   else if (isa<ConstantPointerNull>(Cmp0->getOperand(1)))
1768     MinMaxC = APInt::getZero(8);
1769   else
1770     return nullptr;
1771 
1772   // DeMorganize if this is 'or': P0 || P1 --> !P0 && !P1.
1773   if (!IsAnd) {
1774     Pred0 = ICmpInst::getInversePredicate(Pred0);
1775     Pred1 = ICmpInst::getInversePredicate(Pred1);
1776   }
1777 
1778   // Normalize to unsigned compare and unsigned min/max value.
1779   // Example for 8-bit: -128 + 128 -> 0; 127 + 128 -> 255
1780   if (ICmpInst::isSigned(Pred1)) {
1781     Pred1 = ICmpInst::getUnsignedPredicate(Pred1);
1782     MinMaxC += APInt::getSignedMinValue(MinMaxC.getBitWidth());
1783   }
1784 
1785   // (X != MAX) && (X < Y) --> X < Y
1786   // (X == MAX) || (X >= Y) --> X >= Y
1787   if (MinMaxC.isMaxValue())
1788     if (Pred0 == ICmpInst::ICMP_NE && Pred1 == ICmpInst::ICMP_ULT)
1789       return Cmp1;
1790 
1791   // (X != MIN) && (X > Y) -->  X > Y
1792   // (X == MIN) || (X <= Y) --> X <= Y
1793   if (MinMaxC.isMinValue())
1794     if (Pred0 == ICmpInst::ICMP_NE && Pred1 == ICmpInst::ICMP_UGT)
1795       return Cmp1;
1796 
1797   return nullptr;
1798 }
1799 
1800 static Value *simplifyAndOfICmps(ICmpInst *Op0, ICmpInst *Op1,
1801                                  const SimplifyQuery &Q) {
1802   if (Value *X = simplifyUnsignedRangeCheck(Op0, Op1, /*IsAnd=*/true, Q))
1803     return X;
1804   if (Value *X = simplifyUnsignedRangeCheck(Op1, Op0, /*IsAnd=*/true, Q))
1805     return X;
1806 
1807   if (Value *X = simplifyAndOfICmpsWithSameOperands(Op0, Op1))
1808     return X;
1809   if (Value *X = simplifyAndOfICmpsWithSameOperands(Op1, Op0))
1810     return X;
1811 
1812   if (Value *X = simplifyAndOrOfICmpsWithConstants(Op0, Op1, true))
1813     return X;
1814 
1815   if (Value *X = simplifyAndOrOfICmpsWithLimitConst(Op0, Op1, true))
1816     return X;
1817 
1818   if (Value *X = simplifyAndOrOfICmpsWithZero(Op0, Op1, true))
1819     return X;
1820 
1821   if (Value *X = simplifyAndOfICmpsWithAdd(Op0, Op1, Q.IIQ))
1822     return X;
1823   if (Value *X = simplifyAndOfICmpsWithAdd(Op1, Op0, Q.IIQ))
1824     return X;
1825 
1826   return nullptr;
1827 }
1828 
1829 static Value *simplifyOrOfICmpsWithAdd(ICmpInst *Op0, ICmpInst *Op1,
1830                                        const InstrInfoQuery &IIQ) {
1831   // (icmp (add V, C0), C1) | (icmp V, C0)
1832   ICmpInst::Predicate Pred0, Pred1;
1833   const APInt *C0, *C1;
1834   Value *V;
1835   if (!match(Op0, m_ICmp(Pred0, m_Add(m_Value(V), m_APInt(C0)), m_APInt(C1))))
1836     return nullptr;
1837 
1838   if (!match(Op1, m_ICmp(Pred1, m_Specific(V), m_Value())))
1839     return nullptr;
1840 
1841   auto *AddInst = cast<BinaryOperator>(Op0->getOperand(0));
1842   if (AddInst->getOperand(1) != Op1->getOperand(1))
1843     return nullptr;
1844 
1845   Type *ITy = Op0->getType();
1846   bool isNSW = IIQ.hasNoSignedWrap(AddInst);
1847   bool isNUW = IIQ.hasNoUnsignedWrap(AddInst);
1848 
1849   const APInt Delta = *C1 - *C0;
1850   if (C0->isStrictlyPositive()) {
1851     if (Delta == 2) {
1852       if (Pred0 == ICmpInst::ICMP_UGE && Pred1 == ICmpInst::ICMP_SLE)
1853         return getTrue(ITy);
1854       if (Pred0 == ICmpInst::ICMP_SGE && Pred1 == ICmpInst::ICMP_SLE && isNSW)
1855         return getTrue(ITy);
1856     }
1857     if (Delta == 1) {
1858       if (Pred0 == ICmpInst::ICMP_UGT && Pred1 == ICmpInst::ICMP_SLE)
1859         return getTrue(ITy);
1860       if (Pred0 == ICmpInst::ICMP_SGT && Pred1 == ICmpInst::ICMP_SLE && isNSW)
1861         return getTrue(ITy);
1862     }
1863   }
1864   if (C0->getBoolValue() && isNUW) {
1865     if (Delta == 2)
1866       if (Pred0 == ICmpInst::ICMP_UGE && Pred1 == ICmpInst::ICMP_ULE)
1867         return getTrue(ITy);
1868     if (Delta == 1)
1869       if (Pred0 == ICmpInst::ICMP_UGT && Pred1 == ICmpInst::ICMP_ULE)
1870         return getTrue(ITy);
1871   }
1872 
1873   return nullptr;
1874 }
1875 
1876 static Value *simplifyOrOfICmps(ICmpInst *Op0, ICmpInst *Op1,
1877                                 const SimplifyQuery &Q) {
1878   if (Value *X = simplifyUnsignedRangeCheck(Op0, Op1, /*IsAnd=*/false, Q))
1879     return X;
1880   if (Value *X = simplifyUnsignedRangeCheck(Op1, Op0, /*IsAnd=*/false, Q))
1881     return X;
1882 
1883   if (Value *X = simplifyOrOfICmpsWithSameOperands(Op0, Op1))
1884     return X;
1885   if (Value *X = simplifyOrOfICmpsWithSameOperands(Op1, Op0))
1886     return X;
1887 
1888   if (Value *X = simplifyAndOrOfICmpsWithConstants(Op0, Op1, false))
1889     return X;
1890 
1891   if (Value *X = simplifyAndOrOfICmpsWithLimitConst(Op0, Op1, false))
1892     return X;
1893 
1894   if (Value *X = simplifyAndOrOfICmpsWithZero(Op0, Op1, false))
1895     return X;
1896 
1897   if (Value *X = simplifyOrOfICmpsWithAdd(Op0, Op1, Q.IIQ))
1898     return X;
1899   if (Value *X = simplifyOrOfICmpsWithAdd(Op1, Op0, Q.IIQ))
1900     return X;
1901 
1902   return nullptr;
1903 }
1904 
1905 static Value *simplifyAndOrOfFCmps(const TargetLibraryInfo *TLI,
1906                                    FCmpInst *LHS, FCmpInst *RHS, bool IsAnd) {
1907   Value *LHS0 = LHS->getOperand(0), *LHS1 = LHS->getOperand(1);
1908   Value *RHS0 = RHS->getOperand(0), *RHS1 = RHS->getOperand(1);
1909   if (LHS0->getType() != RHS0->getType())
1910     return nullptr;
1911 
1912   FCmpInst::Predicate PredL = LHS->getPredicate(), PredR = RHS->getPredicate();
1913   if ((PredL == FCmpInst::FCMP_ORD && PredR == FCmpInst::FCMP_ORD && IsAnd) ||
1914       (PredL == FCmpInst::FCMP_UNO && PredR == FCmpInst::FCMP_UNO && !IsAnd)) {
1915     // (fcmp ord NNAN, X) & (fcmp ord X, Y) --> fcmp ord X, Y
1916     // (fcmp ord NNAN, X) & (fcmp ord Y, X) --> fcmp ord Y, X
1917     // (fcmp ord X, NNAN) & (fcmp ord X, Y) --> fcmp ord X, Y
1918     // (fcmp ord X, NNAN) & (fcmp ord Y, X) --> fcmp ord Y, X
1919     // (fcmp uno NNAN, X) | (fcmp uno X, Y) --> fcmp uno X, Y
1920     // (fcmp uno NNAN, X) | (fcmp uno Y, X) --> fcmp uno Y, X
1921     // (fcmp uno X, NNAN) | (fcmp uno X, Y) --> fcmp uno X, Y
1922     // (fcmp uno X, NNAN) | (fcmp uno Y, X) --> fcmp uno Y, X
1923     if ((isKnownNeverNaN(LHS0, TLI) && (LHS1 == RHS0 || LHS1 == RHS1)) ||
1924         (isKnownNeverNaN(LHS1, TLI) && (LHS0 == RHS0 || LHS0 == RHS1)))
1925       return RHS;
1926 
1927     // (fcmp ord X, Y) & (fcmp ord NNAN, X) --> fcmp ord X, Y
1928     // (fcmp ord Y, X) & (fcmp ord NNAN, X) --> fcmp ord Y, X
1929     // (fcmp ord X, Y) & (fcmp ord X, NNAN) --> fcmp ord X, Y
1930     // (fcmp ord Y, X) & (fcmp ord X, NNAN) --> fcmp ord Y, X
1931     // (fcmp uno X, Y) | (fcmp uno NNAN, X) --> fcmp uno X, Y
1932     // (fcmp uno Y, X) | (fcmp uno NNAN, X) --> fcmp uno Y, X
1933     // (fcmp uno X, Y) | (fcmp uno X, NNAN) --> fcmp uno X, Y
1934     // (fcmp uno Y, X) | (fcmp uno X, NNAN) --> fcmp uno Y, X
1935     if ((isKnownNeverNaN(RHS0, TLI) && (RHS1 == LHS0 || RHS1 == LHS1)) ||
1936         (isKnownNeverNaN(RHS1, TLI) && (RHS0 == LHS0 || RHS0 == LHS1)))
1937       return LHS;
1938   }
1939 
1940   return nullptr;
1941 }
1942 
1943 static Value *simplifyAndOrOfCmps(const SimplifyQuery &Q,
1944                                   Value *Op0, Value *Op1, bool IsAnd) {
1945   // Look through casts of the 'and' operands to find compares.
1946   auto *Cast0 = dyn_cast<CastInst>(Op0);
1947   auto *Cast1 = dyn_cast<CastInst>(Op1);
1948   if (Cast0 && Cast1 && Cast0->getOpcode() == Cast1->getOpcode() &&
1949       Cast0->getSrcTy() == Cast1->getSrcTy()) {
1950     Op0 = Cast0->getOperand(0);
1951     Op1 = Cast1->getOperand(0);
1952   }
1953 
1954   Value *V = nullptr;
1955   auto *ICmp0 = dyn_cast<ICmpInst>(Op0);
1956   auto *ICmp1 = dyn_cast<ICmpInst>(Op1);
1957   if (ICmp0 && ICmp1)
1958     V = IsAnd ? simplifyAndOfICmps(ICmp0, ICmp1, Q)
1959               : simplifyOrOfICmps(ICmp0, ICmp1, Q);
1960 
1961   auto *FCmp0 = dyn_cast<FCmpInst>(Op0);
1962   auto *FCmp1 = dyn_cast<FCmpInst>(Op1);
1963   if (FCmp0 && FCmp1)
1964     V = simplifyAndOrOfFCmps(Q.TLI, FCmp0, FCmp1, IsAnd);
1965 
1966   if (!V)
1967     return nullptr;
1968   if (!Cast0)
1969     return V;
1970 
1971   // If we looked through casts, we can only handle a constant simplification
1972   // because we are not allowed to create a cast instruction here.
1973   if (auto *C = dyn_cast<Constant>(V))
1974     return ConstantExpr::getCast(Cast0->getOpcode(), C, Cast0->getType());
1975 
1976   return nullptr;
1977 }
1978 
1979 /// Given a bitwise logic op, check if the operands are add/sub with a common
1980 /// source value and inverted constant (identity: C - X -> ~(X + ~C)).
1981 static Value *simplifyLogicOfAddSub(Value *Op0, Value *Op1,
1982                                     Instruction::BinaryOps Opcode) {
1983   assert(Op0->getType() == Op1->getType() && "Mismatched binop types");
1984   assert(BinaryOperator::isBitwiseLogicOp(Opcode) && "Expected logic op");
1985   Value *X;
1986   Constant *C1, *C2;
1987   if ((match(Op0, m_Add(m_Value(X), m_Constant(C1))) &&
1988        match(Op1, m_Sub(m_Constant(C2), m_Specific(X)))) ||
1989       (match(Op1, m_Add(m_Value(X), m_Constant(C1))) &&
1990        match(Op0, m_Sub(m_Constant(C2), m_Specific(X))))) {
1991     if (ConstantExpr::getNot(C1) == C2) {
1992       // (X + C) & (~C - X) --> (X + C) & ~(X + C) --> 0
1993       // (X + C) | (~C - X) --> (X + C) | ~(X + C) --> -1
1994       // (X + C) ^ (~C - X) --> (X + C) ^ ~(X + C) --> -1
1995       Type *Ty = Op0->getType();
1996       return Opcode == Instruction::And ? ConstantInt::getNullValue(Ty)
1997                                         : ConstantInt::getAllOnesValue(Ty);
1998     }
1999   }
2000   return nullptr;
2001 }
2002 
2003 /// Given operands for an And, see if we can fold the result.
2004 /// If not, this returns null.
2005 static Value *SimplifyAndInst(Value *Op0, Value *Op1, const SimplifyQuery &Q,
2006                               unsigned MaxRecurse) {
2007   if (Constant *C = foldOrCommuteConstant(Instruction::And, Op0, Op1, Q))
2008     return C;
2009 
2010   // X & poison -> poison
2011   if (isa<PoisonValue>(Op1))
2012     return Op1;
2013 
2014   // X & undef -> 0
2015   if (Q.isUndefValue(Op1))
2016     return Constant::getNullValue(Op0->getType());
2017 
2018   // X & X = X
2019   if (Op0 == Op1)
2020     return Op0;
2021 
2022   // X & 0 = 0
2023   if (match(Op1, m_Zero()))
2024     return Constant::getNullValue(Op0->getType());
2025 
2026   // X & -1 = X
2027   if (match(Op1, m_AllOnes()))
2028     return Op0;
2029 
2030   // A & ~A  =  ~A & A  =  0
2031   if (match(Op0, m_Not(m_Specific(Op1))) ||
2032       match(Op1, m_Not(m_Specific(Op0))))
2033     return Constant::getNullValue(Op0->getType());
2034 
2035   // (A | ?) & A = A
2036   if (match(Op0, m_c_Or(m_Specific(Op1), m_Value())))
2037     return Op1;
2038 
2039   // A & (A | ?) = A
2040   if (match(Op1, m_c_Or(m_Specific(Op0), m_Value())))
2041     return Op0;
2042 
2043   // (X | Y) & (X | ~Y) --> X (commuted 8 ways)
2044   Value *X, *Y;
2045   if (match(Op0, m_c_Or(m_Value(X), m_Not(m_Value(Y)))) &&
2046       match(Op1, m_c_Or(m_Deferred(X), m_Deferred(Y))))
2047     return X;
2048   if (match(Op1, m_c_Or(m_Value(X), m_Not(m_Value(Y)))) &&
2049       match(Op0, m_c_Or(m_Deferred(X), m_Deferred(Y))))
2050     return X;
2051 
2052   if (Value *V = simplifyLogicOfAddSub(Op0, Op1, Instruction::And))
2053     return V;
2054 
2055   // A mask that only clears known zeros of a shifted value is a no-op.
2056   const APInt *Mask;
2057   const APInt *ShAmt;
2058   if (match(Op1, m_APInt(Mask))) {
2059     // If all bits in the inverted and shifted mask are clear:
2060     // and (shl X, ShAmt), Mask --> shl X, ShAmt
2061     if (match(Op0, m_Shl(m_Value(X), m_APInt(ShAmt))) &&
2062         (~(*Mask)).lshr(*ShAmt).isZero())
2063       return Op0;
2064 
2065     // If all bits in the inverted and shifted mask are clear:
2066     // and (lshr X, ShAmt), Mask --> lshr X, ShAmt
2067     if (match(Op0, m_LShr(m_Value(X), m_APInt(ShAmt))) &&
2068         (~(*Mask)).shl(*ShAmt).isZero())
2069       return Op0;
2070   }
2071 
2072   // If we have a multiplication overflow check that is being 'and'ed with a
2073   // check that one of the multipliers is not zero, we can omit the 'and', and
2074   // only keep the overflow check.
2075   if (isCheckForZeroAndMulWithOverflow(Op0, Op1, true))
2076     return Op1;
2077   if (isCheckForZeroAndMulWithOverflow(Op1, Op0, true))
2078     return Op0;
2079 
2080   // A & (-A) = A if A is a power of two or zero.
2081   if (match(Op0, m_Neg(m_Specific(Op1))) ||
2082       match(Op1, m_Neg(m_Specific(Op0)))) {
2083     if (isKnownToBeAPowerOfTwo(Op0, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI,
2084                                Q.DT))
2085       return Op0;
2086     if (isKnownToBeAPowerOfTwo(Op1, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI,
2087                                Q.DT))
2088       return Op1;
2089   }
2090 
2091   // This is a similar pattern used for checking if a value is a power-of-2:
2092   // (A - 1) & A --> 0 (if A is a power-of-2 or 0)
2093   // A & (A - 1) --> 0 (if A is a power-of-2 or 0)
2094   if (match(Op0, m_Add(m_Specific(Op1), m_AllOnes())) &&
2095       isKnownToBeAPowerOfTwo(Op1, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI, Q.DT))
2096     return Constant::getNullValue(Op1->getType());
2097   if (match(Op1, m_Add(m_Specific(Op0), m_AllOnes())) &&
2098       isKnownToBeAPowerOfTwo(Op0, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI, Q.DT))
2099     return Constant::getNullValue(Op0->getType());
2100 
2101   if (Value *V = simplifyAndOrOfCmps(Q, Op0, Op1, true))
2102     return V;
2103 
2104   // Try some generic simplifications for associative operations.
2105   if (Value *V = SimplifyAssociativeBinOp(Instruction::And, Op0, Op1, Q,
2106                                           MaxRecurse))
2107     return V;
2108 
2109   // And distributes over Or.  Try some generic simplifications based on this.
2110   if (Value *V = expandCommutativeBinOp(Instruction::And, Op0, Op1,
2111                                         Instruction::Or, Q, MaxRecurse))
2112     return V;
2113 
2114   // And distributes over Xor.  Try some generic simplifications based on this.
2115   if (Value *V = expandCommutativeBinOp(Instruction::And, Op0, Op1,
2116                                         Instruction::Xor, Q, MaxRecurse))
2117     return V;
2118 
2119   if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) {
2120     if (Op0->getType()->isIntOrIntVectorTy(1)) {
2121       // A & (A && B) -> A && B
2122       if (match(Op1, m_Select(m_Specific(Op0), m_Value(), m_Zero())))
2123         return Op1;
2124       else if (match(Op0, m_Select(m_Specific(Op1), m_Value(), m_Zero())))
2125         return Op0;
2126     }
2127     // If the operation is with the result of a select instruction, check
2128     // whether operating on either branch of the select always yields the same
2129     // value.
2130     if (Value *V = ThreadBinOpOverSelect(Instruction::And, Op0, Op1, Q,
2131                                          MaxRecurse))
2132       return V;
2133   }
2134 
2135   // If the operation is with the result of a phi instruction, check whether
2136   // operating on all incoming values of the phi always yields the same value.
2137   if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
2138     if (Value *V = ThreadBinOpOverPHI(Instruction::And, Op0, Op1, Q,
2139                                       MaxRecurse))
2140       return V;
2141 
2142   // Assuming the effective width of Y is not larger than A, i.e. all bits
2143   // from X and Y are disjoint in (X << A) | Y,
2144   // if the mask of this AND op covers all bits of X or Y, while it covers
2145   // no bits from the other, we can bypass this AND op. E.g.,
2146   // ((X << A) | Y) & Mask -> Y,
2147   //     if Mask = ((1 << effective_width_of(Y)) - 1)
2148   // ((X << A) | Y) & Mask -> X << A,
2149   //     if Mask = ((1 << effective_width_of(X)) - 1) << A
2150   // SimplifyDemandedBits in InstCombine can optimize the general case.
2151   // This pattern aims to help other passes for a common case.
2152   Value *XShifted;
2153   if (match(Op1, m_APInt(Mask)) &&
2154       match(Op0, m_c_Or(m_CombineAnd(m_NUWShl(m_Value(X), m_APInt(ShAmt)),
2155                                      m_Value(XShifted)),
2156                         m_Value(Y)))) {
2157     const unsigned Width = Op0->getType()->getScalarSizeInBits();
2158     const unsigned ShftCnt = ShAmt->getLimitedValue(Width);
2159     const KnownBits YKnown = computeKnownBits(Y, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
2160     const unsigned EffWidthY = YKnown.countMaxActiveBits();
2161     if (EffWidthY <= ShftCnt) {
2162       const KnownBits XKnown = computeKnownBits(X, Q.DL, 0, Q.AC, Q.CxtI,
2163                                                 Q.DT);
2164       const unsigned EffWidthX = XKnown.countMaxActiveBits();
2165       const APInt EffBitsY = APInt::getLowBitsSet(Width, EffWidthY);
2166       const APInt EffBitsX = APInt::getLowBitsSet(Width, EffWidthX) << ShftCnt;
2167       // If the mask is extracting all bits from X or Y as is, we can skip
2168       // this AND op.
2169       if (EffBitsY.isSubsetOf(*Mask) && !EffBitsX.intersects(*Mask))
2170         return Y;
2171       if (EffBitsX.isSubsetOf(*Mask) && !EffBitsY.intersects(*Mask))
2172         return XShifted;
2173     }
2174   }
2175 
2176   return nullptr;
2177 }
2178 
2179 Value *llvm::SimplifyAndInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) {
2180   return ::SimplifyAndInst(Op0, Op1, Q, RecursionLimit);
2181 }
2182 
2183 /// Given operands for an Or, see if we can fold the result.
2184 /// If not, this returns null.
2185 static Value *SimplifyOrInst(Value *Op0, Value *Op1, const SimplifyQuery &Q,
2186                              unsigned MaxRecurse) {
2187   if (Constant *C = foldOrCommuteConstant(Instruction::Or, Op0, Op1, Q))
2188     return C;
2189 
2190   // X | poison -> poison
2191   if (isa<PoisonValue>(Op1))
2192     return Op1;
2193 
2194   // X | undef -> -1
2195   // X | -1 = -1
2196   // Do not return Op1 because it may contain undef elements if it's a vector.
2197   if (Q.isUndefValue(Op1) || match(Op1, m_AllOnes()))
2198     return Constant::getAllOnesValue(Op0->getType());
2199 
2200   // X | X = X
2201   // X | 0 = X
2202   if (Op0 == Op1 || match(Op1, m_Zero()))
2203     return Op0;
2204 
2205   // A | ~A  =  ~A | A  =  -1
2206   if (match(Op0, m_Not(m_Specific(Op1))) ||
2207       match(Op1, m_Not(m_Specific(Op0))))
2208     return Constant::getAllOnesValue(Op0->getType());
2209 
2210   // (A & ?) | A = A
2211   if (match(Op0, m_c_And(m_Specific(Op1), m_Value())))
2212     return Op1;
2213 
2214   // A | (A & ?) = A
2215   if (match(Op1, m_c_And(m_Specific(Op0), m_Value())))
2216     return Op0;
2217 
2218   // ~(A & ?) | A = -1
2219   if (match(Op0, m_Not(m_c_And(m_Specific(Op1), m_Value()))))
2220     return Constant::getAllOnesValue(Op1->getType());
2221 
2222   // A | ~(A & ?) = -1
2223   if (match(Op1, m_Not(m_c_And(m_Specific(Op0), m_Value()))))
2224     return Constant::getAllOnesValue(Op0->getType());
2225 
2226   if (Value *V = simplifyLogicOfAddSub(Op0, Op1, Instruction::Or))
2227     return V;
2228 
2229   Value *A, *B, *NotA;
2230   // (A & ~B) | (A ^ B) -> (A ^ B)
2231   // (~B & A) | (A ^ B) -> (A ^ B)
2232   // (A & ~B) | (B ^ A) -> (B ^ A)
2233   // (~B & A) | (B ^ A) -> (B ^ A)
2234   if (match(Op1, m_Xor(m_Value(A), m_Value(B))) &&
2235       (match(Op0, m_c_And(m_Specific(A), m_Not(m_Specific(B)))) ||
2236        match(Op0, m_c_And(m_Not(m_Specific(A)), m_Specific(B)))))
2237     return Op1;
2238 
2239   // Commute the 'or' operands.
2240   // (A ^ B) | (A & ~B) -> (A ^ B)
2241   // (A ^ B) | (~B & A) -> (A ^ B)
2242   // (B ^ A) | (A & ~B) -> (B ^ A)
2243   // (B ^ A) | (~B & A) -> (B ^ A)
2244   if (match(Op0, m_Xor(m_Value(A), m_Value(B))) &&
2245       (match(Op1, m_c_And(m_Specific(A), m_Not(m_Specific(B)))) ||
2246        match(Op1, m_c_And(m_Not(m_Specific(A)), m_Specific(B)))))
2247     return Op0;
2248 
2249   // (A & B) | (~A ^ B) -> (~A ^ B)
2250   // (B & A) | (~A ^ B) -> (~A ^ B)
2251   // (A & B) | (B ^ ~A) -> (B ^ ~A)
2252   // (B & A) | (B ^ ~A) -> (B ^ ~A)
2253   if (match(Op0, m_And(m_Value(A), m_Value(B))) &&
2254       (match(Op1, m_c_Xor(m_Specific(A), m_Not(m_Specific(B)))) ||
2255        match(Op1, m_c_Xor(m_Not(m_Specific(A)), m_Specific(B)))))
2256     return Op1;
2257 
2258   // Commute the 'or' operands.
2259   // (~A ^ B) | (A & B) -> (~A ^ B)
2260   // (~A ^ B) | (B & A) -> (~A ^ B)
2261   // (B ^ ~A) | (A & B) -> (B ^ ~A)
2262   // (B ^ ~A) | (B & A) -> (B ^ ~A)
2263   if (match(Op1, m_And(m_Value(A), m_Value(B))) &&
2264       (match(Op0, m_c_Xor(m_Specific(A), m_Not(m_Specific(B)))) ||
2265        match(Op0, m_c_Xor(m_Not(m_Specific(A)), m_Specific(B)))))
2266     return Op0;
2267 
2268   // (~A & B) | ~(A | B) --> ~A
2269   // (~A & B) | ~(B | A) --> ~A
2270   // (B & ~A) | ~(A | B) --> ~A
2271   // (B & ~A) | ~(B | A) --> ~A
2272   if (match(Op0, m_c_And(m_CombineAnd(m_Value(NotA), m_Not(m_Value(A))),
2273                          m_Value(B))) &&
2274       match(Op1, m_Not(m_c_Or(m_Specific(A), m_Specific(B)))))
2275     return NotA;
2276 
2277   // Commute the 'or' operands.
2278   // ~(A | B) | (~A & B) --> ~A
2279   // ~(B | A) | (~A & B) --> ~A
2280   // ~(A | B) | (B & ~A) --> ~A
2281   // ~(B | A) | (B & ~A) --> ~A
2282   if (match(Op1, m_c_And(m_CombineAnd(m_Value(NotA), m_Not(m_Value(A))),
2283                          m_Value(B))) &&
2284       match(Op0, m_Not(m_c_Or(m_Specific(A), m_Specific(B)))))
2285     return NotA;
2286 
2287   // Rotated -1 is still -1:
2288   // (-1 << X) | (-1 >> (C - X)) --> -1
2289   // (-1 >> X) | (-1 << (C - X)) --> -1
2290   // ...with C <= bitwidth (and commuted variants).
2291   Value *X, *Y;
2292   if ((match(Op0, m_Shl(m_AllOnes(), m_Value(X))) &&
2293        match(Op1, m_LShr(m_AllOnes(), m_Value(Y)))) ||
2294       (match(Op1, m_Shl(m_AllOnes(), m_Value(X))) &&
2295        match(Op0, m_LShr(m_AllOnes(), m_Value(Y))))) {
2296     const APInt *C;
2297     if ((match(X, m_Sub(m_APInt(C), m_Specific(Y))) ||
2298          match(Y, m_Sub(m_APInt(C), m_Specific(X)))) &&
2299         C->ule(X->getType()->getScalarSizeInBits())) {
2300       return ConstantInt::getAllOnesValue(X->getType());
2301     }
2302   }
2303 
2304   if (Value *V = simplifyAndOrOfCmps(Q, Op0, Op1, false))
2305     return V;
2306 
2307   // If we have a multiplication overflow check that is being 'and'ed with a
2308   // check that one of the multipliers is not zero, we can omit the 'and', and
2309   // only keep the overflow check.
2310   if (isCheckForZeroAndMulWithOverflow(Op0, Op1, false))
2311     return Op1;
2312   if (isCheckForZeroAndMulWithOverflow(Op1, Op0, false))
2313     return Op0;
2314 
2315   // Try some generic simplifications for associative operations.
2316   if (Value *V = SimplifyAssociativeBinOp(Instruction::Or, Op0, Op1, Q,
2317                                           MaxRecurse))
2318     return V;
2319 
2320   // Or distributes over And.  Try some generic simplifications based on this.
2321   if (Value *V = expandCommutativeBinOp(Instruction::Or, Op0, Op1,
2322                                         Instruction::And, Q, MaxRecurse))
2323     return V;
2324 
2325   if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) {
2326     if (Op0->getType()->isIntOrIntVectorTy(1)) {
2327       // A | (A || B) -> A || B
2328       if (match(Op1, m_Select(m_Specific(Op0), m_One(), m_Value())))
2329         return Op1;
2330       else if (match(Op0, m_Select(m_Specific(Op1), m_One(), m_Value())))
2331         return Op0;
2332     }
2333     // If the operation is with the result of a select instruction, check
2334     // whether operating on either branch of the select always yields the same
2335     // value.
2336     if (Value *V = ThreadBinOpOverSelect(Instruction::Or, Op0, Op1, Q,
2337                                          MaxRecurse))
2338       return V;
2339   }
2340 
2341   // (A & C1)|(B & C2)
2342   const APInt *C1, *C2;
2343   if (match(Op0, m_And(m_Value(A), m_APInt(C1))) &&
2344       match(Op1, m_And(m_Value(B), m_APInt(C2)))) {
2345     if (*C1 == ~*C2) {
2346       // (A & C1)|(B & C2)
2347       // If we have: ((V + N) & C1) | (V & C2)
2348       // .. and C2 = ~C1 and C2 is 0+1+ and (N & C2) == 0
2349       // replace with V+N.
2350       Value *N;
2351       if (C2->isMask() && // C2 == 0+1+
2352           match(A, m_c_Add(m_Specific(B), m_Value(N)))) {
2353         // Add commutes, try both ways.
2354         if (MaskedValueIsZero(N, *C2, Q.DL, 0, Q.AC, Q.CxtI, Q.DT))
2355           return A;
2356       }
2357       // Or commutes, try both ways.
2358       if (C1->isMask() &&
2359           match(B, m_c_Add(m_Specific(A), m_Value(N)))) {
2360         // Add commutes, try both ways.
2361         if (MaskedValueIsZero(N, *C1, Q.DL, 0, Q.AC, Q.CxtI, Q.DT))
2362           return B;
2363       }
2364     }
2365   }
2366 
2367   // If the operation is with the result of a phi instruction, check whether
2368   // operating on all incoming values of the phi always yields the same value.
2369   if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
2370     if (Value *V = ThreadBinOpOverPHI(Instruction::Or, Op0, Op1, Q, MaxRecurse))
2371       return V;
2372 
2373   return nullptr;
2374 }
2375 
2376 Value *llvm::SimplifyOrInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) {
2377   return ::SimplifyOrInst(Op0, Op1, Q, RecursionLimit);
2378 }
2379 
2380 /// Given operands for a Xor, see if we can fold the result.
2381 /// If not, this returns null.
2382 static Value *SimplifyXorInst(Value *Op0, Value *Op1, const SimplifyQuery &Q,
2383                               unsigned MaxRecurse) {
2384   if (Constant *C = foldOrCommuteConstant(Instruction::Xor, Op0, Op1, Q))
2385     return C;
2386 
2387   // A ^ undef -> undef
2388   if (Q.isUndefValue(Op1))
2389     return Op1;
2390 
2391   // A ^ 0 = A
2392   if (match(Op1, m_Zero()))
2393     return Op0;
2394 
2395   // A ^ A = 0
2396   if (Op0 == Op1)
2397     return Constant::getNullValue(Op0->getType());
2398 
2399   // A ^ ~A  =  ~A ^ A  =  -1
2400   if (match(Op0, m_Not(m_Specific(Op1))) ||
2401       match(Op1, m_Not(m_Specific(Op0))))
2402     return Constant::getAllOnesValue(Op0->getType());
2403 
2404   if (Value *V = simplifyLogicOfAddSub(Op0, Op1, Instruction::Xor))
2405     return V;
2406 
2407   // Try some generic simplifications for associative operations.
2408   if (Value *V = SimplifyAssociativeBinOp(Instruction::Xor, Op0, Op1, Q,
2409                                           MaxRecurse))
2410     return V;
2411 
2412   // Threading Xor over selects and phi nodes is pointless, so don't bother.
2413   // Threading over the select in "A ^ select(cond, B, C)" means evaluating
2414   // "A^B" and "A^C" and seeing if they are equal; but they are equal if and
2415   // only if B and C are equal.  If B and C are equal then (since we assume
2416   // that operands have already been simplified) "select(cond, B, C)" should
2417   // have been simplified to the common value of B and C already.  Analysing
2418   // "A^B" and "A^C" thus gains nothing, but costs compile time.  Similarly
2419   // for threading over phi nodes.
2420 
2421   return nullptr;
2422 }
2423 
2424 Value *llvm::SimplifyXorInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) {
2425   return ::SimplifyXorInst(Op0, Op1, Q, RecursionLimit);
2426 }
2427 
2428 
2429 static Type *GetCompareTy(Value *Op) {
2430   return CmpInst::makeCmpResultType(Op->getType());
2431 }
2432 
2433 /// Rummage around inside V looking for something equivalent to the comparison
2434 /// "LHS Pred RHS". Return such a value if found, otherwise return null.
2435 /// Helper function for analyzing max/min idioms.
2436 static Value *ExtractEquivalentCondition(Value *V, CmpInst::Predicate Pred,
2437                                          Value *LHS, Value *RHS) {
2438   SelectInst *SI = dyn_cast<SelectInst>(V);
2439   if (!SI)
2440     return nullptr;
2441   CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition());
2442   if (!Cmp)
2443     return nullptr;
2444   Value *CmpLHS = Cmp->getOperand(0), *CmpRHS = Cmp->getOperand(1);
2445   if (Pred == Cmp->getPredicate() && LHS == CmpLHS && RHS == CmpRHS)
2446     return Cmp;
2447   if (Pred == CmpInst::getSwappedPredicate(Cmp->getPredicate()) &&
2448       LHS == CmpRHS && RHS == CmpLHS)
2449     return Cmp;
2450   return nullptr;
2451 }
2452 
2453 // A significant optimization not implemented here is assuming that alloca
2454 // addresses are not equal to incoming argument values. They don't *alias*,
2455 // as we say, but that doesn't mean they aren't equal, so we take a
2456 // conservative approach.
2457 //
2458 // This is inspired in part by C++11 5.10p1:
2459 //   "Two pointers of the same type compare equal if and only if they are both
2460 //    null, both point to the same function, or both represent the same
2461 //    address."
2462 //
2463 // This is pretty permissive.
2464 //
2465 // It's also partly due to C11 6.5.9p6:
2466 //   "Two pointers compare equal if and only if both are null pointers, both are
2467 //    pointers to the same object (including a pointer to an object and a
2468 //    subobject at its beginning) or function, both are pointers to one past the
2469 //    last element of the same array object, or one is a pointer to one past the
2470 //    end of one array object and the other is a pointer to the start of a
2471 //    different array object that happens to immediately follow the first array
2472 //    object in the address space.)
2473 //
2474 // C11's version is more restrictive, however there's no reason why an argument
2475 // couldn't be a one-past-the-end value for a stack object in the caller and be
2476 // equal to the beginning of a stack object in the callee.
2477 //
2478 // If the C and C++ standards are ever made sufficiently restrictive in this
2479 // area, it may be possible to update LLVM's semantics accordingly and reinstate
2480 // this optimization.
2481 static Constant *
2482 computePointerICmp(CmpInst::Predicate Pred, Value *LHS, Value *RHS,
2483                    const SimplifyQuery &Q) {
2484   const DataLayout &DL = Q.DL;
2485   const TargetLibraryInfo *TLI = Q.TLI;
2486   const DominatorTree *DT = Q.DT;
2487   const Instruction *CxtI = Q.CxtI;
2488   const InstrInfoQuery &IIQ = Q.IIQ;
2489 
2490   // First, skip past any trivial no-ops.
2491   LHS = LHS->stripPointerCasts();
2492   RHS = RHS->stripPointerCasts();
2493 
2494   // A non-null pointer is not equal to a null pointer.
2495   if (isa<ConstantPointerNull>(RHS) && ICmpInst::isEquality(Pred) &&
2496       llvm::isKnownNonZero(LHS, DL, 0, nullptr, nullptr, nullptr,
2497                            IIQ.UseInstrInfo))
2498     return ConstantInt::get(GetCompareTy(LHS),
2499                             !CmpInst::isTrueWhenEqual(Pred));
2500 
2501   // We can only fold certain predicates on pointer comparisons.
2502   switch (Pred) {
2503   default:
2504     return nullptr;
2505 
2506     // Equality comaprisons are easy to fold.
2507   case CmpInst::ICMP_EQ:
2508   case CmpInst::ICMP_NE:
2509     break;
2510 
2511     // We can only handle unsigned relational comparisons because 'inbounds' on
2512     // a GEP only protects against unsigned wrapping.
2513   case CmpInst::ICMP_UGT:
2514   case CmpInst::ICMP_UGE:
2515   case CmpInst::ICMP_ULT:
2516   case CmpInst::ICMP_ULE:
2517     // However, we have to switch them to their signed variants to handle
2518     // negative indices from the base pointer.
2519     Pred = ICmpInst::getSignedPredicate(Pred);
2520     break;
2521   }
2522 
2523   // Strip off any constant offsets so that we can reason about them.
2524   // It's tempting to use getUnderlyingObject or even just stripInBoundsOffsets
2525   // here and compare base addresses like AliasAnalysis does, however there are
2526   // numerous hazards. AliasAnalysis and its utilities rely on special rules
2527   // governing loads and stores which don't apply to icmps. Also, AliasAnalysis
2528   // doesn't need to guarantee pointer inequality when it says NoAlias.
2529   Constant *LHSOffset = stripAndComputeConstantOffsets(DL, LHS);
2530   Constant *RHSOffset = stripAndComputeConstantOffsets(DL, RHS);
2531 
2532   // If LHS and RHS are related via constant offsets to the same base
2533   // value, we can replace it with an icmp which just compares the offsets.
2534   if (LHS == RHS)
2535     return ConstantExpr::getICmp(Pred, LHSOffset, RHSOffset);
2536 
2537   // Various optimizations for (in)equality comparisons.
2538   if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE) {
2539     // Different non-empty allocations that exist at the same time have
2540     // different addresses (if the program can tell). Global variables always
2541     // exist, so they always exist during the lifetime of each other and all
2542     // allocas. Two different allocas usually have different addresses...
2543     //
2544     // However, if there's an @llvm.stackrestore dynamically in between two
2545     // allocas, they may have the same address. It's tempting to reduce the
2546     // scope of the problem by only looking at *static* allocas here. That would
2547     // cover the majority of allocas while significantly reducing the likelihood
2548     // of having an @llvm.stackrestore pop up in the middle. However, it's not
2549     // actually impossible for an @llvm.stackrestore to pop up in the middle of
2550     // an entry block. Also, if we have a block that's not attached to a
2551     // function, we can't tell if it's "static" under the current definition.
2552     // Theoretically, this problem could be fixed by creating a new kind of
2553     // instruction kind specifically for static allocas. Such a new instruction
2554     // could be required to be at the top of the entry block, thus preventing it
2555     // from being subject to a @llvm.stackrestore. Instcombine could even
2556     // convert regular allocas into these special allocas. It'd be nifty.
2557     // However, until then, this problem remains open.
2558     //
2559     // So, we'll assume that two non-empty allocas have different addresses
2560     // for now.
2561     //
2562     // With all that, if the offsets are within the bounds of their allocations
2563     // (and not one-past-the-end! so we can't use inbounds!), and their
2564     // allocations aren't the same, the pointers are not equal.
2565     //
2566     // Note that it's not necessary to check for LHS being a global variable
2567     // address, due to canonicalization and constant folding.
2568     if (isa<AllocaInst>(LHS) &&
2569         (isa<AllocaInst>(RHS) || isa<GlobalVariable>(RHS))) {
2570       ConstantInt *LHSOffsetCI = dyn_cast<ConstantInt>(LHSOffset);
2571       ConstantInt *RHSOffsetCI = dyn_cast<ConstantInt>(RHSOffset);
2572       uint64_t LHSSize, RHSSize;
2573       ObjectSizeOpts Opts;
2574       Opts.NullIsUnknownSize =
2575           NullPointerIsDefined(cast<AllocaInst>(LHS)->getFunction());
2576       if (LHSOffsetCI && RHSOffsetCI &&
2577           getObjectSize(LHS, LHSSize, DL, TLI, Opts) &&
2578           getObjectSize(RHS, RHSSize, DL, TLI, Opts)) {
2579         const APInt &LHSOffsetValue = LHSOffsetCI->getValue();
2580         const APInt &RHSOffsetValue = RHSOffsetCI->getValue();
2581         if (!LHSOffsetValue.isNegative() &&
2582             !RHSOffsetValue.isNegative() &&
2583             LHSOffsetValue.ult(LHSSize) &&
2584             RHSOffsetValue.ult(RHSSize)) {
2585           return ConstantInt::get(GetCompareTy(LHS),
2586                                   !CmpInst::isTrueWhenEqual(Pred));
2587         }
2588       }
2589 
2590       // Repeat the above check but this time without depending on DataLayout
2591       // or being able to compute a precise size.
2592       if (!cast<PointerType>(LHS->getType())->isEmptyTy() &&
2593           !cast<PointerType>(RHS->getType())->isEmptyTy() &&
2594           LHSOffset->isNullValue() &&
2595           RHSOffset->isNullValue())
2596         return ConstantInt::get(GetCompareTy(LHS),
2597                                 !CmpInst::isTrueWhenEqual(Pred));
2598     }
2599 
2600     // Even if an non-inbounds GEP occurs along the path we can still optimize
2601     // equality comparisons concerning the result. We avoid walking the whole
2602     // chain again by starting where the last calls to
2603     // stripAndComputeConstantOffsets left off and accumulate the offsets.
2604     Constant *LHSNoBound = stripAndComputeConstantOffsets(DL, LHS, true);
2605     Constant *RHSNoBound = stripAndComputeConstantOffsets(DL, RHS, true);
2606     if (LHS == RHS)
2607       return ConstantExpr::getICmp(Pred,
2608                                    ConstantExpr::getAdd(LHSOffset, LHSNoBound),
2609                                    ConstantExpr::getAdd(RHSOffset, RHSNoBound));
2610 
2611     // If one side of the equality comparison must come from a noalias call
2612     // (meaning a system memory allocation function), and the other side must
2613     // come from a pointer that cannot overlap with dynamically-allocated
2614     // memory within the lifetime of the current function (allocas, byval
2615     // arguments, globals), then determine the comparison result here.
2616     SmallVector<const Value *, 8> LHSUObjs, RHSUObjs;
2617     getUnderlyingObjects(LHS, LHSUObjs);
2618     getUnderlyingObjects(RHS, RHSUObjs);
2619 
2620     // Is the set of underlying objects all noalias calls?
2621     auto IsNAC = [](ArrayRef<const Value *> Objects) {
2622       return all_of(Objects, isNoAliasCall);
2623     };
2624 
2625     // Is the set of underlying objects all things which must be disjoint from
2626     // noalias calls. For allocas, we consider only static ones (dynamic
2627     // allocas might be transformed into calls to malloc not simultaneously
2628     // live with the compared-to allocation). For globals, we exclude symbols
2629     // that might be resolve lazily to symbols in another dynamically-loaded
2630     // library (and, thus, could be malloc'ed by the implementation).
2631     auto IsAllocDisjoint = [](ArrayRef<const Value *> Objects) {
2632       return all_of(Objects, [](const Value *V) {
2633         if (const AllocaInst *AI = dyn_cast<AllocaInst>(V))
2634           return AI->getParent() && AI->getFunction() && AI->isStaticAlloca();
2635         if (const GlobalValue *GV = dyn_cast<GlobalValue>(V))
2636           return (GV->hasLocalLinkage() || GV->hasHiddenVisibility() ||
2637                   GV->hasProtectedVisibility() || GV->hasGlobalUnnamedAddr()) &&
2638                  !GV->isThreadLocal();
2639         if (const Argument *A = dyn_cast<Argument>(V))
2640           return A->hasByValAttr();
2641         return false;
2642       });
2643     };
2644 
2645     if ((IsNAC(LHSUObjs) && IsAllocDisjoint(RHSUObjs)) ||
2646         (IsNAC(RHSUObjs) && IsAllocDisjoint(LHSUObjs)))
2647         return ConstantInt::get(GetCompareTy(LHS),
2648                                 !CmpInst::isTrueWhenEqual(Pred));
2649 
2650     // Fold comparisons for non-escaping pointer even if the allocation call
2651     // cannot be elided. We cannot fold malloc comparison to null. Also, the
2652     // dynamic allocation call could be either of the operands.
2653     Value *MI = nullptr;
2654     if (isAllocLikeFn(LHS, TLI) &&
2655         llvm::isKnownNonZero(RHS, DL, 0, nullptr, CxtI, DT))
2656       MI = LHS;
2657     else if (isAllocLikeFn(RHS, TLI) &&
2658              llvm::isKnownNonZero(LHS, DL, 0, nullptr, CxtI, DT))
2659       MI = RHS;
2660     // FIXME: We should also fold the compare when the pointer escapes, but the
2661     // compare dominates the pointer escape
2662     if (MI && !PointerMayBeCaptured(MI, true, true))
2663       return ConstantInt::get(GetCompareTy(LHS),
2664                               CmpInst::isFalseWhenEqual(Pred));
2665   }
2666 
2667   // Otherwise, fail.
2668   return nullptr;
2669 }
2670 
2671 /// Fold an icmp when its operands have i1 scalar type.
2672 static Value *simplifyICmpOfBools(CmpInst::Predicate Pred, Value *LHS,
2673                                   Value *RHS, const SimplifyQuery &Q) {
2674   Type *ITy = GetCompareTy(LHS); // The return type.
2675   Type *OpTy = LHS->getType();   // The operand type.
2676   if (!OpTy->isIntOrIntVectorTy(1))
2677     return nullptr;
2678 
2679   // A boolean compared to true/false can be simplified in 14 out of the 20
2680   // (10 predicates * 2 constants) possible combinations. Cases not handled here
2681   // require a 'not' of the LHS, so those must be transformed in InstCombine.
2682   if (match(RHS, m_Zero())) {
2683     switch (Pred) {
2684     case CmpInst::ICMP_NE:  // X !=  0 -> X
2685     case CmpInst::ICMP_UGT: // X >u  0 -> X
2686     case CmpInst::ICMP_SLT: // X <s  0 -> X
2687       return LHS;
2688 
2689     case CmpInst::ICMP_ULT: // X <u  0 -> false
2690     case CmpInst::ICMP_SGT: // X >s  0 -> false
2691       return getFalse(ITy);
2692 
2693     case CmpInst::ICMP_UGE: // X >=u 0 -> true
2694     case CmpInst::ICMP_SLE: // X <=s 0 -> true
2695       return getTrue(ITy);
2696 
2697     default: break;
2698     }
2699   } else if (match(RHS, m_One())) {
2700     switch (Pred) {
2701     case CmpInst::ICMP_EQ:  // X ==   1 -> X
2702     case CmpInst::ICMP_UGE: // X >=u  1 -> X
2703     case CmpInst::ICMP_SLE: // X <=s -1 -> X
2704       return LHS;
2705 
2706     case CmpInst::ICMP_UGT: // X >u   1 -> false
2707     case CmpInst::ICMP_SLT: // X <s  -1 -> false
2708       return getFalse(ITy);
2709 
2710     case CmpInst::ICMP_ULE: // X <=u  1 -> true
2711     case CmpInst::ICMP_SGE: // X >=s -1 -> true
2712       return getTrue(ITy);
2713 
2714     default: break;
2715     }
2716   }
2717 
2718   switch (Pred) {
2719   default:
2720     break;
2721   case ICmpInst::ICMP_UGE:
2722     if (isImpliedCondition(RHS, LHS, Q.DL).getValueOr(false))
2723       return getTrue(ITy);
2724     break;
2725   case ICmpInst::ICMP_SGE:
2726     /// For signed comparison, the values for an i1 are 0 and -1
2727     /// respectively. This maps into a truth table of:
2728     /// LHS | RHS | LHS >=s RHS   | LHS implies RHS
2729     ///  0  |  0  |  1 (0 >= 0)   |  1
2730     ///  0  |  1  |  1 (0 >= -1)  |  1
2731     ///  1  |  0  |  0 (-1 >= 0)  |  0
2732     ///  1  |  1  |  1 (-1 >= -1) |  1
2733     if (isImpliedCondition(LHS, RHS, Q.DL).getValueOr(false))
2734       return getTrue(ITy);
2735     break;
2736   case ICmpInst::ICMP_ULE:
2737     if (isImpliedCondition(LHS, RHS, Q.DL).getValueOr(false))
2738       return getTrue(ITy);
2739     break;
2740   }
2741 
2742   return nullptr;
2743 }
2744 
2745 /// Try hard to fold icmp with zero RHS because this is a common case.
2746 static Value *simplifyICmpWithZero(CmpInst::Predicate Pred, Value *LHS,
2747                                    Value *RHS, const SimplifyQuery &Q) {
2748   if (!match(RHS, m_Zero()))
2749     return nullptr;
2750 
2751   Type *ITy = GetCompareTy(LHS); // The return type.
2752   switch (Pred) {
2753   default:
2754     llvm_unreachable("Unknown ICmp predicate!");
2755   case ICmpInst::ICMP_ULT:
2756     return getFalse(ITy);
2757   case ICmpInst::ICMP_UGE:
2758     return getTrue(ITy);
2759   case ICmpInst::ICMP_EQ:
2760   case ICmpInst::ICMP_ULE:
2761     if (isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT, Q.IIQ.UseInstrInfo))
2762       return getFalse(ITy);
2763     break;
2764   case ICmpInst::ICMP_NE:
2765   case ICmpInst::ICMP_UGT:
2766     if (isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT, Q.IIQ.UseInstrInfo))
2767       return getTrue(ITy);
2768     break;
2769   case ICmpInst::ICMP_SLT: {
2770     KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
2771     if (LHSKnown.isNegative())
2772       return getTrue(ITy);
2773     if (LHSKnown.isNonNegative())
2774       return getFalse(ITy);
2775     break;
2776   }
2777   case ICmpInst::ICMP_SLE: {
2778     KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
2779     if (LHSKnown.isNegative())
2780       return getTrue(ITy);
2781     if (LHSKnown.isNonNegative() &&
2782         isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT))
2783       return getFalse(ITy);
2784     break;
2785   }
2786   case ICmpInst::ICMP_SGE: {
2787     KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
2788     if (LHSKnown.isNegative())
2789       return getFalse(ITy);
2790     if (LHSKnown.isNonNegative())
2791       return getTrue(ITy);
2792     break;
2793   }
2794   case ICmpInst::ICMP_SGT: {
2795     KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
2796     if (LHSKnown.isNegative())
2797       return getFalse(ITy);
2798     if (LHSKnown.isNonNegative() &&
2799         isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT))
2800       return getTrue(ITy);
2801     break;
2802   }
2803   }
2804 
2805   return nullptr;
2806 }
2807 
2808 static Value *simplifyICmpWithConstant(CmpInst::Predicate Pred, Value *LHS,
2809                                        Value *RHS, const InstrInfoQuery &IIQ) {
2810   Type *ITy = GetCompareTy(RHS); // The return type.
2811 
2812   Value *X;
2813   // Sign-bit checks can be optimized to true/false after unsigned
2814   // floating-point casts:
2815   // icmp slt (bitcast (uitofp X)),  0 --> false
2816   // icmp sgt (bitcast (uitofp X)), -1 --> true
2817   if (match(LHS, m_BitCast(m_UIToFP(m_Value(X))))) {
2818     if (Pred == ICmpInst::ICMP_SLT && match(RHS, m_Zero()))
2819       return ConstantInt::getFalse(ITy);
2820     if (Pred == ICmpInst::ICMP_SGT && match(RHS, m_AllOnes()))
2821       return ConstantInt::getTrue(ITy);
2822   }
2823 
2824   const APInt *C;
2825   if (!match(RHS, m_APIntAllowUndef(C)))
2826     return nullptr;
2827 
2828   // Rule out tautological comparisons (eg., ult 0 or uge 0).
2829   ConstantRange RHS_CR = ConstantRange::makeExactICmpRegion(Pred, *C);
2830   if (RHS_CR.isEmptySet())
2831     return ConstantInt::getFalse(ITy);
2832   if (RHS_CR.isFullSet())
2833     return ConstantInt::getTrue(ITy);
2834 
2835   ConstantRange LHS_CR = computeConstantRange(LHS, IIQ.UseInstrInfo);
2836   if (!LHS_CR.isFullSet()) {
2837     if (RHS_CR.contains(LHS_CR))
2838       return ConstantInt::getTrue(ITy);
2839     if (RHS_CR.inverse().contains(LHS_CR))
2840       return ConstantInt::getFalse(ITy);
2841   }
2842 
2843   // (mul nuw/nsw X, MulC) != C --> true  (if C is not a multiple of MulC)
2844   // (mul nuw/nsw X, MulC) == C --> false (if C is not a multiple of MulC)
2845   const APInt *MulC;
2846   if (ICmpInst::isEquality(Pred) &&
2847       ((match(LHS, m_NUWMul(m_Value(), m_APIntAllowUndef(MulC))) &&
2848         *MulC != 0 && C->urem(*MulC) != 0) ||
2849        (match(LHS, m_NSWMul(m_Value(), m_APIntAllowUndef(MulC))) &&
2850         *MulC != 0 && C->srem(*MulC) != 0)))
2851     return ConstantInt::get(ITy, Pred == ICmpInst::ICMP_NE);
2852 
2853   return nullptr;
2854 }
2855 
2856 static Value *simplifyICmpWithBinOpOnLHS(
2857     CmpInst::Predicate Pred, BinaryOperator *LBO, Value *RHS,
2858     const SimplifyQuery &Q, unsigned MaxRecurse) {
2859   Type *ITy = GetCompareTy(RHS); // The return type.
2860 
2861   Value *Y = nullptr;
2862   // icmp pred (or X, Y), X
2863   if (match(LBO, m_c_Or(m_Value(Y), m_Specific(RHS)))) {
2864     if (Pred == ICmpInst::ICMP_ULT)
2865       return getFalse(ITy);
2866     if (Pred == ICmpInst::ICMP_UGE)
2867       return getTrue(ITy);
2868 
2869     if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SGE) {
2870       KnownBits RHSKnown = computeKnownBits(RHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
2871       KnownBits YKnown = computeKnownBits(Y, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
2872       if (RHSKnown.isNonNegative() && YKnown.isNegative())
2873         return Pred == ICmpInst::ICMP_SLT ? getTrue(ITy) : getFalse(ITy);
2874       if (RHSKnown.isNegative() || YKnown.isNonNegative())
2875         return Pred == ICmpInst::ICMP_SLT ? getFalse(ITy) : getTrue(ITy);
2876     }
2877   }
2878 
2879   // icmp pred (and X, Y), X
2880   if (match(LBO, m_c_And(m_Value(), m_Specific(RHS)))) {
2881     if (Pred == ICmpInst::ICMP_UGT)
2882       return getFalse(ITy);
2883     if (Pred == ICmpInst::ICMP_ULE)
2884       return getTrue(ITy);
2885   }
2886 
2887   // icmp pred (urem X, Y), Y
2888   if (match(LBO, m_URem(m_Value(), m_Specific(RHS)))) {
2889     switch (Pred) {
2890     default:
2891       break;
2892     case ICmpInst::ICMP_SGT:
2893     case ICmpInst::ICMP_SGE: {
2894       KnownBits Known = computeKnownBits(RHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
2895       if (!Known.isNonNegative())
2896         break;
2897       LLVM_FALLTHROUGH;
2898     }
2899     case ICmpInst::ICMP_EQ:
2900     case ICmpInst::ICMP_UGT:
2901     case ICmpInst::ICMP_UGE:
2902       return getFalse(ITy);
2903     case ICmpInst::ICMP_SLT:
2904     case ICmpInst::ICMP_SLE: {
2905       KnownBits Known = computeKnownBits(RHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
2906       if (!Known.isNonNegative())
2907         break;
2908       LLVM_FALLTHROUGH;
2909     }
2910     case ICmpInst::ICMP_NE:
2911     case ICmpInst::ICMP_ULT:
2912     case ICmpInst::ICMP_ULE:
2913       return getTrue(ITy);
2914     }
2915   }
2916 
2917   // icmp pred (urem X, Y), X
2918   if (match(LBO, m_URem(m_Specific(RHS), m_Value()))) {
2919     if (Pred == ICmpInst::ICMP_ULE)
2920       return getTrue(ITy);
2921     if (Pred == ICmpInst::ICMP_UGT)
2922       return getFalse(ITy);
2923   }
2924 
2925   // x >> y <=u x
2926   // x udiv y <=u x.
2927   if (match(LBO, m_LShr(m_Specific(RHS), m_Value())) ||
2928       match(LBO, m_UDiv(m_Specific(RHS), m_Value()))) {
2929     // icmp pred (X op Y), X
2930     if (Pred == ICmpInst::ICMP_UGT)
2931       return getFalse(ITy);
2932     if (Pred == ICmpInst::ICMP_ULE)
2933       return getTrue(ITy);
2934   }
2935 
2936   // (x*C1)/C2 <= x for C1 <= C2.
2937   // This holds even if the multiplication overflows: Assume that x != 0 and
2938   // arithmetic is modulo M. For overflow to occur we must have C1 >= M/x and
2939   // thus C2 >= M/x. It follows that (x*C1)/C2 <= (M-1)/C2 <= ((M-1)*x)/M < x.
2940   //
2941   // Additionally, either the multiplication and division might be represented
2942   // as shifts:
2943   // (x*C1)>>C2 <= x for C1 < 2**C2.
2944   // (x<<C1)/C2 <= x for 2**C1 < C2.
2945   const APInt *C1, *C2;
2946   if ((match(LBO, m_UDiv(m_Mul(m_Specific(RHS), m_APInt(C1)), m_APInt(C2))) &&
2947        C1->ule(*C2)) ||
2948       (match(LBO, m_LShr(m_Mul(m_Specific(RHS), m_APInt(C1)), m_APInt(C2))) &&
2949        C1->ule(APInt(C2->getBitWidth(), 1) << *C2)) ||
2950       (match(LBO, m_UDiv(m_Shl(m_Specific(RHS), m_APInt(C1)), m_APInt(C2))) &&
2951        (APInt(C1->getBitWidth(), 1) << *C1).ule(*C2))) {
2952     if (Pred == ICmpInst::ICMP_UGT)
2953       return getFalse(ITy);
2954     if (Pred == ICmpInst::ICMP_ULE)
2955       return getTrue(ITy);
2956   }
2957 
2958   return nullptr;
2959 }
2960 
2961 
2962 // If only one of the icmp's operands has NSW flags, try to prove that:
2963 //
2964 //   icmp slt (x + C1), (x +nsw C2)
2965 //
2966 // is equivalent to:
2967 //
2968 //   icmp slt C1, C2
2969 //
2970 // which is true if x + C2 has the NSW flags set and:
2971 // *) C1 < C2 && C1 >= 0, or
2972 // *) C2 < C1 && C1 <= 0.
2973 //
2974 static bool trySimplifyICmpWithAdds(CmpInst::Predicate Pred, Value *LHS,
2975                                     Value *RHS) {
2976   // TODO: only support icmp slt for now.
2977   if (Pred != CmpInst::ICMP_SLT)
2978     return false;
2979 
2980   // Canonicalize nsw add as RHS.
2981   if (!match(RHS, m_NSWAdd(m_Value(), m_Value())))
2982     std::swap(LHS, RHS);
2983   if (!match(RHS, m_NSWAdd(m_Value(), m_Value())))
2984     return false;
2985 
2986   Value *X;
2987   const APInt *C1, *C2;
2988   if (!match(LHS, m_c_Add(m_Value(X), m_APInt(C1))) ||
2989       !match(RHS, m_c_Add(m_Specific(X), m_APInt(C2))))
2990     return false;
2991 
2992   return (C1->slt(*C2) && C1->isNonNegative()) ||
2993          (C2->slt(*C1) && C1->isNonPositive());
2994 }
2995 
2996 
2997 /// TODO: A large part of this logic is duplicated in InstCombine's
2998 /// foldICmpBinOp(). We should be able to share that and avoid the code
2999 /// duplication.
3000 static Value *simplifyICmpWithBinOp(CmpInst::Predicate Pred, Value *LHS,
3001                                     Value *RHS, const SimplifyQuery &Q,
3002                                     unsigned MaxRecurse) {
3003   BinaryOperator *LBO = dyn_cast<BinaryOperator>(LHS);
3004   BinaryOperator *RBO = dyn_cast<BinaryOperator>(RHS);
3005   if (MaxRecurse && (LBO || RBO)) {
3006     // Analyze the case when either LHS or RHS is an add instruction.
3007     Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr;
3008     // LHS = A + B (or A and B are null); RHS = C + D (or C and D are null).
3009     bool NoLHSWrapProblem = false, NoRHSWrapProblem = false;
3010     if (LBO && LBO->getOpcode() == Instruction::Add) {
3011       A = LBO->getOperand(0);
3012       B = LBO->getOperand(1);
3013       NoLHSWrapProblem =
3014           ICmpInst::isEquality(Pred) ||
3015           (CmpInst::isUnsigned(Pred) &&
3016            Q.IIQ.hasNoUnsignedWrap(cast<OverflowingBinaryOperator>(LBO))) ||
3017           (CmpInst::isSigned(Pred) &&
3018            Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(LBO)));
3019     }
3020     if (RBO && RBO->getOpcode() == Instruction::Add) {
3021       C = RBO->getOperand(0);
3022       D = RBO->getOperand(1);
3023       NoRHSWrapProblem =
3024           ICmpInst::isEquality(Pred) ||
3025           (CmpInst::isUnsigned(Pred) &&
3026            Q.IIQ.hasNoUnsignedWrap(cast<OverflowingBinaryOperator>(RBO))) ||
3027           (CmpInst::isSigned(Pred) &&
3028            Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(RBO)));
3029     }
3030 
3031     // icmp (X+Y), X -> icmp Y, 0 for equalities or if there is no overflow.
3032     if ((A == RHS || B == RHS) && NoLHSWrapProblem)
3033       if (Value *V = SimplifyICmpInst(Pred, A == RHS ? B : A,
3034                                       Constant::getNullValue(RHS->getType()), Q,
3035                                       MaxRecurse - 1))
3036         return V;
3037 
3038     // icmp X, (X+Y) -> icmp 0, Y for equalities or if there is no overflow.
3039     if ((C == LHS || D == LHS) && NoRHSWrapProblem)
3040       if (Value *V =
3041               SimplifyICmpInst(Pred, Constant::getNullValue(LHS->getType()),
3042                                C == LHS ? D : C, Q, MaxRecurse - 1))
3043         return V;
3044 
3045     // icmp (X+Y), (X+Z) -> icmp Y,Z for equalities or if there is no overflow.
3046     bool CanSimplify = (NoLHSWrapProblem && NoRHSWrapProblem) ||
3047                        trySimplifyICmpWithAdds(Pred, LHS, RHS);
3048     if (A && C && (A == C || A == D || B == C || B == D) && CanSimplify) {
3049       // Determine Y and Z in the form icmp (X+Y), (X+Z).
3050       Value *Y, *Z;
3051       if (A == C) {
3052         // C + B == C + D  ->  B == D
3053         Y = B;
3054         Z = D;
3055       } else if (A == D) {
3056         // D + B == C + D  ->  B == C
3057         Y = B;
3058         Z = C;
3059       } else if (B == C) {
3060         // A + C == C + D  ->  A == D
3061         Y = A;
3062         Z = D;
3063       } else {
3064         assert(B == D);
3065         // A + D == C + D  ->  A == C
3066         Y = A;
3067         Z = C;
3068       }
3069       if (Value *V = SimplifyICmpInst(Pred, Y, Z, Q, MaxRecurse - 1))
3070         return V;
3071     }
3072   }
3073 
3074   if (LBO)
3075     if (Value *V = simplifyICmpWithBinOpOnLHS(Pred, LBO, RHS, Q, MaxRecurse))
3076       return V;
3077 
3078   if (RBO)
3079     if (Value *V = simplifyICmpWithBinOpOnLHS(
3080             ICmpInst::getSwappedPredicate(Pred), RBO, LHS, Q, MaxRecurse))
3081       return V;
3082 
3083   // 0 - (zext X) pred C
3084   if (!CmpInst::isUnsigned(Pred) && match(LHS, m_Neg(m_ZExt(m_Value())))) {
3085     const APInt *C;
3086     if (match(RHS, m_APInt(C))) {
3087       if (C->isStrictlyPositive()) {
3088         if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_NE)
3089           return ConstantInt::getTrue(GetCompareTy(RHS));
3090         if (Pred == ICmpInst::ICMP_SGE || Pred == ICmpInst::ICMP_EQ)
3091           return ConstantInt::getFalse(GetCompareTy(RHS));
3092       }
3093       if (C->isNonNegative()) {
3094         if (Pred == ICmpInst::ICMP_SLE)
3095           return ConstantInt::getTrue(GetCompareTy(RHS));
3096         if (Pred == ICmpInst::ICMP_SGT)
3097           return ConstantInt::getFalse(GetCompareTy(RHS));
3098       }
3099     }
3100   }
3101 
3102   //   If C2 is a power-of-2 and C is not:
3103   //   (C2 << X) == C --> false
3104   //   (C2 << X) != C --> true
3105   const APInt *C;
3106   if (match(LHS, m_Shl(m_Power2(), m_Value())) &&
3107       match(RHS, m_APIntAllowUndef(C)) && !C->isPowerOf2()) {
3108     // C2 << X can equal zero in some circumstances.
3109     // This simplification might be unsafe if C is zero.
3110     //
3111     // We know it is safe if:
3112     // - The shift is nsw. We can't shift out the one bit.
3113     // - The shift is nuw. We can't shift out the one bit.
3114     // - C2 is one.
3115     // - C isn't zero.
3116     if (Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(LBO)) ||
3117         Q.IIQ.hasNoUnsignedWrap(cast<OverflowingBinaryOperator>(LBO)) ||
3118         match(LHS, m_Shl(m_One(), m_Value())) || !C->isZero()) {
3119       if (Pred == ICmpInst::ICMP_EQ)
3120         return ConstantInt::getFalse(GetCompareTy(RHS));
3121       if (Pred == ICmpInst::ICMP_NE)
3122         return ConstantInt::getTrue(GetCompareTy(RHS));
3123     }
3124   }
3125 
3126   // TODO: This is overly constrained. LHS can be any power-of-2.
3127   // (1 << X)  >u 0x8000 --> false
3128   // (1 << X) <=u 0x8000 --> true
3129   if (match(LHS, m_Shl(m_One(), m_Value())) && match(RHS, m_SignMask())) {
3130     if (Pred == ICmpInst::ICMP_UGT)
3131       return ConstantInt::getFalse(GetCompareTy(RHS));
3132     if (Pred == ICmpInst::ICMP_ULE)
3133       return ConstantInt::getTrue(GetCompareTy(RHS));
3134   }
3135 
3136   if (MaxRecurse && LBO && RBO && LBO->getOpcode() == RBO->getOpcode() &&
3137       LBO->getOperand(1) == RBO->getOperand(1)) {
3138     switch (LBO->getOpcode()) {
3139     default:
3140       break;
3141     case Instruction::UDiv:
3142     case Instruction::LShr:
3143       if (ICmpInst::isSigned(Pred) || !Q.IIQ.isExact(LBO) ||
3144           !Q.IIQ.isExact(RBO))
3145         break;
3146       if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0),
3147                                       RBO->getOperand(0), Q, MaxRecurse - 1))
3148           return V;
3149       break;
3150     case Instruction::SDiv:
3151       if (!ICmpInst::isEquality(Pred) || !Q.IIQ.isExact(LBO) ||
3152           !Q.IIQ.isExact(RBO))
3153         break;
3154       if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0),
3155                                       RBO->getOperand(0), Q, MaxRecurse - 1))
3156         return V;
3157       break;
3158     case Instruction::AShr:
3159       if (!Q.IIQ.isExact(LBO) || !Q.IIQ.isExact(RBO))
3160         break;
3161       if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0),
3162                                       RBO->getOperand(0), Q, MaxRecurse - 1))
3163         return V;
3164       break;
3165     case Instruction::Shl: {
3166       bool NUW = Q.IIQ.hasNoUnsignedWrap(LBO) && Q.IIQ.hasNoUnsignedWrap(RBO);
3167       bool NSW = Q.IIQ.hasNoSignedWrap(LBO) && Q.IIQ.hasNoSignedWrap(RBO);
3168       if (!NUW && !NSW)
3169         break;
3170       if (!NSW && ICmpInst::isSigned(Pred))
3171         break;
3172       if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0),
3173                                       RBO->getOperand(0), Q, MaxRecurse - 1))
3174         return V;
3175       break;
3176     }
3177     }
3178   }
3179   return nullptr;
3180 }
3181 
3182 /// Simplify integer comparisons where at least one operand of the compare
3183 /// matches an integer min/max idiom.
3184 static Value *simplifyICmpWithMinMax(CmpInst::Predicate Pred, Value *LHS,
3185                                      Value *RHS, const SimplifyQuery &Q,
3186                                      unsigned MaxRecurse) {
3187   Type *ITy = GetCompareTy(LHS); // The return type.
3188   Value *A, *B;
3189   CmpInst::Predicate P = CmpInst::BAD_ICMP_PREDICATE;
3190   CmpInst::Predicate EqP; // Chosen so that "A == max/min(A,B)" iff "A EqP B".
3191 
3192   // Signed variants on "max(a,b)>=a -> true".
3193   if (match(LHS, m_SMax(m_Value(A), m_Value(B))) && (A == RHS || B == RHS)) {
3194     if (A != RHS)
3195       std::swap(A, B);       // smax(A, B) pred A.
3196     EqP = CmpInst::ICMP_SGE; // "A == smax(A, B)" iff "A sge B".
3197     // We analyze this as smax(A, B) pred A.
3198     P = Pred;
3199   } else if (match(RHS, m_SMax(m_Value(A), m_Value(B))) &&
3200              (A == LHS || B == LHS)) {
3201     if (A != LHS)
3202       std::swap(A, B);       // A pred smax(A, B).
3203     EqP = CmpInst::ICMP_SGE; // "A == smax(A, B)" iff "A sge B".
3204     // We analyze this as smax(A, B) swapped-pred A.
3205     P = CmpInst::getSwappedPredicate(Pred);
3206   } else if (match(LHS, m_SMin(m_Value(A), m_Value(B))) &&
3207              (A == RHS || B == RHS)) {
3208     if (A != RHS)
3209       std::swap(A, B);       // smin(A, B) pred A.
3210     EqP = CmpInst::ICMP_SLE; // "A == smin(A, B)" iff "A sle B".
3211     // We analyze this as smax(-A, -B) swapped-pred -A.
3212     // Note that we do not need to actually form -A or -B thanks to EqP.
3213     P = CmpInst::getSwappedPredicate(Pred);
3214   } else if (match(RHS, m_SMin(m_Value(A), m_Value(B))) &&
3215              (A == LHS || B == LHS)) {
3216     if (A != LHS)
3217       std::swap(A, B);       // A pred smin(A, B).
3218     EqP = CmpInst::ICMP_SLE; // "A == smin(A, B)" iff "A sle B".
3219     // We analyze this as smax(-A, -B) pred -A.
3220     // Note that we do not need to actually form -A or -B thanks to EqP.
3221     P = Pred;
3222   }
3223   if (P != CmpInst::BAD_ICMP_PREDICATE) {
3224     // Cases correspond to "max(A, B) p A".
3225     switch (P) {
3226     default:
3227       break;
3228     case CmpInst::ICMP_EQ:
3229     case CmpInst::ICMP_SLE:
3230       // Equivalent to "A EqP B".  This may be the same as the condition tested
3231       // in the max/min; if so, we can just return that.
3232       if (Value *V = ExtractEquivalentCondition(LHS, EqP, A, B))
3233         return V;
3234       if (Value *V = ExtractEquivalentCondition(RHS, EqP, A, B))
3235         return V;
3236       // Otherwise, see if "A EqP B" simplifies.
3237       if (MaxRecurse)
3238         if (Value *V = SimplifyICmpInst(EqP, A, B, Q, MaxRecurse - 1))
3239           return V;
3240       break;
3241     case CmpInst::ICMP_NE:
3242     case CmpInst::ICMP_SGT: {
3243       CmpInst::Predicate InvEqP = CmpInst::getInversePredicate(EqP);
3244       // Equivalent to "A InvEqP B".  This may be the same as the condition
3245       // tested in the max/min; if so, we can just return that.
3246       if (Value *V = ExtractEquivalentCondition(LHS, InvEqP, A, B))
3247         return V;
3248       if (Value *V = ExtractEquivalentCondition(RHS, InvEqP, A, B))
3249         return V;
3250       // Otherwise, see if "A InvEqP B" simplifies.
3251       if (MaxRecurse)
3252         if (Value *V = SimplifyICmpInst(InvEqP, A, B, Q, MaxRecurse - 1))
3253           return V;
3254       break;
3255     }
3256     case CmpInst::ICMP_SGE:
3257       // Always true.
3258       return getTrue(ITy);
3259     case CmpInst::ICMP_SLT:
3260       // Always false.
3261       return getFalse(ITy);
3262     }
3263   }
3264 
3265   // Unsigned variants on "max(a,b)>=a -> true".
3266   P = CmpInst::BAD_ICMP_PREDICATE;
3267   if (match(LHS, m_UMax(m_Value(A), m_Value(B))) && (A == RHS || B == RHS)) {
3268     if (A != RHS)
3269       std::swap(A, B);       // umax(A, B) pred A.
3270     EqP = CmpInst::ICMP_UGE; // "A == umax(A, B)" iff "A uge B".
3271     // We analyze this as umax(A, B) pred A.
3272     P = Pred;
3273   } else if (match(RHS, m_UMax(m_Value(A), m_Value(B))) &&
3274              (A == LHS || B == LHS)) {
3275     if (A != LHS)
3276       std::swap(A, B);       // A pred umax(A, B).
3277     EqP = CmpInst::ICMP_UGE; // "A == umax(A, B)" iff "A uge B".
3278     // We analyze this as umax(A, B) swapped-pred A.
3279     P = CmpInst::getSwappedPredicate(Pred);
3280   } else if (match(LHS, m_UMin(m_Value(A), m_Value(B))) &&
3281              (A == RHS || B == RHS)) {
3282     if (A != RHS)
3283       std::swap(A, B);       // umin(A, B) pred A.
3284     EqP = CmpInst::ICMP_ULE; // "A == umin(A, B)" iff "A ule B".
3285     // We analyze this as umax(-A, -B) swapped-pred -A.
3286     // Note that we do not need to actually form -A or -B thanks to EqP.
3287     P = CmpInst::getSwappedPredicate(Pred);
3288   } else if (match(RHS, m_UMin(m_Value(A), m_Value(B))) &&
3289              (A == LHS || B == LHS)) {
3290     if (A != LHS)
3291       std::swap(A, B);       // A pred umin(A, B).
3292     EqP = CmpInst::ICMP_ULE; // "A == umin(A, B)" iff "A ule B".
3293     // We analyze this as umax(-A, -B) pred -A.
3294     // Note that we do not need to actually form -A or -B thanks to EqP.
3295     P = Pred;
3296   }
3297   if (P != CmpInst::BAD_ICMP_PREDICATE) {
3298     // Cases correspond to "max(A, B) p A".
3299     switch (P) {
3300     default:
3301       break;
3302     case CmpInst::ICMP_EQ:
3303     case CmpInst::ICMP_ULE:
3304       // Equivalent to "A EqP B".  This may be the same as the condition tested
3305       // in the max/min; if so, we can just return that.
3306       if (Value *V = ExtractEquivalentCondition(LHS, EqP, A, B))
3307         return V;
3308       if (Value *V = ExtractEquivalentCondition(RHS, EqP, A, B))
3309         return V;
3310       // Otherwise, see if "A EqP B" simplifies.
3311       if (MaxRecurse)
3312         if (Value *V = SimplifyICmpInst(EqP, A, B, Q, MaxRecurse - 1))
3313           return V;
3314       break;
3315     case CmpInst::ICMP_NE:
3316     case CmpInst::ICMP_UGT: {
3317       CmpInst::Predicate InvEqP = CmpInst::getInversePredicate(EqP);
3318       // Equivalent to "A InvEqP B".  This may be the same as the condition
3319       // tested in the max/min; if so, we can just return that.
3320       if (Value *V = ExtractEquivalentCondition(LHS, InvEqP, A, B))
3321         return V;
3322       if (Value *V = ExtractEquivalentCondition(RHS, InvEqP, A, B))
3323         return V;
3324       // Otherwise, see if "A InvEqP B" simplifies.
3325       if (MaxRecurse)
3326         if (Value *V = SimplifyICmpInst(InvEqP, A, B, Q, MaxRecurse - 1))
3327           return V;
3328       break;
3329     }
3330     case CmpInst::ICMP_UGE:
3331       return getTrue(ITy);
3332     case CmpInst::ICMP_ULT:
3333       return getFalse(ITy);
3334     }
3335   }
3336 
3337   // Comparing 1 each of min/max with a common operand?
3338   // Canonicalize min operand to RHS.
3339   if (match(LHS, m_UMin(m_Value(), m_Value())) ||
3340       match(LHS, m_SMin(m_Value(), m_Value()))) {
3341     std::swap(LHS, RHS);
3342     Pred = ICmpInst::getSwappedPredicate(Pred);
3343   }
3344 
3345   Value *C, *D;
3346   if (match(LHS, m_SMax(m_Value(A), m_Value(B))) &&
3347       match(RHS, m_SMin(m_Value(C), m_Value(D))) &&
3348       (A == C || A == D || B == C || B == D)) {
3349     // smax(A, B) >=s smin(A, D) --> true
3350     if (Pred == CmpInst::ICMP_SGE)
3351       return getTrue(ITy);
3352     // smax(A, B) <s smin(A, D) --> false
3353     if (Pred == CmpInst::ICMP_SLT)
3354       return getFalse(ITy);
3355   } else if (match(LHS, m_UMax(m_Value(A), m_Value(B))) &&
3356              match(RHS, m_UMin(m_Value(C), m_Value(D))) &&
3357              (A == C || A == D || B == C || B == D)) {
3358     // umax(A, B) >=u umin(A, D) --> true
3359     if (Pred == CmpInst::ICMP_UGE)
3360       return getTrue(ITy);
3361     // umax(A, B) <u umin(A, D) --> false
3362     if (Pred == CmpInst::ICMP_ULT)
3363       return getFalse(ITy);
3364   }
3365 
3366   return nullptr;
3367 }
3368 
3369 static Value *simplifyICmpWithDominatingAssume(CmpInst::Predicate Predicate,
3370                                                Value *LHS, Value *RHS,
3371                                                const SimplifyQuery &Q) {
3372   // Gracefully handle instructions that have not been inserted yet.
3373   if (!Q.AC || !Q.CxtI || !Q.CxtI->getParent())
3374     return nullptr;
3375 
3376   for (Value *AssumeBaseOp : {LHS, RHS}) {
3377     for (auto &AssumeVH : Q.AC->assumptionsFor(AssumeBaseOp)) {
3378       if (!AssumeVH)
3379         continue;
3380 
3381       CallInst *Assume = cast<CallInst>(AssumeVH);
3382       if (Optional<bool> Imp =
3383               isImpliedCondition(Assume->getArgOperand(0), Predicate, LHS, RHS,
3384                                  Q.DL))
3385         if (isValidAssumeForContext(Assume, Q.CxtI, Q.DT))
3386           return ConstantInt::get(GetCompareTy(LHS), *Imp);
3387     }
3388   }
3389 
3390   return nullptr;
3391 }
3392 
3393 /// Given operands for an ICmpInst, see if we can fold the result.
3394 /// If not, this returns null.
3395 static Value *SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS,
3396                                const SimplifyQuery &Q, unsigned MaxRecurse) {
3397   CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate;
3398   assert(CmpInst::isIntPredicate(Pred) && "Not an integer compare!");
3399 
3400   if (Constant *CLHS = dyn_cast<Constant>(LHS)) {
3401     if (Constant *CRHS = dyn_cast<Constant>(RHS))
3402       return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, Q.DL, Q.TLI);
3403 
3404     // If we have a constant, make sure it is on the RHS.
3405     std::swap(LHS, RHS);
3406     Pred = CmpInst::getSwappedPredicate(Pred);
3407   }
3408   assert(!isa<UndefValue>(LHS) && "Unexpected icmp undef,%X");
3409 
3410   Type *ITy = GetCompareTy(LHS); // The return type.
3411 
3412   // icmp poison, X -> poison
3413   if (isa<PoisonValue>(RHS))
3414     return PoisonValue::get(ITy);
3415 
3416   // For EQ and NE, we can always pick a value for the undef to make the
3417   // predicate pass or fail, so we can return undef.
3418   // Matches behavior in llvm::ConstantFoldCompareInstruction.
3419   if (Q.isUndefValue(RHS) && ICmpInst::isEquality(Pred))
3420     return UndefValue::get(ITy);
3421 
3422   // icmp X, X -> true/false
3423   // icmp X, undef -> true/false because undef could be X.
3424   if (LHS == RHS || Q.isUndefValue(RHS))
3425     return ConstantInt::get(ITy, CmpInst::isTrueWhenEqual(Pred));
3426 
3427   if (Value *V = simplifyICmpOfBools(Pred, LHS, RHS, Q))
3428     return V;
3429 
3430   // TODO: Sink/common this with other potentially expensive calls that use
3431   //       ValueTracking? See comment below for isKnownNonEqual().
3432   if (Value *V = simplifyICmpWithZero(Pred, LHS, RHS, Q))
3433     return V;
3434 
3435   if (Value *V = simplifyICmpWithConstant(Pred, LHS, RHS, Q.IIQ))
3436     return V;
3437 
3438   // If both operands have range metadata, use the metadata
3439   // to simplify the comparison.
3440   if (isa<Instruction>(RHS) && isa<Instruction>(LHS)) {
3441     auto RHS_Instr = cast<Instruction>(RHS);
3442     auto LHS_Instr = cast<Instruction>(LHS);
3443 
3444     if (Q.IIQ.getMetadata(RHS_Instr, LLVMContext::MD_range) &&
3445         Q.IIQ.getMetadata(LHS_Instr, LLVMContext::MD_range)) {
3446       auto RHS_CR = getConstantRangeFromMetadata(
3447           *RHS_Instr->getMetadata(LLVMContext::MD_range));
3448       auto LHS_CR = getConstantRangeFromMetadata(
3449           *LHS_Instr->getMetadata(LLVMContext::MD_range));
3450 
3451       if (LHS_CR.icmp(Pred, RHS_CR))
3452         return ConstantInt::getTrue(RHS->getContext());
3453 
3454       if (LHS_CR.icmp(CmpInst::getInversePredicate(Pred), RHS_CR))
3455         return ConstantInt::getFalse(RHS->getContext());
3456     }
3457   }
3458 
3459   // Compare of cast, for example (zext X) != 0 -> X != 0
3460   if (isa<CastInst>(LHS) && (isa<Constant>(RHS) || isa<CastInst>(RHS))) {
3461     Instruction *LI = cast<CastInst>(LHS);
3462     Value *SrcOp = LI->getOperand(0);
3463     Type *SrcTy = SrcOp->getType();
3464     Type *DstTy = LI->getType();
3465 
3466     // Turn icmp (ptrtoint x), (ptrtoint/constant) into a compare of the input
3467     // if the integer type is the same size as the pointer type.
3468     if (MaxRecurse && isa<PtrToIntInst>(LI) &&
3469         Q.DL.getTypeSizeInBits(SrcTy) == DstTy->getPrimitiveSizeInBits()) {
3470       if (Constant *RHSC = dyn_cast<Constant>(RHS)) {
3471         // Transfer the cast to the constant.
3472         if (Value *V = SimplifyICmpInst(Pred, SrcOp,
3473                                         ConstantExpr::getIntToPtr(RHSC, SrcTy),
3474                                         Q, MaxRecurse-1))
3475           return V;
3476       } else if (PtrToIntInst *RI = dyn_cast<PtrToIntInst>(RHS)) {
3477         if (RI->getOperand(0)->getType() == SrcTy)
3478           // Compare without the cast.
3479           if (Value *V = SimplifyICmpInst(Pred, SrcOp, RI->getOperand(0),
3480                                           Q, MaxRecurse-1))
3481             return V;
3482       }
3483     }
3484 
3485     if (isa<ZExtInst>(LHS)) {
3486       // Turn icmp (zext X), (zext Y) into a compare of X and Y if they have the
3487       // same type.
3488       if (ZExtInst *RI = dyn_cast<ZExtInst>(RHS)) {
3489         if (MaxRecurse && SrcTy == RI->getOperand(0)->getType())
3490           // Compare X and Y.  Note that signed predicates become unsigned.
3491           if (Value *V = SimplifyICmpInst(ICmpInst::getUnsignedPredicate(Pred),
3492                                           SrcOp, RI->getOperand(0), Q,
3493                                           MaxRecurse-1))
3494             return V;
3495       }
3496       // Fold (zext X) ule (sext X), (zext X) sge (sext X) to true.
3497       else if (SExtInst *RI = dyn_cast<SExtInst>(RHS)) {
3498         if (SrcOp == RI->getOperand(0)) {
3499           if (Pred == ICmpInst::ICMP_ULE || Pred == ICmpInst::ICMP_SGE)
3500             return ConstantInt::getTrue(ITy);
3501           if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_SLT)
3502             return ConstantInt::getFalse(ITy);
3503         }
3504       }
3505       // Turn icmp (zext X), Cst into a compare of X and Cst if Cst is extended
3506       // too.  If not, then try to deduce the result of the comparison.
3507       else if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
3508         // Compute the constant that would happen if we truncated to SrcTy then
3509         // reextended to DstTy.
3510         Constant *Trunc = ConstantExpr::getTrunc(CI, SrcTy);
3511         Constant *RExt = ConstantExpr::getCast(CastInst::ZExt, Trunc, DstTy);
3512 
3513         // If the re-extended constant didn't change then this is effectively
3514         // also a case of comparing two zero-extended values.
3515         if (RExt == CI && MaxRecurse)
3516           if (Value *V = SimplifyICmpInst(ICmpInst::getUnsignedPredicate(Pred),
3517                                         SrcOp, Trunc, Q, MaxRecurse-1))
3518             return V;
3519 
3520         // Otherwise the upper bits of LHS are zero while RHS has a non-zero bit
3521         // there.  Use this to work out the result of the comparison.
3522         if (RExt != CI) {
3523           switch (Pred) {
3524           default: llvm_unreachable("Unknown ICmp predicate!");
3525           // LHS <u RHS.
3526           case ICmpInst::ICMP_EQ:
3527           case ICmpInst::ICMP_UGT:
3528           case ICmpInst::ICMP_UGE:
3529             return ConstantInt::getFalse(CI->getContext());
3530 
3531           case ICmpInst::ICMP_NE:
3532           case ICmpInst::ICMP_ULT:
3533           case ICmpInst::ICMP_ULE:
3534             return ConstantInt::getTrue(CI->getContext());
3535 
3536           // LHS is non-negative.  If RHS is negative then LHS >s LHS.  If RHS
3537           // is non-negative then LHS <s RHS.
3538           case ICmpInst::ICMP_SGT:
3539           case ICmpInst::ICMP_SGE:
3540             return CI->getValue().isNegative() ?
3541               ConstantInt::getTrue(CI->getContext()) :
3542               ConstantInt::getFalse(CI->getContext());
3543 
3544           case ICmpInst::ICMP_SLT:
3545           case ICmpInst::ICMP_SLE:
3546             return CI->getValue().isNegative() ?
3547               ConstantInt::getFalse(CI->getContext()) :
3548               ConstantInt::getTrue(CI->getContext());
3549           }
3550         }
3551       }
3552     }
3553 
3554     if (isa<SExtInst>(LHS)) {
3555       // Turn icmp (sext X), (sext Y) into a compare of X and Y if they have the
3556       // same type.
3557       if (SExtInst *RI = dyn_cast<SExtInst>(RHS)) {
3558         if (MaxRecurse && SrcTy == RI->getOperand(0)->getType())
3559           // Compare X and Y.  Note that the predicate does not change.
3560           if (Value *V = SimplifyICmpInst(Pred, SrcOp, RI->getOperand(0),
3561                                           Q, MaxRecurse-1))
3562             return V;
3563       }
3564       // Fold (sext X) uge (zext X), (sext X) sle (zext X) to true.
3565       else if (ZExtInst *RI = dyn_cast<ZExtInst>(RHS)) {
3566         if (SrcOp == RI->getOperand(0)) {
3567           if (Pred == ICmpInst::ICMP_UGE || Pred == ICmpInst::ICMP_SLE)
3568             return ConstantInt::getTrue(ITy);
3569           if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_SGT)
3570             return ConstantInt::getFalse(ITy);
3571         }
3572       }
3573       // Turn icmp (sext X), Cst into a compare of X and Cst if Cst is extended
3574       // too.  If not, then try to deduce the result of the comparison.
3575       else if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
3576         // Compute the constant that would happen if we truncated to SrcTy then
3577         // reextended to DstTy.
3578         Constant *Trunc = ConstantExpr::getTrunc(CI, SrcTy);
3579         Constant *RExt = ConstantExpr::getCast(CastInst::SExt, Trunc, DstTy);
3580 
3581         // If the re-extended constant didn't change then this is effectively
3582         // also a case of comparing two sign-extended values.
3583         if (RExt == CI && MaxRecurse)
3584           if (Value *V = SimplifyICmpInst(Pred, SrcOp, Trunc, Q, MaxRecurse-1))
3585             return V;
3586 
3587         // Otherwise the upper bits of LHS are all equal, while RHS has varying
3588         // bits there.  Use this to work out the result of the comparison.
3589         if (RExt != CI) {
3590           switch (Pred) {
3591           default: llvm_unreachable("Unknown ICmp predicate!");
3592           case ICmpInst::ICMP_EQ:
3593             return ConstantInt::getFalse(CI->getContext());
3594           case ICmpInst::ICMP_NE:
3595             return ConstantInt::getTrue(CI->getContext());
3596 
3597           // If RHS is non-negative then LHS <s RHS.  If RHS is negative then
3598           // LHS >s RHS.
3599           case ICmpInst::ICMP_SGT:
3600           case ICmpInst::ICMP_SGE:
3601             return CI->getValue().isNegative() ?
3602               ConstantInt::getTrue(CI->getContext()) :
3603               ConstantInt::getFalse(CI->getContext());
3604           case ICmpInst::ICMP_SLT:
3605           case ICmpInst::ICMP_SLE:
3606             return CI->getValue().isNegative() ?
3607               ConstantInt::getFalse(CI->getContext()) :
3608               ConstantInt::getTrue(CI->getContext());
3609 
3610           // If LHS is non-negative then LHS <u RHS.  If LHS is negative then
3611           // LHS >u RHS.
3612           case ICmpInst::ICMP_UGT:
3613           case ICmpInst::ICMP_UGE:
3614             // Comparison is true iff the LHS <s 0.
3615             if (MaxRecurse)
3616               if (Value *V = SimplifyICmpInst(ICmpInst::ICMP_SLT, SrcOp,
3617                                               Constant::getNullValue(SrcTy),
3618                                               Q, MaxRecurse-1))
3619                 return V;
3620             break;
3621           case ICmpInst::ICMP_ULT:
3622           case ICmpInst::ICMP_ULE:
3623             // Comparison is true iff the LHS >=s 0.
3624             if (MaxRecurse)
3625               if (Value *V = SimplifyICmpInst(ICmpInst::ICMP_SGE, SrcOp,
3626                                               Constant::getNullValue(SrcTy),
3627                                               Q, MaxRecurse-1))
3628                 return V;
3629             break;
3630           }
3631         }
3632       }
3633     }
3634   }
3635 
3636   // icmp eq|ne X, Y -> false|true if X != Y
3637   // This is potentially expensive, and we have already computedKnownBits for
3638   // compares with 0 above here, so only try this for a non-zero compare.
3639   if (ICmpInst::isEquality(Pred) && !match(RHS, m_Zero()) &&
3640       isKnownNonEqual(LHS, RHS, Q.DL, Q.AC, Q.CxtI, Q.DT, Q.IIQ.UseInstrInfo)) {
3641     return Pred == ICmpInst::ICMP_NE ? getTrue(ITy) : getFalse(ITy);
3642   }
3643 
3644   if (Value *V = simplifyICmpWithBinOp(Pred, LHS, RHS, Q, MaxRecurse))
3645     return V;
3646 
3647   if (Value *V = simplifyICmpWithMinMax(Pred, LHS, RHS, Q, MaxRecurse))
3648     return V;
3649 
3650   if (Value *V = simplifyICmpWithDominatingAssume(Pred, LHS, RHS, Q))
3651     return V;
3652 
3653   // Simplify comparisons of related pointers using a powerful, recursive
3654   // GEP-walk when we have target data available..
3655   if (LHS->getType()->isPointerTy())
3656     if (auto *C = computePointerICmp(Pred, LHS, RHS, Q))
3657       return C;
3658   if (auto *CLHS = dyn_cast<PtrToIntOperator>(LHS))
3659     if (auto *CRHS = dyn_cast<PtrToIntOperator>(RHS))
3660       if (Q.DL.getTypeSizeInBits(CLHS->getPointerOperandType()) ==
3661               Q.DL.getTypeSizeInBits(CLHS->getType()) &&
3662           Q.DL.getTypeSizeInBits(CRHS->getPointerOperandType()) ==
3663               Q.DL.getTypeSizeInBits(CRHS->getType()))
3664         if (auto *C = computePointerICmp(Pred, CLHS->getPointerOperand(),
3665                                          CRHS->getPointerOperand(), Q))
3666           return C;
3667 
3668   if (GetElementPtrInst *GLHS = dyn_cast<GetElementPtrInst>(LHS)) {
3669     if (GEPOperator *GRHS = dyn_cast<GEPOperator>(RHS)) {
3670       if (GLHS->getPointerOperand() == GRHS->getPointerOperand() &&
3671           GLHS->hasAllConstantIndices() && GRHS->hasAllConstantIndices() &&
3672           (ICmpInst::isEquality(Pred) ||
3673            (GLHS->isInBounds() && GRHS->isInBounds() &&
3674             Pred == ICmpInst::getSignedPredicate(Pred)))) {
3675         // The bases are equal and the indices are constant.  Build a constant
3676         // expression GEP with the same indices and a null base pointer to see
3677         // what constant folding can make out of it.
3678         Constant *Null = Constant::getNullValue(GLHS->getPointerOperandType());
3679         SmallVector<Value *, 4> IndicesLHS(GLHS->indices());
3680         Constant *NewLHS = ConstantExpr::getGetElementPtr(
3681             GLHS->getSourceElementType(), Null, IndicesLHS);
3682 
3683         SmallVector<Value *, 4> IndicesRHS(GRHS->indices());
3684         Constant *NewRHS = ConstantExpr::getGetElementPtr(
3685             GLHS->getSourceElementType(), Null, IndicesRHS);
3686         Constant *NewICmp = ConstantExpr::getICmp(Pred, NewLHS, NewRHS);
3687         return ConstantFoldConstant(NewICmp, Q.DL);
3688       }
3689     }
3690   }
3691 
3692   // If the comparison is with the result of a select instruction, check whether
3693   // comparing with either branch of the select always yields the same value.
3694   if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS))
3695     if (Value *V = ThreadCmpOverSelect(Pred, LHS, RHS, Q, MaxRecurse))
3696       return V;
3697 
3698   // If the comparison is with the result of a phi instruction, check whether
3699   // doing the compare with each incoming phi value yields a common result.
3700   if (isa<PHINode>(LHS) || isa<PHINode>(RHS))
3701     if (Value *V = ThreadCmpOverPHI(Pred, LHS, RHS, Q, MaxRecurse))
3702       return V;
3703 
3704   return nullptr;
3705 }
3706 
3707 Value *llvm::SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS,
3708                               const SimplifyQuery &Q) {
3709   return ::SimplifyICmpInst(Predicate, LHS, RHS, Q, RecursionLimit);
3710 }
3711 
3712 /// Given operands for an FCmpInst, see if we can fold the result.
3713 /// If not, this returns null.
3714 static Value *SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
3715                                FastMathFlags FMF, const SimplifyQuery &Q,
3716                                unsigned MaxRecurse) {
3717   CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate;
3718   assert(CmpInst::isFPPredicate(Pred) && "Not an FP compare!");
3719 
3720   if (Constant *CLHS = dyn_cast<Constant>(LHS)) {
3721     if (Constant *CRHS = dyn_cast<Constant>(RHS))
3722       return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, Q.DL, Q.TLI);
3723 
3724     // If we have a constant, make sure it is on the RHS.
3725     std::swap(LHS, RHS);
3726     Pred = CmpInst::getSwappedPredicate(Pred);
3727   }
3728 
3729   // Fold trivial predicates.
3730   Type *RetTy = GetCompareTy(LHS);
3731   if (Pred == FCmpInst::FCMP_FALSE)
3732     return getFalse(RetTy);
3733   if (Pred == FCmpInst::FCMP_TRUE)
3734     return getTrue(RetTy);
3735 
3736   // Fold (un)ordered comparison if we can determine there are no NaNs.
3737   if (Pred == FCmpInst::FCMP_UNO || Pred == FCmpInst::FCMP_ORD)
3738     if (FMF.noNaNs() ||
3739         (isKnownNeverNaN(LHS, Q.TLI) && isKnownNeverNaN(RHS, Q.TLI)))
3740       return ConstantInt::get(RetTy, Pred == FCmpInst::FCMP_ORD);
3741 
3742   // NaN is unordered; NaN is not ordered.
3743   assert((FCmpInst::isOrdered(Pred) || FCmpInst::isUnordered(Pred)) &&
3744          "Comparison must be either ordered or unordered");
3745   if (match(RHS, m_NaN()))
3746     return ConstantInt::get(RetTy, CmpInst::isUnordered(Pred));
3747 
3748   // fcmp pred x, poison and  fcmp pred poison, x
3749   // fold to poison
3750   if (isa<PoisonValue>(LHS) || isa<PoisonValue>(RHS))
3751     return PoisonValue::get(RetTy);
3752 
3753   // fcmp pred x, undef  and  fcmp pred undef, x
3754   // fold to true if unordered, false if ordered
3755   if (Q.isUndefValue(LHS) || Q.isUndefValue(RHS)) {
3756     // Choosing NaN for the undef will always make unordered comparison succeed
3757     // and ordered comparison fail.
3758     return ConstantInt::get(RetTy, CmpInst::isUnordered(Pred));
3759   }
3760 
3761   // fcmp x,x -> true/false.  Not all compares are foldable.
3762   if (LHS == RHS) {
3763     if (CmpInst::isTrueWhenEqual(Pred))
3764       return getTrue(RetTy);
3765     if (CmpInst::isFalseWhenEqual(Pred))
3766       return getFalse(RetTy);
3767   }
3768 
3769   // Handle fcmp with constant RHS.
3770   // TODO: Use match with a specific FP value, so these work with vectors with
3771   // undef lanes.
3772   const APFloat *C;
3773   if (match(RHS, m_APFloat(C))) {
3774     // Check whether the constant is an infinity.
3775     if (C->isInfinity()) {
3776       if (C->isNegative()) {
3777         switch (Pred) {
3778         case FCmpInst::FCMP_OLT:
3779           // No value is ordered and less than negative infinity.
3780           return getFalse(RetTy);
3781         case FCmpInst::FCMP_UGE:
3782           // All values are unordered with or at least negative infinity.
3783           return getTrue(RetTy);
3784         default:
3785           break;
3786         }
3787       } else {
3788         switch (Pred) {
3789         case FCmpInst::FCMP_OGT:
3790           // No value is ordered and greater than infinity.
3791           return getFalse(RetTy);
3792         case FCmpInst::FCMP_ULE:
3793           // All values are unordered with and at most infinity.
3794           return getTrue(RetTy);
3795         default:
3796           break;
3797         }
3798       }
3799 
3800       // LHS == Inf
3801       if (Pred == FCmpInst::FCMP_OEQ && isKnownNeverInfinity(LHS, Q.TLI))
3802         return getFalse(RetTy);
3803       // LHS != Inf
3804       if (Pred == FCmpInst::FCMP_UNE && isKnownNeverInfinity(LHS, Q.TLI))
3805         return getTrue(RetTy);
3806       // LHS == Inf || LHS == NaN
3807       if (Pred == FCmpInst::FCMP_UEQ && isKnownNeverInfinity(LHS, Q.TLI) &&
3808           isKnownNeverNaN(LHS, Q.TLI))
3809         return getFalse(RetTy);
3810       // LHS != Inf && LHS != NaN
3811       if (Pred == FCmpInst::FCMP_ONE && isKnownNeverInfinity(LHS, Q.TLI) &&
3812           isKnownNeverNaN(LHS, Q.TLI))
3813         return getTrue(RetTy);
3814     }
3815     if (C->isNegative() && !C->isNegZero()) {
3816       assert(!C->isNaN() && "Unexpected NaN constant!");
3817       // TODO: We can catch more cases by using a range check rather than
3818       //       relying on CannotBeOrderedLessThanZero.
3819       switch (Pred) {
3820       case FCmpInst::FCMP_UGE:
3821       case FCmpInst::FCMP_UGT:
3822       case FCmpInst::FCMP_UNE:
3823         // (X >= 0) implies (X > C) when (C < 0)
3824         if (CannotBeOrderedLessThanZero(LHS, Q.TLI))
3825           return getTrue(RetTy);
3826         break;
3827       case FCmpInst::FCMP_OEQ:
3828       case FCmpInst::FCMP_OLE:
3829       case FCmpInst::FCMP_OLT:
3830         // (X >= 0) implies !(X < C) when (C < 0)
3831         if (CannotBeOrderedLessThanZero(LHS, Q.TLI))
3832           return getFalse(RetTy);
3833         break;
3834       default:
3835         break;
3836       }
3837     }
3838 
3839     // Check comparison of [minnum/maxnum with constant] with other constant.
3840     const APFloat *C2;
3841     if ((match(LHS, m_Intrinsic<Intrinsic::minnum>(m_Value(), m_APFloat(C2))) &&
3842          *C2 < *C) ||
3843         (match(LHS, m_Intrinsic<Intrinsic::maxnum>(m_Value(), m_APFloat(C2))) &&
3844          *C2 > *C)) {
3845       bool IsMaxNum =
3846           cast<IntrinsicInst>(LHS)->getIntrinsicID() == Intrinsic::maxnum;
3847       // The ordered relationship and minnum/maxnum guarantee that we do not
3848       // have NaN constants, so ordered/unordered preds are handled the same.
3849       switch (Pred) {
3850       case FCmpInst::FCMP_OEQ: case FCmpInst::FCMP_UEQ:
3851         // minnum(X, LesserC)  == C --> false
3852         // maxnum(X, GreaterC) == C --> false
3853         return getFalse(RetTy);
3854       case FCmpInst::FCMP_ONE: case FCmpInst::FCMP_UNE:
3855         // minnum(X, LesserC)  != C --> true
3856         // maxnum(X, GreaterC) != C --> true
3857         return getTrue(RetTy);
3858       case FCmpInst::FCMP_OGE: case FCmpInst::FCMP_UGE:
3859       case FCmpInst::FCMP_OGT: case FCmpInst::FCMP_UGT:
3860         // minnum(X, LesserC)  >= C --> false
3861         // minnum(X, LesserC)  >  C --> false
3862         // maxnum(X, GreaterC) >= C --> true
3863         // maxnum(X, GreaterC) >  C --> true
3864         return ConstantInt::get(RetTy, IsMaxNum);
3865       case FCmpInst::FCMP_OLE: case FCmpInst::FCMP_ULE:
3866       case FCmpInst::FCMP_OLT: case FCmpInst::FCMP_ULT:
3867         // minnum(X, LesserC)  <= C --> true
3868         // minnum(X, LesserC)  <  C --> true
3869         // maxnum(X, GreaterC) <= C --> false
3870         // maxnum(X, GreaterC) <  C --> false
3871         return ConstantInt::get(RetTy, !IsMaxNum);
3872       default:
3873         // TRUE/FALSE/ORD/UNO should be handled before this.
3874         llvm_unreachable("Unexpected fcmp predicate");
3875       }
3876     }
3877   }
3878 
3879   if (match(RHS, m_AnyZeroFP())) {
3880     switch (Pred) {
3881     case FCmpInst::FCMP_OGE:
3882     case FCmpInst::FCMP_ULT:
3883       // Positive or zero X >= 0.0 --> true
3884       // Positive or zero X <  0.0 --> false
3885       if ((FMF.noNaNs() || isKnownNeverNaN(LHS, Q.TLI)) &&
3886           CannotBeOrderedLessThanZero(LHS, Q.TLI))
3887         return Pred == FCmpInst::FCMP_OGE ? getTrue(RetTy) : getFalse(RetTy);
3888       break;
3889     case FCmpInst::FCMP_UGE:
3890     case FCmpInst::FCMP_OLT:
3891       // Positive or zero or nan X >= 0.0 --> true
3892       // Positive or zero or nan X <  0.0 --> false
3893       if (CannotBeOrderedLessThanZero(LHS, Q.TLI))
3894         return Pred == FCmpInst::FCMP_UGE ? getTrue(RetTy) : getFalse(RetTy);
3895       break;
3896     default:
3897       break;
3898     }
3899   }
3900 
3901   // If the comparison is with the result of a select instruction, check whether
3902   // comparing with either branch of the select always yields the same value.
3903   if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS))
3904     if (Value *V = ThreadCmpOverSelect(Pred, LHS, RHS, Q, MaxRecurse))
3905       return V;
3906 
3907   // If the comparison is with the result of a phi instruction, check whether
3908   // doing the compare with each incoming phi value yields a common result.
3909   if (isa<PHINode>(LHS) || isa<PHINode>(RHS))
3910     if (Value *V = ThreadCmpOverPHI(Pred, LHS, RHS, Q, MaxRecurse))
3911       return V;
3912 
3913   return nullptr;
3914 }
3915 
3916 Value *llvm::SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
3917                               FastMathFlags FMF, const SimplifyQuery &Q) {
3918   return ::SimplifyFCmpInst(Predicate, LHS, RHS, FMF, Q, RecursionLimit);
3919 }
3920 
3921 static Value *simplifyWithOpReplaced(Value *V, Value *Op, Value *RepOp,
3922                                      const SimplifyQuery &Q,
3923                                      bool AllowRefinement,
3924                                      unsigned MaxRecurse) {
3925   assert(!Op->getType()->isVectorTy() && "This is not safe for vectors");
3926 
3927   // Trivial replacement.
3928   if (V == Op)
3929     return RepOp;
3930 
3931   // We cannot replace a constant, and shouldn't even try.
3932   if (isa<Constant>(Op))
3933     return nullptr;
3934 
3935   auto *I = dyn_cast<Instruction>(V);
3936   if (!I || !is_contained(I->operands(), Op))
3937     return nullptr;
3938 
3939   // Replace Op with RepOp in instruction operands.
3940   SmallVector<Value *, 8> NewOps(I->getNumOperands());
3941   transform(I->operands(), NewOps.begin(),
3942             [&](Value *V) { return V == Op ? RepOp : V; });
3943 
3944   if (!AllowRefinement) {
3945     // General InstSimplify functions may refine the result, e.g. by returning
3946     // a constant for a potentially poison value. To avoid this, implement only
3947     // a few non-refining but profitable transforms here.
3948 
3949     if (auto *BO = dyn_cast<BinaryOperator>(I)) {
3950       unsigned Opcode = BO->getOpcode();
3951       // id op x -> x, x op id -> x
3952       if (NewOps[0] == ConstantExpr::getBinOpIdentity(Opcode, I->getType()))
3953         return NewOps[1];
3954       if (NewOps[1] == ConstantExpr::getBinOpIdentity(Opcode, I->getType(),
3955                                                       /* RHS */ true))
3956         return NewOps[0];
3957 
3958       // x & x -> x, x | x -> x
3959       if ((Opcode == Instruction::And || Opcode == Instruction::Or) &&
3960           NewOps[0] == NewOps[1])
3961         return NewOps[0];
3962     }
3963 
3964     if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) {
3965       // getelementptr x, 0 -> x
3966       if (NewOps.size() == 2 && match(NewOps[1], m_Zero()) &&
3967           !GEP->isInBounds())
3968         return NewOps[0];
3969     }
3970   } else if (MaxRecurse) {
3971     // The simplification queries below may return the original value. Consider:
3972     //   %div = udiv i32 %arg, %arg2
3973     //   %mul = mul nsw i32 %div, %arg2
3974     //   %cmp = icmp eq i32 %mul, %arg
3975     //   %sel = select i1 %cmp, i32 %div, i32 undef
3976     // Replacing %arg by %mul, %div becomes "udiv i32 %mul, %arg2", which
3977     // simplifies back to %arg. This can only happen because %mul does not
3978     // dominate %div. To ensure a consistent return value contract, we make sure
3979     // that this case returns nullptr as well.
3980     auto PreventSelfSimplify = [V](Value *Simplified) {
3981       return Simplified != V ? Simplified : nullptr;
3982     };
3983 
3984     if (auto *B = dyn_cast<BinaryOperator>(I))
3985       return PreventSelfSimplify(SimplifyBinOp(B->getOpcode(), NewOps[0],
3986                                                NewOps[1], Q, MaxRecurse - 1));
3987 
3988     if (CmpInst *C = dyn_cast<CmpInst>(I))
3989       return PreventSelfSimplify(SimplifyCmpInst(C->getPredicate(), NewOps[0],
3990                                                  NewOps[1], Q, MaxRecurse - 1));
3991 
3992     if (auto *GEP = dyn_cast<GetElementPtrInst>(I))
3993       return PreventSelfSimplify(SimplifyGEPInst(GEP->getSourceElementType(),
3994                                                  NewOps, GEP->isInBounds(), Q,
3995                                                  MaxRecurse - 1));
3996 
3997     if (isa<SelectInst>(I))
3998       return PreventSelfSimplify(
3999           SimplifySelectInst(NewOps[0], NewOps[1], NewOps[2], Q,
4000                              MaxRecurse - 1));
4001     // TODO: We could hand off more cases to instsimplify here.
4002   }
4003 
4004   // If all operands are constant after substituting Op for RepOp then we can
4005   // constant fold the instruction.
4006   SmallVector<Constant *, 8> ConstOps;
4007   for (Value *NewOp : NewOps) {
4008     if (Constant *ConstOp = dyn_cast<Constant>(NewOp))
4009       ConstOps.push_back(ConstOp);
4010     else
4011       return nullptr;
4012   }
4013 
4014   // Consider:
4015   //   %cmp = icmp eq i32 %x, 2147483647
4016   //   %add = add nsw i32 %x, 1
4017   //   %sel = select i1 %cmp, i32 -2147483648, i32 %add
4018   //
4019   // We can't replace %sel with %add unless we strip away the flags (which
4020   // will be done in InstCombine).
4021   // TODO: This may be unsound, because it only catches some forms of
4022   // refinement.
4023   if (!AllowRefinement && canCreatePoison(cast<Operator>(I)))
4024     return nullptr;
4025 
4026   if (CmpInst *C = dyn_cast<CmpInst>(I))
4027     return ConstantFoldCompareInstOperands(C->getPredicate(), ConstOps[0],
4028                                            ConstOps[1], Q.DL, Q.TLI);
4029 
4030   if (LoadInst *LI = dyn_cast<LoadInst>(I))
4031     if (!LI->isVolatile())
4032       return ConstantFoldLoadFromConstPtr(ConstOps[0], LI->getType(), Q.DL);
4033 
4034   return ConstantFoldInstOperands(I, ConstOps, Q.DL, Q.TLI);
4035 }
4036 
4037 Value *llvm::simplifyWithOpReplaced(Value *V, Value *Op, Value *RepOp,
4038                                     const SimplifyQuery &Q,
4039                                     bool AllowRefinement) {
4040   return ::simplifyWithOpReplaced(V, Op, RepOp, Q, AllowRefinement,
4041                                   RecursionLimit);
4042 }
4043 
4044 /// Try to simplify a select instruction when its condition operand is an
4045 /// integer comparison where one operand of the compare is a constant.
4046 static Value *simplifySelectBitTest(Value *TrueVal, Value *FalseVal, Value *X,
4047                                     const APInt *Y, bool TrueWhenUnset) {
4048   const APInt *C;
4049 
4050   // (X & Y) == 0 ? X & ~Y : X  --> X
4051   // (X & Y) != 0 ? X & ~Y : X  --> X & ~Y
4052   if (FalseVal == X && match(TrueVal, m_And(m_Specific(X), m_APInt(C))) &&
4053       *Y == ~*C)
4054     return TrueWhenUnset ? FalseVal : TrueVal;
4055 
4056   // (X & Y) == 0 ? X : X & ~Y  --> X & ~Y
4057   // (X & Y) != 0 ? X : X & ~Y  --> X
4058   if (TrueVal == X && match(FalseVal, m_And(m_Specific(X), m_APInt(C))) &&
4059       *Y == ~*C)
4060     return TrueWhenUnset ? FalseVal : TrueVal;
4061 
4062   if (Y->isPowerOf2()) {
4063     // (X & Y) == 0 ? X | Y : X  --> X | Y
4064     // (X & Y) != 0 ? X | Y : X  --> X
4065     if (FalseVal == X && match(TrueVal, m_Or(m_Specific(X), m_APInt(C))) &&
4066         *Y == *C)
4067       return TrueWhenUnset ? TrueVal : FalseVal;
4068 
4069     // (X & Y) == 0 ? X : X | Y  --> X
4070     // (X & Y) != 0 ? X : X | Y  --> X | Y
4071     if (TrueVal == X && match(FalseVal, m_Or(m_Specific(X), m_APInt(C))) &&
4072         *Y == *C)
4073       return TrueWhenUnset ? TrueVal : FalseVal;
4074   }
4075 
4076   return nullptr;
4077 }
4078 
4079 /// An alternative way to test if a bit is set or not uses sgt/slt instead of
4080 /// eq/ne.
4081 static Value *simplifySelectWithFakeICmpEq(Value *CmpLHS, Value *CmpRHS,
4082                                            ICmpInst::Predicate Pred,
4083                                            Value *TrueVal, Value *FalseVal) {
4084   Value *X;
4085   APInt Mask;
4086   if (!decomposeBitTestICmp(CmpLHS, CmpRHS, Pred, X, Mask))
4087     return nullptr;
4088 
4089   return simplifySelectBitTest(TrueVal, FalseVal, X, &Mask,
4090                                Pred == ICmpInst::ICMP_EQ);
4091 }
4092 
4093 /// Try to simplify a select instruction when its condition operand is an
4094 /// integer comparison.
4095 static Value *simplifySelectWithICmpCond(Value *CondVal, Value *TrueVal,
4096                                          Value *FalseVal, const SimplifyQuery &Q,
4097                                          unsigned MaxRecurse) {
4098   ICmpInst::Predicate Pred;
4099   Value *CmpLHS, *CmpRHS;
4100   if (!match(CondVal, m_ICmp(Pred, m_Value(CmpLHS), m_Value(CmpRHS))))
4101     return nullptr;
4102 
4103   // Canonicalize ne to eq predicate.
4104   if (Pred == ICmpInst::ICMP_NE) {
4105     Pred = ICmpInst::ICMP_EQ;
4106     std::swap(TrueVal, FalseVal);
4107   }
4108 
4109   // Check for integer min/max with a limit constant:
4110   // X > MIN_INT ? X : MIN_INT --> X
4111   // X < MAX_INT ? X : MAX_INT --> X
4112   if (TrueVal->getType()->isIntOrIntVectorTy()) {
4113     Value *X, *Y;
4114     SelectPatternFlavor SPF =
4115         matchDecomposedSelectPattern(cast<ICmpInst>(CondVal), TrueVal, FalseVal,
4116                                      X, Y).Flavor;
4117     if (SelectPatternResult::isMinOrMax(SPF) && Pred == getMinMaxPred(SPF)) {
4118       APInt LimitC = getMinMaxLimit(getInverseMinMaxFlavor(SPF),
4119                                     X->getType()->getScalarSizeInBits());
4120       if (match(Y, m_SpecificInt(LimitC)))
4121         return X;
4122     }
4123   }
4124 
4125   if (Pred == ICmpInst::ICMP_EQ && match(CmpRHS, m_Zero())) {
4126     Value *X;
4127     const APInt *Y;
4128     if (match(CmpLHS, m_And(m_Value(X), m_APInt(Y))))
4129       if (Value *V = simplifySelectBitTest(TrueVal, FalseVal, X, Y,
4130                                            /*TrueWhenUnset=*/true))
4131         return V;
4132 
4133     // Test for a bogus zero-shift-guard-op around funnel-shift or rotate.
4134     Value *ShAmt;
4135     auto isFsh = m_CombineOr(m_FShl(m_Value(X), m_Value(), m_Value(ShAmt)),
4136                              m_FShr(m_Value(), m_Value(X), m_Value(ShAmt)));
4137     // (ShAmt == 0) ? fshl(X, *, ShAmt) : X --> X
4138     // (ShAmt == 0) ? fshr(*, X, ShAmt) : X --> X
4139     if (match(TrueVal, isFsh) && FalseVal == X && CmpLHS == ShAmt)
4140       return X;
4141 
4142     // Test for a zero-shift-guard-op around rotates. These are used to
4143     // avoid UB from oversized shifts in raw IR rotate patterns, but the
4144     // intrinsics do not have that problem.
4145     // We do not allow this transform for the general funnel shift case because
4146     // that would not preserve the poison safety of the original code.
4147     auto isRotate =
4148         m_CombineOr(m_FShl(m_Value(X), m_Deferred(X), m_Value(ShAmt)),
4149                     m_FShr(m_Value(X), m_Deferred(X), m_Value(ShAmt)));
4150     // (ShAmt == 0) ? X : fshl(X, X, ShAmt) --> fshl(X, X, ShAmt)
4151     // (ShAmt == 0) ? X : fshr(X, X, ShAmt) --> fshr(X, X, ShAmt)
4152     if (match(FalseVal, isRotate) && TrueVal == X && CmpLHS == ShAmt &&
4153         Pred == ICmpInst::ICMP_EQ)
4154       return FalseVal;
4155 
4156     // X == 0 ? abs(X) : -abs(X) --> -abs(X)
4157     // X == 0 ? -abs(X) : abs(X) --> abs(X)
4158     if (match(TrueVal, m_Intrinsic<Intrinsic::abs>(m_Specific(CmpLHS))) &&
4159         match(FalseVal, m_Neg(m_Intrinsic<Intrinsic::abs>(m_Specific(CmpLHS)))))
4160       return FalseVal;
4161     if (match(TrueVal,
4162               m_Neg(m_Intrinsic<Intrinsic::abs>(m_Specific(CmpLHS)))) &&
4163         match(FalseVal, m_Intrinsic<Intrinsic::abs>(m_Specific(CmpLHS))))
4164       return FalseVal;
4165   }
4166 
4167   // Check for other compares that behave like bit test.
4168   if (Value *V = simplifySelectWithFakeICmpEq(CmpLHS, CmpRHS, Pred,
4169                                               TrueVal, FalseVal))
4170     return V;
4171 
4172   // If we have a scalar equality comparison, then we know the value in one of
4173   // the arms of the select. See if substituting this value into the arm and
4174   // simplifying the result yields the same value as the other arm.
4175   // Note that the equivalence/replacement opportunity does not hold for vectors
4176   // because each element of a vector select is chosen independently.
4177   if (Pred == ICmpInst::ICMP_EQ && !CondVal->getType()->isVectorTy()) {
4178     if (simplifyWithOpReplaced(FalseVal, CmpLHS, CmpRHS, Q,
4179                                /* AllowRefinement */ false, MaxRecurse) ==
4180             TrueVal ||
4181         simplifyWithOpReplaced(FalseVal, CmpRHS, CmpLHS, Q,
4182                                /* AllowRefinement */ false, MaxRecurse) ==
4183             TrueVal)
4184       return FalseVal;
4185     if (simplifyWithOpReplaced(TrueVal, CmpLHS, CmpRHS, Q,
4186                                /* AllowRefinement */ true, MaxRecurse) ==
4187             FalseVal ||
4188         simplifyWithOpReplaced(TrueVal, CmpRHS, CmpLHS, Q,
4189                                /* AllowRefinement */ true, MaxRecurse) ==
4190             FalseVal)
4191       return FalseVal;
4192   }
4193 
4194   return nullptr;
4195 }
4196 
4197 /// Try to simplify a select instruction when its condition operand is a
4198 /// floating-point comparison.
4199 static Value *simplifySelectWithFCmp(Value *Cond, Value *T, Value *F,
4200                                      const SimplifyQuery &Q) {
4201   FCmpInst::Predicate Pred;
4202   if (!match(Cond, m_FCmp(Pred, m_Specific(T), m_Specific(F))) &&
4203       !match(Cond, m_FCmp(Pred, m_Specific(F), m_Specific(T))))
4204     return nullptr;
4205 
4206   // This transform is safe if we do not have (do not care about) -0.0 or if
4207   // at least one operand is known to not be -0.0. Otherwise, the select can
4208   // change the sign of a zero operand.
4209   bool HasNoSignedZeros = Q.CxtI && isa<FPMathOperator>(Q.CxtI) &&
4210                           Q.CxtI->hasNoSignedZeros();
4211   const APFloat *C;
4212   if (HasNoSignedZeros || (match(T, m_APFloat(C)) && C->isNonZero()) ||
4213                           (match(F, m_APFloat(C)) && C->isNonZero())) {
4214     // (T == F) ? T : F --> F
4215     // (F == T) ? T : F --> F
4216     if (Pred == FCmpInst::FCMP_OEQ)
4217       return F;
4218 
4219     // (T != F) ? T : F --> T
4220     // (F != T) ? T : F --> T
4221     if (Pred == FCmpInst::FCMP_UNE)
4222       return T;
4223   }
4224 
4225   return nullptr;
4226 }
4227 
4228 /// Given operands for a SelectInst, see if we can fold the result.
4229 /// If not, this returns null.
4230 static Value *SimplifySelectInst(Value *Cond, Value *TrueVal, Value *FalseVal,
4231                                  const SimplifyQuery &Q, unsigned MaxRecurse) {
4232   if (auto *CondC = dyn_cast<Constant>(Cond)) {
4233     if (auto *TrueC = dyn_cast<Constant>(TrueVal))
4234       if (auto *FalseC = dyn_cast<Constant>(FalseVal))
4235         return ConstantFoldSelectInstruction(CondC, TrueC, FalseC);
4236 
4237     // select poison, X, Y -> poison
4238     if (isa<PoisonValue>(CondC))
4239       return PoisonValue::get(TrueVal->getType());
4240 
4241     // select undef, X, Y -> X or Y
4242     if (Q.isUndefValue(CondC))
4243       return isa<Constant>(FalseVal) ? FalseVal : TrueVal;
4244 
4245     // select true,  X, Y --> X
4246     // select false, X, Y --> Y
4247     // For vectors, allow undef/poison elements in the condition to match the
4248     // defined elements, so we can eliminate the select.
4249     if (match(CondC, m_One()))
4250       return TrueVal;
4251     if (match(CondC, m_Zero()))
4252       return FalseVal;
4253   }
4254 
4255   assert(Cond->getType()->isIntOrIntVectorTy(1) &&
4256          "Select must have bool or bool vector condition");
4257   assert(TrueVal->getType() == FalseVal->getType() &&
4258          "Select must have same types for true/false ops");
4259 
4260   if (Cond->getType() == TrueVal->getType()) {
4261     // select i1 Cond, i1 true, i1 false --> i1 Cond
4262     if (match(TrueVal, m_One()) && match(FalseVal, m_ZeroInt()))
4263       return Cond;
4264 
4265     // (X || Y) && (X || !Y) --> X (commuted 8 ways)
4266     Value *X, *Y;
4267     if (match(FalseVal, m_ZeroInt())) {
4268       if (match(Cond, m_c_LogicalOr(m_Value(X), m_Not(m_Value(Y)))) &&
4269           match(TrueVal, m_c_LogicalOr(m_Specific(X), m_Specific(Y))))
4270         return X;
4271       if (match(TrueVal, m_c_LogicalOr(m_Value(X), m_Not(m_Value(Y)))) &&
4272           match(Cond, m_c_LogicalOr(m_Specific(X), m_Specific(Y))))
4273         return X;
4274     }
4275   }
4276 
4277   // select ?, X, X -> X
4278   if (TrueVal == FalseVal)
4279     return TrueVal;
4280 
4281   // If the true or false value is poison, we can fold to the other value.
4282   // If the true or false value is undef, we can fold to the other value as
4283   // long as the other value isn't poison.
4284   // select ?, poison, X -> X
4285   // select ?, undef,  X -> X
4286   if (isa<PoisonValue>(TrueVal) ||
4287       (Q.isUndefValue(TrueVal) &&
4288        isGuaranteedNotToBePoison(FalseVal, Q.AC, Q.CxtI, Q.DT)))
4289     return FalseVal;
4290   // select ?, X, poison -> X
4291   // select ?, X, undef  -> X
4292   if (isa<PoisonValue>(FalseVal) ||
4293       (Q.isUndefValue(FalseVal) &&
4294        isGuaranteedNotToBePoison(TrueVal, Q.AC, Q.CxtI, Q.DT)))
4295     return TrueVal;
4296 
4297   // Deal with partial undef vector constants: select ?, VecC, VecC' --> VecC''
4298   Constant *TrueC, *FalseC;
4299   if (isa<FixedVectorType>(TrueVal->getType()) &&
4300       match(TrueVal, m_Constant(TrueC)) &&
4301       match(FalseVal, m_Constant(FalseC))) {
4302     unsigned NumElts =
4303         cast<FixedVectorType>(TrueC->getType())->getNumElements();
4304     SmallVector<Constant *, 16> NewC;
4305     for (unsigned i = 0; i != NumElts; ++i) {
4306       // Bail out on incomplete vector constants.
4307       Constant *TEltC = TrueC->getAggregateElement(i);
4308       Constant *FEltC = FalseC->getAggregateElement(i);
4309       if (!TEltC || !FEltC)
4310         break;
4311 
4312       // If the elements match (undef or not), that value is the result. If only
4313       // one element is undef, choose the defined element as the safe result.
4314       if (TEltC == FEltC)
4315         NewC.push_back(TEltC);
4316       else if (isa<PoisonValue>(TEltC) ||
4317                (Q.isUndefValue(TEltC) && isGuaranteedNotToBePoison(FEltC)))
4318         NewC.push_back(FEltC);
4319       else if (isa<PoisonValue>(FEltC) ||
4320                (Q.isUndefValue(FEltC) && isGuaranteedNotToBePoison(TEltC)))
4321         NewC.push_back(TEltC);
4322       else
4323         break;
4324     }
4325     if (NewC.size() == NumElts)
4326       return ConstantVector::get(NewC);
4327   }
4328 
4329   if (Value *V =
4330           simplifySelectWithICmpCond(Cond, TrueVal, FalseVal, Q, MaxRecurse))
4331     return V;
4332 
4333   if (Value *V = simplifySelectWithFCmp(Cond, TrueVal, FalseVal, Q))
4334     return V;
4335 
4336   if (Value *V = foldSelectWithBinaryOp(Cond, TrueVal, FalseVal))
4337     return V;
4338 
4339   Optional<bool> Imp = isImpliedByDomCondition(Cond, Q.CxtI, Q.DL);
4340   if (Imp)
4341     return *Imp ? TrueVal : FalseVal;
4342 
4343   return nullptr;
4344 }
4345 
4346 Value *llvm::SimplifySelectInst(Value *Cond, Value *TrueVal, Value *FalseVal,
4347                                 const SimplifyQuery &Q) {
4348   return ::SimplifySelectInst(Cond, TrueVal, FalseVal, Q, RecursionLimit);
4349 }
4350 
4351 /// Given operands for an GetElementPtrInst, see if we can fold the result.
4352 /// If not, this returns null.
4353 static Value *SimplifyGEPInst(Type *SrcTy, ArrayRef<Value *> Ops, bool InBounds,
4354                               const SimplifyQuery &Q, unsigned) {
4355   // The type of the GEP pointer operand.
4356   unsigned AS =
4357       cast<PointerType>(Ops[0]->getType()->getScalarType())->getAddressSpace();
4358 
4359   // getelementptr P -> P.
4360   if (Ops.size() == 1)
4361     return Ops[0];
4362 
4363   // Compute the (pointer) type returned by the GEP instruction.
4364   Type *LastType = GetElementPtrInst::getIndexedType(SrcTy, Ops.slice(1));
4365   Type *GEPTy = PointerType::get(LastType, AS);
4366   for (Value *Op : Ops) {
4367     // If one of the operands is a vector, the result type is a vector of
4368     // pointers. All vector operands must have the same number of elements.
4369     if (VectorType *VT = dyn_cast<VectorType>(Op->getType())) {
4370       GEPTy = VectorType::get(GEPTy, VT->getElementCount());
4371       break;
4372     }
4373   }
4374 
4375   // getelementptr poison, idx -> poison
4376   // getelementptr baseptr, poison -> poison
4377   if (any_of(Ops, [](const auto *V) { return isa<PoisonValue>(V); }))
4378     return PoisonValue::get(GEPTy);
4379 
4380   if (Q.isUndefValue(Ops[0]))
4381     return UndefValue::get(GEPTy);
4382 
4383   bool IsScalableVec =
4384       isa<ScalableVectorType>(SrcTy) || any_of(Ops, [](const Value *V) {
4385         return isa<ScalableVectorType>(V->getType());
4386       });
4387 
4388   if (Ops.size() == 2) {
4389     // getelementptr P, 0 -> P.
4390     if (match(Ops[1], m_Zero()) && Ops[0]->getType() == GEPTy)
4391       return Ops[0];
4392 
4393     Type *Ty = SrcTy;
4394     if (!IsScalableVec && Ty->isSized()) {
4395       Value *P;
4396       uint64_t C;
4397       uint64_t TyAllocSize = Q.DL.getTypeAllocSize(Ty);
4398       // getelementptr P, N -> P if P points to a type of zero size.
4399       if (TyAllocSize == 0 && Ops[0]->getType() == GEPTy)
4400         return Ops[0];
4401 
4402       // The following transforms are only safe if the ptrtoint cast
4403       // doesn't truncate the pointers.
4404       if (Ops[1]->getType()->getScalarSizeInBits() ==
4405           Q.DL.getPointerSizeInBits(AS)) {
4406         auto CanSimplify = [GEPTy, &P, V = Ops[0]]() -> bool {
4407           return P->getType() == GEPTy &&
4408                  getUnderlyingObject(P) == getUnderlyingObject(V);
4409         };
4410         // getelementptr V, (sub P, V) -> P if P points to a type of size 1.
4411         if (TyAllocSize == 1 &&
4412             match(Ops[1], m_Sub(m_PtrToInt(m_Value(P)),
4413                                 m_PtrToInt(m_Specific(Ops[0])))) &&
4414             CanSimplify())
4415           return P;
4416 
4417         // getelementptr V, (ashr (sub P, V), C) -> P if P points to a type of
4418         // size 1 << C.
4419         if (match(Ops[1], m_AShr(m_Sub(m_PtrToInt(m_Value(P)),
4420                                        m_PtrToInt(m_Specific(Ops[0]))),
4421                                  m_ConstantInt(C))) &&
4422             TyAllocSize == 1ULL << C && CanSimplify())
4423           return P;
4424 
4425         // getelementptr V, (sdiv (sub P, V), C) -> P if P points to a type of
4426         // size C.
4427         if (match(Ops[1], m_SDiv(m_Sub(m_PtrToInt(m_Value(P)),
4428                                        m_PtrToInt(m_Specific(Ops[0]))),
4429                                  m_SpecificInt(TyAllocSize))) &&
4430             CanSimplify())
4431           return P;
4432       }
4433     }
4434   }
4435 
4436   if (!IsScalableVec && Q.DL.getTypeAllocSize(LastType) == 1 &&
4437       all_of(Ops.slice(1).drop_back(1),
4438              [](Value *Idx) { return match(Idx, m_Zero()); })) {
4439     unsigned IdxWidth =
4440         Q.DL.getIndexSizeInBits(Ops[0]->getType()->getPointerAddressSpace());
4441     if (Q.DL.getTypeSizeInBits(Ops.back()->getType()) == IdxWidth) {
4442       APInt BasePtrOffset(IdxWidth, 0);
4443       Value *StrippedBasePtr =
4444           Ops[0]->stripAndAccumulateInBoundsConstantOffsets(Q.DL,
4445                                                             BasePtrOffset);
4446 
4447       // Avoid creating inttoptr of zero here: While LLVMs treatment of
4448       // inttoptr is generally conservative, this particular case is folded to
4449       // a null pointer, which will have incorrect provenance.
4450 
4451       // gep (gep V, C), (sub 0, V) -> C
4452       if (match(Ops.back(),
4453                 m_Sub(m_Zero(), m_PtrToInt(m_Specific(StrippedBasePtr)))) &&
4454           !BasePtrOffset.isZero()) {
4455         auto *CI = ConstantInt::get(GEPTy->getContext(), BasePtrOffset);
4456         return ConstantExpr::getIntToPtr(CI, GEPTy);
4457       }
4458       // gep (gep V, C), (xor V, -1) -> C-1
4459       if (match(Ops.back(),
4460                 m_Xor(m_PtrToInt(m_Specific(StrippedBasePtr)), m_AllOnes())) &&
4461           !BasePtrOffset.isOne()) {
4462         auto *CI = ConstantInt::get(GEPTy->getContext(), BasePtrOffset - 1);
4463         return ConstantExpr::getIntToPtr(CI, GEPTy);
4464       }
4465     }
4466   }
4467 
4468   // Check to see if this is constant foldable.
4469   if (!all_of(Ops, [](Value *V) { return isa<Constant>(V); }))
4470     return nullptr;
4471 
4472   auto *CE = ConstantExpr::getGetElementPtr(SrcTy, cast<Constant>(Ops[0]),
4473                                             Ops.slice(1), InBounds);
4474   return ConstantFoldConstant(CE, Q.DL);
4475 }
4476 
4477 Value *llvm::SimplifyGEPInst(Type *SrcTy, ArrayRef<Value *> Ops, bool InBounds,
4478                              const SimplifyQuery &Q) {
4479   return ::SimplifyGEPInst(SrcTy, Ops, InBounds, Q, RecursionLimit);
4480 }
4481 
4482 /// Given operands for an InsertValueInst, see if we can fold the result.
4483 /// If not, this returns null.
4484 static Value *SimplifyInsertValueInst(Value *Agg, Value *Val,
4485                                       ArrayRef<unsigned> Idxs, const SimplifyQuery &Q,
4486                                       unsigned) {
4487   if (Constant *CAgg = dyn_cast<Constant>(Agg))
4488     if (Constant *CVal = dyn_cast<Constant>(Val))
4489       return ConstantFoldInsertValueInstruction(CAgg, CVal, Idxs);
4490 
4491   // insertvalue x, undef, n -> x
4492   if (Q.isUndefValue(Val))
4493     return Agg;
4494 
4495   // insertvalue x, (extractvalue y, n), n
4496   if (ExtractValueInst *EV = dyn_cast<ExtractValueInst>(Val))
4497     if (EV->getAggregateOperand()->getType() == Agg->getType() &&
4498         EV->getIndices() == Idxs) {
4499       // insertvalue undef, (extractvalue y, n), n -> y
4500       if (Q.isUndefValue(Agg))
4501         return EV->getAggregateOperand();
4502 
4503       // insertvalue y, (extractvalue y, n), n -> y
4504       if (Agg == EV->getAggregateOperand())
4505         return Agg;
4506     }
4507 
4508   return nullptr;
4509 }
4510 
4511 Value *llvm::SimplifyInsertValueInst(Value *Agg, Value *Val,
4512                                      ArrayRef<unsigned> Idxs,
4513                                      const SimplifyQuery &Q) {
4514   return ::SimplifyInsertValueInst(Agg, Val, Idxs, Q, RecursionLimit);
4515 }
4516 
4517 Value *llvm::SimplifyInsertElementInst(Value *Vec, Value *Val, Value *Idx,
4518                                        const SimplifyQuery &Q) {
4519   // Try to constant fold.
4520   auto *VecC = dyn_cast<Constant>(Vec);
4521   auto *ValC = dyn_cast<Constant>(Val);
4522   auto *IdxC = dyn_cast<Constant>(Idx);
4523   if (VecC && ValC && IdxC)
4524     return ConstantExpr::getInsertElement(VecC, ValC, IdxC);
4525 
4526   // For fixed-length vector, fold into poison if index is out of bounds.
4527   if (auto *CI = dyn_cast<ConstantInt>(Idx)) {
4528     if (isa<FixedVectorType>(Vec->getType()) &&
4529         CI->uge(cast<FixedVectorType>(Vec->getType())->getNumElements()))
4530       return PoisonValue::get(Vec->getType());
4531   }
4532 
4533   // If index is undef, it might be out of bounds (see above case)
4534   if (Q.isUndefValue(Idx))
4535     return PoisonValue::get(Vec->getType());
4536 
4537   // If the scalar is poison, or it is undef and there is no risk of
4538   // propagating poison from the vector value, simplify to the vector value.
4539   if (isa<PoisonValue>(Val) ||
4540       (Q.isUndefValue(Val) && isGuaranteedNotToBePoison(Vec)))
4541     return Vec;
4542 
4543   // If we are extracting a value from a vector, then inserting it into the same
4544   // place, that's the input vector:
4545   // insertelt Vec, (extractelt Vec, Idx), Idx --> Vec
4546   if (match(Val, m_ExtractElt(m_Specific(Vec), m_Specific(Idx))))
4547     return Vec;
4548 
4549   return nullptr;
4550 }
4551 
4552 /// Given operands for an ExtractValueInst, see if we can fold the result.
4553 /// If not, this returns null.
4554 static Value *SimplifyExtractValueInst(Value *Agg, ArrayRef<unsigned> Idxs,
4555                                        const SimplifyQuery &, unsigned) {
4556   if (auto *CAgg = dyn_cast<Constant>(Agg))
4557     return ConstantFoldExtractValueInstruction(CAgg, Idxs);
4558 
4559   // extractvalue x, (insertvalue y, elt, n), n -> elt
4560   unsigned NumIdxs = Idxs.size();
4561   for (auto *IVI = dyn_cast<InsertValueInst>(Agg); IVI != nullptr;
4562        IVI = dyn_cast<InsertValueInst>(IVI->getAggregateOperand())) {
4563     ArrayRef<unsigned> InsertValueIdxs = IVI->getIndices();
4564     unsigned NumInsertValueIdxs = InsertValueIdxs.size();
4565     unsigned NumCommonIdxs = std::min(NumInsertValueIdxs, NumIdxs);
4566     if (InsertValueIdxs.slice(0, NumCommonIdxs) ==
4567         Idxs.slice(0, NumCommonIdxs)) {
4568       if (NumIdxs == NumInsertValueIdxs)
4569         return IVI->getInsertedValueOperand();
4570       break;
4571     }
4572   }
4573 
4574   return nullptr;
4575 }
4576 
4577 Value *llvm::SimplifyExtractValueInst(Value *Agg, ArrayRef<unsigned> Idxs,
4578                                       const SimplifyQuery &Q) {
4579   return ::SimplifyExtractValueInst(Agg, Idxs, Q, RecursionLimit);
4580 }
4581 
4582 /// Given operands for an ExtractElementInst, see if we can fold the result.
4583 /// If not, this returns null.
4584 static Value *SimplifyExtractElementInst(Value *Vec, Value *Idx,
4585                                          const SimplifyQuery &Q, unsigned) {
4586   auto *VecVTy = cast<VectorType>(Vec->getType());
4587   if (auto *CVec = dyn_cast<Constant>(Vec)) {
4588     if (auto *CIdx = dyn_cast<Constant>(Idx))
4589       return ConstantExpr::getExtractElement(CVec, CIdx);
4590 
4591     if (Q.isUndefValue(Vec))
4592       return UndefValue::get(VecVTy->getElementType());
4593   }
4594 
4595   // An undef extract index can be arbitrarily chosen to be an out-of-range
4596   // index value, which would result in the instruction being poison.
4597   if (Q.isUndefValue(Idx))
4598     return PoisonValue::get(VecVTy->getElementType());
4599 
4600   // If extracting a specified index from the vector, see if we can recursively
4601   // find a previously computed scalar that was inserted into the vector.
4602   if (auto *IdxC = dyn_cast<ConstantInt>(Idx)) {
4603     // For fixed-length vector, fold into undef if index is out of bounds.
4604     unsigned MinNumElts = VecVTy->getElementCount().getKnownMinValue();
4605     if (isa<FixedVectorType>(VecVTy) && IdxC->getValue().uge(MinNumElts))
4606       return PoisonValue::get(VecVTy->getElementType());
4607     // Handle case where an element is extracted from a splat.
4608     if (IdxC->getValue().ult(MinNumElts))
4609       if (auto *Splat = getSplatValue(Vec))
4610         return Splat;
4611     if (Value *Elt = findScalarElement(Vec, IdxC->getZExtValue()))
4612       return Elt;
4613   } else {
4614     // The index is not relevant if our vector is a splat.
4615     if (Value *Splat = getSplatValue(Vec))
4616       return Splat;
4617   }
4618   return nullptr;
4619 }
4620 
4621 Value *llvm::SimplifyExtractElementInst(Value *Vec, Value *Idx,
4622                                         const SimplifyQuery &Q) {
4623   return ::SimplifyExtractElementInst(Vec, Idx, Q, RecursionLimit);
4624 }
4625 
4626 /// See if we can fold the given phi. If not, returns null.
4627 static Value *SimplifyPHINode(PHINode *PN, ArrayRef<Value *> IncomingValues,
4628                               const SimplifyQuery &Q) {
4629   // WARNING: no matter how worthwhile it may seem, we can not perform PHI CSE
4630   //          here, because the PHI we may succeed simplifying to was not
4631   //          def-reachable from the original PHI!
4632 
4633   // If all of the PHI's incoming values are the same then replace the PHI node
4634   // with the common value.
4635   Value *CommonValue = nullptr;
4636   bool HasUndefInput = false;
4637   for (Value *Incoming : IncomingValues) {
4638     // If the incoming value is the phi node itself, it can safely be skipped.
4639     if (Incoming == PN) continue;
4640     if (Q.isUndefValue(Incoming)) {
4641       // Remember that we saw an undef value, but otherwise ignore them.
4642       HasUndefInput = true;
4643       continue;
4644     }
4645     if (CommonValue && Incoming != CommonValue)
4646       return nullptr;  // Not the same, bail out.
4647     CommonValue = Incoming;
4648   }
4649 
4650   // If CommonValue is null then all of the incoming values were either undef or
4651   // equal to the phi node itself.
4652   if (!CommonValue)
4653     return UndefValue::get(PN->getType());
4654 
4655   // If we have a PHI node like phi(X, undef, X), where X is defined by some
4656   // instruction, we cannot return X as the result of the PHI node unless it
4657   // dominates the PHI block.
4658   if (HasUndefInput)
4659     return valueDominatesPHI(CommonValue, PN, Q.DT) ? CommonValue : nullptr;
4660 
4661   return CommonValue;
4662 }
4663 
4664 static Value *SimplifyCastInst(unsigned CastOpc, Value *Op,
4665                                Type *Ty, const SimplifyQuery &Q, unsigned MaxRecurse) {
4666   if (auto *C = dyn_cast<Constant>(Op))
4667     return ConstantFoldCastOperand(CastOpc, C, Ty, Q.DL);
4668 
4669   if (auto *CI = dyn_cast<CastInst>(Op)) {
4670     auto *Src = CI->getOperand(0);
4671     Type *SrcTy = Src->getType();
4672     Type *MidTy = CI->getType();
4673     Type *DstTy = Ty;
4674     if (Src->getType() == Ty) {
4675       auto FirstOp = static_cast<Instruction::CastOps>(CI->getOpcode());
4676       auto SecondOp = static_cast<Instruction::CastOps>(CastOpc);
4677       Type *SrcIntPtrTy =
4678           SrcTy->isPtrOrPtrVectorTy() ? Q.DL.getIntPtrType(SrcTy) : nullptr;
4679       Type *MidIntPtrTy =
4680           MidTy->isPtrOrPtrVectorTy() ? Q.DL.getIntPtrType(MidTy) : nullptr;
4681       Type *DstIntPtrTy =
4682           DstTy->isPtrOrPtrVectorTy() ? Q.DL.getIntPtrType(DstTy) : nullptr;
4683       if (CastInst::isEliminableCastPair(FirstOp, SecondOp, SrcTy, MidTy, DstTy,
4684                                          SrcIntPtrTy, MidIntPtrTy,
4685                                          DstIntPtrTy) == Instruction::BitCast)
4686         return Src;
4687     }
4688   }
4689 
4690   // bitcast x -> x
4691   if (CastOpc == Instruction::BitCast)
4692     if (Op->getType() == Ty)
4693       return Op;
4694 
4695   return nullptr;
4696 }
4697 
4698 Value *llvm::SimplifyCastInst(unsigned CastOpc, Value *Op, Type *Ty,
4699                               const SimplifyQuery &Q) {
4700   return ::SimplifyCastInst(CastOpc, Op, Ty, Q, RecursionLimit);
4701 }
4702 
4703 /// For the given destination element of a shuffle, peek through shuffles to
4704 /// match a root vector source operand that contains that element in the same
4705 /// vector lane (ie, the same mask index), so we can eliminate the shuffle(s).
4706 static Value *foldIdentityShuffles(int DestElt, Value *Op0, Value *Op1,
4707                                    int MaskVal, Value *RootVec,
4708                                    unsigned MaxRecurse) {
4709   if (!MaxRecurse--)
4710     return nullptr;
4711 
4712   // Bail out if any mask value is undefined. That kind of shuffle may be
4713   // simplified further based on demanded bits or other folds.
4714   if (MaskVal == -1)
4715     return nullptr;
4716 
4717   // The mask value chooses which source operand we need to look at next.
4718   int InVecNumElts = cast<FixedVectorType>(Op0->getType())->getNumElements();
4719   int RootElt = MaskVal;
4720   Value *SourceOp = Op0;
4721   if (MaskVal >= InVecNumElts) {
4722     RootElt = MaskVal - InVecNumElts;
4723     SourceOp = Op1;
4724   }
4725 
4726   // If the source operand is a shuffle itself, look through it to find the
4727   // matching root vector.
4728   if (auto *SourceShuf = dyn_cast<ShuffleVectorInst>(SourceOp)) {
4729     return foldIdentityShuffles(
4730         DestElt, SourceShuf->getOperand(0), SourceShuf->getOperand(1),
4731         SourceShuf->getMaskValue(RootElt), RootVec, MaxRecurse);
4732   }
4733 
4734   // TODO: Look through bitcasts? What if the bitcast changes the vector element
4735   // size?
4736 
4737   // The source operand is not a shuffle. Initialize the root vector value for
4738   // this shuffle if that has not been done yet.
4739   if (!RootVec)
4740     RootVec = SourceOp;
4741 
4742   // Give up as soon as a source operand does not match the existing root value.
4743   if (RootVec != SourceOp)
4744     return nullptr;
4745 
4746   // The element must be coming from the same lane in the source vector
4747   // (although it may have crossed lanes in intermediate shuffles).
4748   if (RootElt != DestElt)
4749     return nullptr;
4750 
4751   return RootVec;
4752 }
4753 
4754 static Value *SimplifyShuffleVectorInst(Value *Op0, Value *Op1,
4755                                         ArrayRef<int> Mask, Type *RetTy,
4756                                         const SimplifyQuery &Q,
4757                                         unsigned MaxRecurse) {
4758   if (all_of(Mask, [](int Elem) { return Elem == UndefMaskElem; }))
4759     return UndefValue::get(RetTy);
4760 
4761   auto *InVecTy = cast<VectorType>(Op0->getType());
4762   unsigned MaskNumElts = Mask.size();
4763   ElementCount InVecEltCount = InVecTy->getElementCount();
4764 
4765   bool Scalable = InVecEltCount.isScalable();
4766 
4767   SmallVector<int, 32> Indices;
4768   Indices.assign(Mask.begin(), Mask.end());
4769 
4770   // Canonicalization: If mask does not select elements from an input vector,
4771   // replace that input vector with poison.
4772   if (!Scalable) {
4773     bool MaskSelects0 = false, MaskSelects1 = false;
4774     unsigned InVecNumElts = InVecEltCount.getKnownMinValue();
4775     for (unsigned i = 0; i != MaskNumElts; ++i) {
4776       if (Indices[i] == -1)
4777         continue;
4778       if ((unsigned)Indices[i] < InVecNumElts)
4779         MaskSelects0 = true;
4780       else
4781         MaskSelects1 = true;
4782     }
4783     if (!MaskSelects0)
4784       Op0 = PoisonValue::get(InVecTy);
4785     if (!MaskSelects1)
4786       Op1 = PoisonValue::get(InVecTy);
4787   }
4788 
4789   auto *Op0Const = dyn_cast<Constant>(Op0);
4790   auto *Op1Const = dyn_cast<Constant>(Op1);
4791 
4792   // If all operands are constant, constant fold the shuffle. This
4793   // transformation depends on the value of the mask which is not known at
4794   // compile time for scalable vectors
4795   if (Op0Const && Op1Const)
4796     return ConstantExpr::getShuffleVector(Op0Const, Op1Const, Mask);
4797 
4798   // Canonicalization: if only one input vector is constant, it shall be the
4799   // second one. This transformation depends on the value of the mask which
4800   // is not known at compile time for scalable vectors
4801   if (!Scalable && Op0Const && !Op1Const) {
4802     std::swap(Op0, Op1);
4803     ShuffleVectorInst::commuteShuffleMask(Indices,
4804                                           InVecEltCount.getKnownMinValue());
4805   }
4806 
4807   // A splat of an inserted scalar constant becomes a vector constant:
4808   // shuf (inselt ?, C, IndexC), undef, <IndexC, IndexC...> --> <C, C...>
4809   // NOTE: We may have commuted above, so analyze the updated Indices, not the
4810   //       original mask constant.
4811   // NOTE: This transformation depends on the value of the mask which is not
4812   // known at compile time for scalable vectors
4813   Constant *C;
4814   ConstantInt *IndexC;
4815   if (!Scalable && match(Op0, m_InsertElt(m_Value(), m_Constant(C),
4816                                           m_ConstantInt(IndexC)))) {
4817     // Match a splat shuffle mask of the insert index allowing undef elements.
4818     int InsertIndex = IndexC->getZExtValue();
4819     if (all_of(Indices, [InsertIndex](int MaskElt) {
4820           return MaskElt == InsertIndex || MaskElt == -1;
4821         })) {
4822       assert(isa<UndefValue>(Op1) && "Expected undef operand 1 for splat");
4823 
4824       // Shuffle mask undefs become undefined constant result elements.
4825       SmallVector<Constant *, 16> VecC(MaskNumElts, C);
4826       for (unsigned i = 0; i != MaskNumElts; ++i)
4827         if (Indices[i] == -1)
4828           VecC[i] = UndefValue::get(C->getType());
4829       return ConstantVector::get(VecC);
4830     }
4831   }
4832 
4833   // A shuffle of a splat is always the splat itself. Legal if the shuffle's
4834   // value type is same as the input vectors' type.
4835   if (auto *OpShuf = dyn_cast<ShuffleVectorInst>(Op0))
4836     if (Q.isUndefValue(Op1) && RetTy == InVecTy &&
4837         is_splat(OpShuf->getShuffleMask()))
4838       return Op0;
4839 
4840   // All remaining transformation depend on the value of the mask, which is
4841   // not known at compile time for scalable vectors.
4842   if (Scalable)
4843     return nullptr;
4844 
4845   // Don't fold a shuffle with undef mask elements. This may get folded in a
4846   // better way using demanded bits or other analysis.
4847   // TODO: Should we allow this?
4848   if (is_contained(Indices, -1))
4849     return nullptr;
4850 
4851   // Check if every element of this shuffle can be mapped back to the
4852   // corresponding element of a single root vector. If so, we don't need this
4853   // shuffle. This handles simple identity shuffles as well as chains of
4854   // shuffles that may widen/narrow and/or move elements across lanes and back.
4855   Value *RootVec = nullptr;
4856   for (unsigned i = 0; i != MaskNumElts; ++i) {
4857     // Note that recursion is limited for each vector element, so if any element
4858     // exceeds the limit, this will fail to simplify.
4859     RootVec =
4860         foldIdentityShuffles(i, Op0, Op1, Indices[i], RootVec, MaxRecurse);
4861 
4862     // We can't replace a widening/narrowing shuffle with one of its operands.
4863     if (!RootVec || RootVec->getType() != RetTy)
4864       return nullptr;
4865   }
4866   return RootVec;
4867 }
4868 
4869 /// Given operands for a ShuffleVectorInst, fold the result or return null.
4870 Value *llvm::SimplifyShuffleVectorInst(Value *Op0, Value *Op1,
4871                                        ArrayRef<int> Mask, Type *RetTy,
4872                                        const SimplifyQuery &Q) {
4873   return ::SimplifyShuffleVectorInst(Op0, Op1, Mask, RetTy, Q, RecursionLimit);
4874 }
4875 
4876 static Constant *foldConstant(Instruction::UnaryOps Opcode,
4877                               Value *&Op, const SimplifyQuery &Q) {
4878   if (auto *C = dyn_cast<Constant>(Op))
4879     return ConstantFoldUnaryOpOperand(Opcode, C, Q.DL);
4880   return nullptr;
4881 }
4882 
4883 /// Given the operand for an FNeg, see if we can fold the result.  If not, this
4884 /// returns null.
4885 static Value *simplifyFNegInst(Value *Op, FastMathFlags FMF,
4886                                const SimplifyQuery &Q, unsigned MaxRecurse) {
4887   if (Constant *C = foldConstant(Instruction::FNeg, Op, Q))
4888     return C;
4889 
4890   Value *X;
4891   // fneg (fneg X) ==> X
4892   if (match(Op, m_FNeg(m_Value(X))))
4893     return X;
4894 
4895   return nullptr;
4896 }
4897 
4898 Value *llvm::SimplifyFNegInst(Value *Op, FastMathFlags FMF,
4899                               const SimplifyQuery &Q) {
4900   return ::simplifyFNegInst(Op, FMF, Q, RecursionLimit);
4901 }
4902 
4903 static Constant *propagateNaN(Constant *In) {
4904   // If the input is a vector with undef elements, just return a default NaN.
4905   if (!In->isNaN())
4906     return ConstantFP::getNaN(In->getType());
4907 
4908   // Propagate the existing NaN constant when possible.
4909   // TODO: Should we quiet a signaling NaN?
4910   return In;
4911 }
4912 
4913 /// Perform folds that are common to any floating-point operation. This implies
4914 /// transforms based on poison/undef/NaN because the operation itself makes no
4915 /// difference to the result.
4916 static Constant *simplifyFPOp(ArrayRef<Value *> Ops, FastMathFlags FMF,
4917                               const SimplifyQuery &Q,
4918                               fp::ExceptionBehavior ExBehavior,
4919                               RoundingMode Rounding) {
4920   // Poison is independent of anything else. It always propagates from an
4921   // operand to a math result.
4922   if (any_of(Ops, [](Value *V) { return match(V, m_Poison()); }))
4923     return PoisonValue::get(Ops[0]->getType());
4924 
4925   for (Value *V : Ops) {
4926     bool IsNan = match(V, m_NaN());
4927     bool IsInf = match(V, m_Inf());
4928     bool IsUndef = Q.isUndefValue(V);
4929 
4930     // If this operation has 'nnan' or 'ninf' and at least 1 disallowed operand
4931     // (an undef operand can be chosen to be Nan/Inf), then the result of
4932     // this operation is poison.
4933     if (FMF.noNaNs() && (IsNan || IsUndef))
4934       return PoisonValue::get(V->getType());
4935     if (FMF.noInfs() && (IsInf || IsUndef))
4936       return PoisonValue::get(V->getType());
4937 
4938     if (isDefaultFPEnvironment(ExBehavior, Rounding)) {
4939       if (IsUndef || IsNan)
4940         return propagateNaN(cast<Constant>(V));
4941     } else if (ExBehavior != fp::ebStrict) {
4942       if (IsNan)
4943         return propagateNaN(cast<Constant>(V));
4944     }
4945   }
4946   return nullptr;
4947 }
4948 
4949 // TODO: Move this out to a header file:
4950 static inline bool canIgnoreSNaN(fp::ExceptionBehavior EB, FastMathFlags FMF) {
4951   return (EB == fp::ebIgnore || FMF.noNaNs());
4952 }
4953 
4954 /// Given operands for an FAdd, see if we can fold the result.  If not, this
4955 /// returns null.
4956 static Value *
4957 SimplifyFAddInst(Value *Op0, Value *Op1, FastMathFlags FMF,
4958                  const SimplifyQuery &Q, unsigned MaxRecurse,
4959                  fp::ExceptionBehavior ExBehavior = fp::ebIgnore,
4960                  RoundingMode Rounding = RoundingMode::NearestTiesToEven) {
4961   if (isDefaultFPEnvironment(ExBehavior, Rounding))
4962     if (Constant *C = foldOrCommuteConstant(Instruction::FAdd, Op0, Op1, Q))
4963       return C;
4964 
4965   if (Constant *C = simplifyFPOp({Op0, Op1}, FMF, Q, ExBehavior, Rounding))
4966     return C;
4967 
4968   // fadd X, -0 ==> X
4969   // With strict/constrained FP, we have these possible edge cases that do
4970   // not simplify to Op0:
4971   // fadd SNaN, -0.0 --> QNaN
4972   // fadd +0.0, -0.0 --> -0.0 (but only with round toward negative)
4973   if (canIgnoreSNaN(ExBehavior, FMF) &&
4974       (!canRoundingModeBe(Rounding, RoundingMode::TowardNegative) ||
4975        FMF.noSignedZeros()))
4976     if (match(Op1, m_NegZeroFP()))
4977       return Op0;
4978 
4979   // fadd X, 0 ==> X, when we know X is not -0
4980   if (canIgnoreSNaN(ExBehavior, FMF))
4981     if (match(Op1, m_PosZeroFP()) &&
4982         (FMF.noSignedZeros() || CannotBeNegativeZero(Op0, Q.TLI)))
4983       return Op0;
4984 
4985   if (!isDefaultFPEnvironment(ExBehavior, Rounding))
4986     return nullptr;
4987 
4988   // With nnan: -X + X --> 0.0 (and commuted variant)
4989   // We don't have to explicitly exclude infinities (ninf): INF + -INF == NaN.
4990   // Negative zeros are allowed because we always end up with positive zero:
4991   // X = -0.0: (-0.0 - (-0.0)) + (-0.0) == ( 0.0) + (-0.0) == 0.0
4992   // X = -0.0: ( 0.0 - (-0.0)) + (-0.0) == ( 0.0) + (-0.0) == 0.0
4993   // X =  0.0: (-0.0 - ( 0.0)) + ( 0.0) == (-0.0) + ( 0.0) == 0.0
4994   // X =  0.0: ( 0.0 - ( 0.0)) + ( 0.0) == ( 0.0) + ( 0.0) == 0.0
4995   if (FMF.noNaNs()) {
4996     if (match(Op0, m_FSub(m_AnyZeroFP(), m_Specific(Op1))) ||
4997         match(Op1, m_FSub(m_AnyZeroFP(), m_Specific(Op0))))
4998       return ConstantFP::getNullValue(Op0->getType());
4999 
5000     if (match(Op0, m_FNeg(m_Specific(Op1))) ||
5001         match(Op1, m_FNeg(m_Specific(Op0))))
5002       return ConstantFP::getNullValue(Op0->getType());
5003   }
5004 
5005   // (X - Y) + Y --> X
5006   // Y + (X - Y) --> X
5007   Value *X;
5008   if (FMF.noSignedZeros() && FMF.allowReassoc() &&
5009       (match(Op0, m_FSub(m_Value(X), m_Specific(Op1))) ||
5010        match(Op1, m_FSub(m_Value(X), m_Specific(Op0)))))
5011     return X;
5012 
5013   return nullptr;
5014 }
5015 
5016 /// Given operands for an FSub, see if we can fold the result.  If not, this
5017 /// returns null.
5018 static Value *
5019 SimplifyFSubInst(Value *Op0, Value *Op1, FastMathFlags FMF,
5020                  const SimplifyQuery &Q, unsigned MaxRecurse,
5021                  fp::ExceptionBehavior ExBehavior = fp::ebIgnore,
5022                  RoundingMode Rounding = RoundingMode::NearestTiesToEven) {
5023   if (isDefaultFPEnvironment(ExBehavior, Rounding))
5024     if (Constant *C = foldOrCommuteConstant(Instruction::FSub, Op0, Op1, Q))
5025       return C;
5026 
5027   if (Constant *C = simplifyFPOp({Op0, Op1}, FMF, Q, ExBehavior, Rounding))
5028     return C;
5029 
5030   if (!isDefaultFPEnvironment(ExBehavior, Rounding))
5031     return nullptr;
5032 
5033   // fsub X, +0 ==> X
5034   if (match(Op1, m_PosZeroFP()))
5035     return Op0;
5036 
5037   // fsub X, -0 ==> X, when we know X is not -0
5038   if (match(Op1, m_NegZeroFP()) &&
5039       (FMF.noSignedZeros() || CannotBeNegativeZero(Op0, Q.TLI)))
5040     return Op0;
5041 
5042   // fsub -0.0, (fsub -0.0, X) ==> X
5043   // fsub -0.0, (fneg X) ==> X
5044   Value *X;
5045   if (match(Op0, m_NegZeroFP()) &&
5046       match(Op1, m_FNeg(m_Value(X))))
5047     return X;
5048 
5049   // fsub 0.0, (fsub 0.0, X) ==> X if signed zeros are ignored.
5050   // fsub 0.0, (fneg X) ==> X if signed zeros are ignored.
5051   if (FMF.noSignedZeros() && match(Op0, m_AnyZeroFP()) &&
5052       (match(Op1, m_FSub(m_AnyZeroFP(), m_Value(X))) ||
5053        match(Op1, m_FNeg(m_Value(X)))))
5054     return X;
5055 
5056   // fsub nnan x, x ==> 0.0
5057   if (FMF.noNaNs() && Op0 == Op1)
5058     return Constant::getNullValue(Op0->getType());
5059 
5060   // Y - (Y - X) --> X
5061   // (X + Y) - Y --> X
5062   if (FMF.noSignedZeros() && FMF.allowReassoc() &&
5063       (match(Op1, m_FSub(m_Specific(Op0), m_Value(X))) ||
5064        match(Op0, m_c_FAdd(m_Specific(Op1), m_Value(X)))))
5065     return X;
5066 
5067   return nullptr;
5068 }
5069 
5070 static Value *SimplifyFMAFMul(Value *Op0, Value *Op1, FastMathFlags FMF,
5071                               const SimplifyQuery &Q, unsigned MaxRecurse,
5072                               fp::ExceptionBehavior ExBehavior,
5073                               RoundingMode Rounding) {
5074   if (Constant *C = simplifyFPOp({Op0, Op1}, FMF, Q, ExBehavior, Rounding))
5075     return C;
5076 
5077   if (!isDefaultFPEnvironment(ExBehavior, Rounding))
5078     return nullptr;
5079 
5080   // fmul X, 1.0 ==> X
5081   if (match(Op1, m_FPOne()))
5082     return Op0;
5083 
5084   // fmul 1.0, X ==> X
5085   if (match(Op0, m_FPOne()))
5086     return Op1;
5087 
5088   // fmul nnan nsz X, 0 ==> 0
5089   if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op1, m_AnyZeroFP()))
5090     return ConstantFP::getNullValue(Op0->getType());
5091 
5092   // fmul nnan nsz 0, X ==> 0
5093   if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op0, m_AnyZeroFP()))
5094     return ConstantFP::getNullValue(Op1->getType());
5095 
5096   // sqrt(X) * sqrt(X) --> X, if we can:
5097   // 1. Remove the intermediate rounding (reassociate).
5098   // 2. Ignore non-zero negative numbers because sqrt would produce NAN.
5099   // 3. Ignore -0.0 because sqrt(-0.0) == -0.0, but -0.0 * -0.0 == 0.0.
5100   Value *X;
5101   if (Op0 == Op1 && match(Op0, m_Intrinsic<Intrinsic::sqrt>(m_Value(X))) &&
5102       FMF.allowReassoc() && FMF.noNaNs() && FMF.noSignedZeros())
5103     return X;
5104 
5105   return nullptr;
5106 }
5107 
5108 /// Given the operands for an FMul, see if we can fold the result
5109 static Value *
5110 SimplifyFMulInst(Value *Op0, Value *Op1, FastMathFlags FMF,
5111                  const SimplifyQuery &Q, unsigned MaxRecurse,
5112                  fp::ExceptionBehavior ExBehavior = fp::ebIgnore,
5113                  RoundingMode Rounding = RoundingMode::NearestTiesToEven) {
5114   if (isDefaultFPEnvironment(ExBehavior, Rounding))
5115     if (Constant *C = foldOrCommuteConstant(Instruction::FMul, Op0, Op1, Q))
5116       return C;
5117 
5118   // Now apply simplifications that do not require rounding.
5119   return SimplifyFMAFMul(Op0, Op1, FMF, Q, MaxRecurse, ExBehavior, Rounding);
5120 }
5121 
5122 Value *llvm::SimplifyFAddInst(Value *Op0, Value *Op1, FastMathFlags FMF,
5123                               const SimplifyQuery &Q,
5124                               fp::ExceptionBehavior ExBehavior,
5125                               RoundingMode Rounding) {
5126   return ::SimplifyFAddInst(Op0, Op1, FMF, Q, RecursionLimit, ExBehavior,
5127                             Rounding);
5128 }
5129 
5130 Value *llvm::SimplifyFSubInst(Value *Op0, Value *Op1, FastMathFlags FMF,
5131                               const SimplifyQuery &Q,
5132                               fp::ExceptionBehavior ExBehavior,
5133                               RoundingMode Rounding) {
5134   return ::SimplifyFSubInst(Op0, Op1, FMF, Q, RecursionLimit, ExBehavior,
5135                             Rounding);
5136 }
5137 
5138 Value *llvm::SimplifyFMulInst(Value *Op0, Value *Op1, FastMathFlags FMF,
5139                               const SimplifyQuery &Q,
5140                               fp::ExceptionBehavior ExBehavior,
5141                               RoundingMode Rounding) {
5142   return ::SimplifyFMulInst(Op0, Op1, FMF, Q, RecursionLimit, ExBehavior,
5143                             Rounding);
5144 }
5145 
5146 Value *llvm::SimplifyFMAFMul(Value *Op0, Value *Op1, FastMathFlags FMF,
5147                              const SimplifyQuery &Q,
5148                              fp::ExceptionBehavior ExBehavior,
5149                              RoundingMode Rounding) {
5150   return ::SimplifyFMAFMul(Op0, Op1, FMF, Q, RecursionLimit, ExBehavior,
5151                            Rounding);
5152 }
5153 
5154 static Value *
5155 SimplifyFDivInst(Value *Op0, Value *Op1, FastMathFlags FMF,
5156                  const SimplifyQuery &Q, unsigned,
5157                  fp::ExceptionBehavior ExBehavior = fp::ebIgnore,
5158                  RoundingMode Rounding = RoundingMode::NearestTiesToEven) {
5159   if (isDefaultFPEnvironment(ExBehavior, Rounding))
5160     if (Constant *C = foldOrCommuteConstant(Instruction::FDiv, Op0, Op1, Q))
5161       return C;
5162 
5163   if (Constant *C = simplifyFPOp({Op0, Op1}, FMF, Q, ExBehavior, Rounding))
5164     return C;
5165 
5166   if (!isDefaultFPEnvironment(ExBehavior, Rounding))
5167     return nullptr;
5168 
5169   // X / 1.0 -> X
5170   if (match(Op1, m_FPOne()))
5171     return Op0;
5172 
5173   // 0 / X -> 0
5174   // Requires that NaNs are off (X could be zero) and signed zeroes are
5175   // ignored (X could be positive or negative, so the output sign is unknown).
5176   if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op0, m_AnyZeroFP()))
5177     return ConstantFP::getNullValue(Op0->getType());
5178 
5179   if (FMF.noNaNs()) {
5180     // X / X -> 1.0 is legal when NaNs are ignored.
5181     // We can ignore infinities because INF/INF is NaN.
5182     if (Op0 == Op1)
5183       return ConstantFP::get(Op0->getType(), 1.0);
5184 
5185     // (X * Y) / Y --> X if we can reassociate to the above form.
5186     Value *X;
5187     if (FMF.allowReassoc() && match(Op0, m_c_FMul(m_Value(X), m_Specific(Op1))))
5188       return X;
5189 
5190     // -X /  X -> -1.0 and
5191     //  X / -X -> -1.0 are legal when NaNs are ignored.
5192     // We can ignore signed zeros because +-0.0/+-0.0 is NaN and ignored.
5193     if (match(Op0, m_FNegNSZ(m_Specific(Op1))) ||
5194         match(Op1, m_FNegNSZ(m_Specific(Op0))))
5195       return ConstantFP::get(Op0->getType(), -1.0);
5196   }
5197 
5198   return nullptr;
5199 }
5200 
5201 Value *llvm::SimplifyFDivInst(Value *Op0, Value *Op1, FastMathFlags FMF,
5202                               const SimplifyQuery &Q,
5203                               fp::ExceptionBehavior ExBehavior,
5204                               RoundingMode Rounding) {
5205   return ::SimplifyFDivInst(Op0, Op1, FMF, Q, RecursionLimit, ExBehavior,
5206                             Rounding);
5207 }
5208 
5209 static Value *
5210 SimplifyFRemInst(Value *Op0, Value *Op1, FastMathFlags FMF,
5211                  const SimplifyQuery &Q, unsigned,
5212                  fp::ExceptionBehavior ExBehavior = fp::ebIgnore,
5213                  RoundingMode Rounding = RoundingMode::NearestTiesToEven) {
5214   if (isDefaultFPEnvironment(ExBehavior, Rounding))
5215     if (Constant *C = foldOrCommuteConstant(Instruction::FRem, Op0, Op1, Q))
5216       return C;
5217 
5218   if (Constant *C = simplifyFPOp({Op0, Op1}, FMF, Q, ExBehavior, Rounding))
5219     return C;
5220 
5221   if (!isDefaultFPEnvironment(ExBehavior, Rounding))
5222     return nullptr;
5223 
5224   // Unlike fdiv, the result of frem always matches the sign of the dividend.
5225   // The constant match may include undef elements in a vector, so return a full
5226   // zero constant as the result.
5227   if (FMF.noNaNs()) {
5228     // +0 % X -> 0
5229     if (match(Op0, m_PosZeroFP()))
5230       return ConstantFP::getNullValue(Op0->getType());
5231     // -0 % X -> -0
5232     if (match(Op0, m_NegZeroFP()))
5233       return ConstantFP::getNegativeZero(Op0->getType());
5234   }
5235 
5236   return nullptr;
5237 }
5238 
5239 Value *llvm::SimplifyFRemInst(Value *Op0, Value *Op1, FastMathFlags FMF,
5240                               const SimplifyQuery &Q,
5241                               fp::ExceptionBehavior ExBehavior,
5242                               RoundingMode Rounding) {
5243   return ::SimplifyFRemInst(Op0, Op1, FMF, Q, RecursionLimit, ExBehavior,
5244                             Rounding);
5245 }
5246 
5247 //=== Helper functions for higher up the class hierarchy.
5248 
5249 /// Given the operand for a UnaryOperator, see if we can fold the result.
5250 /// If not, this returns null.
5251 static Value *simplifyUnOp(unsigned Opcode, Value *Op, const SimplifyQuery &Q,
5252                            unsigned MaxRecurse) {
5253   switch (Opcode) {
5254   case Instruction::FNeg:
5255     return simplifyFNegInst(Op, FastMathFlags(), Q, MaxRecurse);
5256   default:
5257     llvm_unreachable("Unexpected opcode");
5258   }
5259 }
5260 
5261 /// Given the operand for a UnaryOperator, see if we can fold the result.
5262 /// If not, this returns null.
5263 /// Try to use FastMathFlags when folding the result.
5264 static Value *simplifyFPUnOp(unsigned Opcode, Value *Op,
5265                              const FastMathFlags &FMF,
5266                              const SimplifyQuery &Q, unsigned MaxRecurse) {
5267   switch (Opcode) {
5268   case Instruction::FNeg:
5269     return simplifyFNegInst(Op, FMF, Q, MaxRecurse);
5270   default:
5271     return simplifyUnOp(Opcode, Op, Q, MaxRecurse);
5272   }
5273 }
5274 
5275 Value *llvm::SimplifyUnOp(unsigned Opcode, Value *Op, const SimplifyQuery &Q) {
5276   return ::simplifyUnOp(Opcode, Op, Q, RecursionLimit);
5277 }
5278 
5279 Value *llvm::SimplifyUnOp(unsigned Opcode, Value *Op, FastMathFlags FMF,
5280                           const SimplifyQuery &Q) {
5281   return ::simplifyFPUnOp(Opcode, Op, FMF, Q, RecursionLimit);
5282 }
5283 
5284 /// Given operands for a BinaryOperator, see if we can fold the result.
5285 /// If not, this returns null.
5286 static Value *SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS,
5287                             const SimplifyQuery &Q, unsigned MaxRecurse) {
5288   switch (Opcode) {
5289   case Instruction::Add:
5290     return SimplifyAddInst(LHS, RHS, false, false, Q, MaxRecurse);
5291   case Instruction::Sub:
5292     return SimplifySubInst(LHS, RHS, false, false, Q, MaxRecurse);
5293   case Instruction::Mul:
5294     return SimplifyMulInst(LHS, RHS, Q, MaxRecurse);
5295   case Instruction::SDiv:
5296     return SimplifySDivInst(LHS, RHS, Q, MaxRecurse);
5297   case Instruction::UDiv:
5298     return SimplifyUDivInst(LHS, RHS, Q, MaxRecurse);
5299   case Instruction::SRem:
5300     return SimplifySRemInst(LHS, RHS, Q, MaxRecurse);
5301   case Instruction::URem:
5302     return SimplifyURemInst(LHS, RHS, Q, MaxRecurse);
5303   case Instruction::Shl:
5304     return SimplifyShlInst(LHS, RHS, false, false, Q, MaxRecurse);
5305   case Instruction::LShr:
5306     return SimplifyLShrInst(LHS, RHS, false, Q, MaxRecurse);
5307   case Instruction::AShr:
5308     return SimplifyAShrInst(LHS, RHS, false, Q, MaxRecurse);
5309   case Instruction::And:
5310     return SimplifyAndInst(LHS, RHS, Q, MaxRecurse);
5311   case Instruction::Or:
5312     return SimplifyOrInst(LHS, RHS, Q, MaxRecurse);
5313   case Instruction::Xor:
5314     return SimplifyXorInst(LHS, RHS, Q, MaxRecurse);
5315   case Instruction::FAdd:
5316     return SimplifyFAddInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse);
5317   case Instruction::FSub:
5318     return SimplifyFSubInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse);
5319   case Instruction::FMul:
5320     return SimplifyFMulInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse);
5321   case Instruction::FDiv:
5322     return SimplifyFDivInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse);
5323   case Instruction::FRem:
5324     return SimplifyFRemInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse);
5325   default:
5326     llvm_unreachable("Unexpected opcode");
5327   }
5328 }
5329 
5330 /// Given operands for a BinaryOperator, see if we can fold the result.
5331 /// If not, this returns null.
5332 /// Try to use FastMathFlags when folding the result.
5333 static Value *SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS,
5334                             const FastMathFlags &FMF, const SimplifyQuery &Q,
5335                             unsigned MaxRecurse) {
5336   switch (Opcode) {
5337   case Instruction::FAdd:
5338     return SimplifyFAddInst(LHS, RHS, FMF, Q, MaxRecurse);
5339   case Instruction::FSub:
5340     return SimplifyFSubInst(LHS, RHS, FMF, Q, MaxRecurse);
5341   case Instruction::FMul:
5342     return SimplifyFMulInst(LHS, RHS, FMF, Q, MaxRecurse);
5343   case Instruction::FDiv:
5344     return SimplifyFDivInst(LHS, RHS, FMF, Q, MaxRecurse);
5345   default:
5346     return SimplifyBinOp(Opcode, LHS, RHS, Q, MaxRecurse);
5347   }
5348 }
5349 
5350 Value *llvm::SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS,
5351                            const SimplifyQuery &Q) {
5352   return ::SimplifyBinOp(Opcode, LHS, RHS, Q, RecursionLimit);
5353 }
5354 
5355 Value *llvm::SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS,
5356                            FastMathFlags FMF, const SimplifyQuery &Q) {
5357   return ::SimplifyBinOp(Opcode, LHS, RHS, FMF, Q, RecursionLimit);
5358 }
5359 
5360 /// Given operands for a CmpInst, see if we can fold the result.
5361 static Value *SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
5362                               const SimplifyQuery &Q, unsigned MaxRecurse) {
5363   if (CmpInst::isIntPredicate((CmpInst::Predicate)Predicate))
5364     return SimplifyICmpInst(Predicate, LHS, RHS, Q, MaxRecurse);
5365   return SimplifyFCmpInst(Predicate, LHS, RHS, FastMathFlags(), Q, MaxRecurse);
5366 }
5367 
5368 Value *llvm::SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
5369                              const SimplifyQuery &Q) {
5370   return ::SimplifyCmpInst(Predicate, LHS, RHS, Q, RecursionLimit);
5371 }
5372 
5373 static bool IsIdempotent(Intrinsic::ID ID) {
5374   switch (ID) {
5375   default: return false;
5376 
5377   // Unary idempotent: f(f(x)) = f(x)
5378   case Intrinsic::fabs:
5379   case Intrinsic::floor:
5380   case Intrinsic::ceil:
5381   case Intrinsic::trunc:
5382   case Intrinsic::rint:
5383   case Intrinsic::nearbyint:
5384   case Intrinsic::round:
5385   case Intrinsic::roundeven:
5386   case Intrinsic::canonicalize:
5387     return true;
5388   }
5389 }
5390 
5391 static Value *SimplifyRelativeLoad(Constant *Ptr, Constant *Offset,
5392                                    const DataLayout &DL) {
5393   GlobalValue *PtrSym;
5394   APInt PtrOffset;
5395   if (!IsConstantOffsetFromGlobal(Ptr, PtrSym, PtrOffset, DL))
5396     return nullptr;
5397 
5398   Type *Int8PtrTy = Type::getInt8PtrTy(Ptr->getContext());
5399   Type *Int32Ty = Type::getInt32Ty(Ptr->getContext());
5400   Type *Int32PtrTy = Int32Ty->getPointerTo();
5401   Type *Int64Ty = Type::getInt64Ty(Ptr->getContext());
5402 
5403   auto *OffsetConstInt = dyn_cast<ConstantInt>(Offset);
5404   if (!OffsetConstInt || OffsetConstInt->getType()->getBitWidth() > 64)
5405     return nullptr;
5406 
5407   uint64_t OffsetInt = OffsetConstInt->getSExtValue();
5408   if (OffsetInt % 4 != 0)
5409     return nullptr;
5410 
5411   Constant *C = ConstantExpr::getGetElementPtr(
5412       Int32Ty, ConstantExpr::getBitCast(Ptr, Int32PtrTy),
5413       ConstantInt::get(Int64Ty, OffsetInt / 4));
5414   Constant *Loaded = ConstantFoldLoadFromConstPtr(C, Int32Ty, DL);
5415   if (!Loaded)
5416     return nullptr;
5417 
5418   auto *LoadedCE = dyn_cast<ConstantExpr>(Loaded);
5419   if (!LoadedCE)
5420     return nullptr;
5421 
5422   if (LoadedCE->getOpcode() == Instruction::Trunc) {
5423     LoadedCE = dyn_cast<ConstantExpr>(LoadedCE->getOperand(0));
5424     if (!LoadedCE)
5425       return nullptr;
5426   }
5427 
5428   if (LoadedCE->getOpcode() != Instruction::Sub)
5429     return nullptr;
5430 
5431   auto *LoadedLHS = dyn_cast<ConstantExpr>(LoadedCE->getOperand(0));
5432   if (!LoadedLHS || LoadedLHS->getOpcode() != Instruction::PtrToInt)
5433     return nullptr;
5434   auto *LoadedLHSPtr = LoadedLHS->getOperand(0);
5435 
5436   Constant *LoadedRHS = LoadedCE->getOperand(1);
5437   GlobalValue *LoadedRHSSym;
5438   APInt LoadedRHSOffset;
5439   if (!IsConstantOffsetFromGlobal(LoadedRHS, LoadedRHSSym, LoadedRHSOffset,
5440                                   DL) ||
5441       PtrSym != LoadedRHSSym || PtrOffset != LoadedRHSOffset)
5442     return nullptr;
5443 
5444   return ConstantExpr::getBitCast(LoadedLHSPtr, Int8PtrTy);
5445 }
5446 
5447 static Value *simplifyUnaryIntrinsic(Function *F, Value *Op0,
5448                                      const SimplifyQuery &Q) {
5449   // Idempotent functions return the same result when called repeatedly.
5450   Intrinsic::ID IID = F->getIntrinsicID();
5451   if (IsIdempotent(IID))
5452     if (auto *II = dyn_cast<IntrinsicInst>(Op0))
5453       if (II->getIntrinsicID() == IID)
5454         return II;
5455 
5456   Value *X;
5457   switch (IID) {
5458   case Intrinsic::fabs:
5459     if (SignBitMustBeZero(Op0, Q.TLI)) return Op0;
5460     break;
5461   case Intrinsic::bswap:
5462     // bswap(bswap(x)) -> x
5463     if (match(Op0, m_BSwap(m_Value(X)))) return X;
5464     break;
5465   case Intrinsic::bitreverse:
5466     // bitreverse(bitreverse(x)) -> x
5467     if (match(Op0, m_BitReverse(m_Value(X)))) return X;
5468     break;
5469   case Intrinsic::ctpop: {
5470     // If everything but the lowest bit is zero, that bit is the pop-count. Ex:
5471     // ctpop(and X, 1) --> and X, 1
5472     unsigned BitWidth = Op0->getType()->getScalarSizeInBits();
5473     if (MaskedValueIsZero(Op0, APInt::getHighBitsSet(BitWidth, BitWidth - 1),
5474                           Q.DL, 0, Q.AC, Q.CxtI, Q.DT))
5475       return Op0;
5476     break;
5477   }
5478   case Intrinsic::exp:
5479     // exp(log(x)) -> x
5480     if (Q.CxtI->hasAllowReassoc() &&
5481         match(Op0, m_Intrinsic<Intrinsic::log>(m_Value(X)))) return X;
5482     break;
5483   case Intrinsic::exp2:
5484     // exp2(log2(x)) -> x
5485     if (Q.CxtI->hasAllowReassoc() &&
5486         match(Op0, m_Intrinsic<Intrinsic::log2>(m_Value(X)))) return X;
5487     break;
5488   case Intrinsic::log:
5489     // log(exp(x)) -> x
5490     if (Q.CxtI->hasAllowReassoc() &&
5491         match(Op0, m_Intrinsic<Intrinsic::exp>(m_Value(X)))) return X;
5492     break;
5493   case Intrinsic::log2:
5494     // log2(exp2(x)) -> x
5495     if (Q.CxtI->hasAllowReassoc() &&
5496         (match(Op0, m_Intrinsic<Intrinsic::exp2>(m_Value(X))) ||
5497          match(Op0, m_Intrinsic<Intrinsic::pow>(m_SpecificFP(2.0),
5498                                                 m_Value(X))))) return X;
5499     break;
5500   case Intrinsic::log10:
5501     // log10(pow(10.0, x)) -> x
5502     if (Q.CxtI->hasAllowReassoc() &&
5503         match(Op0, m_Intrinsic<Intrinsic::pow>(m_SpecificFP(10.0),
5504                                                m_Value(X)))) return X;
5505     break;
5506   case Intrinsic::floor:
5507   case Intrinsic::trunc:
5508   case Intrinsic::ceil:
5509   case Intrinsic::round:
5510   case Intrinsic::roundeven:
5511   case Intrinsic::nearbyint:
5512   case Intrinsic::rint: {
5513     // floor (sitofp x) -> sitofp x
5514     // floor (uitofp x) -> uitofp x
5515     //
5516     // Converting from int always results in a finite integral number or
5517     // infinity. For either of those inputs, these rounding functions always
5518     // return the same value, so the rounding can be eliminated.
5519     if (match(Op0, m_SIToFP(m_Value())) || match(Op0, m_UIToFP(m_Value())))
5520       return Op0;
5521     break;
5522   }
5523   case Intrinsic::experimental_vector_reverse:
5524     // experimental.vector.reverse(experimental.vector.reverse(x)) -> x
5525     if (match(Op0,
5526               m_Intrinsic<Intrinsic::experimental_vector_reverse>(m_Value(X))))
5527       return X;
5528     // experimental.vector.reverse(splat(X)) -> splat(X)
5529     if (isSplatValue(Op0))
5530       return Op0;
5531     break;
5532   default:
5533     break;
5534   }
5535 
5536   return nullptr;
5537 }
5538 
5539 static APInt getMaxMinLimit(Intrinsic::ID IID, unsigned BitWidth) {
5540   switch (IID) {
5541   case Intrinsic::smax: return APInt::getSignedMaxValue(BitWidth);
5542   case Intrinsic::smin: return APInt::getSignedMinValue(BitWidth);
5543   case Intrinsic::umax: return APInt::getMaxValue(BitWidth);
5544   case Intrinsic::umin: return APInt::getMinValue(BitWidth);
5545   default: llvm_unreachable("Unexpected intrinsic");
5546   }
5547 }
5548 
5549 static ICmpInst::Predicate getMaxMinPredicate(Intrinsic::ID IID) {
5550   switch (IID) {
5551   case Intrinsic::smax: return ICmpInst::ICMP_SGE;
5552   case Intrinsic::smin: return ICmpInst::ICMP_SLE;
5553   case Intrinsic::umax: return ICmpInst::ICMP_UGE;
5554   case Intrinsic::umin: return ICmpInst::ICMP_ULE;
5555   default: llvm_unreachable("Unexpected intrinsic");
5556   }
5557 }
5558 
5559 /// Given a min/max intrinsic, see if it can be removed based on having an
5560 /// operand that is another min/max intrinsic with shared operand(s). The caller
5561 /// is expected to swap the operand arguments to handle commutation.
5562 static Value *foldMinMaxSharedOp(Intrinsic::ID IID, Value *Op0, Value *Op1) {
5563   Value *X, *Y;
5564   if (!match(Op0, m_MaxOrMin(m_Value(X), m_Value(Y))))
5565     return nullptr;
5566 
5567   auto *MM0 = dyn_cast<IntrinsicInst>(Op0);
5568   if (!MM0)
5569     return nullptr;
5570   Intrinsic::ID IID0 = MM0->getIntrinsicID();
5571 
5572   if (Op1 == X || Op1 == Y ||
5573       match(Op1, m_c_MaxOrMin(m_Specific(X), m_Specific(Y)))) {
5574     // max (max X, Y), X --> max X, Y
5575     if (IID0 == IID)
5576       return MM0;
5577     // max (min X, Y), X --> X
5578     if (IID0 == getInverseMinMaxIntrinsic(IID))
5579       return Op1;
5580   }
5581   return nullptr;
5582 }
5583 
5584 static Value *simplifyBinaryIntrinsic(Function *F, Value *Op0, Value *Op1,
5585                                       const SimplifyQuery &Q) {
5586   Intrinsic::ID IID = F->getIntrinsicID();
5587   Type *ReturnType = F->getReturnType();
5588   unsigned BitWidth = ReturnType->getScalarSizeInBits();
5589   switch (IID) {
5590   case Intrinsic::abs:
5591     // abs(abs(x)) -> abs(x). We don't need to worry about the nsw arg here.
5592     // It is always ok to pick the earlier abs. We'll just lose nsw if its only
5593     // on the outer abs.
5594     if (match(Op0, m_Intrinsic<Intrinsic::abs>(m_Value(), m_Value())))
5595       return Op0;
5596     break;
5597 
5598   case Intrinsic::cttz: {
5599     Value *X;
5600     if (match(Op0, m_Shl(m_One(), m_Value(X))))
5601       return X;
5602     break;
5603   }
5604   case Intrinsic::ctlz: {
5605     Value *X;
5606     if (match(Op0, m_LShr(m_Negative(), m_Value(X))))
5607       return X;
5608     if (match(Op0, m_AShr(m_Negative(), m_Value())))
5609       return Constant::getNullValue(ReturnType);
5610     break;
5611   }
5612   case Intrinsic::smax:
5613   case Intrinsic::smin:
5614   case Intrinsic::umax:
5615   case Intrinsic::umin: {
5616     // If the arguments are the same, this is a no-op.
5617     if (Op0 == Op1)
5618       return Op0;
5619 
5620     // Canonicalize constant operand as Op1.
5621     if (isa<Constant>(Op0))
5622       std::swap(Op0, Op1);
5623 
5624     // Assume undef is the limit value.
5625     if (Q.isUndefValue(Op1))
5626       return ConstantInt::get(ReturnType, getMaxMinLimit(IID, BitWidth));
5627 
5628     const APInt *C;
5629     if (match(Op1, m_APIntAllowUndef(C))) {
5630       // Clamp to limit value. For example:
5631       // umax(i8 %x, i8 255) --> 255
5632       if (*C == getMaxMinLimit(IID, BitWidth))
5633         return ConstantInt::get(ReturnType, *C);
5634 
5635       // If the constant op is the opposite of the limit value, the other must
5636       // be larger/smaller or equal. For example:
5637       // umin(i8 %x, i8 255) --> %x
5638       if (*C == getMaxMinLimit(getInverseMinMaxIntrinsic(IID), BitWidth))
5639         return Op0;
5640 
5641       // Remove nested call if constant operands allow it. Example:
5642       // max (max X, 7), 5 -> max X, 7
5643       auto *MinMax0 = dyn_cast<IntrinsicInst>(Op0);
5644       if (MinMax0 && MinMax0->getIntrinsicID() == IID) {
5645         // TODO: loosen undef/splat restrictions for vector constants.
5646         Value *M00 = MinMax0->getOperand(0), *M01 = MinMax0->getOperand(1);
5647         const APInt *InnerC;
5648         if ((match(M00, m_APInt(InnerC)) || match(M01, m_APInt(InnerC))) &&
5649             ((IID == Intrinsic::smax && InnerC->sge(*C)) ||
5650              (IID == Intrinsic::smin && InnerC->sle(*C)) ||
5651              (IID == Intrinsic::umax && InnerC->uge(*C)) ||
5652              (IID == Intrinsic::umin && InnerC->ule(*C))))
5653           return Op0;
5654       }
5655     }
5656 
5657     if (Value *V = foldMinMaxSharedOp(IID, Op0, Op1))
5658       return V;
5659     if (Value *V = foldMinMaxSharedOp(IID, Op1, Op0))
5660       return V;
5661 
5662     ICmpInst::Predicate Pred = getMaxMinPredicate(IID);
5663     if (isICmpTrue(Pred, Op0, Op1, Q.getWithoutUndef(), RecursionLimit))
5664       return Op0;
5665     if (isICmpTrue(Pred, Op1, Op0, Q.getWithoutUndef(), RecursionLimit))
5666       return Op1;
5667 
5668     if (Optional<bool> Imp =
5669             isImpliedByDomCondition(Pred, Op0, Op1, Q.CxtI, Q.DL))
5670       return *Imp ? Op0 : Op1;
5671     if (Optional<bool> Imp =
5672             isImpliedByDomCondition(Pred, Op1, Op0, Q.CxtI, Q.DL))
5673       return *Imp ? Op1 : Op0;
5674 
5675     break;
5676   }
5677   case Intrinsic::usub_with_overflow:
5678   case Intrinsic::ssub_with_overflow:
5679     // X - X -> { 0, false }
5680     // X - undef -> { 0, false }
5681     // undef - X -> { 0, false }
5682     if (Op0 == Op1 || Q.isUndefValue(Op0) || Q.isUndefValue(Op1))
5683       return Constant::getNullValue(ReturnType);
5684     break;
5685   case Intrinsic::uadd_with_overflow:
5686   case Intrinsic::sadd_with_overflow:
5687     // X + undef -> { -1, false }
5688     // undef + x -> { -1, false }
5689     if (Q.isUndefValue(Op0) || Q.isUndefValue(Op1)) {
5690       return ConstantStruct::get(
5691           cast<StructType>(ReturnType),
5692           {Constant::getAllOnesValue(ReturnType->getStructElementType(0)),
5693            Constant::getNullValue(ReturnType->getStructElementType(1))});
5694     }
5695     break;
5696   case Intrinsic::umul_with_overflow:
5697   case Intrinsic::smul_with_overflow:
5698     // 0 * X -> { 0, false }
5699     // X * 0 -> { 0, false }
5700     if (match(Op0, m_Zero()) || match(Op1, m_Zero()))
5701       return Constant::getNullValue(ReturnType);
5702     // undef * X -> { 0, false }
5703     // X * undef -> { 0, false }
5704     if (Q.isUndefValue(Op0) || Q.isUndefValue(Op1))
5705       return Constant::getNullValue(ReturnType);
5706     break;
5707   case Intrinsic::uadd_sat:
5708     // sat(MAX + X) -> MAX
5709     // sat(X + MAX) -> MAX
5710     if (match(Op0, m_AllOnes()) || match(Op1, m_AllOnes()))
5711       return Constant::getAllOnesValue(ReturnType);
5712     LLVM_FALLTHROUGH;
5713   case Intrinsic::sadd_sat:
5714     // sat(X + undef) -> -1
5715     // sat(undef + X) -> -1
5716     // For unsigned: Assume undef is MAX, thus we saturate to MAX (-1).
5717     // For signed: Assume undef is ~X, in which case X + ~X = -1.
5718     if (Q.isUndefValue(Op0) || Q.isUndefValue(Op1))
5719       return Constant::getAllOnesValue(ReturnType);
5720 
5721     // X + 0 -> X
5722     if (match(Op1, m_Zero()))
5723       return Op0;
5724     // 0 + X -> X
5725     if (match(Op0, m_Zero()))
5726       return Op1;
5727     break;
5728   case Intrinsic::usub_sat:
5729     // sat(0 - X) -> 0, sat(X - MAX) -> 0
5730     if (match(Op0, m_Zero()) || match(Op1, m_AllOnes()))
5731       return Constant::getNullValue(ReturnType);
5732     LLVM_FALLTHROUGH;
5733   case Intrinsic::ssub_sat:
5734     // X - X -> 0, X - undef -> 0, undef - X -> 0
5735     if (Op0 == Op1 || Q.isUndefValue(Op0) || Q.isUndefValue(Op1))
5736       return Constant::getNullValue(ReturnType);
5737     // X - 0 -> X
5738     if (match(Op1, m_Zero()))
5739       return Op0;
5740     break;
5741   case Intrinsic::load_relative:
5742     if (auto *C0 = dyn_cast<Constant>(Op0))
5743       if (auto *C1 = dyn_cast<Constant>(Op1))
5744         return SimplifyRelativeLoad(C0, C1, Q.DL);
5745     break;
5746   case Intrinsic::powi:
5747     if (auto *Power = dyn_cast<ConstantInt>(Op1)) {
5748       // powi(x, 0) -> 1.0
5749       if (Power->isZero())
5750         return ConstantFP::get(Op0->getType(), 1.0);
5751       // powi(x, 1) -> x
5752       if (Power->isOne())
5753         return Op0;
5754     }
5755     break;
5756   case Intrinsic::copysign:
5757     // copysign X, X --> X
5758     if (Op0 == Op1)
5759       return Op0;
5760     // copysign -X, X --> X
5761     // copysign X, -X --> -X
5762     if (match(Op0, m_FNeg(m_Specific(Op1))) ||
5763         match(Op1, m_FNeg(m_Specific(Op0))))
5764       return Op1;
5765     break;
5766   case Intrinsic::maxnum:
5767   case Intrinsic::minnum:
5768   case Intrinsic::maximum:
5769   case Intrinsic::minimum: {
5770     // If the arguments are the same, this is a no-op.
5771     if (Op0 == Op1) return Op0;
5772 
5773     // Canonicalize constant operand as Op1.
5774     if (isa<Constant>(Op0))
5775       std::swap(Op0, Op1);
5776 
5777     // If an argument is undef, return the other argument.
5778     if (Q.isUndefValue(Op1))
5779       return Op0;
5780 
5781     bool PropagateNaN = IID == Intrinsic::minimum || IID == Intrinsic::maximum;
5782     bool IsMin = IID == Intrinsic::minimum || IID == Intrinsic::minnum;
5783 
5784     // minnum(X, nan) -> X
5785     // maxnum(X, nan) -> X
5786     // minimum(X, nan) -> nan
5787     // maximum(X, nan) -> nan
5788     if (match(Op1, m_NaN()))
5789       return PropagateNaN ? propagateNaN(cast<Constant>(Op1)) : Op0;
5790 
5791     // In the following folds, inf can be replaced with the largest finite
5792     // float, if the ninf flag is set.
5793     const APFloat *C;
5794     if (match(Op1, m_APFloat(C)) &&
5795         (C->isInfinity() || (Q.CxtI->hasNoInfs() && C->isLargest()))) {
5796       // minnum(X, -inf) -> -inf
5797       // maxnum(X, +inf) -> +inf
5798       // minimum(X, -inf) -> -inf if nnan
5799       // maximum(X, +inf) -> +inf if nnan
5800       if (C->isNegative() == IsMin && (!PropagateNaN || Q.CxtI->hasNoNaNs()))
5801         return ConstantFP::get(ReturnType, *C);
5802 
5803       // minnum(X, +inf) -> X if nnan
5804       // maxnum(X, -inf) -> X if nnan
5805       // minimum(X, +inf) -> X
5806       // maximum(X, -inf) -> X
5807       if (C->isNegative() != IsMin && (PropagateNaN || Q.CxtI->hasNoNaNs()))
5808         return Op0;
5809     }
5810 
5811     // Min/max of the same operation with common operand:
5812     // m(m(X, Y)), X --> m(X, Y) (4 commuted variants)
5813     if (auto *M0 = dyn_cast<IntrinsicInst>(Op0))
5814       if (M0->getIntrinsicID() == IID &&
5815           (M0->getOperand(0) == Op1 || M0->getOperand(1) == Op1))
5816         return Op0;
5817     if (auto *M1 = dyn_cast<IntrinsicInst>(Op1))
5818       if (M1->getIntrinsicID() == IID &&
5819           (M1->getOperand(0) == Op0 || M1->getOperand(1) == Op0))
5820         return Op1;
5821 
5822     break;
5823   }
5824   case Intrinsic::experimental_vector_extract: {
5825     Type *ReturnType = F->getReturnType();
5826 
5827     // (extract_vector (insert_vector _, X, 0), 0) -> X
5828     unsigned IdxN = cast<ConstantInt>(Op1)->getZExtValue();
5829     Value *X = nullptr;
5830     if (match(Op0, m_Intrinsic<Intrinsic::experimental_vector_insert>(
5831                        m_Value(), m_Value(X), m_Zero())) &&
5832         IdxN == 0 && X->getType() == ReturnType)
5833       return X;
5834 
5835     break;
5836   }
5837   default:
5838     break;
5839   }
5840 
5841   return nullptr;
5842 }
5843 
5844 static Value *simplifyIntrinsic(CallBase *Call, const SimplifyQuery &Q) {
5845 
5846   unsigned NumOperands = Call->arg_size();
5847   Function *F = cast<Function>(Call->getCalledFunction());
5848   Intrinsic::ID IID = F->getIntrinsicID();
5849 
5850   // Most of the intrinsics with no operands have some kind of side effect.
5851   // Don't simplify.
5852   if (!NumOperands) {
5853     switch (IID) {
5854     case Intrinsic::vscale: {
5855       // Call may not be inserted into the IR yet at point of calling simplify.
5856       if (!Call->getParent() || !Call->getParent()->getParent())
5857         return nullptr;
5858       auto Attr = Call->getFunction()->getFnAttribute(Attribute::VScaleRange);
5859       if (!Attr.isValid())
5860         return nullptr;
5861       unsigned VScaleMin, VScaleMax;
5862       std::tie(VScaleMin, VScaleMax) = Attr.getVScaleRangeArgs();
5863       if (VScaleMin == VScaleMax && VScaleMax != 0)
5864         return ConstantInt::get(F->getReturnType(), VScaleMin);
5865       return nullptr;
5866     }
5867     default:
5868       return nullptr;
5869     }
5870   }
5871 
5872   if (NumOperands == 1)
5873     return simplifyUnaryIntrinsic(F, Call->getArgOperand(0), Q);
5874 
5875   if (NumOperands == 2)
5876     return simplifyBinaryIntrinsic(F, Call->getArgOperand(0),
5877                                    Call->getArgOperand(1), Q);
5878 
5879   // Handle intrinsics with 3 or more arguments.
5880   switch (IID) {
5881   case Intrinsic::masked_load:
5882   case Intrinsic::masked_gather: {
5883     Value *MaskArg = Call->getArgOperand(2);
5884     Value *PassthruArg = Call->getArgOperand(3);
5885     // If the mask is all zeros or undef, the "passthru" argument is the result.
5886     if (maskIsAllZeroOrUndef(MaskArg))
5887       return PassthruArg;
5888     return nullptr;
5889   }
5890   case Intrinsic::fshl:
5891   case Intrinsic::fshr: {
5892     Value *Op0 = Call->getArgOperand(0), *Op1 = Call->getArgOperand(1),
5893           *ShAmtArg = Call->getArgOperand(2);
5894 
5895     // If both operands are undef, the result is undef.
5896     if (Q.isUndefValue(Op0) && Q.isUndefValue(Op1))
5897       return UndefValue::get(F->getReturnType());
5898 
5899     // If shift amount is undef, assume it is zero.
5900     if (Q.isUndefValue(ShAmtArg))
5901       return Call->getArgOperand(IID == Intrinsic::fshl ? 0 : 1);
5902 
5903     const APInt *ShAmtC;
5904     if (match(ShAmtArg, m_APInt(ShAmtC))) {
5905       // If there's effectively no shift, return the 1st arg or 2nd arg.
5906       APInt BitWidth = APInt(ShAmtC->getBitWidth(), ShAmtC->getBitWidth());
5907       if (ShAmtC->urem(BitWidth).isZero())
5908         return Call->getArgOperand(IID == Intrinsic::fshl ? 0 : 1);
5909     }
5910 
5911     // Rotating zero by anything is zero.
5912     if (match(Op0, m_Zero()) && match(Op1, m_Zero()))
5913       return ConstantInt::getNullValue(F->getReturnType());
5914 
5915     // Rotating -1 by anything is -1.
5916     if (match(Op0, m_AllOnes()) && match(Op1, m_AllOnes()))
5917       return ConstantInt::getAllOnesValue(F->getReturnType());
5918 
5919     return nullptr;
5920   }
5921   case Intrinsic::experimental_constrained_fma: {
5922     Value *Op0 = Call->getArgOperand(0);
5923     Value *Op1 = Call->getArgOperand(1);
5924     Value *Op2 = Call->getArgOperand(2);
5925     auto *FPI = cast<ConstrainedFPIntrinsic>(Call);
5926     if (Value *V = simplifyFPOp({Op0, Op1, Op2}, {}, Q,
5927                                 FPI->getExceptionBehavior().getValue(),
5928                                 FPI->getRoundingMode().getValue()))
5929       return V;
5930     return nullptr;
5931   }
5932   case Intrinsic::fma:
5933   case Intrinsic::fmuladd: {
5934     Value *Op0 = Call->getArgOperand(0);
5935     Value *Op1 = Call->getArgOperand(1);
5936     Value *Op2 = Call->getArgOperand(2);
5937     if (Value *V = simplifyFPOp({Op0, Op1, Op2}, {}, Q, fp::ebIgnore,
5938                                 RoundingMode::NearestTiesToEven))
5939       return V;
5940     return nullptr;
5941   }
5942   case Intrinsic::smul_fix:
5943   case Intrinsic::smul_fix_sat: {
5944     Value *Op0 = Call->getArgOperand(0);
5945     Value *Op1 = Call->getArgOperand(1);
5946     Value *Op2 = Call->getArgOperand(2);
5947     Type *ReturnType = F->getReturnType();
5948 
5949     // Canonicalize constant operand as Op1 (ConstantFolding handles the case
5950     // when both Op0 and Op1 are constant so we do not care about that special
5951     // case here).
5952     if (isa<Constant>(Op0))
5953       std::swap(Op0, Op1);
5954 
5955     // X * 0 -> 0
5956     if (match(Op1, m_Zero()))
5957       return Constant::getNullValue(ReturnType);
5958 
5959     // X * undef -> 0
5960     if (Q.isUndefValue(Op1))
5961       return Constant::getNullValue(ReturnType);
5962 
5963     // X * (1 << Scale) -> X
5964     APInt ScaledOne =
5965         APInt::getOneBitSet(ReturnType->getScalarSizeInBits(),
5966                             cast<ConstantInt>(Op2)->getZExtValue());
5967     if (ScaledOne.isNonNegative() && match(Op1, m_SpecificInt(ScaledOne)))
5968       return Op0;
5969 
5970     return nullptr;
5971   }
5972   case Intrinsic::experimental_vector_insert: {
5973     Value *Vec = Call->getArgOperand(0);
5974     Value *SubVec = Call->getArgOperand(1);
5975     Value *Idx = Call->getArgOperand(2);
5976     Type *ReturnType = F->getReturnType();
5977 
5978     // (insert_vector Y, (extract_vector X, 0), 0) -> X
5979     // where: Y is X, or Y is undef
5980     unsigned IdxN = cast<ConstantInt>(Idx)->getZExtValue();
5981     Value *X = nullptr;
5982     if (match(SubVec, m_Intrinsic<Intrinsic::experimental_vector_extract>(
5983                           m_Value(X), m_Zero())) &&
5984         (Q.isUndefValue(Vec) || Vec == X) && IdxN == 0 &&
5985         X->getType() == ReturnType)
5986       return X;
5987 
5988     return nullptr;
5989   }
5990   case Intrinsic::experimental_constrained_fadd: {
5991     auto *FPI = cast<ConstrainedFPIntrinsic>(Call);
5992     return SimplifyFAddInst(FPI->getArgOperand(0), FPI->getArgOperand(1),
5993                             FPI->getFastMathFlags(), Q,
5994                             FPI->getExceptionBehavior().getValue(),
5995                             FPI->getRoundingMode().getValue());
5996     break;
5997   }
5998   case Intrinsic::experimental_constrained_fsub: {
5999     auto *FPI = cast<ConstrainedFPIntrinsic>(Call);
6000     return SimplifyFSubInst(FPI->getArgOperand(0), FPI->getArgOperand(1),
6001                             FPI->getFastMathFlags(), Q,
6002                             FPI->getExceptionBehavior().getValue(),
6003                             FPI->getRoundingMode().getValue());
6004     break;
6005   }
6006   case Intrinsic::experimental_constrained_fmul: {
6007     auto *FPI = cast<ConstrainedFPIntrinsic>(Call);
6008     return SimplifyFMulInst(FPI->getArgOperand(0), FPI->getArgOperand(1),
6009                             FPI->getFastMathFlags(), Q,
6010                             FPI->getExceptionBehavior().getValue(),
6011                             FPI->getRoundingMode().getValue());
6012     break;
6013   }
6014   case Intrinsic::experimental_constrained_fdiv: {
6015     auto *FPI = cast<ConstrainedFPIntrinsic>(Call);
6016     return SimplifyFDivInst(FPI->getArgOperand(0), FPI->getArgOperand(1),
6017                             FPI->getFastMathFlags(), Q,
6018                             FPI->getExceptionBehavior().getValue(),
6019                             FPI->getRoundingMode().getValue());
6020     break;
6021   }
6022   case Intrinsic::experimental_constrained_frem: {
6023     auto *FPI = cast<ConstrainedFPIntrinsic>(Call);
6024     return SimplifyFRemInst(FPI->getArgOperand(0), FPI->getArgOperand(1),
6025                             FPI->getFastMathFlags(), Q,
6026                             FPI->getExceptionBehavior().getValue(),
6027                             FPI->getRoundingMode().getValue());
6028     break;
6029   }
6030   default:
6031     return nullptr;
6032   }
6033 }
6034 
6035 static Value *tryConstantFoldCall(CallBase *Call, const SimplifyQuery &Q) {
6036   auto *F = dyn_cast<Function>(Call->getCalledOperand());
6037   if (!F || !canConstantFoldCallTo(Call, F))
6038     return nullptr;
6039 
6040   SmallVector<Constant *, 4> ConstantArgs;
6041   unsigned NumArgs = Call->arg_size();
6042   ConstantArgs.reserve(NumArgs);
6043   for (auto &Arg : Call->args()) {
6044     Constant *C = dyn_cast<Constant>(&Arg);
6045     if (!C) {
6046       if (isa<MetadataAsValue>(Arg.get()))
6047         continue;
6048       return nullptr;
6049     }
6050     ConstantArgs.push_back(C);
6051   }
6052 
6053   return ConstantFoldCall(Call, F, ConstantArgs, Q.TLI);
6054 }
6055 
6056 Value *llvm::SimplifyCall(CallBase *Call, const SimplifyQuery &Q) {
6057   // musttail calls can only be simplified if they are also DCEd.
6058   // As we can't guarantee this here, don't simplify them.
6059   if (Call->isMustTailCall())
6060     return nullptr;
6061 
6062   // call undef -> poison
6063   // call null -> poison
6064   Value *Callee = Call->getCalledOperand();
6065   if (isa<UndefValue>(Callee) || isa<ConstantPointerNull>(Callee))
6066     return PoisonValue::get(Call->getType());
6067 
6068   if (Value *V = tryConstantFoldCall(Call, Q))
6069     return V;
6070 
6071   auto *F = dyn_cast<Function>(Callee);
6072   if (F && F->isIntrinsic())
6073     if (Value *Ret = simplifyIntrinsic(Call, Q))
6074       return Ret;
6075 
6076   return nullptr;
6077 }
6078 
6079 /// Given operands for a Freeze, see if we can fold the result.
6080 static Value *SimplifyFreezeInst(Value *Op0, const SimplifyQuery &Q) {
6081   // Use a utility function defined in ValueTracking.
6082   if (llvm::isGuaranteedNotToBeUndefOrPoison(Op0, Q.AC, Q.CxtI, Q.DT))
6083     return Op0;
6084   // We have room for improvement.
6085   return nullptr;
6086 }
6087 
6088 Value *llvm::SimplifyFreezeInst(Value *Op0, const SimplifyQuery &Q) {
6089   return ::SimplifyFreezeInst(Op0, Q);
6090 }
6091 
6092 static Value *SimplifyLoadInst(LoadInst *LI, Value *PtrOp,
6093                                const SimplifyQuery &Q) {
6094   if (LI->isVolatile())
6095     return nullptr;
6096 
6097   APInt Offset(Q.DL.getIndexTypeSizeInBits(PtrOp->getType()), 0);
6098   auto *PtrOpC = dyn_cast<Constant>(PtrOp);
6099   // Try to convert operand into a constant by stripping offsets while looking
6100   // through invariant.group intrinsics. Don't bother if the underlying object
6101   // is not constant, as calculating GEP offsets is expensive.
6102   if (!PtrOpC && isa<Constant>(getUnderlyingObject(PtrOp))) {
6103     PtrOp = PtrOp->stripAndAccumulateConstantOffsets(
6104         Q.DL, Offset, /* AllowNonInbounts */ true,
6105         /* AllowInvariantGroup */ true);
6106     // Index size may have changed due to address space casts.
6107     Offset = Offset.sextOrTrunc(Q.DL.getIndexTypeSizeInBits(PtrOp->getType()));
6108     PtrOpC = dyn_cast<Constant>(PtrOp);
6109   }
6110 
6111   if (PtrOpC)
6112     return ConstantFoldLoadFromConstPtr(PtrOpC, LI->getType(), Offset, Q.DL);
6113   return nullptr;
6114 }
6115 
6116 /// See if we can compute a simplified version of this instruction.
6117 /// If not, this returns null.
6118 
6119 static Value *simplifyInstructionWithOperands(Instruction *I,
6120                                               ArrayRef<Value *> NewOps,
6121                                               const SimplifyQuery &SQ,
6122                                               OptimizationRemarkEmitter *ORE) {
6123   const SimplifyQuery Q = SQ.CxtI ? SQ : SQ.getWithInstruction(I);
6124   Value *Result = nullptr;
6125 
6126   switch (I->getOpcode()) {
6127   default:
6128     if (llvm::all_of(NewOps, [](Value *V) { return isa<Constant>(V); })) {
6129       SmallVector<Constant *, 8> NewConstOps(NewOps.size());
6130       transform(NewOps, NewConstOps.begin(),
6131                 [](Value *V) { return cast<Constant>(V); });
6132       Result = ConstantFoldInstOperands(I, NewConstOps, Q.DL, Q.TLI);
6133     }
6134     break;
6135   case Instruction::FNeg:
6136     Result = SimplifyFNegInst(NewOps[0], I->getFastMathFlags(), Q);
6137     break;
6138   case Instruction::FAdd:
6139     Result = SimplifyFAddInst(NewOps[0], NewOps[1], I->getFastMathFlags(), Q);
6140     break;
6141   case Instruction::Add:
6142     Result = SimplifyAddInst(
6143         NewOps[0], NewOps[1], Q.IIQ.hasNoSignedWrap(cast<BinaryOperator>(I)),
6144         Q.IIQ.hasNoUnsignedWrap(cast<BinaryOperator>(I)), Q);
6145     break;
6146   case Instruction::FSub:
6147     Result = SimplifyFSubInst(NewOps[0], NewOps[1], I->getFastMathFlags(), Q);
6148     break;
6149   case Instruction::Sub:
6150     Result = SimplifySubInst(
6151         NewOps[0], NewOps[1], Q.IIQ.hasNoSignedWrap(cast<BinaryOperator>(I)),
6152         Q.IIQ.hasNoUnsignedWrap(cast<BinaryOperator>(I)), Q);
6153     break;
6154   case Instruction::FMul:
6155     Result = SimplifyFMulInst(NewOps[0], NewOps[1], I->getFastMathFlags(), Q);
6156     break;
6157   case Instruction::Mul:
6158     Result = SimplifyMulInst(NewOps[0], NewOps[1], Q);
6159     break;
6160   case Instruction::SDiv:
6161     Result = SimplifySDivInst(NewOps[0], NewOps[1], Q);
6162     break;
6163   case Instruction::UDiv:
6164     Result = SimplifyUDivInst(NewOps[0], NewOps[1], Q);
6165     break;
6166   case Instruction::FDiv:
6167     Result = SimplifyFDivInst(NewOps[0], NewOps[1], I->getFastMathFlags(), Q);
6168     break;
6169   case Instruction::SRem:
6170     Result = SimplifySRemInst(NewOps[0], NewOps[1], Q);
6171     break;
6172   case Instruction::URem:
6173     Result = SimplifyURemInst(NewOps[0], NewOps[1], Q);
6174     break;
6175   case Instruction::FRem:
6176     Result = SimplifyFRemInst(NewOps[0], NewOps[1], I->getFastMathFlags(), Q);
6177     break;
6178   case Instruction::Shl:
6179     Result = SimplifyShlInst(
6180         NewOps[0], NewOps[1], Q.IIQ.hasNoSignedWrap(cast<BinaryOperator>(I)),
6181         Q.IIQ.hasNoUnsignedWrap(cast<BinaryOperator>(I)), Q);
6182     break;
6183   case Instruction::LShr:
6184     Result = SimplifyLShrInst(NewOps[0], NewOps[1],
6185                               Q.IIQ.isExact(cast<BinaryOperator>(I)), Q);
6186     break;
6187   case Instruction::AShr:
6188     Result = SimplifyAShrInst(NewOps[0], NewOps[1],
6189                               Q.IIQ.isExact(cast<BinaryOperator>(I)), Q);
6190     break;
6191   case Instruction::And:
6192     Result = SimplifyAndInst(NewOps[0], NewOps[1], Q);
6193     break;
6194   case Instruction::Or:
6195     Result = SimplifyOrInst(NewOps[0], NewOps[1], Q);
6196     break;
6197   case Instruction::Xor:
6198     Result = SimplifyXorInst(NewOps[0], NewOps[1], Q);
6199     break;
6200   case Instruction::ICmp:
6201     Result = SimplifyICmpInst(cast<ICmpInst>(I)->getPredicate(), NewOps[0],
6202                               NewOps[1], Q);
6203     break;
6204   case Instruction::FCmp:
6205     Result = SimplifyFCmpInst(cast<FCmpInst>(I)->getPredicate(), NewOps[0],
6206                               NewOps[1], I->getFastMathFlags(), Q);
6207     break;
6208   case Instruction::Select:
6209     Result = SimplifySelectInst(NewOps[0], NewOps[1], NewOps[2], Q);
6210     break;
6211   case Instruction::GetElementPtr: {
6212     auto *GEPI = cast<GetElementPtrInst>(I);
6213     Result = SimplifyGEPInst(GEPI->getSourceElementType(), NewOps,
6214                              GEPI->isInBounds(), Q);
6215     break;
6216   }
6217   case Instruction::InsertValue: {
6218     InsertValueInst *IV = cast<InsertValueInst>(I);
6219     Result = SimplifyInsertValueInst(NewOps[0], NewOps[1], IV->getIndices(), Q);
6220     break;
6221   }
6222   case Instruction::InsertElement: {
6223     Result = SimplifyInsertElementInst(NewOps[0], NewOps[1], NewOps[2], Q);
6224     break;
6225   }
6226   case Instruction::ExtractValue: {
6227     auto *EVI = cast<ExtractValueInst>(I);
6228     Result = SimplifyExtractValueInst(NewOps[0], EVI->getIndices(), Q);
6229     break;
6230   }
6231   case Instruction::ExtractElement: {
6232     Result = SimplifyExtractElementInst(NewOps[0], NewOps[1], Q);
6233     break;
6234   }
6235   case Instruction::ShuffleVector: {
6236     auto *SVI = cast<ShuffleVectorInst>(I);
6237     Result = SimplifyShuffleVectorInst(
6238         NewOps[0], NewOps[1], SVI->getShuffleMask(), SVI->getType(), Q);
6239     break;
6240   }
6241   case Instruction::PHI:
6242     Result = SimplifyPHINode(cast<PHINode>(I), NewOps, Q);
6243     break;
6244   case Instruction::Call: {
6245     // TODO: Use NewOps
6246     Result = SimplifyCall(cast<CallInst>(I), Q);
6247     break;
6248   }
6249   case Instruction::Freeze:
6250     Result = llvm::SimplifyFreezeInst(NewOps[0], Q);
6251     break;
6252 #define HANDLE_CAST_INST(num, opc, clas) case Instruction::opc:
6253 #include "llvm/IR/Instruction.def"
6254 #undef HANDLE_CAST_INST
6255     Result = SimplifyCastInst(I->getOpcode(), NewOps[0], I->getType(), Q);
6256     break;
6257   case Instruction::Alloca:
6258     // No simplifications for Alloca and it can't be constant folded.
6259     Result = nullptr;
6260     break;
6261   case Instruction::Load:
6262     Result = SimplifyLoadInst(cast<LoadInst>(I), NewOps[0], Q);
6263     break;
6264   }
6265 
6266   /// If called on unreachable code, the above logic may report that the
6267   /// instruction simplified to itself.  Make life easier for users by
6268   /// detecting that case here, returning a safe value instead.
6269   return Result == I ? UndefValue::get(I->getType()) : Result;
6270 }
6271 
6272 Value *llvm::SimplifyInstructionWithOperands(Instruction *I,
6273                                              ArrayRef<Value *> NewOps,
6274                                              const SimplifyQuery &SQ,
6275                                              OptimizationRemarkEmitter *ORE) {
6276   assert(NewOps.size() == I->getNumOperands() &&
6277          "Number of operands should match the instruction!");
6278   return ::simplifyInstructionWithOperands(I, NewOps, SQ, ORE);
6279 }
6280 
6281 Value *llvm::SimplifyInstruction(Instruction *I, const SimplifyQuery &SQ,
6282                                  OptimizationRemarkEmitter *ORE) {
6283   SmallVector<Value *, 8> Ops(I->operands());
6284   return ::simplifyInstructionWithOperands(I, Ops, SQ, ORE);
6285 }
6286 
6287 /// Implementation of recursive simplification through an instruction's
6288 /// uses.
6289 ///
6290 /// This is the common implementation of the recursive simplification routines.
6291 /// If we have a pre-simplified value in 'SimpleV', that is forcibly used to
6292 /// replace the instruction 'I'. Otherwise, we simply add 'I' to the list of
6293 /// instructions to process and attempt to simplify it using
6294 /// InstructionSimplify. Recursively visited users which could not be
6295 /// simplified themselves are to the optional UnsimplifiedUsers set for
6296 /// further processing by the caller.
6297 ///
6298 /// This routine returns 'true' only when *it* simplifies something. The passed
6299 /// in simplified value does not count toward this.
6300 static bool replaceAndRecursivelySimplifyImpl(
6301     Instruction *I, Value *SimpleV, const TargetLibraryInfo *TLI,
6302     const DominatorTree *DT, AssumptionCache *AC,
6303     SmallSetVector<Instruction *, 8> *UnsimplifiedUsers = nullptr) {
6304   bool Simplified = false;
6305   SmallSetVector<Instruction *, 8> Worklist;
6306   const DataLayout &DL = I->getModule()->getDataLayout();
6307 
6308   // If we have an explicit value to collapse to, do that round of the
6309   // simplification loop by hand initially.
6310   if (SimpleV) {
6311     for (User *U : I->users())
6312       if (U != I)
6313         Worklist.insert(cast<Instruction>(U));
6314 
6315     // Replace the instruction with its simplified value.
6316     I->replaceAllUsesWith(SimpleV);
6317 
6318     // Gracefully handle edge cases where the instruction is not wired into any
6319     // parent block.
6320     if (I->getParent() && !I->isEHPad() && !I->isTerminator() &&
6321         !I->mayHaveSideEffects())
6322       I->eraseFromParent();
6323   } else {
6324     Worklist.insert(I);
6325   }
6326 
6327   // Note that we must test the size on each iteration, the worklist can grow.
6328   for (unsigned Idx = 0; Idx != Worklist.size(); ++Idx) {
6329     I = Worklist[Idx];
6330 
6331     // See if this instruction simplifies.
6332     SimpleV = SimplifyInstruction(I, {DL, TLI, DT, AC});
6333     if (!SimpleV) {
6334       if (UnsimplifiedUsers)
6335         UnsimplifiedUsers->insert(I);
6336       continue;
6337     }
6338 
6339     Simplified = true;
6340 
6341     // Stash away all the uses of the old instruction so we can check them for
6342     // recursive simplifications after a RAUW. This is cheaper than checking all
6343     // uses of To on the recursive step in most cases.
6344     for (User *U : I->users())
6345       Worklist.insert(cast<Instruction>(U));
6346 
6347     // Replace the instruction with its simplified value.
6348     I->replaceAllUsesWith(SimpleV);
6349 
6350     // Gracefully handle edge cases where the instruction is not wired into any
6351     // parent block.
6352     if (I->getParent() && !I->isEHPad() && !I->isTerminator() &&
6353         !I->mayHaveSideEffects())
6354       I->eraseFromParent();
6355   }
6356   return Simplified;
6357 }
6358 
6359 bool llvm::replaceAndRecursivelySimplify(
6360     Instruction *I, Value *SimpleV, const TargetLibraryInfo *TLI,
6361     const DominatorTree *DT, AssumptionCache *AC,
6362     SmallSetVector<Instruction *, 8> *UnsimplifiedUsers) {
6363   assert(I != SimpleV && "replaceAndRecursivelySimplify(X,X) is not valid!");
6364   assert(SimpleV && "Must provide a simplified value.");
6365   return replaceAndRecursivelySimplifyImpl(I, SimpleV, TLI, DT, AC,
6366                                            UnsimplifiedUsers);
6367 }
6368 
6369 namespace llvm {
6370 const SimplifyQuery getBestSimplifyQuery(Pass &P, Function &F) {
6371   auto *DTWP = P.getAnalysisIfAvailable<DominatorTreeWrapperPass>();
6372   auto *DT = DTWP ? &DTWP->getDomTree() : nullptr;
6373   auto *TLIWP = P.getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>();
6374   auto *TLI = TLIWP ? &TLIWP->getTLI(F) : nullptr;
6375   auto *ACWP = P.getAnalysisIfAvailable<AssumptionCacheTracker>();
6376   auto *AC = ACWP ? &ACWP->getAssumptionCache(F) : nullptr;
6377   return {F.getParent()->getDataLayout(), TLI, DT, AC};
6378 }
6379 
6380 const SimplifyQuery getBestSimplifyQuery(LoopStandardAnalysisResults &AR,
6381                                          const DataLayout &DL) {
6382   return {DL, &AR.TLI, &AR.DT, &AR.AC};
6383 }
6384 
6385 template <class T, class... TArgs>
6386 const SimplifyQuery getBestSimplifyQuery(AnalysisManager<T, TArgs...> &AM,
6387                                          Function &F) {
6388   auto *DT = AM.template getCachedResult<DominatorTreeAnalysis>(F);
6389   auto *TLI = AM.template getCachedResult<TargetLibraryAnalysis>(F);
6390   auto *AC = AM.template getCachedResult<AssumptionAnalysis>(F);
6391   return {F.getParent()->getDataLayout(), TLI, DT, AC};
6392 }
6393 template const SimplifyQuery getBestSimplifyQuery(AnalysisManager<Function> &,
6394                                                   Function &);
6395 }
6396