1 //===- InstructionSimplify.cpp - Fold instruction operands ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements routines for folding instructions into simpler forms 11 // that do not require creating new instructions. This does constant folding 12 // ("add i32 1, 1" -> "2") but can also handle non-constant operands, either 13 // returning a constant ("and i32 %x, 0" -> "0") or an already existing value 14 // ("and i32 %x, %x" -> "%x"). All operands are assumed to have already been 15 // simplified: This is usually true and assuming it simplifies the logic (if 16 // they have not been simplified then results are correct but maybe suboptimal). 17 // 18 //===----------------------------------------------------------------------===// 19 20 #define DEBUG_TYPE "instsimplify" 21 #include "llvm/Operator.h" 22 #include "llvm/ADT/Statistic.h" 23 #include "llvm/Analysis/InstructionSimplify.h" 24 #include "llvm/Analysis/AliasAnalysis.h" 25 #include "llvm/Analysis/ConstantFolding.h" 26 #include "llvm/Analysis/Dominators.h" 27 #include "llvm/Analysis/ValueTracking.h" 28 #include "llvm/Support/ConstantRange.h" 29 #include "llvm/Support/PatternMatch.h" 30 #include "llvm/Support/ValueHandle.h" 31 #include "llvm/Target/TargetData.h" 32 using namespace llvm; 33 using namespace llvm::PatternMatch; 34 35 enum { RecursionLimit = 3 }; 36 37 STATISTIC(NumExpand, "Number of expansions"); 38 STATISTIC(NumFactor , "Number of factorizations"); 39 STATISTIC(NumReassoc, "Number of reassociations"); 40 41 static Value *SimplifyAndInst(Value *, Value *, const TargetData *, 42 const TargetLibraryInfo *, const DominatorTree *, 43 unsigned); 44 static Value *SimplifyBinOp(unsigned, Value *, Value *, const TargetData *, 45 const TargetLibraryInfo *, const DominatorTree *, 46 unsigned); 47 static Value *SimplifyCmpInst(unsigned, Value *, Value *, const TargetData *, 48 const TargetLibraryInfo *, const DominatorTree *, 49 unsigned); 50 static Value *SimplifyOrInst(Value *, Value *, const TargetData *, 51 const TargetLibraryInfo *, const DominatorTree *, 52 unsigned); 53 static Value *SimplifyXorInst(Value *, Value *, const TargetData *, 54 const TargetLibraryInfo *, const DominatorTree *, 55 unsigned); 56 57 /// getFalse - For a boolean type, or a vector of boolean type, return false, or 58 /// a vector with every element false, as appropriate for the type. 59 static Constant *getFalse(Type *Ty) { 60 assert(Ty->getScalarType()->isIntegerTy(1) && 61 "Expected i1 type or a vector of i1!"); 62 return Constant::getNullValue(Ty); 63 } 64 65 /// getTrue - For a boolean type, or a vector of boolean type, return true, or 66 /// a vector with every element true, as appropriate for the type. 67 static Constant *getTrue(Type *Ty) { 68 assert(Ty->getScalarType()->isIntegerTy(1) && 69 "Expected i1 type or a vector of i1!"); 70 return Constant::getAllOnesValue(Ty); 71 } 72 73 /// isSameCompare - Is V equivalent to the comparison "LHS Pred RHS"? 74 static bool isSameCompare(Value *V, CmpInst::Predicate Pred, Value *LHS, 75 Value *RHS) { 76 CmpInst *Cmp = dyn_cast<CmpInst>(V); 77 if (!Cmp) 78 return false; 79 CmpInst::Predicate CPred = Cmp->getPredicate(); 80 Value *CLHS = Cmp->getOperand(0), *CRHS = Cmp->getOperand(1); 81 if (CPred == Pred && CLHS == LHS && CRHS == RHS) 82 return true; 83 return CPred == CmpInst::getSwappedPredicate(Pred) && CLHS == RHS && 84 CRHS == LHS; 85 } 86 87 /// ValueDominatesPHI - Does the given value dominate the specified phi node? 88 static bool ValueDominatesPHI(Value *V, PHINode *P, const DominatorTree *DT) { 89 Instruction *I = dyn_cast<Instruction>(V); 90 if (!I) 91 // Arguments and constants dominate all instructions. 92 return true; 93 94 // If we have a DominatorTree then do a precise test. 95 if (DT) 96 return !DT->isReachableFromEntry(P->getParent()) || 97 !DT->isReachableFromEntry(I->getParent()) || DT->dominates(I, P); 98 99 // Otherwise, if the instruction is in the entry block, and is not an invoke, 100 // then it obviously dominates all phi nodes. 101 if (I->getParent() == &I->getParent()->getParent()->getEntryBlock() && 102 !isa<InvokeInst>(I)) 103 return true; 104 105 return false; 106 } 107 108 /// ExpandBinOp - Simplify "A op (B op' C)" by distributing op over op', turning 109 /// it into "(A op B) op' (A op C)". Here "op" is given by Opcode and "op'" is 110 /// given by OpcodeToExpand, while "A" corresponds to LHS and "B op' C" to RHS. 111 /// Also performs the transform "(A op' B) op C" -> "(A op C) op' (B op C)". 112 /// Returns the simplified value, or null if no simplification was performed. 113 static Value *ExpandBinOp(unsigned Opcode, Value *LHS, Value *RHS, 114 unsigned OpcToExpand, const TargetData *TD, 115 const TargetLibraryInfo *TLI, const DominatorTree *DT, 116 unsigned MaxRecurse) { 117 Instruction::BinaryOps OpcodeToExpand = (Instruction::BinaryOps)OpcToExpand; 118 // Recursion is always used, so bail out at once if we already hit the limit. 119 if (!MaxRecurse--) 120 return 0; 121 122 // Check whether the expression has the form "(A op' B) op C". 123 if (BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS)) 124 if (Op0->getOpcode() == OpcodeToExpand) { 125 // It does! Try turning it into "(A op C) op' (B op C)". 126 Value *A = Op0->getOperand(0), *B = Op0->getOperand(1), *C = RHS; 127 // Do "A op C" and "B op C" both simplify? 128 if (Value *L = SimplifyBinOp(Opcode, A, C, TD, TLI, DT, MaxRecurse)) 129 if (Value *R = SimplifyBinOp(Opcode, B, C, TD, TLI, DT, MaxRecurse)) { 130 // They do! Return "L op' R" if it simplifies or is already available. 131 // If "L op' R" equals "A op' B" then "L op' R" is just the LHS. 132 if ((L == A && R == B) || (Instruction::isCommutative(OpcodeToExpand) 133 && L == B && R == A)) { 134 ++NumExpand; 135 return LHS; 136 } 137 // Otherwise return "L op' R" if it simplifies. 138 if (Value *V = SimplifyBinOp(OpcodeToExpand, L, R, TD, TLI, DT, 139 MaxRecurse)) { 140 ++NumExpand; 141 return V; 142 } 143 } 144 } 145 146 // Check whether the expression has the form "A op (B op' C)". 147 if (BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS)) 148 if (Op1->getOpcode() == OpcodeToExpand) { 149 // It does! Try turning it into "(A op B) op' (A op C)". 150 Value *A = LHS, *B = Op1->getOperand(0), *C = Op1->getOperand(1); 151 // Do "A op B" and "A op C" both simplify? 152 if (Value *L = SimplifyBinOp(Opcode, A, B, TD, TLI, DT, MaxRecurse)) 153 if (Value *R = SimplifyBinOp(Opcode, A, C, TD, TLI, DT, MaxRecurse)) { 154 // They do! Return "L op' R" if it simplifies or is already available. 155 // If "L op' R" equals "B op' C" then "L op' R" is just the RHS. 156 if ((L == B && R == C) || (Instruction::isCommutative(OpcodeToExpand) 157 && L == C && R == B)) { 158 ++NumExpand; 159 return RHS; 160 } 161 // Otherwise return "L op' R" if it simplifies. 162 if (Value *V = SimplifyBinOp(OpcodeToExpand, L, R, TD, TLI, DT, 163 MaxRecurse)) { 164 ++NumExpand; 165 return V; 166 } 167 } 168 } 169 170 return 0; 171 } 172 173 /// FactorizeBinOp - Simplify "LHS Opcode RHS" by factorizing out a common term 174 /// using the operation OpCodeToExtract. For example, when Opcode is Add and 175 /// OpCodeToExtract is Mul then this tries to turn "(A*B)+(A*C)" into "A*(B+C)". 176 /// Returns the simplified value, or null if no simplification was performed. 177 static Value *FactorizeBinOp(unsigned Opcode, Value *LHS, Value *RHS, 178 unsigned OpcToExtract, const TargetData *TD, 179 const TargetLibraryInfo *TLI, 180 const DominatorTree *DT, 181 unsigned MaxRecurse) { 182 Instruction::BinaryOps OpcodeToExtract = (Instruction::BinaryOps)OpcToExtract; 183 // Recursion is always used, so bail out at once if we already hit the limit. 184 if (!MaxRecurse--) 185 return 0; 186 187 BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS); 188 BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS); 189 190 if (!Op0 || Op0->getOpcode() != OpcodeToExtract || 191 !Op1 || Op1->getOpcode() != OpcodeToExtract) 192 return 0; 193 194 // The expression has the form "(A op' B) op (C op' D)". 195 Value *A = Op0->getOperand(0), *B = Op0->getOperand(1); 196 Value *C = Op1->getOperand(0), *D = Op1->getOperand(1); 197 198 // Use left distributivity, i.e. "X op' (Y op Z) = (X op' Y) op (X op' Z)". 199 // Does the instruction have the form "(A op' B) op (A op' D)" or, in the 200 // commutative case, "(A op' B) op (C op' A)"? 201 if (A == C || (Instruction::isCommutative(OpcodeToExtract) && A == D)) { 202 Value *DD = A == C ? D : C; 203 // Form "A op' (B op DD)" if it simplifies completely. 204 // Does "B op DD" simplify? 205 if (Value *V = SimplifyBinOp(Opcode, B, DD, TD, TLI, DT, MaxRecurse)) { 206 // It does! Return "A op' V" if it simplifies or is already available. 207 // If V equals B then "A op' V" is just the LHS. If V equals DD then 208 // "A op' V" is just the RHS. 209 if (V == B || V == DD) { 210 ++NumFactor; 211 return V == B ? LHS : RHS; 212 } 213 // Otherwise return "A op' V" if it simplifies. 214 if (Value *W = SimplifyBinOp(OpcodeToExtract, A, V, TD, TLI, DT, 215 MaxRecurse)) { 216 ++NumFactor; 217 return W; 218 } 219 } 220 } 221 222 // Use right distributivity, i.e. "(X op Y) op' Z = (X op' Z) op (Y op' Z)". 223 // Does the instruction have the form "(A op' B) op (C op' B)" or, in the 224 // commutative case, "(A op' B) op (B op' D)"? 225 if (B == D || (Instruction::isCommutative(OpcodeToExtract) && B == C)) { 226 Value *CC = B == D ? C : D; 227 // Form "(A op CC) op' B" if it simplifies completely.. 228 // Does "A op CC" simplify? 229 if (Value *V = SimplifyBinOp(Opcode, A, CC, TD, TLI, DT, MaxRecurse)) { 230 // It does! Return "V op' B" if it simplifies or is already available. 231 // If V equals A then "V op' B" is just the LHS. If V equals CC then 232 // "V op' B" is just the RHS. 233 if (V == A || V == CC) { 234 ++NumFactor; 235 return V == A ? LHS : RHS; 236 } 237 // Otherwise return "V op' B" if it simplifies. 238 if (Value *W = SimplifyBinOp(OpcodeToExtract, V, B, TD, TLI, DT, 239 MaxRecurse)) { 240 ++NumFactor; 241 return W; 242 } 243 } 244 } 245 246 return 0; 247 } 248 249 /// SimplifyAssociativeBinOp - Generic simplifications for associative binary 250 /// operations. Returns the simpler value, or null if none was found. 251 static Value *SimplifyAssociativeBinOp(unsigned Opc, Value *LHS, Value *RHS, 252 const TargetData *TD, 253 const TargetLibraryInfo *TLI, 254 const DominatorTree *DT, 255 unsigned MaxRecurse) { 256 Instruction::BinaryOps Opcode = (Instruction::BinaryOps)Opc; 257 assert(Instruction::isAssociative(Opcode) && "Not an associative operation!"); 258 259 // Recursion is always used, so bail out at once if we already hit the limit. 260 if (!MaxRecurse--) 261 return 0; 262 263 BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS); 264 BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS); 265 266 // Transform: "(A op B) op C" ==> "A op (B op C)" if it simplifies completely. 267 if (Op0 && Op0->getOpcode() == Opcode) { 268 Value *A = Op0->getOperand(0); 269 Value *B = Op0->getOperand(1); 270 Value *C = RHS; 271 272 // Does "B op C" simplify? 273 if (Value *V = SimplifyBinOp(Opcode, B, C, TD, TLI, DT, MaxRecurse)) { 274 // It does! Return "A op V" if it simplifies or is already available. 275 // If V equals B then "A op V" is just the LHS. 276 if (V == B) return LHS; 277 // Otherwise return "A op V" if it simplifies. 278 if (Value *W = SimplifyBinOp(Opcode, A, V, TD, TLI, DT, MaxRecurse)) { 279 ++NumReassoc; 280 return W; 281 } 282 } 283 } 284 285 // Transform: "A op (B op C)" ==> "(A op B) op C" if it simplifies completely. 286 if (Op1 && Op1->getOpcode() == Opcode) { 287 Value *A = LHS; 288 Value *B = Op1->getOperand(0); 289 Value *C = Op1->getOperand(1); 290 291 // Does "A op B" simplify? 292 if (Value *V = SimplifyBinOp(Opcode, A, B, TD, TLI, DT, MaxRecurse)) { 293 // It does! Return "V op C" if it simplifies or is already available. 294 // If V equals B then "V op C" is just the RHS. 295 if (V == B) return RHS; 296 // Otherwise return "V op C" if it simplifies. 297 if (Value *W = SimplifyBinOp(Opcode, V, C, TD, TLI, DT, MaxRecurse)) { 298 ++NumReassoc; 299 return W; 300 } 301 } 302 } 303 304 // The remaining transforms require commutativity as well as associativity. 305 if (!Instruction::isCommutative(Opcode)) 306 return 0; 307 308 // Transform: "(A op B) op C" ==> "(C op A) op B" if it simplifies completely. 309 if (Op0 && Op0->getOpcode() == Opcode) { 310 Value *A = Op0->getOperand(0); 311 Value *B = Op0->getOperand(1); 312 Value *C = RHS; 313 314 // Does "C op A" simplify? 315 if (Value *V = SimplifyBinOp(Opcode, C, A, TD, TLI, DT, MaxRecurse)) { 316 // It does! Return "V op B" if it simplifies or is already available. 317 // If V equals A then "V op B" is just the LHS. 318 if (V == A) return LHS; 319 // Otherwise return "V op B" if it simplifies. 320 if (Value *W = SimplifyBinOp(Opcode, V, B, TD, TLI, DT, MaxRecurse)) { 321 ++NumReassoc; 322 return W; 323 } 324 } 325 } 326 327 // Transform: "A op (B op C)" ==> "B op (C op A)" if it simplifies completely. 328 if (Op1 && Op1->getOpcode() == Opcode) { 329 Value *A = LHS; 330 Value *B = Op1->getOperand(0); 331 Value *C = Op1->getOperand(1); 332 333 // Does "C op A" simplify? 334 if (Value *V = SimplifyBinOp(Opcode, C, A, TD, TLI, DT, MaxRecurse)) { 335 // It does! Return "B op V" if it simplifies or is already available. 336 // If V equals C then "B op V" is just the RHS. 337 if (V == C) return RHS; 338 // Otherwise return "B op V" if it simplifies. 339 if (Value *W = SimplifyBinOp(Opcode, B, V, TD, TLI, DT, MaxRecurse)) { 340 ++NumReassoc; 341 return W; 342 } 343 } 344 } 345 346 return 0; 347 } 348 349 /// ThreadBinOpOverSelect - In the case of a binary operation with a select 350 /// instruction as an operand, try to simplify the binop by seeing whether 351 /// evaluating it on both branches of the select results in the same value. 352 /// Returns the common value if so, otherwise returns null. 353 static Value *ThreadBinOpOverSelect(unsigned Opcode, Value *LHS, Value *RHS, 354 const TargetData *TD, 355 const TargetLibraryInfo *TLI, 356 const DominatorTree *DT, 357 unsigned MaxRecurse) { 358 // Recursion is always used, so bail out at once if we already hit the limit. 359 if (!MaxRecurse--) 360 return 0; 361 362 SelectInst *SI; 363 if (isa<SelectInst>(LHS)) { 364 SI = cast<SelectInst>(LHS); 365 } else { 366 assert(isa<SelectInst>(RHS) && "No select instruction operand!"); 367 SI = cast<SelectInst>(RHS); 368 } 369 370 // Evaluate the BinOp on the true and false branches of the select. 371 Value *TV; 372 Value *FV; 373 if (SI == LHS) { 374 TV = SimplifyBinOp(Opcode, SI->getTrueValue(), RHS, TD, TLI, DT, MaxRecurse); 375 FV = SimplifyBinOp(Opcode, SI->getFalseValue(), RHS, TD, TLI, DT, MaxRecurse); 376 } else { 377 TV = SimplifyBinOp(Opcode, LHS, SI->getTrueValue(), TD, TLI, DT, MaxRecurse); 378 FV = SimplifyBinOp(Opcode, LHS, SI->getFalseValue(), TD, TLI, DT, MaxRecurse); 379 } 380 381 // If they simplified to the same value, then return the common value. 382 // If they both failed to simplify then return null. 383 if (TV == FV) 384 return TV; 385 386 // If one branch simplified to undef, return the other one. 387 if (TV && isa<UndefValue>(TV)) 388 return FV; 389 if (FV && isa<UndefValue>(FV)) 390 return TV; 391 392 // If applying the operation did not change the true and false select values, 393 // then the result of the binop is the select itself. 394 if (TV == SI->getTrueValue() && FV == SI->getFalseValue()) 395 return SI; 396 397 // If one branch simplified and the other did not, and the simplified 398 // value is equal to the unsimplified one, return the simplified value. 399 // For example, select (cond, X, X & Z) & Z -> X & Z. 400 if ((FV && !TV) || (TV && !FV)) { 401 // Check that the simplified value has the form "X op Y" where "op" is the 402 // same as the original operation. 403 Instruction *Simplified = dyn_cast<Instruction>(FV ? FV : TV); 404 if (Simplified && Simplified->getOpcode() == Opcode) { 405 // The value that didn't simplify is "UnsimplifiedLHS op UnsimplifiedRHS". 406 // We already know that "op" is the same as for the simplified value. See 407 // if the operands match too. If so, return the simplified value. 408 Value *UnsimplifiedBranch = FV ? SI->getTrueValue() : SI->getFalseValue(); 409 Value *UnsimplifiedLHS = SI == LHS ? UnsimplifiedBranch : LHS; 410 Value *UnsimplifiedRHS = SI == LHS ? RHS : UnsimplifiedBranch; 411 if (Simplified->getOperand(0) == UnsimplifiedLHS && 412 Simplified->getOperand(1) == UnsimplifiedRHS) 413 return Simplified; 414 if (Simplified->isCommutative() && 415 Simplified->getOperand(1) == UnsimplifiedLHS && 416 Simplified->getOperand(0) == UnsimplifiedRHS) 417 return Simplified; 418 } 419 } 420 421 return 0; 422 } 423 424 /// ThreadCmpOverSelect - In the case of a comparison with a select instruction, 425 /// try to simplify the comparison by seeing whether both branches of the select 426 /// result in the same value. Returns the common value if so, otherwise returns 427 /// null. 428 static Value *ThreadCmpOverSelect(CmpInst::Predicate Pred, Value *LHS, 429 Value *RHS, const TargetData *TD, 430 const TargetLibraryInfo *TLI, 431 const DominatorTree *DT, 432 unsigned MaxRecurse) { 433 // Recursion is always used, so bail out at once if we already hit the limit. 434 if (!MaxRecurse--) 435 return 0; 436 437 // Make sure the select is on the LHS. 438 if (!isa<SelectInst>(LHS)) { 439 std::swap(LHS, RHS); 440 Pred = CmpInst::getSwappedPredicate(Pred); 441 } 442 assert(isa<SelectInst>(LHS) && "Not comparing with a select instruction!"); 443 SelectInst *SI = cast<SelectInst>(LHS); 444 Value *Cond = SI->getCondition(); 445 Value *TV = SI->getTrueValue(); 446 Value *FV = SI->getFalseValue(); 447 448 // Now that we have "cmp select(Cond, TV, FV), RHS", analyse it. 449 // Does "cmp TV, RHS" simplify? 450 Value *TCmp = SimplifyCmpInst(Pred, TV, RHS, TD, TLI, DT, MaxRecurse); 451 if (TCmp == Cond) { 452 // It not only simplified, it simplified to the select condition. Replace 453 // it with 'true'. 454 TCmp = getTrue(Cond->getType()); 455 } else if (!TCmp) { 456 // It didn't simplify. However if "cmp TV, RHS" is equal to the select 457 // condition then we can replace it with 'true'. Otherwise give up. 458 if (!isSameCompare(Cond, Pred, TV, RHS)) 459 return 0; 460 TCmp = getTrue(Cond->getType()); 461 } 462 463 // Does "cmp FV, RHS" simplify? 464 Value *FCmp = SimplifyCmpInst(Pred, FV, RHS, TD, TLI, DT, MaxRecurse); 465 if (FCmp == Cond) { 466 // It not only simplified, it simplified to the select condition. Replace 467 // it with 'false'. 468 FCmp = getFalse(Cond->getType()); 469 } else if (!FCmp) { 470 // It didn't simplify. However if "cmp FV, RHS" is equal to the select 471 // condition then we can replace it with 'false'. Otherwise give up. 472 if (!isSameCompare(Cond, Pred, FV, RHS)) 473 return 0; 474 FCmp = getFalse(Cond->getType()); 475 } 476 477 // If both sides simplified to the same value, then use it as the result of 478 // the original comparison. 479 if (TCmp == FCmp) 480 return TCmp; 481 482 // The remaining cases only make sense if the select condition has the same 483 // type as the result of the comparison, so bail out if this is not so. 484 if (Cond->getType()->isVectorTy() != RHS->getType()->isVectorTy()) 485 return 0; 486 // If the false value simplified to false, then the result of the compare 487 // is equal to "Cond && TCmp". This also catches the case when the false 488 // value simplified to false and the true value to true, returning "Cond". 489 if (match(FCmp, m_Zero())) 490 if (Value *V = SimplifyAndInst(Cond, TCmp, TD, TLI, DT, MaxRecurse)) 491 return V; 492 // If the true value simplified to true, then the result of the compare 493 // is equal to "Cond || FCmp". 494 if (match(TCmp, m_One())) 495 if (Value *V = SimplifyOrInst(Cond, FCmp, TD, TLI, DT, MaxRecurse)) 496 return V; 497 // Finally, if the false value simplified to true and the true value to 498 // false, then the result of the compare is equal to "!Cond". 499 if (match(FCmp, m_One()) && match(TCmp, m_Zero())) 500 if (Value *V = 501 SimplifyXorInst(Cond, Constant::getAllOnesValue(Cond->getType()), 502 TD, TLI, DT, MaxRecurse)) 503 return V; 504 505 return 0; 506 } 507 508 /// ThreadBinOpOverPHI - In the case of a binary operation with an operand that 509 /// is a PHI instruction, try to simplify the binop by seeing whether evaluating 510 /// it on the incoming phi values yields the same result for every value. If so 511 /// returns the common value, otherwise returns null. 512 static Value *ThreadBinOpOverPHI(unsigned Opcode, Value *LHS, Value *RHS, 513 const TargetData *TD, 514 const TargetLibraryInfo *TLI, 515 const DominatorTree *DT, 516 unsigned MaxRecurse) { 517 // Recursion is always used, so bail out at once if we already hit the limit. 518 if (!MaxRecurse--) 519 return 0; 520 521 PHINode *PI; 522 if (isa<PHINode>(LHS)) { 523 PI = cast<PHINode>(LHS); 524 // Bail out if RHS and the phi may be mutually interdependent due to a loop. 525 if (!ValueDominatesPHI(RHS, PI, DT)) 526 return 0; 527 } else { 528 assert(isa<PHINode>(RHS) && "No PHI instruction operand!"); 529 PI = cast<PHINode>(RHS); 530 // Bail out if LHS and the phi may be mutually interdependent due to a loop. 531 if (!ValueDominatesPHI(LHS, PI, DT)) 532 return 0; 533 } 534 535 // Evaluate the BinOp on the incoming phi values. 536 Value *CommonValue = 0; 537 for (unsigned i = 0, e = PI->getNumIncomingValues(); i != e; ++i) { 538 Value *Incoming = PI->getIncomingValue(i); 539 // If the incoming value is the phi node itself, it can safely be skipped. 540 if (Incoming == PI) continue; 541 Value *V = PI == LHS ? 542 SimplifyBinOp(Opcode, Incoming, RHS, TD, TLI, DT, MaxRecurse) : 543 SimplifyBinOp(Opcode, LHS, Incoming, TD, TLI, DT, MaxRecurse); 544 // If the operation failed to simplify, or simplified to a different value 545 // to previously, then give up. 546 if (!V || (CommonValue && V != CommonValue)) 547 return 0; 548 CommonValue = V; 549 } 550 551 return CommonValue; 552 } 553 554 /// ThreadCmpOverPHI - In the case of a comparison with a PHI instruction, try 555 /// try to simplify the comparison by seeing whether comparing with all of the 556 /// incoming phi values yields the same result every time. If so returns the 557 /// common result, otherwise returns null. 558 static Value *ThreadCmpOverPHI(CmpInst::Predicate Pred, Value *LHS, Value *RHS, 559 const TargetData *TD, 560 const TargetLibraryInfo *TLI, 561 const DominatorTree *DT, 562 unsigned MaxRecurse) { 563 // Recursion is always used, so bail out at once if we already hit the limit. 564 if (!MaxRecurse--) 565 return 0; 566 567 // Make sure the phi is on the LHS. 568 if (!isa<PHINode>(LHS)) { 569 std::swap(LHS, RHS); 570 Pred = CmpInst::getSwappedPredicate(Pred); 571 } 572 assert(isa<PHINode>(LHS) && "Not comparing with a phi instruction!"); 573 PHINode *PI = cast<PHINode>(LHS); 574 575 // Bail out if RHS and the phi may be mutually interdependent due to a loop. 576 if (!ValueDominatesPHI(RHS, PI, DT)) 577 return 0; 578 579 // Evaluate the BinOp on the incoming phi values. 580 Value *CommonValue = 0; 581 for (unsigned i = 0, e = PI->getNumIncomingValues(); i != e; ++i) { 582 Value *Incoming = PI->getIncomingValue(i); 583 // If the incoming value is the phi node itself, it can safely be skipped. 584 if (Incoming == PI) continue; 585 Value *V = SimplifyCmpInst(Pred, Incoming, RHS, TD, TLI, DT, MaxRecurse); 586 // If the operation failed to simplify, or simplified to a different value 587 // to previously, then give up. 588 if (!V || (CommonValue && V != CommonValue)) 589 return 0; 590 CommonValue = V; 591 } 592 593 return CommonValue; 594 } 595 596 /// SimplifyAddInst - Given operands for an Add, see if we can 597 /// fold the result. If not, this returns null. 598 static Value *SimplifyAddInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, 599 const TargetData *TD, 600 const TargetLibraryInfo *TLI, 601 const DominatorTree *DT, 602 unsigned MaxRecurse) { 603 if (Constant *CLHS = dyn_cast<Constant>(Op0)) { 604 if (Constant *CRHS = dyn_cast<Constant>(Op1)) { 605 Constant *Ops[] = { CLHS, CRHS }; 606 return ConstantFoldInstOperands(Instruction::Add, CLHS->getType(), 607 Ops, TD, TLI); 608 } 609 610 // Canonicalize the constant to the RHS. 611 std::swap(Op0, Op1); 612 } 613 614 // X + undef -> undef 615 if (match(Op1, m_Undef())) 616 return Op1; 617 618 // X + 0 -> X 619 if (match(Op1, m_Zero())) 620 return Op0; 621 622 // X + (Y - X) -> Y 623 // (Y - X) + X -> Y 624 // Eg: X + -X -> 0 625 Value *Y = 0; 626 if (match(Op1, m_Sub(m_Value(Y), m_Specific(Op0))) || 627 match(Op0, m_Sub(m_Value(Y), m_Specific(Op1)))) 628 return Y; 629 630 // X + ~X -> -1 since ~X = -X-1 631 if (match(Op0, m_Not(m_Specific(Op1))) || 632 match(Op1, m_Not(m_Specific(Op0)))) 633 return Constant::getAllOnesValue(Op0->getType()); 634 635 /// i1 add -> xor. 636 if (MaxRecurse && Op0->getType()->isIntegerTy(1)) 637 if (Value *V = SimplifyXorInst(Op0, Op1, TD, TLI, DT, MaxRecurse-1)) 638 return V; 639 640 // Try some generic simplifications for associative operations. 641 if (Value *V = SimplifyAssociativeBinOp(Instruction::Add, Op0, Op1, TD, TLI, DT, 642 MaxRecurse)) 643 return V; 644 645 // Mul distributes over Add. Try some generic simplifications based on this. 646 if (Value *V = FactorizeBinOp(Instruction::Add, Op0, Op1, Instruction::Mul, 647 TD, TLI, DT, MaxRecurse)) 648 return V; 649 650 // Threading Add over selects and phi nodes is pointless, so don't bother. 651 // Threading over the select in "A + select(cond, B, C)" means evaluating 652 // "A+B" and "A+C" and seeing if they are equal; but they are equal if and 653 // only if B and C are equal. If B and C are equal then (since we assume 654 // that operands have already been simplified) "select(cond, B, C)" should 655 // have been simplified to the common value of B and C already. Analysing 656 // "A+B" and "A+C" thus gains nothing, but costs compile time. Similarly 657 // for threading over phi nodes. 658 659 return 0; 660 } 661 662 Value *llvm::SimplifyAddInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, 663 const TargetData *TD, const TargetLibraryInfo *TLI, 664 const DominatorTree *DT) { 665 return ::SimplifyAddInst(Op0, Op1, isNSW, isNUW, TD, TLI, DT, RecursionLimit); 666 } 667 668 /// SimplifySubInst - Given operands for a Sub, see if we can 669 /// fold the result. If not, this returns null. 670 static Value *SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, 671 const TargetData *TD, 672 const TargetLibraryInfo *TLI, 673 const DominatorTree *DT, 674 unsigned MaxRecurse) { 675 if (Constant *CLHS = dyn_cast<Constant>(Op0)) 676 if (Constant *CRHS = dyn_cast<Constant>(Op1)) { 677 Constant *Ops[] = { CLHS, CRHS }; 678 return ConstantFoldInstOperands(Instruction::Sub, CLHS->getType(), 679 Ops, TD, TLI); 680 } 681 682 // X - undef -> undef 683 // undef - X -> undef 684 if (match(Op0, m_Undef()) || match(Op1, m_Undef())) 685 return UndefValue::get(Op0->getType()); 686 687 // X - 0 -> X 688 if (match(Op1, m_Zero())) 689 return Op0; 690 691 // X - X -> 0 692 if (Op0 == Op1) 693 return Constant::getNullValue(Op0->getType()); 694 695 // (X*2) - X -> X 696 // (X<<1) - X -> X 697 Value *X = 0; 698 if (match(Op0, m_Mul(m_Specific(Op1), m_ConstantInt<2>())) || 699 match(Op0, m_Shl(m_Specific(Op1), m_One()))) 700 return Op1; 701 702 // (X + Y) - Z -> X + (Y - Z) or Y + (X - Z) if everything simplifies. 703 // For example, (X + Y) - Y -> X; (Y + X) - Y -> X 704 Value *Y = 0, *Z = Op1; 705 if (MaxRecurse && match(Op0, m_Add(m_Value(X), m_Value(Y)))) { // (X + Y) - Z 706 // See if "V === Y - Z" simplifies. 707 if (Value *V = SimplifyBinOp(Instruction::Sub, Y, Z, TD, TLI, DT, MaxRecurse-1)) 708 // It does! Now see if "X + V" simplifies. 709 if (Value *W = SimplifyBinOp(Instruction::Add, X, V, TD, TLI, DT, 710 MaxRecurse-1)) { 711 // It does, we successfully reassociated! 712 ++NumReassoc; 713 return W; 714 } 715 // See if "V === X - Z" simplifies. 716 if (Value *V = SimplifyBinOp(Instruction::Sub, X, Z, TD, TLI, DT, MaxRecurse-1)) 717 // It does! Now see if "Y + V" simplifies. 718 if (Value *W = SimplifyBinOp(Instruction::Add, Y, V, TD, TLI, DT, 719 MaxRecurse-1)) { 720 // It does, we successfully reassociated! 721 ++NumReassoc; 722 return W; 723 } 724 } 725 726 // X - (Y + Z) -> (X - Y) - Z or (X - Z) - Y if everything simplifies. 727 // For example, X - (X + 1) -> -1 728 X = Op0; 729 if (MaxRecurse && match(Op1, m_Add(m_Value(Y), m_Value(Z)))) { // X - (Y + Z) 730 // See if "V === X - Y" simplifies. 731 if (Value *V = SimplifyBinOp(Instruction::Sub, X, Y, TD, TLI, DT, MaxRecurse-1)) 732 // It does! Now see if "V - Z" simplifies. 733 if (Value *W = SimplifyBinOp(Instruction::Sub, V, Z, TD, TLI, DT, 734 MaxRecurse-1)) { 735 // It does, we successfully reassociated! 736 ++NumReassoc; 737 return W; 738 } 739 // See if "V === X - Z" simplifies. 740 if (Value *V = SimplifyBinOp(Instruction::Sub, X, Z, TD, TLI, DT, MaxRecurse-1)) 741 // It does! Now see if "V - Y" simplifies. 742 if (Value *W = SimplifyBinOp(Instruction::Sub, V, Y, TD, TLI, DT, 743 MaxRecurse-1)) { 744 // It does, we successfully reassociated! 745 ++NumReassoc; 746 return W; 747 } 748 } 749 750 // Z - (X - Y) -> (Z - X) + Y if everything simplifies. 751 // For example, X - (X - Y) -> Y. 752 Z = Op0; 753 if (MaxRecurse && match(Op1, m_Sub(m_Value(X), m_Value(Y)))) // Z - (X - Y) 754 // See if "V === Z - X" simplifies. 755 if (Value *V = SimplifyBinOp(Instruction::Sub, Z, X, TD, TLI, DT, MaxRecurse-1)) 756 // It does! Now see if "V + Y" simplifies. 757 if (Value *W = SimplifyBinOp(Instruction::Add, V, Y, TD, TLI, DT, 758 MaxRecurse-1)) { 759 // It does, we successfully reassociated! 760 ++NumReassoc; 761 return W; 762 } 763 764 // Mul distributes over Sub. Try some generic simplifications based on this. 765 if (Value *V = FactorizeBinOp(Instruction::Sub, Op0, Op1, Instruction::Mul, 766 TD, TLI, DT, MaxRecurse)) 767 return V; 768 769 // i1 sub -> xor. 770 if (MaxRecurse && Op0->getType()->isIntegerTy(1)) 771 if (Value *V = SimplifyXorInst(Op0, Op1, TD, TLI, DT, MaxRecurse-1)) 772 return V; 773 774 // Threading Sub over selects and phi nodes is pointless, so don't bother. 775 // Threading over the select in "A - select(cond, B, C)" means evaluating 776 // "A-B" and "A-C" and seeing if they are equal; but they are equal if and 777 // only if B and C are equal. If B and C are equal then (since we assume 778 // that operands have already been simplified) "select(cond, B, C)" should 779 // have been simplified to the common value of B and C already. Analysing 780 // "A-B" and "A-C" thus gains nothing, but costs compile time. Similarly 781 // for threading over phi nodes. 782 783 return 0; 784 } 785 786 Value *llvm::SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, 787 const TargetData *TD, 788 const TargetLibraryInfo *TLI, 789 const DominatorTree *DT) { 790 return ::SimplifySubInst(Op0, Op1, isNSW, isNUW, TD, TLI, DT, RecursionLimit); 791 } 792 793 /// SimplifyMulInst - Given operands for a Mul, see if we can 794 /// fold the result. If not, this returns null. 795 static Value *SimplifyMulInst(Value *Op0, Value *Op1, const TargetData *TD, 796 const TargetLibraryInfo *TLI, 797 const DominatorTree *DT, unsigned MaxRecurse) { 798 if (Constant *CLHS = dyn_cast<Constant>(Op0)) { 799 if (Constant *CRHS = dyn_cast<Constant>(Op1)) { 800 Constant *Ops[] = { CLHS, CRHS }; 801 return ConstantFoldInstOperands(Instruction::Mul, CLHS->getType(), 802 Ops, TD, TLI); 803 } 804 805 // Canonicalize the constant to the RHS. 806 std::swap(Op0, Op1); 807 } 808 809 // X * undef -> 0 810 if (match(Op1, m_Undef())) 811 return Constant::getNullValue(Op0->getType()); 812 813 // X * 0 -> 0 814 if (match(Op1, m_Zero())) 815 return Op1; 816 817 // X * 1 -> X 818 if (match(Op1, m_One())) 819 return Op0; 820 821 // (X / Y) * Y -> X if the division is exact. 822 Value *X = 0; 823 if (match(Op0, m_Exact(m_IDiv(m_Value(X), m_Specific(Op1)))) || // (X / Y) * Y 824 match(Op1, m_Exact(m_IDiv(m_Value(X), m_Specific(Op0))))) // Y * (X / Y) 825 return X; 826 827 // i1 mul -> and. 828 if (MaxRecurse && Op0->getType()->isIntegerTy(1)) 829 if (Value *V = SimplifyAndInst(Op0, Op1, TD, TLI, DT, MaxRecurse-1)) 830 return V; 831 832 // Try some generic simplifications for associative operations. 833 if (Value *V = SimplifyAssociativeBinOp(Instruction::Mul, Op0, Op1, TD, TLI, DT, 834 MaxRecurse)) 835 return V; 836 837 // Mul distributes over Add. Try some generic simplifications based on this. 838 if (Value *V = ExpandBinOp(Instruction::Mul, Op0, Op1, Instruction::Add, 839 TD, TLI, DT, MaxRecurse)) 840 return V; 841 842 // If the operation is with the result of a select instruction, check whether 843 // operating on either branch of the select always yields the same value. 844 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 845 if (Value *V = ThreadBinOpOverSelect(Instruction::Mul, Op0, Op1, TD, TLI, DT, 846 MaxRecurse)) 847 return V; 848 849 // If the operation is with the result of a phi instruction, check whether 850 // operating on all incoming values of the phi always yields the same value. 851 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 852 if (Value *V = ThreadBinOpOverPHI(Instruction::Mul, Op0, Op1, TD, TLI, DT, 853 MaxRecurse)) 854 return V; 855 856 return 0; 857 } 858 859 Value *llvm::SimplifyMulInst(Value *Op0, Value *Op1, const TargetData *TD, 860 const TargetLibraryInfo *TLI, 861 const DominatorTree *DT) { 862 return ::SimplifyMulInst(Op0, Op1, TD, TLI, DT, RecursionLimit); 863 } 864 865 /// SimplifyDiv - Given operands for an SDiv or UDiv, see if we can 866 /// fold the result. If not, this returns null. 867 static Value *SimplifyDiv(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1, 868 const TargetData *TD, const TargetLibraryInfo *TLI, 869 const DominatorTree *DT, unsigned MaxRecurse) { 870 if (Constant *C0 = dyn_cast<Constant>(Op0)) { 871 if (Constant *C1 = dyn_cast<Constant>(Op1)) { 872 Constant *Ops[] = { C0, C1 }; 873 return ConstantFoldInstOperands(Opcode, C0->getType(), Ops, TD, TLI); 874 } 875 } 876 877 bool isSigned = Opcode == Instruction::SDiv; 878 879 // X / undef -> undef 880 if (match(Op1, m_Undef())) 881 return Op1; 882 883 // undef / X -> 0 884 if (match(Op0, m_Undef())) 885 return Constant::getNullValue(Op0->getType()); 886 887 // 0 / X -> 0, we don't need to preserve faults! 888 if (match(Op0, m_Zero())) 889 return Op0; 890 891 // X / 1 -> X 892 if (match(Op1, m_One())) 893 return Op0; 894 895 if (Op0->getType()->isIntegerTy(1)) 896 // It can't be division by zero, hence it must be division by one. 897 return Op0; 898 899 // X / X -> 1 900 if (Op0 == Op1) 901 return ConstantInt::get(Op0->getType(), 1); 902 903 // (X * Y) / Y -> X if the multiplication does not overflow. 904 Value *X = 0, *Y = 0; 905 if (match(Op0, m_Mul(m_Value(X), m_Value(Y))) && (X == Op1 || Y == Op1)) { 906 if (Y != Op1) std::swap(X, Y); // Ensure expression is (X * Y) / Y, Y = Op1 907 OverflowingBinaryOperator *Mul = cast<OverflowingBinaryOperator>(Op0); 908 // If the Mul knows it does not overflow, then we are good to go. 909 if ((isSigned && Mul->hasNoSignedWrap()) || 910 (!isSigned && Mul->hasNoUnsignedWrap())) 911 return X; 912 // If X has the form X = A / Y then X * Y cannot overflow. 913 if (BinaryOperator *Div = dyn_cast<BinaryOperator>(X)) 914 if (Div->getOpcode() == Opcode && Div->getOperand(1) == Y) 915 return X; 916 } 917 918 // (X rem Y) / Y -> 0 919 if ((isSigned && match(Op0, m_SRem(m_Value(), m_Specific(Op1)))) || 920 (!isSigned && match(Op0, m_URem(m_Value(), m_Specific(Op1))))) 921 return Constant::getNullValue(Op0->getType()); 922 923 // If the operation is with the result of a select instruction, check whether 924 // operating on either branch of the select always yields the same value. 925 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 926 if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, TD, TLI, DT, 927 MaxRecurse)) 928 return V; 929 930 // If the operation is with the result of a phi instruction, check whether 931 // operating on all incoming values of the phi always yields the same value. 932 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 933 if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, TD, TLI, DT, 934 MaxRecurse)) 935 return V; 936 937 return 0; 938 } 939 940 /// SimplifySDivInst - Given operands for an SDiv, see if we can 941 /// fold the result. If not, this returns null. 942 static Value *SimplifySDivInst(Value *Op0, Value *Op1, const TargetData *TD, 943 const TargetLibraryInfo *TLI, 944 const DominatorTree *DT, unsigned MaxRecurse) { 945 if (Value *V = SimplifyDiv(Instruction::SDiv, Op0, Op1, TD, TLI, DT, 946 MaxRecurse)) 947 return V; 948 949 return 0; 950 } 951 952 Value *llvm::SimplifySDivInst(Value *Op0, Value *Op1, const TargetData *TD, 953 const TargetLibraryInfo *TLI, 954 const DominatorTree *DT) { 955 return ::SimplifySDivInst(Op0, Op1, TD, TLI, DT, RecursionLimit); 956 } 957 958 /// SimplifyUDivInst - Given operands for a UDiv, see if we can 959 /// fold the result. If not, this returns null. 960 static Value *SimplifyUDivInst(Value *Op0, Value *Op1, const TargetData *TD, 961 const TargetLibraryInfo *TLI, 962 const DominatorTree *DT, unsigned MaxRecurse) { 963 if (Value *V = SimplifyDiv(Instruction::UDiv, Op0, Op1, TD, TLI, DT, 964 MaxRecurse)) 965 return V; 966 967 return 0; 968 } 969 970 Value *llvm::SimplifyUDivInst(Value *Op0, Value *Op1, const TargetData *TD, 971 const TargetLibraryInfo *TLI, 972 const DominatorTree *DT) { 973 return ::SimplifyUDivInst(Op0, Op1, TD, TLI, DT, RecursionLimit); 974 } 975 976 static Value *SimplifyFDivInst(Value *Op0, Value *Op1, const TargetData *, 977 const TargetLibraryInfo *, 978 const DominatorTree *, unsigned) { 979 // undef / X -> undef (the undef could be a snan). 980 if (match(Op0, m_Undef())) 981 return Op0; 982 983 // X / undef -> undef 984 if (match(Op1, m_Undef())) 985 return Op1; 986 987 return 0; 988 } 989 990 Value *llvm::SimplifyFDivInst(Value *Op0, Value *Op1, const TargetData *TD, 991 const TargetLibraryInfo *TLI, 992 const DominatorTree *DT) { 993 return ::SimplifyFDivInst(Op0, Op1, TD, TLI, DT, RecursionLimit); 994 } 995 996 /// SimplifyRem - Given operands for an SRem or URem, see if we can 997 /// fold the result. If not, this returns null. 998 static Value *SimplifyRem(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1, 999 const TargetData *TD, const TargetLibraryInfo *TLI, 1000 const DominatorTree *DT, unsigned MaxRecurse) { 1001 if (Constant *C0 = dyn_cast<Constant>(Op0)) { 1002 if (Constant *C1 = dyn_cast<Constant>(Op1)) { 1003 Constant *Ops[] = { C0, C1 }; 1004 return ConstantFoldInstOperands(Opcode, C0->getType(), Ops, TD, TLI); 1005 } 1006 } 1007 1008 // X % undef -> undef 1009 if (match(Op1, m_Undef())) 1010 return Op1; 1011 1012 // undef % X -> 0 1013 if (match(Op0, m_Undef())) 1014 return Constant::getNullValue(Op0->getType()); 1015 1016 // 0 % X -> 0, we don't need to preserve faults! 1017 if (match(Op0, m_Zero())) 1018 return Op0; 1019 1020 // X % 0 -> undef, we don't need to preserve faults! 1021 if (match(Op1, m_Zero())) 1022 return UndefValue::get(Op0->getType()); 1023 1024 // X % 1 -> 0 1025 if (match(Op1, m_One())) 1026 return Constant::getNullValue(Op0->getType()); 1027 1028 if (Op0->getType()->isIntegerTy(1)) 1029 // It can't be remainder by zero, hence it must be remainder by one. 1030 return Constant::getNullValue(Op0->getType()); 1031 1032 // X % X -> 0 1033 if (Op0 == Op1) 1034 return Constant::getNullValue(Op0->getType()); 1035 1036 // If the operation is with the result of a select instruction, check whether 1037 // operating on either branch of the select always yields the same value. 1038 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 1039 if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, TD, TLI, DT, MaxRecurse)) 1040 return V; 1041 1042 // If the operation is with the result of a phi instruction, check whether 1043 // operating on all incoming values of the phi always yields the same value. 1044 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 1045 if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, TD, TLI, DT, MaxRecurse)) 1046 return V; 1047 1048 return 0; 1049 } 1050 1051 /// SimplifySRemInst - Given operands for an SRem, see if we can 1052 /// fold the result. If not, this returns null. 1053 static Value *SimplifySRemInst(Value *Op0, Value *Op1, const TargetData *TD, 1054 const TargetLibraryInfo *TLI, 1055 const DominatorTree *DT, 1056 unsigned MaxRecurse) { 1057 if (Value *V = SimplifyRem(Instruction::SRem, Op0, Op1, TD, TLI, DT, MaxRecurse)) 1058 return V; 1059 1060 return 0; 1061 } 1062 1063 Value *llvm::SimplifySRemInst(Value *Op0, Value *Op1, const TargetData *TD, 1064 const TargetLibraryInfo *TLI, 1065 const DominatorTree *DT) { 1066 return ::SimplifySRemInst(Op0, Op1, TD, TLI, DT, RecursionLimit); 1067 } 1068 1069 /// SimplifyURemInst - Given operands for a URem, see if we can 1070 /// fold the result. If not, this returns null. 1071 static Value *SimplifyURemInst(Value *Op0, Value *Op1, const TargetData *TD, 1072 const TargetLibraryInfo *TLI, 1073 const DominatorTree *DT, 1074 unsigned MaxRecurse) { 1075 if (Value *V = SimplifyRem(Instruction::URem, Op0, Op1, TD, TLI, DT, MaxRecurse)) 1076 return V; 1077 1078 return 0; 1079 } 1080 1081 Value *llvm::SimplifyURemInst(Value *Op0, Value *Op1, const TargetData *TD, 1082 const TargetLibraryInfo *TLI, 1083 const DominatorTree *DT) { 1084 return ::SimplifyURemInst(Op0, Op1, TD, TLI, DT, RecursionLimit); 1085 } 1086 1087 static Value *SimplifyFRemInst(Value *Op0, Value *Op1, const TargetData *, 1088 const TargetLibraryInfo *, 1089 const DominatorTree *, 1090 unsigned) { 1091 // undef % X -> undef (the undef could be a snan). 1092 if (match(Op0, m_Undef())) 1093 return Op0; 1094 1095 // X % undef -> undef 1096 if (match(Op1, m_Undef())) 1097 return Op1; 1098 1099 return 0; 1100 } 1101 1102 Value *llvm::SimplifyFRemInst(Value *Op0, Value *Op1, const TargetData *TD, 1103 const TargetLibraryInfo *TLI, 1104 const DominatorTree *DT) { 1105 return ::SimplifyFRemInst(Op0, Op1, TD, TLI, DT, RecursionLimit); 1106 } 1107 1108 /// SimplifyShift - Given operands for an Shl, LShr or AShr, see if we can 1109 /// fold the result. If not, this returns null. 1110 static Value *SimplifyShift(unsigned Opcode, Value *Op0, Value *Op1, 1111 const TargetData *TD, const TargetLibraryInfo *TLI, 1112 const DominatorTree *DT, unsigned MaxRecurse) { 1113 if (Constant *C0 = dyn_cast<Constant>(Op0)) { 1114 if (Constant *C1 = dyn_cast<Constant>(Op1)) { 1115 Constant *Ops[] = { C0, C1 }; 1116 return ConstantFoldInstOperands(Opcode, C0->getType(), Ops, TD, TLI); 1117 } 1118 } 1119 1120 // 0 shift by X -> 0 1121 if (match(Op0, m_Zero())) 1122 return Op0; 1123 1124 // X shift by 0 -> X 1125 if (match(Op1, m_Zero())) 1126 return Op0; 1127 1128 // X shift by undef -> undef because it may shift by the bitwidth. 1129 if (match(Op1, m_Undef())) 1130 return Op1; 1131 1132 // Shifting by the bitwidth or more is undefined. 1133 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) 1134 if (CI->getValue().getLimitedValue() >= 1135 Op0->getType()->getScalarSizeInBits()) 1136 return UndefValue::get(Op0->getType()); 1137 1138 // If the operation is with the result of a select instruction, check whether 1139 // operating on either branch of the select always yields the same value. 1140 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 1141 if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, TD, TLI, DT, MaxRecurse)) 1142 return V; 1143 1144 // If the operation is with the result of a phi instruction, check whether 1145 // operating on all incoming values of the phi always yields the same value. 1146 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 1147 if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, TD, TLI, DT, MaxRecurse)) 1148 return V; 1149 1150 return 0; 1151 } 1152 1153 /// SimplifyShlInst - Given operands for an Shl, see if we can 1154 /// fold the result. If not, this returns null. 1155 static Value *SimplifyShlInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, 1156 const TargetData *TD, 1157 const TargetLibraryInfo *TLI, 1158 const DominatorTree *DT, unsigned MaxRecurse) { 1159 if (Value *V = SimplifyShift(Instruction::Shl, Op0, Op1, TD, TLI, DT, MaxRecurse)) 1160 return V; 1161 1162 // undef << X -> 0 1163 if (match(Op0, m_Undef())) 1164 return Constant::getNullValue(Op0->getType()); 1165 1166 // (X >> A) << A -> X 1167 Value *X; 1168 if (match(Op0, m_Exact(m_Shr(m_Value(X), m_Specific(Op1))))) 1169 return X; 1170 return 0; 1171 } 1172 1173 Value *llvm::SimplifyShlInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, 1174 const TargetData *TD, const TargetLibraryInfo *TLI, 1175 const DominatorTree *DT) { 1176 return ::SimplifyShlInst(Op0, Op1, isNSW, isNUW, TD, TLI, DT, RecursionLimit); 1177 } 1178 1179 /// SimplifyLShrInst - Given operands for an LShr, see if we can 1180 /// fold the result. If not, this returns null. 1181 static Value *SimplifyLShrInst(Value *Op0, Value *Op1, bool isExact, 1182 const TargetData *TD, 1183 const TargetLibraryInfo *TLI, 1184 const DominatorTree *DT, 1185 unsigned MaxRecurse) { 1186 if (Value *V = SimplifyShift(Instruction::LShr, Op0, Op1, TD, TLI, DT, MaxRecurse)) 1187 return V; 1188 1189 // undef >>l X -> 0 1190 if (match(Op0, m_Undef())) 1191 return Constant::getNullValue(Op0->getType()); 1192 1193 // (X << A) >> A -> X 1194 Value *X; 1195 if (match(Op0, m_Shl(m_Value(X), m_Specific(Op1))) && 1196 cast<OverflowingBinaryOperator>(Op0)->hasNoUnsignedWrap()) 1197 return X; 1198 1199 return 0; 1200 } 1201 1202 Value *llvm::SimplifyLShrInst(Value *Op0, Value *Op1, bool isExact, 1203 const TargetData *TD, 1204 const TargetLibraryInfo *TLI, 1205 const DominatorTree *DT) { 1206 return ::SimplifyLShrInst(Op0, Op1, isExact, TD, TLI, DT, RecursionLimit); 1207 } 1208 1209 /// SimplifyAShrInst - Given operands for an AShr, see if we can 1210 /// fold the result. If not, this returns null. 1211 static Value *SimplifyAShrInst(Value *Op0, Value *Op1, bool isExact, 1212 const TargetData *TD, 1213 const TargetLibraryInfo *TLI, 1214 const DominatorTree *DT, 1215 unsigned MaxRecurse) { 1216 if (Value *V = SimplifyShift(Instruction::AShr, Op0, Op1, TD, TLI, DT, MaxRecurse)) 1217 return V; 1218 1219 // all ones >>a X -> all ones 1220 if (match(Op0, m_AllOnes())) 1221 return Op0; 1222 1223 // undef >>a X -> all ones 1224 if (match(Op0, m_Undef())) 1225 return Constant::getAllOnesValue(Op0->getType()); 1226 1227 // (X << A) >> A -> X 1228 Value *X; 1229 if (match(Op0, m_Shl(m_Value(X), m_Specific(Op1))) && 1230 cast<OverflowingBinaryOperator>(Op0)->hasNoSignedWrap()) 1231 return X; 1232 1233 return 0; 1234 } 1235 1236 Value *llvm::SimplifyAShrInst(Value *Op0, Value *Op1, bool isExact, 1237 const TargetData *TD, 1238 const TargetLibraryInfo *TLI, 1239 const DominatorTree *DT) { 1240 return ::SimplifyAShrInst(Op0, Op1, isExact, TD, TLI, DT, RecursionLimit); 1241 } 1242 1243 /// SimplifyAndInst - Given operands for an And, see if we can 1244 /// fold the result. If not, this returns null. 1245 static Value *SimplifyAndInst(Value *Op0, Value *Op1, const TargetData *TD, 1246 const TargetLibraryInfo *TLI, 1247 const DominatorTree *DT, 1248 unsigned MaxRecurse) { 1249 if (Constant *CLHS = dyn_cast<Constant>(Op0)) { 1250 if (Constant *CRHS = dyn_cast<Constant>(Op1)) { 1251 Constant *Ops[] = { CLHS, CRHS }; 1252 return ConstantFoldInstOperands(Instruction::And, CLHS->getType(), 1253 Ops, TD, TLI); 1254 } 1255 1256 // Canonicalize the constant to the RHS. 1257 std::swap(Op0, Op1); 1258 } 1259 1260 // X & undef -> 0 1261 if (match(Op1, m_Undef())) 1262 return Constant::getNullValue(Op0->getType()); 1263 1264 // X & X = X 1265 if (Op0 == Op1) 1266 return Op0; 1267 1268 // X & 0 = 0 1269 if (match(Op1, m_Zero())) 1270 return Op1; 1271 1272 // X & -1 = X 1273 if (match(Op1, m_AllOnes())) 1274 return Op0; 1275 1276 // A & ~A = ~A & A = 0 1277 if (match(Op0, m_Not(m_Specific(Op1))) || 1278 match(Op1, m_Not(m_Specific(Op0)))) 1279 return Constant::getNullValue(Op0->getType()); 1280 1281 // (A | ?) & A = A 1282 Value *A = 0, *B = 0; 1283 if (match(Op0, m_Or(m_Value(A), m_Value(B))) && 1284 (A == Op1 || B == Op1)) 1285 return Op1; 1286 1287 // A & (A | ?) = A 1288 if (match(Op1, m_Or(m_Value(A), m_Value(B))) && 1289 (A == Op0 || B == Op0)) 1290 return Op0; 1291 1292 // A & (-A) = A if A is a power of two or zero. 1293 if (match(Op0, m_Neg(m_Specific(Op1))) || 1294 match(Op1, m_Neg(m_Specific(Op0)))) { 1295 if (isPowerOfTwo(Op0, TD, /*OrZero*/true)) 1296 return Op0; 1297 if (isPowerOfTwo(Op1, TD, /*OrZero*/true)) 1298 return Op1; 1299 } 1300 1301 // Try some generic simplifications for associative operations. 1302 if (Value *V = SimplifyAssociativeBinOp(Instruction::And, Op0, Op1, TD, TLI, 1303 DT, MaxRecurse)) 1304 return V; 1305 1306 // And distributes over Or. Try some generic simplifications based on this. 1307 if (Value *V = ExpandBinOp(Instruction::And, Op0, Op1, Instruction::Or, 1308 TD, TLI, DT, MaxRecurse)) 1309 return V; 1310 1311 // And distributes over Xor. Try some generic simplifications based on this. 1312 if (Value *V = ExpandBinOp(Instruction::And, Op0, Op1, Instruction::Xor, 1313 TD, TLI, DT, MaxRecurse)) 1314 return V; 1315 1316 // Or distributes over And. Try some generic simplifications based on this. 1317 if (Value *V = FactorizeBinOp(Instruction::And, Op0, Op1, Instruction::Or, 1318 TD, TLI, DT, MaxRecurse)) 1319 return V; 1320 1321 // If the operation is with the result of a select instruction, check whether 1322 // operating on either branch of the select always yields the same value. 1323 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 1324 if (Value *V = ThreadBinOpOverSelect(Instruction::And, Op0, Op1, TD, TLI, 1325 DT, MaxRecurse)) 1326 return V; 1327 1328 // If the operation is with the result of a phi instruction, check whether 1329 // operating on all incoming values of the phi always yields the same value. 1330 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 1331 if (Value *V = ThreadBinOpOverPHI(Instruction::And, Op0, Op1, TD, TLI, DT, 1332 MaxRecurse)) 1333 return V; 1334 1335 return 0; 1336 } 1337 1338 Value *llvm::SimplifyAndInst(Value *Op0, Value *Op1, const TargetData *TD, 1339 const TargetLibraryInfo *TLI, 1340 const DominatorTree *DT) { 1341 return ::SimplifyAndInst(Op0, Op1, TD, TLI, DT, RecursionLimit); 1342 } 1343 1344 /// SimplifyOrInst - Given operands for an Or, see if we can 1345 /// fold the result. If not, this returns null. 1346 static Value *SimplifyOrInst(Value *Op0, Value *Op1, const TargetData *TD, 1347 const TargetLibraryInfo *TLI, 1348 const DominatorTree *DT, unsigned MaxRecurse) { 1349 if (Constant *CLHS = dyn_cast<Constant>(Op0)) { 1350 if (Constant *CRHS = dyn_cast<Constant>(Op1)) { 1351 Constant *Ops[] = { CLHS, CRHS }; 1352 return ConstantFoldInstOperands(Instruction::Or, CLHS->getType(), 1353 Ops, TD, TLI); 1354 } 1355 1356 // Canonicalize the constant to the RHS. 1357 std::swap(Op0, Op1); 1358 } 1359 1360 // X | undef -> -1 1361 if (match(Op1, m_Undef())) 1362 return Constant::getAllOnesValue(Op0->getType()); 1363 1364 // X | X = X 1365 if (Op0 == Op1) 1366 return Op0; 1367 1368 // X | 0 = X 1369 if (match(Op1, m_Zero())) 1370 return Op0; 1371 1372 // X | -1 = -1 1373 if (match(Op1, m_AllOnes())) 1374 return Op1; 1375 1376 // A | ~A = ~A | A = -1 1377 if (match(Op0, m_Not(m_Specific(Op1))) || 1378 match(Op1, m_Not(m_Specific(Op0)))) 1379 return Constant::getAllOnesValue(Op0->getType()); 1380 1381 // (A & ?) | A = A 1382 Value *A = 0, *B = 0; 1383 if (match(Op0, m_And(m_Value(A), m_Value(B))) && 1384 (A == Op1 || B == Op1)) 1385 return Op1; 1386 1387 // A | (A & ?) = A 1388 if (match(Op1, m_And(m_Value(A), m_Value(B))) && 1389 (A == Op0 || B == Op0)) 1390 return Op0; 1391 1392 // ~(A & ?) | A = -1 1393 if (match(Op0, m_Not(m_And(m_Value(A), m_Value(B)))) && 1394 (A == Op1 || B == Op1)) 1395 return Constant::getAllOnesValue(Op1->getType()); 1396 1397 // A | ~(A & ?) = -1 1398 if (match(Op1, m_Not(m_And(m_Value(A), m_Value(B)))) && 1399 (A == Op0 || B == Op0)) 1400 return Constant::getAllOnesValue(Op0->getType()); 1401 1402 // Try some generic simplifications for associative operations. 1403 if (Value *V = SimplifyAssociativeBinOp(Instruction::Or, Op0, Op1, TD, TLI, 1404 DT, MaxRecurse)) 1405 return V; 1406 1407 // Or distributes over And. Try some generic simplifications based on this. 1408 if (Value *V = ExpandBinOp(Instruction::Or, Op0, Op1, Instruction::And, TD, 1409 TLI, DT, MaxRecurse)) 1410 return V; 1411 1412 // And distributes over Or. Try some generic simplifications based on this. 1413 if (Value *V = FactorizeBinOp(Instruction::Or, Op0, Op1, Instruction::And, 1414 TD, TLI, DT, MaxRecurse)) 1415 return V; 1416 1417 // If the operation is with the result of a select instruction, check whether 1418 // operating on either branch of the select always yields the same value. 1419 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 1420 if (Value *V = ThreadBinOpOverSelect(Instruction::Or, Op0, Op1, TD, TLI, DT, 1421 MaxRecurse)) 1422 return V; 1423 1424 // If the operation is with the result of a phi instruction, check whether 1425 // operating on all incoming values of the phi always yields the same value. 1426 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 1427 if (Value *V = ThreadBinOpOverPHI(Instruction::Or, Op0, Op1, TD, TLI, DT, 1428 MaxRecurse)) 1429 return V; 1430 1431 return 0; 1432 } 1433 1434 Value *llvm::SimplifyOrInst(Value *Op0, Value *Op1, const TargetData *TD, 1435 const TargetLibraryInfo *TLI, 1436 const DominatorTree *DT) { 1437 return ::SimplifyOrInst(Op0, Op1, TD, TLI, DT, RecursionLimit); 1438 } 1439 1440 /// SimplifyXorInst - Given operands for a Xor, see if we can 1441 /// fold the result. If not, this returns null. 1442 static Value *SimplifyXorInst(Value *Op0, Value *Op1, const TargetData *TD, 1443 const TargetLibraryInfo *TLI, 1444 const DominatorTree *DT, unsigned MaxRecurse) { 1445 if (Constant *CLHS = dyn_cast<Constant>(Op0)) { 1446 if (Constant *CRHS = dyn_cast<Constant>(Op1)) { 1447 Constant *Ops[] = { CLHS, CRHS }; 1448 return ConstantFoldInstOperands(Instruction::Xor, CLHS->getType(), 1449 Ops, TD, TLI); 1450 } 1451 1452 // Canonicalize the constant to the RHS. 1453 std::swap(Op0, Op1); 1454 } 1455 1456 // A ^ undef -> undef 1457 if (match(Op1, m_Undef())) 1458 return Op1; 1459 1460 // A ^ 0 = A 1461 if (match(Op1, m_Zero())) 1462 return Op0; 1463 1464 // A ^ A = 0 1465 if (Op0 == Op1) 1466 return Constant::getNullValue(Op0->getType()); 1467 1468 // A ^ ~A = ~A ^ A = -1 1469 if (match(Op0, m_Not(m_Specific(Op1))) || 1470 match(Op1, m_Not(m_Specific(Op0)))) 1471 return Constant::getAllOnesValue(Op0->getType()); 1472 1473 // Try some generic simplifications for associative operations. 1474 if (Value *V = SimplifyAssociativeBinOp(Instruction::Xor, Op0, Op1, TD, TLI, 1475 DT, MaxRecurse)) 1476 return V; 1477 1478 // And distributes over Xor. Try some generic simplifications based on this. 1479 if (Value *V = FactorizeBinOp(Instruction::Xor, Op0, Op1, Instruction::And, 1480 TD, TLI, DT, MaxRecurse)) 1481 return V; 1482 1483 // Threading Xor over selects and phi nodes is pointless, so don't bother. 1484 // Threading over the select in "A ^ select(cond, B, C)" means evaluating 1485 // "A^B" and "A^C" and seeing if they are equal; but they are equal if and 1486 // only if B and C are equal. If B and C are equal then (since we assume 1487 // that operands have already been simplified) "select(cond, B, C)" should 1488 // have been simplified to the common value of B and C already. Analysing 1489 // "A^B" and "A^C" thus gains nothing, but costs compile time. Similarly 1490 // for threading over phi nodes. 1491 1492 return 0; 1493 } 1494 1495 Value *llvm::SimplifyXorInst(Value *Op0, Value *Op1, const TargetData *TD, 1496 const TargetLibraryInfo *TLI, 1497 const DominatorTree *DT) { 1498 return ::SimplifyXorInst(Op0, Op1, TD, TLI, DT, RecursionLimit); 1499 } 1500 1501 static Type *GetCompareTy(Value *Op) { 1502 return CmpInst::makeCmpResultType(Op->getType()); 1503 } 1504 1505 /// ExtractEquivalentCondition - Rummage around inside V looking for something 1506 /// equivalent to the comparison "LHS Pred RHS". Return such a value if found, 1507 /// otherwise return null. Helper function for analyzing max/min idioms. 1508 static Value *ExtractEquivalentCondition(Value *V, CmpInst::Predicate Pred, 1509 Value *LHS, Value *RHS) { 1510 SelectInst *SI = dyn_cast<SelectInst>(V); 1511 if (!SI) 1512 return 0; 1513 CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition()); 1514 if (!Cmp) 1515 return 0; 1516 Value *CmpLHS = Cmp->getOperand(0), *CmpRHS = Cmp->getOperand(1); 1517 if (Pred == Cmp->getPredicate() && LHS == CmpLHS && RHS == CmpRHS) 1518 return Cmp; 1519 if (Pred == CmpInst::getSwappedPredicate(Cmp->getPredicate()) && 1520 LHS == CmpRHS && RHS == CmpLHS) 1521 return Cmp; 1522 return 0; 1523 } 1524 1525 1526 /// SimplifyICmpInst - Given operands for an ICmpInst, see if we can 1527 /// fold the result. If not, this returns null. 1528 static Value *SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS, 1529 const TargetData *TD, 1530 const TargetLibraryInfo *TLI, 1531 const DominatorTree *DT, 1532 unsigned MaxRecurse) { 1533 CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate; 1534 assert(CmpInst::isIntPredicate(Pred) && "Not an integer compare!"); 1535 1536 if (Constant *CLHS = dyn_cast<Constant>(LHS)) { 1537 if (Constant *CRHS = dyn_cast<Constant>(RHS)) 1538 return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, TD, TLI); 1539 1540 // If we have a constant, make sure it is on the RHS. 1541 std::swap(LHS, RHS); 1542 Pred = CmpInst::getSwappedPredicate(Pred); 1543 } 1544 1545 Type *ITy = GetCompareTy(LHS); // The return type. 1546 Type *OpTy = LHS->getType(); // The operand type. 1547 1548 // icmp X, X -> true/false 1549 // X icmp undef -> true/false. For example, icmp ugt %X, undef -> false 1550 // because X could be 0. 1551 if (LHS == RHS || isa<UndefValue>(RHS)) 1552 return ConstantInt::get(ITy, CmpInst::isTrueWhenEqual(Pred)); 1553 1554 // Special case logic when the operands have i1 type. 1555 if (OpTy->getScalarType()->isIntegerTy(1)) { 1556 switch (Pred) { 1557 default: break; 1558 case ICmpInst::ICMP_EQ: 1559 // X == 1 -> X 1560 if (match(RHS, m_One())) 1561 return LHS; 1562 break; 1563 case ICmpInst::ICMP_NE: 1564 // X != 0 -> X 1565 if (match(RHS, m_Zero())) 1566 return LHS; 1567 break; 1568 case ICmpInst::ICMP_UGT: 1569 // X >u 0 -> X 1570 if (match(RHS, m_Zero())) 1571 return LHS; 1572 break; 1573 case ICmpInst::ICMP_UGE: 1574 // X >=u 1 -> X 1575 if (match(RHS, m_One())) 1576 return LHS; 1577 break; 1578 case ICmpInst::ICMP_SLT: 1579 // X <s 0 -> X 1580 if (match(RHS, m_Zero())) 1581 return LHS; 1582 break; 1583 case ICmpInst::ICMP_SLE: 1584 // X <=s -1 -> X 1585 if (match(RHS, m_One())) 1586 return LHS; 1587 break; 1588 } 1589 } 1590 1591 // icmp <object*>, <object*/null> - Different identified objects have 1592 // different addresses (unless null), and what's more the address of an 1593 // identified local is never equal to another argument (again, barring null). 1594 // Note that generalizing to the case where LHS is a global variable address 1595 // or null is pointless, since if both LHS and RHS are constants then we 1596 // already constant folded the compare, and if only one of them is then we 1597 // moved it to RHS already. 1598 Value *LHSPtr = LHS->stripPointerCasts(); 1599 Value *RHSPtr = RHS->stripPointerCasts(); 1600 if (LHSPtr == RHSPtr) 1601 return ConstantInt::get(ITy, CmpInst::isTrueWhenEqual(Pred)); 1602 1603 // Be more aggressive about stripping pointer adjustments when checking a 1604 // comparison of an alloca address to another object. We can rip off all 1605 // inbounds GEP operations, even if they are variable. 1606 LHSPtr = LHSPtr->stripInBoundsOffsets(); 1607 if (llvm::isIdentifiedObject(LHSPtr)) { 1608 RHSPtr = RHSPtr->stripInBoundsOffsets(); 1609 if (llvm::isKnownNonNull(LHSPtr) || llvm::isKnownNonNull(RHSPtr)) { 1610 // If both sides are different identified objects, they aren't equal 1611 // unless they're null. 1612 if (LHSPtr != RHSPtr && llvm::isIdentifiedObject(RHSPtr) && 1613 Pred == CmpInst::ICMP_EQ) 1614 return ConstantInt::get(ITy, false); 1615 1616 // A local identified object (alloca or noalias call) can't equal any 1617 // incoming argument, unless they're both null. 1618 if (isa<Instruction>(LHSPtr) && isa<Argument>(RHSPtr) && 1619 Pred == CmpInst::ICMP_EQ) 1620 return ConstantInt::get(ITy, false); 1621 } 1622 1623 // Assume that the constant null is on the right. 1624 if (llvm::isKnownNonNull(LHSPtr) && isa<ConstantPointerNull>(RHSPtr)) { 1625 if (Pred == CmpInst::ICMP_EQ) 1626 return ConstantInt::get(ITy, false); 1627 else if (Pred == CmpInst::ICMP_NE) 1628 return ConstantInt::get(ITy, true); 1629 } 1630 } else if (isa<Argument>(LHSPtr)) { 1631 RHSPtr = RHSPtr->stripInBoundsOffsets(); 1632 // An alloca can't be equal to an argument. 1633 if (isa<AllocaInst>(RHSPtr)) { 1634 if (Pred == CmpInst::ICMP_EQ) 1635 return ConstantInt::get(ITy, false); 1636 else if (Pred == CmpInst::ICMP_NE) 1637 return ConstantInt::get(ITy, true); 1638 } 1639 } 1640 1641 // If we are comparing with zero then try hard since this is a common case. 1642 if (match(RHS, m_Zero())) { 1643 bool LHSKnownNonNegative, LHSKnownNegative; 1644 switch (Pred) { 1645 default: llvm_unreachable("Unknown ICmp predicate!"); 1646 case ICmpInst::ICMP_ULT: 1647 return getFalse(ITy); 1648 case ICmpInst::ICMP_UGE: 1649 return getTrue(ITy); 1650 case ICmpInst::ICMP_EQ: 1651 case ICmpInst::ICMP_ULE: 1652 if (isKnownNonZero(LHS, TD)) 1653 return getFalse(ITy); 1654 break; 1655 case ICmpInst::ICMP_NE: 1656 case ICmpInst::ICMP_UGT: 1657 if (isKnownNonZero(LHS, TD)) 1658 return getTrue(ITy); 1659 break; 1660 case ICmpInst::ICMP_SLT: 1661 ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, TD); 1662 if (LHSKnownNegative) 1663 return getTrue(ITy); 1664 if (LHSKnownNonNegative) 1665 return getFalse(ITy); 1666 break; 1667 case ICmpInst::ICMP_SLE: 1668 ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, TD); 1669 if (LHSKnownNegative) 1670 return getTrue(ITy); 1671 if (LHSKnownNonNegative && isKnownNonZero(LHS, TD)) 1672 return getFalse(ITy); 1673 break; 1674 case ICmpInst::ICMP_SGE: 1675 ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, TD); 1676 if (LHSKnownNegative) 1677 return getFalse(ITy); 1678 if (LHSKnownNonNegative) 1679 return getTrue(ITy); 1680 break; 1681 case ICmpInst::ICMP_SGT: 1682 ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, TD); 1683 if (LHSKnownNegative) 1684 return getFalse(ITy); 1685 if (LHSKnownNonNegative && isKnownNonZero(LHS, TD)) 1686 return getTrue(ITy); 1687 break; 1688 } 1689 } 1690 1691 // See if we are doing a comparison with a constant integer. 1692 if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) { 1693 // Rule out tautological comparisons (eg., ult 0 or uge 0). 1694 ConstantRange RHS_CR = ICmpInst::makeConstantRange(Pred, CI->getValue()); 1695 if (RHS_CR.isEmptySet()) 1696 return ConstantInt::getFalse(CI->getContext()); 1697 if (RHS_CR.isFullSet()) 1698 return ConstantInt::getTrue(CI->getContext()); 1699 1700 // Many binary operators with constant RHS have easy to compute constant 1701 // range. Use them to check whether the comparison is a tautology. 1702 uint32_t Width = CI->getBitWidth(); 1703 APInt Lower = APInt(Width, 0); 1704 APInt Upper = APInt(Width, 0); 1705 ConstantInt *CI2; 1706 if (match(LHS, m_URem(m_Value(), m_ConstantInt(CI2)))) { 1707 // 'urem x, CI2' produces [0, CI2). 1708 Upper = CI2->getValue(); 1709 } else if (match(LHS, m_SRem(m_Value(), m_ConstantInt(CI2)))) { 1710 // 'srem x, CI2' produces (-|CI2|, |CI2|). 1711 Upper = CI2->getValue().abs(); 1712 Lower = (-Upper) + 1; 1713 } else if (match(LHS, m_UDiv(m_ConstantInt(CI2), m_Value()))) { 1714 // 'udiv CI2, x' produces [0, CI2]. 1715 Upper = CI2->getValue() + 1; 1716 } else if (match(LHS, m_UDiv(m_Value(), m_ConstantInt(CI2)))) { 1717 // 'udiv x, CI2' produces [0, UINT_MAX / CI2]. 1718 APInt NegOne = APInt::getAllOnesValue(Width); 1719 if (!CI2->isZero()) 1720 Upper = NegOne.udiv(CI2->getValue()) + 1; 1721 } else if (match(LHS, m_SDiv(m_Value(), m_ConstantInt(CI2)))) { 1722 // 'sdiv x, CI2' produces [INT_MIN / CI2, INT_MAX / CI2]. 1723 APInt IntMin = APInt::getSignedMinValue(Width); 1724 APInt IntMax = APInt::getSignedMaxValue(Width); 1725 APInt Val = CI2->getValue().abs(); 1726 if (!Val.isMinValue()) { 1727 Lower = IntMin.sdiv(Val); 1728 Upper = IntMax.sdiv(Val) + 1; 1729 } 1730 } else if (match(LHS, m_LShr(m_Value(), m_ConstantInt(CI2)))) { 1731 // 'lshr x, CI2' produces [0, UINT_MAX >> CI2]. 1732 APInt NegOne = APInt::getAllOnesValue(Width); 1733 if (CI2->getValue().ult(Width)) 1734 Upper = NegOne.lshr(CI2->getValue()) + 1; 1735 } else if (match(LHS, m_AShr(m_Value(), m_ConstantInt(CI2)))) { 1736 // 'ashr x, CI2' produces [INT_MIN >> CI2, INT_MAX >> CI2]. 1737 APInt IntMin = APInt::getSignedMinValue(Width); 1738 APInt IntMax = APInt::getSignedMaxValue(Width); 1739 if (CI2->getValue().ult(Width)) { 1740 Lower = IntMin.ashr(CI2->getValue()); 1741 Upper = IntMax.ashr(CI2->getValue()) + 1; 1742 } 1743 } else if (match(LHS, m_Or(m_Value(), m_ConstantInt(CI2)))) { 1744 // 'or x, CI2' produces [CI2, UINT_MAX]. 1745 Lower = CI2->getValue(); 1746 } else if (match(LHS, m_And(m_Value(), m_ConstantInt(CI2)))) { 1747 // 'and x, CI2' produces [0, CI2]. 1748 Upper = CI2->getValue() + 1; 1749 } 1750 if (Lower != Upper) { 1751 ConstantRange LHS_CR = ConstantRange(Lower, Upper); 1752 if (RHS_CR.contains(LHS_CR)) 1753 return ConstantInt::getTrue(RHS->getContext()); 1754 if (RHS_CR.inverse().contains(LHS_CR)) 1755 return ConstantInt::getFalse(RHS->getContext()); 1756 } 1757 } 1758 1759 // Compare of cast, for example (zext X) != 0 -> X != 0 1760 if (isa<CastInst>(LHS) && (isa<Constant>(RHS) || isa<CastInst>(RHS))) { 1761 Instruction *LI = cast<CastInst>(LHS); 1762 Value *SrcOp = LI->getOperand(0); 1763 Type *SrcTy = SrcOp->getType(); 1764 Type *DstTy = LI->getType(); 1765 1766 // Turn icmp (ptrtoint x), (ptrtoint/constant) into a compare of the input 1767 // if the integer type is the same size as the pointer type. 1768 if (MaxRecurse && TD && isa<PtrToIntInst>(LI) && 1769 TD->getPointerSizeInBits() == DstTy->getPrimitiveSizeInBits()) { 1770 if (Constant *RHSC = dyn_cast<Constant>(RHS)) { 1771 // Transfer the cast to the constant. 1772 if (Value *V = SimplifyICmpInst(Pred, SrcOp, 1773 ConstantExpr::getIntToPtr(RHSC, SrcTy), 1774 TD, TLI, DT, MaxRecurse-1)) 1775 return V; 1776 } else if (PtrToIntInst *RI = dyn_cast<PtrToIntInst>(RHS)) { 1777 if (RI->getOperand(0)->getType() == SrcTy) 1778 // Compare without the cast. 1779 if (Value *V = SimplifyICmpInst(Pred, SrcOp, RI->getOperand(0), 1780 TD, TLI, DT, MaxRecurse-1)) 1781 return V; 1782 } 1783 } 1784 1785 if (isa<ZExtInst>(LHS)) { 1786 // Turn icmp (zext X), (zext Y) into a compare of X and Y if they have the 1787 // same type. 1788 if (ZExtInst *RI = dyn_cast<ZExtInst>(RHS)) { 1789 if (MaxRecurse && SrcTy == RI->getOperand(0)->getType()) 1790 // Compare X and Y. Note that signed predicates become unsigned. 1791 if (Value *V = SimplifyICmpInst(ICmpInst::getUnsignedPredicate(Pred), 1792 SrcOp, RI->getOperand(0), TD, TLI, DT, 1793 MaxRecurse-1)) 1794 return V; 1795 } 1796 // Turn icmp (zext X), Cst into a compare of X and Cst if Cst is extended 1797 // too. If not, then try to deduce the result of the comparison. 1798 else if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) { 1799 // Compute the constant that would happen if we truncated to SrcTy then 1800 // reextended to DstTy. 1801 Constant *Trunc = ConstantExpr::getTrunc(CI, SrcTy); 1802 Constant *RExt = ConstantExpr::getCast(CastInst::ZExt, Trunc, DstTy); 1803 1804 // If the re-extended constant didn't change then this is effectively 1805 // also a case of comparing two zero-extended values. 1806 if (RExt == CI && MaxRecurse) 1807 if (Value *V = SimplifyICmpInst(ICmpInst::getUnsignedPredicate(Pred), 1808 SrcOp, Trunc, TD, TLI, DT, MaxRecurse-1)) 1809 return V; 1810 1811 // Otherwise the upper bits of LHS are zero while RHS has a non-zero bit 1812 // there. Use this to work out the result of the comparison. 1813 if (RExt != CI) { 1814 switch (Pred) { 1815 default: llvm_unreachable("Unknown ICmp predicate!"); 1816 // LHS <u RHS. 1817 case ICmpInst::ICMP_EQ: 1818 case ICmpInst::ICMP_UGT: 1819 case ICmpInst::ICMP_UGE: 1820 return ConstantInt::getFalse(CI->getContext()); 1821 1822 case ICmpInst::ICMP_NE: 1823 case ICmpInst::ICMP_ULT: 1824 case ICmpInst::ICMP_ULE: 1825 return ConstantInt::getTrue(CI->getContext()); 1826 1827 // LHS is non-negative. If RHS is negative then LHS >s LHS. If RHS 1828 // is non-negative then LHS <s RHS. 1829 case ICmpInst::ICMP_SGT: 1830 case ICmpInst::ICMP_SGE: 1831 return CI->getValue().isNegative() ? 1832 ConstantInt::getTrue(CI->getContext()) : 1833 ConstantInt::getFalse(CI->getContext()); 1834 1835 case ICmpInst::ICMP_SLT: 1836 case ICmpInst::ICMP_SLE: 1837 return CI->getValue().isNegative() ? 1838 ConstantInt::getFalse(CI->getContext()) : 1839 ConstantInt::getTrue(CI->getContext()); 1840 } 1841 } 1842 } 1843 } 1844 1845 if (isa<SExtInst>(LHS)) { 1846 // Turn icmp (sext X), (sext Y) into a compare of X and Y if they have the 1847 // same type. 1848 if (SExtInst *RI = dyn_cast<SExtInst>(RHS)) { 1849 if (MaxRecurse && SrcTy == RI->getOperand(0)->getType()) 1850 // Compare X and Y. Note that the predicate does not change. 1851 if (Value *V = SimplifyICmpInst(Pred, SrcOp, RI->getOperand(0), 1852 TD, TLI, DT, MaxRecurse-1)) 1853 return V; 1854 } 1855 // Turn icmp (sext X), Cst into a compare of X and Cst if Cst is extended 1856 // too. If not, then try to deduce the result of the comparison. 1857 else if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) { 1858 // Compute the constant that would happen if we truncated to SrcTy then 1859 // reextended to DstTy. 1860 Constant *Trunc = ConstantExpr::getTrunc(CI, SrcTy); 1861 Constant *RExt = ConstantExpr::getCast(CastInst::SExt, Trunc, DstTy); 1862 1863 // If the re-extended constant didn't change then this is effectively 1864 // also a case of comparing two sign-extended values. 1865 if (RExt == CI && MaxRecurse) 1866 if (Value *V = SimplifyICmpInst(Pred, SrcOp, Trunc, TD, TLI, DT, 1867 MaxRecurse-1)) 1868 return V; 1869 1870 // Otherwise the upper bits of LHS are all equal, while RHS has varying 1871 // bits there. Use this to work out the result of the comparison. 1872 if (RExt != CI) { 1873 switch (Pred) { 1874 default: llvm_unreachable("Unknown ICmp predicate!"); 1875 case ICmpInst::ICMP_EQ: 1876 return ConstantInt::getFalse(CI->getContext()); 1877 case ICmpInst::ICMP_NE: 1878 return ConstantInt::getTrue(CI->getContext()); 1879 1880 // If RHS is non-negative then LHS <s RHS. If RHS is negative then 1881 // LHS >s RHS. 1882 case ICmpInst::ICMP_SGT: 1883 case ICmpInst::ICMP_SGE: 1884 return CI->getValue().isNegative() ? 1885 ConstantInt::getTrue(CI->getContext()) : 1886 ConstantInt::getFalse(CI->getContext()); 1887 case ICmpInst::ICMP_SLT: 1888 case ICmpInst::ICMP_SLE: 1889 return CI->getValue().isNegative() ? 1890 ConstantInt::getFalse(CI->getContext()) : 1891 ConstantInt::getTrue(CI->getContext()); 1892 1893 // If LHS is non-negative then LHS <u RHS. If LHS is negative then 1894 // LHS >u RHS. 1895 case ICmpInst::ICMP_UGT: 1896 case ICmpInst::ICMP_UGE: 1897 // Comparison is true iff the LHS <s 0. 1898 if (MaxRecurse) 1899 if (Value *V = SimplifyICmpInst(ICmpInst::ICMP_SLT, SrcOp, 1900 Constant::getNullValue(SrcTy), 1901 TD, TLI, DT, MaxRecurse-1)) 1902 return V; 1903 break; 1904 case ICmpInst::ICMP_ULT: 1905 case ICmpInst::ICMP_ULE: 1906 // Comparison is true iff the LHS >=s 0. 1907 if (MaxRecurse) 1908 if (Value *V = SimplifyICmpInst(ICmpInst::ICMP_SGE, SrcOp, 1909 Constant::getNullValue(SrcTy), 1910 TD, TLI, DT, MaxRecurse-1)) 1911 return V; 1912 break; 1913 } 1914 } 1915 } 1916 } 1917 } 1918 1919 // Special logic for binary operators. 1920 BinaryOperator *LBO = dyn_cast<BinaryOperator>(LHS); 1921 BinaryOperator *RBO = dyn_cast<BinaryOperator>(RHS); 1922 if (MaxRecurse && (LBO || RBO)) { 1923 // Analyze the case when either LHS or RHS is an add instruction. 1924 Value *A = 0, *B = 0, *C = 0, *D = 0; 1925 // LHS = A + B (or A and B are null); RHS = C + D (or C and D are null). 1926 bool NoLHSWrapProblem = false, NoRHSWrapProblem = false; 1927 if (LBO && LBO->getOpcode() == Instruction::Add) { 1928 A = LBO->getOperand(0); B = LBO->getOperand(1); 1929 NoLHSWrapProblem = ICmpInst::isEquality(Pred) || 1930 (CmpInst::isUnsigned(Pred) && LBO->hasNoUnsignedWrap()) || 1931 (CmpInst::isSigned(Pred) && LBO->hasNoSignedWrap()); 1932 } 1933 if (RBO && RBO->getOpcode() == Instruction::Add) { 1934 C = RBO->getOperand(0); D = RBO->getOperand(1); 1935 NoRHSWrapProblem = ICmpInst::isEquality(Pred) || 1936 (CmpInst::isUnsigned(Pred) && RBO->hasNoUnsignedWrap()) || 1937 (CmpInst::isSigned(Pred) && RBO->hasNoSignedWrap()); 1938 } 1939 1940 // icmp (X+Y), X -> icmp Y, 0 for equalities or if there is no overflow. 1941 if ((A == RHS || B == RHS) && NoLHSWrapProblem) 1942 if (Value *V = SimplifyICmpInst(Pred, A == RHS ? B : A, 1943 Constant::getNullValue(RHS->getType()), 1944 TD, TLI, DT, MaxRecurse-1)) 1945 return V; 1946 1947 // icmp X, (X+Y) -> icmp 0, Y for equalities or if there is no overflow. 1948 if ((C == LHS || D == LHS) && NoRHSWrapProblem) 1949 if (Value *V = SimplifyICmpInst(Pred, 1950 Constant::getNullValue(LHS->getType()), 1951 C == LHS ? D : C, TD, TLI, DT, MaxRecurse-1)) 1952 return V; 1953 1954 // icmp (X+Y), (X+Z) -> icmp Y,Z for equalities or if there is no overflow. 1955 if (A && C && (A == C || A == D || B == C || B == D) && 1956 NoLHSWrapProblem && NoRHSWrapProblem) { 1957 // Determine Y and Z in the form icmp (X+Y), (X+Z). 1958 Value *Y = (A == C || A == D) ? B : A; 1959 Value *Z = (C == A || C == B) ? D : C; 1960 if (Value *V = SimplifyICmpInst(Pred, Y, Z, TD, TLI, DT, MaxRecurse-1)) 1961 return V; 1962 } 1963 } 1964 1965 if (LBO && match(LBO, m_URem(m_Value(), m_Specific(RHS)))) { 1966 bool KnownNonNegative, KnownNegative; 1967 switch (Pred) { 1968 default: 1969 break; 1970 case ICmpInst::ICMP_SGT: 1971 case ICmpInst::ICMP_SGE: 1972 ComputeSignBit(LHS, KnownNonNegative, KnownNegative, TD); 1973 if (!KnownNonNegative) 1974 break; 1975 // fall-through 1976 case ICmpInst::ICMP_EQ: 1977 case ICmpInst::ICMP_UGT: 1978 case ICmpInst::ICMP_UGE: 1979 return getFalse(ITy); 1980 case ICmpInst::ICMP_SLT: 1981 case ICmpInst::ICMP_SLE: 1982 ComputeSignBit(LHS, KnownNonNegative, KnownNegative, TD); 1983 if (!KnownNonNegative) 1984 break; 1985 // fall-through 1986 case ICmpInst::ICMP_NE: 1987 case ICmpInst::ICMP_ULT: 1988 case ICmpInst::ICMP_ULE: 1989 return getTrue(ITy); 1990 } 1991 } 1992 if (RBO && match(RBO, m_URem(m_Value(), m_Specific(LHS)))) { 1993 bool KnownNonNegative, KnownNegative; 1994 switch (Pred) { 1995 default: 1996 break; 1997 case ICmpInst::ICMP_SGT: 1998 case ICmpInst::ICMP_SGE: 1999 ComputeSignBit(RHS, KnownNonNegative, KnownNegative, TD); 2000 if (!KnownNonNegative) 2001 break; 2002 // fall-through 2003 case ICmpInst::ICMP_NE: 2004 case ICmpInst::ICMP_UGT: 2005 case ICmpInst::ICMP_UGE: 2006 return getTrue(ITy); 2007 case ICmpInst::ICMP_SLT: 2008 case ICmpInst::ICMP_SLE: 2009 ComputeSignBit(RHS, KnownNonNegative, KnownNegative, TD); 2010 if (!KnownNonNegative) 2011 break; 2012 // fall-through 2013 case ICmpInst::ICMP_EQ: 2014 case ICmpInst::ICMP_ULT: 2015 case ICmpInst::ICMP_ULE: 2016 return getFalse(ITy); 2017 } 2018 } 2019 2020 // x udiv y <=u x. 2021 if (LBO && match(LBO, m_UDiv(m_Specific(RHS), m_Value()))) { 2022 // icmp pred (X /u Y), X 2023 if (Pred == ICmpInst::ICMP_UGT) 2024 return getFalse(ITy); 2025 if (Pred == ICmpInst::ICMP_ULE) 2026 return getTrue(ITy); 2027 } 2028 2029 if (MaxRecurse && LBO && RBO && LBO->getOpcode() == RBO->getOpcode() && 2030 LBO->getOperand(1) == RBO->getOperand(1)) { 2031 switch (LBO->getOpcode()) { 2032 default: break; 2033 case Instruction::UDiv: 2034 case Instruction::LShr: 2035 if (ICmpInst::isSigned(Pred)) 2036 break; 2037 // fall-through 2038 case Instruction::SDiv: 2039 case Instruction::AShr: 2040 if (!LBO->isExact() || !RBO->isExact()) 2041 break; 2042 if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0), 2043 RBO->getOperand(0), TD, TLI, DT, MaxRecurse-1)) 2044 return V; 2045 break; 2046 case Instruction::Shl: { 2047 bool NUW = LBO->hasNoUnsignedWrap() && RBO->hasNoUnsignedWrap(); 2048 bool NSW = LBO->hasNoSignedWrap() && RBO->hasNoSignedWrap(); 2049 if (!NUW && !NSW) 2050 break; 2051 if (!NSW && ICmpInst::isSigned(Pred)) 2052 break; 2053 if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0), 2054 RBO->getOperand(0), TD, TLI, DT, MaxRecurse-1)) 2055 return V; 2056 break; 2057 } 2058 } 2059 } 2060 2061 // Simplify comparisons involving max/min. 2062 Value *A, *B; 2063 CmpInst::Predicate P = CmpInst::BAD_ICMP_PREDICATE; 2064 CmpInst::Predicate EqP; // Chosen so that "A == max/min(A,B)" iff "A EqP B". 2065 2066 // Signed variants on "max(a,b)>=a -> true". 2067 if (match(LHS, m_SMax(m_Value(A), m_Value(B))) && (A == RHS || B == RHS)) { 2068 if (A != RHS) std::swap(A, B); // smax(A, B) pred A. 2069 EqP = CmpInst::ICMP_SGE; // "A == smax(A, B)" iff "A sge B". 2070 // We analyze this as smax(A, B) pred A. 2071 P = Pred; 2072 } else if (match(RHS, m_SMax(m_Value(A), m_Value(B))) && 2073 (A == LHS || B == LHS)) { 2074 if (A != LHS) std::swap(A, B); // A pred smax(A, B). 2075 EqP = CmpInst::ICMP_SGE; // "A == smax(A, B)" iff "A sge B". 2076 // We analyze this as smax(A, B) swapped-pred A. 2077 P = CmpInst::getSwappedPredicate(Pred); 2078 } else if (match(LHS, m_SMin(m_Value(A), m_Value(B))) && 2079 (A == RHS || B == RHS)) { 2080 if (A != RHS) std::swap(A, B); // smin(A, B) pred A. 2081 EqP = CmpInst::ICMP_SLE; // "A == smin(A, B)" iff "A sle B". 2082 // We analyze this as smax(-A, -B) swapped-pred -A. 2083 // Note that we do not need to actually form -A or -B thanks to EqP. 2084 P = CmpInst::getSwappedPredicate(Pred); 2085 } else if (match(RHS, m_SMin(m_Value(A), m_Value(B))) && 2086 (A == LHS || B == LHS)) { 2087 if (A != LHS) std::swap(A, B); // A pred smin(A, B). 2088 EqP = CmpInst::ICMP_SLE; // "A == smin(A, B)" iff "A sle B". 2089 // We analyze this as smax(-A, -B) pred -A. 2090 // Note that we do not need to actually form -A or -B thanks to EqP. 2091 P = Pred; 2092 } 2093 if (P != CmpInst::BAD_ICMP_PREDICATE) { 2094 // Cases correspond to "max(A, B) p A". 2095 switch (P) { 2096 default: 2097 break; 2098 case CmpInst::ICMP_EQ: 2099 case CmpInst::ICMP_SLE: 2100 // Equivalent to "A EqP B". This may be the same as the condition tested 2101 // in the max/min; if so, we can just return that. 2102 if (Value *V = ExtractEquivalentCondition(LHS, EqP, A, B)) 2103 return V; 2104 if (Value *V = ExtractEquivalentCondition(RHS, EqP, A, B)) 2105 return V; 2106 // Otherwise, see if "A EqP B" simplifies. 2107 if (MaxRecurse) 2108 if (Value *V = SimplifyICmpInst(EqP, A, B, TD, TLI, DT, MaxRecurse-1)) 2109 return V; 2110 break; 2111 case CmpInst::ICMP_NE: 2112 case CmpInst::ICMP_SGT: { 2113 CmpInst::Predicate InvEqP = CmpInst::getInversePredicate(EqP); 2114 // Equivalent to "A InvEqP B". This may be the same as the condition 2115 // tested in the max/min; if so, we can just return that. 2116 if (Value *V = ExtractEquivalentCondition(LHS, InvEqP, A, B)) 2117 return V; 2118 if (Value *V = ExtractEquivalentCondition(RHS, InvEqP, A, B)) 2119 return V; 2120 // Otherwise, see if "A InvEqP B" simplifies. 2121 if (MaxRecurse) 2122 if (Value *V = SimplifyICmpInst(InvEqP, A, B, TD, TLI, DT, MaxRecurse-1)) 2123 return V; 2124 break; 2125 } 2126 case CmpInst::ICMP_SGE: 2127 // Always true. 2128 return getTrue(ITy); 2129 case CmpInst::ICMP_SLT: 2130 // Always false. 2131 return getFalse(ITy); 2132 } 2133 } 2134 2135 // Unsigned variants on "max(a,b)>=a -> true". 2136 P = CmpInst::BAD_ICMP_PREDICATE; 2137 if (match(LHS, m_UMax(m_Value(A), m_Value(B))) && (A == RHS || B == RHS)) { 2138 if (A != RHS) std::swap(A, B); // umax(A, B) pred A. 2139 EqP = CmpInst::ICMP_UGE; // "A == umax(A, B)" iff "A uge B". 2140 // We analyze this as umax(A, B) pred A. 2141 P = Pred; 2142 } else if (match(RHS, m_UMax(m_Value(A), m_Value(B))) && 2143 (A == LHS || B == LHS)) { 2144 if (A != LHS) std::swap(A, B); // A pred umax(A, B). 2145 EqP = CmpInst::ICMP_UGE; // "A == umax(A, B)" iff "A uge B". 2146 // We analyze this as umax(A, B) swapped-pred A. 2147 P = CmpInst::getSwappedPredicate(Pred); 2148 } else if (match(LHS, m_UMin(m_Value(A), m_Value(B))) && 2149 (A == RHS || B == RHS)) { 2150 if (A != RHS) std::swap(A, B); // umin(A, B) pred A. 2151 EqP = CmpInst::ICMP_ULE; // "A == umin(A, B)" iff "A ule B". 2152 // We analyze this as umax(-A, -B) swapped-pred -A. 2153 // Note that we do not need to actually form -A or -B thanks to EqP. 2154 P = CmpInst::getSwappedPredicate(Pred); 2155 } else if (match(RHS, m_UMin(m_Value(A), m_Value(B))) && 2156 (A == LHS || B == LHS)) { 2157 if (A != LHS) std::swap(A, B); // A pred umin(A, B). 2158 EqP = CmpInst::ICMP_ULE; // "A == umin(A, B)" iff "A ule B". 2159 // We analyze this as umax(-A, -B) pred -A. 2160 // Note that we do not need to actually form -A or -B thanks to EqP. 2161 P = Pred; 2162 } 2163 if (P != CmpInst::BAD_ICMP_PREDICATE) { 2164 // Cases correspond to "max(A, B) p A". 2165 switch (P) { 2166 default: 2167 break; 2168 case CmpInst::ICMP_EQ: 2169 case CmpInst::ICMP_ULE: 2170 // Equivalent to "A EqP B". This may be the same as the condition tested 2171 // in the max/min; if so, we can just return that. 2172 if (Value *V = ExtractEquivalentCondition(LHS, EqP, A, B)) 2173 return V; 2174 if (Value *V = ExtractEquivalentCondition(RHS, EqP, A, B)) 2175 return V; 2176 // Otherwise, see if "A EqP B" simplifies. 2177 if (MaxRecurse) 2178 if (Value *V = SimplifyICmpInst(EqP, A, B, TD, TLI, DT, MaxRecurse-1)) 2179 return V; 2180 break; 2181 case CmpInst::ICMP_NE: 2182 case CmpInst::ICMP_UGT: { 2183 CmpInst::Predicate InvEqP = CmpInst::getInversePredicate(EqP); 2184 // Equivalent to "A InvEqP B". This may be the same as the condition 2185 // tested in the max/min; if so, we can just return that. 2186 if (Value *V = ExtractEquivalentCondition(LHS, InvEqP, A, B)) 2187 return V; 2188 if (Value *V = ExtractEquivalentCondition(RHS, InvEqP, A, B)) 2189 return V; 2190 // Otherwise, see if "A InvEqP B" simplifies. 2191 if (MaxRecurse) 2192 if (Value *V = SimplifyICmpInst(InvEqP, A, B, TD, TLI, DT, MaxRecurse-1)) 2193 return V; 2194 break; 2195 } 2196 case CmpInst::ICMP_UGE: 2197 // Always true. 2198 return getTrue(ITy); 2199 case CmpInst::ICMP_ULT: 2200 // Always false. 2201 return getFalse(ITy); 2202 } 2203 } 2204 2205 // Variants on "max(x,y) >= min(x,z)". 2206 Value *C, *D; 2207 if (match(LHS, m_SMax(m_Value(A), m_Value(B))) && 2208 match(RHS, m_SMin(m_Value(C), m_Value(D))) && 2209 (A == C || A == D || B == C || B == D)) { 2210 // max(x, ?) pred min(x, ?). 2211 if (Pred == CmpInst::ICMP_SGE) 2212 // Always true. 2213 return getTrue(ITy); 2214 if (Pred == CmpInst::ICMP_SLT) 2215 // Always false. 2216 return getFalse(ITy); 2217 } else if (match(LHS, m_SMin(m_Value(A), m_Value(B))) && 2218 match(RHS, m_SMax(m_Value(C), m_Value(D))) && 2219 (A == C || A == D || B == C || B == D)) { 2220 // min(x, ?) pred max(x, ?). 2221 if (Pred == CmpInst::ICMP_SLE) 2222 // Always true. 2223 return getTrue(ITy); 2224 if (Pred == CmpInst::ICMP_SGT) 2225 // Always false. 2226 return getFalse(ITy); 2227 } else if (match(LHS, m_UMax(m_Value(A), m_Value(B))) && 2228 match(RHS, m_UMin(m_Value(C), m_Value(D))) && 2229 (A == C || A == D || B == C || B == D)) { 2230 // max(x, ?) pred min(x, ?). 2231 if (Pred == CmpInst::ICMP_UGE) 2232 // Always true. 2233 return getTrue(ITy); 2234 if (Pred == CmpInst::ICMP_ULT) 2235 // Always false. 2236 return getFalse(ITy); 2237 } else if (match(LHS, m_UMin(m_Value(A), m_Value(B))) && 2238 match(RHS, m_UMax(m_Value(C), m_Value(D))) && 2239 (A == C || A == D || B == C || B == D)) { 2240 // min(x, ?) pred max(x, ?). 2241 if (Pred == CmpInst::ICMP_ULE) 2242 // Always true. 2243 return getTrue(ITy); 2244 if (Pred == CmpInst::ICMP_UGT) 2245 // Always false. 2246 return getFalse(ITy); 2247 } 2248 2249 // Simplify comparisons of GEPs. 2250 if (GetElementPtrInst *GLHS = dyn_cast<GetElementPtrInst>(LHS)) { 2251 if (GEPOperator *GRHS = dyn_cast<GEPOperator>(RHS)) { 2252 if (GLHS->getPointerOperand() == GRHS->getPointerOperand() && 2253 GLHS->hasAllConstantIndices() && GRHS->hasAllConstantIndices() && 2254 (ICmpInst::isEquality(Pred) || 2255 (GLHS->isInBounds() && GRHS->isInBounds() && 2256 Pred == ICmpInst::getSignedPredicate(Pred)))) { 2257 // The bases are equal and the indices are constant. Build a constant 2258 // expression GEP with the same indices and a null base pointer to see 2259 // what constant folding can make out of it. 2260 Constant *Null = Constant::getNullValue(GLHS->getPointerOperandType()); 2261 SmallVector<Value *, 4> IndicesLHS(GLHS->idx_begin(), GLHS->idx_end()); 2262 Constant *NewLHS = ConstantExpr::getGetElementPtr(Null, IndicesLHS); 2263 2264 SmallVector<Value *, 4> IndicesRHS(GRHS->idx_begin(), GRHS->idx_end()); 2265 Constant *NewRHS = ConstantExpr::getGetElementPtr(Null, IndicesRHS); 2266 return ConstantExpr::getICmp(Pred, NewLHS, NewRHS); 2267 } 2268 } 2269 } 2270 2271 // If the comparison is with the result of a select instruction, check whether 2272 // comparing with either branch of the select always yields the same value. 2273 if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS)) 2274 if (Value *V = ThreadCmpOverSelect(Pred, LHS, RHS, TD, TLI, DT, MaxRecurse)) 2275 return V; 2276 2277 // If the comparison is with the result of a phi instruction, check whether 2278 // doing the compare with each incoming phi value yields a common result. 2279 if (isa<PHINode>(LHS) || isa<PHINode>(RHS)) 2280 if (Value *V = ThreadCmpOverPHI(Pred, LHS, RHS, TD, TLI, DT, MaxRecurse)) 2281 return V; 2282 2283 return 0; 2284 } 2285 2286 Value *llvm::SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS, 2287 const TargetData *TD, 2288 const TargetLibraryInfo *TLI, 2289 const DominatorTree *DT) { 2290 return ::SimplifyICmpInst(Predicate, LHS, RHS, TD, TLI, DT, RecursionLimit); 2291 } 2292 2293 /// SimplifyFCmpInst - Given operands for an FCmpInst, see if we can 2294 /// fold the result. If not, this returns null. 2295 static Value *SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS, 2296 const TargetData *TD, 2297 const TargetLibraryInfo *TLI, 2298 const DominatorTree *DT, 2299 unsigned MaxRecurse) { 2300 CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate; 2301 assert(CmpInst::isFPPredicate(Pred) && "Not an FP compare!"); 2302 2303 if (Constant *CLHS = dyn_cast<Constant>(LHS)) { 2304 if (Constant *CRHS = dyn_cast<Constant>(RHS)) 2305 return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, TD, TLI); 2306 2307 // If we have a constant, make sure it is on the RHS. 2308 std::swap(LHS, RHS); 2309 Pred = CmpInst::getSwappedPredicate(Pred); 2310 } 2311 2312 // Fold trivial predicates. 2313 if (Pred == FCmpInst::FCMP_FALSE) 2314 return ConstantInt::get(GetCompareTy(LHS), 0); 2315 if (Pred == FCmpInst::FCMP_TRUE) 2316 return ConstantInt::get(GetCompareTy(LHS), 1); 2317 2318 if (isa<UndefValue>(RHS)) // fcmp pred X, undef -> undef 2319 return UndefValue::get(GetCompareTy(LHS)); 2320 2321 // fcmp x,x -> true/false. Not all compares are foldable. 2322 if (LHS == RHS) { 2323 if (CmpInst::isTrueWhenEqual(Pred)) 2324 return ConstantInt::get(GetCompareTy(LHS), 1); 2325 if (CmpInst::isFalseWhenEqual(Pred)) 2326 return ConstantInt::get(GetCompareTy(LHS), 0); 2327 } 2328 2329 // Handle fcmp with constant RHS 2330 if (Constant *RHSC = dyn_cast<Constant>(RHS)) { 2331 // If the constant is a nan, see if we can fold the comparison based on it. 2332 if (ConstantFP *CFP = dyn_cast<ConstantFP>(RHSC)) { 2333 if (CFP->getValueAPF().isNaN()) { 2334 if (FCmpInst::isOrdered(Pred)) // True "if ordered and foo" 2335 return ConstantInt::getFalse(CFP->getContext()); 2336 assert(FCmpInst::isUnordered(Pred) && 2337 "Comparison must be either ordered or unordered!"); 2338 // True if unordered. 2339 return ConstantInt::getTrue(CFP->getContext()); 2340 } 2341 // Check whether the constant is an infinity. 2342 if (CFP->getValueAPF().isInfinity()) { 2343 if (CFP->getValueAPF().isNegative()) { 2344 switch (Pred) { 2345 case FCmpInst::FCMP_OLT: 2346 // No value is ordered and less than negative infinity. 2347 return ConstantInt::getFalse(CFP->getContext()); 2348 case FCmpInst::FCMP_UGE: 2349 // All values are unordered with or at least negative infinity. 2350 return ConstantInt::getTrue(CFP->getContext()); 2351 default: 2352 break; 2353 } 2354 } else { 2355 switch (Pred) { 2356 case FCmpInst::FCMP_OGT: 2357 // No value is ordered and greater than infinity. 2358 return ConstantInt::getFalse(CFP->getContext()); 2359 case FCmpInst::FCMP_ULE: 2360 // All values are unordered with and at most infinity. 2361 return ConstantInt::getTrue(CFP->getContext()); 2362 default: 2363 break; 2364 } 2365 } 2366 } 2367 } 2368 } 2369 2370 // If the comparison is with the result of a select instruction, check whether 2371 // comparing with either branch of the select always yields the same value. 2372 if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS)) 2373 if (Value *V = ThreadCmpOverSelect(Pred, LHS, RHS, TD, TLI, DT, MaxRecurse)) 2374 return V; 2375 2376 // If the comparison is with the result of a phi instruction, check whether 2377 // doing the compare with each incoming phi value yields a common result. 2378 if (isa<PHINode>(LHS) || isa<PHINode>(RHS)) 2379 if (Value *V = ThreadCmpOverPHI(Pred, LHS, RHS, TD, TLI, DT, MaxRecurse)) 2380 return V; 2381 2382 return 0; 2383 } 2384 2385 Value *llvm::SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS, 2386 const TargetData *TD, 2387 const TargetLibraryInfo *TLI, 2388 const DominatorTree *DT) { 2389 return ::SimplifyFCmpInst(Predicate, LHS, RHS, TD, TLI, DT, RecursionLimit); 2390 } 2391 2392 /// SimplifySelectInst - Given operands for a SelectInst, see if we can fold 2393 /// the result. If not, this returns null. 2394 Value *llvm::SimplifySelectInst(Value *CondVal, Value *TrueVal, Value *FalseVal, 2395 const TargetData *TD, const DominatorTree *) { 2396 // select true, X, Y -> X 2397 // select false, X, Y -> Y 2398 if (ConstantInt *CB = dyn_cast<ConstantInt>(CondVal)) 2399 return CB->getZExtValue() ? TrueVal : FalseVal; 2400 2401 // select C, X, X -> X 2402 if (TrueVal == FalseVal) 2403 return TrueVal; 2404 2405 if (isa<UndefValue>(CondVal)) { // select undef, X, Y -> X or Y 2406 if (isa<Constant>(TrueVal)) 2407 return TrueVal; 2408 return FalseVal; 2409 } 2410 if (isa<UndefValue>(TrueVal)) // select C, undef, X -> X 2411 return FalseVal; 2412 if (isa<UndefValue>(FalseVal)) // select C, X, undef -> X 2413 return TrueVal; 2414 2415 return 0; 2416 } 2417 2418 /// SimplifyGEPInst - Given operands for an GetElementPtrInst, see if we can 2419 /// fold the result. If not, this returns null. 2420 Value *llvm::SimplifyGEPInst(ArrayRef<Value *> Ops, const TargetData *TD, 2421 const DominatorTree *) { 2422 // The type of the GEP pointer operand. 2423 PointerType *PtrTy = dyn_cast<PointerType>(Ops[0]->getType()); 2424 // The GEP pointer operand is not a pointer, it's a vector of pointers. 2425 if (!PtrTy) 2426 return 0; 2427 2428 // getelementptr P -> P. 2429 if (Ops.size() == 1) 2430 return Ops[0]; 2431 2432 if (isa<UndefValue>(Ops[0])) { 2433 // Compute the (pointer) type returned by the GEP instruction. 2434 Type *LastType = GetElementPtrInst::getIndexedType(PtrTy, Ops.slice(1)); 2435 Type *GEPTy = PointerType::get(LastType, PtrTy->getAddressSpace()); 2436 return UndefValue::get(GEPTy); 2437 } 2438 2439 if (Ops.size() == 2) { 2440 // getelementptr P, 0 -> P. 2441 if (ConstantInt *C = dyn_cast<ConstantInt>(Ops[1])) 2442 if (C->isZero()) 2443 return Ops[0]; 2444 // getelementptr P, N -> P if P points to a type of zero size. 2445 if (TD) { 2446 Type *Ty = PtrTy->getElementType(); 2447 if (Ty->isSized() && TD->getTypeAllocSize(Ty) == 0) 2448 return Ops[0]; 2449 } 2450 } 2451 2452 // Check to see if this is constant foldable. 2453 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2454 if (!isa<Constant>(Ops[i])) 2455 return 0; 2456 2457 return ConstantExpr::getGetElementPtr(cast<Constant>(Ops[0]), Ops.slice(1)); 2458 } 2459 2460 /// SimplifyInsertValueInst - Given operands for an InsertValueInst, see if we 2461 /// can fold the result. If not, this returns null. 2462 Value *llvm::SimplifyInsertValueInst(Value *Agg, Value *Val, 2463 ArrayRef<unsigned> Idxs, 2464 const TargetData *, 2465 const DominatorTree *) { 2466 if (Constant *CAgg = dyn_cast<Constant>(Agg)) 2467 if (Constant *CVal = dyn_cast<Constant>(Val)) 2468 return ConstantFoldInsertValueInstruction(CAgg, CVal, Idxs); 2469 2470 // insertvalue x, undef, n -> x 2471 if (match(Val, m_Undef())) 2472 return Agg; 2473 2474 // insertvalue x, (extractvalue y, n), n 2475 if (ExtractValueInst *EV = dyn_cast<ExtractValueInst>(Val)) 2476 if (EV->getAggregateOperand()->getType() == Agg->getType() && 2477 EV->getIndices() == Idxs) { 2478 // insertvalue undef, (extractvalue y, n), n -> y 2479 if (match(Agg, m_Undef())) 2480 return EV->getAggregateOperand(); 2481 2482 // insertvalue y, (extractvalue y, n), n -> y 2483 if (Agg == EV->getAggregateOperand()) 2484 return Agg; 2485 } 2486 2487 return 0; 2488 } 2489 2490 /// SimplifyPHINode - See if we can fold the given phi. If not, returns null. 2491 static Value *SimplifyPHINode(PHINode *PN, const DominatorTree *DT) { 2492 // If all of the PHI's incoming values are the same then replace the PHI node 2493 // with the common value. 2494 Value *CommonValue = 0; 2495 bool HasUndefInput = false; 2496 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 2497 Value *Incoming = PN->getIncomingValue(i); 2498 // If the incoming value is the phi node itself, it can safely be skipped. 2499 if (Incoming == PN) continue; 2500 if (isa<UndefValue>(Incoming)) { 2501 // Remember that we saw an undef value, but otherwise ignore them. 2502 HasUndefInput = true; 2503 continue; 2504 } 2505 if (CommonValue && Incoming != CommonValue) 2506 return 0; // Not the same, bail out. 2507 CommonValue = Incoming; 2508 } 2509 2510 // If CommonValue is null then all of the incoming values were either undef or 2511 // equal to the phi node itself. 2512 if (!CommonValue) 2513 return UndefValue::get(PN->getType()); 2514 2515 // If we have a PHI node like phi(X, undef, X), where X is defined by some 2516 // instruction, we cannot return X as the result of the PHI node unless it 2517 // dominates the PHI block. 2518 if (HasUndefInput) 2519 return ValueDominatesPHI(CommonValue, PN, DT) ? CommonValue : 0; 2520 2521 return CommonValue; 2522 } 2523 2524 //=== Helper functions for higher up the class hierarchy. 2525 2526 /// SimplifyBinOp - Given operands for a BinaryOperator, see if we can 2527 /// fold the result. If not, this returns null. 2528 static Value *SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS, 2529 const TargetData *TD, 2530 const TargetLibraryInfo *TLI, 2531 const DominatorTree *DT, 2532 unsigned MaxRecurse) { 2533 switch (Opcode) { 2534 case Instruction::Add: 2535 return SimplifyAddInst(LHS, RHS, /*isNSW*/false, /*isNUW*/false, 2536 TD, TLI, DT, MaxRecurse); 2537 case Instruction::Sub: 2538 return SimplifySubInst(LHS, RHS, /*isNSW*/false, /*isNUW*/false, 2539 TD, TLI, DT, MaxRecurse); 2540 case Instruction::Mul: return SimplifyMulInst (LHS, RHS, TD, TLI, DT, 2541 MaxRecurse); 2542 case Instruction::SDiv: return SimplifySDivInst(LHS, RHS, TD, TLI, DT, 2543 MaxRecurse); 2544 case Instruction::UDiv: return SimplifyUDivInst(LHS, RHS, TD, TLI, DT, 2545 MaxRecurse); 2546 case Instruction::FDiv: return SimplifyFDivInst(LHS, RHS, TD, TLI, DT, 2547 MaxRecurse); 2548 case Instruction::SRem: return SimplifySRemInst(LHS, RHS, TD, TLI, DT, 2549 MaxRecurse); 2550 case Instruction::URem: return SimplifyURemInst(LHS, RHS, TD, TLI, DT, 2551 MaxRecurse); 2552 case Instruction::FRem: return SimplifyFRemInst(LHS, RHS, TD, TLI, DT, 2553 MaxRecurse); 2554 case Instruction::Shl: 2555 return SimplifyShlInst(LHS, RHS, /*isNSW*/false, /*isNUW*/false, 2556 TD, TLI, DT, MaxRecurse); 2557 case Instruction::LShr: 2558 return SimplifyLShrInst(LHS, RHS, /*isExact*/false, TD, TLI, DT, 2559 MaxRecurse); 2560 case Instruction::AShr: 2561 return SimplifyAShrInst(LHS, RHS, /*isExact*/false, TD, TLI, DT, 2562 MaxRecurse); 2563 case Instruction::And: return SimplifyAndInst(LHS, RHS, TD, TLI, DT, 2564 MaxRecurse); 2565 case Instruction::Or: return SimplifyOrInst (LHS, RHS, TD, TLI, DT, 2566 MaxRecurse); 2567 case Instruction::Xor: return SimplifyXorInst(LHS, RHS, TD, TLI, DT, 2568 MaxRecurse); 2569 default: 2570 if (Constant *CLHS = dyn_cast<Constant>(LHS)) 2571 if (Constant *CRHS = dyn_cast<Constant>(RHS)) { 2572 Constant *COps[] = {CLHS, CRHS}; 2573 return ConstantFoldInstOperands(Opcode, LHS->getType(), COps, TD, TLI); 2574 } 2575 2576 // If the operation is associative, try some generic simplifications. 2577 if (Instruction::isAssociative(Opcode)) 2578 if (Value *V = SimplifyAssociativeBinOp(Opcode, LHS, RHS, TD, TLI, DT, 2579 MaxRecurse)) 2580 return V; 2581 2582 // If the operation is with the result of a select instruction, check whether 2583 // operating on either branch of the select always yields the same value. 2584 if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS)) 2585 if (Value *V = ThreadBinOpOverSelect(Opcode, LHS, RHS, TD, TLI, DT, 2586 MaxRecurse)) 2587 return V; 2588 2589 // If the operation is with the result of a phi instruction, check whether 2590 // operating on all incoming values of the phi always yields the same value. 2591 if (isa<PHINode>(LHS) || isa<PHINode>(RHS)) 2592 if (Value *V = ThreadBinOpOverPHI(Opcode, LHS, RHS, TD, TLI, DT, 2593 MaxRecurse)) 2594 return V; 2595 2596 return 0; 2597 } 2598 } 2599 2600 Value *llvm::SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS, 2601 const TargetData *TD, const TargetLibraryInfo *TLI, 2602 const DominatorTree *DT) { 2603 return ::SimplifyBinOp(Opcode, LHS, RHS, TD, TLI, DT, RecursionLimit); 2604 } 2605 2606 /// SimplifyCmpInst - Given operands for a CmpInst, see if we can 2607 /// fold the result. 2608 static Value *SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS, 2609 const TargetData *TD, 2610 const TargetLibraryInfo *TLI, 2611 const DominatorTree *DT, 2612 unsigned MaxRecurse) { 2613 if (CmpInst::isIntPredicate((CmpInst::Predicate)Predicate)) 2614 return SimplifyICmpInst(Predicate, LHS, RHS, TD, TLI, DT, MaxRecurse); 2615 return SimplifyFCmpInst(Predicate, LHS, RHS, TD, TLI, DT, MaxRecurse); 2616 } 2617 2618 Value *llvm::SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS, 2619 const TargetData *TD, const TargetLibraryInfo *TLI, 2620 const DominatorTree *DT) { 2621 return ::SimplifyCmpInst(Predicate, LHS, RHS, TD, TLI, DT, RecursionLimit); 2622 } 2623 2624 static Value *SimplifyCallInst(CallInst *CI) { 2625 // call undef -> undef 2626 if (isa<UndefValue>(CI->getCalledValue())) 2627 return UndefValue::get(CI->getType()); 2628 2629 return 0; 2630 } 2631 2632 /// SimplifyInstruction - See if we can compute a simplified version of this 2633 /// instruction. If not, this returns null. 2634 Value *llvm::SimplifyInstruction(Instruction *I, const TargetData *TD, 2635 const TargetLibraryInfo *TLI, 2636 const DominatorTree *DT) { 2637 Value *Result; 2638 2639 switch (I->getOpcode()) { 2640 default: 2641 Result = ConstantFoldInstruction(I, TD, TLI); 2642 break; 2643 case Instruction::Add: 2644 Result = SimplifyAddInst(I->getOperand(0), I->getOperand(1), 2645 cast<BinaryOperator>(I)->hasNoSignedWrap(), 2646 cast<BinaryOperator>(I)->hasNoUnsignedWrap(), 2647 TD, TLI, DT); 2648 break; 2649 case Instruction::Sub: 2650 Result = SimplifySubInst(I->getOperand(0), I->getOperand(1), 2651 cast<BinaryOperator>(I)->hasNoSignedWrap(), 2652 cast<BinaryOperator>(I)->hasNoUnsignedWrap(), 2653 TD, TLI, DT); 2654 break; 2655 case Instruction::Mul: 2656 Result = SimplifyMulInst(I->getOperand(0), I->getOperand(1), TD, TLI, DT); 2657 break; 2658 case Instruction::SDiv: 2659 Result = SimplifySDivInst(I->getOperand(0), I->getOperand(1), TD, TLI, DT); 2660 break; 2661 case Instruction::UDiv: 2662 Result = SimplifyUDivInst(I->getOperand(0), I->getOperand(1), TD, TLI, DT); 2663 break; 2664 case Instruction::FDiv: 2665 Result = SimplifyFDivInst(I->getOperand(0), I->getOperand(1), TD, TLI, DT); 2666 break; 2667 case Instruction::SRem: 2668 Result = SimplifySRemInst(I->getOperand(0), I->getOperand(1), TD, TLI, DT); 2669 break; 2670 case Instruction::URem: 2671 Result = SimplifyURemInst(I->getOperand(0), I->getOperand(1), TD, TLI, DT); 2672 break; 2673 case Instruction::FRem: 2674 Result = SimplifyFRemInst(I->getOperand(0), I->getOperand(1), TD, TLI, DT); 2675 break; 2676 case Instruction::Shl: 2677 Result = SimplifyShlInst(I->getOperand(0), I->getOperand(1), 2678 cast<BinaryOperator>(I)->hasNoSignedWrap(), 2679 cast<BinaryOperator>(I)->hasNoUnsignedWrap(), 2680 TD, TLI, DT); 2681 break; 2682 case Instruction::LShr: 2683 Result = SimplifyLShrInst(I->getOperand(0), I->getOperand(1), 2684 cast<BinaryOperator>(I)->isExact(), 2685 TD, TLI, DT); 2686 break; 2687 case Instruction::AShr: 2688 Result = SimplifyAShrInst(I->getOperand(0), I->getOperand(1), 2689 cast<BinaryOperator>(I)->isExact(), 2690 TD, TLI, DT); 2691 break; 2692 case Instruction::And: 2693 Result = SimplifyAndInst(I->getOperand(0), I->getOperand(1), TD, TLI, DT); 2694 break; 2695 case Instruction::Or: 2696 Result = SimplifyOrInst(I->getOperand(0), I->getOperand(1), TD, TLI, DT); 2697 break; 2698 case Instruction::Xor: 2699 Result = SimplifyXorInst(I->getOperand(0), I->getOperand(1), TD, TLI, DT); 2700 break; 2701 case Instruction::ICmp: 2702 Result = SimplifyICmpInst(cast<ICmpInst>(I)->getPredicate(), 2703 I->getOperand(0), I->getOperand(1), TD, TLI, DT); 2704 break; 2705 case Instruction::FCmp: 2706 Result = SimplifyFCmpInst(cast<FCmpInst>(I)->getPredicate(), 2707 I->getOperand(0), I->getOperand(1), TD, TLI, DT); 2708 break; 2709 case Instruction::Select: 2710 Result = SimplifySelectInst(I->getOperand(0), I->getOperand(1), 2711 I->getOperand(2), TD, DT); 2712 break; 2713 case Instruction::GetElementPtr: { 2714 SmallVector<Value*, 8> Ops(I->op_begin(), I->op_end()); 2715 Result = SimplifyGEPInst(Ops, TD, DT); 2716 break; 2717 } 2718 case Instruction::InsertValue: { 2719 InsertValueInst *IV = cast<InsertValueInst>(I); 2720 Result = SimplifyInsertValueInst(IV->getAggregateOperand(), 2721 IV->getInsertedValueOperand(), 2722 IV->getIndices(), TD, DT); 2723 break; 2724 } 2725 case Instruction::PHI: 2726 Result = SimplifyPHINode(cast<PHINode>(I), DT); 2727 break; 2728 case Instruction::Call: 2729 Result = SimplifyCallInst(cast<CallInst>(I)); 2730 break; 2731 } 2732 2733 /// If called on unreachable code, the above logic may report that the 2734 /// instruction simplified to itself. Make life easier for users by 2735 /// detecting that case here, returning a safe value instead. 2736 return Result == I ? UndefValue::get(I->getType()) : Result; 2737 } 2738 2739 /// ReplaceAndSimplifyAllUses - Perform From->replaceAllUsesWith(To) and then 2740 /// delete the From instruction. In addition to a basic RAUW, this does a 2741 /// recursive simplification of the newly formed instructions. This catches 2742 /// things where one simplification exposes other opportunities. This only 2743 /// simplifies and deletes scalar operations, it does not change the CFG. 2744 /// 2745 void llvm::ReplaceAndSimplifyAllUses(Instruction *From, Value *To, 2746 const TargetData *TD, 2747 const TargetLibraryInfo *TLI, 2748 const DominatorTree *DT) { 2749 assert(From != To && "ReplaceAndSimplifyAllUses(X,X) is not valid!"); 2750 2751 // FromHandle/ToHandle - This keeps a WeakVH on the from/to values so that 2752 // we can know if it gets deleted out from under us or replaced in a 2753 // recursive simplification. 2754 WeakVH FromHandle(From); 2755 WeakVH ToHandle(To); 2756 2757 while (!From->use_empty()) { 2758 // Update the instruction to use the new value. 2759 Use &TheUse = From->use_begin().getUse(); 2760 Instruction *User = cast<Instruction>(TheUse.getUser()); 2761 TheUse = To; 2762 2763 // Check to see if the instruction can be folded due to the operand 2764 // replacement. For example changing (or X, Y) into (or X, -1) can replace 2765 // the 'or' with -1. 2766 Value *SimplifiedVal; 2767 { 2768 // Sanity check to make sure 'User' doesn't dangle across 2769 // SimplifyInstruction. 2770 AssertingVH<> UserHandle(User); 2771 2772 SimplifiedVal = SimplifyInstruction(User, TD, TLI, DT); 2773 if (SimplifiedVal == 0) continue; 2774 } 2775 2776 // Recursively simplify this user to the new value. 2777 ReplaceAndSimplifyAllUses(User, SimplifiedVal, TD, TLI, DT); 2778 From = dyn_cast_or_null<Instruction>((Value*)FromHandle); 2779 To = ToHandle; 2780 2781 assert(ToHandle && "To value deleted by recursive simplification?"); 2782 2783 // If the recursive simplification ended up revisiting and deleting 2784 // 'From' then we're done. 2785 if (From == 0) 2786 return; 2787 } 2788 2789 // If 'From' has value handles referring to it, do a real RAUW to update them. 2790 From->replaceAllUsesWith(To); 2791 2792 From->eraseFromParent(); 2793 } 2794