1 //===- InstructionSimplify.cpp - Fold instruction operands ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements routines for folding instructions into simpler forms 11 // that do not require creating new instructions. This does constant folding 12 // ("add i32 1, 1" -> "2") but can also handle non-constant operands, either 13 // returning a constant ("and i32 %x, 0" -> "0") or an already existing value 14 // ("and i32 %x, %x" -> "%x"). All operands are assumed to have already been 15 // simplified: This is usually true and assuming it simplifies the logic (if 16 // they have not been simplified then results are correct but maybe suboptimal). 17 // 18 //===----------------------------------------------------------------------===// 19 20 #include "llvm/Analysis/InstructionSimplify.h" 21 #include "llvm/ADT/SetVector.h" 22 #include "llvm/ADT/Statistic.h" 23 #include "llvm/Analysis/AliasAnalysis.h" 24 #include "llvm/Analysis/AssumptionCache.h" 25 #include "llvm/Analysis/CaptureTracking.h" 26 #include "llvm/Analysis/CmpInstAnalysis.h" 27 #include "llvm/Analysis/ConstantFolding.h" 28 #include "llvm/Analysis/LoopAnalysisManager.h" 29 #include "llvm/Analysis/MemoryBuiltins.h" 30 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 31 #include "llvm/Analysis/ValueTracking.h" 32 #include "llvm/Analysis/VectorUtils.h" 33 #include "llvm/IR/ConstantRange.h" 34 #include "llvm/IR/DataLayout.h" 35 #include "llvm/IR/Dominators.h" 36 #include "llvm/IR/GetElementPtrTypeIterator.h" 37 #include "llvm/IR/GlobalAlias.h" 38 #include "llvm/IR/Operator.h" 39 #include "llvm/IR/PatternMatch.h" 40 #include "llvm/IR/ValueHandle.h" 41 #include "llvm/Support/KnownBits.h" 42 #include <algorithm> 43 using namespace llvm; 44 using namespace llvm::PatternMatch; 45 46 #define DEBUG_TYPE "instsimplify" 47 48 enum { RecursionLimit = 3 }; 49 50 STATISTIC(NumExpand, "Number of expansions"); 51 STATISTIC(NumReassoc, "Number of reassociations"); 52 53 static Value *SimplifyAndInst(Value *, Value *, const SimplifyQuery &, unsigned); 54 static Value *SimplifyBinOp(unsigned, Value *, Value *, const SimplifyQuery &, 55 unsigned); 56 static Value *SimplifyFPBinOp(unsigned, Value *, Value *, const FastMathFlags &, 57 const SimplifyQuery &, unsigned); 58 static Value *SimplifyCmpInst(unsigned, Value *, Value *, const SimplifyQuery &, 59 unsigned); 60 static Value *SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS, 61 const SimplifyQuery &Q, unsigned MaxRecurse); 62 static Value *SimplifyOrInst(Value *, Value *, const SimplifyQuery &, unsigned); 63 static Value *SimplifyXorInst(Value *, Value *, const SimplifyQuery &, unsigned); 64 static Value *SimplifyCastInst(unsigned, Value *, Type *, 65 const SimplifyQuery &, unsigned); 66 67 /// For a boolean type or a vector of boolean type, return false or a vector 68 /// with every element false. 69 static Constant *getFalse(Type *Ty) { 70 return ConstantInt::getFalse(Ty); 71 } 72 73 /// For a boolean type or a vector of boolean type, return true or a vector 74 /// with every element true. 75 static Constant *getTrue(Type *Ty) { 76 return ConstantInt::getTrue(Ty); 77 } 78 79 /// isSameCompare - Is V equivalent to the comparison "LHS Pred RHS"? 80 static bool isSameCompare(Value *V, CmpInst::Predicate Pred, Value *LHS, 81 Value *RHS) { 82 CmpInst *Cmp = dyn_cast<CmpInst>(V); 83 if (!Cmp) 84 return false; 85 CmpInst::Predicate CPred = Cmp->getPredicate(); 86 Value *CLHS = Cmp->getOperand(0), *CRHS = Cmp->getOperand(1); 87 if (CPred == Pred && CLHS == LHS && CRHS == RHS) 88 return true; 89 return CPred == CmpInst::getSwappedPredicate(Pred) && CLHS == RHS && 90 CRHS == LHS; 91 } 92 93 /// Does the given value dominate the specified phi node? 94 static bool ValueDominatesPHI(Value *V, PHINode *P, const DominatorTree *DT) { 95 Instruction *I = dyn_cast<Instruction>(V); 96 if (!I) 97 // Arguments and constants dominate all instructions. 98 return true; 99 100 // If we are processing instructions (and/or basic blocks) that have not been 101 // fully added to a function, the parent nodes may still be null. Simply 102 // return the conservative answer in these cases. 103 if (!I->getParent() || !P->getParent() || !I->getParent()->getParent()) 104 return false; 105 106 // If we have a DominatorTree then do a precise test. 107 if (DT) 108 return DT->dominates(I, P); 109 110 // Otherwise, if the instruction is in the entry block and is not an invoke, 111 // then it obviously dominates all phi nodes. 112 if (I->getParent() == &I->getParent()->getParent()->getEntryBlock() && 113 !isa<InvokeInst>(I)) 114 return true; 115 116 return false; 117 } 118 119 /// Simplify "A op (B op' C)" by distributing op over op', turning it into 120 /// "(A op B) op' (A op C)". Here "op" is given by Opcode and "op'" is 121 /// given by OpcodeToExpand, while "A" corresponds to LHS and "B op' C" to RHS. 122 /// Also performs the transform "(A op' B) op C" -> "(A op C) op' (B op C)". 123 /// Returns the simplified value, or null if no simplification was performed. 124 static Value *ExpandBinOp(Instruction::BinaryOps Opcode, Value *LHS, Value *RHS, 125 Instruction::BinaryOps OpcodeToExpand, 126 const SimplifyQuery &Q, unsigned MaxRecurse) { 127 // Recursion is always used, so bail out at once if we already hit the limit. 128 if (!MaxRecurse--) 129 return nullptr; 130 131 // Check whether the expression has the form "(A op' B) op C". 132 if (BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS)) 133 if (Op0->getOpcode() == OpcodeToExpand) { 134 // It does! Try turning it into "(A op C) op' (B op C)". 135 Value *A = Op0->getOperand(0), *B = Op0->getOperand(1), *C = RHS; 136 // Do "A op C" and "B op C" both simplify? 137 if (Value *L = SimplifyBinOp(Opcode, A, C, Q, MaxRecurse)) 138 if (Value *R = SimplifyBinOp(Opcode, B, C, Q, MaxRecurse)) { 139 // They do! Return "L op' R" if it simplifies or is already available. 140 // If "L op' R" equals "A op' B" then "L op' R" is just the LHS. 141 if ((L == A && R == B) || (Instruction::isCommutative(OpcodeToExpand) 142 && L == B && R == A)) { 143 ++NumExpand; 144 return LHS; 145 } 146 // Otherwise return "L op' R" if it simplifies. 147 if (Value *V = SimplifyBinOp(OpcodeToExpand, L, R, Q, MaxRecurse)) { 148 ++NumExpand; 149 return V; 150 } 151 } 152 } 153 154 // Check whether the expression has the form "A op (B op' C)". 155 if (BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS)) 156 if (Op1->getOpcode() == OpcodeToExpand) { 157 // It does! Try turning it into "(A op B) op' (A op C)". 158 Value *A = LHS, *B = Op1->getOperand(0), *C = Op1->getOperand(1); 159 // Do "A op B" and "A op C" both simplify? 160 if (Value *L = SimplifyBinOp(Opcode, A, B, Q, MaxRecurse)) 161 if (Value *R = SimplifyBinOp(Opcode, A, C, Q, MaxRecurse)) { 162 // They do! Return "L op' R" if it simplifies or is already available. 163 // If "L op' R" equals "B op' C" then "L op' R" is just the RHS. 164 if ((L == B && R == C) || (Instruction::isCommutative(OpcodeToExpand) 165 && L == C && R == B)) { 166 ++NumExpand; 167 return RHS; 168 } 169 // Otherwise return "L op' R" if it simplifies. 170 if (Value *V = SimplifyBinOp(OpcodeToExpand, L, R, Q, MaxRecurse)) { 171 ++NumExpand; 172 return V; 173 } 174 } 175 } 176 177 return nullptr; 178 } 179 180 /// Generic simplifications for associative binary operations. 181 /// Returns the simpler value, or null if none was found. 182 static Value *SimplifyAssociativeBinOp(Instruction::BinaryOps Opcode, 183 Value *LHS, Value *RHS, 184 const SimplifyQuery &Q, 185 unsigned MaxRecurse) { 186 assert(Instruction::isAssociative(Opcode) && "Not an associative operation!"); 187 188 // Recursion is always used, so bail out at once if we already hit the limit. 189 if (!MaxRecurse--) 190 return nullptr; 191 192 BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS); 193 BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS); 194 195 // Transform: "(A op B) op C" ==> "A op (B op C)" if it simplifies completely. 196 if (Op0 && Op0->getOpcode() == Opcode) { 197 Value *A = Op0->getOperand(0); 198 Value *B = Op0->getOperand(1); 199 Value *C = RHS; 200 201 // Does "B op C" simplify? 202 if (Value *V = SimplifyBinOp(Opcode, B, C, Q, MaxRecurse)) { 203 // It does! Return "A op V" if it simplifies or is already available. 204 // If V equals B then "A op V" is just the LHS. 205 if (V == B) return LHS; 206 // Otherwise return "A op V" if it simplifies. 207 if (Value *W = SimplifyBinOp(Opcode, A, V, Q, MaxRecurse)) { 208 ++NumReassoc; 209 return W; 210 } 211 } 212 } 213 214 // Transform: "A op (B op C)" ==> "(A op B) op C" if it simplifies completely. 215 if (Op1 && Op1->getOpcode() == Opcode) { 216 Value *A = LHS; 217 Value *B = Op1->getOperand(0); 218 Value *C = Op1->getOperand(1); 219 220 // Does "A op B" simplify? 221 if (Value *V = SimplifyBinOp(Opcode, A, B, Q, MaxRecurse)) { 222 // It does! Return "V op C" if it simplifies or is already available. 223 // If V equals B then "V op C" is just the RHS. 224 if (V == B) return RHS; 225 // Otherwise return "V op C" if it simplifies. 226 if (Value *W = SimplifyBinOp(Opcode, V, C, Q, MaxRecurse)) { 227 ++NumReassoc; 228 return W; 229 } 230 } 231 } 232 233 // The remaining transforms require commutativity as well as associativity. 234 if (!Instruction::isCommutative(Opcode)) 235 return nullptr; 236 237 // Transform: "(A op B) op C" ==> "(C op A) op B" if it simplifies completely. 238 if (Op0 && Op0->getOpcode() == Opcode) { 239 Value *A = Op0->getOperand(0); 240 Value *B = Op0->getOperand(1); 241 Value *C = RHS; 242 243 // Does "C op A" simplify? 244 if (Value *V = SimplifyBinOp(Opcode, C, A, Q, MaxRecurse)) { 245 // It does! Return "V op B" if it simplifies or is already available. 246 // If V equals A then "V op B" is just the LHS. 247 if (V == A) return LHS; 248 // Otherwise return "V op B" if it simplifies. 249 if (Value *W = SimplifyBinOp(Opcode, V, B, Q, MaxRecurse)) { 250 ++NumReassoc; 251 return W; 252 } 253 } 254 } 255 256 // Transform: "A op (B op C)" ==> "B op (C op A)" if it simplifies completely. 257 if (Op1 && Op1->getOpcode() == Opcode) { 258 Value *A = LHS; 259 Value *B = Op1->getOperand(0); 260 Value *C = Op1->getOperand(1); 261 262 // Does "C op A" simplify? 263 if (Value *V = SimplifyBinOp(Opcode, C, A, Q, MaxRecurse)) { 264 // It does! Return "B op V" if it simplifies or is already available. 265 // If V equals C then "B op V" is just the RHS. 266 if (V == C) return RHS; 267 // Otherwise return "B op V" if it simplifies. 268 if (Value *W = SimplifyBinOp(Opcode, B, V, Q, MaxRecurse)) { 269 ++NumReassoc; 270 return W; 271 } 272 } 273 } 274 275 return nullptr; 276 } 277 278 /// In the case of a binary operation with a select instruction as an operand, 279 /// try to simplify the binop by seeing whether evaluating it on both branches 280 /// of the select results in the same value. Returns the common value if so, 281 /// otherwise returns null. 282 static Value *ThreadBinOpOverSelect(Instruction::BinaryOps Opcode, Value *LHS, 283 Value *RHS, const SimplifyQuery &Q, 284 unsigned MaxRecurse) { 285 // Recursion is always used, so bail out at once if we already hit the limit. 286 if (!MaxRecurse--) 287 return nullptr; 288 289 SelectInst *SI; 290 if (isa<SelectInst>(LHS)) { 291 SI = cast<SelectInst>(LHS); 292 } else { 293 assert(isa<SelectInst>(RHS) && "No select instruction operand!"); 294 SI = cast<SelectInst>(RHS); 295 } 296 297 // Evaluate the BinOp on the true and false branches of the select. 298 Value *TV; 299 Value *FV; 300 if (SI == LHS) { 301 TV = SimplifyBinOp(Opcode, SI->getTrueValue(), RHS, Q, MaxRecurse); 302 FV = SimplifyBinOp(Opcode, SI->getFalseValue(), RHS, Q, MaxRecurse); 303 } else { 304 TV = SimplifyBinOp(Opcode, LHS, SI->getTrueValue(), Q, MaxRecurse); 305 FV = SimplifyBinOp(Opcode, LHS, SI->getFalseValue(), Q, MaxRecurse); 306 } 307 308 // If they simplified to the same value, then return the common value. 309 // If they both failed to simplify then return null. 310 if (TV == FV) 311 return TV; 312 313 // If one branch simplified to undef, return the other one. 314 if (TV && isa<UndefValue>(TV)) 315 return FV; 316 if (FV && isa<UndefValue>(FV)) 317 return TV; 318 319 // If applying the operation did not change the true and false select values, 320 // then the result of the binop is the select itself. 321 if (TV == SI->getTrueValue() && FV == SI->getFalseValue()) 322 return SI; 323 324 // If one branch simplified and the other did not, and the simplified 325 // value is equal to the unsimplified one, return the simplified value. 326 // For example, select (cond, X, X & Z) & Z -> X & Z. 327 if ((FV && !TV) || (TV && !FV)) { 328 // Check that the simplified value has the form "X op Y" where "op" is the 329 // same as the original operation. 330 Instruction *Simplified = dyn_cast<Instruction>(FV ? FV : TV); 331 if (Simplified && Simplified->getOpcode() == Opcode) { 332 // The value that didn't simplify is "UnsimplifiedLHS op UnsimplifiedRHS". 333 // We already know that "op" is the same as for the simplified value. See 334 // if the operands match too. If so, return the simplified value. 335 Value *UnsimplifiedBranch = FV ? SI->getTrueValue() : SI->getFalseValue(); 336 Value *UnsimplifiedLHS = SI == LHS ? UnsimplifiedBranch : LHS; 337 Value *UnsimplifiedRHS = SI == LHS ? RHS : UnsimplifiedBranch; 338 if (Simplified->getOperand(0) == UnsimplifiedLHS && 339 Simplified->getOperand(1) == UnsimplifiedRHS) 340 return Simplified; 341 if (Simplified->isCommutative() && 342 Simplified->getOperand(1) == UnsimplifiedLHS && 343 Simplified->getOperand(0) == UnsimplifiedRHS) 344 return Simplified; 345 } 346 } 347 348 return nullptr; 349 } 350 351 /// In the case of a comparison with a select instruction, try to simplify the 352 /// comparison by seeing whether both branches of the select result in the same 353 /// value. Returns the common value if so, otherwise returns null. 354 static Value *ThreadCmpOverSelect(CmpInst::Predicate Pred, Value *LHS, 355 Value *RHS, const SimplifyQuery &Q, 356 unsigned MaxRecurse) { 357 // Recursion is always used, so bail out at once if we already hit the limit. 358 if (!MaxRecurse--) 359 return nullptr; 360 361 // Make sure the select is on the LHS. 362 if (!isa<SelectInst>(LHS)) { 363 std::swap(LHS, RHS); 364 Pred = CmpInst::getSwappedPredicate(Pred); 365 } 366 assert(isa<SelectInst>(LHS) && "Not comparing with a select instruction!"); 367 SelectInst *SI = cast<SelectInst>(LHS); 368 Value *Cond = SI->getCondition(); 369 Value *TV = SI->getTrueValue(); 370 Value *FV = SI->getFalseValue(); 371 372 // Now that we have "cmp select(Cond, TV, FV), RHS", analyse it. 373 // Does "cmp TV, RHS" simplify? 374 Value *TCmp = SimplifyCmpInst(Pred, TV, RHS, Q, MaxRecurse); 375 if (TCmp == Cond) { 376 // It not only simplified, it simplified to the select condition. Replace 377 // it with 'true'. 378 TCmp = getTrue(Cond->getType()); 379 } else if (!TCmp) { 380 // It didn't simplify. However if "cmp TV, RHS" is equal to the select 381 // condition then we can replace it with 'true'. Otherwise give up. 382 if (!isSameCompare(Cond, Pred, TV, RHS)) 383 return nullptr; 384 TCmp = getTrue(Cond->getType()); 385 } 386 387 // Does "cmp FV, RHS" simplify? 388 Value *FCmp = SimplifyCmpInst(Pred, FV, RHS, Q, MaxRecurse); 389 if (FCmp == Cond) { 390 // It not only simplified, it simplified to the select condition. Replace 391 // it with 'false'. 392 FCmp = getFalse(Cond->getType()); 393 } else if (!FCmp) { 394 // It didn't simplify. However if "cmp FV, RHS" is equal to the select 395 // condition then we can replace it with 'false'. Otherwise give up. 396 if (!isSameCompare(Cond, Pred, FV, RHS)) 397 return nullptr; 398 FCmp = getFalse(Cond->getType()); 399 } 400 401 // If both sides simplified to the same value, then use it as the result of 402 // the original comparison. 403 if (TCmp == FCmp) 404 return TCmp; 405 406 // The remaining cases only make sense if the select condition has the same 407 // type as the result of the comparison, so bail out if this is not so. 408 if (Cond->getType()->isVectorTy() != RHS->getType()->isVectorTy()) 409 return nullptr; 410 // If the false value simplified to false, then the result of the compare 411 // is equal to "Cond && TCmp". This also catches the case when the false 412 // value simplified to false and the true value to true, returning "Cond". 413 if (match(FCmp, m_Zero())) 414 if (Value *V = SimplifyAndInst(Cond, TCmp, Q, MaxRecurse)) 415 return V; 416 // If the true value simplified to true, then the result of the compare 417 // is equal to "Cond || FCmp". 418 if (match(TCmp, m_One())) 419 if (Value *V = SimplifyOrInst(Cond, FCmp, Q, MaxRecurse)) 420 return V; 421 // Finally, if the false value simplified to true and the true value to 422 // false, then the result of the compare is equal to "!Cond". 423 if (match(FCmp, m_One()) && match(TCmp, m_Zero())) 424 if (Value *V = 425 SimplifyXorInst(Cond, Constant::getAllOnesValue(Cond->getType()), 426 Q, MaxRecurse)) 427 return V; 428 429 return nullptr; 430 } 431 432 /// In the case of a binary operation with an operand that is a PHI instruction, 433 /// try to simplify the binop by seeing whether evaluating it on the incoming 434 /// phi values yields the same result for every value. If so returns the common 435 /// value, otherwise returns null. 436 static Value *ThreadBinOpOverPHI(Instruction::BinaryOps Opcode, Value *LHS, 437 Value *RHS, const SimplifyQuery &Q, 438 unsigned MaxRecurse) { 439 // Recursion is always used, so bail out at once if we already hit the limit. 440 if (!MaxRecurse--) 441 return nullptr; 442 443 PHINode *PI; 444 if (isa<PHINode>(LHS)) { 445 PI = cast<PHINode>(LHS); 446 // Bail out if RHS and the phi may be mutually interdependent due to a loop. 447 if (!ValueDominatesPHI(RHS, PI, Q.DT)) 448 return nullptr; 449 } else { 450 assert(isa<PHINode>(RHS) && "No PHI instruction operand!"); 451 PI = cast<PHINode>(RHS); 452 // Bail out if LHS and the phi may be mutually interdependent due to a loop. 453 if (!ValueDominatesPHI(LHS, PI, Q.DT)) 454 return nullptr; 455 } 456 457 // Evaluate the BinOp on the incoming phi values. 458 Value *CommonValue = nullptr; 459 for (Value *Incoming : PI->incoming_values()) { 460 // If the incoming value is the phi node itself, it can safely be skipped. 461 if (Incoming == PI) continue; 462 Value *V = PI == LHS ? 463 SimplifyBinOp(Opcode, Incoming, RHS, Q, MaxRecurse) : 464 SimplifyBinOp(Opcode, LHS, Incoming, Q, MaxRecurse); 465 // If the operation failed to simplify, or simplified to a different value 466 // to previously, then give up. 467 if (!V || (CommonValue && V != CommonValue)) 468 return nullptr; 469 CommonValue = V; 470 } 471 472 return CommonValue; 473 } 474 475 /// In the case of a comparison with a PHI instruction, try to simplify the 476 /// comparison by seeing whether comparing with all of the incoming phi values 477 /// yields the same result every time. If so returns the common result, 478 /// otherwise returns null. 479 static Value *ThreadCmpOverPHI(CmpInst::Predicate Pred, Value *LHS, Value *RHS, 480 const SimplifyQuery &Q, unsigned MaxRecurse) { 481 // Recursion is always used, so bail out at once if we already hit the limit. 482 if (!MaxRecurse--) 483 return nullptr; 484 485 // Make sure the phi is on the LHS. 486 if (!isa<PHINode>(LHS)) { 487 std::swap(LHS, RHS); 488 Pred = CmpInst::getSwappedPredicate(Pred); 489 } 490 assert(isa<PHINode>(LHS) && "Not comparing with a phi instruction!"); 491 PHINode *PI = cast<PHINode>(LHS); 492 493 // Bail out if RHS and the phi may be mutually interdependent due to a loop. 494 if (!ValueDominatesPHI(RHS, PI, Q.DT)) 495 return nullptr; 496 497 // Evaluate the BinOp on the incoming phi values. 498 Value *CommonValue = nullptr; 499 for (Value *Incoming : PI->incoming_values()) { 500 // If the incoming value is the phi node itself, it can safely be skipped. 501 if (Incoming == PI) continue; 502 Value *V = SimplifyCmpInst(Pred, Incoming, RHS, Q, MaxRecurse); 503 // If the operation failed to simplify, or simplified to a different value 504 // to previously, then give up. 505 if (!V || (CommonValue && V != CommonValue)) 506 return nullptr; 507 CommonValue = V; 508 } 509 510 return CommonValue; 511 } 512 513 static Constant *foldOrCommuteConstant(Instruction::BinaryOps Opcode, 514 Value *&Op0, Value *&Op1, 515 const SimplifyQuery &Q) { 516 if (auto *CLHS = dyn_cast<Constant>(Op0)) { 517 if (auto *CRHS = dyn_cast<Constant>(Op1)) 518 return ConstantFoldBinaryOpOperands(Opcode, CLHS, CRHS, Q.DL); 519 520 // Canonicalize the constant to the RHS if this is a commutative operation. 521 if (Instruction::isCommutative(Opcode)) 522 std::swap(Op0, Op1); 523 } 524 return nullptr; 525 } 526 527 /// Given operands for an Add, see if we can fold the result. 528 /// If not, this returns null. 529 static Value *SimplifyAddInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, 530 const SimplifyQuery &Q, unsigned MaxRecurse) { 531 if (Constant *C = foldOrCommuteConstant(Instruction::Add, Op0, Op1, Q)) 532 return C; 533 534 // X + undef -> undef 535 if (match(Op1, m_Undef())) 536 return Op1; 537 538 // X + 0 -> X 539 if (match(Op1, m_Zero())) 540 return Op0; 541 542 // X + (Y - X) -> Y 543 // (Y - X) + X -> Y 544 // Eg: X + -X -> 0 545 Value *Y = nullptr; 546 if (match(Op1, m_Sub(m_Value(Y), m_Specific(Op0))) || 547 match(Op0, m_Sub(m_Value(Y), m_Specific(Op1)))) 548 return Y; 549 550 // X + ~X -> -1 since ~X = -X-1 551 Type *Ty = Op0->getType(); 552 if (match(Op0, m_Not(m_Specific(Op1))) || 553 match(Op1, m_Not(m_Specific(Op0)))) 554 return Constant::getAllOnesValue(Ty); 555 556 // add nsw/nuw (xor Y, signmask), signmask --> Y 557 // The no-wrapping add guarantees that the top bit will be set by the add. 558 // Therefore, the xor must be clearing the already set sign bit of Y. 559 if ((isNSW || isNUW) && match(Op1, m_SignMask()) && 560 match(Op0, m_Xor(m_Value(Y), m_SignMask()))) 561 return Y; 562 563 /// i1 add -> xor. 564 if (MaxRecurse && Op0->getType()->isIntOrIntVectorTy(1)) 565 if (Value *V = SimplifyXorInst(Op0, Op1, Q, MaxRecurse-1)) 566 return V; 567 568 // Try some generic simplifications for associative operations. 569 if (Value *V = SimplifyAssociativeBinOp(Instruction::Add, Op0, Op1, Q, 570 MaxRecurse)) 571 return V; 572 573 // Threading Add over selects and phi nodes is pointless, so don't bother. 574 // Threading over the select in "A + select(cond, B, C)" means evaluating 575 // "A+B" and "A+C" and seeing if they are equal; but they are equal if and 576 // only if B and C are equal. If B and C are equal then (since we assume 577 // that operands have already been simplified) "select(cond, B, C)" should 578 // have been simplified to the common value of B and C already. Analysing 579 // "A+B" and "A+C" thus gains nothing, but costs compile time. Similarly 580 // for threading over phi nodes. 581 582 return nullptr; 583 } 584 585 Value *llvm::SimplifyAddInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, 586 const SimplifyQuery &Query) { 587 return ::SimplifyAddInst(Op0, Op1, isNSW, isNUW, Query, RecursionLimit); 588 } 589 590 /// \brief Compute the base pointer and cumulative constant offsets for V. 591 /// 592 /// This strips all constant offsets off of V, leaving it the base pointer, and 593 /// accumulates the total constant offset applied in the returned constant. It 594 /// returns 0 if V is not a pointer, and returns the constant '0' if there are 595 /// no constant offsets applied. 596 /// 597 /// This is very similar to GetPointerBaseWithConstantOffset except it doesn't 598 /// follow non-inbounds geps. This allows it to remain usable for icmp ult/etc. 599 /// folding. 600 static Constant *stripAndComputeConstantOffsets(const DataLayout &DL, Value *&V, 601 bool AllowNonInbounds = false) { 602 assert(V->getType()->isPtrOrPtrVectorTy()); 603 604 Type *IntPtrTy = DL.getIntPtrType(V->getType())->getScalarType(); 605 APInt Offset = APInt::getNullValue(IntPtrTy->getIntegerBitWidth()); 606 607 // Even though we don't look through PHI nodes, we could be called on an 608 // instruction in an unreachable block, which may be on a cycle. 609 SmallPtrSet<Value *, 4> Visited; 610 Visited.insert(V); 611 do { 612 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 613 if ((!AllowNonInbounds && !GEP->isInBounds()) || 614 !GEP->accumulateConstantOffset(DL, Offset)) 615 break; 616 V = GEP->getPointerOperand(); 617 } else if (Operator::getOpcode(V) == Instruction::BitCast) { 618 V = cast<Operator>(V)->getOperand(0); 619 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 620 if (GA->isInterposable()) 621 break; 622 V = GA->getAliasee(); 623 } else { 624 if (auto CS = CallSite(V)) 625 if (Value *RV = CS.getReturnedArgOperand()) { 626 V = RV; 627 continue; 628 } 629 break; 630 } 631 assert(V->getType()->isPtrOrPtrVectorTy() && "Unexpected operand type!"); 632 } while (Visited.insert(V).second); 633 634 Constant *OffsetIntPtr = ConstantInt::get(IntPtrTy, Offset); 635 if (V->getType()->isVectorTy()) 636 return ConstantVector::getSplat(V->getType()->getVectorNumElements(), 637 OffsetIntPtr); 638 return OffsetIntPtr; 639 } 640 641 /// \brief Compute the constant difference between two pointer values. 642 /// If the difference is not a constant, returns zero. 643 static Constant *computePointerDifference(const DataLayout &DL, Value *LHS, 644 Value *RHS) { 645 Constant *LHSOffset = stripAndComputeConstantOffsets(DL, LHS); 646 Constant *RHSOffset = stripAndComputeConstantOffsets(DL, RHS); 647 648 // If LHS and RHS are not related via constant offsets to the same base 649 // value, there is nothing we can do here. 650 if (LHS != RHS) 651 return nullptr; 652 653 // Otherwise, the difference of LHS - RHS can be computed as: 654 // LHS - RHS 655 // = (LHSOffset + Base) - (RHSOffset + Base) 656 // = LHSOffset - RHSOffset 657 return ConstantExpr::getSub(LHSOffset, RHSOffset); 658 } 659 660 /// Given operands for a Sub, see if we can fold the result. 661 /// If not, this returns null. 662 static Value *SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, 663 const SimplifyQuery &Q, unsigned MaxRecurse) { 664 if (Constant *C = foldOrCommuteConstant(Instruction::Sub, Op0, Op1, Q)) 665 return C; 666 667 // X - undef -> undef 668 // undef - X -> undef 669 if (match(Op0, m_Undef()) || match(Op1, m_Undef())) 670 return UndefValue::get(Op0->getType()); 671 672 // X - 0 -> X 673 if (match(Op1, m_Zero())) 674 return Op0; 675 676 // X - X -> 0 677 if (Op0 == Op1) 678 return Constant::getNullValue(Op0->getType()); 679 680 // Is this a negation? 681 if (match(Op0, m_Zero())) { 682 // 0 - X -> 0 if the sub is NUW. 683 if (isNUW) 684 return Op0; 685 686 KnownBits Known = computeKnownBits(Op1, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 687 if (Known.Zero.isMaxSignedValue()) { 688 // Op1 is either 0 or the minimum signed value. If the sub is NSW, then 689 // Op1 must be 0 because negating the minimum signed value is undefined. 690 if (isNSW) 691 return Op0; 692 693 // 0 - X -> X if X is 0 or the minimum signed value. 694 return Op1; 695 } 696 } 697 698 // (X + Y) - Z -> X + (Y - Z) or Y + (X - Z) if everything simplifies. 699 // For example, (X + Y) - Y -> X; (Y + X) - Y -> X 700 Value *X = nullptr, *Y = nullptr, *Z = Op1; 701 if (MaxRecurse && match(Op0, m_Add(m_Value(X), m_Value(Y)))) { // (X + Y) - Z 702 // See if "V === Y - Z" simplifies. 703 if (Value *V = SimplifyBinOp(Instruction::Sub, Y, Z, Q, MaxRecurse-1)) 704 // It does! Now see if "X + V" simplifies. 705 if (Value *W = SimplifyBinOp(Instruction::Add, X, V, Q, MaxRecurse-1)) { 706 // It does, we successfully reassociated! 707 ++NumReassoc; 708 return W; 709 } 710 // See if "V === X - Z" simplifies. 711 if (Value *V = SimplifyBinOp(Instruction::Sub, X, Z, Q, MaxRecurse-1)) 712 // It does! Now see if "Y + V" simplifies. 713 if (Value *W = SimplifyBinOp(Instruction::Add, Y, V, Q, MaxRecurse-1)) { 714 // It does, we successfully reassociated! 715 ++NumReassoc; 716 return W; 717 } 718 } 719 720 // X - (Y + Z) -> (X - Y) - Z or (X - Z) - Y if everything simplifies. 721 // For example, X - (X + 1) -> -1 722 X = Op0; 723 if (MaxRecurse && match(Op1, m_Add(m_Value(Y), m_Value(Z)))) { // X - (Y + Z) 724 // See if "V === X - Y" simplifies. 725 if (Value *V = SimplifyBinOp(Instruction::Sub, X, Y, Q, MaxRecurse-1)) 726 // It does! Now see if "V - Z" simplifies. 727 if (Value *W = SimplifyBinOp(Instruction::Sub, V, Z, Q, MaxRecurse-1)) { 728 // It does, we successfully reassociated! 729 ++NumReassoc; 730 return W; 731 } 732 // See if "V === X - Z" simplifies. 733 if (Value *V = SimplifyBinOp(Instruction::Sub, X, Z, Q, MaxRecurse-1)) 734 // It does! Now see if "V - Y" simplifies. 735 if (Value *W = SimplifyBinOp(Instruction::Sub, V, Y, Q, MaxRecurse-1)) { 736 // It does, we successfully reassociated! 737 ++NumReassoc; 738 return W; 739 } 740 } 741 742 // Z - (X - Y) -> (Z - X) + Y if everything simplifies. 743 // For example, X - (X - Y) -> Y. 744 Z = Op0; 745 if (MaxRecurse && match(Op1, m_Sub(m_Value(X), m_Value(Y)))) // Z - (X - Y) 746 // See if "V === Z - X" simplifies. 747 if (Value *V = SimplifyBinOp(Instruction::Sub, Z, X, Q, MaxRecurse-1)) 748 // It does! Now see if "V + Y" simplifies. 749 if (Value *W = SimplifyBinOp(Instruction::Add, V, Y, Q, MaxRecurse-1)) { 750 // It does, we successfully reassociated! 751 ++NumReassoc; 752 return W; 753 } 754 755 // trunc(X) - trunc(Y) -> trunc(X - Y) if everything simplifies. 756 if (MaxRecurse && match(Op0, m_Trunc(m_Value(X))) && 757 match(Op1, m_Trunc(m_Value(Y)))) 758 if (X->getType() == Y->getType()) 759 // See if "V === X - Y" simplifies. 760 if (Value *V = SimplifyBinOp(Instruction::Sub, X, Y, Q, MaxRecurse-1)) 761 // It does! Now see if "trunc V" simplifies. 762 if (Value *W = SimplifyCastInst(Instruction::Trunc, V, Op0->getType(), 763 Q, MaxRecurse - 1)) 764 // It does, return the simplified "trunc V". 765 return W; 766 767 // Variations on GEP(base, I, ...) - GEP(base, i, ...) -> GEP(null, I-i, ...). 768 if (match(Op0, m_PtrToInt(m_Value(X))) && 769 match(Op1, m_PtrToInt(m_Value(Y)))) 770 if (Constant *Result = computePointerDifference(Q.DL, X, Y)) 771 return ConstantExpr::getIntegerCast(Result, Op0->getType(), true); 772 773 // i1 sub -> xor. 774 if (MaxRecurse && Op0->getType()->isIntOrIntVectorTy(1)) 775 if (Value *V = SimplifyXorInst(Op0, Op1, Q, MaxRecurse-1)) 776 return V; 777 778 // Threading Sub over selects and phi nodes is pointless, so don't bother. 779 // Threading over the select in "A - select(cond, B, C)" means evaluating 780 // "A-B" and "A-C" and seeing if they are equal; but they are equal if and 781 // only if B and C are equal. If B and C are equal then (since we assume 782 // that operands have already been simplified) "select(cond, B, C)" should 783 // have been simplified to the common value of B and C already. Analysing 784 // "A-B" and "A-C" thus gains nothing, but costs compile time. Similarly 785 // for threading over phi nodes. 786 787 return nullptr; 788 } 789 790 Value *llvm::SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, 791 const SimplifyQuery &Q) { 792 return ::SimplifySubInst(Op0, Op1, isNSW, isNUW, Q, RecursionLimit); 793 } 794 795 /// Given operands for a Mul, see if we can fold the result. 796 /// If not, this returns null. 797 static Value *SimplifyMulInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 798 unsigned MaxRecurse) { 799 if (Constant *C = foldOrCommuteConstant(Instruction::Mul, Op0, Op1, Q)) 800 return C; 801 802 // X * undef -> 0 803 if (match(Op1, m_Undef())) 804 return Constant::getNullValue(Op0->getType()); 805 806 // X * 0 -> 0 807 if (match(Op1, m_Zero())) 808 return Op1; 809 810 // X * 1 -> X 811 if (match(Op1, m_One())) 812 return Op0; 813 814 // (X / Y) * Y -> X if the division is exact. 815 Value *X = nullptr; 816 if (match(Op0, m_Exact(m_IDiv(m_Value(X), m_Specific(Op1)))) || // (X / Y) * Y 817 match(Op1, m_Exact(m_IDiv(m_Value(X), m_Specific(Op0))))) // Y * (X / Y) 818 return X; 819 820 // i1 mul -> and. 821 if (MaxRecurse && Op0->getType()->isIntOrIntVectorTy(1)) 822 if (Value *V = SimplifyAndInst(Op0, Op1, Q, MaxRecurse-1)) 823 return V; 824 825 // Try some generic simplifications for associative operations. 826 if (Value *V = SimplifyAssociativeBinOp(Instruction::Mul, Op0, Op1, Q, 827 MaxRecurse)) 828 return V; 829 830 // Mul distributes over Add. Try some generic simplifications based on this. 831 if (Value *V = ExpandBinOp(Instruction::Mul, Op0, Op1, Instruction::Add, 832 Q, MaxRecurse)) 833 return V; 834 835 // If the operation is with the result of a select instruction, check whether 836 // operating on either branch of the select always yields the same value. 837 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 838 if (Value *V = ThreadBinOpOverSelect(Instruction::Mul, Op0, Op1, Q, 839 MaxRecurse)) 840 return V; 841 842 // If the operation is with the result of a phi instruction, check whether 843 // operating on all incoming values of the phi always yields the same value. 844 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 845 if (Value *V = ThreadBinOpOverPHI(Instruction::Mul, Op0, Op1, Q, 846 MaxRecurse)) 847 return V; 848 849 return nullptr; 850 } 851 852 Value *llvm::SimplifyMulInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 853 return ::SimplifyMulInst(Op0, Op1, Q, RecursionLimit); 854 } 855 856 /// Check for common or similar folds of integer division or integer remainder. 857 /// This applies to all 4 opcodes (sdiv/udiv/srem/urem). 858 static Value *simplifyDivRem(Value *Op0, Value *Op1, bool IsDiv) { 859 Type *Ty = Op0->getType(); 860 861 // X / undef -> undef 862 // X % undef -> undef 863 if (match(Op1, m_Undef())) 864 return Op1; 865 866 // X / 0 -> undef 867 // X % 0 -> undef 868 // We don't need to preserve faults! 869 if (match(Op1, m_Zero())) 870 return UndefValue::get(Ty); 871 872 // If any element of a constant divisor vector is zero, the whole op is undef. 873 auto *Op1C = dyn_cast<Constant>(Op1); 874 if (Op1C && Ty->isVectorTy()) { 875 unsigned NumElts = Ty->getVectorNumElements(); 876 for (unsigned i = 0; i != NumElts; ++i) { 877 Constant *Elt = Op1C->getAggregateElement(i); 878 if (Elt && Elt->isNullValue()) 879 return UndefValue::get(Ty); 880 } 881 } 882 883 // undef / X -> 0 884 // undef % X -> 0 885 if (match(Op0, m_Undef())) 886 return Constant::getNullValue(Ty); 887 888 // 0 / X -> 0 889 // 0 % X -> 0 890 if (match(Op0, m_Zero())) 891 return Op0; 892 893 // X / X -> 1 894 // X % X -> 0 895 if (Op0 == Op1) 896 return IsDiv ? ConstantInt::get(Ty, 1) : Constant::getNullValue(Ty); 897 898 // X / 1 -> X 899 // X % 1 -> 0 900 // If this is a boolean op (single-bit element type), we can't have 901 // division-by-zero or remainder-by-zero, so assume the divisor is 1. 902 if (match(Op1, m_One()) || Ty->isIntOrIntVectorTy(1)) 903 return IsDiv ? Op0 : Constant::getNullValue(Ty); 904 905 return nullptr; 906 } 907 908 /// Given a predicate and two operands, return true if the comparison is true. 909 /// This is a helper for div/rem simplification where we return some other value 910 /// when we can prove a relationship between the operands. 911 static bool isICmpTrue(ICmpInst::Predicate Pred, Value *LHS, Value *RHS, 912 const SimplifyQuery &Q, unsigned MaxRecurse) { 913 Value *V = SimplifyICmpInst(Pred, LHS, RHS, Q, MaxRecurse); 914 Constant *C = dyn_cast_or_null<Constant>(V); 915 return (C && C->isAllOnesValue()); 916 } 917 918 /// Return true if we can simplify X / Y to 0. Remainder can adapt that answer 919 /// to simplify X % Y to X. 920 static bool isDivZero(Value *X, Value *Y, const SimplifyQuery &Q, 921 unsigned MaxRecurse, bool IsSigned) { 922 // Recursion is always used, so bail out at once if we already hit the limit. 923 if (!MaxRecurse--) 924 return false; 925 926 if (IsSigned) { 927 // |X| / |Y| --> 0 928 // 929 // We require that 1 operand is a simple constant. That could be extended to 930 // 2 variables if we computed the sign bit for each. 931 // 932 // Make sure that a constant is not the minimum signed value because taking 933 // the abs() of that is undefined. 934 Type *Ty = X->getType(); 935 const APInt *C; 936 if (match(X, m_APInt(C)) && !C->isMinSignedValue()) { 937 // Is the variable divisor magnitude always greater than the constant 938 // dividend magnitude? 939 // |Y| > |C| --> Y < -abs(C) or Y > abs(C) 940 Constant *PosDividendC = ConstantInt::get(Ty, C->abs()); 941 Constant *NegDividendC = ConstantInt::get(Ty, -C->abs()); 942 if (isICmpTrue(CmpInst::ICMP_SLT, Y, NegDividendC, Q, MaxRecurse) || 943 isICmpTrue(CmpInst::ICMP_SGT, Y, PosDividendC, Q, MaxRecurse)) 944 return true; 945 } 946 if (match(Y, m_APInt(C))) { 947 // Special-case: we can't take the abs() of a minimum signed value. If 948 // that's the divisor, then all we have to do is prove that the dividend 949 // is also not the minimum signed value. 950 if (C->isMinSignedValue()) 951 return isICmpTrue(CmpInst::ICMP_NE, X, Y, Q, MaxRecurse); 952 953 // Is the variable dividend magnitude always less than the constant 954 // divisor magnitude? 955 // |X| < |C| --> X > -abs(C) and X < abs(C) 956 Constant *PosDivisorC = ConstantInt::get(Ty, C->abs()); 957 Constant *NegDivisorC = ConstantInt::get(Ty, -C->abs()); 958 if (isICmpTrue(CmpInst::ICMP_SGT, X, NegDivisorC, Q, MaxRecurse) && 959 isICmpTrue(CmpInst::ICMP_SLT, X, PosDivisorC, Q, MaxRecurse)) 960 return true; 961 } 962 return false; 963 } 964 965 // IsSigned == false. 966 // Is the dividend unsigned less than the divisor? 967 return isICmpTrue(ICmpInst::ICMP_ULT, X, Y, Q, MaxRecurse); 968 } 969 970 /// These are simplifications common to SDiv and UDiv. 971 static Value *simplifyDiv(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1, 972 const SimplifyQuery &Q, unsigned MaxRecurse) { 973 if (Constant *C = foldOrCommuteConstant(Opcode, Op0, Op1, Q)) 974 return C; 975 976 if (Value *V = simplifyDivRem(Op0, Op1, true)) 977 return V; 978 979 bool IsSigned = Opcode == Instruction::SDiv; 980 981 // (X * Y) / Y -> X if the multiplication does not overflow. 982 Value *X = nullptr, *Y = nullptr; 983 if (match(Op0, m_Mul(m_Value(X), m_Value(Y))) && (X == Op1 || Y == Op1)) { 984 if (Y != Op1) std::swap(X, Y); // Ensure expression is (X * Y) / Y, Y = Op1 985 OverflowingBinaryOperator *Mul = cast<OverflowingBinaryOperator>(Op0); 986 // If the Mul knows it does not overflow, then we are good to go. 987 if ((IsSigned && Mul->hasNoSignedWrap()) || 988 (!IsSigned && Mul->hasNoUnsignedWrap())) 989 return X; 990 // If X has the form X = A / Y then X * Y cannot overflow. 991 if (BinaryOperator *Div = dyn_cast<BinaryOperator>(X)) 992 if (Div->getOpcode() == Opcode && Div->getOperand(1) == Y) 993 return X; 994 } 995 996 // (X rem Y) / Y -> 0 997 if ((IsSigned && match(Op0, m_SRem(m_Value(), m_Specific(Op1)))) || 998 (!IsSigned && match(Op0, m_URem(m_Value(), m_Specific(Op1))))) 999 return Constant::getNullValue(Op0->getType()); 1000 1001 // (X /u C1) /u C2 -> 0 if C1 * C2 overflow 1002 ConstantInt *C1, *C2; 1003 if (!IsSigned && match(Op0, m_UDiv(m_Value(X), m_ConstantInt(C1))) && 1004 match(Op1, m_ConstantInt(C2))) { 1005 bool Overflow; 1006 (void)C1->getValue().umul_ov(C2->getValue(), Overflow); 1007 if (Overflow) 1008 return Constant::getNullValue(Op0->getType()); 1009 } 1010 1011 // If the operation is with the result of a select instruction, check whether 1012 // operating on either branch of the select always yields the same value. 1013 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 1014 if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse)) 1015 return V; 1016 1017 // If the operation is with the result of a phi instruction, check whether 1018 // operating on all incoming values of the phi always yields the same value. 1019 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 1020 if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse)) 1021 return V; 1022 1023 if (isDivZero(Op0, Op1, Q, MaxRecurse, IsSigned)) 1024 return Constant::getNullValue(Op0->getType()); 1025 1026 return nullptr; 1027 } 1028 1029 /// These are simplifications common to SRem and URem. 1030 static Value *simplifyRem(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1, 1031 const SimplifyQuery &Q, unsigned MaxRecurse) { 1032 if (Constant *C = foldOrCommuteConstant(Opcode, Op0, Op1, Q)) 1033 return C; 1034 1035 if (Value *V = simplifyDivRem(Op0, Op1, false)) 1036 return V; 1037 1038 // (X % Y) % Y -> X % Y 1039 if ((Opcode == Instruction::SRem && 1040 match(Op0, m_SRem(m_Value(), m_Specific(Op1)))) || 1041 (Opcode == Instruction::URem && 1042 match(Op0, m_URem(m_Value(), m_Specific(Op1))))) 1043 return Op0; 1044 1045 // If the operation is with the result of a select instruction, check whether 1046 // operating on either branch of the select always yields the same value. 1047 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 1048 if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse)) 1049 return V; 1050 1051 // If the operation is with the result of a phi instruction, check whether 1052 // operating on all incoming values of the phi always yields the same value. 1053 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 1054 if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse)) 1055 return V; 1056 1057 // If X / Y == 0, then X % Y == X. 1058 if (isDivZero(Op0, Op1, Q, MaxRecurse, Opcode == Instruction::SRem)) 1059 return Op0; 1060 1061 return nullptr; 1062 } 1063 1064 /// Given operands for an SDiv, see if we can fold the result. 1065 /// If not, this returns null. 1066 static Value *SimplifySDivInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 1067 unsigned MaxRecurse) { 1068 return simplifyDiv(Instruction::SDiv, Op0, Op1, Q, MaxRecurse); 1069 } 1070 1071 Value *llvm::SimplifySDivInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 1072 return ::SimplifySDivInst(Op0, Op1, Q, RecursionLimit); 1073 } 1074 1075 /// Given operands for a UDiv, see if we can fold the result. 1076 /// If not, this returns null. 1077 static Value *SimplifyUDivInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 1078 unsigned MaxRecurse) { 1079 return simplifyDiv(Instruction::UDiv, Op0, Op1, Q, MaxRecurse); 1080 } 1081 1082 Value *llvm::SimplifyUDivInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 1083 return ::SimplifyUDivInst(Op0, Op1, Q, RecursionLimit); 1084 } 1085 1086 /// Given operands for an SRem, see if we can fold the result. 1087 /// If not, this returns null. 1088 static Value *SimplifySRemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 1089 unsigned MaxRecurse) { 1090 return simplifyRem(Instruction::SRem, Op0, Op1, Q, MaxRecurse); 1091 } 1092 1093 Value *llvm::SimplifySRemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 1094 return ::SimplifySRemInst(Op0, Op1, Q, RecursionLimit); 1095 } 1096 1097 /// Given operands for a URem, see if we can fold the result. 1098 /// If not, this returns null. 1099 static Value *SimplifyURemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 1100 unsigned MaxRecurse) { 1101 return simplifyRem(Instruction::URem, Op0, Op1, Q, MaxRecurse); 1102 } 1103 1104 Value *llvm::SimplifyURemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 1105 return ::SimplifyURemInst(Op0, Op1, Q, RecursionLimit); 1106 } 1107 1108 /// Returns true if a shift by \c Amount always yields undef. 1109 static bool isUndefShift(Value *Amount) { 1110 Constant *C = dyn_cast<Constant>(Amount); 1111 if (!C) 1112 return false; 1113 1114 // X shift by undef -> undef because it may shift by the bitwidth. 1115 if (isa<UndefValue>(C)) 1116 return true; 1117 1118 // Shifting by the bitwidth or more is undefined. 1119 if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1120 if (CI->getValue().getLimitedValue() >= 1121 CI->getType()->getScalarSizeInBits()) 1122 return true; 1123 1124 // If all lanes of a vector shift are undefined the whole shift is. 1125 if (isa<ConstantVector>(C) || isa<ConstantDataVector>(C)) { 1126 for (unsigned I = 0, E = C->getType()->getVectorNumElements(); I != E; ++I) 1127 if (!isUndefShift(C->getAggregateElement(I))) 1128 return false; 1129 return true; 1130 } 1131 1132 return false; 1133 } 1134 1135 /// Given operands for an Shl, LShr or AShr, see if we can fold the result. 1136 /// If not, this returns null. 1137 static Value *SimplifyShift(Instruction::BinaryOps Opcode, Value *Op0, 1138 Value *Op1, const SimplifyQuery &Q, unsigned MaxRecurse) { 1139 if (Constant *C = foldOrCommuteConstant(Opcode, Op0, Op1, Q)) 1140 return C; 1141 1142 // 0 shift by X -> 0 1143 if (match(Op0, m_Zero())) 1144 return Op0; 1145 1146 // X shift by 0 -> X 1147 if (match(Op1, m_Zero())) 1148 return Op0; 1149 1150 // Fold undefined shifts. 1151 if (isUndefShift(Op1)) 1152 return UndefValue::get(Op0->getType()); 1153 1154 // If the operation is with the result of a select instruction, check whether 1155 // operating on either branch of the select always yields the same value. 1156 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 1157 if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse)) 1158 return V; 1159 1160 // If the operation is with the result of a phi instruction, check whether 1161 // operating on all incoming values of the phi always yields the same value. 1162 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 1163 if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse)) 1164 return V; 1165 1166 // If any bits in the shift amount make that value greater than or equal to 1167 // the number of bits in the type, the shift is undefined. 1168 KnownBits Known = computeKnownBits(Op1, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 1169 if (Known.One.getLimitedValue() >= Known.getBitWidth()) 1170 return UndefValue::get(Op0->getType()); 1171 1172 // If all valid bits in the shift amount are known zero, the first operand is 1173 // unchanged. 1174 unsigned NumValidShiftBits = Log2_32_Ceil(Known.getBitWidth()); 1175 if (Known.countMinTrailingZeros() >= NumValidShiftBits) 1176 return Op0; 1177 1178 return nullptr; 1179 } 1180 1181 /// \brief Given operands for an Shl, LShr or AShr, see if we can 1182 /// fold the result. If not, this returns null. 1183 static Value *SimplifyRightShift(Instruction::BinaryOps Opcode, Value *Op0, 1184 Value *Op1, bool isExact, const SimplifyQuery &Q, 1185 unsigned MaxRecurse) { 1186 if (Value *V = SimplifyShift(Opcode, Op0, Op1, Q, MaxRecurse)) 1187 return V; 1188 1189 // X >> X -> 0 1190 if (Op0 == Op1) 1191 return Constant::getNullValue(Op0->getType()); 1192 1193 // undef >> X -> 0 1194 // undef >> X -> undef (if it's exact) 1195 if (match(Op0, m_Undef())) 1196 return isExact ? Op0 : Constant::getNullValue(Op0->getType()); 1197 1198 // The low bit cannot be shifted out of an exact shift if it is set. 1199 if (isExact) { 1200 KnownBits Op0Known = computeKnownBits(Op0, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT); 1201 if (Op0Known.One[0]) 1202 return Op0; 1203 } 1204 1205 return nullptr; 1206 } 1207 1208 /// Given operands for an Shl, see if we can fold the result. 1209 /// If not, this returns null. 1210 static Value *SimplifyShlInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, 1211 const SimplifyQuery &Q, unsigned MaxRecurse) { 1212 if (Value *V = SimplifyShift(Instruction::Shl, Op0, Op1, Q, MaxRecurse)) 1213 return V; 1214 1215 // undef << X -> 0 1216 // undef << X -> undef if (if it's NSW/NUW) 1217 if (match(Op0, m_Undef())) 1218 return isNSW || isNUW ? Op0 : Constant::getNullValue(Op0->getType()); 1219 1220 // (X >> A) << A -> X 1221 Value *X; 1222 if (match(Op0, m_Exact(m_Shr(m_Value(X), m_Specific(Op1))))) 1223 return X; 1224 return nullptr; 1225 } 1226 1227 Value *llvm::SimplifyShlInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, 1228 const SimplifyQuery &Q) { 1229 return ::SimplifyShlInst(Op0, Op1, isNSW, isNUW, Q, RecursionLimit); 1230 } 1231 1232 /// Given operands for an LShr, see if we can fold the result. 1233 /// If not, this returns null. 1234 static Value *SimplifyLShrInst(Value *Op0, Value *Op1, bool isExact, 1235 const SimplifyQuery &Q, unsigned MaxRecurse) { 1236 if (Value *V = SimplifyRightShift(Instruction::LShr, Op0, Op1, isExact, Q, 1237 MaxRecurse)) 1238 return V; 1239 1240 // (X << A) >> A -> X 1241 Value *X; 1242 if (match(Op0, m_NUWShl(m_Value(X), m_Specific(Op1)))) 1243 return X; 1244 1245 return nullptr; 1246 } 1247 1248 Value *llvm::SimplifyLShrInst(Value *Op0, Value *Op1, bool isExact, 1249 const SimplifyQuery &Q) { 1250 return ::SimplifyLShrInst(Op0, Op1, isExact, Q, RecursionLimit); 1251 } 1252 1253 /// Given operands for an AShr, see if we can fold the result. 1254 /// If not, this returns null. 1255 static Value *SimplifyAShrInst(Value *Op0, Value *Op1, bool isExact, 1256 const SimplifyQuery &Q, unsigned MaxRecurse) { 1257 if (Value *V = SimplifyRightShift(Instruction::AShr, Op0, Op1, isExact, Q, 1258 MaxRecurse)) 1259 return V; 1260 1261 // all ones >>a X -> all ones 1262 if (match(Op0, m_AllOnes())) 1263 return Op0; 1264 1265 // (X << A) >> A -> X 1266 Value *X; 1267 if (match(Op0, m_NSWShl(m_Value(X), m_Specific(Op1)))) 1268 return X; 1269 1270 // Arithmetic shifting an all-sign-bit value is a no-op. 1271 unsigned NumSignBits = ComputeNumSignBits(Op0, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 1272 if (NumSignBits == Op0->getType()->getScalarSizeInBits()) 1273 return Op0; 1274 1275 return nullptr; 1276 } 1277 1278 Value *llvm::SimplifyAShrInst(Value *Op0, Value *Op1, bool isExact, 1279 const SimplifyQuery &Q) { 1280 return ::SimplifyAShrInst(Op0, Op1, isExact, Q, RecursionLimit); 1281 } 1282 1283 /// Commuted variants are assumed to be handled by calling this function again 1284 /// with the parameters swapped. 1285 static Value *simplifyUnsignedRangeCheck(ICmpInst *ZeroICmp, 1286 ICmpInst *UnsignedICmp, bool IsAnd) { 1287 Value *X, *Y; 1288 1289 ICmpInst::Predicate EqPred; 1290 if (!match(ZeroICmp, m_ICmp(EqPred, m_Value(Y), m_Zero())) || 1291 !ICmpInst::isEquality(EqPred)) 1292 return nullptr; 1293 1294 ICmpInst::Predicate UnsignedPred; 1295 if (match(UnsignedICmp, m_ICmp(UnsignedPred, m_Value(X), m_Specific(Y))) && 1296 ICmpInst::isUnsigned(UnsignedPred)) 1297 ; 1298 else if (match(UnsignedICmp, 1299 m_ICmp(UnsignedPred, m_Value(Y), m_Specific(X))) && 1300 ICmpInst::isUnsigned(UnsignedPred)) 1301 UnsignedPred = ICmpInst::getSwappedPredicate(UnsignedPred); 1302 else 1303 return nullptr; 1304 1305 // X < Y && Y != 0 --> X < Y 1306 // X < Y || Y != 0 --> Y != 0 1307 if (UnsignedPred == ICmpInst::ICMP_ULT && EqPred == ICmpInst::ICMP_NE) 1308 return IsAnd ? UnsignedICmp : ZeroICmp; 1309 1310 // X >= Y || Y != 0 --> true 1311 // X >= Y || Y == 0 --> X >= Y 1312 if (UnsignedPred == ICmpInst::ICMP_UGE && !IsAnd) { 1313 if (EqPred == ICmpInst::ICMP_NE) 1314 return getTrue(UnsignedICmp->getType()); 1315 return UnsignedICmp; 1316 } 1317 1318 // X < Y && Y == 0 --> false 1319 if (UnsignedPred == ICmpInst::ICMP_ULT && EqPred == ICmpInst::ICMP_EQ && 1320 IsAnd) 1321 return getFalse(UnsignedICmp->getType()); 1322 1323 return nullptr; 1324 } 1325 1326 /// Commuted variants are assumed to be handled by calling this function again 1327 /// with the parameters swapped. 1328 static Value *simplifyAndOfICmpsWithSameOperands(ICmpInst *Op0, ICmpInst *Op1) { 1329 ICmpInst::Predicate Pred0, Pred1; 1330 Value *A ,*B; 1331 if (!match(Op0, m_ICmp(Pred0, m_Value(A), m_Value(B))) || 1332 !match(Op1, m_ICmp(Pred1, m_Specific(A), m_Specific(B)))) 1333 return nullptr; 1334 1335 // We have (icmp Pred0, A, B) & (icmp Pred1, A, B). 1336 // If Op1 is always implied true by Op0, then Op0 is a subset of Op1, and we 1337 // can eliminate Op1 from this 'and'. 1338 if (ICmpInst::isImpliedTrueByMatchingCmp(Pred0, Pred1)) 1339 return Op0; 1340 1341 // Check for any combination of predicates that are guaranteed to be disjoint. 1342 if ((Pred0 == ICmpInst::getInversePredicate(Pred1)) || 1343 (Pred0 == ICmpInst::ICMP_EQ && ICmpInst::isFalseWhenEqual(Pred1)) || 1344 (Pred0 == ICmpInst::ICMP_SLT && Pred1 == ICmpInst::ICMP_SGT) || 1345 (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_UGT)) 1346 return getFalse(Op0->getType()); 1347 1348 return nullptr; 1349 } 1350 1351 /// Commuted variants are assumed to be handled by calling this function again 1352 /// with the parameters swapped. 1353 static Value *simplifyOrOfICmpsWithSameOperands(ICmpInst *Op0, ICmpInst *Op1) { 1354 ICmpInst::Predicate Pred0, Pred1; 1355 Value *A ,*B; 1356 if (!match(Op0, m_ICmp(Pred0, m_Value(A), m_Value(B))) || 1357 !match(Op1, m_ICmp(Pred1, m_Specific(A), m_Specific(B)))) 1358 return nullptr; 1359 1360 // We have (icmp Pred0, A, B) | (icmp Pred1, A, B). 1361 // If Op1 is always implied true by Op0, then Op0 is a subset of Op1, and we 1362 // can eliminate Op0 from this 'or'. 1363 if (ICmpInst::isImpliedTrueByMatchingCmp(Pred0, Pred1)) 1364 return Op1; 1365 1366 // Check for any combination of predicates that cover the entire range of 1367 // possibilities. 1368 if ((Pred0 == ICmpInst::getInversePredicate(Pred1)) || 1369 (Pred0 == ICmpInst::ICMP_NE && ICmpInst::isTrueWhenEqual(Pred1)) || 1370 (Pred0 == ICmpInst::ICMP_SLE && Pred1 == ICmpInst::ICMP_SGE) || 1371 (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_UGE)) 1372 return getTrue(Op0->getType()); 1373 1374 return nullptr; 1375 } 1376 1377 /// Test if a pair of compares with a shared operand and 2 constants has an 1378 /// empty set intersection, full set union, or if one compare is a superset of 1379 /// the other. 1380 static Value *simplifyAndOrOfICmpsWithConstants(ICmpInst *Cmp0, ICmpInst *Cmp1, 1381 bool IsAnd) { 1382 // Look for this pattern: {and/or} (icmp X, C0), (icmp X, C1)). 1383 if (Cmp0->getOperand(0) != Cmp1->getOperand(0)) 1384 return nullptr; 1385 1386 const APInt *C0, *C1; 1387 if (!match(Cmp0->getOperand(1), m_APInt(C0)) || 1388 !match(Cmp1->getOperand(1), m_APInt(C1))) 1389 return nullptr; 1390 1391 auto Range0 = ConstantRange::makeExactICmpRegion(Cmp0->getPredicate(), *C0); 1392 auto Range1 = ConstantRange::makeExactICmpRegion(Cmp1->getPredicate(), *C1); 1393 1394 // For and-of-compares, check if the intersection is empty: 1395 // (icmp X, C0) && (icmp X, C1) --> empty set --> false 1396 if (IsAnd && Range0.intersectWith(Range1).isEmptySet()) 1397 return getFalse(Cmp0->getType()); 1398 1399 // For or-of-compares, check if the union is full: 1400 // (icmp X, C0) || (icmp X, C1) --> full set --> true 1401 if (!IsAnd && Range0.unionWith(Range1).isFullSet()) 1402 return getTrue(Cmp0->getType()); 1403 1404 // Is one range a superset of the other? 1405 // If this is and-of-compares, take the smaller set: 1406 // (icmp sgt X, 4) && (icmp sgt X, 42) --> icmp sgt X, 42 1407 // If this is or-of-compares, take the larger set: 1408 // (icmp sgt X, 4) || (icmp sgt X, 42) --> icmp sgt X, 4 1409 if (Range0.contains(Range1)) 1410 return IsAnd ? Cmp1 : Cmp0; 1411 if (Range1.contains(Range0)) 1412 return IsAnd ? Cmp0 : Cmp1; 1413 1414 return nullptr; 1415 } 1416 1417 static Value *simplifyAndOfICmpsWithAdd(ICmpInst *Op0, ICmpInst *Op1) { 1418 // (icmp (add V, C0), C1) & (icmp V, C0) 1419 ICmpInst::Predicate Pred0, Pred1; 1420 const APInt *C0, *C1; 1421 Value *V; 1422 if (!match(Op0, m_ICmp(Pred0, m_Add(m_Value(V), m_APInt(C0)), m_APInt(C1)))) 1423 return nullptr; 1424 1425 if (!match(Op1, m_ICmp(Pred1, m_Specific(V), m_Value()))) 1426 return nullptr; 1427 1428 auto *AddInst = cast<BinaryOperator>(Op0->getOperand(0)); 1429 if (AddInst->getOperand(1) != Op1->getOperand(1)) 1430 return nullptr; 1431 1432 Type *ITy = Op0->getType(); 1433 bool isNSW = AddInst->hasNoSignedWrap(); 1434 bool isNUW = AddInst->hasNoUnsignedWrap(); 1435 1436 const APInt Delta = *C1 - *C0; 1437 if (C0->isStrictlyPositive()) { 1438 if (Delta == 2) { 1439 if (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_SGT) 1440 return getFalse(ITy); 1441 if (Pred0 == ICmpInst::ICMP_SLT && Pred1 == ICmpInst::ICMP_SGT && isNSW) 1442 return getFalse(ITy); 1443 } 1444 if (Delta == 1) { 1445 if (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_SGT) 1446 return getFalse(ITy); 1447 if (Pred0 == ICmpInst::ICMP_SLE && Pred1 == ICmpInst::ICMP_SGT && isNSW) 1448 return getFalse(ITy); 1449 } 1450 } 1451 if (C0->getBoolValue() && isNUW) { 1452 if (Delta == 2) 1453 if (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_UGT) 1454 return getFalse(ITy); 1455 if (Delta == 1) 1456 if (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_UGT) 1457 return getFalse(ITy); 1458 } 1459 1460 return nullptr; 1461 } 1462 1463 static Value *simplifyAndOfICmps(ICmpInst *Op0, ICmpInst *Op1) { 1464 if (Value *X = simplifyUnsignedRangeCheck(Op0, Op1, /*IsAnd=*/true)) 1465 return X; 1466 if (Value *X = simplifyUnsignedRangeCheck(Op1, Op0, /*IsAnd=*/true)) 1467 return X; 1468 1469 if (Value *X = simplifyAndOfICmpsWithSameOperands(Op0, Op1)) 1470 return X; 1471 if (Value *X = simplifyAndOfICmpsWithSameOperands(Op1, Op0)) 1472 return X; 1473 1474 if (Value *X = simplifyAndOrOfICmpsWithConstants(Op0, Op1, true)) 1475 return X; 1476 1477 if (Value *X = simplifyAndOfICmpsWithAdd(Op0, Op1)) 1478 return X; 1479 if (Value *X = simplifyAndOfICmpsWithAdd(Op1, Op0)) 1480 return X; 1481 1482 return nullptr; 1483 } 1484 1485 static Value *simplifyOrOfICmpsWithAdd(ICmpInst *Op0, ICmpInst *Op1) { 1486 // (icmp (add V, C0), C1) | (icmp V, C0) 1487 ICmpInst::Predicate Pred0, Pred1; 1488 const APInt *C0, *C1; 1489 Value *V; 1490 if (!match(Op0, m_ICmp(Pred0, m_Add(m_Value(V), m_APInt(C0)), m_APInt(C1)))) 1491 return nullptr; 1492 1493 if (!match(Op1, m_ICmp(Pred1, m_Specific(V), m_Value()))) 1494 return nullptr; 1495 1496 auto *AddInst = cast<BinaryOperator>(Op0->getOperand(0)); 1497 if (AddInst->getOperand(1) != Op1->getOperand(1)) 1498 return nullptr; 1499 1500 Type *ITy = Op0->getType(); 1501 bool isNSW = AddInst->hasNoSignedWrap(); 1502 bool isNUW = AddInst->hasNoUnsignedWrap(); 1503 1504 const APInt Delta = *C1 - *C0; 1505 if (C0->isStrictlyPositive()) { 1506 if (Delta == 2) { 1507 if (Pred0 == ICmpInst::ICMP_UGE && Pred1 == ICmpInst::ICMP_SLE) 1508 return getTrue(ITy); 1509 if (Pred0 == ICmpInst::ICMP_SGE && Pred1 == ICmpInst::ICMP_SLE && isNSW) 1510 return getTrue(ITy); 1511 } 1512 if (Delta == 1) { 1513 if (Pred0 == ICmpInst::ICMP_UGT && Pred1 == ICmpInst::ICMP_SLE) 1514 return getTrue(ITy); 1515 if (Pred0 == ICmpInst::ICMP_SGT && Pred1 == ICmpInst::ICMP_SLE && isNSW) 1516 return getTrue(ITy); 1517 } 1518 } 1519 if (C0->getBoolValue() && isNUW) { 1520 if (Delta == 2) 1521 if (Pred0 == ICmpInst::ICMP_UGE && Pred1 == ICmpInst::ICMP_ULE) 1522 return getTrue(ITy); 1523 if (Delta == 1) 1524 if (Pred0 == ICmpInst::ICMP_UGT && Pred1 == ICmpInst::ICMP_ULE) 1525 return getTrue(ITy); 1526 } 1527 1528 return nullptr; 1529 } 1530 1531 static Value *simplifyOrOfICmps(ICmpInst *Op0, ICmpInst *Op1) { 1532 if (Value *X = simplifyUnsignedRangeCheck(Op0, Op1, /*IsAnd=*/false)) 1533 return X; 1534 if (Value *X = simplifyUnsignedRangeCheck(Op1, Op0, /*IsAnd=*/false)) 1535 return X; 1536 1537 if (Value *X = simplifyOrOfICmpsWithSameOperands(Op0, Op1)) 1538 return X; 1539 if (Value *X = simplifyOrOfICmpsWithSameOperands(Op1, Op0)) 1540 return X; 1541 1542 if (Value *X = simplifyAndOrOfICmpsWithConstants(Op0, Op1, false)) 1543 return X; 1544 1545 if (Value *X = simplifyOrOfICmpsWithAdd(Op0, Op1)) 1546 return X; 1547 if (Value *X = simplifyOrOfICmpsWithAdd(Op1, Op0)) 1548 return X; 1549 1550 return nullptr; 1551 } 1552 1553 static Value *simplifyAndOrOfFCmps(FCmpInst *LHS, FCmpInst *RHS, bool IsAnd) { 1554 Value *LHS0 = LHS->getOperand(0), *LHS1 = LHS->getOperand(1); 1555 Value *RHS0 = RHS->getOperand(0), *RHS1 = RHS->getOperand(1); 1556 if (LHS0->getType() != RHS0->getType()) 1557 return nullptr; 1558 1559 FCmpInst::Predicate PredL = LHS->getPredicate(), PredR = RHS->getPredicate(); 1560 if ((PredL == FCmpInst::FCMP_ORD && PredR == FCmpInst::FCMP_ORD && IsAnd) || 1561 (PredL == FCmpInst::FCMP_UNO && PredR == FCmpInst::FCMP_UNO && !IsAnd)) { 1562 // (fcmp ord NNAN, X) & (fcmp ord X, Y) --> fcmp ord X, Y 1563 // (fcmp ord NNAN, X) & (fcmp ord Y, X) --> fcmp ord Y, X 1564 // (fcmp ord X, NNAN) & (fcmp ord X, Y) --> fcmp ord X, Y 1565 // (fcmp ord X, NNAN) & (fcmp ord Y, X) --> fcmp ord Y, X 1566 // (fcmp uno NNAN, X) | (fcmp uno X, Y) --> fcmp uno X, Y 1567 // (fcmp uno NNAN, X) | (fcmp uno Y, X) --> fcmp uno Y, X 1568 // (fcmp uno X, NNAN) | (fcmp uno X, Y) --> fcmp uno X, Y 1569 // (fcmp uno X, NNAN) | (fcmp uno Y, X) --> fcmp uno Y, X 1570 if ((isKnownNeverNaN(LHS0) && (LHS1 == RHS0 || LHS1 == RHS1)) || 1571 (isKnownNeverNaN(LHS1) && (LHS0 == RHS0 || LHS0 == RHS1))) 1572 return RHS; 1573 1574 // (fcmp ord X, Y) & (fcmp ord NNAN, X) --> fcmp ord X, Y 1575 // (fcmp ord Y, X) & (fcmp ord NNAN, X) --> fcmp ord Y, X 1576 // (fcmp ord X, Y) & (fcmp ord X, NNAN) --> fcmp ord X, Y 1577 // (fcmp ord Y, X) & (fcmp ord X, NNAN) --> fcmp ord Y, X 1578 // (fcmp uno X, Y) | (fcmp uno NNAN, X) --> fcmp uno X, Y 1579 // (fcmp uno Y, X) | (fcmp uno NNAN, X) --> fcmp uno Y, X 1580 // (fcmp uno X, Y) | (fcmp uno X, NNAN) --> fcmp uno X, Y 1581 // (fcmp uno Y, X) | (fcmp uno X, NNAN) --> fcmp uno Y, X 1582 if ((isKnownNeverNaN(RHS0) && (RHS1 == LHS0 || RHS1 == LHS1)) || 1583 (isKnownNeverNaN(RHS1) && (RHS0 == LHS0 || RHS0 == LHS1))) 1584 return LHS; 1585 } 1586 1587 return nullptr; 1588 } 1589 1590 static Value *simplifyAndOrOfCmps(Value *Op0, Value *Op1, bool IsAnd) { 1591 // Look through casts of the 'and' operands to find compares. 1592 auto *Cast0 = dyn_cast<CastInst>(Op0); 1593 auto *Cast1 = dyn_cast<CastInst>(Op1); 1594 if (Cast0 && Cast1 && Cast0->getOpcode() == Cast1->getOpcode() && 1595 Cast0->getSrcTy() == Cast1->getSrcTy()) { 1596 Op0 = Cast0->getOperand(0); 1597 Op1 = Cast1->getOperand(0); 1598 } 1599 1600 Value *V = nullptr; 1601 auto *ICmp0 = dyn_cast<ICmpInst>(Op0); 1602 auto *ICmp1 = dyn_cast<ICmpInst>(Op1); 1603 if (ICmp0 && ICmp1) 1604 V = IsAnd ? simplifyAndOfICmps(ICmp0, ICmp1) : 1605 simplifyOrOfICmps(ICmp0, ICmp1); 1606 1607 auto *FCmp0 = dyn_cast<FCmpInst>(Op0); 1608 auto *FCmp1 = dyn_cast<FCmpInst>(Op1); 1609 if (FCmp0 && FCmp1) 1610 V = simplifyAndOrOfFCmps(FCmp0, FCmp1, IsAnd); 1611 1612 if (!V) 1613 return nullptr; 1614 if (!Cast0) 1615 return V; 1616 1617 // If we looked through casts, we can only handle a constant simplification 1618 // because we are not allowed to create a cast instruction here. 1619 if (auto *C = dyn_cast<Constant>(V)) 1620 return ConstantExpr::getCast(Cast0->getOpcode(), C, Cast0->getType()); 1621 1622 return nullptr; 1623 } 1624 1625 /// Given operands for an And, see if we can fold the result. 1626 /// If not, this returns null. 1627 static Value *SimplifyAndInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 1628 unsigned MaxRecurse) { 1629 if (Constant *C = foldOrCommuteConstant(Instruction::And, Op0, Op1, Q)) 1630 return C; 1631 1632 // X & undef -> 0 1633 if (match(Op1, m_Undef())) 1634 return Constant::getNullValue(Op0->getType()); 1635 1636 // X & X = X 1637 if (Op0 == Op1) 1638 return Op0; 1639 1640 // X & 0 = 0 1641 if (match(Op1, m_Zero())) 1642 return Op1; 1643 1644 // X & -1 = X 1645 if (match(Op1, m_AllOnes())) 1646 return Op0; 1647 1648 // A & ~A = ~A & A = 0 1649 if (match(Op0, m_Not(m_Specific(Op1))) || 1650 match(Op1, m_Not(m_Specific(Op0)))) 1651 return Constant::getNullValue(Op0->getType()); 1652 1653 // (A | ?) & A = A 1654 if (match(Op0, m_c_Or(m_Specific(Op1), m_Value()))) 1655 return Op1; 1656 1657 // A & (A | ?) = A 1658 if (match(Op1, m_c_Or(m_Specific(Op0), m_Value()))) 1659 return Op0; 1660 1661 // A mask that only clears known zeros of a shifted value is a no-op. 1662 Value *X; 1663 const APInt *Mask; 1664 const APInt *ShAmt; 1665 if (match(Op1, m_APInt(Mask))) { 1666 // If all bits in the inverted and shifted mask are clear: 1667 // and (shl X, ShAmt), Mask --> shl X, ShAmt 1668 if (match(Op0, m_Shl(m_Value(X), m_APInt(ShAmt))) && 1669 (~(*Mask)).lshr(*ShAmt).isNullValue()) 1670 return Op0; 1671 1672 // If all bits in the inverted and shifted mask are clear: 1673 // and (lshr X, ShAmt), Mask --> lshr X, ShAmt 1674 if (match(Op0, m_LShr(m_Value(X), m_APInt(ShAmt))) && 1675 (~(*Mask)).shl(*ShAmt).isNullValue()) 1676 return Op0; 1677 } 1678 1679 // A & (-A) = A if A is a power of two or zero. 1680 if (match(Op0, m_Neg(m_Specific(Op1))) || 1681 match(Op1, m_Neg(m_Specific(Op0)))) { 1682 if (isKnownToBeAPowerOfTwo(Op0, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI, 1683 Q.DT)) 1684 return Op0; 1685 if (isKnownToBeAPowerOfTwo(Op1, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI, 1686 Q.DT)) 1687 return Op1; 1688 } 1689 1690 if (Value *V = simplifyAndOrOfCmps(Op0, Op1, true)) 1691 return V; 1692 1693 // Try some generic simplifications for associative operations. 1694 if (Value *V = SimplifyAssociativeBinOp(Instruction::And, Op0, Op1, Q, 1695 MaxRecurse)) 1696 return V; 1697 1698 // And distributes over Or. Try some generic simplifications based on this. 1699 if (Value *V = ExpandBinOp(Instruction::And, Op0, Op1, Instruction::Or, 1700 Q, MaxRecurse)) 1701 return V; 1702 1703 // And distributes over Xor. Try some generic simplifications based on this. 1704 if (Value *V = ExpandBinOp(Instruction::And, Op0, Op1, Instruction::Xor, 1705 Q, MaxRecurse)) 1706 return V; 1707 1708 // If the operation is with the result of a select instruction, check whether 1709 // operating on either branch of the select always yields the same value. 1710 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 1711 if (Value *V = ThreadBinOpOverSelect(Instruction::And, Op0, Op1, Q, 1712 MaxRecurse)) 1713 return V; 1714 1715 // If the operation is with the result of a phi instruction, check whether 1716 // operating on all incoming values of the phi always yields the same value. 1717 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 1718 if (Value *V = ThreadBinOpOverPHI(Instruction::And, Op0, Op1, Q, 1719 MaxRecurse)) 1720 return V; 1721 1722 return nullptr; 1723 } 1724 1725 Value *llvm::SimplifyAndInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 1726 return ::SimplifyAndInst(Op0, Op1, Q, RecursionLimit); 1727 } 1728 1729 /// Given operands for an Or, see if we can fold the result. 1730 /// If not, this returns null. 1731 static Value *SimplifyOrInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 1732 unsigned MaxRecurse) { 1733 if (Constant *C = foldOrCommuteConstant(Instruction::Or, Op0, Op1, Q)) 1734 return C; 1735 1736 // X | undef -> -1 1737 if (match(Op1, m_Undef())) 1738 return Constant::getAllOnesValue(Op0->getType()); 1739 1740 // X | X = X 1741 if (Op0 == Op1) 1742 return Op0; 1743 1744 // X | 0 = X 1745 if (match(Op1, m_Zero())) 1746 return Op0; 1747 1748 // X | -1 = -1 1749 if (match(Op1, m_AllOnes())) 1750 return Op1; 1751 1752 // A | ~A = ~A | A = -1 1753 if (match(Op0, m_Not(m_Specific(Op1))) || 1754 match(Op1, m_Not(m_Specific(Op0)))) 1755 return Constant::getAllOnesValue(Op0->getType()); 1756 1757 // (A & ?) | A = A 1758 if (match(Op0, m_c_And(m_Specific(Op1), m_Value()))) 1759 return Op1; 1760 1761 // A | (A & ?) = A 1762 if (match(Op1, m_c_And(m_Specific(Op0), m_Value()))) 1763 return Op0; 1764 1765 // ~(A & ?) | A = -1 1766 if (match(Op0, m_Not(m_c_And(m_Specific(Op1), m_Value())))) 1767 return Constant::getAllOnesValue(Op1->getType()); 1768 1769 // A | ~(A & ?) = -1 1770 if (match(Op1, m_Not(m_c_And(m_Specific(Op1), m_Value())))) 1771 return Constant::getAllOnesValue(Op0->getType()); 1772 1773 Value *A, *B; 1774 // (A & ~B) | (A ^ B) -> (A ^ B) 1775 // (~B & A) | (A ^ B) -> (A ^ B) 1776 // (A & ~B) | (B ^ A) -> (B ^ A) 1777 // (~B & A) | (B ^ A) -> (B ^ A) 1778 if (match(Op1, m_Xor(m_Value(A), m_Value(B))) && 1779 (match(Op0, m_c_And(m_Specific(A), m_Not(m_Specific(B)))) || 1780 match(Op0, m_c_And(m_Not(m_Specific(A)), m_Specific(B))))) 1781 return Op1; 1782 1783 // Commute the 'or' operands. 1784 // (A ^ B) | (A & ~B) -> (A ^ B) 1785 // (A ^ B) | (~B & A) -> (A ^ B) 1786 // (B ^ A) | (A & ~B) -> (B ^ A) 1787 // (B ^ A) | (~B & A) -> (B ^ A) 1788 if (match(Op0, m_Xor(m_Value(A), m_Value(B))) && 1789 (match(Op1, m_c_And(m_Specific(A), m_Not(m_Specific(B)))) || 1790 match(Op1, m_c_And(m_Not(m_Specific(A)), m_Specific(B))))) 1791 return Op0; 1792 1793 // (A & B) | (~A ^ B) -> (~A ^ B) 1794 // (B & A) | (~A ^ B) -> (~A ^ B) 1795 // (A & B) | (B ^ ~A) -> (B ^ ~A) 1796 // (B & A) | (B ^ ~A) -> (B ^ ~A) 1797 if (match(Op0, m_And(m_Value(A), m_Value(B))) && 1798 (match(Op1, m_c_Xor(m_Specific(A), m_Not(m_Specific(B)))) || 1799 match(Op1, m_c_Xor(m_Not(m_Specific(A)), m_Specific(B))))) 1800 return Op1; 1801 1802 // (~A ^ B) | (A & B) -> (~A ^ B) 1803 // (~A ^ B) | (B & A) -> (~A ^ B) 1804 // (B ^ ~A) | (A & B) -> (B ^ ~A) 1805 // (B ^ ~A) | (B & A) -> (B ^ ~A) 1806 if (match(Op1, m_And(m_Value(A), m_Value(B))) && 1807 (match(Op0, m_c_Xor(m_Specific(A), m_Not(m_Specific(B)))) || 1808 match(Op0, m_c_Xor(m_Not(m_Specific(A)), m_Specific(B))))) 1809 return Op0; 1810 1811 if (Value *V = simplifyAndOrOfCmps(Op0, Op1, false)) 1812 return V; 1813 1814 // Try some generic simplifications for associative operations. 1815 if (Value *V = SimplifyAssociativeBinOp(Instruction::Or, Op0, Op1, Q, 1816 MaxRecurse)) 1817 return V; 1818 1819 // Or distributes over And. Try some generic simplifications based on this. 1820 if (Value *V = ExpandBinOp(Instruction::Or, Op0, Op1, Instruction::And, Q, 1821 MaxRecurse)) 1822 return V; 1823 1824 // If the operation is with the result of a select instruction, check whether 1825 // operating on either branch of the select always yields the same value. 1826 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 1827 if (Value *V = ThreadBinOpOverSelect(Instruction::Or, Op0, Op1, Q, 1828 MaxRecurse)) 1829 return V; 1830 1831 // (A & C1)|(B & C2) 1832 const APInt *C1, *C2; 1833 if (match(Op0, m_And(m_Value(A), m_APInt(C1))) && 1834 match(Op1, m_And(m_Value(B), m_APInt(C2)))) { 1835 if (*C1 == ~*C2) { 1836 // (A & C1)|(B & C2) 1837 // If we have: ((V + N) & C1) | (V & C2) 1838 // .. and C2 = ~C1 and C2 is 0+1+ and (N & C2) == 0 1839 // replace with V+N. 1840 Value *N; 1841 if (C2->isMask() && // C2 == 0+1+ 1842 match(A, m_c_Add(m_Specific(B), m_Value(N)))) { 1843 // Add commutes, try both ways. 1844 if (MaskedValueIsZero(N, *C2, Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 1845 return A; 1846 } 1847 // Or commutes, try both ways. 1848 if (C1->isMask() && 1849 match(B, m_c_Add(m_Specific(A), m_Value(N)))) { 1850 // Add commutes, try both ways. 1851 if (MaskedValueIsZero(N, *C1, Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 1852 return B; 1853 } 1854 } 1855 } 1856 1857 // If the operation is with the result of a phi instruction, check whether 1858 // operating on all incoming values of the phi always yields the same value. 1859 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 1860 if (Value *V = ThreadBinOpOverPHI(Instruction::Or, Op0, Op1, Q, MaxRecurse)) 1861 return V; 1862 1863 return nullptr; 1864 } 1865 1866 Value *llvm::SimplifyOrInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 1867 return ::SimplifyOrInst(Op0, Op1, Q, RecursionLimit); 1868 } 1869 1870 /// Given operands for a Xor, see if we can fold the result. 1871 /// If not, this returns null. 1872 static Value *SimplifyXorInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 1873 unsigned MaxRecurse) { 1874 if (Constant *C = foldOrCommuteConstant(Instruction::Xor, Op0, Op1, Q)) 1875 return C; 1876 1877 // A ^ undef -> undef 1878 if (match(Op1, m_Undef())) 1879 return Op1; 1880 1881 // A ^ 0 = A 1882 if (match(Op1, m_Zero())) 1883 return Op0; 1884 1885 // A ^ A = 0 1886 if (Op0 == Op1) 1887 return Constant::getNullValue(Op0->getType()); 1888 1889 // A ^ ~A = ~A ^ A = -1 1890 if (match(Op0, m_Not(m_Specific(Op1))) || 1891 match(Op1, m_Not(m_Specific(Op0)))) 1892 return Constant::getAllOnesValue(Op0->getType()); 1893 1894 // Try some generic simplifications for associative operations. 1895 if (Value *V = SimplifyAssociativeBinOp(Instruction::Xor, Op0, Op1, Q, 1896 MaxRecurse)) 1897 return V; 1898 1899 // Threading Xor over selects and phi nodes is pointless, so don't bother. 1900 // Threading over the select in "A ^ select(cond, B, C)" means evaluating 1901 // "A^B" and "A^C" and seeing if they are equal; but they are equal if and 1902 // only if B and C are equal. If B and C are equal then (since we assume 1903 // that operands have already been simplified) "select(cond, B, C)" should 1904 // have been simplified to the common value of B and C already. Analysing 1905 // "A^B" and "A^C" thus gains nothing, but costs compile time. Similarly 1906 // for threading over phi nodes. 1907 1908 return nullptr; 1909 } 1910 1911 Value *llvm::SimplifyXorInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 1912 return ::SimplifyXorInst(Op0, Op1, Q, RecursionLimit); 1913 } 1914 1915 1916 static Type *GetCompareTy(Value *Op) { 1917 return CmpInst::makeCmpResultType(Op->getType()); 1918 } 1919 1920 /// Rummage around inside V looking for something equivalent to the comparison 1921 /// "LHS Pred RHS". Return such a value if found, otherwise return null. 1922 /// Helper function for analyzing max/min idioms. 1923 static Value *ExtractEquivalentCondition(Value *V, CmpInst::Predicate Pred, 1924 Value *LHS, Value *RHS) { 1925 SelectInst *SI = dyn_cast<SelectInst>(V); 1926 if (!SI) 1927 return nullptr; 1928 CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition()); 1929 if (!Cmp) 1930 return nullptr; 1931 Value *CmpLHS = Cmp->getOperand(0), *CmpRHS = Cmp->getOperand(1); 1932 if (Pred == Cmp->getPredicate() && LHS == CmpLHS && RHS == CmpRHS) 1933 return Cmp; 1934 if (Pred == CmpInst::getSwappedPredicate(Cmp->getPredicate()) && 1935 LHS == CmpRHS && RHS == CmpLHS) 1936 return Cmp; 1937 return nullptr; 1938 } 1939 1940 // A significant optimization not implemented here is assuming that alloca 1941 // addresses are not equal to incoming argument values. They don't *alias*, 1942 // as we say, but that doesn't mean they aren't equal, so we take a 1943 // conservative approach. 1944 // 1945 // This is inspired in part by C++11 5.10p1: 1946 // "Two pointers of the same type compare equal if and only if they are both 1947 // null, both point to the same function, or both represent the same 1948 // address." 1949 // 1950 // This is pretty permissive. 1951 // 1952 // It's also partly due to C11 6.5.9p6: 1953 // "Two pointers compare equal if and only if both are null pointers, both are 1954 // pointers to the same object (including a pointer to an object and a 1955 // subobject at its beginning) or function, both are pointers to one past the 1956 // last element of the same array object, or one is a pointer to one past the 1957 // end of one array object and the other is a pointer to the start of a 1958 // different array object that happens to immediately follow the first array 1959 // object in the address space.) 1960 // 1961 // C11's version is more restrictive, however there's no reason why an argument 1962 // couldn't be a one-past-the-end value for a stack object in the caller and be 1963 // equal to the beginning of a stack object in the callee. 1964 // 1965 // If the C and C++ standards are ever made sufficiently restrictive in this 1966 // area, it may be possible to update LLVM's semantics accordingly and reinstate 1967 // this optimization. 1968 static Constant * 1969 computePointerICmp(const DataLayout &DL, const TargetLibraryInfo *TLI, 1970 const DominatorTree *DT, CmpInst::Predicate Pred, 1971 AssumptionCache *AC, const Instruction *CxtI, 1972 Value *LHS, Value *RHS) { 1973 // First, skip past any trivial no-ops. 1974 LHS = LHS->stripPointerCasts(); 1975 RHS = RHS->stripPointerCasts(); 1976 1977 // A non-null pointer is not equal to a null pointer. 1978 if (llvm::isKnownNonZero(LHS, DL) && isa<ConstantPointerNull>(RHS) && 1979 (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE)) 1980 return ConstantInt::get(GetCompareTy(LHS), 1981 !CmpInst::isTrueWhenEqual(Pred)); 1982 1983 // We can only fold certain predicates on pointer comparisons. 1984 switch (Pred) { 1985 default: 1986 return nullptr; 1987 1988 // Equality comaprisons are easy to fold. 1989 case CmpInst::ICMP_EQ: 1990 case CmpInst::ICMP_NE: 1991 break; 1992 1993 // We can only handle unsigned relational comparisons because 'inbounds' on 1994 // a GEP only protects against unsigned wrapping. 1995 case CmpInst::ICMP_UGT: 1996 case CmpInst::ICMP_UGE: 1997 case CmpInst::ICMP_ULT: 1998 case CmpInst::ICMP_ULE: 1999 // However, we have to switch them to their signed variants to handle 2000 // negative indices from the base pointer. 2001 Pred = ICmpInst::getSignedPredicate(Pred); 2002 break; 2003 } 2004 2005 // Strip off any constant offsets so that we can reason about them. 2006 // It's tempting to use getUnderlyingObject or even just stripInBoundsOffsets 2007 // here and compare base addresses like AliasAnalysis does, however there are 2008 // numerous hazards. AliasAnalysis and its utilities rely on special rules 2009 // governing loads and stores which don't apply to icmps. Also, AliasAnalysis 2010 // doesn't need to guarantee pointer inequality when it says NoAlias. 2011 Constant *LHSOffset = stripAndComputeConstantOffsets(DL, LHS); 2012 Constant *RHSOffset = stripAndComputeConstantOffsets(DL, RHS); 2013 2014 // If LHS and RHS are related via constant offsets to the same base 2015 // value, we can replace it with an icmp which just compares the offsets. 2016 if (LHS == RHS) 2017 return ConstantExpr::getICmp(Pred, LHSOffset, RHSOffset); 2018 2019 // Various optimizations for (in)equality comparisons. 2020 if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE) { 2021 // Different non-empty allocations that exist at the same time have 2022 // different addresses (if the program can tell). Global variables always 2023 // exist, so they always exist during the lifetime of each other and all 2024 // allocas. Two different allocas usually have different addresses... 2025 // 2026 // However, if there's an @llvm.stackrestore dynamically in between two 2027 // allocas, they may have the same address. It's tempting to reduce the 2028 // scope of the problem by only looking at *static* allocas here. That would 2029 // cover the majority of allocas while significantly reducing the likelihood 2030 // of having an @llvm.stackrestore pop up in the middle. However, it's not 2031 // actually impossible for an @llvm.stackrestore to pop up in the middle of 2032 // an entry block. Also, if we have a block that's not attached to a 2033 // function, we can't tell if it's "static" under the current definition. 2034 // Theoretically, this problem could be fixed by creating a new kind of 2035 // instruction kind specifically for static allocas. Such a new instruction 2036 // could be required to be at the top of the entry block, thus preventing it 2037 // from being subject to a @llvm.stackrestore. Instcombine could even 2038 // convert regular allocas into these special allocas. It'd be nifty. 2039 // However, until then, this problem remains open. 2040 // 2041 // So, we'll assume that two non-empty allocas have different addresses 2042 // for now. 2043 // 2044 // With all that, if the offsets are within the bounds of their allocations 2045 // (and not one-past-the-end! so we can't use inbounds!), and their 2046 // allocations aren't the same, the pointers are not equal. 2047 // 2048 // Note that it's not necessary to check for LHS being a global variable 2049 // address, due to canonicalization and constant folding. 2050 if (isa<AllocaInst>(LHS) && 2051 (isa<AllocaInst>(RHS) || isa<GlobalVariable>(RHS))) { 2052 ConstantInt *LHSOffsetCI = dyn_cast<ConstantInt>(LHSOffset); 2053 ConstantInt *RHSOffsetCI = dyn_cast<ConstantInt>(RHSOffset); 2054 uint64_t LHSSize, RHSSize; 2055 if (LHSOffsetCI && RHSOffsetCI && 2056 getObjectSize(LHS, LHSSize, DL, TLI) && 2057 getObjectSize(RHS, RHSSize, DL, TLI)) { 2058 const APInt &LHSOffsetValue = LHSOffsetCI->getValue(); 2059 const APInt &RHSOffsetValue = RHSOffsetCI->getValue(); 2060 if (!LHSOffsetValue.isNegative() && 2061 !RHSOffsetValue.isNegative() && 2062 LHSOffsetValue.ult(LHSSize) && 2063 RHSOffsetValue.ult(RHSSize)) { 2064 return ConstantInt::get(GetCompareTy(LHS), 2065 !CmpInst::isTrueWhenEqual(Pred)); 2066 } 2067 } 2068 2069 // Repeat the above check but this time without depending on DataLayout 2070 // or being able to compute a precise size. 2071 if (!cast<PointerType>(LHS->getType())->isEmptyTy() && 2072 !cast<PointerType>(RHS->getType())->isEmptyTy() && 2073 LHSOffset->isNullValue() && 2074 RHSOffset->isNullValue()) 2075 return ConstantInt::get(GetCompareTy(LHS), 2076 !CmpInst::isTrueWhenEqual(Pred)); 2077 } 2078 2079 // Even if an non-inbounds GEP occurs along the path we can still optimize 2080 // equality comparisons concerning the result. We avoid walking the whole 2081 // chain again by starting where the last calls to 2082 // stripAndComputeConstantOffsets left off and accumulate the offsets. 2083 Constant *LHSNoBound = stripAndComputeConstantOffsets(DL, LHS, true); 2084 Constant *RHSNoBound = stripAndComputeConstantOffsets(DL, RHS, true); 2085 if (LHS == RHS) 2086 return ConstantExpr::getICmp(Pred, 2087 ConstantExpr::getAdd(LHSOffset, LHSNoBound), 2088 ConstantExpr::getAdd(RHSOffset, RHSNoBound)); 2089 2090 // If one side of the equality comparison must come from a noalias call 2091 // (meaning a system memory allocation function), and the other side must 2092 // come from a pointer that cannot overlap with dynamically-allocated 2093 // memory within the lifetime of the current function (allocas, byval 2094 // arguments, globals), then determine the comparison result here. 2095 SmallVector<Value *, 8> LHSUObjs, RHSUObjs; 2096 GetUnderlyingObjects(LHS, LHSUObjs, DL); 2097 GetUnderlyingObjects(RHS, RHSUObjs, DL); 2098 2099 // Is the set of underlying objects all noalias calls? 2100 auto IsNAC = [](ArrayRef<Value *> Objects) { 2101 return all_of(Objects, isNoAliasCall); 2102 }; 2103 2104 // Is the set of underlying objects all things which must be disjoint from 2105 // noalias calls. For allocas, we consider only static ones (dynamic 2106 // allocas might be transformed into calls to malloc not simultaneously 2107 // live with the compared-to allocation). For globals, we exclude symbols 2108 // that might be resolve lazily to symbols in another dynamically-loaded 2109 // library (and, thus, could be malloc'ed by the implementation). 2110 auto IsAllocDisjoint = [](ArrayRef<Value *> Objects) { 2111 return all_of(Objects, [](Value *V) { 2112 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) 2113 return AI->getParent() && AI->getFunction() && AI->isStaticAlloca(); 2114 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) 2115 return (GV->hasLocalLinkage() || GV->hasHiddenVisibility() || 2116 GV->hasProtectedVisibility() || GV->hasGlobalUnnamedAddr()) && 2117 !GV->isThreadLocal(); 2118 if (const Argument *A = dyn_cast<Argument>(V)) 2119 return A->hasByValAttr(); 2120 return false; 2121 }); 2122 }; 2123 2124 if ((IsNAC(LHSUObjs) && IsAllocDisjoint(RHSUObjs)) || 2125 (IsNAC(RHSUObjs) && IsAllocDisjoint(LHSUObjs))) 2126 return ConstantInt::get(GetCompareTy(LHS), 2127 !CmpInst::isTrueWhenEqual(Pred)); 2128 2129 // Fold comparisons for non-escaping pointer even if the allocation call 2130 // cannot be elided. We cannot fold malloc comparison to null. Also, the 2131 // dynamic allocation call could be either of the operands. 2132 Value *MI = nullptr; 2133 if (isAllocLikeFn(LHS, TLI) && 2134 llvm::isKnownNonZero(RHS, DL, 0, nullptr, CxtI, DT)) 2135 MI = LHS; 2136 else if (isAllocLikeFn(RHS, TLI) && 2137 llvm::isKnownNonZero(LHS, DL, 0, nullptr, CxtI, DT)) 2138 MI = RHS; 2139 // FIXME: We should also fold the compare when the pointer escapes, but the 2140 // compare dominates the pointer escape 2141 if (MI && !PointerMayBeCaptured(MI, true, true)) 2142 return ConstantInt::get(GetCompareTy(LHS), 2143 CmpInst::isFalseWhenEqual(Pred)); 2144 } 2145 2146 // Otherwise, fail. 2147 return nullptr; 2148 } 2149 2150 /// Fold an icmp when its operands have i1 scalar type. 2151 static Value *simplifyICmpOfBools(CmpInst::Predicate Pred, Value *LHS, 2152 Value *RHS, const SimplifyQuery &Q) { 2153 Type *ITy = GetCompareTy(LHS); // The return type. 2154 Type *OpTy = LHS->getType(); // The operand type. 2155 if (!OpTy->isIntOrIntVectorTy(1)) 2156 return nullptr; 2157 2158 // A boolean compared to true/false can be simplified in 14 out of the 20 2159 // (10 predicates * 2 constants) possible combinations. Cases not handled here 2160 // require a 'not' of the LHS, so those must be transformed in InstCombine. 2161 if (match(RHS, m_Zero())) { 2162 switch (Pred) { 2163 case CmpInst::ICMP_NE: // X != 0 -> X 2164 case CmpInst::ICMP_UGT: // X >u 0 -> X 2165 case CmpInst::ICMP_SLT: // X <s 0 -> X 2166 return LHS; 2167 2168 case CmpInst::ICMP_ULT: // X <u 0 -> false 2169 case CmpInst::ICMP_SGT: // X >s 0 -> false 2170 return getFalse(ITy); 2171 2172 case CmpInst::ICMP_UGE: // X >=u 0 -> true 2173 case CmpInst::ICMP_SLE: // X <=s 0 -> true 2174 return getTrue(ITy); 2175 2176 default: break; 2177 } 2178 } else if (match(RHS, m_One())) { 2179 switch (Pred) { 2180 case CmpInst::ICMP_EQ: // X == 1 -> X 2181 case CmpInst::ICMP_UGE: // X >=u 1 -> X 2182 case CmpInst::ICMP_SLE: // X <=s -1 -> X 2183 return LHS; 2184 2185 case CmpInst::ICMP_UGT: // X >u 1 -> false 2186 case CmpInst::ICMP_SLT: // X <s -1 -> false 2187 return getFalse(ITy); 2188 2189 case CmpInst::ICMP_ULE: // X <=u 1 -> true 2190 case CmpInst::ICMP_SGE: // X >=s -1 -> true 2191 return getTrue(ITy); 2192 2193 default: break; 2194 } 2195 } 2196 2197 switch (Pred) { 2198 default: 2199 break; 2200 case ICmpInst::ICMP_UGE: 2201 if (isImpliedCondition(RHS, LHS, Q.DL).getValueOr(false)) 2202 return getTrue(ITy); 2203 break; 2204 case ICmpInst::ICMP_SGE: 2205 /// For signed comparison, the values for an i1 are 0 and -1 2206 /// respectively. This maps into a truth table of: 2207 /// LHS | RHS | LHS >=s RHS | LHS implies RHS 2208 /// 0 | 0 | 1 (0 >= 0) | 1 2209 /// 0 | 1 | 1 (0 >= -1) | 1 2210 /// 1 | 0 | 0 (-1 >= 0) | 0 2211 /// 1 | 1 | 1 (-1 >= -1) | 1 2212 if (isImpliedCondition(LHS, RHS, Q.DL).getValueOr(false)) 2213 return getTrue(ITy); 2214 break; 2215 case ICmpInst::ICMP_ULE: 2216 if (isImpliedCondition(LHS, RHS, Q.DL).getValueOr(false)) 2217 return getTrue(ITy); 2218 break; 2219 } 2220 2221 return nullptr; 2222 } 2223 2224 /// Try hard to fold icmp with zero RHS because this is a common case. 2225 static Value *simplifyICmpWithZero(CmpInst::Predicate Pred, Value *LHS, 2226 Value *RHS, const SimplifyQuery &Q) { 2227 if (!match(RHS, m_Zero())) 2228 return nullptr; 2229 2230 Type *ITy = GetCompareTy(LHS); // The return type. 2231 switch (Pred) { 2232 default: 2233 llvm_unreachable("Unknown ICmp predicate!"); 2234 case ICmpInst::ICMP_ULT: 2235 return getFalse(ITy); 2236 case ICmpInst::ICMP_UGE: 2237 return getTrue(ITy); 2238 case ICmpInst::ICMP_EQ: 2239 case ICmpInst::ICMP_ULE: 2240 if (isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 2241 return getFalse(ITy); 2242 break; 2243 case ICmpInst::ICMP_NE: 2244 case ICmpInst::ICMP_UGT: 2245 if (isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 2246 return getTrue(ITy); 2247 break; 2248 case ICmpInst::ICMP_SLT: { 2249 KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2250 if (LHSKnown.isNegative()) 2251 return getTrue(ITy); 2252 if (LHSKnown.isNonNegative()) 2253 return getFalse(ITy); 2254 break; 2255 } 2256 case ICmpInst::ICMP_SLE: { 2257 KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2258 if (LHSKnown.isNegative()) 2259 return getTrue(ITy); 2260 if (LHSKnown.isNonNegative() && 2261 isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 2262 return getFalse(ITy); 2263 break; 2264 } 2265 case ICmpInst::ICMP_SGE: { 2266 KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2267 if (LHSKnown.isNegative()) 2268 return getFalse(ITy); 2269 if (LHSKnown.isNonNegative()) 2270 return getTrue(ITy); 2271 break; 2272 } 2273 case ICmpInst::ICMP_SGT: { 2274 KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2275 if (LHSKnown.isNegative()) 2276 return getFalse(ITy); 2277 if (LHSKnown.isNonNegative() && 2278 isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 2279 return getTrue(ITy); 2280 break; 2281 } 2282 } 2283 2284 return nullptr; 2285 } 2286 2287 /// Many binary operators with a constant operand have an easy-to-compute 2288 /// range of outputs. This can be used to fold a comparison to always true or 2289 /// always false. 2290 static void setLimitsForBinOp(BinaryOperator &BO, APInt &Lower, APInt &Upper) { 2291 unsigned Width = Lower.getBitWidth(); 2292 const APInt *C; 2293 switch (BO.getOpcode()) { 2294 case Instruction::Add: 2295 if (match(BO.getOperand(1), m_APInt(C)) && !C->isNullValue()) { 2296 // FIXME: If we have both nuw and nsw, we should reduce the range further. 2297 if (BO.hasNoUnsignedWrap()) { 2298 // 'add nuw x, C' produces [C, UINT_MAX]. 2299 Lower = *C; 2300 } else if (BO.hasNoSignedWrap()) { 2301 if (C->isNegative()) { 2302 // 'add nsw x, -C' produces [SINT_MIN, SINT_MAX - C]. 2303 Lower = APInt::getSignedMinValue(Width); 2304 Upper = APInt::getSignedMaxValue(Width) + *C + 1; 2305 } else { 2306 // 'add nsw x, +C' produces [SINT_MIN + C, SINT_MAX]. 2307 Lower = APInt::getSignedMinValue(Width) + *C; 2308 Upper = APInt::getSignedMaxValue(Width) + 1; 2309 } 2310 } 2311 } 2312 break; 2313 2314 case Instruction::And: 2315 if (match(BO.getOperand(1), m_APInt(C))) 2316 // 'and x, C' produces [0, C]. 2317 Upper = *C + 1; 2318 break; 2319 2320 case Instruction::Or: 2321 if (match(BO.getOperand(1), m_APInt(C))) 2322 // 'or x, C' produces [C, UINT_MAX]. 2323 Lower = *C; 2324 break; 2325 2326 case Instruction::AShr: 2327 if (match(BO.getOperand(1), m_APInt(C)) && C->ult(Width)) { 2328 // 'ashr x, C' produces [INT_MIN >> C, INT_MAX >> C]. 2329 Lower = APInt::getSignedMinValue(Width).ashr(*C); 2330 Upper = APInt::getSignedMaxValue(Width).ashr(*C) + 1; 2331 } else if (match(BO.getOperand(0), m_APInt(C))) { 2332 unsigned ShiftAmount = Width - 1; 2333 if (!C->isNullValue() && BO.isExact()) 2334 ShiftAmount = C->countTrailingZeros(); 2335 if (C->isNegative()) { 2336 // 'ashr C, x' produces [C, C >> (Width-1)] 2337 Lower = *C; 2338 Upper = C->ashr(ShiftAmount) + 1; 2339 } else { 2340 // 'ashr C, x' produces [C >> (Width-1), C] 2341 Lower = C->ashr(ShiftAmount); 2342 Upper = *C + 1; 2343 } 2344 } 2345 break; 2346 2347 case Instruction::LShr: 2348 if (match(BO.getOperand(1), m_APInt(C)) && C->ult(Width)) { 2349 // 'lshr x, C' produces [0, UINT_MAX >> C]. 2350 Upper = APInt::getAllOnesValue(Width).lshr(*C) + 1; 2351 } else if (match(BO.getOperand(0), m_APInt(C))) { 2352 // 'lshr C, x' produces [C >> (Width-1), C]. 2353 unsigned ShiftAmount = Width - 1; 2354 if (!C->isNullValue() && BO.isExact()) 2355 ShiftAmount = C->countTrailingZeros(); 2356 Lower = C->lshr(ShiftAmount); 2357 Upper = *C + 1; 2358 } 2359 break; 2360 2361 case Instruction::Shl: 2362 if (match(BO.getOperand(0), m_APInt(C))) { 2363 if (BO.hasNoUnsignedWrap()) { 2364 // 'shl nuw C, x' produces [C, C << CLZ(C)] 2365 Lower = *C; 2366 Upper = Lower.shl(Lower.countLeadingZeros()) + 1; 2367 } else if (BO.hasNoSignedWrap()) { // TODO: What if both nuw+nsw? 2368 if (C->isNegative()) { 2369 // 'shl nsw C, x' produces [C << CLO(C)-1, C] 2370 unsigned ShiftAmount = C->countLeadingOnes() - 1; 2371 Lower = C->shl(ShiftAmount); 2372 Upper = *C + 1; 2373 } else { 2374 // 'shl nsw C, x' produces [C, C << CLZ(C)-1] 2375 unsigned ShiftAmount = C->countLeadingZeros() - 1; 2376 Lower = *C; 2377 Upper = C->shl(ShiftAmount) + 1; 2378 } 2379 } 2380 } 2381 break; 2382 2383 case Instruction::SDiv: 2384 if (match(BO.getOperand(1), m_APInt(C))) { 2385 APInt IntMin = APInt::getSignedMinValue(Width); 2386 APInt IntMax = APInt::getSignedMaxValue(Width); 2387 if (C->isAllOnesValue()) { 2388 // 'sdiv x, -1' produces [INT_MIN + 1, INT_MAX] 2389 // where C != -1 and C != 0 and C != 1 2390 Lower = IntMin + 1; 2391 Upper = IntMax + 1; 2392 } else if (C->countLeadingZeros() < Width - 1) { 2393 // 'sdiv x, C' produces [INT_MIN / C, INT_MAX / C] 2394 // where C != -1 and C != 0 and C != 1 2395 Lower = IntMin.sdiv(*C); 2396 Upper = IntMax.sdiv(*C); 2397 if (Lower.sgt(Upper)) 2398 std::swap(Lower, Upper); 2399 Upper = Upper + 1; 2400 assert(Upper != Lower && "Upper part of range has wrapped!"); 2401 } 2402 } else if (match(BO.getOperand(0), m_APInt(C))) { 2403 if (C->isMinSignedValue()) { 2404 // 'sdiv INT_MIN, x' produces [INT_MIN, INT_MIN / -2]. 2405 Lower = *C; 2406 Upper = Lower.lshr(1) + 1; 2407 } else { 2408 // 'sdiv C, x' produces [-|C|, |C|]. 2409 Upper = C->abs() + 1; 2410 Lower = (-Upper) + 1; 2411 } 2412 } 2413 break; 2414 2415 case Instruction::UDiv: 2416 if (match(BO.getOperand(1), m_APInt(C)) && !C->isNullValue()) { 2417 // 'udiv x, C' produces [0, UINT_MAX / C]. 2418 Upper = APInt::getMaxValue(Width).udiv(*C) + 1; 2419 } else if (match(BO.getOperand(0), m_APInt(C))) { 2420 // 'udiv C, x' produces [0, C]. 2421 Upper = *C + 1; 2422 } 2423 break; 2424 2425 case Instruction::SRem: 2426 if (match(BO.getOperand(1), m_APInt(C))) { 2427 // 'srem x, C' produces (-|C|, |C|). 2428 Upper = C->abs(); 2429 Lower = (-Upper) + 1; 2430 } 2431 break; 2432 2433 case Instruction::URem: 2434 if (match(BO.getOperand(1), m_APInt(C))) 2435 // 'urem x, C' produces [0, C). 2436 Upper = *C; 2437 break; 2438 2439 default: 2440 break; 2441 } 2442 } 2443 2444 static Value *simplifyICmpWithConstant(CmpInst::Predicate Pred, Value *LHS, 2445 Value *RHS) { 2446 const APInt *C; 2447 if (!match(RHS, m_APInt(C))) 2448 return nullptr; 2449 2450 // Rule out tautological comparisons (eg., ult 0 or uge 0). 2451 ConstantRange RHS_CR = ConstantRange::makeExactICmpRegion(Pred, *C); 2452 if (RHS_CR.isEmptySet()) 2453 return ConstantInt::getFalse(GetCompareTy(RHS)); 2454 if (RHS_CR.isFullSet()) 2455 return ConstantInt::getTrue(GetCompareTy(RHS)); 2456 2457 // Find the range of possible values for binary operators. 2458 unsigned Width = C->getBitWidth(); 2459 APInt Lower = APInt(Width, 0); 2460 APInt Upper = APInt(Width, 0); 2461 if (auto *BO = dyn_cast<BinaryOperator>(LHS)) 2462 setLimitsForBinOp(*BO, Lower, Upper); 2463 2464 ConstantRange LHS_CR = 2465 Lower != Upper ? ConstantRange(Lower, Upper) : ConstantRange(Width, true); 2466 2467 if (auto *I = dyn_cast<Instruction>(LHS)) 2468 if (auto *Ranges = I->getMetadata(LLVMContext::MD_range)) 2469 LHS_CR = LHS_CR.intersectWith(getConstantRangeFromMetadata(*Ranges)); 2470 2471 if (!LHS_CR.isFullSet()) { 2472 if (RHS_CR.contains(LHS_CR)) 2473 return ConstantInt::getTrue(GetCompareTy(RHS)); 2474 if (RHS_CR.inverse().contains(LHS_CR)) 2475 return ConstantInt::getFalse(GetCompareTy(RHS)); 2476 } 2477 2478 return nullptr; 2479 } 2480 2481 /// TODO: A large part of this logic is duplicated in InstCombine's 2482 /// foldICmpBinOp(). We should be able to share that and avoid the code 2483 /// duplication. 2484 static Value *simplifyICmpWithBinOp(CmpInst::Predicate Pred, Value *LHS, 2485 Value *RHS, const SimplifyQuery &Q, 2486 unsigned MaxRecurse) { 2487 Type *ITy = GetCompareTy(LHS); // The return type. 2488 2489 BinaryOperator *LBO = dyn_cast<BinaryOperator>(LHS); 2490 BinaryOperator *RBO = dyn_cast<BinaryOperator>(RHS); 2491 if (MaxRecurse && (LBO || RBO)) { 2492 // Analyze the case when either LHS or RHS is an add instruction. 2493 Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr; 2494 // LHS = A + B (or A and B are null); RHS = C + D (or C and D are null). 2495 bool NoLHSWrapProblem = false, NoRHSWrapProblem = false; 2496 if (LBO && LBO->getOpcode() == Instruction::Add) { 2497 A = LBO->getOperand(0); 2498 B = LBO->getOperand(1); 2499 NoLHSWrapProblem = 2500 ICmpInst::isEquality(Pred) || 2501 (CmpInst::isUnsigned(Pred) && LBO->hasNoUnsignedWrap()) || 2502 (CmpInst::isSigned(Pred) && LBO->hasNoSignedWrap()); 2503 } 2504 if (RBO && RBO->getOpcode() == Instruction::Add) { 2505 C = RBO->getOperand(0); 2506 D = RBO->getOperand(1); 2507 NoRHSWrapProblem = 2508 ICmpInst::isEquality(Pred) || 2509 (CmpInst::isUnsigned(Pred) && RBO->hasNoUnsignedWrap()) || 2510 (CmpInst::isSigned(Pred) && RBO->hasNoSignedWrap()); 2511 } 2512 2513 // icmp (X+Y), X -> icmp Y, 0 for equalities or if there is no overflow. 2514 if ((A == RHS || B == RHS) && NoLHSWrapProblem) 2515 if (Value *V = SimplifyICmpInst(Pred, A == RHS ? B : A, 2516 Constant::getNullValue(RHS->getType()), Q, 2517 MaxRecurse - 1)) 2518 return V; 2519 2520 // icmp X, (X+Y) -> icmp 0, Y for equalities or if there is no overflow. 2521 if ((C == LHS || D == LHS) && NoRHSWrapProblem) 2522 if (Value *V = 2523 SimplifyICmpInst(Pred, Constant::getNullValue(LHS->getType()), 2524 C == LHS ? D : C, Q, MaxRecurse - 1)) 2525 return V; 2526 2527 // icmp (X+Y), (X+Z) -> icmp Y,Z for equalities or if there is no overflow. 2528 if (A && C && (A == C || A == D || B == C || B == D) && NoLHSWrapProblem && 2529 NoRHSWrapProblem) { 2530 // Determine Y and Z in the form icmp (X+Y), (X+Z). 2531 Value *Y, *Z; 2532 if (A == C) { 2533 // C + B == C + D -> B == D 2534 Y = B; 2535 Z = D; 2536 } else if (A == D) { 2537 // D + B == C + D -> B == C 2538 Y = B; 2539 Z = C; 2540 } else if (B == C) { 2541 // A + C == C + D -> A == D 2542 Y = A; 2543 Z = D; 2544 } else { 2545 assert(B == D); 2546 // A + D == C + D -> A == C 2547 Y = A; 2548 Z = C; 2549 } 2550 if (Value *V = SimplifyICmpInst(Pred, Y, Z, Q, MaxRecurse - 1)) 2551 return V; 2552 } 2553 } 2554 2555 { 2556 Value *Y = nullptr; 2557 // icmp pred (or X, Y), X 2558 if (LBO && match(LBO, m_c_Or(m_Value(Y), m_Specific(RHS)))) { 2559 if (Pred == ICmpInst::ICMP_ULT) 2560 return getFalse(ITy); 2561 if (Pred == ICmpInst::ICMP_UGE) 2562 return getTrue(ITy); 2563 2564 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SGE) { 2565 KnownBits RHSKnown = computeKnownBits(RHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2566 KnownBits YKnown = computeKnownBits(Y, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2567 if (RHSKnown.isNonNegative() && YKnown.isNegative()) 2568 return Pred == ICmpInst::ICMP_SLT ? getTrue(ITy) : getFalse(ITy); 2569 if (RHSKnown.isNegative() || YKnown.isNonNegative()) 2570 return Pred == ICmpInst::ICMP_SLT ? getFalse(ITy) : getTrue(ITy); 2571 } 2572 } 2573 // icmp pred X, (or X, Y) 2574 if (RBO && match(RBO, m_c_Or(m_Value(Y), m_Specific(LHS)))) { 2575 if (Pred == ICmpInst::ICMP_ULE) 2576 return getTrue(ITy); 2577 if (Pred == ICmpInst::ICMP_UGT) 2578 return getFalse(ITy); 2579 2580 if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SLE) { 2581 KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2582 KnownBits YKnown = computeKnownBits(Y, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2583 if (LHSKnown.isNonNegative() && YKnown.isNegative()) 2584 return Pred == ICmpInst::ICMP_SGT ? getTrue(ITy) : getFalse(ITy); 2585 if (LHSKnown.isNegative() || YKnown.isNonNegative()) 2586 return Pred == ICmpInst::ICMP_SGT ? getFalse(ITy) : getTrue(ITy); 2587 } 2588 } 2589 } 2590 2591 // icmp pred (and X, Y), X 2592 if (LBO && match(LBO, m_c_And(m_Value(), m_Specific(RHS)))) { 2593 if (Pred == ICmpInst::ICMP_UGT) 2594 return getFalse(ITy); 2595 if (Pred == ICmpInst::ICMP_ULE) 2596 return getTrue(ITy); 2597 } 2598 // icmp pred X, (and X, Y) 2599 if (RBO && match(RBO, m_c_And(m_Value(), m_Specific(LHS)))) { 2600 if (Pred == ICmpInst::ICMP_UGE) 2601 return getTrue(ITy); 2602 if (Pred == ICmpInst::ICMP_ULT) 2603 return getFalse(ITy); 2604 } 2605 2606 // 0 - (zext X) pred C 2607 if (!CmpInst::isUnsigned(Pred) && match(LHS, m_Neg(m_ZExt(m_Value())))) { 2608 if (ConstantInt *RHSC = dyn_cast<ConstantInt>(RHS)) { 2609 if (RHSC->getValue().isStrictlyPositive()) { 2610 if (Pred == ICmpInst::ICMP_SLT) 2611 return ConstantInt::getTrue(RHSC->getContext()); 2612 if (Pred == ICmpInst::ICMP_SGE) 2613 return ConstantInt::getFalse(RHSC->getContext()); 2614 if (Pred == ICmpInst::ICMP_EQ) 2615 return ConstantInt::getFalse(RHSC->getContext()); 2616 if (Pred == ICmpInst::ICMP_NE) 2617 return ConstantInt::getTrue(RHSC->getContext()); 2618 } 2619 if (RHSC->getValue().isNonNegative()) { 2620 if (Pred == ICmpInst::ICMP_SLE) 2621 return ConstantInt::getTrue(RHSC->getContext()); 2622 if (Pred == ICmpInst::ICMP_SGT) 2623 return ConstantInt::getFalse(RHSC->getContext()); 2624 } 2625 } 2626 } 2627 2628 // icmp pred (urem X, Y), Y 2629 if (LBO && match(LBO, m_URem(m_Value(), m_Specific(RHS)))) { 2630 switch (Pred) { 2631 default: 2632 break; 2633 case ICmpInst::ICMP_SGT: 2634 case ICmpInst::ICMP_SGE: { 2635 KnownBits Known = computeKnownBits(RHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2636 if (!Known.isNonNegative()) 2637 break; 2638 LLVM_FALLTHROUGH; 2639 } 2640 case ICmpInst::ICMP_EQ: 2641 case ICmpInst::ICMP_UGT: 2642 case ICmpInst::ICMP_UGE: 2643 return getFalse(ITy); 2644 case ICmpInst::ICMP_SLT: 2645 case ICmpInst::ICMP_SLE: { 2646 KnownBits Known = computeKnownBits(RHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2647 if (!Known.isNonNegative()) 2648 break; 2649 LLVM_FALLTHROUGH; 2650 } 2651 case ICmpInst::ICMP_NE: 2652 case ICmpInst::ICMP_ULT: 2653 case ICmpInst::ICMP_ULE: 2654 return getTrue(ITy); 2655 } 2656 } 2657 2658 // icmp pred X, (urem Y, X) 2659 if (RBO && match(RBO, m_URem(m_Value(), m_Specific(LHS)))) { 2660 switch (Pred) { 2661 default: 2662 break; 2663 case ICmpInst::ICMP_SGT: 2664 case ICmpInst::ICMP_SGE: { 2665 KnownBits Known = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2666 if (!Known.isNonNegative()) 2667 break; 2668 LLVM_FALLTHROUGH; 2669 } 2670 case ICmpInst::ICMP_NE: 2671 case ICmpInst::ICMP_UGT: 2672 case ICmpInst::ICMP_UGE: 2673 return getTrue(ITy); 2674 case ICmpInst::ICMP_SLT: 2675 case ICmpInst::ICMP_SLE: { 2676 KnownBits Known = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2677 if (!Known.isNonNegative()) 2678 break; 2679 LLVM_FALLTHROUGH; 2680 } 2681 case ICmpInst::ICMP_EQ: 2682 case ICmpInst::ICMP_ULT: 2683 case ICmpInst::ICMP_ULE: 2684 return getFalse(ITy); 2685 } 2686 } 2687 2688 // x >> y <=u x 2689 // x udiv y <=u x. 2690 if (LBO && (match(LBO, m_LShr(m_Specific(RHS), m_Value())) || 2691 match(LBO, m_UDiv(m_Specific(RHS), m_Value())))) { 2692 // icmp pred (X op Y), X 2693 if (Pred == ICmpInst::ICMP_UGT) 2694 return getFalse(ITy); 2695 if (Pred == ICmpInst::ICMP_ULE) 2696 return getTrue(ITy); 2697 } 2698 2699 // x >=u x >> y 2700 // x >=u x udiv y. 2701 if (RBO && (match(RBO, m_LShr(m_Specific(LHS), m_Value())) || 2702 match(RBO, m_UDiv(m_Specific(LHS), m_Value())))) { 2703 // icmp pred X, (X op Y) 2704 if (Pred == ICmpInst::ICMP_ULT) 2705 return getFalse(ITy); 2706 if (Pred == ICmpInst::ICMP_UGE) 2707 return getTrue(ITy); 2708 } 2709 2710 // handle: 2711 // CI2 << X == CI 2712 // CI2 << X != CI 2713 // 2714 // where CI2 is a power of 2 and CI isn't 2715 if (auto *CI = dyn_cast<ConstantInt>(RHS)) { 2716 const APInt *CI2Val, *CIVal = &CI->getValue(); 2717 if (LBO && match(LBO, m_Shl(m_APInt(CI2Val), m_Value())) && 2718 CI2Val->isPowerOf2()) { 2719 if (!CIVal->isPowerOf2()) { 2720 // CI2 << X can equal zero in some circumstances, 2721 // this simplification is unsafe if CI is zero. 2722 // 2723 // We know it is safe if: 2724 // - The shift is nsw, we can't shift out the one bit. 2725 // - The shift is nuw, we can't shift out the one bit. 2726 // - CI2 is one 2727 // - CI isn't zero 2728 if (LBO->hasNoSignedWrap() || LBO->hasNoUnsignedWrap() || 2729 CI2Val->isOneValue() || !CI->isZero()) { 2730 if (Pred == ICmpInst::ICMP_EQ) 2731 return ConstantInt::getFalse(RHS->getContext()); 2732 if (Pred == ICmpInst::ICMP_NE) 2733 return ConstantInt::getTrue(RHS->getContext()); 2734 } 2735 } 2736 if (CIVal->isSignMask() && CI2Val->isOneValue()) { 2737 if (Pred == ICmpInst::ICMP_UGT) 2738 return ConstantInt::getFalse(RHS->getContext()); 2739 if (Pred == ICmpInst::ICMP_ULE) 2740 return ConstantInt::getTrue(RHS->getContext()); 2741 } 2742 } 2743 } 2744 2745 if (MaxRecurse && LBO && RBO && LBO->getOpcode() == RBO->getOpcode() && 2746 LBO->getOperand(1) == RBO->getOperand(1)) { 2747 switch (LBO->getOpcode()) { 2748 default: 2749 break; 2750 case Instruction::UDiv: 2751 case Instruction::LShr: 2752 if (ICmpInst::isSigned(Pred) || !LBO->isExact() || !RBO->isExact()) 2753 break; 2754 if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0), 2755 RBO->getOperand(0), Q, MaxRecurse - 1)) 2756 return V; 2757 break; 2758 case Instruction::SDiv: 2759 if (!ICmpInst::isEquality(Pred) || !LBO->isExact() || !RBO->isExact()) 2760 break; 2761 if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0), 2762 RBO->getOperand(0), Q, MaxRecurse - 1)) 2763 return V; 2764 break; 2765 case Instruction::AShr: 2766 if (!LBO->isExact() || !RBO->isExact()) 2767 break; 2768 if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0), 2769 RBO->getOperand(0), Q, MaxRecurse - 1)) 2770 return V; 2771 break; 2772 case Instruction::Shl: { 2773 bool NUW = LBO->hasNoUnsignedWrap() && RBO->hasNoUnsignedWrap(); 2774 bool NSW = LBO->hasNoSignedWrap() && RBO->hasNoSignedWrap(); 2775 if (!NUW && !NSW) 2776 break; 2777 if (!NSW && ICmpInst::isSigned(Pred)) 2778 break; 2779 if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0), 2780 RBO->getOperand(0), Q, MaxRecurse - 1)) 2781 return V; 2782 break; 2783 } 2784 } 2785 } 2786 return nullptr; 2787 } 2788 2789 /// Simplify integer comparisons where at least one operand of the compare 2790 /// matches an integer min/max idiom. 2791 static Value *simplifyICmpWithMinMax(CmpInst::Predicate Pred, Value *LHS, 2792 Value *RHS, const SimplifyQuery &Q, 2793 unsigned MaxRecurse) { 2794 Type *ITy = GetCompareTy(LHS); // The return type. 2795 Value *A, *B; 2796 CmpInst::Predicate P = CmpInst::BAD_ICMP_PREDICATE; 2797 CmpInst::Predicate EqP; // Chosen so that "A == max/min(A,B)" iff "A EqP B". 2798 2799 // Signed variants on "max(a,b)>=a -> true". 2800 if (match(LHS, m_SMax(m_Value(A), m_Value(B))) && (A == RHS || B == RHS)) { 2801 if (A != RHS) 2802 std::swap(A, B); // smax(A, B) pred A. 2803 EqP = CmpInst::ICMP_SGE; // "A == smax(A, B)" iff "A sge B". 2804 // We analyze this as smax(A, B) pred A. 2805 P = Pred; 2806 } else if (match(RHS, m_SMax(m_Value(A), m_Value(B))) && 2807 (A == LHS || B == LHS)) { 2808 if (A != LHS) 2809 std::swap(A, B); // A pred smax(A, B). 2810 EqP = CmpInst::ICMP_SGE; // "A == smax(A, B)" iff "A sge B". 2811 // We analyze this as smax(A, B) swapped-pred A. 2812 P = CmpInst::getSwappedPredicate(Pred); 2813 } else if (match(LHS, m_SMin(m_Value(A), m_Value(B))) && 2814 (A == RHS || B == RHS)) { 2815 if (A != RHS) 2816 std::swap(A, B); // smin(A, B) pred A. 2817 EqP = CmpInst::ICMP_SLE; // "A == smin(A, B)" iff "A sle B". 2818 // We analyze this as smax(-A, -B) swapped-pred -A. 2819 // Note that we do not need to actually form -A or -B thanks to EqP. 2820 P = CmpInst::getSwappedPredicate(Pred); 2821 } else if (match(RHS, m_SMin(m_Value(A), m_Value(B))) && 2822 (A == LHS || B == LHS)) { 2823 if (A != LHS) 2824 std::swap(A, B); // A pred smin(A, B). 2825 EqP = CmpInst::ICMP_SLE; // "A == smin(A, B)" iff "A sle B". 2826 // We analyze this as smax(-A, -B) pred -A. 2827 // Note that we do not need to actually form -A or -B thanks to EqP. 2828 P = Pred; 2829 } 2830 if (P != CmpInst::BAD_ICMP_PREDICATE) { 2831 // Cases correspond to "max(A, B) p A". 2832 switch (P) { 2833 default: 2834 break; 2835 case CmpInst::ICMP_EQ: 2836 case CmpInst::ICMP_SLE: 2837 // Equivalent to "A EqP B". This may be the same as the condition tested 2838 // in the max/min; if so, we can just return that. 2839 if (Value *V = ExtractEquivalentCondition(LHS, EqP, A, B)) 2840 return V; 2841 if (Value *V = ExtractEquivalentCondition(RHS, EqP, A, B)) 2842 return V; 2843 // Otherwise, see if "A EqP B" simplifies. 2844 if (MaxRecurse) 2845 if (Value *V = SimplifyICmpInst(EqP, A, B, Q, MaxRecurse - 1)) 2846 return V; 2847 break; 2848 case CmpInst::ICMP_NE: 2849 case CmpInst::ICMP_SGT: { 2850 CmpInst::Predicate InvEqP = CmpInst::getInversePredicate(EqP); 2851 // Equivalent to "A InvEqP B". This may be the same as the condition 2852 // tested in the max/min; if so, we can just return that. 2853 if (Value *V = ExtractEquivalentCondition(LHS, InvEqP, A, B)) 2854 return V; 2855 if (Value *V = ExtractEquivalentCondition(RHS, InvEqP, A, B)) 2856 return V; 2857 // Otherwise, see if "A InvEqP B" simplifies. 2858 if (MaxRecurse) 2859 if (Value *V = SimplifyICmpInst(InvEqP, A, B, Q, MaxRecurse - 1)) 2860 return V; 2861 break; 2862 } 2863 case CmpInst::ICMP_SGE: 2864 // Always true. 2865 return getTrue(ITy); 2866 case CmpInst::ICMP_SLT: 2867 // Always false. 2868 return getFalse(ITy); 2869 } 2870 } 2871 2872 // Unsigned variants on "max(a,b)>=a -> true". 2873 P = CmpInst::BAD_ICMP_PREDICATE; 2874 if (match(LHS, m_UMax(m_Value(A), m_Value(B))) && (A == RHS || B == RHS)) { 2875 if (A != RHS) 2876 std::swap(A, B); // umax(A, B) pred A. 2877 EqP = CmpInst::ICMP_UGE; // "A == umax(A, B)" iff "A uge B". 2878 // We analyze this as umax(A, B) pred A. 2879 P = Pred; 2880 } else if (match(RHS, m_UMax(m_Value(A), m_Value(B))) && 2881 (A == LHS || B == LHS)) { 2882 if (A != LHS) 2883 std::swap(A, B); // A pred umax(A, B). 2884 EqP = CmpInst::ICMP_UGE; // "A == umax(A, B)" iff "A uge B". 2885 // We analyze this as umax(A, B) swapped-pred A. 2886 P = CmpInst::getSwappedPredicate(Pred); 2887 } else if (match(LHS, m_UMin(m_Value(A), m_Value(B))) && 2888 (A == RHS || B == RHS)) { 2889 if (A != RHS) 2890 std::swap(A, B); // umin(A, B) pred A. 2891 EqP = CmpInst::ICMP_ULE; // "A == umin(A, B)" iff "A ule B". 2892 // We analyze this as umax(-A, -B) swapped-pred -A. 2893 // Note that we do not need to actually form -A or -B thanks to EqP. 2894 P = CmpInst::getSwappedPredicate(Pred); 2895 } else if (match(RHS, m_UMin(m_Value(A), m_Value(B))) && 2896 (A == LHS || B == LHS)) { 2897 if (A != LHS) 2898 std::swap(A, B); // A pred umin(A, B). 2899 EqP = CmpInst::ICMP_ULE; // "A == umin(A, B)" iff "A ule B". 2900 // We analyze this as umax(-A, -B) pred -A. 2901 // Note that we do not need to actually form -A or -B thanks to EqP. 2902 P = Pred; 2903 } 2904 if (P != CmpInst::BAD_ICMP_PREDICATE) { 2905 // Cases correspond to "max(A, B) p A". 2906 switch (P) { 2907 default: 2908 break; 2909 case CmpInst::ICMP_EQ: 2910 case CmpInst::ICMP_ULE: 2911 // Equivalent to "A EqP B". This may be the same as the condition tested 2912 // in the max/min; if so, we can just return that. 2913 if (Value *V = ExtractEquivalentCondition(LHS, EqP, A, B)) 2914 return V; 2915 if (Value *V = ExtractEquivalentCondition(RHS, EqP, A, B)) 2916 return V; 2917 // Otherwise, see if "A EqP B" simplifies. 2918 if (MaxRecurse) 2919 if (Value *V = SimplifyICmpInst(EqP, A, B, Q, MaxRecurse - 1)) 2920 return V; 2921 break; 2922 case CmpInst::ICMP_NE: 2923 case CmpInst::ICMP_UGT: { 2924 CmpInst::Predicate InvEqP = CmpInst::getInversePredicate(EqP); 2925 // Equivalent to "A InvEqP B". This may be the same as the condition 2926 // tested in the max/min; if so, we can just return that. 2927 if (Value *V = ExtractEquivalentCondition(LHS, InvEqP, A, B)) 2928 return V; 2929 if (Value *V = ExtractEquivalentCondition(RHS, InvEqP, A, B)) 2930 return V; 2931 // Otherwise, see if "A InvEqP B" simplifies. 2932 if (MaxRecurse) 2933 if (Value *V = SimplifyICmpInst(InvEqP, A, B, Q, MaxRecurse - 1)) 2934 return V; 2935 break; 2936 } 2937 case CmpInst::ICMP_UGE: 2938 // Always true. 2939 return getTrue(ITy); 2940 case CmpInst::ICMP_ULT: 2941 // Always false. 2942 return getFalse(ITy); 2943 } 2944 } 2945 2946 // Variants on "max(x,y) >= min(x,z)". 2947 Value *C, *D; 2948 if (match(LHS, m_SMax(m_Value(A), m_Value(B))) && 2949 match(RHS, m_SMin(m_Value(C), m_Value(D))) && 2950 (A == C || A == D || B == C || B == D)) { 2951 // max(x, ?) pred min(x, ?). 2952 if (Pred == CmpInst::ICMP_SGE) 2953 // Always true. 2954 return getTrue(ITy); 2955 if (Pred == CmpInst::ICMP_SLT) 2956 // Always false. 2957 return getFalse(ITy); 2958 } else if (match(LHS, m_SMin(m_Value(A), m_Value(B))) && 2959 match(RHS, m_SMax(m_Value(C), m_Value(D))) && 2960 (A == C || A == D || B == C || B == D)) { 2961 // min(x, ?) pred max(x, ?). 2962 if (Pred == CmpInst::ICMP_SLE) 2963 // Always true. 2964 return getTrue(ITy); 2965 if (Pred == CmpInst::ICMP_SGT) 2966 // Always false. 2967 return getFalse(ITy); 2968 } else if (match(LHS, m_UMax(m_Value(A), m_Value(B))) && 2969 match(RHS, m_UMin(m_Value(C), m_Value(D))) && 2970 (A == C || A == D || B == C || B == D)) { 2971 // max(x, ?) pred min(x, ?). 2972 if (Pred == CmpInst::ICMP_UGE) 2973 // Always true. 2974 return getTrue(ITy); 2975 if (Pred == CmpInst::ICMP_ULT) 2976 // Always false. 2977 return getFalse(ITy); 2978 } else if (match(LHS, m_UMin(m_Value(A), m_Value(B))) && 2979 match(RHS, m_UMax(m_Value(C), m_Value(D))) && 2980 (A == C || A == D || B == C || B == D)) { 2981 // min(x, ?) pred max(x, ?). 2982 if (Pred == CmpInst::ICMP_ULE) 2983 // Always true. 2984 return getTrue(ITy); 2985 if (Pred == CmpInst::ICMP_UGT) 2986 // Always false. 2987 return getFalse(ITy); 2988 } 2989 2990 return nullptr; 2991 } 2992 2993 /// Given operands for an ICmpInst, see if we can fold the result. 2994 /// If not, this returns null. 2995 static Value *SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS, 2996 const SimplifyQuery &Q, unsigned MaxRecurse) { 2997 CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate; 2998 assert(CmpInst::isIntPredicate(Pred) && "Not an integer compare!"); 2999 3000 if (Constant *CLHS = dyn_cast<Constant>(LHS)) { 3001 if (Constant *CRHS = dyn_cast<Constant>(RHS)) 3002 return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, Q.DL, Q.TLI); 3003 3004 // If we have a constant, make sure it is on the RHS. 3005 std::swap(LHS, RHS); 3006 Pred = CmpInst::getSwappedPredicate(Pred); 3007 } 3008 3009 Type *ITy = GetCompareTy(LHS); // The return type. 3010 3011 // icmp X, X -> true/false 3012 // X icmp undef -> true/false. For example, icmp ugt %X, undef -> false 3013 // because X could be 0. 3014 if (LHS == RHS || isa<UndefValue>(RHS)) 3015 return ConstantInt::get(ITy, CmpInst::isTrueWhenEqual(Pred)); 3016 3017 if (Value *V = simplifyICmpOfBools(Pred, LHS, RHS, Q)) 3018 return V; 3019 3020 if (Value *V = simplifyICmpWithZero(Pred, LHS, RHS, Q)) 3021 return V; 3022 3023 if (Value *V = simplifyICmpWithConstant(Pred, LHS, RHS)) 3024 return V; 3025 3026 // If both operands have range metadata, use the metadata 3027 // to simplify the comparison. 3028 if (isa<Instruction>(RHS) && isa<Instruction>(LHS)) { 3029 auto RHS_Instr = cast<Instruction>(RHS); 3030 auto LHS_Instr = cast<Instruction>(LHS); 3031 3032 if (RHS_Instr->getMetadata(LLVMContext::MD_range) && 3033 LHS_Instr->getMetadata(LLVMContext::MD_range)) { 3034 auto RHS_CR = getConstantRangeFromMetadata( 3035 *RHS_Instr->getMetadata(LLVMContext::MD_range)); 3036 auto LHS_CR = getConstantRangeFromMetadata( 3037 *LHS_Instr->getMetadata(LLVMContext::MD_range)); 3038 3039 auto Satisfied_CR = ConstantRange::makeSatisfyingICmpRegion(Pred, RHS_CR); 3040 if (Satisfied_CR.contains(LHS_CR)) 3041 return ConstantInt::getTrue(RHS->getContext()); 3042 3043 auto InversedSatisfied_CR = ConstantRange::makeSatisfyingICmpRegion( 3044 CmpInst::getInversePredicate(Pred), RHS_CR); 3045 if (InversedSatisfied_CR.contains(LHS_CR)) 3046 return ConstantInt::getFalse(RHS->getContext()); 3047 } 3048 } 3049 3050 // Compare of cast, for example (zext X) != 0 -> X != 0 3051 if (isa<CastInst>(LHS) && (isa<Constant>(RHS) || isa<CastInst>(RHS))) { 3052 Instruction *LI = cast<CastInst>(LHS); 3053 Value *SrcOp = LI->getOperand(0); 3054 Type *SrcTy = SrcOp->getType(); 3055 Type *DstTy = LI->getType(); 3056 3057 // Turn icmp (ptrtoint x), (ptrtoint/constant) into a compare of the input 3058 // if the integer type is the same size as the pointer type. 3059 if (MaxRecurse && isa<PtrToIntInst>(LI) && 3060 Q.DL.getTypeSizeInBits(SrcTy) == DstTy->getPrimitiveSizeInBits()) { 3061 if (Constant *RHSC = dyn_cast<Constant>(RHS)) { 3062 // Transfer the cast to the constant. 3063 if (Value *V = SimplifyICmpInst(Pred, SrcOp, 3064 ConstantExpr::getIntToPtr(RHSC, SrcTy), 3065 Q, MaxRecurse-1)) 3066 return V; 3067 } else if (PtrToIntInst *RI = dyn_cast<PtrToIntInst>(RHS)) { 3068 if (RI->getOperand(0)->getType() == SrcTy) 3069 // Compare without the cast. 3070 if (Value *V = SimplifyICmpInst(Pred, SrcOp, RI->getOperand(0), 3071 Q, MaxRecurse-1)) 3072 return V; 3073 } 3074 } 3075 3076 if (isa<ZExtInst>(LHS)) { 3077 // Turn icmp (zext X), (zext Y) into a compare of X and Y if they have the 3078 // same type. 3079 if (ZExtInst *RI = dyn_cast<ZExtInst>(RHS)) { 3080 if (MaxRecurse && SrcTy == RI->getOperand(0)->getType()) 3081 // Compare X and Y. Note that signed predicates become unsigned. 3082 if (Value *V = SimplifyICmpInst(ICmpInst::getUnsignedPredicate(Pred), 3083 SrcOp, RI->getOperand(0), Q, 3084 MaxRecurse-1)) 3085 return V; 3086 } 3087 // Turn icmp (zext X), Cst into a compare of X and Cst if Cst is extended 3088 // too. If not, then try to deduce the result of the comparison. 3089 else if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) { 3090 // Compute the constant that would happen if we truncated to SrcTy then 3091 // reextended to DstTy. 3092 Constant *Trunc = ConstantExpr::getTrunc(CI, SrcTy); 3093 Constant *RExt = ConstantExpr::getCast(CastInst::ZExt, Trunc, DstTy); 3094 3095 // If the re-extended constant didn't change then this is effectively 3096 // also a case of comparing two zero-extended values. 3097 if (RExt == CI && MaxRecurse) 3098 if (Value *V = SimplifyICmpInst(ICmpInst::getUnsignedPredicate(Pred), 3099 SrcOp, Trunc, Q, MaxRecurse-1)) 3100 return V; 3101 3102 // Otherwise the upper bits of LHS are zero while RHS has a non-zero bit 3103 // there. Use this to work out the result of the comparison. 3104 if (RExt != CI) { 3105 switch (Pred) { 3106 default: llvm_unreachable("Unknown ICmp predicate!"); 3107 // LHS <u RHS. 3108 case ICmpInst::ICMP_EQ: 3109 case ICmpInst::ICMP_UGT: 3110 case ICmpInst::ICMP_UGE: 3111 return ConstantInt::getFalse(CI->getContext()); 3112 3113 case ICmpInst::ICMP_NE: 3114 case ICmpInst::ICMP_ULT: 3115 case ICmpInst::ICMP_ULE: 3116 return ConstantInt::getTrue(CI->getContext()); 3117 3118 // LHS is non-negative. If RHS is negative then LHS >s LHS. If RHS 3119 // is non-negative then LHS <s RHS. 3120 case ICmpInst::ICMP_SGT: 3121 case ICmpInst::ICMP_SGE: 3122 return CI->getValue().isNegative() ? 3123 ConstantInt::getTrue(CI->getContext()) : 3124 ConstantInt::getFalse(CI->getContext()); 3125 3126 case ICmpInst::ICMP_SLT: 3127 case ICmpInst::ICMP_SLE: 3128 return CI->getValue().isNegative() ? 3129 ConstantInt::getFalse(CI->getContext()) : 3130 ConstantInt::getTrue(CI->getContext()); 3131 } 3132 } 3133 } 3134 } 3135 3136 if (isa<SExtInst>(LHS)) { 3137 // Turn icmp (sext X), (sext Y) into a compare of X and Y if they have the 3138 // same type. 3139 if (SExtInst *RI = dyn_cast<SExtInst>(RHS)) { 3140 if (MaxRecurse && SrcTy == RI->getOperand(0)->getType()) 3141 // Compare X and Y. Note that the predicate does not change. 3142 if (Value *V = SimplifyICmpInst(Pred, SrcOp, RI->getOperand(0), 3143 Q, MaxRecurse-1)) 3144 return V; 3145 } 3146 // Turn icmp (sext X), Cst into a compare of X and Cst if Cst is extended 3147 // too. If not, then try to deduce the result of the comparison. 3148 else if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) { 3149 // Compute the constant that would happen if we truncated to SrcTy then 3150 // reextended to DstTy. 3151 Constant *Trunc = ConstantExpr::getTrunc(CI, SrcTy); 3152 Constant *RExt = ConstantExpr::getCast(CastInst::SExt, Trunc, DstTy); 3153 3154 // If the re-extended constant didn't change then this is effectively 3155 // also a case of comparing two sign-extended values. 3156 if (RExt == CI && MaxRecurse) 3157 if (Value *V = SimplifyICmpInst(Pred, SrcOp, Trunc, Q, MaxRecurse-1)) 3158 return V; 3159 3160 // Otherwise the upper bits of LHS are all equal, while RHS has varying 3161 // bits there. Use this to work out the result of the comparison. 3162 if (RExt != CI) { 3163 switch (Pred) { 3164 default: llvm_unreachable("Unknown ICmp predicate!"); 3165 case ICmpInst::ICMP_EQ: 3166 return ConstantInt::getFalse(CI->getContext()); 3167 case ICmpInst::ICMP_NE: 3168 return ConstantInt::getTrue(CI->getContext()); 3169 3170 // If RHS is non-negative then LHS <s RHS. If RHS is negative then 3171 // LHS >s RHS. 3172 case ICmpInst::ICMP_SGT: 3173 case ICmpInst::ICMP_SGE: 3174 return CI->getValue().isNegative() ? 3175 ConstantInt::getTrue(CI->getContext()) : 3176 ConstantInt::getFalse(CI->getContext()); 3177 case ICmpInst::ICMP_SLT: 3178 case ICmpInst::ICMP_SLE: 3179 return CI->getValue().isNegative() ? 3180 ConstantInt::getFalse(CI->getContext()) : 3181 ConstantInt::getTrue(CI->getContext()); 3182 3183 // If LHS is non-negative then LHS <u RHS. If LHS is negative then 3184 // LHS >u RHS. 3185 case ICmpInst::ICMP_UGT: 3186 case ICmpInst::ICMP_UGE: 3187 // Comparison is true iff the LHS <s 0. 3188 if (MaxRecurse) 3189 if (Value *V = SimplifyICmpInst(ICmpInst::ICMP_SLT, SrcOp, 3190 Constant::getNullValue(SrcTy), 3191 Q, MaxRecurse-1)) 3192 return V; 3193 break; 3194 case ICmpInst::ICMP_ULT: 3195 case ICmpInst::ICMP_ULE: 3196 // Comparison is true iff the LHS >=s 0. 3197 if (MaxRecurse) 3198 if (Value *V = SimplifyICmpInst(ICmpInst::ICMP_SGE, SrcOp, 3199 Constant::getNullValue(SrcTy), 3200 Q, MaxRecurse-1)) 3201 return V; 3202 break; 3203 } 3204 } 3205 } 3206 } 3207 } 3208 3209 // icmp eq|ne X, Y -> false|true if X != Y 3210 if (ICmpInst::isEquality(Pred) && 3211 isKnownNonEqual(LHS, RHS, Q.DL, Q.AC, Q.CxtI, Q.DT)) { 3212 return Pred == ICmpInst::ICMP_NE ? getTrue(ITy) : getFalse(ITy); 3213 } 3214 3215 if (Value *V = simplifyICmpWithBinOp(Pred, LHS, RHS, Q, MaxRecurse)) 3216 return V; 3217 3218 if (Value *V = simplifyICmpWithMinMax(Pred, LHS, RHS, Q, MaxRecurse)) 3219 return V; 3220 3221 // Simplify comparisons of related pointers using a powerful, recursive 3222 // GEP-walk when we have target data available.. 3223 if (LHS->getType()->isPointerTy()) 3224 if (auto *C = computePointerICmp(Q.DL, Q.TLI, Q.DT, Pred, Q.AC, Q.CxtI, LHS, 3225 RHS)) 3226 return C; 3227 if (auto *CLHS = dyn_cast<PtrToIntOperator>(LHS)) 3228 if (auto *CRHS = dyn_cast<PtrToIntOperator>(RHS)) 3229 if (Q.DL.getTypeSizeInBits(CLHS->getPointerOperandType()) == 3230 Q.DL.getTypeSizeInBits(CLHS->getType()) && 3231 Q.DL.getTypeSizeInBits(CRHS->getPointerOperandType()) == 3232 Q.DL.getTypeSizeInBits(CRHS->getType())) 3233 if (auto *C = computePointerICmp(Q.DL, Q.TLI, Q.DT, Pred, Q.AC, Q.CxtI, 3234 CLHS->getPointerOperand(), 3235 CRHS->getPointerOperand())) 3236 return C; 3237 3238 if (GetElementPtrInst *GLHS = dyn_cast<GetElementPtrInst>(LHS)) { 3239 if (GEPOperator *GRHS = dyn_cast<GEPOperator>(RHS)) { 3240 if (GLHS->getPointerOperand() == GRHS->getPointerOperand() && 3241 GLHS->hasAllConstantIndices() && GRHS->hasAllConstantIndices() && 3242 (ICmpInst::isEquality(Pred) || 3243 (GLHS->isInBounds() && GRHS->isInBounds() && 3244 Pred == ICmpInst::getSignedPredicate(Pred)))) { 3245 // The bases are equal and the indices are constant. Build a constant 3246 // expression GEP with the same indices and a null base pointer to see 3247 // what constant folding can make out of it. 3248 Constant *Null = Constant::getNullValue(GLHS->getPointerOperandType()); 3249 SmallVector<Value *, 4> IndicesLHS(GLHS->idx_begin(), GLHS->idx_end()); 3250 Constant *NewLHS = ConstantExpr::getGetElementPtr( 3251 GLHS->getSourceElementType(), Null, IndicesLHS); 3252 3253 SmallVector<Value *, 4> IndicesRHS(GRHS->idx_begin(), GRHS->idx_end()); 3254 Constant *NewRHS = ConstantExpr::getGetElementPtr( 3255 GLHS->getSourceElementType(), Null, IndicesRHS); 3256 return ConstantExpr::getICmp(Pred, NewLHS, NewRHS); 3257 } 3258 } 3259 } 3260 3261 // If the comparison is with the result of a select instruction, check whether 3262 // comparing with either branch of the select always yields the same value. 3263 if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS)) 3264 if (Value *V = ThreadCmpOverSelect(Pred, LHS, RHS, Q, MaxRecurse)) 3265 return V; 3266 3267 // If the comparison is with the result of a phi instruction, check whether 3268 // doing the compare with each incoming phi value yields a common result. 3269 if (isa<PHINode>(LHS) || isa<PHINode>(RHS)) 3270 if (Value *V = ThreadCmpOverPHI(Pred, LHS, RHS, Q, MaxRecurse)) 3271 return V; 3272 3273 return nullptr; 3274 } 3275 3276 Value *llvm::SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS, 3277 const SimplifyQuery &Q) { 3278 return ::SimplifyICmpInst(Predicate, LHS, RHS, Q, RecursionLimit); 3279 } 3280 3281 /// Given operands for an FCmpInst, see if we can fold the result. 3282 /// If not, this returns null. 3283 static Value *SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS, 3284 FastMathFlags FMF, const SimplifyQuery &Q, 3285 unsigned MaxRecurse) { 3286 CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate; 3287 assert(CmpInst::isFPPredicate(Pred) && "Not an FP compare!"); 3288 3289 if (Constant *CLHS = dyn_cast<Constant>(LHS)) { 3290 if (Constant *CRHS = dyn_cast<Constant>(RHS)) 3291 return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, Q.DL, Q.TLI); 3292 3293 // If we have a constant, make sure it is on the RHS. 3294 std::swap(LHS, RHS); 3295 Pred = CmpInst::getSwappedPredicate(Pred); 3296 } 3297 3298 // Fold trivial predicates. 3299 Type *RetTy = GetCompareTy(LHS); 3300 if (Pred == FCmpInst::FCMP_FALSE) 3301 return getFalse(RetTy); 3302 if (Pred == FCmpInst::FCMP_TRUE) 3303 return getTrue(RetTy); 3304 3305 // UNO/ORD predicates can be trivially folded if NaNs are ignored. 3306 if (FMF.noNaNs()) { 3307 if (Pred == FCmpInst::FCMP_UNO) 3308 return getFalse(RetTy); 3309 if (Pred == FCmpInst::FCMP_ORD) 3310 return getTrue(RetTy); 3311 } 3312 3313 // fcmp pred x, undef and fcmp pred undef, x 3314 // fold to true if unordered, false if ordered 3315 if (isa<UndefValue>(LHS) || isa<UndefValue>(RHS)) { 3316 // Choosing NaN for the undef will always make unordered comparison succeed 3317 // and ordered comparison fail. 3318 return ConstantInt::get(RetTy, CmpInst::isUnordered(Pred)); 3319 } 3320 3321 // fcmp x,x -> true/false. Not all compares are foldable. 3322 if (LHS == RHS) { 3323 if (CmpInst::isTrueWhenEqual(Pred)) 3324 return getTrue(RetTy); 3325 if (CmpInst::isFalseWhenEqual(Pred)) 3326 return getFalse(RetTy); 3327 } 3328 3329 // Handle fcmp with constant RHS. 3330 const APFloat *C; 3331 if (match(RHS, m_APFloat(C))) { 3332 // If the constant is a nan, see if we can fold the comparison based on it. 3333 if (C->isNaN()) { 3334 if (FCmpInst::isOrdered(Pred)) // True "if ordered and foo" 3335 return getFalse(RetTy); 3336 assert(FCmpInst::isUnordered(Pred) && 3337 "Comparison must be either ordered or unordered!"); 3338 // True if unordered. 3339 return getTrue(RetTy); 3340 } 3341 // Check whether the constant is an infinity. 3342 if (C->isInfinity()) { 3343 if (C->isNegative()) { 3344 switch (Pred) { 3345 case FCmpInst::FCMP_OLT: 3346 // No value is ordered and less than negative infinity. 3347 return getFalse(RetTy); 3348 case FCmpInst::FCMP_UGE: 3349 // All values are unordered with or at least negative infinity. 3350 return getTrue(RetTy); 3351 default: 3352 break; 3353 } 3354 } else { 3355 switch (Pred) { 3356 case FCmpInst::FCMP_OGT: 3357 // No value is ordered and greater than infinity. 3358 return getFalse(RetTy); 3359 case FCmpInst::FCMP_ULE: 3360 // All values are unordered with and at most infinity. 3361 return getTrue(RetTy); 3362 default: 3363 break; 3364 } 3365 } 3366 } 3367 if (C->isZero()) { 3368 switch (Pred) { 3369 case FCmpInst::FCMP_UGE: 3370 if (CannotBeOrderedLessThanZero(LHS, Q.TLI)) 3371 return getTrue(RetTy); 3372 break; 3373 case FCmpInst::FCMP_OLT: 3374 // X < 0 3375 if (CannotBeOrderedLessThanZero(LHS, Q.TLI)) 3376 return getFalse(RetTy); 3377 break; 3378 default: 3379 break; 3380 } 3381 } else if (C->isNegative()) { 3382 assert(!C->isNaN() && "Unexpected NaN constant!"); 3383 // TODO: We can catch more cases by using a range check rather than 3384 // relying on CannotBeOrderedLessThanZero. 3385 switch (Pred) { 3386 case FCmpInst::FCMP_UGE: 3387 case FCmpInst::FCMP_UGT: 3388 case FCmpInst::FCMP_UNE: 3389 // (X >= 0) implies (X > C) when (C < 0) 3390 if (CannotBeOrderedLessThanZero(LHS, Q.TLI)) 3391 return getTrue(RetTy); 3392 break; 3393 case FCmpInst::FCMP_OEQ: 3394 case FCmpInst::FCMP_OLE: 3395 case FCmpInst::FCMP_OLT: 3396 // (X >= 0) implies !(X < C) when (C < 0) 3397 if (CannotBeOrderedLessThanZero(LHS, Q.TLI)) 3398 return getFalse(RetTy); 3399 break; 3400 default: 3401 break; 3402 } 3403 } 3404 } 3405 3406 // If the comparison is with the result of a select instruction, check whether 3407 // comparing with either branch of the select always yields the same value. 3408 if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS)) 3409 if (Value *V = ThreadCmpOverSelect(Pred, LHS, RHS, Q, MaxRecurse)) 3410 return V; 3411 3412 // If the comparison is with the result of a phi instruction, check whether 3413 // doing the compare with each incoming phi value yields a common result. 3414 if (isa<PHINode>(LHS) || isa<PHINode>(RHS)) 3415 if (Value *V = ThreadCmpOverPHI(Pred, LHS, RHS, Q, MaxRecurse)) 3416 return V; 3417 3418 return nullptr; 3419 } 3420 3421 Value *llvm::SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS, 3422 FastMathFlags FMF, const SimplifyQuery &Q) { 3423 return ::SimplifyFCmpInst(Predicate, LHS, RHS, FMF, Q, RecursionLimit); 3424 } 3425 3426 /// See if V simplifies when its operand Op is replaced with RepOp. 3427 static const Value *SimplifyWithOpReplaced(Value *V, Value *Op, Value *RepOp, 3428 const SimplifyQuery &Q, 3429 unsigned MaxRecurse) { 3430 // Trivial replacement. 3431 if (V == Op) 3432 return RepOp; 3433 3434 // We cannot replace a constant, and shouldn't even try. 3435 if (isa<Constant>(Op)) 3436 return nullptr; 3437 3438 auto *I = dyn_cast<Instruction>(V); 3439 if (!I) 3440 return nullptr; 3441 3442 // If this is a binary operator, try to simplify it with the replaced op. 3443 if (auto *B = dyn_cast<BinaryOperator>(I)) { 3444 // Consider: 3445 // %cmp = icmp eq i32 %x, 2147483647 3446 // %add = add nsw i32 %x, 1 3447 // %sel = select i1 %cmp, i32 -2147483648, i32 %add 3448 // 3449 // We can't replace %sel with %add unless we strip away the flags. 3450 if (isa<OverflowingBinaryOperator>(B)) 3451 if (B->hasNoSignedWrap() || B->hasNoUnsignedWrap()) 3452 return nullptr; 3453 if (isa<PossiblyExactOperator>(B)) 3454 if (B->isExact()) 3455 return nullptr; 3456 3457 if (MaxRecurse) { 3458 if (B->getOperand(0) == Op) 3459 return SimplifyBinOp(B->getOpcode(), RepOp, B->getOperand(1), Q, 3460 MaxRecurse - 1); 3461 if (B->getOperand(1) == Op) 3462 return SimplifyBinOp(B->getOpcode(), B->getOperand(0), RepOp, Q, 3463 MaxRecurse - 1); 3464 } 3465 } 3466 3467 // Same for CmpInsts. 3468 if (CmpInst *C = dyn_cast<CmpInst>(I)) { 3469 if (MaxRecurse) { 3470 if (C->getOperand(0) == Op) 3471 return SimplifyCmpInst(C->getPredicate(), RepOp, C->getOperand(1), Q, 3472 MaxRecurse - 1); 3473 if (C->getOperand(1) == Op) 3474 return SimplifyCmpInst(C->getPredicate(), C->getOperand(0), RepOp, Q, 3475 MaxRecurse - 1); 3476 } 3477 } 3478 3479 // TODO: We could hand off more cases to instsimplify here. 3480 3481 // If all operands are constant after substituting Op for RepOp then we can 3482 // constant fold the instruction. 3483 if (Constant *CRepOp = dyn_cast<Constant>(RepOp)) { 3484 // Build a list of all constant operands. 3485 SmallVector<Constant *, 8> ConstOps; 3486 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 3487 if (I->getOperand(i) == Op) 3488 ConstOps.push_back(CRepOp); 3489 else if (Constant *COp = dyn_cast<Constant>(I->getOperand(i))) 3490 ConstOps.push_back(COp); 3491 else 3492 break; 3493 } 3494 3495 // All operands were constants, fold it. 3496 if (ConstOps.size() == I->getNumOperands()) { 3497 if (CmpInst *C = dyn_cast<CmpInst>(I)) 3498 return ConstantFoldCompareInstOperands(C->getPredicate(), ConstOps[0], 3499 ConstOps[1], Q.DL, Q.TLI); 3500 3501 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 3502 if (!LI->isVolatile()) 3503 return ConstantFoldLoadFromConstPtr(ConstOps[0], LI->getType(), Q.DL); 3504 3505 return ConstantFoldInstOperands(I, ConstOps, Q.DL, Q.TLI); 3506 } 3507 } 3508 3509 return nullptr; 3510 } 3511 3512 /// Try to simplify a select instruction when its condition operand is an 3513 /// integer comparison where one operand of the compare is a constant. 3514 static Value *simplifySelectBitTest(Value *TrueVal, Value *FalseVal, Value *X, 3515 const APInt *Y, bool TrueWhenUnset) { 3516 const APInt *C; 3517 3518 // (X & Y) == 0 ? X & ~Y : X --> X 3519 // (X & Y) != 0 ? X & ~Y : X --> X & ~Y 3520 if (FalseVal == X && match(TrueVal, m_And(m_Specific(X), m_APInt(C))) && 3521 *Y == ~*C) 3522 return TrueWhenUnset ? FalseVal : TrueVal; 3523 3524 // (X & Y) == 0 ? X : X & ~Y --> X & ~Y 3525 // (X & Y) != 0 ? X : X & ~Y --> X 3526 if (TrueVal == X && match(FalseVal, m_And(m_Specific(X), m_APInt(C))) && 3527 *Y == ~*C) 3528 return TrueWhenUnset ? FalseVal : TrueVal; 3529 3530 if (Y->isPowerOf2()) { 3531 // (X & Y) == 0 ? X | Y : X --> X | Y 3532 // (X & Y) != 0 ? X | Y : X --> X 3533 if (FalseVal == X && match(TrueVal, m_Or(m_Specific(X), m_APInt(C))) && 3534 *Y == *C) 3535 return TrueWhenUnset ? TrueVal : FalseVal; 3536 3537 // (X & Y) == 0 ? X : X | Y --> X 3538 // (X & Y) != 0 ? X : X | Y --> X | Y 3539 if (TrueVal == X && match(FalseVal, m_Or(m_Specific(X), m_APInt(C))) && 3540 *Y == *C) 3541 return TrueWhenUnset ? TrueVal : FalseVal; 3542 } 3543 3544 return nullptr; 3545 } 3546 3547 /// An alternative way to test if a bit is set or not uses sgt/slt instead of 3548 /// eq/ne. 3549 static Value *simplifySelectWithFakeICmpEq(Value *CmpLHS, Value *CmpRHS, 3550 ICmpInst::Predicate Pred, 3551 Value *TrueVal, Value *FalseVal) { 3552 Value *X; 3553 APInt Mask; 3554 if (!decomposeBitTestICmp(CmpLHS, CmpRHS, Pred, X, Mask)) 3555 return nullptr; 3556 3557 return simplifySelectBitTest(TrueVal, FalseVal, X, &Mask, 3558 Pred == ICmpInst::ICMP_EQ); 3559 } 3560 3561 /// Try to simplify a select instruction when its condition operand is an 3562 /// integer comparison. 3563 static Value *simplifySelectWithICmpCond(Value *CondVal, Value *TrueVal, 3564 Value *FalseVal, const SimplifyQuery &Q, 3565 unsigned MaxRecurse) { 3566 ICmpInst::Predicate Pred; 3567 Value *CmpLHS, *CmpRHS; 3568 if (!match(CondVal, m_ICmp(Pred, m_Value(CmpLHS), m_Value(CmpRHS)))) 3569 return nullptr; 3570 3571 if (ICmpInst::isEquality(Pred) && match(CmpRHS, m_Zero())) { 3572 Value *X; 3573 const APInt *Y; 3574 if (match(CmpLHS, m_And(m_Value(X), m_APInt(Y)))) 3575 if (Value *V = simplifySelectBitTest(TrueVal, FalseVal, X, Y, 3576 Pred == ICmpInst::ICMP_EQ)) 3577 return V; 3578 } 3579 3580 // Check for other compares that behave like bit test. 3581 if (Value *V = simplifySelectWithFakeICmpEq(CmpLHS, CmpRHS, Pred, 3582 TrueVal, FalseVal)) 3583 return V; 3584 3585 if (CondVal->hasOneUse()) { 3586 const APInt *C; 3587 if (match(CmpRHS, m_APInt(C))) { 3588 // X < MIN ? T : F --> F 3589 if (Pred == ICmpInst::ICMP_SLT && C->isMinSignedValue()) 3590 return FalseVal; 3591 // X < MIN ? T : F --> F 3592 if (Pred == ICmpInst::ICMP_ULT && C->isMinValue()) 3593 return FalseVal; 3594 // X > MAX ? T : F --> F 3595 if (Pred == ICmpInst::ICMP_SGT && C->isMaxSignedValue()) 3596 return FalseVal; 3597 // X > MAX ? T : F --> F 3598 if (Pred == ICmpInst::ICMP_UGT && C->isMaxValue()) 3599 return FalseVal; 3600 } 3601 } 3602 3603 // If we have an equality comparison, then we know the value in one of the 3604 // arms of the select. See if substituting this value into the arm and 3605 // simplifying the result yields the same value as the other arm. 3606 if (Pred == ICmpInst::ICMP_EQ) { 3607 if (SimplifyWithOpReplaced(FalseVal, CmpLHS, CmpRHS, Q, MaxRecurse) == 3608 TrueVal || 3609 SimplifyWithOpReplaced(FalseVal, CmpRHS, CmpLHS, Q, MaxRecurse) == 3610 TrueVal) 3611 return FalseVal; 3612 if (SimplifyWithOpReplaced(TrueVal, CmpLHS, CmpRHS, Q, MaxRecurse) == 3613 FalseVal || 3614 SimplifyWithOpReplaced(TrueVal, CmpRHS, CmpLHS, Q, MaxRecurse) == 3615 FalseVal) 3616 return FalseVal; 3617 } else if (Pred == ICmpInst::ICMP_NE) { 3618 if (SimplifyWithOpReplaced(TrueVal, CmpLHS, CmpRHS, Q, MaxRecurse) == 3619 FalseVal || 3620 SimplifyWithOpReplaced(TrueVal, CmpRHS, CmpLHS, Q, MaxRecurse) == 3621 FalseVal) 3622 return TrueVal; 3623 if (SimplifyWithOpReplaced(FalseVal, CmpLHS, CmpRHS, Q, MaxRecurse) == 3624 TrueVal || 3625 SimplifyWithOpReplaced(FalseVal, CmpRHS, CmpLHS, Q, MaxRecurse) == 3626 TrueVal) 3627 return TrueVal; 3628 } 3629 3630 return nullptr; 3631 } 3632 3633 /// Given operands for a SelectInst, see if we can fold the result. 3634 /// If not, this returns null. 3635 static Value *SimplifySelectInst(Value *CondVal, Value *TrueVal, 3636 Value *FalseVal, const SimplifyQuery &Q, 3637 unsigned MaxRecurse) { 3638 // select true, X, Y -> X 3639 // select false, X, Y -> Y 3640 if (Constant *CB = dyn_cast<Constant>(CondVal)) { 3641 if (Constant *CT = dyn_cast<Constant>(TrueVal)) 3642 if (Constant *CF = dyn_cast<Constant>(FalseVal)) 3643 return ConstantFoldSelectInstruction(CB, CT, CF); 3644 if (CB->isAllOnesValue()) 3645 return TrueVal; 3646 if (CB->isNullValue()) 3647 return FalseVal; 3648 } 3649 3650 // select C, X, X -> X 3651 if (TrueVal == FalseVal) 3652 return TrueVal; 3653 3654 if (isa<UndefValue>(CondVal)) { // select undef, X, Y -> X or Y 3655 if (isa<Constant>(FalseVal)) 3656 return FalseVal; 3657 return TrueVal; 3658 } 3659 if (isa<UndefValue>(TrueVal)) // select C, undef, X -> X 3660 return FalseVal; 3661 if (isa<UndefValue>(FalseVal)) // select C, X, undef -> X 3662 return TrueVal; 3663 3664 if (Value *V = 3665 simplifySelectWithICmpCond(CondVal, TrueVal, FalseVal, Q, MaxRecurse)) 3666 return V; 3667 3668 return nullptr; 3669 } 3670 3671 Value *llvm::SimplifySelectInst(Value *Cond, Value *TrueVal, Value *FalseVal, 3672 const SimplifyQuery &Q) { 3673 return ::SimplifySelectInst(Cond, TrueVal, FalseVal, Q, RecursionLimit); 3674 } 3675 3676 /// Given operands for an GetElementPtrInst, see if we can fold the result. 3677 /// If not, this returns null. 3678 static Value *SimplifyGEPInst(Type *SrcTy, ArrayRef<Value *> Ops, 3679 const SimplifyQuery &Q, unsigned) { 3680 // The type of the GEP pointer operand. 3681 unsigned AS = 3682 cast<PointerType>(Ops[0]->getType()->getScalarType())->getAddressSpace(); 3683 3684 // getelementptr P -> P. 3685 if (Ops.size() == 1) 3686 return Ops[0]; 3687 3688 // Compute the (pointer) type returned by the GEP instruction. 3689 Type *LastType = GetElementPtrInst::getIndexedType(SrcTy, Ops.slice(1)); 3690 Type *GEPTy = PointerType::get(LastType, AS); 3691 if (VectorType *VT = dyn_cast<VectorType>(Ops[0]->getType())) 3692 GEPTy = VectorType::get(GEPTy, VT->getNumElements()); 3693 else if (VectorType *VT = dyn_cast<VectorType>(Ops[1]->getType())) 3694 GEPTy = VectorType::get(GEPTy, VT->getNumElements()); 3695 3696 if (isa<UndefValue>(Ops[0])) 3697 return UndefValue::get(GEPTy); 3698 3699 if (Ops.size() == 2) { 3700 // getelementptr P, 0 -> P. 3701 if (match(Ops[1], m_Zero())) 3702 return Ops[0]; 3703 3704 Type *Ty = SrcTy; 3705 if (Ty->isSized()) { 3706 Value *P; 3707 uint64_t C; 3708 uint64_t TyAllocSize = Q.DL.getTypeAllocSize(Ty); 3709 // getelementptr P, N -> P if P points to a type of zero size. 3710 if (TyAllocSize == 0) 3711 return Ops[0]; 3712 3713 // The following transforms are only safe if the ptrtoint cast 3714 // doesn't truncate the pointers. 3715 if (Ops[1]->getType()->getScalarSizeInBits() == 3716 Q.DL.getPointerSizeInBits(AS)) { 3717 auto PtrToIntOrZero = [GEPTy](Value *P) -> Value * { 3718 if (match(P, m_Zero())) 3719 return Constant::getNullValue(GEPTy); 3720 Value *Temp; 3721 if (match(P, m_PtrToInt(m_Value(Temp)))) 3722 if (Temp->getType() == GEPTy) 3723 return Temp; 3724 return nullptr; 3725 }; 3726 3727 // getelementptr V, (sub P, V) -> P if P points to a type of size 1. 3728 if (TyAllocSize == 1 && 3729 match(Ops[1], m_Sub(m_Value(P), m_PtrToInt(m_Specific(Ops[0]))))) 3730 if (Value *R = PtrToIntOrZero(P)) 3731 return R; 3732 3733 // getelementptr V, (ashr (sub P, V), C) -> Q 3734 // if P points to a type of size 1 << C. 3735 if (match(Ops[1], 3736 m_AShr(m_Sub(m_Value(P), m_PtrToInt(m_Specific(Ops[0]))), 3737 m_ConstantInt(C))) && 3738 TyAllocSize == 1ULL << C) 3739 if (Value *R = PtrToIntOrZero(P)) 3740 return R; 3741 3742 // getelementptr V, (sdiv (sub P, V), C) -> Q 3743 // if P points to a type of size C. 3744 if (match(Ops[1], 3745 m_SDiv(m_Sub(m_Value(P), m_PtrToInt(m_Specific(Ops[0]))), 3746 m_SpecificInt(TyAllocSize)))) 3747 if (Value *R = PtrToIntOrZero(P)) 3748 return R; 3749 } 3750 } 3751 } 3752 3753 if (Q.DL.getTypeAllocSize(LastType) == 1 && 3754 all_of(Ops.slice(1).drop_back(1), 3755 [](Value *Idx) { return match(Idx, m_Zero()); })) { 3756 unsigned PtrWidth = 3757 Q.DL.getPointerSizeInBits(Ops[0]->getType()->getPointerAddressSpace()); 3758 if (Q.DL.getTypeSizeInBits(Ops.back()->getType()) == PtrWidth) { 3759 APInt BasePtrOffset(PtrWidth, 0); 3760 Value *StrippedBasePtr = 3761 Ops[0]->stripAndAccumulateInBoundsConstantOffsets(Q.DL, 3762 BasePtrOffset); 3763 3764 // gep (gep V, C), (sub 0, V) -> C 3765 if (match(Ops.back(), 3766 m_Sub(m_Zero(), m_PtrToInt(m_Specific(StrippedBasePtr))))) { 3767 auto *CI = ConstantInt::get(GEPTy->getContext(), BasePtrOffset); 3768 return ConstantExpr::getIntToPtr(CI, GEPTy); 3769 } 3770 // gep (gep V, C), (xor V, -1) -> C-1 3771 if (match(Ops.back(), 3772 m_Xor(m_PtrToInt(m_Specific(StrippedBasePtr)), m_AllOnes()))) { 3773 auto *CI = ConstantInt::get(GEPTy->getContext(), BasePtrOffset - 1); 3774 return ConstantExpr::getIntToPtr(CI, GEPTy); 3775 } 3776 } 3777 } 3778 3779 // Check to see if this is constant foldable. 3780 if (!all_of(Ops, [](Value *V) { return isa<Constant>(V); })) 3781 return nullptr; 3782 3783 auto *CE = ConstantExpr::getGetElementPtr(SrcTy, cast<Constant>(Ops[0]), 3784 Ops.slice(1)); 3785 if (auto *CEFolded = ConstantFoldConstant(CE, Q.DL)) 3786 return CEFolded; 3787 return CE; 3788 } 3789 3790 Value *llvm::SimplifyGEPInst(Type *SrcTy, ArrayRef<Value *> Ops, 3791 const SimplifyQuery &Q) { 3792 return ::SimplifyGEPInst(SrcTy, Ops, Q, RecursionLimit); 3793 } 3794 3795 /// Given operands for an InsertValueInst, see if we can fold the result. 3796 /// If not, this returns null. 3797 static Value *SimplifyInsertValueInst(Value *Agg, Value *Val, 3798 ArrayRef<unsigned> Idxs, const SimplifyQuery &Q, 3799 unsigned) { 3800 if (Constant *CAgg = dyn_cast<Constant>(Agg)) 3801 if (Constant *CVal = dyn_cast<Constant>(Val)) 3802 return ConstantFoldInsertValueInstruction(CAgg, CVal, Idxs); 3803 3804 // insertvalue x, undef, n -> x 3805 if (match(Val, m_Undef())) 3806 return Agg; 3807 3808 // insertvalue x, (extractvalue y, n), n 3809 if (ExtractValueInst *EV = dyn_cast<ExtractValueInst>(Val)) 3810 if (EV->getAggregateOperand()->getType() == Agg->getType() && 3811 EV->getIndices() == Idxs) { 3812 // insertvalue undef, (extractvalue y, n), n -> y 3813 if (match(Agg, m_Undef())) 3814 return EV->getAggregateOperand(); 3815 3816 // insertvalue y, (extractvalue y, n), n -> y 3817 if (Agg == EV->getAggregateOperand()) 3818 return Agg; 3819 } 3820 3821 return nullptr; 3822 } 3823 3824 Value *llvm::SimplifyInsertValueInst(Value *Agg, Value *Val, 3825 ArrayRef<unsigned> Idxs, 3826 const SimplifyQuery &Q) { 3827 return ::SimplifyInsertValueInst(Agg, Val, Idxs, Q, RecursionLimit); 3828 } 3829 3830 /// Given operands for an ExtractValueInst, see if we can fold the result. 3831 /// If not, this returns null. 3832 static Value *SimplifyExtractValueInst(Value *Agg, ArrayRef<unsigned> Idxs, 3833 const SimplifyQuery &, unsigned) { 3834 if (auto *CAgg = dyn_cast<Constant>(Agg)) 3835 return ConstantFoldExtractValueInstruction(CAgg, Idxs); 3836 3837 // extractvalue x, (insertvalue y, elt, n), n -> elt 3838 unsigned NumIdxs = Idxs.size(); 3839 for (auto *IVI = dyn_cast<InsertValueInst>(Agg); IVI != nullptr; 3840 IVI = dyn_cast<InsertValueInst>(IVI->getAggregateOperand())) { 3841 ArrayRef<unsigned> InsertValueIdxs = IVI->getIndices(); 3842 unsigned NumInsertValueIdxs = InsertValueIdxs.size(); 3843 unsigned NumCommonIdxs = std::min(NumInsertValueIdxs, NumIdxs); 3844 if (InsertValueIdxs.slice(0, NumCommonIdxs) == 3845 Idxs.slice(0, NumCommonIdxs)) { 3846 if (NumIdxs == NumInsertValueIdxs) 3847 return IVI->getInsertedValueOperand(); 3848 break; 3849 } 3850 } 3851 3852 return nullptr; 3853 } 3854 3855 Value *llvm::SimplifyExtractValueInst(Value *Agg, ArrayRef<unsigned> Idxs, 3856 const SimplifyQuery &Q) { 3857 return ::SimplifyExtractValueInst(Agg, Idxs, Q, RecursionLimit); 3858 } 3859 3860 /// Given operands for an ExtractElementInst, see if we can fold the result. 3861 /// If not, this returns null. 3862 static Value *SimplifyExtractElementInst(Value *Vec, Value *Idx, const SimplifyQuery &, 3863 unsigned) { 3864 if (auto *CVec = dyn_cast<Constant>(Vec)) { 3865 if (auto *CIdx = dyn_cast<Constant>(Idx)) 3866 return ConstantFoldExtractElementInstruction(CVec, CIdx); 3867 3868 // The index is not relevant if our vector is a splat. 3869 if (auto *Splat = CVec->getSplatValue()) 3870 return Splat; 3871 3872 if (isa<UndefValue>(Vec)) 3873 return UndefValue::get(Vec->getType()->getVectorElementType()); 3874 } 3875 3876 // If extracting a specified index from the vector, see if we can recursively 3877 // find a previously computed scalar that was inserted into the vector. 3878 if (auto *IdxC = dyn_cast<ConstantInt>(Idx)) 3879 if (Value *Elt = findScalarElement(Vec, IdxC->getZExtValue())) 3880 return Elt; 3881 3882 // An undef extract index can be arbitrarily chosen to be an out-of-range 3883 // index value, which would result in the instruction being undef. 3884 if (isa<UndefValue>(Idx)) 3885 return UndefValue::get(Vec->getType()->getVectorElementType()); 3886 3887 return nullptr; 3888 } 3889 3890 Value *llvm::SimplifyExtractElementInst(Value *Vec, Value *Idx, 3891 const SimplifyQuery &Q) { 3892 return ::SimplifyExtractElementInst(Vec, Idx, Q, RecursionLimit); 3893 } 3894 3895 /// See if we can fold the given phi. If not, returns null. 3896 static Value *SimplifyPHINode(PHINode *PN, const SimplifyQuery &Q) { 3897 // If all of the PHI's incoming values are the same then replace the PHI node 3898 // with the common value. 3899 Value *CommonValue = nullptr; 3900 bool HasUndefInput = false; 3901 for (Value *Incoming : PN->incoming_values()) { 3902 // If the incoming value is the phi node itself, it can safely be skipped. 3903 if (Incoming == PN) continue; 3904 if (isa<UndefValue>(Incoming)) { 3905 // Remember that we saw an undef value, but otherwise ignore them. 3906 HasUndefInput = true; 3907 continue; 3908 } 3909 if (CommonValue && Incoming != CommonValue) 3910 return nullptr; // Not the same, bail out. 3911 CommonValue = Incoming; 3912 } 3913 3914 // If CommonValue is null then all of the incoming values were either undef or 3915 // equal to the phi node itself. 3916 if (!CommonValue) 3917 return UndefValue::get(PN->getType()); 3918 3919 // If we have a PHI node like phi(X, undef, X), where X is defined by some 3920 // instruction, we cannot return X as the result of the PHI node unless it 3921 // dominates the PHI block. 3922 if (HasUndefInput) 3923 return ValueDominatesPHI(CommonValue, PN, Q.DT) ? CommonValue : nullptr; 3924 3925 return CommonValue; 3926 } 3927 3928 static Value *SimplifyCastInst(unsigned CastOpc, Value *Op, 3929 Type *Ty, const SimplifyQuery &Q, unsigned MaxRecurse) { 3930 if (auto *C = dyn_cast<Constant>(Op)) 3931 return ConstantFoldCastOperand(CastOpc, C, Ty, Q.DL); 3932 3933 if (auto *CI = dyn_cast<CastInst>(Op)) { 3934 auto *Src = CI->getOperand(0); 3935 Type *SrcTy = Src->getType(); 3936 Type *MidTy = CI->getType(); 3937 Type *DstTy = Ty; 3938 if (Src->getType() == Ty) { 3939 auto FirstOp = static_cast<Instruction::CastOps>(CI->getOpcode()); 3940 auto SecondOp = static_cast<Instruction::CastOps>(CastOpc); 3941 Type *SrcIntPtrTy = 3942 SrcTy->isPtrOrPtrVectorTy() ? Q.DL.getIntPtrType(SrcTy) : nullptr; 3943 Type *MidIntPtrTy = 3944 MidTy->isPtrOrPtrVectorTy() ? Q.DL.getIntPtrType(MidTy) : nullptr; 3945 Type *DstIntPtrTy = 3946 DstTy->isPtrOrPtrVectorTy() ? Q.DL.getIntPtrType(DstTy) : nullptr; 3947 if (CastInst::isEliminableCastPair(FirstOp, SecondOp, SrcTy, MidTy, DstTy, 3948 SrcIntPtrTy, MidIntPtrTy, 3949 DstIntPtrTy) == Instruction::BitCast) 3950 return Src; 3951 } 3952 } 3953 3954 // bitcast x -> x 3955 if (CastOpc == Instruction::BitCast) 3956 if (Op->getType() == Ty) 3957 return Op; 3958 3959 return nullptr; 3960 } 3961 3962 Value *llvm::SimplifyCastInst(unsigned CastOpc, Value *Op, Type *Ty, 3963 const SimplifyQuery &Q) { 3964 return ::SimplifyCastInst(CastOpc, Op, Ty, Q, RecursionLimit); 3965 } 3966 3967 /// For the given destination element of a shuffle, peek through shuffles to 3968 /// match a root vector source operand that contains that element in the same 3969 /// vector lane (ie, the same mask index), so we can eliminate the shuffle(s). 3970 static Value *foldIdentityShuffles(int DestElt, Value *Op0, Value *Op1, 3971 int MaskVal, Value *RootVec, 3972 unsigned MaxRecurse) { 3973 if (!MaxRecurse--) 3974 return nullptr; 3975 3976 // Bail out if any mask value is undefined. That kind of shuffle may be 3977 // simplified further based on demanded bits or other folds. 3978 if (MaskVal == -1) 3979 return nullptr; 3980 3981 // The mask value chooses which source operand we need to look at next. 3982 int InVecNumElts = Op0->getType()->getVectorNumElements(); 3983 int RootElt = MaskVal; 3984 Value *SourceOp = Op0; 3985 if (MaskVal >= InVecNumElts) { 3986 RootElt = MaskVal - InVecNumElts; 3987 SourceOp = Op1; 3988 } 3989 3990 // If the source operand is a shuffle itself, look through it to find the 3991 // matching root vector. 3992 if (auto *SourceShuf = dyn_cast<ShuffleVectorInst>(SourceOp)) { 3993 return foldIdentityShuffles( 3994 DestElt, SourceShuf->getOperand(0), SourceShuf->getOperand(1), 3995 SourceShuf->getMaskValue(RootElt), RootVec, MaxRecurse); 3996 } 3997 3998 // TODO: Look through bitcasts? What if the bitcast changes the vector element 3999 // size? 4000 4001 // The source operand is not a shuffle. Initialize the root vector value for 4002 // this shuffle if that has not been done yet. 4003 if (!RootVec) 4004 RootVec = SourceOp; 4005 4006 // Give up as soon as a source operand does not match the existing root value. 4007 if (RootVec != SourceOp) 4008 return nullptr; 4009 4010 // The element must be coming from the same lane in the source vector 4011 // (although it may have crossed lanes in intermediate shuffles). 4012 if (RootElt != DestElt) 4013 return nullptr; 4014 4015 return RootVec; 4016 } 4017 4018 static Value *SimplifyShuffleVectorInst(Value *Op0, Value *Op1, Constant *Mask, 4019 Type *RetTy, const SimplifyQuery &Q, 4020 unsigned MaxRecurse) { 4021 if (isa<UndefValue>(Mask)) 4022 return UndefValue::get(RetTy); 4023 4024 Type *InVecTy = Op0->getType(); 4025 unsigned MaskNumElts = Mask->getType()->getVectorNumElements(); 4026 unsigned InVecNumElts = InVecTy->getVectorNumElements(); 4027 4028 SmallVector<int, 32> Indices; 4029 ShuffleVectorInst::getShuffleMask(Mask, Indices); 4030 assert(MaskNumElts == Indices.size() && 4031 "Size of Indices not same as number of mask elements?"); 4032 4033 // Canonicalization: If mask does not select elements from an input vector, 4034 // replace that input vector with undef. 4035 bool MaskSelects0 = false, MaskSelects1 = false; 4036 for (unsigned i = 0; i != MaskNumElts; ++i) { 4037 if (Indices[i] == -1) 4038 continue; 4039 if ((unsigned)Indices[i] < InVecNumElts) 4040 MaskSelects0 = true; 4041 else 4042 MaskSelects1 = true; 4043 } 4044 if (!MaskSelects0) 4045 Op0 = UndefValue::get(InVecTy); 4046 if (!MaskSelects1) 4047 Op1 = UndefValue::get(InVecTy); 4048 4049 auto *Op0Const = dyn_cast<Constant>(Op0); 4050 auto *Op1Const = dyn_cast<Constant>(Op1); 4051 4052 // If all operands are constant, constant fold the shuffle. 4053 if (Op0Const && Op1Const) 4054 return ConstantFoldShuffleVectorInstruction(Op0Const, Op1Const, Mask); 4055 4056 // Canonicalization: if only one input vector is constant, it shall be the 4057 // second one. 4058 if (Op0Const && !Op1Const) { 4059 std::swap(Op0, Op1); 4060 ShuffleVectorInst::commuteShuffleMask(Indices, InVecNumElts); 4061 } 4062 4063 // A shuffle of a splat is always the splat itself. Legal if the shuffle's 4064 // value type is same as the input vectors' type. 4065 if (auto *OpShuf = dyn_cast<ShuffleVectorInst>(Op0)) 4066 if (isa<UndefValue>(Op1) && RetTy == InVecTy && 4067 OpShuf->getMask()->getSplatValue()) 4068 return Op0; 4069 4070 // Don't fold a shuffle with undef mask elements. This may get folded in a 4071 // better way using demanded bits or other analysis. 4072 // TODO: Should we allow this? 4073 if (find(Indices, -1) != Indices.end()) 4074 return nullptr; 4075 4076 // Check if every element of this shuffle can be mapped back to the 4077 // corresponding element of a single root vector. If so, we don't need this 4078 // shuffle. This handles simple identity shuffles as well as chains of 4079 // shuffles that may widen/narrow and/or move elements across lanes and back. 4080 Value *RootVec = nullptr; 4081 for (unsigned i = 0; i != MaskNumElts; ++i) { 4082 // Note that recursion is limited for each vector element, so if any element 4083 // exceeds the limit, this will fail to simplify. 4084 RootVec = 4085 foldIdentityShuffles(i, Op0, Op1, Indices[i], RootVec, MaxRecurse); 4086 4087 // We can't replace a widening/narrowing shuffle with one of its operands. 4088 if (!RootVec || RootVec->getType() != RetTy) 4089 return nullptr; 4090 } 4091 return RootVec; 4092 } 4093 4094 /// Given operands for a ShuffleVectorInst, fold the result or return null. 4095 Value *llvm::SimplifyShuffleVectorInst(Value *Op0, Value *Op1, Constant *Mask, 4096 Type *RetTy, const SimplifyQuery &Q) { 4097 return ::SimplifyShuffleVectorInst(Op0, Op1, Mask, RetTy, Q, RecursionLimit); 4098 } 4099 4100 /// Given operands for an FAdd, see if we can fold the result. If not, this 4101 /// returns null. 4102 static Value *SimplifyFAddInst(Value *Op0, Value *Op1, FastMathFlags FMF, 4103 const SimplifyQuery &Q, unsigned MaxRecurse) { 4104 if (Constant *C = foldOrCommuteConstant(Instruction::FAdd, Op0, Op1, Q)) 4105 return C; 4106 4107 // fadd X, -0 ==> X 4108 if (match(Op1, m_NegZero())) 4109 return Op0; 4110 4111 // fadd X, 0 ==> X, when we know X is not -0 4112 if (match(Op1, m_Zero()) && 4113 (FMF.noSignedZeros() || CannotBeNegativeZero(Op0, Q.TLI))) 4114 return Op0; 4115 4116 // fadd [nnan ninf] X, (fsub [nnan ninf] 0, X) ==> 0 4117 // where nnan and ninf have to occur at least once somewhere in this 4118 // expression 4119 Value *SubOp = nullptr; 4120 if (match(Op1, m_FSub(m_AnyZero(), m_Specific(Op0)))) 4121 SubOp = Op1; 4122 else if (match(Op0, m_FSub(m_AnyZero(), m_Specific(Op1)))) 4123 SubOp = Op0; 4124 if (SubOp) { 4125 Instruction *FSub = cast<Instruction>(SubOp); 4126 if ((FMF.noNaNs() || FSub->hasNoNaNs()) && 4127 (FMF.noInfs() || FSub->hasNoInfs())) 4128 return Constant::getNullValue(Op0->getType()); 4129 } 4130 4131 return nullptr; 4132 } 4133 4134 /// Given operands for an FSub, see if we can fold the result. If not, this 4135 /// returns null. 4136 static Value *SimplifyFSubInst(Value *Op0, Value *Op1, FastMathFlags FMF, 4137 const SimplifyQuery &Q, unsigned MaxRecurse) { 4138 if (Constant *C = foldOrCommuteConstant(Instruction::FSub, Op0, Op1, Q)) 4139 return C; 4140 4141 // fsub X, 0 ==> X 4142 if (match(Op1, m_Zero())) 4143 return Op0; 4144 4145 // fsub X, -0 ==> X, when we know X is not -0 4146 if (match(Op1, m_NegZero()) && 4147 (FMF.noSignedZeros() || CannotBeNegativeZero(Op0, Q.TLI))) 4148 return Op0; 4149 4150 // fsub -0.0, (fsub -0.0, X) ==> X 4151 Value *X; 4152 if (match(Op0, m_NegZero()) && match(Op1, m_FSub(m_NegZero(), m_Value(X)))) 4153 return X; 4154 4155 // fsub 0.0, (fsub 0.0, X) ==> X if signed zeros are ignored. 4156 if (FMF.noSignedZeros() && match(Op0, m_AnyZero()) && 4157 match(Op1, m_FSub(m_AnyZero(), m_Value(X)))) 4158 return X; 4159 4160 // fsub nnan x, x ==> 0.0 4161 if (FMF.noNaNs() && Op0 == Op1) 4162 return Constant::getNullValue(Op0->getType()); 4163 4164 return nullptr; 4165 } 4166 4167 /// Given the operands for an FMul, see if we can fold the result 4168 static Value *SimplifyFMulInst(Value *Op0, Value *Op1, FastMathFlags FMF, 4169 const SimplifyQuery &Q, unsigned MaxRecurse) { 4170 if (Constant *C = foldOrCommuteConstant(Instruction::FMul, Op0, Op1, Q)) 4171 return C; 4172 4173 // fmul X, 1.0 ==> X 4174 if (match(Op1, m_FPOne())) 4175 return Op0; 4176 4177 // fmul nnan nsz X, 0 ==> 0 4178 if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op1, m_AnyZero())) 4179 return Op1; 4180 4181 return nullptr; 4182 } 4183 4184 Value *llvm::SimplifyFAddInst(Value *Op0, Value *Op1, FastMathFlags FMF, 4185 const SimplifyQuery &Q) { 4186 return ::SimplifyFAddInst(Op0, Op1, FMF, Q, RecursionLimit); 4187 } 4188 4189 4190 Value *llvm::SimplifyFSubInst(Value *Op0, Value *Op1, FastMathFlags FMF, 4191 const SimplifyQuery &Q) { 4192 return ::SimplifyFSubInst(Op0, Op1, FMF, Q, RecursionLimit); 4193 } 4194 4195 Value *llvm::SimplifyFMulInst(Value *Op0, Value *Op1, FastMathFlags FMF, 4196 const SimplifyQuery &Q) { 4197 return ::SimplifyFMulInst(Op0, Op1, FMF, Q, RecursionLimit); 4198 } 4199 4200 static Value *SimplifyFDivInst(Value *Op0, Value *Op1, FastMathFlags FMF, 4201 const SimplifyQuery &Q, unsigned) { 4202 if (Constant *C = foldOrCommuteConstant(Instruction::FDiv, Op0, Op1, Q)) 4203 return C; 4204 4205 // undef / X -> undef (the undef could be a snan). 4206 if (match(Op0, m_Undef())) 4207 return Op0; 4208 4209 // X / undef -> undef 4210 if (match(Op1, m_Undef())) 4211 return Op1; 4212 4213 // X / 1.0 -> X 4214 if (match(Op1, m_FPOne())) 4215 return Op0; 4216 4217 // 0 / X -> 0 4218 // Requires that NaNs are off (X could be zero) and signed zeroes are 4219 // ignored (X could be positive or negative, so the output sign is unknown). 4220 if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op0, m_AnyZero())) 4221 return Op0; 4222 4223 if (FMF.noNaNs()) { 4224 // X / X -> 1.0 is legal when NaNs are ignored. 4225 if (Op0 == Op1) 4226 return ConstantFP::get(Op0->getType(), 1.0); 4227 4228 // -X / X -> -1.0 and 4229 // X / -X -> -1.0 are legal when NaNs are ignored. 4230 // We can ignore signed zeros because +-0.0/+-0.0 is NaN and ignored. 4231 if ((BinaryOperator::isFNeg(Op0, /*IgnoreZeroSign=*/true) && 4232 BinaryOperator::getFNegArgument(Op0) == Op1) || 4233 (BinaryOperator::isFNeg(Op1, /*IgnoreZeroSign=*/true) && 4234 BinaryOperator::getFNegArgument(Op1) == Op0)) 4235 return ConstantFP::get(Op0->getType(), -1.0); 4236 } 4237 4238 return nullptr; 4239 } 4240 4241 Value *llvm::SimplifyFDivInst(Value *Op0, Value *Op1, FastMathFlags FMF, 4242 const SimplifyQuery &Q) { 4243 return ::SimplifyFDivInst(Op0, Op1, FMF, Q, RecursionLimit); 4244 } 4245 4246 static Value *SimplifyFRemInst(Value *Op0, Value *Op1, FastMathFlags FMF, 4247 const SimplifyQuery &Q, unsigned) { 4248 if (Constant *C = foldOrCommuteConstant(Instruction::FRem, Op0, Op1, Q)) 4249 return C; 4250 4251 // undef % X -> undef (the undef could be a snan). 4252 if (match(Op0, m_Undef())) 4253 return Op0; 4254 4255 // X % undef -> undef 4256 if (match(Op1, m_Undef())) 4257 return Op1; 4258 4259 // 0 % X -> 0 4260 // Requires that NaNs are off (X could be zero) and signed zeroes are 4261 // ignored (X could be positive or negative, so the output sign is unknown). 4262 if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op0, m_AnyZero())) 4263 return Op0; 4264 4265 return nullptr; 4266 } 4267 4268 Value *llvm::SimplifyFRemInst(Value *Op0, Value *Op1, FastMathFlags FMF, 4269 const SimplifyQuery &Q) { 4270 return ::SimplifyFRemInst(Op0, Op1, FMF, Q, RecursionLimit); 4271 } 4272 4273 //=== Helper functions for higher up the class hierarchy. 4274 4275 /// Given operands for a BinaryOperator, see if we can fold the result. 4276 /// If not, this returns null. 4277 static Value *SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS, 4278 const SimplifyQuery &Q, unsigned MaxRecurse) { 4279 switch (Opcode) { 4280 case Instruction::Add: 4281 return SimplifyAddInst(LHS, RHS, false, false, Q, MaxRecurse); 4282 case Instruction::Sub: 4283 return SimplifySubInst(LHS, RHS, false, false, Q, MaxRecurse); 4284 case Instruction::Mul: 4285 return SimplifyMulInst(LHS, RHS, Q, MaxRecurse); 4286 case Instruction::SDiv: 4287 return SimplifySDivInst(LHS, RHS, Q, MaxRecurse); 4288 case Instruction::UDiv: 4289 return SimplifyUDivInst(LHS, RHS, Q, MaxRecurse); 4290 case Instruction::SRem: 4291 return SimplifySRemInst(LHS, RHS, Q, MaxRecurse); 4292 case Instruction::URem: 4293 return SimplifyURemInst(LHS, RHS, Q, MaxRecurse); 4294 case Instruction::Shl: 4295 return SimplifyShlInst(LHS, RHS, false, false, Q, MaxRecurse); 4296 case Instruction::LShr: 4297 return SimplifyLShrInst(LHS, RHS, false, Q, MaxRecurse); 4298 case Instruction::AShr: 4299 return SimplifyAShrInst(LHS, RHS, false, Q, MaxRecurse); 4300 case Instruction::And: 4301 return SimplifyAndInst(LHS, RHS, Q, MaxRecurse); 4302 case Instruction::Or: 4303 return SimplifyOrInst(LHS, RHS, Q, MaxRecurse); 4304 case Instruction::Xor: 4305 return SimplifyXorInst(LHS, RHS, Q, MaxRecurse); 4306 case Instruction::FAdd: 4307 return SimplifyFAddInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse); 4308 case Instruction::FSub: 4309 return SimplifyFSubInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse); 4310 case Instruction::FMul: 4311 return SimplifyFMulInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse); 4312 case Instruction::FDiv: 4313 return SimplifyFDivInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse); 4314 case Instruction::FRem: 4315 return SimplifyFRemInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse); 4316 default: 4317 llvm_unreachable("Unexpected opcode"); 4318 } 4319 } 4320 4321 /// Given operands for a BinaryOperator, see if we can fold the result. 4322 /// If not, this returns null. 4323 /// In contrast to SimplifyBinOp, try to use FastMathFlag when folding the 4324 /// result. In case we don't need FastMathFlags, simply fall to SimplifyBinOp. 4325 static Value *SimplifyFPBinOp(unsigned Opcode, Value *LHS, Value *RHS, 4326 const FastMathFlags &FMF, const SimplifyQuery &Q, 4327 unsigned MaxRecurse) { 4328 switch (Opcode) { 4329 case Instruction::FAdd: 4330 return SimplifyFAddInst(LHS, RHS, FMF, Q, MaxRecurse); 4331 case Instruction::FSub: 4332 return SimplifyFSubInst(LHS, RHS, FMF, Q, MaxRecurse); 4333 case Instruction::FMul: 4334 return SimplifyFMulInst(LHS, RHS, FMF, Q, MaxRecurse); 4335 case Instruction::FDiv: 4336 return SimplifyFDivInst(LHS, RHS, FMF, Q, MaxRecurse); 4337 default: 4338 return SimplifyBinOp(Opcode, LHS, RHS, Q, MaxRecurse); 4339 } 4340 } 4341 4342 Value *llvm::SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS, 4343 const SimplifyQuery &Q) { 4344 return ::SimplifyBinOp(Opcode, LHS, RHS, Q, RecursionLimit); 4345 } 4346 4347 Value *llvm::SimplifyFPBinOp(unsigned Opcode, Value *LHS, Value *RHS, 4348 FastMathFlags FMF, const SimplifyQuery &Q) { 4349 return ::SimplifyFPBinOp(Opcode, LHS, RHS, FMF, Q, RecursionLimit); 4350 } 4351 4352 /// Given operands for a CmpInst, see if we can fold the result. 4353 static Value *SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS, 4354 const SimplifyQuery &Q, unsigned MaxRecurse) { 4355 if (CmpInst::isIntPredicate((CmpInst::Predicate)Predicate)) 4356 return SimplifyICmpInst(Predicate, LHS, RHS, Q, MaxRecurse); 4357 return SimplifyFCmpInst(Predicate, LHS, RHS, FastMathFlags(), Q, MaxRecurse); 4358 } 4359 4360 Value *llvm::SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS, 4361 const SimplifyQuery &Q) { 4362 return ::SimplifyCmpInst(Predicate, LHS, RHS, Q, RecursionLimit); 4363 } 4364 4365 static bool IsIdempotent(Intrinsic::ID ID) { 4366 switch (ID) { 4367 default: return false; 4368 4369 // Unary idempotent: f(f(x)) = f(x) 4370 case Intrinsic::fabs: 4371 case Intrinsic::floor: 4372 case Intrinsic::ceil: 4373 case Intrinsic::trunc: 4374 case Intrinsic::rint: 4375 case Intrinsic::nearbyint: 4376 case Intrinsic::round: 4377 case Intrinsic::canonicalize: 4378 return true; 4379 } 4380 } 4381 4382 static Value *SimplifyRelativeLoad(Constant *Ptr, Constant *Offset, 4383 const DataLayout &DL) { 4384 GlobalValue *PtrSym; 4385 APInt PtrOffset; 4386 if (!IsConstantOffsetFromGlobal(Ptr, PtrSym, PtrOffset, DL)) 4387 return nullptr; 4388 4389 Type *Int8PtrTy = Type::getInt8PtrTy(Ptr->getContext()); 4390 Type *Int32Ty = Type::getInt32Ty(Ptr->getContext()); 4391 Type *Int32PtrTy = Int32Ty->getPointerTo(); 4392 Type *Int64Ty = Type::getInt64Ty(Ptr->getContext()); 4393 4394 auto *OffsetConstInt = dyn_cast<ConstantInt>(Offset); 4395 if (!OffsetConstInt || OffsetConstInt->getType()->getBitWidth() > 64) 4396 return nullptr; 4397 4398 uint64_t OffsetInt = OffsetConstInt->getSExtValue(); 4399 if (OffsetInt % 4 != 0) 4400 return nullptr; 4401 4402 Constant *C = ConstantExpr::getGetElementPtr( 4403 Int32Ty, ConstantExpr::getBitCast(Ptr, Int32PtrTy), 4404 ConstantInt::get(Int64Ty, OffsetInt / 4)); 4405 Constant *Loaded = ConstantFoldLoadFromConstPtr(C, Int32Ty, DL); 4406 if (!Loaded) 4407 return nullptr; 4408 4409 auto *LoadedCE = dyn_cast<ConstantExpr>(Loaded); 4410 if (!LoadedCE) 4411 return nullptr; 4412 4413 if (LoadedCE->getOpcode() == Instruction::Trunc) { 4414 LoadedCE = dyn_cast<ConstantExpr>(LoadedCE->getOperand(0)); 4415 if (!LoadedCE) 4416 return nullptr; 4417 } 4418 4419 if (LoadedCE->getOpcode() != Instruction::Sub) 4420 return nullptr; 4421 4422 auto *LoadedLHS = dyn_cast<ConstantExpr>(LoadedCE->getOperand(0)); 4423 if (!LoadedLHS || LoadedLHS->getOpcode() != Instruction::PtrToInt) 4424 return nullptr; 4425 auto *LoadedLHSPtr = LoadedLHS->getOperand(0); 4426 4427 Constant *LoadedRHS = LoadedCE->getOperand(1); 4428 GlobalValue *LoadedRHSSym; 4429 APInt LoadedRHSOffset; 4430 if (!IsConstantOffsetFromGlobal(LoadedRHS, LoadedRHSSym, LoadedRHSOffset, 4431 DL) || 4432 PtrSym != LoadedRHSSym || PtrOffset != LoadedRHSOffset) 4433 return nullptr; 4434 4435 return ConstantExpr::getBitCast(LoadedLHSPtr, Int8PtrTy); 4436 } 4437 4438 static bool maskIsAllZeroOrUndef(Value *Mask) { 4439 auto *ConstMask = dyn_cast<Constant>(Mask); 4440 if (!ConstMask) 4441 return false; 4442 if (ConstMask->isNullValue() || isa<UndefValue>(ConstMask)) 4443 return true; 4444 for (unsigned I = 0, E = ConstMask->getType()->getVectorNumElements(); I != E; 4445 ++I) { 4446 if (auto *MaskElt = ConstMask->getAggregateElement(I)) 4447 if (MaskElt->isNullValue() || isa<UndefValue>(MaskElt)) 4448 continue; 4449 return false; 4450 } 4451 return true; 4452 } 4453 4454 template <typename IterTy> 4455 static Value *SimplifyIntrinsic(Function *F, IterTy ArgBegin, IterTy ArgEnd, 4456 const SimplifyQuery &Q, unsigned MaxRecurse) { 4457 Intrinsic::ID IID = F->getIntrinsicID(); 4458 unsigned NumOperands = std::distance(ArgBegin, ArgEnd); 4459 4460 // Unary Ops 4461 if (NumOperands == 1) { 4462 // Perform idempotent optimizations 4463 if (IsIdempotent(IID)) { 4464 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(*ArgBegin)) { 4465 if (II->getIntrinsicID() == IID) 4466 return II; 4467 } 4468 } 4469 4470 switch (IID) { 4471 case Intrinsic::fabs: { 4472 if (SignBitMustBeZero(*ArgBegin, Q.TLI)) 4473 return *ArgBegin; 4474 return nullptr; 4475 } 4476 default: 4477 return nullptr; 4478 } 4479 } 4480 4481 // Binary Ops 4482 if (NumOperands == 2) { 4483 Value *LHS = *ArgBegin; 4484 Value *RHS = *(ArgBegin + 1); 4485 Type *ReturnType = F->getReturnType(); 4486 4487 switch (IID) { 4488 case Intrinsic::usub_with_overflow: 4489 case Intrinsic::ssub_with_overflow: { 4490 // X - X -> { 0, false } 4491 if (LHS == RHS) 4492 return Constant::getNullValue(ReturnType); 4493 4494 // X - undef -> undef 4495 // undef - X -> undef 4496 if (isa<UndefValue>(LHS) || isa<UndefValue>(RHS)) 4497 return UndefValue::get(ReturnType); 4498 4499 return nullptr; 4500 } 4501 case Intrinsic::uadd_with_overflow: 4502 case Intrinsic::sadd_with_overflow: { 4503 // X + undef -> undef 4504 if (isa<UndefValue>(LHS) || isa<UndefValue>(RHS)) 4505 return UndefValue::get(ReturnType); 4506 4507 return nullptr; 4508 } 4509 case Intrinsic::umul_with_overflow: 4510 case Intrinsic::smul_with_overflow: { 4511 // 0 * X -> { 0, false } 4512 // X * 0 -> { 0, false } 4513 if (match(LHS, m_Zero()) || match(RHS, m_Zero())) 4514 return Constant::getNullValue(ReturnType); 4515 4516 // undef * X -> { 0, false } 4517 // X * undef -> { 0, false } 4518 if (match(LHS, m_Undef()) || match(RHS, m_Undef())) 4519 return Constant::getNullValue(ReturnType); 4520 4521 return nullptr; 4522 } 4523 case Intrinsic::load_relative: { 4524 Constant *C0 = dyn_cast<Constant>(LHS); 4525 Constant *C1 = dyn_cast<Constant>(RHS); 4526 if (C0 && C1) 4527 return SimplifyRelativeLoad(C0, C1, Q.DL); 4528 return nullptr; 4529 } 4530 default: 4531 return nullptr; 4532 } 4533 } 4534 4535 // Simplify calls to llvm.masked.load.* 4536 switch (IID) { 4537 case Intrinsic::masked_load: { 4538 Value *MaskArg = ArgBegin[2]; 4539 Value *PassthruArg = ArgBegin[3]; 4540 // If the mask is all zeros or undef, the "passthru" argument is the result. 4541 if (maskIsAllZeroOrUndef(MaskArg)) 4542 return PassthruArg; 4543 return nullptr; 4544 } 4545 default: 4546 return nullptr; 4547 } 4548 } 4549 4550 template <typename IterTy> 4551 static Value *SimplifyCall(ImmutableCallSite CS, Value *V, IterTy ArgBegin, 4552 IterTy ArgEnd, const SimplifyQuery &Q, 4553 unsigned MaxRecurse) { 4554 Type *Ty = V->getType(); 4555 if (PointerType *PTy = dyn_cast<PointerType>(Ty)) 4556 Ty = PTy->getElementType(); 4557 FunctionType *FTy = cast<FunctionType>(Ty); 4558 4559 // call undef -> undef 4560 // call null -> undef 4561 if (isa<UndefValue>(V) || isa<ConstantPointerNull>(V)) 4562 return UndefValue::get(FTy->getReturnType()); 4563 4564 Function *F = dyn_cast<Function>(V); 4565 if (!F) 4566 return nullptr; 4567 4568 if (F->isIntrinsic()) 4569 if (Value *Ret = SimplifyIntrinsic(F, ArgBegin, ArgEnd, Q, MaxRecurse)) 4570 return Ret; 4571 4572 if (!canConstantFoldCallTo(CS, F)) 4573 return nullptr; 4574 4575 SmallVector<Constant *, 4> ConstantArgs; 4576 ConstantArgs.reserve(ArgEnd - ArgBegin); 4577 for (IterTy I = ArgBegin, E = ArgEnd; I != E; ++I) { 4578 Constant *C = dyn_cast<Constant>(*I); 4579 if (!C) 4580 return nullptr; 4581 ConstantArgs.push_back(C); 4582 } 4583 4584 return ConstantFoldCall(CS, F, ConstantArgs, Q.TLI); 4585 } 4586 4587 Value *llvm::SimplifyCall(ImmutableCallSite CS, Value *V, 4588 User::op_iterator ArgBegin, User::op_iterator ArgEnd, 4589 const SimplifyQuery &Q) { 4590 return ::SimplifyCall(CS, V, ArgBegin, ArgEnd, Q, RecursionLimit); 4591 } 4592 4593 Value *llvm::SimplifyCall(ImmutableCallSite CS, Value *V, 4594 ArrayRef<Value *> Args, const SimplifyQuery &Q) { 4595 return ::SimplifyCall(CS, V, Args.begin(), Args.end(), Q, RecursionLimit); 4596 } 4597 4598 /// See if we can compute a simplified version of this instruction. 4599 /// If not, this returns null. 4600 4601 Value *llvm::SimplifyInstruction(Instruction *I, const SimplifyQuery &SQ, 4602 OptimizationRemarkEmitter *ORE) { 4603 const SimplifyQuery Q = SQ.CxtI ? SQ : SQ.getWithInstruction(I); 4604 Value *Result; 4605 4606 switch (I->getOpcode()) { 4607 default: 4608 Result = ConstantFoldInstruction(I, Q.DL, Q.TLI); 4609 break; 4610 case Instruction::FAdd: 4611 Result = SimplifyFAddInst(I->getOperand(0), I->getOperand(1), 4612 I->getFastMathFlags(), Q); 4613 break; 4614 case Instruction::Add: 4615 Result = SimplifyAddInst(I->getOperand(0), I->getOperand(1), 4616 cast<BinaryOperator>(I)->hasNoSignedWrap(), 4617 cast<BinaryOperator>(I)->hasNoUnsignedWrap(), Q); 4618 break; 4619 case Instruction::FSub: 4620 Result = SimplifyFSubInst(I->getOperand(0), I->getOperand(1), 4621 I->getFastMathFlags(), Q); 4622 break; 4623 case Instruction::Sub: 4624 Result = SimplifySubInst(I->getOperand(0), I->getOperand(1), 4625 cast<BinaryOperator>(I)->hasNoSignedWrap(), 4626 cast<BinaryOperator>(I)->hasNoUnsignedWrap(), Q); 4627 break; 4628 case Instruction::FMul: 4629 Result = SimplifyFMulInst(I->getOperand(0), I->getOperand(1), 4630 I->getFastMathFlags(), Q); 4631 break; 4632 case Instruction::Mul: 4633 Result = SimplifyMulInst(I->getOperand(0), I->getOperand(1), Q); 4634 break; 4635 case Instruction::SDiv: 4636 Result = SimplifySDivInst(I->getOperand(0), I->getOperand(1), Q); 4637 break; 4638 case Instruction::UDiv: 4639 Result = SimplifyUDivInst(I->getOperand(0), I->getOperand(1), Q); 4640 break; 4641 case Instruction::FDiv: 4642 Result = SimplifyFDivInst(I->getOperand(0), I->getOperand(1), 4643 I->getFastMathFlags(), Q); 4644 break; 4645 case Instruction::SRem: 4646 Result = SimplifySRemInst(I->getOperand(0), I->getOperand(1), Q); 4647 break; 4648 case Instruction::URem: 4649 Result = SimplifyURemInst(I->getOperand(0), I->getOperand(1), Q); 4650 break; 4651 case Instruction::FRem: 4652 Result = SimplifyFRemInst(I->getOperand(0), I->getOperand(1), 4653 I->getFastMathFlags(), Q); 4654 break; 4655 case Instruction::Shl: 4656 Result = SimplifyShlInst(I->getOperand(0), I->getOperand(1), 4657 cast<BinaryOperator>(I)->hasNoSignedWrap(), 4658 cast<BinaryOperator>(I)->hasNoUnsignedWrap(), Q); 4659 break; 4660 case Instruction::LShr: 4661 Result = SimplifyLShrInst(I->getOperand(0), I->getOperand(1), 4662 cast<BinaryOperator>(I)->isExact(), Q); 4663 break; 4664 case Instruction::AShr: 4665 Result = SimplifyAShrInst(I->getOperand(0), I->getOperand(1), 4666 cast<BinaryOperator>(I)->isExact(), Q); 4667 break; 4668 case Instruction::And: 4669 Result = SimplifyAndInst(I->getOperand(0), I->getOperand(1), Q); 4670 break; 4671 case Instruction::Or: 4672 Result = SimplifyOrInst(I->getOperand(0), I->getOperand(1), Q); 4673 break; 4674 case Instruction::Xor: 4675 Result = SimplifyXorInst(I->getOperand(0), I->getOperand(1), Q); 4676 break; 4677 case Instruction::ICmp: 4678 Result = SimplifyICmpInst(cast<ICmpInst>(I)->getPredicate(), 4679 I->getOperand(0), I->getOperand(1), Q); 4680 break; 4681 case Instruction::FCmp: 4682 Result = 4683 SimplifyFCmpInst(cast<FCmpInst>(I)->getPredicate(), I->getOperand(0), 4684 I->getOperand(1), I->getFastMathFlags(), Q); 4685 break; 4686 case Instruction::Select: 4687 Result = SimplifySelectInst(I->getOperand(0), I->getOperand(1), 4688 I->getOperand(2), Q); 4689 break; 4690 case Instruction::GetElementPtr: { 4691 SmallVector<Value *, 8> Ops(I->op_begin(), I->op_end()); 4692 Result = SimplifyGEPInst(cast<GetElementPtrInst>(I)->getSourceElementType(), 4693 Ops, Q); 4694 break; 4695 } 4696 case Instruction::InsertValue: { 4697 InsertValueInst *IV = cast<InsertValueInst>(I); 4698 Result = SimplifyInsertValueInst(IV->getAggregateOperand(), 4699 IV->getInsertedValueOperand(), 4700 IV->getIndices(), Q); 4701 break; 4702 } 4703 case Instruction::ExtractValue: { 4704 auto *EVI = cast<ExtractValueInst>(I); 4705 Result = SimplifyExtractValueInst(EVI->getAggregateOperand(), 4706 EVI->getIndices(), Q); 4707 break; 4708 } 4709 case Instruction::ExtractElement: { 4710 auto *EEI = cast<ExtractElementInst>(I); 4711 Result = SimplifyExtractElementInst(EEI->getVectorOperand(), 4712 EEI->getIndexOperand(), Q); 4713 break; 4714 } 4715 case Instruction::ShuffleVector: { 4716 auto *SVI = cast<ShuffleVectorInst>(I); 4717 Result = SimplifyShuffleVectorInst(SVI->getOperand(0), SVI->getOperand(1), 4718 SVI->getMask(), SVI->getType(), Q); 4719 break; 4720 } 4721 case Instruction::PHI: 4722 Result = SimplifyPHINode(cast<PHINode>(I), Q); 4723 break; 4724 case Instruction::Call: { 4725 CallSite CS(cast<CallInst>(I)); 4726 Result = SimplifyCall(CS, CS.getCalledValue(), CS.arg_begin(), CS.arg_end(), 4727 Q); 4728 break; 4729 } 4730 #define HANDLE_CAST_INST(num, opc, clas) case Instruction::opc: 4731 #include "llvm/IR/Instruction.def" 4732 #undef HANDLE_CAST_INST 4733 Result = 4734 SimplifyCastInst(I->getOpcode(), I->getOperand(0), I->getType(), Q); 4735 break; 4736 case Instruction::Alloca: 4737 // No simplifications for Alloca and it can't be constant folded. 4738 Result = nullptr; 4739 break; 4740 } 4741 4742 // In general, it is possible for computeKnownBits to determine all bits in a 4743 // value even when the operands are not all constants. 4744 if (!Result && I->getType()->isIntOrIntVectorTy()) { 4745 KnownBits Known = computeKnownBits(I, Q.DL, /*Depth*/ 0, Q.AC, I, Q.DT, ORE); 4746 if (Known.isConstant()) 4747 Result = ConstantInt::get(I->getType(), Known.getConstant()); 4748 } 4749 4750 /// If called on unreachable code, the above logic may report that the 4751 /// instruction simplified to itself. Make life easier for users by 4752 /// detecting that case here, returning a safe value instead. 4753 return Result == I ? UndefValue::get(I->getType()) : Result; 4754 } 4755 4756 /// \brief Implementation of recursive simplification through an instruction's 4757 /// uses. 4758 /// 4759 /// This is the common implementation of the recursive simplification routines. 4760 /// If we have a pre-simplified value in 'SimpleV', that is forcibly used to 4761 /// replace the instruction 'I'. Otherwise, we simply add 'I' to the list of 4762 /// instructions to process and attempt to simplify it using 4763 /// InstructionSimplify. 4764 /// 4765 /// This routine returns 'true' only when *it* simplifies something. The passed 4766 /// in simplified value does not count toward this. 4767 static bool replaceAndRecursivelySimplifyImpl(Instruction *I, Value *SimpleV, 4768 const TargetLibraryInfo *TLI, 4769 const DominatorTree *DT, 4770 AssumptionCache *AC) { 4771 bool Simplified = false; 4772 SmallSetVector<Instruction *, 8> Worklist; 4773 const DataLayout &DL = I->getModule()->getDataLayout(); 4774 4775 // If we have an explicit value to collapse to, do that round of the 4776 // simplification loop by hand initially. 4777 if (SimpleV) { 4778 for (User *U : I->users()) 4779 if (U != I) 4780 Worklist.insert(cast<Instruction>(U)); 4781 4782 // Replace the instruction with its simplified value. 4783 I->replaceAllUsesWith(SimpleV); 4784 4785 // Gracefully handle edge cases where the instruction is not wired into any 4786 // parent block. 4787 if (I->getParent() && !I->isEHPad() && !isa<TerminatorInst>(I) && 4788 !I->mayHaveSideEffects()) 4789 I->eraseFromParent(); 4790 } else { 4791 Worklist.insert(I); 4792 } 4793 4794 // Note that we must test the size on each iteration, the worklist can grow. 4795 for (unsigned Idx = 0; Idx != Worklist.size(); ++Idx) { 4796 I = Worklist[Idx]; 4797 4798 // See if this instruction simplifies. 4799 SimpleV = SimplifyInstruction(I, {DL, TLI, DT, AC}); 4800 if (!SimpleV) 4801 continue; 4802 4803 Simplified = true; 4804 4805 // Stash away all the uses of the old instruction so we can check them for 4806 // recursive simplifications after a RAUW. This is cheaper than checking all 4807 // uses of To on the recursive step in most cases. 4808 for (User *U : I->users()) 4809 Worklist.insert(cast<Instruction>(U)); 4810 4811 // Replace the instruction with its simplified value. 4812 I->replaceAllUsesWith(SimpleV); 4813 4814 // Gracefully handle edge cases where the instruction is not wired into any 4815 // parent block. 4816 if (I->getParent() && !I->isEHPad() && !isa<TerminatorInst>(I) && 4817 !I->mayHaveSideEffects()) 4818 I->eraseFromParent(); 4819 } 4820 return Simplified; 4821 } 4822 4823 bool llvm::recursivelySimplifyInstruction(Instruction *I, 4824 const TargetLibraryInfo *TLI, 4825 const DominatorTree *DT, 4826 AssumptionCache *AC) { 4827 return replaceAndRecursivelySimplifyImpl(I, nullptr, TLI, DT, AC); 4828 } 4829 4830 bool llvm::replaceAndRecursivelySimplify(Instruction *I, Value *SimpleV, 4831 const TargetLibraryInfo *TLI, 4832 const DominatorTree *DT, 4833 AssumptionCache *AC) { 4834 assert(I != SimpleV && "replaceAndRecursivelySimplify(X,X) is not valid!"); 4835 assert(SimpleV && "Must provide a simplified value."); 4836 return replaceAndRecursivelySimplifyImpl(I, SimpleV, TLI, DT, AC); 4837 } 4838 4839 namespace llvm { 4840 const SimplifyQuery getBestSimplifyQuery(Pass &P, Function &F) { 4841 auto *DTWP = P.getAnalysisIfAvailable<DominatorTreeWrapperPass>(); 4842 auto *DT = DTWP ? &DTWP->getDomTree() : nullptr; 4843 auto *TLIWP = P.getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 4844 auto *TLI = TLIWP ? &TLIWP->getTLI() : nullptr; 4845 auto *ACWP = P.getAnalysisIfAvailable<AssumptionCacheTracker>(); 4846 auto *AC = ACWP ? &ACWP->getAssumptionCache(F) : nullptr; 4847 return {F.getParent()->getDataLayout(), TLI, DT, AC}; 4848 } 4849 4850 const SimplifyQuery getBestSimplifyQuery(LoopStandardAnalysisResults &AR, 4851 const DataLayout &DL) { 4852 return {DL, &AR.TLI, &AR.DT, &AR.AC}; 4853 } 4854 4855 template <class T, class... TArgs> 4856 const SimplifyQuery getBestSimplifyQuery(AnalysisManager<T, TArgs...> &AM, 4857 Function &F) { 4858 auto *DT = AM.template getCachedResult<DominatorTreeAnalysis>(F); 4859 auto *TLI = AM.template getCachedResult<TargetLibraryAnalysis>(F); 4860 auto *AC = AM.template getCachedResult<AssumptionAnalysis>(F); 4861 return {F.getParent()->getDataLayout(), TLI, DT, AC}; 4862 } 4863 template const SimplifyQuery getBestSimplifyQuery(AnalysisManager<Function> &, 4864 Function &); 4865 } 4866