1 //===- InstructionSimplify.cpp - Fold instruction operands ----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements routines for folding instructions into simpler forms
10 // that do not require creating new instructions.  This does constant folding
11 // ("add i32 1, 1" -> "2") but can also handle non-constant operands, either
12 // returning a constant ("and i32 %x, 0" -> "0") or an already existing value
13 // ("and i32 %x, %x" -> "%x").  All operands are assumed to have already been
14 // simplified: This is usually true and assuming it simplifies the logic (if
15 // they have not been simplified then results are correct but maybe suboptimal).
16 //
17 //===----------------------------------------------------------------------===//
18 
19 #include "llvm/Analysis/InstructionSimplify.h"
20 #include "llvm/ADT/SetVector.h"
21 #include "llvm/ADT/SmallPtrSet.h"
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/Analysis/AliasAnalysis.h"
24 #include "llvm/Analysis/AssumptionCache.h"
25 #include "llvm/Analysis/CaptureTracking.h"
26 #include "llvm/Analysis/CmpInstAnalysis.h"
27 #include "llvm/Analysis/ConstantFolding.h"
28 #include "llvm/Analysis/LoopAnalysisManager.h"
29 #include "llvm/Analysis/MemoryBuiltins.h"
30 #include "llvm/Analysis/OverflowInstAnalysis.h"
31 #include "llvm/Analysis/ValueTracking.h"
32 #include "llvm/Analysis/VectorUtils.h"
33 #include "llvm/IR/ConstantRange.h"
34 #include "llvm/IR/DataLayout.h"
35 #include "llvm/IR/Dominators.h"
36 #include "llvm/IR/GetElementPtrTypeIterator.h"
37 #include "llvm/IR/GlobalAlias.h"
38 #include "llvm/IR/InstrTypes.h"
39 #include "llvm/IR/Instructions.h"
40 #include "llvm/IR/Operator.h"
41 #include "llvm/IR/PatternMatch.h"
42 #include "llvm/IR/ValueHandle.h"
43 #include "llvm/Support/KnownBits.h"
44 #include <algorithm>
45 using namespace llvm;
46 using namespace llvm::PatternMatch;
47 
48 #define DEBUG_TYPE "instsimplify"
49 
50 enum { RecursionLimit = 3 };
51 
52 STATISTIC(NumExpand,  "Number of expansions");
53 STATISTIC(NumReassoc, "Number of reassociations");
54 
55 static Value *SimplifyAndInst(Value *, Value *, const SimplifyQuery &, unsigned);
56 static Value *simplifyUnOp(unsigned, Value *, const SimplifyQuery &, unsigned);
57 static Value *simplifyFPUnOp(unsigned, Value *, const FastMathFlags &,
58                              const SimplifyQuery &, unsigned);
59 static Value *SimplifyBinOp(unsigned, Value *, Value *, const SimplifyQuery &,
60                             unsigned);
61 static Value *SimplifyBinOp(unsigned, Value *, Value *, const FastMathFlags &,
62                             const SimplifyQuery &, unsigned);
63 static Value *SimplifyCmpInst(unsigned, Value *, Value *, const SimplifyQuery &,
64                               unsigned);
65 static Value *SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS,
66                                const SimplifyQuery &Q, unsigned MaxRecurse);
67 static Value *SimplifyOrInst(Value *, Value *, const SimplifyQuery &, unsigned);
68 static Value *SimplifyXorInst(Value *, Value *, const SimplifyQuery &, unsigned);
69 static Value *SimplifyCastInst(unsigned, Value *, Type *,
70                                const SimplifyQuery &, unsigned);
71 static Value *SimplifyGEPInst(Type *, ArrayRef<Value *>, const SimplifyQuery &,
72                               unsigned);
73 static Value *SimplifySelectInst(Value *, Value *, Value *,
74                                  const SimplifyQuery &, unsigned);
75 
76 static Value *foldSelectWithBinaryOp(Value *Cond, Value *TrueVal,
77                                      Value *FalseVal) {
78   BinaryOperator::BinaryOps BinOpCode;
79   if (auto *BO = dyn_cast<BinaryOperator>(Cond))
80     BinOpCode = BO->getOpcode();
81   else
82     return nullptr;
83 
84   CmpInst::Predicate ExpectedPred, Pred1, Pred2;
85   if (BinOpCode == BinaryOperator::Or) {
86     ExpectedPred = ICmpInst::ICMP_NE;
87   } else if (BinOpCode == BinaryOperator::And) {
88     ExpectedPred = ICmpInst::ICMP_EQ;
89   } else
90     return nullptr;
91 
92   // %A = icmp eq %TV, %FV
93   // %B = icmp eq %X, %Y (and one of these is a select operand)
94   // %C = and %A, %B
95   // %D = select %C, %TV, %FV
96   // -->
97   // %FV
98 
99   // %A = icmp ne %TV, %FV
100   // %B = icmp ne %X, %Y (and one of these is a select operand)
101   // %C = or %A, %B
102   // %D = select %C, %TV, %FV
103   // -->
104   // %TV
105   Value *X, *Y;
106   if (!match(Cond, m_c_BinOp(m_c_ICmp(Pred1, m_Specific(TrueVal),
107                                       m_Specific(FalseVal)),
108                              m_ICmp(Pred2, m_Value(X), m_Value(Y)))) ||
109       Pred1 != Pred2 || Pred1 != ExpectedPred)
110     return nullptr;
111 
112   if (X == TrueVal || X == FalseVal || Y == TrueVal || Y == FalseVal)
113     return BinOpCode == BinaryOperator::Or ? TrueVal : FalseVal;
114 
115   return nullptr;
116 }
117 
118 /// For a boolean type or a vector of boolean type, return false or a vector
119 /// with every element false.
120 static Constant *getFalse(Type *Ty) {
121   return ConstantInt::getFalse(Ty);
122 }
123 
124 /// For a boolean type or a vector of boolean type, return true or a vector
125 /// with every element true.
126 static Constant *getTrue(Type *Ty) {
127   return ConstantInt::getTrue(Ty);
128 }
129 
130 /// isSameCompare - Is V equivalent to the comparison "LHS Pred RHS"?
131 static bool isSameCompare(Value *V, CmpInst::Predicate Pred, Value *LHS,
132                           Value *RHS) {
133   CmpInst *Cmp = dyn_cast<CmpInst>(V);
134   if (!Cmp)
135     return false;
136   CmpInst::Predicate CPred = Cmp->getPredicate();
137   Value *CLHS = Cmp->getOperand(0), *CRHS = Cmp->getOperand(1);
138   if (CPred == Pred && CLHS == LHS && CRHS == RHS)
139     return true;
140   return CPred == CmpInst::getSwappedPredicate(Pred) && CLHS == RHS &&
141     CRHS == LHS;
142 }
143 
144 /// Simplify comparison with true or false branch of select:
145 ///  %sel = select i1 %cond, i32 %tv, i32 %fv
146 ///  %cmp = icmp sle i32 %sel, %rhs
147 /// Compose new comparison by substituting %sel with either %tv or %fv
148 /// and see if it simplifies.
149 static Value *simplifyCmpSelCase(CmpInst::Predicate Pred, Value *LHS,
150                                  Value *RHS, Value *Cond,
151                                  const SimplifyQuery &Q, unsigned MaxRecurse,
152                                  Constant *TrueOrFalse) {
153   Value *SimplifiedCmp = SimplifyCmpInst(Pred, LHS, RHS, Q, MaxRecurse);
154   if (SimplifiedCmp == Cond) {
155     // %cmp simplified to the select condition (%cond).
156     return TrueOrFalse;
157   } else if (!SimplifiedCmp && isSameCompare(Cond, Pred, LHS, RHS)) {
158     // It didn't simplify. However, if composed comparison is equivalent
159     // to the select condition (%cond) then we can replace it.
160     return TrueOrFalse;
161   }
162   return SimplifiedCmp;
163 }
164 
165 /// Simplify comparison with true branch of select
166 static Value *simplifyCmpSelTrueCase(CmpInst::Predicate Pred, Value *LHS,
167                                      Value *RHS, Value *Cond,
168                                      const SimplifyQuery &Q,
169                                      unsigned MaxRecurse) {
170   return simplifyCmpSelCase(Pred, LHS, RHS, Cond, Q, MaxRecurse,
171                             getTrue(Cond->getType()));
172 }
173 
174 /// Simplify comparison with false branch of select
175 static Value *simplifyCmpSelFalseCase(CmpInst::Predicate Pred, Value *LHS,
176                                       Value *RHS, Value *Cond,
177                                       const SimplifyQuery &Q,
178                                       unsigned MaxRecurse) {
179   return simplifyCmpSelCase(Pred, LHS, RHS, Cond, Q, MaxRecurse,
180                             getFalse(Cond->getType()));
181 }
182 
183 /// We know comparison with both branches of select can be simplified, but they
184 /// are not equal. This routine handles some logical simplifications.
185 static Value *handleOtherCmpSelSimplifications(Value *TCmp, Value *FCmp,
186                                                Value *Cond,
187                                                const SimplifyQuery &Q,
188                                                unsigned MaxRecurse) {
189   // If the false value simplified to false, then the result of the compare
190   // is equal to "Cond && TCmp".  This also catches the case when the false
191   // value simplified to false and the true value to true, returning "Cond".
192   // Folding select to and/or isn't poison-safe in general; impliesPoison
193   // checks whether folding it does not convert a well-defined value into
194   // poison.
195   if (match(FCmp, m_Zero()) && impliesPoison(TCmp, Cond))
196     if (Value *V = SimplifyAndInst(Cond, TCmp, Q, MaxRecurse))
197       return V;
198   // If the true value simplified to true, then the result of the compare
199   // is equal to "Cond || FCmp".
200   if (match(TCmp, m_One()) && impliesPoison(FCmp, Cond))
201     if (Value *V = SimplifyOrInst(Cond, FCmp, Q, MaxRecurse))
202       return V;
203   // Finally, if the false value simplified to true and the true value to
204   // false, then the result of the compare is equal to "!Cond".
205   if (match(FCmp, m_One()) && match(TCmp, m_Zero()))
206     if (Value *V = SimplifyXorInst(
207             Cond, Constant::getAllOnesValue(Cond->getType()), Q, MaxRecurse))
208       return V;
209   return nullptr;
210 }
211 
212 /// Does the given value dominate the specified phi node?
213 static bool valueDominatesPHI(Value *V, PHINode *P, const DominatorTree *DT) {
214   Instruction *I = dyn_cast<Instruction>(V);
215   if (!I)
216     // Arguments and constants dominate all instructions.
217     return true;
218 
219   // If we are processing instructions (and/or basic blocks) that have not been
220   // fully added to a function, the parent nodes may still be null. Simply
221   // return the conservative answer in these cases.
222   if (!I->getParent() || !P->getParent() || !I->getFunction())
223     return false;
224 
225   // If we have a DominatorTree then do a precise test.
226   if (DT)
227     return DT->dominates(I, P);
228 
229   // Otherwise, if the instruction is in the entry block and is not an invoke,
230   // then it obviously dominates all phi nodes.
231   if (I->getParent()->isEntryBlock() && !isa<InvokeInst>(I) &&
232       !isa<CallBrInst>(I))
233     return true;
234 
235   return false;
236 }
237 
238 /// Try to simplify a binary operator of form "V op OtherOp" where V is
239 /// "(B0 opex B1)" by distributing 'op' across 'opex' as
240 /// "(B0 op OtherOp) opex (B1 op OtherOp)".
241 static Value *expandBinOp(Instruction::BinaryOps Opcode, Value *V,
242                           Value *OtherOp, Instruction::BinaryOps OpcodeToExpand,
243                           const SimplifyQuery &Q, unsigned MaxRecurse) {
244   auto *B = dyn_cast<BinaryOperator>(V);
245   if (!B || B->getOpcode() != OpcodeToExpand)
246     return nullptr;
247   Value *B0 = B->getOperand(0), *B1 = B->getOperand(1);
248   Value *L = SimplifyBinOp(Opcode, B0, OtherOp, Q.getWithoutUndef(),
249                            MaxRecurse);
250   if (!L)
251     return nullptr;
252   Value *R = SimplifyBinOp(Opcode, B1, OtherOp, Q.getWithoutUndef(),
253                            MaxRecurse);
254   if (!R)
255     return nullptr;
256 
257   // Does the expanded pair of binops simplify to the existing binop?
258   if ((L == B0 && R == B1) ||
259       (Instruction::isCommutative(OpcodeToExpand) && L == B1 && R == B0)) {
260     ++NumExpand;
261     return B;
262   }
263 
264   // Otherwise, return "L op' R" if it simplifies.
265   Value *S = SimplifyBinOp(OpcodeToExpand, L, R, Q, MaxRecurse);
266   if (!S)
267     return nullptr;
268 
269   ++NumExpand;
270   return S;
271 }
272 
273 /// Try to simplify binops of form "A op (B op' C)" or the commuted variant by
274 /// distributing op over op'.
275 static Value *expandCommutativeBinOp(Instruction::BinaryOps Opcode,
276                                      Value *L, Value *R,
277                                      Instruction::BinaryOps OpcodeToExpand,
278                                      const SimplifyQuery &Q,
279                                      unsigned MaxRecurse) {
280   // Recursion is always used, so bail out at once if we already hit the limit.
281   if (!MaxRecurse--)
282     return nullptr;
283 
284   if (Value *V = expandBinOp(Opcode, L, R, OpcodeToExpand, Q, MaxRecurse))
285     return V;
286   if (Value *V = expandBinOp(Opcode, R, L, OpcodeToExpand, Q, MaxRecurse))
287     return V;
288   return nullptr;
289 }
290 
291 /// Generic simplifications for associative binary operations.
292 /// Returns the simpler value, or null if none was found.
293 static Value *SimplifyAssociativeBinOp(Instruction::BinaryOps Opcode,
294                                        Value *LHS, Value *RHS,
295                                        const SimplifyQuery &Q,
296                                        unsigned MaxRecurse) {
297   assert(Instruction::isAssociative(Opcode) && "Not an associative operation!");
298 
299   // Recursion is always used, so bail out at once if we already hit the limit.
300   if (!MaxRecurse--)
301     return nullptr;
302 
303   BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS);
304   BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS);
305 
306   // Transform: "(A op B) op C" ==> "A op (B op C)" if it simplifies completely.
307   if (Op0 && Op0->getOpcode() == Opcode) {
308     Value *A = Op0->getOperand(0);
309     Value *B = Op0->getOperand(1);
310     Value *C = RHS;
311 
312     // Does "B op C" simplify?
313     if (Value *V = SimplifyBinOp(Opcode, B, C, Q, MaxRecurse)) {
314       // It does!  Return "A op V" if it simplifies or is already available.
315       // If V equals B then "A op V" is just the LHS.
316       if (V == B) return LHS;
317       // Otherwise return "A op V" if it simplifies.
318       if (Value *W = SimplifyBinOp(Opcode, A, V, Q, MaxRecurse)) {
319         ++NumReassoc;
320         return W;
321       }
322     }
323   }
324 
325   // Transform: "A op (B op C)" ==> "(A op B) op C" if it simplifies completely.
326   if (Op1 && Op1->getOpcode() == Opcode) {
327     Value *A = LHS;
328     Value *B = Op1->getOperand(0);
329     Value *C = Op1->getOperand(1);
330 
331     // Does "A op B" simplify?
332     if (Value *V = SimplifyBinOp(Opcode, A, B, Q, MaxRecurse)) {
333       // It does!  Return "V op C" if it simplifies or is already available.
334       // If V equals B then "V op C" is just the RHS.
335       if (V == B) return RHS;
336       // Otherwise return "V op C" if it simplifies.
337       if (Value *W = SimplifyBinOp(Opcode, V, C, Q, MaxRecurse)) {
338         ++NumReassoc;
339         return W;
340       }
341     }
342   }
343 
344   // The remaining transforms require commutativity as well as associativity.
345   if (!Instruction::isCommutative(Opcode))
346     return nullptr;
347 
348   // Transform: "(A op B) op C" ==> "(C op A) op B" if it simplifies completely.
349   if (Op0 && Op0->getOpcode() == Opcode) {
350     Value *A = Op0->getOperand(0);
351     Value *B = Op0->getOperand(1);
352     Value *C = RHS;
353 
354     // Does "C op A" simplify?
355     if (Value *V = SimplifyBinOp(Opcode, C, A, Q, MaxRecurse)) {
356       // It does!  Return "V op B" if it simplifies or is already available.
357       // If V equals A then "V op B" is just the LHS.
358       if (V == A) return LHS;
359       // Otherwise return "V op B" if it simplifies.
360       if (Value *W = SimplifyBinOp(Opcode, V, B, Q, MaxRecurse)) {
361         ++NumReassoc;
362         return W;
363       }
364     }
365   }
366 
367   // Transform: "A op (B op C)" ==> "B op (C op A)" if it simplifies completely.
368   if (Op1 && Op1->getOpcode() == Opcode) {
369     Value *A = LHS;
370     Value *B = Op1->getOperand(0);
371     Value *C = Op1->getOperand(1);
372 
373     // Does "C op A" simplify?
374     if (Value *V = SimplifyBinOp(Opcode, C, A, Q, MaxRecurse)) {
375       // It does!  Return "B op V" if it simplifies or is already available.
376       // If V equals C then "B op V" is just the RHS.
377       if (V == C) return RHS;
378       // Otherwise return "B op V" if it simplifies.
379       if (Value *W = SimplifyBinOp(Opcode, B, V, Q, MaxRecurse)) {
380         ++NumReassoc;
381         return W;
382       }
383     }
384   }
385 
386   return nullptr;
387 }
388 
389 /// In the case of a binary operation with a select instruction as an operand,
390 /// try to simplify the binop by seeing whether evaluating it on both branches
391 /// of the select results in the same value. Returns the common value if so,
392 /// otherwise returns null.
393 static Value *ThreadBinOpOverSelect(Instruction::BinaryOps Opcode, Value *LHS,
394                                     Value *RHS, const SimplifyQuery &Q,
395                                     unsigned MaxRecurse) {
396   // Recursion is always used, so bail out at once if we already hit the limit.
397   if (!MaxRecurse--)
398     return nullptr;
399 
400   SelectInst *SI;
401   if (isa<SelectInst>(LHS)) {
402     SI = cast<SelectInst>(LHS);
403   } else {
404     assert(isa<SelectInst>(RHS) && "No select instruction operand!");
405     SI = cast<SelectInst>(RHS);
406   }
407 
408   // Evaluate the BinOp on the true and false branches of the select.
409   Value *TV;
410   Value *FV;
411   if (SI == LHS) {
412     TV = SimplifyBinOp(Opcode, SI->getTrueValue(), RHS, Q, MaxRecurse);
413     FV = SimplifyBinOp(Opcode, SI->getFalseValue(), RHS, Q, MaxRecurse);
414   } else {
415     TV = SimplifyBinOp(Opcode, LHS, SI->getTrueValue(), Q, MaxRecurse);
416     FV = SimplifyBinOp(Opcode, LHS, SI->getFalseValue(), Q, MaxRecurse);
417   }
418 
419   // If they simplified to the same value, then return the common value.
420   // If they both failed to simplify then return null.
421   if (TV == FV)
422     return TV;
423 
424   // If one branch simplified to undef, return the other one.
425   if (TV && Q.isUndefValue(TV))
426     return FV;
427   if (FV && Q.isUndefValue(FV))
428     return TV;
429 
430   // If applying the operation did not change the true and false select values,
431   // then the result of the binop is the select itself.
432   if (TV == SI->getTrueValue() && FV == SI->getFalseValue())
433     return SI;
434 
435   // If one branch simplified and the other did not, and the simplified
436   // value is equal to the unsimplified one, return the simplified value.
437   // For example, select (cond, X, X & Z) & Z -> X & Z.
438   if ((FV && !TV) || (TV && !FV)) {
439     // Check that the simplified value has the form "X op Y" where "op" is the
440     // same as the original operation.
441     Instruction *Simplified = dyn_cast<Instruction>(FV ? FV : TV);
442     if (Simplified && Simplified->getOpcode() == unsigned(Opcode)) {
443       // The value that didn't simplify is "UnsimplifiedLHS op UnsimplifiedRHS".
444       // We already know that "op" is the same as for the simplified value.  See
445       // if the operands match too.  If so, return the simplified value.
446       Value *UnsimplifiedBranch = FV ? SI->getTrueValue() : SI->getFalseValue();
447       Value *UnsimplifiedLHS = SI == LHS ? UnsimplifiedBranch : LHS;
448       Value *UnsimplifiedRHS = SI == LHS ? RHS : UnsimplifiedBranch;
449       if (Simplified->getOperand(0) == UnsimplifiedLHS &&
450           Simplified->getOperand(1) == UnsimplifiedRHS)
451         return Simplified;
452       if (Simplified->isCommutative() &&
453           Simplified->getOperand(1) == UnsimplifiedLHS &&
454           Simplified->getOperand(0) == UnsimplifiedRHS)
455         return Simplified;
456     }
457   }
458 
459   return nullptr;
460 }
461 
462 /// In the case of a comparison with a select instruction, try to simplify the
463 /// comparison by seeing whether both branches of the select result in the same
464 /// value. Returns the common value if so, otherwise returns null.
465 /// For example, if we have:
466 ///  %tmp = select i1 %cmp, i32 1, i32 2
467 ///  %cmp1 = icmp sle i32 %tmp, 3
468 /// We can simplify %cmp1 to true, because both branches of select are
469 /// less than 3. We compose new comparison by substituting %tmp with both
470 /// branches of select and see if it can be simplified.
471 static Value *ThreadCmpOverSelect(CmpInst::Predicate Pred, Value *LHS,
472                                   Value *RHS, const SimplifyQuery &Q,
473                                   unsigned MaxRecurse) {
474   // Recursion is always used, so bail out at once if we already hit the limit.
475   if (!MaxRecurse--)
476     return nullptr;
477 
478   // Make sure the select is on the LHS.
479   if (!isa<SelectInst>(LHS)) {
480     std::swap(LHS, RHS);
481     Pred = CmpInst::getSwappedPredicate(Pred);
482   }
483   assert(isa<SelectInst>(LHS) && "Not comparing with a select instruction!");
484   SelectInst *SI = cast<SelectInst>(LHS);
485   Value *Cond = SI->getCondition();
486   Value *TV = SI->getTrueValue();
487   Value *FV = SI->getFalseValue();
488 
489   // Now that we have "cmp select(Cond, TV, FV), RHS", analyse it.
490   // Does "cmp TV, RHS" simplify?
491   Value *TCmp = simplifyCmpSelTrueCase(Pred, TV, RHS, Cond, Q, MaxRecurse);
492   if (!TCmp)
493     return nullptr;
494 
495   // Does "cmp FV, RHS" simplify?
496   Value *FCmp = simplifyCmpSelFalseCase(Pred, FV, RHS, Cond, Q, MaxRecurse);
497   if (!FCmp)
498     return nullptr;
499 
500   // If both sides simplified to the same value, then use it as the result of
501   // the original comparison.
502   if (TCmp == FCmp)
503     return TCmp;
504 
505   // The remaining cases only make sense if the select condition has the same
506   // type as the result of the comparison, so bail out if this is not so.
507   if (Cond->getType()->isVectorTy() == RHS->getType()->isVectorTy())
508     return handleOtherCmpSelSimplifications(TCmp, FCmp, Cond, Q, MaxRecurse);
509 
510   return nullptr;
511 }
512 
513 /// In the case of a binary operation with an operand that is a PHI instruction,
514 /// try to simplify the binop by seeing whether evaluating it on the incoming
515 /// phi values yields the same result for every value. If so returns the common
516 /// value, otherwise returns null.
517 static Value *ThreadBinOpOverPHI(Instruction::BinaryOps Opcode, Value *LHS,
518                                  Value *RHS, const SimplifyQuery &Q,
519                                  unsigned MaxRecurse) {
520   // Recursion is always used, so bail out at once if we already hit the limit.
521   if (!MaxRecurse--)
522     return nullptr;
523 
524   PHINode *PI;
525   if (isa<PHINode>(LHS)) {
526     PI = cast<PHINode>(LHS);
527     // Bail out if RHS and the phi may be mutually interdependent due to a loop.
528     if (!valueDominatesPHI(RHS, PI, Q.DT))
529       return nullptr;
530   } else {
531     assert(isa<PHINode>(RHS) && "No PHI instruction operand!");
532     PI = cast<PHINode>(RHS);
533     // Bail out if LHS and the phi may be mutually interdependent due to a loop.
534     if (!valueDominatesPHI(LHS, PI, Q.DT))
535       return nullptr;
536   }
537 
538   // Evaluate the BinOp on the incoming phi values.
539   Value *CommonValue = nullptr;
540   for (Value *Incoming : PI->incoming_values()) {
541     // If the incoming value is the phi node itself, it can safely be skipped.
542     if (Incoming == PI) continue;
543     Value *V = PI == LHS ?
544       SimplifyBinOp(Opcode, Incoming, RHS, Q, MaxRecurse) :
545       SimplifyBinOp(Opcode, LHS, Incoming, Q, MaxRecurse);
546     // If the operation failed to simplify, or simplified to a different value
547     // to previously, then give up.
548     if (!V || (CommonValue && V != CommonValue))
549       return nullptr;
550     CommonValue = V;
551   }
552 
553   return CommonValue;
554 }
555 
556 /// In the case of a comparison with a PHI instruction, try to simplify the
557 /// comparison by seeing whether comparing with all of the incoming phi values
558 /// yields the same result every time. If so returns the common result,
559 /// otherwise returns null.
560 static Value *ThreadCmpOverPHI(CmpInst::Predicate Pred, Value *LHS, Value *RHS,
561                                const SimplifyQuery &Q, unsigned MaxRecurse) {
562   // Recursion is always used, so bail out at once if we already hit the limit.
563   if (!MaxRecurse--)
564     return nullptr;
565 
566   // Make sure the phi is on the LHS.
567   if (!isa<PHINode>(LHS)) {
568     std::swap(LHS, RHS);
569     Pred = CmpInst::getSwappedPredicate(Pred);
570   }
571   assert(isa<PHINode>(LHS) && "Not comparing with a phi instruction!");
572   PHINode *PI = cast<PHINode>(LHS);
573 
574   // Bail out if RHS and the phi may be mutually interdependent due to a loop.
575   if (!valueDominatesPHI(RHS, PI, Q.DT))
576     return nullptr;
577 
578   // Evaluate the BinOp on the incoming phi values.
579   Value *CommonValue = nullptr;
580   for (unsigned u = 0, e = PI->getNumIncomingValues(); u < e; ++u) {
581     Value *Incoming = PI->getIncomingValue(u);
582     Instruction *InTI = PI->getIncomingBlock(u)->getTerminator();
583     // If the incoming value is the phi node itself, it can safely be skipped.
584     if (Incoming == PI) continue;
585     // Change the context instruction to the "edge" that flows into the phi.
586     // This is important because that is where incoming is actually "evaluated"
587     // even though it is used later somewhere else.
588     Value *V = SimplifyCmpInst(Pred, Incoming, RHS, Q.getWithInstruction(InTI),
589                                MaxRecurse);
590     // If the operation failed to simplify, or simplified to a different value
591     // to previously, then give up.
592     if (!V || (CommonValue && V != CommonValue))
593       return nullptr;
594     CommonValue = V;
595   }
596 
597   return CommonValue;
598 }
599 
600 static Constant *foldOrCommuteConstant(Instruction::BinaryOps Opcode,
601                                        Value *&Op0, Value *&Op1,
602                                        const SimplifyQuery &Q) {
603   if (auto *CLHS = dyn_cast<Constant>(Op0)) {
604     if (auto *CRHS = dyn_cast<Constant>(Op1))
605       return ConstantFoldBinaryOpOperands(Opcode, CLHS, CRHS, Q.DL);
606 
607     // Canonicalize the constant to the RHS if this is a commutative operation.
608     if (Instruction::isCommutative(Opcode))
609       std::swap(Op0, Op1);
610   }
611   return nullptr;
612 }
613 
614 /// Given operands for an Add, see if we can fold the result.
615 /// If not, this returns null.
616 static Value *SimplifyAddInst(Value *Op0, Value *Op1, bool IsNSW, bool IsNUW,
617                               const SimplifyQuery &Q, unsigned MaxRecurse) {
618   if (Constant *C = foldOrCommuteConstant(Instruction::Add, Op0, Op1, Q))
619     return C;
620 
621   // X + undef -> undef
622   if (Q.isUndefValue(Op1))
623     return Op1;
624 
625   // X + 0 -> X
626   if (match(Op1, m_Zero()))
627     return Op0;
628 
629   // If two operands are negative, return 0.
630   if (isKnownNegation(Op0, Op1))
631     return Constant::getNullValue(Op0->getType());
632 
633   // X + (Y - X) -> Y
634   // (Y - X) + X -> Y
635   // Eg: X + -X -> 0
636   Value *Y = nullptr;
637   if (match(Op1, m_Sub(m_Value(Y), m_Specific(Op0))) ||
638       match(Op0, m_Sub(m_Value(Y), m_Specific(Op1))))
639     return Y;
640 
641   // X + ~X -> -1   since   ~X = -X-1
642   Type *Ty = Op0->getType();
643   if (match(Op0, m_Not(m_Specific(Op1))) ||
644       match(Op1, m_Not(m_Specific(Op0))))
645     return Constant::getAllOnesValue(Ty);
646 
647   // add nsw/nuw (xor Y, signmask), signmask --> Y
648   // The no-wrapping add guarantees that the top bit will be set by the add.
649   // Therefore, the xor must be clearing the already set sign bit of Y.
650   if ((IsNSW || IsNUW) && match(Op1, m_SignMask()) &&
651       match(Op0, m_Xor(m_Value(Y), m_SignMask())))
652     return Y;
653 
654   // add nuw %x, -1  ->  -1, because %x can only be 0.
655   if (IsNUW && match(Op1, m_AllOnes()))
656     return Op1; // Which is -1.
657 
658   /// i1 add -> xor.
659   if (MaxRecurse && Op0->getType()->isIntOrIntVectorTy(1))
660     if (Value *V = SimplifyXorInst(Op0, Op1, Q, MaxRecurse-1))
661       return V;
662 
663   // Try some generic simplifications for associative operations.
664   if (Value *V = SimplifyAssociativeBinOp(Instruction::Add, Op0, Op1, Q,
665                                           MaxRecurse))
666     return V;
667 
668   // Threading Add over selects and phi nodes is pointless, so don't bother.
669   // Threading over the select in "A + select(cond, B, C)" means evaluating
670   // "A+B" and "A+C" and seeing if they are equal; but they are equal if and
671   // only if B and C are equal.  If B and C are equal then (since we assume
672   // that operands have already been simplified) "select(cond, B, C)" should
673   // have been simplified to the common value of B and C already.  Analysing
674   // "A+B" and "A+C" thus gains nothing, but costs compile time.  Similarly
675   // for threading over phi nodes.
676 
677   return nullptr;
678 }
679 
680 Value *llvm::SimplifyAddInst(Value *Op0, Value *Op1, bool IsNSW, bool IsNUW,
681                              const SimplifyQuery &Query) {
682   return ::SimplifyAddInst(Op0, Op1, IsNSW, IsNUW, Query, RecursionLimit);
683 }
684 
685 /// Compute the base pointer and cumulative constant offsets for V.
686 ///
687 /// This strips all constant offsets off of V, leaving it the base pointer, and
688 /// accumulates the total constant offset applied in the returned constant. It
689 /// returns 0 if V is not a pointer, and returns the constant '0' if there are
690 /// no constant offsets applied.
691 ///
692 /// This is very similar to GetPointerBaseWithConstantOffset except it doesn't
693 /// follow non-inbounds geps. This allows it to remain usable for icmp ult/etc.
694 /// folding.
695 static Constant *stripAndComputeConstantOffsets(const DataLayout &DL, Value *&V,
696                                                 bool AllowNonInbounds = false) {
697   assert(V->getType()->isPtrOrPtrVectorTy());
698 
699   Type *IntIdxTy = DL.getIndexType(V->getType())->getScalarType();
700   APInt Offset = APInt::getNullValue(IntIdxTy->getIntegerBitWidth());
701 
702   V = V->stripAndAccumulateConstantOffsets(DL, Offset, AllowNonInbounds);
703   // As that strip may trace through `addrspacecast`, need to sext or trunc
704   // the offset calculated.
705   IntIdxTy = DL.getIndexType(V->getType())->getScalarType();
706   Offset = Offset.sextOrTrunc(IntIdxTy->getIntegerBitWidth());
707 
708   Constant *OffsetIntPtr = ConstantInt::get(IntIdxTy, Offset);
709   if (VectorType *VecTy = dyn_cast<VectorType>(V->getType()))
710     return ConstantVector::getSplat(VecTy->getElementCount(), OffsetIntPtr);
711   return OffsetIntPtr;
712 }
713 
714 /// Compute the constant difference between two pointer values.
715 /// If the difference is not a constant, returns zero.
716 static Constant *computePointerDifference(const DataLayout &DL, Value *LHS,
717                                           Value *RHS) {
718   Constant *LHSOffset = stripAndComputeConstantOffsets(DL, LHS);
719   Constant *RHSOffset = stripAndComputeConstantOffsets(DL, RHS);
720 
721   // If LHS and RHS are not related via constant offsets to the same base
722   // value, there is nothing we can do here.
723   if (LHS != RHS)
724     return nullptr;
725 
726   // Otherwise, the difference of LHS - RHS can be computed as:
727   //    LHS - RHS
728   //  = (LHSOffset + Base) - (RHSOffset + Base)
729   //  = LHSOffset - RHSOffset
730   return ConstantExpr::getSub(LHSOffset, RHSOffset);
731 }
732 
733 /// Given operands for a Sub, see if we can fold the result.
734 /// If not, this returns null.
735 static Value *SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
736                               const SimplifyQuery &Q, unsigned MaxRecurse) {
737   if (Constant *C = foldOrCommuteConstant(Instruction::Sub, Op0, Op1, Q))
738     return C;
739 
740   // X - poison -> poison
741   // poison - X -> poison
742   if (isa<PoisonValue>(Op0) || isa<PoisonValue>(Op1))
743     return PoisonValue::get(Op0->getType());
744 
745   // X - undef -> undef
746   // undef - X -> undef
747   if (Q.isUndefValue(Op0) || Q.isUndefValue(Op1))
748     return UndefValue::get(Op0->getType());
749 
750   // X - 0 -> X
751   if (match(Op1, m_Zero()))
752     return Op0;
753 
754   // X - X -> 0
755   if (Op0 == Op1)
756     return Constant::getNullValue(Op0->getType());
757 
758   // Is this a negation?
759   if (match(Op0, m_Zero())) {
760     // 0 - X -> 0 if the sub is NUW.
761     if (isNUW)
762       return Constant::getNullValue(Op0->getType());
763 
764     KnownBits Known = computeKnownBits(Op1, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
765     if (Known.Zero.isMaxSignedValue()) {
766       // Op1 is either 0 or the minimum signed value. If the sub is NSW, then
767       // Op1 must be 0 because negating the minimum signed value is undefined.
768       if (isNSW)
769         return Constant::getNullValue(Op0->getType());
770 
771       // 0 - X -> X if X is 0 or the minimum signed value.
772       return Op1;
773     }
774   }
775 
776   // (X + Y) - Z -> X + (Y - Z) or Y + (X - Z) if everything simplifies.
777   // For example, (X + Y) - Y -> X; (Y + X) - Y -> X
778   Value *X = nullptr, *Y = nullptr, *Z = Op1;
779   if (MaxRecurse && match(Op0, m_Add(m_Value(X), m_Value(Y)))) { // (X + Y) - Z
780     // See if "V === Y - Z" simplifies.
781     if (Value *V = SimplifyBinOp(Instruction::Sub, Y, Z, Q, MaxRecurse-1))
782       // It does!  Now see if "X + V" simplifies.
783       if (Value *W = SimplifyBinOp(Instruction::Add, X, V, Q, MaxRecurse-1)) {
784         // It does, we successfully reassociated!
785         ++NumReassoc;
786         return W;
787       }
788     // See if "V === X - Z" simplifies.
789     if (Value *V = SimplifyBinOp(Instruction::Sub, X, Z, Q, MaxRecurse-1))
790       // It does!  Now see if "Y + V" simplifies.
791       if (Value *W = SimplifyBinOp(Instruction::Add, Y, V, Q, MaxRecurse-1)) {
792         // It does, we successfully reassociated!
793         ++NumReassoc;
794         return W;
795       }
796   }
797 
798   // X - (Y + Z) -> (X - Y) - Z or (X - Z) - Y if everything simplifies.
799   // For example, X - (X + 1) -> -1
800   X = Op0;
801   if (MaxRecurse && match(Op1, m_Add(m_Value(Y), m_Value(Z)))) { // X - (Y + Z)
802     // See if "V === X - Y" simplifies.
803     if (Value *V = SimplifyBinOp(Instruction::Sub, X, Y, Q, MaxRecurse-1))
804       // It does!  Now see if "V - Z" simplifies.
805       if (Value *W = SimplifyBinOp(Instruction::Sub, V, Z, Q, MaxRecurse-1)) {
806         // It does, we successfully reassociated!
807         ++NumReassoc;
808         return W;
809       }
810     // See if "V === X - Z" simplifies.
811     if (Value *V = SimplifyBinOp(Instruction::Sub, X, Z, Q, MaxRecurse-1))
812       // It does!  Now see if "V - Y" simplifies.
813       if (Value *W = SimplifyBinOp(Instruction::Sub, V, Y, Q, MaxRecurse-1)) {
814         // It does, we successfully reassociated!
815         ++NumReassoc;
816         return W;
817       }
818   }
819 
820   // Z - (X - Y) -> (Z - X) + Y if everything simplifies.
821   // For example, X - (X - Y) -> Y.
822   Z = Op0;
823   if (MaxRecurse && match(Op1, m_Sub(m_Value(X), m_Value(Y)))) // Z - (X - Y)
824     // See if "V === Z - X" simplifies.
825     if (Value *V = SimplifyBinOp(Instruction::Sub, Z, X, Q, MaxRecurse-1))
826       // It does!  Now see if "V + Y" simplifies.
827       if (Value *W = SimplifyBinOp(Instruction::Add, V, Y, Q, MaxRecurse-1)) {
828         // It does, we successfully reassociated!
829         ++NumReassoc;
830         return W;
831       }
832 
833   // trunc(X) - trunc(Y) -> trunc(X - Y) if everything simplifies.
834   if (MaxRecurse && match(Op0, m_Trunc(m_Value(X))) &&
835       match(Op1, m_Trunc(m_Value(Y))))
836     if (X->getType() == Y->getType())
837       // See if "V === X - Y" simplifies.
838       if (Value *V = SimplifyBinOp(Instruction::Sub, X, Y, Q, MaxRecurse-1))
839         // It does!  Now see if "trunc V" simplifies.
840         if (Value *W = SimplifyCastInst(Instruction::Trunc, V, Op0->getType(),
841                                         Q, MaxRecurse - 1))
842           // It does, return the simplified "trunc V".
843           return W;
844 
845   // Variations on GEP(base, I, ...) - GEP(base, i, ...) -> GEP(null, I-i, ...).
846   if (match(Op0, m_PtrToInt(m_Value(X))) &&
847       match(Op1, m_PtrToInt(m_Value(Y))))
848     if (Constant *Result = computePointerDifference(Q.DL, X, Y))
849       return ConstantExpr::getIntegerCast(Result, Op0->getType(), true);
850 
851   // i1 sub -> xor.
852   if (MaxRecurse && Op0->getType()->isIntOrIntVectorTy(1))
853     if (Value *V = SimplifyXorInst(Op0, Op1, Q, MaxRecurse-1))
854       return V;
855 
856   // Threading Sub over selects and phi nodes is pointless, so don't bother.
857   // Threading over the select in "A - select(cond, B, C)" means evaluating
858   // "A-B" and "A-C" and seeing if they are equal; but they are equal if and
859   // only if B and C are equal.  If B and C are equal then (since we assume
860   // that operands have already been simplified) "select(cond, B, C)" should
861   // have been simplified to the common value of B and C already.  Analysing
862   // "A-B" and "A-C" thus gains nothing, but costs compile time.  Similarly
863   // for threading over phi nodes.
864 
865   return nullptr;
866 }
867 
868 Value *llvm::SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
869                              const SimplifyQuery &Q) {
870   return ::SimplifySubInst(Op0, Op1, isNSW, isNUW, Q, RecursionLimit);
871 }
872 
873 /// Given operands for a Mul, see if we can fold the result.
874 /// If not, this returns null.
875 static Value *SimplifyMulInst(Value *Op0, Value *Op1, const SimplifyQuery &Q,
876                               unsigned MaxRecurse) {
877   if (Constant *C = foldOrCommuteConstant(Instruction::Mul, Op0, Op1, Q))
878     return C;
879 
880   // X * poison -> poison
881   if (isa<PoisonValue>(Op1))
882     return Op1;
883 
884   // X * undef -> 0
885   // X * 0 -> 0
886   if (Q.isUndefValue(Op1) || match(Op1, m_Zero()))
887     return Constant::getNullValue(Op0->getType());
888 
889   // X * 1 -> X
890   if (match(Op1, m_One()))
891     return Op0;
892 
893   // (X / Y) * Y -> X if the division is exact.
894   Value *X = nullptr;
895   if (Q.IIQ.UseInstrInfo &&
896       (match(Op0,
897              m_Exact(m_IDiv(m_Value(X), m_Specific(Op1)))) ||     // (X / Y) * Y
898        match(Op1, m_Exact(m_IDiv(m_Value(X), m_Specific(Op0)))))) // Y * (X / Y)
899     return X;
900 
901   // i1 mul -> and.
902   if (MaxRecurse && Op0->getType()->isIntOrIntVectorTy(1))
903     if (Value *V = SimplifyAndInst(Op0, Op1, Q, MaxRecurse-1))
904       return V;
905 
906   // Try some generic simplifications for associative operations.
907   if (Value *V = SimplifyAssociativeBinOp(Instruction::Mul, Op0, Op1, Q,
908                                           MaxRecurse))
909     return V;
910 
911   // Mul distributes over Add. Try some generic simplifications based on this.
912   if (Value *V = expandCommutativeBinOp(Instruction::Mul, Op0, Op1,
913                                         Instruction::Add, Q, MaxRecurse))
914     return V;
915 
916   // If the operation is with the result of a select instruction, check whether
917   // operating on either branch of the select always yields the same value.
918   if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
919     if (Value *V = ThreadBinOpOverSelect(Instruction::Mul, Op0, Op1, Q,
920                                          MaxRecurse))
921       return V;
922 
923   // If the operation is with the result of a phi instruction, check whether
924   // operating on all incoming values of the phi always yields the same value.
925   if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
926     if (Value *V = ThreadBinOpOverPHI(Instruction::Mul, Op0, Op1, Q,
927                                       MaxRecurse))
928       return V;
929 
930   return nullptr;
931 }
932 
933 Value *llvm::SimplifyMulInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) {
934   return ::SimplifyMulInst(Op0, Op1, Q, RecursionLimit);
935 }
936 
937 /// Check for common or similar folds of integer division or integer remainder.
938 /// This applies to all 4 opcodes (sdiv/udiv/srem/urem).
939 static Value *simplifyDivRem(Instruction::BinaryOps Opcode, Value *Op0,
940                              Value *Op1, const SimplifyQuery &Q) {
941   bool IsDiv = (Opcode == Instruction::SDiv || Opcode == Instruction::UDiv);
942   bool IsSigned = (Opcode == Instruction::SDiv || Opcode == Instruction::SRem);
943 
944   Type *Ty = Op0->getType();
945 
946   // X / undef -> poison
947   // X % undef -> poison
948   if (Q.isUndefValue(Op1))
949     return PoisonValue::get(Ty);
950 
951   // X / 0 -> poison
952   // X % 0 -> poison
953   // We don't need to preserve faults!
954   if (match(Op1, m_Zero()))
955     return PoisonValue::get(Ty);
956 
957   // If any element of a constant divisor fixed width vector is zero or undef
958   // the behavior is undefined and we can fold the whole op to poison.
959   auto *Op1C = dyn_cast<Constant>(Op1);
960   auto *VTy = dyn_cast<FixedVectorType>(Ty);
961   if (Op1C && VTy) {
962     unsigned NumElts = VTy->getNumElements();
963     for (unsigned i = 0; i != NumElts; ++i) {
964       Constant *Elt = Op1C->getAggregateElement(i);
965       if (Elt && (Elt->isNullValue() || Q.isUndefValue(Elt)))
966         return PoisonValue::get(Ty);
967     }
968   }
969 
970   // poison / X -> poison
971   // poison % X -> poison
972   if (isa<PoisonValue>(Op0))
973     return Op0;
974 
975   // undef / X -> 0
976   // undef % X -> 0
977   if (Q.isUndefValue(Op0))
978     return Constant::getNullValue(Ty);
979 
980   // 0 / X -> 0
981   // 0 % X -> 0
982   if (match(Op0, m_Zero()))
983     return Constant::getNullValue(Op0->getType());
984 
985   // X / X -> 1
986   // X % X -> 0
987   if (Op0 == Op1)
988     return IsDiv ? ConstantInt::get(Ty, 1) : Constant::getNullValue(Ty);
989 
990   // X / 1 -> X
991   // X % 1 -> 0
992   // If this is a boolean op (single-bit element type), we can't have
993   // division-by-zero or remainder-by-zero, so assume the divisor is 1.
994   // Similarly, if we're zero-extending a boolean divisor, then assume it's a 1.
995   Value *X;
996   if (match(Op1, m_One()) || Ty->isIntOrIntVectorTy(1) ||
997       (match(Op1, m_ZExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)))
998     return IsDiv ? Op0 : Constant::getNullValue(Ty);
999 
1000   // If X * Y does not overflow, then:
1001   //   X * Y / Y -> X
1002   //   X * Y % Y -> 0
1003   if (match(Op0, m_c_Mul(m_Value(X), m_Specific(Op1)))) {
1004     auto *Mul = cast<OverflowingBinaryOperator>(Op0);
1005     // The multiplication can't overflow if it is defined not to, or if
1006     // X == A / Y for some A.
1007     if ((IsSigned && Q.IIQ.hasNoSignedWrap(Mul)) ||
1008         (!IsSigned && Q.IIQ.hasNoUnsignedWrap(Mul)) ||
1009         (IsSigned && match(X, m_SDiv(m_Value(), m_Specific(Op1)))) ||
1010         (!IsSigned && match(X, m_UDiv(m_Value(), m_Specific(Op1))))) {
1011       return IsDiv ? X : Constant::getNullValue(Op0->getType());
1012     }
1013   }
1014 
1015   return nullptr;
1016 }
1017 
1018 /// Given a predicate and two operands, return true if the comparison is true.
1019 /// This is a helper for div/rem simplification where we return some other value
1020 /// when we can prove a relationship between the operands.
1021 static bool isICmpTrue(ICmpInst::Predicate Pred, Value *LHS, Value *RHS,
1022                        const SimplifyQuery &Q, unsigned MaxRecurse) {
1023   Value *V = SimplifyICmpInst(Pred, LHS, RHS, Q, MaxRecurse);
1024   Constant *C = dyn_cast_or_null<Constant>(V);
1025   return (C && C->isAllOnesValue());
1026 }
1027 
1028 /// Return true if we can simplify X / Y to 0. Remainder can adapt that answer
1029 /// to simplify X % Y to X.
1030 static bool isDivZero(Value *X, Value *Y, const SimplifyQuery &Q,
1031                       unsigned MaxRecurse, bool IsSigned) {
1032   // Recursion is always used, so bail out at once if we already hit the limit.
1033   if (!MaxRecurse--)
1034     return false;
1035 
1036   if (IsSigned) {
1037     // |X| / |Y| --> 0
1038     //
1039     // We require that 1 operand is a simple constant. That could be extended to
1040     // 2 variables if we computed the sign bit for each.
1041     //
1042     // Make sure that a constant is not the minimum signed value because taking
1043     // the abs() of that is undefined.
1044     Type *Ty = X->getType();
1045     const APInt *C;
1046     if (match(X, m_APInt(C)) && !C->isMinSignedValue()) {
1047       // Is the variable divisor magnitude always greater than the constant
1048       // dividend magnitude?
1049       // |Y| > |C| --> Y < -abs(C) or Y > abs(C)
1050       Constant *PosDividendC = ConstantInt::get(Ty, C->abs());
1051       Constant *NegDividendC = ConstantInt::get(Ty, -C->abs());
1052       if (isICmpTrue(CmpInst::ICMP_SLT, Y, NegDividendC, Q, MaxRecurse) ||
1053           isICmpTrue(CmpInst::ICMP_SGT, Y, PosDividendC, Q, MaxRecurse))
1054         return true;
1055     }
1056     if (match(Y, m_APInt(C))) {
1057       // Special-case: we can't take the abs() of a minimum signed value. If
1058       // that's the divisor, then all we have to do is prove that the dividend
1059       // is also not the minimum signed value.
1060       if (C->isMinSignedValue())
1061         return isICmpTrue(CmpInst::ICMP_NE, X, Y, Q, MaxRecurse);
1062 
1063       // Is the variable dividend magnitude always less than the constant
1064       // divisor magnitude?
1065       // |X| < |C| --> X > -abs(C) and X < abs(C)
1066       Constant *PosDivisorC = ConstantInt::get(Ty, C->abs());
1067       Constant *NegDivisorC = ConstantInt::get(Ty, -C->abs());
1068       if (isICmpTrue(CmpInst::ICMP_SGT, X, NegDivisorC, Q, MaxRecurse) &&
1069           isICmpTrue(CmpInst::ICMP_SLT, X, PosDivisorC, Q, MaxRecurse))
1070         return true;
1071     }
1072     return false;
1073   }
1074 
1075   // IsSigned == false.
1076   // Is the dividend unsigned less than the divisor?
1077   return isICmpTrue(ICmpInst::ICMP_ULT, X, Y, Q, MaxRecurse);
1078 }
1079 
1080 /// These are simplifications common to SDiv and UDiv.
1081 static Value *simplifyDiv(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1,
1082                           const SimplifyQuery &Q, unsigned MaxRecurse) {
1083   if (Constant *C = foldOrCommuteConstant(Opcode, Op0, Op1, Q))
1084     return C;
1085 
1086   if (Value *V = simplifyDivRem(Opcode, Op0, Op1, Q))
1087     return V;
1088 
1089   bool IsSigned = Opcode == Instruction::SDiv;
1090 
1091   // (X rem Y) / Y -> 0
1092   if ((IsSigned && match(Op0, m_SRem(m_Value(), m_Specific(Op1)))) ||
1093       (!IsSigned && match(Op0, m_URem(m_Value(), m_Specific(Op1)))))
1094     return Constant::getNullValue(Op0->getType());
1095 
1096   // (X /u C1) /u C2 -> 0 if C1 * C2 overflow
1097   ConstantInt *C1, *C2;
1098   if (!IsSigned && match(Op0, m_UDiv(m_Value(), m_ConstantInt(C1))) &&
1099       match(Op1, m_ConstantInt(C2))) {
1100     bool Overflow;
1101     (void)C1->getValue().umul_ov(C2->getValue(), Overflow);
1102     if (Overflow)
1103       return Constant::getNullValue(Op0->getType());
1104   }
1105 
1106   // If the operation is with the result of a select instruction, check whether
1107   // operating on either branch of the select always yields the same value.
1108   if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
1109     if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse))
1110       return V;
1111 
1112   // If the operation is with the result of a phi instruction, check whether
1113   // operating on all incoming values of the phi always yields the same value.
1114   if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
1115     if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse))
1116       return V;
1117 
1118   if (isDivZero(Op0, Op1, Q, MaxRecurse, IsSigned))
1119     return Constant::getNullValue(Op0->getType());
1120 
1121   return nullptr;
1122 }
1123 
1124 /// These are simplifications common to SRem and URem.
1125 static Value *simplifyRem(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1,
1126                           const SimplifyQuery &Q, unsigned MaxRecurse) {
1127   if (Constant *C = foldOrCommuteConstant(Opcode, Op0, Op1, Q))
1128     return C;
1129 
1130   if (Value *V = simplifyDivRem(Opcode, Op0, Op1, Q))
1131     return V;
1132 
1133   // (X % Y) % Y -> X % Y
1134   if ((Opcode == Instruction::SRem &&
1135        match(Op0, m_SRem(m_Value(), m_Specific(Op1)))) ||
1136       (Opcode == Instruction::URem &&
1137        match(Op0, m_URem(m_Value(), m_Specific(Op1)))))
1138     return Op0;
1139 
1140   // (X << Y) % X -> 0
1141   if (Q.IIQ.UseInstrInfo &&
1142       ((Opcode == Instruction::SRem &&
1143         match(Op0, m_NSWShl(m_Specific(Op1), m_Value()))) ||
1144        (Opcode == Instruction::URem &&
1145         match(Op0, m_NUWShl(m_Specific(Op1), m_Value())))))
1146     return Constant::getNullValue(Op0->getType());
1147 
1148   // If the operation is with the result of a select instruction, check whether
1149   // operating on either branch of the select always yields the same value.
1150   if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
1151     if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse))
1152       return V;
1153 
1154   // If the operation is with the result of a phi instruction, check whether
1155   // operating on all incoming values of the phi always yields the same value.
1156   if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
1157     if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse))
1158       return V;
1159 
1160   // If X / Y == 0, then X % Y == X.
1161   if (isDivZero(Op0, Op1, Q, MaxRecurse, Opcode == Instruction::SRem))
1162     return Op0;
1163 
1164   return nullptr;
1165 }
1166 
1167 /// Given operands for an SDiv, see if we can fold the result.
1168 /// If not, this returns null.
1169 static Value *SimplifySDivInst(Value *Op0, Value *Op1, const SimplifyQuery &Q,
1170                                unsigned MaxRecurse) {
1171   // If two operands are negated and no signed overflow, return -1.
1172   if (isKnownNegation(Op0, Op1, /*NeedNSW=*/true))
1173     return Constant::getAllOnesValue(Op0->getType());
1174 
1175   return simplifyDiv(Instruction::SDiv, Op0, Op1, Q, MaxRecurse);
1176 }
1177 
1178 Value *llvm::SimplifySDivInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) {
1179   return ::SimplifySDivInst(Op0, Op1, Q, RecursionLimit);
1180 }
1181 
1182 /// Given operands for a UDiv, see if we can fold the result.
1183 /// If not, this returns null.
1184 static Value *SimplifyUDivInst(Value *Op0, Value *Op1, const SimplifyQuery &Q,
1185                                unsigned MaxRecurse) {
1186   return simplifyDiv(Instruction::UDiv, Op0, Op1, Q, MaxRecurse);
1187 }
1188 
1189 Value *llvm::SimplifyUDivInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) {
1190   return ::SimplifyUDivInst(Op0, Op1, Q, RecursionLimit);
1191 }
1192 
1193 /// Given operands for an SRem, see if we can fold the result.
1194 /// If not, this returns null.
1195 static Value *SimplifySRemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q,
1196                                unsigned MaxRecurse) {
1197   // If the divisor is 0, the result is undefined, so assume the divisor is -1.
1198   // srem Op0, (sext i1 X) --> srem Op0, -1 --> 0
1199   Value *X;
1200   if (match(Op1, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1))
1201     return ConstantInt::getNullValue(Op0->getType());
1202 
1203   // If the two operands are negated, return 0.
1204   if (isKnownNegation(Op0, Op1))
1205     return ConstantInt::getNullValue(Op0->getType());
1206 
1207   return simplifyRem(Instruction::SRem, Op0, Op1, Q, MaxRecurse);
1208 }
1209 
1210 Value *llvm::SimplifySRemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) {
1211   return ::SimplifySRemInst(Op0, Op1, Q, RecursionLimit);
1212 }
1213 
1214 /// Given operands for a URem, see if we can fold the result.
1215 /// If not, this returns null.
1216 static Value *SimplifyURemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q,
1217                                unsigned MaxRecurse) {
1218   return simplifyRem(Instruction::URem, Op0, Op1, Q, MaxRecurse);
1219 }
1220 
1221 Value *llvm::SimplifyURemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) {
1222   return ::SimplifyURemInst(Op0, Op1, Q, RecursionLimit);
1223 }
1224 
1225 /// Returns true if a shift by \c Amount always yields poison.
1226 static bool isPoisonShift(Value *Amount, const SimplifyQuery &Q) {
1227   Constant *C = dyn_cast<Constant>(Amount);
1228   if (!C)
1229     return false;
1230 
1231   // X shift by undef -> poison because it may shift by the bitwidth.
1232   if (Q.isUndefValue(C))
1233     return true;
1234 
1235   // Shifting by the bitwidth or more is undefined.
1236   if (ConstantInt *CI = dyn_cast<ConstantInt>(C))
1237     if (CI->getValue().uge(CI->getType()->getScalarSizeInBits()))
1238       return true;
1239 
1240   // If all lanes of a vector shift are undefined the whole shift is.
1241   if (isa<ConstantVector>(C) || isa<ConstantDataVector>(C)) {
1242     for (unsigned I = 0,
1243                   E = cast<FixedVectorType>(C->getType())->getNumElements();
1244          I != E; ++I)
1245       if (!isPoisonShift(C->getAggregateElement(I), Q))
1246         return false;
1247     return true;
1248   }
1249 
1250   return false;
1251 }
1252 
1253 /// Given operands for an Shl, LShr or AShr, see if we can fold the result.
1254 /// If not, this returns null.
1255 static Value *SimplifyShift(Instruction::BinaryOps Opcode, Value *Op0,
1256                             Value *Op1, bool IsNSW, const SimplifyQuery &Q,
1257                             unsigned MaxRecurse) {
1258   if (Constant *C = foldOrCommuteConstant(Opcode, Op0, Op1, Q))
1259     return C;
1260 
1261   // poison shift by X -> poison
1262   if (isa<PoisonValue>(Op0))
1263     return Op0;
1264 
1265   // 0 shift by X -> 0
1266   if (match(Op0, m_Zero()))
1267     return Constant::getNullValue(Op0->getType());
1268 
1269   // X shift by 0 -> X
1270   // Shift-by-sign-extended bool must be shift-by-0 because shift-by-all-ones
1271   // would be poison.
1272   Value *X;
1273   if (match(Op1, m_Zero()) ||
1274       (match(Op1, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)))
1275     return Op0;
1276 
1277   // Fold undefined shifts.
1278   if (isPoisonShift(Op1, Q))
1279     return PoisonValue::get(Op0->getType());
1280 
1281   // If the operation is with the result of a select instruction, check whether
1282   // operating on either branch of the select always yields the same value.
1283   if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
1284     if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse))
1285       return V;
1286 
1287   // If the operation is with the result of a phi instruction, check whether
1288   // operating on all incoming values of the phi always yields the same value.
1289   if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
1290     if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse))
1291       return V;
1292 
1293   // If any bits in the shift amount make that value greater than or equal to
1294   // the number of bits in the type, the shift is undefined.
1295   KnownBits KnownAmt = computeKnownBits(Op1, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
1296   if (KnownAmt.getMinValue().uge(KnownAmt.getBitWidth()))
1297     return PoisonValue::get(Op0->getType());
1298 
1299   // If all valid bits in the shift amount are known zero, the first operand is
1300   // unchanged.
1301   unsigned NumValidShiftBits = Log2_32_Ceil(KnownAmt.getBitWidth());
1302   if (KnownAmt.countMinTrailingZeros() >= NumValidShiftBits)
1303     return Op0;
1304 
1305   // Check for nsw shl leading to a poison value.
1306   if (IsNSW) {
1307     assert(Opcode == Instruction::Shl && "Expected shl for nsw instruction");
1308     KnownBits KnownVal = computeKnownBits(Op0, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
1309     KnownBits KnownShl = KnownBits::shl(KnownVal, KnownAmt);
1310 
1311     if (KnownVal.Zero.isSignBitSet())
1312       KnownShl.Zero.setSignBit();
1313     if (KnownVal.One.isSignBitSet())
1314       KnownShl.One.setSignBit();
1315 
1316     if (KnownShl.hasConflict())
1317       return PoisonValue::get(Op0->getType());
1318   }
1319 
1320   return nullptr;
1321 }
1322 
1323 /// Given operands for an Shl, LShr or AShr, see if we can
1324 /// fold the result.  If not, this returns null.
1325 static Value *SimplifyRightShift(Instruction::BinaryOps Opcode, Value *Op0,
1326                                  Value *Op1, bool isExact, const SimplifyQuery &Q,
1327                                  unsigned MaxRecurse) {
1328   if (Value *V =
1329           SimplifyShift(Opcode, Op0, Op1, /*IsNSW*/ false, Q, MaxRecurse))
1330     return V;
1331 
1332   // X >> X -> 0
1333   if (Op0 == Op1)
1334     return Constant::getNullValue(Op0->getType());
1335 
1336   // undef >> X -> 0
1337   // undef >> X -> undef (if it's exact)
1338   if (Q.isUndefValue(Op0))
1339     return isExact ? Op0 : Constant::getNullValue(Op0->getType());
1340 
1341   // The low bit cannot be shifted out of an exact shift if it is set.
1342   if (isExact) {
1343     KnownBits Op0Known = computeKnownBits(Op0, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT);
1344     if (Op0Known.One[0])
1345       return Op0;
1346   }
1347 
1348   return nullptr;
1349 }
1350 
1351 /// Given operands for an Shl, see if we can fold the result.
1352 /// If not, this returns null.
1353 static Value *SimplifyShlInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
1354                               const SimplifyQuery &Q, unsigned MaxRecurse) {
1355   if (Value *V =
1356           SimplifyShift(Instruction::Shl, Op0, Op1, isNSW, Q, MaxRecurse))
1357     return V;
1358 
1359   // undef << X -> 0
1360   // undef << X -> undef if (if it's NSW/NUW)
1361   if (Q.isUndefValue(Op0))
1362     return isNSW || isNUW ? Op0 : Constant::getNullValue(Op0->getType());
1363 
1364   // (X >> A) << A -> X
1365   Value *X;
1366   if (Q.IIQ.UseInstrInfo &&
1367       match(Op0, m_Exact(m_Shr(m_Value(X), m_Specific(Op1)))))
1368     return X;
1369 
1370   // shl nuw i8 C, %x  ->  C  iff C has sign bit set.
1371   if (isNUW && match(Op0, m_Negative()))
1372     return Op0;
1373   // NOTE: could use computeKnownBits() / LazyValueInfo,
1374   // but the cost-benefit analysis suggests it isn't worth it.
1375 
1376   return nullptr;
1377 }
1378 
1379 Value *llvm::SimplifyShlInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
1380                              const SimplifyQuery &Q) {
1381   return ::SimplifyShlInst(Op0, Op1, isNSW, isNUW, Q, RecursionLimit);
1382 }
1383 
1384 /// Given operands for an LShr, see if we can fold the result.
1385 /// If not, this returns null.
1386 static Value *SimplifyLShrInst(Value *Op0, Value *Op1, bool isExact,
1387                                const SimplifyQuery &Q, unsigned MaxRecurse) {
1388   if (Value *V = SimplifyRightShift(Instruction::LShr, Op0, Op1, isExact, Q,
1389                                     MaxRecurse))
1390       return V;
1391 
1392   // (X << A) >> A -> X
1393   Value *X;
1394   if (match(Op0, m_NUWShl(m_Value(X), m_Specific(Op1))))
1395     return X;
1396 
1397   // ((X << A) | Y) >> A -> X  if effective width of Y is not larger than A.
1398   // We can return X as we do in the above case since OR alters no bits in X.
1399   // SimplifyDemandedBits in InstCombine can do more general optimization for
1400   // bit manipulation. This pattern aims to provide opportunities for other
1401   // optimizers by supporting a simple but common case in InstSimplify.
1402   Value *Y;
1403   const APInt *ShRAmt, *ShLAmt;
1404   if (match(Op1, m_APInt(ShRAmt)) &&
1405       match(Op0, m_c_Or(m_NUWShl(m_Value(X), m_APInt(ShLAmt)), m_Value(Y))) &&
1406       *ShRAmt == *ShLAmt) {
1407     const KnownBits YKnown = computeKnownBits(Y, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
1408     const unsigned Width = Op0->getType()->getScalarSizeInBits();
1409     const unsigned EffWidthY = Width - YKnown.countMinLeadingZeros();
1410     if (ShRAmt->uge(EffWidthY))
1411       return X;
1412   }
1413 
1414   return nullptr;
1415 }
1416 
1417 Value *llvm::SimplifyLShrInst(Value *Op0, Value *Op1, bool isExact,
1418                               const SimplifyQuery &Q) {
1419   return ::SimplifyLShrInst(Op0, Op1, isExact, Q, RecursionLimit);
1420 }
1421 
1422 /// Given operands for an AShr, see if we can fold the result.
1423 /// If not, this returns null.
1424 static Value *SimplifyAShrInst(Value *Op0, Value *Op1, bool isExact,
1425                                const SimplifyQuery &Q, unsigned MaxRecurse) {
1426   if (Value *V = SimplifyRightShift(Instruction::AShr, Op0, Op1, isExact, Q,
1427                                     MaxRecurse))
1428     return V;
1429 
1430   // all ones >>a X -> -1
1431   // Do not return Op0 because it may contain undef elements if it's a vector.
1432   if (match(Op0, m_AllOnes()))
1433     return Constant::getAllOnesValue(Op0->getType());
1434 
1435   // (X << A) >> A -> X
1436   Value *X;
1437   if (Q.IIQ.UseInstrInfo && match(Op0, m_NSWShl(m_Value(X), m_Specific(Op1))))
1438     return X;
1439 
1440   // Arithmetic shifting an all-sign-bit value is a no-op.
1441   unsigned NumSignBits = ComputeNumSignBits(Op0, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
1442   if (NumSignBits == Op0->getType()->getScalarSizeInBits())
1443     return Op0;
1444 
1445   return nullptr;
1446 }
1447 
1448 Value *llvm::SimplifyAShrInst(Value *Op0, Value *Op1, bool isExact,
1449                               const SimplifyQuery &Q) {
1450   return ::SimplifyAShrInst(Op0, Op1, isExact, Q, RecursionLimit);
1451 }
1452 
1453 /// Commuted variants are assumed to be handled by calling this function again
1454 /// with the parameters swapped.
1455 static Value *simplifyUnsignedRangeCheck(ICmpInst *ZeroICmp,
1456                                          ICmpInst *UnsignedICmp, bool IsAnd,
1457                                          const SimplifyQuery &Q) {
1458   Value *X, *Y;
1459 
1460   ICmpInst::Predicate EqPred;
1461   if (!match(ZeroICmp, m_ICmp(EqPred, m_Value(Y), m_Zero())) ||
1462       !ICmpInst::isEquality(EqPred))
1463     return nullptr;
1464 
1465   ICmpInst::Predicate UnsignedPred;
1466 
1467   Value *A, *B;
1468   // Y = (A - B);
1469   if (match(Y, m_Sub(m_Value(A), m_Value(B)))) {
1470     if (match(UnsignedICmp,
1471               m_c_ICmp(UnsignedPred, m_Specific(A), m_Specific(B))) &&
1472         ICmpInst::isUnsigned(UnsignedPred)) {
1473       // A >=/<= B || (A - B) != 0  <-->  true
1474       if ((UnsignedPred == ICmpInst::ICMP_UGE ||
1475            UnsignedPred == ICmpInst::ICMP_ULE) &&
1476           EqPred == ICmpInst::ICMP_NE && !IsAnd)
1477         return ConstantInt::getTrue(UnsignedICmp->getType());
1478       // A </> B && (A - B) == 0  <-->  false
1479       if ((UnsignedPred == ICmpInst::ICMP_ULT ||
1480            UnsignedPred == ICmpInst::ICMP_UGT) &&
1481           EqPred == ICmpInst::ICMP_EQ && IsAnd)
1482         return ConstantInt::getFalse(UnsignedICmp->getType());
1483 
1484       // A </> B && (A - B) != 0  <-->  A </> B
1485       // A </> B || (A - B) != 0  <-->  (A - B) != 0
1486       if (EqPred == ICmpInst::ICMP_NE && (UnsignedPred == ICmpInst::ICMP_ULT ||
1487                                           UnsignedPred == ICmpInst::ICMP_UGT))
1488         return IsAnd ? UnsignedICmp : ZeroICmp;
1489 
1490       // A <=/>= B && (A - B) == 0  <-->  (A - B) == 0
1491       // A <=/>= B || (A - B) == 0  <-->  A <=/>= B
1492       if (EqPred == ICmpInst::ICMP_EQ && (UnsignedPred == ICmpInst::ICMP_ULE ||
1493                                           UnsignedPred == ICmpInst::ICMP_UGE))
1494         return IsAnd ? ZeroICmp : UnsignedICmp;
1495     }
1496 
1497     // Given  Y = (A - B)
1498     //   Y >= A && Y != 0  --> Y >= A  iff B != 0
1499     //   Y <  A || Y == 0  --> Y <  A  iff B != 0
1500     if (match(UnsignedICmp,
1501               m_c_ICmp(UnsignedPred, m_Specific(Y), m_Specific(A)))) {
1502       if (UnsignedPred == ICmpInst::ICMP_UGE && IsAnd &&
1503           EqPred == ICmpInst::ICMP_NE &&
1504           isKnownNonZero(B, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT))
1505         return UnsignedICmp;
1506       if (UnsignedPred == ICmpInst::ICMP_ULT && !IsAnd &&
1507           EqPred == ICmpInst::ICMP_EQ &&
1508           isKnownNonZero(B, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT))
1509         return UnsignedICmp;
1510     }
1511   }
1512 
1513   if (match(UnsignedICmp, m_ICmp(UnsignedPred, m_Value(X), m_Specific(Y))) &&
1514       ICmpInst::isUnsigned(UnsignedPred))
1515     ;
1516   else if (match(UnsignedICmp,
1517                  m_ICmp(UnsignedPred, m_Specific(Y), m_Value(X))) &&
1518            ICmpInst::isUnsigned(UnsignedPred))
1519     UnsignedPred = ICmpInst::getSwappedPredicate(UnsignedPred);
1520   else
1521     return nullptr;
1522 
1523   // X > Y && Y == 0  -->  Y == 0  iff X != 0
1524   // X > Y || Y == 0  -->  X > Y   iff X != 0
1525   if (UnsignedPred == ICmpInst::ICMP_UGT && EqPred == ICmpInst::ICMP_EQ &&
1526       isKnownNonZero(X, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT))
1527     return IsAnd ? ZeroICmp : UnsignedICmp;
1528 
1529   // X <= Y && Y != 0  -->  X <= Y  iff X != 0
1530   // X <= Y || Y != 0  -->  Y != 0  iff X != 0
1531   if (UnsignedPred == ICmpInst::ICMP_ULE && EqPred == ICmpInst::ICMP_NE &&
1532       isKnownNonZero(X, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT))
1533     return IsAnd ? UnsignedICmp : ZeroICmp;
1534 
1535   // The transforms below here are expected to be handled more generally with
1536   // simplifyAndOrOfICmpsWithLimitConst() or in InstCombine's
1537   // foldAndOrOfICmpsWithConstEq(). If we are looking to trim optimizer overlap,
1538   // these are candidates for removal.
1539 
1540   // X < Y && Y != 0  -->  X < Y
1541   // X < Y || Y != 0  -->  Y != 0
1542   if (UnsignedPred == ICmpInst::ICMP_ULT && EqPred == ICmpInst::ICMP_NE)
1543     return IsAnd ? UnsignedICmp : ZeroICmp;
1544 
1545   // X >= Y && Y == 0  -->  Y == 0
1546   // X >= Y || Y == 0  -->  X >= Y
1547   if (UnsignedPred == ICmpInst::ICMP_UGE && EqPred == ICmpInst::ICMP_EQ)
1548     return IsAnd ? ZeroICmp : UnsignedICmp;
1549 
1550   // X < Y && Y == 0  -->  false
1551   if (UnsignedPred == ICmpInst::ICMP_ULT && EqPred == ICmpInst::ICMP_EQ &&
1552       IsAnd)
1553     return getFalse(UnsignedICmp->getType());
1554 
1555   // X >= Y || Y != 0  -->  true
1556   if (UnsignedPred == ICmpInst::ICMP_UGE && EqPred == ICmpInst::ICMP_NE &&
1557       !IsAnd)
1558     return getTrue(UnsignedICmp->getType());
1559 
1560   return nullptr;
1561 }
1562 
1563 /// Commuted variants are assumed to be handled by calling this function again
1564 /// with the parameters swapped.
1565 static Value *simplifyAndOfICmpsWithSameOperands(ICmpInst *Op0, ICmpInst *Op1) {
1566   ICmpInst::Predicate Pred0, Pred1;
1567   Value *A ,*B;
1568   if (!match(Op0, m_ICmp(Pred0, m_Value(A), m_Value(B))) ||
1569       !match(Op1, m_ICmp(Pred1, m_Specific(A), m_Specific(B))))
1570     return nullptr;
1571 
1572   // We have (icmp Pred0, A, B) & (icmp Pred1, A, B).
1573   // If Op1 is always implied true by Op0, then Op0 is a subset of Op1, and we
1574   // can eliminate Op1 from this 'and'.
1575   if (ICmpInst::isImpliedTrueByMatchingCmp(Pred0, Pred1))
1576     return Op0;
1577 
1578   // Check for any combination of predicates that are guaranteed to be disjoint.
1579   if ((Pred0 == ICmpInst::getInversePredicate(Pred1)) ||
1580       (Pred0 == ICmpInst::ICMP_EQ && ICmpInst::isFalseWhenEqual(Pred1)) ||
1581       (Pred0 == ICmpInst::ICMP_SLT && Pred1 == ICmpInst::ICMP_SGT) ||
1582       (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_UGT))
1583     return getFalse(Op0->getType());
1584 
1585   return nullptr;
1586 }
1587 
1588 /// Commuted variants are assumed to be handled by calling this function again
1589 /// with the parameters swapped.
1590 static Value *simplifyOrOfICmpsWithSameOperands(ICmpInst *Op0, ICmpInst *Op1) {
1591   ICmpInst::Predicate Pred0, Pred1;
1592   Value *A ,*B;
1593   if (!match(Op0, m_ICmp(Pred0, m_Value(A), m_Value(B))) ||
1594       !match(Op1, m_ICmp(Pred1, m_Specific(A), m_Specific(B))))
1595     return nullptr;
1596 
1597   // We have (icmp Pred0, A, B) | (icmp Pred1, A, B).
1598   // If Op1 is always implied true by Op0, then Op0 is a subset of Op1, and we
1599   // can eliminate Op0 from this 'or'.
1600   if (ICmpInst::isImpliedTrueByMatchingCmp(Pred0, Pred1))
1601     return Op1;
1602 
1603   // Check for any combination of predicates that cover the entire range of
1604   // possibilities.
1605   if ((Pred0 == ICmpInst::getInversePredicate(Pred1)) ||
1606       (Pred0 == ICmpInst::ICMP_NE && ICmpInst::isTrueWhenEqual(Pred1)) ||
1607       (Pred0 == ICmpInst::ICMP_SLE && Pred1 == ICmpInst::ICMP_SGE) ||
1608       (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_UGE))
1609     return getTrue(Op0->getType());
1610 
1611   return nullptr;
1612 }
1613 
1614 /// Test if a pair of compares with a shared operand and 2 constants has an
1615 /// empty set intersection, full set union, or if one compare is a superset of
1616 /// the other.
1617 static Value *simplifyAndOrOfICmpsWithConstants(ICmpInst *Cmp0, ICmpInst *Cmp1,
1618                                                 bool IsAnd) {
1619   // Look for this pattern: {and/or} (icmp X, C0), (icmp X, C1)).
1620   if (Cmp0->getOperand(0) != Cmp1->getOperand(0))
1621     return nullptr;
1622 
1623   const APInt *C0, *C1;
1624   if (!match(Cmp0->getOperand(1), m_APInt(C0)) ||
1625       !match(Cmp1->getOperand(1), m_APInt(C1)))
1626     return nullptr;
1627 
1628   auto Range0 = ConstantRange::makeExactICmpRegion(Cmp0->getPredicate(), *C0);
1629   auto Range1 = ConstantRange::makeExactICmpRegion(Cmp1->getPredicate(), *C1);
1630 
1631   // For and-of-compares, check if the intersection is empty:
1632   // (icmp X, C0) && (icmp X, C1) --> empty set --> false
1633   if (IsAnd && Range0.intersectWith(Range1).isEmptySet())
1634     return getFalse(Cmp0->getType());
1635 
1636   // For or-of-compares, check if the union is full:
1637   // (icmp X, C0) || (icmp X, C1) --> full set --> true
1638   if (!IsAnd && Range0.unionWith(Range1).isFullSet())
1639     return getTrue(Cmp0->getType());
1640 
1641   // Is one range a superset of the other?
1642   // If this is and-of-compares, take the smaller set:
1643   // (icmp sgt X, 4) && (icmp sgt X, 42) --> icmp sgt X, 42
1644   // If this is or-of-compares, take the larger set:
1645   // (icmp sgt X, 4) || (icmp sgt X, 42) --> icmp sgt X, 4
1646   if (Range0.contains(Range1))
1647     return IsAnd ? Cmp1 : Cmp0;
1648   if (Range1.contains(Range0))
1649     return IsAnd ? Cmp0 : Cmp1;
1650 
1651   return nullptr;
1652 }
1653 
1654 static Value *simplifyAndOrOfICmpsWithZero(ICmpInst *Cmp0, ICmpInst *Cmp1,
1655                                            bool IsAnd) {
1656   ICmpInst::Predicate P0 = Cmp0->getPredicate(), P1 = Cmp1->getPredicate();
1657   if (!match(Cmp0->getOperand(1), m_Zero()) ||
1658       !match(Cmp1->getOperand(1), m_Zero()) || P0 != P1)
1659     return nullptr;
1660 
1661   if ((IsAnd && P0 != ICmpInst::ICMP_NE) || (!IsAnd && P1 != ICmpInst::ICMP_EQ))
1662     return nullptr;
1663 
1664   // We have either "(X == 0 || Y == 0)" or "(X != 0 && Y != 0)".
1665   Value *X = Cmp0->getOperand(0);
1666   Value *Y = Cmp1->getOperand(0);
1667 
1668   // If one of the compares is a masked version of a (not) null check, then
1669   // that compare implies the other, so we eliminate the other. Optionally, look
1670   // through a pointer-to-int cast to match a null check of a pointer type.
1671 
1672   // (X == 0) || (([ptrtoint] X & ?) == 0) --> ([ptrtoint] X & ?) == 0
1673   // (X == 0) || ((? & [ptrtoint] X) == 0) --> (? & [ptrtoint] X) == 0
1674   // (X != 0) && (([ptrtoint] X & ?) != 0) --> ([ptrtoint] X & ?) != 0
1675   // (X != 0) && ((? & [ptrtoint] X) != 0) --> (? & [ptrtoint] X) != 0
1676   if (match(Y, m_c_And(m_Specific(X), m_Value())) ||
1677       match(Y, m_c_And(m_PtrToInt(m_Specific(X)), m_Value())))
1678     return Cmp1;
1679 
1680   // (([ptrtoint] Y & ?) == 0) || (Y == 0) --> ([ptrtoint] Y & ?) == 0
1681   // ((? & [ptrtoint] Y) == 0) || (Y == 0) --> (? & [ptrtoint] Y) == 0
1682   // (([ptrtoint] Y & ?) != 0) && (Y != 0) --> ([ptrtoint] Y & ?) != 0
1683   // ((? & [ptrtoint] Y) != 0) && (Y != 0) --> (? & [ptrtoint] Y) != 0
1684   if (match(X, m_c_And(m_Specific(Y), m_Value())) ||
1685       match(X, m_c_And(m_PtrToInt(m_Specific(Y)), m_Value())))
1686     return Cmp0;
1687 
1688   return nullptr;
1689 }
1690 
1691 static Value *simplifyAndOfICmpsWithAdd(ICmpInst *Op0, ICmpInst *Op1,
1692                                         const InstrInfoQuery &IIQ) {
1693   // (icmp (add V, C0), C1) & (icmp V, C0)
1694   ICmpInst::Predicate Pred0, Pred1;
1695   const APInt *C0, *C1;
1696   Value *V;
1697   if (!match(Op0, m_ICmp(Pred0, m_Add(m_Value(V), m_APInt(C0)), m_APInt(C1))))
1698     return nullptr;
1699 
1700   if (!match(Op1, m_ICmp(Pred1, m_Specific(V), m_Value())))
1701     return nullptr;
1702 
1703   auto *AddInst = cast<OverflowingBinaryOperator>(Op0->getOperand(0));
1704   if (AddInst->getOperand(1) != Op1->getOperand(1))
1705     return nullptr;
1706 
1707   Type *ITy = Op0->getType();
1708   bool isNSW = IIQ.hasNoSignedWrap(AddInst);
1709   bool isNUW = IIQ.hasNoUnsignedWrap(AddInst);
1710 
1711   const APInt Delta = *C1 - *C0;
1712   if (C0->isStrictlyPositive()) {
1713     if (Delta == 2) {
1714       if (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_SGT)
1715         return getFalse(ITy);
1716       if (Pred0 == ICmpInst::ICMP_SLT && Pred1 == ICmpInst::ICMP_SGT && isNSW)
1717         return getFalse(ITy);
1718     }
1719     if (Delta == 1) {
1720       if (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_SGT)
1721         return getFalse(ITy);
1722       if (Pred0 == ICmpInst::ICMP_SLE && Pred1 == ICmpInst::ICMP_SGT && isNSW)
1723         return getFalse(ITy);
1724     }
1725   }
1726   if (C0->getBoolValue() && isNUW) {
1727     if (Delta == 2)
1728       if (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_UGT)
1729         return getFalse(ITy);
1730     if (Delta == 1)
1731       if (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_UGT)
1732         return getFalse(ITy);
1733   }
1734 
1735   return nullptr;
1736 }
1737 
1738 /// Try to eliminate compares with signed or unsigned min/max constants.
1739 static Value *simplifyAndOrOfICmpsWithLimitConst(ICmpInst *Cmp0, ICmpInst *Cmp1,
1740                                                  bool IsAnd) {
1741   // Canonicalize an equality compare as Cmp0.
1742   if (Cmp1->isEquality())
1743     std::swap(Cmp0, Cmp1);
1744   if (!Cmp0->isEquality())
1745     return nullptr;
1746 
1747   // The non-equality compare must include a common operand (X). Canonicalize
1748   // the common operand as operand 0 (the predicate is swapped if the common
1749   // operand was operand 1).
1750   ICmpInst::Predicate Pred0 = Cmp0->getPredicate();
1751   Value *X = Cmp0->getOperand(0);
1752   ICmpInst::Predicate Pred1;
1753   bool HasNotOp = match(Cmp1, m_c_ICmp(Pred1, m_Not(m_Specific(X)), m_Value()));
1754   if (!HasNotOp && !match(Cmp1, m_c_ICmp(Pred1, m_Specific(X), m_Value())))
1755     return nullptr;
1756   if (ICmpInst::isEquality(Pred1))
1757     return nullptr;
1758 
1759   // The equality compare must be against a constant. Flip bits if we matched
1760   // a bitwise not. Convert a null pointer constant to an integer zero value.
1761   APInt MinMaxC;
1762   const APInt *C;
1763   if (match(Cmp0->getOperand(1), m_APInt(C)))
1764     MinMaxC = HasNotOp ? ~*C : *C;
1765   else if (isa<ConstantPointerNull>(Cmp0->getOperand(1)))
1766     MinMaxC = APInt::getNullValue(8);
1767   else
1768     return nullptr;
1769 
1770   // DeMorganize if this is 'or': P0 || P1 --> !P0 && !P1.
1771   if (!IsAnd) {
1772     Pred0 = ICmpInst::getInversePredicate(Pred0);
1773     Pred1 = ICmpInst::getInversePredicate(Pred1);
1774   }
1775 
1776   // Normalize to unsigned compare and unsigned min/max value.
1777   // Example for 8-bit: -128 + 128 -> 0; 127 + 128 -> 255
1778   if (ICmpInst::isSigned(Pred1)) {
1779     Pred1 = ICmpInst::getUnsignedPredicate(Pred1);
1780     MinMaxC += APInt::getSignedMinValue(MinMaxC.getBitWidth());
1781   }
1782 
1783   // (X != MAX) && (X < Y) --> X < Y
1784   // (X == MAX) || (X >= Y) --> X >= Y
1785   if (MinMaxC.isMaxValue())
1786     if (Pred0 == ICmpInst::ICMP_NE && Pred1 == ICmpInst::ICMP_ULT)
1787       return Cmp1;
1788 
1789   // (X != MIN) && (X > Y) -->  X > Y
1790   // (X == MIN) || (X <= Y) --> X <= Y
1791   if (MinMaxC.isMinValue())
1792     if (Pred0 == ICmpInst::ICMP_NE && Pred1 == ICmpInst::ICMP_UGT)
1793       return Cmp1;
1794 
1795   return nullptr;
1796 }
1797 
1798 static Value *simplifyAndOfICmps(ICmpInst *Op0, ICmpInst *Op1,
1799                                  const SimplifyQuery &Q) {
1800   if (Value *X = simplifyUnsignedRangeCheck(Op0, Op1, /*IsAnd=*/true, Q))
1801     return X;
1802   if (Value *X = simplifyUnsignedRangeCheck(Op1, Op0, /*IsAnd=*/true, Q))
1803     return X;
1804 
1805   if (Value *X = simplifyAndOfICmpsWithSameOperands(Op0, Op1))
1806     return X;
1807   if (Value *X = simplifyAndOfICmpsWithSameOperands(Op1, Op0))
1808     return X;
1809 
1810   if (Value *X = simplifyAndOrOfICmpsWithConstants(Op0, Op1, true))
1811     return X;
1812 
1813   if (Value *X = simplifyAndOrOfICmpsWithLimitConst(Op0, Op1, true))
1814     return X;
1815 
1816   if (Value *X = simplifyAndOrOfICmpsWithZero(Op0, Op1, true))
1817     return X;
1818 
1819   if (Value *X = simplifyAndOfICmpsWithAdd(Op0, Op1, Q.IIQ))
1820     return X;
1821   if (Value *X = simplifyAndOfICmpsWithAdd(Op1, Op0, Q.IIQ))
1822     return X;
1823 
1824   return nullptr;
1825 }
1826 
1827 static Value *simplifyOrOfICmpsWithAdd(ICmpInst *Op0, ICmpInst *Op1,
1828                                        const InstrInfoQuery &IIQ) {
1829   // (icmp (add V, C0), C1) | (icmp V, C0)
1830   ICmpInst::Predicate Pred0, Pred1;
1831   const APInt *C0, *C1;
1832   Value *V;
1833   if (!match(Op0, m_ICmp(Pred0, m_Add(m_Value(V), m_APInt(C0)), m_APInt(C1))))
1834     return nullptr;
1835 
1836   if (!match(Op1, m_ICmp(Pred1, m_Specific(V), m_Value())))
1837     return nullptr;
1838 
1839   auto *AddInst = cast<BinaryOperator>(Op0->getOperand(0));
1840   if (AddInst->getOperand(1) != Op1->getOperand(1))
1841     return nullptr;
1842 
1843   Type *ITy = Op0->getType();
1844   bool isNSW = IIQ.hasNoSignedWrap(AddInst);
1845   bool isNUW = IIQ.hasNoUnsignedWrap(AddInst);
1846 
1847   const APInt Delta = *C1 - *C0;
1848   if (C0->isStrictlyPositive()) {
1849     if (Delta == 2) {
1850       if (Pred0 == ICmpInst::ICMP_UGE && Pred1 == ICmpInst::ICMP_SLE)
1851         return getTrue(ITy);
1852       if (Pred0 == ICmpInst::ICMP_SGE && Pred1 == ICmpInst::ICMP_SLE && isNSW)
1853         return getTrue(ITy);
1854     }
1855     if (Delta == 1) {
1856       if (Pred0 == ICmpInst::ICMP_UGT && Pred1 == ICmpInst::ICMP_SLE)
1857         return getTrue(ITy);
1858       if (Pred0 == ICmpInst::ICMP_SGT && Pred1 == ICmpInst::ICMP_SLE && isNSW)
1859         return getTrue(ITy);
1860     }
1861   }
1862   if (C0->getBoolValue() && isNUW) {
1863     if (Delta == 2)
1864       if (Pred0 == ICmpInst::ICMP_UGE && Pred1 == ICmpInst::ICMP_ULE)
1865         return getTrue(ITy);
1866     if (Delta == 1)
1867       if (Pred0 == ICmpInst::ICMP_UGT && Pred1 == ICmpInst::ICMP_ULE)
1868         return getTrue(ITy);
1869   }
1870 
1871   return nullptr;
1872 }
1873 
1874 static Value *simplifyOrOfICmps(ICmpInst *Op0, ICmpInst *Op1,
1875                                 const SimplifyQuery &Q) {
1876   if (Value *X = simplifyUnsignedRangeCheck(Op0, Op1, /*IsAnd=*/false, Q))
1877     return X;
1878   if (Value *X = simplifyUnsignedRangeCheck(Op1, Op0, /*IsAnd=*/false, Q))
1879     return X;
1880 
1881   if (Value *X = simplifyOrOfICmpsWithSameOperands(Op0, Op1))
1882     return X;
1883   if (Value *X = simplifyOrOfICmpsWithSameOperands(Op1, Op0))
1884     return X;
1885 
1886   if (Value *X = simplifyAndOrOfICmpsWithConstants(Op0, Op1, false))
1887     return X;
1888 
1889   if (Value *X = simplifyAndOrOfICmpsWithLimitConst(Op0, Op1, false))
1890     return X;
1891 
1892   if (Value *X = simplifyAndOrOfICmpsWithZero(Op0, Op1, false))
1893     return X;
1894 
1895   if (Value *X = simplifyOrOfICmpsWithAdd(Op0, Op1, Q.IIQ))
1896     return X;
1897   if (Value *X = simplifyOrOfICmpsWithAdd(Op1, Op0, Q.IIQ))
1898     return X;
1899 
1900   return nullptr;
1901 }
1902 
1903 static Value *simplifyAndOrOfFCmps(const TargetLibraryInfo *TLI,
1904                                    FCmpInst *LHS, FCmpInst *RHS, bool IsAnd) {
1905   Value *LHS0 = LHS->getOperand(0), *LHS1 = LHS->getOperand(1);
1906   Value *RHS0 = RHS->getOperand(0), *RHS1 = RHS->getOperand(1);
1907   if (LHS0->getType() != RHS0->getType())
1908     return nullptr;
1909 
1910   FCmpInst::Predicate PredL = LHS->getPredicate(), PredR = RHS->getPredicate();
1911   if ((PredL == FCmpInst::FCMP_ORD && PredR == FCmpInst::FCMP_ORD && IsAnd) ||
1912       (PredL == FCmpInst::FCMP_UNO && PredR == FCmpInst::FCMP_UNO && !IsAnd)) {
1913     // (fcmp ord NNAN, X) & (fcmp ord X, Y) --> fcmp ord X, Y
1914     // (fcmp ord NNAN, X) & (fcmp ord Y, X) --> fcmp ord Y, X
1915     // (fcmp ord X, NNAN) & (fcmp ord X, Y) --> fcmp ord X, Y
1916     // (fcmp ord X, NNAN) & (fcmp ord Y, X) --> fcmp ord Y, X
1917     // (fcmp uno NNAN, X) | (fcmp uno X, Y) --> fcmp uno X, Y
1918     // (fcmp uno NNAN, X) | (fcmp uno Y, X) --> fcmp uno Y, X
1919     // (fcmp uno X, NNAN) | (fcmp uno X, Y) --> fcmp uno X, Y
1920     // (fcmp uno X, NNAN) | (fcmp uno Y, X) --> fcmp uno Y, X
1921     if ((isKnownNeverNaN(LHS0, TLI) && (LHS1 == RHS0 || LHS1 == RHS1)) ||
1922         (isKnownNeverNaN(LHS1, TLI) && (LHS0 == RHS0 || LHS0 == RHS1)))
1923       return RHS;
1924 
1925     // (fcmp ord X, Y) & (fcmp ord NNAN, X) --> fcmp ord X, Y
1926     // (fcmp ord Y, X) & (fcmp ord NNAN, X) --> fcmp ord Y, X
1927     // (fcmp ord X, Y) & (fcmp ord X, NNAN) --> fcmp ord X, Y
1928     // (fcmp ord Y, X) & (fcmp ord X, NNAN) --> fcmp ord Y, X
1929     // (fcmp uno X, Y) | (fcmp uno NNAN, X) --> fcmp uno X, Y
1930     // (fcmp uno Y, X) | (fcmp uno NNAN, X) --> fcmp uno Y, X
1931     // (fcmp uno X, Y) | (fcmp uno X, NNAN) --> fcmp uno X, Y
1932     // (fcmp uno Y, X) | (fcmp uno X, NNAN) --> fcmp uno Y, X
1933     if ((isKnownNeverNaN(RHS0, TLI) && (RHS1 == LHS0 || RHS1 == LHS1)) ||
1934         (isKnownNeverNaN(RHS1, TLI) && (RHS0 == LHS0 || RHS0 == LHS1)))
1935       return LHS;
1936   }
1937 
1938   return nullptr;
1939 }
1940 
1941 static Value *simplifyAndOrOfCmps(const SimplifyQuery &Q,
1942                                   Value *Op0, Value *Op1, bool IsAnd) {
1943   // Look through casts of the 'and' operands to find compares.
1944   auto *Cast0 = dyn_cast<CastInst>(Op0);
1945   auto *Cast1 = dyn_cast<CastInst>(Op1);
1946   if (Cast0 && Cast1 && Cast0->getOpcode() == Cast1->getOpcode() &&
1947       Cast0->getSrcTy() == Cast1->getSrcTy()) {
1948     Op0 = Cast0->getOperand(0);
1949     Op1 = Cast1->getOperand(0);
1950   }
1951 
1952   Value *V = nullptr;
1953   auto *ICmp0 = dyn_cast<ICmpInst>(Op0);
1954   auto *ICmp1 = dyn_cast<ICmpInst>(Op1);
1955   if (ICmp0 && ICmp1)
1956     V = IsAnd ? simplifyAndOfICmps(ICmp0, ICmp1, Q)
1957               : simplifyOrOfICmps(ICmp0, ICmp1, Q);
1958 
1959   auto *FCmp0 = dyn_cast<FCmpInst>(Op0);
1960   auto *FCmp1 = dyn_cast<FCmpInst>(Op1);
1961   if (FCmp0 && FCmp1)
1962     V = simplifyAndOrOfFCmps(Q.TLI, FCmp0, FCmp1, IsAnd);
1963 
1964   if (!V)
1965     return nullptr;
1966   if (!Cast0)
1967     return V;
1968 
1969   // If we looked through casts, we can only handle a constant simplification
1970   // because we are not allowed to create a cast instruction here.
1971   if (auto *C = dyn_cast<Constant>(V))
1972     return ConstantExpr::getCast(Cast0->getOpcode(), C, Cast0->getType());
1973 
1974   return nullptr;
1975 }
1976 
1977 /// Given a bitwise logic op, check if the operands are add/sub with a common
1978 /// source value and inverted constant (identity: C - X -> ~(X + ~C)).
1979 static Value *simplifyLogicOfAddSub(Value *Op0, Value *Op1,
1980                                     Instruction::BinaryOps Opcode) {
1981   assert(Op0->getType() == Op1->getType() && "Mismatched binop types");
1982   assert(BinaryOperator::isBitwiseLogicOp(Opcode) && "Expected logic op");
1983   Value *X;
1984   Constant *C1, *C2;
1985   if ((match(Op0, m_Add(m_Value(X), m_Constant(C1))) &&
1986        match(Op1, m_Sub(m_Constant(C2), m_Specific(X)))) ||
1987       (match(Op1, m_Add(m_Value(X), m_Constant(C1))) &&
1988        match(Op0, m_Sub(m_Constant(C2), m_Specific(X))))) {
1989     if (ConstantExpr::getNot(C1) == C2) {
1990       // (X + C) & (~C - X) --> (X + C) & ~(X + C) --> 0
1991       // (X + C) | (~C - X) --> (X + C) | ~(X + C) --> -1
1992       // (X + C) ^ (~C - X) --> (X + C) ^ ~(X + C) --> -1
1993       Type *Ty = Op0->getType();
1994       return Opcode == Instruction::And ? ConstantInt::getNullValue(Ty)
1995                                         : ConstantInt::getAllOnesValue(Ty);
1996     }
1997   }
1998   return nullptr;
1999 }
2000 
2001 /// Given operands for an And, see if we can fold the result.
2002 /// If not, this returns null.
2003 static Value *SimplifyAndInst(Value *Op0, Value *Op1, const SimplifyQuery &Q,
2004                               unsigned MaxRecurse) {
2005   if (Constant *C = foldOrCommuteConstant(Instruction::And, Op0, Op1, Q))
2006     return C;
2007 
2008   // X & poison -> poison
2009   if (isa<PoisonValue>(Op1))
2010     return Op1;
2011 
2012   // X & undef -> 0
2013   if (Q.isUndefValue(Op1))
2014     return Constant::getNullValue(Op0->getType());
2015 
2016   // X & X = X
2017   if (Op0 == Op1)
2018     return Op0;
2019 
2020   // X & 0 = 0
2021   if (match(Op1, m_Zero()))
2022     return Constant::getNullValue(Op0->getType());
2023 
2024   // X & -1 = X
2025   if (match(Op1, m_AllOnes()))
2026     return Op0;
2027 
2028   // A & ~A  =  ~A & A  =  0
2029   if (match(Op0, m_Not(m_Specific(Op1))) ||
2030       match(Op1, m_Not(m_Specific(Op0))))
2031     return Constant::getNullValue(Op0->getType());
2032 
2033   // (A | ?) & A = A
2034   if (match(Op0, m_c_Or(m_Specific(Op1), m_Value())))
2035     return Op1;
2036 
2037   // A & (A | ?) = A
2038   if (match(Op1, m_c_Or(m_Specific(Op0), m_Value())))
2039     return Op0;
2040 
2041   if (Value *V = simplifyLogicOfAddSub(Op0, Op1, Instruction::And))
2042     return V;
2043 
2044   // A mask that only clears known zeros of a shifted value is a no-op.
2045   Value *X;
2046   const APInt *Mask;
2047   const APInt *ShAmt;
2048   if (match(Op1, m_APInt(Mask))) {
2049     // If all bits in the inverted and shifted mask are clear:
2050     // and (shl X, ShAmt), Mask --> shl X, ShAmt
2051     if (match(Op0, m_Shl(m_Value(X), m_APInt(ShAmt))) &&
2052         (~(*Mask)).lshr(*ShAmt).isNullValue())
2053       return Op0;
2054 
2055     // If all bits in the inverted and shifted mask are clear:
2056     // and (lshr X, ShAmt), Mask --> lshr X, ShAmt
2057     if (match(Op0, m_LShr(m_Value(X), m_APInt(ShAmt))) &&
2058         (~(*Mask)).shl(*ShAmt).isNullValue())
2059       return Op0;
2060   }
2061 
2062   // If we have a multiplication overflow check that is being 'and'ed with a
2063   // check that one of the multipliers is not zero, we can omit the 'and', and
2064   // only keep the overflow check.
2065   if (isCheckForZeroAndMulWithOverflow(Op0, Op1, true))
2066     return Op1;
2067   if (isCheckForZeroAndMulWithOverflow(Op1, Op0, true))
2068     return Op0;
2069 
2070   // A & (-A) = A if A is a power of two or zero.
2071   if (match(Op0, m_Neg(m_Specific(Op1))) ||
2072       match(Op1, m_Neg(m_Specific(Op0)))) {
2073     if (isKnownToBeAPowerOfTwo(Op0, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI,
2074                                Q.DT))
2075       return Op0;
2076     if (isKnownToBeAPowerOfTwo(Op1, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI,
2077                                Q.DT))
2078       return Op1;
2079   }
2080 
2081   // This is a similar pattern used for checking if a value is a power-of-2:
2082   // (A - 1) & A --> 0 (if A is a power-of-2 or 0)
2083   // A & (A - 1) --> 0 (if A is a power-of-2 or 0)
2084   if (match(Op0, m_Add(m_Specific(Op1), m_AllOnes())) &&
2085       isKnownToBeAPowerOfTwo(Op1, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI, Q.DT))
2086     return Constant::getNullValue(Op1->getType());
2087   if (match(Op1, m_Add(m_Specific(Op0), m_AllOnes())) &&
2088       isKnownToBeAPowerOfTwo(Op0, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI, Q.DT))
2089     return Constant::getNullValue(Op0->getType());
2090 
2091   if (Value *V = simplifyAndOrOfCmps(Q, Op0, Op1, true))
2092     return V;
2093 
2094   // Try some generic simplifications for associative operations.
2095   if (Value *V = SimplifyAssociativeBinOp(Instruction::And, Op0, Op1, Q,
2096                                           MaxRecurse))
2097     return V;
2098 
2099   // And distributes over Or.  Try some generic simplifications based on this.
2100   if (Value *V = expandCommutativeBinOp(Instruction::And, Op0, Op1,
2101                                         Instruction::Or, Q, MaxRecurse))
2102     return V;
2103 
2104   // And distributes over Xor.  Try some generic simplifications based on this.
2105   if (Value *V = expandCommutativeBinOp(Instruction::And, Op0, Op1,
2106                                         Instruction::Xor, Q, MaxRecurse))
2107     return V;
2108 
2109   if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) {
2110     if (Op0->getType()->isIntOrIntVectorTy(1)) {
2111       // A & (A && B) -> A && B
2112       if (match(Op1, m_Select(m_Specific(Op0), m_Value(), m_Zero())))
2113         return Op1;
2114       else if (match(Op0, m_Select(m_Specific(Op1), m_Value(), m_Zero())))
2115         return Op0;
2116     }
2117     // If the operation is with the result of a select instruction, check
2118     // whether operating on either branch of the select always yields the same
2119     // value.
2120     if (Value *V = ThreadBinOpOverSelect(Instruction::And, Op0, Op1, Q,
2121                                          MaxRecurse))
2122       return V;
2123   }
2124 
2125   // If the operation is with the result of a phi instruction, check whether
2126   // operating on all incoming values of the phi always yields the same value.
2127   if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
2128     if (Value *V = ThreadBinOpOverPHI(Instruction::And, Op0, Op1, Q,
2129                                       MaxRecurse))
2130       return V;
2131 
2132   // Assuming the effective width of Y is not larger than A, i.e. all bits
2133   // from X and Y are disjoint in (X << A) | Y,
2134   // if the mask of this AND op covers all bits of X or Y, while it covers
2135   // no bits from the other, we can bypass this AND op. E.g.,
2136   // ((X << A) | Y) & Mask -> Y,
2137   //     if Mask = ((1 << effective_width_of(Y)) - 1)
2138   // ((X << A) | Y) & Mask -> X << A,
2139   //     if Mask = ((1 << effective_width_of(X)) - 1) << A
2140   // SimplifyDemandedBits in InstCombine can optimize the general case.
2141   // This pattern aims to help other passes for a common case.
2142   Value *Y, *XShifted;
2143   if (match(Op1, m_APInt(Mask)) &&
2144       match(Op0, m_c_Or(m_CombineAnd(m_NUWShl(m_Value(X), m_APInt(ShAmt)),
2145                                      m_Value(XShifted)),
2146                         m_Value(Y)))) {
2147     const unsigned Width = Op0->getType()->getScalarSizeInBits();
2148     const unsigned ShftCnt = ShAmt->getLimitedValue(Width);
2149     const KnownBits YKnown = computeKnownBits(Y, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
2150     const unsigned EffWidthY = Width - YKnown.countMinLeadingZeros();
2151     if (EffWidthY <= ShftCnt) {
2152       const KnownBits XKnown = computeKnownBits(X, Q.DL, 0, Q.AC, Q.CxtI,
2153                                                 Q.DT);
2154       const unsigned EffWidthX = Width - XKnown.countMinLeadingZeros();
2155       const APInt EffBitsY = APInt::getLowBitsSet(Width, EffWidthY);
2156       const APInt EffBitsX = APInt::getLowBitsSet(Width, EffWidthX) << ShftCnt;
2157       // If the mask is extracting all bits from X or Y as is, we can skip
2158       // this AND op.
2159       if (EffBitsY.isSubsetOf(*Mask) && !EffBitsX.intersects(*Mask))
2160         return Y;
2161       if (EffBitsX.isSubsetOf(*Mask) && !EffBitsY.intersects(*Mask))
2162         return XShifted;
2163     }
2164   }
2165 
2166   return nullptr;
2167 }
2168 
2169 Value *llvm::SimplifyAndInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) {
2170   return ::SimplifyAndInst(Op0, Op1, Q, RecursionLimit);
2171 }
2172 
2173 /// Given operands for an Or, see if we can fold the result.
2174 /// If not, this returns null.
2175 static Value *SimplifyOrInst(Value *Op0, Value *Op1, const SimplifyQuery &Q,
2176                              unsigned MaxRecurse) {
2177   if (Constant *C = foldOrCommuteConstant(Instruction::Or, Op0, Op1, Q))
2178     return C;
2179 
2180   // X | poison -> poison
2181   if (isa<PoisonValue>(Op1))
2182     return Op1;
2183 
2184   // X | undef -> -1
2185   // X | -1 = -1
2186   // Do not return Op1 because it may contain undef elements if it's a vector.
2187   if (Q.isUndefValue(Op1) || match(Op1, m_AllOnes()))
2188     return Constant::getAllOnesValue(Op0->getType());
2189 
2190   // X | X = X
2191   // X | 0 = X
2192   if (Op0 == Op1 || match(Op1, m_Zero()))
2193     return Op0;
2194 
2195   // A | ~A  =  ~A | A  =  -1
2196   if (match(Op0, m_Not(m_Specific(Op1))) ||
2197       match(Op1, m_Not(m_Specific(Op0))))
2198     return Constant::getAllOnesValue(Op0->getType());
2199 
2200   // (A & ?) | A = A
2201   if (match(Op0, m_c_And(m_Specific(Op1), m_Value())))
2202     return Op1;
2203 
2204   // A | (A & ?) = A
2205   if (match(Op1, m_c_And(m_Specific(Op0), m_Value())))
2206     return Op0;
2207 
2208   // ~(A & ?) | A = -1
2209   if (match(Op0, m_Not(m_c_And(m_Specific(Op1), m_Value()))))
2210     return Constant::getAllOnesValue(Op1->getType());
2211 
2212   // A | ~(A & ?) = -1
2213   if (match(Op1, m_Not(m_c_And(m_Specific(Op0), m_Value()))))
2214     return Constant::getAllOnesValue(Op0->getType());
2215 
2216   if (Value *V = simplifyLogicOfAddSub(Op0, Op1, Instruction::Or))
2217     return V;
2218 
2219   Value *A, *B, *NotA;
2220   // (A & ~B) | (A ^ B) -> (A ^ B)
2221   // (~B & A) | (A ^ B) -> (A ^ B)
2222   // (A & ~B) | (B ^ A) -> (B ^ A)
2223   // (~B & A) | (B ^ A) -> (B ^ A)
2224   if (match(Op1, m_Xor(m_Value(A), m_Value(B))) &&
2225       (match(Op0, m_c_And(m_Specific(A), m_Not(m_Specific(B)))) ||
2226        match(Op0, m_c_And(m_Not(m_Specific(A)), m_Specific(B)))))
2227     return Op1;
2228 
2229   // Commute the 'or' operands.
2230   // (A ^ B) | (A & ~B) -> (A ^ B)
2231   // (A ^ B) | (~B & A) -> (A ^ B)
2232   // (B ^ A) | (A & ~B) -> (B ^ A)
2233   // (B ^ A) | (~B & A) -> (B ^ A)
2234   if (match(Op0, m_Xor(m_Value(A), m_Value(B))) &&
2235       (match(Op1, m_c_And(m_Specific(A), m_Not(m_Specific(B)))) ||
2236        match(Op1, m_c_And(m_Not(m_Specific(A)), m_Specific(B)))))
2237     return Op0;
2238 
2239   // (A & B) | (~A ^ B) -> (~A ^ B)
2240   // (B & A) | (~A ^ B) -> (~A ^ B)
2241   // (A & B) | (B ^ ~A) -> (B ^ ~A)
2242   // (B & A) | (B ^ ~A) -> (B ^ ~A)
2243   if (match(Op0, m_And(m_Value(A), m_Value(B))) &&
2244       (match(Op1, m_c_Xor(m_Specific(A), m_Not(m_Specific(B)))) ||
2245        match(Op1, m_c_Xor(m_Not(m_Specific(A)), m_Specific(B)))))
2246     return Op1;
2247 
2248   // Commute the 'or' operands.
2249   // (~A ^ B) | (A & B) -> (~A ^ B)
2250   // (~A ^ B) | (B & A) -> (~A ^ B)
2251   // (B ^ ~A) | (A & B) -> (B ^ ~A)
2252   // (B ^ ~A) | (B & A) -> (B ^ ~A)
2253   if (match(Op1, m_And(m_Value(A), m_Value(B))) &&
2254       (match(Op0, m_c_Xor(m_Specific(A), m_Not(m_Specific(B)))) ||
2255        match(Op0, m_c_Xor(m_Not(m_Specific(A)), m_Specific(B)))))
2256     return Op0;
2257 
2258   // (~A & B) | ~(A | B) --> ~A
2259   // (~A & B) | ~(B | A) --> ~A
2260   // (B & ~A) | ~(A | B) --> ~A
2261   // (B & ~A) | ~(B | A) --> ~A
2262   if (match(Op0, m_c_And(m_CombineAnd(m_Value(NotA), m_Not(m_Value(A))),
2263                          m_Value(B))) &&
2264       match(Op1, m_Not(m_c_Or(m_Specific(A), m_Specific(B)))))
2265     return NotA;
2266 
2267   // Commute the 'or' operands.
2268   // ~(A | B) | (~A & B) --> ~A
2269   // ~(B | A) | (~A & B) --> ~A
2270   // ~(A | B) | (B & ~A) --> ~A
2271   // ~(B | A) | (B & ~A) --> ~A
2272   if (match(Op1, m_c_And(m_CombineAnd(m_Value(NotA), m_Not(m_Value(A))),
2273                          m_Value(B))) &&
2274       match(Op0, m_Not(m_c_Or(m_Specific(A), m_Specific(B)))))
2275     return NotA;
2276 
2277   if (Value *V = simplifyAndOrOfCmps(Q, Op0, Op1, false))
2278     return V;
2279 
2280   // If we have a multiplication overflow check that is being 'and'ed with a
2281   // check that one of the multipliers is not zero, we can omit the 'and', and
2282   // only keep the overflow check.
2283   if (isCheckForZeroAndMulWithOverflow(Op0, Op1, false))
2284     return Op1;
2285   if (isCheckForZeroAndMulWithOverflow(Op1, Op0, false))
2286     return Op0;
2287 
2288   // Try some generic simplifications for associative operations.
2289   if (Value *V = SimplifyAssociativeBinOp(Instruction::Or, Op0, Op1, Q,
2290                                           MaxRecurse))
2291     return V;
2292 
2293   // Or distributes over And.  Try some generic simplifications based on this.
2294   if (Value *V = expandCommutativeBinOp(Instruction::Or, Op0, Op1,
2295                                         Instruction::And, Q, MaxRecurse))
2296     return V;
2297 
2298   if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) {
2299     if (Op0->getType()->isIntOrIntVectorTy(1)) {
2300       // A | (A || B) -> A || B
2301       if (match(Op1, m_Select(m_Specific(Op0), m_One(), m_Value())))
2302         return Op1;
2303       else if (match(Op0, m_Select(m_Specific(Op1), m_One(), m_Value())))
2304         return Op0;
2305     }
2306     // If the operation is with the result of a select instruction, check
2307     // whether operating on either branch of the select always yields the same
2308     // value.
2309     if (Value *V = ThreadBinOpOverSelect(Instruction::Or, Op0, Op1, Q,
2310                                          MaxRecurse))
2311       return V;
2312   }
2313 
2314   // (A & C1)|(B & C2)
2315   const APInt *C1, *C2;
2316   if (match(Op0, m_And(m_Value(A), m_APInt(C1))) &&
2317       match(Op1, m_And(m_Value(B), m_APInt(C2)))) {
2318     if (*C1 == ~*C2) {
2319       // (A & C1)|(B & C2)
2320       // If we have: ((V + N) & C1) | (V & C2)
2321       // .. and C2 = ~C1 and C2 is 0+1+ and (N & C2) == 0
2322       // replace with V+N.
2323       Value *N;
2324       if (C2->isMask() && // C2 == 0+1+
2325           match(A, m_c_Add(m_Specific(B), m_Value(N)))) {
2326         // Add commutes, try both ways.
2327         if (MaskedValueIsZero(N, *C2, Q.DL, 0, Q.AC, Q.CxtI, Q.DT))
2328           return A;
2329       }
2330       // Or commutes, try both ways.
2331       if (C1->isMask() &&
2332           match(B, m_c_Add(m_Specific(A), m_Value(N)))) {
2333         // Add commutes, try both ways.
2334         if (MaskedValueIsZero(N, *C1, Q.DL, 0, Q.AC, Q.CxtI, Q.DT))
2335           return B;
2336       }
2337     }
2338   }
2339 
2340   // If the operation is with the result of a phi instruction, check whether
2341   // operating on all incoming values of the phi always yields the same value.
2342   if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
2343     if (Value *V = ThreadBinOpOverPHI(Instruction::Or, Op0, Op1, Q, MaxRecurse))
2344       return V;
2345 
2346   return nullptr;
2347 }
2348 
2349 Value *llvm::SimplifyOrInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) {
2350   return ::SimplifyOrInst(Op0, Op1, Q, RecursionLimit);
2351 }
2352 
2353 /// Given operands for a Xor, see if we can fold the result.
2354 /// If not, this returns null.
2355 static Value *SimplifyXorInst(Value *Op0, Value *Op1, const SimplifyQuery &Q,
2356                               unsigned MaxRecurse) {
2357   if (Constant *C = foldOrCommuteConstant(Instruction::Xor, Op0, Op1, Q))
2358     return C;
2359 
2360   // A ^ undef -> undef
2361   if (Q.isUndefValue(Op1))
2362     return Op1;
2363 
2364   // A ^ 0 = A
2365   if (match(Op1, m_Zero()))
2366     return Op0;
2367 
2368   // A ^ A = 0
2369   if (Op0 == Op1)
2370     return Constant::getNullValue(Op0->getType());
2371 
2372   // A ^ ~A  =  ~A ^ A  =  -1
2373   if (match(Op0, m_Not(m_Specific(Op1))) ||
2374       match(Op1, m_Not(m_Specific(Op0))))
2375     return Constant::getAllOnesValue(Op0->getType());
2376 
2377   if (Value *V = simplifyLogicOfAddSub(Op0, Op1, Instruction::Xor))
2378     return V;
2379 
2380   // Try some generic simplifications for associative operations.
2381   if (Value *V = SimplifyAssociativeBinOp(Instruction::Xor, Op0, Op1, Q,
2382                                           MaxRecurse))
2383     return V;
2384 
2385   // Threading Xor over selects and phi nodes is pointless, so don't bother.
2386   // Threading over the select in "A ^ select(cond, B, C)" means evaluating
2387   // "A^B" and "A^C" and seeing if they are equal; but they are equal if and
2388   // only if B and C are equal.  If B and C are equal then (since we assume
2389   // that operands have already been simplified) "select(cond, B, C)" should
2390   // have been simplified to the common value of B and C already.  Analysing
2391   // "A^B" and "A^C" thus gains nothing, but costs compile time.  Similarly
2392   // for threading over phi nodes.
2393 
2394   return nullptr;
2395 }
2396 
2397 Value *llvm::SimplifyXorInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) {
2398   return ::SimplifyXorInst(Op0, Op1, Q, RecursionLimit);
2399 }
2400 
2401 
2402 static Type *GetCompareTy(Value *Op) {
2403   return CmpInst::makeCmpResultType(Op->getType());
2404 }
2405 
2406 /// Rummage around inside V looking for something equivalent to the comparison
2407 /// "LHS Pred RHS". Return such a value if found, otherwise return null.
2408 /// Helper function for analyzing max/min idioms.
2409 static Value *ExtractEquivalentCondition(Value *V, CmpInst::Predicate Pred,
2410                                          Value *LHS, Value *RHS) {
2411   SelectInst *SI = dyn_cast<SelectInst>(V);
2412   if (!SI)
2413     return nullptr;
2414   CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition());
2415   if (!Cmp)
2416     return nullptr;
2417   Value *CmpLHS = Cmp->getOperand(0), *CmpRHS = Cmp->getOperand(1);
2418   if (Pred == Cmp->getPredicate() && LHS == CmpLHS && RHS == CmpRHS)
2419     return Cmp;
2420   if (Pred == CmpInst::getSwappedPredicate(Cmp->getPredicate()) &&
2421       LHS == CmpRHS && RHS == CmpLHS)
2422     return Cmp;
2423   return nullptr;
2424 }
2425 
2426 // A significant optimization not implemented here is assuming that alloca
2427 // addresses are not equal to incoming argument values. They don't *alias*,
2428 // as we say, but that doesn't mean they aren't equal, so we take a
2429 // conservative approach.
2430 //
2431 // This is inspired in part by C++11 5.10p1:
2432 //   "Two pointers of the same type compare equal if and only if they are both
2433 //    null, both point to the same function, or both represent the same
2434 //    address."
2435 //
2436 // This is pretty permissive.
2437 //
2438 // It's also partly due to C11 6.5.9p6:
2439 //   "Two pointers compare equal if and only if both are null pointers, both are
2440 //    pointers to the same object (including a pointer to an object and a
2441 //    subobject at its beginning) or function, both are pointers to one past the
2442 //    last element of the same array object, or one is a pointer to one past the
2443 //    end of one array object and the other is a pointer to the start of a
2444 //    different array object that happens to immediately follow the first array
2445 //    object in the address space.)
2446 //
2447 // C11's version is more restrictive, however there's no reason why an argument
2448 // couldn't be a one-past-the-end value for a stack object in the caller and be
2449 // equal to the beginning of a stack object in the callee.
2450 //
2451 // If the C and C++ standards are ever made sufficiently restrictive in this
2452 // area, it may be possible to update LLVM's semantics accordingly and reinstate
2453 // this optimization.
2454 static Constant *
2455 computePointerICmp(CmpInst::Predicate Pred, Value *LHS, Value *RHS,
2456                    const SimplifyQuery &Q) {
2457   const DataLayout &DL = Q.DL;
2458   const TargetLibraryInfo *TLI = Q.TLI;
2459   const DominatorTree *DT = Q.DT;
2460   const Instruction *CxtI = Q.CxtI;
2461   const InstrInfoQuery &IIQ = Q.IIQ;
2462 
2463   // First, skip past any trivial no-ops.
2464   LHS = LHS->stripPointerCasts();
2465   RHS = RHS->stripPointerCasts();
2466 
2467   // A non-null pointer is not equal to a null pointer.
2468   if (isa<ConstantPointerNull>(RHS) && ICmpInst::isEquality(Pred) &&
2469       llvm::isKnownNonZero(LHS, DL, 0, nullptr, nullptr, nullptr,
2470                            IIQ.UseInstrInfo))
2471     return ConstantInt::get(GetCompareTy(LHS),
2472                             !CmpInst::isTrueWhenEqual(Pred));
2473 
2474   // We can only fold certain predicates on pointer comparisons.
2475   switch (Pred) {
2476   default:
2477     return nullptr;
2478 
2479     // Equality comaprisons are easy to fold.
2480   case CmpInst::ICMP_EQ:
2481   case CmpInst::ICMP_NE:
2482     break;
2483 
2484     // We can only handle unsigned relational comparisons because 'inbounds' on
2485     // a GEP only protects against unsigned wrapping.
2486   case CmpInst::ICMP_UGT:
2487   case CmpInst::ICMP_UGE:
2488   case CmpInst::ICMP_ULT:
2489   case CmpInst::ICMP_ULE:
2490     // However, we have to switch them to their signed variants to handle
2491     // negative indices from the base pointer.
2492     Pred = ICmpInst::getSignedPredicate(Pred);
2493     break;
2494   }
2495 
2496   // Strip off any constant offsets so that we can reason about them.
2497   // It's tempting to use getUnderlyingObject or even just stripInBoundsOffsets
2498   // here and compare base addresses like AliasAnalysis does, however there are
2499   // numerous hazards. AliasAnalysis and its utilities rely on special rules
2500   // governing loads and stores which don't apply to icmps. Also, AliasAnalysis
2501   // doesn't need to guarantee pointer inequality when it says NoAlias.
2502   Constant *LHSOffset = stripAndComputeConstantOffsets(DL, LHS);
2503   Constant *RHSOffset = stripAndComputeConstantOffsets(DL, RHS);
2504 
2505   // If LHS and RHS are related via constant offsets to the same base
2506   // value, we can replace it with an icmp which just compares the offsets.
2507   if (LHS == RHS)
2508     return ConstantExpr::getICmp(Pred, LHSOffset, RHSOffset);
2509 
2510   // Various optimizations for (in)equality comparisons.
2511   if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE) {
2512     // Different non-empty allocations that exist at the same time have
2513     // different addresses (if the program can tell). Global variables always
2514     // exist, so they always exist during the lifetime of each other and all
2515     // allocas. Two different allocas usually have different addresses...
2516     //
2517     // However, if there's an @llvm.stackrestore dynamically in between two
2518     // allocas, they may have the same address. It's tempting to reduce the
2519     // scope of the problem by only looking at *static* allocas here. That would
2520     // cover the majority of allocas while significantly reducing the likelihood
2521     // of having an @llvm.stackrestore pop up in the middle. However, it's not
2522     // actually impossible for an @llvm.stackrestore to pop up in the middle of
2523     // an entry block. Also, if we have a block that's not attached to a
2524     // function, we can't tell if it's "static" under the current definition.
2525     // Theoretically, this problem could be fixed by creating a new kind of
2526     // instruction kind specifically for static allocas. Such a new instruction
2527     // could be required to be at the top of the entry block, thus preventing it
2528     // from being subject to a @llvm.stackrestore. Instcombine could even
2529     // convert regular allocas into these special allocas. It'd be nifty.
2530     // However, until then, this problem remains open.
2531     //
2532     // So, we'll assume that two non-empty allocas have different addresses
2533     // for now.
2534     //
2535     // With all that, if the offsets are within the bounds of their allocations
2536     // (and not one-past-the-end! so we can't use inbounds!), and their
2537     // allocations aren't the same, the pointers are not equal.
2538     //
2539     // Note that it's not necessary to check for LHS being a global variable
2540     // address, due to canonicalization and constant folding.
2541     if (isa<AllocaInst>(LHS) &&
2542         (isa<AllocaInst>(RHS) || isa<GlobalVariable>(RHS))) {
2543       ConstantInt *LHSOffsetCI = dyn_cast<ConstantInt>(LHSOffset);
2544       ConstantInt *RHSOffsetCI = dyn_cast<ConstantInt>(RHSOffset);
2545       uint64_t LHSSize, RHSSize;
2546       ObjectSizeOpts Opts;
2547       Opts.NullIsUnknownSize =
2548           NullPointerIsDefined(cast<AllocaInst>(LHS)->getFunction());
2549       if (LHSOffsetCI && RHSOffsetCI &&
2550           getObjectSize(LHS, LHSSize, DL, TLI, Opts) &&
2551           getObjectSize(RHS, RHSSize, DL, TLI, Opts)) {
2552         const APInt &LHSOffsetValue = LHSOffsetCI->getValue();
2553         const APInt &RHSOffsetValue = RHSOffsetCI->getValue();
2554         if (!LHSOffsetValue.isNegative() &&
2555             !RHSOffsetValue.isNegative() &&
2556             LHSOffsetValue.ult(LHSSize) &&
2557             RHSOffsetValue.ult(RHSSize)) {
2558           return ConstantInt::get(GetCompareTy(LHS),
2559                                   !CmpInst::isTrueWhenEqual(Pred));
2560         }
2561       }
2562 
2563       // Repeat the above check but this time without depending on DataLayout
2564       // or being able to compute a precise size.
2565       if (!cast<PointerType>(LHS->getType())->isEmptyTy() &&
2566           !cast<PointerType>(RHS->getType())->isEmptyTy() &&
2567           LHSOffset->isNullValue() &&
2568           RHSOffset->isNullValue())
2569         return ConstantInt::get(GetCompareTy(LHS),
2570                                 !CmpInst::isTrueWhenEqual(Pred));
2571     }
2572 
2573     // Even if an non-inbounds GEP occurs along the path we can still optimize
2574     // equality comparisons concerning the result. We avoid walking the whole
2575     // chain again by starting where the last calls to
2576     // stripAndComputeConstantOffsets left off and accumulate the offsets.
2577     Constant *LHSNoBound = stripAndComputeConstantOffsets(DL, LHS, true);
2578     Constant *RHSNoBound = stripAndComputeConstantOffsets(DL, RHS, true);
2579     if (LHS == RHS)
2580       return ConstantExpr::getICmp(Pred,
2581                                    ConstantExpr::getAdd(LHSOffset, LHSNoBound),
2582                                    ConstantExpr::getAdd(RHSOffset, RHSNoBound));
2583 
2584     // If one side of the equality comparison must come from a noalias call
2585     // (meaning a system memory allocation function), and the other side must
2586     // come from a pointer that cannot overlap with dynamically-allocated
2587     // memory within the lifetime of the current function (allocas, byval
2588     // arguments, globals), then determine the comparison result here.
2589     SmallVector<const Value *, 8> LHSUObjs, RHSUObjs;
2590     getUnderlyingObjects(LHS, LHSUObjs);
2591     getUnderlyingObjects(RHS, RHSUObjs);
2592 
2593     // Is the set of underlying objects all noalias calls?
2594     auto IsNAC = [](ArrayRef<const Value *> Objects) {
2595       return all_of(Objects, isNoAliasCall);
2596     };
2597 
2598     // Is the set of underlying objects all things which must be disjoint from
2599     // noalias calls. For allocas, we consider only static ones (dynamic
2600     // allocas might be transformed into calls to malloc not simultaneously
2601     // live with the compared-to allocation). For globals, we exclude symbols
2602     // that might be resolve lazily to symbols in another dynamically-loaded
2603     // library (and, thus, could be malloc'ed by the implementation).
2604     auto IsAllocDisjoint = [](ArrayRef<const Value *> Objects) {
2605       return all_of(Objects, [](const Value *V) {
2606         if (const AllocaInst *AI = dyn_cast<AllocaInst>(V))
2607           return AI->getParent() && AI->getFunction() && AI->isStaticAlloca();
2608         if (const GlobalValue *GV = dyn_cast<GlobalValue>(V))
2609           return (GV->hasLocalLinkage() || GV->hasHiddenVisibility() ||
2610                   GV->hasProtectedVisibility() || GV->hasGlobalUnnamedAddr()) &&
2611                  !GV->isThreadLocal();
2612         if (const Argument *A = dyn_cast<Argument>(V))
2613           return A->hasByValAttr();
2614         return false;
2615       });
2616     };
2617 
2618     if ((IsNAC(LHSUObjs) && IsAllocDisjoint(RHSUObjs)) ||
2619         (IsNAC(RHSUObjs) && IsAllocDisjoint(LHSUObjs)))
2620         return ConstantInt::get(GetCompareTy(LHS),
2621                                 !CmpInst::isTrueWhenEqual(Pred));
2622 
2623     // Fold comparisons for non-escaping pointer even if the allocation call
2624     // cannot be elided. We cannot fold malloc comparison to null. Also, the
2625     // dynamic allocation call could be either of the operands.
2626     Value *MI = nullptr;
2627     if (isAllocLikeFn(LHS, TLI) &&
2628         llvm::isKnownNonZero(RHS, DL, 0, nullptr, CxtI, DT))
2629       MI = LHS;
2630     else if (isAllocLikeFn(RHS, TLI) &&
2631              llvm::isKnownNonZero(LHS, DL, 0, nullptr, CxtI, DT))
2632       MI = RHS;
2633     // FIXME: We should also fold the compare when the pointer escapes, but the
2634     // compare dominates the pointer escape
2635     if (MI && !PointerMayBeCaptured(MI, true, true))
2636       return ConstantInt::get(GetCompareTy(LHS),
2637                               CmpInst::isFalseWhenEqual(Pred));
2638   }
2639 
2640   // Otherwise, fail.
2641   return nullptr;
2642 }
2643 
2644 /// Fold an icmp when its operands have i1 scalar type.
2645 static Value *simplifyICmpOfBools(CmpInst::Predicate Pred, Value *LHS,
2646                                   Value *RHS, const SimplifyQuery &Q) {
2647   Type *ITy = GetCompareTy(LHS); // The return type.
2648   Type *OpTy = LHS->getType();   // The operand type.
2649   if (!OpTy->isIntOrIntVectorTy(1))
2650     return nullptr;
2651 
2652   // A boolean compared to true/false can be simplified in 14 out of the 20
2653   // (10 predicates * 2 constants) possible combinations. Cases not handled here
2654   // require a 'not' of the LHS, so those must be transformed in InstCombine.
2655   if (match(RHS, m_Zero())) {
2656     switch (Pred) {
2657     case CmpInst::ICMP_NE:  // X !=  0 -> X
2658     case CmpInst::ICMP_UGT: // X >u  0 -> X
2659     case CmpInst::ICMP_SLT: // X <s  0 -> X
2660       return LHS;
2661 
2662     case CmpInst::ICMP_ULT: // X <u  0 -> false
2663     case CmpInst::ICMP_SGT: // X >s  0 -> false
2664       return getFalse(ITy);
2665 
2666     case CmpInst::ICMP_UGE: // X >=u 0 -> true
2667     case CmpInst::ICMP_SLE: // X <=s 0 -> true
2668       return getTrue(ITy);
2669 
2670     default: break;
2671     }
2672   } else if (match(RHS, m_One())) {
2673     switch (Pred) {
2674     case CmpInst::ICMP_EQ:  // X ==   1 -> X
2675     case CmpInst::ICMP_UGE: // X >=u  1 -> X
2676     case CmpInst::ICMP_SLE: // X <=s -1 -> X
2677       return LHS;
2678 
2679     case CmpInst::ICMP_UGT: // X >u   1 -> false
2680     case CmpInst::ICMP_SLT: // X <s  -1 -> false
2681       return getFalse(ITy);
2682 
2683     case CmpInst::ICMP_ULE: // X <=u  1 -> true
2684     case CmpInst::ICMP_SGE: // X >=s -1 -> true
2685       return getTrue(ITy);
2686 
2687     default: break;
2688     }
2689   }
2690 
2691   switch (Pred) {
2692   default:
2693     break;
2694   case ICmpInst::ICMP_UGE:
2695     if (isImpliedCondition(RHS, LHS, Q.DL).getValueOr(false))
2696       return getTrue(ITy);
2697     break;
2698   case ICmpInst::ICMP_SGE:
2699     /// For signed comparison, the values for an i1 are 0 and -1
2700     /// respectively. This maps into a truth table of:
2701     /// LHS | RHS | LHS >=s RHS   | LHS implies RHS
2702     ///  0  |  0  |  1 (0 >= 0)   |  1
2703     ///  0  |  1  |  1 (0 >= -1)  |  1
2704     ///  1  |  0  |  0 (-1 >= 0)  |  0
2705     ///  1  |  1  |  1 (-1 >= -1) |  1
2706     if (isImpliedCondition(LHS, RHS, Q.DL).getValueOr(false))
2707       return getTrue(ITy);
2708     break;
2709   case ICmpInst::ICMP_ULE:
2710     if (isImpliedCondition(LHS, RHS, Q.DL).getValueOr(false))
2711       return getTrue(ITy);
2712     break;
2713   }
2714 
2715   return nullptr;
2716 }
2717 
2718 /// Try hard to fold icmp with zero RHS because this is a common case.
2719 static Value *simplifyICmpWithZero(CmpInst::Predicate Pred, Value *LHS,
2720                                    Value *RHS, const SimplifyQuery &Q) {
2721   if (!match(RHS, m_Zero()))
2722     return nullptr;
2723 
2724   Type *ITy = GetCompareTy(LHS); // The return type.
2725   switch (Pred) {
2726   default:
2727     llvm_unreachable("Unknown ICmp predicate!");
2728   case ICmpInst::ICMP_ULT:
2729     return getFalse(ITy);
2730   case ICmpInst::ICMP_UGE:
2731     return getTrue(ITy);
2732   case ICmpInst::ICMP_EQ:
2733   case ICmpInst::ICMP_ULE:
2734     if (isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT, Q.IIQ.UseInstrInfo))
2735       return getFalse(ITy);
2736     break;
2737   case ICmpInst::ICMP_NE:
2738   case ICmpInst::ICMP_UGT:
2739     if (isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT, Q.IIQ.UseInstrInfo))
2740       return getTrue(ITy);
2741     break;
2742   case ICmpInst::ICMP_SLT: {
2743     KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
2744     if (LHSKnown.isNegative())
2745       return getTrue(ITy);
2746     if (LHSKnown.isNonNegative())
2747       return getFalse(ITy);
2748     break;
2749   }
2750   case ICmpInst::ICMP_SLE: {
2751     KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
2752     if (LHSKnown.isNegative())
2753       return getTrue(ITy);
2754     if (LHSKnown.isNonNegative() &&
2755         isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT))
2756       return getFalse(ITy);
2757     break;
2758   }
2759   case ICmpInst::ICMP_SGE: {
2760     KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
2761     if (LHSKnown.isNegative())
2762       return getFalse(ITy);
2763     if (LHSKnown.isNonNegative())
2764       return getTrue(ITy);
2765     break;
2766   }
2767   case ICmpInst::ICMP_SGT: {
2768     KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
2769     if (LHSKnown.isNegative())
2770       return getFalse(ITy);
2771     if (LHSKnown.isNonNegative() &&
2772         isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT))
2773       return getTrue(ITy);
2774     break;
2775   }
2776   }
2777 
2778   return nullptr;
2779 }
2780 
2781 static Value *simplifyICmpWithConstant(CmpInst::Predicate Pred, Value *LHS,
2782                                        Value *RHS, const InstrInfoQuery &IIQ) {
2783   Type *ITy = GetCompareTy(RHS); // The return type.
2784 
2785   Value *X;
2786   // Sign-bit checks can be optimized to true/false after unsigned
2787   // floating-point casts:
2788   // icmp slt (bitcast (uitofp X)),  0 --> false
2789   // icmp sgt (bitcast (uitofp X)), -1 --> true
2790   if (match(LHS, m_BitCast(m_UIToFP(m_Value(X))))) {
2791     if (Pred == ICmpInst::ICMP_SLT && match(RHS, m_Zero()))
2792       return ConstantInt::getFalse(ITy);
2793     if (Pred == ICmpInst::ICMP_SGT && match(RHS, m_AllOnes()))
2794       return ConstantInt::getTrue(ITy);
2795   }
2796 
2797   const APInt *C;
2798   if (!match(RHS, m_APIntAllowUndef(C)))
2799     return nullptr;
2800 
2801   // Rule out tautological comparisons (eg., ult 0 or uge 0).
2802   ConstantRange RHS_CR = ConstantRange::makeExactICmpRegion(Pred, *C);
2803   if (RHS_CR.isEmptySet())
2804     return ConstantInt::getFalse(ITy);
2805   if (RHS_CR.isFullSet())
2806     return ConstantInt::getTrue(ITy);
2807 
2808   ConstantRange LHS_CR = computeConstantRange(LHS, IIQ.UseInstrInfo);
2809   if (!LHS_CR.isFullSet()) {
2810     if (RHS_CR.contains(LHS_CR))
2811       return ConstantInt::getTrue(ITy);
2812     if (RHS_CR.inverse().contains(LHS_CR))
2813       return ConstantInt::getFalse(ITy);
2814   }
2815 
2816   // (mul nuw/nsw X, MulC) != C --> true  (if C is not a multiple of MulC)
2817   // (mul nuw/nsw X, MulC) == C --> false (if C is not a multiple of MulC)
2818   const APInt *MulC;
2819   if (ICmpInst::isEquality(Pred) &&
2820       ((match(LHS, m_NUWMul(m_Value(), m_APIntAllowUndef(MulC))) &&
2821         *MulC != 0 && C->urem(*MulC) != 0) ||
2822        (match(LHS, m_NSWMul(m_Value(), m_APIntAllowUndef(MulC))) &&
2823         *MulC != 0 && C->srem(*MulC) != 0)))
2824     return ConstantInt::get(ITy, Pred == ICmpInst::ICMP_NE);
2825 
2826   return nullptr;
2827 }
2828 
2829 static Value *simplifyICmpWithBinOpOnLHS(
2830     CmpInst::Predicate Pred, BinaryOperator *LBO, Value *RHS,
2831     const SimplifyQuery &Q, unsigned MaxRecurse) {
2832   Type *ITy = GetCompareTy(RHS); // The return type.
2833 
2834   Value *Y = nullptr;
2835   // icmp pred (or X, Y), X
2836   if (match(LBO, m_c_Or(m_Value(Y), m_Specific(RHS)))) {
2837     if (Pred == ICmpInst::ICMP_ULT)
2838       return getFalse(ITy);
2839     if (Pred == ICmpInst::ICMP_UGE)
2840       return getTrue(ITy);
2841 
2842     if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SGE) {
2843       KnownBits RHSKnown = computeKnownBits(RHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
2844       KnownBits YKnown = computeKnownBits(Y, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
2845       if (RHSKnown.isNonNegative() && YKnown.isNegative())
2846         return Pred == ICmpInst::ICMP_SLT ? getTrue(ITy) : getFalse(ITy);
2847       if (RHSKnown.isNegative() || YKnown.isNonNegative())
2848         return Pred == ICmpInst::ICMP_SLT ? getFalse(ITy) : getTrue(ITy);
2849     }
2850   }
2851 
2852   // icmp pred (and X, Y), X
2853   if (match(LBO, m_c_And(m_Value(), m_Specific(RHS)))) {
2854     if (Pred == ICmpInst::ICMP_UGT)
2855       return getFalse(ITy);
2856     if (Pred == ICmpInst::ICMP_ULE)
2857       return getTrue(ITy);
2858   }
2859 
2860   // icmp pred (urem X, Y), Y
2861   if (match(LBO, m_URem(m_Value(), m_Specific(RHS)))) {
2862     switch (Pred) {
2863     default:
2864       break;
2865     case ICmpInst::ICMP_SGT:
2866     case ICmpInst::ICMP_SGE: {
2867       KnownBits Known = computeKnownBits(RHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
2868       if (!Known.isNonNegative())
2869         break;
2870       LLVM_FALLTHROUGH;
2871     }
2872     case ICmpInst::ICMP_EQ:
2873     case ICmpInst::ICMP_UGT:
2874     case ICmpInst::ICMP_UGE:
2875       return getFalse(ITy);
2876     case ICmpInst::ICMP_SLT:
2877     case ICmpInst::ICMP_SLE: {
2878       KnownBits Known = computeKnownBits(RHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
2879       if (!Known.isNonNegative())
2880         break;
2881       LLVM_FALLTHROUGH;
2882     }
2883     case ICmpInst::ICMP_NE:
2884     case ICmpInst::ICMP_ULT:
2885     case ICmpInst::ICMP_ULE:
2886       return getTrue(ITy);
2887     }
2888   }
2889 
2890   // icmp pred (urem X, Y), X
2891   if (match(LBO, m_URem(m_Specific(RHS), m_Value()))) {
2892     if (Pred == ICmpInst::ICMP_ULE)
2893       return getTrue(ITy);
2894     if (Pred == ICmpInst::ICMP_UGT)
2895       return getFalse(ITy);
2896   }
2897 
2898   // x >> y <=u x
2899   // x udiv y <=u x.
2900   if (match(LBO, m_LShr(m_Specific(RHS), m_Value())) ||
2901       match(LBO, m_UDiv(m_Specific(RHS), m_Value()))) {
2902     // icmp pred (X op Y), X
2903     if (Pred == ICmpInst::ICMP_UGT)
2904       return getFalse(ITy);
2905     if (Pred == ICmpInst::ICMP_ULE)
2906       return getTrue(ITy);
2907   }
2908 
2909   // (x*C1)/C2 <= x for C1 <= C2.
2910   // This holds even if the multiplication overflows: Assume that x != 0 and
2911   // arithmetic is modulo M. For overflow to occur we must have C1 >= M/x and
2912   // thus C2 >= M/x. It follows that (x*C1)/C2 <= (M-1)/C2 <= ((M-1)*x)/M < x.
2913   //
2914   // Additionally, either the multiplication and division might be represented
2915   // as shifts:
2916   // (x*C1)>>C2 <= x for C1 < 2**C2.
2917   // (x<<C1)/C2 <= x for 2**C1 < C2.
2918   const APInt *C1, *C2;
2919   if ((match(LBO, m_UDiv(m_Mul(m_Specific(RHS), m_APInt(C1)), m_APInt(C2))) &&
2920        C1->ule(*C2)) ||
2921       (match(LBO, m_LShr(m_Mul(m_Specific(RHS), m_APInt(C1)), m_APInt(C2))) &&
2922        C1->ule(APInt(C2->getBitWidth(), 1) << *C2)) ||
2923       (match(LBO, m_UDiv(m_Shl(m_Specific(RHS), m_APInt(C1)), m_APInt(C2))) &&
2924        (APInt(C1->getBitWidth(), 1) << *C1).ule(*C2))) {
2925     if (Pred == ICmpInst::ICMP_UGT)
2926       return getFalse(ITy);
2927     if (Pred == ICmpInst::ICMP_ULE)
2928       return getTrue(ITy);
2929   }
2930 
2931   return nullptr;
2932 }
2933 
2934 
2935 // If only one of the icmp's operands has NSW flags, try to prove that:
2936 //
2937 //   icmp slt (x + C1), (x +nsw C2)
2938 //
2939 // is equivalent to:
2940 //
2941 //   icmp slt C1, C2
2942 //
2943 // which is true if x + C2 has the NSW flags set and:
2944 // *) C1 < C2 && C1 >= 0, or
2945 // *) C2 < C1 && C1 <= 0.
2946 //
2947 static bool trySimplifyICmpWithAdds(CmpInst::Predicate Pred, Value *LHS,
2948                                     Value *RHS) {
2949   // TODO: only support icmp slt for now.
2950   if (Pred != CmpInst::ICMP_SLT)
2951     return false;
2952 
2953   // Canonicalize nsw add as RHS.
2954   if (!match(RHS, m_NSWAdd(m_Value(), m_Value())))
2955     std::swap(LHS, RHS);
2956   if (!match(RHS, m_NSWAdd(m_Value(), m_Value())))
2957     return false;
2958 
2959   Value *X;
2960   const APInt *C1, *C2;
2961   if (!match(LHS, m_c_Add(m_Value(X), m_APInt(C1))) ||
2962       !match(RHS, m_c_Add(m_Specific(X), m_APInt(C2))))
2963     return false;
2964 
2965   return (C1->slt(*C2) && C1->isNonNegative()) ||
2966          (C2->slt(*C1) && C1->isNonPositive());
2967 }
2968 
2969 
2970 /// TODO: A large part of this logic is duplicated in InstCombine's
2971 /// foldICmpBinOp(). We should be able to share that and avoid the code
2972 /// duplication.
2973 static Value *simplifyICmpWithBinOp(CmpInst::Predicate Pred, Value *LHS,
2974                                     Value *RHS, const SimplifyQuery &Q,
2975                                     unsigned MaxRecurse) {
2976   BinaryOperator *LBO = dyn_cast<BinaryOperator>(LHS);
2977   BinaryOperator *RBO = dyn_cast<BinaryOperator>(RHS);
2978   if (MaxRecurse && (LBO || RBO)) {
2979     // Analyze the case when either LHS or RHS is an add instruction.
2980     Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr;
2981     // LHS = A + B (or A and B are null); RHS = C + D (or C and D are null).
2982     bool NoLHSWrapProblem = false, NoRHSWrapProblem = false;
2983     if (LBO && LBO->getOpcode() == Instruction::Add) {
2984       A = LBO->getOperand(0);
2985       B = LBO->getOperand(1);
2986       NoLHSWrapProblem =
2987           ICmpInst::isEquality(Pred) ||
2988           (CmpInst::isUnsigned(Pred) &&
2989            Q.IIQ.hasNoUnsignedWrap(cast<OverflowingBinaryOperator>(LBO))) ||
2990           (CmpInst::isSigned(Pred) &&
2991            Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(LBO)));
2992     }
2993     if (RBO && RBO->getOpcode() == Instruction::Add) {
2994       C = RBO->getOperand(0);
2995       D = RBO->getOperand(1);
2996       NoRHSWrapProblem =
2997           ICmpInst::isEquality(Pred) ||
2998           (CmpInst::isUnsigned(Pred) &&
2999            Q.IIQ.hasNoUnsignedWrap(cast<OverflowingBinaryOperator>(RBO))) ||
3000           (CmpInst::isSigned(Pred) &&
3001            Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(RBO)));
3002     }
3003 
3004     // icmp (X+Y), X -> icmp Y, 0 for equalities or if there is no overflow.
3005     if ((A == RHS || B == RHS) && NoLHSWrapProblem)
3006       if (Value *V = SimplifyICmpInst(Pred, A == RHS ? B : A,
3007                                       Constant::getNullValue(RHS->getType()), Q,
3008                                       MaxRecurse - 1))
3009         return V;
3010 
3011     // icmp X, (X+Y) -> icmp 0, Y for equalities or if there is no overflow.
3012     if ((C == LHS || D == LHS) && NoRHSWrapProblem)
3013       if (Value *V =
3014               SimplifyICmpInst(Pred, Constant::getNullValue(LHS->getType()),
3015                                C == LHS ? D : C, Q, MaxRecurse - 1))
3016         return V;
3017 
3018     // icmp (X+Y), (X+Z) -> icmp Y,Z for equalities or if there is no overflow.
3019     bool CanSimplify = (NoLHSWrapProblem && NoRHSWrapProblem) ||
3020                        trySimplifyICmpWithAdds(Pred, LHS, RHS);
3021     if (A && C && (A == C || A == D || B == C || B == D) && CanSimplify) {
3022       // Determine Y and Z in the form icmp (X+Y), (X+Z).
3023       Value *Y, *Z;
3024       if (A == C) {
3025         // C + B == C + D  ->  B == D
3026         Y = B;
3027         Z = D;
3028       } else if (A == D) {
3029         // D + B == C + D  ->  B == C
3030         Y = B;
3031         Z = C;
3032       } else if (B == C) {
3033         // A + C == C + D  ->  A == D
3034         Y = A;
3035         Z = D;
3036       } else {
3037         assert(B == D);
3038         // A + D == C + D  ->  A == C
3039         Y = A;
3040         Z = C;
3041       }
3042       if (Value *V = SimplifyICmpInst(Pred, Y, Z, Q, MaxRecurse - 1))
3043         return V;
3044     }
3045   }
3046 
3047   if (LBO)
3048     if (Value *V = simplifyICmpWithBinOpOnLHS(Pred, LBO, RHS, Q, MaxRecurse))
3049       return V;
3050 
3051   if (RBO)
3052     if (Value *V = simplifyICmpWithBinOpOnLHS(
3053             ICmpInst::getSwappedPredicate(Pred), RBO, LHS, Q, MaxRecurse))
3054       return V;
3055 
3056   // 0 - (zext X) pred C
3057   if (!CmpInst::isUnsigned(Pred) && match(LHS, m_Neg(m_ZExt(m_Value())))) {
3058     const APInt *C;
3059     if (match(RHS, m_APInt(C))) {
3060       if (C->isStrictlyPositive()) {
3061         if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_NE)
3062           return ConstantInt::getTrue(GetCompareTy(RHS));
3063         if (Pred == ICmpInst::ICMP_SGE || Pred == ICmpInst::ICMP_EQ)
3064           return ConstantInt::getFalse(GetCompareTy(RHS));
3065       }
3066       if (C->isNonNegative()) {
3067         if (Pred == ICmpInst::ICMP_SLE)
3068           return ConstantInt::getTrue(GetCompareTy(RHS));
3069         if (Pred == ICmpInst::ICMP_SGT)
3070           return ConstantInt::getFalse(GetCompareTy(RHS));
3071       }
3072     }
3073   }
3074 
3075   //   If C2 is a power-of-2 and C is not:
3076   //   (C2 << X) == C --> false
3077   //   (C2 << X) != C --> true
3078   const APInt *C;
3079   if (match(LHS, m_Shl(m_Power2(), m_Value())) &&
3080       match(RHS, m_APIntAllowUndef(C)) && !C->isPowerOf2()) {
3081     // C2 << X can equal zero in some circumstances.
3082     // This simplification might be unsafe if C is zero.
3083     //
3084     // We know it is safe if:
3085     // - The shift is nsw. We can't shift out the one bit.
3086     // - The shift is nuw. We can't shift out the one bit.
3087     // - C2 is one.
3088     // - C isn't zero.
3089     if (Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(LBO)) ||
3090         Q.IIQ.hasNoUnsignedWrap(cast<OverflowingBinaryOperator>(LBO)) ||
3091         match(LHS, m_Shl(m_One(), m_Value())) || !C->isNullValue()) {
3092       if (Pred == ICmpInst::ICMP_EQ)
3093         return ConstantInt::getFalse(GetCompareTy(RHS));
3094       if (Pred == ICmpInst::ICMP_NE)
3095         return ConstantInt::getTrue(GetCompareTy(RHS));
3096     }
3097   }
3098 
3099   // TODO: This is overly constrained. LHS can be any power-of-2.
3100   // (1 << X)  >u 0x8000 --> false
3101   // (1 << X) <=u 0x8000 --> true
3102   if (match(LHS, m_Shl(m_One(), m_Value())) && match(RHS, m_SignMask())) {
3103     if (Pred == ICmpInst::ICMP_UGT)
3104       return ConstantInt::getFalse(GetCompareTy(RHS));
3105     if (Pred == ICmpInst::ICMP_ULE)
3106       return ConstantInt::getTrue(GetCompareTy(RHS));
3107   }
3108 
3109   if (MaxRecurse && LBO && RBO && LBO->getOpcode() == RBO->getOpcode() &&
3110       LBO->getOperand(1) == RBO->getOperand(1)) {
3111     switch (LBO->getOpcode()) {
3112     default:
3113       break;
3114     case Instruction::UDiv:
3115     case Instruction::LShr:
3116       if (ICmpInst::isSigned(Pred) || !Q.IIQ.isExact(LBO) ||
3117           !Q.IIQ.isExact(RBO))
3118         break;
3119       if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0),
3120                                       RBO->getOperand(0), Q, MaxRecurse - 1))
3121           return V;
3122       break;
3123     case Instruction::SDiv:
3124       if (!ICmpInst::isEquality(Pred) || !Q.IIQ.isExact(LBO) ||
3125           !Q.IIQ.isExact(RBO))
3126         break;
3127       if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0),
3128                                       RBO->getOperand(0), Q, MaxRecurse - 1))
3129         return V;
3130       break;
3131     case Instruction::AShr:
3132       if (!Q.IIQ.isExact(LBO) || !Q.IIQ.isExact(RBO))
3133         break;
3134       if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0),
3135                                       RBO->getOperand(0), Q, MaxRecurse - 1))
3136         return V;
3137       break;
3138     case Instruction::Shl: {
3139       bool NUW = Q.IIQ.hasNoUnsignedWrap(LBO) && Q.IIQ.hasNoUnsignedWrap(RBO);
3140       bool NSW = Q.IIQ.hasNoSignedWrap(LBO) && Q.IIQ.hasNoSignedWrap(RBO);
3141       if (!NUW && !NSW)
3142         break;
3143       if (!NSW && ICmpInst::isSigned(Pred))
3144         break;
3145       if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0),
3146                                       RBO->getOperand(0), Q, MaxRecurse - 1))
3147         return V;
3148       break;
3149     }
3150     }
3151   }
3152   return nullptr;
3153 }
3154 
3155 /// Simplify integer comparisons where at least one operand of the compare
3156 /// matches an integer min/max idiom.
3157 static Value *simplifyICmpWithMinMax(CmpInst::Predicate Pred, Value *LHS,
3158                                      Value *RHS, const SimplifyQuery &Q,
3159                                      unsigned MaxRecurse) {
3160   Type *ITy = GetCompareTy(LHS); // The return type.
3161   Value *A, *B;
3162   CmpInst::Predicate P = CmpInst::BAD_ICMP_PREDICATE;
3163   CmpInst::Predicate EqP; // Chosen so that "A == max/min(A,B)" iff "A EqP B".
3164 
3165   // Signed variants on "max(a,b)>=a -> true".
3166   if (match(LHS, m_SMax(m_Value(A), m_Value(B))) && (A == RHS || B == RHS)) {
3167     if (A != RHS)
3168       std::swap(A, B);       // smax(A, B) pred A.
3169     EqP = CmpInst::ICMP_SGE; // "A == smax(A, B)" iff "A sge B".
3170     // We analyze this as smax(A, B) pred A.
3171     P = Pred;
3172   } else if (match(RHS, m_SMax(m_Value(A), m_Value(B))) &&
3173              (A == LHS || B == LHS)) {
3174     if (A != LHS)
3175       std::swap(A, B);       // A pred smax(A, B).
3176     EqP = CmpInst::ICMP_SGE; // "A == smax(A, B)" iff "A sge B".
3177     // We analyze this as smax(A, B) swapped-pred A.
3178     P = CmpInst::getSwappedPredicate(Pred);
3179   } else if (match(LHS, m_SMin(m_Value(A), m_Value(B))) &&
3180              (A == RHS || B == RHS)) {
3181     if (A != RHS)
3182       std::swap(A, B);       // smin(A, B) pred A.
3183     EqP = CmpInst::ICMP_SLE; // "A == smin(A, B)" iff "A sle B".
3184     // We analyze this as smax(-A, -B) swapped-pred -A.
3185     // Note that we do not need to actually form -A or -B thanks to EqP.
3186     P = CmpInst::getSwappedPredicate(Pred);
3187   } else if (match(RHS, m_SMin(m_Value(A), m_Value(B))) &&
3188              (A == LHS || B == LHS)) {
3189     if (A != LHS)
3190       std::swap(A, B);       // A pred smin(A, B).
3191     EqP = CmpInst::ICMP_SLE; // "A == smin(A, B)" iff "A sle B".
3192     // We analyze this as smax(-A, -B) pred -A.
3193     // Note that we do not need to actually form -A or -B thanks to EqP.
3194     P = Pred;
3195   }
3196   if (P != CmpInst::BAD_ICMP_PREDICATE) {
3197     // Cases correspond to "max(A, B) p A".
3198     switch (P) {
3199     default:
3200       break;
3201     case CmpInst::ICMP_EQ:
3202     case CmpInst::ICMP_SLE:
3203       // Equivalent to "A EqP B".  This may be the same as the condition tested
3204       // in the max/min; if so, we can just return that.
3205       if (Value *V = ExtractEquivalentCondition(LHS, EqP, A, B))
3206         return V;
3207       if (Value *V = ExtractEquivalentCondition(RHS, EqP, A, B))
3208         return V;
3209       // Otherwise, see if "A EqP B" simplifies.
3210       if (MaxRecurse)
3211         if (Value *V = SimplifyICmpInst(EqP, A, B, Q, MaxRecurse - 1))
3212           return V;
3213       break;
3214     case CmpInst::ICMP_NE:
3215     case CmpInst::ICMP_SGT: {
3216       CmpInst::Predicate InvEqP = CmpInst::getInversePredicate(EqP);
3217       // Equivalent to "A InvEqP B".  This may be the same as the condition
3218       // tested in the max/min; if so, we can just return that.
3219       if (Value *V = ExtractEquivalentCondition(LHS, InvEqP, A, B))
3220         return V;
3221       if (Value *V = ExtractEquivalentCondition(RHS, InvEqP, A, B))
3222         return V;
3223       // Otherwise, see if "A InvEqP B" simplifies.
3224       if (MaxRecurse)
3225         if (Value *V = SimplifyICmpInst(InvEqP, A, B, Q, MaxRecurse - 1))
3226           return V;
3227       break;
3228     }
3229     case CmpInst::ICMP_SGE:
3230       // Always true.
3231       return getTrue(ITy);
3232     case CmpInst::ICMP_SLT:
3233       // Always false.
3234       return getFalse(ITy);
3235     }
3236   }
3237 
3238   // Unsigned variants on "max(a,b)>=a -> true".
3239   P = CmpInst::BAD_ICMP_PREDICATE;
3240   if (match(LHS, m_UMax(m_Value(A), m_Value(B))) && (A == RHS || B == RHS)) {
3241     if (A != RHS)
3242       std::swap(A, B);       // umax(A, B) pred A.
3243     EqP = CmpInst::ICMP_UGE; // "A == umax(A, B)" iff "A uge B".
3244     // We analyze this as umax(A, B) pred A.
3245     P = Pred;
3246   } else if (match(RHS, m_UMax(m_Value(A), m_Value(B))) &&
3247              (A == LHS || B == LHS)) {
3248     if (A != LHS)
3249       std::swap(A, B);       // A pred umax(A, B).
3250     EqP = CmpInst::ICMP_UGE; // "A == umax(A, B)" iff "A uge B".
3251     // We analyze this as umax(A, B) swapped-pred A.
3252     P = CmpInst::getSwappedPredicate(Pred);
3253   } else if (match(LHS, m_UMin(m_Value(A), m_Value(B))) &&
3254              (A == RHS || B == RHS)) {
3255     if (A != RHS)
3256       std::swap(A, B);       // umin(A, B) pred A.
3257     EqP = CmpInst::ICMP_ULE; // "A == umin(A, B)" iff "A ule B".
3258     // We analyze this as umax(-A, -B) swapped-pred -A.
3259     // Note that we do not need to actually form -A or -B thanks to EqP.
3260     P = CmpInst::getSwappedPredicate(Pred);
3261   } else if (match(RHS, m_UMin(m_Value(A), m_Value(B))) &&
3262              (A == LHS || B == LHS)) {
3263     if (A != LHS)
3264       std::swap(A, B);       // A pred umin(A, B).
3265     EqP = CmpInst::ICMP_ULE; // "A == umin(A, B)" iff "A ule B".
3266     // We analyze this as umax(-A, -B) pred -A.
3267     // Note that we do not need to actually form -A or -B thanks to EqP.
3268     P = Pred;
3269   }
3270   if (P != CmpInst::BAD_ICMP_PREDICATE) {
3271     // Cases correspond to "max(A, B) p A".
3272     switch (P) {
3273     default:
3274       break;
3275     case CmpInst::ICMP_EQ:
3276     case CmpInst::ICMP_ULE:
3277       // Equivalent to "A EqP B".  This may be the same as the condition tested
3278       // in the max/min; if so, we can just return that.
3279       if (Value *V = ExtractEquivalentCondition(LHS, EqP, A, B))
3280         return V;
3281       if (Value *V = ExtractEquivalentCondition(RHS, EqP, A, B))
3282         return V;
3283       // Otherwise, see if "A EqP B" simplifies.
3284       if (MaxRecurse)
3285         if (Value *V = SimplifyICmpInst(EqP, A, B, Q, MaxRecurse - 1))
3286           return V;
3287       break;
3288     case CmpInst::ICMP_NE:
3289     case CmpInst::ICMP_UGT: {
3290       CmpInst::Predicate InvEqP = CmpInst::getInversePredicate(EqP);
3291       // Equivalent to "A InvEqP B".  This may be the same as the condition
3292       // tested in the max/min; if so, we can just return that.
3293       if (Value *V = ExtractEquivalentCondition(LHS, InvEqP, A, B))
3294         return V;
3295       if (Value *V = ExtractEquivalentCondition(RHS, InvEqP, A, B))
3296         return V;
3297       // Otherwise, see if "A InvEqP B" simplifies.
3298       if (MaxRecurse)
3299         if (Value *V = SimplifyICmpInst(InvEqP, A, B, Q, MaxRecurse - 1))
3300           return V;
3301       break;
3302     }
3303     case CmpInst::ICMP_UGE:
3304       return getTrue(ITy);
3305     case CmpInst::ICMP_ULT:
3306       return getFalse(ITy);
3307     }
3308   }
3309 
3310   // Comparing 1 each of min/max with a common operand?
3311   // Canonicalize min operand to RHS.
3312   if (match(LHS, m_UMin(m_Value(), m_Value())) ||
3313       match(LHS, m_SMin(m_Value(), m_Value()))) {
3314     std::swap(LHS, RHS);
3315     Pred = ICmpInst::getSwappedPredicate(Pred);
3316   }
3317 
3318   Value *C, *D;
3319   if (match(LHS, m_SMax(m_Value(A), m_Value(B))) &&
3320       match(RHS, m_SMin(m_Value(C), m_Value(D))) &&
3321       (A == C || A == D || B == C || B == D)) {
3322     // smax(A, B) >=s smin(A, D) --> true
3323     if (Pred == CmpInst::ICMP_SGE)
3324       return getTrue(ITy);
3325     // smax(A, B) <s smin(A, D) --> false
3326     if (Pred == CmpInst::ICMP_SLT)
3327       return getFalse(ITy);
3328   } else if (match(LHS, m_UMax(m_Value(A), m_Value(B))) &&
3329              match(RHS, m_UMin(m_Value(C), m_Value(D))) &&
3330              (A == C || A == D || B == C || B == D)) {
3331     // umax(A, B) >=u umin(A, D) --> true
3332     if (Pred == CmpInst::ICMP_UGE)
3333       return getTrue(ITy);
3334     // umax(A, B) <u umin(A, D) --> false
3335     if (Pred == CmpInst::ICMP_ULT)
3336       return getFalse(ITy);
3337   }
3338 
3339   return nullptr;
3340 }
3341 
3342 static Value *simplifyICmpWithDominatingAssume(CmpInst::Predicate Predicate,
3343                                                Value *LHS, Value *RHS,
3344                                                const SimplifyQuery &Q) {
3345   // Gracefully handle instructions that have not been inserted yet.
3346   if (!Q.AC || !Q.CxtI || !Q.CxtI->getParent())
3347     return nullptr;
3348 
3349   for (Value *AssumeBaseOp : {LHS, RHS}) {
3350     for (auto &AssumeVH : Q.AC->assumptionsFor(AssumeBaseOp)) {
3351       if (!AssumeVH)
3352         continue;
3353 
3354       CallInst *Assume = cast<CallInst>(AssumeVH);
3355       if (Optional<bool> Imp =
3356               isImpliedCondition(Assume->getArgOperand(0), Predicate, LHS, RHS,
3357                                  Q.DL))
3358         if (isValidAssumeForContext(Assume, Q.CxtI, Q.DT))
3359           return ConstantInt::get(GetCompareTy(LHS), *Imp);
3360     }
3361   }
3362 
3363   return nullptr;
3364 }
3365 
3366 /// Given operands for an ICmpInst, see if we can fold the result.
3367 /// If not, this returns null.
3368 static Value *SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS,
3369                                const SimplifyQuery &Q, unsigned MaxRecurse) {
3370   CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate;
3371   assert(CmpInst::isIntPredicate(Pred) && "Not an integer compare!");
3372 
3373   if (Constant *CLHS = dyn_cast<Constant>(LHS)) {
3374     if (Constant *CRHS = dyn_cast<Constant>(RHS))
3375       return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, Q.DL, Q.TLI);
3376 
3377     // If we have a constant, make sure it is on the RHS.
3378     std::swap(LHS, RHS);
3379     Pred = CmpInst::getSwappedPredicate(Pred);
3380   }
3381   assert(!isa<UndefValue>(LHS) && "Unexpected icmp undef,%X");
3382 
3383   Type *ITy = GetCompareTy(LHS); // The return type.
3384 
3385   // icmp poison, X -> poison
3386   if (isa<PoisonValue>(RHS))
3387     return PoisonValue::get(ITy);
3388 
3389   // For EQ and NE, we can always pick a value for the undef to make the
3390   // predicate pass or fail, so we can return undef.
3391   // Matches behavior in llvm::ConstantFoldCompareInstruction.
3392   if (Q.isUndefValue(RHS) && ICmpInst::isEquality(Pred))
3393     return UndefValue::get(ITy);
3394 
3395   // icmp X, X -> true/false
3396   // icmp X, undef -> true/false because undef could be X.
3397   if (LHS == RHS || Q.isUndefValue(RHS))
3398     return ConstantInt::get(ITy, CmpInst::isTrueWhenEqual(Pred));
3399 
3400   if (Value *V = simplifyICmpOfBools(Pred, LHS, RHS, Q))
3401     return V;
3402 
3403   // TODO: Sink/common this with other potentially expensive calls that use
3404   //       ValueTracking? See comment below for isKnownNonEqual().
3405   if (Value *V = simplifyICmpWithZero(Pred, LHS, RHS, Q))
3406     return V;
3407 
3408   if (Value *V = simplifyICmpWithConstant(Pred, LHS, RHS, Q.IIQ))
3409     return V;
3410 
3411   // If both operands have range metadata, use the metadata
3412   // to simplify the comparison.
3413   if (isa<Instruction>(RHS) && isa<Instruction>(LHS)) {
3414     auto RHS_Instr = cast<Instruction>(RHS);
3415     auto LHS_Instr = cast<Instruction>(LHS);
3416 
3417     if (Q.IIQ.getMetadata(RHS_Instr, LLVMContext::MD_range) &&
3418         Q.IIQ.getMetadata(LHS_Instr, LLVMContext::MD_range)) {
3419       auto RHS_CR = getConstantRangeFromMetadata(
3420           *RHS_Instr->getMetadata(LLVMContext::MD_range));
3421       auto LHS_CR = getConstantRangeFromMetadata(
3422           *LHS_Instr->getMetadata(LLVMContext::MD_range));
3423 
3424       if (LHS_CR.icmp(Pred, RHS_CR))
3425         return ConstantInt::getTrue(RHS->getContext());
3426 
3427       if (LHS_CR.icmp(CmpInst::getInversePredicate(Pred), RHS_CR))
3428         return ConstantInt::getFalse(RHS->getContext());
3429     }
3430   }
3431 
3432   // Compare of cast, for example (zext X) != 0 -> X != 0
3433   if (isa<CastInst>(LHS) && (isa<Constant>(RHS) || isa<CastInst>(RHS))) {
3434     Instruction *LI = cast<CastInst>(LHS);
3435     Value *SrcOp = LI->getOperand(0);
3436     Type *SrcTy = SrcOp->getType();
3437     Type *DstTy = LI->getType();
3438 
3439     // Turn icmp (ptrtoint x), (ptrtoint/constant) into a compare of the input
3440     // if the integer type is the same size as the pointer type.
3441     if (MaxRecurse && isa<PtrToIntInst>(LI) &&
3442         Q.DL.getTypeSizeInBits(SrcTy) == DstTy->getPrimitiveSizeInBits()) {
3443       if (Constant *RHSC = dyn_cast<Constant>(RHS)) {
3444         // Transfer the cast to the constant.
3445         if (Value *V = SimplifyICmpInst(Pred, SrcOp,
3446                                         ConstantExpr::getIntToPtr(RHSC, SrcTy),
3447                                         Q, MaxRecurse-1))
3448           return V;
3449       } else if (PtrToIntInst *RI = dyn_cast<PtrToIntInst>(RHS)) {
3450         if (RI->getOperand(0)->getType() == SrcTy)
3451           // Compare without the cast.
3452           if (Value *V = SimplifyICmpInst(Pred, SrcOp, RI->getOperand(0),
3453                                           Q, MaxRecurse-1))
3454             return V;
3455       }
3456     }
3457 
3458     if (isa<ZExtInst>(LHS)) {
3459       // Turn icmp (zext X), (zext Y) into a compare of X and Y if they have the
3460       // same type.
3461       if (ZExtInst *RI = dyn_cast<ZExtInst>(RHS)) {
3462         if (MaxRecurse && SrcTy == RI->getOperand(0)->getType())
3463           // Compare X and Y.  Note that signed predicates become unsigned.
3464           if (Value *V = SimplifyICmpInst(ICmpInst::getUnsignedPredicate(Pred),
3465                                           SrcOp, RI->getOperand(0), Q,
3466                                           MaxRecurse-1))
3467             return V;
3468       }
3469       // Fold (zext X) ule (sext X), (zext X) sge (sext X) to true.
3470       else if (SExtInst *RI = dyn_cast<SExtInst>(RHS)) {
3471         if (SrcOp == RI->getOperand(0)) {
3472           if (Pred == ICmpInst::ICMP_ULE || Pred == ICmpInst::ICMP_SGE)
3473             return ConstantInt::getTrue(ITy);
3474           if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_SLT)
3475             return ConstantInt::getFalse(ITy);
3476         }
3477       }
3478       // Turn icmp (zext X), Cst into a compare of X and Cst if Cst is extended
3479       // too.  If not, then try to deduce the result of the comparison.
3480       else if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
3481         // Compute the constant that would happen if we truncated to SrcTy then
3482         // reextended to DstTy.
3483         Constant *Trunc = ConstantExpr::getTrunc(CI, SrcTy);
3484         Constant *RExt = ConstantExpr::getCast(CastInst::ZExt, Trunc, DstTy);
3485 
3486         // If the re-extended constant didn't change then this is effectively
3487         // also a case of comparing two zero-extended values.
3488         if (RExt == CI && MaxRecurse)
3489           if (Value *V = SimplifyICmpInst(ICmpInst::getUnsignedPredicate(Pred),
3490                                         SrcOp, Trunc, Q, MaxRecurse-1))
3491             return V;
3492 
3493         // Otherwise the upper bits of LHS are zero while RHS has a non-zero bit
3494         // there.  Use this to work out the result of the comparison.
3495         if (RExt != CI) {
3496           switch (Pred) {
3497           default: llvm_unreachable("Unknown ICmp predicate!");
3498           // LHS <u RHS.
3499           case ICmpInst::ICMP_EQ:
3500           case ICmpInst::ICMP_UGT:
3501           case ICmpInst::ICMP_UGE:
3502             return ConstantInt::getFalse(CI->getContext());
3503 
3504           case ICmpInst::ICMP_NE:
3505           case ICmpInst::ICMP_ULT:
3506           case ICmpInst::ICMP_ULE:
3507             return ConstantInt::getTrue(CI->getContext());
3508 
3509           // LHS is non-negative.  If RHS is negative then LHS >s LHS.  If RHS
3510           // is non-negative then LHS <s RHS.
3511           case ICmpInst::ICMP_SGT:
3512           case ICmpInst::ICMP_SGE:
3513             return CI->getValue().isNegative() ?
3514               ConstantInt::getTrue(CI->getContext()) :
3515               ConstantInt::getFalse(CI->getContext());
3516 
3517           case ICmpInst::ICMP_SLT:
3518           case ICmpInst::ICMP_SLE:
3519             return CI->getValue().isNegative() ?
3520               ConstantInt::getFalse(CI->getContext()) :
3521               ConstantInt::getTrue(CI->getContext());
3522           }
3523         }
3524       }
3525     }
3526 
3527     if (isa<SExtInst>(LHS)) {
3528       // Turn icmp (sext X), (sext Y) into a compare of X and Y if they have the
3529       // same type.
3530       if (SExtInst *RI = dyn_cast<SExtInst>(RHS)) {
3531         if (MaxRecurse && SrcTy == RI->getOperand(0)->getType())
3532           // Compare X and Y.  Note that the predicate does not change.
3533           if (Value *V = SimplifyICmpInst(Pred, SrcOp, RI->getOperand(0),
3534                                           Q, MaxRecurse-1))
3535             return V;
3536       }
3537       // Fold (sext X) uge (zext X), (sext X) sle (zext X) to true.
3538       else if (ZExtInst *RI = dyn_cast<ZExtInst>(RHS)) {
3539         if (SrcOp == RI->getOperand(0)) {
3540           if (Pred == ICmpInst::ICMP_UGE || Pred == ICmpInst::ICMP_SLE)
3541             return ConstantInt::getTrue(ITy);
3542           if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_SGT)
3543             return ConstantInt::getFalse(ITy);
3544         }
3545       }
3546       // Turn icmp (sext X), Cst into a compare of X and Cst if Cst is extended
3547       // too.  If not, then try to deduce the result of the comparison.
3548       else if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
3549         // Compute the constant that would happen if we truncated to SrcTy then
3550         // reextended to DstTy.
3551         Constant *Trunc = ConstantExpr::getTrunc(CI, SrcTy);
3552         Constant *RExt = ConstantExpr::getCast(CastInst::SExt, Trunc, DstTy);
3553 
3554         // If the re-extended constant didn't change then this is effectively
3555         // also a case of comparing two sign-extended values.
3556         if (RExt == CI && MaxRecurse)
3557           if (Value *V = SimplifyICmpInst(Pred, SrcOp, Trunc, Q, MaxRecurse-1))
3558             return V;
3559 
3560         // Otherwise the upper bits of LHS are all equal, while RHS has varying
3561         // bits there.  Use this to work out the result of the comparison.
3562         if (RExt != CI) {
3563           switch (Pred) {
3564           default: llvm_unreachable("Unknown ICmp predicate!");
3565           case ICmpInst::ICMP_EQ:
3566             return ConstantInt::getFalse(CI->getContext());
3567           case ICmpInst::ICMP_NE:
3568             return ConstantInt::getTrue(CI->getContext());
3569 
3570           // If RHS is non-negative then LHS <s RHS.  If RHS is negative then
3571           // LHS >s RHS.
3572           case ICmpInst::ICMP_SGT:
3573           case ICmpInst::ICMP_SGE:
3574             return CI->getValue().isNegative() ?
3575               ConstantInt::getTrue(CI->getContext()) :
3576               ConstantInt::getFalse(CI->getContext());
3577           case ICmpInst::ICMP_SLT:
3578           case ICmpInst::ICMP_SLE:
3579             return CI->getValue().isNegative() ?
3580               ConstantInt::getFalse(CI->getContext()) :
3581               ConstantInt::getTrue(CI->getContext());
3582 
3583           // If LHS is non-negative then LHS <u RHS.  If LHS is negative then
3584           // LHS >u RHS.
3585           case ICmpInst::ICMP_UGT:
3586           case ICmpInst::ICMP_UGE:
3587             // Comparison is true iff the LHS <s 0.
3588             if (MaxRecurse)
3589               if (Value *V = SimplifyICmpInst(ICmpInst::ICMP_SLT, SrcOp,
3590                                               Constant::getNullValue(SrcTy),
3591                                               Q, MaxRecurse-1))
3592                 return V;
3593             break;
3594           case ICmpInst::ICMP_ULT:
3595           case ICmpInst::ICMP_ULE:
3596             // Comparison is true iff the LHS >=s 0.
3597             if (MaxRecurse)
3598               if (Value *V = SimplifyICmpInst(ICmpInst::ICMP_SGE, SrcOp,
3599                                               Constant::getNullValue(SrcTy),
3600                                               Q, MaxRecurse-1))
3601                 return V;
3602             break;
3603           }
3604         }
3605       }
3606     }
3607   }
3608 
3609   // icmp eq|ne X, Y -> false|true if X != Y
3610   // This is potentially expensive, and we have already computedKnownBits for
3611   // compares with 0 above here, so only try this for a non-zero compare.
3612   if (ICmpInst::isEquality(Pred) && !match(RHS, m_Zero()) &&
3613       isKnownNonEqual(LHS, RHS, Q.DL, Q.AC, Q.CxtI, Q.DT, Q.IIQ.UseInstrInfo)) {
3614     return Pred == ICmpInst::ICMP_NE ? getTrue(ITy) : getFalse(ITy);
3615   }
3616 
3617   if (Value *V = simplifyICmpWithBinOp(Pred, LHS, RHS, Q, MaxRecurse))
3618     return V;
3619 
3620   if (Value *V = simplifyICmpWithMinMax(Pred, LHS, RHS, Q, MaxRecurse))
3621     return V;
3622 
3623   if (Value *V = simplifyICmpWithDominatingAssume(Pred, LHS, RHS, Q))
3624     return V;
3625 
3626   // Simplify comparisons of related pointers using a powerful, recursive
3627   // GEP-walk when we have target data available..
3628   if (LHS->getType()->isPointerTy())
3629     if (auto *C = computePointerICmp(Pred, LHS, RHS, Q))
3630       return C;
3631   if (auto *CLHS = dyn_cast<PtrToIntOperator>(LHS))
3632     if (auto *CRHS = dyn_cast<PtrToIntOperator>(RHS))
3633       if (Q.DL.getTypeSizeInBits(CLHS->getPointerOperandType()) ==
3634               Q.DL.getTypeSizeInBits(CLHS->getType()) &&
3635           Q.DL.getTypeSizeInBits(CRHS->getPointerOperandType()) ==
3636               Q.DL.getTypeSizeInBits(CRHS->getType()))
3637         if (auto *C = computePointerICmp(Pred, CLHS->getPointerOperand(),
3638                                          CRHS->getPointerOperand(), Q))
3639           return C;
3640 
3641   if (GetElementPtrInst *GLHS = dyn_cast<GetElementPtrInst>(LHS)) {
3642     if (GEPOperator *GRHS = dyn_cast<GEPOperator>(RHS)) {
3643       if (GLHS->getPointerOperand() == GRHS->getPointerOperand() &&
3644           GLHS->hasAllConstantIndices() && GRHS->hasAllConstantIndices() &&
3645           (ICmpInst::isEquality(Pred) ||
3646            (GLHS->isInBounds() && GRHS->isInBounds() &&
3647             Pred == ICmpInst::getSignedPredicate(Pred)))) {
3648         // The bases are equal and the indices are constant.  Build a constant
3649         // expression GEP with the same indices and a null base pointer to see
3650         // what constant folding can make out of it.
3651         Constant *Null = Constant::getNullValue(GLHS->getPointerOperandType());
3652         SmallVector<Value *, 4> IndicesLHS(GLHS->indices());
3653         Constant *NewLHS = ConstantExpr::getGetElementPtr(
3654             GLHS->getSourceElementType(), Null, IndicesLHS);
3655 
3656         SmallVector<Value *, 4> IndicesRHS(GRHS->idx_begin(), GRHS->idx_end());
3657         Constant *NewRHS = ConstantExpr::getGetElementPtr(
3658             GLHS->getSourceElementType(), Null, IndicesRHS);
3659         Constant *NewICmp = ConstantExpr::getICmp(Pred, NewLHS, NewRHS);
3660         return ConstantFoldConstant(NewICmp, Q.DL);
3661       }
3662     }
3663   }
3664 
3665   // If the comparison is with the result of a select instruction, check whether
3666   // comparing with either branch of the select always yields the same value.
3667   if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS))
3668     if (Value *V = ThreadCmpOverSelect(Pred, LHS, RHS, Q, MaxRecurse))
3669       return V;
3670 
3671   // If the comparison is with the result of a phi instruction, check whether
3672   // doing the compare with each incoming phi value yields a common result.
3673   if (isa<PHINode>(LHS) || isa<PHINode>(RHS))
3674     if (Value *V = ThreadCmpOverPHI(Pred, LHS, RHS, Q, MaxRecurse))
3675       return V;
3676 
3677   return nullptr;
3678 }
3679 
3680 Value *llvm::SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS,
3681                               const SimplifyQuery &Q) {
3682   return ::SimplifyICmpInst(Predicate, LHS, RHS, Q, RecursionLimit);
3683 }
3684 
3685 /// Given operands for an FCmpInst, see if we can fold the result.
3686 /// If not, this returns null.
3687 static Value *SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
3688                                FastMathFlags FMF, const SimplifyQuery &Q,
3689                                unsigned MaxRecurse) {
3690   CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate;
3691   assert(CmpInst::isFPPredicate(Pred) && "Not an FP compare!");
3692 
3693   if (Constant *CLHS = dyn_cast<Constant>(LHS)) {
3694     if (Constant *CRHS = dyn_cast<Constant>(RHS))
3695       return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, Q.DL, Q.TLI);
3696 
3697     // If we have a constant, make sure it is on the RHS.
3698     std::swap(LHS, RHS);
3699     Pred = CmpInst::getSwappedPredicate(Pred);
3700   }
3701 
3702   // Fold trivial predicates.
3703   Type *RetTy = GetCompareTy(LHS);
3704   if (Pred == FCmpInst::FCMP_FALSE)
3705     return getFalse(RetTy);
3706   if (Pred == FCmpInst::FCMP_TRUE)
3707     return getTrue(RetTy);
3708 
3709   // Fold (un)ordered comparison if we can determine there are no NaNs.
3710   if (Pred == FCmpInst::FCMP_UNO || Pred == FCmpInst::FCMP_ORD)
3711     if (FMF.noNaNs() ||
3712         (isKnownNeverNaN(LHS, Q.TLI) && isKnownNeverNaN(RHS, Q.TLI)))
3713       return ConstantInt::get(RetTy, Pred == FCmpInst::FCMP_ORD);
3714 
3715   // NaN is unordered; NaN is not ordered.
3716   assert((FCmpInst::isOrdered(Pred) || FCmpInst::isUnordered(Pred)) &&
3717          "Comparison must be either ordered or unordered");
3718   if (match(RHS, m_NaN()))
3719     return ConstantInt::get(RetTy, CmpInst::isUnordered(Pred));
3720 
3721   // fcmp pred x, poison and  fcmp pred poison, x
3722   // fold to poison
3723   if (isa<PoisonValue>(LHS) || isa<PoisonValue>(RHS))
3724     return PoisonValue::get(RetTy);
3725 
3726   // fcmp pred x, undef  and  fcmp pred undef, x
3727   // fold to true if unordered, false if ordered
3728   if (Q.isUndefValue(LHS) || Q.isUndefValue(RHS)) {
3729     // Choosing NaN for the undef will always make unordered comparison succeed
3730     // and ordered comparison fail.
3731     return ConstantInt::get(RetTy, CmpInst::isUnordered(Pred));
3732   }
3733 
3734   // fcmp x,x -> true/false.  Not all compares are foldable.
3735   if (LHS == RHS) {
3736     if (CmpInst::isTrueWhenEqual(Pred))
3737       return getTrue(RetTy);
3738     if (CmpInst::isFalseWhenEqual(Pred))
3739       return getFalse(RetTy);
3740   }
3741 
3742   // Handle fcmp with constant RHS.
3743   // TODO: Use match with a specific FP value, so these work with vectors with
3744   // undef lanes.
3745   const APFloat *C;
3746   if (match(RHS, m_APFloat(C))) {
3747     // Check whether the constant is an infinity.
3748     if (C->isInfinity()) {
3749       if (C->isNegative()) {
3750         switch (Pred) {
3751         case FCmpInst::FCMP_OLT:
3752           // No value is ordered and less than negative infinity.
3753           return getFalse(RetTy);
3754         case FCmpInst::FCMP_UGE:
3755           // All values are unordered with or at least negative infinity.
3756           return getTrue(RetTy);
3757         default:
3758           break;
3759         }
3760       } else {
3761         switch (Pred) {
3762         case FCmpInst::FCMP_OGT:
3763           // No value is ordered and greater than infinity.
3764           return getFalse(RetTy);
3765         case FCmpInst::FCMP_ULE:
3766           // All values are unordered with and at most infinity.
3767           return getTrue(RetTy);
3768         default:
3769           break;
3770         }
3771       }
3772 
3773       // LHS == Inf
3774       if (Pred == FCmpInst::FCMP_OEQ && isKnownNeverInfinity(LHS, Q.TLI))
3775         return getFalse(RetTy);
3776       // LHS != Inf
3777       if (Pred == FCmpInst::FCMP_UNE && isKnownNeverInfinity(LHS, Q.TLI))
3778         return getTrue(RetTy);
3779       // LHS == Inf || LHS == NaN
3780       if (Pred == FCmpInst::FCMP_UEQ && isKnownNeverInfinity(LHS, Q.TLI) &&
3781           isKnownNeverNaN(LHS, Q.TLI))
3782         return getFalse(RetTy);
3783       // LHS != Inf && LHS != NaN
3784       if (Pred == FCmpInst::FCMP_ONE && isKnownNeverInfinity(LHS, Q.TLI) &&
3785           isKnownNeverNaN(LHS, Q.TLI))
3786         return getTrue(RetTy);
3787     }
3788     if (C->isNegative() && !C->isNegZero()) {
3789       assert(!C->isNaN() && "Unexpected NaN constant!");
3790       // TODO: We can catch more cases by using a range check rather than
3791       //       relying on CannotBeOrderedLessThanZero.
3792       switch (Pred) {
3793       case FCmpInst::FCMP_UGE:
3794       case FCmpInst::FCMP_UGT:
3795       case FCmpInst::FCMP_UNE:
3796         // (X >= 0) implies (X > C) when (C < 0)
3797         if (CannotBeOrderedLessThanZero(LHS, Q.TLI))
3798           return getTrue(RetTy);
3799         break;
3800       case FCmpInst::FCMP_OEQ:
3801       case FCmpInst::FCMP_OLE:
3802       case FCmpInst::FCMP_OLT:
3803         // (X >= 0) implies !(X < C) when (C < 0)
3804         if (CannotBeOrderedLessThanZero(LHS, Q.TLI))
3805           return getFalse(RetTy);
3806         break;
3807       default:
3808         break;
3809       }
3810     }
3811 
3812     // Check comparison of [minnum/maxnum with constant] with other constant.
3813     const APFloat *C2;
3814     if ((match(LHS, m_Intrinsic<Intrinsic::minnum>(m_Value(), m_APFloat(C2))) &&
3815          *C2 < *C) ||
3816         (match(LHS, m_Intrinsic<Intrinsic::maxnum>(m_Value(), m_APFloat(C2))) &&
3817          *C2 > *C)) {
3818       bool IsMaxNum =
3819           cast<IntrinsicInst>(LHS)->getIntrinsicID() == Intrinsic::maxnum;
3820       // The ordered relationship and minnum/maxnum guarantee that we do not
3821       // have NaN constants, so ordered/unordered preds are handled the same.
3822       switch (Pred) {
3823       case FCmpInst::FCMP_OEQ: case FCmpInst::FCMP_UEQ:
3824         // minnum(X, LesserC)  == C --> false
3825         // maxnum(X, GreaterC) == C --> false
3826         return getFalse(RetTy);
3827       case FCmpInst::FCMP_ONE: case FCmpInst::FCMP_UNE:
3828         // minnum(X, LesserC)  != C --> true
3829         // maxnum(X, GreaterC) != C --> true
3830         return getTrue(RetTy);
3831       case FCmpInst::FCMP_OGE: case FCmpInst::FCMP_UGE:
3832       case FCmpInst::FCMP_OGT: case FCmpInst::FCMP_UGT:
3833         // minnum(X, LesserC)  >= C --> false
3834         // minnum(X, LesserC)  >  C --> false
3835         // maxnum(X, GreaterC) >= C --> true
3836         // maxnum(X, GreaterC) >  C --> true
3837         return ConstantInt::get(RetTy, IsMaxNum);
3838       case FCmpInst::FCMP_OLE: case FCmpInst::FCMP_ULE:
3839       case FCmpInst::FCMP_OLT: case FCmpInst::FCMP_ULT:
3840         // minnum(X, LesserC)  <= C --> true
3841         // minnum(X, LesserC)  <  C --> true
3842         // maxnum(X, GreaterC) <= C --> false
3843         // maxnum(X, GreaterC) <  C --> false
3844         return ConstantInt::get(RetTy, !IsMaxNum);
3845       default:
3846         // TRUE/FALSE/ORD/UNO should be handled before this.
3847         llvm_unreachable("Unexpected fcmp predicate");
3848       }
3849     }
3850   }
3851 
3852   if (match(RHS, m_AnyZeroFP())) {
3853     switch (Pred) {
3854     case FCmpInst::FCMP_OGE:
3855     case FCmpInst::FCMP_ULT:
3856       // Positive or zero X >= 0.0 --> true
3857       // Positive or zero X <  0.0 --> false
3858       if ((FMF.noNaNs() || isKnownNeverNaN(LHS, Q.TLI)) &&
3859           CannotBeOrderedLessThanZero(LHS, Q.TLI))
3860         return Pred == FCmpInst::FCMP_OGE ? getTrue(RetTy) : getFalse(RetTy);
3861       break;
3862     case FCmpInst::FCMP_UGE:
3863     case FCmpInst::FCMP_OLT:
3864       // Positive or zero or nan X >= 0.0 --> true
3865       // Positive or zero or nan X <  0.0 --> false
3866       if (CannotBeOrderedLessThanZero(LHS, Q.TLI))
3867         return Pred == FCmpInst::FCMP_UGE ? getTrue(RetTy) : getFalse(RetTy);
3868       break;
3869     default:
3870       break;
3871     }
3872   }
3873 
3874   // If the comparison is with the result of a select instruction, check whether
3875   // comparing with either branch of the select always yields the same value.
3876   if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS))
3877     if (Value *V = ThreadCmpOverSelect(Pred, LHS, RHS, Q, MaxRecurse))
3878       return V;
3879 
3880   // If the comparison is with the result of a phi instruction, check whether
3881   // doing the compare with each incoming phi value yields a common result.
3882   if (isa<PHINode>(LHS) || isa<PHINode>(RHS))
3883     if (Value *V = ThreadCmpOverPHI(Pred, LHS, RHS, Q, MaxRecurse))
3884       return V;
3885 
3886   return nullptr;
3887 }
3888 
3889 Value *llvm::SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
3890                               FastMathFlags FMF, const SimplifyQuery &Q) {
3891   return ::SimplifyFCmpInst(Predicate, LHS, RHS, FMF, Q, RecursionLimit);
3892 }
3893 
3894 static Value *simplifyWithOpReplaced(Value *V, Value *Op, Value *RepOp,
3895                                      const SimplifyQuery &Q,
3896                                      bool AllowRefinement,
3897                                      unsigned MaxRecurse) {
3898   assert(!Op->getType()->isVectorTy() && "This is not safe for vectors");
3899 
3900   // Trivial replacement.
3901   if (V == Op)
3902     return RepOp;
3903 
3904   // We cannot replace a constant, and shouldn't even try.
3905   if (isa<Constant>(Op))
3906     return nullptr;
3907 
3908   auto *I = dyn_cast<Instruction>(V);
3909   if (!I || !is_contained(I->operands(), Op))
3910     return nullptr;
3911 
3912   // Replace Op with RepOp in instruction operands.
3913   SmallVector<Value *, 8> NewOps(I->getNumOperands());
3914   transform(I->operands(), NewOps.begin(),
3915             [&](Value *V) { return V == Op ? RepOp : V; });
3916 
3917   if (!AllowRefinement) {
3918     // General InstSimplify functions may refine the result, e.g. by returning
3919     // a constant for a potentially poison value. To avoid this, implement only
3920     // a few non-refining but profitable transforms here.
3921 
3922     if (auto *BO = dyn_cast<BinaryOperator>(I)) {
3923       unsigned Opcode = BO->getOpcode();
3924       // id op x -> x, x op id -> x
3925       if (NewOps[0] == ConstantExpr::getBinOpIdentity(Opcode, I->getType()))
3926         return NewOps[1];
3927       if (NewOps[1] == ConstantExpr::getBinOpIdentity(Opcode, I->getType(),
3928                                                       /* RHS */ true))
3929         return NewOps[0];
3930 
3931       // x & x -> x, x | x -> x
3932       if ((Opcode == Instruction::And || Opcode == Instruction::Or) &&
3933           NewOps[0] == NewOps[1])
3934         return NewOps[0];
3935     }
3936 
3937     if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) {
3938       // getelementptr x, 0 -> x
3939       if (NewOps.size() == 2 && match(NewOps[1], m_Zero()) &&
3940           !GEP->isInBounds())
3941         return NewOps[0];
3942     }
3943   } else if (MaxRecurse) {
3944     // The simplification queries below may return the original value. Consider:
3945     //   %div = udiv i32 %arg, %arg2
3946     //   %mul = mul nsw i32 %div, %arg2
3947     //   %cmp = icmp eq i32 %mul, %arg
3948     //   %sel = select i1 %cmp, i32 %div, i32 undef
3949     // Replacing %arg by %mul, %div becomes "udiv i32 %mul, %arg2", which
3950     // simplifies back to %arg. This can only happen because %mul does not
3951     // dominate %div. To ensure a consistent return value contract, we make sure
3952     // that this case returns nullptr as well.
3953     auto PreventSelfSimplify = [V](Value *Simplified) {
3954       return Simplified != V ? Simplified : nullptr;
3955     };
3956 
3957     if (auto *B = dyn_cast<BinaryOperator>(I))
3958       return PreventSelfSimplify(SimplifyBinOp(B->getOpcode(), NewOps[0],
3959                                                NewOps[1], Q, MaxRecurse - 1));
3960 
3961     if (CmpInst *C = dyn_cast<CmpInst>(I))
3962       return PreventSelfSimplify(SimplifyCmpInst(C->getPredicate(), NewOps[0],
3963                                                  NewOps[1], Q, MaxRecurse - 1));
3964 
3965     if (auto *GEP = dyn_cast<GetElementPtrInst>(I))
3966       return PreventSelfSimplify(SimplifyGEPInst(GEP->getSourceElementType(),
3967                                                  NewOps, Q, MaxRecurse - 1));
3968 
3969     if (isa<SelectInst>(I))
3970       return PreventSelfSimplify(
3971           SimplifySelectInst(NewOps[0], NewOps[1], NewOps[2], Q,
3972                              MaxRecurse - 1));
3973     // TODO: We could hand off more cases to instsimplify here.
3974   }
3975 
3976   // If all operands are constant after substituting Op for RepOp then we can
3977   // constant fold the instruction.
3978   SmallVector<Constant *, 8> ConstOps;
3979   for (Value *NewOp : NewOps) {
3980     if (Constant *ConstOp = dyn_cast<Constant>(NewOp))
3981       ConstOps.push_back(ConstOp);
3982     else
3983       return nullptr;
3984   }
3985 
3986   // Consider:
3987   //   %cmp = icmp eq i32 %x, 2147483647
3988   //   %add = add nsw i32 %x, 1
3989   //   %sel = select i1 %cmp, i32 -2147483648, i32 %add
3990   //
3991   // We can't replace %sel with %add unless we strip away the flags (which
3992   // will be done in InstCombine).
3993   // TODO: This may be unsound, because it only catches some forms of
3994   // refinement.
3995   if (!AllowRefinement && canCreatePoison(cast<Operator>(I)))
3996     return nullptr;
3997 
3998   if (CmpInst *C = dyn_cast<CmpInst>(I))
3999     return ConstantFoldCompareInstOperands(C->getPredicate(), ConstOps[0],
4000                                            ConstOps[1], Q.DL, Q.TLI);
4001 
4002   if (LoadInst *LI = dyn_cast<LoadInst>(I))
4003     if (!LI->isVolatile())
4004       return ConstantFoldLoadFromConstPtr(ConstOps[0], LI->getType(), Q.DL);
4005 
4006   return ConstantFoldInstOperands(I, ConstOps, Q.DL, Q.TLI);
4007 }
4008 
4009 Value *llvm::simplifyWithOpReplaced(Value *V, Value *Op, Value *RepOp,
4010                                     const SimplifyQuery &Q,
4011                                     bool AllowRefinement) {
4012   return ::simplifyWithOpReplaced(V, Op, RepOp, Q, AllowRefinement,
4013                                   RecursionLimit);
4014 }
4015 
4016 /// Try to simplify a select instruction when its condition operand is an
4017 /// integer comparison where one operand of the compare is a constant.
4018 static Value *simplifySelectBitTest(Value *TrueVal, Value *FalseVal, Value *X,
4019                                     const APInt *Y, bool TrueWhenUnset) {
4020   const APInt *C;
4021 
4022   // (X & Y) == 0 ? X & ~Y : X  --> X
4023   // (X & Y) != 0 ? X & ~Y : X  --> X & ~Y
4024   if (FalseVal == X && match(TrueVal, m_And(m_Specific(X), m_APInt(C))) &&
4025       *Y == ~*C)
4026     return TrueWhenUnset ? FalseVal : TrueVal;
4027 
4028   // (X & Y) == 0 ? X : X & ~Y  --> X & ~Y
4029   // (X & Y) != 0 ? X : X & ~Y  --> X
4030   if (TrueVal == X && match(FalseVal, m_And(m_Specific(X), m_APInt(C))) &&
4031       *Y == ~*C)
4032     return TrueWhenUnset ? FalseVal : TrueVal;
4033 
4034   if (Y->isPowerOf2()) {
4035     // (X & Y) == 0 ? X | Y : X  --> X | Y
4036     // (X & Y) != 0 ? X | Y : X  --> X
4037     if (FalseVal == X && match(TrueVal, m_Or(m_Specific(X), m_APInt(C))) &&
4038         *Y == *C)
4039       return TrueWhenUnset ? TrueVal : FalseVal;
4040 
4041     // (X & Y) == 0 ? X : X | Y  --> X
4042     // (X & Y) != 0 ? X : X | Y  --> X | Y
4043     if (TrueVal == X && match(FalseVal, m_Or(m_Specific(X), m_APInt(C))) &&
4044         *Y == *C)
4045       return TrueWhenUnset ? TrueVal : FalseVal;
4046   }
4047 
4048   return nullptr;
4049 }
4050 
4051 /// An alternative way to test if a bit is set or not uses sgt/slt instead of
4052 /// eq/ne.
4053 static Value *simplifySelectWithFakeICmpEq(Value *CmpLHS, Value *CmpRHS,
4054                                            ICmpInst::Predicate Pred,
4055                                            Value *TrueVal, Value *FalseVal) {
4056   Value *X;
4057   APInt Mask;
4058   if (!decomposeBitTestICmp(CmpLHS, CmpRHS, Pred, X, Mask))
4059     return nullptr;
4060 
4061   return simplifySelectBitTest(TrueVal, FalseVal, X, &Mask,
4062                                Pred == ICmpInst::ICMP_EQ);
4063 }
4064 
4065 /// Try to simplify a select instruction when its condition operand is an
4066 /// integer comparison.
4067 static Value *simplifySelectWithICmpCond(Value *CondVal, Value *TrueVal,
4068                                          Value *FalseVal, const SimplifyQuery &Q,
4069                                          unsigned MaxRecurse) {
4070   ICmpInst::Predicate Pred;
4071   Value *CmpLHS, *CmpRHS;
4072   if (!match(CondVal, m_ICmp(Pred, m_Value(CmpLHS), m_Value(CmpRHS))))
4073     return nullptr;
4074 
4075   // Canonicalize ne to eq predicate.
4076   if (Pred == ICmpInst::ICMP_NE) {
4077     Pred = ICmpInst::ICMP_EQ;
4078     std::swap(TrueVal, FalseVal);
4079   }
4080 
4081   if (Pred == ICmpInst::ICMP_EQ && match(CmpRHS, m_Zero())) {
4082     Value *X;
4083     const APInt *Y;
4084     if (match(CmpLHS, m_And(m_Value(X), m_APInt(Y))))
4085       if (Value *V = simplifySelectBitTest(TrueVal, FalseVal, X, Y,
4086                                            /*TrueWhenUnset=*/true))
4087         return V;
4088 
4089     // Test for a bogus zero-shift-guard-op around funnel-shift or rotate.
4090     Value *ShAmt;
4091     auto isFsh = m_CombineOr(m_FShl(m_Value(X), m_Value(), m_Value(ShAmt)),
4092                              m_FShr(m_Value(), m_Value(X), m_Value(ShAmt)));
4093     // (ShAmt == 0) ? fshl(X, *, ShAmt) : X --> X
4094     // (ShAmt == 0) ? fshr(*, X, ShAmt) : X --> X
4095     if (match(TrueVal, isFsh) && FalseVal == X && CmpLHS == ShAmt)
4096       return X;
4097 
4098     // Test for a zero-shift-guard-op around rotates. These are used to
4099     // avoid UB from oversized shifts in raw IR rotate patterns, but the
4100     // intrinsics do not have that problem.
4101     // We do not allow this transform for the general funnel shift case because
4102     // that would not preserve the poison safety of the original code.
4103     auto isRotate =
4104         m_CombineOr(m_FShl(m_Value(X), m_Deferred(X), m_Value(ShAmt)),
4105                     m_FShr(m_Value(X), m_Deferred(X), m_Value(ShAmt)));
4106     // (ShAmt == 0) ? X : fshl(X, X, ShAmt) --> fshl(X, X, ShAmt)
4107     // (ShAmt == 0) ? X : fshr(X, X, ShAmt) --> fshr(X, X, ShAmt)
4108     if (match(FalseVal, isRotate) && TrueVal == X && CmpLHS == ShAmt &&
4109         Pred == ICmpInst::ICMP_EQ)
4110       return FalseVal;
4111 
4112     // X == 0 ? abs(X) : -abs(X) --> -abs(X)
4113     // X == 0 ? -abs(X) : abs(X) --> abs(X)
4114     if (match(TrueVal, m_Intrinsic<Intrinsic::abs>(m_Specific(CmpLHS))) &&
4115         match(FalseVal, m_Neg(m_Intrinsic<Intrinsic::abs>(m_Specific(CmpLHS)))))
4116       return FalseVal;
4117     if (match(TrueVal,
4118               m_Neg(m_Intrinsic<Intrinsic::abs>(m_Specific(CmpLHS)))) &&
4119         match(FalseVal, m_Intrinsic<Intrinsic::abs>(m_Specific(CmpLHS))))
4120       return FalseVal;
4121   }
4122 
4123   // Check for other compares that behave like bit test.
4124   if (Value *V = simplifySelectWithFakeICmpEq(CmpLHS, CmpRHS, Pred,
4125                                               TrueVal, FalseVal))
4126     return V;
4127 
4128   // If we have a scalar equality comparison, then we know the value in one of
4129   // the arms of the select. See if substituting this value into the arm and
4130   // simplifying the result yields the same value as the other arm.
4131   // Note that the equivalence/replacement opportunity does not hold for vectors
4132   // because each element of a vector select is chosen independently.
4133   if (Pred == ICmpInst::ICMP_EQ && !CondVal->getType()->isVectorTy()) {
4134     if (simplifyWithOpReplaced(FalseVal, CmpLHS, CmpRHS, Q,
4135                                /* AllowRefinement */ false, MaxRecurse) ==
4136             TrueVal ||
4137         simplifyWithOpReplaced(FalseVal, CmpRHS, CmpLHS, Q,
4138                                /* AllowRefinement */ false, MaxRecurse) ==
4139             TrueVal)
4140       return FalseVal;
4141     if (simplifyWithOpReplaced(TrueVal, CmpLHS, CmpRHS, Q,
4142                                /* AllowRefinement */ true, MaxRecurse) ==
4143             FalseVal ||
4144         simplifyWithOpReplaced(TrueVal, CmpRHS, CmpLHS, Q,
4145                                /* AllowRefinement */ true, MaxRecurse) ==
4146             FalseVal)
4147       return FalseVal;
4148   }
4149 
4150   return nullptr;
4151 }
4152 
4153 /// Try to simplify a select instruction when its condition operand is a
4154 /// floating-point comparison.
4155 static Value *simplifySelectWithFCmp(Value *Cond, Value *T, Value *F,
4156                                      const SimplifyQuery &Q) {
4157   FCmpInst::Predicate Pred;
4158   if (!match(Cond, m_FCmp(Pred, m_Specific(T), m_Specific(F))) &&
4159       !match(Cond, m_FCmp(Pred, m_Specific(F), m_Specific(T))))
4160     return nullptr;
4161 
4162   // This transform is safe if we do not have (do not care about) -0.0 or if
4163   // at least one operand is known to not be -0.0. Otherwise, the select can
4164   // change the sign of a zero operand.
4165   bool HasNoSignedZeros = Q.CxtI && isa<FPMathOperator>(Q.CxtI) &&
4166                           Q.CxtI->hasNoSignedZeros();
4167   const APFloat *C;
4168   if (HasNoSignedZeros || (match(T, m_APFloat(C)) && C->isNonZero()) ||
4169                           (match(F, m_APFloat(C)) && C->isNonZero())) {
4170     // (T == F) ? T : F --> F
4171     // (F == T) ? T : F --> F
4172     if (Pred == FCmpInst::FCMP_OEQ)
4173       return F;
4174 
4175     // (T != F) ? T : F --> T
4176     // (F != T) ? T : F --> T
4177     if (Pred == FCmpInst::FCMP_UNE)
4178       return T;
4179   }
4180 
4181   return nullptr;
4182 }
4183 
4184 /// Given operands for a SelectInst, see if we can fold the result.
4185 /// If not, this returns null.
4186 static Value *SimplifySelectInst(Value *Cond, Value *TrueVal, Value *FalseVal,
4187                                  const SimplifyQuery &Q, unsigned MaxRecurse) {
4188   if (auto *CondC = dyn_cast<Constant>(Cond)) {
4189     if (auto *TrueC = dyn_cast<Constant>(TrueVal))
4190       if (auto *FalseC = dyn_cast<Constant>(FalseVal))
4191         return ConstantFoldSelectInstruction(CondC, TrueC, FalseC);
4192 
4193     // select poison, X, Y -> poison
4194     if (isa<PoisonValue>(CondC))
4195       return PoisonValue::get(TrueVal->getType());
4196 
4197     // select undef, X, Y -> X or Y
4198     if (Q.isUndefValue(CondC))
4199       return isa<Constant>(FalseVal) ? FalseVal : TrueVal;
4200 
4201     // select true,  X, Y --> X
4202     // select false, X, Y --> Y
4203     // For vectors, allow undef/poison elements in the condition to match the
4204     // defined elements, so we can eliminate the select.
4205     if (match(CondC, m_One()))
4206       return TrueVal;
4207     if (match(CondC, m_Zero()))
4208       return FalseVal;
4209   }
4210 
4211   // select i1 Cond, i1 true, i1 false --> i1 Cond
4212   assert(Cond->getType()->isIntOrIntVectorTy(1) &&
4213          "Select must have bool or bool vector condition");
4214   assert(TrueVal->getType() == FalseVal->getType() &&
4215          "Select must have same types for true/false ops");
4216   if (Cond->getType() == TrueVal->getType() &&
4217       match(TrueVal, m_One()) && match(FalseVal, m_ZeroInt()))
4218     return Cond;
4219 
4220   // select ?, X, X -> X
4221   if (TrueVal == FalseVal)
4222     return TrueVal;
4223 
4224   // If the true or false value is poison, we can fold to the other value.
4225   // If the true or false value is undef, we can fold to the other value as
4226   // long as the other value isn't poison.
4227   // select ?, poison, X -> X
4228   // select ?, undef,  X -> X
4229   if (isa<PoisonValue>(TrueVal) ||
4230       (Q.isUndefValue(TrueVal) &&
4231        isGuaranteedNotToBePoison(FalseVal, Q.AC, Q.CxtI, Q.DT)))
4232     return FalseVal;
4233   // select ?, X, poison -> X
4234   // select ?, X, undef  -> X
4235   if (isa<PoisonValue>(FalseVal) ||
4236       (Q.isUndefValue(FalseVal) &&
4237        isGuaranteedNotToBePoison(TrueVal, Q.AC, Q.CxtI, Q.DT)))
4238     return TrueVal;
4239 
4240   // Deal with partial undef vector constants: select ?, VecC, VecC' --> VecC''
4241   Constant *TrueC, *FalseC;
4242   if (isa<FixedVectorType>(TrueVal->getType()) &&
4243       match(TrueVal, m_Constant(TrueC)) &&
4244       match(FalseVal, m_Constant(FalseC))) {
4245     unsigned NumElts =
4246         cast<FixedVectorType>(TrueC->getType())->getNumElements();
4247     SmallVector<Constant *, 16> NewC;
4248     for (unsigned i = 0; i != NumElts; ++i) {
4249       // Bail out on incomplete vector constants.
4250       Constant *TEltC = TrueC->getAggregateElement(i);
4251       Constant *FEltC = FalseC->getAggregateElement(i);
4252       if (!TEltC || !FEltC)
4253         break;
4254 
4255       // If the elements match (undef or not), that value is the result. If only
4256       // one element is undef, choose the defined element as the safe result.
4257       if (TEltC == FEltC)
4258         NewC.push_back(TEltC);
4259       else if (isa<PoisonValue>(TEltC) ||
4260                (Q.isUndefValue(TEltC) && isGuaranteedNotToBePoison(FEltC)))
4261         NewC.push_back(FEltC);
4262       else if (isa<PoisonValue>(FEltC) ||
4263                (Q.isUndefValue(FEltC) && isGuaranteedNotToBePoison(TEltC)))
4264         NewC.push_back(TEltC);
4265       else
4266         break;
4267     }
4268     if (NewC.size() == NumElts)
4269       return ConstantVector::get(NewC);
4270   }
4271 
4272   if (Value *V =
4273           simplifySelectWithICmpCond(Cond, TrueVal, FalseVal, Q, MaxRecurse))
4274     return V;
4275 
4276   if (Value *V = simplifySelectWithFCmp(Cond, TrueVal, FalseVal, Q))
4277     return V;
4278 
4279   if (Value *V = foldSelectWithBinaryOp(Cond, TrueVal, FalseVal))
4280     return V;
4281 
4282   Optional<bool> Imp = isImpliedByDomCondition(Cond, Q.CxtI, Q.DL);
4283   if (Imp)
4284     return *Imp ? TrueVal : FalseVal;
4285 
4286   return nullptr;
4287 }
4288 
4289 Value *llvm::SimplifySelectInst(Value *Cond, Value *TrueVal, Value *FalseVal,
4290                                 const SimplifyQuery &Q) {
4291   return ::SimplifySelectInst(Cond, TrueVal, FalseVal, Q, RecursionLimit);
4292 }
4293 
4294 /// Given operands for an GetElementPtrInst, see if we can fold the result.
4295 /// If not, this returns null.
4296 static Value *SimplifyGEPInst(Type *SrcTy, ArrayRef<Value *> Ops,
4297                               const SimplifyQuery &Q, unsigned) {
4298   // The type of the GEP pointer operand.
4299   unsigned AS =
4300       cast<PointerType>(Ops[0]->getType()->getScalarType())->getAddressSpace();
4301 
4302   // getelementptr P -> P.
4303   if (Ops.size() == 1)
4304     return Ops[0];
4305 
4306   // Compute the (pointer) type returned by the GEP instruction.
4307   Type *LastType = GetElementPtrInst::getIndexedType(SrcTy, Ops.slice(1));
4308   Type *GEPTy = PointerType::get(LastType, AS);
4309   for (Value *Op : Ops) {
4310     // If one of the operands is a vector, the result type is a vector of
4311     // pointers. All vector operands must have the same number of elements.
4312     if (VectorType *VT = dyn_cast<VectorType>(Op->getType())) {
4313       GEPTy = VectorType::get(GEPTy, VT->getElementCount());
4314       break;
4315     }
4316   }
4317 
4318   // getelementptr poison, idx -> poison
4319   // getelementptr baseptr, poison -> poison
4320   if (any_of(Ops, [](const auto *V) { return isa<PoisonValue>(V); }))
4321     return PoisonValue::get(GEPTy);
4322 
4323   if (Q.isUndefValue(Ops[0]))
4324     return UndefValue::get(GEPTy);
4325 
4326   bool IsScalableVec =
4327       isa<ScalableVectorType>(SrcTy) || any_of(Ops, [](const Value *V) {
4328         return isa<ScalableVectorType>(V->getType());
4329       });
4330 
4331   if (Ops.size() == 2) {
4332     // getelementptr P, 0 -> P.
4333     if (match(Ops[1], m_Zero()) && Ops[0]->getType() == GEPTy)
4334       return Ops[0];
4335 
4336     Type *Ty = SrcTy;
4337     if (!IsScalableVec && Ty->isSized()) {
4338       Value *P;
4339       uint64_t C;
4340       uint64_t TyAllocSize = Q.DL.getTypeAllocSize(Ty);
4341       // getelementptr P, N -> P if P points to a type of zero size.
4342       if (TyAllocSize == 0 && Ops[0]->getType() == GEPTy)
4343         return Ops[0];
4344 
4345       // The following transforms are only safe if the ptrtoint cast
4346       // doesn't truncate the pointers.
4347       if (Ops[1]->getType()->getScalarSizeInBits() ==
4348           Q.DL.getPointerSizeInBits(AS)) {
4349         auto CanSimplify = [GEPTy, &P, V = Ops[0]]() -> bool {
4350           return P->getType() == GEPTy &&
4351                  getUnderlyingObject(P) == getUnderlyingObject(V);
4352         };
4353         // getelementptr V, (sub P, V) -> P if P points to a type of size 1.
4354         if (TyAllocSize == 1 &&
4355             match(Ops[1], m_Sub(m_PtrToInt(m_Value(P)),
4356                                 m_PtrToInt(m_Specific(Ops[0])))) &&
4357             CanSimplify())
4358           return P;
4359 
4360         // getelementptr V, (ashr (sub P, V), C) -> P if P points to a type of
4361         // size 1 << C.
4362         if (match(Ops[1], m_AShr(m_Sub(m_PtrToInt(m_Value(P)),
4363                                        m_PtrToInt(m_Specific(Ops[0]))),
4364                                  m_ConstantInt(C))) &&
4365             TyAllocSize == 1ULL << C && CanSimplify())
4366           return P;
4367 
4368         // getelementptr V, (sdiv (sub P, V), C) -> P if P points to a type of
4369         // size C.
4370         if (match(Ops[1], m_SDiv(m_Sub(m_PtrToInt(m_Value(P)),
4371                                        m_PtrToInt(m_Specific(Ops[0]))),
4372                                  m_SpecificInt(TyAllocSize))) &&
4373             CanSimplify())
4374           return P;
4375       }
4376     }
4377   }
4378 
4379   if (!IsScalableVec && Q.DL.getTypeAllocSize(LastType) == 1 &&
4380       all_of(Ops.slice(1).drop_back(1),
4381              [](Value *Idx) { return match(Idx, m_Zero()); })) {
4382     unsigned IdxWidth =
4383         Q.DL.getIndexSizeInBits(Ops[0]->getType()->getPointerAddressSpace());
4384     if (Q.DL.getTypeSizeInBits(Ops.back()->getType()) == IdxWidth) {
4385       APInt BasePtrOffset(IdxWidth, 0);
4386       Value *StrippedBasePtr =
4387           Ops[0]->stripAndAccumulateInBoundsConstantOffsets(Q.DL,
4388                                                             BasePtrOffset);
4389 
4390       // Avoid creating inttoptr of zero here: While LLVMs treatment of
4391       // inttoptr is generally conservative, this particular case is folded to
4392       // a null pointer, which will have incorrect provenance.
4393 
4394       // gep (gep V, C), (sub 0, V) -> C
4395       if (match(Ops.back(),
4396                 m_Sub(m_Zero(), m_PtrToInt(m_Specific(StrippedBasePtr)))) &&
4397           !BasePtrOffset.isNullValue()) {
4398         auto *CI = ConstantInt::get(GEPTy->getContext(), BasePtrOffset);
4399         return ConstantExpr::getIntToPtr(CI, GEPTy);
4400       }
4401       // gep (gep V, C), (xor V, -1) -> C-1
4402       if (match(Ops.back(),
4403                 m_Xor(m_PtrToInt(m_Specific(StrippedBasePtr)), m_AllOnes())) &&
4404           !BasePtrOffset.isOneValue()) {
4405         auto *CI = ConstantInt::get(GEPTy->getContext(), BasePtrOffset - 1);
4406         return ConstantExpr::getIntToPtr(CI, GEPTy);
4407       }
4408     }
4409   }
4410 
4411   // Check to see if this is constant foldable.
4412   if (!all_of(Ops, [](Value *V) { return isa<Constant>(V); }))
4413     return nullptr;
4414 
4415   auto *CE = ConstantExpr::getGetElementPtr(SrcTy, cast<Constant>(Ops[0]),
4416                                             Ops.slice(1));
4417   return ConstantFoldConstant(CE, Q.DL);
4418 }
4419 
4420 Value *llvm::SimplifyGEPInst(Type *SrcTy, ArrayRef<Value *> Ops,
4421                              const SimplifyQuery &Q) {
4422   return ::SimplifyGEPInst(SrcTy, Ops, Q, RecursionLimit);
4423 }
4424 
4425 /// Given operands for an InsertValueInst, see if we can fold the result.
4426 /// If not, this returns null.
4427 static Value *SimplifyInsertValueInst(Value *Agg, Value *Val,
4428                                       ArrayRef<unsigned> Idxs, const SimplifyQuery &Q,
4429                                       unsigned) {
4430   if (Constant *CAgg = dyn_cast<Constant>(Agg))
4431     if (Constant *CVal = dyn_cast<Constant>(Val))
4432       return ConstantFoldInsertValueInstruction(CAgg, CVal, Idxs);
4433 
4434   // insertvalue x, undef, n -> x
4435   if (Q.isUndefValue(Val))
4436     return Agg;
4437 
4438   // insertvalue x, (extractvalue y, n), n
4439   if (ExtractValueInst *EV = dyn_cast<ExtractValueInst>(Val))
4440     if (EV->getAggregateOperand()->getType() == Agg->getType() &&
4441         EV->getIndices() == Idxs) {
4442       // insertvalue undef, (extractvalue y, n), n -> y
4443       if (Q.isUndefValue(Agg))
4444         return EV->getAggregateOperand();
4445 
4446       // insertvalue y, (extractvalue y, n), n -> y
4447       if (Agg == EV->getAggregateOperand())
4448         return Agg;
4449     }
4450 
4451   return nullptr;
4452 }
4453 
4454 Value *llvm::SimplifyInsertValueInst(Value *Agg, Value *Val,
4455                                      ArrayRef<unsigned> Idxs,
4456                                      const SimplifyQuery &Q) {
4457   return ::SimplifyInsertValueInst(Agg, Val, Idxs, Q, RecursionLimit);
4458 }
4459 
4460 Value *llvm::SimplifyInsertElementInst(Value *Vec, Value *Val, Value *Idx,
4461                                        const SimplifyQuery &Q) {
4462   // Try to constant fold.
4463   auto *VecC = dyn_cast<Constant>(Vec);
4464   auto *ValC = dyn_cast<Constant>(Val);
4465   auto *IdxC = dyn_cast<Constant>(Idx);
4466   if (VecC && ValC && IdxC)
4467     return ConstantExpr::getInsertElement(VecC, ValC, IdxC);
4468 
4469   // For fixed-length vector, fold into poison if index is out of bounds.
4470   if (auto *CI = dyn_cast<ConstantInt>(Idx)) {
4471     if (isa<FixedVectorType>(Vec->getType()) &&
4472         CI->uge(cast<FixedVectorType>(Vec->getType())->getNumElements()))
4473       return PoisonValue::get(Vec->getType());
4474   }
4475 
4476   // If index is undef, it might be out of bounds (see above case)
4477   if (Q.isUndefValue(Idx))
4478     return PoisonValue::get(Vec->getType());
4479 
4480   // If the scalar is poison, or it is undef and there is no risk of
4481   // propagating poison from the vector value, simplify to the vector value.
4482   if (isa<PoisonValue>(Val) ||
4483       (Q.isUndefValue(Val) && isGuaranteedNotToBePoison(Vec)))
4484     return Vec;
4485 
4486   // If we are extracting a value from a vector, then inserting it into the same
4487   // place, that's the input vector:
4488   // insertelt Vec, (extractelt Vec, Idx), Idx --> Vec
4489   if (match(Val, m_ExtractElt(m_Specific(Vec), m_Specific(Idx))))
4490     return Vec;
4491 
4492   return nullptr;
4493 }
4494 
4495 /// Given operands for an ExtractValueInst, see if we can fold the result.
4496 /// If not, this returns null.
4497 static Value *SimplifyExtractValueInst(Value *Agg, ArrayRef<unsigned> Idxs,
4498                                        const SimplifyQuery &, unsigned) {
4499   if (auto *CAgg = dyn_cast<Constant>(Agg))
4500     return ConstantFoldExtractValueInstruction(CAgg, Idxs);
4501 
4502   // extractvalue x, (insertvalue y, elt, n), n -> elt
4503   unsigned NumIdxs = Idxs.size();
4504   for (auto *IVI = dyn_cast<InsertValueInst>(Agg); IVI != nullptr;
4505        IVI = dyn_cast<InsertValueInst>(IVI->getAggregateOperand())) {
4506     ArrayRef<unsigned> InsertValueIdxs = IVI->getIndices();
4507     unsigned NumInsertValueIdxs = InsertValueIdxs.size();
4508     unsigned NumCommonIdxs = std::min(NumInsertValueIdxs, NumIdxs);
4509     if (InsertValueIdxs.slice(0, NumCommonIdxs) ==
4510         Idxs.slice(0, NumCommonIdxs)) {
4511       if (NumIdxs == NumInsertValueIdxs)
4512         return IVI->getInsertedValueOperand();
4513       break;
4514     }
4515   }
4516 
4517   return nullptr;
4518 }
4519 
4520 Value *llvm::SimplifyExtractValueInst(Value *Agg, ArrayRef<unsigned> Idxs,
4521                                       const SimplifyQuery &Q) {
4522   return ::SimplifyExtractValueInst(Agg, Idxs, Q, RecursionLimit);
4523 }
4524 
4525 /// Given operands for an ExtractElementInst, see if we can fold the result.
4526 /// If not, this returns null.
4527 static Value *SimplifyExtractElementInst(Value *Vec, Value *Idx,
4528                                          const SimplifyQuery &Q, unsigned) {
4529   auto *VecVTy = cast<VectorType>(Vec->getType());
4530   if (auto *CVec = dyn_cast<Constant>(Vec)) {
4531     if (auto *CIdx = dyn_cast<Constant>(Idx))
4532       return ConstantExpr::getExtractElement(CVec, CIdx);
4533 
4534     // The index is not relevant if our vector is a splat.
4535     if (auto *Splat = CVec->getSplatValue())
4536       return Splat;
4537 
4538     if (Q.isUndefValue(Vec))
4539       return UndefValue::get(VecVTy->getElementType());
4540   }
4541 
4542   // An undef extract index can be arbitrarily chosen to be an out-of-range
4543   // index value, which would result in the instruction being poison.
4544   if (Q.isUndefValue(Idx))
4545     return PoisonValue::get(VecVTy->getElementType());
4546 
4547   // If extracting a specified index from the vector, see if we can recursively
4548   // find a previously computed scalar that was inserted into the vector.
4549   if (auto *IdxC = dyn_cast<ConstantInt>(Idx)) {
4550     // For fixed-length vector, fold into undef if index is out of bounds.
4551     unsigned MinNumElts = VecVTy->getElementCount().getKnownMinValue();
4552     if (isa<FixedVectorType>(VecVTy) && IdxC->getValue().uge(MinNumElts))
4553       return PoisonValue::get(VecVTy->getElementType());
4554     // Handle case where an element is extracted from a splat.
4555     if (IdxC->getValue().ult(MinNumElts))
4556       if (auto *Splat = getSplatValue(Vec))
4557         return Splat;
4558     if (Value *Elt = findScalarElement(Vec, IdxC->getZExtValue()))
4559       return Elt;
4560   }
4561   return nullptr;
4562 }
4563 
4564 Value *llvm::SimplifyExtractElementInst(Value *Vec, Value *Idx,
4565                                         const SimplifyQuery &Q) {
4566   return ::SimplifyExtractElementInst(Vec, Idx, Q, RecursionLimit);
4567 }
4568 
4569 /// See if we can fold the given phi. If not, returns null.
4570 static Value *SimplifyPHINode(PHINode *PN, const SimplifyQuery &Q) {
4571   // WARNING: no matter how worthwhile it may seem, we can not perform PHI CSE
4572   //          here, because the PHI we may succeed simplifying to was not
4573   //          def-reachable from the original PHI!
4574 
4575   // If all of the PHI's incoming values are the same then replace the PHI node
4576   // with the common value.
4577   Value *CommonValue = nullptr;
4578   bool HasUndefInput = false;
4579   for (Value *Incoming : PN->incoming_values()) {
4580     // If the incoming value is the phi node itself, it can safely be skipped.
4581     if (Incoming == PN) continue;
4582     if (Q.isUndefValue(Incoming)) {
4583       // Remember that we saw an undef value, but otherwise ignore them.
4584       HasUndefInput = true;
4585       continue;
4586     }
4587     if (CommonValue && Incoming != CommonValue)
4588       return nullptr;  // Not the same, bail out.
4589     CommonValue = Incoming;
4590   }
4591 
4592   // If CommonValue is null then all of the incoming values were either undef or
4593   // equal to the phi node itself.
4594   if (!CommonValue)
4595     return UndefValue::get(PN->getType());
4596 
4597   // If we have a PHI node like phi(X, undef, X), where X is defined by some
4598   // instruction, we cannot return X as the result of the PHI node unless it
4599   // dominates the PHI block.
4600   if (HasUndefInput)
4601     return valueDominatesPHI(CommonValue, PN, Q.DT) ? CommonValue : nullptr;
4602 
4603   return CommonValue;
4604 }
4605 
4606 static Value *SimplifyCastInst(unsigned CastOpc, Value *Op,
4607                                Type *Ty, const SimplifyQuery &Q, unsigned MaxRecurse) {
4608   if (auto *C = dyn_cast<Constant>(Op))
4609     return ConstantFoldCastOperand(CastOpc, C, Ty, Q.DL);
4610 
4611   if (auto *CI = dyn_cast<CastInst>(Op)) {
4612     auto *Src = CI->getOperand(0);
4613     Type *SrcTy = Src->getType();
4614     Type *MidTy = CI->getType();
4615     Type *DstTy = Ty;
4616     if (Src->getType() == Ty) {
4617       auto FirstOp = static_cast<Instruction::CastOps>(CI->getOpcode());
4618       auto SecondOp = static_cast<Instruction::CastOps>(CastOpc);
4619       Type *SrcIntPtrTy =
4620           SrcTy->isPtrOrPtrVectorTy() ? Q.DL.getIntPtrType(SrcTy) : nullptr;
4621       Type *MidIntPtrTy =
4622           MidTy->isPtrOrPtrVectorTy() ? Q.DL.getIntPtrType(MidTy) : nullptr;
4623       Type *DstIntPtrTy =
4624           DstTy->isPtrOrPtrVectorTy() ? Q.DL.getIntPtrType(DstTy) : nullptr;
4625       if (CastInst::isEliminableCastPair(FirstOp, SecondOp, SrcTy, MidTy, DstTy,
4626                                          SrcIntPtrTy, MidIntPtrTy,
4627                                          DstIntPtrTy) == Instruction::BitCast)
4628         return Src;
4629     }
4630   }
4631 
4632   // bitcast x -> x
4633   if (CastOpc == Instruction::BitCast)
4634     if (Op->getType() == Ty)
4635       return Op;
4636 
4637   return nullptr;
4638 }
4639 
4640 Value *llvm::SimplifyCastInst(unsigned CastOpc, Value *Op, Type *Ty,
4641                               const SimplifyQuery &Q) {
4642   return ::SimplifyCastInst(CastOpc, Op, Ty, Q, RecursionLimit);
4643 }
4644 
4645 /// For the given destination element of a shuffle, peek through shuffles to
4646 /// match a root vector source operand that contains that element in the same
4647 /// vector lane (ie, the same mask index), so we can eliminate the shuffle(s).
4648 static Value *foldIdentityShuffles(int DestElt, Value *Op0, Value *Op1,
4649                                    int MaskVal, Value *RootVec,
4650                                    unsigned MaxRecurse) {
4651   if (!MaxRecurse--)
4652     return nullptr;
4653 
4654   // Bail out if any mask value is undefined. That kind of shuffle may be
4655   // simplified further based on demanded bits or other folds.
4656   if (MaskVal == -1)
4657     return nullptr;
4658 
4659   // The mask value chooses which source operand we need to look at next.
4660   int InVecNumElts = cast<FixedVectorType>(Op0->getType())->getNumElements();
4661   int RootElt = MaskVal;
4662   Value *SourceOp = Op0;
4663   if (MaskVal >= InVecNumElts) {
4664     RootElt = MaskVal - InVecNumElts;
4665     SourceOp = Op1;
4666   }
4667 
4668   // If the source operand is a shuffle itself, look through it to find the
4669   // matching root vector.
4670   if (auto *SourceShuf = dyn_cast<ShuffleVectorInst>(SourceOp)) {
4671     return foldIdentityShuffles(
4672         DestElt, SourceShuf->getOperand(0), SourceShuf->getOperand(1),
4673         SourceShuf->getMaskValue(RootElt), RootVec, MaxRecurse);
4674   }
4675 
4676   // TODO: Look through bitcasts? What if the bitcast changes the vector element
4677   // size?
4678 
4679   // The source operand is not a shuffle. Initialize the root vector value for
4680   // this shuffle if that has not been done yet.
4681   if (!RootVec)
4682     RootVec = SourceOp;
4683 
4684   // Give up as soon as a source operand does not match the existing root value.
4685   if (RootVec != SourceOp)
4686     return nullptr;
4687 
4688   // The element must be coming from the same lane in the source vector
4689   // (although it may have crossed lanes in intermediate shuffles).
4690   if (RootElt != DestElt)
4691     return nullptr;
4692 
4693   return RootVec;
4694 }
4695 
4696 static Value *SimplifyShuffleVectorInst(Value *Op0, Value *Op1,
4697                                         ArrayRef<int> Mask, Type *RetTy,
4698                                         const SimplifyQuery &Q,
4699                                         unsigned MaxRecurse) {
4700   if (all_of(Mask, [](int Elem) { return Elem == UndefMaskElem; }))
4701     return UndefValue::get(RetTy);
4702 
4703   auto *InVecTy = cast<VectorType>(Op0->getType());
4704   unsigned MaskNumElts = Mask.size();
4705   ElementCount InVecEltCount = InVecTy->getElementCount();
4706 
4707   bool Scalable = InVecEltCount.isScalable();
4708 
4709   SmallVector<int, 32> Indices;
4710   Indices.assign(Mask.begin(), Mask.end());
4711 
4712   // Canonicalization: If mask does not select elements from an input vector,
4713   // replace that input vector with poison.
4714   if (!Scalable) {
4715     bool MaskSelects0 = false, MaskSelects1 = false;
4716     unsigned InVecNumElts = InVecEltCount.getKnownMinValue();
4717     for (unsigned i = 0; i != MaskNumElts; ++i) {
4718       if (Indices[i] == -1)
4719         continue;
4720       if ((unsigned)Indices[i] < InVecNumElts)
4721         MaskSelects0 = true;
4722       else
4723         MaskSelects1 = true;
4724     }
4725     if (!MaskSelects0)
4726       Op0 = PoisonValue::get(InVecTy);
4727     if (!MaskSelects1)
4728       Op1 = PoisonValue::get(InVecTy);
4729   }
4730 
4731   auto *Op0Const = dyn_cast<Constant>(Op0);
4732   auto *Op1Const = dyn_cast<Constant>(Op1);
4733 
4734   // If all operands are constant, constant fold the shuffle. This
4735   // transformation depends on the value of the mask which is not known at
4736   // compile time for scalable vectors
4737   if (Op0Const && Op1Const)
4738     return ConstantExpr::getShuffleVector(Op0Const, Op1Const, Mask);
4739 
4740   // Canonicalization: if only one input vector is constant, it shall be the
4741   // second one. This transformation depends on the value of the mask which
4742   // is not known at compile time for scalable vectors
4743   if (!Scalable && Op0Const && !Op1Const) {
4744     std::swap(Op0, Op1);
4745     ShuffleVectorInst::commuteShuffleMask(Indices,
4746                                           InVecEltCount.getKnownMinValue());
4747   }
4748 
4749   // A splat of an inserted scalar constant becomes a vector constant:
4750   // shuf (inselt ?, C, IndexC), undef, <IndexC, IndexC...> --> <C, C...>
4751   // NOTE: We may have commuted above, so analyze the updated Indices, not the
4752   //       original mask constant.
4753   // NOTE: This transformation depends on the value of the mask which is not
4754   // known at compile time for scalable vectors
4755   Constant *C;
4756   ConstantInt *IndexC;
4757   if (!Scalable && match(Op0, m_InsertElt(m_Value(), m_Constant(C),
4758                                           m_ConstantInt(IndexC)))) {
4759     // Match a splat shuffle mask of the insert index allowing undef elements.
4760     int InsertIndex = IndexC->getZExtValue();
4761     if (all_of(Indices, [InsertIndex](int MaskElt) {
4762           return MaskElt == InsertIndex || MaskElt == -1;
4763         })) {
4764       assert(isa<UndefValue>(Op1) && "Expected undef operand 1 for splat");
4765 
4766       // Shuffle mask undefs become undefined constant result elements.
4767       SmallVector<Constant *, 16> VecC(MaskNumElts, C);
4768       for (unsigned i = 0; i != MaskNumElts; ++i)
4769         if (Indices[i] == -1)
4770           VecC[i] = UndefValue::get(C->getType());
4771       return ConstantVector::get(VecC);
4772     }
4773   }
4774 
4775   // A shuffle of a splat is always the splat itself. Legal if the shuffle's
4776   // value type is same as the input vectors' type.
4777   if (auto *OpShuf = dyn_cast<ShuffleVectorInst>(Op0))
4778     if (Q.isUndefValue(Op1) && RetTy == InVecTy &&
4779         is_splat(OpShuf->getShuffleMask()))
4780       return Op0;
4781 
4782   // All remaining transformation depend on the value of the mask, which is
4783   // not known at compile time for scalable vectors.
4784   if (Scalable)
4785     return nullptr;
4786 
4787   // Don't fold a shuffle with undef mask elements. This may get folded in a
4788   // better way using demanded bits or other analysis.
4789   // TODO: Should we allow this?
4790   if (is_contained(Indices, -1))
4791     return nullptr;
4792 
4793   // Check if every element of this shuffle can be mapped back to the
4794   // corresponding element of a single root vector. If so, we don't need this
4795   // shuffle. This handles simple identity shuffles as well as chains of
4796   // shuffles that may widen/narrow and/or move elements across lanes and back.
4797   Value *RootVec = nullptr;
4798   for (unsigned i = 0; i != MaskNumElts; ++i) {
4799     // Note that recursion is limited for each vector element, so if any element
4800     // exceeds the limit, this will fail to simplify.
4801     RootVec =
4802         foldIdentityShuffles(i, Op0, Op1, Indices[i], RootVec, MaxRecurse);
4803 
4804     // We can't replace a widening/narrowing shuffle with one of its operands.
4805     if (!RootVec || RootVec->getType() != RetTy)
4806       return nullptr;
4807   }
4808   return RootVec;
4809 }
4810 
4811 /// Given operands for a ShuffleVectorInst, fold the result or return null.
4812 Value *llvm::SimplifyShuffleVectorInst(Value *Op0, Value *Op1,
4813                                        ArrayRef<int> Mask, Type *RetTy,
4814                                        const SimplifyQuery &Q) {
4815   return ::SimplifyShuffleVectorInst(Op0, Op1, Mask, RetTy, Q, RecursionLimit);
4816 }
4817 
4818 static Constant *foldConstant(Instruction::UnaryOps Opcode,
4819                               Value *&Op, const SimplifyQuery &Q) {
4820   if (auto *C = dyn_cast<Constant>(Op))
4821     return ConstantFoldUnaryOpOperand(Opcode, C, Q.DL);
4822   return nullptr;
4823 }
4824 
4825 /// Given the operand for an FNeg, see if we can fold the result.  If not, this
4826 /// returns null.
4827 static Value *simplifyFNegInst(Value *Op, FastMathFlags FMF,
4828                                const SimplifyQuery &Q, unsigned MaxRecurse) {
4829   if (Constant *C = foldConstant(Instruction::FNeg, Op, Q))
4830     return C;
4831 
4832   Value *X;
4833   // fneg (fneg X) ==> X
4834   if (match(Op, m_FNeg(m_Value(X))))
4835     return X;
4836 
4837   return nullptr;
4838 }
4839 
4840 Value *llvm::SimplifyFNegInst(Value *Op, FastMathFlags FMF,
4841                               const SimplifyQuery &Q) {
4842   return ::simplifyFNegInst(Op, FMF, Q, RecursionLimit);
4843 }
4844 
4845 static Constant *propagateNaN(Constant *In) {
4846   // If the input is a vector with undef elements, just return a default NaN.
4847   if (!In->isNaN())
4848     return ConstantFP::getNaN(In->getType());
4849 
4850   // Propagate the existing NaN constant when possible.
4851   // TODO: Should we quiet a signaling NaN?
4852   return In;
4853 }
4854 
4855 /// Perform folds that are common to any floating-point operation. This implies
4856 /// transforms based on poison/undef/NaN because the operation itself makes no
4857 /// difference to the result.
4858 static Constant *simplifyFPOp(ArrayRef<Value *> Ops, FastMathFlags FMF,
4859                               const SimplifyQuery &Q) {
4860   for (Value *V : Ops) {
4861     // Poison is independent of anything else. It always propagates from an
4862     // operand to a math result.
4863     if (match(V, m_Poison()))
4864       return PoisonValue::get(V->getType());
4865 
4866     bool IsNan = match(V, m_NaN());
4867     bool IsInf = match(V, m_Inf());
4868     bool IsUndef = Q.isUndefValue(V);
4869 
4870     // If this operation has 'nnan' or 'ninf' and at least 1 disallowed operand
4871     // (an undef operand can be chosen to be Nan/Inf), then the result of
4872     // this operation is poison.
4873     if (FMF.noNaNs() && (IsNan || IsUndef))
4874       return PoisonValue::get(V->getType());
4875     if (FMF.noInfs() && (IsInf || IsUndef))
4876       return PoisonValue::get(V->getType());
4877 
4878     if (IsUndef || IsNan)
4879       return propagateNaN(cast<Constant>(V));
4880   }
4881   return nullptr;
4882 }
4883 
4884 /// Given operands for an FAdd, see if we can fold the result.  If not, this
4885 /// returns null.
4886 static Value *SimplifyFAddInst(Value *Op0, Value *Op1, FastMathFlags FMF,
4887                                const SimplifyQuery &Q, unsigned MaxRecurse) {
4888   if (Constant *C = foldOrCommuteConstant(Instruction::FAdd, Op0, Op1, Q))
4889     return C;
4890 
4891   if (Constant *C = simplifyFPOp({Op0, Op1}, FMF, Q))
4892     return C;
4893 
4894   // fadd X, -0 ==> X
4895   if (match(Op1, m_NegZeroFP()))
4896     return Op0;
4897 
4898   // fadd X, 0 ==> X, when we know X is not -0
4899   if (match(Op1, m_PosZeroFP()) &&
4900       (FMF.noSignedZeros() || CannotBeNegativeZero(Op0, Q.TLI)))
4901     return Op0;
4902 
4903   // With nnan: -X + X --> 0.0 (and commuted variant)
4904   // We don't have to explicitly exclude infinities (ninf): INF + -INF == NaN.
4905   // Negative zeros are allowed because we always end up with positive zero:
4906   // X = -0.0: (-0.0 - (-0.0)) + (-0.0) == ( 0.0) + (-0.0) == 0.0
4907   // X = -0.0: ( 0.0 - (-0.0)) + (-0.0) == ( 0.0) + (-0.0) == 0.0
4908   // X =  0.0: (-0.0 - ( 0.0)) + ( 0.0) == (-0.0) + ( 0.0) == 0.0
4909   // X =  0.0: ( 0.0 - ( 0.0)) + ( 0.0) == ( 0.0) + ( 0.0) == 0.0
4910   if (FMF.noNaNs()) {
4911     if (match(Op0, m_FSub(m_AnyZeroFP(), m_Specific(Op1))) ||
4912         match(Op1, m_FSub(m_AnyZeroFP(), m_Specific(Op0))))
4913       return ConstantFP::getNullValue(Op0->getType());
4914 
4915     if (match(Op0, m_FNeg(m_Specific(Op1))) ||
4916         match(Op1, m_FNeg(m_Specific(Op0))))
4917       return ConstantFP::getNullValue(Op0->getType());
4918   }
4919 
4920   // (X - Y) + Y --> X
4921   // Y + (X - Y) --> X
4922   Value *X;
4923   if (FMF.noSignedZeros() && FMF.allowReassoc() &&
4924       (match(Op0, m_FSub(m_Value(X), m_Specific(Op1))) ||
4925        match(Op1, m_FSub(m_Value(X), m_Specific(Op0)))))
4926     return X;
4927 
4928   return nullptr;
4929 }
4930 
4931 /// Given operands for an FSub, see if we can fold the result.  If not, this
4932 /// returns null.
4933 static Value *SimplifyFSubInst(Value *Op0, Value *Op1, FastMathFlags FMF,
4934                                const SimplifyQuery &Q, unsigned MaxRecurse) {
4935   if (Constant *C = foldOrCommuteConstant(Instruction::FSub, Op0, Op1, Q))
4936     return C;
4937 
4938   if (Constant *C = simplifyFPOp({Op0, Op1}, FMF, Q))
4939     return C;
4940 
4941   // fsub X, +0 ==> X
4942   if (match(Op1, m_PosZeroFP()))
4943     return Op0;
4944 
4945   // fsub X, -0 ==> X, when we know X is not -0
4946   if (match(Op1, m_NegZeroFP()) &&
4947       (FMF.noSignedZeros() || CannotBeNegativeZero(Op0, Q.TLI)))
4948     return Op0;
4949 
4950   // fsub -0.0, (fsub -0.0, X) ==> X
4951   // fsub -0.0, (fneg X) ==> X
4952   Value *X;
4953   if (match(Op0, m_NegZeroFP()) &&
4954       match(Op1, m_FNeg(m_Value(X))))
4955     return X;
4956 
4957   // fsub 0.0, (fsub 0.0, X) ==> X if signed zeros are ignored.
4958   // fsub 0.0, (fneg X) ==> X if signed zeros are ignored.
4959   if (FMF.noSignedZeros() && match(Op0, m_AnyZeroFP()) &&
4960       (match(Op1, m_FSub(m_AnyZeroFP(), m_Value(X))) ||
4961        match(Op1, m_FNeg(m_Value(X)))))
4962     return X;
4963 
4964   // fsub nnan x, x ==> 0.0
4965   if (FMF.noNaNs() && Op0 == Op1)
4966     return Constant::getNullValue(Op0->getType());
4967 
4968   // Y - (Y - X) --> X
4969   // (X + Y) - Y --> X
4970   if (FMF.noSignedZeros() && FMF.allowReassoc() &&
4971       (match(Op1, m_FSub(m_Specific(Op0), m_Value(X))) ||
4972        match(Op0, m_c_FAdd(m_Specific(Op1), m_Value(X)))))
4973     return X;
4974 
4975   return nullptr;
4976 }
4977 
4978 static Value *SimplifyFMAFMul(Value *Op0, Value *Op1, FastMathFlags FMF,
4979                               const SimplifyQuery &Q, unsigned MaxRecurse) {
4980   if (Constant *C = simplifyFPOp({Op0, Op1}, FMF, Q))
4981     return C;
4982 
4983   // fmul X, 1.0 ==> X
4984   if (match(Op1, m_FPOne()))
4985     return Op0;
4986 
4987   // fmul 1.0, X ==> X
4988   if (match(Op0, m_FPOne()))
4989     return Op1;
4990 
4991   // fmul nnan nsz X, 0 ==> 0
4992   if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op1, m_AnyZeroFP()))
4993     return ConstantFP::getNullValue(Op0->getType());
4994 
4995   // fmul nnan nsz 0, X ==> 0
4996   if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op0, m_AnyZeroFP()))
4997     return ConstantFP::getNullValue(Op1->getType());
4998 
4999   // sqrt(X) * sqrt(X) --> X, if we can:
5000   // 1. Remove the intermediate rounding (reassociate).
5001   // 2. Ignore non-zero negative numbers because sqrt would produce NAN.
5002   // 3. Ignore -0.0 because sqrt(-0.0) == -0.0, but -0.0 * -0.0 == 0.0.
5003   Value *X;
5004   if (Op0 == Op1 && match(Op0, m_Intrinsic<Intrinsic::sqrt>(m_Value(X))) &&
5005       FMF.allowReassoc() && FMF.noNaNs() && FMF.noSignedZeros())
5006     return X;
5007 
5008   return nullptr;
5009 }
5010 
5011 /// Given the operands for an FMul, see if we can fold the result
5012 static Value *SimplifyFMulInst(Value *Op0, Value *Op1, FastMathFlags FMF,
5013                                const SimplifyQuery &Q, unsigned MaxRecurse) {
5014   if (Constant *C = foldOrCommuteConstant(Instruction::FMul, Op0, Op1, Q))
5015     return C;
5016 
5017   // Now apply simplifications that do not require rounding.
5018   return SimplifyFMAFMul(Op0, Op1, FMF, Q, MaxRecurse);
5019 }
5020 
5021 Value *llvm::SimplifyFAddInst(Value *Op0, Value *Op1, FastMathFlags FMF,
5022                               const SimplifyQuery &Q) {
5023   return ::SimplifyFAddInst(Op0, Op1, FMF, Q, RecursionLimit);
5024 }
5025 
5026 
5027 Value *llvm::SimplifyFSubInst(Value *Op0, Value *Op1, FastMathFlags FMF,
5028                               const SimplifyQuery &Q) {
5029   return ::SimplifyFSubInst(Op0, Op1, FMF, Q, RecursionLimit);
5030 }
5031 
5032 Value *llvm::SimplifyFMulInst(Value *Op0, Value *Op1, FastMathFlags FMF,
5033                               const SimplifyQuery &Q) {
5034   return ::SimplifyFMulInst(Op0, Op1, FMF, Q, RecursionLimit);
5035 }
5036 
5037 Value *llvm::SimplifyFMAFMul(Value *Op0, Value *Op1, FastMathFlags FMF,
5038                              const SimplifyQuery &Q) {
5039   return ::SimplifyFMAFMul(Op0, Op1, FMF, Q, RecursionLimit);
5040 }
5041 
5042 static Value *SimplifyFDivInst(Value *Op0, Value *Op1, FastMathFlags FMF,
5043                                const SimplifyQuery &Q, unsigned) {
5044   if (Constant *C = foldOrCommuteConstant(Instruction::FDiv, Op0, Op1, Q))
5045     return C;
5046 
5047   if (Constant *C = simplifyFPOp({Op0, Op1}, FMF, Q))
5048     return C;
5049 
5050   // X / 1.0 -> X
5051   if (match(Op1, m_FPOne()))
5052     return Op0;
5053 
5054   // 0 / X -> 0
5055   // Requires that NaNs are off (X could be zero) and signed zeroes are
5056   // ignored (X could be positive or negative, so the output sign is unknown).
5057   if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op0, m_AnyZeroFP()))
5058     return ConstantFP::getNullValue(Op0->getType());
5059 
5060   if (FMF.noNaNs()) {
5061     // X / X -> 1.0 is legal when NaNs are ignored.
5062     // We can ignore infinities because INF/INF is NaN.
5063     if (Op0 == Op1)
5064       return ConstantFP::get(Op0->getType(), 1.0);
5065 
5066     // (X * Y) / Y --> X if we can reassociate to the above form.
5067     Value *X;
5068     if (FMF.allowReassoc() && match(Op0, m_c_FMul(m_Value(X), m_Specific(Op1))))
5069       return X;
5070 
5071     // -X /  X -> -1.0 and
5072     //  X / -X -> -1.0 are legal when NaNs are ignored.
5073     // We can ignore signed zeros because +-0.0/+-0.0 is NaN and ignored.
5074     if (match(Op0, m_FNegNSZ(m_Specific(Op1))) ||
5075         match(Op1, m_FNegNSZ(m_Specific(Op0))))
5076       return ConstantFP::get(Op0->getType(), -1.0);
5077   }
5078 
5079   return nullptr;
5080 }
5081 
5082 Value *llvm::SimplifyFDivInst(Value *Op0, Value *Op1, FastMathFlags FMF,
5083                               const SimplifyQuery &Q) {
5084   return ::SimplifyFDivInst(Op0, Op1, FMF, Q, RecursionLimit);
5085 }
5086 
5087 static Value *SimplifyFRemInst(Value *Op0, Value *Op1, FastMathFlags FMF,
5088                                const SimplifyQuery &Q, unsigned) {
5089   if (Constant *C = foldOrCommuteConstant(Instruction::FRem, Op0, Op1, Q))
5090     return C;
5091 
5092   if (Constant *C = simplifyFPOp({Op0, Op1}, FMF, Q))
5093     return C;
5094 
5095   // Unlike fdiv, the result of frem always matches the sign of the dividend.
5096   // The constant match may include undef elements in a vector, so return a full
5097   // zero constant as the result.
5098   if (FMF.noNaNs()) {
5099     // +0 % X -> 0
5100     if (match(Op0, m_PosZeroFP()))
5101       return ConstantFP::getNullValue(Op0->getType());
5102     // -0 % X -> -0
5103     if (match(Op0, m_NegZeroFP()))
5104       return ConstantFP::getNegativeZero(Op0->getType());
5105   }
5106 
5107   return nullptr;
5108 }
5109 
5110 Value *llvm::SimplifyFRemInst(Value *Op0, Value *Op1, FastMathFlags FMF,
5111                               const SimplifyQuery &Q) {
5112   return ::SimplifyFRemInst(Op0, Op1, FMF, Q, RecursionLimit);
5113 }
5114 
5115 //=== Helper functions for higher up the class hierarchy.
5116 
5117 /// Given the operand for a UnaryOperator, see if we can fold the result.
5118 /// If not, this returns null.
5119 static Value *simplifyUnOp(unsigned Opcode, Value *Op, const SimplifyQuery &Q,
5120                            unsigned MaxRecurse) {
5121   switch (Opcode) {
5122   case Instruction::FNeg:
5123     return simplifyFNegInst(Op, FastMathFlags(), Q, MaxRecurse);
5124   default:
5125     llvm_unreachable("Unexpected opcode");
5126   }
5127 }
5128 
5129 /// Given the operand for a UnaryOperator, see if we can fold the result.
5130 /// If not, this returns null.
5131 /// Try to use FastMathFlags when folding the result.
5132 static Value *simplifyFPUnOp(unsigned Opcode, Value *Op,
5133                              const FastMathFlags &FMF,
5134                              const SimplifyQuery &Q, unsigned MaxRecurse) {
5135   switch (Opcode) {
5136   case Instruction::FNeg:
5137     return simplifyFNegInst(Op, FMF, Q, MaxRecurse);
5138   default:
5139     return simplifyUnOp(Opcode, Op, Q, MaxRecurse);
5140   }
5141 }
5142 
5143 Value *llvm::SimplifyUnOp(unsigned Opcode, Value *Op, const SimplifyQuery &Q) {
5144   return ::simplifyUnOp(Opcode, Op, Q, RecursionLimit);
5145 }
5146 
5147 Value *llvm::SimplifyUnOp(unsigned Opcode, Value *Op, FastMathFlags FMF,
5148                           const SimplifyQuery &Q) {
5149   return ::simplifyFPUnOp(Opcode, Op, FMF, Q, RecursionLimit);
5150 }
5151 
5152 /// Given operands for a BinaryOperator, see if we can fold the result.
5153 /// If not, this returns null.
5154 static Value *SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS,
5155                             const SimplifyQuery &Q, unsigned MaxRecurse) {
5156   switch (Opcode) {
5157   case Instruction::Add:
5158     return SimplifyAddInst(LHS, RHS, false, false, Q, MaxRecurse);
5159   case Instruction::Sub:
5160     return SimplifySubInst(LHS, RHS, false, false, Q, MaxRecurse);
5161   case Instruction::Mul:
5162     return SimplifyMulInst(LHS, RHS, Q, MaxRecurse);
5163   case Instruction::SDiv:
5164     return SimplifySDivInst(LHS, RHS, Q, MaxRecurse);
5165   case Instruction::UDiv:
5166     return SimplifyUDivInst(LHS, RHS, Q, MaxRecurse);
5167   case Instruction::SRem:
5168     return SimplifySRemInst(LHS, RHS, Q, MaxRecurse);
5169   case Instruction::URem:
5170     return SimplifyURemInst(LHS, RHS, Q, MaxRecurse);
5171   case Instruction::Shl:
5172     return SimplifyShlInst(LHS, RHS, false, false, Q, MaxRecurse);
5173   case Instruction::LShr:
5174     return SimplifyLShrInst(LHS, RHS, false, Q, MaxRecurse);
5175   case Instruction::AShr:
5176     return SimplifyAShrInst(LHS, RHS, false, Q, MaxRecurse);
5177   case Instruction::And:
5178     return SimplifyAndInst(LHS, RHS, Q, MaxRecurse);
5179   case Instruction::Or:
5180     return SimplifyOrInst(LHS, RHS, Q, MaxRecurse);
5181   case Instruction::Xor:
5182     return SimplifyXorInst(LHS, RHS, Q, MaxRecurse);
5183   case Instruction::FAdd:
5184     return SimplifyFAddInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse);
5185   case Instruction::FSub:
5186     return SimplifyFSubInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse);
5187   case Instruction::FMul:
5188     return SimplifyFMulInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse);
5189   case Instruction::FDiv:
5190     return SimplifyFDivInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse);
5191   case Instruction::FRem:
5192     return SimplifyFRemInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse);
5193   default:
5194     llvm_unreachable("Unexpected opcode");
5195   }
5196 }
5197 
5198 /// Given operands for a BinaryOperator, see if we can fold the result.
5199 /// If not, this returns null.
5200 /// Try to use FastMathFlags when folding the result.
5201 static Value *SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS,
5202                             const FastMathFlags &FMF, const SimplifyQuery &Q,
5203                             unsigned MaxRecurse) {
5204   switch (Opcode) {
5205   case Instruction::FAdd:
5206     return SimplifyFAddInst(LHS, RHS, FMF, Q, MaxRecurse);
5207   case Instruction::FSub:
5208     return SimplifyFSubInst(LHS, RHS, FMF, Q, MaxRecurse);
5209   case Instruction::FMul:
5210     return SimplifyFMulInst(LHS, RHS, FMF, Q, MaxRecurse);
5211   case Instruction::FDiv:
5212     return SimplifyFDivInst(LHS, RHS, FMF, Q, MaxRecurse);
5213   default:
5214     return SimplifyBinOp(Opcode, LHS, RHS, Q, MaxRecurse);
5215   }
5216 }
5217 
5218 Value *llvm::SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS,
5219                            const SimplifyQuery &Q) {
5220   return ::SimplifyBinOp(Opcode, LHS, RHS, Q, RecursionLimit);
5221 }
5222 
5223 Value *llvm::SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS,
5224                            FastMathFlags FMF, const SimplifyQuery &Q) {
5225   return ::SimplifyBinOp(Opcode, LHS, RHS, FMF, Q, RecursionLimit);
5226 }
5227 
5228 /// Given operands for a CmpInst, see if we can fold the result.
5229 static Value *SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
5230                               const SimplifyQuery &Q, unsigned MaxRecurse) {
5231   if (CmpInst::isIntPredicate((CmpInst::Predicate)Predicate))
5232     return SimplifyICmpInst(Predicate, LHS, RHS, Q, MaxRecurse);
5233   return SimplifyFCmpInst(Predicate, LHS, RHS, FastMathFlags(), Q, MaxRecurse);
5234 }
5235 
5236 Value *llvm::SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
5237                              const SimplifyQuery &Q) {
5238   return ::SimplifyCmpInst(Predicate, LHS, RHS, Q, RecursionLimit);
5239 }
5240 
5241 static bool IsIdempotent(Intrinsic::ID ID) {
5242   switch (ID) {
5243   default: return false;
5244 
5245   // Unary idempotent: f(f(x)) = f(x)
5246   case Intrinsic::fabs:
5247   case Intrinsic::floor:
5248   case Intrinsic::ceil:
5249   case Intrinsic::trunc:
5250   case Intrinsic::rint:
5251   case Intrinsic::nearbyint:
5252   case Intrinsic::round:
5253   case Intrinsic::roundeven:
5254   case Intrinsic::canonicalize:
5255     return true;
5256   }
5257 }
5258 
5259 static Value *SimplifyRelativeLoad(Constant *Ptr, Constant *Offset,
5260                                    const DataLayout &DL) {
5261   GlobalValue *PtrSym;
5262   APInt PtrOffset;
5263   if (!IsConstantOffsetFromGlobal(Ptr, PtrSym, PtrOffset, DL))
5264     return nullptr;
5265 
5266   Type *Int8PtrTy = Type::getInt8PtrTy(Ptr->getContext());
5267   Type *Int32Ty = Type::getInt32Ty(Ptr->getContext());
5268   Type *Int32PtrTy = Int32Ty->getPointerTo();
5269   Type *Int64Ty = Type::getInt64Ty(Ptr->getContext());
5270 
5271   auto *OffsetConstInt = dyn_cast<ConstantInt>(Offset);
5272   if (!OffsetConstInt || OffsetConstInt->getType()->getBitWidth() > 64)
5273     return nullptr;
5274 
5275   uint64_t OffsetInt = OffsetConstInt->getSExtValue();
5276   if (OffsetInt % 4 != 0)
5277     return nullptr;
5278 
5279   Constant *C = ConstantExpr::getGetElementPtr(
5280       Int32Ty, ConstantExpr::getBitCast(Ptr, Int32PtrTy),
5281       ConstantInt::get(Int64Ty, OffsetInt / 4));
5282   Constant *Loaded = ConstantFoldLoadFromConstPtr(C, Int32Ty, DL);
5283   if (!Loaded)
5284     return nullptr;
5285 
5286   auto *LoadedCE = dyn_cast<ConstantExpr>(Loaded);
5287   if (!LoadedCE)
5288     return nullptr;
5289 
5290   if (LoadedCE->getOpcode() == Instruction::Trunc) {
5291     LoadedCE = dyn_cast<ConstantExpr>(LoadedCE->getOperand(0));
5292     if (!LoadedCE)
5293       return nullptr;
5294   }
5295 
5296   if (LoadedCE->getOpcode() != Instruction::Sub)
5297     return nullptr;
5298 
5299   auto *LoadedLHS = dyn_cast<ConstantExpr>(LoadedCE->getOperand(0));
5300   if (!LoadedLHS || LoadedLHS->getOpcode() != Instruction::PtrToInt)
5301     return nullptr;
5302   auto *LoadedLHSPtr = LoadedLHS->getOperand(0);
5303 
5304   Constant *LoadedRHS = LoadedCE->getOperand(1);
5305   GlobalValue *LoadedRHSSym;
5306   APInt LoadedRHSOffset;
5307   if (!IsConstantOffsetFromGlobal(LoadedRHS, LoadedRHSSym, LoadedRHSOffset,
5308                                   DL) ||
5309       PtrSym != LoadedRHSSym || PtrOffset != LoadedRHSOffset)
5310     return nullptr;
5311 
5312   return ConstantExpr::getBitCast(LoadedLHSPtr, Int8PtrTy);
5313 }
5314 
5315 static Value *simplifyUnaryIntrinsic(Function *F, Value *Op0,
5316                                      const SimplifyQuery &Q) {
5317   // Idempotent functions return the same result when called repeatedly.
5318   Intrinsic::ID IID = F->getIntrinsicID();
5319   if (IsIdempotent(IID))
5320     if (auto *II = dyn_cast<IntrinsicInst>(Op0))
5321       if (II->getIntrinsicID() == IID)
5322         return II;
5323 
5324   Value *X;
5325   switch (IID) {
5326   case Intrinsic::fabs:
5327     if (SignBitMustBeZero(Op0, Q.TLI)) return Op0;
5328     break;
5329   case Intrinsic::bswap:
5330     // bswap(bswap(x)) -> x
5331     if (match(Op0, m_BSwap(m_Value(X)))) return X;
5332     break;
5333   case Intrinsic::bitreverse:
5334     // bitreverse(bitreverse(x)) -> x
5335     if (match(Op0, m_BitReverse(m_Value(X)))) return X;
5336     break;
5337   case Intrinsic::ctpop: {
5338     // If everything but the lowest bit is zero, that bit is the pop-count. Ex:
5339     // ctpop(and X, 1) --> and X, 1
5340     unsigned BitWidth = Op0->getType()->getScalarSizeInBits();
5341     if (MaskedValueIsZero(Op0, APInt::getHighBitsSet(BitWidth, BitWidth - 1),
5342                           Q.DL, 0, Q.AC, Q.CxtI, Q.DT))
5343       return Op0;
5344     break;
5345   }
5346   case Intrinsic::exp:
5347     // exp(log(x)) -> x
5348     if (Q.CxtI->hasAllowReassoc() &&
5349         match(Op0, m_Intrinsic<Intrinsic::log>(m_Value(X)))) return X;
5350     break;
5351   case Intrinsic::exp2:
5352     // exp2(log2(x)) -> x
5353     if (Q.CxtI->hasAllowReassoc() &&
5354         match(Op0, m_Intrinsic<Intrinsic::log2>(m_Value(X)))) return X;
5355     break;
5356   case Intrinsic::log:
5357     // log(exp(x)) -> x
5358     if (Q.CxtI->hasAllowReassoc() &&
5359         match(Op0, m_Intrinsic<Intrinsic::exp>(m_Value(X)))) return X;
5360     break;
5361   case Intrinsic::log2:
5362     // log2(exp2(x)) -> x
5363     if (Q.CxtI->hasAllowReassoc() &&
5364         (match(Op0, m_Intrinsic<Intrinsic::exp2>(m_Value(X))) ||
5365          match(Op0, m_Intrinsic<Intrinsic::pow>(m_SpecificFP(2.0),
5366                                                 m_Value(X))))) return X;
5367     break;
5368   case Intrinsic::log10:
5369     // log10(pow(10.0, x)) -> x
5370     if (Q.CxtI->hasAllowReassoc() &&
5371         match(Op0, m_Intrinsic<Intrinsic::pow>(m_SpecificFP(10.0),
5372                                                m_Value(X)))) return X;
5373     break;
5374   case Intrinsic::floor:
5375   case Intrinsic::trunc:
5376   case Intrinsic::ceil:
5377   case Intrinsic::round:
5378   case Intrinsic::roundeven:
5379   case Intrinsic::nearbyint:
5380   case Intrinsic::rint: {
5381     // floor (sitofp x) -> sitofp x
5382     // floor (uitofp x) -> uitofp x
5383     //
5384     // Converting from int always results in a finite integral number or
5385     // infinity. For either of those inputs, these rounding functions always
5386     // return the same value, so the rounding can be eliminated.
5387     if (match(Op0, m_SIToFP(m_Value())) || match(Op0, m_UIToFP(m_Value())))
5388       return Op0;
5389     break;
5390   }
5391   case Intrinsic::experimental_vector_reverse:
5392     // experimental.vector.reverse(experimental.vector.reverse(x)) -> x
5393     if (match(Op0,
5394               m_Intrinsic<Intrinsic::experimental_vector_reverse>(m_Value(X))))
5395       return X;
5396     break;
5397   default:
5398     break;
5399   }
5400 
5401   return nullptr;
5402 }
5403 
5404 static APInt getMaxMinLimit(Intrinsic::ID IID, unsigned BitWidth) {
5405   switch (IID) {
5406   case Intrinsic::smax: return APInt::getSignedMaxValue(BitWidth);
5407   case Intrinsic::smin: return APInt::getSignedMinValue(BitWidth);
5408   case Intrinsic::umax: return APInt::getMaxValue(BitWidth);
5409   case Intrinsic::umin: return APInt::getMinValue(BitWidth);
5410   default: llvm_unreachable("Unexpected intrinsic");
5411   }
5412 }
5413 
5414 static ICmpInst::Predicate getMaxMinPredicate(Intrinsic::ID IID) {
5415   switch (IID) {
5416   case Intrinsic::smax: return ICmpInst::ICMP_SGE;
5417   case Intrinsic::smin: return ICmpInst::ICMP_SLE;
5418   case Intrinsic::umax: return ICmpInst::ICMP_UGE;
5419   case Intrinsic::umin: return ICmpInst::ICMP_ULE;
5420   default: llvm_unreachable("Unexpected intrinsic");
5421   }
5422 }
5423 
5424 /// Given a min/max intrinsic, see if it can be removed based on having an
5425 /// operand that is another min/max intrinsic with shared operand(s). The caller
5426 /// is expected to swap the operand arguments to handle commutation.
5427 static Value *foldMinMaxSharedOp(Intrinsic::ID IID, Value *Op0, Value *Op1) {
5428   Value *X, *Y;
5429   if (!match(Op0, m_MaxOrMin(m_Value(X), m_Value(Y))))
5430     return nullptr;
5431 
5432   auto *MM0 = dyn_cast<IntrinsicInst>(Op0);
5433   if (!MM0)
5434     return nullptr;
5435   Intrinsic::ID IID0 = MM0->getIntrinsicID();
5436 
5437   if (Op1 == X || Op1 == Y ||
5438       match(Op1, m_c_MaxOrMin(m_Specific(X), m_Specific(Y)))) {
5439     // max (max X, Y), X --> max X, Y
5440     if (IID0 == IID)
5441       return MM0;
5442     // max (min X, Y), X --> X
5443     if (IID0 == getInverseMinMaxIntrinsic(IID))
5444       return Op1;
5445   }
5446   return nullptr;
5447 }
5448 
5449 static Value *simplifyBinaryIntrinsic(Function *F, Value *Op0, Value *Op1,
5450                                       const SimplifyQuery &Q) {
5451   Intrinsic::ID IID = F->getIntrinsicID();
5452   Type *ReturnType = F->getReturnType();
5453   unsigned BitWidth = ReturnType->getScalarSizeInBits();
5454   switch (IID) {
5455   case Intrinsic::abs:
5456     // abs(abs(x)) -> abs(x). We don't need to worry about the nsw arg here.
5457     // It is always ok to pick the earlier abs. We'll just lose nsw if its only
5458     // on the outer abs.
5459     if (match(Op0, m_Intrinsic<Intrinsic::abs>(m_Value(), m_Value())))
5460       return Op0;
5461     break;
5462 
5463   case Intrinsic::cttz: {
5464     Value *X;
5465     if (match(Op0, m_Shl(m_One(), m_Value(X))))
5466       return X;
5467     break;
5468   }
5469   case Intrinsic::ctlz: {
5470     Value *X;
5471     if (match(Op0, m_LShr(m_Negative(), m_Value(X))))
5472       return X;
5473     if (match(Op0, m_AShr(m_Negative(), m_Value())))
5474       return Constant::getNullValue(ReturnType);
5475     break;
5476   }
5477   case Intrinsic::smax:
5478   case Intrinsic::smin:
5479   case Intrinsic::umax:
5480   case Intrinsic::umin: {
5481     // If the arguments are the same, this is a no-op.
5482     if (Op0 == Op1)
5483       return Op0;
5484 
5485     // Canonicalize constant operand as Op1.
5486     if (isa<Constant>(Op0))
5487       std::swap(Op0, Op1);
5488 
5489     // Assume undef is the limit value.
5490     if (Q.isUndefValue(Op1))
5491       return ConstantInt::get(ReturnType, getMaxMinLimit(IID, BitWidth));
5492 
5493     const APInt *C;
5494     if (match(Op1, m_APIntAllowUndef(C))) {
5495       // Clamp to limit value. For example:
5496       // umax(i8 %x, i8 255) --> 255
5497       if (*C == getMaxMinLimit(IID, BitWidth))
5498         return ConstantInt::get(ReturnType, *C);
5499 
5500       // If the constant op is the opposite of the limit value, the other must
5501       // be larger/smaller or equal. For example:
5502       // umin(i8 %x, i8 255) --> %x
5503       if (*C == getMaxMinLimit(getInverseMinMaxIntrinsic(IID), BitWidth))
5504         return Op0;
5505 
5506       // Remove nested call if constant operands allow it. Example:
5507       // max (max X, 7), 5 -> max X, 7
5508       auto *MinMax0 = dyn_cast<IntrinsicInst>(Op0);
5509       if (MinMax0 && MinMax0->getIntrinsicID() == IID) {
5510         // TODO: loosen undef/splat restrictions for vector constants.
5511         Value *M00 = MinMax0->getOperand(0), *M01 = MinMax0->getOperand(1);
5512         const APInt *InnerC;
5513         if ((match(M00, m_APInt(InnerC)) || match(M01, m_APInt(InnerC))) &&
5514             ((IID == Intrinsic::smax && InnerC->sge(*C)) ||
5515              (IID == Intrinsic::smin && InnerC->sle(*C)) ||
5516              (IID == Intrinsic::umax && InnerC->uge(*C)) ||
5517              (IID == Intrinsic::umin && InnerC->ule(*C))))
5518           return Op0;
5519       }
5520     }
5521 
5522     if (Value *V = foldMinMaxSharedOp(IID, Op0, Op1))
5523       return V;
5524     if (Value *V = foldMinMaxSharedOp(IID, Op1, Op0))
5525       return V;
5526 
5527     ICmpInst::Predicate Pred = getMaxMinPredicate(IID);
5528     if (isICmpTrue(Pred, Op0, Op1, Q.getWithoutUndef(), RecursionLimit))
5529       return Op0;
5530     if (isICmpTrue(Pred, Op1, Op0, Q.getWithoutUndef(), RecursionLimit))
5531       return Op1;
5532 
5533     if (Optional<bool> Imp =
5534             isImpliedByDomCondition(Pred, Op0, Op1, Q.CxtI, Q.DL))
5535       return *Imp ? Op0 : Op1;
5536     if (Optional<bool> Imp =
5537             isImpliedByDomCondition(Pred, Op1, Op0, Q.CxtI, Q.DL))
5538       return *Imp ? Op1 : Op0;
5539 
5540     break;
5541   }
5542   case Intrinsic::usub_with_overflow:
5543   case Intrinsic::ssub_with_overflow:
5544     // X - X -> { 0, false }
5545     // X - undef -> { 0, false }
5546     // undef - X -> { 0, false }
5547     if (Op0 == Op1 || Q.isUndefValue(Op0) || Q.isUndefValue(Op1))
5548       return Constant::getNullValue(ReturnType);
5549     break;
5550   case Intrinsic::uadd_with_overflow:
5551   case Intrinsic::sadd_with_overflow:
5552     // X + undef -> { -1, false }
5553     // undef + x -> { -1, false }
5554     if (Q.isUndefValue(Op0) || Q.isUndefValue(Op1)) {
5555       return ConstantStruct::get(
5556           cast<StructType>(ReturnType),
5557           {Constant::getAllOnesValue(ReturnType->getStructElementType(0)),
5558            Constant::getNullValue(ReturnType->getStructElementType(1))});
5559     }
5560     break;
5561   case Intrinsic::umul_with_overflow:
5562   case Intrinsic::smul_with_overflow:
5563     // 0 * X -> { 0, false }
5564     // X * 0 -> { 0, false }
5565     if (match(Op0, m_Zero()) || match(Op1, m_Zero()))
5566       return Constant::getNullValue(ReturnType);
5567     // undef * X -> { 0, false }
5568     // X * undef -> { 0, false }
5569     if (Q.isUndefValue(Op0) || Q.isUndefValue(Op1))
5570       return Constant::getNullValue(ReturnType);
5571     break;
5572   case Intrinsic::uadd_sat:
5573     // sat(MAX + X) -> MAX
5574     // sat(X + MAX) -> MAX
5575     if (match(Op0, m_AllOnes()) || match(Op1, m_AllOnes()))
5576       return Constant::getAllOnesValue(ReturnType);
5577     LLVM_FALLTHROUGH;
5578   case Intrinsic::sadd_sat:
5579     // sat(X + undef) -> -1
5580     // sat(undef + X) -> -1
5581     // For unsigned: Assume undef is MAX, thus we saturate to MAX (-1).
5582     // For signed: Assume undef is ~X, in which case X + ~X = -1.
5583     if (Q.isUndefValue(Op0) || Q.isUndefValue(Op1))
5584       return Constant::getAllOnesValue(ReturnType);
5585 
5586     // X + 0 -> X
5587     if (match(Op1, m_Zero()))
5588       return Op0;
5589     // 0 + X -> X
5590     if (match(Op0, m_Zero()))
5591       return Op1;
5592     break;
5593   case Intrinsic::usub_sat:
5594     // sat(0 - X) -> 0, sat(X - MAX) -> 0
5595     if (match(Op0, m_Zero()) || match(Op1, m_AllOnes()))
5596       return Constant::getNullValue(ReturnType);
5597     LLVM_FALLTHROUGH;
5598   case Intrinsic::ssub_sat:
5599     // X - X -> 0, X - undef -> 0, undef - X -> 0
5600     if (Op0 == Op1 || Q.isUndefValue(Op0) || Q.isUndefValue(Op1))
5601       return Constant::getNullValue(ReturnType);
5602     // X - 0 -> X
5603     if (match(Op1, m_Zero()))
5604       return Op0;
5605     break;
5606   case Intrinsic::load_relative:
5607     if (auto *C0 = dyn_cast<Constant>(Op0))
5608       if (auto *C1 = dyn_cast<Constant>(Op1))
5609         return SimplifyRelativeLoad(C0, C1, Q.DL);
5610     break;
5611   case Intrinsic::powi:
5612     if (auto *Power = dyn_cast<ConstantInt>(Op1)) {
5613       // powi(x, 0) -> 1.0
5614       if (Power->isZero())
5615         return ConstantFP::get(Op0->getType(), 1.0);
5616       // powi(x, 1) -> x
5617       if (Power->isOne())
5618         return Op0;
5619     }
5620     break;
5621   case Intrinsic::copysign:
5622     // copysign X, X --> X
5623     if (Op0 == Op1)
5624       return Op0;
5625     // copysign -X, X --> X
5626     // copysign X, -X --> -X
5627     if (match(Op0, m_FNeg(m_Specific(Op1))) ||
5628         match(Op1, m_FNeg(m_Specific(Op0))))
5629       return Op1;
5630     break;
5631   case Intrinsic::maxnum:
5632   case Intrinsic::minnum:
5633   case Intrinsic::maximum:
5634   case Intrinsic::minimum: {
5635     // If the arguments are the same, this is a no-op.
5636     if (Op0 == Op1) return Op0;
5637 
5638     // Canonicalize constant operand as Op1.
5639     if (isa<Constant>(Op0))
5640       std::swap(Op0, Op1);
5641 
5642     // If an argument is undef, return the other argument.
5643     if (Q.isUndefValue(Op1))
5644       return Op0;
5645 
5646     bool PropagateNaN = IID == Intrinsic::minimum || IID == Intrinsic::maximum;
5647     bool IsMin = IID == Intrinsic::minimum || IID == Intrinsic::minnum;
5648 
5649     // minnum(X, nan) -> X
5650     // maxnum(X, nan) -> X
5651     // minimum(X, nan) -> nan
5652     // maximum(X, nan) -> nan
5653     if (match(Op1, m_NaN()))
5654       return PropagateNaN ? propagateNaN(cast<Constant>(Op1)) : Op0;
5655 
5656     // In the following folds, inf can be replaced with the largest finite
5657     // float, if the ninf flag is set.
5658     const APFloat *C;
5659     if (match(Op1, m_APFloat(C)) &&
5660         (C->isInfinity() || (Q.CxtI->hasNoInfs() && C->isLargest()))) {
5661       // minnum(X, -inf) -> -inf
5662       // maxnum(X, +inf) -> +inf
5663       // minimum(X, -inf) -> -inf if nnan
5664       // maximum(X, +inf) -> +inf if nnan
5665       if (C->isNegative() == IsMin && (!PropagateNaN || Q.CxtI->hasNoNaNs()))
5666         return ConstantFP::get(ReturnType, *C);
5667 
5668       // minnum(X, +inf) -> X if nnan
5669       // maxnum(X, -inf) -> X if nnan
5670       // minimum(X, +inf) -> X
5671       // maximum(X, -inf) -> X
5672       if (C->isNegative() != IsMin && (PropagateNaN || Q.CxtI->hasNoNaNs()))
5673         return Op0;
5674     }
5675 
5676     // Min/max of the same operation with common operand:
5677     // m(m(X, Y)), X --> m(X, Y) (4 commuted variants)
5678     if (auto *M0 = dyn_cast<IntrinsicInst>(Op0))
5679       if (M0->getIntrinsicID() == IID &&
5680           (M0->getOperand(0) == Op1 || M0->getOperand(1) == Op1))
5681         return Op0;
5682     if (auto *M1 = dyn_cast<IntrinsicInst>(Op1))
5683       if (M1->getIntrinsicID() == IID &&
5684           (M1->getOperand(0) == Op0 || M1->getOperand(1) == Op0))
5685         return Op1;
5686 
5687     break;
5688   }
5689   case Intrinsic::experimental_vector_extract: {
5690     Type *ReturnType = F->getReturnType();
5691 
5692     // (extract_vector (insert_vector _, X, 0), 0) -> X
5693     unsigned IdxN = cast<ConstantInt>(Op1)->getZExtValue();
5694     Value *X = nullptr;
5695     if (match(Op0, m_Intrinsic<Intrinsic::experimental_vector_insert>(
5696                        m_Value(), m_Value(X), m_Zero())) &&
5697         IdxN == 0 && X->getType() == ReturnType)
5698       return X;
5699 
5700     break;
5701   }
5702   default:
5703     break;
5704   }
5705 
5706   return nullptr;
5707 }
5708 
5709 static Value *simplifyIntrinsic(CallBase *Call, const SimplifyQuery &Q) {
5710 
5711   // Intrinsics with no operands have some kind of side effect. Don't simplify.
5712   unsigned NumOperands = Call->getNumArgOperands();
5713   if (!NumOperands)
5714     return nullptr;
5715 
5716   Function *F = cast<Function>(Call->getCalledFunction());
5717   Intrinsic::ID IID = F->getIntrinsicID();
5718   if (NumOperands == 1)
5719     return simplifyUnaryIntrinsic(F, Call->getArgOperand(0), Q);
5720 
5721   if (NumOperands == 2)
5722     return simplifyBinaryIntrinsic(F, Call->getArgOperand(0),
5723                                    Call->getArgOperand(1), Q);
5724 
5725   // Handle intrinsics with 3 or more arguments.
5726   switch (IID) {
5727   case Intrinsic::masked_load:
5728   case Intrinsic::masked_gather: {
5729     Value *MaskArg = Call->getArgOperand(2);
5730     Value *PassthruArg = Call->getArgOperand(3);
5731     // If the mask is all zeros or undef, the "passthru" argument is the result.
5732     if (maskIsAllZeroOrUndef(MaskArg))
5733       return PassthruArg;
5734     return nullptr;
5735   }
5736   case Intrinsic::fshl:
5737   case Intrinsic::fshr: {
5738     Value *Op0 = Call->getArgOperand(0), *Op1 = Call->getArgOperand(1),
5739           *ShAmtArg = Call->getArgOperand(2);
5740 
5741     // If both operands are undef, the result is undef.
5742     if (Q.isUndefValue(Op0) && Q.isUndefValue(Op1))
5743       return UndefValue::get(F->getReturnType());
5744 
5745     // If shift amount is undef, assume it is zero.
5746     if (Q.isUndefValue(ShAmtArg))
5747       return Call->getArgOperand(IID == Intrinsic::fshl ? 0 : 1);
5748 
5749     const APInt *ShAmtC;
5750     if (match(ShAmtArg, m_APInt(ShAmtC))) {
5751       // If there's effectively no shift, return the 1st arg or 2nd arg.
5752       APInt BitWidth = APInt(ShAmtC->getBitWidth(), ShAmtC->getBitWidth());
5753       if (ShAmtC->urem(BitWidth).isNullValue())
5754         return Call->getArgOperand(IID == Intrinsic::fshl ? 0 : 1);
5755     }
5756     return nullptr;
5757   }
5758   case Intrinsic::fma:
5759   case Intrinsic::fmuladd: {
5760     Value *Op0 = Call->getArgOperand(0);
5761     Value *Op1 = Call->getArgOperand(1);
5762     Value *Op2 = Call->getArgOperand(2);
5763     if (Value *V = simplifyFPOp({ Op0, Op1, Op2 }, {}, Q))
5764       return V;
5765     return nullptr;
5766   }
5767   case Intrinsic::smul_fix:
5768   case Intrinsic::smul_fix_sat: {
5769     Value *Op0 = Call->getArgOperand(0);
5770     Value *Op1 = Call->getArgOperand(1);
5771     Value *Op2 = Call->getArgOperand(2);
5772     Type *ReturnType = F->getReturnType();
5773 
5774     // Canonicalize constant operand as Op1 (ConstantFolding handles the case
5775     // when both Op0 and Op1 are constant so we do not care about that special
5776     // case here).
5777     if (isa<Constant>(Op0))
5778       std::swap(Op0, Op1);
5779 
5780     // X * 0 -> 0
5781     if (match(Op1, m_Zero()))
5782       return Constant::getNullValue(ReturnType);
5783 
5784     // X * undef -> 0
5785     if (Q.isUndefValue(Op1))
5786       return Constant::getNullValue(ReturnType);
5787 
5788     // X * (1 << Scale) -> X
5789     APInt ScaledOne =
5790         APInt::getOneBitSet(ReturnType->getScalarSizeInBits(),
5791                             cast<ConstantInt>(Op2)->getZExtValue());
5792     if (ScaledOne.isNonNegative() && match(Op1, m_SpecificInt(ScaledOne)))
5793       return Op0;
5794 
5795     return nullptr;
5796   }
5797   case Intrinsic::experimental_vector_insert: {
5798     Value *Vec = Call->getArgOperand(0);
5799     Value *SubVec = Call->getArgOperand(1);
5800     Value *Idx = Call->getArgOperand(2);
5801     Type *ReturnType = F->getReturnType();
5802 
5803     // (insert_vector Y, (extract_vector X, 0), 0) -> X
5804     // where: Y is X, or Y is undef
5805     unsigned IdxN = cast<ConstantInt>(Idx)->getZExtValue();
5806     Value *X = nullptr;
5807     if (match(SubVec, m_Intrinsic<Intrinsic::experimental_vector_extract>(
5808                           m_Value(X), m_Zero())) &&
5809         (Q.isUndefValue(Vec) || Vec == X) && IdxN == 0 &&
5810         X->getType() == ReturnType)
5811       return X;
5812 
5813     return nullptr;
5814   }
5815   default:
5816     return nullptr;
5817   }
5818 }
5819 
5820 static Value *tryConstantFoldCall(CallBase *Call, const SimplifyQuery &Q) {
5821   auto *F = dyn_cast<Function>(Call->getCalledOperand());
5822   if (!F || !canConstantFoldCallTo(Call, F))
5823     return nullptr;
5824 
5825   SmallVector<Constant *, 4> ConstantArgs;
5826   unsigned NumArgs = Call->getNumArgOperands();
5827   ConstantArgs.reserve(NumArgs);
5828   for (auto &Arg : Call->args()) {
5829     Constant *C = dyn_cast<Constant>(&Arg);
5830     if (!C) {
5831       if (isa<MetadataAsValue>(Arg.get()))
5832         continue;
5833       return nullptr;
5834     }
5835     ConstantArgs.push_back(C);
5836   }
5837 
5838   return ConstantFoldCall(Call, F, ConstantArgs, Q.TLI);
5839 }
5840 
5841 Value *llvm::SimplifyCall(CallBase *Call, const SimplifyQuery &Q) {
5842   // musttail calls can only be simplified if they are also DCEd.
5843   // As we can't guarantee this here, don't simplify them.
5844   if (Call->isMustTailCall())
5845     return nullptr;
5846 
5847   // call undef -> poison
5848   // call null -> poison
5849   Value *Callee = Call->getCalledOperand();
5850   if (isa<UndefValue>(Callee) || isa<ConstantPointerNull>(Callee))
5851     return PoisonValue::get(Call->getType());
5852 
5853   if (Value *V = tryConstantFoldCall(Call, Q))
5854     return V;
5855 
5856   auto *F = dyn_cast<Function>(Callee);
5857   if (F && F->isIntrinsic())
5858     if (Value *Ret = simplifyIntrinsic(Call, Q))
5859       return Ret;
5860 
5861   return nullptr;
5862 }
5863 
5864 /// Given operands for a Freeze, see if we can fold the result.
5865 static Value *SimplifyFreezeInst(Value *Op0, const SimplifyQuery &Q) {
5866   // Use a utility function defined in ValueTracking.
5867   if (llvm::isGuaranteedNotToBeUndefOrPoison(Op0, Q.AC, Q.CxtI, Q.DT))
5868     return Op0;
5869   // We have room for improvement.
5870   return nullptr;
5871 }
5872 
5873 Value *llvm::SimplifyFreezeInst(Value *Op0, const SimplifyQuery &Q) {
5874   return ::SimplifyFreezeInst(Op0, Q);
5875 }
5876 
5877 static Constant *ConstructLoadOperandConstant(Value *Op) {
5878   SmallVector<Value *, 4> Worklist;
5879   // Invalid IR in unreachable code may contain self-referential values. Don't infinitely loop.
5880   SmallPtrSet<Value *, 4> Visited;
5881   Worklist.push_back(Op);
5882   while (true) {
5883     Value *CurOp = Worklist.back();
5884     if (!Visited.insert(CurOp).second)
5885       return nullptr;
5886     if (isa<Constant>(CurOp))
5887       break;
5888     if (auto *BC = dyn_cast<BitCastOperator>(CurOp)) {
5889       Worklist.push_back(BC->getOperand(0));
5890     } else if (auto *GEP = dyn_cast<GEPOperator>(CurOp)) {
5891       for (unsigned I = 1; I != GEP->getNumOperands(); ++I) {
5892         if (!isa<Constant>(GEP->getOperand(I)))
5893           return nullptr;
5894       }
5895       Worklist.push_back(GEP->getOperand(0));
5896     } else if (auto *II = dyn_cast<IntrinsicInst>(CurOp)) {
5897       if (II->isLaunderOrStripInvariantGroup())
5898         Worklist.push_back(II->getOperand(0));
5899       else
5900         return nullptr;
5901     } else {
5902       return nullptr;
5903     }
5904   }
5905 
5906   Constant *NewOp = cast<Constant>(Worklist.pop_back_val());
5907   while (!Worklist.empty()) {
5908     Value *CurOp = Worklist.pop_back_val();
5909     if (isa<BitCastOperator>(CurOp)) {
5910       NewOp = ConstantExpr::getBitCast(NewOp, CurOp->getType());
5911     } else if (auto *GEP = dyn_cast<GEPOperator>(CurOp)) {
5912       SmallVector<Constant *> Idxs;
5913       Idxs.reserve(GEP->getNumOperands() - 1);
5914       for (unsigned I = 1, E = GEP->getNumOperands(); I != E; ++I) {
5915         Idxs.push_back(cast<Constant>(GEP->getOperand(I)));
5916       }
5917       NewOp = ConstantExpr::getGetElementPtr(GEP->getSourceElementType(), NewOp,
5918                                              Idxs, GEP->isInBounds(),
5919                                              GEP->getInRangeIndex());
5920     } else {
5921       assert(isa<IntrinsicInst>(CurOp) &&
5922              cast<IntrinsicInst>(CurOp)->isLaunderOrStripInvariantGroup() &&
5923              "expected invariant group intrinsic");
5924       NewOp = ConstantExpr::getBitCast(NewOp, CurOp->getType());
5925     }
5926   }
5927   return NewOp;
5928 }
5929 
5930 static Value *SimplifyLoadInst(LoadInst *LI, const SimplifyQuery &Q) {
5931   if (LI->isVolatile())
5932     return nullptr;
5933 
5934   if (auto *C = ConstantFoldInstruction(LI, Q.DL))
5935     return C;
5936 
5937   // The following only catches more cases than ConstantFoldInstruction() if the
5938   // load operand wasn't a constant. Specifically, invariant.group intrinsics.
5939   if (isa<Constant>(LI->getPointerOperand()))
5940     return nullptr;
5941 
5942   if (auto *C = dyn_cast_or_null<Constant>(
5943           ConstructLoadOperandConstant(LI->getPointerOperand())))
5944     return ConstantFoldLoadFromConstPtr(C, LI->getType(), Q.DL);
5945 
5946   return nullptr;
5947 }
5948 
5949 /// See if we can compute a simplified version of this instruction.
5950 /// If not, this returns null.
5951 
5952 Value *llvm::SimplifyInstruction(Instruction *I, const SimplifyQuery &SQ,
5953                                  OptimizationRemarkEmitter *ORE) {
5954   const SimplifyQuery Q = SQ.CxtI ? SQ : SQ.getWithInstruction(I);
5955   Value *Result;
5956 
5957   switch (I->getOpcode()) {
5958   default:
5959     Result = ConstantFoldInstruction(I, Q.DL, Q.TLI);
5960     break;
5961   case Instruction::FNeg:
5962     Result = SimplifyFNegInst(I->getOperand(0), I->getFastMathFlags(), Q);
5963     break;
5964   case Instruction::FAdd:
5965     Result = SimplifyFAddInst(I->getOperand(0), I->getOperand(1),
5966                               I->getFastMathFlags(), Q);
5967     break;
5968   case Instruction::Add:
5969     Result =
5970         SimplifyAddInst(I->getOperand(0), I->getOperand(1),
5971                         Q.IIQ.hasNoSignedWrap(cast<BinaryOperator>(I)),
5972                         Q.IIQ.hasNoUnsignedWrap(cast<BinaryOperator>(I)), Q);
5973     break;
5974   case Instruction::FSub:
5975     Result = SimplifyFSubInst(I->getOperand(0), I->getOperand(1),
5976                               I->getFastMathFlags(), Q);
5977     break;
5978   case Instruction::Sub:
5979     Result =
5980         SimplifySubInst(I->getOperand(0), I->getOperand(1),
5981                         Q.IIQ.hasNoSignedWrap(cast<BinaryOperator>(I)),
5982                         Q.IIQ.hasNoUnsignedWrap(cast<BinaryOperator>(I)), Q);
5983     break;
5984   case Instruction::FMul:
5985     Result = SimplifyFMulInst(I->getOperand(0), I->getOperand(1),
5986                               I->getFastMathFlags(), Q);
5987     break;
5988   case Instruction::Mul:
5989     Result = SimplifyMulInst(I->getOperand(0), I->getOperand(1), Q);
5990     break;
5991   case Instruction::SDiv:
5992     Result = SimplifySDivInst(I->getOperand(0), I->getOperand(1), Q);
5993     break;
5994   case Instruction::UDiv:
5995     Result = SimplifyUDivInst(I->getOperand(0), I->getOperand(1), Q);
5996     break;
5997   case Instruction::FDiv:
5998     Result = SimplifyFDivInst(I->getOperand(0), I->getOperand(1),
5999                               I->getFastMathFlags(), Q);
6000     break;
6001   case Instruction::SRem:
6002     Result = SimplifySRemInst(I->getOperand(0), I->getOperand(1), Q);
6003     break;
6004   case Instruction::URem:
6005     Result = SimplifyURemInst(I->getOperand(0), I->getOperand(1), Q);
6006     break;
6007   case Instruction::FRem:
6008     Result = SimplifyFRemInst(I->getOperand(0), I->getOperand(1),
6009                               I->getFastMathFlags(), Q);
6010     break;
6011   case Instruction::Shl:
6012     Result =
6013         SimplifyShlInst(I->getOperand(0), I->getOperand(1),
6014                         Q.IIQ.hasNoSignedWrap(cast<BinaryOperator>(I)),
6015                         Q.IIQ.hasNoUnsignedWrap(cast<BinaryOperator>(I)), Q);
6016     break;
6017   case Instruction::LShr:
6018     Result = SimplifyLShrInst(I->getOperand(0), I->getOperand(1),
6019                               Q.IIQ.isExact(cast<BinaryOperator>(I)), Q);
6020     break;
6021   case Instruction::AShr:
6022     Result = SimplifyAShrInst(I->getOperand(0), I->getOperand(1),
6023                               Q.IIQ.isExact(cast<BinaryOperator>(I)), Q);
6024     break;
6025   case Instruction::And:
6026     Result = SimplifyAndInst(I->getOperand(0), I->getOperand(1), Q);
6027     break;
6028   case Instruction::Or:
6029     Result = SimplifyOrInst(I->getOperand(0), I->getOperand(1), Q);
6030     break;
6031   case Instruction::Xor:
6032     Result = SimplifyXorInst(I->getOperand(0), I->getOperand(1), Q);
6033     break;
6034   case Instruction::ICmp:
6035     Result = SimplifyICmpInst(cast<ICmpInst>(I)->getPredicate(),
6036                               I->getOperand(0), I->getOperand(1), Q);
6037     break;
6038   case Instruction::FCmp:
6039     Result =
6040         SimplifyFCmpInst(cast<FCmpInst>(I)->getPredicate(), I->getOperand(0),
6041                          I->getOperand(1), I->getFastMathFlags(), Q);
6042     break;
6043   case Instruction::Select:
6044     Result = SimplifySelectInst(I->getOperand(0), I->getOperand(1),
6045                                 I->getOperand(2), Q);
6046     break;
6047   case Instruction::GetElementPtr: {
6048     SmallVector<Value *, 8> Ops(I->operands());
6049     Result = SimplifyGEPInst(cast<GetElementPtrInst>(I)->getSourceElementType(),
6050                              Ops, Q);
6051     break;
6052   }
6053   case Instruction::InsertValue: {
6054     InsertValueInst *IV = cast<InsertValueInst>(I);
6055     Result = SimplifyInsertValueInst(IV->getAggregateOperand(),
6056                                      IV->getInsertedValueOperand(),
6057                                      IV->getIndices(), Q);
6058     break;
6059   }
6060   case Instruction::InsertElement: {
6061     auto *IE = cast<InsertElementInst>(I);
6062     Result = SimplifyInsertElementInst(IE->getOperand(0), IE->getOperand(1),
6063                                        IE->getOperand(2), Q);
6064     break;
6065   }
6066   case Instruction::ExtractValue: {
6067     auto *EVI = cast<ExtractValueInst>(I);
6068     Result = SimplifyExtractValueInst(EVI->getAggregateOperand(),
6069                                       EVI->getIndices(), Q);
6070     break;
6071   }
6072   case Instruction::ExtractElement: {
6073     auto *EEI = cast<ExtractElementInst>(I);
6074     Result = SimplifyExtractElementInst(EEI->getVectorOperand(),
6075                                         EEI->getIndexOperand(), Q);
6076     break;
6077   }
6078   case Instruction::ShuffleVector: {
6079     auto *SVI = cast<ShuffleVectorInst>(I);
6080     Result =
6081         SimplifyShuffleVectorInst(SVI->getOperand(0), SVI->getOperand(1),
6082                                   SVI->getShuffleMask(), SVI->getType(), Q);
6083     break;
6084   }
6085   case Instruction::PHI:
6086     Result = SimplifyPHINode(cast<PHINode>(I), Q);
6087     break;
6088   case Instruction::Call: {
6089     Result = SimplifyCall(cast<CallInst>(I), Q);
6090     break;
6091   }
6092   case Instruction::Freeze:
6093     Result = SimplifyFreezeInst(I->getOperand(0), Q);
6094     break;
6095 #define HANDLE_CAST_INST(num, opc, clas) case Instruction::opc:
6096 #include "llvm/IR/Instruction.def"
6097 #undef HANDLE_CAST_INST
6098     Result =
6099         SimplifyCastInst(I->getOpcode(), I->getOperand(0), I->getType(), Q);
6100     break;
6101   case Instruction::Alloca:
6102     // No simplifications for Alloca and it can't be constant folded.
6103     Result = nullptr;
6104     break;
6105   case Instruction::Load:
6106     Result = SimplifyLoadInst(cast<LoadInst>(I), Q);
6107     break;
6108   }
6109 
6110   /// If called on unreachable code, the above logic may report that the
6111   /// instruction simplified to itself.  Make life easier for users by
6112   /// detecting that case here, returning a safe value instead.
6113   return Result == I ? UndefValue::get(I->getType()) : Result;
6114 }
6115 
6116 /// Implementation of recursive simplification through an instruction's
6117 /// uses.
6118 ///
6119 /// This is the common implementation of the recursive simplification routines.
6120 /// If we have a pre-simplified value in 'SimpleV', that is forcibly used to
6121 /// replace the instruction 'I'. Otherwise, we simply add 'I' to the list of
6122 /// instructions to process and attempt to simplify it using
6123 /// InstructionSimplify. Recursively visited users which could not be
6124 /// simplified themselves are to the optional UnsimplifiedUsers set for
6125 /// further processing by the caller.
6126 ///
6127 /// This routine returns 'true' only when *it* simplifies something. The passed
6128 /// in simplified value does not count toward this.
6129 static bool replaceAndRecursivelySimplifyImpl(
6130     Instruction *I, Value *SimpleV, const TargetLibraryInfo *TLI,
6131     const DominatorTree *DT, AssumptionCache *AC,
6132     SmallSetVector<Instruction *, 8> *UnsimplifiedUsers = nullptr) {
6133   bool Simplified = false;
6134   SmallSetVector<Instruction *, 8> Worklist;
6135   const DataLayout &DL = I->getModule()->getDataLayout();
6136 
6137   // If we have an explicit value to collapse to, do that round of the
6138   // simplification loop by hand initially.
6139   if (SimpleV) {
6140     for (User *U : I->users())
6141       if (U != I)
6142         Worklist.insert(cast<Instruction>(U));
6143 
6144     // Replace the instruction with its simplified value.
6145     I->replaceAllUsesWith(SimpleV);
6146 
6147     // Gracefully handle edge cases where the instruction is not wired into any
6148     // parent block.
6149     if (I->getParent() && !I->isEHPad() && !I->isTerminator() &&
6150         !I->mayHaveSideEffects())
6151       I->eraseFromParent();
6152   } else {
6153     Worklist.insert(I);
6154   }
6155 
6156   // Note that we must test the size on each iteration, the worklist can grow.
6157   for (unsigned Idx = 0; Idx != Worklist.size(); ++Idx) {
6158     I = Worklist[Idx];
6159 
6160     // See if this instruction simplifies.
6161     SimpleV = SimplifyInstruction(I, {DL, TLI, DT, AC});
6162     if (!SimpleV) {
6163       if (UnsimplifiedUsers)
6164         UnsimplifiedUsers->insert(I);
6165       continue;
6166     }
6167 
6168     Simplified = true;
6169 
6170     // Stash away all the uses of the old instruction so we can check them for
6171     // recursive simplifications after a RAUW. This is cheaper than checking all
6172     // uses of To on the recursive step in most cases.
6173     for (User *U : I->users())
6174       Worklist.insert(cast<Instruction>(U));
6175 
6176     // Replace the instruction with its simplified value.
6177     I->replaceAllUsesWith(SimpleV);
6178 
6179     // Gracefully handle edge cases where the instruction is not wired into any
6180     // parent block.
6181     if (I->getParent() && !I->isEHPad() && !I->isTerminator() &&
6182         !I->mayHaveSideEffects())
6183       I->eraseFromParent();
6184   }
6185   return Simplified;
6186 }
6187 
6188 bool llvm::replaceAndRecursivelySimplify(
6189     Instruction *I, Value *SimpleV, const TargetLibraryInfo *TLI,
6190     const DominatorTree *DT, AssumptionCache *AC,
6191     SmallSetVector<Instruction *, 8> *UnsimplifiedUsers) {
6192   assert(I != SimpleV && "replaceAndRecursivelySimplify(X,X) is not valid!");
6193   assert(SimpleV && "Must provide a simplified value.");
6194   return replaceAndRecursivelySimplifyImpl(I, SimpleV, TLI, DT, AC,
6195                                            UnsimplifiedUsers);
6196 }
6197 
6198 namespace llvm {
6199 const SimplifyQuery getBestSimplifyQuery(Pass &P, Function &F) {
6200   auto *DTWP = P.getAnalysisIfAvailable<DominatorTreeWrapperPass>();
6201   auto *DT = DTWP ? &DTWP->getDomTree() : nullptr;
6202   auto *TLIWP = P.getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>();
6203   auto *TLI = TLIWP ? &TLIWP->getTLI(F) : nullptr;
6204   auto *ACWP = P.getAnalysisIfAvailable<AssumptionCacheTracker>();
6205   auto *AC = ACWP ? &ACWP->getAssumptionCache(F) : nullptr;
6206   return {F.getParent()->getDataLayout(), TLI, DT, AC};
6207 }
6208 
6209 const SimplifyQuery getBestSimplifyQuery(LoopStandardAnalysisResults &AR,
6210                                          const DataLayout &DL) {
6211   return {DL, &AR.TLI, &AR.DT, &AR.AC};
6212 }
6213 
6214 template <class T, class... TArgs>
6215 const SimplifyQuery getBestSimplifyQuery(AnalysisManager<T, TArgs...> &AM,
6216                                          Function &F) {
6217   auto *DT = AM.template getCachedResult<DominatorTreeAnalysis>(F);
6218   auto *TLI = AM.template getCachedResult<TargetLibraryAnalysis>(F);
6219   auto *AC = AM.template getCachedResult<AssumptionAnalysis>(F);
6220   return {F.getParent()->getDataLayout(), TLI, DT, AC};
6221 }
6222 template const SimplifyQuery getBestSimplifyQuery(AnalysisManager<Function> &,
6223                                                   Function &);
6224 }
6225