1 //===- InstructionSimplify.cpp - Fold instruction operands ----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements routines for folding instructions into simpler forms
10 // that do not require creating new instructions.  This does constant folding
11 // ("add i32 1, 1" -> "2") but can also handle non-constant operands, either
12 // returning a constant ("and i32 %x, 0" -> "0") or an already existing value
13 // ("and i32 %x, %x" -> "%x").  All operands are assumed to have already been
14 // simplified: This is usually true and assuming it simplifies the logic (if
15 // they have not been simplified then results are correct but maybe suboptimal).
16 //
17 //===----------------------------------------------------------------------===//
18 
19 #include "llvm/Analysis/InstructionSimplify.h"
20 
21 #include "llvm/ADT/STLExtras.h"
22 #include "llvm/ADT/SetVector.h"
23 #include "llvm/ADT/SmallPtrSet.h"
24 #include "llvm/ADT/Statistic.h"
25 #include "llvm/Analysis/AliasAnalysis.h"
26 #include "llvm/Analysis/AssumptionCache.h"
27 #include "llvm/Analysis/CaptureTracking.h"
28 #include "llvm/Analysis/CmpInstAnalysis.h"
29 #include "llvm/Analysis/ConstantFolding.h"
30 #include "llvm/Analysis/LoopAnalysisManager.h"
31 #include "llvm/Analysis/MemoryBuiltins.h"
32 #include "llvm/Analysis/OverflowInstAnalysis.h"
33 #include "llvm/Analysis/ValueTracking.h"
34 #include "llvm/Analysis/VectorUtils.h"
35 #include "llvm/IR/ConstantRange.h"
36 #include "llvm/IR/DataLayout.h"
37 #include "llvm/IR/Dominators.h"
38 #include "llvm/IR/GetElementPtrTypeIterator.h"
39 #include "llvm/IR/GlobalAlias.h"
40 #include "llvm/IR/InstrTypes.h"
41 #include "llvm/IR/Instructions.h"
42 #include "llvm/IR/Operator.h"
43 #include "llvm/IR/PatternMatch.h"
44 #include "llvm/IR/ValueHandle.h"
45 #include "llvm/Support/KnownBits.h"
46 #include <algorithm>
47 using namespace llvm;
48 using namespace llvm::PatternMatch;
49 
50 #define DEBUG_TYPE "instsimplify"
51 
52 enum { RecursionLimit = 3 };
53 
54 STATISTIC(NumExpand,  "Number of expansions");
55 STATISTIC(NumReassoc, "Number of reassociations");
56 
57 static Value *SimplifyAndInst(Value *, Value *, const SimplifyQuery &, unsigned);
58 static Value *simplifyUnOp(unsigned, Value *, const SimplifyQuery &, unsigned);
59 static Value *simplifyFPUnOp(unsigned, Value *, const FastMathFlags &,
60                              const SimplifyQuery &, unsigned);
61 static Value *SimplifyBinOp(unsigned, Value *, Value *, const SimplifyQuery &,
62                             unsigned);
63 static Value *SimplifyBinOp(unsigned, Value *, Value *, const FastMathFlags &,
64                             const SimplifyQuery &, unsigned);
65 static Value *SimplifyCmpInst(unsigned, Value *, Value *, const SimplifyQuery &,
66                               unsigned);
67 static Value *SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS,
68                                const SimplifyQuery &Q, unsigned MaxRecurse);
69 static Value *SimplifyOrInst(Value *, Value *, const SimplifyQuery &, unsigned);
70 static Value *SimplifyXorInst(Value *, Value *, const SimplifyQuery &, unsigned);
71 static Value *SimplifyCastInst(unsigned, Value *, Type *,
72                                const SimplifyQuery &, unsigned);
73 static Value *SimplifyGEPInst(Type *, ArrayRef<Value *>, bool,
74                               const SimplifyQuery &, unsigned);
75 static Value *SimplifySelectInst(Value *, Value *, Value *,
76                                  const SimplifyQuery &, unsigned);
77 
78 static Value *foldSelectWithBinaryOp(Value *Cond, Value *TrueVal,
79                                      Value *FalseVal) {
80   BinaryOperator::BinaryOps BinOpCode;
81   if (auto *BO = dyn_cast<BinaryOperator>(Cond))
82     BinOpCode = BO->getOpcode();
83   else
84     return nullptr;
85 
86   CmpInst::Predicate ExpectedPred, Pred1, Pred2;
87   if (BinOpCode == BinaryOperator::Or) {
88     ExpectedPred = ICmpInst::ICMP_NE;
89   } else if (BinOpCode == BinaryOperator::And) {
90     ExpectedPred = ICmpInst::ICMP_EQ;
91   } else
92     return nullptr;
93 
94   // %A = icmp eq %TV, %FV
95   // %B = icmp eq %X, %Y (and one of these is a select operand)
96   // %C = and %A, %B
97   // %D = select %C, %TV, %FV
98   // -->
99   // %FV
100 
101   // %A = icmp ne %TV, %FV
102   // %B = icmp ne %X, %Y (and one of these is a select operand)
103   // %C = or %A, %B
104   // %D = select %C, %TV, %FV
105   // -->
106   // %TV
107   Value *X, *Y;
108   if (!match(Cond, m_c_BinOp(m_c_ICmp(Pred1, m_Specific(TrueVal),
109                                       m_Specific(FalseVal)),
110                              m_ICmp(Pred2, m_Value(X), m_Value(Y)))) ||
111       Pred1 != Pred2 || Pred1 != ExpectedPred)
112     return nullptr;
113 
114   if (X == TrueVal || X == FalseVal || Y == TrueVal || Y == FalseVal)
115     return BinOpCode == BinaryOperator::Or ? TrueVal : FalseVal;
116 
117   return nullptr;
118 }
119 
120 /// For a boolean type or a vector of boolean type, return false or a vector
121 /// with every element false.
122 static Constant *getFalse(Type *Ty) {
123   return ConstantInt::getFalse(Ty);
124 }
125 
126 /// For a boolean type or a vector of boolean type, return true or a vector
127 /// with every element true.
128 static Constant *getTrue(Type *Ty) {
129   return ConstantInt::getTrue(Ty);
130 }
131 
132 /// isSameCompare - Is V equivalent to the comparison "LHS Pred RHS"?
133 static bool isSameCompare(Value *V, CmpInst::Predicate Pred, Value *LHS,
134                           Value *RHS) {
135   CmpInst *Cmp = dyn_cast<CmpInst>(V);
136   if (!Cmp)
137     return false;
138   CmpInst::Predicate CPred = Cmp->getPredicate();
139   Value *CLHS = Cmp->getOperand(0), *CRHS = Cmp->getOperand(1);
140   if (CPred == Pred && CLHS == LHS && CRHS == RHS)
141     return true;
142   return CPred == CmpInst::getSwappedPredicate(Pred) && CLHS == RHS &&
143     CRHS == LHS;
144 }
145 
146 /// Simplify comparison with true or false branch of select:
147 ///  %sel = select i1 %cond, i32 %tv, i32 %fv
148 ///  %cmp = icmp sle i32 %sel, %rhs
149 /// Compose new comparison by substituting %sel with either %tv or %fv
150 /// and see if it simplifies.
151 static Value *simplifyCmpSelCase(CmpInst::Predicate Pred, Value *LHS,
152                                  Value *RHS, Value *Cond,
153                                  const SimplifyQuery &Q, unsigned MaxRecurse,
154                                  Constant *TrueOrFalse) {
155   Value *SimplifiedCmp = SimplifyCmpInst(Pred, LHS, RHS, Q, MaxRecurse);
156   if (SimplifiedCmp == Cond) {
157     // %cmp simplified to the select condition (%cond).
158     return TrueOrFalse;
159   } else if (!SimplifiedCmp && isSameCompare(Cond, Pred, LHS, RHS)) {
160     // It didn't simplify. However, if composed comparison is equivalent
161     // to the select condition (%cond) then we can replace it.
162     return TrueOrFalse;
163   }
164   return SimplifiedCmp;
165 }
166 
167 /// Simplify comparison with true branch of select
168 static Value *simplifyCmpSelTrueCase(CmpInst::Predicate Pred, Value *LHS,
169                                      Value *RHS, Value *Cond,
170                                      const SimplifyQuery &Q,
171                                      unsigned MaxRecurse) {
172   return simplifyCmpSelCase(Pred, LHS, RHS, Cond, Q, MaxRecurse,
173                             getTrue(Cond->getType()));
174 }
175 
176 /// Simplify comparison with false branch of select
177 static Value *simplifyCmpSelFalseCase(CmpInst::Predicate Pred, Value *LHS,
178                                       Value *RHS, Value *Cond,
179                                       const SimplifyQuery &Q,
180                                       unsigned MaxRecurse) {
181   return simplifyCmpSelCase(Pred, LHS, RHS, Cond, Q, MaxRecurse,
182                             getFalse(Cond->getType()));
183 }
184 
185 /// We know comparison with both branches of select can be simplified, but they
186 /// are not equal. This routine handles some logical simplifications.
187 static Value *handleOtherCmpSelSimplifications(Value *TCmp, Value *FCmp,
188                                                Value *Cond,
189                                                const SimplifyQuery &Q,
190                                                unsigned MaxRecurse) {
191   // If the false value simplified to false, then the result of the compare
192   // is equal to "Cond && TCmp".  This also catches the case when the false
193   // value simplified to false and the true value to true, returning "Cond".
194   // Folding select to and/or isn't poison-safe in general; impliesPoison
195   // checks whether folding it does not convert a well-defined value into
196   // poison.
197   if (match(FCmp, m_Zero()) && impliesPoison(TCmp, Cond))
198     if (Value *V = SimplifyAndInst(Cond, TCmp, Q, MaxRecurse))
199       return V;
200   // If the true value simplified to true, then the result of the compare
201   // is equal to "Cond || FCmp".
202   if (match(TCmp, m_One()) && impliesPoison(FCmp, Cond))
203     if (Value *V = SimplifyOrInst(Cond, FCmp, Q, MaxRecurse))
204       return V;
205   // Finally, if the false value simplified to true and the true value to
206   // false, then the result of the compare is equal to "!Cond".
207   if (match(FCmp, m_One()) && match(TCmp, m_Zero()))
208     if (Value *V = SimplifyXorInst(
209             Cond, Constant::getAllOnesValue(Cond->getType()), Q, MaxRecurse))
210       return V;
211   return nullptr;
212 }
213 
214 /// Does the given value dominate the specified phi node?
215 static bool valueDominatesPHI(Value *V, PHINode *P, const DominatorTree *DT) {
216   Instruction *I = dyn_cast<Instruction>(V);
217   if (!I)
218     // Arguments and constants dominate all instructions.
219     return true;
220 
221   // If we are processing instructions (and/or basic blocks) that have not been
222   // fully added to a function, the parent nodes may still be null. Simply
223   // return the conservative answer in these cases.
224   if (!I->getParent() || !P->getParent() || !I->getFunction())
225     return false;
226 
227   // If we have a DominatorTree then do a precise test.
228   if (DT)
229     return DT->dominates(I, P);
230 
231   // Otherwise, if the instruction is in the entry block and is not an invoke,
232   // then it obviously dominates all phi nodes.
233   if (I->getParent()->isEntryBlock() && !isa<InvokeInst>(I) &&
234       !isa<CallBrInst>(I))
235     return true;
236 
237   return false;
238 }
239 
240 /// Try to simplify a binary operator of form "V op OtherOp" where V is
241 /// "(B0 opex B1)" by distributing 'op' across 'opex' as
242 /// "(B0 op OtherOp) opex (B1 op OtherOp)".
243 static Value *expandBinOp(Instruction::BinaryOps Opcode, Value *V,
244                           Value *OtherOp, Instruction::BinaryOps OpcodeToExpand,
245                           const SimplifyQuery &Q, unsigned MaxRecurse) {
246   auto *B = dyn_cast<BinaryOperator>(V);
247   if (!B || B->getOpcode() != OpcodeToExpand)
248     return nullptr;
249   Value *B0 = B->getOperand(0), *B1 = B->getOperand(1);
250   Value *L = SimplifyBinOp(Opcode, B0, OtherOp, Q.getWithoutUndef(),
251                            MaxRecurse);
252   if (!L)
253     return nullptr;
254   Value *R = SimplifyBinOp(Opcode, B1, OtherOp, Q.getWithoutUndef(),
255                            MaxRecurse);
256   if (!R)
257     return nullptr;
258 
259   // Does the expanded pair of binops simplify to the existing binop?
260   if ((L == B0 && R == B1) ||
261       (Instruction::isCommutative(OpcodeToExpand) && L == B1 && R == B0)) {
262     ++NumExpand;
263     return B;
264   }
265 
266   // Otherwise, return "L op' R" if it simplifies.
267   Value *S = SimplifyBinOp(OpcodeToExpand, L, R, Q, MaxRecurse);
268   if (!S)
269     return nullptr;
270 
271   ++NumExpand;
272   return S;
273 }
274 
275 /// Try to simplify binops of form "A op (B op' C)" or the commuted variant by
276 /// distributing op over op'.
277 static Value *expandCommutativeBinOp(Instruction::BinaryOps Opcode,
278                                      Value *L, Value *R,
279                                      Instruction::BinaryOps OpcodeToExpand,
280                                      const SimplifyQuery &Q,
281                                      unsigned MaxRecurse) {
282   // Recursion is always used, so bail out at once if we already hit the limit.
283   if (!MaxRecurse--)
284     return nullptr;
285 
286   if (Value *V = expandBinOp(Opcode, L, R, OpcodeToExpand, Q, MaxRecurse))
287     return V;
288   if (Value *V = expandBinOp(Opcode, R, L, OpcodeToExpand, Q, MaxRecurse))
289     return V;
290   return nullptr;
291 }
292 
293 /// Generic simplifications for associative binary operations.
294 /// Returns the simpler value, or null if none was found.
295 static Value *SimplifyAssociativeBinOp(Instruction::BinaryOps Opcode,
296                                        Value *LHS, Value *RHS,
297                                        const SimplifyQuery &Q,
298                                        unsigned MaxRecurse) {
299   assert(Instruction::isAssociative(Opcode) && "Not an associative operation!");
300 
301   // Recursion is always used, so bail out at once if we already hit the limit.
302   if (!MaxRecurse--)
303     return nullptr;
304 
305   BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS);
306   BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS);
307 
308   // Transform: "(A op B) op C" ==> "A op (B op C)" if it simplifies completely.
309   if (Op0 && Op0->getOpcode() == Opcode) {
310     Value *A = Op0->getOperand(0);
311     Value *B = Op0->getOperand(1);
312     Value *C = RHS;
313 
314     // Does "B op C" simplify?
315     if (Value *V = SimplifyBinOp(Opcode, B, C, Q, MaxRecurse)) {
316       // It does!  Return "A op V" if it simplifies or is already available.
317       // If V equals B then "A op V" is just the LHS.
318       if (V == B) return LHS;
319       // Otherwise return "A op V" if it simplifies.
320       if (Value *W = SimplifyBinOp(Opcode, A, V, Q, MaxRecurse)) {
321         ++NumReassoc;
322         return W;
323       }
324     }
325   }
326 
327   // Transform: "A op (B op C)" ==> "(A op B) op C" if it simplifies completely.
328   if (Op1 && Op1->getOpcode() == Opcode) {
329     Value *A = LHS;
330     Value *B = Op1->getOperand(0);
331     Value *C = Op1->getOperand(1);
332 
333     // Does "A op B" simplify?
334     if (Value *V = SimplifyBinOp(Opcode, A, B, Q, MaxRecurse)) {
335       // It does!  Return "V op C" if it simplifies or is already available.
336       // If V equals B then "V op C" is just the RHS.
337       if (V == B) return RHS;
338       // Otherwise return "V op C" if it simplifies.
339       if (Value *W = SimplifyBinOp(Opcode, V, C, Q, MaxRecurse)) {
340         ++NumReassoc;
341         return W;
342       }
343     }
344   }
345 
346   // The remaining transforms require commutativity as well as associativity.
347   if (!Instruction::isCommutative(Opcode))
348     return nullptr;
349 
350   // Transform: "(A op B) op C" ==> "(C op A) op B" if it simplifies completely.
351   if (Op0 && Op0->getOpcode() == Opcode) {
352     Value *A = Op0->getOperand(0);
353     Value *B = Op0->getOperand(1);
354     Value *C = RHS;
355 
356     // Does "C op A" simplify?
357     if (Value *V = SimplifyBinOp(Opcode, C, A, Q, MaxRecurse)) {
358       // It does!  Return "V op B" if it simplifies or is already available.
359       // If V equals A then "V op B" is just the LHS.
360       if (V == A) return LHS;
361       // Otherwise return "V op B" if it simplifies.
362       if (Value *W = SimplifyBinOp(Opcode, V, B, Q, MaxRecurse)) {
363         ++NumReassoc;
364         return W;
365       }
366     }
367   }
368 
369   // Transform: "A op (B op C)" ==> "B op (C op A)" if it simplifies completely.
370   if (Op1 && Op1->getOpcode() == Opcode) {
371     Value *A = LHS;
372     Value *B = Op1->getOperand(0);
373     Value *C = Op1->getOperand(1);
374 
375     // Does "C op A" simplify?
376     if (Value *V = SimplifyBinOp(Opcode, C, A, Q, MaxRecurse)) {
377       // It does!  Return "B op V" if it simplifies or is already available.
378       // If V equals C then "B op V" is just the RHS.
379       if (V == C) return RHS;
380       // Otherwise return "B op V" if it simplifies.
381       if (Value *W = SimplifyBinOp(Opcode, B, V, Q, MaxRecurse)) {
382         ++NumReassoc;
383         return W;
384       }
385     }
386   }
387 
388   return nullptr;
389 }
390 
391 /// In the case of a binary operation with a select instruction as an operand,
392 /// try to simplify the binop by seeing whether evaluating it on both branches
393 /// of the select results in the same value. Returns the common value if so,
394 /// otherwise returns null.
395 static Value *ThreadBinOpOverSelect(Instruction::BinaryOps Opcode, Value *LHS,
396                                     Value *RHS, const SimplifyQuery &Q,
397                                     unsigned MaxRecurse) {
398   // Recursion is always used, so bail out at once if we already hit the limit.
399   if (!MaxRecurse--)
400     return nullptr;
401 
402   SelectInst *SI;
403   if (isa<SelectInst>(LHS)) {
404     SI = cast<SelectInst>(LHS);
405   } else {
406     assert(isa<SelectInst>(RHS) && "No select instruction operand!");
407     SI = cast<SelectInst>(RHS);
408   }
409 
410   // Evaluate the BinOp on the true and false branches of the select.
411   Value *TV;
412   Value *FV;
413   if (SI == LHS) {
414     TV = SimplifyBinOp(Opcode, SI->getTrueValue(), RHS, Q, MaxRecurse);
415     FV = SimplifyBinOp(Opcode, SI->getFalseValue(), RHS, Q, MaxRecurse);
416   } else {
417     TV = SimplifyBinOp(Opcode, LHS, SI->getTrueValue(), Q, MaxRecurse);
418     FV = SimplifyBinOp(Opcode, LHS, SI->getFalseValue(), Q, MaxRecurse);
419   }
420 
421   // If they simplified to the same value, then return the common value.
422   // If they both failed to simplify then return null.
423   if (TV == FV)
424     return TV;
425 
426   // If one branch simplified to undef, return the other one.
427   if (TV && Q.isUndefValue(TV))
428     return FV;
429   if (FV && Q.isUndefValue(FV))
430     return TV;
431 
432   // If applying the operation did not change the true and false select values,
433   // then the result of the binop is the select itself.
434   if (TV == SI->getTrueValue() && FV == SI->getFalseValue())
435     return SI;
436 
437   // If one branch simplified and the other did not, and the simplified
438   // value is equal to the unsimplified one, return the simplified value.
439   // For example, select (cond, X, X & Z) & Z -> X & Z.
440   if ((FV && !TV) || (TV && !FV)) {
441     // Check that the simplified value has the form "X op Y" where "op" is the
442     // same as the original operation.
443     Instruction *Simplified = dyn_cast<Instruction>(FV ? FV : TV);
444     if (Simplified && Simplified->getOpcode() == unsigned(Opcode)) {
445       // The value that didn't simplify is "UnsimplifiedLHS op UnsimplifiedRHS".
446       // We already know that "op" is the same as for the simplified value.  See
447       // if the operands match too.  If so, return the simplified value.
448       Value *UnsimplifiedBranch = FV ? SI->getTrueValue() : SI->getFalseValue();
449       Value *UnsimplifiedLHS = SI == LHS ? UnsimplifiedBranch : LHS;
450       Value *UnsimplifiedRHS = SI == LHS ? RHS : UnsimplifiedBranch;
451       if (Simplified->getOperand(0) == UnsimplifiedLHS &&
452           Simplified->getOperand(1) == UnsimplifiedRHS)
453         return Simplified;
454       if (Simplified->isCommutative() &&
455           Simplified->getOperand(1) == UnsimplifiedLHS &&
456           Simplified->getOperand(0) == UnsimplifiedRHS)
457         return Simplified;
458     }
459   }
460 
461   return nullptr;
462 }
463 
464 /// In the case of a comparison with a select instruction, try to simplify the
465 /// comparison by seeing whether both branches of the select result in the same
466 /// value. Returns the common value if so, otherwise returns null.
467 /// For example, if we have:
468 ///  %tmp = select i1 %cmp, i32 1, i32 2
469 ///  %cmp1 = icmp sle i32 %tmp, 3
470 /// We can simplify %cmp1 to true, because both branches of select are
471 /// less than 3. We compose new comparison by substituting %tmp with both
472 /// branches of select and see if it can be simplified.
473 static Value *ThreadCmpOverSelect(CmpInst::Predicate Pred, Value *LHS,
474                                   Value *RHS, const SimplifyQuery &Q,
475                                   unsigned MaxRecurse) {
476   // Recursion is always used, so bail out at once if we already hit the limit.
477   if (!MaxRecurse--)
478     return nullptr;
479 
480   // Make sure the select is on the LHS.
481   if (!isa<SelectInst>(LHS)) {
482     std::swap(LHS, RHS);
483     Pred = CmpInst::getSwappedPredicate(Pred);
484   }
485   assert(isa<SelectInst>(LHS) && "Not comparing with a select instruction!");
486   SelectInst *SI = cast<SelectInst>(LHS);
487   Value *Cond = SI->getCondition();
488   Value *TV = SI->getTrueValue();
489   Value *FV = SI->getFalseValue();
490 
491   // Now that we have "cmp select(Cond, TV, FV), RHS", analyse it.
492   // Does "cmp TV, RHS" simplify?
493   Value *TCmp = simplifyCmpSelTrueCase(Pred, TV, RHS, Cond, Q, MaxRecurse);
494   if (!TCmp)
495     return nullptr;
496 
497   // Does "cmp FV, RHS" simplify?
498   Value *FCmp = simplifyCmpSelFalseCase(Pred, FV, RHS, Cond, Q, MaxRecurse);
499   if (!FCmp)
500     return nullptr;
501 
502   // If both sides simplified to the same value, then use it as the result of
503   // the original comparison.
504   if (TCmp == FCmp)
505     return TCmp;
506 
507   // The remaining cases only make sense if the select condition has the same
508   // type as the result of the comparison, so bail out if this is not so.
509   if (Cond->getType()->isVectorTy() == RHS->getType()->isVectorTy())
510     return handleOtherCmpSelSimplifications(TCmp, FCmp, Cond, Q, MaxRecurse);
511 
512   return nullptr;
513 }
514 
515 /// In the case of a binary operation with an operand that is a PHI instruction,
516 /// try to simplify the binop by seeing whether evaluating it on the incoming
517 /// phi values yields the same result for every value. If so returns the common
518 /// value, otherwise returns null.
519 static Value *ThreadBinOpOverPHI(Instruction::BinaryOps Opcode, Value *LHS,
520                                  Value *RHS, const SimplifyQuery &Q,
521                                  unsigned MaxRecurse) {
522   // Recursion is always used, so bail out at once if we already hit the limit.
523   if (!MaxRecurse--)
524     return nullptr;
525 
526   PHINode *PI;
527   if (isa<PHINode>(LHS)) {
528     PI = cast<PHINode>(LHS);
529     // Bail out if RHS and the phi may be mutually interdependent due to a loop.
530     if (!valueDominatesPHI(RHS, PI, Q.DT))
531       return nullptr;
532   } else {
533     assert(isa<PHINode>(RHS) && "No PHI instruction operand!");
534     PI = cast<PHINode>(RHS);
535     // Bail out if LHS and the phi may be mutually interdependent due to a loop.
536     if (!valueDominatesPHI(LHS, PI, Q.DT))
537       return nullptr;
538   }
539 
540   // Evaluate the BinOp on the incoming phi values.
541   Value *CommonValue = nullptr;
542   for (Value *Incoming : PI->incoming_values()) {
543     // If the incoming value is the phi node itself, it can safely be skipped.
544     if (Incoming == PI) continue;
545     Value *V = PI == LHS ?
546       SimplifyBinOp(Opcode, Incoming, RHS, Q, MaxRecurse) :
547       SimplifyBinOp(Opcode, LHS, Incoming, Q, MaxRecurse);
548     // If the operation failed to simplify, or simplified to a different value
549     // to previously, then give up.
550     if (!V || (CommonValue && V != CommonValue))
551       return nullptr;
552     CommonValue = V;
553   }
554 
555   return CommonValue;
556 }
557 
558 /// In the case of a comparison with a PHI instruction, try to simplify the
559 /// comparison by seeing whether comparing with all of the incoming phi values
560 /// yields the same result every time. If so returns the common result,
561 /// otherwise returns null.
562 static Value *ThreadCmpOverPHI(CmpInst::Predicate Pred, Value *LHS, Value *RHS,
563                                const SimplifyQuery &Q, unsigned MaxRecurse) {
564   // Recursion is always used, so bail out at once if we already hit the limit.
565   if (!MaxRecurse--)
566     return nullptr;
567 
568   // Make sure the phi is on the LHS.
569   if (!isa<PHINode>(LHS)) {
570     std::swap(LHS, RHS);
571     Pred = CmpInst::getSwappedPredicate(Pred);
572   }
573   assert(isa<PHINode>(LHS) && "Not comparing with a phi instruction!");
574   PHINode *PI = cast<PHINode>(LHS);
575 
576   // Bail out if RHS and the phi may be mutually interdependent due to a loop.
577   if (!valueDominatesPHI(RHS, PI, Q.DT))
578     return nullptr;
579 
580   // Evaluate the BinOp on the incoming phi values.
581   Value *CommonValue = nullptr;
582   for (unsigned u = 0, e = PI->getNumIncomingValues(); u < e; ++u) {
583     Value *Incoming = PI->getIncomingValue(u);
584     Instruction *InTI = PI->getIncomingBlock(u)->getTerminator();
585     // If the incoming value is the phi node itself, it can safely be skipped.
586     if (Incoming == PI) continue;
587     // Change the context instruction to the "edge" that flows into the phi.
588     // This is important because that is where incoming is actually "evaluated"
589     // even though it is used later somewhere else.
590     Value *V = SimplifyCmpInst(Pred, Incoming, RHS, Q.getWithInstruction(InTI),
591                                MaxRecurse);
592     // If the operation failed to simplify, or simplified to a different value
593     // to previously, then give up.
594     if (!V || (CommonValue && V != CommonValue))
595       return nullptr;
596     CommonValue = V;
597   }
598 
599   return CommonValue;
600 }
601 
602 static Constant *foldOrCommuteConstant(Instruction::BinaryOps Opcode,
603                                        Value *&Op0, Value *&Op1,
604                                        const SimplifyQuery &Q) {
605   if (auto *CLHS = dyn_cast<Constant>(Op0)) {
606     if (auto *CRHS = dyn_cast<Constant>(Op1))
607       return ConstantFoldBinaryOpOperands(Opcode, CLHS, CRHS, Q.DL);
608 
609     // Canonicalize the constant to the RHS if this is a commutative operation.
610     if (Instruction::isCommutative(Opcode))
611       std::swap(Op0, Op1);
612   }
613   return nullptr;
614 }
615 
616 /// Given operands for an Add, see if we can fold the result.
617 /// If not, this returns null.
618 static Value *SimplifyAddInst(Value *Op0, Value *Op1, bool IsNSW, bool IsNUW,
619                               const SimplifyQuery &Q, unsigned MaxRecurse) {
620   if (Constant *C = foldOrCommuteConstant(Instruction::Add, Op0, Op1, Q))
621     return C;
622 
623   // X + undef -> undef
624   if (Q.isUndefValue(Op1))
625     return Op1;
626 
627   // X + 0 -> X
628   if (match(Op1, m_Zero()))
629     return Op0;
630 
631   // If two operands are negative, return 0.
632   if (isKnownNegation(Op0, Op1))
633     return Constant::getNullValue(Op0->getType());
634 
635   // X + (Y - X) -> Y
636   // (Y - X) + X -> Y
637   // Eg: X + -X -> 0
638   Value *Y = nullptr;
639   if (match(Op1, m_Sub(m_Value(Y), m_Specific(Op0))) ||
640       match(Op0, m_Sub(m_Value(Y), m_Specific(Op1))))
641     return Y;
642 
643   // X + ~X -> -1   since   ~X = -X-1
644   Type *Ty = Op0->getType();
645   if (match(Op0, m_Not(m_Specific(Op1))) ||
646       match(Op1, m_Not(m_Specific(Op0))))
647     return Constant::getAllOnesValue(Ty);
648 
649   // add nsw/nuw (xor Y, signmask), signmask --> Y
650   // The no-wrapping add guarantees that the top bit will be set by the add.
651   // Therefore, the xor must be clearing the already set sign bit of Y.
652   if ((IsNSW || IsNUW) && match(Op1, m_SignMask()) &&
653       match(Op0, m_Xor(m_Value(Y), m_SignMask())))
654     return Y;
655 
656   // add nuw %x, -1  ->  -1, because %x can only be 0.
657   if (IsNUW && match(Op1, m_AllOnes()))
658     return Op1; // Which is -1.
659 
660   /// i1 add -> xor.
661   if (MaxRecurse && Op0->getType()->isIntOrIntVectorTy(1))
662     if (Value *V = SimplifyXorInst(Op0, Op1, Q, MaxRecurse-1))
663       return V;
664 
665   // Try some generic simplifications for associative operations.
666   if (Value *V = SimplifyAssociativeBinOp(Instruction::Add, Op0, Op1, Q,
667                                           MaxRecurse))
668     return V;
669 
670   // Threading Add over selects and phi nodes is pointless, so don't bother.
671   // Threading over the select in "A + select(cond, B, C)" means evaluating
672   // "A+B" and "A+C" and seeing if they are equal; but they are equal if and
673   // only if B and C are equal.  If B and C are equal then (since we assume
674   // that operands have already been simplified) "select(cond, B, C)" should
675   // have been simplified to the common value of B and C already.  Analysing
676   // "A+B" and "A+C" thus gains nothing, but costs compile time.  Similarly
677   // for threading over phi nodes.
678 
679   return nullptr;
680 }
681 
682 Value *llvm::SimplifyAddInst(Value *Op0, Value *Op1, bool IsNSW, bool IsNUW,
683                              const SimplifyQuery &Query) {
684   return ::SimplifyAddInst(Op0, Op1, IsNSW, IsNUW, Query, RecursionLimit);
685 }
686 
687 /// Compute the base pointer and cumulative constant offsets for V.
688 ///
689 /// This strips all constant offsets off of V, leaving it the base pointer, and
690 /// accumulates the total constant offset applied in the returned constant. It
691 /// returns 0 if V is not a pointer, and returns the constant '0' if there are
692 /// no constant offsets applied.
693 ///
694 /// This is very similar to GetPointerBaseWithConstantOffset except it doesn't
695 /// follow non-inbounds geps. This allows it to remain usable for icmp ult/etc.
696 /// folding.
697 static Constant *stripAndComputeConstantOffsets(const DataLayout &DL, Value *&V,
698                                                 bool AllowNonInbounds = false) {
699   assert(V->getType()->isPtrOrPtrVectorTy());
700 
701   APInt Offset = APInt::getZero(DL.getIndexTypeSizeInBits(V->getType()));
702 
703   V = V->stripAndAccumulateConstantOffsets(DL, Offset, AllowNonInbounds);
704   // As that strip may trace through `addrspacecast`, need to sext or trunc
705   // the offset calculated.
706   Type *IntIdxTy = DL.getIndexType(V->getType())->getScalarType();
707   Offset = Offset.sextOrTrunc(IntIdxTy->getIntegerBitWidth());
708 
709   Constant *OffsetIntPtr = ConstantInt::get(IntIdxTy, Offset);
710   if (VectorType *VecTy = dyn_cast<VectorType>(V->getType()))
711     return ConstantVector::getSplat(VecTy->getElementCount(), OffsetIntPtr);
712   return OffsetIntPtr;
713 }
714 
715 /// Compute the constant difference between two pointer values.
716 /// If the difference is not a constant, returns zero.
717 static Constant *computePointerDifference(const DataLayout &DL, Value *LHS,
718                                           Value *RHS) {
719   Constant *LHSOffset = stripAndComputeConstantOffsets(DL, LHS);
720   Constant *RHSOffset = stripAndComputeConstantOffsets(DL, RHS);
721 
722   // If LHS and RHS are not related via constant offsets to the same base
723   // value, there is nothing we can do here.
724   if (LHS != RHS)
725     return nullptr;
726 
727   // Otherwise, the difference of LHS - RHS can be computed as:
728   //    LHS - RHS
729   //  = (LHSOffset + Base) - (RHSOffset + Base)
730   //  = LHSOffset - RHSOffset
731   return ConstantExpr::getSub(LHSOffset, RHSOffset);
732 }
733 
734 /// Given operands for a Sub, see if we can fold the result.
735 /// If not, this returns null.
736 static Value *SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
737                               const SimplifyQuery &Q, unsigned MaxRecurse) {
738   if (Constant *C = foldOrCommuteConstant(Instruction::Sub, Op0, Op1, Q))
739     return C;
740 
741   // X - poison -> poison
742   // poison - X -> poison
743   if (isa<PoisonValue>(Op0) || isa<PoisonValue>(Op1))
744     return PoisonValue::get(Op0->getType());
745 
746   // X - undef -> undef
747   // undef - X -> undef
748   if (Q.isUndefValue(Op0) || Q.isUndefValue(Op1))
749     return UndefValue::get(Op0->getType());
750 
751   // X - 0 -> X
752   if (match(Op1, m_Zero()))
753     return Op0;
754 
755   // X - X -> 0
756   if (Op0 == Op1)
757     return Constant::getNullValue(Op0->getType());
758 
759   // Is this a negation?
760   if (match(Op0, m_Zero())) {
761     // 0 - X -> 0 if the sub is NUW.
762     if (isNUW)
763       return Constant::getNullValue(Op0->getType());
764 
765     KnownBits Known = computeKnownBits(Op1, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
766     if (Known.Zero.isMaxSignedValue()) {
767       // Op1 is either 0 or the minimum signed value. If the sub is NSW, then
768       // Op1 must be 0 because negating the minimum signed value is undefined.
769       if (isNSW)
770         return Constant::getNullValue(Op0->getType());
771 
772       // 0 - X -> X if X is 0 or the minimum signed value.
773       return Op1;
774     }
775   }
776 
777   // (X + Y) - Z -> X + (Y - Z) or Y + (X - Z) if everything simplifies.
778   // For example, (X + Y) - Y -> X; (Y + X) - Y -> X
779   Value *X = nullptr, *Y = nullptr, *Z = Op1;
780   if (MaxRecurse && match(Op0, m_Add(m_Value(X), m_Value(Y)))) { // (X + Y) - Z
781     // See if "V === Y - Z" simplifies.
782     if (Value *V = SimplifyBinOp(Instruction::Sub, Y, Z, Q, MaxRecurse-1))
783       // It does!  Now see if "X + V" simplifies.
784       if (Value *W = SimplifyBinOp(Instruction::Add, X, V, Q, MaxRecurse-1)) {
785         // It does, we successfully reassociated!
786         ++NumReassoc;
787         return W;
788       }
789     // See if "V === X - Z" simplifies.
790     if (Value *V = SimplifyBinOp(Instruction::Sub, X, Z, Q, MaxRecurse-1))
791       // It does!  Now see if "Y + V" simplifies.
792       if (Value *W = SimplifyBinOp(Instruction::Add, Y, V, Q, MaxRecurse-1)) {
793         // It does, we successfully reassociated!
794         ++NumReassoc;
795         return W;
796       }
797   }
798 
799   // X - (Y + Z) -> (X - Y) - Z or (X - Z) - Y if everything simplifies.
800   // For example, X - (X + 1) -> -1
801   X = Op0;
802   if (MaxRecurse && match(Op1, m_Add(m_Value(Y), m_Value(Z)))) { // X - (Y + Z)
803     // See if "V === X - Y" simplifies.
804     if (Value *V = SimplifyBinOp(Instruction::Sub, X, Y, Q, MaxRecurse-1))
805       // It does!  Now see if "V - Z" simplifies.
806       if (Value *W = SimplifyBinOp(Instruction::Sub, V, Z, Q, MaxRecurse-1)) {
807         // It does, we successfully reassociated!
808         ++NumReassoc;
809         return W;
810       }
811     // See if "V === X - Z" simplifies.
812     if (Value *V = SimplifyBinOp(Instruction::Sub, X, Z, Q, MaxRecurse-1))
813       // It does!  Now see if "V - Y" simplifies.
814       if (Value *W = SimplifyBinOp(Instruction::Sub, V, Y, Q, MaxRecurse-1)) {
815         // It does, we successfully reassociated!
816         ++NumReassoc;
817         return W;
818       }
819   }
820 
821   // Z - (X - Y) -> (Z - X) + Y if everything simplifies.
822   // For example, X - (X - Y) -> Y.
823   Z = Op0;
824   if (MaxRecurse && match(Op1, m_Sub(m_Value(X), m_Value(Y)))) // Z - (X - Y)
825     // See if "V === Z - X" simplifies.
826     if (Value *V = SimplifyBinOp(Instruction::Sub, Z, X, Q, MaxRecurse-1))
827       // It does!  Now see if "V + Y" simplifies.
828       if (Value *W = SimplifyBinOp(Instruction::Add, V, Y, Q, MaxRecurse-1)) {
829         // It does, we successfully reassociated!
830         ++NumReassoc;
831         return W;
832       }
833 
834   // trunc(X) - trunc(Y) -> trunc(X - Y) if everything simplifies.
835   if (MaxRecurse && match(Op0, m_Trunc(m_Value(X))) &&
836       match(Op1, m_Trunc(m_Value(Y))))
837     if (X->getType() == Y->getType())
838       // See if "V === X - Y" simplifies.
839       if (Value *V = SimplifyBinOp(Instruction::Sub, X, Y, Q, MaxRecurse-1))
840         // It does!  Now see if "trunc V" simplifies.
841         if (Value *W = SimplifyCastInst(Instruction::Trunc, V, Op0->getType(),
842                                         Q, MaxRecurse - 1))
843           // It does, return the simplified "trunc V".
844           return W;
845 
846   // Variations on GEP(base, I, ...) - GEP(base, i, ...) -> GEP(null, I-i, ...).
847   if (match(Op0, m_PtrToInt(m_Value(X))) &&
848       match(Op1, m_PtrToInt(m_Value(Y))))
849     if (Constant *Result = computePointerDifference(Q.DL, X, Y))
850       return ConstantExpr::getIntegerCast(Result, Op0->getType(), true);
851 
852   // i1 sub -> xor.
853   if (MaxRecurse && Op0->getType()->isIntOrIntVectorTy(1))
854     if (Value *V = SimplifyXorInst(Op0, Op1, Q, MaxRecurse-1))
855       return V;
856 
857   // Threading Sub over selects and phi nodes is pointless, so don't bother.
858   // Threading over the select in "A - select(cond, B, C)" means evaluating
859   // "A-B" and "A-C" and seeing if they are equal; but they are equal if and
860   // only if B and C are equal.  If B and C are equal then (since we assume
861   // that operands have already been simplified) "select(cond, B, C)" should
862   // have been simplified to the common value of B and C already.  Analysing
863   // "A-B" and "A-C" thus gains nothing, but costs compile time.  Similarly
864   // for threading over phi nodes.
865 
866   return nullptr;
867 }
868 
869 Value *llvm::SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
870                              const SimplifyQuery &Q) {
871   return ::SimplifySubInst(Op0, Op1, isNSW, isNUW, Q, RecursionLimit);
872 }
873 
874 /// Given operands for a Mul, see if we can fold the result.
875 /// If not, this returns null.
876 static Value *SimplifyMulInst(Value *Op0, Value *Op1, const SimplifyQuery &Q,
877                               unsigned MaxRecurse) {
878   if (Constant *C = foldOrCommuteConstant(Instruction::Mul, Op0, Op1, Q))
879     return C;
880 
881   // X * poison -> poison
882   if (isa<PoisonValue>(Op1))
883     return Op1;
884 
885   // X * undef -> 0
886   // X * 0 -> 0
887   if (Q.isUndefValue(Op1) || match(Op1, m_Zero()))
888     return Constant::getNullValue(Op0->getType());
889 
890   // X * 1 -> X
891   if (match(Op1, m_One()))
892     return Op0;
893 
894   // (X / Y) * Y -> X if the division is exact.
895   Value *X = nullptr;
896   if (Q.IIQ.UseInstrInfo &&
897       (match(Op0,
898              m_Exact(m_IDiv(m_Value(X), m_Specific(Op1)))) ||     // (X / Y) * Y
899        match(Op1, m_Exact(m_IDiv(m_Value(X), m_Specific(Op0)))))) // Y * (X / Y)
900     return X;
901 
902   // i1 mul -> and.
903   if (MaxRecurse && Op0->getType()->isIntOrIntVectorTy(1))
904     if (Value *V = SimplifyAndInst(Op0, Op1, Q, MaxRecurse-1))
905       return V;
906 
907   // Try some generic simplifications for associative operations.
908   if (Value *V = SimplifyAssociativeBinOp(Instruction::Mul, Op0, Op1, Q,
909                                           MaxRecurse))
910     return V;
911 
912   // Mul distributes over Add. Try some generic simplifications based on this.
913   if (Value *V = expandCommutativeBinOp(Instruction::Mul, Op0, Op1,
914                                         Instruction::Add, Q, MaxRecurse))
915     return V;
916 
917   // If the operation is with the result of a select instruction, check whether
918   // operating on either branch of the select always yields the same value.
919   if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
920     if (Value *V = ThreadBinOpOverSelect(Instruction::Mul, Op0, Op1, Q,
921                                          MaxRecurse))
922       return V;
923 
924   // If the operation is with the result of a phi instruction, check whether
925   // operating on all incoming values of the phi always yields the same value.
926   if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
927     if (Value *V = ThreadBinOpOverPHI(Instruction::Mul, Op0, Op1, Q,
928                                       MaxRecurse))
929       return V;
930 
931   return nullptr;
932 }
933 
934 Value *llvm::SimplifyMulInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) {
935   return ::SimplifyMulInst(Op0, Op1, Q, RecursionLimit);
936 }
937 
938 /// Check for common or similar folds of integer division or integer remainder.
939 /// This applies to all 4 opcodes (sdiv/udiv/srem/urem).
940 static Value *simplifyDivRem(Instruction::BinaryOps Opcode, Value *Op0,
941                              Value *Op1, const SimplifyQuery &Q) {
942   bool IsDiv = (Opcode == Instruction::SDiv || Opcode == Instruction::UDiv);
943   bool IsSigned = (Opcode == Instruction::SDiv || Opcode == Instruction::SRem);
944 
945   Type *Ty = Op0->getType();
946 
947   // X / undef -> poison
948   // X % undef -> poison
949   if (Q.isUndefValue(Op1))
950     return PoisonValue::get(Ty);
951 
952   // X / 0 -> poison
953   // X % 0 -> poison
954   // We don't need to preserve faults!
955   if (match(Op1, m_Zero()))
956     return PoisonValue::get(Ty);
957 
958   // If any element of a constant divisor fixed width vector is zero or undef
959   // the behavior is undefined and we can fold the whole op to poison.
960   auto *Op1C = dyn_cast<Constant>(Op1);
961   auto *VTy = dyn_cast<FixedVectorType>(Ty);
962   if (Op1C && VTy) {
963     unsigned NumElts = VTy->getNumElements();
964     for (unsigned i = 0; i != NumElts; ++i) {
965       Constant *Elt = Op1C->getAggregateElement(i);
966       if (Elt && (Elt->isNullValue() || Q.isUndefValue(Elt)))
967         return PoisonValue::get(Ty);
968     }
969   }
970 
971   // poison / X -> poison
972   // poison % X -> poison
973   if (isa<PoisonValue>(Op0))
974     return Op0;
975 
976   // undef / X -> 0
977   // undef % X -> 0
978   if (Q.isUndefValue(Op0))
979     return Constant::getNullValue(Ty);
980 
981   // 0 / X -> 0
982   // 0 % X -> 0
983   if (match(Op0, m_Zero()))
984     return Constant::getNullValue(Op0->getType());
985 
986   // X / X -> 1
987   // X % X -> 0
988   if (Op0 == Op1)
989     return IsDiv ? ConstantInt::get(Ty, 1) : Constant::getNullValue(Ty);
990 
991   // X / 1 -> X
992   // X % 1 -> 0
993   // If this is a boolean op (single-bit element type), we can't have
994   // division-by-zero or remainder-by-zero, so assume the divisor is 1.
995   // Similarly, if we're zero-extending a boolean divisor, then assume it's a 1.
996   Value *X;
997   if (match(Op1, m_One()) || Ty->isIntOrIntVectorTy(1) ||
998       (match(Op1, m_ZExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)))
999     return IsDiv ? Op0 : Constant::getNullValue(Ty);
1000 
1001   // If X * Y does not overflow, then:
1002   //   X * Y / Y -> X
1003   //   X * Y % Y -> 0
1004   if (match(Op0, m_c_Mul(m_Value(X), m_Specific(Op1)))) {
1005     auto *Mul = cast<OverflowingBinaryOperator>(Op0);
1006     // The multiplication can't overflow if it is defined not to, or if
1007     // X == A / Y for some A.
1008     if ((IsSigned && Q.IIQ.hasNoSignedWrap(Mul)) ||
1009         (!IsSigned && Q.IIQ.hasNoUnsignedWrap(Mul)) ||
1010         (IsSigned && match(X, m_SDiv(m_Value(), m_Specific(Op1)))) ||
1011         (!IsSigned && match(X, m_UDiv(m_Value(), m_Specific(Op1))))) {
1012       return IsDiv ? X : Constant::getNullValue(Op0->getType());
1013     }
1014   }
1015 
1016   return nullptr;
1017 }
1018 
1019 /// Given a predicate and two operands, return true if the comparison is true.
1020 /// This is a helper for div/rem simplification where we return some other value
1021 /// when we can prove a relationship between the operands.
1022 static bool isICmpTrue(ICmpInst::Predicate Pred, Value *LHS, Value *RHS,
1023                        const SimplifyQuery &Q, unsigned MaxRecurse) {
1024   Value *V = SimplifyICmpInst(Pred, LHS, RHS, Q, MaxRecurse);
1025   Constant *C = dyn_cast_or_null<Constant>(V);
1026   return (C && C->isAllOnesValue());
1027 }
1028 
1029 /// Return true if we can simplify X / Y to 0. Remainder can adapt that answer
1030 /// to simplify X % Y to X.
1031 static bool isDivZero(Value *X, Value *Y, const SimplifyQuery &Q,
1032                       unsigned MaxRecurse, bool IsSigned) {
1033   // Recursion is always used, so bail out at once if we already hit the limit.
1034   if (!MaxRecurse--)
1035     return false;
1036 
1037   if (IsSigned) {
1038     // |X| / |Y| --> 0
1039     //
1040     // We require that 1 operand is a simple constant. That could be extended to
1041     // 2 variables if we computed the sign bit for each.
1042     //
1043     // Make sure that a constant is not the minimum signed value because taking
1044     // the abs() of that is undefined.
1045     Type *Ty = X->getType();
1046     const APInt *C;
1047     if (match(X, m_APInt(C)) && !C->isMinSignedValue()) {
1048       // Is the variable divisor magnitude always greater than the constant
1049       // dividend magnitude?
1050       // |Y| > |C| --> Y < -abs(C) or Y > abs(C)
1051       Constant *PosDividendC = ConstantInt::get(Ty, C->abs());
1052       Constant *NegDividendC = ConstantInt::get(Ty, -C->abs());
1053       if (isICmpTrue(CmpInst::ICMP_SLT, Y, NegDividendC, Q, MaxRecurse) ||
1054           isICmpTrue(CmpInst::ICMP_SGT, Y, PosDividendC, Q, MaxRecurse))
1055         return true;
1056     }
1057     if (match(Y, m_APInt(C))) {
1058       // Special-case: we can't take the abs() of a minimum signed value. If
1059       // that's the divisor, then all we have to do is prove that the dividend
1060       // is also not the minimum signed value.
1061       if (C->isMinSignedValue())
1062         return isICmpTrue(CmpInst::ICMP_NE, X, Y, Q, MaxRecurse);
1063 
1064       // Is the variable dividend magnitude always less than the constant
1065       // divisor magnitude?
1066       // |X| < |C| --> X > -abs(C) and X < abs(C)
1067       Constant *PosDivisorC = ConstantInt::get(Ty, C->abs());
1068       Constant *NegDivisorC = ConstantInt::get(Ty, -C->abs());
1069       if (isICmpTrue(CmpInst::ICMP_SGT, X, NegDivisorC, Q, MaxRecurse) &&
1070           isICmpTrue(CmpInst::ICMP_SLT, X, PosDivisorC, Q, MaxRecurse))
1071         return true;
1072     }
1073     return false;
1074   }
1075 
1076   // IsSigned == false.
1077   // Is the dividend unsigned less than the divisor?
1078   return isICmpTrue(ICmpInst::ICMP_ULT, X, Y, Q, MaxRecurse);
1079 }
1080 
1081 /// These are simplifications common to SDiv and UDiv.
1082 static Value *simplifyDiv(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1,
1083                           const SimplifyQuery &Q, unsigned MaxRecurse) {
1084   if (Constant *C = foldOrCommuteConstant(Opcode, Op0, Op1, Q))
1085     return C;
1086 
1087   if (Value *V = simplifyDivRem(Opcode, Op0, Op1, Q))
1088     return V;
1089 
1090   bool IsSigned = Opcode == Instruction::SDiv;
1091 
1092   // (X rem Y) / Y -> 0
1093   if ((IsSigned && match(Op0, m_SRem(m_Value(), m_Specific(Op1)))) ||
1094       (!IsSigned && match(Op0, m_URem(m_Value(), m_Specific(Op1)))))
1095     return Constant::getNullValue(Op0->getType());
1096 
1097   // (X /u C1) /u C2 -> 0 if C1 * C2 overflow
1098   ConstantInt *C1, *C2;
1099   if (!IsSigned && match(Op0, m_UDiv(m_Value(), m_ConstantInt(C1))) &&
1100       match(Op1, m_ConstantInt(C2))) {
1101     bool Overflow;
1102     (void)C1->getValue().umul_ov(C2->getValue(), Overflow);
1103     if (Overflow)
1104       return Constant::getNullValue(Op0->getType());
1105   }
1106 
1107   // If the operation is with the result of a select instruction, check whether
1108   // operating on either branch of the select always yields the same value.
1109   if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
1110     if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse))
1111       return V;
1112 
1113   // If the operation is with the result of a phi instruction, check whether
1114   // operating on all incoming values of the phi always yields the same value.
1115   if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
1116     if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse))
1117       return V;
1118 
1119   if (isDivZero(Op0, Op1, Q, MaxRecurse, IsSigned))
1120     return Constant::getNullValue(Op0->getType());
1121 
1122   return nullptr;
1123 }
1124 
1125 /// These are simplifications common to SRem and URem.
1126 static Value *simplifyRem(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1,
1127                           const SimplifyQuery &Q, unsigned MaxRecurse) {
1128   if (Constant *C = foldOrCommuteConstant(Opcode, Op0, Op1, Q))
1129     return C;
1130 
1131   if (Value *V = simplifyDivRem(Opcode, Op0, Op1, Q))
1132     return V;
1133 
1134   // (X % Y) % Y -> X % Y
1135   if ((Opcode == Instruction::SRem &&
1136        match(Op0, m_SRem(m_Value(), m_Specific(Op1)))) ||
1137       (Opcode == Instruction::URem &&
1138        match(Op0, m_URem(m_Value(), m_Specific(Op1)))))
1139     return Op0;
1140 
1141   // (X << Y) % X -> 0
1142   if (Q.IIQ.UseInstrInfo &&
1143       ((Opcode == Instruction::SRem &&
1144         match(Op0, m_NSWShl(m_Specific(Op1), m_Value()))) ||
1145        (Opcode == Instruction::URem &&
1146         match(Op0, m_NUWShl(m_Specific(Op1), m_Value())))))
1147     return Constant::getNullValue(Op0->getType());
1148 
1149   // If the operation is with the result of a select instruction, check whether
1150   // operating on either branch of the select always yields the same value.
1151   if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
1152     if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse))
1153       return V;
1154 
1155   // If the operation is with the result of a phi instruction, check whether
1156   // operating on all incoming values of the phi always yields the same value.
1157   if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
1158     if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse))
1159       return V;
1160 
1161   // If X / Y == 0, then X % Y == X.
1162   if (isDivZero(Op0, Op1, Q, MaxRecurse, Opcode == Instruction::SRem))
1163     return Op0;
1164 
1165   return nullptr;
1166 }
1167 
1168 /// Given operands for an SDiv, see if we can fold the result.
1169 /// If not, this returns null.
1170 static Value *SimplifySDivInst(Value *Op0, Value *Op1, const SimplifyQuery &Q,
1171                                unsigned MaxRecurse) {
1172   // If two operands are negated and no signed overflow, return -1.
1173   if (isKnownNegation(Op0, Op1, /*NeedNSW=*/true))
1174     return Constant::getAllOnesValue(Op0->getType());
1175 
1176   return simplifyDiv(Instruction::SDiv, Op0, Op1, Q, MaxRecurse);
1177 }
1178 
1179 Value *llvm::SimplifySDivInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) {
1180   return ::SimplifySDivInst(Op0, Op1, Q, RecursionLimit);
1181 }
1182 
1183 /// Given operands for a UDiv, see if we can fold the result.
1184 /// If not, this returns null.
1185 static Value *SimplifyUDivInst(Value *Op0, Value *Op1, const SimplifyQuery &Q,
1186                                unsigned MaxRecurse) {
1187   return simplifyDiv(Instruction::UDiv, Op0, Op1, Q, MaxRecurse);
1188 }
1189 
1190 Value *llvm::SimplifyUDivInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) {
1191   return ::SimplifyUDivInst(Op0, Op1, Q, RecursionLimit);
1192 }
1193 
1194 /// Given operands for an SRem, see if we can fold the result.
1195 /// If not, this returns null.
1196 static Value *SimplifySRemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q,
1197                                unsigned MaxRecurse) {
1198   // If the divisor is 0, the result is undefined, so assume the divisor is -1.
1199   // srem Op0, (sext i1 X) --> srem Op0, -1 --> 0
1200   Value *X;
1201   if (match(Op1, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1))
1202     return ConstantInt::getNullValue(Op0->getType());
1203 
1204   // If the two operands are negated, return 0.
1205   if (isKnownNegation(Op0, Op1))
1206     return ConstantInt::getNullValue(Op0->getType());
1207 
1208   return simplifyRem(Instruction::SRem, Op0, Op1, Q, MaxRecurse);
1209 }
1210 
1211 Value *llvm::SimplifySRemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) {
1212   return ::SimplifySRemInst(Op0, Op1, Q, RecursionLimit);
1213 }
1214 
1215 /// Given operands for a URem, see if we can fold the result.
1216 /// If not, this returns null.
1217 static Value *SimplifyURemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q,
1218                                unsigned MaxRecurse) {
1219   return simplifyRem(Instruction::URem, Op0, Op1, Q, MaxRecurse);
1220 }
1221 
1222 Value *llvm::SimplifyURemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) {
1223   return ::SimplifyURemInst(Op0, Op1, Q, RecursionLimit);
1224 }
1225 
1226 /// Returns true if a shift by \c Amount always yields poison.
1227 static bool isPoisonShift(Value *Amount, const SimplifyQuery &Q) {
1228   Constant *C = dyn_cast<Constant>(Amount);
1229   if (!C)
1230     return false;
1231 
1232   // X shift by undef -> poison because it may shift by the bitwidth.
1233   if (Q.isUndefValue(C))
1234     return true;
1235 
1236   // Shifting by the bitwidth or more is undefined.
1237   if (ConstantInt *CI = dyn_cast<ConstantInt>(C))
1238     if (CI->getValue().uge(CI->getType()->getScalarSizeInBits()))
1239       return true;
1240 
1241   // If all lanes of a vector shift are undefined the whole shift is.
1242   if (isa<ConstantVector>(C) || isa<ConstantDataVector>(C)) {
1243     for (unsigned I = 0,
1244                   E = cast<FixedVectorType>(C->getType())->getNumElements();
1245          I != E; ++I)
1246       if (!isPoisonShift(C->getAggregateElement(I), Q))
1247         return false;
1248     return true;
1249   }
1250 
1251   return false;
1252 }
1253 
1254 /// Given operands for an Shl, LShr or AShr, see if we can fold the result.
1255 /// If not, this returns null.
1256 static Value *SimplifyShift(Instruction::BinaryOps Opcode, Value *Op0,
1257                             Value *Op1, bool IsNSW, const SimplifyQuery &Q,
1258                             unsigned MaxRecurse) {
1259   if (Constant *C = foldOrCommuteConstant(Opcode, Op0, Op1, Q))
1260     return C;
1261 
1262   // poison shift by X -> poison
1263   if (isa<PoisonValue>(Op0))
1264     return Op0;
1265 
1266   // 0 shift by X -> 0
1267   if (match(Op0, m_Zero()))
1268     return Constant::getNullValue(Op0->getType());
1269 
1270   // X shift by 0 -> X
1271   // Shift-by-sign-extended bool must be shift-by-0 because shift-by-all-ones
1272   // would be poison.
1273   Value *X;
1274   if (match(Op1, m_Zero()) ||
1275       (match(Op1, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)))
1276     return Op0;
1277 
1278   // Fold undefined shifts.
1279   if (isPoisonShift(Op1, Q))
1280     return PoisonValue::get(Op0->getType());
1281 
1282   // If the operation is with the result of a select instruction, check whether
1283   // operating on either branch of the select always yields the same value.
1284   if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
1285     if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse))
1286       return V;
1287 
1288   // If the operation is with the result of a phi instruction, check whether
1289   // operating on all incoming values of the phi always yields the same value.
1290   if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
1291     if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse))
1292       return V;
1293 
1294   // If any bits in the shift amount make that value greater than or equal to
1295   // the number of bits in the type, the shift is undefined.
1296   KnownBits KnownAmt = computeKnownBits(Op1, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
1297   if (KnownAmt.getMinValue().uge(KnownAmt.getBitWidth()))
1298     return PoisonValue::get(Op0->getType());
1299 
1300   // If all valid bits in the shift amount are known zero, the first operand is
1301   // unchanged.
1302   unsigned NumValidShiftBits = Log2_32_Ceil(KnownAmt.getBitWidth());
1303   if (KnownAmt.countMinTrailingZeros() >= NumValidShiftBits)
1304     return Op0;
1305 
1306   // Check for nsw shl leading to a poison value.
1307   if (IsNSW) {
1308     assert(Opcode == Instruction::Shl && "Expected shl for nsw instruction");
1309     KnownBits KnownVal = computeKnownBits(Op0, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
1310     KnownBits KnownShl = KnownBits::shl(KnownVal, KnownAmt);
1311 
1312     if (KnownVal.Zero.isSignBitSet())
1313       KnownShl.Zero.setSignBit();
1314     if (KnownVal.One.isSignBitSet())
1315       KnownShl.One.setSignBit();
1316 
1317     if (KnownShl.hasConflict())
1318       return PoisonValue::get(Op0->getType());
1319   }
1320 
1321   return nullptr;
1322 }
1323 
1324 /// Given operands for an Shl, LShr or AShr, see if we can
1325 /// fold the result.  If not, this returns null.
1326 static Value *SimplifyRightShift(Instruction::BinaryOps Opcode, Value *Op0,
1327                                  Value *Op1, bool isExact, const SimplifyQuery &Q,
1328                                  unsigned MaxRecurse) {
1329   if (Value *V =
1330           SimplifyShift(Opcode, Op0, Op1, /*IsNSW*/ false, Q, MaxRecurse))
1331     return V;
1332 
1333   // X >> X -> 0
1334   if (Op0 == Op1)
1335     return Constant::getNullValue(Op0->getType());
1336 
1337   // undef >> X -> 0
1338   // undef >> X -> undef (if it's exact)
1339   if (Q.isUndefValue(Op0))
1340     return isExact ? Op0 : Constant::getNullValue(Op0->getType());
1341 
1342   // The low bit cannot be shifted out of an exact shift if it is set.
1343   if (isExact) {
1344     KnownBits Op0Known = computeKnownBits(Op0, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT);
1345     if (Op0Known.One[0])
1346       return Op0;
1347   }
1348 
1349   return nullptr;
1350 }
1351 
1352 /// Given operands for an Shl, see if we can fold the result.
1353 /// If not, this returns null.
1354 static Value *SimplifyShlInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
1355                               const SimplifyQuery &Q, unsigned MaxRecurse) {
1356   if (Value *V =
1357           SimplifyShift(Instruction::Shl, Op0, Op1, isNSW, Q, MaxRecurse))
1358     return V;
1359 
1360   // undef << X -> 0
1361   // undef << X -> undef if (if it's NSW/NUW)
1362   if (Q.isUndefValue(Op0))
1363     return isNSW || isNUW ? Op0 : Constant::getNullValue(Op0->getType());
1364 
1365   // (X >> A) << A -> X
1366   Value *X;
1367   if (Q.IIQ.UseInstrInfo &&
1368       match(Op0, m_Exact(m_Shr(m_Value(X), m_Specific(Op1)))))
1369     return X;
1370 
1371   // shl nuw i8 C, %x  ->  C  iff C has sign bit set.
1372   if (isNUW && match(Op0, m_Negative()))
1373     return Op0;
1374   // NOTE: could use computeKnownBits() / LazyValueInfo,
1375   // but the cost-benefit analysis suggests it isn't worth it.
1376 
1377   return nullptr;
1378 }
1379 
1380 Value *llvm::SimplifyShlInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
1381                              const SimplifyQuery &Q) {
1382   return ::SimplifyShlInst(Op0, Op1, isNSW, isNUW, Q, RecursionLimit);
1383 }
1384 
1385 /// Given operands for an LShr, see if we can fold the result.
1386 /// If not, this returns null.
1387 static Value *SimplifyLShrInst(Value *Op0, Value *Op1, bool isExact,
1388                                const SimplifyQuery &Q, unsigned MaxRecurse) {
1389   if (Value *V = SimplifyRightShift(Instruction::LShr, Op0, Op1, isExact, Q,
1390                                     MaxRecurse))
1391       return V;
1392 
1393   // (X << A) >> A -> X
1394   Value *X;
1395   if (match(Op0, m_NUWShl(m_Value(X), m_Specific(Op1))))
1396     return X;
1397 
1398   // ((X << A) | Y) >> A -> X  if effective width of Y is not larger than A.
1399   // We can return X as we do in the above case since OR alters no bits in X.
1400   // SimplifyDemandedBits in InstCombine can do more general optimization for
1401   // bit manipulation. This pattern aims to provide opportunities for other
1402   // optimizers by supporting a simple but common case in InstSimplify.
1403   Value *Y;
1404   const APInt *ShRAmt, *ShLAmt;
1405   if (match(Op1, m_APInt(ShRAmt)) &&
1406       match(Op0, m_c_Or(m_NUWShl(m_Value(X), m_APInt(ShLAmt)), m_Value(Y))) &&
1407       *ShRAmt == *ShLAmt) {
1408     const KnownBits YKnown = computeKnownBits(Y, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
1409     const unsigned EffWidthY = YKnown.countMaxActiveBits();
1410     if (ShRAmt->uge(EffWidthY))
1411       return X;
1412   }
1413 
1414   return nullptr;
1415 }
1416 
1417 Value *llvm::SimplifyLShrInst(Value *Op0, Value *Op1, bool isExact,
1418                               const SimplifyQuery &Q) {
1419   return ::SimplifyLShrInst(Op0, Op1, isExact, Q, RecursionLimit);
1420 }
1421 
1422 /// Given operands for an AShr, see if we can fold the result.
1423 /// If not, this returns null.
1424 static Value *SimplifyAShrInst(Value *Op0, Value *Op1, bool isExact,
1425                                const SimplifyQuery &Q, unsigned MaxRecurse) {
1426   if (Value *V = SimplifyRightShift(Instruction::AShr, Op0, Op1, isExact, Q,
1427                                     MaxRecurse))
1428     return V;
1429 
1430   // -1 >>a X --> -1
1431   // (-1 << X) a>> X --> -1
1432   // Do not return Op0 because it may contain undef elements if it's a vector.
1433   if (match(Op0, m_AllOnes()) ||
1434       match(Op0, m_Shl(m_AllOnes(), m_Specific(Op1))))
1435     return Constant::getAllOnesValue(Op0->getType());
1436 
1437   // (X << A) >> A -> X
1438   Value *X;
1439   if (Q.IIQ.UseInstrInfo && match(Op0, m_NSWShl(m_Value(X), m_Specific(Op1))))
1440     return X;
1441 
1442   // Arithmetic shifting an all-sign-bit value is a no-op.
1443   unsigned NumSignBits = ComputeNumSignBits(Op0, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
1444   if (NumSignBits == Op0->getType()->getScalarSizeInBits())
1445     return Op0;
1446 
1447   return nullptr;
1448 }
1449 
1450 Value *llvm::SimplifyAShrInst(Value *Op0, Value *Op1, bool isExact,
1451                               const SimplifyQuery &Q) {
1452   return ::SimplifyAShrInst(Op0, Op1, isExact, Q, RecursionLimit);
1453 }
1454 
1455 /// Commuted variants are assumed to be handled by calling this function again
1456 /// with the parameters swapped.
1457 static Value *simplifyUnsignedRangeCheck(ICmpInst *ZeroICmp,
1458                                          ICmpInst *UnsignedICmp, bool IsAnd,
1459                                          const SimplifyQuery &Q) {
1460   Value *X, *Y;
1461 
1462   ICmpInst::Predicate EqPred;
1463   if (!match(ZeroICmp, m_ICmp(EqPred, m_Value(Y), m_Zero())) ||
1464       !ICmpInst::isEquality(EqPred))
1465     return nullptr;
1466 
1467   ICmpInst::Predicate UnsignedPred;
1468 
1469   Value *A, *B;
1470   // Y = (A - B);
1471   if (match(Y, m_Sub(m_Value(A), m_Value(B)))) {
1472     if (match(UnsignedICmp,
1473               m_c_ICmp(UnsignedPred, m_Specific(A), m_Specific(B))) &&
1474         ICmpInst::isUnsigned(UnsignedPred)) {
1475       // A >=/<= B || (A - B) != 0  <-->  true
1476       if ((UnsignedPred == ICmpInst::ICMP_UGE ||
1477            UnsignedPred == ICmpInst::ICMP_ULE) &&
1478           EqPred == ICmpInst::ICMP_NE && !IsAnd)
1479         return ConstantInt::getTrue(UnsignedICmp->getType());
1480       // A </> B && (A - B) == 0  <-->  false
1481       if ((UnsignedPred == ICmpInst::ICMP_ULT ||
1482            UnsignedPred == ICmpInst::ICMP_UGT) &&
1483           EqPred == ICmpInst::ICMP_EQ && IsAnd)
1484         return ConstantInt::getFalse(UnsignedICmp->getType());
1485 
1486       // A </> B && (A - B) != 0  <-->  A </> B
1487       // A </> B || (A - B) != 0  <-->  (A - B) != 0
1488       if (EqPred == ICmpInst::ICMP_NE && (UnsignedPred == ICmpInst::ICMP_ULT ||
1489                                           UnsignedPred == ICmpInst::ICMP_UGT))
1490         return IsAnd ? UnsignedICmp : ZeroICmp;
1491 
1492       // A <=/>= B && (A - B) == 0  <-->  (A - B) == 0
1493       // A <=/>= B || (A - B) == 0  <-->  A <=/>= B
1494       if (EqPred == ICmpInst::ICMP_EQ && (UnsignedPred == ICmpInst::ICMP_ULE ||
1495                                           UnsignedPred == ICmpInst::ICMP_UGE))
1496         return IsAnd ? ZeroICmp : UnsignedICmp;
1497     }
1498 
1499     // Given  Y = (A - B)
1500     //   Y >= A && Y != 0  --> Y >= A  iff B != 0
1501     //   Y <  A || Y == 0  --> Y <  A  iff B != 0
1502     if (match(UnsignedICmp,
1503               m_c_ICmp(UnsignedPred, m_Specific(Y), m_Specific(A)))) {
1504       if (UnsignedPred == ICmpInst::ICMP_UGE && IsAnd &&
1505           EqPred == ICmpInst::ICMP_NE &&
1506           isKnownNonZero(B, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT))
1507         return UnsignedICmp;
1508       if (UnsignedPred == ICmpInst::ICMP_ULT && !IsAnd &&
1509           EqPred == ICmpInst::ICMP_EQ &&
1510           isKnownNonZero(B, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT))
1511         return UnsignedICmp;
1512     }
1513   }
1514 
1515   if (match(UnsignedICmp, m_ICmp(UnsignedPred, m_Value(X), m_Specific(Y))) &&
1516       ICmpInst::isUnsigned(UnsignedPred))
1517     ;
1518   else if (match(UnsignedICmp,
1519                  m_ICmp(UnsignedPred, m_Specific(Y), m_Value(X))) &&
1520            ICmpInst::isUnsigned(UnsignedPred))
1521     UnsignedPred = ICmpInst::getSwappedPredicate(UnsignedPred);
1522   else
1523     return nullptr;
1524 
1525   // X > Y && Y == 0  -->  Y == 0  iff X != 0
1526   // X > Y || Y == 0  -->  X > Y   iff X != 0
1527   if (UnsignedPred == ICmpInst::ICMP_UGT && EqPred == ICmpInst::ICMP_EQ &&
1528       isKnownNonZero(X, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT))
1529     return IsAnd ? ZeroICmp : UnsignedICmp;
1530 
1531   // X <= Y && Y != 0  -->  X <= Y  iff X != 0
1532   // X <= Y || Y != 0  -->  Y != 0  iff X != 0
1533   if (UnsignedPred == ICmpInst::ICMP_ULE && EqPred == ICmpInst::ICMP_NE &&
1534       isKnownNonZero(X, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT))
1535     return IsAnd ? UnsignedICmp : ZeroICmp;
1536 
1537   // The transforms below here are expected to be handled more generally with
1538   // simplifyAndOrOfICmpsWithLimitConst() or in InstCombine's
1539   // foldAndOrOfICmpsWithConstEq(). If we are looking to trim optimizer overlap,
1540   // these are candidates for removal.
1541 
1542   // X < Y && Y != 0  -->  X < Y
1543   // X < Y || Y != 0  -->  Y != 0
1544   if (UnsignedPred == ICmpInst::ICMP_ULT && EqPred == ICmpInst::ICMP_NE)
1545     return IsAnd ? UnsignedICmp : ZeroICmp;
1546 
1547   // X >= Y && Y == 0  -->  Y == 0
1548   // X >= Y || Y == 0  -->  X >= Y
1549   if (UnsignedPred == ICmpInst::ICMP_UGE && EqPred == ICmpInst::ICMP_EQ)
1550     return IsAnd ? ZeroICmp : UnsignedICmp;
1551 
1552   // X < Y && Y == 0  -->  false
1553   if (UnsignedPred == ICmpInst::ICMP_ULT && EqPred == ICmpInst::ICMP_EQ &&
1554       IsAnd)
1555     return getFalse(UnsignedICmp->getType());
1556 
1557   // X >= Y || Y != 0  -->  true
1558   if (UnsignedPred == ICmpInst::ICMP_UGE && EqPred == ICmpInst::ICMP_NE &&
1559       !IsAnd)
1560     return getTrue(UnsignedICmp->getType());
1561 
1562   return nullptr;
1563 }
1564 
1565 /// Commuted variants are assumed to be handled by calling this function again
1566 /// with the parameters swapped.
1567 static Value *simplifyAndOfICmpsWithSameOperands(ICmpInst *Op0, ICmpInst *Op1) {
1568   ICmpInst::Predicate Pred0, Pred1;
1569   Value *A ,*B;
1570   if (!match(Op0, m_ICmp(Pred0, m_Value(A), m_Value(B))) ||
1571       !match(Op1, m_ICmp(Pred1, m_Specific(A), m_Specific(B))))
1572     return nullptr;
1573 
1574   // We have (icmp Pred0, A, B) & (icmp Pred1, A, B).
1575   // If Op1 is always implied true by Op0, then Op0 is a subset of Op1, and we
1576   // can eliminate Op1 from this 'and'.
1577   if (ICmpInst::isImpliedTrueByMatchingCmp(Pred0, Pred1))
1578     return Op0;
1579 
1580   // Check for any combination of predicates that are guaranteed to be disjoint.
1581   if ((Pred0 == ICmpInst::getInversePredicate(Pred1)) ||
1582       (Pred0 == ICmpInst::ICMP_EQ && ICmpInst::isFalseWhenEqual(Pred1)) ||
1583       (Pred0 == ICmpInst::ICMP_SLT && Pred1 == ICmpInst::ICMP_SGT) ||
1584       (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_UGT))
1585     return getFalse(Op0->getType());
1586 
1587   return nullptr;
1588 }
1589 
1590 /// Commuted variants are assumed to be handled by calling this function again
1591 /// with the parameters swapped.
1592 static Value *simplifyOrOfICmpsWithSameOperands(ICmpInst *Op0, ICmpInst *Op1) {
1593   ICmpInst::Predicate Pred0, Pred1;
1594   Value *A ,*B;
1595   if (!match(Op0, m_ICmp(Pred0, m_Value(A), m_Value(B))) ||
1596       !match(Op1, m_ICmp(Pred1, m_Specific(A), m_Specific(B))))
1597     return nullptr;
1598 
1599   // We have (icmp Pred0, A, B) | (icmp Pred1, A, B).
1600   // If Op1 is always implied true by Op0, then Op0 is a subset of Op1, and we
1601   // can eliminate Op0 from this 'or'.
1602   if (ICmpInst::isImpliedTrueByMatchingCmp(Pred0, Pred1))
1603     return Op1;
1604 
1605   // Check for any combination of predicates that cover the entire range of
1606   // possibilities.
1607   if ((Pred0 == ICmpInst::getInversePredicate(Pred1)) ||
1608       (Pred0 == ICmpInst::ICMP_NE && ICmpInst::isTrueWhenEqual(Pred1)) ||
1609       (Pred0 == ICmpInst::ICMP_SLE && Pred1 == ICmpInst::ICMP_SGE) ||
1610       (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_UGE))
1611     return getTrue(Op0->getType());
1612 
1613   return nullptr;
1614 }
1615 
1616 /// Test if a pair of compares with a shared operand and 2 constants has an
1617 /// empty set intersection, full set union, or if one compare is a superset of
1618 /// the other.
1619 static Value *simplifyAndOrOfICmpsWithConstants(ICmpInst *Cmp0, ICmpInst *Cmp1,
1620                                                 bool IsAnd) {
1621   // Look for this pattern: {and/or} (icmp X, C0), (icmp X, C1)).
1622   if (Cmp0->getOperand(0) != Cmp1->getOperand(0))
1623     return nullptr;
1624 
1625   const APInt *C0, *C1;
1626   if (!match(Cmp0->getOperand(1), m_APInt(C0)) ||
1627       !match(Cmp1->getOperand(1), m_APInt(C1)))
1628     return nullptr;
1629 
1630   auto Range0 = ConstantRange::makeExactICmpRegion(Cmp0->getPredicate(), *C0);
1631   auto Range1 = ConstantRange::makeExactICmpRegion(Cmp1->getPredicate(), *C1);
1632 
1633   // For and-of-compares, check if the intersection is empty:
1634   // (icmp X, C0) && (icmp X, C1) --> empty set --> false
1635   if (IsAnd && Range0.intersectWith(Range1).isEmptySet())
1636     return getFalse(Cmp0->getType());
1637 
1638   // For or-of-compares, check if the union is full:
1639   // (icmp X, C0) || (icmp X, C1) --> full set --> true
1640   if (!IsAnd && Range0.unionWith(Range1).isFullSet())
1641     return getTrue(Cmp0->getType());
1642 
1643   // Is one range a superset of the other?
1644   // If this is and-of-compares, take the smaller set:
1645   // (icmp sgt X, 4) && (icmp sgt X, 42) --> icmp sgt X, 42
1646   // If this is or-of-compares, take the larger set:
1647   // (icmp sgt X, 4) || (icmp sgt X, 42) --> icmp sgt X, 4
1648   if (Range0.contains(Range1))
1649     return IsAnd ? Cmp1 : Cmp0;
1650   if (Range1.contains(Range0))
1651     return IsAnd ? Cmp0 : Cmp1;
1652 
1653   return nullptr;
1654 }
1655 
1656 static Value *simplifyAndOrOfICmpsWithZero(ICmpInst *Cmp0, ICmpInst *Cmp1,
1657                                            bool IsAnd) {
1658   ICmpInst::Predicate P0 = Cmp0->getPredicate(), P1 = Cmp1->getPredicate();
1659   if (!match(Cmp0->getOperand(1), m_Zero()) ||
1660       !match(Cmp1->getOperand(1), m_Zero()) || P0 != P1)
1661     return nullptr;
1662 
1663   if ((IsAnd && P0 != ICmpInst::ICMP_NE) || (!IsAnd && P1 != ICmpInst::ICMP_EQ))
1664     return nullptr;
1665 
1666   // We have either "(X == 0 || Y == 0)" or "(X != 0 && Y != 0)".
1667   Value *X = Cmp0->getOperand(0);
1668   Value *Y = Cmp1->getOperand(0);
1669 
1670   // If one of the compares is a masked version of a (not) null check, then
1671   // that compare implies the other, so we eliminate the other. Optionally, look
1672   // through a pointer-to-int cast to match a null check of a pointer type.
1673 
1674   // (X == 0) || (([ptrtoint] X & ?) == 0) --> ([ptrtoint] X & ?) == 0
1675   // (X == 0) || ((? & [ptrtoint] X) == 0) --> (? & [ptrtoint] X) == 0
1676   // (X != 0) && (([ptrtoint] X & ?) != 0) --> ([ptrtoint] X & ?) != 0
1677   // (X != 0) && ((? & [ptrtoint] X) != 0) --> (? & [ptrtoint] X) != 0
1678   if (match(Y, m_c_And(m_Specific(X), m_Value())) ||
1679       match(Y, m_c_And(m_PtrToInt(m_Specific(X)), m_Value())))
1680     return Cmp1;
1681 
1682   // (([ptrtoint] Y & ?) == 0) || (Y == 0) --> ([ptrtoint] Y & ?) == 0
1683   // ((? & [ptrtoint] Y) == 0) || (Y == 0) --> (? & [ptrtoint] Y) == 0
1684   // (([ptrtoint] Y & ?) != 0) && (Y != 0) --> ([ptrtoint] Y & ?) != 0
1685   // ((? & [ptrtoint] Y) != 0) && (Y != 0) --> (? & [ptrtoint] Y) != 0
1686   if (match(X, m_c_And(m_Specific(Y), m_Value())) ||
1687       match(X, m_c_And(m_PtrToInt(m_Specific(Y)), m_Value())))
1688     return Cmp0;
1689 
1690   return nullptr;
1691 }
1692 
1693 static Value *simplifyAndOfICmpsWithAdd(ICmpInst *Op0, ICmpInst *Op1,
1694                                         const InstrInfoQuery &IIQ) {
1695   // (icmp (add V, C0), C1) & (icmp V, C0)
1696   ICmpInst::Predicate Pred0, Pred1;
1697   const APInt *C0, *C1;
1698   Value *V;
1699   if (!match(Op0, m_ICmp(Pred0, m_Add(m_Value(V), m_APInt(C0)), m_APInt(C1))))
1700     return nullptr;
1701 
1702   if (!match(Op1, m_ICmp(Pred1, m_Specific(V), m_Value())))
1703     return nullptr;
1704 
1705   auto *AddInst = cast<OverflowingBinaryOperator>(Op0->getOperand(0));
1706   if (AddInst->getOperand(1) != Op1->getOperand(1))
1707     return nullptr;
1708 
1709   Type *ITy = Op0->getType();
1710   bool isNSW = IIQ.hasNoSignedWrap(AddInst);
1711   bool isNUW = IIQ.hasNoUnsignedWrap(AddInst);
1712 
1713   const APInt Delta = *C1 - *C0;
1714   if (C0->isStrictlyPositive()) {
1715     if (Delta == 2) {
1716       if (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_SGT)
1717         return getFalse(ITy);
1718       if (Pred0 == ICmpInst::ICMP_SLT && Pred1 == ICmpInst::ICMP_SGT && isNSW)
1719         return getFalse(ITy);
1720     }
1721     if (Delta == 1) {
1722       if (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_SGT)
1723         return getFalse(ITy);
1724       if (Pred0 == ICmpInst::ICMP_SLE && Pred1 == ICmpInst::ICMP_SGT && isNSW)
1725         return getFalse(ITy);
1726     }
1727   }
1728   if (C0->getBoolValue() && isNUW) {
1729     if (Delta == 2)
1730       if (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_UGT)
1731         return getFalse(ITy);
1732     if (Delta == 1)
1733       if (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_UGT)
1734         return getFalse(ITy);
1735   }
1736 
1737   return nullptr;
1738 }
1739 
1740 /// Try to eliminate compares with signed or unsigned min/max constants.
1741 static Value *simplifyAndOrOfICmpsWithLimitConst(ICmpInst *Cmp0, ICmpInst *Cmp1,
1742                                                  bool IsAnd) {
1743   // Canonicalize an equality compare as Cmp0.
1744   if (Cmp1->isEquality())
1745     std::swap(Cmp0, Cmp1);
1746   if (!Cmp0->isEquality())
1747     return nullptr;
1748 
1749   // The non-equality compare must include a common operand (X). Canonicalize
1750   // the common operand as operand 0 (the predicate is swapped if the common
1751   // operand was operand 1).
1752   ICmpInst::Predicate Pred0 = Cmp0->getPredicate();
1753   Value *X = Cmp0->getOperand(0);
1754   ICmpInst::Predicate Pred1;
1755   bool HasNotOp = match(Cmp1, m_c_ICmp(Pred1, m_Not(m_Specific(X)), m_Value()));
1756   if (!HasNotOp && !match(Cmp1, m_c_ICmp(Pred1, m_Specific(X), m_Value())))
1757     return nullptr;
1758   if (ICmpInst::isEquality(Pred1))
1759     return nullptr;
1760 
1761   // The equality compare must be against a constant. Flip bits if we matched
1762   // a bitwise not. Convert a null pointer constant to an integer zero value.
1763   APInt MinMaxC;
1764   const APInt *C;
1765   if (match(Cmp0->getOperand(1), m_APInt(C)))
1766     MinMaxC = HasNotOp ? ~*C : *C;
1767   else if (isa<ConstantPointerNull>(Cmp0->getOperand(1)))
1768     MinMaxC = APInt::getZero(8);
1769   else
1770     return nullptr;
1771 
1772   // DeMorganize if this is 'or': P0 || P1 --> !P0 && !P1.
1773   if (!IsAnd) {
1774     Pred0 = ICmpInst::getInversePredicate(Pred0);
1775     Pred1 = ICmpInst::getInversePredicate(Pred1);
1776   }
1777 
1778   // Normalize to unsigned compare and unsigned min/max value.
1779   // Example for 8-bit: -128 + 128 -> 0; 127 + 128 -> 255
1780   if (ICmpInst::isSigned(Pred1)) {
1781     Pred1 = ICmpInst::getUnsignedPredicate(Pred1);
1782     MinMaxC += APInt::getSignedMinValue(MinMaxC.getBitWidth());
1783   }
1784 
1785   // (X != MAX) && (X < Y) --> X < Y
1786   // (X == MAX) || (X >= Y) --> X >= Y
1787   if (MinMaxC.isMaxValue())
1788     if (Pred0 == ICmpInst::ICMP_NE && Pred1 == ICmpInst::ICMP_ULT)
1789       return Cmp1;
1790 
1791   // (X != MIN) && (X > Y) -->  X > Y
1792   // (X == MIN) || (X <= Y) --> X <= Y
1793   if (MinMaxC.isMinValue())
1794     if (Pred0 == ICmpInst::ICMP_NE && Pred1 == ICmpInst::ICMP_UGT)
1795       return Cmp1;
1796 
1797   return nullptr;
1798 }
1799 
1800 static Value *simplifyAndOfICmps(ICmpInst *Op0, ICmpInst *Op1,
1801                                  const SimplifyQuery &Q) {
1802   if (Value *X = simplifyUnsignedRangeCheck(Op0, Op1, /*IsAnd=*/true, Q))
1803     return X;
1804   if (Value *X = simplifyUnsignedRangeCheck(Op1, Op0, /*IsAnd=*/true, Q))
1805     return X;
1806 
1807   if (Value *X = simplifyAndOfICmpsWithSameOperands(Op0, Op1))
1808     return X;
1809   if (Value *X = simplifyAndOfICmpsWithSameOperands(Op1, Op0))
1810     return X;
1811 
1812   if (Value *X = simplifyAndOrOfICmpsWithConstants(Op0, Op1, true))
1813     return X;
1814 
1815   if (Value *X = simplifyAndOrOfICmpsWithLimitConst(Op0, Op1, true))
1816     return X;
1817 
1818   if (Value *X = simplifyAndOrOfICmpsWithZero(Op0, Op1, true))
1819     return X;
1820 
1821   if (Value *X = simplifyAndOfICmpsWithAdd(Op0, Op1, Q.IIQ))
1822     return X;
1823   if (Value *X = simplifyAndOfICmpsWithAdd(Op1, Op0, Q.IIQ))
1824     return X;
1825 
1826   return nullptr;
1827 }
1828 
1829 static Value *simplifyOrOfICmpsWithAdd(ICmpInst *Op0, ICmpInst *Op1,
1830                                        const InstrInfoQuery &IIQ) {
1831   // (icmp (add V, C0), C1) | (icmp V, C0)
1832   ICmpInst::Predicate Pred0, Pred1;
1833   const APInt *C0, *C1;
1834   Value *V;
1835   if (!match(Op0, m_ICmp(Pred0, m_Add(m_Value(V), m_APInt(C0)), m_APInt(C1))))
1836     return nullptr;
1837 
1838   if (!match(Op1, m_ICmp(Pred1, m_Specific(V), m_Value())))
1839     return nullptr;
1840 
1841   auto *AddInst = cast<BinaryOperator>(Op0->getOperand(0));
1842   if (AddInst->getOperand(1) != Op1->getOperand(1))
1843     return nullptr;
1844 
1845   Type *ITy = Op0->getType();
1846   bool isNSW = IIQ.hasNoSignedWrap(AddInst);
1847   bool isNUW = IIQ.hasNoUnsignedWrap(AddInst);
1848 
1849   const APInt Delta = *C1 - *C0;
1850   if (C0->isStrictlyPositive()) {
1851     if (Delta == 2) {
1852       if (Pred0 == ICmpInst::ICMP_UGE && Pred1 == ICmpInst::ICMP_SLE)
1853         return getTrue(ITy);
1854       if (Pred0 == ICmpInst::ICMP_SGE && Pred1 == ICmpInst::ICMP_SLE && isNSW)
1855         return getTrue(ITy);
1856     }
1857     if (Delta == 1) {
1858       if (Pred0 == ICmpInst::ICMP_UGT && Pred1 == ICmpInst::ICMP_SLE)
1859         return getTrue(ITy);
1860       if (Pred0 == ICmpInst::ICMP_SGT && Pred1 == ICmpInst::ICMP_SLE && isNSW)
1861         return getTrue(ITy);
1862     }
1863   }
1864   if (C0->getBoolValue() && isNUW) {
1865     if (Delta == 2)
1866       if (Pred0 == ICmpInst::ICMP_UGE && Pred1 == ICmpInst::ICMP_ULE)
1867         return getTrue(ITy);
1868     if (Delta == 1)
1869       if (Pred0 == ICmpInst::ICMP_UGT && Pred1 == ICmpInst::ICMP_ULE)
1870         return getTrue(ITy);
1871   }
1872 
1873   return nullptr;
1874 }
1875 
1876 static Value *simplifyOrOfICmps(ICmpInst *Op0, ICmpInst *Op1,
1877                                 const SimplifyQuery &Q) {
1878   if (Value *X = simplifyUnsignedRangeCheck(Op0, Op1, /*IsAnd=*/false, Q))
1879     return X;
1880   if (Value *X = simplifyUnsignedRangeCheck(Op1, Op0, /*IsAnd=*/false, Q))
1881     return X;
1882 
1883   if (Value *X = simplifyOrOfICmpsWithSameOperands(Op0, Op1))
1884     return X;
1885   if (Value *X = simplifyOrOfICmpsWithSameOperands(Op1, Op0))
1886     return X;
1887 
1888   if (Value *X = simplifyAndOrOfICmpsWithConstants(Op0, Op1, false))
1889     return X;
1890 
1891   if (Value *X = simplifyAndOrOfICmpsWithLimitConst(Op0, Op1, false))
1892     return X;
1893 
1894   if (Value *X = simplifyAndOrOfICmpsWithZero(Op0, Op1, false))
1895     return X;
1896 
1897   if (Value *X = simplifyOrOfICmpsWithAdd(Op0, Op1, Q.IIQ))
1898     return X;
1899   if (Value *X = simplifyOrOfICmpsWithAdd(Op1, Op0, Q.IIQ))
1900     return X;
1901 
1902   return nullptr;
1903 }
1904 
1905 static Value *simplifyAndOrOfFCmps(const TargetLibraryInfo *TLI,
1906                                    FCmpInst *LHS, FCmpInst *RHS, bool IsAnd) {
1907   Value *LHS0 = LHS->getOperand(0), *LHS1 = LHS->getOperand(1);
1908   Value *RHS0 = RHS->getOperand(0), *RHS1 = RHS->getOperand(1);
1909   if (LHS0->getType() != RHS0->getType())
1910     return nullptr;
1911 
1912   FCmpInst::Predicate PredL = LHS->getPredicate(), PredR = RHS->getPredicate();
1913   if ((PredL == FCmpInst::FCMP_ORD && PredR == FCmpInst::FCMP_ORD && IsAnd) ||
1914       (PredL == FCmpInst::FCMP_UNO && PredR == FCmpInst::FCMP_UNO && !IsAnd)) {
1915     // (fcmp ord NNAN, X) & (fcmp ord X, Y) --> fcmp ord X, Y
1916     // (fcmp ord NNAN, X) & (fcmp ord Y, X) --> fcmp ord Y, X
1917     // (fcmp ord X, NNAN) & (fcmp ord X, Y) --> fcmp ord X, Y
1918     // (fcmp ord X, NNAN) & (fcmp ord Y, X) --> fcmp ord Y, X
1919     // (fcmp uno NNAN, X) | (fcmp uno X, Y) --> fcmp uno X, Y
1920     // (fcmp uno NNAN, X) | (fcmp uno Y, X) --> fcmp uno Y, X
1921     // (fcmp uno X, NNAN) | (fcmp uno X, Y) --> fcmp uno X, Y
1922     // (fcmp uno X, NNAN) | (fcmp uno Y, X) --> fcmp uno Y, X
1923     if ((isKnownNeverNaN(LHS0, TLI) && (LHS1 == RHS0 || LHS1 == RHS1)) ||
1924         (isKnownNeverNaN(LHS1, TLI) && (LHS0 == RHS0 || LHS0 == RHS1)))
1925       return RHS;
1926 
1927     // (fcmp ord X, Y) & (fcmp ord NNAN, X) --> fcmp ord X, Y
1928     // (fcmp ord Y, X) & (fcmp ord NNAN, X) --> fcmp ord Y, X
1929     // (fcmp ord X, Y) & (fcmp ord X, NNAN) --> fcmp ord X, Y
1930     // (fcmp ord Y, X) & (fcmp ord X, NNAN) --> fcmp ord Y, X
1931     // (fcmp uno X, Y) | (fcmp uno NNAN, X) --> fcmp uno X, Y
1932     // (fcmp uno Y, X) | (fcmp uno NNAN, X) --> fcmp uno Y, X
1933     // (fcmp uno X, Y) | (fcmp uno X, NNAN) --> fcmp uno X, Y
1934     // (fcmp uno Y, X) | (fcmp uno X, NNAN) --> fcmp uno Y, X
1935     if ((isKnownNeverNaN(RHS0, TLI) && (RHS1 == LHS0 || RHS1 == LHS1)) ||
1936         (isKnownNeverNaN(RHS1, TLI) && (RHS0 == LHS0 || RHS0 == LHS1)))
1937       return LHS;
1938   }
1939 
1940   return nullptr;
1941 }
1942 
1943 static Value *simplifyAndOrOfCmps(const SimplifyQuery &Q,
1944                                   Value *Op0, Value *Op1, bool IsAnd) {
1945   // Look through casts of the 'and' operands to find compares.
1946   auto *Cast0 = dyn_cast<CastInst>(Op0);
1947   auto *Cast1 = dyn_cast<CastInst>(Op1);
1948   if (Cast0 && Cast1 && Cast0->getOpcode() == Cast1->getOpcode() &&
1949       Cast0->getSrcTy() == Cast1->getSrcTy()) {
1950     Op0 = Cast0->getOperand(0);
1951     Op1 = Cast1->getOperand(0);
1952   }
1953 
1954   Value *V = nullptr;
1955   auto *ICmp0 = dyn_cast<ICmpInst>(Op0);
1956   auto *ICmp1 = dyn_cast<ICmpInst>(Op1);
1957   if (ICmp0 && ICmp1)
1958     V = IsAnd ? simplifyAndOfICmps(ICmp0, ICmp1, Q)
1959               : simplifyOrOfICmps(ICmp0, ICmp1, Q);
1960 
1961   auto *FCmp0 = dyn_cast<FCmpInst>(Op0);
1962   auto *FCmp1 = dyn_cast<FCmpInst>(Op1);
1963   if (FCmp0 && FCmp1)
1964     V = simplifyAndOrOfFCmps(Q.TLI, FCmp0, FCmp1, IsAnd);
1965 
1966   if (!V)
1967     return nullptr;
1968   if (!Cast0)
1969     return V;
1970 
1971   // If we looked through casts, we can only handle a constant simplification
1972   // because we are not allowed to create a cast instruction here.
1973   if (auto *C = dyn_cast<Constant>(V))
1974     return ConstantExpr::getCast(Cast0->getOpcode(), C, Cast0->getType());
1975 
1976   return nullptr;
1977 }
1978 
1979 /// Given a bitwise logic op, check if the operands are add/sub with a common
1980 /// source value and inverted constant (identity: C - X -> ~(X + ~C)).
1981 static Value *simplifyLogicOfAddSub(Value *Op0, Value *Op1,
1982                                     Instruction::BinaryOps Opcode) {
1983   assert(Op0->getType() == Op1->getType() && "Mismatched binop types");
1984   assert(BinaryOperator::isBitwiseLogicOp(Opcode) && "Expected logic op");
1985   Value *X;
1986   Constant *C1, *C2;
1987   if ((match(Op0, m_Add(m_Value(X), m_Constant(C1))) &&
1988        match(Op1, m_Sub(m_Constant(C2), m_Specific(X)))) ||
1989       (match(Op1, m_Add(m_Value(X), m_Constant(C1))) &&
1990        match(Op0, m_Sub(m_Constant(C2), m_Specific(X))))) {
1991     if (ConstantExpr::getNot(C1) == C2) {
1992       // (X + C) & (~C - X) --> (X + C) & ~(X + C) --> 0
1993       // (X + C) | (~C - X) --> (X + C) | ~(X + C) --> -1
1994       // (X + C) ^ (~C - X) --> (X + C) ^ ~(X + C) --> -1
1995       Type *Ty = Op0->getType();
1996       return Opcode == Instruction::And ? ConstantInt::getNullValue(Ty)
1997                                         : ConstantInt::getAllOnesValue(Ty);
1998     }
1999   }
2000   return nullptr;
2001 }
2002 
2003 /// Given operands for an And, see if we can fold the result.
2004 /// If not, this returns null.
2005 static Value *SimplifyAndInst(Value *Op0, Value *Op1, const SimplifyQuery &Q,
2006                               unsigned MaxRecurse) {
2007   if (Constant *C = foldOrCommuteConstant(Instruction::And, Op0, Op1, Q))
2008     return C;
2009 
2010   // X & poison -> poison
2011   if (isa<PoisonValue>(Op1))
2012     return Op1;
2013 
2014   // X & undef -> 0
2015   if (Q.isUndefValue(Op1))
2016     return Constant::getNullValue(Op0->getType());
2017 
2018   // X & X = X
2019   if (Op0 == Op1)
2020     return Op0;
2021 
2022   // X & 0 = 0
2023   if (match(Op1, m_Zero()))
2024     return Constant::getNullValue(Op0->getType());
2025 
2026   // X & -1 = X
2027   if (match(Op1, m_AllOnes()))
2028     return Op0;
2029 
2030   // A & ~A  =  ~A & A  =  0
2031   if (match(Op0, m_Not(m_Specific(Op1))) ||
2032       match(Op1, m_Not(m_Specific(Op0))))
2033     return Constant::getNullValue(Op0->getType());
2034 
2035   // (A | ?) & A = A
2036   if (match(Op0, m_c_Or(m_Specific(Op1), m_Value())))
2037     return Op1;
2038 
2039   // A & (A | ?) = A
2040   if (match(Op1, m_c_Or(m_Specific(Op0), m_Value())))
2041     return Op0;
2042 
2043   // (X | Y) & (X | ~Y) --> X (commuted 8 ways)
2044   Value *X, *Y;
2045   if (match(Op0, m_c_Or(m_Value(X), m_Not(m_Value(Y)))) &&
2046       match(Op1, m_c_Or(m_Deferred(X), m_Deferred(Y))))
2047     return X;
2048   if (match(Op1, m_c_Or(m_Value(X), m_Not(m_Value(Y)))) &&
2049       match(Op0, m_c_Or(m_Deferred(X), m_Deferred(Y))))
2050     return X;
2051 
2052   if (Value *V = simplifyLogicOfAddSub(Op0, Op1, Instruction::And))
2053     return V;
2054 
2055   // A mask that only clears known zeros of a shifted value is a no-op.
2056   const APInt *Mask;
2057   const APInt *ShAmt;
2058   if (match(Op1, m_APInt(Mask))) {
2059     // If all bits in the inverted and shifted mask are clear:
2060     // and (shl X, ShAmt), Mask --> shl X, ShAmt
2061     if (match(Op0, m_Shl(m_Value(X), m_APInt(ShAmt))) &&
2062         (~(*Mask)).lshr(*ShAmt).isZero())
2063       return Op0;
2064 
2065     // If all bits in the inverted and shifted mask are clear:
2066     // and (lshr X, ShAmt), Mask --> lshr X, ShAmt
2067     if (match(Op0, m_LShr(m_Value(X), m_APInt(ShAmt))) &&
2068         (~(*Mask)).shl(*ShAmt).isZero())
2069       return Op0;
2070   }
2071 
2072   // If we have a multiplication overflow check that is being 'and'ed with a
2073   // check that one of the multipliers is not zero, we can omit the 'and', and
2074   // only keep the overflow check.
2075   if (isCheckForZeroAndMulWithOverflow(Op0, Op1, true))
2076     return Op1;
2077   if (isCheckForZeroAndMulWithOverflow(Op1, Op0, true))
2078     return Op0;
2079 
2080   // A & (-A) = A if A is a power of two or zero.
2081   if (match(Op0, m_Neg(m_Specific(Op1))) ||
2082       match(Op1, m_Neg(m_Specific(Op0)))) {
2083     if (isKnownToBeAPowerOfTwo(Op0, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI,
2084                                Q.DT))
2085       return Op0;
2086     if (isKnownToBeAPowerOfTwo(Op1, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI,
2087                                Q.DT))
2088       return Op1;
2089   }
2090 
2091   // This is a similar pattern used for checking if a value is a power-of-2:
2092   // (A - 1) & A --> 0 (if A is a power-of-2 or 0)
2093   // A & (A - 1) --> 0 (if A is a power-of-2 or 0)
2094   if (match(Op0, m_Add(m_Specific(Op1), m_AllOnes())) &&
2095       isKnownToBeAPowerOfTwo(Op1, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI, Q.DT))
2096     return Constant::getNullValue(Op1->getType());
2097   if (match(Op1, m_Add(m_Specific(Op0), m_AllOnes())) &&
2098       isKnownToBeAPowerOfTwo(Op0, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI, Q.DT))
2099     return Constant::getNullValue(Op0->getType());
2100 
2101   if (Value *V = simplifyAndOrOfCmps(Q, Op0, Op1, true))
2102     return V;
2103 
2104   // Try some generic simplifications for associative operations.
2105   if (Value *V = SimplifyAssociativeBinOp(Instruction::And, Op0, Op1, Q,
2106                                           MaxRecurse))
2107     return V;
2108 
2109   // And distributes over Or.  Try some generic simplifications based on this.
2110   if (Value *V = expandCommutativeBinOp(Instruction::And, Op0, Op1,
2111                                         Instruction::Or, Q, MaxRecurse))
2112     return V;
2113 
2114   // And distributes over Xor.  Try some generic simplifications based on this.
2115   if (Value *V = expandCommutativeBinOp(Instruction::And, Op0, Op1,
2116                                         Instruction::Xor, Q, MaxRecurse))
2117     return V;
2118 
2119   if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) {
2120     if (Op0->getType()->isIntOrIntVectorTy(1)) {
2121       // A & (A && B) -> A && B
2122       if (match(Op1, m_Select(m_Specific(Op0), m_Value(), m_Zero())))
2123         return Op1;
2124       else if (match(Op0, m_Select(m_Specific(Op1), m_Value(), m_Zero())))
2125         return Op0;
2126     }
2127     // If the operation is with the result of a select instruction, check
2128     // whether operating on either branch of the select always yields the same
2129     // value.
2130     if (Value *V = ThreadBinOpOverSelect(Instruction::And, Op0, Op1, Q,
2131                                          MaxRecurse))
2132       return V;
2133   }
2134 
2135   // If the operation is with the result of a phi instruction, check whether
2136   // operating on all incoming values of the phi always yields the same value.
2137   if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
2138     if (Value *V = ThreadBinOpOverPHI(Instruction::And, Op0, Op1, Q,
2139                                       MaxRecurse))
2140       return V;
2141 
2142   // Assuming the effective width of Y is not larger than A, i.e. all bits
2143   // from X and Y are disjoint in (X << A) | Y,
2144   // if the mask of this AND op covers all bits of X or Y, while it covers
2145   // no bits from the other, we can bypass this AND op. E.g.,
2146   // ((X << A) | Y) & Mask -> Y,
2147   //     if Mask = ((1 << effective_width_of(Y)) - 1)
2148   // ((X << A) | Y) & Mask -> X << A,
2149   //     if Mask = ((1 << effective_width_of(X)) - 1) << A
2150   // SimplifyDemandedBits in InstCombine can optimize the general case.
2151   // This pattern aims to help other passes for a common case.
2152   Value *XShifted;
2153   if (match(Op1, m_APInt(Mask)) &&
2154       match(Op0, m_c_Or(m_CombineAnd(m_NUWShl(m_Value(X), m_APInt(ShAmt)),
2155                                      m_Value(XShifted)),
2156                         m_Value(Y)))) {
2157     const unsigned Width = Op0->getType()->getScalarSizeInBits();
2158     const unsigned ShftCnt = ShAmt->getLimitedValue(Width);
2159     const KnownBits YKnown = computeKnownBits(Y, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
2160     const unsigned EffWidthY = YKnown.countMaxActiveBits();
2161     if (EffWidthY <= ShftCnt) {
2162       const KnownBits XKnown = computeKnownBits(X, Q.DL, 0, Q.AC, Q.CxtI,
2163                                                 Q.DT);
2164       const unsigned EffWidthX = XKnown.countMaxActiveBits();
2165       const APInt EffBitsY = APInt::getLowBitsSet(Width, EffWidthY);
2166       const APInt EffBitsX = APInt::getLowBitsSet(Width, EffWidthX) << ShftCnt;
2167       // If the mask is extracting all bits from X or Y as is, we can skip
2168       // this AND op.
2169       if (EffBitsY.isSubsetOf(*Mask) && !EffBitsX.intersects(*Mask))
2170         return Y;
2171       if (EffBitsX.isSubsetOf(*Mask) && !EffBitsY.intersects(*Mask))
2172         return XShifted;
2173     }
2174   }
2175 
2176   return nullptr;
2177 }
2178 
2179 Value *llvm::SimplifyAndInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) {
2180   return ::SimplifyAndInst(Op0, Op1, Q, RecursionLimit);
2181 }
2182 
2183 static Value *simplifyOrLogic(Value *X, Value *Y) {
2184   assert(X->getType() == Y->getType() && "Expected same type for 'or' ops");
2185   Type *Ty = X->getType();
2186 
2187   // X | ~X --> -1
2188   if (match(Y, m_Not(m_Specific(X))))
2189     return ConstantInt::getAllOnesValue(Ty);
2190 
2191   // X | ~(X & ?) = -1
2192   if (match(Y, m_Not(m_c_And(m_Specific(X), m_Value()))))
2193     return ConstantInt::getAllOnesValue(Ty);
2194 
2195   // X | (X & ?) --> X
2196   if (match(Y, m_c_And(m_Specific(X), m_Value())))
2197     return X;
2198 
2199   Value *A, *B;
2200 
2201   // (A ^ B) | (A | B) --> A | B
2202   // (A ^ B) | (B | A) --> B | A
2203   if (match(X, m_Xor(m_Value(A), m_Value(B))) &&
2204       match(Y, m_c_Or(m_Specific(A), m_Specific(B))))
2205     return Y;
2206 
2207   // ~(A ^ B) | (A | B) --> -1
2208   // ~(A ^ B) | (B | A) --> -1
2209   if (match(X, m_Not(m_Xor(m_Value(A), m_Value(B)))) &&
2210       match(Y, m_c_Or(m_Specific(A), m_Specific(B))))
2211     return ConstantInt::getAllOnesValue(Ty);
2212 
2213   // (A & ~B) | (A ^ B) --> A ^ B
2214   // (~B & A) | (A ^ B) --> A ^ B
2215   // (A & ~B) | (B ^ A) --> B ^ A
2216   // (~B & A) | (B ^ A) --> B ^ A
2217   if (match(X, m_c_And(m_Value(A), m_Not(m_Value(B)))) &&
2218       match(Y, m_c_Xor(m_Specific(A), m_Specific(B))))
2219     return Y;
2220 
2221   // (~A ^ B) | (A & B) --> ~A ^ B
2222   // (B ^ ~A) | (A & B) --> B ^ ~A
2223   // (~A ^ B) | (B & A) --> ~A ^ B
2224   // (B ^ ~A) | (B & A) --> B ^ ~A
2225   if (match(X, m_c_Xor(m_Not(m_Value(A)), m_Value(B))) &&
2226       match(Y, m_c_And(m_Specific(A), m_Specific(B))))
2227     return X;
2228 
2229   // (~A | B) | (A ^ B) --> -1
2230   // (~A | B) | (B ^ A) --> -1
2231   // (B | ~A) | (A ^ B) --> -1
2232   // (B | ~A) | (B ^ A) --> -1
2233   if (match(X, m_c_Or(m_Not(m_Value(A)), m_Value(B))) &&
2234       match(Y, m_c_Xor(m_Specific(A), m_Specific(B))))
2235     return ConstantInt::getAllOnesValue(Ty);
2236 
2237   // (~A & B) | ~(A | B) --> ~A
2238   // (~A & B) | ~(B | A) --> ~A
2239   // (B & ~A) | ~(A | B) --> ~A
2240   // (B & ~A) | ~(B | A) --> ~A
2241   Value *NotA;
2242   if (match(X,
2243             m_c_And(m_CombineAnd(m_Value(NotA), m_NotForbidUndef(m_Value(A))),
2244                     m_Value(B))) &&
2245       match(Y, m_Not(m_c_Or(m_Specific(A), m_Specific(B)))))
2246     return NotA;
2247 
2248   // ~(A ^ B) | (A & B) --> ~(A & B)
2249   // ~(A ^ B) | (B & A) --> ~(A & B)
2250   Value *NotAB;
2251   if (match(X, m_CombineAnd(m_NotForbidUndef(m_Xor(m_Value(A), m_Value(B))),
2252                             m_Value(NotAB))) &&
2253       match(Y, m_c_And(m_Specific(A), m_Specific(B))))
2254     return NotAB;
2255 
2256   return nullptr;
2257 }
2258 
2259 /// Given operands for an Or, see if we can fold the result.
2260 /// If not, this returns null.
2261 static Value *SimplifyOrInst(Value *Op0, Value *Op1, const SimplifyQuery &Q,
2262                              unsigned MaxRecurse) {
2263   if (Constant *C = foldOrCommuteConstant(Instruction::Or, Op0, Op1, Q))
2264     return C;
2265 
2266   // X | poison -> poison
2267   if (isa<PoisonValue>(Op1))
2268     return Op1;
2269 
2270   // X | undef -> -1
2271   // X | -1 = -1
2272   // Do not return Op1 because it may contain undef elements if it's a vector.
2273   if (Q.isUndefValue(Op1) || match(Op1, m_AllOnes()))
2274     return Constant::getAllOnesValue(Op0->getType());
2275 
2276   // X | X = X
2277   // X | 0 = X
2278   if (Op0 == Op1 || match(Op1, m_Zero()))
2279     return Op0;
2280 
2281   if (Value *R = simplifyOrLogic(Op0, Op1))
2282     return R;
2283   if (Value *R = simplifyOrLogic(Op1, Op0))
2284     return R;
2285 
2286   if (Value *V = simplifyLogicOfAddSub(Op0, Op1, Instruction::Or))
2287     return V;
2288 
2289   // Rotated -1 is still -1:
2290   // (-1 << X) | (-1 >> (C - X)) --> -1
2291   // (-1 >> X) | (-1 << (C - X)) --> -1
2292   // ...with C <= bitwidth (and commuted variants).
2293   Value *X, *Y;
2294   if ((match(Op0, m_Shl(m_AllOnes(), m_Value(X))) &&
2295        match(Op1, m_LShr(m_AllOnes(), m_Value(Y)))) ||
2296       (match(Op1, m_Shl(m_AllOnes(), m_Value(X))) &&
2297        match(Op0, m_LShr(m_AllOnes(), m_Value(Y))))) {
2298     const APInt *C;
2299     if ((match(X, m_Sub(m_APInt(C), m_Specific(Y))) ||
2300          match(Y, m_Sub(m_APInt(C), m_Specific(X)))) &&
2301         C->ule(X->getType()->getScalarSizeInBits())) {
2302       return ConstantInt::getAllOnesValue(X->getType());
2303     }
2304   }
2305 
2306   if (Value *V = simplifyAndOrOfCmps(Q, Op0, Op1, false))
2307     return V;
2308 
2309   // If we have a multiplication overflow check that is being 'and'ed with a
2310   // check that one of the multipliers is not zero, we can omit the 'and', and
2311   // only keep the overflow check.
2312   if (isCheckForZeroAndMulWithOverflow(Op0, Op1, false))
2313     return Op1;
2314   if (isCheckForZeroAndMulWithOverflow(Op1, Op0, false))
2315     return Op0;
2316 
2317   // Try some generic simplifications for associative operations.
2318   if (Value *V = SimplifyAssociativeBinOp(Instruction::Or, Op0, Op1, Q,
2319                                           MaxRecurse))
2320     return V;
2321 
2322   // Or distributes over And.  Try some generic simplifications based on this.
2323   if (Value *V = expandCommutativeBinOp(Instruction::Or, Op0, Op1,
2324                                         Instruction::And, Q, MaxRecurse))
2325     return V;
2326 
2327   if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) {
2328     if (Op0->getType()->isIntOrIntVectorTy(1)) {
2329       // A | (A || B) -> A || B
2330       if (match(Op1, m_Select(m_Specific(Op0), m_One(), m_Value())))
2331         return Op1;
2332       else if (match(Op0, m_Select(m_Specific(Op1), m_One(), m_Value())))
2333         return Op0;
2334     }
2335     // If the operation is with the result of a select instruction, check
2336     // whether operating on either branch of the select always yields the same
2337     // value.
2338     if (Value *V = ThreadBinOpOverSelect(Instruction::Or, Op0, Op1, Q,
2339                                          MaxRecurse))
2340       return V;
2341   }
2342 
2343   // (A & C1)|(B & C2)
2344   Value *A, *B;
2345   const APInt *C1, *C2;
2346   if (match(Op0, m_And(m_Value(A), m_APInt(C1))) &&
2347       match(Op1, m_And(m_Value(B), m_APInt(C2)))) {
2348     if (*C1 == ~*C2) {
2349       // (A & C1)|(B & C2)
2350       // If we have: ((V + N) & C1) | (V & C2)
2351       // .. and C2 = ~C1 and C2 is 0+1+ and (N & C2) == 0
2352       // replace with V+N.
2353       Value *N;
2354       if (C2->isMask() && // C2 == 0+1+
2355           match(A, m_c_Add(m_Specific(B), m_Value(N)))) {
2356         // Add commutes, try both ways.
2357         if (MaskedValueIsZero(N, *C2, Q.DL, 0, Q.AC, Q.CxtI, Q.DT))
2358           return A;
2359       }
2360       // Or commutes, try both ways.
2361       if (C1->isMask() &&
2362           match(B, m_c_Add(m_Specific(A), m_Value(N)))) {
2363         // Add commutes, try both ways.
2364         if (MaskedValueIsZero(N, *C1, Q.DL, 0, Q.AC, Q.CxtI, Q.DT))
2365           return B;
2366       }
2367     }
2368   }
2369 
2370   // If the operation is with the result of a phi instruction, check whether
2371   // operating on all incoming values of the phi always yields the same value.
2372   if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
2373     if (Value *V = ThreadBinOpOverPHI(Instruction::Or, Op0, Op1, Q, MaxRecurse))
2374       return V;
2375 
2376   return nullptr;
2377 }
2378 
2379 Value *llvm::SimplifyOrInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) {
2380   return ::SimplifyOrInst(Op0, Op1, Q, RecursionLimit);
2381 }
2382 
2383 /// Given operands for a Xor, see if we can fold the result.
2384 /// If not, this returns null.
2385 static Value *SimplifyXorInst(Value *Op0, Value *Op1, const SimplifyQuery &Q,
2386                               unsigned MaxRecurse) {
2387   if (Constant *C = foldOrCommuteConstant(Instruction::Xor, Op0, Op1, Q))
2388     return C;
2389 
2390   // A ^ undef -> undef
2391   if (Q.isUndefValue(Op1))
2392     return Op1;
2393 
2394   // A ^ 0 = A
2395   if (match(Op1, m_Zero()))
2396     return Op0;
2397 
2398   // A ^ A = 0
2399   if (Op0 == Op1)
2400     return Constant::getNullValue(Op0->getType());
2401 
2402   // A ^ ~A  =  ~A ^ A  =  -1
2403   if (match(Op0, m_Not(m_Specific(Op1))) ||
2404       match(Op1, m_Not(m_Specific(Op0))))
2405     return Constant::getAllOnesValue(Op0->getType());
2406 
2407   auto foldAndOrNot = [](Value *X, Value *Y) -> Value * {
2408     Value *A, *B;
2409     // (~A & B) ^ (A | B) --> A -- There are 8 commuted variants.
2410     if (match(X, m_c_And(m_Not(m_Value(A)), m_Value(B))) &&
2411         match(Y, m_c_Or(m_Specific(A), m_Specific(B))))
2412       return A;
2413 
2414     // (~A | B) ^ (A & B) --> ~A -- There are 8 commuted variants.
2415     // The 'not' op must contain a complete -1 operand (no undef elements for
2416     // vector) for the transform to be safe.
2417     Value *NotA;
2418     if (match(X,
2419               m_c_Or(m_CombineAnd(m_NotForbidUndef(m_Value(A)), m_Value(NotA)),
2420                      m_Value(B))) &&
2421         match(Y, m_c_And(m_Specific(A), m_Specific(B))))
2422       return NotA;
2423 
2424     return nullptr;
2425   };
2426   if (Value *R = foldAndOrNot(Op0, Op1))
2427     return R;
2428   if (Value *R = foldAndOrNot(Op1, Op0))
2429     return R;
2430 
2431   if (Value *V = simplifyLogicOfAddSub(Op0, Op1, Instruction::Xor))
2432     return V;
2433 
2434   // Try some generic simplifications for associative operations.
2435   if (Value *V = SimplifyAssociativeBinOp(Instruction::Xor, Op0, Op1, Q,
2436                                           MaxRecurse))
2437     return V;
2438 
2439   // Threading Xor over selects and phi nodes is pointless, so don't bother.
2440   // Threading over the select in "A ^ select(cond, B, C)" means evaluating
2441   // "A^B" and "A^C" and seeing if they are equal; but they are equal if and
2442   // only if B and C are equal.  If B and C are equal then (since we assume
2443   // that operands have already been simplified) "select(cond, B, C)" should
2444   // have been simplified to the common value of B and C already.  Analysing
2445   // "A^B" and "A^C" thus gains nothing, but costs compile time.  Similarly
2446   // for threading over phi nodes.
2447 
2448   return nullptr;
2449 }
2450 
2451 Value *llvm::SimplifyXorInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) {
2452   return ::SimplifyXorInst(Op0, Op1, Q, RecursionLimit);
2453 }
2454 
2455 
2456 static Type *GetCompareTy(Value *Op) {
2457   return CmpInst::makeCmpResultType(Op->getType());
2458 }
2459 
2460 /// Rummage around inside V looking for something equivalent to the comparison
2461 /// "LHS Pred RHS". Return such a value if found, otherwise return null.
2462 /// Helper function for analyzing max/min idioms.
2463 static Value *ExtractEquivalentCondition(Value *V, CmpInst::Predicate Pred,
2464                                          Value *LHS, Value *RHS) {
2465   SelectInst *SI = dyn_cast<SelectInst>(V);
2466   if (!SI)
2467     return nullptr;
2468   CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition());
2469   if (!Cmp)
2470     return nullptr;
2471   Value *CmpLHS = Cmp->getOperand(0), *CmpRHS = Cmp->getOperand(1);
2472   if (Pred == Cmp->getPredicate() && LHS == CmpLHS && RHS == CmpRHS)
2473     return Cmp;
2474   if (Pred == CmpInst::getSwappedPredicate(Cmp->getPredicate()) &&
2475       LHS == CmpRHS && RHS == CmpLHS)
2476     return Cmp;
2477   return nullptr;
2478 }
2479 
2480 // A significant optimization not implemented here is assuming that alloca
2481 // addresses are not equal to incoming argument values. They don't *alias*,
2482 // as we say, but that doesn't mean they aren't equal, so we take a
2483 // conservative approach.
2484 //
2485 // This is inspired in part by C++11 5.10p1:
2486 //   "Two pointers of the same type compare equal if and only if they are both
2487 //    null, both point to the same function, or both represent the same
2488 //    address."
2489 //
2490 // This is pretty permissive.
2491 //
2492 // It's also partly due to C11 6.5.9p6:
2493 //   "Two pointers compare equal if and only if both are null pointers, both are
2494 //    pointers to the same object (including a pointer to an object and a
2495 //    subobject at its beginning) or function, both are pointers to one past the
2496 //    last element of the same array object, or one is a pointer to one past the
2497 //    end of one array object and the other is a pointer to the start of a
2498 //    different array object that happens to immediately follow the first array
2499 //    object in the address space.)
2500 //
2501 // C11's version is more restrictive, however there's no reason why an argument
2502 // couldn't be a one-past-the-end value for a stack object in the caller and be
2503 // equal to the beginning of a stack object in the callee.
2504 //
2505 // If the C and C++ standards are ever made sufficiently restrictive in this
2506 // area, it may be possible to update LLVM's semantics accordingly and reinstate
2507 // this optimization.
2508 static Constant *
2509 computePointerICmp(CmpInst::Predicate Pred, Value *LHS, Value *RHS,
2510                    const SimplifyQuery &Q) {
2511   const DataLayout &DL = Q.DL;
2512   const TargetLibraryInfo *TLI = Q.TLI;
2513   const DominatorTree *DT = Q.DT;
2514   const Instruction *CxtI = Q.CxtI;
2515   const InstrInfoQuery &IIQ = Q.IIQ;
2516 
2517   // First, skip past any trivial no-ops.
2518   LHS = LHS->stripPointerCasts();
2519   RHS = RHS->stripPointerCasts();
2520 
2521   // A non-null pointer is not equal to a null pointer.
2522   if (isa<ConstantPointerNull>(RHS) && ICmpInst::isEquality(Pred) &&
2523       llvm::isKnownNonZero(LHS, DL, 0, nullptr, nullptr, nullptr,
2524                            IIQ.UseInstrInfo))
2525     return ConstantInt::get(GetCompareTy(LHS),
2526                             !CmpInst::isTrueWhenEqual(Pred));
2527 
2528   // We can only fold certain predicates on pointer comparisons.
2529   switch (Pred) {
2530   default:
2531     return nullptr;
2532 
2533     // Equality comaprisons are easy to fold.
2534   case CmpInst::ICMP_EQ:
2535   case CmpInst::ICMP_NE:
2536     break;
2537 
2538     // We can only handle unsigned relational comparisons because 'inbounds' on
2539     // a GEP only protects against unsigned wrapping.
2540   case CmpInst::ICMP_UGT:
2541   case CmpInst::ICMP_UGE:
2542   case CmpInst::ICMP_ULT:
2543   case CmpInst::ICMP_ULE:
2544     // However, we have to switch them to their signed variants to handle
2545     // negative indices from the base pointer.
2546     Pred = ICmpInst::getSignedPredicate(Pred);
2547     break;
2548   }
2549 
2550   // Strip off any constant offsets so that we can reason about them.
2551   // It's tempting to use getUnderlyingObject or even just stripInBoundsOffsets
2552   // here and compare base addresses like AliasAnalysis does, however there are
2553   // numerous hazards. AliasAnalysis and its utilities rely on special rules
2554   // governing loads and stores which don't apply to icmps. Also, AliasAnalysis
2555   // doesn't need to guarantee pointer inequality when it says NoAlias.
2556   Constant *LHSOffset = stripAndComputeConstantOffsets(DL, LHS);
2557   Constant *RHSOffset = stripAndComputeConstantOffsets(DL, RHS);
2558 
2559   // If LHS and RHS are related via constant offsets to the same base
2560   // value, we can replace it with an icmp which just compares the offsets.
2561   if (LHS == RHS)
2562     return ConstantExpr::getICmp(Pred, LHSOffset, RHSOffset);
2563 
2564   // Various optimizations for (in)equality comparisons.
2565   if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE) {
2566     // Different non-empty allocations that exist at the same time have
2567     // different addresses (if the program can tell). Global variables always
2568     // exist, so they always exist during the lifetime of each other and all
2569     // allocas. Two different allocas usually have different addresses...
2570     //
2571     // However, if there's an @llvm.stackrestore dynamically in between two
2572     // allocas, they may have the same address. It's tempting to reduce the
2573     // scope of the problem by only looking at *static* allocas here. That would
2574     // cover the majority of allocas while significantly reducing the likelihood
2575     // of having an @llvm.stackrestore pop up in the middle. However, it's not
2576     // actually impossible for an @llvm.stackrestore to pop up in the middle of
2577     // an entry block. Also, if we have a block that's not attached to a
2578     // function, we can't tell if it's "static" under the current definition.
2579     // Theoretically, this problem could be fixed by creating a new kind of
2580     // instruction kind specifically for static allocas. Such a new instruction
2581     // could be required to be at the top of the entry block, thus preventing it
2582     // from being subject to a @llvm.stackrestore. Instcombine could even
2583     // convert regular allocas into these special allocas. It'd be nifty.
2584     // However, until then, this problem remains open.
2585     //
2586     // So, we'll assume that two non-empty allocas have different addresses
2587     // for now.
2588     //
2589     // With all that, if the offsets are within the bounds of their allocations
2590     // (and not one-past-the-end! so we can't use inbounds!), and their
2591     // allocations aren't the same, the pointers are not equal.
2592     //
2593     // Note that it's not necessary to check for LHS being a global variable
2594     // address, due to canonicalization and constant folding.
2595     if (isa<AllocaInst>(LHS) &&
2596         (isa<AllocaInst>(RHS) || isa<GlobalVariable>(RHS))) {
2597       ConstantInt *LHSOffsetCI = dyn_cast<ConstantInt>(LHSOffset);
2598       ConstantInt *RHSOffsetCI = dyn_cast<ConstantInt>(RHSOffset);
2599       uint64_t LHSSize, RHSSize;
2600       ObjectSizeOpts Opts;
2601       Opts.NullIsUnknownSize =
2602           NullPointerIsDefined(cast<AllocaInst>(LHS)->getFunction());
2603       if (LHSOffsetCI && RHSOffsetCI &&
2604           getObjectSize(LHS, LHSSize, DL, TLI, Opts) &&
2605           getObjectSize(RHS, RHSSize, DL, TLI, Opts)) {
2606         const APInt &LHSOffsetValue = LHSOffsetCI->getValue();
2607         const APInt &RHSOffsetValue = RHSOffsetCI->getValue();
2608         if (!LHSOffsetValue.isNegative() &&
2609             !RHSOffsetValue.isNegative() &&
2610             LHSOffsetValue.ult(LHSSize) &&
2611             RHSOffsetValue.ult(RHSSize)) {
2612           return ConstantInt::get(GetCompareTy(LHS),
2613                                   !CmpInst::isTrueWhenEqual(Pred));
2614         }
2615       }
2616 
2617       // Repeat the above check but this time without depending on DataLayout
2618       // or being able to compute a precise size.
2619       if (!cast<PointerType>(LHS->getType())->isEmptyTy() &&
2620           !cast<PointerType>(RHS->getType())->isEmptyTy() &&
2621           LHSOffset->isNullValue() &&
2622           RHSOffset->isNullValue())
2623         return ConstantInt::get(GetCompareTy(LHS),
2624                                 !CmpInst::isTrueWhenEqual(Pred));
2625     }
2626 
2627     // Even if an non-inbounds GEP occurs along the path we can still optimize
2628     // equality comparisons concerning the result. We avoid walking the whole
2629     // chain again by starting where the last calls to
2630     // stripAndComputeConstantOffsets left off and accumulate the offsets.
2631     Constant *LHSNoBound = stripAndComputeConstantOffsets(DL, LHS, true);
2632     Constant *RHSNoBound = stripAndComputeConstantOffsets(DL, RHS, true);
2633     if (LHS == RHS)
2634       return ConstantExpr::getICmp(Pred,
2635                                    ConstantExpr::getAdd(LHSOffset, LHSNoBound),
2636                                    ConstantExpr::getAdd(RHSOffset, RHSNoBound));
2637 
2638     // If one side of the equality comparison must come from a noalias call
2639     // (meaning a system memory allocation function), and the other side must
2640     // come from a pointer that cannot overlap with dynamically-allocated
2641     // memory within the lifetime of the current function (allocas, byval
2642     // arguments, globals), then determine the comparison result here.
2643     SmallVector<const Value *, 8> LHSUObjs, RHSUObjs;
2644     getUnderlyingObjects(LHS, LHSUObjs);
2645     getUnderlyingObjects(RHS, RHSUObjs);
2646 
2647     // Is the set of underlying objects all noalias calls?
2648     auto IsNAC = [](ArrayRef<const Value *> Objects) {
2649       return all_of(Objects, isNoAliasCall);
2650     };
2651 
2652     // Is the set of underlying objects all things which must be disjoint from
2653     // noalias calls. For allocas, we consider only static ones (dynamic
2654     // allocas might be transformed into calls to malloc not simultaneously
2655     // live with the compared-to allocation). For globals, we exclude symbols
2656     // that might be resolve lazily to symbols in another dynamically-loaded
2657     // library (and, thus, could be malloc'ed by the implementation).
2658     auto IsAllocDisjoint = [](ArrayRef<const Value *> Objects) {
2659       return all_of(Objects, [](const Value *V) {
2660         if (const AllocaInst *AI = dyn_cast<AllocaInst>(V))
2661           return AI->getParent() && AI->getFunction() && AI->isStaticAlloca();
2662         if (const GlobalValue *GV = dyn_cast<GlobalValue>(V))
2663           return (GV->hasLocalLinkage() || GV->hasHiddenVisibility() ||
2664                   GV->hasProtectedVisibility() || GV->hasGlobalUnnamedAddr()) &&
2665                  !GV->isThreadLocal();
2666         if (const Argument *A = dyn_cast<Argument>(V))
2667           return A->hasByValAttr();
2668         return false;
2669       });
2670     };
2671 
2672     if ((IsNAC(LHSUObjs) && IsAllocDisjoint(RHSUObjs)) ||
2673         (IsNAC(RHSUObjs) && IsAllocDisjoint(LHSUObjs)))
2674         return ConstantInt::get(GetCompareTy(LHS),
2675                                 !CmpInst::isTrueWhenEqual(Pred));
2676 
2677     // Fold comparisons for non-escaping pointer even if the allocation call
2678     // cannot be elided. We cannot fold malloc comparison to null. Also, the
2679     // dynamic allocation call could be either of the operands.
2680     Value *MI = nullptr;
2681     if (isAllocLikeFn(LHS, TLI) &&
2682         llvm::isKnownNonZero(RHS, DL, 0, nullptr, CxtI, DT))
2683       MI = LHS;
2684     else if (isAllocLikeFn(RHS, TLI) &&
2685              llvm::isKnownNonZero(LHS, DL, 0, nullptr, CxtI, DT))
2686       MI = RHS;
2687     // FIXME: We should also fold the compare when the pointer escapes, but the
2688     // compare dominates the pointer escape
2689     if (MI && !PointerMayBeCaptured(MI, true, true))
2690       return ConstantInt::get(GetCompareTy(LHS),
2691                               CmpInst::isFalseWhenEqual(Pred));
2692   }
2693 
2694   // Otherwise, fail.
2695   return nullptr;
2696 }
2697 
2698 /// Fold an icmp when its operands have i1 scalar type.
2699 static Value *simplifyICmpOfBools(CmpInst::Predicate Pred, Value *LHS,
2700                                   Value *RHS, const SimplifyQuery &Q) {
2701   Type *ITy = GetCompareTy(LHS); // The return type.
2702   Type *OpTy = LHS->getType();   // The operand type.
2703   if (!OpTy->isIntOrIntVectorTy(1))
2704     return nullptr;
2705 
2706   // A boolean compared to true/false can be simplified in 14 out of the 20
2707   // (10 predicates * 2 constants) possible combinations. Cases not handled here
2708   // require a 'not' of the LHS, so those must be transformed in InstCombine.
2709   if (match(RHS, m_Zero())) {
2710     switch (Pred) {
2711     case CmpInst::ICMP_NE:  // X !=  0 -> X
2712     case CmpInst::ICMP_UGT: // X >u  0 -> X
2713     case CmpInst::ICMP_SLT: // X <s  0 -> X
2714       return LHS;
2715 
2716     case CmpInst::ICMP_ULT: // X <u  0 -> false
2717     case CmpInst::ICMP_SGT: // X >s  0 -> false
2718       return getFalse(ITy);
2719 
2720     case CmpInst::ICMP_UGE: // X >=u 0 -> true
2721     case CmpInst::ICMP_SLE: // X <=s 0 -> true
2722       return getTrue(ITy);
2723 
2724     default: break;
2725     }
2726   } else if (match(RHS, m_One())) {
2727     switch (Pred) {
2728     case CmpInst::ICMP_EQ:  // X ==   1 -> X
2729     case CmpInst::ICMP_UGE: // X >=u  1 -> X
2730     case CmpInst::ICMP_SLE: // X <=s -1 -> X
2731       return LHS;
2732 
2733     case CmpInst::ICMP_UGT: // X >u   1 -> false
2734     case CmpInst::ICMP_SLT: // X <s  -1 -> false
2735       return getFalse(ITy);
2736 
2737     case CmpInst::ICMP_ULE: // X <=u  1 -> true
2738     case CmpInst::ICMP_SGE: // X >=s -1 -> true
2739       return getTrue(ITy);
2740 
2741     default: break;
2742     }
2743   }
2744 
2745   switch (Pred) {
2746   default:
2747     break;
2748   case ICmpInst::ICMP_UGE:
2749     if (isImpliedCondition(RHS, LHS, Q.DL).getValueOr(false))
2750       return getTrue(ITy);
2751     break;
2752   case ICmpInst::ICMP_SGE:
2753     /// For signed comparison, the values for an i1 are 0 and -1
2754     /// respectively. This maps into a truth table of:
2755     /// LHS | RHS | LHS >=s RHS   | LHS implies RHS
2756     ///  0  |  0  |  1 (0 >= 0)   |  1
2757     ///  0  |  1  |  1 (0 >= -1)  |  1
2758     ///  1  |  0  |  0 (-1 >= 0)  |  0
2759     ///  1  |  1  |  1 (-1 >= -1) |  1
2760     if (isImpliedCondition(LHS, RHS, Q.DL).getValueOr(false))
2761       return getTrue(ITy);
2762     break;
2763   case ICmpInst::ICMP_ULE:
2764     if (isImpliedCondition(LHS, RHS, Q.DL).getValueOr(false))
2765       return getTrue(ITy);
2766     break;
2767   }
2768 
2769   return nullptr;
2770 }
2771 
2772 /// Try hard to fold icmp with zero RHS because this is a common case.
2773 static Value *simplifyICmpWithZero(CmpInst::Predicate Pred, Value *LHS,
2774                                    Value *RHS, const SimplifyQuery &Q) {
2775   if (!match(RHS, m_Zero()))
2776     return nullptr;
2777 
2778   Type *ITy = GetCompareTy(LHS); // The return type.
2779   switch (Pred) {
2780   default:
2781     llvm_unreachable("Unknown ICmp predicate!");
2782   case ICmpInst::ICMP_ULT:
2783     return getFalse(ITy);
2784   case ICmpInst::ICMP_UGE:
2785     return getTrue(ITy);
2786   case ICmpInst::ICMP_EQ:
2787   case ICmpInst::ICMP_ULE:
2788     if (isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT, Q.IIQ.UseInstrInfo))
2789       return getFalse(ITy);
2790     break;
2791   case ICmpInst::ICMP_NE:
2792   case ICmpInst::ICMP_UGT:
2793     if (isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT, Q.IIQ.UseInstrInfo))
2794       return getTrue(ITy);
2795     break;
2796   case ICmpInst::ICMP_SLT: {
2797     KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
2798     if (LHSKnown.isNegative())
2799       return getTrue(ITy);
2800     if (LHSKnown.isNonNegative())
2801       return getFalse(ITy);
2802     break;
2803   }
2804   case ICmpInst::ICMP_SLE: {
2805     KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
2806     if (LHSKnown.isNegative())
2807       return getTrue(ITy);
2808     if (LHSKnown.isNonNegative() &&
2809         isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT))
2810       return getFalse(ITy);
2811     break;
2812   }
2813   case ICmpInst::ICMP_SGE: {
2814     KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
2815     if (LHSKnown.isNegative())
2816       return getFalse(ITy);
2817     if (LHSKnown.isNonNegative())
2818       return getTrue(ITy);
2819     break;
2820   }
2821   case ICmpInst::ICMP_SGT: {
2822     KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
2823     if (LHSKnown.isNegative())
2824       return getFalse(ITy);
2825     if (LHSKnown.isNonNegative() &&
2826         isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT))
2827       return getTrue(ITy);
2828     break;
2829   }
2830   }
2831 
2832   return nullptr;
2833 }
2834 
2835 static Value *simplifyICmpWithConstant(CmpInst::Predicate Pred, Value *LHS,
2836                                        Value *RHS, const InstrInfoQuery &IIQ) {
2837   Type *ITy = GetCompareTy(RHS); // The return type.
2838 
2839   Value *X;
2840   // Sign-bit checks can be optimized to true/false after unsigned
2841   // floating-point casts:
2842   // icmp slt (bitcast (uitofp X)),  0 --> false
2843   // icmp sgt (bitcast (uitofp X)), -1 --> true
2844   if (match(LHS, m_BitCast(m_UIToFP(m_Value(X))))) {
2845     if (Pred == ICmpInst::ICMP_SLT && match(RHS, m_Zero()))
2846       return ConstantInt::getFalse(ITy);
2847     if (Pred == ICmpInst::ICMP_SGT && match(RHS, m_AllOnes()))
2848       return ConstantInt::getTrue(ITy);
2849   }
2850 
2851   const APInt *C;
2852   if (!match(RHS, m_APIntAllowUndef(C)))
2853     return nullptr;
2854 
2855   // Rule out tautological comparisons (eg., ult 0 or uge 0).
2856   ConstantRange RHS_CR = ConstantRange::makeExactICmpRegion(Pred, *C);
2857   if (RHS_CR.isEmptySet())
2858     return ConstantInt::getFalse(ITy);
2859   if (RHS_CR.isFullSet())
2860     return ConstantInt::getTrue(ITy);
2861 
2862   ConstantRange LHS_CR = computeConstantRange(LHS, IIQ.UseInstrInfo);
2863   if (!LHS_CR.isFullSet()) {
2864     if (RHS_CR.contains(LHS_CR))
2865       return ConstantInt::getTrue(ITy);
2866     if (RHS_CR.inverse().contains(LHS_CR))
2867       return ConstantInt::getFalse(ITy);
2868   }
2869 
2870   // (mul nuw/nsw X, MulC) != C --> true  (if C is not a multiple of MulC)
2871   // (mul nuw/nsw X, MulC) == C --> false (if C is not a multiple of MulC)
2872   const APInt *MulC;
2873   if (ICmpInst::isEquality(Pred) &&
2874       ((match(LHS, m_NUWMul(m_Value(), m_APIntAllowUndef(MulC))) &&
2875         *MulC != 0 && C->urem(*MulC) != 0) ||
2876        (match(LHS, m_NSWMul(m_Value(), m_APIntAllowUndef(MulC))) &&
2877         *MulC != 0 && C->srem(*MulC) != 0)))
2878     return ConstantInt::get(ITy, Pred == ICmpInst::ICMP_NE);
2879 
2880   return nullptr;
2881 }
2882 
2883 static Value *simplifyICmpWithBinOpOnLHS(
2884     CmpInst::Predicate Pred, BinaryOperator *LBO, Value *RHS,
2885     const SimplifyQuery &Q, unsigned MaxRecurse) {
2886   Type *ITy = GetCompareTy(RHS); // The return type.
2887 
2888   Value *Y = nullptr;
2889   // icmp pred (or X, Y), X
2890   if (match(LBO, m_c_Or(m_Value(Y), m_Specific(RHS)))) {
2891     if (Pred == ICmpInst::ICMP_ULT)
2892       return getFalse(ITy);
2893     if (Pred == ICmpInst::ICMP_UGE)
2894       return getTrue(ITy);
2895 
2896     if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SGE) {
2897       KnownBits RHSKnown = computeKnownBits(RHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
2898       KnownBits YKnown = computeKnownBits(Y, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
2899       if (RHSKnown.isNonNegative() && YKnown.isNegative())
2900         return Pred == ICmpInst::ICMP_SLT ? getTrue(ITy) : getFalse(ITy);
2901       if (RHSKnown.isNegative() || YKnown.isNonNegative())
2902         return Pred == ICmpInst::ICMP_SLT ? getFalse(ITy) : getTrue(ITy);
2903     }
2904   }
2905 
2906   // icmp pred (and X, Y), X
2907   if (match(LBO, m_c_And(m_Value(), m_Specific(RHS)))) {
2908     if (Pred == ICmpInst::ICMP_UGT)
2909       return getFalse(ITy);
2910     if (Pred == ICmpInst::ICMP_ULE)
2911       return getTrue(ITy);
2912   }
2913 
2914   // icmp pred (urem X, Y), Y
2915   if (match(LBO, m_URem(m_Value(), m_Specific(RHS)))) {
2916     switch (Pred) {
2917     default:
2918       break;
2919     case ICmpInst::ICMP_SGT:
2920     case ICmpInst::ICMP_SGE: {
2921       KnownBits Known = computeKnownBits(RHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
2922       if (!Known.isNonNegative())
2923         break;
2924       LLVM_FALLTHROUGH;
2925     }
2926     case ICmpInst::ICMP_EQ:
2927     case ICmpInst::ICMP_UGT:
2928     case ICmpInst::ICMP_UGE:
2929       return getFalse(ITy);
2930     case ICmpInst::ICMP_SLT:
2931     case ICmpInst::ICMP_SLE: {
2932       KnownBits Known = computeKnownBits(RHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
2933       if (!Known.isNonNegative())
2934         break;
2935       LLVM_FALLTHROUGH;
2936     }
2937     case ICmpInst::ICMP_NE:
2938     case ICmpInst::ICMP_ULT:
2939     case ICmpInst::ICMP_ULE:
2940       return getTrue(ITy);
2941     }
2942   }
2943 
2944   // icmp pred (urem X, Y), X
2945   if (match(LBO, m_URem(m_Specific(RHS), m_Value()))) {
2946     if (Pred == ICmpInst::ICMP_ULE)
2947       return getTrue(ITy);
2948     if (Pred == ICmpInst::ICMP_UGT)
2949       return getFalse(ITy);
2950   }
2951 
2952   // x >>u y <=u x --> true.
2953   // x >>u y >u  x --> false.
2954   // x udiv y <=u x --> true.
2955   // x udiv y >u  x --> false.
2956   if (match(LBO, m_LShr(m_Specific(RHS), m_Value())) ||
2957       match(LBO, m_UDiv(m_Specific(RHS), m_Value()))) {
2958     // icmp pred (X op Y), X
2959     if (Pred == ICmpInst::ICMP_UGT)
2960       return getFalse(ITy);
2961     if (Pred == ICmpInst::ICMP_ULE)
2962       return getTrue(ITy);
2963   }
2964 
2965   // If x is nonzero:
2966   // x >>u C <u  x --> true  for C != 0.
2967   // x >>u C !=  x --> true  for C != 0.
2968   // x >>u C >=u x --> false for C != 0.
2969   // x >>u C ==  x --> false for C != 0.
2970   // x udiv C <u  x --> true  for C != 1.
2971   // x udiv C !=  x --> true  for C != 1.
2972   // x udiv C >=u x --> false for C != 1.
2973   // x udiv C ==  x --> false for C != 1.
2974   // TODO: allow non-constant shift amount/divisor
2975   const APInt *C;
2976   if ((match(LBO, m_LShr(m_Specific(RHS), m_APInt(C))) && *C != 0) ||
2977       (match(LBO, m_UDiv(m_Specific(RHS), m_APInt(C))) && *C != 1)) {
2978     if (isKnownNonZero(RHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) {
2979       switch (Pred) {
2980       default:
2981         break;
2982       case ICmpInst::ICMP_EQ:
2983       case ICmpInst::ICMP_UGE:
2984         return getFalse(ITy);
2985       case ICmpInst::ICMP_NE:
2986       case ICmpInst::ICMP_ULT:
2987         return getTrue(ITy);
2988       case ICmpInst::ICMP_UGT:
2989       case ICmpInst::ICMP_ULE:
2990         // UGT/ULE are handled by the more general case just above
2991         llvm_unreachable("Unexpected UGT/ULE, should have been handled");
2992       }
2993     }
2994   }
2995 
2996   // (x*C1)/C2 <= x for C1 <= C2.
2997   // This holds even if the multiplication overflows: Assume that x != 0 and
2998   // arithmetic is modulo M. For overflow to occur we must have C1 >= M/x and
2999   // thus C2 >= M/x. It follows that (x*C1)/C2 <= (M-1)/C2 <= ((M-1)*x)/M < x.
3000   //
3001   // Additionally, either the multiplication and division might be represented
3002   // as shifts:
3003   // (x*C1)>>C2 <= x for C1 < 2**C2.
3004   // (x<<C1)/C2 <= x for 2**C1 < C2.
3005   const APInt *C1, *C2;
3006   if ((match(LBO, m_UDiv(m_Mul(m_Specific(RHS), m_APInt(C1)), m_APInt(C2))) &&
3007        C1->ule(*C2)) ||
3008       (match(LBO, m_LShr(m_Mul(m_Specific(RHS), m_APInt(C1)), m_APInt(C2))) &&
3009        C1->ule(APInt(C2->getBitWidth(), 1) << *C2)) ||
3010       (match(LBO, m_UDiv(m_Shl(m_Specific(RHS), m_APInt(C1)), m_APInt(C2))) &&
3011        (APInt(C1->getBitWidth(), 1) << *C1).ule(*C2))) {
3012     if (Pred == ICmpInst::ICMP_UGT)
3013       return getFalse(ITy);
3014     if (Pred == ICmpInst::ICMP_ULE)
3015       return getTrue(ITy);
3016   }
3017 
3018   return nullptr;
3019 }
3020 
3021 
3022 // If only one of the icmp's operands has NSW flags, try to prove that:
3023 //
3024 //   icmp slt (x + C1), (x +nsw C2)
3025 //
3026 // is equivalent to:
3027 //
3028 //   icmp slt C1, C2
3029 //
3030 // which is true if x + C2 has the NSW flags set and:
3031 // *) C1 < C2 && C1 >= 0, or
3032 // *) C2 < C1 && C1 <= 0.
3033 //
3034 static bool trySimplifyICmpWithAdds(CmpInst::Predicate Pred, Value *LHS,
3035                                     Value *RHS) {
3036   // TODO: only support icmp slt for now.
3037   if (Pred != CmpInst::ICMP_SLT)
3038     return false;
3039 
3040   // Canonicalize nsw add as RHS.
3041   if (!match(RHS, m_NSWAdd(m_Value(), m_Value())))
3042     std::swap(LHS, RHS);
3043   if (!match(RHS, m_NSWAdd(m_Value(), m_Value())))
3044     return false;
3045 
3046   Value *X;
3047   const APInt *C1, *C2;
3048   if (!match(LHS, m_c_Add(m_Value(X), m_APInt(C1))) ||
3049       !match(RHS, m_c_Add(m_Specific(X), m_APInt(C2))))
3050     return false;
3051 
3052   return (C1->slt(*C2) && C1->isNonNegative()) ||
3053          (C2->slt(*C1) && C1->isNonPositive());
3054 }
3055 
3056 
3057 /// TODO: A large part of this logic is duplicated in InstCombine's
3058 /// foldICmpBinOp(). We should be able to share that and avoid the code
3059 /// duplication.
3060 static Value *simplifyICmpWithBinOp(CmpInst::Predicate Pred, Value *LHS,
3061                                     Value *RHS, const SimplifyQuery &Q,
3062                                     unsigned MaxRecurse) {
3063   BinaryOperator *LBO = dyn_cast<BinaryOperator>(LHS);
3064   BinaryOperator *RBO = dyn_cast<BinaryOperator>(RHS);
3065   if (MaxRecurse && (LBO || RBO)) {
3066     // Analyze the case when either LHS or RHS is an add instruction.
3067     Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr;
3068     // LHS = A + B (or A and B are null); RHS = C + D (or C and D are null).
3069     bool NoLHSWrapProblem = false, NoRHSWrapProblem = false;
3070     if (LBO && LBO->getOpcode() == Instruction::Add) {
3071       A = LBO->getOperand(0);
3072       B = LBO->getOperand(1);
3073       NoLHSWrapProblem =
3074           ICmpInst::isEquality(Pred) ||
3075           (CmpInst::isUnsigned(Pred) &&
3076            Q.IIQ.hasNoUnsignedWrap(cast<OverflowingBinaryOperator>(LBO))) ||
3077           (CmpInst::isSigned(Pred) &&
3078            Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(LBO)));
3079     }
3080     if (RBO && RBO->getOpcode() == Instruction::Add) {
3081       C = RBO->getOperand(0);
3082       D = RBO->getOperand(1);
3083       NoRHSWrapProblem =
3084           ICmpInst::isEquality(Pred) ||
3085           (CmpInst::isUnsigned(Pred) &&
3086            Q.IIQ.hasNoUnsignedWrap(cast<OverflowingBinaryOperator>(RBO))) ||
3087           (CmpInst::isSigned(Pred) &&
3088            Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(RBO)));
3089     }
3090 
3091     // icmp (X+Y), X -> icmp Y, 0 for equalities or if there is no overflow.
3092     if ((A == RHS || B == RHS) && NoLHSWrapProblem)
3093       if (Value *V = SimplifyICmpInst(Pred, A == RHS ? B : A,
3094                                       Constant::getNullValue(RHS->getType()), Q,
3095                                       MaxRecurse - 1))
3096         return V;
3097 
3098     // icmp X, (X+Y) -> icmp 0, Y for equalities or if there is no overflow.
3099     if ((C == LHS || D == LHS) && NoRHSWrapProblem)
3100       if (Value *V =
3101               SimplifyICmpInst(Pred, Constant::getNullValue(LHS->getType()),
3102                                C == LHS ? D : C, Q, MaxRecurse - 1))
3103         return V;
3104 
3105     // icmp (X+Y), (X+Z) -> icmp Y,Z for equalities or if there is no overflow.
3106     bool CanSimplify = (NoLHSWrapProblem && NoRHSWrapProblem) ||
3107                        trySimplifyICmpWithAdds(Pred, LHS, RHS);
3108     if (A && C && (A == C || A == D || B == C || B == D) && CanSimplify) {
3109       // Determine Y and Z in the form icmp (X+Y), (X+Z).
3110       Value *Y, *Z;
3111       if (A == C) {
3112         // C + B == C + D  ->  B == D
3113         Y = B;
3114         Z = D;
3115       } else if (A == D) {
3116         // D + B == C + D  ->  B == C
3117         Y = B;
3118         Z = C;
3119       } else if (B == C) {
3120         // A + C == C + D  ->  A == D
3121         Y = A;
3122         Z = D;
3123       } else {
3124         assert(B == D);
3125         // A + D == C + D  ->  A == C
3126         Y = A;
3127         Z = C;
3128       }
3129       if (Value *V = SimplifyICmpInst(Pred, Y, Z, Q, MaxRecurse - 1))
3130         return V;
3131     }
3132   }
3133 
3134   if (LBO)
3135     if (Value *V = simplifyICmpWithBinOpOnLHS(Pred, LBO, RHS, Q, MaxRecurse))
3136       return V;
3137 
3138   if (RBO)
3139     if (Value *V = simplifyICmpWithBinOpOnLHS(
3140             ICmpInst::getSwappedPredicate(Pred), RBO, LHS, Q, MaxRecurse))
3141       return V;
3142 
3143   // 0 - (zext X) pred C
3144   if (!CmpInst::isUnsigned(Pred) && match(LHS, m_Neg(m_ZExt(m_Value())))) {
3145     const APInt *C;
3146     if (match(RHS, m_APInt(C))) {
3147       if (C->isStrictlyPositive()) {
3148         if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_NE)
3149           return ConstantInt::getTrue(GetCompareTy(RHS));
3150         if (Pred == ICmpInst::ICMP_SGE || Pred == ICmpInst::ICMP_EQ)
3151           return ConstantInt::getFalse(GetCompareTy(RHS));
3152       }
3153       if (C->isNonNegative()) {
3154         if (Pred == ICmpInst::ICMP_SLE)
3155           return ConstantInt::getTrue(GetCompareTy(RHS));
3156         if (Pred == ICmpInst::ICMP_SGT)
3157           return ConstantInt::getFalse(GetCompareTy(RHS));
3158       }
3159     }
3160   }
3161 
3162   //   If C2 is a power-of-2 and C is not:
3163   //   (C2 << X) == C --> false
3164   //   (C2 << X) != C --> true
3165   const APInt *C;
3166   if (match(LHS, m_Shl(m_Power2(), m_Value())) &&
3167       match(RHS, m_APIntAllowUndef(C)) && !C->isPowerOf2()) {
3168     // C2 << X can equal zero in some circumstances.
3169     // This simplification might be unsafe if C is zero.
3170     //
3171     // We know it is safe if:
3172     // - The shift is nsw. We can't shift out the one bit.
3173     // - The shift is nuw. We can't shift out the one bit.
3174     // - C2 is one.
3175     // - C isn't zero.
3176     if (Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(LBO)) ||
3177         Q.IIQ.hasNoUnsignedWrap(cast<OverflowingBinaryOperator>(LBO)) ||
3178         match(LHS, m_Shl(m_One(), m_Value())) || !C->isZero()) {
3179       if (Pred == ICmpInst::ICMP_EQ)
3180         return ConstantInt::getFalse(GetCompareTy(RHS));
3181       if (Pred == ICmpInst::ICMP_NE)
3182         return ConstantInt::getTrue(GetCompareTy(RHS));
3183     }
3184   }
3185 
3186   // TODO: This is overly constrained. LHS can be any power-of-2.
3187   // (1 << X)  >u 0x8000 --> false
3188   // (1 << X) <=u 0x8000 --> true
3189   if (match(LHS, m_Shl(m_One(), m_Value())) && match(RHS, m_SignMask())) {
3190     if (Pred == ICmpInst::ICMP_UGT)
3191       return ConstantInt::getFalse(GetCompareTy(RHS));
3192     if (Pred == ICmpInst::ICMP_ULE)
3193       return ConstantInt::getTrue(GetCompareTy(RHS));
3194   }
3195 
3196   if (MaxRecurse && LBO && RBO && LBO->getOpcode() == RBO->getOpcode() &&
3197       LBO->getOperand(1) == RBO->getOperand(1)) {
3198     switch (LBO->getOpcode()) {
3199     default:
3200       break;
3201     case Instruction::UDiv:
3202     case Instruction::LShr:
3203       if (ICmpInst::isSigned(Pred) || !Q.IIQ.isExact(LBO) ||
3204           !Q.IIQ.isExact(RBO))
3205         break;
3206       if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0),
3207                                       RBO->getOperand(0), Q, MaxRecurse - 1))
3208           return V;
3209       break;
3210     case Instruction::SDiv:
3211       if (!ICmpInst::isEquality(Pred) || !Q.IIQ.isExact(LBO) ||
3212           !Q.IIQ.isExact(RBO))
3213         break;
3214       if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0),
3215                                       RBO->getOperand(0), Q, MaxRecurse - 1))
3216         return V;
3217       break;
3218     case Instruction::AShr:
3219       if (!Q.IIQ.isExact(LBO) || !Q.IIQ.isExact(RBO))
3220         break;
3221       if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0),
3222                                       RBO->getOperand(0), Q, MaxRecurse - 1))
3223         return V;
3224       break;
3225     case Instruction::Shl: {
3226       bool NUW = Q.IIQ.hasNoUnsignedWrap(LBO) && Q.IIQ.hasNoUnsignedWrap(RBO);
3227       bool NSW = Q.IIQ.hasNoSignedWrap(LBO) && Q.IIQ.hasNoSignedWrap(RBO);
3228       if (!NUW && !NSW)
3229         break;
3230       if (!NSW && ICmpInst::isSigned(Pred))
3231         break;
3232       if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0),
3233                                       RBO->getOperand(0), Q, MaxRecurse - 1))
3234         return V;
3235       break;
3236     }
3237     }
3238   }
3239   return nullptr;
3240 }
3241 
3242 /// Simplify integer comparisons where at least one operand of the compare
3243 /// matches an integer min/max idiom.
3244 static Value *simplifyICmpWithMinMax(CmpInst::Predicate Pred, Value *LHS,
3245                                      Value *RHS, const SimplifyQuery &Q,
3246                                      unsigned MaxRecurse) {
3247   Type *ITy = GetCompareTy(LHS); // The return type.
3248   Value *A, *B;
3249   CmpInst::Predicate P = CmpInst::BAD_ICMP_PREDICATE;
3250   CmpInst::Predicate EqP; // Chosen so that "A == max/min(A,B)" iff "A EqP B".
3251 
3252   // Signed variants on "max(a,b)>=a -> true".
3253   if (match(LHS, m_SMax(m_Value(A), m_Value(B))) && (A == RHS || B == RHS)) {
3254     if (A != RHS)
3255       std::swap(A, B);       // smax(A, B) pred A.
3256     EqP = CmpInst::ICMP_SGE; // "A == smax(A, B)" iff "A sge B".
3257     // We analyze this as smax(A, B) pred A.
3258     P = Pred;
3259   } else if (match(RHS, m_SMax(m_Value(A), m_Value(B))) &&
3260              (A == LHS || B == LHS)) {
3261     if (A != LHS)
3262       std::swap(A, B);       // A pred smax(A, B).
3263     EqP = CmpInst::ICMP_SGE; // "A == smax(A, B)" iff "A sge B".
3264     // We analyze this as smax(A, B) swapped-pred A.
3265     P = CmpInst::getSwappedPredicate(Pred);
3266   } else if (match(LHS, m_SMin(m_Value(A), m_Value(B))) &&
3267              (A == RHS || B == RHS)) {
3268     if (A != RHS)
3269       std::swap(A, B);       // smin(A, B) pred A.
3270     EqP = CmpInst::ICMP_SLE; // "A == smin(A, B)" iff "A sle B".
3271     // We analyze this as smax(-A, -B) swapped-pred -A.
3272     // Note that we do not need to actually form -A or -B thanks to EqP.
3273     P = CmpInst::getSwappedPredicate(Pred);
3274   } else if (match(RHS, m_SMin(m_Value(A), m_Value(B))) &&
3275              (A == LHS || B == LHS)) {
3276     if (A != LHS)
3277       std::swap(A, B);       // A pred smin(A, B).
3278     EqP = CmpInst::ICMP_SLE; // "A == smin(A, B)" iff "A sle B".
3279     // We analyze this as smax(-A, -B) pred -A.
3280     // Note that we do not need to actually form -A or -B thanks to EqP.
3281     P = Pred;
3282   }
3283   if (P != CmpInst::BAD_ICMP_PREDICATE) {
3284     // Cases correspond to "max(A, B) p A".
3285     switch (P) {
3286     default:
3287       break;
3288     case CmpInst::ICMP_EQ:
3289     case CmpInst::ICMP_SLE:
3290       // Equivalent to "A EqP B".  This may be the same as the condition tested
3291       // in the max/min; if so, we can just return that.
3292       if (Value *V = ExtractEquivalentCondition(LHS, EqP, A, B))
3293         return V;
3294       if (Value *V = ExtractEquivalentCondition(RHS, EqP, A, B))
3295         return V;
3296       // Otherwise, see if "A EqP B" simplifies.
3297       if (MaxRecurse)
3298         if (Value *V = SimplifyICmpInst(EqP, A, B, Q, MaxRecurse - 1))
3299           return V;
3300       break;
3301     case CmpInst::ICMP_NE:
3302     case CmpInst::ICMP_SGT: {
3303       CmpInst::Predicate InvEqP = CmpInst::getInversePredicate(EqP);
3304       // Equivalent to "A InvEqP B".  This may be the same as the condition
3305       // tested in the max/min; if so, we can just return that.
3306       if (Value *V = ExtractEquivalentCondition(LHS, InvEqP, A, B))
3307         return V;
3308       if (Value *V = ExtractEquivalentCondition(RHS, InvEqP, A, B))
3309         return V;
3310       // Otherwise, see if "A InvEqP B" simplifies.
3311       if (MaxRecurse)
3312         if (Value *V = SimplifyICmpInst(InvEqP, A, B, Q, MaxRecurse - 1))
3313           return V;
3314       break;
3315     }
3316     case CmpInst::ICMP_SGE:
3317       // Always true.
3318       return getTrue(ITy);
3319     case CmpInst::ICMP_SLT:
3320       // Always false.
3321       return getFalse(ITy);
3322     }
3323   }
3324 
3325   // Unsigned variants on "max(a,b)>=a -> true".
3326   P = CmpInst::BAD_ICMP_PREDICATE;
3327   if (match(LHS, m_UMax(m_Value(A), m_Value(B))) && (A == RHS || B == RHS)) {
3328     if (A != RHS)
3329       std::swap(A, B);       // umax(A, B) pred A.
3330     EqP = CmpInst::ICMP_UGE; // "A == umax(A, B)" iff "A uge B".
3331     // We analyze this as umax(A, B) pred A.
3332     P = Pred;
3333   } else if (match(RHS, m_UMax(m_Value(A), m_Value(B))) &&
3334              (A == LHS || B == LHS)) {
3335     if (A != LHS)
3336       std::swap(A, B);       // A pred umax(A, B).
3337     EqP = CmpInst::ICMP_UGE; // "A == umax(A, B)" iff "A uge B".
3338     // We analyze this as umax(A, B) swapped-pred A.
3339     P = CmpInst::getSwappedPredicate(Pred);
3340   } else if (match(LHS, m_UMin(m_Value(A), m_Value(B))) &&
3341              (A == RHS || B == RHS)) {
3342     if (A != RHS)
3343       std::swap(A, B);       // umin(A, B) pred A.
3344     EqP = CmpInst::ICMP_ULE; // "A == umin(A, B)" iff "A ule B".
3345     // We analyze this as umax(-A, -B) swapped-pred -A.
3346     // Note that we do not need to actually form -A or -B thanks to EqP.
3347     P = CmpInst::getSwappedPredicate(Pred);
3348   } else if (match(RHS, m_UMin(m_Value(A), m_Value(B))) &&
3349              (A == LHS || B == LHS)) {
3350     if (A != LHS)
3351       std::swap(A, B);       // A pred umin(A, B).
3352     EqP = CmpInst::ICMP_ULE; // "A == umin(A, B)" iff "A ule B".
3353     // We analyze this as umax(-A, -B) pred -A.
3354     // Note that we do not need to actually form -A or -B thanks to EqP.
3355     P = Pred;
3356   }
3357   if (P != CmpInst::BAD_ICMP_PREDICATE) {
3358     // Cases correspond to "max(A, B) p A".
3359     switch (P) {
3360     default:
3361       break;
3362     case CmpInst::ICMP_EQ:
3363     case CmpInst::ICMP_ULE:
3364       // Equivalent to "A EqP B".  This may be the same as the condition tested
3365       // in the max/min; if so, we can just return that.
3366       if (Value *V = ExtractEquivalentCondition(LHS, EqP, A, B))
3367         return V;
3368       if (Value *V = ExtractEquivalentCondition(RHS, EqP, A, B))
3369         return V;
3370       // Otherwise, see if "A EqP B" simplifies.
3371       if (MaxRecurse)
3372         if (Value *V = SimplifyICmpInst(EqP, A, B, Q, MaxRecurse - 1))
3373           return V;
3374       break;
3375     case CmpInst::ICMP_NE:
3376     case CmpInst::ICMP_UGT: {
3377       CmpInst::Predicate InvEqP = CmpInst::getInversePredicate(EqP);
3378       // Equivalent to "A InvEqP B".  This may be the same as the condition
3379       // tested in the max/min; if so, we can just return that.
3380       if (Value *V = ExtractEquivalentCondition(LHS, InvEqP, A, B))
3381         return V;
3382       if (Value *V = ExtractEquivalentCondition(RHS, InvEqP, A, B))
3383         return V;
3384       // Otherwise, see if "A InvEqP B" simplifies.
3385       if (MaxRecurse)
3386         if (Value *V = SimplifyICmpInst(InvEqP, A, B, Q, MaxRecurse - 1))
3387           return V;
3388       break;
3389     }
3390     case CmpInst::ICMP_UGE:
3391       return getTrue(ITy);
3392     case CmpInst::ICMP_ULT:
3393       return getFalse(ITy);
3394     }
3395   }
3396 
3397   // Comparing 1 each of min/max with a common operand?
3398   // Canonicalize min operand to RHS.
3399   if (match(LHS, m_UMin(m_Value(), m_Value())) ||
3400       match(LHS, m_SMin(m_Value(), m_Value()))) {
3401     std::swap(LHS, RHS);
3402     Pred = ICmpInst::getSwappedPredicate(Pred);
3403   }
3404 
3405   Value *C, *D;
3406   if (match(LHS, m_SMax(m_Value(A), m_Value(B))) &&
3407       match(RHS, m_SMin(m_Value(C), m_Value(D))) &&
3408       (A == C || A == D || B == C || B == D)) {
3409     // smax(A, B) >=s smin(A, D) --> true
3410     if (Pred == CmpInst::ICMP_SGE)
3411       return getTrue(ITy);
3412     // smax(A, B) <s smin(A, D) --> false
3413     if (Pred == CmpInst::ICMP_SLT)
3414       return getFalse(ITy);
3415   } else if (match(LHS, m_UMax(m_Value(A), m_Value(B))) &&
3416              match(RHS, m_UMin(m_Value(C), m_Value(D))) &&
3417              (A == C || A == D || B == C || B == D)) {
3418     // umax(A, B) >=u umin(A, D) --> true
3419     if (Pred == CmpInst::ICMP_UGE)
3420       return getTrue(ITy);
3421     // umax(A, B) <u umin(A, D) --> false
3422     if (Pred == CmpInst::ICMP_ULT)
3423       return getFalse(ITy);
3424   }
3425 
3426   return nullptr;
3427 }
3428 
3429 static Value *simplifyICmpWithDominatingAssume(CmpInst::Predicate Predicate,
3430                                                Value *LHS, Value *RHS,
3431                                                const SimplifyQuery &Q) {
3432   // Gracefully handle instructions that have not been inserted yet.
3433   if (!Q.AC || !Q.CxtI || !Q.CxtI->getParent())
3434     return nullptr;
3435 
3436   for (Value *AssumeBaseOp : {LHS, RHS}) {
3437     for (auto &AssumeVH : Q.AC->assumptionsFor(AssumeBaseOp)) {
3438       if (!AssumeVH)
3439         continue;
3440 
3441       CallInst *Assume = cast<CallInst>(AssumeVH);
3442       if (Optional<bool> Imp =
3443               isImpliedCondition(Assume->getArgOperand(0), Predicate, LHS, RHS,
3444                                  Q.DL))
3445         if (isValidAssumeForContext(Assume, Q.CxtI, Q.DT))
3446           return ConstantInt::get(GetCompareTy(LHS), *Imp);
3447     }
3448   }
3449 
3450   return nullptr;
3451 }
3452 
3453 /// Given operands for an ICmpInst, see if we can fold the result.
3454 /// If not, this returns null.
3455 static Value *SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS,
3456                                const SimplifyQuery &Q, unsigned MaxRecurse) {
3457   CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate;
3458   assert(CmpInst::isIntPredicate(Pred) && "Not an integer compare!");
3459 
3460   if (Constant *CLHS = dyn_cast<Constant>(LHS)) {
3461     if (Constant *CRHS = dyn_cast<Constant>(RHS))
3462       return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, Q.DL, Q.TLI);
3463 
3464     // If we have a constant, make sure it is on the RHS.
3465     std::swap(LHS, RHS);
3466     Pred = CmpInst::getSwappedPredicate(Pred);
3467   }
3468   assert(!isa<UndefValue>(LHS) && "Unexpected icmp undef,%X");
3469 
3470   Type *ITy = GetCompareTy(LHS); // The return type.
3471 
3472   // icmp poison, X -> poison
3473   if (isa<PoisonValue>(RHS))
3474     return PoisonValue::get(ITy);
3475 
3476   // For EQ and NE, we can always pick a value for the undef to make the
3477   // predicate pass or fail, so we can return undef.
3478   // Matches behavior in llvm::ConstantFoldCompareInstruction.
3479   if (Q.isUndefValue(RHS) && ICmpInst::isEquality(Pred))
3480     return UndefValue::get(ITy);
3481 
3482   // icmp X, X -> true/false
3483   // icmp X, undef -> true/false because undef could be X.
3484   if (LHS == RHS || Q.isUndefValue(RHS))
3485     return ConstantInt::get(ITy, CmpInst::isTrueWhenEqual(Pred));
3486 
3487   if (Value *V = simplifyICmpOfBools(Pred, LHS, RHS, Q))
3488     return V;
3489 
3490   // TODO: Sink/common this with other potentially expensive calls that use
3491   //       ValueTracking? See comment below for isKnownNonEqual().
3492   if (Value *V = simplifyICmpWithZero(Pred, LHS, RHS, Q))
3493     return V;
3494 
3495   if (Value *V = simplifyICmpWithConstant(Pred, LHS, RHS, Q.IIQ))
3496     return V;
3497 
3498   // If both operands have range metadata, use the metadata
3499   // to simplify the comparison.
3500   if (isa<Instruction>(RHS) && isa<Instruction>(LHS)) {
3501     auto RHS_Instr = cast<Instruction>(RHS);
3502     auto LHS_Instr = cast<Instruction>(LHS);
3503 
3504     if (Q.IIQ.getMetadata(RHS_Instr, LLVMContext::MD_range) &&
3505         Q.IIQ.getMetadata(LHS_Instr, LLVMContext::MD_range)) {
3506       auto RHS_CR = getConstantRangeFromMetadata(
3507           *RHS_Instr->getMetadata(LLVMContext::MD_range));
3508       auto LHS_CR = getConstantRangeFromMetadata(
3509           *LHS_Instr->getMetadata(LLVMContext::MD_range));
3510 
3511       if (LHS_CR.icmp(Pred, RHS_CR))
3512         return ConstantInt::getTrue(RHS->getContext());
3513 
3514       if (LHS_CR.icmp(CmpInst::getInversePredicate(Pred), RHS_CR))
3515         return ConstantInt::getFalse(RHS->getContext());
3516     }
3517   }
3518 
3519   // Compare of cast, for example (zext X) != 0 -> X != 0
3520   if (isa<CastInst>(LHS) && (isa<Constant>(RHS) || isa<CastInst>(RHS))) {
3521     Instruction *LI = cast<CastInst>(LHS);
3522     Value *SrcOp = LI->getOperand(0);
3523     Type *SrcTy = SrcOp->getType();
3524     Type *DstTy = LI->getType();
3525 
3526     // Turn icmp (ptrtoint x), (ptrtoint/constant) into a compare of the input
3527     // if the integer type is the same size as the pointer type.
3528     if (MaxRecurse && isa<PtrToIntInst>(LI) &&
3529         Q.DL.getTypeSizeInBits(SrcTy) == DstTy->getPrimitiveSizeInBits()) {
3530       if (Constant *RHSC = dyn_cast<Constant>(RHS)) {
3531         // Transfer the cast to the constant.
3532         if (Value *V = SimplifyICmpInst(Pred, SrcOp,
3533                                         ConstantExpr::getIntToPtr(RHSC, SrcTy),
3534                                         Q, MaxRecurse-1))
3535           return V;
3536       } else if (PtrToIntInst *RI = dyn_cast<PtrToIntInst>(RHS)) {
3537         if (RI->getOperand(0)->getType() == SrcTy)
3538           // Compare without the cast.
3539           if (Value *V = SimplifyICmpInst(Pred, SrcOp, RI->getOperand(0),
3540                                           Q, MaxRecurse-1))
3541             return V;
3542       }
3543     }
3544 
3545     if (isa<ZExtInst>(LHS)) {
3546       // Turn icmp (zext X), (zext Y) into a compare of X and Y if they have the
3547       // same type.
3548       if (ZExtInst *RI = dyn_cast<ZExtInst>(RHS)) {
3549         if (MaxRecurse && SrcTy == RI->getOperand(0)->getType())
3550           // Compare X and Y.  Note that signed predicates become unsigned.
3551           if (Value *V = SimplifyICmpInst(ICmpInst::getUnsignedPredicate(Pred),
3552                                           SrcOp, RI->getOperand(0), Q,
3553                                           MaxRecurse-1))
3554             return V;
3555       }
3556       // Fold (zext X) ule (sext X), (zext X) sge (sext X) to true.
3557       else if (SExtInst *RI = dyn_cast<SExtInst>(RHS)) {
3558         if (SrcOp == RI->getOperand(0)) {
3559           if (Pred == ICmpInst::ICMP_ULE || Pred == ICmpInst::ICMP_SGE)
3560             return ConstantInt::getTrue(ITy);
3561           if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_SLT)
3562             return ConstantInt::getFalse(ITy);
3563         }
3564       }
3565       // Turn icmp (zext X), Cst into a compare of X and Cst if Cst is extended
3566       // too.  If not, then try to deduce the result of the comparison.
3567       else if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
3568         // Compute the constant that would happen if we truncated to SrcTy then
3569         // reextended to DstTy.
3570         Constant *Trunc = ConstantExpr::getTrunc(CI, SrcTy);
3571         Constant *RExt = ConstantExpr::getCast(CastInst::ZExt, Trunc, DstTy);
3572 
3573         // If the re-extended constant didn't change then this is effectively
3574         // also a case of comparing two zero-extended values.
3575         if (RExt == CI && MaxRecurse)
3576           if (Value *V = SimplifyICmpInst(ICmpInst::getUnsignedPredicate(Pred),
3577                                         SrcOp, Trunc, Q, MaxRecurse-1))
3578             return V;
3579 
3580         // Otherwise the upper bits of LHS are zero while RHS has a non-zero bit
3581         // there.  Use this to work out the result of the comparison.
3582         if (RExt != CI) {
3583           switch (Pred) {
3584           default: llvm_unreachable("Unknown ICmp predicate!");
3585           // LHS <u RHS.
3586           case ICmpInst::ICMP_EQ:
3587           case ICmpInst::ICMP_UGT:
3588           case ICmpInst::ICMP_UGE:
3589             return ConstantInt::getFalse(CI->getContext());
3590 
3591           case ICmpInst::ICMP_NE:
3592           case ICmpInst::ICMP_ULT:
3593           case ICmpInst::ICMP_ULE:
3594             return ConstantInt::getTrue(CI->getContext());
3595 
3596           // LHS is non-negative.  If RHS is negative then LHS >s LHS.  If RHS
3597           // is non-negative then LHS <s RHS.
3598           case ICmpInst::ICMP_SGT:
3599           case ICmpInst::ICMP_SGE:
3600             return CI->getValue().isNegative() ?
3601               ConstantInt::getTrue(CI->getContext()) :
3602               ConstantInt::getFalse(CI->getContext());
3603 
3604           case ICmpInst::ICMP_SLT:
3605           case ICmpInst::ICMP_SLE:
3606             return CI->getValue().isNegative() ?
3607               ConstantInt::getFalse(CI->getContext()) :
3608               ConstantInt::getTrue(CI->getContext());
3609           }
3610         }
3611       }
3612     }
3613 
3614     if (isa<SExtInst>(LHS)) {
3615       // Turn icmp (sext X), (sext Y) into a compare of X and Y if they have the
3616       // same type.
3617       if (SExtInst *RI = dyn_cast<SExtInst>(RHS)) {
3618         if (MaxRecurse && SrcTy == RI->getOperand(0)->getType())
3619           // Compare X and Y.  Note that the predicate does not change.
3620           if (Value *V = SimplifyICmpInst(Pred, SrcOp, RI->getOperand(0),
3621                                           Q, MaxRecurse-1))
3622             return V;
3623       }
3624       // Fold (sext X) uge (zext X), (sext X) sle (zext X) to true.
3625       else if (ZExtInst *RI = dyn_cast<ZExtInst>(RHS)) {
3626         if (SrcOp == RI->getOperand(0)) {
3627           if (Pred == ICmpInst::ICMP_UGE || Pred == ICmpInst::ICMP_SLE)
3628             return ConstantInt::getTrue(ITy);
3629           if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_SGT)
3630             return ConstantInt::getFalse(ITy);
3631         }
3632       }
3633       // Turn icmp (sext X), Cst into a compare of X and Cst if Cst is extended
3634       // too.  If not, then try to deduce the result of the comparison.
3635       else if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
3636         // Compute the constant that would happen if we truncated to SrcTy then
3637         // reextended to DstTy.
3638         Constant *Trunc = ConstantExpr::getTrunc(CI, SrcTy);
3639         Constant *RExt = ConstantExpr::getCast(CastInst::SExt, Trunc, DstTy);
3640 
3641         // If the re-extended constant didn't change then this is effectively
3642         // also a case of comparing two sign-extended values.
3643         if (RExt == CI && MaxRecurse)
3644           if (Value *V = SimplifyICmpInst(Pred, SrcOp, Trunc, Q, MaxRecurse-1))
3645             return V;
3646 
3647         // Otherwise the upper bits of LHS are all equal, while RHS has varying
3648         // bits there.  Use this to work out the result of the comparison.
3649         if (RExt != CI) {
3650           switch (Pred) {
3651           default: llvm_unreachable("Unknown ICmp predicate!");
3652           case ICmpInst::ICMP_EQ:
3653             return ConstantInt::getFalse(CI->getContext());
3654           case ICmpInst::ICMP_NE:
3655             return ConstantInt::getTrue(CI->getContext());
3656 
3657           // If RHS is non-negative then LHS <s RHS.  If RHS is negative then
3658           // LHS >s RHS.
3659           case ICmpInst::ICMP_SGT:
3660           case ICmpInst::ICMP_SGE:
3661             return CI->getValue().isNegative() ?
3662               ConstantInt::getTrue(CI->getContext()) :
3663               ConstantInt::getFalse(CI->getContext());
3664           case ICmpInst::ICMP_SLT:
3665           case ICmpInst::ICMP_SLE:
3666             return CI->getValue().isNegative() ?
3667               ConstantInt::getFalse(CI->getContext()) :
3668               ConstantInt::getTrue(CI->getContext());
3669 
3670           // If LHS is non-negative then LHS <u RHS.  If LHS is negative then
3671           // LHS >u RHS.
3672           case ICmpInst::ICMP_UGT:
3673           case ICmpInst::ICMP_UGE:
3674             // Comparison is true iff the LHS <s 0.
3675             if (MaxRecurse)
3676               if (Value *V = SimplifyICmpInst(ICmpInst::ICMP_SLT, SrcOp,
3677                                               Constant::getNullValue(SrcTy),
3678                                               Q, MaxRecurse-1))
3679                 return V;
3680             break;
3681           case ICmpInst::ICMP_ULT:
3682           case ICmpInst::ICMP_ULE:
3683             // Comparison is true iff the LHS >=s 0.
3684             if (MaxRecurse)
3685               if (Value *V = SimplifyICmpInst(ICmpInst::ICMP_SGE, SrcOp,
3686                                               Constant::getNullValue(SrcTy),
3687                                               Q, MaxRecurse-1))
3688                 return V;
3689             break;
3690           }
3691         }
3692       }
3693     }
3694   }
3695 
3696   // icmp eq|ne X, Y -> false|true if X != Y
3697   // This is potentially expensive, and we have already computedKnownBits for
3698   // compares with 0 above here, so only try this for a non-zero compare.
3699   if (ICmpInst::isEquality(Pred) && !match(RHS, m_Zero()) &&
3700       isKnownNonEqual(LHS, RHS, Q.DL, Q.AC, Q.CxtI, Q.DT, Q.IIQ.UseInstrInfo)) {
3701     return Pred == ICmpInst::ICMP_NE ? getTrue(ITy) : getFalse(ITy);
3702   }
3703 
3704   if (Value *V = simplifyICmpWithBinOp(Pred, LHS, RHS, Q, MaxRecurse))
3705     return V;
3706 
3707   if (Value *V = simplifyICmpWithMinMax(Pred, LHS, RHS, Q, MaxRecurse))
3708     return V;
3709 
3710   if (Value *V = simplifyICmpWithDominatingAssume(Pred, LHS, RHS, Q))
3711     return V;
3712 
3713   // Simplify comparisons of related pointers using a powerful, recursive
3714   // GEP-walk when we have target data available..
3715   if (LHS->getType()->isPointerTy())
3716     if (auto *C = computePointerICmp(Pred, LHS, RHS, Q))
3717       return C;
3718   if (auto *CLHS = dyn_cast<PtrToIntOperator>(LHS))
3719     if (auto *CRHS = dyn_cast<PtrToIntOperator>(RHS))
3720       if (Q.DL.getTypeSizeInBits(CLHS->getPointerOperandType()) ==
3721               Q.DL.getTypeSizeInBits(CLHS->getType()) &&
3722           Q.DL.getTypeSizeInBits(CRHS->getPointerOperandType()) ==
3723               Q.DL.getTypeSizeInBits(CRHS->getType()))
3724         if (auto *C = computePointerICmp(Pred, CLHS->getPointerOperand(),
3725                                          CRHS->getPointerOperand(), Q))
3726           return C;
3727 
3728   // If the comparison is with the result of a select instruction, check whether
3729   // comparing with either branch of the select always yields the same value.
3730   if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS))
3731     if (Value *V = ThreadCmpOverSelect(Pred, LHS, RHS, Q, MaxRecurse))
3732       return V;
3733 
3734   // If the comparison is with the result of a phi instruction, check whether
3735   // doing the compare with each incoming phi value yields a common result.
3736   if (isa<PHINode>(LHS) || isa<PHINode>(RHS))
3737     if (Value *V = ThreadCmpOverPHI(Pred, LHS, RHS, Q, MaxRecurse))
3738       return V;
3739 
3740   return nullptr;
3741 }
3742 
3743 Value *llvm::SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS,
3744                               const SimplifyQuery &Q) {
3745   return ::SimplifyICmpInst(Predicate, LHS, RHS, Q, RecursionLimit);
3746 }
3747 
3748 /// Given operands for an FCmpInst, see if we can fold the result.
3749 /// If not, this returns null.
3750 static Value *SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
3751                                FastMathFlags FMF, const SimplifyQuery &Q,
3752                                unsigned MaxRecurse) {
3753   CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate;
3754   assert(CmpInst::isFPPredicate(Pred) && "Not an FP compare!");
3755 
3756   if (Constant *CLHS = dyn_cast<Constant>(LHS)) {
3757     if (Constant *CRHS = dyn_cast<Constant>(RHS))
3758       return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, Q.DL, Q.TLI);
3759 
3760     // If we have a constant, make sure it is on the RHS.
3761     std::swap(LHS, RHS);
3762     Pred = CmpInst::getSwappedPredicate(Pred);
3763   }
3764 
3765   // Fold trivial predicates.
3766   Type *RetTy = GetCompareTy(LHS);
3767   if (Pred == FCmpInst::FCMP_FALSE)
3768     return getFalse(RetTy);
3769   if (Pred == FCmpInst::FCMP_TRUE)
3770     return getTrue(RetTy);
3771 
3772   // Fold (un)ordered comparison if we can determine there are no NaNs.
3773   if (Pred == FCmpInst::FCMP_UNO || Pred == FCmpInst::FCMP_ORD)
3774     if (FMF.noNaNs() ||
3775         (isKnownNeverNaN(LHS, Q.TLI) && isKnownNeverNaN(RHS, Q.TLI)))
3776       return ConstantInt::get(RetTy, Pred == FCmpInst::FCMP_ORD);
3777 
3778   // NaN is unordered; NaN is not ordered.
3779   assert((FCmpInst::isOrdered(Pred) || FCmpInst::isUnordered(Pred)) &&
3780          "Comparison must be either ordered or unordered");
3781   if (match(RHS, m_NaN()))
3782     return ConstantInt::get(RetTy, CmpInst::isUnordered(Pred));
3783 
3784   // fcmp pred x, poison and  fcmp pred poison, x
3785   // fold to poison
3786   if (isa<PoisonValue>(LHS) || isa<PoisonValue>(RHS))
3787     return PoisonValue::get(RetTy);
3788 
3789   // fcmp pred x, undef  and  fcmp pred undef, x
3790   // fold to true if unordered, false if ordered
3791   if (Q.isUndefValue(LHS) || Q.isUndefValue(RHS)) {
3792     // Choosing NaN for the undef will always make unordered comparison succeed
3793     // and ordered comparison fail.
3794     return ConstantInt::get(RetTy, CmpInst::isUnordered(Pred));
3795   }
3796 
3797   // fcmp x,x -> true/false.  Not all compares are foldable.
3798   if (LHS == RHS) {
3799     if (CmpInst::isTrueWhenEqual(Pred))
3800       return getTrue(RetTy);
3801     if (CmpInst::isFalseWhenEqual(Pred))
3802       return getFalse(RetTy);
3803   }
3804 
3805   // Handle fcmp with constant RHS.
3806   // TODO: Use match with a specific FP value, so these work with vectors with
3807   // undef lanes.
3808   const APFloat *C;
3809   if (match(RHS, m_APFloat(C))) {
3810     // Check whether the constant is an infinity.
3811     if (C->isInfinity()) {
3812       if (C->isNegative()) {
3813         switch (Pred) {
3814         case FCmpInst::FCMP_OLT:
3815           // No value is ordered and less than negative infinity.
3816           return getFalse(RetTy);
3817         case FCmpInst::FCMP_UGE:
3818           // All values are unordered with or at least negative infinity.
3819           return getTrue(RetTy);
3820         default:
3821           break;
3822         }
3823       } else {
3824         switch (Pred) {
3825         case FCmpInst::FCMP_OGT:
3826           // No value is ordered and greater than infinity.
3827           return getFalse(RetTy);
3828         case FCmpInst::FCMP_ULE:
3829           // All values are unordered with and at most infinity.
3830           return getTrue(RetTy);
3831         default:
3832           break;
3833         }
3834       }
3835 
3836       // LHS == Inf
3837       if (Pred == FCmpInst::FCMP_OEQ && isKnownNeverInfinity(LHS, Q.TLI))
3838         return getFalse(RetTy);
3839       // LHS != Inf
3840       if (Pred == FCmpInst::FCMP_UNE && isKnownNeverInfinity(LHS, Q.TLI))
3841         return getTrue(RetTy);
3842       // LHS == Inf || LHS == NaN
3843       if (Pred == FCmpInst::FCMP_UEQ && isKnownNeverInfinity(LHS, Q.TLI) &&
3844           isKnownNeverNaN(LHS, Q.TLI))
3845         return getFalse(RetTy);
3846       // LHS != Inf && LHS != NaN
3847       if (Pred == FCmpInst::FCMP_ONE && isKnownNeverInfinity(LHS, Q.TLI) &&
3848           isKnownNeverNaN(LHS, Q.TLI))
3849         return getTrue(RetTy);
3850     }
3851     if (C->isNegative() && !C->isNegZero()) {
3852       assert(!C->isNaN() && "Unexpected NaN constant!");
3853       // TODO: We can catch more cases by using a range check rather than
3854       //       relying on CannotBeOrderedLessThanZero.
3855       switch (Pred) {
3856       case FCmpInst::FCMP_UGE:
3857       case FCmpInst::FCMP_UGT:
3858       case FCmpInst::FCMP_UNE:
3859         // (X >= 0) implies (X > C) when (C < 0)
3860         if (CannotBeOrderedLessThanZero(LHS, Q.TLI))
3861           return getTrue(RetTy);
3862         break;
3863       case FCmpInst::FCMP_OEQ:
3864       case FCmpInst::FCMP_OLE:
3865       case FCmpInst::FCMP_OLT:
3866         // (X >= 0) implies !(X < C) when (C < 0)
3867         if (CannotBeOrderedLessThanZero(LHS, Q.TLI))
3868           return getFalse(RetTy);
3869         break;
3870       default:
3871         break;
3872       }
3873     }
3874 
3875     // Check comparison of [minnum/maxnum with constant] with other constant.
3876     const APFloat *C2;
3877     if ((match(LHS, m_Intrinsic<Intrinsic::minnum>(m_Value(), m_APFloat(C2))) &&
3878          *C2 < *C) ||
3879         (match(LHS, m_Intrinsic<Intrinsic::maxnum>(m_Value(), m_APFloat(C2))) &&
3880          *C2 > *C)) {
3881       bool IsMaxNum =
3882           cast<IntrinsicInst>(LHS)->getIntrinsicID() == Intrinsic::maxnum;
3883       // The ordered relationship and minnum/maxnum guarantee that we do not
3884       // have NaN constants, so ordered/unordered preds are handled the same.
3885       switch (Pred) {
3886       case FCmpInst::FCMP_OEQ: case FCmpInst::FCMP_UEQ:
3887         // minnum(X, LesserC)  == C --> false
3888         // maxnum(X, GreaterC) == C --> false
3889         return getFalse(RetTy);
3890       case FCmpInst::FCMP_ONE: case FCmpInst::FCMP_UNE:
3891         // minnum(X, LesserC)  != C --> true
3892         // maxnum(X, GreaterC) != C --> true
3893         return getTrue(RetTy);
3894       case FCmpInst::FCMP_OGE: case FCmpInst::FCMP_UGE:
3895       case FCmpInst::FCMP_OGT: case FCmpInst::FCMP_UGT:
3896         // minnum(X, LesserC)  >= C --> false
3897         // minnum(X, LesserC)  >  C --> false
3898         // maxnum(X, GreaterC) >= C --> true
3899         // maxnum(X, GreaterC) >  C --> true
3900         return ConstantInt::get(RetTy, IsMaxNum);
3901       case FCmpInst::FCMP_OLE: case FCmpInst::FCMP_ULE:
3902       case FCmpInst::FCMP_OLT: case FCmpInst::FCMP_ULT:
3903         // minnum(X, LesserC)  <= C --> true
3904         // minnum(X, LesserC)  <  C --> true
3905         // maxnum(X, GreaterC) <= C --> false
3906         // maxnum(X, GreaterC) <  C --> false
3907         return ConstantInt::get(RetTy, !IsMaxNum);
3908       default:
3909         // TRUE/FALSE/ORD/UNO should be handled before this.
3910         llvm_unreachable("Unexpected fcmp predicate");
3911       }
3912     }
3913   }
3914 
3915   if (match(RHS, m_AnyZeroFP())) {
3916     switch (Pred) {
3917     case FCmpInst::FCMP_OGE:
3918     case FCmpInst::FCMP_ULT:
3919       // Positive or zero X >= 0.0 --> true
3920       // Positive or zero X <  0.0 --> false
3921       if ((FMF.noNaNs() || isKnownNeverNaN(LHS, Q.TLI)) &&
3922           CannotBeOrderedLessThanZero(LHS, Q.TLI))
3923         return Pred == FCmpInst::FCMP_OGE ? getTrue(RetTy) : getFalse(RetTy);
3924       break;
3925     case FCmpInst::FCMP_UGE:
3926     case FCmpInst::FCMP_OLT:
3927       // Positive or zero or nan X >= 0.0 --> true
3928       // Positive or zero or nan X <  0.0 --> false
3929       if (CannotBeOrderedLessThanZero(LHS, Q.TLI))
3930         return Pred == FCmpInst::FCMP_UGE ? getTrue(RetTy) : getFalse(RetTy);
3931       break;
3932     default:
3933       break;
3934     }
3935   }
3936 
3937   // If the comparison is with the result of a select instruction, check whether
3938   // comparing with either branch of the select always yields the same value.
3939   if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS))
3940     if (Value *V = ThreadCmpOverSelect(Pred, LHS, RHS, Q, MaxRecurse))
3941       return V;
3942 
3943   // If the comparison is with the result of a phi instruction, check whether
3944   // doing the compare with each incoming phi value yields a common result.
3945   if (isa<PHINode>(LHS) || isa<PHINode>(RHS))
3946     if (Value *V = ThreadCmpOverPHI(Pred, LHS, RHS, Q, MaxRecurse))
3947       return V;
3948 
3949   return nullptr;
3950 }
3951 
3952 Value *llvm::SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
3953                               FastMathFlags FMF, const SimplifyQuery &Q) {
3954   return ::SimplifyFCmpInst(Predicate, LHS, RHS, FMF, Q, RecursionLimit);
3955 }
3956 
3957 static Value *simplifyWithOpReplaced(Value *V, Value *Op, Value *RepOp,
3958                                      const SimplifyQuery &Q,
3959                                      bool AllowRefinement,
3960                                      unsigned MaxRecurse) {
3961   assert(!Op->getType()->isVectorTy() && "This is not safe for vectors");
3962 
3963   // Trivial replacement.
3964   if (V == Op)
3965     return RepOp;
3966 
3967   // We cannot replace a constant, and shouldn't even try.
3968   if (isa<Constant>(Op))
3969     return nullptr;
3970 
3971   auto *I = dyn_cast<Instruction>(V);
3972   if (!I || !is_contained(I->operands(), Op))
3973     return nullptr;
3974 
3975   // Replace Op with RepOp in instruction operands.
3976   SmallVector<Value *, 8> NewOps(I->getNumOperands());
3977   transform(I->operands(), NewOps.begin(),
3978             [&](Value *V) { return V == Op ? RepOp : V; });
3979 
3980   if (!AllowRefinement) {
3981     // General InstSimplify functions may refine the result, e.g. by returning
3982     // a constant for a potentially poison value. To avoid this, implement only
3983     // a few non-refining but profitable transforms here.
3984 
3985     if (auto *BO = dyn_cast<BinaryOperator>(I)) {
3986       unsigned Opcode = BO->getOpcode();
3987       // id op x -> x, x op id -> x
3988       if (NewOps[0] == ConstantExpr::getBinOpIdentity(Opcode, I->getType()))
3989         return NewOps[1];
3990       if (NewOps[1] == ConstantExpr::getBinOpIdentity(Opcode, I->getType(),
3991                                                       /* RHS */ true))
3992         return NewOps[0];
3993 
3994       // x & x -> x, x | x -> x
3995       if ((Opcode == Instruction::And || Opcode == Instruction::Or) &&
3996           NewOps[0] == NewOps[1])
3997         return NewOps[0];
3998     }
3999 
4000     if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) {
4001       // getelementptr x, 0 -> x
4002       if (NewOps.size() == 2 && match(NewOps[1], m_Zero()) &&
4003           !GEP->isInBounds())
4004         return NewOps[0];
4005     }
4006   } else if (MaxRecurse) {
4007     // The simplification queries below may return the original value. Consider:
4008     //   %div = udiv i32 %arg, %arg2
4009     //   %mul = mul nsw i32 %div, %arg2
4010     //   %cmp = icmp eq i32 %mul, %arg
4011     //   %sel = select i1 %cmp, i32 %div, i32 undef
4012     // Replacing %arg by %mul, %div becomes "udiv i32 %mul, %arg2", which
4013     // simplifies back to %arg. This can only happen because %mul does not
4014     // dominate %div. To ensure a consistent return value contract, we make sure
4015     // that this case returns nullptr as well.
4016     auto PreventSelfSimplify = [V](Value *Simplified) {
4017       return Simplified != V ? Simplified : nullptr;
4018     };
4019 
4020     if (auto *B = dyn_cast<BinaryOperator>(I))
4021       return PreventSelfSimplify(SimplifyBinOp(B->getOpcode(), NewOps[0],
4022                                                NewOps[1], Q, MaxRecurse - 1));
4023 
4024     if (CmpInst *C = dyn_cast<CmpInst>(I))
4025       return PreventSelfSimplify(SimplifyCmpInst(C->getPredicate(), NewOps[0],
4026                                                  NewOps[1], Q, MaxRecurse - 1));
4027 
4028     if (auto *GEP = dyn_cast<GetElementPtrInst>(I))
4029       return PreventSelfSimplify(SimplifyGEPInst(GEP->getSourceElementType(),
4030                                                  NewOps, GEP->isInBounds(), Q,
4031                                                  MaxRecurse - 1));
4032 
4033     if (isa<SelectInst>(I))
4034       return PreventSelfSimplify(
4035           SimplifySelectInst(NewOps[0], NewOps[1], NewOps[2], Q,
4036                              MaxRecurse - 1));
4037     // TODO: We could hand off more cases to instsimplify here.
4038   }
4039 
4040   // If all operands are constant after substituting Op for RepOp then we can
4041   // constant fold the instruction.
4042   SmallVector<Constant *, 8> ConstOps;
4043   for (Value *NewOp : NewOps) {
4044     if (Constant *ConstOp = dyn_cast<Constant>(NewOp))
4045       ConstOps.push_back(ConstOp);
4046     else
4047       return nullptr;
4048   }
4049 
4050   // Consider:
4051   //   %cmp = icmp eq i32 %x, 2147483647
4052   //   %add = add nsw i32 %x, 1
4053   //   %sel = select i1 %cmp, i32 -2147483648, i32 %add
4054   //
4055   // We can't replace %sel with %add unless we strip away the flags (which
4056   // will be done in InstCombine).
4057   // TODO: This may be unsound, because it only catches some forms of
4058   // refinement.
4059   if (!AllowRefinement && canCreatePoison(cast<Operator>(I)))
4060     return nullptr;
4061 
4062   if (CmpInst *C = dyn_cast<CmpInst>(I))
4063     return ConstantFoldCompareInstOperands(C->getPredicate(), ConstOps[0],
4064                                            ConstOps[1], Q.DL, Q.TLI);
4065 
4066   if (LoadInst *LI = dyn_cast<LoadInst>(I))
4067     if (!LI->isVolatile())
4068       return ConstantFoldLoadFromConstPtr(ConstOps[0], LI->getType(), Q.DL);
4069 
4070   return ConstantFoldInstOperands(I, ConstOps, Q.DL, Q.TLI);
4071 }
4072 
4073 Value *llvm::simplifyWithOpReplaced(Value *V, Value *Op, Value *RepOp,
4074                                     const SimplifyQuery &Q,
4075                                     bool AllowRefinement) {
4076   return ::simplifyWithOpReplaced(V, Op, RepOp, Q, AllowRefinement,
4077                                   RecursionLimit);
4078 }
4079 
4080 /// Try to simplify a select instruction when its condition operand is an
4081 /// integer comparison where one operand of the compare is a constant.
4082 static Value *simplifySelectBitTest(Value *TrueVal, Value *FalseVal, Value *X,
4083                                     const APInt *Y, bool TrueWhenUnset) {
4084   const APInt *C;
4085 
4086   // (X & Y) == 0 ? X & ~Y : X  --> X
4087   // (X & Y) != 0 ? X & ~Y : X  --> X & ~Y
4088   if (FalseVal == X && match(TrueVal, m_And(m_Specific(X), m_APInt(C))) &&
4089       *Y == ~*C)
4090     return TrueWhenUnset ? FalseVal : TrueVal;
4091 
4092   // (X & Y) == 0 ? X : X & ~Y  --> X & ~Y
4093   // (X & Y) != 0 ? X : X & ~Y  --> X
4094   if (TrueVal == X && match(FalseVal, m_And(m_Specific(X), m_APInt(C))) &&
4095       *Y == ~*C)
4096     return TrueWhenUnset ? FalseVal : TrueVal;
4097 
4098   if (Y->isPowerOf2()) {
4099     // (X & Y) == 0 ? X | Y : X  --> X | Y
4100     // (X & Y) != 0 ? X | Y : X  --> X
4101     if (FalseVal == X && match(TrueVal, m_Or(m_Specific(X), m_APInt(C))) &&
4102         *Y == *C)
4103       return TrueWhenUnset ? TrueVal : FalseVal;
4104 
4105     // (X & Y) == 0 ? X : X | Y  --> X
4106     // (X & Y) != 0 ? X : X | Y  --> X | Y
4107     if (TrueVal == X && match(FalseVal, m_Or(m_Specific(X), m_APInt(C))) &&
4108         *Y == *C)
4109       return TrueWhenUnset ? TrueVal : FalseVal;
4110   }
4111 
4112   return nullptr;
4113 }
4114 
4115 /// An alternative way to test if a bit is set or not uses sgt/slt instead of
4116 /// eq/ne.
4117 static Value *simplifySelectWithFakeICmpEq(Value *CmpLHS, Value *CmpRHS,
4118                                            ICmpInst::Predicate Pred,
4119                                            Value *TrueVal, Value *FalseVal) {
4120   Value *X;
4121   APInt Mask;
4122   if (!decomposeBitTestICmp(CmpLHS, CmpRHS, Pred, X, Mask))
4123     return nullptr;
4124 
4125   return simplifySelectBitTest(TrueVal, FalseVal, X, &Mask,
4126                                Pred == ICmpInst::ICMP_EQ);
4127 }
4128 
4129 /// Try to simplify a select instruction when its condition operand is an
4130 /// integer comparison.
4131 static Value *simplifySelectWithICmpCond(Value *CondVal, Value *TrueVal,
4132                                          Value *FalseVal, const SimplifyQuery &Q,
4133                                          unsigned MaxRecurse) {
4134   ICmpInst::Predicate Pred;
4135   Value *CmpLHS, *CmpRHS;
4136   if (!match(CondVal, m_ICmp(Pred, m_Value(CmpLHS), m_Value(CmpRHS))))
4137     return nullptr;
4138 
4139   // Canonicalize ne to eq predicate.
4140   if (Pred == ICmpInst::ICMP_NE) {
4141     Pred = ICmpInst::ICMP_EQ;
4142     std::swap(TrueVal, FalseVal);
4143   }
4144 
4145   // Check for integer min/max with a limit constant:
4146   // X > MIN_INT ? X : MIN_INT --> X
4147   // X < MAX_INT ? X : MAX_INT --> X
4148   if (TrueVal->getType()->isIntOrIntVectorTy()) {
4149     Value *X, *Y;
4150     SelectPatternFlavor SPF =
4151         matchDecomposedSelectPattern(cast<ICmpInst>(CondVal), TrueVal, FalseVal,
4152                                      X, Y).Flavor;
4153     if (SelectPatternResult::isMinOrMax(SPF) && Pred == getMinMaxPred(SPF)) {
4154       APInt LimitC = getMinMaxLimit(getInverseMinMaxFlavor(SPF),
4155                                     X->getType()->getScalarSizeInBits());
4156       if (match(Y, m_SpecificInt(LimitC)))
4157         return X;
4158     }
4159   }
4160 
4161   if (Pred == ICmpInst::ICMP_EQ && match(CmpRHS, m_Zero())) {
4162     Value *X;
4163     const APInt *Y;
4164     if (match(CmpLHS, m_And(m_Value(X), m_APInt(Y))))
4165       if (Value *V = simplifySelectBitTest(TrueVal, FalseVal, X, Y,
4166                                            /*TrueWhenUnset=*/true))
4167         return V;
4168 
4169     // Test for a bogus zero-shift-guard-op around funnel-shift or rotate.
4170     Value *ShAmt;
4171     auto isFsh = m_CombineOr(m_FShl(m_Value(X), m_Value(), m_Value(ShAmt)),
4172                              m_FShr(m_Value(), m_Value(X), m_Value(ShAmt)));
4173     // (ShAmt == 0) ? fshl(X, *, ShAmt) : X --> X
4174     // (ShAmt == 0) ? fshr(*, X, ShAmt) : X --> X
4175     if (match(TrueVal, isFsh) && FalseVal == X && CmpLHS == ShAmt)
4176       return X;
4177 
4178     // Test for a zero-shift-guard-op around rotates. These are used to
4179     // avoid UB from oversized shifts in raw IR rotate patterns, but the
4180     // intrinsics do not have that problem.
4181     // We do not allow this transform for the general funnel shift case because
4182     // that would not preserve the poison safety of the original code.
4183     auto isRotate =
4184         m_CombineOr(m_FShl(m_Value(X), m_Deferred(X), m_Value(ShAmt)),
4185                     m_FShr(m_Value(X), m_Deferred(X), m_Value(ShAmt)));
4186     // (ShAmt == 0) ? X : fshl(X, X, ShAmt) --> fshl(X, X, ShAmt)
4187     // (ShAmt == 0) ? X : fshr(X, X, ShAmt) --> fshr(X, X, ShAmt)
4188     if (match(FalseVal, isRotate) && TrueVal == X && CmpLHS == ShAmt &&
4189         Pred == ICmpInst::ICMP_EQ)
4190       return FalseVal;
4191 
4192     // X == 0 ? abs(X) : -abs(X) --> -abs(X)
4193     // X == 0 ? -abs(X) : abs(X) --> abs(X)
4194     if (match(TrueVal, m_Intrinsic<Intrinsic::abs>(m_Specific(CmpLHS))) &&
4195         match(FalseVal, m_Neg(m_Intrinsic<Intrinsic::abs>(m_Specific(CmpLHS)))))
4196       return FalseVal;
4197     if (match(TrueVal,
4198               m_Neg(m_Intrinsic<Intrinsic::abs>(m_Specific(CmpLHS)))) &&
4199         match(FalseVal, m_Intrinsic<Intrinsic::abs>(m_Specific(CmpLHS))))
4200       return FalseVal;
4201   }
4202 
4203   // Check for other compares that behave like bit test.
4204   if (Value *V = simplifySelectWithFakeICmpEq(CmpLHS, CmpRHS, Pred,
4205                                               TrueVal, FalseVal))
4206     return V;
4207 
4208   // If we have a scalar equality comparison, then we know the value in one of
4209   // the arms of the select. See if substituting this value into the arm and
4210   // simplifying the result yields the same value as the other arm.
4211   // Note that the equivalence/replacement opportunity does not hold for vectors
4212   // because each element of a vector select is chosen independently.
4213   if (Pred == ICmpInst::ICMP_EQ && !CondVal->getType()->isVectorTy()) {
4214     if (simplifyWithOpReplaced(FalseVal, CmpLHS, CmpRHS, Q,
4215                                /* AllowRefinement */ false, MaxRecurse) ==
4216             TrueVal ||
4217         simplifyWithOpReplaced(FalseVal, CmpRHS, CmpLHS, Q,
4218                                /* AllowRefinement */ false, MaxRecurse) ==
4219             TrueVal)
4220       return FalseVal;
4221     if (simplifyWithOpReplaced(TrueVal, CmpLHS, CmpRHS, Q,
4222                                /* AllowRefinement */ true, MaxRecurse) ==
4223             FalseVal ||
4224         simplifyWithOpReplaced(TrueVal, CmpRHS, CmpLHS, Q,
4225                                /* AllowRefinement */ true, MaxRecurse) ==
4226             FalseVal)
4227       return FalseVal;
4228   }
4229 
4230   return nullptr;
4231 }
4232 
4233 /// Try to simplify a select instruction when its condition operand is a
4234 /// floating-point comparison.
4235 static Value *simplifySelectWithFCmp(Value *Cond, Value *T, Value *F,
4236                                      const SimplifyQuery &Q) {
4237   FCmpInst::Predicate Pred;
4238   if (!match(Cond, m_FCmp(Pred, m_Specific(T), m_Specific(F))) &&
4239       !match(Cond, m_FCmp(Pred, m_Specific(F), m_Specific(T))))
4240     return nullptr;
4241 
4242   // This transform is safe if we do not have (do not care about) -0.0 or if
4243   // at least one operand is known to not be -0.0. Otherwise, the select can
4244   // change the sign of a zero operand.
4245   bool HasNoSignedZeros = Q.CxtI && isa<FPMathOperator>(Q.CxtI) &&
4246                           Q.CxtI->hasNoSignedZeros();
4247   const APFloat *C;
4248   if (HasNoSignedZeros || (match(T, m_APFloat(C)) && C->isNonZero()) ||
4249                           (match(F, m_APFloat(C)) && C->isNonZero())) {
4250     // (T == F) ? T : F --> F
4251     // (F == T) ? T : F --> F
4252     if (Pred == FCmpInst::FCMP_OEQ)
4253       return F;
4254 
4255     // (T != F) ? T : F --> T
4256     // (F != T) ? T : F --> T
4257     if (Pred == FCmpInst::FCMP_UNE)
4258       return T;
4259   }
4260 
4261   return nullptr;
4262 }
4263 
4264 /// Given operands for a SelectInst, see if we can fold the result.
4265 /// If not, this returns null.
4266 static Value *SimplifySelectInst(Value *Cond, Value *TrueVal, Value *FalseVal,
4267                                  const SimplifyQuery &Q, unsigned MaxRecurse) {
4268   if (auto *CondC = dyn_cast<Constant>(Cond)) {
4269     if (auto *TrueC = dyn_cast<Constant>(TrueVal))
4270       if (auto *FalseC = dyn_cast<Constant>(FalseVal))
4271         return ConstantFoldSelectInstruction(CondC, TrueC, FalseC);
4272 
4273     // select poison, X, Y -> poison
4274     if (isa<PoisonValue>(CondC))
4275       return PoisonValue::get(TrueVal->getType());
4276 
4277     // select undef, X, Y -> X or Y
4278     if (Q.isUndefValue(CondC))
4279       return isa<Constant>(FalseVal) ? FalseVal : TrueVal;
4280 
4281     // select true,  X, Y --> X
4282     // select false, X, Y --> Y
4283     // For vectors, allow undef/poison elements in the condition to match the
4284     // defined elements, so we can eliminate the select.
4285     if (match(CondC, m_One()))
4286       return TrueVal;
4287     if (match(CondC, m_Zero()))
4288       return FalseVal;
4289   }
4290 
4291   assert(Cond->getType()->isIntOrIntVectorTy(1) &&
4292          "Select must have bool or bool vector condition");
4293   assert(TrueVal->getType() == FalseVal->getType() &&
4294          "Select must have same types for true/false ops");
4295 
4296   if (Cond->getType() == TrueVal->getType()) {
4297     // select i1 Cond, i1 true, i1 false --> i1 Cond
4298     if (match(TrueVal, m_One()) && match(FalseVal, m_ZeroInt()))
4299       return Cond;
4300 
4301     // (X || Y) && (X || !Y) --> X (commuted 8 ways)
4302     Value *X, *Y;
4303     if (match(FalseVal, m_ZeroInt())) {
4304       if (match(Cond, m_c_LogicalOr(m_Value(X), m_Not(m_Value(Y)))) &&
4305           match(TrueVal, m_c_LogicalOr(m_Specific(X), m_Specific(Y))))
4306         return X;
4307       if (match(TrueVal, m_c_LogicalOr(m_Value(X), m_Not(m_Value(Y)))) &&
4308           match(Cond, m_c_LogicalOr(m_Specific(X), m_Specific(Y))))
4309         return X;
4310     }
4311   }
4312 
4313   // select ?, X, X -> X
4314   if (TrueVal == FalseVal)
4315     return TrueVal;
4316 
4317   // If the true or false value is poison, we can fold to the other value.
4318   // If the true or false value is undef, we can fold to the other value as
4319   // long as the other value isn't poison.
4320   // select ?, poison, X -> X
4321   // select ?, undef,  X -> X
4322   if (isa<PoisonValue>(TrueVal) ||
4323       (Q.isUndefValue(TrueVal) &&
4324        isGuaranteedNotToBePoison(FalseVal, Q.AC, Q.CxtI, Q.DT)))
4325     return FalseVal;
4326   // select ?, X, poison -> X
4327   // select ?, X, undef  -> X
4328   if (isa<PoisonValue>(FalseVal) ||
4329       (Q.isUndefValue(FalseVal) &&
4330        isGuaranteedNotToBePoison(TrueVal, Q.AC, Q.CxtI, Q.DT)))
4331     return TrueVal;
4332 
4333   // Deal with partial undef vector constants: select ?, VecC, VecC' --> VecC''
4334   Constant *TrueC, *FalseC;
4335   if (isa<FixedVectorType>(TrueVal->getType()) &&
4336       match(TrueVal, m_Constant(TrueC)) &&
4337       match(FalseVal, m_Constant(FalseC))) {
4338     unsigned NumElts =
4339         cast<FixedVectorType>(TrueC->getType())->getNumElements();
4340     SmallVector<Constant *, 16> NewC;
4341     for (unsigned i = 0; i != NumElts; ++i) {
4342       // Bail out on incomplete vector constants.
4343       Constant *TEltC = TrueC->getAggregateElement(i);
4344       Constant *FEltC = FalseC->getAggregateElement(i);
4345       if (!TEltC || !FEltC)
4346         break;
4347 
4348       // If the elements match (undef or not), that value is the result. If only
4349       // one element is undef, choose the defined element as the safe result.
4350       if (TEltC == FEltC)
4351         NewC.push_back(TEltC);
4352       else if (isa<PoisonValue>(TEltC) ||
4353                (Q.isUndefValue(TEltC) && isGuaranteedNotToBePoison(FEltC)))
4354         NewC.push_back(FEltC);
4355       else if (isa<PoisonValue>(FEltC) ||
4356                (Q.isUndefValue(FEltC) && isGuaranteedNotToBePoison(TEltC)))
4357         NewC.push_back(TEltC);
4358       else
4359         break;
4360     }
4361     if (NewC.size() == NumElts)
4362       return ConstantVector::get(NewC);
4363   }
4364 
4365   if (Value *V =
4366           simplifySelectWithICmpCond(Cond, TrueVal, FalseVal, Q, MaxRecurse))
4367     return V;
4368 
4369   if (Value *V = simplifySelectWithFCmp(Cond, TrueVal, FalseVal, Q))
4370     return V;
4371 
4372   if (Value *V = foldSelectWithBinaryOp(Cond, TrueVal, FalseVal))
4373     return V;
4374 
4375   Optional<bool> Imp = isImpliedByDomCondition(Cond, Q.CxtI, Q.DL);
4376   if (Imp)
4377     return *Imp ? TrueVal : FalseVal;
4378 
4379   return nullptr;
4380 }
4381 
4382 Value *llvm::SimplifySelectInst(Value *Cond, Value *TrueVal, Value *FalseVal,
4383                                 const SimplifyQuery &Q) {
4384   return ::SimplifySelectInst(Cond, TrueVal, FalseVal, Q, RecursionLimit);
4385 }
4386 
4387 /// Given operands for an GetElementPtrInst, see if we can fold the result.
4388 /// If not, this returns null.
4389 static Value *SimplifyGEPInst(Type *SrcTy, ArrayRef<Value *> Ops, bool InBounds,
4390                               const SimplifyQuery &Q, unsigned) {
4391   // The type of the GEP pointer operand.
4392   unsigned AS =
4393       cast<PointerType>(Ops[0]->getType()->getScalarType())->getAddressSpace();
4394 
4395   // getelementptr P -> P.
4396   if (Ops.size() == 1)
4397     return Ops[0];
4398 
4399   // Compute the (pointer) type returned by the GEP instruction.
4400   Type *LastType = GetElementPtrInst::getIndexedType(SrcTy, Ops.slice(1));
4401   Type *GEPTy = PointerType::get(LastType, AS);
4402   for (Value *Op : Ops) {
4403     // If one of the operands is a vector, the result type is a vector of
4404     // pointers. All vector operands must have the same number of elements.
4405     if (VectorType *VT = dyn_cast<VectorType>(Op->getType())) {
4406       GEPTy = VectorType::get(GEPTy, VT->getElementCount());
4407       break;
4408     }
4409   }
4410 
4411   // getelementptr poison, idx -> poison
4412   // getelementptr baseptr, poison -> poison
4413   if (any_of(Ops, [](const auto *V) { return isa<PoisonValue>(V); }))
4414     return PoisonValue::get(GEPTy);
4415 
4416   if (Q.isUndefValue(Ops[0]))
4417     return UndefValue::get(GEPTy);
4418 
4419   bool IsScalableVec =
4420       isa<ScalableVectorType>(SrcTy) || any_of(Ops, [](const Value *V) {
4421         return isa<ScalableVectorType>(V->getType());
4422       });
4423 
4424   if (Ops.size() == 2) {
4425     // getelementptr P, 0 -> P.
4426     if (match(Ops[1], m_Zero()) && Ops[0]->getType() == GEPTy)
4427       return Ops[0];
4428 
4429     Type *Ty = SrcTy;
4430     if (!IsScalableVec && Ty->isSized()) {
4431       Value *P;
4432       uint64_t C;
4433       uint64_t TyAllocSize = Q.DL.getTypeAllocSize(Ty);
4434       // getelementptr P, N -> P if P points to a type of zero size.
4435       if (TyAllocSize == 0 && Ops[0]->getType() == GEPTy)
4436         return Ops[0];
4437 
4438       // The following transforms are only safe if the ptrtoint cast
4439       // doesn't truncate the pointers.
4440       if (Ops[1]->getType()->getScalarSizeInBits() ==
4441           Q.DL.getPointerSizeInBits(AS)) {
4442         auto CanSimplify = [GEPTy, &P, V = Ops[0]]() -> bool {
4443           return P->getType() == GEPTy &&
4444                  getUnderlyingObject(P) == getUnderlyingObject(V);
4445         };
4446         // getelementptr V, (sub P, V) -> P if P points to a type of size 1.
4447         if (TyAllocSize == 1 &&
4448             match(Ops[1], m_Sub(m_PtrToInt(m_Value(P)),
4449                                 m_PtrToInt(m_Specific(Ops[0])))) &&
4450             CanSimplify())
4451           return P;
4452 
4453         // getelementptr V, (ashr (sub P, V), C) -> P if P points to a type of
4454         // size 1 << C.
4455         if (match(Ops[1], m_AShr(m_Sub(m_PtrToInt(m_Value(P)),
4456                                        m_PtrToInt(m_Specific(Ops[0]))),
4457                                  m_ConstantInt(C))) &&
4458             TyAllocSize == 1ULL << C && CanSimplify())
4459           return P;
4460 
4461         // getelementptr V, (sdiv (sub P, V), C) -> P if P points to a type of
4462         // size C.
4463         if (match(Ops[1], m_SDiv(m_Sub(m_PtrToInt(m_Value(P)),
4464                                        m_PtrToInt(m_Specific(Ops[0]))),
4465                                  m_SpecificInt(TyAllocSize))) &&
4466             CanSimplify())
4467           return P;
4468       }
4469     }
4470   }
4471 
4472   if (!IsScalableVec && Q.DL.getTypeAllocSize(LastType) == 1 &&
4473       all_of(Ops.slice(1).drop_back(1),
4474              [](Value *Idx) { return match(Idx, m_Zero()); })) {
4475     unsigned IdxWidth =
4476         Q.DL.getIndexSizeInBits(Ops[0]->getType()->getPointerAddressSpace());
4477     if (Q.DL.getTypeSizeInBits(Ops.back()->getType()) == IdxWidth) {
4478       APInt BasePtrOffset(IdxWidth, 0);
4479       Value *StrippedBasePtr =
4480           Ops[0]->stripAndAccumulateInBoundsConstantOffsets(Q.DL,
4481                                                             BasePtrOffset);
4482 
4483       // Avoid creating inttoptr of zero here: While LLVMs treatment of
4484       // inttoptr is generally conservative, this particular case is folded to
4485       // a null pointer, which will have incorrect provenance.
4486 
4487       // gep (gep V, C), (sub 0, V) -> C
4488       if (match(Ops.back(),
4489                 m_Sub(m_Zero(), m_PtrToInt(m_Specific(StrippedBasePtr)))) &&
4490           !BasePtrOffset.isZero()) {
4491         auto *CI = ConstantInt::get(GEPTy->getContext(), BasePtrOffset);
4492         return ConstantExpr::getIntToPtr(CI, GEPTy);
4493       }
4494       // gep (gep V, C), (xor V, -1) -> C-1
4495       if (match(Ops.back(),
4496                 m_Xor(m_PtrToInt(m_Specific(StrippedBasePtr)), m_AllOnes())) &&
4497           !BasePtrOffset.isOne()) {
4498         auto *CI = ConstantInt::get(GEPTy->getContext(), BasePtrOffset - 1);
4499         return ConstantExpr::getIntToPtr(CI, GEPTy);
4500       }
4501     }
4502   }
4503 
4504   // Check to see if this is constant foldable.
4505   if (!all_of(Ops, [](Value *V) { return isa<Constant>(V); }))
4506     return nullptr;
4507 
4508   auto *CE = ConstantExpr::getGetElementPtr(SrcTy, cast<Constant>(Ops[0]),
4509                                             Ops.slice(1), InBounds);
4510   return ConstantFoldConstant(CE, Q.DL);
4511 }
4512 
4513 Value *llvm::SimplifyGEPInst(Type *SrcTy, ArrayRef<Value *> Ops, bool InBounds,
4514                              const SimplifyQuery &Q) {
4515   return ::SimplifyGEPInst(SrcTy, Ops, InBounds, Q, RecursionLimit);
4516 }
4517 
4518 /// Given operands for an InsertValueInst, see if we can fold the result.
4519 /// If not, this returns null.
4520 static Value *SimplifyInsertValueInst(Value *Agg, Value *Val,
4521                                       ArrayRef<unsigned> Idxs, const SimplifyQuery &Q,
4522                                       unsigned) {
4523   if (Constant *CAgg = dyn_cast<Constant>(Agg))
4524     if (Constant *CVal = dyn_cast<Constant>(Val))
4525       return ConstantFoldInsertValueInstruction(CAgg, CVal, Idxs);
4526 
4527   // insertvalue x, undef, n -> x
4528   if (Q.isUndefValue(Val))
4529     return Agg;
4530 
4531   // insertvalue x, (extractvalue y, n), n
4532   if (ExtractValueInst *EV = dyn_cast<ExtractValueInst>(Val))
4533     if (EV->getAggregateOperand()->getType() == Agg->getType() &&
4534         EV->getIndices() == Idxs) {
4535       // insertvalue undef, (extractvalue y, n), n -> y
4536       if (Q.isUndefValue(Agg))
4537         return EV->getAggregateOperand();
4538 
4539       // insertvalue y, (extractvalue y, n), n -> y
4540       if (Agg == EV->getAggregateOperand())
4541         return Agg;
4542     }
4543 
4544   return nullptr;
4545 }
4546 
4547 Value *llvm::SimplifyInsertValueInst(Value *Agg, Value *Val,
4548                                      ArrayRef<unsigned> Idxs,
4549                                      const SimplifyQuery &Q) {
4550   return ::SimplifyInsertValueInst(Agg, Val, Idxs, Q, RecursionLimit);
4551 }
4552 
4553 Value *llvm::SimplifyInsertElementInst(Value *Vec, Value *Val, Value *Idx,
4554                                        const SimplifyQuery &Q) {
4555   // Try to constant fold.
4556   auto *VecC = dyn_cast<Constant>(Vec);
4557   auto *ValC = dyn_cast<Constant>(Val);
4558   auto *IdxC = dyn_cast<Constant>(Idx);
4559   if (VecC && ValC && IdxC)
4560     return ConstantExpr::getInsertElement(VecC, ValC, IdxC);
4561 
4562   // For fixed-length vector, fold into poison if index is out of bounds.
4563   if (auto *CI = dyn_cast<ConstantInt>(Idx)) {
4564     if (isa<FixedVectorType>(Vec->getType()) &&
4565         CI->uge(cast<FixedVectorType>(Vec->getType())->getNumElements()))
4566       return PoisonValue::get(Vec->getType());
4567   }
4568 
4569   // If index is undef, it might be out of bounds (see above case)
4570   if (Q.isUndefValue(Idx))
4571     return PoisonValue::get(Vec->getType());
4572 
4573   // If the scalar is poison, or it is undef and there is no risk of
4574   // propagating poison from the vector value, simplify to the vector value.
4575   if (isa<PoisonValue>(Val) ||
4576       (Q.isUndefValue(Val) && isGuaranteedNotToBePoison(Vec)))
4577     return Vec;
4578 
4579   // If we are extracting a value from a vector, then inserting it into the same
4580   // place, that's the input vector:
4581   // insertelt Vec, (extractelt Vec, Idx), Idx --> Vec
4582   if (match(Val, m_ExtractElt(m_Specific(Vec), m_Specific(Idx))))
4583     return Vec;
4584 
4585   return nullptr;
4586 }
4587 
4588 /// Given operands for an ExtractValueInst, see if we can fold the result.
4589 /// If not, this returns null.
4590 static Value *SimplifyExtractValueInst(Value *Agg, ArrayRef<unsigned> Idxs,
4591                                        const SimplifyQuery &, unsigned) {
4592   if (auto *CAgg = dyn_cast<Constant>(Agg))
4593     return ConstantFoldExtractValueInstruction(CAgg, Idxs);
4594 
4595   // extractvalue x, (insertvalue y, elt, n), n -> elt
4596   unsigned NumIdxs = Idxs.size();
4597   for (auto *IVI = dyn_cast<InsertValueInst>(Agg); IVI != nullptr;
4598        IVI = dyn_cast<InsertValueInst>(IVI->getAggregateOperand())) {
4599     ArrayRef<unsigned> InsertValueIdxs = IVI->getIndices();
4600     unsigned NumInsertValueIdxs = InsertValueIdxs.size();
4601     unsigned NumCommonIdxs = std::min(NumInsertValueIdxs, NumIdxs);
4602     if (InsertValueIdxs.slice(0, NumCommonIdxs) ==
4603         Idxs.slice(0, NumCommonIdxs)) {
4604       if (NumIdxs == NumInsertValueIdxs)
4605         return IVI->getInsertedValueOperand();
4606       break;
4607     }
4608   }
4609 
4610   return nullptr;
4611 }
4612 
4613 Value *llvm::SimplifyExtractValueInst(Value *Agg, ArrayRef<unsigned> Idxs,
4614                                       const SimplifyQuery &Q) {
4615   return ::SimplifyExtractValueInst(Agg, Idxs, Q, RecursionLimit);
4616 }
4617 
4618 /// Given operands for an ExtractElementInst, see if we can fold the result.
4619 /// If not, this returns null.
4620 static Value *SimplifyExtractElementInst(Value *Vec, Value *Idx,
4621                                          const SimplifyQuery &Q, unsigned) {
4622   auto *VecVTy = cast<VectorType>(Vec->getType());
4623   if (auto *CVec = dyn_cast<Constant>(Vec)) {
4624     if (auto *CIdx = dyn_cast<Constant>(Idx))
4625       return ConstantExpr::getExtractElement(CVec, CIdx);
4626 
4627     if (Q.isUndefValue(Vec))
4628       return UndefValue::get(VecVTy->getElementType());
4629   }
4630 
4631   // An undef extract index can be arbitrarily chosen to be an out-of-range
4632   // index value, which would result in the instruction being poison.
4633   if (Q.isUndefValue(Idx))
4634     return PoisonValue::get(VecVTy->getElementType());
4635 
4636   // If extracting a specified index from the vector, see if we can recursively
4637   // find a previously computed scalar that was inserted into the vector.
4638   if (auto *IdxC = dyn_cast<ConstantInt>(Idx)) {
4639     // For fixed-length vector, fold into undef if index is out of bounds.
4640     unsigned MinNumElts = VecVTy->getElementCount().getKnownMinValue();
4641     if (isa<FixedVectorType>(VecVTy) && IdxC->getValue().uge(MinNumElts))
4642       return PoisonValue::get(VecVTy->getElementType());
4643     // Handle case where an element is extracted from a splat.
4644     if (IdxC->getValue().ult(MinNumElts))
4645       if (auto *Splat = getSplatValue(Vec))
4646         return Splat;
4647     if (Value *Elt = findScalarElement(Vec, IdxC->getZExtValue()))
4648       return Elt;
4649   } else {
4650     // The index is not relevant if our vector is a splat.
4651     if (Value *Splat = getSplatValue(Vec))
4652       return Splat;
4653   }
4654   return nullptr;
4655 }
4656 
4657 Value *llvm::SimplifyExtractElementInst(Value *Vec, Value *Idx,
4658                                         const SimplifyQuery &Q) {
4659   return ::SimplifyExtractElementInst(Vec, Idx, Q, RecursionLimit);
4660 }
4661 
4662 /// See if we can fold the given phi. If not, returns null.
4663 static Value *SimplifyPHINode(PHINode *PN, ArrayRef<Value *> IncomingValues,
4664                               const SimplifyQuery &Q) {
4665   // WARNING: no matter how worthwhile it may seem, we can not perform PHI CSE
4666   //          here, because the PHI we may succeed simplifying to was not
4667   //          def-reachable from the original PHI!
4668 
4669   // If all of the PHI's incoming values are the same then replace the PHI node
4670   // with the common value.
4671   Value *CommonValue = nullptr;
4672   bool HasUndefInput = false;
4673   for (Value *Incoming : IncomingValues) {
4674     // If the incoming value is the phi node itself, it can safely be skipped.
4675     if (Incoming == PN) continue;
4676     if (Q.isUndefValue(Incoming)) {
4677       // Remember that we saw an undef value, but otherwise ignore them.
4678       HasUndefInput = true;
4679       continue;
4680     }
4681     if (CommonValue && Incoming != CommonValue)
4682       return nullptr;  // Not the same, bail out.
4683     CommonValue = Incoming;
4684   }
4685 
4686   // If CommonValue is null then all of the incoming values were either undef or
4687   // equal to the phi node itself.
4688   if (!CommonValue)
4689     return UndefValue::get(PN->getType());
4690 
4691   // If we have a PHI node like phi(X, undef, X), where X is defined by some
4692   // instruction, we cannot return X as the result of the PHI node unless it
4693   // dominates the PHI block.
4694   if (HasUndefInput)
4695     return valueDominatesPHI(CommonValue, PN, Q.DT) ? CommonValue : nullptr;
4696 
4697   return CommonValue;
4698 }
4699 
4700 static Value *SimplifyCastInst(unsigned CastOpc, Value *Op,
4701                                Type *Ty, const SimplifyQuery &Q, unsigned MaxRecurse) {
4702   if (auto *C = dyn_cast<Constant>(Op))
4703     return ConstantFoldCastOperand(CastOpc, C, Ty, Q.DL);
4704 
4705   if (auto *CI = dyn_cast<CastInst>(Op)) {
4706     auto *Src = CI->getOperand(0);
4707     Type *SrcTy = Src->getType();
4708     Type *MidTy = CI->getType();
4709     Type *DstTy = Ty;
4710     if (Src->getType() == Ty) {
4711       auto FirstOp = static_cast<Instruction::CastOps>(CI->getOpcode());
4712       auto SecondOp = static_cast<Instruction::CastOps>(CastOpc);
4713       Type *SrcIntPtrTy =
4714           SrcTy->isPtrOrPtrVectorTy() ? Q.DL.getIntPtrType(SrcTy) : nullptr;
4715       Type *MidIntPtrTy =
4716           MidTy->isPtrOrPtrVectorTy() ? Q.DL.getIntPtrType(MidTy) : nullptr;
4717       Type *DstIntPtrTy =
4718           DstTy->isPtrOrPtrVectorTy() ? Q.DL.getIntPtrType(DstTy) : nullptr;
4719       if (CastInst::isEliminableCastPair(FirstOp, SecondOp, SrcTy, MidTy, DstTy,
4720                                          SrcIntPtrTy, MidIntPtrTy,
4721                                          DstIntPtrTy) == Instruction::BitCast)
4722         return Src;
4723     }
4724   }
4725 
4726   // bitcast x -> x
4727   if (CastOpc == Instruction::BitCast)
4728     if (Op->getType() == Ty)
4729       return Op;
4730 
4731   return nullptr;
4732 }
4733 
4734 Value *llvm::SimplifyCastInst(unsigned CastOpc, Value *Op, Type *Ty,
4735                               const SimplifyQuery &Q) {
4736   return ::SimplifyCastInst(CastOpc, Op, Ty, Q, RecursionLimit);
4737 }
4738 
4739 /// For the given destination element of a shuffle, peek through shuffles to
4740 /// match a root vector source operand that contains that element in the same
4741 /// vector lane (ie, the same mask index), so we can eliminate the shuffle(s).
4742 static Value *foldIdentityShuffles(int DestElt, Value *Op0, Value *Op1,
4743                                    int MaskVal, Value *RootVec,
4744                                    unsigned MaxRecurse) {
4745   if (!MaxRecurse--)
4746     return nullptr;
4747 
4748   // Bail out if any mask value is undefined. That kind of shuffle may be
4749   // simplified further based on demanded bits or other folds.
4750   if (MaskVal == -1)
4751     return nullptr;
4752 
4753   // The mask value chooses which source operand we need to look at next.
4754   int InVecNumElts = cast<FixedVectorType>(Op0->getType())->getNumElements();
4755   int RootElt = MaskVal;
4756   Value *SourceOp = Op0;
4757   if (MaskVal >= InVecNumElts) {
4758     RootElt = MaskVal - InVecNumElts;
4759     SourceOp = Op1;
4760   }
4761 
4762   // If the source operand is a shuffle itself, look through it to find the
4763   // matching root vector.
4764   if (auto *SourceShuf = dyn_cast<ShuffleVectorInst>(SourceOp)) {
4765     return foldIdentityShuffles(
4766         DestElt, SourceShuf->getOperand(0), SourceShuf->getOperand(1),
4767         SourceShuf->getMaskValue(RootElt), RootVec, MaxRecurse);
4768   }
4769 
4770   // TODO: Look through bitcasts? What if the bitcast changes the vector element
4771   // size?
4772 
4773   // The source operand is not a shuffle. Initialize the root vector value for
4774   // this shuffle if that has not been done yet.
4775   if (!RootVec)
4776     RootVec = SourceOp;
4777 
4778   // Give up as soon as a source operand does not match the existing root value.
4779   if (RootVec != SourceOp)
4780     return nullptr;
4781 
4782   // The element must be coming from the same lane in the source vector
4783   // (although it may have crossed lanes in intermediate shuffles).
4784   if (RootElt != DestElt)
4785     return nullptr;
4786 
4787   return RootVec;
4788 }
4789 
4790 static Value *SimplifyShuffleVectorInst(Value *Op0, Value *Op1,
4791                                         ArrayRef<int> Mask, Type *RetTy,
4792                                         const SimplifyQuery &Q,
4793                                         unsigned MaxRecurse) {
4794   if (all_of(Mask, [](int Elem) { return Elem == UndefMaskElem; }))
4795     return UndefValue::get(RetTy);
4796 
4797   auto *InVecTy = cast<VectorType>(Op0->getType());
4798   unsigned MaskNumElts = Mask.size();
4799   ElementCount InVecEltCount = InVecTy->getElementCount();
4800 
4801   bool Scalable = InVecEltCount.isScalable();
4802 
4803   SmallVector<int, 32> Indices;
4804   Indices.assign(Mask.begin(), Mask.end());
4805 
4806   // Canonicalization: If mask does not select elements from an input vector,
4807   // replace that input vector with poison.
4808   if (!Scalable) {
4809     bool MaskSelects0 = false, MaskSelects1 = false;
4810     unsigned InVecNumElts = InVecEltCount.getKnownMinValue();
4811     for (unsigned i = 0; i != MaskNumElts; ++i) {
4812       if (Indices[i] == -1)
4813         continue;
4814       if ((unsigned)Indices[i] < InVecNumElts)
4815         MaskSelects0 = true;
4816       else
4817         MaskSelects1 = true;
4818     }
4819     if (!MaskSelects0)
4820       Op0 = PoisonValue::get(InVecTy);
4821     if (!MaskSelects1)
4822       Op1 = PoisonValue::get(InVecTy);
4823   }
4824 
4825   auto *Op0Const = dyn_cast<Constant>(Op0);
4826   auto *Op1Const = dyn_cast<Constant>(Op1);
4827 
4828   // If all operands are constant, constant fold the shuffle. This
4829   // transformation depends on the value of the mask which is not known at
4830   // compile time for scalable vectors
4831   if (Op0Const && Op1Const)
4832     return ConstantExpr::getShuffleVector(Op0Const, Op1Const, Mask);
4833 
4834   // Canonicalization: if only one input vector is constant, it shall be the
4835   // second one. This transformation depends on the value of the mask which
4836   // is not known at compile time for scalable vectors
4837   if (!Scalable && Op0Const && !Op1Const) {
4838     std::swap(Op0, Op1);
4839     ShuffleVectorInst::commuteShuffleMask(Indices,
4840                                           InVecEltCount.getKnownMinValue());
4841   }
4842 
4843   // A splat of an inserted scalar constant becomes a vector constant:
4844   // shuf (inselt ?, C, IndexC), undef, <IndexC, IndexC...> --> <C, C...>
4845   // NOTE: We may have commuted above, so analyze the updated Indices, not the
4846   //       original mask constant.
4847   // NOTE: This transformation depends on the value of the mask which is not
4848   // known at compile time for scalable vectors
4849   Constant *C;
4850   ConstantInt *IndexC;
4851   if (!Scalable && match(Op0, m_InsertElt(m_Value(), m_Constant(C),
4852                                           m_ConstantInt(IndexC)))) {
4853     // Match a splat shuffle mask of the insert index allowing undef elements.
4854     int InsertIndex = IndexC->getZExtValue();
4855     if (all_of(Indices, [InsertIndex](int MaskElt) {
4856           return MaskElt == InsertIndex || MaskElt == -1;
4857         })) {
4858       assert(isa<UndefValue>(Op1) && "Expected undef operand 1 for splat");
4859 
4860       // Shuffle mask undefs become undefined constant result elements.
4861       SmallVector<Constant *, 16> VecC(MaskNumElts, C);
4862       for (unsigned i = 0; i != MaskNumElts; ++i)
4863         if (Indices[i] == -1)
4864           VecC[i] = UndefValue::get(C->getType());
4865       return ConstantVector::get(VecC);
4866     }
4867   }
4868 
4869   // A shuffle of a splat is always the splat itself. Legal if the shuffle's
4870   // value type is same as the input vectors' type.
4871   if (auto *OpShuf = dyn_cast<ShuffleVectorInst>(Op0))
4872     if (Q.isUndefValue(Op1) && RetTy == InVecTy &&
4873         is_splat(OpShuf->getShuffleMask()))
4874       return Op0;
4875 
4876   // All remaining transformation depend on the value of the mask, which is
4877   // not known at compile time for scalable vectors.
4878   if (Scalable)
4879     return nullptr;
4880 
4881   // Don't fold a shuffle with undef mask elements. This may get folded in a
4882   // better way using demanded bits or other analysis.
4883   // TODO: Should we allow this?
4884   if (is_contained(Indices, -1))
4885     return nullptr;
4886 
4887   // Check if every element of this shuffle can be mapped back to the
4888   // corresponding element of a single root vector. If so, we don't need this
4889   // shuffle. This handles simple identity shuffles as well as chains of
4890   // shuffles that may widen/narrow and/or move elements across lanes and back.
4891   Value *RootVec = nullptr;
4892   for (unsigned i = 0; i != MaskNumElts; ++i) {
4893     // Note that recursion is limited for each vector element, so if any element
4894     // exceeds the limit, this will fail to simplify.
4895     RootVec =
4896         foldIdentityShuffles(i, Op0, Op1, Indices[i], RootVec, MaxRecurse);
4897 
4898     // We can't replace a widening/narrowing shuffle with one of its operands.
4899     if (!RootVec || RootVec->getType() != RetTy)
4900       return nullptr;
4901   }
4902   return RootVec;
4903 }
4904 
4905 /// Given operands for a ShuffleVectorInst, fold the result or return null.
4906 Value *llvm::SimplifyShuffleVectorInst(Value *Op0, Value *Op1,
4907                                        ArrayRef<int> Mask, Type *RetTy,
4908                                        const SimplifyQuery &Q) {
4909   return ::SimplifyShuffleVectorInst(Op0, Op1, Mask, RetTy, Q, RecursionLimit);
4910 }
4911 
4912 static Constant *foldConstant(Instruction::UnaryOps Opcode,
4913                               Value *&Op, const SimplifyQuery &Q) {
4914   if (auto *C = dyn_cast<Constant>(Op))
4915     return ConstantFoldUnaryOpOperand(Opcode, C, Q.DL);
4916   return nullptr;
4917 }
4918 
4919 /// Given the operand for an FNeg, see if we can fold the result.  If not, this
4920 /// returns null.
4921 static Value *simplifyFNegInst(Value *Op, FastMathFlags FMF,
4922                                const SimplifyQuery &Q, unsigned MaxRecurse) {
4923   if (Constant *C = foldConstant(Instruction::FNeg, Op, Q))
4924     return C;
4925 
4926   Value *X;
4927   // fneg (fneg X) ==> X
4928   if (match(Op, m_FNeg(m_Value(X))))
4929     return X;
4930 
4931   return nullptr;
4932 }
4933 
4934 Value *llvm::SimplifyFNegInst(Value *Op, FastMathFlags FMF,
4935                               const SimplifyQuery &Q) {
4936   return ::simplifyFNegInst(Op, FMF, Q, RecursionLimit);
4937 }
4938 
4939 static Constant *propagateNaN(Constant *In) {
4940   // If the input is a vector with undef elements, just return a default NaN.
4941   if (!In->isNaN())
4942     return ConstantFP::getNaN(In->getType());
4943 
4944   // Propagate the existing NaN constant when possible.
4945   // TODO: Should we quiet a signaling NaN?
4946   return In;
4947 }
4948 
4949 /// Perform folds that are common to any floating-point operation. This implies
4950 /// transforms based on poison/undef/NaN because the operation itself makes no
4951 /// difference to the result.
4952 static Constant *simplifyFPOp(ArrayRef<Value *> Ops, FastMathFlags FMF,
4953                               const SimplifyQuery &Q,
4954                               fp::ExceptionBehavior ExBehavior,
4955                               RoundingMode Rounding) {
4956   // Poison is independent of anything else. It always propagates from an
4957   // operand to a math result.
4958   if (any_of(Ops, [](Value *V) { return match(V, m_Poison()); }))
4959     return PoisonValue::get(Ops[0]->getType());
4960 
4961   for (Value *V : Ops) {
4962     bool IsNan = match(V, m_NaN());
4963     bool IsInf = match(V, m_Inf());
4964     bool IsUndef = Q.isUndefValue(V);
4965 
4966     // If this operation has 'nnan' or 'ninf' and at least 1 disallowed operand
4967     // (an undef operand can be chosen to be Nan/Inf), then the result of
4968     // this operation is poison.
4969     if (FMF.noNaNs() && (IsNan || IsUndef))
4970       return PoisonValue::get(V->getType());
4971     if (FMF.noInfs() && (IsInf || IsUndef))
4972       return PoisonValue::get(V->getType());
4973 
4974     if (isDefaultFPEnvironment(ExBehavior, Rounding)) {
4975       if (IsUndef || IsNan)
4976         return propagateNaN(cast<Constant>(V));
4977     } else if (ExBehavior != fp::ebStrict) {
4978       if (IsNan)
4979         return propagateNaN(cast<Constant>(V));
4980     }
4981   }
4982   return nullptr;
4983 }
4984 
4985 // TODO: Move this out to a header file:
4986 static inline bool canIgnoreSNaN(fp::ExceptionBehavior EB, FastMathFlags FMF) {
4987   return (EB == fp::ebIgnore || FMF.noNaNs());
4988 }
4989 
4990 /// Given operands for an FAdd, see if we can fold the result.  If not, this
4991 /// returns null.
4992 static Value *
4993 SimplifyFAddInst(Value *Op0, Value *Op1, FastMathFlags FMF,
4994                  const SimplifyQuery &Q, unsigned MaxRecurse,
4995                  fp::ExceptionBehavior ExBehavior = fp::ebIgnore,
4996                  RoundingMode Rounding = RoundingMode::NearestTiesToEven) {
4997   if (isDefaultFPEnvironment(ExBehavior, Rounding))
4998     if (Constant *C = foldOrCommuteConstant(Instruction::FAdd, Op0, Op1, Q))
4999       return C;
5000 
5001   if (Constant *C = simplifyFPOp({Op0, Op1}, FMF, Q, ExBehavior, Rounding))
5002     return C;
5003 
5004   // fadd X, -0 ==> X
5005   // With strict/constrained FP, we have these possible edge cases that do
5006   // not simplify to Op0:
5007   // fadd SNaN, -0.0 --> QNaN
5008   // fadd +0.0, -0.0 --> -0.0 (but only with round toward negative)
5009   if (canIgnoreSNaN(ExBehavior, FMF) &&
5010       (!canRoundingModeBe(Rounding, RoundingMode::TowardNegative) ||
5011        FMF.noSignedZeros()))
5012     if (match(Op1, m_NegZeroFP()))
5013       return Op0;
5014 
5015   // fadd X, 0 ==> X, when we know X is not -0
5016   if (canIgnoreSNaN(ExBehavior, FMF))
5017     if (match(Op1, m_PosZeroFP()) &&
5018         (FMF.noSignedZeros() || CannotBeNegativeZero(Op0, Q.TLI)))
5019       return Op0;
5020 
5021   if (!isDefaultFPEnvironment(ExBehavior, Rounding))
5022     return nullptr;
5023 
5024   // With nnan: -X + X --> 0.0 (and commuted variant)
5025   // We don't have to explicitly exclude infinities (ninf): INF + -INF == NaN.
5026   // Negative zeros are allowed because we always end up with positive zero:
5027   // X = -0.0: (-0.0 - (-0.0)) + (-0.0) == ( 0.0) + (-0.0) == 0.0
5028   // X = -0.0: ( 0.0 - (-0.0)) + (-0.0) == ( 0.0) + (-0.0) == 0.0
5029   // X =  0.0: (-0.0 - ( 0.0)) + ( 0.0) == (-0.0) + ( 0.0) == 0.0
5030   // X =  0.0: ( 0.0 - ( 0.0)) + ( 0.0) == ( 0.0) + ( 0.0) == 0.0
5031   if (FMF.noNaNs()) {
5032     if (match(Op0, m_FSub(m_AnyZeroFP(), m_Specific(Op1))) ||
5033         match(Op1, m_FSub(m_AnyZeroFP(), m_Specific(Op0))))
5034       return ConstantFP::getNullValue(Op0->getType());
5035 
5036     if (match(Op0, m_FNeg(m_Specific(Op1))) ||
5037         match(Op1, m_FNeg(m_Specific(Op0))))
5038       return ConstantFP::getNullValue(Op0->getType());
5039   }
5040 
5041   // (X - Y) + Y --> X
5042   // Y + (X - Y) --> X
5043   Value *X;
5044   if (FMF.noSignedZeros() && FMF.allowReassoc() &&
5045       (match(Op0, m_FSub(m_Value(X), m_Specific(Op1))) ||
5046        match(Op1, m_FSub(m_Value(X), m_Specific(Op0)))))
5047     return X;
5048 
5049   return nullptr;
5050 }
5051 
5052 /// Given operands for an FSub, see if we can fold the result.  If not, this
5053 /// returns null.
5054 static Value *
5055 SimplifyFSubInst(Value *Op0, Value *Op1, FastMathFlags FMF,
5056                  const SimplifyQuery &Q, unsigned MaxRecurse,
5057                  fp::ExceptionBehavior ExBehavior = fp::ebIgnore,
5058                  RoundingMode Rounding = RoundingMode::NearestTiesToEven) {
5059   if (isDefaultFPEnvironment(ExBehavior, Rounding))
5060     if (Constant *C = foldOrCommuteConstant(Instruction::FSub, Op0, Op1, Q))
5061       return C;
5062 
5063   if (Constant *C = simplifyFPOp({Op0, Op1}, FMF, Q, ExBehavior, Rounding))
5064     return C;
5065 
5066   if (!isDefaultFPEnvironment(ExBehavior, Rounding))
5067     return nullptr;
5068 
5069   // fsub X, +0 ==> X
5070   if (match(Op1, m_PosZeroFP()))
5071     return Op0;
5072 
5073   // fsub X, -0 ==> X, when we know X is not -0
5074   if (match(Op1, m_NegZeroFP()) &&
5075       (FMF.noSignedZeros() || CannotBeNegativeZero(Op0, Q.TLI)))
5076     return Op0;
5077 
5078   // fsub -0.0, (fsub -0.0, X) ==> X
5079   // fsub -0.0, (fneg X) ==> X
5080   Value *X;
5081   if (match(Op0, m_NegZeroFP()) &&
5082       match(Op1, m_FNeg(m_Value(X))))
5083     return X;
5084 
5085   // fsub 0.0, (fsub 0.0, X) ==> X if signed zeros are ignored.
5086   // fsub 0.0, (fneg X) ==> X if signed zeros are ignored.
5087   if (FMF.noSignedZeros() && match(Op0, m_AnyZeroFP()) &&
5088       (match(Op1, m_FSub(m_AnyZeroFP(), m_Value(X))) ||
5089        match(Op1, m_FNeg(m_Value(X)))))
5090     return X;
5091 
5092   // fsub nnan x, x ==> 0.0
5093   if (FMF.noNaNs() && Op0 == Op1)
5094     return Constant::getNullValue(Op0->getType());
5095 
5096   // Y - (Y - X) --> X
5097   // (X + Y) - Y --> X
5098   if (FMF.noSignedZeros() && FMF.allowReassoc() &&
5099       (match(Op1, m_FSub(m_Specific(Op0), m_Value(X))) ||
5100        match(Op0, m_c_FAdd(m_Specific(Op1), m_Value(X)))))
5101     return X;
5102 
5103   return nullptr;
5104 }
5105 
5106 static Value *SimplifyFMAFMul(Value *Op0, Value *Op1, FastMathFlags FMF,
5107                               const SimplifyQuery &Q, unsigned MaxRecurse,
5108                               fp::ExceptionBehavior ExBehavior,
5109                               RoundingMode Rounding) {
5110   if (Constant *C = simplifyFPOp({Op0, Op1}, FMF, Q, ExBehavior, Rounding))
5111     return C;
5112 
5113   if (!isDefaultFPEnvironment(ExBehavior, Rounding))
5114     return nullptr;
5115 
5116   // fmul X, 1.0 ==> X
5117   if (match(Op1, m_FPOne()))
5118     return Op0;
5119 
5120   // fmul 1.0, X ==> X
5121   if (match(Op0, m_FPOne()))
5122     return Op1;
5123 
5124   // fmul nnan nsz X, 0 ==> 0
5125   if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op1, m_AnyZeroFP()))
5126     return ConstantFP::getNullValue(Op0->getType());
5127 
5128   // fmul nnan nsz 0, X ==> 0
5129   if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op0, m_AnyZeroFP()))
5130     return ConstantFP::getNullValue(Op1->getType());
5131 
5132   // sqrt(X) * sqrt(X) --> X, if we can:
5133   // 1. Remove the intermediate rounding (reassociate).
5134   // 2. Ignore non-zero negative numbers because sqrt would produce NAN.
5135   // 3. Ignore -0.0 because sqrt(-0.0) == -0.0, but -0.0 * -0.0 == 0.0.
5136   Value *X;
5137   if (Op0 == Op1 && match(Op0, m_Intrinsic<Intrinsic::sqrt>(m_Value(X))) &&
5138       FMF.allowReassoc() && FMF.noNaNs() && FMF.noSignedZeros())
5139     return X;
5140 
5141   return nullptr;
5142 }
5143 
5144 /// Given the operands for an FMul, see if we can fold the result
5145 static Value *
5146 SimplifyFMulInst(Value *Op0, Value *Op1, FastMathFlags FMF,
5147                  const SimplifyQuery &Q, unsigned MaxRecurse,
5148                  fp::ExceptionBehavior ExBehavior = fp::ebIgnore,
5149                  RoundingMode Rounding = RoundingMode::NearestTiesToEven) {
5150   if (isDefaultFPEnvironment(ExBehavior, Rounding))
5151     if (Constant *C = foldOrCommuteConstant(Instruction::FMul, Op0, Op1, Q))
5152       return C;
5153 
5154   // Now apply simplifications that do not require rounding.
5155   return SimplifyFMAFMul(Op0, Op1, FMF, Q, MaxRecurse, ExBehavior, Rounding);
5156 }
5157 
5158 Value *llvm::SimplifyFAddInst(Value *Op0, Value *Op1, FastMathFlags FMF,
5159                               const SimplifyQuery &Q,
5160                               fp::ExceptionBehavior ExBehavior,
5161                               RoundingMode Rounding) {
5162   return ::SimplifyFAddInst(Op0, Op1, FMF, Q, RecursionLimit, ExBehavior,
5163                             Rounding);
5164 }
5165 
5166 Value *llvm::SimplifyFSubInst(Value *Op0, Value *Op1, FastMathFlags FMF,
5167                               const SimplifyQuery &Q,
5168                               fp::ExceptionBehavior ExBehavior,
5169                               RoundingMode Rounding) {
5170   return ::SimplifyFSubInst(Op0, Op1, FMF, Q, RecursionLimit, ExBehavior,
5171                             Rounding);
5172 }
5173 
5174 Value *llvm::SimplifyFMulInst(Value *Op0, Value *Op1, FastMathFlags FMF,
5175                               const SimplifyQuery &Q,
5176                               fp::ExceptionBehavior ExBehavior,
5177                               RoundingMode Rounding) {
5178   return ::SimplifyFMulInst(Op0, Op1, FMF, Q, RecursionLimit, ExBehavior,
5179                             Rounding);
5180 }
5181 
5182 Value *llvm::SimplifyFMAFMul(Value *Op0, Value *Op1, FastMathFlags FMF,
5183                              const SimplifyQuery &Q,
5184                              fp::ExceptionBehavior ExBehavior,
5185                              RoundingMode Rounding) {
5186   return ::SimplifyFMAFMul(Op0, Op1, FMF, Q, RecursionLimit, ExBehavior,
5187                            Rounding);
5188 }
5189 
5190 static Value *
5191 SimplifyFDivInst(Value *Op0, Value *Op1, FastMathFlags FMF,
5192                  const SimplifyQuery &Q, unsigned,
5193                  fp::ExceptionBehavior ExBehavior = fp::ebIgnore,
5194                  RoundingMode Rounding = RoundingMode::NearestTiesToEven) {
5195   if (isDefaultFPEnvironment(ExBehavior, Rounding))
5196     if (Constant *C = foldOrCommuteConstant(Instruction::FDiv, Op0, Op1, Q))
5197       return C;
5198 
5199   if (Constant *C = simplifyFPOp({Op0, Op1}, FMF, Q, ExBehavior, Rounding))
5200     return C;
5201 
5202   if (!isDefaultFPEnvironment(ExBehavior, Rounding))
5203     return nullptr;
5204 
5205   // X / 1.0 -> X
5206   if (match(Op1, m_FPOne()))
5207     return Op0;
5208 
5209   // 0 / X -> 0
5210   // Requires that NaNs are off (X could be zero) and signed zeroes are
5211   // ignored (X could be positive or negative, so the output sign is unknown).
5212   if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op0, m_AnyZeroFP()))
5213     return ConstantFP::getNullValue(Op0->getType());
5214 
5215   if (FMF.noNaNs()) {
5216     // X / X -> 1.0 is legal when NaNs are ignored.
5217     // We can ignore infinities because INF/INF is NaN.
5218     if (Op0 == Op1)
5219       return ConstantFP::get(Op0->getType(), 1.0);
5220 
5221     // (X * Y) / Y --> X if we can reassociate to the above form.
5222     Value *X;
5223     if (FMF.allowReassoc() && match(Op0, m_c_FMul(m_Value(X), m_Specific(Op1))))
5224       return X;
5225 
5226     // -X /  X -> -1.0 and
5227     //  X / -X -> -1.0 are legal when NaNs are ignored.
5228     // We can ignore signed zeros because +-0.0/+-0.0 is NaN and ignored.
5229     if (match(Op0, m_FNegNSZ(m_Specific(Op1))) ||
5230         match(Op1, m_FNegNSZ(m_Specific(Op0))))
5231       return ConstantFP::get(Op0->getType(), -1.0);
5232   }
5233 
5234   return nullptr;
5235 }
5236 
5237 Value *llvm::SimplifyFDivInst(Value *Op0, Value *Op1, FastMathFlags FMF,
5238                               const SimplifyQuery &Q,
5239                               fp::ExceptionBehavior ExBehavior,
5240                               RoundingMode Rounding) {
5241   return ::SimplifyFDivInst(Op0, Op1, FMF, Q, RecursionLimit, ExBehavior,
5242                             Rounding);
5243 }
5244 
5245 static Value *
5246 SimplifyFRemInst(Value *Op0, Value *Op1, FastMathFlags FMF,
5247                  const SimplifyQuery &Q, unsigned,
5248                  fp::ExceptionBehavior ExBehavior = fp::ebIgnore,
5249                  RoundingMode Rounding = RoundingMode::NearestTiesToEven) {
5250   if (isDefaultFPEnvironment(ExBehavior, Rounding))
5251     if (Constant *C = foldOrCommuteConstant(Instruction::FRem, Op0, Op1, Q))
5252       return C;
5253 
5254   if (Constant *C = simplifyFPOp({Op0, Op1}, FMF, Q, ExBehavior, Rounding))
5255     return C;
5256 
5257   if (!isDefaultFPEnvironment(ExBehavior, Rounding))
5258     return nullptr;
5259 
5260   // Unlike fdiv, the result of frem always matches the sign of the dividend.
5261   // The constant match may include undef elements in a vector, so return a full
5262   // zero constant as the result.
5263   if (FMF.noNaNs()) {
5264     // +0 % X -> 0
5265     if (match(Op0, m_PosZeroFP()))
5266       return ConstantFP::getNullValue(Op0->getType());
5267     // -0 % X -> -0
5268     if (match(Op0, m_NegZeroFP()))
5269       return ConstantFP::getNegativeZero(Op0->getType());
5270   }
5271 
5272   return nullptr;
5273 }
5274 
5275 Value *llvm::SimplifyFRemInst(Value *Op0, Value *Op1, FastMathFlags FMF,
5276                               const SimplifyQuery &Q,
5277                               fp::ExceptionBehavior ExBehavior,
5278                               RoundingMode Rounding) {
5279   return ::SimplifyFRemInst(Op0, Op1, FMF, Q, RecursionLimit, ExBehavior,
5280                             Rounding);
5281 }
5282 
5283 //=== Helper functions for higher up the class hierarchy.
5284 
5285 /// Given the operand for a UnaryOperator, see if we can fold the result.
5286 /// If not, this returns null.
5287 static Value *simplifyUnOp(unsigned Opcode, Value *Op, const SimplifyQuery &Q,
5288                            unsigned MaxRecurse) {
5289   switch (Opcode) {
5290   case Instruction::FNeg:
5291     return simplifyFNegInst(Op, FastMathFlags(), Q, MaxRecurse);
5292   default:
5293     llvm_unreachable("Unexpected opcode");
5294   }
5295 }
5296 
5297 /// Given the operand for a UnaryOperator, see if we can fold the result.
5298 /// If not, this returns null.
5299 /// Try to use FastMathFlags when folding the result.
5300 static Value *simplifyFPUnOp(unsigned Opcode, Value *Op,
5301                              const FastMathFlags &FMF,
5302                              const SimplifyQuery &Q, unsigned MaxRecurse) {
5303   switch (Opcode) {
5304   case Instruction::FNeg:
5305     return simplifyFNegInst(Op, FMF, Q, MaxRecurse);
5306   default:
5307     return simplifyUnOp(Opcode, Op, Q, MaxRecurse);
5308   }
5309 }
5310 
5311 Value *llvm::SimplifyUnOp(unsigned Opcode, Value *Op, const SimplifyQuery &Q) {
5312   return ::simplifyUnOp(Opcode, Op, Q, RecursionLimit);
5313 }
5314 
5315 Value *llvm::SimplifyUnOp(unsigned Opcode, Value *Op, FastMathFlags FMF,
5316                           const SimplifyQuery &Q) {
5317   return ::simplifyFPUnOp(Opcode, Op, FMF, Q, RecursionLimit);
5318 }
5319 
5320 /// Given operands for a BinaryOperator, see if we can fold the result.
5321 /// If not, this returns null.
5322 static Value *SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS,
5323                             const SimplifyQuery &Q, unsigned MaxRecurse) {
5324   switch (Opcode) {
5325   case Instruction::Add:
5326     return SimplifyAddInst(LHS, RHS, false, false, Q, MaxRecurse);
5327   case Instruction::Sub:
5328     return SimplifySubInst(LHS, RHS, false, false, Q, MaxRecurse);
5329   case Instruction::Mul:
5330     return SimplifyMulInst(LHS, RHS, Q, MaxRecurse);
5331   case Instruction::SDiv:
5332     return SimplifySDivInst(LHS, RHS, Q, MaxRecurse);
5333   case Instruction::UDiv:
5334     return SimplifyUDivInst(LHS, RHS, Q, MaxRecurse);
5335   case Instruction::SRem:
5336     return SimplifySRemInst(LHS, RHS, Q, MaxRecurse);
5337   case Instruction::URem:
5338     return SimplifyURemInst(LHS, RHS, Q, MaxRecurse);
5339   case Instruction::Shl:
5340     return SimplifyShlInst(LHS, RHS, false, false, Q, MaxRecurse);
5341   case Instruction::LShr:
5342     return SimplifyLShrInst(LHS, RHS, false, Q, MaxRecurse);
5343   case Instruction::AShr:
5344     return SimplifyAShrInst(LHS, RHS, false, Q, MaxRecurse);
5345   case Instruction::And:
5346     return SimplifyAndInst(LHS, RHS, Q, MaxRecurse);
5347   case Instruction::Or:
5348     return SimplifyOrInst(LHS, RHS, Q, MaxRecurse);
5349   case Instruction::Xor:
5350     return SimplifyXorInst(LHS, RHS, Q, MaxRecurse);
5351   case Instruction::FAdd:
5352     return SimplifyFAddInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse);
5353   case Instruction::FSub:
5354     return SimplifyFSubInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse);
5355   case Instruction::FMul:
5356     return SimplifyFMulInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse);
5357   case Instruction::FDiv:
5358     return SimplifyFDivInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse);
5359   case Instruction::FRem:
5360     return SimplifyFRemInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse);
5361   default:
5362     llvm_unreachable("Unexpected opcode");
5363   }
5364 }
5365 
5366 /// Given operands for a BinaryOperator, see if we can fold the result.
5367 /// If not, this returns null.
5368 /// Try to use FastMathFlags when folding the result.
5369 static Value *SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS,
5370                             const FastMathFlags &FMF, const SimplifyQuery &Q,
5371                             unsigned MaxRecurse) {
5372   switch (Opcode) {
5373   case Instruction::FAdd:
5374     return SimplifyFAddInst(LHS, RHS, FMF, Q, MaxRecurse);
5375   case Instruction::FSub:
5376     return SimplifyFSubInst(LHS, RHS, FMF, Q, MaxRecurse);
5377   case Instruction::FMul:
5378     return SimplifyFMulInst(LHS, RHS, FMF, Q, MaxRecurse);
5379   case Instruction::FDiv:
5380     return SimplifyFDivInst(LHS, RHS, FMF, Q, MaxRecurse);
5381   default:
5382     return SimplifyBinOp(Opcode, LHS, RHS, Q, MaxRecurse);
5383   }
5384 }
5385 
5386 Value *llvm::SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS,
5387                            const SimplifyQuery &Q) {
5388   return ::SimplifyBinOp(Opcode, LHS, RHS, Q, RecursionLimit);
5389 }
5390 
5391 Value *llvm::SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS,
5392                            FastMathFlags FMF, const SimplifyQuery &Q) {
5393   return ::SimplifyBinOp(Opcode, LHS, RHS, FMF, Q, RecursionLimit);
5394 }
5395 
5396 /// Given operands for a CmpInst, see if we can fold the result.
5397 static Value *SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
5398                               const SimplifyQuery &Q, unsigned MaxRecurse) {
5399   if (CmpInst::isIntPredicate((CmpInst::Predicate)Predicate))
5400     return SimplifyICmpInst(Predicate, LHS, RHS, Q, MaxRecurse);
5401   return SimplifyFCmpInst(Predicate, LHS, RHS, FastMathFlags(), Q, MaxRecurse);
5402 }
5403 
5404 Value *llvm::SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
5405                              const SimplifyQuery &Q) {
5406   return ::SimplifyCmpInst(Predicate, LHS, RHS, Q, RecursionLimit);
5407 }
5408 
5409 static bool IsIdempotent(Intrinsic::ID ID) {
5410   switch (ID) {
5411   default: return false;
5412 
5413   // Unary idempotent: f(f(x)) = f(x)
5414   case Intrinsic::fabs:
5415   case Intrinsic::floor:
5416   case Intrinsic::ceil:
5417   case Intrinsic::trunc:
5418   case Intrinsic::rint:
5419   case Intrinsic::nearbyint:
5420   case Intrinsic::round:
5421   case Intrinsic::roundeven:
5422   case Intrinsic::canonicalize:
5423     return true;
5424   }
5425 }
5426 
5427 static Value *SimplifyRelativeLoad(Constant *Ptr, Constant *Offset,
5428                                    const DataLayout &DL) {
5429   GlobalValue *PtrSym;
5430   APInt PtrOffset;
5431   if (!IsConstantOffsetFromGlobal(Ptr, PtrSym, PtrOffset, DL))
5432     return nullptr;
5433 
5434   Type *Int8PtrTy = Type::getInt8PtrTy(Ptr->getContext());
5435   Type *Int32Ty = Type::getInt32Ty(Ptr->getContext());
5436   Type *Int32PtrTy = Int32Ty->getPointerTo();
5437   Type *Int64Ty = Type::getInt64Ty(Ptr->getContext());
5438 
5439   auto *OffsetConstInt = dyn_cast<ConstantInt>(Offset);
5440   if (!OffsetConstInt || OffsetConstInt->getType()->getBitWidth() > 64)
5441     return nullptr;
5442 
5443   uint64_t OffsetInt = OffsetConstInt->getSExtValue();
5444   if (OffsetInt % 4 != 0)
5445     return nullptr;
5446 
5447   Constant *C = ConstantExpr::getGetElementPtr(
5448       Int32Ty, ConstantExpr::getBitCast(Ptr, Int32PtrTy),
5449       ConstantInt::get(Int64Ty, OffsetInt / 4));
5450   Constant *Loaded = ConstantFoldLoadFromConstPtr(C, Int32Ty, DL);
5451   if (!Loaded)
5452     return nullptr;
5453 
5454   auto *LoadedCE = dyn_cast<ConstantExpr>(Loaded);
5455   if (!LoadedCE)
5456     return nullptr;
5457 
5458   if (LoadedCE->getOpcode() == Instruction::Trunc) {
5459     LoadedCE = dyn_cast<ConstantExpr>(LoadedCE->getOperand(0));
5460     if (!LoadedCE)
5461       return nullptr;
5462   }
5463 
5464   if (LoadedCE->getOpcode() != Instruction::Sub)
5465     return nullptr;
5466 
5467   auto *LoadedLHS = dyn_cast<ConstantExpr>(LoadedCE->getOperand(0));
5468   if (!LoadedLHS || LoadedLHS->getOpcode() != Instruction::PtrToInt)
5469     return nullptr;
5470   auto *LoadedLHSPtr = LoadedLHS->getOperand(0);
5471 
5472   Constant *LoadedRHS = LoadedCE->getOperand(1);
5473   GlobalValue *LoadedRHSSym;
5474   APInt LoadedRHSOffset;
5475   if (!IsConstantOffsetFromGlobal(LoadedRHS, LoadedRHSSym, LoadedRHSOffset,
5476                                   DL) ||
5477       PtrSym != LoadedRHSSym || PtrOffset != LoadedRHSOffset)
5478     return nullptr;
5479 
5480   return ConstantExpr::getBitCast(LoadedLHSPtr, Int8PtrTy);
5481 }
5482 
5483 static Value *simplifyUnaryIntrinsic(Function *F, Value *Op0,
5484                                      const SimplifyQuery &Q) {
5485   // Idempotent functions return the same result when called repeatedly.
5486   Intrinsic::ID IID = F->getIntrinsicID();
5487   if (IsIdempotent(IID))
5488     if (auto *II = dyn_cast<IntrinsicInst>(Op0))
5489       if (II->getIntrinsicID() == IID)
5490         return II;
5491 
5492   Value *X;
5493   switch (IID) {
5494   case Intrinsic::fabs:
5495     if (SignBitMustBeZero(Op0, Q.TLI)) return Op0;
5496     break;
5497   case Intrinsic::bswap:
5498     // bswap(bswap(x)) -> x
5499     if (match(Op0, m_BSwap(m_Value(X)))) return X;
5500     break;
5501   case Intrinsic::bitreverse:
5502     // bitreverse(bitreverse(x)) -> x
5503     if (match(Op0, m_BitReverse(m_Value(X)))) return X;
5504     break;
5505   case Intrinsic::ctpop: {
5506     // If everything but the lowest bit is zero, that bit is the pop-count. Ex:
5507     // ctpop(and X, 1) --> and X, 1
5508     unsigned BitWidth = Op0->getType()->getScalarSizeInBits();
5509     if (MaskedValueIsZero(Op0, APInt::getHighBitsSet(BitWidth, BitWidth - 1),
5510                           Q.DL, 0, Q.AC, Q.CxtI, Q.DT))
5511       return Op0;
5512     break;
5513   }
5514   case Intrinsic::exp:
5515     // exp(log(x)) -> x
5516     if (Q.CxtI->hasAllowReassoc() &&
5517         match(Op0, m_Intrinsic<Intrinsic::log>(m_Value(X)))) return X;
5518     break;
5519   case Intrinsic::exp2:
5520     // exp2(log2(x)) -> x
5521     if (Q.CxtI->hasAllowReassoc() &&
5522         match(Op0, m_Intrinsic<Intrinsic::log2>(m_Value(X)))) return X;
5523     break;
5524   case Intrinsic::log:
5525     // log(exp(x)) -> x
5526     if (Q.CxtI->hasAllowReassoc() &&
5527         match(Op0, m_Intrinsic<Intrinsic::exp>(m_Value(X)))) return X;
5528     break;
5529   case Intrinsic::log2:
5530     // log2(exp2(x)) -> x
5531     if (Q.CxtI->hasAllowReassoc() &&
5532         (match(Op0, m_Intrinsic<Intrinsic::exp2>(m_Value(X))) ||
5533          match(Op0, m_Intrinsic<Intrinsic::pow>(m_SpecificFP(2.0),
5534                                                 m_Value(X))))) return X;
5535     break;
5536   case Intrinsic::log10:
5537     // log10(pow(10.0, x)) -> x
5538     if (Q.CxtI->hasAllowReassoc() &&
5539         match(Op0, m_Intrinsic<Intrinsic::pow>(m_SpecificFP(10.0),
5540                                                m_Value(X)))) return X;
5541     break;
5542   case Intrinsic::floor:
5543   case Intrinsic::trunc:
5544   case Intrinsic::ceil:
5545   case Intrinsic::round:
5546   case Intrinsic::roundeven:
5547   case Intrinsic::nearbyint:
5548   case Intrinsic::rint: {
5549     // floor (sitofp x) -> sitofp x
5550     // floor (uitofp x) -> uitofp x
5551     //
5552     // Converting from int always results in a finite integral number or
5553     // infinity. For either of those inputs, these rounding functions always
5554     // return the same value, so the rounding can be eliminated.
5555     if (match(Op0, m_SIToFP(m_Value())) || match(Op0, m_UIToFP(m_Value())))
5556       return Op0;
5557     break;
5558   }
5559   case Intrinsic::experimental_vector_reverse:
5560     // experimental.vector.reverse(experimental.vector.reverse(x)) -> x
5561     if (match(Op0,
5562               m_Intrinsic<Intrinsic::experimental_vector_reverse>(m_Value(X))))
5563       return X;
5564     // experimental.vector.reverse(splat(X)) -> splat(X)
5565     if (isSplatValue(Op0))
5566       return Op0;
5567     break;
5568   default:
5569     break;
5570   }
5571 
5572   return nullptr;
5573 }
5574 
5575 static APInt getMaxMinLimit(Intrinsic::ID IID, unsigned BitWidth) {
5576   switch (IID) {
5577   case Intrinsic::smax: return APInt::getSignedMaxValue(BitWidth);
5578   case Intrinsic::smin: return APInt::getSignedMinValue(BitWidth);
5579   case Intrinsic::umax: return APInt::getMaxValue(BitWidth);
5580   case Intrinsic::umin: return APInt::getMinValue(BitWidth);
5581   default: llvm_unreachable("Unexpected intrinsic");
5582   }
5583 }
5584 
5585 static ICmpInst::Predicate getMaxMinPredicate(Intrinsic::ID IID) {
5586   switch (IID) {
5587   case Intrinsic::smax: return ICmpInst::ICMP_SGE;
5588   case Intrinsic::smin: return ICmpInst::ICMP_SLE;
5589   case Intrinsic::umax: return ICmpInst::ICMP_UGE;
5590   case Intrinsic::umin: return ICmpInst::ICMP_ULE;
5591   default: llvm_unreachable("Unexpected intrinsic");
5592   }
5593 }
5594 
5595 /// Given a min/max intrinsic, see if it can be removed based on having an
5596 /// operand that is another min/max intrinsic with shared operand(s). The caller
5597 /// is expected to swap the operand arguments to handle commutation.
5598 static Value *foldMinMaxSharedOp(Intrinsic::ID IID, Value *Op0, Value *Op1) {
5599   Value *X, *Y;
5600   if (!match(Op0, m_MaxOrMin(m_Value(X), m_Value(Y))))
5601     return nullptr;
5602 
5603   auto *MM0 = dyn_cast<IntrinsicInst>(Op0);
5604   if (!MM0)
5605     return nullptr;
5606   Intrinsic::ID IID0 = MM0->getIntrinsicID();
5607 
5608   if (Op1 == X || Op1 == Y ||
5609       match(Op1, m_c_MaxOrMin(m_Specific(X), m_Specific(Y)))) {
5610     // max (max X, Y), X --> max X, Y
5611     if (IID0 == IID)
5612       return MM0;
5613     // max (min X, Y), X --> X
5614     if (IID0 == getInverseMinMaxIntrinsic(IID))
5615       return Op1;
5616   }
5617   return nullptr;
5618 }
5619 
5620 static Value *simplifyBinaryIntrinsic(Function *F, Value *Op0, Value *Op1,
5621                                       const SimplifyQuery &Q) {
5622   Intrinsic::ID IID = F->getIntrinsicID();
5623   Type *ReturnType = F->getReturnType();
5624   unsigned BitWidth = ReturnType->getScalarSizeInBits();
5625   switch (IID) {
5626   case Intrinsic::abs:
5627     // abs(abs(x)) -> abs(x). We don't need to worry about the nsw arg here.
5628     // It is always ok to pick the earlier abs. We'll just lose nsw if its only
5629     // on the outer abs.
5630     if (match(Op0, m_Intrinsic<Intrinsic::abs>(m_Value(), m_Value())))
5631       return Op0;
5632     break;
5633 
5634   case Intrinsic::cttz: {
5635     Value *X;
5636     if (match(Op0, m_Shl(m_One(), m_Value(X))))
5637       return X;
5638     break;
5639   }
5640   case Intrinsic::ctlz: {
5641     Value *X;
5642     if (match(Op0, m_LShr(m_Negative(), m_Value(X))))
5643       return X;
5644     if (match(Op0, m_AShr(m_Negative(), m_Value())))
5645       return Constant::getNullValue(ReturnType);
5646     break;
5647   }
5648   case Intrinsic::smax:
5649   case Intrinsic::smin:
5650   case Intrinsic::umax:
5651   case Intrinsic::umin: {
5652     // If the arguments are the same, this is a no-op.
5653     if (Op0 == Op1)
5654       return Op0;
5655 
5656     // Canonicalize constant operand as Op1.
5657     if (isa<Constant>(Op0))
5658       std::swap(Op0, Op1);
5659 
5660     // Assume undef is the limit value.
5661     if (Q.isUndefValue(Op1))
5662       return ConstantInt::get(ReturnType, getMaxMinLimit(IID, BitWidth));
5663 
5664     const APInt *C;
5665     if (match(Op1, m_APIntAllowUndef(C))) {
5666       // Clamp to limit value. For example:
5667       // umax(i8 %x, i8 255) --> 255
5668       if (*C == getMaxMinLimit(IID, BitWidth))
5669         return ConstantInt::get(ReturnType, *C);
5670 
5671       // If the constant op is the opposite of the limit value, the other must
5672       // be larger/smaller or equal. For example:
5673       // umin(i8 %x, i8 255) --> %x
5674       if (*C == getMaxMinLimit(getInverseMinMaxIntrinsic(IID), BitWidth))
5675         return Op0;
5676 
5677       // Remove nested call if constant operands allow it. Example:
5678       // max (max X, 7), 5 -> max X, 7
5679       auto *MinMax0 = dyn_cast<IntrinsicInst>(Op0);
5680       if (MinMax0 && MinMax0->getIntrinsicID() == IID) {
5681         // TODO: loosen undef/splat restrictions for vector constants.
5682         Value *M00 = MinMax0->getOperand(0), *M01 = MinMax0->getOperand(1);
5683         const APInt *InnerC;
5684         if ((match(M00, m_APInt(InnerC)) || match(M01, m_APInt(InnerC))) &&
5685             ((IID == Intrinsic::smax && InnerC->sge(*C)) ||
5686              (IID == Intrinsic::smin && InnerC->sle(*C)) ||
5687              (IID == Intrinsic::umax && InnerC->uge(*C)) ||
5688              (IID == Intrinsic::umin && InnerC->ule(*C))))
5689           return Op0;
5690       }
5691     }
5692 
5693     if (Value *V = foldMinMaxSharedOp(IID, Op0, Op1))
5694       return V;
5695     if (Value *V = foldMinMaxSharedOp(IID, Op1, Op0))
5696       return V;
5697 
5698     ICmpInst::Predicate Pred = getMaxMinPredicate(IID);
5699     if (isICmpTrue(Pred, Op0, Op1, Q.getWithoutUndef(), RecursionLimit))
5700       return Op0;
5701     if (isICmpTrue(Pred, Op1, Op0, Q.getWithoutUndef(), RecursionLimit))
5702       return Op1;
5703 
5704     if (Optional<bool> Imp =
5705             isImpliedByDomCondition(Pred, Op0, Op1, Q.CxtI, Q.DL))
5706       return *Imp ? Op0 : Op1;
5707     if (Optional<bool> Imp =
5708             isImpliedByDomCondition(Pred, Op1, Op0, Q.CxtI, Q.DL))
5709       return *Imp ? Op1 : Op0;
5710 
5711     break;
5712   }
5713   case Intrinsic::usub_with_overflow:
5714   case Intrinsic::ssub_with_overflow:
5715     // X - X -> { 0, false }
5716     // X - undef -> { 0, false }
5717     // undef - X -> { 0, false }
5718     if (Op0 == Op1 || Q.isUndefValue(Op0) || Q.isUndefValue(Op1))
5719       return Constant::getNullValue(ReturnType);
5720     break;
5721   case Intrinsic::uadd_with_overflow:
5722   case Intrinsic::sadd_with_overflow:
5723     // X + undef -> { -1, false }
5724     // undef + x -> { -1, false }
5725     if (Q.isUndefValue(Op0) || Q.isUndefValue(Op1)) {
5726       return ConstantStruct::get(
5727           cast<StructType>(ReturnType),
5728           {Constant::getAllOnesValue(ReturnType->getStructElementType(0)),
5729            Constant::getNullValue(ReturnType->getStructElementType(1))});
5730     }
5731     break;
5732   case Intrinsic::umul_with_overflow:
5733   case Intrinsic::smul_with_overflow:
5734     // 0 * X -> { 0, false }
5735     // X * 0 -> { 0, false }
5736     if (match(Op0, m_Zero()) || match(Op1, m_Zero()))
5737       return Constant::getNullValue(ReturnType);
5738     // undef * X -> { 0, false }
5739     // X * undef -> { 0, false }
5740     if (Q.isUndefValue(Op0) || Q.isUndefValue(Op1))
5741       return Constant::getNullValue(ReturnType);
5742     break;
5743   case Intrinsic::uadd_sat:
5744     // sat(MAX + X) -> MAX
5745     // sat(X + MAX) -> MAX
5746     if (match(Op0, m_AllOnes()) || match(Op1, m_AllOnes()))
5747       return Constant::getAllOnesValue(ReturnType);
5748     LLVM_FALLTHROUGH;
5749   case Intrinsic::sadd_sat:
5750     // sat(X + undef) -> -1
5751     // sat(undef + X) -> -1
5752     // For unsigned: Assume undef is MAX, thus we saturate to MAX (-1).
5753     // For signed: Assume undef is ~X, in which case X + ~X = -1.
5754     if (Q.isUndefValue(Op0) || Q.isUndefValue(Op1))
5755       return Constant::getAllOnesValue(ReturnType);
5756 
5757     // X + 0 -> X
5758     if (match(Op1, m_Zero()))
5759       return Op0;
5760     // 0 + X -> X
5761     if (match(Op0, m_Zero()))
5762       return Op1;
5763     break;
5764   case Intrinsic::usub_sat:
5765     // sat(0 - X) -> 0, sat(X - MAX) -> 0
5766     if (match(Op0, m_Zero()) || match(Op1, m_AllOnes()))
5767       return Constant::getNullValue(ReturnType);
5768     LLVM_FALLTHROUGH;
5769   case Intrinsic::ssub_sat:
5770     // X - X -> 0, X - undef -> 0, undef - X -> 0
5771     if (Op0 == Op1 || Q.isUndefValue(Op0) || Q.isUndefValue(Op1))
5772       return Constant::getNullValue(ReturnType);
5773     // X - 0 -> X
5774     if (match(Op1, m_Zero()))
5775       return Op0;
5776     break;
5777   case Intrinsic::load_relative:
5778     if (auto *C0 = dyn_cast<Constant>(Op0))
5779       if (auto *C1 = dyn_cast<Constant>(Op1))
5780         return SimplifyRelativeLoad(C0, C1, Q.DL);
5781     break;
5782   case Intrinsic::powi:
5783     if (auto *Power = dyn_cast<ConstantInt>(Op1)) {
5784       // powi(x, 0) -> 1.0
5785       if (Power->isZero())
5786         return ConstantFP::get(Op0->getType(), 1.0);
5787       // powi(x, 1) -> x
5788       if (Power->isOne())
5789         return Op0;
5790     }
5791     break;
5792   case Intrinsic::copysign:
5793     // copysign X, X --> X
5794     if (Op0 == Op1)
5795       return Op0;
5796     // copysign -X, X --> X
5797     // copysign X, -X --> -X
5798     if (match(Op0, m_FNeg(m_Specific(Op1))) ||
5799         match(Op1, m_FNeg(m_Specific(Op0))))
5800       return Op1;
5801     break;
5802   case Intrinsic::maxnum:
5803   case Intrinsic::minnum:
5804   case Intrinsic::maximum:
5805   case Intrinsic::minimum: {
5806     // If the arguments are the same, this is a no-op.
5807     if (Op0 == Op1) return Op0;
5808 
5809     // Canonicalize constant operand as Op1.
5810     if (isa<Constant>(Op0))
5811       std::swap(Op0, Op1);
5812 
5813     // If an argument is undef, return the other argument.
5814     if (Q.isUndefValue(Op1))
5815       return Op0;
5816 
5817     bool PropagateNaN = IID == Intrinsic::minimum || IID == Intrinsic::maximum;
5818     bool IsMin = IID == Intrinsic::minimum || IID == Intrinsic::minnum;
5819 
5820     // minnum(X, nan) -> X
5821     // maxnum(X, nan) -> X
5822     // minimum(X, nan) -> nan
5823     // maximum(X, nan) -> nan
5824     if (match(Op1, m_NaN()))
5825       return PropagateNaN ? propagateNaN(cast<Constant>(Op1)) : Op0;
5826 
5827     // In the following folds, inf can be replaced with the largest finite
5828     // float, if the ninf flag is set.
5829     const APFloat *C;
5830     if (match(Op1, m_APFloat(C)) &&
5831         (C->isInfinity() || (Q.CxtI->hasNoInfs() && C->isLargest()))) {
5832       // minnum(X, -inf) -> -inf
5833       // maxnum(X, +inf) -> +inf
5834       // minimum(X, -inf) -> -inf if nnan
5835       // maximum(X, +inf) -> +inf if nnan
5836       if (C->isNegative() == IsMin && (!PropagateNaN || Q.CxtI->hasNoNaNs()))
5837         return ConstantFP::get(ReturnType, *C);
5838 
5839       // minnum(X, +inf) -> X if nnan
5840       // maxnum(X, -inf) -> X if nnan
5841       // minimum(X, +inf) -> X
5842       // maximum(X, -inf) -> X
5843       if (C->isNegative() != IsMin && (PropagateNaN || Q.CxtI->hasNoNaNs()))
5844         return Op0;
5845     }
5846 
5847     // Min/max of the same operation with common operand:
5848     // m(m(X, Y)), X --> m(X, Y) (4 commuted variants)
5849     if (auto *M0 = dyn_cast<IntrinsicInst>(Op0))
5850       if (M0->getIntrinsicID() == IID &&
5851           (M0->getOperand(0) == Op1 || M0->getOperand(1) == Op1))
5852         return Op0;
5853     if (auto *M1 = dyn_cast<IntrinsicInst>(Op1))
5854       if (M1->getIntrinsicID() == IID &&
5855           (M1->getOperand(0) == Op0 || M1->getOperand(1) == Op0))
5856         return Op1;
5857 
5858     break;
5859   }
5860   case Intrinsic::experimental_vector_extract: {
5861     Type *ReturnType = F->getReturnType();
5862 
5863     // (extract_vector (insert_vector _, X, 0), 0) -> X
5864     unsigned IdxN = cast<ConstantInt>(Op1)->getZExtValue();
5865     Value *X = nullptr;
5866     if (match(Op0, m_Intrinsic<Intrinsic::experimental_vector_insert>(
5867                        m_Value(), m_Value(X), m_Zero())) &&
5868         IdxN == 0 && X->getType() == ReturnType)
5869       return X;
5870 
5871     break;
5872   }
5873   default:
5874     break;
5875   }
5876 
5877   return nullptr;
5878 }
5879 
5880 static Value *simplifyIntrinsic(CallBase *Call, const SimplifyQuery &Q) {
5881 
5882   unsigned NumOperands = Call->arg_size();
5883   Function *F = cast<Function>(Call->getCalledFunction());
5884   Intrinsic::ID IID = F->getIntrinsicID();
5885 
5886   // Most of the intrinsics with no operands have some kind of side effect.
5887   // Don't simplify.
5888   if (!NumOperands) {
5889     switch (IID) {
5890     case Intrinsic::vscale: {
5891       // Call may not be inserted into the IR yet at point of calling simplify.
5892       if (!Call->getParent() || !Call->getParent()->getParent())
5893         return nullptr;
5894       auto Attr = Call->getFunction()->getFnAttribute(Attribute::VScaleRange);
5895       if (!Attr.isValid())
5896         return nullptr;
5897       unsigned VScaleMin = Attr.getVScaleRangeMin();
5898       Optional<unsigned> VScaleMax = Attr.getVScaleRangeMax();
5899       if (VScaleMax && VScaleMin == VScaleMax)
5900         return ConstantInt::get(F->getReturnType(), VScaleMin);
5901       return nullptr;
5902     }
5903     default:
5904       return nullptr;
5905     }
5906   }
5907 
5908   if (NumOperands == 1)
5909     return simplifyUnaryIntrinsic(F, Call->getArgOperand(0), Q);
5910 
5911   if (NumOperands == 2)
5912     return simplifyBinaryIntrinsic(F, Call->getArgOperand(0),
5913                                    Call->getArgOperand(1), Q);
5914 
5915   // Handle intrinsics with 3 or more arguments.
5916   switch (IID) {
5917   case Intrinsic::masked_load:
5918   case Intrinsic::masked_gather: {
5919     Value *MaskArg = Call->getArgOperand(2);
5920     Value *PassthruArg = Call->getArgOperand(3);
5921     // If the mask is all zeros or undef, the "passthru" argument is the result.
5922     if (maskIsAllZeroOrUndef(MaskArg))
5923       return PassthruArg;
5924     return nullptr;
5925   }
5926   case Intrinsic::fshl:
5927   case Intrinsic::fshr: {
5928     Value *Op0 = Call->getArgOperand(0), *Op1 = Call->getArgOperand(1),
5929           *ShAmtArg = Call->getArgOperand(2);
5930 
5931     // If both operands are undef, the result is undef.
5932     if (Q.isUndefValue(Op0) && Q.isUndefValue(Op1))
5933       return UndefValue::get(F->getReturnType());
5934 
5935     // If shift amount is undef, assume it is zero.
5936     if (Q.isUndefValue(ShAmtArg))
5937       return Call->getArgOperand(IID == Intrinsic::fshl ? 0 : 1);
5938 
5939     const APInt *ShAmtC;
5940     if (match(ShAmtArg, m_APInt(ShAmtC))) {
5941       // If there's effectively no shift, return the 1st arg or 2nd arg.
5942       APInt BitWidth = APInt(ShAmtC->getBitWidth(), ShAmtC->getBitWidth());
5943       if (ShAmtC->urem(BitWidth).isZero())
5944         return Call->getArgOperand(IID == Intrinsic::fshl ? 0 : 1);
5945     }
5946 
5947     // Rotating zero by anything is zero.
5948     if (match(Op0, m_Zero()) && match(Op1, m_Zero()))
5949       return ConstantInt::getNullValue(F->getReturnType());
5950 
5951     // Rotating -1 by anything is -1.
5952     if (match(Op0, m_AllOnes()) && match(Op1, m_AllOnes()))
5953       return ConstantInt::getAllOnesValue(F->getReturnType());
5954 
5955     return nullptr;
5956   }
5957   case Intrinsic::experimental_constrained_fma: {
5958     Value *Op0 = Call->getArgOperand(0);
5959     Value *Op1 = Call->getArgOperand(1);
5960     Value *Op2 = Call->getArgOperand(2);
5961     auto *FPI = cast<ConstrainedFPIntrinsic>(Call);
5962     if (Value *V = simplifyFPOp({Op0, Op1, Op2}, {}, Q,
5963                                 FPI->getExceptionBehavior().getValue(),
5964                                 FPI->getRoundingMode().getValue()))
5965       return V;
5966     return nullptr;
5967   }
5968   case Intrinsic::fma:
5969   case Intrinsic::fmuladd: {
5970     Value *Op0 = Call->getArgOperand(0);
5971     Value *Op1 = Call->getArgOperand(1);
5972     Value *Op2 = Call->getArgOperand(2);
5973     if (Value *V = simplifyFPOp({Op0, Op1, Op2}, {}, Q, fp::ebIgnore,
5974                                 RoundingMode::NearestTiesToEven))
5975       return V;
5976     return nullptr;
5977   }
5978   case Intrinsic::smul_fix:
5979   case Intrinsic::smul_fix_sat: {
5980     Value *Op0 = Call->getArgOperand(0);
5981     Value *Op1 = Call->getArgOperand(1);
5982     Value *Op2 = Call->getArgOperand(2);
5983     Type *ReturnType = F->getReturnType();
5984 
5985     // Canonicalize constant operand as Op1 (ConstantFolding handles the case
5986     // when both Op0 and Op1 are constant so we do not care about that special
5987     // case here).
5988     if (isa<Constant>(Op0))
5989       std::swap(Op0, Op1);
5990 
5991     // X * 0 -> 0
5992     if (match(Op1, m_Zero()))
5993       return Constant::getNullValue(ReturnType);
5994 
5995     // X * undef -> 0
5996     if (Q.isUndefValue(Op1))
5997       return Constant::getNullValue(ReturnType);
5998 
5999     // X * (1 << Scale) -> X
6000     APInt ScaledOne =
6001         APInt::getOneBitSet(ReturnType->getScalarSizeInBits(),
6002                             cast<ConstantInt>(Op2)->getZExtValue());
6003     if (ScaledOne.isNonNegative() && match(Op1, m_SpecificInt(ScaledOne)))
6004       return Op0;
6005 
6006     return nullptr;
6007   }
6008   case Intrinsic::experimental_vector_insert: {
6009     Value *Vec = Call->getArgOperand(0);
6010     Value *SubVec = Call->getArgOperand(1);
6011     Value *Idx = Call->getArgOperand(2);
6012     Type *ReturnType = F->getReturnType();
6013 
6014     // (insert_vector Y, (extract_vector X, 0), 0) -> X
6015     // where: Y is X, or Y is undef
6016     unsigned IdxN = cast<ConstantInt>(Idx)->getZExtValue();
6017     Value *X = nullptr;
6018     if (match(SubVec, m_Intrinsic<Intrinsic::experimental_vector_extract>(
6019                           m_Value(X), m_Zero())) &&
6020         (Q.isUndefValue(Vec) || Vec == X) && IdxN == 0 &&
6021         X->getType() == ReturnType)
6022       return X;
6023 
6024     return nullptr;
6025   }
6026   case Intrinsic::experimental_constrained_fadd: {
6027     auto *FPI = cast<ConstrainedFPIntrinsic>(Call);
6028     return SimplifyFAddInst(FPI->getArgOperand(0), FPI->getArgOperand(1),
6029                             FPI->getFastMathFlags(), Q,
6030                             FPI->getExceptionBehavior().getValue(),
6031                             FPI->getRoundingMode().getValue());
6032     break;
6033   }
6034   case Intrinsic::experimental_constrained_fsub: {
6035     auto *FPI = cast<ConstrainedFPIntrinsic>(Call);
6036     return SimplifyFSubInst(FPI->getArgOperand(0), FPI->getArgOperand(1),
6037                             FPI->getFastMathFlags(), Q,
6038                             FPI->getExceptionBehavior().getValue(),
6039                             FPI->getRoundingMode().getValue());
6040     break;
6041   }
6042   case Intrinsic::experimental_constrained_fmul: {
6043     auto *FPI = cast<ConstrainedFPIntrinsic>(Call);
6044     return SimplifyFMulInst(FPI->getArgOperand(0), FPI->getArgOperand(1),
6045                             FPI->getFastMathFlags(), Q,
6046                             FPI->getExceptionBehavior().getValue(),
6047                             FPI->getRoundingMode().getValue());
6048     break;
6049   }
6050   case Intrinsic::experimental_constrained_fdiv: {
6051     auto *FPI = cast<ConstrainedFPIntrinsic>(Call);
6052     return SimplifyFDivInst(FPI->getArgOperand(0), FPI->getArgOperand(1),
6053                             FPI->getFastMathFlags(), Q,
6054                             FPI->getExceptionBehavior().getValue(),
6055                             FPI->getRoundingMode().getValue());
6056     break;
6057   }
6058   case Intrinsic::experimental_constrained_frem: {
6059     auto *FPI = cast<ConstrainedFPIntrinsic>(Call);
6060     return SimplifyFRemInst(FPI->getArgOperand(0), FPI->getArgOperand(1),
6061                             FPI->getFastMathFlags(), Q,
6062                             FPI->getExceptionBehavior().getValue(),
6063                             FPI->getRoundingMode().getValue());
6064     break;
6065   }
6066   default:
6067     return nullptr;
6068   }
6069 }
6070 
6071 static Value *tryConstantFoldCall(CallBase *Call, const SimplifyQuery &Q) {
6072   auto *F = dyn_cast<Function>(Call->getCalledOperand());
6073   if (!F || !canConstantFoldCallTo(Call, F))
6074     return nullptr;
6075 
6076   SmallVector<Constant *, 4> ConstantArgs;
6077   unsigned NumArgs = Call->arg_size();
6078   ConstantArgs.reserve(NumArgs);
6079   for (auto &Arg : Call->args()) {
6080     Constant *C = dyn_cast<Constant>(&Arg);
6081     if (!C) {
6082       if (isa<MetadataAsValue>(Arg.get()))
6083         continue;
6084       return nullptr;
6085     }
6086     ConstantArgs.push_back(C);
6087   }
6088 
6089   return ConstantFoldCall(Call, F, ConstantArgs, Q.TLI);
6090 }
6091 
6092 Value *llvm::SimplifyCall(CallBase *Call, const SimplifyQuery &Q) {
6093   // musttail calls can only be simplified if they are also DCEd.
6094   // As we can't guarantee this here, don't simplify them.
6095   if (Call->isMustTailCall())
6096     return nullptr;
6097 
6098   // call undef -> poison
6099   // call null -> poison
6100   Value *Callee = Call->getCalledOperand();
6101   if (isa<UndefValue>(Callee) || isa<ConstantPointerNull>(Callee))
6102     return PoisonValue::get(Call->getType());
6103 
6104   if (Value *V = tryConstantFoldCall(Call, Q))
6105     return V;
6106 
6107   auto *F = dyn_cast<Function>(Callee);
6108   if (F && F->isIntrinsic())
6109     if (Value *Ret = simplifyIntrinsic(Call, Q))
6110       return Ret;
6111 
6112   return nullptr;
6113 }
6114 
6115 /// Given operands for a Freeze, see if we can fold the result.
6116 static Value *SimplifyFreezeInst(Value *Op0, const SimplifyQuery &Q) {
6117   // Use a utility function defined in ValueTracking.
6118   if (llvm::isGuaranteedNotToBeUndefOrPoison(Op0, Q.AC, Q.CxtI, Q.DT))
6119     return Op0;
6120   // We have room for improvement.
6121   return nullptr;
6122 }
6123 
6124 Value *llvm::SimplifyFreezeInst(Value *Op0, const SimplifyQuery &Q) {
6125   return ::SimplifyFreezeInst(Op0, Q);
6126 }
6127 
6128 static Value *SimplifyLoadInst(LoadInst *LI, Value *PtrOp,
6129                                const SimplifyQuery &Q) {
6130   if (LI->isVolatile())
6131     return nullptr;
6132 
6133   APInt Offset(Q.DL.getIndexTypeSizeInBits(PtrOp->getType()), 0);
6134   auto *PtrOpC = dyn_cast<Constant>(PtrOp);
6135   // Try to convert operand into a constant by stripping offsets while looking
6136   // through invariant.group intrinsics. Don't bother if the underlying object
6137   // is not constant, as calculating GEP offsets is expensive.
6138   if (!PtrOpC && isa<Constant>(getUnderlyingObject(PtrOp))) {
6139     PtrOp = PtrOp->stripAndAccumulateConstantOffsets(
6140         Q.DL, Offset, /* AllowNonInbounts */ true,
6141         /* AllowInvariantGroup */ true);
6142     // Index size may have changed due to address space casts.
6143     Offset = Offset.sextOrTrunc(Q.DL.getIndexTypeSizeInBits(PtrOp->getType()));
6144     PtrOpC = dyn_cast<Constant>(PtrOp);
6145   }
6146 
6147   if (PtrOpC)
6148     return ConstantFoldLoadFromConstPtr(PtrOpC, LI->getType(), Offset, Q.DL);
6149   return nullptr;
6150 }
6151 
6152 /// See if we can compute a simplified version of this instruction.
6153 /// If not, this returns null.
6154 
6155 static Value *simplifyInstructionWithOperands(Instruction *I,
6156                                               ArrayRef<Value *> NewOps,
6157                                               const SimplifyQuery &SQ,
6158                                               OptimizationRemarkEmitter *ORE) {
6159   const SimplifyQuery Q = SQ.CxtI ? SQ : SQ.getWithInstruction(I);
6160   Value *Result = nullptr;
6161 
6162   switch (I->getOpcode()) {
6163   default:
6164     if (llvm::all_of(NewOps, [](Value *V) { return isa<Constant>(V); })) {
6165       SmallVector<Constant *, 8> NewConstOps(NewOps.size());
6166       transform(NewOps, NewConstOps.begin(),
6167                 [](Value *V) { return cast<Constant>(V); });
6168       Result = ConstantFoldInstOperands(I, NewConstOps, Q.DL, Q.TLI);
6169     }
6170     break;
6171   case Instruction::FNeg:
6172     Result = SimplifyFNegInst(NewOps[0], I->getFastMathFlags(), Q);
6173     break;
6174   case Instruction::FAdd:
6175     Result = SimplifyFAddInst(NewOps[0], NewOps[1], I->getFastMathFlags(), Q);
6176     break;
6177   case Instruction::Add:
6178     Result = SimplifyAddInst(
6179         NewOps[0], NewOps[1], Q.IIQ.hasNoSignedWrap(cast<BinaryOperator>(I)),
6180         Q.IIQ.hasNoUnsignedWrap(cast<BinaryOperator>(I)), Q);
6181     break;
6182   case Instruction::FSub:
6183     Result = SimplifyFSubInst(NewOps[0], NewOps[1], I->getFastMathFlags(), Q);
6184     break;
6185   case Instruction::Sub:
6186     Result = SimplifySubInst(
6187         NewOps[0], NewOps[1], Q.IIQ.hasNoSignedWrap(cast<BinaryOperator>(I)),
6188         Q.IIQ.hasNoUnsignedWrap(cast<BinaryOperator>(I)), Q);
6189     break;
6190   case Instruction::FMul:
6191     Result = SimplifyFMulInst(NewOps[0], NewOps[1], I->getFastMathFlags(), Q);
6192     break;
6193   case Instruction::Mul:
6194     Result = SimplifyMulInst(NewOps[0], NewOps[1], Q);
6195     break;
6196   case Instruction::SDiv:
6197     Result = SimplifySDivInst(NewOps[0], NewOps[1], Q);
6198     break;
6199   case Instruction::UDiv:
6200     Result = SimplifyUDivInst(NewOps[0], NewOps[1], Q);
6201     break;
6202   case Instruction::FDiv:
6203     Result = SimplifyFDivInst(NewOps[0], NewOps[1], I->getFastMathFlags(), Q);
6204     break;
6205   case Instruction::SRem:
6206     Result = SimplifySRemInst(NewOps[0], NewOps[1], Q);
6207     break;
6208   case Instruction::URem:
6209     Result = SimplifyURemInst(NewOps[0], NewOps[1], Q);
6210     break;
6211   case Instruction::FRem:
6212     Result = SimplifyFRemInst(NewOps[0], NewOps[1], I->getFastMathFlags(), Q);
6213     break;
6214   case Instruction::Shl:
6215     Result = SimplifyShlInst(
6216         NewOps[0], NewOps[1], Q.IIQ.hasNoSignedWrap(cast<BinaryOperator>(I)),
6217         Q.IIQ.hasNoUnsignedWrap(cast<BinaryOperator>(I)), Q);
6218     break;
6219   case Instruction::LShr:
6220     Result = SimplifyLShrInst(NewOps[0], NewOps[1],
6221                               Q.IIQ.isExact(cast<BinaryOperator>(I)), Q);
6222     break;
6223   case Instruction::AShr:
6224     Result = SimplifyAShrInst(NewOps[0], NewOps[1],
6225                               Q.IIQ.isExact(cast<BinaryOperator>(I)), Q);
6226     break;
6227   case Instruction::And:
6228     Result = SimplifyAndInst(NewOps[0], NewOps[1], Q);
6229     break;
6230   case Instruction::Or:
6231     Result = SimplifyOrInst(NewOps[0], NewOps[1], Q);
6232     break;
6233   case Instruction::Xor:
6234     Result = SimplifyXorInst(NewOps[0], NewOps[1], Q);
6235     break;
6236   case Instruction::ICmp:
6237     Result = SimplifyICmpInst(cast<ICmpInst>(I)->getPredicate(), NewOps[0],
6238                               NewOps[1], Q);
6239     break;
6240   case Instruction::FCmp:
6241     Result = SimplifyFCmpInst(cast<FCmpInst>(I)->getPredicate(), NewOps[0],
6242                               NewOps[1], I->getFastMathFlags(), Q);
6243     break;
6244   case Instruction::Select:
6245     Result = SimplifySelectInst(NewOps[0], NewOps[1], NewOps[2], Q);
6246     break;
6247   case Instruction::GetElementPtr: {
6248     auto *GEPI = cast<GetElementPtrInst>(I);
6249     Result = SimplifyGEPInst(GEPI->getSourceElementType(), NewOps,
6250                              GEPI->isInBounds(), Q);
6251     break;
6252   }
6253   case Instruction::InsertValue: {
6254     InsertValueInst *IV = cast<InsertValueInst>(I);
6255     Result = SimplifyInsertValueInst(NewOps[0], NewOps[1], IV->getIndices(), Q);
6256     break;
6257   }
6258   case Instruction::InsertElement: {
6259     Result = SimplifyInsertElementInst(NewOps[0], NewOps[1], NewOps[2], Q);
6260     break;
6261   }
6262   case Instruction::ExtractValue: {
6263     auto *EVI = cast<ExtractValueInst>(I);
6264     Result = SimplifyExtractValueInst(NewOps[0], EVI->getIndices(), Q);
6265     break;
6266   }
6267   case Instruction::ExtractElement: {
6268     Result = SimplifyExtractElementInst(NewOps[0], NewOps[1], Q);
6269     break;
6270   }
6271   case Instruction::ShuffleVector: {
6272     auto *SVI = cast<ShuffleVectorInst>(I);
6273     Result = SimplifyShuffleVectorInst(
6274         NewOps[0], NewOps[1], SVI->getShuffleMask(), SVI->getType(), Q);
6275     break;
6276   }
6277   case Instruction::PHI:
6278     Result = SimplifyPHINode(cast<PHINode>(I), NewOps, Q);
6279     break;
6280   case Instruction::Call: {
6281     // TODO: Use NewOps
6282     Result = SimplifyCall(cast<CallInst>(I), Q);
6283     break;
6284   }
6285   case Instruction::Freeze:
6286     Result = llvm::SimplifyFreezeInst(NewOps[0], Q);
6287     break;
6288 #define HANDLE_CAST_INST(num, opc, clas) case Instruction::opc:
6289 #include "llvm/IR/Instruction.def"
6290 #undef HANDLE_CAST_INST
6291     Result = SimplifyCastInst(I->getOpcode(), NewOps[0], I->getType(), Q);
6292     break;
6293   case Instruction::Alloca:
6294     // No simplifications for Alloca and it can't be constant folded.
6295     Result = nullptr;
6296     break;
6297   case Instruction::Load:
6298     Result = SimplifyLoadInst(cast<LoadInst>(I), NewOps[0], Q);
6299     break;
6300   }
6301 
6302   /// If called on unreachable code, the above logic may report that the
6303   /// instruction simplified to itself.  Make life easier for users by
6304   /// detecting that case here, returning a safe value instead.
6305   return Result == I ? UndefValue::get(I->getType()) : Result;
6306 }
6307 
6308 Value *llvm::SimplifyInstructionWithOperands(Instruction *I,
6309                                              ArrayRef<Value *> NewOps,
6310                                              const SimplifyQuery &SQ,
6311                                              OptimizationRemarkEmitter *ORE) {
6312   assert(NewOps.size() == I->getNumOperands() &&
6313          "Number of operands should match the instruction!");
6314   return ::simplifyInstructionWithOperands(I, NewOps, SQ, ORE);
6315 }
6316 
6317 Value *llvm::SimplifyInstruction(Instruction *I, const SimplifyQuery &SQ,
6318                                  OptimizationRemarkEmitter *ORE) {
6319   SmallVector<Value *, 8> Ops(I->operands());
6320   return ::simplifyInstructionWithOperands(I, Ops, SQ, ORE);
6321 }
6322 
6323 /// Implementation of recursive simplification through an instruction's
6324 /// uses.
6325 ///
6326 /// This is the common implementation of the recursive simplification routines.
6327 /// If we have a pre-simplified value in 'SimpleV', that is forcibly used to
6328 /// replace the instruction 'I'. Otherwise, we simply add 'I' to the list of
6329 /// instructions to process and attempt to simplify it using
6330 /// InstructionSimplify. Recursively visited users which could not be
6331 /// simplified themselves are to the optional UnsimplifiedUsers set for
6332 /// further processing by the caller.
6333 ///
6334 /// This routine returns 'true' only when *it* simplifies something. The passed
6335 /// in simplified value does not count toward this.
6336 static bool replaceAndRecursivelySimplifyImpl(
6337     Instruction *I, Value *SimpleV, const TargetLibraryInfo *TLI,
6338     const DominatorTree *DT, AssumptionCache *AC,
6339     SmallSetVector<Instruction *, 8> *UnsimplifiedUsers = nullptr) {
6340   bool Simplified = false;
6341   SmallSetVector<Instruction *, 8> Worklist;
6342   const DataLayout &DL = I->getModule()->getDataLayout();
6343 
6344   // If we have an explicit value to collapse to, do that round of the
6345   // simplification loop by hand initially.
6346   if (SimpleV) {
6347     for (User *U : I->users())
6348       if (U != I)
6349         Worklist.insert(cast<Instruction>(U));
6350 
6351     // Replace the instruction with its simplified value.
6352     I->replaceAllUsesWith(SimpleV);
6353 
6354     // Gracefully handle edge cases where the instruction is not wired into any
6355     // parent block.
6356     if (I->getParent() && !I->isEHPad() && !I->isTerminator() &&
6357         !I->mayHaveSideEffects())
6358       I->eraseFromParent();
6359   } else {
6360     Worklist.insert(I);
6361   }
6362 
6363   // Note that we must test the size on each iteration, the worklist can grow.
6364   for (unsigned Idx = 0; Idx != Worklist.size(); ++Idx) {
6365     I = Worklist[Idx];
6366 
6367     // See if this instruction simplifies.
6368     SimpleV = SimplifyInstruction(I, {DL, TLI, DT, AC});
6369     if (!SimpleV) {
6370       if (UnsimplifiedUsers)
6371         UnsimplifiedUsers->insert(I);
6372       continue;
6373     }
6374 
6375     Simplified = true;
6376 
6377     // Stash away all the uses of the old instruction so we can check them for
6378     // recursive simplifications after a RAUW. This is cheaper than checking all
6379     // uses of To on the recursive step in most cases.
6380     for (User *U : I->users())
6381       Worklist.insert(cast<Instruction>(U));
6382 
6383     // Replace the instruction with its simplified value.
6384     I->replaceAllUsesWith(SimpleV);
6385 
6386     // Gracefully handle edge cases where the instruction is not wired into any
6387     // parent block.
6388     if (I->getParent() && !I->isEHPad() && !I->isTerminator() &&
6389         !I->mayHaveSideEffects())
6390       I->eraseFromParent();
6391   }
6392   return Simplified;
6393 }
6394 
6395 bool llvm::replaceAndRecursivelySimplify(
6396     Instruction *I, Value *SimpleV, const TargetLibraryInfo *TLI,
6397     const DominatorTree *DT, AssumptionCache *AC,
6398     SmallSetVector<Instruction *, 8> *UnsimplifiedUsers) {
6399   assert(I != SimpleV && "replaceAndRecursivelySimplify(X,X) is not valid!");
6400   assert(SimpleV && "Must provide a simplified value.");
6401   return replaceAndRecursivelySimplifyImpl(I, SimpleV, TLI, DT, AC,
6402                                            UnsimplifiedUsers);
6403 }
6404 
6405 namespace llvm {
6406 const SimplifyQuery getBestSimplifyQuery(Pass &P, Function &F) {
6407   auto *DTWP = P.getAnalysisIfAvailable<DominatorTreeWrapperPass>();
6408   auto *DT = DTWP ? &DTWP->getDomTree() : nullptr;
6409   auto *TLIWP = P.getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>();
6410   auto *TLI = TLIWP ? &TLIWP->getTLI(F) : nullptr;
6411   auto *ACWP = P.getAnalysisIfAvailable<AssumptionCacheTracker>();
6412   auto *AC = ACWP ? &ACWP->getAssumptionCache(F) : nullptr;
6413   return {F.getParent()->getDataLayout(), TLI, DT, AC};
6414 }
6415 
6416 const SimplifyQuery getBestSimplifyQuery(LoopStandardAnalysisResults &AR,
6417                                          const DataLayout &DL) {
6418   return {DL, &AR.TLI, &AR.DT, &AR.AC};
6419 }
6420 
6421 template <class T, class... TArgs>
6422 const SimplifyQuery getBestSimplifyQuery(AnalysisManager<T, TArgs...> &AM,
6423                                          Function &F) {
6424   auto *DT = AM.template getCachedResult<DominatorTreeAnalysis>(F);
6425   auto *TLI = AM.template getCachedResult<TargetLibraryAnalysis>(F);
6426   auto *AC = AM.template getCachedResult<AssumptionAnalysis>(F);
6427   return {F.getParent()->getDataLayout(), TLI, DT, AC};
6428 }
6429 template const SimplifyQuery getBestSimplifyQuery(AnalysisManager<Function> &,
6430                                                   Function &);
6431 }
6432