1 //===- InstructionSimplify.cpp - Fold instruction operands ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements routines for folding instructions into simpler forms 11 // that do not require creating new instructions. This does constant folding 12 // ("add i32 1, 1" -> "2") but can also handle non-constant operands, either 13 // returning a constant ("and i32 %x, 0" -> "0") or an already existing value 14 // ("and i32 %x, %x" -> "%x"). All operands are assumed to have already been 15 // simplified: This is usually true and assuming it simplifies the logic (if 16 // they have not been simplified then results are correct but maybe suboptimal). 17 // 18 //===----------------------------------------------------------------------===// 19 20 #include "llvm/Analysis/InstructionSimplify.h" 21 #include "llvm/ADT/SetVector.h" 22 #include "llvm/ADT/Statistic.h" 23 #include "llvm/Analysis/AliasAnalysis.h" 24 #include "llvm/Analysis/CaptureTracking.h" 25 #include "llvm/Analysis/ConstantFolding.h" 26 #include "llvm/Analysis/MemoryBuiltins.h" 27 #include "llvm/Analysis/OptimizationDiagnosticInfo.h" 28 #include "llvm/Analysis/ValueTracking.h" 29 #include "llvm/Analysis/VectorUtils.h" 30 #include "llvm/IR/ConstantRange.h" 31 #include "llvm/IR/DataLayout.h" 32 #include "llvm/IR/Dominators.h" 33 #include "llvm/IR/GetElementPtrTypeIterator.h" 34 #include "llvm/IR/GlobalAlias.h" 35 #include "llvm/IR/Operator.h" 36 #include "llvm/IR/PatternMatch.h" 37 #include "llvm/IR/ValueHandle.h" 38 #include <algorithm> 39 using namespace llvm; 40 using namespace llvm::PatternMatch; 41 42 #define DEBUG_TYPE "instsimplify" 43 44 enum { RecursionLimit = 3 }; 45 46 STATISTIC(NumExpand, "Number of expansions"); 47 STATISTIC(NumReassoc, "Number of reassociations"); 48 49 namespace { 50 struct Query { 51 const DataLayout &DL; 52 const TargetLibraryInfo *TLI; 53 const DominatorTree *DT; 54 AssumptionCache *AC; 55 const Instruction *CxtI; 56 57 Query(const DataLayout &DL, const TargetLibraryInfo *tli, 58 const DominatorTree *dt, AssumptionCache *ac = nullptr, 59 const Instruction *cxti = nullptr) 60 : DL(DL), TLI(tli), DT(dt), AC(ac), CxtI(cxti) {} 61 }; 62 } // end anonymous namespace 63 64 static Value *SimplifyAndInst(Value *, Value *, const Query &, unsigned); 65 static Value *SimplifyBinOp(unsigned, Value *, Value *, const Query &, 66 unsigned); 67 static Value *SimplifyFPBinOp(unsigned, Value *, Value *, const FastMathFlags &, 68 const Query &, unsigned); 69 static Value *SimplifyCmpInst(unsigned, Value *, Value *, const Query &, 70 unsigned); 71 static Value *SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS, 72 const Query &Q, unsigned MaxRecurse); 73 static Value *SimplifyOrInst(Value *, Value *, const Query &, unsigned); 74 static Value *SimplifyXorInst(Value *, Value *, const Query &, unsigned); 75 static Value *SimplifyCastInst(unsigned, Value *, Type *, 76 const Query &, unsigned); 77 78 /// For a boolean type, or a vector of boolean type, return false, or 79 /// a vector with every element false, as appropriate for the type. 80 static Constant *getFalse(Type *Ty) { 81 assert(Ty->getScalarType()->isIntegerTy(1) && 82 "Expected i1 type or a vector of i1!"); 83 return Constant::getNullValue(Ty); 84 } 85 86 /// For a boolean type, or a vector of boolean type, return true, or 87 /// a vector with every element true, as appropriate for the type. 88 static Constant *getTrue(Type *Ty) { 89 assert(Ty->getScalarType()->isIntegerTy(1) && 90 "Expected i1 type or a vector of i1!"); 91 return Constant::getAllOnesValue(Ty); 92 } 93 94 /// isSameCompare - Is V equivalent to the comparison "LHS Pred RHS"? 95 static bool isSameCompare(Value *V, CmpInst::Predicate Pred, Value *LHS, 96 Value *RHS) { 97 CmpInst *Cmp = dyn_cast<CmpInst>(V); 98 if (!Cmp) 99 return false; 100 CmpInst::Predicate CPred = Cmp->getPredicate(); 101 Value *CLHS = Cmp->getOperand(0), *CRHS = Cmp->getOperand(1); 102 if (CPred == Pred && CLHS == LHS && CRHS == RHS) 103 return true; 104 return CPred == CmpInst::getSwappedPredicate(Pred) && CLHS == RHS && 105 CRHS == LHS; 106 } 107 108 /// Does the given value dominate the specified phi node? 109 static bool ValueDominatesPHI(Value *V, PHINode *P, const DominatorTree *DT) { 110 Instruction *I = dyn_cast<Instruction>(V); 111 if (!I) 112 // Arguments and constants dominate all instructions. 113 return true; 114 115 // If we are processing instructions (and/or basic blocks) that have not been 116 // fully added to a function, the parent nodes may still be null. Simply 117 // return the conservative answer in these cases. 118 if (!I->getParent() || !P->getParent() || !I->getParent()->getParent()) 119 return false; 120 121 // If we have a DominatorTree then do a precise test. 122 if (DT) { 123 if (!DT->isReachableFromEntry(P->getParent())) 124 return true; 125 if (!DT->isReachableFromEntry(I->getParent())) 126 return false; 127 return DT->dominates(I, P); 128 } 129 130 // Otherwise, if the instruction is in the entry block and is not an invoke, 131 // then it obviously dominates all phi nodes. 132 if (I->getParent() == &I->getParent()->getParent()->getEntryBlock() && 133 !isa<InvokeInst>(I)) 134 return true; 135 136 return false; 137 } 138 139 /// Simplify "A op (B op' C)" by distributing op over op', turning it into 140 /// "(A op B) op' (A op C)". Here "op" is given by Opcode and "op'" is 141 /// given by OpcodeToExpand, while "A" corresponds to LHS and "B op' C" to RHS. 142 /// Also performs the transform "(A op' B) op C" -> "(A op C) op' (B op C)". 143 /// Returns the simplified value, or null if no simplification was performed. 144 static Value *ExpandBinOp(unsigned Opcode, Value *LHS, Value *RHS, 145 unsigned OpcToExpand, const Query &Q, 146 unsigned MaxRecurse) { 147 Instruction::BinaryOps OpcodeToExpand = (Instruction::BinaryOps)OpcToExpand; 148 // Recursion is always used, so bail out at once if we already hit the limit. 149 if (!MaxRecurse--) 150 return nullptr; 151 152 // Check whether the expression has the form "(A op' B) op C". 153 if (BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS)) 154 if (Op0->getOpcode() == OpcodeToExpand) { 155 // It does! Try turning it into "(A op C) op' (B op C)". 156 Value *A = Op0->getOperand(0), *B = Op0->getOperand(1), *C = RHS; 157 // Do "A op C" and "B op C" both simplify? 158 if (Value *L = SimplifyBinOp(Opcode, A, C, Q, MaxRecurse)) 159 if (Value *R = SimplifyBinOp(Opcode, B, C, Q, MaxRecurse)) { 160 // They do! Return "L op' R" if it simplifies or is already available. 161 // If "L op' R" equals "A op' B" then "L op' R" is just the LHS. 162 if ((L == A && R == B) || (Instruction::isCommutative(OpcodeToExpand) 163 && L == B && R == A)) { 164 ++NumExpand; 165 return LHS; 166 } 167 // Otherwise return "L op' R" if it simplifies. 168 if (Value *V = SimplifyBinOp(OpcodeToExpand, L, R, Q, MaxRecurse)) { 169 ++NumExpand; 170 return V; 171 } 172 } 173 } 174 175 // Check whether the expression has the form "A op (B op' C)". 176 if (BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS)) 177 if (Op1->getOpcode() == OpcodeToExpand) { 178 // It does! Try turning it into "(A op B) op' (A op C)". 179 Value *A = LHS, *B = Op1->getOperand(0), *C = Op1->getOperand(1); 180 // Do "A op B" and "A op C" both simplify? 181 if (Value *L = SimplifyBinOp(Opcode, A, B, Q, MaxRecurse)) 182 if (Value *R = SimplifyBinOp(Opcode, A, C, Q, MaxRecurse)) { 183 // They do! Return "L op' R" if it simplifies or is already available. 184 // If "L op' R" equals "B op' C" then "L op' R" is just the RHS. 185 if ((L == B && R == C) || (Instruction::isCommutative(OpcodeToExpand) 186 && L == C && R == B)) { 187 ++NumExpand; 188 return RHS; 189 } 190 // Otherwise return "L op' R" if it simplifies. 191 if (Value *V = SimplifyBinOp(OpcodeToExpand, L, R, Q, MaxRecurse)) { 192 ++NumExpand; 193 return V; 194 } 195 } 196 } 197 198 return nullptr; 199 } 200 201 /// Generic simplifications for associative binary operations. 202 /// Returns the simpler value, or null if none was found. 203 static Value *SimplifyAssociativeBinOp(unsigned Opc, Value *LHS, Value *RHS, 204 const Query &Q, unsigned MaxRecurse) { 205 Instruction::BinaryOps Opcode = (Instruction::BinaryOps)Opc; 206 assert(Instruction::isAssociative(Opcode) && "Not an associative operation!"); 207 208 // Recursion is always used, so bail out at once if we already hit the limit. 209 if (!MaxRecurse--) 210 return nullptr; 211 212 BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS); 213 BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS); 214 215 // Transform: "(A op B) op C" ==> "A op (B op C)" if it simplifies completely. 216 if (Op0 && Op0->getOpcode() == Opcode) { 217 Value *A = Op0->getOperand(0); 218 Value *B = Op0->getOperand(1); 219 Value *C = RHS; 220 221 // Does "B op C" simplify? 222 if (Value *V = SimplifyBinOp(Opcode, B, C, Q, MaxRecurse)) { 223 // It does! Return "A op V" if it simplifies or is already available. 224 // If V equals B then "A op V" is just the LHS. 225 if (V == B) return LHS; 226 // Otherwise return "A op V" if it simplifies. 227 if (Value *W = SimplifyBinOp(Opcode, A, V, Q, MaxRecurse)) { 228 ++NumReassoc; 229 return W; 230 } 231 } 232 } 233 234 // Transform: "A op (B op C)" ==> "(A op B) op C" if it simplifies completely. 235 if (Op1 && Op1->getOpcode() == Opcode) { 236 Value *A = LHS; 237 Value *B = Op1->getOperand(0); 238 Value *C = Op1->getOperand(1); 239 240 // Does "A op B" simplify? 241 if (Value *V = SimplifyBinOp(Opcode, A, B, Q, MaxRecurse)) { 242 // It does! Return "V op C" if it simplifies or is already available. 243 // If V equals B then "V op C" is just the RHS. 244 if (V == B) return RHS; 245 // Otherwise return "V op C" if it simplifies. 246 if (Value *W = SimplifyBinOp(Opcode, V, C, Q, MaxRecurse)) { 247 ++NumReassoc; 248 return W; 249 } 250 } 251 } 252 253 // The remaining transforms require commutativity as well as associativity. 254 if (!Instruction::isCommutative(Opcode)) 255 return nullptr; 256 257 // Transform: "(A op B) op C" ==> "(C op A) op B" if it simplifies completely. 258 if (Op0 && Op0->getOpcode() == Opcode) { 259 Value *A = Op0->getOperand(0); 260 Value *B = Op0->getOperand(1); 261 Value *C = RHS; 262 263 // Does "C op A" simplify? 264 if (Value *V = SimplifyBinOp(Opcode, C, A, Q, MaxRecurse)) { 265 // It does! Return "V op B" if it simplifies or is already available. 266 // If V equals A then "V op B" is just the LHS. 267 if (V == A) return LHS; 268 // Otherwise return "V op B" if it simplifies. 269 if (Value *W = SimplifyBinOp(Opcode, V, B, Q, MaxRecurse)) { 270 ++NumReassoc; 271 return W; 272 } 273 } 274 } 275 276 // Transform: "A op (B op C)" ==> "B op (C op A)" if it simplifies completely. 277 if (Op1 && Op1->getOpcode() == Opcode) { 278 Value *A = LHS; 279 Value *B = Op1->getOperand(0); 280 Value *C = Op1->getOperand(1); 281 282 // Does "C op A" simplify? 283 if (Value *V = SimplifyBinOp(Opcode, C, A, Q, MaxRecurse)) { 284 // It does! Return "B op V" if it simplifies or is already available. 285 // If V equals C then "B op V" is just the RHS. 286 if (V == C) return RHS; 287 // Otherwise return "B op V" if it simplifies. 288 if (Value *W = SimplifyBinOp(Opcode, B, V, Q, MaxRecurse)) { 289 ++NumReassoc; 290 return W; 291 } 292 } 293 } 294 295 return nullptr; 296 } 297 298 /// In the case of a binary operation with a select instruction as an operand, 299 /// try to simplify the binop by seeing whether evaluating it on both branches 300 /// of the select results in the same value. Returns the common value if so, 301 /// otherwise returns null. 302 static Value *ThreadBinOpOverSelect(unsigned Opcode, Value *LHS, Value *RHS, 303 const Query &Q, unsigned MaxRecurse) { 304 // Recursion is always used, so bail out at once if we already hit the limit. 305 if (!MaxRecurse--) 306 return nullptr; 307 308 SelectInst *SI; 309 if (isa<SelectInst>(LHS)) { 310 SI = cast<SelectInst>(LHS); 311 } else { 312 assert(isa<SelectInst>(RHS) && "No select instruction operand!"); 313 SI = cast<SelectInst>(RHS); 314 } 315 316 // Evaluate the BinOp on the true and false branches of the select. 317 Value *TV; 318 Value *FV; 319 if (SI == LHS) { 320 TV = SimplifyBinOp(Opcode, SI->getTrueValue(), RHS, Q, MaxRecurse); 321 FV = SimplifyBinOp(Opcode, SI->getFalseValue(), RHS, Q, MaxRecurse); 322 } else { 323 TV = SimplifyBinOp(Opcode, LHS, SI->getTrueValue(), Q, MaxRecurse); 324 FV = SimplifyBinOp(Opcode, LHS, SI->getFalseValue(), Q, MaxRecurse); 325 } 326 327 // If they simplified to the same value, then return the common value. 328 // If they both failed to simplify then return null. 329 if (TV == FV) 330 return TV; 331 332 // If one branch simplified to undef, return the other one. 333 if (TV && isa<UndefValue>(TV)) 334 return FV; 335 if (FV && isa<UndefValue>(FV)) 336 return TV; 337 338 // If applying the operation did not change the true and false select values, 339 // then the result of the binop is the select itself. 340 if (TV == SI->getTrueValue() && FV == SI->getFalseValue()) 341 return SI; 342 343 // If one branch simplified and the other did not, and the simplified 344 // value is equal to the unsimplified one, return the simplified value. 345 // For example, select (cond, X, X & Z) & Z -> X & Z. 346 if ((FV && !TV) || (TV && !FV)) { 347 // Check that the simplified value has the form "X op Y" where "op" is the 348 // same as the original operation. 349 Instruction *Simplified = dyn_cast<Instruction>(FV ? FV : TV); 350 if (Simplified && Simplified->getOpcode() == Opcode) { 351 // The value that didn't simplify is "UnsimplifiedLHS op UnsimplifiedRHS". 352 // We already know that "op" is the same as for the simplified value. See 353 // if the operands match too. If so, return the simplified value. 354 Value *UnsimplifiedBranch = FV ? SI->getTrueValue() : SI->getFalseValue(); 355 Value *UnsimplifiedLHS = SI == LHS ? UnsimplifiedBranch : LHS; 356 Value *UnsimplifiedRHS = SI == LHS ? RHS : UnsimplifiedBranch; 357 if (Simplified->getOperand(0) == UnsimplifiedLHS && 358 Simplified->getOperand(1) == UnsimplifiedRHS) 359 return Simplified; 360 if (Simplified->isCommutative() && 361 Simplified->getOperand(1) == UnsimplifiedLHS && 362 Simplified->getOperand(0) == UnsimplifiedRHS) 363 return Simplified; 364 } 365 } 366 367 return nullptr; 368 } 369 370 /// In the case of a comparison with a select instruction, try to simplify the 371 /// comparison by seeing whether both branches of the select result in the same 372 /// value. Returns the common value if so, otherwise returns null. 373 static Value *ThreadCmpOverSelect(CmpInst::Predicate Pred, Value *LHS, 374 Value *RHS, const Query &Q, 375 unsigned MaxRecurse) { 376 // Recursion is always used, so bail out at once if we already hit the limit. 377 if (!MaxRecurse--) 378 return nullptr; 379 380 // Make sure the select is on the LHS. 381 if (!isa<SelectInst>(LHS)) { 382 std::swap(LHS, RHS); 383 Pred = CmpInst::getSwappedPredicate(Pred); 384 } 385 assert(isa<SelectInst>(LHS) && "Not comparing with a select instruction!"); 386 SelectInst *SI = cast<SelectInst>(LHS); 387 Value *Cond = SI->getCondition(); 388 Value *TV = SI->getTrueValue(); 389 Value *FV = SI->getFalseValue(); 390 391 // Now that we have "cmp select(Cond, TV, FV), RHS", analyse it. 392 // Does "cmp TV, RHS" simplify? 393 Value *TCmp = SimplifyCmpInst(Pred, TV, RHS, Q, MaxRecurse); 394 if (TCmp == Cond) { 395 // It not only simplified, it simplified to the select condition. Replace 396 // it with 'true'. 397 TCmp = getTrue(Cond->getType()); 398 } else if (!TCmp) { 399 // It didn't simplify. However if "cmp TV, RHS" is equal to the select 400 // condition then we can replace it with 'true'. Otherwise give up. 401 if (!isSameCompare(Cond, Pred, TV, RHS)) 402 return nullptr; 403 TCmp = getTrue(Cond->getType()); 404 } 405 406 // Does "cmp FV, RHS" simplify? 407 Value *FCmp = SimplifyCmpInst(Pred, FV, RHS, Q, MaxRecurse); 408 if (FCmp == Cond) { 409 // It not only simplified, it simplified to the select condition. Replace 410 // it with 'false'. 411 FCmp = getFalse(Cond->getType()); 412 } else if (!FCmp) { 413 // It didn't simplify. However if "cmp FV, RHS" is equal to the select 414 // condition then we can replace it with 'false'. Otherwise give up. 415 if (!isSameCompare(Cond, Pred, FV, RHS)) 416 return nullptr; 417 FCmp = getFalse(Cond->getType()); 418 } 419 420 // If both sides simplified to the same value, then use it as the result of 421 // the original comparison. 422 if (TCmp == FCmp) 423 return TCmp; 424 425 // The remaining cases only make sense if the select condition has the same 426 // type as the result of the comparison, so bail out if this is not so. 427 if (Cond->getType()->isVectorTy() != RHS->getType()->isVectorTy()) 428 return nullptr; 429 // If the false value simplified to false, then the result of the compare 430 // is equal to "Cond && TCmp". This also catches the case when the false 431 // value simplified to false and the true value to true, returning "Cond". 432 if (match(FCmp, m_Zero())) 433 if (Value *V = SimplifyAndInst(Cond, TCmp, Q, MaxRecurse)) 434 return V; 435 // If the true value simplified to true, then the result of the compare 436 // is equal to "Cond || FCmp". 437 if (match(TCmp, m_One())) 438 if (Value *V = SimplifyOrInst(Cond, FCmp, Q, MaxRecurse)) 439 return V; 440 // Finally, if the false value simplified to true and the true value to 441 // false, then the result of the compare is equal to "!Cond". 442 if (match(FCmp, m_One()) && match(TCmp, m_Zero())) 443 if (Value *V = 444 SimplifyXorInst(Cond, Constant::getAllOnesValue(Cond->getType()), 445 Q, MaxRecurse)) 446 return V; 447 448 return nullptr; 449 } 450 451 /// In the case of a binary operation with an operand that is a PHI instruction, 452 /// try to simplify the binop by seeing whether evaluating it on the incoming 453 /// phi values yields the same result for every value. If so returns the common 454 /// value, otherwise returns null. 455 static Value *ThreadBinOpOverPHI(unsigned Opcode, Value *LHS, Value *RHS, 456 const Query &Q, unsigned MaxRecurse) { 457 // Recursion is always used, so bail out at once if we already hit the limit. 458 if (!MaxRecurse--) 459 return nullptr; 460 461 PHINode *PI; 462 if (isa<PHINode>(LHS)) { 463 PI = cast<PHINode>(LHS); 464 // Bail out if RHS and the phi may be mutually interdependent due to a loop. 465 if (!ValueDominatesPHI(RHS, PI, Q.DT)) 466 return nullptr; 467 } else { 468 assert(isa<PHINode>(RHS) && "No PHI instruction operand!"); 469 PI = cast<PHINode>(RHS); 470 // Bail out if LHS and the phi may be mutually interdependent due to a loop. 471 if (!ValueDominatesPHI(LHS, PI, Q.DT)) 472 return nullptr; 473 } 474 475 // Evaluate the BinOp on the incoming phi values. 476 Value *CommonValue = nullptr; 477 for (Value *Incoming : PI->incoming_values()) { 478 // If the incoming value is the phi node itself, it can safely be skipped. 479 if (Incoming == PI) continue; 480 Value *V = PI == LHS ? 481 SimplifyBinOp(Opcode, Incoming, RHS, Q, MaxRecurse) : 482 SimplifyBinOp(Opcode, LHS, Incoming, Q, MaxRecurse); 483 // If the operation failed to simplify, or simplified to a different value 484 // to previously, then give up. 485 if (!V || (CommonValue && V != CommonValue)) 486 return nullptr; 487 CommonValue = V; 488 } 489 490 return CommonValue; 491 } 492 493 /// In the case of a comparison with a PHI instruction, try to simplify the 494 /// comparison by seeing whether comparing with all of the incoming phi values 495 /// yields the same result every time. If so returns the common result, 496 /// otherwise returns null. 497 static Value *ThreadCmpOverPHI(CmpInst::Predicate Pred, Value *LHS, Value *RHS, 498 const Query &Q, unsigned MaxRecurse) { 499 // Recursion is always used, so bail out at once if we already hit the limit. 500 if (!MaxRecurse--) 501 return nullptr; 502 503 // Make sure the phi is on the LHS. 504 if (!isa<PHINode>(LHS)) { 505 std::swap(LHS, RHS); 506 Pred = CmpInst::getSwappedPredicate(Pred); 507 } 508 assert(isa<PHINode>(LHS) && "Not comparing with a phi instruction!"); 509 PHINode *PI = cast<PHINode>(LHS); 510 511 // Bail out if RHS and the phi may be mutually interdependent due to a loop. 512 if (!ValueDominatesPHI(RHS, PI, Q.DT)) 513 return nullptr; 514 515 // Evaluate the BinOp on the incoming phi values. 516 Value *CommonValue = nullptr; 517 for (Value *Incoming : PI->incoming_values()) { 518 // If the incoming value is the phi node itself, it can safely be skipped. 519 if (Incoming == PI) continue; 520 Value *V = SimplifyCmpInst(Pred, Incoming, RHS, Q, MaxRecurse); 521 // If the operation failed to simplify, or simplified to a different value 522 // to previously, then give up. 523 if (!V || (CommonValue && V != CommonValue)) 524 return nullptr; 525 CommonValue = V; 526 } 527 528 return CommonValue; 529 } 530 531 /// Given operands for an Add, see if we can fold the result. 532 /// If not, this returns null. 533 static Value *SimplifyAddInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, 534 const Query &Q, unsigned MaxRecurse) { 535 if (Constant *CLHS = dyn_cast<Constant>(Op0)) { 536 if (Constant *CRHS = dyn_cast<Constant>(Op1)) 537 return ConstantFoldBinaryOpOperands(Instruction::Add, CLHS, CRHS, Q.DL); 538 539 // Canonicalize the constant to the RHS. 540 std::swap(Op0, Op1); 541 } 542 543 // X + undef -> undef 544 if (match(Op1, m_Undef())) 545 return Op1; 546 547 // X + 0 -> X 548 if (match(Op1, m_Zero())) 549 return Op0; 550 551 // X + (Y - X) -> Y 552 // (Y - X) + X -> Y 553 // Eg: X + -X -> 0 554 Value *Y = nullptr; 555 if (match(Op1, m_Sub(m_Value(Y), m_Specific(Op0))) || 556 match(Op0, m_Sub(m_Value(Y), m_Specific(Op1)))) 557 return Y; 558 559 // X + ~X -> -1 since ~X = -X-1 560 Type *Ty = Op0->getType(); 561 if (match(Op0, m_Not(m_Specific(Op1))) || 562 match(Op1, m_Not(m_Specific(Op0)))) 563 return Constant::getAllOnesValue(Ty); 564 565 // add nsw/nuw (xor Y, signbit), signbit --> Y 566 // The no-wrapping add guarantees that the top bit will be set by the add. 567 // Therefore, the xor must be clearing the already set sign bit of Y. 568 Constant *SignBit = 569 ConstantInt::get(Ty, APInt::getSignBit(Ty->getScalarSizeInBits())); 570 if ((isNSW || isNUW) && match(Op1, m_Specific(SignBit)) && 571 match(Op0, m_Xor(m_Value(Y), m_Specific(SignBit)))) 572 return Y; 573 574 /// i1 add -> xor. 575 if (MaxRecurse && Op0->getType()->isIntegerTy(1)) 576 if (Value *V = SimplifyXorInst(Op0, Op1, Q, MaxRecurse-1)) 577 return V; 578 579 // Try some generic simplifications for associative operations. 580 if (Value *V = SimplifyAssociativeBinOp(Instruction::Add, Op0, Op1, Q, 581 MaxRecurse)) 582 return V; 583 584 // Threading Add over selects and phi nodes is pointless, so don't bother. 585 // Threading over the select in "A + select(cond, B, C)" means evaluating 586 // "A+B" and "A+C" and seeing if they are equal; but they are equal if and 587 // only if B and C are equal. If B and C are equal then (since we assume 588 // that operands have already been simplified) "select(cond, B, C)" should 589 // have been simplified to the common value of B and C already. Analysing 590 // "A+B" and "A+C" thus gains nothing, but costs compile time. Similarly 591 // for threading over phi nodes. 592 593 return nullptr; 594 } 595 596 Value *llvm::SimplifyAddInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, 597 const DataLayout &DL, const TargetLibraryInfo *TLI, 598 const DominatorTree *DT, AssumptionCache *AC, 599 const Instruction *CxtI) { 600 return ::SimplifyAddInst(Op0, Op1, isNSW, isNUW, Query(DL, TLI, DT, AC, CxtI), 601 RecursionLimit); 602 } 603 604 /// \brief Compute the base pointer and cumulative constant offsets for V. 605 /// 606 /// This strips all constant offsets off of V, leaving it the base pointer, and 607 /// accumulates the total constant offset applied in the returned constant. It 608 /// returns 0 if V is not a pointer, and returns the constant '0' if there are 609 /// no constant offsets applied. 610 /// 611 /// This is very similar to GetPointerBaseWithConstantOffset except it doesn't 612 /// follow non-inbounds geps. This allows it to remain usable for icmp ult/etc. 613 /// folding. 614 static Constant *stripAndComputeConstantOffsets(const DataLayout &DL, Value *&V, 615 bool AllowNonInbounds = false) { 616 assert(V->getType()->getScalarType()->isPointerTy()); 617 618 Type *IntPtrTy = DL.getIntPtrType(V->getType())->getScalarType(); 619 APInt Offset = APInt::getNullValue(IntPtrTy->getIntegerBitWidth()); 620 621 // Even though we don't look through PHI nodes, we could be called on an 622 // instruction in an unreachable block, which may be on a cycle. 623 SmallPtrSet<Value *, 4> Visited; 624 Visited.insert(V); 625 do { 626 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 627 if ((!AllowNonInbounds && !GEP->isInBounds()) || 628 !GEP->accumulateConstantOffset(DL, Offset)) 629 break; 630 V = GEP->getPointerOperand(); 631 } else if (Operator::getOpcode(V) == Instruction::BitCast) { 632 V = cast<Operator>(V)->getOperand(0); 633 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 634 if (GA->isInterposable()) 635 break; 636 V = GA->getAliasee(); 637 } else { 638 if (auto CS = CallSite(V)) 639 if (Value *RV = CS.getReturnedArgOperand()) { 640 V = RV; 641 continue; 642 } 643 break; 644 } 645 assert(V->getType()->getScalarType()->isPointerTy() && 646 "Unexpected operand type!"); 647 } while (Visited.insert(V).second); 648 649 Constant *OffsetIntPtr = ConstantInt::get(IntPtrTy, Offset); 650 if (V->getType()->isVectorTy()) 651 return ConstantVector::getSplat(V->getType()->getVectorNumElements(), 652 OffsetIntPtr); 653 return OffsetIntPtr; 654 } 655 656 /// \brief Compute the constant difference between two pointer values. 657 /// If the difference is not a constant, returns zero. 658 static Constant *computePointerDifference(const DataLayout &DL, Value *LHS, 659 Value *RHS) { 660 Constant *LHSOffset = stripAndComputeConstantOffsets(DL, LHS); 661 Constant *RHSOffset = stripAndComputeConstantOffsets(DL, RHS); 662 663 // If LHS and RHS are not related via constant offsets to the same base 664 // value, there is nothing we can do here. 665 if (LHS != RHS) 666 return nullptr; 667 668 // Otherwise, the difference of LHS - RHS can be computed as: 669 // LHS - RHS 670 // = (LHSOffset + Base) - (RHSOffset + Base) 671 // = LHSOffset - RHSOffset 672 return ConstantExpr::getSub(LHSOffset, RHSOffset); 673 } 674 675 /// Given operands for a Sub, see if we can fold the result. 676 /// If not, this returns null. 677 static Value *SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, 678 const Query &Q, unsigned MaxRecurse) { 679 if (Constant *CLHS = dyn_cast<Constant>(Op0)) 680 if (Constant *CRHS = dyn_cast<Constant>(Op1)) 681 return ConstantFoldBinaryOpOperands(Instruction::Sub, CLHS, CRHS, Q.DL); 682 683 // X - undef -> undef 684 // undef - X -> undef 685 if (match(Op0, m_Undef()) || match(Op1, m_Undef())) 686 return UndefValue::get(Op0->getType()); 687 688 // X - 0 -> X 689 if (match(Op1, m_Zero())) 690 return Op0; 691 692 // X - X -> 0 693 if (Op0 == Op1) 694 return Constant::getNullValue(Op0->getType()); 695 696 // Is this a negation? 697 if (match(Op0, m_Zero())) { 698 // 0 - X -> 0 if the sub is NUW. 699 if (isNUW) 700 return Op0; 701 702 unsigned BitWidth = Op1->getType()->getScalarSizeInBits(); 703 APInt KnownZero(BitWidth, 0); 704 APInt KnownOne(BitWidth, 0); 705 computeKnownBits(Op1, KnownZero, KnownOne, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 706 if (KnownZero == ~APInt::getSignBit(BitWidth)) { 707 // Op1 is either 0 or the minimum signed value. If the sub is NSW, then 708 // Op1 must be 0 because negating the minimum signed value is undefined. 709 if (isNSW) 710 return Op0; 711 712 // 0 - X -> X if X is 0 or the minimum signed value. 713 return Op1; 714 } 715 } 716 717 // (X + Y) - Z -> X + (Y - Z) or Y + (X - Z) if everything simplifies. 718 // For example, (X + Y) - Y -> X; (Y + X) - Y -> X 719 Value *X = nullptr, *Y = nullptr, *Z = Op1; 720 if (MaxRecurse && match(Op0, m_Add(m_Value(X), m_Value(Y)))) { // (X + Y) - Z 721 // See if "V === Y - Z" simplifies. 722 if (Value *V = SimplifyBinOp(Instruction::Sub, Y, Z, Q, MaxRecurse-1)) 723 // It does! Now see if "X + V" simplifies. 724 if (Value *W = SimplifyBinOp(Instruction::Add, X, V, Q, MaxRecurse-1)) { 725 // It does, we successfully reassociated! 726 ++NumReassoc; 727 return W; 728 } 729 // See if "V === X - Z" simplifies. 730 if (Value *V = SimplifyBinOp(Instruction::Sub, X, Z, Q, MaxRecurse-1)) 731 // It does! Now see if "Y + V" simplifies. 732 if (Value *W = SimplifyBinOp(Instruction::Add, Y, V, Q, MaxRecurse-1)) { 733 // It does, we successfully reassociated! 734 ++NumReassoc; 735 return W; 736 } 737 } 738 739 // X - (Y + Z) -> (X - Y) - Z or (X - Z) - Y if everything simplifies. 740 // For example, X - (X + 1) -> -1 741 X = Op0; 742 if (MaxRecurse && match(Op1, m_Add(m_Value(Y), m_Value(Z)))) { // X - (Y + Z) 743 // See if "V === X - Y" simplifies. 744 if (Value *V = SimplifyBinOp(Instruction::Sub, X, Y, Q, MaxRecurse-1)) 745 // It does! Now see if "V - Z" simplifies. 746 if (Value *W = SimplifyBinOp(Instruction::Sub, V, Z, Q, MaxRecurse-1)) { 747 // It does, we successfully reassociated! 748 ++NumReassoc; 749 return W; 750 } 751 // See if "V === X - Z" simplifies. 752 if (Value *V = SimplifyBinOp(Instruction::Sub, X, Z, Q, MaxRecurse-1)) 753 // It does! Now see if "V - Y" simplifies. 754 if (Value *W = SimplifyBinOp(Instruction::Sub, V, Y, Q, MaxRecurse-1)) { 755 // It does, we successfully reassociated! 756 ++NumReassoc; 757 return W; 758 } 759 } 760 761 // Z - (X - Y) -> (Z - X) + Y if everything simplifies. 762 // For example, X - (X - Y) -> Y. 763 Z = Op0; 764 if (MaxRecurse && match(Op1, m_Sub(m_Value(X), m_Value(Y)))) // Z - (X - Y) 765 // See if "V === Z - X" simplifies. 766 if (Value *V = SimplifyBinOp(Instruction::Sub, Z, X, Q, MaxRecurse-1)) 767 // It does! Now see if "V + Y" simplifies. 768 if (Value *W = SimplifyBinOp(Instruction::Add, V, Y, Q, MaxRecurse-1)) { 769 // It does, we successfully reassociated! 770 ++NumReassoc; 771 return W; 772 } 773 774 // trunc(X) - trunc(Y) -> trunc(X - Y) if everything simplifies. 775 if (MaxRecurse && match(Op0, m_Trunc(m_Value(X))) && 776 match(Op1, m_Trunc(m_Value(Y)))) 777 if (X->getType() == Y->getType()) 778 // See if "V === X - Y" simplifies. 779 if (Value *V = SimplifyBinOp(Instruction::Sub, X, Y, Q, MaxRecurse-1)) 780 // It does! Now see if "trunc V" simplifies. 781 if (Value *W = SimplifyCastInst(Instruction::Trunc, V, Op0->getType(), 782 Q, MaxRecurse - 1)) 783 // It does, return the simplified "trunc V". 784 return W; 785 786 // Variations on GEP(base, I, ...) - GEP(base, i, ...) -> GEP(null, I-i, ...). 787 if (match(Op0, m_PtrToInt(m_Value(X))) && 788 match(Op1, m_PtrToInt(m_Value(Y)))) 789 if (Constant *Result = computePointerDifference(Q.DL, X, Y)) 790 return ConstantExpr::getIntegerCast(Result, Op0->getType(), true); 791 792 // i1 sub -> xor. 793 if (MaxRecurse && Op0->getType()->isIntegerTy(1)) 794 if (Value *V = SimplifyXorInst(Op0, Op1, Q, MaxRecurse-1)) 795 return V; 796 797 // Threading Sub over selects and phi nodes is pointless, so don't bother. 798 // Threading over the select in "A - select(cond, B, C)" means evaluating 799 // "A-B" and "A-C" and seeing if they are equal; but they are equal if and 800 // only if B and C are equal. If B and C are equal then (since we assume 801 // that operands have already been simplified) "select(cond, B, C)" should 802 // have been simplified to the common value of B and C already. Analysing 803 // "A-B" and "A-C" thus gains nothing, but costs compile time. Similarly 804 // for threading over phi nodes. 805 806 return nullptr; 807 } 808 809 Value *llvm::SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, 810 const DataLayout &DL, const TargetLibraryInfo *TLI, 811 const DominatorTree *DT, AssumptionCache *AC, 812 const Instruction *CxtI) { 813 return ::SimplifySubInst(Op0, Op1, isNSW, isNUW, Query(DL, TLI, DT, AC, CxtI), 814 RecursionLimit); 815 } 816 817 /// Given operands for an FAdd, see if we can fold the result. If not, this 818 /// returns null. 819 static Value *SimplifyFAddInst(Value *Op0, Value *Op1, FastMathFlags FMF, 820 const Query &Q, unsigned MaxRecurse) { 821 if (Constant *CLHS = dyn_cast<Constant>(Op0)) { 822 if (Constant *CRHS = dyn_cast<Constant>(Op1)) 823 return ConstantFoldBinaryOpOperands(Instruction::FAdd, CLHS, CRHS, Q.DL); 824 825 // Canonicalize the constant to the RHS. 826 std::swap(Op0, Op1); 827 } 828 829 // fadd X, -0 ==> X 830 if (match(Op1, m_NegZero())) 831 return Op0; 832 833 // fadd X, 0 ==> X, when we know X is not -0 834 if (match(Op1, m_Zero()) && 835 (FMF.noSignedZeros() || CannotBeNegativeZero(Op0, Q.TLI))) 836 return Op0; 837 838 // fadd [nnan ninf] X, (fsub [nnan ninf] 0, X) ==> 0 839 // where nnan and ninf have to occur at least once somewhere in this 840 // expression 841 Value *SubOp = nullptr; 842 if (match(Op1, m_FSub(m_AnyZero(), m_Specific(Op0)))) 843 SubOp = Op1; 844 else if (match(Op0, m_FSub(m_AnyZero(), m_Specific(Op1)))) 845 SubOp = Op0; 846 if (SubOp) { 847 Instruction *FSub = cast<Instruction>(SubOp); 848 if ((FMF.noNaNs() || FSub->hasNoNaNs()) && 849 (FMF.noInfs() || FSub->hasNoInfs())) 850 return Constant::getNullValue(Op0->getType()); 851 } 852 853 return nullptr; 854 } 855 856 /// Given operands for an FSub, see if we can fold the result. If not, this 857 /// returns null. 858 static Value *SimplifyFSubInst(Value *Op0, Value *Op1, FastMathFlags FMF, 859 const Query &Q, unsigned MaxRecurse) { 860 if (Constant *CLHS = dyn_cast<Constant>(Op0)) { 861 if (Constant *CRHS = dyn_cast<Constant>(Op1)) 862 return ConstantFoldBinaryOpOperands(Instruction::FSub, CLHS, CRHS, Q.DL); 863 } 864 865 // fsub X, 0 ==> X 866 if (match(Op1, m_Zero())) 867 return Op0; 868 869 // fsub X, -0 ==> X, when we know X is not -0 870 if (match(Op1, m_NegZero()) && 871 (FMF.noSignedZeros() || CannotBeNegativeZero(Op0, Q.TLI))) 872 return Op0; 873 874 // fsub -0.0, (fsub -0.0, X) ==> X 875 Value *X; 876 if (match(Op0, m_NegZero()) && match(Op1, m_FSub(m_NegZero(), m_Value(X)))) 877 return X; 878 879 // fsub 0.0, (fsub 0.0, X) ==> X if signed zeros are ignored. 880 if (FMF.noSignedZeros() && match(Op0, m_AnyZero()) && 881 match(Op1, m_FSub(m_AnyZero(), m_Value(X)))) 882 return X; 883 884 // fsub nnan x, x ==> 0.0 885 if (FMF.noNaNs() && Op0 == Op1) 886 return Constant::getNullValue(Op0->getType()); 887 888 return nullptr; 889 } 890 891 /// Given the operands for an FMul, see if we can fold the result 892 static Value *SimplifyFMulInst(Value *Op0, Value *Op1, 893 FastMathFlags FMF, 894 const Query &Q, 895 unsigned MaxRecurse) { 896 if (Constant *CLHS = dyn_cast<Constant>(Op0)) { 897 if (Constant *CRHS = dyn_cast<Constant>(Op1)) 898 return ConstantFoldBinaryOpOperands(Instruction::FMul, CLHS, CRHS, Q.DL); 899 900 // Canonicalize the constant to the RHS. 901 std::swap(Op0, Op1); 902 } 903 904 // fmul X, 1.0 ==> X 905 if (match(Op1, m_FPOne())) 906 return Op0; 907 908 // fmul nnan nsz X, 0 ==> 0 909 if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op1, m_AnyZero())) 910 return Op1; 911 912 return nullptr; 913 } 914 915 /// Given operands for a Mul, see if we can fold the result. 916 /// If not, this returns null. 917 static Value *SimplifyMulInst(Value *Op0, Value *Op1, const Query &Q, 918 unsigned MaxRecurse) { 919 if (Constant *CLHS = dyn_cast<Constant>(Op0)) { 920 if (Constant *CRHS = dyn_cast<Constant>(Op1)) 921 return ConstantFoldBinaryOpOperands(Instruction::Mul, CLHS, CRHS, Q.DL); 922 923 // Canonicalize the constant to the RHS. 924 std::swap(Op0, Op1); 925 } 926 927 // X * undef -> 0 928 if (match(Op1, m_Undef())) 929 return Constant::getNullValue(Op0->getType()); 930 931 // X * 0 -> 0 932 if (match(Op1, m_Zero())) 933 return Op1; 934 935 // X * 1 -> X 936 if (match(Op1, m_One())) 937 return Op0; 938 939 // (X / Y) * Y -> X if the division is exact. 940 Value *X = nullptr; 941 if (match(Op0, m_Exact(m_IDiv(m_Value(X), m_Specific(Op1)))) || // (X / Y) * Y 942 match(Op1, m_Exact(m_IDiv(m_Value(X), m_Specific(Op0))))) // Y * (X / Y) 943 return X; 944 945 // i1 mul -> and. 946 if (MaxRecurse && Op0->getType()->isIntegerTy(1)) 947 if (Value *V = SimplifyAndInst(Op0, Op1, Q, MaxRecurse-1)) 948 return V; 949 950 // Try some generic simplifications for associative operations. 951 if (Value *V = SimplifyAssociativeBinOp(Instruction::Mul, Op0, Op1, Q, 952 MaxRecurse)) 953 return V; 954 955 // Mul distributes over Add. Try some generic simplifications based on this. 956 if (Value *V = ExpandBinOp(Instruction::Mul, Op0, Op1, Instruction::Add, 957 Q, MaxRecurse)) 958 return V; 959 960 // If the operation is with the result of a select instruction, check whether 961 // operating on either branch of the select always yields the same value. 962 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 963 if (Value *V = ThreadBinOpOverSelect(Instruction::Mul, Op0, Op1, Q, 964 MaxRecurse)) 965 return V; 966 967 // If the operation is with the result of a phi instruction, check whether 968 // operating on all incoming values of the phi always yields the same value. 969 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 970 if (Value *V = ThreadBinOpOverPHI(Instruction::Mul, Op0, Op1, Q, 971 MaxRecurse)) 972 return V; 973 974 return nullptr; 975 } 976 977 Value *llvm::SimplifyFAddInst(Value *Op0, Value *Op1, FastMathFlags FMF, 978 const DataLayout &DL, 979 const TargetLibraryInfo *TLI, 980 const DominatorTree *DT, AssumptionCache *AC, 981 const Instruction *CxtI) { 982 return ::SimplifyFAddInst(Op0, Op1, FMF, Query(DL, TLI, DT, AC, CxtI), 983 RecursionLimit); 984 } 985 986 Value *llvm::SimplifyFSubInst(Value *Op0, Value *Op1, FastMathFlags FMF, 987 const DataLayout &DL, 988 const TargetLibraryInfo *TLI, 989 const DominatorTree *DT, AssumptionCache *AC, 990 const Instruction *CxtI) { 991 return ::SimplifyFSubInst(Op0, Op1, FMF, Query(DL, TLI, DT, AC, CxtI), 992 RecursionLimit); 993 } 994 995 Value *llvm::SimplifyFMulInst(Value *Op0, Value *Op1, FastMathFlags FMF, 996 const DataLayout &DL, 997 const TargetLibraryInfo *TLI, 998 const DominatorTree *DT, AssumptionCache *AC, 999 const Instruction *CxtI) { 1000 return ::SimplifyFMulInst(Op0, Op1, FMF, Query(DL, TLI, DT, AC, CxtI), 1001 RecursionLimit); 1002 } 1003 1004 Value *llvm::SimplifyMulInst(Value *Op0, Value *Op1, const DataLayout &DL, 1005 const TargetLibraryInfo *TLI, 1006 const DominatorTree *DT, AssumptionCache *AC, 1007 const Instruction *CxtI) { 1008 return ::SimplifyMulInst(Op0, Op1, Query(DL, TLI, DT, AC, CxtI), 1009 RecursionLimit); 1010 } 1011 1012 /// Given operands for an SDiv or UDiv, see if we can fold the result. 1013 /// If not, this returns null. 1014 static Value *SimplifyDiv(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1, 1015 const Query &Q, unsigned MaxRecurse) { 1016 if (Constant *C0 = dyn_cast<Constant>(Op0)) 1017 if (Constant *C1 = dyn_cast<Constant>(Op1)) 1018 return ConstantFoldBinaryOpOperands(Opcode, C0, C1, Q.DL); 1019 1020 bool isSigned = Opcode == Instruction::SDiv; 1021 1022 // X / undef -> undef 1023 if (match(Op1, m_Undef())) 1024 return Op1; 1025 1026 // X / 0 -> undef, we don't need to preserve faults! 1027 if (match(Op1, m_Zero())) 1028 return UndefValue::get(Op1->getType()); 1029 1030 // undef / X -> 0 1031 if (match(Op0, m_Undef())) 1032 return Constant::getNullValue(Op0->getType()); 1033 1034 // 0 / X -> 0, we don't need to preserve faults! 1035 if (match(Op0, m_Zero())) 1036 return Op0; 1037 1038 // X / 1 -> X 1039 if (match(Op1, m_One())) 1040 return Op0; 1041 1042 if (Op0->getType()->isIntegerTy(1)) 1043 // It can't be division by zero, hence it must be division by one. 1044 return Op0; 1045 1046 // X / X -> 1 1047 if (Op0 == Op1) 1048 return ConstantInt::get(Op0->getType(), 1); 1049 1050 // (X * Y) / Y -> X if the multiplication does not overflow. 1051 Value *X = nullptr, *Y = nullptr; 1052 if (match(Op0, m_Mul(m_Value(X), m_Value(Y))) && (X == Op1 || Y == Op1)) { 1053 if (Y != Op1) std::swap(X, Y); // Ensure expression is (X * Y) / Y, Y = Op1 1054 OverflowingBinaryOperator *Mul = cast<OverflowingBinaryOperator>(Op0); 1055 // If the Mul knows it does not overflow, then we are good to go. 1056 if ((isSigned && Mul->hasNoSignedWrap()) || 1057 (!isSigned && Mul->hasNoUnsignedWrap())) 1058 return X; 1059 // If X has the form X = A / Y then X * Y cannot overflow. 1060 if (BinaryOperator *Div = dyn_cast<BinaryOperator>(X)) 1061 if (Div->getOpcode() == Opcode && Div->getOperand(1) == Y) 1062 return X; 1063 } 1064 1065 // (X rem Y) / Y -> 0 1066 if ((isSigned && match(Op0, m_SRem(m_Value(), m_Specific(Op1)))) || 1067 (!isSigned && match(Op0, m_URem(m_Value(), m_Specific(Op1))))) 1068 return Constant::getNullValue(Op0->getType()); 1069 1070 // (X /u C1) /u C2 -> 0 if C1 * C2 overflow 1071 ConstantInt *C1, *C2; 1072 if (!isSigned && match(Op0, m_UDiv(m_Value(X), m_ConstantInt(C1))) && 1073 match(Op1, m_ConstantInt(C2))) { 1074 bool Overflow; 1075 C1->getValue().umul_ov(C2->getValue(), Overflow); 1076 if (Overflow) 1077 return Constant::getNullValue(Op0->getType()); 1078 } 1079 1080 // If the operation is with the result of a select instruction, check whether 1081 // operating on either branch of the select always yields the same value. 1082 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 1083 if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse)) 1084 return V; 1085 1086 // If the operation is with the result of a phi instruction, check whether 1087 // operating on all incoming values of the phi always yields the same value. 1088 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 1089 if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse)) 1090 return V; 1091 1092 return nullptr; 1093 } 1094 1095 /// Given operands for an SDiv, see if we can fold the result. 1096 /// If not, this returns null. 1097 static Value *SimplifySDivInst(Value *Op0, Value *Op1, const Query &Q, 1098 unsigned MaxRecurse) { 1099 if (Value *V = SimplifyDiv(Instruction::SDiv, Op0, Op1, Q, MaxRecurse)) 1100 return V; 1101 1102 return nullptr; 1103 } 1104 1105 Value *llvm::SimplifySDivInst(Value *Op0, Value *Op1, const DataLayout &DL, 1106 const TargetLibraryInfo *TLI, 1107 const DominatorTree *DT, AssumptionCache *AC, 1108 const Instruction *CxtI) { 1109 return ::SimplifySDivInst(Op0, Op1, Query(DL, TLI, DT, AC, CxtI), 1110 RecursionLimit); 1111 } 1112 1113 /// Given operands for a UDiv, see if we can fold the result. 1114 /// If not, this returns null. 1115 static Value *SimplifyUDivInst(Value *Op0, Value *Op1, const Query &Q, 1116 unsigned MaxRecurse) { 1117 if (Value *V = SimplifyDiv(Instruction::UDiv, Op0, Op1, Q, MaxRecurse)) 1118 return V; 1119 1120 // udiv %V, C -> 0 if %V < C 1121 if (MaxRecurse) { 1122 if (Constant *C = dyn_cast_or_null<Constant>(SimplifyICmpInst( 1123 ICmpInst::ICMP_ULT, Op0, Op1, Q, MaxRecurse - 1))) { 1124 if (C->isAllOnesValue()) { 1125 return Constant::getNullValue(Op0->getType()); 1126 } 1127 } 1128 } 1129 1130 return nullptr; 1131 } 1132 1133 Value *llvm::SimplifyUDivInst(Value *Op0, Value *Op1, const DataLayout &DL, 1134 const TargetLibraryInfo *TLI, 1135 const DominatorTree *DT, AssumptionCache *AC, 1136 const Instruction *CxtI) { 1137 return ::SimplifyUDivInst(Op0, Op1, Query(DL, TLI, DT, AC, CxtI), 1138 RecursionLimit); 1139 } 1140 1141 static Value *SimplifyFDivInst(Value *Op0, Value *Op1, FastMathFlags FMF, 1142 const Query &Q, unsigned) { 1143 // undef / X -> undef (the undef could be a snan). 1144 if (match(Op0, m_Undef())) 1145 return Op0; 1146 1147 // X / undef -> undef 1148 if (match(Op1, m_Undef())) 1149 return Op1; 1150 1151 // X / 1.0 -> X 1152 if (match(Op1, m_FPOne())) 1153 return Op0; 1154 1155 // 0 / X -> 0 1156 // Requires that NaNs are off (X could be zero) and signed zeroes are 1157 // ignored (X could be positive or negative, so the output sign is unknown). 1158 if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op0, m_AnyZero())) 1159 return Op0; 1160 1161 if (FMF.noNaNs()) { 1162 // X / X -> 1.0 is legal when NaNs are ignored. 1163 if (Op0 == Op1) 1164 return ConstantFP::get(Op0->getType(), 1.0); 1165 1166 // -X / X -> -1.0 and 1167 // X / -X -> -1.0 are legal when NaNs are ignored. 1168 // We can ignore signed zeros because +-0.0/+-0.0 is NaN and ignored. 1169 if ((BinaryOperator::isFNeg(Op0, /*IgnoreZeroSign=*/true) && 1170 BinaryOperator::getFNegArgument(Op0) == Op1) || 1171 (BinaryOperator::isFNeg(Op1, /*IgnoreZeroSign=*/true) && 1172 BinaryOperator::getFNegArgument(Op1) == Op0)) 1173 return ConstantFP::get(Op0->getType(), -1.0); 1174 } 1175 1176 return nullptr; 1177 } 1178 1179 Value *llvm::SimplifyFDivInst(Value *Op0, Value *Op1, FastMathFlags FMF, 1180 const DataLayout &DL, 1181 const TargetLibraryInfo *TLI, 1182 const DominatorTree *DT, AssumptionCache *AC, 1183 const Instruction *CxtI) { 1184 return ::SimplifyFDivInst(Op0, Op1, FMF, Query(DL, TLI, DT, AC, CxtI), 1185 RecursionLimit); 1186 } 1187 1188 /// Given operands for an SRem or URem, see if we can fold the result. 1189 /// If not, this returns null. 1190 static Value *SimplifyRem(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1, 1191 const Query &Q, unsigned MaxRecurse) { 1192 if (Constant *C0 = dyn_cast<Constant>(Op0)) 1193 if (Constant *C1 = dyn_cast<Constant>(Op1)) 1194 return ConstantFoldBinaryOpOperands(Opcode, C0, C1, Q.DL); 1195 1196 // X % undef -> undef 1197 if (match(Op1, m_Undef())) 1198 return Op1; 1199 1200 // undef % X -> 0 1201 if (match(Op0, m_Undef())) 1202 return Constant::getNullValue(Op0->getType()); 1203 1204 // 0 % X -> 0, we don't need to preserve faults! 1205 if (match(Op0, m_Zero())) 1206 return Op0; 1207 1208 // X % 0 -> undef, we don't need to preserve faults! 1209 if (match(Op1, m_Zero())) 1210 return UndefValue::get(Op0->getType()); 1211 1212 // X % 1 -> 0 1213 if (match(Op1, m_One())) 1214 return Constant::getNullValue(Op0->getType()); 1215 1216 if (Op0->getType()->isIntegerTy(1)) 1217 // It can't be remainder by zero, hence it must be remainder by one. 1218 return Constant::getNullValue(Op0->getType()); 1219 1220 // X % X -> 0 1221 if (Op0 == Op1) 1222 return Constant::getNullValue(Op0->getType()); 1223 1224 // (X % Y) % Y -> X % Y 1225 if ((Opcode == Instruction::SRem && 1226 match(Op0, m_SRem(m_Value(), m_Specific(Op1)))) || 1227 (Opcode == Instruction::URem && 1228 match(Op0, m_URem(m_Value(), m_Specific(Op1))))) 1229 return Op0; 1230 1231 // If the operation is with the result of a select instruction, check whether 1232 // operating on either branch of the select always yields the same value. 1233 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 1234 if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse)) 1235 return V; 1236 1237 // If the operation is with the result of a phi instruction, check whether 1238 // operating on all incoming values of the phi always yields the same value. 1239 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 1240 if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse)) 1241 return V; 1242 1243 return nullptr; 1244 } 1245 1246 /// Given operands for an SRem, see if we can fold the result. 1247 /// If not, this returns null. 1248 static Value *SimplifySRemInst(Value *Op0, Value *Op1, const Query &Q, 1249 unsigned MaxRecurse) { 1250 if (Value *V = SimplifyRem(Instruction::SRem, Op0, Op1, Q, MaxRecurse)) 1251 return V; 1252 1253 return nullptr; 1254 } 1255 1256 Value *llvm::SimplifySRemInst(Value *Op0, Value *Op1, const DataLayout &DL, 1257 const TargetLibraryInfo *TLI, 1258 const DominatorTree *DT, AssumptionCache *AC, 1259 const Instruction *CxtI) { 1260 return ::SimplifySRemInst(Op0, Op1, Query(DL, TLI, DT, AC, CxtI), 1261 RecursionLimit); 1262 } 1263 1264 /// Given operands for a URem, see if we can fold the result. 1265 /// If not, this returns null. 1266 static Value *SimplifyURemInst(Value *Op0, Value *Op1, const Query &Q, 1267 unsigned MaxRecurse) { 1268 if (Value *V = SimplifyRem(Instruction::URem, Op0, Op1, Q, MaxRecurse)) 1269 return V; 1270 1271 // urem %V, C -> %V if %V < C 1272 if (MaxRecurse) { 1273 if (Constant *C = dyn_cast_or_null<Constant>(SimplifyICmpInst( 1274 ICmpInst::ICMP_ULT, Op0, Op1, Q, MaxRecurse - 1))) { 1275 if (C->isAllOnesValue()) { 1276 return Op0; 1277 } 1278 } 1279 } 1280 1281 return nullptr; 1282 } 1283 1284 Value *llvm::SimplifyURemInst(Value *Op0, Value *Op1, const DataLayout &DL, 1285 const TargetLibraryInfo *TLI, 1286 const DominatorTree *DT, AssumptionCache *AC, 1287 const Instruction *CxtI) { 1288 return ::SimplifyURemInst(Op0, Op1, Query(DL, TLI, DT, AC, CxtI), 1289 RecursionLimit); 1290 } 1291 1292 static Value *SimplifyFRemInst(Value *Op0, Value *Op1, FastMathFlags FMF, 1293 const Query &, unsigned) { 1294 // undef % X -> undef (the undef could be a snan). 1295 if (match(Op0, m_Undef())) 1296 return Op0; 1297 1298 // X % undef -> undef 1299 if (match(Op1, m_Undef())) 1300 return Op1; 1301 1302 // 0 % X -> 0 1303 // Requires that NaNs are off (X could be zero) and signed zeroes are 1304 // ignored (X could be positive or negative, so the output sign is unknown). 1305 if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op0, m_AnyZero())) 1306 return Op0; 1307 1308 return nullptr; 1309 } 1310 1311 Value *llvm::SimplifyFRemInst(Value *Op0, Value *Op1, FastMathFlags FMF, 1312 const DataLayout &DL, 1313 const TargetLibraryInfo *TLI, 1314 const DominatorTree *DT, AssumptionCache *AC, 1315 const Instruction *CxtI) { 1316 return ::SimplifyFRemInst(Op0, Op1, FMF, Query(DL, TLI, DT, AC, CxtI), 1317 RecursionLimit); 1318 } 1319 1320 /// Returns true if a shift by \c Amount always yields undef. 1321 static bool isUndefShift(Value *Amount) { 1322 Constant *C = dyn_cast<Constant>(Amount); 1323 if (!C) 1324 return false; 1325 1326 // X shift by undef -> undef because it may shift by the bitwidth. 1327 if (isa<UndefValue>(C)) 1328 return true; 1329 1330 // Shifting by the bitwidth or more is undefined. 1331 if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1332 if (CI->getValue().getLimitedValue() >= 1333 CI->getType()->getScalarSizeInBits()) 1334 return true; 1335 1336 // If all lanes of a vector shift are undefined the whole shift is. 1337 if (isa<ConstantVector>(C) || isa<ConstantDataVector>(C)) { 1338 for (unsigned I = 0, E = C->getType()->getVectorNumElements(); I != E; ++I) 1339 if (!isUndefShift(C->getAggregateElement(I))) 1340 return false; 1341 return true; 1342 } 1343 1344 return false; 1345 } 1346 1347 /// Given operands for an Shl, LShr or AShr, see if we can fold the result. 1348 /// If not, this returns null. 1349 static Value *SimplifyShift(unsigned Opcode, Value *Op0, Value *Op1, 1350 const Query &Q, unsigned MaxRecurse) { 1351 if (Constant *C0 = dyn_cast<Constant>(Op0)) 1352 if (Constant *C1 = dyn_cast<Constant>(Op1)) 1353 return ConstantFoldBinaryOpOperands(Opcode, C0, C1, Q.DL); 1354 1355 // 0 shift by X -> 0 1356 if (match(Op0, m_Zero())) 1357 return Op0; 1358 1359 // X shift by 0 -> X 1360 if (match(Op1, m_Zero())) 1361 return Op0; 1362 1363 // Fold undefined shifts. 1364 if (isUndefShift(Op1)) 1365 return UndefValue::get(Op0->getType()); 1366 1367 // If the operation is with the result of a select instruction, check whether 1368 // operating on either branch of the select always yields the same value. 1369 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 1370 if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse)) 1371 return V; 1372 1373 // If the operation is with the result of a phi instruction, check whether 1374 // operating on all incoming values of the phi always yields the same value. 1375 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 1376 if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse)) 1377 return V; 1378 1379 // If any bits in the shift amount make that value greater than or equal to 1380 // the number of bits in the type, the shift is undefined. 1381 unsigned BitWidth = Op1->getType()->getScalarSizeInBits(); 1382 APInt KnownZero(BitWidth, 0); 1383 APInt KnownOne(BitWidth, 0); 1384 computeKnownBits(Op1, KnownZero, KnownOne, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 1385 if (KnownOne.getLimitedValue() >= BitWidth) 1386 return UndefValue::get(Op0->getType()); 1387 1388 // If all valid bits in the shift amount are known zero, the first operand is 1389 // unchanged. 1390 unsigned NumValidShiftBits = Log2_32_Ceil(BitWidth); 1391 APInt ShiftAmountMask = APInt::getLowBitsSet(BitWidth, NumValidShiftBits); 1392 if ((KnownZero & ShiftAmountMask) == ShiftAmountMask) 1393 return Op0; 1394 1395 return nullptr; 1396 } 1397 1398 /// \brief Given operands for an Shl, LShr or AShr, see if we can 1399 /// fold the result. If not, this returns null. 1400 static Value *SimplifyRightShift(unsigned Opcode, Value *Op0, Value *Op1, 1401 bool isExact, const Query &Q, 1402 unsigned MaxRecurse) { 1403 if (Value *V = SimplifyShift(Opcode, Op0, Op1, Q, MaxRecurse)) 1404 return V; 1405 1406 // X >> X -> 0 1407 if (Op0 == Op1) 1408 return Constant::getNullValue(Op0->getType()); 1409 1410 // undef >> X -> 0 1411 // undef >> X -> undef (if it's exact) 1412 if (match(Op0, m_Undef())) 1413 return isExact ? Op0 : Constant::getNullValue(Op0->getType()); 1414 1415 // The low bit cannot be shifted out of an exact shift if it is set. 1416 if (isExact) { 1417 unsigned BitWidth = Op0->getType()->getScalarSizeInBits(); 1418 APInt Op0KnownZero(BitWidth, 0); 1419 APInt Op0KnownOne(BitWidth, 0); 1420 computeKnownBits(Op0, Op0KnownZero, Op0KnownOne, Q.DL, /*Depth=*/0, Q.AC, 1421 Q.CxtI, Q.DT); 1422 if (Op0KnownOne[0]) 1423 return Op0; 1424 } 1425 1426 return nullptr; 1427 } 1428 1429 /// Given operands for an Shl, see if we can fold the result. 1430 /// If not, this returns null. 1431 static Value *SimplifyShlInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, 1432 const Query &Q, unsigned MaxRecurse) { 1433 if (Value *V = SimplifyShift(Instruction::Shl, Op0, Op1, Q, MaxRecurse)) 1434 return V; 1435 1436 // undef << X -> 0 1437 // undef << X -> undef if (if it's NSW/NUW) 1438 if (match(Op0, m_Undef())) 1439 return isNSW || isNUW ? Op0 : Constant::getNullValue(Op0->getType()); 1440 1441 // (X >> A) << A -> X 1442 Value *X; 1443 if (match(Op0, m_Exact(m_Shr(m_Value(X), m_Specific(Op1))))) 1444 return X; 1445 return nullptr; 1446 } 1447 1448 Value *llvm::SimplifyShlInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, 1449 const DataLayout &DL, const TargetLibraryInfo *TLI, 1450 const DominatorTree *DT, AssumptionCache *AC, 1451 const Instruction *CxtI) { 1452 return ::SimplifyShlInst(Op0, Op1, isNSW, isNUW, Query(DL, TLI, DT, AC, CxtI), 1453 RecursionLimit); 1454 } 1455 1456 /// Given operands for an LShr, see if we can fold the result. 1457 /// If not, this returns null. 1458 static Value *SimplifyLShrInst(Value *Op0, Value *Op1, bool isExact, 1459 const Query &Q, unsigned MaxRecurse) { 1460 if (Value *V = SimplifyRightShift(Instruction::LShr, Op0, Op1, isExact, Q, 1461 MaxRecurse)) 1462 return V; 1463 1464 // (X << A) >> A -> X 1465 Value *X; 1466 if (match(Op0, m_NUWShl(m_Value(X), m_Specific(Op1)))) 1467 return X; 1468 1469 return nullptr; 1470 } 1471 1472 Value *llvm::SimplifyLShrInst(Value *Op0, Value *Op1, bool isExact, 1473 const DataLayout &DL, 1474 const TargetLibraryInfo *TLI, 1475 const DominatorTree *DT, AssumptionCache *AC, 1476 const Instruction *CxtI) { 1477 return ::SimplifyLShrInst(Op0, Op1, isExact, Query(DL, TLI, DT, AC, CxtI), 1478 RecursionLimit); 1479 } 1480 1481 /// Given operands for an AShr, see if we can fold the result. 1482 /// If not, this returns null. 1483 static Value *SimplifyAShrInst(Value *Op0, Value *Op1, bool isExact, 1484 const Query &Q, unsigned MaxRecurse) { 1485 if (Value *V = SimplifyRightShift(Instruction::AShr, Op0, Op1, isExact, Q, 1486 MaxRecurse)) 1487 return V; 1488 1489 // all ones >>a X -> all ones 1490 if (match(Op0, m_AllOnes())) 1491 return Op0; 1492 1493 // (X << A) >> A -> X 1494 Value *X; 1495 if (match(Op0, m_NSWShl(m_Value(X), m_Specific(Op1)))) 1496 return X; 1497 1498 // Arithmetic shifting an all-sign-bit value is a no-op. 1499 unsigned NumSignBits = ComputeNumSignBits(Op0, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 1500 if (NumSignBits == Op0->getType()->getScalarSizeInBits()) 1501 return Op0; 1502 1503 return nullptr; 1504 } 1505 1506 Value *llvm::SimplifyAShrInst(Value *Op0, Value *Op1, bool isExact, 1507 const DataLayout &DL, 1508 const TargetLibraryInfo *TLI, 1509 const DominatorTree *DT, AssumptionCache *AC, 1510 const Instruction *CxtI) { 1511 return ::SimplifyAShrInst(Op0, Op1, isExact, Query(DL, TLI, DT, AC, CxtI), 1512 RecursionLimit); 1513 } 1514 1515 static Value *simplifyUnsignedRangeCheck(ICmpInst *ZeroICmp, 1516 ICmpInst *UnsignedICmp, bool IsAnd) { 1517 Value *X, *Y; 1518 1519 ICmpInst::Predicate EqPred; 1520 if (!match(ZeroICmp, m_ICmp(EqPred, m_Value(Y), m_Zero())) || 1521 !ICmpInst::isEquality(EqPred)) 1522 return nullptr; 1523 1524 ICmpInst::Predicate UnsignedPred; 1525 if (match(UnsignedICmp, m_ICmp(UnsignedPred, m_Value(X), m_Specific(Y))) && 1526 ICmpInst::isUnsigned(UnsignedPred)) 1527 ; 1528 else if (match(UnsignedICmp, 1529 m_ICmp(UnsignedPred, m_Value(Y), m_Specific(X))) && 1530 ICmpInst::isUnsigned(UnsignedPred)) 1531 UnsignedPred = ICmpInst::getSwappedPredicate(UnsignedPred); 1532 else 1533 return nullptr; 1534 1535 // X < Y && Y != 0 --> X < Y 1536 // X < Y || Y != 0 --> Y != 0 1537 if (UnsignedPred == ICmpInst::ICMP_ULT && EqPred == ICmpInst::ICMP_NE) 1538 return IsAnd ? UnsignedICmp : ZeroICmp; 1539 1540 // X >= Y || Y != 0 --> true 1541 // X >= Y || Y == 0 --> X >= Y 1542 if (UnsignedPred == ICmpInst::ICMP_UGE && !IsAnd) { 1543 if (EqPred == ICmpInst::ICMP_NE) 1544 return getTrue(UnsignedICmp->getType()); 1545 return UnsignedICmp; 1546 } 1547 1548 // X < Y && Y == 0 --> false 1549 if (UnsignedPred == ICmpInst::ICMP_ULT && EqPred == ICmpInst::ICMP_EQ && 1550 IsAnd) 1551 return getFalse(UnsignedICmp->getType()); 1552 1553 return nullptr; 1554 } 1555 1556 /// Commuted variants are assumed to be handled by calling this function again 1557 /// with the parameters swapped. 1558 static Value *simplifyAndOfICmpsWithSameOperands(ICmpInst *Op0, ICmpInst *Op1) { 1559 ICmpInst::Predicate Pred0, Pred1; 1560 Value *A ,*B; 1561 if (!match(Op0, m_ICmp(Pred0, m_Value(A), m_Value(B))) || 1562 !match(Op1, m_ICmp(Pred1, m_Specific(A), m_Specific(B)))) 1563 return nullptr; 1564 1565 // We have (icmp Pred0, A, B) & (icmp Pred1, A, B). 1566 // If Op1 is always implied true by Op0, then Op0 is a subset of Op1, and we 1567 // can eliminate Op1 from this 'and'. 1568 if (ICmpInst::isImpliedTrueByMatchingCmp(Pred0, Pred1)) 1569 return Op0; 1570 1571 // Check for any combination of predicates that are guaranteed to be disjoint. 1572 if ((Pred0 == ICmpInst::getInversePredicate(Pred1)) || 1573 (Pred0 == ICmpInst::ICMP_EQ && ICmpInst::isFalseWhenEqual(Pred1)) || 1574 (Pred0 == ICmpInst::ICMP_SLT && Pred1 == ICmpInst::ICMP_SGT) || 1575 (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_UGT)) 1576 return getFalse(Op0->getType()); 1577 1578 return nullptr; 1579 } 1580 1581 /// Commuted variants are assumed to be handled by calling this function again 1582 /// with the parameters swapped. 1583 static Value *SimplifyAndOfICmps(ICmpInst *Op0, ICmpInst *Op1) { 1584 if (Value *X = simplifyUnsignedRangeCheck(Op0, Op1, /*IsAnd=*/true)) 1585 return X; 1586 1587 if (Value *X = simplifyAndOfICmpsWithSameOperands(Op0, Op1)) 1588 return X; 1589 1590 // Look for this pattern: (icmp V, C0) & (icmp V, C1)). 1591 Type *ITy = Op0->getType(); 1592 ICmpInst::Predicate Pred0, Pred1; 1593 const APInt *C0, *C1; 1594 Value *V; 1595 if (match(Op0, m_ICmp(Pred0, m_Value(V), m_APInt(C0))) && 1596 match(Op1, m_ICmp(Pred1, m_Specific(V), m_APInt(C1)))) { 1597 // Make a constant range that's the intersection of the two icmp ranges. 1598 // If the intersection is empty, we know that the result is false. 1599 auto Range0 = ConstantRange::makeAllowedICmpRegion(Pred0, *C0); 1600 auto Range1 = ConstantRange::makeAllowedICmpRegion(Pred1, *C1); 1601 if (Range0.intersectWith(Range1).isEmptySet()) 1602 return getFalse(ITy); 1603 } 1604 1605 // (icmp (add V, C0), C1) & (icmp V, C0) 1606 if (!match(Op0, m_ICmp(Pred0, m_Add(m_Value(V), m_APInt(C0)), m_APInt(C1)))) 1607 return nullptr; 1608 1609 if (!match(Op1, m_ICmp(Pred1, m_Specific(V), m_Value()))) 1610 return nullptr; 1611 1612 auto *AddInst = cast<BinaryOperator>(Op0->getOperand(0)); 1613 if (AddInst->getOperand(1) != Op1->getOperand(1)) 1614 return nullptr; 1615 1616 bool isNSW = AddInst->hasNoSignedWrap(); 1617 bool isNUW = AddInst->hasNoUnsignedWrap(); 1618 1619 const APInt Delta = *C1 - *C0; 1620 if (C0->isStrictlyPositive()) { 1621 if (Delta == 2) { 1622 if (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_SGT) 1623 return getFalse(ITy); 1624 if (Pred0 == ICmpInst::ICMP_SLT && Pred1 == ICmpInst::ICMP_SGT && isNSW) 1625 return getFalse(ITy); 1626 } 1627 if (Delta == 1) { 1628 if (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_SGT) 1629 return getFalse(ITy); 1630 if (Pred0 == ICmpInst::ICMP_SLE && Pred1 == ICmpInst::ICMP_SGT && isNSW) 1631 return getFalse(ITy); 1632 } 1633 } 1634 if (C0->getBoolValue() && isNUW) { 1635 if (Delta == 2) 1636 if (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_UGT) 1637 return getFalse(ITy); 1638 if (Delta == 1) 1639 if (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_UGT) 1640 return getFalse(ITy); 1641 } 1642 1643 return nullptr; 1644 } 1645 1646 /// Given operands for an And, see if we can fold the result. 1647 /// If not, this returns null. 1648 static Value *SimplifyAndInst(Value *Op0, Value *Op1, const Query &Q, 1649 unsigned MaxRecurse) { 1650 if (Constant *CLHS = dyn_cast<Constant>(Op0)) { 1651 if (Constant *CRHS = dyn_cast<Constant>(Op1)) 1652 return ConstantFoldBinaryOpOperands(Instruction::And, CLHS, CRHS, Q.DL); 1653 1654 // Canonicalize the constant to the RHS. 1655 std::swap(Op0, Op1); 1656 } 1657 1658 // X & undef -> 0 1659 if (match(Op1, m_Undef())) 1660 return Constant::getNullValue(Op0->getType()); 1661 1662 // X & X = X 1663 if (Op0 == Op1) 1664 return Op0; 1665 1666 // X & 0 = 0 1667 if (match(Op1, m_Zero())) 1668 return Op1; 1669 1670 // X & -1 = X 1671 if (match(Op1, m_AllOnes())) 1672 return Op0; 1673 1674 // A & ~A = ~A & A = 0 1675 if (match(Op0, m_Not(m_Specific(Op1))) || 1676 match(Op1, m_Not(m_Specific(Op0)))) 1677 return Constant::getNullValue(Op0->getType()); 1678 1679 // (A | ?) & A = A 1680 Value *A = nullptr, *B = nullptr; 1681 if (match(Op0, m_Or(m_Value(A), m_Value(B))) && 1682 (A == Op1 || B == Op1)) 1683 return Op1; 1684 1685 // A & (A | ?) = A 1686 if (match(Op1, m_Or(m_Value(A), m_Value(B))) && 1687 (A == Op0 || B == Op0)) 1688 return Op0; 1689 1690 // A & (-A) = A if A is a power of two or zero. 1691 if (match(Op0, m_Neg(m_Specific(Op1))) || 1692 match(Op1, m_Neg(m_Specific(Op0)))) { 1693 if (isKnownToBeAPowerOfTwo(Op0, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI, 1694 Q.DT)) 1695 return Op0; 1696 if (isKnownToBeAPowerOfTwo(Op1, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI, 1697 Q.DT)) 1698 return Op1; 1699 } 1700 1701 if (auto *ICILHS = dyn_cast<ICmpInst>(Op0)) { 1702 if (auto *ICIRHS = dyn_cast<ICmpInst>(Op1)) { 1703 if (Value *V = SimplifyAndOfICmps(ICILHS, ICIRHS)) 1704 return V; 1705 if (Value *V = SimplifyAndOfICmps(ICIRHS, ICILHS)) 1706 return V; 1707 } 1708 } 1709 1710 // The compares may be hidden behind casts. Look through those and try the 1711 // same folds as above. 1712 auto *Cast0 = dyn_cast<CastInst>(Op0); 1713 auto *Cast1 = dyn_cast<CastInst>(Op1); 1714 if (Cast0 && Cast1 && Cast0->getOpcode() == Cast1->getOpcode() && 1715 Cast0->getSrcTy() == Cast1->getSrcTy()) { 1716 auto *Cmp0 = dyn_cast<ICmpInst>(Cast0->getOperand(0)); 1717 auto *Cmp1 = dyn_cast<ICmpInst>(Cast1->getOperand(0)); 1718 if (Cmp0 && Cmp1) { 1719 Instruction::CastOps CastOpc = Cast0->getOpcode(); 1720 Type *ResultType = Cast0->getType(); 1721 if (auto *V = dyn_cast_or_null<Constant>(SimplifyAndOfICmps(Cmp0, Cmp1))) 1722 return ConstantExpr::getCast(CastOpc, V, ResultType); 1723 if (auto *V = dyn_cast_or_null<Constant>(SimplifyAndOfICmps(Cmp1, Cmp0))) 1724 return ConstantExpr::getCast(CastOpc, V, ResultType); 1725 } 1726 } 1727 1728 // Try some generic simplifications for associative operations. 1729 if (Value *V = SimplifyAssociativeBinOp(Instruction::And, Op0, Op1, Q, 1730 MaxRecurse)) 1731 return V; 1732 1733 // And distributes over Or. Try some generic simplifications based on this. 1734 if (Value *V = ExpandBinOp(Instruction::And, Op0, Op1, Instruction::Or, 1735 Q, MaxRecurse)) 1736 return V; 1737 1738 // And distributes over Xor. Try some generic simplifications based on this. 1739 if (Value *V = ExpandBinOp(Instruction::And, Op0, Op1, Instruction::Xor, 1740 Q, MaxRecurse)) 1741 return V; 1742 1743 // If the operation is with the result of a select instruction, check whether 1744 // operating on either branch of the select always yields the same value. 1745 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 1746 if (Value *V = ThreadBinOpOverSelect(Instruction::And, Op0, Op1, Q, 1747 MaxRecurse)) 1748 return V; 1749 1750 // If the operation is with the result of a phi instruction, check whether 1751 // operating on all incoming values of the phi always yields the same value. 1752 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 1753 if (Value *V = ThreadBinOpOverPHI(Instruction::And, Op0, Op1, Q, 1754 MaxRecurse)) 1755 return V; 1756 1757 return nullptr; 1758 } 1759 1760 Value *llvm::SimplifyAndInst(Value *Op0, Value *Op1, const DataLayout &DL, 1761 const TargetLibraryInfo *TLI, 1762 const DominatorTree *DT, AssumptionCache *AC, 1763 const Instruction *CxtI) { 1764 return ::SimplifyAndInst(Op0, Op1, Query(DL, TLI, DT, AC, CxtI), 1765 RecursionLimit); 1766 } 1767 1768 /// Commuted variants are assumed to be handled by calling this function again 1769 /// with the parameters swapped. 1770 static Value *simplifyOrOfICmpsWithSameOperands(ICmpInst *Op0, ICmpInst *Op1) { 1771 ICmpInst::Predicate Pred0, Pred1; 1772 Value *A ,*B; 1773 if (!match(Op0, m_ICmp(Pred0, m_Value(A), m_Value(B))) || 1774 !match(Op1, m_ICmp(Pred1, m_Specific(A), m_Specific(B)))) 1775 return nullptr; 1776 1777 // We have (icmp Pred0, A, B) | (icmp Pred1, A, B). 1778 // If Op1 is always implied true by Op0, then Op0 is a subset of Op1, and we 1779 // can eliminate Op0 from this 'or'. 1780 if (ICmpInst::isImpliedTrueByMatchingCmp(Pred0, Pred1)) 1781 return Op1; 1782 1783 // Check for any combination of predicates that cover the entire range of 1784 // possibilities. 1785 if ((Pred0 == ICmpInst::getInversePredicate(Pred1)) || 1786 (Pred0 == ICmpInst::ICMP_NE && ICmpInst::isTrueWhenEqual(Pred1)) || 1787 (Pred0 == ICmpInst::ICMP_SLE && Pred1 == ICmpInst::ICMP_SGE) || 1788 (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_UGE)) 1789 return getTrue(Op0->getType()); 1790 1791 return nullptr; 1792 } 1793 1794 /// Commuted variants are assumed to be handled by calling this function again 1795 /// with the parameters swapped. 1796 static Value *SimplifyOrOfICmps(ICmpInst *Op0, ICmpInst *Op1) { 1797 if (Value *X = simplifyUnsignedRangeCheck(Op0, Op1, /*IsAnd=*/false)) 1798 return X; 1799 1800 if (Value *X = simplifyOrOfICmpsWithSameOperands(Op0, Op1)) 1801 return X; 1802 1803 // (icmp (add V, C0), C1) | (icmp V, C0) 1804 ICmpInst::Predicate Pred0, Pred1; 1805 const APInt *C0, *C1; 1806 Value *V; 1807 if (!match(Op0, m_ICmp(Pred0, m_Add(m_Value(V), m_APInt(C0)), m_APInt(C1)))) 1808 return nullptr; 1809 1810 if (!match(Op1, m_ICmp(Pred1, m_Specific(V), m_Value()))) 1811 return nullptr; 1812 1813 auto *AddInst = cast<BinaryOperator>(Op0->getOperand(0)); 1814 if (AddInst->getOperand(1) != Op1->getOperand(1)) 1815 return nullptr; 1816 1817 Type *ITy = Op0->getType(); 1818 bool isNSW = AddInst->hasNoSignedWrap(); 1819 bool isNUW = AddInst->hasNoUnsignedWrap(); 1820 1821 const APInt Delta = *C1 - *C0; 1822 if (C0->isStrictlyPositive()) { 1823 if (Delta == 2) { 1824 if (Pred0 == ICmpInst::ICMP_UGE && Pred1 == ICmpInst::ICMP_SLE) 1825 return getTrue(ITy); 1826 if (Pred0 == ICmpInst::ICMP_SGE && Pred1 == ICmpInst::ICMP_SLE && isNSW) 1827 return getTrue(ITy); 1828 } 1829 if (Delta == 1) { 1830 if (Pred0 == ICmpInst::ICMP_UGT && Pred1 == ICmpInst::ICMP_SLE) 1831 return getTrue(ITy); 1832 if (Pred0 == ICmpInst::ICMP_SGT && Pred1 == ICmpInst::ICMP_SLE && isNSW) 1833 return getTrue(ITy); 1834 } 1835 } 1836 if (C0->getBoolValue() && isNUW) { 1837 if (Delta == 2) 1838 if (Pred0 == ICmpInst::ICMP_UGE && Pred1 == ICmpInst::ICMP_ULE) 1839 return getTrue(ITy); 1840 if (Delta == 1) 1841 if (Pred0 == ICmpInst::ICMP_UGT && Pred1 == ICmpInst::ICMP_ULE) 1842 return getTrue(ITy); 1843 } 1844 1845 return nullptr; 1846 } 1847 1848 /// Given operands for an Or, see if we can fold the result. 1849 /// If not, this returns null. 1850 static Value *SimplifyOrInst(Value *Op0, Value *Op1, const Query &Q, 1851 unsigned MaxRecurse) { 1852 if (Constant *CLHS = dyn_cast<Constant>(Op0)) { 1853 if (Constant *CRHS = dyn_cast<Constant>(Op1)) 1854 return ConstantFoldBinaryOpOperands(Instruction::Or, CLHS, CRHS, Q.DL); 1855 1856 // Canonicalize the constant to the RHS. 1857 std::swap(Op0, Op1); 1858 } 1859 1860 // X | undef -> -1 1861 if (match(Op1, m_Undef())) 1862 return Constant::getAllOnesValue(Op0->getType()); 1863 1864 // X | X = X 1865 if (Op0 == Op1) 1866 return Op0; 1867 1868 // X | 0 = X 1869 if (match(Op1, m_Zero())) 1870 return Op0; 1871 1872 // X | -1 = -1 1873 if (match(Op1, m_AllOnes())) 1874 return Op1; 1875 1876 // A | ~A = ~A | A = -1 1877 if (match(Op0, m_Not(m_Specific(Op1))) || 1878 match(Op1, m_Not(m_Specific(Op0)))) 1879 return Constant::getAllOnesValue(Op0->getType()); 1880 1881 // (A & ?) | A = A 1882 Value *A = nullptr, *B = nullptr; 1883 if (match(Op0, m_And(m_Value(A), m_Value(B))) && 1884 (A == Op1 || B == Op1)) 1885 return Op1; 1886 1887 // A | (A & ?) = A 1888 if (match(Op1, m_And(m_Value(A), m_Value(B))) && 1889 (A == Op0 || B == Op0)) 1890 return Op0; 1891 1892 // ~(A & ?) | A = -1 1893 if (match(Op0, m_Not(m_And(m_Value(A), m_Value(B)))) && 1894 (A == Op1 || B == Op1)) 1895 return Constant::getAllOnesValue(Op1->getType()); 1896 1897 // A | ~(A & ?) = -1 1898 if (match(Op1, m_Not(m_And(m_Value(A), m_Value(B)))) && 1899 (A == Op0 || B == Op0)) 1900 return Constant::getAllOnesValue(Op0->getType()); 1901 1902 if (auto *ICILHS = dyn_cast<ICmpInst>(Op0)) { 1903 if (auto *ICIRHS = dyn_cast<ICmpInst>(Op1)) { 1904 if (Value *V = SimplifyOrOfICmps(ICILHS, ICIRHS)) 1905 return V; 1906 if (Value *V = SimplifyOrOfICmps(ICIRHS, ICILHS)) 1907 return V; 1908 } 1909 } 1910 1911 // Try some generic simplifications for associative operations. 1912 if (Value *V = SimplifyAssociativeBinOp(Instruction::Or, Op0, Op1, Q, 1913 MaxRecurse)) 1914 return V; 1915 1916 // Or distributes over And. Try some generic simplifications based on this. 1917 if (Value *V = ExpandBinOp(Instruction::Or, Op0, Op1, Instruction::And, Q, 1918 MaxRecurse)) 1919 return V; 1920 1921 // If the operation is with the result of a select instruction, check whether 1922 // operating on either branch of the select always yields the same value. 1923 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 1924 if (Value *V = ThreadBinOpOverSelect(Instruction::Or, Op0, Op1, Q, 1925 MaxRecurse)) 1926 return V; 1927 1928 // (A & C)|(B & D) 1929 Value *C = nullptr, *D = nullptr; 1930 if (match(Op0, m_And(m_Value(A), m_Value(C))) && 1931 match(Op1, m_And(m_Value(B), m_Value(D)))) { 1932 ConstantInt *C1 = dyn_cast<ConstantInt>(C); 1933 ConstantInt *C2 = dyn_cast<ConstantInt>(D); 1934 if (C1 && C2 && (C1->getValue() == ~C2->getValue())) { 1935 // (A & C1)|(B & C2) 1936 // If we have: ((V + N) & C1) | (V & C2) 1937 // .. and C2 = ~C1 and C2 is 0+1+ and (N & C2) == 0 1938 // replace with V+N. 1939 Value *V1, *V2; 1940 if ((C2->getValue() & (C2->getValue() + 1)) == 0 && // C2 == 0+1+ 1941 match(A, m_Add(m_Value(V1), m_Value(V2)))) { 1942 // Add commutes, try both ways. 1943 if (V1 == B && 1944 MaskedValueIsZero(V2, C2->getValue(), Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 1945 return A; 1946 if (V2 == B && 1947 MaskedValueIsZero(V1, C2->getValue(), Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 1948 return A; 1949 } 1950 // Or commutes, try both ways. 1951 if ((C1->getValue() & (C1->getValue() + 1)) == 0 && 1952 match(B, m_Add(m_Value(V1), m_Value(V2)))) { 1953 // Add commutes, try both ways. 1954 if (V1 == A && 1955 MaskedValueIsZero(V2, C1->getValue(), Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 1956 return B; 1957 if (V2 == A && 1958 MaskedValueIsZero(V1, C1->getValue(), Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 1959 return B; 1960 } 1961 } 1962 } 1963 1964 // If the operation is with the result of a phi instruction, check whether 1965 // operating on all incoming values of the phi always yields the same value. 1966 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 1967 if (Value *V = ThreadBinOpOverPHI(Instruction::Or, Op0, Op1, Q, MaxRecurse)) 1968 return V; 1969 1970 return nullptr; 1971 } 1972 1973 Value *llvm::SimplifyOrInst(Value *Op0, Value *Op1, const DataLayout &DL, 1974 const TargetLibraryInfo *TLI, 1975 const DominatorTree *DT, AssumptionCache *AC, 1976 const Instruction *CxtI) { 1977 return ::SimplifyOrInst(Op0, Op1, Query(DL, TLI, DT, AC, CxtI), 1978 RecursionLimit); 1979 } 1980 1981 /// Given operands for a Xor, see if we can fold the result. 1982 /// If not, this returns null. 1983 static Value *SimplifyXorInst(Value *Op0, Value *Op1, const Query &Q, 1984 unsigned MaxRecurse) { 1985 if (Constant *CLHS = dyn_cast<Constant>(Op0)) { 1986 if (Constant *CRHS = dyn_cast<Constant>(Op1)) 1987 return ConstantFoldBinaryOpOperands(Instruction::Xor, CLHS, CRHS, Q.DL); 1988 1989 // Canonicalize the constant to the RHS. 1990 std::swap(Op0, Op1); 1991 } 1992 1993 // A ^ undef -> undef 1994 if (match(Op1, m_Undef())) 1995 return Op1; 1996 1997 // A ^ 0 = A 1998 if (match(Op1, m_Zero())) 1999 return Op0; 2000 2001 // A ^ A = 0 2002 if (Op0 == Op1) 2003 return Constant::getNullValue(Op0->getType()); 2004 2005 // A ^ ~A = ~A ^ A = -1 2006 if (match(Op0, m_Not(m_Specific(Op1))) || 2007 match(Op1, m_Not(m_Specific(Op0)))) 2008 return Constant::getAllOnesValue(Op0->getType()); 2009 2010 // Try some generic simplifications for associative operations. 2011 if (Value *V = SimplifyAssociativeBinOp(Instruction::Xor, Op0, Op1, Q, 2012 MaxRecurse)) 2013 return V; 2014 2015 // Threading Xor over selects and phi nodes is pointless, so don't bother. 2016 // Threading over the select in "A ^ select(cond, B, C)" means evaluating 2017 // "A^B" and "A^C" and seeing if they are equal; but they are equal if and 2018 // only if B and C are equal. If B and C are equal then (since we assume 2019 // that operands have already been simplified) "select(cond, B, C)" should 2020 // have been simplified to the common value of B and C already. Analysing 2021 // "A^B" and "A^C" thus gains nothing, but costs compile time. Similarly 2022 // for threading over phi nodes. 2023 2024 return nullptr; 2025 } 2026 2027 Value *llvm::SimplifyXorInst(Value *Op0, Value *Op1, const DataLayout &DL, 2028 const TargetLibraryInfo *TLI, 2029 const DominatorTree *DT, AssumptionCache *AC, 2030 const Instruction *CxtI) { 2031 return ::SimplifyXorInst(Op0, Op1, Query(DL, TLI, DT, AC, CxtI), 2032 RecursionLimit); 2033 } 2034 2035 static Type *GetCompareTy(Value *Op) { 2036 return CmpInst::makeCmpResultType(Op->getType()); 2037 } 2038 2039 /// Rummage around inside V looking for something equivalent to the comparison 2040 /// "LHS Pred RHS". Return such a value if found, otherwise return null. 2041 /// Helper function for analyzing max/min idioms. 2042 static Value *ExtractEquivalentCondition(Value *V, CmpInst::Predicate Pred, 2043 Value *LHS, Value *RHS) { 2044 SelectInst *SI = dyn_cast<SelectInst>(V); 2045 if (!SI) 2046 return nullptr; 2047 CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition()); 2048 if (!Cmp) 2049 return nullptr; 2050 Value *CmpLHS = Cmp->getOperand(0), *CmpRHS = Cmp->getOperand(1); 2051 if (Pred == Cmp->getPredicate() && LHS == CmpLHS && RHS == CmpRHS) 2052 return Cmp; 2053 if (Pred == CmpInst::getSwappedPredicate(Cmp->getPredicate()) && 2054 LHS == CmpRHS && RHS == CmpLHS) 2055 return Cmp; 2056 return nullptr; 2057 } 2058 2059 // A significant optimization not implemented here is assuming that alloca 2060 // addresses are not equal to incoming argument values. They don't *alias*, 2061 // as we say, but that doesn't mean they aren't equal, so we take a 2062 // conservative approach. 2063 // 2064 // This is inspired in part by C++11 5.10p1: 2065 // "Two pointers of the same type compare equal if and only if they are both 2066 // null, both point to the same function, or both represent the same 2067 // address." 2068 // 2069 // This is pretty permissive. 2070 // 2071 // It's also partly due to C11 6.5.9p6: 2072 // "Two pointers compare equal if and only if both are null pointers, both are 2073 // pointers to the same object (including a pointer to an object and a 2074 // subobject at its beginning) or function, both are pointers to one past the 2075 // last element of the same array object, or one is a pointer to one past the 2076 // end of one array object and the other is a pointer to the start of a 2077 // different array object that happens to immediately follow the first array 2078 // object in the address space.) 2079 // 2080 // C11's version is more restrictive, however there's no reason why an argument 2081 // couldn't be a one-past-the-end value for a stack object in the caller and be 2082 // equal to the beginning of a stack object in the callee. 2083 // 2084 // If the C and C++ standards are ever made sufficiently restrictive in this 2085 // area, it may be possible to update LLVM's semantics accordingly and reinstate 2086 // this optimization. 2087 static Constant * 2088 computePointerICmp(const DataLayout &DL, const TargetLibraryInfo *TLI, 2089 const DominatorTree *DT, CmpInst::Predicate Pred, 2090 const Instruction *CxtI, Value *LHS, Value *RHS) { 2091 // First, skip past any trivial no-ops. 2092 LHS = LHS->stripPointerCasts(); 2093 RHS = RHS->stripPointerCasts(); 2094 2095 // A non-null pointer is not equal to a null pointer. 2096 if (llvm::isKnownNonNull(LHS) && isa<ConstantPointerNull>(RHS) && 2097 (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE)) 2098 return ConstantInt::get(GetCompareTy(LHS), 2099 !CmpInst::isTrueWhenEqual(Pred)); 2100 2101 // We can only fold certain predicates on pointer comparisons. 2102 switch (Pred) { 2103 default: 2104 return nullptr; 2105 2106 // Equality comaprisons are easy to fold. 2107 case CmpInst::ICMP_EQ: 2108 case CmpInst::ICMP_NE: 2109 break; 2110 2111 // We can only handle unsigned relational comparisons because 'inbounds' on 2112 // a GEP only protects against unsigned wrapping. 2113 case CmpInst::ICMP_UGT: 2114 case CmpInst::ICMP_UGE: 2115 case CmpInst::ICMP_ULT: 2116 case CmpInst::ICMP_ULE: 2117 // However, we have to switch them to their signed variants to handle 2118 // negative indices from the base pointer. 2119 Pred = ICmpInst::getSignedPredicate(Pred); 2120 break; 2121 } 2122 2123 // Strip off any constant offsets so that we can reason about them. 2124 // It's tempting to use getUnderlyingObject or even just stripInBoundsOffsets 2125 // here and compare base addresses like AliasAnalysis does, however there are 2126 // numerous hazards. AliasAnalysis and its utilities rely on special rules 2127 // governing loads and stores which don't apply to icmps. Also, AliasAnalysis 2128 // doesn't need to guarantee pointer inequality when it says NoAlias. 2129 Constant *LHSOffset = stripAndComputeConstantOffsets(DL, LHS); 2130 Constant *RHSOffset = stripAndComputeConstantOffsets(DL, RHS); 2131 2132 // If LHS and RHS are related via constant offsets to the same base 2133 // value, we can replace it with an icmp which just compares the offsets. 2134 if (LHS == RHS) 2135 return ConstantExpr::getICmp(Pred, LHSOffset, RHSOffset); 2136 2137 // Various optimizations for (in)equality comparisons. 2138 if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE) { 2139 // Different non-empty allocations that exist at the same time have 2140 // different addresses (if the program can tell). Global variables always 2141 // exist, so they always exist during the lifetime of each other and all 2142 // allocas. Two different allocas usually have different addresses... 2143 // 2144 // However, if there's an @llvm.stackrestore dynamically in between two 2145 // allocas, they may have the same address. It's tempting to reduce the 2146 // scope of the problem by only looking at *static* allocas here. That would 2147 // cover the majority of allocas while significantly reducing the likelihood 2148 // of having an @llvm.stackrestore pop up in the middle. However, it's not 2149 // actually impossible for an @llvm.stackrestore to pop up in the middle of 2150 // an entry block. Also, if we have a block that's not attached to a 2151 // function, we can't tell if it's "static" under the current definition. 2152 // Theoretically, this problem could be fixed by creating a new kind of 2153 // instruction kind specifically for static allocas. Such a new instruction 2154 // could be required to be at the top of the entry block, thus preventing it 2155 // from being subject to a @llvm.stackrestore. Instcombine could even 2156 // convert regular allocas into these special allocas. It'd be nifty. 2157 // However, until then, this problem remains open. 2158 // 2159 // So, we'll assume that two non-empty allocas have different addresses 2160 // for now. 2161 // 2162 // With all that, if the offsets are within the bounds of their allocations 2163 // (and not one-past-the-end! so we can't use inbounds!), and their 2164 // allocations aren't the same, the pointers are not equal. 2165 // 2166 // Note that it's not necessary to check for LHS being a global variable 2167 // address, due to canonicalization and constant folding. 2168 if (isa<AllocaInst>(LHS) && 2169 (isa<AllocaInst>(RHS) || isa<GlobalVariable>(RHS))) { 2170 ConstantInt *LHSOffsetCI = dyn_cast<ConstantInt>(LHSOffset); 2171 ConstantInt *RHSOffsetCI = dyn_cast<ConstantInt>(RHSOffset); 2172 uint64_t LHSSize, RHSSize; 2173 if (LHSOffsetCI && RHSOffsetCI && 2174 getObjectSize(LHS, LHSSize, DL, TLI) && 2175 getObjectSize(RHS, RHSSize, DL, TLI)) { 2176 const APInt &LHSOffsetValue = LHSOffsetCI->getValue(); 2177 const APInt &RHSOffsetValue = RHSOffsetCI->getValue(); 2178 if (!LHSOffsetValue.isNegative() && 2179 !RHSOffsetValue.isNegative() && 2180 LHSOffsetValue.ult(LHSSize) && 2181 RHSOffsetValue.ult(RHSSize)) { 2182 return ConstantInt::get(GetCompareTy(LHS), 2183 !CmpInst::isTrueWhenEqual(Pred)); 2184 } 2185 } 2186 2187 // Repeat the above check but this time without depending on DataLayout 2188 // or being able to compute a precise size. 2189 if (!cast<PointerType>(LHS->getType())->isEmptyTy() && 2190 !cast<PointerType>(RHS->getType())->isEmptyTy() && 2191 LHSOffset->isNullValue() && 2192 RHSOffset->isNullValue()) 2193 return ConstantInt::get(GetCompareTy(LHS), 2194 !CmpInst::isTrueWhenEqual(Pred)); 2195 } 2196 2197 // Even if an non-inbounds GEP occurs along the path we can still optimize 2198 // equality comparisons concerning the result. We avoid walking the whole 2199 // chain again by starting where the last calls to 2200 // stripAndComputeConstantOffsets left off and accumulate the offsets. 2201 Constant *LHSNoBound = stripAndComputeConstantOffsets(DL, LHS, true); 2202 Constant *RHSNoBound = stripAndComputeConstantOffsets(DL, RHS, true); 2203 if (LHS == RHS) 2204 return ConstantExpr::getICmp(Pred, 2205 ConstantExpr::getAdd(LHSOffset, LHSNoBound), 2206 ConstantExpr::getAdd(RHSOffset, RHSNoBound)); 2207 2208 // If one side of the equality comparison must come from a noalias call 2209 // (meaning a system memory allocation function), and the other side must 2210 // come from a pointer that cannot overlap with dynamically-allocated 2211 // memory within the lifetime of the current function (allocas, byval 2212 // arguments, globals), then determine the comparison result here. 2213 SmallVector<Value *, 8> LHSUObjs, RHSUObjs; 2214 GetUnderlyingObjects(LHS, LHSUObjs, DL); 2215 GetUnderlyingObjects(RHS, RHSUObjs, DL); 2216 2217 // Is the set of underlying objects all noalias calls? 2218 auto IsNAC = [](ArrayRef<Value *> Objects) { 2219 return all_of(Objects, isNoAliasCall); 2220 }; 2221 2222 // Is the set of underlying objects all things which must be disjoint from 2223 // noalias calls. For allocas, we consider only static ones (dynamic 2224 // allocas might be transformed into calls to malloc not simultaneously 2225 // live with the compared-to allocation). For globals, we exclude symbols 2226 // that might be resolve lazily to symbols in another dynamically-loaded 2227 // library (and, thus, could be malloc'ed by the implementation). 2228 auto IsAllocDisjoint = [](ArrayRef<Value *> Objects) { 2229 return all_of(Objects, [](Value *V) { 2230 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) 2231 return AI->getParent() && AI->getFunction() && AI->isStaticAlloca(); 2232 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) 2233 return (GV->hasLocalLinkage() || GV->hasHiddenVisibility() || 2234 GV->hasProtectedVisibility() || GV->hasGlobalUnnamedAddr()) && 2235 !GV->isThreadLocal(); 2236 if (const Argument *A = dyn_cast<Argument>(V)) 2237 return A->hasByValAttr(); 2238 return false; 2239 }); 2240 }; 2241 2242 if ((IsNAC(LHSUObjs) && IsAllocDisjoint(RHSUObjs)) || 2243 (IsNAC(RHSUObjs) && IsAllocDisjoint(LHSUObjs))) 2244 return ConstantInt::get(GetCompareTy(LHS), 2245 !CmpInst::isTrueWhenEqual(Pred)); 2246 2247 // Fold comparisons for non-escaping pointer even if the allocation call 2248 // cannot be elided. We cannot fold malloc comparison to null. Also, the 2249 // dynamic allocation call could be either of the operands. 2250 Value *MI = nullptr; 2251 if (isAllocLikeFn(LHS, TLI) && llvm::isKnownNonNullAt(RHS, CxtI, DT)) 2252 MI = LHS; 2253 else if (isAllocLikeFn(RHS, TLI) && llvm::isKnownNonNullAt(LHS, CxtI, DT)) 2254 MI = RHS; 2255 // FIXME: We should also fold the compare when the pointer escapes, but the 2256 // compare dominates the pointer escape 2257 if (MI && !PointerMayBeCaptured(MI, true, true)) 2258 return ConstantInt::get(GetCompareTy(LHS), 2259 CmpInst::isFalseWhenEqual(Pred)); 2260 } 2261 2262 // Otherwise, fail. 2263 return nullptr; 2264 } 2265 2266 /// Fold an icmp when its operands have i1 scalar type. 2267 static Value *simplifyICmpOfBools(CmpInst::Predicate Pred, Value *LHS, 2268 Value *RHS, const Query &Q) { 2269 Type *ITy = GetCompareTy(LHS); // The return type. 2270 Type *OpTy = LHS->getType(); // The operand type. 2271 if (!OpTy->getScalarType()->isIntegerTy(1)) 2272 return nullptr; 2273 2274 switch (Pred) { 2275 default: 2276 break; 2277 case ICmpInst::ICMP_EQ: 2278 // X == 1 -> X 2279 if (match(RHS, m_One())) 2280 return LHS; 2281 break; 2282 case ICmpInst::ICMP_NE: 2283 // X != 0 -> X 2284 if (match(RHS, m_Zero())) 2285 return LHS; 2286 break; 2287 case ICmpInst::ICMP_UGT: 2288 // X >u 0 -> X 2289 if (match(RHS, m_Zero())) 2290 return LHS; 2291 break; 2292 case ICmpInst::ICMP_UGE: 2293 // X >=u 1 -> X 2294 if (match(RHS, m_One())) 2295 return LHS; 2296 if (isImpliedCondition(RHS, LHS, Q.DL).getValueOr(false)) 2297 return getTrue(ITy); 2298 break; 2299 case ICmpInst::ICMP_SGE: 2300 /// For signed comparison, the values for an i1 are 0 and -1 2301 /// respectively. This maps into a truth table of: 2302 /// LHS | RHS | LHS >=s RHS | LHS implies RHS 2303 /// 0 | 0 | 1 (0 >= 0) | 1 2304 /// 0 | 1 | 1 (0 >= -1) | 1 2305 /// 1 | 0 | 0 (-1 >= 0) | 0 2306 /// 1 | 1 | 1 (-1 >= -1) | 1 2307 if (isImpliedCondition(LHS, RHS, Q.DL).getValueOr(false)) 2308 return getTrue(ITy); 2309 break; 2310 case ICmpInst::ICMP_SLT: 2311 // X <s 0 -> X 2312 if (match(RHS, m_Zero())) 2313 return LHS; 2314 break; 2315 case ICmpInst::ICMP_SLE: 2316 // X <=s -1 -> X 2317 if (match(RHS, m_One())) 2318 return LHS; 2319 break; 2320 case ICmpInst::ICMP_ULE: 2321 if (isImpliedCondition(LHS, RHS, Q.DL).getValueOr(false)) 2322 return getTrue(ITy); 2323 break; 2324 } 2325 2326 return nullptr; 2327 } 2328 2329 /// Try hard to fold icmp with zero RHS because this is a common case. 2330 static Value *simplifyICmpWithZero(CmpInst::Predicate Pred, Value *LHS, 2331 Value *RHS, const Query &Q) { 2332 if (!match(RHS, m_Zero())) 2333 return nullptr; 2334 2335 Type *ITy = GetCompareTy(LHS); // The return type. 2336 bool LHSKnownNonNegative, LHSKnownNegative; 2337 switch (Pred) { 2338 default: 2339 llvm_unreachable("Unknown ICmp predicate!"); 2340 case ICmpInst::ICMP_ULT: 2341 return getFalse(ITy); 2342 case ICmpInst::ICMP_UGE: 2343 return getTrue(ITy); 2344 case ICmpInst::ICMP_EQ: 2345 case ICmpInst::ICMP_ULE: 2346 if (isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 2347 return getFalse(ITy); 2348 break; 2349 case ICmpInst::ICMP_NE: 2350 case ICmpInst::ICMP_UGT: 2351 if (isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 2352 return getTrue(ITy); 2353 break; 2354 case ICmpInst::ICMP_SLT: 2355 ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, Q.DL, 0, Q.AC, 2356 Q.CxtI, Q.DT); 2357 if (LHSKnownNegative) 2358 return getTrue(ITy); 2359 if (LHSKnownNonNegative) 2360 return getFalse(ITy); 2361 break; 2362 case ICmpInst::ICMP_SLE: 2363 ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, Q.DL, 0, Q.AC, 2364 Q.CxtI, Q.DT); 2365 if (LHSKnownNegative) 2366 return getTrue(ITy); 2367 if (LHSKnownNonNegative && isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 2368 return getFalse(ITy); 2369 break; 2370 case ICmpInst::ICMP_SGE: 2371 ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, Q.DL, 0, Q.AC, 2372 Q.CxtI, Q.DT); 2373 if (LHSKnownNegative) 2374 return getFalse(ITy); 2375 if (LHSKnownNonNegative) 2376 return getTrue(ITy); 2377 break; 2378 case ICmpInst::ICMP_SGT: 2379 ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, Q.DL, 0, Q.AC, 2380 Q.CxtI, Q.DT); 2381 if (LHSKnownNegative) 2382 return getFalse(ITy); 2383 if (LHSKnownNonNegative && isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 2384 return getTrue(ITy); 2385 break; 2386 } 2387 2388 return nullptr; 2389 } 2390 2391 /// Many binary operators with a constant operand have an easy-to-compute 2392 /// range of outputs. This can be used to fold a comparison to always true or 2393 /// always false. 2394 static void setLimitsForBinOp(BinaryOperator &BO, APInt &Lower, APInt &Upper) { 2395 unsigned Width = Lower.getBitWidth(); 2396 const APInt *C; 2397 switch (BO.getOpcode()) { 2398 case Instruction::Add: 2399 if (match(BO.getOperand(1), m_APInt(C)) && *C != 0) { 2400 // FIXME: If we have both nuw and nsw, we should reduce the range further. 2401 if (BO.hasNoUnsignedWrap()) { 2402 // 'add nuw x, C' produces [C, UINT_MAX]. 2403 Lower = *C; 2404 } else if (BO.hasNoSignedWrap()) { 2405 if (C->isNegative()) { 2406 // 'add nsw x, -C' produces [SINT_MIN, SINT_MAX - C]. 2407 Lower = APInt::getSignedMinValue(Width); 2408 Upper = APInt::getSignedMaxValue(Width) + *C + 1; 2409 } else { 2410 // 'add nsw x, +C' produces [SINT_MIN + C, SINT_MAX]. 2411 Lower = APInt::getSignedMinValue(Width) + *C; 2412 Upper = APInt::getSignedMaxValue(Width) + 1; 2413 } 2414 } 2415 } 2416 break; 2417 2418 case Instruction::And: 2419 if (match(BO.getOperand(1), m_APInt(C))) 2420 // 'and x, C' produces [0, C]. 2421 Upper = *C + 1; 2422 break; 2423 2424 case Instruction::Or: 2425 if (match(BO.getOperand(1), m_APInt(C))) 2426 // 'or x, C' produces [C, UINT_MAX]. 2427 Lower = *C; 2428 break; 2429 2430 case Instruction::AShr: 2431 if (match(BO.getOperand(1), m_APInt(C)) && C->ult(Width)) { 2432 // 'ashr x, C' produces [INT_MIN >> C, INT_MAX >> C]. 2433 Lower = APInt::getSignedMinValue(Width).ashr(*C); 2434 Upper = APInt::getSignedMaxValue(Width).ashr(*C) + 1; 2435 } else if (match(BO.getOperand(0), m_APInt(C))) { 2436 unsigned ShiftAmount = Width - 1; 2437 if (*C != 0 && BO.isExact()) 2438 ShiftAmount = C->countTrailingZeros(); 2439 if (C->isNegative()) { 2440 // 'ashr C, x' produces [C, C >> (Width-1)] 2441 Lower = *C; 2442 Upper = C->ashr(ShiftAmount) + 1; 2443 } else { 2444 // 'ashr C, x' produces [C >> (Width-1), C] 2445 Lower = C->ashr(ShiftAmount); 2446 Upper = *C + 1; 2447 } 2448 } 2449 break; 2450 2451 case Instruction::LShr: 2452 if (match(BO.getOperand(1), m_APInt(C)) && C->ult(Width)) { 2453 // 'lshr x, C' produces [0, UINT_MAX >> C]. 2454 Upper = APInt::getAllOnesValue(Width).lshr(*C) + 1; 2455 } else if (match(BO.getOperand(0), m_APInt(C))) { 2456 // 'lshr C, x' produces [C >> (Width-1), C]. 2457 unsigned ShiftAmount = Width - 1; 2458 if (*C != 0 && BO.isExact()) 2459 ShiftAmount = C->countTrailingZeros(); 2460 Lower = C->lshr(ShiftAmount); 2461 Upper = *C + 1; 2462 } 2463 break; 2464 2465 case Instruction::Shl: 2466 if (match(BO.getOperand(0), m_APInt(C))) { 2467 if (BO.hasNoUnsignedWrap()) { 2468 // 'shl nuw C, x' produces [C, C << CLZ(C)] 2469 Lower = *C; 2470 Upper = Lower.shl(Lower.countLeadingZeros()) + 1; 2471 } else if (BO.hasNoSignedWrap()) { // TODO: What if both nuw+nsw? 2472 if (C->isNegative()) { 2473 // 'shl nsw C, x' produces [C << CLO(C)-1, C] 2474 unsigned ShiftAmount = C->countLeadingOnes() - 1; 2475 Lower = C->shl(ShiftAmount); 2476 Upper = *C + 1; 2477 } else { 2478 // 'shl nsw C, x' produces [C, C << CLZ(C)-1] 2479 unsigned ShiftAmount = C->countLeadingZeros() - 1; 2480 Lower = *C; 2481 Upper = C->shl(ShiftAmount) + 1; 2482 } 2483 } 2484 } 2485 break; 2486 2487 case Instruction::SDiv: 2488 if (match(BO.getOperand(1), m_APInt(C))) { 2489 APInt IntMin = APInt::getSignedMinValue(Width); 2490 APInt IntMax = APInt::getSignedMaxValue(Width); 2491 if (C->isAllOnesValue()) { 2492 // 'sdiv x, -1' produces [INT_MIN + 1, INT_MAX] 2493 // where C != -1 and C != 0 and C != 1 2494 Lower = IntMin + 1; 2495 Upper = IntMax + 1; 2496 } else if (C->countLeadingZeros() < Width - 1) { 2497 // 'sdiv x, C' produces [INT_MIN / C, INT_MAX / C] 2498 // where C != -1 and C != 0 and C != 1 2499 Lower = IntMin.sdiv(*C); 2500 Upper = IntMax.sdiv(*C); 2501 if (Lower.sgt(Upper)) 2502 std::swap(Lower, Upper); 2503 Upper = Upper + 1; 2504 assert(Upper != Lower && "Upper part of range has wrapped!"); 2505 } 2506 } else if (match(BO.getOperand(0), m_APInt(C))) { 2507 if (C->isMinSignedValue()) { 2508 // 'sdiv INT_MIN, x' produces [INT_MIN, INT_MIN / -2]. 2509 Lower = *C; 2510 Upper = Lower.lshr(1) + 1; 2511 } else { 2512 // 'sdiv C, x' produces [-|C|, |C|]. 2513 Upper = C->abs() + 1; 2514 Lower = (-Upper) + 1; 2515 } 2516 } 2517 break; 2518 2519 case Instruction::UDiv: 2520 if (match(BO.getOperand(1), m_APInt(C)) && *C != 0) { 2521 // 'udiv x, C' produces [0, UINT_MAX / C]. 2522 Upper = APInt::getMaxValue(Width).udiv(*C) + 1; 2523 } else if (match(BO.getOperand(0), m_APInt(C))) { 2524 // 'udiv C, x' produces [0, C]. 2525 Upper = *C + 1; 2526 } 2527 break; 2528 2529 case Instruction::SRem: 2530 if (match(BO.getOperand(1), m_APInt(C))) { 2531 // 'srem x, C' produces (-|C|, |C|). 2532 Upper = C->abs(); 2533 Lower = (-Upper) + 1; 2534 } 2535 break; 2536 2537 case Instruction::URem: 2538 if (match(BO.getOperand(1), m_APInt(C))) 2539 // 'urem x, C' produces [0, C). 2540 Upper = *C; 2541 break; 2542 2543 default: 2544 break; 2545 } 2546 } 2547 2548 static Value *simplifyICmpWithConstant(CmpInst::Predicate Pred, Value *LHS, 2549 Value *RHS) { 2550 const APInt *C; 2551 if (!match(RHS, m_APInt(C))) 2552 return nullptr; 2553 2554 // Rule out tautological comparisons (eg., ult 0 or uge 0). 2555 ConstantRange RHS_CR = ConstantRange::makeExactICmpRegion(Pred, *C); 2556 if (RHS_CR.isEmptySet()) 2557 return ConstantInt::getFalse(GetCompareTy(RHS)); 2558 if (RHS_CR.isFullSet()) 2559 return ConstantInt::getTrue(GetCompareTy(RHS)); 2560 2561 // Find the range of possible values for binary operators. 2562 unsigned Width = C->getBitWidth(); 2563 APInt Lower = APInt(Width, 0); 2564 APInt Upper = APInt(Width, 0); 2565 if (auto *BO = dyn_cast<BinaryOperator>(LHS)) 2566 setLimitsForBinOp(*BO, Lower, Upper); 2567 2568 ConstantRange LHS_CR = 2569 Lower != Upper ? ConstantRange(Lower, Upper) : ConstantRange(Width, true); 2570 2571 if (auto *I = dyn_cast<Instruction>(LHS)) 2572 if (auto *Ranges = I->getMetadata(LLVMContext::MD_range)) 2573 LHS_CR = LHS_CR.intersectWith(getConstantRangeFromMetadata(*Ranges)); 2574 2575 if (!LHS_CR.isFullSet()) { 2576 if (RHS_CR.contains(LHS_CR)) 2577 return ConstantInt::getTrue(GetCompareTy(RHS)); 2578 if (RHS_CR.inverse().contains(LHS_CR)) 2579 return ConstantInt::getFalse(GetCompareTy(RHS)); 2580 } 2581 2582 return nullptr; 2583 } 2584 2585 static Value *simplifyICmpWithBinOp(CmpInst::Predicate Pred, Value *LHS, 2586 Value *RHS, const Query &Q, 2587 unsigned MaxRecurse) { 2588 Type *ITy = GetCompareTy(LHS); // The return type. 2589 2590 BinaryOperator *LBO = dyn_cast<BinaryOperator>(LHS); 2591 BinaryOperator *RBO = dyn_cast<BinaryOperator>(RHS); 2592 if (MaxRecurse && (LBO || RBO)) { 2593 // Analyze the case when either LHS or RHS is an add instruction. 2594 Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr; 2595 // LHS = A + B (or A and B are null); RHS = C + D (or C and D are null). 2596 bool NoLHSWrapProblem = false, NoRHSWrapProblem = false; 2597 if (LBO && LBO->getOpcode() == Instruction::Add) { 2598 A = LBO->getOperand(0); 2599 B = LBO->getOperand(1); 2600 NoLHSWrapProblem = 2601 ICmpInst::isEquality(Pred) || 2602 (CmpInst::isUnsigned(Pred) && LBO->hasNoUnsignedWrap()) || 2603 (CmpInst::isSigned(Pred) && LBO->hasNoSignedWrap()); 2604 } 2605 if (RBO && RBO->getOpcode() == Instruction::Add) { 2606 C = RBO->getOperand(0); 2607 D = RBO->getOperand(1); 2608 NoRHSWrapProblem = 2609 ICmpInst::isEquality(Pred) || 2610 (CmpInst::isUnsigned(Pred) && RBO->hasNoUnsignedWrap()) || 2611 (CmpInst::isSigned(Pred) && RBO->hasNoSignedWrap()); 2612 } 2613 2614 // icmp (X+Y), X -> icmp Y, 0 for equalities or if there is no overflow. 2615 if ((A == RHS || B == RHS) && NoLHSWrapProblem) 2616 if (Value *V = SimplifyICmpInst(Pred, A == RHS ? B : A, 2617 Constant::getNullValue(RHS->getType()), Q, 2618 MaxRecurse - 1)) 2619 return V; 2620 2621 // icmp X, (X+Y) -> icmp 0, Y for equalities or if there is no overflow. 2622 if ((C == LHS || D == LHS) && NoRHSWrapProblem) 2623 if (Value *V = 2624 SimplifyICmpInst(Pred, Constant::getNullValue(LHS->getType()), 2625 C == LHS ? D : C, Q, MaxRecurse - 1)) 2626 return V; 2627 2628 // icmp (X+Y), (X+Z) -> icmp Y,Z for equalities or if there is no overflow. 2629 if (A && C && (A == C || A == D || B == C || B == D) && NoLHSWrapProblem && 2630 NoRHSWrapProblem) { 2631 // Determine Y and Z in the form icmp (X+Y), (X+Z). 2632 Value *Y, *Z; 2633 if (A == C) { 2634 // C + B == C + D -> B == D 2635 Y = B; 2636 Z = D; 2637 } else if (A == D) { 2638 // D + B == C + D -> B == C 2639 Y = B; 2640 Z = C; 2641 } else if (B == C) { 2642 // A + C == C + D -> A == D 2643 Y = A; 2644 Z = D; 2645 } else { 2646 assert(B == D); 2647 // A + D == C + D -> A == C 2648 Y = A; 2649 Z = C; 2650 } 2651 if (Value *V = SimplifyICmpInst(Pred, Y, Z, Q, MaxRecurse - 1)) 2652 return V; 2653 } 2654 } 2655 2656 { 2657 Value *Y = nullptr; 2658 // icmp pred (or X, Y), X 2659 if (LBO && match(LBO, m_c_Or(m_Value(Y), m_Specific(RHS)))) { 2660 if (Pred == ICmpInst::ICMP_ULT) 2661 return getFalse(ITy); 2662 if (Pred == ICmpInst::ICMP_UGE) 2663 return getTrue(ITy); 2664 2665 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SGE) { 2666 bool RHSKnownNonNegative, RHSKnownNegative; 2667 bool YKnownNonNegative, YKnownNegative; 2668 ComputeSignBit(RHS, RHSKnownNonNegative, RHSKnownNegative, Q.DL, 0, 2669 Q.AC, Q.CxtI, Q.DT); 2670 ComputeSignBit(Y, YKnownNonNegative, YKnownNegative, Q.DL, 0, Q.AC, 2671 Q.CxtI, Q.DT); 2672 if (RHSKnownNonNegative && YKnownNegative) 2673 return Pred == ICmpInst::ICMP_SLT ? getTrue(ITy) : getFalse(ITy); 2674 if (RHSKnownNegative || YKnownNonNegative) 2675 return Pred == ICmpInst::ICMP_SLT ? getFalse(ITy) : getTrue(ITy); 2676 } 2677 } 2678 // icmp pred X, (or X, Y) 2679 if (RBO && match(RBO, m_c_Or(m_Value(Y), m_Specific(LHS)))) { 2680 if (Pred == ICmpInst::ICMP_ULE) 2681 return getTrue(ITy); 2682 if (Pred == ICmpInst::ICMP_UGT) 2683 return getFalse(ITy); 2684 2685 if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SLE) { 2686 bool LHSKnownNonNegative, LHSKnownNegative; 2687 bool YKnownNonNegative, YKnownNegative; 2688 ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, Q.DL, 0, 2689 Q.AC, Q.CxtI, Q.DT); 2690 ComputeSignBit(Y, YKnownNonNegative, YKnownNegative, Q.DL, 0, Q.AC, 2691 Q.CxtI, Q.DT); 2692 if (LHSKnownNonNegative && YKnownNegative) 2693 return Pred == ICmpInst::ICMP_SGT ? getTrue(ITy) : getFalse(ITy); 2694 if (LHSKnownNegative || YKnownNonNegative) 2695 return Pred == ICmpInst::ICMP_SGT ? getFalse(ITy) : getTrue(ITy); 2696 } 2697 } 2698 } 2699 2700 // icmp pred (and X, Y), X 2701 if (LBO && match(LBO, m_CombineOr(m_And(m_Value(), m_Specific(RHS)), 2702 m_And(m_Specific(RHS), m_Value())))) { 2703 if (Pred == ICmpInst::ICMP_UGT) 2704 return getFalse(ITy); 2705 if (Pred == ICmpInst::ICMP_ULE) 2706 return getTrue(ITy); 2707 } 2708 // icmp pred X, (and X, Y) 2709 if (RBO && match(RBO, m_CombineOr(m_And(m_Value(), m_Specific(LHS)), 2710 m_And(m_Specific(LHS), m_Value())))) { 2711 if (Pred == ICmpInst::ICMP_UGE) 2712 return getTrue(ITy); 2713 if (Pred == ICmpInst::ICMP_ULT) 2714 return getFalse(ITy); 2715 } 2716 2717 // 0 - (zext X) pred C 2718 if (!CmpInst::isUnsigned(Pred) && match(LHS, m_Neg(m_ZExt(m_Value())))) { 2719 if (ConstantInt *RHSC = dyn_cast<ConstantInt>(RHS)) { 2720 if (RHSC->getValue().isStrictlyPositive()) { 2721 if (Pred == ICmpInst::ICMP_SLT) 2722 return ConstantInt::getTrue(RHSC->getContext()); 2723 if (Pred == ICmpInst::ICMP_SGE) 2724 return ConstantInt::getFalse(RHSC->getContext()); 2725 if (Pred == ICmpInst::ICMP_EQ) 2726 return ConstantInt::getFalse(RHSC->getContext()); 2727 if (Pred == ICmpInst::ICMP_NE) 2728 return ConstantInt::getTrue(RHSC->getContext()); 2729 } 2730 if (RHSC->getValue().isNonNegative()) { 2731 if (Pred == ICmpInst::ICMP_SLE) 2732 return ConstantInt::getTrue(RHSC->getContext()); 2733 if (Pred == ICmpInst::ICMP_SGT) 2734 return ConstantInt::getFalse(RHSC->getContext()); 2735 } 2736 } 2737 } 2738 2739 // icmp pred (urem X, Y), Y 2740 if (LBO && match(LBO, m_URem(m_Value(), m_Specific(RHS)))) { 2741 bool KnownNonNegative, KnownNegative; 2742 switch (Pred) { 2743 default: 2744 break; 2745 case ICmpInst::ICMP_SGT: 2746 case ICmpInst::ICMP_SGE: 2747 ComputeSignBit(RHS, KnownNonNegative, KnownNegative, Q.DL, 0, Q.AC, 2748 Q.CxtI, Q.DT); 2749 if (!KnownNonNegative) 2750 break; 2751 LLVM_FALLTHROUGH; 2752 case ICmpInst::ICMP_EQ: 2753 case ICmpInst::ICMP_UGT: 2754 case ICmpInst::ICMP_UGE: 2755 return getFalse(ITy); 2756 case ICmpInst::ICMP_SLT: 2757 case ICmpInst::ICMP_SLE: 2758 ComputeSignBit(RHS, KnownNonNegative, KnownNegative, Q.DL, 0, Q.AC, 2759 Q.CxtI, Q.DT); 2760 if (!KnownNonNegative) 2761 break; 2762 LLVM_FALLTHROUGH; 2763 case ICmpInst::ICMP_NE: 2764 case ICmpInst::ICMP_ULT: 2765 case ICmpInst::ICMP_ULE: 2766 return getTrue(ITy); 2767 } 2768 } 2769 2770 // icmp pred X, (urem Y, X) 2771 if (RBO && match(RBO, m_URem(m_Value(), m_Specific(LHS)))) { 2772 bool KnownNonNegative, KnownNegative; 2773 switch (Pred) { 2774 default: 2775 break; 2776 case ICmpInst::ICMP_SGT: 2777 case ICmpInst::ICMP_SGE: 2778 ComputeSignBit(LHS, KnownNonNegative, KnownNegative, Q.DL, 0, Q.AC, 2779 Q.CxtI, Q.DT); 2780 if (!KnownNonNegative) 2781 break; 2782 LLVM_FALLTHROUGH; 2783 case ICmpInst::ICMP_NE: 2784 case ICmpInst::ICMP_UGT: 2785 case ICmpInst::ICMP_UGE: 2786 return getTrue(ITy); 2787 case ICmpInst::ICMP_SLT: 2788 case ICmpInst::ICMP_SLE: 2789 ComputeSignBit(LHS, KnownNonNegative, KnownNegative, Q.DL, 0, Q.AC, 2790 Q.CxtI, Q.DT); 2791 if (!KnownNonNegative) 2792 break; 2793 LLVM_FALLTHROUGH; 2794 case ICmpInst::ICMP_EQ: 2795 case ICmpInst::ICMP_ULT: 2796 case ICmpInst::ICMP_ULE: 2797 return getFalse(ITy); 2798 } 2799 } 2800 2801 // x >> y <=u x 2802 // x udiv y <=u x. 2803 if (LBO && (match(LBO, m_LShr(m_Specific(RHS), m_Value())) || 2804 match(LBO, m_UDiv(m_Specific(RHS), m_Value())))) { 2805 // icmp pred (X op Y), X 2806 if (Pred == ICmpInst::ICMP_UGT) 2807 return getFalse(ITy); 2808 if (Pred == ICmpInst::ICMP_ULE) 2809 return getTrue(ITy); 2810 } 2811 2812 // x >=u x >> y 2813 // x >=u x udiv y. 2814 if (RBO && (match(RBO, m_LShr(m_Specific(LHS), m_Value())) || 2815 match(RBO, m_UDiv(m_Specific(LHS), m_Value())))) { 2816 // icmp pred X, (X op Y) 2817 if (Pred == ICmpInst::ICMP_ULT) 2818 return getFalse(ITy); 2819 if (Pred == ICmpInst::ICMP_UGE) 2820 return getTrue(ITy); 2821 } 2822 2823 // handle: 2824 // CI2 << X == CI 2825 // CI2 << X != CI 2826 // 2827 // where CI2 is a power of 2 and CI isn't 2828 if (auto *CI = dyn_cast<ConstantInt>(RHS)) { 2829 const APInt *CI2Val, *CIVal = &CI->getValue(); 2830 if (LBO && match(LBO, m_Shl(m_APInt(CI2Val), m_Value())) && 2831 CI2Val->isPowerOf2()) { 2832 if (!CIVal->isPowerOf2()) { 2833 // CI2 << X can equal zero in some circumstances, 2834 // this simplification is unsafe if CI is zero. 2835 // 2836 // We know it is safe if: 2837 // - The shift is nsw, we can't shift out the one bit. 2838 // - The shift is nuw, we can't shift out the one bit. 2839 // - CI2 is one 2840 // - CI isn't zero 2841 if (LBO->hasNoSignedWrap() || LBO->hasNoUnsignedWrap() || 2842 *CI2Val == 1 || !CI->isZero()) { 2843 if (Pred == ICmpInst::ICMP_EQ) 2844 return ConstantInt::getFalse(RHS->getContext()); 2845 if (Pred == ICmpInst::ICMP_NE) 2846 return ConstantInt::getTrue(RHS->getContext()); 2847 } 2848 } 2849 if (CIVal->isSignBit() && *CI2Val == 1) { 2850 if (Pred == ICmpInst::ICMP_UGT) 2851 return ConstantInt::getFalse(RHS->getContext()); 2852 if (Pred == ICmpInst::ICMP_ULE) 2853 return ConstantInt::getTrue(RHS->getContext()); 2854 } 2855 } 2856 } 2857 2858 if (MaxRecurse && LBO && RBO && LBO->getOpcode() == RBO->getOpcode() && 2859 LBO->getOperand(1) == RBO->getOperand(1)) { 2860 switch (LBO->getOpcode()) { 2861 default: 2862 break; 2863 case Instruction::UDiv: 2864 case Instruction::LShr: 2865 if (ICmpInst::isSigned(Pred)) 2866 break; 2867 LLVM_FALLTHROUGH; 2868 case Instruction::SDiv: 2869 case Instruction::AShr: 2870 if (!LBO->isExact() || !RBO->isExact()) 2871 break; 2872 if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0), 2873 RBO->getOperand(0), Q, MaxRecurse - 1)) 2874 return V; 2875 break; 2876 case Instruction::Shl: { 2877 bool NUW = LBO->hasNoUnsignedWrap() && RBO->hasNoUnsignedWrap(); 2878 bool NSW = LBO->hasNoSignedWrap() && RBO->hasNoSignedWrap(); 2879 if (!NUW && !NSW) 2880 break; 2881 if (!NSW && ICmpInst::isSigned(Pred)) 2882 break; 2883 if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0), 2884 RBO->getOperand(0), Q, MaxRecurse - 1)) 2885 return V; 2886 break; 2887 } 2888 } 2889 } 2890 return nullptr; 2891 } 2892 2893 /// Simplify integer comparisons where at least one operand of the compare 2894 /// matches an integer min/max idiom. 2895 static Value *simplifyICmpWithMinMax(CmpInst::Predicate Pred, Value *LHS, 2896 Value *RHS, const Query &Q, 2897 unsigned MaxRecurse) { 2898 Type *ITy = GetCompareTy(LHS); // The return type. 2899 Value *A, *B; 2900 CmpInst::Predicate P = CmpInst::BAD_ICMP_PREDICATE; 2901 CmpInst::Predicate EqP; // Chosen so that "A == max/min(A,B)" iff "A EqP B". 2902 2903 // Signed variants on "max(a,b)>=a -> true". 2904 if (match(LHS, m_SMax(m_Value(A), m_Value(B))) && (A == RHS || B == RHS)) { 2905 if (A != RHS) 2906 std::swap(A, B); // smax(A, B) pred A. 2907 EqP = CmpInst::ICMP_SGE; // "A == smax(A, B)" iff "A sge B". 2908 // We analyze this as smax(A, B) pred A. 2909 P = Pred; 2910 } else if (match(RHS, m_SMax(m_Value(A), m_Value(B))) && 2911 (A == LHS || B == LHS)) { 2912 if (A != LHS) 2913 std::swap(A, B); // A pred smax(A, B). 2914 EqP = CmpInst::ICMP_SGE; // "A == smax(A, B)" iff "A sge B". 2915 // We analyze this as smax(A, B) swapped-pred A. 2916 P = CmpInst::getSwappedPredicate(Pred); 2917 } else if (match(LHS, m_SMin(m_Value(A), m_Value(B))) && 2918 (A == RHS || B == RHS)) { 2919 if (A != RHS) 2920 std::swap(A, B); // smin(A, B) pred A. 2921 EqP = CmpInst::ICMP_SLE; // "A == smin(A, B)" iff "A sle B". 2922 // We analyze this as smax(-A, -B) swapped-pred -A. 2923 // Note that we do not need to actually form -A or -B thanks to EqP. 2924 P = CmpInst::getSwappedPredicate(Pred); 2925 } else if (match(RHS, m_SMin(m_Value(A), m_Value(B))) && 2926 (A == LHS || B == LHS)) { 2927 if (A != LHS) 2928 std::swap(A, B); // A pred smin(A, B). 2929 EqP = CmpInst::ICMP_SLE; // "A == smin(A, B)" iff "A sle B". 2930 // We analyze this as smax(-A, -B) pred -A. 2931 // Note that we do not need to actually form -A or -B thanks to EqP. 2932 P = Pred; 2933 } 2934 if (P != CmpInst::BAD_ICMP_PREDICATE) { 2935 // Cases correspond to "max(A, B) p A". 2936 switch (P) { 2937 default: 2938 break; 2939 case CmpInst::ICMP_EQ: 2940 case CmpInst::ICMP_SLE: 2941 // Equivalent to "A EqP B". This may be the same as the condition tested 2942 // in the max/min; if so, we can just return that. 2943 if (Value *V = ExtractEquivalentCondition(LHS, EqP, A, B)) 2944 return V; 2945 if (Value *V = ExtractEquivalentCondition(RHS, EqP, A, B)) 2946 return V; 2947 // Otherwise, see if "A EqP B" simplifies. 2948 if (MaxRecurse) 2949 if (Value *V = SimplifyICmpInst(EqP, A, B, Q, MaxRecurse - 1)) 2950 return V; 2951 break; 2952 case CmpInst::ICMP_NE: 2953 case CmpInst::ICMP_SGT: { 2954 CmpInst::Predicate InvEqP = CmpInst::getInversePredicate(EqP); 2955 // Equivalent to "A InvEqP B". This may be the same as the condition 2956 // tested in the max/min; if so, we can just return that. 2957 if (Value *V = ExtractEquivalentCondition(LHS, InvEqP, A, B)) 2958 return V; 2959 if (Value *V = ExtractEquivalentCondition(RHS, InvEqP, A, B)) 2960 return V; 2961 // Otherwise, see if "A InvEqP B" simplifies. 2962 if (MaxRecurse) 2963 if (Value *V = SimplifyICmpInst(InvEqP, A, B, Q, MaxRecurse - 1)) 2964 return V; 2965 break; 2966 } 2967 case CmpInst::ICMP_SGE: 2968 // Always true. 2969 return getTrue(ITy); 2970 case CmpInst::ICMP_SLT: 2971 // Always false. 2972 return getFalse(ITy); 2973 } 2974 } 2975 2976 // Unsigned variants on "max(a,b)>=a -> true". 2977 P = CmpInst::BAD_ICMP_PREDICATE; 2978 if (match(LHS, m_UMax(m_Value(A), m_Value(B))) && (A == RHS || B == RHS)) { 2979 if (A != RHS) 2980 std::swap(A, B); // umax(A, B) pred A. 2981 EqP = CmpInst::ICMP_UGE; // "A == umax(A, B)" iff "A uge B". 2982 // We analyze this as umax(A, B) pred A. 2983 P = Pred; 2984 } else if (match(RHS, m_UMax(m_Value(A), m_Value(B))) && 2985 (A == LHS || B == LHS)) { 2986 if (A != LHS) 2987 std::swap(A, B); // A pred umax(A, B). 2988 EqP = CmpInst::ICMP_UGE; // "A == umax(A, B)" iff "A uge B". 2989 // We analyze this as umax(A, B) swapped-pred A. 2990 P = CmpInst::getSwappedPredicate(Pred); 2991 } else if (match(LHS, m_UMin(m_Value(A), m_Value(B))) && 2992 (A == RHS || B == RHS)) { 2993 if (A != RHS) 2994 std::swap(A, B); // umin(A, B) pred A. 2995 EqP = CmpInst::ICMP_ULE; // "A == umin(A, B)" iff "A ule B". 2996 // We analyze this as umax(-A, -B) swapped-pred -A. 2997 // Note that we do not need to actually form -A or -B thanks to EqP. 2998 P = CmpInst::getSwappedPredicate(Pred); 2999 } else if (match(RHS, m_UMin(m_Value(A), m_Value(B))) && 3000 (A == LHS || B == LHS)) { 3001 if (A != LHS) 3002 std::swap(A, B); // A pred umin(A, B). 3003 EqP = CmpInst::ICMP_ULE; // "A == umin(A, B)" iff "A ule B". 3004 // We analyze this as umax(-A, -B) pred -A. 3005 // Note that we do not need to actually form -A or -B thanks to EqP. 3006 P = Pred; 3007 } 3008 if (P != CmpInst::BAD_ICMP_PREDICATE) { 3009 // Cases correspond to "max(A, B) p A". 3010 switch (P) { 3011 default: 3012 break; 3013 case CmpInst::ICMP_EQ: 3014 case CmpInst::ICMP_ULE: 3015 // Equivalent to "A EqP B". This may be the same as the condition tested 3016 // in the max/min; if so, we can just return that. 3017 if (Value *V = ExtractEquivalentCondition(LHS, EqP, A, B)) 3018 return V; 3019 if (Value *V = ExtractEquivalentCondition(RHS, EqP, A, B)) 3020 return V; 3021 // Otherwise, see if "A EqP B" simplifies. 3022 if (MaxRecurse) 3023 if (Value *V = SimplifyICmpInst(EqP, A, B, Q, MaxRecurse - 1)) 3024 return V; 3025 break; 3026 case CmpInst::ICMP_NE: 3027 case CmpInst::ICMP_UGT: { 3028 CmpInst::Predicate InvEqP = CmpInst::getInversePredicate(EqP); 3029 // Equivalent to "A InvEqP B". This may be the same as the condition 3030 // tested in the max/min; if so, we can just return that. 3031 if (Value *V = ExtractEquivalentCondition(LHS, InvEqP, A, B)) 3032 return V; 3033 if (Value *V = ExtractEquivalentCondition(RHS, InvEqP, A, B)) 3034 return V; 3035 // Otherwise, see if "A InvEqP B" simplifies. 3036 if (MaxRecurse) 3037 if (Value *V = SimplifyICmpInst(InvEqP, A, B, Q, MaxRecurse - 1)) 3038 return V; 3039 break; 3040 } 3041 case CmpInst::ICMP_UGE: 3042 // Always true. 3043 return getTrue(ITy); 3044 case CmpInst::ICMP_ULT: 3045 // Always false. 3046 return getFalse(ITy); 3047 } 3048 } 3049 3050 // Variants on "max(x,y) >= min(x,z)". 3051 Value *C, *D; 3052 if (match(LHS, m_SMax(m_Value(A), m_Value(B))) && 3053 match(RHS, m_SMin(m_Value(C), m_Value(D))) && 3054 (A == C || A == D || B == C || B == D)) { 3055 // max(x, ?) pred min(x, ?). 3056 if (Pred == CmpInst::ICMP_SGE) 3057 // Always true. 3058 return getTrue(ITy); 3059 if (Pred == CmpInst::ICMP_SLT) 3060 // Always false. 3061 return getFalse(ITy); 3062 } else if (match(LHS, m_SMin(m_Value(A), m_Value(B))) && 3063 match(RHS, m_SMax(m_Value(C), m_Value(D))) && 3064 (A == C || A == D || B == C || B == D)) { 3065 // min(x, ?) pred max(x, ?). 3066 if (Pred == CmpInst::ICMP_SLE) 3067 // Always true. 3068 return getTrue(ITy); 3069 if (Pred == CmpInst::ICMP_SGT) 3070 // Always false. 3071 return getFalse(ITy); 3072 } else if (match(LHS, m_UMax(m_Value(A), m_Value(B))) && 3073 match(RHS, m_UMin(m_Value(C), m_Value(D))) && 3074 (A == C || A == D || B == C || B == D)) { 3075 // max(x, ?) pred min(x, ?). 3076 if (Pred == CmpInst::ICMP_UGE) 3077 // Always true. 3078 return getTrue(ITy); 3079 if (Pred == CmpInst::ICMP_ULT) 3080 // Always false. 3081 return getFalse(ITy); 3082 } else if (match(LHS, m_UMin(m_Value(A), m_Value(B))) && 3083 match(RHS, m_UMax(m_Value(C), m_Value(D))) && 3084 (A == C || A == D || B == C || B == D)) { 3085 // min(x, ?) pred max(x, ?). 3086 if (Pred == CmpInst::ICMP_ULE) 3087 // Always true. 3088 return getTrue(ITy); 3089 if (Pred == CmpInst::ICMP_UGT) 3090 // Always false. 3091 return getFalse(ITy); 3092 } 3093 3094 return nullptr; 3095 } 3096 3097 /// Given operands for an ICmpInst, see if we can fold the result. 3098 /// If not, this returns null. 3099 static Value *SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS, 3100 const Query &Q, unsigned MaxRecurse) { 3101 CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate; 3102 assert(CmpInst::isIntPredicate(Pred) && "Not an integer compare!"); 3103 3104 if (Constant *CLHS = dyn_cast<Constant>(LHS)) { 3105 if (Constant *CRHS = dyn_cast<Constant>(RHS)) 3106 return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, Q.DL, Q.TLI); 3107 3108 // If we have a constant, make sure it is on the RHS. 3109 std::swap(LHS, RHS); 3110 Pred = CmpInst::getSwappedPredicate(Pred); 3111 } 3112 3113 Type *ITy = GetCompareTy(LHS); // The return type. 3114 3115 // icmp X, X -> true/false 3116 // X icmp undef -> true/false. For example, icmp ugt %X, undef -> false 3117 // because X could be 0. 3118 if (LHS == RHS || isa<UndefValue>(RHS)) 3119 return ConstantInt::get(ITy, CmpInst::isTrueWhenEqual(Pred)); 3120 3121 if (Value *V = simplifyICmpOfBools(Pred, LHS, RHS, Q)) 3122 return V; 3123 3124 if (Value *V = simplifyICmpWithZero(Pred, LHS, RHS, Q)) 3125 return V; 3126 3127 if (Value *V = simplifyICmpWithConstant(Pred, LHS, RHS)) 3128 return V; 3129 3130 // If both operands have range metadata, use the metadata 3131 // to simplify the comparison. 3132 if (isa<Instruction>(RHS) && isa<Instruction>(LHS)) { 3133 auto RHS_Instr = dyn_cast<Instruction>(RHS); 3134 auto LHS_Instr = dyn_cast<Instruction>(LHS); 3135 3136 if (RHS_Instr->getMetadata(LLVMContext::MD_range) && 3137 LHS_Instr->getMetadata(LLVMContext::MD_range)) { 3138 auto RHS_CR = getConstantRangeFromMetadata( 3139 *RHS_Instr->getMetadata(LLVMContext::MD_range)); 3140 auto LHS_CR = getConstantRangeFromMetadata( 3141 *LHS_Instr->getMetadata(LLVMContext::MD_range)); 3142 3143 auto Satisfied_CR = ConstantRange::makeSatisfyingICmpRegion(Pred, RHS_CR); 3144 if (Satisfied_CR.contains(LHS_CR)) 3145 return ConstantInt::getTrue(RHS->getContext()); 3146 3147 auto InversedSatisfied_CR = ConstantRange::makeSatisfyingICmpRegion( 3148 CmpInst::getInversePredicate(Pred), RHS_CR); 3149 if (InversedSatisfied_CR.contains(LHS_CR)) 3150 return ConstantInt::getFalse(RHS->getContext()); 3151 } 3152 } 3153 3154 // Compare of cast, for example (zext X) != 0 -> X != 0 3155 if (isa<CastInst>(LHS) && (isa<Constant>(RHS) || isa<CastInst>(RHS))) { 3156 Instruction *LI = cast<CastInst>(LHS); 3157 Value *SrcOp = LI->getOperand(0); 3158 Type *SrcTy = SrcOp->getType(); 3159 Type *DstTy = LI->getType(); 3160 3161 // Turn icmp (ptrtoint x), (ptrtoint/constant) into a compare of the input 3162 // if the integer type is the same size as the pointer type. 3163 if (MaxRecurse && isa<PtrToIntInst>(LI) && 3164 Q.DL.getTypeSizeInBits(SrcTy) == DstTy->getPrimitiveSizeInBits()) { 3165 if (Constant *RHSC = dyn_cast<Constant>(RHS)) { 3166 // Transfer the cast to the constant. 3167 if (Value *V = SimplifyICmpInst(Pred, SrcOp, 3168 ConstantExpr::getIntToPtr(RHSC, SrcTy), 3169 Q, MaxRecurse-1)) 3170 return V; 3171 } else if (PtrToIntInst *RI = dyn_cast<PtrToIntInst>(RHS)) { 3172 if (RI->getOperand(0)->getType() == SrcTy) 3173 // Compare without the cast. 3174 if (Value *V = SimplifyICmpInst(Pred, SrcOp, RI->getOperand(0), 3175 Q, MaxRecurse-1)) 3176 return V; 3177 } 3178 } 3179 3180 if (isa<ZExtInst>(LHS)) { 3181 // Turn icmp (zext X), (zext Y) into a compare of X and Y if they have the 3182 // same type. 3183 if (ZExtInst *RI = dyn_cast<ZExtInst>(RHS)) { 3184 if (MaxRecurse && SrcTy == RI->getOperand(0)->getType()) 3185 // Compare X and Y. Note that signed predicates become unsigned. 3186 if (Value *V = SimplifyICmpInst(ICmpInst::getUnsignedPredicate(Pred), 3187 SrcOp, RI->getOperand(0), Q, 3188 MaxRecurse-1)) 3189 return V; 3190 } 3191 // Turn icmp (zext X), Cst into a compare of X and Cst if Cst is extended 3192 // too. If not, then try to deduce the result of the comparison. 3193 else if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) { 3194 // Compute the constant that would happen if we truncated to SrcTy then 3195 // reextended to DstTy. 3196 Constant *Trunc = ConstantExpr::getTrunc(CI, SrcTy); 3197 Constant *RExt = ConstantExpr::getCast(CastInst::ZExt, Trunc, DstTy); 3198 3199 // If the re-extended constant didn't change then this is effectively 3200 // also a case of comparing two zero-extended values. 3201 if (RExt == CI && MaxRecurse) 3202 if (Value *V = SimplifyICmpInst(ICmpInst::getUnsignedPredicate(Pred), 3203 SrcOp, Trunc, Q, MaxRecurse-1)) 3204 return V; 3205 3206 // Otherwise the upper bits of LHS are zero while RHS has a non-zero bit 3207 // there. Use this to work out the result of the comparison. 3208 if (RExt != CI) { 3209 switch (Pred) { 3210 default: llvm_unreachable("Unknown ICmp predicate!"); 3211 // LHS <u RHS. 3212 case ICmpInst::ICMP_EQ: 3213 case ICmpInst::ICMP_UGT: 3214 case ICmpInst::ICMP_UGE: 3215 return ConstantInt::getFalse(CI->getContext()); 3216 3217 case ICmpInst::ICMP_NE: 3218 case ICmpInst::ICMP_ULT: 3219 case ICmpInst::ICMP_ULE: 3220 return ConstantInt::getTrue(CI->getContext()); 3221 3222 // LHS is non-negative. If RHS is negative then LHS >s LHS. If RHS 3223 // is non-negative then LHS <s RHS. 3224 case ICmpInst::ICMP_SGT: 3225 case ICmpInst::ICMP_SGE: 3226 return CI->getValue().isNegative() ? 3227 ConstantInt::getTrue(CI->getContext()) : 3228 ConstantInt::getFalse(CI->getContext()); 3229 3230 case ICmpInst::ICMP_SLT: 3231 case ICmpInst::ICMP_SLE: 3232 return CI->getValue().isNegative() ? 3233 ConstantInt::getFalse(CI->getContext()) : 3234 ConstantInt::getTrue(CI->getContext()); 3235 } 3236 } 3237 } 3238 } 3239 3240 if (isa<SExtInst>(LHS)) { 3241 // Turn icmp (sext X), (sext Y) into a compare of X and Y if they have the 3242 // same type. 3243 if (SExtInst *RI = dyn_cast<SExtInst>(RHS)) { 3244 if (MaxRecurse && SrcTy == RI->getOperand(0)->getType()) 3245 // Compare X and Y. Note that the predicate does not change. 3246 if (Value *V = SimplifyICmpInst(Pred, SrcOp, RI->getOperand(0), 3247 Q, MaxRecurse-1)) 3248 return V; 3249 } 3250 // Turn icmp (sext X), Cst into a compare of X and Cst if Cst is extended 3251 // too. If not, then try to deduce the result of the comparison. 3252 else if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) { 3253 // Compute the constant that would happen if we truncated to SrcTy then 3254 // reextended to DstTy. 3255 Constant *Trunc = ConstantExpr::getTrunc(CI, SrcTy); 3256 Constant *RExt = ConstantExpr::getCast(CastInst::SExt, Trunc, DstTy); 3257 3258 // If the re-extended constant didn't change then this is effectively 3259 // also a case of comparing two sign-extended values. 3260 if (RExt == CI && MaxRecurse) 3261 if (Value *V = SimplifyICmpInst(Pred, SrcOp, Trunc, Q, MaxRecurse-1)) 3262 return V; 3263 3264 // Otherwise the upper bits of LHS are all equal, while RHS has varying 3265 // bits there. Use this to work out the result of the comparison. 3266 if (RExt != CI) { 3267 switch (Pred) { 3268 default: llvm_unreachable("Unknown ICmp predicate!"); 3269 case ICmpInst::ICMP_EQ: 3270 return ConstantInt::getFalse(CI->getContext()); 3271 case ICmpInst::ICMP_NE: 3272 return ConstantInt::getTrue(CI->getContext()); 3273 3274 // If RHS is non-negative then LHS <s RHS. If RHS is negative then 3275 // LHS >s RHS. 3276 case ICmpInst::ICMP_SGT: 3277 case ICmpInst::ICMP_SGE: 3278 return CI->getValue().isNegative() ? 3279 ConstantInt::getTrue(CI->getContext()) : 3280 ConstantInt::getFalse(CI->getContext()); 3281 case ICmpInst::ICMP_SLT: 3282 case ICmpInst::ICMP_SLE: 3283 return CI->getValue().isNegative() ? 3284 ConstantInt::getFalse(CI->getContext()) : 3285 ConstantInt::getTrue(CI->getContext()); 3286 3287 // If LHS is non-negative then LHS <u RHS. If LHS is negative then 3288 // LHS >u RHS. 3289 case ICmpInst::ICMP_UGT: 3290 case ICmpInst::ICMP_UGE: 3291 // Comparison is true iff the LHS <s 0. 3292 if (MaxRecurse) 3293 if (Value *V = SimplifyICmpInst(ICmpInst::ICMP_SLT, SrcOp, 3294 Constant::getNullValue(SrcTy), 3295 Q, MaxRecurse-1)) 3296 return V; 3297 break; 3298 case ICmpInst::ICMP_ULT: 3299 case ICmpInst::ICMP_ULE: 3300 // Comparison is true iff the LHS >=s 0. 3301 if (MaxRecurse) 3302 if (Value *V = SimplifyICmpInst(ICmpInst::ICMP_SGE, SrcOp, 3303 Constant::getNullValue(SrcTy), 3304 Q, MaxRecurse-1)) 3305 return V; 3306 break; 3307 } 3308 } 3309 } 3310 } 3311 } 3312 3313 // icmp eq|ne X, Y -> false|true if X != Y 3314 if ((Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_NE) && 3315 isKnownNonEqual(LHS, RHS, Q.DL, Q.AC, Q.CxtI, Q.DT)) { 3316 LLVMContext &Ctx = LHS->getType()->getContext(); 3317 return Pred == ICmpInst::ICMP_NE ? 3318 ConstantInt::getTrue(Ctx) : ConstantInt::getFalse(Ctx); 3319 } 3320 3321 if (Value *V = simplifyICmpWithBinOp(Pred, LHS, RHS, Q, MaxRecurse)) 3322 return V; 3323 3324 if (Value *V = simplifyICmpWithMinMax(Pred, LHS, RHS, Q, MaxRecurse)) 3325 return V; 3326 3327 // Simplify comparisons of related pointers using a powerful, recursive 3328 // GEP-walk when we have target data available.. 3329 if (LHS->getType()->isPointerTy()) 3330 if (auto *C = computePointerICmp(Q.DL, Q.TLI, Q.DT, Pred, Q.CxtI, LHS, RHS)) 3331 return C; 3332 if (auto *CLHS = dyn_cast<PtrToIntOperator>(LHS)) 3333 if (auto *CRHS = dyn_cast<PtrToIntOperator>(RHS)) 3334 if (Q.DL.getTypeSizeInBits(CLHS->getPointerOperandType()) == 3335 Q.DL.getTypeSizeInBits(CLHS->getType()) && 3336 Q.DL.getTypeSizeInBits(CRHS->getPointerOperandType()) == 3337 Q.DL.getTypeSizeInBits(CRHS->getType())) 3338 if (auto *C = computePointerICmp(Q.DL, Q.TLI, Q.DT, Pred, Q.CxtI, 3339 CLHS->getPointerOperand(), 3340 CRHS->getPointerOperand())) 3341 return C; 3342 3343 if (GetElementPtrInst *GLHS = dyn_cast<GetElementPtrInst>(LHS)) { 3344 if (GEPOperator *GRHS = dyn_cast<GEPOperator>(RHS)) { 3345 if (GLHS->getPointerOperand() == GRHS->getPointerOperand() && 3346 GLHS->hasAllConstantIndices() && GRHS->hasAllConstantIndices() && 3347 (ICmpInst::isEquality(Pred) || 3348 (GLHS->isInBounds() && GRHS->isInBounds() && 3349 Pred == ICmpInst::getSignedPredicate(Pred)))) { 3350 // The bases are equal and the indices are constant. Build a constant 3351 // expression GEP with the same indices and a null base pointer to see 3352 // what constant folding can make out of it. 3353 Constant *Null = Constant::getNullValue(GLHS->getPointerOperandType()); 3354 SmallVector<Value *, 4> IndicesLHS(GLHS->idx_begin(), GLHS->idx_end()); 3355 Constant *NewLHS = ConstantExpr::getGetElementPtr( 3356 GLHS->getSourceElementType(), Null, IndicesLHS); 3357 3358 SmallVector<Value *, 4> IndicesRHS(GRHS->idx_begin(), GRHS->idx_end()); 3359 Constant *NewRHS = ConstantExpr::getGetElementPtr( 3360 GLHS->getSourceElementType(), Null, IndicesRHS); 3361 return ConstantExpr::getICmp(Pred, NewLHS, NewRHS); 3362 } 3363 } 3364 } 3365 3366 // If a bit is known to be zero for A and known to be one for B, 3367 // then A and B cannot be equal. 3368 if (ICmpInst::isEquality(Pred)) { 3369 const APInt *RHSVal; 3370 if (match(RHS, m_APInt(RHSVal))) { 3371 unsigned BitWidth = RHSVal->getBitWidth(); 3372 APInt LHSKnownZero(BitWidth, 0); 3373 APInt LHSKnownOne(BitWidth, 0); 3374 computeKnownBits(LHS, LHSKnownZero, LHSKnownOne, Q.DL, /*Depth=*/0, Q.AC, 3375 Q.CxtI, Q.DT); 3376 if (((LHSKnownZero & *RHSVal) != 0) || ((LHSKnownOne & ~(*RHSVal)) != 0)) 3377 return Pred == ICmpInst::ICMP_EQ ? ConstantInt::getFalse(ITy) 3378 : ConstantInt::getTrue(ITy); 3379 } 3380 } 3381 3382 // If the comparison is with the result of a select instruction, check whether 3383 // comparing with either branch of the select always yields the same value. 3384 if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS)) 3385 if (Value *V = ThreadCmpOverSelect(Pred, LHS, RHS, Q, MaxRecurse)) 3386 return V; 3387 3388 // If the comparison is with the result of a phi instruction, check whether 3389 // doing the compare with each incoming phi value yields a common result. 3390 if (isa<PHINode>(LHS) || isa<PHINode>(RHS)) 3391 if (Value *V = ThreadCmpOverPHI(Pred, LHS, RHS, Q, MaxRecurse)) 3392 return V; 3393 3394 return nullptr; 3395 } 3396 3397 Value *llvm::SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS, 3398 const DataLayout &DL, 3399 const TargetLibraryInfo *TLI, 3400 const DominatorTree *DT, AssumptionCache *AC, 3401 const Instruction *CxtI) { 3402 return ::SimplifyICmpInst(Predicate, LHS, RHS, Query(DL, TLI, DT, AC, CxtI), 3403 RecursionLimit); 3404 } 3405 3406 /// Given operands for an FCmpInst, see if we can fold the result. 3407 /// If not, this returns null. 3408 static Value *SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS, 3409 FastMathFlags FMF, const Query &Q, 3410 unsigned MaxRecurse) { 3411 CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate; 3412 assert(CmpInst::isFPPredicate(Pred) && "Not an FP compare!"); 3413 3414 if (Constant *CLHS = dyn_cast<Constant>(LHS)) { 3415 if (Constant *CRHS = dyn_cast<Constant>(RHS)) 3416 return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, Q.DL, Q.TLI); 3417 3418 // If we have a constant, make sure it is on the RHS. 3419 std::swap(LHS, RHS); 3420 Pred = CmpInst::getSwappedPredicate(Pred); 3421 } 3422 3423 // Fold trivial predicates. 3424 Type *RetTy = GetCompareTy(LHS); 3425 if (Pred == FCmpInst::FCMP_FALSE) 3426 return getFalse(RetTy); 3427 if (Pred == FCmpInst::FCMP_TRUE) 3428 return getTrue(RetTy); 3429 3430 // UNO/ORD predicates can be trivially folded if NaNs are ignored. 3431 if (FMF.noNaNs()) { 3432 if (Pred == FCmpInst::FCMP_UNO) 3433 return getFalse(RetTy); 3434 if (Pred == FCmpInst::FCMP_ORD) 3435 return getTrue(RetTy); 3436 } 3437 3438 // fcmp pred x, undef and fcmp pred undef, x 3439 // fold to true if unordered, false if ordered 3440 if (isa<UndefValue>(LHS) || isa<UndefValue>(RHS)) { 3441 // Choosing NaN for the undef will always make unordered comparison succeed 3442 // and ordered comparison fail. 3443 return ConstantInt::get(RetTy, CmpInst::isUnordered(Pred)); 3444 } 3445 3446 // fcmp x,x -> true/false. Not all compares are foldable. 3447 if (LHS == RHS) { 3448 if (CmpInst::isTrueWhenEqual(Pred)) 3449 return getTrue(RetTy); 3450 if (CmpInst::isFalseWhenEqual(Pred)) 3451 return getFalse(RetTy); 3452 } 3453 3454 // Handle fcmp with constant RHS 3455 const ConstantFP *CFP = nullptr; 3456 if (const auto *RHSC = dyn_cast<Constant>(RHS)) { 3457 if (RHS->getType()->isVectorTy()) 3458 CFP = dyn_cast_or_null<ConstantFP>(RHSC->getSplatValue()); 3459 else 3460 CFP = dyn_cast<ConstantFP>(RHSC); 3461 } 3462 if (CFP) { 3463 // If the constant is a nan, see if we can fold the comparison based on it. 3464 if (CFP->getValueAPF().isNaN()) { 3465 if (FCmpInst::isOrdered(Pred)) // True "if ordered and foo" 3466 return getFalse(RetTy); 3467 assert(FCmpInst::isUnordered(Pred) && 3468 "Comparison must be either ordered or unordered!"); 3469 // True if unordered. 3470 return getTrue(RetTy); 3471 } 3472 // Check whether the constant is an infinity. 3473 if (CFP->getValueAPF().isInfinity()) { 3474 if (CFP->getValueAPF().isNegative()) { 3475 switch (Pred) { 3476 case FCmpInst::FCMP_OLT: 3477 // No value is ordered and less than negative infinity. 3478 return getFalse(RetTy); 3479 case FCmpInst::FCMP_UGE: 3480 // All values are unordered with or at least negative infinity. 3481 return getTrue(RetTy); 3482 default: 3483 break; 3484 } 3485 } else { 3486 switch (Pred) { 3487 case FCmpInst::FCMP_OGT: 3488 // No value is ordered and greater than infinity. 3489 return getFalse(RetTy); 3490 case FCmpInst::FCMP_ULE: 3491 // All values are unordered with and at most infinity. 3492 return getTrue(RetTy); 3493 default: 3494 break; 3495 } 3496 } 3497 } 3498 if (CFP->getValueAPF().isZero()) { 3499 switch (Pred) { 3500 case FCmpInst::FCMP_UGE: 3501 if (CannotBeOrderedLessThanZero(LHS, Q.TLI)) 3502 return getTrue(RetTy); 3503 break; 3504 case FCmpInst::FCMP_OLT: 3505 // X < 0 3506 if (CannotBeOrderedLessThanZero(LHS, Q.TLI)) 3507 return getFalse(RetTy); 3508 break; 3509 default: 3510 break; 3511 } 3512 } 3513 } 3514 3515 // If the comparison is with the result of a select instruction, check whether 3516 // comparing with either branch of the select always yields the same value. 3517 if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS)) 3518 if (Value *V = ThreadCmpOverSelect(Pred, LHS, RHS, Q, MaxRecurse)) 3519 return V; 3520 3521 // If the comparison is with the result of a phi instruction, check whether 3522 // doing the compare with each incoming phi value yields a common result. 3523 if (isa<PHINode>(LHS) || isa<PHINode>(RHS)) 3524 if (Value *V = ThreadCmpOverPHI(Pred, LHS, RHS, Q, MaxRecurse)) 3525 return V; 3526 3527 return nullptr; 3528 } 3529 3530 Value *llvm::SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS, 3531 FastMathFlags FMF, const DataLayout &DL, 3532 const TargetLibraryInfo *TLI, 3533 const DominatorTree *DT, AssumptionCache *AC, 3534 const Instruction *CxtI) { 3535 return ::SimplifyFCmpInst(Predicate, LHS, RHS, FMF, 3536 Query(DL, TLI, DT, AC, CxtI), RecursionLimit); 3537 } 3538 3539 /// See if V simplifies when its operand Op is replaced with RepOp. 3540 static const Value *SimplifyWithOpReplaced(Value *V, Value *Op, Value *RepOp, 3541 const Query &Q, 3542 unsigned MaxRecurse) { 3543 // Trivial replacement. 3544 if (V == Op) 3545 return RepOp; 3546 3547 auto *I = dyn_cast<Instruction>(V); 3548 if (!I) 3549 return nullptr; 3550 3551 // If this is a binary operator, try to simplify it with the replaced op. 3552 if (auto *B = dyn_cast<BinaryOperator>(I)) { 3553 // Consider: 3554 // %cmp = icmp eq i32 %x, 2147483647 3555 // %add = add nsw i32 %x, 1 3556 // %sel = select i1 %cmp, i32 -2147483648, i32 %add 3557 // 3558 // We can't replace %sel with %add unless we strip away the flags. 3559 if (isa<OverflowingBinaryOperator>(B)) 3560 if (B->hasNoSignedWrap() || B->hasNoUnsignedWrap()) 3561 return nullptr; 3562 if (isa<PossiblyExactOperator>(B)) 3563 if (B->isExact()) 3564 return nullptr; 3565 3566 if (MaxRecurse) { 3567 if (B->getOperand(0) == Op) 3568 return SimplifyBinOp(B->getOpcode(), RepOp, B->getOperand(1), Q, 3569 MaxRecurse - 1); 3570 if (B->getOperand(1) == Op) 3571 return SimplifyBinOp(B->getOpcode(), B->getOperand(0), RepOp, Q, 3572 MaxRecurse - 1); 3573 } 3574 } 3575 3576 // Same for CmpInsts. 3577 if (CmpInst *C = dyn_cast<CmpInst>(I)) { 3578 if (MaxRecurse) { 3579 if (C->getOperand(0) == Op) 3580 return SimplifyCmpInst(C->getPredicate(), RepOp, C->getOperand(1), Q, 3581 MaxRecurse - 1); 3582 if (C->getOperand(1) == Op) 3583 return SimplifyCmpInst(C->getPredicate(), C->getOperand(0), RepOp, Q, 3584 MaxRecurse - 1); 3585 } 3586 } 3587 3588 // TODO: We could hand off more cases to instsimplify here. 3589 3590 // If all operands are constant after substituting Op for RepOp then we can 3591 // constant fold the instruction. 3592 if (Constant *CRepOp = dyn_cast<Constant>(RepOp)) { 3593 // Build a list of all constant operands. 3594 SmallVector<Constant *, 8> ConstOps; 3595 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 3596 if (I->getOperand(i) == Op) 3597 ConstOps.push_back(CRepOp); 3598 else if (Constant *COp = dyn_cast<Constant>(I->getOperand(i))) 3599 ConstOps.push_back(COp); 3600 else 3601 break; 3602 } 3603 3604 // All operands were constants, fold it. 3605 if (ConstOps.size() == I->getNumOperands()) { 3606 if (CmpInst *C = dyn_cast<CmpInst>(I)) 3607 return ConstantFoldCompareInstOperands(C->getPredicate(), ConstOps[0], 3608 ConstOps[1], Q.DL, Q.TLI); 3609 3610 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 3611 if (!LI->isVolatile()) 3612 return ConstantFoldLoadFromConstPtr(ConstOps[0], LI->getType(), Q.DL); 3613 3614 return ConstantFoldInstOperands(I, ConstOps, Q.DL, Q.TLI); 3615 } 3616 } 3617 3618 return nullptr; 3619 } 3620 3621 /// Try to simplify a select instruction when its condition operand is an 3622 /// integer comparison where one operand of the compare is a constant. 3623 static Value *simplifySelectBitTest(Value *TrueVal, Value *FalseVal, Value *X, 3624 const APInt *Y, bool TrueWhenUnset) { 3625 const APInt *C; 3626 3627 // (X & Y) == 0 ? X & ~Y : X --> X 3628 // (X & Y) != 0 ? X & ~Y : X --> X & ~Y 3629 if (FalseVal == X && match(TrueVal, m_And(m_Specific(X), m_APInt(C))) && 3630 *Y == ~*C) 3631 return TrueWhenUnset ? FalseVal : TrueVal; 3632 3633 // (X & Y) == 0 ? X : X & ~Y --> X & ~Y 3634 // (X & Y) != 0 ? X : X & ~Y --> X 3635 if (TrueVal == X && match(FalseVal, m_And(m_Specific(X), m_APInt(C))) && 3636 *Y == ~*C) 3637 return TrueWhenUnset ? FalseVal : TrueVal; 3638 3639 if (Y->isPowerOf2()) { 3640 // (X & Y) == 0 ? X | Y : X --> X | Y 3641 // (X & Y) != 0 ? X | Y : X --> X 3642 if (FalseVal == X && match(TrueVal, m_Or(m_Specific(X), m_APInt(C))) && 3643 *Y == *C) 3644 return TrueWhenUnset ? TrueVal : FalseVal; 3645 3646 // (X & Y) == 0 ? X : X | Y --> X 3647 // (X & Y) != 0 ? X : X | Y --> X | Y 3648 if (TrueVal == X && match(FalseVal, m_Or(m_Specific(X), m_APInt(C))) && 3649 *Y == *C) 3650 return TrueWhenUnset ? TrueVal : FalseVal; 3651 } 3652 3653 return nullptr; 3654 } 3655 3656 /// An alternative way to test if a bit is set or not uses sgt/slt instead of 3657 /// eq/ne. 3658 static Value *simplifySelectWithFakeICmpEq(Value *CmpLHS, Value *TrueVal, 3659 Value *FalseVal, 3660 bool TrueWhenUnset) { 3661 unsigned BitWidth = TrueVal->getType()->getScalarSizeInBits(); 3662 if (!BitWidth) 3663 return nullptr; 3664 3665 APInt MinSignedValue; 3666 Value *X; 3667 if (match(CmpLHS, m_Trunc(m_Value(X))) && (X == TrueVal || X == FalseVal)) { 3668 // icmp slt (trunc X), 0 <--> icmp ne (and X, C), 0 3669 // icmp sgt (trunc X), -1 <--> icmp eq (and X, C), 0 3670 unsigned DestSize = CmpLHS->getType()->getScalarSizeInBits(); 3671 MinSignedValue = APInt::getSignedMinValue(DestSize).zext(BitWidth); 3672 } else { 3673 // icmp slt X, 0 <--> icmp ne (and X, C), 0 3674 // icmp sgt X, -1 <--> icmp eq (and X, C), 0 3675 X = CmpLHS; 3676 MinSignedValue = APInt::getSignedMinValue(BitWidth); 3677 } 3678 3679 if (Value *V = simplifySelectBitTest(TrueVal, FalseVal, X, &MinSignedValue, 3680 TrueWhenUnset)) 3681 return V; 3682 3683 return nullptr; 3684 } 3685 3686 /// Try to simplify a select instruction when its condition operand is an 3687 /// integer comparison. 3688 static Value *simplifySelectWithICmpCond(Value *CondVal, Value *TrueVal, 3689 Value *FalseVal, const Query &Q, 3690 unsigned MaxRecurse) { 3691 ICmpInst::Predicate Pred; 3692 Value *CmpLHS, *CmpRHS; 3693 if (!match(CondVal, m_ICmp(Pred, m_Value(CmpLHS), m_Value(CmpRHS)))) 3694 return nullptr; 3695 3696 // FIXME: This code is nearly duplicated in InstCombine. Using/refactoring 3697 // decomposeBitTestICmp() might help. 3698 if (ICmpInst::isEquality(Pred) && match(CmpRHS, m_Zero())) { 3699 Value *X; 3700 const APInt *Y; 3701 if (match(CmpLHS, m_And(m_Value(X), m_APInt(Y)))) 3702 if (Value *V = simplifySelectBitTest(TrueVal, FalseVal, X, Y, 3703 Pred == ICmpInst::ICMP_EQ)) 3704 return V; 3705 } else if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, m_Zero())) { 3706 // Comparing signed-less-than 0 checks if the sign bit is set. 3707 if (Value *V = simplifySelectWithFakeICmpEq(CmpLHS, TrueVal, FalseVal, 3708 false)) 3709 return V; 3710 } else if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, m_AllOnes())) { 3711 // Comparing signed-greater-than -1 checks if the sign bit is not set. 3712 if (Value *V = simplifySelectWithFakeICmpEq(CmpLHS, TrueVal, FalseVal, 3713 true)) 3714 return V; 3715 } 3716 3717 if (CondVal->hasOneUse()) { 3718 const APInt *C; 3719 if (match(CmpRHS, m_APInt(C))) { 3720 // X < MIN ? T : F --> F 3721 if (Pred == ICmpInst::ICMP_SLT && C->isMinSignedValue()) 3722 return FalseVal; 3723 // X < MIN ? T : F --> F 3724 if (Pred == ICmpInst::ICMP_ULT && C->isMinValue()) 3725 return FalseVal; 3726 // X > MAX ? T : F --> F 3727 if (Pred == ICmpInst::ICMP_SGT && C->isMaxSignedValue()) 3728 return FalseVal; 3729 // X > MAX ? T : F --> F 3730 if (Pred == ICmpInst::ICMP_UGT && C->isMaxValue()) 3731 return FalseVal; 3732 } 3733 } 3734 3735 // If we have an equality comparison, then we know the value in one of the 3736 // arms of the select. See if substituting this value into the arm and 3737 // simplifying the result yields the same value as the other arm. 3738 if (Pred == ICmpInst::ICMP_EQ) { 3739 if (SimplifyWithOpReplaced(FalseVal, CmpLHS, CmpRHS, Q, MaxRecurse) == 3740 TrueVal || 3741 SimplifyWithOpReplaced(FalseVal, CmpRHS, CmpLHS, Q, MaxRecurse) == 3742 TrueVal) 3743 return FalseVal; 3744 if (SimplifyWithOpReplaced(TrueVal, CmpLHS, CmpRHS, Q, MaxRecurse) == 3745 FalseVal || 3746 SimplifyWithOpReplaced(TrueVal, CmpRHS, CmpLHS, Q, MaxRecurse) == 3747 FalseVal) 3748 return FalseVal; 3749 } else if (Pred == ICmpInst::ICMP_NE) { 3750 if (SimplifyWithOpReplaced(TrueVal, CmpLHS, CmpRHS, Q, MaxRecurse) == 3751 FalseVal || 3752 SimplifyWithOpReplaced(TrueVal, CmpRHS, CmpLHS, Q, MaxRecurse) == 3753 FalseVal) 3754 return TrueVal; 3755 if (SimplifyWithOpReplaced(FalseVal, CmpLHS, CmpRHS, Q, MaxRecurse) == 3756 TrueVal || 3757 SimplifyWithOpReplaced(FalseVal, CmpRHS, CmpLHS, Q, MaxRecurse) == 3758 TrueVal) 3759 return TrueVal; 3760 } 3761 3762 return nullptr; 3763 } 3764 3765 /// Given operands for a SelectInst, see if we can fold the result. 3766 /// If not, this returns null. 3767 static Value *SimplifySelectInst(Value *CondVal, Value *TrueVal, 3768 Value *FalseVal, const Query &Q, 3769 unsigned MaxRecurse) { 3770 // select true, X, Y -> X 3771 // select false, X, Y -> Y 3772 if (Constant *CB = dyn_cast<Constant>(CondVal)) { 3773 if (CB->isAllOnesValue()) 3774 return TrueVal; 3775 if (CB->isNullValue()) 3776 return FalseVal; 3777 } 3778 3779 // select C, X, X -> X 3780 if (TrueVal == FalseVal) 3781 return TrueVal; 3782 3783 if (isa<UndefValue>(CondVal)) { // select undef, X, Y -> X or Y 3784 if (isa<Constant>(TrueVal)) 3785 return TrueVal; 3786 return FalseVal; 3787 } 3788 if (isa<UndefValue>(TrueVal)) // select C, undef, X -> X 3789 return FalseVal; 3790 if (isa<UndefValue>(FalseVal)) // select C, X, undef -> X 3791 return TrueVal; 3792 3793 if (Value *V = 3794 simplifySelectWithICmpCond(CondVal, TrueVal, FalseVal, Q, MaxRecurse)) 3795 return V; 3796 3797 return nullptr; 3798 } 3799 3800 Value *llvm::SimplifySelectInst(Value *Cond, Value *TrueVal, Value *FalseVal, 3801 const DataLayout &DL, 3802 const TargetLibraryInfo *TLI, 3803 const DominatorTree *DT, AssumptionCache *AC, 3804 const Instruction *CxtI) { 3805 return ::SimplifySelectInst(Cond, TrueVal, FalseVal, 3806 Query(DL, TLI, DT, AC, CxtI), RecursionLimit); 3807 } 3808 3809 /// Given operands for an GetElementPtrInst, see if we can fold the result. 3810 /// If not, this returns null. 3811 static Value *SimplifyGEPInst(Type *SrcTy, ArrayRef<Value *> Ops, 3812 const Query &Q, unsigned) { 3813 // The type of the GEP pointer operand. 3814 unsigned AS = 3815 cast<PointerType>(Ops[0]->getType()->getScalarType())->getAddressSpace(); 3816 3817 // getelementptr P -> P. 3818 if (Ops.size() == 1) 3819 return Ops[0]; 3820 3821 // Compute the (pointer) type returned by the GEP instruction. 3822 Type *LastType = GetElementPtrInst::getIndexedType(SrcTy, Ops.slice(1)); 3823 Type *GEPTy = PointerType::get(LastType, AS); 3824 if (VectorType *VT = dyn_cast<VectorType>(Ops[0]->getType())) 3825 GEPTy = VectorType::get(GEPTy, VT->getNumElements()); 3826 3827 if (isa<UndefValue>(Ops[0])) 3828 return UndefValue::get(GEPTy); 3829 3830 if (Ops.size() == 2) { 3831 // getelementptr P, 0 -> P. 3832 if (match(Ops[1], m_Zero())) 3833 return Ops[0]; 3834 3835 Type *Ty = SrcTy; 3836 if (Ty->isSized()) { 3837 Value *P; 3838 uint64_t C; 3839 uint64_t TyAllocSize = Q.DL.getTypeAllocSize(Ty); 3840 // getelementptr P, N -> P if P points to a type of zero size. 3841 if (TyAllocSize == 0) 3842 return Ops[0]; 3843 3844 // The following transforms are only safe if the ptrtoint cast 3845 // doesn't truncate the pointers. 3846 if (Ops[1]->getType()->getScalarSizeInBits() == 3847 Q.DL.getPointerSizeInBits(AS)) { 3848 auto PtrToIntOrZero = [GEPTy](Value *P) -> Value * { 3849 if (match(P, m_Zero())) 3850 return Constant::getNullValue(GEPTy); 3851 Value *Temp; 3852 if (match(P, m_PtrToInt(m_Value(Temp)))) 3853 if (Temp->getType() == GEPTy) 3854 return Temp; 3855 return nullptr; 3856 }; 3857 3858 // getelementptr V, (sub P, V) -> P if P points to a type of size 1. 3859 if (TyAllocSize == 1 && 3860 match(Ops[1], m_Sub(m_Value(P), m_PtrToInt(m_Specific(Ops[0]))))) 3861 if (Value *R = PtrToIntOrZero(P)) 3862 return R; 3863 3864 // getelementptr V, (ashr (sub P, V), C) -> Q 3865 // if P points to a type of size 1 << C. 3866 if (match(Ops[1], 3867 m_AShr(m_Sub(m_Value(P), m_PtrToInt(m_Specific(Ops[0]))), 3868 m_ConstantInt(C))) && 3869 TyAllocSize == 1ULL << C) 3870 if (Value *R = PtrToIntOrZero(P)) 3871 return R; 3872 3873 // getelementptr V, (sdiv (sub P, V), C) -> Q 3874 // if P points to a type of size C. 3875 if (match(Ops[1], 3876 m_SDiv(m_Sub(m_Value(P), m_PtrToInt(m_Specific(Ops[0]))), 3877 m_SpecificInt(TyAllocSize)))) 3878 if (Value *R = PtrToIntOrZero(P)) 3879 return R; 3880 } 3881 } 3882 } 3883 3884 if (Q.DL.getTypeAllocSize(LastType) == 1 && 3885 all_of(Ops.slice(1).drop_back(1), 3886 [](Value *Idx) { return match(Idx, m_Zero()); })) { 3887 unsigned PtrWidth = 3888 Q.DL.getPointerSizeInBits(Ops[0]->getType()->getPointerAddressSpace()); 3889 if (Q.DL.getTypeSizeInBits(Ops.back()->getType()) == PtrWidth) { 3890 APInt BasePtrOffset(PtrWidth, 0); 3891 Value *StrippedBasePtr = 3892 Ops[0]->stripAndAccumulateInBoundsConstantOffsets(Q.DL, 3893 BasePtrOffset); 3894 3895 // gep (gep V, C), (sub 0, V) -> C 3896 if (match(Ops.back(), 3897 m_Sub(m_Zero(), m_PtrToInt(m_Specific(StrippedBasePtr))))) { 3898 auto *CI = ConstantInt::get(GEPTy->getContext(), BasePtrOffset); 3899 return ConstantExpr::getIntToPtr(CI, GEPTy); 3900 } 3901 // gep (gep V, C), (xor V, -1) -> C-1 3902 if (match(Ops.back(), 3903 m_Xor(m_PtrToInt(m_Specific(StrippedBasePtr)), m_AllOnes()))) { 3904 auto *CI = ConstantInt::get(GEPTy->getContext(), BasePtrOffset - 1); 3905 return ConstantExpr::getIntToPtr(CI, GEPTy); 3906 } 3907 } 3908 } 3909 3910 // Check to see if this is constant foldable. 3911 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 3912 if (!isa<Constant>(Ops[i])) 3913 return nullptr; 3914 3915 return ConstantExpr::getGetElementPtr(SrcTy, cast<Constant>(Ops[0]), 3916 Ops.slice(1)); 3917 } 3918 3919 Value *llvm::SimplifyGEPInst(Type *SrcTy, ArrayRef<Value *> Ops, 3920 const DataLayout &DL, 3921 const TargetLibraryInfo *TLI, 3922 const DominatorTree *DT, AssumptionCache *AC, 3923 const Instruction *CxtI) { 3924 return ::SimplifyGEPInst(SrcTy, Ops, 3925 Query(DL, TLI, DT, AC, CxtI), RecursionLimit); 3926 } 3927 3928 /// Given operands for an InsertValueInst, see if we can fold the result. 3929 /// If not, this returns null. 3930 static Value *SimplifyInsertValueInst(Value *Agg, Value *Val, 3931 ArrayRef<unsigned> Idxs, const Query &Q, 3932 unsigned) { 3933 if (Constant *CAgg = dyn_cast<Constant>(Agg)) 3934 if (Constant *CVal = dyn_cast<Constant>(Val)) 3935 return ConstantFoldInsertValueInstruction(CAgg, CVal, Idxs); 3936 3937 // insertvalue x, undef, n -> x 3938 if (match(Val, m_Undef())) 3939 return Agg; 3940 3941 // insertvalue x, (extractvalue y, n), n 3942 if (ExtractValueInst *EV = dyn_cast<ExtractValueInst>(Val)) 3943 if (EV->getAggregateOperand()->getType() == Agg->getType() && 3944 EV->getIndices() == Idxs) { 3945 // insertvalue undef, (extractvalue y, n), n -> y 3946 if (match(Agg, m_Undef())) 3947 return EV->getAggregateOperand(); 3948 3949 // insertvalue y, (extractvalue y, n), n -> y 3950 if (Agg == EV->getAggregateOperand()) 3951 return Agg; 3952 } 3953 3954 return nullptr; 3955 } 3956 3957 Value *llvm::SimplifyInsertValueInst( 3958 Value *Agg, Value *Val, ArrayRef<unsigned> Idxs, const DataLayout &DL, 3959 const TargetLibraryInfo *TLI, const DominatorTree *DT, AssumptionCache *AC, 3960 const Instruction *CxtI) { 3961 return ::SimplifyInsertValueInst(Agg, Val, Idxs, Query(DL, TLI, DT, AC, CxtI), 3962 RecursionLimit); 3963 } 3964 3965 /// Given operands for an ExtractValueInst, see if we can fold the result. 3966 /// If not, this returns null. 3967 static Value *SimplifyExtractValueInst(Value *Agg, ArrayRef<unsigned> Idxs, 3968 const Query &, unsigned) { 3969 if (auto *CAgg = dyn_cast<Constant>(Agg)) 3970 return ConstantFoldExtractValueInstruction(CAgg, Idxs); 3971 3972 // extractvalue x, (insertvalue y, elt, n), n -> elt 3973 unsigned NumIdxs = Idxs.size(); 3974 for (auto *IVI = dyn_cast<InsertValueInst>(Agg); IVI != nullptr; 3975 IVI = dyn_cast<InsertValueInst>(IVI->getAggregateOperand())) { 3976 ArrayRef<unsigned> InsertValueIdxs = IVI->getIndices(); 3977 unsigned NumInsertValueIdxs = InsertValueIdxs.size(); 3978 unsigned NumCommonIdxs = std::min(NumInsertValueIdxs, NumIdxs); 3979 if (InsertValueIdxs.slice(0, NumCommonIdxs) == 3980 Idxs.slice(0, NumCommonIdxs)) { 3981 if (NumIdxs == NumInsertValueIdxs) 3982 return IVI->getInsertedValueOperand(); 3983 break; 3984 } 3985 } 3986 3987 return nullptr; 3988 } 3989 3990 Value *llvm::SimplifyExtractValueInst(Value *Agg, ArrayRef<unsigned> Idxs, 3991 const DataLayout &DL, 3992 const TargetLibraryInfo *TLI, 3993 const DominatorTree *DT, 3994 AssumptionCache *AC, 3995 const Instruction *CxtI) { 3996 return ::SimplifyExtractValueInst(Agg, Idxs, Query(DL, TLI, DT, AC, CxtI), 3997 RecursionLimit); 3998 } 3999 4000 /// Given operands for an ExtractElementInst, see if we can fold the result. 4001 /// If not, this returns null. 4002 static Value *SimplifyExtractElementInst(Value *Vec, Value *Idx, const Query &, 4003 unsigned) { 4004 if (auto *CVec = dyn_cast<Constant>(Vec)) { 4005 if (auto *CIdx = dyn_cast<Constant>(Idx)) 4006 return ConstantFoldExtractElementInstruction(CVec, CIdx); 4007 4008 // The index is not relevant if our vector is a splat. 4009 if (auto *Splat = CVec->getSplatValue()) 4010 return Splat; 4011 4012 if (isa<UndefValue>(Vec)) 4013 return UndefValue::get(Vec->getType()->getVectorElementType()); 4014 } 4015 4016 // If extracting a specified index from the vector, see if we can recursively 4017 // find a previously computed scalar that was inserted into the vector. 4018 if (auto *IdxC = dyn_cast<ConstantInt>(Idx)) 4019 if (Value *Elt = findScalarElement(Vec, IdxC->getZExtValue())) 4020 return Elt; 4021 4022 return nullptr; 4023 } 4024 4025 Value *llvm::SimplifyExtractElementInst( 4026 Value *Vec, Value *Idx, const DataLayout &DL, const TargetLibraryInfo *TLI, 4027 const DominatorTree *DT, AssumptionCache *AC, const Instruction *CxtI) { 4028 return ::SimplifyExtractElementInst(Vec, Idx, Query(DL, TLI, DT, AC, CxtI), 4029 RecursionLimit); 4030 } 4031 4032 /// See if we can fold the given phi. If not, returns null. 4033 static Value *SimplifyPHINode(PHINode *PN, const Query &Q) { 4034 // If all of the PHI's incoming values are the same then replace the PHI node 4035 // with the common value. 4036 Value *CommonValue = nullptr; 4037 bool HasUndefInput = false; 4038 for (Value *Incoming : PN->incoming_values()) { 4039 // If the incoming value is the phi node itself, it can safely be skipped. 4040 if (Incoming == PN) continue; 4041 if (isa<UndefValue>(Incoming)) { 4042 // Remember that we saw an undef value, but otherwise ignore them. 4043 HasUndefInput = true; 4044 continue; 4045 } 4046 if (CommonValue && Incoming != CommonValue) 4047 return nullptr; // Not the same, bail out. 4048 CommonValue = Incoming; 4049 } 4050 4051 // If CommonValue is null then all of the incoming values were either undef or 4052 // equal to the phi node itself. 4053 if (!CommonValue) 4054 return UndefValue::get(PN->getType()); 4055 4056 // If we have a PHI node like phi(X, undef, X), where X is defined by some 4057 // instruction, we cannot return X as the result of the PHI node unless it 4058 // dominates the PHI block. 4059 if (HasUndefInput) 4060 return ValueDominatesPHI(CommonValue, PN, Q.DT) ? CommonValue : nullptr; 4061 4062 return CommonValue; 4063 } 4064 4065 static Value *SimplifyCastInst(unsigned CastOpc, Value *Op, 4066 Type *Ty, const Query &Q, unsigned MaxRecurse) { 4067 if (auto *C = dyn_cast<Constant>(Op)) 4068 return ConstantFoldCastOperand(CastOpc, C, Ty, Q.DL); 4069 4070 if (auto *CI = dyn_cast<CastInst>(Op)) { 4071 auto *Src = CI->getOperand(0); 4072 Type *SrcTy = Src->getType(); 4073 Type *MidTy = CI->getType(); 4074 Type *DstTy = Ty; 4075 if (Src->getType() == Ty) { 4076 auto FirstOp = static_cast<Instruction::CastOps>(CI->getOpcode()); 4077 auto SecondOp = static_cast<Instruction::CastOps>(CastOpc); 4078 Type *SrcIntPtrTy = 4079 SrcTy->isPtrOrPtrVectorTy() ? Q.DL.getIntPtrType(SrcTy) : nullptr; 4080 Type *MidIntPtrTy = 4081 MidTy->isPtrOrPtrVectorTy() ? Q.DL.getIntPtrType(MidTy) : nullptr; 4082 Type *DstIntPtrTy = 4083 DstTy->isPtrOrPtrVectorTy() ? Q.DL.getIntPtrType(DstTy) : nullptr; 4084 if (CastInst::isEliminableCastPair(FirstOp, SecondOp, SrcTy, MidTy, DstTy, 4085 SrcIntPtrTy, MidIntPtrTy, 4086 DstIntPtrTy) == Instruction::BitCast) 4087 return Src; 4088 } 4089 } 4090 4091 // bitcast x -> x 4092 if (CastOpc == Instruction::BitCast) 4093 if (Op->getType() == Ty) 4094 return Op; 4095 4096 return nullptr; 4097 } 4098 4099 Value *llvm::SimplifyCastInst(unsigned CastOpc, Value *Op, Type *Ty, 4100 const DataLayout &DL, 4101 const TargetLibraryInfo *TLI, 4102 const DominatorTree *DT, AssumptionCache *AC, 4103 const Instruction *CxtI) { 4104 return ::SimplifyCastInst(CastOpc, Op, Ty, Query(DL, TLI, DT, AC, CxtI), 4105 RecursionLimit); 4106 } 4107 4108 //=== Helper functions for higher up the class hierarchy. 4109 4110 /// Given operands for a BinaryOperator, see if we can fold the result. 4111 /// If not, this returns null. 4112 static Value *SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS, 4113 const Query &Q, unsigned MaxRecurse) { 4114 switch (Opcode) { 4115 case Instruction::Add: 4116 return SimplifyAddInst(LHS, RHS, /*isNSW*/false, /*isNUW*/false, 4117 Q, MaxRecurse); 4118 case Instruction::FAdd: 4119 return SimplifyFAddInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse); 4120 4121 case Instruction::Sub: 4122 return SimplifySubInst(LHS, RHS, /*isNSW*/false, /*isNUW*/false, 4123 Q, MaxRecurse); 4124 case Instruction::FSub: 4125 return SimplifyFSubInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse); 4126 4127 case Instruction::Mul: return SimplifyMulInst (LHS, RHS, Q, MaxRecurse); 4128 case Instruction::FMul: 4129 return SimplifyFMulInst (LHS, RHS, FastMathFlags(), Q, MaxRecurse); 4130 case Instruction::SDiv: return SimplifySDivInst(LHS, RHS, Q, MaxRecurse); 4131 case Instruction::UDiv: return SimplifyUDivInst(LHS, RHS, Q, MaxRecurse); 4132 case Instruction::FDiv: 4133 return SimplifyFDivInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse); 4134 case Instruction::SRem: return SimplifySRemInst(LHS, RHS, Q, MaxRecurse); 4135 case Instruction::URem: return SimplifyURemInst(LHS, RHS, Q, MaxRecurse); 4136 case Instruction::FRem: 4137 return SimplifyFRemInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse); 4138 case Instruction::Shl: 4139 return SimplifyShlInst(LHS, RHS, /*isNSW*/false, /*isNUW*/false, 4140 Q, MaxRecurse); 4141 case Instruction::LShr: 4142 return SimplifyLShrInst(LHS, RHS, /*isExact*/false, Q, MaxRecurse); 4143 case Instruction::AShr: 4144 return SimplifyAShrInst(LHS, RHS, /*isExact*/false, Q, MaxRecurse); 4145 case Instruction::And: return SimplifyAndInst(LHS, RHS, Q, MaxRecurse); 4146 case Instruction::Or: return SimplifyOrInst (LHS, RHS, Q, MaxRecurse); 4147 case Instruction::Xor: return SimplifyXorInst(LHS, RHS, Q, MaxRecurse); 4148 default: 4149 if (Constant *CLHS = dyn_cast<Constant>(LHS)) 4150 if (Constant *CRHS = dyn_cast<Constant>(RHS)) 4151 return ConstantFoldBinaryOpOperands(Opcode, CLHS, CRHS, Q.DL); 4152 4153 // If the operation is associative, try some generic simplifications. 4154 if (Instruction::isAssociative(Opcode)) 4155 if (Value *V = SimplifyAssociativeBinOp(Opcode, LHS, RHS, Q, MaxRecurse)) 4156 return V; 4157 4158 // If the operation is with the result of a select instruction check whether 4159 // operating on either branch of the select always yields the same value. 4160 if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS)) 4161 if (Value *V = ThreadBinOpOverSelect(Opcode, LHS, RHS, Q, MaxRecurse)) 4162 return V; 4163 4164 // If the operation is with the result of a phi instruction, check whether 4165 // operating on all incoming values of the phi always yields the same value. 4166 if (isa<PHINode>(LHS) || isa<PHINode>(RHS)) 4167 if (Value *V = ThreadBinOpOverPHI(Opcode, LHS, RHS, Q, MaxRecurse)) 4168 return V; 4169 4170 return nullptr; 4171 } 4172 } 4173 4174 /// Given operands for a BinaryOperator, see if we can fold the result. 4175 /// If not, this returns null. 4176 /// In contrast to SimplifyBinOp, try to use FastMathFlag when folding the 4177 /// result. In case we don't need FastMathFlags, simply fall to SimplifyBinOp. 4178 static Value *SimplifyFPBinOp(unsigned Opcode, Value *LHS, Value *RHS, 4179 const FastMathFlags &FMF, const Query &Q, 4180 unsigned MaxRecurse) { 4181 switch (Opcode) { 4182 case Instruction::FAdd: 4183 return SimplifyFAddInst(LHS, RHS, FMF, Q, MaxRecurse); 4184 case Instruction::FSub: 4185 return SimplifyFSubInst(LHS, RHS, FMF, Q, MaxRecurse); 4186 case Instruction::FMul: 4187 return SimplifyFMulInst(LHS, RHS, FMF, Q, MaxRecurse); 4188 case Instruction::FDiv: 4189 return SimplifyFDivInst(LHS, RHS, FMF, Q, MaxRecurse); 4190 default: 4191 return SimplifyBinOp(Opcode, LHS, RHS, Q, MaxRecurse); 4192 } 4193 } 4194 4195 Value *llvm::SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS, 4196 const DataLayout &DL, const TargetLibraryInfo *TLI, 4197 const DominatorTree *DT, AssumptionCache *AC, 4198 const Instruction *CxtI) { 4199 return ::SimplifyBinOp(Opcode, LHS, RHS, Query(DL, TLI, DT, AC, CxtI), 4200 RecursionLimit); 4201 } 4202 4203 Value *llvm::SimplifyFPBinOp(unsigned Opcode, Value *LHS, Value *RHS, 4204 const FastMathFlags &FMF, const DataLayout &DL, 4205 const TargetLibraryInfo *TLI, 4206 const DominatorTree *DT, AssumptionCache *AC, 4207 const Instruction *CxtI) { 4208 return ::SimplifyFPBinOp(Opcode, LHS, RHS, FMF, Query(DL, TLI, DT, AC, CxtI), 4209 RecursionLimit); 4210 } 4211 4212 /// Given operands for a CmpInst, see if we can fold the result. 4213 static Value *SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS, 4214 const Query &Q, unsigned MaxRecurse) { 4215 if (CmpInst::isIntPredicate((CmpInst::Predicate)Predicate)) 4216 return SimplifyICmpInst(Predicate, LHS, RHS, Q, MaxRecurse); 4217 return SimplifyFCmpInst(Predicate, LHS, RHS, FastMathFlags(), Q, MaxRecurse); 4218 } 4219 4220 Value *llvm::SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS, 4221 const DataLayout &DL, const TargetLibraryInfo *TLI, 4222 const DominatorTree *DT, AssumptionCache *AC, 4223 const Instruction *CxtI) { 4224 return ::SimplifyCmpInst(Predicate, LHS, RHS, Query(DL, TLI, DT, AC, CxtI), 4225 RecursionLimit); 4226 } 4227 4228 static bool IsIdempotent(Intrinsic::ID ID) { 4229 switch (ID) { 4230 default: return false; 4231 4232 // Unary idempotent: f(f(x)) = f(x) 4233 case Intrinsic::fabs: 4234 case Intrinsic::floor: 4235 case Intrinsic::ceil: 4236 case Intrinsic::trunc: 4237 case Intrinsic::rint: 4238 case Intrinsic::nearbyint: 4239 case Intrinsic::round: 4240 return true; 4241 } 4242 } 4243 4244 static Value *SimplifyRelativeLoad(Constant *Ptr, Constant *Offset, 4245 const DataLayout &DL) { 4246 GlobalValue *PtrSym; 4247 APInt PtrOffset; 4248 if (!IsConstantOffsetFromGlobal(Ptr, PtrSym, PtrOffset, DL)) 4249 return nullptr; 4250 4251 Type *Int8PtrTy = Type::getInt8PtrTy(Ptr->getContext()); 4252 Type *Int32Ty = Type::getInt32Ty(Ptr->getContext()); 4253 Type *Int32PtrTy = Int32Ty->getPointerTo(); 4254 Type *Int64Ty = Type::getInt64Ty(Ptr->getContext()); 4255 4256 auto *OffsetConstInt = dyn_cast<ConstantInt>(Offset); 4257 if (!OffsetConstInt || OffsetConstInt->getType()->getBitWidth() > 64) 4258 return nullptr; 4259 4260 uint64_t OffsetInt = OffsetConstInt->getSExtValue(); 4261 if (OffsetInt % 4 != 0) 4262 return nullptr; 4263 4264 Constant *C = ConstantExpr::getGetElementPtr( 4265 Int32Ty, ConstantExpr::getBitCast(Ptr, Int32PtrTy), 4266 ConstantInt::get(Int64Ty, OffsetInt / 4)); 4267 Constant *Loaded = ConstantFoldLoadFromConstPtr(C, Int32Ty, DL); 4268 if (!Loaded) 4269 return nullptr; 4270 4271 auto *LoadedCE = dyn_cast<ConstantExpr>(Loaded); 4272 if (!LoadedCE) 4273 return nullptr; 4274 4275 if (LoadedCE->getOpcode() == Instruction::Trunc) { 4276 LoadedCE = dyn_cast<ConstantExpr>(LoadedCE->getOperand(0)); 4277 if (!LoadedCE) 4278 return nullptr; 4279 } 4280 4281 if (LoadedCE->getOpcode() != Instruction::Sub) 4282 return nullptr; 4283 4284 auto *LoadedLHS = dyn_cast<ConstantExpr>(LoadedCE->getOperand(0)); 4285 if (!LoadedLHS || LoadedLHS->getOpcode() != Instruction::PtrToInt) 4286 return nullptr; 4287 auto *LoadedLHSPtr = LoadedLHS->getOperand(0); 4288 4289 Constant *LoadedRHS = LoadedCE->getOperand(1); 4290 GlobalValue *LoadedRHSSym; 4291 APInt LoadedRHSOffset; 4292 if (!IsConstantOffsetFromGlobal(LoadedRHS, LoadedRHSSym, LoadedRHSOffset, 4293 DL) || 4294 PtrSym != LoadedRHSSym || PtrOffset != LoadedRHSOffset) 4295 return nullptr; 4296 4297 return ConstantExpr::getBitCast(LoadedLHSPtr, Int8PtrTy); 4298 } 4299 4300 static bool maskIsAllZeroOrUndef(Value *Mask) { 4301 auto *ConstMask = dyn_cast<Constant>(Mask); 4302 if (!ConstMask) 4303 return false; 4304 if (ConstMask->isNullValue() || isa<UndefValue>(ConstMask)) 4305 return true; 4306 for (unsigned I = 0, E = ConstMask->getType()->getVectorNumElements(); I != E; 4307 ++I) { 4308 if (auto *MaskElt = ConstMask->getAggregateElement(I)) 4309 if (MaskElt->isNullValue() || isa<UndefValue>(MaskElt)) 4310 continue; 4311 return false; 4312 } 4313 return true; 4314 } 4315 4316 template <typename IterTy> 4317 static Value *SimplifyIntrinsic(Function *F, IterTy ArgBegin, IterTy ArgEnd, 4318 const Query &Q, unsigned MaxRecurse) { 4319 Intrinsic::ID IID = F->getIntrinsicID(); 4320 unsigned NumOperands = std::distance(ArgBegin, ArgEnd); 4321 4322 // Unary Ops 4323 if (NumOperands == 1) { 4324 // Perform idempotent optimizations 4325 if (IsIdempotent(IID)) { 4326 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(*ArgBegin)) { 4327 if (II->getIntrinsicID() == IID) 4328 return II; 4329 } 4330 } 4331 4332 switch (IID) { 4333 case Intrinsic::fabs: { 4334 if (SignBitMustBeZero(*ArgBegin, Q.TLI)) 4335 return *ArgBegin; 4336 return nullptr; 4337 } 4338 default: 4339 return nullptr; 4340 } 4341 } 4342 4343 // Binary Ops 4344 if (NumOperands == 2) { 4345 Value *LHS = *ArgBegin; 4346 Value *RHS = *(ArgBegin + 1); 4347 Type *ReturnType = F->getReturnType(); 4348 4349 switch (IID) { 4350 case Intrinsic::usub_with_overflow: 4351 case Intrinsic::ssub_with_overflow: { 4352 // X - X -> { 0, false } 4353 if (LHS == RHS) 4354 return Constant::getNullValue(ReturnType); 4355 4356 // X - undef -> undef 4357 // undef - X -> undef 4358 if (isa<UndefValue>(LHS) || isa<UndefValue>(RHS)) 4359 return UndefValue::get(ReturnType); 4360 4361 return nullptr; 4362 } 4363 case Intrinsic::uadd_with_overflow: 4364 case Intrinsic::sadd_with_overflow: { 4365 // X + undef -> undef 4366 if (isa<UndefValue>(RHS)) 4367 return UndefValue::get(ReturnType); 4368 4369 return nullptr; 4370 } 4371 case Intrinsic::umul_with_overflow: 4372 case Intrinsic::smul_with_overflow: { 4373 // X * 0 -> { 0, false } 4374 if (match(RHS, m_Zero())) 4375 return Constant::getNullValue(ReturnType); 4376 4377 // X * undef -> { 0, false } 4378 if (match(RHS, m_Undef())) 4379 return Constant::getNullValue(ReturnType); 4380 4381 return nullptr; 4382 } 4383 case Intrinsic::load_relative: { 4384 Constant *C0 = dyn_cast<Constant>(LHS); 4385 Constant *C1 = dyn_cast<Constant>(RHS); 4386 if (C0 && C1) 4387 return SimplifyRelativeLoad(C0, C1, Q.DL); 4388 return nullptr; 4389 } 4390 default: 4391 return nullptr; 4392 } 4393 } 4394 4395 // Simplify calls to llvm.masked.load.* 4396 switch (IID) { 4397 case Intrinsic::masked_load: { 4398 Value *MaskArg = ArgBegin[2]; 4399 Value *PassthruArg = ArgBegin[3]; 4400 // If the mask is all zeros or undef, the "passthru" argument is the result. 4401 if (maskIsAllZeroOrUndef(MaskArg)) 4402 return PassthruArg; 4403 return nullptr; 4404 } 4405 default: 4406 return nullptr; 4407 } 4408 } 4409 4410 template <typename IterTy> 4411 static Value *SimplifyCall(Value *V, IterTy ArgBegin, IterTy ArgEnd, 4412 const Query &Q, unsigned MaxRecurse) { 4413 Type *Ty = V->getType(); 4414 if (PointerType *PTy = dyn_cast<PointerType>(Ty)) 4415 Ty = PTy->getElementType(); 4416 FunctionType *FTy = cast<FunctionType>(Ty); 4417 4418 // call undef -> undef 4419 // call null -> undef 4420 if (isa<UndefValue>(V) || isa<ConstantPointerNull>(V)) 4421 return UndefValue::get(FTy->getReturnType()); 4422 4423 Function *F = dyn_cast<Function>(V); 4424 if (!F) 4425 return nullptr; 4426 4427 if (F->isIntrinsic()) 4428 if (Value *Ret = SimplifyIntrinsic(F, ArgBegin, ArgEnd, Q, MaxRecurse)) 4429 return Ret; 4430 4431 if (!canConstantFoldCallTo(F)) 4432 return nullptr; 4433 4434 SmallVector<Constant *, 4> ConstantArgs; 4435 ConstantArgs.reserve(ArgEnd - ArgBegin); 4436 for (IterTy I = ArgBegin, E = ArgEnd; I != E; ++I) { 4437 Constant *C = dyn_cast<Constant>(*I); 4438 if (!C) 4439 return nullptr; 4440 ConstantArgs.push_back(C); 4441 } 4442 4443 return ConstantFoldCall(F, ConstantArgs, Q.TLI); 4444 } 4445 4446 Value *llvm::SimplifyCall(Value *V, User::op_iterator ArgBegin, 4447 User::op_iterator ArgEnd, const DataLayout &DL, 4448 const TargetLibraryInfo *TLI, const DominatorTree *DT, 4449 AssumptionCache *AC, const Instruction *CxtI) { 4450 return ::SimplifyCall(V, ArgBegin, ArgEnd, Query(DL, TLI, DT, AC, CxtI), 4451 RecursionLimit); 4452 } 4453 4454 Value *llvm::SimplifyCall(Value *V, ArrayRef<Value *> Args, 4455 const DataLayout &DL, const TargetLibraryInfo *TLI, 4456 const DominatorTree *DT, AssumptionCache *AC, 4457 const Instruction *CxtI) { 4458 return ::SimplifyCall(V, Args.begin(), Args.end(), 4459 Query(DL, TLI, DT, AC, CxtI), RecursionLimit); 4460 } 4461 4462 /// See if we can compute a simplified version of this instruction. 4463 /// If not, this returns null. 4464 Value *llvm::SimplifyInstruction(Instruction *I, const DataLayout &DL, 4465 const TargetLibraryInfo *TLI, 4466 const DominatorTree *DT, AssumptionCache *AC, 4467 OptimizationRemarkEmitter *ORE) { 4468 Value *Result; 4469 4470 switch (I->getOpcode()) { 4471 default: 4472 Result = ConstantFoldInstruction(I, DL, TLI); 4473 break; 4474 case Instruction::FAdd: 4475 Result = SimplifyFAddInst(I->getOperand(0), I->getOperand(1), 4476 I->getFastMathFlags(), DL, TLI, DT, AC, I); 4477 break; 4478 case Instruction::Add: 4479 Result = SimplifyAddInst(I->getOperand(0), I->getOperand(1), 4480 cast<BinaryOperator>(I)->hasNoSignedWrap(), 4481 cast<BinaryOperator>(I)->hasNoUnsignedWrap(), DL, 4482 TLI, DT, AC, I); 4483 break; 4484 case Instruction::FSub: 4485 Result = SimplifyFSubInst(I->getOperand(0), I->getOperand(1), 4486 I->getFastMathFlags(), DL, TLI, DT, AC, I); 4487 break; 4488 case Instruction::Sub: 4489 Result = SimplifySubInst(I->getOperand(0), I->getOperand(1), 4490 cast<BinaryOperator>(I)->hasNoSignedWrap(), 4491 cast<BinaryOperator>(I)->hasNoUnsignedWrap(), DL, 4492 TLI, DT, AC, I); 4493 break; 4494 case Instruction::FMul: 4495 Result = SimplifyFMulInst(I->getOperand(0), I->getOperand(1), 4496 I->getFastMathFlags(), DL, TLI, DT, AC, I); 4497 break; 4498 case Instruction::Mul: 4499 Result = 4500 SimplifyMulInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT, AC, I); 4501 break; 4502 case Instruction::SDiv: 4503 Result = SimplifySDivInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT, 4504 AC, I); 4505 break; 4506 case Instruction::UDiv: 4507 Result = SimplifyUDivInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT, 4508 AC, I); 4509 break; 4510 case Instruction::FDiv: 4511 Result = SimplifyFDivInst(I->getOperand(0), I->getOperand(1), 4512 I->getFastMathFlags(), DL, TLI, DT, AC, I); 4513 break; 4514 case Instruction::SRem: 4515 Result = SimplifySRemInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT, 4516 AC, I); 4517 break; 4518 case Instruction::URem: 4519 Result = SimplifyURemInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT, 4520 AC, I); 4521 break; 4522 case Instruction::FRem: 4523 Result = SimplifyFRemInst(I->getOperand(0), I->getOperand(1), 4524 I->getFastMathFlags(), DL, TLI, DT, AC, I); 4525 break; 4526 case Instruction::Shl: 4527 Result = SimplifyShlInst(I->getOperand(0), I->getOperand(1), 4528 cast<BinaryOperator>(I)->hasNoSignedWrap(), 4529 cast<BinaryOperator>(I)->hasNoUnsignedWrap(), DL, 4530 TLI, DT, AC, I); 4531 break; 4532 case Instruction::LShr: 4533 Result = SimplifyLShrInst(I->getOperand(0), I->getOperand(1), 4534 cast<BinaryOperator>(I)->isExact(), DL, TLI, DT, 4535 AC, I); 4536 break; 4537 case Instruction::AShr: 4538 Result = SimplifyAShrInst(I->getOperand(0), I->getOperand(1), 4539 cast<BinaryOperator>(I)->isExact(), DL, TLI, DT, 4540 AC, I); 4541 break; 4542 case Instruction::And: 4543 Result = 4544 SimplifyAndInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT, AC, I); 4545 break; 4546 case Instruction::Or: 4547 Result = 4548 SimplifyOrInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT, AC, I); 4549 break; 4550 case Instruction::Xor: 4551 Result = 4552 SimplifyXorInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT, AC, I); 4553 break; 4554 case Instruction::ICmp: 4555 Result = 4556 SimplifyICmpInst(cast<ICmpInst>(I)->getPredicate(), I->getOperand(0), 4557 I->getOperand(1), DL, TLI, DT, AC, I); 4558 break; 4559 case Instruction::FCmp: 4560 Result = SimplifyFCmpInst(cast<FCmpInst>(I)->getPredicate(), 4561 I->getOperand(0), I->getOperand(1), 4562 I->getFastMathFlags(), DL, TLI, DT, AC, I); 4563 break; 4564 case Instruction::Select: 4565 Result = SimplifySelectInst(I->getOperand(0), I->getOperand(1), 4566 I->getOperand(2), DL, TLI, DT, AC, I); 4567 break; 4568 case Instruction::GetElementPtr: { 4569 SmallVector<Value*, 8> Ops(I->op_begin(), I->op_end()); 4570 Result = SimplifyGEPInst(cast<GetElementPtrInst>(I)->getSourceElementType(), 4571 Ops, DL, TLI, DT, AC, I); 4572 break; 4573 } 4574 case Instruction::InsertValue: { 4575 InsertValueInst *IV = cast<InsertValueInst>(I); 4576 Result = SimplifyInsertValueInst(IV->getAggregateOperand(), 4577 IV->getInsertedValueOperand(), 4578 IV->getIndices(), DL, TLI, DT, AC, I); 4579 break; 4580 } 4581 case Instruction::ExtractValue: { 4582 auto *EVI = cast<ExtractValueInst>(I); 4583 Result = SimplifyExtractValueInst(EVI->getAggregateOperand(), 4584 EVI->getIndices(), DL, TLI, DT, AC, I); 4585 break; 4586 } 4587 case Instruction::ExtractElement: { 4588 auto *EEI = cast<ExtractElementInst>(I); 4589 Result = SimplifyExtractElementInst( 4590 EEI->getVectorOperand(), EEI->getIndexOperand(), DL, TLI, DT, AC, I); 4591 break; 4592 } 4593 case Instruction::PHI: 4594 Result = SimplifyPHINode(cast<PHINode>(I), Query(DL, TLI, DT, AC, I)); 4595 break; 4596 case Instruction::Call: { 4597 CallSite CS(cast<CallInst>(I)); 4598 Result = SimplifyCall(CS.getCalledValue(), CS.arg_begin(), CS.arg_end(), DL, 4599 TLI, DT, AC, I); 4600 break; 4601 } 4602 #define HANDLE_CAST_INST(num, opc, clas) case Instruction::opc: 4603 #include "llvm/IR/Instruction.def" 4604 #undef HANDLE_CAST_INST 4605 Result = SimplifyCastInst(I->getOpcode(), I->getOperand(0), I->getType(), 4606 DL, TLI, DT, AC, I); 4607 break; 4608 } 4609 4610 // In general, it is possible for computeKnownBits to determine all bits in a 4611 // value even when the operands are not all constants. 4612 if (!Result && I->getType()->isIntOrIntVectorTy()) { 4613 unsigned BitWidth = I->getType()->getScalarSizeInBits(); 4614 APInt KnownZero(BitWidth, 0); 4615 APInt KnownOne(BitWidth, 0); 4616 computeKnownBits(I, KnownZero, KnownOne, DL, /*Depth*/0, AC, I, DT, ORE); 4617 if ((KnownZero | KnownOne).isAllOnesValue()) 4618 Result = ConstantInt::get(I->getType(), KnownOne); 4619 } 4620 4621 /// If called on unreachable code, the above logic may report that the 4622 /// instruction simplified to itself. Make life easier for users by 4623 /// detecting that case here, returning a safe value instead. 4624 return Result == I ? UndefValue::get(I->getType()) : Result; 4625 } 4626 4627 /// \brief Implementation of recursive simplification through an instruction's 4628 /// uses. 4629 /// 4630 /// This is the common implementation of the recursive simplification routines. 4631 /// If we have a pre-simplified value in 'SimpleV', that is forcibly used to 4632 /// replace the instruction 'I'. Otherwise, we simply add 'I' to the list of 4633 /// instructions to process and attempt to simplify it using 4634 /// InstructionSimplify. 4635 /// 4636 /// This routine returns 'true' only when *it* simplifies something. The passed 4637 /// in simplified value does not count toward this. 4638 static bool replaceAndRecursivelySimplifyImpl(Instruction *I, Value *SimpleV, 4639 const TargetLibraryInfo *TLI, 4640 const DominatorTree *DT, 4641 AssumptionCache *AC) { 4642 bool Simplified = false; 4643 SmallSetVector<Instruction *, 8> Worklist; 4644 const DataLayout &DL = I->getModule()->getDataLayout(); 4645 4646 // If we have an explicit value to collapse to, do that round of the 4647 // simplification loop by hand initially. 4648 if (SimpleV) { 4649 for (User *U : I->users()) 4650 if (U != I) 4651 Worklist.insert(cast<Instruction>(U)); 4652 4653 // Replace the instruction with its simplified value. 4654 I->replaceAllUsesWith(SimpleV); 4655 4656 // Gracefully handle edge cases where the instruction is not wired into any 4657 // parent block. 4658 if (I->getParent() && !I->isEHPad() && !isa<TerminatorInst>(I) && 4659 !I->mayHaveSideEffects()) 4660 I->eraseFromParent(); 4661 } else { 4662 Worklist.insert(I); 4663 } 4664 4665 // Note that we must test the size on each iteration, the worklist can grow. 4666 for (unsigned Idx = 0; Idx != Worklist.size(); ++Idx) { 4667 I = Worklist[Idx]; 4668 4669 // See if this instruction simplifies. 4670 SimpleV = SimplifyInstruction(I, DL, TLI, DT, AC); 4671 if (!SimpleV) 4672 continue; 4673 4674 Simplified = true; 4675 4676 // Stash away all the uses of the old instruction so we can check them for 4677 // recursive simplifications after a RAUW. This is cheaper than checking all 4678 // uses of To on the recursive step in most cases. 4679 for (User *U : I->users()) 4680 Worklist.insert(cast<Instruction>(U)); 4681 4682 // Replace the instruction with its simplified value. 4683 I->replaceAllUsesWith(SimpleV); 4684 4685 // Gracefully handle edge cases where the instruction is not wired into any 4686 // parent block. 4687 if (I->getParent() && !I->isEHPad() && !isa<TerminatorInst>(I) && 4688 !I->mayHaveSideEffects()) 4689 I->eraseFromParent(); 4690 } 4691 return Simplified; 4692 } 4693 4694 bool llvm::recursivelySimplifyInstruction(Instruction *I, 4695 const TargetLibraryInfo *TLI, 4696 const DominatorTree *DT, 4697 AssumptionCache *AC) { 4698 return replaceAndRecursivelySimplifyImpl(I, nullptr, TLI, DT, AC); 4699 } 4700 4701 bool llvm::replaceAndRecursivelySimplify(Instruction *I, Value *SimpleV, 4702 const TargetLibraryInfo *TLI, 4703 const DominatorTree *DT, 4704 AssumptionCache *AC) { 4705 assert(I != SimpleV && "replaceAndRecursivelySimplify(X,X) is not valid!"); 4706 assert(SimpleV && "Must provide a simplified value."); 4707 return replaceAndRecursivelySimplifyImpl(I, SimpleV, TLI, DT, AC); 4708 } 4709