1 //===- InstructionSimplify.cpp - Fold instruction operands ----------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements routines for folding instructions into simpler forms
11 // that do not require creating new instructions.  This does constant folding
12 // ("add i32 1, 1" -> "2") but can also handle non-constant operands, either
13 // returning a constant ("and i32 %x, 0" -> "0") or an already existing value
14 // ("and i32 %x, %x" -> "%x").  All operands are assumed to have already been
15 // simplified: This is usually true and assuming it simplifies the logic (if
16 // they have not been simplified then results are correct but maybe suboptimal).
17 //
18 //===----------------------------------------------------------------------===//
19 
20 #include "llvm/Analysis/InstructionSimplify.h"
21 #include "llvm/ADT/SetVector.h"
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/Analysis/AliasAnalysis.h"
24 #include "llvm/Analysis/AssumptionCache.h"
25 #include "llvm/Analysis/CaptureTracking.h"
26 #include "llvm/Analysis/CmpInstAnalysis.h"
27 #include "llvm/Analysis/ConstantFolding.h"
28 #include "llvm/Analysis/LoopAnalysisManager.h"
29 #include "llvm/Analysis/MemoryBuiltins.h"
30 #include "llvm/Analysis/ValueTracking.h"
31 #include "llvm/Analysis/VectorUtils.h"
32 #include "llvm/IR/ConstantRange.h"
33 #include "llvm/IR/DataLayout.h"
34 #include "llvm/IR/Dominators.h"
35 #include "llvm/IR/GetElementPtrTypeIterator.h"
36 #include "llvm/IR/GlobalAlias.h"
37 #include "llvm/IR/Operator.h"
38 #include "llvm/IR/PatternMatch.h"
39 #include "llvm/IR/ValueHandle.h"
40 #include "llvm/Support/KnownBits.h"
41 #include <algorithm>
42 using namespace llvm;
43 using namespace llvm::PatternMatch;
44 
45 #define DEBUG_TYPE "instsimplify"
46 
47 enum { RecursionLimit = 3 };
48 
49 STATISTIC(NumExpand,  "Number of expansions");
50 STATISTIC(NumReassoc, "Number of reassociations");
51 
52 static Value *SimplifyAndInst(Value *, Value *, const SimplifyQuery &, unsigned);
53 static Value *SimplifyBinOp(unsigned, Value *, Value *, const SimplifyQuery &,
54                             unsigned);
55 static Value *SimplifyFPBinOp(unsigned, Value *, Value *, const FastMathFlags &,
56                               const SimplifyQuery &, unsigned);
57 static Value *SimplifyCmpInst(unsigned, Value *, Value *, const SimplifyQuery &,
58                               unsigned);
59 static Value *SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS,
60                                const SimplifyQuery &Q, unsigned MaxRecurse);
61 static Value *SimplifyOrInst(Value *, Value *, const SimplifyQuery &, unsigned);
62 static Value *SimplifyXorInst(Value *, Value *, const SimplifyQuery &, unsigned);
63 static Value *SimplifyCastInst(unsigned, Value *, Type *,
64                                const SimplifyQuery &, unsigned);
65 static Value *SimplifyGEPInst(Type *, ArrayRef<Value *>, const SimplifyQuery &,
66                               unsigned);
67 
68 static Value *foldSelectWithBinaryOp(Value *Cond, Value *TrueVal,
69                                      Value *FalseVal) {
70   BinaryOperator::BinaryOps BinOpCode;
71   if (auto *BO = dyn_cast<BinaryOperator>(Cond))
72     BinOpCode = BO->getOpcode();
73   else
74     return nullptr;
75 
76   CmpInst::Predicate ExpectedPred, Pred1, Pred2;
77   if (BinOpCode == BinaryOperator::Or) {
78     ExpectedPred = ICmpInst::ICMP_NE;
79   } else if (BinOpCode == BinaryOperator::And) {
80     ExpectedPred = ICmpInst::ICMP_EQ;
81   } else
82     return nullptr;
83 
84   // %A = icmp eq %TV, %FV
85   // %B = icmp eq %X, %Y (and one of these is a select operand)
86   // %C = and %A, %B
87   // %D = select %C, %TV, %FV
88   // -->
89   // %FV
90 
91   // %A = icmp ne %TV, %FV
92   // %B = icmp ne %X, %Y (and one of these is a select operand)
93   // %C = or %A, %B
94   // %D = select %C, %TV, %FV
95   // -->
96   // %TV
97   Value *X, *Y;
98   if (!match(Cond, m_c_BinOp(m_c_ICmp(Pred1, m_Specific(TrueVal),
99                                       m_Specific(FalseVal)),
100                              m_ICmp(Pred2, m_Value(X), m_Value(Y)))) ||
101       Pred1 != Pred2 || Pred1 != ExpectedPred)
102     return nullptr;
103 
104   if (X == TrueVal || X == FalseVal || Y == TrueVal || Y == FalseVal)
105     return BinOpCode == BinaryOperator::Or ? TrueVal : FalseVal;
106 
107   return nullptr;
108 }
109 
110 /// For a boolean type or a vector of boolean type, return false or a vector
111 /// with every element false.
112 static Constant *getFalse(Type *Ty) {
113   return ConstantInt::getFalse(Ty);
114 }
115 
116 /// For a boolean type or a vector of boolean type, return true or a vector
117 /// with every element true.
118 static Constant *getTrue(Type *Ty) {
119   return ConstantInt::getTrue(Ty);
120 }
121 
122 /// isSameCompare - Is V equivalent to the comparison "LHS Pred RHS"?
123 static bool isSameCompare(Value *V, CmpInst::Predicate Pred, Value *LHS,
124                           Value *RHS) {
125   CmpInst *Cmp = dyn_cast<CmpInst>(V);
126   if (!Cmp)
127     return false;
128   CmpInst::Predicate CPred = Cmp->getPredicate();
129   Value *CLHS = Cmp->getOperand(0), *CRHS = Cmp->getOperand(1);
130   if (CPred == Pred && CLHS == LHS && CRHS == RHS)
131     return true;
132   return CPred == CmpInst::getSwappedPredicate(Pred) && CLHS == RHS &&
133     CRHS == LHS;
134 }
135 
136 /// Does the given value dominate the specified phi node?
137 static bool valueDominatesPHI(Value *V, PHINode *P, const DominatorTree *DT) {
138   Instruction *I = dyn_cast<Instruction>(V);
139   if (!I)
140     // Arguments and constants dominate all instructions.
141     return true;
142 
143   // If we are processing instructions (and/or basic blocks) that have not been
144   // fully added to a function, the parent nodes may still be null. Simply
145   // return the conservative answer in these cases.
146   if (!I->getParent() || !P->getParent() || !I->getFunction())
147     return false;
148 
149   // If we have a DominatorTree then do a precise test.
150   if (DT)
151     return DT->dominates(I, P);
152 
153   // Otherwise, if the instruction is in the entry block and is not an invoke,
154   // then it obviously dominates all phi nodes.
155   if (I->getParent() == &I->getFunction()->getEntryBlock() &&
156       !isa<InvokeInst>(I))
157     return true;
158 
159   return false;
160 }
161 
162 /// Simplify "A op (B op' C)" by distributing op over op', turning it into
163 /// "(A op B) op' (A op C)".  Here "op" is given by Opcode and "op'" is
164 /// given by OpcodeToExpand, while "A" corresponds to LHS and "B op' C" to RHS.
165 /// Also performs the transform "(A op' B) op C" -> "(A op C) op' (B op C)".
166 /// Returns the simplified value, or null if no simplification was performed.
167 static Value *ExpandBinOp(Instruction::BinaryOps Opcode, Value *LHS, Value *RHS,
168                           Instruction::BinaryOps OpcodeToExpand,
169                           const SimplifyQuery &Q, unsigned MaxRecurse) {
170   // Recursion is always used, so bail out at once if we already hit the limit.
171   if (!MaxRecurse--)
172     return nullptr;
173 
174   // Check whether the expression has the form "(A op' B) op C".
175   if (BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS))
176     if (Op0->getOpcode() == OpcodeToExpand) {
177       // It does!  Try turning it into "(A op C) op' (B op C)".
178       Value *A = Op0->getOperand(0), *B = Op0->getOperand(1), *C = RHS;
179       // Do "A op C" and "B op C" both simplify?
180       if (Value *L = SimplifyBinOp(Opcode, A, C, Q, MaxRecurse))
181         if (Value *R = SimplifyBinOp(Opcode, B, C, Q, MaxRecurse)) {
182           // They do! Return "L op' R" if it simplifies or is already available.
183           // If "L op' R" equals "A op' B" then "L op' R" is just the LHS.
184           if ((L == A && R == B) || (Instruction::isCommutative(OpcodeToExpand)
185                                      && L == B && R == A)) {
186             ++NumExpand;
187             return LHS;
188           }
189           // Otherwise return "L op' R" if it simplifies.
190           if (Value *V = SimplifyBinOp(OpcodeToExpand, L, R, Q, MaxRecurse)) {
191             ++NumExpand;
192             return V;
193           }
194         }
195     }
196 
197   // Check whether the expression has the form "A op (B op' C)".
198   if (BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS))
199     if (Op1->getOpcode() == OpcodeToExpand) {
200       // It does!  Try turning it into "(A op B) op' (A op C)".
201       Value *A = LHS, *B = Op1->getOperand(0), *C = Op1->getOperand(1);
202       // Do "A op B" and "A op C" both simplify?
203       if (Value *L = SimplifyBinOp(Opcode, A, B, Q, MaxRecurse))
204         if (Value *R = SimplifyBinOp(Opcode, A, C, Q, MaxRecurse)) {
205           // They do! Return "L op' R" if it simplifies or is already available.
206           // If "L op' R" equals "B op' C" then "L op' R" is just the RHS.
207           if ((L == B && R == C) || (Instruction::isCommutative(OpcodeToExpand)
208                                      && L == C && R == B)) {
209             ++NumExpand;
210             return RHS;
211           }
212           // Otherwise return "L op' R" if it simplifies.
213           if (Value *V = SimplifyBinOp(OpcodeToExpand, L, R, Q, MaxRecurse)) {
214             ++NumExpand;
215             return V;
216           }
217         }
218     }
219 
220   return nullptr;
221 }
222 
223 /// Generic simplifications for associative binary operations.
224 /// Returns the simpler value, or null if none was found.
225 static Value *SimplifyAssociativeBinOp(Instruction::BinaryOps Opcode,
226                                        Value *LHS, Value *RHS,
227                                        const SimplifyQuery &Q,
228                                        unsigned MaxRecurse) {
229   assert(Instruction::isAssociative(Opcode) && "Not an associative operation!");
230 
231   // Recursion is always used, so bail out at once if we already hit the limit.
232   if (!MaxRecurse--)
233     return nullptr;
234 
235   BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS);
236   BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS);
237 
238   // Transform: "(A op B) op C" ==> "A op (B op C)" if it simplifies completely.
239   if (Op0 && Op0->getOpcode() == Opcode) {
240     Value *A = Op0->getOperand(0);
241     Value *B = Op0->getOperand(1);
242     Value *C = RHS;
243 
244     // Does "B op C" simplify?
245     if (Value *V = SimplifyBinOp(Opcode, B, C, Q, MaxRecurse)) {
246       // It does!  Return "A op V" if it simplifies or is already available.
247       // If V equals B then "A op V" is just the LHS.
248       if (V == B) return LHS;
249       // Otherwise return "A op V" if it simplifies.
250       if (Value *W = SimplifyBinOp(Opcode, A, V, Q, MaxRecurse)) {
251         ++NumReassoc;
252         return W;
253       }
254     }
255   }
256 
257   // Transform: "A op (B op C)" ==> "(A op B) op C" if it simplifies completely.
258   if (Op1 && Op1->getOpcode() == Opcode) {
259     Value *A = LHS;
260     Value *B = Op1->getOperand(0);
261     Value *C = Op1->getOperand(1);
262 
263     // Does "A op B" simplify?
264     if (Value *V = SimplifyBinOp(Opcode, A, B, Q, MaxRecurse)) {
265       // It does!  Return "V op C" if it simplifies or is already available.
266       // If V equals B then "V op C" is just the RHS.
267       if (V == B) return RHS;
268       // Otherwise return "V op C" if it simplifies.
269       if (Value *W = SimplifyBinOp(Opcode, V, C, Q, MaxRecurse)) {
270         ++NumReassoc;
271         return W;
272       }
273     }
274   }
275 
276   // The remaining transforms require commutativity as well as associativity.
277   if (!Instruction::isCommutative(Opcode))
278     return nullptr;
279 
280   // Transform: "(A op B) op C" ==> "(C op A) op B" if it simplifies completely.
281   if (Op0 && Op0->getOpcode() == Opcode) {
282     Value *A = Op0->getOperand(0);
283     Value *B = Op0->getOperand(1);
284     Value *C = RHS;
285 
286     // Does "C op A" simplify?
287     if (Value *V = SimplifyBinOp(Opcode, C, A, Q, MaxRecurse)) {
288       // It does!  Return "V op B" if it simplifies or is already available.
289       // If V equals A then "V op B" is just the LHS.
290       if (V == A) return LHS;
291       // Otherwise return "V op B" if it simplifies.
292       if (Value *W = SimplifyBinOp(Opcode, V, B, Q, MaxRecurse)) {
293         ++NumReassoc;
294         return W;
295       }
296     }
297   }
298 
299   // Transform: "A op (B op C)" ==> "B op (C op A)" if it simplifies completely.
300   if (Op1 && Op1->getOpcode() == Opcode) {
301     Value *A = LHS;
302     Value *B = Op1->getOperand(0);
303     Value *C = Op1->getOperand(1);
304 
305     // Does "C op A" simplify?
306     if (Value *V = SimplifyBinOp(Opcode, C, A, Q, MaxRecurse)) {
307       // It does!  Return "B op V" if it simplifies or is already available.
308       // If V equals C then "B op V" is just the RHS.
309       if (V == C) return RHS;
310       // Otherwise return "B op V" if it simplifies.
311       if (Value *W = SimplifyBinOp(Opcode, B, V, Q, MaxRecurse)) {
312         ++NumReassoc;
313         return W;
314       }
315     }
316   }
317 
318   return nullptr;
319 }
320 
321 /// In the case of a binary operation with a select instruction as an operand,
322 /// try to simplify the binop by seeing whether evaluating it on both branches
323 /// of the select results in the same value. Returns the common value if so,
324 /// otherwise returns null.
325 static Value *ThreadBinOpOverSelect(Instruction::BinaryOps Opcode, Value *LHS,
326                                     Value *RHS, const SimplifyQuery &Q,
327                                     unsigned MaxRecurse) {
328   // Recursion is always used, so bail out at once if we already hit the limit.
329   if (!MaxRecurse--)
330     return nullptr;
331 
332   SelectInst *SI;
333   if (isa<SelectInst>(LHS)) {
334     SI = cast<SelectInst>(LHS);
335   } else {
336     assert(isa<SelectInst>(RHS) && "No select instruction operand!");
337     SI = cast<SelectInst>(RHS);
338   }
339 
340   // Evaluate the BinOp on the true and false branches of the select.
341   Value *TV;
342   Value *FV;
343   if (SI == LHS) {
344     TV = SimplifyBinOp(Opcode, SI->getTrueValue(), RHS, Q, MaxRecurse);
345     FV = SimplifyBinOp(Opcode, SI->getFalseValue(), RHS, Q, MaxRecurse);
346   } else {
347     TV = SimplifyBinOp(Opcode, LHS, SI->getTrueValue(), Q, MaxRecurse);
348     FV = SimplifyBinOp(Opcode, LHS, SI->getFalseValue(), Q, MaxRecurse);
349   }
350 
351   // If they simplified to the same value, then return the common value.
352   // If they both failed to simplify then return null.
353   if (TV == FV)
354     return TV;
355 
356   // If one branch simplified to undef, return the other one.
357   if (TV && isa<UndefValue>(TV))
358     return FV;
359   if (FV && isa<UndefValue>(FV))
360     return TV;
361 
362   // If applying the operation did not change the true and false select values,
363   // then the result of the binop is the select itself.
364   if (TV == SI->getTrueValue() && FV == SI->getFalseValue())
365     return SI;
366 
367   // If one branch simplified and the other did not, and the simplified
368   // value is equal to the unsimplified one, return the simplified value.
369   // For example, select (cond, X, X & Z) & Z -> X & Z.
370   if ((FV && !TV) || (TV && !FV)) {
371     // Check that the simplified value has the form "X op Y" where "op" is the
372     // same as the original operation.
373     Instruction *Simplified = dyn_cast<Instruction>(FV ? FV : TV);
374     if (Simplified && Simplified->getOpcode() == unsigned(Opcode)) {
375       // The value that didn't simplify is "UnsimplifiedLHS op UnsimplifiedRHS".
376       // We already know that "op" is the same as for the simplified value.  See
377       // if the operands match too.  If so, return the simplified value.
378       Value *UnsimplifiedBranch = FV ? SI->getTrueValue() : SI->getFalseValue();
379       Value *UnsimplifiedLHS = SI == LHS ? UnsimplifiedBranch : LHS;
380       Value *UnsimplifiedRHS = SI == LHS ? RHS : UnsimplifiedBranch;
381       if (Simplified->getOperand(0) == UnsimplifiedLHS &&
382           Simplified->getOperand(1) == UnsimplifiedRHS)
383         return Simplified;
384       if (Simplified->isCommutative() &&
385           Simplified->getOperand(1) == UnsimplifiedLHS &&
386           Simplified->getOperand(0) == UnsimplifiedRHS)
387         return Simplified;
388     }
389   }
390 
391   return nullptr;
392 }
393 
394 /// In the case of a comparison with a select instruction, try to simplify the
395 /// comparison by seeing whether both branches of the select result in the same
396 /// value. Returns the common value if so, otherwise returns null.
397 static Value *ThreadCmpOverSelect(CmpInst::Predicate Pred, Value *LHS,
398                                   Value *RHS, const SimplifyQuery &Q,
399                                   unsigned MaxRecurse) {
400   // Recursion is always used, so bail out at once if we already hit the limit.
401   if (!MaxRecurse--)
402     return nullptr;
403 
404   // Make sure the select is on the LHS.
405   if (!isa<SelectInst>(LHS)) {
406     std::swap(LHS, RHS);
407     Pred = CmpInst::getSwappedPredicate(Pred);
408   }
409   assert(isa<SelectInst>(LHS) && "Not comparing with a select instruction!");
410   SelectInst *SI = cast<SelectInst>(LHS);
411   Value *Cond = SI->getCondition();
412   Value *TV = SI->getTrueValue();
413   Value *FV = SI->getFalseValue();
414 
415   // Now that we have "cmp select(Cond, TV, FV), RHS", analyse it.
416   // Does "cmp TV, RHS" simplify?
417   Value *TCmp = SimplifyCmpInst(Pred, TV, RHS, Q, MaxRecurse);
418   if (TCmp == Cond) {
419     // It not only simplified, it simplified to the select condition.  Replace
420     // it with 'true'.
421     TCmp = getTrue(Cond->getType());
422   } else if (!TCmp) {
423     // It didn't simplify.  However if "cmp TV, RHS" is equal to the select
424     // condition then we can replace it with 'true'.  Otherwise give up.
425     if (!isSameCompare(Cond, Pred, TV, RHS))
426       return nullptr;
427     TCmp = getTrue(Cond->getType());
428   }
429 
430   // Does "cmp FV, RHS" simplify?
431   Value *FCmp = SimplifyCmpInst(Pred, FV, RHS, Q, MaxRecurse);
432   if (FCmp == Cond) {
433     // It not only simplified, it simplified to the select condition.  Replace
434     // it with 'false'.
435     FCmp = getFalse(Cond->getType());
436   } else if (!FCmp) {
437     // It didn't simplify.  However if "cmp FV, RHS" is equal to the select
438     // condition then we can replace it with 'false'.  Otherwise give up.
439     if (!isSameCompare(Cond, Pred, FV, RHS))
440       return nullptr;
441     FCmp = getFalse(Cond->getType());
442   }
443 
444   // If both sides simplified to the same value, then use it as the result of
445   // the original comparison.
446   if (TCmp == FCmp)
447     return TCmp;
448 
449   // The remaining cases only make sense if the select condition has the same
450   // type as the result of the comparison, so bail out if this is not so.
451   if (Cond->getType()->isVectorTy() != RHS->getType()->isVectorTy())
452     return nullptr;
453   // If the false value simplified to false, then the result of the compare
454   // is equal to "Cond && TCmp".  This also catches the case when the false
455   // value simplified to false and the true value to true, returning "Cond".
456   if (match(FCmp, m_Zero()))
457     if (Value *V = SimplifyAndInst(Cond, TCmp, Q, MaxRecurse))
458       return V;
459   // If the true value simplified to true, then the result of the compare
460   // is equal to "Cond || FCmp".
461   if (match(TCmp, m_One()))
462     if (Value *V = SimplifyOrInst(Cond, FCmp, Q, MaxRecurse))
463       return V;
464   // Finally, if the false value simplified to true and the true value to
465   // false, then the result of the compare is equal to "!Cond".
466   if (match(FCmp, m_One()) && match(TCmp, m_Zero()))
467     if (Value *V =
468         SimplifyXorInst(Cond, Constant::getAllOnesValue(Cond->getType()),
469                         Q, MaxRecurse))
470       return V;
471 
472   return nullptr;
473 }
474 
475 /// In the case of a binary operation with an operand that is a PHI instruction,
476 /// try to simplify the binop by seeing whether evaluating it on the incoming
477 /// phi values yields the same result for every value. If so returns the common
478 /// value, otherwise returns null.
479 static Value *ThreadBinOpOverPHI(Instruction::BinaryOps Opcode, Value *LHS,
480                                  Value *RHS, const SimplifyQuery &Q,
481                                  unsigned MaxRecurse) {
482   // Recursion is always used, so bail out at once if we already hit the limit.
483   if (!MaxRecurse--)
484     return nullptr;
485 
486   PHINode *PI;
487   if (isa<PHINode>(LHS)) {
488     PI = cast<PHINode>(LHS);
489     // Bail out if RHS and the phi may be mutually interdependent due to a loop.
490     if (!valueDominatesPHI(RHS, PI, Q.DT))
491       return nullptr;
492   } else {
493     assert(isa<PHINode>(RHS) && "No PHI instruction operand!");
494     PI = cast<PHINode>(RHS);
495     // Bail out if LHS and the phi may be mutually interdependent due to a loop.
496     if (!valueDominatesPHI(LHS, PI, Q.DT))
497       return nullptr;
498   }
499 
500   // Evaluate the BinOp on the incoming phi values.
501   Value *CommonValue = nullptr;
502   for (Value *Incoming : PI->incoming_values()) {
503     // If the incoming value is the phi node itself, it can safely be skipped.
504     if (Incoming == PI) continue;
505     Value *V = PI == LHS ?
506       SimplifyBinOp(Opcode, Incoming, RHS, Q, MaxRecurse) :
507       SimplifyBinOp(Opcode, LHS, Incoming, Q, MaxRecurse);
508     // If the operation failed to simplify, or simplified to a different value
509     // to previously, then give up.
510     if (!V || (CommonValue && V != CommonValue))
511       return nullptr;
512     CommonValue = V;
513   }
514 
515   return CommonValue;
516 }
517 
518 /// In the case of a comparison with a PHI instruction, try to simplify the
519 /// comparison by seeing whether comparing with all of the incoming phi values
520 /// yields the same result every time. If so returns the common result,
521 /// otherwise returns null.
522 static Value *ThreadCmpOverPHI(CmpInst::Predicate Pred, Value *LHS, Value *RHS,
523                                const SimplifyQuery &Q, unsigned MaxRecurse) {
524   // Recursion is always used, so bail out at once if we already hit the limit.
525   if (!MaxRecurse--)
526     return nullptr;
527 
528   // Make sure the phi is on the LHS.
529   if (!isa<PHINode>(LHS)) {
530     std::swap(LHS, RHS);
531     Pred = CmpInst::getSwappedPredicate(Pred);
532   }
533   assert(isa<PHINode>(LHS) && "Not comparing with a phi instruction!");
534   PHINode *PI = cast<PHINode>(LHS);
535 
536   // Bail out if RHS and the phi may be mutually interdependent due to a loop.
537   if (!valueDominatesPHI(RHS, PI, Q.DT))
538     return nullptr;
539 
540   // Evaluate the BinOp on the incoming phi values.
541   Value *CommonValue = nullptr;
542   for (Value *Incoming : PI->incoming_values()) {
543     // If the incoming value is the phi node itself, it can safely be skipped.
544     if (Incoming == PI) continue;
545     Value *V = SimplifyCmpInst(Pred, Incoming, RHS, Q, MaxRecurse);
546     // If the operation failed to simplify, or simplified to a different value
547     // to previously, then give up.
548     if (!V || (CommonValue && V != CommonValue))
549       return nullptr;
550     CommonValue = V;
551   }
552 
553   return CommonValue;
554 }
555 
556 static Constant *foldOrCommuteConstant(Instruction::BinaryOps Opcode,
557                                        Value *&Op0, Value *&Op1,
558                                        const SimplifyQuery &Q) {
559   if (auto *CLHS = dyn_cast<Constant>(Op0)) {
560     if (auto *CRHS = dyn_cast<Constant>(Op1))
561       return ConstantFoldBinaryOpOperands(Opcode, CLHS, CRHS, Q.DL);
562 
563     // Canonicalize the constant to the RHS if this is a commutative operation.
564     if (Instruction::isCommutative(Opcode))
565       std::swap(Op0, Op1);
566   }
567   return nullptr;
568 }
569 
570 /// Given operands for an Add, see if we can fold the result.
571 /// If not, this returns null.
572 static Value *SimplifyAddInst(Value *Op0, Value *Op1, bool IsNSW, bool IsNUW,
573                               const SimplifyQuery &Q, unsigned MaxRecurse) {
574   if (Constant *C = foldOrCommuteConstant(Instruction::Add, Op0, Op1, Q))
575     return C;
576 
577   // X + undef -> undef
578   if (match(Op1, m_Undef()))
579     return Op1;
580 
581   // X + 0 -> X
582   if (match(Op1, m_Zero()))
583     return Op0;
584 
585   // If two operands are negative, return 0.
586   if (isKnownNegation(Op0, Op1))
587     return Constant::getNullValue(Op0->getType());
588 
589   // X + (Y - X) -> Y
590   // (Y - X) + X -> Y
591   // Eg: X + -X -> 0
592   Value *Y = nullptr;
593   if (match(Op1, m_Sub(m_Value(Y), m_Specific(Op0))) ||
594       match(Op0, m_Sub(m_Value(Y), m_Specific(Op1))))
595     return Y;
596 
597   // X + ~X -> -1   since   ~X = -X-1
598   Type *Ty = Op0->getType();
599   if (match(Op0, m_Not(m_Specific(Op1))) ||
600       match(Op1, m_Not(m_Specific(Op0))))
601     return Constant::getAllOnesValue(Ty);
602 
603   // add nsw/nuw (xor Y, signmask), signmask --> Y
604   // The no-wrapping add guarantees that the top bit will be set by the add.
605   // Therefore, the xor must be clearing the already set sign bit of Y.
606   if ((IsNSW || IsNUW) && match(Op1, m_SignMask()) &&
607       match(Op0, m_Xor(m_Value(Y), m_SignMask())))
608     return Y;
609 
610   // add nuw %x, -1  ->  -1, because %x can only be 0.
611   if (IsNUW && match(Op1, m_AllOnes()))
612     return Op1; // Which is -1.
613 
614   /// i1 add -> xor.
615   if (MaxRecurse && Op0->getType()->isIntOrIntVectorTy(1))
616     if (Value *V = SimplifyXorInst(Op0, Op1, Q, MaxRecurse-1))
617       return V;
618 
619   // Try some generic simplifications for associative operations.
620   if (Value *V = SimplifyAssociativeBinOp(Instruction::Add, Op0, Op1, Q,
621                                           MaxRecurse))
622     return V;
623 
624   // Threading Add over selects and phi nodes is pointless, so don't bother.
625   // Threading over the select in "A + select(cond, B, C)" means evaluating
626   // "A+B" and "A+C" and seeing if they are equal; but they are equal if and
627   // only if B and C are equal.  If B and C are equal then (since we assume
628   // that operands have already been simplified) "select(cond, B, C)" should
629   // have been simplified to the common value of B and C already.  Analysing
630   // "A+B" and "A+C" thus gains nothing, but costs compile time.  Similarly
631   // for threading over phi nodes.
632 
633   return nullptr;
634 }
635 
636 Value *llvm::SimplifyAddInst(Value *Op0, Value *Op1, bool IsNSW, bool IsNUW,
637                              const SimplifyQuery &Query) {
638   return ::SimplifyAddInst(Op0, Op1, IsNSW, IsNUW, Query, RecursionLimit);
639 }
640 
641 /// Compute the base pointer and cumulative constant offsets for V.
642 ///
643 /// This strips all constant offsets off of V, leaving it the base pointer, and
644 /// accumulates the total constant offset applied in the returned constant. It
645 /// returns 0 if V is not a pointer, and returns the constant '0' if there are
646 /// no constant offsets applied.
647 ///
648 /// This is very similar to GetPointerBaseWithConstantOffset except it doesn't
649 /// follow non-inbounds geps. This allows it to remain usable for icmp ult/etc.
650 /// folding.
651 static Constant *stripAndComputeConstantOffsets(const DataLayout &DL, Value *&V,
652                                                 bool AllowNonInbounds = false) {
653   assert(V->getType()->isPtrOrPtrVectorTy());
654 
655   Type *IntPtrTy = DL.getIntPtrType(V->getType())->getScalarType();
656   APInt Offset = APInt::getNullValue(IntPtrTy->getIntegerBitWidth());
657 
658   // Even though we don't look through PHI nodes, we could be called on an
659   // instruction in an unreachable block, which may be on a cycle.
660   SmallPtrSet<Value *, 4> Visited;
661   Visited.insert(V);
662   do {
663     if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
664       if ((!AllowNonInbounds && !GEP->isInBounds()) ||
665           !GEP->accumulateConstantOffset(DL, Offset))
666         break;
667       V = GEP->getPointerOperand();
668     } else if (Operator::getOpcode(V) == Instruction::BitCast) {
669       V = cast<Operator>(V)->getOperand(0);
670     } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
671       if (GA->isInterposable())
672         break;
673       V = GA->getAliasee();
674     } else {
675       if (auto CS = CallSite(V))
676         if (Value *RV = CS.getReturnedArgOperand()) {
677           V = RV;
678           continue;
679         }
680       break;
681     }
682     assert(V->getType()->isPtrOrPtrVectorTy() && "Unexpected operand type!");
683   } while (Visited.insert(V).second);
684 
685   Constant *OffsetIntPtr = ConstantInt::get(IntPtrTy, Offset);
686   if (V->getType()->isVectorTy())
687     return ConstantVector::getSplat(V->getType()->getVectorNumElements(),
688                                     OffsetIntPtr);
689   return OffsetIntPtr;
690 }
691 
692 /// Compute the constant difference between two pointer values.
693 /// If the difference is not a constant, returns zero.
694 static Constant *computePointerDifference(const DataLayout &DL, Value *LHS,
695                                           Value *RHS) {
696   Constant *LHSOffset = stripAndComputeConstantOffsets(DL, LHS);
697   Constant *RHSOffset = stripAndComputeConstantOffsets(DL, RHS);
698 
699   // If LHS and RHS are not related via constant offsets to the same base
700   // value, there is nothing we can do here.
701   if (LHS != RHS)
702     return nullptr;
703 
704   // Otherwise, the difference of LHS - RHS can be computed as:
705   //    LHS - RHS
706   //  = (LHSOffset + Base) - (RHSOffset + Base)
707   //  = LHSOffset - RHSOffset
708   return ConstantExpr::getSub(LHSOffset, RHSOffset);
709 }
710 
711 /// Given operands for a Sub, see if we can fold the result.
712 /// If not, this returns null.
713 static Value *SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
714                               const SimplifyQuery &Q, unsigned MaxRecurse) {
715   if (Constant *C = foldOrCommuteConstant(Instruction::Sub, Op0, Op1, Q))
716     return C;
717 
718   // X - undef -> undef
719   // undef - X -> undef
720   if (match(Op0, m_Undef()) || match(Op1, m_Undef()))
721     return UndefValue::get(Op0->getType());
722 
723   // X - 0 -> X
724   if (match(Op1, m_Zero()))
725     return Op0;
726 
727   // X - X -> 0
728   if (Op0 == Op1)
729     return Constant::getNullValue(Op0->getType());
730 
731   // Is this a negation?
732   if (match(Op0, m_Zero())) {
733     // 0 - X -> 0 if the sub is NUW.
734     if (isNUW)
735       return Constant::getNullValue(Op0->getType());
736 
737     KnownBits Known = computeKnownBits(Op1, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
738     if (Known.Zero.isMaxSignedValue()) {
739       // Op1 is either 0 or the minimum signed value. If the sub is NSW, then
740       // Op1 must be 0 because negating the minimum signed value is undefined.
741       if (isNSW)
742         return Constant::getNullValue(Op0->getType());
743 
744       // 0 - X -> X if X is 0 or the minimum signed value.
745       return Op1;
746     }
747   }
748 
749   // (X + Y) - Z -> X + (Y - Z) or Y + (X - Z) if everything simplifies.
750   // For example, (X + Y) - Y -> X; (Y + X) - Y -> X
751   Value *X = nullptr, *Y = nullptr, *Z = Op1;
752   if (MaxRecurse && match(Op0, m_Add(m_Value(X), m_Value(Y)))) { // (X + Y) - Z
753     // See if "V === Y - Z" simplifies.
754     if (Value *V = SimplifyBinOp(Instruction::Sub, Y, Z, Q, MaxRecurse-1))
755       // It does!  Now see if "X + V" simplifies.
756       if (Value *W = SimplifyBinOp(Instruction::Add, X, V, Q, MaxRecurse-1)) {
757         // It does, we successfully reassociated!
758         ++NumReassoc;
759         return W;
760       }
761     // See if "V === X - Z" simplifies.
762     if (Value *V = SimplifyBinOp(Instruction::Sub, X, Z, Q, MaxRecurse-1))
763       // It does!  Now see if "Y + V" simplifies.
764       if (Value *W = SimplifyBinOp(Instruction::Add, Y, V, Q, MaxRecurse-1)) {
765         // It does, we successfully reassociated!
766         ++NumReassoc;
767         return W;
768       }
769   }
770 
771   // X - (Y + Z) -> (X - Y) - Z or (X - Z) - Y if everything simplifies.
772   // For example, X - (X + 1) -> -1
773   X = Op0;
774   if (MaxRecurse && match(Op1, m_Add(m_Value(Y), m_Value(Z)))) { // X - (Y + Z)
775     // See if "V === X - Y" simplifies.
776     if (Value *V = SimplifyBinOp(Instruction::Sub, X, Y, Q, MaxRecurse-1))
777       // It does!  Now see if "V - Z" simplifies.
778       if (Value *W = SimplifyBinOp(Instruction::Sub, V, Z, Q, MaxRecurse-1)) {
779         // It does, we successfully reassociated!
780         ++NumReassoc;
781         return W;
782       }
783     // See if "V === X - Z" simplifies.
784     if (Value *V = SimplifyBinOp(Instruction::Sub, X, Z, Q, MaxRecurse-1))
785       // It does!  Now see if "V - Y" simplifies.
786       if (Value *W = SimplifyBinOp(Instruction::Sub, V, Y, Q, MaxRecurse-1)) {
787         // It does, we successfully reassociated!
788         ++NumReassoc;
789         return W;
790       }
791   }
792 
793   // Z - (X - Y) -> (Z - X) + Y if everything simplifies.
794   // For example, X - (X - Y) -> Y.
795   Z = Op0;
796   if (MaxRecurse && match(Op1, m_Sub(m_Value(X), m_Value(Y)))) // Z - (X - Y)
797     // See if "V === Z - X" simplifies.
798     if (Value *V = SimplifyBinOp(Instruction::Sub, Z, X, Q, MaxRecurse-1))
799       // It does!  Now see if "V + Y" simplifies.
800       if (Value *W = SimplifyBinOp(Instruction::Add, V, Y, Q, MaxRecurse-1)) {
801         // It does, we successfully reassociated!
802         ++NumReassoc;
803         return W;
804       }
805 
806   // trunc(X) - trunc(Y) -> trunc(X - Y) if everything simplifies.
807   if (MaxRecurse && match(Op0, m_Trunc(m_Value(X))) &&
808       match(Op1, m_Trunc(m_Value(Y))))
809     if (X->getType() == Y->getType())
810       // See if "V === X - Y" simplifies.
811       if (Value *V = SimplifyBinOp(Instruction::Sub, X, Y, Q, MaxRecurse-1))
812         // It does!  Now see if "trunc V" simplifies.
813         if (Value *W = SimplifyCastInst(Instruction::Trunc, V, Op0->getType(),
814                                         Q, MaxRecurse - 1))
815           // It does, return the simplified "trunc V".
816           return W;
817 
818   // Variations on GEP(base, I, ...) - GEP(base, i, ...) -> GEP(null, I-i, ...).
819   if (match(Op0, m_PtrToInt(m_Value(X))) &&
820       match(Op1, m_PtrToInt(m_Value(Y))))
821     if (Constant *Result = computePointerDifference(Q.DL, X, Y))
822       return ConstantExpr::getIntegerCast(Result, Op0->getType(), true);
823 
824   // i1 sub -> xor.
825   if (MaxRecurse && Op0->getType()->isIntOrIntVectorTy(1))
826     if (Value *V = SimplifyXorInst(Op0, Op1, Q, MaxRecurse-1))
827       return V;
828 
829   // Threading Sub over selects and phi nodes is pointless, so don't bother.
830   // Threading over the select in "A - select(cond, B, C)" means evaluating
831   // "A-B" and "A-C" and seeing if they are equal; but they are equal if and
832   // only if B and C are equal.  If B and C are equal then (since we assume
833   // that operands have already been simplified) "select(cond, B, C)" should
834   // have been simplified to the common value of B and C already.  Analysing
835   // "A-B" and "A-C" thus gains nothing, but costs compile time.  Similarly
836   // for threading over phi nodes.
837 
838   return nullptr;
839 }
840 
841 Value *llvm::SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
842                              const SimplifyQuery &Q) {
843   return ::SimplifySubInst(Op0, Op1, isNSW, isNUW, Q, RecursionLimit);
844 }
845 
846 /// Given operands for a Mul, see if we can fold the result.
847 /// If not, this returns null.
848 static Value *SimplifyMulInst(Value *Op0, Value *Op1, const SimplifyQuery &Q,
849                               unsigned MaxRecurse) {
850   if (Constant *C = foldOrCommuteConstant(Instruction::Mul, Op0, Op1, Q))
851     return C;
852 
853   // X * undef -> 0
854   // X * 0 -> 0
855   if (match(Op1, m_CombineOr(m_Undef(), m_Zero())))
856     return Constant::getNullValue(Op0->getType());
857 
858   // X * 1 -> X
859   if (match(Op1, m_One()))
860     return Op0;
861 
862   // (X / Y) * Y -> X if the division is exact.
863   Value *X = nullptr;
864   if (Q.IIQ.UseInstrInfo &&
865       (match(Op0,
866              m_Exact(m_IDiv(m_Value(X), m_Specific(Op1)))) ||     // (X / Y) * Y
867        match(Op1, m_Exact(m_IDiv(m_Value(X), m_Specific(Op0)))))) // Y * (X / Y)
868     return X;
869 
870   // i1 mul -> and.
871   if (MaxRecurse && Op0->getType()->isIntOrIntVectorTy(1))
872     if (Value *V = SimplifyAndInst(Op0, Op1, Q, MaxRecurse-1))
873       return V;
874 
875   // Try some generic simplifications for associative operations.
876   if (Value *V = SimplifyAssociativeBinOp(Instruction::Mul, Op0, Op1, Q,
877                                           MaxRecurse))
878     return V;
879 
880   // Mul distributes over Add. Try some generic simplifications based on this.
881   if (Value *V = ExpandBinOp(Instruction::Mul, Op0, Op1, Instruction::Add,
882                              Q, MaxRecurse))
883     return V;
884 
885   // If the operation is with the result of a select instruction, check whether
886   // operating on either branch of the select always yields the same value.
887   if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
888     if (Value *V = ThreadBinOpOverSelect(Instruction::Mul, Op0, Op1, Q,
889                                          MaxRecurse))
890       return V;
891 
892   // If the operation is with the result of a phi instruction, check whether
893   // operating on all incoming values of the phi always yields the same value.
894   if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
895     if (Value *V = ThreadBinOpOverPHI(Instruction::Mul, Op0, Op1, Q,
896                                       MaxRecurse))
897       return V;
898 
899   return nullptr;
900 }
901 
902 Value *llvm::SimplifyMulInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) {
903   return ::SimplifyMulInst(Op0, Op1, Q, RecursionLimit);
904 }
905 
906 /// Check for common or similar folds of integer division or integer remainder.
907 /// This applies to all 4 opcodes (sdiv/udiv/srem/urem).
908 static Value *simplifyDivRem(Value *Op0, Value *Op1, bool IsDiv) {
909   Type *Ty = Op0->getType();
910 
911   // X / undef -> undef
912   // X % undef -> undef
913   if (match(Op1, m_Undef()))
914     return Op1;
915 
916   // X / 0 -> undef
917   // X % 0 -> undef
918   // We don't need to preserve faults!
919   if (match(Op1, m_Zero()))
920     return UndefValue::get(Ty);
921 
922   // If any element of a constant divisor vector is zero or undef, the whole op
923   // is undef.
924   auto *Op1C = dyn_cast<Constant>(Op1);
925   if (Op1C && Ty->isVectorTy()) {
926     unsigned NumElts = Ty->getVectorNumElements();
927     for (unsigned i = 0; i != NumElts; ++i) {
928       Constant *Elt = Op1C->getAggregateElement(i);
929       if (Elt && (Elt->isNullValue() || isa<UndefValue>(Elt)))
930         return UndefValue::get(Ty);
931     }
932   }
933 
934   // undef / X -> 0
935   // undef % X -> 0
936   if (match(Op0, m_Undef()))
937     return Constant::getNullValue(Ty);
938 
939   // 0 / X -> 0
940   // 0 % X -> 0
941   if (match(Op0, m_Zero()))
942     return Constant::getNullValue(Op0->getType());
943 
944   // X / X -> 1
945   // X % X -> 0
946   if (Op0 == Op1)
947     return IsDiv ? ConstantInt::get(Ty, 1) : Constant::getNullValue(Ty);
948 
949   // X / 1 -> X
950   // X % 1 -> 0
951   // If this is a boolean op (single-bit element type), we can't have
952   // division-by-zero or remainder-by-zero, so assume the divisor is 1.
953   // Similarly, if we're zero-extending a boolean divisor, then assume it's a 1.
954   Value *X;
955   if (match(Op1, m_One()) || Ty->isIntOrIntVectorTy(1) ||
956       (match(Op1, m_ZExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)))
957     return IsDiv ? Op0 : Constant::getNullValue(Ty);
958 
959   return nullptr;
960 }
961 
962 /// Given a predicate and two operands, return true if the comparison is true.
963 /// This is a helper for div/rem simplification where we return some other value
964 /// when we can prove a relationship between the operands.
965 static bool isICmpTrue(ICmpInst::Predicate Pred, Value *LHS, Value *RHS,
966                        const SimplifyQuery &Q, unsigned MaxRecurse) {
967   Value *V = SimplifyICmpInst(Pred, LHS, RHS, Q, MaxRecurse);
968   Constant *C = dyn_cast_or_null<Constant>(V);
969   return (C && C->isAllOnesValue());
970 }
971 
972 /// Return true if we can simplify X / Y to 0. Remainder can adapt that answer
973 /// to simplify X % Y to X.
974 static bool isDivZero(Value *X, Value *Y, const SimplifyQuery &Q,
975                       unsigned MaxRecurse, bool IsSigned) {
976   // Recursion is always used, so bail out at once if we already hit the limit.
977   if (!MaxRecurse--)
978     return false;
979 
980   if (IsSigned) {
981     // |X| / |Y| --> 0
982     //
983     // We require that 1 operand is a simple constant. That could be extended to
984     // 2 variables if we computed the sign bit for each.
985     //
986     // Make sure that a constant is not the minimum signed value because taking
987     // the abs() of that is undefined.
988     Type *Ty = X->getType();
989     const APInt *C;
990     if (match(X, m_APInt(C)) && !C->isMinSignedValue()) {
991       // Is the variable divisor magnitude always greater than the constant
992       // dividend magnitude?
993       // |Y| > |C| --> Y < -abs(C) or Y > abs(C)
994       Constant *PosDividendC = ConstantInt::get(Ty, C->abs());
995       Constant *NegDividendC = ConstantInt::get(Ty, -C->abs());
996       if (isICmpTrue(CmpInst::ICMP_SLT, Y, NegDividendC, Q, MaxRecurse) ||
997           isICmpTrue(CmpInst::ICMP_SGT, Y, PosDividendC, Q, MaxRecurse))
998         return true;
999     }
1000     if (match(Y, m_APInt(C))) {
1001       // Special-case: we can't take the abs() of a minimum signed value. If
1002       // that's the divisor, then all we have to do is prove that the dividend
1003       // is also not the minimum signed value.
1004       if (C->isMinSignedValue())
1005         return isICmpTrue(CmpInst::ICMP_NE, X, Y, Q, MaxRecurse);
1006 
1007       // Is the variable dividend magnitude always less than the constant
1008       // divisor magnitude?
1009       // |X| < |C| --> X > -abs(C) and X < abs(C)
1010       Constant *PosDivisorC = ConstantInt::get(Ty, C->abs());
1011       Constant *NegDivisorC = ConstantInt::get(Ty, -C->abs());
1012       if (isICmpTrue(CmpInst::ICMP_SGT, X, NegDivisorC, Q, MaxRecurse) &&
1013           isICmpTrue(CmpInst::ICMP_SLT, X, PosDivisorC, Q, MaxRecurse))
1014         return true;
1015     }
1016     return false;
1017   }
1018 
1019   // IsSigned == false.
1020   // Is the dividend unsigned less than the divisor?
1021   return isICmpTrue(ICmpInst::ICMP_ULT, X, Y, Q, MaxRecurse);
1022 }
1023 
1024 /// These are simplifications common to SDiv and UDiv.
1025 static Value *simplifyDiv(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1,
1026                           const SimplifyQuery &Q, unsigned MaxRecurse) {
1027   if (Constant *C = foldOrCommuteConstant(Opcode, Op0, Op1, Q))
1028     return C;
1029 
1030   if (Value *V = simplifyDivRem(Op0, Op1, true))
1031     return V;
1032 
1033   bool IsSigned = Opcode == Instruction::SDiv;
1034 
1035   // (X * Y) / Y -> X if the multiplication does not overflow.
1036   Value *X;
1037   if (match(Op0, m_c_Mul(m_Value(X), m_Specific(Op1)))) {
1038     auto *Mul = cast<OverflowingBinaryOperator>(Op0);
1039     // If the Mul does not overflow, then we are good to go.
1040     if ((IsSigned && Q.IIQ.hasNoSignedWrap(Mul)) ||
1041         (!IsSigned && Q.IIQ.hasNoUnsignedWrap(Mul)))
1042       return X;
1043     // If X has the form X = A / Y, then X * Y cannot overflow.
1044     if ((IsSigned && match(X, m_SDiv(m_Value(), m_Specific(Op1)))) ||
1045         (!IsSigned && match(X, m_UDiv(m_Value(), m_Specific(Op1)))))
1046       return X;
1047   }
1048 
1049   // (X rem Y) / Y -> 0
1050   if ((IsSigned && match(Op0, m_SRem(m_Value(), m_Specific(Op1)))) ||
1051       (!IsSigned && match(Op0, m_URem(m_Value(), m_Specific(Op1)))))
1052     return Constant::getNullValue(Op0->getType());
1053 
1054   // (X /u C1) /u C2 -> 0 if C1 * C2 overflow
1055   ConstantInt *C1, *C2;
1056   if (!IsSigned && match(Op0, m_UDiv(m_Value(X), m_ConstantInt(C1))) &&
1057       match(Op1, m_ConstantInt(C2))) {
1058     bool Overflow;
1059     (void)C1->getValue().umul_ov(C2->getValue(), Overflow);
1060     if (Overflow)
1061       return Constant::getNullValue(Op0->getType());
1062   }
1063 
1064   // If the operation is with the result of a select instruction, check whether
1065   // operating on either branch of the select always yields the same value.
1066   if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
1067     if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse))
1068       return V;
1069 
1070   // If the operation is with the result of a phi instruction, check whether
1071   // operating on all incoming values of the phi always yields the same value.
1072   if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
1073     if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse))
1074       return V;
1075 
1076   if (isDivZero(Op0, Op1, Q, MaxRecurse, IsSigned))
1077     return Constant::getNullValue(Op0->getType());
1078 
1079   return nullptr;
1080 }
1081 
1082 /// These are simplifications common to SRem and URem.
1083 static Value *simplifyRem(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1,
1084                           const SimplifyQuery &Q, unsigned MaxRecurse) {
1085   if (Constant *C = foldOrCommuteConstant(Opcode, Op0, Op1, Q))
1086     return C;
1087 
1088   if (Value *V = simplifyDivRem(Op0, Op1, false))
1089     return V;
1090 
1091   // (X % Y) % Y -> X % Y
1092   if ((Opcode == Instruction::SRem &&
1093        match(Op0, m_SRem(m_Value(), m_Specific(Op1)))) ||
1094       (Opcode == Instruction::URem &&
1095        match(Op0, m_URem(m_Value(), m_Specific(Op1)))))
1096     return Op0;
1097 
1098   // (X << Y) % X -> 0
1099   if (Q.IIQ.UseInstrInfo &&
1100       ((Opcode == Instruction::SRem &&
1101         match(Op0, m_NSWShl(m_Specific(Op1), m_Value()))) ||
1102        (Opcode == Instruction::URem &&
1103         match(Op0, m_NUWShl(m_Specific(Op1), m_Value())))))
1104     return Constant::getNullValue(Op0->getType());
1105 
1106   // If the operation is with the result of a select instruction, check whether
1107   // operating on either branch of the select always yields the same value.
1108   if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
1109     if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse))
1110       return V;
1111 
1112   // If the operation is with the result of a phi instruction, check whether
1113   // operating on all incoming values of the phi always yields the same value.
1114   if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
1115     if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse))
1116       return V;
1117 
1118   // If X / Y == 0, then X % Y == X.
1119   if (isDivZero(Op0, Op1, Q, MaxRecurse, Opcode == Instruction::SRem))
1120     return Op0;
1121 
1122   return nullptr;
1123 }
1124 
1125 /// Given operands for an SDiv, see if we can fold the result.
1126 /// If not, this returns null.
1127 static Value *SimplifySDivInst(Value *Op0, Value *Op1, const SimplifyQuery &Q,
1128                                unsigned MaxRecurse) {
1129   // If two operands are negated and no signed overflow, return -1.
1130   if (isKnownNegation(Op0, Op1, /*NeedNSW=*/true))
1131     return Constant::getAllOnesValue(Op0->getType());
1132 
1133   return simplifyDiv(Instruction::SDiv, Op0, Op1, Q, MaxRecurse);
1134 }
1135 
1136 Value *llvm::SimplifySDivInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) {
1137   return ::SimplifySDivInst(Op0, Op1, Q, RecursionLimit);
1138 }
1139 
1140 /// Given operands for a UDiv, see if we can fold the result.
1141 /// If not, this returns null.
1142 static Value *SimplifyUDivInst(Value *Op0, Value *Op1, const SimplifyQuery &Q,
1143                                unsigned MaxRecurse) {
1144   return simplifyDiv(Instruction::UDiv, Op0, Op1, Q, MaxRecurse);
1145 }
1146 
1147 Value *llvm::SimplifyUDivInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) {
1148   return ::SimplifyUDivInst(Op0, Op1, Q, RecursionLimit);
1149 }
1150 
1151 /// Given operands for an SRem, see if we can fold the result.
1152 /// If not, this returns null.
1153 static Value *SimplifySRemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q,
1154                                unsigned MaxRecurse) {
1155   // If the divisor is 0, the result is undefined, so assume the divisor is -1.
1156   // srem Op0, (sext i1 X) --> srem Op0, -1 --> 0
1157   Value *X;
1158   if (match(Op1, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1))
1159     return ConstantInt::getNullValue(Op0->getType());
1160 
1161   // If the two operands are negated, return 0.
1162   if (isKnownNegation(Op0, Op1))
1163     return ConstantInt::getNullValue(Op0->getType());
1164 
1165   return simplifyRem(Instruction::SRem, Op0, Op1, Q, MaxRecurse);
1166 }
1167 
1168 Value *llvm::SimplifySRemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) {
1169   return ::SimplifySRemInst(Op0, Op1, Q, RecursionLimit);
1170 }
1171 
1172 /// Given operands for a URem, see if we can fold the result.
1173 /// If not, this returns null.
1174 static Value *SimplifyURemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q,
1175                                unsigned MaxRecurse) {
1176   return simplifyRem(Instruction::URem, Op0, Op1, Q, MaxRecurse);
1177 }
1178 
1179 Value *llvm::SimplifyURemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) {
1180   return ::SimplifyURemInst(Op0, Op1, Q, RecursionLimit);
1181 }
1182 
1183 /// Returns true if a shift by \c Amount always yields undef.
1184 static bool isUndefShift(Value *Amount) {
1185   Constant *C = dyn_cast<Constant>(Amount);
1186   if (!C)
1187     return false;
1188 
1189   // X shift by undef -> undef because it may shift by the bitwidth.
1190   if (isa<UndefValue>(C))
1191     return true;
1192 
1193   // Shifting by the bitwidth or more is undefined.
1194   if (ConstantInt *CI = dyn_cast<ConstantInt>(C))
1195     if (CI->getValue().getLimitedValue() >=
1196         CI->getType()->getScalarSizeInBits())
1197       return true;
1198 
1199   // If all lanes of a vector shift are undefined the whole shift is.
1200   if (isa<ConstantVector>(C) || isa<ConstantDataVector>(C)) {
1201     for (unsigned I = 0, E = C->getType()->getVectorNumElements(); I != E; ++I)
1202       if (!isUndefShift(C->getAggregateElement(I)))
1203         return false;
1204     return true;
1205   }
1206 
1207   return false;
1208 }
1209 
1210 /// Given operands for an Shl, LShr or AShr, see if we can fold the result.
1211 /// If not, this returns null.
1212 static Value *SimplifyShift(Instruction::BinaryOps Opcode, Value *Op0,
1213                             Value *Op1, const SimplifyQuery &Q, unsigned MaxRecurse) {
1214   if (Constant *C = foldOrCommuteConstant(Opcode, Op0, Op1, Q))
1215     return C;
1216 
1217   // 0 shift by X -> 0
1218   if (match(Op0, m_Zero()))
1219     return Constant::getNullValue(Op0->getType());
1220 
1221   // X shift by 0 -> X
1222   // Shift-by-sign-extended bool must be shift-by-0 because shift-by-all-ones
1223   // would be poison.
1224   Value *X;
1225   if (match(Op1, m_Zero()) ||
1226       (match(Op1, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)))
1227     return Op0;
1228 
1229   // Fold undefined shifts.
1230   if (isUndefShift(Op1))
1231     return UndefValue::get(Op0->getType());
1232 
1233   // If the operation is with the result of a select instruction, check whether
1234   // operating on either branch of the select always yields the same value.
1235   if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
1236     if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse))
1237       return V;
1238 
1239   // If the operation is with the result of a phi instruction, check whether
1240   // operating on all incoming values of the phi always yields the same value.
1241   if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
1242     if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse))
1243       return V;
1244 
1245   // If any bits in the shift amount make that value greater than or equal to
1246   // the number of bits in the type, the shift is undefined.
1247   KnownBits Known = computeKnownBits(Op1, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
1248   if (Known.One.getLimitedValue() >= Known.getBitWidth())
1249     return UndefValue::get(Op0->getType());
1250 
1251   // If all valid bits in the shift amount are known zero, the first operand is
1252   // unchanged.
1253   unsigned NumValidShiftBits = Log2_32_Ceil(Known.getBitWidth());
1254   if (Known.countMinTrailingZeros() >= NumValidShiftBits)
1255     return Op0;
1256 
1257   return nullptr;
1258 }
1259 
1260 /// Given operands for an Shl, LShr or AShr, see if we can
1261 /// fold the result.  If not, this returns null.
1262 static Value *SimplifyRightShift(Instruction::BinaryOps Opcode, Value *Op0,
1263                                  Value *Op1, bool isExact, const SimplifyQuery &Q,
1264                                  unsigned MaxRecurse) {
1265   if (Value *V = SimplifyShift(Opcode, Op0, Op1, Q, MaxRecurse))
1266     return V;
1267 
1268   // X >> X -> 0
1269   if (Op0 == Op1)
1270     return Constant::getNullValue(Op0->getType());
1271 
1272   // undef >> X -> 0
1273   // undef >> X -> undef (if it's exact)
1274   if (match(Op0, m_Undef()))
1275     return isExact ? Op0 : Constant::getNullValue(Op0->getType());
1276 
1277   // The low bit cannot be shifted out of an exact shift if it is set.
1278   if (isExact) {
1279     KnownBits Op0Known = computeKnownBits(Op0, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT);
1280     if (Op0Known.One[0])
1281       return Op0;
1282   }
1283 
1284   return nullptr;
1285 }
1286 
1287 /// Given operands for an Shl, see if we can fold the result.
1288 /// If not, this returns null.
1289 static Value *SimplifyShlInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
1290                               const SimplifyQuery &Q, unsigned MaxRecurse) {
1291   if (Value *V = SimplifyShift(Instruction::Shl, Op0, Op1, Q, MaxRecurse))
1292     return V;
1293 
1294   // undef << X -> 0
1295   // undef << X -> undef if (if it's NSW/NUW)
1296   if (match(Op0, m_Undef()))
1297     return isNSW || isNUW ? Op0 : Constant::getNullValue(Op0->getType());
1298 
1299   // (X >> A) << A -> X
1300   Value *X;
1301   if (Q.IIQ.UseInstrInfo &&
1302       match(Op0, m_Exact(m_Shr(m_Value(X), m_Specific(Op1)))))
1303     return X;
1304 
1305   // shl nuw i8 C, %x  ->  C  iff C has sign bit set.
1306   if (isNUW && match(Op0, m_Negative()))
1307     return Op0;
1308   // NOTE: could use computeKnownBits() / LazyValueInfo,
1309   // but the cost-benefit analysis suggests it isn't worth it.
1310 
1311   return nullptr;
1312 }
1313 
1314 Value *llvm::SimplifyShlInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
1315                              const SimplifyQuery &Q) {
1316   return ::SimplifyShlInst(Op0, Op1, isNSW, isNUW, Q, RecursionLimit);
1317 }
1318 
1319 /// Given operands for an LShr, see if we can fold the result.
1320 /// If not, this returns null.
1321 static Value *SimplifyLShrInst(Value *Op0, Value *Op1, bool isExact,
1322                                const SimplifyQuery &Q, unsigned MaxRecurse) {
1323   if (Value *V = SimplifyRightShift(Instruction::LShr, Op0, Op1, isExact, Q,
1324                                     MaxRecurse))
1325       return V;
1326 
1327   // (X << A) >> A -> X
1328   Value *X;
1329   if (match(Op0, m_NUWShl(m_Value(X), m_Specific(Op1))))
1330     return X;
1331 
1332   // ((X << A) | Y) >> A -> X  if effective width of Y is not larger than A.
1333   // We can return X as we do in the above case since OR alters no bits in X.
1334   // SimplifyDemandedBits in InstCombine can do more general optimization for
1335   // bit manipulation. This pattern aims to provide opportunities for other
1336   // optimizers by supporting a simple but common case in InstSimplify.
1337   Value *Y;
1338   const APInt *ShRAmt, *ShLAmt;
1339   if (match(Op1, m_APInt(ShRAmt)) &&
1340       match(Op0, m_c_Or(m_NUWShl(m_Value(X), m_APInt(ShLAmt)), m_Value(Y))) &&
1341       *ShRAmt == *ShLAmt) {
1342     const KnownBits YKnown = computeKnownBits(Y, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
1343     const unsigned Width = Op0->getType()->getScalarSizeInBits();
1344     const unsigned EffWidthY = Width - YKnown.countMinLeadingZeros();
1345     if (ShRAmt->uge(EffWidthY))
1346       return X;
1347   }
1348 
1349   return nullptr;
1350 }
1351 
1352 Value *llvm::SimplifyLShrInst(Value *Op0, Value *Op1, bool isExact,
1353                               const SimplifyQuery &Q) {
1354   return ::SimplifyLShrInst(Op0, Op1, isExact, Q, RecursionLimit);
1355 }
1356 
1357 /// Given operands for an AShr, see if we can fold the result.
1358 /// If not, this returns null.
1359 static Value *SimplifyAShrInst(Value *Op0, Value *Op1, bool isExact,
1360                                const SimplifyQuery &Q, unsigned MaxRecurse) {
1361   if (Value *V = SimplifyRightShift(Instruction::AShr, Op0, Op1, isExact, Q,
1362                                     MaxRecurse))
1363     return V;
1364 
1365   // all ones >>a X -> -1
1366   // Do not return Op0 because it may contain undef elements if it's a vector.
1367   if (match(Op0, m_AllOnes()))
1368     return Constant::getAllOnesValue(Op0->getType());
1369 
1370   // (X << A) >> A -> X
1371   Value *X;
1372   if (Q.IIQ.UseInstrInfo && match(Op0, m_NSWShl(m_Value(X), m_Specific(Op1))))
1373     return X;
1374 
1375   // Arithmetic shifting an all-sign-bit value is a no-op.
1376   unsigned NumSignBits = ComputeNumSignBits(Op0, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
1377   if (NumSignBits == Op0->getType()->getScalarSizeInBits())
1378     return Op0;
1379 
1380   return nullptr;
1381 }
1382 
1383 Value *llvm::SimplifyAShrInst(Value *Op0, Value *Op1, bool isExact,
1384                               const SimplifyQuery &Q) {
1385   return ::SimplifyAShrInst(Op0, Op1, isExact, Q, RecursionLimit);
1386 }
1387 
1388 /// Commuted variants are assumed to be handled by calling this function again
1389 /// with the parameters swapped.
1390 static Value *simplifyUnsignedRangeCheck(ICmpInst *ZeroICmp,
1391                                          ICmpInst *UnsignedICmp, bool IsAnd) {
1392   Value *X, *Y;
1393 
1394   ICmpInst::Predicate EqPred;
1395   if (!match(ZeroICmp, m_ICmp(EqPred, m_Value(Y), m_Zero())) ||
1396       !ICmpInst::isEquality(EqPred))
1397     return nullptr;
1398 
1399   ICmpInst::Predicate UnsignedPred;
1400   if (match(UnsignedICmp, m_ICmp(UnsignedPred, m_Value(X), m_Specific(Y))) &&
1401       ICmpInst::isUnsigned(UnsignedPred))
1402     ;
1403   else if (match(UnsignedICmp,
1404                  m_ICmp(UnsignedPred, m_Specific(Y), m_Value(X))) &&
1405            ICmpInst::isUnsigned(UnsignedPred))
1406     UnsignedPred = ICmpInst::getSwappedPredicate(UnsignedPred);
1407   else
1408     return nullptr;
1409 
1410   // X < Y && Y != 0  -->  X < Y
1411   // X < Y || Y != 0  -->  Y != 0
1412   if (UnsignedPred == ICmpInst::ICMP_ULT && EqPred == ICmpInst::ICMP_NE)
1413     return IsAnd ? UnsignedICmp : ZeroICmp;
1414 
1415   // X >= Y || Y != 0  -->  true
1416   // X >= Y || Y == 0  -->  X >= Y
1417   if (UnsignedPred == ICmpInst::ICMP_UGE && !IsAnd) {
1418     if (EqPred == ICmpInst::ICMP_NE)
1419       return getTrue(UnsignedICmp->getType());
1420     return UnsignedICmp;
1421   }
1422 
1423   // X < Y && Y == 0  -->  false
1424   if (UnsignedPred == ICmpInst::ICMP_ULT && EqPred == ICmpInst::ICMP_EQ &&
1425       IsAnd)
1426     return getFalse(UnsignedICmp->getType());
1427 
1428   return nullptr;
1429 }
1430 
1431 /// Commuted variants are assumed to be handled by calling this function again
1432 /// with the parameters swapped.
1433 static Value *simplifyAndOfICmpsWithSameOperands(ICmpInst *Op0, ICmpInst *Op1) {
1434   ICmpInst::Predicate Pred0, Pred1;
1435   Value *A ,*B;
1436   if (!match(Op0, m_ICmp(Pred0, m_Value(A), m_Value(B))) ||
1437       !match(Op1, m_ICmp(Pred1, m_Specific(A), m_Specific(B))))
1438     return nullptr;
1439 
1440   // We have (icmp Pred0, A, B) & (icmp Pred1, A, B).
1441   // If Op1 is always implied true by Op0, then Op0 is a subset of Op1, and we
1442   // can eliminate Op1 from this 'and'.
1443   if (ICmpInst::isImpliedTrueByMatchingCmp(Pred0, Pred1))
1444     return Op0;
1445 
1446   // Check for any combination of predicates that are guaranteed to be disjoint.
1447   if ((Pred0 == ICmpInst::getInversePredicate(Pred1)) ||
1448       (Pred0 == ICmpInst::ICMP_EQ && ICmpInst::isFalseWhenEqual(Pred1)) ||
1449       (Pred0 == ICmpInst::ICMP_SLT && Pred1 == ICmpInst::ICMP_SGT) ||
1450       (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_UGT))
1451     return getFalse(Op0->getType());
1452 
1453   return nullptr;
1454 }
1455 
1456 /// Commuted variants are assumed to be handled by calling this function again
1457 /// with the parameters swapped.
1458 static Value *simplifyOrOfICmpsWithSameOperands(ICmpInst *Op0, ICmpInst *Op1) {
1459   ICmpInst::Predicate Pred0, Pred1;
1460   Value *A ,*B;
1461   if (!match(Op0, m_ICmp(Pred0, m_Value(A), m_Value(B))) ||
1462       !match(Op1, m_ICmp(Pred1, m_Specific(A), m_Specific(B))))
1463     return nullptr;
1464 
1465   // We have (icmp Pred0, A, B) | (icmp Pred1, A, B).
1466   // If Op1 is always implied true by Op0, then Op0 is a subset of Op1, and we
1467   // can eliminate Op0 from this 'or'.
1468   if (ICmpInst::isImpliedTrueByMatchingCmp(Pred0, Pred1))
1469     return Op1;
1470 
1471   // Check for any combination of predicates that cover the entire range of
1472   // possibilities.
1473   if ((Pred0 == ICmpInst::getInversePredicate(Pred1)) ||
1474       (Pred0 == ICmpInst::ICMP_NE && ICmpInst::isTrueWhenEqual(Pred1)) ||
1475       (Pred0 == ICmpInst::ICMP_SLE && Pred1 == ICmpInst::ICMP_SGE) ||
1476       (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_UGE))
1477     return getTrue(Op0->getType());
1478 
1479   return nullptr;
1480 }
1481 
1482 /// Test if a pair of compares with a shared operand and 2 constants has an
1483 /// empty set intersection, full set union, or if one compare is a superset of
1484 /// the other.
1485 static Value *simplifyAndOrOfICmpsWithConstants(ICmpInst *Cmp0, ICmpInst *Cmp1,
1486                                                 bool IsAnd) {
1487   // Look for this pattern: {and/or} (icmp X, C0), (icmp X, C1)).
1488   if (Cmp0->getOperand(0) != Cmp1->getOperand(0))
1489     return nullptr;
1490 
1491   const APInt *C0, *C1;
1492   if (!match(Cmp0->getOperand(1), m_APInt(C0)) ||
1493       !match(Cmp1->getOperand(1), m_APInt(C1)))
1494     return nullptr;
1495 
1496   auto Range0 = ConstantRange::makeExactICmpRegion(Cmp0->getPredicate(), *C0);
1497   auto Range1 = ConstantRange::makeExactICmpRegion(Cmp1->getPredicate(), *C1);
1498 
1499   // For and-of-compares, check if the intersection is empty:
1500   // (icmp X, C0) && (icmp X, C1) --> empty set --> false
1501   if (IsAnd && Range0.intersectWith(Range1).isEmptySet())
1502     return getFalse(Cmp0->getType());
1503 
1504   // For or-of-compares, check if the union is full:
1505   // (icmp X, C0) || (icmp X, C1) --> full set --> true
1506   if (!IsAnd && Range0.unionWith(Range1).isFullSet())
1507     return getTrue(Cmp0->getType());
1508 
1509   // Is one range a superset of the other?
1510   // If this is and-of-compares, take the smaller set:
1511   // (icmp sgt X, 4) && (icmp sgt X, 42) --> icmp sgt X, 42
1512   // If this is or-of-compares, take the larger set:
1513   // (icmp sgt X, 4) || (icmp sgt X, 42) --> icmp sgt X, 4
1514   if (Range0.contains(Range1))
1515     return IsAnd ? Cmp1 : Cmp0;
1516   if (Range1.contains(Range0))
1517     return IsAnd ? Cmp0 : Cmp1;
1518 
1519   return nullptr;
1520 }
1521 
1522 static Value *simplifyAndOrOfICmpsWithZero(ICmpInst *Cmp0, ICmpInst *Cmp1,
1523                                            bool IsAnd) {
1524   ICmpInst::Predicate P0 = Cmp0->getPredicate(), P1 = Cmp1->getPredicate();
1525   if (!match(Cmp0->getOperand(1), m_Zero()) ||
1526       !match(Cmp1->getOperand(1), m_Zero()) || P0 != P1)
1527     return nullptr;
1528 
1529   if ((IsAnd && P0 != ICmpInst::ICMP_NE) || (!IsAnd && P1 != ICmpInst::ICMP_EQ))
1530     return nullptr;
1531 
1532   // We have either "(X == 0 || Y == 0)" or "(X != 0 && Y != 0)".
1533   Value *X = Cmp0->getOperand(0);
1534   Value *Y = Cmp1->getOperand(0);
1535 
1536   // If one of the compares is a masked version of a (not) null check, then
1537   // that compare implies the other, so we eliminate the other. Optionally, look
1538   // through a pointer-to-int cast to match a null check of a pointer type.
1539 
1540   // (X == 0) || (([ptrtoint] X & ?) == 0) --> ([ptrtoint] X & ?) == 0
1541   // (X == 0) || ((? & [ptrtoint] X) == 0) --> (? & [ptrtoint] X) == 0
1542   // (X != 0) && (([ptrtoint] X & ?) != 0) --> ([ptrtoint] X & ?) != 0
1543   // (X != 0) && ((? & [ptrtoint] X) != 0) --> (? & [ptrtoint] X) != 0
1544   if (match(Y, m_c_And(m_Specific(X), m_Value())) ||
1545       match(Y, m_c_And(m_PtrToInt(m_Specific(X)), m_Value())))
1546     return Cmp1;
1547 
1548   // (([ptrtoint] Y & ?) == 0) || (Y == 0) --> ([ptrtoint] Y & ?) == 0
1549   // ((? & [ptrtoint] Y) == 0) || (Y == 0) --> (? & [ptrtoint] Y) == 0
1550   // (([ptrtoint] Y & ?) != 0) && (Y != 0) --> ([ptrtoint] Y & ?) != 0
1551   // ((? & [ptrtoint] Y) != 0) && (Y != 0) --> (? & [ptrtoint] Y) != 0
1552   if (match(X, m_c_And(m_Specific(Y), m_Value())) ||
1553       match(X, m_c_And(m_PtrToInt(m_Specific(Y)), m_Value())))
1554     return Cmp0;
1555 
1556   return nullptr;
1557 }
1558 
1559 static Value *simplifyAndOfICmpsWithAdd(ICmpInst *Op0, ICmpInst *Op1,
1560                                         const InstrInfoQuery &IIQ) {
1561   // (icmp (add V, C0), C1) & (icmp V, C0)
1562   ICmpInst::Predicate Pred0, Pred1;
1563   const APInt *C0, *C1;
1564   Value *V;
1565   if (!match(Op0, m_ICmp(Pred0, m_Add(m_Value(V), m_APInt(C0)), m_APInt(C1))))
1566     return nullptr;
1567 
1568   if (!match(Op1, m_ICmp(Pred1, m_Specific(V), m_Value())))
1569     return nullptr;
1570 
1571   auto *AddInst = cast<OverflowingBinaryOperator>(Op0->getOperand(0));
1572   if (AddInst->getOperand(1) != Op1->getOperand(1))
1573     return nullptr;
1574 
1575   Type *ITy = Op0->getType();
1576   bool isNSW = IIQ.hasNoSignedWrap(AddInst);
1577   bool isNUW = IIQ.hasNoUnsignedWrap(AddInst);
1578 
1579   const APInt Delta = *C1 - *C0;
1580   if (C0->isStrictlyPositive()) {
1581     if (Delta == 2) {
1582       if (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_SGT)
1583         return getFalse(ITy);
1584       if (Pred0 == ICmpInst::ICMP_SLT && Pred1 == ICmpInst::ICMP_SGT && isNSW)
1585         return getFalse(ITy);
1586     }
1587     if (Delta == 1) {
1588       if (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_SGT)
1589         return getFalse(ITy);
1590       if (Pred0 == ICmpInst::ICMP_SLE && Pred1 == ICmpInst::ICMP_SGT && isNSW)
1591         return getFalse(ITy);
1592     }
1593   }
1594   if (C0->getBoolValue() && isNUW) {
1595     if (Delta == 2)
1596       if (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_UGT)
1597         return getFalse(ITy);
1598     if (Delta == 1)
1599       if (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_UGT)
1600         return getFalse(ITy);
1601   }
1602 
1603   return nullptr;
1604 }
1605 
1606 static Value *simplifyAndOfICmps(ICmpInst *Op0, ICmpInst *Op1,
1607                                  const InstrInfoQuery &IIQ) {
1608   if (Value *X = simplifyUnsignedRangeCheck(Op0, Op1, /*IsAnd=*/true))
1609     return X;
1610   if (Value *X = simplifyUnsignedRangeCheck(Op1, Op0, /*IsAnd=*/true))
1611     return X;
1612 
1613   if (Value *X = simplifyAndOfICmpsWithSameOperands(Op0, Op1))
1614     return X;
1615   if (Value *X = simplifyAndOfICmpsWithSameOperands(Op1, Op0))
1616     return X;
1617 
1618   if (Value *X = simplifyAndOrOfICmpsWithConstants(Op0, Op1, true))
1619     return X;
1620 
1621   if (Value *X = simplifyAndOrOfICmpsWithZero(Op0, Op1, true))
1622     return X;
1623 
1624   if (Value *X = simplifyAndOfICmpsWithAdd(Op0, Op1, IIQ))
1625     return X;
1626   if (Value *X = simplifyAndOfICmpsWithAdd(Op1, Op0, IIQ))
1627     return X;
1628 
1629   return nullptr;
1630 }
1631 
1632 static Value *simplifyOrOfICmpsWithAdd(ICmpInst *Op0, ICmpInst *Op1,
1633                                        const InstrInfoQuery &IIQ) {
1634   // (icmp (add V, C0), C1) | (icmp V, C0)
1635   ICmpInst::Predicate Pred0, Pred1;
1636   const APInt *C0, *C1;
1637   Value *V;
1638   if (!match(Op0, m_ICmp(Pred0, m_Add(m_Value(V), m_APInt(C0)), m_APInt(C1))))
1639     return nullptr;
1640 
1641   if (!match(Op1, m_ICmp(Pred1, m_Specific(V), m_Value())))
1642     return nullptr;
1643 
1644   auto *AddInst = cast<BinaryOperator>(Op0->getOperand(0));
1645   if (AddInst->getOperand(1) != Op1->getOperand(1))
1646     return nullptr;
1647 
1648   Type *ITy = Op0->getType();
1649   bool isNSW = IIQ.hasNoSignedWrap(AddInst);
1650   bool isNUW = IIQ.hasNoUnsignedWrap(AddInst);
1651 
1652   const APInt Delta = *C1 - *C0;
1653   if (C0->isStrictlyPositive()) {
1654     if (Delta == 2) {
1655       if (Pred0 == ICmpInst::ICMP_UGE && Pred1 == ICmpInst::ICMP_SLE)
1656         return getTrue(ITy);
1657       if (Pred0 == ICmpInst::ICMP_SGE && Pred1 == ICmpInst::ICMP_SLE && isNSW)
1658         return getTrue(ITy);
1659     }
1660     if (Delta == 1) {
1661       if (Pred0 == ICmpInst::ICMP_UGT && Pred1 == ICmpInst::ICMP_SLE)
1662         return getTrue(ITy);
1663       if (Pred0 == ICmpInst::ICMP_SGT && Pred1 == ICmpInst::ICMP_SLE && isNSW)
1664         return getTrue(ITy);
1665     }
1666   }
1667   if (C0->getBoolValue() && isNUW) {
1668     if (Delta == 2)
1669       if (Pred0 == ICmpInst::ICMP_UGE && Pred1 == ICmpInst::ICMP_ULE)
1670         return getTrue(ITy);
1671     if (Delta == 1)
1672       if (Pred0 == ICmpInst::ICMP_UGT && Pred1 == ICmpInst::ICMP_ULE)
1673         return getTrue(ITy);
1674   }
1675 
1676   return nullptr;
1677 }
1678 
1679 static Value *simplifyOrOfICmps(ICmpInst *Op0, ICmpInst *Op1,
1680                                 const InstrInfoQuery &IIQ) {
1681   if (Value *X = simplifyUnsignedRangeCheck(Op0, Op1, /*IsAnd=*/false))
1682     return X;
1683   if (Value *X = simplifyUnsignedRangeCheck(Op1, Op0, /*IsAnd=*/false))
1684     return X;
1685 
1686   if (Value *X = simplifyOrOfICmpsWithSameOperands(Op0, Op1))
1687     return X;
1688   if (Value *X = simplifyOrOfICmpsWithSameOperands(Op1, Op0))
1689     return X;
1690 
1691   if (Value *X = simplifyAndOrOfICmpsWithConstants(Op0, Op1, false))
1692     return X;
1693 
1694   if (Value *X = simplifyAndOrOfICmpsWithZero(Op0, Op1, false))
1695     return X;
1696 
1697   if (Value *X = simplifyOrOfICmpsWithAdd(Op0, Op1, IIQ))
1698     return X;
1699   if (Value *X = simplifyOrOfICmpsWithAdd(Op1, Op0, IIQ))
1700     return X;
1701 
1702   return nullptr;
1703 }
1704 
1705 static Value *simplifyAndOrOfFCmps(const TargetLibraryInfo *TLI,
1706                                    FCmpInst *LHS, FCmpInst *RHS, bool IsAnd) {
1707   Value *LHS0 = LHS->getOperand(0), *LHS1 = LHS->getOperand(1);
1708   Value *RHS0 = RHS->getOperand(0), *RHS1 = RHS->getOperand(1);
1709   if (LHS0->getType() != RHS0->getType())
1710     return nullptr;
1711 
1712   FCmpInst::Predicate PredL = LHS->getPredicate(), PredR = RHS->getPredicate();
1713   if ((PredL == FCmpInst::FCMP_ORD && PredR == FCmpInst::FCMP_ORD && IsAnd) ||
1714       (PredL == FCmpInst::FCMP_UNO && PredR == FCmpInst::FCMP_UNO && !IsAnd)) {
1715     // (fcmp ord NNAN, X) & (fcmp ord X, Y) --> fcmp ord X, Y
1716     // (fcmp ord NNAN, X) & (fcmp ord Y, X) --> fcmp ord Y, X
1717     // (fcmp ord X, NNAN) & (fcmp ord X, Y) --> fcmp ord X, Y
1718     // (fcmp ord X, NNAN) & (fcmp ord Y, X) --> fcmp ord Y, X
1719     // (fcmp uno NNAN, X) | (fcmp uno X, Y) --> fcmp uno X, Y
1720     // (fcmp uno NNAN, X) | (fcmp uno Y, X) --> fcmp uno Y, X
1721     // (fcmp uno X, NNAN) | (fcmp uno X, Y) --> fcmp uno X, Y
1722     // (fcmp uno X, NNAN) | (fcmp uno Y, X) --> fcmp uno Y, X
1723     if ((isKnownNeverNaN(LHS0, TLI) && (LHS1 == RHS0 || LHS1 == RHS1)) ||
1724         (isKnownNeverNaN(LHS1, TLI) && (LHS0 == RHS0 || LHS0 == RHS1)))
1725       return RHS;
1726 
1727     // (fcmp ord X, Y) & (fcmp ord NNAN, X) --> fcmp ord X, Y
1728     // (fcmp ord Y, X) & (fcmp ord NNAN, X) --> fcmp ord Y, X
1729     // (fcmp ord X, Y) & (fcmp ord X, NNAN) --> fcmp ord X, Y
1730     // (fcmp ord Y, X) & (fcmp ord X, NNAN) --> fcmp ord Y, X
1731     // (fcmp uno X, Y) | (fcmp uno NNAN, X) --> fcmp uno X, Y
1732     // (fcmp uno Y, X) | (fcmp uno NNAN, X) --> fcmp uno Y, X
1733     // (fcmp uno X, Y) | (fcmp uno X, NNAN) --> fcmp uno X, Y
1734     // (fcmp uno Y, X) | (fcmp uno X, NNAN) --> fcmp uno Y, X
1735     if ((isKnownNeverNaN(RHS0, TLI) && (RHS1 == LHS0 || RHS1 == LHS1)) ||
1736         (isKnownNeverNaN(RHS1, TLI) && (RHS0 == LHS0 || RHS0 == LHS1)))
1737       return LHS;
1738   }
1739 
1740   return nullptr;
1741 }
1742 
1743 static Value *simplifyAndOrOfCmps(const SimplifyQuery &Q,
1744                                   Value *Op0, Value *Op1, bool IsAnd) {
1745   // Look through casts of the 'and' operands to find compares.
1746   auto *Cast0 = dyn_cast<CastInst>(Op0);
1747   auto *Cast1 = dyn_cast<CastInst>(Op1);
1748   if (Cast0 && Cast1 && Cast0->getOpcode() == Cast1->getOpcode() &&
1749       Cast0->getSrcTy() == Cast1->getSrcTy()) {
1750     Op0 = Cast0->getOperand(0);
1751     Op1 = Cast1->getOperand(0);
1752   }
1753 
1754   Value *V = nullptr;
1755   auto *ICmp0 = dyn_cast<ICmpInst>(Op0);
1756   auto *ICmp1 = dyn_cast<ICmpInst>(Op1);
1757   if (ICmp0 && ICmp1)
1758     V = IsAnd ? simplifyAndOfICmps(ICmp0, ICmp1, Q.IIQ)
1759               : simplifyOrOfICmps(ICmp0, ICmp1, Q.IIQ);
1760 
1761   auto *FCmp0 = dyn_cast<FCmpInst>(Op0);
1762   auto *FCmp1 = dyn_cast<FCmpInst>(Op1);
1763   if (FCmp0 && FCmp1)
1764     V = simplifyAndOrOfFCmps(Q.TLI, FCmp0, FCmp1, IsAnd);
1765 
1766   if (!V)
1767     return nullptr;
1768   if (!Cast0)
1769     return V;
1770 
1771   // If we looked through casts, we can only handle a constant simplification
1772   // because we are not allowed to create a cast instruction here.
1773   if (auto *C = dyn_cast<Constant>(V))
1774     return ConstantExpr::getCast(Cast0->getOpcode(), C, Cast0->getType());
1775 
1776   return nullptr;
1777 }
1778 
1779 /// Given operands for an And, see if we can fold the result.
1780 /// If not, this returns null.
1781 static Value *SimplifyAndInst(Value *Op0, Value *Op1, const SimplifyQuery &Q,
1782                               unsigned MaxRecurse) {
1783   if (Constant *C = foldOrCommuteConstant(Instruction::And, Op0, Op1, Q))
1784     return C;
1785 
1786   // X & undef -> 0
1787   if (match(Op1, m_Undef()))
1788     return Constant::getNullValue(Op0->getType());
1789 
1790   // X & X = X
1791   if (Op0 == Op1)
1792     return Op0;
1793 
1794   // X & 0 = 0
1795   if (match(Op1, m_Zero()))
1796     return Constant::getNullValue(Op0->getType());
1797 
1798   // X & -1 = X
1799   if (match(Op1, m_AllOnes()))
1800     return Op0;
1801 
1802   // A & ~A  =  ~A & A  =  0
1803   if (match(Op0, m_Not(m_Specific(Op1))) ||
1804       match(Op1, m_Not(m_Specific(Op0))))
1805     return Constant::getNullValue(Op0->getType());
1806 
1807   // (A | ?) & A = A
1808   if (match(Op0, m_c_Or(m_Specific(Op1), m_Value())))
1809     return Op1;
1810 
1811   // A & (A | ?) = A
1812   if (match(Op1, m_c_Or(m_Specific(Op0), m_Value())))
1813     return Op0;
1814 
1815   // A mask that only clears known zeros of a shifted value is a no-op.
1816   Value *X;
1817   const APInt *Mask;
1818   const APInt *ShAmt;
1819   if (match(Op1, m_APInt(Mask))) {
1820     // If all bits in the inverted and shifted mask are clear:
1821     // and (shl X, ShAmt), Mask --> shl X, ShAmt
1822     if (match(Op0, m_Shl(m_Value(X), m_APInt(ShAmt))) &&
1823         (~(*Mask)).lshr(*ShAmt).isNullValue())
1824       return Op0;
1825 
1826     // If all bits in the inverted and shifted mask are clear:
1827     // and (lshr X, ShAmt), Mask --> lshr X, ShAmt
1828     if (match(Op0, m_LShr(m_Value(X), m_APInt(ShAmt))) &&
1829         (~(*Mask)).shl(*ShAmt).isNullValue())
1830       return Op0;
1831   }
1832 
1833   // A & (-A) = A if A is a power of two or zero.
1834   if (match(Op0, m_Neg(m_Specific(Op1))) ||
1835       match(Op1, m_Neg(m_Specific(Op0)))) {
1836     if (isKnownToBeAPowerOfTwo(Op0, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI,
1837                                Q.DT))
1838       return Op0;
1839     if (isKnownToBeAPowerOfTwo(Op1, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI,
1840                                Q.DT))
1841       return Op1;
1842   }
1843 
1844   if (Value *V = simplifyAndOrOfCmps(Q, Op0, Op1, true))
1845     return V;
1846 
1847   // Try some generic simplifications for associative operations.
1848   if (Value *V = SimplifyAssociativeBinOp(Instruction::And, Op0, Op1, Q,
1849                                           MaxRecurse))
1850     return V;
1851 
1852   // And distributes over Or.  Try some generic simplifications based on this.
1853   if (Value *V = ExpandBinOp(Instruction::And, Op0, Op1, Instruction::Or,
1854                              Q, MaxRecurse))
1855     return V;
1856 
1857   // And distributes over Xor.  Try some generic simplifications based on this.
1858   if (Value *V = ExpandBinOp(Instruction::And, Op0, Op1, Instruction::Xor,
1859                              Q, MaxRecurse))
1860     return V;
1861 
1862   // If the operation is with the result of a select instruction, check whether
1863   // operating on either branch of the select always yields the same value.
1864   if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
1865     if (Value *V = ThreadBinOpOverSelect(Instruction::And, Op0, Op1, Q,
1866                                          MaxRecurse))
1867       return V;
1868 
1869   // If the operation is with the result of a phi instruction, check whether
1870   // operating on all incoming values of the phi always yields the same value.
1871   if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
1872     if (Value *V = ThreadBinOpOverPHI(Instruction::And, Op0, Op1, Q,
1873                                       MaxRecurse))
1874       return V;
1875 
1876   // Assuming the effective width of Y is not larger than A, i.e. all bits
1877   // from X and Y are disjoint in (X << A) | Y,
1878   // if the mask of this AND op covers all bits of X or Y, while it covers
1879   // no bits from the other, we can bypass this AND op. E.g.,
1880   // ((X << A) | Y) & Mask -> Y,
1881   //     if Mask = ((1 << effective_width_of(Y)) - 1)
1882   // ((X << A) | Y) & Mask -> X << A,
1883   //     if Mask = ((1 << effective_width_of(X)) - 1) << A
1884   // SimplifyDemandedBits in InstCombine can optimize the general case.
1885   // This pattern aims to help other passes for a common case.
1886   Value *Y, *XShifted;
1887   if (match(Op1, m_APInt(Mask)) &&
1888       match(Op0, m_c_Or(m_CombineAnd(m_NUWShl(m_Value(X), m_APInt(ShAmt)),
1889                                      m_Value(XShifted)),
1890                         m_Value(Y)))) {
1891     const unsigned Width = Op0->getType()->getScalarSizeInBits();
1892     const unsigned ShftCnt = ShAmt->getLimitedValue(Width);
1893     const KnownBits YKnown = computeKnownBits(Y, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
1894     const unsigned EffWidthY = Width - YKnown.countMinLeadingZeros();
1895     if (EffWidthY <= ShftCnt) {
1896       const KnownBits XKnown = computeKnownBits(X, Q.DL, 0, Q.AC, Q.CxtI,
1897                                                 Q.DT);
1898       const unsigned EffWidthX = Width - XKnown.countMinLeadingZeros();
1899       const APInt EffBitsY = APInt::getLowBitsSet(Width, EffWidthY);
1900       const APInt EffBitsX = APInt::getLowBitsSet(Width, EffWidthX) << ShftCnt;
1901       // If the mask is extracting all bits from X or Y as is, we can skip
1902       // this AND op.
1903       if (EffBitsY.isSubsetOf(*Mask) && !EffBitsX.intersects(*Mask))
1904         return Y;
1905       if (EffBitsX.isSubsetOf(*Mask) && !EffBitsY.intersects(*Mask))
1906         return XShifted;
1907     }
1908   }
1909 
1910   return nullptr;
1911 }
1912 
1913 Value *llvm::SimplifyAndInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) {
1914   return ::SimplifyAndInst(Op0, Op1, Q, RecursionLimit);
1915 }
1916 
1917 /// Given operands for an Or, see if we can fold the result.
1918 /// If not, this returns null.
1919 static Value *SimplifyOrInst(Value *Op0, Value *Op1, const SimplifyQuery &Q,
1920                              unsigned MaxRecurse) {
1921   if (Constant *C = foldOrCommuteConstant(Instruction::Or, Op0, Op1, Q))
1922     return C;
1923 
1924   // X | undef -> -1
1925   // X | -1 = -1
1926   // Do not return Op1 because it may contain undef elements if it's a vector.
1927   if (match(Op1, m_Undef()) || match(Op1, m_AllOnes()))
1928     return Constant::getAllOnesValue(Op0->getType());
1929 
1930   // X | X = X
1931   // X | 0 = X
1932   if (Op0 == Op1 || match(Op1, m_Zero()))
1933     return Op0;
1934 
1935   // A | ~A  =  ~A | A  =  -1
1936   if (match(Op0, m_Not(m_Specific(Op1))) ||
1937       match(Op1, m_Not(m_Specific(Op0))))
1938     return Constant::getAllOnesValue(Op0->getType());
1939 
1940   // (A & ?) | A = A
1941   if (match(Op0, m_c_And(m_Specific(Op1), m_Value())))
1942     return Op1;
1943 
1944   // A | (A & ?) = A
1945   if (match(Op1, m_c_And(m_Specific(Op0), m_Value())))
1946     return Op0;
1947 
1948   // ~(A & ?) | A = -1
1949   if (match(Op0, m_Not(m_c_And(m_Specific(Op1), m_Value()))))
1950     return Constant::getAllOnesValue(Op1->getType());
1951 
1952   // A | ~(A & ?) = -1
1953   if (match(Op1, m_Not(m_c_And(m_Specific(Op1), m_Value()))))
1954     return Constant::getAllOnesValue(Op0->getType());
1955 
1956   Value *A, *B;
1957   // (A & ~B) | (A ^ B) -> (A ^ B)
1958   // (~B & A) | (A ^ B) -> (A ^ B)
1959   // (A & ~B) | (B ^ A) -> (B ^ A)
1960   // (~B & A) | (B ^ A) -> (B ^ A)
1961   if (match(Op1, m_Xor(m_Value(A), m_Value(B))) &&
1962       (match(Op0, m_c_And(m_Specific(A), m_Not(m_Specific(B)))) ||
1963        match(Op0, m_c_And(m_Not(m_Specific(A)), m_Specific(B)))))
1964     return Op1;
1965 
1966   // Commute the 'or' operands.
1967   // (A ^ B) | (A & ~B) -> (A ^ B)
1968   // (A ^ B) | (~B & A) -> (A ^ B)
1969   // (B ^ A) | (A & ~B) -> (B ^ A)
1970   // (B ^ A) | (~B & A) -> (B ^ A)
1971   if (match(Op0, m_Xor(m_Value(A), m_Value(B))) &&
1972       (match(Op1, m_c_And(m_Specific(A), m_Not(m_Specific(B)))) ||
1973        match(Op1, m_c_And(m_Not(m_Specific(A)), m_Specific(B)))))
1974     return Op0;
1975 
1976   // (A & B) | (~A ^ B) -> (~A ^ B)
1977   // (B & A) | (~A ^ B) -> (~A ^ B)
1978   // (A & B) | (B ^ ~A) -> (B ^ ~A)
1979   // (B & A) | (B ^ ~A) -> (B ^ ~A)
1980   if (match(Op0, m_And(m_Value(A), m_Value(B))) &&
1981       (match(Op1, m_c_Xor(m_Specific(A), m_Not(m_Specific(B)))) ||
1982        match(Op1, m_c_Xor(m_Not(m_Specific(A)), m_Specific(B)))))
1983     return Op1;
1984 
1985   // (~A ^ B) | (A & B) -> (~A ^ B)
1986   // (~A ^ B) | (B & A) -> (~A ^ B)
1987   // (B ^ ~A) | (A & B) -> (B ^ ~A)
1988   // (B ^ ~A) | (B & A) -> (B ^ ~A)
1989   if (match(Op1, m_And(m_Value(A), m_Value(B))) &&
1990       (match(Op0, m_c_Xor(m_Specific(A), m_Not(m_Specific(B)))) ||
1991        match(Op0, m_c_Xor(m_Not(m_Specific(A)), m_Specific(B)))))
1992     return Op0;
1993 
1994   if (Value *V = simplifyAndOrOfCmps(Q, Op0, Op1, false))
1995     return V;
1996 
1997   // Try some generic simplifications for associative operations.
1998   if (Value *V = SimplifyAssociativeBinOp(Instruction::Or, Op0, Op1, Q,
1999                                           MaxRecurse))
2000     return V;
2001 
2002   // Or distributes over And.  Try some generic simplifications based on this.
2003   if (Value *V = ExpandBinOp(Instruction::Or, Op0, Op1, Instruction::And, Q,
2004                              MaxRecurse))
2005     return V;
2006 
2007   // If the operation is with the result of a select instruction, check whether
2008   // operating on either branch of the select always yields the same value.
2009   if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
2010     if (Value *V = ThreadBinOpOverSelect(Instruction::Or, Op0, Op1, Q,
2011                                          MaxRecurse))
2012       return V;
2013 
2014   // (A & C1)|(B & C2)
2015   const APInt *C1, *C2;
2016   if (match(Op0, m_And(m_Value(A), m_APInt(C1))) &&
2017       match(Op1, m_And(m_Value(B), m_APInt(C2)))) {
2018     if (*C1 == ~*C2) {
2019       // (A & C1)|(B & C2)
2020       // If we have: ((V + N) & C1) | (V & C2)
2021       // .. and C2 = ~C1 and C2 is 0+1+ and (N & C2) == 0
2022       // replace with V+N.
2023       Value *N;
2024       if (C2->isMask() && // C2 == 0+1+
2025           match(A, m_c_Add(m_Specific(B), m_Value(N)))) {
2026         // Add commutes, try both ways.
2027         if (MaskedValueIsZero(N, *C2, Q.DL, 0, Q.AC, Q.CxtI, Q.DT))
2028           return A;
2029       }
2030       // Or commutes, try both ways.
2031       if (C1->isMask() &&
2032           match(B, m_c_Add(m_Specific(A), m_Value(N)))) {
2033         // Add commutes, try both ways.
2034         if (MaskedValueIsZero(N, *C1, Q.DL, 0, Q.AC, Q.CxtI, Q.DT))
2035           return B;
2036       }
2037     }
2038   }
2039 
2040   // If the operation is with the result of a phi instruction, check whether
2041   // operating on all incoming values of the phi always yields the same value.
2042   if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
2043     if (Value *V = ThreadBinOpOverPHI(Instruction::Or, Op0, Op1, Q, MaxRecurse))
2044       return V;
2045 
2046   return nullptr;
2047 }
2048 
2049 Value *llvm::SimplifyOrInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) {
2050   return ::SimplifyOrInst(Op0, Op1, Q, RecursionLimit);
2051 }
2052 
2053 /// Given operands for a Xor, see if we can fold the result.
2054 /// If not, this returns null.
2055 static Value *SimplifyXorInst(Value *Op0, Value *Op1, const SimplifyQuery &Q,
2056                               unsigned MaxRecurse) {
2057   if (Constant *C = foldOrCommuteConstant(Instruction::Xor, Op0, Op1, Q))
2058     return C;
2059 
2060   // A ^ undef -> undef
2061   if (match(Op1, m_Undef()))
2062     return Op1;
2063 
2064   // A ^ 0 = A
2065   if (match(Op1, m_Zero()))
2066     return Op0;
2067 
2068   // A ^ A = 0
2069   if (Op0 == Op1)
2070     return Constant::getNullValue(Op0->getType());
2071 
2072   // A ^ ~A  =  ~A ^ A  =  -1
2073   if (match(Op0, m_Not(m_Specific(Op1))) ||
2074       match(Op1, m_Not(m_Specific(Op0))))
2075     return Constant::getAllOnesValue(Op0->getType());
2076 
2077   // Try some generic simplifications for associative operations.
2078   if (Value *V = SimplifyAssociativeBinOp(Instruction::Xor, Op0, Op1, Q,
2079                                           MaxRecurse))
2080     return V;
2081 
2082   // Threading Xor over selects and phi nodes is pointless, so don't bother.
2083   // Threading over the select in "A ^ select(cond, B, C)" means evaluating
2084   // "A^B" and "A^C" and seeing if they are equal; but they are equal if and
2085   // only if B and C are equal.  If B and C are equal then (since we assume
2086   // that operands have already been simplified) "select(cond, B, C)" should
2087   // have been simplified to the common value of B and C already.  Analysing
2088   // "A^B" and "A^C" thus gains nothing, but costs compile time.  Similarly
2089   // for threading over phi nodes.
2090 
2091   return nullptr;
2092 }
2093 
2094 Value *llvm::SimplifyXorInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) {
2095   return ::SimplifyXorInst(Op0, Op1, Q, RecursionLimit);
2096 }
2097 
2098 
2099 static Type *GetCompareTy(Value *Op) {
2100   return CmpInst::makeCmpResultType(Op->getType());
2101 }
2102 
2103 /// Rummage around inside V looking for something equivalent to the comparison
2104 /// "LHS Pred RHS". Return such a value if found, otherwise return null.
2105 /// Helper function for analyzing max/min idioms.
2106 static Value *ExtractEquivalentCondition(Value *V, CmpInst::Predicate Pred,
2107                                          Value *LHS, Value *RHS) {
2108   SelectInst *SI = dyn_cast<SelectInst>(V);
2109   if (!SI)
2110     return nullptr;
2111   CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition());
2112   if (!Cmp)
2113     return nullptr;
2114   Value *CmpLHS = Cmp->getOperand(0), *CmpRHS = Cmp->getOperand(1);
2115   if (Pred == Cmp->getPredicate() && LHS == CmpLHS && RHS == CmpRHS)
2116     return Cmp;
2117   if (Pred == CmpInst::getSwappedPredicate(Cmp->getPredicate()) &&
2118       LHS == CmpRHS && RHS == CmpLHS)
2119     return Cmp;
2120   return nullptr;
2121 }
2122 
2123 // A significant optimization not implemented here is assuming that alloca
2124 // addresses are not equal to incoming argument values. They don't *alias*,
2125 // as we say, but that doesn't mean they aren't equal, so we take a
2126 // conservative approach.
2127 //
2128 // This is inspired in part by C++11 5.10p1:
2129 //   "Two pointers of the same type compare equal if and only if they are both
2130 //    null, both point to the same function, or both represent the same
2131 //    address."
2132 //
2133 // This is pretty permissive.
2134 //
2135 // It's also partly due to C11 6.5.9p6:
2136 //   "Two pointers compare equal if and only if both are null pointers, both are
2137 //    pointers to the same object (including a pointer to an object and a
2138 //    subobject at its beginning) or function, both are pointers to one past the
2139 //    last element of the same array object, or one is a pointer to one past the
2140 //    end of one array object and the other is a pointer to the start of a
2141 //    different array object that happens to immediately follow the first array
2142 //    object in the address space.)
2143 //
2144 // C11's version is more restrictive, however there's no reason why an argument
2145 // couldn't be a one-past-the-end value for a stack object in the caller and be
2146 // equal to the beginning of a stack object in the callee.
2147 //
2148 // If the C and C++ standards are ever made sufficiently restrictive in this
2149 // area, it may be possible to update LLVM's semantics accordingly and reinstate
2150 // this optimization.
2151 static Constant *
2152 computePointerICmp(const DataLayout &DL, const TargetLibraryInfo *TLI,
2153                    const DominatorTree *DT, CmpInst::Predicate Pred,
2154                    AssumptionCache *AC, const Instruction *CxtI,
2155                    const InstrInfoQuery &IIQ, Value *LHS, Value *RHS) {
2156   // First, skip past any trivial no-ops.
2157   LHS = LHS->stripPointerCasts();
2158   RHS = RHS->stripPointerCasts();
2159 
2160   // A non-null pointer is not equal to a null pointer.
2161   if (llvm::isKnownNonZero(LHS, DL, 0, nullptr, nullptr, nullptr,
2162                            IIQ.UseInstrInfo) &&
2163       isa<ConstantPointerNull>(RHS) &&
2164       (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE))
2165     return ConstantInt::get(GetCompareTy(LHS),
2166                             !CmpInst::isTrueWhenEqual(Pred));
2167 
2168   // We can only fold certain predicates on pointer comparisons.
2169   switch (Pred) {
2170   default:
2171     return nullptr;
2172 
2173     // Equality comaprisons are easy to fold.
2174   case CmpInst::ICMP_EQ:
2175   case CmpInst::ICMP_NE:
2176     break;
2177 
2178     // We can only handle unsigned relational comparisons because 'inbounds' on
2179     // a GEP only protects against unsigned wrapping.
2180   case CmpInst::ICMP_UGT:
2181   case CmpInst::ICMP_UGE:
2182   case CmpInst::ICMP_ULT:
2183   case CmpInst::ICMP_ULE:
2184     // However, we have to switch them to their signed variants to handle
2185     // negative indices from the base pointer.
2186     Pred = ICmpInst::getSignedPredicate(Pred);
2187     break;
2188   }
2189 
2190   // Strip off any constant offsets so that we can reason about them.
2191   // It's tempting to use getUnderlyingObject or even just stripInBoundsOffsets
2192   // here and compare base addresses like AliasAnalysis does, however there are
2193   // numerous hazards. AliasAnalysis and its utilities rely on special rules
2194   // governing loads and stores which don't apply to icmps. Also, AliasAnalysis
2195   // doesn't need to guarantee pointer inequality when it says NoAlias.
2196   Constant *LHSOffset = stripAndComputeConstantOffsets(DL, LHS);
2197   Constant *RHSOffset = stripAndComputeConstantOffsets(DL, RHS);
2198 
2199   // If LHS and RHS are related via constant offsets to the same base
2200   // value, we can replace it with an icmp which just compares the offsets.
2201   if (LHS == RHS)
2202     return ConstantExpr::getICmp(Pred, LHSOffset, RHSOffset);
2203 
2204   // Various optimizations for (in)equality comparisons.
2205   if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE) {
2206     // Different non-empty allocations that exist at the same time have
2207     // different addresses (if the program can tell). Global variables always
2208     // exist, so they always exist during the lifetime of each other and all
2209     // allocas. Two different allocas usually have different addresses...
2210     //
2211     // However, if there's an @llvm.stackrestore dynamically in between two
2212     // allocas, they may have the same address. It's tempting to reduce the
2213     // scope of the problem by only looking at *static* allocas here. That would
2214     // cover the majority of allocas while significantly reducing the likelihood
2215     // of having an @llvm.stackrestore pop up in the middle. However, it's not
2216     // actually impossible for an @llvm.stackrestore to pop up in the middle of
2217     // an entry block. Also, if we have a block that's not attached to a
2218     // function, we can't tell if it's "static" under the current definition.
2219     // Theoretically, this problem could be fixed by creating a new kind of
2220     // instruction kind specifically for static allocas. Such a new instruction
2221     // could be required to be at the top of the entry block, thus preventing it
2222     // from being subject to a @llvm.stackrestore. Instcombine could even
2223     // convert regular allocas into these special allocas. It'd be nifty.
2224     // However, until then, this problem remains open.
2225     //
2226     // So, we'll assume that two non-empty allocas have different addresses
2227     // for now.
2228     //
2229     // With all that, if the offsets are within the bounds of their allocations
2230     // (and not one-past-the-end! so we can't use inbounds!), and their
2231     // allocations aren't the same, the pointers are not equal.
2232     //
2233     // Note that it's not necessary to check for LHS being a global variable
2234     // address, due to canonicalization and constant folding.
2235     if (isa<AllocaInst>(LHS) &&
2236         (isa<AllocaInst>(RHS) || isa<GlobalVariable>(RHS))) {
2237       ConstantInt *LHSOffsetCI = dyn_cast<ConstantInt>(LHSOffset);
2238       ConstantInt *RHSOffsetCI = dyn_cast<ConstantInt>(RHSOffset);
2239       uint64_t LHSSize, RHSSize;
2240       ObjectSizeOpts Opts;
2241       Opts.NullIsUnknownSize =
2242           NullPointerIsDefined(cast<AllocaInst>(LHS)->getFunction());
2243       if (LHSOffsetCI && RHSOffsetCI &&
2244           getObjectSize(LHS, LHSSize, DL, TLI, Opts) &&
2245           getObjectSize(RHS, RHSSize, DL, TLI, Opts)) {
2246         const APInt &LHSOffsetValue = LHSOffsetCI->getValue();
2247         const APInt &RHSOffsetValue = RHSOffsetCI->getValue();
2248         if (!LHSOffsetValue.isNegative() &&
2249             !RHSOffsetValue.isNegative() &&
2250             LHSOffsetValue.ult(LHSSize) &&
2251             RHSOffsetValue.ult(RHSSize)) {
2252           return ConstantInt::get(GetCompareTy(LHS),
2253                                   !CmpInst::isTrueWhenEqual(Pred));
2254         }
2255       }
2256 
2257       // Repeat the above check but this time without depending on DataLayout
2258       // or being able to compute a precise size.
2259       if (!cast<PointerType>(LHS->getType())->isEmptyTy() &&
2260           !cast<PointerType>(RHS->getType())->isEmptyTy() &&
2261           LHSOffset->isNullValue() &&
2262           RHSOffset->isNullValue())
2263         return ConstantInt::get(GetCompareTy(LHS),
2264                                 !CmpInst::isTrueWhenEqual(Pred));
2265     }
2266 
2267     // Even if an non-inbounds GEP occurs along the path we can still optimize
2268     // equality comparisons concerning the result. We avoid walking the whole
2269     // chain again by starting where the last calls to
2270     // stripAndComputeConstantOffsets left off and accumulate the offsets.
2271     Constant *LHSNoBound = stripAndComputeConstantOffsets(DL, LHS, true);
2272     Constant *RHSNoBound = stripAndComputeConstantOffsets(DL, RHS, true);
2273     if (LHS == RHS)
2274       return ConstantExpr::getICmp(Pred,
2275                                    ConstantExpr::getAdd(LHSOffset, LHSNoBound),
2276                                    ConstantExpr::getAdd(RHSOffset, RHSNoBound));
2277 
2278     // If one side of the equality comparison must come from a noalias call
2279     // (meaning a system memory allocation function), and the other side must
2280     // come from a pointer that cannot overlap with dynamically-allocated
2281     // memory within the lifetime of the current function (allocas, byval
2282     // arguments, globals), then determine the comparison result here.
2283     SmallVector<Value *, 8> LHSUObjs, RHSUObjs;
2284     GetUnderlyingObjects(LHS, LHSUObjs, DL);
2285     GetUnderlyingObjects(RHS, RHSUObjs, DL);
2286 
2287     // Is the set of underlying objects all noalias calls?
2288     auto IsNAC = [](ArrayRef<Value *> Objects) {
2289       return all_of(Objects, isNoAliasCall);
2290     };
2291 
2292     // Is the set of underlying objects all things which must be disjoint from
2293     // noalias calls. For allocas, we consider only static ones (dynamic
2294     // allocas might be transformed into calls to malloc not simultaneously
2295     // live with the compared-to allocation). For globals, we exclude symbols
2296     // that might be resolve lazily to symbols in another dynamically-loaded
2297     // library (and, thus, could be malloc'ed by the implementation).
2298     auto IsAllocDisjoint = [](ArrayRef<Value *> Objects) {
2299       return all_of(Objects, [](Value *V) {
2300         if (const AllocaInst *AI = dyn_cast<AllocaInst>(V))
2301           return AI->getParent() && AI->getFunction() && AI->isStaticAlloca();
2302         if (const GlobalValue *GV = dyn_cast<GlobalValue>(V))
2303           return (GV->hasLocalLinkage() || GV->hasHiddenVisibility() ||
2304                   GV->hasProtectedVisibility() || GV->hasGlobalUnnamedAddr()) &&
2305                  !GV->isThreadLocal();
2306         if (const Argument *A = dyn_cast<Argument>(V))
2307           return A->hasByValAttr();
2308         return false;
2309       });
2310     };
2311 
2312     if ((IsNAC(LHSUObjs) && IsAllocDisjoint(RHSUObjs)) ||
2313         (IsNAC(RHSUObjs) && IsAllocDisjoint(LHSUObjs)))
2314         return ConstantInt::get(GetCompareTy(LHS),
2315                                 !CmpInst::isTrueWhenEqual(Pred));
2316 
2317     // Fold comparisons for non-escaping pointer even if the allocation call
2318     // cannot be elided. We cannot fold malloc comparison to null. Also, the
2319     // dynamic allocation call could be either of the operands.
2320     Value *MI = nullptr;
2321     if (isAllocLikeFn(LHS, TLI) &&
2322         llvm::isKnownNonZero(RHS, DL, 0, nullptr, CxtI, DT))
2323       MI = LHS;
2324     else if (isAllocLikeFn(RHS, TLI) &&
2325              llvm::isKnownNonZero(LHS, DL, 0, nullptr, CxtI, DT))
2326       MI = RHS;
2327     // FIXME: We should also fold the compare when the pointer escapes, but the
2328     // compare dominates the pointer escape
2329     if (MI && !PointerMayBeCaptured(MI, true, true))
2330       return ConstantInt::get(GetCompareTy(LHS),
2331                               CmpInst::isFalseWhenEqual(Pred));
2332   }
2333 
2334   // Otherwise, fail.
2335   return nullptr;
2336 }
2337 
2338 /// Fold an icmp when its operands have i1 scalar type.
2339 static Value *simplifyICmpOfBools(CmpInst::Predicate Pred, Value *LHS,
2340                                   Value *RHS, const SimplifyQuery &Q) {
2341   Type *ITy = GetCompareTy(LHS); // The return type.
2342   Type *OpTy = LHS->getType();   // The operand type.
2343   if (!OpTy->isIntOrIntVectorTy(1))
2344     return nullptr;
2345 
2346   // A boolean compared to true/false can be simplified in 14 out of the 20
2347   // (10 predicates * 2 constants) possible combinations. Cases not handled here
2348   // require a 'not' of the LHS, so those must be transformed in InstCombine.
2349   if (match(RHS, m_Zero())) {
2350     switch (Pred) {
2351     case CmpInst::ICMP_NE:  // X !=  0 -> X
2352     case CmpInst::ICMP_UGT: // X >u  0 -> X
2353     case CmpInst::ICMP_SLT: // X <s  0 -> X
2354       return LHS;
2355 
2356     case CmpInst::ICMP_ULT: // X <u  0 -> false
2357     case CmpInst::ICMP_SGT: // X >s  0 -> false
2358       return getFalse(ITy);
2359 
2360     case CmpInst::ICMP_UGE: // X >=u 0 -> true
2361     case CmpInst::ICMP_SLE: // X <=s 0 -> true
2362       return getTrue(ITy);
2363 
2364     default: break;
2365     }
2366   } else if (match(RHS, m_One())) {
2367     switch (Pred) {
2368     case CmpInst::ICMP_EQ:  // X ==   1 -> X
2369     case CmpInst::ICMP_UGE: // X >=u  1 -> X
2370     case CmpInst::ICMP_SLE: // X <=s -1 -> X
2371       return LHS;
2372 
2373     case CmpInst::ICMP_UGT: // X >u   1 -> false
2374     case CmpInst::ICMP_SLT: // X <s  -1 -> false
2375       return getFalse(ITy);
2376 
2377     case CmpInst::ICMP_ULE: // X <=u  1 -> true
2378     case CmpInst::ICMP_SGE: // X >=s -1 -> true
2379       return getTrue(ITy);
2380 
2381     default: break;
2382     }
2383   }
2384 
2385   switch (Pred) {
2386   default:
2387     break;
2388   case ICmpInst::ICMP_UGE:
2389     if (isImpliedCondition(RHS, LHS, Q.DL).getValueOr(false))
2390       return getTrue(ITy);
2391     break;
2392   case ICmpInst::ICMP_SGE:
2393     /// For signed comparison, the values for an i1 are 0 and -1
2394     /// respectively. This maps into a truth table of:
2395     /// LHS | RHS | LHS >=s RHS   | LHS implies RHS
2396     ///  0  |  0  |  1 (0 >= 0)   |  1
2397     ///  0  |  1  |  1 (0 >= -1)  |  1
2398     ///  1  |  0  |  0 (-1 >= 0)  |  0
2399     ///  1  |  1  |  1 (-1 >= -1) |  1
2400     if (isImpliedCondition(LHS, RHS, Q.DL).getValueOr(false))
2401       return getTrue(ITy);
2402     break;
2403   case ICmpInst::ICMP_ULE:
2404     if (isImpliedCondition(LHS, RHS, Q.DL).getValueOr(false))
2405       return getTrue(ITy);
2406     break;
2407   }
2408 
2409   return nullptr;
2410 }
2411 
2412 /// Try hard to fold icmp with zero RHS because this is a common case.
2413 static Value *simplifyICmpWithZero(CmpInst::Predicate Pred, Value *LHS,
2414                                    Value *RHS, const SimplifyQuery &Q) {
2415   if (!match(RHS, m_Zero()))
2416     return nullptr;
2417 
2418   Type *ITy = GetCompareTy(LHS); // The return type.
2419   switch (Pred) {
2420   default:
2421     llvm_unreachable("Unknown ICmp predicate!");
2422   case ICmpInst::ICMP_ULT:
2423     return getFalse(ITy);
2424   case ICmpInst::ICMP_UGE:
2425     return getTrue(ITy);
2426   case ICmpInst::ICMP_EQ:
2427   case ICmpInst::ICMP_ULE:
2428     if (isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT, Q.IIQ.UseInstrInfo))
2429       return getFalse(ITy);
2430     break;
2431   case ICmpInst::ICMP_NE:
2432   case ICmpInst::ICMP_UGT:
2433     if (isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT, Q.IIQ.UseInstrInfo))
2434       return getTrue(ITy);
2435     break;
2436   case ICmpInst::ICMP_SLT: {
2437     KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
2438     if (LHSKnown.isNegative())
2439       return getTrue(ITy);
2440     if (LHSKnown.isNonNegative())
2441       return getFalse(ITy);
2442     break;
2443   }
2444   case ICmpInst::ICMP_SLE: {
2445     KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
2446     if (LHSKnown.isNegative())
2447       return getTrue(ITy);
2448     if (LHSKnown.isNonNegative() &&
2449         isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT))
2450       return getFalse(ITy);
2451     break;
2452   }
2453   case ICmpInst::ICMP_SGE: {
2454     KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
2455     if (LHSKnown.isNegative())
2456       return getFalse(ITy);
2457     if (LHSKnown.isNonNegative())
2458       return getTrue(ITy);
2459     break;
2460   }
2461   case ICmpInst::ICMP_SGT: {
2462     KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
2463     if (LHSKnown.isNegative())
2464       return getFalse(ITy);
2465     if (LHSKnown.isNonNegative() &&
2466         isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT))
2467       return getTrue(ITy);
2468     break;
2469   }
2470   }
2471 
2472   return nullptr;
2473 }
2474 
2475 /// Many binary operators with a constant operand have an easy-to-compute
2476 /// range of outputs. This can be used to fold a comparison to always true or
2477 /// always false.
2478 static void setLimitsForBinOp(BinaryOperator &BO, APInt &Lower, APInt &Upper,
2479                               const InstrInfoQuery &IIQ) {
2480   unsigned Width = Lower.getBitWidth();
2481   const APInt *C;
2482   switch (BO.getOpcode()) {
2483   case Instruction::Add:
2484     if (match(BO.getOperand(1), m_APInt(C)) && !C->isNullValue()) {
2485       // FIXME: If we have both nuw and nsw, we should reduce the range further.
2486       if (IIQ.hasNoUnsignedWrap(cast<OverflowingBinaryOperator>(&BO))) {
2487         // 'add nuw x, C' produces [C, UINT_MAX].
2488         Lower = *C;
2489       } else if (IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(&BO))) {
2490         if (C->isNegative()) {
2491           // 'add nsw x, -C' produces [SINT_MIN, SINT_MAX - C].
2492           Lower = APInt::getSignedMinValue(Width);
2493           Upper = APInt::getSignedMaxValue(Width) + *C + 1;
2494         } else {
2495           // 'add nsw x, +C' produces [SINT_MIN + C, SINT_MAX].
2496           Lower = APInt::getSignedMinValue(Width) + *C;
2497           Upper = APInt::getSignedMaxValue(Width) + 1;
2498         }
2499       }
2500     }
2501     break;
2502 
2503   case Instruction::And:
2504     if (match(BO.getOperand(1), m_APInt(C)))
2505       // 'and x, C' produces [0, C].
2506       Upper = *C + 1;
2507     break;
2508 
2509   case Instruction::Or:
2510     if (match(BO.getOperand(1), m_APInt(C)))
2511       // 'or x, C' produces [C, UINT_MAX].
2512       Lower = *C;
2513     break;
2514 
2515   case Instruction::AShr:
2516     if (match(BO.getOperand(1), m_APInt(C)) && C->ult(Width)) {
2517       // 'ashr x, C' produces [INT_MIN >> C, INT_MAX >> C].
2518       Lower = APInt::getSignedMinValue(Width).ashr(*C);
2519       Upper = APInt::getSignedMaxValue(Width).ashr(*C) + 1;
2520     } else if (match(BO.getOperand(0), m_APInt(C))) {
2521       unsigned ShiftAmount = Width - 1;
2522       if (!C->isNullValue() && IIQ.isExact(&BO))
2523         ShiftAmount = C->countTrailingZeros();
2524       if (C->isNegative()) {
2525         // 'ashr C, x' produces [C, C >> (Width-1)]
2526         Lower = *C;
2527         Upper = C->ashr(ShiftAmount) + 1;
2528       } else {
2529         // 'ashr C, x' produces [C >> (Width-1), C]
2530         Lower = C->ashr(ShiftAmount);
2531         Upper = *C + 1;
2532       }
2533     }
2534     break;
2535 
2536   case Instruction::LShr:
2537     if (match(BO.getOperand(1), m_APInt(C)) && C->ult(Width)) {
2538       // 'lshr x, C' produces [0, UINT_MAX >> C].
2539       Upper = APInt::getAllOnesValue(Width).lshr(*C) + 1;
2540     } else if (match(BO.getOperand(0), m_APInt(C))) {
2541       // 'lshr C, x' produces [C >> (Width-1), C].
2542       unsigned ShiftAmount = Width - 1;
2543       if (!C->isNullValue() && IIQ.isExact(&BO))
2544         ShiftAmount = C->countTrailingZeros();
2545       Lower = C->lshr(ShiftAmount);
2546       Upper = *C + 1;
2547     }
2548     break;
2549 
2550   case Instruction::Shl:
2551     if (match(BO.getOperand(0), m_APInt(C))) {
2552       if (IIQ.hasNoUnsignedWrap(&BO)) {
2553         // 'shl nuw C, x' produces [C, C << CLZ(C)]
2554         Lower = *C;
2555         Upper = Lower.shl(Lower.countLeadingZeros()) + 1;
2556       } else if (BO.hasNoSignedWrap()) { // TODO: What if both nuw+nsw?
2557         if (C->isNegative()) {
2558           // 'shl nsw C, x' produces [C << CLO(C)-1, C]
2559           unsigned ShiftAmount = C->countLeadingOnes() - 1;
2560           Lower = C->shl(ShiftAmount);
2561           Upper = *C + 1;
2562         } else {
2563           // 'shl nsw C, x' produces [C, C << CLZ(C)-1]
2564           unsigned ShiftAmount = C->countLeadingZeros() - 1;
2565           Lower = *C;
2566           Upper = C->shl(ShiftAmount) + 1;
2567         }
2568       }
2569     }
2570     break;
2571 
2572   case Instruction::SDiv:
2573     if (match(BO.getOperand(1), m_APInt(C))) {
2574       APInt IntMin = APInt::getSignedMinValue(Width);
2575       APInt IntMax = APInt::getSignedMaxValue(Width);
2576       if (C->isAllOnesValue()) {
2577         // 'sdiv x, -1' produces [INT_MIN + 1, INT_MAX]
2578         //    where C != -1 and C != 0 and C != 1
2579         Lower = IntMin + 1;
2580         Upper = IntMax + 1;
2581       } else if (C->countLeadingZeros() < Width - 1) {
2582         // 'sdiv x, C' produces [INT_MIN / C, INT_MAX / C]
2583         //    where C != -1 and C != 0 and C != 1
2584         Lower = IntMin.sdiv(*C);
2585         Upper = IntMax.sdiv(*C);
2586         if (Lower.sgt(Upper))
2587           std::swap(Lower, Upper);
2588         Upper = Upper + 1;
2589         assert(Upper != Lower && "Upper part of range has wrapped!");
2590       }
2591     } else if (match(BO.getOperand(0), m_APInt(C))) {
2592       if (C->isMinSignedValue()) {
2593         // 'sdiv INT_MIN, x' produces [INT_MIN, INT_MIN / -2].
2594         Lower = *C;
2595         Upper = Lower.lshr(1) + 1;
2596       } else {
2597         // 'sdiv C, x' produces [-|C|, |C|].
2598         Upper = C->abs() + 1;
2599         Lower = (-Upper) + 1;
2600       }
2601     }
2602     break;
2603 
2604   case Instruction::UDiv:
2605     if (match(BO.getOperand(1), m_APInt(C)) && !C->isNullValue()) {
2606       // 'udiv x, C' produces [0, UINT_MAX / C].
2607       Upper = APInt::getMaxValue(Width).udiv(*C) + 1;
2608     } else if (match(BO.getOperand(0), m_APInt(C))) {
2609       // 'udiv C, x' produces [0, C].
2610       Upper = *C + 1;
2611     }
2612     break;
2613 
2614   case Instruction::SRem:
2615     if (match(BO.getOperand(1), m_APInt(C))) {
2616       // 'srem x, C' produces (-|C|, |C|).
2617       Upper = C->abs();
2618       Lower = (-Upper) + 1;
2619     }
2620     break;
2621 
2622   case Instruction::URem:
2623     if (match(BO.getOperand(1), m_APInt(C)))
2624       // 'urem x, C' produces [0, C).
2625       Upper = *C;
2626     break;
2627 
2628   default:
2629     break;
2630   }
2631 }
2632 
2633 static Value *simplifyICmpWithConstant(CmpInst::Predicate Pred, Value *LHS,
2634                                        Value *RHS, const InstrInfoQuery &IIQ) {
2635   Type *ITy = GetCompareTy(RHS); // The return type.
2636 
2637   Value *X;
2638   // Sign-bit checks can be optimized to true/false after unsigned
2639   // floating-point casts:
2640   // icmp slt (bitcast (uitofp X)),  0 --> false
2641   // icmp sgt (bitcast (uitofp X)), -1 --> true
2642   if (match(LHS, m_BitCast(m_UIToFP(m_Value(X))))) {
2643     if (Pred == ICmpInst::ICMP_SLT && match(RHS, m_Zero()))
2644       return ConstantInt::getFalse(ITy);
2645     if (Pred == ICmpInst::ICMP_SGT && match(RHS, m_AllOnes()))
2646       return ConstantInt::getTrue(ITy);
2647   }
2648 
2649   const APInt *C;
2650   if (!match(RHS, m_APInt(C)))
2651     return nullptr;
2652 
2653   // Rule out tautological comparisons (eg., ult 0 or uge 0).
2654   ConstantRange RHS_CR = ConstantRange::makeExactICmpRegion(Pred, *C);
2655   if (RHS_CR.isEmptySet())
2656     return ConstantInt::getFalse(ITy);
2657   if (RHS_CR.isFullSet())
2658     return ConstantInt::getTrue(ITy);
2659 
2660   // Find the range of possible values for binary operators.
2661   unsigned Width = C->getBitWidth();
2662   APInt Lower = APInt(Width, 0);
2663   APInt Upper = APInt(Width, 0);
2664   if (auto *BO = dyn_cast<BinaryOperator>(LHS))
2665     setLimitsForBinOp(*BO, Lower, Upper, IIQ);
2666 
2667   ConstantRange LHS_CR =
2668       Lower != Upper ? ConstantRange(Lower, Upper) : ConstantRange(Width, true);
2669 
2670   if (auto *I = dyn_cast<Instruction>(LHS))
2671     if (auto *Ranges = IIQ.getMetadata(I, LLVMContext::MD_range))
2672       LHS_CR = LHS_CR.intersectWith(getConstantRangeFromMetadata(*Ranges));
2673 
2674   if (!LHS_CR.isFullSet()) {
2675     if (RHS_CR.contains(LHS_CR))
2676       return ConstantInt::getTrue(ITy);
2677     if (RHS_CR.inverse().contains(LHS_CR))
2678       return ConstantInt::getFalse(ITy);
2679   }
2680 
2681   return nullptr;
2682 }
2683 
2684 /// TODO: A large part of this logic is duplicated in InstCombine's
2685 /// foldICmpBinOp(). We should be able to share that and avoid the code
2686 /// duplication.
2687 static Value *simplifyICmpWithBinOp(CmpInst::Predicate Pred, Value *LHS,
2688                                     Value *RHS, const SimplifyQuery &Q,
2689                                     unsigned MaxRecurse) {
2690   Type *ITy = GetCompareTy(LHS); // The return type.
2691 
2692   BinaryOperator *LBO = dyn_cast<BinaryOperator>(LHS);
2693   BinaryOperator *RBO = dyn_cast<BinaryOperator>(RHS);
2694   if (MaxRecurse && (LBO || RBO)) {
2695     // Analyze the case when either LHS or RHS is an add instruction.
2696     Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr;
2697     // LHS = A + B (or A and B are null); RHS = C + D (or C and D are null).
2698     bool NoLHSWrapProblem = false, NoRHSWrapProblem = false;
2699     if (LBO && LBO->getOpcode() == Instruction::Add) {
2700       A = LBO->getOperand(0);
2701       B = LBO->getOperand(1);
2702       NoLHSWrapProblem =
2703           ICmpInst::isEquality(Pred) ||
2704           (CmpInst::isUnsigned(Pred) &&
2705            Q.IIQ.hasNoUnsignedWrap(cast<OverflowingBinaryOperator>(LBO))) ||
2706           (CmpInst::isSigned(Pred) &&
2707            Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(LBO)));
2708     }
2709     if (RBO && RBO->getOpcode() == Instruction::Add) {
2710       C = RBO->getOperand(0);
2711       D = RBO->getOperand(1);
2712       NoRHSWrapProblem =
2713           ICmpInst::isEquality(Pred) ||
2714           (CmpInst::isUnsigned(Pred) &&
2715            Q.IIQ.hasNoUnsignedWrap(cast<OverflowingBinaryOperator>(RBO))) ||
2716           (CmpInst::isSigned(Pred) &&
2717            Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(RBO)));
2718     }
2719 
2720     // icmp (X+Y), X -> icmp Y, 0 for equalities or if there is no overflow.
2721     if ((A == RHS || B == RHS) && NoLHSWrapProblem)
2722       if (Value *V = SimplifyICmpInst(Pred, A == RHS ? B : A,
2723                                       Constant::getNullValue(RHS->getType()), Q,
2724                                       MaxRecurse - 1))
2725         return V;
2726 
2727     // icmp X, (X+Y) -> icmp 0, Y for equalities or if there is no overflow.
2728     if ((C == LHS || D == LHS) && NoRHSWrapProblem)
2729       if (Value *V =
2730               SimplifyICmpInst(Pred, Constant::getNullValue(LHS->getType()),
2731                                C == LHS ? D : C, Q, MaxRecurse - 1))
2732         return V;
2733 
2734     // icmp (X+Y), (X+Z) -> icmp Y,Z for equalities or if there is no overflow.
2735     if (A && C && (A == C || A == D || B == C || B == D) && NoLHSWrapProblem &&
2736         NoRHSWrapProblem) {
2737       // Determine Y and Z in the form icmp (X+Y), (X+Z).
2738       Value *Y, *Z;
2739       if (A == C) {
2740         // C + B == C + D  ->  B == D
2741         Y = B;
2742         Z = D;
2743       } else if (A == D) {
2744         // D + B == C + D  ->  B == C
2745         Y = B;
2746         Z = C;
2747       } else if (B == C) {
2748         // A + C == C + D  ->  A == D
2749         Y = A;
2750         Z = D;
2751       } else {
2752         assert(B == D);
2753         // A + D == C + D  ->  A == C
2754         Y = A;
2755         Z = C;
2756       }
2757       if (Value *V = SimplifyICmpInst(Pred, Y, Z, Q, MaxRecurse - 1))
2758         return V;
2759     }
2760   }
2761 
2762   {
2763     Value *Y = nullptr;
2764     // icmp pred (or X, Y), X
2765     if (LBO && match(LBO, m_c_Or(m_Value(Y), m_Specific(RHS)))) {
2766       if (Pred == ICmpInst::ICMP_ULT)
2767         return getFalse(ITy);
2768       if (Pred == ICmpInst::ICMP_UGE)
2769         return getTrue(ITy);
2770 
2771       if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SGE) {
2772         KnownBits RHSKnown = computeKnownBits(RHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
2773         KnownBits YKnown = computeKnownBits(Y, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
2774         if (RHSKnown.isNonNegative() && YKnown.isNegative())
2775           return Pred == ICmpInst::ICMP_SLT ? getTrue(ITy) : getFalse(ITy);
2776         if (RHSKnown.isNegative() || YKnown.isNonNegative())
2777           return Pred == ICmpInst::ICMP_SLT ? getFalse(ITy) : getTrue(ITy);
2778       }
2779     }
2780     // icmp pred X, (or X, Y)
2781     if (RBO && match(RBO, m_c_Or(m_Value(Y), m_Specific(LHS)))) {
2782       if (Pred == ICmpInst::ICMP_ULE)
2783         return getTrue(ITy);
2784       if (Pred == ICmpInst::ICMP_UGT)
2785         return getFalse(ITy);
2786 
2787       if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SLE) {
2788         KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
2789         KnownBits YKnown = computeKnownBits(Y, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
2790         if (LHSKnown.isNonNegative() && YKnown.isNegative())
2791           return Pred == ICmpInst::ICMP_SGT ? getTrue(ITy) : getFalse(ITy);
2792         if (LHSKnown.isNegative() || YKnown.isNonNegative())
2793           return Pred == ICmpInst::ICMP_SGT ? getFalse(ITy) : getTrue(ITy);
2794       }
2795     }
2796   }
2797 
2798   // icmp pred (and X, Y), X
2799   if (LBO && match(LBO, m_c_And(m_Value(), m_Specific(RHS)))) {
2800     if (Pred == ICmpInst::ICMP_UGT)
2801       return getFalse(ITy);
2802     if (Pred == ICmpInst::ICMP_ULE)
2803       return getTrue(ITy);
2804   }
2805   // icmp pred X, (and X, Y)
2806   if (RBO && match(RBO, m_c_And(m_Value(), m_Specific(LHS)))) {
2807     if (Pred == ICmpInst::ICMP_UGE)
2808       return getTrue(ITy);
2809     if (Pred == ICmpInst::ICMP_ULT)
2810       return getFalse(ITy);
2811   }
2812 
2813   // 0 - (zext X) pred C
2814   if (!CmpInst::isUnsigned(Pred) && match(LHS, m_Neg(m_ZExt(m_Value())))) {
2815     if (ConstantInt *RHSC = dyn_cast<ConstantInt>(RHS)) {
2816       if (RHSC->getValue().isStrictlyPositive()) {
2817         if (Pred == ICmpInst::ICMP_SLT)
2818           return ConstantInt::getTrue(RHSC->getContext());
2819         if (Pred == ICmpInst::ICMP_SGE)
2820           return ConstantInt::getFalse(RHSC->getContext());
2821         if (Pred == ICmpInst::ICMP_EQ)
2822           return ConstantInt::getFalse(RHSC->getContext());
2823         if (Pred == ICmpInst::ICMP_NE)
2824           return ConstantInt::getTrue(RHSC->getContext());
2825       }
2826       if (RHSC->getValue().isNonNegative()) {
2827         if (Pred == ICmpInst::ICMP_SLE)
2828           return ConstantInt::getTrue(RHSC->getContext());
2829         if (Pred == ICmpInst::ICMP_SGT)
2830           return ConstantInt::getFalse(RHSC->getContext());
2831       }
2832     }
2833   }
2834 
2835   // icmp pred (urem X, Y), Y
2836   if (LBO && match(LBO, m_URem(m_Value(), m_Specific(RHS)))) {
2837     switch (Pred) {
2838     default:
2839       break;
2840     case ICmpInst::ICMP_SGT:
2841     case ICmpInst::ICMP_SGE: {
2842       KnownBits Known = computeKnownBits(RHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
2843       if (!Known.isNonNegative())
2844         break;
2845       LLVM_FALLTHROUGH;
2846     }
2847     case ICmpInst::ICMP_EQ:
2848     case ICmpInst::ICMP_UGT:
2849     case ICmpInst::ICMP_UGE:
2850       return getFalse(ITy);
2851     case ICmpInst::ICMP_SLT:
2852     case ICmpInst::ICMP_SLE: {
2853       KnownBits Known = computeKnownBits(RHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
2854       if (!Known.isNonNegative())
2855         break;
2856       LLVM_FALLTHROUGH;
2857     }
2858     case ICmpInst::ICMP_NE:
2859     case ICmpInst::ICMP_ULT:
2860     case ICmpInst::ICMP_ULE:
2861       return getTrue(ITy);
2862     }
2863   }
2864 
2865   // icmp pred X, (urem Y, X)
2866   if (RBO && match(RBO, m_URem(m_Value(), m_Specific(LHS)))) {
2867     switch (Pred) {
2868     default:
2869       break;
2870     case ICmpInst::ICMP_SGT:
2871     case ICmpInst::ICMP_SGE: {
2872       KnownBits Known = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
2873       if (!Known.isNonNegative())
2874         break;
2875       LLVM_FALLTHROUGH;
2876     }
2877     case ICmpInst::ICMP_NE:
2878     case ICmpInst::ICMP_UGT:
2879     case ICmpInst::ICMP_UGE:
2880       return getTrue(ITy);
2881     case ICmpInst::ICMP_SLT:
2882     case ICmpInst::ICMP_SLE: {
2883       KnownBits Known = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
2884       if (!Known.isNonNegative())
2885         break;
2886       LLVM_FALLTHROUGH;
2887     }
2888     case ICmpInst::ICMP_EQ:
2889     case ICmpInst::ICMP_ULT:
2890     case ICmpInst::ICMP_ULE:
2891       return getFalse(ITy);
2892     }
2893   }
2894 
2895   // x >> y <=u x
2896   // x udiv y <=u x.
2897   if (LBO && (match(LBO, m_LShr(m_Specific(RHS), m_Value())) ||
2898               match(LBO, m_UDiv(m_Specific(RHS), m_Value())))) {
2899     // icmp pred (X op Y), X
2900     if (Pred == ICmpInst::ICMP_UGT)
2901       return getFalse(ITy);
2902     if (Pred == ICmpInst::ICMP_ULE)
2903       return getTrue(ITy);
2904   }
2905 
2906   // x >=u x >> y
2907   // x >=u x udiv y.
2908   if (RBO && (match(RBO, m_LShr(m_Specific(LHS), m_Value())) ||
2909               match(RBO, m_UDiv(m_Specific(LHS), m_Value())))) {
2910     // icmp pred X, (X op Y)
2911     if (Pred == ICmpInst::ICMP_ULT)
2912       return getFalse(ITy);
2913     if (Pred == ICmpInst::ICMP_UGE)
2914       return getTrue(ITy);
2915   }
2916 
2917   // handle:
2918   //   CI2 << X == CI
2919   //   CI2 << X != CI
2920   //
2921   //   where CI2 is a power of 2 and CI isn't
2922   if (auto *CI = dyn_cast<ConstantInt>(RHS)) {
2923     const APInt *CI2Val, *CIVal = &CI->getValue();
2924     if (LBO && match(LBO, m_Shl(m_APInt(CI2Val), m_Value())) &&
2925         CI2Val->isPowerOf2()) {
2926       if (!CIVal->isPowerOf2()) {
2927         // CI2 << X can equal zero in some circumstances,
2928         // this simplification is unsafe if CI is zero.
2929         //
2930         // We know it is safe if:
2931         // - The shift is nsw, we can't shift out the one bit.
2932         // - The shift is nuw, we can't shift out the one bit.
2933         // - CI2 is one
2934         // - CI isn't zero
2935         if (Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(LBO)) ||
2936             Q.IIQ.hasNoUnsignedWrap(cast<OverflowingBinaryOperator>(LBO)) ||
2937             CI2Val->isOneValue() || !CI->isZero()) {
2938           if (Pred == ICmpInst::ICMP_EQ)
2939             return ConstantInt::getFalse(RHS->getContext());
2940           if (Pred == ICmpInst::ICMP_NE)
2941             return ConstantInt::getTrue(RHS->getContext());
2942         }
2943       }
2944       if (CIVal->isSignMask() && CI2Val->isOneValue()) {
2945         if (Pred == ICmpInst::ICMP_UGT)
2946           return ConstantInt::getFalse(RHS->getContext());
2947         if (Pred == ICmpInst::ICMP_ULE)
2948           return ConstantInt::getTrue(RHS->getContext());
2949       }
2950     }
2951   }
2952 
2953   if (MaxRecurse && LBO && RBO && LBO->getOpcode() == RBO->getOpcode() &&
2954       LBO->getOperand(1) == RBO->getOperand(1)) {
2955     switch (LBO->getOpcode()) {
2956     default:
2957       break;
2958     case Instruction::UDiv:
2959     case Instruction::LShr:
2960       if (ICmpInst::isSigned(Pred) || !Q.IIQ.isExact(LBO) ||
2961           !Q.IIQ.isExact(RBO))
2962         break;
2963       if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0),
2964                                       RBO->getOperand(0), Q, MaxRecurse - 1))
2965           return V;
2966       break;
2967     case Instruction::SDiv:
2968       if (!ICmpInst::isEquality(Pred) || !Q.IIQ.isExact(LBO) ||
2969           !Q.IIQ.isExact(RBO))
2970         break;
2971       if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0),
2972                                       RBO->getOperand(0), Q, MaxRecurse - 1))
2973         return V;
2974       break;
2975     case Instruction::AShr:
2976       if (!Q.IIQ.isExact(LBO) || !Q.IIQ.isExact(RBO))
2977         break;
2978       if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0),
2979                                       RBO->getOperand(0), Q, MaxRecurse - 1))
2980         return V;
2981       break;
2982     case Instruction::Shl: {
2983       bool NUW = Q.IIQ.hasNoUnsignedWrap(LBO) && Q.IIQ.hasNoUnsignedWrap(RBO);
2984       bool NSW = Q.IIQ.hasNoSignedWrap(LBO) && Q.IIQ.hasNoSignedWrap(RBO);
2985       if (!NUW && !NSW)
2986         break;
2987       if (!NSW && ICmpInst::isSigned(Pred))
2988         break;
2989       if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0),
2990                                       RBO->getOperand(0), Q, MaxRecurse - 1))
2991         return V;
2992       break;
2993     }
2994     }
2995   }
2996   return nullptr;
2997 }
2998 
2999 static Value *simplifyICmpWithAbsNabs(CmpInst::Predicate Pred, Value *Op0,
3000                                       Value *Op1) {
3001   // We need a comparison with a constant.
3002   const APInt *C;
3003   if (!match(Op1, m_APInt(C)))
3004     return nullptr;
3005 
3006   // matchSelectPattern returns the negation part of an abs pattern in SP1.
3007   // If the negate has an NSW flag, abs(INT_MIN) is undefined. Without that
3008   // constraint, we can't make a contiguous range for the result of abs.
3009   ICmpInst::Predicate AbsPred = ICmpInst::BAD_ICMP_PREDICATE;
3010   Value *SP0, *SP1;
3011   SelectPatternFlavor SPF = matchSelectPattern(Op0, SP0, SP1).Flavor;
3012   if (SPF == SelectPatternFlavor::SPF_ABS &&
3013       cast<Instruction>(SP1)->hasNoSignedWrap())
3014     // The result of abs(X) is >= 0 (with nsw).
3015     AbsPred = ICmpInst::ICMP_SGE;
3016   if (SPF == SelectPatternFlavor::SPF_NABS)
3017     // The result of -abs(X) is <= 0.
3018     AbsPred = ICmpInst::ICMP_SLE;
3019 
3020   if (AbsPred == ICmpInst::BAD_ICMP_PREDICATE)
3021     return nullptr;
3022 
3023   // If there is no intersection between abs/nabs and the range of this icmp,
3024   // the icmp must be false. If the abs/nabs range is a subset of the icmp
3025   // range, the icmp must be true.
3026   APInt Zero = APInt::getNullValue(C->getBitWidth());
3027   ConstantRange AbsRange = ConstantRange::makeExactICmpRegion(AbsPred, Zero);
3028   ConstantRange CmpRange = ConstantRange::makeExactICmpRegion(Pred, *C);
3029   if (AbsRange.intersectWith(CmpRange).isEmptySet())
3030     return getFalse(GetCompareTy(Op0));
3031   if (CmpRange.contains(AbsRange))
3032     return getTrue(GetCompareTy(Op0));
3033 
3034   return nullptr;
3035 }
3036 
3037 /// Simplify integer comparisons where at least one operand of the compare
3038 /// matches an integer min/max idiom.
3039 static Value *simplifyICmpWithMinMax(CmpInst::Predicate Pred, Value *LHS,
3040                                      Value *RHS, const SimplifyQuery &Q,
3041                                      unsigned MaxRecurse) {
3042   Type *ITy = GetCompareTy(LHS); // The return type.
3043   Value *A, *B;
3044   CmpInst::Predicate P = CmpInst::BAD_ICMP_PREDICATE;
3045   CmpInst::Predicate EqP; // Chosen so that "A == max/min(A,B)" iff "A EqP B".
3046 
3047   // Signed variants on "max(a,b)>=a -> true".
3048   if (match(LHS, m_SMax(m_Value(A), m_Value(B))) && (A == RHS || B == RHS)) {
3049     if (A != RHS)
3050       std::swap(A, B);       // smax(A, B) pred A.
3051     EqP = CmpInst::ICMP_SGE; // "A == smax(A, B)" iff "A sge B".
3052     // We analyze this as smax(A, B) pred A.
3053     P = Pred;
3054   } else if (match(RHS, m_SMax(m_Value(A), m_Value(B))) &&
3055              (A == LHS || B == LHS)) {
3056     if (A != LHS)
3057       std::swap(A, B);       // A pred smax(A, B).
3058     EqP = CmpInst::ICMP_SGE; // "A == smax(A, B)" iff "A sge B".
3059     // We analyze this as smax(A, B) swapped-pred A.
3060     P = CmpInst::getSwappedPredicate(Pred);
3061   } else if (match(LHS, m_SMin(m_Value(A), m_Value(B))) &&
3062              (A == RHS || B == RHS)) {
3063     if (A != RHS)
3064       std::swap(A, B);       // smin(A, B) pred A.
3065     EqP = CmpInst::ICMP_SLE; // "A == smin(A, B)" iff "A sle B".
3066     // We analyze this as smax(-A, -B) swapped-pred -A.
3067     // Note that we do not need to actually form -A or -B thanks to EqP.
3068     P = CmpInst::getSwappedPredicate(Pred);
3069   } else if (match(RHS, m_SMin(m_Value(A), m_Value(B))) &&
3070              (A == LHS || B == LHS)) {
3071     if (A != LHS)
3072       std::swap(A, B);       // A pred smin(A, B).
3073     EqP = CmpInst::ICMP_SLE; // "A == smin(A, B)" iff "A sle B".
3074     // We analyze this as smax(-A, -B) pred -A.
3075     // Note that we do not need to actually form -A or -B thanks to EqP.
3076     P = Pred;
3077   }
3078   if (P != CmpInst::BAD_ICMP_PREDICATE) {
3079     // Cases correspond to "max(A, B) p A".
3080     switch (P) {
3081     default:
3082       break;
3083     case CmpInst::ICMP_EQ:
3084     case CmpInst::ICMP_SLE:
3085       // Equivalent to "A EqP B".  This may be the same as the condition tested
3086       // in the max/min; if so, we can just return that.
3087       if (Value *V = ExtractEquivalentCondition(LHS, EqP, A, B))
3088         return V;
3089       if (Value *V = ExtractEquivalentCondition(RHS, EqP, A, B))
3090         return V;
3091       // Otherwise, see if "A EqP B" simplifies.
3092       if (MaxRecurse)
3093         if (Value *V = SimplifyICmpInst(EqP, A, B, Q, MaxRecurse - 1))
3094           return V;
3095       break;
3096     case CmpInst::ICMP_NE:
3097     case CmpInst::ICMP_SGT: {
3098       CmpInst::Predicate InvEqP = CmpInst::getInversePredicate(EqP);
3099       // Equivalent to "A InvEqP B".  This may be the same as the condition
3100       // tested in the max/min; if so, we can just return that.
3101       if (Value *V = ExtractEquivalentCondition(LHS, InvEqP, A, B))
3102         return V;
3103       if (Value *V = ExtractEquivalentCondition(RHS, InvEqP, A, B))
3104         return V;
3105       // Otherwise, see if "A InvEqP B" simplifies.
3106       if (MaxRecurse)
3107         if (Value *V = SimplifyICmpInst(InvEqP, A, B, Q, MaxRecurse - 1))
3108           return V;
3109       break;
3110     }
3111     case CmpInst::ICMP_SGE:
3112       // Always true.
3113       return getTrue(ITy);
3114     case CmpInst::ICMP_SLT:
3115       // Always false.
3116       return getFalse(ITy);
3117     }
3118   }
3119 
3120   // Unsigned variants on "max(a,b)>=a -> true".
3121   P = CmpInst::BAD_ICMP_PREDICATE;
3122   if (match(LHS, m_UMax(m_Value(A), m_Value(B))) && (A == RHS || B == RHS)) {
3123     if (A != RHS)
3124       std::swap(A, B);       // umax(A, B) pred A.
3125     EqP = CmpInst::ICMP_UGE; // "A == umax(A, B)" iff "A uge B".
3126     // We analyze this as umax(A, B) pred A.
3127     P = Pred;
3128   } else if (match(RHS, m_UMax(m_Value(A), m_Value(B))) &&
3129              (A == LHS || B == LHS)) {
3130     if (A != LHS)
3131       std::swap(A, B);       // A pred umax(A, B).
3132     EqP = CmpInst::ICMP_UGE; // "A == umax(A, B)" iff "A uge B".
3133     // We analyze this as umax(A, B) swapped-pred A.
3134     P = CmpInst::getSwappedPredicate(Pred);
3135   } else if (match(LHS, m_UMin(m_Value(A), m_Value(B))) &&
3136              (A == RHS || B == RHS)) {
3137     if (A != RHS)
3138       std::swap(A, B);       // umin(A, B) pred A.
3139     EqP = CmpInst::ICMP_ULE; // "A == umin(A, B)" iff "A ule B".
3140     // We analyze this as umax(-A, -B) swapped-pred -A.
3141     // Note that we do not need to actually form -A or -B thanks to EqP.
3142     P = CmpInst::getSwappedPredicate(Pred);
3143   } else if (match(RHS, m_UMin(m_Value(A), m_Value(B))) &&
3144              (A == LHS || B == LHS)) {
3145     if (A != LHS)
3146       std::swap(A, B);       // A pred umin(A, B).
3147     EqP = CmpInst::ICMP_ULE; // "A == umin(A, B)" iff "A ule B".
3148     // We analyze this as umax(-A, -B) pred -A.
3149     // Note that we do not need to actually form -A or -B thanks to EqP.
3150     P = Pred;
3151   }
3152   if (P != CmpInst::BAD_ICMP_PREDICATE) {
3153     // Cases correspond to "max(A, B) p A".
3154     switch (P) {
3155     default:
3156       break;
3157     case CmpInst::ICMP_EQ:
3158     case CmpInst::ICMP_ULE:
3159       // Equivalent to "A EqP B".  This may be the same as the condition tested
3160       // in the max/min; if so, we can just return that.
3161       if (Value *V = ExtractEquivalentCondition(LHS, EqP, A, B))
3162         return V;
3163       if (Value *V = ExtractEquivalentCondition(RHS, EqP, A, B))
3164         return V;
3165       // Otherwise, see if "A EqP B" simplifies.
3166       if (MaxRecurse)
3167         if (Value *V = SimplifyICmpInst(EqP, A, B, Q, MaxRecurse - 1))
3168           return V;
3169       break;
3170     case CmpInst::ICMP_NE:
3171     case CmpInst::ICMP_UGT: {
3172       CmpInst::Predicate InvEqP = CmpInst::getInversePredicate(EqP);
3173       // Equivalent to "A InvEqP B".  This may be the same as the condition
3174       // tested in the max/min; if so, we can just return that.
3175       if (Value *V = ExtractEquivalentCondition(LHS, InvEqP, A, B))
3176         return V;
3177       if (Value *V = ExtractEquivalentCondition(RHS, InvEqP, A, B))
3178         return V;
3179       // Otherwise, see if "A InvEqP B" simplifies.
3180       if (MaxRecurse)
3181         if (Value *V = SimplifyICmpInst(InvEqP, A, B, Q, MaxRecurse - 1))
3182           return V;
3183       break;
3184     }
3185     case CmpInst::ICMP_UGE:
3186       // Always true.
3187       return getTrue(ITy);
3188     case CmpInst::ICMP_ULT:
3189       // Always false.
3190       return getFalse(ITy);
3191     }
3192   }
3193 
3194   // Variants on "max(x,y) >= min(x,z)".
3195   Value *C, *D;
3196   if (match(LHS, m_SMax(m_Value(A), m_Value(B))) &&
3197       match(RHS, m_SMin(m_Value(C), m_Value(D))) &&
3198       (A == C || A == D || B == C || B == D)) {
3199     // max(x, ?) pred min(x, ?).
3200     if (Pred == CmpInst::ICMP_SGE)
3201       // Always true.
3202       return getTrue(ITy);
3203     if (Pred == CmpInst::ICMP_SLT)
3204       // Always false.
3205       return getFalse(ITy);
3206   } else if (match(LHS, m_SMin(m_Value(A), m_Value(B))) &&
3207              match(RHS, m_SMax(m_Value(C), m_Value(D))) &&
3208              (A == C || A == D || B == C || B == D)) {
3209     // min(x, ?) pred max(x, ?).
3210     if (Pred == CmpInst::ICMP_SLE)
3211       // Always true.
3212       return getTrue(ITy);
3213     if (Pred == CmpInst::ICMP_SGT)
3214       // Always false.
3215       return getFalse(ITy);
3216   } else if (match(LHS, m_UMax(m_Value(A), m_Value(B))) &&
3217              match(RHS, m_UMin(m_Value(C), m_Value(D))) &&
3218              (A == C || A == D || B == C || B == D)) {
3219     // max(x, ?) pred min(x, ?).
3220     if (Pred == CmpInst::ICMP_UGE)
3221       // Always true.
3222       return getTrue(ITy);
3223     if (Pred == CmpInst::ICMP_ULT)
3224       // Always false.
3225       return getFalse(ITy);
3226   } else if (match(LHS, m_UMin(m_Value(A), m_Value(B))) &&
3227              match(RHS, m_UMax(m_Value(C), m_Value(D))) &&
3228              (A == C || A == D || B == C || B == D)) {
3229     // min(x, ?) pred max(x, ?).
3230     if (Pred == CmpInst::ICMP_ULE)
3231       // Always true.
3232       return getTrue(ITy);
3233     if (Pred == CmpInst::ICMP_UGT)
3234       // Always false.
3235       return getFalse(ITy);
3236   }
3237 
3238   return nullptr;
3239 }
3240 
3241 /// Given operands for an ICmpInst, see if we can fold the result.
3242 /// If not, this returns null.
3243 static Value *SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS,
3244                                const SimplifyQuery &Q, unsigned MaxRecurse) {
3245   CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate;
3246   assert(CmpInst::isIntPredicate(Pred) && "Not an integer compare!");
3247 
3248   if (Constant *CLHS = dyn_cast<Constant>(LHS)) {
3249     if (Constant *CRHS = dyn_cast<Constant>(RHS))
3250       return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, Q.DL, Q.TLI);
3251 
3252     // If we have a constant, make sure it is on the RHS.
3253     std::swap(LHS, RHS);
3254     Pred = CmpInst::getSwappedPredicate(Pred);
3255   }
3256 
3257   Type *ITy = GetCompareTy(LHS); // The return type.
3258 
3259   // icmp X, X -> true/false
3260   // icmp X, undef -> true/false because undef could be X.
3261   if (LHS == RHS || isa<UndefValue>(RHS))
3262     return ConstantInt::get(ITy, CmpInst::isTrueWhenEqual(Pred));
3263 
3264   if (Value *V = simplifyICmpOfBools(Pred, LHS, RHS, Q))
3265     return V;
3266 
3267   if (Value *V = simplifyICmpWithZero(Pred, LHS, RHS, Q))
3268     return V;
3269 
3270   if (Value *V = simplifyICmpWithConstant(Pred, LHS, RHS, Q.IIQ))
3271     return V;
3272 
3273   // If both operands have range metadata, use the metadata
3274   // to simplify the comparison.
3275   if (isa<Instruction>(RHS) && isa<Instruction>(LHS)) {
3276     auto RHS_Instr = cast<Instruction>(RHS);
3277     auto LHS_Instr = cast<Instruction>(LHS);
3278 
3279     if (Q.IIQ.getMetadata(RHS_Instr, LLVMContext::MD_range) &&
3280         Q.IIQ.getMetadata(LHS_Instr, LLVMContext::MD_range)) {
3281       auto RHS_CR = getConstantRangeFromMetadata(
3282           *RHS_Instr->getMetadata(LLVMContext::MD_range));
3283       auto LHS_CR = getConstantRangeFromMetadata(
3284           *LHS_Instr->getMetadata(LLVMContext::MD_range));
3285 
3286       auto Satisfied_CR = ConstantRange::makeSatisfyingICmpRegion(Pred, RHS_CR);
3287       if (Satisfied_CR.contains(LHS_CR))
3288         return ConstantInt::getTrue(RHS->getContext());
3289 
3290       auto InversedSatisfied_CR = ConstantRange::makeSatisfyingICmpRegion(
3291                 CmpInst::getInversePredicate(Pred), RHS_CR);
3292       if (InversedSatisfied_CR.contains(LHS_CR))
3293         return ConstantInt::getFalse(RHS->getContext());
3294     }
3295   }
3296 
3297   // Compare of cast, for example (zext X) != 0 -> X != 0
3298   if (isa<CastInst>(LHS) && (isa<Constant>(RHS) || isa<CastInst>(RHS))) {
3299     Instruction *LI = cast<CastInst>(LHS);
3300     Value *SrcOp = LI->getOperand(0);
3301     Type *SrcTy = SrcOp->getType();
3302     Type *DstTy = LI->getType();
3303 
3304     // Turn icmp (ptrtoint x), (ptrtoint/constant) into a compare of the input
3305     // if the integer type is the same size as the pointer type.
3306     if (MaxRecurse && isa<PtrToIntInst>(LI) &&
3307         Q.DL.getTypeSizeInBits(SrcTy) == DstTy->getPrimitiveSizeInBits()) {
3308       if (Constant *RHSC = dyn_cast<Constant>(RHS)) {
3309         // Transfer the cast to the constant.
3310         if (Value *V = SimplifyICmpInst(Pred, SrcOp,
3311                                         ConstantExpr::getIntToPtr(RHSC, SrcTy),
3312                                         Q, MaxRecurse-1))
3313           return V;
3314       } else if (PtrToIntInst *RI = dyn_cast<PtrToIntInst>(RHS)) {
3315         if (RI->getOperand(0)->getType() == SrcTy)
3316           // Compare without the cast.
3317           if (Value *V = SimplifyICmpInst(Pred, SrcOp, RI->getOperand(0),
3318                                           Q, MaxRecurse-1))
3319             return V;
3320       }
3321     }
3322 
3323     if (isa<ZExtInst>(LHS)) {
3324       // Turn icmp (zext X), (zext Y) into a compare of X and Y if they have the
3325       // same type.
3326       if (ZExtInst *RI = dyn_cast<ZExtInst>(RHS)) {
3327         if (MaxRecurse && SrcTy == RI->getOperand(0)->getType())
3328           // Compare X and Y.  Note that signed predicates become unsigned.
3329           if (Value *V = SimplifyICmpInst(ICmpInst::getUnsignedPredicate(Pred),
3330                                           SrcOp, RI->getOperand(0), Q,
3331                                           MaxRecurse-1))
3332             return V;
3333       }
3334       // Turn icmp (zext X), Cst into a compare of X and Cst if Cst is extended
3335       // too.  If not, then try to deduce the result of the comparison.
3336       else if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
3337         // Compute the constant that would happen if we truncated to SrcTy then
3338         // reextended to DstTy.
3339         Constant *Trunc = ConstantExpr::getTrunc(CI, SrcTy);
3340         Constant *RExt = ConstantExpr::getCast(CastInst::ZExt, Trunc, DstTy);
3341 
3342         // If the re-extended constant didn't change then this is effectively
3343         // also a case of comparing two zero-extended values.
3344         if (RExt == CI && MaxRecurse)
3345           if (Value *V = SimplifyICmpInst(ICmpInst::getUnsignedPredicate(Pred),
3346                                         SrcOp, Trunc, Q, MaxRecurse-1))
3347             return V;
3348 
3349         // Otherwise the upper bits of LHS are zero while RHS has a non-zero bit
3350         // there.  Use this to work out the result of the comparison.
3351         if (RExt != CI) {
3352           switch (Pred) {
3353           default: llvm_unreachable("Unknown ICmp predicate!");
3354           // LHS <u RHS.
3355           case ICmpInst::ICMP_EQ:
3356           case ICmpInst::ICMP_UGT:
3357           case ICmpInst::ICMP_UGE:
3358             return ConstantInt::getFalse(CI->getContext());
3359 
3360           case ICmpInst::ICMP_NE:
3361           case ICmpInst::ICMP_ULT:
3362           case ICmpInst::ICMP_ULE:
3363             return ConstantInt::getTrue(CI->getContext());
3364 
3365           // LHS is non-negative.  If RHS is negative then LHS >s LHS.  If RHS
3366           // is non-negative then LHS <s RHS.
3367           case ICmpInst::ICMP_SGT:
3368           case ICmpInst::ICMP_SGE:
3369             return CI->getValue().isNegative() ?
3370               ConstantInt::getTrue(CI->getContext()) :
3371               ConstantInt::getFalse(CI->getContext());
3372 
3373           case ICmpInst::ICMP_SLT:
3374           case ICmpInst::ICMP_SLE:
3375             return CI->getValue().isNegative() ?
3376               ConstantInt::getFalse(CI->getContext()) :
3377               ConstantInt::getTrue(CI->getContext());
3378           }
3379         }
3380       }
3381     }
3382 
3383     if (isa<SExtInst>(LHS)) {
3384       // Turn icmp (sext X), (sext Y) into a compare of X and Y if they have the
3385       // same type.
3386       if (SExtInst *RI = dyn_cast<SExtInst>(RHS)) {
3387         if (MaxRecurse && SrcTy == RI->getOperand(0)->getType())
3388           // Compare X and Y.  Note that the predicate does not change.
3389           if (Value *V = SimplifyICmpInst(Pred, SrcOp, RI->getOperand(0),
3390                                           Q, MaxRecurse-1))
3391             return V;
3392       }
3393       // Turn icmp (sext X), Cst into a compare of X and Cst if Cst is extended
3394       // too.  If not, then try to deduce the result of the comparison.
3395       else if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
3396         // Compute the constant that would happen if we truncated to SrcTy then
3397         // reextended to DstTy.
3398         Constant *Trunc = ConstantExpr::getTrunc(CI, SrcTy);
3399         Constant *RExt = ConstantExpr::getCast(CastInst::SExt, Trunc, DstTy);
3400 
3401         // If the re-extended constant didn't change then this is effectively
3402         // also a case of comparing two sign-extended values.
3403         if (RExt == CI && MaxRecurse)
3404           if (Value *V = SimplifyICmpInst(Pred, SrcOp, Trunc, Q, MaxRecurse-1))
3405             return V;
3406 
3407         // Otherwise the upper bits of LHS are all equal, while RHS has varying
3408         // bits there.  Use this to work out the result of the comparison.
3409         if (RExt != CI) {
3410           switch (Pred) {
3411           default: llvm_unreachable("Unknown ICmp predicate!");
3412           case ICmpInst::ICMP_EQ:
3413             return ConstantInt::getFalse(CI->getContext());
3414           case ICmpInst::ICMP_NE:
3415             return ConstantInt::getTrue(CI->getContext());
3416 
3417           // If RHS is non-negative then LHS <s RHS.  If RHS is negative then
3418           // LHS >s RHS.
3419           case ICmpInst::ICMP_SGT:
3420           case ICmpInst::ICMP_SGE:
3421             return CI->getValue().isNegative() ?
3422               ConstantInt::getTrue(CI->getContext()) :
3423               ConstantInt::getFalse(CI->getContext());
3424           case ICmpInst::ICMP_SLT:
3425           case ICmpInst::ICMP_SLE:
3426             return CI->getValue().isNegative() ?
3427               ConstantInt::getFalse(CI->getContext()) :
3428               ConstantInt::getTrue(CI->getContext());
3429 
3430           // If LHS is non-negative then LHS <u RHS.  If LHS is negative then
3431           // LHS >u RHS.
3432           case ICmpInst::ICMP_UGT:
3433           case ICmpInst::ICMP_UGE:
3434             // Comparison is true iff the LHS <s 0.
3435             if (MaxRecurse)
3436               if (Value *V = SimplifyICmpInst(ICmpInst::ICMP_SLT, SrcOp,
3437                                               Constant::getNullValue(SrcTy),
3438                                               Q, MaxRecurse-1))
3439                 return V;
3440             break;
3441           case ICmpInst::ICMP_ULT:
3442           case ICmpInst::ICMP_ULE:
3443             // Comparison is true iff the LHS >=s 0.
3444             if (MaxRecurse)
3445               if (Value *V = SimplifyICmpInst(ICmpInst::ICMP_SGE, SrcOp,
3446                                               Constant::getNullValue(SrcTy),
3447                                               Q, MaxRecurse-1))
3448                 return V;
3449             break;
3450           }
3451         }
3452       }
3453     }
3454   }
3455 
3456   // icmp eq|ne X, Y -> false|true if X != Y
3457   if (ICmpInst::isEquality(Pred) &&
3458       isKnownNonEqual(LHS, RHS, Q.DL, Q.AC, Q.CxtI, Q.DT, Q.IIQ.UseInstrInfo)) {
3459     return Pred == ICmpInst::ICMP_NE ? getTrue(ITy) : getFalse(ITy);
3460   }
3461 
3462   if (Value *V = simplifyICmpWithBinOp(Pred, LHS, RHS, Q, MaxRecurse))
3463     return V;
3464 
3465   if (Value *V = simplifyICmpWithMinMax(Pred, LHS, RHS, Q, MaxRecurse))
3466     return V;
3467 
3468   if (Value *V = simplifyICmpWithAbsNabs(Pred, LHS, RHS))
3469     return V;
3470 
3471   // Simplify comparisons of related pointers using a powerful, recursive
3472   // GEP-walk when we have target data available..
3473   if (LHS->getType()->isPointerTy())
3474     if (auto *C = computePointerICmp(Q.DL, Q.TLI, Q.DT, Pred, Q.AC, Q.CxtI,
3475                                      Q.IIQ, LHS, RHS))
3476       return C;
3477   if (auto *CLHS = dyn_cast<PtrToIntOperator>(LHS))
3478     if (auto *CRHS = dyn_cast<PtrToIntOperator>(RHS))
3479       if (Q.DL.getTypeSizeInBits(CLHS->getPointerOperandType()) ==
3480               Q.DL.getTypeSizeInBits(CLHS->getType()) &&
3481           Q.DL.getTypeSizeInBits(CRHS->getPointerOperandType()) ==
3482               Q.DL.getTypeSizeInBits(CRHS->getType()))
3483         if (auto *C = computePointerICmp(Q.DL, Q.TLI, Q.DT, Pred, Q.AC, Q.CxtI,
3484                                          Q.IIQ, CLHS->getPointerOperand(),
3485                                          CRHS->getPointerOperand()))
3486           return C;
3487 
3488   if (GetElementPtrInst *GLHS = dyn_cast<GetElementPtrInst>(LHS)) {
3489     if (GEPOperator *GRHS = dyn_cast<GEPOperator>(RHS)) {
3490       if (GLHS->getPointerOperand() == GRHS->getPointerOperand() &&
3491           GLHS->hasAllConstantIndices() && GRHS->hasAllConstantIndices() &&
3492           (ICmpInst::isEquality(Pred) ||
3493            (GLHS->isInBounds() && GRHS->isInBounds() &&
3494             Pred == ICmpInst::getSignedPredicate(Pred)))) {
3495         // The bases are equal and the indices are constant.  Build a constant
3496         // expression GEP with the same indices and a null base pointer to see
3497         // what constant folding can make out of it.
3498         Constant *Null = Constant::getNullValue(GLHS->getPointerOperandType());
3499         SmallVector<Value *, 4> IndicesLHS(GLHS->idx_begin(), GLHS->idx_end());
3500         Constant *NewLHS = ConstantExpr::getGetElementPtr(
3501             GLHS->getSourceElementType(), Null, IndicesLHS);
3502 
3503         SmallVector<Value *, 4> IndicesRHS(GRHS->idx_begin(), GRHS->idx_end());
3504         Constant *NewRHS = ConstantExpr::getGetElementPtr(
3505             GLHS->getSourceElementType(), Null, IndicesRHS);
3506         return ConstantExpr::getICmp(Pred, NewLHS, NewRHS);
3507       }
3508     }
3509   }
3510 
3511   // If the comparison is with the result of a select instruction, check whether
3512   // comparing with either branch of the select always yields the same value.
3513   if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS))
3514     if (Value *V = ThreadCmpOverSelect(Pred, LHS, RHS, Q, MaxRecurse))
3515       return V;
3516 
3517   // If the comparison is with the result of a phi instruction, check whether
3518   // doing the compare with each incoming phi value yields a common result.
3519   if (isa<PHINode>(LHS) || isa<PHINode>(RHS))
3520     if (Value *V = ThreadCmpOverPHI(Pred, LHS, RHS, Q, MaxRecurse))
3521       return V;
3522 
3523   return nullptr;
3524 }
3525 
3526 Value *llvm::SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS,
3527                               const SimplifyQuery &Q) {
3528   return ::SimplifyICmpInst(Predicate, LHS, RHS, Q, RecursionLimit);
3529 }
3530 
3531 /// Given operands for an FCmpInst, see if we can fold the result.
3532 /// If not, this returns null.
3533 static Value *SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
3534                                FastMathFlags FMF, const SimplifyQuery &Q,
3535                                unsigned MaxRecurse) {
3536   CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate;
3537   assert(CmpInst::isFPPredicate(Pred) && "Not an FP compare!");
3538 
3539   if (Constant *CLHS = dyn_cast<Constant>(LHS)) {
3540     if (Constant *CRHS = dyn_cast<Constant>(RHS))
3541       return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, Q.DL, Q.TLI);
3542 
3543     // If we have a constant, make sure it is on the RHS.
3544     std::swap(LHS, RHS);
3545     Pred = CmpInst::getSwappedPredicate(Pred);
3546   }
3547 
3548   // Fold trivial predicates.
3549   Type *RetTy = GetCompareTy(LHS);
3550   if (Pred == FCmpInst::FCMP_FALSE)
3551     return getFalse(RetTy);
3552   if (Pred == FCmpInst::FCMP_TRUE)
3553     return getTrue(RetTy);
3554 
3555   // Fold (un)ordered comparison if we can determine there are no NaNs.
3556   if (Pred == FCmpInst::FCMP_UNO || Pred == FCmpInst::FCMP_ORD)
3557     if (FMF.noNaNs() ||
3558         (isKnownNeverNaN(LHS, Q.TLI) && isKnownNeverNaN(RHS, Q.TLI)))
3559       return ConstantInt::get(RetTy, Pred == FCmpInst::FCMP_ORD);
3560 
3561   // NaN is unordered; NaN is not ordered.
3562   assert((FCmpInst::isOrdered(Pred) || FCmpInst::isUnordered(Pred)) &&
3563          "Comparison must be either ordered or unordered");
3564   if (match(RHS, m_NaN()))
3565     return ConstantInt::get(RetTy, CmpInst::isUnordered(Pred));
3566 
3567   // fcmp pred x, undef  and  fcmp pred undef, x
3568   // fold to true if unordered, false if ordered
3569   if (isa<UndefValue>(LHS) || isa<UndefValue>(RHS)) {
3570     // Choosing NaN for the undef will always make unordered comparison succeed
3571     // and ordered comparison fail.
3572     return ConstantInt::get(RetTy, CmpInst::isUnordered(Pred));
3573   }
3574 
3575   // fcmp x,x -> true/false.  Not all compares are foldable.
3576   if (LHS == RHS) {
3577     if (CmpInst::isTrueWhenEqual(Pred))
3578       return getTrue(RetTy);
3579     if (CmpInst::isFalseWhenEqual(Pred))
3580       return getFalse(RetTy);
3581   }
3582 
3583   // Handle fcmp with constant RHS.
3584   const APFloat *C;
3585   if (match(RHS, m_APFloat(C))) {
3586     // Check whether the constant is an infinity.
3587     if (C->isInfinity()) {
3588       if (C->isNegative()) {
3589         switch (Pred) {
3590         case FCmpInst::FCMP_OLT:
3591           // No value is ordered and less than negative infinity.
3592           return getFalse(RetTy);
3593         case FCmpInst::FCMP_UGE:
3594           // All values are unordered with or at least negative infinity.
3595           return getTrue(RetTy);
3596         default:
3597           break;
3598         }
3599       } else {
3600         switch (Pred) {
3601         case FCmpInst::FCMP_OGT:
3602           // No value is ordered and greater than infinity.
3603           return getFalse(RetTy);
3604         case FCmpInst::FCMP_ULE:
3605           // All values are unordered with and at most infinity.
3606           return getTrue(RetTy);
3607         default:
3608           break;
3609         }
3610       }
3611     }
3612     if (C->isZero()) {
3613       switch (Pred) {
3614       case FCmpInst::FCMP_OGE:
3615         if (FMF.noNaNs() && CannotBeOrderedLessThanZero(LHS, Q.TLI))
3616           return getTrue(RetTy);
3617         break;
3618       case FCmpInst::FCMP_UGE:
3619         if (CannotBeOrderedLessThanZero(LHS, Q.TLI))
3620           return getTrue(RetTy);
3621         break;
3622       case FCmpInst::FCMP_ULT:
3623         if (FMF.noNaNs() && CannotBeOrderedLessThanZero(LHS, Q.TLI))
3624           return getFalse(RetTy);
3625         break;
3626       case FCmpInst::FCMP_OLT:
3627         if (CannotBeOrderedLessThanZero(LHS, Q.TLI))
3628           return getFalse(RetTy);
3629         break;
3630       default:
3631         break;
3632       }
3633     } else if (C->isNegative()) {
3634       assert(!C->isNaN() && "Unexpected NaN constant!");
3635       // TODO: We can catch more cases by using a range check rather than
3636       //       relying on CannotBeOrderedLessThanZero.
3637       switch (Pred) {
3638       case FCmpInst::FCMP_UGE:
3639       case FCmpInst::FCMP_UGT:
3640       case FCmpInst::FCMP_UNE:
3641         // (X >= 0) implies (X > C) when (C < 0)
3642         if (CannotBeOrderedLessThanZero(LHS, Q.TLI))
3643           return getTrue(RetTy);
3644         break;
3645       case FCmpInst::FCMP_OEQ:
3646       case FCmpInst::FCMP_OLE:
3647       case FCmpInst::FCMP_OLT:
3648         // (X >= 0) implies !(X < C) when (C < 0)
3649         if (CannotBeOrderedLessThanZero(LHS, Q.TLI))
3650           return getFalse(RetTy);
3651         break;
3652       default:
3653         break;
3654       }
3655     }
3656   }
3657 
3658   // If the comparison is with the result of a select instruction, check whether
3659   // comparing with either branch of the select always yields the same value.
3660   if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS))
3661     if (Value *V = ThreadCmpOverSelect(Pred, LHS, RHS, Q, MaxRecurse))
3662       return V;
3663 
3664   // If the comparison is with the result of a phi instruction, check whether
3665   // doing the compare with each incoming phi value yields a common result.
3666   if (isa<PHINode>(LHS) || isa<PHINode>(RHS))
3667     if (Value *V = ThreadCmpOverPHI(Pred, LHS, RHS, Q, MaxRecurse))
3668       return V;
3669 
3670   return nullptr;
3671 }
3672 
3673 Value *llvm::SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
3674                               FastMathFlags FMF, const SimplifyQuery &Q) {
3675   return ::SimplifyFCmpInst(Predicate, LHS, RHS, FMF, Q, RecursionLimit);
3676 }
3677 
3678 /// See if V simplifies when its operand Op is replaced with RepOp.
3679 static const Value *SimplifyWithOpReplaced(Value *V, Value *Op, Value *RepOp,
3680                                            const SimplifyQuery &Q,
3681                                            unsigned MaxRecurse) {
3682   // Trivial replacement.
3683   if (V == Op)
3684     return RepOp;
3685 
3686   // We cannot replace a constant, and shouldn't even try.
3687   if (isa<Constant>(Op))
3688     return nullptr;
3689 
3690   auto *I = dyn_cast<Instruction>(V);
3691   if (!I)
3692     return nullptr;
3693 
3694   // If this is a binary operator, try to simplify it with the replaced op.
3695   if (auto *B = dyn_cast<BinaryOperator>(I)) {
3696     // Consider:
3697     //   %cmp = icmp eq i32 %x, 2147483647
3698     //   %add = add nsw i32 %x, 1
3699     //   %sel = select i1 %cmp, i32 -2147483648, i32 %add
3700     //
3701     // We can't replace %sel with %add unless we strip away the flags.
3702     if (isa<OverflowingBinaryOperator>(B))
3703       if (Q.IIQ.hasNoSignedWrap(B) || Q.IIQ.hasNoUnsignedWrap(B))
3704         return nullptr;
3705     if (isa<PossiblyExactOperator>(B) && Q.IIQ.isExact(B))
3706       return nullptr;
3707 
3708     if (MaxRecurse) {
3709       if (B->getOperand(0) == Op)
3710         return SimplifyBinOp(B->getOpcode(), RepOp, B->getOperand(1), Q,
3711                              MaxRecurse - 1);
3712       if (B->getOperand(1) == Op)
3713         return SimplifyBinOp(B->getOpcode(), B->getOperand(0), RepOp, Q,
3714                              MaxRecurse - 1);
3715     }
3716   }
3717 
3718   // Same for CmpInsts.
3719   if (CmpInst *C = dyn_cast<CmpInst>(I)) {
3720     if (MaxRecurse) {
3721       if (C->getOperand(0) == Op)
3722         return SimplifyCmpInst(C->getPredicate(), RepOp, C->getOperand(1), Q,
3723                                MaxRecurse - 1);
3724       if (C->getOperand(1) == Op)
3725         return SimplifyCmpInst(C->getPredicate(), C->getOperand(0), RepOp, Q,
3726                                MaxRecurse - 1);
3727     }
3728   }
3729 
3730   // Same for GEPs.
3731   if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) {
3732     if (MaxRecurse) {
3733       SmallVector<Value *, 8> NewOps(GEP->getNumOperands());
3734       transform(GEP->operands(), NewOps.begin(),
3735                 [&](Value *V) { return V == Op ? RepOp : V; });
3736       return SimplifyGEPInst(GEP->getSourceElementType(), NewOps, Q,
3737                              MaxRecurse - 1);
3738     }
3739   }
3740 
3741   // TODO: We could hand off more cases to instsimplify here.
3742 
3743   // If all operands are constant after substituting Op for RepOp then we can
3744   // constant fold the instruction.
3745   if (Constant *CRepOp = dyn_cast<Constant>(RepOp)) {
3746     // Build a list of all constant operands.
3747     SmallVector<Constant *, 8> ConstOps;
3748     for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
3749       if (I->getOperand(i) == Op)
3750         ConstOps.push_back(CRepOp);
3751       else if (Constant *COp = dyn_cast<Constant>(I->getOperand(i)))
3752         ConstOps.push_back(COp);
3753       else
3754         break;
3755     }
3756 
3757     // All operands were constants, fold it.
3758     if (ConstOps.size() == I->getNumOperands()) {
3759       if (CmpInst *C = dyn_cast<CmpInst>(I))
3760         return ConstantFoldCompareInstOperands(C->getPredicate(), ConstOps[0],
3761                                                ConstOps[1], Q.DL, Q.TLI);
3762 
3763       if (LoadInst *LI = dyn_cast<LoadInst>(I))
3764         if (!LI->isVolatile())
3765           return ConstantFoldLoadFromConstPtr(ConstOps[0], LI->getType(), Q.DL);
3766 
3767       return ConstantFoldInstOperands(I, ConstOps, Q.DL, Q.TLI);
3768     }
3769   }
3770 
3771   return nullptr;
3772 }
3773 
3774 /// Try to simplify a select instruction when its condition operand is an
3775 /// integer comparison where one operand of the compare is a constant.
3776 static Value *simplifySelectBitTest(Value *TrueVal, Value *FalseVal, Value *X,
3777                                     const APInt *Y, bool TrueWhenUnset) {
3778   const APInt *C;
3779 
3780   // (X & Y) == 0 ? X & ~Y : X  --> X
3781   // (X & Y) != 0 ? X & ~Y : X  --> X & ~Y
3782   if (FalseVal == X && match(TrueVal, m_And(m_Specific(X), m_APInt(C))) &&
3783       *Y == ~*C)
3784     return TrueWhenUnset ? FalseVal : TrueVal;
3785 
3786   // (X & Y) == 0 ? X : X & ~Y  --> X & ~Y
3787   // (X & Y) != 0 ? X : X & ~Y  --> X
3788   if (TrueVal == X && match(FalseVal, m_And(m_Specific(X), m_APInt(C))) &&
3789       *Y == ~*C)
3790     return TrueWhenUnset ? FalseVal : TrueVal;
3791 
3792   if (Y->isPowerOf2()) {
3793     // (X & Y) == 0 ? X | Y : X  --> X | Y
3794     // (X & Y) != 0 ? X | Y : X  --> X
3795     if (FalseVal == X && match(TrueVal, m_Or(m_Specific(X), m_APInt(C))) &&
3796         *Y == *C)
3797       return TrueWhenUnset ? TrueVal : FalseVal;
3798 
3799     // (X & Y) == 0 ? X : X | Y  --> X
3800     // (X & Y) != 0 ? X : X | Y  --> X | Y
3801     if (TrueVal == X && match(FalseVal, m_Or(m_Specific(X), m_APInt(C))) &&
3802         *Y == *C)
3803       return TrueWhenUnset ? TrueVal : FalseVal;
3804   }
3805 
3806   return nullptr;
3807 }
3808 
3809 /// An alternative way to test if a bit is set or not uses sgt/slt instead of
3810 /// eq/ne.
3811 static Value *simplifySelectWithFakeICmpEq(Value *CmpLHS, Value *CmpRHS,
3812                                            ICmpInst::Predicate Pred,
3813                                            Value *TrueVal, Value *FalseVal) {
3814   Value *X;
3815   APInt Mask;
3816   if (!decomposeBitTestICmp(CmpLHS, CmpRHS, Pred, X, Mask))
3817     return nullptr;
3818 
3819   return simplifySelectBitTest(TrueVal, FalseVal, X, &Mask,
3820                                Pred == ICmpInst::ICMP_EQ);
3821 }
3822 
3823 /// Try to simplify a select instruction when its condition operand is an
3824 /// integer comparison.
3825 static Value *simplifySelectWithICmpCond(Value *CondVal, Value *TrueVal,
3826                                          Value *FalseVal, const SimplifyQuery &Q,
3827                                          unsigned MaxRecurse) {
3828   ICmpInst::Predicate Pred;
3829   Value *CmpLHS, *CmpRHS;
3830   if (!match(CondVal, m_ICmp(Pred, m_Value(CmpLHS), m_Value(CmpRHS))))
3831     return nullptr;
3832 
3833   if (ICmpInst::isEquality(Pred) && match(CmpRHS, m_Zero())) {
3834     Value *X;
3835     const APInt *Y;
3836     if (match(CmpLHS, m_And(m_Value(X), m_APInt(Y))))
3837       if (Value *V = simplifySelectBitTest(TrueVal, FalseVal, X, Y,
3838                                            Pred == ICmpInst::ICMP_EQ))
3839         return V;
3840   }
3841 
3842   // Check for other compares that behave like bit test.
3843   if (Value *V = simplifySelectWithFakeICmpEq(CmpLHS, CmpRHS, Pred,
3844                                               TrueVal, FalseVal))
3845     return V;
3846 
3847   // If we have an equality comparison, then we know the value in one of the
3848   // arms of the select. See if substituting this value into the arm and
3849   // simplifying the result yields the same value as the other arm.
3850   if (Pred == ICmpInst::ICMP_EQ) {
3851     if (SimplifyWithOpReplaced(FalseVal, CmpLHS, CmpRHS, Q, MaxRecurse) ==
3852             TrueVal ||
3853         SimplifyWithOpReplaced(FalseVal, CmpRHS, CmpLHS, Q, MaxRecurse) ==
3854             TrueVal)
3855       return FalseVal;
3856     if (SimplifyWithOpReplaced(TrueVal, CmpLHS, CmpRHS, Q, MaxRecurse) ==
3857             FalseVal ||
3858         SimplifyWithOpReplaced(TrueVal, CmpRHS, CmpLHS, Q, MaxRecurse) ==
3859             FalseVal)
3860       return FalseVal;
3861   } else if (Pred == ICmpInst::ICMP_NE) {
3862     if (SimplifyWithOpReplaced(TrueVal, CmpLHS, CmpRHS, Q, MaxRecurse) ==
3863             FalseVal ||
3864         SimplifyWithOpReplaced(TrueVal, CmpRHS, CmpLHS, Q, MaxRecurse) ==
3865             FalseVal)
3866       return TrueVal;
3867     if (SimplifyWithOpReplaced(FalseVal, CmpLHS, CmpRHS, Q, MaxRecurse) ==
3868             TrueVal ||
3869         SimplifyWithOpReplaced(FalseVal, CmpRHS, CmpLHS, Q, MaxRecurse) ==
3870             TrueVal)
3871       return TrueVal;
3872   }
3873 
3874   return nullptr;
3875 }
3876 
3877 /// Try to simplify a select instruction when its condition operand is a
3878 /// floating-point comparison.
3879 static Value *simplifySelectWithFCmp(Value *Cond, Value *T, Value *F) {
3880   FCmpInst::Predicate Pred;
3881   if (!match(Cond, m_FCmp(Pred, m_Specific(T), m_Specific(F))) &&
3882       !match(Cond, m_FCmp(Pred, m_Specific(F), m_Specific(T))))
3883     return nullptr;
3884 
3885   // TODO: The transform may not be valid with -0.0. An incomplete way of
3886   // testing for that possibility is to check if at least one operand is a
3887   // non-zero constant.
3888   const APFloat *C;
3889   if ((match(T, m_APFloat(C)) && C->isNonZero()) ||
3890       (match(F, m_APFloat(C)) && C->isNonZero())) {
3891     // (T == F) ? T : F --> F
3892     // (F == T) ? T : F --> F
3893     if (Pred == FCmpInst::FCMP_OEQ)
3894       return F;
3895 
3896     // (T != F) ? T : F --> T
3897     // (F != T) ? T : F --> T
3898     if (Pred == FCmpInst::FCMP_UNE)
3899       return T;
3900   }
3901 
3902   return nullptr;
3903 }
3904 
3905 /// Given operands for a SelectInst, see if we can fold the result.
3906 /// If not, this returns null.
3907 static Value *SimplifySelectInst(Value *Cond, Value *TrueVal, Value *FalseVal,
3908                                  const SimplifyQuery &Q, unsigned MaxRecurse) {
3909   if (auto *CondC = dyn_cast<Constant>(Cond)) {
3910     if (auto *TrueC = dyn_cast<Constant>(TrueVal))
3911       if (auto *FalseC = dyn_cast<Constant>(FalseVal))
3912         return ConstantFoldSelectInstruction(CondC, TrueC, FalseC);
3913 
3914     // select undef, X, Y -> X or Y
3915     if (isa<UndefValue>(CondC))
3916       return isa<Constant>(FalseVal) ? FalseVal : TrueVal;
3917 
3918     // TODO: Vector constants with undef elements don't simplify.
3919 
3920     // select true, X, Y  -> X
3921     if (CondC->isAllOnesValue())
3922       return TrueVal;
3923     // select false, X, Y -> Y
3924     if (CondC->isNullValue())
3925       return FalseVal;
3926   }
3927 
3928   // select ?, X, X -> X
3929   if (TrueVal == FalseVal)
3930     return TrueVal;
3931 
3932   if (isa<UndefValue>(TrueVal))   // select ?, undef, X -> X
3933     return FalseVal;
3934   if (isa<UndefValue>(FalseVal))   // select ?, X, undef -> X
3935     return TrueVal;
3936 
3937   if (Value *V =
3938           simplifySelectWithICmpCond(Cond, TrueVal, FalseVal, Q, MaxRecurse))
3939     return V;
3940 
3941   if (Value *V = simplifySelectWithFCmp(Cond, TrueVal, FalseVal))
3942     return V;
3943 
3944   if (Value *V = foldSelectWithBinaryOp(Cond, TrueVal, FalseVal))
3945     return V;
3946 
3947   return nullptr;
3948 }
3949 
3950 Value *llvm::SimplifySelectInst(Value *Cond, Value *TrueVal, Value *FalseVal,
3951                                 const SimplifyQuery &Q) {
3952   return ::SimplifySelectInst(Cond, TrueVal, FalseVal, Q, RecursionLimit);
3953 }
3954 
3955 /// Given operands for an GetElementPtrInst, see if we can fold the result.
3956 /// If not, this returns null.
3957 static Value *SimplifyGEPInst(Type *SrcTy, ArrayRef<Value *> Ops,
3958                               const SimplifyQuery &Q, unsigned) {
3959   // The type of the GEP pointer operand.
3960   unsigned AS =
3961       cast<PointerType>(Ops[0]->getType()->getScalarType())->getAddressSpace();
3962 
3963   // getelementptr P -> P.
3964   if (Ops.size() == 1)
3965     return Ops[0];
3966 
3967   // Compute the (pointer) type returned by the GEP instruction.
3968   Type *LastType = GetElementPtrInst::getIndexedType(SrcTy, Ops.slice(1));
3969   Type *GEPTy = PointerType::get(LastType, AS);
3970   if (VectorType *VT = dyn_cast<VectorType>(Ops[0]->getType()))
3971     GEPTy = VectorType::get(GEPTy, VT->getNumElements());
3972   else if (VectorType *VT = dyn_cast<VectorType>(Ops[1]->getType()))
3973     GEPTy = VectorType::get(GEPTy, VT->getNumElements());
3974 
3975   if (isa<UndefValue>(Ops[0]))
3976     return UndefValue::get(GEPTy);
3977 
3978   if (Ops.size() == 2) {
3979     // getelementptr P, 0 -> P.
3980     if (match(Ops[1], m_Zero()) && Ops[0]->getType() == GEPTy)
3981       return Ops[0];
3982 
3983     Type *Ty = SrcTy;
3984     if (Ty->isSized()) {
3985       Value *P;
3986       uint64_t C;
3987       uint64_t TyAllocSize = Q.DL.getTypeAllocSize(Ty);
3988       // getelementptr P, N -> P if P points to a type of zero size.
3989       if (TyAllocSize == 0 && Ops[0]->getType() == GEPTy)
3990         return Ops[0];
3991 
3992       // The following transforms are only safe if the ptrtoint cast
3993       // doesn't truncate the pointers.
3994       if (Ops[1]->getType()->getScalarSizeInBits() ==
3995           Q.DL.getIndexSizeInBits(AS)) {
3996         auto PtrToIntOrZero = [GEPTy](Value *P) -> Value * {
3997           if (match(P, m_Zero()))
3998             return Constant::getNullValue(GEPTy);
3999           Value *Temp;
4000           if (match(P, m_PtrToInt(m_Value(Temp))))
4001             if (Temp->getType() == GEPTy)
4002               return Temp;
4003           return nullptr;
4004         };
4005 
4006         // getelementptr V, (sub P, V) -> P if P points to a type of size 1.
4007         if (TyAllocSize == 1 &&
4008             match(Ops[1], m_Sub(m_Value(P), m_PtrToInt(m_Specific(Ops[0])))))
4009           if (Value *R = PtrToIntOrZero(P))
4010             return R;
4011 
4012         // getelementptr V, (ashr (sub P, V), C) -> Q
4013         // if P points to a type of size 1 << C.
4014         if (match(Ops[1],
4015                   m_AShr(m_Sub(m_Value(P), m_PtrToInt(m_Specific(Ops[0]))),
4016                          m_ConstantInt(C))) &&
4017             TyAllocSize == 1ULL << C)
4018           if (Value *R = PtrToIntOrZero(P))
4019             return R;
4020 
4021         // getelementptr V, (sdiv (sub P, V), C) -> Q
4022         // if P points to a type of size C.
4023         if (match(Ops[1],
4024                   m_SDiv(m_Sub(m_Value(P), m_PtrToInt(m_Specific(Ops[0]))),
4025                          m_SpecificInt(TyAllocSize))))
4026           if (Value *R = PtrToIntOrZero(P))
4027             return R;
4028       }
4029     }
4030   }
4031 
4032   if (Q.DL.getTypeAllocSize(LastType) == 1 &&
4033       all_of(Ops.slice(1).drop_back(1),
4034              [](Value *Idx) { return match(Idx, m_Zero()); })) {
4035     unsigned IdxWidth =
4036         Q.DL.getIndexSizeInBits(Ops[0]->getType()->getPointerAddressSpace());
4037     if (Q.DL.getTypeSizeInBits(Ops.back()->getType()) == IdxWidth) {
4038       APInt BasePtrOffset(IdxWidth, 0);
4039       Value *StrippedBasePtr =
4040           Ops[0]->stripAndAccumulateInBoundsConstantOffsets(Q.DL,
4041                                                             BasePtrOffset);
4042 
4043       // gep (gep V, C), (sub 0, V) -> C
4044       if (match(Ops.back(),
4045                 m_Sub(m_Zero(), m_PtrToInt(m_Specific(StrippedBasePtr))))) {
4046         auto *CI = ConstantInt::get(GEPTy->getContext(), BasePtrOffset);
4047         return ConstantExpr::getIntToPtr(CI, GEPTy);
4048       }
4049       // gep (gep V, C), (xor V, -1) -> C-1
4050       if (match(Ops.back(),
4051                 m_Xor(m_PtrToInt(m_Specific(StrippedBasePtr)), m_AllOnes()))) {
4052         auto *CI = ConstantInt::get(GEPTy->getContext(), BasePtrOffset - 1);
4053         return ConstantExpr::getIntToPtr(CI, GEPTy);
4054       }
4055     }
4056   }
4057 
4058   // Check to see if this is constant foldable.
4059   if (!all_of(Ops, [](Value *V) { return isa<Constant>(V); }))
4060     return nullptr;
4061 
4062   auto *CE = ConstantExpr::getGetElementPtr(SrcTy, cast<Constant>(Ops[0]),
4063                                             Ops.slice(1));
4064   if (auto *CEFolded = ConstantFoldConstant(CE, Q.DL))
4065     return CEFolded;
4066   return CE;
4067 }
4068 
4069 Value *llvm::SimplifyGEPInst(Type *SrcTy, ArrayRef<Value *> Ops,
4070                              const SimplifyQuery &Q) {
4071   return ::SimplifyGEPInst(SrcTy, Ops, Q, RecursionLimit);
4072 }
4073 
4074 /// Given operands for an InsertValueInst, see if we can fold the result.
4075 /// If not, this returns null.
4076 static Value *SimplifyInsertValueInst(Value *Agg, Value *Val,
4077                                       ArrayRef<unsigned> Idxs, const SimplifyQuery &Q,
4078                                       unsigned) {
4079   if (Constant *CAgg = dyn_cast<Constant>(Agg))
4080     if (Constant *CVal = dyn_cast<Constant>(Val))
4081       return ConstantFoldInsertValueInstruction(CAgg, CVal, Idxs);
4082 
4083   // insertvalue x, undef, n -> x
4084   if (match(Val, m_Undef()))
4085     return Agg;
4086 
4087   // insertvalue x, (extractvalue y, n), n
4088   if (ExtractValueInst *EV = dyn_cast<ExtractValueInst>(Val))
4089     if (EV->getAggregateOperand()->getType() == Agg->getType() &&
4090         EV->getIndices() == Idxs) {
4091       // insertvalue undef, (extractvalue y, n), n -> y
4092       if (match(Agg, m_Undef()))
4093         return EV->getAggregateOperand();
4094 
4095       // insertvalue y, (extractvalue y, n), n -> y
4096       if (Agg == EV->getAggregateOperand())
4097         return Agg;
4098     }
4099 
4100   return nullptr;
4101 }
4102 
4103 Value *llvm::SimplifyInsertValueInst(Value *Agg, Value *Val,
4104                                      ArrayRef<unsigned> Idxs,
4105                                      const SimplifyQuery &Q) {
4106   return ::SimplifyInsertValueInst(Agg, Val, Idxs, Q, RecursionLimit);
4107 }
4108 
4109 Value *llvm::SimplifyInsertElementInst(Value *Vec, Value *Val, Value *Idx,
4110                                        const SimplifyQuery &Q) {
4111   // Try to constant fold.
4112   auto *VecC = dyn_cast<Constant>(Vec);
4113   auto *ValC = dyn_cast<Constant>(Val);
4114   auto *IdxC = dyn_cast<Constant>(Idx);
4115   if (VecC && ValC && IdxC)
4116     return ConstantFoldInsertElementInstruction(VecC, ValC, IdxC);
4117 
4118   // Fold into undef if index is out of bounds.
4119   if (auto *CI = dyn_cast<ConstantInt>(Idx)) {
4120     uint64_t NumElements = cast<VectorType>(Vec->getType())->getNumElements();
4121     if (CI->uge(NumElements))
4122       return UndefValue::get(Vec->getType());
4123   }
4124 
4125   // If index is undef, it might be out of bounds (see above case)
4126   if (isa<UndefValue>(Idx))
4127     return UndefValue::get(Vec->getType());
4128 
4129   return nullptr;
4130 }
4131 
4132 /// Given operands for an ExtractValueInst, see if we can fold the result.
4133 /// If not, this returns null.
4134 static Value *SimplifyExtractValueInst(Value *Agg, ArrayRef<unsigned> Idxs,
4135                                        const SimplifyQuery &, unsigned) {
4136   if (auto *CAgg = dyn_cast<Constant>(Agg))
4137     return ConstantFoldExtractValueInstruction(CAgg, Idxs);
4138 
4139   // extractvalue x, (insertvalue y, elt, n), n -> elt
4140   unsigned NumIdxs = Idxs.size();
4141   for (auto *IVI = dyn_cast<InsertValueInst>(Agg); IVI != nullptr;
4142        IVI = dyn_cast<InsertValueInst>(IVI->getAggregateOperand())) {
4143     ArrayRef<unsigned> InsertValueIdxs = IVI->getIndices();
4144     unsigned NumInsertValueIdxs = InsertValueIdxs.size();
4145     unsigned NumCommonIdxs = std::min(NumInsertValueIdxs, NumIdxs);
4146     if (InsertValueIdxs.slice(0, NumCommonIdxs) ==
4147         Idxs.slice(0, NumCommonIdxs)) {
4148       if (NumIdxs == NumInsertValueIdxs)
4149         return IVI->getInsertedValueOperand();
4150       break;
4151     }
4152   }
4153 
4154   return nullptr;
4155 }
4156 
4157 Value *llvm::SimplifyExtractValueInst(Value *Agg, ArrayRef<unsigned> Idxs,
4158                                       const SimplifyQuery &Q) {
4159   return ::SimplifyExtractValueInst(Agg, Idxs, Q, RecursionLimit);
4160 }
4161 
4162 /// Given operands for an ExtractElementInst, see if we can fold the result.
4163 /// If not, this returns null.
4164 static Value *SimplifyExtractElementInst(Value *Vec, Value *Idx, const SimplifyQuery &,
4165                                          unsigned) {
4166   if (auto *CVec = dyn_cast<Constant>(Vec)) {
4167     if (auto *CIdx = dyn_cast<Constant>(Idx))
4168       return ConstantFoldExtractElementInstruction(CVec, CIdx);
4169 
4170     // The index is not relevant if our vector is a splat.
4171     if (auto *Splat = CVec->getSplatValue())
4172       return Splat;
4173 
4174     if (isa<UndefValue>(Vec))
4175       return UndefValue::get(Vec->getType()->getVectorElementType());
4176   }
4177 
4178   // If extracting a specified index from the vector, see if we can recursively
4179   // find a previously computed scalar that was inserted into the vector.
4180   if (auto *IdxC = dyn_cast<ConstantInt>(Idx)) {
4181     if (IdxC->getValue().uge(Vec->getType()->getVectorNumElements()))
4182       // definitely out of bounds, thus undefined result
4183       return UndefValue::get(Vec->getType()->getVectorElementType());
4184     if (Value *Elt = findScalarElement(Vec, IdxC->getZExtValue()))
4185       return Elt;
4186   }
4187 
4188   // An undef extract index can be arbitrarily chosen to be an out-of-range
4189   // index value, which would result in the instruction being undef.
4190   if (isa<UndefValue>(Idx))
4191     return UndefValue::get(Vec->getType()->getVectorElementType());
4192 
4193   return nullptr;
4194 }
4195 
4196 Value *llvm::SimplifyExtractElementInst(Value *Vec, Value *Idx,
4197                                         const SimplifyQuery &Q) {
4198   return ::SimplifyExtractElementInst(Vec, Idx, Q, RecursionLimit);
4199 }
4200 
4201 /// See if we can fold the given phi. If not, returns null.
4202 static Value *SimplifyPHINode(PHINode *PN, const SimplifyQuery &Q) {
4203   // If all of the PHI's incoming values are the same then replace the PHI node
4204   // with the common value.
4205   Value *CommonValue = nullptr;
4206   bool HasUndefInput = false;
4207   for (Value *Incoming : PN->incoming_values()) {
4208     // If the incoming value is the phi node itself, it can safely be skipped.
4209     if (Incoming == PN) continue;
4210     if (isa<UndefValue>(Incoming)) {
4211       // Remember that we saw an undef value, but otherwise ignore them.
4212       HasUndefInput = true;
4213       continue;
4214     }
4215     if (CommonValue && Incoming != CommonValue)
4216       return nullptr;  // Not the same, bail out.
4217     CommonValue = Incoming;
4218   }
4219 
4220   // If CommonValue is null then all of the incoming values were either undef or
4221   // equal to the phi node itself.
4222   if (!CommonValue)
4223     return UndefValue::get(PN->getType());
4224 
4225   // If we have a PHI node like phi(X, undef, X), where X is defined by some
4226   // instruction, we cannot return X as the result of the PHI node unless it
4227   // dominates the PHI block.
4228   if (HasUndefInput)
4229     return valueDominatesPHI(CommonValue, PN, Q.DT) ? CommonValue : nullptr;
4230 
4231   return CommonValue;
4232 }
4233 
4234 static Value *SimplifyCastInst(unsigned CastOpc, Value *Op,
4235                                Type *Ty, const SimplifyQuery &Q, unsigned MaxRecurse) {
4236   if (auto *C = dyn_cast<Constant>(Op))
4237     return ConstantFoldCastOperand(CastOpc, C, Ty, Q.DL);
4238 
4239   if (auto *CI = dyn_cast<CastInst>(Op)) {
4240     auto *Src = CI->getOperand(0);
4241     Type *SrcTy = Src->getType();
4242     Type *MidTy = CI->getType();
4243     Type *DstTy = Ty;
4244     if (Src->getType() == Ty) {
4245       auto FirstOp = static_cast<Instruction::CastOps>(CI->getOpcode());
4246       auto SecondOp = static_cast<Instruction::CastOps>(CastOpc);
4247       Type *SrcIntPtrTy =
4248           SrcTy->isPtrOrPtrVectorTy() ? Q.DL.getIntPtrType(SrcTy) : nullptr;
4249       Type *MidIntPtrTy =
4250           MidTy->isPtrOrPtrVectorTy() ? Q.DL.getIntPtrType(MidTy) : nullptr;
4251       Type *DstIntPtrTy =
4252           DstTy->isPtrOrPtrVectorTy() ? Q.DL.getIntPtrType(DstTy) : nullptr;
4253       if (CastInst::isEliminableCastPair(FirstOp, SecondOp, SrcTy, MidTy, DstTy,
4254                                          SrcIntPtrTy, MidIntPtrTy,
4255                                          DstIntPtrTy) == Instruction::BitCast)
4256         return Src;
4257     }
4258   }
4259 
4260   // bitcast x -> x
4261   if (CastOpc == Instruction::BitCast)
4262     if (Op->getType() == Ty)
4263       return Op;
4264 
4265   return nullptr;
4266 }
4267 
4268 Value *llvm::SimplifyCastInst(unsigned CastOpc, Value *Op, Type *Ty,
4269                               const SimplifyQuery &Q) {
4270   return ::SimplifyCastInst(CastOpc, Op, Ty, Q, RecursionLimit);
4271 }
4272 
4273 /// For the given destination element of a shuffle, peek through shuffles to
4274 /// match a root vector source operand that contains that element in the same
4275 /// vector lane (ie, the same mask index), so we can eliminate the shuffle(s).
4276 static Value *foldIdentityShuffles(int DestElt, Value *Op0, Value *Op1,
4277                                    int MaskVal, Value *RootVec,
4278                                    unsigned MaxRecurse) {
4279   if (!MaxRecurse--)
4280     return nullptr;
4281 
4282   // Bail out if any mask value is undefined. That kind of shuffle may be
4283   // simplified further based on demanded bits or other folds.
4284   if (MaskVal == -1)
4285     return nullptr;
4286 
4287   // The mask value chooses which source operand we need to look at next.
4288   int InVecNumElts = Op0->getType()->getVectorNumElements();
4289   int RootElt = MaskVal;
4290   Value *SourceOp = Op0;
4291   if (MaskVal >= InVecNumElts) {
4292     RootElt = MaskVal - InVecNumElts;
4293     SourceOp = Op1;
4294   }
4295 
4296   // If the source operand is a shuffle itself, look through it to find the
4297   // matching root vector.
4298   if (auto *SourceShuf = dyn_cast<ShuffleVectorInst>(SourceOp)) {
4299     return foldIdentityShuffles(
4300         DestElt, SourceShuf->getOperand(0), SourceShuf->getOperand(1),
4301         SourceShuf->getMaskValue(RootElt), RootVec, MaxRecurse);
4302   }
4303 
4304   // TODO: Look through bitcasts? What if the bitcast changes the vector element
4305   // size?
4306 
4307   // The source operand is not a shuffle. Initialize the root vector value for
4308   // this shuffle if that has not been done yet.
4309   if (!RootVec)
4310     RootVec = SourceOp;
4311 
4312   // Give up as soon as a source operand does not match the existing root value.
4313   if (RootVec != SourceOp)
4314     return nullptr;
4315 
4316   // The element must be coming from the same lane in the source vector
4317   // (although it may have crossed lanes in intermediate shuffles).
4318   if (RootElt != DestElt)
4319     return nullptr;
4320 
4321   return RootVec;
4322 }
4323 
4324 static Value *SimplifyShuffleVectorInst(Value *Op0, Value *Op1, Constant *Mask,
4325                                         Type *RetTy, const SimplifyQuery &Q,
4326                                         unsigned MaxRecurse) {
4327   if (isa<UndefValue>(Mask))
4328     return UndefValue::get(RetTy);
4329 
4330   Type *InVecTy = Op0->getType();
4331   unsigned MaskNumElts = Mask->getType()->getVectorNumElements();
4332   unsigned InVecNumElts = InVecTy->getVectorNumElements();
4333 
4334   SmallVector<int, 32> Indices;
4335   ShuffleVectorInst::getShuffleMask(Mask, Indices);
4336   assert(MaskNumElts == Indices.size() &&
4337          "Size of Indices not same as number of mask elements?");
4338 
4339   // Canonicalization: If mask does not select elements from an input vector,
4340   // replace that input vector with undef.
4341   bool MaskSelects0 = false, MaskSelects1 = false;
4342   for (unsigned i = 0; i != MaskNumElts; ++i) {
4343     if (Indices[i] == -1)
4344       continue;
4345     if ((unsigned)Indices[i] < InVecNumElts)
4346       MaskSelects0 = true;
4347     else
4348       MaskSelects1 = true;
4349   }
4350   if (!MaskSelects0)
4351     Op0 = UndefValue::get(InVecTy);
4352   if (!MaskSelects1)
4353     Op1 = UndefValue::get(InVecTy);
4354 
4355   auto *Op0Const = dyn_cast<Constant>(Op0);
4356   auto *Op1Const = dyn_cast<Constant>(Op1);
4357 
4358   // If all operands are constant, constant fold the shuffle.
4359   if (Op0Const && Op1Const)
4360     return ConstantFoldShuffleVectorInstruction(Op0Const, Op1Const, Mask);
4361 
4362   // Canonicalization: if only one input vector is constant, it shall be the
4363   // second one.
4364   if (Op0Const && !Op1Const) {
4365     std::swap(Op0, Op1);
4366     ShuffleVectorInst::commuteShuffleMask(Indices, InVecNumElts);
4367   }
4368 
4369   // A shuffle of a splat is always the splat itself. Legal if the shuffle's
4370   // value type is same as the input vectors' type.
4371   if (auto *OpShuf = dyn_cast<ShuffleVectorInst>(Op0))
4372     if (isa<UndefValue>(Op1) && RetTy == InVecTy &&
4373         OpShuf->getMask()->getSplatValue())
4374       return Op0;
4375 
4376   // Don't fold a shuffle with undef mask elements. This may get folded in a
4377   // better way using demanded bits or other analysis.
4378   // TODO: Should we allow this?
4379   if (find(Indices, -1) != Indices.end())
4380     return nullptr;
4381 
4382   // Check if every element of this shuffle can be mapped back to the
4383   // corresponding element of a single root vector. If so, we don't need this
4384   // shuffle. This handles simple identity shuffles as well as chains of
4385   // shuffles that may widen/narrow and/or move elements across lanes and back.
4386   Value *RootVec = nullptr;
4387   for (unsigned i = 0; i != MaskNumElts; ++i) {
4388     // Note that recursion is limited for each vector element, so if any element
4389     // exceeds the limit, this will fail to simplify.
4390     RootVec =
4391         foldIdentityShuffles(i, Op0, Op1, Indices[i], RootVec, MaxRecurse);
4392 
4393     // We can't replace a widening/narrowing shuffle with one of its operands.
4394     if (!RootVec || RootVec->getType() != RetTy)
4395       return nullptr;
4396   }
4397   return RootVec;
4398 }
4399 
4400 /// Given operands for a ShuffleVectorInst, fold the result or return null.
4401 Value *llvm::SimplifyShuffleVectorInst(Value *Op0, Value *Op1, Constant *Mask,
4402                                        Type *RetTy, const SimplifyQuery &Q) {
4403   return ::SimplifyShuffleVectorInst(Op0, Op1, Mask, RetTy, Q, RecursionLimit);
4404 }
4405 
4406 static Constant *propagateNaN(Constant *In) {
4407   // If the input is a vector with undef elements, just return a default NaN.
4408   if (!In->isNaN())
4409     return ConstantFP::getNaN(In->getType());
4410 
4411   // Propagate the existing NaN constant when possible.
4412   // TODO: Should we quiet a signaling NaN?
4413   return In;
4414 }
4415 
4416 static Constant *simplifyFPBinop(Value *Op0, Value *Op1) {
4417   if (isa<UndefValue>(Op0) || isa<UndefValue>(Op1))
4418     return ConstantFP::getNaN(Op0->getType());
4419 
4420   if (match(Op0, m_NaN()))
4421     return propagateNaN(cast<Constant>(Op0));
4422   if (match(Op1, m_NaN()))
4423     return propagateNaN(cast<Constant>(Op1));
4424 
4425   return nullptr;
4426 }
4427 
4428 /// Given operands for an FAdd, see if we can fold the result.  If not, this
4429 /// returns null.
4430 static Value *SimplifyFAddInst(Value *Op0, Value *Op1, FastMathFlags FMF,
4431                                const SimplifyQuery &Q, unsigned MaxRecurse) {
4432   if (Constant *C = foldOrCommuteConstant(Instruction::FAdd, Op0, Op1, Q))
4433     return C;
4434 
4435   if (Constant *C = simplifyFPBinop(Op0, Op1))
4436     return C;
4437 
4438   // fadd X, -0 ==> X
4439   if (match(Op1, m_NegZeroFP()))
4440     return Op0;
4441 
4442   // fadd X, 0 ==> X, when we know X is not -0
4443   if (match(Op1, m_PosZeroFP()) &&
4444       (FMF.noSignedZeros() || CannotBeNegativeZero(Op0, Q.TLI)))
4445     return Op0;
4446 
4447   // With nnan: (+/-0.0 - X) + X --> 0.0 (and commuted variant)
4448   // We don't have to explicitly exclude infinities (ninf): INF + -INF == NaN.
4449   // Negative zeros are allowed because we always end up with positive zero:
4450   // X = -0.0: (-0.0 - (-0.0)) + (-0.0) == ( 0.0) + (-0.0) == 0.0
4451   // X = -0.0: ( 0.0 - (-0.0)) + (-0.0) == ( 0.0) + (-0.0) == 0.0
4452   // X =  0.0: (-0.0 - ( 0.0)) + ( 0.0) == (-0.0) + ( 0.0) == 0.0
4453   // X =  0.0: ( 0.0 - ( 0.0)) + ( 0.0) == ( 0.0) + ( 0.0) == 0.0
4454   if (FMF.noNaNs() && (match(Op0, m_FSub(m_AnyZeroFP(), m_Specific(Op1))) ||
4455                        match(Op1, m_FSub(m_AnyZeroFP(), m_Specific(Op0)))))
4456     return ConstantFP::getNullValue(Op0->getType());
4457 
4458   // (X - Y) + Y --> X
4459   // Y + (X - Y) --> X
4460   Value *X;
4461   if (FMF.noSignedZeros() && FMF.allowReassoc() &&
4462       (match(Op0, m_FSub(m_Value(X), m_Specific(Op1))) ||
4463        match(Op1, m_FSub(m_Value(X), m_Specific(Op0)))))
4464     return X;
4465 
4466   return nullptr;
4467 }
4468 
4469 /// Given operands for an FSub, see if we can fold the result.  If not, this
4470 /// returns null.
4471 static Value *SimplifyFSubInst(Value *Op0, Value *Op1, FastMathFlags FMF,
4472                                const SimplifyQuery &Q, unsigned MaxRecurse) {
4473   if (Constant *C = foldOrCommuteConstant(Instruction::FSub, Op0, Op1, Q))
4474     return C;
4475 
4476   if (Constant *C = simplifyFPBinop(Op0, Op1))
4477     return C;
4478 
4479   // fsub X, +0 ==> X
4480   if (match(Op1, m_PosZeroFP()))
4481     return Op0;
4482 
4483   // fsub X, -0 ==> X, when we know X is not -0
4484   if (match(Op1, m_NegZeroFP()) &&
4485       (FMF.noSignedZeros() || CannotBeNegativeZero(Op0, Q.TLI)))
4486     return Op0;
4487 
4488   // fsub -0.0, (fsub -0.0, X) ==> X
4489   Value *X;
4490   if (match(Op0, m_NegZeroFP()) &&
4491       match(Op1, m_FSub(m_NegZeroFP(), m_Value(X))))
4492     return X;
4493 
4494   // fsub 0.0, (fsub 0.0, X) ==> X if signed zeros are ignored.
4495   if (FMF.noSignedZeros() && match(Op0, m_AnyZeroFP()) &&
4496       match(Op1, m_FSub(m_AnyZeroFP(), m_Value(X))))
4497     return X;
4498 
4499   // fsub nnan x, x ==> 0.0
4500   if (FMF.noNaNs() && Op0 == Op1)
4501     return Constant::getNullValue(Op0->getType());
4502 
4503   // Y - (Y - X) --> X
4504   // (X + Y) - Y --> X
4505   if (FMF.noSignedZeros() && FMF.allowReassoc() &&
4506       (match(Op1, m_FSub(m_Specific(Op0), m_Value(X))) ||
4507        match(Op0, m_c_FAdd(m_Specific(Op1), m_Value(X)))))
4508     return X;
4509 
4510   return nullptr;
4511 }
4512 
4513 /// Given the operands for an FMul, see if we can fold the result
4514 static Value *SimplifyFMulInst(Value *Op0, Value *Op1, FastMathFlags FMF,
4515                                const SimplifyQuery &Q, unsigned MaxRecurse) {
4516   if (Constant *C = foldOrCommuteConstant(Instruction::FMul, Op0, Op1, Q))
4517     return C;
4518 
4519   if (Constant *C = simplifyFPBinop(Op0, Op1))
4520     return C;
4521 
4522   // fmul X, 1.0 ==> X
4523   if (match(Op1, m_FPOne()))
4524     return Op0;
4525 
4526   // fmul nnan nsz X, 0 ==> 0
4527   if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op1, m_AnyZeroFP()))
4528     return ConstantFP::getNullValue(Op0->getType());
4529 
4530   // sqrt(X) * sqrt(X) --> X, if we can:
4531   // 1. Remove the intermediate rounding (reassociate).
4532   // 2. Ignore non-zero negative numbers because sqrt would produce NAN.
4533   // 3. Ignore -0.0 because sqrt(-0.0) == -0.0, but -0.0 * -0.0 == 0.0.
4534   Value *X;
4535   if (Op0 == Op1 && match(Op0, m_Intrinsic<Intrinsic::sqrt>(m_Value(X))) &&
4536       FMF.allowReassoc() && FMF.noNaNs() && FMF.noSignedZeros())
4537     return X;
4538 
4539   return nullptr;
4540 }
4541 
4542 Value *llvm::SimplifyFAddInst(Value *Op0, Value *Op1, FastMathFlags FMF,
4543                               const SimplifyQuery &Q) {
4544   return ::SimplifyFAddInst(Op0, Op1, FMF, Q, RecursionLimit);
4545 }
4546 
4547 
4548 Value *llvm::SimplifyFSubInst(Value *Op0, Value *Op1, FastMathFlags FMF,
4549                               const SimplifyQuery &Q) {
4550   return ::SimplifyFSubInst(Op0, Op1, FMF, Q, RecursionLimit);
4551 }
4552 
4553 Value *llvm::SimplifyFMulInst(Value *Op0, Value *Op1, FastMathFlags FMF,
4554                               const SimplifyQuery &Q) {
4555   return ::SimplifyFMulInst(Op0, Op1, FMF, Q, RecursionLimit);
4556 }
4557 
4558 static Value *SimplifyFDivInst(Value *Op0, Value *Op1, FastMathFlags FMF,
4559                                const SimplifyQuery &Q, unsigned) {
4560   if (Constant *C = foldOrCommuteConstant(Instruction::FDiv, Op0, Op1, Q))
4561     return C;
4562 
4563   if (Constant *C = simplifyFPBinop(Op0, Op1))
4564     return C;
4565 
4566   // X / 1.0 -> X
4567   if (match(Op1, m_FPOne()))
4568     return Op0;
4569 
4570   // 0 / X -> 0
4571   // Requires that NaNs are off (X could be zero) and signed zeroes are
4572   // ignored (X could be positive or negative, so the output sign is unknown).
4573   if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op0, m_AnyZeroFP()))
4574     return ConstantFP::getNullValue(Op0->getType());
4575 
4576   if (FMF.noNaNs()) {
4577     // X / X -> 1.0 is legal when NaNs are ignored.
4578     // We can ignore infinities because INF/INF is NaN.
4579     if (Op0 == Op1)
4580       return ConstantFP::get(Op0->getType(), 1.0);
4581 
4582     // (X * Y) / Y --> X if we can reassociate to the above form.
4583     Value *X;
4584     if (FMF.allowReassoc() && match(Op0, m_c_FMul(m_Value(X), m_Specific(Op1))))
4585       return X;
4586 
4587     // -X /  X -> -1.0 and
4588     //  X / -X -> -1.0 are legal when NaNs are ignored.
4589     // We can ignore signed zeros because +-0.0/+-0.0 is NaN and ignored.
4590     if (match(Op0, m_FNegNSZ(m_Specific(Op1))) ||
4591         match(Op1, m_FNegNSZ(m_Specific(Op0))))
4592       return ConstantFP::get(Op0->getType(), -1.0);
4593   }
4594 
4595   return nullptr;
4596 }
4597 
4598 Value *llvm::SimplifyFDivInst(Value *Op0, Value *Op1, FastMathFlags FMF,
4599                               const SimplifyQuery &Q) {
4600   return ::SimplifyFDivInst(Op0, Op1, FMF, Q, RecursionLimit);
4601 }
4602 
4603 static Value *SimplifyFRemInst(Value *Op0, Value *Op1, FastMathFlags FMF,
4604                                const SimplifyQuery &Q, unsigned) {
4605   if (Constant *C = foldOrCommuteConstant(Instruction::FRem, Op0, Op1, Q))
4606     return C;
4607 
4608   if (Constant *C = simplifyFPBinop(Op0, Op1))
4609     return C;
4610 
4611   // Unlike fdiv, the result of frem always matches the sign of the dividend.
4612   // The constant match may include undef elements in a vector, so return a full
4613   // zero constant as the result.
4614   if (FMF.noNaNs()) {
4615     // +0 % X -> 0
4616     if (match(Op0, m_PosZeroFP()))
4617       return ConstantFP::getNullValue(Op0->getType());
4618     // -0 % X -> -0
4619     if (match(Op0, m_NegZeroFP()))
4620       return ConstantFP::getNegativeZero(Op0->getType());
4621   }
4622 
4623   return nullptr;
4624 }
4625 
4626 Value *llvm::SimplifyFRemInst(Value *Op0, Value *Op1, FastMathFlags FMF,
4627                               const SimplifyQuery &Q) {
4628   return ::SimplifyFRemInst(Op0, Op1, FMF, Q, RecursionLimit);
4629 }
4630 
4631 //=== Helper functions for higher up the class hierarchy.
4632 
4633 /// Given operands for a BinaryOperator, see if we can fold the result.
4634 /// If not, this returns null.
4635 static Value *SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS,
4636                             const SimplifyQuery &Q, unsigned MaxRecurse) {
4637   switch (Opcode) {
4638   case Instruction::Add:
4639     return SimplifyAddInst(LHS, RHS, false, false, Q, MaxRecurse);
4640   case Instruction::Sub:
4641     return SimplifySubInst(LHS, RHS, false, false, Q, MaxRecurse);
4642   case Instruction::Mul:
4643     return SimplifyMulInst(LHS, RHS, Q, MaxRecurse);
4644   case Instruction::SDiv:
4645     return SimplifySDivInst(LHS, RHS, Q, MaxRecurse);
4646   case Instruction::UDiv:
4647     return SimplifyUDivInst(LHS, RHS, Q, MaxRecurse);
4648   case Instruction::SRem:
4649     return SimplifySRemInst(LHS, RHS, Q, MaxRecurse);
4650   case Instruction::URem:
4651     return SimplifyURemInst(LHS, RHS, Q, MaxRecurse);
4652   case Instruction::Shl:
4653     return SimplifyShlInst(LHS, RHS, false, false, Q, MaxRecurse);
4654   case Instruction::LShr:
4655     return SimplifyLShrInst(LHS, RHS, false, Q, MaxRecurse);
4656   case Instruction::AShr:
4657     return SimplifyAShrInst(LHS, RHS, false, Q, MaxRecurse);
4658   case Instruction::And:
4659     return SimplifyAndInst(LHS, RHS, Q, MaxRecurse);
4660   case Instruction::Or:
4661     return SimplifyOrInst(LHS, RHS, Q, MaxRecurse);
4662   case Instruction::Xor:
4663     return SimplifyXorInst(LHS, RHS, Q, MaxRecurse);
4664   case Instruction::FAdd:
4665     return SimplifyFAddInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse);
4666   case Instruction::FSub:
4667     return SimplifyFSubInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse);
4668   case Instruction::FMul:
4669     return SimplifyFMulInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse);
4670   case Instruction::FDiv:
4671     return SimplifyFDivInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse);
4672   case Instruction::FRem:
4673     return SimplifyFRemInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse);
4674   default:
4675     llvm_unreachable("Unexpected opcode");
4676   }
4677 }
4678 
4679 /// Given operands for a BinaryOperator, see if we can fold the result.
4680 /// If not, this returns null.
4681 /// In contrast to SimplifyBinOp, try to use FastMathFlag when folding the
4682 /// result. In case we don't need FastMathFlags, simply fall to SimplifyBinOp.
4683 static Value *SimplifyFPBinOp(unsigned Opcode, Value *LHS, Value *RHS,
4684                               const FastMathFlags &FMF, const SimplifyQuery &Q,
4685                               unsigned MaxRecurse) {
4686   switch (Opcode) {
4687   case Instruction::FAdd:
4688     return SimplifyFAddInst(LHS, RHS, FMF, Q, MaxRecurse);
4689   case Instruction::FSub:
4690     return SimplifyFSubInst(LHS, RHS, FMF, Q, MaxRecurse);
4691   case Instruction::FMul:
4692     return SimplifyFMulInst(LHS, RHS, FMF, Q, MaxRecurse);
4693   case Instruction::FDiv:
4694     return SimplifyFDivInst(LHS, RHS, FMF, Q, MaxRecurse);
4695   default:
4696     return SimplifyBinOp(Opcode, LHS, RHS, Q, MaxRecurse);
4697   }
4698 }
4699 
4700 Value *llvm::SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS,
4701                            const SimplifyQuery &Q) {
4702   return ::SimplifyBinOp(Opcode, LHS, RHS, Q, RecursionLimit);
4703 }
4704 
4705 Value *llvm::SimplifyFPBinOp(unsigned Opcode, Value *LHS, Value *RHS,
4706                              FastMathFlags FMF, const SimplifyQuery &Q) {
4707   return ::SimplifyFPBinOp(Opcode, LHS, RHS, FMF, Q, RecursionLimit);
4708 }
4709 
4710 /// Given operands for a CmpInst, see if we can fold the result.
4711 static Value *SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
4712                               const SimplifyQuery &Q, unsigned MaxRecurse) {
4713   if (CmpInst::isIntPredicate((CmpInst::Predicate)Predicate))
4714     return SimplifyICmpInst(Predicate, LHS, RHS, Q, MaxRecurse);
4715   return SimplifyFCmpInst(Predicate, LHS, RHS, FastMathFlags(), Q, MaxRecurse);
4716 }
4717 
4718 Value *llvm::SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
4719                              const SimplifyQuery &Q) {
4720   return ::SimplifyCmpInst(Predicate, LHS, RHS, Q, RecursionLimit);
4721 }
4722 
4723 static bool IsIdempotent(Intrinsic::ID ID) {
4724   switch (ID) {
4725   default: return false;
4726 
4727   // Unary idempotent: f(f(x)) = f(x)
4728   case Intrinsic::fabs:
4729   case Intrinsic::floor:
4730   case Intrinsic::ceil:
4731   case Intrinsic::trunc:
4732   case Intrinsic::rint:
4733   case Intrinsic::nearbyint:
4734   case Intrinsic::round:
4735   case Intrinsic::canonicalize:
4736     return true;
4737   }
4738 }
4739 
4740 static Value *SimplifyRelativeLoad(Constant *Ptr, Constant *Offset,
4741                                    const DataLayout &DL) {
4742   GlobalValue *PtrSym;
4743   APInt PtrOffset;
4744   if (!IsConstantOffsetFromGlobal(Ptr, PtrSym, PtrOffset, DL))
4745     return nullptr;
4746 
4747   Type *Int8PtrTy = Type::getInt8PtrTy(Ptr->getContext());
4748   Type *Int32Ty = Type::getInt32Ty(Ptr->getContext());
4749   Type *Int32PtrTy = Int32Ty->getPointerTo();
4750   Type *Int64Ty = Type::getInt64Ty(Ptr->getContext());
4751 
4752   auto *OffsetConstInt = dyn_cast<ConstantInt>(Offset);
4753   if (!OffsetConstInt || OffsetConstInt->getType()->getBitWidth() > 64)
4754     return nullptr;
4755 
4756   uint64_t OffsetInt = OffsetConstInt->getSExtValue();
4757   if (OffsetInt % 4 != 0)
4758     return nullptr;
4759 
4760   Constant *C = ConstantExpr::getGetElementPtr(
4761       Int32Ty, ConstantExpr::getBitCast(Ptr, Int32PtrTy),
4762       ConstantInt::get(Int64Ty, OffsetInt / 4));
4763   Constant *Loaded = ConstantFoldLoadFromConstPtr(C, Int32Ty, DL);
4764   if (!Loaded)
4765     return nullptr;
4766 
4767   auto *LoadedCE = dyn_cast<ConstantExpr>(Loaded);
4768   if (!LoadedCE)
4769     return nullptr;
4770 
4771   if (LoadedCE->getOpcode() == Instruction::Trunc) {
4772     LoadedCE = dyn_cast<ConstantExpr>(LoadedCE->getOperand(0));
4773     if (!LoadedCE)
4774       return nullptr;
4775   }
4776 
4777   if (LoadedCE->getOpcode() != Instruction::Sub)
4778     return nullptr;
4779 
4780   auto *LoadedLHS = dyn_cast<ConstantExpr>(LoadedCE->getOperand(0));
4781   if (!LoadedLHS || LoadedLHS->getOpcode() != Instruction::PtrToInt)
4782     return nullptr;
4783   auto *LoadedLHSPtr = LoadedLHS->getOperand(0);
4784 
4785   Constant *LoadedRHS = LoadedCE->getOperand(1);
4786   GlobalValue *LoadedRHSSym;
4787   APInt LoadedRHSOffset;
4788   if (!IsConstantOffsetFromGlobal(LoadedRHS, LoadedRHSSym, LoadedRHSOffset,
4789                                   DL) ||
4790       PtrSym != LoadedRHSSym || PtrOffset != LoadedRHSOffset)
4791     return nullptr;
4792 
4793   return ConstantExpr::getBitCast(LoadedLHSPtr, Int8PtrTy);
4794 }
4795 
4796 static bool maskIsAllZeroOrUndef(Value *Mask) {
4797   auto *ConstMask = dyn_cast<Constant>(Mask);
4798   if (!ConstMask)
4799     return false;
4800   if (ConstMask->isNullValue() || isa<UndefValue>(ConstMask))
4801     return true;
4802   for (unsigned I = 0, E = ConstMask->getType()->getVectorNumElements(); I != E;
4803        ++I) {
4804     if (auto *MaskElt = ConstMask->getAggregateElement(I))
4805       if (MaskElt->isNullValue() || isa<UndefValue>(MaskElt))
4806         continue;
4807     return false;
4808   }
4809   return true;
4810 }
4811 
4812 static Value *simplifyUnaryIntrinsic(Function *F, Value *Op0,
4813                                      const SimplifyQuery &Q) {
4814   // Idempotent functions return the same result when called repeatedly.
4815   Intrinsic::ID IID = F->getIntrinsicID();
4816   if (IsIdempotent(IID))
4817     if (auto *II = dyn_cast<IntrinsicInst>(Op0))
4818       if (II->getIntrinsicID() == IID)
4819         return II;
4820 
4821   Value *X;
4822   switch (IID) {
4823   case Intrinsic::fabs:
4824     if (SignBitMustBeZero(Op0, Q.TLI)) return Op0;
4825     break;
4826   case Intrinsic::bswap:
4827     // bswap(bswap(x)) -> x
4828     if (match(Op0, m_BSwap(m_Value(X)))) return X;
4829     break;
4830   case Intrinsic::bitreverse:
4831     // bitreverse(bitreverse(x)) -> x
4832     if (match(Op0, m_BitReverse(m_Value(X)))) return X;
4833     break;
4834   case Intrinsic::exp:
4835     // exp(log(x)) -> x
4836     if (Q.CxtI->hasAllowReassoc() &&
4837         match(Op0, m_Intrinsic<Intrinsic::log>(m_Value(X)))) return X;
4838     break;
4839   case Intrinsic::exp2:
4840     // exp2(log2(x)) -> x
4841     if (Q.CxtI->hasAllowReassoc() &&
4842         match(Op0, m_Intrinsic<Intrinsic::log2>(m_Value(X)))) return X;
4843     break;
4844   case Intrinsic::log:
4845     // log(exp(x)) -> x
4846     if (Q.CxtI->hasAllowReassoc() &&
4847         match(Op0, m_Intrinsic<Intrinsic::exp>(m_Value(X)))) return X;
4848     break;
4849   case Intrinsic::log2:
4850     // log2(exp2(x)) -> x
4851     if (Q.CxtI->hasAllowReassoc() &&
4852         match(Op0, m_Intrinsic<Intrinsic::exp2>(m_Value(X)))) return X;
4853     break;
4854   default:
4855     break;
4856   }
4857 
4858   return nullptr;
4859 }
4860 
4861 static Value *simplifyBinaryIntrinsic(Function *F, Value *Op0, Value *Op1,
4862                                       const SimplifyQuery &Q) {
4863   Intrinsic::ID IID = F->getIntrinsicID();
4864   Type *ReturnType = F->getReturnType();
4865   switch (IID) {
4866   case Intrinsic::usub_with_overflow:
4867   case Intrinsic::ssub_with_overflow:
4868     // X - X -> { 0, false }
4869     if (Op0 == Op1)
4870       return Constant::getNullValue(ReturnType);
4871     // X - undef -> undef
4872     // undef - X -> undef
4873     if (isa<UndefValue>(Op0) || isa<UndefValue>(Op1))
4874       return UndefValue::get(ReturnType);
4875     break;
4876   case Intrinsic::uadd_with_overflow:
4877   case Intrinsic::sadd_with_overflow:
4878     // X + undef -> undef
4879     if (isa<UndefValue>(Op0) || isa<UndefValue>(Op1))
4880       return UndefValue::get(ReturnType);
4881     break;
4882   case Intrinsic::umul_with_overflow:
4883   case Intrinsic::smul_with_overflow:
4884     // 0 * X -> { 0, false }
4885     // X * 0 -> { 0, false }
4886     if (match(Op0, m_Zero()) || match(Op1, m_Zero()))
4887       return Constant::getNullValue(ReturnType);
4888     // undef * X -> { 0, false }
4889     // X * undef -> { 0, false }
4890     if (match(Op0, m_Undef()) || match(Op1, m_Undef()))
4891       return Constant::getNullValue(ReturnType);
4892     break;
4893   case Intrinsic::load_relative:
4894     if (auto *C0 = dyn_cast<Constant>(Op0))
4895       if (auto *C1 = dyn_cast<Constant>(Op1))
4896         return SimplifyRelativeLoad(C0, C1, Q.DL);
4897     break;
4898   case Intrinsic::powi:
4899     if (auto *Power = dyn_cast<ConstantInt>(Op1)) {
4900       // powi(x, 0) -> 1.0
4901       if (Power->isZero())
4902         return ConstantFP::get(Op0->getType(), 1.0);
4903       // powi(x, 1) -> x
4904       if (Power->isOne())
4905         return Op0;
4906     }
4907     break;
4908   case Intrinsic::maxnum:
4909   case Intrinsic::minnum:
4910   case Intrinsic::maximum:
4911   case Intrinsic::minimum: {
4912     // If the arguments are the same, this is a no-op.
4913     if (Op0 == Op1) return Op0;
4914 
4915     // If one argument is undef, return the other argument.
4916     if (match(Op0, m_Undef()))
4917       return Op1;
4918     if (match(Op1, m_Undef()))
4919       return Op0;
4920 
4921     // If one argument is NaN, return other or NaN appropriately.
4922     bool PropagateNaN = IID == Intrinsic::minimum || IID == Intrinsic::maximum;
4923     if (match(Op0, m_NaN()))
4924       return PropagateNaN ? Op0 : Op1;
4925     if (match(Op1, m_NaN()))
4926       return PropagateNaN ? Op1 : Op0;
4927 
4928     // Min/max of the same operation with common operand:
4929     // m(m(X, Y)), X --> m(X, Y) (4 commuted variants)
4930     if (auto *M0 = dyn_cast<IntrinsicInst>(Op0))
4931       if (M0->getIntrinsicID() == IID &&
4932           (M0->getOperand(0) == Op1 || M0->getOperand(1) == Op1))
4933         return Op0;
4934     if (auto *M1 = dyn_cast<IntrinsicInst>(Op1))
4935       if (M1->getIntrinsicID() == IID &&
4936           (M1->getOperand(0) == Op0 || M1->getOperand(1) == Op0))
4937         return Op1;
4938 
4939     // min(X, -Inf) --> -Inf (and commuted variant)
4940     // max(X, +Inf) --> +Inf (and commuted variant)
4941     bool UseNegInf = IID == Intrinsic::minnum || IID == Intrinsic::minimum;
4942     const APFloat *C;
4943     if ((match(Op0, m_APFloat(C)) && C->isInfinity() &&
4944          C->isNegative() == UseNegInf) ||
4945         (match(Op1, m_APFloat(C)) && C->isInfinity() &&
4946          C->isNegative() == UseNegInf))
4947       return ConstantFP::getInfinity(ReturnType, UseNegInf);
4948 
4949     // TODO: minnum(nnan x, inf) -> x
4950     // TODO: minnum(nnan ninf x, flt_max) -> x
4951     // TODO: maxnum(nnan x, -inf) -> x
4952     // TODO: maxnum(nnan ninf x, -flt_max) -> x
4953     break;
4954   }
4955   default:
4956     break;
4957   }
4958 
4959   return nullptr;
4960 }
4961 
4962 template <typename IterTy>
4963 static Value *simplifyIntrinsic(Function *F, IterTy ArgBegin, IterTy ArgEnd,
4964                                 const SimplifyQuery &Q) {
4965   // Intrinsics with no operands have some kind of side effect. Don't simplify.
4966   unsigned NumOperands = std::distance(ArgBegin, ArgEnd);
4967   if (NumOperands == 0)
4968     return nullptr;
4969 
4970   Intrinsic::ID IID = F->getIntrinsicID();
4971   if (NumOperands == 1)
4972     return simplifyUnaryIntrinsic(F, ArgBegin[0], Q);
4973 
4974   if (NumOperands == 2)
4975     return simplifyBinaryIntrinsic(F, ArgBegin[0], ArgBegin[1], Q);
4976 
4977   // Handle intrinsics with 3 or more arguments.
4978   switch (IID) {
4979   case Intrinsic::masked_load: {
4980     Value *MaskArg = ArgBegin[2];
4981     Value *PassthruArg = ArgBegin[3];
4982     // If the mask is all zeros or undef, the "passthru" argument is the result.
4983     if (maskIsAllZeroOrUndef(MaskArg))
4984       return PassthruArg;
4985     return nullptr;
4986   }
4987   case Intrinsic::fshl:
4988   case Intrinsic::fshr: {
4989     Value *ShAmtArg = ArgBegin[2];
4990     const APInt *ShAmtC;
4991     if (match(ShAmtArg, m_APInt(ShAmtC))) {
4992       // If there's effectively no shift, return the 1st arg or 2nd arg.
4993       // TODO: For vectors, we could check each element of a non-splat constant.
4994       APInt BitWidth = APInt(ShAmtC->getBitWidth(), ShAmtC->getBitWidth());
4995       if (ShAmtC->urem(BitWidth).isNullValue())
4996         return ArgBegin[IID == Intrinsic::fshl ? 0 : 1];
4997     }
4998     return nullptr;
4999   }
5000   default:
5001     return nullptr;
5002   }
5003 }
5004 
5005 template <typename IterTy>
5006 static Value *SimplifyCall(ImmutableCallSite CS, Value *V, IterTy ArgBegin,
5007                            IterTy ArgEnd, const SimplifyQuery &Q,
5008                            unsigned MaxRecurse) {
5009   Type *Ty = V->getType();
5010   if (PointerType *PTy = dyn_cast<PointerType>(Ty))
5011     Ty = PTy->getElementType();
5012   FunctionType *FTy = cast<FunctionType>(Ty);
5013 
5014   // call undef -> undef
5015   // call null -> undef
5016   if (isa<UndefValue>(V) || isa<ConstantPointerNull>(V))
5017     return UndefValue::get(FTy->getReturnType());
5018 
5019   Function *F = dyn_cast<Function>(V);
5020   if (!F)
5021     return nullptr;
5022 
5023   if (F->isIntrinsic())
5024     if (Value *Ret = simplifyIntrinsic(F, ArgBegin, ArgEnd, Q))
5025       return Ret;
5026 
5027   if (!canConstantFoldCallTo(CS, F))
5028     return nullptr;
5029 
5030   SmallVector<Constant *, 4> ConstantArgs;
5031   ConstantArgs.reserve(ArgEnd - ArgBegin);
5032   for (IterTy I = ArgBegin, E = ArgEnd; I != E; ++I) {
5033     Constant *C = dyn_cast<Constant>(*I);
5034     if (!C)
5035       return nullptr;
5036     ConstantArgs.push_back(C);
5037   }
5038 
5039   return ConstantFoldCall(CS, F, ConstantArgs, Q.TLI);
5040 }
5041 
5042 Value *llvm::SimplifyCall(ImmutableCallSite CS, Value *V,
5043                           User::op_iterator ArgBegin, User::op_iterator ArgEnd,
5044                           const SimplifyQuery &Q) {
5045   return ::SimplifyCall(CS, V, ArgBegin, ArgEnd, Q, RecursionLimit);
5046 }
5047 
5048 Value *llvm::SimplifyCall(ImmutableCallSite CS, Value *V,
5049                           ArrayRef<Value *> Args, const SimplifyQuery &Q) {
5050   return ::SimplifyCall(CS, V, Args.begin(), Args.end(), Q, RecursionLimit);
5051 }
5052 
5053 Value *llvm::SimplifyCall(ImmutableCallSite ICS, const SimplifyQuery &Q) {
5054   CallSite CS(const_cast<Instruction*>(ICS.getInstruction()));
5055   return ::SimplifyCall(CS, CS.getCalledValue(), CS.arg_begin(), CS.arg_end(),
5056                         Q, RecursionLimit);
5057 }
5058 
5059 /// See if we can compute a simplified version of this instruction.
5060 /// If not, this returns null.
5061 
5062 Value *llvm::SimplifyInstruction(Instruction *I, const SimplifyQuery &SQ,
5063                                  OptimizationRemarkEmitter *ORE) {
5064   const SimplifyQuery Q = SQ.CxtI ? SQ : SQ.getWithInstruction(I);
5065   Value *Result;
5066 
5067   switch (I->getOpcode()) {
5068   default:
5069     Result = ConstantFoldInstruction(I, Q.DL, Q.TLI);
5070     break;
5071   case Instruction::FAdd:
5072     Result = SimplifyFAddInst(I->getOperand(0), I->getOperand(1),
5073                               I->getFastMathFlags(), Q);
5074     break;
5075   case Instruction::Add:
5076     Result =
5077         SimplifyAddInst(I->getOperand(0), I->getOperand(1),
5078                         Q.IIQ.hasNoSignedWrap(cast<BinaryOperator>(I)),
5079                         Q.IIQ.hasNoUnsignedWrap(cast<BinaryOperator>(I)), Q);
5080     break;
5081   case Instruction::FSub:
5082     Result = SimplifyFSubInst(I->getOperand(0), I->getOperand(1),
5083                               I->getFastMathFlags(), Q);
5084     break;
5085   case Instruction::Sub:
5086     Result =
5087         SimplifySubInst(I->getOperand(0), I->getOperand(1),
5088                         Q.IIQ.hasNoSignedWrap(cast<BinaryOperator>(I)),
5089                         Q.IIQ.hasNoUnsignedWrap(cast<BinaryOperator>(I)), Q);
5090     break;
5091   case Instruction::FMul:
5092     Result = SimplifyFMulInst(I->getOperand(0), I->getOperand(1),
5093                               I->getFastMathFlags(), Q);
5094     break;
5095   case Instruction::Mul:
5096     Result = SimplifyMulInst(I->getOperand(0), I->getOperand(1), Q);
5097     break;
5098   case Instruction::SDiv:
5099     Result = SimplifySDivInst(I->getOperand(0), I->getOperand(1), Q);
5100     break;
5101   case Instruction::UDiv:
5102     Result = SimplifyUDivInst(I->getOperand(0), I->getOperand(1), Q);
5103     break;
5104   case Instruction::FDiv:
5105     Result = SimplifyFDivInst(I->getOperand(0), I->getOperand(1),
5106                               I->getFastMathFlags(), Q);
5107     break;
5108   case Instruction::SRem:
5109     Result = SimplifySRemInst(I->getOperand(0), I->getOperand(1), Q);
5110     break;
5111   case Instruction::URem:
5112     Result = SimplifyURemInst(I->getOperand(0), I->getOperand(1), Q);
5113     break;
5114   case Instruction::FRem:
5115     Result = SimplifyFRemInst(I->getOperand(0), I->getOperand(1),
5116                               I->getFastMathFlags(), Q);
5117     break;
5118   case Instruction::Shl:
5119     Result =
5120         SimplifyShlInst(I->getOperand(0), I->getOperand(1),
5121                         Q.IIQ.hasNoSignedWrap(cast<BinaryOperator>(I)),
5122                         Q.IIQ.hasNoUnsignedWrap(cast<BinaryOperator>(I)), Q);
5123     break;
5124   case Instruction::LShr:
5125     Result = SimplifyLShrInst(I->getOperand(0), I->getOperand(1),
5126                               Q.IIQ.isExact(cast<BinaryOperator>(I)), Q);
5127     break;
5128   case Instruction::AShr:
5129     Result = SimplifyAShrInst(I->getOperand(0), I->getOperand(1),
5130                               Q.IIQ.isExact(cast<BinaryOperator>(I)), Q);
5131     break;
5132   case Instruction::And:
5133     Result = SimplifyAndInst(I->getOperand(0), I->getOperand(1), Q);
5134     break;
5135   case Instruction::Or:
5136     Result = SimplifyOrInst(I->getOperand(0), I->getOperand(1), Q);
5137     break;
5138   case Instruction::Xor:
5139     Result = SimplifyXorInst(I->getOperand(0), I->getOperand(1), Q);
5140     break;
5141   case Instruction::ICmp:
5142     Result = SimplifyICmpInst(cast<ICmpInst>(I)->getPredicate(),
5143                               I->getOperand(0), I->getOperand(1), Q);
5144     break;
5145   case Instruction::FCmp:
5146     Result =
5147         SimplifyFCmpInst(cast<FCmpInst>(I)->getPredicate(), I->getOperand(0),
5148                          I->getOperand(1), I->getFastMathFlags(), Q);
5149     break;
5150   case Instruction::Select:
5151     Result = SimplifySelectInst(I->getOperand(0), I->getOperand(1),
5152                                 I->getOperand(2), Q);
5153     break;
5154   case Instruction::GetElementPtr: {
5155     SmallVector<Value *, 8> Ops(I->op_begin(), I->op_end());
5156     Result = SimplifyGEPInst(cast<GetElementPtrInst>(I)->getSourceElementType(),
5157                              Ops, Q);
5158     break;
5159   }
5160   case Instruction::InsertValue: {
5161     InsertValueInst *IV = cast<InsertValueInst>(I);
5162     Result = SimplifyInsertValueInst(IV->getAggregateOperand(),
5163                                      IV->getInsertedValueOperand(),
5164                                      IV->getIndices(), Q);
5165     break;
5166   }
5167   case Instruction::InsertElement: {
5168     auto *IE = cast<InsertElementInst>(I);
5169     Result = SimplifyInsertElementInst(IE->getOperand(0), IE->getOperand(1),
5170                                        IE->getOperand(2), Q);
5171     break;
5172   }
5173   case Instruction::ExtractValue: {
5174     auto *EVI = cast<ExtractValueInst>(I);
5175     Result = SimplifyExtractValueInst(EVI->getAggregateOperand(),
5176                                       EVI->getIndices(), Q);
5177     break;
5178   }
5179   case Instruction::ExtractElement: {
5180     auto *EEI = cast<ExtractElementInst>(I);
5181     Result = SimplifyExtractElementInst(EEI->getVectorOperand(),
5182                                         EEI->getIndexOperand(), Q);
5183     break;
5184   }
5185   case Instruction::ShuffleVector: {
5186     auto *SVI = cast<ShuffleVectorInst>(I);
5187     Result = SimplifyShuffleVectorInst(SVI->getOperand(0), SVI->getOperand(1),
5188                                        SVI->getMask(), SVI->getType(), Q);
5189     break;
5190   }
5191   case Instruction::PHI:
5192     Result = SimplifyPHINode(cast<PHINode>(I), Q);
5193     break;
5194   case Instruction::Call: {
5195     CallSite CS(cast<CallInst>(I));
5196     Result = SimplifyCall(CS, Q);
5197     break;
5198   }
5199 #define HANDLE_CAST_INST(num, opc, clas) case Instruction::opc:
5200 #include "llvm/IR/Instruction.def"
5201 #undef HANDLE_CAST_INST
5202     Result =
5203         SimplifyCastInst(I->getOpcode(), I->getOperand(0), I->getType(), Q);
5204     break;
5205   case Instruction::Alloca:
5206     // No simplifications for Alloca and it can't be constant folded.
5207     Result = nullptr;
5208     break;
5209   }
5210 
5211   // In general, it is possible for computeKnownBits to determine all bits in a
5212   // value even when the operands are not all constants.
5213   if (!Result && I->getType()->isIntOrIntVectorTy()) {
5214     KnownBits Known = computeKnownBits(I, Q.DL, /*Depth*/ 0, Q.AC, I, Q.DT, ORE);
5215     if (Known.isConstant())
5216       Result = ConstantInt::get(I->getType(), Known.getConstant());
5217   }
5218 
5219   /// If called on unreachable code, the above logic may report that the
5220   /// instruction simplified to itself.  Make life easier for users by
5221   /// detecting that case here, returning a safe value instead.
5222   return Result == I ? UndefValue::get(I->getType()) : Result;
5223 }
5224 
5225 /// Implementation of recursive simplification through an instruction's
5226 /// uses.
5227 ///
5228 /// This is the common implementation of the recursive simplification routines.
5229 /// If we have a pre-simplified value in 'SimpleV', that is forcibly used to
5230 /// replace the instruction 'I'. Otherwise, we simply add 'I' to the list of
5231 /// instructions to process and attempt to simplify it using
5232 /// InstructionSimplify.
5233 ///
5234 /// This routine returns 'true' only when *it* simplifies something. The passed
5235 /// in simplified value does not count toward this.
5236 static bool replaceAndRecursivelySimplifyImpl(Instruction *I, Value *SimpleV,
5237                                               const TargetLibraryInfo *TLI,
5238                                               const DominatorTree *DT,
5239                                               AssumptionCache *AC) {
5240   bool Simplified = false;
5241   SmallSetVector<Instruction *, 8> Worklist;
5242   const DataLayout &DL = I->getModule()->getDataLayout();
5243 
5244   // If we have an explicit value to collapse to, do that round of the
5245   // simplification loop by hand initially.
5246   if (SimpleV) {
5247     for (User *U : I->users())
5248       if (U != I)
5249         Worklist.insert(cast<Instruction>(U));
5250 
5251     // Replace the instruction with its simplified value.
5252     I->replaceAllUsesWith(SimpleV);
5253 
5254     // Gracefully handle edge cases where the instruction is not wired into any
5255     // parent block.
5256     if (I->getParent() && !I->isEHPad() && !I->isTerminator() &&
5257         !I->mayHaveSideEffects())
5258       I->eraseFromParent();
5259   } else {
5260     Worklist.insert(I);
5261   }
5262 
5263   // Note that we must test the size on each iteration, the worklist can grow.
5264   for (unsigned Idx = 0; Idx != Worklist.size(); ++Idx) {
5265     I = Worklist[Idx];
5266 
5267     // See if this instruction simplifies.
5268     SimpleV = SimplifyInstruction(I, {DL, TLI, DT, AC});
5269     if (!SimpleV)
5270       continue;
5271 
5272     Simplified = true;
5273 
5274     // Stash away all the uses of the old instruction so we can check them for
5275     // recursive simplifications after a RAUW. This is cheaper than checking all
5276     // uses of To on the recursive step in most cases.
5277     for (User *U : I->users())
5278       Worklist.insert(cast<Instruction>(U));
5279 
5280     // Replace the instruction with its simplified value.
5281     I->replaceAllUsesWith(SimpleV);
5282 
5283     // Gracefully handle edge cases where the instruction is not wired into any
5284     // parent block.
5285     if (I->getParent() && !I->isEHPad() && !I->isTerminator() &&
5286         !I->mayHaveSideEffects())
5287       I->eraseFromParent();
5288   }
5289   return Simplified;
5290 }
5291 
5292 bool llvm::recursivelySimplifyInstruction(Instruction *I,
5293                                           const TargetLibraryInfo *TLI,
5294                                           const DominatorTree *DT,
5295                                           AssumptionCache *AC) {
5296   return replaceAndRecursivelySimplifyImpl(I, nullptr, TLI, DT, AC);
5297 }
5298 
5299 bool llvm::replaceAndRecursivelySimplify(Instruction *I, Value *SimpleV,
5300                                          const TargetLibraryInfo *TLI,
5301                                          const DominatorTree *DT,
5302                                          AssumptionCache *AC) {
5303   assert(I != SimpleV && "replaceAndRecursivelySimplify(X,X) is not valid!");
5304   assert(SimpleV && "Must provide a simplified value.");
5305   return replaceAndRecursivelySimplifyImpl(I, SimpleV, TLI, DT, AC);
5306 }
5307 
5308 namespace llvm {
5309 const SimplifyQuery getBestSimplifyQuery(Pass &P, Function &F) {
5310   auto *DTWP = P.getAnalysisIfAvailable<DominatorTreeWrapperPass>();
5311   auto *DT = DTWP ? &DTWP->getDomTree() : nullptr;
5312   auto *TLIWP = P.getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>();
5313   auto *TLI = TLIWP ? &TLIWP->getTLI() : nullptr;
5314   auto *ACWP = P.getAnalysisIfAvailable<AssumptionCacheTracker>();
5315   auto *AC = ACWP ? &ACWP->getAssumptionCache(F) : nullptr;
5316   return {F.getParent()->getDataLayout(), TLI, DT, AC};
5317 }
5318 
5319 const SimplifyQuery getBestSimplifyQuery(LoopStandardAnalysisResults &AR,
5320                                          const DataLayout &DL) {
5321   return {DL, &AR.TLI, &AR.DT, &AR.AC};
5322 }
5323 
5324 template <class T, class... TArgs>
5325 const SimplifyQuery getBestSimplifyQuery(AnalysisManager<T, TArgs...> &AM,
5326                                          Function &F) {
5327   auto *DT = AM.template getCachedResult<DominatorTreeAnalysis>(F);
5328   auto *TLI = AM.template getCachedResult<TargetLibraryAnalysis>(F);
5329   auto *AC = AM.template getCachedResult<AssumptionAnalysis>(F);
5330   return {F.getParent()->getDataLayout(), TLI, DT, AC};
5331 }
5332 template const SimplifyQuery getBestSimplifyQuery(AnalysisManager<Function> &,
5333                                                   Function &);
5334 }
5335