1 //===- InstructionSimplify.cpp - Fold instruction operands ----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements routines for folding instructions into simpler forms 10 // that do not require creating new instructions. This does constant folding 11 // ("add i32 1, 1" -> "2") but can also handle non-constant operands, either 12 // returning a constant ("and i32 %x, 0" -> "0") or an already existing value 13 // ("and i32 %x, %x" -> "%x"). All operands are assumed to have already been 14 // simplified: This is usually true and assuming it simplifies the logic (if 15 // they have not been simplified then results are correct but maybe suboptimal). 16 // 17 //===----------------------------------------------------------------------===// 18 19 #include "llvm/Analysis/InstructionSimplify.h" 20 #include "llvm/ADT/SetVector.h" 21 #include "llvm/ADT/SmallPtrSet.h" 22 #include "llvm/ADT/Statistic.h" 23 #include "llvm/Analysis/AliasAnalysis.h" 24 #include "llvm/Analysis/AssumptionCache.h" 25 #include "llvm/Analysis/CaptureTracking.h" 26 #include "llvm/Analysis/CmpInstAnalysis.h" 27 #include "llvm/Analysis/ConstantFolding.h" 28 #include "llvm/Analysis/LoopAnalysisManager.h" 29 #include "llvm/Analysis/MemoryBuiltins.h" 30 #include "llvm/Analysis/OverflowInstAnalysis.h" 31 #include "llvm/Analysis/ValueTracking.h" 32 #include "llvm/Analysis/VectorUtils.h" 33 #include "llvm/IR/ConstantRange.h" 34 #include "llvm/IR/DataLayout.h" 35 #include "llvm/IR/Dominators.h" 36 #include "llvm/IR/GetElementPtrTypeIterator.h" 37 #include "llvm/IR/GlobalAlias.h" 38 #include "llvm/IR/InstrTypes.h" 39 #include "llvm/IR/Instructions.h" 40 #include "llvm/IR/Operator.h" 41 #include "llvm/IR/PatternMatch.h" 42 #include "llvm/IR/ValueHandle.h" 43 #include "llvm/Support/KnownBits.h" 44 #include <algorithm> 45 using namespace llvm; 46 using namespace llvm::PatternMatch; 47 48 #define DEBUG_TYPE "instsimplify" 49 50 enum { RecursionLimit = 3 }; 51 52 STATISTIC(NumExpand, "Number of expansions"); 53 STATISTIC(NumReassoc, "Number of reassociations"); 54 55 static Value *SimplifyAndInst(Value *, Value *, const SimplifyQuery &, unsigned); 56 static Value *simplifyUnOp(unsigned, Value *, const SimplifyQuery &, unsigned); 57 static Value *simplifyFPUnOp(unsigned, Value *, const FastMathFlags &, 58 const SimplifyQuery &, unsigned); 59 static Value *SimplifyBinOp(unsigned, Value *, Value *, const SimplifyQuery &, 60 unsigned); 61 static Value *SimplifyBinOp(unsigned, Value *, Value *, const FastMathFlags &, 62 const SimplifyQuery &, unsigned); 63 static Value *SimplifyCmpInst(unsigned, Value *, Value *, const SimplifyQuery &, 64 unsigned); 65 static Value *SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS, 66 const SimplifyQuery &Q, unsigned MaxRecurse); 67 static Value *SimplifyOrInst(Value *, Value *, const SimplifyQuery &, unsigned); 68 static Value *SimplifyXorInst(Value *, Value *, const SimplifyQuery &, unsigned); 69 static Value *SimplifyCastInst(unsigned, Value *, Type *, 70 const SimplifyQuery &, unsigned); 71 static Value *SimplifyGEPInst(Type *, ArrayRef<Value *>, const SimplifyQuery &, 72 unsigned); 73 static Value *SimplifySelectInst(Value *, Value *, Value *, 74 const SimplifyQuery &, unsigned); 75 76 static Value *foldSelectWithBinaryOp(Value *Cond, Value *TrueVal, 77 Value *FalseVal) { 78 BinaryOperator::BinaryOps BinOpCode; 79 if (auto *BO = dyn_cast<BinaryOperator>(Cond)) 80 BinOpCode = BO->getOpcode(); 81 else 82 return nullptr; 83 84 CmpInst::Predicate ExpectedPred, Pred1, Pred2; 85 if (BinOpCode == BinaryOperator::Or) { 86 ExpectedPred = ICmpInst::ICMP_NE; 87 } else if (BinOpCode == BinaryOperator::And) { 88 ExpectedPred = ICmpInst::ICMP_EQ; 89 } else 90 return nullptr; 91 92 // %A = icmp eq %TV, %FV 93 // %B = icmp eq %X, %Y (and one of these is a select operand) 94 // %C = and %A, %B 95 // %D = select %C, %TV, %FV 96 // --> 97 // %FV 98 99 // %A = icmp ne %TV, %FV 100 // %B = icmp ne %X, %Y (and one of these is a select operand) 101 // %C = or %A, %B 102 // %D = select %C, %TV, %FV 103 // --> 104 // %TV 105 Value *X, *Y; 106 if (!match(Cond, m_c_BinOp(m_c_ICmp(Pred1, m_Specific(TrueVal), 107 m_Specific(FalseVal)), 108 m_ICmp(Pred2, m_Value(X), m_Value(Y)))) || 109 Pred1 != Pred2 || Pred1 != ExpectedPred) 110 return nullptr; 111 112 if (X == TrueVal || X == FalseVal || Y == TrueVal || Y == FalseVal) 113 return BinOpCode == BinaryOperator::Or ? TrueVal : FalseVal; 114 115 return nullptr; 116 } 117 118 /// For a boolean type or a vector of boolean type, return false or a vector 119 /// with every element false. 120 static Constant *getFalse(Type *Ty) { 121 return ConstantInt::getFalse(Ty); 122 } 123 124 /// For a boolean type or a vector of boolean type, return true or a vector 125 /// with every element true. 126 static Constant *getTrue(Type *Ty) { 127 return ConstantInt::getTrue(Ty); 128 } 129 130 /// isSameCompare - Is V equivalent to the comparison "LHS Pred RHS"? 131 static bool isSameCompare(Value *V, CmpInst::Predicate Pred, Value *LHS, 132 Value *RHS) { 133 CmpInst *Cmp = dyn_cast<CmpInst>(V); 134 if (!Cmp) 135 return false; 136 CmpInst::Predicate CPred = Cmp->getPredicate(); 137 Value *CLHS = Cmp->getOperand(0), *CRHS = Cmp->getOperand(1); 138 if (CPred == Pred && CLHS == LHS && CRHS == RHS) 139 return true; 140 return CPred == CmpInst::getSwappedPredicate(Pred) && CLHS == RHS && 141 CRHS == LHS; 142 } 143 144 /// Simplify comparison with true or false branch of select: 145 /// %sel = select i1 %cond, i32 %tv, i32 %fv 146 /// %cmp = icmp sle i32 %sel, %rhs 147 /// Compose new comparison by substituting %sel with either %tv or %fv 148 /// and see if it simplifies. 149 static Value *simplifyCmpSelCase(CmpInst::Predicate Pred, Value *LHS, 150 Value *RHS, Value *Cond, 151 const SimplifyQuery &Q, unsigned MaxRecurse, 152 Constant *TrueOrFalse) { 153 Value *SimplifiedCmp = SimplifyCmpInst(Pred, LHS, RHS, Q, MaxRecurse); 154 if (SimplifiedCmp == Cond) { 155 // %cmp simplified to the select condition (%cond). 156 return TrueOrFalse; 157 } else if (!SimplifiedCmp && isSameCompare(Cond, Pred, LHS, RHS)) { 158 // It didn't simplify. However, if composed comparison is equivalent 159 // to the select condition (%cond) then we can replace it. 160 return TrueOrFalse; 161 } 162 return SimplifiedCmp; 163 } 164 165 /// Simplify comparison with true branch of select 166 static Value *simplifyCmpSelTrueCase(CmpInst::Predicate Pred, Value *LHS, 167 Value *RHS, Value *Cond, 168 const SimplifyQuery &Q, 169 unsigned MaxRecurse) { 170 return simplifyCmpSelCase(Pred, LHS, RHS, Cond, Q, MaxRecurse, 171 getTrue(Cond->getType())); 172 } 173 174 /// Simplify comparison with false branch of select 175 static Value *simplifyCmpSelFalseCase(CmpInst::Predicate Pred, Value *LHS, 176 Value *RHS, Value *Cond, 177 const SimplifyQuery &Q, 178 unsigned MaxRecurse) { 179 return simplifyCmpSelCase(Pred, LHS, RHS, Cond, Q, MaxRecurse, 180 getFalse(Cond->getType())); 181 } 182 183 /// We know comparison with both branches of select can be simplified, but they 184 /// are not equal. This routine handles some logical simplifications. 185 static Value *handleOtherCmpSelSimplifications(Value *TCmp, Value *FCmp, 186 Value *Cond, 187 const SimplifyQuery &Q, 188 unsigned MaxRecurse) { 189 // If the false value simplified to false, then the result of the compare 190 // is equal to "Cond && TCmp". This also catches the case when the false 191 // value simplified to false and the true value to true, returning "Cond". 192 if (match(FCmp, m_Zero())) 193 if (Value *V = SimplifyAndInst(Cond, TCmp, Q, MaxRecurse)) 194 return V; 195 // If the true value simplified to true, then the result of the compare 196 // is equal to "Cond || FCmp". 197 if (match(TCmp, m_One())) 198 if (Value *V = SimplifyOrInst(Cond, FCmp, Q, MaxRecurse)) 199 return V; 200 // Finally, if the false value simplified to true and the true value to 201 // false, then the result of the compare is equal to "!Cond". 202 if (match(FCmp, m_One()) && match(TCmp, m_Zero())) 203 if (Value *V = SimplifyXorInst( 204 Cond, Constant::getAllOnesValue(Cond->getType()), Q, MaxRecurse)) 205 return V; 206 return nullptr; 207 } 208 209 /// Does the given value dominate the specified phi node? 210 static bool valueDominatesPHI(Value *V, PHINode *P, const DominatorTree *DT) { 211 Instruction *I = dyn_cast<Instruction>(V); 212 if (!I) 213 // Arguments and constants dominate all instructions. 214 return true; 215 216 // If we are processing instructions (and/or basic blocks) that have not been 217 // fully added to a function, the parent nodes may still be null. Simply 218 // return the conservative answer in these cases. 219 if (!I->getParent() || !P->getParent() || !I->getFunction()) 220 return false; 221 222 // If we have a DominatorTree then do a precise test. 223 if (DT) 224 return DT->dominates(I, P); 225 226 // Otherwise, if the instruction is in the entry block and is not an invoke, 227 // then it obviously dominates all phi nodes. 228 if (I->getParent()->isEntryBlock() && !isa<InvokeInst>(I) && 229 !isa<CallBrInst>(I)) 230 return true; 231 232 return false; 233 } 234 235 /// Try to simplify a binary operator of form "V op OtherOp" where V is 236 /// "(B0 opex B1)" by distributing 'op' across 'opex' as 237 /// "(B0 op OtherOp) opex (B1 op OtherOp)". 238 static Value *expandBinOp(Instruction::BinaryOps Opcode, Value *V, 239 Value *OtherOp, Instruction::BinaryOps OpcodeToExpand, 240 const SimplifyQuery &Q, unsigned MaxRecurse) { 241 auto *B = dyn_cast<BinaryOperator>(V); 242 if (!B || B->getOpcode() != OpcodeToExpand) 243 return nullptr; 244 Value *B0 = B->getOperand(0), *B1 = B->getOperand(1); 245 Value *L = SimplifyBinOp(Opcode, B0, OtherOp, Q.getWithoutUndef(), 246 MaxRecurse); 247 if (!L) 248 return nullptr; 249 Value *R = SimplifyBinOp(Opcode, B1, OtherOp, Q.getWithoutUndef(), 250 MaxRecurse); 251 if (!R) 252 return nullptr; 253 254 // Does the expanded pair of binops simplify to the existing binop? 255 if ((L == B0 && R == B1) || 256 (Instruction::isCommutative(OpcodeToExpand) && L == B1 && R == B0)) { 257 ++NumExpand; 258 return B; 259 } 260 261 // Otherwise, return "L op' R" if it simplifies. 262 Value *S = SimplifyBinOp(OpcodeToExpand, L, R, Q, MaxRecurse); 263 if (!S) 264 return nullptr; 265 266 ++NumExpand; 267 return S; 268 } 269 270 /// Try to simplify binops of form "A op (B op' C)" or the commuted variant by 271 /// distributing op over op'. 272 static Value *expandCommutativeBinOp(Instruction::BinaryOps Opcode, 273 Value *L, Value *R, 274 Instruction::BinaryOps OpcodeToExpand, 275 const SimplifyQuery &Q, 276 unsigned MaxRecurse) { 277 // Recursion is always used, so bail out at once if we already hit the limit. 278 if (!MaxRecurse--) 279 return nullptr; 280 281 if (Value *V = expandBinOp(Opcode, L, R, OpcodeToExpand, Q, MaxRecurse)) 282 return V; 283 if (Value *V = expandBinOp(Opcode, R, L, OpcodeToExpand, Q, MaxRecurse)) 284 return V; 285 return nullptr; 286 } 287 288 /// Generic simplifications for associative binary operations. 289 /// Returns the simpler value, or null if none was found. 290 static Value *SimplifyAssociativeBinOp(Instruction::BinaryOps Opcode, 291 Value *LHS, Value *RHS, 292 const SimplifyQuery &Q, 293 unsigned MaxRecurse) { 294 assert(Instruction::isAssociative(Opcode) && "Not an associative operation!"); 295 296 // Recursion is always used, so bail out at once if we already hit the limit. 297 if (!MaxRecurse--) 298 return nullptr; 299 300 BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS); 301 BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS); 302 303 // Transform: "(A op B) op C" ==> "A op (B op C)" if it simplifies completely. 304 if (Op0 && Op0->getOpcode() == Opcode) { 305 Value *A = Op0->getOperand(0); 306 Value *B = Op0->getOperand(1); 307 Value *C = RHS; 308 309 // Does "B op C" simplify? 310 if (Value *V = SimplifyBinOp(Opcode, B, C, Q, MaxRecurse)) { 311 // It does! Return "A op V" if it simplifies or is already available. 312 // If V equals B then "A op V" is just the LHS. 313 if (V == B) return LHS; 314 // Otherwise return "A op V" if it simplifies. 315 if (Value *W = SimplifyBinOp(Opcode, A, V, Q, MaxRecurse)) { 316 ++NumReassoc; 317 return W; 318 } 319 } 320 } 321 322 // Transform: "A op (B op C)" ==> "(A op B) op C" if it simplifies completely. 323 if (Op1 && Op1->getOpcode() == Opcode) { 324 Value *A = LHS; 325 Value *B = Op1->getOperand(0); 326 Value *C = Op1->getOperand(1); 327 328 // Does "A op B" simplify? 329 if (Value *V = SimplifyBinOp(Opcode, A, B, Q, MaxRecurse)) { 330 // It does! Return "V op C" if it simplifies or is already available. 331 // If V equals B then "V op C" is just the RHS. 332 if (V == B) return RHS; 333 // Otherwise return "V op C" if it simplifies. 334 if (Value *W = SimplifyBinOp(Opcode, V, C, Q, MaxRecurse)) { 335 ++NumReassoc; 336 return W; 337 } 338 } 339 } 340 341 // The remaining transforms require commutativity as well as associativity. 342 if (!Instruction::isCommutative(Opcode)) 343 return nullptr; 344 345 // Transform: "(A op B) op C" ==> "(C op A) op B" if it simplifies completely. 346 if (Op0 && Op0->getOpcode() == Opcode) { 347 Value *A = Op0->getOperand(0); 348 Value *B = Op0->getOperand(1); 349 Value *C = RHS; 350 351 // Does "C op A" simplify? 352 if (Value *V = SimplifyBinOp(Opcode, C, A, Q, MaxRecurse)) { 353 // It does! Return "V op B" if it simplifies or is already available. 354 // If V equals A then "V op B" is just the LHS. 355 if (V == A) return LHS; 356 // Otherwise return "V op B" if it simplifies. 357 if (Value *W = SimplifyBinOp(Opcode, V, B, Q, MaxRecurse)) { 358 ++NumReassoc; 359 return W; 360 } 361 } 362 } 363 364 // Transform: "A op (B op C)" ==> "B op (C op A)" if it simplifies completely. 365 if (Op1 && Op1->getOpcode() == Opcode) { 366 Value *A = LHS; 367 Value *B = Op1->getOperand(0); 368 Value *C = Op1->getOperand(1); 369 370 // Does "C op A" simplify? 371 if (Value *V = SimplifyBinOp(Opcode, C, A, Q, MaxRecurse)) { 372 // It does! Return "B op V" if it simplifies or is already available. 373 // If V equals C then "B op V" is just the RHS. 374 if (V == C) return RHS; 375 // Otherwise return "B op V" if it simplifies. 376 if (Value *W = SimplifyBinOp(Opcode, B, V, Q, MaxRecurse)) { 377 ++NumReassoc; 378 return W; 379 } 380 } 381 } 382 383 return nullptr; 384 } 385 386 /// In the case of a binary operation with a select instruction as an operand, 387 /// try to simplify the binop by seeing whether evaluating it on both branches 388 /// of the select results in the same value. Returns the common value if so, 389 /// otherwise returns null. 390 static Value *ThreadBinOpOverSelect(Instruction::BinaryOps Opcode, Value *LHS, 391 Value *RHS, const SimplifyQuery &Q, 392 unsigned MaxRecurse) { 393 // Recursion is always used, so bail out at once if we already hit the limit. 394 if (!MaxRecurse--) 395 return nullptr; 396 397 SelectInst *SI; 398 if (isa<SelectInst>(LHS)) { 399 SI = cast<SelectInst>(LHS); 400 } else { 401 assert(isa<SelectInst>(RHS) && "No select instruction operand!"); 402 SI = cast<SelectInst>(RHS); 403 } 404 405 // Evaluate the BinOp on the true and false branches of the select. 406 Value *TV; 407 Value *FV; 408 if (SI == LHS) { 409 TV = SimplifyBinOp(Opcode, SI->getTrueValue(), RHS, Q, MaxRecurse); 410 FV = SimplifyBinOp(Opcode, SI->getFalseValue(), RHS, Q, MaxRecurse); 411 } else { 412 TV = SimplifyBinOp(Opcode, LHS, SI->getTrueValue(), Q, MaxRecurse); 413 FV = SimplifyBinOp(Opcode, LHS, SI->getFalseValue(), Q, MaxRecurse); 414 } 415 416 // If they simplified to the same value, then return the common value. 417 // If they both failed to simplify then return null. 418 if (TV == FV) 419 return TV; 420 421 // If one branch simplified to undef, return the other one. 422 if (TV && Q.isUndefValue(TV)) 423 return FV; 424 if (FV && Q.isUndefValue(FV)) 425 return TV; 426 427 // If applying the operation did not change the true and false select values, 428 // then the result of the binop is the select itself. 429 if (TV == SI->getTrueValue() && FV == SI->getFalseValue()) 430 return SI; 431 432 // If one branch simplified and the other did not, and the simplified 433 // value is equal to the unsimplified one, return the simplified value. 434 // For example, select (cond, X, X & Z) & Z -> X & Z. 435 if ((FV && !TV) || (TV && !FV)) { 436 // Check that the simplified value has the form "X op Y" where "op" is the 437 // same as the original operation. 438 Instruction *Simplified = dyn_cast<Instruction>(FV ? FV : TV); 439 if (Simplified && Simplified->getOpcode() == unsigned(Opcode)) { 440 // The value that didn't simplify is "UnsimplifiedLHS op UnsimplifiedRHS". 441 // We already know that "op" is the same as for the simplified value. See 442 // if the operands match too. If so, return the simplified value. 443 Value *UnsimplifiedBranch = FV ? SI->getTrueValue() : SI->getFalseValue(); 444 Value *UnsimplifiedLHS = SI == LHS ? UnsimplifiedBranch : LHS; 445 Value *UnsimplifiedRHS = SI == LHS ? RHS : UnsimplifiedBranch; 446 if (Simplified->getOperand(0) == UnsimplifiedLHS && 447 Simplified->getOperand(1) == UnsimplifiedRHS) 448 return Simplified; 449 if (Simplified->isCommutative() && 450 Simplified->getOperand(1) == UnsimplifiedLHS && 451 Simplified->getOperand(0) == UnsimplifiedRHS) 452 return Simplified; 453 } 454 } 455 456 return nullptr; 457 } 458 459 /// In the case of a comparison with a select instruction, try to simplify the 460 /// comparison by seeing whether both branches of the select result in the same 461 /// value. Returns the common value if so, otherwise returns null. 462 /// For example, if we have: 463 /// %tmp = select i1 %cmp, i32 1, i32 2 464 /// %cmp1 = icmp sle i32 %tmp, 3 465 /// We can simplify %cmp1 to true, because both branches of select are 466 /// less than 3. We compose new comparison by substituting %tmp with both 467 /// branches of select and see if it can be simplified. 468 static Value *ThreadCmpOverSelect(CmpInst::Predicate Pred, Value *LHS, 469 Value *RHS, const SimplifyQuery &Q, 470 unsigned MaxRecurse) { 471 // Recursion is always used, so bail out at once if we already hit the limit. 472 if (!MaxRecurse--) 473 return nullptr; 474 475 // Make sure the select is on the LHS. 476 if (!isa<SelectInst>(LHS)) { 477 std::swap(LHS, RHS); 478 Pred = CmpInst::getSwappedPredicate(Pred); 479 } 480 assert(isa<SelectInst>(LHS) && "Not comparing with a select instruction!"); 481 SelectInst *SI = cast<SelectInst>(LHS); 482 Value *Cond = SI->getCondition(); 483 Value *TV = SI->getTrueValue(); 484 Value *FV = SI->getFalseValue(); 485 486 // Now that we have "cmp select(Cond, TV, FV), RHS", analyse it. 487 // Does "cmp TV, RHS" simplify? 488 Value *TCmp = simplifyCmpSelTrueCase(Pred, TV, RHS, Cond, Q, MaxRecurse); 489 if (!TCmp) 490 return nullptr; 491 492 // Does "cmp FV, RHS" simplify? 493 Value *FCmp = simplifyCmpSelFalseCase(Pred, FV, RHS, Cond, Q, MaxRecurse); 494 if (!FCmp) 495 return nullptr; 496 497 // If both sides simplified to the same value, then use it as the result of 498 // the original comparison. 499 if (TCmp == FCmp) 500 return TCmp; 501 502 // The remaining cases only make sense if the select condition has the same 503 // type as the result of the comparison, so bail out if this is not so. 504 if (Cond->getType()->isVectorTy() == RHS->getType()->isVectorTy()) 505 return handleOtherCmpSelSimplifications(TCmp, FCmp, Cond, Q, MaxRecurse); 506 507 return nullptr; 508 } 509 510 /// In the case of a binary operation with an operand that is a PHI instruction, 511 /// try to simplify the binop by seeing whether evaluating it on the incoming 512 /// phi values yields the same result for every value. If so returns the common 513 /// value, otherwise returns null. 514 static Value *ThreadBinOpOverPHI(Instruction::BinaryOps Opcode, Value *LHS, 515 Value *RHS, const SimplifyQuery &Q, 516 unsigned MaxRecurse) { 517 // Recursion is always used, so bail out at once if we already hit the limit. 518 if (!MaxRecurse--) 519 return nullptr; 520 521 PHINode *PI; 522 if (isa<PHINode>(LHS)) { 523 PI = cast<PHINode>(LHS); 524 // Bail out if RHS and the phi may be mutually interdependent due to a loop. 525 if (!valueDominatesPHI(RHS, PI, Q.DT)) 526 return nullptr; 527 } else { 528 assert(isa<PHINode>(RHS) && "No PHI instruction operand!"); 529 PI = cast<PHINode>(RHS); 530 // Bail out if LHS and the phi may be mutually interdependent due to a loop. 531 if (!valueDominatesPHI(LHS, PI, Q.DT)) 532 return nullptr; 533 } 534 535 // Evaluate the BinOp on the incoming phi values. 536 Value *CommonValue = nullptr; 537 for (Value *Incoming : PI->incoming_values()) { 538 // If the incoming value is the phi node itself, it can safely be skipped. 539 if (Incoming == PI) continue; 540 Value *V = PI == LHS ? 541 SimplifyBinOp(Opcode, Incoming, RHS, Q, MaxRecurse) : 542 SimplifyBinOp(Opcode, LHS, Incoming, Q, MaxRecurse); 543 // If the operation failed to simplify, or simplified to a different value 544 // to previously, then give up. 545 if (!V || (CommonValue && V != CommonValue)) 546 return nullptr; 547 CommonValue = V; 548 } 549 550 return CommonValue; 551 } 552 553 /// In the case of a comparison with a PHI instruction, try to simplify the 554 /// comparison by seeing whether comparing with all of the incoming phi values 555 /// yields the same result every time. If so returns the common result, 556 /// otherwise returns null. 557 static Value *ThreadCmpOverPHI(CmpInst::Predicate Pred, Value *LHS, Value *RHS, 558 const SimplifyQuery &Q, unsigned MaxRecurse) { 559 // Recursion is always used, so bail out at once if we already hit the limit. 560 if (!MaxRecurse--) 561 return nullptr; 562 563 // Make sure the phi is on the LHS. 564 if (!isa<PHINode>(LHS)) { 565 std::swap(LHS, RHS); 566 Pred = CmpInst::getSwappedPredicate(Pred); 567 } 568 assert(isa<PHINode>(LHS) && "Not comparing with a phi instruction!"); 569 PHINode *PI = cast<PHINode>(LHS); 570 571 // Bail out if RHS and the phi may be mutually interdependent due to a loop. 572 if (!valueDominatesPHI(RHS, PI, Q.DT)) 573 return nullptr; 574 575 // Evaluate the BinOp on the incoming phi values. 576 Value *CommonValue = nullptr; 577 for (unsigned u = 0, e = PI->getNumIncomingValues(); u < e; ++u) { 578 Value *Incoming = PI->getIncomingValue(u); 579 Instruction *InTI = PI->getIncomingBlock(u)->getTerminator(); 580 // If the incoming value is the phi node itself, it can safely be skipped. 581 if (Incoming == PI) continue; 582 // Change the context instruction to the "edge" that flows into the phi. 583 // This is important because that is where incoming is actually "evaluated" 584 // even though it is used later somewhere else. 585 Value *V = SimplifyCmpInst(Pred, Incoming, RHS, Q.getWithInstruction(InTI), 586 MaxRecurse); 587 // If the operation failed to simplify, or simplified to a different value 588 // to previously, then give up. 589 if (!V || (CommonValue && V != CommonValue)) 590 return nullptr; 591 CommonValue = V; 592 } 593 594 return CommonValue; 595 } 596 597 static Constant *foldOrCommuteConstant(Instruction::BinaryOps Opcode, 598 Value *&Op0, Value *&Op1, 599 const SimplifyQuery &Q) { 600 if (auto *CLHS = dyn_cast<Constant>(Op0)) { 601 if (auto *CRHS = dyn_cast<Constant>(Op1)) 602 return ConstantFoldBinaryOpOperands(Opcode, CLHS, CRHS, Q.DL); 603 604 // Canonicalize the constant to the RHS if this is a commutative operation. 605 if (Instruction::isCommutative(Opcode)) 606 std::swap(Op0, Op1); 607 } 608 return nullptr; 609 } 610 611 /// Given operands for an Add, see if we can fold the result. 612 /// If not, this returns null. 613 static Value *SimplifyAddInst(Value *Op0, Value *Op1, bool IsNSW, bool IsNUW, 614 const SimplifyQuery &Q, unsigned MaxRecurse) { 615 if (Constant *C = foldOrCommuteConstant(Instruction::Add, Op0, Op1, Q)) 616 return C; 617 618 // X + undef -> undef 619 if (Q.isUndefValue(Op1)) 620 return Op1; 621 622 // X + 0 -> X 623 if (match(Op1, m_Zero())) 624 return Op0; 625 626 // If two operands are negative, return 0. 627 if (isKnownNegation(Op0, Op1)) 628 return Constant::getNullValue(Op0->getType()); 629 630 // X + (Y - X) -> Y 631 // (Y - X) + X -> Y 632 // Eg: X + -X -> 0 633 Value *Y = nullptr; 634 if (match(Op1, m_Sub(m_Value(Y), m_Specific(Op0))) || 635 match(Op0, m_Sub(m_Value(Y), m_Specific(Op1)))) 636 return Y; 637 638 // X + ~X -> -1 since ~X = -X-1 639 Type *Ty = Op0->getType(); 640 if (match(Op0, m_Not(m_Specific(Op1))) || 641 match(Op1, m_Not(m_Specific(Op0)))) 642 return Constant::getAllOnesValue(Ty); 643 644 // add nsw/nuw (xor Y, signmask), signmask --> Y 645 // The no-wrapping add guarantees that the top bit will be set by the add. 646 // Therefore, the xor must be clearing the already set sign bit of Y. 647 if ((IsNSW || IsNUW) && match(Op1, m_SignMask()) && 648 match(Op0, m_Xor(m_Value(Y), m_SignMask()))) 649 return Y; 650 651 // add nuw %x, -1 -> -1, because %x can only be 0. 652 if (IsNUW && match(Op1, m_AllOnes())) 653 return Op1; // Which is -1. 654 655 /// i1 add -> xor. 656 if (MaxRecurse && Op0->getType()->isIntOrIntVectorTy(1)) 657 if (Value *V = SimplifyXorInst(Op0, Op1, Q, MaxRecurse-1)) 658 return V; 659 660 // Try some generic simplifications for associative operations. 661 if (Value *V = SimplifyAssociativeBinOp(Instruction::Add, Op0, Op1, Q, 662 MaxRecurse)) 663 return V; 664 665 // Threading Add over selects and phi nodes is pointless, so don't bother. 666 // Threading over the select in "A + select(cond, B, C)" means evaluating 667 // "A+B" and "A+C" and seeing if they are equal; but they are equal if and 668 // only if B and C are equal. If B and C are equal then (since we assume 669 // that operands have already been simplified) "select(cond, B, C)" should 670 // have been simplified to the common value of B and C already. Analysing 671 // "A+B" and "A+C" thus gains nothing, but costs compile time. Similarly 672 // for threading over phi nodes. 673 674 return nullptr; 675 } 676 677 Value *llvm::SimplifyAddInst(Value *Op0, Value *Op1, bool IsNSW, bool IsNUW, 678 const SimplifyQuery &Query) { 679 return ::SimplifyAddInst(Op0, Op1, IsNSW, IsNUW, Query, RecursionLimit); 680 } 681 682 /// Compute the base pointer and cumulative constant offsets for V. 683 /// 684 /// This strips all constant offsets off of V, leaving it the base pointer, and 685 /// accumulates the total constant offset applied in the returned constant. It 686 /// returns 0 if V is not a pointer, and returns the constant '0' if there are 687 /// no constant offsets applied. 688 /// 689 /// This is very similar to GetPointerBaseWithConstantOffset except it doesn't 690 /// follow non-inbounds geps. This allows it to remain usable for icmp ult/etc. 691 /// folding. 692 static Constant *stripAndComputeConstantOffsets(const DataLayout &DL, Value *&V, 693 bool AllowNonInbounds = false) { 694 assert(V->getType()->isPtrOrPtrVectorTy()); 695 696 Type *IntIdxTy = DL.getIndexType(V->getType())->getScalarType(); 697 APInt Offset = APInt::getNullValue(IntIdxTy->getIntegerBitWidth()); 698 699 V = V->stripAndAccumulateConstantOffsets(DL, Offset, AllowNonInbounds); 700 // As that strip may trace through `addrspacecast`, need to sext or trunc 701 // the offset calculated. 702 IntIdxTy = DL.getIndexType(V->getType())->getScalarType(); 703 Offset = Offset.sextOrTrunc(IntIdxTy->getIntegerBitWidth()); 704 705 Constant *OffsetIntPtr = ConstantInt::get(IntIdxTy, Offset); 706 if (VectorType *VecTy = dyn_cast<VectorType>(V->getType())) 707 return ConstantVector::getSplat(VecTy->getElementCount(), OffsetIntPtr); 708 return OffsetIntPtr; 709 } 710 711 /// Compute the constant difference between two pointer values. 712 /// If the difference is not a constant, returns zero. 713 static Constant *computePointerDifference(const DataLayout &DL, Value *LHS, 714 Value *RHS) { 715 Constant *LHSOffset = stripAndComputeConstantOffsets(DL, LHS); 716 Constant *RHSOffset = stripAndComputeConstantOffsets(DL, RHS); 717 718 // If LHS and RHS are not related via constant offsets to the same base 719 // value, there is nothing we can do here. 720 if (LHS != RHS) 721 return nullptr; 722 723 // Otherwise, the difference of LHS - RHS can be computed as: 724 // LHS - RHS 725 // = (LHSOffset + Base) - (RHSOffset + Base) 726 // = LHSOffset - RHSOffset 727 return ConstantExpr::getSub(LHSOffset, RHSOffset); 728 } 729 730 /// Given operands for a Sub, see if we can fold the result. 731 /// If not, this returns null. 732 static Value *SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, 733 const SimplifyQuery &Q, unsigned MaxRecurse) { 734 if (Constant *C = foldOrCommuteConstant(Instruction::Sub, Op0, Op1, Q)) 735 return C; 736 737 // X - undef -> undef 738 // undef - X -> undef 739 if (Q.isUndefValue(Op0) || Q.isUndefValue(Op1)) 740 return UndefValue::get(Op0->getType()); 741 742 // X - 0 -> X 743 if (match(Op1, m_Zero())) 744 return Op0; 745 746 // X - X -> 0 747 if (Op0 == Op1) 748 return Constant::getNullValue(Op0->getType()); 749 750 // Is this a negation? 751 if (match(Op0, m_Zero())) { 752 // 0 - X -> 0 if the sub is NUW. 753 if (isNUW) 754 return Constant::getNullValue(Op0->getType()); 755 756 KnownBits Known = computeKnownBits(Op1, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 757 if (Known.Zero.isMaxSignedValue()) { 758 // Op1 is either 0 or the minimum signed value. If the sub is NSW, then 759 // Op1 must be 0 because negating the minimum signed value is undefined. 760 if (isNSW) 761 return Constant::getNullValue(Op0->getType()); 762 763 // 0 - X -> X if X is 0 or the minimum signed value. 764 return Op1; 765 } 766 } 767 768 // (X + Y) - Z -> X + (Y - Z) or Y + (X - Z) if everything simplifies. 769 // For example, (X + Y) - Y -> X; (Y + X) - Y -> X 770 Value *X = nullptr, *Y = nullptr, *Z = Op1; 771 if (MaxRecurse && match(Op0, m_Add(m_Value(X), m_Value(Y)))) { // (X + Y) - Z 772 // See if "V === Y - Z" simplifies. 773 if (Value *V = SimplifyBinOp(Instruction::Sub, Y, Z, Q, MaxRecurse-1)) 774 // It does! Now see if "X + V" simplifies. 775 if (Value *W = SimplifyBinOp(Instruction::Add, X, V, Q, MaxRecurse-1)) { 776 // It does, we successfully reassociated! 777 ++NumReassoc; 778 return W; 779 } 780 // See if "V === X - Z" simplifies. 781 if (Value *V = SimplifyBinOp(Instruction::Sub, X, Z, Q, MaxRecurse-1)) 782 // It does! Now see if "Y + V" simplifies. 783 if (Value *W = SimplifyBinOp(Instruction::Add, Y, V, Q, MaxRecurse-1)) { 784 // It does, we successfully reassociated! 785 ++NumReassoc; 786 return W; 787 } 788 } 789 790 // X - (Y + Z) -> (X - Y) - Z or (X - Z) - Y if everything simplifies. 791 // For example, X - (X + 1) -> -1 792 X = Op0; 793 if (MaxRecurse && match(Op1, m_Add(m_Value(Y), m_Value(Z)))) { // X - (Y + Z) 794 // See if "V === X - Y" simplifies. 795 if (Value *V = SimplifyBinOp(Instruction::Sub, X, Y, Q, MaxRecurse-1)) 796 // It does! Now see if "V - Z" simplifies. 797 if (Value *W = SimplifyBinOp(Instruction::Sub, V, Z, Q, MaxRecurse-1)) { 798 // It does, we successfully reassociated! 799 ++NumReassoc; 800 return W; 801 } 802 // See if "V === X - Z" simplifies. 803 if (Value *V = SimplifyBinOp(Instruction::Sub, X, Z, Q, MaxRecurse-1)) 804 // It does! Now see if "V - Y" simplifies. 805 if (Value *W = SimplifyBinOp(Instruction::Sub, V, Y, Q, MaxRecurse-1)) { 806 // It does, we successfully reassociated! 807 ++NumReassoc; 808 return W; 809 } 810 } 811 812 // Z - (X - Y) -> (Z - X) + Y if everything simplifies. 813 // For example, X - (X - Y) -> Y. 814 Z = Op0; 815 if (MaxRecurse && match(Op1, m_Sub(m_Value(X), m_Value(Y)))) // Z - (X - Y) 816 // See if "V === Z - X" simplifies. 817 if (Value *V = SimplifyBinOp(Instruction::Sub, Z, X, Q, MaxRecurse-1)) 818 // It does! Now see if "V + Y" simplifies. 819 if (Value *W = SimplifyBinOp(Instruction::Add, V, Y, Q, MaxRecurse-1)) { 820 // It does, we successfully reassociated! 821 ++NumReassoc; 822 return W; 823 } 824 825 // trunc(X) - trunc(Y) -> trunc(X - Y) if everything simplifies. 826 if (MaxRecurse && match(Op0, m_Trunc(m_Value(X))) && 827 match(Op1, m_Trunc(m_Value(Y)))) 828 if (X->getType() == Y->getType()) 829 // See if "V === X - Y" simplifies. 830 if (Value *V = SimplifyBinOp(Instruction::Sub, X, Y, Q, MaxRecurse-1)) 831 // It does! Now see if "trunc V" simplifies. 832 if (Value *W = SimplifyCastInst(Instruction::Trunc, V, Op0->getType(), 833 Q, MaxRecurse - 1)) 834 // It does, return the simplified "trunc V". 835 return W; 836 837 // Variations on GEP(base, I, ...) - GEP(base, i, ...) -> GEP(null, I-i, ...). 838 if (match(Op0, m_PtrToInt(m_Value(X))) && 839 match(Op1, m_PtrToInt(m_Value(Y)))) 840 if (Constant *Result = computePointerDifference(Q.DL, X, Y)) 841 return ConstantExpr::getIntegerCast(Result, Op0->getType(), true); 842 843 // i1 sub -> xor. 844 if (MaxRecurse && Op0->getType()->isIntOrIntVectorTy(1)) 845 if (Value *V = SimplifyXorInst(Op0, Op1, Q, MaxRecurse-1)) 846 return V; 847 848 // Threading Sub over selects and phi nodes is pointless, so don't bother. 849 // Threading over the select in "A - select(cond, B, C)" means evaluating 850 // "A-B" and "A-C" and seeing if they are equal; but they are equal if and 851 // only if B and C are equal. If B and C are equal then (since we assume 852 // that operands have already been simplified) "select(cond, B, C)" should 853 // have been simplified to the common value of B and C already. Analysing 854 // "A-B" and "A-C" thus gains nothing, but costs compile time. Similarly 855 // for threading over phi nodes. 856 857 return nullptr; 858 } 859 860 Value *llvm::SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, 861 const SimplifyQuery &Q) { 862 return ::SimplifySubInst(Op0, Op1, isNSW, isNUW, Q, RecursionLimit); 863 } 864 865 /// Given operands for a Mul, see if we can fold the result. 866 /// If not, this returns null. 867 static Value *SimplifyMulInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 868 unsigned MaxRecurse) { 869 if (Constant *C = foldOrCommuteConstant(Instruction::Mul, Op0, Op1, Q)) 870 return C; 871 872 // X * undef -> 0 873 // X * 0 -> 0 874 if (Q.isUndefValue(Op1) || match(Op1, m_Zero())) 875 return Constant::getNullValue(Op0->getType()); 876 877 // X * 1 -> X 878 if (match(Op1, m_One())) 879 return Op0; 880 881 // (X / Y) * Y -> X if the division is exact. 882 Value *X = nullptr; 883 if (Q.IIQ.UseInstrInfo && 884 (match(Op0, 885 m_Exact(m_IDiv(m_Value(X), m_Specific(Op1)))) || // (X / Y) * Y 886 match(Op1, m_Exact(m_IDiv(m_Value(X), m_Specific(Op0)))))) // Y * (X / Y) 887 return X; 888 889 // i1 mul -> and. 890 if (MaxRecurse && Op0->getType()->isIntOrIntVectorTy(1)) 891 if (Value *V = SimplifyAndInst(Op0, Op1, Q, MaxRecurse-1)) 892 return V; 893 894 // Try some generic simplifications for associative operations. 895 if (Value *V = SimplifyAssociativeBinOp(Instruction::Mul, Op0, Op1, Q, 896 MaxRecurse)) 897 return V; 898 899 // Mul distributes over Add. Try some generic simplifications based on this. 900 if (Value *V = expandCommutativeBinOp(Instruction::Mul, Op0, Op1, 901 Instruction::Add, Q, MaxRecurse)) 902 return V; 903 904 // If the operation is with the result of a select instruction, check whether 905 // operating on either branch of the select always yields the same value. 906 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 907 if (Value *V = ThreadBinOpOverSelect(Instruction::Mul, Op0, Op1, Q, 908 MaxRecurse)) 909 return V; 910 911 // If the operation is with the result of a phi instruction, check whether 912 // operating on all incoming values of the phi always yields the same value. 913 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 914 if (Value *V = ThreadBinOpOverPHI(Instruction::Mul, Op0, Op1, Q, 915 MaxRecurse)) 916 return V; 917 918 return nullptr; 919 } 920 921 Value *llvm::SimplifyMulInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 922 return ::SimplifyMulInst(Op0, Op1, Q, RecursionLimit); 923 } 924 925 /// Check for common or similar folds of integer division or integer remainder. 926 /// This applies to all 4 opcodes (sdiv/udiv/srem/urem). 927 static Value *simplifyDivRem(Instruction::BinaryOps Opcode, Value *Op0, 928 Value *Op1, const SimplifyQuery &Q) { 929 bool IsDiv = (Opcode == Instruction::SDiv || Opcode == Instruction::UDiv); 930 bool IsSigned = (Opcode == Instruction::SDiv || Opcode == Instruction::SRem); 931 932 Type *Ty = Op0->getType(); 933 934 // X / undef -> poison 935 // X % undef -> poison 936 if (Q.isUndefValue(Op1)) 937 return PoisonValue::get(Ty); 938 939 // X / 0 -> poison 940 // X % 0 -> poison 941 // We don't need to preserve faults! 942 if (match(Op1, m_Zero())) 943 return PoisonValue::get(Ty); 944 945 // If any element of a constant divisor fixed width vector is zero or undef 946 // the behavior is undefined and we can fold the whole op to poison. 947 auto *Op1C = dyn_cast<Constant>(Op1); 948 auto *VTy = dyn_cast<FixedVectorType>(Ty); 949 if (Op1C && VTy) { 950 unsigned NumElts = VTy->getNumElements(); 951 for (unsigned i = 0; i != NumElts; ++i) { 952 Constant *Elt = Op1C->getAggregateElement(i); 953 if (Elt && (Elt->isNullValue() || Q.isUndefValue(Elt))) 954 return PoisonValue::get(Ty); 955 } 956 } 957 958 // undef / X -> 0 959 // undef % X -> 0 960 if (Q.isUndefValue(Op0)) 961 return Constant::getNullValue(Ty); 962 963 // 0 / X -> 0 964 // 0 % X -> 0 965 if (match(Op0, m_Zero())) 966 return Constant::getNullValue(Op0->getType()); 967 968 // X / X -> 1 969 // X % X -> 0 970 if (Op0 == Op1) 971 return IsDiv ? ConstantInt::get(Ty, 1) : Constant::getNullValue(Ty); 972 973 // X / 1 -> X 974 // X % 1 -> 0 975 // If this is a boolean op (single-bit element type), we can't have 976 // division-by-zero or remainder-by-zero, so assume the divisor is 1. 977 // Similarly, if we're zero-extending a boolean divisor, then assume it's a 1. 978 Value *X; 979 if (match(Op1, m_One()) || Ty->isIntOrIntVectorTy(1) || 980 (match(Op1, m_ZExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1))) 981 return IsDiv ? Op0 : Constant::getNullValue(Ty); 982 983 // If X * Y does not overflow, then: 984 // X * Y / Y -> X 985 // X * Y % Y -> 0 986 if (match(Op0, m_c_Mul(m_Value(X), m_Specific(Op1)))) { 987 auto *Mul = cast<OverflowingBinaryOperator>(Op0); 988 // The multiplication can't overflow if it is defined not to, or if 989 // X == A / Y for some A. 990 if ((IsSigned && Q.IIQ.hasNoSignedWrap(Mul)) || 991 (!IsSigned && Q.IIQ.hasNoUnsignedWrap(Mul)) || 992 (IsSigned && match(X, m_SDiv(m_Value(), m_Specific(Op1)))) || 993 (!IsSigned && match(X, m_UDiv(m_Value(), m_Specific(Op1))))) { 994 return IsDiv ? X : Constant::getNullValue(Op0->getType()); 995 } 996 } 997 998 return nullptr; 999 } 1000 1001 /// Given a predicate and two operands, return true if the comparison is true. 1002 /// This is a helper for div/rem simplification where we return some other value 1003 /// when we can prove a relationship between the operands. 1004 static bool isICmpTrue(ICmpInst::Predicate Pred, Value *LHS, Value *RHS, 1005 const SimplifyQuery &Q, unsigned MaxRecurse) { 1006 Value *V = SimplifyICmpInst(Pred, LHS, RHS, Q, MaxRecurse); 1007 Constant *C = dyn_cast_or_null<Constant>(V); 1008 return (C && C->isAllOnesValue()); 1009 } 1010 1011 /// Return true if we can simplify X / Y to 0. Remainder can adapt that answer 1012 /// to simplify X % Y to X. 1013 static bool isDivZero(Value *X, Value *Y, const SimplifyQuery &Q, 1014 unsigned MaxRecurse, bool IsSigned) { 1015 // Recursion is always used, so bail out at once if we already hit the limit. 1016 if (!MaxRecurse--) 1017 return false; 1018 1019 if (IsSigned) { 1020 // |X| / |Y| --> 0 1021 // 1022 // We require that 1 operand is a simple constant. That could be extended to 1023 // 2 variables if we computed the sign bit for each. 1024 // 1025 // Make sure that a constant is not the minimum signed value because taking 1026 // the abs() of that is undefined. 1027 Type *Ty = X->getType(); 1028 const APInt *C; 1029 if (match(X, m_APInt(C)) && !C->isMinSignedValue()) { 1030 // Is the variable divisor magnitude always greater than the constant 1031 // dividend magnitude? 1032 // |Y| > |C| --> Y < -abs(C) or Y > abs(C) 1033 Constant *PosDividendC = ConstantInt::get(Ty, C->abs()); 1034 Constant *NegDividendC = ConstantInt::get(Ty, -C->abs()); 1035 if (isICmpTrue(CmpInst::ICMP_SLT, Y, NegDividendC, Q, MaxRecurse) || 1036 isICmpTrue(CmpInst::ICMP_SGT, Y, PosDividendC, Q, MaxRecurse)) 1037 return true; 1038 } 1039 if (match(Y, m_APInt(C))) { 1040 // Special-case: we can't take the abs() of a minimum signed value. If 1041 // that's the divisor, then all we have to do is prove that the dividend 1042 // is also not the minimum signed value. 1043 if (C->isMinSignedValue()) 1044 return isICmpTrue(CmpInst::ICMP_NE, X, Y, Q, MaxRecurse); 1045 1046 // Is the variable dividend magnitude always less than the constant 1047 // divisor magnitude? 1048 // |X| < |C| --> X > -abs(C) and X < abs(C) 1049 Constant *PosDivisorC = ConstantInt::get(Ty, C->abs()); 1050 Constant *NegDivisorC = ConstantInt::get(Ty, -C->abs()); 1051 if (isICmpTrue(CmpInst::ICMP_SGT, X, NegDivisorC, Q, MaxRecurse) && 1052 isICmpTrue(CmpInst::ICMP_SLT, X, PosDivisorC, Q, MaxRecurse)) 1053 return true; 1054 } 1055 return false; 1056 } 1057 1058 // IsSigned == false. 1059 // Is the dividend unsigned less than the divisor? 1060 return isICmpTrue(ICmpInst::ICMP_ULT, X, Y, Q, MaxRecurse); 1061 } 1062 1063 /// These are simplifications common to SDiv and UDiv. 1064 static Value *simplifyDiv(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1, 1065 const SimplifyQuery &Q, unsigned MaxRecurse) { 1066 if (Constant *C = foldOrCommuteConstant(Opcode, Op0, Op1, Q)) 1067 return C; 1068 1069 if (Value *V = simplifyDivRem(Opcode, Op0, Op1, Q)) 1070 return V; 1071 1072 bool IsSigned = Opcode == Instruction::SDiv; 1073 1074 // (X rem Y) / Y -> 0 1075 if ((IsSigned && match(Op0, m_SRem(m_Value(), m_Specific(Op1)))) || 1076 (!IsSigned && match(Op0, m_URem(m_Value(), m_Specific(Op1))))) 1077 return Constant::getNullValue(Op0->getType()); 1078 1079 // (X /u C1) /u C2 -> 0 if C1 * C2 overflow 1080 ConstantInt *C1, *C2; 1081 if (!IsSigned && match(Op0, m_UDiv(m_Value(), m_ConstantInt(C1))) && 1082 match(Op1, m_ConstantInt(C2))) { 1083 bool Overflow; 1084 (void)C1->getValue().umul_ov(C2->getValue(), Overflow); 1085 if (Overflow) 1086 return Constant::getNullValue(Op0->getType()); 1087 } 1088 1089 // If the operation is with the result of a select instruction, check whether 1090 // operating on either branch of the select always yields the same value. 1091 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 1092 if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse)) 1093 return V; 1094 1095 // If the operation is with the result of a phi instruction, check whether 1096 // operating on all incoming values of the phi always yields the same value. 1097 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 1098 if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse)) 1099 return V; 1100 1101 if (isDivZero(Op0, Op1, Q, MaxRecurse, IsSigned)) 1102 return Constant::getNullValue(Op0->getType()); 1103 1104 return nullptr; 1105 } 1106 1107 /// These are simplifications common to SRem and URem. 1108 static Value *simplifyRem(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1, 1109 const SimplifyQuery &Q, unsigned MaxRecurse) { 1110 if (Constant *C = foldOrCommuteConstant(Opcode, Op0, Op1, Q)) 1111 return C; 1112 1113 if (Value *V = simplifyDivRem(Opcode, Op0, Op1, Q)) 1114 return V; 1115 1116 // (X % Y) % Y -> X % Y 1117 if ((Opcode == Instruction::SRem && 1118 match(Op0, m_SRem(m_Value(), m_Specific(Op1)))) || 1119 (Opcode == Instruction::URem && 1120 match(Op0, m_URem(m_Value(), m_Specific(Op1))))) 1121 return Op0; 1122 1123 // (X << Y) % X -> 0 1124 if (Q.IIQ.UseInstrInfo && 1125 ((Opcode == Instruction::SRem && 1126 match(Op0, m_NSWShl(m_Specific(Op1), m_Value()))) || 1127 (Opcode == Instruction::URem && 1128 match(Op0, m_NUWShl(m_Specific(Op1), m_Value()))))) 1129 return Constant::getNullValue(Op0->getType()); 1130 1131 // If the operation is with the result of a select instruction, check whether 1132 // operating on either branch of the select always yields the same value. 1133 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 1134 if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse)) 1135 return V; 1136 1137 // If the operation is with the result of a phi instruction, check whether 1138 // operating on all incoming values of the phi always yields the same value. 1139 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 1140 if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse)) 1141 return V; 1142 1143 // If X / Y == 0, then X % Y == X. 1144 if (isDivZero(Op0, Op1, Q, MaxRecurse, Opcode == Instruction::SRem)) 1145 return Op0; 1146 1147 return nullptr; 1148 } 1149 1150 /// Given operands for an SDiv, see if we can fold the result. 1151 /// If not, this returns null. 1152 static Value *SimplifySDivInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 1153 unsigned MaxRecurse) { 1154 // If two operands are negated and no signed overflow, return -1. 1155 if (isKnownNegation(Op0, Op1, /*NeedNSW=*/true)) 1156 return Constant::getAllOnesValue(Op0->getType()); 1157 1158 return simplifyDiv(Instruction::SDiv, Op0, Op1, Q, MaxRecurse); 1159 } 1160 1161 Value *llvm::SimplifySDivInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 1162 return ::SimplifySDivInst(Op0, Op1, Q, RecursionLimit); 1163 } 1164 1165 /// Given operands for a UDiv, see if we can fold the result. 1166 /// If not, this returns null. 1167 static Value *SimplifyUDivInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 1168 unsigned MaxRecurse) { 1169 return simplifyDiv(Instruction::UDiv, Op0, Op1, Q, MaxRecurse); 1170 } 1171 1172 Value *llvm::SimplifyUDivInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 1173 return ::SimplifyUDivInst(Op0, Op1, Q, RecursionLimit); 1174 } 1175 1176 /// Given operands for an SRem, see if we can fold the result. 1177 /// If not, this returns null. 1178 static Value *SimplifySRemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 1179 unsigned MaxRecurse) { 1180 // If the divisor is 0, the result is undefined, so assume the divisor is -1. 1181 // srem Op0, (sext i1 X) --> srem Op0, -1 --> 0 1182 Value *X; 1183 if (match(Op1, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)) 1184 return ConstantInt::getNullValue(Op0->getType()); 1185 1186 // If the two operands are negated, return 0. 1187 if (isKnownNegation(Op0, Op1)) 1188 return ConstantInt::getNullValue(Op0->getType()); 1189 1190 return simplifyRem(Instruction::SRem, Op0, Op1, Q, MaxRecurse); 1191 } 1192 1193 Value *llvm::SimplifySRemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 1194 return ::SimplifySRemInst(Op0, Op1, Q, RecursionLimit); 1195 } 1196 1197 /// Given operands for a URem, see if we can fold the result. 1198 /// If not, this returns null. 1199 static Value *SimplifyURemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 1200 unsigned MaxRecurse) { 1201 return simplifyRem(Instruction::URem, Op0, Op1, Q, MaxRecurse); 1202 } 1203 1204 Value *llvm::SimplifyURemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 1205 return ::SimplifyURemInst(Op0, Op1, Q, RecursionLimit); 1206 } 1207 1208 /// Returns true if a shift by \c Amount always yields poison. 1209 static bool isPoisonShift(Value *Amount, const SimplifyQuery &Q) { 1210 Constant *C = dyn_cast<Constant>(Amount); 1211 if (!C) 1212 return false; 1213 1214 // X shift by undef -> poison because it may shift by the bitwidth. 1215 if (Q.isUndefValue(C)) 1216 return true; 1217 1218 // Shifting by the bitwidth or more is undefined. 1219 if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1220 if (CI->getValue().uge(CI->getType()->getScalarSizeInBits())) 1221 return true; 1222 1223 // If all lanes of a vector shift are undefined the whole shift is. 1224 if (isa<ConstantVector>(C) || isa<ConstantDataVector>(C)) { 1225 for (unsigned I = 0, 1226 E = cast<FixedVectorType>(C->getType())->getNumElements(); 1227 I != E; ++I) 1228 if (!isPoisonShift(C->getAggregateElement(I), Q)) 1229 return false; 1230 return true; 1231 } 1232 1233 return false; 1234 } 1235 1236 /// Given operands for an Shl, LShr or AShr, see if we can fold the result. 1237 /// If not, this returns null. 1238 static Value *SimplifyShift(Instruction::BinaryOps Opcode, Value *Op0, 1239 Value *Op1, bool IsNSW, const SimplifyQuery &Q, 1240 unsigned MaxRecurse) { 1241 if (Constant *C = foldOrCommuteConstant(Opcode, Op0, Op1, Q)) 1242 return C; 1243 1244 // 0 shift by X -> 0 1245 if (match(Op0, m_Zero())) 1246 return Constant::getNullValue(Op0->getType()); 1247 1248 // X shift by 0 -> X 1249 // Shift-by-sign-extended bool must be shift-by-0 because shift-by-all-ones 1250 // would be poison. 1251 Value *X; 1252 if (match(Op1, m_Zero()) || 1253 (match(Op1, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1))) 1254 return Op0; 1255 1256 // Fold undefined shifts. 1257 if (isPoisonShift(Op1, Q)) 1258 return PoisonValue::get(Op0->getType()); 1259 1260 // If the operation is with the result of a select instruction, check whether 1261 // operating on either branch of the select always yields the same value. 1262 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 1263 if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse)) 1264 return V; 1265 1266 // If the operation is with the result of a phi instruction, check whether 1267 // operating on all incoming values of the phi always yields the same value. 1268 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 1269 if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse)) 1270 return V; 1271 1272 // If any bits in the shift amount make that value greater than or equal to 1273 // the number of bits in the type, the shift is undefined. 1274 KnownBits KnownAmt = computeKnownBits(Op1, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 1275 if (KnownAmt.getMinValue().uge(KnownAmt.getBitWidth())) 1276 return PoisonValue::get(Op0->getType()); 1277 1278 // If all valid bits in the shift amount are known zero, the first operand is 1279 // unchanged. 1280 unsigned NumValidShiftBits = Log2_32_Ceil(KnownAmt.getBitWidth()); 1281 if (KnownAmt.countMinTrailingZeros() >= NumValidShiftBits) 1282 return Op0; 1283 1284 // Check for nsw shl leading to a poison value. 1285 if (IsNSW) { 1286 assert(Opcode == Instruction::Shl && "Expected shl for nsw instruction"); 1287 KnownBits KnownVal = computeKnownBits(Op0, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 1288 KnownBits KnownShl = KnownBits::shl(KnownVal, KnownAmt); 1289 1290 if (KnownVal.Zero.isSignBitSet()) 1291 KnownShl.Zero.setSignBit(); 1292 if (KnownVal.One.isSignBitSet()) 1293 KnownShl.One.setSignBit(); 1294 1295 if (KnownShl.hasConflict()) 1296 return PoisonValue::get(Op0->getType()); 1297 } 1298 1299 return nullptr; 1300 } 1301 1302 /// Given operands for an Shl, LShr or AShr, see if we can 1303 /// fold the result. If not, this returns null. 1304 static Value *SimplifyRightShift(Instruction::BinaryOps Opcode, Value *Op0, 1305 Value *Op1, bool isExact, const SimplifyQuery &Q, 1306 unsigned MaxRecurse) { 1307 if (Value *V = 1308 SimplifyShift(Opcode, Op0, Op1, /*IsNSW*/ false, Q, MaxRecurse)) 1309 return V; 1310 1311 // X >> X -> 0 1312 if (Op0 == Op1) 1313 return Constant::getNullValue(Op0->getType()); 1314 1315 // undef >> X -> 0 1316 // undef >> X -> undef (if it's exact) 1317 if (Q.isUndefValue(Op0)) 1318 return isExact ? Op0 : Constant::getNullValue(Op0->getType()); 1319 1320 // The low bit cannot be shifted out of an exact shift if it is set. 1321 if (isExact) { 1322 KnownBits Op0Known = computeKnownBits(Op0, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT); 1323 if (Op0Known.One[0]) 1324 return Op0; 1325 } 1326 1327 return nullptr; 1328 } 1329 1330 /// Given operands for an Shl, see if we can fold the result. 1331 /// If not, this returns null. 1332 static Value *SimplifyShlInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, 1333 const SimplifyQuery &Q, unsigned MaxRecurse) { 1334 if (Value *V = 1335 SimplifyShift(Instruction::Shl, Op0, Op1, isNSW, Q, MaxRecurse)) 1336 return V; 1337 1338 // undef << X -> 0 1339 // undef << X -> undef if (if it's NSW/NUW) 1340 if (Q.isUndefValue(Op0)) 1341 return isNSW || isNUW ? Op0 : Constant::getNullValue(Op0->getType()); 1342 1343 // (X >> A) << A -> X 1344 Value *X; 1345 if (Q.IIQ.UseInstrInfo && 1346 match(Op0, m_Exact(m_Shr(m_Value(X), m_Specific(Op1))))) 1347 return X; 1348 1349 // shl nuw i8 C, %x -> C iff C has sign bit set. 1350 if (isNUW && match(Op0, m_Negative())) 1351 return Op0; 1352 // NOTE: could use computeKnownBits() / LazyValueInfo, 1353 // but the cost-benefit analysis suggests it isn't worth it. 1354 1355 return nullptr; 1356 } 1357 1358 Value *llvm::SimplifyShlInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, 1359 const SimplifyQuery &Q) { 1360 return ::SimplifyShlInst(Op0, Op1, isNSW, isNUW, Q, RecursionLimit); 1361 } 1362 1363 /// Given operands for an LShr, see if we can fold the result. 1364 /// If not, this returns null. 1365 static Value *SimplifyLShrInst(Value *Op0, Value *Op1, bool isExact, 1366 const SimplifyQuery &Q, unsigned MaxRecurse) { 1367 if (Value *V = SimplifyRightShift(Instruction::LShr, Op0, Op1, isExact, Q, 1368 MaxRecurse)) 1369 return V; 1370 1371 // (X << A) >> A -> X 1372 Value *X; 1373 if (match(Op0, m_NUWShl(m_Value(X), m_Specific(Op1)))) 1374 return X; 1375 1376 // ((X << A) | Y) >> A -> X if effective width of Y is not larger than A. 1377 // We can return X as we do in the above case since OR alters no bits in X. 1378 // SimplifyDemandedBits in InstCombine can do more general optimization for 1379 // bit manipulation. This pattern aims to provide opportunities for other 1380 // optimizers by supporting a simple but common case in InstSimplify. 1381 Value *Y; 1382 const APInt *ShRAmt, *ShLAmt; 1383 if (match(Op1, m_APInt(ShRAmt)) && 1384 match(Op0, m_c_Or(m_NUWShl(m_Value(X), m_APInt(ShLAmt)), m_Value(Y))) && 1385 *ShRAmt == *ShLAmt) { 1386 const KnownBits YKnown = computeKnownBits(Y, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 1387 const unsigned Width = Op0->getType()->getScalarSizeInBits(); 1388 const unsigned EffWidthY = Width - YKnown.countMinLeadingZeros(); 1389 if (ShRAmt->uge(EffWidthY)) 1390 return X; 1391 } 1392 1393 return nullptr; 1394 } 1395 1396 Value *llvm::SimplifyLShrInst(Value *Op0, Value *Op1, bool isExact, 1397 const SimplifyQuery &Q) { 1398 return ::SimplifyLShrInst(Op0, Op1, isExact, Q, RecursionLimit); 1399 } 1400 1401 /// Given operands for an AShr, see if we can fold the result. 1402 /// If not, this returns null. 1403 static Value *SimplifyAShrInst(Value *Op0, Value *Op1, bool isExact, 1404 const SimplifyQuery &Q, unsigned MaxRecurse) { 1405 if (Value *V = SimplifyRightShift(Instruction::AShr, Op0, Op1, isExact, Q, 1406 MaxRecurse)) 1407 return V; 1408 1409 // all ones >>a X -> -1 1410 // Do not return Op0 because it may contain undef elements if it's a vector. 1411 if (match(Op0, m_AllOnes())) 1412 return Constant::getAllOnesValue(Op0->getType()); 1413 1414 // (X << A) >> A -> X 1415 Value *X; 1416 if (Q.IIQ.UseInstrInfo && match(Op0, m_NSWShl(m_Value(X), m_Specific(Op1)))) 1417 return X; 1418 1419 // Arithmetic shifting an all-sign-bit value is a no-op. 1420 unsigned NumSignBits = ComputeNumSignBits(Op0, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 1421 if (NumSignBits == Op0->getType()->getScalarSizeInBits()) 1422 return Op0; 1423 1424 return nullptr; 1425 } 1426 1427 Value *llvm::SimplifyAShrInst(Value *Op0, Value *Op1, bool isExact, 1428 const SimplifyQuery &Q) { 1429 return ::SimplifyAShrInst(Op0, Op1, isExact, Q, RecursionLimit); 1430 } 1431 1432 /// Commuted variants are assumed to be handled by calling this function again 1433 /// with the parameters swapped. 1434 static Value *simplifyUnsignedRangeCheck(ICmpInst *ZeroICmp, 1435 ICmpInst *UnsignedICmp, bool IsAnd, 1436 const SimplifyQuery &Q) { 1437 Value *X, *Y; 1438 1439 ICmpInst::Predicate EqPred; 1440 if (!match(ZeroICmp, m_ICmp(EqPred, m_Value(Y), m_Zero())) || 1441 !ICmpInst::isEquality(EqPred)) 1442 return nullptr; 1443 1444 ICmpInst::Predicate UnsignedPred; 1445 1446 Value *A, *B; 1447 // Y = (A - B); 1448 if (match(Y, m_Sub(m_Value(A), m_Value(B)))) { 1449 if (match(UnsignedICmp, 1450 m_c_ICmp(UnsignedPred, m_Specific(A), m_Specific(B))) && 1451 ICmpInst::isUnsigned(UnsignedPred)) { 1452 // A >=/<= B || (A - B) != 0 <--> true 1453 if ((UnsignedPred == ICmpInst::ICMP_UGE || 1454 UnsignedPred == ICmpInst::ICMP_ULE) && 1455 EqPred == ICmpInst::ICMP_NE && !IsAnd) 1456 return ConstantInt::getTrue(UnsignedICmp->getType()); 1457 // A </> B && (A - B) == 0 <--> false 1458 if ((UnsignedPred == ICmpInst::ICMP_ULT || 1459 UnsignedPred == ICmpInst::ICMP_UGT) && 1460 EqPred == ICmpInst::ICMP_EQ && IsAnd) 1461 return ConstantInt::getFalse(UnsignedICmp->getType()); 1462 1463 // A </> B && (A - B) != 0 <--> A </> B 1464 // A </> B || (A - B) != 0 <--> (A - B) != 0 1465 if (EqPred == ICmpInst::ICMP_NE && (UnsignedPred == ICmpInst::ICMP_ULT || 1466 UnsignedPred == ICmpInst::ICMP_UGT)) 1467 return IsAnd ? UnsignedICmp : ZeroICmp; 1468 1469 // A <=/>= B && (A - B) == 0 <--> (A - B) == 0 1470 // A <=/>= B || (A - B) == 0 <--> A <=/>= B 1471 if (EqPred == ICmpInst::ICMP_EQ && (UnsignedPred == ICmpInst::ICMP_ULE || 1472 UnsignedPred == ICmpInst::ICMP_UGE)) 1473 return IsAnd ? ZeroICmp : UnsignedICmp; 1474 } 1475 1476 // Given Y = (A - B) 1477 // Y >= A && Y != 0 --> Y >= A iff B != 0 1478 // Y < A || Y == 0 --> Y < A iff B != 0 1479 if (match(UnsignedICmp, 1480 m_c_ICmp(UnsignedPred, m_Specific(Y), m_Specific(A)))) { 1481 if (UnsignedPred == ICmpInst::ICMP_UGE && IsAnd && 1482 EqPred == ICmpInst::ICMP_NE && 1483 isKnownNonZero(B, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT)) 1484 return UnsignedICmp; 1485 if (UnsignedPred == ICmpInst::ICMP_ULT && !IsAnd && 1486 EqPred == ICmpInst::ICMP_EQ && 1487 isKnownNonZero(B, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT)) 1488 return UnsignedICmp; 1489 } 1490 } 1491 1492 if (match(UnsignedICmp, m_ICmp(UnsignedPred, m_Value(X), m_Specific(Y))) && 1493 ICmpInst::isUnsigned(UnsignedPred)) 1494 ; 1495 else if (match(UnsignedICmp, 1496 m_ICmp(UnsignedPred, m_Specific(Y), m_Value(X))) && 1497 ICmpInst::isUnsigned(UnsignedPred)) 1498 UnsignedPred = ICmpInst::getSwappedPredicate(UnsignedPred); 1499 else 1500 return nullptr; 1501 1502 // X > Y && Y == 0 --> Y == 0 iff X != 0 1503 // X > Y || Y == 0 --> X > Y iff X != 0 1504 if (UnsignedPred == ICmpInst::ICMP_UGT && EqPred == ICmpInst::ICMP_EQ && 1505 isKnownNonZero(X, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT)) 1506 return IsAnd ? ZeroICmp : UnsignedICmp; 1507 1508 // X <= Y && Y != 0 --> X <= Y iff X != 0 1509 // X <= Y || Y != 0 --> Y != 0 iff X != 0 1510 if (UnsignedPred == ICmpInst::ICMP_ULE && EqPred == ICmpInst::ICMP_NE && 1511 isKnownNonZero(X, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT)) 1512 return IsAnd ? UnsignedICmp : ZeroICmp; 1513 1514 // The transforms below here are expected to be handled more generally with 1515 // simplifyAndOrOfICmpsWithLimitConst() or in InstCombine's 1516 // foldAndOrOfICmpsWithConstEq(). If we are looking to trim optimizer overlap, 1517 // these are candidates for removal. 1518 1519 // X < Y && Y != 0 --> X < Y 1520 // X < Y || Y != 0 --> Y != 0 1521 if (UnsignedPred == ICmpInst::ICMP_ULT && EqPred == ICmpInst::ICMP_NE) 1522 return IsAnd ? UnsignedICmp : ZeroICmp; 1523 1524 // X >= Y && Y == 0 --> Y == 0 1525 // X >= Y || Y == 0 --> X >= Y 1526 if (UnsignedPred == ICmpInst::ICMP_UGE && EqPred == ICmpInst::ICMP_EQ) 1527 return IsAnd ? ZeroICmp : UnsignedICmp; 1528 1529 // X < Y && Y == 0 --> false 1530 if (UnsignedPred == ICmpInst::ICMP_ULT && EqPred == ICmpInst::ICMP_EQ && 1531 IsAnd) 1532 return getFalse(UnsignedICmp->getType()); 1533 1534 // X >= Y || Y != 0 --> true 1535 if (UnsignedPred == ICmpInst::ICMP_UGE && EqPred == ICmpInst::ICMP_NE && 1536 !IsAnd) 1537 return getTrue(UnsignedICmp->getType()); 1538 1539 return nullptr; 1540 } 1541 1542 /// Commuted variants are assumed to be handled by calling this function again 1543 /// with the parameters swapped. 1544 static Value *simplifyAndOfICmpsWithSameOperands(ICmpInst *Op0, ICmpInst *Op1) { 1545 ICmpInst::Predicate Pred0, Pred1; 1546 Value *A ,*B; 1547 if (!match(Op0, m_ICmp(Pred0, m_Value(A), m_Value(B))) || 1548 !match(Op1, m_ICmp(Pred1, m_Specific(A), m_Specific(B)))) 1549 return nullptr; 1550 1551 // We have (icmp Pred0, A, B) & (icmp Pred1, A, B). 1552 // If Op1 is always implied true by Op0, then Op0 is a subset of Op1, and we 1553 // can eliminate Op1 from this 'and'. 1554 if (ICmpInst::isImpliedTrueByMatchingCmp(Pred0, Pred1)) 1555 return Op0; 1556 1557 // Check for any combination of predicates that are guaranteed to be disjoint. 1558 if ((Pred0 == ICmpInst::getInversePredicate(Pred1)) || 1559 (Pred0 == ICmpInst::ICMP_EQ && ICmpInst::isFalseWhenEqual(Pred1)) || 1560 (Pred0 == ICmpInst::ICMP_SLT && Pred1 == ICmpInst::ICMP_SGT) || 1561 (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_UGT)) 1562 return getFalse(Op0->getType()); 1563 1564 return nullptr; 1565 } 1566 1567 /// Commuted variants are assumed to be handled by calling this function again 1568 /// with the parameters swapped. 1569 static Value *simplifyOrOfICmpsWithSameOperands(ICmpInst *Op0, ICmpInst *Op1) { 1570 ICmpInst::Predicate Pred0, Pred1; 1571 Value *A ,*B; 1572 if (!match(Op0, m_ICmp(Pred0, m_Value(A), m_Value(B))) || 1573 !match(Op1, m_ICmp(Pred1, m_Specific(A), m_Specific(B)))) 1574 return nullptr; 1575 1576 // We have (icmp Pred0, A, B) | (icmp Pred1, A, B). 1577 // If Op1 is always implied true by Op0, then Op0 is a subset of Op1, and we 1578 // can eliminate Op0 from this 'or'. 1579 if (ICmpInst::isImpliedTrueByMatchingCmp(Pred0, Pred1)) 1580 return Op1; 1581 1582 // Check for any combination of predicates that cover the entire range of 1583 // possibilities. 1584 if ((Pred0 == ICmpInst::getInversePredicate(Pred1)) || 1585 (Pred0 == ICmpInst::ICMP_NE && ICmpInst::isTrueWhenEqual(Pred1)) || 1586 (Pred0 == ICmpInst::ICMP_SLE && Pred1 == ICmpInst::ICMP_SGE) || 1587 (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_UGE)) 1588 return getTrue(Op0->getType()); 1589 1590 return nullptr; 1591 } 1592 1593 /// Test if a pair of compares with a shared operand and 2 constants has an 1594 /// empty set intersection, full set union, or if one compare is a superset of 1595 /// the other. 1596 static Value *simplifyAndOrOfICmpsWithConstants(ICmpInst *Cmp0, ICmpInst *Cmp1, 1597 bool IsAnd) { 1598 // Look for this pattern: {and/or} (icmp X, C0), (icmp X, C1)). 1599 if (Cmp0->getOperand(0) != Cmp1->getOperand(0)) 1600 return nullptr; 1601 1602 const APInt *C0, *C1; 1603 if (!match(Cmp0->getOperand(1), m_APInt(C0)) || 1604 !match(Cmp1->getOperand(1), m_APInt(C1))) 1605 return nullptr; 1606 1607 auto Range0 = ConstantRange::makeExactICmpRegion(Cmp0->getPredicate(), *C0); 1608 auto Range1 = ConstantRange::makeExactICmpRegion(Cmp1->getPredicate(), *C1); 1609 1610 // For and-of-compares, check if the intersection is empty: 1611 // (icmp X, C0) && (icmp X, C1) --> empty set --> false 1612 if (IsAnd && Range0.intersectWith(Range1).isEmptySet()) 1613 return getFalse(Cmp0->getType()); 1614 1615 // For or-of-compares, check if the union is full: 1616 // (icmp X, C0) || (icmp X, C1) --> full set --> true 1617 if (!IsAnd && Range0.unionWith(Range1).isFullSet()) 1618 return getTrue(Cmp0->getType()); 1619 1620 // Is one range a superset of the other? 1621 // If this is and-of-compares, take the smaller set: 1622 // (icmp sgt X, 4) && (icmp sgt X, 42) --> icmp sgt X, 42 1623 // If this is or-of-compares, take the larger set: 1624 // (icmp sgt X, 4) || (icmp sgt X, 42) --> icmp sgt X, 4 1625 if (Range0.contains(Range1)) 1626 return IsAnd ? Cmp1 : Cmp0; 1627 if (Range1.contains(Range0)) 1628 return IsAnd ? Cmp0 : Cmp1; 1629 1630 return nullptr; 1631 } 1632 1633 static Value *simplifyAndOrOfICmpsWithZero(ICmpInst *Cmp0, ICmpInst *Cmp1, 1634 bool IsAnd) { 1635 ICmpInst::Predicate P0 = Cmp0->getPredicate(), P1 = Cmp1->getPredicate(); 1636 if (!match(Cmp0->getOperand(1), m_Zero()) || 1637 !match(Cmp1->getOperand(1), m_Zero()) || P0 != P1) 1638 return nullptr; 1639 1640 if ((IsAnd && P0 != ICmpInst::ICMP_NE) || (!IsAnd && P1 != ICmpInst::ICMP_EQ)) 1641 return nullptr; 1642 1643 // We have either "(X == 0 || Y == 0)" or "(X != 0 && Y != 0)". 1644 Value *X = Cmp0->getOperand(0); 1645 Value *Y = Cmp1->getOperand(0); 1646 1647 // If one of the compares is a masked version of a (not) null check, then 1648 // that compare implies the other, so we eliminate the other. Optionally, look 1649 // through a pointer-to-int cast to match a null check of a pointer type. 1650 1651 // (X == 0) || (([ptrtoint] X & ?) == 0) --> ([ptrtoint] X & ?) == 0 1652 // (X == 0) || ((? & [ptrtoint] X) == 0) --> (? & [ptrtoint] X) == 0 1653 // (X != 0) && (([ptrtoint] X & ?) != 0) --> ([ptrtoint] X & ?) != 0 1654 // (X != 0) && ((? & [ptrtoint] X) != 0) --> (? & [ptrtoint] X) != 0 1655 if (match(Y, m_c_And(m_Specific(X), m_Value())) || 1656 match(Y, m_c_And(m_PtrToInt(m_Specific(X)), m_Value()))) 1657 return Cmp1; 1658 1659 // (([ptrtoint] Y & ?) == 0) || (Y == 0) --> ([ptrtoint] Y & ?) == 0 1660 // ((? & [ptrtoint] Y) == 0) || (Y == 0) --> (? & [ptrtoint] Y) == 0 1661 // (([ptrtoint] Y & ?) != 0) && (Y != 0) --> ([ptrtoint] Y & ?) != 0 1662 // ((? & [ptrtoint] Y) != 0) && (Y != 0) --> (? & [ptrtoint] Y) != 0 1663 if (match(X, m_c_And(m_Specific(Y), m_Value())) || 1664 match(X, m_c_And(m_PtrToInt(m_Specific(Y)), m_Value()))) 1665 return Cmp0; 1666 1667 return nullptr; 1668 } 1669 1670 static Value *simplifyAndOfICmpsWithAdd(ICmpInst *Op0, ICmpInst *Op1, 1671 const InstrInfoQuery &IIQ) { 1672 // (icmp (add V, C0), C1) & (icmp V, C0) 1673 ICmpInst::Predicate Pred0, Pred1; 1674 const APInt *C0, *C1; 1675 Value *V; 1676 if (!match(Op0, m_ICmp(Pred0, m_Add(m_Value(V), m_APInt(C0)), m_APInt(C1)))) 1677 return nullptr; 1678 1679 if (!match(Op1, m_ICmp(Pred1, m_Specific(V), m_Value()))) 1680 return nullptr; 1681 1682 auto *AddInst = cast<OverflowingBinaryOperator>(Op0->getOperand(0)); 1683 if (AddInst->getOperand(1) != Op1->getOperand(1)) 1684 return nullptr; 1685 1686 Type *ITy = Op0->getType(); 1687 bool isNSW = IIQ.hasNoSignedWrap(AddInst); 1688 bool isNUW = IIQ.hasNoUnsignedWrap(AddInst); 1689 1690 const APInt Delta = *C1 - *C0; 1691 if (C0->isStrictlyPositive()) { 1692 if (Delta == 2) { 1693 if (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_SGT) 1694 return getFalse(ITy); 1695 if (Pred0 == ICmpInst::ICMP_SLT && Pred1 == ICmpInst::ICMP_SGT && isNSW) 1696 return getFalse(ITy); 1697 } 1698 if (Delta == 1) { 1699 if (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_SGT) 1700 return getFalse(ITy); 1701 if (Pred0 == ICmpInst::ICMP_SLE && Pred1 == ICmpInst::ICMP_SGT && isNSW) 1702 return getFalse(ITy); 1703 } 1704 } 1705 if (C0->getBoolValue() && isNUW) { 1706 if (Delta == 2) 1707 if (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_UGT) 1708 return getFalse(ITy); 1709 if (Delta == 1) 1710 if (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_UGT) 1711 return getFalse(ITy); 1712 } 1713 1714 return nullptr; 1715 } 1716 1717 /// Try to eliminate compares with signed or unsigned min/max constants. 1718 static Value *simplifyAndOrOfICmpsWithLimitConst(ICmpInst *Cmp0, ICmpInst *Cmp1, 1719 bool IsAnd) { 1720 // Canonicalize an equality compare as Cmp0. 1721 if (Cmp1->isEquality()) 1722 std::swap(Cmp0, Cmp1); 1723 if (!Cmp0->isEquality()) 1724 return nullptr; 1725 1726 // The non-equality compare must include a common operand (X). Canonicalize 1727 // the common operand as operand 0 (the predicate is swapped if the common 1728 // operand was operand 1). 1729 ICmpInst::Predicate Pred0 = Cmp0->getPredicate(); 1730 Value *X = Cmp0->getOperand(0); 1731 ICmpInst::Predicate Pred1; 1732 bool HasNotOp = match(Cmp1, m_c_ICmp(Pred1, m_Not(m_Specific(X)), m_Value())); 1733 if (!HasNotOp && !match(Cmp1, m_c_ICmp(Pred1, m_Specific(X), m_Value()))) 1734 return nullptr; 1735 if (ICmpInst::isEquality(Pred1)) 1736 return nullptr; 1737 1738 // The equality compare must be against a constant. Flip bits if we matched 1739 // a bitwise not. Convert a null pointer constant to an integer zero value. 1740 APInt MinMaxC; 1741 const APInt *C; 1742 if (match(Cmp0->getOperand(1), m_APInt(C))) 1743 MinMaxC = HasNotOp ? ~*C : *C; 1744 else if (isa<ConstantPointerNull>(Cmp0->getOperand(1))) 1745 MinMaxC = APInt::getNullValue(8); 1746 else 1747 return nullptr; 1748 1749 // DeMorganize if this is 'or': P0 || P1 --> !P0 && !P1. 1750 if (!IsAnd) { 1751 Pred0 = ICmpInst::getInversePredicate(Pred0); 1752 Pred1 = ICmpInst::getInversePredicate(Pred1); 1753 } 1754 1755 // Normalize to unsigned compare and unsigned min/max value. 1756 // Example for 8-bit: -128 + 128 -> 0; 127 + 128 -> 255 1757 if (ICmpInst::isSigned(Pred1)) { 1758 Pred1 = ICmpInst::getUnsignedPredicate(Pred1); 1759 MinMaxC += APInt::getSignedMinValue(MinMaxC.getBitWidth()); 1760 } 1761 1762 // (X != MAX) && (X < Y) --> X < Y 1763 // (X == MAX) || (X >= Y) --> X >= Y 1764 if (MinMaxC.isMaxValue()) 1765 if (Pred0 == ICmpInst::ICMP_NE && Pred1 == ICmpInst::ICMP_ULT) 1766 return Cmp1; 1767 1768 // (X != MIN) && (X > Y) --> X > Y 1769 // (X == MIN) || (X <= Y) --> X <= Y 1770 if (MinMaxC.isMinValue()) 1771 if (Pred0 == ICmpInst::ICMP_NE && Pred1 == ICmpInst::ICMP_UGT) 1772 return Cmp1; 1773 1774 return nullptr; 1775 } 1776 1777 static Value *simplifyAndOfICmps(ICmpInst *Op0, ICmpInst *Op1, 1778 const SimplifyQuery &Q) { 1779 if (Value *X = simplifyUnsignedRangeCheck(Op0, Op1, /*IsAnd=*/true, Q)) 1780 return X; 1781 if (Value *X = simplifyUnsignedRangeCheck(Op1, Op0, /*IsAnd=*/true, Q)) 1782 return X; 1783 1784 if (Value *X = simplifyAndOfICmpsWithSameOperands(Op0, Op1)) 1785 return X; 1786 if (Value *X = simplifyAndOfICmpsWithSameOperands(Op1, Op0)) 1787 return X; 1788 1789 if (Value *X = simplifyAndOrOfICmpsWithConstants(Op0, Op1, true)) 1790 return X; 1791 1792 if (Value *X = simplifyAndOrOfICmpsWithLimitConst(Op0, Op1, true)) 1793 return X; 1794 1795 if (Value *X = simplifyAndOrOfICmpsWithZero(Op0, Op1, true)) 1796 return X; 1797 1798 if (Value *X = simplifyAndOfICmpsWithAdd(Op0, Op1, Q.IIQ)) 1799 return X; 1800 if (Value *X = simplifyAndOfICmpsWithAdd(Op1, Op0, Q.IIQ)) 1801 return X; 1802 1803 return nullptr; 1804 } 1805 1806 static Value *simplifyOrOfICmpsWithAdd(ICmpInst *Op0, ICmpInst *Op1, 1807 const InstrInfoQuery &IIQ) { 1808 // (icmp (add V, C0), C1) | (icmp V, C0) 1809 ICmpInst::Predicate Pred0, Pred1; 1810 const APInt *C0, *C1; 1811 Value *V; 1812 if (!match(Op0, m_ICmp(Pred0, m_Add(m_Value(V), m_APInt(C0)), m_APInt(C1)))) 1813 return nullptr; 1814 1815 if (!match(Op1, m_ICmp(Pred1, m_Specific(V), m_Value()))) 1816 return nullptr; 1817 1818 auto *AddInst = cast<BinaryOperator>(Op0->getOperand(0)); 1819 if (AddInst->getOperand(1) != Op1->getOperand(1)) 1820 return nullptr; 1821 1822 Type *ITy = Op0->getType(); 1823 bool isNSW = IIQ.hasNoSignedWrap(AddInst); 1824 bool isNUW = IIQ.hasNoUnsignedWrap(AddInst); 1825 1826 const APInt Delta = *C1 - *C0; 1827 if (C0->isStrictlyPositive()) { 1828 if (Delta == 2) { 1829 if (Pred0 == ICmpInst::ICMP_UGE && Pred1 == ICmpInst::ICMP_SLE) 1830 return getTrue(ITy); 1831 if (Pred0 == ICmpInst::ICMP_SGE && Pred1 == ICmpInst::ICMP_SLE && isNSW) 1832 return getTrue(ITy); 1833 } 1834 if (Delta == 1) { 1835 if (Pred0 == ICmpInst::ICMP_UGT && Pred1 == ICmpInst::ICMP_SLE) 1836 return getTrue(ITy); 1837 if (Pred0 == ICmpInst::ICMP_SGT && Pred1 == ICmpInst::ICMP_SLE && isNSW) 1838 return getTrue(ITy); 1839 } 1840 } 1841 if (C0->getBoolValue() && isNUW) { 1842 if (Delta == 2) 1843 if (Pred0 == ICmpInst::ICMP_UGE && Pred1 == ICmpInst::ICMP_ULE) 1844 return getTrue(ITy); 1845 if (Delta == 1) 1846 if (Pred0 == ICmpInst::ICMP_UGT && Pred1 == ICmpInst::ICMP_ULE) 1847 return getTrue(ITy); 1848 } 1849 1850 return nullptr; 1851 } 1852 1853 static Value *simplifyOrOfICmps(ICmpInst *Op0, ICmpInst *Op1, 1854 const SimplifyQuery &Q) { 1855 if (Value *X = simplifyUnsignedRangeCheck(Op0, Op1, /*IsAnd=*/false, Q)) 1856 return X; 1857 if (Value *X = simplifyUnsignedRangeCheck(Op1, Op0, /*IsAnd=*/false, Q)) 1858 return X; 1859 1860 if (Value *X = simplifyOrOfICmpsWithSameOperands(Op0, Op1)) 1861 return X; 1862 if (Value *X = simplifyOrOfICmpsWithSameOperands(Op1, Op0)) 1863 return X; 1864 1865 if (Value *X = simplifyAndOrOfICmpsWithConstants(Op0, Op1, false)) 1866 return X; 1867 1868 if (Value *X = simplifyAndOrOfICmpsWithLimitConst(Op0, Op1, false)) 1869 return X; 1870 1871 if (Value *X = simplifyAndOrOfICmpsWithZero(Op0, Op1, false)) 1872 return X; 1873 1874 if (Value *X = simplifyOrOfICmpsWithAdd(Op0, Op1, Q.IIQ)) 1875 return X; 1876 if (Value *X = simplifyOrOfICmpsWithAdd(Op1, Op0, Q.IIQ)) 1877 return X; 1878 1879 return nullptr; 1880 } 1881 1882 static Value *simplifyAndOrOfFCmps(const TargetLibraryInfo *TLI, 1883 FCmpInst *LHS, FCmpInst *RHS, bool IsAnd) { 1884 Value *LHS0 = LHS->getOperand(0), *LHS1 = LHS->getOperand(1); 1885 Value *RHS0 = RHS->getOperand(0), *RHS1 = RHS->getOperand(1); 1886 if (LHS0->getType() != RHS0->getType()) 1887 return nullptr; 1888 1889 FCmpInst::Predicate PredL = LHS->getPredicate(), PredR = RHS->getPredicate(); 1890 if ((PredL == FCmpInst::FCMP_ORD && PredR == FCmpInst::FCMP_ORD && IsAnd) || 1891 (PredL == FCmpInst::FCMP_UNO && PredR == FCmpInst::FCMP_UNO && !IsAnd)) { 1892 // (fcmp ord NNAN, X) & (fcmp ord X, Y) --> fcmp ord X, Y 1893 // (fcmp ord NNAN, X) & (fcmp ord Y, X) --> fcmp ord Y, X 1894 // (fcmp ord X, NNAN) & (fcmp ord X, Y) --> fcmp ord X, Y 1895 // (fcmp ord X, NNAN) & (fcmp ord Y, X) --> fcmp ord Y, X 1896 // (fcmp uno NNAN, X) | (fcmp uno X, Y) --> fcmp uno X, Y 1897 // (fcmp uno NNAN, X) | (fcmp uno Y, X) --> fcmp uno Y, X 1898 // (fcmp uno X, NNAN) | (fcmp uno X, Y) --> fcmp uno X, Y 1899 // (fcmp uno X, NNAN) | (fcmp uno Y, X) --> fcmp uno Y, X 1900 if ((isKnownNeverNaN(LHS0, TLI) && (LHS1 == RHS0 || LHS1 == RHS1)) || 1901 (isKnownNeverNaN(LHS1, TLI) && (LHS0 == RHS0 || LHS0 == RHS1))) 1902 return RHS; 1903 1904 // (fcmp ord X, Y) & (fcmp ord NNAN, X) --> fcmp ord X, Y 1905 // (fcmp ord Y, X) & (fcmp ord NNAN, X) --> fcmp ord Y, X 1906 // (fcmp ord X, Y) & (fcmp ord X, NNAN) --> fcmp ord X, Y 1907 // (fcmp ord Y, X) & (fcmp ord X, NNAN) --> fcmp ord Y, X 1908 // (fcmp uno X, Y) | (fcmp uno NNAN, X) --> fcmp uno X, Y 1909 // (fcmp uno Y, X) | (fcmp uno NNAN, X) --> fcmp uno Y, X 1910 // (fcmp uno X, Y) | (fcmp uno X, NNAN) --> fcmp uno X, Y 1911 // (fcmp uno Y, X) | (fcmp uno X, NNAN) --> fcmp uno Y, X 1912 if ((isKnownNeverNaN(RHS0, TLI) && (RHS1 == LHS0 || RHS1 == LHS1)) || 1913 (isKnownNeverNaN(RHS1, TLI) && (RHS0 == LHS0 || RHS0 == LHS1))) 1914 return LHS; 1915 } 1916 1917 return nullptr; 1918 } 1919 1920 static Value *simplifyAndOrOfCmps(const SimplifyQuery &Q, 1921 Value *Op0, Value *Op1, bool IsAnd) { 1922 // Look through casts of the 'and' operands to find compares. 1923 auto *Cast0 = dyn_cast<CastInst>(Op0); 1924 auto *Cast1 = dyn_cast<CastInst>(Op1); 1925 if (Cast0 && Cast1 && Cast0->getOpcode() == Cast1->getOpcode() && 1926 Cast0->getSrcTy() == Cast1->getSrcTy()) { 1927 Op0 = Cast0->getOperand(0); 1928 Op1 = Cast1->getOperand(0); 1929 } 1930 1931 Value *V = nullptr; 1932 auto *ICmp0 = dyn_cast<ICmpInst>(Op0); 1933 auto *ICmp1 = dyn_cast<ICmpInst>(Op1); 1934 if (ICmp0 && ICmp1) 1935 V = IsAnd ? simplifyAndOfICmps(ICmp0, ICmp1, Q) 1936 : simplifyOrOfICmps(ICmp0, ICmp1, Q); 1937 1938 auto *FCmp0 = dyn_cast<FCmpInst>(Op0); 1939 auto *FCmp1 = dyn_cast<FCmpInst>(Op1); 1940 if (FCmp0 && FCmp1) 1941 V = simplifyAndOrOfFCmps(Q.TLI, FCmp0, FCmp1, IsAnd); 1942 1943 if (!V) 1944 return nullptr; 1945 if (!Cast0) 1946 return V; 1947 1948 // If we looked through casts, we can only handle a constant simplification 1949 // because we are not allowed to create a cast instruction here. 1950 if (auto *C = dyn_cast<Constant>(V)) 1951 return ConstantExpr::getCast(Cast0->getOpcode(), C, Cast0->getType()); 1952 1953 return nullptr; 1954 } 1955 1956 /// Given a bitwise logic op, check if the operands are add/sub with a common 1957 /// source value and inverted constant (identity: C - X -> ~(X + ~C)). 1958 static Value *simplifyLogicOfAddSub(Value *Op0, Value *Op1, 1959 Instruction::BinaryOps Opcode) { 1960 assert(Op0->getType() == Op1->getType() && "Mismatched binop types"); 1961 assert(BinaryOperator::isBitwiseLogicOp(Opcode) && "Expected logic op"); 1962 Value *X; 1963 Constant *C1, *C2; 1964 if ((match(Op0, m_Add(m_Value(X), m_Constant(C1))) && 1965 match(Op1, m_Sub(m_Constant(C2), m_Specific(X)))) || 1966 (match(Op1, m_Add(m_Value(X), m_Constant(C1))) && 1967 match(Op0, m_Sub(m_Constant(C2), m_Specific(X))))) { 1968 if (ConstantExpr::getNot(C1) == C2) { 1969 // (X + C) & (~C - X) --> (X + C) & ~(X + C) --> 0 1970 // (X + C) | (~C - X) --> (X + C) | ~(X + C) --> -1 1971 // (X + C) ^ (~C - X) --> (X + C) ^ ~(X + C) --> -1 1972 Type *Ty = Op0->getType(); 1973 return Opcode == Instruction::And ? ConstantInt::getNullValue(Ty) 1974 : ConstantInt::getAllOnesValue(Ty); 1975 } 1976 } 1977 return nullptr; 1978 } 1979 1980 /// Given operands for an And, see if we can fold the result. 1981 /// If not, this returns null. 1982 static Value *SimplifyAndInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 1983 unsigned MaxRecurse) { 1984 if (Constant *C = foldOrCommuteConstant(Instruction::And, Op0, Op1, Q)) 1985 return C; 1986 1987 // X & undef -> 0 1988 if (Q.isUndefValue(Op1)) 1989 return Constant::getNullValue(Op0->getType()); 1990 1991 // X & X = X 1992 if (Op0 == Op1) 1993 return Op0; 1994 1995 // X & 0 = 0 1996 if (match(Op1, m_Zero())) 1997 return Constant::getNullValue(Op0->getType()); 1998 1999 // X & -1 = X 2000 if (match(Op1, m_AllOnes())) 2001 return Op0; 2002 2003 // A & ~A = ~A & A = 0 2004 if (match(Op0, m_Not(m_Specific(Op1))) || 2005 match(Op1, m_Not(m_Specific(Op0)))) 2006 return Constant::getNullValue(Op0->getType()); 2007 2008 // (A | ?) & A = A 2009 if (match(Op0, m_c_Or(m_Specific(Op1), m_Value()))) 2010 return Op1; 2011 2012 // A & (A | ?) = A 2013 if (match(Op1, m_c_Or(m_Specific(Op0), m_Value()))) 2014 return Op0; 2015 2016 if (Value *V = simplifyLogicOfAddSub(Op0, Op1, Instruction::And)) 2017 return V; 2018 2019 // A mask that only clears known zeros of a shifted value is a no-op. 2020 Value *X; 2021 const APInt *Mask; 2022 const APInt *ShAmt; 2023 if (match(Op1, m_APInt(Mask))) { 2024 // If all bits in the inverted and shifted mask are clear: 2025 // and (shl X, ShAmt), Mask --> shl X, ShAmt 2026 if (match(Op0, m_Shl(m_Value(X), m_APInt(ShAmt))) && 2027 (~(*Mask)).lshr(*ShAmt).isNullValue()) 2028 return Op0; 2029 2030 // If all bits in the inverted and shifted mask are clear: 2031 // and (lshr X, ShAmt), Mask --> lshr X, ShAmt 2032 if (match(Op0, m_LShr(m_Value(X), m_APInt(ShAmt))) && 2033 (~(*Mask)).shl(*ShAmt).isNullValue()) 2034 return Op0; 2035 } 2036 2037 // If we have a multiplication overflow check that is being 'and'ed with a 2038 // check that one of the multipliers is not zero, we can omit the 'and', and 2039 // only keep the overflow check. 2040 if (isCheckForZeroAndMulWithOverflow(Op0, Op1, true)) 2041 return Op1; 2042 if (isCheckForZeroAndMulWithOverflow(Op1, Op0, true)) 2043 return Op0; 2044 2045 // A & (-A) = A if A is a power of two or zero. 2046 if (match(Op0, m_Neg(m_Specific(Op1))) || 2047 match(Op1, m_Neg(m_Specific(Op0)))) { 2048 if (isKnownToBeAPowerOfTwo(Op0, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI, 2049 Q.DT)) 2050 return Op0; 2051 if (isKnownToBeAPowerOfTwo(Op1, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI, 2052 Q.DT)) 2053 return Op1; 2054 } 2055 2056 // This is a similar pattern used for checking if a value is a power-of-2: 2057 // (A - 1) & A --> 0 (if A is a power-of-2 or 0) 2058 // A & (A - 1) --> 0 (if A is a power-of-2 or 0) 2059 if (match(Op0, m_Add(m_Specific(Op1), m_AllOnes())) && 2060 isKnownToBeAPowerOfTwo(Op1, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI, Q.DT)) 2061 return Constant::getNullValue(Op1->getType()); 2062 if (match(Op1, m_Add(m_Specific(Op0), m_AllOnes())) && 2063 isKnownToBeAPowerOfTwo(Op0, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI, Q.DT)) 2064 return Constant::getNullValue(Op0->getType()); 2065 2066 if (Value *V = simplifyAndOrOfCmps(Q, Op0, Op1, true)) 2067 return V; 2068 2069 // Try some generic simplifications for associative operations. 2070 if (Value *V = SimplifyAssociativeBinOp(Instruction::And, Op0, Op1, Q, 2071 MaxRecurse)) 2072 return V; 2073 2074 // And distributes over Or. Try some generic simplifications based on this. 2075 if (Value *V = expandCommutativeBinOp(Instruction::And, Op0, Op1, 2076 Instruction::Or, Q, MaxRecurse)) 2077 return V; 2078 2079 // And distributes over Xor. Try some generic simplifications based on this. 2080 if (Value *V = expandCommutativeBinOp(Instruction::And, Op0, Op1, 2081 Instruction::Xor, Q, MaxRecurse)) 2082 return V; 2083 2084 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) { 2085 if (Op0->getType()->isIntOrIntVectorTy(1)) { 2086 // A & (A && B) -> A && B 2087 if (match(Op1, m_Select(m_Specific(Op0), m_Value(), m_Zero()))) 2088 return Op1; 2089 else if (match(Op0, m_Select(m_Specific(Op1), m_Value(), m_Zero()))) 2090 return Op0; 2091 } 2092 // If the operation is with the result of a select instruction, check 2093 // whether operating on either branch of the select always yields the same 2094 // value. 2095 if (Value *V = ThreadBinOpOverSelect(Instruction::And, Op0, Op1, Q, 2096 MaxRecurse)) 2097 return V; 2098 } 2099 2100 // If the operation is with the result of a phi instruction, check whether 2101 // operating on all incoming values of the phi always yields the same value. 2102 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 2103 if (Value *V = ThreadBinOpOverPHI(Instruction::And, Op0, Op1, Q, 2104 MaxRecurse)) 2105 return V; 2106 2107 // Assuming the effective width of Y is not larger than A, i.e. all bits 2108 // from X and Y are disjoint in (X << A) | Y, 2109 // if the mask of this AND op covers all bits of X or Y, while it covers 2110 // no bits from the other, we can bypass this AND op. E.g., 2111 // ((X << A) | Y) & Mask -> Y, 2112 // if Mask = ((1 << effective_width_of(Y)) - 1) 2113 // ((X << A) | Y) & Mask -> X << A, 2114 // if Mask = ((1 << effective_width_of(X)) - 1) << A 2115 // SimplifyDemandedBits in InstCombine can optimize the general case. 2116 // This pattern aims to help other passes for a common case. 2117 Value *Y, *XShifted; 2118 if (match(Op1, m_APInt(Mask)) && 2119 match(Op0, m_c_Or(m_CombineAnd(m_NUWShl(m_Value(X), m_APInt(ShAmt)), 2120 m_Value(XShifted)), 2121 m_Value(Y)))) { 2122 const unsigned Width = Op0->getType()->getScalarSizeInBits(); 2123 const unsigned ShftCnt = ShAmt->getLimitedValue(Width); 2124 const KnownBits YKnown = computeKnownBits(Y, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2125 const unsigned EffWidthY = Width - YKnown.countMinLeadingZeros(); 2126 if (EffWidthY <= ShftCnt) { 2127 const KnownBits XKnown = computeKnownBits(X, Q.DL, 0, Q.AC, Q.CxtI, 2128 Q.DT); 2129 const unsigned EffWidthX = Width - XKnown.countMinLeadingZeros(); 2130 const APInt EffBitsY = APInt::getLowBitsSet(Width, EffWidthY); 2131 const APInt EffBitsX = APInt::getLowBitsSet(Width, EffWidthX) << ShftCnt; 2132 // If the mask is extracting all bits from X or Y as is, we can skip 2133 // this AND op. 2134 if (EffBitsY.isSubsetOf(*Mask) && !EffBitsX.intersects(*Mask)) 2135 return Y; 2136 if (EffBitsX.isSubsetOf(*Mask) && !EffBitsY.intersects(*Mask)) 2137 return XShifted; 2138 } 2139 } 2140 2141 return nullptr; 2142 } 2143 2144 Value *llvm::SimplifyAndInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 2145 return ::SimplifyAndInst(Op0, Op1, Q, RecursionLimit); 2146 } 2147 2148 /// Given operands for an Or, see if we can fold the result. 2149 /// If not, this returns null. 2150 static Value *SimplifyOrInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 2151 unsigned MaxRecurse) { 2152 if (Constant *C = foldOrCommuteConstant(Instruction::Or, Op0, Op1, Q)) 2153 return C; 2154 2155 // X | undef -> -1 2156 // X | -1 = -1 2157 // Do not return Op1 because it may contain undef elements if it's a vector. 2158 if (Q.isUndefValue(Op1) || match(Op1, m_AllOnes())) 2159 return Constant::getAllOnesValue(Op0->getType()); 2160 2161 // X | X = X 2162 // X | 0 = X 2163 if (Op0 == Op1 || match(Op1, m_Zero())) 2164 return Op0; 2165 2166 // A | ~A = ~A | A = -1 2167 if (match(Op0, m_Not(m_Specific(Op1))) || 2168 match(Op1, m_Not(m_Specific(Op0)))) 2169 return Constant::getAllOnesValue(Op0->getType()); 2170 2171 // (A & ?) | A = A 2172 if (match(Op0, m_c_And(m_Specific(Op1), m_Value()))) 2173 return Op1; 2174 2175 // A | (A & ?) = A 2176 if (match(Op1, m_c_And(m_Specific(Op0), m_Value()))) 2177 return Op0; 2178 2179 // ~(A & ?) | A = -1 2180 if (match(Op0, m_Not(m_c_And(m_Specific(Op1), m_Value())))) 2181 return Constant::getAllOnesValue(Op1->getType()); 2182 2183 // A | ~(A & ?) = -1 2184 if (match(Op1, m_Not(m_c_And(m_Specific(Op0), m_Value())))) 2185 return Constant::getAllOnesValue(Op0->getType()); 2186 2187 if (Value *V = simplifyLogicOfAddSub(Op0, Op1, Instruction::Or)) 2188 return V; 2189 2190 Value *A, *B, *NotA; 2191 // (A & ~B) | (A ^ B) -> (A ^ B) 2192 // (~B & A) | (A ^ B) -> (A ^ B) 2193 // (A & ~B) | (B ^ A) -> (B ^ A) 2194 // (~B & A) | (B ^ A) -> (B ^ A) 2195 if (match(Op1, m_Xor(m_Value(A), m_Value(B))) && 2196 (match(Op0, m_c_And(m_Specific(A), m_Not(m_Specific(B)))) || 2197 match(Op0, m_c_And(m_Not(m_Specific(A)), m_Specific(B))))) 2198 return Op1; 2199 2200 // Commute the 'or' operands. 2201 // (A ^ B) | (A & ~B) -> (A ^ B) 2202 // (A ^ B) | (~B & A) -> (A ^ B) 2203 // (B ^ A) | (A & ~B) -> (B ^ A) 2204 // (B ^ A) | (~B & A) -> (B ^ A) 2205 if (match(Op0, m_Xor(m_Value(A), m_Value(B))) && 2206 (match(Op1, m_c_And(m_Specific(A), m_Not(m_Specific(B)))) || 2207 match(Op1, m_c_And(m_Not(m_Specific(A)), m_Specific(B))))) 2208 return Op0; 2209 2210 // (A & B) | (~A ^ B) -> (~A ^ B) 2211 // (B & A) | (~A ^ B) -> (~A ^ B) 2212 // (A & B) | (B ^ ~A) -> (B ^ ~A) 2213 // (B & A) | (B ^ ~A) -> (B ^ ~A) 2214 if (match(Op0, m_And(m_Value(A), m_Value(B))) && 2215 (match(Op1, m_c_Xor(m_Specific(A), m_Not(m_Specific(B)))) || 2216 match(Op1, m_c_Xor(m_Not(m_Specific(A)), m_Specific(B))))) 2217 return Op1; 2218 2219 // Commute the 'or' operands. 2220 // (~A ^ B) | (A & B) -> (~A ^ B) 2221 // (~A ^ B) | (B & A) -> (~A ^ B) 2222 // (B ^ ~A) | (A & B) -> (B ^ ~A) 2223 // (B ^ ~A) | (B & A) -> (B ^ ~A) 2224 if (match(Op1, m_And(m_Value(A), m_Value(B))) && 2225 (match(Op0, m_c_Xor(m_Specific(A), m_Not(m_Specific(B)))) || 2226 match(Op0, m_c_Xor(m_Not(m_Specific(A)), m_Specific(B))))) 2227 return Op0; 2228 2229 // (~A & B) | ~(A | B) --> ~A 2230 // (~A & B) | ~(B | A) --> ~A 2231 // (B & ~A) | ~(A | B) --> ~A 2232 // (B & ~A) | ~(B | A) --> ~A 2233 if (match(Op0, m_c_And(m_CombineAnd(m_Value(NotA), m_Not(m_Value(A))), 2234 m_Value(B))) && 2235 match(Op1, m_Not(m_c_Or(m_Specific(A), m_Specific(B))))) 2236 return NotA; 2237 2238 // Commute the 'or' operands. 2239 // ~(A | B) | (~A & B) --> ~A 2240 // ~(B | A) | (~A & B) --> ~A 2241 // ~(A | B) | (B & ~A) --> ~A 2242 // ~(B | A) | (B & ~A) --> ~A 2243 if (match(Op1, m_c_And(m_CombineAnd(m_Value(NotA), m_Not(m_Value(A))), 2244 m_Value(B))) && 2245 match(Op0, m_Not(m_c_Or(m_Specific(A), m_Specific(B))))) 2246 return NotA; 2247 2248 if (Value *V = simplifyAndOrOfCmps(Q, Op0, Op1, false)) 2249 return V; 2250 2251 // If we have a multiplication overflow check that is being 'and'ed with a 2252 // check that one of the multipliers is not zero, we can omit the 'and', and 2253 // only keep the overflow check. 2254 if (isCheckForZeroAndMulWithOverflow(Op0, Op1, false)) 2255 return Op1; 2256 if (isCheckForZeroAndMulWithOverflow(Op1, Op0, false)) 2257 return Op0; 2258 2259 // Try some generic simplifications for associative operations. 2260 if (Value *V = SimplifyAssociativeBinOp(Instruction::Or, Op0, Op1, Q, 2261 MaxRecurse)) 2262 return V; 2263 2264 // Or distributes over And. Try some generic simplifications based on this. 2265 if (Value *V = expandCommutativeBinOp(Instruction::Or, Op0, Op1, 2266 Instruction::And, Q, MaxRecurse)) 2267 return V; 2268 2269 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) { 2270 if (Op0->getType()->isIntOrIntVectorTy(1)) { 2271 // A | (A || B) -> A || B 2272 if (match(Op1, m_Select(m_Specific(Op0), m_One(), m_Value()))) 2273 return Op1; 2274 else if (match(Op0, m_Select(m_Specific(Op1), m_One(), m_Value()))) 2275 return Op0; 2276 } 2277 // If the operation is with the result of a select instruction, check 2278 // whether operating on either branch of the select always yields the same 2279 // value. 2280 if (Value *V = ThreadBinOpOverSelect(Instruction::Or, Op0, Op1, Q, 2281 MaxRecurse)) 2282 return V; 2283 } 2284 2285 // (A & C1)|(B & C2) 2286 const APInt *C1, *C2; 2287 if (match(Op0, m_And(m_Value(A), m_APInt(C1))) && 2288 match(Op1, m_And(m_Value(B), m_APInt(C2)))) { 2289 if (*C1 == ~*C2) { 2290 // (A & C1)|(B & C2) 2291 // If we have: ((V + N) & C1) | (V & C2) 2292 // .. and C2 = ~C1 and C2 is 0+1+ and (N & C2) == 0 2293 // replace with V+N. 2294 Value *N; 2295 if (C2->isMask() && // C2 == 0+1+ 2296 match(A, m_c_Add(m_Specific(B), m_Value(N)))) { 2297 // Add commutes, try both ways. 2298 if (MaskedValueIsZero(N, *C2, Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 2299 return A; 2300 } 2301 // Or commutes, try both ways. 2302 if (C1->isMask() && 2303 match(B, m_c_Add(m_Specific(A), m_Value(N)))) { 2304 // Add commutes, try both ways. 2305 if (MaskedValueIsZero(N, *C1, Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 2306 return B; 2307 } 2308 } 2309 } 2310 2311 // If the operation is with the result of a phi instruction, check whether 2312 // operating on all incoming values of the phi always yields the same value. 2313 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 2314 if (Value *V = ThreadBinOpOverPHI(Instruction::Or, Op0, Op1, Q, MaxRecurse)) 2315 return V; 2316 2317 return nullptr; 2318 } 2319 2320 Value *llvm::SimplifyOrInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 2321 return ::SimplifyOrInst(Op0, Op1, Q, RecursionLimit); 2322 } 2323 2324 /// Given operands for a Xor, see if we can fold the result. 2325 /// If not, this returns null. 2326 static Value *SimplifyXorInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 2327 unsigned MaxRecurse) { 2328 if (Constant *C = foldOrCommuteConstant(Instruction::Xor, Op0, Op1, Q)) 2329 return C; 2330 2331 // A ^ undef -> undef 2332 if (Q.isUndefValue(Op1)) 2333 return Op1; 2334 2335 // A ^ 0 = A 2336 if (match(Op1, m_Zero())) 2337 return Op0; 2338 2339 // A ^ A = 0 2340 if (Op0 == Op1) 2341 return Constant::getNullValue(Op0->getType()); 2342 2343 // A ^ ~A = ~A ^ A = -1 2344 if (match(Op0, m_Not(m_Specific(Op1))) || 2345 match(Op1, m_Not(m_Specific(Op0)))) 2346 return Constant::getAllOnesValue(Op0->getType()); 2347 2348 if (Value *V = simplifyLogicOfAddSub(Op0, Op1, Instruction::Xor)) 2349 return V; 2350 2351 // Try some generic simplifications for associative operations. 2352 if (Value *V = SimplifyAssociativeBinOp(Instruction::Xor, Op0, Op1, Q, 2353 MaxRecurse)) 2354 return V; 2355 2356 // Threading Xor over selects and phi nodes is pointless, so don't bother. 2357 // Threading over the select in "A ^ select(cond, B, C)" means evaluating 2358 // "A^B" and "A^C" and seeing if they are equal; but they are equal if and 2359 // only if B and C are equal. If B and C are equal then (since we assume 2360 // that operands have already been simplified) "select(cond, B, C)" should 2361 // have been simplified to the common value of B and C already. Analysing 2362 // "A^B" and "A^C" thus gains nothing, but costs compile time. Similarly 2363 // for threading over phi nodes. 2364 2365 return nullptr; 2366 } 2367 2368 Value *llvm::SimplifyXorInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 2369 return ::SimplifyXorInst(Op0, Op1, Q, RecursionLimit); 2370 } 2371 2372 2373 static Type *GetCompareTy(Value *Op) { 2374 return CmpInst::makeCmpResultType(Op->getType()); 2375 } 2376 2377 /// Rummage around inside V looking for something equivalent to the comparison 2378 /// "LHS Pred RHS". Return such a value if found, otherwise return null. 2379 /// Helper function for analyzing max/min idioms. 2380 static Value *ExtractEquivalentCondition(Value *V, CmpInst::Predicate Pred, 2381 Value *LHS, Value *RHS) { 2382 SelectInst *SI = dyn_cast<SelectInst>(V); 2383 if (!SI) 2384 return nullptr; 2385 CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition()); 2386 if (!Cmp) 2387 return nullptr; 2388 Value *CmpLHS = Cmp->getOperand(0), *CmpRHS = Cmp->getOperand(1); 2389 if (Pred == Cmp->getPredicate() && LHS == CmpLHS && RHS == CmpRHS) 2390 return Cmp; 2391 if (Pred == CmpInst::getSwappedPredicate(Cmp->getPredicate()) && 2392 LHS == CmpRHS && RHS == CmpLHS) 2393 return Cmp; 2394 return nullptr; 2395 } 2396 2397 // A significant optimization not implemented here is assuming that alloca 2398 // addresses are not equal to incoming argument values. They don't *alias*, 2399 // as we say, but that doesn't mean they aren't equal, so we take a 2400 // conservative approach. 2401 // 2402 // This is inspired in part by C++11 5.10p1: 2403 // "Two pointers of the same type compare equal if and only if they are both 2404 // null, both point to the same function, or both represent the same 2405 // address." 2406 // 2407 // This is pretty permissive. 2408 // 2409 // It's also partly due to C11 6.5.9p6: 2410 // "Two pointers compare equal if and only if both are null pointers, both are 2411 // pointers to the same object (including a pointer to an object and a 2412 // subobject at its beginning) or function, both are pointers to one past the 2413 // last element of the same array object, or one is a pointer to one past the 2414 // end of one array object and the other is a pointer to the start of a 2415 // different array object that happens to immediately follow the first array 2416 // object in the address space.) 2417 // 2418 // C11's version is more restrictive, however there's no reason why an argument 2419 // couldn't be a one-past-the-end value for a stack object in the caller and be 2420 // equal to the beginning of a stack object in the callee. 2421 // 2422 // If the C and C++ standards are ever made sufficiently restrictive in this 2423 // area, it may be possible to update LLVM's semantics accordingly and reinstate 2424 // this optimization. 2425 static Constant * 2426 computePointerICmp(CmpInst::Predicate Pred, Value *LHS, Value *RHS, 2427 const SimplifyQuery &Q) { 2428 const DataLayout &DL = Q.DL; 2429 const TargetLibraryInfo *TLI = Q.TLI; 2430 const DominatorTree *DT = Q.DT; 2431 const Instruction *CxtI = Q.CxtI; 2432 const InstrInfoQuery &IIQ = Q.IIQ; 2433 2434 // First, skip past any trivial no-ops. 2435 LHS = LHS->stripPointerCasts(); 2436 RHS = RHS->stripPointerCasts(); 2437 2438 // A non-null pointer is not equal to a null pointer. 2439 if (isa<ConstantPointerNull>(RHS) && ICmpInst::isEquality(Pred) && 2440 llvm::isKnownNonZero(LHS, DL, 0, nullptr, nullptr, nullptr, 2441 IIQ.UseInstrInfo)) 2442 return ConstantInt::get(GetCompareTy(LHS), 2443 !CmpInst::isTrueWhenEqual(Pred)); 2444 2445 // We can only fold certain predicates on pointer comparisons. 2446 switch (Pred) { 2447 default: 2448 return nullptr; 2449 2450 // Equality comaprisons are easy to fold. 2451 case CmpInst::ICMP_EQ: 2452 case CmpInst::ICMP_NE: 2453 break; 2454 2455 // We can only handle unsigned relational comparisons because 'inbounds' on 2456 // a GEP only protects against unsigned wrapping. 2457 case CmpInst::ICMP_UGT: 2458 case CmpInst::ICMP_UGE: 2459 case CmpInst::ICMP_ULT: 2460 case CmpInst::ICMP_ULE: 2461 // However, we have to switch them to their signed variants to handle 2462 // negative indices from the base pointer. 2463 Pred = ICmpInst::getSignedPredicate(Pred); 2464 break; 2465 } 2466 2467 // Strip off any constant offsets so that we can reason about them. 2468 // It's tempting to use getUnderlyingObject or even just stripInBoundsOffsets 2469 // here and compare base addresses like AliasAnalysis does, however there are 2470 // numerous hazards. AliasAnalysis and its utilities rely on special rules 2471 // governing loads and stores which don't apply to icmps. Also, AliasAnalysis 2472 // doesn't need to guarantee pointer inequality when it says NoAlias. 2473 Constant *LHSOffset = stripAndComputeConstantOffsets(DL, LHS); 2474 Constant *RHSOffset = stripAndComputeConstantOffsets(DL, RHS); 2475 2476 // If LHS and RHS are related via constant offsets to the same base 2477 // value, we can replace it with an icmp which just compares the offsets. 2478 if (LHS == RHS) 2479 return ConstantExpr::getICmp(Pred, LHSOffset, RHSOffset); 2480 2481 // Various optimizations for (in)equality comparisons. 2482 if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE) { 2483 // Different non-empty allocations that exist at the same time have 2484 // different addresses (if the program can tell). Global variables always 2485 // exist, so they always exist during the lifetime of each other and all 2486 // allocas. Two different allocas usually have different addresses... 2487 // 2488 // However, if there's an @llvm.stackrestore dynamically in between two 2489 // allocas, they may have the same address. It's tempting to reduce the 2490 // scope of the problem by only looking at *static* allocas here. That would 2491 // cover the majority of allocas while significantly reducing the likelihood 2492 // of having an @llvm.stackrestore pop up in the middle. However, it's not 2493 // actually impossible for an @llvm.stackrestore to pop up in the middle of 2494 // an entry block. Also, if we have a block that's not attached to a 2495 // function, we can't tell if it's "static" under the current definition. 2496 // Theoretically, this problem could be fixed by creating a new kind of 2497 // instruction kind specifically for static allocas. Such a new instruction 2498 // could be required to be at the top of the entry block, thus preventing it 2499 // from being subject to a @llvm.stackrestore. Instcombine could even 2500 // convert regular allocas into these special allocas. It'd be nifty. 2501 // However, until then, this problem remains open. 2502 // 2503 // So, we'll assume that two non-empty allocas have different addresses 2504 // for now. 2505 // 2506 // With all that, if the offsets are within the bounds of their allocations 2507 // (and not one-past-the-end! so we can't use inbounds!), and their 2508 // allocations aren't the same, the pointers are not equal. 2509 // 2510 // Note that it's not necessary to check for LHS being a global variable 2511 // address, due to canonicalization and constant folding. 2512 if (isa<AllocaInst>(LHS) && 2513 (isa<AllocaInst>(RHS) || isa<GlobalVariable>(RHS))) { 2514 ConstantInt *LHSOffsetCI = dyn_cast<ConstantInt>(LHSOffset); 2515 ConstantInt *RHSOffsetCI = dyn_cast<ConstantInt>(RHSOffset); 2516 uint64_t LHSSize, RHSSize; 2517 ObjectSizeOpts Opts; 2518 Opts.NullIsUnknownSize = 2519 NullPointerIsDefined(cast<AllocaInst>(LHS)->getFunction()); 2520 if (LHSOffsetCI && RHSOffsetCI && 2521 getObjectSize(LHS, LHSSize, DL, TLI, Opts) && 2522 getObjectSize(RHS, RHSSize, DL, TLI, Opts)) { 2523 const APInt &LHSOffsetValue = LHSOffsetCI->getValue(); 2524 const APInt &RHSOffsetValue = RHSOffsetCI->getValue(); 2525 if (!LHSOffsetValue.isNegative() && 2526 !RHSOffsetValue.isNegative() && 2527 LHSOffsetValue.ult(LHSSize) && 2528 RHSOffsetValue.ult(RHSSize)) { 2529 return ConstantInt::get(GetCompareTy(LHS), 2530 !CmpInst::isTrueWhenEqual(Pred)); 2531 } 2532 } 2533 2534 // Repeat the above check but this time without depending on DataLayout 2535 // or being able to compute a precise size. 2536 if (!cast<PointerType>(LHS->getType())->isEmptyTy() && 2537 !cast<PointerType>(RHS->getType())->isEmptyTy() && 2538 LHSOffset->isNullValue() && 2539 RHSOffset->isNullValue()) 2540 return ConstantInt::get(GetCompareTy(LHS), 2541 !CmpInst::isTrueWhenEqual(Pred)); 2542 } 2543 2544 // Even if an non-inbounds GEP occurs along the path we can still optimize 2545 // equality comparisons concerning the result. We avoid walking the whole 2546 // chain again by starting where the last calls to 2547 // stripAndComputeConstantOffsets left off and accumulate the offsets. 2548 Constant *LHSNoBound = stripAndComputeConstantOffsets(DL, LHS, true); 2549 Constant *RHSNoBound = stripAndComputeConstantOffsets(DL, RHS, true); 2550 if (LHS == RHS) 2551 return ConstantExpr::getICmp(Pred, 2552 ConstantExpr::getAdd(LHSOffset, LHSNoBound), 2553 ConstantExpr::getAdd(RHSOffset, RHSNoBound)); 2554 2555 // If one side of the equality comparison must come from a noalias call 2556 // (meaning a system memory allocation function), and the other side must 2557 // come from a pointer that cannot overlap with dynamically-allocated 2558 // memory within the lifetime of the current function (allocas, byval 2559 // arguments, globals), then determine the comparison result here. 2560 SmallVector<const Value *, 8> LHSUObjs, RHSUObjs; 2561 getUnderlyingObjects(LHS, LHSUObjs); 2562 getUnderlyingObjects(RHS, RHSUObjs); 2563 2564 // Is the set of underlying objects all noalias calls? 2565 auto IsNAC = [](ArrayRef<const Value *> Objects) { 2566 return all_of(Objects, isNoAliasCall); 2567 }; 2568 2569 // Is the set of underlying objects all things which must be disjoint from 2570 // noalias calls. For allocas, we consider only static ones (dynamic 2571 // allocas might be transformed into calls to malloc not simultaneously 2572 // live with the compared-to allocation). For globals, we exclude symbols 2573 // that might be resolve lazily to symbols in another dynamically-loaded 2574 // library (and, thus, could be malloc'ed by the implementation). 2575 auto IsAllocDisjoint = [](ArrayRef<const Value *> Objects) { 2576 return all_of(Objects, [](const Value *V) { 2577 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) 2578 return AI->getParent() && AI->getFunction() && AI->isStaticAlloca(); 2579 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) 2580 return (GV->hasLocalLinkage() || GV->hasHiddenVisibility() || 2581 GV->hasProtectedVisibility() || GV->hasGlobalUnnamedAddr()) && 2582 !GV->isThreadLocal(); 2583 if (const Argument *A = dyn_cast<Argument>(V)) 2584 return A->hasByValAttr(); 2585 return false; 2586 }); 2587 }; 2588 2589 if ((IsNAC(LHSUObjs) && IsAllocDisjoint(RHSUObjs)) || 2590 (IsNAC(RHSUObjs) && IsAllocDisjoint(LHSUObjs))) 2591 return ConstantInt::get(GetCompareTy(LHS), 2592 !CmpInst::isTrueWhenEqual(Pred)); 2593 2594 // Fold comparisons for non-escaping pointer even if the allocation call 2595 // cannot be elided. We cannot fold malloc comparison to null. Also, the 2596 // dynamic allocation call could be either of the operands. 2597 Value *MI = nullptr; 2598 if (isAllocLikeFn(LHS, TLI) && 2599 llvm::isKnownNonZero(RHS, DL, 0, nullptr, CxtI, DT)) 2600 MI = LHS; 2601 else if (isAllocLikeFn(RHS, TLI) && 2602 llvm::isKnownNonZero(LHS, DL, 0, nullptr, CxtI, DT)) 2603 MI = RHS; 2604 // FIXME: We should also fold the compare when the pointer escapes, but the 2605 // compare dominates the pointer escape 2606 if (MI && !PointerMayBeCaptured(MI, true, true)) 2607 return ConstantInt::get(GetCompareTy(LHS), 2608 CmpInst::isFalseWhenEqual(Pred)); 2609 } 2610 2611 // Otherwise, fail. 2612 return nullptr; 2613 } 2614 2615 /// Fold an icmp when its operands have i1 scalar type. 2616 static Value *simplifyICmpOfBools(CmpInst::Predicate Pred, Value *LHS, 2617 Value *RHS, const SimplifyQuery &Q) { 2618 Type *ITy = GetCompareTy(LHS); // The return type. 2619 Type *OpTy = LHS->getType(); // The operand type. 2620 if (!OpTy->isIntOrIntVectorTy(1)) 2621 return nullptr; 2622 2623 // A boolean compared to true/false can be simplified in 14 out of the 20 2624 // (10 predicates * 2 constants) possible combinations. Cases not handled here 2625 // require a 'not' of the LHS, so those must be transformed in InstCombine. 2626 if (match(RHS, m_Zero())) { 2627 switch (Pred) { 2628 case CmpInst::ICMP_NE: // X != 0 -> X 2629 case CmpInst::ICMP_UGT: // X >u 0 -> X 2630 case CmpInst::ICMP_SLT: // X <s 0 -> X 2631 return LHS; 2632 2633 case CmpInst::ICMP_ULT: // X <u 0 -> false 2634 case CmpInst::ICMP_SGT: // X >s 0 -> false 2635 return getFalse(ITy); 2636 2637 case CmpInst::ICMP_UGE: // X >=u 0 -> true 2638 case CmpInst::ICMP_SLE: // X <=s 0 -> true 2639 return getTrue(ITy); 2640 2641 default: break; 2642 } 2643 } else if (match(RHS, m_One())) { 2644 switch (Pred) { 2645 case CmpInst::ICMP_EQ: // X == 1 -> X 2646 case CmpInst::ICMP_UGE: // X >=u 1 -> X 2647 case CmpInst::ICMP_SLE: // X <=s -1 -> X 2648 return LHS; 2649 2650 case CmpInst::ICMP_UGT: // X >u 1 -> false 2651 case CmpInst::ICMP_SLT: // X <s -1 -> false 2652 return getFalse(ITy); 2653 2654 case CmpInst::ICMP_ULE: // X <=u 1 -> true 2655 case CmpInst::ICMP_SGE: // X >=s -1 -> true 2656 return getTrue(ITy); 2657 2658 default: break; 2659 } 2660 } 2661 2662 switch (Pred) { 2663 default: 2664 break; 2665 case ICmpInst::ICMP_UGE: 2666 if (isImpliedCondition(RHS, LHS, Q.DL).getValueOr(false)) 2667 return getTrue(ITy); 2668 break; 2669 case ICmpInst::ICMP_SGE: 2670 /// For signed comparison, the values for an i1 are 0 and -1 2671 /// respectively. This maps into a truth table of: 2672 /// LHS | RHS | LHS >=s RHS | LHS implies RHS 2673 /// 0 | 0 | 1 (0 >= 0) | 1 2674 /// 0 | 1 | 1 (0 >= -1) | 1 2675 /// 1 | 0 | 0 (-1 >= 0) | 0 2676 /// 1 | 1 | 1 (-1 >= -1) | 1 2677 if (isImpliedCondition(LHS, RHS, Q.DL).getValueOr(false)) 2678 return getTrue(ITy); 2679 break; 2680 case ICmpInst::ICMP_ULE: 2681 if (isImpliedCondition(LHS, RHS, Q.DL).getValueOr(false)) 2682 return getTrue(ITy); 2683 break; 2684 } 2685 2686 return nullptr; 2687 } 2688 2689 /// Try hard to fold icmp with zero RHS because this is a common case. 2690 static Value *simplifyICmpWithZero(CmpInst::Predicate Pred, Value *LHS, 2691 Value *RHS, const SimplifyQuery &Q) { 2692 if (!match(RHS, m_Zero())) 2693 return nullptr; 2694 2695 Type *ITy = GetCompareTy(LHS); // The return type. 2696 switch (Pred) { 2697 default: 2698 llvm_unreachable("Unknown ICmp predicate!"); 2699 case ICmpInst::ICMP_ULT: 2700 return getFalse(ITy); 2701 case ICmpInst::ICMP_UGE: 2702 return getTrue(ITy); 2703 case ICmpInst::ICMP_EQ: 2704 case ICmpInst::ICMP_ULE: 2705 if (isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT, Q.IIQ.UseInstrInfo)) 2706 return getFalse(ITy); 2707 break; 2708 case ICmpInst::ICMP_NE: 2709 case ICmpInst::ICMP_UGT: 2710 if (isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT, Q.IIQ.UseInstrInfo)) 2711 return getTrue(ITy); 2712 break; 2713 case ICmpInst::ICMP_SLT: { 2714 KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2715 if (LHSKnown.isNegative()) 2716 return getTrue(ITy); 2717 if (LHSKnown.isNonNegative()) 2718 return getFalse(ITy); 2719 break; 2720 } 2721 case ICmpInst::ICMP_SLE: { 2722 KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2723 if (LHSKnown.isNegative()) 2724 return getTrue(ITy); 2725 if (LHSKnown.isNonNegative() && 2726 isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 2727 return getFalse(ITy); 2728 break; 2729 } 2730 case ICmpInst::ICMP_SGE: { 2731 KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2732 if (LHSKnown.isNegative()) 2733 return getFalse(ITy); 2734 if (LHSKnown.isNonNegative()) 2735 return getTrue(ITy); 2736 break; 2737 } 2738 case ICmpInst::ICMP_SGT: { 2739 KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2740 if (LHSKnown.isNegative()) 2741 return getFalse(ITy); 2742 if (LHSKnown.isNonNegative() && 2743 isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 2744 return getTrue(ITy); 2745 break; 2746 } 2747 } 2748 2749 return nullptr; 2750 } 2751 2752 static Value *simplifyICmpWithConstant(CmpInst::Predicate Pred, Value *LHS, 2753 Value *RHS, const InstrInfoQuery &IIQ) { 2754 Type *ITy = GetCompareTy(RHS); // The return type. 2755 2756 Value *X; 2757 // Sign-bit checks can be optimized to true/false after unsigned 2758 // floating-point casts: 2759 // icmp slt (bitcast (uitofp X)), 0 --> false 2760 // icmp sgt (bitcast (uitofp X)), -1 --> true 2761 if (match(LHS, m_BitCast(m_UIToFP(m_Value(X))))) { 2762 if (Pred == ICmpInst::ICMP_SLT && match(RHS, m_Zero())) 2763 return ConstantInt::getFalse(ITy); 2764 if (Pred == ICmpInst::ICMP_SGT && match(RHS, m_AllOnes())) 2765 return ConstantInt::getTrue(ITy); 2766 } 2767 2768 const APInt *C; 2769 if (!match(RHS, m_APIntAllowUndef(C))) 2770 return nullptr; 2771 2772 // Rule out tautological comparisons (eg., ult 0 or uge 0). 2773 ConstantRange RHS_CR = ConstantRange::makeExactICmpRegion(Pred, *C); 2774 if (RHS_CR.isEmptySet()) 2775 return ConstantInt::getFalse(ITy); 2776 if (RHS_CR.isFullSet()) 2777 return ConstantInt::getTrue(ITy); 2778 2779 ConstantRange LHS_CR = computeConstantRange(LHS, IIQ.UseInstrInfo); 2780 if (!LHS_CR.isFullSet()) { 2781 if (RHS_CR.contains(LHS_CR)) 2782 return ConstantInt::getTrue(ITy); 2783 if (RHS_CR.inverse().contains(LHS_CR)) 2784 return ConstantInt::getFalse(ITy); 2785 } 2786 2787 // (mul nuw/nsw X, MulC) != C --> true (if C is not a multiple of MulC) 2788 // (mul nuw/nsw X, MulC) == C --> false (if C is not a multiple of MulC) 2789 const APInt *MulC; 2790 if (ICmpInst::isEquality(Pred) && 2791 ((match(LHS, m_NUWMul(m_Value(), m_APIntAllowUndef(MulC))) && 2792 *MulC != 0 && C->urem(*MulC) != 0) || 2793 (match(LHS, m_NSWMul(m_Value(), m_APIntAllowUndef(MulC))) && 2794 *MulC != 0 && C->srem(*MulC) != 0))) 2795 return ConstantInt::get(ITy, Pred == ICmpInst::ICMP_NE); 2796 2797 return nullptr; 2798 } 2799 2800 static Value *simplifyICmpWithBinOpOnLHS( 2801 CmpInst::Predicate Pred, BinaryOperator *LBO, Value *RHS, 2802 const SimplifyQuery &Q, unsigned MaxRecurse) { 2803 Type *ITy = GetCompareTy(RHS); // The return type. 2804 2805 Value *Y = nullptr; 2806 // icmp pred (or X, Y), X 2807 if (match(LBO, m_c_Or(m_Value(Y), m_Specific(RHS)))) { 2808 if (Pred == ICmpInst::ICMP_ULT) 2809 return getFalse(ITy); 2810 if (Pred == ICmpInst::ICMP_UGE) 2811 return getTrue(ITy); 2812 2813 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SGE) { 2814 KnownBits RHSKnown = computeKnownBits(RHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2815 KnownBits YKnown = computeKnownBits(Y, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2816 if (RHSKnown.isNonNegative() && YKnown.isNegative()) 2817 return Pred == ICmpInst::ICMP_SLT ? getTrue(ITy) : getFalse(ITy); 2818 if (RHSKnown.isNegative() || YKnown.isNonNegative()) 2819 return Pred == ICmpInst::ICMP_SLT ? getFalse(ITy) : getTrue(ITy); 2820 } 2821 } 2822 2823 // icmp pred (and X, Y), X 2824 if (match(LBO, m_c_And(m_Value(), m_Specific(RHS)))) { 2825 if (Pred == ICmpInst::ICMP_UGT) 2826 return getFalse(ITy); 2827 if (Pred == ICmpInst::ICMP_ULE) 2828 return getTrue(ITy); 2829 } 2830 2831 // icmp pred (urem X, Y), Y 2832 if (match(LBO, m_URem(m_Value(), m_Specific(RHS)))) { 2833 switch (Pred) { 2834 default: 2835 break; 2836 case ICmpInst::ICMP_SGT: 2837 case ICmpInst::ICMP_SGE: { 2838 KnownBits Known = computeKnownBits(RHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2839 if (!Known.isNonNegative()) 2840 break; 2841 LLVM_FALLTHROUGH; 2842 } 2843 case ICmpInst::ICMP_EQ: 2844 case ICmpInst::ICMP_UGT: 2845 case ICmpInst::ICMP_UGE: 2846 return getFalse(ITy); 2847 case ICmpInst::ICMP_SLT: 2848 case ICmpInst::ICMP_SLE: { 2849 KnownBits Known = computeKnownBits(RHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2850 if (!Known.isNonNegative()) 2851 break; 2852 LLVM_FALLTHROUGH; 2853 } 2854 case ICmpInst::ICMP_NE: 2855 case ICmpInst::ICMP_ULT: 2856 case ICmpInst::ICMP_ULE: 2857 return getTrue(ITy); 2858 } 2859 } 2860 2861 // icmp pred (urem X, Y), X 2862 if (match(LBO, m_URem(m_Specific(RHS), m_Value()))) { 2863 if (Pred == ICmpInst::ICMP_ULE) 2864 return getTrue(ITy); 2865 if (Pred == ICmpInst::ICMP_UGT) 2866 return getFalse(ITy); 2867 } 2868 2869 // x >> y <=u x 2870 // x udiv y <=u x. 2871 if (match(LBO, m_LShr(m_Specific(RHS), m_Value())) || 2872 match(LBO, m_UDiv(m_Specific(RHS), m_Value()))) { 2873 // icmp pred (X op Y), X 2874 if (Pred == ICmpInst::ICMP_UGT) 2875 return getFalse(ITy); 2876 if (Pred == ICmpInst::ICMP_ULE) 2877 return getTrue(ITy); 2878 } 2879 2880 // (x*C1)/C2 <= x for C1 <= C2. 2881 // This holds even if the multiplication overflows: Assume that x != 0 and 2882 // arithmetic is modulo M. For overflow to occur we must have C1 >= M/x and 2883 // thus C2 >= M/x. It follows that (x*C1)/C2 <= (M-1)/C2 <= ((M-1)*x)/M < x. 2884 // 2885 // Additionally, either the multiplication and division might be represented 2886 // as shifts: 2887 // (x*C1)>>C2 <= x for C1 < 2**C2. 2888 // (x<<C1)/C2 <= x for 2**C1 < C2. 2889 const APInt *C1, *C2; 2890 if ((match(LBO, m_UDiv(m_Mul(m_Specific(RHS), m_APInt(C1)), m_APInt(C2))) && 2891 C1->ule(*C2)) || 2892 (match(LBO, m_LShr(m_Mul(m_Specific(RHS), m_APInt(C1)), m_APInt(C2))) && 2893 C1->ule(APInt(C2->getBitWidth(), 1) << *C2)) || 2894 (match(LBO, m_UDiv(m_Shl(m_Specific(RHS), m_APInt(C1)), m_APInt(C2))) && 2895 (APInt(C1->getBitWidth(), 1) << *C1).ule(*C2))) { 2896 if (Pred == ICmpInst::ICMP_UGT) 2897 return getFalse(ITy); 2898 if (Pred == ICmpInst::ICMP_ULE) 2899 return getTrue(ITy); 2900 } 2901 2902 return nullptr; 2903 } 2904 2905 2906 // If only one of the icmp's operands has NSW flags, try to prove that: 2907 // 2908 // icmp slt (x + C1), (x +nsw C2) 2909 // 2910 // is equivalent to: 2911 // 2912 // icmp slt C1, C2 2913 // 2914 // which is true if x + C2 has the NSW flags set and: 2915 // *) C1 < C2 && C1 >= 0, or 2916 // *) C2 < C1 && C1 <= 0. 2917 // 2918 static bool trySimplifyICmpWithAdds(CmpInst::Predicate Pred, Value *LHS, 2919 Value *RHS) { 2920 // TODO: only support icmp slt for now. 2921 if (Pred != CmpInst::ICMP_SLT) 2922 return false; 2923 2924 // Canonicalize nsw add as RHS. 2925 if (!match(RHS, m_NSWAdd(m_Value(), m_Value()))) 2926 std::swap(LHS, RHS); 2927 if (!match(RHS, m_NSWAdd(m_Value(), m_Value()))) 2928 return false; 2929 2930 Value *X; 2931 const APInt *C1, *C2; 2932 if (!match(LHS, m_c_Add(m_Value(X), m_APInt(C1))) || 2933 !match(RHS, m_c_Add(m_Specific(X), m_APInt(C2)))) 2934 return false; 2935 2936 return (C1->slt(*C2) && C1->isNonNegative()) || 2937 (C2->slt(*C1) && C1->isNonPositive()); 2938 } 2939 2940 2941 /// TODO: A large part of this logic is duplicated in InstCombine's 2942 /// foldICmpBinOp(). We should be able to share that and avoid the code 2943 /// duplication. 2944 static Value *simplifyICmpWithBinOp(CmpInst::Predicate Pred, Value *LHS, 2945 Value *RHS, const SimplifyQuery &Q, 2946 unsigned MaxRecurse) { 2947 BinaryOperator *LBO = dyn_cast<BinaryOperator>(LHS); 2948 BinaryOperator *RBO = dyn_cast<BinaryOperator>(RHS); 2949 if (MaxRecurse && (LBO || RBO)) { 2950 // Analyze the case when either LHS or RHS is an add instruction. 2951 Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr; 2952 // LHS = A + B (or A and B are null); RHS = C + D (or C and D are null). 2953 bool NoLHSWrapProblem = false, NoRHSWrapProblem = false; 2954 if (LBO && LBO->getOpcode() == Instruction::Add) { 2955 A = LBO->getOperand(0); 2956 B = LBO->getOperand(1); 2957 NoLHSWrapProblem = 2958 ICmpInst::isEquality(Pred) || 2959 (CmpInst::isUnsigned(Pred) && 2960 Q.IIQ.hasNoUnsignedWrap(cast<OverflowingBinaryOperator>(LBO))) || 2961 (CmpInst::isSigned(Pred) && 2962 Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(LBO))); 2963 } 2964 if (RBO && RBO->getOpcode() == Instruction::Add) { 2965 C = RBO->getOperand(0); 2966 D = RBO->getOperand(1); 2967 NoRHSWrapProblem = 2968 ICmpInst::isEquality(Pred) || 2969 (CmpInst::isUnsigned(Pred) && 2970 Q.IIQ.hasNoUnsignedWrap(cast<OverflowingBinaryOperator>(RBO))) || 2971 (CmpInst::isSigned(Pred) && 2972 Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(RBO))); 2973 } 2974 2975 // icmp (X+Y), X -> icmp Y, 0 for equalities or if there is no overflow. 2976 if ((A == RHS || B == RHS) && NoLHSWrapProblem) 2977 if (Value *V = SimplifyICmpInst(Pred, A == RHS ? B : A, 2978 Constant::getNullValue(RHS->getType()), Q, 2979 MaxRecurse - 1)) 2980 return V; 2981 2982 // icmp X, (X+Y) -> icmp 0, Y for equalities or if there is no overflow. 2983 if ((C == LHS || D == LHS) && NoRHSWrapProblem) 2984 if (Value *V = 2985 SimplifyICmpInst(Pred, Constant::getNullValue(LHS->getType()), 2986 C == LHS ? D : C, Q, MaxRecurse - 1)) 2987 return V; 2988 2989 // icmp (X+Y), (X+Z) -> icmp Y,Z for equalities or if there is no overflow. 2990 bool CanSimplify = (NoLHSWrapProblem && NoRHSWrapProblem) || 2991 trySimplifyICmpWithAdds(Pred, LHS, RHS); 2992 if (A && C && (A == C || A == D || B == C || B == D) && CanSimplify) { 2993 // Determine Y and Z in the form icmp (X+Y), (X+Z). 2994 Value *Y, *Z; 2995 if (A == C) { 2996 // C + B == C + D -> B == D 2997 Y = B; 2998 Z = D; 2999 } else if (A == D) { 3000 // D + B == C + D -> B == C 3001 Y = B; 3002 Z = C; 3003 } else if (B == C) { 3004 // A + C == C + D -> A == D 3005 Y = A; 3006 Z = D; 3007 } else { 3008 assert(B == D); 3009 // A + D == C + D -> A == C 3010 Y = A; 3011 Z = C; 3012 } 3013 if (Value *V = SimplifyICmpInst(Pred, Y, Z, Q, MaxRecurse - 1)) 3014 return V; 3015 } 3016 } 3017 3018 if (LBO) 3019 if (Value *V = simplifyICmpWithBinOpOnLHS(Pred, LBO, RHS, Q, MaxRecurse)) 3020 return V; 3021 3022 if (RBO) 3023 if (Value *V = simplifyICmpWithBinOpOnLHS( 3024 ICmpInst::getSwappedPredicate(Pred), RBO, LHS, Q, MaxRecurse)) 3025 return V; 3026 3027 // 0 - (zext X) pred C 3028 if (!CmpInst::isUnsigned(Pred) && match(LHS, m_Neg(m_ZExt(m_Value())))) { 3029 const APInt *C; 3030 if (match(RHS, m_APInt(C))) { 3031 if (C->isStrictlyPositive()) { 3032 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_NE) 3033 return ConstantInt::getTrue(GetCompareTy(RHS)); 3034 if (Pred == ICmpInst::ICMP_SGE || Pred == ICmpInst::ICMP_EQ) 3035 return ConstantInt::getFalse(GetCompareTy(RHS)); 3036 } 3037 if (C->isNonNegative()) { 3038 if (Pred == ICmpInst::ICMP_SLE) 3039 return ConstantInt::getTrue(GetCompareTy(RHS)); 3040 if (Pred == ICmpInst::ICMP_SGT) 3041 return ConstantInt::getFalse(GetCompareTy(RHS)); 3042 } 3043 } 3044 } 3045 3046 // If C2 is a power-of-2 and C is not: 3047 // (C2 << X) == C --> false 3048 // (C2 << X) != C --> true 3049 const APInt *C; 3050 if (match(LHS, m_Shl(m_Power2(), m_Value())) && 3051 match(RHS, m_APIntAllowUndef(C)) && !C->isPowerOf2()) { 3052 // C2 << X can equal zero in some circumstances. 3053 // This simplification might be unsafe if C is zero. 3054 // 3055 // We know it is safe if: 3056 // - The shift is nsw. We can't shift out the one bit. 3057 // - The shift is nuw. We can't shift out the one bit. 3058 // - C2 is one. 3059 // - C isn't zero. 3060 if (Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(LBO)) || 3061 Q.IIQ.hasNoUnsignedWrap(cast<OverflowingBinaryOperator>(LBO)) || 3062 match(LHS, m_Shl(m_One(), m_Value())) || !C->isNullValue()) { 3063 if (Pred == ICmpInst::ICMP_EQ) 3064 return ConstantInt::getFalse(GetCompareTy(RHS)); 3065 if (Pred == ICmpInst::ICMP_NE) 3066 return ConstantInt::getTrue(GetCompareTy(RHS)); 3067 } 3068 } 3069 3070 // TODO: This is overly constrained. LHS can be any power-of-2. 3071 // (1 << X) >u 0x8000 --> false 3072 // (1 << X) <=u 0x8000 --> true 3073 if (match(LHS, m_Shl(m_One(), m_Value())) && match(RHS, m_SignMask())) { 3074 if (Pred == ICmpInst::ICMP_UGT) 3075 return ConstantInt::getFalse(GetCompareTy(RHS)); 3076 if (Pred == ICmpInst::ICMP_ULE) 3077 return ConstantInt::getTrue(GetCompareTy(RHS)); 3078 } 3079 3080 if (MaxRecurse && LBO && RBO && LBO->getOpcode() == RBO->getOpcode() && 3081 LBO->getOperand(1) == RBO->getOperand(1)) { 3082 switch (LBO->getOpcode()) { 3083 default: 3084 break; 3085 case Instruction::UDiv: 3086 case Instruction::LShr: 3087 if (ICmpInst::isSigned(Pred) || !Q.IIQ.isExact(LBO) || 3088 !Q.IIQ.isExact(RBO)) 3089 break; 3090 if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0), 3091 RBO->getOperand(0), Q, MaxRecurse - 1)) 3092 return V; 3093 break; 3094 case Instruction::SDiv: 3095 if (!ICmpInst::isEquality(Pred) || !Q.IIQ.isExact(LBO) || 3096 !Q.IIQ.isExact(RBO)) 3097 break; 3098 if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0), 3099 RBO->getOperand(0), Q, MaxRecurse - 1)) 3100 return V; 3101 break; 3102 case Instruction::AShr: 3103 if (!Q.IIQ.isExact(LBO) || !Q.IIQ.isExact(RBO)) 3104 break; 3105 if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0), 3106 RBO->getOperand(0), Q, MaxRecurse - 1)) 3107 return V; 3108 break; 3109 case Instruction::Shl: { 3110 bool NUW = Q.IIQ.hasNoUnsignedWrap(LBO) && Q.IIQ.hasNoUnsignedWrap(RBO); 3111 bool NSW = Q.IIQ.hasNoSignedWrap(LBO) && Q.IIQ.hasNoSignedWrap(RBO); 3112 if (!NUW && !NSW) 3113 break; 3114 if (!NSW && ICmpInst::isSigned(Pred)) 3115 break; 3116 if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0), 3117 RBO->getOperand(0), Q, MaxRecurse - 1)) 3118 return V; 3119 break; 3120 } 3121 } 3122 } 3123 return nullptr; 3124 } 3125 3126 /// Simplify integer comparisons where at least one operand of the compare 3127 /// matches an integer min/max idiom. 3128 static Value *simplifyICmpWithMinMax(CmpInst::Predicate Pred, Value *LHS, 3129 Value *RHS, const SimplifyQuery &Q, 3130 unsigned MaxRecurse) { 3131 Type *ITy = GetCompareTy(LHS); // The return type. 3132 Value *A, *B; 3133 CmpInst::Predicate P = CmpInst::BAD_ICMP_PREDICATE; 3134 CmpInst::Predicate EqP; // Chosen so that "A == max/min(A,B)" iff "A EqP B". 3135 3136 // Signed variants on "max(a,b)>=a -> true". 3137 if (match(LHS, m_SMax(m_Value(A), m_Value(B))) && (A == RHS || B == RHS)) { 3138 if (A != RHS) 3139 std::swap(A, B); // smax(A, B) pred A. 3140 EqP = CmpInst::ICMP_SGE; // "A == smax(A, B)" iff "A sge B". 3141 // We analyze this as smax(A, B) pred A. 3142 P = Pred; 3143 } else if (match(RHS, m_SMax(m_Value(A), m_Value(B))) && 3144 (A == LHS || B == LHS)) { 3145 if (A != LHS) 3146 std::swap(A, B); // A pred smax(A, B). 3147 EqP = CmpInst::ICMP_SGE; // "A == smax(A, B)" iff "A sge B". 3148 // We analyze this as smax(A, B) swapped-pred A. 3149 P = CmpInst::getSwappedPredicate(Pred); 3150 } else if (match(LHS, m_SMin(m_Value(A), m_Value(B))) && 3151 (A == RHS || B == RHS)) { 3152 if (A != RHS) 3153 std::swap(A, B); // smin(A, B) pred A. 3154 EqP = CmpInst::ICMP_SLE; // "A == smin(A, B)" iff "A sle B". 3155 // We analyze this as smax(-A, -B) swapped-pred -A. 3156 // Note that we do not need to actually form -A or -B thanks to EqP. 3157 P = CmpInst::getSwappedPredicate(Pred); 3158 } else if (match(RHS, m_SMin(m_Value(A), m_Value(B))) && 3159 (A == LHS || B == LHS)) { 3160 if (A != LHS) 3161 std::swap(A, B); // A pred smin(A, B). 3162 EqP = CmpInst::ICMP_SLE; // "A == smin(A, B)" iff "A sle B". 3163 // We analyze this as smax(-A, -B) pred -A. 3164 // Note that we do not need to actually form -A or -B thanks to EqP. 3165 P = Pred; 3166 } 3167 if (P != CmpInst::BAD_ICMP_PREDICATE) { 3168 // Cases correspond to "max(A, B) p A". 3169 switch (P) { 3170 default: 3171 break; 3172 case CmpInst::ICMP_EQ: 3173 case CmpInst::ICMP_SLE: 3174 // Equivalent to "A EqP B". This may be the same as the condition tested 3175 // in the max/min; if so, we can just return that. 3176 if (Value *V = ExtractEquivalentCondition(LHS, EqP, A, B)) 3177 return V; 3178 if (Value *V = ExtractEquivalentCondition(RHS, EqP, A, B)) 3179 return V; 3180 // Otherwise, see if "A EqP B" simplifies. 3181 if (MaxRecurse) 3182 if (Value *V = SimplifyICmpInst(EqP, A, B, Q, MaxRecurse - 1)) 3183 return V; 3184 break; 3185 case CmpInst::ICMP_NE: 3186 case CmpInst::ICMP_SGT: { 3187 CmpInst::Predicate InvEqP = CmpInst::getInversePredicate(EqP); 3188 // Equivalent to "A InvEqP B". This may be the same as the condition 3189 // tested in the max/min; if so, we can just return that. 3190 if (Value *V = ExtractEquivalentCondition(LHS, InvEqP, A, B)) 3191 return V; 3192 if (Value *V = ExtractEquivalentCondition(RHS, InvEqP, A, B)) 3193 return V; 3194 // Otherwise, see if "A InvEqP B" simplifies. 3195 if (MaxRecurse) 3196 if (Value *V = SimplifyICmpInst(InvEqP, A, B, Q, MaxRecurse - 1)) 3197 return V; 3198 break; 3199 } 3200 case CmpInst::ICMP_SGE: 3201 // Always true. 3202 return getTrue(ITy); 3203 case CmpInst::ICMP_SLT: 3204 // Always false. 3205 return getFalse(ITy); 3206 } 3207 } 3208 3209 // Unsigned variants on "max(a,b)>=a -> true". 3210 P = CmpInst::BAD_ICMP_PREDICATE; 3211 if (match(LHS, m_UMax(m_Value(A), m_Value(B))) && (A == RHS || B == RHS)) { 3212 if (A != RHS) 3213 std::swap(A, B); // umax(A, B) pred A. 3214 EqP = CmpInst::ICMP_UGE; // "A == umax(A, B)" iff "A uge B". 3215 // We analyze this as umax(A, B) pred A. 3216 P = Pred; 3217 } else if (match(RHS, m_UMax(m_Value(A), m_Value(B))) && 3218 (A == LHS || B == LHS)) { 3219 if (A != LHS) 3220 std::swap(A, B); // A pred umax(A, B). 3221 EqP = CmpInst::ICMP_UGE; // "A == umax(A, B)" iff "A uge B". 3222 // We analyze this as umax(A, B) swapped-pred A. 3223 P = CmpInst::getSwappedPredicate(Pred); 3224 } else if (match(LHS, m_UMin(m_Value(A), m_Value(B))) && 3225 (A == RHS || B == RHS)) { 3226 if (A != RHS) 3227 std::swap(A, B); // umin(A, B) pred A. 3228 EqP = CmpInst::ICMP_ULE; // "A == umin(A, B)" iff "A ule B". 3229 // We analyze this as umax(-A, -B) swapped-pred -A. 3230 // Note that we do not need to actually form -A or -B thanks to EqP. 3231 P = CmpInst::getSwappedPredicate(Pred); 3232 } else if (match(RHS, m_UMin(m_Value(A), m_Value(B))) && 3233 (A == LHS || B == LHS)) { 3234 if (A != LHS) 3235 std::swap(A, B); // A pred umin(A, B). 3236 EqP = CmpInst::ICMP_ULE; // "A == umin(A, B)" iff "A ule B". 3237 // We analyze this as umax(-A, -B) pred -A. 3238 // Note that we do not need to actually form -A or -B thanks to EqP. 3239 P = Pred; 3240 } 3241 if (P != CmpInst::BAD_ICMP_PREDICATE) { 3242 // Cases correspond to "max(A, B) p A". 3243 switch (P) { 3244 default: 3245 break; 3246 case CmpInst::ICMP_EQ: 3247 case CmpInst::ICMP_ULE: 3248 // Equivalent to "A EqP B". This may be the same as the condition tested 3249 // in the max/min; if so, we can just return that. 3250 if (Value *V = ExtractEquivalentCondition(LHS, EqP, A, B)) 3251 return V; 3252 if (Value *V = ExtractEquivalentCondition(RHS, EqP, A, B)) 3253 return V; 3254 // Otherwise, see if "A EqP B" simplifies. 3255 if (MaxRecurse) 3256 if (Value *V = SimplifyICmpInst(EqP, A, B, Q, MaxRecurse - 1)) 3257 return V; 3258 break; 3259 case CmpInst::ICMP_NE: 3260 case CmpInst::ICMP_UGT: { 3261 CmpInst::Predicate InvEqP = CmpInst::getInversePredicate(EqP); 3262 // Equivalent to "A InvEqP B". This may be the same as the condition 3263 // tested in the max/min; if so, we can just return that. 3264 if (Value *V = ExtractEquivalentCondition(LHS, InvEqP, A, B)) 3265 return V; 3266 if (Value *V = ExtractEquivalentCondition(RHS, InvEqP, A, B)) 3267 return V; 3268 // Otherwise, see if "A InvEqP B" simplifies. 3269 if (MaxRecurse) 3270 if (Value *V = SimplifyICmpInst(InvEqP, A, B, Q, MaxRecurse - 1)) 3271 return V; 3272 break; 3273 } 3274 case CmpInst::ICMP_UGE: 3275 return getTrue(ITy); 3276 case CmpInst::ICMP_ULT: 3277 return getFalse(ITy); 3278 } 3279 } 3280 3281 // Comparing 1 each of min/max with a common operand? 3282 // Canonicalize min operand to RHS. 3283 if (match(LHS, m_UMin(m_Value(), m_Value())) || 3284 match(LHS, m_SMin(m_Value(), m_Value()))) { 3285 std::swap(LHS, RHS); 3286 Pred = ICmpInst::getSwappedPredicate(Pred); 3287 } 3288 3289 Value *C, *D; 3290 if (match(LHS, m_SMax(m_Value(A), m_Value(B))) && 3291 match(RHS, m_SMin(m_Value(C), m_Value(D))) && 3292 (A == C || A == D || B == C || B == D)) { 3293 // smax(A, B) >=s smin(A, D) --> true 3294 if (Pred == CmpInst::ICMP_SGE) 3295 return getTrue(ITy); 3296 // smax(A, B) <s smin(A, D) --> false 3297 if (Pred == CmpInst::ICMP_SLT) 3298 return getFalse(ITy); 3299 } else if (match(LHS, m_UMax(m_Value(A), m_Value(B))) && 3300 match(RHS, m_UMin(m_Value(C), m_Value(D))) && 3301 (A == C || A == D || B == C || B == D)) { 3302 // umax(A, B) >=u umin(A, D) --> true 3303 if (Pred == CmpInst::ICMP_UGE) 3304 return getTrue(ITy); 3305 // umax(A, B) <u umin(A, D) --> false 3306 if (Pred == CmpInst::ICMP_ULT) 3307 return getFalse(ITy); 3308 } 3309 3310 return nullptr; 3311 } 3312 3313 static Value *simplifyICmpWithDominatingAssume(CmpInst::Predicate Predicate, 3314 Value *LHS, Value *RHS, 3315 const SimplifyQuery &Q) { 3316 // Gracefully handle instructions that have not been inserted yet. 3317 if (!Q.AC || !Q.CxtI || !Q.CxtI->getParent()) 3318 return nullptr; 3319 3320 for (Value *AssumeBaseOp : {LHS, RHS}) { 3321 for (auto &AssumeVH : Q.AC->assumptionsFor(AssumeBaseOp)) { 3322 if (!AssumeVH) 3323 continue; 3324 3325 CallInst *Assume = cast<CallInst>(AssumeVH); 3326 if (Optional<bool> Imp = 3327 isImpliedCondition(Assume->getArgOperand(0), Predicate, LHS, RHS, 3328 Q.DL)) 3329 if (isValidAssumeForContext(Assume, Q.CxtI, Q.DT)) 3330 return ConstantInt::get(GetCompareTy(LHS), *Imp); 3331 } 3332 } 3333 3334 return nullptr; 3335 } 3336 3337 /// Given operands for an ICmpInst, see if we can fold the result. 3338 /// If not, this returns null. 3339 static Value *SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS, 3340 const SimplifyQuery &Q, unsigned MaxRecurse) { 3341 CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate; 3342 assert(CmpInst::isIntPredicate(Pred) && "Not an integer compare!"); 3343 3344 if (Constant *CLHS = dyn_cast<Constant>(LHS)) { 3345 if (Constant *CRHS = dyn_cast<Constant>(RHS)) 3346 return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, Q.DL, Q.TLI); 3347 3348 // If we have a constant, make sure it is on the RHS. 3349 std::swap(LHS, RHS); 3350 Pred = CmpInst::getSwappedPredicate(Pred); 3351 } 3352 assert(!isa<UndefValue>(LHS) && "Unexpected icmp undef,%X"); 3353 3354 Type *ITy = GetCompareTy(LHS); // The return type. 3355 3356 // For EQ and NE, we can always pick a value for the undef to make the 3357 // predicate pass or fail, so we can return undef. 3358 // Matches behavior in llvm::ConstantFoldCompareInstruction. 3359 if (Q.isUndefValue(RHS) && ICmpInst::isEquality(Pred)) 3360 return UndefValue::get(ITy); 3361 3362 // icmp X, X -> true/false 3363 // icmp X, undef -> true/false because undef could be X. 3364 if (LHS == RHS || Q.isUndefValue(RHS)) 3365 return ConstantInt::get(ITy, CmpInst::isTrueWhenEqual(Pred)); 3366 3367 if (Value *V = simplifyICmpOfBools(Pred, LHS, RHS, Q)) 3368 return V; 3369 3370 // TODO: Sink/common this with other potentially expensive calls that use 3371 // ValueTracking? See comment below for isKnownNonEqual(). 3372 if (Value *V = simplifyICmpWithZero(Pred, LHS, RHS, Q)) 3373 return V; 3374 3375 if (Value *V = simplifyICmpWithConstant(Pred, LHS, RHS, Q.IIQ)) 3376 return V; 3377 3378 // If both operands have range metadata, use the metadata 3379 // to simplify the comparison. 3380 if (isa<Instruction>(RHS) && isa<Instruction>(LHS)) { 3381 auto RHS_Instr = cast<Instruction>(RHS); 3382 auto LHS_Instr = cast<Instruction>(LHS); 3383 3384 if (Q.IIQ.getMetadata(RHS_Instr, LLVMContext::MD_range) && 3385 Q.IIQ.getMetadata(LHS_Instr, LLVMContext::MD_range)) { 3386 auto RHS_CR = getConstantRangeFromMetadata( 3387 *RHS_Instr->getMetadata(LLVMContext::MD_range)); 3388 auto LHS_CR = getConstantRangeFromMetadata( 3389 *LHS_Instr->getMetadata(LLVMContext::MD_range)); 3390 3391 if (LHS_CR.icmp(Pred, RHS_CR)) 3392 return ConstantInt::getTrue(RHS->getContext()); 3393 3394 if (LHS_CR.icmp(CmpInst::getInversePredicate(Pred), RHS_CR)) 3395 return ConstantInt::getFalse(RHS->getContext()); 3396 } 3397 } 3398 3399 // Compare of cast, for example (zext X) != 0 -> X != 0 3400 if (isa<CastInst>(LHS) && (isa<Constant>(RHS) || isa<CastInst>(RHS))) { 3401 Instruction *LI = cast<CastInst>(LHS); 3402 Value *SrcOp = LI->getOperand(0); 3403 Type *SrcTy = SrcOp->getType(); 3404 Type *DstTy = LI->getType(); 3405 3406 // Turn icmp (ptrtoint x), (ptrtoint/constant) into a compare of the input 3407 // if the integer type is the same size as the pointer type. 3408 if (MaxRecurse && isa<PtrToIntInst>(LI) && 3409 Q.DL.getTypeSizeInBits(SrcTy) == DstTy->getPrimitiveSizeInBits()) { 3410 if (Constant *RHSC = dyn_cast<Constant>(RHS)) { 3411 // Transfer the cast to the constant. 3412 if (Value *V = SimplifyICmpInst(Pred, SrcOp, 3413 ConstantExpr::getIntToPtr(RHSC, SrcTy), 3414 Q, MaxRecurse-1)) 3415 return V; 3416 } else if (PtrToIntInst *RI = dyn_cast<PtrToIntInst>(RHS)) { 3417 if (RI->getOperand(0)->getType() == SrcTy) 3418 // Compare without the cast. 3419 if (Value *V = SimplifyICmpInst(Pred, SrcOp, RI->getOperand(0), 3420 Q, MaxRecurse-1)) 3421 return V; 3422 } 3423 } 3424 3425 if (isa<ZExtInst>(LHS)) { 3426 // Turn icmp (zext X), (zext Y) into a compare of X and Y if they have the 3427 // same type. 3428 if (ZExtInst *RI = dyn_cast<ZExtInst>(RHS)) { 3429 if (MaxRecurse && SrcTy == RI->getOperand(0)->getType()) 3430 // Compare X and Y. Note that signed predicates become unsigned. 3431 if (Value *V = SimplifyICmpInst(ICmpInst::getUnsignedPredicate(Pred), 3432 SrcOp, RI->getOperand(0), Q, 3433 MaxRecurse-1)) 3434 return V; 3435 } 3436 // Fold (zext X) ule (sext X), (zext X) sge (sext X) to true. 3437 else if (SExtInst *RI = dyn_cast<SExtInst>(RHS)) { 3438 if (SrcOp == RI->getOperand(0)) { 3439 if (Pred == ICmpInst::ICMP_ULE || Pred == ICmpInst::ICMP_SGE) 3440 return ConstantInt::getTrue(ITy); 3441 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_SLT) 3442 return ConstantInt::getFalse(ITy); 3443 } 3444 } 3445 // Turn icmp (zext X), Cst into a compare of X and Cst if Cst is extended 3446 // too. If not, then try to deduce the result of the comparison. 3447 else if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) { 3448 // Compute the constant that would happen if we truncated to SrcTy then 3449 // reextended to DstTy. 3450 Constant *Trunc = ConstantExpr::getTrunc(CI, SrcTy); 3451 Constant *RExt = ConstantExpr::getCast(CastInst::ZExt, Trunc, DstTy); 3452 3453 // If the re-extended constant didn't change then this is effectively 3454 // also a case of comparing two zero-extended values. 3455 if (RExt == CI && MaxRecurse) 3456 if (Value *V = SimplifyICmpInst(ICmpInst::getUnsignedPredicate(Pred), 3457 SrcOp, Trunc, Q, MaxRecurse-1)) 3458 return V; 3459 3460 // Otherwise the upper bits of LHS are zero while RHS has a non-zero bit 3461 // there. Use this to work out the result of the comparison. 3462 if (RExt != CI) { 3463 switch (Pred) { 3464 default: llvm_unreachable("Unknown ICmp predicate!"); 3465 // LHS <u RHS. 3466 case ICmpInst::ICMP_EQ: 3467 case ICmpInst::ICMP_UGT: 3468 case ICmpInst::ICMP_UGE: 3469 return ConstantInt::getFalse(CI->getContext()); 3470 3471 case ICmpInst::ICMP_NE: 3472 case ICmpInst::ICMP_ULT: 3473 case ICmpInst::ICMP_ULE: 3474 return ConstantInt::getTrue(CI->getContext()); 3475 3476 // LHS is non-negative. If RHS is negative then LHS >s LHS. If RHS 3477 // is non-negative then LHS <s RHS. 3478 case ICmpInst::ICMP_SGT: 3479 case ICmpInst::ICMP_SGE: 3480 return CI->getValue().isNegative() ? 3481 ConstantInt::getTrue(CI->getContext()) : 3482 ConstantInt::getFalse(CI->getContext()); 3483 3484 case ICmpInst::ICMP_SLT: 3485 case ICmpInst::ICMP_SLE: 3486 return CI->getValue().isNegative() ? 3487 ConstantInt::getFalse(CI->getContext()) : 3488 ConstantInt::getTrue(CI->getContext()); 3489 } 3490 } 3491 } 3492 } 3493 3494 if (isa<SExtInst>(LHS)) { 3495 // Turn icmp (sext X), (sext Y) into a compare of X and Y if they have the 3496 // same type. 3497 if (SExtInst *RI = dyn_cast<SExtInst>(RHS)) { 3498 if (MaxRecurse && SrcTy == RI->getOperand(0)->getType()) 3499 // Compare X and Y. Note that the predicate does not change. 3500 if (Value *V = SimplifyICmpInst(Pred, SrcOp, RI->getOperand(0), 3501 Q, MaxRecurse-1)) 3502 return V; 3503 } 3504 // Fold (sext X) uge (zext X), (sext X) sle (zext X) to true. 3505 else if (ZExtInst *RI = dyn_cast<ZExtInst>(RHS)) { 3506 if (SrcOp == RI->getOperand(0)) { 3507 if (Pred == ICmpInst::ICMP_UGE || Pred == ICmpInst::ICMP_SLE) 3508 return ConstantInt::getTrue(ITy); 3509 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_SGT) 3510 return ConstantInt::getFalse(ITy); 3511 } 3512 } 3513 // Turn icmp (sext X), Cst into a compare of X and Cst if Cst is extended 3514 // too. If not, then try to deduce the result of the comparison. 3515 else if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) { 3516 // Compute the constant that would happen if we truncated to SrcTy then 3517 // reextended to DstTy. 3518 Constant *Trunc = ConstantExpr::getTrunc(CI, SrcTy); 3519 Constant *RExt = ConstantExpr::getCast(CastInst::SExt, Trunc, DstTy); 3520 3521 // If the re-extended constant didn't change then this is effectively 3522 // also a case of comparing two sign-extended values. 3523 if (RExt == CI && MaxRecurse) 3524 if (Value *V = SimplifyICmpInst(Pred, SrcOp, Trunc, Q, MaxRecurse-1)) 3525 return V; 3526 3527 // Otherwise the upper bits of LHS are all equal, while RHS has varying 3528 // bits there. Use this to work out the result of the comparison. 3529 if (RExt != CI) { 3530 switch (Pred) { 3531 default: llvm_unreachable("Unknown ICmp predicate!"); 3532 case ICmpInst::ICMP_EQ: 3533 return ConstantInt::getFalse(CI->getContext()); 3534 case ICmpInst::ICMP_NE: 3535 return ConstantInt::getTrue(CI->getContext()); 3536 3537 // If RHS is non-negative then LHS <s RHS. If RHS is negative then 3538 // LHS >s RHS. 3539 case ICmpInst::ICMP_SGT: 3540 case ICmpInst::ICMP_SGE: 3541 return CI->getValue().isNegative() ? 3542 ConstantInt::getTrue(CI->getContext()) : 3543 ConstantInt::getFalse(CI->getContext()); 3544 case ICmpInst::ICMP_SLT: 3545 case ICmpInst::ICMP_SLE: 3546 return CI->getValue().isNegative() ? 3547 ConstantInt::getFalse(CI->getContext()) : 3548 ConstantInt::getTrue(CI->getContext()); 3549 3550 // If LHS is non-negative then LHS <u RHS. If LHS is negative then 3551 // LHS >u RHS. 3552 case ICmpInst::ICMP_UGT: 3553 case ICmpInst::ICMP_UGE: 3554 // Comparison is true iff the LHS <s 0. 3555 if (MaxRecurse) 3556 if (Value *V = SimplifyICmpInst(ICmpInst::ICMP_SLT, SrcOp, 3557 Constant::getNullValue(SrcTy), 3558 Q, MaxRecurse-1)) 3559 return V; 3560 break; 3561 case ICmpInst::ICMP_ULT: 3562 case ICmpInst::ICMP_ULE: 3563 // Comparison is true iff the LHS >=s 0. 3564 if (MaxRecurse) 3565 if (Value *V = SimplifyICmpInst(ICmpInst::ICMP_SGE, SrcOp, 3566 Constant::getNullValue(SrcTy), 3567 Q, MaxRecurse-1)) 3568 return V; 3569 break; 3570 } 3571 } 3572 } 3573 } 3574 } 3575 3576 // icmp eq|ne X, Y -> false|true if X != Y 3577 // This is potentially expensive, and we have already computedKnownBits for 3578 // compares with 0 above here, so only try this for a non-zero compare. 3579 if (ICmpInst::isEquality(Pred) && !match(RHS, m_Zero()) && 3580 isKnownNonEqual(LHS, RHS, Q.DL, Q.AC, Q.CxtI, Q.DT, Q.IIQ.UseInstrInfo)) { 3581 return Pred == ICmpInst::ICMP_NE ? getTrue(ITy) : getFalse(ITy); 3582 } 3583 3584 if (Value *V = simplifyICmpWithBinOp(Pred, LHS, RHS, Q, MaxRecurse)) 3585 return V; 3586 3587 if (Value *V = simplifyICmpWithMinMax(Pred, LHS, RHS, Q, MaxRecurse)) 3588 return V; 3589 3590 if (Value *V = simplifyICmpWithDominatingAssume(Pred, LHS, RHS, Q)) 3591 return V; 3592 3593 // Simplify comparisons of related pointers using a powerful, recursive 3594 // GEP-walk when we have target data available.. 3595 if (LHS->getType()->isPointerTy()) 3596 if (auto *C = computePointerICmp(Pred, LHS, RHS, Q)) 3597 return C; 3598 if (auto *CLHS = dyn_cast<PtrToIntOperator>(LHS)) 3599 if (auto *CRHS = dyn_cast<PtrToIntOperator>(RHS)) 3600 if (Q.DL.getTypeSizeInBits(CLHS->getPointerOperandType()) == 3601 Q.DL.getTypeSizeInBits(CLHS->getType()) && 3602 Q.DL.getTypeSizeInBits(CRHS->getPointerOperandType()) == 3603 Q.DL.getTypeSizeInBits(CRHS->getType())) 3604 if (auto *C = computePointerICmp(Pred, CLHS->getPointerOperand(), 3605 CRHS->getPointerOperand(), Q)) 3606 return C; 3607 3608 if (GetElementPtrInst *GLHS = dyn_cast<GetElementPtrInst>(LHS)) { 3609 if (GEPOperator *GRHS = dyn_cast<GEPOperator>(RHS)) { 3610 if (GLHS->getPointerOperand() == GRHS->getPointerOperand() && 3611 GLHS->hasAllConstantIndices() && GRHS->hasAllConstantIndices() && 3612 (ICmpInst::isEquality(Pred) || 3613 (GLHS->isInBounds() && GRHS->isInBounds() && 3614 Pred == ICmpInst::getSignedPredicate(Pred)))) { 3615 // The bases are equal and the indices are constant. Build a constant 3616 // expression GEP with the same indices and a null base pointer to see 3617 // what constant folding can make out of it. 3618 Constant *Null = Constant::getNullValue(GLHS->getPointerOperandType()); 3619 SmallVector<Value *, 4> IndicesLHS(GLHS->indices()); 3620 Constant *NewLHS = ConstantExpr::getGetElementPtr( 3621 GLHS->getSourceElementType(), Null, IndicesLHS); 3622 3623 SmallVector<Value *, 4> IndicesRHS(GRHS->idx_begin(), GRHS->idx_end()); 3624 Constant *NewRHS = ConstantExpr::getGetElementPtr( 3625 GLHS->getSourceElementType(), Null, IndicesRHS); 3626 Constant *NewICmp = ConstantExpr::getICmp(Pred, NewLHS, NewRHS); 3627 return ConstantFoldConstant(NewICmp, Q.DL); 3628 } 3629 } 3630 } 3631 3632 // If the comparison is with the result of a select instruction, check whether 3633 // comparing with either branch of the select always yields the same value. 3634 if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS)) 3635 if (Value *V = ThreadCmpOverSelect(Pred, LHS, RHS, Q, MaxRecurse)) 3636 return V; 3637 3638 // If the comparison is with the result of a phi instruction, check whether 3639 // doing the compare with each incoming phi value yields a common result. 3640 if (isa<PHINode>(LHS) || isa<PHINode>(RHS)) 3641 if (Value *V = ThreadCmpOverPHI(Pred, LHS, RHS, Q, MaxRecurse)) 3642 return V; 3643 3644 return nullptr; 3645 } 3646 3647 Value *llvm::SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS, 3648 const SimplifyQuery &Q) { 3649 return ::SimplifyICmpInst(Predicate, LHS, RHS, Q, RecursionLimit); 3650 } 3651 3652 /// Given operands for an FCmpInst, see if we can fold the result. 3653 /// If not, this returns null. 3654 static Value *SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS, 3655 FastMathFlags FMF, const SimplifyQuery &Q, 3656 unsigned MaxRecurse) { 3657 CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate; 3658 assert(CmpInst::isFPPredicate(Pred) && "Not an FP compare!"); 3659 3660 if (Constant *CLHS = dyn_cast<Constant>(LHS)) { 3661 if (Constant *CRHS = dyn_cast<Constant>(RHS)) 3662 return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, Q.DL, Q.TLI); 3663 3664 // If we have a constant, make sure it is on the RHS. 3665 std::swap(LHS, RHS); 3666 Pred = CmpInst::getSwappedPredicate(Pred); 3667 } 3668 3669 // Fold trivial predicates. 3670 Type *RetTy = GetCompareTy(LHS); 3671 if (Pred == FCmpInst::FCMP_FALSE) 3672 return getFalse(RetTy); 3673 if (Pred == FCmpInst::FCMP_TRUE) 3674 return getTrue(RetTy); 3675 3676 // Fold (un)ordered comparison if we can determine there are no NaNs. 3677 if (Pred == FCmpInst::FCMP_UNO || Pred == FCmpInst::FCMP_ORD) 3678 if (FMF.noNaNs() || 3679 (isKnownNeverNaN(LHS, Q.TLI) && isKnownNeverNaN(RHS, Q.TLI))) 3680 return ConstantInt::get(RetTy, Pred == FCmpInst::FCMP_ORD); 3681 3682 // NaN is unordered; NaN is not ordered. 3683 assert((FCmpInst::isOrdered(Pred) || FCmpInst::isUnordered(Pred)) && 3684 "Comparison must be either ordered or unordered"); 3685 if (match(RHS, m_NaN())) 3686 return ConstantInt::get(RetTy, CmpInst::isUnordered(Pred)); 3687 3688 // fcmp pred x, undef and fcmp pred undef, x 3689 // fold to true if unordered, false if ordered 3690 if (Q.isUndefValue(LHS) || Q.isUndefValue(RHS)) { 3691 // Choosing NaN for the undef will always make unordered comparison succeed 3692 // and ordered comparison fail. 3693 return ConstantInt::get(RetTy, CmpInst::isUnordered(Pred)); 3694 } 3695 3696 // fcmp x,x -> true/false. Not all compares are foldable. 3697 if (LHS == RHS) { 3698 if (CmpInst::isTrueWhenEqual(Pred)) 3699 return getTrue(RetTy); 3700 if (CmpInst::isFalseWhenEqual(Pred)) 3701 return getFalse(RetTy); 3702 } 3703 3704 // Handle fcmp with constant RHS. 3705 // TODO: Use match with a specific FP value, so these work with vectors with 3706 // undef lanes. 3707 const APFloat *C; 3708 if (match(RHS, m_APFloat(C))) { 3709 // Check whether the constant is an infinity. 3710 if (C->isInfinity()) { 3711 if (C->isNegative()) { 3712 switch (Pred) { 3713 case FCmpInst::FCMP_OLT: 3714 // No value is ordered and less than negative infinity. 3715 return getFalse(RetTy); 3716 case FCmpInst::FCMP_UGE: 3717 // All values are unordered with or at least negative infinity. 3718 return getTrue(RetTy); 3719 default: 3720 break; 3721 } 3722 } else { 3723 switch (Pred) { 3724 case FCmpInst::FCMP_OGT: 3725 // No value is ordered and greater than infinity. 3726 return getFalse(RetTy); 3727 case FCmpInst::FCMP_ULE: 3728 // All values are unordered with and at most infinity. 3729 return getTrue(RetTy); 3730 default: 3731 break; 3732 } 3733 } 3734 3735 // LHS == Inf 3736 if (Pred == FCmpInst::FCMP_OEQ && isKnownNeverInfinity(LHS, Q.TLI)) 3737 return getFalse(RetTy); 3738 // LHS != Inf 3739 if (Pred == FCmpInst::FCMP_UNE && isKnownNeverInfinity(LHS, Q.TLI)) 3740 return getTrue(RetTy); 3741 // LHS == Inf || LHS == NaN 3742 if (Pred == FCmpInst::FCMP_UEQ && isKnownNeverInfinity(LHS, Q.TLI) && 3743 isKnownNeverNaN(LHS, Q.TLI)) 3744 return getFalse(RetTy); 3745 // LHS != Inf && LHS != NaN 3746 if (Pred == FCmpInst::FCMP_ONE && isKnownNeverInfinity(LHS, Q.TLI) && 3747 isKnownNeverNaN(LHS, Q.TLI)) 3748 return getTrue(RetTy); 3749 } 3750 if (C->isNegative() && !C->isNegZero()) { 3751 assert(!C->isNaN() && "Unexpected NaN constant!"); 3752 // TODO: We can catch more cases by using a range check rather than 3753 // relying on CannotBeOrderedLessThanZero. 3754 switch (Pred) { 3755 case FCmpInst::FCMP_UGE: 3756 case FCmpInst::FCMP_UGT: 3757 case FCmpInst::FCMP_UNE: 3758 // (X >= 0) implies (X > C) when (C < 0) 3759 if (CannotBeOrderedLessThanZero(LHS, Q.TLI)) 3760 return getTrue(RetTy); 3761 break; 3762 case FCmpInst::FCMP_OEQ: 3763 case FCmpInst::FCMP_OLE: 3764 case FCmpInst::FCMP_OLT: 3765 // (X >= 0) implies !(X < C) when (C < 0) 3766 if (CannotBeOrderedLessThanZero(LHS, Q.TLI)) 3767 return getFalse(RetTy); 3768 break; 3769 default: 3770 break; 3771 } 3772 } 3773 3774 // Check comparison of [minnum/maxnum with constant] with other constant. 3775 const APFloat *C2; 3776 if ((match(LHS, m_Intrinsic<Intrinsic::minnum>(m_Value(), m_APFloat(C2))) && 3777 *C2 < *C) || 3778 (match(LHS, m_Intrinsic<Intrinsic::maxnum>(m_Value(), m_APFloat(C2))) && 3779 *C2 > *C)) { 3780 bool IsMaxNum = 3781 cast<IntrinsicInst>(LHS)->getIntrinsicID() == Intrinsic::maxnum; 3782 // The ordered relationship and minnum/maxnum guarantee that we do not 3783 // have NaN constants, so ordered/unordered preds are handled the same. 3784 switch (Pred) { 3785 case FCmpInst::FCMP_OEQ: case FCmpInst::FCMP_UEQ: 3786 // minnum(X, LesserC) == C --> false 3787 // maxnum(X, GreaterC) == C --> false 3788 return getFalse(RetTy); 3789 case FCmpInst::FCMP_ONE: case FCmpInst::FCMP_UNE: 3790 // minnum(X, LesserC) != C --> true 3791 // maxnum(X, GreaterC) != C --> true 3792 return getTrue(RetTy); 3793 case FCmpInst::FCMP_OGE: case FCmpInst::FCMP_UGE: 3794 case FCmpInst::FCMP_OGT: case FCmpInst::FCMP_UGT: 3795 // minnum(X, LesserC) >= C --> false 3796 // minnum(X, LesserC) > C --> false 3797 // maxnum(X, GreaterC) >= C --> true 3798 // maxnum(X, GreaterC) > C --> true 3799 return ConstantInt::get(RetTy, IsMaxNum); 3800 case FCmpInst::FCMP_OLE: case FCmpInst::FCMP_ULE: 3801 case FCmpInst::FCMP_OLT: case FCmpInst::FCMP_ULT: 3802 // minnum(X, LesserC) <= C --> true 3803 // minnum(X, LesserC) < C --> true 3804 // maxnum(X, GreaterC) <= C --> false 3805 // maxnum(X, GreaterC) < C --> false 3806 return ConstantInt::get(RetTy, !IsMaxNum); 3807 default: 3808 // TRUE/FALSE/ORD/UNO should be handled before this. 3809 llvm_unreachable("Unexpected fcmp predicate"); 3810 } 3811 } 3812 } 3813 3814 if (match(RHS, m_AnyZeroFP())) { 3815 switch (Pred) { 3816 case FCmpInst::FCMP_OGE: 3817 case FCmpInst::FCMP_ULT: 3818 // Positive or zero X >= 0.0 --> true 3819 // Positive or zero X < 0.0 --> false 3820 if ((FMF.noNaNs() || isKnownNeverNaN(LHS, Q.TLI)) && 3821 CannotBeOrderedLessThanZero(LHS, Q.TLI)) 3822 return Pred == FCmpInst::FCMP_OGE ? getTrue(RetTy) : getFalse(RetTy); 3823 break; 3824 case FCmpInst::FCMP_UGE: 3825 case FCmpInst::FCMP_OLT: 3826 // Positive or zero or nan X >= 0.0 --> true 3827 // Positive or zero or nan X < 0.0 --> false 3828 if (CannotBeOrderedLessThanZero(LHS, Q.TLI)) 3829 return Pred == FCmpInst::FCMP_UGE ? getTrue(RetTy) : getFalse(RetTy); 3830 break; 3831 default: 3832 break; 3833 } 3834 } 3835 3836 // If the comparison is with the result of a select instruction, check whether 3837 // comparing with either branch of the select always yields the same value. 3838 if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS)) 3839 if (Value *V = ThreadCmpOverSelect(Pred, LHS, RHS, Q, MaxRecurse)) 3840 return V; 3841 3842 // If the comparison is with the result of a phi instruction, check whether 3843 // doing the compare with each incoming phi value yields a common result. 3844 if (isa<PHINode>(LHS) || isa<PHINode>(RHS)) 3845 if (Value *V = ThreadCmpOverPHI(Pred, LHS, RHS, Q, MaxRecurse)) 3846 return V; 3847 3848 return nullptr; 3849 } 3850 3851 Value *llvm::SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS, 3852 FastMathFlags FMF, const SimplifyQuery &Q) { 3853 return ::SimplifyFCmpInst(Predicate, LHS, RHS, FMF, Q, RecursionLimit); 3854 } 3855 3856 static Value *simplifyWithOpReplaced(Value *V, Value *Op, Value *RepOp, 3857 const SimplifyQuery &Q, 3858 bool AllowRefinement, 3859 unsigned MaxRecurse) { 3860 assert(!Op->getType()->isVectorTy() && "This is not safe for vectors"); 3861 3862 // Trivial replacement. 3863 if (V == Op) 3864 return RepOp; 3865 3866 // We cannot replace a constant, and shouldn't even try. 3867 if (isa<Constant>(Op)) 3868 return nullptr; 3869 3870 auto *I = dyn_cast<Instruction>(V); 3871 if (!I || !is_contained(I->operands(), Op)) 3872 return nullptr; 3873 3874 // Replace Op with RepOp in instruction operands. 3875 SmallVector<Value *, 8> NewOps(I->getNumOperands()); 3876 transform(I->operands(), NewOps.begin(), 3877 [&](Value *V) { return V == Op ? RepOp : V; }); 3878 3879 if (!AllowRefinement) { 3880 // General InstSimplify functions may refine the result, e.g. by returning 3881 // a constant for a potentially poison value. To avoid this, implement only 3882 // a few non-refining but profitable transforms here. 3883 3884 if (auto *BO = dyn_cast<BinaryOperator>(I)) { 3885 unsigned Opcode = BO->getOpcode(); 3886 // id op x -> x, x op id -> x 3887 if (NewOps[0] == ConstantExpr::getBinOpIdentity(Opcode, I->getType())) 3888 return NewOps[1]; 3889 if (NewOps[1] == ConstantExpr::getBinOpIdentity(Opcode, I->getType(), 3890 /* RHS */ true)) 3891 return NewOps[0]; 3892 3893 // x & x -> x, x | x -> x 3894 if ((Opcode == Instruction::And || Opcode == Instruction::Or) && 3895 NewOps[0] == NewOps[1]) 3896 return NewOps[0]; 3897 } 3898 3899 if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) { 3900 // getelementptr x, 0 -> x 3901 if (NewOps.size() == 2 && match(NewOps[1], m_Zero()) && 3902 !GEP->isInBounds()) 3903 return NewOps[0]; 3904 } 3905 } else if (MaxRecurse) { 3906 // The simplification queries below may return the original value. Consider: 3907 // %div = udiv i32 %arg, %arg2 3908 // %mul = mul nsw i32 %div, %arg2 3909 // %cmp = icmp eq i32 %mul, %arg 3910 // %sel = select i1 %cmp, i32 %div, i32 undef 3911 // Replacing %arg by %mul, %div becomes "udiv i32 %mul, %arg2", which 3912 // simplifies back to %arg. This can only happen because %mul does not 3913 // dominate %div. To ensure a consistent return value contract, we make sure 3914 // that this case returns nullptr as well. 3915 auto PreventSelfSimplify = [V](Value *Simplified) { 3916 return Simplified != V ? Simplified : nullptr; 3917 }; 3918 3919 if (auto *B = dyn_cast<BinaryOperator>(I)) 3920 return PreventSelfSimplify(SimplifyBinOp(B->getOpcode(), NewOps[0], 3921 NewOps[1], Q, MaxRecurse - 1)); 3922 3923 if (CmpInst *C = dyn_cast<CmpInst>(I)) 3924 return PreventSelfSimplify(SimplifyCmpInst(C->getPredicate(), NewOps[0], 3925 NewOps[1], Q, MaxRecurse - 1)); 3926 3927 if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) 3928 return PreventSelfSimplify(SimplifyGEPInst(GEP->getSourceElementType(), 3929 NewOps, Q, MaxRecurse - 1)); 3930 3931 if (isa<SelectInst>(I)) 3932 return PreventSelfSimplify( 3933 SimplifySelectInst(NewOps[0], NewOps[1], NewOps[2], Q, 3934 MaxRecurse - 1)); 3935 // TODO: We could hand off more cases to instsimplify here. 3936 } 3937 3938 // If all operands are constant after substituting Op for RepOp then we can 3939 // constant fold the instruction. 3940 SmallVector<Constant *, 8> ConstOps; 3941 for (Value *NewOp : NewOps) { 3942 if (Constant *ConstOp = dyn_cast<Constant>(NewOp)) 3943 ConstOps.push_back(ConstOp); 3944 else 3945 return nullptr; 3946 } 3947 3948 // Consider: 3949 // %cmp = icmp eq i32 %x, 2147483647 3950 // %add = add nsw i32 %x, 1 3951 // %sel = select i1 %cmp, i32 -2147483648, i32 %add 3952 // 3953 // We can't replace %sel with %add unless we strip away the flags (which 3954 // will be done in InstCombine). 3955 // TODO: This may be unsound, because it only catches some forms of 3956 // refinement. 3957 if (!AllowRefinement && canCreatePoison(cast<Operator>(I))) 3958 return nullptr; 3959 3960 if (CmpInst *C = dyn_cast<CmpInst>(I)) 3961 return ConstantFoldCompareInstOperands(C->getPredicate(), ConstOps[0], 3962 ConstOps[1], Q.DL, Q.TLI); 3963 3964 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 3965 if (!LI->isVolatile()) 3966 return ConstantFoldLoadFromConstPtr(ConstOps[0], LI->getType(), Q.DL); 3967 3968 return ConstantFoldInstOperands(I, ConstOps, Q.DL, Q.TLI); 3969 } 3970 3971 Value *llvm::simplifyWithOpReplaced(Value *V, Value *Op, Value *RepOp, 3972 const SimplifyQuery &Q, 3973 bool AllowRefinement) { 3974 return ::simplifyWithOpReplaced(V, Op, RepOp, Q, AllowRefinement, 3975 RecursionLimit); 3976 } 3977 3978 /// Try to simplify a select instruction when its condition operand is an 3979 /// integer comparison where one operand of the compare is a constant. 3980 static Value *simplifySelectBitTest(Value *TrueVal, Value *FalseVal, Value *X, 3981 const APInt *Y, bool TrueWhenUnset) { 3982 const APInt *C; 3983 3984 // (X & Y) == 0 ? X & ~Y : X --> X 3985 // (X & Y) != 0 ? X & ~Y : X --> X & ~Y 3986 if (FalseVal == X && match(TrueVal, m_And(m_Specific(X), m_APInt(C))) && 3987 *Y == ~*C) 3988 return TrueWhenUnset ? FalseVal : TrueVal; 3989 3990 // (X & Y) == 0 ? X : X & ~Y --> X & ~Y 3991 // (X & Y) != 0 ? X : X & ~Y --> X 3992 if (TrueVal == X && match(FalseVal, m_And(m_Specific(X), m_APInt(C))) && 3993 *Y == ~*C) 3994 return TrueWhenUnset ? FalseVal : TrueVal; 3995 3996 if (Y->isPowerOf2()) { 3997 // (X & Y) == 0 ? X | Y : X --> X | Y 3998 // (X & Y) != 0 ? X | Y : X --> X 3999 if (FalseVal == X && match(TrueVal, m_Or(m_Specific(X), m_APInt(C))) && 4000 *Y == *C) 4001 return TrueWhenUnset ? TrueVal : FalseVal; 4002 4003 // (X & Y) == 0 ? X : X | Y --> X 4004 // (X & Y) != 0 ? X : X | Y --> X | Y 4005 if (TrueVal == X && match(FalseVal, m_Or(m_Specific(X), m_APInt(C))) && 4006 *Y == *C) 4007 return TrueWhenUnset ? TrueVal : FalseVal; 4008 } 4009 4010 return nullptr; 4011 } 4012 4013 /// An alternative way to test if a bit is set or not uses sgt/slt instead of 4014 /// eq/ne. 4015 static Value *simplifySelectWithFakeICmpEq(Value *CmpLHS, Value *CmpRHS, 4016 ICmpInst::Predicate Pred, 4017 Value *TrueVal, Value *FalseVal) { 4018 Value *X; 4019 APInt Mask; 4020 if (!decomposeBitTestICmp(CmpLHS, CmpRHS, Pred, X, Mask)) 4021 return nullptr; 4022 4023 return simplifySelectBitTest(TrueVal, FalseVal, X, &Mask, 4024 Pred == ICmpInst::ICMP_EQ); 4025 } 4026 4027 /// Try to simplify a select instruction when its condition operand is an 4028 /// integer comparison. 4029 static Value *simplifySelectWithICmpCond(Value *CondVal, Value *TrueVal, 4030 Value *FalseVal, const SimplifyQuery &Q, 4031 unsigned MaxRecurse) { 4032 ICmpInst::Predicate Pred; 4033 Value *CmpLHS, *CmpRHS; 4034 if (!match(CondVal, m_ICmp(Pred, m_Value(CmpLHS), m_Value(CmpRHS)))) 4035 return nullptr; 4036 4037 // Canonicalize ne to eq predicate. 4038 if (Pred == ICmpInst::ICMP_NE) { 4039 Pred = ICmpInst::ICMP_EQ; 4040 std::swap(TrueVal, FalseVal); 4041 } 4042 4043 if (Pred == ICmpInst::ICMP_EQ && match(CmpRHS, m_Zero())) { 4044 Value *X; 4045 const APInt *Y; 4046 if (match(CmpLHS, m_And(m_Value(X), m_APInt(Y)))) 4047 if (Value *V = simplifySelectBitTest(TrueVal, FalseVal, X, Y, 4048 /*TrueWhenUnset=*/true)) 4049 return V; 4050 4051 // Test for a bogus zero-shift-guard-op around funnel-shift or rotate. 4052 Value *ShAmt; 4053 auto isFsh = m_CombineOr(m_FShl(m_Value(X), m_Value(), m_Value(ShAmt)), 4054 m_FShr(m_Value(), m_Value(X), m_Value(ShAmt))); 4055 // (ShAmt == 0) ? fshl(X, *, ShAmt) : X --> X 4056 // (ShAmt == 0) ? fshr(*, X, ShAmt) : X --> X 4057 if (match(TrueVal, isFsh) && FalseVal == X && CmpLHS == ShAmt) 4058 return X; 4059 4060 // Test for a zero-shift-guard-op around rotates. These are used to 4061 // avoid UB from oversized shifts in raw IR rotate patterns, but the 4062 // intrinsics do not have that problem. 4063 // We do not allow this transform for the general funnel shift case because 4064 // that would not preserve the poison safety of the original code. 4065 auto isRotate = 4066 m_CombineOr(m_FShl(m_Value(X), m_Deferred(X), m_Value(ShAmt)), 4067 m_FShr(m_Value(X), m_Deferred(X), m_Value(ShAmt))); 4068 // (ShAmt == 0) ? X : fshl(X, X, ShAmt) --> fshl(X, X, ShAmt) 4069 // (ShAmt == 0) ? X : fshr(X, X, ShAmt) --> fshr(X, X, ShAmt) 4070 if (match(FalseVal, isRotate) && TrueVal == X && CmpLHS == ShAmt && 4071 Pred == ICmpInst::ICMP_EQ) 4072 return FalseVal; 4073 4074 // X == 0 ? abs(X) : -abs(X) --> -abs(X) 4075 // X == 0 ? -abs(X) : abs(X) --> abs(X) 4076 if (match(TrueVal, m_Intrinsic<Intrinsic::abs>(m_Specific(CmpLHS))) && 4077 match(FalseVal, m_Neg(m_Intrinsic<Intrinsic::abs>(m_Specific(CmpLHS))))) 4078 return FalseVal; 4079 if (match(TrueVal, 4080 m_Neg(m_Intrinsic<Intrinsic::abs>(m_Specific(CmpLHS)))) && 4081 match(FalseVal, m_Intrinsic<Intrinsic::abs>(m_Specific(CmpLHS)))) 4082 return FalseVal; 4083 } 4084 4085 // Check for other compares that behave like bit test. 4086 if (Value *V = simplifySelectWithFakeICmpEq(CmpLHS, CmpRHS, Pred, 4087 TrueVal, FalseVal)) 4088 return V; 4089 4090 // If we have a scalar equality comparison, then we know the value in one of 4091 // the arms of the select. See if substituting this value into the arm and 4092 // simplifying the result yields the same value as the other arm. 4093 // Note that the equivalence/replacement opportunity does not hold for vectors 4094 // because each element of a vector select is chosen independently. 4095 if (Pred == ICmpInst::ICMP_EQ && !CondVal->getType()->isVectorTy()) { 4096 if (simplifyWithOpReplaced(FalseVal, CmpLHS, CmpRHS, Q, 4097 /* AllowRefinement */ false, MaxRecurse) == 4098 TrueVal || 4099 simplifyWithOpReplaced(FalseVal, CmpRHS, CmpLHS, Q, 4100 /* AllowRefinement */ false, MaxRecurse) == 4101 TrueVal) 4102 return FalseVal; 4103 if (simplifyWithOpReplaced(TrueVal, CmpLHS, CmpRHS, Q, 4104 /* AllowRefinement */ true, MaxRecurse) == 4105 FalseVal || 4106 simplifyWithOpReplaced(TrueVal, CmpRHS, CmpLHS, Q, 4107 /* AllowRefinement */ true, MaxRecurse) == 4108 FalseVal) 4109 return FalseVal; 4110 } 4111 4112 return nullptr; 4113 } 4114 4115 /// Try to simplify a select instruction when its condition operand is a 4116 /// floating-point comparison. 4117 static Value *simplifySelectWithFCmp(Value *Cond, Value *T, Value *F, 4118 const SimplifyQuery &Q) { 4119 FCmpInst::Predicate Pred; 4120 if (!match(Cond, m_FCmp(Pred, m_Specific(T), m_Specific(F))) && 4121 !match(Cond, m_FCmp(Pred, m_Specific(F), m_Specific(T)))) 4122 return nullptr; 4123 4124 // This transform is safe if we do not have (do not care about) -0.0 or if 4125 // at least one operand is known to not be -0.0. Otherwise, the select can 4126 // change the sign of a zero operand. 4127 bool HasNoSignedZeros = Q.CxtI && isa<FPMathOperator>(Q.CxtI) && 4128 Q.CxtI->hasNoSignedZeros(); 4129 const APFloat *C; 4130 if (HasNoSignedZeros || (match(T, m_APFloat(C)) && C->isNonZero()) || 4131 (match(F, m_APFloat(C)) && C->isNonZero())) { 4132 // (T == F) ? T : F --> F 4133 // (F == T) ? T : F --> F 4134 if (Pred == FCmpInst::FCMP_OEQ) 4135 return F; 4136 4137 // (T != F) ? T : F --> T 4138 // (F != T) ? T : F --> T 4139 if (Pred == FCmpInst::FCMP_UNE) 4140 return T; 4141 } 4142 4143 return nullptr; 4144 } 4145 4146 /// Given operands for a SelectInst, see if we can fold the result. 4147 /// If not, this returns null. 4148 static Value *SimplifySelectInst(Value *Cond, Value *TrueVal, Value *FalseVal, 4149 const SimplifyQuery &Q, unsigned MaxRecurse) { 4150 if (auto *CondC = dyn_cast<Constant>(Cond)) { 4151 if (auto *TrueC = dyn_cast<Constant>(TrueVal)) 4152 if (auto *FalseC = dyn_cast<Constant>(FalseVal)) 4153 return ConstantFoldSelectInstruction(CondC, TrueC, FalseC); 4154 4155 // select undef, X, Y -> X or Y 4156 if (Q.isUndefValue(CondC)) 4157 return isa<Constant>(FalseVal) ? FalseVal : TrueVal; 4158 4159 // select true, X, Y --> X 4160 // select false, X, Y --> Y 4161 // For vectors, allow undef/poison elements in the condition to match the 4162 // defined elements, so we can eliminate the select. 4163 if (match(CondC, m_One())) 4164 return TrueVal; 4165 if (match(CondC, m_Zero())) 4166 return FalseVal; 4167 } 4168 4169 // select i1 Cond, i1 true, i1 false --> i1 Cond 4170 assert(Cond->getType()->isIntOrIntVectorTy(1) && 4171 "Select must have bool or bool vector condition"); 4172 assert(TrueVal->getType() == FalseVal->getType() && 4173 "Select must have same types for true/false ops"); 4174 if (Cond->getType() == TrueVal->getType() && 4175 match(TrueVal, m_One()) && match(FalseVal, m_ZeroInt())) 4176 return Cond; 4177 4178 // select ?, X, X -> X 4179 if (TrueVal == FalseVal) 4180 return TrueVal; 4181 4182 // If the true or false value is undef, we can fold to the other value as 4183 // long as the other value isn't poison. 4184 // select ?, undef, X -> X 4185 if (Q.isUndefValue(TrueVal) && 4186 isGuaranteedNotToBeUndefOrPoison(FalseVal, Q.AC, Q.CxtI, Q.DT)) 4187 return FalseVal; 4188 // select ?, X, undef -> X 4189 if (Q.isUndefValue(FalseVal) && 4190 isGuaranteedNotToBeUndefOrPoison(TrueVal, Q.AC, Q.CxtI, Q.DT)) 4191 return TrueVal; 4192 4193 // Deal with partial undef vector constants: select ?, VecC, VecC' --> VecC'' 4194 Constant *TrueC, *FalseC; 4195 if (isa<FixedVectorType>(TrueVal->getType()) && 4196 match(TrueVal, m_Constant(TrueC)) && 4197 match(FalseVal, m_Constant(FalseC))) { 4198 unsigned NumElts = 4199 cast<FixedVectorType>(TrueC->getType())->getNumElements(); 4200 SmallVector<Constant *, 16> NewC; 4201 for (unsigned i = 0; i != NumElts; ++i) { 4202 // Bail out on incomplete vector constants. 4203 Constant *TEltC = TrueC->getAggregateElement(i); 4204 Constant *FEltC = FalseC->getAggregateElement(i); 4205 if (!TEltC || !FEltC) 4206 break; 4207 4208 // If the elements match (undef or not), that value is the result. If only 4209 // one element is undef, choose the defined element as the safe result. 4210 if (TEltC == FEltC) 4211 NewC.push_back(TEltC); 4212 else if (Q.isUndefValue(TEltC) && 4213 isGuaranteedNotToBeUndefOrPoison(FEltC)) 4214 NewC.push_back(FEltC); 4215 else if (Q.isUndefValue(FEltC) && 4216 isGuaranteedNotToBeUndefOrPoison(TEltC)) 4217 NewC.push_back(TEltC); 4218 else 4219 break; 4220 } 4221 if (NewC.size() == NumElts) 4222 return ConstantVector::get(NewC); 4223 } 4224 4225 if (Value *V = 4226 simplifySelectWithICmpCond(Cond, TrueVal, FalseVal, Q, MaxRecurse)) 4227 return V; 4228 4229 if (Value *V = simplifySelectWithFCmp(Cond, TrueVal, FalseVal, Q)) 4230 return V; 4231 4232 if (Value *V = foldSelectWithBinaryOp(Cond, TrueVal, FalseVal)) 4233 return V; 4234 4235 Optional<bool> Imp = isImpliedByDomCondition(Cond, Q.CxtI, Q.DL); 4236 if (Imp) 4237 return *Imp ? TrueVal : FalseVal; 4238 4239 return nullptr; 4240 } 4241 4242 Value *llvm::SimplifySelectInst(Value *Cond, Value *TrueVal, Value *FalseVal, 4243 const SimplifyQuery &Q) { 4244 return ::SimplifySelectInst(Cond, TrueVal, FalseVal, Q, RecursionLimit); 4245 } 4246 4247 /// Given operands for an GetElementPtrInst, see if we can fold the result. 4248 /// If not, this returns null. 4249 static Value *SimplifyGEPInst(Type *SrcTy, ArrayRef<Value *> Ops, 4250 const SimplifyQuery &Q, unsigned) { 4251 // The type of the GEP pointer operand. 4252 unsigned AS = 4253 cast<PointerType>(Ops[0]->getType()->getScalarType())->getAddressSpace(); 4254 4255 // getelementptr P -> P. 4256 if (Ops.size() == 1) 4257 return Ops[0]; 4258 4259 // Compute the (pointer) type returned by the GEP instruction. 4260 Type *LastType = GetElementPtrInst::getIndexedType(SrcTy, Ops.slice(1)); 4261 Type *GEPTy = PointerType::get(LastType, AS); 4262 for (Value *Op : Ops) { 4263 // If one of the operands is a vector, the result type is a vector of 4264 // pointers. All vector operands must have the same number of elements. 4265 if (VectorType *VT = dyn_cast<VectorType>(Op->getType())) { 4266 GEPTy = VectorType::get(GEPTy, VT->getElementCount()); 4267 break; 4268 } 4269 } 4270 4271 // getelementptr poison, idx -> poison 4272 // getelementptr baseptr, poison -> poison 4273 if (any_of(Ops, [](const auto *V) { return isa<PoisonValue>(V); })) 4274 return PoisonValue::get(GEPTy); 4275 4276 if (Q.isUndefValue(Ops[0])) 4277 return UndefValue::get(GEPTy); 4278 4279 bool IsScalableVec = 4280 isa<ScalableVectorType>(SrcTy) || any_of(Ops, [](const Value *V) { 4281 return isa<ScalableVectorType>(V->getType()); 4282 }); 4283 4284 if (Ops.size() == 2) { 4285 // getelementptr P, 0 -> P. 4286 if (match(Ops[1], m_Zero()) && Ops[0]->getType() == GEPTy) 4287 return Ops[0]; 4288 4289 Type *Ty = SrcTy; 4290 if (!IsScalableVec && Ty->isSized()) { 4291 Value *P; 4292 uint64_t C; 4293 uint64_t TyAllocSize = Q.DL.getTypeAllocSize(Ty); 4294 // getelementptr P, N -> P if P points to a type of zero size. 4295 if (TyAllocSize == 0 && Ops[0]->getType() == GEPTy) 4296 return Ops[0]; 4297 4298 // The following transforms are only safe if the ptrtoint cast 4299 // doesn't truncate the pointers. 4300 if (Ops[1]->getType()->getScalarSizeInBits() == 4301 Q.DL.getPointerSizeInBits(AS)) { 4302 auto CanSimplify = [GEPTy, &P, V = Ops[0]]() -> bool { 4303 return P->getType() == GEPTy && 4304 getUnderlyingObject(P) == getUnderlyingObject(V); 4305 }; 4306 // getelementptr V, (sub P, V) -> P if P points to a type of size 1. 4307 if (TyAllocSize == 1 && 4308 match(Ops[1], m_Sub(m_PtrToInt(m_Value(P)), 4309 m_PtrToInt(m_Specific(Ops[0])))) && 4310 CanSimplify()) 4311 return P; 4312 4313 // getelementptr V, (ashr (sub P, V), C) -> P if P points to a type of 4314 // size 1 << C. 4315 if (match(Ops[1], m_AShr(m_Sub(m_PtrToInt(m_Value(P)), 4316 m_PtrToInt(m_Specific(Ops[0]))), 4317 m_ConstantInt(C))) && 4318 TyAllocSize == 1ULL << C && CanSimplify()) 4319 return P; 4320 4321 // getelementptr V, (sdiv (sub P, V), C) -> P if P points to a type of 4322 // size C. 4323 if (match(Ops[1], m_SDiv(m_Sub(m_PtrToInt(m_Value(P)), 4324 m_PtrToInt(m_Specific(Ops[0]))), 4325 m_SpecificInt(TyAllocSize))) && 4326 CanSimplify()) 4327 return P; 4328 } 4329 } 4330 } 4331 4332 if (!IsScalableVec && Q.DL.getTypeAllocSize(LastType) == 1 && 4333 all_of(Ops.slice(1).drop_back(1), 4334 [](Value *Idx) { return match(Idx, m_Zero()); })) { 4335 unsigned IdxWidth = 4336 Q.DL.getIndexSizeInBits(Ops[0]->getType()->getPointerAddressSpace()); 4337 if (Q.DL.getTypeSizeInBits(Ops.back()->getType()) == IdxWidth) { 4338 APInt BasePtrOffset(IdxWidth, 0); 4339 Value *StrippedBasePtr = 4340 Ops[0]->stripAndAccumulateInBoundsConstantOffsets(Q.DL, 4341 BasePtrOffset); 4342 4343 // Avoid creating inttoptr of zero here: While LLVMs treatment of 4344 // inttoptr is generally conservative, this particular case is folded to 4345 // a null pointer, which will have incorrect provenance. 4346 4347 // gep (gep V, C), (sub 0, V) -> C 4348 if (match(Ops.back(), 4349 m_Sub(m_Zero(), m_PtrToInt(m_Specific(StrippedBasePtr)))) && 4350 !BasePtrOffset.isNullValue()) { 4351 auto *CI = ConstantInt::get(GEPTy->getContext(), BasePtrOffset); 4352 return ConstantExpr::getIntToPtr(CI, GEPTy); 4353 } 4354 // gep (gep V, C), (xor V, -1) -> C-1 4355 if (match(Ops.back(), 4356 m_Xor(m_PtrToInt(m_Specific(StrippedBasePtr)), m_AllOnes())) && 4357 !BasePtrOffset.isOneValue()) { 4358 auto *CI = ConstantInt::get(GEPTy->getContext(), BasePtrOffset - 1); 4359 return ConstantExpr::getIntToPtr(CI, GEPTy); 4360 } 4361 } 4362 } 4363 4364 // Check to see if this is constant foldable. 4365 if (!all_of(Ops, [](Value *V) { return isa<Constant>(V); })) 4366 return nullptr; 4367 4368 auto *CE = ConstantExpr::getGetElementPtr(SrcTy, cast<Constant>(Ops[0]), 4369 Ops.slice(1)); 4370 return ConstantFoldConstant(CE, Q.DL); 4371 } 4372 4373 Value *llvm::SimplifyGEPInst(Type *SrcTy, ArrayRef<Value *> Ops, 4374 const SimplifyQuery &Q) { 4375 return ::SimplifyGEPInst(SrcTy, Ops, Q, RecursionLimit); 4376 } 4377 4378 /// Given operands for an InsertValueInst, see if we can fold the result. 4379 /// If not, this returns null. 4380 static Value *SimplifyInsertValueInst(Value *Agg, Value *Val, 4381 ArrayRef<unsigned> Idxs, const SimplifyQuery &Q, 4382 unsigned) { 4383 if (Constant *CAgg = dyn_cast<Constant>(Agg)) 4384 if (Constant *CVal = dyn_cast<Constant>(Val)) 4385 return ConstantFoldInsertValueInstruction(CAgg, CVal, Idxs); 4386 4387 // insertvalue x, undef, n -> x 4388 if (Q.isUndefValue(Val)) 4389 return Agg; 4390 4391 // insertvalue x, (extractvalue y, n), n 4392 if (ExtractValueInst *EV = dyn_cast<ExtractValueInst>(Val)) 4393 if (EV->getAggregateOperand()->getType() == Agg->getType() && 4394 EV->getIndices() == Idxs) { 4395 // insertvalue undef, (extractvalue y, n), n -> y 4396 if (Q.isUndefValue(Agg)) 4397 return EV->getAggregateOperand(); 4398 4399 // insertvalue y, (extractvalue y, n), n -> y 4400 if (Agg == EV->getAggregateOperand()) 4401 return Agg; 4402 } 4403 4404 return nullptr; 4405 } 4406 4407 Value *llvm::SimplifyInsertValueInst(Value *Agg, Value *Val, 4408 ArrayRef<unsigned> Idxs, 4409 const SimplifyQuery &Q) { 4410 return ::SimplifyInsertValueInst(Agg, Val, Idxs, Q, RecursionLimit); 4411 } 4412 4413 Value *llvm::SimplifyInsertElementInst(Value *Vec, Value *Val, Value *Idx, 4414 const SimplifyQuery &Q) { 4415 // Try to constant fold. 4416 auto *VecC = dyn_cast<Constant>(Vec); 4417 auto *ValC = dyn_cast<Constant>(Val); 4418 auto *IdxC = dyn_cast<Constant>(Idx); 4419 if (VecC && ValC && IdxC) 4420 return ConstantExpr::getInsertElement(VecC, ValC, IdxC); 4421 4422 // For fixed-length vector, fold into poison if index is out of bounds. 4423 if (auto *CI = dyn_cast<ConstantInt>(Idx)) { 4424 if (isa<FixedVectorType>(Vec->getType()) && 4425 CI->uge(cast<FixedVectorType>(Vec->getType())->getNumElements())) 4426 return PoisonValue::get(Vec->getType()); 4427 } 4428 4429 // If index is undef, it might be out of bounds (see above case) 4430 if (Q.isUndefValue(Idx)) 4431 return PoisonValue::get(Vec->getType()); 4432 4433 // If the scalar is poison, or it is undef and there is no risk of 4434 // propagating poison from the vector value, simplify to the vector value. 4435 if (isa<PoisonValue>(Val) || 4436 (Q.isUndefValue(Val) && isGuaranteedNotToBePoison(Vec))) 4437 return Vec; 4438 4439 // If we are extracting a value from a vector, then inserting it into the same 4440 // place, that's the input vector: 4441 // insertelt Vec, (extractelt Vec, Idx), Idx --> Vec 4442 if (match(Val, m_ExtractElt(m_Specific(Vec), m_Specific(Idx)))) 4443 return Vec; 4444 4445 return nullptr; 4446 } 4447 4448 /// Given operands for an ExtractValueInst, see if we can fold the result. 4449 /// If not, this returns null. 4450 static Value *SimplifyExtractValueInst(Value *Agg, ArrayRef<unsigned> Idxs, 4451 const SimplifyQuery &, unsigned) { 4452 if (auto *CAgg = dyn_cast<Constant>(Agg)) 4453 return ConstantFoldExtractValueInstruction(CAgg, Idxs); 4454 4455 // extractvalue x, (insertvalue y, elt, n), n -> elt 4456 unsigned NumIdxs = Idxs.size(); 4457 for (auto *IVI = dyn_cast<InsertValueInst>(Agg); IVI != nullptr; 4458 IVI = dyn_cast<InsertValueInst>(IVI->getAggregateOperand())) { 4459 ArrayRef<unsigned> InsertValueIdxs = IVI->getIndices(); 4460 unsigned NumInsertValueIdxs = InsertValueIdxs.size(); 4461 unsigned NumCommonIdxs = std::min(NumInsertValueIdxs, NumIdxs); 4462 if (InsertValueIdxs.slice(0, NumCommonIdxs) == 4463 Idxs.slice(0, NumCommonIdxs)) { 4464 if (NumIdxs == NumInsertValueIdxs) 4465 return IVI->getInsertedValueOperand(); 4466 break; 4467 } 4468 } 4469 4470 return nullptr; 4471 } 4472 4473 Value *llvm::SimplifyExtractValueInst(Value *Agg, ArrayRef<unsigned> Idxs, 4474 const SimplifyQuery &Q) { 4475 return ::SimplifyExtractValueInst(Agg, Idxs, Q, RecursionLimit); 4476 } 4477 4478 /// Given operands for an ExtractElementInst, see if we can fold the result. 4479 /// If not, this returns null. 4480 static Value *SimplifyExtractElementInst(Value *Vec, Value *Idx, 4481 const SimplifyQuery &Q, unsigned) { 4482 auto *VecVTy = cast<VectorType>(Vec->getType()); 4483 if (auto *CVec = dyn_cast<Constant>(Vec)) { 4484 if (auto *CIdx = dyn_cast<Constant>(Idx)) 4485 return ConstantExpr::getExtractElement(CVec, CIdx); 4486 4487 // The index is not relevant if our vector is a splat. 4488 if (auto *Splat = CVec->getSplatValue()) 4489 return Splat; 4490 4491 if (Q.isUndefValue(Vec)) 4492 return UndefValue::get(VecVTy->getElementType()); 4493 } 4494 4495 // If extracting a specified index from the vector, see if we can recursively 4496 // find a previously computed scalar that was inserted into the vector. 4497 if (auto *IdxC = dyn_cast<ConstantInt>(Idx)) { 4498 // For fixed-length vector, fold into undef if index is out of bounds. 4499 unsigned MinNumElts = VecVTy->getElementCount().getKnownMinValue(); 4500 if (isa<FixedVectorType>(VecVTy) && IdxC->getValue().uge(MinNumElts)) 4501 return PoisonValue::get(VecVTy->getElementType()); 4502 // Handle case where an element is extracted from a splat. 4503 if (IdxC->getValue().ult(MinNumElts)) 4504 if (auto *Splat = getSplatValue(Vec)) 4505 return Splat; 4506 if (Value *Elt = findScalarElement(Vec, IdxC->getZExtValue())) 4507 return Elt; 4508 } 4509 4510 // An undef extract index can be arbitrarily chosen to be an out-of-range 4511 // index value, which would result in the instruction being poison. 4512 if (Q.isUndefValue(Idx)) 4513 return PoisonValue::get(VecVTy->getElementType()); 4514 4515 return nullptr; 4516 } 4517 4518 Value *llvm::SimplifyExtractElementInst(Value *Vec, Value *Idx, 4519 const SimplifyQuery &Q) { 4520 return ::SimplifyExtractElementInst(Vec, Idx, Q, RecursionLimit); 4521 } 4522 4523 /// See if we can fold the given phi. If not, returns null. 4524 static Value *SimplifyPHINode(PHINode *PN, const SimplifyQuery &Q) { 4525 // WARNING: no matter how worthwhile it may seem, we can not perform PHI CSE 4526 // here, because the PHI we may succeed simplifying to was not 4527 // def-reachable from the original PHI! 4528 4529 // If all of the PHI's incoming values are the same then replace the PHI node 4530 // with the common value. 4531 Value *CommonValue = nullptr; 4532 bool HasUndefInput = false; 4533 for (Value *Incoming : PN->incoming_values()) { 4534 // If the incoming value is the phi node itself, it can safely be skipped. 4535 if (Incoming == PN) continue; 4536 if (Q.isUndefValue(Incoming)) { 4537 // Remember that we saw an undef value, but otherwise ignore them. 4538 HasUndefInput = true; 4539 continue; 4540 } 4541 if (CommonValue && Incoming != CommonValue) 4542 return nullptr; // Not the same, bail out. 4543 CommonValue = Incoming; 4544 } 4545 4546 // If CommonValue is null then all of the incoming values were either undef or 4547 // equal to the phi node itself. 4548 if (!CommonValue) 4549 return UndefValue::get(PN->getType()); 4550 4551 // If we have a PHI node like phi(X, undef, X), where X is defined by some 4552 // instruction, we cannot return X as the result of the PHI node unless it 4553 // dominates the PHI block. 4554 if (HasUndefInput) 4555 return valueDominatesPHI(CommonValue, PN, Q.DT) ? CommonValue : nullptr; 4556 4557 return CommonValue; 4558 } 4559 4560 static Value *SimplifyCastInst(unsigned CastOpc, Value *Op, 4561 Type *Ty, const SimplifyQuery &Q, unsigned MaxRecurse) { 4562 if (auto *C = dyn_cast<Constant>(Op)) 4563 return ConstantFoldCastOperand(CastOpc, C, Ty, Q.DL); 4564 4565 if (auto *CI = dyn_cast<CastInst>(Op)) { 4566 auto *Src = CI->getOperand(0); 4567 Type *SrcTy = Src->getType(); 4568 Type *MidTy = CI->getType(); 4569 Type *DstTy = Ty; 4570 if (Src->getType() == Ty) { 4571 auto FirstOp = static_cast<Instruction::CastOps>(CI->getOpcode()); 4572 auto SecondOp = static_cast<Instruction::CastOps>(CastOpc); 4573 Type *SrcIntPtrTy = 4574 SrcTy->isPtrOrPtrVectorTy() ? Q.DL.getIntPtrType(SrcTy) : nullptr; 4575 Type *MidIntPtrTy = 4576 MidTy->isPtrOrPtrVectorTy() ? Q.DL.getIntPtrType(MidTy) : nullptr; 4577 Type *DstIntPtrTy = 4578 DstTy->isPtrOrPtrVectorTy() ? Q.DL.getIntPtrType(DstTy) : nullptr; 4579 if (CastInst::isEliminableCastPair(FirstOp, SecondOp, SrcTy, MidTy, DstTy, 4580 SrcIntPtrTy, MidIntPtrTy, 4581 DstIntPtrTy) == Instruction::BitCast) 4582 return Src; 4583 } 4584 } 4585 4586 // bitcast x -> x 4587 if (CastOpc == Instruction::BitCast) 4588 if (Op->getType() == Ty) 4589 return Op; 4590 4591 return nullptr; 4592 } 4593 4594 Value *llvm::SimplifyCastInst(unsigned CastOpc, Value *Op, Type *Ty, 4595 const SimplifyQuery &Q) { 4596 return ::SimplifyCastInst(CastOpc, Op, Ty, Q, RecursionLimit); 4597 } 4598 4599 /// For the given destination element of a shuffle, peek through shuffles to 4600 /// match a root vector source operand that contains that element in the same 4601 /// vector lane (ie, the same mask index), so we can eliminate the shuffle(s). 4602 static Value *foldIdentityShuffles(int DestElt, Value *Op0, Value *Op1, 4603 int MaskVal, Value *RootVec, 4604 unsigned MaxRecurse) { 4605 if (!MaxRecurse--) 4606 return nullptr; 4607 4608 // Bail out if any mask value is undefined. That kind of shuffle may be 4609 // simplified further based on demanded bits or other folds. 4610 if (MaskVal == -1) 4611 return nullptr; 4612 4613 // The mask value chooses which source operand we need to look at next. 4614 int InVecNumElts = cast<FixedVectorType>(Op0->getType())->getNumElements(); 4615 int RootElt = MaskVal; 4616 Value *SourceOp = Op0; 4617 if (MaskVal >= InVecNumElts) { 4618 RootElt = MaskVal - InVecNumElts; 4619 SourceOp = Op1; 4620 } 4621 4622 // If the source operand is a shuffle itself, look through it to find the 4623 // matching root vector. 4624 if (auto *SourceShuf = dyn_cast<ShuffleVectorInst>(SourceOp)) { 4625 return foldIdentityShuffles( 4626 DestElt, SourceShuf->getOperand(0), SourceShuf->getOperand(1), 4627 SourceShuf->getMaskValue(RootElt), RootVec, MaxRecurse); 4628 } 4629 4630 // TODO: Look through bitcasts? What if the bitcast changes the vector element 4631 // size? 4632 4633 // The source operand is not a shuffle. Initialize the root vector value for 4634 // this shuffle if that has not been done yet. 4635 if (!RootVec) 4636 RootVec = SourceOp; 4637 4638 // Give up as soon as a source operand does not match the existing root value. 4639 if (RootVec != SourceOp) 4640 return nullptr; 4641 4642 // The element must be coming from the same lane in the source vector 4643 // (although it may have crossed lanes in intermediate shuffles). 4644 if (RootElt != DestElt) 4645 return nullptr; 4646 4647 return RootVec; 4648 } 4649 4650 static Value *SimplifyShuffleVectorInst(Value *Op0, Value *Op1, 4651 ArrayRef<int> Mask, Type *RetTy, 4652 const SimplifyQuery &Q, 4653 unsigned MaxRecurse) { 4654 if (all_of(Mask, [](int Elem) { return Elem == UndefMaskElem; })) 4655 return UndefValue::get(RetTy); 4656 4657 auto *InVecTy = cast<VectorType>(Op0->getType()); 4658 unsigned MaskNumElts = Mask.size(); 4659 ElementCount InVecEltCount = InVecTy->getElementCount(); 4660 4661 bool Scalable = InVecEltCount.isScalable(); 4662 4663 SmallVector<int, 32> Indices; 4664 Indices.assign(Mask.begin(), Mask.end()); 4665 4666 // Canonicalization: If mask does not select elements from an input vector, 4667 // replace that input vector with poison. 4668 if (!Scalable) { 4669 bool MaskSelects0 = false, MaskSelects1 = false; 4670 unsigned InVecNumElts = InVecEltCount.getKnownMinValue(); 4671 for (unsigned i = 0; i != MaskNumElts; ++i) { 4672 if (Indices[i] == -1) 4673 continue; 4674 if ((unsigned)Indices[i] < InVecNumElts) 4675 MaskSelects0 = true; 4676 else 4677 MaskSelects1 = true; 4678 } 4679 if (!MaskSelects0) 4680 Op0 = PoisonValue::get(InVecTy); 4681 if (!MaskSelects1) 4682 Op1 = PoisonValue::get(InVecTy); 4683 } 4684 4685 auto *Op0Const = dyn_cast<Constant>(Op0); 4686 auto *Op1Const = dyn_cast<Constant>(Op1); 4687 4688 // If all operands are constant, constant fold the shuffle. This 4689 // transformation depends on the value of the mask which is not known at 4690 // compile time for scalable vectors 4691 if (Op0Const && Op1Const) 4692 return ConstantExpr::getShuffleVector(Op0Const, Op1Const, Mask); 4693 4694 // Canonicalization: if only one input vector is constant, it shall be the 4695 // second one. This transformation depends on the value of the mask which 4696 // is not known at compile time for scalable vectors 4697 if (!Scalable && Op0Const && !Op1Const) { 4698 std::swap(Op0, Op1); 4699 ShuffleVectorInst::commuteShuffleMask(Indices, 4700 InVecEltCount.getKnownMinValue()); 4701 } 4702 4703 // A splat of an inserted scalar constant becomes a vector constant: 4704 // shuf (inselt ?, C, IndexC), undef, <IndexC, IndexC...> --> <C, C...> 4705 // NOTE: We may have commuted above, so analyze the updated Indices, not the 4706 // original mask constant. 4707 // NOTE: This transformation depends on the value of the mask which is not 4708 // known at compile time for scalable vectors 4709 Constant *C; 4710 ConstantInt *IndexC; 4711 if (!Scalable && match(Op0, m_InsertElt(m_Value(), m_Constant(C), 4712 m_ConstantInt(IndexC)))) { 4713 // Match a splat shuffle mask of the insert index allowing undef elements. 4714 int InsertIndex = IndexC->getZExtValue(); 4715 if (all_of(Indices, [InsertIndex](int MaskElt) { 4716 return MaskElt == InsertIndex || MaskElt == -1; 4717 })) { 4718 assert(isa<UndefValue>(Op1) && "Expected undef operand 1 for splat"); 4719 4720 // Shuffle mask undefs become undefined constant result elements. 4721 SmallVector<Constant *, 16> VecC(MaskNumElts, C); 4722 for (unsigned i = 0; i != MaskNumElts; ++i) 4723 if (Indices[i] == -1) 4724 VecC[i] = UndefValue::get(C->getType()); 4725 return ConstantVector::get(VecC); 4726 } 4727 } 4728 4729 // A shuffle of a splat is always the splat itself. Legal if the shuffle's 4730 // value type is same as the input vectors' type. 4731 if (auto *OpShuf = dyn_cast<ShuffleVectorInst>(Op0)) 4732 if (Q.isUndefValue(Op1) && RetTy == InVecTy && 4733 is_splat(OpShuf->getShuffleMask())) 4734 return Op0; 4735 4736 // All remaining transformation depend on the value of the mask, which is 4737 // not known at compile time for scalable vectors. 4738 if (Scalable) 4739 return nullptr; 4740 4741 // Don't fold a shuffle with undef mask elements. This may get folded in a 4742 // better way using demanded bits or other analysis. 4743 // TODO: Should we allow this? 4744 if (is_contained(Indices, -1)) 4745 return nullptr; 4746 4747 // Check if every element of this shuffle can be mapped back to the 4748 // corresponding element of a single root vector. If so, we don't need this 4749 // shuffle. This handles simple identity shuffles as well as chains of 4750 // shuffles that may widen/narrow and/or move elements across lanes and back. 4751 Value *RootVec = nullptr; 4752 for (unsigned i = 0; i != MaskNumElts; ++i) { 4753 // Note that recursion is limited for each vector element, so if any element 4754 // exceeds the limit, this will fail to simplify. 4755 RootVec = 4756 foldIdentityShuffles(i, Op0, Op1, Indices[i], RootVec, MaxRecurse); 4757 4758 // We can't replace a widening/narrowing shuffle with one of its operands. 4759 if (!RootVec || RootVec->getType() != RetTy) 4760 return nullptr; 4761 } 4762 return RootVec; 4763 } 4764 4765 /// Given operands for a ShuffleVectorInst, fold the result or return null. 4766 Value *llvm::SimplifyShuffleVectorInst(Value *Op0, Value *Op1, 4767 ArrayRef<int> Mask, Type *RetTy, 4768 const SimplifyQuery &Q) { 4769 return ::SimplifyShuffleVectorInst(Op0, Op1, Mask, RetTy, Q, RecursionLimit); 4770 } 4771 4772 static Constant *foldConstant(Instruction::UnaryOps Opcode, 4773 Value *&Op, const SimplifyQuery &Q) { 4774 if (auto *C = dyn_cast<Constant>(Op)) 4775 return ConstantFoldUnaryOpOperand(Opcode, C, Q.DL); 4776 return nullptr; 4777 } 4778 4779 /// Given the operand for an FNeg, see if we can fold the result. If not, this 4780 /// returns null. 4781 static Value *simplifyFNegInst(Value *Op, FastMathFlags FMF, 4782 const SimplifyQuery &Q, unsigned MaxRecurse) { 4783 if (Constant *C = foldConstant(Instruction::FNeg, Op, Q)) 4784 return C; 4785 4786 Value *X; 4787 // fneg (fneg X) ==> X 4788 if (match(Op, m_FNeg(m_Value(X)))) 4789 return X; 4790 4791 return nullptr; 4792 } 4793 4794 Value *llvm::SimplifyFNegInst(Value *Op, FastMathFlags FMF, 4795 const SimplifyQuery &Q) { 4796 return ::simplifyFNegInst(Op, FMF, Q, RecursionLimit); 4797 } 4798 4799 static Constant *propagateNaN(Constant *In) { 4800 // If the input is a vector with undef elements, just return a default NaN. 4801 if (!In->isNaN()) 4802 return ConstantFP::getNaN(In->getType()); 4803 4804 // Propagate the existing NaN constant when possible. 4805 // TODO: Should we quiet a signaling NaN? 4806 return In; 4807 } 4808 4809 /// Perform folds that are common to any floating-point operation. This implies 4810 /// transforms based on undef/NaN because the operation itself makes no 4811 /// difference to the result. 4812 static Constant *simplifyFPOp(ArrayRef<Value *> Ops, 4813 FastMathFlags FMF, 4814 const SimplifyQuery &Q) { 4815 for (Value *V : Ops) { 4816 bool IsNan = match(V, m_NaN()); 4817 bool IsInf = match(V, m_Inf()); 4818 bool IsUndef = Q.isUndefValue(V); 4819 4820 // If this operation has 'nnan' or 'ninf' and at least 1 disallowed operand 4821 // (an undef operand can be chosen to be Nan/Inf), then the result of 4822 // this operation is poison. 4823 if (FMF.noNaNs() && (IsNan || IsUndef)) 4824 return PoisonValue::get(V->getType()); 4825 if (FMF.noInfs() && (IsInf || IsUndef)) 4826 return PoisonValue::get(V->getType()); 4827 4828 if (IsUndef || IsNan) 4829 return propagateNaN(cast<Constant>(V)); 4830 } 4831 return nullptr; 4832 } 4833 4834 /// Given operands for an FAdd, see if we can fold the result. If not, this 4835 /// returns null. 4836 static Value *SimplifyFAddInst(Value *Op0, Value *Op1, FastMathFlags FMF, 4837 const SimplifyQuery &Q, unsigned MaxRecurse) { 4838 if (Constant *C = foldOrCommuteConstant(Instruction::FAdd, Op0, Op1, Q)) 4839 return C; 4840 4841 if (Constant *C = simplifyFPOp({Op0, Op1}, FMF, Q)) 4842 return C; 4843 4844 // fadd X, -0 ==> X 4845 if (match(Op1, m_NegZeroFP())) 4846 return Op0; 4847 4848 // fadd X, 0 ==> X, when we know X is not -0 4849 if (match(Op1, m_PosZeroFP()) && 4850 (FMF.noSignedZeros() || CannotBeNegativeZero(Op0, Q.TLI))) 4851 return Op0; 4852 4853 // With nnan: -X + X --> 0.0 (and commuted variant) 4854 // We don't have to explicitly exclude infinities (ninf): INF + -INF == NaN. 4855 // Negative zeros are allowed because we always end up with positive zero: 4856 // X = -0.0: (-0.0 - (-0.0)) + (-0.0) == ( 0.0) + (-0.0) == 0.0 4857 // X = -0.0: ( 0.0 - (-0.0)) + (-0.0) == ( 0.0) + (-0.0) == 0.0 4858 // X = 0.0: (-0.0 - ( 0.0)) + ( 0.0) == (-0.0) + ( 0.0) == 0.0 4859 // X = 0.0: ( 0.0 - ( 0.0)) + ( 0.0) == ( 0.0) + ( 0.0) == 0.0 4860 if (FMF.noNaNs()) { 4861 if (match(Op0, m_FSub(m_AnyZeroFP(), m_Specific(Op1))) || 4862 match(Op1, m_FSub(m_AnyZeroFP(), m_Specific(Op0)))) 4863 return ConstantFP::getNullValue(Op0->getType()); 4864 4865 if (match(Op0, m_FNeg(m_Specific(Op1))) || 4866 match(Op1, m_FNeg(m_Specific(Op0)))) 4867 return ConstantFP::getNullValue(Op0->getType()); 4868 } 4869 4870 // (X - Y) + Y --> X 4871 // Y + (X - Y) --> X 4872 Value *X; 4873 if (FMF.noSignedZeros() && FMF.allowReassoc() && 4874 (match(Op0, m_FSub(m_Value(X), m_Specific(Op1))) || 4875 match(Op1, m_FSub(m_Value(X), m_Specific(Op0))))) 4876 return X; 4877 4878 return nullptr; 4879 } 4880 4881 /// Given operands for an FSub, see if we can fold the result. If not, this 4882 /// returns null. 4883 static Value *SimplifyFSubInst(Value *Op0, Value *Op1, FastMathFlags FMF, 4884 const SimplifyQuery &Q, unsigned MaxRecurse) { 4885 if (Constant *C = foldOrCommuteConstant(Instruction::FSub, Op0, Op1, Q)) 4886 return C; 4887 4888 if (Constant *C = simplifyFPOp({Op0, Op1}, FMF, Q)) 4889 return C; 4890 4891 // fsub X, +0 ==> X 4892 if (match(Op1, m_PosZeroFP())) 4893 return Op0; 4894 4895 // fsub X, -0 ==> X, when we know X is not -0 4896 if (match(Op1, m_NegZeroFP()) && 4897 (FMF.noSignedZeros() || CannotBeNegativeZero(Op0, Q.TLI))) 4898 return Op0; 4899 4900 // fsub -0.0, (fsub -0.0, X) ==> X 4901 // fsub -0.0, (fneg X) ==> X 4902 Value *X; 4903 if (match(Op0, m_NegZeroFP()) && 4904 match(Op1, m_FNeg(m_Value(X)))) 4905 return X; 4906 4907 // fsub 0.0, (fsub 0.0, X) ==> X if signed zeros are ignored. 4908 // fsub 0.0, (fneg X) ==> X if signed zeros are ignored. 4909 if (FMF.noSignedZeros() && match(Op0, m_AnyZeroFP()) && 4910 (match(Op1, m_FSub(m_AnyZeroFP(), m_Value(X))) || 4911 match(Op1, m_FNeg(m_Value(X))))) 4912 return X; 4913 4914 // fsub nnan x, x ==> 0.0 4915 if (FMF.noNaNs() && Op0 == Op1) 4916 return Constant::getNullValue(Op0->getType()); 4917 4918 // Y - (Y - X) --> X 4919 // (X + Y) - Y --> X 4920 if (FMF.noSignedZeros() && FMF.allowReassoc() && 4921 (match(Op1, m_FSub(m_Specific(Op0), m_Value(X))) || 4922 match(Op0, m_c_FAdd(m_Specific(Op1), m_Value(X))))) 4923 return X; 4924 4925 return nullptr; 4926 } 4927 4928 static Value *SimplifyFMAFMul(Value *Op0, Value *Op1, FastMathFlags FMF, 4929 const SimplifyQuery &Q, unsigned MaxRecurse) { 4930 if (Constant *C = simplifyFPOp({Op0, Op1}, FMF, Q)) 4931 return C; 4932 4933 // fmul X, 1.0 ==> X 4934 if (match(Op1, m_FPOne())) 4935 return Op0; 4936 4937 // fmul 1.0, X ==> X 4938 if (match(Op0, m_FPOne())) 4939 return Op1; 4940 4941 // fmul nnan nsz X, 0 ==> 0 4942 if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op1, m_AnyZeroFP())) 4943 return ConstantFP::getNullValue(Op0->getType()); 4944 4945 // fmul nnan nsz 0, X ==> 0 4946 if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op0, m_AnyZeroFP())) 4947 return ConstantFP::getNullValue(Op1->getType()); 4948 4949 // sqrt(X) * sqrt(X) --> X, if we can: 4950 // 1. Remove the intermediate rounding (reassociate). 4951 // 2. Ignore non-zero negative numbers because sqrt would produce NAN. 4952 // 3. Ignore -0.0 because sqrt(-0.0) == -0.0, but -0.0 * -0.0 == 0.0. 4953 Value *X; 4954 if (Op0 == Op1 && match(Op0, m_Intrinsic<Intrinsic::sqrt>(m_Value(X))) && 4955 FMF.allowReassoc() && FMF.noNaNs() && FMF.noSignedZeros()) 4956 return X; 4957 4958 return nullptr; 4959 } 4960 4961 /// Given the operands for an FMul, see if we can fold the result 4962 static Value *SimplifyFMulInst(Value *Op0, Value *Op1, FastMathFlags FMF, 4963 const SimplifyQuery &Q, unsigned MaxRecurse) { 4964 if (Constant *C = foldOrCommuteConstant(Instruction::FMul, Op0, Op1, Q)) 4965 return C; 4966 4967 // Now apply simplifications that do not require rounding. 4968 return SimplifyFMAFMul(Op0, Op1, FMF, Q, MaxRecurse); 4969 } 4970 4971 Value *llvm::SimplifyFAddInst(Value *Op0, Value *Op1, FastMathFlags FMF, 4972 const SimplifyQuery &Q) { 4973 return ::SimplifyFAddInst(Op0, Op1, FMF, Q, RecursionLimit); 4974 } 4975 4976 4977 Value *llvm::SimplifyFSubInst(Value *Op0, Value *Op1, FastMathFlags FMF, 4978 const SimplifyQuery &Q) { 4979 return ::SimplifyFSubInst(Op0, Op1, FMF, Q, RecursionLimit); 4980 } 4981 4982 Value *llvm::SimplifyFMulInst(Value *Op0, Value *Op1, FastMathFlags FMF, 4983 const SimplifyQuery &Q) { 4984 return ::SimplifyFMulInst(Op0, Op1, FMF, Q, RecursionLimit); 4985 } 4986 4987 Value *llvm::SimplifyFMAFMul(Value *Op0, Value *Op1, FastMathFlags FMF, 4988 const SimplifyQuery &Q) { 4989 return ::SimplifyFMAFMul(Op0, Op1, FMF, Q, RecursionLimit); 4990 } 4991 4992 static Value *SimplifyFDivInst(Value *Op0, Value *Op1, FastMathFlags FMF, 4993 const SimplifyQuery &Q, unsigned) { 4994 if (Constant *C = foldOrCommuteConstant(Instruction::FDiv, Op0, Op1, Q)) 4995 return C; 4996 4997 if (Constant *C = simplifyFPOp({Op0, Op1}, FMF, Q)) 4998 return C; 4999 5000 // X / 1.0 -> X 5001 if (match(Op1, m_FPOne())) 5002 return Op0; 5003 5004 // 0 / X -> 0 5005 // Requires that NaNs are off (X could be zero) and signed zeroes are 5006 // ignored (X could be positive or negative, so the output sign is unknown). 5007 if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op0, m_AnyZeroFP())) 5008 return ConstantFP::getNullValue(Op0->getType()); 5009 5010 if (FMF.noNaNs()) { 5011 // X / X -> 1.0 is legal when NaNs are ignored. 5012 // We can ignore infinities because INF/INF is NaN. 5013 if (Op0 == Op1) 5014 return ConstantFP::get(Op0->getType(), 1.0); 5015 5016 // (X * Y) / Y --> X if we can reassociate to the above form. 5017 Value *X; 5018 if (FMF.allowReassoc() && match(Op0, m_c_FMul(m_Value(X), m_Specific(Op1)))) 5019 return X; 5020 5021 // -X / X -> -1.0 and 5022 // X / -X -> -1.0 are legal when NaNs are ignored. 5023 // We can ignore signed zeros because +-0.0/+-0.0 is NaN and ignored. 5024 if (match(Op0, m_FNegNSZ(m_Specific(Op1))) || 5025 match(Op1, m_FNegNSZ(m_Specific(Op0)))) 5026 return ConstantFP::get(Op0->getType(), -1.0); 5027 } 5028 5029 return nullptr; 5030 } 5031 5032 Value *llvm::SimplifyFDivInst(Value *Op0, Value *Op1, FastMathFlags FMF, 5033 const SimplifyQuery &Q) { 5034 return ::SimplifyFDivInst(Op0, Op1, FMF, Q, RecursionLimit); 5035 } 5036 5037 static Value *SimplifyFRemInst(Value *Op0, Value *Op1, FastMathFlags FMF, 5038 const SimplifyQuery &Q, unsigned) { 5039 if (Constant *C = foldOrCommuteConstant(Instruction::FRem, Op0, Op1, Q)) 5040 return C; 5041 5042 if (Constant *C = simplifyFPOp({Op0, Op1}, FMF, Q)) 5043 return C; 5044 5045 // Unlike fdiv, the result of frem always matches the sign of the dividend. 5046 // The constant match may include undef elements in a vector, so return a full 5047 // zero constant as the result. 5048 if (FMF.noNaNs()) { 5049 // +0 % X -> 0 5050 if (match(Op0, m_PosZeroFP())) 5051 return ConstantFP::getNullValue(Op0->getType()); 5052 // -0 % X -> -0 5053 if (match(Op0, m_NegZeroFP())) 5054 return ConstantFP::getNegativeZero(Op0->getType()); 5055 } 5056 5057 return nullptr; 5058 } 5059 5060 Value *llvm::SimplifyFRemInst(Value *Op0, Value *Op1, FastMathFlags FMF, 5061 const SimplifyQuery &Q) { 5062 return ::SimplifyFRemInst(Op0, Op1, FMF, Q, RecursionLimit); 5063 } 5064 5065 //=== Helper functions for higher up the class hierarchy. 5066 5067 /// Given the operand for a UnaryOperator, see if we can fold the result. 5068 /// If not, this returns null. 5069 static Value *simplifyUnOp(unsigned Opcode, Value *Op, const SimplifyQuery &Q, 5070 unsigned MaxRecurse) { 5071 switch (Opcode) { 5072 case Instruction::FNeg: 5073 return simplifyFNegInst(Op, FastMathFlags(), Q, MaxRecurse); 5074 default: 5075 llvm_unreachable("Unexpected opcode"); 5076 } 5077 } 5078 5079 /// Given the operand for a UnaryOperator, see if we can fold the result. 5080 /// If not, this returns null. 5081 /// Try to use FastMathFlags when folding the result. 5082 static Value *simplifyFPUnOp(unsigned Opcode, Value *Op, 5083 const FastMathFlags &FMF, 5084 const SimplifyQuery &Q, unsigned MaxRecurse) { 5085 switch (Opcode) { 5086 case Instruction::FNeg: 5087 return simplifyFNegInst(Op, FMF, Q, MaxRecurse); 5088 default: 5089 return simplifyUnOp(Opcode, Op, Q, MaxRecurse); 5090 } 5091 } 5092 5093 Value *llvm::SimplifyUnOp(unsigned Opcode, Value *Op, const SimplifyQuery &Q) { 5094 return ::simplifyUnOp(Opcode, Op, Q, RecursionLimit); 5095 } 5096 5097 Value *llvm::SimplifyUnOp(unsigned Opcode, Value *Op, FastMathFlags FMF, 5098 const SimplifyQuery &Q) { 5099 return ::simplifyFPUnOp(Opcode, Op, FMF, Q, RecursionLimit); 5100 } 5101 5102 /// Given operands for a BinaryOperator, see if we can fold the result. 5103 /// If not, this returns null. 5104 static Value *SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS, 5105 const SimplifyQuery &Q, unsigned MaxRecurse) { 5106 switch (Opcode) { 5107 case Instruction::Add: 5108 return SimplifyAddInst(LHS, RHS, false, false, Q, MaxRecurse); 5109 case Instruction::Sub: 5110 return SimplifySubInst(LHS, RHS, false, false, Q, MaxRecurse); 5111 case Instruction::Mul: 5112 return SimplifyMulInst(LHS, RHS, Q, MaxRecurse); 5113 case Instruction::SDiv: 5114 return SimplifySDivInst(LHS, RHS, Q, MaxRecurse); 5115 case Instruction::UDiv: 5116 return SimplifyUDivInst(LHS, RHS, Q, MaxRecurse); 5117 case Instruction::SRem: 5118 return SimplifySRemInst(LHS, RHS, Q, MaxRecurse); 5119 case Instruction::URem: 5120 return SimplifyURemInst(LHS, RHS, Q, MaxRecurse); 5121 case Instruction::Shl: 5122 return SimplifyShlInst(LHS, RHS, false, false, Q, MaxRecurse); 5123 case Instruction::LShr: 5124 return SimplifyLShrInst(LHS, RHS, false, Q, MaxRecurse); 5125 case Instruction::AShr: 5126 return SimplifyAShrInst(LHS, RHS, false, Q, MaxRecurse); 5127 case Instruction::And: 5128 return SimplifyAndInst(LHS, RHS, Q, MaxRecurse); 5129 case Instruction::Or: 5130 return SimplifyOrInst(LHS, RHS, Q, MaxRecurse); 5131 case Instruction::Xor: 5132 return SimplifyXorInst(LHS, RHS, Q, MaxRecurse); 5133 case Instruction::FAdd: 5134 return SimplifyFAddInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse); 5135 case Instruction::FSub: 5136 return SimplifyFSubInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse); 5137 case Instruction::FMul: 5138 return SimplifyFMulInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse); 5139 case Instruction::FDiv: 5140 return SimplifyFDivInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse); 5141 case Instruction::FRem: 5142 return SimplifyFRemInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse); 5143 default: 5144 llvm_unreachable("Unexpected opcode"); 5145 } 5146 } 5147 5148 /// Given operands for a BinaryOperator, see if we can fold the result. 5149 /// If not, this returns null. 5150 /// Try to use FastMathFlags when folding the result. 5151 static Value *SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS, 5152 const FastMathFlags &FMF, const SimplifyQuery &Q, 5153 unsigned MaxRecurse) { 5154 switch (Opcode) { 5155 case Instruction::FAdd: 5156 return SimplifyFAddInst(LHS, RHS, FMF, Q, MaxRecurse); 5157 case Instruction::FSub: 5158 return SimplifyFSubInst(LHS, RHS, FMF, Q, MaxRecurse); 5159 case Instruction::FMul: 5160 return SimplifyFMulInst(LHS, RHS, FMF, Q, MaxRecurse); 5161 case Instruction::FDiv: 5162 return SimplifyFDivInst(LHS, RHS, FMF, Q, MaxRecurse); 5163 default: 5164 return SimplifyBinOp(Opcode, LHS, RHS, Q, MaxRecurse); 5165 } 5166 } 5167 5168 Value *llvm::SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS, 5169 const SimplifyQuery &Q) { 5170 return ::SimplifyBinOp(Opcode, LHS, RHS, Q, RecursionLimit); 5171 } 5172 5173 Value *llvm::SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS, 5174 FastMathFlags FMF, const SimplifyQuery &Q) { 5175 return ::SimplifyBinOp(Opcode, LHS, RHS, FMF, Q, RecursionLimit); 5176 } 5177 5178 /// Given operands for a CmpInst, see if we can fold the result. 5179 static Value *SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS, 5180 const SimplifyQuery &Q, unsigned MaxRecurse) { 5181 if (CmpInst::isIntPredicate((CmpInst::Predicate)Predicate)) 5182 return SimplifyICmpInst(Predicate, LHS, RHS, Q, MaxRecurse); 5183 return SimplifyFCmpInst(Predicate, LHS, RHS, FastMathFlags(), Q, MaxRecurse); 5184 } 5185 5186 Value *llvm::SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS, 5187 const SimplifyQuery &Q) { 5188 return ::SimplifyCmpInst(Predicate, LHS, RHS, Q, RecursionLimit); 5189 } 5190 5191 static bool IsIdempotent(Intrinsic::ID ID) { 5192 switch (ID) { 5193 default: return false; 5194 5195 // Unary idempotent: f(f(x)) = f(x) 5196 case Intrinsic::fabs: 5197 case Intrinsic::floor: 5198 case Intrinsic::ceil: 5199 case Intrinsic::trunc: 5200 case Intrinsic::rint: 5201 case Intrinsic::nearbyint: 5202 case Intrinsic::round: 5203 case Intrinsic::roundeven: 5204 case Intrinsic::canonicalize: 5205 return true; 5206 } 5207 } 5208 5209 static Value *SimplifyRelativeLoad(Constant *Ptr, Constant *Offset, 5210 const DataLayout &DL) { 5211 GlobalValue *PtrSym; 5212 APInt PtrOffset; 5213 if (!IsConstantOffsetFromGlobal(Ptr, PtrSym, PtrOffset, DL)) 5214 return nullptr; 5215 5216 Type *Int8PtrTy = Type::getInt8PtrTy(Ptr->getContext()); 5217 Type *Int32Ty = Type::getInt32Ty(Ptr->getContext()); 5218 Type *Int32PtrTy = Int32Ty->getPointerTo(); 5219 Type *Int64Ty = Type::getInt64Ty(Ptr->getContext()); 5220 5221 auto *OffsetConstInt = dyn_cast<ConstantInt>(Offset); 5222 if (!OffsetConstInt || OffsetConstInt->getType()->getBitWidth() > 64) 5223 return nullptr; 5224 5225 uint64_t OffsetInt = OffsetConstInt->getSExtValue(); 5226 if (OffsetInt % 4 != 0) 5227 return nullptr; 5228 5229 Constant *C = ConstantExpr::getGetElementPtr( 5230 Int32Ty, ConstantExpr::getBitCast(Ptr, Int32PtrTy), 5231 ConstantInt::get(Int64Ty, OffsetInt / 4)); 5232 Constant *Loaded = ConstantFoldLoadFromConstPtr(C, Int32Ty, DL); 5233 if (!Loaded) 5234 return nullptr; 5235 5236 auto *LoadedCE = dyn_cast<ConstantExpr>(Loaded); 5237 if (!LoadedCE) 5238 return nullptr; 5239 5240 if (LoadedCE->getOpcode() == Instruction::Trunc) { 5241 LoadedCE = dyn_cast<ConstantExpr>(LoadedCE->getOperand(0)); 5242 if (!LoadedCE) 5243 return nullptr; 5244 } 5245 5246 if (LoadedCE->getOpcode() != Instruction::Sub) 5247 return nullptr; 5248 5249 auto *LoadedLHS = dyn_cast<ConstantExpr>(LoadedCE->getOperand(0)); 5250 if (!LoadedLHS || LoadedLHS->getOpcode() != Instruction::PtrToInt) 5251 return nullptr; 5252 auto *LoadedLHSPtr = LoadedLHS->getOperand(0); 5253 5254 Constant *LoadedRHS = LoadedCE->getOperand(1); 5255 GlobalValue *LoadedRHSSym; 5256 APInt LoadedRHSOffset; 5257 if (!IsConstantOffsetFromGlobal(LoadedRHS, LoadedRHSSym, LoadedRHSOffset, 5258 DL) || 5259 PtrSym != LoadedRHSSym || PtrOffset != LoadedRHSOffset) 5260 return nullptr; 5261 5262 return ConstantExpr::getBitCast(LoadedLHSPtr, Int8PtrTy); 5263 } 5264 5265 static Value *simplifyUnaryIntrinsic(Function *F, Value *Op0, 5266 const SimplifyQuery &Q) { 5267 // Idempotent functions return the same result when called repeatedly. 5268 Intrinsic::ID IID = F->getIntrinsicID(); 5269 if (IsIdempotent(IID)) 5270 if (auto *II = dyn_cast<IntrinsicInst>(Op0)) 5271 if (II->getIntrinsicID() == IID) 5272 return II; 5273 5274 Value *X; 5275 switch (IID) { 5276 case Intrinsic::fabs: 5277 if (SignBitMustBeZero(Op0, Q.TLI)) return Op0; 5278 break; 5279 case Intrinsic::bswap: 5280 // bswap(bswap(x)) -> x 5281 if (match(Op0, m_BSwap(m_Value(X)))) return X; 5282 break; 5283 case Intrinsic::bitreverse: 5284 // bitreverse(bitreverse(x)) -> x 5285 if (match(Op0, m_BitReverse(m_Value(X)))) return X; 5286 break; 5287 case Intrinsic::ctpop: { 5288 // If everything but the lowest bit is zero, that bit is the pop-count. Ex: 5289 // ctpop(and X, 1) --> and X, 1 5290 unsigned BitWidth = Op0->getType()->getScalarSizeInBits(); 5291 if (MaskedValueIsZero(Op0, APInt::getHighBitsSet(BitWidth, BitWidth - 1), 5292 Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 5293 return Op0; 5294 break; 5295 } 5296 case Intrinsic::exp: 5297 // exp(log(x)) -> x 5298 if (Q.CxtI->hasAllowReassoc() && 5299 match(Op0, m_Intrinsic<Intrinsic::log>(m_Value(X)))) return X; 5300 break; 5301 case Intrinsic::exp2: 5302 // exp2(log2(x)) -> x 5303 if (Q.CxtI->hasAllowReassoc() && 5304 match(Op0, m_Intrinsic<Intrinsic::log2>(m_Value(X)))) return X; 5305 break; 5306 case Intrinsic::log: 5307 // log(exp(x)) -> x 5308 if (Q.CxtI->hasAllowReassoc() && 5309 match(Op0, m_Intrinsic<Intrinsic::exp>(m_Value(X)))) return X; 5310 break; 5311 case Intrinsic::log2: 5312 // log2(exp2(x)) -> x 5313 if (Q.CxtI->hasAllowReassoc() && 5314 (match(Op0, m_Intrinsic<Intrinsic::exp2>(m_Value(X))) || 5315 match(Op0, m_Intrinsic<Intrinsic::pow>(m_SpecificFP(2.0), 5316 m_Value(X))))) return X; 5317 break; 5318 case Intrinsic::log10: 5319 // log10(pow(10.0, x)) -> x 5320 if (Q.CxtI->hasAllowReassoc() && 5321 match(Op0, m_Intrinsic<Intrinsic::pow>(m_SpecificFP(10.0), 5322 m_Value(X)))) return X; 5323 break; 5324 case Intrinsic::floor: 5325 case Intrinsic::trunc: 5326 case Intrinsic::ceil: 5327 case Intrinsic::round: 5328 case Intrinsic::roundeven: 5329 case Intrinsic::nearbyint: 5330 case Intrinsic::rint: { 5331 // floor (sitofp x) -> sitofp x 5332 // floor (uitofp x) -> uitofp x 5333 // 5334 // Converting from int always results in a finite integral number or 5335 // infinity. For either of those inputs, these rounding functions always 5336 // return the same value, so the rounding can be eliminated. 5337 if (match(Op0, m_SIToFP(m_Value())) || match(Op0, m_UIToFP(m_Value()))) 5338 return Op0; 5339 break; 5340 } 5341 case Intrinsic::experimental_vector_reverse: 5342 // experimental.vector.reverse(experimental.vector.reverse(x)) -> x 5343 if (match(Op0, 5344 m_Intrinsic<Intrinsic::experimental_vector_reverse>(m_Value(X)))) 5345 return X; 5346 break; 5347 default: 5348 break; 5349 } 5350 5351 return nullptr; 5352 } 5353 5354 static APInt getMaxMinLimit(Intrinsic::ID IID, unsigned BitWidth) { 5355 switch (IID) { 5356 case Intrinsic::smax: return APInt::getSignedMaxValue(BitWidth); 5357 case Intrinsic::smin: return APInt::getSignedMinValue(BitWidth); 5358 case Intrinsic::umax: return APInt::getMaxValue(BitWidth); 5359 case Intrinsic::umin: return APInt::getMinValue(BitWidth); 5360 default: llvm_unreachable("Unexpected intrinsic"); 5361 } 5362 } 5363 5364 static ICmpInst::Predicate getMaxMinPredicate(Intrinsic::ID IID) { 5365 switch (IID) { 5366 case Intrinsic::smax: return ICmpInst::ICMP_SGE; 5367 case Intrinsic::smin: return ICmpInst::ICMP_SLE; 5368 case Intrinsic::umax: return ICmpInst::ICMP_UGE; 5369 case Intrinsic::umin: return ICmpInst::ICMP_ULE; 5370 default: llvm_unreachable("Unexpected intrinsic"); 5371 } 5372 } 5373 5374 /// Given a min/max intrinsic, see if it can be removed based on having an 5375 /// operand that is another min/max intrinsic with shared operand(s). The caller 5376 /// is expected to swap the operand arguments to handle commutation. 5377 static Value *foldMinMaxSharedOp(Intrinsic::ID IID, Value *Op0, Value *Op1) { 5378 Value *X, *Y; 5379 if (!match(Op0, m_MaxOrMin(m_Value(X), m_Value(Y)))) 5380 return nullptr; 5381 5382 auto *MM0 = dyn_cast<IntrinsicInst>(Op0); 5383 if (!MM0) 5384 return nullptr; 5385 Intrinsic::ID IID0 = MM0->getIntrinsicID(); 5386 5387 if (Op1 == X || Op1 == Y || 5388 match(Op1, m_c_MaxOrMin(m_Specific(X), m_Specific(Y)))) { 5389 // max (max X, Y), X --> max X, Y 5390 if (IID0 == IID) 5391 return MM0; 5392 // max (min X, Y), X --> X 5393 if (IID0 == getInverseMinMaxIntrinsic(IID)) 5394 return Op1; 5395 } 5396 return nullptr; 5397 } 5398 5399 static Value *simplifyBinaryIntrinsic(Function *F, Value *Op0, Value *Op1, 5400 const SimplifyQuery &Q) { 5401 Intrinsic::ID IID = F->getIntrinsicID(); 5402 Type *ReturnType = F->getReturnType(); 5403 unsigned BitWidth = ReturnType->getScalarSizeInBits(); 5404 switch (IID) { 5405 case Intrinsic::abs: 5406 // abs(abs(x)) -> abs(x). We don't need to worry about the nsw arg here. 5407 // It is always ok to pick the earlier abs. We'll just lose nsw if its only 5408 // on the outer abs. 5409 if (match(Op0, m_Intrinsic<Intrinsic::abs>(m_Value(), m_Value()))) 5410 return Op0; 5411 break; 5412 5413 case Intrinsic::cttz: { 5414 Value *X; 5415 if (match(Op0, m_Shl(m_One(), m_Value(X)))) 5416 return X; 5417 break; 5418 } 5419 case Intrinsic::ctlz: { 5420 Value *X; 5421 if (match(Op0, m_LShr(m_Negative(), m_Value(X)))) 5422 return X; 5423 if (match(Op0, m_AShr(m_Negative(), m_Value()))) 5424 return Constant::getNullValue(ReturnType); 5425 break; 5426 } 5427 case Intrinsic::smax: 5428 case Intrinsic::smin: 5429 case Intrinsic::umax: 5430 case Intrinsic::umin: { 5431 // If the arguments are the same, this is a no-op. 5432 if (Op0 == Op1) 5433 return Op0; 5434 5435 // Canonicalize constant operand as Op1. 5436 if (isa<Constant>(Op0)) 5437 std::swap(Op0, Op1); 5438 5439 // Assume undef is the limit value. 5440 if (Q.isUndefValue(Op1)) 5441 return ConstantInt::get(ReturnType, getMaxMinLimit(IID, BitWidth)); 5442 5443 const APInt *C; 5444 if (match(Op1, m_APIntAllowUndef(C))) { 5445 // Clamp to limit value. For example: 5446 // umax(i8 %x, i8 255) --> 255 5447 if (*C == getMaxMinLimit(IID, BitWidth)) 5448 return ConstantInt::get(ReturnType, *C); 5449 5450 // If the constant op is the opposite of the limit value, the other must 5451 // be larger/smaller or equal. For example: 5452 // umin(i8 %x, i8 255) --> %x 5453 if (*C == getMaxMinLimit(getInverseMinMaxIntrinsic(IID), BitWidth)) 5454 return Op0; 5455 5456 // Remove nested call if constant operands allow it. Example: 5457 // max (max X, 7), 5 -> max X, 7 5458 auto *MinMax0 = dyn_cast<IntrinsicInst>(Op0); 5459 if (MinMax0 && MinMax0->getIntrinsicID() == IID) { 5460 // TODO: loosen undef/splat restrictions for vector constants. 5461 Value *M00 = MinMax0->getOperand(0), *M01 = MinMax0->getOperand(1); 5462 const APInt *InnerC; 5463 if ((match(M00, m_APInt(InnerC)) || match(M01, m_APInt(InnerC))) && 5464 ((IID == Intrinsic::smax && InnerC->sge(*C)) || 5465 (IID == Intrinsic::smin && InnerC->sle(*C)) || 5466 (IID == Intrinsic::umax && InnerC->uge(*C)) || 5467 (IID == Intrinsic::umin && InnerC->ule(*C)))) 5468 return Op0; 5469 } 5470 } 5471 5472 if (Value *V = foldMinMaxSharedOp(IID, Op0, Op1)) 5473 return V; 5474 if (Value *V = foldMinMaxSharedOp(IID, Op1, Op0)) 5475 return V; 5476 5477 ICmpInst::Predicate Pred = getMaxMinPredicate(IID); 5478 if (isICmpTrue(Pred, Op0, Op1, Q.getWithoutUndef(), RecursionLimit)) 5479 return Op0; 5480 if (isICmpTrue(Pred, Op1, Op0, Q.getWithoutUndef(), RecursionLimit)) 5481 return Op1; 5482 5483 if (Optional<bool> Imp = 5484 isImpliedByDomCondition(Pred, Op0, Op1, Q.CxtI, Q.DL)) 5485 return *Imp ? Op0 : Op1; 5486 if (Optional<bool> Imp = 5487 isImpliedByDomCondition(Pred, Op1, Op0, Q.CxtI, Q.DL)) 5488 return *Imp ? Op1 : Op0; 5489 5490 break; 5491 } 5492 case Intrinsic::usub_with_overflow: 5493 case Intrinsic::ssub_with_overflow: 5494 // X - X -> { 0, false } 5495 // X - undef -> { 0, false } 5496 // undef - X -> { 0, false } 5497 if (Op0 == Op1 || Q.isUndefValue(Op0) || Q.isUndefValue(Op1)) 5498 return Constant::getNullValue(ReturnType); 5499 break; 5500 case Intrinsic::uadd_with_overflow: 5501 case Intrinsic::sadd_with_overflow: 5502 // X + undef -> { -1, false } 5503 // undef + x -> { -1, false } 5504 if (Q.isUndefValue(Op0) || Q.isUndefValue(Op1)) { 5505 return ConstantStruct::get( 5506 cast<StructType>(ReturnType), 5507 {Constant::getAllOnesValue(ReturnType->getStructElementType(0)), 5508 Constant::getNullValue(ReturnType->getStructElementType(1))}); 5509 } 5510 break; 5511 case Intrinsic::umul_with_overflow: 5512 case Intrinsic::smul_with_overflow: 5513 // 0 * X -> { 0, false } 5514 // X * 0 -> { 0, false } 5515 if (match(Op0, m_Zero()) || match(Op1, m_Zero())) 5516 return Constant::getNullValue(ReturnType); 5517 // undef * X -> { 0, false } 5518 // X * undef -> { 0, false } 5519 if (Q.isUndefValue(Op0) || Q.isUndefValue(Op1)) 5520 return Constant::getNullValue(ReturnType); 5521 break; 5522 case Intrinsic::uadd_sat: 5523 // sat(MAX + X) -> MAX 5524 // sat(X + MAX) -> MAX 5525 if (match(Op0, m_AllOnes()) || match(Op1, m_AllOnes())) 5526 return Constant::getAllOnesValue(ReturnType); 5527 LLVM_FALLTHROUGH; 5528 case Intrinsic::sadd_sat: 5529 // sat(X + undef) -> -1 5530 // sat(undef + X) -> -1 5531 // For unsigned: Assume undef is MAX, thus we saturate to MAX (-1). 5532 // For signed: Assume undef is ~X, in which case X + ~X = -1. 5533 if (Q.isUndefValue(Op0) || Q.isUndefValue(Op1)) 5534 return Constant::getAllOnesValue(ReturnType); 5535 5536 // X + 0 -> X 5537 if (match(Op1, m_Zero())) 5538 return Op0; 5539 // 0 + X -> X 5540 if (match(Op0, m_Zero())) 5541 return Op1; 5542 break; 5543 case Intrinsic::usub_sat: 5544 // sat(0 - X) -> 0, sat(X - MAX) -> 0 5545 if (match(Op0, m_Zero()) || match(Op1, m_AllOnes())) 5546 return Constant::getNullValue(ReturnType); 5547 LLVM_FALLTHROUGH; 5548 case Intrinsic::ssub_sat: 5549 // X - X -> 0, X - undef -> 0, undef - X -> 0 5550 if (Op0 == Op1 || Q.isUndefValue(Op0) || Q.isUndefValue(Op1)) 5551 return Constant::getNullValue(ReturnType); 5552 // X - 0 -> X 5553 if (match(Op1, m_Zero())) 5554 return Op0; 5555 break; 5556 case Intrinsic::load_relative: 5557 if (auto *C0 = dyn_cast<Constant>(Op0)) 5558 if (auto *C1 = dyn_cast<Constant>(Op1)) 5559 return SimplifyRelativeLoad(C0, C1, Q.DL); 5560 break; 5561 case Intrinsic::powi: 5562 if (auto *Power = dyn_cast<ConstantInt>(Op1)) { 5563 // powi(x, 0) -> 1.0 5564 if (Power->isZero()) 5565 return ConstantFP::get(Op0->getType(), 1.0); 5566 // powi(x, 1) -> x 5567 if (Power->isOne()) 5568 return Op0; 5569 } 5570 break; 5571 case Intrinsic::copysign: 5572 // copysign X, X --> X 5573 if (Op0 == Op1) 5574 return Op0; 5575 // copysign -X, X --> X 5576 // copysign X, -X --> -X 5577 if (match(Op0, m_FNeg(m_Specific(Op1))) || 5578 match(Op1, m_FNeg(m_Specific(Op0)))) 5579 return Op1; 5580 break; 5581 case Intrinsic::maxnum: 5582 case Intrinsic::minnum: 5583 case Intrinsic::maximum: 5584 case Intrinsic::minimum: { 5585 // If the arguments are the same, this is a no-op. 5586 if (Op0 == Op1) return Op0; 5587 5588 // Canonicalize constant operand as Op1. 5589 if (isa<Constant>(Op0)) 5590 std::swap(Op0, Op1); 5591 5592 // If an argument is undef, return the other argument. 5593 if (Q.isUndefValue(Op1)) 5594 return Op0; 5595 5596 bool PropagateNaN = IID == Intrinsic::minimum || IID == Intrinsic::maximum; 5597 bool IsMin = IID == Intrinsic::minimum || IID == Intrinsic::minnum; 5598 5599 // minnum(X, nan) -> X 5600 // maxnum(X, nan) -> X 5601 // minimum(X, nan) -> nan 5602 // maximum(X, nan) -> nan 5603 if (match(Op1, m_NaN())) 5604 return PropagateNaN ? propagateNaN(cast<Constant>(Op1)) : Op0; 5605 5606 // In the following folds, inf can be replaced with the largest finite 5607 // float, if the ninf flag is set. 5608 const APFloat *C; 5609 if (match(Op1, m_APFloat(C)) && 5610 (C->isInfinity() || (Q.CxtI->hasNoInfs() && C->isLargest()))) { 5611 // minnum(X, -inf) -> -inf 5612 // maxnum(X, +inf) -> +inf 5613 // minimum(X, -inf) -> -inf if nnan 5614 // maximum(X, +inf) -> +inf if nnan 5615 if (C->isNegative() == IsMin && (!PropagateNaN || Q.CxtI->hasNoNaNs())) 5616 return ConstantFP::get(ReturnType, *C); 5617 5618 // minnum(X, +inf) -> X if nnan 5619 // maxnum(X, -inf) -> X if nnan 5620 // minimum(X, +inf) -> X 5621 // maximum(X, -inf) -> X 5622 if (C->isNegative() != IsMin && (PropagateNaN || Q.CxtI->hasNoNaNs())) 5623 return Op0; 5624 } 5625 5626 // Min/max of the same operation with common operand: 5627 // m(m(X, Y)), X --> m(X, Y) (4 commuted variants) 5628 if (auto *M0 = dyn_cast<IntrinsicInst>(Op0)) 5629 if (M0->getIntrinsicID() == IID && 5630 (M0->getOperand(0) == Op1 || M0->getOperand(1) == Op1)) 5631 return Op0; 5632 if (auto *M1 = dyn_cast<IntrinsicInst>(Op1)) 5633 if (M1->getIntrinsicID() == IID && 5634 (M1->getOperand(0) == Op0 || M1->getOperand(1) == Op0)) 5635 return Op1; 5636 5637 break; 5638 } 5639 case Intrinsic::experimental_vector_extract: { 5640 Type *ReturnType = F->getReturnType(); 5641 5642 // (extract_vector (insert_vector _, X, 0), 0) -> X 5643 unsigned IdxN = cast<ConstantInt>(Op1)->getZExtValue(); 5644 Value *X = nullptr; 5645 if (match(Op0, m_Intrinsic<Intrinsic::experimental_vector_insert>( 5646 m_Value(), m_Value(X), m_Zero())) && 5647 IdxN == 0 && X->getType() == ReturnType) 5648 return X; 5649 5650 break; 5651 } 5652 default: 5653 break; 5654 } 5655 5656 return nullptr; 5657 } 5658 5659 static Value *simplifyIntrinsic(CallBase *Call, const SimplifyQuery &Q) { 5660 5661 // Intrinsics with no operands have some kind of side effect. Don't simplify. 5662 unsigned NumOperands = Call->getNumArgOperands(); 5663 if (!NumOperands) 5664 return nullptr; 5665 5666 Function *F = cast<Function>(Call->getCalledFunction()); 5667 Intrinsic::ID IID = F->getIntrinsicID(); 5668 if (NumOperands == 1) 5669 return simplifyUnaryIntrinsic(F, Call->getArgOperand(0), Q); 5670 5671 if (NumOperands == 2) 5672 return simplifyBinaryIntrinsic(F, Call->getArgOperand(0), 5673 Call->getArgOperand(1), Q); 5674 5675 // Handle intrinsics with 3 or more arguments. 5676 switch (IID) { 5677 case Intrinsic::masked_load: 5678 case Intrinsic::masked_gather: { 5679 Value *MaskArg = Call->getArgOperand(2); 5680 Value *PassthruArg = Call->getArgOperand(3); 5681 // If the mask is all zeros or undef, the "passthru" argument is the result. 5682 if (maskIsAllZeroOrUndef(MaskArg)) 5683 return PassthruArg; 5684 return nullptr; 5685 } 5686 case Intrinsic::fshl: 5687 case Intrinsic::fshr: { 5688 Value *Op0 = Call->getArgOperand(0), *Op1 = Call->getArgOperand(1), 5689 *ShAmtArg = Call->getArgOperand(2); 5690 5691 // If both operands are undef, the result is undef. 5692 if (Q.isUndefValue(Op0) && Q.isUndefValue(Op1)) 5693 return UndefValue::get(F->getReturnType()); 5694 5695 // If shift amount is undef, assume it is zero. 5696 if (Q.isUndefValue(ShAmtArg)) 5697 return Call->getArgOperand(IID == Intrinsic::fshl ? 0 : 1); 5698 5699 const APInt *ShAmtC; 5700 if (match(ShAmtArg, m_APInt(ShAmtC))) { 5701 // If there's effectively no shift, return the 1st arg or 2nd arg. 5702 APInt BitWidth = APInt(ShAmtC->getBitWidth(), ShAmtC->getBitWidth()); 5703 if (ShAmtC->urem(BitWidth).isNullValue()) 5704 return Call->getArgOperand(IID == Intrinsic::fshl ? 0 : 1); 5705 } 5706 return nullptr; 5707 } 5708 case Intrinsic::fma: 5709 case Intrinsic::fmuladd: { 5710 Value *Op0 = Call->getArgOperand(0); 5711 Value *Op1 = Call->getArgOperand(1); 5712 Value *Op2 = Call->getArgOperand(2); 5713 if (Value *V = simplifyFPOp({ Op0, Op1, Op2 }, {}, Q)) 5714 return V; 5715 return nullptr; 5716 } 5717 case Intrinsic::smul_fix: 5718 case Intrinsic::smul_fix_sat: { 5719 Value *Op0 = Call->getArgOperand(0); 5720 Value *Op1 = Call->getArgOperand(1); 5721 Value *Op2 = Call->getArgOperand(2); 5722 Type *ReturnType = F->getReturnType(); 5723 5724 // Canonicalize constant operand as Op1 (ConstantFolding handles the case 5725 // when both Op0 and Op1 are constant so we do not care about that special 5726 // case here). 5727 if (isa<Constant>(Op0)) 5728 std::swap(Op0, Op1); 5729 5730 // X * 0 -> 0 5731 if (match(Op1, m_Zero())) 5732 return Constant::getNullValue(ReturnType); 5733 5734 // X * undef -> 0 5735 if (Q.isUndefValue(Op1)) 5736 return Constant::getNullValue(ReturnType); 5737 5738 // X * (1 << Scale) -> X 5739 APInt ScaledOne = 5740 APInt::getOneBitSet(ReturnType->getScalarSizeInBits(), 5741 cast<ConstantInt>(Op2)->getZExtValue()); 5742 if (ScaledOne.isNonNegative() && match(Op1, m_SpecificInt(ScaledOne))) 5743 return Op0; 5744 5745 return nullptr; 5746 } 5747 case Intrinsic::experimental_vector_insert: { 5748 Value *Vec = Call->getArgOperand(0); 5749 Value *SubVec = Call->getArgOperand(1); 5750 Value *Idx = Call->getArgOperand(2); 5751 Type *ReturnType = F->getReturnType(); 5752 5753 // (insert_vector Y, (extract_vector X, 0), 0) -> X 5754 // where: Y is X, or Y is undef 5755 unsigned IdxN = cast<ConstantInt>(Idx)->getZExtValue(); 5756 Value *X = nullptr; 5757 if (match(SubVec, m_Intrinsic<Intrinsic::experimental_vector_extract>( 5758 m_Value(X), m_Zero())) && 5759 (Q.isUndefValue(Vec) || Vec == X) && IdxN == 0 && 5760 X->getType() == ReturnType) 5761 return X; 5762 5763 return nullptr; 5764 } 5765 default: 5766 return nullptr; 5767 } 5768 } 5769 5770 static Value *tryConstantFoldCall(CallBase *Call, const SimplifyQuery &Q) { 5771 auto *F = dyn_cast<Function>(Call->getCalledOperand()); 5772 if (!F || !canConstantFoldCallTo(Call, F)) 5773 return nullptr; 5774 5775 SmallVector<Constant *, 4> ConstantArgs; 5776 unsigned NumArgs = Call->getNumArgOperands(); 5777 ConstantArgs.reserve(NumArgs); 5778 for (auto &Arg : Call->args()) { 5779 Constant *C = dyn_cast<Constant>(&Arg); 5780 if (!C) { 5781 if (isa<MetadataAsValue>(Arg.get())) 5782 continue; 5783 return nullptr; 5784 } 5785 ConstantArgs.push_back(C); 5786 } 5787 5788 return ConstantFoldCall(Call, F, ConstantArgs, Q.TLI); 5789 } 5790 5791 Value *llvm::SimplifyCall(CallBase *Call, const SimplifyQuery &Q) { 5792 // musttail calls can only be simplified if they are also DCEd. 5793 // As we can't guarantee this here, don't simplify them. 5794 if (Call->isMustTailCall()) 5795 return nullptr; 5796 5797 // call undef -> poison 5798 // call null -> poison 5799 Value *Callee = Call->getCalledOperand(); 5800 if (isa<UndefValue>(Callee) || isa<ConstantPointerNull>(Callee)) 5801 return PoisonValue::get(Call->getType()); 5802 5803 if (Value *V = tryConstantFoldCall(Call, Q)) 5804 return V; 5805 5806 auto *F = dyn_cast<Function>(Callee); 5807 if (F && F->isIntrinsic()) 5808 if (Value *Ret = simplifyIntrinsic(Call, Q)) 5809 return Ret; 5810 5811 return nullptr; 5812 } 5813 5814 /// Given operands for a Freeze, see if we can fold the result. 5815 static Value *SimplifyFreezeInst(Value *Op0, const SimplifyQuery &Q) { 5816 // Use a utility function defined in ValueTracking. 5817 if (llvm::isGuaranteedNotToBeUndefOrPoison(Op0, Q.AC, Q.CxtI, Q.DT)) 5818 return Op0; 5819 // We have room for improvement. 5820 return nullptr; 5821 } 5822 5823 Value *llvm::SimplifyFreezeInst(Value *Op0, const SimplifyQuery &Q) { 5824 return ::SimplifyFreezeInst(Op0, Q); 5825 } 5826 5827 static Constant *ConstructLoadOperandConstant(Value *Op) { 5828 SmallVector<Value *, 4> Worklist; 5829 // Invalid IR in unreachable code may contain self-referential values. Don't infinitely loop. 5830 SmallPtrSet<Value *, 4> Visited; 5831 Worklist.push_back(Op); 5832 while (true) { 5833 Value *CurOp = Worklist.back(); 5834 if (!Visited.insert(CurOp).second) 5835 return nullptr; 5836 if (isa<Constant>(CurOp)) 5837 break; 5838 if (auto *BC = dyn_cast<BitCastOperator>(CurOp)) { 5839 Worklist.push_back(BC->getOperand(0)); 5840 } else if (auto *GEP = dyn_cast<GEPOperator>(CurOp)) { 5841 for (unsigned I = 1; I != GEP->getNumOperands(); ++I) { 5842 if (!isa<Constant>(GEP->getOperand(I))) 5843 return nullptr; 5844 } 5845 Worklist.push_back(GEP->getOperand(0)); 5846 } else if (auto *II = dyn_cast<IntrinsicInst>(CurOp)) { 5847 if (II->isLaunderOrStripInvariantGroup()) 5848 Worklist.push_back(II->getOperand(0)); 5849 else 5850 return nullptr; 5851 } else { 5852 return nullptr; 5853 } 5854 } 5855 5856 Constant *NewOp = cast<Constant>(Worklist.pop_back_val()); 5857 while (!Worklist.empty()) { 5858 Value *CurOp = Worklist.pop_back_val(); 5859 if (isa<BitCastOperator>(CurOp)) { 5860 NewOp = ConstantExpr::getBitCast(NewOp, CurOp->getType()); 5861 } else if (auto *GEP = dyn_cast<GEPOperator>(CurOp)) { 5862 SmallVector<Constant *> Idxs; 5863 Idxs.reserve(GEP->getNumOperands() - 1); 5864 for (unsigned I = 1, E = GEP->getNumOperands(); I != E; ++I) { 5865 Idxs.push_back(cast<Constant>(GEP->getOperand(I))); 5866 } 5867 NewOp = ConstantExpr::getGetElementPtr(GEP->getSourceElementType(), NewOp, 5868 Idxs, GEP->isInBounds(), 5869 GEP->getInRangeIndex()); 5870 } else { 5871 assert(isa<IntrinsicInst>(CurOp) && 5872 cast<IntrinsicInst>(CurOp)->isLaunderOrStripInvariantGroup() && 5873 "expected invariant group intrinsic"); 5874 NewOp = ConstantExpr::getBitCast(NewOp, CurOp->getType()); 5875 } 5876 } 5877 return NewOp; 5878 } 5879 5880 static Value *SimplifyLoadInst(LoadInst *LI, const SimplifyQuery &Q) { 5881 if (LI->isVolatile()) 5882 return nullptr; 5883 5884 if (auto *C = ConstantFoldInstruction(LI, Q.DL)) 5885 return C; 5886 5887 // The following only catches more cases than ConstantFoldInstruction() if the 5888 // load operand wasn't a constant. Specifically, invariant.group intrinsics. 5889 if (isa<Constant>(LI->getPointerOperand())) 5890 return nullptr; 5891 5892 if (auto *C = dyn_cast_or_null<Constant>( 5893 ConstructLoadOperandConstant(LI->getPointerOperand()))) 5894 return ConstantFoldLoadFromConstPtr(C, LI->getType(), Q.DL); 5895 5896 return nullptr; 5897 } 5898 5899 /// See if we can compute a simplified version of this instruction. 5900 /// If not, this returns null. 5901 5902 Value *llvm::SimplifyInstruction(Instruction *I, const SimplifyQuery &SQ, 5903 OptimizationRemarkEmitter *ORE) { 5904 const SimplifyQuery Q = SQ.CxtI ? SQ : SQ.getWithInstruction(I); 5905 Value *Result; 5906 5907 switch (I->getOpcode()) { 5908 default: 5909 Result = ConstantFoldInstruction(I, Q.DL, Q.TLI); 5910 break; 5911 case Instruction::FNeg: 5912 Result = SimplifyFNegInst(I->getOperand(0), I->getFastMathFlags(), Q); 5913 break; 5914 case Instruction::FAdd: 5915 Result = SimplifyFAddInst(I->getOperand(0), I->getOperand(1), 5916 I->getFastMathFlags(), Q); 5917 break; 5918 case Instruction::Add: 5919 Result = 5920 SimplifyAddInst(I->getOperand(0), I->getOperand(1), 5921 Q.IIQ.hasNoSignedWrap(cast<BinaryOperator>(I)), 5922 Q.IIQ.hasNoUnsignedWrap(cast<BinaryOperator>(I)), Q); 5923 break; 5924 case Instruction::FSub: 5925 Result = SimplifyFSubInst(I->getOperand(0), I->getOperand(1), 5926 I->getFastMathFlags(), Q); 5927 break; 5928 case Instruction::Sub: 5929 Result = 5930 SimplifySubInst(I->getOperand(0), I->getOperand(1), 5931 Q.IIQ.hasNoSignedWrap(cast<BinaryOperator>(I)), 5932 Q.IIQ.hasNoUnsignedWrap(cast<BinaryOperator>(I)), Q); 5933 break; 5934 case Instruction::FMul: 5935 Result = SimplifyFMulInst(I->getOperand(0), I->getOperand(1), 5936 I->getFastMathFlags(), Q); 5937 break; 5938 case Instruction::Mul: 5939 Result = SimplifyMulInst(I->getOperand(0), I->getOperand(1), Q); 5940 break; 5941 case Instruction::SDiv: 5942 Result = SimplifySDivInst(I->getOperand(0), I->getOperand(1), Q); 5943 break; 5944 case Instruction::UDiv: 5945 Result = SimplifyUDivInst(I->getOperand(0), I->getOperand(1), Q); 5946 break; 5947 case Instruction::FDiv: 5948 Result = SimplifyFDivInst(I->getOperand(0), I->getOperand(1), 5949 I->getFastMathFlags(), Q); 5950 break; 5951 case Instruction::SRem: 5952 Result = SimplifySRemInst(I->getOperand(0), I->getOperand(1), Q); 5953 break; 5954 case Instruction::URem: 5955 Result = SimplifyURemInst(I->getOperand(0), I->getOperand(1), Q); 5956 break; 5957 case Instruction::FRem: 5958 Result = SimplifyFRemInst(I->getOperand(0), I->getOperand(1), 5959 I->getFastMathFlags(), Q); 5960 break; 5961 case Instruction::Shl: 5962 Result = 5963 SimplifyShlInst(I->getOperand(0), I->getOperand(1), 5964 Q.IIQ.hasNoSignedWrap(cast<BinaryOperator>(I)), 5965 Q.IIQ.hasNoUnsignedWrap(cast<BinaryOperator>(I)), Q); 5966 break; 5967 case Instruction::LShr: 5968 Result = SimplifyLShrInst(I->getOperand(0), I->getOperand(1), 5969 Q.IIQ.isExact(cast<BinaryOperator>(I)), Q); 5970 break; 5971 case Instruction::AShr: 5972 Result = SimplifyAShrInst(I->getOperand(0), I->getOperand(1), 5973 Q.IIQ.isExact(cast<BinaryOperator>(I)), Q); 5974 break; 5975 case Instruction::And: 5976 Result = SimplifyAndInst(I->getOperand(0), I->getOperand(1), Q); 5977 break; 5978 case Instruction::Or: 5979 Result = SimplifyOrInst(I->getOperand(0), I->getOperand(1), Q); 5980 break; 5981 case Instruction::Xor: 5982 Result = SimplifyXorInst(I->getOperand(0), I->getOperand(1), Q); 5983 break; 5984 case Instruction::ICmp: 5985 Result = SimplifyICmpInst(cast<ICmpInst>(I)->getPredicate(), 5986 I->getOperand(0), I->getOperand(1), Q); 5987 break; 5988 case Instruction::FCmp: 5989 Result = 5990 SimplifyFCmpInst(cast<FCmpInst>(I)->getPredicate(), I->getOperand(0), 5991 I->getOperand(1), I->getFastMathFlags(), Q); 5992 break; 5993 case Instruction::Select: 5994 Result = SimplifySelectInst(I->getOperand(0), I->getOperand(1), 5995 I->getOperand(2), Q); 5996 break; 5997 case Instruction::GetElementPtr: { 5998 SmallVector<Value *, 8> Ops(I->operands()); 5999 Result = SimplifyGEPInst(cast<GetElementPtrInst>(I)->getSourceElementType(), 6000 Ops, Q); 6001 break; 6002 } 6003 case Instruction::InsertValue: { 6004 InsertValueInst *IV = cast<InsertValueInst>(I); 6005 Result = SimplifyInsertValueInst(IV->getAggregateOperand(), 6006 IV->getInsertedValueOperand(), 6007 IV->getIndices(), Q); 6008 break; 6009 } 6010 case Instruction::InsertElement: { 6011 auto *IE = cast<InsertElementInst>(I); 6012 Result = SimplifyInsertElementInst(IE->getOperand(0), IE->getOperand(1), 6013 IE->getOperand(2), Q); 6014 break; 6015 } 6016 case Instruction::ExtractValue: { 6017 auto *EVI = cast<ExtractValueInst>(I); 6018 Result = SimplifyExtractValueInst(EVI->getAggregateOperand(), 6019 EVI->getIndices(), Q); 6020 break; 6021 } 6022 case Instruction::ExtractElement: { 6023 auto *EEI = cast<ExtractElementInst>(I); 6024 Result = SimplifyExtractElementInst(EEI->getVectorOperand(), 6025 EEI->getIndexOperand(), Q); 6026 break; 6027 } 6028 case Instruction::ShuffleVector: { 6029 auto *SVI = cast<ShuffleVectorInst>(I); 6030 Result = 6031 SimplifyShuffleVectorInst(SVI->getOperand(0), SVI->getOperand(1), 6032 SVI->getShuffleMask(), SVI->getType(), Q); 6033 break; 6034 } 6035 case Instruction::PHI: 6036 Result = SimplifyPHINode(cast<PHINode>(I), Q); 6037 break; 6038 case Instruction::Call: { 6039 Result = SimplifyCall(cast<CallInst>(I), Q); 6040 break; 6041 } 6042 case Instruction::Freeze: 6043 Result = SimplifyFreezeInst(I->getOperand(0), Q); 6044 break; 6045 #define HANDLE_CAST_INST(num, opc, clas) case Instruction::opc: 6046 #include "llvm/IR/Instruction.def" 6047 #undef HANDLE_CAST_INST 6048 Result = 6049 SimplifyCastInst(I->getOpcode(), I->getOperand(0), I->getType(), Q); 6050 break; 6051 case Instruction::Alloca: 6052 // No simplifications for Alloca and it can't be constant folded. 6053 Result = nullptr; 6054 break; 6055 case Instruction::Load: 6056 Result = SimplifyLoadInst(cast<LoadInst>(I), Q); 6057 break; 6058 } 6059 6060 /// If called on unreachable code, the above logic may report that the 6061 /// instruction simplified to itself. Make life easier for users by 6062 /// detecting that case here, returning a safe value instead. 6063 return Result == I ? UndefValue::get(I->getType()) : Result; 6064 } 6065 6066 /// Implementation of recursive simplification through an instruction's 6067 /// uses. 6068 /// 6069 /// This is the common implementation of the recursive simplification routines. 6070 /// If we have a pre-simplified value in 'SimpleV', that is forcibly used to 6071 /// replace the instruction 'I'. Otherwise, we simply add 'I' to the list of 6072 /// instructions to process and attempt to simplify it using 6073 /// InstructionSimplify. Recursively visited users which could not be 6074 /// simplified themselves are to the optional UnsimplifiedUsers set for 6075 /// further processing by the caller. 6076 /// 6077 /// This routine returns 'true' only when *it* simplifies something. The passed 6078 /// in simplified value does not count toward this. 6079 static bool replaceAndRecursivelySimplifyImpl( 6080 Instruction *I, Value *SimpleV, const TargetLibraryInfo *TLI, 6081 const DominatorTree *DT, AssumptionCache *AC, 6082 SmallSetVector<Instruction *, 8> *UnsimplifiedUsers = nullptr) { 6083 bool Simplified = false; 6084 SmallSetVector<Instruction *, 8> Worklist; 6085 const DataLayout &DL = I->getModule()->getDataLayout(); 6086 6087 // If we have an explicit value to collapse to, do that round of the 6088 // simplification loop by hand initially. 6089 if (SimpleV) { 6090 for (User *U : I->users()) 6091 if (U != I) 6092 Worklist.insert(cast<Instruction>(U)); 6093 6094 // Replace the instruction with its simplified value. 6095 I->replaceAllUsesWith(SimpleV); 6096 6097 // Gracefully handle edge cases where the instruction is not wired into any 6098 // parent block. 6099 if (I->getParent() && !I->isEHPad() && !I->isTerminator() && 6100 !I->mayHaveSideEffects()) 6101 I->eraseFromParent(); 6102 } else { 6103 Worklist.insert(I); 6104 } 6105 6106 // Note that we must test the size on each iteration, the worklist can grow. 6107 for (unsigned Idx = 0; Idx != Worklist.size(); ++Idx) { 6108 I = Worklist[Idx]; 6109 6110 // See if this instruction simplifies. 6111 SimpleV = SimplifyInstruction(I, {DL, TLI, DT, AC}); 6112 if (!SimpleV) { 6113 if (UnsimplifiedUsers) 6114 UnsimplifiedUsers->insert(I); 6115 continue; 6116 } 6117 6118 Simplified = true; 6119 6120 // Stash away all the uses of the old instruction so we can check them for 6121 // recursive simplifications after a RAUW. This is cheaper than checking all 6122 // uses of To on the recursive step in most cases. 6123 for (User *U : I->users()) 6124 Worklist.insert(cast<Instruction>(U)); 6125 6126 // Replace the instruction with its simplified value. 6127 I->replaceAllUsesWith(SimpleV); 6128 6129 // Gracefully handle edge cases where the instruction is not wired into any 6130 // parent block. 6131 if (I->getParent() && !I->isEHPad() && !I->isTerminator() && 6132 !I->mayHaveSideEffects()) 6133 I->eraseFromParent(); 6134 } 6135 return Simplified; 6136 } 6137 6138 bool llvm::replaceAndRecursivelySimplify( 6139 Instruction *I, Value *SimpleV, const TargetLibraryInfo *TLI, 6140 const DominatorTree *DT, AssumptionCache *AC, 6141 SmallSetVector<Instruction *, 8> *UnsimplifiedUsers) { 6142 assert(I != SimpleV && "replaceAndRecursivelySimplify(X,X) is not valid!"); 6143 assert(SimpleV && "Must provide a simplified value."); 6144 return replaceAndRecursivelySimplifyImpl(I, SimpleV, TLI, DT, AC, 6145 UnsimplifiedUsers); 6146 } 6147 6148 namespace llvm { 6149 const SimplifyQuery getBestSimplifyQuery(Pass &P, Function &F) { 6150 auto *DTWP = P.getAnalysisIfAvailable<DominatorTreeWrapperPass>(); 6151 auto *DT = DTWP ? &DTWP->getDomTree() : nullptr; 6152 auto *TLIWP = P.getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 6153 auto *TLI = TLIWP ? &TLIWP->getTLI(F) : nullptr; 6154 auto *ACWP = P.getAnalysisIfAvailable<AssumptionCacheTracker>(); 6155 auto *AC = ACWP ? &ACWP->getAssumptionCache(F) : nullptr; 6156 return {F.getParent()->getDataLayout(), TLI, DT, AC}; 6157 } 6158 6159 const SimplifyQuery getBestSimplifyQuery(LoopStandardAnalysisResults &AR, 6160 const DataLayout &DL) { 6161 return {DL, &AR.TLI, &AR.DT, &AR.AC}; 6162 } 6163 6164 template <class T, class... TArgs> 6165 const SimplifyQuery getBestSimplifyQuery(AnalysisManager<T, TArgs...> &AM, 6166 Function &F) { 6167 auto *DT = AM.template getCachedResult<DominatorTreeAnalysis>(F); 6168 auto *TLI = AM.template getCachedResult<TargetLibraryAnalysis>(F); 6169 auto *AC = AM.template getCachedResult<AssumptionAnalysis>(F); 6170 return {F.getParent()->getDataLayout(), TLI, DT, AC}; 6171 } 6172 template const SimplifyQuery getBestSimplifyQuery(AnalysisManager<Function> &, 6173 Function &); 6174 } 6175