1 //===- InstructionSimplify.cpp - Fold instruction operands ----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements routines for folding instructions into simpler forms 10 // that do not require creating new instructions. This does constant folding 11 // ("add i32 1, 1" -> "2") but can also handle non-constant operands, either 12 // returning a constant ("and i32 %x, 0" -> "0") or an already existing value 13 // ("and i32 %x, %x" -> "%x"). All operands are assumed to have already been 14 // simplified: This is usually true and assuming it simplifies the logic (if 15 // they have not been simplified then results are correct but maybe suboptimal). 16 // 17 //===----------------------------------------------------------------------===// 18 19 #include "llvm/Analysis/InstructionSimplify.h" 20 21 #include "llvm/ADT/STLExtras.h" 22 #include "llvm/ADT/SetVector.h" 23 #include "llvm/ADT/SmallPtrSet.h" 24 #include "llvm/ADT/Statistic.h" 25 #include "llvm/Analysis/AliasAnalysis.h" 26 #include "llvm/Analysis/AssumptionCache.h" 27 #include "llvm/Analysis/CaptureTracking.h" 28 #include "llvm/Analysis/CmpInstAnalysis.h" 29 #include "llvm/Analysis/ConstantFolding.h" 30 #include "llvm/Analysis/LoopAnalysisManager.h" 31 #include "llvm/Analysis/MemoryBuiltins.h" 32 #include "llvm/Analysis/OverflowInstAnalysis.h" 33 #include "llvm/Analysis/ValueTracking.h" 34 #include "llvm/Analysis/VectorUtils.h" 35 #include "llvm/IR/ConstantRange.h" 36 #include "llvm/IR/DataLayout.h" 37 #include "llvm/IR/Dominators.h" 38 #include "llvm/IR/GetElementPtrTypeIterator.h" 39 #include "llvm/IR/GlobalAlias.h" 40 #include "llvm/IR/InstrTypes.h" 41 #include "llvm/IR/Instructions.h" 42 #include "llvm/IR/Operator.h" 43 #include "llvm/IR/PatternMatch.h" 44 #include "llvm/IR/ValueHandle.h" 45 #include "llvm/Support/KnownBits.h" 46 #include <algorithm> 47 using namespace llvm; 48 using namespace llvm::PatternMatch; 49 50 #define DEBUG_TYPE "instsimplify" 51 52 enum { RecursionLimit = 3 }; 53 54 STATISTIC(NumExpand, "Number of expansions"); 55 STATISTIC(NumReassoc, "Number of reassociations"); 56 57 static Value *SimplifyAndInst(Value *, Value *, const SimplifyQuery &, unsigned); 58 static Value *simplifyUnOp(unsigned, Value *, const SimplifyQuery &, unsigned); 59 static Value *simplifyFPUnOp(unsigned, Value *, const FastMathFlags &, 60 const SimplifyQuery &, unsigned); 61 static Value *SimplifyBinOp(unsigned, Value *, Value *, const SimplifyQuery &, 62 unsigned); 63 static Value *SimplifyBinOp(unsigned, Value *, Value *, const FastMathFlags &, 64 const SimplifyQuery &, unsigned); 65 static Value *SimplifyCmpInst(unsigned, Value *, Value *, const SimplifyQuery &, 66 unsigned); 67 static Value *SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS, 68 const SimplifyQuery &Q, unsigned MaxRecurse); 69 static Value *SimplifyOrInst(Value *, Value *, const SimplifyQuery &, unsigned); 70 static Value *SimplifyXorInst(Value *, Value *, const SimplifyQuery &, unsigned); 71 static Value *SimplifyCastInst(unsigned, Value *, Type *, 72 const SimplifyQuery &, unsigned); 73 static Value *SimplifyGEPInst(Type *, ArrayRef<Value *>, bool, 74 const SimplifyQuery &, unsigned); 75 static Value *SimplifySelectInst(Value *, Value *, Value *, 76 const SimplifyQuery &, unsigned); 77 78 static Value *foldSelectWithBinaryOp(Value *Cond, Value *TrueVal, 79 Value *FalseVal) { 80 BinaryOperator::BinaryOps BinOpCode; 81 if (auto *BO = dyn_cast<BinaryOperator>(Cond)) 82 BinOpCode = BO->getOpcode(); 83 else 84 return nullptr; 85 86 CmpInst::Predicate ExpectedPred, Pred1, Pred2; 87 if (BinOpCode == BinaryOperator::Or) { 88 ExpectedPred = ICmpInst::ICMP_NE; 89 } else if (BinOpCode == BinaryOperator::And) { 90 ExpectedPred = ICmpInst::ICMP_EQ; 91 } else 92 return nullptr; 93 94 // %A = icmp eq %TV, %FV 95 // %B = icmp eq %X, %Y (and one of these is a select operand) 96 // %C = and %A, %B 97 // %D = select %C, %TV, %FV 98 // --> 99 // %FV 100 101 // %A = icmp ne %TV, %FV 102 // %B = icmp ne %X, %Y (and one of these is a select operand) 103 // %C = or %A, %B 104 // %D = select %C, %TV, %FV 105 // --> 106 // %TV 107 Value *X, *Y; 108 if (!match(Cond, m_c_BinOp(m_c_ICmp(Pred1, m_Specific(TrueVal), 109 m_Specific(FalseVal)), 110 m_ICmp(Pred2, m_Value(X), m_Value(Y)))) || 111 Pred1 != Pred2 || Pred1 != ExpectedPred) 112 return nullptr; 113 114 if (X == TrueVal || X == FalseVal || Y == TrueVal || Y == FalseVal) 115 return BinOpCode == BinaryOperator::Or ? TrueVal : FalseVal; 116 117 return nullptr; 118 } 119 120 /// For a boolean type or a vector of boolean type, return false or a vector 121 /// with every element false. 122 static Constant *getFalse(Type *Ty) { 123 return ConstantInt::getFalse(Ty); 124 } 125 126 /// For a boolean type or a vector of boolean type, return true or a vector 127 /// with every element true. 128 static Constant *getTrue(Type *Ty) { 129 return ConstantInt::getTrue(Ty); 130 } 131 132 /// isSameCompare - Is V equivalent to the comparison "LHS Pred RHS"? 133 static bool isSameCompare(Value *V, CmpInst::Predicate Pred, Value *LHS, 134 Value *RHS) { 135 CmpInst *Cmp = dyn_cast<CmpInst>(V); 136 if (!Cmp) 137 return false; 138 CmpInst::Predicate CPred = Cmp->getPredicate(); 139 Value *CLHS = Cmp->getOperand(0), *CRHS = Cmp->getOperand(1); 140 if (CPred == Pred && CLHS == LHS && CRHS == RHS) 141 return true; 142 return CPred == CmpInst::getSwappedPredicate(Pred) && CLHS == RHS && 143 CRHS == LHS; 144 } 145 146 /// Simplify comparison with true or false branch of select: 147 /// %sel = select i1 %cond, i32 %tv, i32 %fv 148 /// %cmp = icmp sle i32 %sel, %rhs 149 /// Compose new comparison by substituting %sel with either %tv or %fv 150 /// and see if it simplifies. 151 static Value *simplifyCmpSelCase(CmpInst::Predicate Pred, Value *LHS, 152 Value *RHS, Value *Cond, 153 const SimplifyQuery &Q, unsigned MaxRecurse, 154 Constant *TrueOrFalse) { 155 Value *SimplifiedCmp = SimplifyCmpInst(Pred, LHS, RHS, Q, MaxRecurse); 156 if (SimplifiedCmp == Cond) { 157 // %cmp simplified to the select condition (%cond). 158 return TrueOrFalse; 159 } else if (!SimplifiedCmp && isSameCompare(Cond, Pred, LHS, RHS)) { 160 // It didn't simplify. However, if composed comparison is equivalent 161 // to the select condition (%cond) then we can replace it. 162 return TrueOrFalse; 163 } 164 return SimplifiedCmp; 165 } 166 167 /// Simplify comparison with true branch of select 168 static Value *simplifyCmpSelTrueCase(CmpInst::Predicate Pred, Value *LHS, 169 Value *RHS, Value *Cond, 170 const SimplifyQuery &Q, 171 unsigned MaxRecurse) { 172 return simplifyCmpSelCase(Pred, LHS, RHS, Cond, Q, MaxRecurse, 173 getTrue(Cond->getType())); 174 } 175 176 /// Simplify comparison with false branch of select 177 static Value *simplifyCmpSelFalseCase(CmpInst::Predicate Pred, Value *LHS, 178 Value *RHS, Value *Cond, 179 const SimplifyQuery &Q, 180 unsigned MaxRecurse) { 181 return simplifyCmpSelCase(Pred, LHS, RHS, Cond, Q, MaxRecurse, 182 getFalse(Cond->getType())); 183 } 184 185 /// We know comparison with both branches of select can be simplified, but they 186 /// are not equal. This routine handles some logical simplifications. 187 static Value *handleOtherCmpSelSimplifications(Value *TCmp, Value *FCmp, 188 Value *Cond, 189 const SimplifyQuery &Q, 190 unsigned MaxRecurse) { 191 // If the false value simplified to false, then the result of the compare 192 // is equal to "Cond && TCmp". This also catches the case when the false 193 // value simplified to false and the true value to true, returning "Cond". 194 // Folding select to and/or isn't poison-safe in general; impliesPoison 195 // checks whether folding it does not convert a well-defined value into 196 // poison. 197 if (match(FCmp, m_Zero()) && impliesPoison(TCmp, Cond)) 198 if (Value *V = SimplifyAndInst(Cond, TCmp, Q, MaxRecurse)) 199 return V; 200 // If the true value simplified to true, then the result of the compare 201 // is equal to "Cond || FCmp". 202 if (match(TCmp, m_One()) && impliesPoison(FCmp, Cond)) 203 if (Value *V = SimplifyOrInst(Cond, FCmp, Q, MaxRecurse)) 204 return V; 205 // Finally, if the false value simplified to true and the true value to 206 // false, then the result of the compare is equal to "!Cond". 207 if (match(FCmp, m_One()) && match(TCmp, m_Zero())) 208 if (Value *V = SimplifyXorInst( 209 Cond, Constant::getAllOnesValue(Cond->getType()), Q, MaxRecurse)) 210 return V; 211 return nullptr; 212 } 213 214 /// Does the given value dominate the specified phi node? 215 static bool valueDominatesPHI(Value *V, PHINode *P, const DominatorTree *DT) { 216 Instruction *I = dyn_cast<Instruction>(V); 217 if (!I) 218 // Arguments and constants dominate all instructions. 219 return true; 220 221 // If we are processing instructions (and/or basic blocks) that have not been 222 // fully added to a function, the parent nodes may still be null. Simply 223 // return the conservative answer in these cases. 224 if (!I->getParent() || !P->getParent() || !I->getFunction()) 225 return false; 226 227 // If we have a DominatorTree then do a precise test. 228 if (DT) 229 return DT->dominates(I, P); 230 231 // Otherwise, if the instruction is in the entry block and is not an invoke, 232 // then it obviously dominates all phi nodes. 233 if (I->getParent()->isEntryBlock() && !isa<InvokeInst>(I) && 234 !isa<CallBrInst>(I)) 235 return true; 236 237 return false; 238 } 239 240 /// Try to simplify a binary operator of form "V op OtherOp" where V is 241 /// "(B0 opex B1)" by distributing 'op' across 'opex' as 242 /// "(B0 op OtherOp) opex (B1 op OtherOp)". 243 static Value *expandBinOp(Instruction::BinaryOps Opcode, Value *V, 244 Value *OtherOp, Instruction::BinaryOps OpcodeToExpand, 245 const SimplifyQuery &Q, unsigned MaxRecurse) { 246 auto *B = dyn_cast<BinaryOperator>(V); 247 if (!B || B->getOpcode() != OpcodeToExpand) 248 return nullptr; 249 Value *B0 = B->getOperand(0), *B1 = B->getOperand(1); 250 Value *L = SimplifyBinOp(Opcode, B0, OtherOp, Q.getWithoutUndef(), 251 MaxRecurse); 252 if (!L) 253 return nullptr; 254 Value *R = SimplifyBinOp(Opcode, B1, OtherOp, Q.getWithoutUndef(), 255 MaxRecurse); 256 if (!R) 257 return nullptr; 258 259 // Does the expanded pair of binops simplify to the existing binop? 260 if ((L == B0 && R == B1) || 261 (Instruction::isCommutative(OpcodeToExpand) && L == B1 && R == B0)) { 262 ++NumExpand; 263 return B; 264 } 265 266 // Otherwise, return "L op' R" if it simplifies. 267 Value *S = SimplifyBinOp(OpcodeToExpand, L, R, Q, MaxRecurse); 268 if (!S) 269 return nullptr; 270 271 ++NumExpand; 272 return S; 273 } 274 275 /// Try to simplify binops of form "A op (B op' C)" or the commuted variant by 276 /// distributing op over op'. 277 static Value *expandCommutativeBinOp(Instruction::BinaryOps Opcode, 278 Value *L, Value *R, 279 Instruction::BinaryOps OpcodeToExpand, 280 const SimplifyQuery &Q, 281 unsigned MaxRecurse) { 282 // Recursion is always used, so bail out at once if we already hit the limit. 283 if (!MaxRecurse--) 284 return nullptr; 285 286 if (Value *V = expandBinOp(Opcode, L, R, OpcodeToExpand, Q, MaxRecurse)) 287 return V; 288 if (Value *V = expandBinOp(Opcode, R, L, OpcodeToExpand, Q, MaxRecurse)) 289 return V; 290 return nullptr; 291 } 292 293 /// Generic simplifications for associative binary operations. 294 /// Returns the simpler value, or null if none was found. 295 static Value *SimplifyAssociativeBinOp(Instruction::BinaryOps Opcode, 296 Value *LHS, Value *RHS, 297 const SimplifyQuery &Q, 298 unsigned MaxRecurse) { 299 assert(Instruction::isAssociative(Opcode) && "Not an associative operation!"); 300 301 // Recursion is always used, so bail out at once if we already hit the limit. 302 if (!MaxRecurse--) 303 return nullptr; 304 305 BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS); 306 BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS); 307 308 // Transform: "(A op B) op C" ==> "A op (B op C)" if it simplifies completely. 309 if (Op0 && Op0->getOpcode() == Opcode) { 310 Value *A = Op0->getOperand(0); 311 Value *B = Op0->getOperand(1); 312 Value *C = RHS; 313 314 // Does "B op C" simplify? 315 if (Value *V = SimplifyBinOp(Opcode, B, C, Q, MaxRecurse)) { 316 // It does! Return "A op V" if it simplifies or is already available. 317 // If V equals B then "A op V" is just the LHS. 318 if (V == B) return LHS; 319 // Otherwise return "A op V" if it simplifies. 320 if (Value *W = SimplifyBinOp(Opcode, A, V, Q, MaxRecurse)) { 321 ++NumReassoc; 322 return W; 323 } 324 } 325 } 326 327 // Transform: "A op (B op C)" ==> "(A op B) op C" if it simplifies completely. 328 if (Op1 && Op1->getOpcode() == Opcode) { 329 Value *A = LHS; 330 Value *B = Op1->getOperand(0); 331 Value *C = Op1->getOperand(1); 332 333 // Does "A op B" simplify? 334 if (Value *V = SimplifyBinOp(Opcode, A, B, Q, MaxRecurse)) { 335 // It does! Return "V op C" if it simplifies or is already available. 336 // If V equals B then "V op C" is just the RHS. 337 if (V == B) return RHS; 338 // Otherwise return "V op C" if it simplifies. 339 if (Value *W = SimplifyBinOp(Opcode, V, C, Q, MaxRecurse)) { 340 ++NumReassoc; 341 return W; 342 } 343 } 344 } 345 346 // The remaining transforms require commutativity as well as associativity. 347 if (!Instruction::isCommutative(Opcode)) 348 return nullptr; 349 350 // Transform: "(A op B) op C" ==> "(C op A) op B" if it simplifies completely. 351 if (Op0 && Op0->getOpcode() == Opcode) { 352 Value *A = Op0->getOperand(0); 353 Value *B = Op0->getOperand(1); 354 Value *C = RHS; 355 356 // Does "C op A" simplify? 357 if (Value *V = SimplifyBinOp(Opcode, C, A, Q, MaxRecurse)) { 358 // It does! Return "V op B" if it simplifies or is already available. 359 // If V equals A then "V op B" is just the LHS. 360 if (V == A) return LHS; 361 // Otherwise return "V op B" if it simplifies. 362 if (Value *W = SimplifyBinOp(Opcode, V, B, Q, MaxRecurse)) { 363 ++NumReassoc; 364 return W; 365 } 366 } 367 } 368 369 // Transform: "A op (B op C)" ==> "B op (C op A)" if it simplifies completely. 370 if (Op1 && Op1->getOpcode() == Opcode) { 371 Value *A = LHS; 372 Value *B = Op1->getOperand(0); 373 Value *C = Op1->getOperand(1); 374 375 // Does "C op A" simplify? 376 if (Value *V = SimplifyBinOp(Opcode, C, A, Q, MaxRecurse)) { 377 // It does! Return "B op V" if it simplifies or is already available. 378 // If V equals C then "B op V" is just the RHS. 379 if (V == C) return RHS; 380 // Otherwise return "B op V" if it simplifies. 381 if (Value *W = SimplifyBinOp(Opcode, B, V, Q, MaxRecurse)) { 382 ++NumReassoc; 383 return W; 384 } 385 } 386 } 387 388 return nullptr; 389 } 390 391 /// In the case of a binary operation with a select instruction as an operand, 392 /// try to simplify the binop by seeing whether evaluating it on both branches 393 /// of the select results in the same value. Returns the common value if so, 394 /// otherwise returns null. 395 static Value *ThreadBinOpOverSelect(Instruction::BinaryOps Opcode, Value *LHS, 396 Value *RHS, const SimplifyQuery &Q, 397 unsigned MaxRecurse) { 398 // Recursion is always used, so bail out at once if we already hit the limit. 399 if (!MaxRecurse--) 400 return nullptr; 401 402 SelectInst *SI; 403 if (isa<SelectInst>(LHS)) { 404 SI = cast<SelectInst>(LHS); 405 } else { 406 assert(isa<SelectInst>(RHS) && "No select instruction operand!"); 407 SI = cast<SelectInst>(RHS); 408 } 409 410 // Evaluate the BinOp on the true and false branches of the select. 411 Value *TV; 412 Value *FV; 413 if (SI == LHS) { 414 TV = SimplifyBinOp(Opcode, SI->getTrueValue(), RHS, Q, MaxRecurse); 415 FV = SimplifyBinOp(Opcode, SI->getFalseValue(), RHS, Q, MaxRecurse); 416 } else { 417 TV = SimplifyBinOp(Opcode, LHS, SI->getTrueValue(), Q, MaxRecurse); 418 FV = SimplifyBinOp(Opcode, LHS, SI->getFalseValue(), Q, MaxRecurse); 419 } 420 421 // If they simplified to the same value, then return the common value. 422 // If they both failed to simplify then return null. 423 if (TV == FV) 424 return TV; 425 426 // If one branch simplified to undef, return the other one. 427 if (TV && Q.isUndefValue(TV)) 428 return FV; 429 if (FV && Q.isUndefValue(FV)) 430 return TV; 431 432 // If applying the operation did not change the true and false select values, 433 // then the result of the binop is the select itself. 434 if (TV == SI->getTrueValue() && FV == SI->getFalseValue()) 435 return SI; 436 437 // If one branch simplified and the other did not, and the simplified 438 // value is equal to the unsimplified one, return the simplified value. 439 // For example, select (cond, X, X & Z) & Z -> X & Z. 440 if ((FV && !TV) || (TV && !FV)) { 441 // Check that the simplified value has the form "X op Y" where "op" is the 442 // same as the original operation. 443 Instruction *Simplified = dyn_cast<Instruction>(FV ? FV : TV); 444 if (Simplified && Simplified->getOpcode() == unsigned(Opcode)) { 445 // The value that didn't simplify is "UnsimplifiedLHS op UnsimplifiedRHS". 446 // We already know that "op" is the same as for the simplified value. See 447 // if the operands match too. If so, return the simplified value. 448 Value *UnsimplifiedBranch = FV ? SI->getTrueValue() : SI->getFalseValue(); 449 Value *UnsimplifiedLHS = SI == LHS ? UnsimplifiedBranch : LHS; 450 Value *UnsimplifiedRHS = SI == LHS ? RHS : UnsimplifiedBranch; 451 if (Simplified->getOperand(0) == UnsimplifiedLHS && 452 Simplified->getOperand(1) == UnsimplifiedRHS) 453 return Simplified; 454 if (Simplified->isCommutative() && 455 Simplified->getOperand(1) == UnsimplifiedLHS && 456 Simplified->getOperand(0) == UnsimplifiedRHS) 457 return Simplified; 458 } 459 } 460 461 return nullptr; 462 } 463 464 /// In the case of a comparison with a select instruction, try to simplify the 465 /// comparison by seeing whether both branches of the select result in the same 466 /// value. Returns the common value if so, otherwise returns null. 467 /// For example, if we have: 468 /// %tmp = select i1 %cmp, i32 1, i32 2 469 /// %cmp1 = icmp sle i32 %tmp, 3 470 /// We can simplify %cmp1 to true, because both branches of select are 471 /// less than 3. We compose new comparison by substituting %tmp with both 472 /// branches of select and see if it can be simplified. 473 static Value *ThreadCmpOverSelect(CmpInst::Predicate Pred, Value *LHS, 474 Value *RHS, const SimplifyQuery &Q, 475 unsigned MaxRecurse) { 476 // Recursion is always used, so bail out at once if we already hit the limit. 477 if (!MaxRecurse--) 478 return nullptr; 479 480 // Make sure the select is on the LHS. 481 if (!isa<SelectInst>(LHS)) { 482 std::swap(LHS, RHS); 483 Pred = CmpInst::getSwappedPredicate(Pred); 484 } 485 assert(isa<SelectInst>(LHS) && "Not comparing with a select instruction!"); 486 SelectInst *SI = cast<SelectInst>(LHS); 487 Value *Cond = SI->getCondition(); 488 Value *TV = SI->getTrueValue(); 489 Value *FV = SI->getFalseValue(); 490 491 // Now that we have "cmp select(Cond, TV, FV), RHS", analyse it. 492 // Does "cmp TV, RHS" simplify? 493 Value *TCmp = simplifyCmpSelTrueCase(Pred, TV, RHS, Cond, Q, MaxRecurse); 494 if (!TCmp) 495 return nullptr; 496 497 // Does "cmp FV, RHS" simplify? 498 Value *FCmp = simplifyCmpSelFalseCase(Pred, FV, RHS, Cond, Q, MaxRecurse); 499 if (!FCmp) 500 return nullptr; 501 502 // If both sides simplified to the same value, then use it as the result of 503 // the original comparison. 504 if (TCmp == FCmp) 505 return TCmp; 506 507 // The remaining cases only make sense if the select condition has the same 508 // type as the result of the comparison, so bail out if this is not so. 509 if (Cond->getType()->isVectorTy() == RHS->getType()->isVectorTy()) 510 return handleOtherCmpSelSimplifications(TCmp, FCmp, Cond, Q, MaxRecurse); 511 512 return nullptr; 513 } 514 515 /// In the case of a binary operation with an operand that is a PHI instruction, 516 /// try to simplify the binop by seeing whether evaluating it on the incoming 517 /// phi values yields the same result for every value. If so returns the common 518 /// value, otherwise returns null. 519 static Value *ThreadBinOpOverPHI(Instruction::BinaryOps Opcode, Value *LHS, 520 Value *RHS, const SimplifyQuery &Q, 521 unsigned MaxRecurse) { 522 // Recursion is always used, so bail out at once if we already hit the limit. 523 if (!MaxRecurse--) 524 return nullptr; 525 526 PHINode *PI; 527 if (isa<PHINode>(LHS)) { 528 PI = cast<PHINode>(LHS); 529 // Bail out if RHS and the phi may be mutually interdependent due to a loop. 530 if (!valueDominatesPHI(RHS, PI, Q.DT)) 531 return nullptr; 532 } else { 533 assert(isa<PHINode>(RHS) && "No PHI instruction operand!"); 534 PI = cast<PHINode>(RHS); 535 // Bail out if LHS and the phi may be mutually interdependent due to a loop. 536 if (!valueDominatesPHI(LHS, PI, Q.DT)) 537 return nullptr; 538 } 539 540 // Evaluate the BinOp on the incoming phi values. 541 Value *CommonValue = nullptr; 542 for (Value *Incoming : PI->incoming_values()) { 543 // If the incoming value is the phi node itself, it can safely be skipped. 544 if (Incoming == PI) continue; 545 Value *V = PI == LHS ? 546 SimplifyBinOp(Opcode, Incoming, RHS, Q, MaxRecurse) : 547 SimplifyBinOp(Opcode, LHS, Incoming, Q, MaxRecurse); 548 // If the operation failed to simplify, or simplified to a different value 549 // to previously, then give up. 550 if (!V || (CommonValue && V != CommonValue)) 551 return nullptr; 552 CommonValue = V; 553 } 554 555 return CommonValue; 556 } 557 558 /// In the case of a comparison with a PHI instruction, try to simplify the 559 /// comparison by seeing whether comparing with all of the incoming phi values 560 /// yields the same result every time. If so returns the common result, 561 /// otherwise returns null. 562 static Value *ThreadCmpOverPHI(CmpInst::Predicate Pred, Value *LHS, Value *RHS, 563 const SimplifyQuery &Q, unsigned MaxRecurse) { 564 // Recursion is always used, so bail out at once if we already hit the limit. 565 if (!MaxRecurse--) 566 return nullptr; 567 568 // Make sure the phi is on the LHS. 569 if (!isa<PHINode>(LHS)) { 570 std::swap(LHS, RHS); 571 Pred = CmpInst::getSwappedPredicate(Pred); 572 } 573 assert(isa<PHINode>(LHS) && "Not comparing with a phi instruction!"); 574 PHINode *PI = cast<PHINode>(LHS); 575 576 // Bail out if RHS and the phi may be mutually interdependent due to a loop. 577 if (!valueDominatesPHI(RHS, PI, Q.DT)) 578 return nullptr; 579 580 // Evaluate the BinOp on the incoming phi values. 581 Value *CommonValue = nullptr; 582 for (unsigned u = 0, e = PI->getNumIncomingValues(); u < e; ++u) { 583 Value *Incoming = PI->getIncomingValue(u); 584 Instruction *InTI = PI->getIncomingBlock(u)->getTerminator(); 585 // If the incoming value is the phi node itself, it can safely be skipped. 586 if (Incoming == PI) continue; 587 // Change the context instruction to the "edge" that flows into the phi. 588 // This is important because that is where incoming is actually "evaluated" 589 // even though it is used later somewhere else. 590 Value *V = SimplifyCmpInst(Pred, Incoming, RHS, Q.getWithInstruction(InTI), 591 MaxRecurse); 592 // If the operation failed to simplify, or simplified to a different value 593 // to previously, then give up. 594 if (!V || (CommonValue && V != CommonValue)) 595 return nullptr; 596 CommonValue = V; 597 } 598 599 return CommonValue; 600 } 601 602 static Constant *foldOrCommuteConstant(Instruction::BinaryOps Opcode, 603 Value *&Op0, Value *&Op1, 604 const SimplifyQuery &Q) { 605 if (auto *CLHS = dyn_cast<Constant>(Op0)) { 606 if (auto *CRHS = dyn_cast<Constant>(Op1)) 607 return ConstantFoldBinaryOpOperands(Opcode, CLHS, CRHS, Q.DL); 608 609 // Canonicalize the constant to the RHS if this is a commutative operation. 610 if (Instruction::isCommutative(Opcode)) 611 std::swap(Op0, Op1); 612 } 613 return nullptr; 614 } 615 616 /// Given operands for an Add, see if we can fold the result. 617 /// If not, this returns null. 618 static Value *SimplifyAddInst(Value *Op0, Value *Op1, bool IsNSW, bool IsNUW, 619 const SimplifyQuery &Q, unsigned MaxRecurse) { 620 if (Constant *C = foldOrCommuteConstant(Instruction::Add, Op0, Op1, Q)) 621 return C; 622 623 // X + undef -> undef 624 if (Q.isUndefValue(Op1)) 625 return Op1; 626 627 // X + 0 -> X 628 if (match(Op1, m_Zero())) 629 return Op0; 630 631 // If two operands are negative, return 0. 632 if (isKnownNegation(Op0, Op1)) 633 return Constant::getNullValue(Op0->getType()); 634 635 // X + (Y - X) -> Y 636 // (Y - X) + X -> Y 637 // Eg: X + -X -> 0 638 Value *Y = nullptr; 639 if (match(Op1, m_Sub(m_Value(Y), m_Specific(Op0))) || 640 match(Op0, m_Sub(m_Value(Y), m_Specific(Op1)))) 641 return Y; 642 643 // X + ~X -> -1 since ~X = -X-1 644 Type *Ty = Op0->getType(); 645 if (match(Op0, m_Not(m_Specific(Op1))) || 646 match(Op1, m_Not(m_Specific(Op0)))) 647 return Constant::getAllOnesValue(Ty); 648 649 // add nsw/nuw (xor Y, signmask), signmask --> Y 650 // The no-wrapping add guarantees that the top bit will be set by the add. 651 // Therefore, the xor must be clearing the already set sign bit of Y. 652 if ((IsNSW || IsNUW) && match(Op1, m_SignMask()) && 653 match(Op0, m_Xor(m_Value(Y), m_SignMask()))) 654 return Y; 655 656 // add nuw %x, -1 -> -1, because %x can only be 0. 657 if (IsNUW && match(Op1, m_AllOnes())) 658 return Op1; // Which is -1. 659 660 /// i1 add -> xor. 661 if (MaxRecurse && Op0->getType()->isIntOrIntVectorTy(1)) 662 if (Value *V = SimplifyXorInst(Op0, Op1, Q, MaxRecurse-1)) 663 return V; 664 665 // Try some generic simplifications for associative operations. 666 if (Value *V = SimplifyAssociativeBinOp(Instruction::Add, Op0, Op1, Q, 667 MaxRecurse)) 668 return V; 669 670 // Threading Add over selects and phi nodes is pointless, so don't bother. 671 // Threading over the select in "A + select(cond, B, C)" means evaluating 672 // "A+B" and "A+C" and seeing if they are equal; but they are equal if and 673 // only if B and C are equal. If B and C are equal then (since we assume 674 // that operands have already been simplified) "select(cond, B, C)" should 675 // have been simplified to the common value of B and C already. Analysing 676 // "A+B" and "A+C" thus gains nothing, but costs compile time. Similarly 677 // for threading over phi nodes. 678 679 return nullptr; 680 } 681 682 Value *llvm::SimplifyAddInst(Value *Op0, Value *Op1, bool IsNSW, bool IsNUW, 683 const SimplifyQuery &Query) { 684 return ::SimplifyAddInst(Op0, Op1, IsNSW, IsNUW, Query, RecursionLimit); 685 } 686 687 /// Compute the base pointer and cumulative constant offsets for V. 688 /// 689 /// This strips all constant offsets off of V, leaving it the base pointer, and 690 /// accumulates the total constant offset applied in the returned constant. It 691 /// returns 0 if V is not a pointer, and returns the constant '0' if there are 692 /// no constant offsets applied. 693 /// 694 /// This is very similar to GetPointerBaseWithConstantOffset except it doesn't 695 /// follow non-inbounds geps. This allows it to remain usable for icmp ult/etc. 696 /// folding. 697 static Constant *stripAndComputeConstantOffsets(const DataLayout &DL, Value *&V, 698 bool AllowNonInbounds = false) { 699 assert(V->getType()->isPtrOrPtrVectorTy()); 700 701 APInt Offset = APInt::getZero(DL.getIndexTypeSizeInBits(V->getType())); 702 703 V = V->stripAndAccumulateConstantOffsets(DL, Offset, AllowNonInbounds); 704 // As that strip may trace through `addrspacecast`, need to sext or trunc 705 // the offset calculated. 706 Type *IntIdxTy = DL.getIndexType(V->getType())->getScalarType(); 707 Offset = Offset.sextOrTrunc(IntIdxTy->getIntegerBitWidth()); 708 709 Constant *OffsetIntPtr = ConstantInt::get(IntIdxTy, Offset); 710 if (VectorType *VecTy = dyn_cast<VectorType>(V->getType())) 711 return ConstantVector::getSplat(VecTy->getElementCount(), OffsetIntPtr); 712 return OffsetIntPtr; 713 } 714 715 /// Compute the constant difference between two pointer values. 716 /// If the difference is not a constant, returns zero. 717 static Constant *computePointerDifference(const DataLayout &DL, Value *LHS, 718 Value *RHS) { 719 Constant *LHSOffset = stripAndComputeConstantOffsets(DL, LHS); 720 Constant *RHSOffset = stripAndComputeConstantOffsets(DL, RHS); 721 722 // If LHS and RHS are not related via constant offsets to the same base 723 // value, there is nothing we can do here. 724 if (LHS != RHS) 725 return nullptr; 726 727 // Otherwise, the difference of LHS - RHS can be computed as: 728 // LHS - RHS 729 // = (LHSOffset + Base) - (RHSOffset + Base) 730 // = LHSOffset - RHSOffset 731 return ConstantExpr::getSub(LHSOffset, RHSOffset); 732 } 733 734 /// Given operands for a Sub, see if we can fold the result. 735 /// If not, this returns null. 736 static Value *SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, 737 const SimplifyQuery &Q, unsigned MaxRecurse) { 738 if (Constant *C = foldOrCommuteConstant(Instruction::Sub, Op0, Op1, Q)) 739 return C; 740 741 // X - poison -> poison 742 // poison - X -> poison 743 if (isa<PoisonValue>(Op0) || isa<PoisonValue>(Op1)) 744 return PoisonValue::get(Op0->getType()); 745 746 // X - undef -> undef 747 // undef - X -> undef 748 if (Q.isUndefValue(Op0) || Q.isUndefValue(Op1)) 749 return UndefValue::get(Op0->getType()); 750 751 // X - 0 -> X 752 if (match(Op1, m_Zero())) 753 return Op0; 754 755 // X - X -> 0 756 if (Op0 == Op1) 757 return Constant::getNullValue(Op0->getType()); 758 759 // Is this a negation? 760 if (match(Op0, m_Zero())) { 761 // 0 - X -> 0 if the sub is NUW. 762 if (isNUW) 763 return Constant::getNullValue(Op0->getType()); 764 765 KnownBits Known = computeKnownBits(Op1, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 766 if (Known.Zero.isMaxSignedValue()) { 767 // Op1 is either 0 or the minimum signed value. If the sub is NSW, then 768 // Op1 must be 0 because negating the minimum signed value is undefined. 769 if (isNSW) 770 return Constant::getNullValue(Op0->getType()); 771 772 // 0 - X -> X if X is 0 or the minimum signed value. 773 return Op1; 774 } 775 } 776 777 // (X + Y) - Z -> X + (Y - Z) or Y + (X - Z) if everything simplifies. 778 // For example, (X + Y) - Y -> X; (Y + X) - Y -> X 779 Value *X = nullptr, *Y = nullptr, *Z = Op1; 780 if (MaxRecurse && match(Op0, m_Add(m_Value(X), m_Value(Y)))) { // (X + Y) - Z 781 // See if "V === Y - Z" simplifies. 782 if (Value *V = SimplifyBinOp(Instruction::Sub, Y, Z, Q, MaxRecurse-1)) 783 // It does! Now see if "X + V" simplifies. 784 if (Value *W = SimplifyBinOp(Instruction::Add, X, V, Q, MaxRecurse-1)) { 785 // It does, we successfully reassociated! 786 ++NumReassoc; 787 return W; 788 } 789 // See if "V === X - Z" simplifies. 790 if (Value *V = SimplifyBinOp(Instruction::Sub, X, Z, Q, MaxRecurse-1)) 791 // It does! Now see if "Y + V" simplifies. 792 if (Value *W = SimplifyBinOp(Instruction::Add, Y, V, Q, MaxRecurse-1)) { 793 // It does, we successfully reassociated! 794 ++NumReassoc; 795 return W; 796 } 797 } 798 799 // X - (Y + Z) -> (X - Y) - Z or (X - Z) - Y if everything simplifies. 800 // For example, X - (X + 1) -> -1 801 X = Op0; 802 if (MaxRecurse && match(Op1, m_Add(m_Value(Y), m_Value(Z)))) { // X - (Y + Z) 803 // See if "V === X - Y" simplifies. 804 if (Value *V = SimplifyBinOp(Instruction::Sub, X, Y, Q, MaxRecurse-1)) 805 // It does! Now see if "V - Z" simplifies. 806 if (Value *W = SimplifyBinOp(Instruction::Sub, V, Z, Q, MaxRecurse-1)) { 807 // It does, we successfully reassociated! 808 ++NumReassoc; 809 return W; 810 } 811 // See if "V === X - Z" simplifies. 812 if (Value *V = SimplifyBinOp(Instruction::Sub, X, Z, Q, MaxRecurse-1)) 813 // It does! Now see if "V - Y" simplifies. 814 if (Value *W = SimplifyBinOp(Instruction::Sub, V, Y, Q, MaxRecurse-1)) { 815 // It does, we successfully reassociated! 816 ++NumReassoc; 817 return W; 818 } 819 } 820 821 // Z - (X - Y) -> (Z - X) + Y if everything simplifies. 822 // For example, X - (X - Y) -> Y. 823 Z = Op0; 824 if (MaxRecurse && match(Op1, m_Sub(m_Value(X), m_Value(Y)))) // Z - (X - Y) 825 // See if "V === Z - X" simplifies. 826 if (Value *V = SimplifyBinOp(Instruction::Sub, Z, X, Q, MaxRecurse-1)) 827 // It does! Now see if "V + Y" simplifies. 828 if (Value *W = SimplifyBinOp(Instruction::Add, V, Y, Q, MaxRecurse-1)) { 829 // It does, we successfully reassociated! 830 ++NumReassoc; 831 return W; 832 } 833 834 // trunc(X) - trunc(Y) -> trunc(X - Y) if everything simplifies. 835 if (MaxRecurse && match(Op0, m_Trunc(m_Value(X))) && 836 match(Op1, m_Trunc(m_Value(Y)))) 837 if (X->getType() == Y->getType()) 838 // See if "V === X - Y" simplifies. 839 if (Value *V = SimplifyBinOp(Instruction::Sub, X, Y, Q, MaxRecurse-1)) 840 // It does! Now see if "trunc V" simplifies. 841 if (Value *W = SimplifyCastInst(Instruction::Trunc, V, Op0->getType(), 842 Q, MaxRecurse - 1)) 843 // It does, return the simplified "trunc V". 844 return W; 845 846 // Variations on GEP(base, I, ...) - GEP(base, i, ...) -> GEP(null, I-i, ...). 847 if (match(Op0, m_PtrToInt(m_Value(X))) && 848 match(Op1, m_PtrToInt(m_Value(Y)))) 849 if (Constant *Result = computePointerDifference(Q.DL, X, Y)) 850 return ConstantExpr::getIntegerCast(Result, Op0->getType(), true); 851 852 // i1 sub -> xor. 853 if (MaxRecurse && Op0->getType()->isIntOrIntVectorTy(1)) 854 if (Value *V = SimplifyXorInst(Op0, Op1, Q, MaxRecurse-1)) 855 return V; 856 857 // Threading Sub over selects and phi nodes is pointless, so don't bother. 858 // Threading over the select in "A - select(cond, B, C)" means evaluating 859 // "A-B" and "A-C" and seeing if they are equal; but they are equal if and 860 // only if B and C are equal. If B and C are equal then (since we assume 861 // that operands have already been simplified) "select(cond, B, C)" should 862 // have been simplified to the common value of B and C already. Analysing 863 // "A-B" and "A-C" thus gains nothing, but costs compile time. Similarly 864 // for threading over phi nodes. 865 866 return nullptr; 867 } 868 869 Value *llvm::SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, 870 const SimplifyQuery &Q) { 871 return ::SimplifySubInst(Op0, Op1, isNSW, isNUW, Q, RecursionLimit); 872 } 873 874 /// Given operands for a Mul, see if we can fold the result. 875 /// If not, this returns null. 876 static Value *SimplifyMulInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 877 unsigned MaxRecurse) { 878 if (Constant *C = foldOrCommuteConstant(Instruction::Mul, Op0, Op1, Q)) 879 return C; 880 881 // X * poison -> poison 882 if (isa<PoisonValue>(Op1)) 883 return Op1; 884 885 // X * undef -> 0 886 // X * 0 -> 0 887 if (Q.isUndefValue(Op1) || match(Op1, m_Zero())) 888 return Constant::getNullValue(Op0->getType()); 889 890 // X * 1 -> X 891 if (match(Op1, m_One())) 892 return Op0; 893 894 // (X / Y) * Y -> X if the division is exact. 895 Value *X = nullptr; 896 if (Q.IIQ.UseInstrInfo && 897 (match(Op0, 898 m_Exact(m_IDiv(m_Value(X), m_Specific(Op1)))) || // (X / Y) * Y 899 match(Op1, m_Exact(m_IDiv(m_Value(X), m_Specific(Op0)))))) // Y * (X / Y) 900 return X; 901 902 // i1 mul -> and. 903 if (MaxRecurse && Op0->getType()->isIntOrIntVectorTy(1)) 904 if (Value *V = SimplifyAndInst(Op0, Op1, Q, MaxRecurse-1)) 905 return V; 906 907 // Try some generic simplifications for associative operations. 908 if (Value *V = SimplifyAssociativeBinOp(Instruction::Mul, Op0, Op1, Q, 909 MaxRecurse)) 910 return V; 911 912 // Mul distributes over Add. Try some generic simplifications based on this. 913 if (Value *V = expandCommutativeBinOp(Instruction::Mul, Op0, Op1, 914 Instruction::Add, Q, MaxRecurse)) 915 return V; 916 917 // If the operation is with the result of a select instruction, check whether 918 // operating on either branch of the select always yields the same value. 919 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 920 if (Value *V = ThreadBinOpOverSelect(Instruction::Mul, Op0, Op1, Q, 921 MaxRecurse)) 922 return V; 923 924 // If the operation is with the result of a phi instruction, check whether 925 // operating on all incoming values of the phi always yields the same value. 926 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 927 if (Value *V = ThreadBinOpOverPHI(Instruction::Mul, Op0, Op1, Q, 928 MaxRecurse)) 929 return V; 930 931 return nullptr; 932 } 933 934 Value *llvm::SimplifyMulInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 935 return ::SimplifyMulInst(Op0, Op1, Q, RecursionLimit); 936 } 937 938 /// Check for common or similar folds of integer division or integer remainder. 939 /// This applies to all 4 opcodes (sdiv/udiv/srem/urem). 940 static Value *simplifyDivRem(Instruction::BinaryOps Opcode, Value *Op0, 941 Value *Op1, const SimplifyQuery &Q) { 942 bool IsDiv = (Opcode == Instruction::SDiv || Opcode == Instruction::UDiv); 943 bool IsSigned = (Opcode == Instruction::SDiv || Opcode == Instruction::SRem); 944 945 Type *Ty = Op0->getType(); 946 947 // X / undef -> poison 948 // X % undef -> poison 949 if (Q.isUndefValue(Op1)) 950 return PoisonValue::get(Ty); 951 952 // X / 0 -> poison 953 // X % 0 -> poison 954 // We don't need to preserve faults! 955 if (match(Op1, m_Zero())) 956 return PoisonValue::get(Ty); 957 958 // If any element of a constant divisor fixed width vector is zero or undef 959 // the behavior is undefined and we can fold the whole op to poison. 960 auto *Op1C = dyn_cast<Constant>(Op1); 961 auto *VTy = dyn_cast<FixedVectorType>(Ty); 962 if (Op1C && VTy) { 963 unsigned NumElts = VTy->getNumElements(); 964 for (unsigned i = 0; i != NumElts; ++i) { 965 Constant *Elt = Op1C->getAggregateElement(i); 966 if (Elt && (Elt->isNullValue() || Q.isUndefValue(Elt))) 967 return PoisonValue::get(Ty); 968 } 969 } 970 971 // poison / X -> poison 972 // poison % X -> poison 973 if (isa<PoisonValue>(Op0)) 974 return Op0; 975 976 // undef / X -> 0 977 // undef % X -> 0 978 if (Q.isUndefValue(Op0)) 979 return Constant::getNullValue(Ty); 980 981 // 0 / X -> 0 982 // 0 % X -> 0 983 if (match(Op0, m_Zero())) 984 return Constant::getNullValue(Op0->getType()); 985 986 // X / X -> 1 987 // X % X -> 0 988 if (Op0 == Op1) 989 return IsDiv ? ConstantInt::get(Ty, 1) : Constant::getNullValue(Ty); 990 991 // X / 1 -> X 992 // X % 1 -> 0 993 // If this is a boolean op (single-bit element type), we can't have 994 // division-by-zero or remainder-by-zero, so assume the divisor is 1. 995 // Similarly, if we're zero-extending a boolean divisor, then assume it's a 1. 996 Value *X; 997 if (match(Op1, m_One()) || Ty->isIntOrIntVectorTy(1) || 998 (match(Op1, m_ZExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1))) 999 return IsDiv ? Op0 : Constant::getNullValue(Ty); 1000 1001 // If X * Y does not overflow, then: 1002 // X * Y / Y -> X 1003 // X * Y % Y -> 0 1004 if (match(Op0, m_c_Mul(m_Value(X), m_Specific(Op1)))) { 1005 auto *Mul = cast<OverflowingBinaryOperator>(Op0); 1006 // The multiplication can't overflow if it is defined not to, or if 1007 // X == A / Y for some A. 1008 if ((IsSigned && Q.IIQ.hasNoSignedWrap(Mul)) || 1009 (!IsSigned && Q.IIQ.hasNoUnsignedWrap(Mul)) || 1010 (IsSigned && match(X, m_SDiv(m_Value(), m_Specific(Op1)))) || 1011 (!IsSigned && match(X, m_UDiv(m_Value(), m_Specific(Op1))))) { 1012 return IsDiv ? X : Constant::getNullValue(Op0->getType()); 1013 } 1014 } 1015 1016 return nullptr; 1017 } 1018 1019 /// Given a predicate and two operands, return true if the comparison is true. 1020 /// This is a helper for div/rem simplification where we return some other value 1021 /// when we can prove a relationship between the operands. 1022 static bool isICmpTrue(ICmpInst::Predicate Pred, Value *LHS, Value *RHS, 1023 const SimplifyQuery &Q, unsigned MaxRecurse) { 1024 Value *V = SimplifyICmpInst(Pred, LHS, RHS, Q, MaxRecurse); 1025 Constant *C = dyn_cast_or_null<Constant>(V); 1026 return (C && C->isAllOnesValue()); 1027 } 1028 1029 /// Return true if we can simplify X / Y to 0. Remainder can adapt that answer 1030 /// to simplify X % Y to X. 1031 static bool isDivZero(Value *X, Value *Y, const SimplifyQuery &Q, 1032 unsigned MaxRecurse, bool IsSigned) { 1033 // Recursion is always used, so bail out at once if we already hit the limit. 1034 if (!MaxRecurse--) 1035 return false; 1036 1037 if (IsSigned) { 1038 // |X| / |Y| --> 0 1039 // 1040 // We require that 1 operand is a simple constant. That could be extended to 1041 // 2 variables if we computed the sign bit for each. 1042 // 1043 // Make sure that a constant is not the minimum signed value because taking 1044 // the abs() of that is undefined. 1045 Type *Ty = X->getType(); 1046 const APInt *C; 1047 if (match(X, m_APInt(C)) && !C->isMinSignedValue()) { 1048 // Is the variable divisor magnitude always greater than the constant 1049 // dividend magnitude? 1050 // |Y| > |C| --> Y < -abs(C) or Y > abs(C) 1051 Constant *PosDividendC = ConstantInt::get(Ty, C->abs()); 1052 Constant *NegDividendC = ConstantInt::get(Ty, -C->abs()); 1053 if (isICmpTrue(CmpInst::ICMP_SLT, Y, NegDividendC, Q, MaxRecurse) || 1054 isICmpTrue(CmpInst::ICMP_SGT, Y, PosDividendC, Q, MaxRecurse)) 1055 return true; 1056 } 1057 if (match(Y, m_APInt(C))) { 1058 // Special-case: we can't take the abs() of a minimum signed value. If 1059 // that's the divisor, then all we have to do is prove that the dividend 1060 // is also not the minimum signed value. 1061 if (C->isMinSignedValue()) 1062 return isICmpTrue(CmpInst::ICMP_NE, X, Y, Q, MaxRecurse); 1063 1064 // Is the variable dividend magnitude always less than the constant 1065 // divisor magnitude? 1066 // |X| < |C| --> X > -abs(C) and X < abs(C) 1067 Constant *PosDivisorC = ConstantInt::get(Ty, C->abs()); 1068 Constant *NegDivisorC = ConstantInt::get(Ty, -C->abs()); 1069 if (isICmpTrue(CmpInst::ICMP_SGT, X, NegDivisorC, Q, MaxRecurse) && 1070 isICmpTrue(CmpInst::ICMP_SLT, X, PosDivisorC, Q, MaxRecurse)) 1071 return true; 1072 } 1073 return false; 1074 } 1075 1076 // IsSigned == false. 1077 // Is the dividend unsigned less than the divisor? 1078 return isICmpTrue(ICmpInst::ICMP_ULT, X, Y, Q, MaxRecurse); 1079 } 1080 1081 /// These are simplifications common to SDiv and UDiv. 1082 static Value *simplifyDiv(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1, 1083 const SimplifyQuery &Q, unsigned MaxRecurse) { 1084 if (Constant *C = foldOrCommuteConstant(Opcode, Op0, Op1, Q)) 1085 return C; 1086 1087 if (Value *V = simplifyDivRem(Opcode, Op0, Op1, Q)) 1088 return V; 1089 1090 bool IsSigned = Opcode == Instruction::SDiv; 1091 1092 // (X rem Y) / Y -> 0 1093 if ((IsSigned && match(Op0, m_SRem(m_Value(), m_Specific(Op1)))) || 1094 (!IsSigned && match(Op0, m_URem(m_Value(), m_Specific(Op1))))) 1095 return Constant::getNullValue(Op0->getType()); 1096 1097 // (X /u C1) /u C2 -> 0 if C1 * C2 overflow 1098 ConstantInt *C1, *C2; 1099 if (!IsSigned && match(Op0, m_UDiv(m_Value(), m_ConstantInt(C1))) && 1100 match(Op1, m_ConstantInt(C2))) { 1101 bool Overflow; 1102 (void)C1->getValue().umul_ov(C2->getValue(), Overflow); 1103 if (Overflow) 1104 return Constant::getNullValue(Op0->getType()); 1105 } 1106 1107 // If the operation is with the result of a select instruction, check whether 1108 // operating on either branch of the select always yields the same value. 1109 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 1110 if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse)) 1111 return V; 1112 1113 // If the operation is with the result of a phi instruction, check whether 1114 // operating on all incoming values of the phi always yields the same value. 1115 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 1116 if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse)) 1117 return V; 1118 1119 if (isDivZero(Op0, Op1, Q, MaxRecurse, IsSigned)) 1120 return Constant::getNullValue(Op0->getType()); 1121 1122 return nullptr; 1123 } 1124 1125 /// These are simplifications common to SRem and URem. 1126 static Value *simplifyRem(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1, 1127 const SimplifyQuery &Q, unsigned MaxRecurse) { 1128 if (Constant *C = foldOrCommuteConstant(Opcode, Op0, Op1, Q)) 1129 return C; 1130 1131 if (Value *V = simplifyDivRem(Opcode, Op0, Op1, Q)) 1132 return V; 1133 1134 // (X % Y) % Y -> X % Y 1135 if ((Opcode == Instruction::SRem && 1136 match(Op0, m_SRem(m_Value(), m_Specific(Op1)))) || 1137 (Opcode == Instruction::URem && 1138 match(Op0, m_URem(m_Value(), m_Specific(Op1))))) 1139 return Op0; 1140 1141 // (X << Y) % X -> 0 1142 if (Q.IIQ.UseInstrInfo && 1143 ((Opcode == Instruction::SRem && 1144 match(Op0, m_NSWShl(m_Specific(Op1), m_Value()))) || 1145 (Opcode == Instruction::URem && 1146 match(Op0, m_NUWShl(m_Specific(Op1), m_Value()))))) 1147 return Constant::getNullValue(Op0->getType()); 1148 1149 // If the operation is with the result of a select instruction, check whether 1150 // operating on either branch of the select always yields the same value. 1151 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 1152 if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse)) 1153 return V; 1154 1155 // If the operation is with the result of a phi instruction, check whether 1156 // operating on all incoming values of the phi always yields the same value. 1157 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 1158 if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse)) 1159 return V; 1160 1161 // If X / Y == 0, then X % Y == X. 1162 if (isDivZero(Op0, Op1, Q, MaxRecurse, Opcode == Instruction::SRem)) 1163 return Op0; 1164 1165 return nullptr; 1166 } 1167 1168 /// Given operands for an SDiv, see if we can fold the result. 1169 /// If not, this returns null. 1170 static Value *SimplifySDivInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 1171 unsigned MaxRecurse) { 1172 // If two operands are negated and no signed overflow, return -1. 1173 if (isKnownNegation(Op0, Op1, /*NeedNSW=*/true)) 1174 return Constant::getAllOnesValue(Op0->getType()); 1175 1176 return simplifyDiv(Instruction::SDiv, Op0, Op1, Q, MaxRecurse); 1177 } 1178 1179 Value *llvm::SimplifySDivInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 1180 return ::SimplifySDivInst(Op0, Op1, Q, RecursionLimit); 1181 } 1182 1183 /// Given operands for a UDiv, see if we can fold the result. 1184 /// If not, this returns null. 1185 static Value *SimplifyUDivInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 1186 unsigned MaxRecurse) { 1187 return simplifyDiv(Instruction::UDiv, Op0, Op1, Q, MaxRecurse); 1188 } 1189 1190 Value *llvm::SimplifyUDivInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 1191 return ::SimplifyUDivInst(Op0, Op1, Q, RecursionLimit); 1192 } 1193 1194 /// Given operands for an SRem, see if we can fold the result. 1195 /// If not, this returns null. 1196 static Value *SimplifySRemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 1197 unsigned MaxRecurse) { 1198 // If the divisor is 0, the result is undefined, so assume the divisor is -1. 1199 // srem Op0, (sext i1 X) --> srem Op0, -1 --> 0 1200 Value *X; 1201 if (match(Op1, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)) 1202 return ConstantInt::getNullValue(Op0->getType()); 1203 1204 // If the two operands are negated, return 0. 1205 if (isKnownNegation(Op0, Op1)) 1206 return ConstantInt::getNullValue(Op0->getType()); 1207 1208 return simplifyRem(Instruction::SRem, Op0, Op1, Q, MaxRecurse); 1209 } 1210 1211 Value *llvm::SimplifySRemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 1212 return ::SimplifySRemInst(Op0, Op1, Q, RecursionLimit); 1213 } 1214 1215 /// Given operands for a URem, see if we can fold the result. 1216 /// If not, this returns null. 1217 static Value *SimplifyURemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 1218 unsigned MaxRecurse) { 1219 return simplifyRem(Instruction::URem, Op0, Op1, Q, MaxRecurse); 1220 } 1221 1222 Value *llvm::SimplifyURemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 1223 return ::SimplifyURemInst(Op0, Op1, Q, RecursionLimit); 1224 } 1225 1226 /// Returns true if a shift by \c Amount always yields poison. 1227 static bool isPoisonShift(Value *Amount, const SimplifyQuery &Q) { 1228 Constant *C = dyn_cast<Constant>(Amount); 1229 if (!C) 1230 return false; 1231 1232 // X shift by undef -> poison because it may shift by the bitwidth. 1233 if (Q.isUndefValue(C)) 1234 return true; 1235 1236 // Shifting by the bitwidth or more is undefined. 1237 if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1238 if (CI->getValue().uge(CI->getType()->getScalarSizeInBits())) 1239 return true; 1240 1241 // If all lanes of a vector shift are undefined the whole shift is. 1242 if (isa<ConstantVector>(C) || isa<ConstantDataVector>(C)) { 1243 for (unsigned I = 0, 1244 E = cast<FixedVectorType>(C->getType())->getNumElements(); 1245 I != E; ++I) 1246 if (!isPoisonShift(C->getAggregateElement(I), Q)) 1247 return false; 1248 return true; 1249 } 1250 1251 return false; 1252 } 1253 1254 /// Given operands for an Shl, LShr or AShr, see if we can fold the result. 1255 /// If not, this returns null. 1256 static Value *SimplifyShift(Instruction::BinaryOps Opcode, Value *Op0, 1257 Value *Op1, bool IsNSW, const SimplifyQuery &Q, 1258 unsigned MaxRecurse) { 1259 if (Constant *C = foldOrCommuteConstant(Opcode, Op0, Op1, Q)) 1260 return C; 1261 1262 // poison shift by X -> poison 1263 if (isa<PoisonValue>(Op0)) 1264 return Op0; 1265 1266 // 0 shift by X -> 0 1267 if (match(Op0, m_Zero())) 1268 return Constant::getNullValue(Op0->getType()); 1269 1270 // X shift by 0 -> X 1271 // Shift-by-sign-extended bool must be shift-by-0 because shift-by-all-ones 1272 // would be poison. 1273 Value *X; 1274 if (match(Op1, m_Zero()) || 1275 (match(Op1, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1))) 1276 return Op0; 1277 1278 // Fold undefined shifts. 1279 if (isPoisonShift(Op1, Q)) 1280 return PoisonValue::get(Op0->getType()); 1281 1282 // If the operation is with the result of a select instruction, check whether 1283 // operating on either branch of the select always yields the same value. 1284 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 1285 if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse)) 1286 return V; 1287 1288 // If the operation is with the result of a phi instruction, check whether 1289 // operating on all incoming values of the phi always yields the same value. 1290 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 1291 if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse)) 1292 return V; 1293 1294 // If any bits in the shift amount make that value greater than or equal to 1295 // the number of bits in the type, the shift is undefined. 1296 KnownBits KnownAmt = computeKnownBits(Op1, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 1297 if (KnownAmt.getMinValue().uge(KnownAmt.getBitWidth())) 1298 return PoisonValue::get(Op0->getType()); 1299 1300 // If all valid bits in the shift amount are known zero, the first operand is 1301 // unchanged. 1302 unsigned NumValidShiftBits = Log2_32_Ceil(KnownAmt.getBitWidth()); 1303 if (KnownAmt.countMinTrailingZeros() >= NumValidShiftBits) 1304 return Op0; 1305 1306 // Check for nsw shl leading to a poison value. 1307 if (IsNSW) { 1308 assert(Opcode == Instruction::Shl && "Expected shl for nsw instruction"); 1309 KnownBits KnownVal = computeKnownBits(Op0, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 1310 KnownBits KnownShl = KnownBits::shl(KnownVal, KnownAmt); 1311 1312 if (KnownVal.Zero.isSignBitSet()) 1313 KnownShl.Zero.setSignBit(); 1314 if (KnownVal.One.isSignBitSet()) 1315 KnownShl.One.setSignBit(); 1316 1317 if (KnownShl.hasConflict()) 1318 return PoisonValue::get(Op0->getType()); 1319 } 1320 1321 return nullptr; 1322 } 1323 1324 /// Given operands for an Shl, LShr or AShr, see if we can 1325 /// fold the result. If not, this returns null. 1326 static Value *SimplifyRightShift(Instruction::BinaryOps Opcode, Value *Op0, 1327 Value *Op1, bool isExact, const SimplifyQuery &Q, 1328 unsigned MaxRecurse) { 1329 if (Value *V = 1330 SimplifyShift(Opcode, Op0, Op1, /*IsNSW*/ false, Q, MaxRecurse)) 1331 return V; 1332 1333 // X >> X -> 0 1334 if (Op0 == Op1) 1335 return Constant::getNullValue(Op0->getType()); 1336 1337 // undef >> X -> 0 1338 // undef >> X -> undef (if it's exact) 1339 if (Q.isUndefValue(Op0)) 1340 return isExact ? Op0 : Constant::getNullValue(Op0->getType()); 1341 1342 // The low bit cannot be shifted out of an exact shift if it is set. 1343 if (isExact) { 1344 KnownBits Op0Known = computeKnownBits(Op0, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT); 1345 if (Op0Known.One[0]) 1346 return Op0; 1347 } 1348 1349 return nullptr; 1350 } 1351 1352 /// Given operands for an Shl, see if we can fold the result. 1353 /// If not, this returns null. 1354 static Value *SimplifyShlInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, 1355 const SimplifyQuery &Q, unsigned MaxRecurse) { 1356 if (Value *V = 1357 SimplifyShift(Instruction::Shl, Op0, Op1, isNSW, Q, MaxRecurse)) 1358 return V; 1359 1360 // undef << X -> 0 1361 // undef << X -> undef if (if it's NSW/NUW) 1362 if (Q.isUndefValue(Op0)) 1363 return isNSW || isNUW ? Op0 : Constant::getNullValue(Op0->getType()); 1364 1365 // (X >> A) << A -> X 1366 Value *X; 1367 if (Q.IIQ.UseInstrInfo && 1368 match(Op0, m_Exact(m_Shr(m_Value(X), m_Specific(Op1))))) 1369 return X; 1370 1371 // shl nuw i8 C, %x -> C iff C has sign bit set. 1372 if (isNUW && match(Op0, m_Negative())) 1373 return Op0; 1374 // NOTE: could use computeKnownBits() / LazyValueInfo, 1375 // but the cost-benefit analysis suggests it isn't worth it. 1376 1377 return nullptr; 1378 } 1379 1380 Value *llvm::SimplifyShlInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, 1381 const SimplifyQuery &Q) { 1382 return ::SimplifyShlInst(Op0, Op1, isNSW, isNUW, Q, RecursionLimit); 1383 } 1384 1385 /// Given operands for an LShr, see if we can fold the result. 1386 /// If not, this returns null. 1387 static Value *SimplifyLShrInst(Value *Op0, Value *Op1, bool isExact, 1388 const SimplifyQuery &Q, unsigned MaxRecurse) { 1389 if (Value *V = SimplifyRightShift(Instruction::LShr, Op0, Op1, isExact, Q, 1390 MaxRecurse)) 1391 return V; 1392 1393 // (X << A) >> A -> X 1394 Value *X; 1395 if (match(Op0, m_NUWShl(m_Value(X), m_Specific(Op1)))) 1396 return X; 1397 1398 // ((X << A) | Y) >> A -> X if effective width of Y is not larger than A. 1399 // We can return X as we do in the above case since OR alters no bits in X. 1400 // SimplifyDemandedBits in InstCombine can do more general optimization for 1401 // bit manipulation. This pattern aims to provide opportunities for other 1402 // optimizers by supporting a simple but common case in InstSimplify. 1403 Value *Y; 1404 const APInt *ShRAmt, *ShLAmt; 1405 if (match(Op1, m_APInt(ShRAmt)) && 1406 match(Op0, m_c_Or(m_NUWShl(m_Value(X), m_APInt(ShLAmt)), m_Value(Y))) && 1407 *ShRAmt == *ShLAmt) { 1408 const KnownBits YKnown = computeKnownBits(Y, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 1409 const unsigned EffWidthY = YKnown.countMaxActiveBits(); 1410 if (ShRAmt->uge(EffWidthY)) 1411 return X; 1412 } 1413 1414 return nullptr; 1415 } 1416 1417 Value *llvm::SimplifyLShrInst(Value *Op0, Value *Op1, bool isExact, 1418 const SimplifyQuery &Q) { 1419 return ::SimplifyLShrInst(Op0, Op1, isExact, Q, RecursionLimit); 1420 } 1421 1422 /// Given operands for an AShr, see if we can fold the result. 1423 /// If not, this returns null. 1424 static Value *SimplifyAShrInst(Value *Op0, Value *Op1, bool isExact, 1425 const SimplifyQuery &Q, unsigned MaxRecurse) { 1426 if (Value *V = SimplifyRightShift(Instruction::AShr, Op0, Op1, isExact, Q, 1427 MaxRecurse)) 1428 return V; 1429 1430 // -1 >>a X --> -1 1431 // (-1 << X) a>> X --> -1 1432 // Do not return Op0 because it may contain undef elements if it's a vector. 1433 if (match(Op0, m_AllOnes()) || 1434 match(Op0, m_Shl(m_AllOnes(), m_Specific(Op1)))) 1435 return Constant::getAllOnesValue(Op0->getType()); 1436 1437 // (X << A) >> A -> X 1438 Value *X; 1439 if (Q.IIQ.UseInstrInfo && match(Op0, m_NSWShl(m_Value(X), m_Specific(Op1)))) 1440 return X; 1441 1442 // Arithmetic shifting an all-sign-bit value is a no-op. 1443 unsigned NumSignBits = ComputeNumSignBits(Op0, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 1444 if (NumSignBits == Op0->getType()->getScalarSizeInBits()) 1445 return Op0; 1446 1447 return nullptr; 1448 } 1449 1450 Value *llvm::SimplifyAShrInst(Value *Op0, Value *Op1, bool isExact, 1451 const SimplifyQuery &Q) { 1452 return ::SimplifyAShrInst(Op0, Op1, isExact, Q, RecursionLimit); 1453 } 1454 1455 /// Commuted variants are assumed to be handled by calling this function again 1456 /// with the parameters swapped. 1457 static Value *simplifyUnsignedRangeCheck(ICmpInst *ZeroICmp, 1458 ICmpInst *UnsignedICmp, bool IsAnd, 1459 const SimplifyQuery &Q) { 1460 Value *X, *Y; 1461 1462 ICmpInst::Predicate EqPred; 1463 if (!match(ZeroICmp, m_ICmp(EqPred, m_Value(Y), m_Zero())) || 1464 !ICmpInst::isEquality(EqPred)) 1465 return nullptr; 1466 1467 ICmpInst::Predicate UnsignedPred; 1468 1469 Value *A, *B; 1470 // Y = (A - B); 1471 if (match(Y, m_Sub(m_Value(A), m_Value(B)))) { 1472 if (match(UnsignedICmp, 1473 m_c_ICmp(UnsignedPred, m_Specific(A), m_Specific(B))) && 1474 ICmpInst::isUnsigned(UnsignedPred)) { 1475 // A >=/<= B || (A - B) != 0 <--> true 1476 if ((UnsignedPred == ICmpInst::ICMP_UGE || 1477 UnsignedPred == ICmpInst::ICMP_ULE) && 1478 EqPred == ICmpInst::ICMP_NE && !IsAnd) 1479 return ConstantInt::getTrue(UnsignedICmp->getType()); 1480 // A </> B && (A - B) == 0 <--> false 1481 if ((UnsignedPred == ICmpInst::ICMP_ULT || 1482 UnsignedPred == ICmpInst::ICMP_UGT) && 1483 EqPred == ICmpInst::ICMP_EQ && IsAnd) 1484 return ConstantInt::getFalse(UnsignedICmp->getType()); 1485 1486 // A </> B && (A - B) != 0 <--> A </> B 1487 // A </> B || (A - B) != 0 <--> (A - B) != 0 1488 if (EqPred == ICmpInst::ICMP_NE && (UnsignedPred == ICmpInst::ICMP_ULT || 1489 UnsignedPred == ICmpInst::ICMP_UGT)) 1490 return IsAnd ? UnsignedICmp : ZeroICmp; 1491 1492 // A <=/>= B && (A - B) == 0 <--> (A - B) == 0 1493 // A <=/>= B || (A - B) == 0 <--> A <=/>= B 1494 if (EqPred == ICmpInst::ICMP_EQ && (UnsignedPred == ICmpInst::ICMP_ULE || 1495 UnsignedPred == ICmpInst::ICMP_UGE)) 1496 return IsAnd ? ZeroICmp : UnsignedICmp; 1497 } 1498 1499 // Given Y = (A - B) 1500 // Y >= A && Y != 0 --> Y >= A iff B != 0 1501 // Y < A || Y == 0 --> Y < A iff B != 0 1502 if (match(UnsignedICmp, 1503 m_c_ICmp(UnsignedPred, m_Specific(Y), m_Specific(A)))) { 1504 if (UnsignedPred == ICmpInst::ICMP_UGE && IsAnd && 1505 EqPred == ICmpInst::ICMP_NE && 1506 isKnownNonZero(B, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT)) 1507 return UnsignedICmp; 1508 if (UnsignedPred == ICmpInst::ICMP_ULT && !IsAnd && 1509 EqPred == ICmpInst::ICMP_EQ && 1510 isKnownNonZero(B, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT)) 1511 return UnsignedICmp; 1512 } 1513 } 1514 1515 if (match(UnsignedICmp, m_ICmp(UnsignedPred, m_Value(X), m_Specific(Y))) && 1516 ICmpInst::isUnsigned(UnsignedPred)) 1517 ; 1518 else if (match(UnsignedICmp, 1519 m_ICmp(UnsignedPred, m_Specific(Y), m_Value(X))) && 1520 ICmpInst::isUnsigned(UnsignedPred)) 1521 UnsignedPred = ICmpInst::getSwappedPredicate(UnsignedPred); 1522 else 1523 return nullptr; 1524 1525 // X > Y && Y == 0 --> Y == 0 iff X != 0 1526 // X > Y || Y == 0 --> X > Y iff X != 0 1527 if (UnsignedPred == ICmpInst::ICMP_UGT && EqPred == ICmpInst::ICMP_EQ && 1528 isKnownNonZero(X, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT)) 1529 return IsAnd ? ZeroICmp : UnsignedICmp; 1530 1531 // X <= Y && Y != 0 --> X <= Y iff X != 0 1532 // X <= Y || Y != 0 --> Y != 0 iff X != 0 1533 if (UnsignedPred == ICmpInst::ICMP_ULE && EqPred == ICmpInst::ICMP_NE && 1534 isKnownNonZero(X, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT)) 1535 return IsAnd ? UnsignedICmp : ZeroICmp; 1536 1537 // The transforms below here are expected to be handled more generally with 1538 // simplifyAndOrOfICmpsWithLimitConst() or in InstCombine's 1539 // foldAndOrOfICmpsWithConstEq(). If we are looking to trim optimizer overlap, 1540 // these are candidates for removal. 1541 1542 // X < Y && Y != 0 --> X < Y 1543 // X < Y || Y != 0 --> Y != 0 1544 if (UnsignedPred == ICmpInst::ICMP_ULT && EqPred == ICmpInst::ICMP_NE) 1545 return IsAnd ? UnsignedICmp : ZeroICmp; 1546 1547 // X >= Y && Y == 0 --> Y == 0 1548 // X >= Y || Y == 0 --> X >= Y 1549 if (UnsignedPred == ICmpInst::ICMP_UGE && EqPred == ICmpInst::ICMP_EQ) 1550 return IsAnd ? ZeroICmp : UnsignedICmp; 1551 1552 // X < Y && Y == 0 --> false 1553 if (UnsignedPred == ICmpInst::ICMP_ULT && EqPred == ICmpInst::ICMP_EQ && 1554 IsAnd) 1555 return getFalse(UnsignedICmp->getType()); 1556 1557 // X >= Y || Y != 0 --> true 1558 if (UnsignedPred == ICmpInst::ICMP_UGE && EqPred == ICmpInst::ICMP_NE && 1559 !IsAnd) 1560 return getTrue(UnsignedICmp->getType()); 1561 1562 return nullptr; 1563 } 1564 1565 /// Commuted variants are assumed to be handled by calling this function again 1566 /// with the parameters swapped. 1567 static Value *simplifyAndOfICmpsWithSameOperands(ICmpInst *Op0, ICmpInst *Op1) { 1568 ICmpInst::Predicate Pred0, Pred1; 1569 Value *A ,*B; 1570 if (!match(Op0, m_ICmp(Pred0, m_Value(A), m_Value(B))) || 1571 !match(Op1, m_ICmp(Pred1, m_Specific(A), m_Specific(B)))) 1572 return nullptr; 1573 1574 // We have (icmp Pred0, A, B) & (icmp Pred1, A, B). 1575 // If Op1 is always implied true by Op0, then Op0 is a subset of Op1, and we 1576 // can eliminate Op1 from this 'and'. 1577 if (ICmpInst::isImpliedTrueByMatchingCmp(Pred0, Pred1)) 1578 return Op0; 1579 1580 // Check for any combination of predicates that are guaranteed to be disjoint. 1581 if ((Pred0 == ICmpInst::getInversePredicate(Pred1)) || 1582 (Pred0 == ICmpInst::ICMP_EQ && ICmpInst::isFalseWhenEqual(Pred1)) || 1583 (Pred0 == ICmpInst::ICMP_SLT && Pred1 == ICmpInst::ICMP_SGT) || 1584 (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_UGT)) 1585 return getFalse(Op0->getType()); 1586 1587 return nullptr; 1588 } 1589 1590 /// Commuted variants are assumed to be handled by calling this function again 1591 /// with the parameters swapped. 1592 static Value *simplifyOrOfICmpsWithSameOperands(ICmpInst *Op0, ICmpInst *Op1) { 1593 ICmpInst::Predicate Pred0, Pred1; 1594 Value *A ,*B; 1595 if (!match(Op0, m_ICmp(Pred0, m_Value(A), m_Value(B))) || 1596 !match(Op1, m_ICmp(Pred1, m_Specific(A), m_Specific(B)))) 1597 return nullptr; 1598 1599 // We have (icmp Pred0, A, B) | (icmp Pred1, A, B). 1600 // If Op1 is always implied true by Op0, then Op0 is a subset of Op1, and we 1601 // can eliminate Op0 from this 'or'. 1602 if (ICmpInst::isImpliedTrueByMatchingCmp(Pred0, Pred1)) 1603 return Op1; 1604 1605 // Check for any combination of predicates that cover the entire range of 1606 // possibilities. 1607 if ((Pred0 == ICmpInst::getInversePredicate(Pred1)) || 1608 (Pred0 == ICmpInst::ICMP_NE && ICmpInst::isTrueWhenEqual(Pred1)) || 1609 (Pred0 == ICmpInst::ICMP_SLE && Pred1 == ICmpInst::ICMP_SGE) || 1610 (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_UGE)) 1611 return getTrue(Op0->getType()); 1612 1613 return nullptr; 1614 } 1615 1616 /// Test if a pair of compares with a shared operand and 2 constants has an 1617 /// empty set intersection, full set union, or if one compare is a superset of 1618 /// the other. 1619 static Value *simplifyAndOrOfICmpsWithConstants(ICmpInst *Cmp0, ICmpInst *Cmp1, 1620 bool IsAnd) { 1621 // Look for this pattern: {and/or} (icmp X, C0), (icmp X, C1)). 1622 if (Cmp0->getOperand(0) != Cmp1->getOperand(0)) 1623 return nullptr; 1624 1625 const APInt *C0, *C1; 1626 if (!match(Cmp0->getOperand(1), m_APInt(C0)) || 1627 !match(Cmp1->getOperand(1), m_APInt(C1))) 1628 return nullptr; 1629 1630 auto Range0 = ConstantRange::makeExactICmpRegion(Cmp0->getPredicate(), *C0); 1631 auto Range1 = ConstantRange::makeExactICmpRegion(Cmp1->getPredicate(), *C1); 1632 1633 // For and-of-compares, check if the intersection is empty: 1634 // (icmp X, C0) && (icmp X, C1) --> empty set --> false 1635 if (IsAnd && Range0.intersectWith(Range1).isEmptySet()) 1636 return getFalse(Cmp0->getType()); 1637 1638 // For or-of-compares, check if the union is full: 1639 // (icmp X, C0) || (icmp X, C1) --> full set --> true 1640 if (!IsAnd && Range0.unionWith(Range1).isFullSet()) 1641 return getTrue(Cmp0->getType()); 1642 1643 // Is one range a superset of the other? 1644 // If this is and-of-compares, take the smaller set: 1645 // (icmp sgt X, 4) && (icmp sgt X, 42) --> icmp sgt X, 42 1646 // If this is or-of-compares, take the larger set: 1647 // (icmp sgt X, 4) || (icmp sgt X, 42) --> icmp sgt X, 4 1648 if (Range0.contains(Range1)) 1649 return IsAnd ? Cmp1 : Cmp0; 1650 if (Range1.contains(Range0)) 1651 return IsAnd ? Cmp0 : Cmp1; 1652 1653 return nullptr; 1654 } 1655 1656 static Value *simplifyAndOrOfICmpsWithZero(ICmpInst *Cmp0, ICmpInst *Cmp1, 1657 bool IsAnd) { 1658 ICmpInst::Predicate P0 = Cmp0->getPredicate(), P1 = Cmp1->getPredicate(); 1659 if (!match(Cmp0->getOperand(1), m_Zero()) || 1660 !match(Cmp1->getOperand(1), m_Zero()) || P0 != P1) 1661 return nullptr; 1662 1663 if ((IsAnd && P0 != ICmpInst::ICMP_NE) || (!IsAnd && P1 != ICmpInst::ICMP_EQ)) 1664 return nullptr; 1665 1666 // We have either "(X == 0 || Y == 0)" or "(X != 0 && Y != 0)". 1667 Value *X = Cmp0->getOperand(0); 1668 Value *Y = Cmp1->getOperand(0); 1669 1670 // If one of the compares is a masked version of a (not) null check, then 1671 // that compare implies the other, so we eliminate the other. Optionally, look 1672 // through a pointer-to-int cast to match a null check of a pointer type. 1673 1674 // (X == 0) || (([ptrtoint] X & ?) == 0) --> ([ptrtoint] X & ?) == 0 1675 // (X == 0) || ((? & [ptrtoint] X) == 0) --> (? & [ptrtoint] X) == 0 1676 // (X != 0) && (([ptrtoint] X & ?) != 0) --> ([ptrtoint] X & ?) != 0 1677 // (X != 0) && ((? & [ptrtoint] X) != 0) --> (? & [ptrtoint] X) != 0 1678 if (match(Y, m_c_And(m_Specific(X), m_Value())) || 1679 match(Y, m_c_And(m_PtrToInt(m_Specific(X)), m_Value()))) 1680 return Cmp1; 1681 1682 // (([ptrtoint] Y & ?) == 0) || (Y == 0) --> ([ptrtoint] Y & ?) == 0 1683 // ((? & [ptrtoint] Y) == 0) || (Y == 0) --> (? & [ptrtoint] Y) == 0 1684 // (([ptrtoint] Y & ?) != 0) && (Y != 0) --> ([ptrtoint] Y & ?) != 0 1685 // ((? & [ptrtoint] Y) != 0) && (Y != 0) --> (? & [ptrtoint] Y) != 0 1686 if (match(X, m_c_And(m_Specific(Y), m_Value())) || 1687 match(X, m_c_And(m_PtrToInt(m_Specific(Y)), m_Value()))) 1688 return Cmp0; 1689 1690 return nullptr; 1691 } 1692 1693 static Value *simplifyAndOfICmpsWithAdd(ICmpInst *Op0, ICmpInst *Op1, 1694 const InstrInfoQuery &IIQ) { 1695 // (icmp (add V, C0), C1) & (icmp V, C0) 1696 ICmpInst::Predicate Pred0, Pred1; 1697 const APInt *C0, *C1; 1698 Value *V; 1699 if (!match(Op0, m_ICmp(Pred0, m_Add(m_Value(V), m_APInt(C0)), m_APInt(C1)))) 1700 return nullptr; 1701 1702 if (!match(Op1, m_ICmp(Pred1, m_Specific(V), m_Value()))) 1703 return nullptr; 1704 1705 auto *AddInst = cast<OverflowingBinaryOperator>(Op0->getOperand(0)); 1706 if (AddInst->getOperand(1) != Op1->getOperand(1)) 1707 return nullptr; 1708 1709 Type *ITy = Op0->getType(); 1710 bool isNSW = IIQ.hasNoSignedWrap(AddInst); 1711 bool isNUW = IIQ.hasNoUnsignedWrap(AddInst); 1712 1713 const APInt Delta = *C1 - *C0; 1714 if (C0->isStrictlyPositive()) { 1715 if (Delta == 2) { 1716 if (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_SGT) 1717 return getFalse(ITy); 1718 if (Pred0 == ICmpInst::ICMP_SLT && Pred1 == ICmpInst::ICMP_SGT && isNSW) 1719 return getFalse(ITy); 1720 } 1721 if (Delta == 1) { 1722 if (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_SGT) 1723 return getFalse(ITy); 1724 if (Pred0 == ICmpInst::ICMP_SLE && Pred1 == ICmpInst::ICMP_SGT && isNSW) 1725 return getFalse(ITy); 1726 } 1727 } 1728 if (C0->getBoolValue() && isNUW) { 1729 if (Delta == 2) 1730 if (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_UGT) 1731 return getFalse(ITy); 1732 if (Delta == 1) 1733 if (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_UGT) 1734 return getFalse(ITy); 1735 } 1736 1737 return nullptr; 1738 } 1739 1740 /// Try to eliminate compares with signed or unsigned min/max constants. 1741 static Value *simplifyAndOrOfICmpsWithLimitConst(ICmpInst *Cmp0, ICmpInst *Cmp1, 1742 bool IsAnd) { 1743 // Canonicalize an equality compare as Cmp0. 1744 if (Cmp1->isEquality()) 1745 std::swap(Cmp0, Cmp1); 1746 if (!Cmp0->isEquality()) 1747 return nullptr; 1748 1749 // The non-equality compare must include a common operand (X). Canonicalize 1750 // the common operand as operand 0 (the predicate is swapped if the common 1751 // operand was operand 1). 1752 ICmpInst::Predicate Pred0 = Cmp0->getPredicate(); 1753 Value *X = Cmp0->getOperand(0); 1754 ICmpInst::Predicate Pred1; 1755 bool HasNotOp = match(Cmp1, m_c_ICmp(Pred1, m_Not(m_Specific(X)), m_Value())); 1756 if (!HasNotOp && !match(Cmp1, m_c_ICmp(Pred1, m_Specific(X), m_Value()))) 1757 return nullptr; 1758 if (ICmpInst::isEquality(Pred1)) 1759 return nullptr; 1760 1761 // The equality compare must be against a constant. Flip bits if we matched 1762 // a bitwise not. Convert a null pointer constant to an integer zero value. 1763 APInt MinMaxC; 1764 const APInt *C; 1765 if (match(Cmp0->getOperand(1), m_APInt(C))) 1766 MinMaxC = HasNotOp ? ~*C : *C; 1767 else if (isa<ConstantPointerNull>(Cmp0->getOperand(1))) 1768 MinMaxC = APInt::getZero(8); 1769 else 1770 return nullptr; 1771 1772 // DeMorganize if this is 'or': P0 || P1 --> !P0 && !P1. 1773 if (!IsAnd) { 1774 Pred0 = ICmpInst::getInversePredicate(Pred0); 1775 Pred1 = ICmpInst::getInversePredicate(Pred1); 1776 } 1777 1778 // Normalize to unsigned compare and unsigned min/max value. 1779 // Example for 8-bit: -128 + 128 -> 0; 127 + 128 -> 255 1780 if (ICmpInst::isSigned(Pred1)) { 1781 Pred1 = ICmpInst::getUnsignedPredicate(Pred1); 1782 MinMaxC += APInt::getSignedMinValue(MinMaxC.getBitWidth()); 1783 } 1784 1785 // (X != MAX) && (X < Y) --> X < Y 1786 // (X == MAX) || (X >= Y) --> X >= Y 1787 if (MinMaxC.isMaxValue()) 1788 if (Pred0 == ICmpInst::ICMP_NE && Pred1 == ICmpInst::ICMP_ULT) 1789 return Cmp1; 1790 1791 // (X != MIN) && (X > Y) --> X > Y 1792 // (X == MIN) || (X <= Y) --> X <= Y 1793 if (MinMaxC.isMinValue()) 1794 if (Pred0 == ICmpInst::ICMP_NE && Pred1 == ICmpInst::ICMP_UGT) 1795 return Cmp1; 1796 1797 return nullptr; 1798 } 1799 1800 static Value *simplifyAndOfICmps(ICmpInst *Op0, ICmpInst *Op1, 1801 const SimplifyQuery &Q) { 1802 if (Value *X = simplifyUnsignedRangeCheck(Op0, Op1, /*IsAnd=*/true, Q)) 1803 return X; 1804 if (Value *X = simplifyUnsignedRangeCheck(Op1, Op0, /*IsAnd=*/true, Q)) 1805 return X; 1806 1807 if (Value *X = simplifyAndOfICmpsWithSameOperands(Op0, Op1)) 1808 return X; 1809 if (Value *X = simplifyAndOfICmpsWithSameOperands(Op1, Op0)) 1810 return X; 1811 1812 if (Value *X = simplifyAndOrOfICmpsWithConstants(Op0, Op1, true)) 1813 return X; 1814 1815 if (Value *X = simplifyAndOrOfICmpsWithLimitConst(Op0, Op1, true)) 1816 return X; 1817 1818 if (Value *X = simplifyAndOrOfICmpsWithZero(Op0, Op1, true)) 1819 return X; 1820 1821 if (Value *X = simplifyAndOfICmpsWithAdd(Op0, Op1, Q.IIQ)) 1822 return X; 1823 if (Value *X = simplifyAndOfICmpsWithAdd(Op1, Op0, Q.IIQ)) 1824 return X; 1825 1826 return nullptr; 1827 } 1828 1829 static Value *simplifyOrOfICmpsWithAdd(ICmpInst *Op0, ICmpInst *Op1, 1830 const InstrInfoQuery &IIQ) { 1831 // (icmp (add V, C0), C1) | (icmp V, C0) 1832 ICmpInst::Predicate Pred0, Pred1; 1833 const APInt *C0, *C1; 1834 Value *V; 1835 if (!match(Op0, m_ICmp(Pred0, m_Add(m_Value(V), m_APInt(C0)), m_APInt(C1)))) 1836 return nullptr; 1837 1838 if (!match(Op1, m_ICmp(Pred1, m_Specific(V), m_Value()))) 1839 return nullptr; 1840 1841 auto *AddInst = cast<BinaryOperator>(Op0->getOperand(0)); 1842 if (AddInst->getOperand(1) != Op1->getOperand(1)) 1843 return nullptr; 1844 1845 Type *ITy = Op0->getType(); 1846 bool isNSW = IIQ.hasNoSignedWrap(AddInst); 1847 bool isNUW = IIQ.hasNoUnsignedWrap(AddInst); 1848 1849 const APInt Delta = *C1 - *C0; 1850 if (C0->isStrictlyPositive()) { 1851 if (Delta == 2) { 1852 if (Pred0 == ICmpInst::ICMP_UGE && Pred1 == ICmpInst::ICMP_SLE) 1853 return getTrue(ITy); 1854 if (Pred0 == ICmpInst::ICMP_SGE && Pred1 == ICmpInst::ICMP_SLE && isNSW) 1855 return getTrue(ITy); 1856 } 1857 if (Delta == 1) { 1858 if (Pred0 == ICmpInst::ICMP_UGT && Pred1 == ICmpInst::ICMP_SLE) 1859 return getTrue(ITy); 1860 if (Pred0 == ICmpInst::ICMP_SGT && Pred1 == ICmpInst::ICMP_SLE && isNSW) 1861 return getTrue(ITy); 1862 } 1863 } 1864 if (C0->getBoolValue() && isNUW) { 1865 if (Delta == 2) 1866 if (Pred0 == ICmpInst::ICMP_UGE && Pred1 == ICmpInst::ICMP_ULE) 1867 return getTrue(ITy); 1868 if (Delta == 1) 1869 if (Pred0 == ICmpInst::ICMP_UGT && Pred1 == ICmpInst::ICMP_ULE) 1870 return getTrue(ITy); 1871 } 1872 1873 return nullptr; 1874 } 1875 1876 static Value *simplifyOrOfICmps(ICmpInst *Op0, ICmpInst *Op1, 1877 const SimplifyQuery &Q) { 1878 if (Value *X = simplifyUnsignedRangeCheck(Op0, Op1, /*IsAnd=*/false, Q)) 1879 return X; 1880 if (Value *X = simplifyUnsignedRangeCheck(Op1, Op0, /*IsAnd=*/false, Q)) 1881 return X; 1882 1883 if (Value *X = simplifyOrOfICmpsWithSameOperands(Op0, Op1)) 1884 return X; 1885 if (Value *X = simplifyOrOfICmpsWithSameOperands(Op1, Op0)) 1886 return X; 1887 1888 if (Value *X = simplifyAndOrOfICmpsWithConstants(Op0, Op1, false)) 1889 return X; 1890 1891 if (Value *X = simplifyAndOrOfICmpsWithLimitConst(Op0, Op1, false)) 1892 return X; 1893 1894 if (Value *X = simplifyAndOrOfICmpsWithZero(Op0, Op1, false)) 1895 return X; 1896 1897 if (Value *X = simplifyOrOfICmpsWithAdd(Op0, Op1, Q.IIQ)) 1898 return X; 1899 if (Value *X = simplifyOrOfICmpsWithAdd(Op1, Op0, Q.IIQ)) 1900 return X; 1901 1902 return nullptr; 1903 } 1904 1905 static Value *simplifyAndOrOfFCmps(const TargetLibraryInfo *TLI, 1906 FCmpInst *LHS, FCmpInst *RHS, bool IsAnd) { 1907 Value *LHS0 = LHS->getOperand(0), *LHS1 = LHS->getOperand(1); 1908 Value *RHS0 = RHS->getOperand(0), *RHS1 = RHS->getOperand(1); 1909 if (LHS0->getType() != RHS0->getType()) 1910 return nullptr; 1911 1912 FCmpInst::Predicate PredL = LHS->getPredicate(), PredR = RHS->getPredicate(); 1913 if ((PredL == FCmpInst::FCMP_ORD && PredR == FCmpInst::FCMP_ORD && IsAnd) || 1914 (PredL == FCmpInst::FCMP_UNO && PredR == FCmpInst::FCMP_UNO && !IsAnd)) { 1915 // (fcmp ord NNAN, X) & (fcmp ord X, Y) --> fcmp ord X, Y 1916 // (fcmp ord NNAN, X) & (fcmp ord Y, X) --> fcmp ord Y, X 1917 // (fcmp ord X, NNAN) & (fcmp ord X, Y) --> fcmp ord X, Y 1918 // (fcmp ord X, NNAN) & (fcmp ord Y, X) --> fcmp ord Y, X 1919 // (fcmp uno NNAN, X) | (fcmp uno X, Y) --> fcmp uno X, Y 1920 // (fcmp uno NNAN, X) | (fcmp uno Y, X) --> fcmp uno Y, X 1921 // (fcmp uno X, NNAN) | (fcmp uno X, Y) --> fcmp uno X, Y 1922 // (fcmp uno X, NNAN) | (fcmp uno Y, X) --> fcmp uno Y, X 1923 if ((isKnownNeverNaN(LHS0, TLI) && (LHS1 == RHS0 || LHS1 == RHS1)) || 1924 (isKnownNeverNaN(LHS1, TLI) && (LHS0 == RHS0 || LHS0 == RHS1))) 1925 return RHS; 1926 1927 // (fcmp ord X, Y) & (fcmp ord NNAN, X) --> fcmp ord X, Y 1928 // (fcmp ord Y, X) & (fcmp ord NNAN, X) --> fcmp ord Y, X 1929 // (fcmp ord X, Y) & (fcmp ord X, NNAN) --> fcmp ord X, Y 1930 // (fcmp ord Y, X) & (fcmp ord X, NNAN) --> fcmp ord Y, X 1931 // (fcmp uno X, Y) | (fcmp uno NNAN, X) --> fcmp uno X, Y 1932 // (fcmp uno Y, X) | (fcmp uno NNAN, X) --> fcmp uno Y, X 1933 // (fcmp uno X, Y) | (fcmp uno X, NNAN) --> fcmp uno X, Y 1934 // (fcmp uno Y, X) | (fcmp uno X, NNAN) --> fcmp uno Y, X 1935 if ((isKnownNeverNaN(RHS0, TLI) && (RHS1 == LHS0 || RHS1 == LHS1)) || 1936 (isKnownNeverNaN(RHS1, TLI) && (RHS0 == LHS0 || RHS0 == LHS1))) 1937 return LHS; 1938 } 1939 1940 return nullptr; 1941 } 1942 1943 static Value *simplifyAndOrOfCmps(const SimplifyQuery &Q, 1944 Value *Op0, Value *Op1, bool IsAnd) { 1945 // Look through casts of the 'and' operands to find compares. 1946 auto *Cast0 = dyn_cast<CastInst>(Op0); 1947 auto *Cast1 = dyn_cast<CastInst>(Op1); 1948 if (Cast0 && Cast1 && Cast0->getOpcode() == Cast1->getOpcode() && 1949 Cast0->getSrcTy() == Cast1->getSrcTy()) { 1950 Op0 = Cast0->getOperand(0); 1951 Op1 = Cast1->getOperand(0); 1952 } 1953 1954 Value *V = nullptr; 1955 auto *ICmp0 = dyn_cast<ICmpInst>(Op0); 1956 auto *ICmp1 = dyn_cast<ICmpInst>(Op1); 1957 if (ICmp0 && ICmp1) 1958 V = IsAnd ? simplifyAndOfICmps(ICmp0, ICmp1, Q) 1959 : simplifyOrOfICmps(ICmp0, ICmp1, Q); 1960 1961 auto *FCmp0 = dyn_cast<FCmpInst>(Op0); 1962 auto *FCmp1 = dyn_cast<FCmpInst>(Op1); 1963 if (FCmp0 && FCmp1) 1964 V = simplifyAndOrOfFCmps(Q.TLI, FCmp0, FCmp1, IsAnd); 1965 1966 if (!V) 1967 return nullptr; 1968 if (!Cast0) 1969 return V; 1970 1971 // If we looked through casts, we can only handle a constant simplification 1972 // because we are not allowed to create a cast instruction here. 1973 if (auto *C = dyn_cast<Constant>(V)) 1974 return ConstantExpr::getCast(Cast0->getOpcode(), C, Cast0->getType()); 1975 1976 return nullptr; 1977 } 1978 1979 /// Given a bitwise logic op, check if the operands are add/sub with a common 1980 /// source value and inverted constant (identity: C - X -> ~(X + ~C)). 1981 static Value *simplifyLogicOfAddSub(Value *Op0, Value *Op1, 1982 Instruction::BinaryOps Opcode) { 1983 assert(Op0->getType() == Op1->getType() && "Mismatched binop types"); 1984 assert(BinaryOperator::isBitwiseLogicOp(Opcode) && "Expected logic op"); 1985 Value *X; 1986 Constant *C1, *C2; 1987 if ((match(Op0, m_Add(m_Value(X), m_Constant(C1))) && 1988 match(Op1, m_Sub(m_Constant(C2), m_Specific(X)))) || 1989 (match(Op1, m_Add(m_Value(X), m_Constant(C1))) && 1990 match(Op0, m_Sub(m_Constant(C2), m_Specific(X))))) { 1991 if (ConstantExpr::getNot(C1) == C2) { 1992 // (X + C) & (~C - X) --> (X + C) & ~(X + C) --> 0 1993 // (X + C) | (~C - X) --> (X + C) | ~(X + C) --> -1 1994 // (X + C) ^ (~C - X) --> (X + C) ^ ~(X + C) --> -1 1995 Type *Ty = Op0->getType(); 1996 return Opcode == Instruction::And ? ConstantInt::getNullValue(Ty) 1997 : ConstantInt::getAllOnesValue(Ty); 1998 } 1999 } 2000 return nullptr; 2001 } 2002 2003 /// Given operands for an And, see if we can fold the result. 2004 /// If not, this returns null. 2005 static Value *SimplifyAndInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 2006 unsigned MaxRecurse) { 2007 if (Constant *C = foldOrCommuteConstant(Instruction::And, Op0, Op1, Q)) 2008 return C; 2009 2010 // X & poison -> poison 2011 if (isa<PoisonValue>(Op1)) 2012 return Op1; 2013 2014 // X & undef -> 0 2015 if (Q.isUndefValue(Op1)) 2016 return Constant::getNullValue(Op0->getType()); 2017 2018 // X & X = X 2019 if (Op0 == Op1) 2020 return Op0; 2021 2022 // X & 0 = 0 2023 if (match(Op1, m_Zero())) 2024 return Constant::getNullValue(Op0->getType()); 2025 2026 // X & -1 = X 2027 if (match(Op1, m_AllOnes())) 2028 return Op0; 2029 2030 // A & ~A = ~A & A = 0 2031 if (match(Op0, m_Not(m_Specific(Op1))) || 2032 match(Op1, m_Not(m_Specific(Op0)))) 2033 return Constant::getNullValue(Op0->getType()); 2034 2035 // (A | ?) & A = A 2036 if (match(Op0, m_c_Or(m_Specific(Op1), m_Value()))) 2037 return Op1; 2038 2039 // A & (A | ?) = A 2040 if (match(Op1, m_c_Or(m_Specific(Op0), m_Value()))) 2041 return Op0; 2042 2043 // (X | Y) & (X | ~Y) --> X (commuted 8 ways) 2044 Value *X, *Y; 2045 if (match(Op0, m_c_Or(m_Value(X), m_Not(m_Value(Y)))) && 2046 match(Op1, m_c_Or(m_Deferred(X), m_Deferred(Y)))) 2047 return X; 2048 if (match(Op1, m_c_Or(m_Value(X), m_Not(m_Value(Y)))) && 2049 match(Op0, m_c_Or(m_Deferred(X), m_Deferred(Y)))) 2050 return X; 2051 2052 if (Value *V = simplifyLogicOfAddSub(Op0, Op1, Instruction::And)) 2053 return V; 2054 2055 // A mask that only clears known zeros of a shifted value is a no-op. 2056 const APInt *Mask; 2057 const APInt *ShAmt; 2058 if (match(Op1, m_APInt(Mask))) { 2059 // If all bits in the inverted and shifted mask are clear: 2060 // and (shl X, ShAmt), Mask --> shl X, ShAmt 2061 if (match(Op0, m_Shl(m_Value(X), m_APInt(ShAmt))) && 2062 (~(*Mask)).lshr(*ShAmt).isZero()) 2063 return Op0; 2064 2065 // If all bits in the inverted and shifted mask are clear: 2066 // and (lshr X, ShAmt), Mask --> lshr X, ShAmt 2067 if (match(Op0, m_LShr(m_Value(X), m_APInt(ShAmt))) && 2068 (~(*Mask)).shl(*ShAmt).isZero()) 2069 return Op0; 2070 } 2071 2072 // If we have a multiplication overflow check that is being 'and'ed with a 2073 // check that one of the multipliers is not zero, we can omit the 'and', and 2074 // only keep the overflow check. 2075 if (isCheckForZeroAndMulWithOverflow(Op0, Op1, true)) 2076 return Op1; 2077 if (isCheckForZeroAndMulWithOverflow(Op1, Op0, true)) 2078 return Op0; 2079 2080 // A & (-A) = A if A is a power of two or zero. 2081 if (match(Op0, m_Neg(m_Specific(Op1))) || 2082 match(Op1, m_Neg(m_Specific(Op0)))) { 2083 if (isKnownToBeAPowerOfTwo(Op0, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI, 2084 Q.DT)) 2085 return Op0; 2086 if (isKnownToBeAPowerOfTwo(Op1, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI, 2087 Q.DT)) 2088 return Op1; 2089 } 2090 2091 // This is a similar pattern used for checking if a value is a power-of-2: 2092 // (A - 1) & A --> 0 (if A is a power-of-2 or 0) 2093 // A & (A - 1) --> 0 (if A is a power-of-2 or 0) 2094 if (match(Op0, m_Add(m_Specific(Op1), m_AllOnes())) && 2095 isKnownToBeAPowerOfTwo(Op1, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI, Q.DT)) 2096 return Constant::getNullValue(Op1->getType()); 2097 if (match(Op1, m_Add(m_Specific(Op0), m_AllOnes())) && 2098 isKnownToBeAPowerOfTwo(Op0, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI, Q.DT)) 2099 return Constant::getNullValue(Op0->getType()); 2100 2101 if (Value *V = simplifyAndOrOfCmps(Q, Op0, Op1, true)) 2102 return V; 2103 2104 // Try some generic simplifications for associative operations. 2105 if (Value *V = SimplifyAssociativeBinOp(Instruction::And, Op0, Op1, Q, 2106 MaxRecurse)) 2107 return V; 2108 2109 // And distributes over Or. Try some generic simplifications based on this. 2110 if (Value *V = expandCommutativeBinOp(Instruction::And, Op0, Op1, 2111 Instruction::Or, Q, MaxRecurse)) 2112 return V; 2113 2114 // And distributes over Xor. Try some generic simplifications based on this. 2115 if (Value *V = expandCommutativeBinOp(Instruction::And, Op0, Op1, 2116 Instruction::Xor, Q, MaxRecurse)) 2117 return V; 2118 2119 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) { 2120 if (Op0->getType()->isIntOrIntVectorTy(1)) { 2121 // A & (A && B) -> A && B 2122 if (match(Op1, m_Select(m_Specific(Op0), m_Value(), m_Zero()))) 2123 return Op1; 2124 else if (match(Op0, m_Select(m_Specific(Op1), m_Value(), m_Zero()))) 2125 return Op0; 2126 } 2127 // If the operation is with the result of a select instruction, check 2128 // whether operating on either branch of the select always yields the same 2129 // value. 2130 if (Value *V = ThreadBinOpOverSelect(Instruction::And, Op0, Op1, Q, 2131 MaxRecurse)) 2132 return V; 2133 } 2134 2135 // If the operation is with the result of a phi instruction, check whether 2136 // operating on all incoming values of the phi always yields the same value. 2137 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 2138 if (Value *V = ThreadBinOpOverPHI(Instruction::And, Op0, Op1, Q, 2139 MaxRecurse)) 2140 return V; 2141 2142 // Assuming the effective width of Y is not larger than A, i.e. all bits 2143 // from X and Y are disjoint in (X << A) | Y, 2144 // if the mask of this AND op covers all bits of X or Y, while it covers 2145 // no bits from the other, we can bypass this AND op. E.g., 2146 // ((X << A) | Y) & Mask -> Y, 2147 // if Mask = ((1 << effective_width_of(Y)) - 1) 2148 // ((X << A) | Y) & Mask -> X << A, 2149 // if Mask = ((1 << effective_width_of(X)) - 1) << A 2150 // SimplifyDemandedBits in InstCombine can optimize the general case. 2151 // This pattern aims to help other passes for a common case. 2152 Value *XShifted; 2153 if (match(Op1, m_APInt(Mask)) && 2154 match(Op0, m_c_Or(m_CombineAnd(m_NUWShl(m_Value(X), m_APInt(ShAmt)), 2155 m_Value(XShifted)), 2156 m_Value(Y)))) { 2157 const unsigned Width = Op0->getType()->getScalarSizeInBits(); 2158 const unsigned ShftCnt = ShAmt->getLimitedValue(Width); 2159 const KnownBits YKnown = computeKnownBits(Y, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2160 const unsigned EffWidthY = YKnown.countMaxActiveBits(); 2161 if (EffWidthY <= ShftCnt) { 2162 const KnownBits XKnown = computeKnownBits(X, Q.DL, 0, Q.AC, Q.CxtI, 2163 Q.DT); 2164 const unsigned EffWidthX = XKnown.countMaxActiveBits(); 2165 const APInt EffBitsY = APInt::getLowBitsSet(Width, EffWidthY); 2166 const APInt EffBitsX = APInt::getLowBitsSet(Width, EffWidthX) << ShftCnt; 2167 // If the mask is extracting all bits from X or Y as is, we can skip 2168 // this AND op. 2169 if (EffBitsY.isSubsetOf(*Mask) && !EffBitsX.intersects(*Mask)) 2170 return Y; 2171 if (EffBitsX.isSubsetOf(*Mask) && !EffBitsY.intersects(*Mask)) 2172 return XShifted; 2173 } 2174 } 2175 2176 return nullptr; 2177 } 2178 2179 Value *llvm::SimplifyAndInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 2180 return ::SimplifyAndInst(Op0, Op1, Q, RecursionLimit); 2181 } 2182 2183 /// Given operands for an Or, see if we can fold the result. 2184 /// If not, this returns null. 2185 static Value *SimplifyOrInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 2186 unsigned MaxRecurse) { 2187 if (Constant *C = foldOrCommuteConstant(Instruction::Or, Op0, Op1, Q)) 2188 return C; 2189 2190 // X | poison -> poison 2191 if (isa<PoisonValue>(Op1)) 2192 return Op1; 2193 2194 // X | undef -> -1 2195 // X | -1 = -1 2196 // Do not return Op1 because it may contain undef elements if it's a vector. 2197 if (Q.isUndefValue(Op1) || match(Op1, m_AllOnes())) 2198 return Constant::getAllOnesValue(Op0->getType()); 2199 2200 // X | X = X 2201 // X | 0 = X 2202 if (Op0 == Op1 || match(Op1, m_Zero())) 2203 return Op0; 2204 2205 // A | ~A = ~A | A = -1 2206 if (match(Op0, m_Not(m_Specific(Op1))) || 2207 match(Op1, m_Not(m_Specific(Op0)))) 2208 return Constant::getAllOnesValue(Op0->getType()); 2209 2210 // (A & ?) | A = A 2211 if (match(Op0, m_c_And(m_Specific(Op1), m_Value()))) 2212 return Op1; 2213 2214 // A | (A & ?) = A 2215 if (match(Op1, m_c_And(m_Specific(Op0), m_Value()))) 2216 return Op0; 2217 2218 // ~(A & ?) | A = -1 2219 if (match(Op0, m_Not(m_c_And(m_Specific(Op1), m_Value())))) 2220 return Constant::getAllOnesValue(Op1->getType()); 2221 2222 // A | ~(A & ?) = -1 2223 if (match(Op1, m_Not(m_c_And(m_Specific(Op0), m_Value())))) 2224 return Constant::getAllOnesValue(Op0->getType()); 2225 2226 if (Value *V = simplifyLogicOfAddSub(Op0, Op1, Instruction::Or)) 2227 return V; 2228 2229 Value *A, *B, *NotA; 2230 // (A & ~B) | (A ^ B) -> (A ^ B) 2231 // (~B & A) | (A ^ B) -> (A ^ B) 2232 // (A & ~B) | (B ^ A) -> (B ^ A) 2233 // (~B & A) | (B ^ A) -> (B ^ A) 2234 if (match(Op1, m_Xor(m_Value(A), m_Value(B))) && 2235 (match(Op0, m_c_And(m_Specific(A), m_Not(m_Specific(B)))) || 2236 match(Op0, m_c_And(m_Not(m_Specific(A)), m_Specific(B))))) 2237 return Op1; 2238 2239 // Commute the 'or' operands. 2240 // (A ^ B) | (A & ~B) -> (A ^ B) 2241 // (A ^ B) | (~B & A) -> (A ^ B) 2242 // (B ^ A) | (A & ~B) -> (B ^ A) 2243 // (B ^ A) | (~B & A) -> (B ^ A) 2244 if (match(Op0, m_Xor(m_Value(A), m_Value(B))) && 2245 (match(Op1, m_c_And(m_Specific(A), m_Not(m_Specific(B)))) || 2246 match(Op1, m_c_And(m_Not(m_Specific(A)), m_Specific(B))))) 2247 return Op0; 2248 2249 // (A & B) | (~A ^ B) -> (~A ^ B) 2250 // (B & A) | (~A ^ B) -> (~A ^ B) 2251 // (A & B) | (B ^ ~A) -> (B ^ ~A) 2252 // (B & A) | (B ^ ~A) -> (B ^ ~A) 2253 if (match(Op0, m_And(m_Value(A), m_Value(B))) && 2254 (match(Op1, m_c_Xor(m_Specific(A), m_Not(m_Specific(B)))) || 2255 match(Op1, m_c_Xor(m_Not(m_Specific(A)), m_Specific(B))))) 2256 return Op1; 2257 2258 // Commute the 'or' operands. 2259 // (~A ^ B) | (A & B) -> (~A ^ B) 2260 // (~A ^ B) | (B & A) -> (~A ^ B) 2261 // (B ^ ~A) | (A & B) -> (B ^ ~A) 2262 // (B ^ ~A) | (B & A) -> (B ^ ~A) 2263 if (match(Op1, m_And(m_Value(A), m_Value(B))) && 2264 (match(Op0, m_c_Xor(m_Specific(A), m_Not(m_Specific(B)))) || 2265 match(Op0, m_c_Xor(m_Not(m_Specific(A)), m_Specific(B))))) 2266 return Op0; 2267 2268 // (A | B) | (A ^ B) --> A | B 2269 // (B | A) | (A ^ B) --> B | A 2270 if (match(Op1, m_Xor(m_Value(A), m_Value(B))) && 2271 match(Op0, m_c_Or(m_Specific(A), m_Specific(B)))) 2272 return Op0; 2273 2274 // Commute the outer 'or' operands. 2275 // (A ^ B) | (A | B) --> A | B 2276 // (A ^ B) | (B | A) --> B | A 2277 if (match(Op0, m_Xor(m_Value(A), m_Value(B))) && 2278 match(Op1, m_c_Or(m_Specific(A), m_Specific(B)))) 2279 return Op1; 2280 2281 // (~A & B) | ~(A | B) --> ~A 2282 // (~A & B) | ~(B | A) --> ~A 2283 // (B & ~A) | ~(A | B) --> ~A 2284 // (B & ~A) | ~(B | A) --> ~A 2285 if (match(Op0, m_c_And(m_CombineAnd(m_Value(NotA), m_Not(m_Value(A))), 2286 m_Value(B))) && 2287 match(Op1, m_Not(m_c_Or(m_Specific(A), m_Specific(B))))) 2288 return NotA; 2289 2290 // Commute the 'or' operands. 2291 // ~(A | B) | (~A & B) --> ~A 2292 // ~(B | A) | (~A & B) --> ~A 2293 // ~(A | B) | (B & ~A) --> ~A 2294 // ~(B | A) | (B & ~A) --> ~A 2295 if (match(Op1, m_c_And(m_CombineAnd(m_Value(NotA), m_Not(m_Value(A))), 2296 m_Value(B))) && 2297 match(Op0, m_Not(m_c_Or(m_Specific(A), m_Specific(B))))) 2298 return NotA; 2299 2300 // Rotated -1 is still -1: 2301 // (-1 << X) | (-1 >> (C - X)) --> -1 2302 // (-1 >> X) | (-1 << (C - X)) --> -1 2303 // ...with C <= bitwidth (and commuted variants). 2304 Value *X, *Y; 2305 if ((match(Op0, m_Shl(m_AllOnes(), m_Value(X))) && 2306 match(Op1, m_LShr(m_AllOnes(), m_Value(Y)))) || 2307 (match(Op1, m_Shl(m_AllOnes(), m_Value(X))) && 2308 match(Op0, m_LShr(m_AllOnes(), m_Value(Y))))) { 2309 const APInt *C; 2310 if ((match(X, m_Sub(m_APInt(C), m_Specific(Y))) || 2311 match(Y, m_Sub(m_APInt(C), m_Specific(X)))) && 2312 C->ule(X->getType()->getScalarSizeInBits())) { 2313 return ConstantInt::getAllOnesValue(X->getType()); 2314 } 2315 } 2316 2317 if (Value *V = simplifyAndOrOfCmps(Q, Op0, Op1, false)) 2318 return V; 2319 2320 // If we have a multiplication overflow check that is being 'and'ed with a 2321 // check that one of the multipliers is not zero, we can omit the 'and', and 2322 // only keep the overflow check. 2323 if (isCheckForZeroAndMulWithOverflow(Op0, Op1, false)) 2324 return Op1; 2325 if (isCheckForZeroAndMulWithOverflow(Op1, Op0, false)) 2326 return Op0; 2327 2328 // Try some generic simplifications for associative operations. 2329 if (Value *V = SimplifyAssociativeBinOp(Instruction::Or, Op0, Op1, Q, 2330 MaxRecurse)) 2331 return V; 2332 2333 // Or distributes over And. Try some generic simplifications based on this. 2334 if (Value *V = expandCommutativeBinOp(Instruction::Or, Op0, Op1, 2335 Instruction::And, Q, MaxRecurse)) 2336 return V; 2337 2338 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) { 2339 if (Op0->getType()->isIntOrIntVectorTy(1)) { 2340 // A | (A || B) -> A || B 2341 if (match(Op1, m_Select(m_Specific(Op0), m_One(), m_Value()))) 2342 return Op1; 2343 else if (match(Op0, m_Select(m_Specific(Op1), m_One(), m_Value()))) 2344 return Op0; 2345 } 2346 // If the operation is with the result of a select instruction, check 2347 // whether operating on either branch of the select always yields the same 2348 // value. 2349 if (Value *V = ThreadBinOpOverSelect(Instruction::Or, Op0, Op1, Q, 2350 MaxRecurse)) 2351 return V; 2352 } 2353 2354 // (A & C1)|(B & C2) 2355 const APInt *C1, *C2; 2356 if (match(Op0, m_And(m_Value(A), m_APInt(C1))) && 2357 match(Op1, m_And(m_Value(B), m_APInt(C2)))) { 2358 if (*C1 == ~*C2) { 2359 // (A & C1)|(B & C2) 2360 // If we have: ((V + N) & C1) | (V & C2) 2361 // .. and C2 = ~C1 and C2 is 0+1+ and (N & C2) == 0 2362 // replace with V+N. 2363 Value *N; 2364 if (C2->isMask() && // C2 == 0+1+ 2365 match(A, m_c_Add(m_Specific(B), m_Value(N)))) { 2366 // Add commutes, try both ways. 2367 if (MaskedValueIsZero(N, *C2, Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 2368 return A; 2369 } 2370 // Or commutes, try both ways. 2371 if (C1->isMask() && 2372 match(B, m_c_Add(m_Specific(A), m_Value(N)))) { 2373 // Add commutes, try both ways. 2374 if (MaskedValueIsZero(N, *C1, Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 2375 return B; 2376 } 2377 } 2378 } 2379 2380 // If the operation is with the result of a phi instruction, check whether 2381 // operating on all incoming values of the phi always yields the same value. 2382 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 2383 if (Value *V = ThreadBinOpOverPHI(Instruction::Or, Op0, Op1, Q, MaxRecurse)) 2384 return V; 2385 2386 return nullptr; 2387 } 2388 2389 Value *llvm::SimplifyOrInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 2390 return ::SimplifyOrInst(Op0, Op1, Q, RecursionLimit); 2391 } 2392 2393 /// Given operands for a Xor, see if we can fold the result. 2394 /// If not, this returns null. 2395 static Value *SimplifyXorInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 2396 unsigned MaxRecurse) { 2397 if (Constant *C = foldOrCommuteConstant(Instruction::Xor, Op0, Op1, Q)) 2398 return C; 2399 2400 // A ^ undef -> undef 2401 if (Q.isUndefValue(Op1)) 2402 return Op1; 2403 2404 // A ^ 0 = A 2405 if (match(Op1, m_Zero())) 2406 return Op0; 2407 2408 // A ^ A = 0 2409 if (Op0 == Op1) 2410 return Constant::getNullValue(Op0->getType()); 2411 2412 // A ^ ~A = ~A ^ A = -1 2413 if (match(Op0, m_Not(m_Specific(Op1))) || 2414 match(Op1, m_Not(m_Specific(Op0)))) 2415 return Constant::getAllOnesValue(Op0->getType()); 2416 2417 auto foldAndOrNot = [](Value *X, Value *Y) -> Value * { 2418 Value *A, *B; 2419 // (~A & B) ^ (A | B) --> A -- There are 8 commuted variants. 2420 if (match(X, m_c_And(m_Not(m_Value(A)), m_Value(B))) && 2421 match(Y, m_c_Or(m_Specific(A), m_Specific(B)))) 2422 return A; 2423 2424 // (~A | B) ^ (A & B) --> ~A -- There are 8 commuted variants. 2425 // The 'not' op must contain a complete -1 operand (no undef elements for 2426 // vector) for the transform to be safe. 2427 Value *NotA; 2428 const APInt *C; 2429 if (match(X, m_c_Or(m_CombineAnd(m_Xor(m_Value(A), m_APIntForbidUndef(C)), 2430 m_Value(NotA)), 2431 m_Value(B))) && 2432 match(Y, m_c_And(m_Specific(A), m_Specific(B))) && C->isAllOnes()) 2433 return NotA; 2434 2435 return nullptr; 2436 }; 2437 if (Value *R = foldAndOrNot(Op0, Op1)) 2438 return R; 2439 if (Value *R = foldAndOrNot(Op1, Op0)) 2440 return R; 2441 2442 if (Value *V = simplifyLogicOfAddSub(Op0, Op1, Instruction::Xor)) 2443 return V; 2444 2445 // Try some generic simplifications for associative operations. 2446 if (Value *V = SimplifyAssociativeBinOp(Instruction::Xor, Op0, Op1, Q, 2447 MaxRecurse)) 2448 return V; 2449 2450 // Threading Xor over selects and phi nodes is pointless, so don't bother. 2451 // Threading over the select in "A ^ select(cond, B, C)" means evaluating 2452 // "A^B" and "A^C" and seeing if they are equal; but they are equal if and 2453 // only if B and C are equal. If B and C are equal then (since we assume 2454 // that operands have already been simplified) "select(cond, B, C)" should 2455 // have been simplified to the common value of B and C already. Analysing 2456 // "A^B" and "A^C" thus gains nothing, but costs compile time. Similarly 2457 // for threading over phi nodes. 2458 2459 return nullptr; 2460 } 2461 2462 Value *llvm::SimplifyXorInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 2463 return ::SimplifyXorInst(Op0, Op1, Q, RecursionLimit); 2464 } 2465 2466 2467 static Type *GetCompareTy(Value *Op) { 2468 return CmpInst::makeCmpResultType(Op->getType()); 2469 } 2470 2471 /// Rummage around inside V looking for something equivalent to the comparison 2472 /// "LHS Pred RHS". Return such a value if found, otherwise return null. 2473 /// Helper function for analyzing max/min idioms. 2474 static Value *ExtractEquivalentCondition(Value *V, CmpInst::Predicate Pred, 2475 Value *LHS, Value *RHS) { 2476 SelectInst *SI = dyn_cast<SelectInst>(V); 2477 if (!SI) 2478 return nullptr; 2479 CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition()); 2480 if (!Cmp) 2481 return nullptr; 2482 Value *CmpLHS = Cmp->getOperand(0), *CmpRHS = Cmp->getOperand(1); 2483 if (Pred == Cmp->getPredicate() && LHS == CmpLHS && RHS == CmpRHS) 2484 return Cmp; 2485 if (Pred == CmpInst::getSwappedPredicate(Cmp->getPredicate()) && 2486 LHS == CmpRHS && RHS == CmpLHS) 2487 return Cmp; 2488 return nullptr; 2489 } 2490 2491 // A significant optimization not implemented here is assuming that alloca 2492 // addresses are not equal to incoming argument values. They don't *alias*, 2493 // as we say, but that doesn't mean they aren't equal, so we take a 2494 // conservative approach. 2495 // 2496 // This is inspired in part by C++11 5.10p1: 2497 // "Two pointers of the same type compare equal if and only if they are both 2498 // null, both point to the same function, or both represent the same 2499 // address." 2500 // 2501 // This is pretty permissive. 2502 // 2503 // It's also partly due to C11 6.5.9p6: 2504 // "Two pointers compare equal if and only if both are null pointers, both are 2505 // pointers to the same object (including a pointer to an object and a 2506 // subobject at its beginning) or function, both are pointers to one past the 2507 // last element of the same array object, or one is a pointer to one past the 2508 // end of one array object and the other is a pointer to the start of a 2509 // different array object that happens to immediately follow the first array 2510 // object in the address space.) 2511 // 2512 // C11's version is more restrictive, however there's no reason why an argument 2513 // couldn't be a one-past-the-end value for a stack object in the caller and be 2514 // equal to the beginning of a stack object in the callee. 2515 // 2516 // If the C and C++ standards are ever made sufficiently restrictive in this 2517 // area, it may be possible to update LLVM's semantics accordingly and reinstate 2518 // this optimization. 2519 static Constant * 2520 computePointerICmp(CmpInst::Predicate Pred, Value *LHS, Value *RHS, 2521 const SimplifyQuery &Q) { 2522 const DataLayout &DL = Q.DL; 2523 const TargetLibraryInfo *TLI = Q.TLI; 2524 const DominatorTree *DT = Q.DT; 2525 const Instruction *CxtI = Q.CxtI; 2526 const InstrInfoQuery &IIQ = Q.IIQ; 2527 2528 // First, skip past any trivial no-ops. 2529 LHS = LHS->stripPointerCasts(); 2530 RHS = RHS->stripPointerCasts(); 2531 2532 // A non-null pointer is not equal to a null pointer. 2533 if (isa<ConstantPointerNull>(RHS) && ICmpInst::isEquality(Pred) && 2534 llvm::isKnownNonZero(LHS, DL, 0, nullptr, nullptr, nullptr, 2535 IIQ.UseInstrInfo)) 2536 return ConstantInt::get(GetCompareTy(LHS), 2537 !CmpInst::isTrueWhenEqual(Pred)); 2538 2539 // We can only fold certain predicates on pointer comparisons. 2540 switch (Pred) { 2541 default: 2542 return nullptr; 2543 2544 // Equality comaprisons are easy to fold. 2545 case CmpInst::ICMP_EQ: 2546 case CmpInst::ICMP_NE: 2547 break; 2548 2549 // We can only handle unsigned relational comparisons because 'inbounds' on 2550 // a GEP only protects against unsigned wrapping. 2551 case CmpInst::ICMP_UGT: 2552 case CmpInst::ICMP_UGE: 2553 case CmpInst::ICMP_ULT: 2554 case CmpInst::ICMP_ULE: 2555 // However, we have to switch them to their signed variants to handle 2556 // negative indices from the base pointer. 2557 Pred = ICmpInst::getSignedPredicate(Pred); 2558 break; 2559 } 2560 2561 // Strip off any constant offsets so that we can reason about them. 2562 // It's tempting to use getUnderlyingObject or even just stripInBoundsOffsets 2563 // here and compare base addresses like AliasAnalysis does, however there are 2564 // numerous hazards. AliasAnalysis and its utilities rely on special rules 2565 // governing loads and stores which don't apply to icmps. Also, AliasAnalysis 2566 // doesn't need to guarantee pointer inequality when it says NoAlias. 2567 Constant *LHSOffset = stripAndComputeConstantOffsets(DL, LHS); 2568 Constant *RHSOffset = stripAndComputeConstantOffsets(DL, RHS); 2569 2570 // If LHS and RHS are related via constant offsets to the same base 2571 // value, we can replace it with an icmp which just compares the offsets. 2572 if (LHS == RHS) 2573 return ConstantExpr::getICmp(Pred, LHSOffset, RHSOffset); 2574 2575 // Various optimizations for (in)equality comparisons. 2576 if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE) { 2577 // Different non-empty allocations that exist at the same time have 2578 // different addresses (if the program can tell). Global variables always 2579 // exist, so they always exist during the lifetime of each other and all 2580 // allocas. Two different allocas usually have different addresses... 2581 // 2582 // However, if there's an @llvm.stackrestore dynamically in between two 2583 // allocas, they may have the same address. It's tempting to reduce the 2584 // scope of the problem by only looking at *static* allocas here. That would 2585 // cover the majority of allocas while significantly reducing the likelihood 2586 // of having an @llvm.stackrestore pop up in the middle. However, it's not 2587 // actually impossible for an @llvm.stackrestore to pop up in the middle of 2588 // an entry block. Also, if we have a block that's not attached to a 2589 // function, we can't tell if it's "static" under the current definition. 2590 // Theoretically, this problem could be fixed by creating a new kind of 2591 // instruction kind specifically for static allocas. Such a new instruction 2592 // could be required to be at the top of the entry block, thus preventing it 2593 // from being subject to a @llvm.stackrestore. Instcombine could even 2594 // convert regular allocas into these special allocas. It'd be nifty. 2595 // However, until then, this problem remains open. 2596 // 2597 // So, we'll assume that two non-empty allocas have different addresses 2598 // for now. 2599 // 2600 // With all that, if the offsets are within the bounds of their allocations 2601 // (and not one-past-the-end! so we can't use inbounds!), and their 2602 // allocations aren't the same, the pointers are not equal. 2603 // 2604 // Note that it's not necessary to check for LHS being a global variable 2605 // address, due to canonicalization and constant folding. 2606 if (isa<AllocaInst>(LHS) && 2607 (isa<AllocaInst>(RHS) || isa<GlobalVariable>(RHS))) { 2608 ConstantInt *LHSOffsetCI = dyn_cast<ConstantInt>(LHSOffset); 2609 ConstantInt *RHSOffsetCI = dyn_cast<ConstantInt>(RHSOffset); 2610 uint64_t LHSSize, RHSSize; 2611 ObjectSizeOpts Opts; 2612 Opts.NullIsUnknownSize = 2613 NullPointerIsDefined(cast<AllocaInst>(LHS)->getFunction()); 2614 if (LHSOffsetCI && RHSOffsetCI && 2615 getObjectSize(LHS, LHSSize, DL, TLI, Opts) && 2616 getObjectSize(RHS, RHSSize, DL, TLI, Opts)) { 2617 const APInt &LHSOffsetValue = LHSOffsetCI->getValue(); 2618 const APInt &RHSOffsetValue = RHSOffsetCI->getValue(); 2619 if (!LHSOffsetValue.isNegative() && 2620 !RHSOffsetValue.isNegative() && 2621 LHSOffsetValue.ult(LHSSize) && 2622 RHSOffsetValue.ult(RHSSize)) { 2623 return ConstantInt::get(GetCompareTy(LHS), 2624 !CmpInst::isTrueWhenEqual(Pred)); 2625 } 2626 } 2627 2628 // Repeat the above check but this time without depending on DataLayout 2629 // or being able to compute a precise size. 2630 if (!cast<PointerType>(LHS->getType())->isEmptyTy() && 2631 !cast<PointerType>(RHS->getType())->isEmptyTy() && 2632 LHSOffset->isNullValue() && 2633 RHSOffset->isNullValue()) 2634 return ConstantInt::get(GetCompareTy(LHS), 2635 !CmpInst::isTrueWhenEqual(Pred)); 2636 } 2637 2638 // Even if an non-inbounds GEP occurs along the path we can still optimize 2639 // equality comparisons concerning the result. We avoid walking the whole 2640 // chain again by starting where the last calls to 2641 // stripAndComputeConstantOffsets left off and accumulate the offsets. 2642 Constant *LHSNoBound = stripAndComputeConstantOffsets(DL, LHS, true); 2643 Constant *RHSNoBound = stripAndComputeConstantOffsets(DL, RHS, true); 2644 if (LHS == RHS) 2645 return ConstantExpr::getICmp(Pred, 2646 ConstantExpr::getAdd(LHSOffset, LHSNoBound), 2647 ConstantExpr::getAdd(RHSOffset, RHSNoBound)); 2648 2649 // If one side of the equality comparison must come from a noalias call 2650 // (meaning a system memory allocation function), and the other side must 2651 // come from a pointer that cannot overlap with dynamically-allocated 2652 // memory within the lifetime of the current function (allocas, byval 2653 // arguments, globals), then determine the comparison result here. 2654 SmallVector<const Value *, 8> LHSUObjs, RHSUObjs; 2655 getUnderlyingObjects(LHS, LHSUObjs); 2656 getUnderlyingObjects(RHS, RHSUObjs); 2657 2658 // Is the set of underlying objects all noalias calls? 2659 auto IsNAC = [](ArrayRef<const Value *> Objects) { 2660 return all_of(Objects, isNoAliasCall); 2661 }; 2662 2663 // Is the set of underlying objects all things which must be disjoint from 2664 // noalias calls. For allocas, we consider only static ones (dynamic 2665 // allocas might be transformed into calls to malloc not simultaneously 2666 // live with the compared-to allocation). For globals, we exclude symbols 2667 // that might be resolve lazily to symbols in another dynamically-loaded 2668 // library (and, thus, could be malloc'ed by the implementation). 2669 auto IsAllocDisjoint = [](ArrayRef<const Value *> Objects) { 2670 return all_of(Objects, [](const Value *V) { 2671 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) 2672 return AI->getParent() && AI->getFunction() && AI->isStaticAlloca(); 2673 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) 2674 return (GV->hasLocalLinkage() || GV->hasHiddenVisibility() || 2675 GV->hasProtectedVisibility() || GV->hasGlobalUnnamedAddr()) && 2676 !GV->isThreadLocal(); 2677 if (const Argument *A = dyn_cast<Argument>(V)) 2678 return A->hasByValAttr(); 2679 return false; 2680 }); 2681 }; 2682 2683 if ((IsNAC(LHSUObjs) && IsAllocDisjoint(RHSUObjs)) || 2684 (IsNAC(RHSUObjs) && IsAllocDisjoint(LHSUObjs))) 2685 return ConstantInt::get(GetCompareTy(LHS), 2686 !CmpInst::isTrueWhenEqual(Pred)); 2687 2688 // Fold comparisons for non-escaping pointer even if the allocation call 2689 // cannot be elided. We cannot fold malloc comparison to null. Also, the 2690 // dynamic allocation call could be either of the operands. 2691 Value *MI = nullptr; 2692 if (isAllocLikeFn(LHS, TLI) && 2693 llvm::isKnownNonZero(RHS, DL, 0, nullptr, CxtI, DT)) 2694 MI = LHS; 2695 else if (isAllocLikeFn(RHS, TLI) && 2696 llvm::isKnownNonZero(LHS, DL, 0, nullptr, CxtI, DT)) 2697 MI = RHS; 2698 // FIXME: We should also fold the compare when the pointer escapes, but the 2699 // compare dominates the pointer escape 2700 if (MI && !PointerMayBeCaptured(MI, true, true)) 2701 return ConstantInt::get(GetCompareTy(LHS), 2702 CmpInst::isFalseWhenEqual(Pred)); 2703 } 2704 2705 // Otherwise, fail. 2706 return nullptr; 2707 } 2708 2709 /// Fold an icmp when its operands have i1 scalar type. 2710 static Value *simplifyICmpOfBools(CmpInst::Predicate Pred, Value *LHS, 2711 Value *RHS, const SimplifyQuery &Q) { 2712 Type *ITy = GetCompareTy(LHS); // The return type. 2713 Type *OpTy = LHS->getType(); // The operand type. 2714 if (!OpTy->isIntOrIntVectorTy(1)) 2715 return nullptr; 2716 2717 // A boolean compared to true/false can be simplified in 14 out of the 20 2718 // (10 predicates * 2 constants) possible combinations. Cases not handled here 2719 // require a 'not' of the LHS, so those must be transformed in InstCombine. 2720 if (match(RHS, m_Zero())) { 2721 switch (Pred) { 2722 case CmpInst::ICMP_NE: // X != 0 -> X 2723 case CmpInst::ICMP_UGT: // X >u 0 -> X 2724 case CmpInst::ICMP_SLT: // X <s 0 -> X 2725 return LHS; 2726 2727 case CmpInst::ICMP_ULT: // X <u 0 -> false 2728 case CmpInst::ICMP_SGT: // X >s 0 -> false 2729 return getFalse(ITy); 2730 2731 case CmpInst::ICMP_UGE: // X >=u 0 -> true 2732 case CmpInst::ICMP_SLE: // X <=s 0 -> true 2733 return getTrue(ITy); 2734 2735 default: break; 2736 } 2737 } else if (match(RHS, m_One())) { 2738 switch (Pred) { 2739 case CmpInst::ICMP_EQ: // X == 1 -> X 2740 case CmpInst::ICMP_UGE: // X >=u 1 -> X 2741 case CmpInst::ICMP_SLE: // X <=s -1 -> X 2742 return LHS; 2743 2744 case CmpInst::ICMP_UGT: // X >u 1 -> false 2745 case CmpInst::ICMP_SLT: // X <s -1 -> false 2746 return getFalse(ITy); 2747 2748 case CmpInst::ICMP_ULE: // X <=u 1 -> true 2749 case CmpInst::ICMP_SGE: // X >=s -1 -> true 2750 return getTrue(ITy); 2751 2752 default: break; 2753 } 2754 } 2755 2756 switch (Pred) { 2757 default: 2758 break; 2759 case ICmpInst::ICMP_UGE: 2760 if (isImpliedCondition(RHS, LHS, Q.DL).getValueOr(false)) 2761 return getTrue(ITy); 2762 break; 2763 case ICmpInst::ICMP_SGE: 2764 /// For signed comparison, the values for an i1 are 0 and -1 2765 /// respectively. This maps into a truth table of: 2766 /// LHS | RHS | LHS >=s RHS | LHS implies RHS 2767 /// 0 | 0 | 1 (0 >= 0) | 1 2768 /// 0 | 1 | 1 (0 >= -1) | 1 2769 /// 1 | 0 | 0 (-1 >= 0) | 0 2770 /// 1 | 1 | 1 (-1 >= -1) | 1 2771 if (isImpliedCondition(LHS, RHS, Q.DL).getValueOr(false)) 2772 return getTrue(ITy); 2773 break; 2774 case ICmpInst::ICMP_ULE: 2775 if (isImpliedCondition(LHS, RHS, Q.DL).getValueOr(false)) 2776 return getTrue(ITy); 2777 break; 2778 } 2779 2780 return nullptr; 2781 } 2782 2783 /// Try hard to fold icmp with zero RHS because this is a common case. 2784 static Value *simplifyICmpWithZero(CmpInst::Predicate Pred, Value *LHS, 2785 Value *RHS, const SimplifyQuery &Q) { 2786 if (!match(RHS, m_Zero())) 2787 return nullptr; 2788 2789 Type *ITy = GetCompareTy(LHS); // The return type. 2790 switch (Pred) { 2791 default: 2792 llvm_unreachable("Unknown ICmp predicate!"); 2793 case ICmpInst::ICMP_ULT: 2794 return getFalse(ITy); 2795 case ICmpInst::ICMP_UGE: 2796 return getTrue(ITy); 2797 case ICmpInst::ICMP_EQ: 2798 case ICmpInst::ICMP_ULE: 2799 if (isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT, Q.IIQ.UseInstrInfo)) 2800 return getFalse(ITy); 2801 break; 2802 case ICmpInst::ICMP_NE: 2803 case ICmpInst::ICMP_UGT: 2804 if (isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT, Q.IIQ.UseInstrInfo)) 2805 return getTrue(ITy); 2806 break; 2807 case ICmpInst::ICMP_SLT: { 2808 KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2809 if (LHSKnown.isNegative()) 2810 return getTrue(ITy); 2811 if (LHSKnown.isNonNegative()) 2812 return getFalse(ITy); 2813 break; 2814 } 2815 case ICmpInst::ICMP_SLE: { 2816 KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2817 if (LHSKnown.isNegative()) 2818 return getTrue(ITy); 2819 if (LHSKnown.isNonNegative() && 2820 isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 2821 return getFalse(ITy); 2822 break; 2823 } 2824 case ICmpInst::ICMP_SGE: { 2825 KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2826 if (LHSKnown.isNegative()) 2827 return getFalse(ITy); 2828 if (LHSKnown.isNonNegative()) 2829 return getTrue(ITy); 2830 break; 2831 } 2832 case ICmpInst::ICMP_SGT: { 2833 KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2834 if (LHSKnown.isNegative()) 2835 return getFalse(ITy); 2836 if (LHSKnown.isNonNegative() && 2837 isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 2838 return getTrue(ITy); 2839 break; 2840 } 2841 } 2842 2843 return nullptr; 2844 } 2845 2846 static Value *simplifyICmpWithConstant(CmpInst::Predicate Pred, Value *LHS, 2847 Value *RHS, const InstrInfoQuery &IIQ) { 2848 Type *ITy = GetCompareTy(RHS); // The return type. 2849 2850 Value *X; 2851 // Sign-bit checks can be optimized to true/false after unsigned 2852 // floating-point casts: 2853 // icmp slt (bitcast (uitofp X)), 0 --> false 2854 // icmp sgt (bitcast (uitofp X)), -1 --> true 2855 if (match(LHS, m_BitCast(m_UIToFP(m_Value(X))))) { 2856 if (Pred == ICmpInst::ICMP_SLT && match(RHS, m_Zero())) 2857 return ConstantInt::getFalse(ITy); 2858 if (Pred == ICmpInst::ICMP_SGT && match(RHS, m_AllOnes())) 2859 return ConstantInt::getTrue(ITy); 2860 } 2861 2862 const APInt *C; 2863 if (!match(RHS, m_APIntAllowUndef(C))) 2864 return nullptr; 2865 2866 // Rule out tautological comparisons (eg., ult 0 or uge 0). 2867 ConstantRange RHS_CR = ConstantRange::makeExactICmpRegion(Pred, *C); 2868 if (RHS_CR.isEmptySet()) 2869 return ConstantInt::getFalse(ITy); 2870 if (RHS_CR.isFullSet()) 2871 return ConstantInt::getTrue(ITy); 2872 2873 ConstantRange LHS_CR = computeConstantRange(LHS, IIQ.UseInstrInfo); 2874 if (!LHS_CR.isFullSet()) { 2875 if (RHS_CR.contains(LHS_CR)) 2876 return ConstantInt::getTrue(ITy); 2877 if (RHS_CR.inverse().contains(LHS_CR)) 2878 return ConstantInt::getFalse(ITy); 2879 } 2880 2881 // (mul nuw/nsw X, MulC) != C --> true (if C is not a multiple of MulC) 2882 // (mul nuw/nsw X, MulC) == C --> false (if C is not a multiple of MulC) 2883 const APInt *MulC; 2884 if (ICmpInst::isEquality(Pred) && 2885 ((match(LHS, m_NUWMul(m_Value(), m_APIntAllowUndef(MulC))) && 2886 *MulC != 0 && C->urem(*MulC) != 0) || 2887 (match(LHS, m_NSWMul(m_Value(), m_APIntAllowUndef(MulC))) && 2888 *MulC != 0 && C->srem(*MulC) != 0))) 2889 return ConstantInt::get(ITy, Pred == ICmpInst::ICMP_NE); 2890 2891 return nullptr; 2892 } 2893 2894 static Value *simplifyICmpWithBinOpOnLHS( 2895 CmpInst::Predicate Pred, BinaryOperator *LBO, Value *RHS, 2896 const SimplifyQuery &Q, unsigned MaxRecurse) { 2897 Type *ITy = GetCompareTy(RHS); // The return type. 2898 2899 Value *Y = nullptr; 2900 // icmp pred (or X, Y), X 2901 if (match(LBO, m_c_Or(m_Value(Y), m_Specific(RHS)))) { 2902 if (Pred == ICmpInst::ICMP_ULT) 2903 return getFalse(ITy); 2904 if (Pred == ICmpInst::ICMP_UGE) 2905 return getTrue(ITy); 2906 2907 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SGE) { 2908 KnownBits RHSKnown = computeKnownBits(RHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2909 KnownBits YKnown = computeKnownBits(Y, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2910 if (RHSKnown.isNonNegative() && YKnown.isNegative()) 2911 return Pred == ICmpInst::ICMP_SLT ? getTrue(ITy) : getFalse(ITy); 2912 if (RHSKnown.isNegative() || YKnown.isNonNegative()) 2913 return Pred == ICmpInst::ICMP_SLT ? getFalse(ITy) : getTrue(ITy); 2914 } 2915 } 2916 2917 // icmp pred (and X, Y), X 2918 if (match(LBO, m_c_And(m_Value(), m_Specific(RHS)))) { 2919 if (Pred == ICmpInst::ICMP_UGT) 2920 return getFalse(ITy); 2921 if (Pred == ICmpInst::ICMP_ULE) 2922 return getTrue(ITy); 2923 } 2924 2925 // icmp pred (urem X, Y), Y 2926 if (match(LBO, m_URem(m_Value(), m_Specific(RHS)))) { 2927 switch (Pred) { 2928 default: 2929 break; 2930 case ICmpInst::ICMP_SGT: 2931 case ICmpInst::ICMP_SGE: { 2932 KnownBits Known = computeKnownBits(RHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2933 if (!Known.isNonNegative()) 2934 break; 2935 LLVM_FALLTHROUGH; 2936 } 2937 case ICmpInst::ICMP_EQ: 2938 case ICmpInst::ICMP_UGT: 2939 case ICmpInst::ICMP_UGE: 2940 return getFalse(ITy); 2941 case ICmpInst::ICMP_SLT: 2942 case ICmpInst::ICMP_SLE: { 2943 KnownBits Known = computeKnownBits(RHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2944 if (!Known.isNonNegative()) 2945 break; 2946 LLVM_FALLTHROUGH; 2947 } 2948 case ICmpInst::ICMP_NE: 2949 case ICmpInst::ICMP_ULT: 2950 case ICmpInst::ICMP_ULE: 2951 return getTrue(ITy); 2952 } 2953 } 2954 2955 // icmp pred (urem X, Y), X 2956 if (match(LBO, m_URem(m_Specific(RHS), m_Value()))) { 2957 if (Pred == ICmpInst::ICMP_ULE) 2958 return getTrue(ITy); 2959 if (Pred == ICmpInst::ICMP_UGT) 2960 return getFalse(ITy); 2961 } 2962 2963 // x >> y <=u x 2964 // x udiv y <=u x. 2965 if (match(LBO, m_LShr(m_Specific(RHS), m_Value())) || 2966 match(LBO, m_UDiv(m_Specific(RHS), m_Value()))) { 2967 // icmp pred (X op Y), X 2968 if (Pred == ICmpInst::ICMP_UGT) 2969 return getFalse(ITy); 2970 if (Pred == ICmpInst::ICMP_ULE) 2971 return getTrue(ITy); 2972 } 2973 2974 // (x*C1)/C2 <= x for C1 <= C2. 2975 // This holds even if the multiplication overflows: Assume that x != 0 and 2976 // arithmetic is modulo M. For overflow to occur we must have C1 >= M/x and 2977 // thus C2 >= M/x. It follows that (x*C1)/C2 <= (M-1)/C2 <= ((M-1)*x)/M < x. 2978 // 2979 // Additionally, either the multiplication and division might be represented 2980 // as shifts: 2981 // (x*C1)>>C2 <= x for C1 < 2**C2. 2982 // (x<<C1)/C2 <= x for 2**C1 < C2. 2983 const APInt *C1, *C2; 2984 if ((match(LBO, m_UDiv(m_Mul(m_Specific(RHS), m_APInt(C1)), m_APInt(C2))) && 2985 C1->ule(*C2)) || 2986 (match(LBO, m_LShr(m_Mul(m_Specific(RHS), m_APInt(C1)), m_APInt(C2))) && 2987 C1->ule(APInt(C2->getBitWidth(), 1) << *C2)) || 2988 (match(LBO, m_UDiv(m_Shl(m_Specific(RHS), m_APInt(C1)), m_APInt(C2))) && 2989 (APInt(C1->getBitWidth(), 1) << *C1).ule(*C2))) { 2990 if (Pred == ICmpInst::ICMP_UGT) 2991 return getFalse(ITy); 2992 if (Pred == ICmpInst::ICMP_ULE) 2993 return getTrue(ITy); 2994 } 2995 2996 return nullptr; 2997 } 2998 2999 3000 // If only one of the icmp's operands has NSW flags, try to prove that: 3001 // 3002 // icmp slt (x + C1), (x +nsw C2) 3003 // 3004 // is equivalent to: 3005 // 3006 // icmp slt C1, C2 3007 // 3008 // which is true if x + C2 has the NSW flags set and: 3009 // *) C1 < C2 && C1 >= 0, or 3010 // *) C2 < C1 && C1 <= 0. 3011 // 3012 static bool trySimplifyICmpWithAdds(CmpInst::Predicate Pred, Value *LHS, 3013 Value *RHS) { 3014 // TODO: only support icmp slt for now. 3015 if (Pred != CmpInst::ICMP_SLT) 3016 return false; 3017 3018 // Canonicalize nsw add as RHS. 3019 if (!match(RHS, m_NSWAdd(m_Value(), m_Value()))) 3020 std::swap(LHS, RHS); 3021 if (!match(RHS, m_NSWAdd(m_Value(), m_Value()))) 3022 return false; 3023 3024 Value *X; 3025 const APInt *C1, *C2; 3026 if (!match(LHS, m_c_Add(m_Value(X), m_APInt(C1))) || 3027 !match(RHS, m_c_Add(m_Specific(X), m_APInt(C2)))) 3028 return false; 3029 3030 return (C1->slt(*C2) && C1->isNonNegative()) || 3031 (C2->slt(*C1) && C1->isNonPositive()); 3032 } 3033 3034 3035 /// TODO: A large part of this logic is duplicated in InstCombine's 3036 /// foldICmpBinOp(). We should be able to share that and avoid the code 3037 /// duplication. 3038 static Value *simplifyICmpWithBinOp(CmpInst::Predicate Pred, Value *LHS, 3039 Value *RHS, const SimplifyQuery &Q, 3040 unsigned MaxRecurse) { 3041 BinaryOperator *LBO = dyn_cast<BinaryOperator>(LHS); 3042 BinaryOperator *RBO = dyn_cast<BinaryOperator>(RHS); 3043 if (MaxRecurse && (LBO || RBO)) { 3044 // Analyze the case when either LHS or RHS is an add instruction. 3045 Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr; 3046 // LHS = A + B (or A and B are null); RHS = C + D (or C and D are null). 3047 bool NoLHSWrapProblem = false, NoRHSWrapProblem = false; 3048 if (LBO && LBO->getOpcode() == Instruction::Add) { 3049 A = LBO->getOperand(0); 3050 B = LBO->getOperand(1); 3051 NoLHSWrapProblem = 3052 ICmpInst::isEquality(Pred) || 3053 (CmpInst::isUnsigned(Pred) && 3054 Q.IIQ.hasNoUnsignedWrap(cast<OverflowingBinaryOperator>(LBO))) || 3055 (CmpInst::isSigned(Pred) && 3056 Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(LBO))); 3057 } 3058 if (RBO && RBO->getOpcode() == Instruction::Add) { 3059 C = RBO->getOperand(0); 3060 D = RBO->getOperand(1); 3061 NoRHSWrapProblem = 3062 ICmpInst::isEquality(Pred) || 3063 (CmpInst::isUnsigned(Pred) && 3064 Q.IIQ.hasNoUnsignedWrap(cast<OverflowingBinaryOperator>(RBO))) || 3065 (CmpInst::isSigned(Pred) && 3066 Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(RBO))); 3067 } 3068 3069 // icmp (X+Y), X -> icmp Y, 0 for equalities or if there is no overflow. 3070 if ((A == RHS || B == RHS) && NoLHSWrapProblem) 3071 if (Value *V = SimplifyICmpInst(Pred, A == RHS ? B : A, 3072 Constant::getNullValue(RHS->getType()), Q, 3073 MaxRecurse - 1)) 3074 return V; 3075 3076 // icmp X, (X+Y) -> icmp 0, Y for equalities or if there is no overflow. 3077 if ((C == LHS || D == LHS) && NoRHSWrapProblem) 3078 if (Value *V = 3079 SimplifyICmpInst(Pred, Constant::getNullValue(LHS->getType()), 3080 C == LHS ? D : C, Q, MaxRecurse - 1)) 3081 return V; 3082 3083 // icmp (X+Y), (X+Z) -> icmp Y,Z for equalities or if there is no overflow. 3084 bool CanSimplify = (NoLHSWrapProblem && NoRHSWrapProblem) || 3085 trySimplifyICmpWithAdds(Pred, LHS, RHS); 3086 if (A && C && (A == C || A == D || B == C || B == D) && CanSimplify) { 3087 // Determine Y and Z in the form icmp (X+Y), (X+Z). 3088 Value *Y, *Z; 3089 if (A == C) { 3090 // C + B == C + D -> B == D 3091 Y = B; 3092 Z = D; 3093 } else if (A == D) { 3094 // D + B == C + D -> B == C 3095 Y = B; 3096 Z = C; 3097 } else if (B == C) { 3098 // A + C == C + D -> A == D 3099 Y = A; 3100 Z = D; 3101 } else { 3102 assert(B == D); 3103 // A + D == C + D -> A == C 3104 Y = A; 3105 Z = C; 3106 } 3107 if (Value *V = SimplifyICmpInst(Pred, Y, Z, Q, MaxRecurse - 1)) 3108 return V; 3109 } 3110 } 3111 3112 if (LBO) 3113 if (Value *V = simplifyICmpWithBinOpOnLHS(Pred, LBO, RHS, Q, MaxRecurse)) 3114 return V; 3115 3116 if (RBO) 3117 if (Value *V = simplifyICmpWithBinOpOnLHS( 3118 ICmpInst::getSwappedPredicate(Pred), RBO, LHS, Q, MaxRecurse)) 3119 return V; 3120 3121 // 0 - (zext X) pred C 3122 if (!CmpInst::isUnsigned(Pred) && match(LHS, m_Neg(m_ZExt(m_Value())))) { 3123 const APInt *C; 3124 if (match(RHS, m_APInt(C))) { 3125 if (C->isStrictlyPositive()) { 3126 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_NE) 3127 return ConstantInt::getTrue(GetCompareTy(RHS)); 3128 if (Pred == ICmpInst::ICMP_SGE || Pred == ICmpInst::ICMP_EQ) 3129 return ConstantInt::getFalse(GetCompareTy(RHS)); 3130 } 3131 if (C->isNonNegative()) { 3132 if (Pred == ICmpInst::ICMP_SLE) 3133 return ConstantInt::getTrue(GetCompareTy(RHS)); 3134 if (Pred == ICmpInst::ICMP_SGT) 3135 return ConstantInt::getFalse(GetCompareTy(RHS)); 3136 } 3137 } 3138 } 3139 3140 // If C2 is a power-of-2 and C is not: 3141 // (C2 << X) == C --> false 3142 // (C2 << X) != C --> true 3143 const APInt *C; 3144 if (match(LHS, m_Shl(m_Power2(), m_Value())) && 3145 match(RHS, m_APIntAllowUndef(C)) && !C->isPowerOf2()) { 3146 // C2 << X can equal zero in some circumstances. 3147 // This simplification might be unsafe if C is zero. 3148 // 3149 // We know it is safe if: 3150 // - The shift is nsw. We can't shift out the one bit. 3151 // - The shift is nuw. We can't shift out the one bit. 3152 // - C2 is one. 3153 // - C isn't zero. 3154 if (Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(LBO)) || 3155 Q.IIQ.hasNoUnsignedWrap(cast<OverflowingBinaryOperator>(LBO)) || 3156 match(LHS, m_Shl(m_One(), m_Value())) || !C->isZero()) { 3157 if (Pred == ICmpInst::ICMP_EQ) 3158 return ConstantInt::getFalse(GetCompareTy(RHS)); 3159 if (Pred == ICmpInst::ICMP_NE) 3160 return ConstantInt::getTrue(GetCompareTy(RHS)); 3161 } 3162 } 3163 3164 // TODO: This is overly constrained. LHS can be any power-of-2. 3165 // (1 << X) >u 0x8000 --> false 3166 // (1 << X) <=u 0x8000 --> true 3167 if (match(LHS, m_Shl(m_One(), m_Value())) && match(RHS, m_SignMask())) { 3168 if (Pred == ICmpInst::ICMP_UGT) 3169 return ConstantInt::getFalse(GetCompareTy(RHS)); 3170 if (Pred == ICmpInst::ICMP_ULE) 3171 return ConstantInt::getTrue(GetCompareTy(RHS)); 3172 } 3173 3174 if (MaxRecurse && LBO && RBO && LBO->getOpcode() == RBO->getOpcode() && 3175 LBO->getOperand(1) == RBO->getOperand(1)) { 3176 switch (LBO->getOpcode()) { 3177 default: 3178 break; 3179 case Instruction::UDiv: 3180 case Instruction::LShr: 3181 if (ICmpInst::isSigned(Pred) || !Q.IIQ.isExact(LBO) || 3182 !Q.IIQ.isExact(RBO)) 3183 break; 3184 if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0), 3185 RBO->getOperand(0), Q, MaxRecurse - 1)) 3186 return V; 3187 break; 3188 case Instruction::SDiv: 3189 if (!ICmpInst::isEquality(Pred) || !Q.IIQ.isExact(LBO) || 3190 !Q.IIQ.isExact(RBO)) 3191 break; 3192 if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0), 3193 RBO->getOperand(0), Q, MaxRecurse - 1)) 3194 return V; 3195 break; 3196 case Instruction::AShr: 3197 if (!Q.IIQ.isExact(LBO) || !Q.IIQ.isExact(RBO)) 3198 break; 3199 if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0), 3200 RBO->getOperand(0), Q, MaxRecurse - 1)) 3201 return V; 3202 break; 3203 case Instruction::Shl: { 3204 bool NUW = Q.IIQ.hasNoUnsignedWrap(LBO) && Q.IIQ.hasNoUnsignedWrap(RBO); 3205 bool NSW = Q.IIQ.hasNoSignedWrap(LBO) && Q.IIQ.hasNoSignedWrap(RBO); 3206 if (!NUW && !NSW) 3207 break; 3208 if (!NSW && ICmpInst::isSigned(Pred)) 3209 break; 3210 if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0), 3211 RBO->getOperand(0), Q, MaxRecurse - 1)) 3212 return V; 3213 break; 3214 } 3215 } 3216 } 3217 return nullptr; 3218 } 3219 3220 /// Simplify integer comparisons where at least one operand of the compare 3221 /// matches an integer min/max idiom. 3222 static Value *simplifyICmpWithMinMax(CmpInst::Predicate Pred, Value *LHS, 3223 Value *RHS, const SimplifyQuery &Q, 3224 unsigned MaxRecurse) { 3225 Type *ITy = GetCompareTy(LHS); // The return type. 3226 Value *A, *B; 3227 CmpInst::Predicate P = CmpInst::BAD_ICMP_PREDICATE; 3228 CmpInst::Predicate EqP; // Chosen so that "A == max/min(A,B)" iff "A EqP B". 3229 3230 // Signed variants on "max(a,b)>=a -> true". 3231 if (match(LHS, m_SMax(m_Value(A), m_Value(B))) && (A == RHS || B == RHS)) { 3232 if (A != RHS) 3233 std::swap(A, B); // smax(A, B) pred A. 3234 EqP = CmpInst::ICMP_SGE; // "A == smax(A, B)" iff "A sge B". 3235 // We analyze this as smax(A, B) pred A. 3236 P = Pred; 3237 } else if (match(RHS, m_SMax(m_Value(A), m_Value(B))) && 3238 (A == LHS || B == LHS)) { 3239 if (A != LHS) 3240 std::swap(A, B); // A pred smax(A, B). 3241 EqP = CmpInst::ICMP_SGE; // "A == smax(A, B)" iff "A sge B". 3242 // We analyze this as smax(A, B) swapped-pred A. 3243 P = CmpInst::getSwappedPredicate(Pred); 3244 } else if (match(LHS, m_SMin(m_Value(A), m_Value(B))) && 3245 (A == RHS || B == RHS)) { 3246 if (A != RHS) 3247 std::swap(A, B); // smin(A, B) pred A. 3248 EqP = CmpInst::ICMP_SLE; // "A == smin(A, B)" iff "A sle B". 3249 // We analyze this as smax(-A, -B) swapped-pred -A. 3250 // Note that we do not need to actually form -A or -B thanks to EqP. 3251 P = CmpInst::getSwappedPredicate(Pred); 3252 } else if (match(RHS, m_SMin(m_Value(A), m_Value(B))) && 3253 (A == LHS || B == LHS)) { 3254 if (A != LHS) 3255 std::swap(A, B); // A pred smin(A, B). 3256 EqP = CmpInst::ICMP_SLE; // "A == smin(A, B)" iff "A sle B". 3257 // We analyze this as smax(-A, -B) pred -A. 3258 // Note that we do not need to actually form -A or -B thanks to EqP. 3259 P = Pred; 3260 } 3261 if (P != CmpInst::BAD_ICMP_PREDICATE) { 3262 // Cases correspond to "max(A, B) p A". 3263 switch (P) { 3264 default: 3265 break; 3266 case CmpInst::ICMP_EQ: 3267 case CmpInst::ICMP_SLE: 3268 // Equivalent to "A EqP B". This may be the same as the condition tested 3269 // in the max/min; if so, we can just return that. 3270 if (Value *V = ExtractEquivalentCondition(LHS, EqP, A, B)) 3271 return V; 3272 if (Value *V = ExtractEquivalentCondition(RHS, EqP, A, B)) 3273 return V; 3274 // Otherwise, see if "A EqP B" simplifies. 3275 if (MaxRecurse) 3276 if (Value *V = SimplifyICmpInst(EqP, A, B, Q, MaxRecurse - 1)) 3277 return V; 3278 break; 3279 case CmpInst::ICMP_NE: 3280 case CmpInst::ICMP_SGT: { 3281 CmpInst::Predicate InvEqP = CmpInst::getInversePredicate(EqP); 3282 // Equivalent to "A InvEqP B". This may be the same as the condition 3283 // tested in the max/min; if so, we can just return that. 3284 if (Value *V = ExtractEquivalentCondition(LHS, InvEqP, A, B)) 3285 return V; 3286 if (Value *V = ExtractEquivalentCondition(RHS, InvEqP, A, B)) 3287 return V; 3288 // Otherwise, see if "A InvEqP B" simplifies. 3289 if (MaxRecurse) 3290 if (Value *V = SimplifyICmpInst(InvEqP, A, B, Q, MaxRecurse - 1)) 3291 return V; 3292 break; 3293 } 3294 case CmpInst::ICMP_SGE: 3295 // Always true. 3296 return getTrue(ITy); 3297 case CmpInst::ICMP_SLT: 3298 // Always false. 3299 return getFalse(ITy); 3300 } 3301 } 3302 3303 // Unsigned variants on "max(a,b)>=a -> true". 3304 P = CmpInst::BAD_ICMP_PREDICATE; 3305 if (match(LHS, m_UMax(m_Value(A), m_Value(B))) && (A == RHS || B == RHS)) { 3306 if (A != RHS) 3307 std::swap(A, B); // umax(A, B) pred A. 3308 EqP = CmpInst::ICMP_UGE; // "A == umax(A, B)" iff "A uge B". 3309 // We analyze this as umax(A, B) pred A. 3310 P = Pred; 3311 } else if (match(RHS, m_UMax(m_Value(A), m_Value(B))) && 3312 (A == LHS || B == LHS)) { 3313 if (A != LHS) 3314 std::swap(A, B); // A pred umax(A, B). 3315 EqP = CmpInst::ICMP_UGE; // "A == umax(A, B)" iff "A uge B". 3316 // We analyze this as umax(A, B) swapped-pred A. 3317 P = CmpInst::getSwappedPredicate(Pred); 3318 } else if (match(LHS, m_UMin(m_Value(A), m_Value(B))) && 3319 (A == RHS || B == RHS)) { 3320 if (A != RHS) 3321 std::swap(A, B); // umin(A, B) pred A. 3322 EqP = CmpInst::ICMP_ULE; // "A == umin(A, B)" iff "A ule B". 3323 // We analyze this as umax(-A, -B) swapped-pred -A. 3324 // Note that we do not need to actually form -A or -B thanks to EqP. 3325 P = CmpInst::getSwappedPredicate(Pred); 3326 } else if (match(RHS, m_UMin(m_Value(A), m_Value(B))) && 3327 (A == LHS || B == LHS)) { 3328 if (A != LHS) 3329 std::swap(A, B); // A pred umin(A, B). 3330 EqP = CmpInst::ICMP_ULE; // "A == umin(A, B)" iff "A ule B". 3331 // We analyze this as umax(-A, -B) pred -A. 3332 // Note that we do not need to actually form -A or -B thanks to EqP. 3333 P = Pred; 3334 } 3335 if (P != CmpInst::BAD_ICMP_PREDICATE) { 3336 // Cases correspond to "max(A, B) p A". 3337 switch (P) { 3338 default: 3339 break; 3340 case CmpInst::ICMP_EQ: 3341 case CmpInst::ICMP_ULE: 3342 // Equivalent to "A EqP B". This may be the same as the condition tested 3343 // in the max/min; if so, we can just return that. 3344 if (Value *V = ExtractEquivalentCondition(LHS, EqP, A, B)) 3345 return V; 3346 if (Value *V = ExtractEquivalentCondition(RHS, EqP, A, B)) 3347 return V; 3348 // Otherwise, see if "A EqP B" simplifies. 3349 if (MaxRecurse) 3350 if (Value *V = SimplifyICmpInst(EqP, A, B, Q, MaxRecurse - 1)) 3351 return V; 3352 break; 3353 case CmpInst::ICMP_NE: 3354 case CmpInst::ICMP_UGT: { 3355 CmpInst::Predicate InvEqP = CmpInst::getInversePredicate(EqP); 3356 // Equivalent to "A InvEqP B". This may be the same as the condition 3357 // tested in the max/min; if so, we can just return that. 3358 if (Value *V = ExtractEquivalentCondition(LHS, InvEqP, A, B)) 3359 return V; 3360 if (Value *V = ExtractEquivalentCondition(RHS, InvEqP, A, B)) 3361 return V; 3362 // Otherwise, see if "A InvEqP B" simplifies. 3363 if (MaxRecurse) 3364 if (Value *V = SimplifyICmpInst(InvEqP, A, B, Q, MaxRecurse - 1)) 3365 return V; 3366 break; 3367 } 3368 case CmpInst::ICMP_UGE: 3369 return getTrue(ITy); 3370 case CmpInst::ICMP_ULT: 3371 return getFalse(ITy); 3372 } 3373 } 3374 3375 // Comparing 1 each of min/max with a common operand? 3376 // Canonicalize min operand to RHS. 3377 if (match(LHS, m_UMin(m_Value(), m_Value())) || 3378 match(LHS, m_SMin(m_Value(), m_Value()))) { 3379 std::swap(LHS, RHS); 3380 Pred = ICmpInst::getSwappedPredicate(Pred); 3381 } 3382 3383 Value *C, *D; 3384 if (match(LHS, m_SMax(m_Value(A), m_Value(B))) && 3385 match(RHS, m_SMin(m_Value(C), m_Value(D))) && 3386 (A == C || A == D || B == C || B == D)) { 3387 // smax(A, B) >=s smin(A, D) --> true 3388 if (Pred == CmpInst::ICMP_SGE) 3389 return getTrue(ITy); 3390 // smax(A, B) <s smin(A, D) --> false 3391 if (Pred == CmpInst::ICMP_SLT) 3392 return getFalse(ITy); 3393 } else if (match(LHS, m_UMax(m_Value(A), m_Value(B))) && 3394 match(RHS, m_UMin(m_Value(C), m_Value(D))) && 3395 (A == C || A == D || B == C || B == D)) { 3396 // umax(A, B) >=u umin(A, D) --> true 3397 if (Pred == CmpInst::ICMP_UGE) 3398 return getTrue(ITy); 3399 // umax(A, B) <u umin(A, D) --> false 3400 if (Pred == CmpInst::ICMP_ULT) 3401 return getFalse(ITy); 3402 } 3403 3404 return nullptr; 3405 } 3406 3407 static Value *simplifyICmpWithDominatingAssume(CmpInst::Predicate Predicate, 3408 Value *LHS, Value *RHS, 3409 const SimplifyQuery &Q) { 3410 // Gracefully handle instructions that have not been inserted yet. 3411 if (!Q.AC || !Q.CxtI || !Q.CxtI->getParent()) 3412 return nullptr; 3413 3414 for (Value *AssumeBaseOp : {LHS, RHS}) { 3415 for (auto &AssumeVH : Q.AC->assumptionsFor(AssumeBaseOp)) { 3416 if (!AssumeVH) 3417 continue; 3418 3419 CallInst *Assume = cast<CallInst>(AssumeVH); 3420 if (Optional<bool> Imp = 3421 isImpliedCondition(Assume->getArgOperand(0), Predicate, LHS, RHS, 3422 Q.DL)) 3423 if (isValidAssumeForContext(Assume, Q.CxtI, Q.DT)) 3424 return ConstantInt::get(GetCompareTy(LHS), *Imp); 3425 } 3426 } 3427 3428 return nullptr; 3429 } 3430 3431 /// Given operands for an ICmpInst, see if we can fold the result. 3432 /// If not, this returns null. 3433 static Value *SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS, 3434 const SimplifyQuery &Q, unsigned MaxRecurse) { 3435 CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate; 3436 assert(CmpInst::isIntPredicate(Pred) && "Not an integer compare!"); 3437 3438 if (Constant *CLHS = dyn_cast<Constant>(LHS)) { 3439 if (Constant *CRHS = dyn_cast<Constant>(RHS)) 3440 return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, Q.DL, Q.TLI); 3441 3442 // If we have a constant, make sure it is on the RHS. 3443 std::swap(LHS, RHS); 3444 Pred = CmpInst::getSwappedPredicate(Pred); 3445 } 3446 assert(!isa<UndefValue>(LHS) && "Unexpected icmp undef,%X"); 3447 3448 Type *ITy = GetCompareTy(LHS); // The return type. 3449 3450 // icmp poison, X -> poison 3451 if (isa<PoisonValue>(RHS)) 3452 return PoisonValue::get(ITy); 3453 3454 // For EQ and NE, we can always pick a value for the undef to make the 3455 // predicate pass or fail, so we can return undef. 3456 // Matches behavior in llvm::ConstantFoldCompareInstruction. 3457 if (Q.isUndefValue(RHS) && ICmpInst::isEquality(Pred)) 3458 return UndefValue::get(ITy); 3459 3460 // icmp X, X -> true/false 3461 // icmp X, undef -> true/false because undef could be X. 3462 if (LHS == RHS || Q.isUndefValue(RHS)) 3463 return ConstantInt::get(ITy, CmpInst::isTrueWhenEqual(Pred)); 3464 3465 if (Value *V = simplifyICmpOfBools(Pred, LHS, RHS, Q)) 3466 return V; 3467 3468 // TODO: Sink/common this with other potentially expensive calls that use 3469 // ValueTracking? See comment below for isKnownNonEqual(). 3470 if (Value *V = simplifyICmpWithZero(Pred, LHS, RHS, Q)) 3471 return V; 3472 3473 if (Value *V = simplifyICmpWithConstant(Pred, LHS, RHS, Q.IIQ)) 3474 return V; 3475 3476 // If both operands have range metadata, use the metadata 3477 // to simplify the comparison. 3478 if (isa<Instruction>(RHS) && isa<Instruction>(LHS)) { 3479 auto RHS_Instr = cast<Instruction>(RHS); 3480 auto LHS_Instr = cast<Instruction>(LHS); 3481 3482 if (Q.IIQ.getMetadata(RHS_Instr, LLVMContext::MD_range) && 3483 Q.IIQ.getMetadata(LHS_Instr, LLVMContext::MD_range)) { 3484 auto RHS_CR = getConstantRangeFromMetadata( 3485 *RHS_Instr->getMetadata(LLVMContext::MD_range)); 3486 auto LHS_CR = getConstantRangeFromMetadata( 3487 *LHS_Instr->getMetadata(LLVMContext::MD_range)); 3488 3489 if (LHS_CR.icmp(Pred, RHS_CR)) 3490 return ConstantInt::getTrue(RHS->getContext()); 3491 3492 if (LHS_CR.icmp(CmpInst::getInversePredicate(Pred), RHS_CR)) 3493 return ConstantInt::getFalse(RHS->getContext()); 3494 } 3495 } 3496 3497 // Compare of cast, for example (zext X) != 0 -> X != 0 3498 if (isa<CastInst>(LHS) && (isa<Constant>(RHS) || isa<CastInst>(RHS))) { 3499 Instruction *LI = cast<CastInst>(LHS); 3500 Value *SrcOp = LI->getOperand(0); 3501 Type *SrcTy = SrcOp->getType(); 3502 Type *DstTy = LI->getType(); 3503 3504 // Turn icmp (ptrtoint x), (ptrtoint/constant) into a compare of the input 3505 // if the integer type is the same size as the pointer type. 3506 if (MaxRecurse && isa<PtrToIntInst>(LI) && 3507 Q.DL.getTypeSizeInBits(SrcTy) == DstTy->getPrimitiveSizeInBits()) { 3508 if (Constant *RHSC = dyn_cast<Constant>(RHS)) { 3509 // Transfer the cast to the constant. 3510 if (Value *V = SimplifyICmpInst(Pred, SrcOp, 3511 ConstantExpr::getIntToPtr(RHSC, SrcTy), 3512 Q, MaxRecurse-1)) 3513 return V; 3514 } else if (PtrToIntInst *RI = dyn_cast<PtrToIntInst>(RHS)) { 3515 if (RI->getOperand(0)->getType() == SrcTy) 3516 // Compare without the cast. 3517 if (Value *V = SimplifyICmpInst(Pred, SrcOp, RI->getOperand(0), 3518 Q, MaxRecurse-1)) 3519 return V; 3520 } 3521 } 3522 3523 if (isa<ZExtInst>(LHS)) { 3524 // Turn icmp (zext X), (zext Y) into a compare of X and Y if they have the 3525 // same type. 3526 if (ZExtInst *RI = dyn_cast<ZExtInst>(RHS)) { 3527 if (MaxRecurse && SrcTy == RI->getOperand(0)->getType()) 3528 // Compare X and Y. Note that signed predicates become unsigned. 3529 if (Value *V = SimplifyICmpInst(ICmpInst::getUnsignedPredicate(Pred), 3530 SrcOp, RI->getOperand(0), Q, 3531 MaxRecurse-1)) 3532 return V; 3533 } 3534 // Fold (zext X) ule (sext X), (zext X) sge (sext X) to true. 3535 else if (SExtInst *RI = dyn_cast<SExtInst>(RHS)) { 3536 if (SrcOp == RI->getOperand(0)) { 3537 if (Pred == ICmpInst::ICMP_ULE || Pred == ICmpInst::ICMP_SGE) 3538 return ConstantInt::getTrue(ITy); 3539 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_SLT) 3540 return ConstantInt::getFalse(ITy); 3541 } 3542 } 3543 // Turn icmp (zext X), Cst into a compare of X and Cst if Cst is extended 3544 // too. If not, then try to deduce the result of the comparison. 3545 else if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) { 3546 // Compute the constant that would happen if we truncated to SrcTy then 3547 // reextended to DstTy. 3548 Constant *Trunc = ConstantExpr::getTrunc(CI, SrcTy); 3549 Constant *RExt = ConstantExpr::getCast(CastInst::ZExt, Trunc, DstTy); 3550 3551 // If the re-extended constant didn't change then this is effectively 3552 // also a case of comparing two zero-extended values. 3553 if (RExt == CI && MaxRecurse) 3554 if (Value *V = SimplifyICmpInst(ICmpInst::getUnsignedPredicate(Pred), 3555 SrcOp, Trunc, Q, MaxRecurse-1)) 3556 return V; 3557 3558 // Otherwise the upper bits of LHS are zero while RHS has a non-zero bit 3559 // there. Use this to work out the result of the comparison. 3560 if (RExt != CI) { 3561 switch (Pred) { 3562 default: llvm_unreachable("Unknown ICmp predicate!"); 3563 // LHS <u RHS. 3564 case ICmpInst::ICMP_EQ: 3565 case ICmpInst::ICMP_UGT: 3566 case ICmpInst::ICMP_UGE: 3567 return ConstantInt::getFalse(CI->getContext()); 3568 3569 case ICmpInst::ICMP_NE: 3570 case ICmpInst::ICMP_ULT: 3571 case ICmpInst::ICMP_ULE: 3572 return ConstantInt::getTrue(CI->getContext()); 3573 3574 // LHS is non-negative. If RHS is negative then LHS >s LHS. If RHS 3575 // is non-negative then LHS <s RHS. 3576 case ICmpInst::ICMP_SGT: 3577 case ICmpInst::ICMP_SGE: 3578 return CI->getValue().isNegative() ? 3579 ConstantInt::getTrue(CI->getContext()) : 3580 ConstantInt::getFalse(CI->getContext()); 3581 3582 case ICmpInst::ICMP_SLT: 3583 case ICmpInst::ICMP_SLE: 3584 return CI->getValue().isNegative() ? 3585 ConstantInt::getFalse(CI->getContext()) : 3586 ConstantInt::getTrue(CI->getContext()); 3587 } 3588 } 3589 } 3590 } 3591 3592 if (isa<SExtInst>(LHS)) { 3593 // Turn icmp (sext X), (sext Y) into a compare of X and Y if they have the 3594 // same type. 3595 if (SExtInst *RI = dyn_cast<SExtInst>(RHS)) { 3596 if (MaxRecurse && SrcTy == RI->getOperand(0)->getType()) 3597 // Compare X and Y. Note that the predicate does not change. 3598 if (Value *V = SimplifyICmpInst(Pred, SrcOp, RI->getOperand(0), 3599 Q, MaxRecurse-1)) 3600 return V; 3601 } 3602 // Fold (sext X) uge (zext X), (sext X) sle (zext X) to true. 3603 else if (ZExtInst *RI = dyn_cast<ZExtInst>(RHS)) { 3604 if (SrcOp == RI->getOperand(0)) { 3605 if (Pred == ICmpInst::ICMP_UGE || Pred == ICmpInst::ICMP_SLE) 3606 return ConstantInt::getTrue(ITy); 3607 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_SGT) 3608 return ConstantInt::getFalse(ITy); 3609 } 3610 } 3611 // Turn icmp (sext X), Cst into a compare of X and Cst if Cst is extended 3612 // too. If not, then try to deduce the result of the comparison. 3613 else if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) { 3614 // Compute the constant that would happen if we truncated to SrcTy then 3615 // reextended to DstTy. 3616 Constant *Trunc = ConstantExpr::getTrunc(CI, SrcTy); 3617 Constant *RExt = ConstantExpr::getCast(CastInst::SExt, Trunc, DstTy); 3618 3619 // If the re-extended constant didn't change then this is effectively 3620 // also a case of comparing two sign-extended values. 3621 if (RExt == CI && MaxRecurse) 3622 if (Value *V = SimplifyICmpInst(Pred, SrcOp, Trunc, Q, MaxRecurse-1)) 3623 return V; 3624 3625 // Otherwise the upper bits of LHS are all equal, while RHS has varying 3626 // bits there. Use this to work out the result of the comparison. 3627 if (RExt != CI) { 3628 switch (Pred) { 3629 default: llvm_unreachable("Unknown ICmp predicate!"); 3630 case ICmpInst::ICMP_EQ: 3631 return ConstantInt::getFalse(CI->getContext()); 3632 case ICmpInst::ICMP_NE: 3633 return ConstantInt::getTrue(CI->getContext()); 3634 3635 // If RHS is non-negative then LHS <s RHS. If RHS is negative then 3636 // LHS >s RHS. 3637 case ICmpInst::ICMP_SGT: 3638 case ICmpInst::ICMP_SGE: 3639 return CI->getValue().isNegative() ? 3640 ConstantInt::getTrue(CI->getContext()) : 3641 ConstantInt::getFalse(CI->getContext()); 3642 case ICmpInst::ICMP_SLT: 3643 case ICmpInst::ICMP_SLE: 3644 return CI->getValue().isNegative() ? 3645 ConstantInt::getFalse(CI->getContext()) : 3646 ConstantInt::getTrue(CI->getContext()); 3647 3648 // If LHS is non-negative then LHS <u RHS. If LHS is negative then 3649 // LHS >u RHS. 3650 case ICmpInst::ICMP_UGT: 3651 case ICmpInst::ICMP_UGE: 3652 // Comparison is true iff the LHS <s 0. 3653 if (MaxRecurse) 3654 if (Value *V = SimplifyICmpInst(ICmpInst::ICMP_SLT, SrcOp, 3655 Constant::getNullValue(SrcTy), 3656 Q, MaxRecurse-1)) 3657 return V; 3658 break; 3659 case ICmpInst::ICMP_ULT: 3660 case ICmpInst::ICMP_ULE: 3661 // Comparison is true iff the LHS >=s 0. 3662 if (MaxRecurse) 3663 if (Value *V = SimplifyICmpInst(ICmpInst::ICMP_SGE, SrcOp, 3664 Constant::getNullValue(SrcTy), 3665 Q, MaxRecurse-1)) 3666 return V; 3667 break; 3668 } 3669 } 3670 } 3671 } 3672 } 3673 3674 // icmp eq|ne X, Y -> false|true if X != Y 3675 // This is potentially expensive, and we have already computedKnownBits for 3676 // compares with 0 above here, so only try this for a non-zero compare. 3677 if (ICmpInst::isEquality(Pred) && !match(RHS, m_Zero()) && 3678 isKnownNonEqual(LHS, RHS, Q.DL, Q.AC, Q.CxtI, Q.DT, Q.IIQ.UseInstrInfo)) { 3679 return Pred == ICmpInst::ICMP_NE ? getTrue(ITy) : getFalse(ITy); 3680 } 3681 3682 if (Value *V = simplifyICmpWithBinOp(Pred, LHS, RHS, Q, MaxRecurse)) 3683 return V; 3684 3685 if (Value *V = simplifyICmpWithMinMax(Pred, LHS, RHS, Q, MaxRecurse)) 3686 return V; 3687 3688 if (Value *V = simplifyICmpWithDominatingAssume(Pred, LHS, RHS, Q)) 3689 return V; 3690 3691 // Simplify comparisons of related pointers using a powerful, recursive 3692 // GEP-walk when we have target data available.. 3693 if (LHS->getType()->isPointerTy()) 3694 if (auto *C = computePointerICmp(Pred, LHS, RHS, Q)) 3695 return C; 3696 if (auto *CLHS = dyn_cast<PtrToIntOperator>(LHS)) 3697 if (auto *CRHS = dyn_cast<PtrToIntOperator>(RHS)) 3698 if (Q.DL.getTypeSizeInBits(CLHS->getPointerOperandType()) == 3699 Q.DL.getTypeSizeInBits(CLHS->getType()) && 3700 Q.DL.getTypeSizeInBits(CRHS->getPointerOperandType()) == 3701 Q.DL.getTypeSizeInBits(CRHS->getType())) 3702 if (auto *C = computePointerICmp(Pred, CLHS->getPointerOperand(), 3703 CRHS->getPointerOperand(), Q)) 3704 return C; 3705 3706 // If the comparison is with the result of a select instruction, check whether 3707 // comparing with either branch of the select always yields the same value. 3708 if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS)) 3709 if (Value *V = ThreadCmpOverSelect(Pred, LHS, RHS, Q, MaxRecurse)) 3710 return V; 3711 3712 // If the comparison is with the result of a phi instruction, check whether 3713 // doing the compare with each incoming phi value yields a common result. 3714 if (isa<PHINode>(LHS) || isa<PHINode>(RHS)) 3715 if (Value *V = ThreadCmpOverPHI(Pred, LHS, RHS, Q, MaxRecurse)) 3716 return V; 3717 3718 return nullptr; 3719 } 3720 3721 Value *llvm::SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS, 3722 const SimplifyQuery &Q) { 3723 return ::SimplifyICmpInst(Predicate, LHS, RHS, Q, RecursionLimit); 3724 } 3725 3726 /// Given operands for an FCmpInst, see if we can fold the result. 3727 /// If not, this returns null. 3728 static Value *SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS, 3729 FastMathFlags FMF, const SimplifyQuery &Q, 3730 unsigned MaxRecurse) { 3731 CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate; 3732 assert(CmpInst::isFPPredicate(Pred) && "Not an FP compare!"); 3733 3734 if (Constant *CLHS = dyn_cast<Constant>(LHS)) { 3735 if (Constant *CRHS = dyn_cast<Constant>(RHS)) 3736 return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, Q.DL, Q.TLI); 3737 3738 // If we have a constant, make sure it is on the RHS. 3739 std::swap(LHS, RHS); 3740 Pred = CmpInst::getSwappedPredicate(Pred); 3741 } 3742 3743 // Fold trivial predicates. 3744 Type *RetTy = GetCompareTy(LHS); 3745 if (Pred == FCmpInst::FCMP_FALSE) 3746 return getFalse(RetTy); 3747 if (Pred == FCmpInst::FCMP_TRUE) 3748 return getTrue(RetTy); 3749 3750 // Fold (un)ordered comparison if we can determine there are no NaNs. 3751 if (Pred == FCmpInst::FCMP_UNO || Pred == FCmpInst::FCMP_ORD) 3752 if (FMF.noNaNs() || 3753 (isKnownNeverNaN(LHS, Q.TLI) && isKnownNeverNaN(RHS, Q.TLI))) 3754 return ConstantInt::get(RetTy, Pred == FCmpInst::FCMP_ORD); 3755 3756 // NaN is unordered; NaN is not ordered. 3757 assert((FCmpInst::isOrdered(Pred) || FCmpInst::isUnordered(Pred)) && 3758 "Comparison must be either ordered or unordered"); 3759 if (match(RHS, m_NaN())) 3760 return ConstantInt::get(RetTy, CmpInst::isUnordered(Pred)); 3761 3762 // fcmp pred x, poison and fcmp pred poison, x 3763 // fold to poison 3764 if (isa<PoisonValue>(LHS) || isa<PoisonValue>(RHS)) 3765 return PoisonValue::get(RetTy); 3766 3767 // fcmp pred x, undef and fcmp pred undef, x 3768 // fold to true if unordered, false if ordered 3769 if (Q.isUndefValue(LHS) || Q.isUndefValue(RHS)) { 3770 // Choosing NaN for the undef will always make unordered comparison succeed 3771 // and ordered comparison fail. 3772 return ConstantInt::get(RetTy, CmpInst::isUnordered(Pred)); 3773 } 3774 3775 // fcmp x,x -> true/false. Not all compares are foldable. 3776 if (LHS == RHS) { 3777 if (CmpInst::isTrueWhenEqual(Pred)) 3778 return getTrue(RetTy); 3779 if (CmpInst::isFalseWhenEqual(Pred)) 3780 return getFalse(RetTy); 3781 } 3782 3783 // Handle fcmp with constant RHS. 3784 // TODO: Use match with a specific FP value, so these work with vectors with 3785 // undef lanes. 3786 const APFloat *C; 3787 if (match(RHS, m_APFloat(C))) { 3788 // Check whether the constant is an infinity. 3789 if (C->isInfinity()) { 3790 if (C->isNegative()) { 3791 switch (Pred) { 3792 case FCmpInst::FCMP_OLT: 3793 // No value is ordered and less than negative infinity. 3794 return getFalse(RetTy); 3795 case FCmpInst::FCMP_UGE: 3796 // All values are unordered with or at least negative infinity. 3797 return getTrue(RetTy); 3798 default: 3799 break; 3800 } 3801 } else { 3802 switch (Pred) { 3803 case FCmpInst::FCMP_OGT: 3804 // No value is ordered and greater than infinity. 3805 return getFalse(RetTy); 3806 case FCmpInst::FCMP_ULE: 3807 // All values are unordered with and at most infinity. 3808 return getTrue(RetTy); 3809 default: 3810 break; 3811 } 3812 } 3813 3814 // LHS == Inf 3815 if (Pred == FCmpInst::FCMP_OEQ && isKnownNeverInfinity(LHS, Q.TLI)) 3816 return getFalse(RetTy); 3817 // LHS != Inf 3818 if (Pred == FCmpInst::FCMP_UNE && isKnownNeverInfinity(LHS, Q.TLI)) 3819 return getTrue(RetTy); 3820 // LHS == Inf || LHS == NaN 3821 if (Pred == FCmpInst::FCMP_UEQ && isKnownNeverInfinity(LHS, Q.TLI) && 3822 isKnownNeverNaN(LHS, Q.TLI)) 3823 return getFalse(RetTy); 3824 // LHS != Inf && LHS != NaN 3825 if (Pred == FCmpInst::FCMP_ONE && isKnownNeverInfinity(LHS, Q.TLI) && 3826 isKnownNeverNaN(LHS, Q.TLI)) 3827 return getTrue(RetTy); 3828 } 3829 if (C->isNegative() && !C->isNegZero()) { 3830 assert(!C->isNaN() && "Unexpected NaN constant!"); 3831 // TODO: We can catch more cases by using a range check rather than 3832 // relying on CannotBeOrderedLessThanZero. 3833 switch (Pred) { 3834 case FCmpInst::FCMP_UGE: 3835 case FCmpInst::FCMP_UGT: 3836 case FCmpInst::FCMP_UNE: 3837 // (X >= 0) implies (X > C) when (C < 0) 3838 if (CannotBeOrderedLessThanZero(LHS, Q.TLI)) 3839 return getTrue(RetTy); 3840 break; 3841 case FCmpInst::FCMP_OEQ: 3842 case FCmpInst::FCMP_OLE: 3843 case FCmpInst::FCMP_OLT: 3844 // (X >= 0) implies !(X < C) when (C < 0) 3845 if (CannotBeOrderedLessThanZero(LHS, Q.TLI)) 3846 return getFalse(RetTy); 3847 break; 3848 default: 3849 break; 3850 } 3851 } 3852 3853 // Check comparison of [minnum/maxnum with constant] with other constant. 3854 const APFloat *C2; 3855 if ((match(LHS, m_Intrinsic<Intrinsic::minnum>(m_Value(), m_APFloat(C2))) && 3856 *C2 < *C) || 3857 (match(LHS, m_Intrinsic<Intrinsic::maxnum>(m_Value(), m_APFloat(C2))) && 3858 *C2 > *C)) { 3859 bool IsMaxNum = 3860 cast<IntrinsicInst>(LHS)->getIntrinsicID() == Intrinsic::maxnum; 3861 // The ordered relationship and minnum/maxnum guarantee that we do not 3862 // have NaN constants, so ordered/unordered preds are handled the same. 3863 switch (Pred) { 3864 case FCmpInst::FCMP_OEQ: case FCmpInst::FCMP_UEQ: 3865 // minnum(X, LesserC) == C --> false 3866 // maxnum(X, GreaterC) == C --> false 3867 return getFalse(RetTy); 3868 case FCmpInst::FCMP_ONE: case FCmpInst::FCMP_UNE: 3869 // minnum(X, LesserC) != C --> true 3870 // maxnum(X, GreaterC) != C --> true 3871 return getTrue(RetTy); 3872 case FCmpInst::FCMP_OGE: case FCmpInst::FCMP_UGE: 3873 case FCmpInst::FCMP_OGT: case FCmpInst::FCMP_UGT: 3874 // minnum(X, LesserC) >= C --> false 3875 // minnum(X, LesserC) > C --> false 3876 // maxnum(X, GreaterC) >= C --> true 3877 // maxnum(X, GreaterC) > C --> true 3878 return ConstantInt::get(RetTy, IsMaxNum); 3879 case FCmpInst::FCMP_OLE: case FCmpInst::FCMP_ULE: 3880 case FCmpInst::FCMP_OLT: case FCmpInst::FCMP_ULT: 3881 // minnum(X, LesserC) <= C --> true 3882 // minnum(X, LesserC) < C --> true 3883 // maxnum(X, GreaterC) <= C --> false 3884 // maxnum(X, GreaterC) < C --> false 3885 return ConstantInt::get(RetTy, !IsMaxNum); 3886 default: 3887 // TRUE/FALSE/ORD/UNO should be handled before this. 3888 llvm_unreachable("Unexpected fcmp predicate"); 3889 } 3890 } 3891 } 3892 3893 if (match(RHS, m_AnyZeroFP())) { 3894 switch (Pred) { 3895 case FCmpInst::FCMP_OGE: 3896 case FCmpInst::FCMP_ULT: 3897 // Positive or zero X >= 0.0 --> true 3898 // Positive or zero X < 0.0 --> false 3899 if ((FMF.noNaNs() || isKnownNeverNaN(LHS, Q.TLI)) && 3900 CannotBeOrderedLessThanZero(LHS, Q.TLI)) 3901 return Pred == FCmpInst::FCMP_OGE ? getTrue(RetTy) : getFalse(RetTy); 3902 break; 3903 case FCmpInst::FCMP_UGE: 3904 case FCmpInst::FCMP_OLT: 3905 // Positive or zero or nan X >= 0.0 --> true 3906 // Positive or zero or nan X < 0.0 --> false 3907 if (CannotBeOrderedLessThanZero(LHS, Q.TLI)) 3908 return Pred == FCmpInst::FCMP_UGE ? getTrue(RetTy) : getFalse(RetTy); 3909 break; 3910 default: 3911 break; 3912 } 3913 } 3914 3915 // If the comparison is with the result of a select instruction, check whether 3916 // comparing with either branch of the select always yields the same value. 3917 if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS)) 3918 if (Value *V = ThreadCmpOverSelect(Pred, LHS, RHS, Q, MaxRecurse)) 3919 return V; 3920 3921 // If the comparison is with the result of a phi instruction, check whether 3922 // doing the compare with each incoming phi value yields a common result. 3923 if (isa<PHINode>(LHS) || isa<PHINode>(RHS)) 3924 if (Value *V = ThreadCmpOverPHI(Pred, LHS, RHS, Q, MaxRecurse)) 3925 return V; 3926 3927 return nullptr; 3928 } 3929 3930 Value *llvm::SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS, 3931 FastMathFlags FMF, const SimplifyQuery &Q) { 3932 return ::SimplifyFCmpInst(Predicate, LHS, RHS, FMF, Q, RecursionLimit); 3933 } 3934 3935 static Value *simplifyWithOpReplaced(Value *V, Value *Op, Value *RepOp, 3936 const SimplifyQuery &Q, 3937 bool AllowRefinement, 3938 unsigned MaxRecurse) { 3939 assert(!Op->getType()->isVectorTy() && "This is not safe for vectors"); 3940 3941 // Trivial replacement. 3942 if (V == Op) 3943 return RepOp; 3944 3945 // We cannot replace a constant, and shouldn't even try. 3946 if (isa<Constant>(Op)) 3947 return nullptr; 3948 3949 auto *I = dyn_cast<Instruction>(V); 3950 if (!I || !is_contained(I->operands(), Op)) 3951 return nullptr; 3952 3953 // Replace Op with RepOp in instruction operands. 3954 SmallVector<Value *, 8> NewOps(I->getNumOperands()); 3955 transform(I->operands(), NewOps.begin(), 3956 [&](Value *V) { return V == Op ? RepOp : V; }); 3957 3958 if (!AllowRefinement) { 3959 // General InstSimplify functions may refine the result, e.g. by returning 3960 // a constant for a potentially poison value. To avoid this, implement only 3961 // a few non-refining but profitable transforms here. 3962 3963 if (auto *BO = dyn_cast<BinaryOperator>(I)) { 3964 unsigned Opcode = BO->getOpcode(); 3965 // id op x -> x, x op id -> x 3966 if (NewOps[0] == ConstantExpr::getBinOpIdentity(Opcode, I->getType())) 3967 return NewOps[1]; 3968 if (NewOps[1] == ConstantExpr::getBinOpIdentity(Opcode, I->getType(), 3969 /* RHS */ true)) 3970 return NewOps[0]; 3971 3972 // x & x -> x, x | x -> x 3973 if ((Opcode == Instruction::And || Opcode == Instruction::Or) && 3974 NewOps[0] == NewOps[1]) 3975 return NewOps[0]; 3976 } 3977 3978 if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) { 3979 // getelementptr x, 0 -> x 3980 if (NewOps.size() == 2 && match(NewOps[1], m_Zero()) && 3981 !GEP->isInBounds()) 3982 return NewOps[0]; 3983 } 3984 } else if (MaxRecurse) { 3985 // The simplification queries below may return the original value. Consider: 3986 // %div = udiv i32 %arg, %arg2 3987 // %mul = mul nsw i32 %div, %arg2 3988 // %cmp = icmp eq i32 %mul, %arg 3989 // %sel = select i1 %cmp, i32 %div, i32 undef 3990 // Replacing %arg by %mul, %div becomes "udiv i32 %mul, %arg2", which 3991 // simplifies back to %arg. This can only happen because %mul does not 3992 // dominate %div. To ensure a consistent return value contract, we make sure 3993 // that this case returns nullptr as well. 3994 auto PreventSelfSimplify = [V](Value *Simplified) { 3995 return Simplified != V ? Simplified : nullptr; 3996 }; 3997 3998 if (auto *B = dyn_cast<BinaryOperator>(I)) 3999 return PreventSelfSimplify(SimplifyBinOp(B->getOpcode(), NewOps[0], 4000 NewOps[1], Q, MaxRecurse - 1)); 4001 4002 if (CmpInst *C = dyn_cast<CmpInst>(I)) 4003 return PreventSelfSimplify(SimplifyCmpInst(C->getPredicate(), NewOps[0], 4004 NewOps[1], Q, MaxRecurse - 1)); 4005 4006 if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) 4007 return PreventSelfSimplify(SimplifyGEPInst(GEP->getSourceElementType(), 4008 NewOps, GEP->isInBounds(), Q, 4009 MaxRecurse - 1)); 4010 4011 if (isa<SelectInst>(I)) 4012 return PreventSelfSimplify( 4013 SimplifySelectInst(NewOps[0], NewOps[1], NewOps[2], Q, 4014 MaxRecurse - 1)); 4015 // TODO: We could hand off more cases to instsimplify here. 4016 } 4017 4018 // If all operands are constant after substituting Op for RepOp then we can 4019 // constant fold the instruction. 4020 SmallVector<Constant *, 8> ConstOps; 4021 for (Value *NewOp : NewOps) { 4022 if (Constant *ConstOp = dyn_cast<Constant>(NewOp)) 4023 ConstOps.push_back(ConstOp); 4024 else 4025 return nullptr; 4026 } 4027 4028 // Consider: 4029 // %cmp = icmp eq i32 %x, 2147483647 4030 // %add = add nsw i32 %x, 1 4031 // %sel = select i1 %cmp, i32 -2147483648, i32 %add 4032 // 4033 // We can't replace %sel with %add unless we strip away the flags (which 4034 // will be done in InstCombine). 4035 // TODO: This may be unsound, because it only catches some forms of 4036 // refinement. 4037 if (!AllowRefinement && canCreatePoison(cast<Operator>(I))) 4038 return nullptr; 4039 4040 if (CmpInst *C = dyn_cast<CmpInst>(I)) 4041 return ConstantFoldCompareInstOperands(C->getPredicate(), ConstOps[0], 4042 ConstOps[1], Q.DL, Q.TLI); 4043 4044 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 4045 if (!LI->isVolatile()) 4046 return ConstantFoldLoadFromConstPtr(ConstOps[0], LI->getType(), Q.DL); 4047 4048 return ConstantFoldInstOperands(I, ConstOps, Q.DL, Q.TLI); 4049 } 4050 4051 Value *llvm::simplifyWithOpReplaced(Value *V, Value *Op, Value *RepOp, 4052 const SimplifyQuery &Q, 4053 bool AllowRefinement) { 4054 return ::simplifyWithOpReplaced(V, Op, RepOp, Q, AllowRefinement, 4055 RecursionLimit); 4056 } 4057 4058 /// Try to simplify a select instruction when its condition operand is an 4059 /// integer comparison where one operand of the compare is a constant. 4060 static Value *simplifySelectBitTest(Value *TrueVal, Value *FalseVal, Value *X, 4061 const APInt *Y, bool TrueWhenUnset) { 4062 const APInt *C; 4063 4064 // (X & Y) == 0 ? X & ~Y : X --> X 4065 // (X & Y) != 0 ? X & ~Y : X --> X & ~Y 4066 if (FalseVal == X && match(TrueVal, m_And(m_Specific(X), m_APInt(C))) && 4067 *Y == ~*C) 4068 return TrueWhenUnset ? FalseVal : TrueVal; 4069 4070 // (X & Y) == 0 ? X : X & ~Y --> X & ~Y 4071 // (X & Y) != 0 ? X : X & ~Y --> X 4072 if (TrueVal == X && match(FalseVal, m_And(m_Specific(X), m_APInt(C))) && 4073 *Y == ~*C) 4074 return TrueWhenUnset ? FalseVal : TrueVal; 4075 4076 if (Y->isPowerOf2()) { 4077 // (X & Y) == 0 ? X | Y : X --> X | Y 4078 // (X & Y) != 0 ? X | Y : X --> X 4079 if (FalseVal == X && match(TrueVal, m_Or(m_Specific(X), m_APInt(C))) && 4080 *Y == *C) 4081 return TrueWhenUnset ? TrueVal : FalseVal; 4082 4083 // (X & Y) == 0 ? X : X | Y --> X 4084 // (X & Y) != 0 ? X : X | Y --> X | Y 4085 if (TrueVal == X && match(FalseVal, m_Or(m_Specific(X), m_APInt(C))) && 4086 *Y == *C) 4087 return TrueWhenUnset ? TrueVal : FalseVal; 4088 } 4089 4090 return nullptr; 4091 } 4092 4093 /// An alternative way to test if a bit is set or not uses sgt/slt instead of 4094 /// eq/ne. 4095 static Value *simplifySelectWithFakeICmpEq(Value *CmpLHS, Value *CmpRHS, 4096 ICmpInst::Predicate Pred, 4097 Value *TrueVal, Value *FalseVal) { 4098 Value *X; 4099 APInt Mask; 4100 if (!decomposeBitTestICmp(CmpLHS, CmpRHS, Pred, X, Mask)) 4101 return nullptr; 4102 4103 return simplifySelectBitTest(TrueVal, FalseVal, X, &Mask, 4104 Pred == ICmpInst::ICMP_EQ); 4105 } 4106 4107 /// Try to simplify a select instruction when its condition operand is an 4108 /// integer comparison. 4109 static Value *simplifySelectWithICmpCond(Value *CondVal, Value *TrueVal, 4110 Value *FalseVal, const SimplifyQuery &Q, 4111 unsigned MaxRecurse) { 4112 ICmpInst::Predicate Pred; 4113 Value *CmpLHS, *CmpRHS; 4114 if (!match(CondVal, m_ICmp(Pred, m_Value(CmpLHS), m_Value(CmpRHS)))) 4115 return nullptr; 4116 4117 // Canonicalize ne to eq predicate. 4118 if (Pred == ICmpInst::ICMP_NE) { 4119 Pred = ICmpInst::ICMP_EQ; 4120 std::swap(TrueVal, FalseVal); 4121 } 4122 4123 // Check for integer min/max with a limit constant: 4124 // X > MIN_INT ? X : MIN_INT --> X 4125 // X < MAX_INT ? X : MAX_INT --> X 4126 if (TrueVal->getType()->isIntOrIntVectorTy()) { 4127 Value *X, *Y; 4128 SelectPatternFlavor SPF = 4129 matchDecomposedSelectPattern(cast<ICmpInst>(CondVal), TrueVal, FalseVal, 4130 X, Y).Flavor; 4131 if (SelectPatternResult::isMinOrMax(SPF) && Pred == getMinMaxPred(SPF)) { 4132 APInt LimitC = getMinMaxLimit(getInverseMinMaxFlavor(SPF), 4133 X->getType()->getScalarSizeInBits()); 4134 if (match(Y, m_SpecificInt(LimitC))) 4135 return X; 4136 } 4137 } 4138 4139 if (Pred == ICmpInst::ICMP_EQ && match(CmpRHS, m_Zero())) { 4140 Value *X; 4141 const APInt *Y; 4142 if (match(CmpLHS, m_And(m_Value(X), m_APInt(Y)))) 4143 if (Value *V = simplifySelectBitTest(TrueVal, FalseVal, X, Y, 4144 /*TrueWhenUnset=*/true)) 4145 return V; 4146 4147 // Test for a bogus zero-shift-guard-op around funnel-shift or rotate. 4148 Value *ShAmt; 4149 auto isFsh = m_CombineOr(m_FShl(m_Value(X), m_Value(), m_Value(ShAmt)), 4150 m_FShr(m_Value(), m_Value(X), m_Value(ShAmt))); 4151 // (ShAmt == 0) ? fshl(X, *, ShAmt) : X --> X 4152 // (ShAmt == 0) ? fshr(*, X, ShAmt) : X --> X 4153 if (match(TrueVal, isFsh) && FalseVal == X && CmpLHS == ShAmt) 4154 return X; 4155 4156 // Test for a zero-shift-guard-op around rotates. These are used to 4157 // avoid UB from oversized shifts in raw IR rotate patterns, but the 4158 // intrinsics do not have that problem. 4159 // We do not allow this transform for the general funnel shift case because 4160 // that would not preserve the poison safety of the original code. 4161 auto isRotate = 4162 m_CombineOr(m_FShl(m_Value(X), m_Deferred(X), m_Value(ShAmt)), 4163 m_FShr(m_Value(X), m_Deferred(X), m_Value(ShAmt))); 4164 // (ShAmt == 0) ? X : fshl(X, X, ShAmt) --> fshl(X, X, ShAmt) 4165 // (ShAmt == 0) ? X : fshr(X, X, ShAmt) --> fshr(X, X, ShAmt) 4166 if (match(FalseVal, isRotate) && TrueVal == X && CmpLHS == ShAmt && 4167 Pred == ICmpInst::ICMP_EQ) 4168 return FalseVal; 4169 4170 // X == 0 ? abs(X) : -abs(X) --> -abs(X) 4171 // X == 0 ? -abs(X) : abs(X) --> abs(X) 4172 if (match(TrueVal, m_Intrinsic<Intrinsic::abs>(m_Specific(CmpLHS))) && 4173 match(FalseVal, m_Neg(m_Intrinsic<Intrinsic::abs>(m_Specific(CmpLHS))))) 4174 return FalseVal; 4175 if (match(TrueVal, 4176 m_Neg(m_Intrinsic<Intrinsic::abs>(m_Specific(CmpLHS)))) && 4177 match(FalseVal, m_Intrinsic<Intrinsic::abs>(m_Specific(CmpLHS)))) 4178 return FalseVal; 4179 } 4180 4181 // Check for other compares that behave like bit test. 4182 if (Value *V = simplifySelectWithFakeICmpEq(CmpLHS, CmpRHS, Pred, 4183 TrueVal, FalseVal)) 4184 return V; 4185 4186 // If we have a scalar equality comparison, then we know the value in one of 4187 // the arms of the select. See if substituting this value into the arm and 4188 // simplifying the result yields the same value as the other arm. 4189 // Note that the equivalence/replacement opportunity does not hold for vectors 4190 // because each element of a vector select is chosen independently. 4191 if (Pred == ICmpInst::ICMP_EQ && !CondVal->getType()->isVectorTy()) { 4192 if (simplifyWithOpReplaced(FalseVal, CmpLHS, CmpRHS, Q, 4193 /* AllowRefinement */ false, MaxRecurse) == 4194 TrueVal || 4195 simplifyWithOpReplaced(FalseVal, CmpRHS, CmpLHS, Q, 4196 /* AllowRefinement */ false, MaxRecurse) == 4197 TrueVal) 4198 return FalseVal; 4199 if (simplifyWithOpReplaced(TrueVal, CmpLHS, CmpRHS, Q, 4200 /* AllowRefinement */ true, MaxRecurse) == 4201 FalseVal || 4202 simplifyWithOpReplaced(TrueVal, CmpRHS, CmpLHS, Q, 4203 /* AllowRefinement */ true, MaxRecurse) == 4204 FalseVal) 4205 return FalseVal; 4206 } 4207 4208 return nullptr; 4209 } 4210 4211 /// Try to simplify a select instruction when its condition operand is a 4212 /// floating-point comparison. 4213 static Value *simplifySelectWithFCmp(Value *Cond, Value *T, Value *F, 4214 const SimplifyQuery &Q) { 4215 FCmpInst::Predicate Pred; 4216 if (!match(Cond, m_FCmp(Pred, m_Specific(T), m_Specific(F))) && 4217 !match(Cond, m_FCmp(Pred, m_Specific(F), m_Specific(T)))) 4218 return nullptr; 4219 4220 // This transform is safe if we do not have (do not care about) -0.0 or if 4221 // at least one operand is known to not be -0.0. Otherwise, the select can 4222 // change the sign of a zero operand. 4223 bool HasNoSignedZeros = Q.CxtI && isa<FPMathOperator>(Q.CxtI) && 4224 Q.CxtI->hasNoSignedZeros(); 4225 const APFloat *C; 4226 if (HasNoSignedZeros || (match(T, m_APFloat(C)) && C->isNonZero()) || 4227 (match(F, m_APFloat(C)) && C->isNonZero())) { 4228 // (T == F) ? T : F --> F 4229 // (F == T) ? T : F --> F 4230 if (Pred == FCmpInst::FCMP_OEQ) 4231 return F; 4232 4233 // (T != F) ? T : F --> T 4234 // (F != T) ? T : F --> T 4235 if (Pred == FCmpInst::FCMP_UNE) 4236 return T; 4237 } 4238 4239 return nullptr; 4240 } 4241 4242 /// Given operands for a SelectInst, see if we can fold the result. 4243 /// If not, this returns null. 4244 static Value *SimplifySelectInst(Value *Cond, Value *TrueVal, Value *FalseVal, 4245 const SimplifyQuery &Q, unsigned MaxRecurse) { 4246 if (auto *CondC = dyn_cast<Constant>(Cond)) { 4247 if (auto *TrueC = dyn_cast<Constant>(TrueVal)) 4248 if (auto *FalseC = dyn_cast<Constant>(FalseVal)) 4249 return ConstantFoldSelectInstruction(CondC, TrueC, FalseC); 4250 4251 // select poison, X, Y -> poison 4252 if (isa<PoisonValue>(CondC)) 4253 return PoisonValue::get(TrueVal->getType()); 4254 4255 // select undef, X, Y -> X or Y 4256 if (Q.isUndefValue(CondC)) 4257 return isa<Constant>(FalseVal) ? FalseVal : TrueVal; 4258 4259 // select true, X, Y --> X 4260 // select false, X, Y --> Y 4261 // For vectors, allow undef/poison elements in the condition to match the 4262 // defined elements, so we can eliminate the select. 4263 if (match(CondC, m_One())) 4264 return TrueVal; 4265 if (match(CondC, m_Zero())) 4266 return FalseVal; 4267 } 4268 4269 assert(Cond->getType()->isIntOrIntVectorTy(1) && 4270 "Select must have bool or bool vector condition"); 4271 assert(TrueVal->getType() == FalseVal->getType() && 4272 "Select must have same types for true/false ops"); 4273 4274 if (Cond->getType() == TrueVal->getType()) { 4275 // select i1 Cond, i1 true, i1 false --> i1 Cond 4276 if (match(TrueVal, m_One()) && match(FalseVal, m_ZeroInt())) 4277 return Cond; 4278 4279 // (X || Y) && (X || !Y) --> X (commuted 8 ways) 4280 Value *X, *Y; 4281 if (match(FalseVal, m_ZeroInt())) { 4282 if (match(Cond, m_c_LogicalOr(m_Value(X), m_Not(m_Value(Y)))) && 4283 match(TrueVal, m_c_LogicalOr(m_Specific(X), m_Specific(Y)))) 4284 return X; 4285 if (match(TrueVal, m_c_LogicalOr(m_Value(X), m_Not(m_Value(Y)))) && 4286 match(Cond, m_c_LogicalOr(m_Specific(X), m_Specific(Y)))) 4287 return X; 4288 } 4289 } 4290 4291 // select ?, X, X -> X 4292 if (TrueVal == FalseVal) 4293 return TrueVal; 4294 4295 // If the true or false value is poison, we can fold to the other value. 4296 // If the true or false value is undef, we can fold to the other value as 4297 // long as the other value isn't poison. 4298 // select ?, poison, X -> X 4299 // select ?, undef, X -> X 4300 if (isa<PoisonValue>(TrueVal) || 4301 (Q.isUndefValue(TrueVal) && 4302 isGuaranteedNotToBePoison(FalseVal, Q.AC, Q.CxtI, Q.DT))) 4303 return FalseVal; 4304 // select ?, X, poison -> X 4305 // select ?, X, undef -> X 4306 if (isa<PoisonValue>(FalseVal) || 4307 (Q.isUndefValue(FalseVal) && 4308 isGuaranteedNotToBePoison(TrueVal, Q.AC, Q.CxtI, Q.DT))) 4309 return TrueVal; 4310 4311 // Deal with partial undef vector constants: select ?, VecC, VecC' --> VecC'' 4312 Constant *TrueC, *FalseC; 4313 if (isa<FixedVectorType>(TrueVal->getType()) && 4314 match(TrueVal, m_Constant(TrueC)) && 4315 match(FalseVal, m_Constant(FalseC))) { 4316 unsigned NumElts = 4317 cast<FixedVectorType>(TrueC->getType())->getNumElements(); 4318 SmallVector<Constant *, 16> NewC; 4319 for (unsigned i = 0; i != NumElts; ++i) { 4320 // Bail out on incomplete vector constants. 4321 Constant *TEltC = TrueC->getAggregateElement(i); 4322 Constant *FEltC = FalseC->getAggregateElement(i); 4323 if (!TEltC || !FEltC) 4324 break; 4325 4326 // If the elements match (undef or not), that value is the result. If only 4327 // one element is undef, choose the defined element as the safe result. 4328 if (TEltC == FEltC) 4329 NewC.push_back(TEltC); 4330 else if (isa<PoisonValue>(TEltC) || 4331 (Q.isUndefValue(TEltC) && isGuaranteedNotToBePoison(FEltC))) 4332 NewC.push_back(FEltC); 4333 else if (isa<PoisonValue>(FEltC) || 4334 (Q.isUndefValue(FEltC) && isGuaranteedNotToBePoison(TEltC))) 4335 NewC.push_back(TEltC); 4336 else 4337 break; 4338 } 4339 if (NewC.size() == NumElts) 4340 return ConstantVector::get(NewC); 4341 } 4342 4343 if (Value *V = 4344 simplifySelectWithICmpCond(Cond, TrueVal, FalseVal, Q, MaxRecurse)) 4345 return V; 4346 4347 if (Value *V = simplifySelectWithFCmp(Cond, TrueVal, FalseVal, Q)) 4348 return V; 4349 4350 if (Value *V = foldSelectWithBinaryOp(Cond, TrueVal, FalseVal)) 4351 return V; 4352 4353 Optional<bool> Imp = isImpliedByDomCondition(Cond, Q.CxtI, Q.DL); 4354 if (Imp) 4355 return *Imp ? TrueVal : FalseVal; 4356 4357 return nullptr; 4358 } 4359 4360 Value *llvm::SimplifySelectInst(Value *Cond, Value *TrueVal, Value *FalseVal, 4361 const SimplifyQuery &Q) { 4362 return ::SimplifySelectInst(Cond, TrueVal, FalseVal, Q, RecursionLimit); 4363 } 4364 4365 /// Given operands for an GetElementPtrInst, see if we can fold the result. 4366 /// If not, this returns null. 4367 static Value *SimplifyGEPInst(Type *SrcTy, ArrayRef<Value *> Ops, bool InBounds, 4368 const SimplifyQuery &Q, unsigned) { 4369 // The type of the GEP pointer operand. 4370 unsigned AS = 4371 cast<PointerType>(Ops[0]->getType()->getScalarType())->getAddressSpace(); 4372 4373 // getelementptr P -> P. 4374 if (Ops.size() == 1) 4375 return Ops[0]; 4376 4377 // Compute the (pointer) type returned by the GEP instruction. 4378 Type *LastType = GetElementPtrInst::getIndexedType(SrcTy, Ops.slice(1)); 4379 Type *GEPTy = PointerType::get(LastType, AS); 4380 for (Value *Op : Ops) { 4381 // If one of the operands is a vector, the result type is a vector of 4382 // pointers. All vector operands must have the same number of elements. 4383 if (VectorType *VT = dyn_cast<VectorType>(Op->getType())) { 4384 GEPTy = VectorType::get(GEPTy, VT->getElementCount()); 4385 break; 4386 } 4387 } 4388 4389 // getelementptr poison, idx -> poison 4390 // getelementptr baseptr, poison -> poison 4391 if (any_of(Ops, [](const auto *V) { return isa<PoisonValue>(V); })) 4392 return PoisonValue::get(GEPTy); 4393 4394 if (Q.isUndefValue(Ops[0])) 4395 return UndefValue::get(GEPTy); 4396 4397 bool IsScalableVec = 4398 isa<ScalableVectorType>(SrcTy) || any_of(Ops, [](const Value *V) { 4399 return isa<ScalableVectorType>(V->getType()); 4400 }); 4401 4402 if (Ops.size() == 2) { 4403 // getelementptr P, 0 -> P. 4404 if (match(Ops[1], m_Zero()) && Ops[0]->getType() == GEPTy) 4405 return Ops[0]; 4406 4407 Type *Ty = SrcTy; 4408 if (!IsScalableVec && Ty->isSized()) { 4409 Value *P; 4410 uint64_t C; 4411 uint64_t TyAllocSize = Q.DL.getTypeAllocSize(Ty); 4412 // getelementptr P, N -> P if P points to a type of zero size. 4413 if (TyAllocSize == 0 && Ops[0]->getType() == GEPTy) 4414 return Ops[0]; 4415 4416 // The following transforms are only safe if the ptrtoint cast 4417 // doesn't truncate the pointers. 4418 if (Ops[1]->getType()->getScalarSizeInBits() == 4419 Q.DL.getPointerSizeInBits(AS)) { 4420 auto CanSimplify = [GEPTy, &P, V = Ops[0]]() -> bool { 4421 return P->getType() == GEPTy && 4422 getUnderlyingObject(P) == getUnderlyingObject(V); 4423 }; 4424 // getelementptr V, (sub P, V) -> P if P points to a type of size 1. 4425 if (TyAllocSize == 1 && 4426 match(Ops[1], m_Sub(m_PtrToInt(m_Value(P)), 4427 m_PtrToInt(m_Specific(Ops[0])))) && 4428 CanSimplify()) 4429 return P; 4430 4431 // getelementptr V, (ashr (sub P, V), C) -> P if P points to a type of 4432 // size 1 << C. 4433 if (match(Ops[1], m_AShr(m_Sub(m_PtrToInt(m_Value(P)), 4434 m_PtrToInt(m_Specific(Ops[0]))), 4435 m_ConstantInt(C))) && 4436 TyAllocSize == 1ULL << C && CanSimplify()) 4437 return P; 4438 4439 // getelementptr V, (sdiv (sub P, V), C) -> P if P points to a type of 4440 // size C. 4441 if (match(Ops[1], m_SDiv(m_Sub(m_PtrToInt(m_Value(P)), 4442 m_PtrToInt(m_Specific(Ops[0]))), 4443 m_SpecificInt(TyAllocSize))) && 4444 CanSimplify()) 4445 return P; 4446 } 4447 } 4448 } 4449 4450 if (!IsScalableVec && Q.DL.getTypeAllocSize(LastType) == 1 && 4451 all_of(Ops.slice(1).drop_back(1), 4452 [](Value *Idx) { return match(Idx, m_Zero()); })) { 4453 unsigned IdxWidth = 4454 Q.DL.getIndexSizeInBits(Ops[0]->getType()->getPointerAddressSpace()); 4455 if (Q.DL.getTypeSizeInBits(Ops.back()->getType()) == IdxWidth) { 4456 APInt BasePtrOffset(IdxWidth, 0); 4457 Value *StrippedBasePtr = 4458 Ops[0]->stripAndAccumulateInBoundsConstantOffsets(Q.DL, 4459 BasePtrOffset); 4460 4461 // Avoid creating inttoptr of zero here: While LLVMs treatment of 4462 // inttoptr is generally conservative, this particular case is folded to 4463 // a null pointer, which will have incorrect provenance. 4464 4465 // gep (gep V, C), (sub 0, V) -> C 4466 if (match(Ops.back(), 4467 m_Sub(m_Zero(), m_PtrToInt(m_Specific(StrippedBasePtr)))) && 4468 !BasePtrOffset.isZero()) { 4469 auto *CI = ConstantInt::get(GEPTy->getContext(), BasePtrOffset); 4470 return ConstantExpr::getIntToPtr(CI, GEPTy); 4471 } 4472 // gep (gep V, C), (xor V, -1) -> C-1 4473 if (match(Ops.back(), 4474 m_Xor(m_PtrToInt(m_Specific(StrippedBasePtr)), m_AllOnes())) && 4475 !BasePtrOffset.isOne()) { 4476 auto *CI = ConstantInt::get(GEPTy->getContext(), BasePtrOffset - 1); 4477 return ConstantExpr::getIntToPtr(CI, GEPTy); 4478 } 4479 } 4480 } 4481 4482 // Check to see if this is constant foldable. 4483 if (!all_of(Ops, [](Value *V) { return isa<Constant>(V); })) 4484 return nullptr; 4485 4486 auto *CE = ConstantExpr::getGetElementPtr(SrcTy, cast<Constant>(Ops[0]), 4487 Ops.slice(1), InBounds); 4488 return ConstantFoldConstant(CE, Q.DL); 4489 } 4490 4491 Value *llvm::SimplifyGEPInst(Type *SrcTy, ArrayRef<Value *> Ops, bool InBounds, 4492 const SimplifyQuery &Q) { 4493 return ::SimplifyGEPInst(SrcTy, Ops, InBounds, Q, RecursionLimit); 4494 } 4495 4496 /// Given operands for an InsertValueInst, see if we can fold the result. 4497 /// If not, this returns null. 4498 static Value *SimplifyInsertValueInst(Value *Agg, Value *Val, 4499 ArrayRef<unsigned> Idxs, const SimplifyQuery &Q, 4500 unsigned) { 4501 if (Constant *CAgg = dyn_cast<Constant>(Agg)) 4502 if (Constant *CVal = dyn_cast<Constant>(Val)) 4503 return ConstantFoldInsertValueInstruction(CAgg, CVal, Idxs); 4504 4505 // insertvalue x, undef, n -> x 4506 if (Q.isUndefValue(Val)) 4507 return Agg; 4508 4509 // insertvalue x, (extractvalue y, n), n 4510 if (ExtractValueInst *EV = dyn_cast<ExtractValueInst>(Val)) 4511 if (EV->getAggregateOperand()->getType() == Agg->getType() && 4512 EV->getIndices() == Idxs) { 4513 // insertvalue undef, (extractvalue y, n), n -> y 4514 if (Q.isUndefValue(Agg)) 4515 return EV->getAggregateOperand(); 4516 4517 // insertvalue y, (extractvalue y, n), n -> y 4518 if (Agg == EV->getAggregateOperand()) 4519 return Agg; 4520 } 4521 4522 return nullptr; 4523 } 4524 4525 Value *llvm::SimplifyInsertValueInst(Value *Agg, Value *Val, 4526 ArrayRef<unsigned> Idxs, 4527 const SimplifyQuery &Q) { 4528 return ::SimplifyInsertValueInst(Agg, Val, Idxs, Q, RecursionLimit); 4529 } 4530 4531 Value *llvm::SimplifyInsertElementInst(Value *Vec, Value *Val, Value *Idx, 4532 const SimplifyQuery &Q) { 4533 // Try to constant fold. 4534 auto *VecC = dyn_cast<Constant>(Vec); 4535 auto *ValC = dyn_cast<Constant>(Val); 4536 auto *IdxC = dyn_cast<Constant>(Idx); 4537 if (VecC && ValC && IdxC) 4538 return ConstantExpr::getInsertElement(VecC, ValC, IdxC); 4539 4540 // For fixed-length vector, fold into poison if index is out of bounds. 4541 if (auto *CI = dyn_cast<ConstantInt>(Idx)) { 4542 if (isa<FixedVectorType>(Vec->getType()) && 4543 CI->uge(cast<FixedVectorType>(Vec->getType())->getNumElements())) 4544 return PoisonValue::get(Vec->getType()); 4545 } 4546 4547 // If index is undef, it might be out of bounds (see above case) 4548 if (Q.isUndefValue(Idx)) 4549 return PoisonValue::get(Vec->getType()); 4550 4551 // If the scalar is poison, or it is undef and there is no risk of 4552 // propagating poison from the vector value, simplify to the vector value. 4553 if (isa<PoisonValue>(Val) || 4554 (Q.isUndefValue(Val) && isGuaranteedNotToBePoison(Vec))) 4555 return Vec; 4556 4557 // If we are extracting a value from a vector, then inserting it into the same 4558 // place, that's the input vector: 4559 // insertelt Vec, (extractelt Vec, Idx), Idx --> Vec 4560 if (match(Val, m_ExtractElt(m_Specific(Vec), m_Specific(Idx)))) 4561 return Vec; 4562 4563 return nullptr; 4564 } 4565 4566 /// Given operands for an ExtractValueInst, see if we can fold the result. 4567 /// If not, this returns null. 4568 static Value *SimplifyExtractValueInst(Value *Agg, ArrayRef<unsigned> Idxs, 4569 const SimplifyQuery &, unsigned) { 4570 if (auto *CAgg = dyn_cast<Constant>(Agg)) 4571 return ConstantFoldExtractValueInstruction(CAgg, Idxs); 4572 4573 // extractvalue x, (insertvalue y, elt, n), n -> elt 4574 unsigned NumIdxs = Idxs.size(); 4575 for (auto *IVI = dyn_cast<InsertValueInst>(Agg); IVI != nullptr; 4576 IVI = dyn_cast<InsertValueInst>(IVI->getAggregateOperand())) { 4577 ArrayRef<unsigned> InsertValueIdxs = IVI->getIndices(); 4578 unsigned NumInsertValueIdxs = InsertValueIdxs.size(); 4579 unsigned NumCommonIdxs = std::min(NumInsertValueIdxs, NumIdxs); 4580 if (InsertValueIdxs.slice(0, NumCommonIdxs) == 4581 Idxs.slice(0, NumCommonIdxs)) { 4582 if (NumIdxs == NumInsertValueIdxs) 4583 return IVI->getInsertedValueOperand(); 4584 break; 4585 } 4586 } 4587 4588 return nullptr; 4589 } 4590 4591 Value *llvm::SimplifyExtractValueInst(Value *Agg, ArrayRef<unsigned> Idxs, 4592 const SimplifyQuery &Q) { 4593 return ::SimplifyExtractValueInst(Agg, Idxs, Q, RecursionLimit); 4594 } 4595 4596 /// Given operands for an ExtractElementInst, see if we can fold the result. 4597 /// If not, this returns null. 4598 static Value *SimplifyExtractElementInst(Value *Vec, Value *Idx, 4599 const SimplifyQuery &Q, unsigned) { 4600 auto *VecVTy = cast<VectorType>(Vec->getType()); 4601 if (auto *CVec = dyn_cast<Constant>(Vec)) { 4602 if (auto *CIdx = dyn_cast<Constant>(Idx)) 4603 return ConstantExpr::getExtractElement(CVec, CIdx); 4604 4605 if (Q.isUndefValue(Vec)) 4606 return UndefValue::get(VecVTy->getElementType()); 4607 } 4608 4609 // An undef extract index can be arbitrarily chosen to be an out-of-range 4610 // index value, which would result in the instruction being poison. 4611 if (Q.isUndefValue(Idx)) 4612 return PoisonValue::get(VecVTy->getElementType()); 4613 4614 // If extracting a specified index from the vector, see if we can recursively 4615 // find a previously computed scalar that was inserted into the vector. 4616 if (auto *IdxC = dyn_cast<ConstantInt>(Idx)) { 4617 // For fixed-length vector, fold into undef if index is out of bounds. 4618 unsigned MinNumElts = VecVTy->getElementCount().getKnownMinValue(); 4619 if (isa<FixedVectorType>(VecVTy) && IdxC->getValue().uge(MinNumElts)) 4620 return PoisonValue::get(VecVTy->getElementType()); 4621 // Handle case where an element is extracted from a splat. 4622 if (IdxC->getValue().ult(MinNumElts)) 4623 if (auto *Splat = getSplatValue(Vec)) 4624 return Splat; 4625 if (Value *Elt = findScalarElement(Vec, IdxC->getZExtValue())) 4626 return Elt; 4627 } else { 4628 // The index is not relevant if our vector is a splat. 4629 if (Value *Splat = getSplatValue(Vec)) 4630 return Splat; 4631 } 4632 return nullptr; 4633 } 4634 4635 Value *llvm::SimplifyExtractElementInst(Value *Vec, Value *Idx, 4636 const SimplifyQuery &Q) { 4637 return ::SimplifyExtractElementInst(Vec, Idx, Q, RecursionLimit); 4638 } 4639 4640 /// See if we can fold the given phi. If not, returns null. 4641 static Value *SimplifyPHINode(PHINode *PN, ArrayRef<Value *> IncomingValues, 4642 const SimplifyQuery &Q) { 4643 // WARNING: no matter how worthwhile it may seem, we can not perform PHI CSE 4644 // here, because the PHI we may succeed simplifying to was not 4645 // def-reachable from the original PHI! 4646 4647 // If all of the PHI's incoming values are the same then replace the PHI node 4648 // with the common value. 4649 Value *CommonValue = nullptr; 4650 bool HasUndefInput = false; 4651 for (Value *Incoming : IncomingValues) { 4652 // If the incoming value is the phi node itself, it can safely be skipped. 4653 if (Incoming == PN) continue; 4654 if (Q.isUndefValue(Incoming)) { 4655 // Remember that we saw an undef value, but otherwise ignore them. 4656 HasUndefInput = true; 4657 continue; 4658 } 4659 if (CommonValue && Incoming != CommonValue) 4660 return nullptr; // Not the same, bail out. 4661 CommonValue = Incoming; 4662 } 4663 4664 // If CommonValue is null then all of the incoming values were either undef or 4665 // equal to the phi node itself. 4666 if (!CommonValue) 4667 return UndefValue::get(PN->getType()); 4668 4669 // If we have a PHI node like phi(X, undef, X), where X is defined by some 4670 // instruction, we cannot return X as the result of the PHI node unless it 4671 // dominates the PHI block. 4672 if (HasUndefInput) 4673 return valueDominatesPHI(CommonValue, PN, Q.DT) ? CommonValue : nullptr; 4674 4675 return CommonValue; 4676 } 4677 4678 static Value *SimplifyCastInst(unsigned CastOpc, Value *Op, 4679 Type *Ty, const SimplifyQuery &Q, unsigned MaxRecurse) { 4680 if (auto *C = dyn_cast<Constant>(Op)) 4681 return ConstantFoldCastOperand(CastOpc, C, Ty, Q.DL); 4682 4683 if (auto *CI = dyn_cast<CastInst>(Op)) { 4684 auto *Src = CI->getOperand(0); 4685 Type *SrcTy = Src->getType(); 4686 Type *MidTy = CI->getType(); 4687 Type *DstTy = Ty; 4688 if (Src->getType() == Ty) { 4689 auto FirstOp = static_cast<Instruction::CastOps>(CI->getOpcode()); 4690 auto SecondOp = static_cast<Instruction::CastOps>(CastOpc); 4691 Type *SrcIntPtrTy = 4692 SrcTy->isPtrOrPtrVectorTy() ? Q.DL.getIntPtrType(SrcTy) : nullptr; 4693 Type *MidIntPtrTy = 4694 MidTy->isPtrOrPtrVectorTy() ? Q.DL.getIntPtrType(MidTy) : nullptr; 4695 Type *DstIntPtrTy = 4696 DstTy->isPtrOrPtrVectorTy() ? Q.DL.getIntPtrType(DstTy) : nullptr; 4697 if (CastInst::isEliminableCastPair(FirstOp, SecondOp, SrcTy, MidTy, DstTy, 4698 SrcIntPtrTy, MidIntPtrTy, 4699 DstIntPtrTy) == Instruction::BitCast) 4700 return Src; 4701 } 4702 } 4703 4704 // bitcast x -> x 4705 if (CastOpc == Instruction::BitCast) 4706 if (Op->getType() == Ty) 4707 return Op; 4708 4709 return nullptr; 4710 } 4711 4712 Value *llvm::SimplifyCastInst(unsigned CastOpc, Value *Op, Type *Ty, 4713 const SimplifyQuery &Q) { 4714 return ::SimplifyCastInst(CastOpc, Op, Ty, Q, RecursionLimit); 4715 } 4716 4717 /// For the given destination element of a shuffle, peek through shuffles to 4718 /// match a root vector source operand that contains that element in the same 4719 /// vector lane (ie, the same mask index), so we can eliminate the shuffle(s). 4720 static Value *foldIdentityShuffles(int DestElt, Value *Op0, Value *Op1, 4721 int MaskVal, Value *RootVec, 4722 unsigned MaxRecurse) { 4723 if (!MaxRecurse--) 4724 return nullptr; 4725 4726 // Bail out if any mask value is undefined. That kind of shuffle may be 4727 // simplified further based on demanded bits or other folds. 4728 if (MaskVal == -1) 4729 return nullptr; 4730 4731 // The mask value chooses which source operand we need to look at next. 4732 int InVecNumElts = cast<FixedVectorType>(Op0->getType())->getNumElements(); 4733 int RootElt = MaskVal; 4734 Value *SourceOp = Op0; 4735 if (MaskVal >= InVecNumElts) { 4736 RootElt = MaskVal - InVecNumElts; 4737 SourceOp = Op1; 4738 } 4739 4740 // If the source operand is a shuffle itself, look through it to find the 4741 // matching root vector. 4742 if (auto *SourceShuf = dyn_cast<ShuffleVectorInst>(SourceOp)) { 4743 return foldIdentityShuffles( 4744 DestElt, SourceShuf->getOperand(0), SourceShuf->getOperand(1), 4745 SourceShuf->getMaskValue(RootElt), RootVec, MaxRecurse); 4746 } 4747 4748 // TODO: Look through bitcasts? What if the bitcast changes the vector element 4749 // size? 4750 4751 // The source operand is not a shuffle. Initialize the root vector value for 4752 // this shuffle if that has not been done yet. 4753 if (!RootVec) 4754 RootVec = SourceOp; 4755 4756 // Give up as soon as a source operand does not match the existing root value. 4757 if (RootVec != SourceOp) 4758 return nullptr; 4759 4760 // The element must be coming from the same lane in the source vector 4761 // (although it may have crossed lanes in intermediate shuffles). 4762 if (RootElt != DestElt) 4763 return nullptr; 4764 4765 return RootVec; 4766 } 4767 4768 static Value *SimplifyShuffleVectorInst(Value *Op0, Value *Op1, 4769 ArrayRef<int> Mask, Type *RetTy, 4770 const SimplifyQuery &Q, 4771 unsigned MaxRecurse) { 4772 if (all_of(Mask, [](int Elem) { return Elem == UndefMaskElem; })) 4773 return UndefValue::get(RetTy); 4774 4775 auto *InVecTy = cast<VectorType>(Op0->getType()); 4776 unsigned MaskNumElts = Mask.size(); 4777 ElementCount InVecEltCount = InVecTy->getElementCount(); 4778 4779 bool Scalable = InVecEltCount.isScalable(); 4780 4781 SmallVector<int, 32> Indices; 4782 Indices.assign(Mask.begin(), Mask.end()); 4783 4784 // Canonicalization: If mask does not select elements from an input vector, 4785 // replace that input vector with poison. 4786 if (!Scalable) { 4787 bool MaskSelects0 = false, MaskSelects1 = false; 4788 unsigned InVecNumElts = InVecEltCount.getKnownMinValue(); 4789 for (unsigned i = 0; i != MaskNumElts; ++i) { 4790 if (Indices[i] == -1) 4791 continue; 4792 if ((unsigned)Indices[i] < InVecNumElts) 4793 MaskSelects0 = true; 4794 else 4795 MaskSelects1 = true; 4796 } 4797 if (!MaskSelects0) 4798 Op0 = PoisonValue::get(InVecTy); 4799 if (!MaskSelects1) 4800 Op1 = PoisonValue::get(InVecTy); 4801 } 4802 4803 auto *Op0Const = dyn_cast<Constant>(Op0); 4804 auto *Op1Const = dyn_cast<Constant>(Op1); 4805 4806 // If all operands are constant, constant fold the shuffle. This 4807 // transformation depends on the value of the mask which is not known at 4808 // compile time for scalable vectors 4809 if (Op0Const && Op1Const) 4810 return ConstantExpr::getShuffleVector(Op0Const, Op1Const, Mask); 4811 4812 // Canonicalization: if only one input vector is constant, it shall be the 4813 // second one. This transformation depends on the value of the mask which 4814 // is not known at compile time for scalable vectors 4815 if (!Scalable && Op0Const && !Op1Const) { 4816 std::swap(Op0, Op1); 4817 ShuffleVectorInst::commuteShuffleMask(Indices, 4818 InVecEltCount.getKnownMinValue()); 4819 } 4820 4821 // A splat of an inserted scalar constant becomes a vector constant: 4822 // shuf (inselt ?, C, IndexC), undef, <IndexC, IndexC...> --> <C, C...> 4823 // NOTE: We may have commuted above, so analyze the updated Indices, not the 4824 // original mask constant. 4825 // NOTE: This transformation depends on the value of the mask which is not 4826 // known at compile time for scalable vectors 4827 Constant *C; 4828 ConstantInt *IndexC; 4829 if (!Scalable && match(Op0, m_InsertElt(m_Value(), m_Constant(C), 4830 m_ConstantInt(IndexC)))) { 4831 // Match a splat shuffle mask of the insert index allowing undef elements. 4832 int InsertIndex = IndexC->getZExtValue(); 4833 if (all_of(Indices, [InsertIndex](int MaskElt) { 4834 return MaskElt == InsertIndex || MaskElt == -1; 4835 })) { 4836 assert(isa<UndefValue>(Op1) && "Expected undef operand 1 for splat"); 4837 4838 // Shuffle mask undefs become undefined constant result elements. 4839 SmallVector<Constant *, 16> VecC(MaskNumElts, C); 4840 for (unsigned i = 0; i != MaskNumElts; ++i) 4841 if (Indices[i] == -1) 4842 VecC[i] = UndefValue::get(C->getType()); 4843 return ConstantVector::get(VecC); 4844 } 4845 } 4846 4847 // A shuffle of a splat is always the splat itself. Legal if the shuffle's 4848 // value type is same as the input vectors' type. 4849 if (auto *OpShuf = dyn_cast<ShuffleVectorInst>(Op0)) 4850 if (Q.isUndefValue(Op1) && RetTy == InVecTy && 4851 is_splat(OpShuf->getShuffleMask())) 4852 return Op0; 4853 4854 // All remaining transformation depend on the value of the mask, which is 4855 // not known at compile time for scalable vectors. 4856 if (Scalable) 4857 return nullptr; 4858 4859 // Don't fold a shuffle with undef mask elements. This may get folded in a 4860 // better way using demanded bits or other analysis. 4861 // TODO: Should we allow this? 4862 if (is_contained(Indices, -1)) 4863 return nullptr; 4864 4865 // Check if every element of this shuffle can be mapped back to the 4866 // corresponding element of a single root vector. If so, we don't need this 4867 // shuffle. This handles simple identity shuffles as well as chains of 4868 // shuffles that may widen/narrow and/or move elements across lanes and back. 4869 Value *RootVec = nullptr; 4870 for (unsigned i = 0; i != MaskNumElts; ++i) { 4871 // Note that recursion is limited for each vector element, so if any element 4872 // exceeds the limit, this will fail to simplify. 4873 RootVec = 4874 foldIdentityShuffles(i, Op0, Op1, Indices[i], RootVec, MaxRecurse); 4875 4876 // We can't replace a widening/narrowing shuffle with one of its operands. 4877 if (!RootVec || RootVec->getType() != RetTy) 4878 return nullptr; 4879 } 4880 return RootVec; 4881 } 4882 4883 /// Given operands for a ShuffleVectorInst, fold the result or return null. 4884 Value *llvm::SimplifyShuffleVectorInst(Value *Op0, Value *Op1, 4885 ArrayRef<int> Mask, Type *RetTy, 4886 const SimplifyQuery &Q) { 4887 return ::SimplifyShuffleVectorInst(Op0, Op1, Mask, RetTy, Q, RecursionLimit); 4888 } 4889 4890 static Constant *foldConstant(Instruction::UnaryOps Opcode, 4891 Value *&Op, const SimplifyQuery &Q) { 4892 if (auto *C = dyn_cast<Constant>(Op)) 4893 return ConstantFoldUnaryOpOperand(Opcode, C, Q.DL); 4894 return nullptr; 4895 } 4896 4897 /// Given the operand for an FNeg, see if we can fold the result. If not, this 4898 /// returns null. 4899 static Value *simplifyFNegInst(Value *Op, FastMathFlags FMF, 4900 const SimplifyQuery &Q, unsigned MaxRecurse) { 4901 if (Constant *C = foldConstant(Instruction::FNeg, Op, Q)) 4902 return C; 4903 4904 Value *X; 4905 // fneg (fneg X) ==> X 4906 if (match(Op, m_FNeg(m_Value(X)))) 4907 return X; 4908 4909 return nullptr; 4910 } 4911 4912 Value *llvm::SimplifyFNegInst(Value *Op, FastMathFlags FMF, 4913 const SimplifyQuery &Q) { 4914 return ::simplifyFNegInst(Op, FMF, Q, RecursionLimit); 4915 } 4916 4917 static Constant *propagateNaN(Constant *In) { 4918 // If the input is a vector with undef elements, just return a default NaN. 4919 if (!In->isNaN()) 4920 return ConstantFP::getNaN(In->getType()); 4921 4922 // Propagate the existing NaN constant when possible. 4923 // TODO: Should we quiet a signaling NaN? 4924 return In; 4925 } 4926 4927 /// Perform folds that are common to any floating-point operation. This implies 4928 /// transforms based on poison/undef/NaN because the operation itself makes no 4929 /// difference to the result. 4930 static Constant *simplifyFPOp(ArrayRef<Value *> Ops, FastMathFlags FMF, 4931 const SimplifyQuery &Q, 4932 fp::ExceptionBehavior ExBehavior, 4933 RoundingMode Rounding) { 4934 // Poison is independent of anything else. It always propagates from an 4935 // operand to a math result. 4936 if (any_of(Ops, [](Value *V) { return match(V, m_Poison()); })) 4937 return PoisonValue::get(Ops[0]->getType()); 4938 4939 for (Value *V : Ops) { 4940 bool IsNan = match(V, m_NaN()); 4941 bool IsInf = match(V, m_Inf()); 4942 bool IsUndef = Q.isUndefValue(V); 4943 4944 // If this operation has 'nnan' or 'ninf' and at least 1 disallowed operand 4945 // (an undef operand can be chosen to be Nan/Inf), then the result of 4946 // this operation is poison. 4947 if (FMF.noNaNs() && (IsNan || IsUndef)) 4948 return PoisonValue::get(V->getType()); 4949 if (FMF.noInfs() && (IsInf || IsUndef)) 4950 return PoisonValue::get(V->getType()); 4951 4952 if (isDefaultFPEnvironment(ExBehavior, Rounding)) { 4953 if (IsUndef || IsNan) 4954 return propagateNaN(cast<Constant>(V)); 4955 } else if (ExBehavior != fp::ebStrict) { 4956 if (IsNan) 4957 return propagateNaN(cast<Constant>(V)); 4958 } 4959 } 4960 return nullptr; 4961 } 4962 4963 // TODO: Move this out to a header file: 4964 static inline bool canIgnoreSNaN(fp::ExceptionBehavior EB, FastMathFlags FMF) { 4965 return (EB == fp::ebIgnore || FMF.noNaNs()); 4966 } 4967 4968 /// Given operands for an FAdd, see if we can fold the result. If not, this 4969 /// returns null. 4970 static Value * 4971 SimplifyFAddInst(Value *Op0, Value *Op1, FastMathFlags FMF, 4972 const SimplifyQuery &Q, unsigned MaxRecurse, 4973 fp::ExceptionBehavior ExBehavior = fp::ebIgnore, 4974 RoundingMode Rounding = RoundingMode::NearestTiesToEven) { 4975 if (isDefaultFPEnvironment(ExBehavior, Rounding)) 4976 if (Constant *C = foldOrCommuteConstant(Instruction::FAdd, Op0, Op1, Q)) 4977 return C; 4978 4979 if (Constant *C = simplifyFPOp({Op0, Op1}, FMF, Q, ExBehavior, Rounding)) 4980 return C; 4981 4982 // fadd X, -0 ==> X 4983 // With strict/constrained FP, we have these possible edge cases that do 4984 // not simplify to Op0: 4985 // fadd SNaN, -0.0 --> QNaN 4986 // fadd +0.0, -0.0 --> -0.0 (but only with round toward negative) 4987 if (canIgnoreSNaN(ExBehavior, FMF) && 4988 (!canRoundingModeBe(Rounding, RoundingMode::TowardNegative) || 4989 FMF.noSignedZeros())) 4990 if (match(Op1, m_NegZeroFP())) 4991 return Op0; 4992 4993 // fadd X, 0 ==> X, when we know X is not -0 4994 if (canIgnoreSNaN(ExBehavior, FMF)) 4995 if (match(Op1, m_PosZeroFP()) && 4996 (FMF.noSignedZeros() || CannotBeNegativeZero(Op0, Q.TLI))) 4997 return Op0; 4998 4999 if (!isDefaultFPEnvironment(ExBehavior, Rounding)) 5000 return nullptr; 5001 5002 // With nnan: -X + X --> 0.0 (and commuted variant) 5003 // We don't have to explicitly exclude infinities (ninf): INF + -INF == NaN. 5004 // Negative zeros are allowed because we always end up with positive zero: 5005 // X = -0.0: (-0.0 - (-0.0)) + (-0.0) == ( 0.0) + (-0.0) == 0.0 5006 // X = -0.0: ( 0.0 - (-0.0)) + (-0.0) == ( 0.0) + (-0.0) == 0.0 5007 // X = 0.0: (-0.0 - ( 0.0)) + ( 0.0) == (-0.0) + ( 0.0) == 0.0 5008 // X = 0.0: ( 0.0 - ( 0.0)) + ( 0.0) == ( 0.0) + ( 0.0) == 0.0 5009 if (FMF.noNaNs()) { 5010 if (match(Op0, m_FSub(m_AnyZeroFP(), m_Specific(Op1))) || 5011 match(Op1, m_FSub(m_AnyZeroFP(), m_Specific(Op0)))) 5012 return ConstantFP::getNullValue(Op0->getType()); 5013 5014 if (match(Op0, m_FNeg(m_Specific(Op1))) || 5015 match(Op1, m_FNeg(m_Specific(Op0)))) 5016 return ConstantFP::getNullValue(Op0->getType()); 5017 } 5018 5019 // (X - Y) + Y --> X 5020 // Y + (X - Y) --> X 5021 Value *X; 5022 if (FMF.noSignedZeros() && FMF.allowReassoc() && 5023 (match(Op0, m_FSub(m_Value(X), m_Specific(Op1))) || 5024 match(Op1, m_FSub(m_Value(X), m_Specific(Op0))))) 5025 return X; 5026 5027 return nullptr; 5028 } 5029 5030 /// Given operands for an FSub, see if we can fold the result. If not, this 5031 /// returns null. 5032 static Value * 5033 SimplifyFSubInst(Value *Op0, Value *Op1, FastMathFlags FMF, 5034 const SimplifyQuery &Q, unsigned MaxRecurse, 5035 fp::ExceptionBehavior ExBehavior = fp::ebIgnore, 5036 RoundingMode Rounding = RoundingMode::NearestTiesToEven) { 5037 if (isDefaultFPEnvironment(ExBehavior, Rounding)) 5038 if (Constant *C = foldOrCommuteConstant(Instruction::FSub, Op0, Op1, Q)) 5039 return C; 5040 5041 if (Constant *C = simplifyFPOp({Op0, Op1}, FMF, Q, ExBehavior, Rounding)) 5042 return C; 5043 5044 if (!isDefaultFPEnvironment(ExBehavior, Rounding)) 5045 return nullptr; 5046 5047 // fsub X, +0 ==> X 5048 if (match(Op1, m_PosZeroFP())) 5049 return Op0; 5050 5051 // fsub X, -0 ==> X, when we know X is not -0 5052 if (match(Op1, m_NegZeroFP()) && 5053 (FMF.noSignedZeros() || CannotBeNegativeZero(Op0, Q.TLI))) 5054 return Op0; 5055 5056 // fsub -0.0, (fsub -0.0, X) ==> X 5057 // fsub -0.0, (fneg X) ==> X 5058 Value *X; 5059 if (match(Op0, m_NegZeroFP()) && 5060 match(Op1, m_FNeg(m_Value(X)))) 5061 return X; 5062 5063 // fsub 0.0, (fsub 0.0, X) ==> X if signed zeros are ignored. 5064 // fsub 0.0, (fneg X) ==> X if signed zeros are ignored. 5065 if (FMF.noSignedZeros() && match(Op0, m_AnyZeroFP()) && 5066 (match(Op1, m_FSub(m_AnyZeroFP(), m_Value(X))) || 5067 match(Op1, m_FNeg(m_Value(X))))) 5068 return X; 5069 5070 // fsub nnan x, x ==> 0.0 5071 if (FMF.noNaNs() && Op0 == Op1) 5072 return Constant::getNullValue(Op0->getType()); 5073 5074 // Y - (Y - X) --> X 5075 // (X + Y) - Y --> X 5076 if (FMF.noSignedZeros() && FMF.allowReassoc() && 5077 (match(Op1, m_FSub(m_Specific(Op0), m_Value(X))) || 5078 match(Op0, m_c_FAdd(m_Specific(Op1), m_Value(X))))) 5079 return X; 5080 5081 return nullptr; 5082 } 5083 5084 static Value *SimplifyFMAFMul(Value *Op0, Value *Op1, FastMathFlags FMF, 5085 const SimplifyQuery &Q, unsigned MaxRecurse, 5086 fp::ExceptionBehavior ExBehavior, 5087 RoundingMode Rounding) { 5088 if (Constant *C = simplifyFPOp({Op0, Op1}, FMF, Q, ExBehavior, Rounding)) 5089 return C; 5090 5091 if (!isDefaultFPEnvironment(ExBehavior, Rounding)) 5092 return nullptr; 5093 5094 // fmul X, 1.0 ==> X 5095 if (match(Op1, m_FPOne())) 5096 return Op0; 5097 5098 // fmul 1.0, X ==> X 5099 if (match(Op0, m_FPOne())) 5100 return Op1; 5101 5102 // fmul nnan nsz X, 0 ==> 0 5103 if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op1, m_AnyZeroFP())) 5104 return ConstantFP::getNullValue(Op0->getType()); 5105 5106 // fmul nnan nsz 0, X ==> 0 5107 if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op0, m_AnyZeroFP())) 5108 return ConstantFP::getNullValue(Op1->getType()); 5109 5110 // sqrt(X) * sqrt(X) --> X, if we can: 5111 // 1. Remove the intermediate rounding (reassociate). 5112 // 2. Ignore non-zero negative numbers because sqrt would produce NAN. 5113 // 3. Ignore -0.0 because sqrt(-0.0) == -0.0, but -0.0 * -0.0 == 0.0. 5114 Value *X; 5115 if (Op0 == Op1 && match(Op0, m_Intrinsic<Intrinsic::sqrt>(m_Value(X))) && 5116 FMF.allowReassoc() && FMF.noNaNs() && FMF.noSignedZeros()) 5117 return X; 5118 5119 return nullptr; 5120 } 5121 5122 /// Given the operands for an FMul, see if we can fold the result 5123 static Value * 5124 SimplifyFMulInst(Value *Op0, Value *Op1, FastMathFlags FMF, 5125 const SimplifyQuery &Q, unsigned MaxRecurse, 5126 fp::ExceptionBehavior ExBehavior = fp::ebIgnore, 5127 RoundingMode Rounding = RoundingMode::NearestTiesToEven) { 5128 if (isDefaultFPEnvironment(ExBehavior, Rounding)) 5129 if (Constant *C = foldOrCommuteConstant(Instruction::FMul, Op0, Op1, Q)) 5130 return C; 5131 5132 // Now apply simplifications that do not require rounding. 5133 return SimplifyFMAFMul(Op0, Op1, FMF, Q, MaxRecurse, ExBehavior, Rounding); 5134 } 5135 5136 Value *llvm::SimplifyFAddInst(Value *Op0, Value *Op1, FastMathFlags FMF, 5137 const SimplifyQuery &Q, 5138 fp::ExceptionBehavior ExBehavior, 5139 RoundingMode Rounding) { 5140 return ::SimplifyFAddInst(Op0, Op1, FMF, Q, RecursionLimit, ExBehavior, 5141 Rounding); 5142 } 5143 5144 Value *llvm::SimplifyFSubInst(Value *Op0, Value *Op1, FastMathFlags FMF, 5145 const SimplifyQuery &Q, 5146 fp::ExceptionBehavior ExBehavior, 5147 RoundingMode Rounding) { 5148 return ::SimplifyFSubInst(Op0, Op1, FMF, Q, RecursionLimit, ExBehavior, 5149 Rounding); 5150 } 5151 5152 Value *llvm::SimplifyFMulInst(Value *Op0, Value *Op1, FastMathFlags FMF, 5153 const SimplifyQuery &Q, 5154 fp::ExceptionBehavior ExBehavior, 5155 RoundingMode Rounding) { 5156 return ::SimplifyFMulInst(Op0, Op1, FMF, Q, RecursionLimit, ExBehavior, 5157 Rounding); 5158 } 5159 5160 Value *llvm::SimplifyFMAFMul(Value *Op0, Value *Op1, FastMathFlags FMF, 5161 const SimplifyQuery &Q, 5162 fp::ExceptionBehavior ExBehavior, 5163 RoundingMode Rounding) { 5164 return ::SimplifyFMAFMul(Op0, Op1, FMF, Q, RecursionLimit, ExBehavior, 5165 Rounding); 5166 } 5167 5168 static Value * 5169 SimplifyFDivInst(Value *Op0, Value *Op1, FastMathFlags FMF, 5170 const SimplifyQuery &Q, unsigned, 5171 fp::ExceptionBehavior ExBehavior = fp::ebIgnore, 5172 RoundingMode Rounding = RoundingMode::NearestTiesToEven) { 5173 if (isDefaultFPEnvironment(ExBehavior, Rounding)) 5174 if (Constant *C = foldOrCommuteConstant(Instruction::FDiv, Op0, Op1, Q)) 5175 return C; 5176 5177 if (Constant *C = simplifyFPOp({Op0, Op1}, FMF, Q, ExBehavior, Rounding)) 5178 return C; 5179 5180 if (!isDefaultFPEnvironment(ExBehavior, Rounding)) 5181 return nullptr; 5182 5183 // X / 1.0 -> X 5184 if (match(Op1, m_FPOne())) 5185 return Op0; 5186 5187 // 0 / X -> 0 5188 // Requires that NaNs are off (X could be zero) and signed zeroes are 5189 // ignored (X could be positive or negative, so the output sign is unknown). 5190 if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op0, m_AnyZeroFP())) 5191 return ConstantFP::getNullValue(Op0->getType()); 5192 5193 if (FMF.noNaNs()) { 5194 // X / X -> 1.0 is legal when NaNs are ignored. 5195 // We can ignore infinities because INF/INF is NaN. 5196 if (Op0 == Op1) 5197 return ConstantFP::get(Op0->getType(), 1.0); 5198 5199 // (X * Y) / Y --> X if we can reassociate to the above form. 5200 Value *X; 5201 if (FMF.allowReassoc() && match(Op0, m_c_FMul(m_Value(X), m_Specific(Op1)))) 5202 return X; 5203 5204 // -X / X -> -1.0 and 5205 // X / -X -> -1.0 are legal when NaNs are ignored. 5206 // We can ignore signed zeros because +-0.0/+-0.0 is NaN and ignored. 5207 if (match(Op0, m_FNegNSZ(m_Specific(Op1))) || 5208 match(Op1, m_FNegNSZ(m_Specific(Op0)))) 5209 return ConstantFP::get(Op0->getType(), -1.0); 5210 } 5211 5212 return nullptr; 5213 } 5214 5215 Value *llvm::SimplifyFDivInst(Value *Op0, Value *Op1, FastMathFlags FMF, 5216 const SimplifyQuery &Q, 5217 fp::ExceptionBehavior ExBehavior, 5218 RoundingMode Rounding) { 5219 return ::SimplifyFDivInst(Op0, Op1, FMF, Q, RecursionLimit, ExBehavior, 5220 Rounding); 5221 } 5222 5223 static Value * 5224 SimplifyFRemInst(Value *Op0, Value *Op1, FastMathFlags FMF, 5225 const SimplifyQuery &Q, unsigned, 5226 fp::ExceptionBehavior ExBehavior = fp::ebIgnore, 5227 RoundingMode Rounding = RoundingMode::NearestTiesToEven) { 5228 if (isDefaultFPEnvironment(ExBehavior, Rounding)) 5229 if (Constant *C = foldOrCommuteConstant(Instruction::FRem, Op0, Op1, Q)) 5230 return C; 5231 5232 if (Constant *C = simplifyFPOp({Op0, Op1}, FMF, Q, ExBehavior, Rounding)) 5233 return C; 5234 5235 if (!isDefaultFPEnvironment(ExBehavior, Rounding)) 5236 return nullptr; 5237 5238 // Unlike fdiv, the result of frem always matches the sign of the dividend. 5239 // The constant match may include undef elements in a vector, so return a full 5240 // zero constant as the result. 5241 if (FMF.noNaNs()) { 5242 // +0 % X -> 0 5243 if (match(Op0, m_PosZeroFP())) 5244 return ConstantFP::getNullValue(Op0->getType()); 5245 // -0 % X -> -0 5246 if (match(Op0, m_NegZeroFP())) 5247 return ConstantFP::getNegativeZero(Op0->getType()); 5248 } 5249 5250 return nullptr; 5251 } 5252 5253 Value *llvm::SimplifyFRemInst(Value *Op0, Value *Op1, FastMathFlags FMF, 5254 const SimplifyQuery &Q, 5255 fp::ExceptionBehavior ExBehavior, 5256 RoundingMode Rounding) { 5257 return ::SimplifyFRemInst(Op0, Op1, FMF, Q, RecursionLimit, ExBehavior, 5258 Rounding); 5259 } 5260 5261 //=== Helper functions for higher up the class hierarchy. 5262 5263 /// Given the operand for a UnaryOperator, see if we can fold the result. 5264 /// If not, this returns null. 5265 static Value *simplifyUnOp(unsigned Opcode, Value *Op, const SimplifyQuery &Q, 5266 unsigned MaxRecurse) { 5267 switch (Opcode) { 5268 case Instruction::FNeg: 5269 return simplifyFNegInst(Op, FastMathFlags(), Q, MaxRecurse); 5270 default: 5271 llvm_unreachable("Unexpected opcode"); 5272 } 5273 } 5274 5275 /// Given the operand for a UnaryOperator, see if we can fold the result. 5276 /// If not, this returns null. 5277 /// Try to use FastMathFlags when folding the result. 5278 static Value *simplifyFPUnOp(unsigned Opcode, Value *Op, 5279 const FastMathFlags &FMF, 5280 const SimplifyQuery &Q, unsigned MaxRecurse) { 5281 switch (Opcode) { 5282 case Instruction::FNeg: 5283 return simplifyFNegInst(Op, FMF, Q, MaxRecurse); 5284 default: 5285 return simplifyUnOp(Opcode, Op, Q, MaxRecurse); 5286 } 5287 } 5288 5289 Value *llvm::SimplifyUnOp(unsigned Opcode, Value *Op, const SimplifyQuery &Q) { 5290 return ::simplifyUnOp(Opcode, Op, Q, RecursionLimit); 5291 } 5292 5293 Value *llvm::SimplifyUnOp(unsigned Opcode, Value *Op, FastMathFlags FMF, 5294 const SimplifyQuery &Q) { 5295 return ::simplifyFPUnOp(Opcode, Op, FMF, Q, RecursionLimit); 5296 } 5297 5298 /// Given operands for a BinaryOperator, see if we can fold the result. 5299 /// If not, this returns null. 5300 static Value *SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS, 5301 const SimplifyQuery &Q, unsigned MaxRecurse) { 5302 switch (Opcode) { 5303 case Instruction::Add: 5304 return SimplifyAddInst(LHS, RHS, false, false, Q, MaxRecurse); 5305 case Instruction::Sub: 5306 return SimplifySubInst(LHS, RHS, false, false, Q, MaxRecurse); 5307 case Instruction::Mul: 5308 return SimplifyMulInst(LHS, RHS, Q, MaxRecurse); 5309 case Instruction::SDiv: 5310 return SimplifySDivInst(LHS, RHS, Q, MaxRecurse); 5311 case Instruction::UDiv: 5312 return SimplifyUDivInst(LHS, RHS, Q, MaxRecurse); 5313 case Instruction::SRem: 5314 return SimplifySRemInst(LHS, RHS, Q, MaxRecurse); 5315 case Instruction::URem: 5316 return SimplifyURemInst(LHS, RHS, Q, MaxRecurse); 5317 case Instruction::Shl: 5318 return SimplifyShlInst(LHS, RHS, false, false, Q, MaxRecurse); 5319 case Instruction::LShr: 5320 return SimplifyLShrInst(LHS, RHS, false, Q, MaxRecurse); 5321 case Instruction::AShr: 5322 return SimplifyAShrInst(LHS, RHS, false, Q, MaxRecurse); 5323 case Instruction::And: 5324 return SimplifyAndInst(LHS, RHS, Q, MaxRecurse); 5325 case Instruction::Or: 5326 return SimplifyOrInst(LHS, RHS, Q, MaxRecurse); 5327 case Instruction::Xor: 5328 return SimplifyXorInst(LHS, RHS, Q, MaxRecurse); 5329 case Instruction::FAdd: 5330 return SimplifyFAddInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse); 5331 case Instruction::FSub: 5332 return SimplifyFSubInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse); 5333 case Instruction::FMul: 5334 return SimplifyFMulInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse); 5335 case Instruction::FDiv: 5336 return SimplifyFDivInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse); 5337 case Instruction::FRem: 5338 return SimplifyFRemInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse); 5339 default: 5340 llvm_unreachable("Unexpected opcode"); 5341 } 5342 } 5343 5344 /// Given operands for a BinaryOperator, see if we can fold the result. 5345 /// If not, this returns null. 5346 /// Try to use FastMathFlags when folding the result. 5347 static Value *SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS, 5348 const FastMathFlags &FMF, const SimplifyQuery &Q, 5349 unsigned MaxRecurse) { 5350 switch (Opcode) { 5351 case Instruction::FAdd: 5352 return SimplifyFAddInst(LHS, RHS, FMF, Q, MaxRecurse); 5353 case Instruction::FSub: 5354 return SimplifyFSubInst(LHS, RHS, FMF, Q, MaxRecurse); 5355 case Instruction::FMul: 5356 return SimplifyFMulInst(LHS, RHS, FMF, Q, MaxRecurse); 5357 case Instruction::FDiv: 5358 return SimplifyFDivInst(LHS, RHS, FMF, Q, MaxRecurse); 5359 default: 5360 return SimplifyBinOp(Opcode, LHS, RHS, Q, MaxRecurse); 5361 } 5362 } 5363 5364 Value *llvm::SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS, 5365 const SimplifyQuery &Q) { 5366 return ::SimplifyBinOp(Opcode, LHS, RHS, Q, RecursionLimit); 5367 } 5368 5369 Value *llvm::SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS, 5370 FastMathFlags FMF, const SimplifyQuery &Q) { 5371 return ::SimplifyBinOp(Opcode, LHS, RHS, FMF, Q, RecursionLimit); 5372 } 5373 5374 /// Given operands for a CmpInst, see if we can fold the result. 5375 static Value *SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS, 5376 const SimplifyQuery &Q, unsigned MaxRecurse) { 5377 if (CmpInst::isIntPredicate((CmpInst::Predicate)Predicate)) 5378 return SimplifyICmpInst(Predicate, LHS, RHS, Q, MaxRecurse); 5379 return SimplifyFCmpInst(Predicate, LHS, RHS, FastMathFlags(), Q, MaxRecurse); 5380 } 5381 5382 Value *llvm::SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS, 5383 const SimplifyQuery &Q) { 5384 return ::SimplifyCmpInst(Predicate, LHS, RHS, Q, RecursionLimit); 5385 } 5386 5387 static bool IsIdempotent(Intrinsic::ID ID) { 5388 switch (ID) { 5389 default: return false; 5390 5391 // Unary idempotent: f(f(x)) = f(x) 5392 case Intrinsic::fabs: 5393 case Intrinsic::floor: 5394 case Intrinsic::ceil: 5395 case Intrinsic::trunc: 5396 case Intrinsic::rint: 5397 case Intrinsic::nearbyint: 5398 case Intrinsic::round: 5399 case Intrinsic::roundeven: 5400 case Intrinsic::canonicalize: 5401 return true; 5402 } 5403 } 5404 5405 static Value *SimplifyRelativeLoad(Constant *Ptr, Constant *Offset, 5406 const DataLayout &DL) { 5407 GlobalValue *PtrSym; 5408 APInt PtrOffset; 5409 if (!IsConstantOffsetFromGlobal(Ptr, PtrSym, PtrOffset, DL)) 5410 return nullptr; 5411 5412 Type *Int8PtrTy = Type::getInt8PtrTy(Ptr->getContext()); 5413 Type *Int32Ty = Type::getInt32Ty(Ptr->getContext()); 5414 Type *Int32PtrTy = Int32Ty->getPointerTo(); 5415 Type *Int64Ty = Type::getInt64Ty(Ptr->getContext()); 5416 5417 auto *OffsetConstInt = dyn_cast<ConstantInt>(Offset); 5418 if (!OffsetConstInt || OffsetConstInt->getType()->getBitWidth() > 64) 5419 return nullptr; 5420 5421 uint64_t OffsetInt = OffsetConstInt->getSExtValue(); 5422 if (OffsetInt % 4 != 0) 5423 return nullptr; 5424 5425 Constant *C = ConstantExpr::getGetElementPtr( 5426 Int32Ty, ConstantExpr::getBitCast(Ptr, Int32PtrTy), 5427 ConstantInt::get(Int64Ty, OffsetInt / 4)); 5428 Constant *Loaded = ConstantFoldLoadFromConstPtr(C, Int32Ty, DL); 5429 if (!Loaded) 5430 return nullptr; 5431 5432 auto *LoadedCE = dyn_cast<ConstantExpr>(Loaded); 5433 if (!LoadedCE) 5434 return nullptr; 5435 5436 if (LoadedCE->getOpcode() == Instruction::Trunc) { 5437 LoadedCE = dyn_cast<ConstantExpr>(LoadedCE->getOperand(0)); 5438 if (!LoadedCE) 5439 return nullptr; 5440 } 5441 5442 if (LoadedCE->getOpcode() != Instruction::Sub) 5443 return nullptr; 5444 5445 auto *LoadedLHS = dyn_cast<ConstantExpr>(LoadedCE->getOperand(0)); 5446 if (!LoadedLHS || LoadedLHS->getOpcode() != Instruction::PtrToInt) 5447 return nullptr; 5448 auto *LoadedLHSPtr = LoadedLHS->getOperand(0); 5449 5450 Constant *LoadedRHS = LoadedCE->getOperand(1); 5451 GlobalValue *LoadedRHSSym; 5452 APInt LoadedRHSOffset; 5453 if (!IsConstantOffsetFromGlobal(LoadedRHS, LoadedRHSSym, LoadedRHSOffset, 5454 DL) || 5455 PtrSym != LoadedRHSSym || PtrOffset != LoadedRHSOffset) 5456 return nullptr; 5457 5458 return ConstantExpr::getBitCast(LoadedLHSPtr, Int8PtrTy); 5459 } 5460 5461 static Value *simplifyUnaryIntrinsic(Function *F, Value *Op0, 5462 const SimplifyQuery &Q) { 5463 // Idempotent functions return the same result when called repeatedly. 5464 Intrinsic::ID IID = F->getIntrinsicID(); 5465 if (IsIdempotent(IID)) 5466 if (auto *II = dyn_cast<IntrinsicInst>(Op0)) 5467 if (II->getIntrinsicID() == IID) 5468 return II; 5469 5470 Value *X; 5471 switch (IID) { 5472 case Intrinsic::fabs: 5473 if (SignBitMustBeZero(Op0, Q.TLI)) return Op0; 5474 break; 5475 case Intrinsic::bswap: 5476 // bswap(bswap(x)) -> x 5477 if (match(Op0, m_BSwap(m_Value(X)))) return X; 5478 break; 5479 case Intrinsic::bitreverse: 5480 // bitreverse(bitreverse(x)) -> x 5481 if (match(Op0, m_BitReverse(m_Value(X)))) return X; 5482 break; 5483 case Intrinsic::ctpop: { 5484 // If everything but the lowest bit is zero, that bit is the pop-count. Ex: 5485 // ctpop(and X, 1) --> and X, 1 5486 unsigned BitWidth = Op0->getType()->getScalarSizeInBits(); 5487 if (MaskedValueIsZero(Op0, APInt::getHighBitsSet(BitWidth, BitWidth - 1), 5488 Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 5489 return Op0; 5490 break; 5491 } 5492 case Intrinsic::exp: 5493 // exp(log(x)) -> x 5494 if (Q.CxtI->hasAllowReassoc() && 5495 match(Op0, m_Intrinsic<Intrinsic::log>(m_Value(X)))) return X; 5496 break; 5497 case Intrinsic::exp2: 5498 // exp2(log2(x)) -> x 5499 if (Q.CxtI->hasAllowReassoc() && 5500 match(Op0, m_Intrinsic<Intrinsic::log2>(m_Value(X)))) return X; 5501 break; 5502 case Intrinsic::log: 5503 // log(exp(x)) -> x 5504 if (Q.CxtI->hasAllowReassoc() && 5505 match(Op0, m_Intrinsic<Intrinsic::exp>(m_Value(X)))) return X; 5506 break; 5507 case Intrinsic::log2: 5508 // log2(exp2(x)) -> x 5509 if (Q.CxtI->hasAllowReassoc() && 5510 (match(Op0, m_Intrinsic<Intrinsic::exp2>(m_Value(X))) || 5511 match(Op0, m_Intrinsic<Intrinsic::pow>(m_SpecificFP(2.0), 5512 m_Value(X))))) return X; 5513 break; 5514 case Intrinsic::log10: 5515 // log10(pow(10.0, x)) -> x 5516 if (Q.CxtI->hasAllowReassoc() && 5517 match(Op0, m_Intrinsic<Intrinsic::pow>(m_SpecificFP(10.0), 5518 m_Value(X)))) return X; 5519 break; 5520 case Intrinsic::floor: 5521 case Intrinsic::trunc: 5522 case Intrinsic::ceil: 5523 case Intrinsic::round: 5524 case Intrinsic::roundeven: 5525 case Intrinsic::nearbyint: 5526 case Intrinsic::rint: { 5527 // floor (sitofp x) -> sitofp x 5528 // floor (uitofp x) -> uitofp x 5529 // 5530 // Converting from int always results in a finite integral number or 5531 // infinity. For either of those inputs, these rounding functions always 5532 // return the same value, so the rounding can be eliminated. 5533 if (match(Op0, m_SIToFP(m_Value())) || match(Op0, m_UIToFP(m_Value()))) 5534 return Op0; 5535 break; 5536 } 5537 case Intrinsic::experimental_vector_reverse: 5538 // experimental.vector.reverse(experimental.vector.reverse(x)) -> x 5539 if (match(Op0, 5540 m_Intrinsic<Intrinsic::experimental_vector_reverse>(m_Value(X)))) 5541 return X; 5542 // experimental.vector.reverse(splat(X)) -> splat(X) 5543 if (isSplatValue(Op0)) 5544 return Op0; 5545 break; 5546 default: 5547 break; 5548 } 5549 5550 return nullptr; 5551 } 5552 5553 static APInt getMaxMinLimit(Intrinsic::ID IID, unsigned BitWidth) { 5554 switch (IID) { 5555 case Intrinsic::smax: return APInt::getSignedMaxValue(BitWidth); 5556 case Intrinsic::smin: return APInt::getSignedMinValue(BitWidth); 5557 case Intrinsic::umax: return APInt::getMaxValue(BitWidth); 5558 case Intrinsic::umin: return APInt::getMinValue(BitWidth); 5559 default: llvm_unreachable("Unexpected intrinsic"); 5560 } 5561 } 5562 5563 static ICmpInst::Predicate getMaxMinPredicate(Intrinsic::ID IID) { 5564 switch (IID) { 5565 case Intrinsic::smax: return ICmpInst::ICMP_SGE; 5566 case Intrinsic::smin: return ICmpInst::ICMP_SLE; 5567 case Intrinsic::umax: return ICmpInst::ICMP_UGE; 5568 case Intrinsic::umin: return ICmpInst::ICMP_ULE; 5569 default: llvm_unreachable("Unexpected intrinsic"); 5570 } 5571 } 5572 5573 /// Given a min/max intrinsic, see if it can be removed based on having an 5574 /// operand that is another min/max intrinsic with shared operand(s). The caller 5575 /// is expected to swap the operand arguments to handle commutation. 5576 static Value *foldMinMaxSharedOp(Intrinsic::ID IID, Value *Op0, Value *Op1) { 5577 Value *X, *Y; 5578 if (!match(Op0, m_MaxOrMin(m_Value(X), m_Value(Y)))) 5579 return nullptr; 5580 5581 auto *MM0 = dyn_cast<IntrinsicInst>(Op0); 5582 if (!MM0) 5583 return nullptr; 5584 Intrinsic::ID IID0 = MM0->getIntrinsicID(); 5585 5586 if (Op1 == X || Op1 == Y || 5587 match(Op1, m_c_MaxOrMin(m_Specific(X), m_Specific(Y)))) { 5588 // max (max X, Y), X --> max X, Y 5589 if (IID0 == IID) 5590 return MM0; 5591 // max (min X, Y), X --> X 5592 if (IID0 == getInverseMinMaxIntrinsic(IID)) 5593 return Op1; 5594 } 5595 return nullptr; 5596 } 5597 5598 static Value *simplifyBinaryIntrinsic(Function *F, Value *Op0, Value *Op1, 5599 const SimplifyQuery &Q) { 5600 Intrinsic::ID IID = F->getIntrinsicID(); 5601 Type *ReturnType = F->getReturnType(); 5602 unsigned BitWidth = ReturnType->getScalarSizeInBits(); 5603 switch (IID) { 5604 case Intrinsic::abs: 5605 // abs(abs(x)) -> abs(x). We don't need to worry about the nsw arg here. 5606 // It is always ok to pick the earlier abs. We'll just lose nsw if its only 5607 // on the outer abs. 5608 if (match(Op0, m_Intrinsic<Intrinsic::abs>(m_Value(), m_Value()))) 5609 return Op0; 5610 break; 5611 5612 case Intrinsic::cttz: { 5613 Value *X; 5614 if (match(Op0, m_Shl(m_One(), m_Value(X)))) 5615 return X; 5616 break; 5617 } 5618 case Intrinsic::ctlz: { 5619 Value *X; 5620 if (match(Op0, m_LShr(m_Negative(), m_Value(X)))) 5621 return X; 5622 if (match(Op0, m_AShr(m_Negative(), m_Value()))) 5623 return Constant::getNullValue(ReturnType); 5624 break; 5625 } 5626 case Intrinsic::smax: 5627 case Intrinsic::smin: 5628 case Intrinsic::umax: 5629 case Intrinsic::umin: { 5630 // If the arguments are the same, this is a no-op. 5631 if (Op0 == Op1) 5632 return Op0; 5633 5634 // Canonicalize constant operand as Op1. 5635 if (isa<Constant>(Op0)) 5636 std::swap(Op0, Op1); 5637 5638 // Assume undef is the limit value. 5639 if (Q.isUndefValue(Op1)) 5640 return ConstantInt::get(ReturnType, getMaxMinLimit(IID, BitWidth)); 5641 5642 const APInt *C; 5643 if (match(Op1, m_APIntAllowUndef(C))) { 5644 // Clamp to limit value. For example: 5645 // umax(i8 %x, i8 255) --> 255 5646 if (*C == getMaxMinLimit(IID, BitWidth)) 5647 return ConstantInt::get(ReturnType, *C); 5648 5649 // If the constant op is the opposite of the limit value, the other must 5650 // be larger/smaller or equal. For example: 5651 // umin(i8 %x, i8 255) --> %x 5652 if (*C == getMaxMinLimit(getInverseMinMaxIntrinsic(IID), BitWidth)) 5653 return Op0; 5654 5655 // Remove nested call if constant operands allow it. Example: 5656 // max (max X, 7), 5 -> max X, 7 5657 auto *MinMax0 = dyn_cast<IntrinsicInst>(Op0); 5658 if (MinMax0 && MinMax0->getIntrinsicID() == IID) { 5659 // TODO: loosen undef/splat restrictions for vector constants. 5660 Value *M00 = MinMax0->getOperand(0), *M01 = MinMax0->getOperand(1); 5661 const APInt *InnerC; 5662 if ((match(M00, m_APInt(InnerC)) || match(M01, m_APInt(InnerC))) && 5663 ((IID == Intrinsic::smax && InnerC->sge(*C)) || 5664 (IID == Intrinsic::smin && InnerC->sle(*C)) || 5665 (IID == Intrinsic::umax && InnerC->uge(*C)) || 5666 (IID == Intrinsic::umin && InnerC->ule(*C)))) 5667 return Op0; 5668 } 5669 } 5670 5671 if (Value *V = foldMinMaxSharedOp(IID, Op0, Op1)) 5672 return V; 5673 if (Value *V = foldMinMaxSharedOp(IID, Op1, Op0)) 5674 return V; 5675 5676 ICmpInst::Predicate Pred = getMaxMinPredicate(IID); 5677 if (isICmpTrue(Pred, Op0, Op1, Q.getWithoutUndef(), RecursionLimit)) 5678 return Op0; 5679 if (isICmpTrue(Pred, Op1, Op0, Q.getWithoutUndef(), RecursionLimit)) 5680 return Op1; 5681 5682 if (Optional<bool> Imp = 5683 isImpliedByDomCondition(Pred, Op0, Op1, Q.CxtI, Q.DL)) 5684 return *Imp ? Op0 : Op1; 5685 if (Optional<bool> Imp = 5686 isImpliedByDomCondition(Pred, Op1, Op0, Q.CxtI, Q.DL)) 5687 return *Imp ? Op1 : Op0; 5688 5689 break; 5690 } 5691 case Intrinsic::usub_with_overflow: 5692 case Intrinsic::ssub_with_overflow: 5693 // X - X -> { 0, false } 5694 // X - undef -> { 0, false } 5695 // undef - X -> { 0, false } 5696 if (Op0 == Op1 || Q.isUndefValue(Op0) || Q.isUndefValue(Op1)) 5697 return Constant::getNullValue(ReturnType); 5698 break; 5699 case Intrinsic::uadd_with_overflow: 5700 case Intrinsic::sadd_with_overflow: 5701 // X + undef -> { -1, false } 5702 // undef + x -> { -1, false } 5703 if (Q.isUndefValue(Op0) || Q.isUndefValue(Op1)) { 5704 return ConstantStruct::get( 5705 cast<StructType>(ReturnType), 5706 {Constant::getAllOnesValue(ReturnType->getStructElementType(0)), 5707 Constant::getNullValue(ReturnType->getStructElementType(1))}); 5708 } 5709 break; 5710 case Intrinsic::umul_with_overflow: 5711 case Intrinsic::smul_with_overflow: 5712 // 0 * X -> { 0, false } 5713 // X * 0 -> { 0, false } 5714 if (match(Op0, m_Zero()) || match(Op1, m_Zero())) 5715 return Constant::getNullValue(ReturnType); 5716 // undef * X -> { 0, false } 5717 // X * undef -> { 0, false } 5718 if (Q.isUndefValue(Op0) || Q.isUndefValue(Op1)) 5719 return Constant::getNullValue(ReturnType); 5720 break; 5721 case Intrinsic::uadd_sat: 5722 // sat(MAX + X) -> MAX 5723 // sat(X + MAX) -> MAX 5724 if (match(Op0, m_AllOnes()) || match(Op1, m_AllOnes())) 5725 return Constant::getAllOnesValue(ReturnType); 5726 LLVM_FALLTHROUGH; 5727 case Intrinsic::sadd_sat: 5728 // sat(X + undef) -> -1 5729 // sat(undef + X) -> -1 5730 // For unsigned: Assume undef is MAX, thus we saturate to MAX (-1). 5731 // For signed: Assume undef is ~X, in which case X + ~X = -1. 5732 if (Q.isUndefValue(Op0) || Q.isUndefValue(Op1)) 5733 return Constant::getAllOnesValue(ReturnType); 5734 5735 // X + 0 -> X 5736 if (match(Op1, m_Zero())) 5737 return Op0; 5738 // 0 + X -> X 5739 if (match(Op0, m_Zero())) 5740 return Op1; 5741 break; 5742 case Intrinsic::usub_sat: 5743 // sat(0 - X) -> 0, sat(X - MAX) -> 0 5744 if (match(Op0, m_Zero()) || match(Op1, m_AllOnes())) 5745 return Constant::getNullValue(ReturnType); 5746 LLVM_FALLTHROUGH; 5747 case Intrinsic::ssub_sat: 5748 // X - X -> 0, X - undef -> 0, undef - X -> 0 5749 if (Op0 == Op1 || Q.isUndefValue(Op0) || Q.isUndefValue(Op1)) 5750 return Constant::getNullValue(ReturnType); 5751 // X - 0 -> X 5752 if (match(Op1, m_Zero())) 5753 return Op0; 5754 break; 5755 case Intrinsic::load_relative: 5756 if (auto *C0 = dyn_cast<Constant>(Op0)) 5757 if (auto *C1 = dyn_cast<Constant>(Op1)) 5758 return SimplifyRelativeLoad(C0, C1, Q.DL); 5759 break; 5760 case Intrinsic::powi: 5761 if (auto *Power = dyn_cast<ConstantInt>(Op1)) { 5762 // powi(x, 0) -> 1.0 5763 if (Power->isZero()) 5764 return ConstantFP::get(Op0->getType(), 1.0); 5765 // powi(x, 1) -> x 5766 if (Power->isOne()) 5767 return Op0; 5768 } 5769 break; 5770 case Intrinsic::copysign: 5771 // copysign X, X --> X 5772 if (Op0 == Op1) 5773 return Op0; 5774 // copysign -X, X --> X 5775 // copysign X, -X --> -X 5776 if (match(Op0, m_FNeg(m_Specific(Op1))) || 5777 match(Op1, m_FNeg(m_Specific(Op0)))) 5778 return Op1; 5779 break; 5780 case Intrinsic::maxnum: 5781 case Intrinsic::minnum: 5782 case Intrinsic::maximum: 5783 case Intrinsic::minimum: { 5784 // If the arguments are the same, this is a no-op. 5785 if (Op0 == Op1) return Op0; 5786 5787 // Canonicalize constant operand as Op1. 5788 if (isa<Constant>(Op0)) 5789 std::swap(Op0, Op1); 5790 5791 // If an argument is undef, return the other argument. 5792 if (Q.isUndefValue(Op1)) 5793 return Op0; 5794 5795 bool PropagateNaN = IID == Intrinsic::minimum || IID == Intrinsic::maximum; 5796 bool IsMin = IID == Intrinsic::minimum || IID == Intrinsic::minnum; 5797 5798 // minnum(X, nan) -> X 5799 // maxnum(X, nan) -> X 5800 // minimum(X, nan) -> nan 5801 // maximum(X, nan) -> nan 5802 if (match(Op1, m_NaN())) 5803 return PropagateNaN ? propagateNaN(cast<Constant>(Op1)) : Op0; 5804 5805 // In the following folds, inf can be replaced with the largest finite 5806 // float, if the ninf flag is set. 5807 const APFloat *C; 5808 if (match(Op1, m_APFloat(C)) && 5809 (C->isInfinity() || (Q.CxtI->hasNoInfs() && C->isLargest()))) { 5810 // minnum(X, -inf) -> -inf 5811 // maxnum(X, +inf) -> +inf 5812 // minimum(X, -inf) -> -inf if nnan 5813 // maximum(X, +inf) -> +inf if nnan 5814 if (C->isNegative() == IsMin && (!PropagateNaN || Q.CxtI->hasNoNaNs())) 5815 return ConstantFP::get(ReturnType, *C); 5816 5817 // minnum(X, +inf) -> X if nnan 5818 // maxnum(X, -inf) -> X if nnan 5819 // minimum(X, +inf) -> X 5820 // maximum(X, -inf) -> X 5821 if (C->isNegative() != IsMin && (PropagateNaN || Q.CxtI->hasNoNaNs())) 5822 return Op0; 5823 } 5824 5825 // Min/max of the same operation with common operand: 5826 // m(m(X, Y)), X --> m(X, Y) (4 commuted variants) 5827 if (auto *M0 = dyn_cast<IntrinsicInst>(Op0)) 5828 if (M0->getIntrinsicID() == IID && 5829 (M0->getOperand(0) == Op1 || M0->getOperand(1) == Op1)) 5830 return Op0; 5831 if (auto *M1 = dyn_cast<IntrinsicInst>(Op1)) 5832 if (M1->getIntrinsicID() == IID && 5833 (M1->getOperand(0) == Op0 || M1->getOperand(1) == Op0)) 5834 return Op1; 5835 5836 break; 5837 } 5838 case Intrinsic::experimental_vector_extract: { 5839 Type *ReturnType = F->getReturnType(); 5840 5841 // (extract_vector (insert_vector _, X, 0), 0) -> X 5842 unsigned IdxN = cast<ConstantInt>(Op1)->getZExtValue(); 5843 Value *X = nullptr; 5844 if (match(Op0, m_Intrinsic<Intrinsic::experimental_vector_insert>( 5845 m_Value(), m_Value(X), m_Zero())) && 5846 IdxN == 0 && X->getType() == ReturnType) 5847 return X; 5848 5849 break; 5850 } 5851 default: 5852 break; 5853 } 5854 5855 return nullptr; 5856 } 5857 5858 static Value *simplifyIntrinsic(CallBase *Call, const SimplifyQuery &Q) { 5859 5860 unsigned NumOperands = Call->arg_size(); 5861 Function *F = cast<Function>(Call->getCalledFunction()); 5862 Intrinsic::ID IID = F->getIntrinsicID(); 5863 5864 // Most of the intrinsics with no operands have some kind of side effect. 5865 // Don't simplify. 5866 if (!NumOperands) { 5867 switch (IID) { 5868 case Intrinsic::vscale: { 5869 // Call may not be inserted into the IR yet at point of calling simplify. 5870 if (!Call->getParent() || !Call->getParent()->getParent()) 5871 return nullptr; 5872 auto Attr = Call->getFunction()->getFnAttribute(Attribute::VScaleRange); 5873 if (!Attr.isValid()) 5874 return nullptr; 5875 unsigned VScaleMin, VScaleMax; 5876 std::tie(VScaleMin, VScaleMax) = Attr.getVScaleRangeArgs(); 5877 if (VScaleMin == VScaleMax && VScaleMax != 0) 5878 return ConstantInt::get(F->getReturnType(), VScaleMin); 5879 return nullptr; 5880 } 5881 default: 5882 return nullptr; 5883 } 5884 } 5885 5886 if (NumOperands == 1) 5887 return simplifyUnaryIntrinsic(F, Call->getArgOperand(0), Q); 5888 5889 if (NumOperands == 2) 5890 return simplifyBinaryIntrinsic(F, Call->getArgOperand(0), 5891 Call->getArgOperand(1), Q); 5892 5893 // Handle intrinsics with 3 or more arguments. 5894 switch (IID) { 5895 case Intrinsic::masked_load: 5896 case Intrinsic::masked_gather: { 5897 Value *MaskArg = Call->getArgOperand(2); 5898 Value *PassthruArg = Call->getArgOperand(3); 5899 // If the mask is all zeros or undef, the "passthru" argument is the result. 5900 if (maskIsAllZeroOrUndef(MaskArg)) 5901 return PassthruArg; 5902 return nullptr; 5903 } 5904 case Intrinsic::fshl: 5905 case Intrinsic::fshr: { 5906 Value *Op0 = Call->getArgOperand(0), *Op1 = Call->getArgOperand(1), 5907 *ShAmtArg = Call->getArgOperand(2); 5908 5909 // If both operands are undef, the result is undef. 5910 if (Q.isUndefValue(Op0) && Q.isUndefValue(Op1)) 5911 return UndefValue::get(F->getReturnType()); 5912 5913 // If shift amount is undef, assume it is zero. 5914 if (Q.isUndefValue(ShAmtArg)) 5915 return Call->getArgOperand(IID == Intrinsic::fshl ? 0 : 1); 5916 5917 const APInt *ShAmtC; 5918 if (match(ShAmtArg, m_APInt(ShAmtC))) { 5919 // If there's effectively no shift, return the 1st arg or 2nd arg. 5920 APInt BitWidth = APInt(ShAmtC->getBitWidth(), ShAmtC->getBitWidth()); 5921 if (ShAmtC->urem(BitWidth).isZero()) 5922 return Call->getArgOperand(IID == Intrinsic::fshl ? 0 : 1); 5923 } 5924 5925 // Rotating zero by anything is zero. 5926 if (match(Op0, m_Zero()) && match(Op1, m_Zero())) 5927 return ConstantInt::getNullValue(F->getReturnType()); 5928 5929 // Rotating -1 by anything is -1. 5930 if (match(Op0, m_AllOnes()) && match(Op1, m_AllOnes())) 5931 return ConstantInt::getAllOnesValue(F->getReturnType()); 5932 5933 return nullptr; 5934 } 5935 case Intrinsic::experimental_constrained_fma: { 5936 Value *Op0 = Call->getArgOperand(0); 5937 Value *Op1 = Call->getArgOperand(1); 5938 Value *Op2 = Call->getArgOperand(2); 5939 auto *FPI = cast<ConstrainedFPIntrinsic>(Call); 5940 if (Value *V = simplifyFPOp({Op0, Op1, Op2}, {}, Q, 5941 FPI->getExceptionBehavior().getValue(), 5942 FPI->getRoundingMode().getValue())) 5943 return V; 5944 return nullptr; 5945 } 5946 case Intrinsic::fma: 5947 case Intrinsic::fmuladd: { 5948 Value *Op0 = Call->getArgOperand(0); 5949 Value *Op1 = Call->getArgOperand(1); 5950 Value *Op2 = Call->getArgOperand(2); 5951 if (Value *V = simplifyFPOp({Op0, Op1, Op2}, {}, Q, fp::ebIgnore, 5952 RoundingMode::NearestTiesToEven)) 5953 return V; 5954 return nullptr; 5955 } 5956 case Intrinsic::smul_fix: 5957 case Intrinsic::smul_fix_sat: { 5958 Value *Op0 = Call->getArgOperand(0); 5959 Value *Op1 = Call->getArgOperand(1); 5960 Value *Op2 = Call->getArgOperand(2); 5961 Type *ReturnType = F->getReturnType(); 5962 5963 // Canonicalize constant operand as Op1 (ConstantFolding handles the case 5964 // when both Op0 and Op1 are constant so we do not care about that special 5965 // case here). 5966 if (isa<Constant>(Op0)) 5967 std::swap(Op0, Op1); 5968 5969 // X * 0 -> 0 5970 if (match(Op1, m_Zero())) 5971 return Constant::getNullValue(ReturnType); 5972 5973 // X * undef -> 0 5974 if (Q.isUndefValue(Op1)) 5975 return Constant::getNullValue(ReturnType); 5976 5977 // X * (1 << Scale) -> X 5978 APInt ScaledOne = 5979 APInt::getOneBitSet(ReturnType->getScalarSizeInBits(), 5980 cast<ConstantInt>(Op2)->getZExtValue()); 5981 if (ScaledOne.isNonNegative() && match(Op1, m_SpecificInt(ScaledOne))) 5982 return Op0; 5983 5984 return nullptr; 5985 } 5986 case Intrinsic::experimental_vector_insert: { 5987 Value *Vec = Call->getArgOperand(0); 5988 Value *SubVec = Call->getArgOperand(1); 5989 Value *Idx = Call->getArgOperand(2); 5990 Type *ReturnType = F->getReturnType(); 5991 5992 // (insert_vector Y, (extract_vector X, 0), 0) -> X 5993 // where: Y is X, or Y is undef 5994 unsigned IdxN = cast<ConstantInt>(Idx)->getZExtValue(); 5995 Value *X = nullptr; 5996 if (match(SubVec, m_Intrinsic<Intrinsic::experimental_vector_extract>( 5997 m_Value(X), m_Zero())) && 5998 (Q.isUndefValue(Vec) || Vec == X) && IdxN == 0 && 5999 X->getType() == ReturnType) 6000 return X; 6001 6002 return nullptr; 6003 } 6004 case Intrinsic::experimental_constrained_fadd: { 6005 auto *FPI = cast<ConstrainedFPIntrinsic>(Call); 6006 return SimplifyFAddInst(FPI->getArgOperand(0), FPI->getArgOperand(1), 6007 FPI->getFastMathFlags(), Q, 6008 FPI->getExceptionBehavior().getValue(), 6009 FPI->getRoundingMode().getValue()); 6010 break; 6011 } 6012 case Intrinsic::experimental_constrained_fsub: { 6013 auto *FPI = cast<ConstrainedFPIntrinsic>(Call); 6014 return SimplifyFSubInst(FPI->getArgOperand(0), FPI->getArgOperand(1), 6015 FPI->getFastMathFlags(), Q, 6016 FPI->getExceptionBehavior().getValue(), 6017 FPI->getRoundingMode().getValue()); 6018 break; 6019 } 6020 case Intrinsic::experimental_constrained_fmul: { 6021 auto *FPI = cast<ConstrainedFPIntrinsic>(Call); 6022 return SimplifyFMulInst(FPI->getArgOperand(0), FPI->getArgOperand(1), 6023 FPI->getFastMathFlags(), Q, 6024 FPI->getExceptionBehavior().getValue(), 6025 FPI->getRoundingMode().getValue()); 6026 break; 6027 } 6028 case Intrinsic::experimental_constrained_fdiv: { 6029 auto *FPI = cast<ConstrainedFPIntrinsic>(Call); 6030 return SimplifyFDivInst(FPI->getArgOperand(0), FPI->getArgOperand(1), 6031 FPI->getFastMathFlags(), Q, 6032 FPI->getExceptionBehavior().getValue(), 6033 FPI->getRoundingMode().getValue()); 6034 break; 6035 } 6036 case Intrinsic::experimental_constrained_frem: { 6037 auto *FPI = cast<ConstrainedFPIntrinsic>(Call); 6038 return SimplifyFRemInst(FPI->getArgOperand(0), FPI->getArgOperand(1), 6039 FPI->getFastMathFlags(), Q, 6040 FPI->getExceptionBehavior().getValue(), 6041 FPI->getRoundingMode().getValue()); 6042 break; 6043 } 6044 default: 6045 return nullptr; 6046 } 6047 } 6048 6049 static Value *tryConstantFoldCall(CallBase *Call, const SimplifyQuery &Q) { 6050 auto *F = dyn_cast<Function>(Call->getCalledOperand()); 6051 if (!F || !canConstantFoldCallTo(Call, F)) 6052 return nullptr; 6053 6054 SmallVector<Constant *, 4> ConstantArgs; 6055 unsigned NumArgs = Call->arg_size(); 6056 ConstantArgs.reserve(NumArgs); 6057 for (auto &Arg : Call->args()) { 6058 Constant *C = dyn_cast<Constant>(&Arg); 6059 if (!C) { 6060 if (isa<MetadataAsValue>(Arg.get())) 6061 continue; 6062 return nullptr; 6063 } 6064 ConstantArgs.push_back(C); 6065 } 6066 6067 return ConstantFoldCall(Call, F, ConstantArgs, Q.TLI); 6068 } 6069 6070 Value *llvm::SimplifyCall(CallBase *Call, const SimplifyQuery &Q) { 6071 // musttail calls can only be simplified if they are also DCEd. 6072 // As we can't guarantee this here, don't simplify them. 6073 if (Call->isMustTailCall()) 6074 return nullptr; 6075 6076 // call undef -> poison 6077 // call null -> poison 6078 Value *Callee = Call->getCalledOperand(); 6079 if (isa<UndefValue>(Callee) || isa<ConstantPointerNull>(Callee)) 6080 return PoisonValue::get(Call->getType()); 6081 6082 if (Value *V = tryConstantFoldCall(Call, Q)) 6083 return V; 6084 6085 auto *F = dyn_cast<Function>(Callee); 6086 if (F && F->isIntrinsic()) 6087 if (Value *Ret = simplifyIntrinsic(Call, Q)) 6088 return Ret; 6089 6090 return nullptr; 6091 } 6092 6093 /// Given operands for a Freeze, see if we can fold the result. 6094 static Value *SimplifyFreezeInst(Value *Op0, const SimplifyQuery &Q) { 6095 // Use a utility function defined in ValueTracking. 6096 if (llvm::isGuaranteedNotToBeUndefOrPoison(Op0, Q.AC, Q.CxtI, Q.DT)) 6097 return Op0; 6098 // We have room for improvement. 6099 return nullptr; 6100 } 6101 6102 Value *llvm::SimplifyFreezeInst(Value *Op0, const SimplifyQuery &Q) { 6103 return ::SimplifyFreezeInst(Op0, Q); 6104 } 6105 6106 static Value *SimplifyLoadInst(LoadInst *LI, Value *PtrOp, 6107 const SimplifyQuery &Q) { 6108 if (LI->isVolatile()) 6109 return nullptr; 6110 6111 APInt Offset(Q.DL.getIndexTypeSizeInBits(PtrOp->getType()), 0); 6112 auto *PtrOpC = dyn_cast<Constant>(PtrOp); 6113 // Try to convert operand into a constant by stripping offsets while looking 6114 // through invariant.group intrinsics. Don't bother if the underlying object 6115 // is not constant, as calculating GEP offsets is expensive. 6116 if (!PtrOpC && isa<Constant>(getUnderlyingObject(PtrOp))) { 6117 PtrOp = PtrOp->stripAndAccumulateConstantOffsets( 6118 Q.DL, Offset, /* AllowNonInbounts */ true, 6119 /* AllowInvariantGroup */ true); 6120 // Index size may have changed due to address space casts. 6121 Offset = Offset.sextOrTrunc(Q.DL.getIndexTypeSizeInBits(PtrOp->getType())); 6122 PtrOpC = dyn_cast<Constant>(PtrOp); 6123 } 6124 6125 if (PtrOpC) 6126 return ConstantFoldLoadFromConstPtr(PtrOpC, LI->getType(), Offset, Q.DL); 6127 return nullptr; 6128 } 6129 6130 /// See if we can compute a simplified version of this instruction. 6131 /// If not, this returns null. 6132 6133 static Value *simplifyInstructionWithOperands(Instruction *I, 6134 ArrayRef<Value *> NewOps, 6135 const SimplifyQuery &SQ, 6136 OptimizationRemarkEmitter *ORE) { 6137 const SimplifyQuery Q = SQ.CxtI ? SQ : SQ.getWithInstruction(I); 6138 Value *Result = nullptr; 6139 6140 switch (I->getOpcode()) { 6141 default: 6142 if (llvm::all_of(NewOps, [](Value *V) { return isa<Constant>(V); })) { 6143 SmallVector<Constant *, 8> NewConstOps(NewOps.size()); 6144 transform(NewOps, NewConstOps.begin(), 6145 [](Value *V) { return cast<Constant>(V); }); 6146 Result = ConstantFoldInstOperands(I, NewConstOps, Q.DL, Q.TLI); 6147 } 6148 break; 6149 case Instruction::FNeg: 6150 Result = SimplifyFNegInst(NewOps[0], I->getFastMathFlags(), Q); 6151 break; 6152 case Instruction::FAdd: 6153 Result = SimplifyFAddInst(NewOps[0], NewOps[1], I->getFastMathFlags(), Q); 6154 break; 6155 case Instruction::Add: 6156 Result = SimplifyAddInst( 6157 NewOps[0], NewOps[1], Q.IIQ.hasNoSignedWrap(cast<BinaryOperator>(I)), 6158 Q.IIQ.hasNoUnsignedWrap(cast<BinaryOperator>(I)), Q); 6159 break; 6160 case Instruction::FSub: 6161 Result = SimplifyFSubInst(NewOps[0], NewOps[1], I->getFastMathFlags(), Q); 6162 break; 6163 case Instruction::Sub: 6164 Result = SimplifySubInst( 6165 NewOps[0], NewOps[1], Q.IIQ.hasNoSignedWrap(cast<BinaryOperator>(I)), 6166 Q.IIQ.hasNoUnsignedWrap(cast<BinaryOperator>(I)), Q); 6167 break; 6168 case Instruction::FMul: 6169 Result = SimplifyFMulInst(NewOps[0], NewOps[1], I->getFastMathFlags(), Q); 6170 break; 6171 case Instruction::Mul: 6172 Result = SimplifyMulInst(NewOps[0], NewOps[1], Q); 6173 break; 6174 case Instruction::SDiv: 6175 Result = SimplifySDivInst(NewOps[0], NewOps[1], Q); 6176 break; 6177 case Instruction::UDiv: 6178 Result = SimplifyUDivInst(NewOps[0], NewOps[1], Q); 6179 break; 6180 case Instruction::FDiv: 6181 Result = SimplifyFDivInst(NewOps[0], NewOps[1], I->getFastMathFlags(), Q); 6182 break; 6183 case Instruction::SRem: 6184 Result = SimplifySRemInst(NewOps[0], NewOps[1], Q); 6185 break; 6186 case Instruction::URem: 6187 Result = SimplifyURemInst(NewOps[0], NewOps[1], Q); 6188 break; 6189 case Instruction::FRem: 6190 Result = SimplifyFRemInst(NewOps[0], NewOps[1], I->getFastMathFlags(), Q); 6191 break; 6192 case Instruction::Shl: 6193 Result = SimplifyShlInst( 6194 NewOps[0], NewOps[1], Q.IIQ.hasNoSignedWrap(cast<BinaryOperator>(I)), 6195 Q.IIQ.hasNoUnsignedWrap(cast<BinaryOperator>(I)), Q); 6196 break; 6197 case Instruction::LShr: 6198 Result = SimplifyLShrInst(NewOps[0], NewOps[1], 6199 Q.IIQ.isExact(cast<BinaryOperator>(I)), Q); 6200 break; 6201 case Instruction::AShr: 6202 Result = SimplifyAShrInst(NewOps[0], NewOps[1], 6203 Q.IIQ.isExact(cast<BinaryOperator>(I)), Q); 6204 break; 6205 case Instruction::And: 6206 Result = SimplifyAndInst(NewOps[0], NewOps[1], Q); 6207 break; 6208 case Instruction::Or: 6209 Result = SimplifyOrInst(NewOps[0], NewOps[1], Q); 6210 break; 6211 case Instruction::Xor: 6212 Result = SimplifyXorInst(NewOps[0], NewOps[1], Q); 6213 break; 6214 case Instruction::ICmp: 6215 Result = SimplifyICmpInst(cast<ICmpInst>(I)->getPredicate(), NewOps[0], 6216 NewOps[1], Q); 6217 break; 6218 case Instruction::FCmp: 6219 Result = SimplifyFCmpInst(cast<FCmpInst>(I)->getPredicate(), NewOps[0], 6220 NewOps[1], I->getFastMathFlags(), Q); 6221 break; 6222 case Instruction::Select: 6223 Result = SimplifySelectInst(NewOps[0], NewOps[1], NewOps[2], Q); 6224 break; 6225 case Instruction::GetElementPtr: { 6226 auto *GEPI = cast<GetElementPtrInst>(I); 6227 Result = SimplifyGEPInst(GEPI->getSourceElementType(), NewOps, 6228 GEPI->isInBounds(), Q); 6229 break; 6230 } 6231 case Instruction::InsertValue: { 6232 InsertValueInst *IV = cast<InsertValueInst>(I); 6233 Result = SimplifyInsertValueInst(NewOps[0], NewOps[1], IV->getIndices(), Q); 6234 break; 6235 } 6236 case Instruction::InsertElement: { 6237 Result = SimplifyInsertElementInst(NewOps[0], NewOps[1], NewOps[2], Q); 6238 break; 6239 } 6240 case Instruction::ExtractValue: { 6241 auto *EVI = cast<ExtractValueInst>(I); 6242 Result = SimplifyExtractValueInst(NewOps[0], EVI->getIndices(), Q); 6243 break; 6244 } 6245 case Instruction::ExtractElement: { 6246 Result = SimplifyExtractElementInst(NewOps[0], NewOps[1], Q); 6247 break; 6248 } 6249 case Instruction::ShuffleVector: { 6250 auto *SVI = cast<ShuffleVectorInst>(I); 6251 Result = SimplifyShuffleVectorInst( 6252 NewOps[0], NewOps[1], SVI->getShuffleMask(), SVI->getType(), Q); 6253 break; 6254 } 6255 case Instruction::PHI: 6256 Result = SimplifyPHINode(cast<PHINode>(I), NewOps, Q); 6257 break; 6258 case Instruction::Call: { 6259 // TODO: Use NewOps 6260 Result = SimplifyCall(cast<CallInst>(I), Q); 6261 break; 6262 } 6263 case Instruction::Freeze: 6264 Result = llvm::SimplifyFreezeInst(NewOps[0], Q); 6265 break; 6266 #define HANDLE_CAST_INST(num, opc, clas) case Instruction::opc: 6267 #include "llvm/IR/Instruction.def" 6268 #undef HANDLE_CAST_INST 6269 Result = SimplifyCastInst(I->getOpcode(), NewOps[0], I->getType(), Q); 6270 break; 6271 case Instruction::Alloca: 6272 // No simplifications for Alloca and it can't be constant folded. 6273 Result = nullptr; 6274 break; 6275 case Instruction::Load: 6276 Result = SimplifyLoadInst(cast<LoadInst>(I), NewOps[0], Q); 6277 break; 6278 } 6279 6280 /// If called on unreachable code, the above logic may report that the 6281 /// instruction simplified to itself. Make life easier for users by 6282 /// detecting that case here, returning a safe value instead. 6283 return Result == I ? UndefValue::get(I->getType()) : Result; 6284 } 6285 6286 Value *llvm::SimplifyInstructionWithOperands(Instruction *I, 6287 ArrayRef<Value *> NewOps, 6288 const SimplifyQuery &SQ, 6289 OptimizationRemarkEmitter *ORE) { 6290 assert(NewOps.size() == I->getNumOperands() && 6291 "Number of operands should match the instruction!"); 6292 return ::simplifyInstructionWithOperands(I, NewOps, SQ, ORE); 6293 } 6294 6295 Value *llvm::SimplifyInstruction(Instruction *I, const SimplifyQuery &SQ, 6296 OptimizationRemarkEmitter *ORE) { 6297 SmallVector<Value *, 8> Ops(I->operands()); 6298 return ::simplifyInstructionWithOperands(I, Ops, SQ, ORE); 6299 } 6300 6301 /// Implementation of recursive simplification through an instruction's 6302 /// uses. 6303 /// 6304 /// This is the common implementation of the recursive simplification routines. 6305 /// If we have a pre-simplified value in 'SimpleV', that is forcibly used to 6306 /// replace the instruction 'I'. Otherwise, we simply add 'I' to the list of 6307 /// instructions to process and attempt to simplify it using 6308 /// InstructionSimplify. Recursively visited users which could not be 6309 /// simplified themselves are to the optional UnsimplifiedUsers set for 6310 /// further processing by the caller. 6311 /// 6312 /// This routine returns 'true' only when *it* simplifies something. The passed 6313 /// in simplified value does not count toward this. 6314 static bool replaceAndRecursivelySimplifyImpl( 6315 Instruction *I, Value *SimpleV, const TargetLibraryInfo *TLI, 6316 const DominatorTree *DT, AssumptionCache *AC, 6317 SmallSetVector<Instruction *, 8> *UnsimplifiedUsers = nullptr) { 6318 bool Simplified = false; 6319 SmallSetVector<Instruction *, 8> Worklist; 6320 const DataLayout &DL = I->getModule()->getDataLayout(); 6321 6322 // If we have an explicit value to collapse to, do that round of the 6323 // simplification loop by hand initially. 6324 if (SimpleV) { 6325 for (User *U : I->users()) 6326 if (U != I) 6327 Worklist.insert(cast<Instruction>(U)); 6328 6329 // Replace the instruction with its simplified value. 6330 I->replaceAllUsesWith(SimpleV); 6331 6332 // Gracefully handle edge cases where the instruction is not wired into any 6333 // parent block. 6334 if (I->getParent() && !I->isEHPad() && !I->isTerminator() && 6335 !I->mayHaveSideEffects()) 6336 I->eraseFromParent(); 6337 } else { 6338 Worklist.insert(I); 6339 } 6340 6341 // Note that we must test the size on each iteration, the worklist can grow. 6342 for (unsigned Idx = 0; Idx != Worklist.size(); ++Idx) { 6343 I = Worklist[Idx]; 6344 6345 // See if this instruction simplifies. 6346 SimpleV = SimplifyInstruction(I, {DL, TLI, DT, AC}); 6347 if (!SimpleV) { 6348 if (UnsimplifiedUsers) 6349 UnsimplifiedUsers->insert(I); 6350 continue; 6351 } 6352 6353 Simplified = true; 6354 6355 // Stash away all the uses of the old instruction so we can check them for 6356 // recursive simplifications after a RAUW. This is cheaper than checking all 6357 // uses of To on the recursive step in most cases. 6358 for (User *U : I->users()) 6359 Worklist.insert(cast<Instruction>(U)); 6360 6361 // Replace the instruction with its simplified value. 6362 I->replaceAllUsesWith(SimpleV); 6363 6364 // Gracefully handle edge cases where the instruction is not wired into any 6365 // parent block. 6366 if (I->getParent() && !I->isEHPad() && !I->isTerminator() && 6367 !I->mayHaveSideEffects()) 6368 I->eraseFromParent(); 6369 } 6370 return Simplified; 6371 } 6372 6373 bool llvm::replaceAndRecursivelySimplify( 6374 Instruction *I, Value *SimpleV, const TargetLibraryInfo *TLI, 6375 const DominatorTree *DT, AssumptionCache *AC, 6376 SmallSetVector<Instruction *, 8> *UnsimplifiedUsers) { 6377 assert(I != SimpleV && "replaceAndRecursivelySimplify(X,X) is not valid!"); 6378 assert(SimpleV && "Must provide a simplified value."); 6379 return replaceAndRecursivelySimplifyImpl(I, SimpleV, TLI, DT, AC, 6380 UnsimplifiedUsers); 6381 } 6382 6383 namespace llvm { 6384 const SimplifyQuery getBestSimplifyQuery(Pass &P, Function &F) { 6385 auto *DTWP = P.getAnalysisIfAvailable<DominatorTreeWrapperPass>(); 6386 auto *DT = DTWP ? &DTWP->getDomTree() : nullptr; 6387 auto *TLIWP = P.getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 6388 auto *TLI = TLIWP ? &TLIWP->getTLI(F) : nullptr; 6389 auto *ACWP = P.getAnalysisIfAvailable<AssumptionCacheTracker>(); 6390 auto *AC = ACWP ? &ACWP->getAssumptionCache(F) : nullptr; 6391 return {F.getParent()->getDataLayout(), TLI, DT, AC}; 6392 } 6393 6394 const SimplifyQuery getBestSimplifyQuery(LoopStandardAnalysisResults &AR, 6395 const DataLayout &DL) { 6396 return {DL, &AR.TLI, &AR.DT, &AR.AC}; 6397 } 6398 6399 template <class T, class... TArgs> 6400 const SimplifyQuery getBestSimplifyQuery(AnalysisManager<T, TArgs...> &AM, 6401 Function &F) { 6402 auto *DT = AM.template getCachedResult<DominatorTreeAnalysis>(F); 6403 auto *TLI = AM.template getCachedResult<TargetLibraryAnalysis>(F); 6404 auto *AC = AM.template getCachedResult<AssumptionAnalysis>(F); 6405 return {F.getParent()->getDataLayout(), TLI, DT, AC}; 6406 } 6407 template const SimplifyQuery getBestSimplifyQuery(AnalysisManager<Function> &, 6408 Function &); 6409 } 6410