1 //===- InstructionSimplify.cpp - Fold instruction operands ----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements routines for folding instructions into simpler forms 10 // that do not require creating new instructions. This does constant folding 11 // ("add i32 1, 1" -> "2") but can also handle non-constant operands, either 12 // returning a constant ("and i32 %x, 0" -> "0") or an already existing value 13 // ("and i32 %x, %x" -> "%x"). All operands are assumed to have already been 14 // simplified: This is usually true and assuming it simplifies the logic (if 15 // they have not been simplified then results are correct but maybe suboptimal). 16 // 17 //===----------------------------------------------------------------------===// 18 19 #include "llvm/Analysis/InstructionSimplify.h" 20 21 #include "llvm/ADT/STLExtras.h" 22 #include "llvm/ADT/SetVector.h" 23 #include "llvm/ADT/SmallPtrSet.h" 24 #include "llvm/ADT/Statistic.h" 25 #include "llvm/Analysis/AliasAnalysis.h" 26 #include "llvm/Analysis/AssumptionCache.h" 27 #include "llvm/Analysis/CaptureTracking.h" 28 #include "llvm/Analysis/CmpInstAnalysis.h" 29 #include "llvm/Analysis/ConstantFolding.h" 30 #include "llvm/Analysis/LoopAnalysisManager.h" 31 #include "llvm/Analysis/MemoryBuiltins.h" 32 #include "llvm/Analysis/OverflowInstAnalysis.h" 33 #include "llvm/Analysis/ValueTracking.h" 34 #include "llvm/Analysis/VectorUtils.h" 35 #include "llvm/IR/ConstantRange.h" 36 #include "llvm/IR/DataLayout.h" 37 #include "llvm/IR/Dominators.h" 38 #include "llvm/IR/GetElementPtrTypeIterator.h" 39 #include "llvm/IR/GlobalAlias.h" 40 #include "llvm/IR/InstrTypes.h" 41 #include "llvm/IR/Instructions.h" 42 #include "llvm/IR/Operator.h" 43 #include "llvm/IR/PatternMatch.h" 44 #include "llvm/IR/ValueHandle.h" 45 #include "llvm/Support/KnownBits.h" 46 #include <algorithm> 47 using namespace llvm; 48 using namespace llvm::PatternMatch; 49 50 #define DEBUG_TYPE "instsimplify" 51 52 enum { RecursionLimit = 3 }; 53 54 STATISTIC(NumExpand, "Number of expansions"); 55 STATISTIC(NumReassoc, "Number of reassociations"); 56 57 static Value *SimplifyAndInst(Value *, Value *, const SimplifyQuery &, unsigned); 58 static Value *simplifyUnOp(unsigned, Value *, const SimplifyQuery &, unsigned); 59 static Value *simplifyFPUnOp(unsigned, Value *, const FastMathFlags &, 60 const SimplifyQuery &, unsigned); 61 static Value *SimplifyBinOp(unsigned, Value *, Value *, const SimplifyQuery &, 62 unsigned); 63 static Value *SimplifyBinOp(unsigned, Value *, Value *, const FastMathFlags &, 64 const SimplifyQuery &, unsigned); 65 static Value *SimplifyCmpInst(unsigned, Value *, Value *, const SimplifyQuery &, 66 unsigned); 67 static Value *SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS, 68 const SimplifyQuery &Q, unsigned MaxRecurse); 69 static Value *SimplifyOrInst(Value *, Value *, const SimplifyQuery &, unsigned); 70 static Value *SimplifyXorInst(Value *, Value *, const SimplifyQuery &, unsigned); 71 static Value *SimplifyCastInst(unsigned, Value *, Type *, 72 const SimplifyQuery &, unsigned); 73 static Value *SimplifyGEPInst(Type *, ArrayRef<Value *>, bool, 74 const SimplifyQuery &, unsigned); 75 static Value *SimplifySelectInst(Value *, Value *, Value *, 76 const SimplifyQuery &, unsigned); 77 78 static Value *foldSelectWithBinaryOp(Value *Cond, Value *TrueVal, 79 Value *FalseVal) { 80 BinaryOperator::BinaryOps BinOpCode; 81 if (auto *BO = dyn_cast<BinaryOperator>(Cond)) 82 BinOpCode = BO->getOpcode(); 83 else 84 return nullptr; 85 86 CmpInst::Predicate ExpectedPred, Pred1, Pred2; 87 if (BinOpCode == BinaryOperator::Or) { 88 ExpectedPred = ICmpInst::ICMP_NE; 89 } else if (BinOpCode == BinaryOperator::And) { 90 ExpectedPred = ICmpInst::ICMP_EQ; 91 } else 92 return nullptr; 93 94 // %A = icmp eq %TV, %FV 95 // %B = icmp eq %X, %Y (and one of these is a select operand) 96 // %C = and %A, %B 97 // %D = select %C, %TV, %FV 98 // --> 99 // %FV 100 101 // %A = icmp ne %TV, %FV 102 // %B = icmp ne %X, %Y (and one of these is a select operand) 103 // %C = or %A, %B 104 // %D = select %C, %TV, %FV 105 // --> 106 // %TV 107 Value *X, *Y; 108 if (!match(Cond, m_c_BinOp(m_c_ICmp(Pred1, m_Specific(TrueVal), 109 m_Specific(FalseVal)), 110 m_ICmp(Pred2, m_Value(X), m_Value(Y)))) || 111 Pred1 != Pred2 || Pred1 != ExpectedPred) 112 return nullptr; 113 114 if (X == TrueVal || X == FalseVal || Y == TrueVal || Y == FalseVal) 115 return BinOpCode == BinaryOperator::Or ? TrueVal : FalseVal; 116 117 return nullptr; 118 } 119 120 /// For a boolean type or a vector of boolean type, return false or a vector 121 /// with every element false. 122 static Constant *getFalse(Type *Ty) { 123 return ConstantInt::getFalse(Ty); 124 } 125 126 /// For a boolean type or a vector of boolean type, return true or a vector 127 /// with every element true. 128 static Constant *getTrue(Type *Ty) { 129 return ConstantInt::getTrue(Ty); 130 } 131 132 /// isSameCompare - Is V equivalent to the comparison "LHS Pred RHS"? 133 static bool isSameCompare(Value *V, CmpInst::Predicate Pred, Value *LHS, 134 Value *RHS) { 135 CmpInst *Cmp = dyn_cast<CmpInst>(V); 136 if (!Cmp) 137 return false; 138 CmpInst::Predicate CPred = Cmp->getPredicate(); 139 Value *CLHS = Cmp->getOperand(0), *CRHS = Cmp->getOperand(1); 140 if (CPred == Pred && CLHS == LHS && CRHS == RHS) 141 return true; 142 return CPred == CmpInst::getSwappedPredicate(Pred) && CLHS == RHS && 143 CRHS == LHS; 144 } 145 146 /// Simplify comparison with true or false branch of select: 147 /// %sel = select i1 %cond, i32 %tv, i32 %fv 148 /// %cmp = icmp sle i32 %sel, %rhs 149 /// Compose new comparison by substituting %sel with either %tv or %fv 150 /// and see if it simplifies. 151 static Value *simplifyCmpSelCase(CmpInst::Predicate Pred, Value *LHS, 152 Value *RHS, Value *Cond, 153 const SimplifyQuery &Q, unsigned MaxRecurse, 154 Constant *TrueOrFalse) { 155 Value *SimplifiedCmp = SimplifyCmpInst(Pred, LHS, RHS, Q, MaxRecurse); 156 if (SimplifiedCmp == Cond) { 157 // %cmp simplified to the select condition (%cond). 158 return TrueOrFalse; 159 } else if (!SimplifiedCmp && isSameCompare(Cond, Pred, LHS, RHS)) { 160 // It didn't simplify. However, if composed comparison is equivalent 161 // to the select condition (%cond) then we can replace it. 162 return TrueOrFalse; 163 } 164 return SimplifiedCmp; 165 } 166 167 /// Simplify comparison with true branch of select 168 static Value *simplifyCmpSelTrueCase(CmpInst::Predicate Pred, Value *LHS, 169 Value *RHS, Value *Cond, 170 const SimplifyQuery &Q, 171 unsigned MaxRecurse) { 172 return simplifyCmpSelCase(Pred, LHS, RHS, Cond, Q, MaxRecurse, 173 getTrue(Cond->getType())); 174 } 175 176 /// Simplify comparison with false branch of select 177 static Value *simplifyCmpSelFalseCase(CmpInst::Predicate Pred, Value *LHS, 178 Value *RHS, Value *Cond, 179 const SimplifyQuery &Q, 180 unsigned MaxRecurse) { 181 return simplifyCmpSelCase(Pred, LHS, RHS, Cond, Q, MaxRecurse, 182 getFalse(Cond->getType())); 183 } 184 185 /// We know comparison with both branches of select can be simplified, but they 186 /// are not equal. This routine handles some logical simplifications. 187 static Value *handleOtherCmpSelSimplifications(Value *TCmp, Value *FCmp, 188 Value *Cond, 189 const SimplifyQuery &Q, 190 unsigned MaxRecurse) { 191 // If the false value simplified to false, then the result of the compare 192 // is equal to "Cond && TCmp". This also catches the case when the false 193 // value simplified to false and the true value to true, returning "Cond". 194 // Folding select to and/or isn't poison-safe in general; impliesPoison 195 // checks whether folding it does not convert a well-defined value into 196 // poison. 197 if (match(FCmp, m_Zero()) && impliesPoison(TCmp, Cond)) 198 if (Value *V = SimplifyAndInst(Cond, TCmp, Q, MaxRecurse)) 199 return V; 200 // If the true value simplified to true, then the result of the compare 201 // is equal to "Cond || FCmp". 202 if (match(TCmp, m_One()) && impliesPoison(FCmp, Cond)) 203 if (Value *V = SimplifyOrInst(Cond, FCmp, Q, MaxRecurse)) 204 return V; 205 // Finally, if the false value simplified to true and the true value to 206 // false, then the result of the compare is equal to "!Cond". 207 if (match(FCmp, m_One()) && match(TCmp, m_Zero())) 208 if (Value *V = SimplifyXorInst( 209 Cond, Constant::getAllOnesValue(Cond->getType()), Q, MaxRecurse)) 210 return V; 211 return nullptr; 212 } 213 214 /// Does the given value dominate the specified phi node? 215 static bool valueDominatesPHI(Value *V, PHINode *P, const DominatorTree *DT) { 216 Instruction *I = dyn_cast<Instruction>(V); 217 if (!I) 218 // Arguments and constants dominate all instructions. 219 return true; 220 221 // If we are processing instructions (and/or basic blocks) that have not been 222 // fully added to a function, the parent nodes may still be null. Simply 223 // return the conservative answer in these cases. 224 if (!I->getParent() || !P->getParent() || !I->getFunction()) 225 return false; 226 227 // If we have a DominatorTree then do a precise test. 228 if (DT) 229 return DT->dominates(I, P); 230 231 // Otherwise, if the instruction is in the entry block and is not an invoke, 232 // then it obviously dominates all phi nodes. 233 if (I->getParent()->isEntryBlock() && !isa<InvokeInst>(I) && 234 !isa<CallBrInst>(I)) 235 return true; 236 237 return false; 238 } 239 240 /// Try to simplify a binary operator of form "V op OtherOp" where V is 241 /// "(B0 opex B1)" by distributing 'op' across 'opex' as 242 /// "(B0 op OtherOp) opex (B1 op OtherOp)". 243 static Value *expandBinOp(Instruction::BinaryOps Opcode, Value *V, 244 Value *OtherOp, Instruction::BinaryOps OpcodeToExpand, 245 const SimplifyQuery &Q, unsigned MaxRecurse) { 246 auto *B = dyn_cast<BinaryOperator>(V); 247 if (!B || B->getOpcode() != OpcodeToExpand) 248 return nullptr; 249 Value *B0 = B->getOperand(0), *B1 = B->getOperand(1); 250 Value *L = SimplifyBinOp(Opcode, B0, OtherOp, Q.getWithoutUndef(), 251 MaxRecurse); 252 if (!L) 253 return nullptr; 254 Value *R = SimplifyBinOp(Opcode, B1, OtherOp, Q.getWithoutUndef(), 255 MaxRecurse); 256 if (!R) 257 return nullptr; 258 259 // Does the expanded pair of binops simplify to the existing binop? 260 if ((L == B0 && R == B1) || 261 (Instruction::isCommutative(OpcodeToExpand) && L == B1 && R == B0)) { 262 ++NumExpand; 263 return B; 264 } 265 266 // Otherwise, return "L op' R" if it simplifies. 267 Value *S = SimplifyBinOp(OpcodeToExpand, L, R, Q, MaxRecurse); 268 if (!S) 269 return nullptr; 270 271 ++NumExpand; 272 return S; 273 } 274 275 /// Try to simplify binops of form "A op (B op' C)" or the commuted variant by 276 /// distributing op over op'. 277 static Value *expandCommutativeBinOp(Instruction::BinaryOps Opcode, 278 Value *L, Value *R, 279 Instruction::BinaryOps OpcodeToExpand, 280 const SimplifyQuery &Q, 281 unsigned MaxRecurse) { 282 // Recursion is always used, so bail out at once if we already hit the limit. 283 if (!MaxRecurse--) 284 return nullptr; 285 286 if (Value *V = expandBinOp(Opcode, L, R, OpcodeToExpand, Q, MaxRecurse)) 287 return V; 288 if (Value *V = expandBinOp(Opcode, R, L, OpcodeToExpand, Q, MaxRecurse)) 289 return V; 290 return nullptr; 291 } 292 293 /// Generic simplifications for associative binary operations. 294 /// Returns the simpler value, or null if none was found. 295 static Value *SimplifyAssociativeBinOp(Instruction::BinaryOps Opcode, 296 Value *LHS, Value *RHS, 297 const SimplifyQuery &Q, 298 unsigned MaxRecurse) { 299 assert(Instruction::isAssociative(Opcode) && "Not an associative operation!"); 300 301 // Recursion is always used, so bail out at once if we already hit the limit. 302 if (!MaxRecurse--) 303 return nullptr; 304 305 BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS); 306 BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS); 307 308 // Transform: "(A op B) op C" ==> "A op (B op C)" if it simplifies completely. 309 if (Op0 && Op0->getOpcode() == Opcode) { 310 Value *A = Op0->getOperand(0); 311 Value *B = Op0->getOperand(1); 312 Value *C = RHS; 313 314 // Does "B op C" simplify? 315 if (Value *V = SimplifyBinOp(Opcode, B, C, Q, MaxRecurse)) { 316 // It does! Return "A op V" if it simplifies or is already available. 317 // If V equals B then "A op V" is just the LHS. 318 if (V == B) return LHS; 319 // Otherwise return "A op V" if it simplifies. 320 if (Value *W = SimplifyBinOp(Opcode, A, V, Q, MaxRecurse)) { 321 ++NumReassoc; 322 return W; 323 } 324 } 325 } 326 327 // Transform: "A op (B op C)" ==> "(A op B) op C" if it simplifies completely. 328 if (Op1 && Op1->getOpcode() == Opcode) { 329 Value *A = LHS; 330 Value *B = Op1->getOperand(0); 331 Value *C = Op1->getOperand(1); 332 333 // Does "A op B" simplify? 334 if (Value *V = SimplifyBinOp(Opcode, A, B, Q, MaxRecurse)) { 335 // It does! Return "V op C" if it simplifies or is already available. 336 // If V equals B then "V op C" is just the RHS. 337 if (V == B) return RHS; 338 // Otherwise return "V op C" if it simplifies. 339 if (Value *W = SimplifyBinOp(Opcode, V, C, Q, MaxRecurse)) { 340 ++NumReassoc; 341 return W; 342 } 343 } 344 } 345 346 // The remaining transforms require commutativity as well as associativity. 347 if (!Instruction::isCommutative(Opcode)) 348 return nullptr; 349 350 // Transform: "(A op B) op C" ==> "(C op A) op B" if it simplifies completely. 351 if (Op0 && Op0->getOpcode() == Opcode) { 352 Value *A = Op0->getOperand(0); 353 Value *B = Op0->getOperand(1); 354 Value *C = RHS; 355 356 // Does "C op A" simplify? 357 if (Value *V = SimplifyBinOp(Opcode, C, A, Q, MaxRecurse)) { 358 // It does! Return "V op B" if it simplifies or is already available. 359 // If V equals A then "V op B" is just the LHS. 360 if (V == A) return LHS; 361 // Otherwise return "V op B" if it simplifies. 362 if (Value *W = SimplifyBinOp(Opcode, V, B, Q, MaxRecurse)) { 363 ++NumReassoc; 364 return W; 365 } 366 } 367 } 368 369 // Transform: "A op (B op C)" ==> "B op (C op A)" if it simplifies completely. 370 if (Op1 && Op1->getOpcode() == Opcode) { 371 Value *A = LHS; 372 Value *B = Op1->getOperand(0); 373 Value *C = Op1->getOperand(1); 374 375 // Does "C op A" simplify? 376 if (Value *V = SimplifyBinOp(Opcode, C, A, Q, MaxRecurse)) { 377 // It does! Return "B op V" if it simplifies or is already available. 378 // If V equals C then "B op V" is just the RHS. 379 if (V == C) return RHS; 380 // Otherwise return "B op V" if it simplifies. 381 if (Value *W = SimplifyBinOp(Opcode, B, V, Q, MaxRecurse)) { 382 ++NumReassoc; 383 return W; 384 } 385 } 386 } 387 388 return nullptr; 389 } 390 391 /// In the case of a binary operation with a select instruction as an operand, 392 /// try to simplify the binop by seeing whether evaluating it on both branches 393 /// of the select results in the same value. Returns the common value if so, 394 /// otherwise returns null. 395 static Value *ThreadBinOpOverSelect(Instruction::BinaryOps Opcode, Value *LHS, 396 Value *RHS, const SimplifyQuery &Q, 397 unsigned MaxRecurse) { 398 // Recursion is always used, so bail out at once if we already hit the limit. 399 if (!MaxRecurse--) 400 return nullptr; 401 402 SelectInst *SI; 403 if (isa<SelectInst>(LHS)) { 404 SI = cast<SelectInst>(LHS); 405 } else { 406 assert(isa<SelectInst>(RHS) && "No select instruction operand!"); 407 SI = cast<SelectInst>(RHS); 408 } 409 410 // Evaluate the BinOp on the true and false branches of the select. 411 Value *TV; 412 Value *FV; 413 if (SI == LHS) { 414 TV = SimplifyBinOp(Opcode, SI->getTrueValue(), RHS, Q, MaxRecurse); 415 FV = SimplifyBinOp(Opcode, SI->getFalseValue(), RHS, Q, MaxRecurse); 416 } else { 417 TV = SimplifyBinOp(Opcode, LHS, SI->getTrueValue(), Q, MaxRecurse); 418 FV = SimplifyBinOp(Opcode, LHS, SI->getFalseValue(), Q, MaxRecurse); 419 } 420 421 // If they simplified to the same value, then return the common value. 422 // If they both failed to simplify then return null. 423 if (TV == FV) 424 return TV; 425 426 // If one branch simplified to undef, return the other one. 427 if (TV && Q.isUndefValue(TV)) 428 return FV; 429 if (FV && Q.isUndefValue(FV)) 430 return TV; 431 432 // If applying the operation did not change the true and false select values, 433 // then the result of the binop is the select itself. 434 if (TV == SI->getTrueValue() && FV == SI->getFalseValue()) 435 return SI; 436 437 // If one branch simplified and the other did not, and the simplified 438 // value is equal to the unsimplified one, return the simplified value. 439 // For example, select (cond, X, X & Z) & Z -> X & Z. 440 if ((FV && !TV) || (TV && !FV)) { 441 // Check that the simplified value has the form "X op Y" where "op" is the 442 // same as the original operation. 443 Instruction *Simplified = dyn_cast<Instruction>(FV ? FV : TV); 444 if (Simplified && Simplified->getOpcode() == unsigned(Opcode)) { 445 // The value that didn't simplify is "UnsimplifiedLHS op UnsimplifiedRHS". 446 // We already know that "op" is the same as for the simplified value. See 447 // if the operands match too. If so, return the simplified value. 448 Value *UnsimplifiedBranch = FV ? SI->getTrueValue() : SI->getFalseValue(); 449 Value *UnsimplifiedLHS = SI == LHS ? UnsimplifiedBranch : LHS; 450 Value *UnsimplifiedRHS = SI == LHS ? RHS : UnsimplifiedBranch; 451 if (Simplified->getOperand(0) == UnsimplifiedLHS && 452 Simplified->getOperand(1) == UnsimplifiedRHS) 453 return Simplified; 454 if (Simplified->isCommutative() && 455 Simplified->getOperand(1) == UnsimplifiedLHS && 456 Simplified->getOperand(0) == UnsimplifiedRHS) 457 return Simplified; 458 } 459 } 460 461 return nullptr; 462 } 463 464 /// In the case of a comparison with a select instruction, try to simplify the 465 /// comparison by seeing whether both branches of the select result in the same 466 /// value. Returns the common value if so, otherwise returns null. 467 /// For example, if we have: 468 /// %tmp = select i1 %cmp, i32 1, i32 2 469 /// %cmp1 = icmp sle i32 %tmp, 3 470 /// We can simplify %cmp1 to true, because both branches of select are 471 /// less than 3. We compose new comparison by substituting %tmp with both 472 /// branches of select and see if it can be simplified. 473 static Value *ThreadCmpOverSelect(CmpInst::Predicate Pred, Value *LHS, 474 Value *RHS, const SimplifyQuery &Q, 475 unsigned MaxRecurse) { 476 // Recursion is always used, so bail out at once if we already hit the limit. 477 if (!MaxRecurse--) 478 return nullptr; 479 480 // Make sure the select is on the LHS. 481 if (!isa<SelectInst>(LHS)) { 482 std::swap(LHS, RHS); 483 Pred = CmpInst::getSwappedPredicate(Pred); 484 } 485 assert(isa<SelectInst>(LHS) && "Not comparing with a select instruction!"); 486 SelectInst *SI = cast<SelectInst>(LHS); 487 Value *Cond = SI->getCondition(); 488 Value *TV = SI->getTrueValue(); 489 Value *FV = SI->getFalseValue(); 490 491 // Now that we have "cmp select(Cond, TV, FV), RHS", analyse it. 492 // Does "cmp TV, RHS" simplify? 493 Value *TCmp = simplifyCmpSelTrueCase(Pred, TV, RHS, Cond, Q, MaxRecurse); 494 if (!TCmp) 495 return nullptr; 496 497 // Does "cmp FV, RHS" simplify? 498 Value *FCmp = simplifyCmpSelFalseCase(Pred, FV, RHS, Cond, Q, MaxRecurse); 499 if (!FCmp) 500 return nullptr; 501 502 // If both sides simplified to the same value, then use it as the result of 503 // the original comparison. 504 if (TCmp == FCmp) 505 return TCmp; 506 507 // The remaining cases only make sense if the select condition has the same 508 // type as the result of the comparison, so bail out if this is not so. 509 if (Cond->getType()->isVectorTy() == RHS->getType()->isVectorTy()) 510 return handleOtherCmpSelSimplifications(TCmp, FCmp, Cond, Q, MaxRecurse); 511 512 return nullptr; 513 } 514 515 /// In the case of a binary operation with an operand that is a PHI instruction, 516 /// try to simplify the binop by seeing whether evaluating it on the incoming 517 /// phi values yields the same result for every value. If so returns the common 518 /// value, otherwise returns null. 519 static Value *ThreadBinOpOverPHI(Instruction::BinaryOps Opcode, Value *LHS, 520 Value *RHS, const SimplifyQuery &Q, 521 unsigned MaxRecurse) { 522 // Recursion is always used, so bail out at once if we already hit the limit. 523 if (!MaxRecurse--) 524 return nullptr; 525 526 PHINode *PI; 527 if (isa<PHINode>(LHS)) { 528 PI = cast<PHINode>(LHS); 529 // Bail out if RHS and the phi may be mutually interdependent due to a loop. 530 if (!valueDominatesPHI(RHS, PI, Q.DT)) 531 return nullptr; 532 } else { 533 assert(isa<PHINode>(RHS) && "No PHI instruction operand!"); 534 PI = cast<PHINode>(RHS); 535 // Bail out if LHS and the phi may be mutually interdependent due to a loop. 536 if (!valueDominatesPHI(LHS, PI, Q.DT)) 537 return nullptr; 538 } 539 540 // Evaluate the BinOp on the incoming phi values. 541 Value *CommonValue = nullptr; 542 for (Value *Incoming : PI->incoming_values()) { 543 // If the incoming value is the phi node itself, it can safely be skipped. 544 if (Incoming == PI) continue; 545 Value *V = PI == LHS ? 546 SimplifyBinOp(Opcode, Incoming, RHS, Q, MaxRecurse) : 547 SimplifyBinOp(Opcode, LHS, Incoming, Q, MaxRecurse); 548 // If the operation failed to simplify, or simplified to a different value 549 // to previously, then give up. 550 if (!V || (CommonValue && V != CommonValue)) 551 return nullptr; 552 CommonValue = V; 553 } 554 555 return CommonValue; 556 } 557 558 /// In the case of a comparison with a PHI instruction, try to simplify the 559 /// comparison by seeing whether comparing with all of the incoming phi values 560 /// yields the same result every time. If so returns the common result, 561 /// otherwise returns null. 562 static Value *ThreadCmpOverPHI(CmpInst::Predicate Pred, Value *LHS, Value *RHS, 563 const SimplifyQuery &Q, unsigned MaxRecurse) { 564 // Recursion is always used, so bail out at once if we already hit the limit. 565 if (!MaxRecurse--) 566 return nullptr; 567 568 // Make sure the phi is on the LHS. 569 if (!isa<PHINode>(LHS)) { 570 std::swap(LHS, RHS); 571 Pred = CmpInst::getSwappedPredicate(Pred); 572 } 573 assert(isa<PHINode>(LHS) && "Not comparing with a phi instruction!"); 574 PHINode *PI = cast<PHINode>(LHS); 575 576 // Bail out if RHS and the phi may be mutually interdependent due to a loop. 577 if (!valueDominatesPHI(RHS, PI, Q.DT)) 578 return nullptr; 579 580 // Evaluate the BinOp on the incoming phi values. 581 Value *CommonValue = nullptr; 582 for (unsigned u = 0, e = PI->getNumIncomingValues(); u < e; ++u) { 583 Value *Incoming = PI->getIncomingValue(u); 584 Instruction *InTI = PI->getIncomingBlock(u)->getTerminator(); 585 // If the incoming value is the phi node itself, it can safely be skipped. 586 if (Incoming == PI) continue; 587 // Change the context instruction to the "edge" that flows into the phi. 588 // This is important because that is where incoming is actually "evaluated" 589 // even though it is used later somewhere else. 590 Value *V = SimplifyCmpInst(Pred, Incoming, RHS, Q.getWithInstruction(InTI), 591 MaxRecurse); 592 // If the operation failed to simplify, or simplified to a different value 593 // to previously, then give up. 594 if (!V || (CommonValue && V != CommonValue)) 595 return nullptr; 596 CommonValue = V; 597 } 598 599 return CommonValue; 600 } 601 602 static Constant *foldOrCommuteConstant(Instruction::BinaryOps Opcode, 603 Value *&Op0, Value *&Op1, 604 const SimplifyQuery &Q) { 605 if (auto *CLHS = dyn_cast<Constant>(Op0)) { 606 if (auto *CRHS = dyn_cast<Constant>(Op1)) 607 return ConstantFoldBinaryOpOperands(Opcode, CLHS, CRHS, Q.DL); 608 609 // Canonicalize the constant to the RHS if this is a commutative operation. 610 if (Instruction::isCommutative(Opcode)) 611 std::swap(Op0, Op1); 612 } 613 return nullptr; 614 } 615 616 /// Given operands for an Add, see if we can fold the result. 617 /// If not, this returns null. 618 static Value *SimplifyAddInst(Value *Op0, Value *Op1, bool IsNSW, bool IsNUW, 619 const SimplifyQuery &Q, unsigned MaxRecurse) { 620 if (Constant *C = foldOrCommuteConstant(Instruction::Add, Op0, Op1, Q)) 621 return C; 622 623 // X + undef -> undef 624 if (Q.isUndefValue(Op1)) 625 return Op1; 626 627 // X + 0 -> X 628 if (match(Op1, m_Zero())) 629 return Op0; 630 631 // If two operands are negative, return 0. 632 if (isKnownNegation(Op0, Op1)) 633 return Constant::getNullValue(Op0->getType()); 634 635 // X + (Y - X) -> Y 636 // (Y - X) + X -> Y 637 // Eg: X + -X -> 0 638 Value *Y = nullptr; 639 if (match(Op1, m_Sub(m_Value(Y), m_Specific(Op0))) || 640 match(Op0, m_Sub(m_Value(Y), m_Specific(Op1)))) 641 return Y; 642 643 // X + ~X -> -1 since ~X = -X-1 644 Type *Ty = Op0->getType(); 645 if (match(Op0, m_Not(m_Specific(Op1))) || 646 match(Op1, m_Not(m_Specific(Op0)))) 647 return Constant::getAllOnesValue(Ty); 648 649 // add nsw/nuw (xor Y, signmask), signmask --> Y 650 // The no-wrapping add guarantees that the top bit will be set by the add. 651 // Therefore, the xor must be clearing the already set sign bit of Y. 652 if ((IsNSW || IsNUW) && match(Op1, m_SignMask()) && 653 match(Op0, m_Xor(m_Value(Y), m_SignMask()))) 654 return Y; 655 656 // add nuw %x, -1 -> -1, because %x can only be 0. 657 if (IsNUW && match(Op1, m_AllOnes())) 658 return Op1; // Which is -1. 659 660 /// i1 add -> xor. 661 if (MaxRecurse && Op0->getType()->isIntOrIntVectorTy(1)) 662 if (Value *V = SimplifyXorInst(Op0, Op1, Q, MaxRecurse-1)) 663 return V; 664 665 // Try some generic simplifications for associative operations. 666 if (Value *V = SimplifyAssociativeBinOp(Instruction::Add, Op0, Op1, Q, 667 MaxRecurse)) 668 return V; 669 670 // Threading Add over selects and phi nodes is pointless, so don't bother. 671 // Threading over the select in "A + select(cond, B, C)" means evaluating 672 // "A+B" and "A+C" and seeing if they are equal; but they are equal if and 673 // only if B and C are equal. If B and C are equal then (since we assume 674 // that operands have already been simplified) "select(cond, B, C)" should 675 // have been simplified to the common value of B and C already. Analysing 676 // "A+B" and "A+C" thus gains nothing, but costs compile time. Similarly 677 // for threading over phi nodes. 678 679 return nullptr; 680 } 681 682 Value *llvm::SimplifyAddInst(Value *Op0, Value *Op1, bool IsNSW, bool IsNUW, 683 const SimplifyQuery &Query) { 684 return ::SimplifyAddInst(Op0, Op1, IsNSW, IsNUW, Query, RecursionLimit); 685 } 686 687 /// Compute the base pointer and cumulative constant offsets for V. 688 /// 689 /// This strips all constant offsets off of V, leaving it the base pointer, and 690 /// accumulates the total constant offset applied in the returned constant. It 691 /// returns 0 if V is not a pointer, and returns the constant '0' if there are 692 /// no constant offsets applied. 693 /// 694 /// This is very similar to GetPointerBaseWithConstantOffset except it doesn't 695 /// follow non-inbounds geps. This allows it to remain usable for icmp ult/etc. 696 /// folding. 697 static Constant *stripAndComputeConstantOffsets(const DataLayout &DL, Value *&V, 698 bool AllowNonInbounds = false) { 699 assert(V->getType()->isPtrOrPtrVectorTy()); 700 701 Type *IntIdxTy = DL.getIndexType(V->getType())->getScalarType(); 702 APInt Offset = APInt::getZero(IntIdxTy->getIntegerBitWidth()); 703 704 V = V->stripAndAccumulateConstantOffsets(DL, Offset, AllowNonInbounds); 705 // As that strip may trace through `addrspacecast`, need to sext or trunc 706 // the offset calculated. 707 IntIdxTy = DL.getIndexType(V->getType())->getScalarType(); 708 Offset = Offset.sextOrTrunc(IntIdxTy->getIntegerBitWidth()); 709 710 Constant *OffsetIntPtr = ConstantInt::get(IntIdxTy, Offset); 711 if (VectorType *VecTy = dyn_cast<VectorType>(V->getType())) 712 return ConstantVector::getSplat(VecTy->getElementCount(), OffsetIntPtr); 713 return OffsetIntPtr; 714 } 715 716 /// Compute the constant difference between two pointer values. 717 /// If the difference is not a constant, returns zero. 718 static Constant *computePointerDifference(const DataLayout &DL, Value *LHS, 719 Value *RHS) { 720 Constant *LHSOffset = stripAndComputeConstantOffsets(DL, LHS); 721 Constant *RHSOffset = stripAndComputeConstantOffsets(DL, RHS); 722 723 // If LHS and RHS are not related via constant offsets to the same base 724 // value, there is nothing we can do here. 725 if (LHS != RHS) 726 return nullptr; 727 728 // Otherwise, the difference of LHS - RHS can be computed as: 729 // LHS - RHS 730 // = (LHSOffset + Base) - (RHSOffset + Base) 731 // = LHSOffset - RHSOffset 732 return ConstantExpr::getSub(LHSOffset, RHSOffset); 733 } 734 735 /// Given operands for a Sub, see if we can fold the result. 736 /// If not, this returns null. 737 static Value *SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, 738 const SimplifyQuery &Q, unsigned MaxRecurse) { 739 if (Constant *C = foldOrCommuteConstant(Instruction::Sub, Op0, Op1, Q)) 740 return C; 741 742 // X - poison -> poison 743 // poison - X -> poison 744 if (isa<PoisonValue>(Op0) || isa<PoisonValue>(Op1)) 745 return PoisonValue::get(Op0->getType()); 746 747 // X - undef -> undef 748 // undef - X -> undef 749 if (Q.isUndefValue(Op0) || Q.isUndefValue(Op1)) 750 return UndefValue::get(Op0->getType()); 751 752 // X - 0 -> X 753 if (match(Op1, m_Zero())) 754 return Op0; 755 756 // X - X -> 0 757 if (Op0 == Op1) 758 return Constant::getNullValue(Op0->getType()); 759 760 // Is this a negation? 761 if (match(Op0, m_Zero())) { 762 // 0 - X -> 0 if the sub is NUW. 763 if (isNUW) 764 return Constant::getNullValue(Op0->getType()); 765 766 KnownBits Known = computeKnownBits(Op1, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 767 if (Known.Zero.isMaxSignedValue()) { 768 // Op1 is either 0 or the minimum signed value. If the sub is NSW, then 769 // Op1 must be 0 because negating the minimum signed value is undefined. 770 if (isNSW) 771 return Constant::getNullValue(Op0->getType()); 772 773 // 0 - X -> X if X is 0 or the minimum signed value. 774 return Op1; 775 } 776 } 777 778 // (X + Y) - Z -> X + (Y - Z) or Y + (X - Z) if everything simplifies. 779 // For example, (X + Y) - Y -> X; (Y + X) - Y -> X 780 Value *X = nullptr, *Y = nullptr, *Z = Op1; 781 if (MaxRecurse && match(Op0, m_Add(m_Value(X), m_Value(Y)))) { // (X + Y) - Z 782 // See if "V === Y - Z" simplifies. 783 if (Value *V = SimplifyBinOp(Instruction::Sub, Y, Z, Q, MaxRecurse-1)) 784 // It does! Now see if "X + V" simplifies. 785 if (Value *W = SimplifyBinOp(Instruction::Add, X, V, Q, MaxRecurse-1)) { 786 // It does, we successfully reassociated! 787 ++NumReassoc; 788 return W; 789 } 790 // See if "V === X - Z" simplifies. 791 if (Value *V = SimplifyBinOp(Instruction::Sub, X, Z, Q, MaxRecurse-1)) 792 // It does! Now see if "Y + V" simplifies. 793 if (Value *W = SimplifyBinOp(Instruction::Add, Y, V, Q, MaxRecurse-1)) { 794 // It does, we successfully reassociated! 795 ++NumReassoc; 796 return W; 797 } 798 } 799 800 // X - (Y + Z) -> (X - Y) - Z or (X - Z) - Y if everything simplifies. 801 // For example, X - (X + 1) -> -1 802 X = Op0; 803 if (MaxRecurse && match(Op1, m_Add(m_Value(Y), m_Value(Z)))) { // X - (Y + Z) 804 // See if "V === X - Y" simplifies. 805 if (Value *V = SimplifyBinOp(Instruction::Sub, X, Y, Q, MaxRecurse-1)) 806 // It does! Now see if "V - Z" simplifies. 807 if (Value *W = SimplifyBinOp(Instruction::Sub, V, Z, Q, MaxRecurse-1)) { 808 // It does, we successfully reassociated! 809 ++NumReassoc; 810 return W; 811 } 812 // See if "V === X - Z" simplifies. 813 if (Value *V = SimplifyBinOp(Instruction::Sub, X, Z, Q, MaxRecurse-1)) 814 // It does! Now see if "V - Y" simplifies. 815 if (Value *W = SimplifyBinOp(Instruction::Sub, V, Y, Q, MaxRecurse-1)) { 816 // It does, we successfully reassociated! 817 ++NumReassoc; 818 return W; 819 } 820 } 821 822 // Z - (X - Y) -> (Z - X) + Y if everything simplifies. 823 // For example, X - (X - Y) -> Y. 824 Z = Op0; 825 if (MaxRecurse && match(Op1, m_Sub(m_Value(X), m_Value(Y)))) // Z - (X - Y) 826 // See if "V === Z - X" simplifies. 827 if (Value *V = SimplifyBinOp(Instruction::Sub, Z, X, Q, MaxRecurse-1)) 828 // It does! Now see if "V + Y" simplifies. 829 if (Value *W = SimplifyBinOp(Instruction::Add, V, Y, Q, MaxRecurse-1)) { 830 // It does, we successfully reassociated! 831 ++NumReassoc; 832 return W; 833 } 834 835 // trunc(X) - trunc(Y) -> trunc(X - Y) if everything simplifies. 836 if (MaxRecurse && match(Op0, m_Trunc(m_Value(X))) && 837 match(Op1, m_Trunc(m_Value(Y)))) 838 if (X->getType() == Y->getType()) 839 // See if "V === X - Y" simplifies. 840 if (Value *V = SimplifyBinOp(Instruction::Sub, X, Y, Q, MaxRecurse-1)) 841 // It does! Now see if "trunc V" simplifies. 842 if (Value *W = SimplifyCastInst(Instruction::Trunc, V, Op0->getType(), 843 Q, MaxRecurse - 1)) 844 // It does, return the simplified "trunc V". 845 return W; 846 847 // Variations on GEP(base, I, ...) - GEP(base, i, ...) -> GEP(null, I-i, ...). 848 if (match(Op0, m_PtrToInt(m_Value(X))) && 849 match(Op1, m_PtrToInt(m_Value(Y)))) 850 if (Constant *Result = computePointerDifference(Q.DL, X, Y)) 851 return ConstantExpr::getIntegerCast(Result, Op0->getType(), true); 852 853 // i1 sub -> xor. 854 if (MaxRecurse && Op0->getType()->isIntOrIntVectorTy(1)) 855 if (Value *V = SimplifyXorInst(Op0, Op1, Q, MaxRecurse-1)) 856 return V; 857 858 // Threading Sub over selects and phi nodes is pointless, so don't bother. 859 // Threading over the select in "A - select(cond, B, C)" means evaluating 860 // "A-B" and "A-C" and seeing if they are equal; but they are equal if and 861 // only if B and C are equal. If B and C are equal then (since we assume 862 // that operands have already been simplified) "select(cond, B, C)" should 863 // have been simplified to the common value of B and C already. Analysing 864 // "A-B" and "A-C" thus gains nothing, but costs compile time. Similarly 865 // for threading over phi nodes. 866 867 return nullptr; 868 } 869 870 Value *llvm::SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, 871 const SimplifyQuery &Q) { 872 return ::SimplifySubInst(Op0, Op1, isNSW, isNUW, Q, RecursionLimit); 873 } 874 875 /// Given operands for a Mul, see if we can fold the result. 876 /// If not, this returns null. 877 static Value *SimplifyMulInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 878 unsigned MaxRecurse) { 879 if (Constant *C = foldOrCommuteConstant(Instruction::Mul, Op0, Op1, Q)) 880 return C; 881 882 // X * poison -> poison 883 if (isa<PoisonValue>(Op1)) 884 return Op1; 885 886 // X * undef -> 0 887 // X * 0 -> 0 888 if (Q.isUndefValue(Op1) || match(Op1, m_Zero())) 889 return Constant::getNullValue(Op0->getType()); 890 891 // X * 1 -> X 892 if (match(Op1, m_One())) 893 return Op0; 894 895 // (X / Y) * Y -> X if the division is exact. 896 Value *X = nullptr; 897 if (Q.IIQ.UseInstrInfo && 898 (match(Op0, 899 m_Exact(m_IDiv(m_Value(X), m_Specific(Op1)))) || // (X / Y) * Y 900 match(Op1, m_Exact(m_IDiv(m_Value(X), m_Specific(Op0)))))) // Y * (X / Y) 901 return X; 902 903 // i1 mul -> and. 904 if (MaxRecurse && Op0->getType()->isIntOrIntVectorTy(1)) 905 if (Value *V = SimplifyAndInst(Op0, Op1, Q, MaxRecurse-1)) 906 return V; 907 908 // Try some generic simplifications for associative operations. 909 if (Value *V = SimplifyAssociativeBinOp(Instruction::Mul, Op0, Op1, Q, 910 MaxRecurse)) 911 return V; 912 913 // Mul distributes over Add. Try some generic simplifications based on this. 914 if (Value *V = expandCommutativeBinOp(Instruction::Mul, Op0, Op1, 915 Instruction::Add, Q, MaxRecurse)) 916 return V; 917 918 // If the operation is with the result of a select instruction, check whether 919 // operating on either branch of the select always yields the same value. 920 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 921 if (Value *V = ThreadBinOpOverSelect(Instruction::Mul, Op0, Op1, Q, 922 MaxRecurse)) 923 return V; 924 925 // If the operation is with the result of a phi instruction, check whether 926 // operating on all incoming values of the phi always yields the same value. 927 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 928 if (Value *V = ThreadBinOpOverPHI(Instruction::Mul, Op0, Op1, Q, 929 MaxRecurse)) 930 return V; 931 932 return nullptr; 933 } 934 935 Value *llvm::SimplifyMulInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 936 return ::SimplifyMulInst(Op0, Op1, Q, RecursionLimit); 937 } 938 939 /// Check for common or similar folds of integer division or integer remainder. 940 /// This applies to all 4 opcodes (sdiv/udiv/srem/urem). 941 static Value *simplifyDivRem(Instruction::BinaryOps Opcode, Value *Op0, 942 Value *Op1, const SimplifyQuery &Q) { 943 bool IsDiv = (Opcode == Instruction::SDiv || Opcode == Instruction::UDiv); 944 bool IsSigned = (Opcode == Instruction::SDiv || Opcode == Instruction::SRem); 945 946 Type *Ty = Op0->getType(); 947 948 // X / undef -> poison 949 // X % undef -> poison 950 if (Q.isUndefValue(Op1)) 951 return PoisonValue::get(Ty); 952 953 // X / 0 -> poison 954 // X % 0 -> poison 955 // We don't need to preserve faults! 956 if (match(Op1, m_Zero())) 957 return PoisonValue::get(Ty); 958 959 // If any element of a constant divisor fixed width vector is zero or undef 960 // the behavior is undefined and we can fold the whole op to poison. 961 auto *Op1C = dyn_cast<Constant>(Op1); 962 auto *VTy = dyn_cast<FixedVectorType>(Ty); 963 if (Op1C && VTy) { 964 unsigned NumElts = VTy->getNumElements(); 965 for (unsigned i = 0; i != NumElts; ++i) { 966 Constant *Elt = Op1C->getAggregateElement(i); 967 if (Elt && (Elt->isNullValue() || Q.isUndefValue(Elt))) 968 return PoisonValue::get(Ty); 969 } 970 } 971 972 // poison / X -> poison 973 // poison % X -> poison 974 if (isa<PoisonValue>(Op0)) 975 return Op0; 976 977 // undef / X -> 0 978 // undef % X -> 0 979 if (Q.isUndefValue(Op0)) 980 return Constant::getNullValue(Ty); 981 982 // 0 / X -> 0 983 // 0 % X -> 0 984 if (match(Op0, m_Zero())) 985 return Constant::getNullValue(Op0->getType()); 986 987 // X / X -> 1 988 // X % X -> 0 989 if (Op0 == Op1) 990 return IsDiv ? ConstantInt::get(Ty, 1) : Constant::getNullValue(Ty); 991 992 // X / 1 -> X 993 // X % 1 -> 0 994 // If this is a boolean op (single-bit element type), we can't have 995 // division-by-zero or remainder-by-zero, so assume the divisor is 1. 996 // Similarly, if we're zero-extending a boolean divisor, then assume it's a 1. 997 Value *X; 998 if (match(Op1, m_One()) || Ty->isIntOrIntVectorTy(1) || 999 (match(Op1, m_ZExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1))) 1000 return IsDiv ? Op0 : Constant::getNullValue(Ty); 1001 1002 // If X * Y does not overflow, then: 1003 // X * Y / Y -> X 1004 // X * Y % Y -> 0 1005 if (match(Op0, m_c_Mul(m_Value(X), m_Specific(Op1)))) { 1006 auto *Mul = cast<OverflowingBinaryOperator>(Op0); 1007 // The multiplication can't overflow if it is defined not to, or if 1008 // X == A / Y for some A. 1009 if ((IsSigned && Q.IIQ.hasNoSignedWrap(Mul)) || 1010 (!IsSigned && Q.IIQ.hasNoUnsignedWrap(Mul)) || 1011 (IsSigned && match(X, m_SDiv(m_Value(), m_Specific(Op1)))) || 1012 (!IsSigned && match(X, m_UDiv(m_Value(), m_Specific(Op1))))) { 1013 return IsDiv ? X : Constant::getNullValue(Op0->getType()); 1014 } 1015 } 1016 1017 return nullptr; 1018 } 1019 1020 /// Given a predicate and two operands, return true if the comparison is true. 1021 /// This is a helper for div/rem simplification where we return some other value 1022 /// when we can prove a relationship between the operands. 1023 static bool isICmpTrue(ICmpInst::Predicate Pred, Value *LHS, Value *RHS, 1024 const SimplifyQuery &Q, unsigned MaxRecurse) { 1025 Value *V = SimplifyICmpInst(Pred, LHS, RHS, Q, MaxRecurse); 1026 Constant *C = dyn_cast_or_null<Constant>(V); 1027 return (C && C->isAllOnesValue()); 1028 } 1029 1030 /// Return true if we can simplify X / Y to 0. Remainder can adapt that answer 1031 /// to simplify X % Y to X. 1032 static bool isDivZero(Value *X, Value *Y, const SimplifyQuery &Q, 1033 unsigned MaxRecurse, bool IsSigned) { 1034 // Recursion is always used, so bail out at once if we already hit the limit. 1035 if (!MaxRecurse--) 1036 return false; 1037 1038 if (IsSigned) { 1039 // |X| / |Y| --> 0 1040 // 1041 // We require that 1 operand is a simple constant. That could be extended to 1042 // 2 variables if we computed the sign bit for each. 1043 // 1044 // Make sure that a constant is not the minimum signed value because taking 1045 // the abs() of that is undefined. 1046 Type *Ty = X->getType(); 1047 const APInt *C; 1048 if (match(X, m_APInt(C)) && !C->isMinSignedValue()) { 1049 // Is the variable divisor magnitude always greater than the constant 1050 // dividend magnitude? 1051 // |Y| > |C| --> Y < -abs(C) or Y > abs(C) 1052 Constant *PosDividendC = ConstantInt::get(Ty, C->abs()); 1053 Constant *NegDividendC = ConstantInt::get(Ty, -C->abs()); 1054 if (isICmpTrue(CmpInst::ICMP_SLT, Y, NegDividendC, Q, MaxRecurse) || 1055 isICmpTrue(CmpInst::ICMP_SGT, Y, PosDividendC, Q, MaxRecurse)) 1056 return true; 1057 } 1058 if (match(Y, m_APInt(C))) { 1059 // Special-case: we can't take the abs() of a minimum signed value. If 1060 // that's the divisor, then all we have to do is prove that the dividend 1061 // is also not the minimum signed value. 1062 if (C->isMinSignedValue()) 1063 return isICmpTrue(CmpInst::ICMP_NE, X, Y, Q, MaxRecurse); 1064 1065 // Is the variable dividend magnitude always less than the constant 1066 // divisor magnitude? 1067 // |X| < |C| --> X > -abs(C) and X < abs(C) 1068 Constant *PosDivisorC = ConstantInt::get(Ty, C->abs()); 1069 Constant *NegDivisorC = ConstantInt::get(Ty, -C->abs()); 1070 if (isICmpTrue(CmpInst::ICMP_SGT, X, NegDivisorC, Q, MaxRecurse) && 1071 isICmpTrue(CmpInst::ICMP_SLT, X, PosDivisorC, Q, MaxRecurse)) 1072 return true; 1073 } 1074 return false; 1075 } 1076 1077 // IsSigned == false. 1078 // Is the dividend unsigned less than the divisor? 1079 return isICmpTrue(ICmpInst::ICMP_ULT, X, Y, Q, MaxRecurse); 1080 } 1081 1082 /// These are simplifications common to SDiv and UDiv. 1083 static Value *simplifyDiv(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1, 1084 const SimplifyQuery &Q, unsigned MaxRecurse) { 1085 if (Constant *C = foldOrCommuteConstant(Opcode, Op0, Op1, Q)) 1086 return C; 1087 1088 if (Value *V = simplifyDivRem(Opcode, Op0, Op1, Q)) 1089 return V; 1090 1091 bool IsSigned = Opcode == Instruction::SDiv; 1092 1093 // (X rem Y) / Y -> 0 1094 if ((IsSigned && match(Op0, m_SRem(m_Value(), m_Specific(Op1)))) || 1095 (!IsSigned && match(Op0, m_URem(m_Value(), m_Specific(Op1))))) 1096 return Constant::getNullValue(Op0->getType()); 1097 1098 // (X /u C1) /u C2 -> 0 if C1 * C2 overflow 1099 ConstantInt *C1, *C2; 1100 if (!IsSigned && match(Op0, m_UDiv(m_Value(), m_ConstantInt(C1))) && 1101 match(Op1, m_ConstantInt(C2))) { 1102 bool Overflow; 1103 (void)C1->getValue().umul_ov(C2->getValue(), Overflow); 1104 if (Overflow) 1105 return Constant::getNullValue(Op0->getType()); 1106 } 1107 1108 // If the operation is with the result of a select instruction, check whether 1109 // operating on either branch of the select always yields the same value. 1110 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 1111 if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse)) 1112 return V; 1113 1114 // If the operation is with the result of a phi instruction, check whether 1115 // operating on all incoming values of the phi always yields the same value. 1116 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 1117 if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse)) 1118 return V; 1119 1120 if (isDivZero(Op0, Op1, Q, MaxRecurse, IsSigned)) 1121 return Constant::getNullValue(Op0->getType()); 1122 1123 return nullptr; 1124 } 1125 1126 /// These are simplifications common to SRem and URem. 1127 static Value *simplifyRem(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1, 1128 const SimplifyQuery &Q, unsigned MaxRecurse) { 1129 if (Constant *C = foldOrCommuteConstant(Opcode, Op0, Op1, Q)) 1130 return C; 1131 1132 if (Value *V = simplifyDivRem(Opcode, Op0, Op1, Q)) 1133 return V; 1134 1135 // (X % Y) % Y -> X % Y 1136 if ((Opcode == Instruction::SRem && 1137 match(Op0, m_SRem(m_Value(), m_Specific(Op1)))) || 1138 (Opcode == Instruction::URem && 1139 match(Op0, m_URem(m_Value(), m_Specific(Op1))))) 1140 return Op0; 1141 1142 // (X << Y) % X -> 0 1143 if (Q.IIQ.UseInstrInfo && 1144 ((Opcode == Instruction::SRem && 1145 match(Op0, m_NSWShl(m_Specific(Op1), m_Value()))) || 1146 (Opcode == Instruction::URem && 1147 match(Op0, m_NUWShl(m_Specific(Op1), m_Value()))))) 1148 return Constant::getNullValue(Op0->getType()); 1149 1150 // If the operation is with the result of a select instruction, check whether 1151 // operating on either branch of the select always yields the same value. 1152 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 1153 if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse)) 1154 return V; 1155 1156 // If the operation is with the result of a phi instruction, check whether 1157 // operating on all incoming values of the phi always yields the same value. 1158 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 1159 if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse)) 1160 return V; 1161 1162 // If X / Y == 0, then X % Y == X. 1163 if (isDivZero(Op0, Op1, Q, MaxRecurse, Opcode == Instruction::SRem)) 1164 return Op0; 1165 1166 return nullptr; 1167 } 1168 1169 /// Given operands for an SDiv, see if we can fold the result. 1170 /// If not, this returns null. 1171 static Value *SimplifySDivInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 1172 unsigned MaxRecurse) { 1173 // If two operands are negated and no signed overflow, return -1. 1174 if (isKnownNegation(Op0, Op1, /*NeedNSW=*/true)) 1175 return Constant::getAllOnesValue(Op0->getType()); 1176 1177 return simplifyDiv(Instruction::SDiv, Op0, Op1, Q, MaxRecurse); 1178 } 1179 1180 Value *llvm::SimplifySDivInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 1181 return ::SimplifySDivInst(Op0, Op1, Q, RecursionLimit); 1182 } 1183 1184 /// Given operands for a UDiv, see if we can fold the result. 1185 /// If not, this returns null. 1186 static Value *SimplifyUDivInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 1187 unsigned MaxRecurse) { 1188 return simplifyDiv(Instruction::UDiv, Op0, Op1, Q, MaxRecurse); 1189 } 1190 1191 Value *llvm::SimplifyUDivInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 1192 return ::SimplifyUDivInst(Op0, Op1, Q, RecursionLimit); 1193 } 1194 1195 /// Given operands for an SRem, see if we can fold the result. 1196 /// If not, this returns null. 1197 static Value *SimplifySRemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 1198 unsigned MaxRecurse) { 1199 // If the divisor is 0, the result is undefined, so assume the divisor is -1. 1200 // srem Op0, (sext i1 X) --> srem Op0, -1 --> 0 1201 Value *X; 1202 if (match(Op1, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)) 1203 return ConstantInt::getNullValue(Op0->getType()); 1204 1205 // If the two operands are negated, return 0. 1206 if (isKnownNegation(Op0, Op1)) 1207 return ConstantInt::getNullValue(Op0->getType()); 1208 1209 return simplifyRem(Instruction::SRem, Op0, Op1, Q, MaxRecurse); 1210 } 1211 1212 Value *llvm::SimplifySRemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 1213 return ::SimplifySRemInst(Op0, Op1, Q, RecursionLimit); 1214 } 1215 1216 /// Given operands for a URem, see if we can fold the result. 1217 /// If not, this returns null. 1218 static Value *SimplifyURemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 1219 unsigned MaxRecurse) { 1220 return simplifyRem(Instruction::URem, Op0, Op1, Q, MaxRecurse); 1221 } 1222 1223 Value *llvm::SimplifyURemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 1224 return ::SimplifyURemInst(Op0, Op1, Q, RecursionLimit); 1225 } 1226 1227 /// Returns true if a shift by \c Amount always yields poison. 1228 static bool isPoisonShift(Value *Amount, const SimplifyQuery &Q) { 1229 Constant *C = dyn_cast<Constant>(Amount); 1230 if (!C) 1231 return false; 1232 1233 // X shift by undef -> poison because it may shift by the bitwidth. 1234 if (Q.isUndefValue(C)) 1235 return true; 1236 1237 // Shifting by the bitwidth or more is undefined. 1238 if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1239 if (CI->getValue().uge(CI->getType()->getScalarSizeInBits())) 1240 return true; 1241 1242 // If all lanes of a vector shift are undefined the whole shift is. 1243 if (isa<ConstantVector>(C) || isa<ConstantDataVector>(C)) { 1244 for (unsigned I = 0, 1245 E = cast<FixedVectorType>(C->getType())->getNumElements(); 1246 I != E; ++I) 1247 if (!isPoisonShift(C->getAggregateElement(I), Q)) 1248 return false; 1249 return true; 1250 } 1251 1252 return false; 1253 } 1254 1255 /// Given operands for an Shl, LShr or AShr, see if we can fold the result. 1256 /// If not, this returns null. 1257 static Value *SimplifyShift(Instruction::BinaryOps Opcode, Value *Op0, 1258 Value *Op1, bool IsNSW, const SimplifyQuery &Q, 1259 unsigned MaxRecurse) { 1260 if (Constant *C = foldOrCommuteConstant(Opcode, Op0, Op1, Q)) 1261 return C; 1262 1263 // poison shift by X -> poison 1264 if (isa<PoisonValue>(Op0)) 1265 return Op0; 1266 1267 // 0 shift by X -> 0 1268 if (match(Op0, m_Zero())) 1269 return Constant::getNullValue(Op0->getType()); 1270 1271 // X shift by 0 -> X 1272 // Shift-by-sign-extended bool must be shift-by-0 because shift-by-all-ones 1273 // would be poison. 1274 Value *X; 1275 if (match(Op1, m_Zero()) || 1276 (match(Op1, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1))) 1277 return Op0; 1278 1279 // Fold undefined shifts. 1280 if (isPoisonShift(Op1, Q)) 1281 return PoisonValue::get(Op0->getType()); 1282 1283 // If the operation is with the result of a select instruction, check whether 1284 // operating on either branch of the select always yields the same value. 1285 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 1286 if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse)) 1287 return V; 1288 1289 // If the operation is with the result of a phi instruction, check whether 1290 // operating on all incoming values of the phi always yields the same value. 1291 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 1292 if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse)) 1293 return V; 1294 1295 // If any bits in the shift amount make that value greater than or equal to 1296 // the number of bits in the type, the shift is undefined. 1297 KnownBits KnownAmt = computeKnownBits(Op1, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 1298 if (KnownAmt.getMinValue().uge(KnownAmt.getBitWidth())) 1299 return PoisonValue::get(Op0->getType()); 1300 1301 // If all valid bits in the shift amount are known zero, the first operand is 1302 // unchanged. 1303 unsigned NumValidShiftBits = Log2_32_Ceil(KnownAmt.getBitWidth()); 1304 if (KnownAmt.countMinTrailingZeros() >= NumValidShiftBits) 1305 return Op0; 1306 1307 // Check for nsw shl leading to a poison value. 1308 if (IsNSW) { 1309 assert(Opcode == Instruction::Shl && "Expected shl for nsw instruction"); 1310 KnownBits KnownVal = computeKnownBits(Op0, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 1311 KnownBits KnownShl = KnownBits::shl(KnownVal, KnownAmt); 1312 1313 if (KnownVal.Zero.isSignBitSet()) 1314 KnownShl.Zero.setSignBit(); 1315 if (KnownVal.One.isSignBitSet()) 1316 KnownShl.One.setSignBit(); 1317 1318 if (KnownShl.hasConflict()) 1319 return PoisonValue::get(Op0->getType()); 1320 } 1321 1322 return nullptr; 1323 } 1324 1325 /// Given operands for an Shl, LShr or AShr, see if we can 1326 /// fold the result. If not, this returns null. 1327 static Value *SimplifyRightShift(Instruction::BinaryOps Opcode, Value *Op0, 1328 Value *Op1, bool isExact, const SimplifyQuery &Q, 1329 unsigned MaxRecurse) { 1330 if (Value *V = 1331 SimplifyShift(Opcode, Op0, Op1, /*IsNSW*/ false, Q, MaxRecurse)) 1332 return V; 1333 1334 // X >> X -> 0 1335 if (Op0 == Op1) 1336 return Constant::getNullValue(Op0->getType()); 1337 1338 // undef >> X -> 0 1339 // undef >> X -> undef (if it's exact) 1340 if (Q.isUndefValue(Op0)) 1341 return isExact ? Op0 : Constant::getNullValue(Op0->getType()); 1342 1343 // The low bit cannot be shifted out of an exact shift if it is set. 1344 if (isExact) { 1345 KnownBits Op0Known = computeKnownBits(Op0, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT); 1346 if (Op0Known.One[0]) 1347 return Op0; 1348 } 1349 1350 return nullptr; 1351 } 1352 1353 /// Given operands for an Shl, see if we can fold the result. 1354 /// If not, this returns null. 1355 static Value *SimplifyShlInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, 1356 const SimplifyQuery &Q, unsigned MaxRecurse) { 1357 if (Value *V = 1358 SimplifyShift(Instruction::Shl, Op0, Op1, isNSW, Q, MaxRecurse)) 1359 return V; 1360 1361 // undef << X -> 0 1362 // undef << X -> undef if (if it's NSW/NUW) 1363 if (Q.isUndefValue(Op0)) 1364 return isNSW || isNUW ? Op0 : Constant::getNullValue(Op0->getType()); 1365 1366 // (X >> A) << A -> X 1367 Value *X; 1368 if (Q.IIQ.UseInstrInfo && 1369 match(Op0, m_Exact(m_Shr(m_Value(X), m_Specific(Op1))))) 1370 return X; 1371 1372 // shl nuw i8 C, %x -> C iff C has sign bit set. 1373 if (isNUW && match(Op0, m_Negative())) 1374 return Op0; 1375 // NOTE: could use computeKnownBits() / LazyValueInfo, 1376 // but the cost-benefit analysis suggests it isn't worth it. 1377 1378 return nullptr; 1379 } 1380 1381 Value *llvm::SimplifyShlInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, 1382 const SimplifyQuery &Q) { 1383 return ::SimplifyShlInst(Op0, Op1, isNSW, isNUW, Q, RecursionLimit); 1384 } 1385 1386 /// Given operands for an LShr, see if we can fold the result. 1387 /// If not, this returns null. 1388 static Value *SimplifyLShrInst(Value *Op0, Value *Op1, bool isExact, 1389 const SimplifyQuery &Q, unsigned MaxRecurse) { 1390 if (Value *V = SimplifyRightShift(Instruction::LShr, Op0, Op1, isExact, Q, 1391 MaxRecurse)) 1392 return V; 1393 1394 // (X << A) >> A -> X 1395 Value *X; 1396 if (match(Op0, m_NUWShl(m_Value(X), m_Specific(Op1)))) 1397 return X; 1398 1399 // ((X << A) | Y) >> A -> X if effective width of Y is not larger than A. 1400 // We can return X as we do in the above case since OR alters no bits in X. 1401 // SimplifyDemandedBits in InstCombine can do more general optimization for 1402 // bit manipulation. This pattern aims to provide opportunities for other 1403 // optimizers by supporting a simple but common case in InstSimplify. 1404 Value *Y; 1405 const APInt *ShRAmt, *ShLAmt; 1406 if (match(Op1, m_APInt(ShRAmt)) && 1407 match(Op0, m_c_Or(m_NUWShl(m_Value(X), m_APInt(ShLAmt)), m_Value(Y))) && 1408 *ShRAmt == *ShLAmt) { 1409 const KnownBits YKnown = computeKnownBits(Y, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 1410 const unsigned Width = Op0->getType()->getScalarSizeInBits(); 1411 const unsigned EffWidthY = Width - YKnown.countMinLeadingZeros(); 1412 if (ShRAmt->uge(EffWidthY)) 1413 return X; 1414 } 1415 1416 return nullptr; 1417 } 1418 1419 Value *llvm::SimplifyLShrInst(Value *Op0, Value *Op1, bool isExact, 1420 const SimplifyQuery &Q) { 1421 return ::SimplifyLShrInst(Op0, Op1, isExact, Q, RecursionLimit); 1422 } 1423 1424 /// Given operands for an AShr, see if we can fold the result. 1425 /// If not, this returns null. 1426 static Value *SimplifyAShrInst(Value *Op0, Value *Op1, bool isExact, 1427 const SimplifyQuery &Q, unsigned MaxRecurse) { 1428 if (Value *V = SimplifyRightShift(Instruction::AShr, Op0, Op1, isExact, Q, 1429 MaxRecurse)) 1430 return V; 1431 1432 // -1 >>a X --> -1 1433 // (-1 << X) a>> X --> -1 1434 // Do not return Op0 because it may contain undef elements if it's a vector. 1435 if (match(Op0, m_AllOnes()) || 1436 match(Op0, m_Shl(m_AllOnes(), m_Specific(Op1)))) 1437 return Constant::getAllOnesValue(Op0->getType()); 1438 1439 // (X << A) >> A -> X 1440 Value *X; 1441 if (Q.IIQ.UseInstrInfo && match(Op0, m_NSWShl(m_Value(X), m_Specific(Op1)))) 1442 return X; 1443 1444 // Arithmetic shifting an all-sign-bit value is a no-op. 1445 unsigned NumSignBits = ComputeNumSignBits(Op0, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 1446 if (NumSignBits == Op0->getType()->getScalarSizeInBits()) 1447 return Op0; 1448 1449 return nullptr; 1450 } 1451 1452 Value *llvm::SimplifyAShrInst(Value *Op0, Value *Op1, bool isExact, 1453 const SimplifyQuery &Q) { 1454 return ::SimplifyAShrInst(Op0, Op1, isExact, Q, RecursionLimit); 1455 } 1456 1457 /// Commuted variants are assumed to be handled by calling this function again 1458 /// with the parameters swapped. 1459 static Value *simplifyUnsignedRangeCheck(ICmpInst *ZeroICmp, 1460 ICmpInst *UnsignedICmp, bool IsAnd, 1461 const SimplifyQuery &Q) { 1462 Value *X, *Y; 1463 1464 ICmpInst::Predicate EqPred; 1465 if (!match(ZeroICmp, m_ICmp(EqPred, m_Value(Y), m_Zero())) || 1466 !ICmpInst::isEquality(EqPred)) 1467 return nullptr; 1468 1469 ICmpInst::Predicate UnsignedPred; 1470 1471 Value *A, *B; 1472 // Y = (A - B); 1473 if (match(Y, m_Sub(m_Value(A), m_Value(B)))) { 1474 if (match(UnsignedICmp, 1475 m_c_ICmp(UnsignedPred, m_Specific(A), m_Specific(B))) && 1476 ICmpInst::isUnsigned(UnsignedPred)) { 1477 // A >=/<= B || (A - B) != 0 <--> true 1478 if ((UnsignedPred == ICmpInst::ICMP_UGE || 1479 UnsignedPred == ICmpInst::ICMP_ULE) && 1480 EqPred == ICmpInst::ICMP_NE && !IsAnd) 1481 return ConstantInt::getTrue(UnsignedICmp->getType()); 1482 // A </> B && (A - B) == 0 <--> false 1483 if ((UnsignedPred == ICmpInst::ICMP_ULT || 1484 UnsignedPred == ICmpInst::ICMP_UGT) && 1485 EqPred == ICmpInst::ICMP_EQ && IsAnd) 1486 return ConstantInt::getFalse(UnsignedICmp->getType()); 1487 1488 // A </> B && (A - B) != 0 <--> A </> B 1489 // A </> B || (A - B) != 0 <--> (A - B) != 0 1490 if (EqPred == ICmpInst::ICMP_NE && (UnsignedPred == ICmpInst::ICMP_ULT || 1491 UnsignedPred == ICmpInst::ICMP_UGT)) 1492 return IsAnd ? UnsignedICmp : ZeroICmp; 1493 1494 // A <=/>= B && (A - B) == 0 <--> (A - B) == 0 1495 // A <=/>= B || (A - B) == 0 <--> A <=/>= B 1496 if (EqPred == ICmpInst::ICMP_EQ && (UnsignedPred == ICmpInst::ICMP_ULE || 1497 UnsignedPred == ICmpInst::ICMP_UGE)) 1498 return IsAnd ? ZeroICmp : UnsignedICmp; 1499 } 1500 1501 // Given Y = (A - B) 1502 // Y >= A && Y != 0 --> Y >= A iff B != 0 1503 // Y < A || Y == 0 --> Y < A iff B != 0 1504 if (match(UnsignedICmp, 1505 m_c_ICmp(UnsignedPred, m_Specific(Y), m_Specific(A)))) { 1506 if (UnsignedPred == ICmpInst::ICMP_UGE && IsAnd && 1507 EqPred == ICmpInst::ICMP_NE && 1508 isKnownNonZero(B, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT)) 1509 return UnsignedICmp; 1510 if (UnsignedPred == ICmpInst::ICMP_ULT && !IsAnd && 1511 EqPred == ICmpInst::ICMP_EQ && 1512 isKnownNonZero(B, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT)) 1513 return UnsignedICmp; 1514 } 1515 } 1516 1517 if (match(UnsignedICmp, m_ICmp(UnsignedPred, m_Value(X), m_Specific(Y))) && 1518 ICmpInst::isUnsigned(UnsignedPred)) 1519 ; 1520 else if (match(UnsignedICmp, 1521 m_ICmp(UnsignedPred, m_Specific(Y), m_Value(X))) && 1522 ICmpInst::isUnsigned(UnsignedPred)) 1523 UnsignedPred = ICmpInst::getSwappedPredicate(UnsignedPred); 1524 else 1525 return nullptr; 1526 1527 // X > Y && Y == 0 --> Y == 0 iff X != 0 1528 // X > Y || Y == 0 --> X > Y iff X != 0 1529 if (UnsignedPred == ICmpInst::ICMP_UGT && EqPred == ICmpInst::ICMP_EQ && 1530 isKnownNonZero(X, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT)) 1531 return IsAnd ? ZeroICmp : UnsignedICmp; 1532 1533 // X <= Y && Y != 0 --> X <= Y iff X != 0 1534 // X <= Y || Y != 0 --> Y != 0 iff X != 0 1535 if (UnsignedPred == ICmpInst::ICMP_ULE && EqPred == ICmpInst::ICMP_NE && 1536 isKnownNonZero(X, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT)) 1537 return IsAnd ? UnsignedICmp : ZeroICmp; 1538 1539 // The transforms below here are expected to be handled more generally with 1540 // simplifyAndOrOfICmpsWithLimitConst() or in InstCombine's 1541 // foldAndOrOfICmpsWithConstEq(). If we are looking to trim optimizer overlap, 1542 // these are candidates for removal. 1543 1544 // X < Y && Y != 0 --> X < Y 1545 // X < Y || Y != 0 --> Y != 0 1546 if (UnsignedPred == ICmpInst::ICMP_ULT && EqPred == ICmpInst::ICMP_NE) 1547 return IsAnd ? UnsignedICmp : ZeroICmp; 1548 1549 // X >= Y && Y == 0 --> Y == 0 1550 // X >= Y || Y == 0 --> X >= Y 1551 if (UnsignedPred == ICmpInst::ICMP_UGE && EqPred == ICmpInst::ICMP_EQ) 1552 return IsAnd ? ZeroICmp : UnsignedICmp; 1553 1554 // X < Y && Y == 0 --> false 1555 if (UnsignedPred == ICmpInst::ICMP_ULT && EqPred == ICmpInst::ICMP_EQ && 1556 IsAnd) 1557 return getFalse(UnsignedICmp->getType()); 1558 1559 // X >= Y || Y != 0 --> true 1560 if (UnsignedPred == ICmpInst::ICMP_UGE && EqPred == ICmpInst::ICMP_NE && 1561 !IsAnd) 1562 return getTrue(UnsignedICmp->getType()); 1563 1564 return nullptr; 1565 } 1566 1567 /// Commuted variants are assumed to be handled by calling this function again 1568 /// with the parameters swapped. 1569 static Value *simplifyAndOfICmpsWithSameOperands(ICmpInst *Op0, ICmpInst *Op1) { 1570 ICmpInst::Predicate Pred0, Pred1; 1571 Value *A ,*B; 1572 if (!match(Op0, m_ICmp(Pred0, m_Value(A), m_Value(B))) || 1573 !match(Op1, m_ICmp(Pred1, m_Specific(A), m_Specific(B)))) 1574 return nullptr; 1575 1576 // We have (icmp Pred0, A, B) & (icmp Pred1, A, B). 1577 // If Op1 is always implied true by Op0, then Op0 is a subset of Op1, and we 1578 // can eliminate Op1 from this 'and'. 1579 if (ICmpInst::isImpliedTrueByMatchingCmp(Pred0, Pred1)) 1580 return Op0; 1581 1582 // Check for any combination of predicates that are guaranteed to be disjoint. 1583 if ((Pred0 == ICmpInst::getInversePredicate(Pred1)) || 1584 (Pred0 == ICmpInst::ICMP_EQ && ICmpInst::isFalseWhenEqual(Pred1)) || 1585 (Pred0 == ICmpInst::ICMP_SLT && Pred1 == ICmpInst::ICMP_SGT) || 1586 (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_UGT)) 1587 return getFalse(Op0->getType()); 1588 1589 return nullptr; 1590 } 1591 1592 /// Commuted variants are assumed to be handled by calling this function again 1593 /// with the parameters swapped. 1594 static Value *simplifyOrOfICmpsWithSameOperands(ICmpInst *Op0, ICmpInst *Op1) { 1595 ICmpInst::Predicate Pred0, Pred1; 1596 Value *A ,*B; 1597 if (!match(Op0, m_ICmp(Pred0, m_Value(A), m_Value(B))) || 1598 !match(Op1, m_ICmp(Pred1, m_Specific(A), m_Specific(B)))) 1599 return nullptr; 1600 1601 // We have (icmp Pred0, A, B) | (icmp Pred1, A, B). 1602 // If Op1 is always implied true by Op0, then Op0 is a subset of Op1, and we 1603 // can eliminate Op0 from this 'or'. 1604 if (ICmpInst::isImpliedTrueByMatchingCmp(Pred0, Pred1)) 1605 return Op1; 1606 1607 // Check for any combination of predicates that cover the entire range of 1608 // possibilities. 1609 if ((Pred0 == ICmpInst::getInversePredicate(Pred1)) || 1610 (Pred0 == ICmpInst::ICMP_NE && ICmpInst::isTrueWhenEqual(Pred1)) || 1611 (Pred0 == ICmpInst::ICMP_SLE && Pred1 == ICmpInst::ICMP_SGE) || 1612 (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_UGE)) 1613 return getTrue(Op0->getType()); 1614 1615 return nullptr; 1616 } 1617 1618 /// Test if a pair of compares with a shared operand and 2 constants has an 1619 /// empty set intersection, full set union, or if one compare is a superset of 1620 /// the other. 1621 static Value *simplifyAndOrOfICmpsWithConstants(ICmpInst *Cmp0, ICmpInst *Cmp1, 1622 bool IsAnd) { 1623 // Look for this pattern: {and/or} (icmp X, C0), (icmp X, C1)). 1624 if (Cmp0->getOperand(0) != Cmp1->getOperand(0)) 1625 return nullptr; 1626 1627 const APInt *C0, *C1; 1628 if (!match(Cmp0->getOperand(1), m_APInt(C0)) || 1629 !match(Cmp1->getOperand(1), m_APInt(C1))) 1630 return nullptr; 1631 1632 auto Range0 = ConstantRange::makeExactICmpRegion(Cmp0->getPredicate(), *C0); 1633 auto Range1 = ConstantRange::makeExactICmpRegion(Cmp1->getPredicate(), *C1); 1634 1635 // For and-of-compares, check if the intersection is empty: 1636 // (icmp X, C0) && (icmp X, C1) --> empty set --> false 1637 if (IsAnd && Range0.intersectWith(Range1).isEmptySet()) 1638 return getFalse(Cmp0->getType()); 1639 1640 // For or-of-compares, check if the union is full: 1641 // (icmp X, C0) || (icmp X, C1) --> full set --> true 1642 if (!IsAnd && Range0.unionWith(Range1).isFullSet()) 1643 return getTrue(Cmp0->getType()); 1644 1645 // Is one range a superset of the other? 1646 // If this is and-of-compares, take the smaller set: 1647 // (icmp sgt X, 4) && (icmp sgt X, 42) --> icmp sgt X, 42 1648 // If this is or-of-compares, take the larger set: 1649 // (icmp sgt X, 4) || (icmp sgt X, 42) --> icmp sgt X, 4 1650 if (Range0.contains(Range1)) 1651 return IsAnd ? Cmp1 : Cmp0; 1652 if (Range1.contains(Range0)) 1653 return IsAnd ? Cmp0 : Cmp1; 1654 1655 return nullptr; 1656 } 1657 1658 static Value *simplifyAndOrOfICmpsWithZero(ICmpInst *Cmp0, ICmpInst *Cmp1, 1659 bool IsAnd) { 1660 ICmpInst::Predicate P0 = Cmp0->getPredicate(), P1 = Cmp1->getPredicate(); 1661 if (!match(Cmp0->getOperand(1), m_Zero()) || 1662 !match(Cmp1->getOperand(1), m_Zero()) || P0 != P1) 1663 return nullptr; 1664 1665 if ((IsAnd && P0 != ICmpInst::ICMP_NE) || (!IsAnd && P1 != ICmpInst::ICMP_EQ)) 1666 return nullptr; 1667 1668 // We have either "(X == 0 || Y == 0)" or "(X != 0 && Y != 0)". 1669 Value *X = Cmp0->getOperand(0); 1670 Value *Y = Cmp1->getOperand(0); 1671 1672 // If one of the compares is a masked version of a (not) null check, then 1673 // that compare implies the other, so we eliminate the other. Optionally, look 1674 // through a pointer-to-int cast to match a null check of a pointer type. 1675 1676 // (X == 0) || (([ptrtoint] X & ?) == 0) --> ([ptrtoint] X & ?) == 0 1677 // (X == 0) || ((? & [ptrtoint] X) == 0) --> (? & [ptrtoint] X) == 0 1678 // (X != 0) && (([ptrtoint] X & ?) != 0) --> ([ptrtoint] X & ?) != 0 1679 // (X != 0) && ((? & [ptrtoint] X) != 0) --> (? & [ptrtoint] X) != 0 1680 if (match(Y, m_c_And(m_Specific(X), m_Value())) || 1681 match(Y, m_c_And(m_PtrToInt(m_Specific(X)), m_Value()))) 1682 return Cmp1; 1683 1684 // (([ptrtoint] Y & ?) == 0) || (Y == 0) --> ([ptrtoint] Y & ?) == 0 1685 // ((? & [ptrtoint] Y) == 0) || (Y == 0) --> (? & [ptrtoint] Y) == 0 1686 // (([ptrtoint] Y & ?) != 0) && (Y != 0) --> ([ptrtoint] Y & ?) != 0 1687 // ((? & [ptrtoint] Y) != 0) && (Y != 0) --> (? & [ptrtoint] Y) != 0 1688 if (match(X, m_c_And(m_Specific(Y), m_Value())) || 1689 match(X, m_c_And(m_PtrToInt(m_Specific(Y)), m_Value()))) 1690 return Cmp0; 1691 1692 return nullptr; 1693 } 1694 1695 static Value *simplifyAndOfICmpsWithAdd(ICmpInst *Op0, ICmpInst *Op1, 1696 const InstrInfoQuery &IIQ) { 1697 // (icmp (add V, C0), C1) & (icmp V, C0) 1698 ICmpInst::Predicate Pred0, Pred1; 1699 const APInt *C0, *C1; 1700 Value *V; 1701 if (!match(Op0, m_ICmp(Pred0, m_Add(m_Value(V), m_APInt(C0)), m_APInt(C1)))) 1702 return nullptr; 1703 1704 if (!match(Op1, m_ICmp(Pred1, m_Specific(V), m_Value()))) 1705 return nullptr; 1706 1707 auto *AddInst = cast<OverflowingBinaryOperator>(Op0->getOperand(0)); 1708 if (AddInst->getOperand(1) != Op1->getOperand(1)) 1709 return nullptr; 1710 1711 Type *ITy = Op0->getType(); 1712 bool isNSW = IIQ.hasNoSignedWrap(AddInst); 1713 bool isNUW = IIQ.hasNoUnsignedWrap(AddInst); 1714 1715 const APInt Delta = *C1 - *C0; 1716 if (C0->isStrictlyPositive()) { 1717 if (Delta == 2) { 1718 if (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_SGT) 1719 return getFalse(ITy); 1720 if (Pred0 == ICmpInst::ICMP_SLT && Pred1 == ICmpInst::ICMP_SGT && isNSW) 1721 return getFalse(ITy); 1722 } 1723 if (Delta == 1) { 1724 if (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_SGT) 1725 return getFalse(ITy); 1726 if (Pred0 == ICmpInst::ICMP_SLE && Pred1 == ICmpInst::ICMP_SGT && isNSW) 1727 return getFalse(ITy); 1728 } 1729 } 1730 if (C0->getBoolValue() && isNUW) { 1731 if (Delta == 2) 1732 if (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_UGT) 1733 return getFalse(ITy); 1734 if (Delta == 1) 1735 if (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_UGT) 1736 return getFalse(ITy); 1737 } 1738 1739 return nullptr; 1740 } 1741 1742 /// Try to eliminate compares with signed or unsigned min/max constants. 1743 static Value *simplifyAndOrOfICmpsWithLimitConst(ICmpInst *Cmp0, ICmpInst *Cmp1, 1744 bool IsAnd) { 1745 // Canonicalize an equality compare as Cmp0. 1746 if (Cmp1->isEquality()) 1747 std::swap(Cmp0, Cmp1); 1748 if (!Cmp0->isEquality()) 1749 return nullptr; 1750 1751 // The non-equality compare must include a common operand (X). Canonicalize 1752 // the common operand as operand 0 (the predicate is swapped if the common 1753 // operand was operand 1). 1754 ICmpInst::Predicate Pred0 = Cmp0->getPredicate(); 1755 Value *X = Cmp0->getOperand(0); 1756 ICmpInst::Predicate Pred1; 1757 bool HasNotOp = match(Cmp1, m_c_ICmp(Pred1, m_Not(m_Specific(X)), m_Value())); 1758 if (!HasNotOp && !match(Cmp1, m_c_ICmp(Pred1, m_Specific(X), m_Value()))) 1759 return nullptr; 1760 if (ICmpInst::isEquality(Pred1)) 1761 return nullptr; 1762 1763 // The equality compare must be against a constant. Flip bits if we matched 1764 // a bitwise not. Convert a null pointer constant to an integer zero value. 1765 APInt MinMaxC; 1766 const APInt *C; 1767 if (match(Cmp0->getOperand(1), m_APInt(C))) 1768 MinMaxC = HasNotOp ? ~*C : *C; 1769 else if (isa<ConstantPointerNull>(Cmp0->getOperand(1))) 1770 MinMaxC = APInt::getZero(8); 1771 else 1772 return nullptr; 1773 1774 // DeMorganize if this is 'or': P0 || P1 --> !P0 && !P1. 1775 if (!IsAnd) { 1776 Pred0 = ICmpInst::getInversePredicate(Pred0); 1777 Pred1 = ICmpInst::getInversePredicate(Pred1); 1778 } 1779 1780 // Normalize to unsigned compare and unsigned min/max value. 1781 // Example for 8-bit: -128 + 128 -> 0; 127 + 128 -> 255 1782 if (ICmpInst::isSigned(Pred1)) { 1783 Pred1 = ICmpInst::getUnsignedPredicate(Pred1); 1784 MinMaxC += APInt::getSignedMinValue(MinMaxC.getBitWidth()); 1785 } 1786 1787 // (X != MAX) && (X < Y) --> X < Y 1788 // (X == MAX) || (X >= Y) --> X >= Y 1789 if (MinMaxC.isMaxValue()) 1790 if (Pred0 == ICmpInst::ICMP_NE && Pred1 == ICmpInst::ICMP_ULT) 1791 return Cmp1; 1792 1793 // (X != MIN) && (X > Y) --> X > Y 1794 // (X == MIN) || (X <= Y) --> X <= Y 1795 if (MinMaxC.isMinValue()) 1796 if (Pred0 == ICmpInst::ICMP_NE && Pred1 == ICmpInst::ICMP_UGT) 1797 return Cmp1; 1798 1799 return nullptr; 1800 } 1801 1802 static Value *simplifyAndOfICmps(ICmpInst *Op0, ICmpInst *Op1, 1803 const SimplifyQuery &Q) { 1804 if (Value *X = simplifyUnsignedRangeCheck(Op0, Op1, /*IsAnd=*/true, Q)) 1805 return X; 1806 if (Value *X = simplifyUnsignedRangeCheck(Op1, Op0, /*IsAnd=*/true, Q)) 1807 return X; 1808 1809 if (Value *X = simplifyAndOfICmpsWithSameOperands(Op0, Op1)) 1810 return X; 1811 if (Value *X = simplifyAndOfICmpsWithSameOperands(Op1, Op0)) 1812 return X; 1813 1814 if (Value *X = simplifyAndOrOfICmpsWithConstants(Op0, Op1, true)) 1815 return X; 1816 1817 if (Value *X = simplifyAndOrOfICmpsWithLimitConst(Op0, Op1, true)) 1818 return X; 1819 1820 if (Value *X = simplifyAndOrOfICmpsWithZero(Op0, Op1, true)) 1821 return X; 1822 1823 if (Value *X = simplifyAndOfICmpsWithAdd(Op0, Op1, Q.IIQ)) 1824 return X; 1825 if (Value *X = simplifyAndOfICmpsWithAdd(Op1, Op0, Q.IIQ)) 1826 return X; 1827 1828 return nullptr; 1829 } 1830 1831 static Value *simplifyOrOfICmpsWithAdd(ICmpInst *Op0, ICmpInst *Op1, 1832 const InstrInfoQuery &IIQ) { 1833 // (icmp (add V, C0), C1) | (icmp V, C0) 1834 ICmpInst::Predicate Pred0, Pred1; 1835 const APInt *C0, *C1; 1836 Value *V; 1837 if (!match(Op0, m_ICmp(Pred0, m_Add(m_Value(V), m_APInt(C0)), m_APInt(C1)))) 1838 return nullptr; 1839 1840 if (!match(Op1, m_ICmp(Pred1, m_Specific(V), m_Value()))) 1841 return nullptr; 1842 1843 auto *AddInst = cast<BinaryOperator>(Op0->getOperand(0)); 1844 if (AddInst->getOperand(1) != Op1->getOperand(1)) 1845 return nullptr; 1846 1847 Type *ITy = Op0->getType(); 1848 bool isNSW = IIQ.hasNoSignedWrap(AddInst); 1849 bool isNUW = IIQ.hasNoUnsignedWrap(AddInst); 1850 1851 const APInt Delta = *C1 - *C0; 1852 if (C0->isStrictlyPositive()) { 1853 if (Delta == 2) { 1854 if (Pred0 == ICmpInst::ICMP_UGE && Pred1 == ICmpInst::ICMP_SLE) 1855 return getTrue(ITy); 1856 if (Pred0 == ICmpInst::ICMP_SGE && Pred1 == ICmpInst::ICMP_SLE && isNSW) 1857 return getTrue(ITy); 1858 } 1859 if (Delta == 1) { 1860 if (Pred0 == ICmpInst::ICMP_UGT && Pred1 == ICmpInst::ICMP_SLE) 1861 return getTrue(ITy); 1862 if (Pred0 == ICmpInst::ICMP_SGT && Pred1 == ICmpInst::ICMP_SLE && isNSW) 1863 return getTrue(ITy); 1864 } 1865 } 1866 if (C0->getBoolValue() && isNUW) { 1867 if (Delta == 2) 1868 if (Pred0 == ICmpInst::ICMP_UGE && Pred1 == ICmpInst::ICMP_ULE) 1869 return getTrue(ITy); 1870 if (Delta == 1) 1871 if (Pred0 == ICmpInst::ICMP_UGT && Pred1 == ICmpInst::ICMP_ULE) 1872 return getTrue(ITy); 1873 } 1874 1875 return nullptr; 1876 } 1877 1878 static Value *simplifyOrOfICmps(ICmpInst *Op0, ICmpInst *Op1, 1879 const SimplifyQuery &Q) { 1880 if (Value *X = simplifyUnsignedRangeCheck(Op0, Op1, /*IsAnd=*/false, Q)) 1881 return X; 1882 if (Value *X = simplifyUnsignedRangeCheck(Op1, Op0, /*IsAnd=*/false, Q)) 1883 return X; 1884 1885 if (Value *X = simplifyOrOfICmpsWithSameOperands(Op0, Op1)) 1886 return X; 1887 if (Value *X = simplifyOrOfICmpsWithSameOperands(Op1, Op0)) 1888 return X; 1889 1890 if (Value *X = simplifyAndOrOfICmpsWithConstants(Op0, Op1, false)) 1891 return X; 1892 1893 if (Value *X = simplifyAndOrOfICmpsWithLimitConst(Op0, Op1, false)) 1894 return X; 1895 1896 if (Value *X = simplifyAndOrOfICmpsWithZero(Op0, Op1, false)) 1897 return X; 1898 1899 if (Value *X = simplifyOrOfICmpsWithAdd(Op0, Op1, Q.IIQ)) 1900 return X; 1901 if (Value *X = simplifyOrOfICmpsWithAdd(Op1, Op0, Q.IIQ)) 1902 return X; 1903 1904 return nullptr; 1905 } 1906 1907 static Value *simplifyAndOrOfFCmps(const TargetLibraryInfo *TLI, 1908 FCmpInst *LHS, FCmpInst *RHS, bool IsAnd) { 1909 Value *LHS0 = LHS->getOperand(0), *LHS1 = LHS->getOperand(1); 1910 Value *RHS0 = RHS->getOperand(0), *RHS1 = RHS->getOperand(1); 1911 if (LHS0->getType() != RHS0->getType()) 1912 return nullptr; 1913 1914 FCmpInst::Predicate PredL = LHS->getPredicate(), PredR = RHS->getPredicate(); 1915 if ((PredL == FCmpInst::FCMP_ORD && PredR == FCmpInst::FCMP_ORD && IsAnd) || 1916 (PredL == FCmpInst::FCMP_UNO && PredR == FCmpInst::FCMP_UNO && !IsAnd)) { 1917 // (fcmp ord NNAN, X) & (fcmp ord X, Y) --> fcmp ord X, Y 1918 // (fcmp ord NNAN, X) & (fcmp ord Y, X) --> fcmp ord Y, X 1919 // (fcmp ord X, NNAN) & (fcmp ord X, Y) --> fcmp ord X, Y 1920 // (fcmp ord X, NNAN) & (fcmp ord Y, X) --> fcmp ord Y, X 1921 // (fcmp uno NNAN, X) | (fcmp uno X, Y) --> fcmp uno X, Y 1922 // (fcmp uno NNAN, X) | (fcmp uno Y, X) --> fcmp uno Y, X 1923 // (fcmp uno X, NNAN) | (fcmp uno X, Y) --> fcmp uno X, Y 1924 // (fcmp uno X, NNAN) | (fcmp uno Y, X) --> fcmp uno Y, X 1925 if ((isKnownNeverNaN(LHS0, TLI) && (LHS1 == RHS0 || LHS1 == RHS1)) || 1926 (isKnownNeverNaN(LHS1, TLI) && (LHS0 == RHS0 || LHS0 == RHS1))) 1927 return RHS; 1928 1929 // (fcmp ord X, Y) & (fcmp ord NNAN, X) --> fcmp ord X, Y 1930 // (fcmp ord Y, X) & (fcmp ord NNAN, X) --> fcmp ord Y, X 1931 // (fcmp ord X, Y) & (fcmp ord X, NNAN) --> fcmp ord X, Y 1932 // (fcmp ord Y, X) & (fcmp ord X, NNAN) --> fcmp ord Y, X 1933 // (fcmp uno X, Y) | (fcmp uno NNAN, X) --> fcmp uno X, Y 1934 // (fcmp uno Y, X) | (fcmp uno NNAN, X) --> fcmp uno Y, X 1935 // (fcmp uno X, Y) | (fcmp uno X, NNAN) --> fcmp uno X, Y 1936 // (fcmp uno Y, X) | (fcmp uno X, NNAN) --> fcmp uno Y, X 1937 if ((isKnownNeverNaN(RHS0, TLI) && (RHS1 == LHS0 || RHS1 == LHS1)) || 1938 (isKnownNeverNaN(RHS1, TLI) && (RHS0 == LHS0 || RHS0 == LHS1))) 1939 return LHS; 1940 } 1941 1942 return nullptr; 1943 } 1944 1945 static Value *simplifyAndOrOfCmps(const SimplifyQuery &Q, 1946 Value *Op0, Value *Op1, bool IsAnd) { 1947 // Look through casts of the 'and' operands to find compares. 1948 auto *Cast0 = dyn_cast<CastInst>(Op0); 1949 auto *Cast1 = dyn_cast<CastInst>(Op1); 1950 if (Cast0 && Cast1 && Cast0->getOpcode() == Cast1->getOpcode() && 1951 Cast0->getSrcTy() == Cast1->getSrcTy()) { 1952 Op0 = Cast0->getOperand(0); 1953 Op1 = Cast1->getOperand(0); 1954 } 1955 1956 Value *V = nullptr; 1957 auto *ICmp0 = dyn_cast<ICmpInst>(Op0); 1958 auto *ICmp1 = dyn_cast<ICmpInst>(Op1); 1959 if (ICmp0 && ICmp1) 1960 V = IsAnd ? simplifyAndOfICmps(ICmp0, ICmp1, Q) 1961 : simplifyOrOfICmps(ICmp0, ICmp1, Q); 1962 1963 auto *FCmp0 = dyn_cast<FCmpInst>(Op0); 1964 auto *FCmp1 = dyn_cast<FCmpInst>(Op1); 1965 if (FCmp0 && FCmp1) 1966 V = simplifyAndOrOfFCmps(Q.TLI, FCmp0, FCmp1, IsAnd); 1967 1968 if (!V) 1969 return nullptr; 1970 if (!Cast0) 1971 return V; 1972 1973 // If we looked through casts, we can only handle a constant simplification 1974 // because we are not allowed to create a cast instruction here. 1975 if (auto *C = dyn_cast<Constant>(V)) 1976 return ConstantExpr::getCast(Cast0->getOpcode(), C, Cast0->getType()); 1977 1978 return nullptr; 1979 } 1980 1981 /// Given a bitwise logic op, check if the operands are add/sub with a common 1982 /// source value and inverted constant (identity: C - X -> ~(X + ~C)). 1983 static Value *simplifyLogicOfAddSub(Value *Op0, Value *Op1, 1984 Instruction::BinaryOps Opcode) { 1985 assert(Op0->getType() == Op1->getType() && "Mismatched binop types"); 1986 assert(BinaryOperator::isBitwiseLogicOp(Opcode) && "Expected logic op"); 1987 Value *X; 1988 Constant *C1, *C2; 1989 if ((match(Op0, m_Add(m_Value(X), m_Constant(C1))) && 1990 match(Op1, m_Sub(m_Constant(C2), m_Specific(X)))) || 1991 (match(Op1, m_Add(m_Value(X), m_Constant(C1))) && 1992 match(Op0, m_Sub(m_Constant(C2), m_Specific(X))))) { 1993 if (ConstantExpr::getNot(C1) == C2) { 1994 // (X + C) & (~C - X) --> (X + C) & ~(X + C) --> 0 1995 // (X + C) | (~C - X) --> (X + C) | ~(X + C) --> -1 1996 // (X + C) ^ (~C - X) --> (X + C) ^ ~(X + C) --> -1 1997 Type *Ty = Op0->getType(); 1998 return Opcode == Instruction::And ? ConstantInt::getNullValue(Ty) 1999 : ConstantInt::getAllOnesValue(Ty); 2000 } 2001 } 2002 return nullptr; 2003 } 2004 2005 /// Given operands for an And, see if we can fold the result. 2006 /// If not, this returns null. 2007 static Value *SimplifyAndInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 2008 unsigned MaxRecurse) { 2009 if (Constant *C = foldOrCommuteConstant(Instruction::And, Op0, Op1, Q)) 2010 return C; 2011 2012 // X & poison -> poison 2013 if (isa<PoisonValue>(Op1)) 2014 return Op1; 2015 2016 // X & undef -> 0 2017 if (Q.isUndefValue(Op1)) 2018 return Constant::getNullValue(Op0->getType()); 2019 2020 // X & X = X 2021 if (Op0 == Op1) 2022 return Op0; 2023 2024 // X & 0 = 0 2025 if (match(Op1, m_Zero())) 2026 return Constant::getNullValue(Op0->getType()); 2027 2028 // X & -1 = X 2029 if (match(Op1, m_AllOnes())) 2030 return Op0; 2031 2032 // A & ~A = ~A & A = 0 2033 if (match(Op0, m_Not(m_Specific(Op1))) || 2034 match(Op1, m_Not(m_Specific(Op0)))) 2035 return Constant::getNullValue(Op0->getType()); 2036 2037 // (A | ?) & A = A 2038 if (match(Op0, m_c_Or(m_Specific(Op1), m_Value()))) 2039 return Op1; 2040 2041 // A & (A | ?) = A 2042 if (match(Op1, m_c_Or(m_Specific(Op0), m_Value()))) 2043 return Op0; 2044 2045 // (X | Y) & (X | ~Y) --> X (commuted 8 ways) 2046 Value *X, *Y; 2047 if (match(Op0, m_c_Or(m_Value(X), m_Not(m_Value(Y)))) && 2048 match(Op1, m_c_Or(m_Deferred(X), m_Deferred(Y)))) 2049 return X; 2050 if (match(Op1, m_c_Or(m_Value(X), m_Not(m_Value(Y)))) && 2051 match(Op0, m_c_Or(m_Deferred(X), m_Deferred(Y)))) 2052 return X; 2053 2054 if (Value *V = simplifyLogicOfAddSub(Op0, Op1, Instruction::And)) 2055 return V; 2056 2057 // A mask that only clears known zeros of a shifted value is a no-op. 2058 const APInt *Mask; 2059 const APInt *ShAmt; 2060 if (match(Op1, m_APInt(Mask))) { 2061 // If all bits in the inverted and shifted mask are clear: 2062 // and (shl X, ShAmt), Mask --> shl X, ShAmt 2063 if (match(Op0, m_Shl(m_Value(X), m_APInt(ShAmt))) && 2064 (~(*Mask)).lshr(*ShAmt).isZero()) 2065 return Op0; 2066 2067 // If all bits in the inverted and shifted mask are clear: 2068 // and (lshr X, ShAmt), Mask --> lshr X, ShAmt 2069 if (match(Op0, m_LShr(m_Value(X), m_APInt(ShAmt))) && 2070 (~(*Mask)).shl(*ShAmt).isZero()) 2071 return Op0; 2072 } 2073 2074 // If we have a multiplication overflow check that is being 'and'ed with a 2075 // check that one of the multipliers is not zero, we can omit the 'and', and 2076 // only keep the overflow check. 2077 if (isCheckForZeroAndMulWithOverflow(Op0, Op1, true)) 2078 return Op1; 2079 if (isCheckForZeroAndMulWithOverflow(Op1, Op0, true)) 2080 return Op0; 2081 2082 // A & (-A) = A if A is a power of two or zero. 2083 if (match(Op0, m_Neg(m_Specific(Op1))) || 2084 match(Op1, m_Neg(m_Specific(Op0)))) { 2085 if (isKnownToBeAPowerOfTwo(Op0, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI, 2086 Q.DT)) 2087 return Op0; 2088 if (isKnownToBeAPowerOfTwo(Op1, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI, 2089 Q.DT)) 2090 return Op1; 2091 } 2092 2093 // This is a similar pattern used for checking if a value is a power-of-2: 2094 // (A - 1) & A --> 0 (if A is a power-of-2 or 0) 2095 // A & (A - 1) --> 0 (if A is a power-of-2 or 0) 2096 if (match(Op0, m_Add(m_Specific(Op1), m_AllOnes())) && 2097 isKnownToBeAPowerOfTwo(Op1, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI, Q.DT)) 2098 return Constant::getNullValue(Op1->getType()); 2099 if (match(Op1, m_Add(m_Specific(Op0), m_AllOnes())) && 2100 isKnownToBeAPowerOfTwo(Op0, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI, Q.DT)) 2101 return Constant::getNullValue(Op0->getType()); 2102 2103 if (Value *V = simplifyAndOrOfCmps(Q, Op0, Op1, true)) 2104 return V; 2105 2106 // Try some generic simplifications for associative operations. 2107 if (Value *V = SimplifyAssociativeBinOp(Instruction::And, Op0, Op1, Q, 2108 MaxRecurse)) 2109 return V; 2110 2111 // And distributes over Or. Try some generic simplifications based on this. 2112 if (Value *V = expandCommutativeBinOp(Instruction::And, Op0, Op1, 2113 Instruction::Or, Q, MaxRecurse)) 2114 return V; 2115 2116 // And distributes over Xor. Try some generic simplifications based on this. 2117 if (Value *V = expandCommutativeBinOp(Instruction::And, Op0, Op1, 2118 Instruction::Xor, Q, MaxRecurse)) 2119 return V; 2120 2121 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) { 2122 if (Op0->getType()->isIntOrIntVectorTy(1)) { 2123 // A & (A && B) -> A && B 2124 if (match(Op1, m_Select(m_Specific(Op0), m_Value(), m_Zero()))) 2125 return Op1; 2126 else if (match(Op0, m_Select(m_Specific(Op1), m_Value(), m_Zero()))) 2127 return Op0; 2128 } 2129 // If the operation is with the result of a select instruction, check 2130 // whether operating on either branch of the select always yields the same 2131 // value. 2132 if (Value *V = ThreadBinOpOverSelect(Instruction::And, Op0, Op1, Q, 2133 MaxRecurse)) 2134 return V; 2135 } 2136 2137 // If the operation is with the result of a phi instruction, check whether 2138 // operating on all incoming values of the phi always yields the same value. 2139 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 2140 if (Value *V = ThreadBinOpOverPHI(Instruction::And, Op0, Op1, Q, 2141 MaxRecurse)) 2142 return V; 2143 2144 // Assuming the effective width of Y is not larger than A, i.e. all bits 2145 // from X and Y are disjoint in (X << A) | Y, 2146 // if the mask of this AND op covers all bits of X or Y, while it covers 2147 // no bits from the other, we can bypass this AND op. E.g., 2148 // ((X << A) | Y) & Mask -> Y, 2149 // if Mask = ((1 << effective_width_of(Y)) - 1) 2150 // ((X << A) | Y) & Mask -> X << A, 2151 // if Mask = ((1 << effective_width_of(X)) - 1) << A 2152 // SimplifyDemandedBits in InstCombine can optimize the general case. 2153 // This pattern aims to help other passes for a common case. 2154 Value *XShifted; 2155 if (match(Op1, m_APInt(Mask)) && 2156 match(Op0, m_c_Or(m_CombineAnd(m_NUWShl(m_Value(X), m_APInt(ShAmt)), 2157 m_Value(XShifted)), 2158 m_Value(Y)))) { 2159 const unsigned Width = Op0->getType()->getScalarSizeInBits(); 2160 const unsigned ShftCnt = ShAmt->getLimitedValue(Width); 2161 const KnownBits YKnown = computeKnownBits(Y, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2162 const unsigned EffWidthY = Width - YKnown.countMinLeadingZeros(); 2163 if (EffWidthY <= ShftCnt) { 2164 const KnownBits XKnown = computeKnownBits(X, Q.DL, 0, Q.AC, Q.CxtI, 2165 Q.DT); 2166 const unsigned EffWidthX = Width - XKnown.countMinLeadingZeros(); 2167 const APInt EffBitsY = APInt::getLowBitsSet(Width, EffWidthY); 2168 const APInt EffBitsX = APInt::getLowBitsSet(Width, EffWidthX) << ShftCnt; 2169 // If the mask is extracting all bits from X or Y as is, we can skip 2170 // this AND op. 2171 if (EffBitsY.isSubsetOf(*Mask) && !EffBitsX.intersects(*Mask)) 2172 return Y; 2173 if (EffBitsX.isSubsetOf(*Mask) && !EffBitsY.intersects(*Mask)) 2174 return XShifted; 2175 } 2176 } 2177 2178 return nullptr; 2179 } 2180 2181 Value *llvm::SimplifyAndInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 2182 return ::SimplifyAndInst(Op0, Op1, Q, RecursionLimit); 2183 } 2184 2185 /// Given operands for an Or, see if we can fold the result. 2186 /// If not, this returns null. 2187 static Value *SimplifyOrInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 2188 unsigned MaxRecurse) { 2189 if (Constant *C = foldOrCommuteConstant(Instruction::Or, Op0, Op1, Q)) 2190 return C; 2191 2192 // X | poison -> poison 2193 if (isa<PoisonValue>(Op1)) 2194 return Op1; 2195 2196 // X | undef -> -1 2197 // X | -1 = -1 2198 // Do not return Op1 because it may contain undef elements if it's a vector. 2199 if (Q.isUndefValue(Op1) || match(Op1, m_AllOnes())) 2200 return Constant::getAllOnesValue(Op0->getType()); 2201 2202 // X | X = X 2203 // X | 0 = X 2204 if (Op0 == Op1 || match(Op1, m_Zero())) 2205 return Op0; 2206 2207 // A | ~A = ~A | A = -1 2208 if (match(Op0, m_Not(m_Specific(Op1))) || 2209 match(Op1, m_Not(m_Specific(Op0)))) 2210 return Constant::getAllOnesValue(Op0->getType()); 2211 2212 // (A & ?) | A = A 2213 if (match(Op0, m_c_And(m_Specific(Op1), m_Value()))) 2214 return Op1; 2215 2216 // A | (A & ?) = A 2217 if (match(Op1, m_c_And(m_Specific(Op0), m_Value()))) 2218 return Op0; 2219 2220 // ~(A & ?) | A = -1 2221 if (match(Op0, m_Not(m_c_And(m_Specific(Op1), m_Value())))) 2222 return Constant::getAllOnesValue(Op1->getType()); 2223 2224 // A | ~(A & ?) = -1 2225 if (match(Op1, m_Not(m_c_And(m_Specific(Op0), m_Value())))) 2226 return Constant::getAllOnesValue(Op0->getType()); 2227 2228 if (Value *V = simplifyLogicOfAddSub(Op0, Op1, Instruction::Or)) 2229 return V; 2230 2231 Value *A, *B, *NotA; 2232 // (A & ~B) | (A ^ B) -> (A ^ B) 2233 // (~B & A) | (A ^ B) -> (A ^ B) 2234 // (A & ~B) | (B ^ A) -> (B ^ A) 2235 // (~B & A) | (B ^ A) -> (B ^ A) 2236 if (match(Op1, m_Xor(m_Value(A), m_Value(B))) && 2237 (match(Op0, m_c_And(m_Specific(A), m_Not(m_Specific(B)))) || 2238 match(Op0, m_c_And(m_Not(m_Specific(A)), m_Specific(B))))) 2239 return Op1; 2240 2241 // Commute the 'or' operands. 2242 // (A ^ B) | (A & ~B) -> (A ^ B) 2243 // (A ^ B) | (~B & A) -> (A ^ B) 2244 // (B ^ A) | (A & ~B) -> (B ^ A) 2245 // (B ^ A) | (~B & A) -> (B ^ A) 2246 if (match(Op0, m_Xor(m_Value(A), m_Value(B))) && 2247 (match(Op1, m_c_And(m_Specific(A), m_Not(m_Specific(B)))) || 2248 match(Op1, m_c_And(m_Not(m_Specific(A)), m_Specific(B))))) 2249 return Op0; 2250 2251 // (A & B) | (~A ^ B) -> (~A ^ B) 2252 // (B & A) | (~A ^ B) -> (~A ^ B) 2253 // (A & B) | (B ^ ~A) -> (B ^ ~A) 2254 // (B & A) | (B ^ ~A) -> (B ^ ~A) 2255 if (match(Op0, m_And(m_Value(A), m_Value(B))) && 2256 (match(Op1, m_c_Xor(m_Specific(A), m_Not(m_Specific(B)))) || 2257 match(Op1, m_c_Xor(m_Not(m_Specific(A)), m_Specific(B))))) 2258 return Op1; 2259 2260 // Commute the 'or' operands. 2261 // (~A ^ B) | (A & B) -> (~A ^ B) 2262 // (~A ^ B) | (B & A) -> (~A ^ B) 2263 // (B ^ ~A) | (A & B) -> (B ^ ~A) 2264 // (B ^ ~A) | (B & A) -> (B ^ ~A) 2265 if (match(Op1, m_And(m_Value(A), m_Value(B))) && 2266 (match(Op0, m_c_Xor(m_Specific(A), m_Not(m_Specific(B)))) || 2267 match(Op0, m_c_Xor(m_Not(m_Specific(A)), m_Specific(B))))) 2268 return Op0; 2269 2270 // (~A & B) | ~(A | B) --> ~A 2271 // (~A & B) | ~(B | A) --> ~A 2272 // (B & ~A) | ~(A | B) --> ~A 2273 // (B & ~A) | ~(B | A) --> ~A 2274 if (match(Op0, m_c_And(m_CombineAnd(m_Value(NotA), m_Not(m_Value(A))), 2275 m_Value(B))) && 2276 match(Op1, m_Not(m_c_Or(m_Specific(A), m_Specific(B))))) 2277 return NotA; 2278 2279 // Commute the 'or' operands. 2280 // ~(A | B) | (~A & B) --> ~A 2281 // ~(B | A) | (~A & B) --> ~A 2282 // ~(A | B) | (B & ~A) --> ~A 2283 // ~(B | A) | (B & ~A) --> ~A 2284 if (match(Op1, m_c_And(m_CombineAnd(m_Value(NotA), m_Not(m_Value(A))), 2285 m_Value(B))) && 2286 match(Op0, m_Not(m_c_Or(m_Specific(A), m_Specific(B))))) 2287 return NotA; 2288 2289 // Rotated -1 is still -1: 2290 // (-1 << X) | (-1 >> (C - X)) --> -1 2291 // (-1 >> X) | (-1 << (C - X)) --> -1 2292 // ...with C <= bitwidth (and commuted variants). 2293 Value *X, *Y; 2294 if ((match(Op0, m_Shl(m_AllOnes(), m_Value(X))) && 2295 match(Op1, m_LShr(m_AllOnes(), m_Value(Y)))) || 2296 (match(Op1, m_Shl(m_AllOnes(), m_Value(X))) && 2297 match(Op0, m_LShr(m_AllOnes(), m_Value(Y))))) { 2298 const APInt *C; 2299 if ((match(X, m_Sub(m_APInt(C), m_Specific(Y))) || 2300 match(Y, m_Sub(m_APInt(C), m_Specific(X)))) && 2301 C->ule(X->getType()->getScalarSizeInBits())) { 2302 return ConstantInt::getAllOnesValue(X->getType()); 2303 } 2304 } 2305 2306 if (Value *V = simplifyAndOrOfCmps(Q, Op0, Op1, false)) 2307 return V; 2308 2309 // If we have a multiplication overflow check that is being 'and'ed with a 2310 // check that one of the multipliers is not zero, we can omit the 'and', and 2311 // only keep the overflow check. 2312 if (isCheckForZeroAndMulWithOverflow(Op0, Op1, false)) 2313 return Op1; 2314 if (isCheckForZeroAndMulWithOverflow(Op1, Op0, false)) 2315 return Op0; 2316 2317 // Try some generic simplifications for associative operations. 2318 if (Value *V = SimplifyAssociativeBinOp(Instruction::Or, Op0, Op1, Q, 2319 MaxRecurse)) 2320 return V; 2321 2322 // Or distributes over And. Try some generic simplifications based on this. 2323 if (Value *V = expandCommutativeBinOp(Instruction::Or, Op0, Op1, 2324 Instruction::And, Q, MaxRecurse)) 2325 return V; 2326 2327 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) { 2328 if (Op0->getType()->isIntOrIntVectorTy(1)) { 2329 // A | (A || B) -> A || B 2330 if (match(Op1, m_Select(m_Specific(Op0), m_One(), m_Value()))) 2331 return Op1; 2332 else if (match(Op0, m_Select(m_Specific(Op1), m_One(), m_Value()))) 2333 return Op0; 2334 } 2335 // If the operation is with the result of a select instruction, check 2336 // whether operating on either branch of the select always yields the same 2337 // value. 2338 if (Value *V = ThreadBinOpOverSelect(Instruction::Or, Op0, Op1, Q, 2339 MaxRecurse)) 2340 return V; 2341 } 2342 2343 // (A & C1)|(B & C2) 2344 const APInt *C1, *C2; 2345 if (match(Op0, m_And(m_Value(A), m_APInt(C1))) && 2346 match(Op1, m_And(m_Value(B), m_APInt(C2)))) { 2347 if (*C1 == ~*C2) { 2348 // (A & C1)|(B & C2) 2349 // If we have: ((V + N) & C1) | (V & C2) 2350 // .. and C2 = ~C1 and C2 is 0+1+ and (N & C2) == 0 2351 // replace with V+N. 2352 Value *N; 2353 if (C2->isMask() && // C2 == 0+1+ 2354 match(A, m_c_Add(m_Specific(B), m_Value(N)))) { 2355 // Add commutes, try both ways. 2356 if (MaskedValueIsZero(N, *C2, Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 2357 return A; 2358 } 2359 // Or commutes, try both ways. 2360 if (C1->isMask() && 2361 match(B, m_c_Add(m_Specific(A), m_Value(N)))) { 2362 // Add commutes, try both ways. 2363 if (MaskedValueIsZero(N, *C1, Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 2364 return B; 2365 } 2366 } 2367 } 2368 2369 // If the operation is with the result of a phi instruction, check whether 2370 // operating on all incoming values of the phi always yields the same value. 2371 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 2372 if (Value *V = ThreadBinOpOverPHI(Instruction::Or, Op0, Op1, Q, MaxRecurse)) 2373 return V; 2374 2375 return nullptr; 2376 } 2377 2378 Value *llvm::SimplifyOrInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 2379 return ::SimplifyOrInst(Op0, Op1, Q, RecursionLimit); 2380 } 2381 2382 /// Given operands for a Xor, see if we can fold the result. 2383 /// If not, this returns null. 2384 static Value *SimplifyXorInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 2385 unsigned MaxRecurse) { 2386 if (Constant *C = foldOrCommuteConstant(Instruction::Xor, Op0, Op1, Q)) 2387 return C; 2388 2389 // A ^ undef -> undef 2390 if (Q.isUndefValue(Op1)) 2391 return Op1; 2392 2393 // A ^ 0 = A 2394 if (match(Op1, m_Zero())) 2395 return Op0; 2396 2397 // A ^ A = 0 2398 if (Op0 == Op1) 2399 return Constant::getNullValue(Op0->getType()); 2400 2401 // A ^ ~A = ~A ^ A = -1 2402 if (match(Op0, m_Not(m_Specific(Op1))) || 2403 match(Op1, m_Not(m_Specific(Op0)))) 2404 return Constant::getAllOnesValue(Op0->getType()); 2405 2406 if (Value *V = simplifyLogicOfAddSub(Op0, Op1, Instruction::Xor)) 2407 return V; 2408 2409 // Try some generic simplifications for associative operations. 2410 if (Value *V = SimplifyAssociativeBinOp(Instruction::Xor, Op0, Op1, Q, 2411 MaxRecurse)) 2412 return V; 2413 2414 // Threading Xor over selects and phi nodes is pointless, so don't bother. 2415 // Threading over the select in "A ^ select(cond, B, C)" means evaluating 2416 // "A^B" and "A^C" and seeing if they are equal; but they are equal if and 2417 // only if B and C are equal. If B and C are equal then (since we assume 2418 // that operands have already been simplified) "select(cond, B, C)" should 2419 // have been simplified to the common value of B and C already. Analysing 2420 // "A^B" and "A^C" thus gains nothing, but costs compile time. Similarly 2421 // for threading over phi nodes. 2422 2423 return nullptr; 2424 } 2425 2426 Value *llvm::SimplifyXorInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 2427 return ::SimplifyXorInst(Op0, Op1, Q, RecursionLimit); 2428 } 2429 2430 2431 static Type *GetCompareTy(Value *Op) { 2432 return CmpInst::makeCmpResultType(Op->getType()); 2433 } 2434 2435 /// Rummage around inside V looking for something equivalent to the comparison 2436 /// "LHS Pred RHS". Return such a value if found, otherwise return null. 2437 /// Helper function for analyzing max/min idioms. 2438 static Value *ExtractEquivalentCondition(Value *V, CmpInst::Predicate Pred, 2439 Value *LHS, Value *RHS) { 2440 SelectInst *SI = dyn_cast<SelectInst>(V); 2441 if (!SI) 2442 return nullptr; 2443 CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition()); 2444 if (!Cmp) 2445 return nullptr; 2446 Value *CmpLHS = Cmp->getOperand(0), *CmpRHS = Cmp->getOperand(1); 2447 if (Pred == Cmp->getPredicate() && LHS == CmpLHS && RHS == CmpRHS) 2448 return Cmp; 2449 if (Pred == CmpInst::getSwappedPredicate(Cmp->getPredicate()) && 2450 LHS == CmpRHS && RHS == CmpLHS) 2451 return Cmp; 2452 return nullptr; 2453 } 2454 2455 // A significant optimization not implemented here is assuming that alloca 2456 // addresses are not equal to incoming argument values. They don't *alias*, 2457 // as we say, but that doesn't mean they aren't equal, so we take a 2458 // conservative approach. 2459 // 2460 // This is inspired in part by C++11 5.10p1: 2461 // "Two pointers of the same type compare equal if and only if they are both 2462 // null, both point to the same function, or both represent the same 2463 // address." 2464 // 2465 // This is pretty permissive. 2466 // 2467 // It's also partly due to C11 6.5.9p6: 2468 // "Two pointers compare equal if and only if both are null pointers, both are 2469 // pointers to the same object (including a pointer to an object and a 2470 // subobject at its beginning) or function, both are pointers to one past the 2471 // last element of the same array object, or one is a pointer to one past the 2472 // end of one array object and the other is a pointer to the start of a 2473 // different array object that happens to immediately follow the first array 2474 // object in the address space.) 2475 // 2476 // C11's version is more restrictive, however there's no reason why an argument 2477 // couldn't be a one-past-the-end value for a stack object in the caller and be 2478 // equal to the beginning of a stack object in the callee. 2479 // 2480 // If the C and C++ standards are ever made sufficiently restrictive in this 2481 // area, it may be possible to update LLVM's semantics accordingly and reinstate 2482 // this optimization. 2483 static Constant * 2484 computePointerICmp(CmpInst::Predicate Pred, Value *LHS, Value *RHS, 2485 const SimplifyQuery &Q) { 2486 const DataLayout &DL = Q.DL; 2487 const TargetLibraryInfo *TLI = Q.TLI; 2488 const DominatorTree *DT = Q.DT; 2489 const Instruction *CxtI = Q.CxtI; 2490 const InstrInfoQuery &IIQ = Q.IIQ; 2491 2492 // First, skip past any trivial no-ops. 2493 LHS = LHS->stripPointerCasts(); 2494 RHS = RHS->stripPointerCasts(); 2495 2496 // A non-null pointer is not equal to a null pointer. 2497 if (isa<ConstantPointerNull>(RHS) && ICmpInst::isEquality(Pred) && 2498 llvm::isKnownNonZero(LHS, DL, 0, nullptr, nullptr, nullptr, 2499 IIQ.UseInstrInfo)) 2500 return ConstantInt::get(GetCompareTy(LHS), 2501 !CmpInst::isTrueWhenEqual(Pred)); 2502 2503 // We can only fold certain predicates on pointer comparisons. 2504 switch (Pred) { 2505 default: 2506 return nullptr; 2507 2508 // Equality comaprisons are easy to fold. 2509 case CmpInst::ICMP_EQ: 2510 case CmpInst::ICMP_NE: 2511 break; 2512 2513 // We can only handle unsigned relational comparisons because 'inbounds' on 2514 // a GEP only protects against unsigned wrapping. 2515 case CmpInst::ICMP_UGT: 2516 case CmpInst::ICMP_UGE: 2517 case CmpInst::ICMP_ULT: 2518 case CmpInst::ICMP_ULE: 2519 // However, we have to switch them to their signed variants to handle 2520 // negative indices from the base pointer. 2521 Pred = ICmpInst::getSignedPredicate(Pred); 2522 break; 2523 } 2524 2525 // Strip off any constant offsets so that we can reason about them. 2526 // It's tempting to use getUnderlyingObject or even just stripInBoundsOffsets 2527 // here and compare base addresses like AliasAnalysis does, however there are 2528 // numerous hazards. AliasAnalysis and its utilities rely on special rules 2529 // governing loads and stores which don't apply to icmps. Also, AliasAnalysis 2530 // doesn't need to guarantee pointer inequality when it says NoAlias. 2531 Constant *LHSOffset = stripAndComputeConstantOffsets(DL, LHS); 2532 Constant *RHSOffset = stripAndComputeConstantOffsets(DL, RHS); 2533 2534 // If LHS and RHS are related via constant offsets to the same base 2535 // value, we can replace it with an icmp which just compares the offsets. 2536 if (LHS == RHS) 2537 return ConstantExpr::getICmp(Pred, LHSOffset, RHSOffset); 2538 2539 // Various optimizations for (in)equality comparisons. 2540 if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE) { 2541 // Different non-empty allocations that exist at the same time have 2542 // different addresses (if the program can tell). Global variables always 2543 // exist, so they always exist during the lifetime of each other and all 2544 // allocas. Two different allocas usually have different addresses... 2545 // 2546 // However, if there's an @llvm.stackrestore dynamically in between two 2547 // allocas, they may have the same address. It's tempting to reduce the 2548 // scope of the problem by only looking at *static* allocas here. That would 2549 // cover the majority of allocas while significantly reducing the likelihood 2550 // of having an @llvm.stackrestore pop up in the middle. However, it's not 2551 // actually impossible for an @llvm.stackrestore to pop up in the middle of 2552 // an entry block. Also, if we have a block that's not attached to a 2553 // function, we can't tell if it's "static" under the current definition. 2554 // Theoretically, this problem could be fixed by creating a new kind of 2555 // instruction kind specifically for static allocas. Such a new instruction 2556 // could be required to be at the top of the entry block, thus preventing it 2557 // from being subject to a @llvm.stackrestore. Instcombine could even 2558 // convert regular allocas into these special allocas. It'd be nifty. 2559 // However, until then, this problem remains open. 2560 // 2561 // So, we'll assume that two non-empty allocas have different addresses 2562 // for now. 2563 // 2564 // With all that, if the offsets are within the bounds of their allocations 2565 // (and not one-past-the-end! so we can't use inbounds!), and their 2566 // allocations aren't the same, the pointers are not equal. 2567 // 2568 // Note that it's not necessary to check for LHS being a global variable 2569 // address, due to canonicalization and constant folding. 2570 if (isa<AllocaInst>(LHS) && 2571 (isa<AllocaInst>(RHS) || isa<GlobalVariable>(RHS))) { 2572 ConstantInt *LHSOffsetCI = dyn_cast<ConstantInt>(LHSOffset); 2573 ConstantInt *RHSOffsetCI = dyn_cast<ConstantInt>(RHSOffset); 2574 uint64_t LHSSize, RHSSize; 2575 ObjectSizeOpts Opts; 2576 Opts.NullIsUnknownSize = 2577 NullPointerIsDefined(cast<AllocaInst>(LHS)->getFunction()); 2578 if (LHSOffsetCI && RHSOffsetCI && 2579 getObjectSize(LHS, LHSSize, DL, TLI, Opts) && 2580 getObjectSize(RHS, RHSSize, DL, TLI, Opts)) { 2581 const APInt &LHSOffsetValue = LHSOffsetCI->getValue(); 2582 const APInt &RHSOffsetValue = RHSOffsetCI->getValue(); 2583 if (!LHSOffsetValue.isNegative() && 2584 !RHSOffsetValue.isNegative() && 2585 LHSOffsetValue.ult(LHSSize) && 2586 RHSOffsetValue.ult(RHSSize)) { 2587 return ConstantInt::get(GetCompareTy(LHS), 2588 !CmpInst::isTrueWhenEqual(Pred)); 2589 } 2590 } 2591 2592 // Repeat the above check but this time without depending on DataLayout 2593 // or being able to compute a precise size. 2594 if (!cast<PointerType>(LHS->getType())->isEmptyTy() && 2595 !cast<PointerType>(RHS->getType())->isEmptyTy() && 2596 LHSOffset->isNullValue() && 2597 RHSOffset->isNullValue()) 2598 return ConstantInt::get(GetCompareTy(LHS), 2599 !CmpInst::isTrueWhenEqual(Pred)); 2600 } 2601 2602 // Even if an non-inbounds GEP occurs along the path we can still optimize 2603 // equality comparisons concerning the result. We avoid walking the whole 2604 // chain again by starting where the last calls to 2605 // stripAndComputeConstantOffsets left off and accumulate the offsets. 2606 Constant *LHSNoBound = stripAndComputeConstantOffsets(DL, LHS, true); 2607 Constant *RHSNoBound = stripAndComputeConstantOffsets(DL, RHS, true); 2608 if (LHS == RHS) 2609 return ConstantExpr::getICmp(Pred, 2610 ConstantExpr::getAdd(LHSOffset, LHSNoBound), 2611 ConstantExpr::getAdd(RHSOffset, RHSNoBound)); 2612 2613 // If one side of the equality comparison must come from a noalias call 2614 // (meaning a system memory allocation function), and the other side must 2615 // come from a pointer that cannot overlap with dynamically-allocated 2616 // memory within the lifetime of the current function (allocas, byval 2617 // arguments, globals), then determine the comparison result here. 2618 SmallVector<const Value *, 8> LHSUObjs, RHSUObjs; 2619 getUnderlyingObjects(LHS, LHSUObjs); 2620 getUnderlyingObjects(RHS, RHSUObjs); 2621 2622 // Is the set of underlying objects all noalias calls? 2623 auto IsNAC = [](ArrayRef<const Value *> Objects) { 2624 return all_of(Objects, isNoAliasCall); 2625 }; 2626 2627 // Is the set of underlying objects all things which must be disjoint from 2628 // noalias calls. For allocas, we consider only static ones (dynamic 2629 // allocas might be transformed into calls to malloc not simultaneously 2630 // live with the compared-to allocation). For globals, we exclude symbols 2631 // that might be resolve lazily to symbols in another dynamically-loaded 2632 // library (and, thus, could be malloc'ed by the implementation). 2633 auto IsAllocDisjoint = [](ArrayRef<const Value *> Objects) { 2634 return all_of(Objects, [](const Value *V) { 2635 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) 2636 return AI->getParent() && AI->getFunction() && AI->isStaticAlloca(); 2637 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) 2638 return (GV->hasLocalLinkage() || GV->hasHiddenVisibility() || 2639 GV->hasProtectedVisibility() || GV->hasGlobalUnnamedAddr()) && 2640 !GV->isThreadLocal(); 2641 if (const Argument *A = dyn_cast<Argument>(V)) 2642 return A->hasByValAttr(); 2643 return false; 2644 }); 2645 }; 2646 2647 if ((IsNAC(LHSUObjs) && IsAllocDisjoint(RHSUObjs)) || 2648 (IsNAC(RHSUObjs) && IsAllocDisjoint(LHSUObjs))) 2649 return ConstantInt::get(GetCompareTy(LHS), 2650 !CmpInst::isTrueWhenEqual(Pred)); 2651 2652 // Fold comparisons for non-escaping pointer even if the allocation call 2653 // cannot be elided. We cannot fold malloc comparison to null. Also, the 2654 // dynamic allocation call could be either of the operands. 2655 Value *MI = nullptr; 2656 if (isAllocLikeFn(LHS, TLI) && 2657 llvm::isKnownNonZero(RHS, DL, 0, nullptr, CxtI, DT)) 2658 MI = LHS; 2659 else if (isAllocLikeFn(RHS, TLI) && 2660 llvm::isKnownNonZero(LHS, DL, 0, nullptr, CxtI, DT)) 2661 MI = RHS; 2662 // FIXME: We should also fold the compare when the pointer escapes, but the 2663 // compare dominates the pointer escape 2664 if (MI && !PointerMayBeCaptured(MI, true, true)) 2665 return ConstantInt::get(GetCompareTy(LHS), 2666 CmpInst::isFalseWhenEqual(Pred)); 2667 } 2668 2669 // Otherwise, fail. 2670 return nullptr; 2671 } 2672 2673 /// Fold an icmp when its operands have i1 scalar type. 2674 static Value *simplifyICmpOfBools(CmpInst::Predicate Pred, Value *LHS, 2675 Value *RHS, const SimplifyQuery &Q) { 2676 Type *ITy = GetCompareTy(LHS); // The return type. 2677 Type *OpTy = LHS->getType(); // The operand type. 2678 if (!OpTy->isIntOrIntVectorTy(1)) 2679 return nullptr; 2680 2681 // A boolean compared to true/false can be simplified in 14 out of the 20 2682 // (10 predicates * 2 constants) possible combinations. Cases not handled here 2683 // require a 'not' of the LHS, so those must be transformed in InstCombine. 2684 if (match(RHS, m_Zero())) { 2685 switch (Pred) { 2686 case CmpInst::ICMP_NE: // X != 0 -> X 2687 case CmpInst::ICMP_UGT: // X >u 0 -> X 2688 case CmpInst::ICMP_SLT: // X <s 0 -> X 2689 return LHS; 2690 2691 case CmpInst::ICMP_ULT: // X <u 0 -> false 2692 case CmpInst::ICMP_SGT: // X >s 0 -> false 2693 return getFalse(ITy); 2694 2695 case CmpInst::ICMP_UGE: // X >=u 0 -> true 2696 case CmpInst::ICMP_SLE: // X <=s 0 -> true 2697 return getTrue(ITy); 2698 2699 default: break; 2700 } 2701 } else if (match(RHS, m_One())) { 2702 switch (Pred) { 2703 case CmpInst::ICMP_EQ: // X == 1 -> X 2704 case CmpInst::ICMP_UGE: // X >=u 1 -> X 2705 case CmpInst::ICMP_SLE: // X <=s -1 -> X 2706 return LHS; 2707 2708 case CmpInst::ICMP_UGT: // X >u 1 -> false 2709 case CmpInst::ICMP_SLT: // X <s -1 -> false 2710 return getFalse(ITy); 2711 2712 case CmpInst::ICMP_ULE: // X <=u 1 -> true 2713 case CmpInst::ICMP_SGE: // X >=s -1 -> true 2714 return getTrue(ITy); 2715 2716 default: break; 2717 } 2718 } 2719 2720 switch (Pred) { 2721 default: 2722 break; 2723 case ICmpInst::ICMP_UGE: 2724 if (isImpliedCondition(RHS, LHS, Q.DL).getValueOr(false)) 2725 return getTrue(ITy); 2726 break; 2727 case ICmpInst::ICMP_SGE: 2728 /// For signed comparison, the values for an i1 are 0 and -1 2729 /// respectively. This maps into a truth table of: 2730 /// LHS | RHS | LHS >=s RHS | LHS implies RHS 2731 /// 0 | 0 | 1 (0 >= 0) | 1 2732 /// 0 | 1 | 1 (0 >= -1) | 1 2733 /// 1 | 0 | 0 (-1 >= 0) | 0 2734 /// 1 | 1 | 1 (-1 >= -1) | 1 2735 if (isImpliedCondition(LHS, RHS, Q.DL).getValueOr(false)) 2736 return getTrue(ITy); 2737 break; 2738 case ICmpInst::ICMP_ULE: 2739 if (isImpliedCondition(LHS, RHS, Q.DL).getValueOr(false)) 2740 return getTrue(ITy); 2741 break; 2742 } 2743 2744 return nullptr; 2745 } 2746 2747 /// Try hard to fold icmp with zero RHS because this is a common case. 2748 static Value *simplifyICmpWithZero(CmpInst::Predicate Pred, Value *LHS, 2749 Value *RHS, const SimplifyQuery &Q) { 2750 if (!match(RHS, m_Zero())) 2751 return nullptr; 2752 2753 Type *ITy = GetCompareTy(LHS); // The return type. 2754 switch (Pred) { 2755 default: 2756 llvm_unreachable("Unknown ICmp predicate!"); 2757 case ICmpInst::ICMP_ULT: 2758 return getFalse(ITy); 2759 case ICmpInst::ICMP_UGE: 2760 return getTrue(ITy); 2761 case ICmpInst::ICMP_EQ: 2762 case ICmpInst::ICMP_ULE: 2763 if (isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT, Q.IIQ.UseInstrInfo)) 2764 return getFalse(ITy); 2765 break; 2766 case ICmpInst::ICMP_NE: 2767 case ICmpInst::ICMP_UGT: 2768 if (isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT, Q.IIQ.UseInstrInfo)) 2769 return getTrue(ITy); 2770 break; 2771 case ICmpInst::ICMP_SLT: { 2772 KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2773 if (LHSKnown.isNegative()) 2774 return getTrue(ITy); 2775 if (LHSKnown.isNonNegative()) 2776 return getFalse(ITy); 2777 break; 2778 } 2779 case ICmpInst::ICMP_SLE: { 2780 KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2781 if (LHSKnown.isNegative()) 2782 return getTrue(ITy); 2783 if (LHSKnown.isNonNegative() && 2784 isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 2785 return getFalse(ITy); 2786 break; 2787 } 2788 case ICmpInst::ICMP_SGE: { 2789 KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2790 if (LHSKnown.isNegative()) 2791 return getFalse(ITy); 2792 if (LHSKnown.isNonNegative()) 2793 return getTrue(ITy); 2794 break; 2795 } 2796 case ICmpInst::ICMP_SGT: { 2797 KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2798 if (LHSKnown.isNegative()) 2799 return getFalse(ITy); 2800 if (LHSKnown.isNonNegative() && 2801 isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 2802 return getTrue(ITy); 2803 break; 2804 } 2805 } 2806 2807 return nullptr; 2808 } 2809 2810 static Value *simplifyICmpWithConstant(CmpInst::Predicate Pred, Value *LHS, 2811 Value *RHS, const InstrInfoQuery &IIQ) { 2812 Type *ITy = GetCompareTy(RHS); // The return type. 2813 2814 Value *X; 2815 // Sign-bit checks can be optimized to true/false after unsigned 2816 // floating-point casts: 2817 // icmp slt (bitcast (uitofp X)), 0 --> false 2818 // icmp sgt (bitcast (uitofp X)), -1 --> true 2819 if (match(LHS, m_BitCast(m_UIToFP(m_Value(X))))) { 2820 if (Pred == ICmpInst::ICMP_SLT && match(RHS, m_Zero())) 2821 return ConstantInt::getFalse(ITy); 2822 if (Pred == ICmpInst::ICMP_SGT && match(RHS, m_AllOnes())) 2823 return ConstantInt::getTrue(ITy); 2824 } 2825 2826 const APInt *C; 2827 if (!match(RHS, m_APIntAllowUndef(C))) 2828 return nullptr; 2829 2830 // Rule out tautological comparisons (eg., ult 0 or uge 0). 2831 ConstantRange RHS_CR = ConstantRange::makeExactICmpRegion(Pred, *C); 2832 if (RHS_CR.isEmptySet()) 2833 return ConstantInt::getFalse(ITy); 2834 if (RHS_CR.isFullSet()) 2835 return ConstantInt::getTrue(ITy); 2836 2837 ConstantRange LHS_CR = computeConstantRange(LHS, IIQ.UseInstrInfo); 2838 if (!LHS_CR.isFullSet()) { 2839 if (RHS_CR.contains(LHS_CR)) 2840 return ConstantInt::getTrue(ITy); 2841 if (RHS_CR.inverse().contains(LHS_CR)) 2842 return ConstantInt::getFalse(ITy); 2843 } 2844 2845 // (mul nuw/nsw X, MulC) != C --> true (if C is not a multiple of MulC) 2846 // (mul nuw/nsw X, MulC) == C --> false (if C is not a multiple of MulC) 2847 const APInt *MulC; 2848 if (ICmpInst::isEquality(Pred) && 2849 ((match(LHS, m_NUWMul(m_Value(), m_APIntAllowUndef(MulC))) && 2850 *MulC != 0 && C->urem(*MulC) != 0) || 2851 (match(LHS, m_NSWMul(m_Value(), m_APIntAllowUndef(MulC))) && 2852 *MulC != 0 && C->srem(*MulC) != 0))) 2853 return ConstantInt::get(ITy, Pred == ICmpInst::ICMP_NE); 2854 2855 return nullptr; 2856 } 2857 2858 static Value *simplifyICmpWithBinOpOnLHS( 2859 CmpInst::Predicate Pred, BinaryOperator *LBO, Value *RHS, 2860 const SimplifyQuery &Q, unsigned MaxRecurse) { 2861 Type *ITy = GetCompareTy(RHS); // The return type. 2862 2863 Value *Y = nullptr; 2864 // icmp pred (or X, Y), X 2865 if (match(LBO, m_c_Or(m_Value(Y), m_Specific(RHS)))) { 2866 if (Pred == ICmpInst::ICMP_ULT) 2867 return getFalse(ITy); 2868 if (Pred == ICmpInst::ICMP_UGE) 2869 return getTrue(ITy); 2870 2871 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SGE) { 2872 KnownBits RHSKnown = computeKnownBits(RHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2873 KnownBits YKnown = computeKnownBits(Y, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2874 if (RHSKnown.isNonNegative() && YKnown.isNegative()) 2875 return Pred == ICmpInst::ICMP_SLT ? getTrue(ITy) : getFalse(ITy); 2876 if (RHSKnown.isNegative() || YKnown.isNonNegative()) 2877 return Pred == ICmpInst::ICMP_SLT ? getFalse(ITy) : getTrue(ITy); 2878 } 2879 } 2880 2881 // icmp pred (and X, Y), X 2882 if (match(LBO, m_c_And(m_Value(), m_Specific(RHS)))) { 2883 if (Pred == ICmpInst::ICMP_UGT) 2884 return getFalse(ITy); 2885 if (Pred == ICmpInst::ICMP_ULE) 2886 return getTrue(ITy); 2887 } 2888 2889 // icmp pred (urem X, Y), Y 2890 if (match(LBO, m_URem(m_Value(), m_Specific(RHS)))) { 2891 switch (Pred) { 2892 default: 2893 break; 2894 case ICmpInst::ICMP_SGT: 2895 case ICmpInst::ICMP_SGE: { 2896 KnownBits Known = computeKnownBits(RHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2897 if (!Known.isNonNegative()) 2898 break; 2899 LLVM_FALLTHROUGH; 2900 } 2901 case ICmpInst::ICMP_EQ: 2902 case ICmpInst::ICMP_UGT: 2903 case ICmpInst::ICMP_UGE: 2904 return getFalse(ITy); 2905 case ICmpInst::ICMP_SLT: 2906 case ICmpInst::ICMP_SLE: { 2907 KnownBits Known = computeKnownBits(RHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2908 if (!Known.isNonNegative()) 2909 break; 2910 LLVM_FALLTHROUGH; 2911 } 2912 case ICmpInst::ICMP_NE: 2913 case ICmpInst::ICMP_ULT: 2914 case ICmpInst::ICMP_ULE: 2915 return getTrue(ITy); 2916 } 2917 } 2918 2919 // icmp pred (urem X, Y), X 2920 if (match(LBO, m_URem(m_Specific(RHS), m_Value()))) { 2921 if (Pred == ICmpInst::ICMP_ULE) 2922 return getTrue(ITy); 2923 if (Pred == ICmpInst::ICMP_UGT) 2924 return getFalse(ITy); 2925 } 2926 2927 // x >> y <=u x 2928 // x udiv y <=u x. 2929 if (match(LBO, m_LShr(m_Specific(RHS), m_Value())) || 2930 match(LBO, m_UDiv(m_Specific(RHS), m_Value()))) { 2931 // icmp pred (X op Y), X 2932 if (Pred == ICmpInst::ICMP_UGT) 2933 return getFalse(ITy); 2934 if (Pred == ICmpInst::ICMP_ULE) 2935 return getTrue(ITy); 2936 } 2937 2938 // (x*C1)/C2 <= x for C1 <= C2. 2939 // This holds even if the multiplication overflows: Assume that x != 0 and 2940 // arithmetic is modulo M. For overflow to occur we must have C1 >= M/x and 2941 // thus C2 >= M/x. It follows that (x*C1)/C2 <= (M-1)/C2 <= ((M-1)*x)/M < x. 2942 // 2943 // Additionally, either the multiplication and division might be represented 2944 // as shifts: 2945 // (x*C1)>>C2 <= x for C1 < 2**C2. 2946 // (x<<C1)/C2 <= x for 2**C1 < C2. 2947 const APInt *C1, *C2; 2948 if ((match(LBO, m_UDiv(m_Mul(m_Specific(RHS), m_APInt(C1)), m_APInt(C2))) && 2949 C1->ule(*C2)) || 2950 (match(LBO, m_LShr(m_Mul(m_Specific(RHS), m_APInt(C1)), m_APInt(C2))) && 2951 C1->ule(APInt(C2->getBitWidth(), 1) << *C2)) || 2952 (match(LBO, m_UDiv(m_Shl(m_Specific(RHS), m_APInt(C1)), m_APInt(C2))) && 2953 (APInt(C1->getBitWidth(), 1) << *C1).ule(*C2))) { 2954 if (Pred == ICmpInst::ICMP_UGT) 2955 return getFalse(ITy); 2956 if (Pred == ICmpInst::ICMP_ULE) 2957 return getTrue(ITy); 2958 } 2959 2960 return nullptr; 2961 } 2962 2963 2964 // If only one of the icmp's operands has NSW flags, try to prove that: 2965 // 2966 // icmp slt (x + C1), (x +nsw C2) 2967 // 2968 // is equivalent to: 2969 // 2970 // icmp slt C1, C2 2971 // 2972 // which is true if x + C2 has the NSW flags set and: 2973 // *) C1 < C2 && C1 >= 0, or 2974 // *) C2 < C1 && C1 <= 0. 2975 // 2976 static bool trySimplifyICmpWithAdds(CmpInst::Predicate Pred, Value *LHS, 2977 Value *RHS) { 2978 // TODO: only support icmp slt for now. 2979 if (Pred != CmpInst::ICMP_SLT) 2980 return false; 2981 2982 // Canonicalize nsw add as RHS. 2983 if (!match(RHS, m_NSWAdd(m_Value(), m_Value()))) 2984 std::swap(LHS, RHS); 2985 if (!match(RHS, m_NSWAdd(m_Value(), m_Value()))) 2986 return false; 2987 2988 Value *X; 2989 const APInt *C1, *C2; 2990 if (!match(LHS, m_c_Add(m_Value(X), m_APInt(C1))) || 2991 !match(RHS, m_c_Add(m_Specific(X), m_APInt(C2)))) 2992 return false; 2993 2994 return (C1->slt(*C2) && C1->isNonNegative()) || 2995 (C2->slt(*C1) && C1->isNonPositive()); 2996 } 2997 2998 2999 /// TODO: A large part of this logic is duplicated in InstCombine's 3000 /// foldICmpBinOp(). We should be able to share that and avoid the code 3001 /// duplication. 3002 static Value *simplifyICmpWithBinOp(CmpInst::Predicate Pred, Value *LHS, 3003 Value *RHS, const SimplifyQuery &Q, 3004 unsigned MaxRecurse) { 3005 BinaryOperator *LBO = dyn_cast<BinaryOperator>(LHS); 3006 BinaryOperator *RBO = dyn_cast<BinaryOperator>(RHS); 3007 if (MaxRecurse && (LBO || RBO)) { 3008 // Analyze the case when either LHS or RHS is an add instruction. 3009 Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr; 3010 // LHS = A + B (or A and B are null); RHS = C + D (or C and D are null). 3011 bool NoLHSWrapProblem = false, NoRHSWrapProblem = false; 3012 if (LBO && LBO->getOpcode() == Instruction::Add) { 3013 A = LBO->getOperand(0); 3014 B = LBO->getOperand(1); 3015 NoLHSWrapProblem = 3016 ICmpInst::isEquality(Pred) || 3017 (CmpInst::isUnsigned(Pred) && 3018 Q.IIQ.hasNoUnsignedWrap(cast<OverflowingBinaryOperator>(LBO))) || 3019 (CmpInst::isSigned(Pred) && 3020 Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(LBO))); 3021 } 3022 if (RBO && RBO->getOpcode() == Instruction::Add) { 3023 C = RBO->getOperand(0); 3024 D = RBO->getOperand(1); 3025 NoRHSWrapProblem = 3026 ICmpInst::isEquality(Pred) || 3027 (CmpInst::isUnsigned(Pred) && 3028 Q.IIQ.hasNoUnsignedWrap(cast<OverflowingBinaryOperator>(RBO))) || 3029 (CmpInst::isSigned(Pred) && 3030 Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(RBO))); 3031 } 3032 3033 // icmp (X+Y), X -> icmp Y, 0 for equalities or if there is no overflow. 3034 if ((A == RHS || B == RHS) && NoLHSWrapProblem) 3035 if (Value *V = SimplifyICmpInst(Pred, A == RHS ? B : A, 3036 Constant::getNullValue(RHS->getType()), Q, 3037 MaxRecurse - 1)) 3038 return V; 3039 3040 // icmp X, (X+Y) -> icmp 0, Y for equalities or if there is no overflow. 3041 if ((C == LHS || D == LHS) && NoRHSWrapProblem) 3042 if (Value *V = 3043 SimplifyICmpInst(Pred, Constant::getNullValue(LHS->getType()), 3044 C == LHS ? D : C, Q, MaxRecurse - 1)) 3045 return V; 3046 3047 // icmp (X+Y), (X+Z) -> icmp Y,Z for equalities or if there is no overflow. 3048 bool CanSimplify = (NoLHSWrapProblem && NoRHSWrapProblem) || 3049 trySimplifyICmpWithAdds(Pred, LHS, RHS); 3050 if (A && C && (A == C || A == D || B == C || B == D) && CanSimplify) { 3051 // Determine Y and Z in the form icmp (X+Y), (X+Z). 3052 Value *Y, *Z; 3053 if (A == C) { 3054 // C + B == C + D -> B == D 3055 Y = B; 3056 Z = D; 3057 } else if (A == D) { 3058 // D + B == C + D -> B == C 3059 Y = B; 3060 Z = C; 3061 } else if (B == C) { 3062 // A + C == C + D -> A == D 3063 Y = A; 3064 Z = D; 3065 } else { 3066 assert(B == D); 3067 // A + D == C + D -> A == C 3068 Y = A; 3069 Z = C; 3070 } 3071 if (Value *V = SimplifyICmpInst(Pred, Y, Z, Q, MaxRecurse - 1)) 3072 return V; 3073 } 3074 } 3075 3076 if (LBO) 3077 if (Value *V = simplifyICmpWithBinOpOnLHS(Pred, LBO, RHS, Q, MaxRecurse)) 3078 return V; 3079 3080 if (RBO) 3081 if (Value *V = simplifyICmpWithBinOpOnLHS( 3082 ICmpInst::getSwappedPredicate(Pred), RBO, LHS, Q, MaxRecurse)) 3083 return V; 3084 3085 // 0 - (zext X) pred C 3086 if (!CmpInst::isUnsigned(Pred) && match(LHS, m_Neg(m_ZExt(m_Value())))) { 3087 const APInt *C; 3088 if (match(RHS, m_APInt(C))) { 3089 if (C->isStrictlyPositive()) { 3090 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_NE) 3091 return ConstantInt::getTrue(GetCompareTy(RHS)); 3092 if (Pred == ICmpInst::ICMP_SGE || Pred == ICmpInst::ICMP_EQ) 3093 return ConstantInt::getFalse(GetCompareTy(RHS)); 3094 } 3095 if (C->isNonNegative()) { 3096 if (Pred == ICmpInst::ICMP_SLE) 3097 return ConstantInt::getTrue(GetCompareTy(RHS)); 3098 if (Pred == ICmpInst::ICMP_SGT) 3099 return ConstantInt::getFalse(GetCompareTy(RHS)); 3100 } 3101 } 3102 } 3103 3104 // If C2 is a power-of-2 and C is not: 3105 // (C2 << X) == C --> false 3106 // (C2 << X) != C --> true 3107 const APInt *C; 3108 if (match(LHS, m_Shl(m_Power2(), m_Value())) && 3109 match(RHS, m_APIntAllowUndef(C)) && !C->isPowerOf2()) { 3110 // C2 << X can equal zero in some circumstances. 3111 // This simplification might be unsafe if C is zero. 3112 // 3113 // We know it is safe if: 3114 // - The shift is nsw. We can't shift out the one bit. 3115 // - The shift is nuw. We can't shift out the one bit. 3116 // - C2 is one. 3117 // - C isn't zero. 3118 if (Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(LBO)) || 3119 Q.IIQ.hasNoUnsignedWrap(cast<OverflowingBinaryOperator>(LBO)) || 3120 match(LHS, m_Shl(m_One(), m_Value())) || !C->isZero()) { 3121 if (Pred == ICmpInst::ICMP_EQ) 3122 return ConstantInt::getFalse(GetCompareTy(RHS)); 3123 if (Pred == ICmpInst::ICMP_NE) 3124 return ConstantInt::getTrue(GetCompareTy(RHS)); 3125 } 3126 } 3127 3128 // TODO: This is overly constrained. LHS can be any power-of-2. 3129 // (1 << X) >u 0x8000 --> false 3130 // (1 << X) <=u 0x8000 --> true 3131 if (match(LHS, m_Shl(m_One(), m_Value())) && match(RHS, m_SignMask())) { 3132 if (Pred == ICmpInst::ICMP_UGT) 3133 return ConstantInt::getFalse(GetCompareTy(RHS)); 3134 if (Pred == ICmpInst::ICMP_ULE) 3135 return ConstantInt::getTrue(GetCompareTy(RHS)); 3136 } 3137 3138 if (MaxRecurse && LBO && RBO && LBO->getOpcode() == RBO->getOpcode() && 3139 LBO->getOperand(1) == RBO->getOperand(1)) { 3140 switch (LBO->getOpcode()) { 3141 default: 3142 break; 3143 case Instruction::UDiv: 3144 case Instruction::LShr: 3145 if (ICmpInst::isSigned(Pred) || !Q.IIQ.isExact(LBO) || 3146 !Q.IIQ.isExact(RBO)) 3147 break; 3148 if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0), 3149 RBO->getOperand(0), Q, MaxRecurse - 1)) 3150 return V; 3151 break; 3152 case Instruction::SDiv: 3153 if (!ICmpInst::isEquality(Pred) || !Q.IIQ.isExact(LBO) || 3154 !Q.IIQ.isExact(RBO)) 3155 break; 3156 if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0), 3157 RBO->getOperand(0), Q, MaxRecurse - 1)) 3158 return V; 3159 break; 3160 case Instruction::AShr: 3161 if (!Q.IIQ.isExact(LBO) || !Q.IIQ.isExact(RBO)) 3162 break; 3163 if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0), 3164 RBO->getOperand(0), Q, MaxRecurse - 1)) 3165 return V; 3166 break; 3167 case Instruction::Shl: { 3168 bool NUW = Q.IIQ.hasNoUnsignedWrap(LBO) && Q.IIQ.hasNoUnsignedWrap(RBO); 3169 bool NSW = Q.IIQ.hasNoSignedWrap(LBO) && Q.IIQ.hasNoSignedWrap(RBO); 3170 if (!NUW && !NSW) 3171 break; 3172 if (!NSW && ICmpInst::isSigned(Pred)) 3173 break; 3174 if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0), 3175 RBO->getOperand(0), Q, MaxRecurse - 1)) 3176 return V; 3177 break; 3178 } 3179 } 3180 } 3181 return nullptr; 3182 } 3183 3184 /// Simplify integer comparisons where at least one operand of the compare 3185 /// matches an integer min/max idiom. 3186 static Value *simplifyICmpWithMinMax(CmpInst::Predicate Pred, Value *LHS, 3187 Value *RHS, const SimplifyQuery &Q, 3188 unsigned MaxRecurse) { 3189 Type *ITy = GetCompareTy(LHS); // The return type. 3190 Value *A, *B; 3191 CmpInst::Predicate P = CmpInst::BAD_ICMP_PREDICATE; 3192 CmpInst::Predicate EqP; // Chosen so that "A == max/min(A,B)" iff "A EqP B". 3193 3194 // Signed variants on "max(a,b)>=a -> true". 3195 if (match(LHS, m_SMax(m_Value(A), m_Value(B))) && (A == RHS || B == RHS)) { 3196 if (A != RHS) 3197 std::swap(A, B); // smax(A, B) pred A. 3198 EqP = CmpInst::ICMP_SGE; // "A == smax(A, B)" iff "A sge B". 3199 // We analyze this as smax(A, B) pred A. 3200 P = Pred; 3201 } else if (match(RHS, m_SMax(m_Value(A), m_Value(B))) && 3202 (A == LHS || B == LHS)) { 3203 if (A != LHS) 3204 std::swap(A, B); // A pred smax(A, B). 3205 EqP = CmpInst::ICMP_SGE; // "A == smax(A, B)" iff "A sge B". 3206 // We analyze this as smax(A, B) swapped-pred A. 3207 P = CmpInst::getSwappedPredicate(Pred); 3208 } else if (match(LHS, m_SMin(m_Value(A), m_Value(B))) && 3209 (A == RHS || B == RHS)) { 3210 if (A != RHS) 3211 std::swap(A, B); // smin(A, B) pred A. 3212 EqP = CmpInst::ICMP_SLE; // "A == smin(A, B)" iff "A sle B". 3213 // We analyze this as smax(-A, -B) swapped-pred -A. 3214 // Note that we do not need to actually form -A or -B thanks to EqP. 3215 P = CmpInst::getSwappedPredicate(Pred); 3216 } else if (match(RHS, m_SMin(m_Value(A), m_Value(B))) && 3217 (A == LHS || B == LHS)) { 3218 if (A != LHS) 3219 std::swap(A, B); // A pred smin(A, B). 3220 EqP = CmpInst::ICMP_SLE; // "A == smin(A, B)" iff "A sle B". 3221 // We analyze this as smax(-A, -B) pred -A. 3222 // Note that we do not need to actually form -A or -B thanks to EqP. 3223 P = Pred; 3224 } 3225 if (P != CmpInst::BAD_ICMP_PREDICATE) { 3226 // Cases correspond to "max(A, B) p A". 3227 switch (P) { 3228 default: 3229 break; 3230 case CmpInst::ICMP_EQ: 3231 case CmpInst::ICMP_SLE: 3232 // Equivalent to "A EqP B". This may be the same as the condition tested 3233 // in the max/min; if so, we can just return that. 3234 if (Value *V = ExtractEquivalentCondition(LHS, EqP, A, B)) 3235 return V; 3236 if (Value *V = ExtractEquivalentCondition(RHS, EqP, A, B)) 3237 return V; 3238 // Otherwise, see if "A EqP B" simplifies. 3239 if (MaxRecurse) 3240 if (Value *V = SimplifyICmpInst(EqP, A, B, Q, MaxRecurse - 1)) 3241 return V; 3242 break; 3243 case CmpInst::ICMP_NE: 3244 case CmpInst::ICMP_SGT: { 3245 CmpInst::Predicate InvEqP = CmpInst::getInversePredicate(EqP); 3246 // Equivalent to "A InvEqP B". This may be the same as the condition 3247 // tested in the max/min; if so, we can just return that. 3248 if (Value *V = ExtractEquivalentCondition(LHS, InvEqP, A, B)) 3249 return V; 3250 if (Value *V = ExtractEquivalentCondition(RHS, InvEqP, A, B)) 3251 return V; 3252 // Otherwise, see if "A InvEqP B" simplifies. 3253 if (MaxRecurse) 3254 if (Value *V = SimplifyICmpInst(InvEqP, A, B, Q, MaxRecurse - 1)) 3255 return V; 3256 break; 3257 } 3258 case CmpInst::ICMP_SGE: 3259 // Always true. 3260 return getTrue(ITy); 3261 case CmpInst::ICMP_SLT: 3262 // Always false. 3263 return getFalse(ITy); 3264 } 3265 } 3266 3267 // Unsigned variants on "max(a,b)>=a -> true". 3268 P = CmpInst::BAD_ICMP_PREDICATE; 3269 if (match(LHS, m_UMax(m_Value(A), m_Value(B))) && (A == RHS || B == RHS)) { 3270 if (A != RHS) 3271 std::swap(A, B); // umax(A, B) pred A. 3272 EqP = CmpInst::ICMP_UGE; // "A == umax(A, B)" iff "A uge B". 3273 // We analyze this as umax(A, B) pred A. 3274 P = Pred; 3275 } else if (match(RHS, m_UMax(m_Value(A), m_Value(B))) && 3276 (A == LHS || B == LHS)) { 3277 if (A != LHS) 3278 std::swap(A, B); // A pred umax(A, B). 3279 EqP = CmpInst::ICMP_UGE; // "A == umax(A, B)" iff "A uge B". 3280 // We analyze this as umax(A, B) swapped-pred A. 3281 P = CmpInst::getSwappedPredicate(Pred); 3282 } else if (match(LHS, m_UMin(m_Value(A), m_Value(B))) && 3283 (A == RHS || B == RHS)) { 3284 if (A != RHS) 3285 std::swap(A, B); // umin(A, B) pred A. 3286 EqP = CmpInst::ICMP_ULE; // "A == umin(A, B)" iff "A ule B". 3287 // We analyze this as umax(-A, -B) swapped-pred -A. 3288 // Note that we do not need to actually form -A or -B thanks to EqP. 3289 P = CmpInst::getSwappedPredicate(Pred); 3290 } else if (match(RHS, m_UMin(m_Value(A), m_Value(B))) && 3291 (A == LHS || B == LHS)) { 3292 if (A != LHS) 3293 std::swap(A, B); // A pred umin(A, B). 3294 EqP = CmpInst::ICMP_ULE; // "A == umin(A, B)" iff "A ule B". 3295 // We analyze this as umax(-A, -B) pred -A. 3296 // Note that we do not need to actually form -A or -B thanks to EqP. 3297 P = Pred; 3298 } 3299 if (P != CmpInst::BAD_ICMP_PREDICATE) { 3300 // Cases correspond to "max(A, B) p A". 3301 switch (P) { 3302 default: 3303 break; 3304 case CmpInst::ICMP_EQ: 3305 case CmpInst::ICMP_ULE: 3306 // Equivalent to "A EqP B". This may be the same as the condition tested 3307 // in the max/min; if so, we can just return that. 3308 if (Value *V = ExtractEquivalentCondition(LHS, EqP, A, B)) 3309 return V; 3310 if (Value *V = ExtractEquivalentCondition(RHS, EqP, A, B)) 3311 return V; 3312 // Otherwise, see if "A EqP B" simplifies. 3313 if (MaxRecurse) 3314 if (Value *V = SimplifyICmpInst(EqP, A, B, Q, MaxRecurse - 1)) 3315 return V; 3316 break; 3317 case CmpInst::ICMP_NE: 3318 case CmpInst::ICMP_UGT: { 3319 CmpInst::Predicate InvEqP = CmpInst::getInversePredicate(EqP); 3320 // Equivalent to "A InvEqP B". This may be the same as the condition 3321 // tested in the max/min; if so, we can just return that. 3322 if (Value *V = ExtractEquivalentCondition(LHS, InvEqP, A, B)) 3323 return V; 3324 if (Value *V = ExtractEquivalentCondition(RHS, InvEqP, A, B)) 3325 return V; 3326 // Otherwise, see if "A InvEqP B" simplifies. 3327 if (MaxRecurse) 3328 if (Value *V = SimplifyICmpInst(InvEqP, A, B, Q, MaxRecurse - 1)) 3329 return V; 3330 break; 3331 } 3332 case CmpInst::ICMP_UGE: 3333 return getTrue(ITy); 3334 case CmpInst::ICMP_ULT: 3335 return getFalse(ITy); 3336 } 3337 } 3338 3339 // Comparing 1 each of min/max with a common operand? 3340 // Canonicalize min operand to RHS. 3341 if (match(LHS, m_UMin(m_Value(), m_Value())) || 3342 match(LHS, m_SMin(m_Value(), m_Value()))) { 3343 std::swap(LHS, RHS); 3344 Pred = ICmpInst::getSwappedPredicate(Pred); 3345 } 3346 3347 Value *C, *D; 3348 if (match(LHS, m_SMax(m_Value(A), m_Value(B))) && 3349 match(RHS, m_SMin(m_Value(C), m_Value(D))) && 3350 (A == C || A == D || B == C || B == D)) { 3351 // smax(A, B) >=s smin(A, D) --> true 3352 if (Pred == CmpInst::ICMP_SGE) 3353 return getTrue(ITy); 3354 // smax(A, B) <s smin(A, D) --> false 3355 if (Pred == CmpInst::ICMP_SLT) 3356 return getFalse(ITy); 3357 } else if (match(LHS, m_UMax(m_Value(A), m_Value(B))) && 3358 match(RHS, m_UMin(m_Value(C), m_Value(D))) && 3359 (A == C || A == D || B == C || B == D)) { 3360 // umax(A, B) >=u umin(A, D) --> true 3361 if (Pred == CmpInst::ICMP_UGE) 3362 return getTrue(ITy); 3363 // umax(A, B) <u umin(A, D) --> false 3364 if (Pred == CmpInst::ICMP_ULT) 3365 return getFalse(ITy); 3366 } 3367 3368 return nullptr; 3369 } 3370 3371 static Value *simplifyICmpWithDominatingAssume(CmpInst::Predicate Predicate, 3372 Value *LHS, Value *RHS, 3373 const SimplifyQuery &Q) { 3374 // Gracefully handle instructions that have not been inserted yet. 3375 if (!Q.AC || !Q.CxtI || !Q.CxtI->getParent()) 3376 return nullptr; 3377 3378 for (Value *AssumeBaseOp : {LHS, RHS}) { 3379 for (auto &AssumeVH : Q.AC->assumptionsFor(AssumeBaseOp)) { 3380 if (!AssumeVH) 3381 continue; 3382 3383 CallInst *Assume = cast<CallInst>(AssumeVH); 3384 if (Optional<bool> Imp = 3385 isImpliedCondition(Assume->getArgOperand(0), Predicate, LHS, RHS, 3386 Q.DL)) 3387 if (isValidAssumeForContext(Assume, Q.CxtI, Q.DT)) 3388 return ConstantInt::get(GetCompareTy(LHS), *Imp); 3389 } 3390 } 3391 3392 return nullptr; 3393 } 3394 3395 /// Given operands for an ICmpInst, see if we can fold the result. 3396 /// If not, this returns null. 3397 static Value *SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS, 3398 const SimplifyQuery &Q, unsigned MaxRecurse) { 3399 CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate; 3400 assert(CmpInst::isIntPredicate(Pred) && "Not an integer compare!"); 3401 3402 if (Constant *CLHS = dyn_cast<Constant>(LHS)) { 3403 if (Constant *CRHS = dyn_cast<Constant>(RHS)) 3404 return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, Q.DL, Q.TLI); 3405 3406 // If we have a constant, make sure it is on the RHS. 3407 std::swap(LHS, RHS); 3408 Pred = CmpInst::getSwappedPredicate(Pred); 3409 } 3410 assert(!isa<UndefValue>(LHS) && "Unexpected icmp undef,%X"); 3411 3412 Type *ITy = GetCompareTy(LHS); // The return type. 3413 3414 // icmp poison, X -> poison 3415 if (isa<PoisonValue>(RHS)) 3416 return PoisonValue::get(ITy); 3417 3418 // For EQ and NE, we can always pick a value for the undef to make the 3419 // predicate pass or fail, so we can return undef. 3420 // Matches behavior in llvm::ConstantFoldCompareInstruction. 3421 if (Q.isUndefValue(RHS) && ICmpInst::isEquality(Pred)) 3422 return UndefValue::get(ITy); 3423 3424 // icmp X, X -> true/false 3425 // icmp X, undef -> true/false because undef could be X. 3426 if (LHS == RHS || Q.isUndefValue(RHS)) 3427 return ConstantInt::get(ITy, CmpInst::isTrueWhenEqual(Pred)); 3428 3429 if (Value *V = simplifyICmpOfBools(Pred, LHS, RHS, Q)) 3430 return V; 3431 3432 // TODO: Sink/common this with other potentially expensive calls that use 3433 // ValueTracking? See comment below for isKnownNonEqual(). 3434 if (Value *V = simplifyICmpWithZero(Pred, LHS, RHS, Q)) 3435 return V; 3436 3437 if (Value *V = simplifyICmpWithConstant(Pred, LHS, RHS, Q.IIQ)) 3438 return V; 3439 3440 // If both operands have range metadata, use the metadata 3441 // to simplify the comparison. 3442 if (isa<Instruction>(RHS) && isa<Instruction>(LHS)) { 3443 auto RHS_Instr = cast<Instruction>(RHS); 3444 auto LHS_Instr = cast<Instruction>(LHS); 3445 3446 if (Q.IIQ.getMetadata(RHS_Instr, LLVMContext::MD_range) && 3447 Q.IIQ.getMetadata(LHS_Instr, LLVMContext::MD_range)) { 3448 auto RHS_CR = getConstantRangeFromMetadata( 3449 *RHS_Instr->getMetadata(LLVMContext::MD_range)); 3450 auto LHS_CR = getConstantRangeFromMetadata( 3451 *LHS_Instr->getMetadata(LLVMContext::MD_range)); 3452 3453 if (LHS_CR.icmp(Pred, RHS_CR)) 3454 return ConstantInt::getTrue(RHS->getContext()); 3455 3456 if (LHS_CR.icmp(CmpInst::getInversePredicate(Pred), RHS_CR)) 3457 return ConstantInt::getFalse(RHS->getContext()); 3458 } 3459 } 3460 3461 // Compare of cast, for example (zext X) != 0 -> X != 0 3462 if (isa<CastInst>(LHS) && (isa<Constant>(RHS) || isa<CastInst>(RHS))) { 3463 Instruction *LI = cast<CastInst>(LHS); 3464 Value *SrcOp = LI->getOperand(0); 3465 Type *SrcTy = SrcOp->getType(); 3466 Type *DstTy = LI->getType(); 3467 3468 // Turn icmp (ptrtoint x), (ptrtoint/constant) into a compare of the input 3469 // if the integer type is the same size as the pointer type. 3470 if (MaxRecurse && isa<PtrToIntInst>(LI) && 3471 Q.DL.getTypeSizeInBits(SrcTy) == DstTy->getPrimitiveSizeInBits()) { 3472 if (Constant *RHSC = dyn_cast<Constant>(RHS)) { 3473 // Transfer the cast to the constant. 3474 if (Value *V = SimplifyICmpInst(Pred, SrcOp, 3475 ConstantExpr::getIntToPtr(RHSC, SrcTy), 3476 Q, MaxRecurse-1)) 3477 return V; 3478 } else if (PtrToIntInst *RI = dyn_cast<PtrToIntInst>(RHS)) { 3479 if (RI->getOperand(0)->getType() == SrcTy) 3480 // Compare without the cast. 3481 if (Value *V = SimplifyICmpInst(Pred, SrcOp, RI->getOperand(0), 3482 Q, MaxRecurse-1)) 3483 return V; 3484 } 3485 } 3486 3487 if (isa<ZExtInst>(LHS)) { 3488 // Turn icmp (zext X), (zext Y) into a compare of X and Y if they have the 3489 // same type. 3490 if (ZExtInst *RI = dyn_cast<ZExtInst>(RHS)) { 3491 if (MaxRecurse && SrcTy == RI->getOperand(0)->getType()) 3492 // Compare X and Y. Note that signed predicates become unsigned. 3493 if (Value *V = SimplifyICmpInst(ICmpInst::getUnsignedPredicate(Pred), 3494 SrcOp, RI->getOperand(0), Q, 3495 MaxRecurse-1)) 3496 return V; 3497 } 3498 // Fold (zext X) ule (sext X), (zext X) sge (sext X) to true. 3499 else if (SExtInst *RI = dyn_cast<SExtInst>(RHS)) { 3500 if (SrcOp == RI->getOperand(0)) { 3501 if (Pred == ICmpInst::ICMP_ULE || Pred == ICmpInst::ICMP_SGE) 3502 return ConstantInt::getTrue(ITy); 3503 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_SLT) 3504 return ConstantInt::getFalse(ITy); 3505 } 3506 } 3507 // Turn icmp (zext X), Cst into a compare of X and Cst if Cst is extended 3508 // too. If not, then try to deduce the result of the comparison. 3509 else if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) { 3510 // Compute the constant that would happen if we truncated to SrcTy then 3511 // reextended to DstTy. 3512 Constant *Trunc = ConstantExpr::getTrunc(CI, SrcTy); 3513 Constant *RExt = ConstantExpr::getCast(CastInst::ZExt, Trunc, DstTy); 3514 3515 // If the re-extended constant didn't change then this is effectively 3516 // also a case of comparing two zero-extended values. 3517 if (RExt == CI && MaxRecurse) 3518 if (Value *V = SimplifyICmpInst(ICmpInst::getUnsignedPredicate(Pred), 3519 SrcOp, Trunc, Q, MaxRecurse-1)) 3520 return V; 3521 3522 // Otherwise the upper bits of LHS are zero while RHS has a non-zero bit 3523 // there. Use this to work out the result of the comparison. 3524 if (RExt != CI) { 3525 switch (Pred) { 3526 default: llvm_unreachable("Unknown ICmp predicate!"); 3527 // LHS <u RHS. 3528 case ICmpInst::ICMP_EQ: 3529 case ICmpInst::ICMP_UGT: 3530 case ICmpInst::ICMP_UGE: 3531 return ConstantInt::getFalse(CI->getContext()); 3532 3533 case ICmpInst::ICMP_NE: 3534 case ICmpInst::ICMP_ULT: 3535 case ICmpInst::ICMP_ULE: 3536 return ConstantInt::getTrue(CI->getContext()); 3537 3538 // LHS is non-negative. If RHS is negative then LHS >s LHS. If RHS 3539 // is non-negative then LHS <s RHS. 3540 case ICmpInst::ICMP_SGT: 3541 case ICmpInst::ICMP_SGE: 3542 return CI->getValue().isNegative() ? 3543 ConstantInt::getTrue(CI->getContext()) : 3544 ConstantInt::getFalse(CI->getContext()); 3545 3546 case ICmpInst::ICMP_SLT: 3547 case ICmpInst::ICMP_SLE: 3548 return CI->getValue().isNegative() ? 3549 ConstantInt::getFalse(CI->getContext()) : 3550 ConstantInt::getTrue(CI->getContext()); 3551 } 3552 } 3553 } 3554 } 3555 3556 if (isa<SExtInst>(LHS)) { 3557 // Turn icmp (sext X), (sext Y) into a compare of X and Y if they have the 3558 // same type. 3559 if (SExtInst *RI = dyn_cast<SExtInst>(RHS)) { 3560 if (MaxRecurse && SrcTy == RI->getOperand(0)->getType()) 3561 // Compare X and Y. Note that the predicate does not change. 3562 if (Value *V = SimplifyICmpInst(Pred, SrcOp, RI->getOperand(0), 3563 Q, MaxRecurse-1)) 3564 return V; 3565 } 3566 // Fold (sext X) uge (zext X), (sext X) sle (zext X) to true. 3567 else if (ZExtInst *RI = dyn_cast<ZExtInst>(RHS)) { 3568 if (SrcOp == RI->getOperand(0)) { 3569 if (Pred == ICmpInst::ICMP_UGE || Pred == ICmpInst::ICMP_SLE) 3570 return ConstantInt::getTrue(ITy); 3571 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_SGT) 3572 return ConstantInt::getFalse(ITy); 3573 } 3574 } 3575 // Turn icmp (sext X), Cst into a compare of X and Cst if Cst is extended 3576 // too. If not, then try to deduce the result of the comparison. 3577 else if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) { 3578 // Compute the constant that would happen if we truncated to SrcTy then 3579 // reextended to DstTy. 3580 Constant *Trunc = ConstantExpr::getTrunc(CI, SrcTy); 3581 Constant *RExt = ConstantExpr::getCast(CastInst::SExt, Trunc, DstTy); 3582 3583 // If the re-extended constant didn't change then this is effectively 3584 // also a case of comparing two sign-extended values. 3585 if (RExt == CI && MaxRecurse) 3586 if (Value *V = SimplifyICmpInst(Pred, SrcOp, Trunc, Q, MaxRecurse-1)) 3587 return V; 3588 3589 // Otherwise the upper bits of LHS are all equal, while RHS has varying 3590 // bits there. Use this to work out the result of the comparison. 3591 if (RExt != CI) { 3592 switch (Pred) { 3593 default: llvm_unreachable("Unknown ICmp predicate!"); 3594 case ICmpInst::ICMP_EQ: 3595 return ConstantInt::getFalse(CI->getContext()); 3596 case ICmpInst::ICMP_NE: 3597 return ConstantInt::getTrue(CI->getContext()); 3598 3599 // If RHS is non-negative then LHS <s RHS. If RHS is negative then 3600 // LHS >s RHS. 3601 case ICmpInst::ICMP_SGT: 3602 case ICmpInst::ICMP_SGE: 3603 return CI->getValue().isNegative() ? 3604 ConstantInt::getTrue(CI->getContext()) : 3605 ConstantInt::getFalse(CI->getContext()); 3606 case ICmpInst::ICMP_SLT: 3607 case ICmpInst::ICMP_SLE: 3608 return CI->getValue().isNegative() ? 3609 ConstantInt::getFalse(CI->getContext()) : 3610 ConstantInt::getTrue(CI->getContext()); 3611 3612 // If LHS is non-negative then LHS <u RHS. If LHS is negative then 3613 // LHS >u RHS. 3614 case ICmpInst::ICMP_UGT: 3615 case ICmpInst::ICMP_UGE: 3616 // Comparison is true iff the LHS <s 0. 3617 if (MaxRecurse) 3618 if (Value *V = SimplifyICmpInst(ICmpInst::ICMP_SLT, SrcOp, 3619 Constant::getNullValue(SrcTy), 3620 Q, MaxRecurse-1)) 3621 return V; 3622 break; 3623 case ICmpInst::ICMP_ULT: 3624 case ICmpInst::ICMP_ULE: 3625 // Comparison is true iff the LHS >=s 0. 3626 if (MaxRecurse) 3627 if (Value *V = SimplifyICmpInst(ICmpInst::ICMP_SGE, SrcOp, 3628 Constant::getNullValue(SrcTy), 3629 Q, MaxRecurse-1)) 3630 return V; 3631 break; 3632 } 3633 } 3634 } 3635 } 3636 } 3637 3638 // icmp eq|ne X, Y -> false|true if X != Y 3639 // This is potentially expensive, and we have already computedKnownBits for 3640 // compares with 0 above here, so only try this for a non-zero compare. 3641 if (ICmpInst::isEquality(Pred) && !match(RHS, m_Zero()) && 3642 isKnownNonEqual(LHS, RHS, Q.DL, Q.AC, Q.CxtI, Q.DT, Q.IIQ.UseInstrInfo)) { 3643 return Pred == ICmpInst::ICMP_NE ? getTrue(ITy) : getFalse(ITy); 3644 } 3645 3646 if (Value *V = simplifyICmpWithBinOp(Pred, LHS, RHS, Q, MaxRecurse)) 3647 return V; 3648 3649 if (Value *V = simplifyICmpWithMinMax(Pred, LHS, RHS, Q, MaxRecurse)) 3650 return V; 3651 3652 if (Value *V = simplifyICmpWithDominatingAssume(Pred, LHS, RHS, Q)) 3653 return V; 3654 3655 // Simplify comparisons of related pointers using a powerful, recursive 3656 // GEP-walk when we have target data available.. 3657 if (LHS->getType()->isPointerTy()) 3658 if (auto *C = computePointerICmp(Pred, LHS, RHS, Q)) 3659 return C; 3660 if (auto *CLHS = dyn_cast<PtrToIntOperator>(LHS)) 3661 if (auto *CRHS = dyn_cast<PtrToIntOperator>(RHS)) 3662 if (Q.DL.getTypeSizeInBits(CLHS->getPointerOperandType()) == 3663 Q.DL.getTypeSizeInBits(CLHS->getType()) && 3664 Q.DL.getTypeSizeInBits(CRHS->getPointerOperandType()) == 3665 Q.DL.getTypeSizeInBits(CRHS->getType())) 3666 if (auto *C = computePointerICmp(Pred, CLHS->getPointerOperand(), 3667 CRHS->getPointerOperand(), Q)) 3668 return C; 3669 3670 if (GetElementPtrInst *GLHS = dyn_cast<GetElementPtrInst>(LHS)) { 3671 if (GEPOperator *GRHS = dyn_cast<GEPOperator>(RHS)) { 3672 if (GLHS->getPointerOperand() == GRHS->getPointerOperand() && 3673 GLHS->hasAllConstantIndices() && GRHS->hasAllConstantIndices() && 3674 (ICmpInst::isEquality(Pred) || 3675 (GLHS->isInBounds() && GRHS->isInBounds() && 3676 Pred == ICmpInst::getSignedPredicate(Pred)))) { 3677 // The bases are equal and the indices are constant. Build a constant 3678 // expression GEP with the same indices and a null base pointer to see 3679 // what constant folding can make out of it. 3680 Constant *Null = Constant::getNullValue(GLHS->getPointerOperandType()); 3681 SmallVector<Value *, 4> IndicesLHS(GLHS->indices()); 3682 Constant *NewLHS = ConstantExpr::getGetElementPtr( 3683 GLHS->getSourceElementType(), Null, IndicesLHS); 3684 3685 SmallVector<Value *, 4> IndicesRHS(GRHS->indices()); 3686 Constant *NewRHS = ConstantExpr::getGetElementPtr( 3687 GLHS->getSourceElementType(), Null, IndicesRHS); 3688 Constant *NewICmp = ConstantExpr::getICmp(Pred, NewLHS, NewRHS); 3689 return ConstantFoldConstant(NewICmp, Q.DL); 3690 } 3691 } 3692 } 3693 3694 // If the comparison is with the result of a select instruction, check whether 3695 // comparing with either branch of the select always yields the same value. 3696 if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS)) 3697 if (Value *V = ThreadCmpOverSelect(Pred, LHS, RHS, Q, MaxRecurse)) 3698 return V; 3699 3700 // If the comparison is with the result of a phi instruction, check whether 3701 // doing the compare with each incoming phi value yields a common result. 3702 if (isa<PHINode>(LHS) || isa<PHINode>(RHS)) 3703 if (Value *V = ThreadCmpOverPHI(Pred, LHS, RHS, Q, MaxRecurse)) 3704 return V; 3705 3706 return nullptr; 3707 } 3708 3709 Value *llvm::SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS, 3710 const SimplifyQuery &Q) { 3711 return ::SimplifyICmpInst(Predicate, LHS, RHS, Q, RecursionLimit); 3712 } 3713 3714 /// Given operands for an FCmpInst, see if we can fold the result. 3715 /// If not, this returns null. 3716 static Value *SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS, 3717 FastMathFlags FMF, const SimplifyQuery &Q, 3718 unsigned MaxRecurse) { 3719 CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate; 3720 assert(CmpInst::isFPPredicate(Pred) && "Not an FP compare!"); 3721 3722 if (Constant *CLHS = dyn_cast<Constant>(LHS)) { 3723 if (Constant *CRHS = dyn_cast<Constant>(RHS)) 3724 return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, Q.DL, Q.TLI); 3725 3726 // If we have a constant, make sure it is on the RHS. 3727 std::swap(LHS, RHS); 3728 Pred = CmpInst::getSwappedPredicate(Pred); 3729 } 3730 3731 // Fold trivial predicates. 3732 Type *RetTy = GetCompareTy(LHS); 3733 if (Pred == FCmpInst::FCMP_FALSE) 3734 return getFalse(RetTy); 3735 if (Pred == FCmpInst::FCMP_TRUE) 3736 return getTrue(RetTy); 3737 3738 // Fold (un)ordered comparison if we can determine there are no NaNs. 3739 if (Pred == FCmpInst::FCMP_UNO || Pred == FCmpInst::FCMP_ORD) 3740 if (FMF.noNaNs() || 3741 (isKnownNeverNaN(LHS, Q.TLI) && isKnownNeverNaN(RHS, Q.TLI))) 3742 return ConstantInt::get(RetTy, Pred == FCmpInst::FCMP_ORD); 3743 3744 // NaN is unordered; NaN is not ordered. 3745 assert((FCmpInst::isOrdered(Pred) || FCmpInst::isUnordered(Pred)) && 3746 "Comparison must be either ordered or unordered"); 3747 if (match(RHS, m_NaN())) 3748 return ConstantInt::get(RetTy, CmpInst::isUnordered(Pred)); 3749 3750 // fcmp pred x, poison and fcmp pred poison, x 3751 // fold to poison 3752 if (isa<PoisonValue>(LHS) || isa<PoisonValue>(RHS)) 3753 return PoisonValue::get(RetTy); 3754 3755 // fcmp pred x, undef and fcmp pred undef, x 3756 // fold to true if unordered, false if ordered 3757 if (Q.isUndefValue(LHS) || Q.isUndefValue(RHS)) { 3758 // Choosing NaN for the undef will always make unordered comparison succeed 3759 // and ordered comparison fail. 3760 return ConstantInt::get(RetTy, CmpInst::isUnordered(Pred)); 3761 } 3762 3763 // fcmp x,x -> true/false. Not all compares are foldable. 3764 if (LHS == RHS) { 3765 if (CmpInst::isTrueWhenEqual(Pred)) 3766 return getTrue(RetTy); 3767 if (CmpInst::isFalseWhenEqual(Pred)) 3768 return getFalse(RetTy); 3769 } 3770 3771 // Handle fcmp with constant RHS. 3772 // TODO: Use match with a specific FP value, so these work with vectors with 3773 // undef lanes. 3774 const APFloat *C; 3775 if (match(RHS, m_APFloat(C))) { 3776 // Check whether the constant is an infinity. 3777 if (C->isInfinity()) { 3778 if (C->isNegative()) { 3779 switch (Pred) { 3780 case FCmpInst::FCMP_OLT: 3781 // No value is ordered and less than negative infinity. 3782 return getFalse(RetTy); 3783 case FCmpInst::FCMP_UGE: 3784 // All values are unordered with or at least negative infinity. 3785 return getTrue(RetTy); 3786 default: 3787 break; 3788 } 3789 } else { 3790 switch (Pred) { 3791 case FCmpInst::FCMP_OGT: 3792 // No value is ordered and greater than infinity. 3793 return getFalse(RetTy); 3794 case FCmpInst::FCMP_ULE: 3795 // All values are unordered with and at most infinity. 3796 return getTrue(RetTy); 3797 default: 3798 break; 3799 } 3800 } 3801 3802 // LHS == Inf 3803 if (Pred == FCmpInst::FCMP_OEQ && isKnownNeverInfinity(LHS, Q.TLI)) 3804 return getFalse(RetTy); 3805 // LHS != Inf 3806 if (Pred == FCmpInst::FCMP_UNE && isKnownNeverInfinity(LHS, Q.TLI)) 3807 return getTrue(RetTy); 3808 // LHS == Inf || LHS == NaN 3809 if (Pred == FCmpInst::FCMP_UEQ && isKnownNeverInfinity(LHS, Q.TLI) && 3810 isKnownNeverNaN(LHS, Q.TLI)) 3811 return getFalse(RetTy); 3812 // LHS != Inf && LHS != NaN 3813 if (Pred == FCmpInst::FCMP_ONE && isKnownNeverInfinity(LHS, Q.TLI) && 3814 isKnownNeverNaN(LHS, Q.TLI)) 3815 return getTrue(RetTy); 3816 } 3817 if (C->isNegative() && !C->isNegZero()) { 3818 assert(!C->isNaN() && "Unexpected NaN constant!"); 3819 // TODO: We can catch more cases by using a range check rather than 3820 // relying on CannotBeOrderedLessThanZero. 3821 switch (Pred) { 3822 case FCmpInst::FCMP_UGE: 3823 case FCmpInst::FCMP_UGT: 3824 case FCmpInst::FCMP_UNE: 3825 // (X >= 0) implies (X > C) when (C < 0) 3826 if (CannotBeOrderedLessThanZero(LHS, Q.TLI)) 3827 return getTrue(RetTy); 3828 break; 3829 case FCmpInst::FCMP_OEQ: 3830 case FCmpInst::FCMP_OLE: 3831 case FCmpInst::FCMP_OLT: 3832 // (X >= 0) implies !(X < C) when (C < 0) 3833 if (CannotBeOrderedLessThanZero(LHS, Q.TLI)) 3834 return getFalse(RetTy); 3835 break; 3836 default: 3837 break; 3838 } 3839 } 3840 3841 // Check comparison of [minnum/maxnum with constant] with other constant. 3842 const APFloat *C2; 3843 if ((match(LHS, m_Intrinsic<Intrinsic::minnum>(m_Value(), m_APFloat(C2))) && 3844 *C2 < *C) || 3845 (match(LHS, m_Intrinsic<Intrinsic::maxnum>(m_Value(), m_APFloat(C2))) && 3846 *C2 > *C)) { 3847 bool IsMaxNum = 3848 cast<IntrinsicInst>(LHS)->getIntrinsicID() == Intrinsic::maxnum; 3849 // The ordered relationship and minnum/maxnum guarantee that we do not 3850 // have NaN constants, so ordered/unordered preds are handled the same. 3851 switch (Pred) { 3852 case FCmpInst::FCMP_OEQ: case FCmpInst::FCMP_UEQ: 3853 // minnum(X, LesserC) == C --> false 3854 // maxnum(X, GreaterC) == C --> false 3855 return getFalse(RetTy); 3856 case FCmpInst::FCMP_ONE: case FCmpInst::FCMP_UNE: 3857 // minnum(X, LesserC) != C --> true 3858 // maxnum(X, GreaterC) != C --> true 3859 return getTrue(RetTy); 3860 case FCmpInst::FCMP_OGE: case FCmpInst::FCMP_UGE: 3861 case FCmpInst::FCMP_OGT: case FCmpInst::FCMP_UGT: 3862 // minnum(X, LesserC) >= C --> false 3863 // minnum(X, LesserC) > C --> false 3864 // maxnum(X, GreaterC) >= C --> true 3865 // maxnum(X, GreaterC) > C --> true 3866 return ConstantInt::get(RetTy, IsMaxNum); 3867 case FCmpInst::FCMP_OLE: case FCmpInst::FCMP_ULE: 3868 case FCmpInst::FCMP_OLT: case FCmpInst::FCMP_ULT: 3869 // minnum(X, LesserC) <= C --> true 3870 // minnum(X, LesserC) < C --> true 3871 // maxnum(X, GreaterC) <= C --> false 3872 // maxnum(X, GreaterC) < C --> false 3873 return ConstantInt::get(RetTy, !IsMaxNum); 3874 default: 3875 // TRUE/FALSE/ORD/UNO should be handled before this. 3876 llvm_unreachable("Unexpected fcmp predicate"); 3877 } 3878 } 3879 } 3880 3881 if (match(RHS, m_AnyZeroFP())) { 3882 switch (Pred) { 3883 case FCmpInst::FCMP_OGE: 3884 case FCmpInst::FCMP_ULT: 3885 // Positive or zero X >= 0.0 --> true 3886 // Positive or zero X < 0.0 --> false 3887 if ((FMF.noNaNs() || isKnownNeverNaN(LHS, Q.TLI)) && 3888 CannotBeOrderedLessThanZero(LHS, Q.TLI)) 3889 return Pred == FCmpInst::FCMP_OGE ? getTrue(RetTy) : getFalse(RetTy); 3890 break; 3891 case FCmpInst::FCMP_UGE: 3892 case FCmpInst::FCMP_OLT: 3893 // Positive or zero or nan X >= 0.0 --> true 3894 // Positive or zero or nan X < 0.0 --> false 3895 if (CannotBeOrderedLessThanZero(LHS, Q.TLI)) 3896 return Pred == FCmpInst::FCMP_UGE ? getTrue(RetTy) : getFalse(RetTy); 3897 break; 3898 default: 3899 break; 3900 } 3901 } 3902 3903 // If the comparison is with the result of a select instruction, check whether 3904 // comparing with either branch of the select always yields the same value. 3905 if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS)) 3906 if (Value *V = ThreadCmpOverSelect(Pred, LHS, RHS, Q, MaxRecurse)) 3907 return V; 3908 3909 // If the comparison is with the result of a phi instruction, check whether 3910 // doing the compare with each incoming phi value yields a common result. 3911 if (isa<PHINode>(LHS) || isa<PHINode>(RHS)) 3912 if (Value *V = ThreadCmpOverPHI(Pred, LHS, RHS, Q, MaxRecurse)) 3913 return V; 3914 3915 return nullptr; 3916 } 3917 3918 Value *llvm::SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS, 3919 FastMathFlags FMF, const SimplifyQuery &Q) { 3920 return ::SimplifyFCmpInst(Predicate, LHS, RHS, FMF, Q, RecursionLimit); 3921 } 3922 3923 static Value *simplifyWithOpReplaced(Value *V, Value *Op, Value *RepOp, 3924 const SimplifyQuery &Q, 3925 bool AllowRefinement, 3926 unsigned MaxRecurse) { 3927 assert(!Op->getType()->isVectorTy() && "This is not safe for vectors"); 3928 3929 // Trivial replacement. 3930 if (V == Op) 3931 return RepOp; 3932 3933 // We cannot replace a constant, and shouldn't even try. 3934 if (isa<Constant>(Op)) 3935 return nullptr; 3936 3937 auto *I = dyn_cast<Instruction>(V); 3938 if (!I || !is_contained(I->operands(), Op)) 3939 return nullptr; 3940 3941 // Replace Op with RepOp in instruction operands. 3942 SmallVector<Value *, 8> NewOps(I->getNumOperands()); 3943 transform(I->operands(), NewOps.begin(), 3944 [&](Value *V) { return V == Op ? RepOp : V; }); 3945 3946 if (!AllowRefinement) { 3947 // General InstSimplify functions may refine the result, e.g. by returning 3948 // a constant for a potentially poison value. To avoid this, implement only 3949 // a few non-refining but profitable transforms here. 3950 3951 if (auto *BO = dyn_cast<BinaryOperator>(I)) { 3952 unsigned Opcode = BO->getOpcode(); 3953 // id op x -> x, x op id -> x 3954 if (NewOps[0] == ConstantExpr::getBinOpIdentity(Opcode, I->getType())) 3955 return NewOps[1]; 3956 if (NewOps[1] == ConstantExpr::getBinOpIdentity(Opcode, I->getType(), 3957 /* RHS */ true)) 3958 return NewOps[0]; 3959 3960 // x & x -> x, x | x -> x 3961 if ((Opcode == Instruction::And || Opcode == Instruction::Or) && 3962 NewOps[0] == NewOps[1]) 3963 return NewOps[0]; 3964 } 3965 3966 if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) { 3967 // getelementptr x, 0 -> x 3968 if (NewOps.size() == 2 && match(NewOps[1], m_Zero()) && 3969 !GEP->isInBounds()) 3970 return NewOps[0]; 3971 } 3972 } else if (MaxRecurse) { 3973 // The simplification queries below may return the original value. Consider: 3974 // %div = udiv i32 %arg, %arg2 3975 // %mul = mul nsw i32 %div, %arg2 3976 // %cmp = icmp eq i32 %mul, %arg 3977 // %sel = select i1 %cmp, i32 %div, i32 undef 3978 // Replacing %arg by %mul, %div becomes "udiv i32 %mul, %arg2", which 3979 // simplifies back to %arg. This can only happen because %mul does not 3980 // dominate %div. To ensure a consistent return value contract, we make sure 3981 // that this case returns nullptr as well. 3982 auto PreventSelfSimplify = [V](Value *Simplified) { 3983 return Simplified != V ? Simplified : nullptr; 3984 }; 3985 3986 if (auto *B = dyn_cast<BinaryOperator>(I)) 3987 return PreventSelfSimplify(SimplifyBinOp(B->getOpcode(), NewOps[0], 3988 NewOps[1], Q, MaxRecurse - 1)); 3989 3990 if (CmpInst *C = dyn_cast<CmpInst>(I)) 3991 return PreventSelfSimplify(SimplifyCmpInst(C->getPredicate(), NewOps[0], 3992 NewOps[1], Q, MaxRecurse - 1)); 3993 3994 if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) 3995 return PreventSelfSimplify(SimplifyGEPInst(GEP->getSourceElementType(), 3996 NewOps, GEP->isInBounds(), Q, 3997 MaxRecurse - 1)); 3998 3999 if (isa<SelectInst>(I)) 4000 return PreventSelfSimplify( 4001 SimplifySelectInst(NewOps[0], NewOps[1], NewOps[2], Q, 4002 MaxRecurse - 1)); 4003 // TODO: We could hand off more cases to instsimplify here. 4004 } 4005 4006 // If all operands are constant after substituting Op for RepOp then we can 4007 // constant fold the instruction. 4008 SmallVector<Constant *, 8> ConstOps; 4009 for (Value *NewOp : NewOps) { 4010 if (Constant *ConstOp = dyn_cast<Constant>(NewOp)) 4011 ConstOps.push_back(ConstOp); 4012 else 4013 return nullptr; 4014 } 4015 4016 // Consider: 4017 // %cmp = icmp eq i32 %x, 2147483647 4018 // %add = add nsw i32 %x, 1 4019 // %sel = select i1 %cmp, i32 -2147483648, i32 %add 4020 // 4021 // We can't replace %sel with %add unless we strip away the flags (which 4022 // will be done in InstCombine). 4023 // TODO: This may be unsound, because it only catches some forms of 4024 // refinement. 4025 if (!AllowRefinement && canCreatePoison(cast<Operator>(I))) 4026 return nullptr; 4027 4028 if (CmpInst *C = dyn_cast<CmpInst>(I)) 4029 return ConstantFoldCompareInstOperands(C->getPredicate(), ConstOps[0], 4030 ConstOps[1], Q.DL, Q.TLI); 4031 4032 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 4033 if (!LI->isVolatile()) 4034 return ConstantFoldLoadFromConstPtr(ConstOps[0], LI->getType(), Q.DL); 4035 4036 return ConstantFoldInstOperands(I, ConstOps, Q.DL, Q.TLI); 4037 } 4038 4039 Value *llvm::simplifyWithOpReplaced(Value *V, Value *Op, Value *RepOp, 4040 const SimplifyQuery &Q, 4041 bool AllowRefinement) { 4042 return ::simplifyWithOpReplaced(V, Op, RepOp, Q, AllowRefinement, 4043 RecursionLimit); 4044 } 4045 4046 /// Try to simplify a select instruction when its condition operand is an 4047 /// integer comparison where one operand of the compare is a constant. 4048 static Value *simplifySelectBitTest(Value *TrueVal, Value *FalseVal, Value *X, 4049 const APInt *Y, bool TrueWhenUnset) { 4050 const APInt *C; 4051 4052 // (X & Y) == 0 ? X & ~Y : X --> X 4053 // (X & Y) != 0 ? X & ~Y : X --> X & ~Y 4054 if (FalseVal == X && match(TrueVal, m_And(m_Specific(X), m_APInt(C))) && 4055 *Y == ~*C) 4056 return TrueWhenUnset ? FalseVal : TrueVal; 4057 4058 // (X & Y) == 0 ? X : X & ~Y --> X & ~Y 4059 // (X & Y) != 0 ? X : X & ~Y --> X 4060 if (TrueVal == X && match(FalseVal, m_And(m_Specific(X), m_APInt(C))) && 4061 *Y == ~*C) 4062 return TrueWhenUnset ? FalseVal : TrueVal; 4063 4064 if (Y->isPowerOf2()) { 4065 // (X & Y) == 0 ? X | Y : X --> X | Y 4066 // (X & Y) != 0 ? X | Y : X --> X 4067 if (FalseVal == X && match(TrueVal, m_Or(m_Specific(X), m_APInt(C))) && 4068 *Y == *C) 4069 return TrueWhenUnset ? TrueVal : FalseVal; 4070 4071 // (X & Y) == 0 ? X : X | Y --> X 4072 // (X & Y) != 0 ? X : X | Y --> X | Y 4073 if (TrueVal == X && match(FalseVal, m_Or(m_Specific(X), m_APInt(C))) && 4074 *Y == *C) 4075 return TrueWhenUnset ? TrueVal : FalseVal; 4076 } 4077 4078 return nullptr; 4079 } 4080 4081 /// An alternative way to test if a bit is set or not uses sgt/slt instead of 4082 /// eq/ne. 4083 static Value *simplifySelectWithFakeICmpEq(Value *CmpLHS, Value *CmpRHS, 4084 ICmpInst::Predicate Pred, 4085 Value *TrueVal, Value *FalseVal) { 4086 Value *X; 4087 APInt Mask; 4088 if (!decomposeBitTestICmp(CmpLHS, CmpRHS, Pred, X, Mask)) 4089 return nullptr; 4090 4091 return simplifySelectBitTest(TrueVal, FalseVal, X, &Mask, 4092 Pred == ICmpInst::ICMP_EQ); 4093 } 4094 4095 /// Try to simplify a select instruction when its condition operand is an 4096 /// integer comparison. 4097 static Value *simplifySelectWithICmpCond(Value *CondVal, Value *TrueVal, 4098 Value *FalseVal, const SimplifyQuery &Q, 4099 unsigned MaxRecurse) { 4100 ICmpInst::Predicate Pred; 4101 Value *CmpLHS, *CmpRHS; 4102 if (!match(CondVal, m_ICmp(Pred, m_Value(CmpLHS), m_Value(CmpRHS)))) 4103 return nullptr; 4104 4105 // Canonicalize ne to eq predicate. 4106 if (Pred == ICmpInst::ICMP_NE) { 4107 Pred = ICmpInst::ICMP_EQ; 4108 std::swap(TrueVal, FalseVal); 4109 } 4110 4111 // Check for integer min/max with a limit constant: 4112 // X > MIN_INT ? X : MIN_INT --> X 4113 // X < MAX_INT ? X : MAX_INT --> X 4114 if (TrueVal->getType()->isIntOrIntVectorTy()) { 4115 Value *X, *Y; 4116 SelectPatternFlavor SPF = 4117 matchDecomposedSelectPattern(cast<ICmpInst>(CondVal), TrueVal, FalseVal, 4118 X, Y).Flavor; 4119 if (SelectPatternResult::isMinOrMax(SPF) && Pred == getMinMaxPred(SPF)) { 4120 APInt LimitC = getMinMaxLimit(getInverseMinMaxFlavor(SPF), 4121 X->getType()->getScalarSizeInBits()); 4122 if (match(Y, m_SpecificInt(LimitC))) 4123 return X; 4124 } 4125 } 4126 4127 if (Pred == ICmpInst::ICMP_EQ && match(CmpRHS, m_Zero())) { 4128 Value *X; 4129 const APInt *Y; 4130 if (match(CmpLHS, m_And(m_Value(X), m_APInt(Y)))) 4131 if (Value *V = simplifySelectBitTest(TrueVal, FalseVal, X, Y, 4132 /*TrueWhenUnset=*/true)) 4133 return V; 4134 4135 // Test for a bogus zero-shift-guard-op around funnel-shift or rotate. 4136 Value *ShAmt; 4137 auto isFsh = m_CombineOr(m_FShl(m_Value(X), m_Value(), m_Value(ShAmt)), 4138 m_FShr(m_Value(), m_Value(X), m_Value(ShAmt))); 4139 // (ShAmt == 0) ? fshl(X, *, ShAmt) : X --> X 4140 // (ShAmt == 0) ? fshr(*, X, ShAmt) : X --> X 4141 if (match(TrueVal, isFsh) && FalseVal == X && CmpLHS == ShAmt) 4142 return X; 4143 4144 // Test for a zero-shift-guard-op around rotates. These are used to 4145 // avoid UB from oversized shifts in raw IR rotate patterns, but the 4146 // intrinsics do not have that problem. 4147 // We do not allow this transform for the general funnel shift case because 4148 // that would not preserve the poison safety of the original code. 4149 auto isRotate = 4150 m_CombineOr(m_FShl(m_Value(X), m_Deferred(X), m_Value(ShAmt)), 4151 m_FShr(m_Value(X), m_Deferred(X), m_Value(ShAmt))); 4152 // (ShAmt == 0) ? X : fshl(X, X, ShAmt) --> fshl(X, X, ShAmt) 4153 // (ShAmt == 0) ? X : fshr(X, X, ShAmt) --> fshr(X, X, ShAmt) 4154 if (match(FalseVal, isRotate) && TrueVal == X && CmpLHS == ShAmt && 4155 Pred == ICmpInst::ICMP_EQ) 4156 return FalseVal; 4157 4158 // X == 0 ? abs(X) : -abs(X) --> -abs(X) 4159 // X == 0 ? -abs(X) : abs(X) --> abs(X) 4160 if (match(TrueVal, m_Intrinsic<Intrinsic::abs>(m_Specific(CmpLHS))) && 4161 match(FalseVal, m_Neg(m_Intrinsic<Intrinsic::abs>(m_Specific(CmpLHS))))) 4162 return FalseVal; 4163 if (match(TrueVal, 4164 m_Neg(m_Intrinsic<Intrinsic::abs>(m_Specific(CmpLHS)))) && 4165 match(FalseVal, m_Intrinsic<Intrinsic::abs>(m_Specific(CmpLHS)))) 4166 return FalseVal; 4167 } 4168 4169 // Check for other compares that behave like bit test. 4170 if (Value *V = simplifySelectWithFakeICmpEq(CmpLHS, CmpRHS, Pred, 4171 TrueVal, FalseVal)) 4172 return V; 4173 4174 // If we have a scalar equality comparison, then we know the value in one of 4175 // the arms of the select. See if substituting this value into the arm and 4176 // simplifying the result yields the same value as the other arm. 4177 // Note that the equivalence/replacement opportunity does not hold for vectors 4178 // because each element of a vector select is chosen independently. 4179 if (Pred == ICmpInst::ICMP_EQ && !CondVal->getType()->isVectorTy()) { 4180 if (simplifyWithOpReplaced(FalseVal, CmpLHS, CmpRHS, Q, 4181 /* AllowRefinement */ false, MaxRecurse) == 4182 TrueVal || 4183 simplifyWithOpReplaced(FalseVal, CmpRHS, CmpLHS, Q, 4184 /* AllowRefinement */ false, MaxRecurse) == 4185 TrueVal) 4186 return FalseVal; 4187 if (simplifyWithOpReplaced(TrueVal, CmpLHS, CmpRHS, Q, 4188 /* AllowRefinement */ true, MaxRecurse) == 4189 FalseVal || 4190 simplifyWithOpReplaced(TrueVal, CmpRHS, CmpLHS, Q, 4191 /* AllowRefinement */ true, MaxRecurse) == 4192 FalseVal) 4193 return FalseVal; 4194 } 4195 4196 return nullptr; 4197 } 4198 4199 /// Try to simplify a select instruction when its condition operand is a 4200 /// floating-point comparison. 4201 static Value *simplifySelectWithFCmp(Value *Cond, Value *T, Value *F, 4202 const SimplifyQuery &Q) { 4203 FCmpInst::Predicate Pred; 4204 if (!match(Cond, m_FCmp(Pred, m_Specific(T), m_Specific(F))) && 4205 !match(Cond, m_FCmp(Pred, m_Specific(F), m_Specific(T)))) 4206 return nullptr; 4207 4208 // This transform is safe if we do not have (do not care about) -0.0 or if 4209 // at least one operand is known to not be -0.0. Otherwise, the select can 4210 // change the sign of a zero operand. 4211 bool HasNoSignedZeros = Q.CxtI && isa<FPMathOperator>(Q.CxtI) && 4212 Q.CxtI->hasNoSignedZeros(); 4213 const APFloat *C; 4214 if (HasNoSignedZeros || (match(T, m_APFloat(C)) && C->isNonZero()) || 4215 (match(F, m_APFloat(C)) && C->isNonZero())) { 4216 // (T == F) ? T : F --> F 4217 // (F == T) ? T : F --> F 4218 if (Pred == FCmpInst::FCMP_OEQ) 4219 return F; 4220 4221 // (T != F) ? T : F --> T 4222 // (F != T) ? T : F --> T 4223 if (Pred == FCmpInst::FCMP_UNE) 4224 return T; 4225 } 4226 4227 return nullptr; 4228 } 4229 4230 /// Given operands for a SelectInst, see if we can fold the result. 4231 /// If not, this returns null. 4232 static Value *SimplifySelectInst(Value *Cond, Value *TrueVal, Value *FalseVal, 4233 const SimplifyQuery &Q, unsigned MaxRecurse) { 4234 if (auto *CondC = dyn_cast<Constant>(Cond)) { 4235 if (auto *TrueC = dyn_cast<Constant>(TrueVal)) 4236 if (auto *FalseC = dyn_cast<Constant>(FalseVal)) 4237 return ConstantFoldSelectInstruction(CondC, TrueC, FalseC); 4238 4239 // select poison, X, Y -> poison 4240 if (isa<PoisonValue>(CondC)) 4241 return PoisonValue::get(TrueVal->getType()); 4242 4243 // select undef, X, Y -> X or Y 4244 if (Q.isUndefValue(CondC)) 4245 return isa<Constant>(FalseVal) ? FalseVal : TrueVal; 4246 4247 // select true, X, Y --> X 4248 // select false, X, Y --> Y 4249 // For vectors, allow undef/poison elements in the condition to match the 4250 // defined elements, so we can eliminate the select. 4251 if (match(CondC, m_One())) 4252 return TrueVal; 4253 if (match(CondC, m_Zero())) 4254 return FalseVal; 4255 } 4256 4257 assert(Cond->getType()->isIntOrIntVectorTy(1) && 4258 "Select must have bool or bool vector condition"); 4259 assert(TrueVal->getType() == FalseVal->getType() && 4260 "Select must have same types for true/false ops"); 4261 4262 if (Cond->getType() == TrueVal->getType()) { 4263 // select i1 Cond, i1 true, i1 false --> i1 Cond 4264 if (match(TrueVal, m_One()) && match(FalseVal, m_ZeroInt())) 4265 return Cond; 4266 4267 // (X || Y) && (X || !Y) --> X (commuted 8 ways) 4268 Value *X, *Y; 4269 if (match(FalseVal, m_ZeroInt())) { 4270 if (match(Cond, m_c_LogicalOr(m_Value(X), m_Not(m_Value(Y)))) && 4271 match(TrueVal, m_c_LogicalOr(m_Specific(X), m_Specific(Y)))) 4272 return X; 4273 if (match(TrueVal, m_c_LogicalOr(m_Value(X), m_Not(m_Value(Y)))) && 4274 match(Cond, m_c_LogicalOr(m_Specific(X), m_Specific(Y)))) 4275 return X; 4276 } 4277 } 4278 4279 // select ?, X, X -> X 4280 if (TrueVal == FalseVal) 4281 return TrueVal; 4282 4283 // If the true or false value is poison, we can fold to the other value. 4284 // If the true or false value is undef, we can fold to the other value as 4285 // long as the other value isn't poison. 4286 // select ?, poison, X -> X 4287 // select ?, undef, X -> X 4288 if (isa<PoisonValue>(TrueVal) || 4289 (Q.isUndefValue(TrueVal) && 4290 isGuaranteedNotToBePoison(FalseVal, Q.AC, Q.CxtI, Q.DT))) 4291 return FalseVal; 4292 // select ?, X, poison -> X 4293 // select ?, X, undef -> X 4294 if (isa<PoisonValue>(FalseVal) || 4295 (Q.isUndefValue(FalseVal) && 4296 isGuaranteedNotToBePoison(TrueVal, Q.AC, Q.CxtI, Q.DT))) 4297 return TrueVal; 4298 4299 // Deal with partial undef vector constants: select ?, VecC, VecC' --> VecC'' 4300 Constant *TrueC, *FalseC; 4301 if (isa<FixedVectorType>(TrueVal->getType()) && 4302 match(TrueVal, m_Constant(TrueC)) && 4303 match(FalseVal, m_Constant(FalseC))) { 4304 unsigned NumElts = 4305 cast<FixedVectorType>(TrueC->getType())->getNumElements(); 4306 SmallVector<Constant *, 16> NewC; 4307 for (unsigned i = 0; i != NumElts; ++i) { 4308 // Bail out on incomplete vector constants. 4309 Constant *TEltC = TrueC->getAggregateElement(i); 4310 Constant *FEltC = FalseC->getAggregateElement(i); 4311 if (!TEltC || !FEltC) 4312 break; 4313 4314 // If the elements match (undef or not), that value is the result. If only 4315 // one element is undef, choose the defined element as the safe result. 4316 if (TEltC == FEltC) 4317 NewC.push_back(TEltC); 4318 else if (isa<PoisonValue>(TEltC) || 4319 (Q.isUndefValue(TEltC) && isGuaranteedNotToBePoison(FEltC))) 4320 NewC.push_back(FEltC); 4321 else if (isa<PoisonValue>(FEltC) || 4322 (Q.isUndefValue(FEltC) && isGuaranteedNotToBePoison(TEltC))) 4323 NewC.push_back(TEltC); 4324 else 4325 break; 4326 } 4327 if (NewC.size() == NumElts) 4328 return ConstantVector::get(NewC); 4329 } 4330 4331 if (Value *V = 4332 simplifySelectWithICmpCond(Cond, TrueVal, FalseVal, Q, MaxRecurse)) 4333 return V; 4334 4335 if (Value *V = simplifySelectWithFCmp(Cond, TrueVal, FalseVal, Q)) 4336 return V; 4337 4338 if (Value *V = foldSelectWithBinaryOp(Cond, TrueVal, FalseVal)) 4339 return V; 4340 4341 Optional<bool> Imp = isImpliedByDomCondition(Cond, Q.CxtI, Q.DL); 4342 if (Imp) 4343 return *Imp ? TrueVal : FalseVal; 4344 4345 return nullptr; 4346 } 4347 4348 Value *llvm::SimplifySelectInst(Value *Cond, Value *TrueVal, Value *FalseVal, 4349 const SimplifyQuery &Q) { 4350 return ::SimplifySelectInst(Cond, TrueVal, FalseVal, Q, RecursionLimit); 4351 } 4352 4353 /// Given operands for an GetElementPtrInst, see if we can fold the result. 4354 /// If not, this returns null. 4355 static Value *SimplifyGEPInst(Type *SrcTy, ArrayRef<Value *> Ops, bool InBounds, 4356 const SimplifyQuery &Q, unsigned) { 4357 // The type of the GEP pointer operand. 4358 unsigned AS = 4359 cast<PointerType>(Ops[0]->getType()->getScalarType())->getAddressSpace(); 4360 4361 // getelementptr P -> P. 4362 if (Ops.size() == 1) 4363 return Ops[0]; 4364 4365 // Compute the (pointer) type returned by the GEP instruction. 4366 Type *LastType = GetElementPtrInst::getIndexedType(SrcTy, Ops.slice(1)); 4367 Type *GEPTy = PointerType::get(LastType, AS); 4368 for (Value *Op : Ops) { 4369 // If one of the operands is a vector, the result type is a vector of 4370 // pointers. All vector operands must have the same number of elements. 4371 if (VectorType *VT = dyn_cast<VectorType>(Op->getType())) { 4372 GEPTy = VectorType::get(GEPTy, VT->getElementCount()); 4373 break; 4374 } 4375 } 4376 4377 // getelementptr poison, idx -> poison 4378 // getelementptr baseptr, poison -> poison 4379 if (any_of(Ops, [](const auto *V) { return isa<PoisonValue>(V); })) 4380 return PoisonValue::get(GEPTy); 4381 4382 if (Q.isUndefValue(Ops[0])) 4383 return UndefValue::get(GEPTy); 4384 4385 bool IsScalableVec = 4386 isa<ScalableVectorType>(SrcTy) || any_of(Ops, [](const Value *V) { 4387 return isa<ScalableVectorType>(V->getType()); 4388 }); 4389 4390 if (Ops.size() == 2) { 4391 // getelementptr P, 0 -> P. 4392 if (match(Ops[1], m_Zero()) && Ops[0]->getType() == GEPTy) 4393 return Ops[0]; 4394 4395 Type *Ty = SrcTy; 4396 if (!IsScalableVec && Ty->isSized()) { 4397 Value *P; 4398 uint64_t C; 4399 uint64_t TyAllocSize = Q.DL.getTypeAllocSize(Ty); 4400 // getelementptr P, N -> P if P points to a type of zero size. 4401 if (TyAllocSize == 0 && Ops[0]->getType() == GEPTy) 4402 return Ops[0]; 4403 4404 // The following transforms are only safe if the ptrtoint cast 4405 // doesn't truncate the pointers. 4406 if (Ops[1]->getType()->getScalarSizeInBits() == 4407 Q.DL.getPointerSizeInBits(AS)) { 4408 auto CanSimplify = [GEPTy, &P, V = Ops[0]]() -> bool { 4409 return P->getType() == GEPTy && 4410 getUnderlyingObject(P) == getUnderlyingObject(V); 4411 }; 4412 // getelementptr V, (sub P, V) -> P if P points to a type of size 1. 4413 if (TyAllocSize == 1 && 4414 match(Ops[1], m_Sub(m_PtrToInt(m_Value(P)), 4415 m_PtrToInt(m_Specific(Ops[0])))) && 4416 CanSimplify()) 4417 return P; 4418 4419 // getelementptr V, (ashr (sub P, V), C) -> P if P points to a type of 4420 // size 1 << C. 4421 if (match(Ops[1], m_AShr(m_Sub(m_PtrToInt(m_Value(P)), 4422 m_PtrToInt(m_Specific(Ops[0]))), 4423 m_ConstantInt(C))) && 4424 TyAllocSize == 1ULL << C && CanSimplify()) 4425 return P; 4426 4427 // getelementptr V, (sdiv (sub P, V), C) -> P if P points to a type of 4428 // size C. 4429 if (match(Ops[1], m_SDiv(m_Sub(m_PtrToInt(m_Value(P)), 4430 m_PtrToInt(m_Specific(Ops[0]))), 4431 m_SpecificInt(TyAllocSize))) && 4432 CanSimplify()) 4433 return P; 4434 } 4435 } 4436 } 4437 4438 if (!IsScalableVec && Q.DL.getTypeAllocSize(LastType) == 1 && 4439 all_of(Ops.slice(1).drop_back(1), 4440 [](Value *Idx) { return match(Idx, m_Zero()); })) { 4441 unsigned IdxWidth = 4442 Q.DL.getIndexSizeInBits(Ops[0]->getType()->getPointerAddressSpace()); 4443 if (Q.DL.getTypeSizeInBits(Ops.back()->getType()) == IdxWidth) { 4444 APInt BasePtrOffset(IdxWidth, 0); 4445 Value *StrippedBasePtr = 4446 Ops[0]->stripAndAccumulateInBoundsConstantOffsets(Q.DL, 4447 BasePtrOffset); 4448 4449 // Avoid creating inttoptr of zero here: While LLVMs treatment of 4450 // inttoptr is generally conservative, this particular case is folded to 4451 // a null pointer, which will have incorrect provenance. 4452 4453 // gep (gep V, C), (sub 0, V) -> C 4454 if (match(Ops.back(), 4455 m_Sub(m_Zero(), m_PtrToInt(m_Specific(StrippedBasePtr)))) && 4456 !BasePtrOffset.isZero()) { 4457 auto *CI = ConstantInt::get(GEPTy->getContext(), BasePtrOffset); 4458 return ConstantExpr::getIntToPtr(CI, GEPTy); 4459 } 4460 // gep (gep V, C), (xor V, -1) -> C-1 4461 if (match(Ops.back(), 4462 m_Xor(m_PtrToInt(m_Specific(StrippedBasePtr)), m_AllOnes())) && 4463 !BasePtrOffset.isOne()) { 4464 auto *CI = ConstantInt::get(GEPTy->getContext(), BasePtrOffset - 1); 4465 return ConstantExpr::getIntToPtr(CI, GEPTy); 4466 } 4467 } 4468 } 4469 4470 // Check to see if this is constant foldable. 4471 if (!all_of(Ops, [](Value *V) { return isa<Constant>(V); })) 4472 return nullptr; 4473 4474 auto *CE = ConstantExpr::getGetElementPtr(SrcTy, cast<Constant>(Ops[0]), 4475 Ops.slice(1), InBounds); 4476 return ConstantFoldConstant(CE, Q.DL); 4477 } 4478 4479 Value *llvm::SimplifyGEPInst(Type *SrcTy, ArrayRef<Value *> Ops, bool InBounds, 4480 const SimplifyQuery &Q) { 4481 return ::SimplifyGEPInst(SrcTy, Ops, InBounds, Q, RecursionLimit); 4482 } 4483 4484 /// Given operands for an InsertValueInst, see if we can fold the result. 4485 /// If not, this returns null. 4486 static Value *SimplifyInsertValueInst(Value *Agg, Value *Val, 4487 ArrayRef<unsigned> Idxs, const SimplifyQuery &Q, 4488 unsigned) { 4489 if (Constant *CAgg = dyn_cast<Constant>(Agg)) 4490 if (Constant *CVal = dyn_cast<Constant>(Val)) 4491 return ConstantFoldInsertValueInstruction(CAgg, CVal, Idxs); 4492 4493 // insertvalue x, undef, n -> x 4494 if (Q.isUndefValue(Val)) 4495 return Agg; 4496 4497 // insertvalue x, (extractvalue y, n), n 4498 if (ExtractValueInst *EV = dyn_cast<ExtractValueInst>(Val)) 4499 if (EV->getAggregateOperand()->getType() == Agg->getType() && 4500 EV->getIndices() == Idxs) { 4501 // insertvalue undef, (extractvalue y, n), n -> y 4502 if (Q.isUndefValue(Agg)) 4503 return EV->getAggregateOperand(); 4504 4505 // insertvalue y, (extractvalue y, n), n -> y 4506 if (Agg == EV->getAggregateOperand()) 4507 return Agg; 4508 } 4509 4510 return nullptr; 4511 } 4512 4513 Value *llvm::SimplifyInsertValueInst(Value *Agg, Value *Val, 4514 ArrayRef<unsigned> Idxs, 4515 const SimplifyQuery &Q) { 4516 return ::SimplifyInsertValueInst(Agg, Val, Idxs, Q, RecursionLimit); 4517 } 4518 4519 Value *llvm::SimplifyInsertElementInst(Value *Vec, Value *Val, Value *Idx, 4520 const SimplifyQuery &Q) { 4521 // Try to constant fold. 4522 auto *VecC = dyn_cast<Constant>(Vec); 4523 auto *ValC = dyn_cast<Constant>(Val); 4524 auto *IdxC = dyn_cast<Constant>(Idx); 4525 if (VecC && ValC && IdxC) 4526 return ConstantExpr::getInsertElement(VecC, ValC, IdxC); 4527 4528 // For fixed-length vector, fold into poison if index is out of bounds. 4529 if (auto *CI = dyn_cast<ConstantInt>(Idx)) { 4530 if (isa<FixedVectorType>(Vec->getType()) && 4531 CI->uge(cast<FixedVectorType>(Vec->getType())->getNumElements())) 4532 return PoisonValue::get(Vec->getType()); 4533 } 4534 4535 // If index is undef, it might be out of bounds (see above case) 4536 if (Q.isUndefValue(Idx)) 4537 return PoisonValue::get(Vec->getType()); 4538 4539 // If the scalar is poison, or it is undef and there is no risk of 4540 // propagating poison from the vector value, simplify to the vector value. 4541 if (isa<PoisonValue>(Val) || 4542 (Q.isUndefValue(Val) && isGuaranteedNotToBePoison(Vec))) 4543 return Vec; 4544 4545 // If we are extracting a value from a vector, then inserting it into the same 4546 // place, that's the input vector: 4547 // insertelt Vec, (extractelt Vec, Idx), Idx --> Vec 4548 if (match(Val, m_ExtractElt(m_Specific(Vec), m_Specific(Idx)))) 4549 return Vec; 4550 4551 return nullptr; 4552 } 4553 4554 /// Given operands for an ExtractValueInst, see if we can fold the result. 4555 /// If not, this returns null. 4556 static Value *SimplifyExtractValueInst(Value *Agg, ArrayRef<unsigned> Idxs, 4557 const SimplifyQuery &, unsigned) { 4558 if (auto *CAgg = dyn_cast<Constant>(Agg)) 4559 return ConstantFoldExtractValueInstruction(CAgg, Idxs); 4560 4561 // extractvalue x, (insertvalue y, elt, n), n -> elt 4562 unsigned NumIdxs = Idxs.size(); 4563 for (auto *IVI = dyn_cast<InsertValueInst>(Agg); IVI != nullptr; 4564 IVI = dyn_cast<InsertValueInst>(IVI->getAggregateOperand())) { 4565 ArrayRef<unsigned> InsertValueIdxs = IVI->getIndices(); 4566 unsigned NumInsertValueIdxs = InsertValueIdxs.size(); 4567 unsigned NumCommonIdxs = std::min(NumInsertValueIdxs, NumIdxs); 4568 if (InsertValueIdxs.slice(0, NumCommonIdxs) == 4569 Idxs.slice(0, NumCommonIdxs)) { 4570 if (NumIdxs == NumInsertValueIdxs) 4571 return IVI->getInsertedValueOperand(); 4572 break; 4573 } 4574 } 4575 4576 return nullptr; 4577 } 4578 4579 Value *llvm::SimplifyExtractValueInst(Value *Agg, ArrayRef<unsigned> Idxs, 4580 const SimplifyQuery &Q) { 4581 return ::SimplifyExtractValueInst(Agg, Idxs, Q, RecursionLimit); 4582 } 4583 4584 /// Given operands for an ExtractElementInst, see if we can fold the result. 4585 /// If not, this returns null. 4586 static Value *SimplifyExtractElementInst(Value *Vec, Value *Idx, 4587 const SimplifyQuery &Q, unsigned) { 4588 auto *VecVTy = cast<VectorType>(Vec->getType()); 4589 if (auto *CVec = dyn_cast<Constant>(Vec)) { 4590 if (auto *CIdx = dyn_cast<Constant>(Idx)) 4591 return ConstantExpr::getExtractElement(CVec, CIdx); 4592 4593 if (Q.isUndefValue(Vec)) 4594 return UndefValue::get(VecVTy->getElementType()); 4595 } 4596 4597 // An undef extract index can be arbitrarily chosen to be an out-of-range 4598 // index value, which would result in the instruction being poison. 4599 if (Q.isUndefValue(Idx)) 4600 return PoisonValue::get(VecVTy->getElementType()); 4601 4602 // If extracting a specified index from the vector, see if we can recursively 4603 // find a previously computed scalar that was inserted into the vector. 4604 if (auto *IdxC = dyn_cast<ConstantInt>(Idx)) { 4605 // For fixed-length vector, fold into undef if index is out of bounds. 4606 unsigned MinNumElts = VecVTy->getElementCount().getKnownMinValue(); 4607 if (isa<FixedVectorType>(VecVTy) && IdxC->getValue().uge(MinNumElts)) 4608 return PoisonValue::get(VecVTy->getElementType()); 4609 // Handle case where an element is extracted from a splat. 4610 if (IdxC->getValue().ult(MinNumElts)) 4611 if (auto *Splat = getSplatValue(Vec)) 4612 return Splat; 4613 if (Value *Elt = findScalarElement(Vec, IdxC->getZExtValue())) 4614 return Elt; 4615 } else { 4616 // The index is not relevant if our vector is a splat. 4617 if (Value *Splat = getSplatValue(Vec)) 4618 return Splat; 4619 } 4620 return nullptr; 4621 } 4622 4623 Value *llvm::SimplifyExtractElementInst(Value *Vec, Value *Idx, 4624 const SimplifyQuery &Q) { 4625 return ::SimplifyExtractElementInst(Vec, Idx, Q, RecursionLimit); 4626 } 4627 4628 /// See if we can fold the given phi. If not, returns null. 4629 static Value *SimplifyPHINode(PHINode *PN, ArrayRef<Value *> IncomingValues, 4630 const SimplifyQuery &Q) { 4631 // WARNING: no matter how worthwhile it may seem, we can not perform PHI CSE 4632 // here, because the PHI we may succeed simplifying to was not 4633 // def-reachable from the original PHI! 4634 4635 // If all of the PHI's incoming values are the same then replace the PHI node 4636 // with the common value. 4637 Value *CommonValue = nullptr; 4638 bool HasUndefInput = false; 4639 for (Value *Incoming : IncomingValues) { 4640 // If the incoming value is the phi node itself, it can safely be skipped. 4641 if (Incoming == PN) continue; 4642 if (Q.isUndefValue(Incoming)) { 4643 // Remember that we saw an undef value, but otherwise ignore them. 4644 HasUndefInput = true; 4645 continue; 4646 } 4647 if (CommonValue && Incoming != CommonValue) 4648 return nullptr; // Not the same, bail out. 4649 CommonValue = Incoming; 4650 } 4651 4652 // If CommonValue is null then all of the incoming values were either undef or 4653 // equal to the phi node itself. 4654 if (!CommonValue) 4655 return UndefValue::get(PN->getType()); 4656 4657 // If we have a PHI node like phi(X, undef, X), where X is defined by some 4658 // instruction, we cannot return X as the result of the PHI node unless it 4659 // dominates the PHI block. 4660 if (HasUndefInput) 4661 return valueDominatesPHI(CommonValue, PN, Q.DT) ? CommonValue : nullptr; 4662 4663 return CommonValue; 4664 } 4665 4666 static Value *SimplifyCastInst(unsigned CastOpc, Value *Op, 4667 Type *Ty, const SimplifyQuery &Q, unsigned MaxRecurse) { 4668 if (auto *C = dyn_cast<Constant>(Op)) 4669 return ConstantFoldCastOperand(CastOpc, C, Ty, Q.DL); 4670 4671 if (auto *CI = dyn_cast<CastInst>(Op)) { 4672 auto *Src = CI->getOperand(0); 4673 Type *SrcTy = Src->getType(); 4674 Type *MidTy = CI->getType(); 4675 Type *DstTy = Ty; 4676 if (Src->getType() == Ty) { 4677 auto FirstOp = static_cast<Instruction::CastOps>(CI->getOpcode()); 4678 auto SecondOp = static_cast<Instruction::CastOps>(CastOpc); 4679 Type *SrcIntPtrTy = 4680 SrcTy->isPtrOrPtrVectorTy() ? Q.DL.getIntPtrType(SrcTy) : nullptr; 4681 Type *MidIntPtrTy = 4682 MidTy->isPtrOrPtrVectorTy() ? Q.DL.getIntPtrType(MidTy) : nullptr; 4683 Type *DstIntPtrTy = 4684 DstTy->isPtrOrPtrVectorTy() ? Q.DL.getIntPtrType(DstTy) : nullptr; 4685 if (CastInst::isEliminableCastPair(FirstOp, SecondOp, SrcTy, MidTy, DstTy, 4686 SrcIntPtrTy, MidIntPtrTy, 4687 DstIntPtrTy) == Instruction::BitCast) 4688 return Src; 4689 } 4690 } 4691 4692 // bitcast x -> x 4693 if (CastOpc == Instruction::BitCast) 4694 if (Op->getType() == Ty) 4695 return Op; 4696 4697 return nullptr; 4698 } 4699 4700 Value *llvm::SimplifyCastInst(unsigned CastOpc, Value *Op, Type *Ty, 4701 const SimplifyQuery &Q) { 4702 return ::SimplifyCastInst(CastOpc, Op, Ty, Q, RecursionLimit); 4703 } 4704 4705 /// For the given destination element of a shuffle, peek through shuffles to 4706 /// match a root vector source operand that contains that element in the same 4707 /// vector lane (ie, the same mask index), so we can eliminate the shuffle(s). 4708 static Value *foldIdentityShuffles(int DestElt, Value *Op0, Value *Op1, 4709 int MaskVal, Value *RootVec, 4710 unsigned MaxRecurse) { 4711 if (!MaxRecurse--) 4712 return nullptr; 4713 4714 // Bail out if any mask value is undefined. That kind of shuffle may be 4715 // simplified further based on demanded bits or other folds. 4716 if (MaskVal == -1) 4717 return nullptr; 4718 4719 // The mask value chooses which source operand we need to look at next. 4720 int InVecNumElts = cast<FixedVectorType>(Op0->getType())->getNumElements(); 4721 int RootElt = MaskVal; 4722 Value *SourceOp = Op0; 4723 if (MaskVal >= InVecNumElts) { 4724 RootElt = MaskVal - InVecNumElts; 4725 SourceOp = Op1; 4726 } 4727 4728 // If the source operand is a shuffle itself, look through it to find the 4729 // matching root vector. 4730 if (auto *SourceShuf = dyn_cast<ShuffleVectorInst>(SourceOp)) { 4731 return foldIdentityShuffles( 4732 DestElt, SourceShuf->getOperand(0), SourceShuf->getOperand(1), 4733 SourceShuf->getMaskValue(RootElt), RootVec, MaxRecurse); 4734 } 4735 4736 // TODO: Look through bitcasts? What if the bitcast changes the vector element 4737 // size? 4738 4739 // The source operand is not a shuffle. Initialize the root vector value for 4740 // this shuffle if that has not been done yet. 4741 if (!RootVec) 4742 RootVec = SourceOp; 4743 4744 // Give up as soon as a source operand does not match the existing root value. 4745 if (RootVec != SourceOp) 4746 return nullptr; 4747 4748 // The element must be coming from the same lane in the source vector 4749 // (although it may have crossed lanes in intermediate shuffles). 4750 if (RootElt != DestElt) 4751 return nullptr; 4752 4753 return RootVec; 4754 } 4755 4756 static Value *SimplifyShuffleVectorInst(Value *Op0, Value *Op1, 4757 ArrayRef<int> Mask, Type *RetTy, 4758 const SimplifyQuery &Q, 4759 unsigned MaxRecurse) { 4760 if (all_of(Mask, [](int Elem) { return Elem == UndefMaskElem; })) 4761 return UndefValue::get(RetTy); 4762 4763 auto *InVecTy = cast<VectorType>(Op0->getType()); 4764 unsigned MaskNumElts = Mask.size(); 4765 ElementCount InVecEltCount = InVecTy->getElementCount(); 4766 4767 bool Scalable = InVecEltCount.isScalable(); 4768 4769 SmallVector<int, 32> Indices; 4770 Indices.assign(Mask.begin(), Mask.end()); 4771 4772 // Canonicalization: If mask does not select elements from an input vector, 4773 // replace that input vector with poison. 4774 if (!Scalable) { 4775 bool MaskSelects0 = false, MaskSelects1 = false; 4776 unsigned InVecNumElts = InVecEltCount.getKnownMinValue(); 4777 for (unsigned i = 0; i != MaskNumElts; ++i) { 4778 if (Indices[i] == -1) 4779 continue; 4780 if ((unsigned)Indices[i] < InVecNumElts) 4781 MaskSelects0 = true; 4782 else 4783 MaskSelects1 = true; 4784 } 4785 if (!MaskSelects0) 4786 Op0 = PoisonValue::get(InVecTy); 4787 if (!MaskSelects1) 4788 Op1 = PoisonValue::get(InVecTy); 4789 } 4790 4791 auto *Op0Const = dyn_cast<Constant>(Op0); 4792 auto *Op1Const = dyn_cast<Constant>(Op1); 4793 4794 // If all operands are constant, constant fold the shuffle. This 4795 // transformation depends on the value of the mask which is not known at 4796 // compile time for scalable vectors 4797 if (Op0Const && Op1Const) 4798 return ConstantExpr::getShuffleVector(Op0Const, Op1Const, Mask); 4799 4800 // Canonicalization: if only one input vector is constant, it shall be the 4801 // second one. This transformation depends on the value of the mask which 4802 // is not known at compile time for scalable vectors 4803 if (!Scalable && Op0Const && !Op1Const) { 4804 std::swap(Op0, Op1); 4805 ShuffleVectorInst::commuteShuffleMask(Indices, 4806 InVecEltCount.getKnownMinValue()); 4807 } 4808 4809 // A splat of an inserted scalar constant becomes a vector constant: 4810 // shuf (inselt ?, C, IndexC), undef, <IndexC, IndexC...> --> <C, C...> 4811 // NOTE: We may have commuted above, so analyze the updated Indices, not the 4812 // original mask constant. 4813 // NOTE: This transformation depends on the value of the mask which is not 4814 // known at compile time for scalable vectors 4815 Constant *C; 4816 ConstantInt *IndexC; 4817 if (!Scalable && match(Op0, m_InsertElt(m_Value(), m_Constant(C), 4818 m_ConstantInt(IndexC)))) { 4819 // Match a splat shuffle mask of the insert index allowing undef elements. 4820 int InsertIndex = IndexC->getZExtValue(); 4821 if (all_of(Indices, [InsertIndex](int MaskElt) { 4822 return MaskElt == InsertIndex || MaskElt == -1; 4823 })) { 4824 assert(isa<UndefValue>(Op1) && "Expected undef operand 1 for splat"); 4825 4826 // Shuffle mask undefs become undefined constant result elements. 4827 SmallVector<Constant *, 16> VecC(MaskNumElts, C); 4828 for (unsigned i = 0; i != MaskNumElts; ++i) 4829 if (Indices[i] == -1) 4830 VecC[i] = UndefValue::get(C->getType()); 4831 return ConstantVector::get(VecC); 4832 } 4833 } 4834 4835 // A shuffle of a splat is always the splat itself. Legal if the shuffle's 4836 // value type is same as the input vectors' type. 4837 if (auto *OpShuf = dyn_cast<ShuffleVectorInst>(Op0)) 4838 if (Q.isUndefValue(Op1) && RetTy == InVecTy && 4839 is_splat(OpShuf->getShuffleMask())) 4840 return Op0; 4841 4842 // All remaining transformation depend on the value of the mask, which is 4843 // not known at compile time for scalable vectors. 4844 if (Scalable) 4845 return nullptr; 4846 4847 // Don't fold a shuffle with undef mask elements. This may get folded in a 4848 // better way using demanded bits or other analysis. 4849 // TODO: Should we allow this? 4850 if (is_contained(Indices, -1)) 4851 return nullptr; 4852 4853 // Check if every element of this shuffle can be mapped back to the 4854 // corresponding element of a single root vector. If so, we don't need this 4855 // shuffle. This handles simple identity shuffles as well as chains of 4856 // shuffles that may widen/narrow and/or move elements across lanes and back. 4857 Value *RootVec = nullptr; 4858 for (unsigned i = 0; i != MaskNumElts; ++i) { 4859 // Note that recursion is limited for each vector element, so if any element 4860 // exceeds the limit, this will fail to simplify. 4861 RootVec = 4862 foldIdentityShuffles(i, Op0, Op1, Indices[i], RootVec, MaxRecurse); 4863 4864 // We can't replace a widening/narrowing shuffle with one of its operands. 4865 if (!RootVec || RootVec->getType() != RetTy) 4866 return nullptr; 4867 } 4868 return RootVec; 4869 } 4870 4871 /// Given operands for a ShuffleVectorInst, fold the result or return null. 4872 Value *llvm::SimplifyShuffleVectorInst(Value *Op0, Value *Op1, 4873 ArrayRef<int> Mask, Type *RetTy, 4874 const SimplifyQuery &Q) { 4875 return ::SimplifyShuffleVectorInst(Op0, Op1, Mask, RetTy, Q, RecursionLimit); 4876 } 4877 4878 static Constant *foldConstant(Instruction::UnaryOps Opcode, 4879 Value *&Op, const SimplifyQuery &Q) { 4880 if (auto *C = dyn_cast<Constant>(Op)) 4881 return ConstantFoldUnaryOpOperand(Opcode, C, Q.DL); 4882 return nullptr; 4883 } 4884 4885 /// Given the operand for an FNeg, see if we can fold the result. If not, this 4886 /// returns null. 4887 static Value *simplifyFNegInst(Value *Op, FastMathFlags FMF, 4888 const SimplifyQuery &Q, unsigned MaxRecurse) { 4889 if (Constant *C = foldConstant(Instruction::FNeg, Op, Q)) 4890 return C; 4891 4892 Value *X; 4893 // fneg (fneg X) ==> X 4894 if (match(Op, m_FNeg(m_Value(X)))) 4895 return X; 4896 4897 return nullptr; 4898 } 4899 4900 Value *llvm::SimplifyFNegInst(Value *Op, FastMathFlags FMF, 4901 const SimplifyQuery &Q) { 4902 return ::simplifyFNegInst(Op, FMF, Q, RecursionLimit); 4903 } 4904 4905 static Constant *propagateNaN(Constant *In) { 4906 // If the input is a vector with undef elements, just return a default NaN. 4907 if (!In->isNaN()) 4908 return ConstantFP::getNaN(In->getType()); 4909 4910 // Propagate the existing NaN constant when possible. 4911 // TODO: Should we quiet a signaling NaN? 4912 return In; 4913 } 4914 4915 /// Perform folds that are common to any floating-point operation. This implies 4916 /// transforms based on poison/undef/NaN because the operation itself makes no 4917 /// difference to the result. 4918 static Constant *simplifyFPOp(ArrayRef<Value *> Ops, FastMathFlags FMF, 4919 const SimplifyQuery &Q, 4920 fp::ExceptionBehavior ExBehavior, 4921 RoundingMode Rounding) { 4922 // Poison is independent of anything else. It always propagates from an 4923 // operand to a math result. 4924 if (any_of(Ops, [](Value *V) { return match(V, m_Poison()); })) 4925 return PoisonValue::get(Ops[0]->getType()); 4926 4927 for (Value *V : Ops) { 4928 bool IsNan = match(V, m_NaN()); 4929 bool IsInf = match(V, m_Inf()); 4930 bool IsUndef = Q.isUndefValue(V); 4931 4932 // If this operation has 'nnan' or 'ninf' and at least 1 disallowed operand 4933 // (an undef operand can be chosen to be Nan/Inf), then the result of 4934 // this operation is poison. 4935 if (FMF.noNaNs() && (IsNan || IsUndef)) 4936 return PoisonValue::get(V->getType()); 4937 if (FMF.noInfs() && (IsInf || IsUndef)) 4938 return PoisonValue::get(V->getType()); 4939 4940 if (isDefaultFPEnvironment(ExBehavior, Rounding)) { 4941 if (IsUndef || IsNan) 4942 return propagateNaN(cast<Constant>(V)); 4943 } else if (ExBehavior != fp::ebStrict) { 4944 if (IsNan) 4945 return propagateNaN(cast<Constant>(V)); 4946 } 4947 } 4948 return nullptr; 4949 } 4950 4951 // TODO: Move this out to a header file: 4952 static inline bool canIgnoreSNaN(fp::ExceptionBehavior EB, FastMathFlags FMF) { 4953 return (EB == fp::ebIgnore || FMF.noNaNs()); 4954 } 4955 4956 /// Given operands for an FAdd, see if we can fold the result. If not, this 4957 /// returns null. 4958 static Value * 4959 SimplifyFAddInst(Value *Op0, Value *Op1, FastMathFlags FMF, 4960 const SimplifyQuery &Q, unsigned MaxRecurse, 4961 fp::ExceptionBehavior ExBehavior = fp::ebIgnore, 4962 RoundingMode Rounding = RoundingMode::NearestTiesToEven) { 4963 if (isDefaultFPEnvironment(ExBehavior, Rounding)) 4964 if (Constant *C = foldOrCommuteConstant(Instruction::FAdd, Op0, Op1, Q)) 4965 return C; 4966 4967 if (Constant *C = simplifyFPOp({Op0, Op1}, FMF, Q, ExBehavior, Rounding)) 4968 return C; 4969 4970 // fadd X, -0 ==> X 4971 // With strict/constrained FP, we have these possible edge cases that do 4972 // not simplify to Op0: 4973 // fadd SNaN, -0.0 --> QNaN 4974 // fadd +0.0, -0.0 --> -0.0 (but only with round toward negative) 4975 if (canIgnoreSNaN(ExBehavior, FMF) && 4976 (!canRoundingModeBe(Rounding, RoundingMode::TowardNegative) || 4977 FMF.noSignedZeros())) 4978 if (match(Op1, m_NegZeroFP())) 4979 return Op0; 4980 4981 if (!isDefaultFPEnvironment(ExBehavior, Rounding)) 4982 return nullptr; 4983 4984 // fadd X, 0 ==> X, when we know X is not -0 4985 if (match(Op1, m_PosZeroFP()) && 4986 (FMF.noSignedZeros() || CannotBeNegativeZero(Op0, Q.TLI))) 4987 return Op0; 4988 4989 // With nnan: -X + X --> 0.0 (and commuted variant) 4990 // We don't have to explicitly exclude infinities (ninf): INF + -INF == NaN. 4991 // Negative zeros are allowed because we always end up with positive zero: 4992 // X = -0.0: (-0.0 - (-0.0)) + (-0.0) == ( 0.0) + (-0.0) == 0.0 4993 // X = -0.0: ( 0.0 - (-0.0)) + (-0.0) == ( 0.0) + (-0.0) == 0.0 4994 // X = 0.0: (-0.0 - ( 0.0)) + ( 0.0) == (-0.0) + ( 0.0) == 0.0 4995 // X = 0.0: ( 0.0 - ( 0.0)) + ( 0.0) == ( 0.0) + ( 0.0) == 0.0 4996 if (FMF.noNaNs()) { 4997 if (match(Op0, m_FSub(m_AnyZeroFP(), m_Specific(Op1))) || 4998 match(Op1, m_FSub(m_AnyZeroFP(), m_Specific(Op0)))) 4999 return ConstantFP::getNullValue(Op0->getType()); 5000 5001 if (match(Op0, m_FNeg(m_Specific(Op1))) || 5002 match(Op1, m_FNeg(m_Specific(Op0)))) 5003 return ConstantFP::getNullValue(Op0->getType()); 5004 } 5005 5006 // (X - Y) + Y --> X 5007 // Y + (X - Y) --> X 5008 Value *X; 5009 if (FMF.noSignedZeros() && FMF.allowReassoc() && 5010 (match(Op0, m_FSub(m_Value(X), m_Specific(Op1))) || 5011 match(Op1, m_FSub(m_Value(X), m_Specific(Op0))))) 5012 return X; 5013 5014 return nullptr; 5015 } 5016 5017 /// Given operands for an FSub, see if we can fold the result. If not, this 5018 /// returns null. 5019 static Value * 5020 SimplifyFSubInst(Value *Op0, Value *Op1, FastMathFlags FMF, 5021 const SimplifyQuery &Q, unsigned MaxRecurse, 5022 fp::ExceptionBehavior ExBehavior = fp::ebIgnore, 5023 RoundingMode Rounding = RoundingMode::NearestTiesToEven) { 5024 if (isDefaultFPEnvironment(ExBehavior, Rounding)) 5025 if (Constant *C = foldOrCommuteConstant(Instruction::FSub, Op0, Op1, Q)) 5026 return C; 5027 5028 if (Constant *C = simplifyFPOp({Op0, Op1}, FMF, Q, ExBehavior, Rounding)) 5029 return C; 5030 5031 if (!isDefaultFPEnvironment(ExBehavior, Rounding)) 5032 return nullptr; 5033 5034 // fsub X, +0 ==> X 5035 if (match(Op1, m_PosZeroFP())) 5036 return Op0; 5037 5038 // fsub X, -0 ==> X, when we know X is not -0 5039 if (match(Op1, m_NegZeroFP()) && 5040 (FMF.noSignedZeros() || CannotBeNegativeZero(Op0, Q.TLI))) 5041 return Op0; 5042 5043 // fsub -0.0, (fsub -0.0, X) ==> X 5044 // fsub -0.0, (fneg X) ==> X 5045 Value *X; 5046 if (match(Op0, m_NegZeroFP()) && 5047 match(Op1, m_FNeg(m_Value(X)))) 5048 return X; 5049 5050 // fsub 0.0, (fsub 0.0, X) ==> X if signed zeros are ignored. 5051 // fsub 0.0, (fneg X) ==> X if signed zeros are ignored. 5052 if (FMF.noSignedZeros() && match(Op0, m_AnyZeroFP()) && 5053 (match(Op1, m_FSub(m_AnyZeroFP(), m_Value(X))) || 5054 match(Op1, m_FNeg(m_Value(X))))) 5055 return X; 5056 5057 // fsub nnan x, x ==> 0.0 5058 if (FMF.noNaNs() && Op0 == Op1) 5059 return Constant::getNullValue(Op0->getType()); 5060 5061 // Y - (Y - X) --> X 5062 // (X + Y) - Y --> X 5063 if (FMF.noSignedZeros() && FMF.allowReassoc() && 5064 (match(Op1, m_FSub(m_Specific(Op0), m_Value(X))) || 5065 match(Op0, m_c_FAdd(m_Specific(Op1), m_Value(X))))) 5066 return X; 5067 5068 return nullptr; 5069 } 5070 5071 static Value *SimplifyFMAFMul(Value *Op0, Value *Op1, FastMathFlags FMF, 5072 const SimplifyQuery &Q, unsigned MaxRecurse, 5073 fp::ExceptionBehavior ExBehavior, 5074 RoundingMode Rounding) { 5075 if (Constant *C = simplifyFPOp({Op0, Op1}, FMF, Q, ExBehavior, Rounding)) 5076 return C; 5077 5078 if (!isDefaultFPEnvironment(ExBehavior, Rounding)) 5079 return nullptr; 5080 5081 // fmul X, 1.0 ==> X 5082 if (match(Op1, m_FPOne())) 5083 return Op0; 5084 5085 // fmul 1.0, X ==> X 5086 if (match(Op0, m_FPOne())) 5087 return Op1; 5088 5089 // fmul nnan nsz X, 0 ==> 0 5090 if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op1, m_AnyZeroFP())) 5091 return ConstantFP::getNullValue(Op0->getType()); 5092 5093 // fmul nnan nsz 0, X ==> 0 5094 if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op0, m_AnyZeroFP())) 5095 return ConstantFP::getNullValue(Op1->getType()); 5096 5097 // sqrt(X) * sqrt(X) --> X, if we can: 5098 // 1. Remove the intermediate rounding (reassociate). 5099 // 2. Ignore non-zero negative numbers because sqrt would produce NAN. 5100 // 3. Ignore -0.0 because sqrt(-0.0) == -0.0, but -0.0 * -0.0 == 0.0. 5101 Value *X; 5102 if (Op0 == Op1 && match(Op0, m_Intrinsic<Intrinsic::sqrt>(m_Value(X))) && 5103 FMF.allowReassoc() && FMF.noNaNs() && FMF.noSignedZeros()) 5104 return X; 5105 5106 return nullptr; 5107 } 5108 5109 /// Given the operands for an FMul, see if we can fold the result 5110 static Value * 5111 SimplifyFMulInst(Value *Op0, Value *Op1, FastMathFlags FMF, 5112 const SimplifyQuery &Q, unsigned MaxRecurse, 5113 fp::ExceptionBehavior ExBehavior = fp::ebIgnore, 5114 RoundingMode Rounding = RoundingMode::NearestTiesToEven) { 5115 if (isDefaultFPEnvironment(ExBehavior, Rounding)) 5116 if (Constant *C = foldOrCommuteConstant(Instruction::FMul, Op0, Op1, Q)) 5117 return C; 5118 5119 // Now apply simplifications that do not require rounding. 5120 return SimplifyFMAFMul(Op0, Op1, FMF, Q, MaxRecurse, ExBehavior, Rounding); 5121 } 5122 5123 Value *llvm::SimplifyFAddInst(Value *Op0, Value *Op1, FastMathFlags FMF, 5124 const SimplifyQuery &Q, 5125 fp::ExceptionBehavior ExBehavior, 5126 RoundingMode Rounding) { 5127 return ::SimplifyFAddInst(Op0, Op1, FMF, Q, RecursionLimit, ExBehavior, 5128 Rounding); 5129 } 5130 5131 Value *llvm::SimplifyFSubInst(Value *Op0, Value *Op1, FastMathFlags FMF, 5132 const SimplifyQuery &Q, 5133 fp::ExceptionBehavior ExBehavior, 5134 RoundingMode Rounding) { 5135 return ::SimplifyFSubInst(Op0, Op1, FMF, Q, RecursionLimit, ExBehavior, 5136 Rounding); 5137 } 5138 5139 Value *llvm::SimplifyFMulInst(Value *Op0, Value *Op1, FastMathFlags FMF, 5140 const SimplifyQuery &Q, 5141 fp::ExceptionBehavior ExBehavior, 5142 RoundingMode Rounding) { 5143 return ::SimplifyFMulInst(Op0, Op1, FMF, Q, RecursionLimit, ExBehavior, 5144 Rounding); 5145 } 5146 5147 Value *llvm::SimplifyFMAFMul(Value *Op0, Value *Op1, FastMathFlags FMF, 5148 const SimplifyQuery &Q, 5149 fp::ExceptionBehavior ExBehavior, 5150 RoundingMode Rounding) { 5151 return ::SimplifyFMAFMul(Op0, Op1, FMF, Q, RecursionLimit, ExBehavior, 5152 Rounding); 5153 } 5154 5155 static Value * 5156 SimplifyFDivInst(Value *Op0, Value *Op1, FastMathFlags FMF, 5157 const SimplifyQuery &Q, unsigned, 5158 fp::ExceptionBehavior ExBehavior = fp::ebIgnore, 5159 RoundingMode Rounding = RoundingMode::NearestTiesToEven) { 5160 if (isDefaultFPEnvironment(ExBehavior, Rounding)) 5161 if (Constant *C = foldOrCommuteConstant(Instruction::FDiv, Op0, Op1, Q)) 5162 return C; 5163 5164 if (Constant *C = simplifyFPOp({Op0, Op1}, FMF, Q, ExBehavior, Rounding)) 5165 return C; 5166 5167 if (!isDefaultFPEnvironment(ExBehavior, Rounding)) 5168 return nullptr; 5169 5170 // X / 1.0 -> X 5171 if (match(Op1, m_FPOne())) 5172 return Op0; 5173 5174 // 0 / X -> 0 5175 // Requires that NaNs are off (X could be zero) and signed zeroes are 5176 // ignored (X could be positive or negative, so the output sign is unknown). 5177 if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op0, m_AnyZeroFP())) 5178 return ConstantFP::getNullValue(Op0->getType()); 5179 5180 if (FMF.noNaNs()) { 5181 // X / X -> 1.0 is legal when NaNs are ignored. 5182 // We can ignore infinities because INF/INF is NaN. 5183 if (Op0 == Op1) 5184 return ConstantFP::get(Op0->getType(), 1.0); 5185 5186 // (X * Y) / Y --> X if we can reassociate to the above form. 5187 Value *X; 5188 if (FMF.allowReassoc() && match(Op0, m_c_FMul(m_Value(X), m_Specific(Op1)))) 5189 return X; 5190 5191 // -X / X -> -1.0 and 5192 // X / -X -> -1.0 are legal when NaNs are ignored. 5193 // We can ignore signed zeros because +-0.0/+-0.0 is NaN and ignored. 5194 if (match(Op0, m_FNegNSZ(m_Specific(Op1))) || 5195 match(Op1, m_FNegNSZ(m_Specific(Op0)))) 5196 return ConstantFP::get(Op0->getType(), -1.0); 5197 } 5198 5199 return nullptr; 5200 } 5201 5202 Value *llvm::SimplifyFDivInst(Value *Op0, Value *Op1, FastMathFlags FMF, 5203 const SimplifyQuery &Q, 5204 fp::ExceptionBehavior ExBehavior, 5205 RoundingMode Rounding) { 5206 return ::SimplifyFDivInst(Op0, Op1, FMF, Q, RecursionLimit, ExBehavior, 5207 Rounding); 5208 } 5209 5210 static Value * 5211 SimplifyFRemInst(Value *Op0, Value *Op1, FastMathFlags FMF, 5212 const SimplifyQuery &Q, unsigned, 5213 fp::ExceptionBehavior ExBehavior = fp::ebIgnore, 5214 RoundingMode Rounding = RoundingMode::NearestTiesToEven) { 5215 if (isDefaultFPEnvironment(ExBehavior, Rounding)) 5216 if (Constant *C = foldOrCommuteConstant(Instruction::FRem, Op0, Op1, Q)) 5217 return C; 5218 5219 if (Constant *C = simplifyFPOp({Op0, Op1}, FMF, Q, ExBehavior, Rounding)) 5220 return C; 5221 5222 if (!isDefaultFPEnvironment(ExBehavior, Rounding)) 5223 return nullptr; 5224 5225 // Unlike fdiv, the result of frem always matches the sign of the dividend. 5226 // The constant match may include undef elements in a vector, so return a full 5227 // zero constant as the result. 5228 if (FMF.noNaNs()) { 5229 // +0 % X -> 0 5230 if (match(Op0, m_PosZeroFP())) 5231 return ConstantFP::getNullValue(Op0->getType()); 5232 // -0 % X -> -0 5233 if (match(Op0, m_NegZeroFP())) 5234 return ConstantFP::getNegativeZero(Op0->getType()); 5235 } 5236 5237 return nullptr; 5238 } 5239 5240 Value *llvm::SimplifyFRemInst(Value *Op0, Value *Op1, FastMathFlags FMF, 5241 const SimplifyQuery &Q, 5242 fp::ExceptionBehavior ExBehavior, 5243 RoundingMode Rounding) { 5244 return ::SimplifyFRemInst(Op0, Op1, FMF, Q, RecursionLimit, ExBehavior, 5245 Rounding); 5246 } 5247 5248 //=== Helper functions for higher up the class hierarchy. 5249 5250 /// Given the operand for a UnaryOperator, see if we can fold the result. 5251 /// If not, this returns null. 5252 static Value *simplifyUnOp(unsigned Opcode, Value *Op, const SimplifyQuery &Q, 5253 unsigned MaxRecurse) { 5254 switch (Opcode) { 5255 case Instruction::FNeg: 5256 return simplifyFNegInst(Op, FastMathFlags(), Q, MaxRecurse); 5257 default: 5258 llvm_unreachable("Unexpected opcode"); 5259 } 5260 } 5261 5262 /// Given the operand for a UnaryOperator, see if we can fold the result. 5263 /// If not, this returns null. 5264 /// Try to use FastMathFlags when folding the result. 5265 static Value *simplifyFPUnOp(unsigned Opcode, Value *Op, 5266 const FastMathFlags &FMF, 5267 const SimplifyQuery &Q, unsigned MaxRecurse) { 5268 switch (Opcode) { 5269 case Instruction::FNeg: 5270 return simplifyFNegInst(Op, FMF, Q, MaxRecurse); 5271 default: 5272 return simplifyUnOp(Opcode, Op, Q, MaxRecurse); 5273 } 5274 } 5275 5276 Value *llvm::SimplifyUnOp(unsigned Opcode, Value *Op, const SimplifyQuery &Q) { 5277 return ::simplifyUnOp(Opcode, Op, Q, RecursionLimit); 5278 } 5279 5280 Value *llvm::SimplifyUnOp(unsigned Opcode, Value *Op, FastMathFlags FMF, 5281 const SimplifyQuery &Q) { 5282 return ::simplifyFPUnOp(Opcode, Op, FMF, Q, RecursionLimit); 5283 } 5284 5285 /// Given operands for a BinaryOperator, see if we can fold the result. 5286 /// If not, this returns null. 5287 static Value *SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS, 5288 const SimplifyQuery &Q, unsigned MaxRecurse) { 5289 switch (Opcode) { 5290 case Instruction::Add: 5291 return SimplifyAddInst(LHS, RHS, false, false, Q, MaxRecurse); 5292 case Instruction::Sub: 5293 return SimplifySubInst(LHS, RHS, false, false, Q, MaxRecurse); 5294 case Instruction::Mul: 5295 return SimplifyMulInst(LHS, RHS, Q, MaxRecurse); 5296 case Instruction::SDiv: 5297 return SimplifySDivInst(LHS, RHS, Q, MaxRecurse); 5298 case Instruction::UDiv: 5299 return SimplifyUDivInst(LHS, RHS, Q, MaxRecurse); 5300 case Instruction::SRem: 5301 return SimplifySRemInst(LHS, RHS, Q, MaxRecurse); 5302 case Instruction::URem: 5303 return SimplifyURemInst(LHS, RHS, Q, MaxRecurse); 5304 case Instruction::Shl: 5305 return SimplifyShlInst(LHS, RHS, false, false, Q, MaxRecurse); 5306 case Instruction::LShr: 5307 return SimplifyLShrInst(LHS, RHS, false, Q, MaxRecurse); 5308 case Instruction::AShr: 5309 return SimplifyAShrInst(LHS, RHS, false, Q, MaxRecurse); 5310 case Instruction::And: 5311 return SimplifyAndInst(LHS, RHS, Q, MaxRecurse); 5312 case Instruction::Or: 5313 return SimplifyOrInst(LHS, RHS, Q, MaxRecurse); 5314 case Instruction::Xor: 5315 return SimplifyXorInst(LHS, RHS, Q, MaxRecurse); 5316 case Instruction::FAdd: 5317 return SimplifyFAddInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse); 5318 case Instruction::FSub: 5319 return SimplifyFSubInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse); 5320 case Instruction::FMul: 5321 return SimplifyFMulInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse); 5322 case Instruction::FDiv: 5323 return SimplifyFDivInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse); 5324 case Instruction::FRem: 5325 return SimplifyFRemInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse); 5326 default: 5327 llvm_unreachable("Unexpected opcode"); 5328 } 5329 } 5330 5331 /// Given operands for a BinaryOperator, see if we can fold the result. 5332 /// If not, this returns null. 5333 /// Try to use FastMathFlags when folding the result. 5334 static Value *SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS, 5335 const FastMathFlags &FMF, const SimplifyQuery &Q, 5336 unsigned MaxRecurse) { 5337 switch (Opcode) { 5338 case Instruction::FAdd: 5339 return SimplifyFAddInst(LHS, RHS, FMF, Q, MaxRecurse); 5340 case Instruction::FSub: 5341 return SimplifyFSubInst(LHS, RHS, FMF, Q, MaxRecurse); 5342 case Instruction::FMul: 5343 return SimplifyFMulInst(LHS, RHS, FMF, Q, MaxRecurse); 5344 case Instruction::FDiv: 5345 return SimplifyFDivInst(LHS, RHS, FMF, Q, MaxRecurse); 5346 default: 5347 return SimplifyBinOp(Opcode, LHS, RHS, Q, MaxRecurse); 5348 } 5349 } 5350 5351 Value *llvm::SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS, 5352 const SimplifyQuery &Q) { 5353 return ::SimplifyBinOp(Opcode, LHS, RHS, Q, RecursionLimit); 5354 } 5355 5356 Value *llvm::SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS, 5357 FastMathFlags FMF, const SimplifyQuery &Q) { 5358 return ::SimplifyBinOp(Opcode, LHS, RHS, FMF, Q, RecursionLimit); 5359 } 5360 5361 /// Given operands for a CmpInst, see if we can fold the result. 5362 static Value *SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS, 5363 const SimplifyQuery &Q, unsigned MaxRecurse) { 5364 if (CmpInst::isIntPredicate((CmpInst::Predicate)Predicate)) 5365 return SimplifyICmpInst(Predicate, LHS, RHS, Q, MaxRecurse); 5366 return SimplifyFCmpInst(Predicate, LHS, RHS, FastMathFlags(), Q, MaxRecurse); 5367 } 5368 5369 Value *llvm::SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS, 5370 const SimplifyQuery &Q) { 5371 return ::SimplifyCmpInst(Predicate, LHS, RHS, Q, RecursionLimit); 5372 } 5373 5374 static bool IsIdempotent(Intrinsic::ID ID) { 5375 switch (ID) { 5376 default: return false; 5377 5378 // Unary idempotent: f(f(x)) = f(x) 5379 case Intrinsic::fabs: 5380 case Intrinsic::floor: 5381 case Intrinsic::ceil: 5382 case Intrinsic::trunc: 5383 case Intrinsic::rint: 5384 case Intrinsic::nearbyint: 5385 case Intrinsic::round: 5386 case Intrinsic::roundeven: 5387 case Intrinsic::canonicalize: 5388 return true; 5389 } 5390 } 5391 5392 static Value *SimplifyRelativeLoad(Constant *Ptr, Constant *Offset, 5393 const DataLayout &DL) { 5394 GlobalValue *PtrSym; 5395 APInt PtrOffset; 5396 if (!IsConstantOffsetFromGlobal(Ptr, PtrSym, PtrOffset, DL)) 5397 return nullptr; 5398 5399 Type *Int8PtrTy = Type::getInt8PtrTy(Ptr->getContext()); 5400 Type *Int32Ty = Type::getInt32Ty(Ptr->getContext()); 5401 Type *Int32PtrTy = Int32Ty->getPointerTo(); 5402 Type *Int64Ty = Type::getInt64Ty(Ptr->getContext()); 5403 5404 auto *OffsetConstInt = dyn_cast<ConstantInt>(Offset); 5405 if (!OffsetConstInt || OffsetConstInt->getType()->getBitWidth() > 64) 5406 return nullptr; 5407 5408 uint64_t OffsetInt = OffsetConstInt->getSExtValue(); 5409 if (OffsetInt % 4 != 0) 5410 return nullptr; 5411 5412 Constant *C = ConstantExpr::getGetElementPtr( 5413 Int32Ty, ConstantExpr::getBitCast(Ptr, Int32PtrTy), 5414 ConstantInt::get(Int64Ty, OffsetInt / 4)); 5415 Constant *Loaded = ConstantFoldLoadFromConstPtr(C, Int32Ty, DL); 5416 if (!Loaded) 5417 return nullptr; 5418 5419 auto *LoadedCE = dyn_cast<ConstantExpr>(Loaded); 5420 if (!LoadedCE) 5421 return nullptr; 5422 5423 if (LoadedCE->getOpcode() == Instruction::Trunc) { 5424 LoadedCE = dyn_cast<ConstantExpr>(LoadedCE->getOperand(0)); 5425 if (!LoadedCE) 5426 return nullptr; 5427 } 5428 5429 if (LoadedCE->getOpcode() != Instruction::Sub) 5430 return nullptr; 5431 5432 auto *LoadedLHS = dyn_cast<ConstantExpr>(LoadedCE->getOperand(0)); 5433 if (!LoadedLHS || LoadedLHS->getOpcode() != Instruction::PtrToInt) 5434 return nullptr; 5435 auto *LoadedLHSPtr = LoadedLHS->getOperand(0); 5436 5437 Constant *LoadedRHS = LoadedCE->getOperand(1); 5438 GlobalValue *LoadedRHSSym; 5439 APInt LoadedRHSOffset; 5440 if (!IsConstantOffsetFromGlobal(LoadedRHS, LoadedRHSSym, LoadedRHSOffset, 5441 DL) || 5442 PtrSym != LoadedRHSSym || PtrOffset != LoadedRHSOffset) 5443 return nullptr; 5444 5445 return ConstantExpr::getBitCast(LoadedLHSPtr, Int8PtrTy); 5446 } 5447 5448 static Value *simplifyUnaryIntrinsic(Function *F, Value *Op0, 5449 const SimplifyQuery &Q) { 5450 // Idempotent functions return the same result when called repeatedly. 5451 Intrinsic::ID IID = F->getIntrinsicID(); 5452 if (IsIdempotent(IID)) 5453 if (auto *II = dyn_cast<IntrinsicInst>(Op0)) 5454 if (II->getIntrinsicID() == IID) 5455 return II; 5456 5457 Value *X; 5458 switch (IID) { 5459 case Intrinsic::fabs: 5460 if (SignBitMustBeZero(Op0, Q.TLI)) return Op0; 5461 break; 5462 case Intrinsic::bswap: 5463 // bswap(bswap(x)) -> x 5464 if (match(Op0, m_BSwap(m_Value(X)))) return X; 5465 break; 5466 case Intrinsic::bitreverse: 5467 // bitreverse(bitreverse(x)) -> x 5468 if (match(Op0, m_BitReverse(m_Value(X)))) return X; 5469 break; 5470 case Intrinsic::ctpop: { 5471 // If everything but the lowest bit is zero, that bit is the pop-count. Ex: 5472 // ctpop(and X, 1) --> and X, 1 5473 unsigned BitWidth = Op0->getType()->getScalarSizeInBits(); 5474 if (MaskedValueIsZero(Op0, APInt::getHighBitsSet(BitWidth, BitWidth - 1), 5475 Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 5476 return Op0; 5477 break; 5478 } 5479 case Intrinsic::exp: 5480 // exp(log(x)) -> x 5481 if (Q.CxtI->hasAllowReassoc() && 5482 match(Op0, m_Intrinsic<Intrinsic::log>(m_Value(X)))) return X; 5483 break; 5484 case Intrinsic::exp2: 5485 // exp2(log2(x)) -> x 5486 if (Q.CxtI->hasAllowReassoc() && 5487 match(Op0, m_Intrinsic<Intrinsic::log2>(m_Value(X)))) return X; 5488 break; 5489 case Intrinsic::log: 5490 // log(exp(x)) -> x 5491 if (Q.CxtI->hasAllowReassoc() && 5492 match(Op0, m_Intrinsic<Intrinsic::exp>(m_Value(X)))) return X; 5493 break; 5494 case Intrinsic::log2: 5495 // log2(exp2(x)) -> x 5496 if (Q.CxtI->hasAllowReassoc() && 5497 (match(Op0, m_Intrinsic<Intrinsic::exp2>(m_Value(X))) || 5498 match(Op0, m_Intrinsic<Intrinsic::pow>(m_SpecificFP(2.0), 5499 m_Value(X))))) return X; 5500 break; 5501 case Intrinsic::log10: 5502 // log10(pow(10.0, x)) -> x 5503 if (Q.CxtI->hasAllowReassoc() && 5504 match(Op0, m_Intrinsic<Intrinsic::pow>(m_SpecificFP(10.0), 5505 m_Value(X)))) return X; 5506 break; 5507 case Intrinsic::floor: 5508 case Intrinsic::trunc: 5509 case Intrinsic::ceil: 5510 case Intrinsic::round: 5511 case Intrinsic::roundeven: 5512 case Intrinsic::nearbyint: 5513 case Intrinsic::rint: { 5514 // floor (sitofp x) -> sitofp x 5515 // floor (uitofp x) -> uitofp x 5516 // 5517 // Converting from int always results in a finite integral number or 5518 // infinity. For either of those inputs, these rounding functions always 5519 // return the same value, so the rounding can be eliminated. 5520 if (match(Op0, m_SIToFP(m_Value())) || match(Op0, m_UIToFP(m_Value()))) 5521 return Op0; 5522 break; 5523 } 5524 case Intrinsic::experimental_vector_reverse: 5525 // experimental.vector.reverse(experimental.vector.reverse(x)) -> x 5526 if (match(Op0, 5527 m_Intrinsic<Intrinsic::experimental_vector_reverse>(m_Value(X)))) 5528 return X; 5529 // experimental.vector.reverse(splat(X)) -> splat(X) 5530 if (isSplatValue(Op0)) 5531 return Op0; 5532 break; 5533 default: 5534 break; 5535 } 5536 5537 return nullptr; 5538 } 5539 5540 static APInt getMaxMinLimit(Intrinsic::ID IID, unsigned BitWidth) { 5541 switch (IID) { 5542 case Intrinsic::smax: return APInt::getSignedMaxValue(BitWidth); 5543 case Intrinsic::smin: return APInt::getSignedMinValue(BitWidth); 5544 case Intrinsic::umax: return APInt::getMaxValue(BitWidth); 5545 case Intrinsic::umin: return APInt::getMinValue(BitWidth); 5546 default: llvm_unreachable("Unexpected intrinsic"); 5547 } 5548 } 5549 5550 static ICmpInst::Predicate getMaxMinPredicate(Intrinsic::ID IID) { 5551 switch (IID) { 5552 case Intrinsic::smax: return ICmpInst::ICMP_SGE; 5553 case Intrinsic::smin: return ICmpInst::ICMP_SLE; 5554 case Intrinsic::umax: return ICmpInst::ICMP_UGE; 5555 case Intrinsic::umin: return ICmpInst::ICMP_ULE; 5556 default: llvm_unreachable("Unexpected intrinsic"); 5557 } 5558 } 5559 5560 /// Given a min/max intrinsic, see if it can be removed based on having an 5561 /// operand that is another min/max intrinsic with shared operand(s). The caller 5562 /// is expected to swap the operand arguments to handle commutation. 5563 static Value *foldMinMaxSharedOp(Intrinsic::ID IID, Value *Op0, Value *Op1) { 5564 Value *X, *Y; 5565 if (!match(Op0, m_MaxOrMin(m_Value(X), m_Value(Y)))) 5566 return nullptr; 5567 5568 auto *MM0 = dyn_cast<IntrinsicInst>(Op0); 5569 if (!MM0) 5570 return nullptr; 5571 Intrinsic::ID IID0 = MM0->getIntrinsicID(); 5572 5573 if (Op1 == X || Op1 == Y || 5574 match(Op1, m_c_MaxOrMin(m_Specific(X), m_Specific(Y)))) { 5575 // max (max X, Y), X --> max X, Y 5576 if (IID0 == IID) 5577 return MM0; 5578 // max (min X, Y), X --> X 5579 if (IID0 == getInverseMinMaxIntrinsic(IID)) 5580 return Op1; 5581 } 5582 return nullptr; 5583 } 5584 5585 static Value *simplifyBinaryIntrinsic(Function *F, Value *Op0, Value *Op1, 5586 const SimplifyQuery &Q) { 5587 Intrinsic::ID IID = F->getIntrinsicID(); 5588 Type *ReturnType = F->getReturnType(); 5589 unsigned BitWidth = ReturnType->getScalarSizeInBits(); 5590 switch (IID) { 5591 case Intrinsic::abs: 5592 // abs(abs(x)) -> abs(x). We don't need to worry about the nsw arg here. 5593 // It is always ok to pick the earlier abs. We'll just lose nsw if its only 5594 // on the outer abs. 5595 if (match(Op0, m_Intrinsic<Intrinsic::abs>(m_Value(), m_Value()))) 5596 return Op0; 5597 break; 5598 5599 case Intrinsic::cttz: { 5600 Value *X; 5601 if (match(Op0, m_Shl(m_One(), m_Value(X)))) 5602 return X; 5603 break; 5604 } 5605 case Intrinsic::ctlz: { 5606 Value *X; 5607 if (match(Op0, m_LShr(m_Negative(), m_Value(X)))) 5608 return X; 5609 if (match(Op0, m_AShr(m_Negative(), m_Value()))) 5610 return Constant::getNullValue(ReturnType); 5611 break; 5612 } 5613 case Intrinsic::smax: 5614 case Intrinsic::smin: 5615 case Intrinsic::umax: 5616 case Intrinsic::umin: { 5617 // If the arguments are the same, this is a no-op. 5618 if (Op0 == Op1) 5619 return Op0; 5620 5621 // Canonicalize constant operand as Op1. 5622 if (isa<Constant>(Op0)) 5623 std::swap(Op0, Op1); 5624 5625 // Assume undef is the limit value. 5626 if (Q.isUndefValue(Op1)) 5627 return ConstantInt::get(ReturnType, getMaxMinLimit(IID, BitWidth)); 5628 5629 const APInt *C; 5630 if (match(Op1, m_APIntAllowUndef(C))) { 5631 // Clamp to limit value. For example: 5632 // umax(i8 %x, i8 255) --> 255 5633 if (*C == getMaxMinLimit(IID, BitWidth)) 5634 return ConstantInt::get(ReturnType, *C); 5635 5636 // If the constant op is the opposite of the limit value, the other must 5637 // be larger/smaller or equal. For example: 5638 // umin(i8 %x, i8 255) --> %x 5639 if (*C == getMaxMinLimit(getInverseMinMaxIntrinsic(IID), BitWidth)) 5640 return Op0; 5641 5642 // Remove nested call if constant operands allow it. Example: 5643 // max (max X, 7), 5 -> max X, 7 5644 auto *MinMax0 = dyn_cast<IntrinsicInst>(Op0); 5645 if (MinMax0 && MinMax0->getIntrinsicID() == IID) { 5646 // TODO: loosen undef/splat restrictions for vector constants. 5647 Value *M00 = MinMax0->getOperand(0), *M01 = MinMax0->getOperand(1); 5648 const APInt *InnerC; 5649 if ((match(M00, m_APInt(InnerC)) || match(M01, m_APInt(InnerC))) && 5650 ((IID == Intrinsic::smax && InnerC->sge(*C)) || 5651 (IID == Intrinsic::smin && InnerC->sle(*C)) || 5652 (IID == Intrinsic::umax && InnerC->uge(*C)) || 5653 (IID == Intrinsic::umin && InnerC->ule(*C)))) 5654 return Op0; 5655 } 5656 } 5657 5658 if (Value *V = foldMinMaxSharedOp(IID, Op0, Op1)) 5659 return V; 5660 if (Value *V = foldMinMaxSharedOp(IID, Op1, Op0)) 5661 return V; 5662 5663 ICmpInst::Predicate Pred = getMaxMinPredicate(IID); 5664 if (isICmpTrue(Pred, Op0, Op1, Q.getWithoutUndef(), RecursionLimit)) 5665 return Op0; 5666 if (isICmpTrue(Pred, Op1, Op0, Q.getWithoutUndef(), RecursionLimit)) 5667 return Op1; 5668 5669 if (Optional<bool> Imp = 5670 isImpliedByDomCondition(Pred, Op0, Op1, Q.CxtI, Q.DL)) 5671 return *Imp ? Op0 : Op1; 5672 if (Optional<bool> Imp = 5673 isImpliedByDomCondition(Pred, Op1, Op0, Q.CxtI, Q.DL)) 5674 return *Imp ? Op1 : Op0; 5675 5676 break; 5677 } 5678 case Intrinsic::usub_with_overflow: 5679 case Intrinsic::ssub_with_overflow: 5680 // X - X -> { 0, false } 5681 // X - undef -> { 0, false } 5682 // undef - X -> { 0, false } 5683 if (Op0 == Op1 || Q.isUndefValue(Op0) || Q.isUndefValue(Op1)) 5684 return Constant::getNullValue(ReturnType); 5685 break; 5686 case Intrinsic::uadd_with_overflow: 5687 case Intrinsic::sadd_with_overflow: 5688 // X + undef -> { -1, false } 5689 // undef + x -> { -1, false } 5690 if (Q.isUndefValue(Op0) || Q.isUndefValue(Op1)) { 5691 return ConstantStruct::get( 5692 cast<StructType>(ReturnType), 5693 {Constant::getAllOnesValue(ReturnType->getStructElementType(0)), 5694 Constant::getNullValue(ReturnType->getStructElementType(1))}); 5695 } 5696 break; 5697 case Intrinsic::umul_with_overflow: 5698 case Intrinsic::smul_with_overflow: 5699 // 0 * X -> { 0, false } 5700 // X * 0 -> { 0, false } 5701 if (match(Op0, m_Zero()) || match(Op1, m_Zero())) 5702 return Constant::getNullValue(ReturnType); 5703 // undef * X -> { 0, false } 5704 // X * undef -> { 0, false } 5705 if (Q.isUndefValue(Op0) || Q.isUndefValue(Op1)) 5706 return Constant::getNullValue(ReturnType); 5707 break; 5708 case Intrinsic::uadd_sat: 5709 // sat(MAX + X) -> MAX 5710 // sat(X + MAX) -> MAX 5711 if (match(Op0, m_AllOnes()) || match(Op1, m_AllOnes())) 5712 return Constant::getAllOnesValue(ReturnType); 5713 LLVM_FALLTHROUGH; 5714 case Intrinsic::sadd_sat: 5715 // sat(X + undef) -> -1 5716 // sat(undef + X) -> -1 5717 // For unsigned: Assume undef is MAX, thus we saturate to MAX (-1). 5718 // For signed: Assume undef is ~X, in which case X + ~X = -1. 5719 if (Q.isUndefValue(Op0) || Q.isUndefValue(Op1)) 5720 return Constant::getAllOnesValue(ReturnType); 5721 5722 // X + 0 -> X 5723 if (match(Op1, m_Zero())) 5724 return Op0; 5725 // 0 + X -> X 5726 if (match(Op0, m_Zero())) 5727 return Op1; 5728 break; 5729 case Intrinsic::usub_sat: 5730 // sat(0 - X) -> 0, sat(X - MAX) -> 0 5731 if (match(Op0, m_Zero()) || match(Op1, m_AllOnes())) 5732 return Constant::getNullValue(ReturnType); 5733 LLVM_FALLTHROUGH; 5734 case Intrinsic::ssub_sat: 5735 // X - X -> 0, X - undef -> 0, undef - X -> 0 5736 if (Op0 == Op1 || Q.isUndefValue(Op0) || Q.isUndefValue(Op1)) 5737 return Constant::getNullValue(ReturnType); 5738 // X - 0 -> X 5739 if (match(Op1, m_Zero())) 5740 return Op0; 5741 break; 5742 case Intrinsic::load_relative: 5743 if (auto *C0 = dyn_cast<Constant>(Op0)) 5744 if (auto *C1 = dyn_cast<Constant>(Op1)) 5745 return SimplifyRelativeLoad(C0, C1, Q.DL); 5746 break; 5747 case Intrinsic::powi: 5748 if (auto *Power = dyn_cast<ConstantInt>(Op1)) { 5749 // powi(x, 0) -> 1.0 5750 if (Power->isZero()) 5751 return ConstantFP::get(Op0->getType(), 1.0); 5752 // powi(x, 1) -> x 5753 if (Power->isOne()) 5754 return Op0; 5755 } 5756 break; 5757 case Intrinsic::copysign: 5758 // copysign X, X --> X 5759 if (Op0 == Op1) 5760 return Op0; 5761 // copysign -X, X --> X 5762 // copysign X, -X --> -X 5763 if (match(Op0, m_FNeg(m_Specific(Op1))) || 5764 match(Op1, m_FNeg(m_Specific(Op0)))) 5765 return Op1; 5766 break; 5767 case Intrinsic::maxnum: 5768 case Intrinsic::minnum: 5769 case Intrinsic::maximum: 5770 case Intrinsic::minimum: { 5771 // If the arguments are the same, this is a no-op. 5772 if (Op0 == Op1) return Op0; 5773 5774 // Canonicalize constant operand as Op1. 5775 if (isa<Constant>(Op0)) 5776 std::swap(Op0, Op1); 5777 5778 // If an argument is undef, return the other argument. 5779 if (Q.isUndefValue(Op1)) 5780 return Op0; 5781 5782 bool PropagateNaN = IID == Intrinsic::minimum || IID == Intrinsic::maximum; 5783 bool IsMin = IID == Intrinsic::minimum || IID == Intrinsic::minnum; 5784 5785 // minnum(X, nan) -> X 5786 // maxnum(X, nan) -> X 5787 // minimum(X, nan) -> nan 5788 // maximum(X, nan) -> nan 5789 if (match(Op1, m_NaN())) 5790 return PropagateNaN ? propagateNaN(cast<Constant>(Op1)) : Op0; 5791 5792 // In the following folds, inf can be replaced with the largest finite 5793 // float, if the ninf flag is set. 5794 const APFloat *C; 5795 if (match(Op1, m_APFloat(C)) && 5796 (C->isInfinity() || (Q.CxtI->hasNoInfs() && C->isLargest()))) { 5797 // minnum(X, -inf) -> -inf 5798 // maxnum(X, +inf) -> +inf 5799 // minimum(X, -inf) -> -inf if nnan 5800 // maximum(X, +inf) -> +inf if nnan 5801 if (C->isNegative() == IsMin && (!PropagateNaN || Q.CxtI->hasNoNaNs())) 5802 return ConstantFP::get(ReturnType, *C); 5803 5804 // minnum(X, +inf) -> X if nnan 5805 // maxnum(X, -inf) -> X if nnan 5806 // minimum(X, +inf) -> X 5807 // maximum(X, -inf) -> X 5808 if (C->isNegative() != IsMin && (PropagateNaN || Q.CxtI->hasNoNaNs())) 5809 return Op0; 5810 } 5811 5812 // Min/max of the same operation with common operand: 5813 // m(m(X, Y)), X --> m(X, Y) (4 commuted variants) 5814 if (auto *M0 = dyn_cast<IntrinsicInst>(Op0)) 5815 if (M0->getIntrinsicID() == IID && 5816 (M0->getOperand(0) == Op1 || M0->getOperand(1) == Op1)) 5817 return Op0; 5818 if (auto *M1 = dyn_cast<IntrinsicInst>(Op1)) 5819 if (M1->getIntrinsicID() == IID && 5820 (M1->getOperand(0) == Op0 || M1->getOperand(1) == Op0)) 5821 return Op1; 5822 5823 break; 5824 } 5825 case Intrinsic::experimental_vector_extract: { 5826 Type *ReturnType = F->getReturnType(); 5827 5828 // (extract_vector (insert_vector _, X, 0), 0) -> X 5829 unsigned IdxN = cast<ConstantInt>(Op1)->getZExtValue(); 5830 Value *X = nullptr; 5831 if (match(Op0, m_Intrinsic<Intrinsic::experimental_vector_insert>( 5832 m_Value(), m_Value(X), m_Zero())) && 5833 IdxN == 0 && X->getType() == ReturnType) 5834 return X; 5835 5836 break; 5837 } 5838 default: 5839 break; 5840 } 5841 5842 return nullptr; 5843 } 5844 5845 static Value *simplifyIntrinsic(CallBase *Call, const SimplifyQuery &Q) { 5846 5847 unsigned NumOperands = Call->arg_size(); 5848 Function *F = cast<Function>(Call->getCalledFunction()); 5849 Intrinsic::ID IID = F->getIntrinsicID(); 5850 5851 // Most of the intrinsics with no operands have some kind of side effect. 5852 // Don't simplify. 5853 if (!NumOperands) { 5854 switch (IID) { 5855 case Intrinsic::vscale: { 5856 // Call may not be inserted into the IR yet at point of calling simplify. 5857 if (!Call->getParent() || !Call->getParent()->getParent()) 5858 return nullptr; 5859 auto Attr = Call->getFunction()->getFnAttribute(Attribute::VScaleRange); 5860 if (!Attr.isValid()) 5861 return nullptr; 5862 unsigned VScaleMin, VScaleMax; 5863 std::tie(VScaleMin, VScaleMax) = Attr.getVScaleRangeArgs(); 5864 if (VScaleMin == VScaleMax && VScaleMax != 0) 5865 return ConstantInt::get(F->getReturnType(), VScaleMin); 5866 return nullptr; 5867 } 5868 default: 5869 return nullptr; 5870 } 5871 } 5872 5873 if (NumOperands == 1) 5874 return simplifyUnaryIntrinsic(F, Call->getArgOperand(0), Q); 5875 5876 if (NumOperands == 2) 5877 return simplifyBinaryIntrinsic(F, Call->getArgOperand(0), 5878 Call->getArgOperand(1), Q); 5879 5880 // Handle intrinsics with 3 or more arguments. 5881 switch (IID) { 5882 case Intrinsic::masked_load: 5883 case Intrinsic::masked_gather: { 5884 Value *MaskArg = Call->getArgOperand(2); 5885 Value *PassthruArg = Call->getArgOperand(3); 5886 // If the mask is all zeros or undef, the "passthru" argument is the result. 5887 if (maskIsAllZeroOrUndef(MaskArg)) 5888 return PassthruArg; 5889 return nullptr; 5890 } 5891 case Intrinsic::fshl: 5892 case Intrinsic::fshr: { 5893 Value *Op0 = Call->getArgOperand(0), *Op1 = Call->getArgOperand(1), 5894 *ShAmtArg = Call->getArgOperand(2); 5895 5896 // If both operands are undef, the result is undef. 5897 if (Q.isUndefValue(Op0) && Q.isUndefValue(Op1)) 5898 return UndefValue::get(F->getReturnType()); 5899 5900 // If shift amount is undef, assume it is zero. 5901 if (Q.isUndefValue(ShAmtArg)) 5902 return Call->getArgOperand(IID == Intrinsic::fshl ? 0 : 1); 5903 5904 const APInt *ShAmtC; 5905 if (match(ShAmtArg, m_APInt(ShAmtC))) { 5906 // If there's effectively no shift, return the 1st arg or 2nd arg. 5907 APInt BitWidth = APInt(ShAmtC->getBitWidth(), ShAmtC->getBitWidth()); 5908 if (ShAmtC->urem(BitWidth).isZero()) 5909 return Call->getArgOperand(IID == Intrinsic::fshl ? 0 : 1); 5910 } 5911 5912 // Rotating zero by anything is zero. 5913 if (match(Op0, m_Zero()) && match(Op1, m_Zero())) 5914 return ConstantInt::getNullValue(F->getReturnType()); 5915 5916 // Rotating -1 by anything is -1. 5917 if (match(Op0, m_AllOnes()) && match(Op1, m_AllOnes())) 5918 return ConstantInt::getAllOnesValue(F->getReturnType()); 5919 5920 return nullptr; 5921 } 5922 case Intrinsic::experimental_constrained_fma: { 5923 Value *Op0 = Call->getArgOperand(0); 5924 Value *Op1 = Call->getArgOperand(1); 5925 Value *Op2 = Call->getArgOperand(2); 5926 auto *FPI = cast<ConstrainedFPIntrinsic>(Call); 5927 if (Value *V = simplifyFPOp({Op0, Op1, Op2}, {}, Q, 5928 FPI->getExceptionBehavior().getValue(), 5929 FPI->getRoundingMode().getValue())) 5930 return V; 5931 return nullptr; 5932 } 5933 case Intrinsic::fma: 5934 case Intrinsic::fmuladd: { 5935 Value *Op0 = Call->getArgOperand(0); 5936 Value *Op1 = Call->getArgOperand(1); 5937 Value *Op2 = Call->getArgOperand(2); 5938 if (Value *V = simplifyFPOp({Op0, Op1, Op2}, {}, Q, fp::ebIgnore, 5939 RoundingMode::NearestTiesToEven)) 5940 return V; 5941 return nullptr; 5942 } 5943 case Intrinsic::smul_fix: 5944 case Intrinsic::smul_fix_sat: { 5945 Value *Op0 = Call->getArgOperand(0); 5946 Value *Op1 = Call->getArgOperand(1); 5947 Value *Op2 = Call->getArgOperand(2); 5948 Type *ReturnType = F->getReturnType(); 5949 5950 // Canonicalize constant operand as Op1 (ConstantFolding handles the case 5951 // when both Op0 and Op1 are constant so we do not care about that special 5952 // case here). 5953 if (isa<Constant>(Op0)) 5954 std::swap(Op0, Op1); 5955 5956 // X * 0 -> 0 5957 if (match(Op1, m_Zero())) 5958 return Constant::getNullValue(ReturnType); 5959 5960 // X * undef -> 0 5961 if (Q.isUndefValue(Op1)) 5962 return Constant::getNullValue(ReturnType); 5963 5964 // X * (1 << Scale) -> X 5965 APInt ScaledOne = 5966 APInt::getOneBitSet(ReturnType->getScalarSizeInBits(), 5967 cast<ConstantInt>(Op2)->getZExtValue()); 5968 if (ScaledOne.isNonNegative() && match(Op1, m_SpecificInt(ScaledOne))) 5969 return Op0; 5970 5971 return nullptr; 5972 } 5973 case Intrinsic::experimental_vector_insert: { 5974 Value *Vec = Call->getArgOperand(0); 5975 Value *SubVec = Call->getArgOperand(1); 5976 Value *Idx = Call->getArgOperand(2); 5977 Type *ReturnType = F->getReturnType(); 5978 5979 // (insert_vector Y, (extract_vector X, 0), 0) -> X 5980 // where: Y is X, or Y is undef 5981 unsigned IdxN = cast<ConstantInt>(Idx)->getZExtValue(); 5982 Value *X = nullptr; 5983 if (match(SubVec, m_Intrinsic<Intrinsic::experimental_vector_extract>( 5984 m_Value(X), m_Zero())) && 5985 (Q.isUndefValue(Vec) || Vec == X) && IdxN == 0 && 5986 X->getType() == ReturnType) 5987 return X; 5988 5989 return nullptr; 5990 } 5991 case Intrinsic::experimental_constrained_fadd: { 5992 auto *FPI = cast<ConstrainedFPIntrinsic>(Call); 5993 return SimplifyFAddInst(FPI->getArgOperand(0), FPI->getArgOperand(1), 5994 FPI->getFastMathFlags(), Q, 5995 FPI->getExceptionBehavior().getValue(), 5996 FPI->getRoundingMode().getValue()); 5997 break; 5998 } 5999 case Intrinsic::experimental_constrained_fsub: { 6000 auto *FPI = cast<ConstrainedFPIntrinsic>(Call); 6001 return SimplifyFSubInst(FPI->getArgOperand(0), FPI->getArgOperand(1), 6002 FPI->getFastMathFlags(), Q, 6003 FPI->getExceptionBehavior().getValue(), 6004 FPI->getRoundingMode().getValue()); 6005 break; 6006 } 6007 case Intrinsic::experimental_constrained_fmul: { 6008 auto *FPI = cast<ConstrainedFPIntrinsic>(Call); 6009 return SimplifyFMulInst(FPI->getArgOperand(0), FPI->getArgOperand(1), 6010 FPI->getFastMathFlags(), Q, 6011 FPI->getExceptionBehavior().getValue(), 6012 FPI->getRoundingMode().getValue()); 6013 break; 6014 } 6015 case Intrinsic::experimental_constrained_fdiv: { 6016 auto *FPI = cast<ConstrainedFPIntrinsic>(Call); 6017 return SimplifyFDivInst(FPI->getArgOperand(0), FPI->getArgOperand(1), 6018 FPI->getFastMathFlags(), Q, 6019 FPI->getExceptionBehavior().getValue(), 6020 FPI->getRoundingMode().getValue()); 6021 break; 6022 } 6023 case Intrinsic::experimental_constrained_frem: { 6024 auto *FPI = cast<ConstrainedFPIntrinsic>(Call); 6025 return SimplifyFRemInst(FPI->getArgOperand(0), FPI->getArgOperand(1), 6026 FPI->getFastMathFlags(), Q, 6027 FPI->getExceptionBehavior().getValue(), 6028 FPI->getRoundingMode().getValue()); 6029 break; 6030 } 6031 default: 6032 return nullptr; 6033 } 6034 } 6035 6036 static Value *tryConstantFoldCall(CallBase *Call, const SimplifyQuery &Q) { 6037 auto *F = dyn_cast<Function>(Call->getCalledOperand()); 6038 if (!F || !canConstantFoldCallTo(Call, F)) 6039 return nullptr; 6040 6041 SmallVector<Constant *, 4> ConstantArgs; 6042 unsigned NumArgs = Call->arg_size(); 6043 ConstantArgs.reserve(NumArgs); 6044 for (auto &Arg : Call->args()) { 6045 Constant *C = dyn_cast<Constant>(&Arg); 6046 if (!C) { 6047 if (isa<MetadataAsValue>(Arg.get())) 6048 continue; 6049 return nullptr; 6050 } 6051 ConstantArgs.push_back(C); 6052 } 6053 6054 return ConstantFoldCall(Call, F, ConstantArgs, Q.TLI); 6055 } 6056 6057 Value *llvm::SimplifyCall(CallBase *Call, const SimplifyQuery &Q) { 6058 // musttail calls can only be simplified if they are also DCEd. 6059 // As we can't guarantee this here, don't simplify them. 6060 if (Call->isMustTailCall()) 6061 return nullptr; 6062 6063 // call undef -> poison 6064 // call null -> poison 6065 Value *Callee = Call->getCalledOperand(); 6066 if (isa<UndefValue>(Callee) || isa<ConstantPointerNull>(Callee)) 6067 return PoisonValue::get(Call->getType()); 6068 6069 if (Value *V = tryConstantFoldCall(Call, Q)) 6070 return V; 6071 6072 auto *F = dyn_cast<Function>(Callee); 6073 if (F && F->isIntrinsic()) 6074 if (Value *Ret = simplifyIntrinsic(Call, Q)) 6075 return Ret; 6076 6077 return nullptr; 6078 } 6079 6080 /// Given operands for a Freeze, see if we can fold the result. 6081 static Value *SimplifyFreezeInst(Value *Op0, const SimplifyQuery &Q) { 6082 // Use a utility function defined in ValueTracking. 6083 if (llvm::isGuaranteedNotToBeUndefOrPoison(Op0, Q.AC, Q.CxtI, Q.DT)) 6084 return Op0; 6085 // We have room for improvement. 6086 return nullptr; 6087 } 6088 6089 Value *llvm::SimplifyFreezeInst(Value *Op0, const SimplifyQuery &Q) { 6090 return ::SimplifyFreezeInst(Op0, Q); 6091 } 6092 6093 static Constant *ConstructLoadOperandConstant(Value *Op) { 6094 SmallVector<Value *, 4> Worklist; 6095 // Invalid IR in unreachable code may contain self-referential values. Don't infinitely loop. 6096 SmallPtrSet<Value *, 4> Visited; 6097 Worklist.push_back(Op); 6098 while (true) { 6099 Value *CurOp = Worklist.back(); 6100 if (!Visited.insert(CurOp).second) 6101 return nullptr; 6102 if (isa<Constant>(CurOp)) 6103 break; 6104 if (auto *BC = dyn_cast<BitCastOperator>(CurOp)) { 6105 Worklist.push_back(BC->getOperand(0)); 6106 } else if (auto *GEP = dyn_cast<GEPOperator>(CurOp)) { 6107 for (unsigned I = 1; I != GEP->getNumOperands(); ++I) { 6108 if (!isa<Constant>(GEP->getOperand(I))) 6109 return nullptr; 6110 } 6111 Worklist.push_back(GEP->getOperand(0)); 6112 } else if (auto *II = dyn_cast<IntrinsicInst>(CurOp)) { 6113 if (II->isLaunderOrStripInvariantGroup()) 6114 Worklist.push_back(II->getOperand(0)); 6115 else 6116 return nullptr; 6117 } else { 6118 return nullptr; 6119 } 6120 } 6121 6122 Constant *NewOp = cast<Constant>(Worklist.pop_back_val()); 6123 while (!Worklist.empty()) { 6124 Value *CurOp = Worklist.pop_back_val(); 6125 if (isa<BitCastOperator>(CurOp)) { 6126 NewOp = ConstantExpr::getBitCast(NewOp, CurOp->getType()); 6127 } else if (auto *GEP = dyn_cast<GEPOperator>(CurOp)) { 6128 SmallVector<Constant *> Idxs; 6129 Idxs.reserve(GEP->getNumOperands() - 1); 6130 for (unsigned I = 1, E = GEP->getNumOperands(); I != E; ++I) { 6131 Idxs.push_back(cast<Constant>(GEP->getOperand(I))); 6132 } 6133 NewOp = ConstantExpr::getGetElementPtr(GEP->getSourceElementType(), NewOp, 6134 Idxs, GEP->isInBounds(), 6135 GEP->getInRangeIndex()); 6136 } else { 6137 assert(isa<IntrinsicInst>(CurOp) && 6138 cast<IntrinsicInst>(CurOp)->isLaunderOrStripInvariantGroup() && 6139 "expected invariant group intrinsic"); 6140 NewOp = ConstantExpr::getBitCast(NewOp, CurOp->getType()); 6141 } 6142 } 6143 return NewOp; 6144 } 6145 6146 static Value *SimplifyLoadInst(LoadInst *LI, Value *PtrOp, 6147 const SimplifyQuery &Q) { 6148 if (LI->isVolatile()) 6149 return nullptr; 6150 6151 // Try to make the load operand a constant, specifically handle 6152 // invariant.group intrinsics. 6153 auto *PtrOpC = dyn_cast<Constant>(PtrOp); 6154 if (!PtrOpC) 6155 PtrOpC = ConstructLoadOperandConstant(PtrOp); 6156 6157 if (PtrOpC) 6158 return ConstantFoldLoadFromConstPtr(PtrOpC, LI->getType(), Q.DL); 6159 6160 return nullptr; 6161 } 6162 6163 /// See if we can compute a simplified version of this instruction. 6164 /// If not, this returns null. 6165 6166 static Value *simplifyInstructionWithOperands(Instruction *I, 6167 ArrayRef<Value *> NewOps, 6168 const SimplifyQuery &SQ, 6169 OptimizationRemarkEmitter *ORE) { 6170 const SimplifyQuery Q = SQ.CxtI ? SQ : SQ.getWithInstruction(I); 6171 Value *Result = nullptr; 6172 6173 switch (I->getOpcode()) { 6174 default: 6175 if (llvm::all_of(NewOps, [](Value *V) { return isa<Constant>(V); })) { 6176 SmallVector<Constant *, 8> NewConstOps(NewOps.size()); 6177 transform(NewOps, NewConstOps.begin(), 6178 [](Value *V) { return cast<Constant>(V); }); 6179 Result = ConstantFoldInstOperands(I, NewConstOps, Q.DL, Q.TLI); 6180 } 6181 break; 6182 case Instruction::FNeg: 6183 Result = SimplifyFNegInst(NewOps[0], I->getFastMathFlags(), Q); 6184 break; 6185 case Instruction::FAdd: 6186 Result = SimplifyFAddInst(NewOps[0], NewOps[1], I->getFastMathFlags(), Q); 6187 break; 6188 case Instruction::Add: 6189 Result = SimplifyAddInst( 6190 NewOps[0], NewOps[1], Q.IIQ.hasNoSignedWrap(cast<BinaryOperator>(I)), 6191 Q.IIQ.hasNoUnsignedWrap(cast<BinaryOperator>(I)), Q); 6192 break; 6193 case Instruction::FSub: 6194 Result = SimplifyFSubInst(NewOps[0], NewOps[1], I->getFastMathFlags(), Q); 6195 break; 6196 case Instruction::Sub: 6197 Result = SimplifySubInst( 6198 NewOps[0], NewOps[1], Q.IIQ.hasNoSignedWrap(cast<BinaryOperator>(I)), 6199 Q.IIQ.hasNoUnsignedWrap(cast<BinaryOperator>(I)), Q); 6200 break; 6201 case Instruction::FMul: 6202 Result = SimplifyFMulInst(NewOps[0], NewOps[1], I->getFastMathFlags(), Q); 6203 break; 6204 case Instruction::Mul: 6205 Result = SimplifyMulInst(NewOps[0], NewOps[1], Q); 6206 break; 6207 case Instruction::SDiv: 6208 Result = SimplifySDivInst(NewOps[0], NewOps[1], Q); 6209 break; 6210 case Instruction::UDiv: 6211 Result = SimplifyUDivInst(NewOps[0], NewOps[1], Q); 6212 break; 6213 case Instruction::FDiv: 6214 Result = SimplifyFDivInst(NewOps[0], NewOps[1], I->getFastMathFlags(), Q); 6215 break; 6216 case Instruction::SRem: 6217 Result = SimplifySRemInst(NewOps[0], NewOps[1], Q); 6218 break; 6219 case Instruction::URem: 6220 Result = SimplifyURemInst(NewOps[0], NewOps[1], Q); 6221 break; 6222 case Instruction::FRem: 6223 Result = SimplifyFRemInst(NewOps[0], NewOps[1], I->getFastMathFlags(), Q); 6224 break; 6225 case Instruction::Shl: 6226 Result = SimplifyShlInst( 6227 NewOps[0], NewOps[1], Q.IIQ.hasNoSignedWrap(cast<BinaryOperator>(I)), 6228 Q.IIQ.hasNoUnsignedWrap(cast<BinaryOperator>(I)), Q); 6229 break; 6230 case Instruction::LShr: 6231 Result = SimplifyLShrInst(NewOps[0], NewOps[1], 6232 Q.IIQ.isExact(cast<BinaryOperator>(I)), Q); 6233 break; 6234 case Instruction::AShr: 6235 Result = SimplifyAShrInst(NewOps[0], NewOps[1], 6236 Q.IIQ.isExact(cast<BinaryOperator>(I)), Q); 6237 break; 6238 case Instruction::And: 6239 Result = SimplifyAndInst(NewOps[0], NewOps[1], Q); 6240 break; 6241 case Instruction::Or: 6242 Result = SimplifyOrInst(NewOps[0], NewOps[1], Q); 6243 break; 6244 case Instruction::Xor: 6245 Result = SimplifyXorInst(NewOps[0], NewOps[1], Q); 6246 break; 6247 case Instruction::ICmp: 6248 Result = SimplifyICmpInst(cast<ICmpInst>(I)->getPredicate(), NewOps[0], 6249 NewOps[1], Q); 6250 break; 6251 case Instruction::FCmp: 6252 Result = SimplifyFCmpInst(cast<FCmpInst>(I)->getPredicate(), NewOps[0], 6253 NewOps[1], I->getFastMathFlags(), Q); 6254 break; 6255 case Instruction::Select: 6256 Result = SimplifySelectInst(NewOps[0], NewOps[1], NewOps[2], Q); 6257 break; 6258 case Instruction::GetElementPtr: { 6259 auto *GEPI = cast<GetElementPtrInst>(I); 6260 Result = SimplifyGEPInst(GEPI->getSourceElementType(), NewOps, 6261 GEPI->isInBounds(), Q); 6262 break; 6263 } 6264 case Instruction::InsertValue: { 6265 InsertValueInst *IV = cast<InsertValueInst>(I); 6266 Result = SimplifyInsertValueInst(NewOps[0], NewOps[1], IV->getIndices(), Q); 6267 break; 6268 } 6269 case Instruction::InsertElement: { 6270 Result = SimplifyInsertElementInst(NewOps[0], NewOps[1], NewOps[2], Q); 6271 break; 6272 } 6273 case Instruction::ExtractValue: { 6274 auto *EVI = cast<ExtractValueInst>(I); 6275 Result = SimplifyExtractValueInst(NewOps[0], EVI->getIndices(), Q); 6276 break; 6277 } 6278 case Instruction::ExtractElement: { 6279 Result = SimplifyExtractElementInst(NewOps[0], NewOps[1], Q); 6280 break; 6281 } 6282 case Instruction::ShuffleVector: { 6283 auto *SVI = cast<ShuffleVectorInst>(I); 6284 Result = SimplifyShuffleVectorInst( 6285 NewOps[0], NewOps[1], SVI->getShuffleMask(), SVI->getType(), Q); 6286 break; 6287 } 6288 case Instruction::PHI: 6289 Result = SimplifyPHINode(cast<PHINode>(I), NewOps, Q); 6290 break; 6291 case Instruction::Call: { 6292 // TODO: Use NewOps 6293 Result = SimplifyCall(cast<CallInst>(I), Q); 6294 break; 6295 } 6296 case Instruction::Freeze: 6297 Result = llvm::SimplifyFreezeInst(NewOps[0], Q); 6298 break; 6299 #define HANDLE_CAST_INST(num, opc, clas) case Instruction::opc: 6300 #include "llvm/IR/Instruction.def" 6301 #undef HANDLE_CAST_INST 6302 Result = SimplifyCastInst(I->getOpcode(), NewOps[0], I->getType(), Q); 6303 break; 6304 case Instruction::Alloca: 6305 // No simplifications for Alloca and it can't be constant folded. 6306 Result = nullptr; 6307 break; 6308 case Instruction::Load: 6309 Result = SimplifyLoadInst(cast<LoadInst>(I), NewOps[0], Q); 6310 break; 6311 } 6312 6313 /// If called on unreachable code, the above logic may report that the 6314 /// instruction simplified to itself. Make life easier for users by 6315 /// detecting that case here, returning a safe value instead. 6316 return Result == I ? UndefValue::get(I->getType()) : Result; 6317 } 6318 6319 Value *llvm::SimplifyInstructionWithOperands(Instruction *I, 6320 ArrayRef<Value *> NewOps, 6321 const SimplifyQuery &SQ, 6322 OptimizationRemarkEmitter *ORE) { 6323 assert(NewOps.size() == I->getNumOperands() && 6324 "Number of operands should match the instruction!"); 6325 return ::simplifyInstructionWithOperands(I, NewOps, SQ, ORE); 6326 } 6327 6328 Value *llvm::SimplifyInstruction(Instruction *I, const SimplifyQuery &SQ, 6329 OptimizationRemarkEmitter *ORE) { 6330 SmallVector<Value *, 8> Ops(I->operands()); 6331 return ::simplifyInstructionWithOperands(I, Ops, SQ, ORE); 6332 } 6333 6334 /// Implementation of recursive simplification through an instruction's 6335 /// uses. 6336 /// 6337 /// This is the common implementation of the recursive simplification routines. 6338 /// If we have a pre-simplified value in 'SimpleV', that is forcibly used to 6339 /// replace the instruction 'I'. Otherwise, we simply add 'I' to the list of 6340 /// instructions to process and attempt to simplify it using 6341 /// InstructionSimplify. Recursively visited users which could not be 6342 /// simplified themselves are to the optional UnsimplifiedUsers set for 6343 /// further processing by the caller. 6344 /// 6345 /// This routine returns 'true' only when *it* simplifies something. The passed 6346 /// in simplified value does not count toward this. 6347 static bool replaceAndRecursivelySimplifyImpl( 6348 Instruction *I, Value *SimpleV, const TargetLibraryInfo *TLI, 6349 const DominatorTree *DT, AssumptionCache *AC, 6350 SmallSetVector<Instruction *, 8> *UnsimplifiedUsers = nullptr) { 6351 bool Simplified = false; 6352 SmallSetVector<Instruction *, 8> Worklist; 6353 const DataLayout &DL = I->getModule()->getDataLayout(); 6354 6355 // If we have an explicit value to collapse to, do that round of the 6356 // simplification loop by hand initially. 6357 if (SimpleV) { 6358 for (User *U : I->users()) 6359 if (U != I) 6360 Worklist.insert(cast<Instruction>(U)); 6361 6362 // Replace the instruction with its simplified value. 6363 I->replaceAllUsesWith(SimpleV); 6364 6365 // Gracefully handle edge cases where the instruction is not wired into any 6366 // parent block. 6367 if (I->getParent() && !I->isEHPad() && !I->isTerminator() && 6368 !I->mayHaveSideEffects()) 6369 I->eraseFromParent(); 6370 } else { 6371 Worklist.insert(I); 6372 } 6373 6374 // Note that we must test the size on each iteration, the worklist can grow. 6375 for (unsigned Idx = 0; Idx != Worklist.size(); ++Idx) { 6376 I = Worklist[Idx]; 6377 6378 // See if this instruction simplifies. 6379 SimpleV = SimplifyInstruction(I, {DL, TLI, DT, AC}); 6380 if (!SimpleV) { 6381 if (UnsimplifiedUsers) 6382 UnsimplifiedUsers->insert(I); 6383 continue; 6384 } 6385 6386 Simplified = true; 6387 6388 // Stash away all the uses of the old instruction so we can check them for 6389 // recursive simplifications after a RAUW. This is cheaper than checking all 6390 // uses of To on the recursive step in most cases. 6391 for (User *U : I->users()) 6392 Worklist.insert(cast<Instruction>(U)); 6393 6394 // Replace the instruction with its simplified value. 6395 I->replaceAllUsesWith(SimpleV); 6396 6397 // Gracefully handle edge cases where the instruction is not wired into any 6398 // parent block. 6399 if (I->getParent() && !I->isEHPad() && !I->isTerminator() && 6400 !I->mayHaveSideEffects()) 6401 I->eraseFromParent(); 6402 } 6403 return Simplified; 6404 } 6405 6406 bool llvm::replaceAndRecursivelySimplify( 6407 Instruction *I, Value *SimpleV, const TargetLibraryInfo *TLI, 6408 const DominatorTree *DT, AssumptionCache *AC, 6409 SmallSetVector<Instruction *, 8> *UnsimplifiedUsers) { 6410 assert(I != SimpleV && "replaceAndRecursivelySimplify(X,X) is not valid!"); 6411 assert(SimpleV && "Must provide a simplified value."); 6412 return replaceAndRecursivelySimplifyImpl(I, SimpleV, TLI, DT, AC, 6413 UnsimplifiedUsers); 6414 } 6415 6416 namespace llvm { 6417 const SimplifyQuery getBestSimplifyQuery(Pass &P, Function &F) { 6418 auto *DTWP = P.getAnalysisIfAvailable<DominatorTreeWrapperPass>(); 6419 auto *DT = DTWP ? &DTWP->getDomTree() : nullptr; 6420 auto *TLIWP = P.getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 6421 auto *TLI = TLIWP ? &TLIWP->getTLI(F) : nullptr; 6422 auto *ACWP = P.getAnalysisIfAvailable<AssumptionCacheTracker>(); 6423 auto *AC = ACWP ? &ACWP->getAssumptionCache(F) : nullptr; 6424 return {F.getParent()->getDataLayout(), TLI, DT, AC}; 6425 } 6426 6427 const SimplifyQuery getBestSimplifyQuery(LoopStandardAnalysisResults &AR, 6428 const DataLayout &DL) { 6429 return {DL, &AR.TLI, &AR.DT, &AR.AC}; 6430 } 6431 6432 template <class T, class... TArgs> 6433 const SimplifyQuery getBestSimplifyQuery(AnalysisManager<T, TArgs...> &AM, 6434 Function &F) { 6435 auto *DT = AM.template getCachedResult<DominatorTreeAnalysis>(F); 6436 auto *TLI = AM.template getCachedResult<TargetLibraryAnalysis>(F); 6437 auto *AC = AM.template getCachedResult<AssumptionAnalysis>(F); 6438 return {F.getParent()->getDataLayout(), TLI, DT, AC}; 6439 } 6440 template const SimplifyQuery getBestSimplifyQuery(AnalysisManager<Function> &, 6441 Function &); 6442 } 6443