1 //===- InstructionSimplify.cpp - Fold instruction operands ----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements routines for folding instructions into simpler forms
10 // that do not require creating new instructions.  This does constant folding
11 // ("add i32 1, 1" -> "2") but can also handle non-constant operands, either
12 // returning a constant ("and i32 %x, 0" -> "0") or an already existing value
13 // ("and i32 %x, %x" -> "%x").  All operands are assumed to have already been
14 // simplified: This is usually true and assuming it simplifies the logic (if
15 // they have not been simplified then results are correct but maybe suboptimal).
16 //
17 //===----------------------------------------------------------------------===//
18 
19 #include "llvm/Analysis/InstructionSimplify.h"
20 
21 #include "llvm/ADT/STLExtras.h"
22 #include "llvm/ADT/SetVector.h"
23 #include "llvm/ADT/SmallPtrSet.h"
24 #include "llvm/ADT/Statistic.h"
25 #include "llvm/Analysis/AliasAnalysis.h"
26 #include "llvm/Analysis/AssumptionCache.h"
27 #include "llvm/Analysis/CaptureTracking.h"
28 #include "llvm/Analysis/CmpInstAnalysis.h"
29 #include "llvm/Analysis/ConstantFolding.h"
30 #include "llvm/Analysis/LoopAnalysisManager.h"
31 #include "llvm/Analysis/MemoryBuiltins.h"
32 #include "llvm/Analysis/OverflowInstAnalysis.h"
33 #include "llvm/Analysis/ValueTracking.h"
34 #include "llvm/Analysis/VectorUtils.h"
35 #include "llvm/IR/ConstantRange.h"
36 #include "llvm/IR/DataLayout.h"
37 #include "llvm/IR/Dominators.h"
38 #include "llvm/IR/GetElementPtrTypeIterator.h"
39 #include "llvm/IR/GlobalAlias.h"
40 #include "llvm/IR/InstrTypes.h"
41 #include "llvm/IR/Instructions.h"
42 #include "llvm/IR/Operator.h"
43 #include "llvm/IR/PatternMatch.h"
44 #include "llvm/IR/ValueHandle.h"
45 #include "llvm/Support/KnownBits.h"
46 #include <algorithm>
47 using namespace llvm;
48 using namespace llvm::PatternMatch;
49 
50 #define DEBUG_TYPE "instsimplify"
51 
52 enum { RecursionLimit = 3 };
53 
54 STATISTIC(NumExpand,  "Number of expansions");
55 STATISTIC(NumReassoc, "Number of reassociations");
56 
57 static Value *SimplifyAndInst(Value *, Value *, const SimplifyQuery &, unsigned);
58 static Value *simplifyUnOp(unsigned, Value *, const SimplifyQuery &, unsigned);
59 static Value *simplifyFPUnOp(unsigned, Value *, const FastMathFlags &,
60                              const SimplifyQuery &, unsigned);
61 static Value *SimplifyBinOp(unsigned, Value *, Value *, const SimplifyQuery &,
62                             unsigned);
63 static Value *SimplifyBinOp(unsigned, Value *, Value *, const FastMathFlags &,
64                             const SimplifyQuery &, unsigned);
65 static Value *SimplifyCmpInst(unsigned, Value *, Value *, const SimplifyQuery &,
66                               unsigned);
67 static Value *SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS,
68                                const SimplifyQuery &Q, unsigned MaxRecurse);
69 static Value *SimplifyOrInst(Value *, Value *, const SimplifyQuery &, unsigned);
70 static Value *SimplifyXorInst(Value *, Value *, const SimplifyQuery &, unsigned);
71 static Value *SimplifyCastInst(unsigned, Value *, Type *,
72                                const SimplifyQuery &, unsigned);
73 static Value *SimplifyGEPInst(Type *, ArrayRef<Value *>, bool,
74                               const SimplifyQuery &, unsigned);
75 static Value *SimplifySelectInst(Value *, Value *, Value *,
76                                  const SimplifyQuery &, unsigned);
77 
78 static Value *foldSelectWithBinaryOp(Value *Cond, Value *TrueVal,
79                                      Value *FalseVal) {
80   BinaryOperator::BinaryOps BinOpCode;
81   if (auto *BO = dyn_cast<BinaryOperator>(Cond))
82     BinOpCode = BO->getOpcode();
83   else
84     return nullptr;
85 
86   CmpInst::Predicate ExpectedPred, Pred1, Pred2;
87   if (BinOpCode == BinaryOperator::Or) {
88     ExpectedPred = ICmpInst::ICMP_NE;
89   } else if (BinOpCode == BinaryOperator::And) {
90     ExpectedPred = ICmpInst::ICMP_EQ;
91   } else
92     return nullptr;
93 
94   // %A = icmp eq %TV, %FV
95   // %B = icmp eq %X, %Y (and one of these is a select operand)
96   // %C = and %A, %B
97   // %D = select %C, %TV, %FV
98   // -->
99   // %FV
100 
101   // %A = icmp ne %TV, %FV
102   // %B = icmp ne %X, %Y (and one of these is a select operand)
103   // %C = or %A, %B
104   // %D = select %C, %TV, %FV
105   // -->
106   // %TV
107   Value *X, *Y;
108   if (!match(Cond, m_c_BinOp(m_c_ICmp(Pred1, m_Specific(TrueVal),
109                                       m_Specific(FalseVal)),
110                              m_ICmp(Pred2, m_Value(X), m_Value(Y)))) ||
111       Pred1 != Pred2 || Pred1 != ExpectedPred)
112     return nullptr;
113 
114   if (X == TrueVal || X == FalseVal || Y == TrueVal || Y == FalseVal)
115     return BinOpCode == BinaryOperator::Or ? TrueVal : FalseVal;
116 
117   return nullptr;
118 }
119 
120 /// For a boolean type or a vector of boolean type, return false or a vector
121 /// with every element false.
122 static Constant *getFalse(Type *Ty) {
123   return ConstantInt::getFalse(Ty);
124 }
125 
126 /// For a boolean type or a vector of boolean type, return true or a vector
127 /// with every element true.
128 static Constant *getTrue(Type *Ty) {
129   return ConstantInt::getTrue(Ty);
130 }
131 
132 /// isSameCompare - Is V equivalent to the comparison "LHS Pred RHS"?
133 static bool isSameCompare(Value *V, CmpInst::Predicate Pred, Value *LHS,
134                           Value *RHS) {
135   CmpInst *Cmp = dyn_cast<CmpInst>(V);
136   if (!Cmp)
137     return false;
138   CmpInst::Predicate CPred = Cmp->getPredicate();
139   Value *CLHS = Cmp->getOperand(0), *CRHS = Cmp->getOperand(1);
140   if (CPred == Pred && CLHS == LHS && CRHS == RHS)
141     return true;
142   return CPred == CmpInst::getSwappedPredicate(Pred) && CLHS == RHS &&
143     CRHS == LHS;
144 }
145 
146 /// Simplify comparison with true or false branch of select:
147 ///  %sel = select i1 %cond, i32 %tv, i32 %fv
148 ///  %cmp = icmp sle i32 %sel, %rhs
149 /// Compose new comparison by substituting %sel with either %tv or %fv
150 /// and see if it simplifies.
151 static Value *simplifyCmpSelCase(CmpInst::Predicate Pred, Value *LHS,
152                                  Value *RHS, Value *Cond,
153                                  const SimplifyQuery &Q, unsigned MaxRecurse,
154                                  Constant *TrueOrFalse) {
155   Value *SimplifiedCmp = SimplifyCmpInst(Pred, LHS, RHS, Q, MaxRecurse);
156   if (SimplifiedCmp == Cond) {
157     // %cmp simplified to the select condition (%cond).
158     return TrueOrFalse;
159   } else if (!SimplifiedCmp && isSameCompare(Cond, Pred, LHS, RHS)) {
160     // It didn't simplify. However, if composed comparison is equivalent
161     // to the select condition (%cond) then we can replace it.
162     return TrueOrFalse;
163   }
164   return SimplifiedCmp;
165 }
166 
167 /// Simplify comparison with true branch of select
168 static Value *simplifyCmpSelTrueCase(CmpInst::Predicate Pred, Value *LHS,
169                                      Value *RHS, Value *Cond,
170                                      const SimplifyQuery &Q,
171                                      unsigned MaxRecurse) {
172   return simplifyCmpSelCase(Pred, LHS, RHS, Cond, Q, MaxRecurse,
173                             getTrue(Cond->getType()));
174 }
175 
176 /// Simplify comparison with false branch of select
177 static Value *simplifyCmpSelFalseCase(CmpInst::Predicate Pred, Value *LHS,
178                                       Value *RHS, Value *Cond,
179                                       const SimplifyQuery &Q,
180                                       unsigned MaxRecurse) {
181   return simplifyCmpSelCase(Pred, LHS, RHS, Cond, Q, MaxRecurse,
182                             getFalse(Cond->getType()));
183 }
184 
185 /// We know comparison with both branches of select can be simplified, but they
186 /// are not equal. This routine handles some logical simplifications.
187 static Value *handleOtherCmpSelSimplifications(Value *TCmp, Value *FCmp,
188                                                Value *Cond,
189                                                const SimplifyQuery &Q,
190                                                unsigned MaxRecurse) {
191   // If the false value simplified to false, then the result of the compare
192   // is equal to "Cond && TCmp".  This also catches the case when the false
193   // value simplified to false and the true value to true, returning "Cond".
194   // Folding select to and/or isn't poison-safe in general; impliesPoison
195   // checks whether folding it does not convert a well-defined value into
196   // poison.
197   if (match(FCmp, m_Zero()) && impliesPoison(TCmp, Cond))
198     if (Value *V = SimplifyAndInst(Cond, TCmp, Q, MaxRecurse))
199       return V;
200   // If the true value simplified to true, then the result of the compare
201   // is equal to "Cond || FCmp".
202   if (match(TCmp, m_One()) && impliesPoison(FCmp, Cond))
203     if (Value *V = SimplifyOrInst(Cond, FCmp, Q, MaxRecurse))
204       return V;
205   // Finally, if the false value simplified to true and the true value to
206   // false, then the result of the compare is equal to "!Cond".
207   if (match(FCmp, m_One()) && match(TCmp, m_Zero()))
208     if (Value *V = SimplifyXorInst(
209             Cond, Constant::getAllOnesValue(Cond->getType()), Q, MaxRecurse))
210       return V;
211   return nullptr;
212 }
213 
214 /// Does the given value dominate the specified phi node?
215 static bool valueDominatesPHI(Value *V, PHINode *P, const DominatorTree *DT) {
216   Instruction *I = dyn_cast<Instruction>(V);
217   if (!I)
218     // Arguments and constants dominate all instructions.
219     return true;
220 
221   // If we are processing instructions (and/or basic blocks) that have not been
222   // fully added to a function, the parent nodes may still be null. Simply
223   // return the conservative answer in these cases.
224   if (!I->getParent() || !P->getParent() || !I->getFunction())
225     return false;
226 
227   // If we have a DominatorTree then do a precise test.
228   if (DT)
229     return DT->dominates(I, P);
230 
231   // Otherwise, if the instruction is in the entry block and is not an invoke,
232   // then it obviously dominates all phi nodes.
233   if (I->getParent()->isEntryBlock() && !isa<InvokeInst>(I) &&
234       !isa<CallBrInst>(I))
235     return true;
236 
237   return false;
238 }
239 
240 /// Try to simplify a binary operator of form "V op OtherOp" where V is
241 /// "(B0 opex B1)" by distributing 'op' across 'opex' as
242 /// "(B0 op OtherOp) opex (B1 op OtherOp)".
243 static Value *expandBinOp(Instruction::BinaryOps Opcode, Value *V,
244                           Value *OtherOp, Instruction::BinaryOps OpcodeToExpand,
245                           const SimplifyQuery &Q, unsigned MaxRecurse) {
246   auto *B = dyn_cast<BinaryOperator>(V);
247   if (!B || B->getOpcode() != OpcodeToExpand)
248     return nullptr;
249   Value *B0 = B->getOperand(0), *B1 = B->getOperand(1);
250   Value *L = SimplifyBinOp(Opcode, B0, OtherOp, Q.getWithoutUndef(),
251                            MaxRecurse);
252   if (!L)
253     return nullptr;
254   Value *R = SimplifyBinOp(Opcode, B1, OtherOp, Q.getWithoutUndef(),
255                            MaxRecurse);
256   if (!R)
257     return nullptr;
258 
259   // Does the expanded pair of binops simplify to the existing binop?
260   if ((L == B0 && R == B1) ||
261       (Instruction::isCommutative(OpcodeToExpand) && L == B1 && R == B0)) {
262     ++NumExpand;
263     return B;
264   }
265 
266   // Otherwise, return "L op' R" if it simplifies.
267   Value *S = SimplifyBinOp(OpcodeToExpand, L, R, Q, MaxRecurse);
268   if (!S)
269     return nullptr;
270 
271   ++NumExpand;
272   return S;
273 }
274 
275 /// Try to simplify binops of form "A op (B op' C)" or the commuted variant by
276 /// distributing op over op'.
277 static Value *expandCommutativeBinOp(Instruction::BinaryOps Opcode,
278                                      Value *L, Value *R,
279                                      Instruction::BinaryOps OpcodeToExpand,
280                                      const SimplifyQuery &Q,
281                                      unsigned MaxRecurse) {
282   // Recursion is always used, so bail out at once if we already hit the limit.
283   if (!MaxRecurse--)
284     return nullptr;
285 
286   if (Value *V = expandBinOp(Opcode, L, R, OpcodeToExpand, Q, MaxRecurse))
287     return V;
288   if (Value *V = expandBinOp(Opcode, R, L, OpcodeToExpand, Q, MaxRecurse))
289     return V;
290   return nullptr;
291 }
292 
293 /// Generic simplifications for associative binary operations.
294 /// Returns the simpler value, or null if none was found.
295 static Value *SimplifyAssociativeBinOp(Instruction::BinaryOps Opcode,
296                                        Value *LHS, Value *RHS,
297                                        const SimplifyQuery &Q,
298                                        unsigned MaxRecurse) {
299   assert(Instruction::isAssociative(Opcode) && "Not an associative operation!");
300 
301   // Recursion is always used, so bail out at once if we already hit the limit.
302   if (!MaxRecurse--)
303     return nullptr;
304 
305   BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS);
306   BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS);
307 
308   // Transform: "(A op B) op C" ==> "A op (B op C)" if it simplifies completely.
309   if (Op0 && Op0->getOpcode() == Opcode) {
310     Value *A = Op0->getOperand(0);
311     Value *B = Op0->getOperand(1);
312     Value *C = RHS;
313 
314     // Does "B op C" simplify?
315     if (Value *V = SimplifyBinOp(Opcode, B, C, Q, MaxRecurse)) {
316       // It does!  Return "A op V" if it simplifies or is already available.
317       // If V equals B then "A op V" is just the LHS.
318       if (V == B) return LHS;
319       // Otherwise return "A op V" if it simplifies.
320       if (Value *W = SimplifyBinOp(Opcode, A, V, Q, MaxRecurse)) {
321         ++NumReassoc;
322         return W;
323       }
324     }
325   }
326 
327   // Transform: "A op (B op C)" ==> "(A op B) op C" if it simplifies completely.
328   if (Op1 && Op1->getOpcode() == Opcode) {
329     Value *A = LHS;
330     Value *B = Op1->getOperand(0);
331     Value *C = Op1->getOperand(1);
332 
333     // Does "A op B" simplify?
334     if (Value *V = SimplifyBinOp(Opcode, A, B, Q, MaxRecurse)) {
335       // It does!  Return "V op C" if it simplifies or is already available.
336       // If V equals B then "V op C" is just the RHS.
337       if (V == B) return RHS;
338       // Otherwise return "V op C" if it simplifies.
339       if (Value *W = SimplifyBinOp(Opcode, V, C, Q, MaxRecurse)) {
340         ++NumReassoc;
341         return W;
342       }
343     }
344   }
345 
346   // The remaining transforms require commutativity as well as associativity.
347   if (!Instruction::isCommutative(Opcode))
348     return nullptr;
349 
350   // Transform: "(A op B) op C" ==> "(C op A) op B" if it simplifies completely.
351   if (Op0 && Op0->getOpcode() == Opcode) {
352     Value *A = Op0->getOperand(0);
353     Value *B = Op0->getOperand(1);
354     Value *C = RHS;
355 
356     // Does "C op A" simplify?
357     if (Value *V = SimplifyBinOp(Opcode, C, A, Q, MaxRecurse)) {
358       // It does!  Return "V op B" if it simplifies or is already available.
359       // If V equals A then "V op B" is just the LHS.
360       if (V == A) return LHS;
361       // Otherwise return "V op B" if it simplifies.
362       if (Value *W = SimplifyBinOp(Opcode, V, B, Q, MaxRecurse)) {
363         ++NumReassoc;
364         return W;
365       }
366     }
367   }
368 
369   // Transform: "A op (B op C)" ==> "B op (C op A)" if it simplifies completely.
370   if (Op1 && Op1->getOpcode() == Opcode) {
371     Value *A = LHS;
372     Value *B = Op1->getOperand(0);
373     Value *C = Op1->getOperand(1);
374 
375     // Does "C op A" simplify?
376     if (Value *V = SimplifyBinOp(Opcode, C, A, Q, MaxRecurse)) {
377       // It does!  Return "B op V" if it simplifies or is already available.
378       // If V equals C then "B op V" is just the RHS.
379       if (V == C) return RHS;
380       // Otherwise return "B op V" if it simplifies.
381       if (Value *W = SimplifyBinOp(Opcode, B, V, Q, MaxRecurse)) {
382         ++NumReassoc;
383         return W;
384       }
385     }
386   }
387 
388   return nullptr;
389 }
390 
391 /// In the case of a binary operation with a select instruction as an operand,
392 /// try to simplify the binop by seeing whether evaluating it on both branches
393 /// of the select results in the same value. Returns the common value if so,
394 /// otherwise returns null.
395 static Value *ThreadBinOpOverSelect(Instruction::BinaryOps Opcode, Value *LHS,
396                                     Value *RHS, const SimplifyQuery &Q,
397                                     unsigned MaxRecurse) {
398   // Recursion is always used, so bail out at once if we already hit the limit.
399   if (!MaxRecurse--)
400     return nullptr;
401 
402   SelectInst *SI;
403   if (isa<SelectInst>(LHS)) {
404     SI = cast<SelectInst>(LHS);
405   } else {
406     assert(isa<SelectInst>(RHS) && "No select instruction operand!");
407     SI = cast<SelectInst>(RHS);
408   }
409 
410   // Evaluate the BinOp on the true and false branches of the select.
411   Value *TV;
412   Value *FV;
413   if (SI == LHS) {
414     TV = SimplifyBinOp(Opcode, SI->getTrueValue(), RHS, Q, MaxRecurse);
415     FV = SimplifyBinOp(Opcode, SI->getFalseValue(), RHS, Q, MaxRecurse);
416   } else {
417     TV = SimplifyBinOp(Opcode, LHS, SI->getTrueValue(), Q, MaxRecurse);
418     FV = SimplifyBinOp(Opcode, LHS, SI->getFalseValue(), Q, MaxRecurse);
419   }
420 
421   // If they simplified to the same value, then return the common value.
422   // If they both failed to simplify then return null.
423   if (TV == FV)
424     return TV;
425 
426   // If one branch simplified to undef, return the other one.
427   if (TV && Q.isUndefValue(TV))
428     return FV;
429   if (FV && Q.isUndefValue(FV))
430     return TV;
431 
432   // If applying the operation did not change the true and false select values,
433   // then the result of the binop is the select itself.
434   if (TV == SI->getTrueValue() && FV == SI->getFalseValue())
435     return SI;
436 
437   // If one branch simplified and the other did not, and the simplified
438   // value is equal to the unsimplified one, return the simplified value.
439   // For example, select (cond, X, X & Z) & Z -> X & Z.
440   if ((FV && !TV) || (TV && !FV)) {
441     // Check that the simplified value has the form "X op Y" where "op" is the
442     // same as the original operation.
443     Instruction *Simplified = dyn_cast<Instruction>(FV ? FV : TV);
444     if (Simplified && Simplified->getOpcode() == unsigned(Opcode)) {
445       // The value that didn't simplify is "UnsimplifiedLHS op UnsimplifiedRHS".
446       // We already know that "op" is the same as for the simplified value.  See
447       // if the operands match too.  If so, return the simplified value.
448       Value *UnsimplifiedBranch = FV ? SI->getTrueValue() : SI->getFalseValue();
449       Value *UnsimplifiedLHS = SI == LHS ? UnsimplifiedBranch : LHS;
450       Value *UnsimplifiedRHS = SI == LHS ? RHS : UnsimplifiedBranch;
451       if (Simplified->getOperand(0) == UnsimplifiedLHS &&
452           Simplified->getOperand(1) == UnsimplifiedRHS)
453         return Simplified;
454       if (Simplified->isCommutative() &&
455           Simplified->getOperand(1) == UnsimplifiedLHS &&
456           Simplified->getOperand(0) == UnsimplifiedRHS)
457         return Simplified;
458     }
459   }
460 
461   return nullptr;
462 }
463 
464 /// In the case of a comparison with a select instruction, try to simplify the
465 /// comparison by seeing whether both branches of the select result in the same
466 /// value. Returns the common value if so, otherwise returns null.
467 /// For example, if we have:
468 ///  %tmp = select i1 %cmp, i32 1, i32 2
469 ///  %cmp1 = icmp sle i32 %tmp, 3
470 /// We can simplify %cmp1 to true, because both branches of select are
471 /// less than 3. We compose new comparison by substituting %tmp with both
472 /// branches of select and see if it can be simplified.
473 static Value *ThreadCmpOverSelect(CmpInst::Predicate Pred, Value *LHS,
474                                   Value *RHS, const SimplifyQuery &Q,
475                                   unsigned MaxRecurse) {
476   // Recursion is always used, so bail out at once if we already hit the limit.
477   if (!MaxRecurse--)
478     return nullptr;
479 
480   // Make sure the select is on the LHS.
481   if (!isa<SelectInst>(LHS)) {
482     std::swap(LHS, RHS);
483     Pred = CmpInst::getSwappedPredicate(Pred);
484   }
485   assert(isa<SelectInst>(LHS) && "Not comparing with a select instruction!");
486   SelectInst *SI = cast<SelectInst>(LHS);
487   Value *Cond = SI->getCondition();
488   Value *TV = SI->getTrueValue();
489   Value *FV = SI->getFalseValue();
490 
491   // Now that we have "cmp select(Cond, TV, FV), RHS", analyse it.
492   // Does "cmp TV, RHS" simplify?
493   Value *TCmp = simplifyCmpSelTrueCase(Pred, TV, RHS, Cond, Q, MaxRecurse);
494   if (!TCmp)
495     return nullptr;
496 
497   // Does "cmp FV, RHS" simplify?
498   Value *FCmp = simplifyCmpSelFalseCase(Pred, FV, RHS, Cond, Q, MaxRecurse);
499   if (!FCmp)
500     return nullptr;
501 
502   // If both sides simplified to the same value, then use it as the result of
503   // the original comparison.
504   if (TCmp == FCmp)
505     return TCmp;
506 
507   // The remaining cases only make sense if the select condition has the same
508   // type as the result of the comparison, so bail out if this is not so.
509   if (Cond->getType()->isVectorTy() == RHS->getType()->isVectorTy())
510     return handleOtherCmpSelSimplifications(TCmp, FCmp, Cond, Q, MaxRecurse);
511 
512   return nullptr;
513 }
514 
515 /// In the case of a binary operation with an operand that is a PHI instruction,
516 /// try to simplify the binop by seeing whether evaluating it on the incoming
517 /// phi values yields the same result for every value. If so returns the common
518 /// value, otherwise returns null.
519 static Value *ThreadBinOpOverPHI(Instruction::BinaryOps Opcode, Value *LHS,
520                                  Value *RHS, const SimplifyQuery &Q,
521                                  unsigned MaxRecurse) {
522   // Recursion is always used, so bail out at once if we already hit the limit.
523   if (!MaxRecurse--)
524     return nullptr;
525 
526   PHINode *PI;
527   if (isa<PHINode>(LHS)) {
528     PI = cast<PHINode>(LHS);
529     // Bail out if RHS and the phi may be mutually interdependent due to a loop.
530     if (!valueDominatesPHI(RHS, PI, Q.DT))
531       return nullptr;
532   } else {
533     assert(isa<PHINode>(RHS) && "No PHI instruction operand!");
534     PI = cast<PHINode>(RHS);
535     // Bail out if LHS and the phi may be mutually interdependent due to a loop.
536     if (!valueDominatesPHI(LHS, PI, Q.DT))
537       return nullptr;
538   }
539 
540   // Evaluate the BinOp on the incoming phi values.
541   Value *CommonValue = nullptr;
542   for (Value *Incoming : PI->incoming_values()) {
543     // If the incoming value is the phi node itself, it can safely be skipped.
544     if (Incoming == PI) continue;
545     Value *V = PI == LHS ?
546       SimplifyBinOp(Opcode, Incoming, RHS, Q, MaxRecurse) :
547       SimplifyBinOp(Opcode, LHS, Incoming, Q, MaxRecurse);
548     // If the operation failed to simplify, or simplified to a different value
549     // to previously, then give up.
550     if (!V || (CommonValue && V != CommonValue))
551       return nullptr;
552     CommonValue = V;
553   }
554 
555   return CommonValue;
556 }
557 
558 /// In the case of a comparison with a PHI instruction, try to simplify the
559 /// comparison by seeing whether comparing with all of the incoming phi values
560 /// yields the same result every time. If so returns the common result,
561 /// otherwise returns null.
562 static Value *ThreadCmpOverPHI(CmpInst::Predicate Pred, Value *LHS, Value *RHS,
563                                const SimplifyQuery &Q, unsigned MaxRecurse) {
564   // Recursion is always used, so bail out at once if we already hit the limit.
565   if (!MaxRecurse--)
566     return nullptr;
567 
568   // Make sure the phi is on the LHS.
569   if (!isa<PHINode>(LHS)) {
570     std::swap(LHS, RHS);
571     Pred = CmpInst::getSwappedPredicate(Pred);
572   }
573   assert(isa<PHINode>(LHS) && "Not comparing with a phi instruction!");
574   PHINode *PI = cast<PHINode>(LHS);
575 
576   // Bail out if RHS and the phi may be mutually interdependent due to a loop.
577   if (!valueDominatesPHI(RHS, PI, Q.DT))
578     return nullptr;
579 
580   // Evaluate the BinOp on the incoming phi values.
581   Value *CommonValue = nullptr;
582   for (unsigned u = 0, e = PI->getNumIncomingValues(); u < e; ++u) {
583     Value *Incoming = PI->getIncomingValue(u);
584     Instruction *InTI = PI->getIncomingBlock(u)->getTerminator();
585     // If the incoming value is the phi node itself, it can safely be skipped.
586     if (Incoming == PI) continue;
587     // Change the context instruction to the "edge" that flows into the phi.
588     // This is important because that is where incoming is actually "evaluated"
589     // even though it is used later somewhere else.
590     Value *V = SimplifyCmpInst(Pred, Incoming, RHS, Q.getWithInstruction(InTI),
591                                MaxRecurse);
592     // If the operation failed to simplify, or simplified to a different value
593     // to previously, then give up.
594     if (!V || (CommonValue && V != CommonValue))
595       return nullptr;
596     CommonValue = V;
597   }
598 
599   return CommonValue;
600 }
601 
602 static Constant *foldOrCommuteConstant(Instruction::BinaryOps Opcode,
603                                        Value *&Op0, Value *&Op1,
604                                        const SimplifyQuery &Q) {
605   if (auto *CLHS = dyn_cast<Constant>(Op0)) {
606     if (auto *CRHS = dyn_cast<Constant>(Op1))
607       return ConstantFoldBinaryOpOperands(Opcode, CLHS, CRHS, Q.DL);
608 
609     // Canonicalize the constant to the RHS if this is a commutative operation.
610     if (Instruction::isCommutative(Opcode))
611       std::swap(Op0, Op1);
612   }
613   return nullptr;
614 }
615 
616 /// Given operands for an Add, see if we can fold the result.
617 /// If not, this returns null.
618 static Value *SimplifyAddInst(Value *Op0, Value *Op1, bool IsNSW, bool IsNUW,
619                               const SimplifyQuery &Q, unsigned MaxRecurse) {
620   if (Constant *C = foldOrCommuteConstant(Instruction::Add, Op0, Op1, Q))
621     return C;
622 
623   // X + poison -> poison
624   if (isa<PoisonValue>(Op1))
625     return Op1;
626 
627   // X + undef -> undef
628   if (Q.isUndefValue(Op1))
629     return Op1;
630 
631   // X + 0 -> X
632   if (match(Op1, m_Zero()))
633     return Op0;
634 
635   // If two operands are negative, return 0.
636   if (isKnownNegation(Op0, Op1))
637     return Constant::getNullValue(Op0->getType());
638 
639   // X + (Y - X) -> Y
640   // (Y - X) + X -> Y
641   // Eg: X + -X -> 0
642   Value *Y = nullptr;
643   if (match(Op1, m_Sub(m_Value(Y), m_Specific(Op0))) ||
644       match(Op0, m_Sub(m_Value(Y), m_Specific(Op1))))
645     return Y;
646 
647   // X + ~X -> -1   since   ~X = -X-1
648   Type *Ty = Op0->getType();
649   if (match(Op0, m_Not(m_Specific(Op1))) ||
650       match(Op1, m_Not(m_Specific(Op0))))
651     return Constant::getAllOnesValue(Ty);
652 
653   // add nsw/nuw (xor Y, signmask), signmask --> Y
654   // The no-wrapping add guarantees that the top bit will be set by the add.
655   // Therefore, the xor must be clearing the already set sign bit of Y.
656   if ((IsNSW || IsNUW) && match(Op1, m_SignMask()) &&
657       match(Op0, m_Xor(m_Value(Y), m_SignMask())))
658     return Y;
659 
660   // add nuw %x, -1  ->  -1, because %x can only be 0.
661   if (IsNUW && match(Op1, m_AllOnes()))
662     return Op1; // Which is -1.
663 
664   /// i1 add -> xor.
665   if (MaxRecurse && Op0->getType()->isIntOrIntVectorTy(1))
666     if (Value *V = SimplifyXorInst(Op0, Op1, Q, MaxRecurse-1))
667       return V;
668 
669   // Try some generic simplifications for associative operations.
670   if (Value *V = SimplifyAssociativeBinOp(Instruction::Add, Op0, Op1, Q,
671                                           MaxRecurse))
672     return V;
673 
674   // Threading Add over selects and phi nodes is pointless, so don't bother.
675   // Threading over the select in "A + select(cond, B, C)" means evaluating
676   // "A+B" and "A+C" and seeing if they are equal; but they are equal if and
677   // only if B and C are equal.  If B and C are equal then (since we assume
678   // that operands have already been simplified) "select(cond, B, C)" should
679   // have been simplified to the common value of B and C already.  Analysing
680   // "A+B" and "A+C" thus gains nothing, but costs compile time.  Similarly
681   // for threading over phi nodes.
682 
683   return nullptr;
684 }
685 
686 Value *llvm::SimplifyAddInst(Value *Op0, Value *Op1, bool IsNSW, bool IsNUW,
687                              const SimplifyQuery &Query) {
688   return ::SimplifyAddInst(Op0, Op1, IsNSW, IsNUW, Query, RecursionLimit);
689 }
690 
691 /// Compute the base pointer and cumulative constant offsets for V.
692 ///
693 /// This strips all constant offsets off of V, leaving it the base pointer, and
694 /// accumulates the total constant offset applied in the returned constant. It
695 /// returns 0 if V is not a pointer, and returns the constant '0' if there are
696 /// no constant offsets applied.
697 ///
698 /// This is very similar to GetPointerBaseWithConstantOffset except it doesn't
699 /// follow non-inbounds geps. This allows it to remain usable for icmp ult/etc.
700 /// folding.
701 static Constant *stripAndComputeConstantOffsets(const DataLayout &DL, Value *&V,
702                                                 bool AllowNonInbounds = false) {
703   assert(V->getType()->isPtrOrPtrVectorTy());
704 
705   APInt Offset = APInt::getZero(DL.getIndexTypeSizeInBits(V->getType()));
706 
707   V = V->stripAndAccumulateConstantOffsets(DL, Offset, AllowNonInbounds);
708   // As that strip may trace through `addrspacecast`, need to sext or trunc
709   // the offset calculated.
710   Type *IntIdxTy = DL.getIndexType(V->getType())->getScalarType();
711   Offset = Offset.sextOrTrunc(IntIdxTy->getIntegerBitWidth());
712 
713   Constant *OffsetIntPtr = ConstantInt::get(IntIdxTy, Offset);
714   if (VectorType *VecTy = dyn_cast<VectorType>(V->getType()))
715     return ConstantVector::getSplat(VecTy->getElementCount(), OffsetIntPtr);
716   return OffsetIntPtr;
717 }
718 
719 /// Compute the constant difference between two pointer values.
720 /// If the difference is not a constant, returns zero.
721 static Constant *computePointerDifference(const DataLayout &DL, Value *LHS,
722                                           Value *RHS) {
723   Constant *LHSOffset = stripAndComputeConstantOffsets(DL, LHS);
724   Constant *RHSOffset = stripAndComputeConstantOffsets(DL, RHS);
725 
726   // If LHS and RHS are not related via constant offsets to the same base
727   // value, there is nothing we can do here.
728   if (LHS != RHS)
729     return nullptr;
730 
731   // Otherwise, the difference of LHS - RHS can be computed as:
732   //    LHS - RHS
733   //  = (LHSOffset + Base) - (RHSOffset + Base)
734   //  = LHSOffset - RHSOffset
735   return ConstantExpr::getSub(LHSOffset, RHSOffset);
736 }
737 
738 /// Given operands for a Sub, see if we can fold the result.
739 /// If not, this returns null.
740 static Value *SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
741                               const SimplifyQuery &Q, unsigned MaxRecurse) {
742   if (Constant *C = foldOrCommuteConstant(Instruction::Sub, Op0, Op1, Q))
743     return C;
744 
745   // X - poison -> poison
746   // poison - X -> poison
747   if (isa<PoisonValue>(Op0) || isa<PoisonValue>(Op1))
748     return PoisonValue::get(Op0->getType());
749 
750   // X - undef -> undef
751   // undef - X -> undef
752   if (Q.isUndefValue(Op0) || Q.isUndefValue(Op1))
753     return UndefValue::get(Op0->getType());
754 
755   // X - 0 -> X
756   if (match(Op1, m_Zero()))
757     return Op0;
758 
759   // X - X -> 0
760   if (Op0 == Op1)
761     return Constant::getNullValue(Op0->getType());
762 
763   // Is this a negation?
764   if (match(Op0, m_Zero())) {
765     // 0 - X -> 0 if the sub is NUW.
766     if (isNUW)
767       return Constant::getNullValue(Op0->getType());
768 
769     KnownBits Known = computeKnownBits(Op1, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
770     if (Known.Zero.isMaxSignedValue()) {
771       // Op1 is either 0 or the minimum signed value. If the sub is NSW, then
772       // Op1 must be 0 because negating the minimum signed value is undefined.
773       if (isNSW)
774         return Constant::getNullValue(Op0->getType());
775 
776       // 0 - X -> X if X is 0 or the minimum signed value.
777       return Op1;
778     }
779   }
780 
781   // (X + Y) - Z -> X + (Y - Z) or Y + (X - Z) if everything simplifies.
782   // For example, (X + Y) - Y -> X; (Y + X) - Y -> X
783   Value *X = nullptr, *Y = nullptr, *Z = Op1;
784   if (MaxRecurse && match(Op0, m_Add(m_Value(X), m_Value(Y)))) { // (X + Y) - Z
785     // See if "V === Y - Z" simplifies.
786     if (Value *V = SimplifyBinOp(Instruction::Sub, Y, Z, Q, MaxRecurse-1))
787       // It does!  Now see if "X + V" simplifies.
788       if (Value *W = SimplifyBinOp(Instruction::Add, X, V, Q, MaxRecurse-1)) {
789         // It does, we successfully reassociated!
790         ++NumReassoc;
791         return W;
792       }
793     // See if "V === X - Z" simplifies.
794     if (Value *V = SimplifyBinOp(Instruction::Sub, X, Z, Q, MaxRecurse-1))
795       // It does!  Now see if "Y + V" simplifies.
796       if (Value *W = SimplifyBinOp(Instruction::Add, Y, V, Q, MaxRecurse-1)) {
797         // It does, we successfully reassociated!
798         ++NumReassoc;
799         return W;
800       }
801   }
802 
803   // X - (Y + Z) -> (X - Y) - Z or (X - Z) - Y if everything simplifies.
804   // For example, X - (X + 1) -> -1
805   X = Op0;
806   if (MaxRecurse && match(Op1, m_Add(m_Value(Y), m_Value(Z)))) { // X - (Y + Z)
807     // See if "V === X - Y" simplifies.
808     if (Value *V = SimplifyBinOp(Instruction::Sub, X, Y, Q, MaxRecurse-1))
809       // It does!  Now see if "V - Z" simplifies.
810       if (Value *W = SimplifyBinOp(Instruction::Sub, V, Z, Q, MaxRecurse-1)) {
811         // It does, we successfully reassociated!
812         ++NumReassoc;
813         return W;
814       }
815     // See if "V === X - Z" simplifies.
816     if (Value *V = SimplifyBinOp(Instruction::Sub, X, Z, Q, MaxRecurse-1))
817       // It does!  Now see if "V - Y" simplifies.
818       if (Value *W = SimplifyBinOp(Instruction::Sub, V, Y, Q, MaxRecurse-1)) {
819         // It does, we successfully reassociated!
820         ++NumReassoc;
821         return W;
822       }
823   }
824 
825   // Z - (X - Y) -> (Z - X) + Y if everything simplifies.
826   // For example, X - (X - Y) -> Y.
827   Z = Op0;
828   if (MaxRecurse && match(Op1, m_Sub(m_Value(X), m_Value(Y)))) // Z - (X - Y)
829     // See if "V === Z - X" simplifies.
830     if (Value *V = SimplifyBinOp(Instruction::Sub, Z, X, Q, MaxRecurse-1))
831       // It does!  Now see if "V + Y" simplifies.
832       if (Value *W = SimplifyBinOp(Instruction::Add, V, Y, Q, MaxRecurse-1)) {
833         // It does, we successfully reassociated!
834         ++NumReassoc;
835         return W;
836       }
837 
838   // trunc(X) - trunc(Y) -> trunc(X - Y) if everything simplifies.
839   if (MaxRecurse && match(Op0, m_Trunc(m_Value(X))) &&
840       match(Op1, m_Trunc(m_Value(Y))))
841     if (X->getType() == Y->getType())
842       // See if "V === X - Y" simplifies.
843       if (Value *V = SimplifyBinOp(Instruction::Sub, X, Y, Q, MaxRecurse-1))
844         // It does!  Now see if "trunc V" simplifies.
845         if (Value *W = SimplifyCastInst(Instruction::Trunc, V, Op0->getType(),
846                                         Q, MaxRecurse - 1))
847           // It does, return the simplified "trunc V".
848           return W;
849 
850   // Variations on GEP(base, I, ...) - GEP(base, i, ...) -> GEP(null, I-i, ...).
851   if (match(Op0, m_PtrToInt(m_Value(X))) &&
852       match(Op1, m_PtrToInt(m_Value(Y))))
853     if (Constant *Result = computePointerDifference(Q.DL, X, Y))
854       return ConstantExpr::getIntegerCast(Result, Op0->getType(), true);
855 
856   // i1 sub -> xor.
857   if (MaxRecurse && Op0->getType()->isIntOrIntVectorTy(1))
858     if (Value *V = SimplifyXorInst(Op0, Op1, Q, MaxRecurse-1))
859       return V;
860 
861   // Threading Sub over selects and phi nodes is pointless, so don't bother.
862   // Threading over the select in "A - select(cond, B, C)" means evaluating
863   // "A-B" and "A-C" and seeing if they are equal; but they are equal if and
864   // only if B and C are equal.  If B and C are equal then (since we assume
865   // that operands have already been simplified) "select(cond, B, C)" should
866   // have been simplified to the common value of B and C already.  Analysing
867   // "A-B" and "A-C" thus gains nothing, but costs compile time.  Similarly
868   // for threading over phi nodes.
869 
870   return nullptr;
871 }
872 
873 Value *llvm::SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
874                              const SimplifyQuery &Q) {
875   return ::SimplifySubInst(Op0, Op1, isNSW, isNUW, Q, RecursionLimit);
876 }
877 
878 /// Given operands for a Mul, see if we can fold the result.
879 /// If not, this returns null.
880 static Value *SimplifyMulInst(Value *Op0, Value *Op1, const SimplifyQuery &Q,
881                               unsigned MaxRecurse) {
882   if (Constant *C = foldOrCommuteConstant(Instruction::Mul, Op0, Op1, Q))
883     return C;
884 
885   // X * poison -> poison
886   if (isa<PoisonValue>(Op1))
887     return Op1;
888 
889   // X * undef -> 0
890   // X * 0 -> 0
891   if (Q.isUndefValue(Op1) || match(Op1, m_Zero()))
892     return Constant::getNullValue(Op0->getType());
893 
894   // X * 1 -> X
895   if (match(Op1, m_One()))
896     return Op0;
897 
898   // (X / Y) * Y -> X if the division is exact.
899   Value *X = nullptr;
900   if (Q.IIQ.UseInstrInfo &&
901       (match(Op0,
902              m_Exact(m_IDiv(m_Value(X), m_Specific(Op1)))) ||     // (X / Y) * Y
903        match(Op1, m_Exact(m_IDiv(m_Value(X), m_Specific(Op0)))))) // Y * (X / Y)
904     return X;
905 
906   // i1 mul -> and.
907   if (MaxRecurse && Op0->getType()->isIntOrIntVectorTy(1))
908     if (Value *V = SimplifyAndInst(Op0, Op1, Q, MaxRecurse-1))
909       return V;
910 
911   // Try some generic simplifications for associative operations.
912   if (Value *V = SimplifyAssociativeBinOp(Instruction::Mul, Op0, Op1, Q,
913                                           MaxRecurse))
914     return V;
915 
916   // Mul distributes over Add. Try some generic simplifications based on this.
917   if (Value *V = expandCommutativeBinOp(Instruction::Mul, Op0, Op1,
918                                         Instruction::Add, Q, MaxRecurse))
919     return V;
920 
921   // If the operation is with the result of a select instruction, check whether
922   // operating on either branch of the select always yields the same value.
923   if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
924     if (Value *V = ThreadBinOpOverSelect(Instruction::Mul, Op0, Op1, Q,
925                                          MaxRecurse))
926       return V;
927 
928   // If the operation is with the result of a phi instruction, check whether
929   // operating on all incoming values of the phi always yields the same value.
930   if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
931     if (Value *V = ThreadBinOpOverPHI(Instruction::Mul, Op0, Op1, Q,
932                                       MaxRecurse))
933       return V;
934 
935   return nullptr;
936 }
937 
938 Value *llvm::SimplifyMulInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) {
939   return ::SimplifyMulInst(Op0, Op1, Q, RecursionLimit);
940 }
941 
942 /// Check for common or similar folds of integer division or integer remainder.
943 /// This applies to all 4 opcodes (sdiv/udiv/srem/urem).
944 static Value *simplifyDivRem(Instruction::BinaryOps Opcode, Value *Op0,
945                              Value *Op1, const SimplifyQuery &Q) {
946   bool IsDiv = (Opcode == Instruction::SDiv || Opcode == Instruction::UDiv);
947   bool IsSigned = (Opcode == Instruction::SDiv || Opcode == Instruction::SRem);
948 
949   Type *Ty = Op0->getType();
950 
951   // X / undef -> poison
952   // X % undef -> poison
953   if (Q.isUndefValue(Op1))
954     return PoisonValue::get(Ty);
955 
956   // X / 0 -> poison
957   // X % 0 -> poison
958   // We don't need to preserve faults!
959   if (match(Op1, m_Zero()))
960     return PoisonValue::get(Ty);
961 
962   // If any element of a constant divisor fixed width vector is zero or undef
963   // the behavior is undefined and we can fold the whole op to poison.
964   auto *Op1C = dyn_cast<Constant>(Op1);
965   auto *VTy = dyn_cast<FixedVectorType>(Ty);
966   if (Op1C && VTy) {
967     unsigned NumElts = VTy->getNumElements();
968     for (unsigned i = 0; i != NumElts; ++i) {
969       Constant *Elt = Op1C->getAggregateElement(i);
970       if (Elt && (Elt->isNullValue() || Q.isUndefValue(Elt)))
971         return PoisonValue::get(Ty);
972     }
973   }
974 
975   // poison / X -> poison
976   // poison % X -> poison
977   if (isa<PoisonValue>(Op0))
978     return Op0;
979 
980   // undef / X -> 0
981   // undef % X -> 0
982   if (Q.isUndefValue(Op0))
983     return Constant::getNullValue(Ty);
984 
985   // 0 / X -> 0
986   // 0 % X -> 0
987   if (match(Op0, m_Zero()))
988     return Constant::getNullValue(Op0->getType());
989 
990   // X / X -> 1
991   // X % X -> 0
992   if (Op0 == Op1)
993     return IsDiv ? ConstantInt::get(Ty, 1) : Constant::getNullValue(Ty);
994 
995   // X / 1 -> X
996   // X % 1 -> 0
997   // If this is a boolean op (single-bit element type), we can't have
998   // division-by-zero or remainder-by-zero, so assume the divisor is 1.
999   // Similarly, if we're zero-extending a boolean divisor, then assume it's a 1.
1000   Value *X;
1001   if (match(Op1, m_One()) || Ty->isIntOrIntVectorTy(1) ||
1002       (match(Op1, m_ZExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)))
1003     return IsDiv ? Op0 : Constant::getNullValue(Ty);
1004 
1005   // If X * Y does not overflow, then:
1006   //   X * Y / Y -> X
1007   //   X * Y % Y -> 0
1008   if (match(Op0, m_c_Mul(m_Value(X), m_Specific(Op1)))) {
1009     auto *Mul = cast<OverflowingBinaryOperator>(Op0);
1010     // The multiplication can't overflow if it is defined not to, or if
1011     // X == A / Y for some A.
1012     if ((IsSigned && Q.IIQ.hasNoSignedWrap(Mul)) ||
1013         (!IsSigned && Q.IIQ.hasNoUnsignedWrap(Mul)) ||
1014         (IsSigned && match(X, m_SDiv(m_Value(), m_Specific(Op1)))) ||
1015         (!IsSigned && match(X, m_UDiv(m_Value(), m_Specific(Op1))))) {
1016       return IsDiv ? X : Constant::getNullValue(Op0->getType());
1017     }
1018   }
1019 
1020   return nullptr;
1021 }
1022 
1023 /// Given a predicate and two operands, return true if the comparison is true.
1024 /// This is a helper for div/rem simplification where we return some other value
1025 /// when we can prove a relationship between the operands.
1026 static bool isICmpTrue(ICmpInst::Predicate Pred, Value *LHS, Value *RHS,
1027                        const SimplifyQuery &Q, unsigned MaxRecurse) {
1028   Value *V = SimplifyICmpInst(Pred, LHS, RHS, Q, MaxRecurse);
1029   Constant *C = dyn_cast_or_null<Constant>(V);
1030   return (C && C->isAllOnesValue());
1031 }
1032 
1033 /// Return true if we can simplify X / Y to 0. Remainder can adapt that answer
1034 /// to simplify X % Y to X.
1035 static bool isDivZero(Value *X, Value *Y, const SimplifyQuery &Q,
1036                       unsigned MaxRecurse, bool IsSigned) {
1037   // Recursion is always used, so bail out at once if we already hit the limit.
1038   if (!MaxRecurse--)
1039     return false;
1040 
1041   if (IsSigned) {
1042     // |X| / |Y| --> 0
1043     //
1044     // We require that 1 operand is a simple constant. That could be extended to
1045     // 2 variables if we computed the sign bit for each.
1046     //
1047     // Make sure that a constant is not the minimum signed value because taking
1048     // the abs() of that is undefined.
1049     Type *Ty = X->getType();
1050     const APInt *C;
1051     if (match(X, m_APInt(C)) && !C->isMinSignedValue()) {
1052       // Is the variable divisor magnitude always greater than the constant
1053       // dividend magnitude?
1054       // |Y| > |C| --> Y < -abs(C) or Y > abs(C)
1055       Constant *PosDividendC = ConstantInt::get(Ty, C->abs());
1056       Constant *NegDividendC = ConstantInt::get(Ty, -C->abs());
1057       if (isICmpTrue(CmpInst::ICMP_SLT, Y, NegDividendC, Q, MaxRecurse) ||
1058           isICmpTrue(CmpInst::ICMP_SGT, Y, PosDividendC, Q, MaxRecurse))
1059         return true;
1060     }
1061     if (match(Y, m_APInt(C))) {
1062       // Special-case: we can't take the abs() of a minimum signed value. If
1063       // that's the divisor, then all we have to do is prove that the dividend
1064       // is also not the minimum signed value.
1065       if (C->isMinSignedValue())
1066         return isICmpTrue(CmpInst::ICMP_NE, X, Y, Q, MaxRecurse);
1067 
1068       // Is the variable dividend magnitude always less than the constant
1069       // divisor magnitude?
1070       // |X| < |C| --> X > -abs(C) and X < abs(C)
1071       Constant *PosDivisorC = ConstantInt::get(Ty, C->abs());
1072       Constant *NegDivisorC = ConstantInt::get(Ty, -C->abs());
1073       if (isICmpTrue(CmpInst::ICMP_SGT, X, NegDivisorC, Q, MaxRecurse) &&
1074           isICmpTrue(CmpInst::ICMP_SLT, X, PosDivisorC, Q, MaxRecurse))
1075         return true;
1076     }
1077     return false;
1078   }
1079 
1080   // IsSigned == false.
1081   // Is the dividend unsigned less than the divisor?
1082   return isICmpTrue(ICmpInst::ICMP_ULT, X, Y, Q, MaxRecurse);
1083 }
1084 
1085 /// These are simplifications common to SDiv and UDiv.
1086 static Value *simplifyDiv(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1,
1087                           const SimplifyQuery &Q, unsigned MaxRecurse) {
1088   if (Constant *C = foldOrCommuteConstant(Opcode, Op0, Op1, Q))
1089     return C;
1090 
1091   if (Value *V = simplifyDivRem(Opcode, Op0, Op1, Q))
1092     return V;
1093 
1094   bool IsSigned = Opcode == Instruction::SDiv;
1095 
1096   // (X rem Y) / Y -> 0
1097   if ((IsSigned && match(Op0, m_SRem(m_Value(), m_Specific(Op1)))) ||
1098       (!IsSigned && match(Op0, m_URem(m_Value(), m_Specific(Op1)))))
1099     return Constant::getNullValue(Op0->getType());
1100 
1101   // (X /u C1) /u C2 -> 0 if C1 * C2 overflow
1102   ConstantInt *C1, *C2;
1103   if (!IsSigned && match(Op0, m_UDiv(m_Value(), m_ConstantInt(C1))) &&
1104       match(Op1, m_ConstantInt(C2))) {
1105     bool Overflow;
1106     (void)C1->getValue().umul_ov(C2->getValue(), Overflow);
1107     if (Overflow)
1108       return Constant::getNullValue(Op0->getType());
1109   }
1110 
1111   // If the operation is with the result of a select instruction, check whether
1112   // operating on either branch of the select always yields the same value.
1113   if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
1114     if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse))
1115       return V;
1116 
1117   // If the operation is with the result of a phi instruction, check whether
1118   // operating on all incoming values of the phi always yields the same value.
1119   if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
1120     if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse))
1121       return V;
1122 
1123   if (isDivZero(Op0, Op1, Q, MaxRecurse, IsSigned))
1124     return Constant::getNullValue(Op0->getType());
1125 
1126   return nullptr;
1127 }
1128 
1129 /// These are simplifications common to SRem and URem.
1130 static Value *simplifyRem(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1,
1131                           const SimplifyQuery &Q, unsigned MaxRecurse) {
1132   if (Constant *C = foldOrCommuteConstant(Opcode, Op0, Op1, Q))
1133     return C;
1134 
1135   if (Value *V = simplifyDivRem(Opcode, Op0, Op1, Q))
1136     return V;
1137 
1138   // (X % Y) % Y -> X % Y
1139   if ((Opcode == Instruction::SRem &&
1140        match(Op0, m_SRem(m_Value(), m_Specific(Op1)))) ||
1141       (Opcode == Instruction::URem &&
1142        match(Op0, m_URem(m_Value(), m_Specific(Op1)))))
1143     return Op0;
1144 
1145   // (X << Y) % X -> 0
1146   if (Q.IIQ.UseInstrInfo &&
1147       ((Opcode == Instruction::SRem &&
1148         match(Op0, m_NSWShl(m_Specific(Op1), m_Value()))) ||
1149        (Opcode == Instruction::URem &&
1150         match(Op0, m_NUWShl(m_Specific(Op1), m_Value())))))
1151     return Constant::getNullValue(Op0->getType());
1152 
1153   // If the operation is with the result of a select instruction, check whether
1154   // operating on either branch of the select always yields the same value.
1155   if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
1156     if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse))
1157       return V;
1158 
1159   // If the operation is with the result of a phi instruction, check whether
1160   // operating on all incoming values of the phi always yields the same value.
1161   if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
1162     if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse))
1163       return V;
1164 
1165   // If X / Y == 0, then X % Y == X.
1166   if (isDivZero(Op0, Op1, Q, MaxRecurse, Opcode == Instruction::SRem))
1167     return Op0;
1168 
1169   return nullptr;
1170 }
1171 
1172 /// Given operands for an SDiv, see if we can fold the result.
1173 /// If not, this returns null.
1174 static Value *SimplifySDivInst(Value *Op0, Value *Op1, const SimplifyQuery &Q,
1175                                unsigned MaxRecurse) {
1176   // If two operands are negated and no signed overflow, return -1.
1177   if (isKnownNegation(Op0, Op1, /*NeedNSW=*/true))
1178     return Constant::getAllOnesValue(Op0->getType());
1179 
1180   return simplifyDiv(Instruction::SDiv, Op0, Op1, Q, MaxRecurse);
1181 }
1182 
1183 Value *llvm::SimplifySDivInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) {
1184   return ::SimplifySDivInst(Op0, Op1, Q, RecursionLimit);
1185 }
1186 
1187 /// Given operands for a UDiv, see if we can fold the result.
1188 /// If not, this returns null.
1189 static Value *SimplifyUDivInst(Value *Op0, Value *Op1, const SimplifyQuery &Q,
1190                                unsigned MaxRecurse) {
1191   return simplifyDiv(Instruction::UDiv, Op0, Op1, Q, MaxRecurse);
1192 }
1193 
1194 Value *llvm::SimplifyUDivInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) {
1195   return ::SimplifyUDivInst(Op0, Op1, Q, RecursionLimit);
1196 }
1197 
1198 /// Given operands for an SRem, see if we can fold the result.
1199 /// If not, this returns null.
1200 static Value *SimplifySRemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q,
1201                                unsigned MaxRecurse) {
1202   // If the divisor is 0, the result is undefined, so assume the divisor is -1.
1203   // srem Op0, (sext i1 X) --> srem Op0, -1 --> 0
1204   Value *X;
1205   if (match(Op1, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1))
1206     return ConstantInt::getNullValue(Op0->getType());
1207 
1208   // If the two operands are negated, return 0.
1209   if (isKnownNegation(Op0, Op1))
1210     return ConstantInt::getNullValue(Op0->getType());
1211 
1212   return simplifyRem(Instruction::SRem, Op0, Op1, Q, MaxRecurse);
1213 }
1214 
1215 Value *llvm::SimplifySRemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) {
1216   return ::SimplifySRemInst(Op0, Op1, Q, RecursionLimit);
1217 }
1218 
1219 /// Given operands for a URem, see if we can fold the result.
1220 /// If not, this returns null.
1221 static Value *SimplifyURemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q,
1222                                unsigned MaxRecurse) {
1223   return simplifyRem(Instruction::URem, Op0, Op1, Q, MaxRecurse);
1224 }
1225 
1226 Value *llvm::SimplifyURemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) {
1227   return ::SimplifyURemInst(Op0, Op1, Q, RecursionLimit);
1228 }
1229 
1230 /// Returns true if a shift by \c Amount always yields poison.
1231 static bool isPoisonShift(Value *Amount, const SimplifyQuery &Q) {
1232   Constant *C = dyn_cast<Constant>(Amount);
1233   if (!C)
1234     return false;
1235 
1236   // X shift by undef -> poison because it may shift by the bitwidth.
1237   if (Q.isUndefValue(C))
1238     return true;
1239 
1240   // Shifting by the bitwidth or more is undefined.
1241   if (ConstantInt *CI = dyn_cast<ConstantInt>(C))
1242     if (CI->getValue().uge(CI->getType()->getScalarSizeInBits()))
1243       return true;
1244 
1245   // If all lanes of a vector shift are undefined the whole shift is.
1246   if (isa<ConstantVector>(C) || isa<ConstantDataVector>(C)) {
1247     for (unsigned I = 0,
1248                   E = cast<FixedVectorType>(C->getType())->getNumElements();
1249          I != E; ++I)
1250       if (!isPoisonShift(C->getAggregateElement(I), Q))
1251         return false;
1252     return true;
1253   }
1254 
1255   return false;
1256 }
1257 
1258 /// Given operands for an Shl, LShr or AShr, see if we can fold the result.
1259 /// If not, this returns null.
1260 static Value *SimplifyShift(Instruction::BinaryOps Opcode, Value *Op0,
1261                             Value *Op1, bool IsNSW, const SimplifyQuery &Q,
1262                             unsigned MaxRecurse) {
1263   if (Constant *C = foldOrCommuteConstant(Opcode, Op0, Op1, Q))
1264     return C;
1265 
1266   // poison shift by X -> poison
1267   if (isa<PoisonValue>(Op0))
1268     return Op0;
1269 
1270   // 0 shift by X -> 0
1271   if (match(Op0, m_Zero()))
1272     return Constant::getNullValue(Op0->getType());
1273 
1274   // X shift by 0 -> X
1275   // Shift-by-sign-extended bool must be shift-by-0 because shift-by-all-ones
1276   // would be poison.
1277   Value *X;
1278   if (match(Op1, m_Zero()) ||
1279       (match(Op1, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)))
1280     return Op0;
1281 
1282   // Fold undefined shifts.
1283   if (isPoisonShift(Op1, Q))
1284     return PoisonValue::get(Op0->getType());
1285 
1286   // If the operation is with the result of a select instruction, check whether
1287   // operating on either branch of the select always yields the same value.
1288   if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
1289     if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse))
1290       return V;
1291 
1292   // If the operation is with the result of a phi instruction, check whether
1293   // operating on all incoming values of the phi always yields the same value.
1294   if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
1295     if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse))
1296       return V;
1297 
1298   // If any bits in the shift amount make that value greater than or equal to
1299   // the number of bits in the type, the shift is undefined.
1300   KnownBits KnownAmt = computeKnownBits(Op1, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
1301   if (KnownAmt.getMinValue().uge(KnownAmt.getBitWidth()))
1302     return PoisonValue::get(Op0->getType());
1303 
1304   // If all valid bits in the shift amount are known zero, the first operand is
1305   // unchanged.
1306   unsigned NumValidShiftBits = Log2_32_Ceil(KnownAmt.getBitWidth());
1307   if (KnownAmt.countMinTrailingZeros() >= NumValidShiftBits)
1308     return Op0;
1309 
1310   // Check for nsw shl leading to a poison value.
1311   if (IsNSW) {
1312     assert(Opcode == Instruction::Shl && "Expected shl for nsw instruction");
1313     KnownBits KnownVal = computeKnownBits(Op0, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
1314     KnownBits KnownShl = KnownBits::shl(KnownVal, KnownAmt);
1315 
1316     if (KnownVal.Zero.isSignBitSet())
1317       KnownShl.Zero.setSignBit();
1318     if (KnownVal.One.isSignBitSet())
1319       KnownShl.One.setSignBit();
1320 
1321     if (KnownShl.hasConflict())
1322       return PoisonValue::get(Op0->getType());
1323   }
1324 
1325   return nullptr;
1326 }
1327 
1328 /// Given operands for an Shl, LShr or AShr, see if we can
1329 /// fold the result.  If not, this returns null.
1330 static Value *SimplifyRightShift(Instruction::BinaryOps Opcode, Value *Op0,
1331                                  Value *Op1, bool isExact, const SimplifyQuery &Q,
1332                                  unsigned MaxRecurse) {
1333   if (Value *V =
1334           SimplifyShift(Opcode, Op0, Op1, /*IsNSW*/ false, Q, MaxRecurse))
1335     return V;
1336 
1337   // X >> X -> 0
1338   if (Op0 == Op1)
1339     return Constant::getNullValue(Op0->getType());
1340 
1341   // undef >> X -> 0
1342   // undef >> X -> undef (if it's exact)
1343   if (Q.isUndefValue(Op0))
1344     return isExact ? Op0 : Constant::getNullValue(Op0->getType());
1345 
1346   // The low bit cannot be shifted out of an exact shift if it is set.
1347   if (isExact) {
1348     KnownBits Op0Known = computeKnownBits(Op0, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT);
1349     if (Op0Known.One[0])
1350       return Op0;
1351   }
1352 
1353   return nullptr;
1354 }
1355 
1356 /// Given operands for an Shl, see if we can fold the result.
1357 /// If not, this returns null.
1358 static Value *SimplifyShlInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
1359                               const SimplifyQuery &Q, unsigned MaxRecurse) {
1360   if (Value *V =
1361           SimplifyShift(Instruction::Shl, Op0, Op1, isNSW, Q, MaxRecurse))
1362     return V;
1363 
1364   // undef << X -> 0
1365   // undef << X -> undef if (if it's NSW/NUW)
1366   if (Q.isUndefValue(Op0))
1367     return isNSW || isNUW ? Op0 : Constant::getNullValue(Op0->getType());
1368 
1369   // (X >> A) << A -> X
1370   Value *X;
1371   if (Q.IIQ.UseInstrInfo &&
1372       match(Op0, m_Exact(m_Shr(m_Value(X), m_Specific(Op1)))))
1373     return X;
1374 
1375   // shl nuw i8 C, %x  ->  C  iff C has sign bit set.
1376   if (isNUW && match(Op0, m_Negative()))
1377     return Op0;
1378   // NOTE: could use computeKnownBits() / LazyValueInfo,
1379   // but the cost-benefit analysis suggests it isn't worth it.
1380 
1381   return nullptr;
1382 }
1383 
1384 Value *llvm::SimplifyShlInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
1385                              const SimplifyQuery &Q) {
1386   return ::SimplifyShlInst(Op0, Op1, isNSW, isNUW, Q, RecursionLimit);
1387 }
1388 
1389 /// Given operands for an LShr, see if we can fold the result.
1390 /// If not, this returns null.
1391 static Value *SimplifyLShrInst(Value *Op0, Value *Op1, bool isExact,
1392                                const SimplifyQuery &Q, unsigned MaxRecurse) {
1393   if (Value *V = SimplifyRightShift(Instruction::LShr, Op0, Op1, isExact, Q,
1394                                     MaxRecurse))
1395       return V;
1396 
1397   // (X << A) >> A -> X
1398   Value *X;
1399   if (match(Op0, m_NUWShl(m_Value(X), m_Specific(Op1))))
1400     return X;
1401 
1402   // ((X << A) | Y) >> A -> X  if effective width of Y is not larger than A.
1403   // We can return X as we do in the above case since OR alters no bits in X.
1404   // SimplifyDemandedBits in InstCombine can do more general optimization for
1405   // bit manipulation. This pattern aims to provide opportunities for other
1406   // optimizers by supporting a simple but common case in InstSimplify.
1407   Value *Y;
1408   const APInt *ShRAmt, *ShLAmt;
1409   if (match(Op1, m_APInt(ShRAmt)) &&
1410       match(Op0, m_c_Or(m_NUWShl(m_Value(X), m_APInt(ShLAmt)), m_Value(Y))) &&
1411       *ShRAmt == *ShLAmt) {
1412     const KnownBits YKnown = computeKnownBits(Y, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
1413     const unsigned EffWidthY = YKnown.countMaxActiveBits();
1414     if (ShRAmt->uge(EffWidthY))
1415       return X;
1416   }
1417 
1418   return nullptr;
1419 }
1420 
1421 Value *llvm::SimplifyLShrInst(Value *Op0, Value *Op1, bool isExact,
1422                               const SimplifyQuery &Q) {
1423   return ::SimplifyLShrInst(Op0, Op1, isExact, Q, RecursionLimit);
1424 }
1425 
1426 /// Given operands for an AShr, see if we can fold the result.
1427 /// If not, this returns null.
1428 static Value *SimplifyAShrInst(Value *Op0, Value *Op1, bool isExact,
1429                                const SimplifyQuery &Q, unsigned MaxRecurse) {
1430   if (Value *V = SimplifyRightShift(Instruction::AShr, Op0, Op1, isExact, Q,
1431                                     MaxRecurse))
1432     return V;
1433 
1434   // -1 >>a X --> -1
1435   // (-1 << X) a>> X --> -1
1436   // Do not return Op0 because it may contain undef elements if it's a vector.
1437   if (match(Op0, m_AllOnes()) ||
1438       match(Op0, m_Shl(m_AllOnes(), m_Specific(Op1))))
1439     return Constant::getAllOnesValue(Op0->getType());
1440 
1441   // (X << A) >> A -> X
1442   Value *X;
1443   if (Q.IIQ.UseInstrInfo && match(Op0, m_NSWShl(m_Value(X), m_Specific(Op1))))
1444     return X;
1445 
1446   // Arithmetic shifting an all-sign-bit value is a no-op.
1447   unsigned NumSignBits = ComputeNumSignBits(Op0, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
1448   if (NumSignBits == Op0->getType()->getScalarSizeInBits())
1449     return Op0;
1450 
1451   return nullptr;
1452 }
1453 
1454 Value *llvm::SimplifyAShrInst(Value *Op0, Value *Op1, bool isExact,
1455                               const SimplifyQuery &Q) {
1456   return ::SimplifyAShrInst(Op0, Op1, isExact, Q, RecursionLimit);
1457 }
1458 
1459 /// Commuted variants are assumed to be handled by calling this function again
1460 /// with the parameters swapped.
1461 static Value *simplifyUnsignedRangeCheck(ICmpInst *ZeroICmp,
1462                                          ICmpInst *UnsignedICmp, bool IsAnd,
1463                                          const SimplifyQuery &Q) {
1464   Value *X, *Y;
1465 
1466   ICmpInst::Predicate EqPred;
1467   if (!match(ZeroICmp, m_ICmp(EqPred, m_Value(Y), m_Zero())) ||
1468       !ICmpInst::isEquality(EqPred))
1469     return nullptr;
1470 
1471   ICmpInst::Predicate UnsignedPred;
1472 
1473   Value *A, *B;
1474   // Y = (A - B);
1475   if (match(Y, m_Sub(m_Value(A), m_Value(B)))) {
1476     if (match(UnsignedICmp,
1477               m_c_ICmp(UnsignedPred, m_Specific(A), m_Specific(B))) &&
1478         ICmpInst::isUnsigned(UnsignedPred)) {
1479       // A >=/<= B || (A - B) != 0  <-->  true
1480       if ((UnsignedPred == ICmpInst::ICMP_UGE ||
1481            UnsignedPred == ICmpInst::ICMP_ULE) &&
1482           EqPred == ICmpInst::ICMP_NE && !IsAnd)
1483         return ConstantInt::getTrue(UnsignedICmp->getType());
1484       // A </> B && (A - B) == 0  <-->  false
1485       if ((UnsignedPred == ICmpInst::ICMP_ULT ||
1486            UnsignedPred == ICmpInst::ICMP_UGT) &&
1487           EqPred == ICmpInst::ICMP_EQ && IsAnd)
1488         return ConstantInt::getFalse(UnsignedICmp->getType());
1489 
1490       // A </> B && (A - B) != 0  <-->  A </> B
1491       // A </> B || (A - B) != 0  <-->  (A - B) != 0
1492       if (EqPred == ICmpInst::ICMP_NE && (UnsignedPred == ICmpInst::ICMP_ULT ||
1493                                           UnsignedPred == ICmpInst::ICMP_UGT))
1494         return IsAnd ? UnsignedICmp : ZeroICmp;
1495 
1496       // A <=/>= B && (A - B) == 0  <-->  (A - B) == 0
1497       // A <=/>= B || (A - B) == 0  <-->  A <=/>= B
1498       if (EqPred == ICmpInst::ICMP_EQ && (UnsignedPred == ICmpInst::ICMP_ULE ||
1499                                           UnsignedPred == ICmpInst::ICMP_UGE))
1500         return IsAnd ? ZeroICmp : UnsignedICmp;
1501     }
1502 
1503     // Given  Y = (A - B)
1504     //   Y >= A && Y != 0  --> Y >= A  iff B != 0
1505     //   Y <  A || Y == 0  --> Y <  A  iff B != 0
1506     if (match(UnsignedICmp,
1507               m_c_ICmp(UnsignedPred, m_Specific(Y), m_Specific(A)))) {
1508       if (UnsignedPred == ICmpInst::ICMP_UGE && IsAnd &&
1509           EqPred == ICmpInst::ICMP_NE &&
1510           isKnownNonZero(B, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT))
1511         return UnsignedICmp;
1512       if (UnsignedPred == ICmpInst::ICMP_ULT && !IsAnd &&
1513           EqPred == ICmpInst::ICMP_EQ &&
1514           isKnownNonZero(B, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT))
1515         return UnsignedICmp;
1516     }
1517   }
1518 
1519   if (match(UnsignedICmp, m_ICmp(UnsignedPred, m_Value(X), m_Specific(Y))) &&
1520       ICmpInst::isUnsigned(UnsignedPred))
1521     ;
1522   else if (match(UnsignedICmp,
1523                  m_ICmp(UnsignedPred, m_Specific(Y), m_Value(X))) &&
1524            ICmpInst::isUnsigned(UnsignedPred))
1525     UnsignedPred = ICmpInst::getSwappedPredicate(UnsignedPred);
1526   else
1527     return nullptr;
1528 
1529   // X > Y && Y == 0  -->  Y == 0  iff X != 0
1530   // X > Y || Y == 0  -->  X > Y   iff X != 0
1531   if (UnsignedPred == ICmpInst::ICMP_UGT && EqPred == ICmpInst::ICMP_EQ &&
1532       isKnownNonZero(X, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT))
1533     return IsAnd ? ZeroICmp : UnsignedICmp;
1534 
1535   // X <= Y && Y != 0  -->  X <= Y  iff X != 0
1536   // X <= Y || Y != 0  -->  Y != 0  iff X != 0
1537   if (UnsignedPred == ICmpInst::ICMP_ULE && EqPred == ICmpInst::ICMP_NE &&
1538       isKnownNonZero(X, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT))
1539     return IsAnd ? UnsignedICmp : ZeroICmp;
1540 
1541   // The transforms below here are expected to be handled more generally with
1542   // simplifyAndOrOfICmpsWithLimitConst() or in InstCombine's
1543   // foldAndOrOfICmpsWithConstEq(). If we are looking to trim optimizer overlap,
1544   // these are candidates for removal.
1545 
1546   // X < Y && Y != 0  -->  X < Y
1547   // X < Y || Y != 0  -->  Y != 0
1548   if (UnsignedPred == ICmpInst::ICMP_ULT && EqPred == ICmpInst::ICMP_NE)
1549     return IsAnd ? UnsignedICmp : ZeroICmp;
1550 
1551   // X >= Y && Y == 0  -->  Y == 0
1552   // X >= Y || Y == 0  -->  X >= Y
1553   if (UnsignedPred == ICmpInst::ICMP_UGE && EqPred == ICmpInst::ICMP_EQ)
1554     return IsAnd ? ZeroICmp : UnsignedICmp;
1555 
1556   // X < Y && Y == 0  -->  false
1557   if (UnsignedPred == ICmpInst::ICMP_ULT && EqPred == ICmpInst::ICMP_EQ &&
1558       IsAnd)
1559     return getFalse(UnsignedICmp->getType());
1560 
1561   // X >= Y || Y != 0  -->  true
1562   if (UnsignedPred == ICmpInst::ICMP_UGE && EqPred == ICmpInst::ICMP_NE &&
1563       !IsAnd)
1564     return getTrue(UnsignedICmp->getType());
1565 
1566   return nullptr;
1567 }
1568 
1569 /// Commuted variants are assumed to be handled by calling this function again
1570 /// with the parameters swapped.
1571 static Value *simplifyAndOfICmpsWithSameOperands(ICmpInst *Op0, ICmpInst *Op1) {
1572   ICmpInst::Predicate Pred0, Pred1;
1573   Value *A ,*B;
1574   if (!match(Op0, m_ICmp(Pred0, m_Value(A), m_Value(B))) ||
1575       !match(Op1, m_ICmp(Pred1, m_Specific(A), m_Specific(B))))
1576     return nullptr;
1577 
1578   // We have (icmp Pred0, A, B) & (icmp Pred1, A, B).
1579   // If Op1 is always implied true by Op0, then Op0 is a subset of Op1, and we
1580   // can eliminate Op1 from this 'and'.
1581   if (ICmpInst::isImpliedTrueByMatchingCmp(Pred0, Pred1))
1582     return Op0;
1583 
1584   // Check for any combination of predicates that are guaranteed to be disjoint.
1585   if ((Pred0 == ICmpInst::getInversePredicate(Pred1)) ||
1586       (Pred0 == ICmpInst::ICMP_EQ && ICmpInst::isFalseWhenEqual(Pred1)) ||
1587       (Pred0 == ICmpInst::ICMP_SLT && Pred1 == ICmpInst::ICMP_SGT) ||
1588       (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_UGT))
1589     return getFalse(Op0->getType());
1590 
1591   return nullptr;
1592 }
1593 
1594 /// Commuted variants are assumed to be handled by calling this function again
1595 /// with the parameters swapped.
1596 static Value *simplifyOrOfICmpsWithSameOperands(ICmpInst *Op0, ICmpInst *Op1) {
1597   ICmpInst::Predicate Pred0, Pred1;
1598   Value *A ,*B;
1599   if (!match(Op0, m_ICmp(Pred0, m_Value(A), m_Value(B))) ||
1600       !match(Op1, m_ICmp(Pred1, m_Specific(A), m_Specific(B))))
1601     return nullptr;
1602 
1603   // We have (icmp Pred0, A, B) | (icmp Pred1, A, B).
1604   // If Op1 is always implied true by Op0, then Op0 is a subset of Op1, and we
1605   // can eliminate Op0 from this 'or'.
1606   if (ICmpInst::isImpliedTrueByMatchingCmp(Pred0, Pred1))
1607     return Op1;
1608 
1609   // Check for any combination of predicates that cover the entire range of
1610   // possibilities.
1611   if ((Pred0 == ICmpInst::getInversePredicate(Pred1)) ||
1612       (Pred0 == ICmpInst::ICMP_NE && ICmpInst::isTrueWhenEqual(Pred1)) ||
1613       (Pred0 == ICmpInst::ICMP_SLE && Pred1 == ICmpInst::ICMP_SGE) ||
1614       (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_UGE))
1615     return getTrue(Op0->getType());
1616 
1617   return nullptr;
1618 }
1619 
1620 /// Test if a pair of compares with a shared operand and 2 constants has an
1621 /// empty set intersection, full set union, or if one compare is a superset of
1622 /// the other.
1623 static Value *simplifyAndOrOfICmpsWithConstants(ICmpInst *Cmp0, ICmpInst *Cmp1,
1624                                                 bool IsAnd) {
1625   // Look for this pattern: {and/or} (icmp X, C0), (icmp X, C1)).
1626   if (Cmp0->getOperand(0) != Cmp1->getOperand(0))
1627     return nullptr;
1628 
1629   const APInt *C0, *C1;
1630   if (!match(Cmp0->getOperand(1), m_APInt(C0)) ||
1631       !match(Cmp1->getOperand(1), m_APInt(C1)))
1632     return nullptr;
1633 
1634   auto Range0 = ConstantRange::makeExactICmpRegion(Cmp0->getPredicate(), *C0);
1635   auto Range1 = ConstantRange::makeExactICmpRegion(Cmp1->getPredicate(), *C1);
1636 
1637   // For and-of-compares, check if the intersection is empty:
1638   // (icmp X, C0) && (icmp X, C1) --> empty set --> false
1639   if (IsAnd && Range0.intersectWith(Range1).isEmptySet())
1640     return getFalse(Cmp0->getType());
1641 
1642   // For or-of-compares, check if the union is full:
1643   // (icmp X, C0) || (icmp X, C1) --> full set --> true
1644   if (!IsAnd && Range0.unionWith(Range1).isFullSet())
1645     return getTrue(Cmp0->getType());
1646 
1647   // Is one range a superset of the other?
1648   // If this is and-of-compares, take the smaller set:
1649   // (icmp sgt X, 4) && (icmp sgt X, 42) --> icmp sgt X, 42
1650   // If this is or-of-compares, take the larger set:
1651   // (icmp sgt X, 4) || (icmp sgt X, 42) --> icmp sgt X, 4
1652   if (Range0.contains(Range1))
1653     return IsAnd ? Cmp1 : Cmp0;
1654   if (Range1.contains(Range0))
1655     return IsAnd ? Cmp0 : Cmp1;
1656 
1657   return nullptr;
1658 }
1659 
1660 static Value *simplifyAndOrOfICmpsWithZero(ICmpInst *Cmp0, ICmpInst *Cmp1,
1661                                            bool IsAnd) {
1662   ICmpInst::Predicate P0 = Cmp0->getPredicate(), P1 = Cmp1->getPredicate();
1663   if (!match(Cmp0->getOperand(1), m_Zero()) ||
1664       !match(Cmp1->getOperand(1), m_Zero()) || P0 != P1)
1665     return nullptr;
1666 
1667   if ((IsAnd && P0 != ICmpInst::ICMP_NE) || (!IsAnd && P1 != ICmpInst::ICMP_EQ))
1668     return nullptr;
1669 
1670   // We have either "(X == 0 || Y == 0)" or "(X != 0 && Y != 0)".
1671   Value *X = Cmp0->getOperand(0);
1672   Value *Y = Cmp1->getOperand(0);
1673 
1674   // If one of the compares is a masked version of a (not) null check, then
1675   // that compare implies the other, so we eliminate the other. Optionally, look
1676   // through a pointer-to-int cast to match a null check of a pointer type.
1677 
1678   // (X == 0) || (([ptrtoint] X & ?) == 0) --> ([ptrtoint] X & ?) == 0
1679   // (X == 0) || ((? & [ptrtoint] X) == 0) --> (? & [ptrtoint] X) == 0
1680   // (X != 0) && (([ptrtoint] X & ?) != 0) --> ([ptrtoint] X & ?) != 0
1681   // (X != 0) && ((? & [ptrtoint] X) != 0) --> (? & [ptrtoint] X) != 0
1682   if (match(Y, m_c_And(m_Specific(X), m_Value())) ||
1683       match(Y, m_c_And(m_PtrToInt(m_Specific(X)), m_Value())))
1684     return Cmp1;
1685 
1686   // (([ptrtoint] Y & ?) == 0) || (Y == 0) --> ([ptrtoint] Y & ?) == 0
1687   // ((? & [ptrtoint] Y) == 0) || (Y == 0) --> (? & [ptrtoint] Y) == 0
1688   // (([ptrtoint] Y & ?) != 0) && (Y != 0) --> ([ptrtoint] Y & ?) != 0
1689   // ((? & [ptrtoint] Y) != 0) && (Y != 0) --> (? & [ptrtoint] Y) != 0
1690   if (match(X, m_c_And(m_Specific(Y), m_Value())) ||
1691       match(X, m_c_And(m_PtrToInt(m_Specific(Y)), m_Value())))
1692     return Cmp0;
1693 
1694   return nullptr;
1695 }
1696 
1697 static Value *simplifyAndOfICmpsWithAdd(ICmpInst *Op0, ICmpInst *Op1,
1698                                         const InstrInfoQuery &IIQ) {
1699   // (icmp (add V, C0), C1) & (icmp V, C0)
1700   ICmpInst::Predicate Pred0, Pred1;
1701   const APInt *C0, *C1;
1702   Value *V;
1703   if (!match(Op0, m_ICmp(Pred0, m_Add(m_Value(V), m_APInt(C0)), m_APInt(C1))))
1704     return nullptr;
1705 
1706   if (!match(Op1, m_ICmp(Pred1, m_Specific(V), m_Value())))
1707     return nullptr;
1708 
1709   auto *AddInst = cast<OverflowingBinaryOperator>(Op0->getOperand(0));
1710   if (AddInst->getOperand(1) != Op1->getOperand(1))
1711     return nullptr;
1712 
1713   Type *ITy = Op0->getType();
1714   bool isNSW = IIQ.hasNoSignedWrap(AddInst);
1715   bool isNUW = IIQ.hasNoUnsignedWrap(AddInst);
1716 
1717   const APInt Delta = *C1 - *C0;
1718   if (C0->isStrictlyPositive()) {
1719     if (Delta == 2) {
1720       if (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_SGT)
1721         return getFalse(ITy);
1722       if (Pred0 == ICmpInst::ICMP_SLT && Pred1 == ICmpInst::ICMP_SGT && isNSW)
1723         return getFalse(ITy);
1724     }
1725     if (Delta == 1) {
1726       if (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_SGT)
1727         return getFalse(ITy);
1728       if (Pred0 == ICmpInst::ICMP_SLE && Pred1 == ICmpInst::ICMP_SGT && isNSW)
1729         return getFalse(ITy);
1730     }
1731   }
1732   if (C0->getBoolValue() && isNUW) {
1733     if (Delta == 2)
1734       if (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_UGT)
1735         return getFalse(ITy);
1736     if (Delta == 1)
1737       if (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_UGT)
1738         return getFalse(ITy);
1739   }
1740 
1741   return nullptr;
1742 }
1743 
1744 /// Try to eliminate compares with signed or unsigned min/max constants.
1745 static Value *simplifyAndOrOfICmpsWithLimitConst(ICmpInst *Cmp0, ICmpInst *Cmp1,
1746                                                  bool IsAnd) {
1747   // Canonicalize an equality compare as Cmp0.
1748   if (Cmp1->isEquality())
1749     std::swap(Cmp0, Cmp1);
1750   if (!Cmp0->isEquality())
1751     return nullptr;
1752 
1753   // The non-equality compare must include a common operand (X). Canonicalize
1754   // the common operand as operand 0 (the predicate is swapped if the common
1755   // operand was operand 1).
1756   ICmpInst::Predicate Pred0 = Cmp0->getPredicate();
1757   Value *X = Cmp0->getOperand(0);
1758   ICmpInst::Predicate Pred1;
1759   bool HasNotOp = match(Cmp1, m_c_ICmp(Pred1, m_Not(m_Specific(X)), m_Value()));
1760   if (!HasNotOp && !match(Cmp1, m_c_ICmp(Pred1, m_Specific(X), m_Value())))
1761     return nullptr;
1762   if (ICmpInst::isEquality(Pred1))
1763     return nullptr;
1764 
1765   // The equality compare must be against a constant. Flip bits if we matched
1766   // a bitwise not. Convert a null pointer constant to an integer zero value.
1767   APInt MinMaxC;
1768   const APInt *C;
1769   if (match(Cmp0->getOperand(1), m_APInt(C)))
1770     MinMaxC = HasNotOp ? ~*C : *C;
1771   else if (isa<ConstantPointerNull>(Cmp0->getOperand(1)))
1772     MinMaxC = APInt::getZero(8);
1773   else
1774     return nullptr;
1775 
1776   // DeMorganize if this is 'or': P0 || P1 --> !P0 && !P1.
1777   if (!IsAnd) {
1778     Pred0 = ICmpInst::getInversePredicate(Pred0);
1779     Pred1 = ICmpInst::getInversePredicate(Pred1);
1780   }
1781 
1782   // Normalize to unsigned compare and unsigned min/max value.
1783   // Example for 8-bit: -128 + 128 -> 0; 127 + 128 -> 255
1784   if (ICmpInst::isSigned(Pred1)) {
1785     Pred1 = ICmpInst::getUnsignedPredicate(Pred1);
1786     MinMaxC += APInt::getSignedMinValue(MinMaxC.getBitWidth());
1787   }
1788 
1789   // (X != MAX) && (X < Y) --> X < Y
1790   // (X == MAX) || (X >= Y) --> X >= Y
1791   if (MinMaxC.isMaxValue())
1792     if (Pred0 == ICmpInst::ICMP_NE && Pred1 == ICmpInst::ICMP_ULT)
1793       return Cmp1;
1794 
1795   // (X != MIN) && (X > Y) -->  X > Y
1796   // (X == MIN) || (X <= Y) --> X <= Y
1797   if (MinMaxC.isMinValue())
1798     if (Pred0 == ICmpInst::ICMP_NE && Pred1 == ICmpInst::ICMP_UGT)
1799       return Cmp1;
1800 
1801   return nullptr;
1802 }
1803 
1804 static Value *simplifyAndOfICmps(ICmpInst *Op0, ICmpInst *Op1,
1805                                  const SimplifyQuery &Q) {
1806   if (Value *X = simplifyUnsignedRangeCheck(Op0, Op1, /*IsAnd=*/true, Q))
1807     return X;
1808   if (Value *X = simplifyUnsignedRangeCheck(Op1, Op0, /*IsAnd=*/true, Q))
1809     return X;
1810 
1811   if (Value *X = simplifyAndOfICmpsWithSameOperands(Op0, Op1))
1812     return X;
1813   if (Value *X = simplifyAndOfICmpsWithSameOperands(Op1, Op0))
1814     return X;
1815 
1816   if (Value *X = simplifyAndOrOfICmpsWithConstants(Op0, Op1, true))
1817     return X;
1818 
1819   if (Value *X = simplifyAndOrOfICmpsWithLimitConst(Op0, Op1, true))
1820     return X;
1821 
1822   if (Value *X = simplifyAndOrOfICmpsWithZero(Op0, Op1, true))
1823     return X;
1824 
1825   if (Value *X = simplifyAndOfICmpsWithAdd(Op0, Op1, Q.IIQ))
1826     return X;
1827   if (Value *X = simplifyAndOfICmpsWithAdd(Op1, Op0, Q.IIQ))
1828     return X;
1829 
1830   return nullptr;
1831 }
1832 
1833 static Value *simplifyOrOfICmpsWithAdd(ICmpInst *Op0, ICmpInst *Op1,
1834                                        const InstrInfoQuery &IIQ) {
1835   // (icmp (add V, C0), C1) | (icmp V, C0)
1836   ICmpInst::Predicate Pred0, Pred1;
1837   const APInt *C0, *C1;
1838   Value *V;
1839   if (!match(Op0, m_ICmp(Pred0, m_Add(m_Value(V), m_APInt(C0)), m_APInt(C1))))
1840     return nullptr;
1841 
1842   if (!match(Op1, m_ICmp(Pred1, m_Specific(V), m_Value())))
1843     return nullptr;
1844 
1845   auto *AddInst = cast<BinaryOperator>(Op0->getOperand(0));
1846   if (AddInst->getOperand(1) != Op1->getOperand(1))
1847     return nullptr;
1848 
1849   Type *ITy = Op0->getType();
1850   bool isNSW = IIQ.hasNoSignedWrap(AddInst);
1851   bool isNUW = IIQ.hasNoUnsignedWrap(AddInst);
1852 
1853   const APInt Delta = *C1 - *C0;
1854   if (C0->isStrictlyPositive()) {
1855     if (Delta == 2) {
1856       if (Pred0 == ICmpInst::ICMP_UGE && Pred1 == ICmpInst::ICMP_SLE)
1857         return getTrue(ITy);
1858       if (Pred0 == ICmpInst::ICMP_SGE && Pred1 == ICmpInst::ICMP_SLE && isNSW)
1859         return getTrue(ITy);
1860     }
1861     if (Delta == 1) {
1862       if (Pred0 == ICmpInst::ICMP_UGT && Pred1 == ICmpInst::ICMP_SLE)
1863         return getTrue(ITy);
1864       if (Pred0 == ICmpInst::ICMP_SGT && Pred1 == ICmpInst::ICMP_SLE && isNSW)
1865         return getTrue(ITy);
1866     }
1867   }
1868   if (C0->getBoolValue() && isNUW) {
1869     if (Delta == 2)
1870       if (Pred0 == ICmpInst::ICMP_UGE && Pred1 == ICmpInst::ICMP_ULE)
1871         return getTrue(ITy);
1872     if (Delta == 1)
1873       if (Pred0 == ICmpInst::ICMP_UGT && Pred1 == ICmpInst::ICMP_ULE)
1874         return getTrue(ITy);
1875   }
1876 
1877   return nullptr;
1878 }
1879 
1880 static Value *simplifyOrOfICmps(ICmpInst *Op0, ICmpInst *Op1,
1881                                 const SimplifyQuery &Q) {
1882   if (Value *X = simplifyUnsignedRangeCheck(Op0, Op1, /*IsAnd=*/false, Q))
1883     return X;
1884   if (Value *X = simplifyUnsignedRangeCheck(Op1, Op0, /*IsAnd=*/false, Q))
1885     return X;
1886 
1887   if (Value *X = simplifyOrOfICmpsWithSameOperands(Op0, Op1))
1888     return X;
1889   if (Value *X = simplifyOrOfICmpsWithSameOperands(Op1, Op0))
1890     return X;
1891 
1892   if (Value *X = simplifyAndOrOfICmpsWithConstants(Op0, Op1, false))
1893     return X;
1894 
1895   if (Value *X = simplifyAndOrOfICmpsWithLimitConst(Op0, Op1, false))
1896     return X;
1897 
1898   if (Value *X = simplifyAndOrOfICmpsWithZero(Op0, Op1, false))
1899     return X;
1900 
1901   if (Value *X = simplifyOrOfICmpsWithAdd(Op0, Op1, Q.IIQ))
1902     return X;
1903   if (Value *X = simplifyOrOfICmpsWithAdd(Op1, Op0, Q.IIQ))
1904     return X;
1905 
1906   return nullptr;
1907 }
1908 
1909 static Value *simplifyAndOrOfFCmps(const TargetLibraryInfo *TLI,
1910                                    FCmpInst *LHS, FCmpInst *RHS, bool IsAnd) {
1911   Value *LHS0 = LHS->getOperand(0), *LHS1 = LHS->getOperand(1);
1912   Value *RHS0 = RHS->getOperand(0), *RHS1 = RHS->getOperand(1);
1913   if (LHS0->getType() != RHS0->getType())
1914     return nullptr;
1915 
1916   FCmpInst::Predicate PredL = LHS->getPredicate(), PredR = RHS->getPredicate();
1917   if ((PredL == FCmpInst::FCMP_ORD && PredR == FCmpInst::FCMP_ORD && IsAnd) ||
1918       (PredL == FCmpInst::FCMP_UNO && PredR == FCmpInst::FCMP_UNO && !IsAnd)) {
1919     // (fcmp ord NNAN, X) & (fcmp ord X, Y) --> fcmp ord X, Y
1920     // (fcmp ord NNAN, X) & (fcmp ord Y, X) --> fcmp ord Y, X
1921     // (fcmp ord X, NNAN) & (fcmp ord X, Y) --> fcmp ord X, Y
1922     // (fcmp ord X, NNAN) & (fcmp ord Y, X) --> fcmp ord Y, X
1923     // (fcmp uno NNAN, X) | (fcmp uno X, Y) --> fcmp uno X, Y
1924     // (fcmp uno NNAN, X) | (fcmp uno Y, X) --> fcmp uno Y, X
1925     // (fcmp uno X, NNAN) | (fcmp uno X, Y) --> fcmp uno X, Y
1926     // (fcmp uno X, NNAN) | (fcmp uno Y, X) --> fcmp uno Y, X
1927     if ((isKnownNeverNaN(LHS0, TLI) && (LHS1 == RHS0 || LHS1 == RHS1)) ||
1928         (isKnownNeverNaN(LHS1, TLI) && (LHS0 == RHS0 || LHS0 == RHS1)))
1929       return RHS;
1930 
1931     // (fcmp ord X, Y) & (fcmp ord NNAN, X) --> fcmp ord X, Y
1932     // (fcmp ord Y, X) & (fcmp ord NNAN, X) --> fcmp ord Y, X
1933     // (fcmp ord X, Y) & (fcmp ord X, NNAN) --> fcmp ord X, Y
1934     // (fcmp ord Y, X) & (fcmp ord X, NNAN) --> fcmp ord Y, X
1935     // (fcmp uno X, Y) | (fcmp uno NNAN, X) --> fcmp uno X, Y
1936     // (fcmp uno Y, X) | (fcmp uno NNAN, X) --> fcmp uno Y, X
1937     // (fcmp uno X, Y) | (fcmp uno X, NNAN) --> fcmp uno X, Y
1938     // (fcmp uno Y, X) | (fcmp uno X, NNAN) --> fcmp uno Y, X
1939     if ((isKnownNeverNaN(RHS0, TLI) && (RHS1 == LHS0 || RHS1 == LHS1)) ||
1940         (isKnownNeverNaN(RHS1, TLI) && (RHS0 == LHS0 || RHS0 == LHS1)))
1941       return LHS;
1942   }
1943 
1944   return nullptr;
1945 }
1946 
1947 static Value *simplifyAndOrOfCmps(const SimplifyQuery &Q,
1948                                   Value *Op0, Value *Op1, bool IsAnd) {
1949   // Look through casts of the 'and' operands to find compares.
1950   auto *Cast0 = dyn_cast<CastInst>(Op0);
1951   auto *Cast1 = dyn_cast<CastInst>(Op1);
1952   if (Cast0 && Cast1 && Cast0->getOpcode() == Cast1->getOpcode() &&
1953       Cast0->getSrcTy() == Cast1->getSrcTy()) {
1954     Op0 = Cast0->getOperand(0);
1955     Op1 = Cast1->getOperand(0);
1956   }
1957 
1958   Value *V = nullptr;
1959   auto *ICmp0 = dyn_cast<ICmpInst>(Op0);
1960   auto *ICmp1 = dyn_cast<ICmpInst>(Op1);
1961   if (ICmp0 && ICmp1)
1962     V = IsAnd ? simplifyAndOfICmps(ICmp0, ICmp1, Q)
1963               : simplifyOrOfICmps(ICmp0, ICmp1, Q);
1964 
1965   auto *FCmp0 = dyn_cast<FCmpInst>(Op0);
1966   auto *FCmp1 = dyn_cast<FCmpInst>(Op1);
1967   if (FCmp0 && FCmp1)
1968     V = simplifyAndOrOfFCmps(Q.TLI, FCmp0, FCmp1, IsAnd);
1969 
1970   if (!V)
1971     return nullptr;
1972   if (!Cast0)
1973     return V;
1974 
1975   // If we looked through casts, we can only handle a constant simplification
1976   // because we are not allowed to create a cast instruction here.
1977   if (auto *C = dyn_cast<Constant>(V))
1978     return ConstantExpr::getCast(Cast0->getOpcode(), C, Cast0->getType());
1979 
1980   return nullptr;
1981 }
1982 
1983 /// Given a bitwise logic op, check if the operands are add/sub with a common
1984 /// source value and inverted constant (identity: C - X -> ~(X + ~C)).
1985 static Value *simplifyLogicOfAddSub(Value *Op0, Value *Op1,
1986                                     Instruction::BinaryOps Opcode) {
1987   assert(Op0->getType() == Op1->getType() && "Mismatched binop types");
1988   assert(BinaryOperator::isBitwiseLogicOp(Opcode) && "Expected logic op");
1989   Value *X;
1990   Constant *C1, *C2;
1991   if ((match(Op0, m_Add(m_Value(X), m_Constant(C1))) &&
1992        match(Op1, m_Sub(m_Constant(C2), m_Specific(X)))) ||
1993       (match(Op1, m_Add(m_Value(X), m_Constant(C1))) &&
1994        match(Op0, m_Sub(m_Constant(C2), m_Specific(X))))) {
1995     if (ConstantExpr::getNot(C1) == C2) {
1996       // (X + C) & (~C - X) --> (X + C) & ~(X + C) --> 0
1997       // (X + C) | (~C - X) --> (X + C) | ~(X + C) --> -1
1998       // (X + C) ^ (~C - X) --> (X + C) ^ ~(X + C) --> -1
1999       Type *Ty = Op0->getType();
2000       return Opcode == Instruction::And ? ConstantInt::getNullValue(Ty)
2001                                         : ConstantInt::getAllOnesValue(Ty);
2002     }
2003   }
2004   return nullptr;
2005 }
2006 
2007 /// Given operands for an And, see if we can fold the result.
2008 /// If not, this returns null.
2009 static Value *SimplifyAndInst(Value *Op0, Value *Op1, const SimplifyQuery &Q,
2010                               unsigned MaxRecurse) {
2011   if (Constant *C = foldOrCommuteConstant(Instruction::And, Op0, Op1, Q))
2012     return C;
2013 
2014   // X & poison -> poison
2015   if (isa<PoisonValue>(Op1))
2016     return Op1;
2017 
2018   // X & undef -> 0
2019   if (Q.isUndefValue(Op1))
2020     return Constant::getNullValue(Op0->getType());
2021 
2022   // X & X = X
2023   if (Op0 == Op1)
2024     return Op0;
2025 
2026   // X & 0 = 0
2027   if (match(Op1, m_Zero()))
2028     return Constant::getNullValue(Op0->getType());
2029 
2030   // X & -1 = X
2031   if (match(Op1, m_AllOnes()))
2032     return Op0;
2033 
2034   // A & ~A  =  ~A & A  =  0
2035   if (match(Op0, m_Not(m_Specific(Op1))) ||
2036       match(Op1, m_Not(m_Specific(Op0))))
2037     return Constant::getNullValue(Op0->getType());
2038 
2039   // (A | ?) & A = A
2040   if (match(Op0, m_c_Or(m_Specific(Op1), m_Value())))
2041     return Op1;
2042 
2043   // A & (A | ?) = A
2044   if (match(Op1, m_c_Or(m_Specific(Op0), m_Value())))
2045     return Op0;
2046 
2047   // (X | Y) & (X | ~Y) --> X (commuted 8 ways)
2048   Value *X, *Y;
2049   if (match(Op0, m_c_Or(m_Value(X), m_Not(m_Value(Y)))) &&
2050       match(Op1, m_c_Or(m_Deferred(X), m_Deferred(Y))))
2051     return X;
2052   if (match(Op1, m_c_Or(m_Value(X), m_Not(m_Value(Y)))) &&
2053       match(Op0, m_c_Or(m_Deferred(X), m_Deferred(Y))))
2054     return X;
2055 
2056   if (Value *V = simplifyLogicOfAddSub(Op0, Op1, Instruction::And))
2057     return V;
2058 
2059   // A mask that only clears known zeros of a shifted value is a no-op.
2060   const APInt *Mask;
2061   const APInt *ShAmt;
2062   if (match(Op1, m_APInt(Mask))) {
2063     // If all bits in the inverted and shifted mask are clear:
2064     // and (shl X, ShAmt), Mask --> shl X, ShAmt
2065     if (match(Op0, m_Shl(m_Value(X), m_APInt(ShAmt))) &&
2066         (~(*Mask)).lshr(*ShAmt).isZero())
2067       return Op0;
2068 
2069     // If all bits in the inverted and shifted mask are clear:
2070     // and (lshr X, ShAmt), Mask --> lshr X, ShAmt
2071     if (match(Op0, m_LShr(m_Value(X), m_APInt(ShAmt))) &&
2072         (~(*Mask)).shl(*ShAmt).isZero())
2073       return Op0;
2074   }
2075 
2076   // If we have a multiplication overflow check that is being 'and'ed with a
2077   // check that one of the multipliers is not zero, we can omit the 'and', and
2078   // only keep the overflow check.
2079   if (isCheckForZeroAndMulWithOverflow(Op0, Op1, true))
2080     return Op1;
2081   if (isCheckForZeroAndMulWithOverflow(Op1, Op0, true))
2082     return Op0;
2083 
2084   // A & (-A) = A if A is a power of two or zero.
2085   if (match(Op0, m_Neg(m_Specific(Op1))) ||
2086       match(Op1, m_Neg(m_Specific(Op0)))) {
2087     if (isKnownToBeAPowerOfTwo(Op0, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI,
2088                                Q.DT))
2089       return Op0;
2090     if (isKnownToBeAPowerOfTwo(Op1, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI,
2091                                Q.DT))
2092       return Op1;
2093   }
2094 
2095   // This is a similar pattern used for checking if a value is a power-of-2:
2096   // (A - 1) & A --> 0 (if A is a power-of-2 or 0)
2097   // A & (A - 1) --> 0 (if A is a power-of-2 or 0)
2098   if (match(Op0, m_Add(m_Specific(Op1), m_AllOnes())) &&
2099       isKnownToBeAPowerOfTwo(Op1, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI, Q.DT))
2100     return Constant::getNullValue(Op1->getType());
2101   if (match(Op1, m_Add(m_Specific(Op0), m_AllOnes())) &&
2102       isKnownToBeAPowerOfTwo(Op0, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI, Q.DT))
2103     return Constant::getNullValue(Op0->getType());
2104 
2105   if (Value *V = simplifyAndOrOfCmps(Q, Op0, Op1, true))
2106     return V;
2107 
2108   // Try some generic simplifications for associative operations.
2109   if (Value *V = SimplifyAssociativeBinOp(Instruction::And, Op0, Op1, Q,
2110                                           MaxRecurse))
2111     return V;
2112 
2113   // And distributes over Or.  Try some generic simplifications based on this.
2114   if (Value *V = expandCommutativeBinOp(Instruction::And, Op0, Op1,
2115                                         Instruction::Or, Q, MaxRecurse))
2116     return V;
2117 
2118   // And distributes over Xor.  Try some generic simplifications based on this.
2119   if (Value *V = expandCommutativeBinOp(Instruction::And, Op0, Op1,
2120                                         Instruction::Xor, Q, MaxRecurse))
2121     return V;
2122 
2123   if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) {
2124     if (Op0->getType()->isIntOrIntVectorTy(1)) {
2125       // A & (A && B) -> A && B
2126       if (match(Op1, m_Select(m_Specific(Op0), m_Value(), m_Zero())))
2127         return Op1;
2128       else if (match(Op0, m_Select(m_Specific(Op1), m_Value(), m_Zero())))
2129         return Op0;
2130     }
2131     // If the operation is with the result of a select instruction, check
2132     // whether operating on either branch of the select always yields the same
2133     // value.
2134     if (Value *V = ThreadBinOpOverSelect(Instruction::And, Op0, Op1, Q,
2135                                          MaxRecurse))
2136       return V;
2137   }
2138 
2139   // If the operation is with the result of a phi instruction, check whether
2140   // operating on all incoming values of the phi always yields the same value.
2141   if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
2142     if (Value *V = ThreadBinOpOverPHI(Instruction::And, Op0, Op1, Q,
2143                                       MaxRecurse))
2144       return V;
2145 
2146   // Assuming the effective width of Y is not larger than A, i.e. all bits
2147   // from X and Y are disjoint in (X << A) | Y,
2148   // if the mask of this AND op covers all bits of X or Y, while it covers
2149   // no bits from the other, we can bypass this AND op. E.g.,
2150   // ((X << A) | Y) & Mask -> Y,
2151   //     if Mask = ((1 << effective_width_of(Y)) - 1)
2152   // ((X << A) | Y) & Mask -> X << A,
2153   //     if Mask = ((1 << effective_width_of(X)) - 1) << A
2154   // SimplifyDemandedBits in InstCombine can optimize the general case.
2155   // This pattern aims to help other passes for a common case.
2156   Value *XShifted;
2157   if (match(Op1, m_APInt(Mask)) &&
2158       match(Op0, m_c_Or(m_CombineAnd(m_NUWShl(m_Value(X), m_APInt(ShAmt)),
2159                                      m_Value(XShifted)),
2160                         m_Value(Y)))) {
2161     const unsigned Width = Op0->getType()->getScalarSizeInBits();
2162     const unsigned ShftCnt = ShAmt->getLimitedValue(Width);
2163     const KnownBits YKnown = computeKnownBits(Y, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
2164     const unsigned EffWidthY = YKnown.countMaxActiveBits();
2165     if (EffWidthY <= ShftCnt) {
2166       const KnownBits XKnown = computeKnownBits(X, Q.DL, 0, Q.AC, Q.CxtI,
2167                                                 Q.DT);
2168       const unsigned EffWidthX = XKnown.countMaxActiveBits();
2169       const APInt EffBitsY = APInt::getLowBitsSet(Width, EffWidthY);
2170       const APInt EffBitsX = APInt::getLowBitsSet(Width, EffWidthX) << ShftCnt;
2171       // If the mask is extracting all bits from X or Y as is, we can skip
2172       // this AND op.
2173       if (EffBitsY.isSubsetOf(*Mask) && !EffBitsX.intersects(*Mask))
2174         return Y;
2175       if (EffBitsX.isSubsetOf(*Mask) && !EffBitsY.intersects(*Mask))
2176         return XShifted;
2177     }
2178   }
2179 
2180   // ((X | Y) ^ X ) & ((X | Y) ^ Y) --> 0
2181   // ((X | Y) ^ Y ) & ((X | Y) ^ X) --> 0
2182   BinaryOperator *Or;
2183   if (match(Op0, m_c_Xor(m_Value(X),
2184                          m_CombineAnd(m_BinOp(Or),
2185                                       m_c_Or(m_Deferred(X), m_Value(Y))))) &&
2186       match(Op1, m_c_Xor(m_Specific(Or), m_Specific(Y))))
2187     return Constant::getNullValue(Op0->getType());
2188 
2189   return nullptr;
2190 }
2191 
2192 Value *llvm::SimplifyAndInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) {
2193   return ::SimplifyAndInst(Op0, Op1, Q, RecursionLimit);
2194 }
2195 
2196 static Value *simplifyOrLogic(Value *X, Value *Y) {
2197   assert(X->getType() == Y->getType() && "Expected same type for 'or' ops");
2198   Type *Ty = X->getType();
2199 
2200   // X | ~X --> -1
2201   if (match(Y, m_Not(m_Specific(X))))
2202     return ConstantInt::getAllOnesValue(Ty);
2203 
2204   // X | ~(X & ?) = -1
2205   if (match(Y, m_Not(m_c_And(m_Specific(X), m_Value()))))
2206     return ConstantInt::getAllOnesValue(Ty);
2207 
2208   // X | (X & ?) --> X
2209   if (match(Y, m_c_And(m_Specific(X), m_Value())))
2210     return X;
2211 
2212   Value *A, *B;
2213 
2214   // (A ^ B) | (A | B) --> A | B
2215   // (A ^ B) | (B | A) --> B | A
2216   if (match(X, m_Xor(m_Value(A), m_Value(B))) &&
2217       match(Y, m_c_Or(m_Specific(A), m_Specific(B))))
2218     return Y;
2219 
2220   // ~(A ^ B) | (A | B) --> -1
2221   // ~(A ^ B) | (B | A) --> -1
2222   if (match(X, m_Not(m_Xor(m_Value(A), m_Value(B)))) &&
2223       match(Y, m_c_Or(m_Specific(A), m_Specific(B))))
2224     return ConstantInt::getAllOnesValue(Ty);
2225 
2226   // (A & ~B) | (A ^ B) --> A ^ B
2227   // (~B & A) | (A ^ B) --> A ^ B
2228   // (A & ~B) | (B ^ A) --> B ^ A
2229   // (~B & A) | (B ^ A) --> B ^ A
2230   if (match(X, m_c_And(m_Value(A), m_Not(m_Value(B)))) &&
2231       match(Y, m_c_Xor(m_Specific(A), m_Specific(B))))
2232     return Y;
2233 
2234   // (~A ^ B) | (A & B) --> ~A ^ B
2235   // (B ^ ~A) | (A & B) --> B ^ ~A
2236   // (~A ^ B) | (B & A) --> ~A ^ B
2237   // (B ^ ~A) | (B & A) --> B ^ ~A
2238   if (match(X, m_c_Xor(m_Not(m_Value(A)), m_Value(B))) &&
2239       match(Y, m_c_And(m_Specific(A), m_Specific(B))))
2240     return X;
2241 
2242   // (~A | B) | (A ^ B) --> -1
2243   // (~A | B) | (B ^ A) --> -1
2244   // (B | ~A) | (A ^ B) --> -1
2245   // (B | ~A) | (B ^ A) --> -1
2246   if (match(X, m_c_Or(m_Not(m_Value(A)), m_Value(B))) &&
2247       match(Y, m_c_Xor(m_Specific(A), m_Specific(B))))
2248     return ConstantInt::getAllOnesValue(Ty);
2249 
2250   // (~A & B) | ~(A | B) --> ~A
2251   // (~A & B) | ~(B | A) --> ~A
2252   // (B & ~A) | ~(A | B) --> ~A
2253   // (B & ~A) | ~(B | A) --> ~A
2254   Value *NotA;
2255   if (match(X,
2256             m_c_And(m_CombineAnd(m_Value(NotA), m_NotForbidUndef(m_Value(A))),
2257                     m_Value(B))) &&
2258       match(Y, m_Not(m_c_Or(m_Specific(A), m_Specific(B)))))
2259     return NotA;
2260 
2261   // ~(A ^ B) | (A & B) --> ~(A ^ B)
2262   // ~(A ^ B) | (B & A) --> ~(A ^ B)
2263   Value *NotAB;
2264   if (match(X, m_CombineAnd(m_NotForbidUndef(m_Xor(m_Value(A), m_Value(B))),
2265                             m_Value(NotAB))) &&
2266       match(Y, m_c_And(m_Specific(A), m_Specific(B))))
2267     return NotAB;
2268 
2269   // ~(A & B) | (A ^ B) --> ~(A & B)
2270   // ~(A & B) | (B ^ A) --> ~(A & B)
2271   if (match(X, m_CombineAnd(m_NotForbidUndef(m_And(m_Value(A), m_Value(B))),
2272                             m_Value(NotAB))) &&
2273       match(Y, m_c_Xor(m_Specific(A), m_Specific(B))))
2274     return NotAB;
2275 
2276   return nullptr;
2277 }
2278 
2279 /// Given operands for an Or, see if we can fold the result.
2280 /// If not, this returns null.
2281 static Value *SimplifyOrInst(Value *Op0, Value *Op1, const SimplifyQuery &Q,
2282                              unsigned MaxRecurse) {
2283   if (Constant *C = foldOrCommuteConstant(Instruction::Or, Op0, Op1, Q))
2284     return C;
2285 
2286   // X | poison -> poison
2287   if (isa<PoisonValue>(Op1))
2288     return Op1;
2289 
2290   // X | undef -> -1
2291   // X | -1 = -1
2292   // Do not return Op1 because it may contain undef elements if it's a vector.
2293   if (Q.isUndefValue(Op1) || match(Op1, m_AllOnes()))
2294     return Constant::getAllOnesValue(Op0->getType());
2295 
2296   // X | X = X
2297   // X | 0 = X
2298   if (Op0 == Op1 || match(Op1, m_Zero()))
2299     return Op0;
2300 
2301   if (Value *R = simplifyOrLogic(Op0, Op1))
2302     return R;
2303   if (Value *R = simplifyOrLogic(Op1, Op0))
2304     return R;
2305 
2306   if (Value *V = simplifyLogicOfAddSub(Op0, Op1, Instruction::Or))
2307     return V;
2308 
2309   // Rotated -1 is still -1:
2310   // (-1 << X) | (-1 >> (C - X)) --> -1
2311   // (-1 >> X) | (-1 << (C - X)) --> -1
2312   // ...with C <= bitwidth (and commuted variants).
2313   Value *X, *Y;
2314   if ((match(Op0, m_Shl(m_AllOnes(), m_Value(X))) &&
2315        match(Op1, m_LShr(m_AllOnes(), m_Value(Y)))) ||
2316       (match(Op1, m_Shl(m_AllOnes(), m_Value(X))) &&
2317        match(Op0, m_LShr(m_AllOnes(), m_Value(Y))))) {
2318     const APInt *C;
2319     if ((match(X, m_Sub(m_APInt(C), m_Specific(Y))) ||
2320          match(Y, m_Sub(m_APInt(C), m_Specific(X)))) &&
2321         C->ule(X->getType()->getScalarSizeInBits())) {
2322       return ConstantInt::getAllOnesValue(X->getType());
2323     }
2324   }
2325 
2326   if (Value *V = simplifyAndOrOfCmps(Q, Op0, Op1, false))
2327     return V;
2328 
2329   // If we have a multiplication overflow check that is being 'and'ed with a
2330   // check that one of the multipliers is not zero, we can omit the 'and', and
2331   // only keep the overflow check.
2332   if (isCheckForZeroAndMulWithOverflow(Op0, Op1, false))
2333     return Op1;
2334   if (isCheckForZeroAndMulWithOverflow(Op1, Op0, false))
2335     return Op0;
2336 
2337   // Try some generic simplifications for associative operations.
2338   if (Value *V = SimplifyAssociativeBinOp(Instruction::Or, Op0, Op1, Q,
2339                                           MaxRecurse))
2340     return V;
2341 
2342   // Or distributes over And.  Try some generic simplifications based on this.
2343   if (Value *V = expandCommutativeBinOp(Instruction::Or, Op0, Op1,
2344                                         Instruction::And, Q, MaxRecurse))
2345     return V;
2346 
2347   if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) {
2348     if (Op0->getType()->isIntOrIntVectorTy(1)) {
2349       // A | (A || B) -> A || B
2350       if (match(Op1, m_Select(m_Specific(Op0), m_One(), m_Value())))
2351         return Op1;
2352       else if (match(Op0, m_Select(m_Specific(Op1), m_One(), m_Value())))
2353         return Op0;
2354     }
2355     // If the operation is with the result of a select instruction, check
2356     // whether operating on either branch of the select always yields the same
2357     // value.
2358     if (Value *V = ThreadBinOpOverSelect(Instruction::Or, Op0, Op1, Q,
2359                                          MaxRecurse))
2360       return V;
2361   }
2362 
2363   // (A & C1)|(B & C2)
2364   Value *A, *B;
2365   const APInt *C1, *C2;
2366   if (match(Op0, m_And(m_Value(A), m_APInt(C1))) &&
2367       match(Op1, m_And(m_Value(B), m_APInt(C2)))) {
2368     if (*C1 == ~*C2) {
2369       // (A & C1)|(B & C2)
2370       // If we have: ((V + N) & C1) | (V & C2)
2371       // .. and C2 = ~C1 and C2 is 0+1+ and (N & C2) == 0
2372       // replace with V+N.
2373       Value *N;
2374       if (C2->isMask() && // C2 == 0+1+
2375           match(A, m_c_Add(m_Specific(B), m_Value(N)))) {
2376         // Add commutes, try both ways.
2377         if (MaskedValueIsZero(N, *C2, Q.DL, 0, Q.AC, Q.CxtI, Q.DT))
2378           return A;
2379       }
2380       // Or commutes, try both ways.
2381       if (C1->isMask() &&
2382           match(B, m_c_Add(m_Specific(A), m_Value(N)))) {
2383         // Add commutes, try both ways.
2384         if (MaskedValueIsZero(N, *C1, Q.DL, 0, Q.AC, Q.CxtI, Q.DT))
2385           return B;
2386       }
2387     }
2388   }
2389 
2390   // If the operation is with the result of a phi instruction, check whether
2391   // operating on all incoming values of the phi always yields the same value.
2392   if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
2393     if (Value *V = ThreadBinOpOverPHI(Instruction::Or, Op0, Op1, Q, MaxRecurse))
2394       return V;
2395 
2396   return nullptr;
2397 }
2398 
2399 Value *llvm::SimplifyOrInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) {
2400   return ::SimplifyOrInst(Op0, Op1, Q, RecursionLimit);
2401 }
2402 
2403 /// Given operands for a Xor, see if we can fold the result.
2404 /// If not, this returns null.
2405 static Value *SimplifyXorInst(Value *Op0, Value *Op1, const SimplifyQuery &Q,
2406                               unsigned MaxRecurse) {
2407   if (Constant *C = foldOrCommuteConstant(Instruction::Xor, Op0, Op1, Q))
2408     return C;
2409 
2410   // A ^ undef -> undef
2411   if (Q.isUndefValue(Op1))
2412     return Op1;
2413 
2414   // A ^ 0 = A
2415   if (match(Op1, m_Zero()))
2416     return Op0;
2417 
2418   // A ^ A = 0
2419   if (Op0 == Op1)
2420     return Constant::getNullValue(Op0->getType());
2421 
2422   // A ^ ~A  =  ~A ^ A  =  -1
2423   if (match(Op0, m_Not(m_Specific(Op1))) ||
2424       match(Op1, m_Not(m_Specific(Op0))))
2425     return Constant::getAllOnesValue(Op0->getType());
2426 
2427   auto foldAndOrNot = [](Value *X, Value *Y) -> Value * {
2428     Value *A, *B;
2429     // (~A & B) ^ (A | B) --> A -- There are 8 commuted variants.
2430     if (match(X, m_c_And(m_Not(m_Value(A)), m_Value(B))) &&
2431         match(Y, m_c_Or(m_Specific(A), m_Specific(B))))
2432       return A;
2433 
2434     // (~A | B) ^ (A & B) --> ~A -- There are 8 commuted variants.
2435     // The 'not' op must contain a complete -1 operand (no undef elements for
2436     // vector) for the transform to be safe.
2437     Value *NotA;
2438     if (match(X,
2439               m_c_Or(m_CombineAnd(m_NotForbidUndef(m_Value(A)), m_Value(NotA)),
2440                      m_Value(B))) &&
2441         match(Y, m_c_And(m_Specific(A), m_Specific(B))))
2442       return NotA;
2443 
2444     return nullptr;
2445   };
2446   if (Value *R = foldAndOrNot(Op0, Op1))
2447     return R;
2448   if (Value *R = foldAndOrNot(Op1, Op0))
2449     return R;
2450 
2451   if (Value *V = simplifyLogicOfAddSub(Op0, Op1, Instruction::Xor))
2452     return V;
2453 
2454   // Try some generic simplifications for associative operations.
2455   if (Value *V = SimplifyAssociativeBinOp(Instruction::Xor, Op0, Op1, Q,
2456                                           MaxRecurse))
2457     return V;
2458 
2459   // Threading Xor over selects and phi nodes is pointless, so don't bother.
2460   // Threading over the select in "A ^ select(cond, B, C)" means evaluating
2461   // "A^B" and "A^C" and seeing if they are equal; but they are equal if and
2462   // only if B and C are equal.  If B and C are equal then (since we assume
2463   // that operands have already been simplified) "select(cond, B, C)" should
2464   // have been simplified to the common value of B and C already.  Analysing
2465   // "A^B" and "A^C" thus gains nothing, but costs compile time.  Similarly
2466   // for threading over phi nodes.
2467 
2468   return nullptr;
2469 }
2470 
2471 Value *llvm::SimplifyXorInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) {
2472   return ::SimplifyXorInst(Op0, Op1, Q, RecursionLimit);
2473 }
2474 
2475 
2476 static Type *GetCompareTy(Value *Op) {
2477   return CmpInst::makeCmpResultType(Op->getType());
2478 }
2479 
2480 /// Rummage around inside V looking for something equivalent to the comparison
2481 /// "LHS Pred RHS". Return such a value if found, otherwise return null.
2482 /// Helper function for analyzing max/min idioms.
2483 static Value *ExtractEquivalentCondition(Value *V, CmpInst::Predicate Pred,
2484                                          Value *LHS, Value *RHS) {
2485   SelectInst *SI = dyn_cast<SelectInst>(V);
2486   if (!SI)
2487     return nullptr;
2488   CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition());
2489   if (!Cmp)
2490     return nullptr;
2491   Value *CmpLHS = Cmp->getOperand(0), *CmpRHS = Cmp->getOperand(1);
2492   if (Pred == Cmp->getPredicate() && LHS == CmpLHS && RHS == CmpRHS)
2493     return Cmp;
2494   if (Pred == CmpInst::getSwappedPredicate(Cmp->getPredicate()) &&
2495       LHS == CmpRHS && RHS == CmpLHS)
2496     return Cmp;
2497   return nullptr;
2498 }
2499 
2500 // A significant optimization not implemented here is assuming that alloca
2501 // addresses are not equal to incoming argument values. They don't *alias*,
2502 // as we say, but that doesn't mean they aren't equal, so we take a
2503 // conservative approach.
2504 //
2505 // This is inspired in part by C++11 5.10p1:
2506 //   "Two pointers of the same type compare equal if and only if they are both
2507 //    null, both point to the same function, or both represent the same
2508 //    address."
2509 //
2510 // This is pretty permissive.
2511 //
2512 // It's also partly due to C11 6.5.9p6:
2513 //   "Two pointers compare equal if and only if both are null pointers, both are
2514 //    pointers to the same object (including a pointer to an object and a
2515 //    subobject at its beginning) or function, both are pointers to one past the
2516 //    last element of the same array object, or one is a pointer to one past the
2517 //    end of one array object and the other is a pointer to the start of a
2518 //    different array object that happens to immediately follow the first array
2519 //    object in the address space.)
2520 //
2521 // C11's version is more restrictive, however there's no reason why an argument
2522 // couldn't be a one-past-the-end value for a stack object in the caller and be
2523 // equal to the beginning of a stack object in the callee.
2524 //
2525 // If the C and C++ standards are ever made sufficiently restrictive in this
2526 // area, it may be possible to update LLVM's semantics accordingly and reinstate
2527 // this optimization.
2528 static Constant *
2529 computePointerICmp(CmpInst::Predicate Pred, Value *LHS, Value *RHS,
2530                    const SimplifyQuery &Q) {
2531   const DataLayout &DL = Q.DL;
2532   const TargetLibraryInfo *TLI = Q.TLI;
2533   const DominatorTree *DT = Q.DT;
2534   const Instruction *CxtI = Q.CxtI;
2535   const InstrInfoQuery &IIQ = Q.IIQ;
2536 
2537   // First, skip past any trivial no-ops.
2538   LHS = LHS->stripPointerCasts();
2539   RHS = RHS->stripPointerCasts();
2540 
2541   // A non-null pointer is not equal to a null pointer.
2542   if (isa<ConstantPointerNull>(RHS) && ICmpInst::isEquality(Pred) &&
2543       llvm::isKnownNonZero(LHS, DL, 0, nullptr, nullptr, nullptr,
2544                            IIQ.UseInstrInfo))
2545     return ConstantInt::get(GetCompareTy(LHS),
2546                             !CmpInst::isTrueWhenEqual(Pred));
2547 
2548   // We can only fold certain predicates on pointer comparisons.
2549   switch (Pred) {
2550   default:
2551     return nullptr;
2552 
2553     // Equality comaprisons are easy to fold.
2554   case CmpInst::ICMP_EQ:
2555   case CmpInst::ICMP_NE:
2556     break;
2557 
2558     // We can only handle unsigned relational comparisons because 'inbounds' on
2559     // a GEP only protects against unsigned wrapping.
2560   case CmpInst::ICMP_UGT:
2561   case CmpInst::ICMP_UGE:
2562   case CmpInst::ICMP_ULT:
2563   case CmpInst::ICMP_ULE:
2564     // However, we have to switch them to their signed variants to handle
2565     // negative indices from the base pointer.
2566     Pred = ICmpInst::getSignedPredicate(Pred);
2567     break;
2568   }
2569 
2570   // Strip off any constant offsets so that we can reason about them.
2571   // It's tempting to use getUnderlyingObject or even just stripInBoundsOffsets
2572   // here and compare base addresses like AliasAnalysis does, however there are
2573   // numerous hazards. AliasAnalysis and its utilities rely on special rules
2574   // governing loads and stores which don't apply to icmps. Also, AliasAnalysis
2575   // doesn't need to guarantee pointer inequality when it says NoAlias.
2576   Constant *LHSOffset = stripAndComputeConstantOffsets(DL, LHS);
2577   Constant *RHSOffset = stripAndComputeConstantOffsets(DL, RHS);
2578 
2579   // If LHS and RHS are related via constant offsets to the same base
2580   // value, we can replace it with an icmp which just compares the offsets.
2581   if (LHS == RHS)
2582     return ConstantExpr::getICmp(Pred, LHSOffset, RHSOffset);
2583 
2584   // Various optimizations for (in)equality comparisons.
2585   if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE) {
2586     // Different non-empty allocations that exist at the same time have
2587     // different addresses (if the program can tell). Global variables always
2588     // exist, so they always exist during the lifetime of each other and all
2589     // allocas. Two different allocas usually have different addresses...
2590     //
2591     // However, if there's an @llvm.stackrestore dynamically in between two
2592     // allocas, they may have the same address. It's tempting to reduce the
2593     // scope of the problem by only looking at *static* allocas here. That would
2594     // cover the majority of allocas while significantly reducing the likelihood
2595     // of having an @llvm.stackrestore pop up in the middle. However, it's not
2596     // actually impossible for an @llvm.stackrestore to pop up in the middle of
2597     // an entry block. Also, if we have a block that's not attached to a
2598     // function, we can't tell if it's "static" under the current definition.
2599     // Theoretically, this problem could be fixed by creating a new kind of
2600     // instruction kind specifically for static allocas. Such a new instruction
2601     // could be required to be at the top of the entry block, thus preventing it
2602     // from being subject to a @llvm.stackrestore. Instcombine could even
2603     // convert regular allocas into these special allocas. It'd be nifty.
2604     // However, until then, this problem remains open.
2605     //
2606     // So, we'll assume that two non-empty allocas have different addresses
2607     // for now.
2608     //
2609     // With all that, if the offsets are within the bounds of their allocations
2610     // (and not one-past-the-end! so we can't use inbounds!), and their
2611     // allocations aren't the same, the pointers are not equal.
2612     //
2613     // Note that it's not necessary to check for LHS being a global variable
2614     // address, due to canonicalization and constant folding.
2615     if (isa<AllocaInst>(LHS) &&
2616         (isa<AllocaInst>(RHS) || isa<GlobalVariable>(RHS))) {
2617       ConstantInt *LHSOffsetCI = dyn_cast<ConstantInt>(LHSOffset);
2618       ConstantInt *RHSOffsetCI = dyn_cast<ConstantInt>(RHSOffset);
2619       uint64_t LHSSize, RHSSize;
2620       ObjectSizeOpts Opts;
2621       Opts.NullIsUnknownSize =
2622           NullPointerIsDefined(cast<AllocaInst>(LHS)->getFunction());
2623       if (LHSOffsetCI && RHSOffsetCI &&
2624           getObjectSize(LHS, LHSSize, DL, TLI, Opts) &&
2625           getObjectSize(RHS, RHSSize, DL, TLI, Opts)) {
2626         const APInt &LHSOffsetValue = LHSOffsetCI->getValue();
2627         const APInt &RHSOffsetValue = RHSOffsetCI->getValue();
2628         if (!LHSOffsetValue.isNegative() &&
2629             !RHSOffsetValue.isNegative() &&
2630             LHSOffsetValue.ult(LHSSize) &&
2631             RHSOffsetValue.ult(RHSSize)) {
2632           return ConstantInt::get(GetCompareTy(LHS),
2633                                   !CmpInst::isTrueWhenEqual(Pred));
2634         }
2635       }
2636 
2637       // Repeat the above check but this time without depending on DataLayout
2638       // or being able to compute a precise size.
2639       if (!cast<PointerType>(LHS->getType())->isEmptyTy() &&
2640           !cast<PointerType>(RHS->getType())->isEmptyTy() &&
2641           LHSOffset->isNullValue() &&
2642           RHSOffset->isNullValue())
2643         return ConstantInt::get(GetCompareTy(LHS),
2644                                 !CmpInst::isTrueWhenEqual(Pred));
2645     }
2646 
2647     // Even if an non-inbounds GEP occurs along the path we can still optimize
2648     // equality comparisons concerning the result. We avoid walking the whole
2649     // chain again by starting where the last calls to
2650     // stripAndComputeConstantOffsets left off and accumulate the offsets.
2651     Constant *LHSNoBound = stripAndComputeConstantOffsets(DL, LHS, true);
2652     Constant *RHSNoBound = stripAndComputeConstantOffsets(DL, RHS, true);
2653     if (LHS == RHS)
2654       return ConstantExpr::getICmp(Pred,
2655                                    ConstantExpr::getAdd(LHSOffset, LHSNoBound),
2656                                    ConstantExpr::getAdd(RHSOffset, RHSNoBound));
2657 
2658     // If one side of the equality comparison must come from a noalias call
2659     // (meaning a system memory allocation function), and the other side must
2660     // come from a pointer that cannot overlap with dynamically-allocated
2661     // memory within the lifetime of the current function (allocas, byval
2662     // arguments, globals), then determine the comparison result here.
2663     SmallVector<const Value *, 8> LHSUObjs, RHSUObjs;
2664     getUnderlyingObjects(LHS, LHSUObjs);
2665     getUnderlyingObjects(RHS, RHSUObjs);
2666 
2667     // Is the set of underlying objects all noalias calls?
2668     auto IsNAC = [](ArrayRef<const Value *> Objects) {
2669       return all_of(Objects, isNoAliasCall);
2670     };
2671 
2672     // Is the set of underlying objects all things which must be disjoint from
2673     // noalias calls. For allocas, we consider only static ones (dynamic
2674     // allocas might be transformed into calls to malloc not simultaneously
2675     // live with the compared-to allocation). For globals, we exclude symbols
2676     // that might be resolve lazily to symbols in another dynamically-loaded
2677     // library (and, thus, could be malloc'ed by the implementation).
2678     auto IsAllocDisjoint = [](ArrayRef<const Value *> Objects) {
2679       return all_of(Objects, [](const Value *V) {
2680         if (const AllocaInst *AI = dyn_cast<AllocaInst>(V))
2681           return AI->getParent() && AI->getFunction() && AI->isStaticAlloca();
2682         if (const GlobalValue *GV = dyn_cast<GlobalValue>(V))
2683           return (GV->hasLocalLinkage() || GV->hasHiddenVisibility() ||
2684                   GV->hasProtectedVisibility() || GV->hasGlobalUnnamedAddr()) &&
2685                  !GV->isThreadLocal();
2686         if (const Argument *A = dyn_cast<Argument>(V))
2687           return A->hasByValAttr();
2688         return false;
2689       });
2690     };
2691 
2692     if ((IsNAC(LHSUObjs) && IsAllocDisjoint(RHSUObjs)) ||
2693         (IsNAC(RHSUObjs) && IsAllocDisjoint(LHSUObjs)))
2694         return ConstantInt::get(GetCompareTy(LHS),
2695                                 !CmpInst::isTrueWhenEqual(Pred));
2696 
2697     // Fold comparisons for non-escaping pointer even if the allocation call
2698     // cannot be elided. We cannot fold malloc comparison to null. Also, the
2699     // dynamic allocation call could be either of the operands.
2700     Value *MI = nullptr;
2701     if (isAllocLikeFn(LHS, TLI) &&
2702         llvm::isKnownNonZero(RHS, DL, 0, nullptr, CxtI, DT))
2703       MI = LHS;
2704     else if (isAllocLikeFn(RHS, TLI) &&
2705              llvm::isKnownNonZero(LHS, DL, 0, nullptr, CxtI, DT))
2706       MI = RHS;
2707     // FIXME: We should also fold the compare when the pointer escapes, but the
2708     // compare dominates the pointer escape
2709     if (MI && !PointerMayBeCaptured(MI, true, true))
2710       return ConstantInt::get(GetCompareTy(LHS),
2711                               CmpInst::isFalseWhenEqual(Pred));
2712   }
2713 
2714   // Otherwise, fail.
2715   return nullptr;
2716 }
2717 
2718 /// Fold an icmp when its operands have i1 scalar type.
2719 static Value *simplifyICmpOfBools(CmpInst::Predicate Pred, Value *LHS,
2720                                   Value *RHS, const SimplifyQuery &Q) {
2721   Type *ITy = GetCompareTy(LHS); // The return type.
2722   Type *OpTy = LHS->getType();   // The operand type.
2723   if (!OpTy->isIntOrIntVectorTy(1))
2724     return nullptr;
2725 
2726   // A boolean compared to true/false can be reduced in 14 out of the 20
2727   // (10 predicates * 2 constants) possible combinations. The other
2728   // 6 cases require a 'not' of the LHS.
2729 
2730   auto ExtractNotLHS = [](Value *V) -> Value * {
2731     Value *X;
2732     if (match(V, m_Not(m_Value(X))))
2733       return X;
2734     return nullptr;
2735   };
2736 
2737   if (match(RHS, m_Zero())) {
2738     switch (Pred) {
2739     case CmpInst::ICMP_NE:  // X !=  0 -> X
2740     case CmpInst::ICMP_UGT: // X >u  0 -> X
2741     case CmpInst::ICMP_SLT: // X <s  0 -> X
2742       return LHS;
2743 
2744     case CmpInst::ICMP_EQ:  // not(X) ==  0 -> X != 0 -> X
2745     case CmpInst::ICMP_ULE: // not(X) <=u 0 -> X >u 0 -> X
2746     case CmpInst::ICMP_SGE: // not(X) >=s 0 -> X <s 0 -> X
2747       if (Value *X = ExtractNotLHS(LHS))
2748         return X;
2749       break;
2750 
2751     case CmpInst::ICMP_ULT: // X <u  0 -> false
2752     case CmpInst::ICMP_SGT: // X >s  0 -> false
2753       return getFalse(ITy);
2754 
2755     case CmpInst::ICMP_UGE: // X >=u 0 -> true
2756     case CmpInst::ICMP_SLE: // X <=s 0 -> true
2757       return getTrue(ITy);
2758 
2759     default: break;
2760     }
2761   } else if (match(RHS, m_One())) {
2762     switch (Pred) {
2763     case CmpInst::ICMP_EQ:  // X ==   1 -> X
2764     case CmpInst::ICMP_UGE: // X >=u  1 -> X
2765     case CmpInst::ICMP_SLE: // X <=s -1 -> X
2766       return LHS;
2767 
2768     case CmpInst::ICMP_NE:  // not(X) !=  1 -> X ==   1 -> X
2769     case CmpInst::ICMP_ULT: // not(X) <=u 1 -> X >=u  1 -> X
2770     case CmpInst::ICMP_SGT: // not(X) >s  1 -> X <=s -1 -> X
2771       if (Value *X = ExtractNotLHS(LHS))
2772         return X;
2773       break;
2774 
2775     case CmpInst::ICMP_UGT: // X >u   1 -> false
2776     case CmpInst::ICMP_SLT: // X <s  -1 -> false
2777       return getFalse(ITy);
2778 
2779     case CmpInst::ICMP_ULE: // X <=u  1 -> true
2780     case CmpInst::ICMP_SGE: // X >=s -1 -> true
2781       return getTrue(ITy);
2782 
2783     default: break;
2784     }
2785   }
2786 
2787   switch (Pred) {
2788   default:
2789     break;
2790   case ICmpInst::ICMP_UGE:
2791     if (isImpliedCondition(RHS, LHS, Q.DL).getValueOr(false))
2792       return getTrue(ITy);
2793     break;
2794   case ICmpInst::ICMP_SGE:
2795     /// For signed comparison, the values for an i1 are 0 and -1
2796     /// respectively. This maps into a truth table of:
2797     /// LHS | RHS | LHS >=s RHS   | LHS implies RHS
2798     ///  0  |  0  |  1 (0 >= 0)   |  1
2799     ///  0  |  1  |  1 (0 >= -1)  |  1
2800     ///  1  |  0  |  0 (-1 >= 0)  |  0
2801     ///  1  |  1  |  1 (-1 >= -1) |  1
2802     if (isImpliedCondition(LHS, RHS, Q.DL).getValueOr(false))
2803       return getTrue(ITy);
2804     break;
2805   case ICmpInst::ICMP_ULE:
2806     if (isImpliedCondition(LHS, RHS, Q.DL).getValueOr(false))
2807       return getTrue(ITy);
2808     break;
2809   }
2810 
2811   return nullptr;
2812 }
2813 
2814 /// Try hard to fold icmp with zero RHS because this is a common case.
2815 static Value *simplifyICmpWithZero(CmpInst::Predicate Pred, Value *LHS,
2816                                    Value *RHS, const SimplifyQuery &Q) {
2817   if (!match(RHS, m_Zero()))
2818     return nullptr;
2819 
2820   Type *ITy = GetCompareTy(LHS); // The return type.
2821   switch (Pred) {
2822   default:
2823     llvm_unreachable("Unknown ICmp predicate!");
2824   case ICmpInst::ICMP_ULT:
2825     return getFalse(ITy);
2826   case ICmpInst::ICMP_UGE:
2827     return getTrue(ITy);
2828   case ICmpInst::ICMP_EQ:
2829   case ICmpInst::ICMP_ULE:
2830     if (isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT, Q.IIQ.UseInstrInfo))
2831       return getFalse(ITy);
2832     break;
2833   case ICmpInst::ICMP_NE:
2834   case ICmpInst::ICMP_UGT:
2835     if (isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT, Q.IIQ.UseInstrInfo))
2836       return getTrue(ITy);
2837     break;
2838   case ICmpInst::ICMP_SLT: {
2839     KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
2840     if (LHSKnown.isNegative())
2841       return getTrue(ITy);
2842     if (LHSKnown.isNonNegative())
2843       return getFalse(ITy);
2844     break;
2845   }
2846   case ICmpInst::ICMP_SLE: {
2847     KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
2848     if (LHSKnown.isNegative())
2849       return getTrue(ITy);
2850     if (LHSKnown.isNonNegative() &&
2851         isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT))
2852       return getFalse(ITy);
2853     break;
2854   }
2855   case ICmpInst::ICMP_SGE: {
2856     KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
2857     if (LHSKnown.isNegative())
2858       return getFalse(ITy);
2859     if (LHSKnown.isNonNegative())
2860       return getTrue(ITy);
2861     break;
2862   }
2863   case ICmpInst::ICMP_SGT: {
2864     KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
2865     if (LHSKnown.isNegative())
2866       return getFalse(ITy);
2867     if (LHSKnown.isNonNegative() &&
2868         isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT))
2869       return getTrue(ITy);
2870     break;
2871   }
2872   }
2873 
2874   return nullptr;
2875 }
2876 
2877 static Value *simplifyICmpWithConstant(CmpInst::Predicate Pred, Value *LHS,
2878                                        Value *RHS, const InstrInfoQuery &IIQ) {
2879   Type *ITy = GetCompareTy(RHS); // The return type.
2880 
2881   Value *X;
2882   // Sign-bit checks can be optimized to true/false after unsigned
2883   // floating-point casts:
2884   // icmp slt (bitcast (uitofp X)),  0 --> false
2885   // icmp sgt (bitcast (uitofp X)), -1 --> true
2886   if (match(LHS, m_BitCast(m_UIToFP(m_Value(X))))) {
2887     if (Pred == ICmpInst::ICMP_SLT && match(RHS, m_Zero()))
2888       return ConstantInt::getFalse(ITy);
2889     if (Pred == ICmpInst::ICMP_SGT && match(RHS, m_AllOnes()))
2890       return ConstantInt::getTrue(ITy);
2891   }
2892 
2893   const APInt *C;
2894   if (!match(RHS, m_APIntAllowUndef(C)))
2895     return nullptr;
2896 
2897   // Rule out tautological comparisons (eg., ult 0 or uge 0).
2898   ConstantRange RHS_CR = ConstantRange::makeExactICmpRegion(Pred, *C);
2899   if (RHS_CR.isEmptySet())
2900     return ConstantInt::getFalse(ITy);
2901   if (RHS_CR.isFullSet())
2902     return ConstantInt::getTrue(ITy);
2903 
2904   ConstantRange LHS_CR =
2905       computeConstantRange(LHS, CmpInst::isSigned(Pred), IIQ.UseInstrInfo);
2906   if (!LHS_CR.isFullSet()) {
2907     if (RHS_CR.contains(LHS_CR))
2908       return ConstantInt::getTrue(ITy);
2909     if (RHS_CR.inverse().contains(LHS_CR))
2910       return ConstantInt::getFalse(ITy);
2911   }
2912 
2913   // (mul nuw/nsw X, MulC) != C --> true  (if C is not a multiple of MulC)
2914   // (mul nuw/nsw X, MulC) == C --> false (if C is not a multiple of MulC)
2915   const APInt *MulC;
2916   if (ICmpInst::isEquality(Pred) &&
2917       ((match(LHS, m_NUWMul(m_Value(), m_APIntAllowUndef(MulC))) &&
2918         *MulC != 0 && C->urem(*MulC) != 0) ||
2919        (match(LHS, m_NSWMul(m_Value(), m_APIntAllowUndef(MulC))) &&
2920         *MulC != 0 && C->srem(*MulC) != 0)))
2921     return ConstantInt::get(ITy, Pred == ICmpInst::ICMP_NE);
2922 
2923   return nullptr;
2924 }
2925 
2926 static Value *simplifyICmpWithBinOpOnLHS(
2927     CmpInst::Predicate Pred, BinaryOperator *LBO, Value *RHS,
2928     const SimplifyQuery &Q, unsigned MaxRecurse) {
2929   Type *ITy = GetCompareTy(RHS); // The return type.
2930 
2931   Value *Y = nullptr;
2932   // icmp pred (or X, Y), X
2933   if (match(LBO, m_c_Or(m_Value(Y), m_Specific(RHS)))) {
2934     if (Pred == ICmpInst::ICMP_ULT)
2935       return getFalse(ITy);
2936     if (Pred == ICmpInst::ICMP_UGE)
2937       return getTrue(ITy);
2938 
2939     if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SGE) {
2940       KnownBits RHSKnown = computeKnownBits(RHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
2941       KnownBits YKnown = computeKnownBits(Y, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
2942       if (RHSKnown.isNonNegative() && YKnown.isNegative())
2943         return Pred == ICmpInst::ICMP_SLT ? getTrue(ITy) : getFalse(ITy);
2944       if (RHSKnown.isNegative() || YKnown.isNonNegative())
2945         return Pred == ICmpInst::ICMP_SLT ? getFalse(ITy) : getTrue(ITy);
2946     }
2947   }
2948 
2949   // icmp pred (and X, Y), X
2950   if (match(LBO, m_c_And(m_Value(), m_Specific(RHS)))) {
2951     if (Pred == ICmpInst::ICMP_UGT)
2952       return getFalse(ITy);
2953     if (Pred == ICmpInst::ICMP_ULE)
2954       return getTrue(ITy);
2955   }
2956 
2957   // icmp pred (urem X, Y), Y
2958   if (match(LBO, m_URem(m_Value(), m_Specific(RHS)))) {
2959     switch (Pred) {
2960     default:
2961       break;
2962     case ICmpInst::ICMP_SGT:
2963     case ICmpInst::ICMP_SGE: {
2964       KnownBits Known = computeKnownBits(RHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
2965       if (!Known.isNonNegative())
2966         break;
2967       LLVM_FALLTHROUGH;
2968     }
2969     case ICmpInst::ICMP_EQ:
2970     case ICmpInst::ICMP_UGT:
2971     case ICmpInst::ICMP_UGE:
2972       return getFalse(ITy);
2973     case ICmpInst::ICMP_SLT:
2974     case ICmpInst::ICMP_SLE: {
2975       KnownBits Known = computeKnownBits(RHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
2976       if (!Known.isNonNegative())
2977         break;
2978       LLVM_FALLTHROUGH;
2979     }
2980     case ICmpInst::ICMP_NE:
2981     case ICmpInst::ICMP_ULT:
2982     case ICmpInst::ICMP_ULE:
2983       return getTrue(ITy);
2984     }
2985   }
2986 
2987   // icmp pred (urem X, Y), X
2988   if (match(LBO, m_URem(m_Specific(RHS), m_Value()))) {
2989     if (Pred == ICmpInst::ICMP_ULE)
2990       return getTrue(ITy);
2991     if (Pred == ICmpInst::ICMP_UGT)
2992       return getFalse(ITy);
2993   }
2994 
2995   // x >>u y <=u x --> true.
2996   // x >>u y >u  x --> false.
2997   // x udiv y <=u x --> true.
2998   // x udiv y >u  x --> false.
2999   if (match(LBO, m_LShr(m_Specific(RHS), m_Value())) ||
3000       match(LBO, m_UDiv(m_Specific(RHS), m_Value()))) {
3001     // icmp pred (X op Y), X
3002     if (Pred == ICmpInst::ICMP_UGT)
3003       return getFalse(ITy);
3004     if (Pred == ICmpInst::ICMP_ULE)
3005       return getTrue(ITy);
3006   }
3007 
3008   // If x is nonzero:
3009   // x >>u C <u  x --> true  for C != 0.
3010   // x >>u C !=  x --> true  for C != 0.
3011   // x >>u C >=u x --> false for C != 0.
3012   // x >>u C ==  x --> false for C != 0.
3013   // x udiv C <u  x --> true  for C != 1.
3014   // x udiv C !=  x --> true  for C != 1.
3015   // x udiv C >=u x --> false for C != 1.
3016   // x udiv C ==  x --> false for C != 1.
3017   // TODO: allow non-constant shift amount/divisor
3018   const APInt *C;
3019   if ((match(LBO, m_LShr(m_Specific(RHS), m_APInt(C))) && *C != 0) ||
3020       (match(LBO, m_UDiv(m_Specific(RHS), m_APInt(C))) && *C != 1)) {
3021     if (isKnownNonZero(RHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) {
3022       switch (Pred) {
3023       default:
3024         break;
3025       case ICmpInst::ICMP_EQ:
3026       case ICmpInst::ICMP_UGE:
3027         return getFalse(ITy);
3028       case ICmpInst::ICMP_NE:
3029       case ICmpInst::ICMP_ULT:
3030         return getTrue(ITy);
3031       case ICmpInst::ICMP_UGT:
3032       case ICmpInst::ICMP_ULE:
3033         // UGT/ULE are handled by the more general case just above
3034         llvm_unreachable("Unexpected UGT/ULE, should have been handled");
3035       }
3036     }
3037   }
3038 
3039   // (x*C1)/C2 <= x for C1 <= C2.
3040   // This holds even if the multiplication overflows: Assume that x != 0 and
3041   // arithmetic is modulo M. For overflow to occur we must have C1 >= M/x and
3042   // thus C2 >= M/x. It follows that (x*C1)/C2 <= (M-1)/C2 <= ((M-1)*x)/M < x.
3043   //
3044   // Additionally, either the multiplication and division might be represented
3045   // as shifts:
3046   // (x*C1)>>C2 <= x for C1 < 2**C2.
3047   // (x<<C1)/C2 <= x for 2**C1 < C2.
3048   const APInt *C1, *C2;
3049   if ((match(LBO, m_UDiv(m_Mul(m_Specific(RHS), m_APInt(C1)), m_APInt(C2))) &&
3050        C1->ule(*C2)) ||
3051       (match(LBO, m_LShr(m_Mul(m_Specific(RHS), m_APInt(C1)), m_APInt(C2))) &&
3052        C1->ule(APInt(C2->getBitWidth(), 1) << *C2)) ||
3053       (match(LBO, m_UDiv(m_Shl(m_Specific(RHS), m_APInt(C1)), m_APInt(C2))) &&
3054        (APInt(C1->getBitWidth(), 1) << *C1).ule(*C2))) {
3055     if (Pred == ICmpInst::ICMP_UGT)
3056       return getFalse(ITy);
3057     if (Pred == ICmpInst::ICMP_ULE)
3058       return getTrue(ITy);
3059   }
3060 
3061   return nullptr;
3062 }
3063 
3064 
3065 // If only one of the icmp's operands has NSW flags, try to prove that:
3066 //
3067 //   icmp slt (x + C1), (x +nsw C2)
3068 //
3069 // is equivalent to:
3070 //
3071 //   icmp slt C1, C2
3072 //
3073 // which is true if x + C2 has the NSW flags set and:
3074 // *) C1 < C2 && C1 >= 0, or
3075 // *) C2 < C1 && C1 <= 0.
3076 //
3077 static bool trySimplifyICmpWithAdds(CmpInst::Predicate Pred, Value *LHS,
3078                                     Value *RHS) {
3079   // TODO: only support icmp slt for now.
3080   if (Pred != CmpInst::ICMP_SLT)
3081     return false;
3082 
3083   // Canonicalize nsw add as RHS.
3084   if (!match(RHS, m_NSWAdd(m_Value(), m_Value())))
3085     std::swap(LHS, RHS);
3086   if (!match(RHS, m_NSWAdd(m_Value(), m_Value())))
3087     return false;
3088 
3089   Value *X;
3090   const APInt *C1, *C2;
3091   if (!match(LHS, m_c_Add(m_Value(X), m_APInt(C1))) ||
3092       !match(RHS, m_c_Add(m_Specific(X), m_APInt(C2))))
3093     return false;
3094 
3095   return (C1->slt(*C2) && C1->isNonNegative()) ||
3096          (C2->slt(*C1) && C1->isNonPositive());
3097 }
3098 
3099 
3100 /// TODO: A large part of this logic is duplicated in InstCombine's
3101 /// foldICmpBinOp(). We should be able to share that and avoid the code
3102 /// duplication.
3103 static Value *simplifyICmpWithBinOp(CmpInst::Predicate Pred, Value *LHS,
3104                                     Value *RHS, const SimplifyQuery &Q,
3105                                     unsigned MaxRecurse) {
3106   BinaryOperator *LBO = dyn_cast<BinaryOperator>(LHS);
3107   BinaryOperator *RBO = dyn_cast<BinaryOperator>(RHS);
3108   if (MaxRecurse && (LBO || RBO)) {
3109     // Analyze the case when either LHS or RHS is an add instruction.
3110     Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr;
3111     // LHS = A + B (or A and B are null); RHS = C + D (or C and D are null).
3112     bool NoLHSWrapProblem = false, NoRHSWrapProblem = false;
3113     if (LBO && LBO->getOpcode() == Instruction::Add) {
3114       A = LBO->getOperand(0);
3115       B = LBO->getOperand(1);
3116       NoLHSWrapProblem =
3117           ICmpInst::isEquality(Pred) ||
3118           (CmpInst::isUnsigned(Pred) &&
3119            Q.IIQ.hasNoUnsignedWrap(cast<OverflowingBinaryOperator>(LBO))) ||
3120           (CmpInst::isSigned(Pred) &&
3121            Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(LBO)));
3122     }
3123     if (RBO && RBO->getOpcode() == Instruction::Add) {
3124       C = RBO->getOperand(0);
3125       D = RBO->getOperand(1);
3126       NoRHSWrapProblem =
3127           ICmpInst::isEquality(Pred) ||
3128           (CmpInst::isUnsigned(Pred) &&
3129            Q.IIQ.hasNoUnsignedWrap(cast<OverflowingBinaryOperator>(RBO))) ||
3130           (CmpInst::isSigned(Pred) &&
3131            Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(RBO)));
3132     }
3133 
3134     // icmp (X+Y), X -> icmp Y, 0 for equalities or if there is no overflow.
3135     if ((A == RHS || B == RHS) && NoLHSWrapProblem)
3136       if (Value *V = SimplifyICmpInst(Pred, A == RHS ? B : A,
3137                                       Constant::getNullValue(RHS->getType()), Q,
3138                                       MaxRecurse - 1))
3139         return V;
3140 
3141     // icmp X, (X+Y) -> icmp 0, Y for equalities or if there is no overflow.
3142     if ((C == LHS || D == LHS) && NoRHSWrapProblem)
3143       if (Value *V =
3144               SimplifyICmpInst(Pred, Constant::getNullValue(LHS->getType()),
3145                                C == LHS ? D : C, Q, MaxRecurse - 1))
3146         return V;
3147 
3148     // icmp (X+Y), (X+Z) -> icmp Y,Z for equalities or if there is no overflow.
3149     bool CanSimplify = (NoLHSWrapProblem && NoRHSWrapProblem) ||
3150                        trySimplifyICmpWithAdds(Pred, LHS, RHS);
3151     if (A && C && (A == C || A == D || B == C || B == D) && CanSimplify) {
3152       // Determine Y and Z in the form icmp (X+Y), (X+Z).
3153       Value *Y, *Z;
3154       if (A == C) {
3155         // C + B == C + D  ->  B == D
3156         Y = B;
3157         Z = D;
3158       } else if (A == D) {
3159         // D + B == C + D  ->  B == C
3160         Y = B;
3161         Z = C;
3162       } else if (B == C) {
3163         // A + C == C + D  ->  A == D
3164         Y = A;
3165         Z = D;
3166       } else {
3167         assert(B == D);
3168         // A + D == C + D  ->  A == C
3169         Y = A;
3170         Z = C;
3171       }
3172       if (Value *V = SimplifyICmpInst(Pred, Y, Z, Q, MaxRecurse - 1))
3173         return V;
3174     }
3175   }
3176 
3177   if (LBO)
3178     if (Value *V = simplifyICmpWithBinOpOnLHS(Pred, LBO, RHS, Q, MaxRecurse))
3179       return V;
3180 
3181   if (RBO)
3182     if (Value *V = simplifyICmpWithBinOpOnLHS(
3183             ICmpInst::getSwappedPredicate(Pred), RBO, LHS, Q, MaxRecurse))
3184       return V;
3185 
3186   // 0 - (zext X) pred C
3187   if (!CmpInst::isUnsigned(Pred) && match(LHS, m_Neg(m_ZExt(m_Value())))) {
3188     const APInt *C;
3189     if (match(RHS, m_APInt(C))) {
3190       if (C->isStrictlyPositive()) {
3191         if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_NE)
3192           return ConstantInt::getTrue(GetCompareTy(RHS));
3193         if (Pred == ICmpInst::ICMP_SGE || Pred == ICmpInst::ICMP_EQ)
3194           return ConstantInt::getFalse(GetCompareTy(RHS));
3195       }
3196       if (C->isNonNegative()) {
3197         if (Pred == ICmpInst::ICMP_SLE)
3198           return ConstantInt::getTrue(GetCompareTy(RHS));
3199         if (Pred == ICmpInst::ICMP_SGT)
3200           return ConstantInt::getFalse(GetCompareTy(RHS));
3201       }
3202     }
3203   }
3204 
3205   //   If C2 is a power-of-2 and C is not:
3206   //   (C2 << X) == C --> false
3207   //   (C2 << X) != C --> true
3208   const APInt *C;
3209   if (match(LHS, m_Shl(m_Power2(), m_Value())) &&
3210       match(RHS, m_APIntAllowUndef(C)) && !C->isPowerOf2()) {
3211     // C2 << X can equal zero in some circumstances.
3212     // This simplification might be unsafe if C is zero.
3213     //
3214     // We know it is safe if:
3215     // - The shift is nsw. We can't shift out the one bit.
3216     // - The shift is nuw. We can't shift out the one bit.
3217     // - C2 is one.
3218     // - C isn't zero.
3219     if (Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(LBO)) ||
3220         Q.IIQ.hasNoUnsignedWrap(cast<OverflowingBinaryOperator>(LBO)) ||
3221         match(LHS, m_Shl(m_One(), m_Value())) || !C->isZero()) {
3222       if (Pred == ICmpInst::ICMP_EQ)
3223         return ConstantInt::getFalse(GetCompareTy(RHS));
3224       if (Pred == ICmpInst::ICMP_NE)
3225         return ConstantInt::getTrue(GetCompareTy(RHS));
3226     }
3227   }
3228 
3229   // TODO: This is overly constrained. LHS can be any power-of-2.
3230   // (1 << X)  >u 0x8000 --> false
3231   // (1 << X) <=u 0x8000 --> true
3232   if (match(LHS, m_Shl(m_One(), m_Value())) && match(RHS, m_SignMask())) {
3233     if (Pred == ICmpInst::ICMP_UGT)
3234       return ConstantInt::getFalse(GetCompareTy(RHS));
3235     if (Pred == ICmpInst::ICMP_ULE)
3236       return ConstantInt::getTrue(GetCompareTy(RHS));
3237   }
3238 
3239   if (MaxRecurse && LBO && RBO && LBO->getOpcode() == RBO->getOpcode() &&
3240       LBO->getOperand(1) == RBO->getOperand(1)) {
3241     switch (LBO->getOpcode()) {
3242     default:
3243       break;
3244     case Instruction::UDiv:
3245     case Instruction::LShr:
3246       if (ICmpInst::isSigned(Pred) || !Q.IIQ.isExact(LBO) ||
3247           !Q.IIQ.isExact(RBO))
3248         break;
3249       if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0),
3250                                       RBO->getOperand(0), Q, MaxRecurse - 1))
3251           return V;
3252       break;
3253     case Instruction::SDiv:
3254       if (!ICmpInst::isEquality(Pred) || !Q.IIQ.isExact(LBO) ||
3255           !Q.IIQ.isExact(RBO))
3256         break;
3257       if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0),
3258                                       RBO->getOperand(0), Q, MaxRecurse - 1))
3259         return V;
3260       break;
3261     case Instruction::AShr:
3262       if (!Q.IIQ.isExact(LBO) || !Q.IIQ.isExact(RBO))
3263         break;
3264       if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0),
3265                                       RBO->getOperand(0), Q, MaxRecurse - 1))
3266         return V;
3267       break;
3268     case Instruction::Shl: {
3269       bool NUW = Q.IIQ.hasNoUnsignedWrap(LBO) && Q.IIQ.hasNoUnsignedWrap(RBO);
3270       bool NSW = Q.IIQ.hasNoSignedWrap(LBO) && Q.IIQ.hasNoSignedWrap(RBO);
3271       if (!NUW && !NSW)
3272         break;
3273       if (!NSW && ICmpInst::isSigned(Pred))
3274         break;
3275       if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0),
3276                                       RBO->getOperand(0), Q, MaxRecurse - 1))
3277         return V;
3278       break;
3279     }
3280     }
3281   }
3282   return nullptr;
3283 }
3284 
3285 /// Simplify integer comparisons where at least one operand of the compare
3286 /// matches an integer min/max idiom.
3287 static Value *simplifyICmpWithMinMax(CmpInst::Predicate Pred, Value *LHS,
3288                                      Value *RHS, const SimplifyQuery &Q,
3289                                      unsigned MaxRecurse) {
3290   Type *ITy = GetCompareTy(LHS); // The return type.
3291   Value *A, *B;
3292   CmpInst::Predicate P = CmpInst::BAD_ICMP_PREDICATE;
3293   CmpInst::Predicate EqP; // Chosen so that "A == max/min(A,B)" iff "A EqP B".
3294 
3295   // Signed variants on "max(a,b)>=a -> true".
3296   if (match(LHS, m_SMax(m_Value(A), m_Value(B))) && (A == RHS || B == RHS)) {
3297     if (A != RHS)
3298       std::swap(A, B);       // smax(A, B) pred A.
3299     EqP = CmpInst::ICMP_SGE; // "A == smax(A, B)" iff "A sge B".
3300     // We analyze this as smax(A, B) pred A.
3301     P = Pred;
3302   } else if (match(RHS, m_SMax(m_Value(A), m_Value(B))) &&
3303              (A == LHS || B == LHS)) {
3304     if (A != LHS)
3305       std::swap(A, B);       // A pred smax(A, B).
3306     EqP = CmpInst::ICMP_SGE; // "A == smax(A, B)" iff "A sge B".
3307     // We analyze this as smax(A, B) swapped-pred A.
3308     P = CmpInst::getSwappedPredicate(Pred);
3309   } else if (match(LHS, m_SMin(m_Value(A), m_Value(B))) &&
3310              (A == RHS || B == RHS)) {
3311     if (A != RHS)
3312       std::swap(A, B);       // smin(A, B) pred A.
3313     EqP = CmpInst::ICMP_SLE; // "A == smin(A, B)" iff "A sle B".
3314     // We analyze this as smax(-A, -B) swapped-pred -A.
3315     // Note that we do not need to actually form -A or -B thanks to EqP.
3316     P = CmpInst::getSwappedPredicate(Pred);
3317   } else if (match(RHS, m_SMin(m_Value(A), m_Value(B))) &&
3318              (A == LHS || B == LHS)) {
3319     if (A != LHS)
3320       std::swap(A, B);       // A pred smin(A, B).
3321     EqP = CmpInst::ICMP_SLE; // "A == smin(A, B)" iff "A sle B".
3322     // We analyze this as smax(-A, -B) pred -A.
3323     // Note that we do not need to actually form -A or -B thanks to EqP.
3324     P = Pred;
3325   }
3326   if (P != CmpInst::BAD_ICMP_PREDICATE) {
3327     // Cases correspond to "max(A, B) p A".
3328     switch (P) {
3329     default:
3330       break;
3331     case CmpInst::ICMP_EQ:
3332     case CmpInst::ICMP_SLE:
3333       // Equivalent to "A EqP B".  This may be the same as the condition tested
3334       // in the max/min; if so, we can just return that.
3335       if (Value *V = ExtractEquivalentCondition(LHS, EqP, A, B))
3336         return V;
3337       if (Value *V = ExtractEquivalentCondition(RHS, EqP, A, B))
3338         return V;
3339       // Otherwise, see if "A EqP B" simplifies.
3340       if (MaxRecurse)
3341         if (Value *V = SimplifyICmpInst(EqP, A, B, Q, MaxRecurse - 1))
3342           return V;
3343       break;
3344     case CmpInst::ICMP_NE:
3345     case CmpInst::ICMP_SGT: {
3346       CmpInst::Predicate InvEqP = CmpInst::getInversePredicate(EqP);
3347       // Equivalent to "A InvEqP B".  This may be the same as the condition
3348       // tested in the max/min; if so, we can just return that.
3349       if (Value *V = ExtractEquivalentCondition(LHS, InvEqP, A, B))
3350         return V;
3351       if (Value *V = ExtractEquivalentCondition(RHS, InvEqP, A, B))
3352         return V;
3353       // Otherwise, see if "A InvEqP B" simplifies.
3354       if (MaxRecurse)
3355         if (Value *V = SimplifyICmpInst(InvEqP, A, B, Q, MaxRecurse - 1))
3356           return V;
3357       break;
3358     }
3359     case CmpInst::ICMP_SGE:
3360       // Always true.
3361       return getTrue(ITy);
3362     case CmpInst::ICMP_SLT:
3363       // Always false.
3364       return getFalse(ITy);
3365     }
3366   }
3367 
3368   // Unsigned variants on "max(a,b)>=a -> true".
3369   P = CmpInst::BAD_ICMP_PREDICATE;
3370   if (match(LHS, m_UMax(m_Value(A), m_Value(B))) && (A == RHS || B == RHS)) {
3371     if (A != RHS)
3372       std::swap(A, B);       // umax(A, B) pred A.
3373     EqP = CmpInst::ICMP_UGE; // "A == umax(A, B)" iff "A uge B".
3374     // We analyze this as umax(A, B) pred A.
3375     P = Pred;
3376   } else if (match(RHS, m_UMax(m_Value(A), m_Value(B))) &&
3377              (A == LHS || B == LHS)) {
3378     if (A != LHS)
3379       std::swap(A, B);       // A pred umax(A, B).
3380     EqP = CmpInst::ICMP_UGE; // "A == umax(A, B)" iff "A uge B".
3381     // We analyze this as umax(A, B) swapped-pred A.
3382     P = CmpInst::getSwappedPredicate(Pred);
3383   } else if (match(LHS, m_UMin(m_Value(A), m_Value(B))) &&
3384              (A == RHS || B == RHS)) {
3385     if (A != RHS)
3386       std::swap(A, B);       // umin(A, B) pred A.
3387     EqP = CmpInst::ICMP_ULE; // "A == umin(A, B)" iff "A ule B".
3388     // We analyze this as umax(-A, -B) swapped-pred -A.
3389     // Note that we do not need to actually form -A or -B thanks to EqP.
3390     P = CmpInst::getSwappedPredicate(Pred);
3391   } else if (match(RHS, m_UMin(m_Value(A), m_Value(B))) &&
3392              (A == LHS || B == LHS)) {
3393     if (A != LHS)
3394       std::swap(A, B);       // A pred umin(A, B).
3395     EqP = CmpInst::ICMP_ULE; // "A == umin(A, B)" iff "A ule B".
3396     // We analyze this as umax(-A, -B) pred -A.
3397     // Note that we do not need to actually form -A or -B thanks to EqP.
3398     P = Pred;
3399   }
3400   if (P != CmpInst::BAD_ICMP_PREDICATE) {
3401     // Cases correspond to "max(A, B) p A".
3402     switch (P) {
3403     default:
3404       break;
3405     case CmpInst::ICMP_EQ:
3406     case CmpInst::ICMP_ULE:
3407       // Equivalent to "A EqP B".  This may be the same as the condition tested
3408       // in the max/min; if so, we can just return that.
3409       if (Value *V = ExtractEquivalentCondition(LHS, EqP, A, B))
3410         return V;
3411       if (Value *V = ExtractEquivalentCondition(RHS, EqP, A, B))
3412         return V;
3413       // Otherwise, see if "A EqP B" simplifies.
3414       if (MaxRecurse)
3415         if (Value *V = SimplifyICmpInst(EqP, A, B, Q, MaxRecurse - 1))
3416           return V;
3417       break;
3418     case CmpInst::ICMP_NE:
3419     case CmpInst::ICMP_UGT: {
3420       CmpInst::Predicate InvEqP = CmpInst::getInversePredicate(EqP);
3421       // Equivalent to "A InvEqP B".  This may be the same as the condition
3422       // tested in the max/min; if so, we can just return that.
3423       if (Value *V = ExtractEquivalentCondition(LHS, InvEqP, A, B))
3424         return V;
3425       if (Value *V = ExtractEquivalentCondition(RHS, InvEqP, A, B))
3426         return V;
3427       // Otherwise, see if "A InvEqP B" simplifies.
3428       if (MaxRecurse)
3429         if (Value *V = SimplifyICmpInst(InvEqP, A, B, Q, MaxRecurse - 1))
3430           return V;
3431       break;
3432     }
3433     case CmpInst::ICMP_UGE:
3434       return getTrue(ITy);
3435     case CmpInst::ICMP_ULT:
3436       return getFalse(ITy);
3437     }
3438   }
3439 
3440   // Comparing 1 each of min/max with a common operand?
3441   // Canonicalize min operand to RHS.
3442   if (match(LHS, m_UMin(m_Value(), m_Value())) ||
3443       match(LHS, m_SMin(m_Value(), m_Value()))) {
3444     std::swap(LHS, RHS);
3445     Pred = ICmpInst::getSwappedPredicate(Pred);
3446   }
3447 
3448   Value *C, *D;
3449   if (match(LHS, m_SMax(m_Value(A), m_Value(B))) &&
3450       match(RHS, m_SMin(m_Value(C), m_Value(D))) &&
3451       (A == C || A == D || B == C || B == D)) {
3452     // smax(A, B) >=s smin(A, D) --> true
3453     if (Pred == CmpInst::ICMP_SGE)
3454       return getTrue(ITy);
3455     // smax(A, B) <s smin(A, D) --> false
3456     if (Pred == CmpInst::ICMP_SLT)
3457       return getFalse(ITy);
3458   } else if (match(LHS, m_UMax(m_Value(A), m_Value(B))) &&
3459              match(RHS, m_UMin(m_Value(C), m_Value(D))) &&
3460              (A == C || A == D || B == C || B == D)) {
3461     // umax(A, B) >=u umin(A, D) --> true
3462     if (Pred == CmpInst::ICMP_UGE)
3463       return getTrue(ITy);
3464     // umax(A, B) <u umin(A, D) --> false
3465     if (Pred == CmpInst::ICMP_ULT)
3466       return getFalse(ITy);
3467   }
3468 
3469   return nullptr;
3470 }
3471 
3472 static Value *simplifyICmpWithDominatingAssume(CmpInst::Predicate Predicate,
3473                                                Value *LHS, Value *RHS,
3474                                                const SimplifyQuery &Q) {
3475   // Gracefully handle instructions that have not been inserted yet.
3476   if (!Q.AC || !Q.CxtI || !Q.CxtI->getParent())
3477     return nullptr;
3478 
3479   for (Value *AssumeBaseOp : {LHS, RHS}) {
3480     for (auto &AssumeVH : Q.AC->assumptionsFor(AssumeBaseOp)) {
3481       if (!AssumeVH)
3482         continue;
3483 
3484       CallInst *Assume = cast<CallInst>(AssumeVH);
3485       if (Optional<bool> Imp =
3486               isImpliedCondition(Assume->getArgOperand(0), Predicate, LHS, RHS,
3487                                  Q.DL))
3488         if (isValidAssumeForContext(Assume, Q.CxtI, Q.DT))
3489           return ConstantInt::get(GetCompareTy(LHS), *Imp);
3490     }
3491   }
3492 
3493   return nullptr;
3494 }
3495 
3496 /// Given operands for an ICmpInst, see if we can fold the result.
3497 /// If not, this returns null.
3498 static Value *SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS,
3499                                const SimplifyQuery &Q, unsigned MaxRecurse) {
3500   CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate;
3501   assert(CmpInst::isIntPredicate(Pred) && "Not an integer compare!");
3502 
3503   if (Constant *CLHS = dyn_cast<Constant>(LHS)) {
3504     if (Constant *CRHS = dyn_cast<Constant>(RHS))
3505       return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, Q.DL, Q.TLI);
3506 
3507     // If we have a constant, make sure it is on the RHS.
3508     std::swap(LHS, RHS);
3509     Pred = CmpInst::getSwappedPredicate(Pred);
3510   }
3511   assert(!isa<UndefValue>(LHS) && "Unexpected icmp undef,%X");
3512 
3513   Type *ITy = GetCompareTy(LHS); // The return type.
3514 
3515   // icmp poison, X -> poison
3516   if (isa<PoisonValue>(RHS))
3517     return PoisonValue::get(ITy);
3518 
3519   // For EQ and NE, we can always pick a value for the undef to make the
3520   // predicate pass or fail, so we can return undef.
3521   // Matches behavior in llvm::ConstantFoldCompareInstruction.
3522   if (Q.isUndefValue(RHS) && ICmpInst::isEquality(Pred))
3523     return UndefValue::get(ITy);
3524 
3525   // icmp X, X -> true/false
3526   // icmp X, undef -> true/false because undef could be X.
3527   if (LHS == RHS || Q.isUndefValue(RHS))
3528     return ConstantInt::get(ITy, CmpInst::isTrueWhenEqual(Pred));
3529 
3530   if (Value *V = simplifyICmpOfBools(Pred, LHS, RHS, Q))
3531     return V;
3532 
3533   // TODO: Sink/common this with other potentially expensive calls that use
3534   //       ValueTracking? See comment below for isKnownNonEqual().
3535   if (Value *V = simplifyICmpWithZero(Pred, LHS, RHS, Q))
3536     return V;
3537 
3538   if (Value *V = simplifyICmpWithConstant(Pred, LHS, RHS, Q.IIQ))
3539     return V;
3540 
3541   // If both operands have range metadata, use the metadata
3542   // to simplify the comparison.
3543   if (isa<Instruction>(RHS) && isa<Instruction>(LHS)) {
3544     auto RHS_Instr = cast<Instruction>(RHS);
3545     auto LHS_Instr = cast<Instruction>(LHS);
3546 
3547     if (Q.IIQ.getMetadata(RHS_Instr, LLVMContext::MD_range) &&
3548         Q.IIQ.getMetadata(LHS_Instr, LLVMContext::MD_range)) {
3549       auto RHS_CR = getConstantRangeFromMetadata(
3550           *RHS_Instr->getMetadata(LLVMContext::MD_range));
3551       auto LHS_CR = getConstantRangeFromMetadata(
3552           *LHS_Instr->getMetadata(LLVMContext::MD_range));
3553 
3554       if (LHS_CR.icmp(Pred, RHS_CR))
3555         return ConstantInt::getTrue(RHS->getContext());
3556 
3557       if (LHS_CR.icmp(CmpInst::getInversePredicate(Pred), RHS_CR))
3558         return ConstantInt::getFalse(RHS->getContext());
3559     }
3560   }
3561 
3562   // Compare of cast, for example (zext X) != 0 -> X != 0
3563   if (isa<CastInst>(LHS) && (isa<Constant>(RHS) || isa<CastInst>(RHS))) {
3564     Instruction *LI = cast<CastInst>(LHS);
3565     Value *SrcOp = LI->getOperand(0);
3566     Type *SrcTy = SrcOp->getType();
3567     Type *DstTy = LI->getType();
3568 
3569     // Turn icmp (ptrtoint x), (ptrtoint/constant) into a compare of the input
3570     // if the integer type is the same size as the pointer type.
3571     if (MaxRecurse && isa<PtrToIntInst>(LI) &&
3572         Q.DL.getTypeSizeInBits(SrcTy) == DstTy->getPrimitiveSizeInBits()) {
3573       if (Constant *RHSC = dyn_cast<Constant>(RHS)) {
3574         // Transfer the cast to the constant.
3575         if (Value *V = SimplifyICmpInst(Pred, SrcOp,
3576                                         ConstantExpr::getIntToPtr(RHSC, SrcTy),
3577                                         Q, MaxRecurse-1))
3578           return V;
3579       } else if (PtrToIntInst *RI = dyn_cast<PtrToIntInst>(RHS)) {
3580         if (RI->getOperand(0)->getType() == SrcTy)
3581           // Compare without the cast.
3582           if (Value *V = SimplifyICmpInst(Pred, SrcOp, RI->getOperand(0),
3583                                           Q, MaxRecurse-1))
3584             return V;
3585       }
3586     }
3587 
3588     if (isa<ZExtInst>(LHS)) {
3589       // Turn icmp (zext X), (zext Y) into a compare of X and Y if they have the
3590       // same type.
3591       if (ZExtInst *RI = dyn_cast<ZExtInst>(RHS)) {
3592         if (MaxRecurse && SrcTy == RI->getOperand(0)->getType())
3593           // Compare X and Y.  Note that signed predicates become unsigned.
3594           if (Value *V = SimplifyICmpInst(ICmpInst::getUnsignedPredicate(Pred),
3595                                           SrcOp, RI->getOperand(0), Q,
3596                                           MaxRecurse-1))
3597             return V;
3598       }
3599       // Fold (zext X) ule (sext X), (zext X) sge (sext X) to true.
3600       else if (SExtInst *RI = dyn_cast<SExtInst>(RHS)) {
3601         if (SrcOp == RI->getOperand(0)) {
3602           if (Pred == ICmpInst::ICMP_ULE || Pred == ICmpInst::ICMP_SGE)
3603             return ConstantInt::getTrue(ITy);
3604           if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_SLT)
3605             return ConstantInt::getFalse(ITy);
3606         }
3607       }
3608       // Turn icmp (zext X), Cst into a compare of X and Cst if Cst is extended
3609       // too.  If not, then try to deduce the result of the comparison.
3610       else if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
3611         // Compute the constant that would happen if we truncated to SrcTy then
3612         // reextended to DstTy.
3613         Constant *Trunc = ConstantExpr::getTrunc(CI, SrcTy);
3614         Constant *RExt = ConstantExpr::getCast(CastInst::ZExt, Trunc, DstTy);
3615 
3616         // If the re-extended constant didn't change then this is effectively
3617         // also a case of comparing two zero-extended values.
3618         if (RExt == CI && MaxRecurse)
3619           if (Value *V = SimplifyICmpInst(ICmpInst::getUnsignedPredicate(Pred),
3620                                         SrcOp, Trunc, Q, MaxRecurse-1))
3621             return V;
3622 
3623         // Otherwise the upper bits of LHS are zero while RHS has a non-zero bit
3624         // there.  Use this to work out the result of the comparison.
3625         if (RExt != CI) {
3626           switch (Pred) {
3627           default: llvm_unreachable("Unknown ICmp predicate!");
3628           // LHS <u RHS.
3629           case ICmpInst::ICMP_EQ:
3630           case ICmpInst::ICMP_UGT:
3631           case ICmpInst::ICMP_UGE:
3632             return ConstantInt::getFalse(CI->getContext());
3633 
3634           case ICmpInst::ICMP_NE:
3635           case ICmpInst::ICMP_ULT:
3636           case ICmpInst::ICMP_ULE:
3637             return ConstantInt::getTrue(CI->getContext());
3638 
3639           // LHS is non-negative.  If RHS is negative then LHS >s LHS.  If RHS
3640           // is non-negative then LHS <s RHS.
3641           case ICmpInst::ICMP_SGT:
3642           case ICmpInst::ICMP_SGE:
3643             return CI->getValue().isNegative() ?
3644               ConstantInt::getTrue(CI->getContext()) :
3645               ConstantInt::getFalse(CI->getContext());
3646 
3647           case ICmpInst::ICMP_SLT:
3648           case ICmpInst::ICMP_SLE:
3649             return CI->getValue().isNegative() ?
3650               ConstantInt::getFalse(CI->getContext()) :
3651               ConstantInt::getTrue(CI->getContext());
3652           }
3653         }
3654       }
3655     }
3656 
3657     if (isa<SExtInst>(LHS)) {
3658       // Turn icmp (sext X), (sext Y) into a compare of X and Y if they have the
3659       // same type.
3660       if (SExtInst *RI = dyn_cast<SExtInst>(RHS)) {
3661         if (MaxRecurse && SrcTy == RI->getOperand(0)->getType())
3662           // Compare X and Y.  Note that the predicate does not change.
3663           if (Value *V = SimplifyICmpInst(Pred, SrcOp, RI->getOperand(0),
3664                                           Q, MaxRecurse-1))
3665             return V;
3666       }
3667       // Fold (sext X) uge (zext X), (sext X) sle (zext X) to true.
3668       else if (ZExtInst *RI = dyn_cast<ZExtInst>(RHS)) {
3669         if (SrcOp == RI->getOperand(0)) {
3670           if (Pred == ICmpInst::ICMP_UGE || Pred == ICmpInst::ICMP_SLE)
3671             return ConstantInt::getTrue(ITy);
3672           if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_SGT)
3673             return ConstantInt::getFalse(ITy);
3674         }
3675       }
3676       // Turn icmp (sext X), Cst into a compare of X and Cst if Cst is extended
3677       // too.  If not, then try to deduce the result of the comparison.
3678       else if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
3679         // Compute the constant that would happen if we truncated to SrcTy then
3680         // reextended to DstTy.
3681         Constant *Trunc = ConstantExpr::getTrunc(CI, SrcTy);
3682         Constant *RExt = ConstantExpr::getCast(CastInst::SExt, Trunc, DstTy);
3683 
3684         // If the re-extended constant didn't change then this is effectively
3685         // also a case of comparing two sign-extended values.
3686         if (RExt == CI && MaxRecurse)
3687           if (Value *V = SimplifyICmpInst(Pred, SrcOp, Trunc, Q, MaxRecurse-1))
3688             return V;
3689 
3690         // Otherwise the upper bits of LHS are all equal, while RHS has varying
3691         // bits there.  Use this to work out the result of the comparison.
3692         if (RExt != CI) {
3693           switch (Pred) {
3694           default: llvm_unreachable("Unknown ICmp predicate!");
3695           case ICmpInst::ICMP_EQ:
3696             return ConstantInt::getFalse(CI->getContext());
3697           case ICmpInst::ICMP_NE:
3698             return ConstantInt::getTrue(CI->getContext());
3699 
3700           // If RHS is non-negative then LHS <s RHS.  If RHS is negative then
3701           // LHS >s RHS.
3702           case ICmpInst::ICMP_SGT:
3703           case ICmpInst::ICMP_SGE:
3704             return CI->getValue().isNegative() ?
3705               ConstantInt::getTrue(CI->getContext()) :
3706               ConstantInt::getFalse(CI->getContext());
3707           case ICmpInst::ICMP_SLT:
3708           case ICmpInst::ICMP_SLE:
3709             return CI->getValue().isNegative() ?
3710               ConstantInt::getFalse(CI->getContext()) :
3711               ConstantInt::getTrue(CI->getContext());
3712 
3713           // If LHS is non-negative then LHS <u RHS.  If LHS is negative then
3714           // LHS >u RHS.
3715           case ICmpInst::ICMP_UGT:
3716           case ICmpInst::ICMP_UGE:
3717             // Comparison is true iff the LHS <s 0.
3718             if (MaxRecurse)
3719               if (Value *V = SimplifyICmpInst(ICmpInst::ICMP_SLT, SrcOp,
3720                                               Constant::getNullValue(SrcTy),
3721                                               Q, MaxRecurse-1))
3722                 return V;
3723             break;
3724           case ICmpInst::ICMP_ULT:
3725           case ICmpInst::ICMP_ULE:
3726             // Comparison is true iff the LHS >=s 0.
3727             if (MaxRecurse)
3728               if (Value *V = SimplifyICmpInst(ICmpInst::ICMP_SGE, SrcOp,
3729                                               Constant::getNullValue(SrcTy),
3730                                               Q, MaxRecurse-1))
3731                 return V;
3732             break;
3733           }
3734         }
3735       }
3736     }
3737   }
3738 
3739   // icmp eq|ne X, Y -> false|true if X != Y
3740   // This is potentially expensive, and we have already computedKnownBits for
3741   // compares with 0 above here, so only try this for a non-zero compare.
3742   if (ICmpInst::isEquality(Pred) && !match(RHS, m_Zero()) &&
3743       isKnownNonEqual(LHS, RHS, Q.DL, Q.AC, Q.CxtI, Q.DT, Q.IIQ.UseInstrInfo)) {
3744     return Pred == ICmpInst::ICMP_NE ? getTrue(ITy) : getFalse(ITy);
3745   }
3746 
3747   if (Value *V = simplifyICmpWithBinOp(Pred, LHS, RHS, Q, MaxRecurse))
3748     return V;
3749 
3750   if (Value *V = simplifyICmpWithMinMax(Pred, LHS, RHS, Q, MaxRecurse))
3751     return V;
3752 
3753   if (Value *V = simplifyICmpWithDominatingAssume(Pred, LHS, RHS, Q))
3754     return V;
3755 
3756   // Simplify comparisons of related pointers using a powerful, recursive
3757   // GEP-walk when we have target data available..
3758   if (LHS->getType()->isPointerTy())
3759     if (auto *C = computePointerICmp(Pred, LHS, RHS, Q))
3760       return C;
3761   if (auto *CLHS = dyn_cast<PtrToIntOperator>(LHS))
3762     if (auto *CRHS = dyn_cast<PtrToIntOperator>(RHS))
3763       if (Q.DL.getTypeSizeInBits(CLHS->getPointerOperandType()) ==
3764               Q.DL.getTypeSizeInBits(CLHS->getType()) &&
3765           Q.DL.getTypeSizeInBits(CRHS->getPointerOperandType()) ==
3766               Q.DL.getTypeSizeInBits(CRHS->getType()))
3767         if (auto *C = computePointerICmp(Pred, CLHS->getPointerOperand(),
3768                                          CRHS->getPointerOperand(), Q))
3769           return C;
3770 
3771   // If the comparison is with the result of a select instruction, check whether
3772   // comparing with either branch of the select always yields the same value.
3773   if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS))
3774     if (Value *V = ThreadCmpOverSelect(Pred, LHS, RHS, Q, MaxRecurse))
3775       return V;
3776 
3777   // If the comparison is with the result of a phi instruction, check whether
3778   // doing the compare with each incoming phi value yields a common result.
3779   if (isa<PHINode>(LHS) || isa<PHINode>(RHS))
3780     if (Value *V = ThreadCmpOverPHI(Pred, LHS, RHS, Q, MaxRecurse))
3781       return V;
3782 
3783   return nullptr;
3784 }
3785 
3786 Value *llvm::SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS,
3787                               const SimplifyQuery &Q) {
3788   return ::SimplifyICmpInst(Predicate, LHS, RHS, Q, RecursionLimit);
3789 }
3790 
3791 /// Given operands for an FCmpInst, see if we can fold the result.
3792 /// If not, this returns null.
3793 static Value *SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
3794                                FastMathFlags FMF, const SimplifyQuery &Q,
3795                                unsigned MaxRecurse) {
3796   CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate;
3797   assert(CmpInst::isFPPredicate(Pred) && "Not an FP compare!");
3798 
3799   if (Constant *CLHS = dyn_cast<Constant>(LHS)) {
3800     if (Constant *CRHS = dyn_cast<Constant>(RHS))
3801       return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, Q.DL, Q.TLI);
3802 
3803     // If we have a constant, make sure it is on the RHS.
3804     std::swap(LHS, RHS);
3805     Pred = CmpInst::getSwappedPredicate(Pred);
3806   }
3807 
3808   // Fold trivial predicates.
3809   Type *RetTy = GetCompareTy(LHS);
3810   if (Pred == FCmpInst::FCMP_FALSE)
3811     return getFalse(RetTy);
3812   if (Pred == FCmpInst::FCMP_TRUE)
3813     return getTrue(RetTy);
3814 
3815   // Fold (un)ordered comparison if we can determine there are no NaNs.
3816   if (Pred == FCmpInst::FCMP_UNO || Pred == FCmpInst::FCMP_ORD)
3817     if (FMF.noNaNs() ||
3818         (isKnownNeverNaN(LHS, Q.TLI) && isKnownNeverNaN(RHS, Q.TLI)))
3819       return ConstantInt::get(RetTy, Pred == FCmpInst::FCMP_ORD);
3820 
3821   // NaN is unordered; NaN is not ordered.
3822   assert((FCmpInst::isOrdered(Pred) || FCmpInst::isUnordered(Pred)) &&
3823          "Comparison must be either ordered or unordered");
3824   if (match(RHS, m_NaN()))
3825     return ConstantInt::get(RetTy, CmpInst::isUnordered(Pred));
3826 
3827   // fcmp pred x, poison and  fcmp pred poison, x
3828   // fold to poison
3829   if (isa<PoisonValue>(LHS) || isa<PoisonValue>(RHS))
3830     return PoisonValue::get(RetTy);
3831 
3832   // fcmp pred x, undef  and  fcmp pred undef, x
3833   // fold to true if unordered, false if ordered
3834   if (Q.isUndefValue(LHS) || Q.isUndefValue(RHS)) {
3835     // Choosing NaN for the undef will always make unordered comparison succeed
3836     // and ordered comparison fail.
3837     return ConstantInt::get(RetTy, CmpInst::isUnordered(Pred));
3838   }
3839 
3840   // fcmp x,x -> true/false.  Not all compares are foldable.
3841   if (LHS == RHS) {
3842     if (CmpInst::isTrueWhenEqual(Pred))
3843       return getTrue(RetTy);
3844     if (CmpInst::isFalseWhenEqual(Pred))
3845       return getFalse(RetTy);
3846   }
3847 
3848   // Handle fcmp with constant RHS.
3849   // TODO: Use match with a specific FP value, so these work with vectors with
3850   // undef lanes.
3851   const APFloat *C;
3852   if (match(RHS, m_APFloat(C))) {
3853     // Check whether the constant is an infinity.
3854     if (C->isInfinity()) {
3855       if (C->isNegative()) {
3856         switch (Pred) {
3857         case FCmpInst::FCMP_OLT:
3858           // No value is ordered and less than negative infinity.
3859           return getFalse(RetTy);
3860         case FCmpInst::FCMP_UGE:
3861           // All values are unordered with or at least negative infinity.
3862           return getTrue(RetTy);
3863         default:
3864           break;
3865         }
3866       } else {
3867         switch (Pred) {
3868         case FCmpInst::FCMP_OGT:
3869           // No value is ordered and greater than infinity.
3870           return getFalse(RetTy);
3871         case FCmpInst::FCMP_ULE:
3872           // All values are unordered with and at most infinity.
3873           return getTrue(RetTy);
3874         default:
3875           break;
3876         }
3877       }
3878 
3879       // LHS == Inf
3880       if (Pred == FCmpInst::FCMP_OEQ && isKnownNeverInfinity(LHS, Q.TLI))
3881         return getFalse(RetTy);
3882       // LHS != Inf
3883       if (Pred == FCmpInst::FCMP_UNE && isKnownNeverInfinity(LHS, Q.TLI))
3884         return getTrue(RetTy);
3885       // LHS == Inf || LHS == NaN
3886       if (Pred == FCmpInst::FCMP_UEQ && isKnownNeverInfinity(LHS, Q.TLI) &&
3887           isKnownNeverNaN(LHS, Q.TLI))
3888         return getFalse(RetTy);
3889       // LHS != Inf && LHS != NaN
3890       if (Pred == FCmpInst::FCMP_ONE && isKnownNeverInfinity(LHS, Q.TLI) &&
3891           isKnownNeverNaN(LHS, Q.TLI))
3892         return getTrue(RetTy);
3893     }
3894     if (C->isNegative() && !C->isNegZero()) {
3895       assert(!C->isNaN() && "Unexpected NaN constant!");
3896       // TODO: We can catch more cases by using a range check rather than
3897       //       relying on CannotBeOrderedLessThanZero.
3898       switch (Pred) {
3899       case FCmpInst::FCMP_UGE:
3900       case FCmpInst::FCMP_UGT:
3901       case FCmpInst::FCMP_UNE:
3902         // (X >= 0) implies (X > C) when (C < 0)
3903         if (CannotBeOrderedLessThanZero(LHS, Q.TLI))
3904           return getTrue(RetTy);
3905         break;
3906       case FCmpInst::FCMP_OEQ:
3907       case FCmpInst::FCMP_OLE:
3908       case FCmpInst::FCMP_OLT:
3909         // (X >= 0) implies !(X < C) when (C < 0)
3910         if (CannotBeOrderedLessThanZero(LHS, Q.TLI))
3911           return getFalse(RetTy);
3912         break;
3913       default:
3914         break;
3915       }
3916     }
3917 
3918     // Check comparison of [minnum/maxnum with constant] with other constant.
3919     const APFloat *C2;
3920     if ((match(LHS, m_Intrinsic<Intrinsic::minnum>(m_Value(), m_APFloat(C2))) &&
3921          *C2 < *C) ||
3922         (match(LHS, m_Intrinsic<Intrinsic::maxnum>(m_Value(), m_APFloat(C2))) &&
3923          *C2 > *C)) {
3924       bool IsMaxNum =
3925           cast<IntrinsicInst>(LHS)->getIntrinsicID() == Intrinsic::maxnum;
3926       // The ordered relationship and minnum/maxnum guarantee that we do not
3927       // have NaN constants, so ordered/unordered preds are handled the same.
3928       switch (Pred) {
3929       case FCmpInst::FCMP_OEQ: case FCmpInst::FCMP_UEQ:
3930         // minnum(X, LesserC)  == C --> false
3931         // maxnum(X, GreaterC) == C --> false
3932         return getFalse(RetTy);
3933       case FCmpInst::FCMP_ONE: case FCmpInst::FCMP_UNE:
3934         // minnum(X, LesserC)  != C --> true
3935         // maxnum(X, GreaterC) != C --> true
3936         return getTrue(RetTy);
3937       case FCmpInst::FCMP_OGE: case FCmpInst::FCMP_UGE:
3938       case FCmpInst::FCMP_OGT: case FCmpInst::FCMP_UGT:
3939         // minnum(X, LesserC)  >= C --> false
3940         // minnum(X, LesserC)  >  C --> false
3941         // maxnum(X, GreaterC) >= C --> true
3942         // maxnum(X, GreaterC) >  C --> true
3943         return ConstantInt::get(RetTy, IsMaxNum);
3944       case FCmpInst::FCMP_OLE: case FCmpInst::FCMP_ULE:
3945       case FCmpInst::FCMP_OLT: case FCmpInst::FCMP_ULT:
3946         // minnum(X, LesserC)  <= C --> true
3947         // minnum(X, LesserC)  <  C --> true
3948         // maxnum(X, GreaterC) <= C --> false
3949         // maxnum(X, GreaterC) <  C --> false
3950         return ConstantInt::get(RetTy, !IsMaxNum);
3951       default:
3952         // TRUE/FALSE/ORD/UNO should be handled before this.
3953         llvm_unreachable("Unexpected fcmp predicate");
3954       }
3955     }
3956   }
3957 
3958   if (match(RHS, m_AnyZeroFP())) {
3959     switch (Pred) {
3960     case FCmpInst::FCMP_OGE:
3961     case FCmpInst::FCMP_ULT:
3962       // Positive or zero X >= 0.0 --> true
3963       // Positive or zero X <  0.0 --> false
3964       if ((FMF.noNaNs() || isKnownNeverNaN(LHS, Q.TLI)) &&
3965           CannotBeOrderedLessThanZero(LHS, Q.TLI))
3966         return Pred == FCmpInst::FCMP_OGE ? getTrue(RetTy) : getFalse(RetTy);
3967       break;
3968     case FCmpInst::FCMP_UGE:
3969     case FCmpInst::FCMP_OLT:
3970       // Positive or zero or nan X >= 0.0 --> true
3971       // Positive or zero or nan X <  0.0 --> false
3972       if (CannotBeOrderedLessThanZero(LHS, Q.TLI))
3973         return Pred == FCmpInst::FCMP_UGE ? getTrue(RetTy) : getFalse(RetTy);
3974       break;
3975     default:
3976       break;
3977     }
3978   }
3979 
3980   // If the comparison is with the result of a select instruction, check whether
3981   // comparing with either branch of the select always yields the same value.
3982   if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS))
3983     if (Value *V = ThreadCmpOverSelect(Pred, LHS, RHS, Q, MaxRecurse))
3984       return V;
3985 
3986   // If the comparison is with the result of a phi instruction, check whether
3987   // doing the compare with each incoming phi value yields a common result.
3988   if (isa<PHINode>(LHS) || isa<PHINode>(RHS))
3989     if (Value *V = ThreadCmpOverPHI(Pred, LHS, RHS, Q, MaxRecurse))
3990       return V;
3991 
3992   return nullptr;
3993 }
3994 
3995 Value *llvm::SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
3996                               FastMathFlags FMF, const SimplifyQuery &Q) {
3997   return ::SimplifyFCmpInst(Predicate, LHS, RHS, FMF, Q, RecursionLimit);
3998 }
3999 
4000 static Value *simplifyWithOpReplaced(Value *V, Value *Op, Value *RepOp,
4001                                      const SimplifyQuery &Q,
4002                                      bool AllowRefinement,
4003                                      unsigned MaxRecurse) {
4004   assert(!Op->getType()->isVectorTy() && "This is not safe for vectors");
4005 
4006   // Trivial replacement.
4007   if (V == Op)
4008     return RepOp;
4009 
4010   // We cannot replace a constant, and shouldn't even try.
4011   if (isa<Constant>(Op))
4012     return nullptr;
4013 
4014   auto *I = dyn_cast<Instruction>(V);
4015   if (!I || !is_contained(I->operands(), Op))
4016     return nullptr;
4017 
4018   // Replace Op with RepOp in instruction operands.
4019   SmallVector<Value *, 8> NewOps(I->getNumOperands());
4020   transform(I->operands(), NewOps.begin(),
4021             [&](Value *V) { return V == Op ? RepOp : V; });
4022 
4023   if (!AllowRefinement) {
4024     // General InstSimplify functions may refine the result, e.g. by returning
4025     // a constant for a potentially poison value. To avoid this, implement only
4026     // a few non-refining but profitable transforms here.
4027 
4028     if (auto *BO = dyn_cast<BinaryOperator>(I)) {
4029       unsigned Opcode = BO->getOpcode();
4030       // id op x -> x, x op id -> x
4031       if (NewOps[0] == ConstantExpr::getBinOpIdentity(Opcode, I->getType()))
4032         return NewOps[1];
4033       if (NewOps[1] == ConstantExpr::getBinOpIdentity(Opcode, I->getType(),
4034                                                       /* RHS */ true))
4035         return NewOps[0];
4036 
4037       // x & x -> x, x | x -> x
4038       if ((Opcode == Instruction::And || Opcode == Instruction::Or) &&
4039           NewOps[0] == NewOps[1])
4040         return NewOps[0];
4041     }
4042 
4043     if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) {
4044       // getelementptr x, 0 -> x
4045       if (NewOps.size() == 2 && match(NewOps[1], m_Zero()) &&
4046           !GEP->isInBounds())
4047         return NewOps[0];
4048     }
4049   } else if (MaxRecurse) {
4050     // The simplification queries below may return the original value. Consider:
4051     //   %div = udiv i32 %arg, %arg2
4052     //   %mul = mul nsw i32 %div, %arg2
4053     //   %cmp = icmp eq i32 %mul, %arg
4054     //   %sel = select i1 %cmp, i32 %div, i32 undef
4055     // Replacing %arg by %mul, %div becomes "udiv i32 %mul, %arg2", which
4056     // simplifies back to %arg. This can only happen because %mul does not
4057     // dominate %div. To ensure a consistent return value contract, we make sure
4058     // that this case returns nullptr as well.
4059     auto PreventSelfSimplify = [V](Value *Simplified) {
4060       return Simplified != V ? Simplified : nullptr;
4061     };
4062 
4063     if (auto *B = dyn_cast<BinaryOperator>(I))
4064       return PreventSelfSimplify(SimplifyBinOp(B->getOpcode(), NewOps[0],
4065                                                NewOps[1], Q, MaxRecurse - 1));
4066 
4067     if (CmpInst *C = dyn_cast<CmpInst>(I))
4068       return PreventSelfSimplify(SimplifyCmpInst(C->getPredicate(), NewOps[0],
4069                                                  NewOps[1], Q, MaxRecurse - 1));
4070 
4071     if (auto *GEP = dyn_cast<GetElementPtrInst>(I))
4072       return PreventSelfSimplify(SimplifyGEPInst(GEP->getSourceElementType(),
4073                                                  NewOps, GEP->isInBounds(), Q,
4074                                                  MaxRecurse - 1));
4075 
4076     if (isa<SelectInst>(I))
4077       return PreventSelfSimplify(
4078           SimplifySelectInst(NewOps[0], NewOps[1], NewOps[2], Q,
4079                              MaxRecurse - 1));
4080     // TODO: We could hand off more cases to instsimplify here.
4081   }
4082 
4083   // If all operands are constant after substituting Op for RepOp then we can
4084   // constant fold the instruction.
4085   SmallVector<Constant *, 8> ConstOps;
4086   for (Value *NewOp : NewOps) {
4087     if (Constant *ConstOp = dyn_cast<Constant>(NewOp))
4088       ConstOps.push_back(ConstOp);
4089     else
4090       return nullptr;
4091   }
4092 
4093   // Consider:
4094   //   %cmp = icmp eq i32 %x, 2147483647
4095   //   %add = add nsw i32 %x, 1
4096   //   %sel = select i1 %cmp, i32 -2147483648, i32 %add
4097   //
4098   // We can't replace %sel with %add unless we strip away the flags (which
4099   // will be done in InstCombine).
4100   // TODO: This may be unsound, because it only catches some forms of
4101   // refinement.
4102   if (!AllowRefinement && canCreatePoison(cast<Operator>(I)))
4103     return nullptr;
4104 
4105   if (CmpInst *C = dyn_cast<CmpInst>(I))
4106     return ConstantFoldCompareInstOperands(C->getPredicate(), ConstOps[0],
4107                                            ConstOps[1], Q.DL, Q.TLI);
4108 
4109   if (LoadInst *LI = dyn_cast<LoadInst>(I))
4110     if (!LI->isVolatile())
4111       return ConstantFoldLoadFromConstPtr(ConstOps[0], LI->getType(), Q.DL);
4112 
4113   return ConstantFoldInstOperands(I, ConstOps, Q.DL, Q.TLI);
4114 }
4115 
4116 Value *llvm::simplifyWithOpReplaced(Value *V, Value *Op, Value *RepOp,
4117                                     const SimplifyQuery &Q,
4118                                     bool AllowRefinement) {
4119   return ::simplifyWithOpReplaced(V, Op, RepOp, Q, AllowRefinement,
4120                                   RecursionLimit);
4121 }
4122 
4123 /// Try to simplify a select instruction when its condition operand is an
4124 /// integer comparison where one operand of the compare is a constant.
4125 static Value *simplifySelectBitTest(Value *TrueVal, Value *FalseVal, Value *X,
4126                                     const APInt *Y, bool TrueWhenUnset) {
4127   const APInt *C;
4128 
4129   // (X & Y) == 0 ? X & ~Y : X  --> X
4130   // (X & Y) != 0 ? X & ~Y : X  --> X & ~Y
4131   if (FalseVal == X && match(TrueVal, m_And(m_Specific(X), m_APInt(C))) &&
4132       *Y == ~*C)
4133     return TrueWhenUnset ? FalseVal : TrueVal;
4134 
4135   // (X & Y) == 0 ? X : X & ~Y  --> X & ~Y
4136   // (X & Y) != 0 ? X : X & ~Y  --> X
4137   if (TrueVal == X && match(FalseVal, m_And(m_Specific(X), m_APInt(C))) &&
4138       *Y == ~*C)
4139     return TrueWhenUnset ? FalseVal : TrueVal;
4140 
4141   if (Y->isPowerOf2()) {
4142     // (X & Y) == 0 ? X | Y : X  --> X | Y
4143     // (X & Y) != 0 ? X | Y : X  --> X
4144     if (FalseVal == X && match(TrueVal, m_Or(m_Specific(X), m_APInt(C))) &&
4145         *Y == *C)
4146       return TrueWhenUnset ? TrueVal : FalseVal;
4147 
4148     // (X & Y) == 0 ? X : X | Y  --> X
4149     // (X & Y) != 0 ? X : X | Y  --> X | Y
4150     if (TrueVal == X && match(FalseVal, m_Or(m_Specific(X), m_APInt(C))) &&
4151         *Y == *C)
4152       return TrueWhenUnset ? TrueVal : FalseVal;
4153   }
4154 
4155   return nullptr;
4156 }
4157 
4158 /// An alternative way to test if a bit is set or not uses sgt/slt instead of
4159 /// eq/ne.
4160 static Value *simplifySelectWithFakeICmpEq(Value *CmpLHS, Value *CmpRHS,
4161                                            ICmpInst::Predicate Pred,
4162                                            Value *TrueVal, Value *FalseVal) {
4163   Value *X;
4164   APInt Mask;
4165   if (!decomposeBitTestICmp(CmpLHS, CmpRHS, Pred, X, Mask))
4166     return nullptr;
4167 
4168   return simplifySelectBitTest(TrueVal, FalseVal, X, &Mask,
4169                                Pred == ICmpInst::ICMP_EQ);
4170 }
4171 
4172 /// Try to simplify a select instruction when its condition operand is an
4173 /// integer comparison.
4174 static Value *simplifySelectWithICmpCond(Value *CondVal, Value *TrueVal,
4175                                          Value *FalseVal, const SimplifyQuery &Q,
4176                                          unsigned MaxRecurse) {
4177   ICmpInst::Predicate Pred;
4178   Value *CmpLHS, *CmpRHS;
4179   if (!match(CondVal, m_ICmp(Pred, m_Value(CmpLHS), m_Value(CmpRHS))))
4180     return nullptr;
4181 
4182   // Canonicalize ne to eq predicate.
4183   if (Pred == ICmpInst::ICMP_NE) {
4184     Pred = ICmpInst::ICMP_EQ;
4185     std::swap(TrueVal, FalseVal);
4186   }
4187 
4188   // Check for integer min/max with a limit constant:
4189   // X > MIN_INT ? X : MIN_INT --> X
4190   // X < MAX_INT ? X : MAX_INT --> X
4191   if (TrueVal->getType()->isIntOrIntVectorTy()) {
4192     Value *X, *Y;
4193     SelectPatternFlavor SPF =
4194         matchDecomposedSelectPattern(cast<ICmpInst>(CondVal), TrueVal, FalseVal,
4195                                      X, Y).Flavor;
4196     if (SelectPatternResult::isMinOrMax(SPF) && Pred == getMinMaxPred(SPF)) {
4197       APInt LimitC = getMinMaxLimit(getInverseMinMaxFlavor(SPF),
4198                                     X->getType()->getScalarSizeInBits());
4199       if (match(Y, m_SpecificInt(LimitC)))
4200         return X;
4201     }
4202   }
4203 
4204   if (Pred == ICmpInst::ICMP_EQ && match(CmpRHS, m_Zero())) {
4205     Value *X;
4206     const APInt *Y;
4207     if (match(CmpLHS, m_And(m_Value(X), m_APInt(Y))))
4208       if (Value *V = simplifySelectBitTest(TrueVal, FalseVal, X, Y,
4209                                            /*TrueWhenUnset=*/true))
4210         return V;
4211 
4212     // Test for a bogus zero-shift-guard-op around funnel-shift or rotate.
4213     Value *ShAmt;
4214     auto isFsh = m_CombineOr(m_FShl(m_Value(X), m_Value(), m_Value(ShAmt)),
4215                              m_FShr(m_Value(), m_Value(X), m_Value(ShAmt)));
4216     // (ShAmt == 0) ? fshl(X, *, ShAmt) : X --> X
4217     // (ShAmt == 0) ? fshr(*, X, ShAmt) : X --> X
4218     if (match(TrueVal, isFsh) && FalseVal == X && CmpLHS == ShAmt)
4219       return X;
4220 
4221     // Test for a zero-shift-guard-op around rotates. These are used to
4222     // avoid UB from oversized shifts in raw IR rotate patterns, but the
4223     // intrinsics do not have that problem.
4224     // We do not allow this transform for the general funnel shift case because
4225     // that would not preserve the poison safety of the original code.
4226     auto isRotate =
4227         m_CombineOr(m_FShl(m_Value(X), m_Deferred(X), m_Value(ShAmt)),
4228                     m_FShr(m_Value(X), m_Deferred(X), m_Value(ShAmt)));
4229     // (ShAmt == 0) ? X : fshl(X, X, ShAmt) --> fshl(X, X, ShAmt)
4230     // (ShAmt == 0) ? X : fshr(X, X, ShAmt) --> fshr(X, X, ShAmt)
4231     if (match(FalseVal, isRotate) && TrueVal == X && CmpLHS == ShAmt &&
4232         Pred == ICmpInst::ICMP_EQ)
4233       return FalseVal;
4234 
4235     // X == 0 ? abs(X) : -abs(X) --> -abs(X)
4236     // X == 0 ? -abs(X) : abs(X) --> abs(X)
4237     if (match(TrueVal, m_Intrinsic<Intrinsic::abs>(m_Specific(CmpLHS))) &&
4238         match(FalseVal, m_Neg(m_Intrinsic<Intrinsic::abs>(m_Specific(CmpLHS)))))
4239       return FalseVal;
4240     if (match(TrueVal,
4241               m_Neg(m_Intrinsic<Intrinsic::abs>(m_Specific(CmpLHS)))) &&
4242         match(FalseVal, m_Intrinsic<Intrinsic::abs>(m_Specific(CmpLHS))))
4243       return FalseVal;
4244   }
4245 
4246   // Check for other compares that behave like bit test.
4247   if (Value *V = simplifySelectWithFakeICmpEq(CmpLHS, CmpRHS, Pred,
4248                                               TrueVal, FalseVal))
4249     return V;
4250 
4251   // If we have a scalar equality comparison, then we know the value in one of
4252   // the arms of the select. See if substituting this value into the arm and
4253   // simplifying the result yields the same value as the other arm.
4254   // Note that the equivalence/replacement opportunity does not hold for vectors
4255   // because each element of a vector select is chosen independently.
4256   if (Pred == ICmpInst::ICMP_EQ && !CondVal->getType()->isVectorTy()) {
4257     if (simplifyWithOpReplaced(FalseVal, CmpLHS, CmpRHS, Q,
4258                                /* AllowRefinement */ false, MaxRecurse) ==
4259             TrueVal ||
4260         simplifyWithOpReplaced(FalseVal, CmpRHS, CmpLHS, Q,
4261                                /* AllowRefinement */ false, MaxRecurse) ==
4262             TrueVal)
4263       return FalseVal;
4264     if (simplifyWithOpReplaced(TrueVal, CmpLHS, CmpRHS, Q,
4265                                /* AllowRefinement */ true, MaxRecurse) ==
4266             FalseVal ||
4267         simplifyWithOpReplaced(TrueVal, CmpRHS, CmpLHS, Q,
4268                                /* AllowRefinement */ true, MaxRecurse) ==
4269             FalseVal)
4270       return FalseVal;
4271   }
4272 
4273   return nullptr;
4274 }
4275 
4276 /// Try to simplify a select instruction when its condition operand is a
4277 /// floating-point comparison.
4278 static Value *simplifySelectWithFCmp(Value *Cond, Value *T, Value *F,
4279                                      const SimplifyQuery &Q) {
4280   FCmpInst::Predicate Pred;
4281   if (!match(Cond, m_FCmp(Pred, m_Specific(T), m_Specific(F))) &&
4282       !match(Cond, m_FCmp(Pred, m_Specific(F), m_Specific(T))))
4283     return nullptr;
4284 
4285   // This transform is safe if we do not have (do not care about) -0.0 or if
4286   // at least one operand is known to not be -0.0. Otherwise, the select can
4287   // change the sign of a zero operand.
4288   bool HasNoSignedZeros = Q.CxtI && isa<FPMathOperator>(Q.CxtI) &&
4289                           Q.CxtI->hasNoSignedZeros();
4290   const APFloat *C;
4291   if (HasNoSignedZeros || (match(T, m_APFloat(C)) && C->isNonZero()) ||
4292                           (match(F, m_APFloat(C)) && C->isNonZero())) {
4293     // (T == F) ? T : F --> F
4294     // (F == T) ? T : F --> F
4295     if (Pred == FCmpInst::FCMP_OEQ)
4296       return F;
4297 
4298     // (T != F) ? T : F --> T
4299     // (F != T) ? T : F --> T
4300     if (Pred == FCmpInst::FCMP_UNE)
4301       return T;
4302   }
4303 
4304   return nullptr;
4305 }
4306 
4307 /// Given operands for a SelectInst, see if we can fold the result.
4308 /// If not, this returns null.
4309 static Value *SimplifySelectInst(Value *Cond, Value *TrueVal, Value *FalseVal,
4310                                  const SimplifyQuery &Q, unsigned MaxRecurse) {
4311   if (auto *CondC = dyn_cast<Constant>(Cond)) {
4312     if (auto *TrueC = dyn_cast<Constant>(TrueVal))
4313       if (auto *FalseC = dyn_cast<Constant>(FalseVal))
4314         return ConstantFoldSelectInstruction(CondC, TrueC, FalseC);
4315 
4316     // select poison, X, Y -> poison
4317     if (isa<PoisonValue>(CondC))
4318       return PoisonValue::get(TrueVal->getType());
4319 
4320     // select undef, X, Y -> X or Y
4321     if (Q.isUndefValue(CondC))
4322       return isa<Constant>(FalseVal) ? FalseVal : TrueVal;
4323 
4324     // select true,  X, Y --> X
4325     // select false, X, Y --> Y
4326     // For vectors, allow undef/poison elements in the condition to match the
4327     // defined elements, so we can eliminate the select.
4328     if (match(CondC, m_One()))
4329       return TrueVal;
4330     if (match(CondC, m_Zero()))
4331       return FalseVal;
4332   }
4333 
4334   assert(Cond->getType()->isIntOrIntVectorTy(1) &&
4335          "Select must have bool or bool vector condition");
4336   assert(TrueVal->getType() == FalseVal->getType() &&
4337          "Select must have same types for true/false ops");
4338 
4339   if (Cond->getType() == TrueVal->getType()) {
4340     // select i1 Cond, i1 true, i1 false --> i1 Cond
4341     if (match(TrueVal, m_One()) && match(FalseVal, m_ZeroInt()))
4342       return Cond;
4343 
4344     // (X || Y) && (X || !Y) --> X (commuted 8 ways)
4345     Value *X, *Y;
4346     if (match(FalseVal, m_ZeroInt())) {
4347       if (match(Cond, m_c_LogicalOr(m_Value(X), m_Not(m_Value(Y)))) &&
4348           match(TrueVal, m_c_LogicalOr(m_Specific(X), m_Specific(Y))))
4349         return X;
4350       if (match(TrueVal, m_c_LogicalOr(m_Value(X), m_Not(m_Value(Y)))) &&
4351           match(Cond, m_c_LogicalOr(m_Specific(X), m_Specific(Y))))
4352         return X;
4353     }
4354   }
4355 
4356   // select ?, X, X -> X
4357   if (TrueVal == FalseVal)
4358     return TrueVal;
4359 
4360   // If the true or false value is poison, we can fold to the other value.
4361   // If the true or false value is undef, we can fold to the other value as
4362   // long as the other value isn't poison.
4363   // select ?, poison, X -> X
4364   // select ?, undef,  X -> X
4365   if (isa<PoisonValue>(TrueVal) ||
4366       (Q.isUndefValue(TrueVal) &&
4367        isGuaranteedNotToBePoison(FalseVal, Q.AC, Q.CxtI, Q.DT)))
4368     return FalseVal;
4369   // select ?, X, poison -> X
4370   // select ?, X, undef  -> X
4371   if (isa<PoisonValue>(FalseVal) ||
4372       (Q.isUndefValue(FalseVal) &&
4373        isGuaranteedNotToBePoison(TrueVal, Q.AC, Q.CxtI, Q.DT)))
4374     return TrueVal;
4375 
4376   // Deal with partial undef vector constants: select ?, VecC, VecC' --> VecC''
4377   Constant *TrueC, *FalseC;
4378   if (isa<FixedVectorType>(TrueVal->getType()) &&
4379       match(TrueVal, m_Constant(TrueC)) &&
4380       match(FalseVal, m_Constant(FalseC))) {
4381     unsigned NumElts =
4382         cast<FixedVectorType>(TrueC->getType())->getNumElements();
4383     SmallVector<Constant *, 16> NewC;
4384     for (unsigned i = 0; i != NumElts; ++i) {
4385       // Bail out on incomplete vector constants.
4386       Constant *TEltC = TrueC->getAggregateElement(i);
4387       Constant *FEltC = FalseC->getAggregateElement(i);
4388       if (!TEltC || !FEltC)
4389         break;
4390 
4391       // If the elements match (undef or not), that value is the result. If only
4392       // one element is undef, choose the defined element as the safe result.
4393       if (TEltC == FEltC)
4394         NewC.push_back(TEltC);
4395       else if (isa<PoisonValue>(TEltC) ||
4396                (Q.isUndefValue(TEltC) && isGuaranteedNotToBePoison(FEltC)))
4397         NewC.push_back(FEltC);
4398       else if (isa<PoisonValue>(FEltC) ||
4399                (Q.isUndefValue(FEltC) && isGuaranteedNotToBePoison(TEltC)))
4400         NewC.push_back(TEltC);
4401       else
4402         break;
4403     }
4404     if (NewC.size() == NumElts)
4405       return ConstantVector::get(NewC);
4406   }
4407 
4408   if (Value *V =
4409           simplifySelectWithICmpCond(Cond, TrueVal, FalseVal, Q, MaxRecurse))
4410     return V;
4411 
4412   if (Value *V = simplifySelectWithFCmp(Cond, TrueVal, FalseVal, Q))
4413     return V;
4414 
4415   if (Value *V = foldSelectWithBinaryOp(Cond, TrueVal, FalseVal))
4416     return V;
4417 
4418   Optional<bool> Imp = isImpliedByDomCondition(Cond, Q.CxtI, Q.DL);
4419   if (Imp)
4420     return *Imp ? TrueVal : FalseVal;
4421 
4422   return nullptr;
4423 }
4424 
4425 Value *llvm::SimplifySelectInst(Value *Cond, Value *TrueVal, Value *FalseVal,
4426                                 const SimplifyQuery &Q) {
4427   return ::SimplifySelectInst(Cond, TrueVal, FalseVal, Q, RecursionLimit);
4428 }
4429 
4430 /// Given operands for an GetElementPtrInst, see if we can fold the result.
4431 /// If not, this returns null.
4432 static Value *SimplifyGEPInst(Type *SrcTy, ArrayRef<Value *> Ops, bool InBounds,
4433                               const SimplifyQuery &Q, unsigned) {
4434   // The type of the GEP pointer operand.
4435   unsigned AS =
4436       cast<PointerType>(Ops[0]->getType()->getScalarType())->getAddressSpace();
4437 
4438   // getelementptr P -> P.
4439   if (Ops.size() == 1)
4440     return Ops[0];
4441 
4442   // Compute the (pointer) type returned by the GEP instruction.
4443   Type *LastType = GetElementPtrInst::getIndexedType(SrcTy, Ops.slice(1));
4444   Type *GEPTy = PointerType::get(LastType, AS);
4445   for (Value *Op : Ops) {
4446     // If one of the operands is a vector, the result type is a vector of
4447     // pointers. All vector operands must have the same number of elements.
4448     if (VectorType *VT = dyn_cast<VectorType>(Op->getType())) {
4449       GEPTy = VectorType::get(GEPTy, VT->getElementCount());
4450       break;
4451     }
4452   }
4453 
4454   // getelementptr poison, idx -> poison
4455   // getelementptr baseptr, poison -> poison
4456   if (any_of(Ops, [](const auto *V) { return isa<PoisonValue>(V); }))
4457     return PoisonValue::get(GEPTy);
4458 
4459   if (Q.isUndefValue(Ops[0]))
4460     return UndefValue::get(GEPTy);
4461 
4462   bool IsScalableVec =
4463       isa<ScalableVectorType>(SrcTy) || any_of(Ops, [](const Value *V) {
4464         return isa<ScalableVectorType>(V->getType());
4465       });
4466 
4467   if (Ops.size() == 2) {
4468     // getelementptr P, 0 -> P.
4469     if (match(Ops[1], m_Zero()) && Ops[0]->getType() == GEPTy)
4470       return Ops[0];
4471 
4472     Type *Ty = SrcTy;
4473     if (!IsScalableVec && Ty->isSized()) {
4474       Value *P;
4475       uint64_t C;
4476       uint64_t TyAllocSize = Q.DL.getTypeAllocSize(Ty);
4477       // getelementptr P, N -> P if P points to a type of zero size.
4478       if (TyAllocSize == 0 && Ops[0]->getType() == GEPTy)
4479         return Ops[0];
4480 
4481       // The following transforms are only safe if the ptrtoint cast
4482       // doesn't truncate the pointers.
4483       if (Ops[1]->getType()->getScalarSizeInBits() ==
4484           Q.DL.getPointerSizeInBits(AS)) {
4485         auto CanSimplify = [GEPTy, &P, V = Ops[0]]() -> bool {
4486           return P->getType() == GEPTy &&
4487                  getUnderlyingObject(P) == getUnderlyingObject(V);
4488         };
4489         // getelementptr V, (sub P, V) -> P if P points to a type of size 1.
4490         if (TyAllocSize == 1 &&
4491             match(Ops[1], m_Sub(m_PtrToInt(m_Value(P)),
4492                                 m_PtrToInt(m_Specific(Ops[0])))) &&
4493             CanSimplify())
4494           return P;
4495 
4496         // getelementptr V, (ashr (sub P, V), C) -> P if P points to a type of
4497         // size 1 << C.
4498         if (match(Ops[1], m_AShr(m_Sub(m_PtrToInt(m_Value(P)),
4499                                        m_PtrToInt(m_Specific(Ops[0]))),
4500                                  m_ConstantInt(C))) &&
4501             TyAllocSize == 1ULL << C && CanSimplify())
4502           return P;
4503 
4504         // getelementptr V, (sdiv (sub P, V), C) -> P if P points to a type of
4505         // size C.
4506         if (match(Ops[1], m_SDiv(m_Sub(m_PtrToInt(m_Value(P)),
4507                                        m_PtrToInt(m_Specific(Ops[0]))),
4508                                  m_SpecificInt(TyAllocSize))) &&
4509             CanSimplify())
4510           return P;
4511       }
4512     }
4513   }
4514 
4515   if (!IsScalableVec && Q.DL.getTypeAllocSize(LastType) == 1 &&
4516       all_of(Ops.slice(1).drop_back(1),
4517              [](Value *Idx) { return match(Idx, m_Zero()); })) {
4518     unsigned IdxWidth =
4519         Q.DL.getIndexSizeInBits(Ops[0]->getType()->getPointerAddressSpace());
4520     if (Q.DL.getTypeSizeInBits(Ops.back()->getType()) == IdxWidth) {
4521       APInt BasePtrOffset(IdxWidth, 0);
4522       Value *StrippedBasePtr =
4523           Ops[0]->stripAndAccumulateInBoundsConstantOffsets(Q.DL,
4524                                                             BasePtrOffset);
4525 
4526       // Avoid creating inttoptr of zero here: While LLVMs treatment of
4527       // inttoptr is generally conservative, this particular case is folded to
4528       // a null pointer, which will have incorrect provenance.
4529 
4530       // gep (gep V, C), (sub 0, V) -> C
4531       if (match(Ops.back(),
4532                 m_Sub(m_Zero(), m_PtrToInt(m_Specific(StrippedBasePtr)))) &&
4533           !BasePtrOffset.isZero()) {
4534         auto *CI = ConstantInt::get(GEPTy->getContext(), BasePtrOffset);
4535         return ConstantExpr::getIntToPtr(CI, GEPTy);
4536       }
4537       // gep (gep V, C), (xor V, -1) -> C-1
4538       if (match(Ops.back(),
4539                 m_Xor(m_PtrToInt(m_Specific(StrippedBasePtr)), m_AllOnes())) &&
4540           !BasePtrOffset.isOne()) {
4541         auto *CI = ConstantInt::get(GEPTy->getContext(), BasePtrOffset - 1);
4542         return ConstantExpr::getIntToPtr(CI, GEPTy);
4543       }
4544     }
4545   }
4546 
4547   // Check to see if this is constant foldable.
4548   if (!all_of(Ops, [](Value *V) { return isa<Constant>(V); }))
4549     return nullptr;
4550 
4551   auto *CE = ConstantExpr::getGetElementPtr(SrcTy, cast<Constant>(Ops[0]),
4552                                             Ops.slice(1), InBounds);
4553   return ConstantFoldConstant(CE, Q.DL);
4554 }
4555 
4556 Value *llvm::SimplifyGEPInst(Type *SrcTy, ArrayRef<Value *> Ops, bool InBounds,
4557                              const SimplifyQuery &Q) {
4558   return ::SimplifyGEPInst(SrcTy, Ops, InBounds, Q, RecursionLimit);
4559 }
4560 
4561 /// Given operands for an InsertValueInst, see if we can fold the result.
4562 /// If not, this returns null.
4563 static Value *SimplifyInsertValueInst(Value *Agg, Value *Val,
4564                                       ArrayRef<unsigned> Idxs, const SimplifyQuery &Q,
4565                                       unsigned) {
4566   if (Constant *CAgg = dyn_cast<Constant>(Agg))
4567     if (Constant *CVal = dyn_cast<Constant>(Val))
4568       return ConstantFoldInsertValueInstruction(CAgg, CVal, Idxs);
4569 
4570   // insertvalue x, undef, n -> x
4571   if (Q.isUndefValue(Val))
4572     return Agg;
4573 
4574   // insertvalue x, (extractvalue y, n), n
4575   if (ExtractValueInst *EV = dyn_cast<ExtractValueInst>(Val))
4576     if (EV->getAggregateOperand()->getType() == Agg->getType() &&
4577         EV->getIndices() == Idxs) {
4578       // insertvalue undef, (extractvalue y, n), n -> y
4579       if (Q.isUndefValue(Agg))
4580         return EV->getAggregateOperand();
4581 
4582       // insertvalue y, (extractvalue y, n), n -> y
4583       if (Agg == EV->getAggregateOperand())
4584         return Agg;
4585     }
4586 
4587   return nullptr;
4588 }
4589 
4590 Value *llvm::SimplifyInsertValueInst(Value *Agg, Value *Val,
4591                                      ArrayRef<unsigned> Idxs,
4592                                      const SimplifyQuery &Q) {
4593   return ::SimplifyInsertValueInst(Agg, Val, Idxs, Q, RecursionLimit);
4594 }
4595 
4596 Value *llvm::SimplifyInsertElementInst(Value *Vec, Value *Val, Value *Idx,
4597                                        const SimplifyQuery &Q) {
4598   // Try to constant fold.
4599   auto *VecC = dyn_cast<Constant>(Vec);
4600   auto *ValC = dyn_cast<Constant>(Val);
4601   auto *IdxC = dyn_cast<Constant>(Idx);
4602   if (VecC && ValC && IdxC)
4603     return ConstantExpr::getInsertElement(VecC, ValC, IdxC);
4604 
4605   // For fixed-length vector, fold into poison if index is out of bounds.
4606   if (auto *CI = dyn_cast<ConstantInt>(Idx)) {
4607     if (isa<FixedVectorType>(Vec->getType()) &&
4608         CI->uge(cast<FixedVectorType>(Vec->getType())->getNumElements()))
4609       return PoisonValue::get(Vec->getType());
4610   }
4611 
4612   // If index is undef, it might be out of bounds (see above case)
4613   if (Q.isUndefValue(Idx))
4614     return PoisonValue::get(Vec->getType());
4615 
4616   // If the scalar is poison, or it is undef and there is no risk of
4617   // propagating poison from the vector value, simplify to the vector value.
4618   if (isa<PoisonValue>(Val) ||
4619       (Q.isUndefValue(Val) && isGuaranteedNotToBePoison(Vec)))
4620     return Vec;
4621 
4622   // If we are extracting a value from a vector, then inserting it into the same
4623   // place, that's the input vector:
4624   // insertelt Vec, (extractelt Vec, Idx), Idx --> Vec
4625   if (match(Val, m_ExtractElt(m_Specific(Vec), m_Specific(Idx))))
4626     return Vec;
4627 
4628   return nullptr;
4629 }
4630 
4631 /// Given operands for an ExtractValueInst, see if we can fold the result.
4632 /// If not, this returns null.
4633 static Value *SimplifyExtractValueInst(Value *Agg, ArrayRef<unsigned> Idxs,
4634                                        const SimplifyQuery &, unsigned) {
4635   if (auto *CAgg = dyn_cast<Constant>(Agg))
4636     return ConstantFoldExtractValueInstruction(CAgg, Idxs);
4637 
4638   // extractvalue x, (insertvalue y, elt, n), n -> elt
4639   unsigned NumIdxs = Idxs.size();
4640   for (auto *IVI = dyn_cast<InsertValueInst>(Agg); IVI != nullptr;
4641        IVI = dyn_cast<InsertValueInst>(IVI->getAggregateOperand())) {
4642     ArrayRef<unsigned> InsertValueIdxs = IVI->getIndices();
4643     unsigned NumInsertValueIdxs = InsertValueIdxs.size();
4644     unsigned NumCommonIdxs = std::min(NumInsertValueIdxs, NumIdxs);
4645     if (InsertValueIdxs.slice(0, NumCommonIdxs) ==
4646         Idxs.slice(0, NumCommonIdxs)) {
4647       if (NumIdxs == NumInsertValueIdxs)
4648         return IVI->getInsertedValueOperand();
4649       break;
4650     }
4651   }
4652 
4653   return nullptr;
4654 }
4655 
4656 Value *llvm::SimplifyExtractValueInst(Value *Agg, ArrayRef<unsigned> Idxs,
4657                                       const SimplifyQuery &Q) {
4658   return ::SimplifyExtractValueInst(Agg, Idxs, Q, RecursionLimit);
4659 }
4660 
4661 /// Given operands for an ExtractElementInst, see if we can fold the result.
4662 /// If not, this returns null.
4663 static Value *SimplifyExtractElementInst(Value *Vec, Value *Idx,
4664                                          const SimplifyQuery &Q, unsigned) {
4665   auto *VecVTy = cast<VectorType>(Vec->getType());
4666   if (auto *CVec = dyn_cast<Constant>(Vec)) {
4667     if (auto *CIdx = dyn_cast<Constant>(Idx))
4668       return ConstantExpr::getExtractElement(CVec, CIdx);
4669 
4670     if (Q.isUndefValue(Vec))
4671       return UndefValue::get(VecVTy->getElementType());
4672   }
4673 
4674   // An undef extract index can be arbitrarily chosen to be an out-of-range
4675   // index value, which would result in the instruction being poison.
4676   if (Q.isUndefValue(Idx))
4677     return PoisonValue::get(VecVTy->getElementType());
4678 
4679   // If extracting a specified index from the vector, see if we can recursively
4680   // find a previously computed scalar that was inserted into the vector.
4681   if (auto *IdxC = dyn_cast<ConstantInt>(Idx)) {
4682     // For fixed-length vector, fold into undef if index is out of bounds.
4683     unsigned MinNumElts = VecVTy->getElementCount().getKnownMinValue();
4684     if (isa<FixedVectorType>(VecVTy) && IdxC->getValue().uge(MinNumElts))
4685       return PoisonValue::get(VecVTy->getElementType());
4686     // Handle case where an element is extracted from a splat.
4687     if (IdxC->getValue().ult(MinNumElts))
4688       if (auto *Splat = getSplatValue(Vec))
4689         return Splat;
4690     if (Value *Elt = findScalarElement(Vec, IdxC->getZExtValue()))
4691       return Elt;
4692   } else {
4693     // The index is not relevant if our vector is a splat.
4694     if (Value *Splat = getSplatValue(Vec))
4695       return Splat;
4696   }
4697   return nullptr;
4698 }
4699 
4700 Value *llvm::SimplifyExtractElementInst(Value *Vec, Value *Idx,
4701                                         const SimplifyQuery &Q) {
4702   return ::SimplifyExtractElementInst(Vec, Idx, Q, RecursionLimit);
4703 }
4704 
4705 /// See if we can fold the given phi. If not, returns null.
4706 static Value *SimplifyPHINode(PHINode *PN, ArrayRef<Value *> IncomingValues,
4707                               const SimplifyQuery &Q) {
4708   // WARNING: no matter how worthwhile it may seem, we can not perform PHI CSE
4709   //          here, because the PHI we may succeed simplifying to was not
4710   //          def-reachable from the original PHI!
4711 
4712   // If all of the PHI's incoming values are the same then replace the PHI node
4713   // with the common value.
4714   Value *CommonValue = nullptr;
4715   bool HasUndefInput = false;
4716   for (Value *Incoming : IncomingValues) {
4717     // If the incoming value is the phi node itself, it can safely be skipped.
4718     if (Incoming == PN) continue;
4719     if (Q.isUndefValue(Incoming)) {
4720       // Remember that we saw an undef value, but otherwise ignore them.
4721       HasUndefInput = true;
4722       continue;
4723     }
4724     if (CommonValue && Incoming != CommonValue)
4725       return nullptr;  // Not the same, bail out.
4726     CommonValue = Incoming;
4727   }
4728 
4729   // If CommonValue is null then all of the incoming values were either undef or
4730   // equal to the phi node itself.
4731   if (!CommonValue)
4732     return UndefValue::get(PN->getType());
4733 
4734   // If we have a PHI node like phi(X, undef, X), where X is defined by some
4735   // instruction, we cannot return X as the result of the PHI node unless it
4736   // dominates the PHI block.
4737   if (HasUndefInput)
4738     return valueDominatesPHI(CommonValue, PN, Q.DT) ? CommonValue : nullptr;
4739 
4740   return CommonValue;
4741 }
4742 
4743 static Value *SimplifyCastInst(unsigned CastOpc, Value *Op,
4744                                Type *Ty, const SimplifyQuery &Q, unsigned MaxRecurse) {
4745   if (auto *C = dyn_cast<Constant>(Op))
4746     return ConstantFoldCastOperand(CastOpc, C, Ty, Q.DL);
4747 
4748   if (auto *CI = dyn_cast<CastInst>(Op)) {
4749     auto *Src = CI->getOperand(0);
4750     Type *SrcTy = Src->getType();
4751     Type *MidTy = CI->getType();
4752     Type *DstTy = Ty;
4753     if (Src->getType() == Ty) {
4754       auto FirstOp = static_cast<Instruction::CastOps>(CI->getOpcode());
4755       auto SecondOp = static_cast<Instruction::CastOps>(CastOpc);
4756       Type *SrcIntPtrTy =
4757           SrcTy->isPtrOrPtrVectorTy() ? Q.DL.getIntPtrType(SrcTy) : nullptr;
4758       Type *MidIntPtrTy =
4759           MidTy->isPtrOrPtrVectorTy() ? Q.DL.getIntPtrType(MidTy) : nullptr;
4760       Type *DstIntPtrTy =
4761           DstTy->isPtrOrPtrVectorTy() ? Q.DL.getIntPtrType(DstTy) : nullptr;
4762       if (CastInst::isEliminableCastPair(FirstOp, SecondOp, SrcTy, MidTy, DstTy,
4763                                          SrcIntPtrTy, MidIntPtrTy,
4764                                          DstIntPtrTy) == Instruction::BitCast)
4765         return Src;
4766     }
4767   }
4768 
4769   // bitcast x -> x
4770   if (CastOpc == Instruction::BitCast)
4771     if (Op->getType() == Ty)
4772       return Op;
4773 
4774   return nullptr;
4775 }
4776 
4777 Value *llvm::SimplifyCastInst(unsigned CastOpc, Value *Op, Type *Ty,
4778                               const SimplifyQuery &Q) {
4779   return ::SimplifyCastInst(CastOpc, Op, Ty, Q, RecursionLimit);
4780 }
4781 
4782 /// For the given destination element of a shuffle, peek through shuffles to
4783 /// match a root vector source operand that contains that element in the same
4784 /// vector lane (ie, the same mask index), so we can eliminate the shuffle(s).
4785 static Value *foldIdentityShuffles(int DestElt, Value *Op0, Value *Op1,
4786                                    int MaskVal, Value *RootVec,
4787                                    unsigned MaxRecurse) {
4788   if (!MaxRecurse--)
4789     return nullptr;
4790 
4791   // Bail out if any mask value is undefined. That kind of shuffle may be
4792   // simplified further based on demanded bits or other folds.
4793   if (MaskVal == -1)
4794     return nullptr;
4795 
4796   // The mask value chooses which source operand we need to look at next.
4797   int InVecNumElts = cast<FixedVectorType>(Op0->getType())->getNumElements();
4798   int RootElt = MaskVal;
4799   Value *SourceOp = Op0;
4800   if (MaskVal >= InVecNumElts) {
4801     RootElt = MaskVal - InVecNumElts;
4802     SourceOp = Op1;
4803   }
4804 
4805   // If the source operand is a shuffle itself, look through it to find the
4806   // matching root vector.
4807   if (auto *SourceShuf = dyn_cast<ShuffleVectorInst>(SourceOp)) {
4808     return foldIdentityShuffles(
4809         DestElt, SourceShuf->getOperand(0), SourceShuf->getOperand(1),
4810         SourceShuf->getMaskValue(RootElt), RootVec, MaxRecurse);
4811   }
4812 
4813   // TODO: Look through bitcasts? What if the bitcast changes the vector element
4814   // size?
4815 
4816   // The source operand is not a shuffle. Initialize the root vector value for
4817   // this shuffle if that has not been done yet.
4818   if (!RootVec)
4819     RootVec = SourceOp;
4820 
4821   // Give up as soon as a source operand does not match the existing root value.
4822   if (RootVec != SourceOp)
4823     return nullptr;
4824 
4825   // The element must be coming from the same lane in the source vector
4826   // (although it may have crossed lanes in intermediate shuffles).
4827   if (RootElt != DestElt)
4828     return nullptr;
4829 
4830   return RootVec;
4831 }
4832 
4833 static Value *SimplifyShuffleVectorInst(Value *Op0, Value *Op1,
4834                                         ArrayRef<int> Mask, Type *RetTy,
4835                                         const SimplifyQuery &Q,
4836                                         unsigned MaxRecurse) {
4837   if (all_of(Mask, [](int Elem) { return Elem == UndefMaskElem; }))
4838     return UndefValue::get(RetTy);
4839 
4840   auto *InVecTy = cast<VectorType>(Op0->getType());
4841   unsigned MaskNumElts = Mask.size();
4842   ElementCount InVecEltCount = InVecTy->getElementCount();
4843 
4844   bool Scalable = InVecEltCount.isScalable();
4845 
4846   SmallVector<int, 32> Indices;
4847   Indices.assign(Mask.begin(), Mask.end());
4848 
4849   // Canonicalization: If mask does not select elements from an input vector,
4850   // replace that input vector with poison.
4851   if (!Scalable) {
4852     bool MaskSelects0 = false, MaskSelects1 = false;
4853     unsigned InVecNumElts = InVecEltCount.getKnownMinValue();
4854     for (unsigned i = 0; i != MaskNumElts; ++i) {
4855       if (Indices[i] == -1)
4856         continue;
4857       if ((unsigned)Indices[i] < InVecNumElts)
4858         MaskSelects0 = true;
4859       else
4860         MaskSelects1 = true;
4861     }
4862     if (!MaskSelects0)
4863       Op0 = PoisonValue::get(InVecTy);
4864     if (!MaskSelects1)
4865       Op1 = PoisonValue::get(InVecTy);
4866   }
4867 
4868   auto *Op0Const = dyn_cast<Constant>(Op0);
4869   auto *Op1Const = dyn_cast<Constant>(Op1);
4870 
4871   // If all operands are constant, constant fold the shuffle. This
4872   // transformation depends on the value of the mask which is not known at
4873   // compile time for scalable vectors
4874   if (Op0Const && Op1Const)
4875     return ConstantExpr::getShuffleVector(Op0Const, Op1Const, Mask);
4876 
4877   // Canonicalization: if only one input vector is constant, it shall be the
4878   // second one. This transformation depends on the value of the mask which
4879   // is not known at compile time for scalable vectors
4880   if (!Scalable && Op0Const && !Op1Const) {
4881     std::swap(Op0, Op1);
4882     ShuffleVectorInst::commuteShuffleMask(Indices,
4883                                           InVecEltCount.getKnownMinValue());
4884   }
4885 
4886   // A splat of an inserted scalar constant becomes a vector constant:
4887   // shuf (inselt ?, C, IndexC), undef, <IndexC, IndexC...> --> <C, C...>
4888   // NOTE: We may have commuted above, so analyze the updated Indices, not the
4889   //       original mask constant.
4890   // NOTE: This transformation depends on the value of the mask which is not
4891   // known at compile time for scalable vectors
4892   Constant *C;
4893   ConstantInt *IndexC;
4894   if (!Scalable && match(Op0, m_InsertElt(m_Value(), m_Constant(C),
4895                                           m_ConstantInt(IndexC)))) {
4896     // Match a splat shuffle mask of the insert index allowing undef elements.
4897     int InsertIndex = IndexC->getZExtValue();
4898     if (all_of(Indices, [InsertIndex](int MaskElt) {
4899           return MaskElt == InsertIndex || MaskElt == -1;
4900         })) {
4901       assert(isa<UndefValue>(Op1) && "Expected undef operand 1 for splat");
4902 
4903       // Shuffle mask undefs become undefined constant result elements.
4904       SmallVector<Constant *, 16> VecC(MaskNumElts, C);
4905       for (unsigned i = 0; i != MaskNumElts; ++i)
4906         if (Indices[i] == -1)
4907           VecC[i] = UndefValue::get(C->getType());
4908       return ConstantVector::get(VecC);
4909     }
4910   }
4911 
4912   // A shuffle of a splat is always the splat itself. Legal if the shuffle's
4913   // value type is same as the input vectors' type.
4914   if (auto *OpShuf = dyn_cast<ShuffleVectorInst>(Op0))
4915     if (Q.isUndefValue(Op1) && RetTy == InVecTy &&
4916         is_splat(OpShuf->getShuffleMask()))
4917       return Op0;
4918 
4919   // All remaining transformation depend on the value of the mask, which is
4920   // not known at compile time for scalable vectors.
4921   if (Scalable)
4922     return nullptr;
4923 
4924   // Don't fold a shuffle with undef mask elements. This may get folded in a
4925   // better way using demanded bits or other analysis.
4926   // TODO: Should we allow this?
4927   if (is_contained(Indices, -1))
4928     return nullptr;
4929 
4930   // Check if every element of this shuffle can be mapped back to the
4931   // corresponding element of a single root vector. If so, we don't need this
4932   // shuffle. This handles simple identity shuffles as well as chains of
4933   // shuffles that may widen/narrow and/or move elements across lanes and back.
4934   Value *RootVec = nullptr;
4935   for (unsigned i = 0; i != MaskNumElts; ++i) {
4936     // Note that recursion is limited for each vector element, so if any element
4937     // exceeds the limit, this will fail to simplify.
4938     RootVec =
4939         foldIdentityShuffles(i, Op0, Op1, Indices[i], RootVec, MaxRecurse);
4940 
4941     // We can't replace a widening/narrowing shuffle with one of its operands.
4942     if (!RootVec || RootVec->getType() != RetTy)
4943       return nullptr;
4944   }
4945   return RootVec;
4946 }
4947 
4948 /// Given operands for a ShuffleVectorInst, fold the result or return null.
4949 Value *llvm::SimplifyShuffleVectorInst(Value *Op0, Value *Op1,
4950                                        ArrayRef<int> Mask, Type *RetTy,
4951                                        const SimplifyQuery &Q) {
4952   return ::SimplifyShuffleVectorInst(Op0, Op1, Mask, RetTy, Q, RecursionLimit);
4953 }
4954 
4955 static Constant *foldConstant(Instruction::UnaryOps Opcode,
4956                               Value *&Op, const SimplifyQuery &Q) {
4957   if (auto *C = dyn_cast<Constant>(Op))
4958     return ConstantFoldUnaryOpOperand(Opcode, C, Q.DL);
4959   return nullptr;
4960 }
4961 
4962 /// Given the operand for an FNeg, see if we can fold the result.  If not, this
4963 /// returns null.
4964 static Value *simplifyFNegInst(Value *Op, FastMathFlags FMF,
4965                                const SimplifyQuery &Q, unsigned MaxRecurse) {
4966   if (Constant *C = foldConstant(Instruction::FNeg, Op, Q))
4967     return C;
4968 
4969   Value *X;
4970   // fneg (fneg X) ==> X
4971   if (match(Op, m_FNeg(m_Value(X))))
4972     return X;
4973 
4974   return nullptr;
4975 }
4976 
4977 Value *llvm::SimplifyFNegInst(Value *Op, FastMathFlags FMF,
4978                               const SimplifyQuery &Q) {
4979   return ::simplifyFNegInst(Op, FMF, Q, RecursionLimit);
4980 }
4981 
4982 static Constant *propagateNaN(Constant *In) {
4983   // If the input is a vector with undef elements, just return a default NaN.
4984   if (!In->isNaN())
4985     return ConstantFP::getNaN(In->getType());
4986 
4987   // Propagate the existing NaN constant when possible.
4988   // TODO: Should we quiet a signaling NaN?
4989   return In;
4990 }
4991 
4992 /// Perform folds that are common to any floating-point operation. This implies
4993 /// transforms based on poison/undef/NaN because the operation itself makes no
4994 /// difference to the result.
4995 static Constant *simplifyFPOp(ArrayRef<Value *> Ops, FastMathFlags FMF,
4996                               const SimplifyQuery &Q,
4997                               fp::ExceptionBehavior ExBehavior,
4998                               RoundingMode Rounding) {
4999   // Poison is independent of anything else. It always propagates from an
5000   // operand to a math result.
5001   if (any_of(Ops, [](Value *V) { return match(V, m_Poison()); }))
5002     return PoisonValue::get(Ops[0]->getType());
5003 
5004   for (Value *V : Ops) {
5005     bool IsNan = match(V, m_NaN());
5006     bool IsInf = match(V, m_Inf());
5007     bool IsUndef = Q.isUndefValue(V);
5008 
5009     // If this operation has 'nnan' or 'ninf' and at least 1 disallowed operand
5010     // (an undef operand can be chosen to be Nan/Inf), then the result of
5011     // this operation is poison.
5012     if (FMF.noNaNs() && (IsNan || IsUndef))
5013       return PoisonValue::get(V->getType());
5014     if (FMF.noInfs() && (IsInf || IsUndef))
5015       return PoisonValue::get(V->getType());
5016 
5017     if (isDefaultFPEnvironment(ExBehavior, Rounding)) {
5018       if (IsUndef || IsNan)
5019         return propagateNaN(cast<Constant>(V));
5020     } else if (ExBehavior != fp::ebStrict) {
5021       if (IsNan)
5022         return propagateNaN(cast<Constant>(V));
5023     }
5024   }
5025   return nullptr;
5026 }
5027 
5028 // TODO: Move this out to a header file:
5029 static inline bool canIgnoreSNaN(fp::ExceptionBehavior EB, FastMathFlags FMF) {
5030   return (EB == fp::ebIgnore || FMF.noNaNs());
5031 }
5032 
5033 /// Given operands for an FAdd, see if we can fold the result.  If not, this
5034 /// returns null.
5035 static Value *
5036 SimplifyFAddInst(Value *Op0, Value *Op1, FastMathFlags FMF,
5037                  const SimplifyQuery &Q, unsigned MaxRecurse,
5038                  fp::ExceptionBehavior ExBehavior = fp::ebIgnore,
5039                  RoundingMode Rounding = RoundingMode::NearestTiesToEven) {
5040   if (isDefaultFPEnvironment(ExBehavior, Rounding))
5041     if (Constant *C = foldOrCommuteConstant(Instruction::FAdd, Op0, Op1, Q))
5042       return C;
5043 
5044   if (Constant *C = simplifyFPOp({Op0, Op1}, FMF, Q, ExBehavior, Rounding))
5045     return C;
5046 
5047   // fadd X, -0 ==> X
5048   // With strict/constrained FP, we have these possible edge cases that do
5049   // not simplify to Op0:
5050   // fadd SNaN, -0.0 --> QNaN
5051   // fadd +0.0, -0.0 --> -0.0 (but only with round toward negative)
5052   if (canIgnoreSNaN(ExBehavior, FMF) &&
5053       (!canRoundingModeBe(Rounding, RoundingMode::TowardNegative) ||
5054        FMF.noSignedZeros()))
5055     if (match(Op1, m_NegZeroFP()))
5056       return Op0;
5057 
5058   // fadd X, 0 ==> X, when we know X is not -0
5059   if (canIgnoreSNaN(ExBehavior, FMF))
5060     if (match(Op1, m_PosZeroFP()) &&
5061         (FMF.noSignedZeros() || CannotBeNegativeZero(Op0, Q.TLI)))
5062       return Op0;
5063 
5064   if (!isDefaultFPEnvironment(ExBehavior, Rounding))
5065     return nullptr;
5066 
5067   // With nnan: -X + X --> 0.0 (and commuted variant)
5068   // We don't have to explicitly exclude infinities (ninf): INF + -INF == NaN.
5069   // Negative zeros are allowed because we always end up with positive zero:
5070   // X = -0.0: (-0.0 - (-0.0)) + (-0.0) == ( 0.0) + (-0.0) == 0.0
5071   // X = -0.0: ( 0.0 - (-0.0)) + (-0.0) == ( 0.0) + (-0.0) == 0.0
5072   // X =  0.0: (-0.0 - ( 0.0)) + ( 0.0) == (-0.0) + ( 0.0) == 0.0
5073   // X =  0.0: ( 0.0 - ( 0.0)) + ( 0.0) == ( 0.0) + ( 0.0) == 0.0
5074   if (FMF.noNaNs()) {
5075     if (match(Op0, m_FSub(m_AnyZeroFP(), m_Specific(Op1))) ||
5076         match(Op1, m_FSub(m_AnyZeroFP(), m_Specific(Op0))))
5077       return ConstantFP::getNullValue(Op0->getType());
5078 
5079     if (match(Op0, m_FNeg(m_Specific(Op1))) ||
5080         match(Op1, m_FNeg(m_Specific(Op0))))
5081       return ConstantFP::getNullValue(Op0->getType());
5082   }
5083 
5084   // (X - Y) + Y --> X
5085   // Y + (X - Y) --> X
5086   Value *X;
5087   if (FMF.noSignedZeros() && FMF.allowReassoc() &&
5088       (match(Op0, m_FSub(m_Value(X), m_Specific(Op1))) ||
5089        match(Op1, m_FSub(m_Value(X), m_Specific(Op0)))))
5090     return X;
5091 
5092   return nullptr;
5093 }
5094 
5095 /// Given operands for an FSub, see if we can fold the result.  If not, this
5096 /// returns null.
5097 static Value *
5098 SimplifyFSubInst(Value *Op0, Value *Op1, FastMathFlags FMF,
5099                  const SimplifyQuery &Q, unsigned MaxRecurse,
5100                  fp::ExceptionBehavior ExBehavior = fp::ebIgnore,
5101                  RoundingMode Rounding = RoundingMode::NearestTiesToEven) {
5102   if (isDefaultFPEnvironment(ExBehavior, Rounding))
5103     if (Constant *C = foldOrCommuteConstant(Instruction::FSub, Op0, Op1, Q))
5104       return C;
5105 
5106   if (Constant *C = simplifyFPOp({Op0, Op1}, FMF, Q, ExBehavior, Rounding))
5107     return C;
5108 
5109   if (!isDefaultFPEnvironment(ExBehavior, Rounding))
5110     return nullptr;
5111 
5112   // fsub X, +0 ==> X
5113   if (match(Op1, m_PosZeroFP()))
5114     return Op0;
5115 
5116   // fsub X, -0 ==> X, when we know X is not -0
5117   if (match(Op1, m_NegZeroFP()) &&
5118       (FMF.noSignedZeros() || CannotBeNegativeZero(Op0, Q.TLI)))
5119     return Op0;
5120 
5121   // fsub -0.0, (fsub -0.0, X) ==> X
5122   // fsub -0.0, (fneg X) ==> X
5123   Value *X;
5124   if (match(Op0, m_NegZeroFP()) &&
5125       match(Op1, m_FNeg(m_Value(X))))
5126     return X;
5127 
5128   // fsub 0.0, (fsub 0.0, X) ==> X if signed zeros are ignored.
5129   // fsub 0.0, (fneg X) ==> X if signed zeros are ignored.
5130   if (FMF.noSignedZeros() && match(Op0, m_AnyZeroFP()) &&
5131       (match(Op1, m_FSub(m_AnyZeroFP(), m_Value(X))) ||
5132        match(Op1, m_FNeg(m_Value(X)))))
5133     return X;
5134 
5135   // fsub nnan x, x ==> 0.0
5136   if (FMF.noNaNs() && Op0 == Op1)
5137     return Constant::getNullValue(Op0->getType());
5138 
5139   // Y - (Y - X) --> X
5140   // (X + Y) - Y --> X
5141   if (FMF.noSignedZeros() && FMF.allowReassoc() &&
5142       (match(Op1, m_FSub(m_Specific(Op0), m_Value(X))) ||
5143        match(Op0, m_c_FAdd(m_Specific(Op1), m_Value(X)))))
5144     return X;
5145 
5146   return nullptr;
5147 }
5148 
5149 static Value *SimplifyFMAFMul(Value *Op0, Value *Op1, FastMathFlags FMF,
5150                               const SimplifyQuery &Q, unsigned MaxRecurse,
5151                               fp::ExceptionBehavior ExBehavior,
5152                               RoundingMode Rounding) {
5153   if (Constant *C = simplifyFPOp({Op0, Op1}, FMF, Q, ExBehavior, Rounding))
5154     return C;
5155 
5156   if (!isDefaultFPEnvironment(ExBehavior, Rounding))
5157     return nullptr;
5158 
5159   // fmul X, 1.0 ==> X
5160   if (match(Op1, m_FPOne()))
5161     return Op0;
5162 
5163   // fmul 1.0, X ==> X
5164   if (match(Op0, m_FPOne()))
5165     return Op1;
5166 
5167   // fmul nnan nsz X, 0 ==> 0
5168   if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op1, m_AnyZeroFP()))
5169     return ConstantFP::getNullValue(Op0->getType());
5170 
5171   // fmul nnan nsz 0, X ==> 0
5172   if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op0, m_AnyZeroFP()))
5173     return ConstantFP::getNullValue(Op1->getType());
5174 
5175   // sqrt(X) * sqrt(X) --> X, if we can:
5176   // 1. Remove the intermediate rounding (reassociate).
5177   // 2. Ignore non-zero negative numbers because sqrt would produce NAN.
5178   // 3. Ignore -0.0 because sqrt(-0.0) == -0.0, but -0.0 * -0.0 == 0.0.
5179   Value *X;
5180   if (Op0 == Op1 && match(Op0, m_Intrinsic<Intrinsic::sqrt>(m_Value(X))) &&
5181       FMF.allowReassoc() && FMF.noNaNs() && FMF.noSignedZeros())
5182     return X;
5183 
5184   return nullptr;
5185 }
5186 
5187 /// Given the operands for an FMul, see if we can fold the result
5188 static Value *
5189 SimplifyFMulInst(Value *Op0, Value *Op1, FastMathFlags FMF,
5190                  const SimplifyQuery &Q, unsigned MaxRecurse,
5191                  fp::ExceptionBehavior ExBehavior = fp::ebIgnore,
5192                  RoundingMode Rounding = RoundingMode::NearestTiesToEven) {
5193   if (isDefaultFPEnvironment(ExBehavior, Rounding))
5194     if (Constant *C = foldOrCommuteConstant(Instruction::FMul, Op0, Op1, Q))
5195       return C;
5196 
5197   // Now apply simplifications that do not require rounding.
5198   return SimplifyFMAFMul(Op0, Op1, FMF, Q, MaxRecurse, ExBehavior, Rounding);
5199 }
5200 
5201 Value *llvm::SimplifyFAddInst(Value *Op0, Value *Op1, FastMathFlags FMF,
5202                               const SimplifyQuery &Q,
5203                               fp::ExceptionBehavior ExBehavior,
5204                               RoundingMode Rounding) {
5205   return ::SimplifyFAddInst(Op0, Op1, FMF, Q, RecursionLimit, ExBehavior,
5206                             Rounding);
5207 }
5208 
5209 Value *llvm::SimplifyFSubInst(Value *Op0, Value *Op1, FastMathFlags FMF,
5210                               const SimplifyQuery &Q,
5211                               fp::ExceptionBehavior ExBehavior,
5212                               RoundingMode Rounding) {
5213   return ::SimplifyFSubInst(Op0, Op1, FMF, Q, RecursionLimit, ExBehavior,
5214                             Rounding);
5215 }
5216 
5217 Value *llvm::SimplifyFMulInst(Value *Op0, Value *Op1, FastMathFlags FMF,
5218                               const SimplifyQuery &Q,
5219                               fp::ExceptionBehavior ExBehavior,
5220                               RoundingMode Rounding) {
5221   return ::SimplifyFMulInst(Op0, Op1, FMF, Q, RecursionLimit, ExBehavior,
5222                             Rounding);
5223 }
5224 
5225 Value *llvm::SimplifyFMAFMul(Value *Op0, Value *Op1, FastMathFlags FMF,
5226                              const SimplifyQuery &Q,
5227                              fp::ExceptionBehavior ExBehavior,
5228                              RoundingMode Rounding) {
5229   return ::SimplifyFMAFMul(Op0, Op1, FMF, Q, RecursionLimit, ExBehavior,
5230                            Rounding);
5231 }
5232 
5233 static Value *
5234 SimplifyFDivInst(Value *Op0, Value *Op1, FastMathFlags FMF,
5235                  const SimplifyQuery &Q, unsigned,
5236                  fp::ExceptionBehavior ExBehavior = fp::ebIgnore,
5237                  RoundingMode Rounding = RoundingMode::NearestTiesToEven) {
5238   if (isDefaultFPEnvironment(ExBehavior, Rounding))
5239     if (Constant *C = foldOrCommuteConstant(Instruction::FDiv, Op0, Op1, Q))
5240       return C;
5241 
5242   if (Constant *C = simplifyFPOp({Op0, Op1}, FMF, Q, ExBehavior, Rounding))
5243     return C;
5244 
5245   if (!isDefaultFPEnvironment(ExBehavior, Rounding))
5246     return nullptr;
5247 
5248   // X / 1.0 -> X
5249   if (match(Op1, m_FPOne()))
5250     return Op0;
5251 
5252   // 0 / X -> 0
5253   // Requires that NaNs are off (X could be zero) and signed zeroes are
5254   // ignored (X could be positive or negative, so the output sign is unknown).
5255   if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op0, m_AnyZeroFP()))
5256     return ConstantFP::getNullValue(Op0->getType());
5257 
5258   if (FMF.noNaNs()) {
5259     // X / X -> 1.0 is legal when NaNs are ignored.
5260     // We can ignore infinities because INF/INF is NaN.
5261     if (Op0 == Op1)
5262       return ConstantFP::get(Op0->getType(), 1.0);
5263 
5264     // (X * Y) / Y --> X if we can reassociate to the above form.
5265     Value *X;
5266     if (FMF.allowReassoc() && match(Op0, m_c_FMul(m_Value(X), m_Specific(Op1))))
5267       return X;
5268 
5269     // -X /  X -> -1.0 and
5270     //  X / -X -> -1.0 are legal when NaNs are ignored.
5271     // We can ignore signed zeros because +-0.0/+-0.0 is NaN and ignored.
5272     if (match(Op0, m_FNegNSZ(m_Specific(Op1))) ||
5273         match(Op1, m_FNegNSZ(m_Specific(Op0))))
5274       return ConstantFP::get(Op0->getType(), -1.0);
5275   }
5276 
5277   return nullptr;
5278 }
5279 
5280 Value *llvm::SimplifyFDivInst(Value *Op0, Value *Op1, FastMathFlags FMF,
5281                               const SimplifyQuery &Q,
5282                               fp::ExceptionBehavior ExBehavior,
5283                               RoundingMode Rounding) {
5284   return ::SimplifyFDivInst(Op0, Op1, FMF, Q, RecursionLimit, ExBehavior,
5285                             Rounding);
5286 }
5287 
5288 static Value *
5289 SimplifyFRemInst(Value *Op0, Value *Op1, FastMathFlags FMF,
5290                  const SimplifyQuery &Q, unsigned,
5291                  fp::ExceptionBehavior ExBehavior = fp::ebIgnore,
5292                  RoundingMode Rounding = RoundingMode::NearestTiesToEven) {
5293   if (isDefaultFPEnvironment(ExBehavior, Rounding))
5294     if (Constant *C = foldOrCommuteConstant(Instruction::FRem, Op0, Op1, Q))
5295       return C;
5296 
5297   if (Constant *C = simplifyFPOp({Op0, Op1}, FMF, Q, ExBehavior, Rounding))
5298     return C;
5299 
5300   if (!isDefaultFPEnvironment(ExBehavior, Rounding))
5301     return nullptr;
5302 
5303   // Unlike fdiv, the result of frem always matches the sign of the dividend.
5304   // The constant match may include undef elements in a vector, so return a full
5305   // zero constant as the result.
5306   if (FMF.noNaNs()) {
5307     // +0 % X -> 0
5308     if (match(Op0, m_PosZeroFP()))
5309       return ConstantFP::getNullValue(Op0->getType());
5310     // -0 % X -> -0
5311     if (match(Op0, m_NegZeroFP()))
5312       return ConstantFP::getNegativeZero(Op0->getType());
5313   }
5314 
5315   return nullptr;
5316 }
5317 
5318 Value *llvm::SimplifyFRemInst(Value *Op0, Value *Op1, FastMathFlags FMF,
5319                               const SimplifyQuery &Q,
5320                               fp::ExceptionBehavior ExBehavior,
5321                               RoundingMode Rounding) {
5322   return ::SimplifyFRemInst(Op0, Op1, FMF, Q, RecursionLimit, ExBehavior,
5323                             Rounding);
5324 }
5325 
5326 //=== Helper functions for higher up the class hierarchy.
5327 
5328 /// Given the operand for a UnaryOperator, see if we can fold the result.
5329 /// If not, this returns null.
5330 static Value *simplifyUnOp(unsigned Opcode, Value *Op, const SimplifyQuery &Q,
5331                            unsigned MaxRecurse) {
5332   switch (Opcode) {
5333   case Instruction::FNeg:
5334     return simplifyFNegInst(Op, FastMathFlags(), Q, MaxRecurse);
5335   default:
5336     llvm_unreachable("Unexpected opcode");
5337   }
5338 }
5339 
5340 /// Given the operand for a UnaryOperator, see if we can fold the result.
5341 /// If not, this returns null.
5342 /// Try to use FastMathFlags when folding the result.
5343 static Value *simplifyFPUnOp(unsigned Opcode, Value *Op,
5344                              const FastMathFlags &FMF,
5345                              const SimplifyQuery &Q, unsigned MaxRecurse) {
5346   switch (Opcode) {
5347   case Instruction::FNeg:
5348     return simplifyFNegInst(Op, FMF, Q, MaxRecurse);
5349   default:
5350     return simplifyUnOp(Opcode, Op, Q, MaxRecurse);
5351   }
5352 }
5353 
5354 Value *llvm::SimplifyUnOp(unsigned Opcode, Value *Op, const SimplifyQuery &Q) {
5355   return ::simplifyUnOp(Opcode, Op, Q, RecursionLimit);
5356 }
5357 
5358 Value *llvm::SimplifyUnOp(unsigned Opcode, Value *Op, FastMathFlags FMF,
5359                           const SimplifyQuery &Q) {
5360   return ::simplifyFPUnOp(Opcode, Op, FMF, Q, RecursionLimit);
5361 }
5362 
5363 /// Given operands for a BinaryOperator, see if we can fold the result.
5364 /// If not, this returns null.
5365 static Value *SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS,
5366                             const SimplifyQuery &Q, unsigned MaxRecurse) {
5367   switch (Opcode) {
5368   case Instruction::Add:
5369     return SimplifyAddInst(LHS, RHS, false, false, Q, MaxRecurse);
5370   case Instruction::Sub:
5371     return SimplifySubInst(LHS, RHS, false, false, Q, MaxRecurse);
5372   case Instruction::Mul:
5373     return SimplifyMulInst(LHS, RHS, Q, MaxRecurse);
5374   case Instruction::SDiv:
5375     return SimplifySDivInst(LHS, RHS, Q, MaxRecurse);
5376   case Instruction::UDiv:
5377     return SimplifyUDivInst(LHS, RHS, Q, MaxRecurse);
5378   case Instruction::SRem:
5379     return SimplifySRemInst(LHS, RHS, Q, MaxRecurse);
5380   case Instruction::URem:
5381     return SimplifyURemInst(LHS, RHS, Q, MaxRecurse);
5382   case Instruction::Shl:
5383     return SimplifyShlInst(LHS, RHS, false, false, Q, MaxRecurse);
5384   case Instruction::LShr:
5385     return SimplifyLShrInst(LHS, RHS, false, Q, MaxRecurse);
5386   case Instruction::AShr:
5387     return SimplifyAShrInst(LHS, RHS, false, Q, MaxRecurse);
5388   case Instruction::And:
5389     return SimplifyAndInst(LHS, RHS, Q, MaxRecurse);
5390   case Instruction::Or:
5391     return SimplifyOrInst(LHS, RHS, Q, MaxRecurse);
5392   case Instruction::Xor:
5393     return SimplifyXorInst(LHS, RHS, Q, MaxRecurse);
5394   case Instruction::FAdd:
5395     return SimplifyFAddInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse);
5396   case Instruction::FSub:
5397     return SimplifyFSubInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse);
5398   case Instruction::FMul:
5399     return SimplifyFMulInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse);
5400   case Instruction::FDiv:
5401     return SimplifyFDivInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse);
5402   case Instruction::FRem:
5403     return SimplifyFRemInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse);
5404   default:
5405     llvm_unreachable("Unexpected opcode");
5406   }
5407 }
5408 
5409 /// Given operands for a BinaryOperator, see if we can fold the result.
5410 /// If not, this returns null.
5411 /// Try to use FastMathFlags when folding the result.
5412 static Value *SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS,
5413                             const FastMathFlags &FMF, const SimplifyQuery &Q,
5414                             unsigned MaxRecurse) {
5415   switch (Opcode) {
5416   case Instruction::FAdd:
5417     return SimplifyFAddInst(LHS, RHS, FMF, Q, MaxRecurse);
5418   case Instruction::FSub:
5419     return SimplifyFSubInst(LHS, RHS, FMF, Q, MaxRecurse);
5420   case Instruction::FMul:
5421     return SimplifyFMulInst(LHS, RHS, FMF, Q, MaxRecurse);
5422   case Instruction::FDiv:
5423     return SimplifyFDivInst(LHS, RHS, FMF, Q, MaxRecurse);
5424   default:
5425     return SimplifyBinOp(Opcode, LHS, RHS, Q, MaxRecurse);
5426   }
5427 }
5428 
5429 Value *llvm::SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS,
5430                            const SimplifyQuery &Q) {
5431   return ::SimplifyBinOp(Opcode, LHS, RHS, Q, RecursionLimit);
5432 }
5433 
5434 Value *llvm::SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS,
5435                            FastMathFlags FMF, const SimplifyQuery &Q) {
5436   return ::SimplifyBinOp(Opcode, LHS, RHS, FMF, Q, RecursionLimit);
5437 }
5438 
5439 /// Given operands for a CmpInst, see if we can fold the result.
5440 static Value *SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
5441                               const SimplifyQuery &Q, unsigned MaxRecurse) {
5442   if (CmpInst::isIntPredicate((CmpInst::Predicate)Predicate))
5443     return SimplifyICmpInst(Predicate, LHS, RHS, Q, MaxRecurse);
5444   return SimplifyFCmpInst(Predicate, LHS, RHS, FastMathFlags(), Q, MaxRecurse);
5445 }
5446 
5447 Value *llvm::SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
5448                              const SimplifyQuery &Q) {
5449   return ::SimplifyCmpInst(Predicate, LHS, RHS, Q, RecursionLimit);
5450 }
5451 
5452 static bool IsIdempotent(Intrinsic::ID ID) {
5453   switch (ID) {
5454   default: return false;
5455 
5456   // Unary idempotent: f(f(x)) = f(x)
5457   case Intrinsic::fabs:
5458   case Intrinsic::floor:
5459   case Intrinsic::ceil:
5460   case Intrinsic::trunc:
5461   case Intrinsic::rint:
5462   case Intrinsic::nearbyint:
5463   case Intrinsic::round:
5464   case Intrinsic::roundeven:
5465   case Intrinsic::canonicalize:
5466     return true;
5467   }
5468 }
5469 
5470 static Value *SimplifyRelativeLoad(Constant *Ptr, Constant *Offset,
5471                                    const DataLayout &DL) {
5472   GlobalValue *PtrSym;
5473   APInt PtrOffset;
5474   if (!IsConstantOffsetFromGlobal(Ptr, PtrSym, PtrOffset, DL))
5475     return nullptr;
5476 
5477   Type *Int8PtrTy = Type::getInt8PtrTy(Ptr->getContext());
5478   Type *Int32Ty = Type::getInt32Ty(Ptr->getContext());
5479   Type *Int32PtrTy = Int32Ty->getPointerTo();
5480   Type *Int64Ty = Type::getInt64Ty(Ptr->getContext());
5481 
5482   auto *OffsetConstInt = dyn_cast<ConstantInt>(Offset);
5483   if (!OffsetConstInt || OffsetConstInt->getType()->getBitWidth() > 64)
5484     return nullptr;
5485 
5486   uint64_t OffsetInt = OffsetConstInt->getSExtValue();
5487   if (OffsetInt % 4 != 0)
5488     return nullptr;
5489 
5490   Constant *C = ConstantExpr::getGetElementPtr(
5491       Int32Ty, ConstantExpr::getBitCast(Ptr, Int32PtrTy),
5492       ConstantInt::get(Int64Ty, OffsetInt / 4));
5493   Constant *Loaded = ConstantFoldLoadFromConstPtr(C, Int32Ty, DL);
5494   if (!Loaded)
5495     return nullptr;
5496 
5497   auto *LoadedCE = dyn_cast<ConstantExpr>(Loaded);
5498   if (!LoadedCE)
5499     return nullptr;
5500 
5501   if (LoadedCE->getOpcode() == Instruction::Trunc) {
5502     LoadedCE = dyn_cast<ConstantExpr>(LoadedCE->getOperand(0));
5503     if (!LoadedCE)
5504       return nullptr;
5505   }
5506 
5507   if (LoadedCE->getOpcode() != Instruction::Sub)
5508     return nullptr;
5509 
5510   auto *LoadedLHS = dyn_cast<ConstantExpr>(LoadedCE->getOperand(0));
5511   if (!LoadedLHS || LoadedLHS->getOpcode() != Instruction::PtrToInt)
5512     return nullptr;
5513   auto *LoadedLHSPtr = LoadedLHS->getOperand(0);
5514 
5515   Constant *LoadedRHS = LoadedCE->getOperand(1);
5516   GlobalValue *LoadedRHSSym;
5517   APInt LoadedRHSOffset;
5518   if (!IsConstantOffsetFromGlobal(LoadedRHS, LoadedRHSSym, LoadedRHSOffset,
5519                                   DL) ||
5520       PtrSym != LoadedRHSSym || PtrOffset != LoadedRHSOffset)
5521     return nullptr;
5522 
5523   return ConstantExpr::getBitCast(LoadedLHSPtr, Int8PtrTy);
5524 }
5525 
5526 static Value *simplifyUnaryIntrinsic(Function *F, Value *Op0,
5527                                      const SimplifyQuery &Q) {
5528   // Idempotent functions return the same result when called repeatedly.
5529   Intrinsic::ID IID = F->getIntrinsicID();
5530   if (IsIdempotent(IID))
5531     if (auto *II = dyn_cast<IntrinsicInst>(Op0))
5532       if (II->getIntrinsicID() == IID)
5533         return II;
5534 
5535   Value *X;
5536   switch (IID) {
5537   case Intrinsic::fabs:
5538     if (SignBitMustBeZero(Op0, Q.TLI)) return Op0;
5539     break;
5540   case Intrinsic::bswap:
5541     // bswap(bswap(x)) -> x
5542     if (match(Op0, m_BSwap(m_Value(X)))) return X;
5543     break;
5544   case Intrinsic::bitreverse:
5545     // bitreverse(bitreverse(x)) -> x
5546     if (match(Op0, m_BitReverse(m_Value(X)))) return X;
5547     break;
5548   case Intrinsic::ctpop: {
5549     // If everything but the lowest bit is zero, that bit is the pop-count. Ex:
5550     // ctpop(and X, 1) --> and X, 1
5551     unsigned BitWidth = Op0->getType()->getScalarSizeInBits();
5552     if (MaskedValueIsZero(Op0, APInt::getHighBitsSet(BitWidth, BitWidth - 1),
5553                           Q.DL, 0, Q.AC, Q.CxtI, Q.DT))
5554       return Op0;
5555     break;
5556   }
5557   case Intrinsic::exp:
5558     // exp(log(x)) -> x
5559     if (Q.CxtI->hasAllowReassoc() &&
5560         match(Op0, m_Intrinsic<Intrinsic::log>(m_Value(X)))) return X;
5561     break;
5562   case Intrinsic::exp2:
5563     // exp2(log2(x)) -> x
5564     if (Q.CxtI->hasAllowReassoc() &&
5565         match(Op0, m_Intrinsic<Intrinsic::log2>(m_Value(X)))) return X;
5566     break;
5567   case Intrinsic::log:
5568     // log(exp(x)) -> x
5569     if (Q.CxtI->hasAllowReassoc() &&
5570         match(Op0, m_Intrinsic<Intrinsic::exp>(m_Value(X)))) return X;
5571     break;
5572   case Intrinsic::log2:
5573     // log2(exp2(x)) -> x
5574     if (Q.CxtI->hasAllowReassoc() &&
5575         (match(Op0, m_Intrinsic<Intrinsic::exp2>(m_Value(X))) ||
5576          match(Op0, m_Intrinsic<Intrinsic::pow>(m_SpecificFP(2.0),
5577                                                 m_Value(X))))) return X;
5578     break;
5579   case Intrinsic::log10:
5580     // log10(pow(10.0, x)) -> x
5581     if (Q.CxtI->hasAllowReassoc() &&
5582         match(Op0, m_Intrinsic<Intrinsic::pow>(m_SpecificFP(10.0),
5583                                                m_Value(X)))) return X;
5584     break;
5585   case Intrinsic::floor:
5586   case Intrinsic::trunc:
5587   case Intrinsic::ceil:
5588   case Intrinsic::round:
5589   case Intrinsic::roundeven:
5590   case Intrinsic::nearbyint:
5591   case Intrinsic::rint: {
5592     // floor (sitofp x) -> sitofp x
5593     // floor (uitofp x) -> uitofp x
5594     //
5595     // Converting from int always results in a finite integral number or
5596     // infinity. For either of those inputs, these rounding functions always
5597     // return the same value, so the rounding can be eliminated.
5598     if (match(Op0, m_SIToFP(m_Value())) || match(Op0, m_UIToFP(m_Value())))
5599       return Op0;
5600     break;
5601   }
5602   case Intrinsic::experimental_vector_reverse:
5603     // experimental.vector.reverse(experimental.vector.reverse(x)) -> x
5604     if (match(Op0,
5605               m_Intrinsic<Intrinsic::experimental_vector_reverse>(m_Value(X))))
5606       return X;
5607     // experimental.vector.reverse(splat(X)) -> splat(X)
5608     if (isSplatValue(Op0))
5609       return Op0;
5610     break;
5611   default:
5612     break;
5613   }
5614 
5615   return nullptr;
5616 }
5617 
5618 static APInt getMaxMinLimit(Intrinsic::ID IID, unsigned BitWidth) {
5619   switch (IID) {
5620   case Intrinsic::smax: return APInt::getSignedMaxValue(BitWidth);
5621   case Intrinsic::smin: return APInt::getSignedMinValue(BitWidth);
5622   case Intrinsic::umax: return APInt::getMaxValue(BitWidth);
5623   case Intrinsic::umin: return APInt::getMinValue(BitWidth);
5624   default: llvm_unreachable("Unexpected intrinsic");
5625   }
5626 }
5627 
5628 static ICmpInst::Predicate getMaxMinPredicate(Intrinsic::ID IID) {
5629   switch (IID) {
5630   case Intrinsic::smax: return ICmpInst::ICMP_SGE;
5631   case Intrinsic::smin: return ICmpInst::ICMP_SLE;
5632   case Intrinsic::umax: return ICmpInst::ICMP_UGE;
5633   case Intrinsic::umin: return ICmpInst::ICMP_ULE;
5634   default: llvm_unreachable("Unexpected intrinsic");
5635   }
5636 }
5637 
5638 /// Given a min/max intrinsic, see if it can be removed based on having an
5639 /// operand that is another min/max intrinsic with shared operand(s). The caller
5640 /// is expected to swap the operand arguments to handle commutation.
5641 static Value *foldMinMaxSharedOp(Intrinsic::ID IID, Value *Op0, Value *Op1) {
5642   Value *X, *Y;
5643   if (!match(Op0, m_MaxOrMin(m_Value(X), m_Value(Y))))
5644     return nullptr;
5645 
5646   auto *MM0 = dyn_cast<IntrinsicInst>(Op0);
5647   if (!MM0)
5648     return nullptr;
5649   Intrinsic::ID IID0 = MM0->getIntrinsicID();
5650 
5651   if (Op1 == X || Op1 == Y ||
5652       match(Op1, m_c_MaxOrMin(m_Specific(X), m_Specific(Y)))) {
5653     // max (max X, Y), X --> max X, Y
5654     if (IID0 == IID)
5655       return MM0;
5656     // max (min X, Y), X --> X
5657     if (IID0 == getInverseMinMaxIntrinsic(IID))
5658       return Op1;
5659   }
5660   return nullptr;
5661 }
5662 
5663 static Value *simplifyBinaryIntrinsic(Function *F, Value *Op0, Value *Op1,
5664                                       const SimplifyQuery &Q) {
5665   Intrinsic::ID IID = F->getIntrinsicID();
5666   Type *ReturnType = F->getReturnType();
5667   unsigned BitWidth = ReturnType->getScalarSizeInBits();
5668   switch (IID) {
5669   case Intrinsic::abs:
5670     // abs(abs(x)) -> abs(x). We don't need to worry about the nsw arg here.
5671     // It is always ok to pick the earlier abs. We'll just lose nsw if its only
5672     // on the outer abs.
5673     if (match(Op0, m_Intrinsic<Intrinsic::abs>(m_Value(), m_Value())))
5674       return Op0;
5675     break;
5676 
5677   case Intrinsic::cttz: {
5678     Value *X;
5679     if (match(Op0, m_Shl(m_One(), m_Value(X))))
5680       return X;
5681     break;
5682   }
5683   case Intrinsic::ctlz: {
5684     Value *X;
5685     if (match(Op0, m_LShr(m_Negative(), m_Value(X))))
5686       return X;
5687     if (match(Op0, m_AShr(m_Negative(), m_Value())))
5688       return Constant::getNullValue(ReturnType);
5689     break;
5690   }
5691   case Intrinsic::smax:
5692   case Intrinsic::smin:
5693   case Intrinsic::umax:
5694   case Intrinsic::umin: {
5695     // If the arguments are the same, this is a no-op.
5696     if (Op0 == Op1)
5697       return Op0;
5698 
5699     // Canonicalize constant operand as Op1.
5700     if (isa<Constant>(Op0))
5701       std::swap(Op0, Op1);
5702 
5703     // Assume undef is the limit value.
5704     if (Q.isUndefValue(Op1))
5705       return ConstantInt::get(ReturnType, getMaxMinLimit(IID, BitWidth));
5706 
5707     const APInt *C;
5708     if (match(Op1, m_APIntAllowUndef(C))) {
5709       // Clamp to limit value. For example:
5710       // umax(i8 %x, i8 255) --> 255
5711       if (*C == getMaxMinLimit(IID, BitWidth))
5712         return ConstantInt::get(ReturnType, *C);
5713 
5714       // If the constant op is the opposite of the limit value, the other must
5715       // be larger/smaller or equal. For example:
5716       // umin(i8 %x, i8 255) --> %x
5717       if (*C == getMaxMinLimit(getInverseMinMaxIntrinsic(IID), BitWidth))
5718         return Op0;
5719 
5720       // Remove nested call if constant operands allow it. Example:
5721       // max (max X, 7), 5 -> max X, 7
5722       auto *MinMax0 = dyn_cast<IntrinsicInst>(Op0);
5723       if (MinMax0 && MinMax0->getIntrinsicID() == IID) {
5724         // TODO: loosen undef/splat restrictions for vector constants.
5725         Value *M00 = MinMax0->getOperand(0), *M01 = MinMax0->getOperand(1);
5726         const APInt *InnerC;
5727         if ((match(M00, m_APInt(InnerC)) || match(M01, m_APInt(InnerC))) &&
5728             ((IID == Intrinsic::smax && InnerC->sge(*C)) ||
5729              (IID == Intrinsic::smin && InnerC->sle(*C)) ||
5730              (IID == Intrinsic::umax && InnerC->uge(*C)) ||
5731              (IID == Intrinsic::umin && InnerC->ule(*C))))
5732           return Op0;
5733       }
5734     }
5735 
5736     if (Value *V = foldMinMaxSharedOp(IID, Op0, Op1))
5737       return V;
5738     if (Value *V = foldMinMaxSharedOp(IID, Op1, Op0))
5739       return V;
5740 
5741     ICmpInst::Predicate Pred = getMaxMinPredicate(IID);
5742     if (isICmpTrue(Pred, Op0, Op1, Q.getWithoutUndef(), RecursionLimit))
5743       return Op0;
5744     if (isICmpTrue(Pred, Op1, Op0, Q.getWithoutUndef(), RecursionLimit))
5745       return Op1;
5746 
5747     if (Optional<bool> Imp =
5748             isImpliedByDomCondition(Pred, Op0, Op1, Q.CxtI, Q.DL))
5749       return *Imp ? Op0 : Op1;
5750     if (Optional<bool> Imp =
5751             isImpliedByDomCondition(Pred, Op1, Op0, Q.CxtI, Q.DL))
5752       return *Imp ? Op1 : Op0;
5753 
5754     break;
5755   }
5756   case Intrinsic::usub_with_overflow:
5757   case Intrinsic::ssub_with_overflow:
5758     // X - X -> { 0, false }
5759     // X - undef -> { 0, false }
5760     // undef - X -> { 0, false }
5761     if (Op0 == Op1 || Q.isUndefValue(Op0) || Q.isUndefValue(Op1))
5762       return Constant::getNullValue(ReturnType);
5763     break;
5764   case Intrinsic::uadd_with_overflow:
5765   case Intrinsic::sadd_with_overflow:
5766     // X + undef -> { -1, false }
5767     // undef + x -> { -1, false }
5768     if (Q.isUndefValue(Op0) || Q.isUndefValue(Op1)) {
5769       return ConstantStruct::get(
5770           cast<StructType>(ReturnType),
5771           {Constant::getAllOnesValue(ReturnType->getStructElementType(0)),
5772            Constant::getNullValue(ReturnType->getStructElementType(1))});
5773     }
5774     break;
5775   case Intrinsic::umul_with_overflow:
5776   case Intrinsic::smul_with_overflow:
5777     // 0 * X -> { 0, false }
5778     // X * 0 -> { 0, false }
5779     if (match(Op0, m_Zero()) || match(Op1, m_Zero()))
5780       return Constant::getNullValue(ReturnType);
5781     // undef * X -> { 0, false }
5782     // X * undef -> { 0, false }
5783     if (Q.isUndefValue(Op0) || Q.isUndefValue(Op1))
5784       return Constant::getNullValue(ReturnType);
5785     break;
5786   case Intrinsic::uadd_sat:
5787     // sat(MAX + X) -> MAX
5788     // sat(X + MAX) -> MAX
5789     if (match(Op0, m_AllOnes()) || match(Op1, m_AllOnes()))
5790       return Constant::getAllOnesValue(ReturnType);
5791     LLVM_FALLTHROUGH;
5792   case Intrinsic::sadd_sat:
5793     // sat(X + undef) -> -1
5794     // sat(undef + X) -> -1
5795     // For unsigned: Assume undef is MAX, thus we saturate to MAX (-1).
5796     // For signed: Assume undef is ~X, in which case X + ~X = -1.
5797     if (Q.isUndefValue(Op0) || Q.isUndefValue(Op1))
5798       return Constant::getAllOnesValue(ReturnType);
5799 
5800     // X + 0 -> X
5801     if (match(Op1, m_Zero()))
5802       return Op0;
5803     // 0 + X -> X
5804     if (match(Op0, m_Zero()))
5805       return Op1;
5806     break;
5807   case Intrinsic::usub_sat:
5808     // sat(0 - X) -> 0, sat(X - MAX) -> 0
5809     if (match(Op0, m_Zero()) || match(Op1, m_AllOnes()))
5810       return Constant::getNullValue(ReturnType);
5811     LLVM_FALLTHROUGH;
5812   case Intrinsic::ssub_sat:
5813     // X - X -> 0, X - undef -> 0, undef - X -> 0
5814     if (Op0 == Op1 || Q.isUndefValue(Op0) || Q.isUndefValue(Op1))
5815       return Constant::getNullValue(ReturnType);
5816     // X - 0 -> X
5817     if (match(Op1, m_Zero()))
5818       return Op0;
5819     break;
5820   case Intrinsic::load_relative:
5821     if (auto *C0 = dyn_cast<Constant>(Op0))
5822       if (auto *C1 = dyn_cast<Constant>(Op1))
5823         return SimplifyRelativeLoad(C0, C1, Q.DL);
5824     break;
5825   case Intrinsic::powi:
5826     if (auto *Power = dyn_cast<ConstantInt>(Op1)) {
5827       // powi(x, 0) -> 1.0
5828       if (Power->isZero())
5829         return ConstantFP::get(Op0->getType(), 1.0);
5830       // powi(x, 1) -> x
5831       if (Power->isOne())
5832         return Op0;
5833     }
5834     break;
5835   case Intrinsic::copysign:
5836     // copysign X, X --> X
5837     if (Op0 == Op1)
5838       return Op0;
5839     // copysign -X, X --> X
5840     // copysign X, -X --> -X
5841     if (match(Op0, m_FNeg(m_Specific(Op1))) ||
5842         match(Op1, m_FNeg(m_Specific(Op0))))
5843       return Op1;
5844     break;
5845   case Intrinsic::maxnum:
5846   case Intrinsic::minnum:
5847   case Intrinsic::maximum:
5848   case Intrinsic::minimum: {
5849     // If the arguments are the same, this is a no-op.
5850     if (Op0 == Op1) return Op0;
5851 
5852     // Canonicalize constant operand as Op1.
5853     if (isa<Constant>(Op0))
5854       std::swap(Op0, Op1);
5855 
5856     // If an argument is undef, return the other argument.
5857     if (Q.isUndefValue(Op1))
5858       return Op0;
5859 
5860     bool PropagateNaN = IID == Intrinsic::minimum || IID == Intrinsic::maximum;
5861     bool IsMin = IID == Intrinsic::minimum || IID == Intrinsic::minnum;
5862 
5863     // minnum(X, nan) -> X
5864     // maxnum(X, nan) -> X
5865     // minimum(X, nan) -> nan
5866     // maximum(X, nan) -> nan
5867     if (match(Op1, m_NaN()))
5868       return PropagateNaN ? propagateNaN(cast<Constant>(Op1)) : Op0;
5869 
5870     // In the following folds, inf can be replaced with the largest finite
5871     // float, if the ninf flag is set.
5872     const APFloat *C;
5873     if (match(Op1, m_APFloat(C)) &&
5874         (C->isInfinity() || (Q.CxtI->hasNoInfs() && C->isLargest()))) {
5875       // minnum(X, -inf) -> -inf
5876       // maxnum(X, +inf) -> +inf
5877       // minimum(X, -inf) -> -inf if nnan
5878       // maximum(X, +inf) -> +inf if nnan
5879       if (C->isNegative() == IsMin && (!PropagateNaN || Q.CxtI->hasNoNaNs()))
5880         return ConstantFP::get(ReturnType, *C);
5881 
5882       // minnum(X, +inf) -> X if nnan
5883       // maxnum(X, -inf) -> X if nnan
5884       // minimum(X, +inf) -> X
5885       // maximum(X, -inf) -> X
5886       if (C->isNegative() != IsMin && (PropagateNaN || Q.CxtI->hasNoNaNs()))
5887         return Op0;
5888     }
5889 
5890     // Min/max of the same operation with common operand:
5891     // m(m(X, Y)), X --> m(X, Y) (4 commuted variants)
5892     if (auto *M0 = dyn_cast<IntrinsicInst>(Op0))
5893       if (M0->getIntrinsicID() == IID &&
5894           (M0->getOperand(0) == Op1 || M0->getOperand(1) == Op1))
5895         return Op0;
5896     if (auto *M1 = dyn_cast<IntrinsicInst>(Op1))
5897       if (M1->getIntrinsicID() == IID &&
5898           (M1->getOperand(0) == Op0 || M1->getOperand(1) == Op0))
5899         return Op1;
5900 
5901     break;
5902   }
5903   case Intrinsic::experimental_vector_extract: {
5904     Type *ReturnType = F->getReturnType();
5905 
5906     // (extract_vector (insert_vector _, X, 0), 0) -> X
5907     unsigned IdxN = cast<ConstantInt>(Op1)->getZExtValue();
5908     Value *X = nullptr;
5909     if (match(Op0, m_Intrinsic<Intrinsic::experimental_vector_insert>(
5910                        m_Value(), m_Value(X), m_Zero())) &&
5911         IdxN == 0 && X->getType() == ReturnType)
5912       return X;
5913 
5914     break;
5915   }
5916   default:
5917     break;
5918   }
5919 
5920   return nullptr;
5921 }
5922 
5923 static Value *simplifyIntrinsic(CallBase *Call, const SimplifyQuery &Q) {
5924 
5925   unsigned NumOperands = Call->arg_size();
5926   Function *F = cast<Function>(Call->getCalledFunction());
5927   Intrinsic::ID IID = F->getIntrinsicID();
5928 
5929   // Most of the intrinsics with no operands have some kind of side effect.
5930   // Don't simplify.
5931   if (!NumOperands) {
5932     switch (IID) {
5933     case Intrinsic::vscale: {
5934       // Call may not be inserted into the IR yet at point of calling simplify.
5935       if (!Call->getParent() || !Call->getParent()->getParent())
5936         return nullptr;
5937       auto Attr = Call->getFunction()->getFnAttribute(Attribute::VScaleRange);
5938       if (!Attr.isValid())
5939         return nullptr;
5940       unsigned VScaleMin = Attr.getVScaleRangeMin();
5941       Optional<unsigned> VScaleMax = Attr.getVScaleRangeMax();
5942       if (VScaleMax && VScaleMin == VScaleMax)
5943         return ConstantInt::get(F->getReturnType(), VScaleMin);
5944       return nullptr;
5945     }
5946     default:
5947       return nullptr;
5948     }
5949   }
5950 
5951   if (NumOperands == 1)
5952     return simplifyUnaryIntrinsic(F, Call->getArgOperand(0), Q);
5953 
5954   if (NumOperands == 2)
5955     return simplifyBinaryIntrinsic(F, Call->getArgOperand(0),
5956                                    Call->getArgOperand(1), Q);
5957 
5958   // Handle intrinsics with 3 or more arguments.
5959   switch (IID) {
5960   case Intrinsic::masked_load:
5961   case Intrinsic::masked_gather: {
5962     Value *MaskArg = Call->getArgOperand(2);
5963     Value *PassthruArg = Call->getArgOperand(3);
5964     // If the mask is all zeros or undef, the "passthru" argument is the result.
5965     if (maskIsAllZeroOrUndef(MaskArg))
5966       return PassthruArg;
5967     return nullptr;
5968   }
5969   case Intrinsic::fshl:
5970   case Intrinsic::fshr: {
5971     Value *Op0 = Call->getArgOperand(0), *Op1 = Call->getArgOperand(1),
5972           *ShAmtArg = Call->getArgOperand(2);
5973 
5974     // If both operands are undef, the result is undef.
5975     if (Q.isUndefValue(Op0) && Q.isUndefValue(Op1))
5976       return UndefValue::get(F->getReturnType());
5977 
5978     // If shift amount is undef, assume it is zero.
5979     if (Q.isUndefValue(ShAmtArg))
5980       return Call->getArgOperand(IID == Intrinsic::fshl ? 0 : 1);
5981 
5982     const APInt *ShAmtC;
5983     if (match(ShAmtArg, m_APInt(ShAmtC))) {
5984       // If there's effectively no shift, return the 1st arg or 2nd arg.
5985       APInt BitWidth = APInt(ShAmtC->getBitWidth(), ShAmtC->getBitWidth());
5986       if (ShAmtC->urem(BitWidth).isZero())
5987         return Call->getArgOperand(IID == Intrinsic::fshl ? 0 : 1);
5988     }
5989 
5990     // Rotating zero by anything is zero.
5991     if (match(Op0, m_Zero()) && match(Op1, m_Zero()))
5992       return ConstantInt::getNullValue(F->getReturnType());
5993 
5994     // Rotating -1 by anything is -1.
5995     if (match(Op0, m_AllOnes()) && match(Op1, m_AllOnes()))
5996       return ConstantInt::getAllOnesValue(F->getReturnType());
5997 
5998     return nullptr;
5999   }
6000   case Intrinsic::experimental_constrained_fma: {
6001     Value *Op0 = Call->getArgOperand(0);
6002     Value *Op1 = Call->getArgOperand(1);
6003     Value *Op2 = Call->getArgOperand(2);
6004     auto *FPI = cast<ConstrainedFPIntrinsic>(Call);
6005     if (Value *V = simplifyFPOp({Op0, Op1, Op2}, {}, Q,
6006                                 FPI->getExceptionBehavior().getValue(),
6007                                 FPI->getRoundingMode().getValue()))
6008       return V;
6009     return nullptr;
6010   }
6011   case Intrinsic::fma:
6012   case Intrinsic::fmuladd: {
6013     Value *Op0 = Call->getArgOperand(0);
6014     Value *Op1 = Call->getArgOperand(1);
6015     Value *Op2 = Call->getArgOperand(2);
6016     if (Value *V = simplifyFPOp({Op0, Op1, Op2}, {}, Q, fp::ebIgnore,
6017                                 RoundingMode::NearestTiesToEven))
6018       return V;
6019     return nullptr;
6020   }
6021   case Intrinsic::smul_fix:
6022   case Intrinsic::smul_fix_sat: {
6023     Value *Op0 = Call->getArgOperand(0);
6024     Value *Op1 = Call->getArgOperand(1);
6025     Value *Op2 = Call->getArgOperand(2);
6026     Type *ReturnType = F->getReturnType();
6027 
6028     // Canonicalize constant operand as Op1 (ConstantFolding handles the case
6029     // when both Op0 and Op1 are constant so we do not care about that special
6030     // case here).
6031     if (isa<Constant>(Op0))
6032       std::swap(Op0, Op1);
6033 
6034     // X * 0 -> 0
6035     if (match(Op1, m_Zero()))
6036       return Constant::getNullValue(ReturnType);
6037 
6038     // X * undef -> 0
6039     if (Q.isUndefValue(Op1))
6040       return Constant::getNullValue(ReturnType);
6041 
6042     // X * (1 << Scale) -> X
6043     APInt ScaledOne =
6044         APInt::getOneBitSet(ReturnType->getScalarSizeInBits(),
6045                             cast<ConstantInt>(Op2)->getZExtValue());
6046     if (ScaledOne.isNonNegative() && match(Op1, m_SpecificInt(ScaledOne)))
6047       return Op0;
6048 
6049     return nullptr;
6050   }
6051   case Intrinsic::experimental_vector_insert: {
6052     Value *Vec = Call->getArgOperand(0);
6053     Value *SubVec = Call->getArgOperand(1);
6054     Value *Idx = Call->getArgOperand(2);
6055     Type *ReturnType = F->getReturnType();
6056 
6057     // (insert_vector Y, (extract_vector X, 0), 0) -> X
6058     // where: Y is X, or Y is undef
6059     unsigned IdxN = cast<ConstantInt>(Idx)->getZExtValue();
6060     Value *X = nullptr;
6061     if (match(SubVec, m_Intrinsic<Intrinsic::experimental_vector_extract>(
6062                           m_Value(X), m_Zero())) &&
6063         (Q.isUndefValue(Vec) || Vec == X) && IdxN == 0 &&
6064         X->getType() == ReturnType)
6065       return X;
6066 
6067     return nullptr;
6068   }
6069   case Intrinsic::experimental_constrained_fadd: {
6070     auto *FPI = cast<ConstrainedFPIntrinsic>(Call);
6071     return SimplifyFAddInst(FPI->getArgOperand(0), FPI->getArgOperand(1),
6072                             FPI->getFastMathFlags(), Q,
6073                             FPI->getExceptionBehavior().getValue(),
6074                             FPI->getRoundingMode().getValue());
6075     break;
6076   }
6077   case Intrinsic::experimental_constrained_fsub: {
6078     auto *FPI = cast<ConstrainedFPIntrinsic>(Call);
6079     return SimplifyFSubInst(FPI->getArgOperand(0), FPI->getArgOperand(1),
6080                             FPI->getFastMathFlags(), Q,
6081                             FPI->getExceptionBehavior().getValue(),
6082                             FPI->getRoundingMode().getValue());
6083     break;
6084   }
6085   case Intrinsic::experimental_constrained_fmul: {
6086     auto *FPI = cast<ConstrainedFPIntrinsic>(Call);
6087     return SimplifyFMulInst(FPI->getArgOperand(0), FPI->getArgOperand(1),
6088                             FPI->getFastMathFlags(), Q,
6089                             FPI->getExceptionBehavior().getValue(),
6090                             FPI->getRoundingMode().getValue());
6091     break;
6092   }
6093   case Intrinsic::experimental_constrained_fdiv: {
6094     auto *FPI = cast<ConstrainedFPIntrinsic>(Call);
6095     return SimplifyFDivInst(FPI->getArgOperand(0), FPI->getArgOperand(1),
6096                             FPI->getFastMathFlags(), Q,
6097                             FPI->getExceptionBehavior().getValue(),
6098                             FPI->getRoundingMode().getValue());
6099     break;
6100   }
6101   case Intrinsic::experimental_constrained_frem: {
6102     auto *FPI = cast<ConstrainedFPIntrinsic>(Call);
6103     return SimplifyFRemInst(FPI->getArgOperand(0), FPI->getArgOperand(1),
6104                             FPI->getFastMathFlags(), Q,
6105                             FPI->getExceptionBehavior().getValue(),
6106                             FPI->getRoundingMode().getValue());
6107     break;
6108   }
6109   default:
6110     return nullptr;
6111   }
6112 }
6113 
6114 static Value *tryConstantFoldCall(CallBase *Call, const SimplifyQuery &Q) {
6115   auto *F = dyn_cast<Function>(Call->getCalledOperand());
6116   if (!F || !canConstantFoldCallTo(Call, F))
6117     return nullptr;
6118 
6119   SmallVector<Constant *, 4> ConstantArgs;
6120   unsigned NumArgs = Call->arg_size();
6121   ConstantArgs.reserve(NumArgs);
6122   for (auto &Arg : Call->args()) {
6123     Constant *C = dyn_cast<Constant>(&Arg);
6124     if (!C) {
6125       if (isa<MetadataAsValue>(Arg.get()))
6126         continue;
6127       return nullptr;
6128     }
6129     ConstantArgs.push_back(C);
6130   }
6131 
6132   return ConstantFoldCall(Call, F, ConstantArgs, Q.TLI);
6133 }
6134 
6135 Value *llvm::SimplifyCall(CallBase *Call, const SimplifyQuery &Q) {
6136   // musttail calls can only be simplified if they are also DCEd.
6137   // As we can't guarantee this here, don't simplify them.
6138   if (Call->isMustTailCall())
6139     return nullptr;
6140 
6141   // call undef -> poison
6142   // call null -> poison
6143   Value *Callee = Call->getCalledOperand();
6144   if (isa<UndefValue>(Callee) || isa<ConstantPointerNull>(Callee))
6145     return PoisonValue::get(Call->getType());
6146 
6147   if (Value *V = tryConstantFoldCall(Call, Q))
6148     return V;
6149 
6150   auto *F = dyn_cast<Function>(Callee);
6151   if (F && F->isIntrinsic())
6152     if (Value *Ret = simplifyIntrinsic(Call, Q))
6153       return Ret;
6154 
6155   return nullptr;
6156 }
6157 
6158 /// Given operands for a Freeze, see if we can fold the result.
6159 static Value *SimplifyFreezeInst(Value *Op0, const SimplifyQuery &Q) {
6160   // Use a utility function defined in ValueTracking.
6161   if (llvm::isGuaranteedNotToBeUndefOrPoison(Op0, Q.AC, Q.CxtI, Q.DT))
6162     return Op0;
6163   // We have room for improvement.
6164   return nullptr;
6165 }
6166 
6167 Value *llvm::SimplifyFreezeInst(Value *Op0, const SimplifyQuery &Q) {
6168   return ::SimplifyFreezeInst(Op0, Q);
6169 }
6170 
6171 static Value *SimplifyLoadInst(LoadInst *LI, Value *PtrOp,
6172                                const SimplifyQuery &Q) {
6173   if (LI->isVolatile())
6174     return nullptr;
6175 
6176   APInt Offset(Q.DL.getIndexTypeSizeInBits(PtrOp->getType()), 0);
6177   auto *PtrOpC = dyn_cast<Constant>(PtrOp);
6178   // Try to convert operand into a constant by stripping offsets while looking
6179   // through invariant.group intrinsics. Don't bother if the underlying object
6180   // is not constant, as calculating GEP offsets is expensive.
6181   if (!PtrOpC && isa<Constant>(getUnderlyingObject(PtrOp))) {
6182     PtrOp = PtrOp->stripAndAccumulateConstantOffsets(
6183         Q.DL, Offset, /* AllowNonInbounts */ true,
6184         /* AllowInvariantGroup */ true);
6185     // Index size may have changed due to address space casts.
6186     Offset = Offset.sextOrTrunc(Q.DL.getIndexTypeSizeInBits(PtrOp->getType()));
6187     PtrOpC = dyn_cast<Constant>(PtrOp);
6188   }
6189 
6190   if (PtrOpC)
6191     return ConstantFoldLoadFromConstPtr(PtrOpC, LI->getType(), Offset, Q.DL);
6192   return nullptr;
6193 }
6194 
6195 /// See if we can compute a simplified version of this instruction.
6196 /// If not, this returns null.
6197 
6198 static Value *simplifyInstructionWithOperands(Instruction *I,
6199                                               ArrayRef<Value *> NewOps,
6200                                               const SimplifyQuery &SQ,
6201                                               OptimizationRemarkEmitter *ORE) {
6202   const SimplifyQuery Q = SQ.CxtI ? SQ : SQ.getWithInstruction(I);
6203   Value *Result = nullptr;
6204 
6205   switch (I->getOpcode()) {
6206   default:
6207     if (llvm::all_of(NewOps, [](Value *V) { return isa<Constant>(V); })) {
6208       SmallVector<Constant *, 8> NewConstOps(NewOps.size());
6209       transform(NewOps, NewConstOps.begin(),
6210                 [](Value *V) { return cast<Constant>(V); });
6211       Result = ConstantFoldInstOperands(I, NewConstOps, Q.DL, Q.TLI);
6212     }
6213     break;
6214   case Instruction::FNeg:
6215     Result = SimplifyFNegInst(NewOps[0], I->getFastMathFlags(), Q);
6216     break;
6217   case Instruction::FAdd:
6218     Result = SimplifyFAddInst(NewOps[0], NewOps[1], I->getFastMathFlags(), Q);
6219     break;
6220   case Instruction::Add:
6221     Result = SimplifyAddInst(
6222         NewOps[0], NewOps[1], Q.IIQ.hasNoSignedWrap(cast<BinaryOperator>(I)),
6223         Q.IIQ.hasNoUnsignedWrap(cast<BinaryOperator>(I)), Q);
6224     break;
6225   case Instruction::FSub:
6226     Result = SimplifyFSubInst(NewOps[0], NewOps[1], I->getFastMathFlags(), Q);
6227     break;
6228   case Instruction::Sub:
6229     Result = SimplifySubInst(
6230         NewOps[0], NewOps[1], Q.IIQ.hasNoSignedWrap(cast<BinaryOperator>(I)),
6231         Q.IIQ.hasNoUnsignedWrap(cast<BinaryOperator>(I)), Q);
6232     break;
6233   case Instruction::FMul:
6234     Result = SimplifyFMulInst(NewOps[0], NewOps[1], I->getFastMathFlags(), Q);
6235     break;
6236   case Instruction::Mul:
6237     Result = SimplifyMulInst(NewOps[0], NewOps[1], Q);
6238     break;
6239   case Instruction::SDiv:
6240     Result = SimplifySDivInst(NewOps[0], NewOps[1], Q);
6241     break;
6242   case Instruction::UDiv:
6243     Result = SimplifyUDivInst(NewOps[0], NewOps[1], Q);
6244     break;
6245   case Instruction::FDiv:
6246     Result = SimplifyFDivInst(NewOps[0], NewOps[1], I->getFastMathFlags(), Q);
6247     break;
6248   case Instruction::SRem:
6249     Result = SimplifySRemInst(NewOps[0], NewOps[1], Q);
6250     break;
6251   case Instruction::URem:
6252     Result = SimplifyURemInst(NewOps[0], NewOps[1], Q);
6253     break;
6254   case Instruction::FRem:
6255     Result = SimplifyFRemInst(NewOps[0], NewOps[1], I->getFastMathFlags(), Q);
6256     break;
6257   case Instruction::Shl:
6258     Result = SimplifyShlInst(
6259         NewOps[0], NewOps[1], Q.IIQ.hasNoSignedWrap(cast<BinaryOperator>(I)),
6260         Q.IIQ.hasNoUnsignedWrap(cast<BinaryOperator>(I)), Q);
6261     break;
6262   case Instruction::LShr:
6263     Result = SimplifyLShrInst(NewOps[0], NewOps[1],
6264                               Q.IIQ.isExact(cast<BinaryOperator>(I)), Q);
6265     break;
6266   case Instruction::AShr:
6267     Result = SimplifyAShrInst(NewOps[0], NewOps[1],
6268                               Q.IIQ.isExact(cast<BinaryOperator>(I)), Q);
6269     break;
6270   case Instruction::And:
6271     Result = SimplifyAndInst(NewOps[0], NewOps[1], Q);
6272     break;
6273   case Instruction::Or:
6274     Result = SimplifyOrInst(NewOps[0], NewOps[1], Q);
6275     break;
6276   case Instruction::Xor:
6277     Result = SimplifyXorInst(NewOps[0], NewOps[1], Q);
6278     break;
6279   case Instruction::ICmp:
6280     Result = SimplifyICmpInst(cast<ICmpInst>(I)->getPredicate(), NewOps[0],
6281                               NewOps[1], Q);
6282     break;
6283   case Instruction::FCmp:
6284     Result = SimplifyFCmpInst(cast<FCmpInst>(I)->getPredicate(), NewOps[0],
6285                               NewOps[1], I->getFastMathFlags(), Q);
6286     break;
6287   case Instruction::Select:
6288     Result = SimplifySelectInst(NewOps[0], NewOps[1], NewOps[2], Q);
6289     break;
6290   case Instruction::GetElementPtr: {
6291     auto *GEPI = cast<GetElementPtrInst>(I);
6292     Result = SimplifyGEPInst(GEPI->getSourceElementType(), NewOps,
6293                              GEPI->isInBounds(), Q);
6294     break;
6295   }
6296   case Instruction::InsertValue: {
6297     InsertValueInst *IV = cast<InsertValueInst>(I);
6298     Result = SimplifyInsertValueInst(NewOps[0], NewOps[1], IV->getIndices(), Q);
6299     break;
6300   }
6301   case Instruction::InsertElement: {
6302     Result = SimplifyInsertElementInst(NewOps[0], NewOps[1], NewOps[2], Q);
6303     break;
6304   }
6305   case Instruction::ExtractValue: {
6306     auto *EVI = cast<ExtractValueInst>(I);
6307     Result = SimplifyExtractValueInst(NewOps[0], EVI->getIndices(), Q);
6308     break;
6309   }
6310   case Instruction::ExtractElement: {
6311     Result = SimplifyExtractElementInst(NewOps[0], NewOps[1], Q);
6312     break;
6313   }
6314   case Instruction::ShuffleVector: {
6315     auto *SVI = cast<ShuffleVectorInst>(I);
6316     Result = SimplifyShuffleVectorInst(
6317         NewOps[0], NewOps[1], SVI->getShuffleMask(), SVI->getType(), Q);
6318     break;
6319   }
6320   case Instruction::PHI:
6321     Result = SimplifyPHINode(cast<PHINode>(I), NewOps, Q);
6322     break;
6323   case Instruction::Call: {
6324     // TODO: Use NewOps
6325     Result = SimplifyCall(cast<CallInst>(I), Q);
6326     break;
6327   }
6328   case Instruction::Freeze:
6329     Result = llvm::SimplifyFreezeInst(NewOps[0], Q);
6330     break;
6331 #define HANDLE_CAST_INST(num, opc, clas) case Instruction::opc:
6332 #include "llvm/IR/Instruction.def"
6333 #undef HANDLE_CAST_INST
6334     Result = SimplifyCastInst(I->getOpcode(), NewOps[0], I->getType(), Q);
6335     break;
6336   case Instruction::Alloca:
6337     // No simplifications for Alloca and it can't be constant folded.
6338     Result = nullptr;
6339     break;
6340   case Instruction::Load:
6341     Result = SimplifyLoadInst(cast<LoadInst>(I), NewOps[0], Q);
6342     break;
6343   }
6344 
6345   /// If called on unreachable code, the above logic may report that the
6346   /// instruction simplified to itself.  Make life easier for users by
6347   /// detecting that case here, returning a safe value instead.
6348   return Result == I ? UndefValue::get(I->getType()) : Result;
6349 }
6350 
6351 Value *llvm::SimplifyInstructionWithOperands(Instruction *I,
6352                                              ArrayRef<Value *> NewOps,
6353                                              const SimplifyQuery &SQ,
6354                                              OptimizationRemarkEmitter *ORE) {
6355   assert(NewOps.size() == I->getNumOperands() &&
6356          "Number of operands should match the instruction!");
6357   return ::simplifyInstructionWithOperands(I, NewOps, SQ, ORE);
6358 }
6359 
6360 Value *llvm::SimplifyInstruction(Instruction *I, const SimplifyQuery &SQ,
6361                                  OptimizationRemarkEmitter *ORE) {
6362   SmallVector<Value *, 8> Ops(I->operands());
6363   return ::simplifyInstructionWithOperands(I, Ops, SQ, ORE);
6364 }
6365 
6366 /// Implementation of recursive simplification through an instruction's
6367 /// uses.
6368 ///
6369 /// This is the common implementation of the recursive simplification routines.
6370 /// If we have a pre-simplified value in 'SimpleV', that is forcibly used to
6371 /// replace the instruction 'I'. Otherwise, we simply add 'I' to the list of
6372 /// instructions to process and attempt to simplify it using
6373 /// InstructionSimplify. Recursively visited users which could not be
6374 /// simplified themselves are to the optional UnsimplifiedUsers set for
6375 /// further processing by the caller.
6376 ///
6377 /// This routine returns 'true' only when *it* simplifies something. The passed
6378 /// in simplified value does not count toward this.
6379 static bool replaceAndRecursivelySimplifyImpl(
6380     Instruction *I, Value *SimpleV, const TargetLibraryInfo *TLI,
6381     const DominatorTree *DT, AssumptionCache *AC,
6382     SmallSetVector<Instruction *, 8> *UnsimplifiedUsers = nullptr) {
6383   bool Simplified = false;
6384   SmallSetVector<Instruction *, 8> Worklist;
6385   const DataLayout &DL = I->getModule()->getDataLayout();
6386 
6387   // If we have an explicit value to collapse to, do that round of the
6388   // simplification loop by hand initially.
6389   if (SimpleV) {
6390     for (User *U : I->users())
6391       if (U != I)
6392         Worklist.insert(cast<Instruction>(U));
6393 
6394     // Replace the instruction with its simplified value.
6395     I->replaceAllUsesWith(SimpleV);
6396 
6397     // Gracefully handle edge cases where the instruction is not wired into any
6398     // parent block.
6399     if (I->getParent() && !I->isEHPad() && !I->isTerminator() &&
6400         !I->mayHaveSideEffects())
6401       I->eraseFromParent();
6402   } else {
6403     Worklist.insert(I);
6404   }
6405 
6406   // Note that we must test the size on each iteration, the worklist can grow.
6407   for (unsigned Idx = 0; Idx != Worklist.size(); ++Idx) {
6408     I = Worklist[Idx];
6409 
6410     // See if this instruction simplifies.
6411     SimpleV = SimplifyInstruction(I, {DL, TLI, DT, AC});
6412     if (!SimpleV) {
6413       if (UnsimplifiedUsers)
6414         UnsimplifiedUsers->insert(I);
6415       continue;
6416     }
6417 
6418     Simplified = true;
6419 
6420     // Stash away all the uses of the old instruction so we can check them for
6421     // recursive simplifications after a RAUW. This is cheaper than checking all
6422     // uses of To on the recursive step in most cases.
6423     for (User *U : I->users())
6424       Worklist.insert(cast<Instruction>(U));
6425 
6426     // Replace the instruction with its simplified value.
6427     I->replaceAllUsesWith(SimpleV);
6428 
6429     // Gracefully handle edge cases where the instruction is not wired into any
6430     // parent block.
6431     if (I->getParent() && !I->isEHPad() && !I->isTerminator() &&
6432         !I->mayHaveSideEffects())
6433       I->eraseFromParent();
6434   }
6435   return Simplified;
6436 }
6437 
6438 bool llvm::replaceAndRecursivelySimplify(
6439     Instruction *I, Value *SimpleV, const TargetLibraryInfo *TLI,
6440     const DominatorTree *DT, AssumptionCache *AC,
6441     SmallSetVector<Instruction *, 8> *UnsimplifiedUsers) {
6442   assert(I != SimpleV && "replaceAndRecursivelySimplify(X,X) is not valid!");
6443   assert(SimpleV && "Must provide a simplified value.");
6444   return replaceAndRecursivelySimplifyImpl(I, SimpleV, TLI, DT, AC,
6445                                            UnsimplifiedUsers);
6446 }
6447 
6448 namespace llvm {
6449 const SimplifyQuery getBestSimplifyQuery(Pass &P, Function &F) {
6450   auto *DTWP = P.getAnalysisIfAvailable<DominatorTreeWrapperPass>();
6451   auto *DT = DTWP ? &DTWP->getDomTree() : nullptr;
6452   auto *TLIWP = P.getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>();
6453   auto *TLI = TLIWP ? &TLIWP->getTLI(F) : nullptr;
6454   auto *ACWP = P.getAnalysisIfAvailable<AssumptionCacheTracker>();
6455   auto *AC = ACWP ? &ACWP->getAssumptionCache(F) : nullptr;
6456   return {F.getParent()->getDataLayout(), TLI, DT, AC};
6457 }
6458 
6459 const SimplifyQuery getBestSimplifyQuery(LoopStandardAnalysisResults &AR,
6460                                          const DataLayout &DL) {
6461   return {DL, &AR.TLI, &AR.DT, &AR.AC};
6462 }
6463 
6464 template <class T, class... TArgs>
6465 const SimplifyQuery getBestSimplifyQuery(AnalysisManager<T, TArgs...> &AM,
6466                                          Function &F) {
6467   auto *DT = AM.template getCachedResult<DominatorTreeAnalysis>(F);
6468   auto *TLI = AM.template getCachedResult<TargetLibraryAnalysis>(F);
6469   auto *AC = AM.template getCachedResult<AssumptionAnalysis>(F);
6470   return {F.getParent()->getDataLayout(), TLI, DT, AC};
6471 }
6472 template const SimplifyQuery getBestSimplifyQuery(AnalysisManager<Function> &,
6473                                                   Function &);
6474 }
6475