1 //===- InstructionSimplify.cpp - Fold instruction operands ----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements routines for folding instructions into simpler forms 10 // that do not require creating new instructions. This does constant folding 11 // ("add i32 1, 1" -> "2") but can also handle non-constant operands, either 12 // returning a constant ("and i32 %x, 0" -> "0") or an already existing value 13 // ("and i32 %x, %x" -> "%x"). All operands are assumed to have already been 14 // simplified: This is usually true and assuming it simplifies the logic (if 15 // they have not been simplified then results are correct but maybe suboptimal). 16 // 17 //===----------------------------------------------------------------------===// 18 19 #include "llvm/Analysis/InstructionSimplify.h" 20 #include "llvm/ADT/SetVector.h" 21 #include "llvm/ADT/SmallPtrSet.h" 22 #include "llvm/ADT/Statistic.h" 23 #include "llvm/Analysis/AliasAnalysis.h" 24 #include "llvm/Analysis/AssumptionCache.h" 25 #include "llvm/Analysis/CaptureTracking.h" 26 #include "llvm/Analysis/CmpInstAnalysis.h" 27 #include "llvm/Analysis/ConstantFolding.h" 28 #include "llvm/Analysis/LoopAnalysisManager.h" 29 #include "llvm/Analysis/MemoryBuiltins.h" 30 #include "llvm/Analysis/OverflowInstAnalysis.h" 31 #include "llvm/Analysis/ValueTracking.h" 32 #include "llvm/Analysis/VectorUtils.h" 33 #include "llvm/IR/ConstantRange.h" 34 #include "llvm/IR/DataLayout.h" 35 #include "llvm/IR/Dominators.h" 36 #include "llvm/IR/GetElementPtrTypeIterator.h" 37 #include "llvm/IR/GlobalAlias.h" 38 #include "llvm/IR/InstrTypes.h" 39 #include "llvm/IR/Instructions.h" 40 #include "llvm/IR/Operator.h" 41 #include "llvm/IR/PatternMatch.h" 42 #include "llvm/IR/ValueHandle.h" 43 #include "llvm/Support/KnownBits.h" 44 #include <algorithm> 45 using namespace llvm; 46 using namespace llvm::PatternMatch; 47 48 #define DEBUG_TYPE "instsimplify" 49 50 enum { RecursionLimit = 3 }; 51 52 STATISTIC(NumExpand, "Number of expansions"); 53 STATISTIC(NumReassoc, "Number of reassociations"); 54 55 static Value *SimplifyAndInst(Value *, Value *, const SimplifyQuery &, unsigned); 56 static Value *simplifyUnOp(unsigned, Value *, const SimplifyQuery &, unsigned); 57 static Value *simplifyFPUnOp(unsigned, Value *, const FastMathFlags &, 58 const SimplifyQuery &, unsigned); 59 static Value *SimplifyBinOp(unsigned, Value *, Value *, const SimplifyQuery &, 60 unsigned); 61 static Value *SimplifyBinOp(unsigned, Value *, Value *, const FastMathFlags &, 62 const SimplifyQuery &, unsigned); 63 static Value *SimplifyCmpInst(unsigned, Value *, Value *, const SimplifyQuery &, 64 unsigned); 65 static Value *SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS, 66 const SimplifyQuery &Q, unsigned MaxRecurse); 67 static Value *SimplifyOrInst(Value *, Value *, const SimplifyQuery &, unsigned); 68 static Value *SimplifyXorInst(Value *, Value *, const SimplifyQuery &, unsigned); 69 static Value *SimplifyCastInst(unsigned, Value *, Type *, 70 const SimplifyQuery &, unsigned); 71 static Value *SimplifyGEPInst(Type *, ArrayRef<Value *>, const SimplifyQuery &, 72 unsigned); 73 static Value *SimplifySelectInst(Value *, Value *, Value *, 74 const SimplifyQuery &, unsigned); 75 76 static Value *foldSelectWithBinaryOp(Value *Cond, Value *TrueVal, 77 Value *FalseVal) { 78 BinaryOperator::BinaryOps BinOpCode; 79 if (auto *BO = dyn_cast<BinaryOperator>(Cond)) 80 BinOpCode = BO->getOpcode(); 81 else 82 return nullptr; 83 84 CmpInst::Predicate ExpectedPred, Pred1, Pred2; 85 if (BinOpCode == BinaryOperator::Or) { 86 ExpectedPred = ICmpInst::ICMP_NE; 87 } else if (BinOpCode == BinaryOperator::And) { 88 ExpectedPred = ICmpInst::ICMP_EQ; 89 } else 90 return nullptr; 91 92 // %A = icmp eq %TV, %FV 93 // %B = icmp eq %X, %Y (and one of these is a select operand) 94 // %C = and %A, %B 95 // %D = select %C, %TV, %FV 96 // --> 97 // %FV 98 99 // %A = icmp ne %TV, %FV 100 // %B = icmp ne %X, %Y (and one of these is a select operand) 101 // %C = or %A, %B 102 // %D = select %C, %TV, %FV 103 // --> 104 // %TV 105 Value *X, *Y; 106 if (!match(Cond, m_c_BinOp(m_c_ICmp(Pred1, m_Specific(TrueVal), 107 m_Specific(FalseVal)), 108 m_ICmp(Pred2, m_Value(X), m_Value(Y)))) || 109 Pred1 != Pred2 || Pred1 != ExpectedPred) 110 return nullptr; 111 112 if (X == TrueVal || X == FalseVal || Y == TrueVal || Y == FalseVal) 113 return BinOpCode == BinaryOperator::Or ? TrueVal : FalseVal; 114 115 return nullptr; 116 } 117 118 /// For a boolean type or a vector of boolean type, return false or a vector 119 /// with every element false. 120 static Constant *getFalse(Type *Ty) { 121 return ConstantInt::getFalse(Ty); 122 } 123 124 /// For a boolean type or a vector of boolean type, return true or a vector 125 /// with every element true. 126 static Constant *getTrue(Type *Ty) { 127 return ConstantInt::getTrue(Ty); 128 } 129 130 /// isSameCompare - Is V equivalent to the comparison "LHS Pred RHS"? 131 static bool isSameCompare(Value *V, CmpInst::Predicate Pred, Value *LHS, 132 Value *RHS) { 133 CmpInst *Cmp = dyn_cast<CmpInst>(V); 134 if (!Cmp) 135 return false; 136 CmpInst::Predicate CPred = Cmp->getPredicate(); 137 Value *CLHS = Cmp->getOperand(0), *CRHS = Cmp->getOperand(1); 138 if (CPred == Pred && CLHS == LHS && CRHS == RHS) 139 return true; 140 return CPred == CmpInst::getSwappedPredicate(Pred) && CLHS == RHS && 141 CRHS == LHS; 142 } 143 144 /// Simplify comparison with true or false branch of select: 145 /// %sel = select i1 %cond, i32 %tv, i32 %fv 146 /// %cmp = icmp sle i32 %sel, %rhs 147 /// Compose new comparison by substituting %sel with either %tv or %fv 148 /// and see if it simplifies. 149 static Value *simplifyCmpSelCase(CmpInst::Predicate Pred, Value *LHS, 150 Value *RHS, Value *Cond, 151 const SimplifyQuery &Q, unsigned MaxRecurse, 152 Constant *TrueOrFalse) { 153 Value *SimplifiedCmp = SimplifyCmpInst(Pred, LHS, RHS, Q, MaxRecurse); 154 if (SimplifiedCmp == Cond) { 155 // %cmp simplified to the select condition (%cond). 156 return TrueOrFalse; 157 } else if (!SimplifiedCmp && isSameCompare(Cond, Pred, LHS, RHS)) { 158 // It didn't simplify. However, if composed comparison is equivalent 159 // to the select condition (%cond) then we can replace it. 160 return TrueOrFalse; 161 } 162 return SimplifiedCmp; 163 } 164 165 /// Simplify comparison with true branch of select 166 static Value *simplifyCmpSelTrueCase(CmpInst::Predicate Pred, Value *LHS, 167 Value *RHS, Value *Cond, 168 const SimplifyQuery &Q, 169 unsigned MaxRecurse) { 170 return simplifyCmpSelCase(Pred, LHS, RHS, Cond, Q, MaxRecurse, 171 getTrue(Cond->getType())); 172 } 173 174 /// Simplify comparison with false branch of select 175 static Value *simplifyCmpSelFalseCase(CmpInst::Predicate Pred, Value *LHS, 176 Value *RHS, Value *Cond, 177 const SimplifyQuery &Q, 178 unsigned MaxRecurse) { 179 return simplifyCmpSelCase(Pred, LHS, RHS, Cond, Q, MaxRecurse, 180 getFalse(Cond->getType())); 181 } 182 183 /// We know comparison with both branches of select can be simplified, but they 184 /// are not equal. This routine handles some logical simplifications. 185 static Value *handleOtherCmpSelSimplifications(Value *TCmp, Value *FCmp, 186 Value *Cond, 187 const SimplifyQuery &Q, 188 unsigned MaxRecurse) { 189 // If the false value simplified to false, then the result of the compare 190 // is equal to "Cond && TCmp". This also catches the case when the false 191 // value simplified to false and the true value to true, returning "Cond". 192 if (match(FCmp, m_Zero())) 193 if (Value *V = SimplifyAndInst(Cond, TCmp, Q, MaxRecurse)) 194 return V; 195 // If the true value simplified to true, then the result of the compare 196 // is equal to "Cond || FCmp". 197 if (match(TCmp, m_One())) 198 if (Value *V = SimplifyOrInst(Cond, FCmp, Q, MaxRecurse)) 199 return V; 200 // Finally, if the false value simplified to true and the true value to 201 // false, then the result of the compare is equal to "!Cond". 202 if (match(FCmp, m_One()) && match(TCmp, m_Zero())) 203 if (Value *V = SimplifyXorInst( 204 Cond, Constant::getAllOnesValue(Cond->getType()), Q, MaxRecurse)) 205 return V; 206 return nullptr; 207 } 208 209 /// Does the given value dominate the specified phi node? 210 static bool valueDominatesPHI(Value *V, PHINode *P, const DominatorTree *DT) { 211 Instruction *I = dyn_cast<Instruction>(V); 212 if (!I) 213 // Arguments and constants dominate all instructions. 214 return true; 215 216 // If we are processing instructions (and/or basic blocks) that have not been 217 // fully added to a function, the parent nodes may still be null. Simply 218 // return the conservative answer in these cases. 219 if (!I->getParent() || !P->getParent() || !I->getFunction()) 220 return false; 221 222 // If we have a DominatorTree then do a precise test. 223 if (DT) 224 return DT->dominates(I, P); 225 226 // Otherwise, if the instruction is in the entry block and is not an invoke, 227 // then it obviously dominates all phi nodes. 228 if (I->getParent()->isEntryBlock() && !isa<InvokeInst>(I) && 229 !isa<CallBrInst>(I)) 230 return true; 231 232 return false; 233 } 234 235 /// Try to simplify a binary operator of form "V op OtherOp" where V is 236 /// "(B0 opex B1)" by distributing 'op' across 'opex' as 237 /// "(B0 op OtherOp) opex (B1 op OtherOp)". 238 static Value *expandBinOp(Instruction::BinaryOps Opcode, Value *V, 239 Value *OtherOp, Instruction::BinaryOps OpcodeToExpand, 240 const SimplifyQuery &Q, unsigned MaxRecurse) { 241 auto *B = dyn_cast<BinaryOperator>(V); 242 if (!B || B->getOpcode() != OpcodeToExpand) 243 return nullptr; 244 Value *B0 = B->getOperand(0), *B1 = B->getOperand(1); 245 Value *L = SimplifyBinOp(Opcode, B0, OtherOp, Q.getWithoutUndef(), 246 MaxRecurse); 247 if (!L) 248 return nullptr; 249 Value *R = SimplifyBinOp(Opcode, B1, OtherOp, Q.getWithoutUndef(), 250 MaxRecurse); 251 if (!R) 252 return nullptr; 253 254 // Does the expanded pair of binops simplify to the existing binop? 255 if ((L == B0 && R == B1) || 256 (Instruction::isCommutative(OpcodeToExpand) && L == B1 && R == B0)) { 257 ++NumExpand; 258 return B; 259 } 260 261 // Otherwise, return "L op' R" if it simplifies. 262 Value *S = SimplifyBinOp(OpcodeToExpand, L, R, Q, MaxRecurse); 263 if (!S) 264 return nullptr; 265 266 ++NumExpand; 267 return S; 268 } 269 270 /// Try to simplify binops of form "A op (B op' C)" or the commuted variant by 271 /// distributing op over op'. 272 static Value *expandCommutativeBinOp(Instruction::BinaryOps Opcode, 273 Value *L, Value *R, 274 Instruction::BinaryOps OpcodeToExpand, 275 const SimplifyQuery &Q, 276 unsigned MaxRecurse) { 277 // Recursion is always used, so bail out at once if we already hit the limit. 278 if (!MaxRecurse--) 279 return nullptr; 280 281 if (Value *V = expandBinOp(Opcode, L, R, OpcodeToExpand, Q, MaxRecurse)) 282 return V; 283 if (Value *V = expandBinOp(Opcode, R, L, OpcodeToExpand, Q, MaxRecurse)) 284 return V; 285 return nullptr; 286 } 287 288 /// Generic simplifications for associative binary operations. 289 /// Returns the simpler value, or null if none was found. 290 static Value *SimplifyAssociativeBinOp(Instruction::BinaryOps Opcode, 291 Value *LHS, Value *RHS, 292 const SimplifyQuery &Q, 293 unsigned MaxRecurse) { 294 assert(Instruction::isAssociative(Opcode) && "Not an associative operation!"); 295 296 // Recursion is always used, so bail out at once if we already hit the limit. 297 if (!MaxRecurse--) 298 return nullptr; 299 300 BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS); 301 BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS); 302 303 // Transform: "(A op B) op C" ==> "A op (B op C)" if it simplifies completely. 304 if (Op0 && Op0->getOpcode() == Opcode) { 305 Value *A = Op0->getOperand(0); 306 Value *B = Op0->getOperand(1); 307 Value *C = RHS; 308 309 // Does "B op C" simplify? 310 if (Value *V = SimplifyBinOp(Opcode, B, C, Q, MaxRecurse)) { 311 // It does! Return "A op V" if it simplifies or is already available. 312 // If V equals B then "A op V" is just the LHS. 313 if (V == B) return LHS; 314 // Otherwise return "A op V" if it simplifies. 315 if (Value *W = SimplifyBinOp(Opcode, A, V, Q, MaxRecurse)) { 316 ++NumReassoc; 317 return W; 318 } 319 } 320 } 321 322 // Transform: "A op (B op C)" ==> "(A op B) op C" if it simplifies completely. 323 if (Op1 && Op1->getOpcode() == Opcode) { 324 Value *A = LHS; 325 Value *B = Op1->getOperand(0); 326 Value *C = Op1->getOperand(1); 327 328 // Does "A op B" simplify? 329 if (Value *V = SimplifyBinOp(Opcode, A, B, Q, MaxRecurse)) { 330 // It does! Return "V op C" if it simplifies or is already available. 331 // If V equals B then "V op C" is just the RHS. 332 if (V == B) return RHS; 333 // Otherwise return "V op C" if it simplifies. 334 if (Value *W = SimplifyBinOp(Opcode, V, C, Q, MaxRecurse)) { 335 ++NumReassoc; 336 return W; 337 } 338 } 339 } 340 341 // The remaining transforms require commutativity as well as associativity. 342 if (!Instruction::isCommutative(Opcode)) 343 return nullptr; 344 345 // Transform: "(A op B) op C" ==> "(C op A) op B" if it simplifies completely. 346 if (Op0 && Op0->getOpcode() == Opcode) { 347 Value *A = Op0->getOperand(0); 348 Value *B = Op0->getOperand(1); 349 Value *C = RHS; 350 351 // Does "C op A" simplify? 352 if (Value *V = SimplifyBinOp(Opcode, C, A, Q, MaxRecurse)) { 353 // It does! Return "V op B" if it simplifies or is already available. 354 // If V equals A then "V op B" is just the LHS. 355 if (V == A) return LHS; 356 // Otherwise return "V op B" if it simplifies. 357 if (Value *W = SimplifyBinOp(Opcode, V, B, Q, MaxRecurse)) { 358 ++NumReassoc; 359 return W; 360 } 361 } 362 } 363 364 // Transform: "A op (B op C)" ==> "B op (C op A)" if it simplifies completely. 365 if (Op1 && Op1->getOpcode() == Opcode) { 366 Value *A = LHS; 367 Value *B = Op1->getOperand(0); 368 Value *C = Op1->getOperand(1); 369 370 // Does "C op A" simplify? 371 if (Value *V = SimplifyBinOp(Opcode, C, A, Q, MaxRecurse)) { 372 // It does! Return "B op V" if it simplifies or is already available. 373 // If V equals C then "B op V" is just the RHS. 374 if (V == C) return RHS; 375 // Otherwise return "B op V" if it simplifies. 376 if (Value *W = SimplifyBinOp(Opcode, B, V, Q, MaxRecurse)) { 377 ++NumReassoc; 378 return W; 379 } 380 } 381 } 382 383 return nullptr; 384 } 385 386 /// In the case of a binary operation with a select instruction as an operand, 387 /// try to simplify the binop by seeing whether evaluating it on both branches 388 /// of the select results in the same value. Returns the common value if so, 389 /// otherwise returns null. 390 static Value *ThreadBinOpOverSelect(Instruction::BinaryOps Opcode, Value *LHS, 391 Value *RHS, const SimplifyQuery &Q, 392 unsigned MaxRecurse) { 393 // Recursion is always used, so bail out at once if we already hit the limit. 394 if (!MaxRecurse--) 395 return nullptr; 396 397 SelectInst *SI; 398 if (isa<SelectInst>(LHS)) { 399 SI = cast<SelectInst>(LHS); 400 } else { 401 assert(isa<SelectInst>(RHS) && "No select instruction operand!"); 402 SI = cast<SelectInst>(RHS); 403 } 404 405 // Evaluate the BinOp on the true and false branches of the select. 406 Value *TV; 407 Value *FV; 408 if (SI == LHS) { 409 TV = SimplifyBinOp(Opcode, SI->getTrueValue(), RHS, Q, MaxRecurse); 410 FV = SimplifyBinOp(Opcode, SI->getFalseValue(), RHS, Q, MaxRecurse); 411 } else { 412 TV = SimplifyBinOp(Opcode, LHS, SI->getTrueValue(), Q, MaxRecurse); 413 FV = SimplifyBinOp(Opcode, LHS, SI->getFalseValue(), Q, MaxRecurse); 414 } 415 416 // If they simplified to the same value, then return the common value. 417 // If they both failed to simplify then return null. 418 if (TV == FV) 419 return TV; 420 421 // If one branch simplified to undef, return the other one. 422 if (TV && Q.isUndefValue(TV)) 423 return FV; 424 if (FV && Q.isUndefValue(FV)) 425 return TV; 426 427 // If applying the operation did not change the true and false select values, 428 // then the result of the binop is the select itself. 429 if (TV == SI->getTrueValue() && FV == SI->getFalseValue()) 430 return SI; 431 432 // If one branch simplified and the other did not, and the simplified 433 // value is equal to the unsimplified one, return the simplified value. 434 // For example, select (cond, X, X & Z) & Z -> X & Z. 435 if ((FV && !TV) || (TV && !FV)) { 436 // Check that the simplified value has the form "X op Y" where "op" is the 437 // same as the original operation. 438 Instruction *Simplified = dyn_cast<Instruction>(FV ? FV : TV); 439 if (Simplified && Simplified->getOpcode() == unsigned(Opcode)) { 440 // The value that didn't simplify is "UnsimplifiedLHS op UnsimplifiedRHS". 441 // We already know that "op" is the same as for the simplified value. See 442 // if the operands match too. If so, return the simplified value. 443 Value *UnsimplifiedBranch = FV ? SI->getTrueValue() : SI->getFalseValue(); 444 Value *UnsimplifiedLHS = SI == LHS ? UnsimplifiedBranch : LHS; 445 Value *UnsimplifiedRHS = SI == LHS ? RHS : UnsimplifiedBranch; 446 if (Simplified->getOperand(0) == UnsimplifiedLHS && 447 Simplified->getOperand(1) == UnsimplifiedRHS) 448 return Simplified; 449 if (Simplified->isCommutative() && 450 Simplified->getOperand(1) == UnsimplifiedLHS && 451 Simplified->getOperand(0) == UnsimplifiedRHS) 452 return Simplified; 453 } 454 } 455 456 return nullptr; 457 } 458 459 /// In the case of a comparison with a select instruction, try to simplify the 460 /// comparison by seeing whether both branches of the select result in the same 461 /// value. Returns the common value if so, otherwise returns null. 462 /// For example, if we have: 463 /// %tmp = select i1 %cmp, i32 1, i32 2 464 /// %cmp1 = icmp sle i32 %tmp, 3 465 /// We can simplify %cmp1 to true, because both branches of select are 466 /// less than 3. We compose new comparison by substituting %tmp with both 467 /// branches of select and see if it can be simplified. 468 static Value *ThreadCmpOverSelect(CmpInst::Predicate Pred, Value *LHS, 469 Value *RHS, const SimplifyQuery &Q, 470 unsigned MaxRecurse) { 471 // Recursion is always used, so bail out at once if we already hit the limit. 472 if (!MaxRecurse--) 473 return nullptr; 474 475 // Make sure the select is on the LHS. 476 if (!isa<SelectInst>(LHS)) { 477 std::swap(LHS, RHS); 478 Pred = CmpInst::getSwappedPredicate(Pred); 479 } 480 assert(isa<SelectInst>(LHS) && "Not comparing with a select instruction!"); 481 SelectInst *SI = cast<SelectInst>(LHS); 482 Value *Cond = SI->getCondition(); 483 Value *TV = SI->getTrueValue(); 484 Value *FV = SI->getFalseValue(); 485 486 // Now that we have "cmp select(Cond, TV, FV), RHS", analyse it. 487 // Does "cmp TV, RHS" simplify? 488 Value *TCmp = simplifyCmpSelTrueCase(Pred, TV, RHS, Cond, Q, MaxRecurse); 489 if (!TCmp) 490 return nullptr; 491 492 // Does "cmp FV, RHS" simplify? 493 Value *FCmp = simplifyCmpSelFalseCase(Pred, FV, RHS, Cond, Q, MaxRecurse); 494 if (!FCmp) 495 return nullptr; 496 497 // If both sides simplified to the same value, then use it as the result of 498 // the original comparison. 499 if (TCmp == FCmp) 500 return TCmp; 501 502 // The remaining cases only make sense if the select condition has the same 503 // type as the result of the comparison, so bail out if this is not so. 504 if (Cond->getType()->isVectorTy() == RHS->getType()->isVectorTy()) 505 return handleOtherCmpSelSimplifications(TCmp, FCmp, Cond, Q, MaxRecurse); 506 507 return nullptr; 508 } 509 510 /// In the case of a binary operation with an operand that is a PHI instruction, 511 /// try to simplify the binop by seeing whether evaluating it on the incoming 512 /// phi values yields the same result for every value. If so returns the common 513 /// value, otherwise returns null. 514 static Value *ThreadBinOpOverPHI(Instruction::BinaryOps Opcode, Value *LHS, 515 Value *RHS, const SimplifyQuery &Q, 516 unsigned MaxRecurse) { 517 // Recursion is always used, so bail out at once if we already hit the limit. 518 if (!MaxRecurse--) 519 return nullptr; 520 521 PHINode *PI; 522 if (isa<PHINode>(LHS)) { 523 PI = cast<PHINode>(LHS); 524 // Bail out if RHS and the phi may be mutually interdependent due to a loop. 525 if (!valueDominatesPHI(RHS, PI, Q.DT)) 526 return nullptr; 527 } else { 528 assert(isa<PHINode>(RHS) && "No PHI instruction operand!"); 529 PI = cast<PHINode>(RHS); 530 // Bail out if LHS and the phi may be mutually interdependent due to a loop. 531 if (!valueDominatesPHI(LHS, PI, Q.DT)) 532 return nullptr; 533 } 534 535 // Evaluate the BinOp on the incoming phi values. 536 Value *CommonValue = nullptr; 537 for (Value *Incoming : PI->incoming_values()) { 538 // If the incoming value is the phi node itself, it can safely be skipped. 539 if (Incoming == PI) continue; 540 Value *V = PI == LHS ? 541 SimplifyBinOp(Opcode, Incoming, RHS, Q, MaxRecurse) : 542 SimplifyBinOp(Opcode, LHS, Incoming, Q, MaxRecurse); 543 // If the operation failed to simplify, or simplified to a different value 544 // to previously, then give up. 545 if (!V || (CommonValue && V != CommonValue)) 546 return nullptr; 547 CommonValue = V; 548 } 549 550 return CommonValue; 551 } 552 553 /// In the case of a comparison with a PHI instruction, try to simplify the 554 /// comparison by seeing whether comparing with all of the incoming phi values 555 /// yields the same result every time. If so returns the common result, 556 /// otherwise returns null. 557 static Value *ThreadCmpOverPHI(CmpInst::Predicate Pred, Value *LHS, Value *RHS, 558 const SimplifyQuery &Q, unsigned MaxRecurse) { 559 // Recursion is always used, so bail out at once if we already hit the limit. 560 if (!MaxRecurse--) 561 return nullptr; 562 563 // Make sure the phi is on the LHS. 564 if (!isa<PHINode>(LHS)) { 565 std::swap(LHS, RHS); 566 Pred = CmpInst::getSwappedPredicate(Pred); 567 } 568 assert(isa<PHINode>(LHS) && "Not comparing with a phi instruction!"); 569 PHINode *PI = cast<PHINode>(LHS); 570 571 // Bail out if RHS and the phi may be mutually interdependent due to a loop. 572 if (!valueDominatesPHI(RHS, PI, Q.DT)) 573 return nullptr; 574 575 // Evaluate the BinOp on the incoming phi values. 576 Value *CommonValue = nullptr; 577 for (unsigned u = 0, e = PI->getNumIncomingValues(); u < e; ++u) { 578 Value *Incoming = PI->getIncomingValue(u); 579 Instruction *InTI = PI->getIncomingBlock(u)->getTerminator(); 580 // If the incoming value is the phi node itself, it can safely be skipped. 581 if (Incoming == PI) continue; 582 // Change the context instruction to the "edge" that flows into the phi. 583 // This is important because that is where incoming is actually "evaluated" 584 // even though it is used later somewhere else. 585 Value *V = SimplifyCmpInst(Pred, Incoming, RHS, Q.getWithInstruction(InTI), 586 MaxRecurse); 587 // If the operation failed to simplify, or simplified to a different value 588 // to previously, then give up. 589 if (!V || (CommonValue && V != CommonValue)) 590 return nullptr; 591 CommonValue = V; 592 } 593 594 return CommonValue; 595 } 596 597 static Constant *foldOrCommuteConstant(Instruction::BinaryOps Opcode, 598 Value *&Op0, Value *&Op1, 599 const SimplifyQuery &Q) { 600 if (auto *CLHS = dyn_cast<Constant>(Op0)) { 601 if (auto *CRHS = dyn_cast<Constant>(Op1)) 602 return ConstantFoldBinaryOpOperands(Opcode, CLHS, CRHS, Q.DL); 603 604 // Canonicalize the constant to the RHS if this is a commutative operation. 605 if (Instruction::isCommutative(Opcode)) 606 std::swap(Op0, Op1); 607 } 608 return nullptr; 609 } 610 611 /// Given operands for an Add, see if we can fold the result. 612 /// If not, this returns null. 613 static Value *SimplifyAddInst(Value *Op0, Value *Op1, bool IsNSW, bool IsNUW, 614 const SimplifyQuery &Q, unsigned MaxRecurse) { 615 if (Constant *C = foldOrCommuteConstant(Instruction::Add, Op0, Op1, Q)) 616 return C; 617 618 // X + undef -> undef 619 if (Q.isUndefValue(Op1)) 620 return Op1; 621 622 // X + 0 -> X 623 if (match(Op1, m_Zero())) 624 return Op0; 625 626 // If two operands are negative, return 0. 627 if (isKnownNegation(Op0, Op1)) 628 return Constant::getNullValue(Op0->getType()); 629 630 // X + (Y - X) -> Y 631 // (Y - X) + X -> Y 632 // Eg: X + -X -> 0 633 Value *Y = nullptr; 634 if (match(Op1, m_Sub(m_Value(Y), m_Specific(Op0))) || 635 match(Op0, m_Sub(m_Value(Y), m_Specific(Op1)))) 636 return Y; 637 638 // X + ~X -> -1 since ~X = -X-1 639 Type *Ty = Op0->getType(); 640 if (match(Op0, m_Not(m_Specific(Op1))) || 641 match(Op1, m_Not(m_Specific(Op0)))) 642 return Constant::getAllOnesValue(Ty); 643 644 // add nsw/nuw (xor Y, signmask), signmask --> Y 645 // The no-wrapping add guarantees that the top bit will be set by the add. 646 // Therefore, the xor must be clearing the already set sign bit of Y. 647 if ((IsNSW || IsNUW) && match(Op1, m_SignMask()) && 648 match(Op0, m_Xor(m_Value(Y), m_SignMask()))) 649 return Y; 650 651 // add nuw %x, -1 -> -1, because %x can only be 0. 652 if (IsNUW && match(Op1, m_AllOnes())) 653 return Op1; // Which is -1. 654 655 /// i1 add -> xor. 656 if (MaxRecurse && Op0->getType()->isIntOrIntVectorTy(1)) 657 if (Value *V = SimplifyXorInst(Op0, Op1, Q, MaxRecurse-1)) 658 return V; 659 660 // Try some generic simplifications for associative operations. 661 if (Value *V = SimplifyAssociativeBinOp(Instruction::Add, Op0, Op1, Q, 662 MaxRecurse)) 663 return V; 664 665 // Threading Add over selects and phi nodes is pointless, so don't bother. 666 // Threading over the select in "A + select(cond, B, C)" means evaluating 667 // "A+B" and "A+C" and seeing if they are equal; but they are equal if and 668 // only if B and C are equal. If B and C are equal then (since we assume 669 // that operands have already been simplified) "select(cond, B, C)" should 670 // have been simplified to the common value of B and C already. Analysing 671 // "A+B" and "A+C" thus gains nothing, but costs compile time. Similarly 672 // for threading over phi nodes. 673 674 return nullptr; 675 } 676 677 Value *llvm::SimplifyAddInst(Value *Op0, Value *Op1, bool IsNSW, bool IsNUW, 678 const SimplifyQuery &Query) { 679 return ::SimplifyAddInst(Op0, Op1, IsNSW, IsNUW, Query, RecursionLimit); 680 } 681 682 /// Compute the base pointer and cumulative constant offsets for V. 683 /// 684 /// This strips all constant offsets off of V, leaving it the base pointer, and 685 /// accumulates the total constant offset applied in the returned constant. It 686 /// returns 0 if V is not a pointer, and returns the constant '0' if there are 687 /// no constant offsets applied. 688 /// 689 /// This is very similar to GetPointerBaseWithConstantOffset except it doesn't 690 /// follow non-inbounds geps. This allows it to remain usable for icmp ult/etc. 691 /// folding. 692 static Constant *stripAndComputeConstantOffsets(const DataLayout &DL, Value *&V, 693 bool AllowNonInbounds = false) { 694 assert(V->getType()->isPtrOrPtrVectorTy()); 695 696 Type *IntIdxTy = DL.getIndexType(V->getType())->getScalarType(); 697 APInt Offset = APInt::getNullValue(IntIdxTy->getIntegerBitWidth()); 698 699 V = V->stripAndAccumulateConstantOffsets(DL, Offset, AllowNonInbounds); 700 // As that strip may trace through `addrspacecast`, need to sext or trunc 701 // the offset calculated. 702 IntIdxTy = DL.getIndexType(V->getType())->getScalarType(); 703 Offset = Offset.sextOrTrunc(IntIdxTy->getIntegerBitWidth()); 704 705 Constant *OffsetIntPtr = ConstantInt::get(IntIdxTy, Offset); 706 if (VectorType *VecTy = dyn_cast<VectorType>(V->getType())) 707 return ConstantVector::getSplat(VecTy->getElementCount(), OffsetIntPtr); 708 return OffsetIntPtr; 709 } 710 711 /// Compute the constant difference between two pointer values. 712 /// If the difference is not a constant, returns zero. 713 static Constant *computePointerDifference(const DataLayout &DL, Value *LHS, 714 Value *RHS) { 715 Constant *LHSOffset = stripAndComputeConstantOffsets(DL, LHS); 716 Constant *RHSOffset = stripAndComputeConstantOffsets(DL, RHS); 717 718 // If LHS and RHS are not related via constant offsets to the same base 719 // value, there is nothing we can do here. 720 if (LHS != RHS) 721 return nullptr; 722 723 // Otherwise, the difference of LHS - RHS can be computed as: 724 // LHS - RHS 725 // = (LHSOffset + Base) - (RHSOffset + Base) 726 // = LHSOffset - RHSOffset 727 return ConstantExpr::getSub(LHSOffset, RHSOffset); 728 } 729 730 /// Given operands for a Sub, see if we can fold the result. 731 /// If not, this returns null. 732 static Value *SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, 733 const SimplifyQuery &Q, unsigned MaxRecurse) { 734 if (Constant *C = foldOrCommuteConstant(Instruction::Sub, Op0, Op1, Q)) 735 return C; 736 737 // X - poison -> poison 738 // poison - X -> poison 739 if (isa<PoisonValue>(Op0) || isa<PoisonValue>(Op1)) 740 return PoisonValue::get(Op0->getType()); 741 742 // X - undef -> undef 743 // undef - X -> undef 744 if (Q.isUndefValue(Op0) || Q.isUndefValue(Op1)) 745 return UndefValue::get(Op0->getType()); 746 747 // X - 0 -> X 748 if (match(Op1, m_Zero())) 749 return Op0; 750 751 // X - X -> 0 752 if (Op0 == Op1) 753 return Constant::getNullValue(Op0->getType()); 754 755 // Is this a negation? 756 if (match(Op0, m_Zero())) { 757 // 0 - X -> 0 if the sub is NUW. 758 if (isNUW) 759 return Constant::getNullValue(Op0->getType()); 760 761 KnownBits Known = computeKnownBits(Op1, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 762 if (Known.Zero.isMaxSignedValue()) { 763 // Op1 is either 0 or the minimum signed value. If the sub is NSW, then 764 // Op1 must be 0 because negating the minimum signed value is undefined. 765 if (isNSW) 766 return Constant::getNullValue(Op0->getType()); 767 768 // 0 - X -> X if X is 0 or the minimum signed value. 769 return Op1; 770 } 771 } 772 773 // (X + Y) - Z -> X + (Y - Z) or Y + (X - Z) if everything simplifies. 774 // For example, (X + Y) - Y -> X; (Y + X) - Y -> X 775 Value *X = nullptr, *Y = nullptr, *Z = Op1; 776 if (MaxRecurse && match(Op0, m_Add(m_Value(X), m_Value(Y)))) { // (X + Y) - Z 777 // See if "V === Y - Z" simplifies. 778 if (Value *V = SimplifyBinOp(Instruction::Sub, Y, Z, Q, MaxRecurse-1)) 779 // It does! Now see if "X + V" simplifies. 780 if (Value *W = SimplifyBinOp(Instruction::Add, X, V, Q, MaxRecurse-1)) { 781 // It does, we successfully reassociated! 782 ++NumReassoc; 783 return W; 784 } 785 // See if "V === X - Z" simplifies. 786 if (Value *V = SimplifyBinOp(Instruction::Sub, X, Z, Q, MaxRecurse-1)) 787 // It does! Now see if "Y + V" simplifies. 788 if (Value *W = SimplifyBinOp(Instruction::Add, Y, V, Q, MaxRecurse-1)) { 789 // It does, we successfully reassociated! 790 ++NumReassoc; 791 return W; 792 } 793 } 794 795 // X - (Y + Z) -> (X - Y) - Z or (X - Z) - Y if everything simplifies. 796 // For example, X - (X + 1) -> -1 797 X = Op0; 798 if (MaxRecurse && match(Op1, m_Add(m_Value(Y), m_Value(Z)))) { // X - (Y + Z) 799 // See if "V === X - Y" simplifies. 800 if (Value *V = SimplifyBinOp(Instruction::Sub, X, Y, Q, MaxRecurse-1)) 801 // It does! Now see if "V - Z" simplifies. 802 if (Value *W = SimplifyBinOp(Instruction::Sub, V, Z, Q, MaxRecurse-1)) { 803 // It does, we successfully reassociated! 804 ++NumReassoc; 805 return W; 806 } 807 // See if "V === X - Z" simplifies. 808 if (Value *V = SimplifyBinOp(Instruction::Sub, X, Z, Q, MaxRecurse-1)) 809 // It does! Now see if "V - Y" simplifies. 810 if (Value *W = SimplifyBinOp(Instruction::Sub, V, Y, Q, MaxRecurse-1)) { 811 // It does, we successfully reassociated! 812 ++NumReassoc; 813 return W; 814 } 815 } 816 817 // Z - (X - Y) -> (Z - X) + Y if everything simplifies. 818 // For example, X - (X - Y) -> Y. 819 Z = Op0; 820 if (MaxRecurse && match(Op1, m_Sub(m_Value(X), m_Value(Y)))) // Z - (X - Y) 821 // See if "V === Z - X" simplifies. 822 if (Value *V = SimplifyBinOp(Instruction::Sub, Z, X, Q, MaxRecurse-1)) 823 // It does! Now see if "V + Y" simplifies. 824 if (Value *W = SimplifyBinOp(Instruction::Add, V, Y, Q, MaxRecurse-1)) { 825 // It does, we successfully reassociated! 826 ++NumReassoc; 827 return W; 828 } 829 830 // trunc(X) - trunc(Y) -> trunc(X - Y) if everything simplifies. 831 if (MaxRecurse && match(Op0, m_Trunc(m_Value(X))) && 832 match(Op1, m_Trunc(m_Value(Y)))) 833 if (X->getType() == Y->getType()) 834 // See if "V === X - Y" simplifies. 835 if (Value *V = SimplifyBinOp(Instruction::Sub, X, Y, Q, MaxRecurse-1)) 836 // It does! Now see if "trunc V" simplifies. 837 if (Value *W = SimplifyCastInst(Instruction::Trunc, V, Op0->getType(), 838 Q, MaxRecurse - 1)) 839 // It does, return the simplified "trunc V". 840 return W; 841 842 // Variations on GEP(base, I, ...) - GEP(base, i, ...) -> GEP(null, I-i, ...). 843 if (match(Op0, m_PtrToInt(m_Value(X))) && 844 match(Op1, m_PtrToInt(m_Value(Y)))) 845 if (Constant *Result = computePointerDifference(Q.DL, X, Y)) 846 return ConstantExpr::getIntegerCast(Result, Op0->getType(), true); 847 848 // i1 sub -> xor. 849 if (MaxRecurse && Op0->getType()->isIntOrIntVectorTy(1)) 850 if (Value *V = SimplifyXorInst(Op0, Op1, Q, MaxRecurse-1)) 851 return V; 852 853 // Threading Sub over selects and phi nodes is pointless, so don't bother. 854 // Threading over the select in "A - select(cond, B, C)" means evaluating 855 // "A-B" and "A-C" and seeing if they are equal; but they are equal if and 856 // only if B and C are equal. If B and C are equal then (since we assume 857 // that operands have already been simplified) "select(cond, B, C)" should 858 // have been simplified to the common value of B and C already. Analysing 859 // "A-B" and "A-C" thus gains nothing, but costs compile time. Similarly 860 // for threading over phi nodes. 861 862 return nullptr; 863 } 864 865 Value *llvm::SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, 866 const SimplifyQuery &Q) { 867 return ::SimplifySubInst(Op0, Op1, isNSW, isNUW, Q, RecursionLimit); 868 } 869 870 /// Given operands for a Mul, see if we can fold the result. 871 /// If not, this returns null. 872 static Value *SimplifyMulInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 873 unsigned MaxRecurse) { 874 if (Constant *C = foldOrCommuteConstant(Instruction::Mul, Op0, Op1, Q)) 875 return C; 876 877 // X * poison -> poison 878 if (isa<PoisonValue>(Op1)) 879 return Op1; 880 881 // X * undef -> 0 882 // X * 0 -> 0 883 if (Q.isUndefValue(Op1) || match(Op1, m_Zero())) 884 return Constant::getNullValue(Op0->getType()); 885 886 // X * 1 -> X 887 if (match(Op1, m_One())) 888 return Op0; 889 890 // (X / Y) * Y -> X if the division is exact. 891 Value *X = nullptr; 892 if (Q.IIQ.UseInstrInfo && 893 (match(Op0, 894 m_Exact(m_IDiv(m_Value(X), m_Specific(Op1)))) || // (X / Y) * Y 895 match(Op1, m_Exact(m_IDiv(m_Value(X), m_Specific(Op0)))))) // Y * (X / Y) 896 return X; 897 898 // i1 mul -> and. 899 if (MaxRecurse && Op0->getType()->isIntOrIntVectorTy(1)) 900 if (Value *V = SimplifyAndInst(Op0, Op1, Q, MaxRecurse-1)) 901 return V; 902 903 // Try some generic simplifications for associative operations. 904 if (Value *V = SimplifyAssociativeBinOp(Instruction::Mul, Op0, Op1, Q, 905 MaxRecurse)) 906 return V; 907 908 // Mul distributes over Add. Try some generic simplifications based on this. 909 if (Value *V = expandCommutativeBinOp(Instruction::Mul, Op0, Op1, 910 Instruction::Add, Q, MaxRecurse)) 911 return V; 912 913 // If the operation is with the result of a select instruction, check whether 914 // operating on either branch of the select always yields the same value. 915 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 916 if (Value *V = ThreadBinOpOverSelect(Instruction::Mul, Op0, Op1, Q, 917 MaxRecurse)) 918 return V; 919 920 // If the operation is with the result of a phi instruction, check whether 921 // operating on all incoming values of the phi always yields the same value. 922 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 923 if (Value *V = ThreadBinOpOverPHI(Instruction::Mul, Op0, Op1, Q, 924 MaxRecurse)) 925 return V; 926 927 return nullptr; 928 } 929 930 Value *llvm::SimplifyMulInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 931 return ::SimplifyMulInst(Op0, Op1, Q, RecursionLimit); 932 } 933 934 /// Check for common or similar folds of integer division or integer remainder. 935 /// This applies to all 4 opcodes (sdiv/udiv/srem/urem). 936 static Value *simplifyDivRem(Instruction::BinaryOps Opcode, Value *Op0, 937 Value *Op1, const SimplifyQuery &Q) { 938 bool IsDiv = (Opcode == Instruction::SDiv || Opcode == Instruction::UDiv); 939 bool IsSigned = (Opcode == Instruction::SDiv || Opcode == Instruction::SRem); 940 941 Type *Ty = Op0->getType(); 942 943 // X / undef -> poison 944 // X % undef -> poison 945 if (Q.isUndefValue(Op1)) 946 return PoisonValue::get(Ty); 947 948 // X / 0 -> poison 949 // X % 0 -> poison 950 // We don't need to preserve faults! 951 if (match(Op1, m_Zero())) 952 return PoisonValue::get(Ty); 953 954 // If any element of a constant divisor fixed width vector is zero or undef 955 // the behavior is undefined and we can fold the whole op to poison. 956 auto *Op1C = dyn_cast<Constant>(Op1); 957 auto *VTy = dyn_cast<FixedVectorType>(Ty); 958 if (Op1C && VTy) { 959 unsigned NumElts = VTy->getNumElements(); 960 for (unsigned i = 0; i != NumElts; ++i) { 961 Constant *Elt = Op1C->getAggregateElement(i); 962 if (Elt && (Elt->isNullValue() || Q.isUndefValue(Elt))) 963 return PoisonValue::get(Ty); 964 } 965 } 966 967 // poison / X -> poison 968 // poison % X -> poison 969 if (isa<PoisonValue>(Op0)) 970 return Op0; 971 972 // undef / X -> 0 973 // undef % X -> 0 974 if (Q.isUndefValue(Op0)) 975 return Constant::getNullValue(Ty); 976 977 // 0 / X -> 0 978 // 0 % X -> 0 979 if (match(Op0, m_Zero())) 980 return Constant::getNullValue(Op0->getType()); 981 982 // X / X -> 1 983 // X % X -> 0 984 if (Op0 == Op1) 985 return IsDiv ? ConstantInt::get(Ty, 1) : Constant::getNullValue(Ty); 986 987 // X / 1 -> X 988 // X % 1 -> 0 989 // If this is a boolean op (single-bit element type), we can't have 990 // division-by-zero or remainder-by-zero, so assume the divisor is 1. 991 // Similarly, if we're zero-extending a boolean divisor, then assume it's a 1. 992 Value *X; 993 if (match(Op1, m_One()) || Ty->isIntOrIntVectorTy(1) || 994 (match(Op1, m_ZExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1))) 995 return IsDiv ? Op0 : Constant::getNullValue(Ty); 996 997 // If X * Y does not overflow, then: 998 // X * Y / Y -> X 999 // X * Y % Y -> 0 1000 if (match(Op0, m_c_Mul(m_Value(X), m_Specific(Op1)))) { 1001 auto *Mul = cast<OverflowingBinaryOperator>(Op0); 1002 // The multiplication can't overflow if it is defined not to, or if 1003 // X == A / Y for some A. 1004 if ((IsSigned && Q.IIQ.hasNoSignedWrap(Mul)) || 1005 (!IsSigned && Q.IIQ.hasNoUnsignedWrap(Mul)) || 1006 (IsSigned && match(X, m_SDiv(m_Value(), m_Specific(Op1)))) || 1007 (!IsSigned && match(X, m_UDiv(m_Value(), m_Specific(Op1))))) { 1008 return IsDiv ? X : Constant::getNullValue(Op0->getType()); 1009 } 1010 } 1011 1012 return nullptr; 1013 } 1014 1015 /// Given a predicate and two operands, return true if the comparison is true. 1016 /// This is a helper for div/rem simplification where we return some other value 1017 /// when we can prove a relationship between the operands. 1018 static bool isICmpTrue(ICmpInst::Predicate Pred, Value *LHS, Value *RHS, 1019 const SimplifyQuery &Q, unsigned MaxRecurse) { 1020 Value *V = SimplifyICmpInst(Pred, LHS, RHS, Q, MaxRecurse); 1021 Constant *C = dyn_cast_or_null<Constant>(V); 1022 return (C && C->isAllOnesValue()); 1023 } 1024 1025 /// Return true if we can simplify X / Y to 0. Remainder can adapt that answer 1026 /// to simplify X % Y to X. 1027 static bool isDivZero(Value *X, Value *Y, const SimplifyQuery &Q, 1028 unsigned MaxRecurse, bool IsSigned) { 1029 // Recursion is always used, so bail out at once if we already hit the limit. 1030 if (!MaxRecurse--) 1031 return false; 1032 1033 if (IsSigned) { 1034 // |X| / |Y| --> 0 1035 // 1036 // We require that 1 operand is a simple constant. That could be extended to 1037 // 2 variables if we computed the sign bit for each. 1038 // 1039 // Make sure that a constant is not the minimum signed value because taking 1040 // the abs() of that is undefined. 1041 Type *Ty = X->getType(); 1042 const APInt *C; 1043 if (match(X, m_APInt(C)) && !C->isMinSignedValue()) { 1044 // Is the variable divisor magnitude always greater than the constant 1045 // dividend magnitude? 1046 // |Y| > |C| --> Y < -abs(C) or Y > abs(C) 1047 Constant *PosDividendC = ConstantInt::get(Ty, C->abs()); 1048 Constant *NegDividendC = ConstantInt::get(Ty, -C->abs()); 1049 if (isICmpTrue(CmpInst::ICMP_SLT, Y, NegDividendC, Q, MaxRecurse) || 1050 isICmpTrue(CmpInst::ICMP_SGT, Y, PosDividendC, Q, MaxRecurse)) 1051 return true; 1052 } 1053 if (match(Y, m_APInt(C))) { 1054 // Special-case: we can't take the abs() of a minimum signed value. If 1055 // that's the divisor, then all we have to do is prove that the dividend 1056 // is also not the minimum signed value. 1057 if (C->isMinSignedValue()) 1058 return isICmpTrue(CmpInst::ICMP_NE, X, Y, Q, MaxRecurse); 1059 1060 // Is the variable dividend magnitude always less than the constant 1061 // divisor magnitude? 1062 // |X| < |C| --> X > -abs(C) and X < abs(C) 1063 Constant *PosDivisorC = ConstantInt::get(Ty, C->abs()); 1064 Constant *NegDivisorC = ConstantInt::get(Ty, -C->abs()); 1065 if (isICmpTrue(CmpInst::ICMP_SGT, X, NegDivisorC, Q, MaxRecurse) && 1066 isICmpTrue(CmpInst::ICMP_SLT, X, PosDivisorC, Q, MaxRecurse)) 1067 return true; 1068 } 1069 return false; 1070 } 1071 1072 // IsSigned == false. 1073 // Is the dividend unsigned less than the divisor? 1074 return isICmpTrue(ICmpInst::ICMP_ULT, X, Y, Q, MaxRecurse); 1075 } 1076 1077 /// These are simplifications common to SDiv and UDiv. 1078 static Value *simplifyDiv(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1, 1079 const SimplifyQuery &Q, unsigned MaxRecurse) { 1080 if (Constant *C = foldOrCommuteConstant(Opcode, Op0, Op1, Q)) 1081 return C; 1082 1083 if (Value *V = simplifyDivRem(Opcode, Op0, Op1, Q)) 1084 return V; 1085 1086 bool IsSigned = Opcode == Instruction::SDiv; 1087 1088 // (X rem Y) / Y -> 0 1089 if ((IsSigned && match(Op0, m_SRem(m_Value(), m_Specific(Op1)))) || 1090 (!IsSigned && match(Op0, m_URem(m_Value(), m_Specific(Op1))))) 1091 return Constant::getNullValue(Op0->getType()); 1092 1093 // (X /u C1) /u C2 -> 0 if C1 * C2 overflow 1094 ConstantInt *C1, *C2; 1095 if (!IsSigned && match(Op0, m_UDiv(m_Value(), m_ConstantInt(C1))) && 1096 match(Op1, m_ConstantInt(C2))) { 1097 bool Overflow; 1098 (void)C1->getValue().umul_ov(C2->getValue(), Overflow); 1099 if (Overflow) 1100 return Constant::getNullValue(Op0->getType()); 1101 } 1102 1103 // If the operation is with the result of a select instruction, check whether 1104 // operating on either branch of the select always yields the same value. 1105 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 1106 if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse)) 1107 return V; 1108 1109 // If the operation is with the result of a phi instruction, check whether 1110 // operating on all incoming values of the phi always yields the same value. 1111 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 1112 if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse)) 1113 return V; 1114 1115 if (isDivZero(Op0, Op1, Q, MaxRecurse, IsSigned)) 1116 return Constant::getNullValue(Op0->getType()); 1117 1118 return nullptr; 1119 } 1120 1121 /// These are simplifications common to SRem and URem. 1122 static Value *simplifyRem(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1, 1123 const SimplifyQuery &Q, unsigned MaxRecurse) { 1124 if (Constant *C = foldOrCommuteConstant(Opcode, Op0, Op1, Q)) 1125 return C; 1126 1127 if (Value *V = simplifyDivRem(Opcode, Op0, Op1, Q)) 1128 return V; 1129 1130 // (X % Y) % Y -> X % Y 1131 if ((Opcode == Instruction::SRem && 1132 match(Op0, m_SRem(m_Value(), m_Specific(Op1)))) || 1133 (Opcode == Instruction::URem && 1134 match(Op0, m_URem(m_Value(), m_Specific(Op1))))) 1135 return Op0; 1136 1137 // (X << Y) % X -> 0 1138 if (Q.IIQ.UseInstrInfo && 1139 ((Opcode == Instruction::SRem && 1140 match(Op0, m_NSWShl(m_Specific(Op1), m_Value()))) || 1141 (Opcode == Instruction::URem && 1142 match(Op0, m_NUWShl(m_Specific(Op1), m_Value()))))) 1143 return Constant::getNullValue(Op0->getType()); 1144 1145 // If the operation is with the result of a select instruction, check whether 1146 // operating on either branch of the select always yields the same value. 1147 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 1148 if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse)) 1149 return V; 1150 1151 // If the operation is with the result of a phi instruction, check whether 1152 // operating on all incoming values of the phi always yields the same value. 1153 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 1154 if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse)) 1155 return V; 1156 1157 // If X / Y == 0, then X % Y == X. 1158 if (isDivZero(Op0, Op1, Q, MaxRecurse, Opcode == Instruction::SRem)) 1159 return Op0; 1160 1161 return nullptr; 1162 } 1163 1164 /// Given operands for an SDiv, see if we can fold the result. 1165 /// If not, this returns null. 1166 static Value *SimplifySDivInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 1167 unsigned MaxRecurse) { 1168 // If two operands are negated and no signed overflow, return -1. 1169 if (isKnownNegation(Op0, Op1, /*NeedNSW=*/true)) 1170 return Constant::getAllOnesValue(Op0->getType()); 1171 1172 return simplifyDiv(Instruction::SDiv, Op0, Op1, Q, MaxRecurse); 1173 } 1174 1175 Value *llvm::SimplifySDivInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 1176 return ::SimplifySDivInst(Op0, Op1, Q, RecursionLimit); 1177 } 1178 1179 /// Given operands for a UDiv, see if we can fold the result. 1180 /// If not, this returns null. 1181 static Value *SimplifyUDivInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 1182 unsigned MaxRecurse) { 1183 return simplifyDiv(Instruction::UDiv, Op0, Op1, Q, MaxRecurse); 1184 } 1185 1186 Value *llvm::SimplifyUDivInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 1187 return ::SimplifyUDivInst(Op0, Op1, Q, RecursionLimit); 1188 } 1189 1190 /// Given operands for an SRem, see if we can fold the result. 1191 /// If not, this returns null. 1192 static Value *SimplifySRemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 1193 unsigned MaxRecurse) { 1194 // If the divisor is 0, the result is undefined, so assume the divisor is -1. 1195 // srem Op0, (sext i1 X) --> srem Op0, -1 --> 0 1196 Value *X; 1197 if (match(Op1, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)) 1198 return ConstantInt::getNullValue(Op0->getType()); 1199 1200 // If the two operands are negated, return 0. 1201 if (isKnownNegation(Op0, Op1)) 1202 return ConstantInt::getNullValue(Op0->getType()); 1203 1204 return simplifyRem(Instruction::SRem, Op0, Op1, Q, MaxRecurse); 1205 } 1206 1207 Value *llvm::SimplifySRemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 1208 return ::SimplifySRemInst(Op0, Op1, Q, RecursionLimit); 1209 } 1210 1211 /// Given operands for a URem, see if we can fold the result. 1212 /// If not, this returns null. 1213 static Value *SimplifyURemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 1214 unsigned MaxRecurse) { 1215 return simplifyRem(Instruction::URem, Op0, Op1, Q, MaxRecurse); 1216 } 1217 1218 Value *llvm::SimplifyURemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 1219 return ::SimplifyURemInst(Op0, Op1, Q, RecursionLimit); 1220 } 1221 1222 /// Returns true if a shift by \c Amount always yields poison. 1223 static bool isPoisonShift(Value *Amount, const SimplifyQuery &Q) { 1224 Constant *C = dyn_cast<Constant>(Amount); 1225 if (!C) 1226 return false; 1227 1228 // X shift by undef -> poison because it may shift by the bitwidth. 1229 if (Q.isUndefValue(C)) 1230 return true; 1231 1232 // Shifting by the bitwidth or more is undefined. 1233 if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1234 if (CI->getValue().uge(CI->getType()->getScalarSizeInBits())) 1235 return true; 1236 1237 // If all lanes of a vector shift are undefined the whole shift is. 1238 if (isa<ConstantVector>(C) || isa<ConstantDataVector>(C)) { 1239 for (unsigned I = 0, 1240 E = cast<FixedVectorType>(C->getType())->getNumElements(); 1241 I != E; ++I) 1242 if (!isPoisonShift(C->getAggregateElement(I), Q)) 1243 return false; 1244 return true; 1245 } 1246 1247 return false; 1248 } 1249 1250 /// Given operands for an Shl, LShr or AShr, see if we can fold the result. 1251 /// If not, this returns null. 1252 static Value *SimplifyShift(Instruction::BinaryOps Opcode, Value *Op0, 1253 Value *Op1, bool IsNSW, const SimplifyQuery &Q, 1254 unsigned MaxRecurse) { 1255 if (Constant *C = foldOrCommuteConstant(Opcode, Op0, Op1, Q)) 1256 return C; 1257 1258 // poison shift by X -> poison 1259 if (isa<PoisonValue>(Op0)) 1260 return Op0; 1261 1262 // 0 shift by X -> 0 1263 if (match(Op0, m_Zero())) 1264 return Constant::getNullValue(Op0->getType()); 1265 1266 // X shift by 0 -> X 1267 // Shift-by-sign-extended bool must be shift-by-0 because shift-by-all-ones 1268 // would be poison. 1269 Value *X; 1270 if (match(Op1, m_Zero()) || 1271 (match(Op1, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1))) 1272 return Op0; 1273 1274 // Fold undefined shifts. 1275 if (isPoisonShift(Op1, Q)) 1276 return PoisonValue::get(Op0->getType()); 1277 1278 // If the operation is with the result of a select instruction, check whether 1279 // operating on either branch of the select always yields the same value. 1280 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 1281 if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse)) 1282 return V; 1283 1284 // If the operation is with the result of a phi instruction, check whether 1285 // operating on all incoming values of the phi always yields the same value. 1286 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 1287 if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse)) 1288 return V; 1289 1290 // If any bits in the shift amount make that value greater than or equal to 1291 // the number of bits in the type, the shift is undefined. 1292 KnownBits KnownAmt = computeKnownBits(Op1, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 1293 if (KnownAmt.getMinValue().uge(KnownAmt.getBitWidth())) 1294 return PoisonValue::get(Op0->getType()); 1295 1296 // If all valid bits in the shift amount are known zero, the first operand is 1297 // unchanged. 1298 unsigned NumValidShiftBits = Log2_32_Ceil(KnownAmt.getBitWidth()); 1299 if (KnownAmt.countMinTrailingZeros() >= NumValidShiftBits) 1300 return Op0; 1301 1302 // Check for nsw shl leading to a poison value. 1303 if (IsNSW) { 1304 assert(Opcode == Instruction::Shl && "Expected shl for nsw instruction"); 1305 KnownBits KnownVal = computeKnownBits(Op0, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 1306 KnownBits KnownShl = KnownBits::shl(KnownVal, KnownAmt); 1307 1308 if (KnownVal.Zero.isSignBitSet()) 1309 KnownShl.Zero.setSignBit(); 1310 if (KnownVal.One.isSignBitSet()) 1311 KnownShl.One.setSignBit(); 1312 1313 if (KnownShl.hasConflict()) 1314 return PoisonValue::get(Op0->getType()); 1315 } 1316 1317 return nullptr; 1318 } 1319 1320 /// Given operands for an Shl, LShr or AShr, see if we can 1321 /// fold the result. If not, this returns null. 1322 static Value *SimplifyRightShift(Instruction::BinaryOps Opcode, Value *Op0, 1323 Value *Op1, bool isExact, const SimplifyQuery &Q, 1324 unsigned MaxRecurse) { 1325 if (Value *V = 1326 SimplifyShift(Opcode, Op0, Op1, /*IsNSW*/ false, Q, MaxRecurse)) 1327 return V; 1328 1329 // X >> X -> 0 1330 if (Op0 == Op1) 1331 return Constant::getNullValue(Op0->getType()); 1332 1333 // undef >> X -> 0 1334 // undef >> X -> undef (if it's exact) 1335 if (Q.isUndefValue(Op0)) 1336 return isExact ? Op0 : Constant::getNullValue(Op0->getType()); 1337 1338 // The low bit cannot be shifted out of an exact shift if it is set. 1339 if (isExact) { 1340 KnownBits Op0Known = computeKnownBits(Op0, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT); 1341 if (Op0Known.One[0]) 1342 return Op0; 1343 } 1344 1345 return nullptr; 1346 } 1347 1348 /// Given operands for an Shl, see if we can fold the result. 1349 /// If not, this returns null. 1350 static Value *SimplifyShlInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, 1351 const SimplifyQuery &Q, unsigned MaxRecurse) { 1352 if (Value *V = 1353 SimplifyShift(Instruction::Shl, Op0, Op1, isNSW, Q, MaxRecurse)) 1354 return V; 1355 1356 // undef << X -> 0 1357 // undef << X -> undef if (if it's NSW/NUW) 1358 if (Q.isUndefValue(Op0)) 1359 return isNSW || isNUW ? Op0 : Constant::getNullValue(Op0->getType()); 1360 1361 // (X >> A) << A -> X 1362 Value *X; 1363 if (Q.IIQ.UseInstrInfo && 1364 match(Op0, m_Exact(m_Shr(m_Value(X), m_Specific(Op1))))) 1365 return X; 1366 1367 // shl nuw i8 C, %x -> C iff C has sign bit set. 1368 if (isNUW && match(Op0, m_Negative())) 1369 return Op0; 1370 // NOTE: could use computeKnownBits() / LazyValueInfo, 1371 // but the cost-benefit analysis suggests it isn't worth it. 1372 1373 return nullptr; 1374 } 1375 1376 Value *llvm::SimplifyShlInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, 1377 const SimplifyQuery &Q) { 1378 return ::SimplifyShlInst(Op0, Op1, isNSW, isNUW, Q, RecursionLimit); 1379 } 1380 1381 /// Given operands for an LShr, see if we can fold the result. 1382 /// If not, this returns null. 1383 static Value *SimplifyLShrInst(Value *Op0, Value *Op1, bool isExact, 1384 const SimplifyQuery &Q, unsigned MaxRecurse) { 1385 if (Value *V = SimplifyRightShift(Instruction::LShr, Op0, Op1, isExact, Q, 1386 MaxRecurse)) 1387 return V; 1388 1389 // (X << A) >> A -> X 1390 Value *X; 1391 if (match(Op0, m_NUWShl(m_Value(X), m_Specific(Op1)))) 1392 return X; 1393 1394 // ((X << A) | Y) >> A -> X if effective width of Y is not larger than A. 1395 // We can return X as we do in the above case since OR alters no bits in X. 1396 // SimplifyDemandedBits in InstCombine can do more general optimization for 1397 // bit manipulation. This pattern aims to provide opportunities for other 1398 // optimizers by supporting a simple but common case in InstSimplify. 1399 Value *Y; 1400 const APInt *ShRAmt, *ShLAmt; 1401 if (match(Op1, m_APInt(ShRAmt)) && 1402 match(Op0, m_c_Or(m_NUWShl(m_Value(X), m_APInt(ShLAmt)), m_Value(Y))) && 1403 *ShRAmt == *ShLAmt) { 1404 const KnownBits YKnown = computeKnownBits(Y, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 1405 const unsigned Width = Op0->getType()->getScalarSizeInBits(); 1406 const unsigned EffWidthY = Width - YKnown.countMinLeadingZeros(); 1407 if (ShRAmt->uge(EffWidthY)) 1408 return X; 1409 } 1410 1411 return nullptr; 1412 } 1413 1414 Value *llvm::SimplifyLShrInst(Value *Op0, Value *Op1, bool isExact, 1415 const SimplifyQuery &Q) { 1416 return ::SimplifyLShrInst(Op0, Op1, isExact, Q, RecursionLimit); 1417 } 1418 1419 /// Given operands for an AShr, see if we can fold the result. 1420 /// If not, this returns null. 1421 static Value *SimplifyAShrInst(Value *Op0, Value *Op1, bool isExact, 1422 const SimplifyQuery &Q, unsigned MaxRecurse) { 1423 if (Value *V = SimplifyRightShift(Instruction::AShr, Op0, Op1, isExact, Q, 1424 MaxRecurse)) 1425 return V; 1426 1427 // all ones >>a X -> -1 1428 // Do not return Op0 because it may contain undef elements if it's a vector. 1429 if (match(Op0, m_AllOnes())) 1430 return Constant::getAllOnesValue(Op0->getType()); 1431 1432 // (X << A) >> A -> X 1433 Value *X; 1434 if (Q.IIQ.UseInstrInfo && match(Op0, m_NSWShl(m_Value(X), m_Specific(Op1)))) 1435 return X; 1436 1437 // Arithmetic shifting an all-sign-bit value is a no-op. 1438 unsigned NumSignBits = ComputeNumSignBits(Op0, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 1439 if (NumSignBits == Op0->getType()->getScalarSizeInBits()) 1440 return Op0; 1441 1442 return nullptr; 1443 } 1444 1445 Value *llvm::SimplifyAShrInst(Value *Op0, Value *Op1, bool isExact, 1446 const SimplifyQuery &Q) { 1447 return ::SimplifyAShrInst(Op0, Op1, isExact, Q, RecursionLimit); 1448 } 1449 1450 /// Commuted variants are assumed to be handled by calling this function again 1451 /// with the parameters swapped. 1452 static Value *simplifyUnsignedRangeCheck(ICmpInst *ZeroICmp, 1453 ICmpInst *UnsignedICmp, bool IsAnd, 1454 const SimplifyQuery &Q) { 1455 Value *X, *Y; 1456 1457 ICmpInst::Predicate EqPred; 1458 if (!match(ZeroICmp, m_ICmp(EqPred, m_Value(Y), m_Zero())) || 1459 !ICmpInst::isEquality(EqPred)) 1460 return nullptr; 1461 1462 ICmpInst::Predicate UnsignedPred; 1463 1464 Value *A, *B; 1465 // Y = (A - B); 1466 if (match(Y, m_Sub(m_Value(A), m_Value(B)))) { 1467 if (match(UnsignedICmp, 1468 m_c_ICmp(UnsignedPred, m_Specific(A), m_Specific(B))) && 1469 ICmpInst::isUnsigned(UnsignedPred)) { 1470 // A >=/<= B || (A - B) != 0 <--> true 1471 if ((UnsignedPred == ICmpInst::ICMP_UGE || 1472 UnsignedPred == ICmpInst::ICMP_ULE) && 1473 EqPred == ICmpInst::ICMP_NE && !IsAnd) 1474 return ConstantInt::getTrue(UnsignedICmp->getType()); 1475 // A </> B && (A - B) == 0 <--> false 1476 if ((UnsignedPred == ICmpInst::ICMP_ULT || 1477 UnsignedPred == ICmpInst::ICMP_UGT) && 1478 EqPred == ICmpInst::ICMP_EQ && IsAnd) 1479 return ConstantInt::getFalse(UnsignedICmp->getType()); 1480 1481 // A </> B && (A - B) != 0 <--> A </> B 1482 // A </> B || (A - B) != 0 <--> (A - B) != 0 1483 if (EqPred == ICmpInst::ICMP_NE && (UnsignedPred == ICmpInst::ICMP_ULT || 1484 UnsignedPred == ICmpInst::ICMP_UGT)) 1485 return IsAnd ? UnsignedICmp : ZeroICmp; 1486 1487 // A <=/>= B && (A - B) == 0 <--> (A - B) == 0 1488 // A <=/>= B || (A - B) == 0 <--> A <=/>= B 1489 if (EqPred == ICmpInst::ICMP_EQ && (UnsignedPred == ICmpInst::ICMP_ULE || 1490 UnsignedPred == ICmpInst::ICMP_UGE)) 1491 return IsAnd ? ZeroICmp : UnsignedICmp; 1492 } 1493 1494 // Given Y = (A - B) 1495 // Y >= A && Y != 0 --> Y >= A iff B != 0 1496 // Y < A || Y == 0 --> Y < A iff B != 0 1497 if (match(UnsignedICmp, 1498 m_c_ICmp(UnsignedPred, m_Specific(Y), m_Specific(A)))) { 1499 if (UnsignedPred == ICmpInst::ICMP_UGE && IsAnd && 1500 EqPred == ICmpInst::ICMP_NE && 1501 isKnownNonZero(B, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT)) 1502 return UnsignedICmp; 1503 if (UnsignedPred == ICmpInst::ICMP_ULT && !IsAnd && 1504 EqPred == ICmpInst::ICMP_EQ && 1505 isKnownNonZero(B, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT)) 1506 return UnsignedICmp; 1507 } 1508 } 1509 1510 if (match(UnsignedICmp, m_ICmp(UnsignedPred, m_Value(X), m_Specific(Y))) && 1511 ICmpInst::isUnsigned(UnsignedPred)) 1512 ; 1513 else if (match(UnsignedICmp, 1514 m_ICmp(UnsignedPred, m_Specific(Y), m_Value(X))) && 1515 ICmpInst::isUnsigned(UnsignedPred)) 1516 UnsignedPred = ICmpInst::getSwappedPredicate(UnsignedPred); 1517 else 1518 return nullptr; 1519 1520 // X > Y && Y == 0 --> Y == 0 iff X != 0 1521 // X > Y || Y == 0 --> X > Y iff X != 0 1522 if (UnsignedPred == ICmpInst::ICMP_UGT && EqPred == ICmpInst::ICMP_EQ && 1523 isKnownNonZero(X, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT)) 1524 return IsAnd ? ZeroICmp : UnsignedICmp; 1525 1526 // X <= Y && Y != 0 --> X <= Y iff X != 0 1527 // X <= Y || Y != 0 --> Y != 0 iff X != 0 1528 if (UnsignedPred == ICmpInst::ICMP_ULE && EqPred == ICmpInst::ICMP_NE && 1529 isKnownNonZero(X, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT)) 1530 return IsAnd ? UnsignedICmp : ZeroICmp; 1531 1532 // The transforms below here are expected to be handled more generally with 1533 // simplifyAndOrOfICmpsWithLimitConst() or in InstCombine's 1534 // foldAndOrOfICmpsWithConstEq(). If we are looking to trim optimizer overlap, 1535 // these are candidates for removal. 1536 1537 // X < Y && Y != 0 --> X < Y 1538 // X < Y || Y != 0 --> Y != 0 1539 if (UnsignedPred == ICmpInst::ICMP_ULT && EqPred == ICmpInst::ICMP_NE) 1540 return IsAnd ? UnsignedICmp : ZeroICmp; 1541 1542 // X >= Y && Y == 0 --> Y == 0 1543 // X >= Y || Y == 0 --> X >= Y 1544 if (UnsignedPred == ICmpInst::ICMP_UGE && EqPred == ICmpInst::ICMP_EQ) 1545 return IsAnd ? ZeroICmp : UnsignedICmp; 1546 1547 // X < Y && Y == 0 --> false 1548 if (UnsignedPred == ICmpInst::ICMP_ULT && EqPred == ICmpInst::ICMP_EQ && 1549 IsAnd) 1550 return getFalse(UnsignedICmp->getType()); 1551 1552 // X >= Y || Y != 0 --> true 1553 if (UnsignedPred == ICmpInst::ICMP_UGE && EqPred == ICmpInst::ICMP_NE && 1554 !IsAnd) 1555 return getTrue(UnsignedICmp->getType()); 1556 1557 return nullptr; 1558 } 1559 1560 /// Commuted variants are assumed to be handled by calling this function again 1561 /// with the parameters swapped. 1562 static Value *simplifyAndOfICmpsWithSameOperands(ICmpInst *Op0, ICmpInst *Op1) { 1563 ICmpInst::Predicate Pred0, Pred1; 1564 Value *A ,*B; 1565 if (!match(Op0, m_ICmp(Pred0, m_Value(A), m_Value(B))) || 1566 !match(Op1, m_ICmp(Pred1, m_Specific(A), m_Specific(B)))) 1567 return nullptr; 1568 1569 // We have (icmp Pred0, A, B) & (icmp Pred1, A, B). 1570 // If Op1 is always implied true by Op0, then Op0 is a subset of Op1, and we 1571 // can eliminate Op1 from this 'and'. 1572 if (ICmpInst::isImpliedTrueByMatchingCmp(Pred0, Pred1)) 1573 return Op0; 1574 1575 // Check for any combination of predicates that are guaranteed to be disjoint. 1576 if ((Pred0 == ICmpInst::getInversePredicate(Pred1)) || 1577 (Pred0 == ICmpInst::ICMP_EQ && ICmpInst::isFalseWhenEqual(Pred1)) || 1578 (Pred0 == ICmpInst::ICMP_SLT && Pred1 == ICmpInst::ICMP_SGT) || 1579 (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_UGT)) 1580 return getFalse(Op0->getType()); 1581 1582 return nullptr; 1583 } 1584 1585 /// Commuted variants are assumed to be handled by calling this function again 1586 /// with the parameters swapped. 1587 static Value *simplifyOrOfICmpsWithSameOperands(ICmpInst *Op0, ICmpInst *Op1) { 1588 ICmpInst::Predicate Pred0, Pred1; 1589 Value *A ,*B; 1590 if (!match(Op0, m_ICmp(Pred0, m_Value(A), m_Value(B))) || 1591 !match(Op1, m_ICmp(Pred1, m_Specific(A), m_Specific(B)))) 1592 return nullptr; 1593 1594 // We have (icmp Pred0, A, B) | (icmp Pred1, A, B). 1595 // If Op1 is always implied true by Op0, then Op0 is a subset of Op1, and we 1596 // can eliminate Op0 from this 'or'. 1597 if (ICmpInst::isImpliedTrueByMatchingCmp(Pred0, Pred1)) 1598 return Op1; 1599 1600 // Check for any combination of predicates that cover the entire range of 1601 // possibilities. 1602 if ((Pred0 == ICmpInst::getInversePredicate(Pred1)) || 1603 (Pred0 == ICmpInst::ICMP_NE && ICmpInst::isTrueWhenEqual(Pred1)) || 1604 (Pred0 == ICmpInst::ICMP_SLE && Pred1 == ICmpInst::ICMP_SGE) || 1605 (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_UGE)) 1606 return getTrue(Op0->getType()); 1607 1608 return nullptr; 1609 } 1610 1611 /// Test if a pair of compares with a shared operand and 2 constants has an 1612 /// empty set intersection, full set union, or if one compare is a superset of 1613 /// the other. 1614 static Value *simplifyAndOrOfICmpsWithConstants(ICmpInst *Cmp0, ICmpInst *Cmp1, 1615 bool IsAnd) { 1616 // Look for this pattern: {and/or} (icmp X, C0), (icmp X, C1)). 1617 if (Cmp0->getOperand(0) != Cmp1->getOperand(0)) 1618 return nullptr; 1619 1620 const APInt *C0, *C1; 1621 if (!match(Cmp0->getOperand(1), m_APInt(C0)) || 1622 !match(Cmp1->getOperand(1), m_APInt(C1))) 1623 return nullptr; 1624 1625 auto Range0 = ConstantRange::makeExactICmpRegion(Cmp0->getPredicate(), *C0); 1626 auto Range1 = ConstantRange::makeExactICmpRegion(Cmp1->getPredicate(), *C1); 1627 1628 // For and-of-compares, check if the intersection is empty: 1629 // (icmp X, C0) && (icmp X, C1) --> empty set --> false 1630 if (IsAnd && Range0.intersectWith(Range1).isEmptySet()) 1631 return getFalse(Cmp0->getType()); 1632 1633 // For or-of-compares, check if the union is full: 1634 // (icmp X, C0) || (icmp X, C1) --> full set --> true 1635 if (!IsAnd && Range0.unionWith(Range1).isFullSet()) 1636 return getTrue(Cmp0->getType()); 1637 1638 // Is one range a superset of the other? 1639 // If this is and-of-compares, take the smaller set: 1640 // (icmp sgt X, 4) && (icmp sgt X, 42) --> icmp sgt X, 42 1641 // If this is or-of-compares, take the larger set: 1642 // (icmp sgt X, 4) || (icmp sgt X, 42) --> icmp sgt X, 4 1643 if (Range0.contains(Range1)) 1644 return IsAnd ? Cmp1 : Cmp0; 1645 if (Range1.contains(Range0)) 1646 return IsAnd ? Cmp0 : Cmp1; 1647 1648 return nullptr; 1649 } 1650 1651 static Value *simplifyAndOrOfICmpsWithZero(ICmpInst *Cmp0, ICmpInst *Cmp1, 1652 bool IsAnd) { 1653 ICmpInst::Predicate P0 = Cmp0->getPredicate(), P1 = Cmp1->getPredicate(); 1654 if (!match(Cmp0->getOperand(1), m_Zero()) || 1655 !match(Cmp1->getOperand(1), m_Zero()) || P0 != P1) 1656 return nullptr; 1657 1658 if ((IsAnd && P0 != ICmpInst::ICMP_NE) || (!IsAnd && P1 != ICmpInst::ICMP_EQ)) 1659 return nullptr; 1660 1661 // We have either "(X == 0 || Y == 0)" or "(X != 0 && Y != 0)". 1662 Value *X = Cmp0->getOperand(0); 1663 Value *Y = Cmp1->getOperand(0); 1664 1665 // If one of the compares is a masked version of a (not) null check, then 1666 // that compare implies the other, so we eliminate the other. Optionally, look 1667 // through a pointer-to-int cast to match a null check of a pointer type. 1668 1669 // (X == 0) || (([ptrtoint] X & ?) == 0) --> ([ptrtoint] X & ?) == 0 1670 // (X == 0) || ((? & [ptrtoint] X) == 0) --> (? & [ptrtoint] X) == 0 1671 // (X != 0) && (([ptrtoint] X & ?) != 0) --> ([ptrtoint] X & ?) != 0 1672 // (X != 0) && ((? & [ptrtoint] X) != 0) --> (? & [ptrtoint] X) != 0 1673 if (match(Y, m_c_And(m_Specific(X), m_Value())) || 1674 match(Y, m_c_And(m_PtrToInt(m_Specific(X)), m_Value()))) 1675 return Cmp1; 1676 1677 // (([ptrtoint] Y & ?) == 0) || (Y == 0) --> ([ptrtoint] Y & ?) == 0 1678 // ((? & [ptrtoint] Y) == 0) || (Y == 0) --> (? & [ptrtoint] Y) == 0 1679 // (([ptrtoint] Y & ?) != 0) && (Y != 0) --> ([ptrtoint] Y & ?) != 0 1680 // ((? & [ptrtoint] Y) != 0) && (Y != 0) --> (? & [ptrtoint] Y) != 0 1681 if (match(X, m_c_And(m_Specific(Y), m_Value())) || 1682 match(X, m_c_And(m_PtrToInt(m_Specific(Y)), m_Value()))) 1683 return Cmp0; 1684 1685 return nullptr; 1686 } 1687 1688 static Value *simplifyAndOfICmpsWithAdd(ICmpInst *Op0, ICmpInst *Op1, 1689 const InstrInfoQuery &IIQ) { 1690 // (icmp (add V, C0), C1) & (icmp V, C0) 1691 ICmpInst::Predicate Pred0, Pred1; 1692 const APInt *C0, *C1; 1693 Value *V; 1694 if (!match(Op0, m_ICmp(Pred0, m_Add(m_Value(V), m_APInt(C0)), m_APInt(C1)))) 1695 return nullptr; 1696 1697 if (!match(Op1, m_ICmp(Pred1, m_Specific(V), m_Value()))) 1698 return nullptr; 1699 1700 auto *AddInst = cast<OverflowingBinaryOperator>(Op0->getOperand(0)); 1701 if (AddInst->getOperand(1) != Op1->getOperand(1)) 1702 return nullptr; 1703 1704 Type *ITy = Op0->getType(); 1705 bool isNSW = IIQ.hasNoSignedWrap(AddInst); 1706 bool isNUW = IIQ.hasNoUnsignedWrap(AddInst); 1707 1708 const APInt Delta = *C1 - *C0; 1709 if (C0->isStrictlyPositive()) { 1710 if (Delta == 2) { 1711 if (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_SGT) 1712 return getFalse(ITy); 1713 if (Pred0 == ICmpInst::ICMP_SLT && Pred1 == ICmpInst::ICMP_SGT && isNSW) 1714 return getFalse(ITy); 1715 } 1716 if (Delta == 1) { 1717 if (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_SGT) 1718 return getFalse(ITy); 1719 if (Pred0 == ICmpInst::ICMP_SLE && Pred1 == ICmpInst::ICMP_SGT && isNSW) 1720 return getFalse(ITy); 1721 } 1722 } 1723 if (C0->getBoolValue() && isNUW) { 1724 if (Delta == 2) 1725 if (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_UGT) 1726 return getFalse(ITy); 1727 if (Delta == 1) 1728 if (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_UGT) 1729 return getFalse(ITy); 1730 } 1731 1732 return nullptr; 1733 } 1734 1735 /// Try to eliminate compares with signed or unsigned min/max constants. 1736 static Value *simplifyAndOrOfICmpsWithLimitConst(ICmpInst *Cmp0, ICmpInst *Cmp1, 1737 bool IsAnd) { 1738 // Canonicalize an equality compare as Cmp0. 1739 if (Cmp1->isEquality()) 1740 std::swap(Cmp0, Cmp1); 1741 if (!Cmp0->isEquality()) 1742 return nullptr; 1743 1744 // The non-equality compare must include a common operand (X). Canonicalize 1745 // the common operand as operand 0 (the predicate is swapped if the common 1746 // operand was operand 1). 1747 ICmpInst::Predicate Pred0 = Cmp0->getPredicate(); 1748 Value *X = Cmp0->getOperand(0); 1749 ICmpInst::Predicate Pred1; 1750 bool HasNotOp = match(Cmp1, m_c_ICmp(Pred1, m_Not(m_Specific(X)), m_Value())); 1751 if (!HasNotOp && !match(Cmp1, m_c_ICmp(Pred1, m_Specific(X), m_Value()))) 1752 return nullptr; 1753 if (ICmpInst::isEquality(Pred1)) 1754 return nullptr; 1755 1756 // The equality compare must be against a constant. Flip bits if we matched 1757 // a bitwise not. Convert a null pointer constant to an integer zero value. 1758 APInt MinMaxC; 1759 const APInt *C; 1760 if (match(Cmp0->getOperand(1), m_APInt(C))) 1761 MinMaxC = HasNotOp ? ~*C : *C; 1762 else if (isa<ConstantPointerNull>(Cmp0->getOperand(1))) 1763 MinMaxC = APInt::getNullValue(8); 1764 else 1765 return nullptr; 1766 1767 // DeMorganize if this is 'or': P0 || P1 --> !P0 && !P1. 1768 if (!IsAnd) { 1769 Pred0 = ICmpInst::getInversePredicate(Pred0); 1770 Pred1 = ICmpInst::getInversePredicate(Pred1); 1771 } 1772 1773 // Normalize to unsigned compare and unsigned min/max value. 1774 // Example for 8-bit: -128 + 128 -> 0; 127 + 128 -> 255 1775 if (ICmpInst::isSigned(Pred1)) { 1776 Pred1 = ICmpInst::getUnsignedPredicate(Pred1); 1777 MinMaxC += APInt::getSignedMinValue(MinMaxC.getBitWidth()); 1778 } 1779 1780 // (X != MAX) && (X < Y) --> X < Y 1781 // (X == MAX) || (X >= Y) --> X >= Y 1782 if (MinMaxC.isMaxValue()) 1783 if (Pred0 == ICmpInst::ICMP_NE && Pred1 == ICmpInst::ICMP_ULT) 1784 return Cmp1; 1785 1786 // (X != MIN) && (X > Y) --> X > Y 1787 // (X == MIN) || (X <= Y) --> X <= Y 1788 if (MinMaxC.isMinValue()) 1789 if (Pred0 == ICmpInst::ICMP_NE && Pred1 == ICmpInst::ICMP_UGT) 1790 return Cmp1; 1791 1792 return nullptr; 1793 } 1794 1795 static Value *simplifyAndOfICmps(ICmpInst *Op0, ICmpInst *Op1, 1796 const SimplifyQuery &Q) { 1797 if (Value *X = simplifyUnsignedRangeCheck(Op0, Op1, /*IsAnd=*/true, Q)) 1798 return X; 1799 if (Value *X = simplifyUnsignedRangeCheck(Op1, Op0, /*IsAnd=*/true, Q)) 1800 return X; 1801 1802 if (Value *X = simplifyAndOfICmpsWithSameOperands(Op0, Op1)) 1803 return X; 1804 if (Value *X = simplifyAndOfICmpsWithSameOperands(Op1, Op0)) 1805 return X; 1806 1807 if (Value *X = simplifyAndOrOfICmpsWithConstants(Op0, Op1, true)) 1808 return X; 1809 1810 if (Value *X = simplifyAndOrOfICmpsWithLimitConst(Op0, Op1, true)) 1811 return X; 1812 1813 if (Value *X = simplifyAndOrOfICmpsWithZero(Op0, Op1, true)) 1814 return X; 1815 1816 if (Value *X = simplifyAndOfICmpsWithAdd(Op0, Op1, Q.IIQ)) 1817 return X; 1818 if (Value *X = simplifyAndOfICmpsWithAdd(Op1, Op0, Q.IIQ)) 1819 return X; 1820 1821 return nullptr; 1822 } 1823 1824 static Value *simplifyOrOfICmpsWithAdd(ICmpInst *Op0, ICmpInst *Op1, 1825 const InstrInfoQuery &IIQ) { 1826 // (icmp (add V, C0), C1) | (icmp V, C0) 1827 ICmpInst::Predicate Pred0, Pred1; 1828 const APInt *C0, *C1; 1829 Value *V; 1830 if (!match(Op0, m_ICmp(Pred0, m_Add(m_Value(V), m_APInt(C0)), m_APInt(C1)))) 1831 return nullptr; 1832 1833 if (!match(Op1, m_ICmp(Pred1, m_Specific(V), m_Value()))) 1834 return nullptr; 1835 1836 auto *AddInst = cast<BinaryOperator>(Op0->getOperand(0)); 1837 if (AddInst->getOperand(1) != Op1->getOperand(1)) 1838 return nullptr; 1839 1840 Type *ITy = Op0->getType(); 1841 bool isNSW = IIQ.hasNoSignedWrap(AddInst); 1842 bool isNUW = IIQ.hasNoUnsignedWrap(AddInst); 1843 1844 const APInt Delta = *C1 - *C0; 1845 if (C0->isStrictlyPositive()) { 1846 if (Delta == 2) { 1847 if (Pred0 == ICmpInst::ICMP_UGE && Pred1 == ICmpInst::ICMP_SLE) 1848 return getTrue(ITy); 1849 if (Pred0 == ICmpInst::ICMP_SGE && Pred1 == ICmpInst::ICMP_SLE && isNSW) 1850 return getTrue(ITy); 1851 } 1852 if (Delta == 1) { 1853 if (Pred0 == ICmpInst::ICMP_UGT && Pred1 == ICmpInst::ICMP_SLE) 1854 return getTrue(ITy); 1855 if (Pred0 == ICmpInst::ICMP_SGT && Pred1 == ICmpInst::ICMP_SLE && isNSW) 1856 return getTrue(ITy); 1857 } 1858 } 1859 if (C0->getBoolValue() && isNUW) { 1860 if (Delta == 2) 1861 if (Pred0 == ICmpInst::ICMP_UGE && Pred1 == ICmpInst::ICMP_ULE) 1862 return getTrue(ITy); 1863 if (Delta == 1) 1864 if (Pred0 == ICmpInst::ICMP_UGT && Pred1 == ICmpInst::ICMP_ULE) 1865 return getTrue(ITy); 1866 } 1867 1868 return nullptr; 1869 } 1870 1871 static Value *simplifyOrOfICmps(ICmpInst *Op0, ICmpInst *Op1, 1872 const SimplifyQuery &Q) { 1873 if (Value *X = simplifyUnsignedRangeCheck(Op0, Op1, /*IsAnd=*/false, Q)) 1874 return X; 1875 if (Value *X = simplifyUnsignedRangeCheck(Op1, Op0, /*IsAnd=*/false, Q)) 1876 return X; 1877 1878 if (Value *X = simplifyOrOfICmpsWithSameOperands(Op0, Op1)) 1879 return X; 1880 if (Value *X = simplifyOrOfICmpsWithSameOperands(Op1, Op0)) 1881 return X; 1882 1883 if (Value *X = simplifyAndOrOfICmpsWithConstants(Op0, Op1, false)) 1884 return X; 1885 1886 if (Value *X = simplifyAndOrOfICmpsWithLimitConst(Op0, Op1, false)) 1887 return X; 1888 1889 if (Value *X = simplifyAndOrOfICmpsWithZero(Op0, Op1, false)) 1890 return X; 1891 1892 if (Value *X = simplifyOrOfICmpsWithAdd(Op0, Op1, Q.IIQ)) 1893 return X; 1894 if (Value *X = simplifyOrOfICmpsWithAdd(Op1, Op0, Q.IIQ)) 1895 return X; 1896 1897 return nullptr; 1898 } 1899 1900 static Value *simplifyAndOrOfFCmps(const TargetLibraryInfo *TLI, 1901 FCmpInst *LHS, FCmpInst *RHS, bool IsAnd) { 1902 Value *LHS0 = LHS->getOperand(0), *LHS1 = LHS->getOperand(1); 1903 Value *RHS0 = RHS->getOperand(0), *RHS1 = RHS->getOperand(1); 1904 if (LHS0->getType() != RHS0->getType()) 1905 return nullptr; 1906 1907 FCmpInst::Predicate PredL = LHS->getPredicate(), PredR = RHS->getPredicate(); 1908 if ((PredL == FCmpInst::FCMP_ORD && PredR == FCmpInst::FCMP_ORD && IsAnd) || 1909 (PredL == FCmpInst::FCMP_UNO && PredR == FCmpInst::FCMP_UNO && !IsAnd)) { 1910 // (fcmp ord NNAN, X) & (fcmp ord X, Y) --> fcmp ord X, Y 1911 // (fcmp ord NNAN, X) & (fcmp ord Y, X) --> fcmp ord Y, X 1912 // (fcmp ord X, NNAN) & (fcmp ord X, Y) --> fcmp ord X, Y 1913 // (fcmp ord X, NNAN) & (fcmp ord Y, X) --> fcmp ord Y, X 1914 // (fcmp uno NNAN, X) | (fcmp uno X, Y) --> fcmp uno X, Y 1915 // (fcmp uno NNAN, X) | (fcmp uno Y, X) --> fcmp uno Y, X 1916 // (fcmp uno X, NNAN) | (fcmp uno X, Y) --> fcmp uno X, Y 1917 // (fcmp uno X, NNAN) | (fcmp uno Y, X) --> fcmp uno Y, X 1918 if ((isKnownNeverNaN(LHS0, TLI) && (LHS1 == RHS0 || LHS1 == RHS1)) || 1919 (isKnownNeverNaN(LHS1, TLI) && (LHS0 == RHS0 || LHS0 == RHS1))) 1920 return RHS; 1921 1922 // (fcmp ord X, Y) & (fcmp ord NNAN, X) --> fcmp ord X, Y 1923 // (fcmp ord Y, X) & (fcmp ord NNAN, X) --> fcmp ord Y, X 1924 // (fcmp ord X, Y) & (fcmp ord X, NNAN) --> fcmp ord X, Y 1925 // (fcmp ord Y, X) & (fcmp ord X, NNAN) --> fcmp ord Y, X 1926 // (fcmp uno X, Y) | (fcmp uno NNAN, X) --> fcmp uno X, Y 1927 // (fcmp uno Y, X) | (fcmp uno NNAN, X) --> fcmp uno Y, X 1928 // (fcmp uno X, Y) | (fcmp uno X, NNAN) --> fcmp uno X, Y 1929 // (fcmp uno Y, X) | (fcmp uno X, NNAN) --> fcmp uno Y, X 1930 if ((isKnownNeverNaN(RHS0, TLI) && (RHS1 == LHS0 || RHS1 == LHS1)) || 1931 (isKnownNeverNaN(RHS1, TLI) && (RHS0 == LHS0 || RHS0 == LHS1))) 1932 return LHS; 1933 } 1934 1935 return nullptr; 1936 } 1937 1938 static Value *simplifyAndOrOfCmps(const SimplifyQuery &Q, 1939 Value *Op0, Value *Op1, bool IsAnd) { 1940 // Look through casts of the 'and' operands to find compares. 1941 auto *Cast0 = dyn_cast<CastInst>(Op0); 1942 auto *Cast1 = dyn_cast<CastInst>(Op1); 1943 if (Cast0 && Cast1 && Cast0->getOpcode() == Cast1->getOpcode() && 1944 Cast0->getSrcTy() == Cast1->getSrcTy()) { 1945 Op0 = Cast0->getOperand(0); 1946 Op1 = Cast1->getOperand(0); 1947 } 1948 1949 Value *V = nullptr; 1950 auto *ICmp0 = dyn_cast<ICmpInst>(Op0); 1951 auto *ICmp1 = dyn_cast<ICmpInst>(Op1); 1952 if (ICmp0 && ICmp1) 1953 V = IsAnd ? simplifyAndOfICmps(ICmp0, ICmp1, Q) 1954 : simplifyOrOfICmps(ICmp0, ICmp1, Q); 1955 1956 auto *FCmp0 = dyn_cast<FCmpInst>(Op0); 1957 auto *FCmp1 = dyn_cast<FCmpInst>(Op1); 1958 if (FCmp0 && FCmp1) 1959 V = simplifyAndOrOfFCmps(Q.TLI, FCmp0, FCmp1, IsAnd); 1960 1961 if (!V) 1962 return nullptr; 1963 if (!Cast0) 1964 return V; 1965 1966 // If we looked through casts, we can only handle a constant simplification 1967 // because we are not allowed to create a cast instruction here. 1968 if (auto *C = dyn_cast<Constant>(V)) 1969 return ConstantExpr::getCast(Cast0->getOpcode(), C, Cast0->getType()); 1970 1971 return nullptr; 1972 } 1973 1974 /// Given a bitwise logic op, check if the operands are add/sub with a common 1975 /// source value and inverted constant (identity: C - X -> ~(X + ~C)). 1976 static Value *simplifyLogicOfAddSub(Value *Op0, Value *Op1, 1977 Instruction::BinaryOps Opcode) { 1978 assert(Op0->getType() == Op1->getType() && "Mismatched binop types"); 1979 assert(BinaryOperator::isBitwiseLogicOp(Opcode) && "Expected logic op"); 1980 Value *X; 1981 Constant *C1, *C2; 1982 if ((match(Op0, m_Add(m_Value(X), m_Constant(C1))) && 1983 match(Op1, m_Sub(m_Constant(C2), m_Specific(X)))) || 1984 (match(Op1, m_Add(m_Value(X), m_Constant(C1))) && 1985 match(Op0, m_Sub(m_Constant(C2), m_Specific(X))))) { 1986 if (ConstantExpr::getNot(C1) == C2) { 1987 // (X + C) & (~C - X) --> (X + C) & ~(X + C) --> 0 1988 // (X + C) | (~C - X) --> (X + C) | ~(X + C) --> -1 1989 // (X + C) ^ (~C - X) --> (X + C) ^ ~(X + C) --> -1 1990 Type *Ty = Op0->getType(); 1991 return Opcode == Instruction::And ? ConstantInt::getNullValue(Ty) 1992 : ConstantInt::getAllOnesValue(Ty); 1993 } 1994 } 1995 return nullptr; 1996 } 1997 1998 /// Given operands for an And, see if we can fold the result. 1999 /// If not, this returns null. 2000 static Value *SimplifyAndInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 2001 unsigned MaxRecurse) { 2002 if (Constant *C = foldOrCommuteConstant(Instruction::And, Op0, Op1, Q)) 2003 return C; 2004 2005 // X & poison -> poison 2006 if (isa<PoisonValue>(Op1)) 2007 return Op1; 2008 2009 // X & undef -> 0 2010 if (Q.isUndefValue(Op1)) 2011 return Constant::getNullValue(Op0->getType()); 2012 2013 // X & X = X 2014 if (Op0 == Op1) 2015 return Op0; 2016 2017 // X & 0 = 0 2018 if (match(Op1, m_Zero())) 2019 return Constant::getNullValue(Op0->getType()); 2020 2021 // X & -1 = X 2022 if (match(Op1, m_AllOnes())) 2023 return Op0; 2024 2025 // A & ~A = ~A & A = 0 2026 if (match(Op0, m_Not(m_Specific(Op1))) || 2027 match(Op1, m_Not(m_Specific(Op0)))) 2028 return Constant::getNullValue(Op0->getType()); 2029 2030 // (A | ?) & A = A 2031 if (match(Op0, m_c_Or(m_Specific(Op1), m_Value()))) 2032 return Op1; 2033 2034 // A & (A | ?) = A 2035 if (match(Op1, m_c_Or(m_Specific(Op0), m_Value()))) 2036 return Op0; 2037 2038 if (Value *V = simplifyLogicOfAddSub(Op0, Op1, Instruction::And)) 2039 return V; 2040 2041 // A mask that only clears known zeros of a shifted value is a no-op. 2042 Value *X; 2043 const APInt *Mask; 2044 const APInt *ShAmt; 2045 if (match(Op1, m_APInt(Mask))) { 2046 // If all bits in the inverted and shifted mask are clear: 2047 // and (shl X, ShAmt), Mask --> shl X, ShAmt 2048 if (match(Op0, m_Shl(m_Value(X), m_APInt(ShAmt))) && 2049 (~(*Mask)).lshr(*ShAmt).isNullValue()) 2050 return Op0; 2051 2052 // If all bits in the inverted and shifted mask are clear: 2053 // and (lshr X, ShAmt), Mask --> lshr X, ShAmt 2054 if (match(Op0, m_LShr(m_Value(X), m_APInt(ShAmt))) && 2055 (~(*Mask)).shl(*ShAmt).isNullValue()) 2056 return Op0; 2057 } 2058 2059 // If we have a multiplication overflow check that is being 'and'ed with a 2060 // check that one of the multipliers is not zero, we can omit the 'and', and 2061 // only keep the overflow check. 2062 if (isCheckForZeroAndMulWithOverflow(Op0, Op1, true)) 2063 return Op1; 2064 if (isCheckForZeroAndMulWithOverflow(Op1, Op0, true)) 2065 return Op0; 2066 2067 // A & (-A) = A if A is a power of two or zero. 2068 if (match(Op0, m_Neg(m_Specific(Op1))) || 2069 match(Op1, m_Neg(m_Specific(Op0)))) { 2070 if (isKnownToBeAPowerOfTwo(Op0, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI, 2071 Q.DT)) 2072 return Op0; 2073 if (isKnownToBeAPowerOfTwo(Op1, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI, 2074 Q.DT)) 2075 return Op1; 2076 } 2077 2078 // This is a similar pattern used for checking if a value is a power-of-2: 2079 // (A - 1) & A --> 0 (if A is a power-of-2 or 0) 2080 // A & (A - 1) --> 0 (if A is a power-of-2 or 0) 2081 if (match(Op0, m_Add(m_Specific(Op1), m_AllOnes())) && 2082 isKnownToBeAPowerOfTwo(Op1, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI, Q.DT)) 2083 return Constant::getNullValue(Op1->getType()); 2084 if (match(Op1, m_Add(m_Specific(Op0), m_AllOnes())) && 2085 isKnownToBeAPowerOfTwo(Op0, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI, Q.DT)) 2086 return Constant::getNullValue(Op0->getType()); 2087 2088 if (Value *V = simplifyAndOrOfCmps(Q, Op0, Op1, true)) 2089 return V; 2090 2091 // Try some generic simplifications for associative operations. 2092 if (Value *V = SimplifyAssociativeBinOp(Instruction::And, Op0, Op1, Q, 2093 MaxRecurse)) 2094 return V; 2095 2096 // And distributes over Or. Try some generic simplifications based on this. 2097 if (Value *V = expandCommutativeBinOp(Instruction::And, Op0, Op1, 2098 Instruction::Or, Q, MaxRecurse)) 2099 return V; 2100 2101 // And distributes over Xor. Try some generic simplifications based on this. 2102 if (Value *V = expandCommutativeBinOp(Instruction::And, Op0, Op1, 2103 Instruction::Xor, Q, MaxRecurse)) 2104 return V; 2105 2106 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) { 2107 if (Op0->getType()->isIntOrIntVectorTy(1)) { 2108 // A & (A && B) -> A && B 2109 if (match(Op1, m_Select(m_Specific(Op0), m_Value(), m_Zero()))) 2110 return Op1; 2111 else if (match(Op0, m_Select(m_Specific(Op1), m_Value(), m_Zero()))) 2112 return Op0; 2113 } 2114 // If the operation is with the result of a select instruction, check 2115 // whether operating on either branch of the select always yields the same 2116 // value. 2117 if (Value *V = ThreadBinOpOverSelect(Instruction::And, Op0, Op1, Q, 2118 MaxRecurse)) 2119 return V; 2120 } 2121 2122 // If the operation is with the result of a phi instruction, check whether 2123 // operating on all incoming values of the phi always yields the same value. 2124 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 2125 if (Value *V = ThreadBinOpOverPHI(Instruction::And, Op0, Op1, Q, 2126 MaxRecurse)) 2127 return V; 2128 2129 // Assuming the effective width of Y is not larger than A, i.e. all bits 2130 // from X and Y are disjoint in (X << A) | Y, 2131 // if the mask of this AND op covers all bits of X or Y, while it covers 2132 // no bits from the other, we can bypass this AND op. E.g., 2133 // ((X << A) | Y) & Mask -> Y, 2134 // if Mask = ((1 << effective_width_of(Y)) - 1) 2135 // ((X << A) | Y) & Mask -> X << A, 2136 // if Mask = ((1 << effective_width_of(X)) - 1) << A 2137 // SimplifyDemandedBits in InstCombine can optimize the general case. 2138 // This pattern aims to help other passes for a common case. 2139 Value *Y, *XShifted; 2140 if (match(Op1, m_APInt(Mask)) && 2141 match(Op0, m_c_Or(m_CombineAnd(m_NUWShl(m_Value(X), m_APInt(ShAmt)), 2142 m_Value(XShifted)), 2143 m_Value(Y)))) { 2144 const unsigned Width = Op0->getType()->getScalarSizeInBits(); 2145 const unsigned ShftCnt = ShAmt->getLimitedValue(Width); 2146 const KnownBits YKnown = computeKnownBits(Y, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2147 const unsigned EffWidthY = Width - YKnown.countMinLeadingZeros(); 2148 if (EffWidthY <= ShftCnt) { 2149 const KnownBits XKnown = computeKnownBits(X, Q.DL, 0, Q.AC, Q.CxtI, 2150 Q.DT); 2151 const unsigned EffWidthX = Width - XKnown.countMinLeadingZeros(); 2152 const APInt EffBitsY = APInt::getLowBitsSet(Width, EffWidthY); 2153 const APInt EffBitsX = APInt::getLowBitsSet(Width, EffWidthX) << ShftCnt; 2154 // If the mask is extracting all bits from X or Y as is, we can skip 2155 // this AND op. 2156 if (EffBitsY.isSubsetOf(*Mask) && !EffBitsX.intersects(*Mask)) 2157 return Y; 2158 if (EffBitsX.isSubsetOf(*Mask) && !EffBitsY.intersects(*Mask)) 2159 return XShifted; 2160 } 2161 } 2162 2163 return nullptr; 2164 } 2165 2166 Value *llvm::SimplifyAndInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 2167 return ::SimplifyAndInst(Op0, Op1, Q, RecursionLimit); 2168 } 2169 2170 /// Given operands for an Or, see if we can fold the result. 2171 /// If not, this returns null. 2172 static Value *SimplifyOrInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 2173 unsigned MaxRecurse) { 2174 if (Constant *C = foldOrCommuteConstant(Instruction::Or, Op0, Op1, Q)) 2175 return C; 2176 2177 // X | poison -> poison 2178 if (isa<PoisonValue>(Op1)) 2179 return Op1; 2180 2181 // X | undef -> -1 2182 // X | -1 = -1 2183 // Do not return Op1 because it may contain undef elements if it's a vector. 2184 if (Q.isUndefValue(Op1) || match(Op1, m_AllOnes())) 2185 return Constant::getAllOnesValue(Op0->getType()); 2186 2187 // X | X = X 2188 // X | 0 = X 2189 if (Op0 == Op1 || match(Op1, m_Zero())) 2190 return Op0; 2191 2192 // A | ~A = ~A | A = -1 2193 if (match(Op0, m_Not(m_Specific(Op1))) || 2194 match(Op1, m_Not(m_Specific(Op0)))) 2195 return Constant::getAllOnesValue(Op0->getType()); 2196 2197 // (A & ?) | A = A 2198 if (match(Op0, m_c_And(m_Specific(Op1), m_Value()))) 2199 return Op1; 2200 2201 // A | (A & ?) = A 2202 if (match(Op1, m_c_And(m_Specific(Op0), m_Value()))) 2203 return Op0; 2204 2205 // ~(A & ?) | A = -1 2206 if (match(Op0, m_Not(m_c_And(m_Specific(Op1), m_Value())))) 2207 return Constant::getAllOnesValue(Op1->getType()); 2208 2209 // A | ~(A & ?) = -1 2210 if (match(Op1, m_Not(m_c_And(m_Specific(Op0), m_Value())))) 2211 return Constant::getAllOnesValue(Op0->getType()); 2212 2213 if (Value *V = simplifyLogicOfAddSub(Op0, Op1, Instruction::Or)) 2214 return V; 2215 2216 Value *A, *B, *NotA; 2217 // (A & ~B) | (A ^ B) -> (A ^ B) 2218 // (~B & A) | (A ^ B) -> (A ^ B) 2219 // (A & ~B) | (B ^ A) -> (B ^ A) 2220 // (~B & A) | (B ^ A) -> (B ^ A) 2221 if (match(Op1, m_Xor(m_Value(A), m_Value(B))) && 2222 (match(Op0, m_c_And(m_Specific(A), m_Not(m_Specific(B)))) || 2223 match(Op0, m_c_And(m_Not(m_Specific(A)), m_Specific(B))))) 2224 return Op1; 2225 2226 // Commute the 'or' operands. 2227 // (A ^ B) | (A & ~B) -> (A ^ B) 2228 // (A ^ B) | (~B & A) -> (A ^ B) 2229 // (B ^ A) | (A & ~B) -> (B ^ A) 2230 // (B ^ A) | (~B & A) -> (B ^ A) 2231 if (match(Op0, m_Xor(m_Value(A), m_Value(B))) && 2232 (match(Op1, m_c_And(m_Specific(A), m_Not(m_Specific(B)))) || 2233 match(Op1, m_c_And(m_Not(m_Specific(A)), m_Specific(B))))) 2234 return Op0; 2235 2236 // (A & B) | (~A ^ B) -> (~A ^ B) 2237 // (B & A) | (~A ^ B) -> (~A ^ B) 2238 // (A & B) | (B ^ ~A) -> (B ^ ~A) 2239 // (B & A) | (B ^ ~A) -> (B ^ ~A) 2240 if (match(Op0, m_And(m_Value(A), m_Value(B))) && 2241 (match(Op1, m_c_Xor(m_Specific(A), m_Not(m_Specific(B)))) || 2242 match(Op1, m_c_Xor(m_Not(m_Specific(A)), m_Specific(B))))) 2243 return Op1; 2244 2245 // Commute the 'or' operands. 2246 // (~A ^ B) | (A & B) -> (~A ^ B) 2247 // (~A ^ B) | (B & A) -> (~A ^ B) 2248 // (B ^ ~A) | (A & B) -> (B ^ ~A) 2249 // (B ^ ~A) | (B & A) -> (B ^ ~A) 2250 if (match(Op1, m_And(m_Value(A), m_Value(B))) && 2251 (match(Op0, m_c_Xor(m_Specific(A), m_Not(m_Specific(B)))) || 2252 match(Op0, m_c_Xor(m_Not(m_Specific(A)), m_Specific(B))))) 2253 return Op0; 2254 2255 // (~A & B) | ~(A | B) --> ~A 2256 // (~A & B) | ~(B | A) --> ~A 2257 // (B & ~A) | ~(A | B) --> ~A 2258 // (B & ~A) | ~(B | A) --> ~A 2259 if (match(Op0, m_c_And(m_CombineAnd(m_Value(NotA), m_Not(m_Value(A))), 2260 m_Value(B))) && 2261 match(Op1, m_Not(m_c_Or(m_Specific(A), m_Specific(B))))) 2262 return NotA; 2263 2264 // Commute the 'or' operands. 2265 // ~(A | B) | (~A & B) --> ~A 2266 // ~(B | A) | (~A & B) --> ~A 2267 // ~(A | B) | (B & ~A) --> ~A 2268 // ~(B | A) | (B & ~A) --> ~A 2269 if (match(Op1, m_c_And(m_CombineAnd(m_Value(NotA), m_Not(m_Value(A))), 2270 m_Value(B))) && 2271 match(Op0, m_Not(m_c_Or(m_Specific(A), m_Specific(B))))) 2272 return NotA; 2273 2274 if (Value *V = simplifyAndOrOfCmps(Q, Op0, Op1, false)) 2275 return V; 2276 2277 // If we have a multiplication overflow check that is being 'and'ed with a 2278 // check that one of the multipliers is not zero, we can omit the 'and', and 2279 // only keep the overflow check. 2280 if (isCheckForZeroAndMulWithOverflow(Op0, Op1, false)) 2281 return Op1; 2282 if (isCheckForZeroAndMulWithOverflow(Op1, Op0, false)) 2283 return Op0; 2284 2285 // Try some generic simplifications for associative operations. 2286 if (Value *V = SimplifyAssociativeBinOp(Instruction::Or, Op0, Op1, Q, 2287 MaxRecurse)) 2288 return V; 2289 2290 // Or distributes over And. Try some generic simplifications based on this. 2291 if (Value *V = expandCommutativeBinOp(Instruction::Or, Op0, Op1, 2292 Instruction::And, Q, MaxRecurse)) 2293 return V; 2294 2295 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) { 2296 if (Op0->getType()->isIntOrIntVectorTy(1)) { 2297 // A | (A || B) -> A || B 2298 if (match(Op1, m_Select(m_Specific(Op0), m_One(), m_Value()))) 2299 return Op1; 2300 else if (match(Op0, m_Select(m_Specific(Op1), m_One(), m_Value()))) 2301 return Op0; 2302 } 2303 // If the operation is with the result of a select instruction, check 2304 // whether operating on either branch of the select always yields the same 2305 // value. 2306 if (Value *V = ThreadBinOpOverSelect(Instruction::Or, Op0, Op1, Q, 2307 MaxRecurse)) 2308 return V; 2309 } 2310 2311 // (A & C1)|(B & C2) 2312 const APInt *C1, *C2; 2313 if (match(Op0, m_And(m_Value(A), m_APInt(C1))) && 2314 match(Op1, m_And(m_Value(B), m_APInt(C2)))) { 2315 if (*C1 == ~*C2) { 2316 // (A & C1)|(B & C2) 2317 // If we have: ((V + N) & C1) | (V & C2) 2318 // .. and C2 = ~C1 and C2 is 0+1+ and (N & C2) == 0 2319 // replace with V+N. 2320 Value *N; 2321 if (C2->isMask() && // C2 == 0+1+ 2322 match(A, m_c_Add(m_Specific(B), m_Value(N)))) { 2323 // Add commutes, try both ways. 2324 if (MaskedValueIsZero(N, *C2, Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 2325 return A; 2326 } 2327 // Or commutes, try both ways. 2328 if (C1->isMask() && 2329 match(B, m_c_Add(m_Specific(A), m_Value(N)))) { 2330 // Add commutes, try both ways. 2331 if (MaskedValueIsZero(N, *C1, Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 2332 return B; 2333 } 2334 } 2335 } 2336 2337 // If the operation is with the result of a phi instruction, check whether 2338 // operating on all incoming values of the phi always yields the same value. 2339 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 2340 if (Value *V = ThreadBinOpOverPHI(Instruction::Or, Op0, Op1, Q, MaxRecurse)) 2341 return V; 2342 2343 return nullptr; 2344 } 2345 2346 Value *llvm::SimplifyOrInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 2347 return ::SimplifyOrInst(Op0, Op1, Q, RecursionLimit); 2348 } 2349 2350 /// Given operands for a Xor, see if we can fold the result. 2351 /// If not, this returns null. 2352 static Value *SimplifyXorInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 2353 unsigned MaxRecurse) { 2354 if (Constant *C = foldOrCommuteConstant(Instruction::Xor, Op0, Op1, Q)) 2355 return C; 2356 2357 // A ^ undef -> undef 2358 if (Q.isUndefValue(Op1)) 2359 return Op1; 2360 2361 // A ^ 0 = A 2362 if (match(Op1, m_Zero())) 2363 return Op0; 2364 2365 // A ^ A = 0 2366 if (Op0 == Op1) 2367 return Constant::getNullValue(Op0->getType()); 2368 2369 // A ^ ~A = ~A ^ A = -1 2370 if (match(Op0, m_Not(m_Specific(Op1))) || 2371 match(Op1, m_Not(m_Specific(Op0)))) 2372 return Constant::getAllOnesValue(Op0->getType()); 2373 2374 if (Value *V = simplifyLogicOfAddSub(Op0, Op1, Instruction::Xor)) 2375 return V; 2376 2377 // Try some generic simplifications for associative operations. 2378 if (Value *V = SimplifyAssociativeBinOp(Instruction::Xor, Op0, Op1, Q, 2379 MaxRecurse)) 2380 return V; 2381 2382 // Threading Xor over selects and phi nodes is pointless, so don't bother. 2383 // Threading over the select in "A ^ select(cond, B, C)" means evaluating 2384 // "A^B" and "A^C" and seeing if they are equal; but they are equal if and 2385 // only if B and C are equal. If B and C are equal then (since we assume 2386 // that operands have already been simplified) "select(cond, B, C)" should 2387 // have been simplified to the common value of B and C already. Analysing 2388 // "A^B" and "A^C" thus gains nothing, but costs compile time. Similarly 2389 // for threading over phi nodes. 2390 2391 return nullptr; 2392 } 2393 2394 Value *llvm::SimplifyXorInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 2395 return ::SimplifyXorInst(Op0, Op1, Q, RecursionLimit); 2396 } 2397 2398 2399 static Type *GetCompareTy(Value *Op) { 2400 return CmpInst::makeCmpResultType(Op->getType()); 2401 } 2402 2403 /// Rummage around inside V looking for something equivalent to the comparison 2404 /// "LHS Pred RHS". Return such a value if found, otherwise return null. 2405 /// Helper function for analyzing max/min idioms. 2406 static Value *ExtractEquivalentCondition(Value *V, CmpInst::Predicate Pred, 2407 Value *LHS, Value *RHS) { 2408 SelectInst *SI = dyn_cast<SelectInst>(V); 2409 if (!SI) 2410 return nullptr; 2411 CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition()); 2412 if (!Cmp) 2413 return nullptr; 2414 Value *CmpLHS = Cmp->getOperand(0), *CmpRHS = Cmp->getOperand(1); 2415 if (Pred == Cmp->getPredicate() && LHS == CmpLHS && RHS == CmpRHS) 2416 return Cmp; 2417 if (Pred == CmpInst::getSwappedPredicate(Cmp->getPredicate()) && 2418 LHS == CmpRHS && RHS == CmpLHS) 2419 return Cmp; 2420 return nullptr; 2421 } 2422 2423 // A significant optimization not implemented here is assuming that alloca 2424 // addresses are not equal to incoming argument values. They don't *alias*, 2425 // as we say, but that doesn't mean they aren't equal, so we take a 2426 // conservative approach. 2427 // 2428 // This is inspired in part by C++11 5.10p1: 2429 // "Two pointers of the same type compare equal if and only if they are both 2430 // null, both point to the same function, or both represent the same 2431 // address." 2432 // 2433 // This is pretty permissive. 2434 // 2435 // It's also partly due to C11 6.5.9p6: 2436 // "Two pointers compare equal if and only if both are null pointers, both are 2437 // pointers to the same object (including a pointer to an object and a 2438 // subobject at its beginning) or function, both are pointers to one past the 2439 // last element of the same array object, or one is a pointer to one past the 2440 // end of one array object and the other is a pointer to the start of a 2441 // different array object that happens to immediately follow the first array 2442 // object in the address space.) 2443 // 2444 // C11's version is more restrictive, however there's no reason why an argument 2445 // couldn't be a one-past-the-end value for a stack object in the caller and be 2446 // equal to the beginning of a stack object in the callee. 2447 // 2448 // If the C and C++ standards are ever made sufficiently restrictive in this 2449 // area, it may be possible to update LLVM's semantics accordingly and reinstate 2450 // this optimization. 2451 static Constant * 2452 computePointerICmp(CmpInst::Predicate Pred, Value *LHS, Value *RHS, 2453 const SimplifyQuery &Q) { 2454 const DataLayout &DL = Q.DL; 2455 const TargetLibraryInfo *TLI = Q.TLI; 2456 const DominatorTree *DT = Q.DT; 2457 const Instruction *CxtI = Q.CxtI; 2458 const InstrInfoQuery &IIQ = Q.IIQ; 2459 2460 // First, skip past any trivial no-ops. 2461 LHS = LHS->stripPointerCasts(); 2462 RHS = RHS->stripPointerCasts(); 2463 2464 // A non-null pointer is not equal to a null pointer. 2465 if (isa<ConstantPointerNull>(RHS) && ICmpInst::isEquality(Pred) && 2466 llvm::isKnownNonZero(LHS, DL, 0, nullptr, nullptr, nullptr, 2467 IIQ.UseInstrInfo)) 2468 return ConstantInt::get(GetCompareTy(LHS), 2469 !CmpInst::isTrueWhenEqual(Pred)); 2470 2471 // We can only fold certain predicates on pointer comparisons. 2472 switch (Pred) { 2473 default: 2474 return nullptr; 2475 2476 // Equality comaprisons are easy to fold. 2477 case CmpInst::ICMP_EQ: 2478 case CmpInst::ICMP_NE: 2479 break; 2480 2481 // We can only handle unsigned relational comparisons because 'inbounds' on 2482 // a GEP only protects against unsigned wrapping. 2483 case CmpInst::ICMP_UGT: 2484 case CmpInst::ICMP_UGE: 2485 case CmpInst::ICMP_ULT: 2486 case CmpInst::ICMP_ULE: 2487 // However, we have to switch them to their signed variants to handle 2488 // negative indices from the base pointer. 2489 Pred = ICmpInst::getSignedPredicate(Pred); 2490 break; 2491 } 2492 2493 // Strip off any constant offsets so that we can reason about them. 2494 // It's tempting to use getUnderlyingObject or even just stripInBoundsOffsets 2495 // here and compare base addresses like AliasAnalysis does, however there are 2496 // numerous hazards. AliasAnalysis and its utilities rely on special rules 2497 // governing loads and stores which don't apply to icmps. Also, AliasAnalysis 2498 // doesn't need to guarantee pointer inequality when it says NoAlias. 2499 Constant *LHSOffset = stripAndComputeConstantOffsets(DL, LHS); 2500 Constant *RHSOffset = stripAndComputeConstantOffsets(DL, RHS); 2501 2502 // If LHS and RHS are related via constant offsets to the same base 2503 // value, we can replace it with an icmp which just compares the offsets. 2504 if (LHS == RHS) 2505 return ConstantExpr::getICmp(Pred, LHSOffset, RHSOffset); 2506 2507 // Various optimizations for (in)equality comparisons. 2508 if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE) { 2509 // Different non-empty allocations that exist at the same time have 2510 // different addresses (if the program can tell). Global variables always 2511 // exist, so they always exist during the lifetime of each other and all 2512 // allocas. Two different allocas usually have different addresses... 2513 // 2514 // However, if there's an @llvm.stackrestore dynamically in between two 2515 // allocas, they may have the same address. It's tempting to reduce the 2516 // scope of the problem by only looking at *static* allocas here. That would 2517 // cover the majority of allocas while significantly reducing the likelihood 2518 // of having an @llvm.stackrestore pop up in the middle. However, it's not 2519 // actually impossible for an @llvm.stackrestore to pop up in the middle of 2520 // an entry block. Also, if we have a block that's not attached to a 2521 // function, we can't tell if it's "static" under the current definition. 2522 // Theoretically, this problem could be fixed by creating a new kind of 2523 // instruction kind specifically for static allocas. Such a new instruction 2524 // could be required to be at the top of the entry block, thus preventing it 2525 // from being subject to a @llvm.stackrestore. Instcombine could even 2526 // convert regular allocas into these special allocas. It'd be nifty. 2527 // However, until then, this problem remains open. 2528 // 2529 // So, we'll assume that two non-empty allocas have different addresses 2530 // for now. 2531 // 2532 // With all that, if the offsets are within the bounds of their allocations 2533 // (and not one-past-the-end! so we can't use inbounds!), and their 2534 // allocations aren't the same, the pointers are not equal. 2535 // 2536 // Note that it's not necessary to check for LHS being a global variable 2537 // address, due to canonicalization and constant folding. 2538 if (isa<AllocaInst>(LHS) && 2539 (isa<AllocaInst>(RHS) || isa<GlobalVariable>(RHS))) { 2540 ConstantInt *LHSOffsetCI = dyn_cast<ConstantInt>(LHSOffset); 2541 ConstantInt *RHSOffsetCI = dyn_cast<ConstantInt>(RHSOffset); 2542 uint64_t LHSSize, RHSSize; 2543 ObjectSizeOpts Opts; 2544 Opts.NullIsUnknownSize = 2545 NullPointerIsDefined(cast<AllocaInst>(LHS)->getFunction()); 2546 if (LHSOffsetCI && RHSOffsetCI && 2547 getObjectSize(LHS, LHSSize, DL, TLI, Opts) && 2548 getObjectSize(RHS, RHSSize, DL, TLI, Opts)) { 2549 const APInt &LHSOffsetValue = LHSOffsetCI->getValue(); 2550 const APInt &RHSOffsetValue = RHSOffsetCI->getValue(); 2551 if (!LHSOffsetValue.isNegative() && 2552 !RHSOffsetValue.isNegative() && 2553 LHSOffsetValue.ult(LHSSize) && 2554 RHSOffsetValue.ult(RHSSize)) { 2555 return ConstantInt::get(GetCompareTy(LHS), 2556 !CmpInst::isTrueWhenEqual(Pred)); 2557 } 2558 } 2559 2560 // Repeat the above check but this time without depending on DataLayout 2561 // or being able to compute a precise size. 2562 if (!cast<PointerType>(LHS->getType())->isEmptyTy() && 2563 !cast<PointerType>(RHS->getType())->isEmptyTy() && 2564 LHSOffset->isNullValue() && 2565 RHSOffset->isNullValue()) 2566 return ConstantInt::get(GetCompareTy(LHS), 2567 !CmpInst::isTrueWhenEqual(Pred)); 2568 } 2569 2570 // Even if an non-inbounds GEP occurs along the path we can still optimize 2571 // equality comparisons concerning the result. We avoid walking the whole 2572 // chain again by starting where the last calls to 2573 // stripAndComputeConstantOffsets left off and accumulate the offsets. 2574 Constant *LHSNoBound = stripAndComputeConstantOffsets(DL, LHS, true); 2575 Constant *RHSNoBound = stripAndComputeConstantOffsets(DL, RHS, true); 2576 if (LHS == RHS) 2577 return ConstantExpr::getICmp(Pred, 2578 ConstantExpr::getAdd(LHSOffset, LHSNoBound), 2579 ConstantExpr::getAdd(RHSOffset, RHSNoBound)); 2580 2581 // If one side of the equality comparison must come from a noalias call 2582 // (meaning a system memory allocation function), and the other side must 2583 // come from a pointer that cannot overlap with dynamically-allocated 2584 // memory within the lifetime of the current function (allocas, byval 2585 // arguments, globals), then determine the comparison result here. 2586 SmallVector<const Value *, 8> LHSUObjs, RHSUObjs; 2587 getUnderlyingObjects(LHS, LHSUObjs); 2588 getUnderlyingObjects(RHS, RHSUObjs); 2589 2590 // Is the set of underlying objects all noalias calls? 2591 auto IsNAC = [](ArrayRef<const Value *> Objects) { 2592 return all_of(Objects, isNoAliasCall); 2593 }; 2594 2595 // Is the set of underlying objects all things which must be disjoint from 2596 // noalias calls. For allocas, we consider only static ones (dynamic 2597 // allocas might be transformed into calls to malloc not simultaneously 2598 // live with the compared-to allocation). For globals, we exclude symbols 2599 // that might be resolve lazily to symbols in another dynamically-loaded 2600 // library (and, thus, could be malloc'ed by the implementation). 2601 auto IsAllocDisjoint = [](ArrayRef<const Value *> Objects) { 2602 return all_of(Objects, [](const Value *V) { 2603 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) 2604 return AI->getParent() && AI->getFunction() && AI->isStaticAlloca(); 2605 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) 2606 return (GV->hasLocalLinkage() || GV->hasHiddenVisibility() || 2607 GV->hasProtectedVisibility() || GV->hasGlobalUnnamedAddr()) && 2608 !GV->isThreadLocal(); 2609 if (const Argument *A = dyn_cast<Argument>(V)) 2610 return A->hasByValAttr(); 2611 return false; 2612 }); 2613 }; 2614 2615 if ((IsNAC(LHSUObjs) && IsAllocDisjoint(RHSUObjs)) || 2616 (IsNAC(RHSUObjs) && IsAllocDisjoint(LHSUObjs))) 2617 return ConstantInt::get(GetCompareTy(LHS), 2618 !CmpInst::isTrueWhenEqual(Pred)); 2619 2620 // Fold comparisons for non-escaping pointer even if the allocation call 2621 // cannot be elided. We cannot fold malloc comparison to null. Also, the 2622 // dynamic allocation call could be either of the operands. 2623 Value *MI = nullptr; 2624 if (isAllocLikeFn(LHS, TLI) && 2625 llvm::isKnownNonZero(RHS, DL, 0, nullptr, CxtI, DT)) 2626 MI = LHS; 2627 else if (isAllocLikeFn(RHS, TLI) && 2628 llvm::isKnownNonZero(LHS, DL, 0, nullptr, CxtI, DT)) 2629 MI = RHS; 2630 // FIXME: We should also fold the compare when the pointer escapes, but the 2631 // compare dominates the pointer escape 2632 if (MI && !PointerMayBeCaptured(MI, true, true)) 2633 return ConstantInt::get(GetCompareTy(LHS), 2634 CmpInst::isFalseWhenEqual(Pred)); 2635 } 2636 2637 // Otherwise, fail. 2638 return nullptr; 2639 } 2640 2641 /// Fold an icmp when its operands have i1 scalar type. 2642 static Value *simplifyICmpOfBools(CmpInst::Predicate Pred, Value *LHS, 2643 Value *RHS, const SimplifyQuery &Q) { 2644 Type *ITy = GetCompareTy(LHS); // The return type. 2645 Type *OpTy = LHS->getType(); // The operand type. 2646 if (!OpTy->isIntOrIntVectorTy(1)) 2647 return nullptr; 2648 2649 // A boolean compared to true/false can be simplified in 14 out of the 20 2650 // (10 predicates * 2 constants) possible combinations. Cases not handled here 2651 // require a 'not' of the LHS, so those must be transformed in InstCombine. 2652 if (match(RHS, m_Zero())) { 2653 switch (Pred) { 2654 case CmpInst::ICMP_NE: // X != 0 -> X 2655 case CmpInst::ICMP_UGT: // X >u 0 -> X 2656 case CmpInst::ICMP_SLT: // X <s 0 -> X 2657 return LHS; 2658 2659 case CmpInst::ICMP_ULT: // X <u 0 -> false 2660 case CmpInst::ICMP_SGT: // X >s 0 -> false 2661 return getFalse(ITy); 2662 2663 case CmpInst::ICMP_UGE: // X >=u 0 -> true 2664 case CmpInst::ICMP_SLE: // X <=s 0 -> true 2665 return getTrue(ITy); 2666 2667 default: break; 2668 } 2669 } else if (match(RHS, m_One())) { 2670 switch (Pred) { 2671 case CmpInst::ICMP_EQ: // X == 1 -> X 2672 case CmpInst::ICMP_UGE: // X >=u 1 -> X 2673 case CmpInst::ICMP_SLE: // X <=s -1 -> X 2674 return LHS; 2675 2676 case CmpInst::ICMP_UGT: // X >u 1 -> false 2677 case CmpInst::ICMP_SLT: // X <s -1 -> false 2678 return getFalse(ITy); 2679 2680 case CmpInst::ICMP_ULE: // X <=u 1 -> true 2681 case CmpInst::ICMP_SGE: // X >=s -1 -> true 2682 return getTrue(ITy); 2683 2684 default: break; 2685 } 2686 } 2687 2688 switch (Pred) { 2689 default: 2690 break; 2691 case ICmpInst::ICMP_UGE: 2692 if (isImpliedCondition(RHS, LHS, Q.DL).getValueOr(false)) 2693 return getTrue(ITy); 2694 break; 2695 case ICmpInst::ICMP_SGE: 2696 /// For signed comparison, the values for an i1 are 0 and -1 2697 /// respectively. This maps into a truth table of: 2698 /// LHS | RHS | LHS >=s RHS | LHS implies RHS 2699 /// 0 | 0 | 1 (0 >= 0) | 1 2700 /// 0 | 1 | 1 (0 >= -1) | 1 2701 /// 1 | 0 | 0 (-1 >= 0) | 0 2702 /// 1 | 1 | 1 (-1 >= -1) | 1 2703 if (isImpliedCondition(LHS, RHS, Q.DL).getValueOr(false)) 2704 return getTrue(ITy); 2705 break; 2706 case ICmpInst::ICMP_ULE: 2707 if (isImpliedCondition(LHS, RHS, Q.DL).getValueOr(false)) 2708 return getTrue(ITy); 2709 break; 2710 } 2711 2712 return nullptr; 2713 } 2714 2715 /// Try hard to fold icmp with zero RHS because this is a common case. 2716 static Value *simplifyICmpWithZero(CmpInst::Predicate Pred, Value *LHS, 2717 Value *RHS, const SimplifyQuery &Q) { 2718 if (!match(RHS, m_Zero())) 2719 return nullptr; 2720 2721 Type *ITy = GetCompareTy(LHS); // The return type. 2722 switch (Pred) { 2723 default: 2724 llvm_unreachable("Unknown ICmp predicate!"); 2725 case ICmpInst::ICMP_ULT: 2726 return getFalse(ITy); 2727 case ICmpInst::ICMP_UGE: 2728 return getTrue(ITy); 2729 case ICmpInst::ICMP_EQ: 2730 case ICmpInst::ICMP_ULE: 2731 if (isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT, Q.IIQ.UseInstrInfo)) 2732 return getFalse(ITy); 2733 break; 2734 case ICmpInst::ICMP_NE: 2735 case ICmpInst::ICMP_UGT: 2736 if (isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT, Q.IIQ.UseInstrInfo)) 2737 return getTrue(ITy); 2738 break; 2739 case ICmpInst::ICMP_SLT: { 2740 KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2741 if (LHSKnown.isNegative()) 2742 return getTrue(ITy); 2743 if (LHSKnown.isNonNegative()) 2744 return getFalse(ITy); 2745 break; 2746 } 2747 case ICmpInst::ICMP_SLE: { 2748 KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2749 if (LHSKnown.isNegative()) 2750 return getTrue(ITy); 2751 if (LHSKnown.isNonNegative() && 2752 isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 2753 return getFalse(ITy); 2754 break; 2755 } 2756 case ICmpInst::ICMP_SGE: { 2757 KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2758 if (LHSKnown.isNegative()) 2759 return getFalse(ITy); 2760 if (LHSKnown.isNonNegative()) 2761 return getTrue(ITy); 2762 break; 2763 } 2764 case ICmpInst::ICMP_SGT: { 2765 KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2766 if (LHSKnown.isNegative()) 2767 return getFalse(ITy); 2768 if (LHSKnown.isNonNegative() && 2769 isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 2770 return getTrue(ITy); 2771 break; 2772 } 2773 } 2774 2775 return nullptr; 2776 } 2777 2778 static Value *simplifyICmpWithConstant(CmpInst::Predicate Pred, Value *LHS, 2779 Value *RHS, const InstrInfoQuery &IIQ) { 2780 Type *ITy = GetCompareTy(RHS); // The return type. 2781 2782 Value *X; 2783 // Sign-bit checks can be optimized to true/false after unsigned 2784 // floating-point casts: 2785 // icmp slt (bitcast (uitofp X)), 0 --> false 2786 // icmp sgt (bitcast (uitofp X)), -1 --> true 2787 if (match(LHS, m_BitCast(m_UIToFP(m_Value(X))))) { 2788 if (Pred == ICmpInst::ICMP_SLT && match(RHS, m_Zero())) 2789 return ConstantInt::getFalse(ITy); 2790 if (Pred == ICmpInst::ICMP_SGT && match(RHS, m_AllOnes())) 2791 return ConstantInt::getTrue(ITy); 2792 } 2793 2794 const APInt *C; 2795 if (!match(RHS, m_APIntAllowUndef(C))) 2796 return nullptr; 2797 2798 // Rule out tautological comparisons (eg., ult 0 or uge 0). 2799 ConstantRange RHS_CR = ConstantRange::makeExactICmpRegion(Pred, *C); 2800 if (RHS_CR.isEmptySet()) 2801 return ConstantInt::getFalse(ITy); 2802 if (RHS_CR.isFullSet()) 2803 return ConstantInt::getTrue(ITy); 2804 2805 ConstantRange LHS_CR = computeConstantRange(LHS, IIQ.UseInstrInfo); 2806 if (!LHS_CR.isFullSet()) { 2807 if (RHS_CR.contains(LHS_CR)) 2808 return ConstantInt::getTrue(ITy); 2809 if (RHS_CR.inverse().contains(LHS_CR)) 2810 return ConstantInt::getFalse(ITy); 2811 } 2812 2813 // (mul nuw/nsw X, MulC) != C --> true (if C is not a multiple of MulC) 2814 // (mul nuw/nsw X, MulC) == C --> false (if C is not a multiple of MulC) 2815 const APInt *MulC; 2816 if (ICmpInst::isEquality(Pred) && 2817 ((match(LHS, m_NUWMul(m_Value(), m_APIntAllowUndef(MulC))) && 2818 *MulC != 0 && C->urem(*MulC) != 0) || 2819 (match(LHS, m_NSWMul(m_Value(), m_APIntAllowUndef(MulC))) && 2820 *MulC != 0 && C->srem(*MulC) != 0))) 2821 return ConstantInt::get(ITy, Pred == ICmpInst::ICMP_NE); 2822 2823 return nullptr; 2824 } 2825 2826 static Value *simplifyICmpWithBinOpOnLHS( 2827 CmpInst::Predicate Pred, BinaryOperator *LBO, Value *RHS, 2828 const SimplifyQuery &Q, unsigned MaxRecurse) { 2829 Type *ITy = GetCompareTy(RHS); // The return type. 2830 2831 Value *Y = nullptr; 2832 // icmp pred (or X, Y), X 2833 if (match(LBO, m_c_Or(m_Value(Y), m_Specific(RHS)))) { 2834 if (Pred == ICmpInst::ICMP_ULT) 2835 return getFalse(ITy); 2836 if (Pred == ICmpInst::ICMP_UGE) 2837 return getTrue(ITy); 2838 2839 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SGE) { 2840 KnownBits RHSKnown = computeKnownBits(RHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2841 KnownBits YKnown = computeKnownBits(Y, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2842 if (RHSKnown.isNonNegative() && YKnown.isNegative()) 2843 return Pred == ICmpInst::ICMP_SLT ? getTrue(ITy) : getFalse(ITy); 2844 if (RHSKnown.isNegative() || YKnown.isNonNegative()) 2845 return Pred == ICmpInst::ICMP_SLT ? getFalse(ITy) : getTrue(ITy); 2846 } 2847 } 2848 2849 // icmp pred (and X, Y), X 2850 if (match(LBO, m_c_And(m_Value(), m_Specific(RHS)))) { 2851 if (Pred == ICmpInst::ICMP_UGT) 2852 return getFalse(ITy); 2853 if (Pred == ICmpInst::ICMP_ULE) 2854 return getTrue(ITy); 2855 } 2856 2857 // icmp pred (urem X, Y), Y 2858 if (match(LBO, m_URem(m_Value(), m_Specific(RHS)))) { 2859 switch (Pred) { 2860 default: 2861 break; 2862 case ICmpInst::ICMP_SGT: 2863 case ICmpInst::ICMP_SGE: { 2864 KnownBits Known = computeKnownBits(RHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2865 if (!Known.isNonNegative()) 2866 break; 2867 LLVM_FALLTHROUGH; 2868 } 2869 case ICmpInst::ICMP_EQ: 2870 case ICmpInst::ICMP_UGT: 2871 case ICmpInst::ICMP_UGE: 2872 return getFalse(ITy); 2873 case ICmpInst::ICMP_SLT: 2874 case ICmpInst::ICMP_SLE: { 2875 KnownBits Known = computeKnownBits(RHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2876 if (!Known.isNonNegative()) 2877 break; 2878 LLVM_FALLTHROUGH; 2879 } 2880 case ICmpInst::ICMP_NE: 2881 case ICmpInst::ICMP_ULT: 2882 case ICmpInst::ICMP_ULE: 2883 return getTrue(ITy); 2884 } 2885 } 2886 2887 // icmp pred (urem X, Y), X 2888 if (match(LBO, m_URem(m_Specific(RHS), m_Value()))) { 2889 if (Pred == ICmpInst::ICMP_ULE) 2890 return getTrue(ITy); 2891 if (Pred == ICmpInst::ICMP_UGT) 2892 return getFalse(ITy); 2893 } 2894 2895 // x >> y <=u x 2896 // x udiv y <=u x. 2897 if (match(LBO, m_LShr(m_Specific(RHS), m_Value())) || 2898 match(LBO, m_UDiv(m_Specific(RHS), m_Value()))) { 2899 // icmp pred (X op Y), X 2900 if (Pred == ICmpInst::ICMP_UGT) 2901 return getFalse(ITy); 2902 if (Pred == ICmpInst::ICMP_ULE) 2903 return getTrue(ITy); 2904 } 2905 2906 // (x*C1)/C2 <= x for C1 <= C2. 2907 // This holds even if the multiplication overflows: Assume that x != 0 and 2908 // arithmetic is modulo M. For overflow to occur we must have C1 >= M/x and 2909 // thus C2 >= M/x. It follows that (x*C1)/C2 <= (M-1)/C2 <= ((M-1)*x)/M < x. 2910 // 2911 // Additionally, either the multiplication and division might be represented 2912 // as shifts: 2913 // (x*C1)>>C2 <= x for C1 < 2**C2. 2914 // (x<<C1)/C2 <= x for 2**C1 < C2. 2915 const APInt *C1, *C2; 2916 if ((match(LBO, m_UDiv(m_Mul(m_Specific(RHS), m_APInt(C1)), m_APInt(C2))) && 2917 C1->ule(*C2)) || 2918 (match(LBO, m_LShr(m_Mul(m_Specific(RHS), m_APInt(C1)), m_APInt(C2))) && 2919 C1->ule(APInt(C2->getBitWidth(), 1) << *C2)) || 2920 (match(LBO, m_UDiv(m_Shl(m_Specific(RHS), m_APInt(C1)), m_APInt(C2))) && 2921 (APInt(C1->getBitWidth(), 1) << *C1).ule(*C2))) { 2922 if (Pred == ICmpInst::ICMP_UGT) 2923 return getFalse(ITy); 2924 if (Pred == ICmpInst::ICMP_ULE) 2925 return getTrue(ITy); 2926 } 2927 2928 return nullptr; 2929 } 2930 2931 2932 // If only one of the icmp's operands has NSW flags, try to prove that: 2933 // 2934 // icmp slt (x + C1), (x +nsw C2) 2935 // 2936 // is equivalent to: 2937 // 2938 // icmp slt C1, C2 2939 // 2940 // which is true if x + C2 has the NSW flags set and: 2941 // *) C1 < C2 && C1 >= 0, or 2942 // *) C2 < C1 && C1 <= 0. 2943 // 2944 static bool trySimplifyICmpWithAdds(CmpInst::Predicate Pred, Value *LHS, 2945 Value *RHS) { 2946 // TODO: only support icmp slt for now. 2947 if (Pred != CmpInst::ICMP_SLT) 2948 return false; 2949 2950 // Canonicalize nsw add as RHS. 2951 if (!match(RHS, m_NSWAdd(m_Value(), m_Value()))) 2952 std::swap(LHS, RHS); 2953 if (!match(RHS, m_NSWAdd(m_Value(), m_Value()))) 2954 return false; 2955 2956 Value *X; 2957 const APInt *C1, *C2; 2958 if (!match(LHS, m_c_Add(m_Value(X), m_APInt(C1))) || 2959 !match(RHS, m_c_Add(m_Specific(X), m_APInt(C2)))) 2960 return false; 2961 2962 return (C1->slt(*C2) && C1->isNonNegative()) || 2963 (C2->slt(*C1) && C1->isNonPositive()); 2964 } 2965 2966 2967 /// TODO: A large part of this logic is duplicated in InstCombine's 2968 /// foldICmpBinOp(). We should be able to share that and avoid the code 2969 /// duplication. 2970 static Value *simplifyICmpWithBinOp(CmpInst::Predicate Pred, Value *LHS, 2971 Value *RHS, const SimplifyQuery &Q, 2972 unsigned MaxRecurse) { 2973 BinaryOperator *LBO = dyn_cast<BinaryOperator>(LHS); 2974 BinaryOperator *RBO = dyn_cast<BinaryOperator>(RHS); 2975 if (MaxRecurse && (LBO || RBO)) { 2976 // Analyze the case when either LHS or RHS is an add instruction. 2977 Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr; 2978 // LHS = A + B (or A and B are null); RHS = C + D (or C and D are null). 2979 bool NoLHSWrapProblem = false, NoRHSWrapProblem = false; 2980 if (LBO && LBO->getOpcode() == Instruction::Add) { 2981 A = LBO->getOperand(0); 2982 B = LBO->getOperand(1); 2983 NoLHSWrapProblem = 2984 ICmpInst::isEquality(Pred) || 2985 (CmpInst::isUnsigned(Pred) && 2986 Q.IIQ.hasNoUnsignedWrap(cast<OverflowingBinaryOperator>(LBO))) || 2987 (CmpInst::isSigned(Pred) && 2988 Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(LBO))); 2989 } 2990 if (RBO && RBO->getOpcode() == Instruction::Add) { 2991 C = RBO->getOperand(0); 2992 D = RBO->getOperand(1); 2993 NoRHSWrapProblem = 2994 ICmpInst::isEquality(Pred) || 2995 (CmpInst::isUnsigned(Pred) && 2996 Q.IIQ.hasNoUnsignedWrap(cast<OverflowingBinaryOperator>(RBO))) || 2997 (CmpInst::isSigned(Pred) && 2998 Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(RBO))); 2999 } 3000 3001 // icmp (X+Y), X -> icmp Y, 0 for equalities or if there is no overflow. 3002 if ((A == RHS || B == RHS) && NoLHSWrapProblem) 3003 if (Value *V = SimplifyICmpInst(Pred, A == RHS ? B : A, 3004 Constant::getNullValue(RHS->getType()), Q, 3005 MaxRecurse - 1)) 3006 return V; 3007 3008 // icmp X, (X+Y) -> icmp 0, Y for equalities or if there is no overflow. 3009 if ((C == LHS || D == LHS) && NoRHSWrapProblem) 3010 if (Value *V = 3011 SimplifyICmpInst(Pred, Constant::getNullValue(LHS->getType()), 3012 C == LHS ? D : C, Q, MaxRecurse - 1)) 3013 return V; 3014 3015 // icmp (X+Y), (X+Z) -> icmp Y,Z for equalities or if there is no overflow. 3016 bool CanSimplify = (NoLHSWrapProblem && NoRHSWrapProblem) || 3017 trySimplifyICmpWithAdds(Pred, LHS, RHS); 3018 if (A && C && (A == C || A == D || B == C || B == D) && CanSimplify) { 3019 // Determine Y and Z in the form icmp (X+Y), (X+Z). 3020 Value *Y, *Z; 3021 if (A == C) { 3022 // C + B == C + D -> B == D 3023 Y = B; 3024 Z = D; 3025 } else if (A == D) { 3026 // D + B == C + D -> B == C 3027 Y = B; 3028 Z = C; 3029 } else if (B == C) { 3030 // A + C == C + D -> A == D 3031 Y = A; 3032 Z = D; 3033 } else { 3034 assert(B == D); 3035 // A + D == C + D -> A == C 3036 Y = A; 3037 Z = C; 3038 } 3039 if (Value *V = SimplifyICmpInst(Pred, Y, Z, Q, MaxRecurse - 1)) 3040 return V; 3041 } 3042 } 3043 3044 if (LBO) 3045 if (Value *V = simplifyICmpWithBinOpOnLHS(Pred, LBO, RHS, Q, MaxRecurse)) 3046 return V; 3047 3048 if (RBO) 3049 if (Value *V = simplifyICmpWithBinOpOnLHS( 3050 ICmpInst::getSwappedPredicate(Pred), RBO, LHS, Q, MaxRecurse)) 3051 return V; 3052 3053 // 0 - (zext X) pred C 3054 if (!CmpInst::isUnsigned(Pred) && match(LHS, m_Neg(m_ZExt(m_Value())))) { 3055 const APInt *C; 3056 if (match(RHS, m_APInt(C))) { 3057 if (C->isStrictlyPositive()) { 3058 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_NE) 3059 return ConstantInt::getTrue(GetCompareTy(RHS)); 3060 if (Pred == ICmpInst::ICMP_SGE || Pred == ICmpInst::ICMP_EQ) 3061 return ConstantInt::getFalse(GetCompareTy(RHS)); 3062 } 3063 if (C->isNonNegative()) { 3064 if (Pred == ICmpInst::ICMP_SLE) 3065 return ConstantInt::getTrue(GetCompareTy(RHS)); 3066 if (Pred == ICmpInst::ICMP_SGT) 3067 return ConstantInt::getFalse(GetCompareTy(RHS)); 3068 } 3069 } 3070 } 3071 3072 // If C2 is a power-of-2 and C is not: 3073 // (C2 << X) == C --> false 3074 // (C2 << X) != C --> true 3075 const APInt *C; 3076 if (match(LHS, m_Shl(m_Power2(), m_Value())) && 3077 match(RHS, m_APIntAllowUndef(C)) && !C->isPowerOf2()) { 3078 // C2 << X can equal zero in some circumstances. 3079 // This simplification might be unsafe if C is zero. 3080 // 3081 // We know it is safe if: 3082 // - The shift is nsw. We can't shift out the one bit. 3083 // - The shift is nuw. We can't shift out the one bit. 3084 // - C2 is one. 3085 // - C isn't zero. 3086 if (Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(LBO)) || 3087 Q.IIQ.hasNoUnsignedWrap(cast<OverflowingBinaryOperator>(LBO)) || 3088 match(LHS, m_Shl(m_One(), m_Value())) || !C->isNullValue()) { 3089 if (Pred == ICmpInst::ICMP_EQ) 3090 return ConstantInt::getFalse(GetCompareTy(RHS)); 3091 if (Pred == ICmpInst::ICMP_NE) 3092 return ConstantInt::getTrue(GetCompareTy(RHS)); 3093 } 3094 } 3095 3096 // TODO: This is overly constrained. LHS can be any power-of-2. 3097 // (1 << X) >u 0x8000 --> false 3098 // (1 << X) <=u 0x8000 --> true 3099 if (match(LHS, m_Shl(m_One(), m_Value())) && match(RHS, m_SignMask())) { 3100 if (Pred == ICmpInst::ICMP_UGT) 3101 return ConstantInt::getFalse(GetCompareTy(RHS)); 3102 if (Pred == ICmpInst::ICMP_ULE) 3103 return ConstantInt::getTrue(GetCompareTy(RHS)); 3104 } 3105 3106 if (MaxRecurse && LBO && RBO && LBO->getOpcode() == RBO->getOpcode() && 3107 LBO->getOperand(1) == RBO->getOperand(1)) { 3108 switch (LBO->getOpcode()) { 3109 default: 3110 break; 3111 case Instruction::UDiv: 3112 case Instruction::LShr: 3113 if (ICmpInst::isSigned(Pred) || !Q.IIQ.isExact(LBO) || 3114 !Q.IIQ.isExact(RBO)) 3115 break; 3116 if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0), 3117 RBO->getOperand(0), Q, MaxRecurse - 1)) 3118 return V; 3119 break; 3120 case Instruction::SDiv: 3121 if (!ICmpInst::isEquality(Pred) || !Q.IIQ.isExact(LBO) || 3122 !Q.IIQ.isExact(RBO)) 3123 break; 3124 if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0), 3125 RBO->getOperand(0), Q, MaxRecurse - 1)) 3126 return V; 3127 break; 3128 case Instruction::AShr: 3129 if (!Q.IIQ.isExact(LBO) || !Q.IIQ.isExact(RBO)) 3130 break; 3131 if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0), 3132 RBO->getOperand(0), Q, MaxRecurse - 1)) 3133 return V; 3134 break; 3135 case Instruction::Shl: { 3136 bool NUW = Q.IIQ.hasNoUnsignedWrap(LBO) && Q.IIQ.hasNoUnsignedWrap(RBO); 3137 bool NSW = Q.IIQ.hasNoSignedWrap(LBO) && Q.IIQ.hasNoSignedWrap(RBO); 3138 if (!NUW && !NSW) 3139 break; 3140 if (!NSW && ICmpInst::isSigned(Pred)) 3141 break; 3142 if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0), 3143 RBO->getOperand(0), Q, MaxRecurse - 1)) 3144 return V; 3145 break; 3146 } 3147 } 3148 } 3149 return nullptr; 3150 } 3151 3152 /// Simplify integer comparisons where at least one operand of the compare 3153 /// matches an integer min/max idiom. 3154 static Value *simplifyICmpWithMinMax(CmpInst::Predicate Pred, Value *LHS, 3155 Value *RHS, const SimplifyQuery &Q, 3156 unsigned MaxRecurse) { 3157 Type *ITy = GetCompareTy(LHS); // The return type. 3158 Value *A, *B; 3159 CmpInst::Predicate P = CmpInst::BAD_ICMP_PREDICATE; 3160 CmpInst::Predicate EqP; // Chosen so that "A == max/min(A,B)" iff "A EqP B". 3161 3162 // Signed variants on "max(a,b)>=a -> true". 3163 if (match(LHS, m_SMax(m_Value(A), m_Value(B))) && (A == RHS || B == RHS)) { 3164 if (A != RHS) 3165 std::swap(A, B); // smax(A, B) pred A. 3166 EqP = CmpInst::ICMP_SGE; // "A == smax(A, B)" iff "A sge B". 3167 // We analyze this as smax(A, B) pred A. 3168 P = Pred; 3169 } else if (match(RHS, m_SMax(m_Value(A), m_Value(B))) && 3170 (A == LHS || B == LHS)) { 3171 if (A != LHS) 3172 std::swap(A, B); // A pred smax(A, B). 3173 EqP = CmpInst::ICMP_SGE; // "A == smax(A, B)" iff "A sge B". 3174 // We analyze this as smax(A, B) swapped-pred A. 3175 P = CmpInst::getSwappedPredicate(Pred); 3176 } else if (match(LHS, m_SMin(m_Value(A), m_Value(B))) && 3177 (A == RHS || B == RHS)) { 3178 if (A != RHS) 3179 std::swap(A, B); // smin(A, B) pred A. 3180 EqP = CmpInst::ICMP_SLE; // "A == smin(A, B)" iff "A sle B". 3181 // We analyze this as smax(-A, -B) swapped-pred -A. 3182 // Note that we do not need to actually form -A or -B thanks to EqP. 3183 P = CmpInst::getSwappedPredicate(Pred); 3184 } else if (match(RHS, m_SMin(m_Value(A), m_Value(B))) && 3185 (A == LHS || B == LHS)) { 3186 if (A != LHS) 3187 std::swap(A, B); // A pred smin(A, B). 3188 EqP = CmpInst::ICMP_SLE; // "A == smin(A, B)" iff "A sle B". 3189 // We analyze this as smax(-A, -B) pred -A. 3190 // Note that we do not need to actually form -A or -B thanks to EqP. 3191 P = Pred; 3192 } 3193 if (P != CmpInst::BAD_ICMP_PREDICATE) { 3194 // Cases correspond to "max(A, B) p A". 3195 switch (P) { 3196 default: 3197 break; 3198 case CmpInst::ICMP_EQ: 3199 case CmpInst::ICMP_SLE: 3200 // Equivalent to "A EqP B". This may be the same as the condition tested 3201 // in the max/min; if so, we can just return that. 3202 if (Value *V = ExtractEquivalentCondition(LHS, EqP, A, B)) 3203 return V; 3204 if (Value *V = ExtractEquivalentCondition(RHS, EqP, A, B)) 3205 return V; 3206 // Otherwise, see if "A EqP B" simplifies. 3207 if (MaxRecurse) 3208 if (Value *V = SimplifyICmpInst(EqP, A, B, Q, MaxRecurse - 1)) 3209 return V; 3210 break; 3211 case CmpInst::ICMP_NE: 3212 case CmpInst::ICMP_SGT: { 3213 CmpInst::Predicate InvEqP = CmpInst::getInversePredicate(EqP); 3214 // Equivalent to "A InvEqP B". This may be the same as the condition 3215 // tested in the max/min; if so, we can just return that. 3216 if (Value *V = ExtractEquivalentCondition(LHS, InvEqP, A, B)) 3217 return V; 3218 if (Value *V = ExtractEquivalentCondition(RHS, InvEqP, A, B)) 3219 return V; 3220 // Otherwise, see if "A InvEqP B" simplifies. 3221 if (MaxRecurse) 3222 if (Value *V = SimplifyICmpInst(InvEqP, A, B, Q, MaxRecurse - 1)) 3223 return V; 3224 break; 3225 } 3226 case CmpInst::ICMP_SGE: 3227 // Always true. 3228 return getTrue(ITy); 3229 case CmpInst::ICMP_SLT: 3230 // Always false. 3231 return getFalse(ITy); 3232 } 3233 } 3234 3235 // Unsigned variants on "max(a,b)>=a -> true". 3236 P = CmpInst::BAD_ICMP_PREDICATE; 3237 if (match(LHS, m_UMax(m_Value(A), m_Value(B))) && (A == RHS || B == RHS)) { 3238 if (A != RHS) 3239 std::swap(A, B); // umax(A, B) pred A. 3240 EqP = CmpInst::ICMP_UGE; // "A == umax(A, B)" iff "A uge B". 3241 // We analyze this as umax(A, B) pred A. 3242 P = Pred; 3243 } else if (match(RHS, m_UMax(m_Value(A), m_Value(B))) && 3244 (A == LHS || B == LHS)) { 3245 if (A != LHS) 3246 std::swap(A, B); // A pred umax(A, B). 3247 EqP = CmpInst::ICMP_UGE; // "A == umax(A, B)" iff "A uge B". 3248 // We analyze this as umax(A, B) swapped-pred A. 3249 P = CmpInst::getSwappedPredicate(Pred); 3250 } else if (match(LHS, m_UMin(m_Value(A), m_Value(B))) && 3251 (A == RHS || B == RHS)) { 3252 if (A != RHS) 3253 std::swap(A, B); // umin(A, B) pred A. 3254 EqP = CmpInst::ICMP_ULE; // "A == umin(A, B)" iff "A ule B". 3255 // We analyze this as umax(-A, -B) swapped-pred -A. 3256 // Note that we do not need to actually form -A or -B thanks to EqP. 3257 P = CmpInst::getSwappedPredicate(Pred); 3258 } else if (match(RHS, m_UMin(m_Value(A), m_Value(B))) && 3259 (A == LHS || B == LHS)) { 3260 if (A != LHS) 3261 std::swap(A, B); // A pred umin(A, B). 3262 EqP = CmpInst::ICMP_ULE; // "A == umin(A, B)" iff "A ule B". 3263 // We analyze this as umax(-A, -B) pred -A. 3264 // Note that we do not need to actually form -A or -B thanks to EqP. 3265 P = Pred; 3266 } 3267 if (P != CmpInst::BAD_ICMP_PREDICATE) { 3268 // Cases correspond to "max(A, B) p A". 3269 switch (P) { 3270 default: 3271 break; 3272 case CmpInst::ICMP_EQ: 3273 case CmpInst::ICMP_ULE: 3274 // Equivalent to "A EqP B". This may be the same as the condition tested 3275 // in the max/min; if so, we can just return that. 3276 if (Value *V = ExtractEquivalentCondition(LHS, EqP, A, B)) 3277 return V; 3278 if (Value *V = ExtractEquivalentCondition(RHS, EqP, A, B)) 3279 return V; 3280 // Otherwise, see if "A EqP B" simplifies. 3281 if (MaxRecurse) 3282 if (Value *V = SimplifyICmpInst(EqP, A, B, Q, MaxRecurse - 1)) 3283 return V; 3284 break; 3285 case CmpInst::ICMP_NE: 3286 case CmpInst::ICMP_UGT: { 3287 CmpInst::Predicate InvEqP = CmpInst::getInversePredicate(EqP); 3288 // Equivalent to "A InvEqP B". This may be the same as the condition 3289 // tested in the max/min; if so, we can just return that. 3290 if (Value *V = ExtractEquivalentCondition(LHS, InvEqP, A, B)) 3291 return V; 3292 if (Value *V = ExtractEquivalentCondition(RHS, InvEqP, A, B)) 3293 return V; 3294 // Otherwise, see if "A InvEqP B" simplifies. 3295 if (MaxRecurse) 3296 if (Value *V = SimplifyICmpInst(InvEqP, A, B, Q, MaxRecurse - 1)) 3297 return V; 3298 break; 3299 } 3300 case CmpInst::ICMP_UGE: 3301 return getTrue(ITy); 3302 case CmpInst::ICMP_ULT: 3303 return getFalse(ITy); 3304 } 3305 } 3306 3307 // Comparing 1 each of min/max with a common operand? 3308 // Canonicalize min operand to RHS. 3309 if (match(LHS, m_UMin(m_Value(), m_Value())) || 3310 match(LHS, m_SMin(m_Value(), m_Value()))) { 3311 std::swap(LHS, RHS); 3312 Pred = ICmpInst::getSwappedPredicate(Pred); 3313 } 3314 3315 Value *C, *D; 3316 if (match(LHS, m_SMax(m_Value(A), m_Value(B))) && 3317 match(RHS, m_SMin(m_Value(C), m_Value(D))) && 3318 (A == C || A == D || B == C || B == D)) { 3319 // smax(A, B) >=s smin(A, D) --> true 3320 if (Pred == CmpInst::ICMP_SGE) 3321 return getTrue(ITy); 3322 // smax(A, B) <s smin(A, D) --> false 3323 if (Pred == CmpInst::ICMP_SLT) 3324 return getFalse(ITy); 3325 } else if (match(LHS, m_UMax(m_Value(A), m_Value(B))) && 3326 match(RHS, m_UMin(m_Value(C), m_Value(D))) && 3327 (A == C || A == D || B == C || B == D)) { 3328 // umax(A, B) >=u umin(A, D) --> true 3329 if (Pred == CmpInst::ICMP_UGE) 3330 return getTrue(ITy); 3331 // umax(A, B) <u umin(A, D) --> false 3332 if (Pred == CmpInst::ICMP_ULT) 3333 return getFalse(ITy); 3334 } 3335 3336 return nullptr; 3337 } 3338 3339 static Value *simplifyICmpWithDominatingAssume(CmpInst::Predicate Predicate, 3340 Value *LHS, Value *RHS, 3341 const SimplifyQuery &Q) { 3342 // Gracefully handle instructions that have not been inserted yet. 3343 if (!Q.AC || !Q.CxtI || !Q.CxtI->getParent()) 3344 return nullptr; 3345 3346 for (Value *AssumeBaseOp : {LHS, RHS}) { 3347 for (auto &AssumeVH : Q.AC->assumptionsFor(AssumeBaseOp)) { 3348 if (!AssumeVH) 3349 continue; 3350 3351 CallInst *Assume = cast<CallInst>(AssumeVH); 3352 if (Optional<bool> Imp = 3353 isImpliedCondition(Assume->getArgOperand(0), Predicate, LHS, RHS, 3354 Q.DL)) 3355 if (isValidAssumeForContext(Assume, Q.CxtI, Q.DT)) 3356 return ConstantInt::get(GetCompareTy(LHS), *Imp); 3357 } 3358 } 3359 3360 return nullptr; 3361 } 3362 3363 /// Given operands for an ICmpInst, see if we can fold the result. 3364 /// If not, this returns null. 3365 static Value *SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS, 3366 const SimplifyQuery &Q, unsigned MaxRecurse) { 3367 CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate; 3368 assert(CmpInst::isIntPredicate(Pred) && "Not an integer compare!"); 3369 3370 if (Constant *CLHS = dyn_cast<Constant>(LHS)) { 3371 if (Constant *CRHS = dyn_cast<Constant>(RHS)) 3372 return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, Q.DL, Q.TLI); 3373 3374 // If we have a constant, make sure it is on the RHS. 3375 std::swap(LHS, RHS); 3376 Pred = CmpInst::getSwappedPredicate(Pred); 3377 } 3378 assert(!isa<UndefValue>(LHS) && "Unexpected icmp undef,%X"); 3379 3380 Type *ITy = GetCompareTy(LHS); // The return type. 3381 3382 // icmp poison, X -> poison 3383 if (isa<PoisonValue>(RHS)) 3384 return PoisonValue::get(ITy); 3385 3386 // For EQ and NE, we can always pick a value for the undef to make the 3387 // predicate pass or fail, so we can return undef. 3388 // Matches behavior in llvm::ConstantFoldCompareInstruction. 3389 if (Q.isUndefValue(RHS) && ICmpInst::isEquality(Pred)) 3390 return UndefValue::get(ITy); 3391 3392 // icmp X, X -> true/false 3393 // icmp X, undef -> true/false because undef could be X. 3394 if (LHS == RHS || Q.isUndefValue(RHS)) 3395 return ConstantInt::get(ITy, CmpInst::isTrueWhenEqual(Pred)); 3396 3397 if (Value *V = simplifyICmpOfBools(Pred, LHS, RHS, Q)) 3398 return V; 3399 3400 // TODO: Sink/common this with other potentially expensive calls that use 3401 // ValueTracking? See comment below for isKnownNonEqual(). 3402 if (Value *V = simplifyICmpWithZero(Pred, LHS, RHS, Q)) 3403 return V; 3404 3405 if (Value *V = simplifyICmpWithConstant(Pred, LHS, RHS, Q.IIQ)) 3406 return V; 3407 3408 // If both operands have range metadata, use the metadata 3409 // to simplify the comparison. 3410 if (isa<Instruction>(RHS) && isa<Instruction>(LHS)) { 3411 auto RHS_Instr = cast<Instruction>(RHS); 3412 auto LHS_Instr = cast<Instruction>(LHS); 3413 3414 if (Q.IIQ.getMetadata(RHS_Instr, LLVMContext::MD_range) && 3415 Q.IIQ.getMetadata(LHS_Instr, LLVMContext::MD_range)) { 3416 auto RHS_CR = getConstantRangeFromMetadata( 3417 *RHS_Instr->getMetadata(LLVMContext::MD_range)); 3418 auto LHS_CR = getConstantRangeFromMetadata( 3419 *LHS_Instr->getMetadata(LLVMContext::MD_range)); 3420 3421 if (LHS_CR.icmp(Pred, RHS_CR)) 3422 return ConstantInt::getTrue(RHS->getContext()); 3423 3424 if (LHS_CR.icmp(CmpInst::getInversePredicate(Pred), RHS_CR)) 3425 return ConstantInt::getFalse(RHS->getContext()); 3426 } 3427 } 3428 3429 // Compare of cast, for example (zext X) != 0 -> X != 0 3430 if (isa<CastInst>(LHS) && (isa<Constant>(RHS) || isa<CastInst>(RHS))) { 3431 Instruction *LI = cast<CastInst>(LHS); 3432 Value *SrcOp = LI->getOperand(0); 3433 Type *SrcTy = SrcOp->getType(); 3434 Type *DstTy = LI->getType(); 3435 3436 // Turn icmp (ptrtoint x), (ptrtoint/constant) into a compare of the input 3437 // if the integer type is the same size as the pointer type. 3438 if (MaxRecurse && isa<PtrToIntInst>(LI) && 3439 Q.DL.getTypeSizeInBits(SrcTy) == DstTy->getPrimitiveSizeInBits()) { 3440 if (Constant *RHSC = dyn_cast<Constant>(RHS)) { 3441 // Transfer the cast to the constant. 3442 if (Value *V = SimplifyICmpInst(Pred, SrcOp, 3443 ConstantExpr::getIntToPtr(RHSC, SrcTy), 3444 Q, MaxRecurse-1)) 3445 return V; 3446 } else if (PtrToIntInst *RI = dyn_cast<PtrToIntInst>(RHS)) { 3447 if (RI->getOperand(0)->getType() == SrcTy) 3448 // Compare without the cast. 3449 if (Value *V = SimplifyICmpInst(Pred, SrcOp, RI->getOperand(0), 3450 Q, MaxRecurse-1)) 3451 return V; 3452 } 3453 } 3454 3455 if (isa<ZExtInst>(LHS)) { 3456 // Turn icmp (zext X), (zext Y) into a compare of X and Y if they have the 3457 // same type. 3458 if (ZExtInst *RI = dyn_cast<ZExtInst>(RHS)) { 3459 if (MaxRecurse && SrcTy == RI->getOperand(0)->getType()) 3460 // Compare X and Y. Note that signed predicates become unsigned. 3461 if (Value *V = SimplifyICmpInst(ICmpInst::getUnsignedPredicate(Pred), 3462 SrcOp, RI->getOperand(0), Q, 3463 MaxRecurse-1)) 3464 return V; 3465 } 3466 // Fold (zext X) ule (sext X), (zext X) sge (sext X) to true. 3467 else if (SExtInst *RI = dyn_cast<SExtInst>(RHS)) { 3468 if (SrcOp == RI->getOperand(0)) { 3469 if (Pred == ICmpInst::ICMP_ULE || Pred == ICmpInst::ICMP_SGE) 3470 return ConstantInt::getTrue(ITy); 3471 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_SLT) 3472 return ConstantInt::getFalse(ITy); 3473 } 3474 } 3475 // Turn icmp (zext X), Cst into a compare of X and Cst if Cst is extended 3476 // too. If not, then try to deduce the result of the comparison. 3477 else if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) { 3478 // Compute the constant that would happen if we truncated to SrcTy then 3479 // reextended to DstTy. 3480 Constant *Trunc = ConstantExpr::getTrunc(CI, SrcTy); 3481 Constant *RExt = ConstantExpr::getCast(CastInst::ZExt, Trunc, DstTy); 3482 3483 // If the re-extended constant didn't change then this is effectively 3484 // also a case of comparing two zero-extended values. 3485 if (RExt == CI && MaxRecurse) 3486 if (Value *V = SimplifyICmpInst(ICmpInst::getUnsignedPredicate(Pred), 3487 SrcOp, Trunc, Q, MaxRecurse-1)) 3488 return V; 3489 3490 // Otherwise the upper bits of LHS are zero while RHS has a non-zero bit 3491 // there. Use this to work out the result of the comparison. 3492 if (RExt != CI) { 3493 switch (Pred) { 3494 default: llvm_unreachable("Unknown ICmp predicate!"); 3495 // LHS <u RHS. 3496 case ICmpInst::ICMP_EQ: 3497 case ICmpInst::ICMP_UGT: 3498 case ICmpInst::ICMP_UGE: 3499 return ConstantInt::getFalse(CI->getContext()); 3500 3501 case ICmpInst::ICMP_NE: 3502 case ICmpInst::ICMP_ULT: 3503 case ICmpInst::ICMP_ULE: 3504 return ConstantInt::getTrue(CI->getContext()); 3505 3506 // LHS is non-negative. If RHS is negative then LHS >s LHS. If RHS 3507 // is non-negative then LHS <s RHS. 3508 case ICmpInst::ICMP_SGT: 3509 case ICmpInst::ICMP_SGE: 3510 return CI->getValue().isNegative() ? 3511 ConstantInt::getTrue(CI->getContext()) : 3512 ConstantInt::getFalse(CI->getContext()); 3513 3514 case ICmpInst::ICMP_SLT: 3515 case ICmpInst::ICMP_SLE: 3516 return CI->getValue().isNegative() ? 3517 ConstantInt::getFalse(CI->getContext()) : 3518 ConstantInt::getTrue(CI->getContext()); 3519 } 3520 } 3521 } 3522 } 3523 3524 if (isa<SExtInst>(LHS)) { 3525 // Turn icmp (sext X), (sext Y) into a compare of X and Y if they have the 3526 // same type. 3527 if (SExtInst *RI = dyn_cast<SExtInst>(RHS)) { 3528 if (MaxRecurse && SrcTy == RI->getOperand(0)->getType()) 3529 // Compare X and Y. Note that the predicate does not change. 3530 if (Value *V = SimplifyICmpInst(Pred, SrcOp, RI->getOperand(0), 3531 Q, MaxRecurse-1)) 3532 return V; 3533 } 3534 // Fold (sext X) uge (zext X), (sext X) sle (zext X) to true. 3535 else if (ZExtInst *RI = dyn_cast<ZExtInst>(RHS)) { 3536 if (SrcOp == RI->getOperand(0)) { 3537 if (Pred == ICmpInst::ICMP_UGE || Pred == ICmpInst::ICMP_SLE) 3538 return ConstantInt::getTrue(ITy); 3539 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_SGT) 3540 return ConstantInt::getFalse(ITy); 3541 } 3542 } 3543 // Turn icmp (sext X), Cst into a compare of X and Cst if Cst is extended 3544 // too. If not, then try to deduce the result of the comparison. 3545 else if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) { 3546 // Compute the constant that would happen if we truncated to SrcTy then 3547 // reextended to DstTy. 3548 Constant *Trunc = ConstantExpr::getTrunc(CI, SrcTy); 3549 Constant *RExt = ConstantExpr::getCast(CastInst::SExt, Trunc, DstTy); 3550 3551 // If the re-extended constant didn't change then this is effectively 3552 // also a case of comparing two sign-extended values. 3553 if (RExt == CI && MaxRecurse) 3554 if (Value *V = SimplifyICmpInst(Pred, SrcOp, Trunc, Q, MaxRecurse-1)) 3555 return V; 3556 3557 // Otherwise the upper bits of LHS are all equal, while RHS has varying 3558 // bits there. Use this to work out the result of the comparison. 3559 if (RExt != CI) { 3560 switch (Pred) { 3561 default: llvm_unreachable("Unknown ICmp predicate!"); 3562 case ICmpInst::ICMP_EQ: 3563 return ConstantInt::getFalse(CI->getContext()); 3564 case ICmpInst::ICMP_NE: 3565 return ConstantInt::getTrue(CI->getContext()); 3566 3567 // If RHS is non-negative then LHS <s RHS. If RHS is negative then 3568 // LHS >s RHS. 3569 case ICmpInst::ICMP_SGT: 3570 case ICmpInst::ICMP_SGE: 3571 return CI->getValue().isNegative() ? 3572 ConstantInt::getTrue(CI->getContext()) : 3573 ConstantInt::getFalse(CI->getContext()); 3574 case ICmpInst::ICMP_SLT: 3575 case ICmpInst::ICMP_SLE: 3576 return CI->getValue().isNegative() ? 3577 ConstantInt::getFalse(CI->getContext()) : 3578 ConstantInt::getTrue(CI->getContext()); 3579 3580 // If LHS is non-negative then LHS <u RHS. If LHS is negative then 3581 // LHS >u RHS. 3582 case ICmpInst::ICMP_UGT: 3583 case ICmpInst::ICMP_UGE: 3584 // Comparison is true iff the LHS <s 0. 3585 if (MaxRecurse) 3586 if (Value *V = SimplifyICmpInst(ICmpInst::ICMP_SLT, SrcOp, 3587 Constant::getNullValue(SrcTy), 3588 Q, MaxRecurse-1)) 3589 return V; 3590 break; 3591 case ICmpInst::ICMP_ULT: 3592 case ICmpInst::ICMP_ULE: 3593 // Comparison is true iff the LHS >=s 0. 3594 if (MaxRecurse) 3595 if (Value *V = SimplifyICmpInst(ICmpInst::ICMP_SGE, SrcOp, 3596 Constant::getNullValue(SrcTy), 3597 Q, MaxRecurse-1)) 3598 return V; 3599 break; 3600 } 3601 } 3602 } 3603 } 3604 } 3605 3606 // icmp eq|ne X, Y -> false|true if X != Y 3607 // This is potentially expensive, and we have already computedKnownBits for 3608 // compares with 0 above here, so only try this for a non-zero compare. 3609 if (ICmpInst::isEquality(Pred) && !match(RHS, m_Zero()) && 3610 isKnownNonEqual(LHS, RHS, Q.DL, Q.AC, Q.CxtI, Q.DT, Q.IIQ.UseInstrInfo)) { 3611 return Pred == ICmpInst::ICMP_NE ? getTrue(ITy) : getFalse(ITy); 3612 } 3613 3614 if (Value *V = simplifyICmpWithBinOp(Pred, LHS, RHS, Q, MaxRecurse)) 3615 return V; 3616 3617 if (Value *V = simplifyICmpWithMinMax(Pred, LHS, RHS, Q, MaxRecurse)) 3618 return V; 3619 3620 if (Value *V = simplifyICmpWithDominatingAssume(Pred, LHS, RHS, Q)) 3621 return V; 3622 3623 // Simplify comparisons of related pointers using a powerful, recursive 3624 // GEP-walk when we have target data available.. 3625 if (LHS->getType()->isPointerTy()) 3626 if (auto *C = computePointerICmp(Pred, LHS, RHS, Q)) 3627 return C; 3628 if (auto *CLHS = dyn_cast<PtrToIntOperator>(LHS)) 3629 if (auto *CRHS = dyn_cast<PtrToIntOperator>(RHS)) 3630 if (Q.DL.getTypeSizeInBits(CLHS->getPointerOperandType()) == 3631 Q.DL.getTypeSizeInBits(CLHS->getType()) && 3632 Q.DL.getTypeSizeInBits(CRHS->getPointerOperandType()) == 3633 Q.DL.getTypeSizeInBits(CRHS->getType())) 3634 if (auto *C = computePointerICmp(Pred, CLHS->getPointerOperand(), 3635 CRHS->getPointerOperand(), Q)) 3636 return C; 3637 3638 if (GetElementPtrInst *GLHS = dyn_cast<GetElementPtrInst>(LHS)) { 3639 if (GEPOperator *GRHS = dyn_cast<GEPOperator>(RHS)) { 3640 if (GLHS->getPointerOperand() == GRHS->getPointerOperand() && 3641 GLHS->hasAllConstantIndices() && GRHS->hasAllConstantIndices() && 3642 (ICmpInst::isEquality(Pred) || 3643 (GLHS->isInBounds() && GRHS->isInBounds() && 3644 Pred == ICmpInst::getSignedPredicate(Pred)))) { 3645 // The bases are equal and the indices are constant. Build a constant 3646 // expression GEP with the same indices and a null base pointer to see 3647 // what constant folding can make out of it. 3648 Constant *Null = Constant::getNullValue(GLHS->getPointerOperandType()); 3649 SmallVector<Value *, 4> IndicesLHS(GLHS->indices()); 3650 Constant *NewLHS = ConstantExpr::getGetElementPtr( 3651 GLHS->getSourceElementType(), Null, IndicesLHS); 3652 3653 SmallVector<Value *, 4> IndicesRHS(GRHS->idx_begin(), GRHS->idx_end()); 3654 Constant *NewRHS = ConstantExpr::getGetElementPtr( 3655 GLHS->getSourceElementType(), Null, IndicesRHS); 3656 Constant *NewICmp = ConstantExpr::getICmp(Pred, NewLHS, NewRHS); 3657 return ConstantFoldConstant(NewICmp, Q.DL); 3658 } 3659 } 3660 } 3661 3662 // If the comparison is with the result of a select instruction, check whether 3663 // comparing with either branch of the select always yields the same value. 3664 if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS)) 3665 if (Value *V = ThreadCmpOverSelect(Pred, LHS, RHS, Q, MaxRecurse)) 3666 return V; 3667 3668 // If the comparison is with the result of a phi instruction, check whether 3669 // doing the compare with each incoming phi value yields a common result. 3670 if (isa<PHINode>(LHS) || isa<PHINode>(RHS)) 3671 if (Value *V = ThreadCmpOverPHI(Pred, LHS, RHS, Q, MaxRecurse)) 3672 return V; 3673 3674 return nullptr; 3675 } 3676 3677 Value *llvm::SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS, 3678 const SimplifyQuery &Q) { 3679 return ::SimplifyICmpInst(Predicate, LHS, RHS, Q, RecursionLimit); 3680 } 3681 3682 /// Given operands for an FCmpInst, see if we can fold the result. 3683 /// If not, this returns null. 3684 static Value *SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS, 3685 FastMathFlags FMF, const SimplifyQuery &Q, 3686 unsigned MaxRecurse) { 3687 CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate; 3688 assert(CmpInst::isFPPredicate(Pred) && "Not an FP compare!"); 3689 3690 if (Constant *CLHS = dyn_cast<Constant>(LHS)) { 3691 if (Constant *CRHS = dyn_cast<Constant>(RHS)) 3692 return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, Q.DL, Q.TLI); 3693 3694 // If we have a constant, make sure it is on the RHS. 3695 std::swap(LHS, RHS); 3696 Pred = CmpInst::getSwappedPredicate(Pred); 3697 } 3698 3699 // Fold trivial predicates. 3700 Type *RetTy = GetCompareTy(LHS); 3701 if (Pred == FCmpInst::FCMP_FALSE) 3702 return getFalse(RetTy); 3703 if (Pred == FCmpInst::FCMP_TRUE) 3704 return getTrue(RetTy); 3705 3706 // Fold (un)ordered comparison if we can determine there are no NaNs. 3707 if (Pred == FCmpInst::FCMP_UNO || Pred == FCmpInst::FCMP_ORD) 3708 if (FMF.noNaNs() || 3709 (isKnownNeverNaN(LHS, Q.TLI) && isKnownNeverNaN(RHS, Q.TLI))) 3710 return ConstantInt::get(RetTy, Pred == FCmpInst::FCMP_ORD); 3711 3712 // NaN is unordered; NaN is not ordered. 3713 assert((FCmpInst::isOrdered(Pred) || FCmpInst::isUnordered(Pred)) && 3714 "Comparison must be either ordered or unordered"); 3715 if (match(RHS, m_NaN())) 3716 return ConstantInt::get(RetTy, CmpInst::isUnordered(Pred)); 3717 3718 // fcmp pred x, poison and fcmp pred poison, x 3719 // fold to poison 3720 if (isa<PoisonValue>(LHS) || isa<PoisonValue>(RHS)) 3721 return PoisonValue::get(RetTy); 3722 3723 // fcmp pred x, undef and fcmp pred undef, x 3724 // fold to true if unordered, false if ordered 3725 if (Q.isUndefValue(LHS) || Q.isUndefValue(RHS)) { 3726 // Choosing NaN for the undef will always make unordered comparison succeed 3727 // and ordered comparison fail. 3728 return ConstantInt::get(RetTy, CmpInst::isUnordered(Pred)); 3729 } 3730 3731 // fcmp x,x -> true/false. Not all compares are foldable. 3732 if (LHS == RHS) { 3733 if (CmpInst::isTrueWhenEqual(Pred)) 3734 return getTrue(RetTy); 3735 if (CmpInst::isFalseWhenEqual(Pred)) 3736 return getFalse(RetTy); 3737 } 3738 3739 // Handle fcmp with constant RHS. 3740 // TODO: Use match with a specific FP value, so these work with vectors with 3741 // undef lanes. 3742 const APFloat *C; 3743 if (match(RHS, m_APFloat(C))) { 3744 // Check whether the constant is an infinity. 3745 if (C->isInfinity()) { 3746 if (C->isNegative()) { 3747 switch (Pred) { 3748 case FCmpInst::FCMP_OLT: 3749 // No value is ordered and less than negative infinity. 3750 return getFalse(RetTy); 3751 case FCmpInst::FCMP_UGE: 3752 // All values are unordered with or at least negative infinity. 3753 return getTrue(RetTy); 3754 default: 3755 break; 3756 } 3757 } else { 3758 switch (Pred) { 3759 case FCmpInst::FCMP_OGT: 3760 // No value is ordered and greater than infinity. 3761 return getFalse(RetTy); 3762 case FCmpInst::FCMP_ULE: 3763 // All values are unordered with and at most infinity. 3764 return getTrue(RetTy); 3765 default: 3766 break; 3767 } 3768 } 3769 3770 // LHS == Inf 3771 if (Pred == FCmpInst::FCMP_OEQ && isKnownNeverInfinity(LHS, Q.TLI)) 3772 return getFalse(RetTy); 3773 // LHS != Inf 3774 if (Pred == FCmpInst::FCMP_UNE && isKnownNeverInfinity(LHS, Q.TLI)) 3775 return getTrue(RetTy); 3776 // LHS == Inf || LHS == NaN 3777 if (Pred == FCmpInst::FCMP_UEQ && isKnownNeverInfinity(LHS, Q.TLI) && 3778 isKnownNeverNaN(LHS, Q.TLI)) 3779 return getFalse(RetTy); 3780 // LHS != Inf && LHS != NaN 3781 if (Pred == FCmpInst::FCMP_ONE && isKnownNeverInfinity(LHS, Q.TLI) && 3782 isKnownNeverNaN(LHS, Q.TLI)) 3783 return getTrue(RetTy); 3784 } 3785 if (C->isNegative() && !C->isNegZero()) { 3786 assert(!C->isNaN() && "Unexpected NaN constant!"); 3787 // TODO: We can catch more cases by using a range check rather than 3788 // relying on CannotBeOrderedLessThanZero. 3789 switch (Pred) { 3790 case FCmpInst::FCMP_UGE: 3791 case FCmpInst::FCMP_UGT: 3792 case FCmpInst::FCMP_UNE: 3793 // (X >= 0) implies (X > C) when (C < 0) 3794 if (CannotBeOrderedLessThanZero(LHS, Q.TLI)) 3795 return getTrue(RetTy); 3796 break; 3797 case FCmpInst::FCMP_OEQ: 3798 case FCmpInst::FCMP_OLE: 3799 case FCmpInst::FCMP_OLT: 3800 // (X >= 0) implies !(X < C) when (C < 0) 3801 if (CannotBeOrderedLessThanZero(LHS, Q.TLI)) 3802 return getFalse(RetTy); 3803 break; 3804 default: 3805 break; 3806 } 3807 } 3808 3809 // Check comparison of [minnum/maxnum with constant] with other constant. 3810 const APFloat *C2; 3811 if ((match(LHS, m_Intrinsic<Intrinsic::minnum>(m_Value(), m_APFloat(C2))) && 3812 *C2 < *C) || 3813 (match(LHS, m_Intrinsic<Intrinsic::maxnum>(m_Value(), m_APFloat(C2))) && 3814 *C2 > *C)) { 3815 bool IsMaxNum = 3816 cast<IntrinsicInst>(LHS)->getIntrinsicID() == Intrinsic::maxnum; 3817 // The ordered relationship and minnum/maxnum guarantee that we do not 3818 // have NaN constants, so ordered/unordered preds are handled the same. 3819 switch (Pred) { 3820 case FCmpInst::FCMP_OEQ: case FCmpInst::FCMP_UEQ: 3821 // minnum(X, LesserC) == C --> false 3822 // maxnum(X, GreaterC) == C --> false 3823 return getFalse(RetTy); 3824 case FCmpInst::FCMP_ONE: case FCmpInst::FCMP_UNE: 3825 // minnum(X, LesserC) != C --> true 3826 // maxnum(X, GreaterC) != C --> true 3827 return getTrue(RetTy); 3828 case FCmpInst::FCMP_OGE: case FCmpInst::FCMP_UGE: 3829 case FCmpInst::FCMP_OGT: case FCmpInst::FCMP_UGT: 3830 // minnum(X, LesserC) >= C --> false 3831 // minnum(X, LesserC) > C --> false 3832 // maxnum(X, GreaterC) >= C --> true 3833 // maxnum(X, GreaterC) > C --> true 3834 return ConstantInt::get(RetTy, IsMaxNum); 3835 case FCmpInst::FCMP_OLE: case FCmpInst::FCMP_ULE: 3836 case FCmpInst::FCMP_OLT: case FCmpInst::FCMP_ULT: 3837 // minnum(X, LesserC) <= C --> true 3838 // minnum(X, LesserC) < C --> true 3839 // maxnum(X, GreaterC) <= C --> false 3840 // maxnum(X, GreaterC) < C --> false 3841 return ConstantInt::get(RetTy, !IsMaxNum); 3842 default: 3843 // TRUE/FALSE/ORD/UNO should be handled before this. 3844 llvm_unreachable("Unexpected fcmp predicate"); 3845 } 3846 } 3847 } 3848 3849 if (match(RHS, m_AnyZeroFP())) { 3850 switch (Pred) { 3851 case FCmpInst::FCMP_OGE: 3852 case FCmpInst::FCMP_ULT: 3853 // Positive or zero X >= 0.0 --> true 3854 // Positive or zero X < 0.0 --> false 3855 if ((FMF.noNaNs() || isKnownNeverNaN(LHS, Q.TLI)) && 3856 CannotBeOrderedLessThanZero(LHS, Q.TLI)) 3857 return Pred == FCmpInst::FCMP_OGE ? getTrue(RetTy) : getFalse(RetTy); 3858 break; 3859 case FCmpInst::FCMP_UGE: 3860 case FCmpInst::FCMP_OLT: 3861 // Positive or zero or nan X >= 0.0 --> true 3862 // Positive or zero or nan X < 0.0 --> false 3863 if (CannotBeOrderedLessThanZero(LHS, Q.TLI)) 3864 return Pred == FCmpInst::FCMP_UGE ? getTrue(RetTy) : getFalse(RetTy); 3865 break; 3866 default: 3867 break; 3868 } 3869 } 3870 3871 // If the comparison is with the result of a select instruction, check whether 3872 // comparing with either branch of the select always yields the same value. 3873 if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS)) 3874 if (Value *V = ThreadCmpOverSelect(Pred, LHS, RHS, Q, MaxRecurse)) 3875 return V; 3876 3877 // If the comparison is with the result of a phi instruction, check whether 3878 // doing the compare with each incoming phi value yields a common result. 3879 if (isa<PHINode>(LHS) || isa<PHINode>(RHS)) 3880 if (Value *V = ThreadCmpOverPHI(Pred, LHS, RHS, Q, MaxRecurse)) 3881 return V; 3882 3883 return nullptr; 3884 } 3885 3886 Value *llvm::SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS, 3887 FastMathFlags FMF, const SimplifyQuery &Q) { 3888 return ::SimplifyFCmpInst(Predicate, LHS, RHS, FMF, Q, RecursionLimit); 3889 } 3890 3891 static Value *simplifyWithOpReplaced(Value *V, Value *Op, Value *RepOp, 3892 const SimplifyQuery &Q, 3893 bool AllowRefinement, 3894 unsigned MaxRecurse) { 3895 assert(!Op->getType()->isVectorTy() && "This is not safe for vectors"); 3896 3897 // Trivial replacement. 3898 if (V == Op) 3899 return RepOp; 3900 3901 // We cannot replace a constant, and shouldn't even try. 3902 if (isa<Constant>(Op)) 3903 return nullptr; 3904 3905 auto *I = dyn_cast<Instruction>(V); 3906 if (!I || !is_contained(I->operands(), Op)) 3907 return nullptr; 3908 3909 // Replace Op with RepOp in instruction operands. 3910 SmallVector<Value *, 8> NewOps(I->getNumOperands()); 3911 transform(I->operands(), NewOps.begin(), 3912 [&](Value *V) { return V == Op ? RepOp : V; }); 3913 3914 if (!AllowRefinement) { 3915 // General InstSimplify functions may refine the result, e.g. by returning 3916 // a constant for a potentially poison value. To avoid this, implement only 3917 // a few non-refining but profitable transforms here. 3918 3919 if (auto *BO = dyn_cast<BinaryOperator>(I)) { 3920 unsigned Opcode = BO->getOpcode(); 3921 // id op x -> x, x op id -> x 3922 if (NewOps[0] == ConstantExpr::getBinOpIdentity(Opcode, I->getType())) 3923 return NewOps[1]; 3924 if (NewOps[1] == ConstantExpr::getBinOpIdentity(Opcode, I->getType(), 3925 /* RHS */ true)) 3926 return NewOps[0]; 3927 3928 // x & x -> x, x | x -> x 3929 if ((Opcode == Instruction::And || Opcode == Instruction::Or) && 3930 NewOps[0] == NewOps[1]) 3931 return NewOps[0]; 3932 } 3933 3934 if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) { 3935 // getelementptr x, 0 -> x 3936 if (NewOps.size() == 2 && match(NewOps[1], m_Zero()) && 3937 !GEP->isInBounds()) 3938 return NewOps[0]; 3939 } 3940 } else if (MaxRecurse) { 3941 // The simplification queries below may return the original value. Consider: 3942 // %div = udiv i32 %arg, %arg2 3943 // %mul = mul nsw i32 %div, %arg2 3944 // %cmp = icmp eq i32 %mul, %arg 3945 // %sel = select i1 %cmp, i32 %div, i32 undef 3946 // Replacing %arg by %mul, %div becomes "udiv i32 %mul, %arg2", which 3947 // simplifies back to %arg. This can only happen because %mul does not 3948 // dominate %div. To ensure a consistent return value contract, we make sure 3949 // that this case returns nullptr as well. 3950 auto PreventSelfSimplify = [V](Value *Simplified) { 3951 return Simplified != V ? Simplified : nullptr; 3952 }; 3953 3954 if (auto *B = dyn_cast<BinaryOperator>(I)) 3955 return PreventSelfSimplify(SimplifyBinOp(B->getOpcode(), NewOps[0], 3956 NewOps[1], Q, MaxRecurse - 1)); 3957 3958 if (CmpInst *C = dyn_cast<CmpInst>(I)) 3959 return PreventSelfSimplify(SimplifyCmpInst(C->getPredicate(), NewOps[0], 3960 NewOps[1], Q, MaxRecurse - 1)); 3961 3962 if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) 3963 return PreventSelfSimplify(SimplifyGEPInst(GEP->getSourceElementType(), 3964 NewOps, Q, MaxRecurse - 1)); 3965 3966 if (isa<SelectInst>(I)) 3967 return PreventSelfSimplify( 3968 SimplifySelectInst(NewOps[0], NewOps[1], NewOps[2], Q, 3969 MaxRecurse - 1)); 3970 // TODO: We could hand off more cases to instsimplify here. 3971 } 3972 3973 // If all operands are constant after substituting Op for RepOp then we can 3974 // constant fold the instruction. 3975 SmallVector<Constant *, 8> ConstOps; 3976 for (Value *NewOp : NewOps) { 3977 if (Constant *ConstOp = dyn_cast<Constant>(NewOp)) 3978 ConstOps.push_back(ConstOp); 3979 else 3980 return nullptr; 3981 } 3982 3983 // Consider: 3984 // %cmp = icmp eq i32 %x, 2147483647 3985 // %add = add nsw i32 %x, 1 3986 // %sel = select i1 %cmp, i32 -2147483648, i32 %add 3987 // 3988 // We can't replace %sel with %add unless we strip away the flags (which 3989 // will be done in InstCombine). 3990 // TODO: This may be unsound, because it only catches some forms of 3991 // refinement. 3992 if (!AllowRefinement && canCreatePoison(cast<Operator>(I))) 3993 return nullptr; 3994 3995 if (CmpInst *C = dyn_cast<CmpInst>(I)) 3996 return ConstantFoldCompareInstOperands(C->getPredicate(), ConstOps[0], 3997 ConstOps[1], Q.DL, Q.TLI); 3998 3999 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 4000 if (!LI->isVolatile()) 4001 return ConstantFoldLoadFromConstPtr(ConstOps[0], LI->getType(), Q.DL); 4002 4003 return ConstantFoldInstOperands(I, ConstOps, Q.DL, Q.TLI); 4004 } 4005 4006 Value *llvm::simplifyWithOpReplaced(Value *V, Value *Op, Value *RepOp, 4007 const SimplifyQuery &Q, 4008 bool AllowRefinement) { 4009 return ::simplifyWithOpReplaced(V, Op, RepOp, Q, AllowRefinement, 4010 RecursionLimit); 4011 } 4012 4013 /// Try to simplify a select instruction when its condition operand is an 4014 /// integer comparison where one operand of the compare is a constant. 4015 static Value *simplifySelectBitTest(Value *TrueVal, Value *FalseVal, Value *X, 4016 const APInt *Y, bool TrueWhenUnset) { 4017 const APInt *C; 4018 4019 // (X & Y) == 0 ? X & ~Y : X --> X 4020 // (X & Y) != 0 ? X & ~Y : X --> X & ~Y 4021 if (FalseVal == X && match(TrueVal, m_And(m_Specific(X), m_APInt(C))) && 4022 *Y == ~*C) 4023 return TrueWhenUnset ? FalseVal : TrueVal; 4024 4025 // (X & Y) == 0 ? X : X & ~Y --> X & ~Y 4026 // (X & Y) != 0 ? X : X & ~Y --> X 4027 if (TrueVal == X && match(FalseVal, m_And(m_Specific(X), m_APInt(C))) && 4028 *Y == ~*C) 4029 return TrueWhenUnset ? FalseVal : TrueVal; 4030 4031 if (Y->isPowerOf2()) { 4032 // (X & Y) == 0 ? X | Y : X --> X | Y 4033 // (X & Y) != 0 ? X | Y : X --> X 4034 if (FalseVal == X && match(TrueVal, m_Or(m_Specific(X), m_APInt(C))) && 4035 *Y == *C) 4036 return TrueWhenUnset ? TrueVal : FalseVal; 4037 4038 // (X & Y) == 0 ? X : X | Y --> X 4039 // (X & Y) != 0 ? X : X | Y --> X | Y 4040 if (TrueVal == X && match(FalseVal, m_Or(m_Specific(X), m_APInt(C))) && 4041 *Y == *C) 4042 return TrueWhenUnset ? TrueVal : FalseVal; 4043 } 4044 4045 return nullptr; 4046 } 4047 4048 /// An alternative way to test if a bit is set or not uses sgt/slt instead of 4049 /// eq/ne. 4050 static Value *simplifySelectWithFakeICmpEq(Value *CmpLHS, Value *CmpRHS, 4051 ICmpInst::Predicate Pred, 4052 Value *TrueVal, Value *FalseVal) { 4053 Value *X; 4054 APInt Mask; 4055 if (!decomposeBitTestICmp(CmpLHS, CmpRHS, Pred, X, Mask)) 4056 return nullptr; 4057 4058 return simplifySelectBitTest(TrueVal, FalseVal, X, &Mask, 4059 Pred == ICmpInst::ICMP_EQ); 4060 } 4061 4062 /// Try to simplify a select instruction when its condition operand is an 4063 /// integer comparison. 4064 static Value *simplifySelectWithICmpCond(Value *CondVal, Value *TrueVal, 4065 Value *FalseVal, const SimplifyQuery &Q, 4066 unsigned MaxRecurse) { 4067 ICmpInst::Predicate Pred; 4068 Value *CmpLHS, *CmpRHS; 4069 if (!match(CondVal, m_ICmp(Pred, m_Value(CmpLHS), m_Value(CmpRHS)))) 4070 return nullptr; 4071 4072 // Canonicalize ne to eq predicate. 4073 if (Pred == ICmpInst::ICMP_NE) { 4074 Pred = ICmpInst::ICMP_EQ; 4075 std::swap(TrueVal, FalseVal); 4076 } 4077 4078 if (Pred == ICmpInst::ICMP_EQ && match(CmpRHS, m_Zero())) { 4079 Value *X; 4080 const APInt *Y; 4081 if (match(CmpLHS, m_And(m_Value(X), m_APInt(Y)))) 4082 if (Value *V = simplifySelectBitTest(TrueVal, FalseVal, X, Y, 4083 /*TrueWhenUnset=*/true)) 4084 return V; 4085 4086 // Test for a bogus zero-shift-guard-op around funnel-shift or rotate. 4087 Value *ShAmt; 4088 auto isFsh = m_CombineOr(m_FShl(m_Value(X), m_Value(), m_Value(ShAmt)), 4089 m_FShr(m_Value(), m_Value(X), m_Value(ShAmt))); 4090 // (ShAmt == 0) ? fshl(X, *, ShAmt) : X --> X 4091 // (ShAmt == 0) ? fshr(*, X, ShAmt) : X --> X 4092 if (match(TrueVal, isFsh) && FalseVal == X && CmpLHS == ShAmt) 4093 return X; 4094 4095 // Test for a zero-shift-guard-op around rotates. These are used to 4096 // avoid UB from oversized shifts in raw IR rotate patterns, but the 4097 // intrinsics do not have that problem. 4098 // We do not allow this transform for the general funnel shift case because 4099 // that would not preserve the poison safety of the original code. 4100 auto isRotate = 4101 m_CombineOr(m_FShl(m_Value(X), m_Deferred(X), m_Value(ShAmt)), 4102 m_FShr(m_Value(X), m_Deferred(X), m_Value(ShAmt))); 4103 // (ShAmt == 0) ? X : fshl(X, X, ShAmt) --> fshl(X, X, ShAmt) 4104 // (ShAmt == 0) ? X : fshr(X, X, ShAmt) --> fshr(X, X, ShAmt) 4105 if (match(FalseVal, isRotate) && TrueVal == X && CmpLHS == ShAmt && 4106 Pred == ICmpInst::ICMP_EQ) 4107 return FalseVal; 4108 4109 // X == 0 ? abs(X) : -abs(X) --> -abs(X) 4110 // X == 0 ? -abs(X) : abs(X) --> abs(X) 4111 if (match(TrueVal, m_Intrinsic<Intrinsic::abs>(m_Specific(CmpLHS))) && 4112 match(FalseVal, m_Neg(m_Intrinsic<Intrinsic::abs>(m_Specific(CmpLHS))))) 4113 return FalseVal; 4114 if (match(TrueVal, 4115 m_Neg(m_Intrinsic<Intrinsic::abs>(m_Specific(CmpLHS)))) && 4116 match(FalseVal, m_Intrinsic<Intrinsic::abs>(m_Specific(CmpLHS)))) 4117 return FalseVal; 4118 } 4119 4120 // Check for other compares that behave like bit test. 4121 if (Value *V = simplifySelectWithFakeICmpEq(CmpLHS, CmpRHS, Pred, 4122 TrueVal, FalseVal)) 4123 return V; 4124 4125 // If we have a scalar equality comparison, then we know the value in one of 4126 // the arms of the select. See if substituting this value into the arm and 4127 // simplifying the result yields the same value as the other arm. 4128 // Note that the equivalence/replacement opportunity does not hold for vectors 4129 // because each element of a vector select is chosen independently. 4130 if (Pred == ICmpInst::ICMP_EQ && !CondVal->getType()->isVectorTy()) { 4131 if (simplifyWithOpReplaced(FalseVal, CmpLHS, CmpRHS, Q, 4132 /* AllowRefinement */ false, MaxRecurse) == 4133 TrueVal || 4134 simplifyWithOpReplaced(FalseVal, CmpRHS, CmpLHS, Q, 4135 /* AllowRefinement */ false, MaxRecurse) == 4136 TrueVal) 4137 return FalseVal; 4138 if (simplifyWithOpReplaced(TrueVal, CmpLHS, CmpRHS, Q, 4139 /* AllowRefinement */ true, MaxRecurse) == 4140 FalseVal || 4141 simplifyWithOpReplaced(TrueVal, CmpRHS, CmpLHS, Q, 4142 /* AllowRefinement */ true, MaxRecurse) == 4143 FalseVal) 4144 return FalseVal; 4145 } 4146 4147 return nullptr; 4148 } 4149 4150 /// Try to simplify a select instruction when its condition operand is a 4151 /// floating-point comparison. 4152 static Value *simplifySelectWithFCmp(Value *Cond, Value *T, Value *F, 4153 const SimplifyQuery &Q) { 4154 FCmpInst::Predicate Pred; 4155 if (!match(Cond, m_FCmp(Pred, m_Specific(T), m_Specific(F))) && 4156 !match(Cond, m_FCmp(Pred, m_Specific(F), m_Specific(T)))) 4157 return nullptr; 4158 4159 // This transform is safe if we do not have (do not care about) -0.0 or if 4160 // at least one operand is known to not be -0.0. Otherwise, the select can 4161 // change the sign of a zero operand. 4162 bool HasNoSignedZeros = Q.CxtI && isa<FPMathOperator>(Q.CxtI) && 4163 Q.CxtI->hasNoSignedZeros(); 4164 const APFloat *C; 4165 if (HasNoSignedZeros || (match(T, m_APFloat(C)) && C->isNonZero()) || 4166 (match(F, m_APFloat(C)) && C->isNonZero())) { 4167 // (T == F) ? T : F --> F 4168 // (F == T) ? T : F --> F 4169 if (Pred == FCmpInst::FCMP_OEQ) 4170 return F; 4171 4172 // (T != F) ? T : F --> T 4173 // (F != T) ? T : F --> T 4174 if (Pred == FCmpInst::FCMP_UNE) 4175 return T; 4176 } 4177 4178 return nullptr; 4179 } 4180 4181 /// Given operands for a SelectInst, see if we can fold the result. 4182 /// If not, this returns null. 4183 static Value *SimplifySelectInst(Value *Cond, Value *TrueVal, Value *FalseVal, 4184 const SimplifyQuery &Q, unsigned MaxRecurse) { 4185 if (auto *CondC = dyn_cast<Constant>(Cond)) { 4186 if (auto *TrueC = dyn_cast<Constant>(TrueVal)) 4187 if (auto *FalseC = dyn_cast<Constant>(FalseVal)) 4188 return ConstantFoldSelectInstruction(CondC, TrueC, FalseC); 4189 4190 // select poison, X, Y -> poison 4191 if (isa<PoisonValue>(CondC)) 4192 return PoisonValue::get(TrueVal->getType()); 4193 4194 // select undef, X, Y -> X or Y 4195 if (Q.isUndefValue(CondC)) 4196 return isa<Constant>(FalseVal) ? FalseVal : TrueVal; 4197 4198 // select true, X, Y --> X 4199 // select false, X, Y --> Y 4200 // For vectors, allow undef/poison elements in the condition to match the 4201 // defined elements, so we can eliminate the select. 4202 if (match(CondC, m_One())) 4203 return TrueVal; 4204 if (match(CondC, m_Zero())) 4205 return FalseVal; 4206 } 4207 4208 // select i1 Cond, i1 true, i1 false --> i1 Cond 4209 assert(Cond->getType()->isIntOrIntVectorTy(1) && 4210 "Select must have bool or bool vector condition"); 4211 assert(TrueVal->getType() == FalseVal->getType() && 4212 "Select must have same types for true/false ops"); 4213 if (Cond->getType() == TrueVal->getType() && 4214 match(TrueVal, m_One()) && match(FalseVal, m_ZeroInt())) 4215 return Cond; 4216 4217 // select ?, X, X -> X 4218 if (TrueVal == FalseVal) 4219 return TrueVal; 4220 4221 // If the true or false value is poison, we can fold to the other value. 4222 // If the true or false value is undef, we can fold to the other value as 4223 // long as the other value isn't poison. 4224 // select ?, poison, X -> X 4225 // select ?, undef, X -> X 4226 if (isa<PoisonValue>(TrueVal) || 4227 (Q.isUndefValue(TrueVal) && 4228 isGuaranteedNotToBePoison(FalseVal, Q.AC, Q.CxtI, Q.DT))) 4229 return FalseVal; 4230 // select ?, X, poison -> X 4231 // select ?, X, undef -> X 4232 if (isa<PoisonValue>(FalseVal) || 4233 (Q.isUndefValue(FalseVal) && 4234 isGuaranteedNotToBePoison(TrueVal, Q.AC, Q.CxtI, Q.DT))) 4235 return TrueVal; 4236 4237 // Deal with partial undef vector constants: select ?, VecC, VecC' --> VecC'' 4238 Constant *TrueC, *FalseC; 4239 if (isa<FixedVectorType>(TrueVal->getType()) && 4240 match(TrueVal, m_Constant(TrueC)) && 4241 match(FalseVal, m_Constant(FalseC))) { 4242 unsigned NumElts = 4243 cast<FixedVectorType>(TrueC->getType())->getNumElements(); 4244 SmallVector<Constant *, 16> NewC; 4245 for (unsigned i = 0; i != NumElts; ++i) { 4246 // Bail out on incomplete vector constants. 4247 Constant *TEltC = TrueC->getAggregateElement(i); 4248 Constant *FEltC = FalseC->getAggregateElement(i); 4249 if (!TEltC || !FEltC) 4250 break; 4251 4252 // If the elements match (undef or not), that value is the result. If only 4253 // one element is undef, choose the defined element as the safe result. 4254 if (TEltC == FEltC) 4255 NewC.push_back(TEltC); 4256 else if (isa<PoisonValue>(TEltC) || 4257 (Q.isUndefValue(TEltC) && isGuaranteedNotToBePoison(FEltC))) 4258 NewC.push_back(FEltC); 4259 else if (isa<PoisonValue>(FEltC) || 4260 (Q.isUndefValue(FEltC) && isGuaranteedNotToBePoison(TEltC))) 4261 NewC.push_back(TEltC); 4262 else 4263 break; 4264 } 4265 if (NewC.size() == NumElts) 4266 return ConstantVector::get(NewC); 4267 } 4268 4269 if (Value *V = 4270 simplifySelectWithICmpCond(Cond, TrueVal, FalseVal, Q, MaxRecurse)) 4271 return V; 4272 4273 if (Value *V = simplifySelectWithFCmp(Cond, TrueVal, FalseVal, Q)) 4274 return V; 4275 4276 if (Value *V = foldSelectWithBinaryOp(Cond, TrueVal, FalseVal)) 4277 return V; 4278 4279 Optional<bool> Imp = isImpliedByDomCondition(Cond, Q.CxtI, Q.DL); 4280 if (Imp) 4281 return *Imp ? TrueVal : FalseVal; 4282 4283 return nullptr; 4284 } 4285 4286 Value *llvm::SimplifySelectInst(Value *Cond, Value *TrueVal, Value *FalseVal, 4287 const SimplifyQuery &Q) { 4288 return ::SimplifySelectInst(Cond, TrueVal, FalseVal, Q, RecursionLimit); 4289 } 4290 4291 /// Given operands for an GetElementPtrInst, see if we can fold the result. 4292 /// If not, this returns null. 4293 static Value *SimplifyGEPInst(Type *SrcTy, ArrayRef<Value *> Ops, 4294 const SimplifyQuery &Q, unsigned) { 4295 // The type of the GEP pointer operand. 4296 unsigned AS = 4297 cast<PointerType>(Ops[0]->getType()->getScalarType())->getAddressSpace(); 4298 4299 // getelementptr P -> P. 4300 if (Ops.size() == 1) 4301 return Ops[0]; 4302 4303 // Compute the (pointer) type returned by the GEP instruction. 4304 Type *LastType = GetElementPtrInst::getIndexedType(SrcTy, Ops.slice(1)); 4305 Type *GEPTy = PointerType::get(LastType, AS); 4306 for (Value *Op : Ops) { 4307 // If one of the operands is a vector, the result type is a vector of 4308 // pointers. All vector operands must have the same number of elements. 4309 if (VectorType *VT = dyn_cast<VectorType>(Op->getType())) { 4310 GEPTy = VectorType::get(GEPTy, VT->getElementCount()); 4311 break; 4312 } 4313 } 4314 4315 // getelementptr poison, idx -> poison 4316 // getelementptr baseptr, poison -> poison 4317 if (any_of(Ops, [](const auto *V) { return isa<PoisonValue>(V); })) 4318 return PoisonValue::get(GEPTy); 4319 4320 if (Q.isUndefValue(Ops[0])) 4321 return UndefValue::get(GEPTy); 4322 4323 bool IsScalableVec = 4324 isa<ScalableVectorType>(SrcTy) || any_of(Ops, [](const Value *V) { 4325 return isa<ScalableVectorType>(V->getType()); 4326 }); 4327 4328 if (Ops.size() == 2) { 4329 // getelementptr P, 0 -> P. 4330 if (match(Ops[1], m_Zero()) && Ops[0]->getType() == GEPTy) 4331 return Ops[0]; 4332 4333 Type *Ty = SrcTy; 4334 if (!IsScalableVec && Ty->isSized()) { 4335 Value *P; 4336 uint64_t C; 4337 uint64_t TyAllocSize = Q.DL.getTypeAllocSize(Ty); 4338 // getelementptr P, N -> P if P points to a type of zero size. 4339 if (TyAllocSize == 0 && Ops[0]->getType() == GEPTy) 4340 return Ops[0]; 4341 4342 // The following transforms are only safe if the ptrtoint cast 4343 // doesn't truncate the pointers. 4344 if (Ops[1]->getType()->getScalarSizeInBits() == 4345 Q.DL.getPointerSizeInBits(AS)) { 4346 auto CanSimplify = [GEPTy, &P, V = Ops[0]]() -> bool { 4347 return P->getType() == GEPTy && 4348 getUnderlyingObject(P) == getUnderlyingObject(V); 4349 }; 4350 // getelementptr V, (sub P, V) -> P if P points to a type of size 1. 4351 if (TyAllocSize == 1 && 4352 match(Ops[1], m_Sub(m_PtrToInt(m_Value(P)), 4353 m_PtrToInt(m_Specific(Ops[0])))) && 4354 CanSimplify()) 4355 return P; 4356 4357 // getelementptr V, (ashr (sub P, V), C) -> P if P points to a type of 4358 // size 1 << C. 4359 if (match(Ops[1], m_AShr(m_Sub(m_PtrToInt(m_Value(P)), 4360 m_PtrToInt(m_Specific(Ops[0]))), 4361 m_ConstantInt(C))) && 4362 TyAllocSize == 1ULL << C && CanSimplify()) 4363 return P; 4364 4365 // getelementptr V, (sdiv (sub P, V), C) -> P if P points to a type of 4366 // size C. 4367 if (match(Ops[1], m_SDiv(m_Sub(m_PtrToInt(m_Value(P)), 4368 m_PtrToInt(m_Specific(Ops[0]))), 4369 m_SpecificInt(TyAllocSize))) && 4370 CanSimplify()) 4371 return P; 4372 } 4373 } 4374 } 4375 4376 if (!IsScalableVec && Q.DL.getTypeAllocSize(LastType) == 1 && 4377 all_of(Ops.slice(1).drop_back(1), 4378 [](Value *Idx) { return match(Idx, m_Zero()); })) { 4379 unsigned IdxWidth = 4380 Q.DL.getIndexSizeInBits(Ops[0]->getType()->getPointerAddressSpace()); 4381 if (Q.DL.getTypeSizeInBits(Ops.back()->getType()) == IdxWidth) { 4382 APInt BasePtrOffset(IdxWidth, 0); 4383 Value *StrippedBasePtr = 4384 Ops[0]->stripAndAccumulateInBoundsConstantOffsets(Q.DL, 4385 BasePtrOffset); 4386 4387 // Avoid creating inttoptr of zero here: While LLVMs treatment of 4388 // inttoptr is generally conservative, this particular case is folded to 4389 // a null pointer, which will have incorrect provenance. 4390 4391 // gep (gep V, C), (sub 0, V) -> C 4392 if (match(Ops.back(), 4393 m_Sub(m_Zero(), m_PtrToInt(m_Specific(StrippedBasePtr)))) && 4394 !BasePtrOffset.isNullValue()) { 4395 auto *CI = ConstantInt::get(GEPTy->getContext(), BasePtrOffset); 4396 return ConstantExpr::getIntToPtr(CI, GEPTy); 4397 } 4398 // gep (gep V, C), (xor V, -1) -> C-1 4399 if (match(Ops.back(), 4400 m_Xor(m_PtrToInt(m_Specific(StrippedBasePtr)), m_AllOnes())) && 4401 !BasePtrOffset.isOneValue()) { 4402 auto *CI = ConstantInt::get(GEPTy->getContext(), BasePtrOffset - 1); 4403 return ConstantExpr::getIntToPtr(CI, GEPTy); 4404 } 4405 } 4406 } 4407 4408 // Check to see if this is constant foldable. 4409 if (!all_of(Ops, [](Value *V) { return isa<Constant>(V); })) 4410 return nullptr; 4411 4412 auto *CE = ConstantExpr::getGetElementPtr(SrcTy, cast<Constant>(Ops[0]), 4413 Ops.slice(1)); 4414 return ConstantFoldConstant(CE, Q.DL); 4415 } 4416 4417 Value *llvm::SimplifyGEPInst(Type *SrcTy, ArrayRef<Value *> Ops, 4418 const SimplifyQuery &Q) { 4419 return ::SimplifyGEPInst(SrcTy, Ops, Q, RecursionLimit); 4420 } 4421 4422 /// Given operands for an InsertValueInst, see if we can fold the result. 4423 /// If not, this returns null. 4424 static Value *SimplifyInsertValueInst(Value *Agg, Value *Val, 4425 ArrayRef<unsigned> Idxs, const SimplifyQuery &Q, 4426 unsigned) { 4427 if (Constant *CAgg = dyn_cast<Constant>(Agg)) 4428 if (Constant *CVal = dyn_cast<Constant>(Val)) 4429 return ConstantFoldInsertValueInstruction(CAgg, CVal, Idxs); 4430 4431 // insertvalue x, undef, n -> x 4432 if (Q.isUndefValue(Val)) 4433 return Agg; 4434 4435 // insertvalue x, (extractvalue y, n), n 4436 if (ExtractValueInst *EV = dyn_cast<ExtractValueInst>(Val)) 4437 if (EV->getAggregateOperand()->getType() == Agg->getType() && 4438 EV->getIndices() == Idxs) { 4439 // insertvalue undef, (extractvalue y, n), n -> y 4440 if (Q.isUndefValue(Agg)) 4441 return EV->getAggregateOperand(); 4442 4443 // insertvalue y, (extractvalue y, n), n -> y 4444 if (Agg == EV->getAggregateOperand()) 4445 return Agg; 4446 } 4447 4448 return nullptr; 4449 } 4450 4451 Value *llvm::SimplifyInsertValueInst(Value *Agg, Value *Val, 4452 ArrayRef<unsigned> Idxs, 4453 const SimplifyQuery &Q) { 4454 return ::SimplifyInsertValueInst(Agg, Val, Idxs, Q, RecursionLimit); 4455 } 4456 4457 Value *llvm::SimplifyInsertElementInst(Value *Vec, Value *Val, Value *Idx, 4458 const SimplifyQuery &Q) { 4459 // Try to constant fold. 4460 auto *VecC = dyn_cast<Constant>(Vec); 4461 auto *ValC = dyn_cast<Constant>(Val); 4462 auto *IdxC = dyn_cast<Constant>(Idx); 4463 if (VecC && ValC && IdxC) 4464 return ConstantExpr::getInsertElement(VecC, ValC, IdxC); 4465 4466 // For fixed-length vector, fold into poison if index is out of bounds. 4467 if (auto *CI = dyn_cast<ConstantInt>(Idx)) { 4468 if (isa<FixedVectorType>(Vec->getType()) && 4469 CI->uge(cast<FixedVectorType>(Vec->getType())->getNumElements())) 4470 return PoisonValue::get(Vec->getType()); 4471 } 4472 4473 // If index is undef, it might be out of bounds (see above case) 4474 if (Q.isUndefValue(Idx)) 4475 return PoisonValue::get(Vec->getType()); 4476 4477 // If the scalar is poison, or it is undef and there is no risk of 4478 // propagating poison from the vector value, simplify to the vector value. 4479 if (isa<PoisonValue>(Val) || 4480 (Q.isUndefValue(Val) && isGuaranteedNotToBePoison(Vec))) 4481 return Vec; 4482 4483 // If we are extracting a value from a vector, then inserting it into the same 4484 // place, that's the input vector: 4485 // insertelt Vec, (extractelt Vec, Idx), Idx --> Vec 4486 if (match(Val, m_ExtractElt(m_Specific(Vec), m_Specific(Idx)))) 4487 return Vec; 4488 4489 return nullptr; 4490 } 4491 4492 /// Given operands for an ExtractValueInst, see if we can fold the result. 4493 /// If not, this returns null. 4494 static Value *SimplifyExtractValueInst(Value *Agg, ArrayRef<unsigned> Idxs, 4495 const SimplifyQuery &, unsigned) { 4496 if (auto *CAgg = dyn_cast<Constant>(Agg)) 4497 return ConstantFoldExtractValueInstruction(CAgg, Idxs); 4498 4499 // extractvalue x, (insertvalue y, elt, n), n -> elt 4500 unsigned NumIdxs = Idxs.size(); 4501 for (auto *IVI = dyn_cast<InsertValueInst>(Agg); IVI != nullptr; 4502 IVI = dyn_cast<InsertValueInst>(IVI->getAggregateOperand())) { 4503 ArrayRef<unsigned> InsertValueIdxs = IVI->getIndices(); 4504 unsigned NumInsertValueIdxs = InsertValueIdxs.size(); 4505 unsigned NumCommonIdxs = std::min(NumInsertValueIdxs, NumIdxs); 4506 if (InsertValueIdxs.slice(0, NumCommonIdxs) == 4507 Idxs.slice(0, NumCommonIdxs)) { 4508 if (NumIdxs == NumInsertValueIdxs) 4509 return IVI->getInsertedValueOperand(); 4510 break; 4511 } 4512 } 4513 4514 return nullptr; 4515 } 4516 4517 Value *llvm::SimplifyExtractValueInst(Value *Agg, ArrayRef<unsigned> Idxs, 4518 const SimplifyQuery &Q) { 4519 return ::SimplifyExtractValueInst(Agg, Idxs, Q, RecursionLimit); 4520 } 4521 4522 /// Given operands for an ExtractElementInst, see if we can fold the result. 4523 /// If not, this returns null. 4524 static Value *SimplifyExtractElementInst(Value *Vec, Value *Idx, 4525 const SimplifyQuery &Q, unsigned) { 4526 auto *VecVTy = cast<VectorType>(Vec->getType()); 4527 if (auto *CVec = dyn_cast<Constant>(Vec)) { 4528 if (auto *CIdx = dyn_cast<Constant>(Idx)) 4529 return ConstantExpr::getExtractElement(CVec, CIdx); 4530 4531 // The index is not relevant if our vector is a splat. 4532 if (auto *Splat = CVec->getSplatValue()) 4533 return Splat; 4534 4535 if (Q.isUndefValue(Vec)) 4536 return UndefValue::get(VecVTy->getElementType()); 4537 } 4538 4539 // An undef extract index can be arbitrarily chosen to be an out-of-range 4540 // index value, which would result in the instruction being poison. 4541 if (Q.isUndefValue(Idx)) 4542 return PoisonValue::get(VecVTy->getElementType()); 4543 4544 // If extracting a specified index from the vector, see if we can recursively 4545 // find a previously computed scalar that was inserted into the vector. 4546 if (auto *IdxC = dyn_cast<ConstantInt>(Idx)) { 4547 // For fixed-length vector, fold into undef if index is out of bounds. 4548 unsigned MinNumElts = VecVTy->getElementCount().getKnownMinValue(); 4549 if (isa<FixedVectorType>(VecVTy) && IdxC->getValue().uge(MinNumElts)) 4550 return PoisonValue::get(VecVTy->getElementType()); 4551 // Handle case where an element is extracted from a splat. 4552 if (IdxC->getValue().ult(MinNumElts)) 4553 if (auto *Splat = getSplatValue(Vec)) 4554 return Splat; 4555 if (Value *Elt = findScalarElement(Vec, IdxC->getZExtValue())) 4556 return Elt; 4557 } 4558 return nullptr; 4559 } 4560 4561 Value *llvm::SimplifyExtractElementInst(Value *Vec, Value *Idx, 4562 const SimplifyQuery &Q) { 4563 return ::SimplifyExtractElementInst(Vec, Idx, Q, RecursionLimit); 4564 } 4565 4566 /// See if we can fold the given phi. If not, returns null. 4567 static Value *SimplifyPHINode(PHINode *PN, const SimplifyQuery &Q) { 4568 // WARNING: no matter how worthwhile it may seem, we can not perform PHI CSE 4569 // here, because the PHI we may succeed simplifying to was not 4570 // def-reachable from the original PHI! 4571 4572 // If all of the PHI's incoming values are the same then replace the PHI node 4573 // with the common value. 4574 Value *CommonValue = nullptr; 4575 bool HasUndefInput = false; 4576 for (Value *Incoming : PN->incoming_values()) { 4577 // If the incoming value is the phi node itself, it can safely be skipped. 4578 if (Incoming == PN) continue; 4579 if (Q.isUndefValue(Incoming)) { 4580 // Remember that we saw an undef value, but otherwise ignore them. 4581 HasUndefInput = true; 4582 continue; 4583 } 4584 if (CommonValue && Incoming != CommonValue) 4585 return nullptr; // Not the same, bail out. 4586 CommonValue = Incoming; 4587 } 4588 4589 // If CommonValue is null then all of the incoming values were either undef or 4590 // equal to the phi node itself. 4591 if (!CommonValue) 4592 return UndefValue::get(PN->getType()); 4593 4594 // If we have a PHI node like phi(X, undef, X), where X is defined by some 4595 // instruction, we cannot return X as the result of the PHI node unless it 4596 // dominates the PHI block. 4597 if (HasUndefInput) 4598 return valueDominatesPHI(CommonValue, PN, Q.DT) ? CommonValue : nullptr; 4599 4600 return CommonValue; 4601 } 4602 4603 static Value *SimplifyCastInst(unsigned CastOpc, Value *Op, 4604 Type *Ty, const SimplifyQuery &Q, unsigned MaxRecurse) { 4605 if (auto *C = dyn_cast<Constant>(Op)) 4606 return ConstantFoldCastOperand(CastOpc, C, Ty, Q.DL); 4607 4608 if (auto *CI = dyn_cast<CastInst>(Op)) { 4609 auto *Src = CI->getOperand(0); 4610 Type *SrcTy = Src->getType(); 4611 Type *MidTy = CI->getType(); 4612 Type *DstTy = Ty; 4613 if (Src->getType() == Ty) { 4614 auto FirstOp = static_cast<Instruction::CastOps>(CI->getOpcode()); 4615 auto SecondOp = static_cast<Instruction::CastOps>(CastOpc); 4616 Type *SrcIntPtrTy = 4617 SrcTy->isPtrOrPtrVectorTy() ? Q.DL.getIntPtrType(SrcTy) : nullptr; 4618 Type *MidIntPtrTy = 4619 MidTy->isPtrOrPtrVectorTy() ? Q.DL.getIntPtrType(MidTy) : nullptr; 4620 Type *DstIntPtrTy = 4621 DstTy->isPtrOrPtrVectorTy() ? Q.DL.getIntPtrType(DstTy) : nullptr; 4622 if (CastInst::isEliminableCastPair(FirstOp, SecondOp, SrcTy, MidTy, DstTy, 4623 SrcIntPtrTy, MidIntPtrTy, 4624 DstIntPtrTy) == Instruction::BitCast) 4625 return Src; 4626 } 4627 } 4628 4629 // bitcast x -> x 4630 if (CastOpc == Instruction::BitCast) 4631 if (Op->getType() == Ty) 4632 return Op; 4633 4634 return nullptr; 4635 } 4636 4637 Value *llvm::SimplifyCastInst(unsigned CastOpc, Value *Op, Type *Ty, 4638 const SimplifyQuery &Q) { 4639 return ::SimplifyCastInst(CastOpc, Op, Ty, Q, RecursionLimit); 4640 } 4641 4642 /// For the given destination element of a shuffle, peek through shuffles to 4643 /// match a root vector source operand that contains that element in the same 4644 /// vector lane (ie, the same mask index), so we can eliminate the shuffle(s). 4645 static Value *foldIdentityShuffles(int DestElt, Value *Op0, Value *Op1, 4646 int MaskVal, Value *RootVec, 4647 unsigned MaxRecurse) { 4648 if (!MaxRecurse--) 4649 return nullptr; 4650 4651 // Bail out if any mask value is undefined. That kind of shuffle may be 4652 // simplified further based on demanded bits or other folds. 4653 if (MaskVal == -1) 4654 return nullptr; 4655 4656 // The mask value chooses which source operand we need to look at next. 4657 int InVecNumElts = cast<FixedVectorType>(Op0->getType())->getNumElements(); 4658 int RootElt = MaskVal; 4659 Value *SourceOp = Op0; 4660 if (MaskVal >= InVecNumElts) { 4661 RootElt = MaskVal - InVecNumElts; 4662 SourceOp = Op1; 4663 } 4664 4665 // If the source operand is a shuffle itself, look through it to find the 4666 // matching root vector. 4667 if (auto *SourceShuf = dyn_cast<ShuffleVectorInst>(SourceOp)) { 4668 return foldIdentityShuffles( 4669 DestElt, SourceShuf->getOperand(0), SourceShuf->getOperand(1), 4670 SourceShuf->getMaskValue(RootElt), RootVec, MaxRecurse); 4671 } 4672 4673 // TODO: Look through bitcasts? What if the bitcast changes the vector element 4674 // size? 4675 4676 // The source operand is not a shuffle. Initialize the root vector value for 4677 // this shuffle if that has not been done yet. 4678 if (!RootVec) 4679 RootVec = SourceOp; 4680 4681 // Give up as soon as a source operand does not match the existing root value. 4682 if (RootVec != SourceOp) 4683 return nullptr; 4684 4685 // The element must be coming from the same lane in the source vector 4686 // (although it may have crossed lanes in intermediate shuffles). 4687 if (RootElt != DestElt) 4688 return nullptr; 4689 4690 return RootVec; 4691 } 4692 4693 static Value *SimplifyShuffleVectorInst(Value *Op0, Value *Op1, 4694 ArrayRef<int> Mask, Type *RetTy, 4695 const SimplifyQuery &Q, 4696 unsigned MaxRecurse) { 4697 if (all_of(Mask, [](int Elem) { return Elem == UndefMaskElem; })) 4698 return UndefValue::get(RetTy); 4699 4700 auto *InVecTy = cast<VectorType>(Op0->getType()); 4701 unsigned MaskNumElts = Mask.size(); 4702 ElementCount InVecEltCount = InVecTy->getElementCount(); 4703 4704 bool Scalable = InVecEltCount.isScalable(); 4705 4706 SmallVector<int, 32> Indices; 4707 Indices.assign(Mask.begin(), Mask.end()); 4708 4709 // Canonicalization: If mask does not select elements from an input vector, 4710 // replace that input vector with poison. 4711 if (!Scalable) { 4712 bool MaskSelects0 = false, MaskSelects1 = false; 4713 unsigned InVecNumElts = InVecEltCount.getKnownMinValue(); 4714 for (unsigned i = 0; i != MaskNumElts; ++i) { 4715 if (Indices[i] == -1) 4716 continue; 4717 if ((unsigned)Indices[i] < InVecNumElts) 4718 MaskSelects0 = true; 4719 else 4720 MaskSelects1 = true; 4721 } 4722 if (!MaskSelects0) 4723 Op0 = PoisonValue::get(InVecTy); 4724 if (!MaskSelects1) 4725 Op1 = PoisonValue::get(InVecTy); 4726 } 4727 4728 auto *Op0Const = dyn_cast<Constant>(Op0); 4729 auto *Op1Const = dyn_cast<Constant>(Op1); 4730 4731 // If all operands are constant, constant fold the shuffle. This 4732 // transformation depends on the value of the mask which is not known at 4733 // compile time for scalable vectors 4734 if (Op0Const && Op1Const) 4735 return ConstantExpr::getShuffleVector(Op0Const, Op1Const, Mask); 4736 4737 // Canonicalization: if only one input vector is constant, it shall be the 4738 // second one. This transformation depends on the value of the mask which 4739 // is not known at compile time for scalable vectors 4740 if (!Scalable && Op0Const && !Op1Const) { 4741 std::swap(Op0, Op1); 4742 ShuffleVectorInst::commuteShuffleMask(Indices, 4743 InVecEltCount.getKnownMinValue()); 4744 } 4745 4746 // A splat of an inserted scalar constant becomes a vector constant: 4747 // shuf (inselt ?, C, IndexC), undef, <IndexC, IndexC...> --> <C, C...> 4748 // NOTE: We may have commuted above, so analyze the updated Indices, not the 4749 // original mask constant. 4750 // NOTE: This transformation depends on the value of the mask which is not 4751 // known at compile time for scalable vectors 4752 Constant *C; 4753 ConstantInt *IndexC; 4754 if (!Scalable && match(Op0, m_InsertElt(m_Value(), m_Constant(C), 4755 m_ConstantInt(IndexC)))) { 4756 // Match a splat shuffle mask of the insert index allowing undef elements. 4757 int InsertIndex = IndexC->getZExtValue(); 4758 if (all_of(Indices, [InsertIndex](int MaskElt) { 4759 return MaskElt == InsertIndex || MaskElt == -1; 4760 })) { 4761 assert(isa<UndefValue>(Op1) && "Expected undef operand 1 for splat"); 4762 4763 // Shuffle mask undefs become undefined constant result elements. 4764 SmallVector<Constant *, 16> VecC(MaskNumElts, C); 4765 for (unsigned i = 0; i != MaskNumElts; ++i) 4766 if (Indices[i] == -1) 4767 VecC[i] = UndefValue::get(C->getType()); 4768 return ConstantVector::get(VecC); 4769 } 4770 } 4771 4772 // A shuffle of a splat is always the splat itself. Legal if the shuffle's 4773 // value type is same as the input vectors' type. 4774 if (auto *OpShuf = dyn_cast<ShuffleVectorInst>(Op0)) 4775 if (Q.isUndefValue(Op1) && RetTy == InVecTy && 4776 is_splat(OpShuf->getShuffleMask())) 4777 return Op0; 4778 4779 // All remaining transformation depend on the value of the mask, which is 4780 // not known at compile time for scalable vectors. 4781 if (Scalable) 4782 return nullptr; 4783 4784 // Don't fold a shuffle with undef mask elements. This may get folded in a 4785 // better way using demanded bits or other analysis. 4786 // TODO: Should we allow this? 4787 if (is_contained(Indices, -1)) 4788 return nullptr; 4789 4790 // Check if every element of this shuffle can be mapped back to the 4791 // corresponding element of a single root vector. If so, we don't need this 4792 // shuffle. This handles simple identity shuffles as well as chains of 4793 // shuffles that may widen/narrow and/or move elements across lanes and back. 4794 Value *RootVec = nullptr; 4795 for (unsigned i = 0; i != MaskNumElts; ++i) { 4796 // Note that recursion is limited for each vector element, so if any element 4797 // exceeds the limit, this will fail to simplify. 4798 RootVec = 4799 foldIdentityShuffles(i, Op0, Op1, Indices[i], RootVec, MaxRecurse); 4800 4801 // We can't replace a widening/narrowing shuffle with one of its operands. 4802 if (!RootVec || RootVec->getType() != RetTy) 4803 return nullptr; 4804 } 4805 return RootVec; 4806 } 4807 4808 /// Given operands for a ShuffleVectorInst, fold the result or return null. 4809 Value *llvm::SimplifyShuffleVectorInst(Value *Op0, Value *Op1, 4810 ArrayRef<int> Mask, Type *RetTy, 4811 const SimplifyQuery &Q) { 4812 return ::SimplifyShuffleVectorInst(Op0, Op1, Mask, RetTy, Q, RecursionLimit); 4813 } 4814 4815 static Constant *foldConstant(Instruction::UnaryOps Opcode, 4816 Value *&Op, const SimplifyQuery &Q) { 4817 if (auto *C = dyn_cast<Constant>(Op)) 4818 return ConstantFoldUnaryOpOperand(Opcode, C, Q.DL); 4819 return nullptr; 4820 } 4821 4822 /// Given the operand for an FNeg, see if we can fold the result. If not, this 4823 /// returns null. 4824 static Value *simplifyFNegInst(Value *Op, FastMathFlags FMF, 4825 const SimplifyQuery &Q, unsigned MaxRecurse) { 4826 if (Constant *C = foldConstant(Instruction::FNeg, Op, Q)) 4827 return C; 4828 4829 Value *X; 4830 // fneg (fneg X) ==> X 4831 if (match(Op, m_FNeg(m_Value(X)))) 4832 return X; 4833 4834 return nullptr; 4835 } 4836 4837 Value *llvm::SimplifyFNegInst(Value *Op, FastMathFlags FMF, 4838 const SimplifyQuery &Q) { 4839 return ::simplifyFNegInst(Op, FMF, Q, RecursionLimit); 4840 } 4841 4842 static Constant *propagateNaN(Constant *In) { 4843 // If the input is a vector with undef elements, just return a default NaN. 4844 if (!In->isNaN()) 4845 return ConstantFP::getNaN(In->getType()); 4846 4847 // Propagate the existing NaN constant when possible. 4848 // TODO: Should we quiet a signaling NaN? 4849 return In; 4850 } 4851 4852 /// Perform folds that are common to any floating-point operation. This implies 4853 /// transforms based on poison/undef/NaN because the operation itself makes no 4854 /// difference to the result. 4855 static Constant *simplifyFPOp(ArrayRef<Value *> Ops, FastMathFlags FMF, 4856 const SimplifyQuery &Q) { 4857 for (Value *V : Ops) { 4858 // Poison is independent of anything else. It always propagates from an 4859 // operand to a math result. 4860 if (match(V, m_Poison())) 4861 return PoisonValue::get(V->getType()); 4862 4863 bool IsNan = match(V, m_NaN()); 4864 bool IsInf = match(V, m_Inf()); 4865 bool IsUndef = Q.isUndefValue(V); 4866 4867 // If this operation has 'nnan' or 'ninf' and at least 1 disallowed operand 4868 // (an undef operand can be chosen to be Nan/Inf), then the result of 4869 // this operation is poison. 4870 if (FMF.noNaNs() && (IsNan || IsUndef)) 4871 return PoisonValue::get(V->getType()); 4872 if (FMF.noInfs() && (IsInf || IsUndef)) 4873 return PoisonValue::get(V->getType()); 4874 4875 if (IsUndef || IsNan) 4876 return propagateNaN(cast<Constant>(V)); 4877 } 4878 return nullptr; 4879 } 4880 4881 /// Given operands for an FAdd, see if we can fold the result. If not, this 4882 /// returns null. 4883 static Value *SimplifyFAddInst(Value *Op0, Value *Op1, FastMathFlags FMF, 4884 const SimplifyQuery &Q, unsigned MaxRecurse) { 4885 if (Constant *C = foldOrCommuteConstant(Instruction::FAdd, Op0, Op1, Q)) 4886 return C; 4887 4888 if (Constant *C = simplifyFPOp({Op0, Op1}, FMF, Q)) 4889 return C; 4890 4891 // fadd X, -0 ==> X 4892 if (match(Op1, m_NegZeroFP())) 4893 return Op0; 4894 4895 // fadd X, 0 ==> X, when we know X is not -0 4896 if (match(Op1, m_PosZeroFP()) && 4897 (FMF.noSignedZeros() || CannotBeNegativeZero(Op0, Q.TLI))) 4898 return Op0; 4899 4900 // With nnan: -X + X --> 0.0 (and commuted variant) 4901 // We don't have to explicitly exclude infinities (ninf): INF + -INF == NaN. 4902 // Negative zeros are allowed because we always end up with positive zero: 4903 // X = -0.0: (-0.0 - (-0.0)) + (-0.0) == ( 0.0) + (-0.0) == 0.0 4904 // X = -0.0: ( 0.0 - (-0.0)) + (-0.0) == ( 0.0) + (-0.0) == 0.0 4905 // X = 0.0: (-0.0 - ( 0.0)) + ( 0.0) == (-0.0) + ( 0.0) == 0.0 4906 // X = 0.0: ( 0.0 - ( 0.0)) + ( 0.0) == ( 0.0) + ( 0.0) == 0.0 4907 if (FMF.noNaNs()) { 4908 if (match(Op0, m_FSub(m_AnyZeroFP(), m_Specific(Op1))) || 4909 match(Op1, m_FSub(m_AnyZeroFP(), m_Specific(Op0)))) 4910 return ConstantFP::getNullValue(Op0->getType()); 4911 4912 if (match(Op0, m_FNeg(m_Specific(Op1))) || 4913 match(Op1, m_FNeg(m_Specific(Op0)))) 4914 return ConstantFP::getNullValue(Op0->getType()); 4915 } 4916 4917 // (X - Y) + Y --> X 4918 // Y + (X - Y) --> X 4919 Value *X; 4920 if (FMF.noSignedZeros() && FMF.allowReassoc() && 4921 (match(Op0, m_FSub(m_Value(X), m_Specific(Op1))) || 4922 match(Op1, m_FSub(m_Value(X), m_Specific(Op0))))) 4923 return X; 4924 4925 return nullptr; 4926 } 4927 4928 /// Given operands for an FSub, see if we can fold the result. If not, this 4929 /// returns null. 4930 static Value *SimplifyFSubInst(Value *Op0, Value *Op1, FastMathFlags FMF, 4931 const SimplifyQuery &Q, unsigned MaxRecurse) { 4932 if (Constant *C = foldOrCommuteConstant(Instruction::FSub, Op0, Op1, Q)) 4933 return C; 4934 4935 if (Constant *C = simplifyFPOp({Op0, Op1}, FMF, Q)) 4936 return C; 4937 4938 // fsub X, +0 ==> X 4939 if (match(Op1, m_PosZeroFP())) 4940 return Op0; 4941 4942 // fsub X, -0 ==> X, when we know X is not -0 4943 if (match(Op1, m_NegZeroFP()) && 4944 (FMF.noSignedZeros() || CannotBeNegativeZero(Op0, Q.TLI))) 4945 return Op0; 4946 4947 // fsub -0.0, (fsub -0.0, X) ==> X 4948 // fsub -0.0, (fneg X) ==> X 4949 Value *X; 4950 if (match(Op0, m_NegZeroFP()) && 4951 match(Op1, m_FNeg(m_Value(X)))) 4952 return X; 4953 4954 // fsub 0.0, (fsub 0.0, X) ==> X if signed zeros are ignored. 4955 // fsub 0.0, (fneg X) ==> X if signed zeros are ignored. 4956 if (FMF.noSignedZeros() && match(Op0, m_AnyZeroFP()) && 4957 (match(Op1, m_FSub(m_AnyZeroFP(), m_Value(X))) || 4958 match(Op1, m_FNeg(m_Value(X))))) 4959 return X; 4960 4961 // fsub nnan x, x ==> 0.0 4962 if (FMF.noNaNs() && Op0 == Op1) 4963 return Constant::getNullValue(Op0->getType()); 4964 4965 // Y - (Y - X) --> X 4966 // (X + Y) - Y --> X 4967 if (FMF.noSignedZeros() && FMF.allowReassoc() && 4968 (match(Op1, m_FSub(m_Specific(Op0), m_Value(X))) || 4969 match(Op0, m_c_FAdd(m_Specific(Op1), m_Value(X))))) 4970 return X; 4971 4972 return nullptr; 4973 } 4974 4975 static Value *SimplifyFMAFMul(Value *Op0, Value *Op1, FastMathFlags FMF, 4976 const SimplifyQuery &Q, unsigned MaxRecurse) { 4977 if (Constant *C = simplifyFPOp({Op0, Op1}, FMF, Q)) 4978 return C; 4979 4980 // fmul X, 1.0 ==> X 4981 if (match(Op1, m_FPOne())) 4982 return Op0; 4983 4984 // fmul 1.0, X ==> X 4985 if (match(Op0, m_FPOne())) 4986 return Op1; 4987 4988 // fmul nnan nsz X, 0 ==> 0 4989 if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op1, m_AnyZeroFP())) 4990 return ConstantFP::getNullValue(Op0->getType()); 4991 4992 // fmul nnan nsz 0, X ==> 0 4993 if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op0, m_AnyZeroFP())) 4994 return ConstantFP::getNullValue(Op1->getType()); 4995 4996 // sqrt(X) * sqrt(X) --> X, if we can: 4997 // 1. Remove the intermediate rounding (reassociate). 4998 // 2. Ignore non-zero negative numbers because sqrt would produce NAN. 4999 // 3. Ignore -0.0 because sqrt(-0.0) == -0.0, but -0.0 * -0.0 == 0.0. 5000 Value *X; 5001 if (Op0 == Op1 && match(Op0, m_Intrinsic<Intrinsic::sqrt>(m_Value(X))) && 5002 FMF.allowReassoc() && FMF.noNaNs() && FMF.noSignedZeros()) 5003 return X; 5004 5005 return nullptr; 5006 } 5007 5008 /// Given the operands for an FMul, see if we can fold the result 5009 static Value *SimplifyFMulInst(Value *Op0, Value *Op1, FastMathFlags FMF, 5010 const SimplifyQuery &Q, unsigned MaxRecurse) { 5011 if (Constant *C = foldOrCommuteConstant(Instruction::FMul, Op0, Op1, Q)) 5012 return C; 5013 5014 // Now apply simplifications that do not require rounding. 5015 return SimplifyFMAFMul(Op0, Op1, FMF, Q, MaxRecurse); 5016 } 5017 5018 Value *llvm::SimplifyFAddInst(Value *Op0, Value *Op1, FastMathFlags FMF, 5019 const SimplifyQuery &Q) { 5020 return ::SimplifyFAddInst(Op0, Op1, FMF, Q, RecursionLimit); 5021 } 5022 5023 5024 Value *llvm::SimplifyFSubInst(Value *Op0, Value *Op1, FastMathFlags FMF, 5025 const SimplifyQuery &Q) { 5026 return ::SimplifyFSubInst(Op0, Op1, FMF, Q, RecursionLimit); 5027 } 5028 5029 Value *llvm::SimplifyFMulInst(Value *Op0, Value *Op1, FastMathFlags FMF, 5030 const SimplifyQuery &Q) { 5031 return ::SimplifyFMulInst(Op0, Op1, FMF, Q, RecursionLimit); 5032 } 5033 5034 Value *llvm::SimplifyFMAFMul(Value *Op0, Value *Op1, FastMathFlags FMF, 5035 const SimplifyQuery &Q) { 5036 return ::SimplifyFMAFMul(Op0, Op1, FMF, Q, RecursionLimit); 5037 } 5038 5039 static Value *SimplifyFDivInst(Value *Op0, Value *Op1, FastMathFlags FMF, 5040 const SimplifyQuery &Q, unsigned) { 5041 if (Constant *C = foldOrCommuteConstant(Instruction::FDiv, Op0, Op1, Q)) 5042 return C; 5043 5044 if (Constant *C = simplifyFPOp({Op0, Op1}, FMF, Q)) 5045 return C; 5046 5047 // X / 1.0 -> X 5048 if (match(Op1, m_FPOne())) 5049 return Op0; 5050 5051 // 0 / X -> 0 5052 // Requires that NaNs are off (X could be zero) and signed zeroes are 5053 // ignored (X could be positive or negative, so the output sign is unknown). 5054 if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op0, m_AnyZeroFP())) 5055 return ConstantFP::getNullValue(Op0->getType()); 5056 5057 if (FMF.noNaNs()) { 5058 // X / X -> 1.0 is legal when NaNs are ignored. 5059 // We can ignore infinities because INF/INF is NaN. 5060 if (Op0 == Op1) 5061 return ConstantFP::get(Op0->getType(), 1.0); 5062 5063 // (X * Y) / Y --> X if we can reassociate to the above form. 5064 Value *X; 5065 if (FMF.allowReassoc() && match(Op0, m_c_FMul(m_Value(X), m_Specific(Op1)))) 5066 return X; 5067 5068 // -X / X -> -1.0 and 5069 // X / -X -> -1.0 are legal when NaNs are ignored. 5070 // We can ignore signed zeros because +-0.0/+-0.0 is NaN and ignored. 5071 if (match(Op0, m_FNegNSZ(m_Specific(Op1))) || 5072 match(Op1, m_FNegNSZ(m_Specific(Op0)))) 5073 return ConstantFP::get(Op0->getType(), -1.0); 5074 } 5075 5076 return nullptr; 5077 } 5078 5079 Value *llvm::SimplifyFDivInst(Value *Op0, Value *Op1, FastMathFlags FMF, 5080 const SimplifyQuery &Q) { 5081 return ::SimplifyFDivInst(Op0, Op1, FMF, Q, RecursionLimit); 5082 } 5083 5084 static Value *SimplifyFRemInst(Value *Op0, Value *Op1, FastMathFlags FMF, 5085 const SimplifyQuery &Q, unsigned) { 5086 if (Constant *C = foldOrCommuteConstant(Instruction::FRem, Op0, Op1, Q)) 5087 return C; 5088 5089 if (Constant *C = simplifyFPOp({Op0, Op1}, FMF, Q)) 5090 return C; 5091 5092 // Unlike fdiv, the result of frem always matches the sign of the dividend. 5093 // The constant match may include undef elements in a vector, so return a full 5094 // zero constant as the result. 5095 if (FMF.noNaNs()) { 5096 // +0 % X -> 0 5097 if (match(Op0, m_PosZeroFP())) 5098 return ConstantFP::getNullValue(Op0->getType()); 5099 // -0 % X -> -0 5100 if (match(Op0, m_NegZeroFP())) 5101 return ConstantFP::getNegativeZero(Op0->getType()); 5102 } 5103 5104 return nullptr; 5105 } 5106 5107 Value *llvm::SimplifyFRemInst(Value *Op0, Value *Op1, FastMathFlags FMF, 5108 const SimplifyQuery &Q) { 5109 return ::SimplifyFRemInst(Op0, Op1, FMF, Q, RecursionLimit); 5110 } 5111 5112 //=== Helper functions for higher up the class hierarchy. 5113 5114 /// Given the operand for a UnaryOperator, see if we can fold the result. 5115 /// If not, this returns null. 5116 static Value *simplifyUnOp(unsigned Opcode, Value *Op, const SimplifyQuery &Q, 5117 unsigned MaxRecurse) { 5118 switch (Opcode) { 5119 case Instruction::FNeg: 5120 return simplifyFNegInst(Op, FastMathFlags(), Q, MaxRecurse); 5121 default: 5122 llvm_unreachable("Unexpected opcode"); 5123 } 5124 } 5125 5126 /// Given the operand for a UnaryOperator, see if we can fold the result. 5127 /// If not, this returns null. 5128 /// Try to use FastMathFlags when folding the result. 5129 static Value *simplifyFPUnOp(unsigned Opcode, Value *Op, 5130 const FastMathFlags &FMF, 5131 const SimplifyQuery &Q, unsigned MaxRecurse) { 5132 switch (Opcode) { 5133 case Instruction::FNeg: 5134 return simplifyFNegInst(Op, FMF, Q, MaxRecurse); 5135 default: 5136 return simplifyUnOp(Opcode, Op, Q, MaxRecurse); 5137 } 5138 } 5139 5140 Value *llvm::SimplifyUnOp(unsigned Opcode, Value *Op, const SimplifyQuery &Q) { 5141 return ::simplifyUnOp(Opcode, Op, Q, RecursionLimit); 5142 } 5143 5144 Value *llvm::SimplifyUnOp(unsigned Opcode, Value *Op, FastMathFlags FMF, 5145 const SimplifyQuery &Q) { 5146 return ::simplifyFPUnOp(Opcode, Op, FMF, Q, RecursionLimit); 5147 } 5148 5149 /// Given operands for a BinaryOperator, see if we can fold the result. 5150 /// If not, this returns null. 5151 static Value *SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS, 5152 const SimplifyQuery &Q, unsigned MaxRecurse) { 5153 switch (Opcode) { 5154 case Instruction::Add: 5155 return SimplifyAddInst(LHS, RHS, false, false, Q, MaxRecurse); 5156 case Instruction::Sub: 5157 return SimplifySubInst(LHS, RHS, false, false, Q, MaxRecurse); 5158 case Instruction::Mul: 5159 return SimplifyMulInst(LHS, RHS, Q, MaxRecurse); 5160 case Instruction::SDiv: 5161 return SimplifySDivInst(LHS, RHS, Q, MaxRecurse); 5162 case Instruction::UDiv: 5163 return SimplifyUDivInst(LHS, RHS, Q, MaxRecurse); 5164 case Instruction::SRem: 5165 return SimplifySRemInst(LHS, RHS, Q, MaxRecurse); 5166 case Instruction::URem: 5167 return SimplifyURemInst(LHS, RHS, Q, MaxRecurse); 5168 case Instruction::Shl: 5169 return SimplifyShlInst(LHS, RHS, false, false, Q, MaxRecurse); 5170 case Instruction::LShr: 5171 return SimplifyLShrInst(LHS, RHS, false, Q, MaxRecurse); 5172 case Instruction::AShr: 5173 return SimplifyAShrInst(LHS, RHS, false, Q, MaxRecurse); 5174 case Instruction::And: 5175 return SimplifyAndInst(LHS, RHS, Q, MaxRecurse); 5176 case Instruction::Or: 5177 return SimplifyOrInst(LHS, RHS, Q, MaxRecurse); 5178 case Instruction::Xor: 5179 return SimplifyXorInst(LHS, RHS, Q, MaxRecurse); 5180 case Instruction::FAdd: 5181 return SimplifyFAddInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse); 5182 case Instruction::FSub: 5183 return SimplifyFSubInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse); 5184 case Instruction::FMul: 5185 return SimplifyFMulInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse); 5186 case Instruction::FDiv: 5187 return SimplifyFDivInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse); 5188 case Instruction::FRem: 5189 return SimplifyFRemInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse); 5190 default: 5191 llvm_unreachable("Unexpected opcode"); 5192 } 5193 } 5194 5195 /// Given operands for a BinaryOperator, see if we can fold the result. 5196 /// If not, this returns null. 5197 /// Try to use FastMathFlags when folding the result. 5198 static Value *SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS, 5199 const FastMathFlags &FMF, const SimplifyQuery &Q, 5200 unsigned MaxRecurse) { 5201 switch (Opcode) { 5202 case Instruction::FAdd: 5203 return SimplifyFAddInst(LHS, RHS, FMF, Q, MaxRecurse); 5204 case Instruction::FSub: 5205 return SimplifyFSubInst(LHS, RHS, FMF, Q, MaxRecurse); 5206 case Instruction::FMul: 5207 return SimplifyFMulInst(LHS, RHS, FMF, Q, MaxRecurse); 5208 case Instruction::FDiv: 5209 return SimplifyFDivInst(LHS, RHS, FMF, Q, MaxRecurse); 5210 default: 5211 return SimplifyBinOp(Opcode, LHS, RHS, Q, MaxRecurse); 5212 } 5213 } 5214 5215 Value *llvm::SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS, 5216 const SimplifyQuery &Q) { 5217 return ::SimplifyBinOp(Opcode, LHS, RHS, Q, RecursionLimit); 5218 } 5219 5220 Value *llvm::SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS, 5221 FastMathFlags FMF, const SimplifyQuery &Q) { 5222 return ::SimplifyBinOp(Opcode, LHS, RHS, FMF, Q, RecursionLimit); 5223 } 5224 5225 /// Given operands for a CmpInst, see if we can fold the result. 5226 static Value *SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS, 5227 const SimplifyQuery &Q, unsigned MaxRecurse) { 5228 if (CmpInst::isIntPredicate((CmpInst::Predicate)Predicate)) 5229 return SimplifyICmpInst(Predicate, LHS, RHS, Q, MaxRecurse); 5230 return SimplifyFCmpInst(Predicate, LHS, RHS, FastMathFlags(), Q, MaxRecurse); 5231 } 5232 5233 Value *llvm::SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS, 5234 const SimplifyQuery &Q) { 5235 return ::SimplifyCmpInst(Predicate, LHS, RHS, Q, RecursionLimit); 5236 } 5237 5238 static bool IsIdempotent(Intrinsic::ID ID) { 5239 switch (ID) { 5240 default: return false; 5241 5242 // Unary idempotent: f(f(x)) = f(x) 5243 case Intrinsic::fabs: 5244 case Intrinsic::floor: 5245 case Intrinsic::ceil: 5246 case Intrinsic::trunc: 5247 case Intrinsic::rint: 5248 case Intrinsic::nearbyint: 5249 case Intrinsic::round: 5250 case Intrinsic::roundeven: 5251 case Intrinsic::canonicalize: 5252 return true; 5253 } 5254 } 5255 5256 static Value *SimplifyRelativeLoad(Constant *Ptr, Constant *Offset, 5257 const DataLayout &DL) { 5258 GlobalValue *PtrSym; 5259 APInt PtrOffset; 5260 if (!IsConstantOffsetFromGlobal(Ptr, PtrSym, PtrOffset, DL)) 5261 return nullptr; 5262 5263 Type *Int8PtrTy = Type::getInt8PtrTy(Ptr->getContext()); 5264 Type *Int32Ty = Type::getInt32Ty(Ptr->getContext()); 5265 Type *Int32PtrTy = Int32Ty->getPointerTo(); 5266 Type *Int64Ty = Type::getInt64Ty(Ptr->getContext()); 5267 5268 auto *OffsetConstInt = dyn_cast<ConstantInt>(Offset); 5269 if (!OffsetConstInt || OffsetConstInt->getType()->getBitWidth() > 64) 5270 return nullptr; 5271 5272 uint64_t OffsetInt = OffsetConstInt->getSExtValue(); 5273 if (OffsetInt % 4 != 0) 5274 return nullptr; 5275 5276 Constant *C = ConstantExpr::getGetElementPtr( 5277 Int32Ty, ConstantExpr::getBitCast(Ptr, Int32PtrTy), 5278 ConstantInt::get(Int64Ty, OffsetInt / 4)); 5279 Constant *Loaded = ConstantFoldLoadFromConstPtr(C, Int32Ty, DL); 5280 if (!Loaded) 5281 return nullptr; 5282 5283 auto *LoadedCE = dyn_cast<ConstantExpr>(Loaded); 5284 if (!LoadedCE) 5285 return nullptr; 5286 5287 if (LoadedCE->getOpcode() == Instruction::Trunc) { 5288 LoadedCE = dyn_cast<ConstantExpr>(LoadedCE->getOperand(0)); 5289 if (!LoadedCE) 5290 return nullptr; 5291 } 5292 5293 if (LoadedCE->getOpcode() != Instruction::Sub) 5294 return nullptr; 5295 5296 auto *LoadedLHS = dyn_cast<ConstantExpr>(LoadedCE->getOperand(0)); 5297 if (!LoadedLHS || LoadedLHS->getOpcode() != Instruction::PtrToInt) 5298 return nullptr; 5299 auto *LoadedLHSPtr = LoadedLHS->getOperand(0); 5300 5301 Constant *LoadedRHS = LoadedCE->getOperand(1); 5302 GlobalValue *LoadedRHSSym; 5303 APInt LoadedRHSOffset; 5304 if (!IsConstantOffsetFromGlobal(LoadedRHS, LoadedRHSSym, LoadedRHSOffset, 5305 DL) || 5306 PtrSym != LoadedRHSSym || PtrOffset != LoadedRHSOffset) 5307 return nullptr; 5308 5309 return ConstantExpr::getBitCast(LoadedLHSPtr, Int8PtrTy); 5310 } 5311 5312 static Value *simplifyUnaryIntrinsic(Function *F, Value *Op0, 5313 const SimplifyQuery &Q) { 5314 // Idempotent functions return the same result when called repeatedly. 5315 Intrinsic::ID IID = F->getIntrinsicID(); 5316 if (IsIdempotent(IID)) 5317 if (auto *II = dyn_cast<IntrinsicInst>(Op0)) 5318 if (II->getIntrinsicID() == IID) 5319 return II; 5320 5321 Value *X; 5322 switch (IID) { 5323 case Intrinsic::fabs: 5324 if (SignBitMustBeZero(Op0, Q.TLI)) return Op0; 5325 break; 5326 case Intrinsic::bswap: 5327 // bswap(bswap(x)) -> x 5328 if (match(Op0, m_BSwap(m_Value(X)))) return X; 5329 break; 5330 case Intrinsic::bitreverse: 5331 // bitreverse(bitreverse(x)) -> x 5332 if (match(Op0, m_BitReverse(m_Value(X)))) return X; 5333 break; 5334 case Intrinsic::ctpop: { 5335 // If everything but the lowest bit is zero, that bit is the pop-count. Ex: 5336 // ctpop(and X, 1) --> and X, 1 5337 unsigned BitWidth = Op0->getType()->getScalarSizeInBits(); 5338 if (MaskedValueIsZero(Op0, APInt::getHighBitsSet(BitWidth, BitWidth - 1), 5339 Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 5340 return Op0; 5341 break; 5342 } 5343 case Intrinsic::exp: 5344 // exp(log(x)) -> x 5345 if (Q.CxtI->hasAllowReassoc() && 5346 match(Op0, m_Intrinsic<Intrinsic::log>(m_Value(X)))) return X; 5347 break; 5348 case Intrinsic::exp2: 5349 // exp2(log2(x)) -> x 5350 if (Q.CxtI->hasAllowReassoc() && 5351 match(Op0, m_Intrinsic<Intrinsic::log2>(m_Value(X)))) return X; 5352 break; 5353 case Intrinsic::log: 5354 // log(exp(x)) -> x 5355 if (Q.CxtI->hasAllowReassoc() && 5356 match(Op0, m_Intrinsic<Intrinsic::exp>(m_Value(X)))) return X; 5357 break; 5358 case Intrinsic::log2: 5359 // log2(exp2(x)) -> x 5360 if (Q.CxtI->hasAllowReassoc() && 5361 (match(Op0, m_Intrinsic<Intrinsic::exp2>(m_Value(X))) || 5362 match(Op0, m_Intrinsic<Intrinsic::pow>(m_SpecificFP(2.0), 5363 m_Value(X))))) return X; 5364 break; 5365 case Intrinsic::log10: 5366 // log10(pow(10.0, x)) -> x 5367 if (Q.CxtI->hasAllowReassoc() && 5368 match(Op0, m_Intrinsic<Intrinsic::pow>(m_SpecificFP(10.0), 5369 m_Value(X)))) return X; 5370 break; 5371 case Intrinsic::floor: 5372 case Intrinsic::trunc: 5373 case Intrinsic::ceil: 5374 case Intrinsic::round: 5375 case Intrinsic::roundeven: 5376 case Intrinsic::nearbyint: 5377 case Intrinsic::rint: { 5378 // floor (sitofp x) -> sitofp x 5379 // floor (uitofp x) -> uitofp x 5380 // 5381 // Converting from int always results in a finite integral number or 5382 // infinity. For either of those inputs, these rounding functions always 5383 // return the same value, so the rounding can be eliminated. 5384 if (match(Op0, m_SIToFP(m_Value())) || match(Op0, m_UIToFP(m_Value()))) 5385 return Op0; 5386 break; 5387 } 5388 case Intrinsic::experimental_vector_reverse: 5389 // experimental.vector.reverse(experimental.vector.reverse(x)) -> x 5390 if (match(Op0, 5391 m_Intrinsic<Intrinsic::experimental_vector_reverse>(m_Value(X)))) 5392 return X; 5393 break; 5394 default: 5395 break; 5396 } 5397 5398 return nullptr; 5399 } 5400 5401 static APInt getMaxMinLimit(Intrinsic::ID IID, unsigned BitWidth) { 5402 switch (IID) { 5403 case Intrinsic::smax: return APInt::getSignedMaxValue(BitWidth); 5404 case Intrinsic::smin: return APInt::getSignedMinValue(BitWidth); 5405 case Intrinsic::umax: return APInt::getMaxValue(BitWidth); 5406 case Intrinsic::umin: return APInt::getMinValue(BitWidth); 5407 default: llvm_unreachable("Unexpected intrinsic"); 5408 } 5409 } 5410 5411 static ICmpInst::Predicate getMaxMinPredicate(Intrinsic::ID IID) { 5412 switch (IID) { 5413 case Intrinsic::smax: return ICmpInst::ICMP_SGE; 5414 case Intrinsic::smin: return ICmpInst::ICMP_SLE; 5415 case Intrinsic::umax: return ICmpInst::ICMP_UGE; 5416 case Intrinsic::umin: return ICmpInst::ICMP_ULE; 5417 default: llvm_unreachable("Unexpected intrinsic"); 5418 } 5419 } 5420 5421 /// Given a min/max intrinsic, see if it can be removed based on having an 5422 /// operand that is another min/max intrinsic with shared operand(s). The caller 5423 /// is expected to swap the operand arguments to handle commutation. 5424 static Value *foldMinMaxSharedOp(Intrinsic::ID IID, Value *Op0, Value *Op1) { 5425 Value *X, *Y; 5426 if (!match(Op0, m_MaxOrMin(m_Value(X), m_Value(Y)))) 5427 return nullptr; 5428 5429 auto *MM0 = dyn_cast<IntrinsicInst>(Op0); 5430 if (!MM0) 5431 return nullptr; 5432 Intrinsic::ID IID0 = MM0->getIntrinsicID(); 5433 5434 if (Op1 == X || Op1 == Y || 5435 match(Op1, m_c_MaxOrMin(m_Specific(X), m_Specific(Y)))) { 5436 // max (max X, Y), X --> max X, Y 5437 if (IID0 == IID) 5438 return MM0; 5439 // max (min X, Y), X --> X 5440 if (IID0 == getInverseMinMaxIntrinsic(IID)) 5441 return Op1; 5442 } 5443 return nullptr; 5444 } 5445 5446 static Value *simplifyBinaryIntrinsic(Function *F, Value *Op0, Value *Op1, 5447 const SimplifyQuery &Q) { 5448 Intrinsic::ID IID = F->getIntrinsicID(); 5449 Type *ReturnType = F->getReturnType(); 5450 unsigned BitWidth = ReturnType->getScalarSizeInBits(); 5451 switch (IID) { 5452 case Intrinsic::abs: 5453 // abs(abs(x)) -> abs(x). We don't need to worry about the nsw arg here. 5454 // It is always ok to pick the earlier abs. We'll just lose nsw if its only 5455 // on the outer abs. 5456 if (match(Op0, m_Intrinsic<Intrinsic::abs>(m_Value(), m_Value()))) 5457 return Op0; 5458 break; 5459 5460 case Intrinsic::cttz: { 5461 Value *X; 5462 if (match(Op0, m_Shl(m_One(), m_Value(X)))) 5463 return X; 5464 break; 5465 } 5466 case Intrinsic::ctlz: { 5467 Value *X; 5468 if (match(Op0, m_LShr(m_Negative(), m_Value(X)))) 5469 return X; 5470 if (match(Op0, m_AShr(m_Negative(), m_Value()))) 5471 return Constant::getNullValue(ReturnType); 5472 break; 5473 } 5474 case Intrinsic::smax: 5475 case Intrinsic::smin: 5476 case Intrinsic::umax: 5477 case Intrinsic::umin: { 5478 // If the arguments are the same, this is a no-op. 5479 if (Op0 == Op1) 5480 return Op0; 5481 5482 // Canonicalize constant operand as Op1. 5483 if (isa<Constant>(Op0)) 5484 std::swap(Op0, Op1); 5485 5486 // Assume undef is the limit value. 5487 if (Q.isUndefValue(Op1)) 5488 return ConstantInt::get(ReturnType, getMaxMinLimit(IID, BitWidth)); 5489 5490 const APInt *C; 5491 if (match(Op1, m_APIntAllowUndef(C))) { 5492 // Clamp to limit value. For example: 5493 // umax(i8 %x, i8 255) --> 255 5494 if (*C == getMaxMinLimit(IID, BitWidth)) 5495 return ConstantInt::get(ReturnType, *C); 5496 5497 // If the constant op is the opposite of the limit value, the other must 5498 // be larger/smaller or equal. For example: 5499 // umin(i8 %x, i8 255) --> %x 5500 if (*C == getMaxMinLimit(getInverseMinMaxIntrinsic(IID), BitWidth)) 5501 return Op0; 5502 5503 // Remove nested call if constant operands allow it. Example: 5504 // max (max X, 7), 5 -> max X, 7 5505 auto *MinMax0 = dyn_cast<IntrinsicInst>(Op0); 5506 if (MinMax0 && MinMax0->getIntrinsicID() == IID) { 5507 // TODO: loosen undef/splat restrictions for vector constants. 5508 Value *M00 = MinMax0->getOperand(0), *M01 = MinMax0->getOperand(1); 5509 const APInt *InnerC; 5510 if ((match(M00, m_APInt(InnerC)) || match(M01, m_APInt(InnerC))) && 5511 ((IID == Intrinsic::smax && InnerC->sge(*C)) || 5512 (IID == Intrinsic::smin && InnerC->sle(*C)) || 5513 (IID == Intrinsic::umax && InnerC->uge(*C)) || 5514 (IID == Intrinsic::umin && InnerC->ule(*C)))) 5515 return Op0; 5516 } 5517 } 5518 5519 if (Value *V = foldMinMaxSharedOp(IID, Op0, Op1)) 5520 return V; 5521 if (Value *V = foldMinMaxSharedOp(IID, Op1, Op0)) 5522 return V; 5523 5524 ICmpInst::Predicate Pred = getMaxMinPredicate(IID); 5525 if (isICmpTrue(Pred, Op0, Op1, Q.getWithoutUndef(), RecursionLimit)) 5526 return Op0; 5527 if (isICmpTrue(Pred, Op1, Op0, Q.getWithoutUndef(), RecursionLimit)) 5528 return Op1; 5529 5530 if (Optional<bool> Imp = 5531 isImpliedByDomCondition(Pred, Op0, Op1, Q.CxtI, Q.DL)) 5532 return *Imp ? Op0 : Op1; 5533 if (Optional<bool> Imp = 5534 isImpliedByDomCondition(Pred, Op1, Op0, Q.CxtI, Q.DL)) 5535 return *Imp ? Op1 : Op0; 5536 5537 break; 5538 } 5539 case Intrinsic::usub_with_overflow: 5540 case Intrinsic::ssub_with_overflow: 5541 // X - X -> { 0, false } 5542 // X - undef -> { 0, false } 5543 // undef - X -> { 0, false } 5544 if (Op0 == Op1 || Q.isUndefValue(Op0) || Q.isUndefValue(Op1)) 5545 return Constant::getNullValue(ReturnType); 5546 break; 5547 case Intrinsic::uadd_with_overflow: 5548 case Intrinsic::sadd_with_overflow: 5549 // X + undef -> { -1, false } 5550 // undef + x -> { -1, false } 5551 if (Q.isUndefValue(Op0) || Q.isUndefValue(Op1)) { 5552 return ConstantStruct::get( 5553 cast<StructType>(ReturnType), 5554 {Constant::getAllOnesValue(ReturnType->getStructElementType(0)), 5555 Constant::getNullValue(ReturnType->getStructElementType(1))}); 5556 } 5557 break; 5558 case Intrinsic::umul_with_overflow: 5559 case Intrinsic::smul_with_overflow: 5560 // 0 * X -> { 0, false } 5561 // X * 0 -> { 0, false } 5562 if (match(Op0, m_Zero()) || match(Op1, m_Zero())) 5563 return Constant::getNullValue(ReturnType); 5564 // undef * X -> { 0, false } 5565 // X * undef -> { 0, false } 5566 if (Q.isUndefValue(Op0) || Q.isUndefValue(Op1)) 5567 return Constant::getNullValue(ReturnType); 5568 break; 5569 case Intrinsic::uadd_sat: 5570 // sat(MAX + X) -> MAX 5571 // sat(X + MAX) -> MAX 5572 if (match(Op0, m_AllOnes()) || match(Op1, m_AllOnes())) 5573 return Constant::getAllOnesValue(ReturnType); 5574 LLVM_FALLTHROUGH; 5575 case Intrinsic::sadd_sat: 5576 // sat(X + undef) -> -1 5577 // sat(undef + X) -> -1 5578 // For unsigned: Assume undef is MAX, thus we saturate to MAX (-1). 5579 // For signed: Assume undef is ~X, in which case X + ~X = -1. 5580 if (Q.isUndefValue(Op0) || Q.isUndefValue(Op1)) 5581 return Constant::getAllOnesValue(ReturnType); 5582 5583 // X + 0 -> X 5584 if (match(Op1, m_Zero())) 5585 return Op0; 5586 // 0 + X -> X 5587 if (match(Op0, m_Zero())) 5588 return Op1; 5589 break; 5590 case Intrinsic::usub_sat: 5591 // sat(0 - X) -> 0, sat(X - MAX) -> 0 5592 if (match(Op0, m_Zero()) || match(Op1, m_AllOnes())) 5593 return Constant::getNullValue(ReturnType); 5594 LLVM_FALLTHROUGH; 5595 case Intrinsic::ssub_sat: 5596 // X - X -> 0, X - undef -> 0, undef - X -> 0 5597 if (Op0 == Op1 || Q.isUndefValue(Op0) || Q.isUndefValue(Op1)) 5598 return Constant::getNullValue(ReturnType); 5599 // X - 0 -> X 5600 if (match(Op1, m_Zero())) 5601 return Op0; 5602 break; 5603 case Intrinsic::load_relative: 5604 if (auto *C0 = dyn_cast<Constant>(Op0)) 5605 if (auto *C1 = dyn_cast<Constant>(Op1)) 5606 return SimplifyRelativeLoad(C0, C1, Q.DL); 5607 break; 5608 case Intrinsic::powi: 5609 if (auto *Power = dyn_cast<ConstantInt>(Op1)) { 5610 // powi(x, 0) -> 1.0 5611 if (Power->isZero()) 5612 return ConstantFP::get(Op0->getType(), 1.0); 5613 // powi(x, 1) -> x 5614 if (Power->isOne()) 5615 return Op0; 5616 } 5617 break; 5618 case Intrinsic::copysign: 5619 // copysign X, X --> X 5620 if (Op0 == Op1) 5621 return Op0; 5622 // copysign -X, X --> X 5623 // copysign X, -X --> -X 5624 if (match(Op0, m_FNeg(m_Specific(Op1))) || 5625 match(Op1, m_FNeg(m_Specific(Op0)))) 5626 return Op1; 5627 break; 5628 case Intrinsic::maxnum: 5629 case Intrinsic::minnum: 5630 case Intrinsic::maximum: 5631 case Intrinsic::minimum: { 5632 // If the arguments are the same, this is a no-op. 5633 if (Op0 == Op1) return Op0; 5634 5635 // Canonicalize constant operand as Op1. 5636 if (isa<Constant>(Op0)) 5637 std::swap(Op0, Op1); 5638 5639 // If an argument is undef, return the other argument. 5640 if (Q.isUndefValue(Op1)) 5641 return Op0; 5642 5643 bool PropagateNaN = IID == Intrinsic::minimum || IID == Intrinsic::maximum; 5644 bool IsMin = IID == Intrinsic::minimum || IID == Intrinsic::minnum; 5645 5646 // minnum(X, nan) -> X 5647 // maxnum(X, nan) -> X 5648 // minimum(X, nan) -> nan 5649 // maximum(X, nan) -> nan 5650 if (match(Op1, m_NaN())) 5651 return PropagateNaN ? propagateNaN(cast<Constant>(Op1)) : Op0; 5652 5653 // In the following folds, inf can be replaced with the largest finite 5654 // float, if the ninf flag is set. 5655 const APFloat *C; 5656 if (match(Op1, m_APFloat(C)) && 5657 (C->isInfinity() || (Q.CxtI->hasNoInfs() && C->isLargest()))) { 5658 // minnum(X, -inf) -> -inf 5659 // maxnum(X, +inf) -> +inf 5660 // minimum(X, -inf) -> -inf if nnan 5661 // maximum(X, +inf) -> +inf if nnan 5662 if (C->isNegative() == IsMin && (!PropagateNaN || Q.CxtI->hasNoNaNs())) 5663 return ConstantFP::get(ReturnType, *C); 5664 5665 // minnum(X, +inf) -> X if nnan 5666 // maxnum(X, -inf) -> X if nnan 5667 // minimum(X, +inf) -> X 5668 // maximum(X, -inf) -> X 5669 if (C->isNegative() != IsMin && (PropagateNaN || Q.CxtI->hasNoNaNs())) 5670 return Op0; 5671 } 5672 5673 // Min/max of the same operation with common operand: 5674 // m(m(X, Y)), X --> m(X, Y) (4 commuted variants) 5675 if (auto *M0 = dyn_cast<IntrinsicInst>(Op0)) 5676 if (M0->getIntrinsicID() == IID && 5677 (M0->getOperand(0) == Op1 || M0->getOperand(1) == Op1)) 5678 return Op0; 5679 if (auto *M1 = dyn_cast<IntrinsicInst>(Op1)) 5680 if (M1->getIntrinsicID() == IID && 5681 (M1->getOperand(0) == Op0 || M1->getOperand(1) == Op0)) 5682 return Op1; 5683 5684 break; 5685 } 5686 case Intrinsic::experimental_vector_extract: { 5687 Type *ReturnType = F->getReturnType(); 5688 5689 // (extract_vector (insert_vector _, X, 0), 0) -> X 5690 unsigned IdxN = cast<ConstantInt>(Op1)->getZExtValue(); 5691 Value *X = nullptr; 5692 if (match(Op0, m_Intrinsic<Intrinsic::experimental_vector_insert>( 5693 m_Value(), m_Value(X), m_Zero())) && 5694 IdxN == 0 && X->getType() == ReturnType) 5695 return X; 5696 5697 break; 5698 } 5699 default: 5700 break; 5701 } 5702 5703 return nullptr; 5704 } 5705 5706 static Value *simplifyIntrinsic(CallBase *Call, const SimplifyQuery &Q) { 5707 5708 // Intrinsics with no operands have some kind of side effect. Don't simplify. 5709 unsigned NumOperands = Call->getNumArgOperands(); 5710 if (!NumOperands) 5711 return nullptr; 5712 5713 Function *F = cast<Function>(Call->getCalledFunction()); 5714 Intrinsic::ID IID = F->getIntrinsicID(); 5715 if (NumOperands == 1) 5716 return simplifyUnaryIntrinsic(F, Call->getArgOperand(0), Q); 5717 5718 if (NumOperands == 2) 5719 return simplifyBinaryIntrinsic(F, Call->getArgOperand(0), 5720 Call->getArgOperand(1), Q); 5721 5722 // Handle intrinsics with 3 or more arguments. 5723 switch (IID) { 5724 case Intrinsic::masked_load: 5725 case Intrinsic::masked_gather: { 5726 Value *MaskArg = Call->getArgOperand(2); 5727 Value *PassthruArg = Call->getArgOperand(3); 5728 // If the mask is all zeros or undef, the "passthru" argument is the result. 5729 if (maskIsAllZeroOrUndef(MaskArg)) 5730 return PassthruArg; 5731 return nullptr; 5732 } 5733 case Intrinsic::fshl: 5734 case Intrinsic::fshr: { 5735 Value *Op0 = Call->getArgOperand(0), *Op1 = Call->getArgOperand(1), 5736 *ShAmtArg = Call->getArgOperand(2); 5737 5738 // If both operands are undef, the result is undef. 5739 if (Q.isUndefValue(Op0) && Q.isUndefValue(Op1)) 5740 return UndefValue::get(F->getReturnType()); 5741 5742 // If shift amount is undef, assume it is zero. 5743 if (Q.isUndefValue(ShAmtArg)) 5744 return Call->getArgOperand(IID == Intrinsic::fshl ? 0 : 1); 5745 5746 const APInt *ShAmtC; 5747 if (match(ShAmtArg, m_APInt(ShAmtC))) { 5748 // If there's effectively no shift, return the 1st arg or 2nd arg. 5749 APInt BitWidth = APInt(ShAmtC->getBitWidth(), ShAmtC->getBitWidth()); 5750 if (ShAmtC->urem(BitWidth).isNullValue()) 5751 return Call->getArgOperand(IID == Intrinsic::fshl ? 0 : 1); 5752 } 5753 return nullptr; 5754 } 5755 case Intrinsic::fma: 5756 case Intrinsic::fmuladd: { 5757 Value *Op0 = Call->getArgOperand(0); 5758 Value *Op1 = Call->getArgOperand(1); 5759 Value *Op2 = Call->getArgOperand(2); 5760 if (Value *V = simplifyFPOp({ Op0, Op1, Op2 }, {}, Q)) 5761 return V; 5762 return nullptr; 5763 } 5764 case Intrinsic::smul_fix: 5765 case Intrinsic::smul_fix_sat: { 5766 Value *Op0 = Call->getArgOperand(0); 5767 Value *Op1 = Call->getArgOperand(1); 5768 Value *Op2 = Call->getArgOperand(2); 5769 Type *ReturnType = F->getReturnType(); 5770 5771 // Canonicalize constant operand as Op1 (ConstantFolding handles the case 5772 // when both Op0 and Op1 are constant so we do not care about that special 5773 // case here). 5774 if (isa<Constant>(Op0)) 5775 std::swap(Op0, Op1); 5776 5777 // X * 0 -> 0 5778 if (match(Op1, m_Zero())) 5779 return Constant::getNullValue(ReturnType); 5780 5781 // X * undef -> 0 5782 if (Q.isUndefValue(Op1)) 5783 return Constant::getNullValue(ReturnType); 5784 5785 // X * (1 << Scale) -> X 5786 APInt ScaledOne = 5787 APInt::getOneBitSet(ReturnType->getScalarSizeInBits(), 5788 cast<ConstantInt>(Op2)->getZExtValue()); 5789 if (ScaledOne.isNonNegative() && match(Op1, m_SpecificInt(ScaledOne))) 5790 return Op0; 5791 5792 return nullptr; 5793 } 5794 case Intrinsic::experimental_vector_insert: { 5795 Value *Vec = Call->getArgOperand(0); 5796 Value *SubVec = Call->getArgOperand(1); 5797 Value *Idx = Call->getArgOperand(2); 5798 Type *ReturnType = F->getReturnType(); 5799 5800 // (insert_vector Y, (extract_vector X, 0), 0) -> X 5801 // where: Y is X, or Y is undef 5802 unsigned IdxN = cast<ConstantInt>(Idx)->getZExtValue(); 5803 Value *X = nullptr; 5804 if (match(SubVec, m_Intrinsic<Intrinsic::experimental_vector_extract>( 5805 m_Value(X), m_Zero())) && 5806 (Q.isUndefValue(Vec) || Vec == X) && IdxN == 0 && 5807 X->getType() == ReturnType) 5808 return X; 5809 5810 return nullptr; 5811 } 5812 default: 5813 return nullptr; 5814 } 5815 } 5816 5817 static Value *tryConstantFoldCall(CallBase *Call, const SimplifyQuery &Q) { 5818 auto *F = dyn_cast<Function>(Call->getCalledOperand()); 5819 if (!F || !canConstantFoldCallTo(Call, F)) 5820 return nullptr; 5821 5822 SmallVector<Constant *, 4> ConstantArgs; 5823 unsigned NumArgs = Call->getNumArgOperands(); 5824 ConstantArgs.reserve(NumArgs); 5825 for (auto &Arg : Call->args()) { 5826 Constant *C = dyn_cast<Constant>(&Arg); 5827 if (!C) { 5828 if (isa<MetadataAsValue>(Arg.get())) 5829 continue; 5830 return nullptr; 5831 } 5832 ConstantArgs.push_back(C); 5833 } 5834 5835 return ConstantFoldCall(Call, F, ConstantArgs, Q.TLI); 5836 } 5837 5838 Value *llvm::SimplifyCall(CallBase *Call, const SimplifyQuery &Q) { 5839 // musttail calls can only be simplified if they are also DCEd. 5840 // As we can't guarantee this here, don't simplify them. 5841 if (Call->isMustTailCall()) 5842 return nullptr; 5843 5844 // call undef -> poison 5845 // call null -> poison 5846 Value *Callee = Call->getCalledOperand(); 5847 if (isa<UndefValue>(Callee) || isa<ConstantPointerNull>(Callee)) 5848 return PoisonValue::get(Call->getType()); 5849 5850 if (Value *V = tryConstantFoldCall(Call, Q)) 5851 return V; 5852 5853 auto *F = dyn_cast<Function>(Callee); 5854 if (F && F->isIntrinsic()) 5855 if (Value *Ret = simplifyIntrinsic(Call, Q)) 5856 return Ret; 5857 5858 return nullptr; 5859 } 5860 5861 /// Given operands for a Freeze, see if we can fold the result. 5862 static Value *SimplifyFreezeInst(Value *Op0, const SimplifyQuery &Q) { 5863 // Use a utility function defined in ValueTracking. 5864 if (llvm::isGuaranteedNotToBeUndefOrPoison(Op0, Q.AC, Q.CxtI, Q.DT)) 5865 return Op0; 5866 // We have room for improvement. 5867 return nullptr; 5868 } 5869 5870 Value *llvm::SimplifyFreezeInst(Value *Op0, const SimplifyQuery &Q) { 5871 return ::SimplifyFreezeInst(Op0, Q); 5872 } 5873 5874 static Constant *ConstructLoadOperandConstant(Value *Op) { 5875 SmallVector<Value *, 4> Worklist; 5876 // Invalid IR in unreachable code may contain self-referential values. Don't infinitely loop. 5877 SmallPtrSet<Value *, 4> Visited; 5878 Worklist.push_back(Op); 5879 while (true) { 5880 Value *CurOp = Worklist.back(); 5881 if (!Visited.insert(CurOp).second) 5882 return nullptr; 5883 if (isa<Constant>(CurOp)) 5884 break; 5885 if (auto *BC = dyn_cast<BitCastOperator>(CurOp)) { 5886 Worklist.push_back(BC->getOperand(0)); 5887 } else if (auto *GEP = dyn_cast<GEPOperator>(CurOp)) { 5888 for (unsigned I = 1; I != GEP->getNumOperands(); ++I) { 5889 if (!isa<Constant>(GEP->getOperand(I))) 5890 return nullptr; 5891 } 5892 Worklist.push_back(GEP->getOperand(0)); 5893 } else if (auto *II = dyn_cast<IntrinsicInst>(CurOp)) { 5894 if (II->isLaunderOrStripInvariantGroup()) 5895 Worklist.push_back(II->getOperand(0)); 5896 else 5897 return nullptr; 5898 } else { 5899 return nullptr; 5900 } 5901 } 5902 5903 Constant *NewOp = cast<Constant>(Worklist.pop_back_val()); 5904 while (!Worklist.empty()) { 5905 Value *CurOp = Worklist.pop_back_val(); 5906 if (isa<BitCastOperator>(CurOp)) { 5907 NewOp = ConstantExpr::getBitCast(NewOp, CurOp->getType()); 5908 } else if (auto *GEP = dyn_cast<GEPOperator>(CurOp)) { 5909 SmallVector<Constant *> Idxs; 5910 Idxs.reserve(GEP->getNumOperands() - 1); 5911 for (unsigned I = 1, E = GEP->getNumOperands(); I != E; ++I) { 5912 Idxs.push_back(cast<Constant>(GEP->getOperand(I))); 5913 } 5914 NewOp = ConstantExpr::getGetElementPtr(GEP->getSourceElementType(), NewOp, 5915 Idxs, GEP->isInBounds(), 5916 GEP->getInRangeIndex()); 5917 } else { 5918 assert(isa<IntrinsicInst>(CurOp) && 5919 cast<IntrinsicInst>(CurOp)->isLaunderOrStripInvariantGroup() && 5920 "expected invariant group intrinsic"); 5921 NewOp = ConstantExpr::getBitCast(NewOp, CurOp->getType()); 5922 } 5923 } 5924 return NewOp; 5925 } 5926 5927 static Value *SimplifyLoadInst(LoadInst *LI, const SimplifyQuery &Q) { 5928 if (LI->isVolatile()) 5929 return nullptr; 5930 5931 if (auto *C = ConstantFoldInstruction(LI, Q.DL)) 5932 return C; 5933 5934 // The following only catches more cases than ConstantFoldInstruction() if the 5935 // load operand wasn't a constant. Specifically, invariant.group intrinsics. 5936 if (isa<Constant>(LI->getPointerOperand())) 5937 return nullptr; 5938 5939 if (auto *C = dyn_cast_or_null<Constant>( 5940 ConstructLoadOperandConstant(LI->getPointerOperand()))) 5941 return ConstantFoldLoadFromConstPtr(C, LI->getType(), Q.DL); 5942 5943 return nullptr; 5944 } 5945 5946 /// See if we can compute a simplified version of this instruction. 5947 /// If not, this returns null. 5948 5949 Value *llvm::SimplifyInstruction(Instruction *I, const SimplifyQuery &SQ, 5950 OptimizationRemarkEmitter *ORE) { 5951 const SimplifyQuery Q = SQ.CxtI ? SQ : SQ.getWithInstruction(I); 5952 Value *Result; 5953 5954 switch (I->getOpcode()) { 5955 default: 5956 Result = ConstantFoldInstruction(I, Q.DL, Q.TLI); 5957 break; 5958 case Instruction::FNeg: 5959 Result = SimplifyFNegInst(I->getOperand(0), I->getFastMathFlags(), Q); 5960 break; 5961 case Instruction::FAdd: 5962 Result = SimplifyFAddInst(I->getOperand(0), I->getOperand(1), 5963 I->getFastMathFlags(), Q); 5964 break; 5965 case Instruction::Add: 5966 Result = 5967 SimplifyAddInst(I->getOperand(0), I->getOperand(1), 5968 Q.IIQ.hasNoSignedWrap(cast<BinaryOperator>(I)), 5969 Q.IIQ.hasNoUnsignedWrap(cast<BinaryOperator>(I)), Q); 5970 break; 5971 case Instruction::FSub: 5972 Result = SimplifyFSubInst(I->getOperand(0), I->getOperand(1), 5973 I->getFastMathFlags(), Q); 5974 break; 5975 case Instruction::Sub: 5976 Result = 5977 SimplifySubInst(I->getOperand(0), I->getOperand(1), 5978 Q.IIQ.hasNoSignedWrap(cast<BinaryOperator>(I)), 5979 Q.IIQ.hasNoUnsignedWrap(cast<BinaryOperator>(I)), Q); 5980 break; 5981 case Instruction::FMul: 5982 Result = SimplifyFMulInst(I->getOperand(0), I->getOperand(1), 5983 I->getFastMathFlags(), Q); 5984 break; 5985 case Instruction::Mul: 5986 Result = SimplifyMulInst(I->getOperand(0), I->getOperand(1), Q); 5987 break; 5988 case Instruction::SDiv: 5989 Result = SimplifySDivInst(I->getOperand(0), I->getOperand(1), Q); 5990 break; 5991 case Instruction::UDiv: 5992 Result = SimplifyUDivInst(I->getOperand(0), I->getOperand(1), Q); 5993 break; 5994 case Instruction::FDiv: 5995 Result = SimplifyFDivInst(I->getOperand(0), I->getOperand(1), 5996 I->getFastMathFlags(), Q); 5997 break; 5998 case Instruction::SRem: 5999 Result = SimplifySRemInst(I->getOperand(0), I->getOperand(1), Q); 6000 break; 6001 case Instruction::URem: 6002 Result = SimplifyURemInst(I->getOperand(0), I->getOperand(1), Q); 6003 break; 6004 case Instruction::FRem: 6005 Result = SimplifyFRemInst(I->getOperand(0), I->getOperand(1), 6006 I->getFastMathFlags(), Q); 6007 break; 6008 case Instruction::Shl: 6009 Result = 6010 SimplifyShlInst(I->getOperand(0), I->getOperand(1), 6011 Q.IIQ.hasNoSignedWrap(cast<BinaryOperator>(I)), 6012 Q.IIQ.hasNoUnsignedWrap(cast<BinaryOperator>(I)), Q); 6013 break; 6014 case Instruction::LShr: 6015 Result = SimplifyLShrInst(I->getOperand(0), I->getOperand(1), 6016 Q.IIQ.isExact(cast<BinaryOperator>(I)), Q); 6017 break; 6018 case Instruction::AShr: 6019 Result = SimplifyAShrInst(I->getOperand(0), I->getOperand(1), 6020 Q.IIQ.isExact(cast<BinaryOperator>(I)), Q); 6021 break; 6022 case Instruction::And: 6023 Result = SimplifyAndInst(I->getOperand(0), I->getOperand(1), Q); 6024 break; 6025 case Instruction::Or: 6026 Result = SimplifyOrInst(I->getOperand(0), I->getOperand(1), Q); 6027 break; 6028 case Instruction::Xor: 6029 Result = SimplifyXorInst(I->getOperand(0), I->getOperand(1), Q); 6030 break; 6031 case Instruction::ICmp: 6032 Result = SimplifyICmpInst(cast<ICmpInst>(I)->getPredicate(), 6033 I->getOperand(0), I->getOperand(1), Q); 6034 break; 6035 case Instruction::FCmp: 6036 Result = 6037 SimplifyFCmpInst(cast<FCmpInst>(I)->getPredicate(), I->getOperand(0), 6038 I->getOperand(1), I->getFastMathFlags(), Q); 6039 break; 6040 case Instruction::Select: 6041 Result = SimplifySelectInst(I->getOperand(0), I->getOperand(1), 6042 I->getOperand(2), Q); 6043 break; 6044 case Instruction::GetElementPtr: { 6045 SmallVector<Value *, 8> Ops(I->operands()); 6046 Result = SimplifyGEPInst(cast<GetElementPtrInst>(I)->getSourceElementType(), 6047 Ops, Q); 6048 break; 6049 } 6050 case Instruction::InsertValue: { 6051 InsertValueInst *IV = cast<InsertValueInst>(I); 6052 Result = SimplifyInsertValueInst(IV->getAggregateOperand(), 6053 IV->getInsertedValueOperand(), 6054 IV->getIndices(), Q); 6055 break; 6056 } 6057 case Instruction::InsertElement: { 6058 auto *IE = cast<InsertElementInst>(I); 6059 Result = SimplifyInsertElementInst(IE->getOperand(0), IE->getOperand(1), 6060 IE->getOperand(2), Q); 6061 break; 6062 } 6063 case Instruction::ExtractValue: { 6064 auto *EVI = cast<ExtractValueInst>(I); 6065 Result = SimplifyExtractValueInst(EVI->getAggregateOperand(), 6066 EVI->getIndices(), Q); 6067 break; 6068 } 6069 case Instruction::ExtractElement: { 6070 auto *EEI = cast<ExtractElementInst>(I); 6071 Result = SimplifyExtractElementInst(EEI->getVectorOperand(), 6072 EEI->getIndexOperand(), Q); 6073 break; 6074 } 6075 case Instruction::ShuffleVector: { 6076 auto *SVI = cast<ShuffleVectorInst>(I); 6077 Result = 6078 SimplifyShuffleVectorInst(SVI->getOperand(0), SVI->getOperand(1), 6079 SVI->getShuffleMask(), SVI->getType(), Q); 6080 break; 6081 } 6082 case Instruction::PHI: 6083 Result = SimplifyPHINode(cast<PHINode>(I), Q); 6084 break; 6085 case Instruction::Call: { 6086 Result = SimplifyCall(cast<CallInst>(I), Q); 6087 break; 6088 } 6089 case Instruction::Freeze: 6090 Result = SimplifyFreezeInst(I->getOperand(0), Q); 6091 break; 6092 #define HANDLE_CAST_INST(num, opc, clas) case Instruction::opc: 6093 #include "llvm/IR/Instruction.def" 6094 #undef HANDLE_CAST_INST 6095 Result = 6096 SimplifyCastInst(I->getOpcode(), I->getOperand(0), I->getType(), Q); 6097 break; 6098 case Instruction::Alloca: 6099 // No simplifications for Alloca and it can't be constant folded. 6100 Result = nullptr; 6101 break; 6102 case Instruction::Load: 6103 Result = SimplifyLoadInst(cast<LoadInst>(I), Q); 6104 break; 6105 } 6106 6107 /// If called on unreachable code, the above logic may report that the 6108 /// instruction simplified to itself. Make life easier for users by 6109 /// detecting that case here, returning a safe value instead. 6110 return Result == I ? UndefValue::get(I->getType()) : Result; 6111 } 6112 6113 /// Implementation of recursive simplification through an instruction's 6114 /// uses. 6115 /// 6116 /// This is the common implementation of the recursive simplification routines. 6117 /// If we have a pre-simplified value in 'SimpleV', that is forcibly used to 6118 /// replace the instruction 'I'. Otherwise, we simply add 'I' to the list of 6119 /// instructions to process and attempt to simplify it using 6120 /// InstructionSimplify. Recursively visited users which could not be 6121 /// simplified themselves are to the optional UnsimplifiedUsers set for 6122 /// further processing by the caller. 6123 /// 6124 /// This routine returns 'true' only when *it* simplifies something. The passed 6125 /// in simplified value does not count toward this. 6126 static bool replaceAndRecursivelySimplifyImpl( 6127 Instruction *I, Value *SimpleV, const TargetLibraryInfo *TLI, 6128 const DominatorTree *DT, AssumptionCache *AC, 6129 SmallSetVector<Instruction *, 8> *UnsimplifiedUsers = nullptr) { 6130 bool Simplified = false; 6131 SmallSetVector<Instruction *, 8> Worklist; 6132 const DataLayout &DL = I->getModule()->getDataLayout(); 6133 6134 // If we have an explicit value to collapse to, do that round of the 6135 // simplification loop by hand initially. 6136 if (SimpleV) { 6137 for (User *U : I->users()) 6138 if (U != I) 6139 Worklist.insert(cast<Instruction>(U)); 6140 6141 // Replace the instruction with its simplified value. 6142 I->replaceAllUsesWith(SimpleV); 6143 6144 // Gracefully handle edge cases where the instruction is not wired into any 6145 // parent block. 6146 if (I->getParent() && !I->isEHPad() && !I->isTerminator() && 6147 !I->mayHaveSideEffects()) 6148 I->eraseFromParent(); 6149 } else { 6150 Worklist.insert(I); 6151 } 6152 6153 // Note that we must test the size on each iteration, the worklist can grow. 6154 for (unsigned Idx = 0; Idx != Worklist.size(); ++Idx) { 6155 I = Worklist[Idx]; 6156 6157 // See if this instruction simplifies. 6158 SimpleV = SimplifyInstruction(I, {DL, TLI, DT, AC}); 6159 if (!SimpleV) { 6160 if (UnsimplifiedUsers) 6161 UnsimplifiedUsers->insert(I); 6162 continue; 6163 } 6164 6165 Simplified = true; 6166 6167 // Stash away all the uses of the old instruction so we can check them for 6168 // recursive simplifications after a RAUW. This is cheaper than checking all 6169 // uses of To on the recursive step in most cases. 6170 for (User *U : I->users()) 6171 Worklist.insert(cast<Instruction>(U)); 6172 6173 // Replace the instruction with its simplified value. 6174 I->replaceAllUsesWith(SimpleV); 6175 6176 // Gracefully handle edge cases where the instruction is not wired into any 6177 // parent block. 6178 if (I->getParent() && !I->isEHPad() && !I->isTerminator() && 6179 !I->mayHaveSideEffects()) 6180 I->eraseFromParent(); 6181 } 6182 return Simplified; 6183 } 6184 6185 bool llvm::replaceAndRecursivelySimplify( 6186 Instruction *I, Value *SimpleV, const TargetLibraryInfo *TLI, 6187 const DominatorTree *DT, AssumptionCache *AC, 6188 SmallSetVector<Instruction *, 8> *UnsimplifiedUsers) { 6189 assert(I != SimpleV && "replaceAndRecursivelySimplify(X,X) is not valid!"); 6190 assert(SimpleV && "Must provide a simplified value."); 6191 return replaceAndRecursivelySimplifyImpl(I, SimpleV, TLI, DT, AC, 6192 UnsimplifiedUsers); 6193 } 6194 6195 namespace llvm { 6196 const SimplifyQuery getBestSimplifyQuery(Pass &P, Function &F) { 6197 auto *DTWP = P.getAnalysisIfAvailable<DominatorTreeWrapperPass>(); 6198 auto *DT = DTWP ? &DTWP->getDomTree() : nullptr; 6199 auto *TLIWP = P.getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 6200 auto *TLI = TLIWP ? &TLIWP->getTLI(F) : nullptr; 6201 auto *ACWP = P.getAnalysisIfAvailable<AssumptionCacheTracker>(); 6202 auto *AC = ACWP ? &ACWP->getAssumptionCache(F) : nullptr; 6203 return {F.getParent()->getDataLayout(), TLI, DT, AC}; 6204 } 6205 6206 const SimplifyQuery getBestSimplifyQuery(LoopStandardAnalysisResults &AR, 6207 const DataLayout &DL) { 6208 return {DL, &AR.TLI, &AR.DT, &AR.AC}; 6209 } 6210 6211 template <class T, class... TArgs> 6212 const SimplifyQuery getBestSimplifyQuery(AnalysisManager<T, TArgs...> &AM, 6213 Function &F) { 6214 auto *DT = AM.template getCachedResult<DominatorTreeAnalysis>(F); 6215 auto *TLI = AM.template getCachedResult<TargetLibraryAnalysis>(F); 6216 auto *AC = AM.template getCachedResult<AssumptionAnalysis>(F); 6217 return {F.getParent()->getDataLayout(), TLI, DT, AC}; 6218 } 6219 template const SimplifyQuery getBestSimplifyQuery(AnalysisManager<Function> &, 6220 Function &); 6221 } 6222